module_content
stringlengths 18
1.05M
|
---|
module tx_chain_hb
(input clock,
input reset,
input enable,
input wire [7:0] interp_rate,
input sample_strobe,
input interpolator_strobe,
input hb_strobe,
input wire [31:0] freq,
input wire [15:0] i_in,
input wire [15:0] q_in,
output wire [15:0] i_out,
output wire [15:0] q_out,
output wire [15:0] debug, output [15:0] hb_i_out
);
assign debug[15:13] = {sample_strobe,hb_strobe,interpolator_strobe};
wire [15:0] bb_i, bb_q;
wire [15:0] hb_i_out, hb_q_out;
halfband_interp hb
(.clock(clock),.reset(reset),.enable(enable),
.strobe_in(interpolator_strobe),.strobe_out(hb_strobe),
.signal_in_i(i_in),.signal_in_q(q_in),
.signal_out_i(hb_i_out),.signal_out_q(hb_q_out),
.debug(debug[12:0]));
cic_interp cic_interp_i
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(hb_strobe),.strobe_out(sample_strobe),
.signal_in(hb_i_out),.signal_out(bb_i) );
cic_interp cic_interp_q
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(hb_strobe),.strobe_out(sample_strobe),
.signal_in(hb_q_out),.signal_out(bb_q) );
`define NOCORDIC_TX
`ifdef NOCORDIC_TX
assign i_out = bb_i;
assign q_out = bb_q;
`else
wire [31:0] phase;
phase_acc phase_acc_tx
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq),.phase(phase) );
cordic tx_cordic_0
( .clock(clock),.reset(reset),.enable(sample_strobe),
.xi(bb_i),.yi(bb_q),.zi(phase[31:16]),
.xo(i_out),.yo(q_out),.zo() );
`endif
endmodule
|
module tx_chain_hb
(input clock,
input reset,
input enable,
input wire [7:0] interp_rate,
input sample_strobe,
input interpolator_strobe,
input hb_strobe,
input wire [31:0] freq,
input wire [15:0] i_in,
input wire [15:0] q_in,
output wire [15:0] i_out,
output wire [15:0] q_out,
output wire [15:0] debug, output [15:0] hb_i_out
);
assign debug[15:13] = {sample_strobe,hb_strobe,interpolator_strobe};
wire [15:0] bb_i, bb_q;
wire [15:0] hb_i_out, hb_q_out;
halfband_interp hb
(.clock(clock),.reset(reset),.enable(enable),
.strobe_in(interpolator_strobe),.strobe_out(hb_strobe),
.signal_in_i(i_in),.signal_in_q(q_in),
.signal_out_i(hb_i_out),.signal_out_q(hb_q_out),
.debug(debug[12:0]));
cic_interp cic_interp_i
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(hb_strobe),.strobe_out(sample_strobe),
.signal_in(hb_i_out),.signal_out(bb_i) );
cic_interp cic_interp_q
( .clock(clock),.reset(reset),.enable(enable),
.rate(interp_rate),.strobe_in(hb_strobe),.strobe_out(sample_strobe),
.signal_in(hb_q_out),.signal_out(bb_q) );
`define NOCORDIC_TX
`ifdef NOCORDIC_TX
assign i_out = bb_i;
assign q_out = bb_q;
`else
wire [31:0] phase;
phase_acc phase_acc_tx
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq),.phase(phase) );
cordic tx_cordic_0
( .clock(clock),.reset(reset),.enable(sample_strobe),
.xi(bb_i),.yi(bb_q),.zi(phase[31:16]),
.xo(i_out),.yo(q_out),.zo() );
`endif
endmodule
|
module ddr3_int_example_top (
// inputs:
clock_source,
global_reset_n,
// outputs:
mem_addr,
mem_ba,
mem_cas_n,
mem_cke,
mem_clk,
mem_clk_n,
mem_cs_n,
mem_dm,
mem_dq,
mem_dqs,
mem_dqsn,
mem_odt,
mem_ras_n,
mem_reset_n,
mem_we_n,
pnf,
pnf_per_byte,
test_complete,
test_status
)
;
output [ 12: 0] mem_addr;
output [ 2: 0] mem_ba;
output mem_cas_n;
output [ 0: 0] mem_cke;
inout [ 0: 0] mem_clk;
inout [ 0: 0] mem_clk_n;
output [ 0: 0] mem_cs_n;
output [ 3: 0] mem_dm;
inout [ 31: 0] mem_dq;
inout [ 3: 0] mem_dqs;
inout [ 3: 0] mem_dqsn;
output [ 0: 0] mem_odt;
output mem_ras_n;
output mem_reset_n;
output mem_we_n;
output pnf;
output [ 15: 0] pnf_per_byte;
output test_complete;
output [ 7: 0] test_status;
input clock_source;
input global_reset_n;
wire [ 0: 0] cs_n;
wire dll_reference_clk_sig;
wire [ 5: 0] dqs_delay_ctrl_export_sig;
wire local_burstbegin_sig;
wire [ 12: 0] mem_addr;
wire mem_aux_full_rate_clk;
wire mem_aux_half_rate_clk;
wire [ 2: 0] mem_ba;
wire mem_cas_n;
wire [ 0: 0] mem_cke;
wire [ 0: 0] mem_clk;
wire [ 0: 0] mem_clk_n;
wire [ 0: 0] mem_cs_n;
wire [ 3: 0] mem_dm;
wire [ 31: 0] mem_dq;
wire [ 3: 0] mem_dqs;
wire [ 3: 0] mem_dqsn;
wire [ 23: 0] mem_local_addr;
wire [ 15: 0] mem_local_be;
wire [ 9: 0] mem_local_col_addr;
wire mem_local_cs_addr;
wire [127: 0] mem_local_rdata;
wire mem_local_rdata_valid;
wire mem_local_read_req;
wire mem_local_ready;
wire [ 5: 0] mem_local_size;
wire [127: 0] mem_local_wdata;
wire mem_local_write_req;
wire [ 0: 0] mem_odt;
wire mem_ras_n;
wire mem_reset_n;
wire mem_we_n;
wire phy_clk;
wire pnf;
wire [ 15: 0] pnf_per_byte;
wire reset_phy_clk_n;
wire test_complete;
wire [ 7: 0] test_status;
wire tie_high;
wire tie_low;
//
//
assign mem_cs_n = cs_n;
//<< END MEGAWIZARD INSERT MODULE
assign tie_high = 1'b1;
assign tie_low = 1'b0;
//<< START MEGAWIZARD INSERT WRAPPER_NAME
ddr3_int ddr3_int_inst
(
.aux_full_rate_clk (mem_aux_full_rate_clk),
.aux_half_rate_clk (mem_aux_half_rate_clk),
.dll_reference_clk (dll_reference_clk_sig),
.dqs_delay_ctrl_export (dqs_delay_ctrl_export_sig),
.global_reset_n (global_reset_n),
.local_address (mem_local_addr),
.local_be (mem_local_be),
.local_burstbegin (local_burstbegin_sig),
.local_init_done (),
.local_rdata (mem_local_rdata),
.local_rdata_valid (mem_local_rdata_valid),
.local_read_req (mem_local_read_req),
.local_ready (mem_local_ready),
.local_refresh_ack (),
.local_size (mem_local_size),
.local_wdata (mem_local_wdata),
.local_wdata_req (),
.local_write_req (mem_local_write_req),
.mem_addr (mem_addr[12 : 0]),
.mem_ba (mem_ba),
.mem_cas_n (mem_cas_n),
.mem_cke (mem_cke),
.mem_clk (mem_clk),
.mem_clk_n (mem_clk_n),
.mem_cs_n (cs_n),
.mem_dm (mem_dm[3 : 0]),
.mem_dq (mem_dq),
.mem_dqs (mem_dqs[3 : 0]),
.mem_dqsn (mem_dqsn[3 : 0]),
.mem_odt (mem_odt),
.mem_ras_n (mem_ras_n),
.mem_reset_n (mem_reset_n),
.mem_we_n (mem_we_n),
.phy_clk (phy_clk),
.pll_ref_clk (clock_source),
.reset_phy_clk_n (reset_phy_clk_n),
.reset_request_n (),
.soft_reset_n (tie_high)
);
//<< END MEGAWIZARD INSERT WRAPPER_NAME
//<< START MEGAWIZARD INSERT CS_ADDR_MAP
//connect up the column address bits, dropping 2 bits from example driver output because of 4:1 data rate
assign mem_local_addr[7 : 0] = mem_local_col_addr[9 : 2];
//<< END MEGAWIZARD INSERT CS_ADDR_MAP
//<< START MEGAWIZARD INSERT EXAMPLE_DRIVER
//Self-test, synthesisable code to exercise the DDR SDRAM Controller
ddr3_int_example_driver driver
(
.clk (phy_clk),
.local_bank_addr (mem_local_addr[23 : 21]),
.local_be (mem_local_be),
.local_burstbegin (local_burstbegin_sig),
.local_col_addr (mem_local_col_addr),
.local_cs_addr (mem_local_cs_addr),
.local_rdata (mem_local_rdata),
.local_rdata_valid (mem_local_rdata_valid),
.local_read_req (mem_local_read_req),
.local_ready (mem_local_ready),
.local_row_addr (mem_local_addr[20 : 8]),
.local_size (mem_local_size),
.local_wdata (mem_local_wdata),
.local_write_req (mem_local_write_req),
.pnf_per_byte (pnf_per_byte[15 : 0]),
.pnf_persist (pnf),
.reset_n (reset_phy_clk_n),
.test_complete (test_complete),
.test_status (test_status)
);
//<< END MEGAWIZARD INSERT EXAMPLE_DRIVER
//<< START MEGAWIZARD INSERT DLL
//<< END MEGAWIZARD INSERT DLL
//<< START MEGAWIZARD INSERT BANK_INFORMATION_EXAMPLE
//<< END MEGAWIZARD INSERT BANK_INFORMATION_EXAMPLE
//<< start europa
endmodule
|
module clk_divider(input reset, input wire in_clk,output reg out_clk, input [7:0] ratio);
reg [7:0] counter;
// FIXME maybe should use PLL or switch to double edge version
always @(posedge in_clk or posedge reset)
if(reset)
counter <= #1 8'd0;
else if(counter == 0)
counter <= #1 ratio[7:1] + (ratio[0] & out_clk) - 8'b1;
else
counter <= #1 counter-8'd1;
always @(posedge in_clk or posedge reset)
if(reset)
out_clk <= #1 1'b0;
else if(counter == 0)
out_clk <= #1 ~out_clk;
endmodule
|
module clk_divider(input reset, input wire in_clk,output reg out_clk, input [7:0] ratio);
reg [7:0] counter;
// FIXME maybe should use PLL or switch to double edge version
always @(posedge in_clk or posedge reset)
if(reset)
counter <= #1 8'd0;
else if(counter == 0)
counter <= #1 ratio[7:1] + (ratio[0] & out_clk) - 8'b1;
else
counter <= #1 counter-8'd1;
always @(posedge in_clk or posedge reset)
if(reset)
out_clk <= #1 1'b0;
else if(counter == 0)
out_clk <= #1 ~out_clk;
endmodule
|
module cic_decim
( clock,reset,enable,rate,strobe_in,strobe_out,signal_in,signal_out);
parameter bw = 16;
parameter N = 4;
parameter log2_of_max_rate = 7;
parameter maxbitgain = N * log2_of_max_rate;
input clock;
input reset;
input enable;
input [7:0] rate;
input strobe_in,strobe_out;
input [bw-1:0] signal_in;
output [bw-1:0] signal_out;
reg [bw-1:0] signal_out;
wire [bw-1:0] signal_out_unreg;
wire [bw+maxbitgain-1:0] signal_in_ext;
reg [bw+maxbitgain-1:0] integrator [0:N-1];
reg [bw+maxbitgain-1:0] differentiator [0:N-1];
reg [bw+maxbitgain-1:0] pipeline [0:N-1];
reg [bw+maxbitgain-1:0] sampler;
integer i;
sign_extend #(bw,bw+maxbitgain)
ext_input (.in(signal_in),.out(signal_in_ext));
always @(posedge clock)
if(reset)
for(i=0;i<N;i=i+1)
integrator[i] <= #1 0;
else if (enable && strobe_in)
begin
integrator[0] <= #1 integrator[0] + signal_in_ext;
for(i=1;i<N;i=i+1)
integrator[i] <= #1 integrator[i] + integrator[i-1];
end
always @(posedge clock)
if(reset)
begin
sampler <= #1 0;
for(i=0;i<N;i=i+1)
begin
pipeline[i] <= #1 0;
differentiator[i] <= #1 0;
end
end
else if (enable && strobe_out)
begin
sampler <= #1 integrator[N-1];
differentiator[0] <= #1 sampler;
pipeline[0] <= #1 sampler - differentiator[0];
for(i=1;i<N;i=i+1)
begin
differentiator[i] <= #1 pipeline[i-1];
pipeline[i] <= #1 pipeline[i-1] - differentiator[i];
end
end // if (enable && strobe_out)
wire [bw+maxbitgain-1:0] signal_out_unnorm = pipeline[N-1];
cic_dec_shifter #(bw)
cic_dec_shifter(rate,signal_out_unnorm,signal_out_unreg);
always @(posedge clock)
signal_out <= #1 signal_out_unreg;
endmodule
|
module cic_decim
( clock,reset,enable,rate,strobe_in,strobe_out,signal_in,signal_out);
parameter bw = 16;
parameter N = 4;
parameter log2_of_max_rate = 7;
parameter maxbitgain = N * log2_of_max_rate;
input clock;
input reset;
input enable;
input [7:0] rate;
input strobe_in,strobe_out;
input [bw-1:0] signal_in;
output [bw-1:0] signal_out;
reg [bw-1:0] signal_out;
wire [bw-1:0] signal_out_unreg;
wire [bw+maxbitgain-1:0] signal_in_ext;
reg [bw+maxbitgain-1:0] integrator [0:N-1];
reg [bw+maxbitgain-1:0] differentiator [0:N-1];
reg [bw+maxbitgain-1:0] pipeline [0:N-1];
reg [bw+maxbitgain-1:0] sampler;
integer i;
sign_extend #(bw,bw+maxbitgain)
ext_input (.in(signal_in),.out(signal_in_ext));
always @(posedge clock)
if(reset)
for(i=0;i<N;i=i+1)
integrator[i] <= #1 0;
else if (enable && strobe_in)
begin
integrator[0] <= #1 integrator[0] + signal_in_ext;
for(i=1;i<N;i=i+1)
integrator[i] <= #1 integrator[i] + integrator[i-1];
end
always @(posedge clock)
if(reset)
begin
sampler <= #1 0;
for(i=0;i<N;i=i+1)
begin
pipeline[i] <= #1 0;
differentiator[i] <= #1 0;
end
end
else if (enable && strobe_out)
begin
sampler <= #1 integrator[N-1];
differentiator[0] <= #1 sampler;
pipeline[0] <= #1 sampler - differentiator[0];
for(i=1;i<N;i=i+1)
begin
differentiator[i] <= #1 pipeline[i-1];
pipeline[i] <= #1 pipeline[i-1] - differentiator[i];
end
end // if (enable && strobe_out)
wire [bw+maxbitgain-1:0] signal_out_unnorm = pipeline[N-1];
cic_dec_shifter #(bw)
cic_dec_shifter(rate,signal_out_unnorm,signal_out_unreg);
always @(posedge clock)
signal_out <= #1 signal_out_unreg;
endmodule
|
module clk_doubler (
inclk0,
c0);
input inclk0;
output c0;
endmodule
|
module fifo_1c_4k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 4096;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [7:0] rdusedw;
output wrfull;
output wrempty;
output [7:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [7:0] rdusedw;
reg [7:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
endmodule
|
module fifo_1c_4k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 4096;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [7:0] rdusedw;
output wrfull;
output wrempty;
output [7:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [7:0] rdusedw;
reg [7:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
endmodule
|
module fifo_1c_4k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 4096;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [7:0] rdusedw;
output wrfull;
output wrempty;
output [7:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [7:0] rdusedw;
reg [7:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
endmodule
|
module fifo_1c_4k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 4096;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [7:0] rdusedw;
output wrfull;
output wrempty;
output [7:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [7:0] rdusedw;
reg [7:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
endmodule
|
module fifo (reset,data,write,wrclk,wr_used,q,read_ack,rdclk,rd_used);
parameter width=32;
parameter depth=10;
input reset; // Asynchronous
input [width-1:0] data;
input write;
input wrclk;
output [depth-1:0] wr_used;
output [width-1:0] q;
input read_ack;
input rdclk;
output [depth-1:0] rd_used;
reg [depth-1:0] read_addr, write_addr,
read_addr_gray, read_addr_gray_sync,
write_addr_gray, write_addr_gray_sync;
// Pseudo-dual-port RAM
dpram #(.depth(10),.width(width),.size(1024))
fifo_ram (.wclk(wrclk),.wdata(data),.waddr(write_addr),.wen(write),
.rclk(rdclk), .rdata(q),.raddr(read_addr) );
wire [depth-1:0] wag,rag;
// Keep track of own side's pointer
always @(posedge wrclk or posedge reset)
if(reset) write_addr <= #1 0;
else if(write) write_addr <= #1 write_addr + 1;
always @(posedge rdclk or posedge reset)
if(reset) read_addr <= #1 0;
else if(read_ack) read_addr <= #1 read_addr + 1;
// Convert own side pointer to gray
bin2gray #(depth) write_b2g (write_addr,wag);
bin2gray #(depth) read_b2g (read_addr,rag);
// Latch it
always @(posedge wrclk or posedge reset)
if(reset) write_addr_gray <= #1 0;
else write_addr_gray <= #1 wag;
always @(posedge rdclk or posedge reset)
if(reset) read_addr_gray <= #1 0;
else read_addr_gray <= #1 rag;
// Send it to other side and latch
always @(posedge wrclk or posedge reset)
if(reset) read_addr_gray_sync <= #1 0;
else read_addr_gray_sync <= #1 read_addr_gray;
always @(posedge rdclk or posedge reset)
if(reset) write_addr_gray_sync <= #1 0;
else write_addr_gray_sync <= #1 write_addr_gray;
wire [depth-1:0] write_addr_sync, read_addr_sync;
// Convert back to binary
gray2bin #(depth) write_g2b (write_addr_gray_sync, write_addr_sync);
gray2bin #(depth) read_g2b (read_addr_gray_sync, read_addr_sync);
assign rd_used = write_addr_sync - read_addr;
assign wr_used = write_addr - read_addr_sync;
endmodule
|
module bin2gray(bin_val,gray_val);
parameter width = 8;
input [width-1:0] bin_val;
output reg [width-1:0] gray_val;
integer i;
always @*
begin
gray_val[width-1] = bin_val[width-1];
for(i=0;i<width-1;i=i+1)
gray_val[i] = bin_val[i] ^ bin_val[i+1];
end
endmodule
|
module gray2bin(gray_val,bin_val);
parameter width = 8;
input [width-1:0] gray_val;
output reg [width-1:0] bin_val;
integer i;
always @*
begin
bin_val[width-1] = gray_val[width-1];
for(i=width-2;i>=0;i=i-1)
bin_val[i] = bin_val[i+1] ^ gray_val[i];
end
endmodule
|
module fifo_1c_2k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 2048;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [10:0] rdusedw;
output wrfull;
output wrempty;
output [10:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [10:0] rdusedw;
reg [10:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule
|
module fifo_1c_2k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 2048;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [10:0] rdusedw;
output wrfull;
output wrempty;
output [10:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [10:0] rdusedw;
reg [10:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule
|
module fifo_1c_2k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 2048;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [10:0] rdusedw;
output wrfull;
output wrempty;
output [10:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [10:0] rdusedw;
reg [10:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule
|
module fifo_1c_2k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 2048;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [10:0] rdusedw;
output wrfull;
output wrempty;
output [10:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [10:0] rdusedw;
reg [10:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule
|
module gen_sync
( input clock,
input reset,
input enable,
input [7:0] rate,
output wire sync );
// parameter width = 8;
reg [7:0] counter;
assign sync = |(((rate+1)>>1)& counter);
always @(posedge clock)
if(reset || ~enable)
counter <= #1 0;
else if(counter == rate)
counter <= #1 0;
else
counter <= #1 counter + 8'd1;
endmodule
|
module dspclkpll (
inclk0,
c0,
c1);
input inclk0;
output c0;
output c1;
endmodule
|
module dspclkpll (
inclk0,
c0,
c1);
input inclk0;
output c0;
output c1;
endmodule
|
module dspclkpll (
inclk0,
c0,
c1);
input inclk0;
output c0;
output c1;
endmodule
|
module dspclkpll (
inclk0,
c0,
c1);
input inclk0;
output c0;
output c1;
endmodule
|
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
endmodule
|
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
endmodule
|
module fifo_2k_a_gray2bin_8m4
(
bin,
gray) /* synthesis synthesis_clearbox=1 */;
output [10:0] bin;
input [10:0] gray;
wire xor0;
wire xor1;
wire xor2;
wire xor3;
wire xor4;
wire xor5;
wire xor6;
wire xor7;
wire xor8;
wire xor9;
assign
bin = {gray[10], xor9, xor8, xor7, xor6, xor5, xor4, xor3, xor2, xor1, xor0},
xor0 = (gray[0] ^ xor1),
xor1 = (gray[1] ^ xor2),
xor2 = (gray[2] ^ xor3),
xor3 = (gray[3] ^ xor4),
xor4 = (gray[4] ^ xor5),
xor5 = (gray[5] ^ xor6),
xor6 = (gray[6] ^ xor7),
xor7 = (gray[7] ^ xor8),
xor8 = (gray[8] ^ xor9),
xor9 = (gray[10] ^ gray[9]);
endmodule
|
module fifo_2k_a_graycounter_726
(
aclr,
clock,
cnt_en,
q) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clock;
input cnt_en;
output [10:0] q;
wire [0:0] wire_countera_0cout;
wire [0:0] wire_countera_1cout;
wire [0:0] wire_countera_2cout;
wire [0:0] wire_countera_3cout;
wire [0:0] wire_countera_4cout;
wire [0:0] wire_countera_5cout;
wire [0:0] wire_countera_6cout;
wire [0:0] wire_countera_7cout;
wire [0:0] wire_countera_8cout;
wire [0:0] wire_countera_9cout;
wire [10:0] wire_countera_regout;
wire wire_parity_cout;
wire wire_parity_regout;
wire [10:0] power_modified_counter_values;
wire sclr;
wire updown;
cyclone_lcell countera_0
(
.aclr(aclr),
.cin(wire_parity_cout),
.clk(clock),
.combout(),
.cout(wire_countera_0cout[0:0]),
.dataa(cnt_en),
.datab(wire_countera_regout[0:0]),
.ena(1'b1),
.regout(wire_countera_regout[0:0]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_0.cin_used = "true",
countera_0.lut_mask = "c6a0",
countera_0.operation_mode = "arithmetic",
countera_0.sum_lutc_input = "cin",
countera_0.synch_mode = "on",
countera_0.lpm_type = "cyclone_lcell";
cyclone_lcell countera_1
(
.aclr(aclr),
.cin(wire_countera_0cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_1cout[0:0]),
.dataa(power_modified_counter_values[0]),
.datab(power_modified_counter_values[1]),
.ena(1'b1),
.regout(wire_countera_regout[1:1]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_1.cin_used = "true",
countera_1.lut_mask = "6c50",
countera_1.operation_mode = "arithmetic",
countera_1.sum_lutc_input = "cin",
countera_1.synch_mode = "on",
countera_1.lpm_type = "cyclone_lcell";
cyclone_lcell countera_2
(
.aclr(aclr),
.cin(wire_countera_1cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_2cout[0:0]),
.dataa(power_modified_counter_values[1]),
.datab(power_modified_counter_values[2]),
.ena(1'b1),
.regout(wire_countera_regout[2:2]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_2.cin_used = "true",
countera_2.lut_mask = "6c50",
countera_2.operation_mode = "arithmetic",
countera_2.sum_lutc_input = "cin",
countera_2.synch_mode = "on",
countera_2.lpm_type = "cyclone_lcell";
cyclone_lcell countera_3
(
.aclr(aclr),
.cin(wire_countera_2cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_3cout[0:0]),
.dataa(power_modified_counter_values[2]),
.datab(power_modified_counter_values[3]),
.ena(1'b1),
.regout(wire_countera_regout[3:3]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_3.cin_used = "true",
countera_3.lut_mask = "6c50",
countera_3.operation_mode = "arithmetic",
countera_3.sum_lutc_input = "cin",
countera_3.synch_mode = "on",
countera_3.lpm_type = "cyclone_lcell";
cyclone_lcell countera_4
(
.aclr(aclr),
.cin(wire_countera_3cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_4cout[0:0]),
.dataa(power_modified_counter_values[3]),
.datab(power_modified_counter_values[4]),
.ena(1'b1),
.regout(wire_countera_regout[4:4]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_4.cin_used = "true",
countera_4.lut_mask = "6c50",
countera_4.operation_mode = "arithmetic",
countera_4.sum_lutc_input = "cin",
countera_4.synch_mode = "on",
countera_4.lpm_type = "cyclone_lcell";
cyclone_lcell countera_5
(
.aclr(aclr),
.cin(wire_countera_4cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_5cout[0:0]),
.dataa(power_modified_counter_values[4]),
.datab(power_modified_counter_values[5]),
.ena(1'b1),
.regout(wire_countera_regout[5:5]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_5.cin_used = "true",
countera_5.lut_mask = "6c50",
countera_5.operation_mode = "arithmetic",
countera_5.sum_lutc_input = "cin",
countera_5.synch_mode = "on",
countera_5.lpm_type = "cyclone_lcell";
cyclone_lcell countera_6
(
.aclr(aclr),
.cin(wire_countera_5cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_6cout[0:0]),
.dataa(power_modified_counter_values[5]),
.datab(power_modified_counter_values[6]),
.ena(1'b1),
.regout(wire_countera_regout[6:6]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_6.cin_used = "true",
countera_6.lut_mask = "6c50",
countera_6.operation_mode = "arithmetic",
countera_6.sum_lutc_input = "cin",
countera_6.synch_mode = "on",
countera_6.lpm_type = "cyclone_lcell";
cyclone_lcell countera_7
(
.aclr(aclr),
.cin(wire_countera_6cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_7cout[0:0]),
.dataa(power_modified_counter_values[6]),
.datab(power_modified_counter_values[7]),
.ena(1'b1),
.regout(wire_countera_regout[7:7]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_7.cin_used = "true",
countera_7.lut_mask = "6c50",
countera_7.operation_mode = "arithmetic",
countera_7.sum_lutc_input = "cin",
countera_7.synch_mode = "on",
countera_7.lpm_type = "cyclone_lcell";
cyclone_lcell countera_8
(
.aclr(aclr),
.cin(wire_countera_7cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_8cout[0:0]),
.dataa(power_modified_counter_values[7]),
.datab(power_modified_counter_values[8]),
.ena(1'b1),
.regout(wire_countera_regout[8:8]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_8.cin_used = "true",
countera_8.lut_mask = "6c50",
countera_8.operation_mode = "arithmetic",
countera_8.sum_lutc_input = "cin",
countera_8.synch_mode = "on",
countera_8.lpm_type = "cyclone_lcell";
cyclone_lcell countera_9
(
.aclr(aclr),
.cin(wire_countera_8cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_9cout[0:0]),
.dataa(power_modified_counter_values[8]),
.datab(power_modified_counter_values[9]),
.ena(1'b1),
.regout(wire_countera_regout[9:9]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_9.cin_used = "true",
countera_9.lut_mask = "6c50",
countera_9.operation_mode = "arithmetic",
countera_9.sum_lutc_input = "cin",
countera_9.synch_mode = "on",
countera_9.lpm_type = "cyclone_lcell";
cyclone_lcell countera_10
(
.aclr(aclr),
.cin(wire_countera_9cout[0:0]),
.clk(clock),
.combout(),
.cout(),
.dataa(power_modified_counter_values[10]),
.ena(1'b1),
.regout(wire_countera_regout[10:10]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datab(1'b1),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_10.cin_used = "true",
countera_10.lut_mask = "5a5a",
countera_10.operation_mode = "normal",
countera_10.sum_lutc_input = "cin",
countera_10.synch_mode = "on",
countera_10.lpm_type = "cyclone_lcell";
cyclone_lcell parity
(
.aclr(aclr),
.cin(updown),
.clk(clock),
.combout(),
.cout(wire_parity_cout),
.dataa(cnt_en),
.datab(wire_parity_regout),
.ena(1'b1),
.regout(wire_parity_regout),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
parity.cin_used = "true",
parity.lut_mask = "6682",
parity.operation_mode = "arithmetic",
parity.synch_mode = "on",
parity.lpm_type = "cyclone_lcell";
assign
power_modified_counter_values = {wire_countera_regout[10:0]},
q = power_modified_counter_values,
sclr = 1'b0,
updown = 1'b1;
endmodule
|
module fifo_2k_a_graycounter_2r6
(
aclr,
clock,
cnt_en,
q) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clock;
input cnt_en;
output [10:0] q;
wire [0:0] wire_countera_0cout;
wire [0:0] wire_countera_1cout;
wire [0:0] wire_countera_2cout;
wire [0:0] wire_countera_3cout;
wire [0:0] wire_countera_4cout;
wire [0:0] wire_countera_5cout;
wire [0:0] wire_countera_6cout;
wire [0:0] wire_countera_7cout;
wire [0:0] wire_countera_8cout;
wire [0:0] wire_countera_9cout;
wire [10:0] wire_countera_regout;
wire wire_parity_cout;
wire wire_parity_regout;
wire [10:0] power_modified_counter_values;
wire sclr;
wire updown;
cyclone_lcell countera_0
(
.aclr(aclr),
.cin(wire_parity_cout),
.clk(clock),
.combout(),
.cout(wire_countera_0cout[0:0]),
.dataa(cnt_en),
.datab(wire_countera_regout[0:0]),
.ena(1'b1),
.regout(wire_countera_regout[0:0]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_0.cin_used = "true",
countera_0.lut_mask = "c6a0",
countera_0.operation_mode = "arithmetic",
countera_0.sum_lutc_input = "cin",
countera_0.synch_mode = "on",
countera_0.lpm_type = "cyclone_lcell";
cyclone_lcell countera_1
(
.aclr(aclr),
.cin(wire_countera_0cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_1cout[0:0]),
.dataa(power_modified_counter_values[0]),
.datab(power_modified_counter_values[1]),
.ena(1'b1),
.regout(wire_countera_regout[1:1]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_1.cin_used = "true",
countera_1.lut_mask = "6c50",
countera_1.operation_mode = "arithmetic",
countera_1.sum_lutc_input = "cin",
countera_1.synch_mode = "on",
countera_1.lpm_type = "cyclone_lcell";
cyclone_lcell countera_2
(
.aclr(aclr),
.cin(wire_countera_1cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_2cout[0:0]),
.dataa(power_modified_counter_values[1]),
.datab(power_modified_counter_values[2]),
.ena(1'b1),
.regout(wire_countera_regout[2:2]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_2.cin_used = "true",
countera_2.lut_mask = "6c50",
countera_2.operation_mode = "arithmetic",
countera_2.sum_lutc_input = "cin",
countera_2.synch_mode = "on",
countera_2.lpm_type = "cyclone_lcell";
cyclone_lcell countera_3
(
.aclr(aclr),
.cin(wire_countera_2cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_3cout[0:0]),
.dataa(power_modified_counter_values[2]),
.datab(power_modified_counter_values[3]),
.ena(1'b1),
.regout(wire_countera_regout[3:3]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_3.cin_used = "true",
countera_3.lut_mask = "6c50",
countera_3.operation_mode = "arithmetic",
countera_3.sum_lutc_input = "cin",
countera_3.synch_mode = "on",
countera_3.lpm_type = "cyclone_lcell";
cyclone_lcell countera_4
(
.aclr(aclr),
.cin(wire_countera_3cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_4cout[0:0]),
.dataa(power_modified_counter_values[3]),
.datab(power_modified_counter_values[4]),
.ena(1'b1),
.regout(wire_countera_regout[4:4]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_4.cin_used = "true",
countera_4.lut_mask = "6c50",
countera_4.operation_mode = "arithmetic",
countera_4.sum_lutc_input = "cin",
countera_4.synch_mode = "on",
countera_4.lpm_type = "cyclone_lcell";
cyclone_lcell countera_5
(
.aclr(aclr),
.cin(wire_countera_4cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_5cout[0:0]),
.dataa(power_modified_counter_values[4]),
.datab(power_modified_counter_values[5]),
.ena(1'b1),
.regout(wire_countera_regout[5:5]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_5.cin_used = "true",
countera_5.lut_mask = "6c50",
countera_5.operation_mode = "arithmetic",
countera_5.sum_lutc_input = "cin",
countera_5.synch_mode = "on",
countera_5.lpm_type = "cyclone_lcell";
cyclone_lcell countera_6
(
.aclr(aclr),
.cin(wire_countera_5cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_6cout[0:0]),
.dataa(power_modified_counter_values[5]),
.datab(power_modified_counter_values[6]),
.ena(1'b1),
.regout(wire_countera_regout[6:6]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_6.cin_used = "true",
countera_6.lut_mask = "6c50",
countera_6.operation_mode = "arithmetic",
countera_6.sum_lutc_input = "cin",
countera_6.synch_mode = "on",
countera_6.lpm_type = "cyclone_lcell";
cyclone_lcell countera_7
(
.aclr(aclr),
.cin(wire_countera_6cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_7cout[0:0]),
.dataa(power_modified_counter_values[6]),
.datab(power_modified_counter_values[7]),
.ena(1'b1),
.regout(wire_countera_regout[7:7]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_7.cin_used = "true",
countera_7.lut_mask = "6c50",
countera_7.operation_mode = "arithmetic",
countera_7.sum_lutc_input = "cin",
countera_7.synch_mode = "on",
countera_7.lpm_type = "cyclone_lcell";
cyclone_lcell countera_8
(
.aclr(aclr),
.cin(wire_countera_7cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_8cout[0:0]),
.dataa(power_modified_counter_values[7]),
.datab(power_modified_counter_values[8]),
.ena(1'b1),
.regout(wire_countera_regout[8:8]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_8.cin_used = "true",
countera_8.lut_mask = "6c50",
countera_8.operation_mode = "arithmetic",
countera_8.sum_lutc_input = "cin",
countera_8.synch_mode = "on",
countera_8.lpm_type = "cyclone_lcell";
cyclone_lcell countera_9
(
.aclr(aclr),
.cin(wire_countera_8cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_9cout[0:0]),
.dataa(power_modified_counter_values[8]),
.datab(power_modified_counter_values[9]),
.ena(1'b1),
.regout(wire_countera_regout[9:9]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_9.cin_used = "true",
countera_9.lut_mask = "6c50",
countera_9.operation_mode = "arithmetic",
countera_9.sum_lutc_input = "cin",
countera_9.synch_mode = "on",
countera_9.lpm_type = "cyclone_lcell";
cyclone_lcell countera_10
(
.aclr(aclr),
.cin(wire_countera_9cout[0:0]),
.clk(clock),
.combout(),
.cout(),
.dataa(power_modified_counter_values[10]),
.ena(1'b1),
.regout(wire_countera_regout[10:10]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datab(1'b1),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_10.cin_used = "true",
countera_10.lut_mask = "5a5a",
countera_10.operation_mode = "normal",
countera_10.sum_lutc_input = "cin",
countera_10.synch_mode = "on",
countera_10.lpm_type = "cyclone_lcell";
cyclone_lcell parity
(
.aclr(aclr),
.cin(updown),
.clk(clock),
.combout(),
.cout(wire_parity_cout),
.dataa(cnt_en),
.datab((~ wire_parity_regout)),
.ena(1'b1),
.regout(wire_parity_regout),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
parity.cin_used = "true",
parity.lut_mask = "9982",
parity.operation_mode = "arithmetic",
parity.synch_mode = "on",
parity.lpm_type = "cyclone_lcell";
assign
power_modified_counter_values = {wire_countera_regout[10:1], (~ wire_countera_regout[0])},
q = power_modified_counter_values,
sclr = 1'b0,
updown = 1'b1;
endmodule
|
module fifo_2k_altsyncram_6pl
(
address_a,
address_b,
clock0,
clock1,
clocken1,
data_a,
q_b,
wren_a) /* synthesis synthesis_clearbox=1 */;
input [10:0] address_a;
input [10:0] address_b;
input clock0;
input clock1;
input clocken1;
input [15:0] data_a;
output [15:0] q_b;
input wren_a;
wire [0:0] wire_ram_block3a_0portbdataout;
wire [0:0] wire_ram_block3a_1portbdataout;
wire [0:0] wire_ram_block3a_2portbdataout;
wire [0:0] wire_ram_block3a_3portbdataout;
wire [0:0] wire_ram_block3a_4portbdataout;
wire [0:0] wire_ram_block3a_5portbdataout;
wire [0:0] wire_ram_block3a_6portbdataout;
wire [0:0] wire_ram_block3a_7portbdataout;
wire [0:0] wire_ram_block3a_8portbdataout;
wire [0:0] wire_ram_block3a_9portbdataout;
wire [0:0] wire_ram_block3a_10portbdataout;
wire [0:0] wire_ram_block3a_11portbdataout;
wire [0:0] wire_ram_block3a_12portbdataout;
wire [0:0] wire_ram_block3a_13portbdataout;
wire [0:0] wire_ram_block3a_14portbdataout;
wire [0:0] wire_ram_block3a_15portbdataout;
wire [10:0] address_a_wire;
wire [10:0] address_b_wire;
cyclone_ram_block ram_block3a_0
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[0]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_0portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_0.connectivity_checking = "OFF",
ram_block3a_0.logical_ram_name = "ALTSYNCRAM",
ram_block3a_0.mixed_port_feed_through_mode = "dont_care",
ram_block3a_0.operation_mode = "dual_port",
ram_block3a_0.port_a_address_width = 11,
ram_block3a_0.port_a_data_width = 1,
ram_block3a_0.port_a_first_address = 0,
ram_block3a_0.port_a_first_bit_number = 0,
ram_block3a_0.port_a_last_address = 2047,
ram_block3a_0.port_a_logical_ram_depth = 2048,
ram_block3a_0.port_a_logical_ram_width = 16,
ram_block3a_0.port_b_address_clear = "none",
ram_block3a_0.port_b_address_clock = "clock1",
ram_block3a_0.port_b_address_width = 11,
ram_block3a_0.port_b_data_out_clear = "none",
ram_block3a_0.port_b_data_out_clock = "none",
ram_block3a_0.port_b_data_width = 1,
ram_block3a_0.port_b_first_address = 0,
ram_block3a_0.port_b_first_bit_number = 0,
ram_block3a_0.port_b_last_address = 2047,
ram_block3a_0.port_b_logical_ram_depth = 2048,
ram_block3a_0.port_b_logical_ram_width = 16,
ram_block3a_0.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_0.ram_block_type = "auto",
ram_block3a_0.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_1
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[1]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_1portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_1.connectivity_checking = "OFF",
ram_block3a_1.logical_ram_name = "ALTSYNCRAM",
ram_block3a_1.mixed_port_feed_through_mode = "dont_care",
ram_block3a_1.operation_mode = "dual_port",
ram_block3a_1.port_a_address_width = 11,
ram_block3a_1.port_a_data_width = 1,
ram_block3a_1.port_a_first_address = 0,
ram_block3a_1.port_a_first_bit_number = 1,
ram_block3a_1.port_a_last_address = 2047,
ram_block3a_1.port_a_logical_ram_depth = 2048,
ram_block3a_1.port_a_logical_ram_width = 16,
ram_block3a_1.port_b_address_clear = "none",
ram_block3a_1.port_b_address_clock = "clock1",
ram_block3a_1.port_b_address_width = 11,
ram_block3a_1.port_b_data_out_clear = "none",
ram_block3a_1.port_b_data_out_clock = "none",
ram_block3a_1.port_b_data_width = 1,
ram_block3a_1.port_b_first_address = 0,
ram_block3a_1.port_b_first_bit_number = 1,
ram_block3a_1.port_b_last_address = 2047,
ram_block3a_1.port_b_logical_ram_depth = 2048,
ram_block3a_1.port_b_logical_ram_width = 16,
ram_block3a_1.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_1.ram_block_type = "auto",
ram_block3a_1.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_2
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[2]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_2portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_2.connectivity_checking = "OFF",
ram_block3a_2.logical_ram_name = "ALTSYNCRAM",
ram_block3a_2.mixed_port_feed_through_mode = "dont_care",
ram_block3a_2.operation_mode = "dual_port",
ram_block3a_2.port_a_address_width = 11,
ram_block3a_2.port_a_data_width = 1,
ram_block3a_2.port_a_first_address = 0,
ram_block3a_2.port_a_first_bit_number = 2,
ram_block3a_2.port_a_last_address = 2047,
ram_block3a_2.port_a_logical_ram_depth = 2048,
ram_block3a_2.port_a_logical_ram_width = 16,
ram_block3a_2.port_b_address_clear = "none",
ram_block3a_2.port_b_address_clock = "clock1",
ram_block3a_2.port_b_address_width = 11,
ram_block3a_2.port_b_data_out_clear = "none",
ram_block3a_2.port_b_data_out_clock = "none",
ram_block3a_2.port_b_data_width = 1,
ram_block3a_2.port_b_first_address = 0,
ram_block3a_2.port_b_first_bit_number = 2,
ram_block3a_2.port_b_last_address = 2047,
ram_block3a_2.port_b_logical_ram_depth = 2048,
ram_block3a_2.port_b_logical_ram_width = 16,
ram_block3a_2.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_2.ram_block_type = "auto",
ram_block3a_2.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_3
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[3]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_3portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_3.connectivity_checking = "OFF",
ram_block3a_3.logical_ram_name = "ALTSYNCRAM",
ram_block3a_3.mixed_port_feed_through_mode = "dont_care",
ram_block3a_3.operation_mode = "dual_port",
ram_block3a_3.port_a_address_width = 11,
ram_block3a_3.port_a_data_width = 1,
ram_block3a_3.port_a_first_address = 0,
ram_block3a_3.port_a_first_bit_number = 3,
ram_block3a_3.port_a_last_address = 2047,
ram_block3a_3.port_a_logical_ram_depth = 2048,
ram_block3a_3.port_a_logical_ram_width = 16,
ram_block3a_3.port_b_address_clear = "none",
ram_block3a_3.port_b_address_clock = "clock1",
ram_block3a_3.port_b_address_width = 11,
ram_block3a_3.port_b_data_out_clear = "none",
ram_block3a_3.port_b_data_out_clock = "none",
ram_block3a_3.port_b_data_width = 1,
ram_block3a_3.port_b_first_address = 0,
ram_block3a_3.port_b_first_bit_number = 3,
ram_block3a_3.port_b_last_address = 2047,
ram_block3a_3.port_b_logical_ram_depth = 2048,
ram_block3a_3.port_b_logical_ram_width = 16,
ram_block3a_3.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_3.ram_block_type = "auto",
ram_block3a_3.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_4
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[4]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_4portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_4.connectivity_checking = "OFF",
ram_block3a_4.logical_ram_name = "ALTSYNCRAM",
ram_block3a_4.mixed_port_feed_through_mode = "dont_care",
ram_block3a_4.operation_mode = "dual_port",
ram_block3a_4.port_a_address_width = 11,
ram_block3a_4.port_a_data_width = 1,
ram_block3a_4.port_a_first_address = 0,
ram_block3a_4.port_a_first_bit_number = 4,
ram_block3a_4.port_a_last_address = 2047,
ram_block3a_4.port_a_logical_ram_depth = 2048,
ram_block3a_4.port_a_logical_ram_width = 16,
ram_block3a_4.port_b_address_clear = "none",
ram_block3a_4.port_b_address_clock = "clock1",
ram_block3a_4.port_b_address_width = 11,
ram_block3a_4.port_b_data_out_clear = "none",
ram_block3a_4.port_b_data_out_clock = "none",
ram_block3a_4.port_b_data_width = 1,
ram_block3a_4.port_b_first_address = 0,
ram_block3a_4.port_b_first_bit_number = 4,
ram_block3a_4.port_b_last_address = 2047,
ram_block3a_4.port_b_logical_ram_depth = 2048,
ram_block3a_4.port_b_logical_ram_width = 16,
ram_block3a_4.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_4.ram_block_type = "auto",
ram_block3a_4.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_5
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[5]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_5portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_5.connectivity_checking = "OFF",
ram_block3a_5.logical_ram_name = "ALTSYNCRAM",
ram_block3a_5.mixed_port_feed_through_mode = "dont_care",
ram_block3a_5.operation_mode = "dual_port",
ram_block3a_5.port_a_address_width = 11,
ram_block3a_5.port_a_data_width = 1,
ram_block3a_5.port_a_first_address = 0,
ram_block3a_5.port_a_first_bit_number = 5,
ram_block3a_5.port_a_last_address = 2047,
ram_block3a_5.port_a_logical_ram_depth = 2048,
ram_block3a_5.port_a_logical_ram_width = 16,
ram_block3a_5.port_b_address_clear = "none",
ram_block3a_5.port_b_address_clock = "clock1",
ram_block3a_5.port_b_address_width = 11,
ram_block3a_5.port_b_data_out_clear = "none",
ram_block3a_5.port_b_data_out_clock = "none",
ram_block3a_5.port_b_data_width = 1,
ram_block3a_5.port_b_first_address = 0,
ram_block3a_5.port_b_first_bit_number = 5,
ram_block3a_5.port_b_last_address = 2047,
ram_block3a_5.port_b_logical_ram_depth = 2048,
ram_block3a_5.port_b_logical_ram_width = 16,
ram_block3a_5.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_5.ram_block_type = "auto",
ram_block3a_5.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_6
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[6]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_6portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_6.connectivity_checking = "OFF",
ram_block3a_6.logical_ram_name = "ALTSYNCRAM",
ram_block3a_6.mixed_port_feed_through_mode = "dont_care",
ram_block3a_6.operation_mode = "dual_port",
ram_block3a_6.port_a_address_width = 11,
ram_block3a_6.port_a_data_width = 1,
ram_block3a_6.port_a_first_address = 0,
ram_block3a_6.port_a_first_bit_number = 6,
ram_block3a_6.port_a_last_address = 2047,
ram_block3a_6.port_a_logical_ram_depth = 2048,
ram_block3a_6.port_a_logical_ram_width = 16,
ram_block3a_6.port_b_address_clear = "none",
ram_block3a_6.port_b_address_clock = "clock1",
ram_block3a_6.port_b_address_width = 11,
ram_block3a_6.port_b_data_out_clear = "none",
ram_block3a_6.port_b_data_out_clock = "none",
ram_block3a_6.port_b_data_width = 1,
ram_block3a_6.port_b_first_address = 0,
ram_block3a_6.port_b_first_bit_number = 6,
ram_block3a_6.port_b_last_address = 2047,
ram_block3a_6.port_b_logical_ram_depth = 2048,
ram_block3a_6.port_b_logical_ram_width = 16,
ram_block3a_6.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_6.ram_block_type = "auto",
ram_block3a_6.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_7
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[7]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_7portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_7.connectivity_checking = "OFF",
ram_block3a_7.logical_ram_name = "ALTSYNCRAM",
ram_block3a_7.mixed_port_feed_through_mode = "dont_care",
ram_block3a_7.operation_mode = "dual_port",
ram_block3a_7.port_a_address_width = 11,
ram_block3a_7.port_a_data_width = 1,
ram_block3a_7.port_a_first_address = 0,
ram_block3a_7.port_a_first_bit_number = 7,
ram_block3a_7.port_a_last_address = 2047,
ram_block3a_7.port_a_logical_ram_depth = 2048,
ram_block3a_7.port_a_logical_ram_width = 16,
ram_block3a_7.port_b_address_clear = "none",
ram_block3a_7.port_b_address_clock = "clock1",
ram_block3a_7.port_b_address_width = 11,
ram_block3a_7.port_b_data_out_clear = "none",
ram_block3a_7.port_b_data_out_clock = "none",
ram_block3a_7.port_b_data_width = 1,
ram_block3a_7.port_b_first_address = 0,
ram_block3a_7.port_b_first_bit_number = 7,
ram_block3a_7.port_b_last_address = 2047,
ram_block3a_7.port_b_logical_ram_depth = 2048,
ram_block3a_7.port_b_logical_ram_width = 16,
ram_block3a_7.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_7.ram_block_type = "auto",
ram_block3a_7.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_8
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[8]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_8portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_8.connectivity_checking = "OFF",
ram_block3a_8.logical_ram_name = "ALTSYNCRAM",
ram_block3a_8.mixed_port_feed_through_mode = "dont_care",
ram_block3a_8.operation_mode = "dual_port",
ram_block3a_8.port_a_address_width = 11,
ram_block3a_8.port_a_data_width = 1,
ram_block3a_8.port_a_first_address = 0,
ram_block3a_8.port_a_first_bit_number = 8,
ram_block3a_8.port_a_last_address = 2047,
ram_block3a_8.port_a_logical_ram_depth = 2048,
ram_block3a_8.port_a_logical_ram_width = 16,
ram_block3a_8.port_b_address_clear = "none",
ram_block3a_8.port_b_address_clock = "clock1",
ram_block3a_8.port_b_address_width = 11,
ram_block3a_8.port_b_data_out_clear = "none",
ram_block3a_8.port_b_data_out_clock = "none",
ram_block3a_8.port_b_data_width = 1,
ram_block3a_8.port_b_first_address = 0,
ram_block3a_8.port_b_first_bit_number = 8,
ram_block3a_8.port_b_last_address = 2047,
ram_block3a_8.port_b_logical_ram_depth = 2048,
ram_block3a_8.port_b_logical_ram_width = 16,
ram_block3a_8.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_8.ram_block_type = "auto",
ram_block3a_8.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_9
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[9]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_9portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_9.connectivity_checking = "OFF",
ram_block3a_9.logical_ram_name = "ALTSYNCRAM",
ram_block3a_9.mixed_port_feed_through_mode = "dont_care",
ram_block3a_9.operation_mode = "dual_port",
ram_block3a_9.port_a_address_width = 11,
ram_block3a_9.port_a_data_width = 1,
ram_block3a_9.port_a_first_address = 0,
ram_block3a_9.port_a_first_bit_number = 9,
ram_block3a_9.port_a_last_address = 2047,
ram_block3a_9.port_a_logical_ram_depth = 2048,
ram_block3a_9.port_a_logical_ram_width = 16,
ram_block3a_9.port_b_address_clear = "none",
ram_block3a_9.port_b_address_clock = "clock1",
ram_block3a_9.port_b_address_width = 11,
ram_block3a_9.port_b_data_out_clear = "none",
ram_block3a_9.port_b_data_out_clock = "none",
ram_block3a_9.port_b_data_width = 1,
ram_block3a_9.port_b_first_address = 0,
ram_block3a_9.port_b_first_bit_number = 9,
ram_block3a_9.port_b_last_address = 2047,
ram_block3a_9.port_b_logical_ram_depth = 2048,
ram_block3a_9.port_b_logical_ram_width = 16,
ram_block3a_9.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_9.ram_block_type = "auto",
ram_block3a_9.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_10
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[10]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_10portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_10.connectivity_checking = "OFF",
ram_block3a_10.logical_ram_name = "ALTSYNCRAM",
ram_block3a_10.mixed_port_feed_through_mode = "dont_care",
ram_block3a_10.operation_mode = "dual_port",
ram_block3a_10.port_a_address_width = 11,
ram_block3a_10.port_a_data_width = 1,
ram_block3a_10.port_a_first_address = 0,
ram_block3a_10.port_a_first_bit_number = 10,
ram_block3a_10.port_a_last_address = 2047,
ram_block3a_10.port_a_logical_ram_depth = 2048,
ram_block3a_10.port_a_logical_ram_width = 16,
ram_block3a_10.port_b_address_clear = "none",
ram_block3a_10.port_b_address_clock = "clock1",
ram_block3a_10.port_b_address_width = 11,
ram_block3a_10.port_b_data_out_clear = "none",
ram_block3a_10.port_b_data_out_clock = "none",
ram_block3a_10.port_b_data_width = 1,
ram_block3a_10.port_b_first_address = 0,
ram_block3a_10.port_b_first_bit_number = 10,
ram_block3a_10.port_b_last_address = 2047,
ram_block3a_10.port_b_logical_ram_depth = 2048,
ram_block3a_10.port_b_logical_ram_width = 16,
ram_block3a_10.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_10.ram_block_type = "auto",
ram_block3a_10.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_11
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[11]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_11portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_11.connectivity_checking = "OFF",
ram_block3a_11.logical_ram_name = "ALTSYNCRAM",
ram_block3a_11.mixed_port_feed_through_mode = "dont_care",
ram_block3a_11.operation_mode = "dual_port",
ram_block3a_11.port_a_address_width = 11,
ram_block3a_11.port_a_data_width = 1,
ram_block3a_11.port_a_first_address = 0,
ram_block3a_11.port_a_first_bit_number = 11,
ram_block3a_11.port_a_last_address = 2047,
ram_block3a_11.port_a_logical_ram_depth = 2048,
ram_block3a_11.port_a_logical_ram_width = 16,
ram_block3a_11.port_b_address_clear = "none",
ram_block3a_11.port_b_address_clock = "clock1",
ram_block3a_11.port_b_address_width = 11,
ram_block3a_11.port_b_data_out_clear = "none",
ram_block3a_11.port_b_data_out_clock = "none",
ram_block3a_11.port_b_data_width = 1,
ram_block3a_11.port_b_first_address = 0,
ram_block3a_11.port_b_first_bit_number = 11,
ram_block3a_11.port_b_last_address = 2047,
ram_block3a_11.port_b_logical_ram_depth = 2048,
ram_block3a_11.port_b_logical_ram_width = 16,
ram_block3a_11.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_11.ram_block_type = "auto",
ram_block3a_11.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_12
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[12]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_12portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_12.connectivity_checking = "OFF",
ram_block3a_12.logical_ram_name = "ALTSYNCRAM",
ram_block3a_12.mixed_port_feed_through_mode = "dont_care",
ram_block3a_12.operation_mode = "dual_port",
ram_block3a_12.port_a_address_width = 11,
ram_block3a_12.port_a_data_width = 1,
ram_block3a_12.port_a_first_address = 0,
ram_block3a_12.port_a_first_bit_number = 12,
ram_block3a_12.port_a_last_address = 2047,
ram_block3a_12.port_a_logical_ram_depth = 2048,
ram_block3a_12.port_a_logical_ram_width = 16,
ram_block3a_12.port_b_address_clear = "none",
ram_block3a_12.port_b_address_clock = "clock1",
ram_block3a_12.port_b_address_width = 11,
ram_block3a_12.port_b_data_out_clear = "none",
ram_block3a_12.port_b_data_out_clock = "none",
ram_block3a_12.port_b_data_width = 1,
ram_block3a_12.port_b_first_address = 0,
ram_block3a_12.port_b_first_bit_number = 12,
ram_block3a_12.port_b_last_address = 2047,
ram_block3a_12.port_b_logical_ram_depth = 2048,
ram_block3a_12.port_b_logical_ram_width = 16,
ram_block3a_12.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_12.ram_block_type = "auto",
ram_block3a_12.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_13
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[13]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_13portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_13.connectivity_checking = "OFF",
ram_block3a_13.logical_ram_name = "ALTSYNCRAM",
ram_block3a_13.mixed_port_feed_through_mode = "dont_care",
ram_block3a_13.operation_mode = "dual_port",
ram_block3a_13.port_a_address_width = 11,
ram_block3a_13.port_a_data_width = 1,
ram_block3a_13.port_a_first_address = 0,
ram_block3a_13.port_a_first_bit_number = 13,
ram_block3a_13.port_a_last_address = 2047,
ram_block3a_13.port_a_logical_ram_depth = 2048,
ram_block3a_13.port_a_logical_ram_width = 16,
ram_block3a_13.port_b_address_clear = "none",
ram_block3a_13.port_b_address_clock = "clock1",
ram_block3a_13.port_b_address_width = 11,
ram_block3a_13.port_b_data_out_clear = "none",
ram_block3a_13.port_b_data_out_clock = "none",
ram_block3a_13.port_b_data_width = 1,
ram_block3a_13.port_b_first_address = 0,
ram_block3a_13.port_b_first_bit_number = 13,
ram_block3a_13.port_b_last_address = 2047,
ram_block3a_13.port_b_logical_ram_depth = 2048,
ram_block3a_13.port_b_logical_ram_width = 16,
ram_block3a_13.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_13.ram_block_type = "auto",
ram_block3a_13.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_14
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[14]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_14portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_14.connectivity_checking = "OFF",
ram_block3a_14.logical_ram_name = "ALTSYNCRAM",
ram_block3a_14.mixed_port_feed_through_mode = "dont_care",
ram_block3a_14.operation_mode = "dual_port",
ram_block3a_14.port_a_address_width = 11,
ram_block3a_14.port_a_data_width = 1,
ram_block3a_14.port_a_first_address = 0,
ram_block3a_14.port_a_first_bit_number = 14,
ram_block3a_14.port_a_last_address = 2047,
ram_block3a_14.port_a_logical_ram_depth = 2048,
ram_block3a_14.port_a_logical_ram_width = 16,
ram_block3a_14.port_b_address_clear = "none",
ram_block3a_14.port_b_address_clock = "clock1",
ram_block3a_14.port_b_address_width = 11,
ram_block3a_14.port_b_data_out_clear = "none",
ram_block3a_14.port_b_data_out_clock = "none",
ram_block3a_14.port_b_data_width = 1,
ram_block3a_14.port_b_first_address = 0,
ram_block3a_14.port_b_first_bit_number = 14,
ram_block3a_14.port_b_last_address = 2047,
ram_block3a_14.port_b_logical_ram_depth = 2048,
ram_block3a_14.port_b_logical_ram_width = 16,
ram_block3a_14.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_14.ram_block_type = "auto",
ram_block3a_14.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_15
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[15]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_15portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_15.connectivity_checking = "OFF",
ram_block3a_15.logical_ram_name = "ALTSYNCRAM",
ram_block3a_15.mixed_port_feed_through_mode = "dont_care",
ram_block3a_15.operation_mode = "dual_port",
ram_block3a_15.port_a_address_width = 11,
ram_block3a_15.port_a_data_width = 1,
ram_block3a_15.port_a_first_address = 0,
ram_block3a_15.port_a_first_bit_number = 15,
ram_block3a_15.port_a_last_address = 2047,
ram_block3a_15.port_a_logical_ram_depth = 2048,
ram_block3a_15.port_a_logical_ram_width = 16,
ram_block3a_15.port_b_address_clear = "none",
ram_block3a_15.port_b_address_clock = "clock1",
ram_block3a_15.port_b_address_width = 11,
ram_block3a_15.port_b_data_out_clear = "none",
ram_block3a_15.port_b_data_out_clock = "none",
ram_block3a_15.port_b_data_width = 1,
ram_block3a_15.port_b_first_address = 0,
ram_block3a_15.port_b_first_bit_number = 15,
ram_block3a_15.port_b_last_address = 2047,
ram_block3a_15.port_b_logical_ram_depth = 2048,
ram_block3a_15.port_b_logical_ram_width = 16,
ram_block3a_15.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_15.ram_block_type = "auto",
ram_block3a_15.lpm_type = "cyclone_ram_block";
assign
address_a_wire = address_a,
address_b_wire = address_b,
q_b = {wire_ram_block3a_15portbdataout[0], wire_ram_block3a_14portbdataout[0], wire_ram_block3a_13portbdataout[0], wire_ram_block3a_12portbdataout[0], wire_ram_block3a_11portbdataout[0], wire_ram_block3a_10portbdataout[0], wire_ram_block3a_9portbdataout[0], wire_ram_block3a_8portbdataout[0], wire_ram_block3a_7portbdataout[0], wire_ram_block3a_6portbdataout[0], wire_ram_block3a_5portbdataout[0], wire_ram_block3a_4portbdataout[0], wire_ram_block3a_3portbdataout[0], wire_ram_block3a_2portbdataout[0], wire_ram_block3a_1portbdataout[0], wire_ram_block3a_0portbdataout[0]};
endmodule
|
module fifo_2k_dffpipe_ab3
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffe4a_D;
reg [10:0] dffe4a;
wire ena;
wire prn;
wire sclr;
// synopsys translate_off
initial
dffe4a[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[0:0] <= 1'b1;
else if (clrn == 1'b0) dffe4a[0:0] <= 1'b0;
else if (ena == 1'b1) dffe4a[0:0] <= wire_dffe4a_D[0:0];
// synopsys translate_off
initial
dffe4a[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[1:1] <= 1'b1;
else if (clrn == 1'b0) dffe4a[1:1] <= 1'b0;
else if (ena == 1'b1) dffe4a[1:1] <= wire_dffe4a_D[1:1];
// synopsys translate_off
initial
dffe4a[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[2:2] <= 1'b1;
else if (clrn == 1'b0) dffe4a[2:2] <= 1'b0;
else if (ena == 1'b1) dffe4a[2:2] <= wire_dffe4a_D[2:2];
// synopsys translate_off
initial
dffe4a[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[3:3] <= 1'b1;
else if (clrn == 1'b0) dffe4a[3:3] <= 1'b0;
else if (ena == 1'b1) dffe4a[3:3] <= wire_dffe4a_D[3:3];
// synopsys translate_off
initial
dffe4a[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[4:4] <= 1'b1;
else if (clrn == 1'b0) dffe4a[4:4] <= 1'b0;
else if (ena == 1'b1) dffe4a[4:4] <= wire_dffe4a_D[4:4];
// synopsys translate_off
initial
dffe4a[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[5:5] <= 1'b1;
else if (clrn == 1'b0) dffe4a[5:5] <= 1'b0;
else if (ena == 1'b1) dffe4a[5:5] <= wire_dffe4a_D[5:5];
// synopsys translate_off
initial
dffe4a[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[6:6] <= 1'b1;
else if (clrn == 1'b0) dffe4a[6:6] <= 1'b0;
else if (ena == 1'b1) dffe4a[6:6] <= wire_dffe4a_D[6:6];
// synopsys translate_off
initial
dffe4a[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[7:7] <= 1'b1;
else if (clrn == 1'b0) dffe4a[7:7] <= 1'b0;
else if (ena == 1'b1) dffe4a[7:7] <= wire_dffe4a_D[7:7];
// synopsys translate_off
initial
dffe4a[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[8:8] <= 1'b1;
else if (clrn == 1'b0) dffe4a[8:8] <= 1'b0;
else if (ena == 1'b1) dffe4a[8:8] <= wire_dffe4a_D[8:8];
// synopsys translate_off
initial
dffe4a[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[9:9] <= 1'b1;
else if (clrn == 1'b0) dffe4a[9:9] <= 1'b0;
else if (ena == 1'b1) dffe4a[9:9] <= wire_dffe4a_D[9:9];
// synopsys translate_off
initial
dffe4a[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[10:10] <= 1'b1;
else if (clrn == 1'b0) dffe4a[10:10] <= 1'b0;
else if (ena == 1'b1) dffe4a[10:10] <= wire_dffe4a_D[10:10];
assign
wire_dffe4a_D = (d & {11{(~ sclr)}});
assign
ena = 1'b1,
prn = 1'b1,
q = dffe4a,
sclr = 1'b0;
endmodule
|
module fifo_2k_dffpipe_dm2
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffe6a_D;
reg [10:0] dffe6a;
wire ena;
wire prn;
wire sclr;
// synopsys translate_off
initial
dffe6a[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[0:0] <= 1'b1;
else if (clrn == 1'b0) dffe6a[0:0] <= 1'b0;
else if (ena == 1'b1) dffe6a[0:0] <= wire_dffe6a_D[0:0];
// synopsys translate_off
initial
dffe6a[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[1:1] <= 1'b1;
else if (clrn == 1'b0) dffe6a[1:1] <= 1'b0;
else if (ena == 1'b1) dffe6a[1:1] <= wire_dffe6a_D[1:1];
// synopsys translate_off
initial
dffe6a[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[2:2] <= 1'b1;
else if (clrn == 1'b0) dffe6a[2:2] <= 1'b0;
else if (ena == 1'b1) dffe6a[2:2] <= wire_dffe6a_D[2:2];
// synopsys translate_off
initial
dffe6a[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[3:3] <= 1'b1;
else if (clrn == 1'b0) dffe6a[3:3] <= 1'b0;
else if (ena == 1'b1) dffe6a[3:3] <= wire_dffe6a_D[3:3];
// synopsys translate_off
initial
dffe6a[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[4:4] <= 1'b1;
else if (clrn == 1'b0) dffe6a[4:4] <= 1'b0;
else if (ena == 1'b1) dffe6a[4:4] <= wire_dffe6a_D[4:4];
// synopsys translate_off
initial
dffe6a[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[5:5] <= 1'b1;
else if (clrn == 1'b0) dffe6a[5:5] <= 1'b0;
else if (ena == 1'b1) dffe6a[5:5] <= wire_dffe6a_D[5:5];
// synopsys translate_off
initial
dffe6a[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[6:6] <= 1'b1;
else if (clrn == 1'b0) dffe6a[6:6] <= 1'b0;
else if (ena == 1'b1) dffe6a[6:6] <= wire_dffe6a_D[6:6];
// synopsys translate_off
initial
dffe6a[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[7:7] <= 1'b1;
else if (clrn == 1'b0) dffe6a[7:7] <= 1'b0;
else if (ena == 1'b1) dffe6a[7:7] <= wire_dffe6a_D[7:7];
// synopsys translate_off
initial
dffe6a[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[8:8] <= 1'b1;
else if (clrn == 1'b0) dffe6a[8:8] <= 1'b0;
else if (ena == 1'b1) dffe6a[8:8] <= wire_dffe6a_D[8:8];
// synopsys translate_off
initial
dffe6a[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[9:9] <= 1'b1;
else if (clrn == 1'b0) dffe6a[9:9] <= 1'b0;
else if (ena == 1'b1) dffe6a[9:9] <= wire_dffe6a_D[9:9];
// synopsys translate_off
initial
dffe6a[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[10:10] <= 1'b1;
else if (clrn == 1'b0) dffe6a[10:10] <= 1'b0;
else if (ena == 1'b1) dffe6a[10:10] <= wire_dffe6a_D[10:10];
assign
wire_dffe6a_D = (d & {11{(~ sclr)}});
assign
ena = 1'b1,
prn = 1'b1,
q = dffe6a,
sclr = 1'b0;
endmodule
|
module fifo_2k_alt_synch_pipe_dm2
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="X_ON_VIOLATION_OPTION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffpipe5_q;
fifo_2k_dffpipe_dm2 dffpipe5
(
.clock(clock),
.clrn(clrn),
.d(d),
.q(wire_dffpipe5_q));
assign
q = wire_dffpipe5_q;
endmodule
|
module fifo_2k_add_sub_a18
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [10:0] dataa;
input [10:0] datab;
output [10:0] result;
wire [10:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [10:0] wire_add_sub_cella_dataa;
wire [10:0] wire_add_sub_cella_datab;
cyclone_lcell add_sub_cella_0
(
.cin(1'b1),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_8
(
.cin(wire_add_sub_cella_7cout[0:0]),
.combout(wire_add_sub_cella_combout[8:8]),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_9
(
.cin(wire_add_sub_cella_8cout[0:0]),
.combout(wire_add_sub_cella_combout[9:9]),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_10
(
.cin(wire_add_sub_cella_9cout[0:0]),
.combout(wire_add_sub_cella_combout[10:10]),
.cout(),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "6969",
add_sub_cella_10.operation_mode = "normal",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "cyclone_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule
|
module fifo_2k_dcfifo_0cq
(
aclr,
data,
q,
rdclk,
rdempty,
rdreq,
rdusedw,
wrclk,
wrfull,
wrreq,
wrusedw) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF;{ -from \"rdptr_g|power_modified_counter_values\" -to \"ws_dgrp|dffpipe5|dffe6a\" }CUT=ON;{ -from \"delayed_wrptr_g\" -to \"rs_dgwp|dffpipe5|dffe6a\" }CUT=ON" */;
input aclr;
input [15:0] data;
output [15:0] q;
input rdclk;
output rdempty;
input rdreq;
output [10:0] rdusedw;
input wrclk;
output wrfull;
input wrreq;
output [10:0] wrusedw;
wire [10:0] wire_rdptr_g_gray2bin_bin;
wire [10:0] wire_rs_dgwp_gray2bin_bin;
wire [10:0] wire_wrptr_g_gray2bin_bin;
wire [10:0] wire_ws_dgrp_gray2bin_bin;
wire [10:0] wire_rdptr_g_q;
wire [10:0] wire_rdptr_g1p_q;
wire [10:0] wire_wrptr_g1p_q;
wire [15:0] wire_fifo_ram_q_b;
reg [10:0] delayed_wrptr_g;
reg [10:0] wrptr_g;
wire [10:0] wire_rs_brp_q;
wire [10:0] wire_rs_bwp_q;
wire [10:0] wire_rs_dgwp_q;
wire [10:0] wire_ws_brp_q;
wire [10:0] wire_ws_bwp_q;
wire [10:0] wire_ws_dgrp_q;
wire [10:0] wire_rdusedw_sub_result;
wire [10:0] wire_wrusedw_sub_result;
reg wire_rdempty_eq_comp_aeb_int;
wire wire_rdempty_eq_comp_aeb;
wire [10:0] wire_rdempty_eq_comp_dataa;
wire [10:0] wire_rdempty_eq_comp_datab;
reg wire_wrfull_eq_comp_aeb_int;
wire wire_wrfull_eq_comp_aeb;
wire [10:0] wire_wrfull_eq_comp_dataa;
wire [10:0] wire_wrfull_eq_comp_datab;
wire int_rdempty;
wire int_wrfull;
wire valid_rdreq;
wire valid_wrreq;
fifo_2k_a_gray2bin_8m4 rdptr_g_gray2bin
(
.bin(wire_rdptr_g_gray2bin_bin),
.gray(wire_rdptr_g_q));
fifo_2k_a_gray2bin_8m4 rs_dgwp_gray2bin
(
.bin(wire_rs_dgwp_gray2bin_bin),
.gray(wire_rs_dgwp_q));
fifo_2k_a_gray2bin_8m4 wrptr_g_gray2bin
(
.bin(wire_wrptr_g_gray2bin_bin),
.gray(wrptr_g));
fifo_2k_a_gray2bin_8m4 ws_dgrp_gray2bin
(
.bin(wire_ws_dgrp_gray2bin_bin),
.gray(wire_ws_dgrp_q));
fifo_2k_a_graycounter_726 rdptr_g
(
.aclr(aclr),
.clock(rdclk),
.cnt_en(valid_rdreq),
.q(wire_rdptr_g_q));
fifo_2k_a_graycounter_2r6 rdptr_g1p
(
.aclr(aclr),
.clock(rdclk),
.cnt_en(valid_rdreq),
.q(wire_rdptr_g1p_q));
fifo_2k_a_graycounter_2r6 wrptr_g1p
(
.aclr(aclr),
.clock(wrclk),
.cnt_en(valid_wrreq),
.q(wire_wrptr_g1p_q));
fifo_2k_altsyncram_6pl fifo_ram
(
.address_a(wrptr_g),
.address_b(((wire_rdptr_g_q & {11{int_rdempty}}) | (wire_rdptr_g1p_q & {11{(~ int_rdempty)}}))),
.clock0(wrclk),
.clock1(rdclk),
.clocken1((valid_rdreq | int_rdempty)),
.data_a(data),
.q_b(wire_fifo_ram_q_b),
.wren_a(valid_wrreq));
// synopsys translate_off
initial
delayed_wrptr_g = 0;
// synopsys translate_on
always @ ( posedge wrclk or posedge aclr)
if (aclr == 1'b1) delayed_wrptr_g <= 11'b0;
else delayed_wrptr_g <= wrptr_g;
// synopsys translate_off
initial
wrptr_g = 0;
// synopsys translate_on
always @ ( posedge wrclk or posedge aclr)
if (aclr == 1'b1) wrptr_g <= 11'b0;
else if (valid_wrreq == 1'b1) wrptr_g <= wire_wrptr_g1p_q;
fifo_2k_dffpipe_ab3 rs_brp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(wire_rdptr_g_gray2bin_bin),
.q(wire_rs_brp_q));
fifo_2k_dffpipe_ab3 rs_bwp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(wire_rs_dgwp_gray2bin_bin),
.q(wire_rs_bwp_q));
fifo_2k_alt_synch_pipe_dm2 rs_dgwp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(delayed_wrptr_g),
.q(wire_rs_dgwp_q));
fifo_2k_dffpipe_ab3 ws_brp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_ws_dgrp_gray2bin_bin),
.q(wire_ws_brp_q));
fifo_2k_dffpipe_ab3 ws_bwp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_wrptr_g_gray2bin_bin),
.q(wire_ws_bwp_q));
fifo_2k_alt_synch_pipe_dm2 ws_dgrp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_rdptr_g_q),
.q(wire_ws_dgrp_q));
fifo_2k_add_sub_a18 rdusedw_sub
(
.dataa(wire_rs_bwp_q),
.datab(wire_rs_brp_q),
.result(wire_rdusedw_sub_result));
fifo_2k_add_sub_a18 wrusedw_sub
(
.dataa(wire_ws_bwp_q),
.datab(wire_ws_brp_q),
.result(wire_wrusedw_sub_result));
always @(wire_rdempty_eq_comp_dataa or wire_rdempty_eq_comp_datab)
if (wire_rdempty_eq_comp_dataa == wire_rdempty_eq_comp_datab)
begin
wire_rdempty_eq_comp_aeb_int = 1'b1;
end
else
begin
wire_rdempty_eq_comp_aeb_int = 1'b0;
end
assign
wire_rdempty_eq_comp_aeb = wire_rdempty_eq_comp_aeb_int;
assign
wire_rdempty_eq_comp_dataa = wire_rs_dgwp_q,
wire_rdempty_eq_comp_datab = wire_rdptr_g_q;
always @(wire_wrfull_eq_comp_dataa or wire_wrfull_eq_comp_datab)
if (wire_wrfull_eq_comp_dataa == wire_wrfull_eq_comp_datab)
begin
wire_wrfull_eq_comp_aeb_int = 1'b1;
end
else
begin
wire_wrfull_eq_comp_aeb_int = 1'b0;
end
assign
wire_wrfull_eq_comp_aeb = wire_wrfull_eq_comp_aeb_int;
assign
wire_wrfull_eq_comp_dataa = wire_ws_dgrp_q,
wire_wrfull_eq_comp_datab = wire_wrptr_g1p_q;
assign
int_rdempty = wire_rdempty_eq_comp_aeb,
int_wrfull = wire_wrfull_eq_comp_aeb,
q = wire_fifo_ram_q_b,
rdempty = int_rdempty,
rdusedw = wire_rdusedw_sub_result,
valid_rdreq = rdreq,
valid_wrreq = wrreq,
wrfull = int_wrfull,
wrusedw = wire_wrusedw_sub_result;
endmodule
|
module fifo_2k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [10:0] rdusedw;
output wrfull;
output [10:0] wrusedw;
wire sub_wire0;
wire [10:0] sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire [10:0] sub_wire4;
wire rdempty = sub_wire0;
wire [10:0] wrusedw = sub_wire1[10:0];
wire wrfull = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire [10:0] rdusedw = sub_wire4[10:0];
fifo_2k_dcfifo_0cq fifo_2k_dcfifo_0cq_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4));
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
endmodule
|
module addsub16_add_sub_gp9
(
aclr,
add_sub,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input add_sub;
input clken;
input clock;
input [15:0] dataa;
input [15:0] datab;
output [15:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [15:0] wire_add_sub_cella_dataa;
wire [15:0] wire_add_sub_cella_datab;
wire [15:0] wire_add_sub_cella_regout;
wire wire_strx_lcell1_cout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(wire_strx_lcell1_cout),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "96e8",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "96e8",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "96e8",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "96e8",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "96e8",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "96e8",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "96e8",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "96e8",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "9696",
add_sub_cella_15.operation_mode = "normal",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = datab,
wire_add_sub_cella_datab = dataa;
stratix_lcell strx_lcell1
(
.cout(wire_strx_lcell1_cout),
.dataa(1'b0),
.datab((~ add_sub)),
.inverta((~ add_sub)));
defparam
strx_lcell1.cin_used = "false",
strx_lcell1.lut_mask = "00cc",
strx_lcell1.operation_mode = "arithmetic",
strx_lcell1.lpm_type = "stratix_lcell";
assign
result = wire_add_sub_cella_regout;
endmodule
|
module addsub16 (
add_sub,
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input add_sub;
input [15:0] dataa;
input [15:0] datab;
input clock;
input aclr;
input clken;
output [15:0] result;
wire [15:0] sub_wire0;
wire [15:0] result = sub_wire0[15:0];
addsub16_add_sub_gp9 addsub16_add_sub_gp9_component (
.dataa (dataa),
.add_sub (add_sub),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule
|
module addsub16_add_sub_gp9
(
aclr,
add_sub,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input add_sub;
input clken;
input clock;
input [15:0] dataa;
input [15:0] datab;
output [15:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [15:0] wire_add_sub_cella_dataa;
wire [15:0] wire_add_sub_cella_datab;
wire [15:0] wire_add_sub_cella_regout;
wire wire_strx_lcell1_cout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(wire_strx_lcell1_cout),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "96e8",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "96e8",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "96e8",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "96e8",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "96e8",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "96e8",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "96e8",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "96e8",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "9696",
add_sub_cella_15.operation_mode = "normal",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = datab,
wire_add_sub_cella_datab = dataa;
stratix_lcell strx_lcell1
(
.cout(wire_strx_lcell1_cout),
.dataa(1'b0),
.datab((~ add_sub)),
.inverta((~ add_sub)));
defparam
strx_lcell1.cin_used = "false",
strx_lcell1.lut_mask = "00cc",
strx_lcell1.operation_mode = "arithmetic",
strx_lcell1.lpm_type = "stratix_lcell";
assign
result = wire_add_sub_cella_regout;
endmodule
|
module addsub16 (
add_sub,
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input add_sub;
input [15:0] dataa;
input [15:0] datab;
input clock;
input aclr;
input clken;
output [15:0] result;
wire [15:0] sub_wire0;
wire [15:0] result = sub_wire0[15:0];
addsub16_add_sub_gp9 addsub16_add_sub_gp9_component (
.dataa (dataa),
.add_sub (add_sub),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule
|
module addsub16_add_sub_gp9
(
aclr,
add_sub,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input add_sub;
input clken;
input clock;
input [15:0] dataa;
input [15:0] datab;
output [15:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [15:0] wire_add_sub_cella_dataa;
wire [15:0] wire_add_sub_cella_datab;
wire [15:0] wire_add_sub_cella_regout;
wire wire_strx_lcell1_cout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(wire_strx_lcell1_cout),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "96e8",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "96e8",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "96e8",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "96e8",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "96e8",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "96e8",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "96e8",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "96e8",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "9696",
add_sub_cella_15.operation_mode = "normal",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = datab,
wire_add_sub_cella_datab = dataa;
stratix_lcell strx_lcell1
(
.cout(wire_strx_lcell1_cout),
.dataa(1'b0),
.datab((~ add_sub)),
.inverta((~ add_sub)));
defparam
strx_lcell1.cin_used = "false",
strx_lcell1.lut_mask = "00cc",
strx_lcell1.operation_mode = "arithmetic",
strx_lcell1.lpm_type = "stratix_lcell";
assign
result = wire_add_sub_cella_regout;
endmodule
|
module addsub16 (
add_sub,
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input add_sub;
input [15:0] dataa;
input [15:0] datab;
input clock;
input aclr;
input clken;
output [15:0] result;
wire [15:0] sub_wire0;
wire [15:0] result = sub_wire0[15:0];
addsub16_add_sub_gp9 addsub16_add_sub_gp9_component (
.dataa (dataa),
.add_sub (add_sub),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule
|
module altera_reset_controller
#(
parameter NUM_RESET_INPUTS = 6,
parameter USE_RESET_REQUEST_IN0 = 0,
parameter USE_RESET_REQUEST_IN1 = 0,
parameter USE_RESET_REQUEST_IN2 = 0,
parameter USE_RESET_REQUEST_IN3 = 0,
parameter USE_RESET_REQUEST_IN4 = 0,
parameter USE_RESET_REQUEST_IN5 = 0,
parameter USE_RESET_REQUEST_IN6 = 0,
parameter USE_RESET_REQUEST_IN7 = 0,
parameter USE_RESET_REQUEST_IN8 = 0,
parameter USE_RESET_REQUEST_IN9 = 0,
parameter USE_RESET_REQUEST_IN10 = 0,
parameter USE_RESET_REQUEST_IN11 = 0,
parameter USE_RESET_REQUEST_IN12 = 0,
parameter USE_RESET_REQUEST_IN13 = 0,
parameter USE_RESET_REQUEST_IN14 = 0,
parameter USE_RESET_REQUEST_IN15 = 0,
parameter OUTPUT_RESET_SYNC_EDGES = "deassert",
parameter SYNC_DEPTH = 2,
parameter RESET_REQUEST_PRESENT = 0,
parameter RESET_REQ_WAIT_TIME = 3,
parameter MIN_RST_ASSERTION_TIME = 11,
parameter RESET_REQ_EARLY_DSRT_TIME = 4,
parameter ADAPT_RESET_REQUEST = 0
)
(
// --------------------------------------
// We support up to 16 reset inputs, for now
// --------------------------------------
input reset_in0,
input reset_in1,
input reset_in2,
input reset_in3,
input reset_in4,
input reset_in5,
input reset_in6,
input reset_in7,
input reset_in8,
input reset_in9,
input reset_in10,
input reset_in11,
input reset_in12,
input reset_in13,
input reset_in14,
input reset_in15,
input reset_req_in0,
input reset_req_in1,
input reset_req_in2,
input reset_req_in3,
input reset_req_in4,
input reset_req_in5,
input reset_req_in6,
input reset_req_in7,
input reset_req_in8,
input reset_req_in9,
input reset_req_in10,
input reset_req_in11,
input reset_req_in12,
input reset_req_in13,
input reset_req_in14,
input reset_req_in15,
input clk,
output reg reset_out,
output reg reset_req
);
// Always use async reset synchronizer if reset_req is used
localparam ASYNC_RESET = (OUTPUT_RESET_SYNC_EDGES == "deassert");
// --------------------------------------
// Local parameter to control the reset_req and reset_out timing when RESET_REQUEST_PRESENT==1
// --------------------------------------
localparam MIN_METASTABLE = 3;
localparam RSTREQ_ASRT_SYNC_TAP = MIN_METASTABLE + RESET_REQ_WAIT_TIME;
localparam LARGER = RESET_REQ_WAIT_TIME > RESET_REQ_EARLY_DSRT_TIME ? RESET_REQ_WAIT_TIME : RESET_REQ_EARLY_DSRT_TIME;
localparam ASSERTION_CHAIN_LENGTH = (MIN_METASTABLE > LARGER) ?
MIN_RST_ASSERTION_TIME + 1 :
(
(MIN_RST_ASSERTION_TIME > LARGER)?
MIN_RST_ASSERTION_TIME + (LARGER - MIN_METASTABLE + 1) + 1 :
MIN_RST_ASSERTION_TIME + RESET_REQ_EARLY_DSRT_TIME + RESET_REQ_WAIT_TIME - MIN_METASTABLE + 2
);
localparam RESET_REQ_DRST_TAP = RESET_REQ_EARLY_DSRT_TIME + 1;
// --------------------------------------
wire merged_reset;
wire merged_reset_req_in;
wire reset_out_pre;
wire reset_req_pre;
// Registers and Interconnect
(*preserve*) reg [RSTREQ_ASRT_SYNC_TAP: 0] altera_reset_synchronizer_int_chain;
reg [ASSERTION_CHAIN_LENGTH-1: 0] r_sync_rst_chain;
reg r_sync_rst;
reg r_early_rst;
// --------------------------------------
// "Or" all the input resets together
// --------------------------------------
assign merged_reset = (
reset_in0 |
reset_in1 |
reset_in2 |
reset_in3 |
reset_in4 |
reset_in5 |
reset_in6 |
reset_in7 |
reset_in8 |
reset_in9 |
reset_in10 |
reset_in11 |
reset_in12 |
reset_in13 |
reset_in14 |
reset_in15
);
assign merged_reset_req_in = (
( (USE_RESET_REQUEST_IN0 == 1) ? reset_req_in0 : 1'b0) |
( (USE_RESET_REQUEST_IN1 == 1) ? reset_req_in1 : 1'b0) |
( (USE_RESET_REQUEST_IN2 == 1) ? reset_req_in2 : 1'b0) |
( (USE_RESET_REQUEST_IN3 == 1) ? reset_req_in3 : 1'b0) |
( (USE_RESET_REQUEST_IN4 == 1) ? reset_req_in4 : 1'b0) |
( (USE_RESET_REQUEST_IN5 == 1) ? reset_req_in5 : 1'b0) |
( (USE_RESET_REQUEST_IN6 == 1) ? reset_req_in6 : 1'b0) |
( (USE_RESET_REQUEST_IN7 == 1) ? reset_req_in7 : 1'b0) |
( (USE_RESET_REQUEST_IN8 == 1) ? reset_req_in8 : 1'b0) |
( (USE_RESET_REQUEST_IN9 == 1) ? reset_req_in9 : 1'b0) |
( (USE_RESET_REQUEST_IN10 == 1) ? reset_req_in10 : 1'b0) |
( (USE_RESET_REQUEST_IN11 == 1) ? reset_req_in11 : 1'b0) |
( (USE_RESET_REQUEST_IN12 == 1) ? reset_req_in12 : 1'b0) |
( (USE_RESET_REQUEST_IN13 == 1) ? reset_req_in13 : 1'b0) |
( (USE_RESET_REQUEST_IN14 == 1) ? reset_req_in14 : 1'b0) |
( (USE_RESET_REQUEST_IN15 == 1) ? reset_req_in15 : 1'b0)
);
// --------------------------------------
// And if required, synchronize it to the required clock domain,
// with the correct synchronization type
// --------------------------------------
generate if (OUTPUT_RESET_SYNC_EDGES == "none" && (RESET_REQUEST_PRESENT==0)) begin
assign reset_out_pre = merged_reset;
assign reset_req_pre = merged_reset_req_in;
end else begin
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(RESET_REQUEST_PRESENT? 1'b1 : ASYNC_RESET)
)
alt_rst_sync_uq1
(
.clk (clk),
.reset_in (merged_reset),
.reset_out (reset_out_pre)
);
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(0)
)
alt_rst_req_sync_uq1
(
.clk (clk),
.reset_in (merged_reset_req_in),
.reset_out (reset_req_pre)
);
end
endgenerate
generate if ( ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==0) )|
( (ADAPT_RESET_REQUEST == 1) && (OUTPUT_RESET_SYNC_EDGES != "deassert") ) ) begin
always @* begin
reset_out = reset_out_pre;
reset_req = reset_req_pre;
end
end else if ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==1) ) begin
wire reset_out_pre2;
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH+1),
.ASYNC_RESET(0)
)
alt_rst_sync_uq2
(
.clk (clk),
.reset_in (reset_out_pre),
.reset_out (reset_out_pre2)
);
always @* begin
reset_out = reset_out_pre2;
reset_req = reset_req_pre;
end
end
else begin
// 3-FF Metastability Synchronizer
initial
begin
altera_reset_synchronizer_int_chain <= {RSTREQ_ASRT_SYNC_TAP{1'b1}};
end
always @(posedge clk)
begin
altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP:0] <=
{altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP-1:0], reset_out_pre};
end
// Synchronous reset pipe
initial
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
always @(posedge clk)
begin
if (altera_reset_synchronizer_int_chain[MIN_METASTABLE-1] == 1'b1)
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
else
begin
r_sync_rst_chain <= {1'b0, r_sync_rst_chain[ASSERTION_CHAIN_LENGTH-1:1]};
end
end
// Standard synchronous reset output. From 0-1, the transition lags the early output. For 1->0, the transition
// matches the early input.
always @(posedge clk)
begin
case ({altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP], r_sync_rst_chain[1], r_sync_rst})
3'b000: r_sync_rst <= 1'b0; // Not reset
3'b001: r_sync_rst <= 1'b0;
3'b010: r_sync_rst <= 1'b0;
3'b011: r_sync_rst <= 1'b1;
3'b100: r_sync_rst <= 1'b1;
3'b101: r_sync_rst <= 1'b1;
3'b110: r_sync_rst <= 1'b1;
3'b111: r_sync_rst <= 1'b1; // In Reset
default: r_sync_rst <= 1'b1;
endcase
case ({r_sync_rst_chain[1], r_sync_rst_chain[RESET_REQ_DRST_TAP] | reset_req_pre})
2'b00: r_early_rst <= 1'b0; // Not reset
2'b01: r_early_rst <= 1'b1; // Coming out of reset
2'b10: r_early_rst <= 1'b0; // Spurious reset - should not be possible via synchronous design.
2'b11: r_early_rst <= 1'b1; // Held in reset
default: r_early_rst <= 1'b1;
endcase
end
always @* begin
reset_out = r_sync_rst;
reset_req = r_early_rst;
end
end
endgenerate
endmodule
|
module altera_reset_controller
#(
parameter NUM_RESET_INPUTS = 6,
parameter USE_RESET_REQUEST_IN0 = 0,
parameter USE_RESET_REQUEST_IN1 = 0,
parameter USE_RESET_REQUEST_IN2 = 0,
parameter USE_RESET_REQUEST_IN3 = 0,
parameter USE_RESET_REQUEST_IN4 = 0,
parameter USE_RESET_REQUEST_IN5 = 0,
parameter USE_RESET_REQUEST_IN6 = 0,
parameter USE_RESET_REQUEST_IN7 = 0,
parameter USE_RESET_REQUEST_IN8 = 0,
parameter USE_RESET_REQUEST_IN9 = 0,
parameter USE_RESET_REQUEST_IN10 = 0,
parameter USE_RESET_REQUEST_IN11 = 0,
parameter USE_RESET_REQUEST_IN12 = 0,
parameter USE_RESET_REQUEST_IN13 = 0,
parameter USE_RESET_REQUEST_IN14 = 0,
parameter USE_RESET_REQUEST_IN15 = 0,
parameter OUTPUT_RESET_SYNC_EDGES = "deassert",
parameter SYNC_DEPTH = 2,
parameter RESET_REQUEST_PRESENT = 0,
parameter RESET_REQ_WAIT_TIME = 3,
parameter MIN_RST_ASSERTION_TIME = 11,
parameter RESET_REQ_EARLY_DSRT_TIME = 4,
parameter ADAPT_RESET_REQUEST = 0
)
(
// --------------------------------------
// We support up to 16 reset inputs, for now
// --------------------------------------
input reset_in0,
input reset_in1,
input reset_in2,
input reset_in3,
input reset_in4,
input reset_in5,
input reset_in6,
input reset_in7,
input reset_in8,
input reset_in9,
input reset_in10,
input reset_in11,
input reset_in12,
input reset_in13,
input reset_in14,
input reset_in15,
input reset_req_in0,
input reset_req_in1,
input reset_req_in2,
input reset_req_in3,
input reset_req_in4,
input reset_req_in5,
input reset_req_in6,
input reset_req_in7,
input reset_req_in8,
input reset_req_in9,
input reset_req_in10,
input reset_req_in11,
input reset_req_in12,
input reset_req_in13,
input reset_req_in14,
input reset_req_in15,
input clk,
output reg reset_out,
output reg reset_req
);
// Always use async reset synchronizer if reset_req is used
localparam ASYNC_RESET = (OUTPUT_RESET_SYNC_EDGES == "deassert");
// --------------------------------------
// Local parameter to control the reset_req and reset_out timing when RESET_REQUEST_PRESENT==1
// --------------------------------------
localparam MIN_METASTABLE = 3;
localparam RSTREQ_ASRT_SYNC_TAP = MIN_METASTABLE + RESET_REQ_WAIT_TIME;
localparam LARGER = RESET_REQ_WAIT_TIME > RESET_REQ_EARLY_DSRT_TIME ? RESET_REQ_WAIT_TIME : RESET_REQ_EARLY_DSRT_TIME;
localparam ASSERTION_CHAIN_LENGTH = (MIN_METASTABLE > LARGER) ?
MIN_RST_ASSERTION_TIME + 1 :
(
(MIN_RST_ASSERTION_TIME > LARGER)?
MIN_RST_ASSERTION_TIME + (LARGER - MIN_METASTABLE + 1) + 1 :
MIN_RST_ASSERTION_TIME + RESET_REQ_EARLY_DSRT_TIME + RESET_REQ_WAIT_TIME - MIN_METASTABLE + 2
);
localparam RESET_REQ_DRST_TAP = RESET_REQ_EARLY_DSRT_TIME + 1;
// --------------------------------------
wire merged_reset;
wire merged_reset_req_in;
wire reset_out_pre;
wire reset_req_pre;
// Registers and Interconnect
(*preserve*) reg [RSTREQ_ASRT_SYNC_TAP: 0] altera_reset_synchronizer_int_chain;
reg [ASSERTION_CHAIN_LENGTH-1: 0] r_sync_rst_chain;
reg r_sync_rst;
reg r_early_rst;
// --------------------------------------
// "Or" all the input resets together
// --------------------------------------
assign merged_reset = (
reset_in0 |
reset_in1 |
reset_in2 |
reset_in3 |
reset_in4 |
reset_in5 |
reset_in6 |
reset_in7 |
reset_in8 |
reset_in9 |
reset_in10 |
reset_in11 |
reset_in12 |
reset_in13 |
reset_in14 |
reset_in15
);
assign merged_reset_req_in = (
( (USE_RESET_REQUEST_IN0 == 1) ? reset_req_in0 : 1'b0) |
( (USE_RESET_REQUEST_IN1 == 1) ? reset_req_in1 : 1'b0) |
( (USE_RESET_REQUEST_IN2 == 1) ? reset_req_in2 : 1'b0) |
( (USE_RESET_REQUEST_IN3 == 1) ? reset_req_in3 : 1'b0) |
( (USE_RESET_REQUEST_IN4 == 1) ? reset_req_in4 : 1'b0) |
( (USE_RESET_REQUEST_IN5 == 1) ? reset_req_in5 : 1'b0) |
( (USE_RESET_REQUEST_IN6 == 1) ? reset_req_in6 : 1'b0) |
( (USE_RESET_REQUEST_IN7 == 1) ? reset_req_in7 : 1'b0) |
( (USE_RESET_REQUEST_IN8 == 1) ? reset_req_in8 : 1'b0) |
( (USE_RESET_REQUEST_IN9 == 1) ? reset_req_in9 : 1'b0) |
( (USE_RESET_REQUEST_IN10 == 1) ? reset_req_in10 : 1'b0) |
( (USE_RESET_REQUEST_IN11 == 1) ? reset_req_in11 : 1'b0) |
( (USE_RESET_REQUEST_IN12 == 1) ? reset_req_in12 : 1'b0) |
( (USE_RESET_REQUEST_IN13 == 1) ? reset_req_in13 : 1'b0) |
( (USE_RESET_REQUEST_IN14 == 1) ? reset_req_in14 : 1'b0) |
( (USE_RESET_REQUEST_IN15 == 1) ? reset_req_in15 : 1'b0)
);
// --------------------------------------
// And if required, synchronize it to the required clock domain,
// with the correct synchronization type
// --------------------------------------
generate if (OUTPUT_RESET_SYNC_EDGES == "none" && (RESET_REQUEST_PRESENT==0)) begin
assign reset_out_pre = merged_reset;
assign reset_req_pre = merged_reset_req_in;
end else begin
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(RESET_REQUEST_PRESENT? 1'b1 : ASYNC_RESET)
)
alt_rst_sync_uq1
(
.clk (clk),
.reset_in (merged_reset),
.reset_out (reset_out_pre)
);
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(0)
)
alt_rst_req_sync_uq1
(
.clk (clk),
.reset_in (merged_reset_req_in),
.reset_out (reset_req_pre)
);
end
endgenerate
generate if ( ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==0) )|
( (ADAPT_RESET_REQUEST == 1) && (OUTPUT_RESET_SYNC_EDGES != "deassert") ) ) begin
always @* begin
reset_out = reset_out_pre;
reset_req = reset_req_pre;
end
end else if ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==1) ) begin
wire reset_out_pre2;
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH+1),
.ASYNC_RESET(0)
)
alt_rst_sync_uq2
(
.clk (clk),
.reset_in (reset_out_pre),
.reset_out (reset_out_pre2)
);
always @* begin
reset_out = reset_out_pre2;
reset_req = reset_req_pre;
end
end
else begin
// 3-FF Metastability Synchronizer
initial
begin
altera_reset_synchronizer_int_chain <= {RSTREQ_ASRT_SYNC_TAP{1'b1}};
end
always @(posedge clk)
begin
altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP:0] <=
{altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP-1:0], reset_out_pre};
end
// Synchronous reset pipe
initial
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
always @(posedge clk)
begin
if (altera_reset_synchronizer_int_chain[MIN_METASTABLE-1] == 1'b1)
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
else
begin
r_sync_rst_chain <= {1'b0, r_sync_rst_chain[ASSERTION_CHAIN_LENGTH-1:1]};
end
end
// Standard synchronous reset output. From 0-1, the transition lags the early output. For 1->0, the transition
// matches the early input.
always @(posedge clk)
begin
case ({altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP], r_sync_rst_chain[1], r_sync_rst})
3'b000: r_sync_rst <= 1'b0; // Not reset
3'b001: r_sync_rst <= 1'b0;
3'b010: r_sync_rst <= 1'b0;
3'b011: r_sync_rst <= 1'b1;
3'b100: r_sync_rst <= 1'b1;
3'b101: r_sync_rst <= 1'b1;
3'b110: r_sync_rst <= 1'b1;
3'b111: r_sync_rst <= 1'b1; // In Reset
default: r_sync_rst <= 1'b1;
endcase
case ({r_sync_rst_chain[1], r_sync_rst_chain[RESET_REQ_DRST_TAP] | reset_req_pre})
2'b00: r_early_rst <= 1'b0; // Not reset
2'b01: r_early_rst <= 1'b1; // Coming out of reset
2'b10: r_early_rst <= 1'b0; // Spurious reset - should not be possible via synchronous design.
2'b11: r_early_rst <= 1'b1; // Held in reset
default: r_early_rst <= 1'b1;
endcase
end
always @* begin
reset_out = r_sync_rst;
reset_req = r_early_rst;
end
end
endgenerate
endmodule
|
module
.idelayctrl_refclk (),
.phy_dout (phy_dout),
.phy_cmd_wr_en (phy_cmd_wr_en),
.phy_data_wr_en (phy_data_wr_en),
.phy_rd_en (phy_rd_en),
.phy_ctl_wd (phy_ctl_wd_temp),
.phy_ctl_wr (phy_ctl_wr_temp),
.if_empty_def (phy_if_empty_def),
.if_rst (phy_if_reset),
.phyGo ('b1),
.aux_in_1 (aux_in_1),
.aux_in_2 (aux_in_2),
// No support yet for different data offsets for different I/O banks
// (possible use in supporting wider range of skew among bytes)
.data_offset_1 (data_offset_1_temp),
.data_offset_2 (data_offset_2_temp),
.cke_in (),
.if_a_empty (),
.if_empty (if_empty),
.if_empty_or (),
.if_empty_and (),
.of_ctl_a_full (),
// .of_data_a_full (phy_data_full),
.of_ctl_full (phy_cmd_full),
.of_data_full (),
.pre_data_a_full (phy_pre_data_a_full),
.idelay_ld (idelay_ld),
.idelay_ce (idelay_ce),
.idelay_inc (idelay_inc),
.input_sink (),
.phy_din (phy_din),
.phy_ctl_a_full (),
.phy_ctl_full (phy_ctl_full_temp),
.mem_dq_out (mem_dq_out),
.mem_dq_ts (mem_dq_ts),
.mem_dq_in (mem_dq_in),
.mem_dqs_out (mem_dqs_out),
.mem_dqs_ts (mem_dqs_ts),
.mem_dqs_in (mem_dqs_in),
.aux_out (aux_out),
.phy_ctl_ready (),
.rst_out (),
.ddr_clk (ddr_clk),
//.rclk (),
.mcGo (phy_mc_go),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
.calib_sel (calib_sel),
.calib_in_common (calib_in_common),
.calib_zero_inputs (calib_zero_inputs),
.calib_zero_ctrl (calib_zero_ctrl),
.calib_zero_lanes ('b0),
.po_fine_enable (po_fine_enable),
.po_coarse_enable (po_coarse_enable),
.po_fine_inc (po_fine_inc),
.po_coarse_inc (po_coarse_inc),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (),
.po_fine_overflow (),
.po_counter_read_val (po_counter_read_val),
.pi_rst_dqs_find (pi_rst_dqs_find),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (dbg_pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (),
.pi_counter_read_val (pi_counter_read_val),
.pi_phase_locked (pi_phase_locked),
.pi_phase_locked_all (pi_phase_locked_all),
.pi_dqs_found (),
.pi_dqs_found_any (pi_dqs_found),
.pi_dqs_found_all (pi_dqs_found_all),
.pi_dqs_found_lanes (dbg_pi_dqs_found_lanes_phy4lanes),
// Currently not being used. May be used in future if periodic
// reads become a requirement. This output could be used to signal
// a catastrophic failure in read capture and the need for
// re-calibration.
.pi_dqs_out_of_range (pi_dqs_out_of_range)
,.ref_dll_lock (ref_dll_lock)
,.pi_phase_locked_lanes (dbg_pi_phase_locked_phy4lanes)
,.fine_delay (fine_delay_mod)
,.fine_delay_sel (fine_delay_sel_r)
// ,.rst_phaser_ref (rst_phaser_ref)
);
endmodule
|
module mig_7series_v2_3_ecc_buf
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter DATA_BUF_ADDR_WIDTH = 4,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DATA_WIDTH = 64,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_merge_data,
// Inputs
clk, rst, rd_data_addr, rd_data_offset, wr_data_addr,
wr_data_offset, rd_data, wr_ecc_buf
);
input clk;
input rst;
// RMW architecture supports only 16 data buffer entries.
// Allow DATA_BUF_ADDR_WIDTH to be greater than 4, but
// assume the upper bits are used for tagging.
input [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
input [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset;
wire [4:0] buf_wr_addr;
input [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr;
input [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset;
reg [4:0] buf_rd_addr_r;
generate
if (DATA_BUF_ADDR_WIDTH >= 4) begin : ge_4_addr_bits
always @(posedge clk)
buf_rd_addr_r <= #TCQ{wr_data_addr[3:0], wr_data_offset};
assign buf_wr_addr = {rd_data_addr[3:0], rd_data_offset};
end
else begin : lt_4_addr_bits
always @(posedge clk)
buf_rd_addr_r <= #TCQ{{4-DATA_BUF_ADDR_WIDTH{1'b0}},
wr_data_addr[DATA_BUF_ADDR_WIDTH-1:0],
wr_data_offset};
assign buf_wr_addr = {{4-DATA_BUF_ADDR_WIDTH{1'b0}},
rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0],
rd_data_offset};
end
endgenerate
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
reg [2*nCK_PER_CLK*DATA_WIDTH-1:0] payload;
integer h;
always @(/*AS*/rd_data)
for (h=0; h<2*nCK_PER_CLK; h=h+1)
payload[h*DATA_WIDTH+:DATA_WIDTH] =
rd_data[h*PAYLOAD_WIDTH+:DATA_WIDTH];
input wr_ecc_buf;
localparam BUF_WIDTH = 2*nCK_PER_CLK*DATA_WIDTH;
localparam FULL_RAM_CNT = (BUF_WIDTH/6);
localparam REMAINDER = BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
wire [RAM_WIDTH-1:0] buf_out_data;
generate
begin : ram_buf
wire [RAM_WIDTH-1:0] buf_in_data;
if (REMAINDER == 0)
assign buf_in_data = payload;
else
assign buf_in_data = {{6-REMAINDER{1'b0}}, payload};
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : rd_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(buf_out_data[((i*6)+4)+:2]),
.DOB(buf_out_data[((i*6)+2)+:2]),
.DOC(buf_out_data[((i*6)+0)+:2]),
.DOD(),
.DIA(buf_in_data[((i*6)+4)+:2]),
.DIB(buf_in_data[((i*6)+2)+:2]),
.DIC(buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(buf_rd_addr_r),
.ADDRB(buf_rd_addr_r),
.ADDRC(buf_rd_addr_r),
.ADDRD(buf_wr_addr),
.WE(wr_ecc_buf),
.WCLK(clk)
);
end // block: rd_buffer_ram
end
endgenerate
output wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
assign rd_merge_data = buf_out_data[2*nCK_PER_CLK*DATA_WIDTH-1:0];
endmodule
|
module mig_7series_v2_3_ecc_buf
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter DATA_BUF_ADDR_WIDTH = 4,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DATA_WIDTH = 64,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_merge_data,
// Inputs
clk, rst, rd_data_addr, rd_data_offset, wr_data_addr,
wr_data_offset, rd_data, wr_ecc_buf
);
input clk;
input rst;
// RMW architecture supports only 16 data buffer entries.
// Allow DATA_BUF_ADDR_WIDTH to be greater than 4, but
// assume the upper bits are used for tagging.
input [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
input [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset;
wire [4:0] buf_wr_addr;
input [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr;
input [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset;
reg [4:0] buf_rd_addr_r;
generate
if (DATA_BUF_ADDR_WIDTH >= 4) begin : ge_4_addr_bits
always @(posedge clk)
buf_rd_addr_r <= #TCQ{wr_data_addr[3:0], wr_data_offset};
assign buf_wr_addr = {rd_data_addr[3:0], rd_data_offset};
end
else begin : lt_4_addr_bits
always @(posedge clk)
buf_rd_addr_r <= #TCQ{{4-DATA_BUF_ADDR_WIDTH{1'b0}},
wr_data_addr[DATA_BUF_ADDR_WIDTH-1:0],
wr_data_offset};
assign buf_wr_addr = {{4-DATA_BUF_ADDR_WIDTH{1'b0}},
rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0],
rd_data_offset};
end
endgenerate
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
reg [2*nCK_PER_CLK*DATA_WIDTH-1:0] payload;
integer h;
always @(/*AS*/rd_data)
for (h=0; h<2*nCK_PER_CLK; h=h+1)
payload[h*DATA_WIDTH+:DATA_WIDTH] =
rd_data[h*PAYLOAD_WIDTH+:DATA_WIDTH];
input wr_ecc_buf;
localparam BUF_WIDTH = 2*nCK_PER_CLK*DATA_WIDTH;
localparam FULL_RAM_CNT = (BUF_WIDTH/6);
localparam REMAINDER = BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
wire [RAM_WIDTH-1:0] buf_out_data;
generate
begin : ram_buf
wire [RAM_WIDTH-1:0] buf_in_data;
if (REMAINDER == 0)
assign buf_in_data = payload;
else
assign buf_in_data = {{6-REMAINDER{1'b0}}, payload};
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : rd_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(buf_out_data[((i*6)+4)+:2]),
.DOB(buf_out_data[((i*6)+2)+:2]),
.DOC(buf_out_data[((i*6)+0)+:2]),
.DOD(),
.DIA(buf_in_data[((i*6)+4)+:2]),
.DIB(buf_in_data[((i*6)+2)+:2]),
.DIC(buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(buf_rd_addr_r),
.ADDRB(buf_rd_addr_r),
.ADDRC(buf_rd_addr_r),
.ADDRD(buf_wr_addr),
.WE(wr_ecc_buf),
.WCLK(clk)
);
end // block: rd_buffer_ram
end
endgenerate
output wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
assign rd_merge_data = buf_out_data[2*nCK_PER_CLK*DATA_WIDTH-1:0];
endmodule
|
module mig_7series_v2_3_ecc_buf
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter DATA_BUF_ADDR_WIDTH = 4,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DATA_WIDTH = 64,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_merge_data,
// Inputs
clk, rst, rd_data_addr, rd_data_offset, wr_data_addr,
wr_data_offset, rd_data, wr_ecc_buf
);
input clk;
input rst;
// RMW architecture supports only 16 data buffer entries.
// Allow DATA_BUF_ADDR_WIDTH to be greater than 4, but
// assume the upper bits are used for tagging.
input [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
input [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset;
wire [4:0] buf_wr_addr;
input [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr;
input [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset;
reg [4:0] buf_rd_addr_r;
generate
if (DATA_BUF_ADDR_WIDTH >= 4) begin : ge_4_addr_bits
always @(posedge clk)
buf_rd_addr_r <= #TCQ{wr_data_addr[3:0], wr_data_offset};
assign buf_wr_addr = {rd_data_addr[3:0], rd_data_offset};
end
else begin : lt_4_addr_bits
always @(posedge clk)
buf_rd_addr_r <= #TCQ{{4-DATA_BUF_ADDR_WIDTH{1'b0}},
wr_data_addr[DATA_BUF_ADDR_WIDTH-1:0],
wr_data_offset};
assign buf_wr_addr = {{4-DATA_BUF_ADDR_WIDTH{1'b0}},
rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0],
rd_data_offset};
end
endgenerate
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
reg [2*nCK_PER_CLK*DATA_WIDTH-1:0] payload;
integer h;
always @(/*AS*/rd_data)
for (h=0; h<2*nCK_PER_CLK; h=h+1)
payload[h*DATA_WIDTH+:DATA_WIDTH] =
rd_data[h*PAYLOAD_WIDTH+:DATA_WIDTH];
input wr_ecc_buf;
localparam BUF_WIDTH = 2*nCK_PER_CLK*DATA_WIDTH;
localparam FULL_RAM_CNT = (BUF_WIDTH/6);
localparam REMAINDER = BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
wire [RAM_WIDTH-1:0] buf_out_data;
generate
begin : ram_buf
wire [RAM_WIDTH-1:0] buf_in_data;
if (REMAINDER == 0)
assign buf_in_data = payload;
else
assign buf_in_data = {{6-REMAINDER{1'b0}}, payload};
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : rd_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(buf_out_data[((i*6)+4)+:2]),
.DOB(buf_out_data[((i*6)+2)+:2]),
.DOC(buf_out_data[((i*6)+0)+:2]),
.DOD(),
.DIA(buf_in_data[((i*6)+4)+:2]),
.DIB(buf_in_data[((i*6)+2)+:2]),
.DIC(buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(buf_rd_addr_r),
.ADDRB(buf_rd_addr_r),
.ADDRC(buf_rd_addr_r),
.ADDRD(buf_wr_addr),
.WE(wr_ecc_buf),
.WCLK(clk)
);
end // block: rd_buffer_ram
end
endgenerate
output wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
assign rd_merge_data = buf_out_data[2*nCK_PER_CLK*DATA_WIDTH-1:0];
endmodule
|
module mig_7series_v2_3_fi_xor #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
// External Memory Data Width
parameter integer DQ_WIDTH = 72,
parameter integer DQS_WIDTH = 9,
parameter integer nCK_PER_CLK = 4
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire clk ,
input wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] wrdata_in ,
output wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] wrdata_out ,
input wire wrdata_en ,
input wire [DQS_WIDTH-1:0] fi_xor_we ,
input wire [DQ_WIDTH-1:0] fi_xor_wrdata
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam DQ_PER_DQS = DQ_WIDTH / DQS_WIDTH;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [DQ_WIDTH-1:0] fi_xor_data = {DQ_WIDTH{1'b0}};
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
///////////////////////////////////////////////////////////////////////////////
// Register in the fi_xor_wrdata on a byte width basis
generate
begin
genvar i;
for (i = 0; i < DQS_WIDTH; i = i + 1) begin : assign_fi_xor_data
always @(posedge clk) begin
if (wrdata_en) begin
fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS] <= {DQ_PER_DQS{1'b0}};
end
else if (fi_xor_we[i]) begin
fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS] <= fi_xor_wrdata[i*DQ_PER_DQS+:DQ_PER_DQS];
end
else begin
fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS] <= fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS];
end
end
end
end
endgenerate
assign wrdata_out[0+:DQ_WIDTH] = wrdata_in[0+:DQ_WIDTH] ^ fi_xor_data[0+:DQ_WIDTH];
// Pass through upper bits
assign wrdata_out[DQ_WIDTH+:(2*nCK_PER_CLK-1)*DQ_WIDTH] = wrdata_in[DQ_WIDTH+:(2*nCK_PER_CLK-1)*DQ_WIDTH];
endmodule
|
module mig_7series_v2_3_fi_xor #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
// External Memory Data Width
parameter integer DQ_WIDTH = 72,
parameter integer DQS_WIDTH = 9,
parameter integer nCK_PER_CLK = 4
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire clk ,
input wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] wrdata_in ,
output wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] wrdata_out ,
input wire wrdata_en ,
input wire [DQS_WIDTH-1:0] fi_xor_we ,
input wire [DQ_WIDTH-1:0] fi_xor_wrdata
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam DQ_PER_DQS = DQ_WIDTH / DQS_WIDTH;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [DQ_WIDTH-1:0] fi_xor_data = {DQ_WIDTH{1'b0}};
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
///////////////////////////////////////////////////////////////////////////////
// Register in the fi_xor_wrdata on a byte width basis
generate
begin
genvar i;
for (i = 0; i < DQS_WIDTH; i = i + 1) begin : assign_fi_xor_data
always @(posedge clk) begin
if (wrdata_en) begin
fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS] <= {DQ_PER_DQS{1'b0}};
end
else if (fi_xor_we[i]) begin
fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS] <= fi_xor_wrdata[i*DQ_PER_DQS+:DQ_PER_DQS];
end
else begin
fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS] <= fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS];
end
end
end
end
endgenerate
assign wrdata_out[0+:DQ_WIDTH] = wrdata_in[0+:DQ_WIDTH] ^ fi_xor_data[0+:DQ_WIDTH];
// Pass through upper bits
assign wrdata_out[DQ_WIDTH+:(2*nCK_PER_CLK-1)*DQ_WIDTH] = wrdata_in[DQ_WIDTH+:(2*nCK_PER_CLK-1)*DQ_WIDTH];
endmodule
|
module mig_7series_v2_3_mc #
(
parameter TCQ = 100, // clk->out delay(sim only)
parameter ADDR_CMD_MODE = "1T", // registered or
// 1Tfered mem?
parameter BANK_WIDTH = 3, // bank address width
parameter BM_CNT_WIDTH = 2, // # BM counter width
// i.e., log2(nBANK_MACHS)
parameter BURST_MODE = "8", // Burst length
parameter CL = 5, // Read CAS latency
// (in clk cyc)
parameter CMD_PIPE_PLUS1 = "ON", // add register stage
// between MC and PHY
parameter COL_WIDTH = 12, // column address width
parameter CS_WIDTH = 4, // # of unique CS outputs
parameter CWL = 5, // Write CAS latency
// (in clk cyc)
parameter DATA_BUF_ADDR_WIDTH = 8, // User request tag (e.g.
// user src/dest buf addr)
parameter DATA_BUF_OFFSET_WIDTH = 1, // User buffer offset width
parameter DATA_WIDTH = 64, // Data bus width
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_TYPE = "DDR3", // Memory I/F type:
// "DDR3", "DDR2"
parameter ECC = "OFF", // ECC ON/OFF?
parameter ECC_WIDTH = 8, // # of ECC bits
parameter MAINT_PRESCALER_PERIOD= 200000, // maintenance period (ps)
parameter MC_ERR_ADDR_WIDTH = 31, // # of error address bits
parameter nBANK_MACHS = 4, // # of bank machines (BM)
parameter nCK_PER_CLK = 4, // DRAM clock : MC clock
// frequency ratio
parameter nCS_PER_RANK = 1, // # of unique CS outputs
// per rank
parameter nREFRESH_BANK = 1, // # of REF cmds to pull-in
parameter nSLOTS = 1, // # DIMM slots in system
parameter ORDERING = "NORM", // request ordering mode
parameter PAYLOAD_WIDTH = 64, // Width of data payload
// from PHY
parameter RANK_WIDTH = 2, // # of bits to count ranks
parameter RANKS = 4, // # of ranks of DRAM
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter ROW_WIDTH = 16, // row address width
parameter RTT_NOM = "40", // Nominal ODT value
parameter RTT_WR = "120", // Write ODT value
parameter SLOT_0_CONFIG = 8'b0000_0101, // ranks allowed in slot 0
parameter SLOT_1_CONFIG = 8'b0000_1010, // ranks allowed in slot 1
parameter STARVE_LIMIT = 2, // max # of times a user
// request is allowed to
// lose arbitration when
// reordering is enabled
parameter tCK = 2500, // memory clk period(ps)
parameter tCKE = 10000, // CKE minimum pulse (ps)
parameter tFAW = 40000, // four activate window(ps)
parameter tRAS = 37500, // ACT->PRE cmd period (ps)
parameter tRCD = 12500, // ACT->R/W delay (ps)
parameter tREFI = 7800000, // average periodic
// refresh interval(ps)
parameter CKE_ODT_AUX = "FALSE", //Parameter to turn on/off the aux_out signal
parameter tRFC = 110000, // REF->ACT/REF delay (ps)
parameter tRP = 12500, // PRE cmd period (ps)
parameter tRRD = 10000, // ACT->ACT period (ps)
parameter tRTP = 7500, // Read->PRE cmd delay (ps)
parameter tWTR = 7500, // Internal write->read
// delay (ps)
// requiring DLL lock (CKs)
parameter tZQCS = 64, // ZQCS cmd period (CKs)
parameter tZQI = 128_000_000, // ZQCS interval (ps)
parameter tPRDI = 1_000_000, // pS
parameter USER_REFRESH = "OFF" // Whether user manages REF
)
(
// System inputs
input clk,
input rst,
// Physical memory slot presence
input [7:0] slot_0_present,
input [7:0] slot_1_present,
// Native Interface
input [2:0] cmd,
input [DATA_BUF_ADDR_WIDTH-1:0] data_buf_addr,
input hi_priority,
input size,
input [BANK_WIDTH-1:0] bank,
input [COL_WIDTH-1:0] col,
input [RANK_WIDTH-1:0] rank,
input [ROW_WIDTH-1:0] row,
input use_addr,
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data,
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask,
output accept,
output accept_ns,
output [BM_CNT_WIDTH-1:0] bank_mach_next,
output wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data,
output [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr,
output rd_data_en,
output rd_data_end,
output [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset,
output reg [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr /* synthesis syn_maxfan = 30 */,
output reg wr_data_en,
output reg [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset /* synthesis syn_maxfan = 30 */,
output mc_read_idle,
output mc_ref_zq_wip,
// ECC interface
input correct_en,
input [2*nCK_PER_CLK-1:0] raw_not_ecc,
input [DQS_WIDTH - 1:0] fi_xor_we,
input [DQ_WIDTH -1 :0 ] fi_xor_wrdata,
output [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr,
output [2*nCK_PER_CLK-1:0] ecc_single,
output [2*nCK_PER_CLK-1:0] ecc_multiple,
// User maintenance requests
input app_periodic_rd_req,
input app_ref_req,
input app_zq_req,
input app_sr_req,
output app_sr_active,
output app_ref_ack,
output app_zq_ack,
// MC <==> PHY Interface
output reg [nCK_PER_CLK-1:0] mc_ras_n,
output reg [nCK_PER_CLK-1:0] mc_cas_n,
output reg [nCK_PER_CLK-1:0] mc_we_n,
output reg [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address,
output reg [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank,
output reg [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n,
output reg [1:0] mc_odt,
output reg [nCK_PER_CLK-1:0] mc_cke,
output wire mc_reset_n,
output wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata,
output wire [2*nCK_PER_CLK*DQ_WIDTH/8-1:0]mc_wrdata_mask,
output reg mc_wrdata_en,
output wire mc_cmd_wren,
output wire mc_ctl_wren,
output reg [2:0] mc_cmd,
output reg [5:0] mc_data_offset,
output reg [5:0] mc_data_offset_1,
output reg [5:0] mc_data_offset_2,
output reg [1:0] mc_cas_slot,
output reg [3:0] mc_aux_out0,
output reg [3:0] mc_aux_out1,
output reg [1:0] mc_rank_cnt,
input phy_mc_ctl_full,
input phy_mc_cmd_full,
input phy_mc_data_full,
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rd_data,
input phy_rddata_valid,
input init_calib_complete,
input [6*RANKS-1:0] calib_rd_data_offset,
input [6*RANKS-1:0] calib_rd_data_offset_1,
input [6*RANKS-1:0] calib_rd_data_offset_2
);
assign mc_reset_n = 1'b1; // never reset memory
assign mc_cmd_wren = 1'b1; // always write CMD FIFO(issue DSEL when idle)
assign mc_ctl_wren = 1'b1; // always write CTL FIFO(issue nondata when idle)
// Ensure there is always at least one rank present during operation
`ifdef MC_SVA
ranks_present: assert property
(@(posedge clk) (rst || (|(slot_0_present | slot_1_present))));
`endif
// Reserved. Do not change.
localparam nPHY_WRLAT = 2;
// always delay write data control unless ECC mode is enabled
localparam DELAY_WR_DATA_CNTRL = ECC == "ON" ? 0 : 1;
// Ensure that write control is delayed for appropriate CWL
/*`ifdef MC_SVA
delay_wr_data_zero_CWL_le_6: assert property
(@(posedge clk) ((CWL > 6) || (DELAY_WR_DATA_CNTRL == 0)));
`endif*/
// Never retrieve WR_DATA_ADDR early
localparam EARLY_WR_DATA_ADDR = "OFF";
//***************************************************************************
// Convert timing parameters from time to clock cycles
//***************************************************************************
localparam nCKE = cdiv(tCKE, tCK);
localparam nRP = cdiv(tRP, tCK);
localparam nRCD = cdiv(tRCD, tCK);
localparam nRAS = cdiv(tRAS, tCK);
localparam nFAW = cdiv(tFAW, tCK);
localparam nRFC = cdiv(tRFC, tCK);
// Convert tWR. As per specification, write recover for autoprecharge
// cycles doesn't support values of 9 and 11. Round up 9 to 10 and 11 to 12
localparam nWR_CK = cdiv(15000, tCK) ;
localparam nWR = (nWR_CK == 9) ? 10 : (nWR_CK == 11) ? 12 : nWR_CK;
// tRRD, tWTR at tRTP have a 4 cycle floor in DDR3 and 2 cycle floor in DDR2
localparam nRRD_CK = cdiv(tRRD, tCK);
localparam nRRD = (DRAM_TYPE == "DDR3") ? (nRRD_CK < 4) ? 4 : nRRD_CK
: (nRRD_CK < 2) ? 2 : nRRD_CK;
localparam nWTR_CK = cdiv(tWTR, tCK);
localparam nWTR = (DRAM_TYPE == "DDR3") ? (nWTR_CK < 4) ? 4 : nWTR_CK
: (nWTR_CK < 2) ? 2 : nWTR_CK;
localparam nRTP_CK = cdiv(tRTP, tCK);
localparam nRTP = (DRAM_TYPE == "DDR3") ? (nRTP_CK < 4) ? 4 : nRTP_CK
: (nRTP_CK < 2) ? 2 : nRTP_CK;
// Add a cycle to CL/CWL for the register in RDIMM devices
localparam CWL_M = (REG_CTRL == "ON") ? CWL + 1 : CWL;
localparam CL_M = (REG_CTRL == "ON") ? CL + 1 : CL;
// Tuneable delay between read and write data on the DQ bus
localparam DQRD2DQWR_DLY = 4;
// CKE minimum pulse width for self-refresh (SRE->SRX minimum time)
localparam nCKESR = nCKE + 1;
// Delay from SRE to command requiring locked DLL. Currently fixed at 512 for
// all devices per JEDEC spec.
localparam tXSDLL = 512;
//***************************************************************************
// Set up maintenance counter dividers
//***************************************************************************
// CK clock divisor to generate maintenance prescaler period (round down)
localparam MAINT_PRESCALER_DIV = MAINT_PRESCALER_PERIOD / (tCK*nCK_PER_CLK);
// Maintenance prescaler divisor for refresh timer. Essentially, this is
// just (tREFI / MAINT_PRESCALER_PERIOD), but we must account for the worst
// case delay from the time we get a tick from the refresh counter to the
// time that we can actually issue the REF command. Thus, subtract tRCD, CL,
// data burst time and tRP for each implemented bank machine to ensure that
// all transactions can complete before tREFI expires
localparam REFRESH_TIMER_DIV =
USER_REFRESH == "ON" ? 0 :
(tREFI-((tRCD+((CL+4)*tCK)+tRP)*nBANK_MACHS)) / MAINT_PRESCALER_PERIOD;
// Periodic read (RESERVED - not currently required or supported in 7 series)
// tPRDI should only be set to 0
// localparam tPRDI = 0; // Do NOT change.
localparam PERIODIC_RD_TIMER_DIV = tPRDI / MAINT_PRESCALER_PERIOD;
// Convert maintenance prescaler from ps to ns
localparam MAINT_PRESCALER_PERIOD_NS = MAINT_PRESCALER_PERIOD / 1000;
// Maintenance prescaler divisor for ZQ calibration (ZQCS) timer
localparam ZQ_TIMER_DIV = tZQI / MAINT_PRESCALER_PERIOD_NS;
// Bus width required to broadcast a single bit rank signal among all the
// bank machines - 1 bit per rank, per bank
localparam RANK_BM_BV_WIDTH = nBANK_MACHS * RANKS;
//***************************************************************************
// Define 2T, CWL-even mode to enable multi-fabric-cycle 2T commands
//***************************************************************************
localparam EVEN_CWL_2T_MODE =
((ADDR_CMD_MODE == "2T") && (!(CWL % 2))) ? "ON" : "OFF";
//***************************************************************************
// Reserved feature control.
//***************************************************************************
// Open page wait mode is reserved.
// nOP_WAIT is the number of states a bank machine will park itself
// on an otherwise inactive open page before closing the page. If
// nOP_WAIT == 0, open page wait mode is disabled. If nOP_WAIT == -1,
// the bank machine will remain parked until the pool of idle bank machines
// are less than LOW_IDLE_CNT. At which point parked bank machines
// are selected to exit until the number of idle bank machines exceeds the
// LOW_IDLE_CNT.
localparam nOP_WAIT = 0; // Open page mode
localparam LOW_IDLE_CNT = 0; // Low idle bank machine threshold
//***************************************************************************
// Internal wires
//***************************************************************************
wire [RANK_BM_BV_WIDTH-1:0] act_this_rank_r;
wire [ROW_WIDTH-1:0] col_a;
wire [BANK_WIDTH-1:0] col_ba;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_data_buf_addr;
wire col_periodic_rd;
wire [RANK_WIDTH-1:0] col_ra;
wire col_rmw;
wire col_rd_wr;
wire [ROW_WIDTH-1:0] col_row;
wire col_size;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr;
wire dq_busy_data;
wire ecc_status_valid;
wire [RANKS-1:0] inhbt_act_faw_r;
wire [RANKS-1:0] inhbt_rd;
wire [RANKS-1:0] inhbt_wr;
wire insert_maint_r1;
wire [RANK_WIDTH-1:0] maint_rank_r;
wire maint_req_r;
wire maint_wip_r;
wire maint_zq_r;
wire maint_sre_r;
wire maint_srx_r;
wire periodic_rd_ack_r;
wire periodic_rd_r;
wire [RANK_WIDTH-1:0] periodic_rd_rank_r;
wire [(RANKS*nBANK_MACHS)-1:0] rank_busy_r;
wire rd_rmw;
wire [RANK_BM_BV_WIDTH-1:0] rd_this_rank_r;
wire [nBANK_MACHS-1:0] sending_col;
wire [nBANK_MACHS-1:0] sending_row;
wire sent_col;
wire sent_col_r;
wire wr_ecc_buf;
wire [RANK_BM_BV_WIDTH-1:0] wr_this_rank_r;
// MC/PHY optional pipeline stage support
wire [nCK_PER_CLK-1:0] mc_ras_n_ns;
wire [nCK_PER_CLK-1:0] mc_cas_n_ns;
wire [nCK_PER_CLK-1:0] mc_we_n_ns;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address_ns;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank_ns;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n_ns;
wire [1:0] mc_odt_ns;
wire [nCK_PER_CLK-1:0] mc_cke_ns;
wire [3:0] mc_aux_out0_ns;
wire [3:0] mc_aux_out1_ns;
wire [1:0] mc_rank_cnt_ns = col_ra;
wire [2:0] mc_cmd_ns;
wire [5:0] mc_data_offset_ns;
wire [5:0] mc_data_offset_1_ns;
wire [5:0] mc_data_offset_2_ns;
wire [1:0] mc_cas_slot_ns;
wire mc_wrdata_en_ns;
wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr_ns;
wire wr_data_en_ns;
wire [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset_ns;
integer i;
// MC Read idle support
wire col_read_fifo_empty;
wire mc_read_idle_ns;
reg mc_read_idle_r;
// MC Maintenance in progress with bus idle indication
wire maint_ref_zq_wip;
wire mc_ref_zq_wip_ns;
reg mc_ref_zq_wip_r;
//***************************************************************************
// Function cdiv
// Description:
// This function performs ceiling division (divide and round-up)
// Inputs:
// num: integer to be divided
// div: divisor
// Outputs:
// cdiv: result of ceiling division (num/div, rounded up)
//***************************************************************************
function integer cdiv (input integer num, input integer div);
begin
// perform division, then add 1 if and only if remainder is non-zero
cdiv = (num/div) + (((num%div)>0) ? 1 : 0);
end
endfunction // cdiv
//***************************************************************************
// Optional pipeline register stage on MC/PHY interface
//***************************************************************************
generate
if (CMD_PIPE_PLUS1 == "ON") begin : cmd_pipe_plus // register interface
always @(posedge clk) begin
mc_address <= #TCQ mc_address_ns;
mc_bank <= #TCQ mc_bank_ns;
mc_cas_n <= #TCQ mc_cas_n_ns;
mc_cs_n <= #TCQ mc_cs_n_ns;
mc_odt <= #TCQ mc_odt_ns;
mc_cke <= #TCQ mc_cke_ns;
mc_aux_out0 <= #TCQ mc_aux_out0_ns;
mc_aux_out1 <= #TCQ mc_aux_out1_ns;
mc_cmd <= #TCQ mc_cmd_ns;
mc_ras_n <= #TCQ mc_ras_n_ns;
mc_we_n <= #TCQ mc_we_n_ns;
mc_data_offset <= #TCQ mc_data_offset_ns;
mc_data_offset_1 <= #TCQ mc_data_offset_1_ns;
mc_data_offset_2 <= #TCQ mc_data_offset_2_ns;
mc_cas_slot <= #TCQ mc_cas_slot_ns;
mc_wrdata_en <= #TCQ mc_wrdata_en_ns;
mc_rank_cnt <= #TCQ mc_rank_cnt_ns;
wr_data_addr <= #TCQ wr_data_addr_ns;
wr_data_en <= #TCQ wr_data_en_ns;
wr_data_offset <= #TCQ wr_data_offset_ns;
end // always @ (posedge clk)
end // block: cmd_pipe_plus
else begin : cmd_pipe_plus0 // don't register interface
always @( mc_address_ns or mc_aux_out0_ns or mc_aux_out1_ns or
mc_bank_ns or mc_cas_n_ns or mc_cmd_ns or mc_cs_n_ns or
mc_odt_ns or mc_cke_ns or mc_data_offset_ns or
mc_data_offset_1_ns or mc_data_offset_2_ns or mc_rank_cnt_ns or
mc_ras_n_ns or mc_we_n_ns or mc_wrdata_en_ns or
wr_data_addr_ns or wr_data_en_ns or wr_data_offset_ns or
mc_cas_slot_ns)
begin
mc_address = #TCQ mc_address_ns;
mc_bank = #TCQ mc_bank_ns;
mc_cas_n = #TCQ mc_cas_n_ns;
mc_cs_n = #TCQ mc_cs_n_ns;
mc_odt = #TCQ mc_odt_ns;
mc_cke = #TCQ mc_cke_ns;
mc_aux_out0 = #TCQ mc_aux_out0_ns;
mc_aux_out1 = #TCQ mc_aux_out1_ns;
mc_cmd = #TCQ mc_cmd_ns;
mc_ras_n = #TCQ mc_ras_n_ns;
mc_we_n = #TCQ mc_we_n_ns;
mc_data_offset = #TCQ mc_data_offset_ns;
mc_data_offset_1 = #TCQ mc_data_offset_1_ns;
mc_data_offset_2 = #TCQ mc_data_offset_2_ns;
mc_cas_slot = #TCQ mc_cas_slot_ns;
mc_wrdata_en = #TCQ mc_wrdata_en_ns;
mc_rank_cnt = #TCQ mc_rank_cnt_ns;
wr_data_addr = #TCQ wr_data_addr_ns;
wr_data_en = #TCQ wr_data_en_ns;
wr_data_offset = #TCQ wr_data_offset_ns;
end // always @ (...
end // block: cmd_pipe_plus0
endgenerate
//***************************************************************************
// Indicate when there are no pending reads so that input features can be
// powered down
//***************************************************************************
assign mc_read_idle_ns = col_read_fifo_empty & init_calib_complete;
always @(posedge clk) mc_read_idle_r <= #TCQ mc_read_idle_ns;
assign mc_read_idle = mc_read_idle_r;
//***************************************************************************
// Indicate when there is a refresh in progress and the bus is idle so that
// tap adjustments can be made
//***************************************************************************
assign mc_ref_zq_wip_ns = maint_ref_zq_wip && col_read_fifo_empty;
always @(posedge clk) mc_ref_zq_wip_r <= mc_ref_zq_wip_ns;
assign mc_ref_zq_wip = mc_ref_zq_wip_r;
//***************************************************************************
// Manage rank-level timing and maintanence
//***************************************************************************
mig_7series_v2_3_rank_mach #
(
// Parameters
.BURST_MODE (BURST_MODE),
.CL (CL),
.CWL (CWL),
.CS_WIDTH (CS_WIDTH),
.DQRD2DQWR_DLY (DQRD2DQWR_DLY),
.DRAM_TYPE (DRAM_TYPE),
.MAINT_PRESCALER_DIV (MAINT_PRESCALER_DIV),
.nBANK_MACHS (nBANK_MACHS),
.nCKESR (nCKESR),
.nCK_PER_CLK (nCK_PER_CLK),
.nFAW (nFAW),
.nREFRESH_BANK (nREFRESH_BANK),
.nRRD (nRRD),
.nWTR (nWTR),
.PERIODIC_RD_TIMER_DIV (PERIODIC_RD_TIMER_DIV),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.REFRESH_TIMER_DIV (REFRESH_TIMER_DIV),
.ZQ_TIMER_DIV (ZQ_TIMER_DIV)
)
rank_mach0
(
// Outputs
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.maint_ref_zq_wip (maint_ref_zq_wip),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
// Inputs
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.app_periodic_rd_req (app_periodic_rd_req),
.app_ref_req (app_ref_req),
.app_ref_ack (app_ref_ack),
.app_zq_req (app_zq_req),
.app_zq_ack (app_zq_ack),
.app_sr_req (app_sr_req),
.app_sr_active (app_sr_active),
.col_rd_wr (col_rd_wr),
.clk (clk),
.init_calib_complete (init_calib_complete),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.rst (rst),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0])
);
//***************************************************************************
// Manage requests, reordering and bank timing
//***************************************************************************
mig_7series_v2_3_bank_mach #
(
// Parameters
.TCQ (TCQ),
.EVEN_CWL_2T_MODE (EVEN_CWL_2T_MODE),
.ADDR_CMD_MODE (ADDR_CMD_MODE),
.BANK_WIDTH (BANK_WIDTH),
.BM_CNT_WIDTH (BM_CNT_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.CL (CL_M),
.CWL (CWL_M),
.CKE_ODT_AUX (CKE_ODT_AUX),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.LOW_IDLE_CNT (LOW_IDLE_CNT),
.nBANK_MACHS (nBANK_MACHS),
.nCK_PER_CLK (nCK_PER_CLK),
.nCS_PER_RANK (nCS_PER_RANK),
.nOP_WAIT (nOP_WAIT),
.nRAS (nRAS),
.nRCD (nRCD),
.nRFC (nRFC),
.nRP (nRP),
.nRTP (nRTP),
.nSLOTS (nSLOTS),
.nWR (nWR),
.nXSDLL (tXSDLL),
.ORDERING (ORDERING),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.ROW_WIDTH (ROW_WIDTH),
.RTT_NOM (RTT_NOM),
.RTT_WR (RTT_WR),
.SLOT_0_CONFIG (SLOT_0_CONFIG),
.SLOT_1_CONFIG (SLOT_1_CONFIG),
.STARVE_LIMIT (STARVE_LIMIT),
.tZQCS (tZQCS)
)
bank_mach0
(
// Outputs
.accept (accept),
.accept_ns (accept_ns),
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.bank_mach_next (bank_mach_next[BM_CNT_WIDTH-1:0]),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.mc_bank (mc_bank_ns),
.mc_address (mc_address_ns),
.mc_ras_n (mc_ras_n_ns),
.mc_cas_n (mc_cas_n_ns),
.mc_we_n (mc_we_n_ns),
.mc_cs_n (mc_cs_n_ns),
.mc_odt (mc_odt_ns),
.mc_cke (mc_cke_ns),
.mc_aux_out0 (mc_aux_out0_ns),
.mc_aux_out1 (mc_aux_out1_ns),
.mc_cmd (mc_cmd_ns),
.mc_data_offset (mc_data_offset_ns),
.mc_data_offset_1 (mc_data_offset_1_ns),
.mc_data_offset_2 (mc_data_offset_2_ns),
.mc_cas_slot (mc_cas_slot_ns),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sent_col (sent_col),
.sent_col_r (sent_col_r),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
// Inputs
.bank (bank[BANK_WIDTH-1:0]),
.calib_rddata_offset (calib_rd_data_offset),
.calib_rddata_offset_1 (calib_rd_data_offset_1),
.calib_rddata_offset_2 (calib_rd_data_offset_2),
.clk (clk),
.cmd (cmd[2:0]),
.col (col[COL_WIDTH-1:0]),
.data_buf_addr (data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.init_calib_complete (init_calib_complete),
.phy_rddata_valid (phy_rddata_valid),
.dq_busy_data (dq_busy_data),
.hi_priority (hi_priority),
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
.phy_mc_cmd_full (phy_mc_cmd_full),
.phy_mc_ctl_full (phy_mc_ctl_full),
.phy_mc_data_full (phy_mc_data_full),
.rank (rank[RANK_WIDTH-1:0]),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_rmw (rd_rmw),
.row (row[ROW_WIDTH-1:0]),
.rst (rst),
.size (size),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.use_addr (use_addr)
);
//***************************************************************************
// Manage DQ bus
//***************************************************************************
mig_7series_v2_3_col_mach #
(
// Parameters
.TCQ (TCQ),
.BANK_WIDTH (BANK_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DELAY_WR_DATA_CNTRL (DELAY_WR_DATA_CNTRL),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.MC_ERR_ADDR_WIDTH (MC_ERR_ADDR_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK),
.nPHY_WRLAT (nPHY_WRLAT),
.RANK_WIDTH (RANK_WIDTH),
.ROW_WIDTH (ROW_WIDTH)
)
col_mach0
(
// Outputs
.mc_wrdata_en (mc_wrdata_en_ns),
.dq_busy_data (dq_busy_data),
.ecc_err_addr (ecc_err_addr[MC_ERR_ADDR_WIDTH-1:0]),
.ecc_status_valid (ecc_status_valid),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_data_en (rd_data_en),
.rd_data_end (rd_data_end),
.rd_data_offset (rd_data_offset),
.rd_rmw (rd_rmw),
.wr_data_addr (wr_data_addr_ns),
.wr_data_en (wr_data_en_ns),
.wr_data_offset (wr_data_offset_ns),
.wr_ecc_buf (wr_ecc_buf),
.col_read_fifo_empty (col_read_fifo_empty),
// Inputs
.clk (clk),
.rst (rst),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.phy_rddata_valid (phy_rddata_valid),
.sent_col (EVEN_CWL_2T_MODE == "ON" ? sent_col_r : sent_col)
);
//***************************************************************************
// Implement ECC
//***************************************************************************
// Total ECC word length = ECC code width + Data width
localparam CODE_WIDTH = DATA_WIDTH + ECC_WIDTH;
generate
if (ECC == "OFF") begin : ecc_off
assign rd_data = phy_rd_data;
assign mc_wrdata = wr_data;
assign mc_wrdata_mask = wr_data_mask;
assign ecc_single = 4'b0;
assign ecc_multiple = 4'b0;
end
else begin : ecc_on
wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_i;
// Merge and encode
mig_7series_v2_3_ecc_merge_enc #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_merge_enc0
(
// Outputs
.mc_wrdata (mc_wrdata_i),
.mc_wrdata_mask (mc_wrdata_mask),
// Inputs
.clk (clk),
.rst (rst),
.h_rows (h_rows),
.rd_merge_data (rd_merge_data),
.raw_not_ecc (raw_not_ecc),
.wr_data (wr_data),
.wr_data_mask (wr_data_mask)
);
// Decode and fix
mig_7series_v2_3_ecc_dec_fix #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_dec_fix0
(
// Outputs
.ecc_multiple (ecc_multiple),
.ecc_single (ecc_single),
.rd_data (rd_data),
// Inputs
.clk (clk),
.rst (rst),
.correct_en (correct_en),
.phy_rddata (phy_rd_data),
.ecc_status_valid (ecc_status_valid),
.h_rows (h_rows)
);
// ECC Buffer
mig_7series_v2_3_ecc_buf #
(
// Parameters
.TCQ (TCQ),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_buf0
(
// Outputs
.rd_merge_data (rd_merge_data),
// Inputs
.clk (clk),
.rst (rst),
.rd_data (rd_data),
.rd_data_addr (rd_data_addr),
.rd_data_offset (rd_data_offset),
.wr_data_addr (wr_data_addr),
.wr_data_offset (wr_data_offset),
.wr_ecc_buf (wr_ecc_buf)
);
// Generate ECC table
mig_7series_v2_3_ecc_gen #
(
// Parameters
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.ECC_WIDTH (ECC_WIDTH)
)
ecc_gen0
(
// Outputs
.h_rows (h_rows)
);
if (ECC == "ON") begin : gen_fi_xor_inst
reg mc_wrdata_en_r;
wire mc_wrdata_en_i;
always @(posedge clk) begin
mc_wrdata_en_r <= mc_wrdata_en;
end
assign mc_wrdata_en_i = mc_wrdata_en_r;
mig_7series_v2_3_fi_xor #(
.DQ_WIDTH (DQ_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
fi_xor0
(
.clk (clk),
.wrdata_in (mc_wrdata_i),
.wrdata_out (mc_wrdata),
.wrdata_en (mc_wrdata_en_i),
.fi_xor_we (fi_xor_we),
.fi_xor_wrdata (fi_xor_wrdata)
);
end
else begin : gen_wrdata_passthru
assign mc_wrdata = mc_wrdata_i;
end
`ifdef DISPLAY_H_MATRIX
integer i;
always @(negedge rst) begin
$display ("**********************************************");
$display ("H Matrix:");
for (i=0; i<ECC_WIDTH; i=i+1)
$display ("%b", h_rows[i*CODE_WIDTH+:CODE_WIDTH]);
$display ("**********************************************");
end
`endif
end
endgenerate
endmodule
|
module mig_7series_v2_3_mc #
(
parameter TCQ = 100, // clk->out delay(sim only)
parameter ADDR_CMD_MODE = "1T", // registered or
// 1Tfered mem?
parameter BANK_WIDTH = 3, // bank address width
parameter BM_CNT_WIDTH = 2, // # BM counter width
// i.e., log2(nBANK_MACHS)
parameter BURST_MODE = "8", // Burst length
parameter CL = 5, // Read CAS latency
// (in clk cyc)
parameter CMD_PIPE_PLUS1 = "ON", // add register stage
// between MC and PHY
parameter COL_WIDTH = 12, // column address width
parameter CS_WIDTH = 4, // # of unique CS outputs
parameter CWL = 5, // Write CAS latency
// (in clk cyc)
parameter DATA_BUF_ADDR_WIDTH = 8, // User request tag (e.g.
// user src/dest buf addr)
parameter DATA_BUF_OFFSET_WIDTH = 1, // User buffer offset width
parameter DATA_WIDTH = 64, // Data bus width
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_TYPE = "DDR3", // Memory I/F type:
// "DDR3", "DDR2"
parameter ECC = "OFF", // ECC ON/OFF?
parameter ECC_WIDTH = 8, // # of ECC bits
parameter MAINT_PRESCALER_PERIOD= 200000, // maintenance period (ps)
parameter MC_ERR_ADDR_WIDTH = 31, // # of error address bits
parameter nBANK_MACHS = 4, // # of bank machines (BM)
parameter nCK_PER_CLK = 4, // DRAM clock : MC clock
// frequency ratio
parameter nCS_PER_RANK = 1, // # of unique CS outputs
// per rank
parameter nREFRESH_BANK = 1, // # of REF cmds to pull-in
parameter nSLOTS = 1, // # DIMM slots in system
parameter ORDERING = "NORM", // request ordering mode
parameter PAYLOAD_WIDTH = 64, // Width of data payload
// from PHY
parameter RANK_WIDTH = 2, // # of bits to count ranks
parameter RANKS = 4, // # of ranks of DRAM
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter ROW_WIDTH = 16, // row address width
parameter RTT_NOM = "40", // Nominal ODT value
parameter RTT_WR = "120", // Write ODT value
parameter SLOT_0_CONFIG = 8'b0000_0101, // ranks allowed in slot 0
parameter SLOT_1_CONFIG = 8'b0000_1010, // ranks allowed in slot 1
parameter STARVE_LIMIT = 2, // max # of times a user
// request is allowed to
// lose arbitration when
// reordering is enabled
parameter tCK = 2500, // memory clk period(ps)
parameter tCKE = 10000, // CKE minimum pulse (ps)
parameter tFAW = 40000, // four activate window(ps)
parameter tRAS = 37500, // ACT->PRE cmd period (ps)
parameter tRCD = 12500, // ACT->R/W delay (ps)
parameter tREFI = 7800000, // average periodic
// refresh interval(ps)
parameter CKE_ODT_AUX = "FALSE", //Parameter to turn on/off the aux_out signal
parameter tRFC = 110000, // REF->ACT/REF delay (ps)
parameter tRP = 12500, // PRE cmd period (ps)
parameter tRRD = 10000, // ACT->ACT period (ps)
parameter tRTP = 7500, // Read->PRE cmd delay (ps)
parameter tWTR = 7500, // Internal write->read
// delay (ps)
// requiring DLL lock (CKs)
parameter tZQCS = 64, // ZQCS cmd period (CKs)
parameter tZQI = 128_000_000, // ZQCS interval (ps)
parameter tPRDI = 1_000_000, // pS
parameter USER_REFRESH = "OFF" // Whether user manages REF
)
(
// System inputs
input clk,
input rst,
// Physical memory slot presence
input [7:0] slot_0_present,
input [7:0] slot_1_present,
// Native Interface
input [2:0] cmd,
input [DATA_BUF_ADDR_WIDTH-1:0] data_buf_addr,
input hi_priority,
input size,
input [BANK_WIDTH-1:0] bank,
input [COL_WIDTH-1:0] col,
input [RANK_WIDTH-1:0] rank,
input [ROW_WIDTH-1:0] row,
input use_addr,
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data,
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask,
output accept,
output accept_ns,
output [BM_CNT_WIDTH-1:0] bank_mach_next,
output wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data,
output [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr,
output rd_data_en,
output rd_data_end,
output [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset,
output reg [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr /* synthesis syn_maxfan = 30 */,
output reg wr_data_en,
output reg [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset /* synthesis syn_maxfan = 30 */,
output mc_read_idle,
output mc_ref_zq_wip,
// ECC interface
input correct_en,
input [2*nCK_PER_CLK-1:0] raw_not_ecc,
input [DQS_WIDTH - 1:0] fi_xor_we,
input [DQ_WIDTH -1 :0 ] fi_xor_wrdata,
output [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr,
output [2*nCK_PER_CLK-1:0] ecc_single,
output [2*nCK_PER_CLK-1:0] ecc_multiple,
// User maintenance requests
input app_periodic_rd_req,
input app_ref_req,
input app_zq_req,
input app_sr_req,
output app_sr_active,
output app_ref_ack,
output app_zq_ack,
// MC <==> PHY Interface
output reg [nCK_PER_CLK-1:0] mc_ras_n,
output reg [nCK_PER_CLK-1:0] mc_cas_n,
output reg [nCK_PER_CLK-1:0] mc_we_n,
output reg [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address,
output reg [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank,
output reg [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n,
output reg [1:0] mc_odt,
output reg [nCK_PER_CLK-1:0] mc_cke,
output wire mc_reset_n,
output wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata,
output wire [2*nCK_PER_CLK*DQ_WIDTH/8-1:0]mc_wrdata_mask,
output reg mc_wrdata_en,
output wire mc_cmd_wren,
output wire mc_ctl_wren,
output reg [2:0] mc_cmd,
output reg [5:0] mc_data_offset,
output reg [5:0] mc_data_offset_1,
output reg [5:0] mc_data_offset_2,
output reg [1:0] mc_cas_slot,
output reg [3:0] mc_aux_out0,
output reg [3:0] mc_aux_out1,
output reg [1:0] mc_rank_cnt,
input phy_mc_ctl_full,
input phy_mc_cmd_full,
input phy_mc_data_full,
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rd_data,
input phy_rddata_valid,
input init_calib_complete,
input [6*RANKS-1:0] calib_rd_data_offset,
input [6*RANKS-1:0] calib_rd_data_offset_1,
input [6*RANKS-1:0] calib_rd_data_offset_2
);
assign mc_reset_n = 1'b1; // never reset memory
assign mc_cmd_wren = 1'b1; // always write CMD FIFO(issue DSEL when idle)
assign mc_ctl_wren = 1'b1; // always write CTL FIFO(issue nondata when idle)
// Ensure there is always at least one rank present during operation
`ifdef MC_SVA
ranks_present: assert property
(@(posedge clk) (rst || (|(slot_0_present | slot_1_present))));
`endif
// Reserved. Do not change.
localparam nPHY_WRLAT = 2;
// always delay write data control unless ECC mode is enabled
localparam DELAY_WR_DATA_CNTRL = ECC == "ON" ? 0 : 1;
// Ensure that write control is delayed for appropriate CWL
/*`ifdef MC_SVA
delay_wr_data_zero_CWL_le_6: assert property
(@(posedge clk) ((CWL > 6) || (DELAY_WR_DATA_CNTRL == 0)));
`endif*/
// Never retrieve WR_DATA_ADDR early
localparam EARLY_WR_DATA_ADDR = "OFF";
//***************************************************************************
// Convert timing parameters from time to clock cycles
//***************************************************************************
localparam nCKE = cdiv(tCKE, tCK);
localparam nRP = cdiv(tRP, tCK);
localparam nRCD = cdiv(tRCD, tCK);
localparam nRAS = cdiv(tRAS, tCK);
localparam nFAW = cdiv(tFAW, tCK);
localparam nRFC = cdiv(tRFC, tCK);
// Convert tWR. As per specification, write recover for autoprecharge
// cycles doesn't support values of 9 and 11. Round up 9 to 10 and 11 to 12
localparam nWR_CK = cdiv(15000, tCK) ;
localparam nWR = (nWR_CK == 9) ? 10 : (nWR_CK == 11) ? 12 : nWR_CK;
// tRRD, tWTR at tRTP have a 4 cycle floor in DDR3 and 2 cycle floor in DDR2
localparam nRRD_CK = cdiv(tRRD, tCK);
localparam nRRD = (DRAM_TYPE == "DDR3") ? (nRRD_CK < 4) ? 4 : nRRD_CK
: (nRRD_CK < 2) ? 2 : nRRD_CK;
localparam nWTR_CK = cdiv(tWTR, tCK);
localparam nWTR = (DRAM_TYPE == "DDR3") ? (nWTR_CK < 4) ? 4 : nWTR_CK
: (nWTR_CK < 2) ? 2 : nWTR_CK;
localparam nRTP_CK = cdiv(tRTP, tCK);
localparam nRTP = (DRAM_TYPE == "DDR3") ? (nRTP_CK < 4) ? 4 : nRTP_CK
: (nRTP_CK < 2) ? 2 : nRTP_CK;
// Add a cycle to CL/CWL for the register in RDIMM devices
localparam CWL_M = (REG_CTRL == "ON") ? CWL + 1 : CWL;
localparam CL_M = (REG_CTRL == "ON") ? CL + 1 : CL;
// Tuneable delay between read and write data on the DQ bus
localparam DQRD2DQWR_DLY = 4;
// CKE minimum pulse width for self-refresh (SRE->SRX minimum time)
localparam nCKESR = nCKE + 1;
// Delay from SRE to command requiring locked DLL. Currently fixed at 512 for
// all devices per JEDEC spec.
localparam tXSDLL = 512;
//***************************************************************************
// Set up maintenance counter dividers
//***************************************************************************
// CK clock divisor to generate maintenance prescaler period (round down)
localparam MAINT_PRESCALER_DIV = MAINT_PRESCALER_PERIOD / (tCK*nCK_PER_CLK);
// Maintenance prescaler divisor for refresh timer. Essentially, this is
// just (tREFI / MAINT_PRESCALER_PERIOD), but we must account for the worst
// case delay from the time we get a tick from the refresh counter to the
// time that we can actually issue the REF command. Thus, subtract tRCD, CL,
// data burst time and tRP for each implemented bank machine to ensure that
// all transactions can complete before tREFI expires
localparam REFRESH_TIMER_DIV =
USER_REFRESH == "ON" ? 0 :
(tREFI-((tRCD+((CL+4)*tCK)+tRP)*nBANK_MACHS)) / MAINT_PRESCALER_PERIOD;
// Periodic read (RESERVED - not currently required or supported in 7 series)
// tPRDI should only be set to 0
// localparam tPRDI = 0; // Do NOT change.
localparam PERIODIC_RD_TIMER_DIV = tPRDI / MAINT_PRESCALER_PERIOD;
// Convert maintenance prescaler from ps to ns
localparam MAINT_PRESCALER_PERIOD_NS = MAINT_PRESCALER_PERIOD / 1000;
// Maintenance prescaler divisor for ZQ calibration (ZQCS) timer
localparam ZQ_TIMER_DIV = tZQI / MAINT_PRESCALER_PERIOD_NS;
// Bus width required to broadcast a single bit rank signal among all the
// bank machines - 1 bit per rank, per bank
localparam RANK_BM_BV_WIDTH = nBANK_MACHS * RANKS;
//***************************************************************************
// Define 2T, CWL-even mode to enable multi-fabric-cycle 2T commands
//***************************************************************************
localparam EVEN_CWL_2T_MODE =
((ADDR_CMD_MODE == "2T") && (!(CWL % 2))) ? "ON" : "OFF";
//***************************************************************************
// Reserved feature control.
//***************************************************************************
// Open page wait mode is reserved.
// nOP_WAIT is the number of states a bank machine will park itself
// on an otherwise inactive open page before closing the page. If
// nOP_WAIT == 0, open page wait mode is disabled. If nOP_WAIT == -1,
// the bank machine will remain parked until the pool of idle bank machines
// are less than LOW_IDLE_CNT. At which point parked bank machines
// are selected to exit until the number of idle bank machines exceeds the
// LOW_IDLE_CNT.
localparam nOP_WAIT = 0; // Open page mode
localparam LOW_IDLE_CNT = 0; // Low idle bank machine threshold
//***************************************************************************
// Internal wires
//***************************************************************************
wire [RANK_BM_BV_WIDTH-1:0] act_this_rank_r;
wire [ROW_WIDTH-1:0] col_a;
wire [BANK_WIDTH-1:0] col_ba;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_data_buf_addr;
wire col_periodic_rd;
wire [RANK_WIDTH-1:0] col_ra;
wire col_rmw;
wire col_rd_wr;
wire [ROW_WIDTH-1:0] col_row;
wire col_size;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr;
wire dq_busy_data;
wire ecc_status_valid;
wire [RANKS-1:0] inhbt_act_faw_r;
wire [RANKS-1:0] inhbt_rd;
wire [RANKS-1:0] inhbt_wr;
wire insert_maint_r1;
wire [RANK_WIDTH-1:0] maint_rank_r;
wire maint_req_r;
wire maint_wip_r;
wire maint_zq_r;
wire maint_sre_r;
wire maint_srx_r;
wire periodic_rd_ack_r;
wire periodic_rd_r;
wire [RANK_WIDTH-1:0] periodic_rd_rank_r;
wire [(RANKS*nBANK_MACHS)-1:0] rank_busy_r;
wire rd_rmw;
wire [RANK_BM_BV_WIDTH-1:0] rd_this_rank_r;
wire [nBANK_MACHS-1:0] sending_col;
wire [nBANK_MACHS-1:0] sending_row;
wire sent_col;
wire sent_col_r;
wire wr_ecc_buf;
wire [RANK_BM_BV_WIDTH-1:0] wr_this_rank_r;
// MC/PHY optional pipeline stage support
wire [nCK_PER_CLK-1:0] mc_ras_n_ns;
wire [nCK_PER_CLK-1:0] mc_cas_n_ns;
wire [nCK_PER_CLK-1:0] mc_we_n_ns;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address_ns;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank_ns;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n_ns;
wire [1:0] mc_odt_ns;
wire [nCK_PER_CLK-1:0] mc_cke_ns;
wire [3:0] mc_aux_out0_ns;
wire [3:0] mc_aux_out1_ns;
wire [1:0] mc_rank_cnt_ns = col_ra;
wire [2:0] mc_cmd_ns;
wire [5:0] mc_data_offset_ns;
wire [5:0] mc_data_offset_1_ns;
wire [5:0] mc_data_offset_2_ns;
wire [1:0] mc_cas_slot_ns;
wire mc_wrdata_en_ns;
wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr_ns;
wire wr_data_en_ns;
wire [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset_ns;
integer i;
// MC Read idle support
wire col_read_fifo_empty;
wire mc_read_idle_ns;
reg mc_read_idle_r;
// MC Maintenance in progress with bus idle indication
wire maint_ref_zq_wip;
wire mc_ref_zq_wip_ns;
reg mc_ref_zq_wip_r;
//***************************************************************************
// Function cdiv
// Description:
// This function performs ceiling division (divide and round-up)
// Inputs:
// num: integer to be divided
// div: divisor
// Outputs:
// cdiv: result of ceiling division (num/div, rounded up)
//***************************************************************************
function integer cdiv (input integer num, input integer div);
begin
// perform division, then add 1 if and only if remainder is non-zero
cdiv = (num/div) + (((num%div)>0) ? 1 : 0);
end
endfunction // cdiv
//***************************************************************************
// Optional pipeline register stage on MC/PHY interface
//***************************************************************************
generate
if (CMD_PIPE_PLUS1 == "ON") begin : cmd_pipe_plus // register interface
always @(posedge clk) begin
mc_address <= #TCQ mc_address_ns;
mc_bank <= #TCQ mc_bank_ns;
mc_cas_n <= #TCQ mc_cas_n_ns;
mc_cs_n <= #TCQ mc_cs_n_ns;
mc_odt <= #TCQ mc_odt_ns;
mc_cke <= #TCQ mc_cke_ns;
mc_aux_out0 <= #TCQ mc_aux_out0_ns;
mc_aux_out1 <= #TCQ mc_aux_out1_ns;
mc_cmd <= #TCQ mc_cmd_ns;
mc_ras_n <= #TCQ mc_ras_n_ns;
mc_we_n <= #TCQ mc_we_n_ns;
mc_data_offset <= #TCQ mc_data_offset_ns;
mc_data_offset_1 <= #TCQ mc_data_offset_1_ns;
mc_data_offset_2 <= #TCQ mc_data_offset_2_ns;
mc_cas_slot <= #TCQ mc_cas_slot_ns;
mc_wrdata_en <= #TCQ mc_wrdata_en_ns;
mc_rank_cnt <= #TCQ mc_rank_cnt_ns;
wr_data_addr <= #TCQ wr_data_addr_ns;
wr_data_en <= #TCQ wr_data_en_ns;
wr_data_offset <= #TCQ wr_data_offset_ns;
end // always @ (posedge clk)
end // block: cmd_pipe_plus
else begin : cmd_pipe_plus0 // don't register interface
always @( mc_address_ns or mc_aux_out0_ns or mc_aux_out1_ns or
mc_bank_ns or mc_cas_n_ns or mc_cmd_ns or mc_cs_n_ns or
mc_odt_ns or mc_cke_ns or mc_data_offset_ns or
mc_data_offset_1_ns or mc_data_offset_2_ns or mc_rank_cnt_ns or
mc_ras_n_ns or mc_we_n_ns or mc_wrdata_en_ns or
wr_data_addr_ns or wr_data_en_ns or wr_data_offset_ns or
mc_cas_slot_ns)
begin
mc_address = #TCQ mc_address_ns;
mc_bank = #TCQ mc_bank_ns;
mc_cas_n = #TCQ mc_cas_n_ns;
mc_cs_n = #TCQ mc_cs_n_ns;
mc_odt = #TCQ mc_odt_ns;
mc_cke = #TCQ mc_cke_ns;
mc_aux_out0 = #TCQ mc_aux_out0_ns;
mc_aux_out1 = #TCQ mc_aux_out1_ns;
mc_cmd = #TCQ mc_cmd_ns;
mc_ras_n = #TCQ mc_ras_n_ns;
mc_we_n = #TCQ mc_we_n_ns;
mc_data_offset = #TCQ mc_data_offset_ns;
mc_data_offset_1 = #TCQ mc_data_offset_1_ns;
mc_data_offset_2 = #TCQ mc_data_offset_2_ns;
mc_cas_slot = #TCQ mc_cas_slot_ns;
mc_wrdata_en = #TCQ mc_wrdata_en_ns;
mc_rank_cnt = #TCQ mc_rank_cnt_ns;
wr_data_addr = #TCQ wr_data_addr_ns;
wr_data_en = #TCQ wr_data_en_ns;
wr_data_offset = #TCQ wr_data_offset_ns;
end // always @ (...
end // block: cmd_pipe_plus0
endgenerate
//***************************************************************************
// Indicate when there are no pending reads so that input features can be
// powered down
//***************************************************************************
assign mc_read_idle_ns = col_read_fifo_empty & init_calib_complete;
always @(posedge clk) mc_read_idle_r <= #TCQ mc_read_idle_ns;
assign mc_read_idle = mc_read_idle_r;
//***************************************************************************
// Indicate when there is a refresh in progress and the bus is idle so that
// tap adjustments can be made
//***************************************************************************
assign mc_ref_zq_wip_ns = maint_ref_zq_wip && col_read_fifo_empty;
always @(posedge clk) mc_ref_zq_wip_r <= mc_ref_zq_wip_ns;
assign mc_ref_zq_wip = mc_ref_zq_wip_r;
//***************************************************************************
// Manage rank-level timing and maintanence
//***************************************************************************
mig_7series_v2_3_rank_mach #
(
// Parameters
.BURST_MODE (BURST_MODE),
.CL (CL),
.CWL (CWL),
.CS_WIDTH (CS_WIDTH),
.DQRD2DQWR_DLY (DQRD2DQWR_DLY),
.DRAM_TYPE (DRAM_TYPE),
.MAINT_PRESCALER_DIV (MAINT_PRESCALER_DIV),
.nBANK_MACHS (nBANK_MACHS),
.nCKESR (nCKESR),
.nCK_PER_CLK (nCK_PER_CLK),
.nFAW (nFAW),
.nREFRESH_BANK (nREFRESH_BANK),
.nRRD (nRRD),
.nWTR (nWTR),
.PERIODIC_RD_TIMER_DIV (PERIODIC_RD_TIMER_DIV),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.REFRESH_TIMER_DIV (REFRESH_TIMER_DIV),
.ZQ_TIMER_DIV (ZQ_TIMER_DIV)
)
rank_mach0
(
// Outputs
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.maint_ref_zq_wip (maint_ref_zq_wip),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
// Inputs
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.app_periodic_rd_req (app_periodic_rd_req),
.app_ref_req (app_ref_req),
.app_ref_ack (app_ref_ack),
.app_zq_req (app_zq_req),
.app_zq_ack (app_zq_ack),
.app_sr_req (app_sr_req),
.app_sr_active (app_sr_active),
.col_rd_wr (col_rd_wr),
.clk (clk),
.init_calib_complete (init_calib_complete),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.rst (rst),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0])
);
//***************************************************************************
// Manage requests, reordering and bank timing
//***************************************************************************
mig_7series_v2_3_bank_mach #
(
// Parameters
.TCQ (TCQ),
.EVEN_CWL_2T_MODE (EVEN_CWL_2T_MODE),
.ADDR_CMD_MODE (ADDR_CMD_MODE),
.BANK_WIDTH (BANK_WIDTH),
.BM_CNT_WIDTH (BM_CNT_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.CL (CL_M),
.CWL (CWL_M),
.CKE_ODT_AUX (CKE_ODT_AUX),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.LOW_IDLE_CNT (LOW_IDLE_CNT),
.nBANK_MACHS (nBANK_MACHS),
.nCK_PER_CLK (nCK_PER_CLK),
.nCS_PER_RANK (nCS_PER_RANK),
.nOP_WAIT (nOP_WAIT),
.nRAS (nRAS),
.nRCD (nRCD),
.nRFC (nRFC),
.nRP (nRP),
.nRTP (nRTP),
.nSLOTS (nSLOTS),
.nWR (nWR),
.nXSDLL (tXSDLL),
.ORDERING (ORDERING),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.ROW_WIDTH (ROW_WIDTH),
.RTT_NOM (RTT_NOM),
.RTT_WR (RTT_WR),
.SLOT_0_CONFIG (SLOT_0_CONFIG),
.SLOT_1_CONFIG (SLOT_1_CONFIG),
.STARVE_LIMIT (STARVE_LIMIT),
.tZQCS (tZQCS)
)
bank_mach0
(
// Outputs
.accept (accept),
.accept_ns (accept_ns),
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.bank_mach_next (bank_mach_next[BM_CNT_WIDTH-1:0]),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.mc_bank (mc_bank_ns),
.mc_address (mc_address_ns),
.mc_ras_n (mc_ras_n_ns),
.mc_cas_n (mc_cas_n_ns),
.mc_we_n (mc_we_n_ns),
.mc_cs_n (mc_cs_n_ns),
.mc_odt (mc_odt_ns),
.mc_cke (mc_cke_ns),
.mc_aux_out0 (mc_aux_out0_ns),
.mc_aux_out1 (mc_aux_out1_ns),
.mc_cmd (mc_cmd_ns),
.mc_data_offset (mc_data_offset_ns),
.mc_data_offset_1 (mc_data_offset_1_ns),
.mc_data_offset_2 (mc_data_offset_2_ns),
.mc_cas_slot (mc_cas_slot_ns),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sent_col (sent_col),
.sent_col_r (sent_col_r),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
// Inputs
.bank (bank[BANK_WIDTH-1:0]),
.calib_rddata_offset (calib_rd_data_offset),
.calib_rddata_offset_1 (calib_rd_data_offset_1),
.calib_rddata_offset_2 (calib_rd_data_offset_2),
.clk (clk),
.cmd (cmd[2:0]),
.col (col[COL_WIDTH-1:0]),
.data_buf_addr (data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.init_calib_complete (init_calib_complete),
.phy_rddata_valid (phy_rddata_valid),
.dq_busy_data (dq_busy_data),
.hi_priority (hi_priority),
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
.phy_mc_cmd_full (phy_mc_cmd_full),
.phy_mc_ctl_full (phy_mc_ctl_full),
.phy_mc_data_full (phy_mc_data_full),
.rank (rank[RANK_WIDTH-1:0]),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_rmw (rd_rmw),
.row (row[ROW_WIDTH-1:0]),
.rst (rst),
.size (size),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.use_addr (use_addr)
);
//***************************************************************************
// Manage DQ bus
//***************************************************************************
mig_7series_v2_3_col_mach #
(
// Parameters
.TCQ (TCQ),
.BANK_WIDTH (BANK_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DELAY_WR_DATA_CNTRL (DELAY_WR_DATA_CNTRL),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.MC_ERR_ADDR_WIDTH (MC_ERR_ADDR_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK),
.nPHY_WRLAT (nPHY_WRLAT),
.RANK_WIDTH (RANK_WIDTH),
.ROW_WIDTH (ROW_WIDTH)
)
col_mach0
(
// Outputs
.mc_wrdata_en (mc_wrdata_en_ns),
.dq_busy_data (dq_busy_data),
.ecc_err_addr (ecc_err_addr[MC_ERR_ADDR_WIDTH-1:0]),
.ecc_status_valid (ecc_status_valid),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_data_en (rd_data_en),
.rd_data_end (rd_data_end),
.rd_data_offset (rd_data_offset),
.rd_rmw (rd_rmw),
.wr_data_addr (wr_data_addr_ns),
.wr_data_en (wr_data_en_ns),
.wr_data_offset (wr_data_offset_ns),
.wr_ecc_buf (wr_ecc_buf),
.col_read_fifo_empty (col_read_fifo_empty),
// Inputs
.clk (clk),
.rst (rst),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.phy_rddata_valid (phy_rddata_valid),
.sent_col (EVEN_CWL_2T_MODE == "ON" ? sent_col_r : sent_col)
);
//***************************************************************************
// Implement ECC
//***************************************************************************
// Total ECC word length = ECC code width + Data width
localparam CODE_WIDTH = DATA_WIDTH + ECC_WIDTH;
generate
if (ECC == "OFF") begin : ecc_off
assign rd_data = phy_rd_data;
assign mc_wrdata = wr_data;
assign mc_wrdata_mask = wr_data_mask;
assign ecc_single = 4'b0;
assign ecc_multiple = 4'b0;
end
else begin : ecc_on
wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_i;
// Merge and encode
mig_7series_v2_3_ecc_merge_enc #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_merge_enc0
(
// Outputs
.mc_wrdata (mc_wrdata_i),
.mc_wrdata_mask (mc_wrdata_mask),
// Inputs
.clk (clk),
.rst (rst),
.h_rows (h_rows),
.rd_merge_data (rd_merge_data),
.raw_not_ecc (raw_not_ecc),
.wr_data (wr_data),
.wr_data_mask (wr_data_mask)
);
// Decode and fix
mig_7series_v2_3_ecc_dec_fix #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_dec_fix0
(
// Outputs
.ecc_multiple (ecc_multiple),
.ecc_single (ecc_single),
.rd_data (rd_data),
// Inputs
.clk (clk),
.rst (rst),
.correct_en (correct_en),
.phy_rddata (phy_rd_data),
.ecc_status_valid (ecc_status_valid),
.h_rows (h_rows)
);
// ECC Buffer
mig_7series_v2_3_ecc_buf #
(
// Parameters
.TCQ (TCQ),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_buf0
(
// Outputs
.rd_merge_data (rd_merge_data),
// Inputs
.clk (clk),
.rst (rst),
.rd_data (rd_data),
.rd_data_addr (rd_data_addr),
.rd_data_offset (rd_data_offset),
.wr_data_addr (wr_data_addr),
.wr_data_offset (wr_data_offset),
.wr_ecc_buf (wr_ecc_buf)
);
// Generate ECC table
mig_7series_v2_3_ecc_gen #
(
// Parameters
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.ECC_WIDTH (ECC_WIDTH)
)
ecc_gen0
(
// Outputs
.h_rows (h_rows)
);
if (ECC == "ON") begin : gen_fi_xor_inst
reg mc_wrdata_en_r;
wire mc_wrdata_en_i;
always @(posedge clk) begin
mc_wrdata_en_r <= mc_wrdata_en;
end
assign mc_wrdata_en_i = mc_wrdata_en_r;
mig_7series_v2_3_fi_xor #(
.DQ_WIDTH (DQ_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
fi_xor0
(
.clk (clk),
.wrdata_in (mc_wrdata_i),
.wrdata_out (mc_wrdata),
.wrdata_en (mc_wrdata_en_i),
.fi_xor_we (fi_xor_we),
.fi_xor_wrdata (fi_xor_wrdata)
);
end
else begin : gen_wrdata_passthru
assign mc_wrdata = mc_wrdata_i;
end
`ifdef DISPLAY_H_MATRIX
integer i;
always @(negedge rst) begin
$display ("**********************************************");
$display ("H Matrix:");
for (i=0; i<ECC_WIDTH; i=i+1)
$display ("%b", h_rows[i*CODE_WIDTH+:CODE_WIDTH]);
$display ("**********************************************");
end
`endif
end
endgenerate
endmodule
|
module mig_7series_v2_3_mc #
(
parameter TCQ = 100, // clk->out delay(sim only)
parameter ADDR_CMD_MODE = "1T", // registered or
// 1Tfered mem?
parameter BANK_WIDTH = 3, // bank address width
parameter BM_CNT_WIDTH = 2, // # BM counter width
// i.e., log2(nBANK_MACHS)
parameter BURST_MODE = "8", // Burst length
parameter CL = 5, // Read CAS latency
// (in clk cyc)
parameter CMD_PIPE_PLUS1 = "ON", // add register stage
// between MC and PHY
parameter COL_WIDTH = 12, // column address width
parameter CS_WIDTH = 4, // # of unique CS outputs
parameter CWL = 5, // Write CAS latency
// (in clk cyc)
parameter DATA_BUF_ADDR_WIDTH = 8, // User request tag (e.g.
// user src/dest buf addr)
parameter DATA_BUF_OFFSET_WIDTH = 1, // User buffer offset width
parameter DATA_WIDTH = 64, // Data bus width
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_TYPE = "DDR3", // Memory I/F type:
// "DDR3", "DDR2"
parameter ECC = "OFF", // ECC ON/OFF?
parameter ECC_WIDTH = 8, // # of ECC bits
parameter MAINT_PRESCALER_PERIOD= 200000, // maintenance period (ps)
parameter MC_ERR_ADDR_WIDTH = 31, // # of error address bits
parameter nBANK_MACHS = 4, // # of bank machines (BM)
parameter nCK_PER_CLK = 4, // DRAM clock : MC clock
// frequency ratio
parameter nCS_PER_RANK = 1, // # of unique CS outputs
// per rank
parameter nREFRESH_BANK = 1, // # of REF cmds to pull-in
parameter nSLOTS = 1, // # DIMM slots in system
parameter ORDERING = "NORM", // request ordering mode
parameter PAYLOAD_WIDTH = 64, // Width of data payload
// from PHY
parameter RANK_WIDTH = 2, // # of bits to count ranks
parameter RANKS = 4, // # of ranks of DRAM
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter ROW_WIDTH = 16, // row address width
parameter RTT_NOM = "40", // Nominal ODT value
parameter RTT_WR = "120", // Write ODT value
parameter SLOT_0_CONFIG = 8'b0000_0101, // ranks allowed in slot 0
parameter SLOT_1_CONFIG = 8'b0000_1010, // ranks allowed in slot 1
parameter STARVE_LIMIT = 2, // max # of times a user
// request is allowed to
// lose arbitration when
// reordering is enabled
parameter tCK = 2500, // memory clk period(ps)
parameter tCKE = 10000, // CKE minimum pulse (ps)
parameter tFAW = 40000, // four activate window(ps)
parameter tRAS = 37500, // ACT->PRE cmd period (ps)
parameter tRCD = 12500, // ACT->R/W delay (ps)
parameter tREFI = 7800000, // average periodic
// refresh interval(ps)
parameter CKE_ODT_AUX = "FALSE", //Parameter to turn on/off the aux_out signal
parameter tRFC = 110000, // REF->ACT/REF delay (ps)
parameter tRP = 12500, // PRE cmd period (ps)
parameter tRRD = 10000, // ACT->ACT period (ps)
parameter tRTP = 7500, // Read->PRE cmd delay (ps)
parameter tWTR = 7500, // Internal write->read
// delay (ps)
// requiring DLL lock (CKs)
parameter tZQCS = 64, // ZQCS cmd period (CKs)
parameter tZQI = 128_000_000, // ZQCS interval (ps)
parameter tPRDI = 1_000_000, // pS
parameter USER_REFRESH = "OFF" // Whether user manages REF
)
(
// System inputs
input clk,
input rst,
// Physical memory slot presence
input [7:0] slot_0_present,
input [7:0] slot_1_present,
// Native Interface
input [2:0] cmd,
input [DATA_BUF_ADDR_WIDTH-1:0] data_buf_addr,
input hi_priority,
input size,
input [BANK_WIDTH-1:0] bank,
input [COL_WIDTH-1:0] col,
input [RANK_WIDTH-1:0] rank,
input [ROW_WIDTH-1:0] row,
input use_addr,
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data,
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask,
output accept,
output accept_ns,
output [BM_CNT_WIDTH-1:0] bank_mach_next,
output wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data,
output [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr,
output rd_data_en,
output rd_data_end,
output [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset,
output reg [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr /* synthesis syn_maxfan = 30 */,
output reg wr_data_en,
output reg [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset /* synthesis syn_maxfan = 30 */,
output mc_read_idle,
output mc_ref_zq_wip,
// ECC interface
input correct_en,
input [2*nCK_PER_CLK-1:0] raw_not_ecc,
input [DQS_WIDTH - 1:0] fi_xor_we,
input [DQ_WIDTH -1 :0 ] fi_xor_wrdata,
output [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr,
output [2*nCK_PER_CLK-1:0] ecc_single,
output [2*nCK_PER_CLK-1:0] ecc_multiple,
// User maintenance requests
input app_periodic_rd_req,
input app_ref_req,
input app_zq_req,
input app_sr_req,
output app_sr_active,
output app_ref_ack,
output app_zq_ack,
// MC <==> PHY Interface
output reg [nCK_PER_CLK-1:0] mc_ras_n,
output reg [nCK_PER_CLK-1:0] mc_cas_n,
output reg [nCK_PER_CLK-1:0] mc_we_n,
output reg [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address,
output reg [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank,
output reg [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n,
output reg [1:0] mc_odt,
output reg [nCK_PER_CLK-1:0] mc_cke,
output wire mc_reset_n,
output wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata,
output wire [2*nCK_PER_CLK*DQ_WIDTH/8-1:0]mc_wrdata_mask,
output reg mc_wrdata_en,
output wire mc_cmd_wren,
output wire mc_ctl_wren,
output reg [2:0] mc_cmd,
output reg [5:0] mc_data_offset,
output reg [5:0] mc_data_offset_1,
output reg [5:0] mc_data_offset_2,
output reg [1:0] mc_cas_slot,
output reg [3:0] mc_aux_out0,
output reg [3:0] mc_aux_out1,
output reg [1:0] mc_rank_cnt,
input phy_mc_ctl_full,
input phy_mc_cmd_full,
input phy_mc_data_full,
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rd_data,
input phy_rddata_valid,
input init_calib_complete,
input [6*RANKS-1:0] calib_rd_data_offset,
input [6*RANKS-1:0] calib_rd_data_offset_1,
input [6*RANKS-1:0] calib_rd_data_offset_2
);
assign mc_reset_n = 1'b1; // never reset memory
assign mc_cmd_wren = 1'b1; // always write CMD FIFO(issue DSEL when idle)
assign mc_ctl_wren = 1'b1; // always write CTL FIFO(issue nondata when idle)
// Ensure there is always at least one rank present during operation
`ifdef MC_SVA
ranks_present: assert property
(@(posedge clk) (rst || (|(slot_0_present | slot_1_present))));
`endif
// Reserved. Do not change.
localparam nPHY_WRLAT = 2;
// always delay write data control unless ECC mode is enabled
localparam DELAY_WR_DATA_CNTRL = ECC == "ON" ? 0 : 1;
// Ensure that write control is delayed for appropriate CWL
/*`ifdef MC_SVA
delay_wr_data_zero_CWL_le_6: assert property
(@(posedge clk) ((CWL > 6) || (DELAY_WR_DATA_CNTRL == 0)));
`endif*/
// Never retrieve WR_DATA_ADDR early
localparam EARLY_WR_DATA_ADDR = "OFF";
//***************************************************************************
// Convert timing parameters from time to clock cycles
//***************************************************************************
localparam nCKE = cdiv(tCKE, tCK);
localparam nRP = cdiv(tRP, tCK);
localparam nRCD = cdiv(tRCD, tCK);
localparam nRAS = cdiv(tRAS, tCK);
localparam nFAW = cdiv(tFAW, tCK);
localparam nRFC = cdiv(tRFC, tCK);
// Convert tWR. As per specification, write recover for autoprecharge
// cycles doesn't support values of 9 and 11. Round up 9 to 10 and 11 to 12
localparam nWR_CK = cdiv(15000, tCK) ;
localparam nWR = (nWR_CK == 9) ? 10 : (nWR_CK == 11) ? 12 : nWR_CK;
// tRRD, tWTR at tRTP have a 4 cycle floor in DDR3 and 2 cycle floor in DDR2
localparam nRRD_CK = cdiv(tRRD, tCK);
localparam nRRD = (DRAM_TYPE == "DDR3") ? (nRRD_CK < 4) ? 4 : nRRD_CK
: (nRRD_CK < 2) ? 2 : nRRD_CK;
localparam nWTR_CK = cdiv(tWTR, tCK);
localparam nWTR = (DRAM_TYPE == "DDR3") ? (nWTR_CK < 4) ? 4 : nWTR_CK
: (nWTR_CK < 2) ? 2 : nWTR_CK;
localparam nRTP_CK = cdiv(tRTP, tCK);
localparam nRTP = (DRAM_TYPE == "DDR3") ? (nRTP_CK < 4) ? 4 : nRTP_CK
: (nRTP_CK < 2) ? 2 : nRTP_CK;
// Add a cycle to CL/CWL for the register in RDIMM devices
localparam CWL_M = (REG_CTRL == "ON") ? CWL + 1 : CWL;
localparam CL_M = (REG_CTRL == "ON") ? CL + 1 : CL;
// Tuneable delay between read and write data on the DQ bus
localparam DQRD2DQWR_DLY = 4;
// CKE minimum pulse width for self-refresh (SRE->SRX minimum time)
localparam nCKESR = nCKE + 1;
// Delay from SRE to command requiring locked DLL. Currently fixed at 512 for
// all devices per JEDEC spec.
localparam tXSDLL = 512;
//***************************************************************************
// Set up maintenance counter dividers
//***************************************************************************
// CK clock divisor to generate maintenance prescaler period (round down)
localparam MAINT_PRESCALER_DIV = MAINT_PRESCALER_PERIOD / (tCK*nCK_PER_CLK);
// Maintenance prescaler divisor for refresh timer. Essentially, this is
// just (tREFI / MAINT_PRESCALER_PERIOD), but we must account for the worst
// case delay from the time we get a tick from the refresh counter to the
// time that we can actually issue the REF command. Thus, subtract tRCD, CL,
// data burst time and tRP for each implemented bank machine to ensure that
// all transactions can complete before tREFI expires
localparam REFRESH_TIMER_DIV =
USER_REFRESH == "ON" ? 0 :
(tREFI-((tRCD+((CL+4)*tCK)+tRP)*nBANK_MACHS)) / MAINT_PRESCALER_PERIOD;
// Periodic read (RESERVED - not currently required or supported in 7 series)
// tPRDI should only be set to 0
// localparam tPRDI = 0; // Do NOT change.
localparam PERIODIC_RD_TIMER_DIV = tPRDI / MAINT_PRESCALER_PERIOD;
// Convert maintenance prescaler from ps to ns
localparam MAINT_PRESCALER_PERIOD_NS = MAINT_PRESCALER_PERIOD / 1000;
// Maintenance prescaler divisor for ZQ calibration (ZQCS) timer
localparam ZQ_TIMER_DIV = tZQI / MAINT_PRESCALER_PERIOD_NS;
// Bus width required to broadcast a single bit rank signal among all the
// bank machines - 1 bit per rank, per bank
localparam RANK_BM_BV_WIDTH = nBANK_MACHS * RANKS;
//***************************************************************************
// Define 2T, CWL-even mode to enable multi-fabric-cycle 2T commands
//***************************************************************************
localparam EVEN_CWL_2T_MODE =
((ADDR_CMD_MODE == "2T") && (!(CWL % 2))) ? "ON" : "OFF";
//***************************************************************************
// Reserved feature control.
//***************************************************************************
// Open page wait mode is reserved.
// nOP_WAIT is the number of states a bank machine will park itself
// on an otherwise inactive open page before closing the page. If
// nOP_WAIT == 0, open page wait mode is disabled. If nOP_WAIT == -1,
// the bank machine will remain parked until the pool of idle bank machines
// are less than LOW_IDLE_CNT. At which point parked bank machines
// are selected to exit until the number of idle bank machines exceeds the
// LOW_IDLE_CNT.
localparam nOP_WAIT = 0; // Open page mode
localparam LOW_IDLE_CNT = 0; // Low idle bank machine threshold
//***************************************************************************
// Internal wires
//***************************************************************************
wire [RANK_BM_BV_WIDTH-1:0] act_this_rank_r;
wire [ROW_WIDTH-1:0] col_a;
wire [BANK_WIDTH-1:0] col_ba;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_data_buf_addr;
wire col_periodic_rd;
wire [RANK_WIDTH-1:0] col_ra;
wire col_rmw;
wire col_rd_wr;
wire [ROW_WIDTH-1:0] col_row;
wire col_size;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr;
wire dq_busy_data;
wire ecc_status_valid;
wire [RANKS-1:0] inhbt_act_faw_r;
wire [RANKS-1:0] inhbt_rd;
wire [RANKS-1:0] inhbt_wr;
wire insert_maint_r1;
wire [RANK_WIDTH-1:0] maint_rank_r;
wire maint_req_r;
wire maint_wip_r;
wire maint_zq_r;
wire maint_sre_r;
wire maint_srx_r;
wire periodic_rd_ack_r;
wire periodic_rd_r;
wire [RANK_WIDTH-1:0] periodic_rd_rank_r;
wire [(RANKS*nBANK_MACHS)-1:0] rank_busy_r;
wire rd_rmw;
wire [RANK_BM_BV_WIDTH-1:0] rd_this_rank_r;
wire [nBANK_MACHS-1:0] sending_col;
wire [nBANK_MACHS-1:0] sending_row;
wire sent_col;
wire sent_col_r;
wire wr_ecc_buf;
wire [RANK_BM_BV_WIDTH-1:0] wr_this_rank_r;
// MC/PHY optional pipeline stage support
wire [nCK_PER_CLK-1:0] mc_ras_n_ns;
wire [nCK_PER_CLK-1:0] mc_cas_n_ns;
wire [nCK_PER_CLK-1:0] mc_we_n_ns;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address_ns;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank_ns;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n_ns;
wire [1:0] mc_odt_ns;
wire [nCK_PER_CLK-1:0] mc_cke_ns;
wire [3:0] mc_aux_out0_ns;
wire [3:0] mc_aux_out1_ns;
wire [1:0] mc_rank_cnt_ns = col_ra;
wire [2:0] mc_cmd_ns;
wire [5:0] mc_data_offset_ns;
wire [5:0] mc_data_offset_1_ns;
wire [5:0] mc_data_offset_2_ns;
wire [1:0] mc_cas_slot_ns;
wire mc_wrdata_en_ns;
wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr_ns;
wire wr_data_en_ns;
wire [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset_ns;
integer i;
// MC Read idle support
wire col_read_fifo_empty;
wire mc_read_idle_ns;
reg mc_read_idle_r;
// MC Maintenance in progress with bus idle indication
wire maint_ref_zq_wip;
wire mc_ref_zq_wip_ns;
reg mc_ref_zq_wip_r;
//***************************************************************************
// Function cdiv
// Description:
// This function performs ceiling division (divide and round-up)
// Inputs:
// num: integer to be divided
// div: divisor
// Outputs:
// cdiv: result of ceiling division (num/div, rounded up)
//***************************************************************************
function integer cdiv (input integer num, input integer div);
begin
// perform division, then add 1 if and only if remainder is non-zero
cdiv = (num/div) + (((num%div)>0) ? 1 : 0);
end
endfunction // cdiv
//***************************************************************************
// Optional pipeline register stage on MC/PHY interface
//***************************************************************************
generate
if (CMD_PIPE_PLUS1 == "ON") begin : cmd_pipe_plus // register interface
always @(posedge clk) begin
mc_address <= #TCQ mc_address_ns;
mc_bank <= #TCQ mc_bank_ns;
mc_cas_n <= #TCQ mc_cas_n_ns;
mc_cs_n <= #TCQ mc_cs_n_ns;
mc_odt <= #TCQ mc_odt_ns;
mc_cke <= #TCQ mc_cke_ns;
mc_aux_out0 <= #TCQ mc_aux_out0_ns;
mc_aux_out1 <= #TCQ mc_aux_out1_ns;
mc_cmd <= #TCQ mc_cmd_ns;
mc_ras_n <= #TCQ mc_ras_n_ns;
mc_we_n <= #TCQ mc_we_n_ns;
mc_data_offset <= #TCQ mc_data_offset_ns;
mc_data_offset_1 <= #TCQ mc_data_offset_1_ns;
mc_data_offset_2 <= #TCQ mc_data_offset_2_ns;
mc_cas_slot <= #TCQ mc_cas_slot_ns;
mc_wrdata_en <= #TCQ mc_wrdata_en_ns;
mc_rank_cnt <= #TCQ mc_rank_cnt_ns;
wr_data_addr <= #TCQ wr_data_addr_ns;
wr_data_en <= #TCQ wr_data_en_ns;
wr_data_offset <= #TCQ wr_data_offset_ns;
end // always @ (posedge clk)
end // block: cmd_pipe_plus
else begin : cmd_pipe_plus0 // don't register interface
always @( mc_address_ns or mc_aux_out0_ns or mc_aux_out1_ns or
mc_bank_ns or mc_cas_n_ns or mc_cmd_ns or mc_cs_n_ns or
mc_odt_ns or mc_cke_ns or mc_data_offset_ns or
mc_data_offset_1_ns or mc_data_offset_2_ns or mc_rank_cnt_ns or
mc_ras_n_ns or mc_we_n_ns or mc_wrdata_en_ns or
wr_data_addr_ns or wr_data_en_ns or wr_data_offset_ns or
mc_cas_slot_ns)
begin
mc_address = #TCQ mc_address_ns;
mc_bank = #TCQ mc_bank_ns;
mc_cas_n = #TCQ mc_cas_n_ns;
mc_cs_n = #TCQ mc_cs_n_ns;
mc_odt = #TCQ mc_odt_ns;
mc_cke = #TCQ mc_cke_ns;
mc_aux_out0 = #TCQ mc_aux_out0_ns;
mc_aux_out1 = #TCQ mc_aux_out1_ns;
mc_cmd = #TCQ mc_cmd_ns;
mc_ras_n = #TCQ mc_ras_n_ns;
mc_we_n = #TCQ mc_we_n_ns;
mc_data_offset = #TCQ mc_data_offset_ns;
mc_data_offset_1 = #TCQ mc_data_offset_1_ns;
mc_data_offset_2 = #TCQ mc_data_offset_2_ns;
mc_cas_slot = #TCQ mc_cas_slot_ns;
mc_wrdata_en = #TCQ mc_wrdata_en_ns;
mc_rank_cnt = #TCQ mc_rank_cnt_ns;
wr_data_addr = #TCQ wr_data_addr_ns;
wr_data_en = #TCQ wr_data_en_ns;
wr_data_offset = #TCQ wr_data_offset_ns;
end // always @ (...
end // block: cmd_pipe_plus0
endgenerate
//***************************************************************************
// Indicate when there are no pending reads so that input features can be
// powered down
//***************************************************************************
assign mc_read_idle_ns = col_read_fifo_empty & init_calib_complete;
always @(posedge clk) mc_read_idle_r <= #TCQ mc_read_idle_ns;
assign mc_read_idle = mc_read_idle_r;
//***************************************************************************
// Indicate when there is a refresh in progress and the bus is idle so that
// tap adjustments can be made
//***************************************************************************
assign mc_ref_zq_wip_ns = maint_ref_zq_wip && col_read_fifo_empty;
always @(posedge clk) mc_ref_zq_wip_r <= mc_ref_zq_wip_ns;
assign mc_ref_zq_wip = mc_ref_zq_wip_r;
//***************************************************************************
// Manage rank-level timing and maintanence
//***************************************************************************
mig_7series_v2_3_rank_mach #
(
// Parameters
.BURST_MODE (BURST_MODE),
.CL (CL),
.CWL (CWL),
.CS_WIDTH (CS_WIDTH),
.DQRD2DQWR_DLY (DQRD2DQWR_DLY),
.DRAM_TYPE (DRAM_TYPE),
.MAINT_PRESCALER_DIV (MAINT_PRESCALER_DIV),
.nBANK_MACHS (nBANK_MACHS),
.nCKESR (nCKESR),
.nCK_PER_CLK (nCK_PER_CLK),
.nFAW (nFAW),
.nREFRESH_BANK (nREFRESH_BANK),
.nRRD (nRRD),
.nWTR (nWTR),
.PERIODIC_RD_TIMER_DIV (PERIODIC_RD_TIMER_DIV),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.REFRESH_TIMER_DIV (REFRESH_TIMER_DIV),
.ZQ_TIMER_DIV (ZQ_TIMER_DIV)
)
rank_mach0
(
// Outputs
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.maint_ref_zq_wip (maint_ref_zq_wip),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
// Inputs
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.app_periodic_rd_req (app_periodic_rd_req),
.app_ref_req (app_ref_req),
.app_ref_ack (app_ref_ack),
.app_zq_req (app_zq_req),
.app_zq_ack (app_zq_ack),
.app_sr_req (app_sr_req),
.app_sr_active (app_sr_active),
.col_rd_wr (col_rd_wr),
.clk (clk),
.init_calib_complete (init_calib_complete),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.rst (rst),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0])
);
//***************************************************************************
// Manage requests, reordering and bank timing
//***************************************************************************
mig_7series_v2_3_bank_mach #
(
// Parameters
.TCQ (TCQ),
.EVEN_CWL_2T_MODE (EVEN_CWL_2T_MODE),
.ADDR_CMD_MODE (ADDR_CMD_MODE),
.BANK_WIDTH (BANK_WIDTH),
.BM_CNT_WIDTH (BM_CNT_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.CL (CL_M),
.CWL (CWL_M),
.CKE_ODT_AUX (CKE_ODT_AUX),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.LOW_IDLE_CNT (LOW_IDLE_CNT),
.nBANK_MACHS (nBANK_MACHS),
.nCK_PER_CLK (nCK_PER_CLK),
.nCS_PER_RANK (nCS_PER_RANK),
.nOP_WAIT (nOP_WAIT),
.nRAS (nRAS),
.nRCD (nRCD),
.nRFC (nRFC),
.nRP (nRP),
.nRTP (nRTP),
.nSLOTS (nSLOTS),
.nWR (nWR),
.nXSDLL (tXSDLL),
.ORDERING (ORDERING),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.ROW_WIDTH (ROW_WIDTH),
.RTT_NOM (RTT_NOM),
.RTT_WR (RTT_WR),
.SLOT_0_CONFIG (SLOT_0_CONFIG),
.SLOT_1_CONFIG (SLOT_1_CONFIG),
.STARVE_LIMIT (STARVE_LIMIT),
.tZQCS (tZQCS)
)
bank_mach0
(
// Outputs
.accept (accept),
.accept_ns (accept_ns),
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.bank_mach_next (bank_mach_next[BM_CNT_WIDTH-1:0]),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.mc_bank (mc_bank_ns),
.mc_address (mc_address_ns),
.mc_ras_n (mc_ras_n_ns),
.mc_cas_n (mc_cas_n_ns),
.mc_we_n (mc_we_n_ns),
.mc_cs_n (mc_cs_n_ns),
.mc_odt (mc_odt_ns),
.mc_cke (mc_cke_ns),
.mc_aux_out0 (mc_aux_out0_ns),
.mc_aux_out1 (mc_aux_out1_ns),
.mc_cmd (mc_cmd_ns),
.mc_data_offset (mc_data_offset_ns),
.mc_data_offset_1 (mc_data_offset_1_ns),
.mc_data_offset_2 (mc_data_offset_2_ns),
.mc_cas_slot (mc_cas_slot_ns),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sent_col (sent_col),
.sent_col_r (sent_col_r),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
// Inputs
.bank (bank[BANK_WIDTH-1:0]),
.calib_rddata_offset (calib_rd_data_offset),
.calib_rddata_offset_1 (calib_rd_data_offset_1),
.calib_rddata_offset_2 (calib_rd_data_offset_2),
.clk (clk),
.cmd (cmd[2:0]),
.col (col[COL_WIDTH-1:0]),
.data_buf_addr (data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.init_calib_complete (init_calib_complete),
.phy_rddata_valid (phy_rddata_valid),
.dq_busy_data (dq_busy_data),
.hi_priority (hi_priority),
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
.phy_mc_cmd_full (phy_mc_cmd_full),
.phy_mc_ctl_full (phy_mc_ctl_full),
.phy_mc_data_full (phy_mc_data_full),
.rank (rank[RANK_WIDTH-1:0]),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_rmw (rd_rmw),
.row (row[ROW_WIDTH-1:0]),
.rst (rst),
.size (size),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.use_addr (use_addr)
);
//***************************************************************************
// Manage DQ bus
//***************************************************************************
mig_7series_v2_3_col_mach #
(
// Parameters
.TCQ (TCQ),
.BANK_WIDTH (BANK_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DELAY_WR_DATA_CNTRL (DELAY_WR_DATA_CNTRL),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.MC_ERR_ADDR_WIDTH (MC_ERR_ADDR_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK),
.nPHY_WRLAT (nPHY_WRLAT),
.RANK_WIDTH (RANK_WIDTH),
.ROW_WIDTH (ROW_WIDTH)
)
col_mach0
(
// Outputs
.mc_wrdata_en (mc_wrdata_en_ns),
.dq_busy_data (dq_busy_data),
.ecc_err_addr (ecc_err_addr[MC_ERR_ADDR_WIDTH-1:0]),
.ecc_status_valid (ecc_status_valid),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_data_en (rd_data_en),
.rd_data_end (rd_data_end),
.rd_data_offset (rd_data_offset),
.rd_rmw (rd_rmw),
.wr_data_addr (wr_data_addr_ns),
.wr_data_en (wr_data_en_ns),
.wr_data_offset (wr_data_offset_ns),
.wr_ecc_buf (wr_ecc_buf),
.col_read_fifo_empty (col_read_fifo_empty),
// Inputs
.clk (clk),
.rst (rst),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.phy_rddata_valid (phy_rddata_valid),
.sent_col (EVEN_CWL_2T_MODE == "ON" ? sent_col_r : sent_col)
);
//***************************************************************************
// Implement ECC
//***************************************************************************
// Total ECC word length = ECC code width + Data width
localparam CODE_WIDTH = DATA_WIDTH + ECC_WIDTH;
generate
if (ECC == "OFF") begin : ecc_off
assign rd_data = phy_rd_data;
assign mc_wrdata = wr_data;
assign mc_wrdata_mask = wr_data_mask;
assign ecc_single = 4'b0;
assign ecc_multiple = 4'b0;
end
else begin : ecc_on
wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_i;
// Merge and encode
mig_7series_v2_3_ecc_merge_enc #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_merge_enc0
(
// Outputs
.mc_wrdata (mc_wrdata_i),
.mc_wrdata_mask (mc_wrdata_mask),
// Inputs
.clk (clk),
.rst (rst),
.h_rows (h_rows),
.rd_merge_data (rd_merge_data),
.raw_not_ecc (raw_not_ecc),
.wr_data (wr_data),
.wr_data_mask (wr_data_mask)
);
// Decode and fix
mig_7series_v2_3_ecc_dec_fix #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_dec_fix0
(
// Outputs
.ecc_multiple (ecc_multiple),
.ecc_single (ecc_single),
.rd_data (rd_data),
// Inputs
.clk (clk),
.rst (rst),
.correct_en (correct_en),
.phy_rddata (phy_rd_data),
.ecc_status_valid (ecc_status_valid),
.h_rows (h_rows)
);
// ECC Buffer
mig_7series_v2_3_ecc_buf #
(
// Parameters
.TCQ (TCQ),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_buf0
(
// Outputs
.rd_merge_data (rd_merge_data),
// Inputs
.clk (clk),
.rst (rst),
.rd_data (rd_data),
.rd_data_addr (rd_data_addr),
.rd_data_offset (rd_data_offset),
.wr_data_addr (wr_data_addr),
.wr_data_offset (wr_data_offset),
.wr_ecc_buf (wr_ecc_buf)
);
// Generate ECC table
mig_7series_v2_3_ecc_gen #
(
// Parameters
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.ECC_WIDTH (ECC_WIDTH)
)
ecc_gen0
(
// Outputs
.h_rows (h_rows)
);
if (ECC == "ON") begin : gen_fi_xor_inst
reg mc_wrdata_en_r;
wire mc_wrdata_en_i;
always @(posedge clk) begin
mc_wrdata_en_r <= mc_wrdata_en;
end
assign mc_wrdata_en_i = mc_wrdata_en_r;
mig_7series_v2_3_fi_xor #(
.DQ_WIDTH (DQ_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
fi_xor0
(
.clk (clk),
.wrdata_in (mc_wrdata_i),
.wrdata_out (mc_wrdata),
.wrdata_en (mc_wrdata_en_i),
.fi_xor_we (fi_xor_we),
.fi_xor_wrdata (fi_xor_wrdata)
);
end
else begin : gen_wrdata_passthru
assign mc_wrdata = mc_wrdata_i;
end
`ifdef DISPLAY_H_MATRIX
integer i;
always @(negedge rst) begin
$display ("**********************************************");
$display ("H Matrix:");
for (i=0; i<ECC_WIDTH; i=i+1)
$display ("%b", h_rows[i*CODE_WIDTH+:CODE_WIDTH]);
$display ("**********************************************");
end
`endif
end
endgenerate
endmodule
|
module mig_7series_v2_3_mc #
(
parameter TCQ = 100, // clk->out delay(sim only)
parameter ADDR_CMD_MODE = "1T", // registered or
// 1Tfered mem?
parameter BANK_WIDTH = 3, // bank address width
parameter BM_CNT_WIDTH = 2, // # BM counter width
// i.e., log2(nBANK_MACHS)
parameter BURST_MODE = "8", // Burst length
parameter CL = 5, // Read CAS latency
// (in clk cyc)
parameter CMD_PIPE_PLUS1 = "ON", // add register stage
// between MC and PHY
parameter COL_WIDTH = 12, // column address width
parameter CS_WIDTH = 4, // # of unique CS outputs
parameter CWL = 5, // Write CAS latency
// (in clk cyc)
parameter DATA_BUF_ADDR_WIDTH = 8, // User request tag (e.g.
// user src/dest buf addr)
parameter DATA_BUF_OFFSET_WIDTH = 1, // User buffer offset width
parameter DATA_WIDTH = 64, // Data bus width
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_TYPE = "DDR3", // Memory I/F type:
// "DDR3", "DDR2"
parameter ECC = "OFF", // ECC ON/OFF?
parameter ECC_WIDTH = 8, // # of ECC bits
parameter MAINT_PRESCALER_PERIOD= 200000, // maintenance period (ps)
parameter MC_ERR_ADDR_WIDTH = 31, // # of error address bits
parameter nBANK_MACHS = 4, // # of bank machines (BM)
parameter nCK_PER_CLK = 4, // DRAM clock : MC clock
// frequency ratio
parameter nCS_PER_RANK = 1, // # of unique CS outputs
// per rank
parameter nREFRESH_BANK = 1, // # of REF cmds to pull-in
parameter nSLOTS = 1, // # DIMM slots in system
parameter ORDERING = "NORM", // request ordering mode
parameter PAYLOAD_WIDTH = 64, // Width of data payload
// from PHY
parameter RANK_WIDTH = 2, // # of bits to count ranks
parameter RANKS = 4, // # of ranks of DRAM
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter ROW_WIDTH = 16, // row address width
parameter RTT_NOM = "40", // Nominal ODT value
parameter RTT_WR = "120", // Write ODT value
parameter SLOT_0_CONFIG = 8'b0000_0101, // ranks allowed in slot 0
parameter SLOT_1_CONFIG = 8'b0000_1010, // ranks allowed in slot 1
parameter STARVE_LIMIT = 2, // max # of times a user
// request is allowed to
// lose arbitration when
// reordering is enabled
parameter tCK = 2500, // memory clk period(ps)
parameter tCKE = 10000, // CKE minimum pulse (ps)
parameter tFAW = 40000, // four activate window(ps)
parameter tRAS = 37500, // ACT->PRE cmd period (ps)
parameter tRCD = 12500, // ACT->R/W delay (ps)
parameter tREFI = 7800000, // average periodic
// refresh interval(ps)
parameter CKE_ODT_AUX = "FALSE", //Parameter to turn on/off the aux_out signal
parameter tRFC = 110000, // REF->ACT/REF delay (ps)
parameter tRP = 12500, // PRE cmd period (ps)
parameter tRRD = 10000, // ACT->ACT period (ps)
parameter tRTP = 7500, // Read->PRE cmd delay (ps)
parameter tWTR = 7500, // Internal write->read
// delay (ps)
// requiring DLL lock (CKs)
parameter tZQCS = 64, // ZQCS cmd period (CKs)
parameter tZQI = 128_000_000, // ZQCS interval (ps)
parameter tPRDI = 1_000_000, // pS
parameter USER_REFRESH = "OFF" // Whether user manages REF
)
(
// System inputs
input clk,
input rst,
// Physical memory slot presence
input [7:0] slot_0_present,
input [7:0] slot_1_present,
// Native Interface
input [2:0] cmd,
input [DATA_BUF_ADDR_WIDTH-1:0] data_buf_addr,
input hi_priority,
input size,
input [BANK_WIDTH-1:0] bank,
input [COL_WIDTH-1:0] col,
input [RANK_WIDTH-1:0] rank,
input [ROW_WIDTH-1:0] row,
input use_addr,
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data,
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask,
output accept,
output accept_ns,
output [BM_CNT_WIDTH-1:0] bank_mach_next,
output wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data,
output [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr,
output rd_data_en,
output rd_data_end,
output [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset,
output reg [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr /* synthesis syn_maxfan = 30 */,
output reg wr_data_en,
output reg [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset /* synthesis syn_maxfan = 30 */,
output mc_read_idle,
output mc_ref_zq_wip,
// ECC interface
input correct_en,
input [2*nCK_PER_CLK-1:0] raw_not_ecc,
input [DQS_WIDTH - 1:0] fi_xor_we,
input [DQ_WIDTH -1 :0 ] fi_xor_wrdata,
output [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr,
output [2*nCK_PER_CLK-1:0] ecc_single,
output [2*nCK_PER_CLK-1:0] ecc_multiple,
// User maintenance requests
input app_periodic_rd_req,
input app_ref_req,
input app_zq_req,
input app_sr_req,
output app_sr_active,
output app_ref_ack,
output app_zq_ack,
// MC <==> PHY Interface
output reg [nCK_PER_CLK-1:0] mc_ras_n,
output reg [nCK_PER_CLK-1:0] mc_cas_n,
output reg [nCK_PER_CLK-1:0] mc_we_n,
output reg [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address,
output reg [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank,
output reg [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n,
output reg [1:0] mc_odt,
output reg [nCK_PER_CLK-1:0] mc_cke,
output wire mc_reset_n,
output wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata,
output wire [2*nCK_PER_CLK*DQ_WIDTH/8-1:0]mc_wrdata_mask,
output reg mc_wrdata_en,
output wire mc_cmd_wren,
output wire mc_ctl_wren,
output reg [2:0] mc_cmd,
output reg [5:0] mc_data_offset,
output reg [5:0] mc_data_offset_1,
output reg [5:0] mc_data_offset_2,
output reg [1:0] mc_cas_slot,
output reg [3:0] mc_aux_out0,
output reg [3:0] mc_aux_out1,
output reg [1:0] mc_rank_cnt,
input phy_mc_ctl_full,
input phy_mc_cmd_full,
input phy_mc_data_full,
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rd_data,
input phy_rddata_valid,
input init_calib_complete,
input [6*RANKS-1:0] calib_rd_data_offset,
input [6*RANKS-1:0] calib_rd_data_offset_1,
input [6*RANKS-1:0] calib_rd_data_offset_2
);
assign mc_reset_n = 1'b1; // never reset memory
assign mc_cmd_wren = 1'b1; // always write CMD FIFO(issue DSEL when idle)
assign mc_ctl_wren = 1'b1; // always write CTL FIFO(issue nondata when idle)
// Ensure there is always at least one rank present during operation
`ifdef MC_SVA
ranks_present: assert property
(@(posedge clk) (rst || (|(slot_0_present | slot_1_present))));
`endif
// Reserved. Do not change.
localparam nPHY_WRLAT = 2;
// always delay write data control unless ECC mode is enabled
localparam DELAY_WR_DATA_CNTRL = ECC == "ON" ? 0 : 1;
// Ensure that write control is delayed for appropriate CWL
/*`ifdef MC_SVA
delay_wr_data_zero_CWL_le_6: assert property
(@(posedge clk) ((CWL > 6) || (DELAY_WR_DATA_CNTRL == 0)));
`endif*/
// Never retrieve WR_DATA_ADDR early
localparam EARLY_WR_DATA_ADDR = "OFF";
//***************************************************************************
// Convert timing parameters from time to clock cycles
//***************************************************************************
localparam nCKE = cdiv(tCKE, tCK);
localparam nRP = cdiv(tRP, tCK);
localparam nRCD = cdiv(tRCD, tCK);
localparam nRAS = cdiv(tRAS, tCK);
localparam nFAW = cdiv(tFAW, tCK);
localparam nRFC = cdiv(tRFC, tCK);
// Convert tWR. As per specification, write recover for autoprecharge
// cycles doesn't support values of 9 and 11. Round up 9 to 10 and 11 to 12
localparam nWR_CK = cdiv(15000, tCK) ;
localparam nWR = (nWR_CK == 9) ? 10 : (nWR_CK == 11) ? 12 : nWR_CK;
// tRRD, tWTR at tRTP have a 4 cycle floor in DDR3 and 2 cycle floor in DDR2
localparam nRRD_CK = cdiv(tRRD, tCK);
localparam nRRD = (DRAM_TYPE == "DDR3") ? (nRRD_CK < 4) ? 4 : nRRD_CK
: (nRRD_CK < 2) ? 2 : nRRD_CK;
localparam nWTR_CK = cdiv(tWTR, tCK);
localparam nWTR = (DRAM_TYPE == "DDR3") ? (nWTR_CK < 4) ? 4 : nWTR_CK
: (nWTR_CK < 2) ? 2 : nWTR_CK;
localparam nRTP_CK = cdiv(tRTP, tCK);
localparam nRTP = (DRAM_TYPE == "DDR3") ? (nRTP_CK < 4) ? 4 : nRTP_CK
: (nRTP_CK < 2) ? 2 : nRTP_CK;
// Add a cycle to CL/CWL for the register in RDIMM devices
localparam CWL_M = (REG_CTRL == "ON") ? CWL + 1 : CWL;
localparam CL_M = (REG_CTRL == "ON") ? CL + 1 : CL;
// Tuneable delay between read and write data on the DQ bus
localparam DQRD2DQWR_DLY = 4;
// CKE minimum pulse width for self-refresh (SRE->SRX minimum time)
localparam nCKESR = nCKE + 1;
// Delay from SRE to command requiring locked DLL. Currently fixed at 512 for
// all devices per JEDEC spec.
localparam tXSDLL = 512;
//***************************************************************************
// Set up maintenance counter dividers
//***************************************************************************
// CK clock divisor to generate maintenance prescaler period (round down)
localparam MAINT_PRESCALER_DIV = MAINT_PRESCALER_PERIOD / (tCK*nCK_PER_CLK);
// Maintenance prescaler divisor for refresh timer. Essentially, this is
// just (tREFI / MAINT_PRESCALER_PERIOD), but we must account for the worst
// case delay from the time we get a tick from the refresh counter to the
// time that we can actually issue the REF command. Thus, subtract tRCD, CL,
// data burst time and tRP for each implemented bank machine to ensure that
// all transactions can complete before tREFI expires
localparam REFRESH_TIMER_DIV =
USER_REFRESH == "ON" ? 0 :
(tREFI-((tRCD+((CL+4)*tCK)+tRP)*nBANK_MACHS)) / MAINT_PRESCALER_PERIOD;
// Periodic read (RESERVED - not currently required or supported in 7 series)
// tPRDI should only be set to 0
// localparam tPRDI = 0; // Do NOT change.
localparam PERIODIC_RD_TIMER_DIV = tPRDI / MAINT_PRESCALER_PERIOD;
// Convert maintenance prescaler from ps to ns
localparam MAINT_PRESCALER_PERIOD_NS = MAINT_PRESCALER_PERIOD / 1000;
// Maintenance prescaler divisor for ZQ calibration (ZQCS) timer
localparam ZQ_TIMER_DIV = tZQI / MAINT_PRESCALER_PERIOD_NS;
// Bus width required to broadcast a single bit rank signal among all the
// bank machines - 1 bit per rank, per bank
localparam RANK_BM_BV_WIDTH = nBANK_MACHS * RANKS;
//***************************************************************************
// Define 2T, CWL-even mode to enable multi-fabric-cycle 2T commands
//***************************************************************************
localparam EVEN_CWL_2T_MODE =
((ADDR_CMD_MODE == "2T") && (!(CWL % 2))) ? "ON" : "OFF";
//***************************************************************************
// Reserved feature control.
//***************************************************************************
// Open page wait mode is reserved.
// nOP_WAIT is the number of states a bank machine will park itself
// on an otherwise inactive open page before closing the page. If
// nOP_WAIT == 0, open page wait mode is disabled. If nOP_WAIT == -1,
// the bank machine will remain parked until the pool of idle bank machines
// are less than LOW_IDLE_CNT. At which point parked bank machines
// are selected to exit until the number of idle bank machines exceeds the
// LOW_IDLE_CNT.
localparam nOP_WAIT = 0; // Open page mode
localparam LOW_IDLE_CNT = 0; // Low idle bank machine threshold
//***************************************************************************
// Internal wires
//***************************************************************************
wire [RANK_BM_BV_WIDTH-1:0] act_this_rank_r;
wire [ROW_WIDTH-1:0] col_a;
wire [BANK_WIDTH-1:0] col_ba;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_data_buf_addr;
wire col_periodic_rd;
wire [RANK_WIDTH-1:0] col_ra;
wire col_rmw;
wire col_rd_wr;
wire [ROW_WIDTH-1:0] col_row;
wire col_size;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr;
wire dq_busy_data;
wire ecc_status_valid;
wire [RANKS-1:0] inhbt_act_faw_r;
wire [RANKS-1:0] inhbt_rd;
wire [RANKS-1:0] inhbt_wr;
wire insert_maint_r1;
wire [RANK_WIDTH-1:0] maint_rank_r;
wire maint_req_r;
wire maint_wip_r;
wire maint_zq_r;
wire maint_sre_r;
wire maint_srx_r;
wire periodic_rd_ack_r;
wire periodic_rd_r;
wire [RANK_WIDTH-1:0] periodic_rd_rank_r;
wire [(RANKS*nBANK_MACHS)-1:0] rank_busy_r;
wire rd_rmw;
wire [RANK_BM_BV_WIDTH-1:0] rd_this_rank_r;
wire [nBANK_MACHS-1:0] sending_col;
wire [nBANK_MACHS-1:0] sending_row;
wire sent_col;
wire sent_col_r;
wire wr_ecc_buf;
wire [RANK_BM_BV_WIDTH-1:0] wr_this_rank_r;
// MC/PHY optional pipeline stage support
wire [nCK_PER_CLK-1:0] mc_ras_n_ns;
wire [nCK_PER_CLK-1:0] mc_cas_n_ns;
wire [nCK_PER_CLK-1:0] mc_we_n_ns;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address_ns;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank_ns;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n_ns;
wire [1:0] mc_odt_ns;
wire [nCK_PER_CLK-1:0] mc_cke_ns;
wire [3:0] mc_aux_out0_ns;
wire [3:0] mc_aux_out1_ns;
wire [1:0] mc_rank_cnt_ns = col_ra;
wire [2:0] mc_cmd_ns;
wire [5:0] mc_data_offset_ns;
wire [5:0] mc_data_offset_1_ns;
wire [5:0] mc_data_offset_2_ns;
wire [1:0] mc_cas_slot_ns;
wire mc_wrdata_en_ns;
wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr_ns;
wire wr_data_en_ns;
wire [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset_ns;
integer i;
// MC Read idle support
wire col_read_fifo_empty;
wire mc_read_idle_ns;
reg mc_read_idle_r;
// MC Maintenance in progress with bus idle indication
wire maint_ref_zq_wip;
wire mc_ref_zq_wip_ns;
reg mc_ref_zq_wip_r;
//***************************************************************************
// Function cdiv
// Description:
// This function performs ceiling division (divide and round-up)
// Inputs:
// num: integer to be divided
// div: divisor
// Outputs:
// cdiv: result of ceiling division (num/div, rounded up)
//***************************************************************************
function integer cdiv (input integer num, input integer div);
begin
// perform division, then add 1 if and only if remainder is non-zero
cdiv = (num/div) + (((num%div)>0) ? 1 : 0);
end
endfunction // cdiv
//***************************************************************************
// Optional pipeline register stage on MC/PHY interface
//***************************************************************************
generate
if (CMD_PIPE_PLUS1 == "ON") begin : cmd_pipe_plus // register interface
always @(posedge clk) begin
mc_address <= #TCQ mc_address_ns;
mc_bank <= #TCQ mc_bank_ns;
mc_cas_n <= #TCQ mc_cas_n_ns;
mc_cs_n <= #TCQ mc_cs_n_ns;
mc_odt <= #TCQ mc_odt_ns;
mc_cke <= #TCQ mc_cke_ns;
mc_aux_out0 <= #TCQ mc_aux_out0_ns;
mc_aux_out1 <= #TCQ mc_aux_out1_ns;
mc_cmd <= #TCQ mc_cmd_ns;
mc_ras_n <= #TCQ mc_ras_n_ns;
mc_we_n <= #TCQ mc_we_n_ns;
mc_data_offset <= #TCQ mc_data_offset_ns;
mc_data_offset_1 <= #TCQ mc_data_offset_1_ns;
mc_data_offset_2 <= #TCQ mc_data_offset_2_ns;
mc_cas_slot <= #TCQ mc_cas_slot_ns;
mc_wrdata_en <= #TCQ mc_wrdata_en_ns;
mc_rank_cnt <= #TCQ mc_rank_cnt_ns;
wr_data_addr <= #TCQ wr_data_addr_ns;
wr_data_en <= #TCQ wr_data_en_ns;
wr_data_offset <= #TCQ wr_data_offset_ns;
end // always @ (posedge clk)
end // block: cmd_pipe_plus
else begin : cmd_pipe_plus0 // don't register interface
always @( mc_address_ns or mc_aux_out0_ns or mc_aux_out1_ns or
mc_bank_ns or mc_cas_n_ns or mc_cmd_ns or mc_cs_n_ns or
mc_odt_ns or mc_cke_ns or mc_data_offset_ns or
mc_data_offset_1_ns or mc_data_offset_2_ns or mc_rank_cnt_ns or
mc_ras_n_ns or mc_we_n_ns or mc_wrdata_en_ns or
wr_data_addr_ns or wr_data_en_ns or wr_data_offset_ns or
mc_cas_slot_ns)
begin
mc_address = #TCQ mc_address_ns;
mc_bank = #TCQ mc_bank_ns;
mc_cas_n = #TCQ mc_cas_n_ns;
mc_cs_n = #TCQ mc_cs_n_ns;
mc_odt = #TCQ mc_odt_ns;
mc_cke = #TCQ mc_cke_ns;
mc_aux_out0 = #TCQ mc_aux_out0_ns;
mc_aux_out1 = #TCQ mc_aux_out1_ns;
mc_cmd = #TCQ mc_cmd_ns;
mc_ras_n = #TCQ mc_ras_n_ns;
mc_we_n = #TCQ mc_we_n_ns;
mc_data_offset = #TCQ mc_data_offset_ns;
mc_data_offset_1 = #TCQ mc_data_offset_1_ns;
mc_data_offset_2 = #TCQ mc_data_offset_2_ns;
mc_cas_slot = #TCQ mc_cas_slot_ns;
mc_wrdata_en = #TCQ mc_wrdata_en_ns;
mc_rank_cnt = #TCQ mc_rank_cnt_ns;
wr_data_addr = #TCQ wr_data_addr_ns;
wr_data_en = #TCQ wr_data_en_ns;
wr_data_offset = #TCQ wr_data_offset_ns;
end // always @ (...
end // block: cmd_pipe_plus0
endgenerate
//***************************************************************************
// Indicate when there are no pending reads so that input features can be
// powered down
//***************************************************************************
assign mc_read_idle_ns = col_read_fifo_empty & init_calib_complete;
always @(posedge clk) mc_read_idle_r <= #TCQ mc_read_idle_ns;
assign mc_read_idle = mc_read_idle_r;
//***************************************************************************
// Indicate when there is a refresh in progress and the bus is idle so that
// tap adjustments can be made
//***************************************************************************
assign mc_ref_zq_wip_ns = maint_ref_zq_wip && col_read_fifo_empty;
always @(posedge clk) mc_ref_zq_wip_r <= mc_ref_zq_wip_ns;
assign mc_ref_zq_wip = mc_ref_zq_wip_r;
//***************************************************************************
// Manage rank-level timing and maintanence
//***************************************************************************
mig_7series_v2_3_rank_mach #
(
// Parameters
.BURST_MODE (BURST_MODE),
.CL (CL),
.CWL (CWL),
.CS_WIDTH (CS_WIDTH),
.DQRD2DQWR_DLY (DQRD2DQWR_DLY),
.DRAM_TYPE (DRAM_TYPE),
.MAINT_PRESCALER_DIV (MAINT_PRESCALER_DIV),
.nBANK_MACHS (nBANK_MACHS),
.nCKESR (nCKESR),
.nCK_PER_CLK (nCK_PER_CLK),
.nFAW (nFAW),
.nREFRESH_BANK (nREFRESH_BANK),
.nRRD (nRRD),
.nWTR (nWTR),
.PERIODIC_RD_TIMER_DIV (PERIODIC_RD_TIMER_DIV),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.REFRESH_TIMER_DIV (REFRESH_TIMER_DIV),
.ZQ_TIMER_DIV (ZQ_TIMER_DIV)
)
rank_mach0
(
// Outputs
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.maint_ref_zq_wip (maint_ref_zq_wip),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
// Inputs
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.app_periodic_rd_req (app_periodic_rd_req),
.app_ref_req (app_ref_req),
.app_ref_ack (app_ref_ack),
.app_zq_req (app_zq_req),
.app_zq_ack (app_zq_ack),
.app_sr_req (app_sr_req),
.app_sr_active (app_sr_active),
.col_rd_wr (col_rd_wr),
.clk (clk),
.init_calib_complete (init_calib_complete),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.rst (rst),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0])
);
//***************************************************************************
// Manage requests, reordering and bank timing
//***************************************************************************
mig_7series_v2_3_bank_mach #
(
// Parameters
.TCQ (TCQ),
.EVEN_CWL_2T_MODE (EVEN_CWL_2T_MODE),
.ADDR_CMD_MODE (ADDR_CMD_MODE),
.BANK_WIDTH (BANK_WIDTH),
.BM_CNT_WIDTH (BM_CNT_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.CL (CL_M),
.CWL (CWL_M),
.CKE_ODT_AUX (CKE_ODT_AUX),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.LOW_IDLE_CNT (LOW_IDLE_CNT),
.nBANK_MACHS (nBANK_MACHS),
.nCK_PER_CLK (nCK_PER_CLK),
.nCS_PER_RANK (nCS_PER_RANK),
.nOP_WAIT (nOP_WAIT),
.nRAS (nRAS),
.nRCD (nRCD),
.nRFC (nRFC),
.nRP (nRP),
.nRTP (nRTP),
.nSLOTS (nSLOTS),
.nWR (nWR),
.nXSDLL (tXSDLL),
.ORDERING (ORDERING),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.ROW_WIDTH (ROW_WIDTH),
.RTT_NOM (RTT_NOM),
.RTT_WR (RTT_WR),
.SLOT_0_CONFIG (SLOT_0_CONFIG),
.SLOT_1_CONFIG (SLOT_1_CONFIG),
.STARVE_LIMIT (STARVE_LIMIT),
.tZQCS (tZQCS)
)
bank_mach0
(
// Outputs
.accept (accept),
.accept_ns (accept_ns),
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.bank_mach_next (bank_mach_next[BM_CNT_WIDTH-1:0]),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.mc_bank (mc_bank_ns),
.mc_address (mc_address_ns),
.mc_ras_n (mc_ras_n_ns),
.mc_cas_n (mc_cas_n_ns),
.mc_we_n (mc_we_n_ns),
.mc_cs_n (mc_cs_n_ns),
.mc_odt (mc_odt_ns),
.mc_cke (mc_cke_ns),
.mc_aux_out0 (mc_aux_out0_ns),
.mc_aux_out1 (mc_aux_out1_ns),
.mc_cmd (mc_cmd_ns),
.mc_data_offset (mc_data_offset_ns),
.mc_data_offset_1 (mc_data_offset_1_ns),
.mc_data_offset_2 (mc_data_offset_2_ns),
.mc_cas_slot (mc_cas_slot_ns),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sent_col (sent_col),
.sent_col_r (sent_col_r),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
// Inputs
.bank (bank[BANK_WIDTH-1:0]),
.calib_rddata_offset (calib_rd_data_offset),
.calib_rddata_offset_1 (calib_rd_data_offset_1),
.calib_rddata_offset_2 (calib_rd_data_offset_2),
.clk (clk),
.cmd (cmd[2:0]),
.col (col[COL_WIDTH-1:0]),
.data_buf_addr (data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.init_calib_complete (init_calib_complete),
.phy_rddata_valid (phy_rddata_valid),
.dq_busy_data (dq_busy_data),
.hi_priority (hi_priority),
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
.phy_mc_cmd_full (phy_mc_cmd_full),
.phy_mc_ctl_full (phy_mc_ctl_full),
.phy_mc_data_full (phy_mc_data_full),
.rank (rank[RANK_WIDTH-1:0]),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_rmw (rd_rmw),
.row (row[ROW_WIDTH-1:0]),
.rst (rst),
.size (size),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.use_addr (use_addr)
);
//***************************************************************************
// Manage DQ bus
//***************************************************************************
mig_7series_v2_3_col_mach #
(
// Parameters
.TCQ (TCQ),
.BANK_WIDTH (BANK_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DELAY_WR_DATA_CNTRL (DELAY_WR_DATA_CNTRL),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.MC_ERR_ADDR_WIDTH (MC_ERR_ADDR_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK),
.nPHY_WRLAT (nPHY_WRLAT),
.RANK_WIDTH (RANK_WIDTH),
.ROW_WIDTH (ROW_WIDTH)
)
col_mach0
(
// Outputs
.mc_wrdata_en (mc_wrdata_en_ns),
.dq_busy_data (dq_busy_data),
.ecc_err_addr (ecc_err_addr[MC_ERR_ADDR_WIDTH-1:0]),
.ecc_status_valid (ecc_status_valid),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_data_en (rd_data_en),
.rd_data_end (rd_data_end),
.rd_data_offset (rd_data_offset),
.rd_rmw (rd_rmw),
.wr_data_addr (wr_data_addr_ns),
.wr_data_en (wr_data_en_ns),
.wr_data_offset (wr_data_offset_ns),
.wr_ecc_buf (wr_ecc_buf),
.col_read_fifo_empty (col_read_fifo_empty),
// Inputs
.clk (clk),
.rst (rst),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.phy_rddata_valid (phy_rddata_valid),
.sent_col (EVEN_CWL_2T_MODE == "ON" ? sent_col_r : sent_col)
);
//***************************************************************************
// Implement ECC
//***************************************************************************
// Total ECC word length = ECC code width + Data width
localparam CODE_WIDTH = DATA_WIDTH + ECC_WIDTH;
generate
if (ECC == "OFF") begin : ecc_off
assign rd_data = phy_rd_data;
assign mc_wrdata = wr_data;
assign mc_wrdata_mask = wr_data_mask;
assign ecc_single = 4'b0;
assign ecc_multiple = 4'b0;
end
else begin : ecc_on
wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_i;
// Merge and encode
mig_7series_v2_3_ecc_merge_enc #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_merge_enc0
(
// Outputs
.mc_wrdata (mc_wrdata_i),
.mc_wrdata_mask (mc_wrdata_mask),
// Inputs
.clk (clk),
.rst (rst),
.h_rows (h_rows),
.rd_merge_data (rd_merge_data),
.raw_not_ecc (raw_not_ecc),
.wr_data (wr_data),
.wr_data_mask (wr_data_mask)
);
// Decode and fix
mig_7series_v2_3_ecc_dec_fix #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_dec_fix0
(
// Outputs
.ecc_multiple (ecc_multiple),
.ecc_single (ecc_single),
.rd_data (rd_data),
// Inputs
.clk (clk),
.rst (rst),
.correct_en (correct_en),
.phy_rddata (phy_rd_data),
.ecc_status_valid (ecc_status_valid),
.h_rows (h_rows)
);
// ECC Buffer
mig_7series_v2_3_ecc_buf #
(
// Parameters
.TCQ (TCQ),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_buf0
(
// Outputs
.rd_merge_data (rd_merge_data),
// Inputs
.clk (clk),
.rst (rst),
.rd_data (rd_data),
.rd_data_addr (rd_data_addr),
.rd_data_offset (rd_data_offset),
.wr_data_addr (wr_data_addr),
.wr_data_offset (wr_data_offset),
.wr_ecc_buf (wr_ecc_buf)
);
// Generate ECC table
mig_7series_v2_3_ecc_gen #
(
// Parameters
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.ECC_WIDTH (ECC_WIDTH)
)
ecc_gen0
(
// Outputs
.h_rows (h_rows)
);
if (ECC == "ON") begin : gen_fi_xor_inst
reg mc_wrdata_en_r;
wire mc_wrdata_en_i;
always @(posedge clk) begin
mc_wrdata_en_r <= mc_wrdata_en;
end
assign mc_wrdata_en_i = mc_wrdata_en_r;
mig_7series_v2_3_fi_xor #(
.DQ_WIDTH (DQ_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
fi_xor0
(
.clk (clk),
.wrdata_in (mc_wrdata_i),
.wrdata_out (mc_wrdata),
.wrdata_en (mc_wrdata_en_i),
.fi_xor_we (fi_xor_we),
.fi_xor_wrdata (fi_xor_wrdata)
);
end
else begin : gen_wrdata_passthru
assign mc_wrdata = mc_wrdata_i;
end
`ifdef DISPLAY_H_MATRIX
integer i;
always @(negedge rst) begin
$display ("**********************************************");
$display ("H Matrix:");
for (i=0; i<ECC_WIDTH; i=i+1)
$display ("%b", h_rows[i*CODE_WIDTH+:CODE_WIDTH]);
$display ("**********************************************");
end
`endif
end
endgenerate
endmodule
|
module mig_7series_v2_3_mc #
(
parameter TCQ = 100, // clk->out delay(sim only)
parameter ADDR_CMD_MODE = "1T", // registered or
// 1Tfered mem?
parameter BANK_WIDTH = 3, // bank address width
parameter BM_CNT_WIDTH = 2, // # BM counter width
// i.e., log2(nBANK_MACHS)
parameter BURST_MODE = "8", // Burst length
parameter CL = 5, // Read CAS latency
// (in clk cyc)
parameter CMD_PIPE_PLUS1 = "ON", // add register stage
// between MC and PHY
parameter COL_WIDTH = 12, // column address width
parameter CS_WIDTH = 4, // # of unique CS outputs
parameter CWL = 5, // Write CAS latency
// (in clk cyc)
parameter DATA_BUF_ADDR_WIDTH = 8, // User request tag (e.g.
// user src/dest buf addr)
parameter DATA_BUF_OFFSET_WIDTH = 1, // User buffer offset width
parameter DATA_WIDTH = 64, // Data bus width
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_TYPE = "DDR3", // Memory I/F type:
// "DDR3", "DDR2"
parameter ECC = "OFF", // ECC ON/OFF?
parameter ECC_WIDTH = 8, // # of ECC bits
parameter MAINT_PRESCALER_PERIOD= 200000, // maintenance period (ps)
parameter MC_ERR_ADDR_WIDTH = 31, // # of error address bits
parameter nBANK_MACHS = 4, // # of bank machines (BM)
parameter nCK_PER_CLK = 4, // DRAM clock : MC clock
// frequency ratio
parameter nCS_PER_RANK = 1, // # of unique CS outputs
// per rank
parameter nREFRESH_BANK = 1, // # of REF cmds to pull-in
parameter nSLOTS = 1, // # DIMM slots in system
parameter ORDERING = "NORM", // request ordering mode
parameter PAYLOAD_WIDTH = 64, // Width of data payload
// from PHY
parameter RANK_WIDTH = 2, // # of bits to count ranks
parameter RANKS = 4, // # of ranks of DRAM
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter ROW_WIDTH = 16, // row address width
parameter RTT_NOM = "40", // Nominal ODT value
parameter RTT_WR = "120", // Write ODT value
parameter SLOT_0_CONFIG = 8'b0000_0101, // ranks allowed in slot 0
parameter SLOT_1_CONFIG = 8'b0000_1010, // ranks allowed in slot 1
parameter STARVE_LIMIT = 2, // max # of times a user
// request is allowed to
// lose arbitration when
// reordering is enabled
parameter tCK = 2500, // memory clk period(ps)
parameter tCKE = 10000, // CKE minimum pulse (ps)
parameter tFAW = 40000, // four activate window(ps)
parameter tRAS = 37500, // ACT->PRE cmd period (ps)
parameter tRCD = 12500, // ACT->R/W delay (ps)
parameter tREFI = 7800000, // average periodic
// refresh interval(ps)
parameter CKE_ODT_AUX = "FALSE", //Parameter to turn on/off the aux_out signal
parameter tRFC = 110000, // REF->ACT/REF delay (ps)
parameter tRP = 12500, // PRE cmd period (ps)
parameter tRRD = 10000, // ACT->ACT period (ps)
parameter tRTP = 7500, // Read->PRE cmd delay (ps)
parameter tWTR = 7500, // Internal write->read
// delay (ps)
// requiring DLL lock (CKs)
parameter tZQCS = 64, // ZQCS cmd period (CKs)
parameter tZQI = 128_000_000, // ZQCS interval (ps)
parameter tPRDI = 1_000_000, // pS
parameter USER_REFRESH = "OFF" // Whether user manages REF
)
(
// System inputs
input clk,
input rst,
// Physical memory slot presence
input [7:0] slot_0_present,
input [7:0] slot_1_present,
// Native Interface
input [2:0] cmd,
input [DATA_BUF_ADDR_WIDTH-1:0] data_buf_addr,
input hi_priority,
input size,
input [BANK_WIDTH-1:0] bank,
input [COL_WIDTH-1:0] col,
input [RANK_WIDTH-1:0] rank,
input [ROW_WIDTH-1:0] row,
input use_addr,
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data,
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask,
output accept,
output accept_ns,
output [BM_CNT_WIDTH-1:0] bank_mach_next,
output wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data,
output [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr,
output rd_data_en,
output rd_data_end,
output [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset,
output reg [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr /* synthesis syn_maxfan = 30 */,
output reg wr_data_en,
output reg [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset /* synthesis syn_maxfan = 30 */,
output mc_read_idle,
output mc_ref_zq_wip,
// ECC interface
input correct_en,
input [2*nCK_PER_CLK-1:0] raw_not_ecc,
input [DQS_WIDTH - 1:0] fi_xor_we,
input [DQ_WIDTH -1 :0 ] fi_xor_wrdata,
output [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr,
output [2*nCK_PER_CLK-1:0] ecc_single,
output [2*nCK_PER_CLK-1:0] ecc_multiple,
// User maintenance requests
input app_periodic_rd_req,
input app_ref_req,
input app_zq_req,
input app_sr_req,
output app_sr_active,
output app_ref_ack,
output app_zq_ack,
// MC <==> PHY Interface
output reg [nCK_PER_CLK-1:0] mc_ras_n,
output reg [nCK_PER_CLK-1:0] mc_cas_n,
output reg [nCK_PER_CLK-1:0] mc_we_n,
output reg [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address,
output reg [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank,
output reg [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n,
output reg [1:0] mc_odt,
output reg [nCK_PER_CLK-1:0] mc_cke,
output wire mc_reset_n,
output wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata,
output wire [2*nCK_PER_CLK*DQ_WIDTH/8-1:0]mc_wrdata_mask,
output reg mc_wrdata_en,
output wire mc_cmd_wren,
output wire mc_ctl_wren,
output reg [2:0] mc_cmd,
output reg [5:0] mc_data_offset,
output reg [5:0] mc_data_offset_1,
output reg [5:0] mc_data_offset_2,
output reg [1:0] mc_cas_slot,
output reg [3:0] mc_aux_out0,
output reg [3:0] mc_aux_out1,
output reg [1:0] mc_rank_cnt,
input phy_mc_ctl_full,
input phy_mc_cmd_full,
input phy_mc_data_full,
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rd_data,
input phy_rddata_valid,
input init_calib_complete,
input [6*RANKS-1:0] calib_rd_data_offset,
input [6*RANKS-1:0] calib_rd_data_offset_1,
input [6*RANKS-1:0] calib_rd_data_offset_2
);
assign mc_reset_n = 1'b1; // never reset memory
assign mc_cmd_wren = 1'b1; // always write CMD FIFO(issue DSEL when idle)
assign mc_ctl_wren = 1'b1; // always write CTL FIFO(issue nondata when idle)
// Ensure there is always at least one rank present during operation
`ifdef MC_SVA
ranks_present: assert property
(@(posedge clk) (rst || (|(slot_0_present | slot_1_present))));
`endif
// Reserved. Do not change.
localparam nPHY_WRLAT = 2;
// always delay write data control unless ECC mode is enabled
localparam DELAY_WR_DATA_CNTRL = ECC == "ON" ? 0 : 1;
// Ensure that write control is delayed for appropriate CWL
/*`ifdef MC_SVA
delay_wr_data_zero_CWL_le_6: assert property
(@(posedge clk) ((CWL > 6) || (DELAY_WR_DATA_CNTRL == 0)));
`endif*/
// Never retrieve WR_DATA_ADDR early
localparam EARLY_WR_DATA_ADDR = "OFF";
//***************************************************************************
// Convert timing parameters from time to clock cycles
//***************************************************************************
localparam nCKE = cdiv(tCKE, tCK);
localparam nRP = cdiv(tRP, tCK);
localparam nRCD = cdiv(tRCD, tCK);
localparam nRAS = cdiv(tRAS, tCK);
localparam nFAW = cdiv(tFAW, tCK);
localparam nRFC = cdiv(tRFC, tCK);
// Convert tWR. As per specification, write recover for autoprecharge
// cycles doesn't support values of 9 and 11. Round up 9 to 10 and 11 to 12
localparam nWR_CK = cdiv(15000, tCK) ;
localparam nWR = (nWR_CK == 9) ? 10 : (nWR_CK == 11) ? 12 : nWR_CK;
// tRRD, tWTR at tRTP have a 4 cycle floor in DDR3 and 2 cycle floor in DDR2
localparam nRRD_CK = cdiv(tRRD, tCK);
localparam nRRD = (DRAM_TYPE == "DDR3") ? (nRRD_CK < 4) ? 4 : nRRD_CK
: (nRRD_CK < 2) ? 2 : nRRD_CK;
localparam nWTR_CK = cdiv(tWTR, tCK);
localparam nWTR = (DRAM_TYPE == "DDR3") ? (nWTR_CK < 4) ? 4 : nWTR_CK
: (nWTR_CK < 2) ? 2 : nWTR_CK;
localparam nRTP_CK = cdiv(tRTP, tCK);
localparam nRTP = (DRAM_TYPE == "DDR3") ? (nRTP_CK < 4) ? 4 : nRTP_CK
: (nRTP_CK < 2) ? 2 : nRTP_CK;
// Add a cycle to CL/CWL for the register in RDIMM devices
localparam CWL_M = (REG_CTRL == "ON") ? CWL + 1 : CWL;
localparam CL_M = (REG_CTRL == "ON") ? CL + 1 : CL;
// Tuneable delay between read and write data on the DQ bus
localparam DQRD2DQWR_DLY = 4;
// CKE minimum pulse width for self-refresh (SRE->SRX minimum time)
localparam nCKESR = nCKE + 1;
// Delay from SRE to command requiring locked DLL. Currently fixed at 512 for
// all devices per JEDEC spec.
localparam tXSDLL = 512;
//***************************************************************************
// Set up maintenance counter dividers
//***************************************************************************
// CK clock divisor to generate maintenance prescaler period (round down)
localparam MAINT_PRESCALER_DIV = MAINT_PRESCALER_PERIOD / (tCK*nCK_PER_CLK);
// Maintenance prescaler divisor for refresh timer. Essentially, this is
// just (tREFI / MAINT_PRESCALER_PERIOD), but we must account for the worst
// case delay from the time we get a tick from the refresh counter to the
// time that we can actually issue the REF command. Thus, subtract tRCD, CL,
// data burst time and tRP for each implemented bank machine to ensure that
// all transactions can complete before tREFI expires
localparam REFRESH_TIMER_DIV =
USER_REFRESH == "ON" ? 0 :
(tREFI-((tRCD+((CL+4)*tCK)+tRP)*nBANK_MACHS)) / MAINT_PRESCALER_PERIOD;
// Periodic read (RESERVED - not currently required or supported in 7 series)
// tPRDI should only be set to 0
// localparam tPRDI = 0; // Do NOT change.
localparam PERIODIC_RD_TIMER_DIV = tPRDI / MAINT_PRESCALER_PERIOD;
// Convert maintenance prescaler from ps to ns
localparam MAINT_PRESCALER_PERIOD_NS = MAINT_PRESCALER_PERIOD / 1000;
// Maintenance prescaler divisor for ZQ calibration (ZQCS) timer
localparam ZQ_TIMER_DIV = tZQI / MAINT_PRESCALER_PERIOD_NS;
// Bus width required to broadcast a single bit rank signal among all the
// bank machines - 1 bit per rank, per bank
localparam RANK_BM_BV_WIDTH = nBANK_MACHS * RANKS;
//***************************************************************************
// Define 2T, CWL-even mode to enable multi-fabric-cycle 2T commands
//***************************************************************************
localparam EVEN_CWL_2T_MODE =
((ADDR_CMD_MODE == "2T") && (!(CWL % 2))) ? "ON" : "OFF";
//***************************************************************************
// Reserved feature control.
//***************************************************************************
// Open page wait mode is reserved.
// nOP_WAIT is the number of states a bank machine will park itself
// on an otherwise inactive open page before closing the page. If
// nOP_WAIT == 0, open page wait mode is disabled. If nOP_WAIT == -1,
// the bank machine will remain parked until the pool of idle bank machines
// are less than LOW_IDLE_CNT. At which point parked bank machines
// are selected to exit until the number of idle bank machines exceeds the
// LOW_IDLE_CNT.
localparam nOP_WAIT = 0; // Open page mode
localparam LOW_IDLE_CNT = 0; // Low idle bank machine threshold
//***************************************************************************
// Internal wires
//***************************************************************************
wire [RANK_BM_BV_WIDTH-1:0] act_this_rank_r;
wire [ROW_WIDTH-1:0] col_a;
wire [BANK_WIDTH-1:0] col_ba;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_data_buf_addr;
wire col_periodic_rd;
wire [RANK_WIDTH-1:0] col_ra;
wire col_rmw;
wire col_rd_wr;
wire [ROW_WIDTH-1:0] col_row;
wire col_size;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr;
wire dq_busy_data;
wire ecc_status_valid;
wire [RANKS-1:0] inhbt_act_faw_r;
wire [RANKS-1:0] inhbt_rd;
wire [RANKS-1:0] inhbt_wr;
wire insert_maint_r1;
wire [RANK_WIDTH-1:0] maint_rank_r;
wire maint_req_r;
wire maint_wip_r;
wire maint_zq_r;
wire maint_sre_r;
wire maint_srx_r;
wire periodic_rd_ack_r;
wire periodic_rd_r;
wire [RANK_WIDTH-1:0] periodic_rd_rank_r;
wire [(RANKS*nBANK_MACHS)-1:0] rank_busy_r;
wire rd_rmw;
wire [RANK_BM_BV_WIDTH-1:0] rd_this_rank_r;
wire [nBANK_MACHS-1:0] sending_col;
wire [nBANK_MACHS-1:0] sending_row;
wire sent_col;
wire sent_col_r;
wire wr_ecc_buf;
wire [RANK_BM_BV_WIDTH-1:0] wr_this_rank_r;
// MC/PHY optional pipeline stage support
wire [nCK_PER_CLK-1:0] mc_ras_n_ns;
wire [nCK_PER_CLK-1:0] mc_cas_n_ns;
wire [nCK_PER_CLK-1:0] mc_we_n_ns;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address_ns;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank_ns;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n_ns;
wire [1:0] mc_odt_ns;
wire [nCK_PER_CLK-1:0] mc_cke_ns;
wire [3:0] mc_aux_out0_ns;
wire [3:0] mc_aux_out1_ns;
wire [1:0] mc_rank_cnt_ns = col_ra;
wire [2:0] mc_cmd_ns;
wire [5:0] mc_data_offset_ns;
wire [5:0] mc_data_offset_1_ns;
wire [5:0] mc_data_offset_2_ns;
wire [1:0] mc_cas_slot_ns;
wire mc_wrdata_en_ns;
wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr_ns;
wire wr_data_en_ns;
wire [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset_ns;
integer i;
// MC Read idle support
wire col_read_fifo_empty;
wire mc_read_idle_ns;
reg mc_read_idle_r;
// MC Maintenance in progress with bus idle indication
wire maint_ref_zq_wip;
wire mc_ref_zq_wip_ns;
reg mc_ref_zq_wip_r;
//***************************************************************************
// Function cdiv
// Description:
// This function performs ceiling division (divide and round-up)
// Inputs:
// num: integer to be divided
// div: divisor
// Outputs:
// cdiv: result of ceiling division (num/div, rounded up)
//***************************************************************************
function integer cdiv (input integer num, input integer div);
begin
// perform division, then add 1 if and only if remainder is non-zero
cdiv = (num/div) + (((num%div)>0) ? 1 : 0);
end
endfunction // cdiv
//***************************************************************************
// Optional pipeline register stage on MC/PHY interface
//***************************************************************************
generate
if (CMD_PIPE_PLUS1 == "ON") begin : cmd_pipe_plus // register interface
always @(posedge clk) begin
mc_address <= #TCQ mc_address_ns;
mc_bank <= #TCQ mc_bank_ns;
mc_cas_n <= #TCQ mc_cas_n_ns;
mc_cs_n <= #TCQ mc_cs_n_ns;
mc_odt <= #TCQ mc_odt_ns;
mc_cke <= #TCQ mc_cke_ns;
mc_aux_out0 <= #TCQ mc_aux_out0_ns;
mc_aux_out1 <= #TCQ mc_aux_out1_ns;
mc_cmd <= #TCQ mc_cmd_ns;
mc_ras_n <= #TCQ mc_ras_n_ns;
mc_we_n <= #TCQ mc_we_n_ns;
mc_data_offset <= #TCQ mc_data_offset_ns;
mc_data_offset_1 <= #TCQ mc_data_offset_1_ns;
mc_data_offset_2 <= #TCQ mc_data_offset_2_ns;
mc_cas_slot <= #TCQ mc_cas_slot_ns;
mc_wrdata_en <= #TCQ mc_wrdata_en_ns;
mc_rank_cnt <= #TCQ mc_rank_cnt_ns;
wr_data_addr <= #TCQ wr_data_addr_ns;
wr_data_en <= #TCQ wr_data_en_ns;
wr_data_offset <= #TCQ wr_data_offset_ns;
end // always @ (posedge clk)
end // block: cmd_pipe_plus
else begin : cmd_pipe_plus0 // don't register interface
always @( mc_address_ns or mc_aux_out0_ns or mc_aux_out1_ns or
mc_bank_ns or mc_cas_n_ns or mc_cmd_ns or mc_cs_n_ns or
mc_odt_ns or mc_cke_ns or mc_data_offset_ns or
mc_data_offset_1_ns or mc_data_offset_2_ns or mc_rank_cnt_ns or
mc_ras_n_ns or mc_we_n_ns or mc_wrdata_en_ns or
wr_data_addr_ns or wr_data_en_ns or wr_data_offset_ns or
mc_cas_slot_ns)
begin
mc_address = #TCQ mc_address_ns;
mc_bank = #TCQ mc_bank_ns;
mc_cas_n = #TCQ mc_cas_n_ns;
mc_cs_n = #TCQ mc_cs_n_ns;
mc_odt = #TCQ mc_odt_ns;
mc_cke = #TCQ mc_cke_ns;
mc_aux_out0 = #TCQ mc_aux_out0_ns;
mc_aux_out1 = #TCQ mc_aux_out1_ns;
mc_cmd = #TCQ mc_cmd_ns;
mc_ras_n = #TCQ mc_ras_n_ns;
mc_we_n = #TCQ mc_we_n_ns;
mc_data_offset = #TCQ mc_data_offset_ns;
mc_data_offset_1 = #TCQ mc_data_offset_1_ns;
mc_data_offset_2 = #TCQ mc_data_offset_2_ns;
mc_cas_slot = #TCQ mc_cas_slot_ns;
mc_wrdata_en = #TCQ mc_wrdata_en_ns;
mc_rank_cnt = #TCQ mc_rank_cnt_ns;
wr_data_addr = #TCQ wr_data_addr_ns;
wr_data_en = #TCQ wr_data_en_ns;
wr_data_offset = #TCQ wr_data_offset_ns;
end // always @ (...
end // block: cmd_pipe_plus0
endgenerate
//***************************************************************************
// Indicate when there are no pending reads so that input features can be
// powered down
//***************************************************************************
assign mc_read_idle_ns = col_read_fifo_empty & init_calib_complete;
always @(posedge clk) mc_read_idle_r <= #TCQ mc_read_idle_ns;
assign mc_read_idle = mc_read_idle_r;
//***************************************************************************
// Indicate when there is a refresh in progress and the bus is idle so that
// tap adjustments can be made
//***************************************************************************
assign mc_ref_zq_wip_ns = maint_ref_zq_wip && col_read_fifo_empty;
always @(posedge clk) mc_ref_zq_wip_r <= mc_ref_zq_wip_ns;
assign mc_ref_zq_wip = mc_ref_zq_wip_r;
//***************************************************************************
// Manage rank-level timing and maintanence
//***************************************************************************
mig_7series_v2_3_rank_mach #
(
// Parameters
.BURST_MODE (BURST_MODE),
.CL (CL),
.CWL (CWL),
.CS_WIDTH (CS_WIDTH),
.DQRD2DQWR_DLY (DQRD2DQWR_DLY),
.DRAM_TYPE (DRAM_TYPE),
.MAINT_PRESCALER_DIV (MAINT_PRESCALER_DIV),
.nBANK_MACHS (nBANK_MACHS),
.nCKESR (nCKESR),
.nCK_PER_CLK (nCK_PER_CLK),
.nFAW (nFAW),
.nREFRESH_BANK (nREFRESH_BANK),
.nRRD (nRRD),
.nWTR (nWTR),
.PERIODIC_RD_TIMER_DIV (PERIODIC_RD_TIMER_DIV),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.REFRESH_TIMER_DIV (REFRESH_TIMER_DIV),
.ZQ_TIMER_DIV (ZQ_TIMER_DIV)
)
rank_mach0
(
// Outputs
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.maint_ref_zq_wip (maint_ref_zq_wip),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
// Inputs
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.app_periodic_rd_req (app_periodic_rd_req),
.app_ref_req (app_ref_req),
.app_ref_ack (app_ref_ack),
.app_zq_req (app_zq_req),
.app_zq_ack (app_zq_ack),
.app_sr_req (app_sr_req),
.app_sr_active (app_sr_active),
.col_rd_wr (col_rd_wr),
.clk (clk),
.init_calib_complete (init_calib_complete),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.rst (rst),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0])
);
//***************************************************************************
// Manage requests, reordering and bank timing
//***************************************************************************
mig_7series_v2_3_bank_mach #
(
// Parameters
.TCQ (TCQ),
.EVEN_CWL_2T_MODE (EVEN_CWL_2T_MODE),
.ADDR_CMD_MODE (ADDR_CMD_MODE),
.BANK_WIDTH (BANK_WIDTH),
.BM_CNT_WIDTH (BM_CNT_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.CL (CL_M),
.CWL (CWL_M),
.CKE_ODT_AUX (CKE_ODT_AUX),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.LOW_IDLE_CNT (LOW_IDLE_CNT),
.nBANK_MACHS (nBANK_MACHS),
.nCK_PER_CLK (nCK_PER_CLK),
.nCS_PER_RANK (nCS_PER_RANK),
.nOP_WAIT (nOP_WAIT),
.nRAS (nRAS),
.nRCD (nRCD),
.nRFC (nRFC),
.nRP (nRP),
.nRTP (nRTP),
.nSLOTS (nSLOTS),
.nWR (nWR),
.nXSDLL (tXSDLL),
.ORDERING (ORDERING),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.ROW_WIDTH (ROW_WIDTH),
.RTT_NOM (RTT_NOM),
.RTT_WR (RTT_WR),
.SLOT_0_CONFIG (SLOT_0_CONFIG),
.SLOT_1_CONFIG (SLOT_1_CONFIG),
.STARVE_LIMIT (STARVE_LIMIT),
.tZQCS (tZQCS)
)
bank_mach0
(
// Outputs
.accept (accept),
.accept_ns (accept_ns),
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.bank_mach_next (bank_mach_next[BM_CNT_WIDTH-1:0]),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.mc_bank (mc_bank_ns),
.mc_address (mc_address_ns),
.mc_ras_n (mc_ras_n_ns),
.mc_cas_n (mc_cas_n_ns),
.mc_we_n (mc_we_n_ns),
.mc_cs_n (mc_cs_n_ns),
.mc_odt (mc_odt_ns),
.mc_cke (mc_cke_ns),
.mc_aux_out0 (mc_aux_out0_ns),
.mc_aux_out1 (mc_aux_out1_ns),
.mc_cmd (mc_cmd_ns),
.mc_data_offset (mc_data_offset_ns),
.mc_data_offset_1 (mc_data_offset_1_ns),
.mc_data_offset_2 (mc_data_offset_2_ns),
.mc_cas_slot (mc_cas_slot_ns),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sent_col (sent_col),
.sent_col_r (sent_col_r),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
// Inputs
.bank (bank[BANK_WIDTH-1:0]),
.calib_rddata_offset (calib_rd_data_offset),
.calib_rddata_offset_1 (calib_rd_data_offset_1),
.calib_rddata_offset_2 (calib_rd_data_offset_2),
.clk (clk),
.cmd (cmd[2:0]),
.col (col[COL_WIDTH-1:0]),
.data_buf_addr (data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.init_calib_complete (init_calib_complete),
.phy_rddata_valid (phy_rddata_valid),
.dq_busy_data (dq_busy_data),
.hi_priority (hi_priority),
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
.phy_mc_cmd_full (phy_mc_cmd_full),
.phy_mc_ctl_full (phy_mc_ctl_full),
.phy_mc_data_full (phy_mc_data_full),
.rank (rank[RANK_WIDTH-1:0]),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_rmw (rd_rmw),
.row (row[ROW_WIDTH-1:0]),
.rst (rst),
.size (size),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.use_addr (use_addr)
);
//***************************************************************************
// Manage DQ bus
//***************************************************************************
mig_7series_v2_3_col_mach #
(
// Parameters
.TCQ (TCQ),
.BANK_WIDTH (BANK_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DELAY_WR_DATA_CNTRL (DELAY_WR_DATA_CNTRL),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.MC_ERR_ADDR_WIDTH (MC_ERR_ADDR_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK),
.nPHY_WRLAT (nPHY_WRLAT),
.RANK_WIDTH (RANK_WIDTH),
.ROW_WIDTH (ROW_WIDTH)
)
col_mach0
(
// Outputs
.mc_wrdata_en (mc_wrdata_en_ns),
.dq_busy_data (dq_busy_data),
.ecc_err_addr (ecc_err_addr[MC_ERR_ADDR_WIDTH-1:0]),
.ecc_status_valid (ecc_status_valid),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_data_en (rd_data_en),
.rd_data_end (rd_data_end),
.rd_data_offset (rd_data_offset),
.rd_rmw (rd_rmw),
.wr_data_addr (wr_data_addr_ns),
.wr_data_en (wr_data_en_ns),
.wr_data_offset (wr_data_offset_ns),
.wr_ecc_buf (wr_ecc_buf),
.col_read_fifo_empty (col_read_fifo_empty),
// Inputs
.clk (clk),
.rst (rst),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.phy_rddata_valid (phy_rddata_valid),
.sent_col (EVEN_CWL_2T_MODE == "ON" ? sent_col_r : sent_col)
);
//***************************************************************************
// Implement ECC
//***************************************************************************
// Total ECC word length = ECC code width + Data width
localparam CODE_WIDTH = DATA_WIDTH + ECC_WIDTH;
generate
if (ECC == "OFF") begin : ecc_off
assign rd_data = phy_rd_data;
assign mc_wrdata = wr_data;
assign mc_wrdata_mask = wr_data_mask;
assign ecc_single = 4'b0;
assign ecc_multiple = 4'b0;
end
else begin : ecc_on
wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_i;
// Merge and encode
mig_7series_v2_3_ecc_merge_enc #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_merge_enc0
(
// Outputs
.mc_wrdata (mc_wrdata_i),
.mc_wrdata_mask (mc_wrdata_mask),
// Inputs
.clk (clk),
.rst (rst),
.h_rows (h_rows),
.rd_merge_data (rd_merge_data),
.raw_not_ecc (raw_not_ecc),
.wr_data (wr_data),
.wr_data_mask (wr_data_mask)
);
// Decode and fix
mig_7series_v2_3_ecc_dec_fix #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_dec_fix0
(
// Outputs
.ecc_multiple (ecc_multiple),
.ecc_single (ecc_single),
.rd_data (rd_data),
// Inputs
.clk (clk),
.rst (rst),
.correct_en (correct_en),
.phy_rddata (phy_rd_data),
.ecc_status_valid (ecc_status_valid),
.h_rows (h_rows)
);
// ECC Buffer
mig_7series_v2_3_ecc_buf #
(
// Parameters
.TCQ (TCQ),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_buf0
(
// Outputs
.rd_merge_data (rd_merge_data),
// Inputs
.clk (clk),
.rst (rst),
.rd_data (rd_data),
.rd_data_addr (rd_data_addr),
.rd_data_offset (rd_data_offset),
.wr_data_addr (wr_data_addr),
.wr_data_offset (wr_data_offset),
.wr_ecc_buf (wr_ecc_buf)
);
// Generate ECC table
mig_7series_v2_3_ecc_gen #
(
// Parameters
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.ECC_WIDTH (ECC_WIDTH)
)
ecc_gen0
(
// Outputs
.h_rows (h_rows)
);
if (ECC == "ON") begin : gen_fi_xor_inst
reg mc_wrdata_en_r;
wire mc_wrdata_en_i;
always @(posedge clk) begin
mc_wrdata_en_r <= mc_wrdata_en;
end
assign mc_wrdata_en_i = mc_wrdata_en_r;
mig_7series_v2_3_fi_xor #(
.DQ_WIDTH (DQ_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
fi_xor0
(
.clk (clk),
.wrdata_in (mc_wrdata_i),
.wrdata_out (mc_wrdata),
.wrdata_en (mc_wrdata_en_i),
.fi_xor_we (fi_xor_we),
.fi_xor_wrdata (fi_xor_wrdata)
);
end
else begin : gen_wrdata_passthru
assign mc_wrdata = mc_wrdata_i;
end
`ifdef DISPLAY_H_MATRIX
integer i;
always @(negedge rst) begin
$display ("**********************************************");
$display ("H Matrix:");
for (i=0; i<ECC_WIDTH; i=i+1)
$display ("%b", h_rows[i*CODE_WIDTH+:CODE_WIDTH]);
$display ("**********************************************");
end
`endif
end
endgenerate
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal_hr #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] + 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] + 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] + 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal_hr #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] + 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] + 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] + 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal_hr #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] + 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] + 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] + 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal_hr #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] + 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] + 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] + 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal_hr #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] + 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] + 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] + 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL - 2;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL + LATENCY_FACTOR - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL - 2;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL + LATENCY_FACTOR)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] + 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL + LATENCY_FACTOR - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
module mig_7series_v2_3_ui_wr_data #
(
parameter TCQ = 100,
parameter APP_DATA_WIDTH = 256,
parameter APP_MASK_WIDTH = 32,
parameter ECC = "OFF",
parameter nCK_PER_CLK = 2 ,
parameter ECC_TEST = "OFF",
parameter CWL = 5
)
(/*AUTOARG*/
// Outputs
app_wdf_rdy, wr_req_16, wr_data_buf_addr, wr_data, wr_data_mask,
raw_not_ecc,
// Inputs
rst, clk, app_wdf_data, app_wdf_mask, app_raw_not_ecc, app_wdf_wren,
app_wdf_end, wr_data_offset, wr_data_addr, wr_data_en, wr_accepted,
ram_init_done_r, ram_init_addr
);
input rst;
input clk;
input [APP_DATA_WIDTH-1:0] app_wdf_data;
input [APP_MASK_WIDTH-1:0] app_wdf_mask;
input [2*nCK_PER_CLK-1:0] app_raw_not_ecc;
input app_wdf_wren;
input app_wdf_end;
reg [APP_DATA_WIDTH-1:0] app_wdf_data_r1;
reg [APP_MASK_WIDTH-1:0] app_wdf_mask_r1;
reg [2*nCK_PER_CLK-1:0] app_raw_not_ecc_r1 = 4'b0;
reg app_wdf_wren_r1;
reg app_wdf_end_r1;
reg app_wdf_rdy_r;
//Adding few copies of the app_wdf_rdy_r signal in order to meet
//timing. This is signal has a very high fanout. So grouped into
//few functional groups and alloted one copy per group.
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy1;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy2;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy3;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy4;
wire [APP_DATA_WIDTH-1:0] app_wdf_data_ns1 =
~app_wdf_rdy_r_copy2 ? app_wdf_data_r1 : app_wdf_data;
wire [APP_MASK_WIDTH-1:0] app_wdf_mask_ns1 =
~app_wdf_rdy_r_copy2 ? app_wdf_mask_r1 : app_wdf_mask;
wire app_wdf_wren_ns1 =
~rst && (~app_wdf_rdy_r_copy2 ? app_wdf_wren_r1 : app_wdf_wren);
wire app_wdf_end_ns1 =
~rst && (~app_wdf_rdy_r_copy2 ? app_wdf_end_r1 : app_wdf_end);
generate
if (ECC_TEST != "OFF") begin : ecc_on
always @(app_raw_not_ecc) app_raw_not_ecc_r1 = app_raw_not_ecc;
end
endgenerate
// Be explicit about the latch enable on these registers.
always @(posedge clk) begin
app_wdf_data_r1 <= #TCQ app_wdf_data_ns1;
app_wdf_mask_r1 <= #TCQ app_wdf_mask_ns1;
app_wdf_wren_r1 <= #TCQ app_wdf_wren_ns1;
app_wdf_end_r1 <= #TCQ app_wdf_end_ns1;
end
// The signals wr_data_addr and wr_data_offset come at different
// times depending on ECC and the value of CWL. The data portion
// always needs to look a the raw wires, the control portion needs
// to look at a delayed version when ECC is on and CWL != 8. The
// currently supported write data delays do not require this
// functionality, but preserve for future use.
input wr_data_offset;
input [3:0] wr_data_addr;
reg wr_data_offset_r;
reg [3:0] wr_data_addr_r;
generate
if (ECC == "OFF" || CWL >= 0) begin : pass_wr_addr
always @(wr_data_offset) wr_data_offset_r = wr_data_offset;
always @(wr_data_addr) wr_data_addr_r = wr_data_addr;
end
else begin : delay_wr_addr
always @(posedge clk) wr_data_offset_r <= #TCQ wr_data_offset;
always @(posedge clk) wr_data_addr_r <= #TCQ wr_data_addr;
end
endgenerate
// rd_data_cnt is the pointer RAM index for data read from the write data
// buffer. Ie, its the data on its way out to the DRAM.
input wr_data_en;
wire new_rd_data = wr_data_en && ~wr_data_offset_r;
reg [3:0] rd_data_indx_r;
reg rd_data_upd_indx_r;
generate begin : read_data_indx
reg [3:0] rd_data_indx_ns;
always @(/*AS*/new_rd_data or rd_data_indx_r or rst) begin
rd_data_indx_ns = rd_data_indx_r;
if (rst) rd_data_indx_ns = 5'b0;
else if (new_rd_data) rd_data_indx_ns = rd_data_indx_r + 5'h1;
end
always @(posedge clk) rd_data_indx_r <= #TCQ rd_data_indx_ns;
always @(posedge clk) rd_data_upd_indx_r <= #TCQ new_rd_data;
end
endgenerate
// data_buf_addr_cnt generates the pointer for the pointer RAM on behalf
// of data buf address that comes with the wr_data_en.
// The data buf address is written into the memory
// controller along with the command and address.
input wr_accepted;
reg [3:0] data_buf_addr_cnt_r;
generate begin : data_buf_address_counter
reg [3:0] data_buf_addr_cnt_ns;
always @(/*AS*/data_buf_addr_cnt_r or rst or wr_accepted) begin
data_buf_addr_cnt_ns = data_buf_addr_cnt_r;
if (rst) data_buf_addr_cnt_ns = 4'b0;
else if (wr_accepted) data_buf_addr_cnt_ns =
data_buf_addr_cnt_r + 4'h1;
end
always @(posedge clk) data_buf_addr_cnt_r <= #TCQ data_buf_addr_cnt_ns;
end
endgenerate
// Control writing data into the write data buffer.
wire wdf_rdy_ns;
always @( posedge clk ) begin
app_wdf_rdy_r_copy1 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy2 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy3 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy4 <= #TCQ wdf_rdy_ns;
end
wire wr_data_end = app_wdf_end_r1 && app_wdf_rdy_r_copy1 && app_wdf_wren_r1;
wire [3:0] wr_data_pntr;
wire [4:0] wb_wr_data_addr;
wire [4:0] wb_wr_data_addr_w;
reg [3:0] wr_data_indx_r;
generate begin : write_data_control
wire wr_data_addr_le = (wr_data_end && wdf_rdy_ns) ||
(rd_data_upd_indx_r && ~app_wdf_rdy_r_copy1);
// For pointer RAM. Initialize to one since this is one ahead of
// what's being registered in wb_wr_data_addr. Assumes pointer RAM
// has been initialized such that address equals contents.
reg [3:0] wr_data_indx_ns;
always @(/*AS*/rst or wr_data_addr_le or wr_data_indx_r) begin
wr_data_indx_ns = wr_data_indx_r;
if (rst) wr_data_indx_ns = 4'b1;
else if (wr_data_addr_le) wr_data_indx_ns = wr_data_indx_r + 4'h1;
end
always @(posedge clk) wr_data_indx_r <= #TCQ wr_data_indx_ns;
// Take pointer from pointer RAM and set into the write data address.
// Needs to be split into zeroth bit and everything else because synthesis
// tools don't always allow assigning bit vectors seperately. Bit zero of the
// address is computed via an entirely different algorithm.
reg [4:1] wb_wr_data_addr_ns;
reg [4:1] wb_wr_data_addr_r;
always @(/*AS*/rst or wb_wr_data_addr_r or wr_data_addr_le
or wr_data_pntr) begin
wb_wr_data_addr_ns = wb_wr_data_addr_r;
if (rst) wb_wr_data_addr_ns = 4'b0;
else if (wr_data_addr_le) wb_wr_data_addr_ns = wr_data_pntr;
end
always @(posedge clk) wb_wr_data_addr_r <= #TCQ wb_wr_data_addr_ns;
// If we see the first getting accepted, then
// second half is unconditionally accepted.
reg wb_wr_data_addr0_r;
wire wb_wr_data_addr0_ns = ~rst &&
((app_wdf_rdy_r_copy3 && app_wdf_wren_r1 && ~app_wdf_end_r1) ||
(wb_wr_data_addr0_r && ~app_wdf_wren_r1));
always @(posedge clk) wb_wr_data_addr0_r <= #TCQ wb_wr_data_addr0_ns;
assign wb_wr_data_addr = {wb_wr_data_addr_r, wb_wr_data_addr0_r};
assign wb_wr_data_addr_w = {wb_wr_data_addr_ns, wb_wr_data_addr0_ns};
end
endgenerate
// Keep track of how many entries in the queue hold data.
input ram_init_done_r;
output wire app_wdf_rdy;
generate begin : occupied_counter
//reg [4:0] occ_cnt_ns;
//reg [4:0] occ_cnt_r;
//always @(/*AS*/occ_cnt_r or rd_data_upd_indx_r or rst
// or wr_data_end) begin
// occ_cnt_ns = occ_cnt_r;
// if (rst) occ_cnt_ns = 5'b0;
// else case ({wr_data_end, rd_data_upd_indx_r})
// 2'b01 : occ_cnt_ns = occ_cnt_r - 5'b1;
// 2'b10 : occ_cnt_ns = occ_cnt_r + 5'b1;
// endcase // case ({wr_data_end, rd_data_upd_indx_r})
//end
//always @(posedge clk) occ_cnt_r <= #TCQ occ_cnt_ns;
//assign wdf_rdy_ns = !(rst || ~ram_init_done_r || occ_cnt_ns[4]);
//always @(posedge clk) app_wdf_rdy_r <= #TCQ wdf_rdy_ns;
//assign app_wdf_rdy = app_wdf_rdy_r;
reg [15:0] occ_cnt;
always @(posedge clk) begin
if ( rst )
occ_cnt <= #TCQ 16'h0000;
else case ({wr_data_end, rd_data_upd_indx_r})
2'b01 : occ_cnt <= #TCQ {1'b0,occ_cnt[15:1]};
2'b10 : occ_cnt <= #TCQ {occ_cnt[14:0],1'b1};
endcase // case ({wr_data_end, rd_data_upd_indx_r})
end
assign wdf_rdy_ns = !(rst || ~ram_init_done_r || (occ_cnt[14] && wr_data_end && ~rd_data_upd_indx_r) || (occ_cnt[15] && ~rd_data_upd_indx_r));
always @(posedge clk) app_wdf_rdy_r <= #TCQ wdf_rdy_ns;
assign app_wdf_rdy = app_wdf_rdy_r;
`ifdef MC_SVA
wr_data_buffer_full: cover property (@(posedge clk)
(~rst && ~app_wdf_rdy_r));
// wr_data_buffer_inc_dec_15: cover property (@(posedge clk)
// (~rst && wr_data_end && rd_data_upd_indx_r && (occ_cnt_r == 5'hf)));
// wr_data_underflow: assert property (@(posedge clk)
// (rst || !((occ_cnt_r == 5'b0) && (occ_cnt_ns == 5'h1f))));
// wr_data_overflow: assert property (@(posedge clk)
// (rst || !((occ_cnt_r == 5'h10) && (occ_cnt_ns == 5'h11))));
`endif
end // block: occupied_counter
endgenerate
// Keep track of how many write requests are in the memory controller. We
// must limit this to 16 because we only have that many data_buf_addrs to
// hand out. Since the memory controller queue and the write data buffer
// queue are distinct, the number of valid entries can be different.
// Throttle request acceptance once there are sixteen write requests in
// the memory controller. Note that there is still a requirement
// for a write reqeusts corresponding write data to be written into the
// write data queue with two states of the request.
output wire wr_req_16;
generate begin : wr_req_counter
reg [4:0] wr_req_cnt_ns;
reg [4:0] wr_req_cnt_r;
always @(/*AS*/rd_data_upd_indx_r or rst or wr_accepted
or wr_req_cnt_r) begin
wr_req_cnt_ns = wr_req_cnt_r;
if (rst) wr_req_cnt_ns = 5'b0;
else case ({wr_accepted, rd_data_upd_indx_r})
2'b01 : wr_req_cnt_ns = wr_req_cnt_r - 5'b1;
2'b10 : wr_req_cnt_ns = wr_req_cnt_r + 5'b1;
endcase // case ({wr_accepted, rd_data_upd_indx_r})
end
always @(posedge clk) wr_req_cnt_r <= #TCQ wr_req_cnt_ns;
assign wr_req_16 = (wr_req_cnt_ns == 5'h10);
`ifdef MC_SVA
wr_req_mc_full: cover property (@(posedge clk) (~rst && wr_req_16));
wr_req_mc_full_inc_dec_15: cover property (@(posedge clk)
(~rst && wr_accepted && rd_data_upd_indx_r && (wr_req_cnt_r == 5'hf)));
wr_req_underflow: assert property (@(posedge clk)
(rst || !((wr_req_cnt_r == 5'b0) && (wr_req_cnt_ns == 5'h1f))));
wr_req_overflow: assert property (@(posedge clk)
(rst || !((wr_req_cnt_r == 5'h10) && (wr_req_cnt_ns == 5'h11))));
`endif
end // block: wr_req_counter
endgenerate
// Instantiate pointer RAM. Made up of RAM32M in single write, two read
// port mode, 2 bit wide mode.
input [3:0] ram_init_addr;
output wire [3:0] wr_data_buf_addr;
localparam PNTR_RAM_CNT = 2;
generate begin : pointer_ram
wire pointer_we = new_rd_data || ~ram_init_done_r;
wire [3:0] pointer_wr_data = ram_init_done_r
? wr_data_addr_r
: ram_init_addr;
wire [3:0] pointer_wr_addr = ram_init_done_r
? rd_data_indx_r
: ram_init_addr;
genvar i;
for (i=0; i<PNTR_RAM_CNT; i=i+1) begin : rams
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(),
.DOB(wr_data_buf_addr[i*2+:2]),
.DOC(wr_data_pntr[i*2+:2]),
.DOD(),
.DIA(2'b0),
.DIB(pointer_wr_data[i*2+:2]),
.DIC(pointer_wr_data[i*2+:2]),
.DID(2'b0),
.ADDRA(5'b0),
.ADDRB({1'b0, data_buf_addr_cnt_r}),
.ADDRC({1'b0, wr_data_indx_r}),
.ADDRD({1'b0, pointer_wr_addr}),
.WE(pointer_we),
.WCLK(clk)
);
end // block : rams
end // block: pointer_ram
endgenerate
// Instantiate write data buffer. Depending on width of DQ bus and
// DRAM CK to fabric ratio, number of RAM32Ms is variable. RAM32Ms are
// used in single write, single read, 6 bit wide mode.
localparam WR_BUF_WIDTH =
APP_DATA_WIDTH + APP_MASK_WIDTH + (ECC_TEST == "OFF" ? 0 : 2*nCK_PER_CLK);
localparam FULL_RAM_CNT = (WR_BUF_WIDTH/6);
localparam REMAINDER = WR_BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
wire [RAM_WIDTH-1:0] wr_buf_out_data_w;
reg [RAM_WIDTH-1:0] wr_buf_out_data;
generate
begin : write_buffer
wire [RAM_WIDTH-1:0] wr_buf_in_data;
if (REMAINDER == 0)
if (ECC_TEST == "OFF")
assign wr_buf_in_data = {app_wdf_mask_ns1, app_wdf_data_ns1};
else
assign wr_buf_in_data =
{app_raw_not_ecc_r1, app_wdf_mask_ns1, app_wdf_data_ns1};
else
if (ECC_TEST == "OFF")
assign wr_buf_in_data =
{{6-REMAINDER{1'b0}}, app_wdf_mask_ns1, app_wdf_data_ns1};
else
assign wr_buf_in_data = {{6-REMAINDER{1'b0}}, app_raw_not_ecc_r1,//app_raw_not_ecc_r1 is not ff
app_wdf_mask_ns1, app_wdf_data_ns1};
wire [4:0] rd_addr_w;
assign rd_addr_w = {wr_data_addr, wr_data_offset};
always @(posedge clk) wr_buf_out_data <= #TCQ wr_buf_out_data_w;
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : wr_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(wr_buf_out_data_w[((i*6)+4)+:2]),
.DOB(wr_buf_out_data_w[((i*6)+2)+:2]),
.DOC(wr_buf_out_data_w[((i*6)+0)+:2]),
.DOD(),
.DIA(wr_buf_in_data[((i*6)+4)+:2]),
.DIB(wr_buf_in_data[((i*6)+2)+:2]),
.DIC(wr_buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(rd_addr_w),
.ADDRB(rd_addr_w),
.ADDRC(rd_addr_w),
.ADDRD(wb_wr_data_addr_w),
.WE(wdf_rdy_ns),
.WCLK(clk)
);
end // block: wr_buffer_ram
end
endgenerate
output [APP_DATA_WIDTH-1:0] wr_data;
output [APP_MASK_WIDTH-1:0] wr_data_mask;
assign {wr_data_mask, wr_data} = wr_buf_out_data[WR_BUF_WIDTH-1:0];
output [2*nCK_PER_CLK-1:0] raw_not_ecc;
generate
if (ECC_TEST == "OFF") assign raw_not_ecc = {2*nCK_PER_CLK{1'b0}};
else assign raw_not_ecc = wr_buf_out_data[WR_BUF_WIDTH-1-:(2*nCK_PER_CLK)];
endgenerate
endmodule
|
module mig_7series_v2_3_ui_wr_data #
(
parameter TCQ = 100,
parameter APP_DATA_WIDTH = 256,
parameter APP_MASK_WIDTH = 32,
parameter ECC = "OFF",
parameter nCK_PER_CLK = 2 ,
parameter ECC_TEST = "OFF",
parameter CWL = 5
)
(/*AUTOARG*/
// Outputs
app_wdf_rdy, wr_req_16, wr_data_buf_addr, wr_data, wr_data_mask,
raw_not_ecc,
// Inputs
rst, clk, app_wdf_data, app_wdf_mask, app_raw_not_ecc, app_wdf_wren,
app_wdf_end, wr_data_offset, wr_data_addr, wr_data_en, wr_accepted,
ram_init_done_r, ram_init_addr
);
input rst;
input clk;
input [APP_DATA_WIDTH-1:0] app_wdf_data;
input [APP_MASK_WIDTH-1:0] app_wdf_mask;
input [2*nCK_PER_CLK-1:0] app_raw_not_ecc;
input app_wdf_wren;
input app_wdf_end;
reg [APP_DATA_WIDTH-1:0] app_wdf_data_r1;
reg [APP_MASK_WIDTH-1:0] app_wdf_mask_r1;
reg [2*nCK_PER_CLK-1:0] app_raw_not_ecc_r1 = 4'b0;
reg app_wdf_wren_r1;
reg app_wdf_end_r1;
reg app_wdf_rdy_r;
//Adding few copies of the app_wdf_rdy_r signal in order to meet
//timing. This is signal has a very high fanout. So grouped into
//few functional groups and alloted one copy per group.
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy1;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy2;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy3;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy4;
wire [APP_DATA_WIDTH-1:0] app_wdf_data_ns1 =
~app_wdf_rdy_r_copy2 ? app_wdf_data_r1 : app_wdf_data;
wire [APP_MASK_WIDTH-1:0] app_wdf_mask_ns1 =
~app_wdf_rdy_r_copy2 ? app_wdf_mask_r1 : app_wdf_mask;
wire app_wdf_wren_ns1 =
~rst && (~app_wdf_rdy_r_copy2 ? app_wdf_wren_r1 : app_wdf_wren);
wire app_wdf_end_ns1 =
~rst && (~app_wdf_rdy_r_copy2 ? app_wdf_end_r1 : app_wdf_end);
generate
if (ECC_TEST != "OFF") begin : ecc_on
always @(app_raw_not_ecc) app_raw_not_ecc_r1 = app_raw_not_ecc;
end
endgenerate
// Be explicit about the latch enable on these registers.
always @(posedge clk) begin
app_wdf_data_r1 <= #TCQ app_wdf_data_ns1;
app_wdf_mask_r1 <= #TCQ app_wdf_mask_ns1;
app_wdf_wren_r1 <= #TCQ app_wdf_wren_ns1;
app_wdf_end_r1 <= #TCQ app_wdf_end_ns1;
end
// The signals wr_data_addr and wr_data_offset come at different
// times depending on ECC and the value of CWL. The data portion
// always needs to look a the raw wires, the control portion needs
// to look at a delayed version when ECC is on and CWL != 8. The
// currently supported write data delays do not require this
// functionality, but preserve for future use.
input wr_data_offset;
input [3:0] wr_data_addr;
reg wr_data_offset_r;
reg [3:0] wr_data_addr_r;
generate
if (ECC == "OFF" || CWL >= 0) begin : pass_wr_addr
always @(wr_data_offset) wr_data_offset_r = wr_data_offset;
always @(wr_data_addr) wr_data_addr_r = wr_data_addr;
end
else begin : delay_wr_addr
always @(posedge clk) wr_data_offset_r <= #TCQ wr_data_offset;
always @(posedge clk) wr_data_addr_r <= #TCQ wr_data_addr;
end
endgenerate
// rd_data_cnt is the pointer RAM index for data read from the write data
// buffer. Ie, its the data on its way out to the DRAM.
input wr_data_en;
wire new_rd_data = wr_data_en && ~wr_data_offset_r;
reg [3:0] rd_data_indx_r;
reg rd_data_upd_indx_r;
generate begin : read_data_indx
reg [3:0] rd_data_indx_ns;
always @(/*AS*/new_rd_data or rd_data_indx_r or rst) begin
rd_data_indx_ns = rd_data_indx_r;
if (rst) rd_data_indx_ns = 5'b0;
else if (new_rd_data) rd_data_indx_ns = rd_data_indx_r + 5'h1;
end
always @(posedge clk) rd_data_indx_r <= #TCQ rd_data_indx_ns;
always @(posedge clk) rd_data_upd_indx_r <= #TCQ new_rd_data;
end
endgenerate
// data_buf_addr_cnt generates the pointer for the pointer RAM on behalf
// of data buf address that comes with the wr_data_en.
// The data buf address is written into the memory
// controller along with the command and address.
input wr_accepted;
reg [3:0] data_buf_addr_cnt_r;
generate begin : data_buf_address_counter
reg [3:0] data_buf_addr_cnt_ns;
always @(/*AS*/data_buf_addr_cnt_r or rst or wr_accepted) begin
data_buf_addr_cnt_ns = data_buf_addr_cnt_r;
if (rst) data_buf_addr_cnt_ns = 4'b0;
else if (wr_accepted) data_buf_addr_cnt_ns =
data_buf_addr_cnt_r + 4'h1;
end
always @(posedge clk) data_buf_addr_cnt_r <= #TCQ data_buf_addr_cnt_ns;
end
endgenerate
// Control writing data into the write data buffer.
wire wdf_rdy_ns;
always @( posedge clk ) begin
app_wdf_rdy_r_copy1 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy2 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy3 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy4 <= #TCQ wdf_rdy_ns;
end
wire wr_data_end = app_wdf_end_r1 && app_wdf_rdy_r_copy1 && app_wdf_wren_r1;
wire [3:0] wr_data_pntr;
wire [4:0] wb_wr_data_addr;
wire [4:0] wb_wr_data_addr_w;
reg [3:0] wr_data_indx_r;
generate begin : write_data_control
wire wr_data_addr_le = (wr_data_end && wdf_rdy_ns) ||
(rd_data_upd_indx_r && ~app_wdf_rdy_r_copy1);
// For pointer RAM. Initialize to one since this is one ahead of
// what's being registered in wb_wr_data_addr. Assumes pointer RAM
// has been initialized such that address equals contents.
reg [3:0] wr_data_indx_ns;
always @(/*AS*/rst or wr_data_addr_le or wr_data_indx_r) begin
wr_data_indx_ns = wr_data_indx_r;
if (rst) wr_data_indx_ns = 4'b1;
else if (wr_data_addr_le) wr_data_indx_ns = wr_data_indx_r + 4'h1;
end
always @(posedge clk) wr_data_indx_r <= #TCQ wr_data_indx_ns;
// Take pointer from pointer RAM and set into the write data address.
// Needs to be split into zeroth bit and everything else because synthesis
// tools don't always allow assigning bit vectors seperately. Bit zero of the
// address is computed via an entirely different algorithm.
reg [4:1] wb_wr_data_addr_ns;
reg [4:1] wb_wr_data_addr_r;
always @(/*AS*/rst or wb_wr_data_addr_r or wr_data_addr_le
or wr_data_pntr) begin
wb_wr_data_addr_ns = wb_wr_data_addr_r;
if (rst) wb_wr_data_addr_ns = 4'b0;
else if (wr_data_addr_le) wb_wr_data_addr_ns = wr_data_pntr;
end
always @(posedge clk) wb_wr_data_addr_r <= #TCQ wb_wr_data_addr_ns;
// If we see the first getting accepted, then
// second half is unconditionally accepted.
reg wb_wr_data_addr0_r;
wire wb_wr_data_addr0_ns = ~rst &&
((app_wdf_rdy_r_copy3 && app_wdf_wren_r1 && ~app_wdf_end_r1) ||
(wb_wr_data_addr0_r && ~app_wdf_wren_r1));
always @(posedge clk) wb_wr_data_addr0_r <= #TCQ wb_wr_data_addr0_ns;
assign wb_wr_data_addr = {wb_wr_data_addr_r, wb_wr_data_addr0_r};
assign wb_wr_data_addr_w = {wb_wr_data_addr_ns, wb_wr_data_addr0_ns};
end
endgenerate
// Keep track of how many entries in the queue hold data.
input ram_init_done_r;
output wire app_wdf_rdy;
generate begin : occupied_counter
//reg [4:0] occ_cnt_ns;
//reg [4:0] occ_cnt_r;
//always @(/*AS*/occ_cnt_r or rd_data_upd_indx_r or rst
// or wr_data_end) begin
// occ_cnt_ns = occ_cnt_r;
// if (rst) occ_cnt_ns = 5'b0;
// else case ({wr_data_end, rd_data_upd_indx_r})
// 2'b01 : occ_cnt_ns = occ_cnt_r - 5'b1;
// 2'b10 : occ_cnt_ns = occ_cnt_r + 5'b1;
// endcase // case ({wr_data_end, rd_data_upd_indx_r})
//end
//always @(posedge clk) occ_cnt_r <= #TCQ occ_cnt_ns;
//assign wdf_rdy_ns = !(rst || ~ram_init_done_r || occ_cnt_ns[4]);
//always @(posedge clk) app_wdf_rdy_r <= #TCQ wdf_rdy_ns;
//assign app_wdf_rdy = app_wdf_rdy_r;
reg [15:0] occ_cnt;
always @(posedge clk) begin
if ( rst )
occ_cnt <= #TCQ 16'h0000;
else case ({wr_data_end, rd_data_upd_indx_r})
2'b01 : occ_cnt <= #TCQ {1'b0,occ_cnt[15:1]};
2'b10 : occ_cnt <= #TCQ {occ_cnt[14:0],1'b1};
endcase // case ({wr_data_end, rd_data_upd_indx_r})
end
assign wdf_rdy_ns = !(rst || ~ram_init_done_r || (occ_cnt[14] && wr_data_end && ~rd_data_upd_indx_r) || (occ_cnt[15] && ~rd_data_upd_indx_r));
always @(posedge clk) app_wdf_rdy_r <= #TCQ wdf_rdy_ns;
assign app_wdf_rdy = app_wdf_rdy_r;
`ifdef MC_SVA
wr_data_buffer_full: cover property (@(posedge clk)
(~rst && ~app_wdf_rdy_r));
// wr_data_buffer_inc_dec_15: cover property (@(posedge clk)
// (~rst && wr_data_end && rd_data_upd_indx_r && (occ_cnt_r == 5'hf)));
// wr_data_underflow: assert property (@(posedge clk)
// (rst || !((occ_cnt_r == 5'b0) && (occ_cnt_ns == 5'h1f))));
// wr_data_overflow: assert property (@(posedge clk)
// (rst || !((occ_cnt_r == 5'h10) && (occ_cnt_ns == 5'h11))));
`endif
end // block: occupied_counter
endgenerate
// Keep track of how many write requests are in the memory controller. We
// must limit this to 16 because we only have that many data_buf_addrs to
// hand out. Since the memory controller queue and the write data buffer
// queue are distinct, the number of valid entries can be different.
// Throttle request acceptance once there are sixteen write requests in
// the memory controller. Note that there is still a requirement
// for a write reqeusts corresponding write data to be written into the
// write data queue with two states of the request.
output wire wr_req_16;
generate begin : wr_req_counter
reg [4:0] wr_req_cnt_ns;
reg [4:0] wr_req_cnt_r;
always @(/*AS*/rd_data_upd_indx_r or rst or wr_accepted
or wr_req_cnt_r) begin
wr_req_cnt_ns = wr_req_cnt_r;
if (rst) wr_req_cnt_ns = 5'b0;
else case ({wr_accepted, rd_data_upd_indx_r})
2'b01 : wr_req_cnt_ns = wr_req_cnt_r - 5'b1;
2'b10 : wr_req_cnt_ns = wr_req_cnt_r + 5'b1;
endcase // case ({wr_accepted, rd_data_upd_indx_r})
end
always @(posedge clk) wr_req_cnt_r <= #TCQ wr_req_cnt_ns;
assign wr_req_16 = (wr_req_cnt_ns == 5'h10);
`ifdef MC_SVA
wr_req_mc_full: cover property (@(posedge clk) (~rst && wr_req_16));
wr_req_mc_full_inc_dec_15: cover property (@(posedge clk)
(~rst && wr_accepted && rd_data_upd_indx_r && (wr_req_cnt_r == 5'hf)));
wr_req_underflow: assert property (@(posedge clk)
(rst || !((wr_req_cnt_r == 5'b0) && (wr_req_cnt_ns == 5'h1f))));
wr_req_overflow: assert property (@(posedge clk)
(rst || !((wr_req_cnt_r == 5'h10) && (wr_req_cnt_ns == 5'h11))));
`endif
end // block: wr_req_counter
endgenerate
// Instantiate pointer RAM. Made up of RAM32M in single write, two read
// port mode, 2 bit wide mode.
input [3:0] ram_init_addr;
output wire [3:0] wr_data_buf_addr;
localparam PNTR_RAM_CNT = 2;
generate begin : pointer_ram
wire pointer_we = new_rd_data || ~ram_init_done_r;
wire [3:0] pointer_wr_data = ram_init_done_r
? wr_data_addr_r
: ram_init_addr;
wire [3:0] pointer_wr_addr = ram_init_done_r
? rd_data_indx_r
: ram_init_addr;
genvar i;
for (i=0; i<PNTR_RAM_CNT; i=i+1) begin : rams
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(),
.DOB(wr_data_buf_addr[i*2+:2]),
.DOC(wr_data_pntr[i*2+:2]),
.DOD(),
.DIA(2'b0),
.DIB(pointer_wr_data[i*2+:2]),
.DIC(pointer_wr_data[i*2+:2]),
.DID(2'b0),
.ADDRA(5'b0),
.ADDRB({1'b0, data_buf_addr_cnt_r}),
.ADDRC({1'b0, wr_data_indx_r}),
.ADDRD({1'b0, pointer_wr_addr}),
.WE(pointer_we),
.WCLK(clk)
);
end // block : rams
end // block: pointer_ram
endgenerate
// Instantiate write data buffer. Depending on width of DQ bus and
// DRAM CK to fabric ratio, number of RAM32Ms is variable. RAM32Ms are
// used in single write, single read, 6 bit wide mode.
localparam WR_BUF_WIDTH =
APP_DATA_WIDTH + APP_MASK_WIDTH + (ECC_TEST == "OFF" ? 0 : 2*nCK_PER_CLK);
localparam FULL_RAM_CNT = (WR_BUF_WIDTH/6);
localparam REMAINDER = WR_BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
wire [RAM_WIDTH-1:0] wr_buf_out_data_w;
reg [RAM_WIDTH-1:0] wr_buf_out_data;
generate
begin : write_buffer
wire [RAM_WIDTH-1:0] wr_buf_in_data;
if (REMAINDER == 0)
if (ECC_TEST == "OFF")
assign wr_buf_in_data = {app_wdf_mask_ns1, app_wdf_data_ns1};
else
assign wr_buf_in_data =
{app_raw_not_ecc_r1, app_wdf_mask_ns1, app_wdf_data_ns1};
else
if (ECC_TEST == "OFF")
assign wr_buf_in_data =
{{6-REMAINDER{1'b0}}, app_wdf_mask_ns1, app_wdf_data_ns1};
else
assign wr_buf_in_data = {{6-REMAINDER{1'b0}}, app_raw_not_ecc_r1,//app_raw_not_ecc_r1 is not ff
app_wdf_mask_ns1, app_wdf_data_ns1};
wire [4:0] rd_addr_w;
assign rd_addr_w = {wr_data_addr, wr_data_offset};
always @(posedge clk) wr_buf_out_data <= #TCQ wr_buf_out_data_w;
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : wr_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(wr_buf_out_data_w[((i*6)+4)+:2]),
.DOB(wr_buf_out_data_w[((i*6)+2)+:2]),
.DOC(wr_buf_out_data_w[((i*6)+0)+:2]),
.DOD(),
.DIA(wr_buf_in_data[((i*6)+4)+:2]),
.DIB(wr_buf_in_data[((i*6)+2)+:2]),
.DIC(wr_buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(rd_addr_w),
.ADDRB(rd_addr_w),
.ADDRC(rd_addr_w),
.ADDRD(wb_wr_data_addr_w),
.WE(wdf_rdy_ns),
.WCLK(clk)
);
end // block: wr_buffer_ram
end
endgenerate
output [APP_DATA_WIDTH-1:0] wr_data;
output [APP_MASK_WIDTH-1:0] wr_data_mask;
assign {wr_data_mask, wr_data} = wr_buf_out_data[WR_BUF_WIDTH-1:0];
output [2*nCK_PER_CLK-1:0] raw_not_ecc;
generate
if (ECC_TEST == "OFF") assign raw_not_ecc = {2*nCK_PER_CLK{1'b0}};
else assign raw_not_ecc = wr_buf_out_data[WR_BUF_WIDTH-1-:(2*nCK_PER_CLK)];
endgenerate
endmodule
|
module mig_7series_v2_3_ui_wr_data #
(
parameter TCQ = 100,
parameter APP_DATA_WIDTH = 256,
parameter APP_MASK_WIDTH = 32,
parameter ECC = "OFF",
parameter nCK_PER_CLK = 2 ,
parameter ECC_TEST = "OFF",
parameter CWL = 5
)
(/*AUTOARG*/
// Outputs
app_wdf_rdy, wr_req_16, wr_data_buf_addr, wr_data, wr_data_mask,
raw_not_ecc,
// Inputs
rst, clk, app_wdf_data, app_wdf_mask, app_raw_not_ecc, app_wdf_wren,
app_wdf_end, wr_data_offset, wr_data_addr, wr_data_en, wr_accepted,
ram_init_done_r, ram_init_addr
);
input rst;
input clk;
input [APP_DATA_WIDTH-1:0] app_wdf_data;
input [APP_MASK_WIDTH-1:0] app_wdf_mask;
input [2*nCK_PER_CLK-1:0] app_raw_not_ecc;
input app_wdf_wren;
input app_wdf_end;
reg [APP_DATA_WIDTH-1:0] app_wdf_data_r1;
reg [APP_MASK_WIDTH-1:0] app_wdf_mask_r1;
reg [2*nCK_PER_CLK-1:0] app_raw_not_ecc_r1 = 4'b0;
reg app_wdf_wren_r1;
reg app_wdf_end_r1;
reg app_wdf_rdy_r;
//Adding few copies of the app_wdf_rdy_r signal in order to meet
//timing. This is signal has a very high fanout. So grouped into
//few functional groups and alloted one copy per group.
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy1;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy2;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy3;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy4;
wire [APP_DATA_WIDTH-1:0] app_wdf_data_ns1 =
~app_wdf_rdy_r_copy2 ? app_wdf_data_r1 : app_wdf_data;
wire [APP_MASK_WIDTH-1:0] app_wdf_mask_ns1 =
~app_wdf_rdy_r_copy2 ? app_wdf_mask_r1 : app_wdf_mask;
wire app_wdf_wren_ns1 =
~rst && (~app_wdf_rdy_r_copy2 ? app_wdf_wren_r1 : app_wdf_wren);
wire app_wdf_end_ns1 =
~rst && (~app_wdf_rdy_r_copy2 ? app_wdf_end_r1 : app_wdf_end);
generate
if (ECC_TEST != "OFF") begin : ecc_on
always @(app_raw_not_ecc) app_raw_not_ecc_r1 = app_raw_not_ecc;
end
endgenerate
// Be explicit about the latch enable on these registers.
always @(posedge clk) begin
app_wdf_data_r1 <= #TCQ app_wdf_data_ns1;
app_wdf_mask_r1 <= #TCQ app_wdf_mask_ns1;
app_wdf_wren_r1 <= #TCQ app_wdf_wren_ns1;
app_wdf_end_r1 <= #TCQ app_wdf_end_ns1;
end
// The signals wr_data_addr and wr_data_offset come at different
// times depending on ECC and the value of CWL. The data portion
// always needs to look a the raw wires, the control portion needs
// to look at a delayed version when ECC is on and CWL != 8. The
// currently supported write data delays do not require this
// functionality, but preserve for future use.
input wr_data_offset;
input [3:0] wr_data_addr;
reg wr_data_offset_r;
reg [3:0] wr_data_addr_r;
generate
if (ECC == "OFF" || CWL >= 0) begin : pass_wr_addr
always @(wr_data_offset) wr_data_offset_r = wr_data_offset;
always @(wr_data_addr) wr_data_addr_r = wr_data_addr;
end
else begin : delay_wr_addr
always @(posedge clk) wr_data_offset_r <= #TCQ wr_data_offset;
always @(posedge clk) wr_data_addr_r <= #TCQ wr_data_addr;
end
endgenerate
// rd_data_cnt is the pointer RAM index for data read from the write data
// buffer. Ie, its the data on its way out to the DRAM.
input wr_data_en;
wire new_rd_data = wr_data_en && ~wr_data_offset_r;
reg [3:0] rd_data_indx_r;
reg rd_data_upd_indx_r;
generate begin : read_data_indx
reg [3:0] rd_data_indx_ns;
always @(/*AS*/new_rd_data or rd_data_indx_r or rst) begin
rd_data_indx_ns = rd_data_indx_r;
if (rst) rd_data_indx_ns = 5'b0;
else if (new_rd_data) rd_data_indx_ns = rd_data_indx_r + 5'h1;
end
always @(posedge clk) rd_data_indx_r <= #TCQ rd_data_indx_ns;
always @(posedge clk) rd_data_upd_indx_r <= #TCQ new_rd_data;
end
endgenerate
// data_buf_addr_cnt generates the pointer for the pointer RAM on behalf
// of data buf address that comes with the wr_data_en.
// The data buf address is written into the memory
// controller along with the command and address.
input wr_accepted;
reg [3:0] data_buf_addr_cnt_r;
generate begin : data_buf_address_counter
reg [3:0] data_buf_addr_cnt_ns;
always @(/*AS*/data_buf_addr_cnt_r or rst or wr_accepted) begin
data_buf_addr_cnt_ns = data_buf_addr_cnt_r;
if (rst) data_buf_addr_cnt_ns = 4'b0;
else if (wr_accepted) data_buf_addr_cnt_ns =
data_buf_addr_cnt_r + 4'h1;
end
always @(posedge clk) data_buf_addr_cnt_r <= #TCQ data_buf_addr_cnt_ns;
end
endgenerate
// Control writing data into the write data buffer.
wire wdf_rdy_ns;
always @( posedge clk ) begin
app_wdf_rdy_r_copy1 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy2 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy3 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy4 <= #TCQ wdf_rdy_ns;
end
wire wr_data_end = app_wdf_end_r1 && app_wdf_rdy_r_copy1 && app_wdf_wren_r1;
wire [3:0] wr_data_pntr;
wire [4:0] wb_wr_data_addr;
wire [4:0] wb_wr_data_addr_w;
reg [3:0] wr_data_indx_r;
generate begin : write_data_control
wire wr_data_addr_le = (wr_data_end && wdf_rdy_ns) ||
(rd_data_upd_indx_r && ~app_wdf_rdy_r_copy1);
// For pointer RAM. Initialize to one since this is one ahead of
// what's being registered in wb_wr_data_addr. Assumes pointer RAM
// has been initialized such that address equals contents.
reg [3:0] wr_data_indx_ns;
always @(/*AS*/rst or wr_data_addr_le or wr_data_indx_r) begin
wr_data_indx_ns = wr_data_indx_r;
if (rst) wr_data_indx_ns = 4'b1;
else if (wr_data_addr_le) wr_data_indx_ns = wr_data_indx_r + 4'h1;
end
always @(posedge clk) wr_data_indx_r <= #TCQ wr_data_indx_ns;
// Take pointer from pointer RAM and set into the write data address.
// Needs to be split into zeroth bit and everything else because synthesis
// tools don't always allow assigning bit vectors seperately. Bit zero of the
// address is computed via an entirely different algorithm.
reg [4:1] wb_wr_data_addr_ns;
reg [4:1] wb_wr_data_addr_r;
always @(/*AS*/rst or wb_wr_data_addr_r or wr_data_addr_le
or wr_data_pntr) begin
wb_wr_data_addr_ns = wb_wr_data_addr_r;
if (rst) wb_wr_data_addr_ns = 4'b0;
else if (wr_data_addr_le) wb_wr_data_addr_ns = wr_data_pntr;
end
always @(posedge clk) wb_wr_data_addr_r <= #TCQ wb_wr_data_addr_ns;
// If we see the first getting accepted, then
// second half is unconditionally accepted.
reg wb_wr_data_addr0_r;
wire wb_wr_data_addr0_ns = ~rst &&
((app_wdf_rdy_r_copy3 && app_wdf_wren_r1 && ~app_wdf_end_r1) ||
(wb_wr_data_addr0_r && ~app_wdf_wren_r1));
always @(posedge clk) wb_wr_data_addr0_r <= #TCQ wb_wr_data_addr0_ns;
assign wb_wr_data_addr = {wb_wr_data_addr_r, wb_wr_data_addr0_r};
assign wb_wr_data_addr_w = {wb_wr_data_addr_ns, wb_wr_data_addr0_ns};
end
endgenerate
// Keep track of how many entries in the queue hold data.
input ram_init_done_r;
output wire app_wdf_rdy;
generate begin : occupied_counter
//reg [4:0] occ_cnt_ns;
//reg [4:0] occ_cnt_r;
//always @(/*AS*/occ_cnt_r or rd_data_upd_indx_r or rst
// or wr_data_end) begin
// occ_cnt_ns = occ_cnt_r;
// if (rst) occ_cnt_ns = 5'b0;
// else case ({wr_data_end, rd_data_upd_indx_r})
// 2'b01 : occ_cnt_ns = occ_cnt_r - 5'b1;
// 2'b10 : occ_cnt_ns = occ_cnt_r + 5'b1;
// endcase // case ({wr_data_end, rd_data_upd_indx_r})
//end
//always @(posedge clk) occ_cnt_r <= #TCQ occ_cnt_ns;
//assign wdf_rdy_ns = !(rst || ~ram_init_done_r || occ_cnt_ns[4]);
//always @(posedge clk) app_wdf_rdy_r <= #TCQ wdf_rdy_ns;
//assign app_wdf_rdy = app_wdf_rdy_r;
reg [15:0] occ_cnt;
always @(posedge clk) begin
if ( rst )
occ_cnt <= #TCQ 16'h0000;
else case ({wr_data_end, rd_data_upd_indx_r})
2'b01 : occ_cnt <= #TCQ {1'b0,occ_cnt[15:1]};
2'b10 : occ_cnt <= #TCQ {occ_cnt[14:0],1'b1};
endcase // case ({wr_data_end, rd_data_upd_indx_r})
end
assign wdf_rdy_ns = !(rst || ~ram_init_done_r || (occ_cnt[14] && wr_data_end && ~rd_data_upd_indx_r) || (occ_cnt[15] && ~rd_data_upd_indx_r));
always @(posedge clk) app_wdf_rdy_r <= #TCQ wdf_rdy_ns;
assign app_wdf_rdy = app_wdf_rdy_r;
`ifdef MC_SVA
wr_data_buffer_full: cover property (@(posedge clk)
(~rst && ~app_wdf_rdy_r));
// wr_data_buffer_inc_dec_15: cover property (@(posedge clk)
// (~rst && wr_data_end && rd_data_upd_indx_r && (occ_cnt_r == 5'hf)));
// wr_data_underflow: assert property (@(posedge clk)
// (rst || !((occ_cnt_r == 5'b0) && (occ_cnt_ns == 5'h1f))));
// wr_data_overflow: assert property (@(posedge clk)
// (rst || !((occ_cnt_r == 5'h10) && (occ_cnt_ns == 5'h11))));
`endif
end // block: occupied_counter
endgenerate
// Keep track of how many write requests are in the memory controller. We
// must limit this to 16 because we only have that many data_buf_addrs to
// hand out. Since the memory controller queue and the write data buffer
// queue are distinct, the number of valid entries can be different.
// Throttle request acceptance once there are sixteen write requests in
// the memory controller. Note that there is still a requirement
// for a write reqeusts corresponding write data to be written into the
// write data queue with two states of the request.
output wire wr_req_16;
generate begin : wr_req_counter
reg [4:0] wr_req_cnt_ns;
reg [4:0] wr_req_cnt_r;
always @(/*AS*/rd_data_upd_indx_r or rst or wr_accepted
or wr_req_cnt_r) begin
wr_req_cnt_ns = wr_req_cnt_r;
if (rst) wr_req_cnt_ns = 5'b0;
else case ({wr_accepted, rd_data_upd_indx_r})
2'b01 : wr_req_cnt_ns = wr_req_cnt_r - 5'b1;
2'b10 : wr_req_cnt_ns = wr_req_cnt_r + 5'b1;
endcase // case ({wr_accepted, rd_data_upd_indx_r})
end
always @(posedge clk) wr_req_cnt_r <= #TCQ wr_req_cnt_ns;
assign wr_req_16 = (wr_req_cnt_ns == 5'h10);
`ifdef MC_SVA
wr_req_mc_full: cover property (@(posedge clk) (~rst && wr_req_16));
wr_req_mc_full_inc_dec_15: cover property (@(posedge clk)
(~rst && wr_accepted && rd_data_upd_indx_r && (wr_req_cnt_r == 5'hf)));
wr_req_underflow: assert property (@(posedge clk)
(rst || !((wr_req_cnt_r == 5'b0) && (wr_req_cnt_ns == 5'h1f))));
wr_req_overflow: assert property (@(posedge clk)
(rst || !((wr_req_cnt_r == 5'h10) && (wr_req_cnt_ns == 5'h11))));
`endif
end // block: wr_req_counter
endgenerate
// Instantiate pointer RAM. Made up of RAM32M in single write, two read
// port mode, 2 bit wide mode.
input [3:0] ram_init_addr;
output wire [3:0] wr_data_buf_addr;
localparam PNTR_RAM_CNT = 2;
generate begin : pointer_ram
wire pointer_we = new_rd_data || ~ram_init_done_r;
wire [3:0] pointer_wr_data = ram_init_done_r
? wr_data_addr_r
: ram_init_addr;
wire [3:0] pointer_wr_addr = ram_init_done_r
? rd_data_indx_r
: ram_init_addr;
genvar i;
for (i=0; i<PNTR_RAM_CNT; i=i+1) begin : rams
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(),
.DOB(wr_data_buf_addr[i*2+:2]),
.DOC(wr_data_pntr[i*2+:2]),
.DOD(),
.DIA(2'b0),
.DIB(pointer_wr_data[i*2+:2]),
.DIC(pointer_wr_data[i*2+:2]),
.DID(2'b0),
.ADDRA(5'b0),
.ADDRB({1'b0, data_buf_addr_cnt_r}),
.ADDRC({1'b0, wr_data_indx_r}),
.ADDRD({1'b0, pointer_wr_addr}),
.WE(pointer_we),
.WCLK(clk)
);
end // block : rams
end // block: pointer_ram
endgenerate
// Instantiate write data buffer. Depending on width of DQ bus and
// DRAM CK to fabric ratio, number of RAM32Ms is variable. RAM32Ms are
// used in single write, single read, 6 bit wide mode.
localparam WR_BUF_WIDTH =
APP_DATA_WIDTH + APP_MASK_WIDTH + (ECC_TEST == "OFF" ? 0 : 2*nCK_PER_CLK);
localparam FULL_RAM_CNT = (WR_BUF_WIDTH/6);
localparam REMAINDER = WR_BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
wire [RAM_WIDTH-1:0] wr_buf_out_data_w;
reg [RAM_WIDTH-1:0] wr_buf_out_data;
generate
begin : write_buffer
wire [RAM_WIDTH-1:0] wr_buf_in_data;
if (REMAINDER == 0)
if (ECC_TEST == "OFF")
assign wr_buf_in_data = {app_wdf_mask_ns1, app_wdf_data_ns1};
else
assign wr_buf_in_data =
{app_raw_not_ecc_r1, app_wdf_mask_ns1, app_wdf_data_ns1};
else
if (ECC_TEST == "OFF")
assign wr_buf_in_data =
{{6-REMAINDER{1'b0}}, app_wdf_mask_ns1, app_wdf_data_ns1};
else
assign wr_buf_in_data = {{6-REMAINDER{1'b0}}, app_raw_not_ecc_r1,//app_raw_not_ecc_r1 is not ff
app_wdf_mask_ns1, app_wdf_data_ns1};
wire [4:0] rd_addr_w;
assign rd_addr_w = {wr_data_addr, wr_data_offset};
always @(posedge clk) wr_buf_out_data <= #TCQ wr_buf_out_data_w;
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : wr_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(wr_buf_out_data_w[((i*6)+4)+:2]),
.DOB(wr_buf_out_data_w[((i*6)+2)+:2]),
.DOC(wr_buf_out_data_w[((i*6)+0)+:2]),
.DOD(),
.DIA(wr_buf_in_data[((i*6)+4)+:2]),
.DIB(wr_buf_in_data[((i*6)+2)+:2]),
.DIC(wr_buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(rd_addr_w),
.ADDRB(rd_addr_w),
.ADDRC(rd_addr_w),
.ADDRD(wb_wr_data_addr_w),
.WE(wdf_rdy_ns),
.WCLK(clk)
);
end // block: wr_buffer_ram
end
endgenerate
output [APP_DATA_WIDTH-1:0] wr_data;
output [APP_MASK_WIDTH-1:0] wr_data_mask;
assign {wr_data_mask, wr_data} = wr_buf_out_data[WR_BUF_WIDTH-1:0];
output [2*nCK_PER_CLK-1:0] raw_not_ecc;
generate
if (ECC_TEST == "OFF") assign raw_not_ecc = {2*nCK_PER_CLK{1'b0}};
else assign raw_not_ecc = wr_buf_out_data[WR_BUF_WIDTH-1-:(2*nCK_PER_CLK)];
endgenerate
endmodule
|
module mig_7series_v2_3_ui_wr_data #
(
parameter TCQ = 100,
parameter APP_DATA_WIDTH = 256,
parameter APP_MASK_WIDTH = 32,
parameter ECC = "OFF",
parameter nCK_PER_CLK = 2 ,
parameter ECC_TEST = "OFF",
parameter CWL = 5
)
(/*AUTOARG*/
// Outputs
app_wdf_rdy, wr_req_16, wr_data_buf_addr, wr_data, wr_data_mask,
raw_not_ecc,
// Inputs
rst, clk, app_wdf_data, app_wdf_mask, app_raw_not_ecc, app_wdf_wren,
app_wdf_end, wr_data_offset, wr_data_addr, wr_data_en, wr_accepted,
ram_init_done_r, ram_init_addr
);
input rst;
input clk;
input [APP_DATA_WIDTH-1:0] app_wdf_data;
input [APP_MASK_WIDTH-1:0] app_wdf_mask;
input [2*nCK_PER_CLK-1:0] app_raw_not_ecc;
input app_wdf_wren;
input app_wdf_end;
reg [APP_DATA_WIDTH-1:0] app_wdf_data_r1;
reg [APP_MASK_WIDTH-1:0] app_wdf_mask_r1;
reg [2*nCK_PER_CLK-1:0] app_raw_not_ecc_r1 = 4'b0;
reg app_wdf_wren_r1;
reg app_wdf_end_r1;
reg app_wdf_rdy_r;
//Adding few copies of the app_wdf_rdy_r signal in order to meet
//timing. This is signal has a very high fanout. So grouped into
//few functional groups and alloted one copy per group.
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy1;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy2;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy3;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy4;
wire [APP_DATA_WIDTH-1:0] app_wdf_data_ns1 =
~app_wdf_rdy_r_copy2 ? app_wdf_data_r1 : app_wdf_data;
wire [APP_MASK_WIDTH-1:0] app_wdf_mask_ns1 =
~app_wdf_rdy_r_copy2 ? app_wdf_mask_r1 : app_wdf_mask;
wire app_wdf_wren_ns1 =
~rst && (~app_wdf_rdy_r_copy2 ? app_wdf_wren_r1 : app_wdf_wren);
wire app_wdf_end_ns1 =
~rst && (~app_wdf_rdy_r_copy2 ? app_wdf_end_r1 : app_wdf_end);
generate
if (ECC_TEST != "OFF") begin : ecc_on
always @(app_raw_not_ecc) app_raw_not_ecc_r1 = app_raw_not_ecc;
end
endgenerate
// Be explicit about the latch enable on these registers.
always @(posedge clk) begin
app_wdf_data_r1 <= #TCQ app_wdf_data_ns1;
app_wdf_mask_r1 <= #TCQ app_wdf_mask_ns1;
app_wdf_wren_r1 <= #TCQ app_wdf_wren_ns1;
app_wdf_end_r1 <= #TCQ app_wdf_end_ns1;
end
// The signals wr_data_addr and wr_data_offset come at different
// times depending on ECC and the value of CWL. The data portion
// always needs to look a the raw wires, the control portion needs
// to look at a delayed version when ECC is on and CWL != 8. The
// currently supported write data delays do not require this
// functionality, but preserve for future use.
input wr_data_offset;
input [3:0] wr_data_addr;
reg wr_data_offset_r;
reg [3:0] wr_data_addr_r;
generate
if (ECC == "OFF" || CWL >= 0) begin : pass_wr_addr
always @(wr_data_offset) wr_data_offset_r = wr_data_offset;
always @(wr_data_addr) wr_data_addr_r = wr_data_addr;
end
else begin : delay_wr_addr
always @(posedge clk) wr_data_offset_r <= #TCQ wr_data_offset;
always @(posedge clk) wr_data_addr_r <= #TCQ wr_data_addr;
end
endgenerate
// rd_data_cnt is the pointer RAM index for data read from the write data
// buffer. Ie, its the data on its way out to the DRAM.
input wr_data_en;
wire new_rd_data = wr_data_en && ~wr_data_offset_r;
reg [3:0] rd_data_indx_r;
reg rd_data_upd_indx_r;
generate begin : read_data_indx
reg [3:0] rd_data_indx_ns;
always @(/*AS*/new_rd_data or rd_data_indx_r or rst) begin
rd_data_indx_ns = rd_data_indx_r;
if (rst) rd_data_indx_ns = 5'b0;
else if (new_rd_data) rd_data_indx_ns = rd_data_indx_r + 5'h1;
end
always @(posedge clk) rd_data_indx_r <= #TCQ rd_data_indx_ns;
always @(posedge clk) rd_data_upd_indx_r <= #TCQ new_rd_data;
end
endgenerate
// data_buf_addr_cnt generates the pointer for the pointer RAM on behalf
// of data buf address that comes with the wr_data_en.
// The data buf address is written into the memory
// controller along with the command and address.
input wr_accepted;
reg [3:0] data_buf_addr_cnt_r;
generate begin : data_buf_address_counter
reg [3:0] data_buf_addr_cnt_ns;
always @(/*AS*/data_buf_addr_cnt_r or rst or wr_accepted) begin
data_buf_addr_cnt_ns = data_buf_addr_cnt_r;
if (rst) data_buf_addr_cnt_ns = 4'b0;
else if (wr_accepted) data_buf_addr_cnt_ns =
data_buf_addr_cnt_r + 4'h1;
end
always @(posedge clk) data_buf_addr_cnt_r <= #TCQ data_buf_addr_cnt_ns;
end
endgenerate
// Control writing data into the write data buffer.
wire wdf_rdy_ns;
always @( posedge clk ) begin
app_wdf_rdy_r_copy1 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy2 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy3 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy4 <= #TCQ wdf_rdy_ns;
end
wire wr_data_end = app_wdf_end_r1 && app_wdf_rdy_r_copy1 && app_wdf_wren_r1;
wire [3:0] wr_data_pntr;
wire [4:0] wb_wr_data_addr;
wire [4:0] wb_wr_data_addr_w;
reg [3:0] wr_data_indx_r;
generate begin : write_data_control
wire wr_data_addr_le = (wr_data_end && wdf_rdy_ns) ||
(rd_data_upd_indx_r && ~app_wdf_rdy_r_copy1);
// For pointer RAM. Initialize to one since this is one ahead of
// what's being registered in wb_wr_data_addr. Assumes pointer RAM
// has been initialized such that address equals contents.
reg [3:0] wr_data_indx_ns;
always @(/*AS*/rst or wr_data_addr_le or wr_data_indx_r) begin
wr_data_indx_ns = wr_data_indx_r;
if (rst) wr_data_indx_ns = 4'b1;
else if (wr_data_addr_le) wr_data_indx_ns = wr_data_indx_r + 4'h1;
end
always @(posedge clk) wr_data_indx_r <= #TCQ wr_data_indx_ns;
// Take pointer from pointer RAM and set into the write data address.
// Needs to be split into zeroth bit and everything else because synthesis
// tools don't always allow assigning bit vectors seperately. Bit zero of the
// address is computed via an entirely different algorithm.
reg [4:1] wb_wr_data_addr_ns;
reg [4:1] wb_wr_data_addr_r;
always @(/*AS*/rst or wb_wr_data_addr_r or wr_data_addr_le
or wr_data_pntr) begin
wb_wr_data_addr_ns = wb_wr_data_addr_r;
if (rst) wb_wr_data_addr_ns = 4'b0;
else if (wr_data_addr_le) wb_wr_data_addr_ns = wr_data_pntr;
end
always @(posedge clk) wb_wr_data_addr_r <= #TCQ wb_wr_data_addr_ns;
// If we see the first getting accepted, then
// second half is unconditionally accepted.
reg wb_wr_data_addr0_r;
wire wb_wr_data_addr0_ns = ~rst &&
((app_wdf_rdy_r_copy3 && app_wdf_wren_r1 && ~app_wdf_end_r1) ||
(wb_wr_data_addr0_r && ~app_wdf_wren_r1));
always @(posedge clk) wb_wr_data_addr0_r <= #TCQ wb_wr_data_addr0_ns;
assign wb_wr_data_addr = {wb_wr_data_addr_r, wb_wr_data_addr0_r};
assign wb_wr_data_addr_w = {wb_wr_data_addr_ns, wb_wr_data_addr0_ns};
end
endgenerate
// Keep track of how many entries in the queue hold data.
input ram_init_done_r;
output wire app_wdf_rdy;
generate begin : occupied_counter
//reg [4:0] occ_cnt_ns;
//reg [4:0] occ_cnt_r;
//always @(/*AS*/occ_cnt_r or rd_data_upd_indx_r or rst
// or wr_data_end) begin
// occ_cnt_ns = occ_cnt_r;
// if (rst) occ_cnt_ns = 5'b0;
// else case ({wr_data_end, rd_data_upd_indx_r})
// 2'b01 : occ_cnt_ns = occ_cnt_r - 5'b1;
// 2'b10 : occ_cnt_ns = occ_cnt_r + 5'b1;
// endcase // case ({wr_data_end, rd_data_upd_indx_r})
//end
//always @(posedge clk) occ_cnt_r <= #TCQ occ_cnt_ns;
//assign wdf_rdy_ns = !(rst || ~ram_init_done_r || occ_cnt_ns[4]);
//always @(posedge clk) app_wdf_rdy_r <= #TCQ wdf_rdy_ns;
//assign app_wdf_rdy = app_wdf_rdy_r;
reg [15:0] occ_cnt;
always @(posedge clk) begin
if ( rst )
occ_cnt <= #TCQ 16'h0000;
else case ({wr_data_end, rd_data_upd_indx_r})
2'b01 : occ_cnt <= #TCQ {1'b0,occ_cnt[15:1]};
2'b10 : occ_cnt <= #TCQ {occ_cnt[14:0],1'b1};
endcase // case ({wr_data_end, rd_data_upd_indx_r})
end
assign wdf_rdy_ns = !(rst || ~ram_init_done_r || (occ_cnt[14] && wr_data_end && ~rd_data_upd_indx_r) || (occ_cnt[15] && ~rd_data_upd_indx_r));
always @(posedge clk) app_wdf_rdy_r <= #TCQ wdf_rdy_ns;
assign app_wdf_rdy = app_wdf_rdy_r;
`ifdef MC_SVA
wr_data_buffer_full: cover property (@(posedge clk)
(~rst && ~app_wdf_rdy_r));
// wr_data_buffer_inc_dec_15: cover property (@(posedge clk)
// (~rst && wr_data_end && rd_data_upd_indx_r && (occ_cnt_r == 5'hf)));
// wr_data_underflow: assert property (@(posedge clk)
// (rst || !((occ_cnt_r == 5'b0) && (occ_cnt_ns == 5'h1f))));
// wr_data_overflow: assert property (@(posedge clk)
// (rst || !((occ_cnt_r == 5'h10) && (occ_cnt_ns == 5'h11))));
`endif
end // block: occupied_counter
endgenerate
// Keep track of how many write requests are in the memory controller. We
// must limit this to 16 because we only have that many data_buf_addrs to
// hand out. Since the memory controller queue and the write data buffer
// queue are distinct, the number of valid entries can be different.
// Throttle request acceptance once there are sixteen write requests in
// the memory controller. Note that there is still a requirement
// for a write reqeusts corresponding write data to be written into the
// write data queue with two states of the request.
output wire wr_req_16;
generate begin : wr_req_counter
reg [4:0] wr_req_cnt_ns;
reg [4:0] wr_req_cnt_r;
always @(/*AS*/rd_data_upd_indx_r or rst or wr_accepted
or wr_req_cnt_r) begin
wr_req_cnt_ns = wr_req_cnt_r;
if (rst) wr_req_cnt_ns = 5'b0;
else case ({wr_accepted, rd_data_upd_indx_r})
2'b01 : wr_req_cnt_ns = wr_req_cnt_r - 5'b1;
2'b10 : wr_req_cnt_ns = wr_req_cnt_r + 5'b1;
endcase // case ({wr_accepted, rd_data_upd_indx_r})
end
always @(posedge clk) wr_req_cnt_r <= #TCQ wr_req_cnt_ns;
assign wr_req_16 = (wr_req_cnt_ns == 5'h10);
`ifdef MC_SVA
wr_req_mc_full: cover property (@(posedge clk) (~rst && wr_req_16));
wr_req_mc_full_inc_dec_15: cover property (@(posedge clk)
(~rst && wr_accepted && rd_data_upd_indx_r && (wr_req_cnt_r == 5'hf)));
wr_req_underflow: assert property (@(posedge clk)
(rst || !((wr_req_cnt_r == 5'b0) && (wr_req_cnt_ns == 5'h1f))));
wr_req_overflow: assert property (@(posedge clk)
(rst || !((wr_req_cnt_r == 5'h10) && (wr_req_cnt_ns == 5'h11))));
`endif
end // block: wr_req_counter
endgenerate
// Instantiate pointer RAM. Made up of RAM32M in single write, two read
// port mode, 2 bit wide mode.
input [3:0] ram_init_addr;
output wire [3:0] wr_data_buf_addr;
localparam PNTR_RAM_CNT = 2;
generate begin : pointer_ram
wire pointer_we = new_rd_data || ~ram_init_done_r;
wire [3:0] pointer_wr_data = ram_init_done_r
? wr_data_addr_r
: ram_init_addr;
wire [3:0] pointer_wr_addr = ram_init_done_r
? rd_data_indx_r
: ram_init_addr;
genvar i;
for (i=0; i<PNTR_RAM_CNT; i=i+1) begin : rams
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(),
.DOB(wr_data_buf_addr[i*2+:2]),
.DOC(wr_data_pntr[i*2+:2]),
.DOD(),
.DIA(2'b0),
.DIB(pointer_wr_data[i*2+:2]),
.DIC(pointer_wr_data[i*2+:2]),
.DID(2'b0),
.ADDRA(5'b0),
.ADDRB({1'b0, data_buf_addr_cnt_r}),
.ADDRC({1'b0, wr_data_indx_r}),
.ADDRD({1'b0, pointer_wr_addr}),
.WE(pointer_we),
.WCLK(clk)
);
end // block : rams
end // block: pointer_ram
endgenerate
// Instantiate write data buffer. Depending on width of DQ bus and
// DRAM CK to fabric ratio, number of RAM32Ms is variable. RAM32Ms are
// used in single write, single read, 6 bit wide mode.
localparam WR_BUF_WIDTH =
APP_DATA_WIDTH + APP_MASK_WIDTH + (ECC_TEST == "OFF" ? 0 : 2*nCK_PER_CLK);
localparam FULL_RAM_CNT = (WR_BUF_WIDTH/6);
localparam REMAINDER = WR_BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
wire [RAM_WIDTH-1:0] wr_buf_out_data_w;
reg [RAM_WIDTH-1:0] wr_buf_out_data;
generate
begin : write_buffer
wire [RAM_WIDTH-1:0] wr_buf_in_data;
if (REMAINDER == 0)
if (ECC_TEST == "OFF")
assign wr_buf_in_data = {app_wdf_mask_ns1, app_wdf_data_ns1};
else
assign wr_buf_in_data =
{app_raw_not_ecc_r1, app_wdf_mask_ns1, app_wdf_data_ns1};
else
if (ECC_TEST == "OFF")
assign wr_buf_in_data =
{{6-REMAINDER{1'b0}}, app_wdf_mask_ns1, app_wdf_data_ns1};
else
assign wr_buf_in_data = {{6-REMAINDER{1'b0}}, app_raw_not_ecc_r1,//app_raw_not_ecc_r1 is not ff
app_wdf_mask_ns1, app_wdf_data_ns1};
wire [4:0] rd_addr_w;
assign rd_addr_w = {wr_data_addr, wr_data_offset};
always @(posedge clk) wr_buf_out_data <= #TCQ wr_buf_out_data_w;
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : wr_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(wr_buf_out_data_w[((i*6)+4)+:2]),
.DOB(wr_buf_out_data_w[((i*6)+2)+:2]),
.DOC(wr_buf_out_data_w[((i*6)+0)+:2]),
.DOD(),
.DIA(wr_buf_in_data[((i*6)+4)+:2]),
.DIB(wr_buf_in_data[((i*6)+2)+:2]),
.DIC(wr_buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(rd_addr_w),
.ADDRB(rd_addr_w),
.ADDRC(rd_addr_w),
.ADDRD(wb_wr_data_addr_w),
.WE(wdf_rdy_ns),
.WCLK(clk)
);
end // block: wr_buffer_ram
end
endgenerate
output [APP_DATA_WIDTH-1:0] wr_data;
output [APP_MASK_WIDTH-1:0] wr_data_mask;
assign {wr_data_mask, wr_data} = wr_buf_out_data[WR_BUF_WIDTH-1:0];
output [2*nCK_PER_CLK-1:0] raw_not_ecc;
generate
if (ECC_TEST == "OFF") assign raw_not_ecc = {2*nCK_PER_CLK{1'b0}};
else assign raw_not_ecc = wr_buf_out_data[WR_BUF_WIDTH-1-:(2*nCK_PER_CLK)];
endgenerate
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_samp #
(parameter nCK_PER_CLK = 4,
parameter OCAL_SIMPLE_SCAN_SAMPS = 2,
parameter SCAN_PCT_SAMPS_SOLID = 95,
parameter TCQ = 100,
parameter SIM_CAL_OPTION = "NONE")
(/*AUTOARG*/
// Outputs
samp_done, oclk_calib_resume, rd_victim_sel, samp_result,
// Inputs
complex_oclkdelay_calib_start, clk, rst, reset_scan,
ocal_num_samples_inc, match, phy_rddata_en_1, taps_set
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
localparam ONE = 1;
localparam CMPLX_DATA_CNT = nCK_PER_CLK == 2 ? 157 * 2 : 157;
localparam SIMP_DATA_CNT = nCK_PER_CLK == 2 ? 2 : 1;
localparam DATA_CNT_WIDTH = nCK_PER_CLK == 2 ? 9 : 8;
localparam CMPLX_SAMPS = SIM_CAL_OPTION == "NONE" ? 50 : 1;
// Plus one because were counting in natural numbers.
localparam SAMP_CNT_WIDTH = clogb2(OCAL_SIMPLE_SCAN_SAMPS > CMPLX_SAMPS
? OCAL_SIMPLE_SCAN_SAMPS : CMPLX_SAMPS) + 1;
// Remember SAMPLES is natural number counting. One corresponds to one sample.
localparam integer SIMP_SAMPS_SOLID_THRESH = OCAL_SIMPLE_SCAN_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
localparam integer CMPLX_SAMPS_SOLID_THRESH = CMPLX_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
input complex_oclkdelay_calib_start;
wire [SAMP_CNT_WIDTH-1:0] samples = complex_oclkdelay_calib_start
? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
localparam [1:0] NULL = 2'b11,
FUZZ = 2'b00,
ONEEIGHTY = 2'b10,
ZERO = 2'b01;
input clk;
input rst;
input reset_scan;
// Given the need to count phy_data_en, this is not useful.
input ocal_num_samples_inc;
input [1:0] match;
input phy_rddata_en_1;
input taps_set;
reg samp_done_ns, samp_done_r;
always @(posedge clk) samp_done_r <= #TCQ samp_done_ns;
output samp_done;
assign samp_done = samp_done_r;
reg [1:0] agg_samp_ns, agg_samp_r;
always @(posedge clk) agg_samp_r <= #TCQ agg_samp_ns;
reg oclk_calib_resume_ns, oclk_calib_resume_r;
always @(posedge clk) oclk_calib_resume_r <= #TCQ oclk_calib_resume_ns;
output oclk_calib_resume;
assign oclk_calib_resume = oclk_calib_resume_r;
// Complex data counting.
// Inner most loop. 157 phy_data_en.
reg [DATA_CNT_WIDTH-1:0] data_cnt_ns, data_cnt_r;
always @(posedge clk) data_cnt_r <= #TCQ data_cnt_ns;
// Nominally, 50 samples of the above 157 phy_data_en.
reg [SAMP_CNT_WIDTH-1:0] samps_ns, samps_r;
always @(posedge clk) samps_r <= #TCQ samps_ns;
// Step through the 8 bits in the byte.
reg [2:0] rd_victim_sel_ns, rd_victim_sel_r;
always @(posedge clk) rd_victim_sel_r <= #TCQ rd_victim_sel_ns;
output [2:0] rd_victim_sel;
assign rd_victim_sel = rd_victim_sel_r;
reg [SAMP_CNT_WIDTH-1:0] zero_ns, zero_r, oneeighty_ns, oneeighty_r;
always @(posedge clk) zero_r <= #TCQ zero_ns;
always @(posedge clk) oneeighty_r <= #TCQ oneeighty_ns;
output [1:0] samp_result;
assign samp_result[0] = zero_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
assign samp_result[1] = oneeighty_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
reg [0:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
wire [DATA_CNT_WIDTH-1:0] data_cnt = complex_oclkdelay_calib_start
? CMPLX_DATA_CNT[DATA_CNT_WIDTH-1:0]
: SIMP_DATA_CNT[DATA_CNT_WIDTH-1:0];
wire [2:0] rd_victim_end = complex_oclkdelay_calib_start ? 3'h7 : 3'h0;
wire data_end = data_cnt_r == ONE[DATA_CNT_WIDTH-1:0];
wire samp_end = samps_r == ONE[SAMP_CNT_WIDTH-1:0];
// Primary state machine.
always @(*) begin
// Default next state assignments.
agg_samp_ns = agg_samp_r;
data_cnt_ns = data_cnt_r;
oclk_calib_resume_ns = 1'b0;
oneeighty_ns = oneeighty_r;
rd_victim_sel_ns = rd_victim_sel_r;
samp_done_ns = samp_done_r;
samps_ns = samps_r;
sm_ns = sm_r;
zero_ns = zero_r;
if (rst == 1'b1) begin
// RESET next states
sm_ns = /*AK("READY")*/1'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/1'd0:begin
agg_samp_ns = NULL;
data_cnt_ns = data_cnt;
oneeighty_ns = {SAMP_CNT_WIDTH{1'b0}};
rd_victim_sel_ns = 3'b0;
samps_ns = complex_oclkdelay_calib_start ? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
zero_ns = {SAMP_CNT_WIDTH{1'b0}};
if (taps_set) begin
samp_done_ns = 1'b0;
sm_ns = /*AK("AWAITING_DATA")*/1'd1;
oclk_calib_resume_ns = 1'b1;
end
end
/*AL("AWAITING_DATA")*/1'd1:begin
if (phy_rddata_en_1) begin
case (agg_samp_r)
NULL : if (~&match) agg_samp_ns = match;
ZERO, ONEEIGHTY : if (~(agg_samp_r == match || &match)) agg_samp_ns = FUZZ;
FUZZ : ;
endcase // case (agg_samp_r)
if (~data_end) data_cnt_ns = data_cnt_r - ONE[DATA_CNT_WIDTH-1:0];
else begin
data_cnt_ns = data_cnt;
if (rd_victim_end != rd_victim_sel_r) rd_victim_sel_ns = rd_victim_sel_r + 3'h1;
else begin
rd_victim_sel_ns = 3'h0;
if (agg_samp_ns == ZERO) zero_ns = zero_r + ONE[SAMP_CNT_WIDTH-1:0];
if (agg_samp_ns == ONEEIGHTY) oneeighty_ns = oneeighty_r + ONE[SAMP_CNT_WIDTH-1:0];
agg_samp_ns = NULL;
if (~samp_end) samps_ns = samps_r - ONE[SAMP_CNT_WIDTH-1:0];
else samp_done_ns = 1'b1;
end
end
if (samp_done_ns) sm_ns = /*AK("READY")*/1'd0;
else oclk_calib_resume_ns = ~complex_oclkdelay_calib_start && data_end;
end
end
endcase // case (sm_r)
end // always @ begin
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_samp #
(parameter nCK_PER_CLK = 4,
parameter OCAL_SIMPLE_SCAN_SAMPS = 2,
parameter SCAN_PCT_SAMPS_SOLID = 95,
parameter TCQ = 100,
parameter SIM_CAL_OPTION = "NONE")
(/*AUTOARG*/
// Outputs
samp_done, oclk_calib_resume, rd_victim_sel, samp_result,
// Inputs
complex_oclkdelay_calib_start, clk, rst, reset_scan,
ocal_num_samples_inc, match, phy_rddata_en_1, taps_set
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
localparam ONE = 1;
localparam CMPLX_DATA_CNT = nCK_PER_CLK == 2 ? 157 * 2 : 157;
localparam SIMP_DATA_CNT = nCK_PER_CLK == 2 ? 2 : 1;
localparam DATA_CNT_WIDTH = nCK_PER_CLK == 2 ? 9 : 8;
localparam CMPLX_SAMPS = SIM_CAL_OPTION == "NONE" ? 50 : 1;
// Plus one because were counting in natural numbers.
localparam SAMP_CNT_WIDTH = clogb2(OCAL_SIMPLE_SCAN_SAMPS > CMPLX_SAMPS
? OCAL_SIMPLE_SCAN_SAMPS : CMPLX_SAMPS) + 1;
// Remember SAMPLES is natural number counting. One corresponds to one sample.
localparam integer SIMP_SAMPS_SOLID_THRESH = OCAL_SIMPLE_SCAN_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
localparam integer CMPLX_SAMPS_SOLID_THRESH = CMPLX_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
input complex_oclkdelay_calib_start;
wire [SAMP_CNT_WIDTH-1:0] samples = complex_oclkdelay_calib_start
? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
localparam [1:0] NULL = 2'b11,
FUZZ = 2'b00,
ONEEIGHTY = 2'b10,
ZERO = 2'b01;
input clk;
input rst;
input reset_scan;
// Given the need to count phy_data_en, this is not useful.
input ocal_num_samples_inc;
input [1:0] match;
input phy_rddata_en_1;
input taps_set;
reg samp_done_ns, samp_done_r;
always @(posedge clk) samp_done_r <= #TCQ samp_done_ns;
output samp_done;
assign samp_done = samp_done_r;
reg [1:0] agg_samp_ns, agg_samp_r;
always @(posedge clk) agg_samp_r <= #TCQ agg_samp_ns;
reg oclk_calib_resume_ns, oclk_calib_resume_r;
always @(posedge clk) oclk_calib_resume_r <= #TCQ oclk_calib_resume_ns;
output oclk_calib_resume;
assign oclk_calib_resume = oclk_calib_resume_r;
// Complex data counting.
// Inner most loop. 157 phy_data_en.
reg [DATA_CNT_WIDTH-1:0] data_cnt_ns, data_cnt_r;
always @(posedge clk) data_cnt_r <= #TCQ data_cnt_ns;
// Nominally, 50 samples of the above 157 phy_data_en.
reg [SAMP_CNT_WIDTH-1:0] samps_ns, samps_r;
always @(posedge clk) samps_r <= #TCQ samps_ns;
// Step through the 8 bits in the byte.
reg [2:0] rd_victim_sel_ns, rd_victim_sel_r;
always @(posedge clk) rd_victim_sel_r <= #TCQ rd_victim_sel_ns;
output [2:0] rd_victim_sel;
assign rd_victim_sel = rd_victim_sel_r;
reg [SAMP_CNT_WIDTH-1:0] zero_ns, zero_r, oneeighty_ns, oneeighty_r;
always @(posedge clk) zero_r <= #TCQ zero_ns;
always @(posedge clk) oneeighty_r <= #TCQ oneeighty_ns;
output [1:0] samp_result;
assign samp_result[0] = zero_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
assign samp_result[1] = oneeighty_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
reg [0:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
wire [DATA_CNT_WIDTH-1:0] data_cnt = complex_oclkdelay_calib_start
? CMPLX_DATA_CNT[DATA_CNT_WIDTH-1:0]
: SIMP_DATA_CNT[DATA_CNT_WIDTH-1:0];
wire [2:0] rd_victim_end = complex_oclkdelay_calib_start ? 3'h7 : 3'h0;
wire data_end = data_cnt_r == ONE[DATA_CNT_WIDTH-1:0];
wire samp_end = samps_r == ONE[SAMP_CNT_WIDTH-1:0];
// Primary state machine.
always @(*) begin
// Default next state assignments.
agg_samp_ns = agg_samp_r;
data_cnt_ns = data_cnt_r;
oclk_calib_resume_ns = 1'b0;
oneeighty_ns = oneeighty_r;
rd_victim_sel_ns = rd_victim_sel_r;
samp_done_ns = samp_done_r;
samps_ns = samps_r;
sm_ns = sm_r;
zero_ns = zero_r;
if (rst == 1'b1) begin
// RESET next states
sm_ns = /*AK("READY")*/1'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/1'd0:begin
agg_samp_ns = NULL;
data_cnt_ns = data_cnt;
oneeighty_ns = {SAMP_CNT_WIDTH{1'b0}};
rd_victim_sel_ns = 3'b0;
samps_ns = complex_oclkdelay_calib_start ? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
zero_ns = {SAMP_CNT_WIDTH{1'b0}};
if (taps_set) begin
samp_done_ns = 1'b0;
sm_ns = /*AK("AWAITING_DATA")*/1'd1;
oclk_calib_resume_ns = 1'b1;
end
end
/*AL("AWAITING_DATA")*/1'd1:begin
if (phy_rddata_en_1) begin
case (agg_samp_r)
NULL : if (~&match) agg_samp_ns = match;
ZERO, ONEEIGHTY : if (~(agg_samp_r == match || &match)) agg_samp_ns = FUZZ;
FUZZ : ;
endcase // case (agg_samp_r)
if (~data_end) data_cnt_ns = data_cnt_r - ONE[DATA_CNT_WIDTH-1:0];
else begin
data_cnt_ns = data_cnt;
if (rd_victim_end != rd_victim_sel_r) rd_victim_sel_ns = rd_victim_sel_r + 3'h1;
else begin
rd_victim_sel_ns = 3'h0;
if (agg_samp_ns == ZERO) zero_ns = zero_r + ONE[SAMP_CNT_WIDTH-1:0];
if (agg_samp_ns == ONEEIGHTY) oneeighty_ns = oneeighty_r + ONE[SAMP_CNT_WIDTH-1:0];
agg_samp_ns = NULL;
if (~samp_end) samps_ns = samps_r - ONE[SAMP_CNT_WIDTH-1:0];
else samp_done_ns = 1'b1;
end
end
if (samp_done_ns) sm_ns = /*AK("READY")*/1'd0;
else oclk_calib_resume_ns = ~complex_oclkdelay_calib_start && data_end;
end
end
endcase // case (sm_r)
end // always @ begin
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_samp #
(parameter nCK_PER_CLK = 4,
parameter OCAL_SIMPLE_SCAN_SAMPS = 2,
parameter SCAN_PCT_SAMPS_SOLID = 95,
parameter TCQ = 100,
parameter SIM_CAL_OPTION = "NONE")
(/*AUTOARG*/
// Outputs
samp_done, oclk_calib_resume, rd_victim_sel, samp_result,
// Inputs
complex_oclkdelay_calib_start, clk, rst, reset_scan,
ocal_num_samples_inc, match, phy_rddata_en_1, taps_set
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
localparam ONE = 1;
localparam CMPLX_DATA_CNT = nCK_PER_CLK == 2 ? 157 * 2 : 157;
localparam SIMP_DATA_CNT = nCK_PER_CLK == 2 ? 2 : 1;
localparam DATA_CNT_WIDTH = nCK_PER_CLK == 2 ? 9 : 8;
localparam CMPLX_SAMPS = SIM_CAL_OPTION == "NONE" ? 50 : 1;
// Plus one because were counting in natural numbers.
localparam SAMP_CNT_WIDTH = clogb2(OCAL_SIMPLE_SCAN_SAMPS > CMPLX_SAMPS
? OCAL_SIMPLE_SCAN_SAMPS : CMPLX_SAMPS) + 1;
// Remember SAMPLES is natural number counting. One corresponds to one sample.
localparam integer SIMP_SAMPS_SOLID_THRESH = OCAL_SIMPLE_SCAN_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
localparam integer CMPLX_SAMPS_SOLID_THRESH = CMPLX_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
input complex_oclkdelay_calib_start;
wire [SAMP_CNT_WIDTH-1:0] samples = complex_oclkdelay_calib_start
? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
localparam [1:0] NULL = 2'b11,
FUZZ = 2'b00,
ONEEIGHTY = 2'b10,
ZERO = 2'b01;
input clk;
input rst;
input reset_scan;
// Given the need to count phy_data_en, this is not useful.
input ocal_num_samples_inc;
input [1:0] match;
input phy_rddata_en_1;
input taps_set;
reg samp_done_ns, samp_done_r;
always @(posedge clk) samp_done_r <= #TCQ samp_done_ns;
output samp_done;
assign samp_done = samp_done_r;
reg [1:0] agg_samp_ns, agg_samp_r;
always @(posedge clk) agg_samp_r <= #TCQ agg_samp_ns;
reg oclk_calib_resume_ns, oclk_calib_resume_r;
always @(posedge clk) oclk_calib_resume_r <= #TCQ oclk_calib_resume_ns;
output oclk_calib_resume;
assign oclk_calib_resume = oclk_calib_resume_r;
// Complex data counting.
// Inner most loop. 157 phy_data_en.
reg [DATA_CNT_WIDTH-1:0] data_cnt_ns, data_cnt_r;
always @(posedge clk) data_cnt_r <= #TCQ data_cnt_ns;
// Nominally, 50 samples of the above 157 phy_data_en.
reg [SAMP_CNT_WIDTH-1:0] samps_ns, samps_r;
always @(posedge clk) samps_r <= #TCQ samps_ns;
// Step through the 8 bits in the byte.
reg [2:0] rd_victim_sel_ns, rd_victim_sel_r;
always @(posedge clk) rd_victim_sel_r <= #TCQ rd_victim_sel_ns;
output [2:0] rd_victim_sel;
assign rd_victim_sel = rd_victim_sel_r;
reg [SAMP_CNT_WIDTH-1:0] zero_ns, zero_r, oneeighty_ns, oneeighty_r;
always @(posedge clk) zero_r <= #TCQ zero_ns;
always @(posedge clk) oneeighty_r <= #TCQ oneeighty_ns;
output [1:0] samp_result;
assign samp_result[0] = zero_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
assign samp_result[1] = oneeighty_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
reg [0:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
wire [DATA_CNT_WIDTH-1:0] data_cnt = complex_oclkdelay_calib_start
? CMPLX_DATA_CNT[DATA_CNT_WIDTH-1:0]
: SIMP_DATA_CNT[DATA_CNT_WIDTH-1:0];
wire [2:0] rd_victim_end = complex_oclkdelay_calib_start ? 3'h7 : 3'h0;
wire data_end = data_cnt_r == ONE[DATA_CNT_WIDTH-1:0];
wire samp_end = samps_r == ONE[SAMP_CNT_WIDTH-1:0];
// Primary state machine.
always @(*) begin
// Default next state assignments.
agg_samp_ns = agg_samp_r;
data_cnt_ns = data_cnt_r;
oclk_calib_resume_ns = 1'b0;
oneeighty_ns = oneeighty_r;
rd_victim_sel_ns = rd_victim_sel_r;
samp_done_ns = samp_done_r;
samps_ns = samps_r;
sm_ns = sm_r;
zero_ns = zero_r;
if (rst == 1'b1) begin
// RESET next states
sm_ns = /*AK("READY")*/1'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/1'd0:begin
agg_samp_ns = NULL;
data_cnt_ns = data_cnt;
oneeighty_ns = {SAMP_CNT_WIDTH{1'b0}};
rd_victim_sel_ns = 3'b0;
samps_ns = complex_oclkdelay_calib_start ? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
zero_ns = {SAMP_CNT_WIDTH{1'b0}};
if (taps_set) begin
samp_done_ns = 1'b0;
sm_ns = /*AK("AWAITING_DATA")*/1'd1;
oclk_calib_resume_ns = 1'b1;
end
end
/*AL("AWAITING_DATA")*/1'd1:begin
if (phy_rddata_en_1) begin
case (agg_samp_r)
NULL : if (~&match) agg_samp_ns = match;
ZERO, ONEEIGHTY : if (~(agg_samp_r == match || &match)) agg_samp_ns = FUZZ;
FUZZ : ;
endcase // case (agg_samp_r)
if (~data_end) data_cnt_ns = data_cnt_r - ONE[DATA_CNT_WIDTH-1:0];
else begin
data_cnt_ns = data_cnt;
if (rd_victim_end != rd_victim_sel_r) rd_victim_sel_ns = rd_victim_sel_r + 3'h1;
else begin
rd_victim_sel_ns = 3'h0;
if (agg_samp_ns == ZERO) zero_ns = zero_r + ONE[SAMP_CNT_WIDTH-1:0];
if (agg_samp_ns == ONEEIGHTY) oneeighty_ns = oneeighty_r + ONE[SAMP_CNT_WIDTH-1:0];
agg_samp_ns = NULL;
if (~samp_end) samps_ns = samps_r - ONE[SAMP_CNT_WIDTH-1:0];
else samp_done_ns = 1'b1;
end
end
if (samp_done_ns) sm_ns = /*AK("READY")*/1'd0;
else oclk_calib_resume_ns = ~complex_oclkdelay_calib_start && data_end;
end
end
endcase // case (sm_r)
end // always @ begin
endmodule
|
module mig_7series_v2_3_col_mach #
(
parameter TCQ = 100,
parameter BANK_WIDTH = 3,
parameter BURST_MODE = "8",
parameter COL_WIDTH = 12,
parameter CS_WIDTH = 4,
parameter DATA_BUF_ADDR_WIDTH = 8,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DELAY_WR_DATA_CNTRL = 0,
parameter DQS_WIDTH = 8,
parameter DRAM_TYPE = "DDR3",
parameter EARLY_WR_DATA_ADDR = "OFF",
parameter ECC = "OFF",
parameter MC_ERR_ADDR_WIDTH = 31,
parameter nCK_PER_CLK = 2,
parameter nPHY_WRLAT = 0,
parameter RANK_WIDTH = 2,
parameter ROW_WIDTH = 16
)
(/*AUTOARG*/
// Outputs
dq_busy_data, wr_data_offset, mc_wrdata_en, wr_data_en,
wr_data_addr, rd_rmw, ecc_err_addr, ecc_status_valid, wr_ecc_buf, rd_data_end,
rd_data_addr, rd_data_offset, rd_data_en, col_read_fifo_empty,
// Inputs
clk, rst, sent_col, col_size, col_wr_data_buf_addr,
phy_rddata_valid, col_periodic_rd, col_data_buf_addr, col_rmw,
col_rd_wr, col_ra, col_ba, col_row, col_a
);
input clk;
input rst;
input sent_col;
input col_rd_wr;
output reg dq_busy_data = 1'b0;
// The following generates a column command disable based mostly on the type
// of DRAM and the fabric to DRAM CK ratio.
generate
if ((nCK_PER_CLK == 1) && ((BURST_MODE == "8") || (DRAM_TYPE == "DDR3")))
begin : three_bumps
reg [1:0] granted_col_d_r;
wire [1:0] granted_col_d_ns = {sent_col, granted_col_d_r[1]};
always @(posedge clk) granted_col_d_r <= #TCQ granted_col_d_ns;
always @(/*AS*/granted_col_d_r or sent_col)
dq_busy_data = sent_col || |granted_col_d_r;
end
if (((nCK_PER_CLK == 2) && ((BURST_MODE == "8") || (DRAM_TYPE == "DDR3")))
|| ((nCK_PER_CLK == 1) && ((BURST_MODE == "4") || (DRAM_TYPE == "DDR2"))))
begin : one_bump
always @(/*AS*/sent_col) dq_busy_data = sent_col;
end
endgenerate
// This generates a data offset based on fabric clock to DRAM CK ratio and
// the size bit. Note that this is different that the dq_busy_data signal
// generated above.
reg [1:0] offset_r = 2'b0;
reg [1:0] offset_ns = 2'b0;
input col_size;
wire data_end;
generate
if(nCK_PER_CLK == 4) begin : data_valid_4_1
// For 4:1 mode all data is transfered in a single beat so the default
// values of 0 for offset_r/offset_ns suffice - just tie off data_end
assign data_end = 1'b1;
end
else begin
if(DATA_BUF_OFFSET_WIDTH == 2) begin : data_valid_1_1
always @(col_size or offset_r or rst or sent_col) begin
if (rst) offset_ns = 2'b0;
else begin
offset_ns = offset_r;
if (sent_col) offset_ns = 2'b1;
else if (|offset_r && (offset_r != {col_size, 1'b1}))
offset_ns = offset_r + 2'b1;
else offset_ns = 2'b0;
end
end
always @(posedge clk) offset_r <= #TCQ offset_ns;
assign data_end = col_size ? (offset_r == 2'b11) : offset_r[0];
end
else begin : data_valid_2_1
always @(col_size or rst or sent_col)
offset_ns[0] = rst ? 1'b0 : sent_col && col_size;
always @(posedge clk) offset_r[0] <= #TCQ offset_ns[0];
assign data_end = col_size ? offset_r[0] : 1'b1;
end
end
endgenerate
reg [DATA_BUF_OFFSET_WIDTH-1:0] offset_r1 = {DATA_BUF_OFFSET_WIDTH{1'b0}};
reg [DATA_BUF_OFFSET_WIDTH-1:0] offset_r2 = {DATA_BUF_OFFSET_WIDTH{1'b0}};
reg col_rd_wr_r1;
reg col_rd_wr_r2;
generate
if ((nPHY_WRLAT >= 1) || (DELAY_WR_DATA_CNTRL == 1)) begin : offset_pipe_0
always @(posedge clk) offset_r1 <=
#TCQ offset_r[DATA_BUF_OFFSET_WIDTH-1:0];
always @(posedge clk) col_rd_wr_r1 <= #TCQ col_rd_wr;
end
if(nPHY_WRLAT == 2) begin : offset_pipe_1
always @(posedge clk) offset_r2 <=
#TCQ offset_r1[DATA_BUF_OFFSET_WIDTH-1:0];
always @(posedge clk) col_rd_wr_r2 <= #TCQ col_rd_wr_r1;
end
endgenerate
output wire [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset;
assign wr_data_offset = (DELAY_WR_DATA_CNTRL == 1)
? offset_r1[DATA_BUF_OFFSET_WIDTH-1:0]
: (EARLY_WR_DATA_ADDR == "OFF")
? offset_r[DATA_BUF_OFFSET_WIDTH-1:0]
: offset_ns[DATA_BUF_OFFSET_WIDTH-1:0];
reg sent_col_r1;
reg sent_col_r2;
always @(posedge clk) sent_col_r1 <= #TCQ sent_col;
always @(posedge clk) sent_col_r2 <= #TCQ sent_col_r1;
wire wrdata_en = (nPHY_WRLAT == 0) ?
(sent_col || |offset_r) & ~col_rd_wr :
(nPHY_WRLAT == 1) ?
(sent_col_r1 || |offset_r1) & ~col_rd_wr_r1 :
//(nPHY_WRLAT >= 2) ?
(sent_col_r2 || |offset_r2) & ~col_rd_wr_r2;
output wire mc_wrdata_en;
assign mc_wrdata_en = wrdata_en;
output wire wr_data_en;
assign wr_data_en = (DELAY_WR_DATA_CNTRL == 1)
? ((sent_col_r1 || |offset_r1) && ~col_rd_wr_r1)
: ((sent_col || |offset_r) && ~col_rd_wr);
input [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr;
output wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr;
generate
if (DELAY_WR_DATA_CNTRL == 1) begin : delay_wr_data_cntrl_eq_1
reg [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr_r;
always @(posedge clk) col_wr_data_buf_addr_r <=
#TCQ col_wr_data_buf_addr;
assign wr_data_addr = col_wr_data_buf_addr_r;
end
else begin : delay_wr_data_cntrl_ne_1
assign wr_data_addr = col_wr_data_buf_addr;
end
endgenerate
// CAS-RD to mc_rddata_en
wire read_data_valid = (sent_col || |offset_r) && col_rd_wr;
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
// Implement FIFO that records reads as they are sent to the DRAM.
// When phy_rddata_valid is returned some unknown time later, the
// FIFO output is used to control how the data is interpreted.
input phy_rddata_valid;
output wire rd_rmw;
output reg [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr;
output reg ecc_status_valid;
output reg wr_ecc_buf;
output reg rd_data_end;
output reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
output reg [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset;
output reg rd_data_en /* synthesis syn_maxfan = 10 */;
output col_read_fifo_empty;
input col_periodic_rd;
input [DATA_BUF_ADDR_WIDTH-1:0] col_data_buf_addr;
input col_rmw;
input [RANK_WIDTH-1:0] col_ra;
input [BANK_WIDTH-1:0] col_ba;
input [ROW_WIDTH-1:0] col_row;
input [ROW_WIDTH-1:0] col_a;
// Real column address (skip A10/AP and A12/BC#). The maximum width is 12;
// the width will be tailored for the target DRAM downstream.
wire [11:0] col_a_full;
// Minimum row width is 12; take remaining 11 bits after omitting A10/AP
assign col_a_full[10:0] = {col_a[11], col_a[9:0]};
// Get the 12th bit when row address width accommodates it; omit A12/BC#
generate
if (ROW_WIDTH >= 14) begin : COL_A_FULL_11_1
assign col_a_full[11] = col_a[13];
end else begin : COL_A_FULL_11_0
assign col_a_full[11] = 0;
end
endgenerate
// Extract only the width of the target DRAM
wire [COL_WIDTH-1:0] col_a_extracted = col_a_full[COL_WIDTH-1:0];
localparam MC_ERR_LINE_WIDTH = MC_ERR_ADDR_WIDTH-DATA_BUF_OFFSET_WIDTH;
localparam FIFO_WIDTH = 1 /*data_end*/ +
1 /*periodic_rd*/ +
DATA_BUF_ADDR_WIDTH +
DATA_BUF_OFFSET_WIDTH +
((ECC == "OFF") ? 0 : 1+MC_ERR_LINE_WIDTH);
localparam FULL_RAM_CNT = (FIFO_WIDTH/6);
localparam REMAINDER = FIFO_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
generate
begin : read_fifo
wire [MC_ERR_LINE_WIDTH:0] ecc_line;
if (CS_WIDTH == 1)
assign ecc_line = {col_rmw, col_ba, col_row, col_a_extracted};
else
assign ecc_line = {col_rmw,
col_ra,
col_ba,
col_row,
col_a_extracted};
wire [FIFO_WIDTH-1:0] real_fifo_data;
if (ECC == "OFF")
assign real_fifo_data = {data_end,
col_periodic_rd,
col_data_buf_addr,
offset_r[DATA_BUF_OFFSET_WIDTH-1:0]};
else
assign real_fifo_data = {data_end,
col_periodic_rd,
col_data_buf_addr,
offset_r[DATA_BUF_OFFSET_WIDTH-1:0],
ecc_line};
wire [RAM_WIDTH-1:0] fifo_in_data;
if (REMAINDER == 0)
assign fifo_in_data = real_fifo_data;
else
assign fifo_in_data = {{6-REMAINDER{1'b0}}, real_fifo_data};
wire [RAM_WIDTH-1:0] fifo_out_data_ns;
reg [4:0] head_r;
wire [4:0] head_ns = rst ? 5'b0 : read_data_valid
? (head_r + 5'b1)
: head_r;
always @(posedge clk) head_r <= #TCQ head_ns;
reg [4:0] tail_r;
wire [4:0] tail_ns = rst ? 5'b0 : phy_rddata_valid
? (tail_r + 5'b1)
: tail_r;
always @(posedge clk) tail_r <= #TCQ tail_ns;
assign col_read_fifo_empty = head_r == tail_r ? 1'b1 : 1'b0;
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : fifo_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(fifo_out_data_ns[((i*6)+4)+:2]),
.DOB(fifo_out_data_ns[((i*6)+2)+:2]),
.DOC(fifo_out_data_ns[((i*6)+0)+:2]),
.DOD(),
.DIA(fifo_in_data[((i*6)+4)+:2]),
.DIB(fifo_in_data[((i*6)+2)+:2]),
.DIC(fifo_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(tail_ns),
.ADDRB(tail_ns),
.ADDRC(tail_ns),
.ADDRD(head_r),
.WE(1'b1),
.WCLK(clk)
);
end // block: fifo_ram
reg [RAM_WIDTH-1:0] fifo_out_data_r;
always @(posedge clk) fifo_out_data_r <= #TCQ fifo_out_data_ns;
// When ECC is ON, most of the FIFO output is delayed
// by one state.
if (ECC == "OFF") begin
reg periodic_rd;
always @(/*AS*/phy_rddata_valid or fifo_out_data_r) begin
{rd_data_end,
periodic_rd,
rd_data_addr,
rd_data_offset} = fifo_out_data_r[FIFO_WIDTH-1:0];
ecc_err_addr = {MC_ERR_ADDR_WIDTH{1'b0}};
rd_data_en = phy_rddata_valid && ~periodic_rd;
ecc_status_valid = 1'b0;
wr_ecc_buf = 1'b0;
end
assign rd_rmw = 1'b0;
end
else begin
wire rd_data_end_ns;
wire periodic_rd;
wire [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr_ns;
wire [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset_ns;
wire [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr_ns;
assign {rd_data_end_ns,
periodic_rd,
rd_data_addr_ns,
rd_data_offset_ns,
rd_rmw,
ecc_err_addr_ns[DATA_BUF_OFFSET_WIDTH+:MC_ERR_LINE_WIDTH]} =
{fifo_out_data_r[FIFO_WIDTH-1:0]};
assign ecc_err_addr_ns[0+:DATA_BUF_OFFSET_WIDTH] = rd_data_offset_ns;
always @(posedge clk) rd_data_end <= #TCQ rd_data_end_ns;
always @(posedge clk) rd_data_addr <= #TCQ rd_data_addr_ns;
always @(posedge clk) rd_data_offset <= #TCQ rd_data_offset_ns;
always @(posedge clk) ecc_err_addr <= #TCQ ecc_err_addr_ns;
wire rd_data_en_ns = phy_rddata_valid && ~(periodic_rd || rd_rmw);
always @(posedge clk) rd_data_en <= rd_data_en_ns;
wire ecc_status_valid_ns = phy_rddata_valid && ~periodic_rd;
always @(posedge clk) ecc_status_valid <= #TCQ ecc_status_valid_ns;
wire wr_ecc_buf_ns = phy_rddata_valid && ~periodic_rd && rd_rmw;
always @(posedge clk) wr_ecc_buf <= #TCQ wr_ecc_buf_ns;
end
end
endgenerate
endmodule
|
module mig_7series_v2_3_col_mach #
(
parameter TCQ = 100,
parameter BANK_WIDTH = 3,
parameter BURST_MODE = "8",
parameter COL_WIDTH = 12,
parameter CS_WIDTH = 4,
parameter DATA_BUF_ADDR_WIDTH = 8,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DELAY_WR_DATA_CNTRL = 0,
parameter DQS_WIDTH = 8,
parameter DRAM_TYPE = "DDR3",
parameter EARLY_WR_DATA_ADDR = "OFF",
parameter ECC = "OFF",
parameter MC_ERR_ADDR_WIDTH = 31,
parameter nCK_PER_CLK = 2,
parameter nPHY_WRLAT = 0,
parameter RANK_WIDTH = 2,
parameter ROW_WIDTH = 16
)
(/*AUTOARG*/
// Outputs
dq_busy_data, wr_data_offset, mc_wrdata_en, wr_data_en,
wr_data_addr, rd_rmw, ecc_err_addr, ecc_status_valid, wr_ecc_buf, rd_data_end,
rd_data_addr, rd_data_offset, rd_data_en, col_read_fifo_empty,
// Inputs
clk, rst, sent_col, col_size, col_wr_data_buf_addr,
phy_rddata_valid, col_periodic_rd, col_data_buf_addr, col_rmw,
col_rd_wr, col_ra, col_ba, col_row, col_a
);
input clk;
input rst;
input sent_col;
input col_rd_wr;
output reg dq_busy_data = 1'b0;
// The following generates a column command disable based mostly on the type
// of DRAM and the fabric to DRAM CK ratio.
generate
if ((nCK_PER_CLK == 1) && ((BURST_MODE == "8") || (DRAM_TYPE == "DDR3")))
begin : three_bumps
reg [1:0] granted_col_d_r;
wire [1:0] granted_col_d_ns = {sent_col, granted_col_d_r[1]};
always @(posedge clk) granted_col_d_r <= #TCQ granted_col_d_ns;
always @(/*AS*/granted_col_d_r or sent_col)
dq_busy_data = sent_col || |granted_col_d_r;
end
if (((nCK_PER_CLK == 2) && ((BURST_MODE == "8") || (DRAM_TYPE == "DDR3")))
|| ((nCK_PER_CLK == 1) && ((BURST_MODE == "4") || (DRAM_TYPE == "DDR2"))))
begin : one_bump
always @(/*AS*/sent_col) dq_busy_data = sent_col;
end
endgenerate
// This generates a data offset based on fabric clock to DRAM CK ratio and
// the size bit. Note that this is different that the dq_busy_data signal
// generated above.
reg [1:0] offset_r = 2'b0;
reg [1:0] offset_ns = 2'b0;
input col_size;
wire data_end;
generate
if(nCK_PER_CLK == 4) begin : data_valid_4_1
// For 4:1 mode all data is transfered in a single beat so the default
// values of 0 for offset_r/offset_ns suffice - just tie off data_end
assign data_end = 1'b1;
end
else begin
if(DATA_BUF_OFFSET_WIDTH == 2) begin : data_valid_1_1
always @(col_size or offset_r or rst or sent_col) begin
if (rst) offset_ns = 2'b0;
else begin
offset_ns = offset_r;
if (sent_col) offset_ns = 2'b1;
else if (|offset_r && (offset_r != {col_size, 1'b1}))
offset_ns = offset_r + 2'b1;
else offset_ns = 2'b0;
end
end
always @(posedge clk) offset_r <= #TCQ offset_ns;
assign data_end = col_size ? (offset_r == 2'b11) : offset_r[0];
end
else begin : data_valid_2_1
always @(col_size or rst or sent_col)
offset_ns[0] = rst ? 1'b0 : sent_col && col_size;
always @(posedge clk) offset_r[0] <= #TCQ offset_ns[0];
assign data_end = col_size ? offset_r[0] : 1'b1;
end
end
endgenerate
reg [DATA_BUF_OFFSET_WIDTH-1:0] offset_r1 = {DATA_BUF_OFFSET_WIDTH{1'b0}};
reg [DATA_BUF_OFFSET_WIDTH-1:0] offset_r2 = {DATA_BUF_OFFSET_WIDTH{1'b0}};
reg col_rd_wr_r1;
reg col_rd_wr_r2;
generate
if ((nPHY_WRLAT >= 1) || (DELAY_WR_DATA_CNTRL == 1)) begin : offset_pipe_0
always @(posedge clk) offset_r1 <=
#TCQ offset_r[DATA_BUF_OFFSET_WIDTH-1:0];
always @(posedge clk) col_rd_wr_r1 <= #TCQ col_rd_wr;
end
if(nPHY_WRLAT == 2) begin : offset_pipe_1
always @(posedge clk) offset_r2 <=
#TCQ offset_r1[DATA_BUF_OFFSET_WIDTH-1:0];
always @(posedge clk) col_rd_wr_r2 <= #TCQ col_rd_wr_r1;
end
endgenerate
output wire [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset;
assign wr_data_offset = (DELAY_WR_DATA_CNTRL == 1)
? offset_r1[DATA_BUF_OFFSET_WIDTH-1:0]
: (EARLY_WR_DATA_ADDR == "OFF")
? offset_r[DATA_BUF_OFFSET_WIDTH-1:0]
: offset_ns[DATA_BUF_OFFSET_WIDTH-1:0];
reg sent_col_r1;
reg sent_col_r2;
always @(posedge clk) sent_col_r1 <= #TCQ sent_col;
always @(posedge clk) sent_col_r2 <= #TCQ sent_col_r1;
wire wrdata_en = (nPHY_WRLAT == 0) ?
(sent_col || |offset_r) & ~col_rd_wr :
(nPHY_WRLAT == 1) ?
(sent_col_r1 || |offset_r1) & ~col_rd_wr_r1 :
//(nPHY_WRLAT >= 2) ?
(sent_col_r2 || |offset_r2) & ~col_rd_wr_r2;
output wire mc_wrdata_en;
assign mc_wrdata_en = wrdata_en;
output wire wr_data_en;
assign wr_data_en = (DELAY_WR_DATA_CNTRL == 1)
? ((sent_col_r1 || |offset_r1) && ~col_rd_wr_r1)
: ((sent_col || |offset_r) && ~col_rd_wr);
input [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr;
output wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr;
generate
if (DELAY_WR_DATA_CNTRL == 1) begin : delay_wr_data_cntrl_eq_1
reg [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr_r;
always @(posedge clk) col_wr_data_buf_addr_r <=
#TCQ col_wr_data_buf_addr;
assign wr_data_addr = col_wr_data_buf_addr_r;
end
else begin : delay_wr_data_cntrl_ne_1
assign wr_data_addr = col_wr_data_buf_addr;
end
endgenerate
// CAS-RD to mc_rddata_en
wire read_data_valid = (sent_col || |offset_r) && col_rd_wr;
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
// Implement FIFO that records reads as they are sent to the DRAM.
// When phy_rddata_valid is returned some unknown time later, the
// FIFO output is used to control how the data is interpreted.
input phy_rddata_valid;
output wire rd_rmw;
output reg [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr;
output reg ecc_status_valid;
output reg wr_ecc_buf;
output reg rd_data_end;
output reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
output reg [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset;
output reg rd_data_en /* synthesis syn_maxfan = 10 */;
output col_read_fifo_empty;
input col_periodic_rd;
input [DATA_BUF_ADDR_WIDTH-1:0] col_data_buf_addr;
input col_rmw;
input [RANK_WIDTH-1:0] col_ra;
input [BANK_WIDTH-1:0] col_ba;
input [ROW_WIDTH-1:0] col_row;
input [ROW_WIDTH-1:0] col_a;
// Real column address (skip A10/AP and A12/BC#). The maximum width is 12;
// the width will be tailored for the target DRAM downstream.
wire [11:0] col_a_full;
// Minimum row width is 12; take remaining 11 bits after omitting A10/AP
assign col_a_full[10:0] = {col_a[11], col_a[9:0]};
// Get the 12th bit when row address width accommodates it; omit A12/BC#
generate
if (ROW_WIDTH >= 14) begin : COL_A_FULL_11_1
assign col_a_full[11] = col_a[13];
end else begin : COL_A_FULL_11_0
assign col_a_full[11] = 0;
end
endgenerate
// Extract only the width of the target DRAM
wire [COL_WIDTH-1:0] col_a_extracted = col_a_full[COL_WIDTH-1:0];
localparam MC_ERR_LINE_WIDTH = MC_ERR_ADDR_WIDTH-DATA_BUF_OFFSET_WIDTH;
localparam FIFO_WIDTH = 1 /*data_end*/ +
1 /*periodic_rd*/ +
DATA_BUF_ADDR_WIDTH +
DATA_BUF_OFFSET_WIDTH +
((ECC == "OFF") ? 0 : 1+MC_ERR_LINE_WIDTH);
localparam FULL_RAM_CNT = (FIFO_WIDTH/6);
localparam REMAINDER = FIFO_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
generate
begin : read_fifo
wire [MC_ERR_LINE_WIDTH:0] ecc_line;
if (CS_WIDTH == 1)
assign ecc_line = {col_rmw, col_ba, col_row, col_a_extracted};
else
assign ecc_line = {col_rmw,
col_ra,
col_ba,
col_row,
col_a_extracted};
wire [FIFO_WIDTH-1:0] real_fifo_data;
if (ECC == "OFF")
assign real_fifo_data = {data_end,
col_periodic_rd,
col_data_buf_addr,
offset_r[DATA_BUF_OFFSET_WIDTH-1:0]};
else
assign real_fifo_data = {data_end,
col_periodic_rd,
col_data_buf_addr,
offset_r[DATA_BUF_OFFSET_WIDTH-1:0],
ecc_line};
wire [RAM_WIDTH-1:0] fifo_in_data;
if (REMAINDER == 0)
assign fifo_in_data = real_fifo_data;
else
assign fifo_in_data = {{6-REMAINDER{1'b0}}, real_fifo_data};
wire [RAM_WIDTH-1:0] fifo_out_data_ns;
reg [4:0] head_r;
wire [4:0] head_ns = rst ? 5'b0 : read_data_valid
? (head_r + 5'b1)
: head_r;
always @(posedge clk) head_r <= #TCQ head_ns;
reg [4:0] tail_r;
wire [4:0] tail_ns = rst ? 5'b0 : phy_rddata_valid
? (tail_r + 5'b1)
: tail_r;
always @(posedge clk) tail_r <= #TCQ tail_ns;
assign col_read_fifo_empty = head_r == tail_r ? 1'b1 : 1'b0;
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : fifo_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(fifo_out_data_ns[((i*6)+4)+:2]),
.DOB(fifo_out_data_ns[((i*6)+2)+:2]),
.DOC(fifo_out_data_ns[((i*6)+0)+:2]),
.DOD(),
.DIA(fifo_in_data[((i*6)+4)+:2]),
.DIB(fifo_in_data[((i*6)+2)+:2]),
.DIC(fifo_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(tail_ns),
.ADDRB(tail_ns),
.ADDRC(tail_ns),
.ADDRD(head_r),
.WE(1'b1),
.WCLK(clk)
);
end // block: fifo_ram
reg [RAM_WIDTH-1:0] fifo_out_data_r;
always @(posedge clk) fifo_out_data_r <= #TCQ fifo_out_data_ns;
// When ECC is ON, most of the FIFO output is delayed
// by one state.
if (ECC == "OFF") begin
reg periodic_rd;
always @(/*AS*/phy_rddata_valid or fifo_out_data_r) begin
{rd_data_end,
periodic_rd,
rd_data_addr,
rd_data_offset} = fifo_out_data_r[FIFO_WIDTH-1:0];
ecc_err_addr = {MC_ERR_ADDR_WIDTH{1'b0}};
rd_data_en = phy_rddata_valid && ~periodic_rd;
ecc_status_valid = 1'b0;
wr_ecc_buf = 1'b0;
end
assign rd_rmw = 1'b0;
end
else begin
wire rd_data_end_ns;
wire periodic_rd;
wire [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr_ns;
wire [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset_ns;
wire [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr_ns;
assign {rd_data_end_ns,
periodic_rd,
rd_data_addr_ns,
rd_data_offset_ns,
rd_rmw,
ecc_err_addr_ns[DATA_BUF_OFFSET_WIDTH+:MC_ERR_LINE_WIDTH]} =
{fifo_out_data_r[FIFO_WIDTH-1:0]};
assign ecc_err_addr_ns[0+:DATA_BUF_OFFSET_WIDTH] = rd_data_offset_ns;
always @(posedge clk) rd_data_end <= #TCQ rd_data_end_ns;
always @(posedge clk) rd_data_addr <= #TCQ rd_data_addr_ns;
always @(posedge clk) rd_data_offset <= #TCQ rd_data_offset_ns;
always @(posedge clk) ecc_err_addr <= #TCQ ecc_err_addr_ns;
wire rd_data_en_ns = phy_rddata_valid && ~(periodic_rd || rd_rmw);
always @(posedge clk) rd_data_en <= rd_data_en_ns;
wire ecc_status_valid_ns = phy_rddata_valid && ~periodic_rd;
always @(posedge clk) ecc_status_valid <= #TCQ ecc_status_valid_ns;
wire wr_ecc_buf_ns = phy_rddata_valid && ~periodic_rd && rd_rmw;
always @(posedge clk) wr_ecc_buf <= #TCQ wr_ecc_buf_ns;
end
end
endgenerate
endmodule
|
module mig_7series_v2_3_poc_pd #
(parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter SIM_CAL_OPTION = "NONE",
parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
pd_out,
// Inputs
iddr_rst, clk, kclk, mmcm_ps_clk
);
input iddr_rst;
input clk;
input kclk;
input mmcm_ps_clk;
wire q1;
IDDR #
(.DDR_CLK_EDGE ("OPPOSITE_EDGE"),
.INIT_Q1 (1'b0),
.INIT_Q2 (1'b0),
.SRTYPE ("SYNC"))
u_phase_detector
(.Q1 (q1),
.Q2 (),
.C (mmcm_ps_clk),
.CE (1'b1),
.D (kclk),
.R (iddr_rst),
.S (1'b0));
// Path from q1 to xxx_edge_samp must be constrained to be less than 1/4 cycle. FIXME
reg pos_edge_samp;
generate if (SIM_CAL_OPTION == "NONE" || POC_USE_METASTABLE_SAMP == "TRUE") begin : no_eXes
always @(posedge clk) pos_edge_samp <= #TCQ q1;
end else begin : eXes
reg q1_delayed;
reg rising_clk_seen;
always @(posedge mmcm_ps_clk) begin
rising_clk_seen <= 1'b0;
q1_delayed <= 1'bx;
end
always @(posedge clk) begin
rising_clk_seen = 1'b1;
if (rising_clk_seen) q1_delayed <= q1;
end
always @(posedge clk) begin
pos_edge_samp <= q1_delayed;
end
end endgenerate
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pos_edge_samp;
output pd_out;
assign pd_out = pd_out_r;
endmodule
|
module mig_7series_v2_3_poc_pd #
(parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter SIM_CAL_OPTION = "NONE",
parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
pd_out,
// Inputs
iddr_rst, clk, kclk, mmcm_ps_clk
);
input iddr_rst;
input clk;
input kclk;
input mmcm_ps_clk;
wire q1;
IDDR #
(.DDR_CLK_EDGE ("OPPOSITE_EDGE"),
.INIT_Q1 (1'b0),
.INIT_Q2 (1'b0),
.SRTYPE ("SYNC"))
u_phase_detector
(.Q1 (q1),
.Q2 (),
.C (mmcm_ps_clk),
.CE (1'b1),
.D (kclk),
.R (iddr_rst),
.S (1'b0));
// Path from q1 to xxx_edge_samp must be constrained to be less than 1/4 cycle. FIXME
reg pos_edge_samp;
generate if (SIM_CAL_OPTION == "NONE" || POC_USE_METASTABLE_SAMP == "TRUE") begin : no_eXes
always @(posedge clk) pos_edge_samp <= #TCQ q1;
end else begin : eXes
reg q1_delayed;
reg rising_clk_seen;
always @(posedge mmcm_ps_clk) begin
rising_clk_seen <= 1'b0;
q1_delayed <= 1'bx;
end
always @(posedge clk) begin
rising_clk_seen = 1'b1;
if (rising_clk_seen) q1_delayed <= q1;
end
always @(posedge clk) begin
pos_edge_samp <= q1_delayed;
end
end endgenerate
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pos_edge_samp;
output pd_out;
assign pd_out = pd_out_r;
endmodule
|
module mig_7series_v2_3_ddr_of_pre_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input full_in, // FULL flag from OUT_FIFO
input wr_en_in, // write enable from controller
input [WIDTH-1:0] d_in, // write data from controller
output wr_en_out, // write enable to OUT_FIFO
output [WIDTH-1:0] d_out, // write data to OUT_FIFO
output afull // almost full signal to controller
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
((DEPTH == 3) || (DEPTH == 4)) ? 2 :
(((DEPTH == 5) || (DEPTH == 6) ||
(DEPTH == 7) || (DEPTH == 8)) ? 3 :
DEPTH == 9 ? 4 : 'bx);
// Set watermark. Always give the MC 5 cycles to engage flow control.
localparam ALMOST_FULL_VALUE = DEPTH - 5;
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1] ;
reg [8:0] my_empty /* synthesis syn_maxfan = 3 */;
reg [5:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
(* KEEP = "TRUE", max_fanout = 50 *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
(* KEEP = "TRUE", max_fanout = 50 *) reg [PTR_BITS-1:0] wr_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS:0] entry_cnt;
wire [PTR_BITS-1:0] nxt_rd_ptr;
wire [PTR_BITS-1:0] nxt_wr_ptr;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 50 *) wire wr_en;
assign d_out = my_empty[0] ? d_in : mem_out;
assign wr_en_out = !full_in && (!my_empty[1] || wr_en_in);
assign wr_en = wr_en_in & ((!my_empty[3] & !full_in)|(!my_full[2] & full_in));
always @ (posedge clk)
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
assign mem_out = mem[rd_ptr];
assign nxt_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
always @ (posedge clk)
begin
if (rst) begin
rd_ptr <= 'b0;
rd_ptr_timing <= 'b0;
end
else if ((!my_empty[4]) & (!full_in)) begin
rd_ptr <= nxt_rd_ptr;
rd_ptr_timing <= nxt_rd_ptr;
end
end
always @ (posedge clk)
begin
if (rst)
my_empty <= 9'h1ff;
else begin
if (my_empty[2] & !my_full[3] & full_in & wr_en_in)
my_empty[3:0] <= 4'b0000;
else if (!my_empty[2] & !my_full[3] & !full_in & !wr_en_in) begin
my_empty[0] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[1] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[2] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[3] <= (nxt_rd_ptr == wr_ptr_timing);
end
if (my_empty[8] & !my_full[5] & full_in & wr_en_in)
my_empty[8:4] <= 5'b00000;
else if (!my_empty[8] & !my_full[5] & !full_in & !wr_en_in) begin
my_empty[4] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[5] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[6] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[7] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[8] <= (nxt_rd_ptr == wr_ptr_timing);
end
end
end
assign nxt_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
always @ (posedge clk)
begin
if (rst) begin
wr_ptr <= 'b0;
wr_ptr_timing <= 'b0;
end
else if ((wr_en_in) & ((!my_empty[5] & !full_in) | (!my_full[1] & full_in))) begin
wr_ptr <= nxt_wr_ptr;
wr_ptr_timing <= nxt_wr_ptr;
end
end
always @ (posedge clk)
begin
if (rst)
my_full <= 6'b000000;
else if (!my_empty[6] & my_full[0] & !full_in & !wr_en_in)
my_full <= 6'b000000;
else if (!my_empty[6] & !my_full[0] & full_in & wr_en_in) begin
my_full[0] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[1] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[2] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[3] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[4] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[5] <= (nxt_wr_ptr == rd_ptr_timing);
end
end
always @ (posedge clk)
begin
if (rst)
entry_cnt <= 'b0;
else if (wr_en_in & full_in & !my_full[4])
entry_cnt <= entry_cnt + 1'b1;
else if (!wr_en_in & !full_in & !my_empty[7])
entry_cnt <= entry_cnt - 1'b1;
end
assign afull = (entry_cnt >= ALMOST_FULL_VALUE);
endmodule
|
module mig_7series_v2_3_ddr_of_pre_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input full_in, // FULL flag from OUT_FIFO
input wr_en_in, // write enable from controller
input [WIDTH-1:0] d_in, // write data from controller
output wr_en_out, // write enable to OUT_FIFO
output [WIDTH-1:0] d_out, // write data to OUT_FIFO
output afull // almost full signal to controller
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
((DEPTH == 3) || (DEPTH == 4)) ? 2 :
(((DEPTH == 5) || (DEPTH == 6) ||
(DEPTH == 7) || (DEPTH == 8)) ? 3 :
DEPTH == 9 ? 4 : 'bx);
// Set watermark. Always give the MC 5 cycles to engage flow control.
localparam ALMOST_FULL_VALUE = DEPTH - 5;
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1] ;
reg [8:0] my_empty /* synthesis syn_maxfan = 3 */;
reg [5:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
(* KEEP = "TRUE", max_fanout = 50 *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
(* KEEP = "TRUE", max_fanout = 50 *) reg [PTR_BITS-1:0] wr_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS:0] entry_cnt;
wire [PTR_BITS-1:0] nxt_rd_ptr;
wire [PTR_BITS-1:0] nxt_wr_ptr;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 50 *) wire wr_en;
assign d_out = my_empty[0] ? d_in : mem_out;
assign wr_en_out = !full_in && (!my_empty[1] || wr_en_in);
assign wr_en = wr_en_in & ((!my_empty[3] & !full_in)|(!my_full[2] & full_in));
always @ (posedge clk)
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
assign mem_out = mem[rd_ptr];
assign nxt_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
always @ (posedge clk)
begin
if (rst) begin
rd_ptr <= 'b0;
rd_ptr_timing <= 'b0;
end
else if ((!my_empty[4]) & (!full_in)) begin
rd_ptr <= nxt_rd_ptr;
rd_ptr_timing <= nxt_rd_ptr;
end
end
always @ (posedge clk)
begin
if (rst)
my_empty <= 9'h1ff;
else begin
if (my_empty[2] & !my_full[3] & full_in & wr_en_in)
my_empty[3:0] <= 4'b0000;
else if (!my_empty[2] & !my_full[3] & !full_in & !wr_en_in) begin
my_empty[0] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[1] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[2] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[3] <= (nxt_rd_ptr == wr_ptr_timing);
end
if (my_empty[8] & !my_full[5] & full_in & wr_en_in)
my_empty[8:4] <= 5'b00000;
else if (!my_empty[8] & !my_full[5] & !full_in & !wr_en_in) begin
my_empty[4] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[5] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[6] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[7] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[8] <= (nxt_rd_ptr == wr_ptr_timing);
end
end
end
assign nxt_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
always @ (posedge clk)
begin
if (rst) begin
wr_ptr <= 'b0;
wr_ptr_timing <= 'b0;
end
else if ((wr_en_in) & ((!my_empty[5] & !full_in) | (!my_full[1] & full_in))) begin
wr_ptr <= nxt_wr_ptr;
wr_ptr_timing <= nxt_wr_ptr;
end
end
always @ (posedge clk)
begin
if (rst)
my_full <= 6'b000000;
else if (!my_empty[6] & my_full[0] & !full_in & !wr_en_in)
my_full <= 6'b000000;
else if (!my_empty[6] & !my_full[0] & full_in & wr_en_in) begin
my_full[0] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[1] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[2] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[3] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[4] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[5] <= (nxt_wr_ptr == rd_ptr_timing);
end
end
always @ (posedge clk)
begin
if (rst)
entry_cnt <= 'b0;
else if (wr_en_in & full_in & !my_full[4])
entry_cnt <= entry_cnt + 1'b1;
else if (!wr_en_in & !full_in & !my_empty[7])
entry_cnt <= entry_cnt - 1'b1;
end
assign afull = (entry_cnt >= ALMOST_FULL_VALUE);
endmodule
|
module mig_7series_v2_3_ddr_phy_wrlvl_off_delay #
(
parameter TCQ = 100,
parameter tCK = 3636,
parameter nCK_PER_CLK = 2,
parameter CLK_PERIOD = 4,
parameter PO_INITIAL_DLY= 46,
parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter N_CTL_LANES = 3
)
(
input clk,
input rst,
input pi_fine_dly_dec_done,
input cmd_delay_start,
// Control lane being shifted using Phaser_Out fine delay taps
output reg [DQS_CNT_WIDTH:0] ctl_lane_cnt,
// Inc/dec Phaser_Out fine delay line
output reg po_s2_incdec_f,
output reg po_en_s2_f,
// Inc/dec Phaser_Out coarse delay line
output reg po_s2_incdec_c,
output reg po_en_s2_c,
// Completed adjusting delays for dq, dqs for tdqss
output po_ck_addr_cmd_delay_done,
// completed decrementing initialPO delays
output po_dec_done,
output phy_ctl_rdy_dly
);
localparam TAP_LIMIT = 63;
// PO fine delay tap resolution change by frequency. tCK > 2500, need
// twice the amount of taps
// localparam D_DLY_F = (tCK > 2500 ) ? D_DLY * 2 : D_DLY;
// coarse delay tap is added DQ/DQS to meet the TDQSS specification.
localparam TDQSS_DLY = (tCK > 2500 )? 2: 1;
reg delay_done;
reg delay_done_r1;
reg delay_done_r2;
reg delay_done_r3;
reg delay_done_r4;
reg [5:0] po_delay_cnt_r;
reg po_cnt_inc;
reg cmd_delay_start_r1;
reg cmd_delay_start_r2;
reg cmd_delay_start_r3;
reg cmd_delay_start_r4;
reg cmd_delay_start_r5;
reg cmd_delay_start_r6;
reg po_delay_done;
reg po_delay_done_r1;
reg po_delay_done_r2;
reg po_delay_done_r3;
reg po_delay_done_r4;
reg pi_fine_dly_dec_done_r;
reg po_en_stg2_c;
reg po_en_stg2_f;
reg po_stg2_incdec_c;
reg po_stg2_f_incdec;
reg [DQS_CNT_WIDTH:0] lane_cnt_dqs_c_r;
reg [DQS_CNT_WIDTH:0] lane_cnt_po_r;
reg [5:0] delay_cnt_r;
always @(posedge clk) begin
cmd_delay_start_r1 <= #TCQ cmd_delay_start;
cmd_delay_start_r2 <= #TCQ cmd_delay_start_r1;
cmd_delay_start_r3 <= #TCQ cmd_delay_start_r2;
cmd_delay_start_r4 <= #TCQ cmd_delay_start_r3;
cmd_delay_start_r5 <= #TCQ cmd_delay_start_r4;
cmd_delay_start_r6 <= #TCQ cmd_delay_start_r5;
pi_fine_dly_dec_done_r <= #TCQ pi_fine_dly_dec_done;
end
assign phy_ctl_rdy_dly = cmd_delay_start_r6;
// logic for decrementing initial fine delay taps for all PO
// Decrement done for add, ctrl and data phaser outs
assign po_dec_done = (PO_INITIAL_DLY == 0) ? 1 : po_delay_done_r4;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || po_delay_done) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
end else if (po_delay_cnt_r > 6'd0) begin
po_en_stg2_f <= #TCQ ~po_en_stg2_f;
end
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || (po_delay_cnt_r == 6'd0))
// set all the PO delays to 31. Decrement from 46 to 31.
// Requirement comes from dqs_found logic
po_delay_cnt_r <= #TCQ (PO_INITIAL_DLY - 31);
else if ( po_en_stg2_f && (po_delay_cnt_r > 6'd0))
po_delay_cnt_r <= #TCQ po_delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_po_r <= #TCQ 'd0;
else if ( po_en_stg2_f && (po_delay_cnt_r == 6'd1))
lane_cnt_po_r <= #TCQ lane_cnt_po_r + 1;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 )
po_delay_done <= #TCQ 1'b0;
else if ((po_delay_cnt_r == 6'd1) && (lane_cnt_po_r ==1'b0))
po_delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
po_delay_done_r1 <= #TCQ po_delay_done;
po_delay_done_r2 <= #TCQ po_delay_done_r1;
po_delay_done_r3 <= #TCQ po_delay_done_r2;
po_delay_done_r4 <= #TCQ po_delay_done_r3;
end
// logic to select between all PO delays and data path delay.
always @(posedge clk) begin
po_s2_incdec_f <= #TCQ po_stg2_f_incdec;
po_en_s2_f <= #TCQ po_en_stg2_f;
end
// Logic to add 1/4 taps amount of delay to data path for tdqss.
// After all the initial PO delays are decremented the 1/4 delay will
// be added. Coarse delay taps will be added here .
// Delay added only to data path
assign po_ck_addr_cmd_delay_done = (TDQSS_DLY == 0) ? pi_fine_dly_dec_done_r
: delay_done_r4;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || delay_done) begin
po_stg2_incdec_c <= #TCQ 1'b1;
po_en_stg2_c <= #TCQ 1'b0;
end else if (delay_cnt_r > 6'd0) begin
po_en_stg2_c <= #TCQ ~po_en_stg2_c;
end
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || (delay_cnt_r == 6'd0))
delay_cnt_r <= #TCQ TDQSS_DLY;
else if ( po_en_stg2_c && (delay_cnt_r > 6'd0))
delay_cnt_r <= #TCQ delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_dqs_c_r <= #TCQ 'd0;
else if ( po_en_stg2_c && (delay_cnt_r == 6'd1))
lane_cnt_dqs_c_r <= #TCQ lane_cnt_dqs_c_r + 1;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r)
delay_done <= #TCQ 1'b0;
else if ((delay_cnt_r == 6'd1) && (lane_cnt_dqs_c_r == 1'b0))
delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
delay_done_r1 <= #TCQ delay_done;
delay_done_r2 <= #TCQ delay_done_r1;
delay_done_r3 <= #TCQ delay_done_r2;
delay_done_r4 <= #TCQ delay_done_r3;
end
always @(posedge clk) begin
po_s2_incdec_c <= #TCQ po_stg2_incdec_c;
po_en_s2_c <= #TCQ po_en_stg2_c;
ctl_lane_cnt <= #TCQ lane_cnt_dqs_c_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_wrlvl_off_delay #
(
parameter TCQ = 100,
parameter tCK = 3636,
parameter nCK_PER_CLK = 2,
parameter CLK_PERIOD = 4,
parameter PO_INITIAL_DLY= 46,
parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter N_CTL_LANES = 3
)
(
input clk,
input rst,
input pi_fine_dly_dec_done,
input cmd_delay_start,
// Control lane being shifted using Phaser_Out fine delay taps
output reg [DQS_CNT_WIDTH:0] ctl_lane_cnt,
// Inc/dec Phaser_Out fine delay line
output reg po_s2_incdec_f,
output reg po_en_s2_f,
// Inc/dec Phaser_Out coarse delay line
output reg po_s2_incdec_c,
output reg po_en_s2_c,
// Completed adjusting delays for dq, dqs for tdqss
output po_ck_addr_cmd_delay_done,
// completed decrementing initialPO delays
output po_dec_done,
output phy_ctl_rdy_dly
);
localparam TAP_LIMIT = 63;
// PO fine delay tap resolution change by frequency. tCK > 2500, need
// twice the amount of taps
// localparam D_DLY_F = (tCK > 2500 ) ? D_DLY * 2 : D_DLY;
// coarse delay tap is added DQ/DQS to meet the TDQSS specification.
localparam TDQSS_DLY = (tCK > 2500 )? 2: 1;
reg delay_done;
reg delay_done_r1;
reg delay_done_r2;
reg delay_done_r3;
reg delay_done_r4;
reg [5:0] po_delay_cnt_r;
reg po_cnt_inc;
reg cmd_delay_start_r1;
reg cmd_delay_start_r2;
reg cmd_delay_start_r3;
reg cmd_delay_start_r4;
reg cmd_delay_start_r5;
reg cmd_delay_start_r6;
reg po_delay_done;
reg po_delay_done_r1;
reg po_delay_done_r2;
reg po_delay_done_r3;
reg po_delay_done_r4;
reg pi_fine_dly_dec_done_r;
reg po_en_stg2_c;
reg po_en_stg2_f;
reg po_stg2_incdec_c;
reg po_stg2_f_incdec;
reg [DQS_CNT_WIDTH:0] lane_cnt_dqs_c_r;
reg [DQS_CNT_WIDTH:0] lane_cnt_po_r;
reg [5:0] delay_cnt_r;
always @(posedge clk) begin
cmd_delay_start_r1 <= #TCQ cmd_delay_start;
cmd_delay_start_r2 <= #TCQ cmd_delay_start_r1;
cmd_delay_start_r3 <= #TCQ cmd_delay_start_r2;
cmd_delay_start_r4 <= #TCQ cmd_delay_start_r3;
cmd_delay_start_r5 <= #TCQ cmd_delay_start_r4;
cmd_delay_start_r6 <= #TCQ cmd_delay_start_r5;
pi_fine_dly_dec_done_r <= #TCQ pi_fine_dly_dec_done;
end
assign phy_ctl_rdy_dly = cmd_delay_start_r6;
// logic for decrementing initial fine delay taps for all PO
// Decrement done for add, ctrl and data phaser outs
assign po_dec_done = (PO_INITIAL_DLY == 0) ? 1 : po_delay_done_r4;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || po_delay_done) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
end else if (po_delay_cnt_r > 6'd0) begin
po_en_stg2_f <= #TCQ ~po_en_stg2_f;
end
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || (po_delay_cnt_r == 6'd0))
// set all the PO delays to 31. Decrement from 46 to 31.
// Requirement comes from dqs_found logic
po_delay_cnt_r <= #TCQ (PO_INITIAL_DLY - 31);
else if ( po_en_stg2_f && (po_delay_cnt_r > 6'd0))
po_delay_cnt_r <= #TCQ po_delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_po_r <= #TCQ 'd0;
else if ( po_en_stg2_f && (po_delay_cnt_r == 6'd1))
lane_cnt_po_r <= #TCQ lane_cnt_po_r + 1;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 )
po_delay_done <= #TCQ 1'b0;
else if ((po_delay_cnt_r == 6'd1) && (lane_cnt_po_r ==1'b0))
po_delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
po_delay_done_r1 <= #TCQ po_delay_done;
po_delay_done_r2 <= #TCQ po_delay_done_r1;
po_delay_done_r3 <= #TCQ po_delay_done_r2;
po_delay_done_r4 <= #TCQ po_delay_done_r3;
end
// logic to select between all PO delays and data path delay.
always @(posedge clk) begin
po_s2_incdec_f <= #TCQ po_stg2_f_incdec;
po_en_s2_f <= #TCQ po_en_stg2_f;
end
// Logic to add 1/4 taps amount of delay to data path for tdqss.
// After all the initial PO delays are decremented the 1/4 delay will
// be added. Coarse delay taps will be added here .
// Delay added only to data path
assign po_ck_addr_cmd_delay_done = (TDQSS_DLY == 0) ? pi_fine_dly_dec_done_r
: delay_done_r4;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || delay_done) begin
po_stg2_incdec_c <= #TCQ 1'b1;
po_en_stg2_c <= #TCQ 1'b0;
end else if (delay_cnt_r > 6'd0) begin
po_en_stg2_c <= #TCQ ~po_en_stg2_c;
end
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || (delay_cnt_r == 6'd0))
delay_cnt_r <= #TCQ TDQSS_DLY;
else if ( po_en_stg2_c && (delay_cnt_r > 6'd0))
delay_cnt_r <= #TCQ delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_dqs_c_r <= #TCQ 'd0;
else if ( po_en_stg2_c && (delay_cnt_r == 6'd1))
lane_cnt_dqs_c_r <= #TCQ lane_cnt_dqs_c_r + 1;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r)
delay_done <= #TCQ 1'b0;
else if ((delay_cnt_r == 6'd1) && (lane_cnt_dqs_c_r == 1'b0))
delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
delay_done_r1 <= #TCQ delay_done;
delay_done_r2 <= #TCQ delay_done_r1;
delay_done_r3 <= #TCQ delay_done_r2;
delay_done_r4 <= #TCQ delay_done_r3;
end
always @(posedge clk) begin
po_s2_incdec_c <= #TCQ po_stg2_incdec_c;
po_en_s2_c <= #TCQ po_en_stg2_c;
ctl_lane_cnt <= #TCQ lane_cnt_dqs_c_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_wrlvl_off_delay #
(
parameter TCQ = 100,
parameter tCK = 3636,
parameter nCK_PER_CLK = 2,
parameter CLK_PERIOD = 4,
parameter PO_INITIAL_DLY= 46,
parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter N_CTL_LANES = 3
)
(
input clk,
input rst,
input pi_fine_dly_dec_done,
input cmd_delay_start,
// Control lane being shifted using Phaser_Out fine delay taps
output reg [DQS_CNT_WIDTH:0] ctl_lane_cnt,
// Inc/dec Phaser_Out fine delay line
output reg po_s2_incdec_f,
output reg po_en_s2_f,
// Inc/dec Phaser_Out coarse delay line
output reg po_s2_incdec_c,
output reg po_en_s2_c,
// Completed adjusting delays for dq, dqs for tdqss
output po_ck_addr_cmd_delay_done,
// completed decrementing initialPO delays
output po_dec_done,
output phy_ctl_rdy_dly
);
localparam TAP_LIMIT = 63;
// PO fine delay tap resolution change by frequency. tCK > 2500, need
// twice the amount of taps
// localparam D_DLY_F = (tCK > 2500 ) ? D_DLY * 2 : D_DLY;
// coarse delay tap is added DQ/DQS to meet the TDQSS specification.
localparam TDQSS_DLY = (tCK > 2500 )? 2: 1;
reg delay_done;
reg delay_done_r1;
reg delay_done_r2;
reg delay_done_r3;
reg delay_done_r4;
reg [5:0] po_delay_cnt_r;
reg po_cnt_inc;
reg cmd_delay_start_r1;
reg cmd_delay_start_r2;
reg cmd_delay_start_r3;
reg cmd_delay_start_r4;
reg cmd_delay_start_r5;
reg cmd_delay_start_r6;
reg po_delay_done;
reg po_delay_done_r1;
reg po_delay_done_r2;
reg po_delay_done_r3;
reg po_delay_done_r4;
reg pi_fine_dly_dec_done_r;
reg po_en_stg2_c;
reg po_en_stg2_f;
reg po_stg2_incdec_c;
reg po_stg2_f_incdec;
reg [DQS_CNT_WIDTH:0] lane_cnt_dqs_c_r;
reg [DQS_CNT_WIDTH:0] lane_cnt_po_r;
reg [5:0] delay_cnt_r;
always @(posedge clk) begin
cmd_delay_start_r1 <= #TCQ cmd_delay_start;
cmd_delay_start_r2 <= #TCQ cmd_delay_start_r1;
cmd_delay_start_r3 <= #TCQ cmd_delay_start_r2;
cmd_delay_start_r4 <= #TCQ cmd_delay_start_r3;
cmd_delay_start_r5 <= #TCQ cmd_delay_start_r4;
cmd_delay_start_r6 <= #TCQ cmd_delay_start_r5;
pi_fine_dly_dec_done_r <= #TCQ pi_fine_dly_dec_done;
end
assign phy_ctl_rdy_dly = cmd_delay_start_r6;
// logic for decrementing initial fine delay taps for all PO
// Decrement done for add, ctrl and data phaser outs
assign po_dec_done = (PO_INITIAL_DLY == 0) ? 1 : po_delay_done_r4;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || po_delay_done) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
end else if (po_delay_cnt_r > 6'd0) begin
po_en_stg2_f <= #TCQ ~po_en_stg2_f;
end
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || (po_delay_cnt_r == 6'd0))
// set all the PO delays to 31. Decrement from 46 to 31.
// Requirement comes from dqs_found logic
po_delay_cnt_r <= #TCQ (PO_INITIAL_DLY - 31);
else if ( po_en_stg2_f && (po_delay_cnt_r > 6'd0))
po_delay_cnt_r <= #TCQ po_delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_po_r <= #TCQ 'd0;
else if ( po_en_stg2_f && (po_delay_cnt_r == 6'd1))
lane_cnt_po_r <= #TCQ lane_cnt_po_r + 1;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 )
po_delay_done <= #TCQ 1'b0;
else if ((po_delay_cnt_r == 6'd1) && (lane_cnt_po_r ==1'b0))
po_delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
po_delay_done_r1 <= #TCQ po_delay_done;
po_delay_done_r2 <= #TCQ po_delay_done_r1;
po_delay_done_r3 <= #TCQ po_delay_done_r2;
po_delay_done_r4 <= #TCQ po_delay_done_r3;
end
// logic to select between all PO delays and data path delay.
always @(posedge clk) begin
po_s2_incdec_f <= #TCQ po_stg2_f_incdec;
po_en_s2_f <= #TCQ po_en_stg2_f;
end
// Logic to add 1/4 taps amount of delay to data path for tdqss.
// After all the initial PO delays are decremented the 1/4 delay will
// be added. Coarse delay taps will be added here .
// Delay added only to data path
assign po_ck_addr_cmd_delay_done = (TDQSS_DLY == 0) ? pi_fine_dly_dec_done_r
: delay_done_r4;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || delay_done) begin
po_stg2_incdec_c <= #TCQ 1'b1;
po_en_stg2_c <= #TCQ 1'b0;
end else if (delay_cnt_r > 6'd0) begin
po_en_stg2_c <= #TCQ ~po_en_stg2_c;
end
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || (delay_cnt_r == 6'd0))
delay_cnt_r <= #TCQ TDQSS_DLY;
else if ( po_en_stg2_c && (delay_cnt_r > 6'd0))
delay_cnt_r <= #TCQ delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_dqs_c_r <= #TCQ 'd0;
else if ( po_en_stg2_c && (delay_cnt_r == 6'd1))
lane_cnt_dqs_c_r <= #TCQ lane_cnt_dqs_c_r + 1;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r)
delay_done <= #TCQ 1'b0;
else if ((delay_cnt_r == 6'd1) && (lane_cnt_dqs_c_r == 1'b0))
delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
delay_done_r1 <= #TCQ delay_done;
delay_done_r2 <= #TCQ delay_done_r1;
delay_done_r3 <= #TCQ delay_done_r2;
delay_done_r4 <= #TCQ delay_done_r3;
end
always @(posedge clk) begin
po_s2_incdec_c <= #TCQ po_stg2_incdec_c;
po_en_s2_c <= #TCQ po_en_stg2_c;
ctl_lane_cnt <= #TCQ lane_cnt_dqs_c_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_wrlvl_off_delay #
(
parameter TCQ = 100,
parameter tCK = 3636,
parameter nCK_PER_CLK = 2,
parameter CLK_PERIOD = 4,
parameter PO_INITIAL_DLY= 46,
parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter N_CTL_LANES = 3
)
(
input clk,
input rst,
input pi_fine_dly_dec_done,
input cmd_delay_start,
// Control lane being shifted using Phaser_Out fine delay taps
output reg [DQS_CNT_WIDTH:0] ctl_lane_cnt,
// Inc/dec Phaser_Out fine delay line
output reg po_s2_incdec_f,
output reg po_en_s2_f,
// Inc/dec Phaser_Out coarse delay line
output reg po_s2_incdec_c,
output reg po_en_s2_c,
// Completed adjusting delays for dq, dqs for tdqss
output po_ck_addr_cmd_delay_done,
// completed decrementing initialPO delays
output po_dec_done,
output phy_ctl_rdy_dly
);
localparam TAP_LIMIT = 63;
// PO fine delay tap resolution change by frequency. tCK > 2500, need
// twice the amount of taps
// localparam D_DLY_F = (tCK > 2500 ) ? D_DLY * 2 : D_DLY;
// coarse delay tap is added DQ/DQS to meet the TDQSS specification.
localparam TDQSS_DLY = (tCK > 2500 )? 2: 1;
reg delay_done;
reg delay_done_r1;
reg delay_done_r2;
reg delay_done_r3;
reg delay_done_r4;
reg [5:0] po_delay_cnt_r;
reg po_cnt_inc;
reg cmd_delay_start_r1;
reg cmd_delay_start_r2;
reg cmd_delay_start_r3;
reg cmd_delay_start_r4;
reg cmd_delay_start_r5;
reg cmd_delay_start_r6;
reg po_delay_done;
reg po_delay_done_r1;
reg po_delay_done_r2;
reg po_delay_done_r3;
reg po_delay_done_r4;
reg pi_fine_dly_dec_done_r;
reg po_en_stg2_c;
reg po_en_stg2_f;
reg po_stg2_incdec_c;
reg po_stg2_f_incdec;
reg [DQS_CNT_WIDTH:0] lane_cnt_dqs_c_r;
reg [DQS_CNT_WIDTH:0] lane_cnt_po_r;
reg [5:0] delay_cnt_r;
always @(posedge clk) begin
cmd_delay_start_r1 <= #TCQ cmd_delay_start;
cmd_delay_start_r2 <= #TCQ cmd_delay_start_r1;
cmd_delay_start_r3 <= #TCQ cmd_delay_start_r2;
cmd_delay_start_r4 <= #TCQ cmd_delay_start_r3;
cmd_delay_start_r5 <= #TCQ cmd_delay_start_r4;
cmd_delay_start_r6 <= #TCQ cmd_delay_start_r5;
pi_fine_dly_dec_done_r <= #TCQ pi_fine_dly_dec_done;
end
assign phy_ctl_rdy_dly = cmd_delay_start_r6;
// logic for decrementing initial fine delay taps for all PO
// Decrement done for add, ctrl and data phaser outs
assign po_dec_done = (PO_INITIAL_DLY == 0) ? 1 : po_delay_done_r4;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || po_delay_done) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
end else if (po_delay_cnt_r > 6'd0) begin
po_en_stg2_f <= #TCQ ~po_en_stg2_f;
end
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || (po_delay_cnt_r == 6'd0))
// set all the PO delays to 31. Decrement from 46 to 31.
// Requirement comes from dqs_found logic
po_delay_cnt_r <= #TCQ (PO_INITIAL_DLY - 31);
else if ( po_en_stg2_f && (po_delay_cnt_r > 6'd0))
po_delay_cnt_r <= #TCQ po_delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_po_r <= #TCQ 'd0;
else if ( po_en_stg2_f && (po_delay_cnt_r == 6'd1))
lane_cnt_po_r <= #TCQ lane_cnt_po_r + 1;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 )
po_delay_done <= #TCQ 1'b0;
else if ((po_delay_cnt_r == 6'd1) && (lane_cnt_po_r ==1'b0))
po_delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
po_delay_done_r1 <= #TCQ po_delay_done;
po_delay_done_r2 <= #TCQ po_delay_done_r1;
po_delay_done_r3 <= #TCQ po_delay_done_r2;
po_delay_done_r4 <= #TCQ po_delay_done_r3;
end
// logic to select between all PO delays and data path delay.
always @(posedge clk) begin
po_s2_incdec_f <= #TCQ po_stg2_f_incdec;
po_en_s2_f <= #TCQ po_en_stg2_f;
end
// Logic to add 1/4 taps amount of delay to data path for tdqss.
// After all the initial PO delays are decremented the 1/4 delay will
// be added. Coarse delay taps will be added here .
// Delay added only to data path
assign po_ck_addr_cmd_delay_done = (TDQSS_DLY == 0) ? pi_fine_dly_dec_done_r
: delay_done_r4;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || delay_done) begin
po_stg2_incdec_c <= #TCQ 1'b1;
po_en_stg2_c <= #TCQ 1'b0;
end else if (delay_cnt_r > 6'd0) begin
po_en_stg2_c <= #TCQ ~po_en_stg2_c;
end
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || (delay_cnt_r == 6'd0))
delay_cnt_r <= #TCQ TDQSS_DLY;
else if ( po_en_stg2_c && (delay_cnt_r > 6'd0))
delay_cnt_r <= #TCQ delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_dqs_c_r <= #TCQ 'd0;
else if ( po_en_stg2_c && (delay_cnt_r == 6'd1))
lane_cnt_dqs_c_r <= #TCQ lane_cnt_dqs_c_r + 1;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r)
delay_done <= #TCQ 1'b0;
else if ((delay_cnt_r == 6'd1) && (lane_cnt_dqs_c_r == 1'b0))
delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
delay_done_r1 <= #TCQ delay_done;
delay_done_r2 <= #TCQ delay_done_r1;
delay_done_r3 <= #TCQ delay_done_r2;
delay_done_r4 <= #TCQ delay_done_r3;
end
always @(posedge clk) begin
po_s2_incdec_c <= #TCQ po_stg2_incdec_c;
po_en_s2_c <= #TCQ po_en_stg2_c;
ctl_lane_cnt <= #TCQ lane_cnt_dqs_c_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_wrlvl_off_delay #
(
parameter TCQ = 100,
parameter tCK = 3636,
parameter nCK_PER_CLK = 2,
parameter CLK_PERIOD = 4,
parameter PO_INITIAL_DLY= 46,
parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter N_CTL_LANES = 3
)
(
input clk,
input rst,
input pi_fine_dly_dec_done,
input cmd_delay_start,
// Control lane being shifted using Phaser_Out fine delay taps
output reg [DQS_CNT_WIDTH:0] ctl_lane_cnt,
// Inc/dec Phaser_Out fine delay line
output reg po_s2_incdec_f,
output reg po_en_s2_f,
// Inc/dec Phaser_Out coarse delay line
output reg po_s2_incdec_c,
output reg po_en_s2_c,
// Completed adjusting delays for dq, dqs for tdqss
output po_ck_addr_cmd_delay_done,
// completed decrementing initialPO delays
output po_dec_done,
output phy_ctl_rdy_dly
);
localparam TAP_LIMIT = 63;
// PO fine delay tap resolution change by frequency. tCK > 2500, need
// twice the amount of taps
// localparam D_DLY_F = (tCK > 2500 ) ? D_DLY * 2 : D_DLY;
// coarse delay tap is added DQ/DQS to meet the TDQSS specification.
localparam TDQSS_DLY = (tCK > 2500 )? 2: 1;
reg delay_done;
reg delay_done_r1;
reg delay_done_r2;
reg delay_done_r3;
reg delay_done_r4;
reg [5:0] po_delay_cnt_r;
reg po_cnt_inc;
reg cmd_delay_start_r1;
reg cmd_delay_start_r2;
reg cmd_delay_start_r3;
reg cmd_delay_start_r4;
reg cmd_delay_start_r5;
reg cmd_delay_start_r6;
reg po_delay_done;
reg po_delay_done_r1;
reg po_delay_done_r2;
reg po_delay_done_r3;
reg po_delay_done_r4;
reg pi_fine_dly_dec_done_r;
reg po_en_stg2_c;
reg po_en_stg2_f;
reg po_stg2_incdec_c;
reg po_stg2_f_incdec;
reg [DQS_CNT_WIDTH:0] lane_cnt_dqs_c_r;
reg [DQS_CNT_WIDTH:0] lane_cnt_po_r;
reg [5:0] delay_cnt_r;
always @(posedge clk) begin
cmd_delay_start_r1 <= #TCQ cmd_delay_start;
cmd_delay_start_r2 <= #TCQ cmd_delay_start_r1;
cmd_delay_start_r3 <= #TCQ cmd_delay_start_r2;
cmd_delay_start_r4 <= #TCQ cmd_delay_start_r3;
cmd_delay_start_r5 <= #TCQ cmd_delay_start_r4;
cmd_delay_start_r6 <= #TCQ cmd_delay_start_r5;
pi_fine_dly_dec_done_r <= #TCQ pi_fine_dly_dec_done;
end
assign phy_ctl_rdy_dly = cmd_delay_start_r6;
// logic for decrementing initial fine delay taps for all PO
// Decrement done for add, ctrl and data phaser outs
assign po_dec_done = (PO_INITIAL_DLY == 0) ? 1 : po_delay_done_r4;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || po_delay_done) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
end else if (po_delay_cnt_r > 6'd0) begin
po_en_stg2_f <= #TCQ ~po_en_stg2_f;
end
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || (po_delay_cnt_r == 6'd0))
// set all the PO delays to 31. Decrement from 46 to 31.
// Requirement comes from dqs_found logic
po_delay_cnt_r <= #TCQ (PO_INITIAL_DLY - 31);
else if ( po_en_stg2_f && (po_delay_cnt_r > 6'd0))
po_delay_cnt_r <= #TCQ po_delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_po_r <= #TCQ 'd0;
else if ( po_en_stg2_f && (po_delay_cnt_r == 6'd1))
lane_cnt_po_r <= #TCQ lane_cnt_po_r + 1;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 )
po_delay_done <= #TCQ 1'b0;
else if ((po_delay_cnt_r == 6'd1) && (lane_cnt_po_r ==1'b0))
po_delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
po_delay_done_r1 <= #TCQ po_delay_done;
po_delay_done_r2 <= #TCQ po_delay_done_r1;
po_delay_done_r3 <= #TCQ po_delay_done_r2;
po_delay_done_r4 <= #TCQ po_delay_done_r3;
end
// logic to select between all PO delays and data path delay.
always @(posedge clk) begin
po_s2_incdec_f <= #TCQ po_stg2_f_incdec;
po_en_s2_f <= #TCQ po_en_stg2_f;
end
// Logic to add 1/4 taps amount of delay to data path for tdqss.
// After all the initial PO delays are decremented the 1/4 delay will
// be added. Coarse delay taps will be added here .
// Delay added only to data path
assign po_ck_addr_cmd_delay_done = (TDQSS_DLY == 0) ? pi_fine_dly_dec_done_r
: delay_done_r4;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || delay_done) begin
po_stg2_incdec_c <= #TCQ 1'b1;
po_en_stg2_c <= #TCQ 1'b0;
end else if (delay_cnt_r > 6'd0) begin
po_en_stg2_c <= #TCQ ~po_en_stg2_c;
end
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || (delay_cnt_r == 6'd0))
delay_cnt_r <= #TCQ TDQSS_DLY;
else if ( po_en_stg2_c && (delay_cnt_r > 6'd0))
delay_cnt_r <= #TCQ delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_dqs_c_r <= #TCQ 'd0;
else if ( po_en_stg2_c && (delay_cnt_r == 6'd1))
lane_cnt_dqs_c_r <= #TCQ lane_cnt_dqs_c_r + 1;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r)
delay_done <= #TCQ 1'b0;
else if ((delay_cnt_r == 6'd1) && (lane_cnt_dqs_c_r == 1'b0))
delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
delay_done_r1 <= #TCQ delay_done;
delay_done_r2 <= #TCQ delay_done_r1;
delay_done_r3 <= #TCQ delay_done_r2;
delay_done_r4 <= #TCQ delay_done_r3;
end
always @(posedge clk) begin
po_s2_incdec_c <= #TCQ po_stg2_incdec_c;
po_en_s2_c <= #TCQ po_en_stg2_c;
ctl_lane_cnt <= #TCQ lane_cnt_dqs_c_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_wrlvl_off_delay #
(
parameter TCQ = 100,
parameter tCK = 3636,
parameter nCK_PER_CLK = 2,
parameter CLK_PERIOD = 4,
parameter PO_INITIAL_DLY= 46,
parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter N_CTL_LANES = 3
)
(
input clk,
input rst,
input pi_fine_dly_dec_done,
input cmd_delay_start,
// Control lane being shifted using Phaser_Out fine delay taps
output reg [DQS_CNT_WIDTH:0] ctl_lane_cnt,
// Inc/dec Phaser_Out fine delay line
output reg po_s2_incdec_f,
output reg po_en_s2_f,
// Inc/dec Phaser_Out coarse delay line
output reg po_s2_incdec_c,
output reg po_en_s2_c,
// Completed adjusting delays for dq, dqs for tdqss
output po_ck_addr_cmd_delay_done,
// completed decrementing initialPO delays
output po_dec_done,
output phy_ctl_rdy_dly
);
localparam TAP_LIMIT = 63;
// PO fine delay tap resolution change by frequency. tCK > 2500, need
// twice the amount of taps
// localparam D_DLY_F = (tCK > 2500 ) ? D_DLY * 2 : D_DLY;
// coarse delay tap is added DQ/DQS to meet the TDQSS specification.
localparam TDQSS_DLY = (tCK > 2500 )? 2: 1;
reg delay_done;
reg delay_done_r1;
reg delay_done_r2;
reg delay_done_r3;
reg delay_done_r4;
reg [5:0] po_delay_cnt_r;
reg po_cnt_inc;
reg cmd_delay_start_r1;
reg cmd_delay_start_r2;
reg cmd_delay_start_r3;
reg cmd_delay_start_r4;
reg cmd_delay_start_r5;
reg cmd_delay_start_r6;
reg po_delay_done;
reg po_delay_done_r1;
reg po_delay_done_r2;
reg po_delay_done_r3;
reg po_delay_done_r4;
reg pi_fine_dly_dec_done_r;
reg po_en_stg2_c;
reg po_en_stg2_f;
reg po_stg2_incdec_c;
reg po_stg2_f_incdec;
reg [DQS_CNT_WIDTH:0] lane_cnt_dqs_c_r;
reg [DQS_CNT_WIDTH:0] lane_cnt_po_r;
reg [5:0] delay_cnt_r;
always @(posedge clk) begin
cmd_delay_start_r1 <= #TCQ cmd_delay_start;
cmd_delay_start_r2 <= #TCQ cmd_delay_start_r1;
cmd_delay_start_r3 <= #TCQ cmd_delay_start_r2;
cmd_delay_start_r4 <= #TCQ cmd_delay_start_r3;
cmd_delay_start_r5 <= #TCQ cmd_delay_start_r4;
cmd_delay_start_r6 <= #TCQ cmd_delay_start_r5;
pi_fine_dly_dec_done_r <= #TCQ pi_fine_dly_dec_done;
end
assign phy_ctl_rdy_dly = cmd_delay_start_r6;
// logic for decrementing initial fine delay taps for all PO
// Decrement done for add, ctrl and data phaser outs
assign po_dec_done = (PO_INITIAL_DLY == 0) ? 1 : po_delay_done_r4;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || po_delay_done) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
end else if (po_delay_cnt_r > 6'd0) begin
po_en_stg2_f <= #TCQ ~po_en_stg2_f;
end
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || (po_delay_cnt_r == 6'd0))
// set all the PO delays to 31. Decrement from 46 to 31.
// Requirement comes from dqs_found logic
po_delay_cnt_r <= #TCQ (PO_INITIAL_DLY - 31);
else if ( po_en_stg2_f && (po_delay_cnt_r > 6'd0))
po_delay_cnt_r <= #TCQ po_delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_po_r <= #TCQ 'd0;
else if ( po_en_stg2_f && (po_delay_cnt_r == 6'd1))
lane_cnt_po_r <= #TCQ lane_cnt_po_r + 1;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 )
po_delay_done <= #TCQ 1'b0;
else if ((po_delay_cnt_r == 6'd1) && (lane_cnt_po_r ==1'b0))
po_delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
po_delay_done_r1 <= #TCQ po_delay_done;
po_delay_done_r2 <= #TCQ po_delay_done_r1;
po_delay_done_r3 <= #TCQ po_delay_done_r2;
po_delay_done_r4 <= #TCQ po_delay_done_r3;
end
// logic to select between all PO delays and data path delay.
always @(posedge clk) begin
po_s2_incdec_f <= #TCQ po_stg2_f_incdec;
po_en_s2_f <= #TCQ po_en_stg2_f;
end
// Logic to add 1/4 taps amount of delay to data path for tdqss.
// After all the initial PO delays are decremented the 1/4 delay will
// be added. Coarse delay taps will be added here .
// Delay added only to data path
assign po_ck_addr_cmd_delay_done = (TDQSS_DLY == 0) ? pi_fine_dly_dec_done_r
: delay_done_r4;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || delay_done) begin
po_stg2_incdec_c <= #TCQ 1'b1;
po_en_stg2_c <= #TCQ 1'b0;
end else if (delay_cnt_r > 6'd0) begin
po_en_stg2_c <= #TCQ ~po_en_stg2_c;
end
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || (delay_cnt_r == 6'd0))
delay_cnt_r <= #TCQ TDQSS_DLY;
else if ( po_en_stg2_c && (delay_cnt_r > 6'd0))
delay_cnt_r <= #TCQ delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_dqs_c_r <= #TCQ 'd0;
else if ( po_en_stg2_c && (delay_cnt_r == 6'd1))
lane_cnt_dqs_c_r <= #TCQ lane_cnt_dqs_c_r + 1;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r)
delay_done <= #TCQ 1'b0;
else if ((delay_cnt_r == 6'd1) && (lane_cnt_dqs_c_r == 1'b0))
delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
delay_done_r1 <= #TCQ delay_done;
delay_done_r2 <= #TCQ delay_done_r1;
delay_done_r3 <= #TCQ delay_done_r2;
delay_done_r4 <= #TCQ delay_done_r3;
end
always @(posedge clk) begin
po_s2_incdec_c <= #TCQ po_stg2_incdec_c;
po_en_s2_c <= #TCQ po_en_stg2_c;
ctl_lane_cnt <= #TCQ lane_cnt_dqs_c_r;
end
endmodule
|
module mig_7series_v2_3_ecc_gen
#(
parameter CODE_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter DATA_WIDTH = 64
)
(
/*AUTOARG*/
// Outputs
h_rows
);
function integer factorial (input integer i);
integer index;
if (i == 1) factorial = 1;
else begin
factorial = 1;
for (index=2; index<=i; index=index+1)
factorial = factorial * index;
end
endfunction // factorial
function integer combos (input integer n, k);
combos = factorial(n)/(factorial(k)*factorial(n-k));
endfunction // combinations
// function next_combo
// Given a combination, return the next combo in lexicographical
// order. Scans from right to left. Assumes the first combination
// is k ones all of the way to the left.
//
// Upon entry, initialize seen0, trig1, and ones. "seen0" means
// that a zero has been observed while scanning from right to left.
// "trig1" means that a one have been observed _after_ seen0 is set.
// "ones" counts the number of ones observed while scanning the input.
//
// If trig1 is one, just copy the input bit to the output and increment
// to the next bit. Otherwise set the the output bit to zero, if the
// input is a one, increment ones. If the input bit is a one and seen0
// is true, dump out the accumulated ones. Set seen0 to the complement
// of the input bit. Note that seen0 is not used subsequent to trig1
// getting set.
function [ECC_WIDTH-1:0] next_combo (input [ECC_WIDTH-1:0] i);
integer index;
integer dump_index;
reg seen0;
reg trig1;
// integer ones;
reg [ECC_WIDTH-1:0] ones;
begin
seen0 = 1'b0;
trig1 = 1'b0;
ones = 0;
for (index=0; index<ECC_WIDTH; index=index+1)
begin
// The "== 1'bx" is so this will converge at time zero.
// XST assumes false, which should be OK.
if ((&i == 1'bx) || trig1) next_combo[index] = i[index];
else begin
next_combo[index] = 1'b0;
ones = ones + i[index];
if (i[index] && seen0) begin
trig1 = 1'b1;
for (dump_index=index-1; dump_index>=0;dump_index=dump_index-1)
if (dump_index>=index-ones) next_combo[dump_index] = 1'b1;
end
seen0 = ~i[index];
end // else: !if(trig1)
end
end // function
endfunction // next_combo
wire [ECC_WIDTH-1:0] ht_matrix [CODE_WIDTH-1:0];
output wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
localparam COMBOS_3 = combos(ECC_WIDTH, 3);
localparam COMBOS_5 = combos(ECC_WIDTH, 5);
genvar n;
genvar s;
generate
for (n=0; n<CODE_WIDTH; n=n+1) begin : ht
if (n == 0)
assign ht_matrix[n] = {{3{1'b1}}, {ECC_WIDTH-3{1'b0}}};
else if (n == COMBOS_3 && n < DATA_WIDTH)
assign ht_matrix[n] = {{5{1'b1}}, {ECC_WIDTH-5{1'b0}}};
else if ((n == COMBOS_3+COMBOS_5) && n < DATA_WIDTH)
assign ht_matrix[n] = {{7{1'b1}}, {ECC_WIDTH-7{1'b0}}};
else if (n == DATA_WIDTH)
assign ht_matrix[n] = {{1{1'b1}}, {ECC_WIDTH-1{1'b0}}};
else assign ht_matrix[n] = next_combo(ht_matrix[n-1]);
for (s=0; s<ECC_WIDTH; s=s+1) begin : h_row
assign h_rows[s*CODE_WIDTH+n] = ht_matrix[n][s];
end
end
endgenerate
endmodule
|
module mig_7series_v2_3_ecc_gen
#(
parameter CODE_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter DATA_WIDTH = 64
)
(
/*AUTOARG*/
// Outputs
h_rows
);
function integer factorial (input integer i);
integer index;
if (i == 1) factorial = 1;
else begin
factorial = 1;
for (index=2; index<=i; index=index+1)
factorial = factorial * index;
end
endfunction // factorial
function integer combos (input integer n, k);
combos = factorial(n)/(factorial(k)*factorial(n-k));
endfunction // combinations
// function next_combo
// Given a combination, return the next combo in lexicographical
// order. Scans from right to left. Assumes the first combination
// is k ones all of the way to the left.
//
// Upon entry, initialize seen0, trig1, and ones. "seen0" means
// that a zero has been observed while scanning from right to left.
// "trig1" means that a one have been observed _after_ seen0 is set.
// "ones" counts the number of ones observed while scanning the input.
//
// If trig1 is one, just copy the input bit to the output and increment
// to the next bit. Otherwise set the the output bit to zero, if the
// input is a one, increment ones. If the input bit is a one and seen0
// is true, dump out the accumulated ones. Set seen0 to the complement
// of the input bit. Note that seen0 is not used subsequent to trig1
// getting set.
function [ECC_WIDTH-1:0] next_combo (input [ECC_WIDTH-1:0] i);
integer index;
integer dump_index;
reg seen0;
reg trig1;
// integer ones;
reg [ECC_WIDTH-1:0] ones;
begin
seen0 = 1'b0;
trig1 = 1'b0;
ones = 0;
for (index=0; index<ECC_WIDTH; index=index+1)
begin
// The "== 1'bx" is so this will converge at time zero.
// XST assumes false, which should be OK.
if ((&i == 1'bx) || trig1) next_combo[index] = i[index];
else begin
next_combo[index] = 1'b0;
ones = ones + i[index];
if (i[index] && seen0) begin
trig1 = 1'b1;
for (dump_index=index-1; dump_index>=0;dump_index=dump_index-1)
if (dump_index>=index-ones) next_combo[dump_index] = 1'b1;
end
seen0 = ~i[index];
end // else: !if(trig1)
end
end // function
endfunction // next_combo
wire [ECC_WIDTH-1:0] ht_matrix [CODE_WIDTH-1:0];
output wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
localparam COMBOS_3 = combos(ECC_WIDTH, 3);
localparam COMBOS_5 = combos(ECC_WIDTH, 5);
genvar n;
genvar s;
generate
for (n=0; n<CODE_WIDTH; n=n+1) begin : ht
if (n == 0)
assign ht_matrix[n] = {{3{1'b1}}, {ECC_WIDTH-3{1'b0}}};
else if (n == COMBOS_3 && n < DATA_WIDTH)
assign ht_matrix[n] = {{5{1'b1}}, {ECC_WIDTH-5{1'b0}}};
else if ((n == COMBOS_3+COMBOS_5) && n < DATA_WIDTH)
assign ht_matrix[n] = {{7{1'b1}}, {ECC_WIDTH-7{1'b0}}};
else if (n == DATA_WIDTH)
assign ht_matrix[n] = {{1{1'b1}}, {ECC_WIDTH-1{1'b0}}};
else assign ht_matrix[n] = next_combo(ht_matrix[n-1]);
for (s=0; s<ECC_WIDTH; s=s+1) begin : h_row
assign h_rows[s*CODE_WIDTH+n] = ht_matrix[n][s];
end
end
endgenerate
endmodule
|
module mig_7series_v2_3_ddr_mc_phy
#(
// five fields, one per possible I/O bank, 4 bits in each field, 1 per lane data=1/ctl=0
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf,
parameter RCLK_SELECT_BANK = 0,
parameter RCLK_SELECT_LANE = "B",
parameter RCLK_SELECT_EDGE = 4'b1111,
parameter GENERATE_DDR_CK_MAP = "0B",
parameter BYTELANES_DDR_CK = 72'h00_0000_0000_0000_0002,
parameter USE_PRE_POST_FIFO = "TRUE",
parameter SYNTHESIS = "FALSE",
parameter PO_CTL_COARSE_BYPASS = "FALSE",
parameter PI_SEL_CLK_OFFSET = 6,
parameter PHYCTL_CMD_FIFO = "FALSE",
parameter PHY_CLK_RATIO = 4, // phy to controller divide ratio
// common to all i/o banks
parameter PHY_FOUR_WINDOW_CLOCKS = 63,
parameter PHY_EVENTS_DELAY = 18,
parameter PHY_COUNT_EN = "TRUE",
parameter PHY_SYNC_MODE = "TRUE",
parameter PHY_DISABLE_SEQ_MATCH = "FALSE",
parameter MASTER_PHY_CTL = 0,
// common to instance 0
parameter PHY_0_BITLANES = 48'hdffd_fffe_dfff,
parameter PHY_0_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_0_LANE_REMAP = 16'h3210,
parameter PHY_0_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_0_IODELAY_GRP = "IODELAY_MIG",
parameter FPGA_SPEED_GRADE = 1,
parameter BANK_TYPE = "HP_IO", // # = "HP_IO", "HPL_IO", "HR_IO", "HRL_IO"
parameter NUM_DDR_CK = 1,
parameter PHY_0_DATA_CTL = DATA_CTL_B0,
parameter PHY_0_CMD_OFFSET = 0,
parameter PHY_0_RD_CMD_OFFSET_0 = 0,
parameter PHY_0_RD_CMD_OFFSET_1 = 0,
parameter PHY_0_RD_CMD_OFFSET_2 = 0,
parameter PHY_0_RD_CMD_OFFSET_3 = 0,
parameter PHY_0_RD_DURATION_0 = 0,
parameter PHY_0_RD_DURATION_1 = 0,
parameter PHY_0_RD_DURATION_2 = 0,
parameter PHY_0_RD_DURATION_3 = 0,
parameter PHY_0_WR_CMD_OFFSET_0 = 0,
parameter PHY_0_WR_CMD_OFFSET_1 = 0,
parameter PHY_0_WR_CMD_OFFSET_2 = 0,
parameter PHY_0_WR_CMD_OFFSET_3 = 0,
parameter PHY_0_WR_DURATION_0 = 0,
parameter PHY_0_WR_DURATION_1 = 0,
parameter PHY_0_WR_DURATION_2 = 0,
parameter PHY_0_WR_DURATION_3 = 0,
parameter PHY_0_AO_WRLVL_EN = 0,
parameter PHY_0_AO_TOGGLE = 4'b0101, // odd bits are toggle (CKE)
parameter PHY_0_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_0_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_0_A_PI_FREQ_REF_DIV = "NONE",
parameter PHY_0_A_PI_CLKOUT_DIV = 2,
parameter PHY_0_A_PO_CLKOUT_DIV = 2,
parameter PHY_0_A_BURST_MODE = "TRUE",
parameter PHY_0_A_PI_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OCLK_DELAY = 25,
parameter PHY_0_B_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_C_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_D_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_A_PO_OCLKDELAY_INV = "FALSE",
parameter PHY_0_A_OF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_IF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_OSERDES_DATA_RATE = "UNDECLARED",
parameter PHY_0_A_OSERDES_DATA_WIDTH = "UNDECLARED",
parameter PHY_0_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_A_IDELAYE2_IDELAY_TYPE = "VARIABLE",
parameter PHY_0_A_IDELAYE2_IDELAY_VALUE = 00,
parameter PHY_0_B_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_B_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_C_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_C_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_D_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_D_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
// common to instance 1
parameter PHY_1_BITLANES = PHY_0_BITLANES,
parameter PHY_1_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_1_LANE_REMAP = 16'h3210,
parameter PHY_1_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_1_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_1_DATA_CTL = DATA_CTL_B1,
parameter PHY_1_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_1_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_1_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_1_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_1_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_1_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_1_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_1_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_1_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_1_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_1_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_1_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_1_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_1_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_1_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_1_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_1_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_1_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_1_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_1_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_1_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_1_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_1_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV,
parameter PHY_1_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_1_A_BURST_MODE = PHY_0_A_BURST_MODE,
parameter PHY_1_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_1_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC ,
parameter PHY_1_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_1_B_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_C_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_D_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_1_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_B_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_B_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_C_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_C_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_D_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_D_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_1_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
// common to instance 2
parameter PHY_2_BITLANES = PHY_0_BITLANES,
parameter PHY_2_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_2_LANE_REMAP = 16'h3210,
parameter PHY_2_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_2_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_2_DATA_CTL = DATA_CTL_B2,
parameter PHY_2_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_2_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_2_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_2_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_2_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_2_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_2_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_2_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_2_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_2_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_2_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_2_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_2_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_2_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_2_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_2_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_2_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_2_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_2_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_2_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_2_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_2_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_2_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV ,
parameter PHY_2_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_2_A_BURST_MODE = PHY_0_A_BURST_MODE ,
parameter PHY_2_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_2_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC,
parameter PHY_2_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_2_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_2_B_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_C_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_D_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_2_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_B_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_B_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_C_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_C_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_D_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_D_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) || (BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : "TRUE",
parameter PHY_1_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) && ((BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0))) ? "FALSE" : ((PHY_0_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter PHY_2_IS_LAST_BANK = (BYTE_LANES_B2 != 0) && ((BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : ((PHY_0_IS_LAST_BANK || PHY_1_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter TCK = 2500,
// local computational use, do not pass down
parameter N_LANES = (0+BYTE_LANES_B0[0]) + (0+BYTE_LANES_B0[1]) + (0+BYTE_LANES_B0[2]) + (0+BYTE_LANES_B0[3])
+ (0+BYTE_LANES_B1[0]) + (0+BYTE_LANES_B1[1]) + (0+BYTE_LANES_B1[2]) + (0+BYTE_LANES_B1[3]) + (0+BYTE_LANES_B2[0]) + (0+BYTE_LANES_B2[1]) + (0+BYTE_LANES_B2[2]) + (0+BYTE_LANES_B2[3])
, // must not delete comma for syntax
parameter HIGHEST_BANK = (BYTE_LANES_B4 != 0 ? 5 : (BYTE_LANES_B3 != 0 ? 4 : (BYTE_LANES_B2 != 0 ? 3 : (BYTE_LANES_B1 != 0 ? 2 : 1)))),
parameter HIGHEST_LANE_B0 = ((PHY_0_IS_LAST_BANK == "FALSE") ? 4 : BYTE_LANES_B0[3] ? 4 : BYTE_LANES_B0[2] ? 3 : BYTE_LANES_B0[1] ? 2 : BYTE_LANES_B0[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B1 = (HIGHEST_BANK > 2) ? 4 : ( BYTE_LANES_B1[3] ? 4 : BYTE_LANES_B1[2] ? 3 : BYTE_LANES_B1[1] ? 2 : BYTE_LANES_B1[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B2 = (HIGHEST_BANK > 3) ? 4 : ( BYTE_LANES_B2[3] ? 4 : BYTE_LANES_B2[2] ? 3 : BYTE_LANES_B2[1] ? 2 : BYTE_LANES_B2[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B3 = 0,
parameter HIGHEST_LANE_B4 = 0,
parameter HIGHEST_LANE = (HIGHEST_LANE_B4 != 0) ? (HIGHEST_LANE_B4+16) : ((HIGHEST_LANE_B3 != 0) ? (HIGHEST_LANE_B3 + 12) : ((HIGHEST_LANE_B2 != 0) ? (HIGHEST_LANE_B2 + 8) : ((HIGHEST_LANE_B1 != 0) ? (HIGHEST_LANE_B1 + 4) : HIGHEST_LANE_B0))),
parameter LP_DDR_CK_WIDTH = 2,
parameter GENERATE_SIGNAL_SPLIT = "FALSE"
,parameter CKE_ODT_AUX = "FALSE"
)
(
input rst,
input ddr_rst_in_n ,
input phy_clk,
input freq_refclk,
input mem_refclk,
input mem_refclk_div4,
input pll_lock,
input sync_pulse,
input auxout_clk,
input idelayctrl_refclk,
input [HIGHEST_LANE*80-1:0] phy_dout,
input phy_cmd_wr_en,
input phy_data_wr_en,
input phy_rd_en,
input [31:0] phy_ctl_wd,
input [3:0] aux_in_1,
input [3:0] aux_in_2,
input [5:0] data_offset_1,
input [5:0] data_offset_2,
input phy_ctl_wr,
input if_rst,
input if_empty_def,
input cke_in,
input idelay_ce,
input idelay_ld,
input idelay_inc,
input phyGo,
input input_sink,
output if_a_empty,
output if_empty /* synthesis syn_maxfan = 3 */,
output if_empty_or,
output if_empty_and,
output of_ctl_a_full,
output of_data_a_full,
output of_ctl_full,
output of_data_full,
output pre_data_a_full,
output [HIGHEST_LANE*80-1:0] phy_din,
output phy_ctl_a_full,
output wire [3:0] phy_ctl_full,
output [HIGHEST_LANE*12-1:0] mem_dq_out,
output [HIGHEST_LANE*12-1:0] mem_dq_ts,
input [HIGHEST_LANE*10-1:0] mem_dq_in,
output [HIGHEST_LANE-1:0] mem_dqs_out,
output [HIGHEST_LANE-1:0] mem_dqs_ts,
input [HIGHEST_LANE-1:0] mem_dqs_in,
(* IOB = "FORCE" *) output reg [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out, // to memory, odt , 4 per phy controller
output phy_ctl_ready, // to fabric
output reg rst_out, // to memory
output [(NUM_DDR_CK * LP_DDR_CK_WIDTH)-1:0] ddr_clk,
// output rclk,
output mcGo,
output ref_dll_lock,
// calibration signals
input phy_write_calib,
input phy_read_calib,
input [5:0] calib_sel,
input [HIGHEST_BANK-1:0]calib_zero_inputs, // bit calib_sel[2], one per bank
input [HIGHEST_BANK-1:0]calib_zero_ctrl, // one bit per bank, zero's only control lane calibration inputs
input [HIGHEST_LANE-1:0] calib_zero_lanes, // one bit per lane
input calib_in_common,
input [2:0] po_fine_enable,
input [2:0] po_coarse_enable,
input [2:0] po_fine_inc,
input [2:0] po_coarse_inc,
input po_counter_load_en,
input [2:0] po_sel_fine_oclk_delay,
input [8:0] po_counter_load_val,
input po_counter_read_en,
output reg po_coarse_overflow,
output reg po_fine_overflow,
output reg [8:0] po_counter_read_val,
input [HIGHEST_BANK-1:0] pi_rst_dqs_find,
input pi_fine_enable,
input pi_fine_inc,
input pi_counter_load_en,
input pi_counter_read_en,
input [5:0] pi_counter_load_val,
output reg pi_fine_overflow,
output reg [5:0] pi_counter_read_val,
output reg pi_phase_locked,
output pi_phase_locked_all,
output reg pi_dqs_found,
output pi_dqs_found_all,
output pi_dqs_found_any,
output [HIGHEST_LANE-1:0] pi_phase_locked_lanes,
output [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg pi_dqs_out_of_range,
input [29:0] fine_delay,
input fine_delay_sel
);
wire [7:0] calib_zero_inputs_int ;
wire [HIGHEST_BANK*4-1:0] calib_zero_lanes_int ;
//Added the temporary variable for concadination operation
wire [2:0] calib_sel_byte0 ;
wire [2:0] calib_sel_byte1 ;
wire [2:0] calib_sel_byte2 ;
wire [4:0] po_coarse_overflow_w;
wire [4:0] po_fine_overflow_w;
wire [8:0] po_counter_read_val_w[4:0];
wire [4:0] pi_fine_overflow_w;
wire [5:0] pi_counter_read_val_w[4:0];
wire [4:0] pi_dqs_found_w;
wire [4:0] pi_dqs_found_all_w;
wire [4:0] pi_dqs_found_any_w;
wire [4:0] pi_dqs_out_of_range_w;
wire [4:0] pi_phase_locked_w;
wire [4:0] pi_phase_locked_all_w;
wire [4:0] rclk_w;
wire [HIGHEST_BANK-1:0] phy_ctl_ready_w;
wire [(LP_DDR_CK_WIDTH*24)-1:0] ddr_clk_w [HIGHEST_BANK-1:0];
wire [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out_;
wire [3:0] if_q0;
wire [3:0] if_q1;
wire [3:0] if_q2;
wire [3:0] if_q3;
wire [3:0] if_q4;
wire [7:0] if_q5;
wire [7:0] if_q6;
wire [3:0] if_q7;
wire [3:0] if_q8;
wire [3:0] if_q9;
wire [31:0] _phy_ctl_wd;
wire [3:0] aux_in_[4:1];
wire [3:0] rst_out_w;
wire freq_refclk_split;
wire mem_refclk_split;
wire mem_refclk_div4_split;
wire sync_pulse_split;
wire phy_clk_split0;
wire phy_ctl_clk_split0;
wire [31:0] phy_ctl_wd_split0;
wire phy_ctl_wr_split0;
wire phy_ctl_clk_split1;
wire phy_clk_split1;
wire [31:0] phy_ctl_wd_split1;
wire phy_ctl_wr_split1;
wire [5:0] phy_data_offset_1_split1;
wire phy_ctl_clk_split2;
wire phy_clk_split2;
wire [31:0] phy_ctl_wd_split2;
wire phy_ctl_wr_split2;
wire [5:0] phy_data_offset_2_split2;
wire [HIGHEST_LANE*80-1:0] phy_dout_split0;
wire phy_cmd_wr_en_split0;
wire phy_data_wr_en_split0;
wire phy_rd_en_split0;
wire [HIGHEST_LANE*80-1:0] phy_dout_split1;
wire phy_cmd_wr_en_split1;
wire phy_data_wr_en_split1;
wire phy_rd_en_split1;
wire [HIGHEST_LANE*80-1:0] phy_dout_split2;
wire phy_cmd_wr_en_split2;
wire phy_data_wr_en_split2;
wire phy_rd_en_split2;
wire phy_ctl_mstr_empty;
wire [HIGHEST_BANK-1:0] phy_ctl_empty;
wire _phy_ctl_a_full_f;
wire _phy_ctl_a_empty_f;
wire _phy_ctl_full_f;
wire _phy_ctl_empty_f;
wire [HIGHEST_BANK-1:0] _phy_ctl_a_full_p;
wire [HIGHEST_BANK-1:0] _phy_ctl_full_p;
wire [HIGHEST_BANK-1:0] of_ctl_a_full_v;
wire [HIGHEST_BANK-1:0] of_ctl_full_v;
wire [HIGHEST_BANK-1:0] of_data_a_full_v;
wire [HIGHEST_BANK-1:0] of_data_full_v;
wire [HIGHEST_BANK-1:0] pre_data_a_full_v;
wire [HIGHEST_BANK-1:0] if_empty_v;
wire [HIGHEST_BANK-1:0] byte_rd_en_v;
wire [HIGHEST_BANK*2-1:0] byte_rd_en_oth_banks;
wire [HIGHEST_BANK-1:0] if_empty_or_v;
wire [HIGHEST_BANK-1:0] if_empty_and_v;
wire [HIGHEST_BANK-1:0] if_a_empty_v;
localparam IF_ARRAY_MODE = "ARRAY_MODE_4_X_4";
localparam IF_SYNCHRONOUS_MODE = "FALSE";
localparam IF_SLOW_WR_CLK = "FALSE";
localparam IF_SLOW_RD_CLK = "FALSE";
localparam PHY_MULTI_REGION = (HIGHEST_BANK > 1) ? "TRUE" : "FALSE";
localparam RCLK_NEG_EDGE = 3'b000;
localparam RCLK_POS_EDGE = 3'b111;
localparam LP_PHY_0_BYTELANES_DDR_CK = BYTELANES_DDR_CK & 24'hFF_FFFF;
localparam LP_PHY_1_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 24) & 24'hFF_FFFF;
localparam LP_PHY_2_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 48) & 24'hFF_FFFF;
// hi, lo positions for data offset field, MIG doesn't allow defines
localparam PC_DATA_OFFSET_RANGE_HI = 22;
localparam PC_DATA_OFFSET_RANGE_LO = 17;
/* Phaser_In Output source coding table
"PHASE_REF" : 4'b0000;
"DELAYED_MEM_REF" : 4'b0101;
"DELAYED_PHASE_REF" : 4'b0011;
"DELAYED_REF" : 4'b0001;
"FREQ_REF" : 4'b1000;
"MEM_REF" : 4'b0010;
*/
localparam RCLK_PI_OUTPUT_CLK_SRC = "DELAYED_MEM_REF";
localparam DDR_TCK = TCK;
localparam real FREQ_REF_PERIOD = DDR_TCK / (PHY_0_A_PI_FREQ_REF_DIV == "DIV2" ? 2 : 1);
localparam real L_FREQ_REF_PERIOD_NS = FREQ_REF_PERIOD /1000.0;
localparam PO_S3_TAPS = 64 ; // Number of taps per clock cycle in OCLK_DELAYED delay line
localparam PI_S2_TAPS = 128 ; // Number of taps per clock cycle in stage 2 delay line
localparam PO_S2_TAPS = 128 ; // Number of taps per clock cycle in sta
/*
Intrinsic delay of Phaser In Stage 1
@3300ps - 1.939ns - 58.8%
@2500ps - 1.657ns - 66.3%
@1875ps - 1.263ns - 67.4%
@1500ps - 1.021ns - 68.1%
@1250ps - 0.868ns - 69.4%
@1072ps - 0.752ns - 70.1%
@938ps - 0.667ns - 71.1%
*/
// If we use the Delayed Mem_Ref_Clk in the RCLK Phaser_In, then the Stage 1 intrinsic delay is 0.0
// Fraction of a full DDR_TCK period
localparam real PI_STG1_INTRINSIC_DELAY = (RCLK_PI_OUTPUT_CLK_SRC == "DELAYED_MEM_REF") ? 0.0 :
((DDR_TCK < 1005) ? 0.667 :
(DDR_TCK < 1160) ? 0.752 :
(DDR_TCK < 1375) ? 0.868 :
(DDR_TCK < 1685) ? 1.021 :
(DDR_TCK < 2185) ? 1.263 :
(DDR_TCK < 2900) ? 1.657 :
(DDR_TCK < 3100) ? 1.771 : 1.939)*1000;
/*
Intrinsic delay of Phaser In Stage 2
@3300ps - 0.912ns - 27.6% - single tap - 13ps
@3000ps - 0.848ns - 28.3% - single tap - 11ps
@2500ps - 1.264ns - 50.6% - single tap - 19ps
@1875ps - 1.000ns - 53.3% - single tap - 15ps
@1500ps - 0.848ns - 56.5% - single tap - 11ps
@1250ps - 0.736ns - 58.9% - single tap - 9ps
@1072ps - 0.664ns - 61.9% - single tap - 8ps
@938ps - 0.608ns - 64.8% - single tap - 7ps
*/
// Intrinsic delay = (.4218 + .0002freq(MHz))period(ps)
localparam real PI_STG2_INTRINSIC_DELAY = (0.4218*FREQ_REF_PERIOD + 200) + 16.75; // 12ps fudge factor
/*
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 1
@3300ps - 1.294ns - 39.2%
@2500ps - 1.294ns - 51.8%
@1875ps - 1.030ns - 54.9%
@1500ps - 0.878ns - 58.5%
@1250ps - 0.766ns - 61.3%
@1072ps - 0.694ns - 64.7%
@938ps - 0.638ns - 68.0%
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 0
@3300ps - 2.084ns - 63.2% - single tap - 20ps
@2500ps - 2.084ns - 81.9% - single tap - 19ps
@1875ps - 1.676ns - 89.4% - single tap - 15ps
@1500ps - 1.444ns - 96.3% - single tap - 11ps
@1250ps - 1.276ns - 102.1% - single tap - 9ps
@1072ps - 1.164ns - 108.6% - single tap - 8ps
@938ps - 1.076ns - 114.7% - single tap - 7ps
*/
// Fraction of a full DDR_TCK period
localparam real PO_STG1_INTRINSIC_DELAY = 0;
localparam real PO_STG2_FINE_INTRINSIC_DELAY = 0.4218*FREQ_REF_PERIOD + 200 + 42; // 42ps fudge factor
localparam real PO_STG2_COARSE_INTRINSIC_DELAY = 0.2256*FREQ_REF_PERIOD + 200 + 29; // 29ps fudge factor
localparam real PO_STG2_INTRINSIC_DELAY = PO_STG2_FINE_INTRINSIC_DELAY +
(PO_CTL_COARSE_BYPASS == "TRUE" ? 30 : PO_STG2_COARSE_INTRINSIC_DELAY);
// When the PO_STG2_INTRINSIC_DELAY is approximately equal to tCK, then the Phaser Out's circular buffer can
// go metastable. The circular buffer must be prevented from getting into a metastable state. To accomplish this,
// a default programmed value must be programmed into the stage 2 delay. This delay is only needed at reset, adjustments
// to the stage 2 delay can be made after reset is removed.
localparam real PO_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PO_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PO_CIRC_BUF_META_ZONE = 200.0;
localparam PO_CIRC_BUF_EARLY = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? 1'b1 : 1'b0;
localparam real PO_CIRC_BUF_OFFSET = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? DDR_TCK - PO_STG2_INTRINSIC_DELAY : PO_STG2_INTRINSIC_DELAY - DDR_TCK;
// If the stage 2 intrinsic delay is less than the clock period, then see if it is less than the threshold
// If it is not more than the threshold than we must push the delay after the clock period plus a guardband.
//A change in PO_CIRC_BUF_DELAY value will affect the localparam TAP_DEC value(=PO_CIRC_BUF_DELAY - 31) in ddr_phy_ck_addr_cmd_delay.v. Update TAP_DEC value when PO_CIRC_BUF_DELAY is updated.
localparam integer PO_CIRC_BUF_DELAY = 60;
//localparam integer PO_CIRC_BUF_DELAY = PO_CIRC_BUF_EARLY ? (PO_CIRC_BUF_OFFSET > PO_CIRC_BUF_META_ZONE) ? 0 :
// (PO_CIRC_BUF_META_ZONE + PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE :
// (PO_CIRC_BUF_META_ZONE - PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE;
localparam real PI_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PI_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PI_MAX_STG2_DELAY = (PI_S2_TAPS/2 - 1) * PI_S2_TAPS_SIZE;
localparam real PI_INTRINSIC_DELAY = PI_STG1_INTRINSIC_DELAY + PI_STG2_INTRINSIC_DELAY;
localparam real PO_INTRINSIC_DELAY = PO_STG1_INTRINSIC_DELAY + PO_STG2_INTRINSIC_DELAY;
localparam real PO_DELAY = PO_INTRINSIC_DELAY + (PO_CIRC_BUF_DELAY*PO_S2_TAPS_SIZE);
localparam RCLK_BUFIO_DELAY = 1200; // estimate of clock insertion delay of rclk through BUFIO to ioi
// The PI_OFFSET is the difference between the Phaser Out delay path and the intrinsic delay path
// of the Phaser_In that drives the rclk. The objective is to align either the rising edges of the
// oserdes_oclk and the rclk or to align the rising to falling edges depending on which adjustment
// is within the range of the stage 2 delay line in the Phaser_In.
localparam integer RCLK_DELAY_INT= (PI_INTRINSIC_DELAY + RCLK_BUFIO_DELAY);
localparam integer PO_DELAY_INT = PO_DELAY;
localparam PI_OFFSET = (PO_DELAY_INT % DDR_TCK) - (RCLK_DELAY_INT % DDR_TCK);
// if pi_offset >= 0 align to oclk posedge by delaying pi path to where oclk is
// if pi_offset < 0 align to oclk negedge by delaying pi path the additional distance to next oclk edge.
// note that in this case PI_OFFSET is negative so invert before subtracting.
localparam real PI_STG2_DELAY_CAND = PI_OFFSET >= 0
? PI_OFFSET
: ((-PI_OFFSET) < DDR_TCK/2) ?
(DDR_TCK/2 - (- PI_OFFSET)) :
(DDR_TCK - (- PI_OFFSET)) ;
localparam real PI_STG2_DELAY =
(PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY ?
PI_MAX_STG2_DELAY : PI_STG2_DELAY_CAND);
localparam integer DEFAULT_RCLK_DELAY = PI_STG2_DELAY / PI_S2_TAPS_SIZE;
localparam LP_RCLK_SELECT_EDGE = (RCLK_SELECT_EDGE != 4'b1111 ) ? RCLK_SELECT_EDGE : (PI_OFFSET >= 0 ? RCLK_POS_EDGE : (PI_OFFSET <= TCK/2 ? RCLK_NEG_EDGE : RCLK_POS_EDGE));
localparam integer L_PHY_0_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_1_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_2_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam L_PHY_0_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
wire _phy_clk;
wire [2:0] mcGo_w;
wire [HIGHEST_BANK-1:0] ref_dll_lock_w;
reg [15:0] mcGo_r;
assign ref_dll_lock = & ref_dll_lock_w;
initial begin
if ( SYNTHESIS == "FALSE" ) begin
$display("%m : BYTE_LANES_B0 = %x BYTE_LANES_B1 = %x DATA_CTL_B0 = %x DATA_CTL_B1 = %x", BYTE_LANES_B0, BYTE_LANES_B1, DATA_CTL_B0, DATA_CTL_B1);
$display("%m : HIGHEST_LANE = %d HIGHEST_LANE_B0 = %d HIGHEST_LANE_B1 = %d", HIGHEST_LANE, HIGHEST_LANE_B0, HIGHEST_LANE_B1);
$display("%m : HIGHEST_BANK = %d", HIGHEST_BANK);
$display("%m : FREQ_REF_PERIOD = %0.2f ", FREQ_REF_PERIOD);
$display("%m : DDR_TCK = %0d ", DDR_TCK);
$display("%m : PO_S2_TAPS_SIZE = %0.2f ", PO_S2_TAPS_SIZE);
$display("%m : PO_CIRC_BUF_EARLY = %0d ", PO_CIRC_BUF_EARLY);
$display("%m : PO_CIRC_BUF_OFFSET = %0.2f ", PO_CIRC_BUF_OFFSET);
$display("%m : PO_CIRC_BUF_META_ZONE = %0.2f ", PO_CIRC_BUF_META_ZONE);
$display("%m : PO_STG2_FINE_INTR_DLY = %0.2f ", PO_STG2_FINE_INTRINSIC_DELAY);
$display("%m : PO_STG2_COARSE_INTR_DLY = %0.2f ", PO_STG2_COARSE_INTRINSIC_DELAY);
$display("%m : PO_STG2_INTRINSIC_DELAY = %0.2f ", PO_STG2_INTRINSIC_DELAY);
$display("%m : PO_CIRC_BUF_DELAY = %0d ", PO_CIRC_BUF_DELAY);
$display("%m : PO_INTRINSIC_DELAY = %0.2f ", PO_INTRINSIC_DELAY);
$display("%m : PO_DELAY = %0.2f ", PO_DELAY);
$display("%m : PO_OCLK_DELAY = %0d ", PHY_0_A_PO_OCLK_DELAY);
$display("%m : L_PHY_0_PO_FINE_DELAY = %0d ", L_PHY_0_PO_FINE_DELAY);
$display("%m : PI_STG1_INTRINSIC_DELAY = %0.2f ", PI_STG1_INTRINSIC_DELAY);
$display("%m : PI_STG2_INTRINSIC_DELAY = %0.2f ", PI_STG2_INTRINSIC_DELAY);
$display("%m : PI_INTRINSIC_DELAY = %0.2f ", PI_INTRINSIC_DELAY);
$display("%m : PI_MAX_STG2_DELAY = %0.2f ", PI_MAX_STG2_DELAY);
$display("%m : PI_OFFSET = %0.2f ", PI_OFFSET);
if ( PI_OFFSET < 0) $display("%m : a negative PI_OFFSET means that rclk path is longer than oclk path so rclk will be delayed to next oclk edge and the negedge of rclk may be used.");
$display("%m : PI_STG2_DELAY = %0.2f ", PI_STG2_DELAY);
$display("%m :PI_STG2_DELAY_CAND = %0.2f ",PI_STG2_DELAY_CAND);
$display("%m : DEFAULT_RCLK_DELAY = %0d ", DEFAULT_RCLK_DELAY);
$display("%m : RCLK_SELECT_EDGE = %0b ", LP_RCLK_SELECT_EDGE);
end // SYNTHESIS
if ( PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY) $display("WARNING: %m: The required delay though the phaser_in to internally match the aux_out clock to ddr clock exceeds the maximum allowable delay. The clock edge will occur at the output registers of aux_out %0.2f ps before the ddr clock edge. If aux_out is used for memory inputs, this may violate setup or hold time.", PI_STG2_DELAY_CAND - PI_MAX_STG2_DELAY);
end
assign sync_pulse_split = sync_pulse;
assign mem_refclk_split = mem_refclk;
assign freq_refclk_split = freq_refclk;
assign mem_refclk_div4_split = mem_refclk_div4;
assign phy_ctl_clk_split0 = _phy_clk;
assign phy_ctl_wd_split0 = phy_ctl_wd;
assign phy_ctl_wr_split0 = phy_ctl_wr;
assign phy_clk_split0 = phy_clk;
assign phy_cmd_wr_en_split0 = phy_cmd_wr_en;
assign phy_data_wr_en_split0 = phy_data_wr_en;
assign phy_rd_en_split0 = phy_rd_en;
assign phy_dout_split0 = phy_dout;
assign phy_ctl_clk_split1 = phy_clk;
assign phy_ctl_wd_split1 = phy_ctl_wd;
assign phy_data_offset_1_split1 = data_offset_1;
assign phy_ctl_wr_split1 = phy_ctl_wr;
assign phy_clk_split1 = phy_clk;
assign phy_cmd_wr_en_split1 = phy_cmd_wr_en;
assign phy_data_wr_en_split1 = phy_data_wr_en;
assign phy_rd_en_split1 = phy_rd_en;
assign phy_dout_split1 = phy_dout;
assign phy_ctl_clk_split2 = phy_clk;
assign phy_ctl_wd_split2 = phy_ctl_wd;
assign phy_data_offset_2_split2 = data_offset_2;
assign phy_ctl_wr_split2 = phy_ctl_wr;
assign phy_clk_split2 = phy_clk;
assign phy_cmd_wr_en_split2 = phy_cmd_wr_en;
assign phy_data_wr_en_split2 = phy_data_wr_en;
assign phy_rd_en_split2 = phy_rd_en;
assign phy_dout_split2 = phy_dout;
// these wires are needed to coerce correct synthesis
// the synthesizer did not always see the widths of the
// parameters as 4 bits.
wire [3:0] blb0 = BYTE_LANES_B0;
wire [3:0] blb1 = BYTE_LANES_B1;
wire [3:0] blb2 = BYTE_LANES_B2;
wire [3:0] dcb0 = DATA_CTL_B0;
wire [3:0] dcb1 = DATA_CTL_B1;
wire [3:0] dcb2 = DATA_CTL_B2;
assign pi_dqs_found_all = & (pi_dqs_found_lanes | ~ {blb2, blb1, blb0} | ~ {dcb2, dcb1, dcb0});
assign pi_dqs_found_any = | (pi_dqs_found_lanes & {blb2, blb1, blb0} & {dcb2, dcb1, dcb0});
assign pi_phase_locked_all = & pi_phase_locked_all_w[HIGHEST_BANK-1:0];
assign calib_zero_inputs_int = {3'bxxx, calib_zero_inputs};
//Added to remove concadination in the instantiation
assign calib_sel_byte0 = {calib_zero_inputs_int[0], calib_sel[1:0]} ;
assign calib_sel_byte1 = {calib_zero_inputs_int[1], calib_sel[1:0]} ;
assign calib_sel_byte2 = {calib_zero_inputs_int[2], calib_sel[1:0]} ;
assign calib_zero_lanes_int = calib_zero_lanes;
assign phy_ctl_ready = &phy_ctl_ready_w[HIGHEST_BANK-1:0];
assign phy_ctl_mstr_empty = phy_ctl_empty[MASTER_PHY_CTL];
assign of_ctl_a_full = |of_ctl_a_full_v;
assign of_ctl_full = |of_ctl_full_v;
assign of_data_a_full = |of_data_a_full_v;
assign of_data_full = |of_data_full_v;
assign pre_data_a_full= |pre_data_a_full_v;
// if if_empty_def == 1, empty is asserted only if all are empty;
// this allows the user to detect a skewed fifo depth and self-clear
// if desired. It avoids a reset to clear the flags.
assign if_empty = !if_empty_def ? |if_empty_v : &if_empty_v;
assign if_empty_or = |if_empty_or_v;
assign if_empty_and = &if_empty_and_v;
assign if_a_empty = |if_a_empty_v;
generate
genvar i;
for (i = 0; i != NUM_DDR_CK; i = i + 1) begin : ddr_clk_gen
case ((GENERATE_DDR_CK_MAP >> (16*i)) & 16'hffff)
16'h3041: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3042: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3043: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3044: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3141: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3142: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3143: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3144: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3241: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3242: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3243: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3244: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
default : initial $display("ERROR: mc_phy ddr_clk_gen : invalid specification for parameter GENERATE_DDR_CK_MAP , clock index = %d, spec= %x (hex) ", i, (( GENERATE_DDR_CK_MAP >> (16 * i )) & 16'hffff ));
endcase
end
endgenerate
//assign rclk = rclk_w[RCLK_SELECT_BANK];
reg rst_auxout;
reg rst_auxout_r;
reg rst_auxout_rr;
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout_r <= #(1) 1'b1;
rst_auxout_rr <= #(1) 1'b1;
end
else begin
rst_auxout_r <= #(1) rst;
rst_auxout_rr <= #(1) rst_auxout_r;
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
else begin
always @(negedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
localparam L_RESET_SELECT_BANK =
(BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK) ? 0 : RCLK_SELECT_BANK;
always @(*) begin
rst_out = rst_out_w[L_RESET_SELECT_BANK] & ddr_rst_in_n;
end
always @(posedge phy_clk) begin
if ( rst)
mcGo_r <= #(1) 0;
else
mcGo_r <= #(1) (mcGo_r << 1) | &mcGo_w;
end
assign mcGo = mcGo_r[15];
generate
// this is an optional 1 clock delay to add latency to the phy_control programming path
if (PHYCTL_CMD_FIFO == "TRUE") begin : cmd_fifo_soft
reg [31:0] phy_wd_reg = 0;
reg [3:0] aux_in1_reg = 0;
reg [3:0] aux_in2_reg = 0;
reg sfifo_ready = 0;
assign _phy_ctl_wd = phy_wd_reg;
assign aux_in_[1] = aux_in1_reg;
assign aux_in_[2] = aux_in2_reg;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[1] = |_phy_ctl_full_p;
assign phy_ctl_full[2] = |_phy_ctl_full_p;
assign phy_ctl_full[3] = |_phy_ctl_full_p;
assign _phy_clk = phy_clk;
always @(posedge phy_clk) begin
phy_wd_reg <= #1 phy_ctl_wd;
aux_in1_reg <= #1 aux_in_1;
aux_in2_reg <= #1 aux_in_2;
sfifo_ready <= #1 phy_ctl_wr;
end
end
else if (PHYCTL_CMD_FIFO == "FALSE") begin
assign _phy_ctl_wd = phy_ctl_wd;
assign aux_in_[1] = aux_in_1;
assign aux_in_[2] = aux_in_2;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[3:1] = 3'b000;
assign _phy_clk = phy_clk;
end
endgenerate
// instance of four-lane phy
generate
if (HIGHEST_BANK == 3) begin : banks_3
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[5:4] = {byte_rd_en_v[0],byte_rd_en_v[1]};
end
else if (HIGHEST_BANK == 2) begin : banks_2
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],1'b1};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],1'b1};
end
else begin : banks_1
assign byte_rd_en_oth_banks[1:0] = {1'b1,1'b1};
end
if ( BYTE_LANES_B0 != 0) begin : ddr_phy_4lanes_0
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B0), /* four bits, one per lanes */
.DATA_CTL_N (PHY_0_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_0_PO_FINE_DELAY),
.BITLANES (PHY_0_BITLANES),
.BITLANES_OUTONLY (PHY_0_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_0_BYTELANES_DDR_CK),
.LAST_BANK (PHY_0_IS_LAST_BANK),
.LANE_REMAP (PHY_0_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_0_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_0_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_0_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_0_IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_0_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_0_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_0_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_0_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_0_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_0_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_0_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_0_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_0_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_0_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_0_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_0_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_0_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_0_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_0_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_0_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_0_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_0_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_0_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_0_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_0_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_0_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_0_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_0_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_0_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_0_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_0_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_0_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_0_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_0_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_0_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_0_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_0_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_0_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_0_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_0_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_0_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_0_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_0_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_0_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_0_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_0_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_0_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_0_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_0_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_0_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_0_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_0_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_0_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_0_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_0_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split0),
.phy_ctl_clk (phy_ctl_clk_split0),
.phy_ctl_wd (phy_ctl_wd_split0),
.data_offset (phy_ctl_wd_split0[PC_DATA_OFFSET_RANGE_HI : PC_DATA_OFFSET_RANGE_LO]),
.phy_ctl_wr (phy_ctl_wr_split0),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split0[HIGHEST_LANE_B0*80-1:0]),
.phy_cmd_wr_en (phy_cmd_wr_en_split0),
.phy_data_wr_en (phy_data_wr_en_split0),
.phy_rd_en (phy_rd_en_split0),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[0]),
.rclk (),
.rst_out (rst_out_w[0]),
.mcGo (mcGo_w[0]),
.ref_dll_lock (ref_dll_lock_w[0]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[1:0]),
.if_a_empty (if_a_empty_v[0]),
.if_empty (if_empty_v[0]),
.byte_rd_en (byte_rd_en_v[0]),
.if_empty_or (if_empty_or_v[0]),
.if_empty_and (if_empty_and_v[0]),
.of_ctl_a_full (of_ctl_a_full_v[0]),
.of_data_a_full (of_data_a_full_v[0]),
.of_ctl_full (of_ctl_full_v[0]),
.of_data_full (of_data_full_v[0]),
.pre_data_a_full (pre_data_a_full_v[0]),
.phy_din (phy_din[HIGHEST_LANE_B0*80-1:0]),
.phy_ctl_a_full (_phy_ctl_a_full_p[0]),
.phy_ctl_full (_phy_ctl_full_p[0]),
.phy_ctl_empty (phy_ctl_empty[0]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B0*10-1:0]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B0-1:0]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B0-1:0]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B0-1:0]),
.aux_out (aux_out_[3:0]),
.phy_ctl_ready (phy_ctl_ready_w[0]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte0),
.calib_zero_ctrl (calib_zero_ctrl[0]),
.calib_zero_lanes (calib_zero_lanes_int[3:0]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[0]),
.po_fine_enable (po_fine_enable[0]),
.po_fine_inc (po_fine_inc[0]),
.po_coarse_inc (po_coarse_inc[0]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[0]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[0]),
.po_fine_overflow (po_fine_overflow_w[0]),
.po_counter_read_val (po_counter_read_val_w[0]),
.pi_rst_dqs_find (pi_rst_dqs_find[0]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[0]),
.pi_counter_read_val (pi_counter_read_val_w[0]),
.pi_dqs_found (pi_dqs_found_w[0]),
.pi_dqs_found_all (pi_dqs_found_all_w[0]),
.pi_dqs_found_any (pi_dqs_found_any_w[0]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[0]),
.pi_phase_locked (pi_phase_locked_w[0]),
.pi_phase_locked_all (pi_phase_locked_all_w[0]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[0] <= #100 0;
aux_out[2] <= #100 0;
end
else begin
aux_out[0] <= #100 aux_out_[0];
aux_out[2] <= #100 aux_out_[2];
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
end
else begin
if ( HIGHEST_BANK > 0) begin
assign phy_din[HIGHEST_LANE_B0*80-1:0] = 0;
assign _phy_ctl_a_full_p[0] = 0;
assign of_ctl_a_full_v[0] = 0;
assign of_ctl_full_v[0] = 0;
assign of_data_a_full_v[0] = 0;
assign of_data_full_v[0] = 0;
assign pre_data_a_full_v[0] = 0;
assign if_empty_v[0] = 0;
assign byte_rd_en_v[0] = 1;
always @(*)
aux_out[3:0] = 0;
end
assign pi_dqs_found_w[0] = 1;
assign pi_dqs_found_all_w[0] = 1;
assign pi_dqs_found_any_w[0] = 0;
assign pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_out_of_range_w[0] = 0;
assign pi_phase_locked_w[0] = 1;
assign po_fine_overflow_w[0] = 0;
assign po_coarse_overflow_w[0] = 0;
assign po_fine_overflow_w[0] = 0;
assign pi_fine_overflow_w[0] = 0;
assign po_counter_read_val_w[0] = 0;
assign pi_counter_read_val_w[0] = 0;
assign mcGo_w[0] = 1;
if ( RCLK_SELECT_BANK == 0)
always @(*)
aux_out[3:0] = 0;
end
if ( BYTE_LANES_B1 != 0) begin : ddr_phy_4lanes_1
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B1), /* four bits, one per lanes */
.DATA_CTL_N (PHY_1_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_1_PO_FINE_DELAY),
.BITLANES (PHY_1_BITLANES),
.BITLANES_OUTONLY (PHY_1_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_1_BYTELANES_DDR_CK),
.LAST_BANK (PHY_1_IS_LAST_BANK ),
.LANE_REMAP (PHY_1_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_1_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_1_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_1_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_1_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_1_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_1_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_1_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_1_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_1_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_1_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_1_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_1_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_1_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_1_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_1_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_1_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_1_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_1_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_1_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_1_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_1_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_1_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_1_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_1_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_1_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_1_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_1_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_1_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_1_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_1_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_1_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_1_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_1_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_1_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_1_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_1_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_1_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_1_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_1_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_1_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_1_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_1_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_1_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_1_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_1_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_1_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_1_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_1_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_1_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_1_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_1_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_1_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_1_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_1_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_1_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split1),
.phy_ctl_clk (phy_ctl_clk_split1),
.phy_ctl_wd (phy_ctl_wd_split1),
.data_offset (phy_data_offset_1_split1),
.phy_ctl_wr (phy_ctl_wr_split1),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split1[HIGHEST_LANE_B1*80+320-1:320]),
.phy_cmd_wr_en (phy_cmd_wr_en_split1),
.phy_data_wr_en (phy_data_wr_en_split1),
.phy_rd_en (phy_rd_en_split1),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[1]),
.rclk (),
.rst_out (rst_out_w[1]),
.mcGo (mcGo_w[1]),
.ref_dll_lock (ref_dll_lock_w[1]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[3:2]),
.if_a_empty (if_a_empty_v[1]),
.if_empty (if_empty_v[1]),
.byte_rd_en (byte_rd_en_v[1]),
.if_empty_or (if_empty_or_v[1]),
.if_empty_and (if_empty_and_v[1]),
.of_ctl_a_full (of_ctl_a_full_v[1]),
.of_data_a_full (of_data_a_full_v[1]),
.of_ctl_full (of_ctl_full_v[1]),
.of_data_full (of_data_full_v[1]),
.pre_data_a_full (pre_data_a_full_v[1]),
.phy_din (phy_din[HIGHEST_LANE_B1*80+320-1:320]),
.phy_ctl_a_full (_phy_ctl_a_full_p[1]),
.phy_ctl_full (_phy_ctl_full_p[1]),
.phy_ctl_empty (phy_ctl_empty[1]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B1*10+40-1:40]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B1+4-1:4]),
.aux_out (aux_out_[7:4]),
.phy_ctl_ready (phy_ctl_ready_w[1]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte1),
.calib_zero_ctrl (calib_zero_ctrl[1]),
.calib_zero_lanes (calib_zero_lanes_int[7:4]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[1]),
.po_fine_enable (po_fine_enable[1]),
.po_fine_inc (po_fine_inc[1]),
.po_coarse_inc (po_coarse_inc[1]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[1]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[1]),
.po_fine_overflow (po_fine_overflow_w[1]),
.po_counter_read_val (po_counter_read_val_w[1]),
.pi_rst_dqs_find (pi_rst_dqs_find[1]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[1]),
.pi_counter_read_val (pi_counter_read_val_w[1]),
.pi_dqs_found (pi_dqs_found_w[1]),
.pi_dqs_found_all (pi_dqs_found_all_w[1]),
.pi_dqs_found_any (pi_dqs_found_any_w[1]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[1]),
.pi_phase_locked (pi_phase_locked_w[1]),
.pi_phase_locked_all (pi_phase_locked_all_w[1]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[4] <= #100 0;
aux_out[6] <= #100 0;
end
else begin
aux_out[4] <= #100 aux_out_[4];
aux_out[6] <= #100 aux_out_[6];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
end
else begin
if ( HIGHEST_BANK > 1) begin
assign phy_din[HIGHEST_LANE_B1*80+320-1:320] = 0;
assign _phy_ctl_a_full_p[1] = 0;
assign of_ctl_a_full_v[1] = 0;
assign of_ctl_full_v[1] = 0;
assign of_data_a_full_v[1] = 0;
assign of_data_full_v[1] = 0;
assign pre_data_a_full_v[1] = 0;
assign if_empty_v[1] = 0;
assign byte_rd_en_v[1] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
always @(*)
aux_out[7:4] = 0;
end
assign pi_dqs_found_w[1] = 1;
assign pi_dqs_found_all_w[1] = 1;
assign pi_dqs_found_any_w[1] = 0;
assign pi_dqs_out_of_range_w[1] = 0;
assign pi_phase_locked_w[1] = 1;
assign po_coarse_overflow_w[1] = 0;
assign po_fine_overflow_w[1] = 0;
assign pi_fine_overflow_w[1] = 0;
assign po_counter_read_val_w[1] = 0;
assign pi_counter_read_val_w[1] = 0;
assign mcGo_w[1] = 1;
end
if ( BYTE_LANES_B2 != 0) begin : ddr_phy_4lanes_2
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B2), /* four bits, one per lanes */
.DATA_CTL_N (PHY_2_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_2_PO_FINE_DELAY),
.BITLANES (PHY_2_BITLANES),
.BITLANES_OUTONLY (PHY_2_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_2_BYTELANES_DDR_CK),
.LAST_BANK (PHY_2_IS_LAST_BANK ),
.LANE_REMAP (PHY_2_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_2_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_2_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_2_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_2_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_2_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_2_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_2_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_2_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_2_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_2_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_2_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_2_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_2_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_2_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_2_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_2_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_2_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_2_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_2_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_2_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_2_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_2_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_2_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_2_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_2_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_2_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_2_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_2_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_2_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_2_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_2_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_2_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_2_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_2_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_2_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_2_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_2_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_2_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_2_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_2_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_2_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_2_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_2_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_2_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_2_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_2_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_2_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_2_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_2_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_2_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_2_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_2_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_2_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_2_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_2_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split2),
.phy_ctl_clk (phy_ctl_clk_split2),
.phy_ctl_wd (phy_ctl_wd_split2),
.data_offset (phy_data_offset_2_split2),
.phy_ctl_wr (phy_ctl_wr_split2),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split2[HIGHEST_LANE_B2*80+640-1:640]),
.phy_cmd_wr_en (phy_cmd_wr_en_split2),
.phy_data_wr_en (phy_data_wr_en_split2),
.phy_rd_en (phy_rd_en_split2),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[2]),
.rclk (),
.rst_out (rst_out_w[2]),
.mcGo (mcGo_w[2]),
.ref_dll_lock (ref_dll_lock_w[2]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[5:4]),
.if_a_empty (if_a_empty_v[2]),
.if_empty (if_empty_v[2]),
.byte_rd_en (byte_rd_en_v[2]),
.if_empty_or (if_empty_or_v[2]),
.if_empty_and (if_empty_and_v[2]),
.of_ctl_a_full (of_ctl_a_full_v[2]),
.of_data_a_full (of_data_a_full_v[2]),
.of_ctl_full (of_ctl_full_v[2]),
.of_data_full (of_data_full_v[2]),
.pre_data_a_full (pre_data_a_full_v[2]),
.phy_din (phy_din[HIGHEST_LANE_B2*80+640-1:640]),
.phy_ctl_a_full (_phy_ctl_a_full_p[2]),
.phy_ctl_full (_phy_ctl_full_p[2]),
.phy_ctl_empty (phy_ctl_empty[2]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B2*10+80-1:80]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B2-1+8:8]),
.aux_out (aux_out_[11:8]),
.phy_ctl_ready (phy_ctl_ready_w[2]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte2),
.calib_zero_ctrl (calib_zero_ctrl[2]),
.calib_zero_lanes (calib_zero_lanes_int[11:8]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[2]),
.po_fine_enable (po_fine_enable[2]),
.po_fine_inc (po_fine_inc[2]),
.po_coarse_inc (po_coarse_inc[2]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[2]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[2]),
.po_fine_overflow (po_fine_overflow_w[2]),
.po_counter_read_val (po_counter_read_val_w[2]),
.pi_rst_dqs_find (pi_rst_dqs_find[2]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[2]),
.pi_counter_read_val (pi_counter_read_val_w[2]),
.pi_dqs_found (pi_dqs_found_w[2]),
.pi_dqs_found_all (pi_dqs_found_all_w[2]),
.pi_dqs_found_any (pi_dqs_found_any_w[2]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[2]),
.pi_phase_locked (pi_phase_locked_w[2]),
.pi_phase_locked_all (pi_phase_locked_all_w[2]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[8] <= #100 0;
aux_out[10] <= #100 0;
end
else begin
aux_out[8] <= #100 aux_out_[8];
aux_out[10] <= #100 aux_out_[10];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
end
else begin
if ( HIGHEST_BANK > 2) begin
assign phy_din[HIGHEST_LANE_B2*80+640-1:640] = 0;
assign _phy_ctl_a_full_p[2] = 0;
assign of_ctl_a_full_v[2] = 0;
assign of_ctl_full_v[2] = 0;
assign of_data_a_full_v[2] = 0;
assign of_data_full_v[2] = 0;
assign pre_data_a_full_v[2] = 0;
assign if_empty_v[2] = 0;
assign byte_rd_en_v[2] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
always @(*)
aux_out[11:8] = 0;
end
assign pi_dqs_found_w[2] = 1;
assign pi_dqs_found_all_w[2] = 1;
assign pi_dqs_found_any_w[2] = 0;
assign pi_dqs_out_of_range_w[2] = 0;
assign pi_phase_locked_w[2] = 1;
assign po_coarse_overflow_w[2] = 0;
assign po_fine_overflow_w[2] = 0;
assign po_counter_read_val_w[2] = 0;
assign pi_counter_read_val_w[2] = 0;
assign mcGo_w[2] = 1;
end
endgenerate
generate
// for single bank , emit an extra phaser_in to generate rclk
// so that auxout can be placed in another region
// if desired
if ( BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK>0)
begin : phaser_in_rclk
localparam L_EXTRA_PI_FINE_DELAY = DEFAULT_RCLK_DELAY;
PHASER_IN_PHY #(
.BURST_MODE ( PHY_0_A_BURST_MODE),
.CLKOUT_DIV ( PHY_0_A_PI_CLKOUT_DIV),
.FREQ_REF_DIV ( PHY_0_A_PI_FREQ_REF_DIV),
.REFCLK_PERIOD ( L_FREQ_REF_PERIOD_NS),
.FINE_DELAY ( L_EXTRA_PI_FINE_DELAY),
.OUTPUT_CLK_SRC ( RCLK_PI_OUTPUT_CLK_SRC)
) phaser_in_rclk (
.DQSFOUND (),
.DQSOUTOFRANGE (),
.FINEOVERFLOW (),
.PHASELOCKED (),
.ISERDESRST (),
.ICLKDIV (),
.ICLK (),
.COUNTERREADVAL (),
.RCLK (),
.WRENABLE (),
.BURSTPENDINGPHY (),
.ENCALIBPHY (),
.FINEENABLE (0),
.FREQREFCLK (freq_refclk),
.MEMREFCLK (mem_refclk),
.RANKSELPHY (0),
.PHASEREFCLK (),
.RSTDQSFIND (0),
.RST (rst),
.FINEINC (),
.COUNTERLOADEN (),
.COUNTERREADEN (),
.COUNTERLOADVAL (),
.SYNCIN (sync_pulse),
.SYSCLK (phy_clk)
);
end
endgenerate
always @(*) begin
case (calib_sel[5:3])
3'b000: begin
po_coarse_overflow = po_coarse_overflow_w[0];
po_fine_overflow = po_fine_overflow_w[0];
po_counter_read_val = po_counter_read_val_w[0];
pi_fine_overflow = pi_fine_overflow_w[0];
pi_counter_read_val = pi_counter_read_val_w[0];
pi_phase_locked = pi_phase_locked_w[0];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[0];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[0];
end
3'b001: begin
po_coarse_overflow = po_coarse_overflow_w[1];
po_fine_overflow = po_fine_overflow_w[1];
po_counter_read_val = po_counter_read_val_w[1];
pi_fine_overflow = pi_fine_overflow_w[1];
pi_counter_read_val = pi_counter_read_val_w[1];
pi_phase_locked = pi_phase_locked_w[1];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[1];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[1];
end
3'b010: begin
po_coarse_overflow = po_coarse_overflow_w[2];
po_fine_overflow = po_fine_overflow_w[2];
po_counter_read_val = po_counter_read_val_w[2];
pi_fine_overflow = pi_fine_overflow_w[2];
pi_counter_read_val = pi_counter_read_val_w[2];
pi_phase_locked = pi_phase_locked_w[2];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[2];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[2];
end
default: begin
po_coarse_overflow = 0;
po_fine_overflow = 0;
po_counter_read_val = 0;
pi_fine_overflow = 0;
pi_counter_read_val = 0;
pi_phase_locked = 0;
pi_dqs_found = 0;
pi_dqs_out_of_range = 0;
end
endcase
end
endmodule
|
module mig_7series_v2_3_ddr_mc_phy
#(
// five fields, one per possible I/O bank, 4 bits in each field, 1 per lane data=1/ctl=0
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf,
parameter RCLK_SELECT_BANK = 0,
parameter RCLK_SELECT_LANE = "B",
parameter RCLK_SELECT_EDGE = 4'b1111,
parameter GENERATE_DDR_CK_MAP = "0B",
parameter BYTELANES_DDR_CK = 72'h00_0000_0000_0000_0002,
parameter USE_PRE_POST_FIFO = "TRUE",
parameter SYNTHESIS = "FALSE",
parameter PO_CTL_COARSE_BYPASS = "FALSE",
parameter PI_SEL_CLK_OFFSET = 6,
parameter PHYCTL_CMD_FIFO = "FALSE",
parameter PHY_CLK_RATIO = 4, // phy to controller divide ratio
// common to all i/o banks
parameter PHY_FOUR_WINDOW_CLOCKS = 63,
parameter PHY_EVENTS_DELAY = 18,
parameter PHY_COUNT_EN = "TRUE",
parameter PHY_SYNC_MODE = "TRUE",
parameter PHY_DISABLE_SEQ_MATCH = "FALSE",
parameter MASTER_PHY_CTL = 0,
// common to instance 0
parameter PHY_0_BITLANES = 48'hdffd_fffe_dfff,
parameter PHY_0_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_0_LANE_REMAP = 16'h3210,
parameter PHY_0_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_0_IODELAY_GRP = "IODELAY_MIG",
parameter FPGA_SPEED_GRADE = 1,
parameter BANK_TYPE = "HP_IO", // # = "HP_IO", "HPL_IO", "HR_IO", "HRL_IO"
parameter NUM_DDR_CK = 1,
parameter PHY_0_DATA_CTL = DATA_CTL_B0,
parameter PHY_0_CMD_OFFSET = 0,
parameter PHY_0_RD_CMD_OFFSET_0 = 0,
parameter PHY_0_RD_CMD_OFFSET_1 = 0,
parameter PHY_0_RD_CMD_OFFSET_2 = 0,
parameter PHY_0_RD_CMD_OFFSET_3 = 0,
parameter PHY_0_RD_DURATION_0 = 0,
parameter PHY_0_RD_DURATION_1 = 0,
parameter PHY_0_RD_DURATION_2 = 0,
parameter PHY_0_RD_DURATION_3 = 0,
parameter PHY_0_WR_CMD_OFFSET_0 = 0,
parameter PHY_0_WR_CMD_OFFSET_1 = 0,
parameter PHY_0_WR_CMD_OFFSET_2 = 0,
parameter PHY_0_WR_CMD_OFFSET_3 = 0,
parameter PHY_0_WR_DURATION_0 = 0,
parameter PHY_0_WR_DURATION_1 = 0,
parameter PHY_0_WR_DURATION_2 = 0,
parameter PHY_0_WR_DURATION_3 = 0,
parameter PHY_0_AO_WRLVL_EN = 0,
parameter PHY_0_AO_TOGGLE = 4'b0101, // odd bits are toggle (CKE)
parameter PHY_0_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_0_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_0_A_PI_FREQ_REF_DIV = "NONE",
parameter PHY_0_A_PI_CLKOUT_DIV = 2,
parameter PHY_0_A_PO_CLKOUT_DIV = 2,
parameter PHY_0_A_BURST_MODE = "TRUE",
parameter PHY_0_A_PI_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OCLK_DELAY = 25,
parameter PHY_0_B_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_C_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_D_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_A_PO_OCLKDELAY_INV = "FALSE",
parameter PHY_0_A_OF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_IF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_OSERDES_DATA_RATE = "UNDECLARED",
parameter PHY_0_A_OSERDES_DATA_WIDTH = "UNDECLARED",
parameter PHY_0_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_A_IDELAYE2_IDELAY_TYPE = "VARIABLE",
parameter PHY_0_A_IDELAYE2_IDELAY_VALUE = 00,
parameter PHY_0_B_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_B_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_C_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_C_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_D_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_D_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
// common to instance 1
parameter PHY_1_BITLANES = PHY_0_BITLANES,
parameter PHY_1_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_1_LANE_REMAP = 16'h3210,
parameter PHY_1_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_1_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_1_DATA_CTL = DATA_CTL_B1,
parameter PHY_1_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_1_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_1_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_1_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_1_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_1_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_1_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_1_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_1_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_1_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_1_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_1_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_1_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_1_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_1_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_1_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_1_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_1_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_1_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_1_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_1_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_1_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_1_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV,
parameter PHY_1_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_1_A_BURST_MODE = PHY_0_A_BURST_MODE,
parameter PHY_1_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_1_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC ,
parameter PHY_1_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_1_B_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_C_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_D_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_1_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_B_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_B_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_C_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_C_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_D_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_D_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_1_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
// common to instance 2
parameter PHY_2_BITLANES = PHY_0_BITLANES,
parameter PHY_2_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_2_LANE_REMAP = 16'h3210,
parameter PHY_2_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_2_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_2_DATA_CTL = DATA_CTL_B2,
parameter PHY_2_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_2_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_2_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_2_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_2_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_2_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_2_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_2_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_2_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_2_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_2_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_2_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_2_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_2_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_2_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_2_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_2_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_2_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_2_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_2_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_2_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_2_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_2_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV ,
parameter PHY_2_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_2_A_BURST_MODE = PHY_0_A_BURST_MODE ,
parameter PHY_2_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_2_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC,
parameter PHY_2_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_2_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_2_B_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_C_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_D_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_2_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_B_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_B_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_C_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_C_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_D_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_D_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) || (BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : "TRUE",
parameter PHY_1_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) && ((BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0))) ? "FALSE" : ((PHY_0_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter PHY_2_IS_LAST_BANK = (BYTE_LANES_B2 != 0) && ((BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : ((PHY_0_IS_LAST_BANK || PHY_1_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter TCK = 2500,
// local computational use, do not pass down
parameter N_LANES = (0+BYTE_LANES_B0[0]) + (0+BYTE_LANES_B0[1]) + (0+BYTE_LANES_B0[2]) + (0+BYTE_LANES_B0[3])
+ (0+BYTE_LANES_B1[0]) + (0+BYTE_LANES_B1[1]) + (0+BYTE_LANES_B1[2]) + (0+BYTE_LANES_B1[3]) + (0+BYTE_LANES_B2[0]) + (0+BYTE_LANES_B2[1]) + (0+BYTE_LANES_B2[2]) + (0+BYTE_LANES_B2[3])
, // must not delete comma for syntax
parameter HIGHEST_BANK = (BYTE_LANES_B4 != 0 ? 5 : (BYTE_LANES_B3 != 0 ? 4 : (BYTE_LANES_B2 != 0 ? 3 : (BYTE_LANES_B1 != 0 ? 2 : 1)))),
parameter HIGHEST_LANE_B0 = ((PHY_0_IS_LAST_BANK == "FALSE") ? 4 : BYTE_LANES_B0[3] ? 4 : BYTE_LANES_B0[2] ? 3 : BYTE_LANES_B0[1] ? 2 : BYTE_LANES_B0[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B1 = (HIGHEST_BANK > 2) ? 4 : ( BYTE_LANES_B1[3] ? 4 : BYTE_LANES_B1[2] ? 3 : BYTE_LANES_B1[1] ? 2 : BYTE_LANES_B1[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B2 = (HIGHEST_BANK > 3) ? 4 : ( BYTE_LANES_B2[3] ? 4 : BYTE_LANES_B2[2] ? 3 : BYTE_LANES_B2[1] ? 2 : BYTE_LANES_B2[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B3 = 0,
parameter HIGHEST_LANE_B4 = 0,
parameter HIGHEST_LANE = (HIGHEST_LANE_B4 != 0) ? (HIGHEST_LANE_B4+16) : ((HIGHEST_LANE_B3 != 0) ? (HIGHEST_LANE_B3 + 12) : ((HIGHEST_LANE_B2 != 0) ? (HIGHEST_LANE_B2 + 8) : ((HIGHEST_LANE_B1 != 0) ? (HIGHEST_LANE_B1 + 4) : HIGHEST_LANE_B0))),
parameter LP_DDR_CK_WIDTH = 2,
parameter GENERATE_SIGNAL_SPLIT = "FALSE"
,parameter CKE_ODT_AUX = "FALSE"
)
(
input rst,
input ddr_rst_in_n ,
input phy_clk,
input freq_refclk,
input mem_refclk,
input mem_refclk_div4,
input pll_lock,
input sync_pulse,
input auxout_clk,
input idelayctrl_refclk,
input [HIGHEST_LANE*80-1:0] phy_dout,
input phy_cmd_wr_en,
input phy_data_wr_en,
input phy_rd_en,
input [31:0] phy_ctl_wd,
input [3:0] aux_in_1,
input [3:0] aux_in_2,
input [5:0] data_offset_1,
input [5:0] data_offset_2,
input phy_ctl_wr,
input if_rst,
input if_empty_def,
input cke_in,
input idelay_ce,
input idelay_ld,
input idelay_inc,
input phyGo,
input input_sink,
output if_a_empty,
output if_empty /* synthesis syn_maxfan = 3 */,
output if_empty_or,
output if_empty_and,
output of_ctl_a_full,
output of_data_a_full,
output of_ctl_full,
output of_data_full,
output pre_data_a_full,
output [HIGHEST_LANE*80-1:0] phy_din,
output phy_ctl_a_full,
output wire [3:0] phy_ctl_full,
output [HIGHEST_LANE*12-1:0] mem_dq_out,
output [HIGHEST_LANE*12-1:0] mem_dq_ts,
input [HIGHEST_LANE*10-1:0] mem_dq_in,
output [HIGHEST_LANE-1:0] mem_dqs_out,
output [HIGHEST_LANE-1:0] mem_dqs_ts,
input [HIGHEST_LANE-1:0] mem_dqs_in,
(* IOB = "FORCE" *) output reg [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out, // to memory, odt , 4 per phy controller
output phy_ctl_ready, // to fabric
output reg rst_out, // to memory
output [(NUM_DDR_CK * LP_DDR_CK_WIDTH)-1:0] ddr_clk,
// output rclk,
output mcGo,
output ref_dll_lock,
// calibration signals
input phy_write_calib,
input phy_read_calib,
input [5:0] calib_sel,
input [HIGHEST_BANK-1:0]calib_zero_inputs, // bit calib_sel[2], one per bank
input [HIGHEST_BANK-1:0]calib_zero_ctrl, // one bit per bank, zero's only control lane calibration inputs
input [HIGHEST_LANE-1:0] calib_zero_lanes, // one bit per lane
input calib_in_common,
input [2:0] po_fine_enable,
input [2:0] po_coarse_enable,
input [2:0] po_fine_inc,
input [2:0] po_coarse_inc,
input po_counter_load_en,
input [2:0] po_sel_fine_oclk_delay,
input [8:0] po_counter_load_val,
input po_counter_read_en,
output reg po_coarse_overflow,
output reg po_fine_overflow,
output reg [8:0] po_counter_read_val,
input [HIGHEST_BANK-1:0] pi_rst_dqs_find,
input pi_fine_enable,
input pi_fine_inc,
input pi_counter_load_en,
input pi_counter_read_en,
input [5:0] pi_counter_load_val,
output reg pi_fine_overflow,
output reg [5:0] pi_counter_read_val,
output reg pi_phase_locked,
output pi_phase_locked_all,
output reg pi_dqs_found,
output pi_dqs_found_all,
output pi_dqs_found_any,
output [HIGHEST_LANE-1:0] pi_phase_locked_lanes,
output [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg pi_dqs_out_of_range,
input [29:0] fine_delay,
input fine_delay_sel
);
wire [7:0] calib_zero_inputs_int ;
wire [HIGHEST_BANK*4-1:0] calib_zero_lanes_int ;
//Added the temporary variable for concadination operation
wire [2:0] calib_sel_byte0 ;
wire [2:0] calib_sel_byte1 ;
wire [2:0] calib_sel_byte2 ;
wire [4:0] po_coarse_overflow_w;
wire [4:0] po_fine_overflow_w;
wire [8:0] po_counter_read_val_w[4:0];
wire [4:0] pi_fine_overflow_w;
wire [5:0] pi_counter_read_val_w[4:0];
wire [4:0] pi_dqs_found_w;
wire [4:0] pi_dqs_found_all_w;
wire [4:0] pi_dqs_found_any_w;
wire [4:0] pi_dqs_out_of_range_w;
wire [4:0] pi_phase_locked_w;
wire [4:0] pi_phase_locked_all_w;
wire [4:0] rclk_w;
wire [HIGHEST_BANK-1:0] phy_ctl_ready_w;
wire [(LP_DDR_CK_WIDTH*24)-1:0] ddr_clk_w [HIGHEST_BANK-1:0];
wire [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out_;
wire [3:0] if_q0;
wire [3:0] if_q1;
wire [3:0] if_q2;
wire [3:0] if_q3;
wire [3:0] if_q4;
wire [7:0] if_q5;
wire [7:0] if_q6;
wire [3:0] if_q7;
wire [3:0] if_q8;
wire [3:0] if_q9;
wire [31:0] _phy_ctl_wd;
wire [3:0] aux_in_[4:1];
wire [3:0] rst_out_w;
wire freq_refclk_split;
wire mem_refclk_split;
wire mem_refclk_div4_split;
wire sync_pulse_split;
wire phy_clk_split0;
wire phy_ctl_clk_split0;
wire [31:0] phy_ctl_wd_split0;
wire phy_ctl_wr_split0;
wire phy_ctl_clk_split1;
wire phy_clk_split1;
wire [31:0] phy_ctl_wd_split1;
wire phy_ctl_wr_split1;
wire [5:0] phy_data_offset_1_split1;
wire phy_ctl_clk_split2;
wire phy_clk_split2;
wire [31:0] phy_ctl_wd_split2;
wire phy_ctl_wr_split2;
wire [5:0] phy_data_offset_2_split2;
wire [HIGHEST_LANE*80-1:0] phy_dout_split0;
wire phy_cmd_wr_en_split0;
wire phy_data_wr_en_split0;
wire phy_rd_en_split0;
wire [HIGHEST_LANE*80-1:0] phy_dout_split1;
wire phy_cmd_wr_en_split1;
wire phy_data_wr_en_split1;
wire phy_rd_en_split1;
wire [HIGHEST_LANE*80-1:0] phy_dout_split2;
wire phy_cmd_wr_en_split2;
wire phy_data_wr_en_split2;
wire phy_rd_en_split2;
wire phy_ctl_mstr_empty;
wire [HIGHEST_BANK-1:0] phy_ctl_empty;
wire _phy_ctl_a_full_f;
wire _phy_ctl_a_empty_f;
wire _phy_ctl_full_f;
wire _phy_ctl_empty_f;
wire [HIGHEST_BANK-1:0] _phy_ctl_a_full_p;
wire [HIGHEST_BANK-1:0] _phy_ctl_full_p;
wire [HIGHEST_BANK-1:0] of_ctl_a_full_v;
wire [HIGHEST_BANK-1:0] of_ctl_full_v;
wire [HIGHEST_BANK-1:0] of_data_a_full_v;
wire [HIGHEST_BANK-1:0] of_data_full_v;
wire [HIGHEST_BANK-1:0] pre_data_a_full_v;
wire [HIGHEST_BANK-1:0] if_empty_v;
wire [HIGHEST_BANK-1:0] byte_rd_en_v;
wire [HIGHEST_BANK*2-1:0] byte_rd_en_oth_banks;
wire [HIGHEST_BANK-1:0] if_empty_or_v;
wire [HIGHEST_BANK-1:0] if_empty_and_v;
wire [HIGHEST_BANK-1:0] if_a_empty_v;
localparam IF_ARRAY_MODE = "ARRAY_MODE_4_X_4";
localparam IF_SYNCHRONOUS_MODE = "FALSE";
localparam IF_SLOW_WR_CLK = "FALSE";
localparam IF_SLOW_RD_CLK = "FALSE";
localparam PHY_MULTI_REGION = (HIGHEST_BANK > 1) ? "TRUE" : "FALSE";
localparam RCLK_NEG_EDGE = 3'b000;
localparam RCLK_POS_EDGE = 3'b111;
localparam LP_PHY_0_BYTELANES_DDR_CK = BYTELANES_DDR_CK & 24'hFF_FFFF;
localparam LP_PHY_1_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 24) & 24'hFF_FFFF;
localparam LP_PHY_2_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 48) & 24'hFF_FFFF;
// hi, lo positions for data offset field, MIG doesn't allow defines
localparam PC_DATA_OFFSET_RANGE_HI = 22;
localparam PC_DATA_OFFSET_RANGE_LO = 17;
/* Phaser_In Output source coding table
"PHASE_REF" : 4'b0000;
"DELAYED_MEM_REF" : 4'b0101;
"DELAYED_PHASE_REF" : 4'b0011;
"DELAYED_REF" : 4'b0001;
"FREQ_REF" : 4'b1000;
"MEM_REF" : 4'b0010;
*/
localparam RCLK_PI_OUTPUT_CLK_SRC = "DELAYED_MEM_REF";
localparam DDR_TCK = TCK;
localparam real FREQ_REF_PERIOD = DDR_TCK / (PHY_0_A_PI_FREQ_REF_DIV == "DIV2" ? 2 : 1);
localparam real L_FREQ_REF_PERIOD_NS = FREQ_REF_PERIOD /1000.0;
localparam PO_S3_TAPS = 64 ; // Number of taps per clock cycle in OCLK_DELAYED delay line
localparam PI_S2_TAPS = 128 ; // Number of taps per clock cycle in stage 2 delay line
localparam PO_S2_TAPS = 128 ; // Number of taps per clock cycle in sta
/*
Intrinsic delay of Phaser In Stage 1
@3300ps - 1.939ns - 58.8%
@2500ps - 1.657ns - 66.3%
@1875ps - 1.263ns - 67.4%
@1500ps - 1.021ns - 68.1%
@1250ps - 0.868ns - 69.4%
@1072ps - 0.752ns - 70.1%
@938ps - 0.667ns - 71.1%
*/
// If we use the Delayed Mem_Ref_Clk in the RCLK Phaser_In, then the Stage 1 intrinsic delay is 0.0
// Fraction of a full DDR_TCK period
localparam real PI_STG1_INTRINSIC_DELAY = (RCLK_PI_OUTPUT_CLK_SRC == "DELAYED_MEM_REF") ? 0.0 :
((DDR_TCK < 1005) ? 0.667 :
(DDR_TCK < 1160) ? 0.752 :
(DDR_TCK < 1375) ? 0.868 :
(DDR_TCK < 1685) ? 1.021 :
(DDR_TCK < 2185) ? 1.263 :
(DDR_TCK < 2900) ? 1.657 :
(DDR_TCK < 3100) ? 1.771 : 1.939)*1000;
/*
Intrinsic delay of Phaser In Stage 2
@3300ps - 0.912ns - 27.6% - single tap - 13ps
@3000ps - 0.848ns - 28.3% - single tap - 11ps
@2500ps - 1.264ns - 50.6% - single tap - 19ps
@1875ps - 1.000ns - 53.3% - single tap - 15ps
@1500ps - 0.848ns - 56.5% - single tap - 11ps
@1250ps - 0.736ns - 58.9% - single tap - 9ps
@1072ps - 0.664ns - 61.9% - single tap - 8ps
@938ps - 0.608ns - 64.8% - single tap - 7ps
*/
// Intrinsic delay = (.4218 + .0002freq(MHz))period(ps)
localparam real PI_STG2_INTRINSIC_DELAY = (0.4218*FREQ_REF_PERIOD + 200) + 16.75; // 12ps fudge factor
/*
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 1
@3300ps - 1.294ns - 39.2%
@2500ps - 1.294ns - 51.8%
@1875ps - 1.030ns - 54.9%
@1500ps - 0.878ns - 58.5%
@1250ps - 0.766ns - 61.3%
@1072ps - 0.694ns - 64.7%
@938ps - 0.638ns - 68.0%
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 0
@3300ps - 2.084ns - 63.2% - single tap - 20ps
@2500ps - 2.084ns - 81.9% - single tap - 19ps
@1875ps - 1.676ns - 89.4% - single tap - 15ps
@1500ps - 1.444ns - 96.3% - single tap - 11ps
@1250ps - 1.276ns - 102.1% - single tap - 9ps
@1072ps - 1.164ns - 108.6% - single tap - 8ps
@938ps - 1.076ns - 114.7% - single tap - 7ps
*/
// Fraction of a full DDR_TCK period
localparam real PO_STG1_INTRINSIC_DELAY = 0;
localparam real PO_STG2_FINE_INTRINSIC_DELAY = 0.4218*FREQ_REF_PERIOD + 200 + 42; // 42ps fudge factor
localparam real PO_STG2_COARSE_INTRINSIC_DELAY = 0.2256*FREQ_REF_PERIOD + 200 + 29; // 29ps fudge factor
localparam real PO_STG2_INTRINSIC_DELAY = PO_STG2_FINE_INTRINSIC_DELAY +
(PO_CTL_COARSE_BYPASS == "TRUE" ? 30 : PO_STG2_COARSE_INTRINSIC_DELAY);
// When the PO_STG2_INTRINSIC_DELAY is approximately equal to tCK, then the Phaser Out's circular buffer can
// go metastable. The circular buffer must be prevented from getting into a metastable state. To accomplish this,
// a default programmed value must be programmed into the stage 2 delay. This delay is only needed at reset, adjustments
// to the stage 2 delay can be made after reset is removed.
localparam real PO_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PO_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PO_CIRC_BUF_META_ZONE = 200.0;
localparam PO_CIRC_BUF_EARLY = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? 1'b1 : 1'b0;
localparam real PO_CIRC_BUF_OFFSET = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? DDR_TCK - PO_STG2_INTRINSIC_DELAY : PO_STG2_INTRINSIC_DELAY - DDR_TCK;
// If the stage 2 intrinsic delay is less than the clock period, then see if it is less than the threshold
// If it is not more than the threshold than we must push the delay after the clock period plus a guardband.
//A change in PO_CIRC_BUF_DELAY value will affect the localparam TAP_DEC value(=PO_CIRC_BUF_DELAY - 31) in ddr_phy_ck_addr_cmd_delay.v. Update TAP_DEC value when PO_CIRC_BUF_DELAY is updated.
localparam integer PO_CIRC_BUF_DELAY = 60;
//localparam integer PO_CIRC_BUF_DELAY = PO_CIRC_BUF_EARLY ? (PO_CIRC_BUF_OFFSET > PO_CIRC_BUF_META_ZONE) ? 0 :
// (PO_CIRC_BUF_META_ZONE + PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE :
// (PO_CIRC_BUF_META_ZONE - PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE;
localparam real PI_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PI_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PI_MAX_STG2_DELAY = (PI_S2_TAPS/2 - 1) * PI_S2_TAPS_SIZE;
localparam real PI_INTRINSIC_DELAY = PI_STG1_INTRINSIC_DELAY + PI_STG2_INTRINSIC_DELAY;
localparam real PO_INTRINSIC_DELAY = PO_STG1_INTRINSIC_DELAY + PO_STG2_INTRINSIC_DELAY;
localparam real PO_DELAY = PO_INTRINSIC_DELAY + (PO_CIRC_BUF_DELAY*PO_S2_TAPS_SIZE);
localparam RCLK_BUFIO_DELAY = 1200; // estimate of clock insertion delay of rclk through BUFIO to ioi
// The PI_OFFSET is the difference between the Phaser Out delay path and the intrinsic delay path
// of the Phaser_In that drives the rclk. The objective is to align either the rising edges of the
// oserdes_oclk and the rclk or to align the rising to falling edges depending on which adjustment
// is within the range of the stage 2 delay line in the Phaser_In.
localparam integer RCLK_DELAY_INT= (PI_INTRINSIC_DELAY + RCLK_BUFIO_DELAY);
localparam integer PO_DELAY_INT = PO_DELAY;
localparam PI_OFFSET = (PO_DELAY_INT % DDR_TCK) - (RCLK_DELAY_INT % DDR_TCK);
// if pi_offset >= 0 align to oclk posedge by delaying pi path to where oclk is
// if pi_offset < 0 align to oclk negedge by delaying pi path the additional distance to next oclk edge.
// note that in this case PI_OFFSET is negative so invert before subtracting.
localparam real PI_STG2_DELAY_CAND = PI_OFFSET >= 0
? PI_OFFSET
: ((-PI_OFFSET) < DDR_TCK/2) ?
(DDR_TCK/2 - (- PI_OFFSET)) :
(DDR_TCK - (- PI_OFFSET)) ;
localparam real PI_STG2_DELAY =
(PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY ?
PI_MAX_STG2_DELAY : PI_STG2_DELAY_CAND);
localparam integer DEFAULT_RCLK_DELAY = PI_STG2_DELAY / PI_S2_TAPS_SIZE;
localparam LP_RCLK_SELECT_EDGE = (RCLK_SELECT_EDGE != 4'b1111 ) ? RCLK_SELECT_EDGE : (PI_OFFSET >= 0 ? RCLK_POS_EDGE : (PI_OFFSET <= TCK/2 ? RCLK_NEG_EDGE : RCLK_POS_EDGE));
localparam integer L_PHY_0_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_1_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_2_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam L_PHY_0_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
wire _phy_clk;
wire [2:0] mcGo_w;
wire [HIGHEST_BANK-1:0] ref_dll_lock_w;
reg [15:0] mcGo_r;
assign ref_dll_lock = & ref_dll_lock_w;
initial begin
if ( SYNTHESIS == "FALSE" ) begin
$display("%m : BYTE_LANES_B0 = %x BYTE_LANES_B1 = %x DATA_CTL_B0 = %x DATA_CTL_B1 = %x", BYTE_LANES_B0, BYTE_LANES_B1, DATA_CTL_B0, DATA_CTL_B1);
$display("%m : HIGHEST_LANE = %d HIGHEST_LANE_B0 = %d HIGHEST_LANE_B1 = %d", HIGHEST_LANE, HIGHEST_LANE_B0, HIGHEST_LANE_B1);
$display("%m : HIGHEST_BANK = %d", HIGHEST_BANK);
$display("%m : FREQ_REF_PERIOD = %0.2f ", FREQ_REF_PERIOD);
$display("%m : DDR_TCK = %0d ", DDR_TCK);
$display("%m : PO_S2_TAPS_SIZE = %0.2f ", PO_S2_TAPS_SIZE);
$display("%m : PO_CIRC_BUF_EARLY = %0d ", PO_CIRC_BUF_EARLY);
$display("%m : PO_CIRC_BUF_OFFSET = %0.2f ", PO_CIRC_BUF_OFFSET);
$display("%m : PO_CIRC_BUF_META_ZONE = %0.2f ", PO_CIRC_BUF_META_ZONE);
$display("%m : PO_STG2_FINE_INTR_DLY = %0.2f ", PO_STG2_FINE_INTRINSIC_DELAY);
$display("%m : PO_STG2_COARSE_INTR_DLY = %0.2f ", PO_STG2_COARSE_INTRINSIC_DELAY);
$display("%m : PO_STG2_INTRINSIC_DELAY = %0.2f ", PO_STG2_INTRINSIC_DELAY);
$display("%m : PO_CIRC_BUF_DELAY = %0d ", PO_CIRC_BUF_DELAY);
$display("%m : PO_INTRINSIC_DELAY = %0.2f ", PO_INTRINSIC_DELAY);
$display("%m : PO_DELAY = %0.2f ", PO_DELAY);
$display("%m : PO_OCLK_DELAY = %0d ", PHY_0_A_PO_OCLK_DELAY);
$display("%m : L_PHY_0_PO_FINE_DELAY = %0d ", L_PHY_0_PO_FINE_DELAY);
$display("%m : PI_STG1_INTRINSIC_DELAY = %0.2f ", PI_STG1_INTRINSIC_DELAY);
$display("%m : PI_STG2_INTRINSIC_DELAY = %0.2f ", PI_STG2_INTRINSIC_DELAY);
$display("%m : PI_INTRINSIC_DELAY = %0.2f ", PI_INTRINSIC_DELAY);
$display("%m : PI_MAX_STG2_DELAY = %0.2f ", PI_MAX_STG2_DELAY);
$display("%m : PI_OFFSET = %0.2f ", PI_OFFSET);
if ( PI_OFFSET < 0) $display("%m : a negative PI_OFFSET means that rclk path is longer than oclk path so rclk will be delayed to next oclk edge and the negedge of rclk may be used.");
$display("%m : PI_STG2_DELAY = %0.2f ", PI_STG2_DELAY);
$display("%m :PI_STG2_DELAY_CAND = %0.2f ",PI_STG2_DELAY_CAND);
$display("%m : DEFAULT_RCLK_DELAY = %0d ", DEFAULT_RCLK_DELAY);
$display("%m : RCLK_SELECT_EDGE = %0b ", LP_RCLK_SELECT_EDGE);
end // SYNTHESIS
if ( PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY) $display("WARNING: %m: The required delay though the phaser_in to internally match the aux_out clock to ddr clock exceeds the maximum allowable delay. The clock edge will occur at the output registers of aux_out %0.2f ps before the ddr clock edge. If aux_out is used for memory inputs, this may violate setup or hold time.", PI_STG2_DELAY_CAND - PI_MAX_STG2_DELAY);
end
assign sync_pulse_split = sync_pulse;
assign mem_refclk_split = mem_refclk;
assign freq_refclk_split = freq_refclk;
assign mem_refclk_div4_split = mem_refclk_div4;
assign phy_ctl_clk_split0 = _phy_clk;
assign phy_ctl_wd_split0 = phy_ctl_wd;
assign phy_ctl_wr_split0 = phy_ctl_wr;
assign phy_clk_split0 = phy_clk;
assign phy_cmd_wr_en_split0 = phy_cmd_wr_en;
assign phy_data_wr_en_split0 = phy_data_wr_en;
assign phy_rd_en_split0 = phy_rd_en;
assign phy_dout_split0 = phy_dout;
assign phy_ctl_clk_split1 = phy_clk;
assign phy_ctl_wd_split1 = phy_ctl_wd;
assign phy_data_offset_1_split1 = data_offset_1;
assign phy_ctl_wr_split1 = phy_ctl_wr;
assign phy_clk_split1 = phy_clk;
assign phy_cmd_wr_en_split1 = phy_cmd_wr_en;
assign phy_data_wr_en_split1 = phy_data_wr_en;
assign phy_rd_en_split1 = phy_rd_en;
assign phy_dout_split1 = phy_dout;
assign phy_ctl_clk_split2 = phy_clk;
assign phy_ctl_wd_split2 = phy_ctl_wd;
assign phy_data_offset_2_split2 = data_offset_2;
assign phy_ctl_wr_split2 = phy_ctl_wr;
assign phy_clk_split2 = phy_clk;
assign phy_cmd_wr_en_split2 = phy_cmd_wr_en;
assign phy_data_wr_en_split2 = phy_data_wr_en;
assign phy_rd_en_split2 = phy_rd_en;
assign phy_dout_split2 = phy_dout;
// these wires are needed to coerce correct synthesis
// the synthesizer did not always see the widths of the
// parameters as 4 bits.
wire [3:0] blb0 = BYTE_LANES_B0;
wire [3:0] blb1 = BYTE_LANES_B1;
wire [3:0] blb2 = BYTE_LANES_B2;
wire [3:0] dcb0 = DATA_CTL_B0;
wire [3:0] dcb1 = DATA_CTL_B1;
wire [3:0] dcb2 = DATA_CTL_B2;
assign pi_dqs_found_all = & (pi_dqs_found_lanes | ~ {blb2, blb1, blb0} | ~ {dcb2, dcb1, dcb0});
assign pi_dqs_found_any = | (pi_dqs_found_lanes & {blb2, blb1, blb0} & {dcb2, dcb1, dcb0});
assign pi_phase_locked_all = & pi_phase_locked_all_w[HIGHEST_BANK-1:0];
assign calib_zero_inputs_int = {3'bxxx, calib_zero_inputs};
//Added to remove concadination in the instantiation
assign calib_sel_byte0 = {calib_zero_inputs_int[0], calib_sel[1:0]} ;
assign calib_sel_byte1 = {calib_zero_inputs_int[1], calib_sel[1:0]} ;
assign calib_sel_byte2 = {calib_zero_inputs_int[2], calib_sel[1:0]} ;
assign calib_zero_lanes_int = calib_zero_lanes;
assign phy_ctl_ready = &phy_ctl_ready_w[HIGHEST_BANK-1:0];
assign phy_ctl_mstr_empty = phy_ctl_empty[MASTER_PHY_CTL];
assign of_ctl_a_full = |of_ctl_a_full_v;
assign of_ctl_full = |of_ctl_full_v;
assign of_data_a_full = |of_data_a_full_v;
assign of_data_full = |of_data_full_v;
assign pre_data_a_full= |pre_data_a_full_v;
// if if_empty_def == 1, empty is asserted only if all are empty;
// this allows the user to detect a skewed fifo depth and self-clear
// if desired. It avoids a reset to clear the flags.
assign if_empty = !if_empty_def ? |if_empty_v : &if_empty_v;
assign if_empty_or = |if_empty_or_v;
assign if_empty_and = &if_empty_and_v;
assign if_a_empty = |if_a_empty_v;
generate
genvar i;
for (i = 0; i != NUM_DDR_CK; i = i + 1) begin : ddr_clk_gen
case ((GENERATE_DDR_CK_MAP >> (16*i)) & 16'hffff)
16'h3041: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3042: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3043: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3044: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3141: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3142: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3143: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3144: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3241: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3242: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3243: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3244: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
default : initial $display("ERROR: mc_phy ddr_clk_gen : invalid specification for parameter GENERATE_DDR_CK_MAP , clock index = %d, spec= %x (hex) ", i, (( GENERATE_DDR_CK_MAP >> (16 * i )) & 16'hffff ));
endcase
end
endgenerate
//assign rclk = rclk_w[RCLK_SELECT_BANK];
reg rst_auxout;
reg rst_auxout_r;
reg rst_auxout_rr;
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout_r <= #(1) 1'b1;
rst_auxout_rr <= #(1) 1'b1;
end
else begin
rst_auxout_r <= #(1) rst;
rst_auxout_rr <= #(1) rst_auxout_r;
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
else begin
always @(negedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
localparam L_RESET_SELECT_BANK =
(BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK) ? 0 : RCLK_SELECT_BANK;
always @(*) begin
rst_out = rst_out_w[L_RESET_SELECT_BANK] & ddr_rst_in_n;
end
always @(posedge phy_clk) begin
if ( rst)
mcGo_r <= #(1) 0;
else
mcGo_r <= #(1) (mcGo_r << 1) | &mcGo_w;
end
assign mcGo = mcGo_r[15];
generate
// this is an optional 1 clock delay to add latency to the phy_control programming path
if (PHYCTL_CMD_FIFO == "TRUE") begin : cmd_fifo_soft
reg [31:0] phy_wd_reg = 0;
reg [3:0] aux_in1_reg = 0;
reg [3:0] aux_in2_reg = 0;
reg sfifo_ready = 0;
assign _phy_ctl_wd = phy_wd_reg;
assign aux_in_[1] = aux_in1_reg;
assign aux_in_[2] = aux_in2_reg;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[1] = |_phy_ctl_full_p;
assign phy_ctl_full[2] = |_phy_ctl_full_p;
assign phy_ctl_full[3] = |_phy_ctl_full_p;
assign _phy_clk = phy_clk;
always @(posedge phy_clk) begin
phy_wd_reg <= #1 phy_ctl_wd;
aux_in1_reg <= #1 aux_in_1;
aux_in2_reg <= #1 aux_in_2;
sfifo_ready <= #1 phy_ctl_wr;
end
end
else if (PHYCTL_CMD_FIFO == "FALSE") begin
assign _phy_ctl_wd = phy_ctl_wd;
assign aux_in_[1] = aux_in_1;
assign aux_in_[2] = aux_in_2;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[3:1] = 3'b000;
assign _phy_clk = phy_clk;
end
endgenerate
// instance of four-lane phy
generate
if (HIGHEST_BANK == 3) begin : banks_3
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[5:4] = {byte_rd_en_v[0],byte_rd_en_v[1]};
end
else if (HIGHEST_BANK == 2) begin : banks_2
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],1'b1};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],1'b1};
end
else begin : banks_1
assign byte_rd_en_oth_banks[1:0] = {1'b1,1'b1};
end
if ( BYTE_LANES_B0 != 0) begin : ddr_phy_4lanes_0
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B0), /* four bits, one per lanes */
.DATA_CTL_N (PHY_0_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_0_PO_FINE_DELAY),
.BITLANES (PHY_0_BITLANES),
.BITLANES_OUTONLY (PHY_0_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_0_BYTELANES_DDR_CK),
.LAST_BANK (PHY_0_IS_LAST_BANK),
.LANE_REMAP (PHY_0_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_0_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_0_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_0_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_0_IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_0_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_0_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_0_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_0_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_0_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_0_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_0_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_0_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_0_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_0_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_0_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_0_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_0_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_0_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_0_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_0_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_0_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_0_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_0_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_0_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_0_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_0_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_0_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_0_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_0_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_0_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_0_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_0_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_0_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_0_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_0_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_0_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_0_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_0_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_0_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_0_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_0_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_0_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_0_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_0_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_0_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_0_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_0_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_0_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_0_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_0_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_0_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_0_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_0_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_0_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_0_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split0),
.phy_ctl_clk (phy_ctl_clk_split0),
.phy_ctl_wd (phy_ctl_wd_split0),
.data_offset (phy_ctl_wd_split0[PC_DATA_OFFSET_RANGE_HI : PC_DATA_OFFSET_RANGE_LO]),
.phy_ctl_wr (phy_ctl_wr_split0),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split0[HIGHEST_LANE_B0*80-1:0]),
.phy_cmd_wr_en (phy_cmd_wr_en_split0),
.phy_data_wr_en (phy_data_wr_en_split0),
.phy_rd_en (phy_rd_en_split0),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[0]),
.rclk (),
.rst_out (rst_out_w[0]),
.mcGo (mcGo_w[0]),
.ref_dll_lock (ref_dll_lock_w[0]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[1:0]),
.if_a_empty (if_a_empty_v[0]),
.if_empty (if_empty_v[0]),
.byte_rd_en (byte_rd_en_v[0]),
.if_empty_or (if_empty_or_v[0]),
.if_empty_and (if_empty_and_v[0]),
.of_ctl_a_full (of_ctl_a_full_v[0]),
.of_data_a_full (of_data_a_full_v[0]),
.of_ctl_full (of_ctl_full_v[0]),
.of_data_full (of_data_full_v[0]),
.pre_data_a_full (pre_data_a_full_v[0]),
.phy_din (phy_din[HIGHEST_LANE_B0*80-1:0]),
.phy_ctl_a_full (_phy_ctl_a_full_p[0]),
.phy_ctl_full (_phy_ctl_full_p[0]),
.phy_ctl_empty (phy_ctl_empty[0]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B0*10-1:0]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B0-1:0]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B0-1:0]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B0-1:0]),
.aux_out (aux_out_[3:0]),
.phy_ctl_ready (phy_ctl_ready_w[0]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte0),
.calib_zero_ctrl (calib_zero_ctrl[0]),
.calib_zero_lanes (calib_zero_lanes_int[3:0]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[0]),
.po_fine_enable (po_fine_enable[0]),
.po_fine_inc (po_fine_inc[0]),
.po_coarse_inc (po_coarse_inc[0]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[0]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[0]),
.po_fine_overflow (po_fine_overflow_w[0]),
.po_counter_read_val (po_counter_read_val_w[0]),
.pi_rst_dqs_find (pi_rst_dqs_find[0]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[0]),
.pi_counter_read_val (pi_counter_read_val_w[0]),
.pi_dqs_found (pi_dqs_found_w[0]),
.pi_dqs_found_all (pi_dqs_found_all_w[0]),
.pi_dqs_found_any (pi_dqs_found_any_w[0]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[0]),
.pi_phase_locked (pi_phase_locked_w[0]),
.pi_phase_locked_all (pi_phase_locked_all_w[0]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[0] <= #100 0;
aux_out[2] <= #100 0;
end
else begin
aux_out[0] <= #100 aux_out_[0];
aux_out[2] <= #100 aux_out_[2];
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
end
else begin
if ( HIGHEST_BANK > 0) begin
assign phy_din[HIGHEST_LANE_B0*80-1:0] = 0;
assign _phy_ctl_a_full_p[0] = 0;
assign of_ctl_a_full_v[0] = 0;
assign of_ctl_full_v[0] = 0;
assign of_data_a_full_v[0] = 0;
assign of_data_full_v[0] = 0;
assign pre_data_a_full_v[0] = 0;
assign if_empty_v[0] = 0;
assign byte_rd_en_v[0] = 1;
always @(*)
aux_out[3:0] = 0;
end
assign pi_dqs_found_w[0] = 1;
assign pi_dqs_found_all_w[0] = 1;
assign pi_dqs_found_any_w[0] = 0;
assign pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_out_of_range_w[0] = 0;
assign pi_phase_locked_w[0] = 1;
assign po_fine_overflow_w[0] = 0;
assign po_coarse_overflow_w[0] = 0;
assign po_fine_overflow_w[0] = 0;
assign pi_fine_overflow_w[0] = 0;
assign po_counter_read_val_w[0] = 0;
assign pi_counter_read_val_w[0] = 0;
assign mcGo_w[0] = 1;
if ( RCLK_SELECT_BANK == 0)
always @(*)
aux_out[3:0] = 0;
end
if ( BYTE_LANES_B1 != 0) begin : ddr_phy_4lanes_1
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B1), /* four bits, one per lanes */
.DATA_CTL_N (PHY_1_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_1_PO_FINE_DELAY),
.BITLANES (PHY_1_BITLANES),
.BITLANES_OUTONLY (PHY_1_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_1_BYTELANES_DDR_CK),
.LAST_BANK (PHY_1_IS_LAST_BANK ),
.LANE_REMAP (PHY_1_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_1_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_1_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_1_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_1_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_1_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_1_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_1_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_1_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_1_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_1_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_1_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_1_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_1_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_1_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_1_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_1_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_1_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_1_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_1_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_1_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_1_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_1_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_1_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_1_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_1_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_1_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_1_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_1_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_1_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_1_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_1_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_1_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_1_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_1_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_1_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_1_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_1_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_1_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_1_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_1_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_1_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_1_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_1_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_1_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_1_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_1_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_1_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_1_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_1_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_1_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_1_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_1_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_1_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_1_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_1_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split1),
.phy_ctl_clk (phy_ctl_clk_split1),
.phy_ctl_wd (phy_ctl_wd_split1),
.data_offset (phy_data_offset_1_split1),
.phy_ctl_wr (phy_ctl_wr_split1),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split1[HIGHEST_LANE_B1*80+320-1:320]),
.phy_cmd_wr_en (phy_cmd_wr_en_split1),
.phy_data_wr_en (phy_data_wr_en_split1),
.phy_rd_en (phy_rd_en_split1),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[1]),
.rclk (),
.rst_out (rst_out_w[1]),
.mcGo (mcGo_w[1]),
.ref_dll_lock (ref_dll_lock_w[1]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[3:2]),
.if_a_empty (if_a_empty_v[1]),
.if_empty (if_empty_v[1]),
.byte_rd_en (byte_rd_en_v[1]),
.if_empty_or (if_empty_or_v[1]),
.if_empty_and (if_empty_and_v[1]),
.of_ctl_a_full (of_ctl_a_full_v[1]),
.of_data_a_full (of_data_a_full_v[1]),
.of_ctl_full (of_ctl_full_v[1]),
.of_data_full (of_data_full_v[1]),
.pre_data_a_full (pre_data_a_full_v[1]),
.phy_din (phy_din[HIGHEST_LANE_B1*80+320-1:320]),
.phy_ctl_a_full (_phy_ctl_a_full_p[1]),
.phy_ctl_full (_phy_ctl_full_p[1]),
.phy_ctl_empty (phy_ctl_empty[1]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B1*10+40-1:40]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B1+4-1:4]),
.aux_out (aux_out_[7:4]),
.phy_ctl_ready (phy_ctl_ready_w[1]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte1),
.calib_zero_ctrl (calib_zero_ctrl[1]),
.calib_zero_lanes (calib_zero_lanes_int[7:4]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[1]),
.po_fine_enable (po_fine_enable[1]),
.po_fine_inc (po_fine_inc[1]),
.po_coarse_inc (po_coarse_inc[1]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[1]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[1]),
.po_fine_overflow (po_fine_overflow_w[1]),
.po_counter_read_val (po_counter_read_val_w[1]),
.pi_rst_dqs_find (pi_rst_dqs_find[1]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[1]),
.pi_counter_read_val (pi_counter_read_val_w[1]),
.pi_dqs_found (pi_dqs_found_w[1]),
.pi_dqs_found_all (pi_dqs_found_all_w[1]),
.pi_dqs_found_any (pi_dqs_found_any_w[1]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[1]),
.pi_phase_locked (pi_phase_locked_w[1]),
.pi_phase_locked_all (pi_phase_locked_all_w[1]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[4] <= #100 0;
aux_out[6] <= #100 0;
end
else begin
aux_out[4] <= #100 aux_out_[4];
aux_out[6] <= #100 aux_out_[6];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
end
else begin
if ( HIGHEST_BANK > 1) begin
assign phy_din[HIGHEST_LANE_B1*80+320-1:320] = 0;
assign _phy_ctl_a_full_p[1] = 0;
assign of_ctl_a_full_v[1] = 0;
assign of_ctl_full_v[1] = 0;
assign of_data_a_full_v[1] = 0;
assign of_data_full_v[1] = 0;
assign pre_data_a_full_v[1] = 0;
assign if_empty_v[1] = 0;
assign byte_rd_en_v[1] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
always @(*)
aux_out[7:4] = 0;
end
assign pi_dqs_found_w[1] = 1;
assign pi_dqs_found_all_w[1] = 1;
assign pi_dqs_found_any_w[1] = 0;
assign pi_dqs_out_of_range_w[1] = 0;
assign pi_phase_locked_w[1] = 1;
assign po_coarse_overflow_w[1] = 0;
assign po_fine_overflow_w[1] = 0;
assign pi_fine_overflow_w[1] = 0;
assign po_counter_read_val_w[1] = 0;
assign pi_counter_read_val_w[1] = 0;
assign mcGo_w[1] = 1;
end
if ( BYTE_LANES_B2 != 0) begin : ddr_phy_4lanes_2
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B2), /* four bits, one per lanes */
.DATA_CTL_N (PHY_2_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_2_PO_FINE_DELAY),
.BITLANES (PHY_2_BITLANES),
.BITLANES_OUTONLY (PHY_2_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_2_BYTELANES_DDR_CK),
.LAST_BANK (PHY_2_IS_LAST_BANK ),
.LANE_REMAP (PHY_2_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_2_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_2_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_2_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_2_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_2_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_2_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_2_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_2_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_2_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_2_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_2_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_2_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_2_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_2_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_2_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_2_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_2_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_2_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_2_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_2_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_2_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_2_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_2_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_2_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_2_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_2_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_2_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_2_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_2_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_2_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_2_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_2_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_2_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_2_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_2_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_2_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_2_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_2_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_2_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_2_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_2_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_2_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_2_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_2_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_2_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_2_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_2_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_2_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_2_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_2_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_2_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_2_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_2_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_2_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_2_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split2),
.phy_ctl_clk (phy_ctl_clk_split2),
.phy_ctl_wd (phy_ctl_wd_split2),
.data_offset (phy_data_offset_2_split2),
.phy_ctl_wr (phy_ctl_wr_split2),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split2[HIGHEST_LANE_B2*80+640-1:640]),
.phy_cmd_wr_en (phy_cmd_wr_en_split2),
.phy_data_wr_en (phy_data_wr_en_split2),
.phy_rd_en (phy_rd_en_split2),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[2]),
.rclk (),
.rst_out (rst_out_w[2]),
.mcGo (mcGo_w[2]),
.ref_dll_lock (ref_dll_lock_w[2]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[5:4]),
.if_a_empty (if_a_empty_v[2]),
.if_empty (if_empty_v[2]),
.byte_rd_en (byte_rd_en_v[2]),
.if_empty_or (if_empty_or_v[2]),
.if_empty_and (if_empty_and_v[2]),
.of_ctl_a_full (of_ctl_a_full_v[2]),
.of_data_a_full (of_data_a_full_v[2]),
.of_ctl_full (of_ctl_full_v[2]),
.of_data_full (of_data_full_v[2]),
.pre_data_a_full (pre_data_a_full_v[2]),
.phy_din (phy_din[HIGHEST_LANE_B2*80+640-1:640]),
.phy_ctl_a_full (_phy_ctl_a_full_p[2]),
.phy_ctl_full (_phy_ctl_full_p[2]),
.phy_ctl_empty (phy_ctl_empty[2]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B2*10+80-1:80]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B2-1+8:8]),
.aux_out (aux_out_[11:8]),
.phy_ctl_ready (phy_ctl_ready_w[2]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte2),
.calib_zero_ctrl (calib_zero_ctrl[2]),
.calib_zero_lanes (calib_zero_lanes_int[11:8]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[2]),
.po_fine_enable (po_fine_enable[2]),
.po_fine_inc (po_fine_inc[2]),
.po_coarse_inc (po_coarse_inc[2]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[2]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[2]),
.po_fine_overflow (po_fine_overflow_w[2]),
.po_counter_read_val (po_counter_read_val_w[2]),
.pi_rst_dqs_find (pi_rst_dqs_find[2]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[2]),
.pi_counter_read_val (pi_counter_read_val_w[2]),
.pi_dqs_found (pi_dqs_found_w[2]),
.pi_dqs_found_all (pi_dqs_found_all_w[2]),
.pi_dqs_found_any (pi_dqs_found_any_w[2]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[2]),
.pi_phase_locked (pi_phase_locked_w[2]),
.pi_phase_locked_all (pi_phase_locked_all_w[2]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[8] <= #100 0;
aux_out[10] <= #100 0;
end
else begin
aux_out[8] <= #100 aux_out_[8];
aux_out[10] <= #100 aux_out_[10];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
end
else begin
if ( HIGHEST_BANK > 2) begin
assign phy_din[HIGHEST_LANE_B2*80+640-1:640] = 0;
assign _phy_ctl_a_full_p[2] = 0;
assign of_ctl_a_full_v[2] = 0;
assign of_ctl_full_v[2] = 0;
assign of_data_a_full_v[2] = 0;
assign of_data_full_v[2] = 0;
assign pre_data_a_full_v[2] = 0;
assign if_empty_v[2] = 0;
assign byte_rd_en_v[2] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
always @(*)
aux_out[11:8] = 0;
end
assign pi_dqs_found_w[2] = 1;
assign pi_dqs_found_all_w[2] = 1;
assign pi_dqs_found_any_w[2] = 0;
assign pi_dqs_out_of_range_w[2] = 0;
assign pi_phase_locked_w[2] = 1;
assign po_coarse_overflow_w[2] = 0;
assign po_fine_overflow_w[2] = 0;
assign po_counter_read_val_w[2] = 0;
assign pi_counter_read_val_w[2] = 0;
assign mcGo_w[2] = 1;
end
endgenerate
generate
// for single bank , emit an extra phaser_in to generate rclk
// so that auxout can be placed in another region
// if desired
if ( BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK>0)
begin : phaser_in_rclk
localparam L_EXTRA_PI_FINE_DELAY = DEFAULT_RCLK_DELAY;
PHASER_IN_PHY #(
.BURST_MODE ( PHY_0_A_BURST_MODE),
.CLKOUT_DIV ( PHY_0_A_PI_CLKOUT_DIV),
.FREQ_REF_DIV ( PHY_0_A_PI_FREQ_REF_DIV),
.REFCLK_PERIOD ( L_FREQ_REF_PERIOD_NS),
.FINE_DELAY ( L_EXTRA_PI_FINE_DELAY),
.OUTPUT_CLK_SRC ( RCLK_PI_OUTPUT_CLK_SRC)
) phaser_in_rclk (
.DQSFOUND (),
.DQSOUTOFRANGE (),
.FINEOVERFLOW (),
.PHASELOCKED (),
.ISERDESRST (),
.ICLKDIV (),
.ICLK (),
.COUNTERREADVAL (),
.RCLK (),
.WRENABLE (),
.BURSTPENDINGPHY (),
.ENCALIBPHY (),
.FINEENABLE (0),
.FREQREFCLK (freq_refclk),
.MEMREFCLK (mem_refclk),
.RANKSELPHY (0),
.PHASEREFCLK (),
.RSTDQSFIND (0),
.RST (rst),
.FINEINC (),
.COUNTERLOADEN (),
.COUNTERREADEN (),
.COUNTERLOADVAL (),
.SYNCIN (sync_pulse),
.SYSCLK (phy_clk)
);
end
endgenerate
always @(*) begin
case (calib_sel[5:3])
3'b000: begin
po_coarse_overflow = po_coarse_overflow_w[0];
po_fine_overflow = po_fine_overflow_w[0];
po_counter_read_val = po_counter_read_val_w[0];
pi_fine_overflow = pi_fine_overflow_w[0];
pi_counter_read_val = pi_counter_read_val_w[0];
pi_phase_locked = pi_phase_locked_w[0];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[0];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[0];
end
3'b001: begin
po_coarse_overflow = po_coarse_overflow_w[1];
po_fine_overflow = po_fine_overflow_w[1];
po_counter_read_val = po_counter_read_val_w[1];
pi_fine_overflow = pi_fine_overflow_w[1];
pi_counter_read_val = pi_counter_read_val_w[1];
pi_phase_locked = pi_phase_locked_w[1];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[1];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[1];
end
3'b010: begin
po_coarse_overflow = po_coarse_overflow_w[2];
po_fine_overflow = po_fine_overflow_w[2];
po_counter_read_val = po_counter_read_val_w[2];
pi_fine_overflow = pi_fine_overflow_w[2];
pi_counter_read_val = pi_counter_read_val_w[2];
pi_phase_locked = pi_phase_locked_w[2];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[2];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[2];
end
default: begin
po_coarse_overflow = 0;
po_fine_overflow = 0;
po_counter_read_val = 0;
pi_fine_overflow = 0;
pi_counter_read_val = 0;
pi_phase_locked = 0;
pi_dqs_found = 0;
pi_dqs_out_of_range = 0;
end
endcase
end
endmodule
|
module mig_7series_v2_3_ddr_mc_phy
#(
// five fields, one per possible I/O bank, 4 bits in each field, 1 per lane data=1/ctl=0
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf,
parameter RCLK_SELECT_BANK = 0,
parameter RCLK_SELECT_LANE = "B",
parameter RCLK_SELECT_EDGE = 4'b1111,
parameter GENERATE_DDR_CK_MAP = "0B",
parameter BYTELANES_DDR_CK = 72'h00_0000_0000_0000_0002,
parameter USE_PRE_POST_FIFO = "TRUE",
parameter SYNTHESIS = "FALSE",
parameter PO_CTL_COARSE_BYPASS = "FALSE",
parameter PI_SEL_CLK_OFFSET = 6,
parameter PHYCTL_CMD_FIFO = "FALSE",
parameter PHY_CLK_RATIO = 4, // phy to controller divide ratio
// common to all i/o banks
parameter PHY_FOUR_WINDOW_CLOCKS = 63,
parameter PHY_EVENTS_DELAY = 18,
parameter PHY_COUNT_EN = "TRUE",
parameter PHY_SYNC_MODE = "TRUE",
parameter PHY_DISABLE_SEQ_MATCH = "FALSE",
parameter MASTER_PHY_CTL = 0,
// common to instance 0
parameter PHY_0_BITLANES = 48'hdffd_fffe_dfff,
parameter PHY_0_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_0_LANE_REMAP = 16'h3210,
parameter PHY_0_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_0_IODELAY_GRP = "IODELAY_MIG",
parameter FPGA_SPEED_GRADE = 1,
parameter BANK_TYPE = "HP_IO", // # = "HP_IO", "HPL_IO", "HR_IO", "HRL_IO"
parameter NUM_DDR_CK = 1,
parameter PHY_0_DATA_CTL = DATA_CTL_B0,
parameter PHY_0_CMD_OFFSET = 0,
parameter PHY_0_RD_CMD_OFFSET_0 = 0,
parameter PHY_0_RD_CMD_OFFSET_1 = 0,
parameter PHY_0_RD_CMD_OFFSET_2 = 0,
parameter PHY_0_RD_CMD_OFFSET_3 = 0,
parameter PHY_0_RD_DURATION_0 = 0,
parameter PHY_0_RD_DURATION_1 = 0,
parameter PHY_0_RD_DURATION_2 = 0,
parameter PHY_0_RD_DURATION_3 = 0,
parameter PHY_0_WR_CMD_OFFSET_0 = 0,
parameter PHY_0_WR_CMD_OFFSET_1 = 0,
parameter PHY_0_WR_CMD_OFFSET_2 = 0,
parameter PHY_0_WR_CMD_OFFSET_3 = 0,
parameter PHY_0_WR_DURATION_0 = 0,
parameter PHY_0_WR_DURATION_1 = 0,
parameter PHY_0_WR_DURATION_2 = 0,
parameter PHY_0_WR_DURATION_3 = 0,
parameter PHY_0_AO_WRLVL_EN = 0,
parameter PHY_0_AO_TOGGLE = 4'b0101, // odd bits are toggle (CKE)
parameter PHY_0_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_0_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_0_A_PI_FREQ_REF_DIV = "NONE",
parameter PHY_0_A_PI_CLKOUT_DIV = 2,
parameter PHY_0_A_PO_CLKOUT_DIV = 2,
parameter PHY_0_A_BURST_MODE = "TRUE",
parameter PHY_0_A_PI_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OCLK_DELAY = 25,
parameter PHY_0_B_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_C_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_D_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_A_PO_OCLKDELAY_INV = "FALSE",
parameter PHY_0_A_OF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_IF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_OSERDES_DATA_RATE = "UNDECLARED",
parameter PHY_0_A_OSERDES_DATA_WIDTH = "UNDECLARED",
parameter PHY_0_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_A_IDELAYE2_IDELAY_TYPE = "VARIABLE",
parameter PHY_0_A_IDELAYE2_IDELAY_VALUE = 00,
parameter PHY_0_B_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_B_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_C_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_C_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_D_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_D_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
// common to instance 1
parameter PHY_1_BITLANES = PHY_0_BITLANES,
parameter PHY_1_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_1_LANE_REMAP = 16'h3210,
parameter PHY_1_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_1_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_1_DATA_CTL = DATA_CTL_B1,
parameter PHY_1_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_1_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_1_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_1_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_1_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_1_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_1_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_1_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_1_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_1_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_1_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_1_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_1_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_1_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_1_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_1_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_1_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_1_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_1_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_1_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_1_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_1_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_1_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV,
parameter PHY_1_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_1_A_BURST_MODE = PHY_0_A_BURST_MODE,
parameter PHY_1_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_1_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC ,
parameter PHY_1_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_1_B_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_C_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_D_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_1_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_B_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_B_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_C_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_C_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_D_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_D_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_1_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
// common to instance 2
parameter PHY_2_BITLANES = PHY_0_BITLANES,
parameter PHY_2_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_2_LANE_REMAP = 16'h3210,
parameter PHY_2_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_2_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_2_DATA_CTL = DATA_CTL_B2,
parameter PHY_2_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_2_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_2_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_2_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_2_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_2_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_2_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_2_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_2_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_2_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_2_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_2_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_2_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_2_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_2_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_2_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_2_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_2_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_2_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_2_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_2_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_2_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_2_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV ,
parameter PHY_2_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_2_A_BURST_MODE = PHY_0_A_BURST_MODE ,
parameter PHY_2_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_2_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC,
parameter PHY_2_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_2_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_2_B_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_C_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_D_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_2_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_B_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_B_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_C_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_C_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_D_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_D_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) || (BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : "TRUE",
parameter PHY_1_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) && ((BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0))) ? "FALSE" : ((PHY_0_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter PHY_2_IS_LAST_BANK = (BYTE_LANES_B2 != 0) && ((BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : ((PHY_0_IS_LAST_BANK || PHY_1_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter TCK = 2500,
// local computational use, do not pass down
parameter N_LANES = (0+BYTE_LANES_B0[0]) + (0+BYTE_LANES_B0[1]) + (0+BYTE_LANES_B0[2]) + (0+BYTE_LANES_B0[3])
+ (0+BYTE_LANES_B1[0]) + (0+BYTE_LANES_B1[1]) + (0+BYTE_LANES_B1[2]) + (0+BYTE_LANES_B1[3]) + (0+BYTE_LANES_B2[0]) + (0+BYTE_LANES_B2[1]) + (0+BYTE_LANES_B2[2]) + (0+BYTE_LANES_B2[3])
, // must not delete comma for syntax
parameter HIGHEST_BANK = (BYTE_LANES_B4 != 0 ? 5 : (BYTE_LANES_B3 != 0 ? 4 : (BYTE_LANES_B2 != 0 ? 3 : (BYTE_LANES_B1 != 0 ? 2 : 1)))),
parameter HIGHEST_LANE_B0 = ((PHY_0_IS_LAST_BANK == "FALSE") ? 4 : BYTE_LANES_B0[3] ? 4 : BYTE_LANES_B0[2] ? 3 : BYTE_LANES_B0[1] ? 2 : BYTE_LANES_B0[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B1 = (HIGHEST_BANK > 2) ? 4 : ( BYTE_LANES_B1[3] ? 4 : BYTE_LANES_B1[2] ? 3 : BYTE_LANES_B1[1] ? 2 : BYTE_LANES_B1[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B2 = (HIGHEST_BANK > 3) ? 4 : ( BYTE_LANES_B2[3] ? 4 : BYTE_LANES_B2[2] ? 3 : BYTE_LANES_B2[1] ? 2 : BYTE_LANES_B2[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B3 = 0,
parameter HIGHEST_LANE_B4 = 0,
parameter HIGHEST_LANE = (HIGHEST_LANE_B4 != 0) ? (HIGHEST_LANE_B4+16) : ((HIGHEST_LANE_B3 != 0) ? (HIGHEST_LANE_B3 + 12) : ((HIGHEST_LANE_B2 != 0) ? (HIGHEST_LANE_B2 + 8) : ((HIGHEST_LANE_B1 != 0) ? (HIGHEST_LANE_B1 + 4) : HIGHEST_LANE_B0))),
parameter LP_DDR_CK_WIDTH = 2,
parameter GENERATE_SIGNAL_SPLIT = "FALSE"
,parameter CKE_ODT_AUX = "FALSE"
)
(
input rst,
input ddr_rst_in_n ,
input phy_clk,
input freq_refclk,
input mem_refclk,
input mem_refclk_div4,
input pll_lock,
input sync_pulse,
input auxout_clk,
input idelayctrl_refclk,
input [HIGHEST_LANE*80-1:0] phy_dout,
input phy_cmd_wr_en,
input phy_data_wr_en,
input phy_rd_en,
input [31:0] phy_ctl_wd,
input [3:0] aux_in_1,
input [3:0] aux_in_2,
input [5:0] data_offset_1,
input [5:0] data_offset_2,
input phy_ctl_wr,
input if_rst,
input if_empty_def,
input cke_in,
input idelay_ce,
input idelay_ld,
input idelay_inc,
input phyGo,
input input_sink,
output if_a_empty,
output if_empty /* synthesis syn_maxfan = 3 */,
output if_empty_or,
output if_empty_and,
output of_ctl_a_full,
output of_data_a_full,
output of_ctl_full,
output of_data_full,
output pre_data_a_full,
output [HIGHEST_LANE*80-1:0] phy_din,
output phy_ctl_a_full,
output wire [3:0] phy_ctl_full,
output [HIGHEST_LANE*12-1:0] mem_dq_out,
output [HIGHEST_LANE*12-1:0] mem_dq_ts,
input [HIGHEST_LANE*10-1:0] mem_dq_in,
output [HIGHEST_LANE-1:0] mem_dqs_out,
output [HIGHEST_LANE-1:0] mem_dqs_ts,
input [HIGHEST_LANE-1:0] mem_dqs_in,
(* IOB = "FORCE" *) output reg [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out, // to memory, odt , 4 per phy controller
output phy_ctl_ready, // to fabric
output reg rst_out, // to memory
output [(NUM_DDR_CK * LP_DDR_CK_WIDTH)-1:0] ddr_clk,
// output rclk,
output mcGo,
output ref_dll_lock,
// calibration signals
input phy_write_calib,
input phy_read_calib,
input [5:0] calib_sel,
input [HIGHEST_BANK-1:0]calib_zero_inputs, // bit calib_sel[2], one per bank
input [HIGHEST_BANK-1:0]calib_zero_ctrl, // one bit per bank, zero's only control lane calibration inputs
input [HIGHEST_LANE-1:0] calib_zero_lanes, // one bit per lane
input calib_in_common,
input [2:0] po_fine_enable,
input [2:0] po_coarse_enable,
input [2:0] po_fine_inc,
input [2:0] po_coarse_inc,
input po_counter_load_en,
input [2:0] po_sel_fine_oclk_delay,
input [8:0] po_counter_load_val,
input po_counter_read_en,
output reg po_coarse_overflow,
output reg po_fine_overflow,
output reg [8:0] po_counter_read_val,
input [HIGHEST_BANK-1:0] pi_rst_dqs_find,
input pi_fine_enable,
input pi_fine_inc,
input pi_counter_load_en,
input pi_counter_read_en,
input [5:0] pi_counter_load_val,
output reg pi_fine_overflow,
output reg [5:0] pi_counter_read_val,
output reg pi_phase_locked,
output pi_phase_locked_all,
output reg pi_dqs_found,
output pi_dqs_found_all,
output pi_dqs_found_any,
output [HIGHEST_LANE-1:0] pi_phase_locked_lanes,
output [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg pi_dqs_out_of_range,
input [29:0] fine_delay,
input fine_delay_sel
);
wire [7:0] calib_zero_inputs_int ;
wire [HIGHEST_BANK*4-1:0] calib_zero_lanes_int ;
//Added the temporary variable for concadination operation
wire [2:0] calib_sel_byte0 ;
wire [2:0] calib_sel_byte1 ;
wire [2:0] calib_sel_byte2 ;
wire [4:0] po_coarse_overflow_w;
wire [4:0] po_fine_overflow_w;
wire [8:0] po_counter_read_val_w[4:0];
wire [4:0] pi_fine_overflow_w;
wire [5:0] pi_counter_read_val_w[4:0];
wire [4:0] pi_dqs_found_w;
wire [4:0] pi_dqs_found_all_w;
wire [4:0] pi_dqs_found_any_w;
wire [4:0] pi_dqs_out_of_range_w;
wire [4:0] pi_phase_locked_w;
wire [4:0] pi_phase_locked_all_w;
wire [4:0] rclk_w;
wire [HIGHEST_BANK-1:0] phy_ctl_ready_w;
wire [(LP_DDR_CK_WIDTH*24)-1:0] ddr_clk_w [HIGHEST_BANK-1:0];
wire [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out_;
wire [3:0] if_q0;
wire [3:0] if_q1;
wire [3:0] if_q2;
wire [3:0] if_q3;
wire [3:0] if_q4;
wire [7:0] if_q5;
wire [7:0] if_q6;
wire [3:0] if_q7;
wire [3:0] if_q8;
wire [3:0] if_q9;
wire [31:0] _phy_ctl_wd;
wire [3:0] aux_in_[4:1];
wire [3:0] rst_out_w;
wire freq_refclk_split;
wire mem_refclk_split;
wire mem_refclk_div4_split;
wire sync_pulse_split;
wire phy_clk_split0;
wire phy_ctl_clk_split0;
wire [31:0] phy_ctl_wd_split0;
wire phy_ctl_wr_split0;
wire phy_ctl_clk_split1;
wire phy_clk_split1;
wire [31:0] phy_ctl_wd_split1;
wire phy_ctl_wr_split1;
wire [5:0] phy_data_offset_1_split1;
wire phy_ctl_clk_split2;
wire phy_clk_split2;
wire [31:0] phy_ctl_wd_split2;
wire phy_ctl_wr_split2;
wire [5:0] phy_data_offset_2_split2;
wire [HIGHEST_LANE*80-1:0] phy_dout_split0;
wire phy_cmd_wr_en_split0;
wire phy_data_wr_en_split0;
wire phy_rd_en_split0;
wire [HIGHEST_LANE*80-1:0] phy_dout_split1;
wire phy_cmd_wr_en_split1;
wire phy_data_wr_en_split1;
wire phy_rd_en_split1;
wire [HIGHEST_LANE*80-1:0] phy_dout_split2;
wire phy_cmd_wr_en_split2;
wire phy_data_wr_en_split2;
wire phy_rd_en_split2;
wire phy_ctl_mstr_empty;
wire [HIGHEST_BANK-1:0] phy_ctl_empty;
wire _phy_ctl_a_full_f;
wire _phy_ctl_a_empty_f;
wire _phy_ctl_full_f;
wire _phy_ctl_empty_f;
wire [HIGHEST_BANK-1:0] _phy_ctl_a_full_p;
wire [HIGHEST_BANK-1:0] _phy_ctl_full_p;
wire [HIGHEST_BANK-1:0] of_ctl_a_full_v;
wire [HIGHEST_BANK-1:0] of_ctl_full_v;
wire [HIGHEST_BANK-1:0] of_data_a_full_v;
wire [HIGHEST_BANK-1:0] of_data_full_v;
wire [HIGHEST_BANK-1:0] pre_data_a_full_v;
wire [HIGHEST_BANK-1:0] if_empty_v;
wire [HIGHEST_BANK-1:0] byte_rd_en_v;
wire [HIGHEST_BANK*2-1:0] byte_rd_en_oth_banks;
wire [HIGHEST_BANK-1:0] if_empty_or_v;
wire [HIGHEST_BANK-1:0] if_empty_and_v;
wire [HIGHEST_BANK-1:0] if_a_empty_v;
localparam IF_ARRAY_MODE = "ARRAY_MODE_4_X_4";
localparam IF_SYNCHRONOUS_MODE = "FALSE";
localparam IF_SLOW_WR_CLK = "FALSE";
localparam IF_SLOW_RD_CLK = "FALSE";
localparam PHY_MULTI_REGION = (HIGHEST_BANK > 1) ? "TRUE" : "FALSE";
localparam RCLK_NEG_EDGE = 3'b000;
localparam RCLK_POS_EDGE = 3'b111;
localparam LP_PHY_0_BYTELANES_DDR_CK = BYTELANES_DDR_CK & 24'hFF_FFFF;
localparam LP_PHY_1_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 24) & 24'hFF_FFFF;
localparam LP_PHY_2_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 48) & 24'hFF_FFFF;
// hi, lo positions for data offset field, MIG doesn't allow defines
localparam PC_DATA_OFFSET_RANGE_HI = 22;
localparam PC_DATA_OFFSET_RANGE_LO = 17;
/* Phaser_In Output source coding table
"PHASE_REF" : 4'b0000;
"DELAYED_MEM_REF" : 4'b0101;
"DELAYED_PHASE_REF" : 4'b0011;
"DELAYED_REF" : 4'b0001;
"FREQ_REF" : 4'b1000;
"MEM_REF" : 4'b0010;
*/
localparam RCLK_PI_OUTPUT_CLK_SRC = "DELAYED_MEM_REF";
localparam DDR_TCK = TCK;
localparam real FREQ_REF_PERIOD = DDR_TCK / (PHY_0_A_PI_FREQ_REF_DIV == "DIV2" ? 2 : 1);
localparam real L_FREQ_REF_PERIOD_NS = FREQ_REF_PERIOD /1000.0;
localparam PO_S3_TAPS = 64 ; // Number of taps per clock cycle in OCLK_DELAYED delay line
localparam PI_S2_TAPS = 128 ; // Number of taps per clock cycle in stage 2 delay line
localparam PO_S2_TAPS = 128 ; // Number of taps per clock cycle in sta
/*
Intrinsic delay of Phaser In Stage 1
@3300ps - 1.939ns - 58.8%
@2500ps - 1.657ns - 66.3%
@1875ps - 1.263ns - 67.4%
@1500ps - 1.021ns - 68.1%
@1250ps - 0.868ns - 69.4%
@1072ps - 0.752ns - 70.1%
@938ps - 0.667ns - 71.1%
*/
// If we use the Delayed Mem_Ref_Clk in the RCLK Phaser_In, then the Stage 1 intrinsic delay is 0.0
// Fraction of a full DDR_TCK period
localparam real PI_STG1_INTRINSIC_DELAY = (RCLK_PI_OUTPUT_CLK_SRC == "DELAYED_MEM_REF") ? 0.0 :
((DDR_TCK < 1005) ? 0.667 :
(DDR_TCK < 1160) ? 0.752 :
(DDR_TCK < 1375) ? 0.868 :
(DDR_TCK < 1685) ? 1.021 :
(DDR_TCK < 2185) ? 1.263 :
(DDR_TCK < 2900) ? 1.657 :
(DDR_TCK < 3100) ? 1.771 : 1.939)*1000;
/*
Intrinsic delay of Phaser In Stage 2
@3300ps - 0.912ns - 27.6% - single tap - 13ps
@3000ps - 0.848ns - 28.3% - single tap - 11ps
@2500ps - 1.264ns - 50.6% - single tap - 19ps
@1875ps - 1.000ns - 53.3% - single tap - 15ps
@1500ps - 0.848ns - 56.5% - single tap - 11ps
@1250ps - 0.736ns - 58.9% - single tap - 9ps
@1072ps - 0.664ns - 61.9% - single tap - 8ps
@938ps - 0.608ns - 64.8% - single tap - 7ps
*/
// Intrinsic delay = (.4218 + .0002freq(MHz))period(ps)
localparam real PI_STG2_INTRINSIC_DELAY = (0.4218*FREQ_REF_PERIOD + 200) + 16.75; // 12ps fudge factor
/*
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 1
@3300ps - 1.294ns - 39.2%
@2500ps - 1.294ns - 51.8%
@1875ps - 1.030ns - 54.9%
@1500ps - 0.878ns - 58.5%
@1250ps - 0.766ns - 61.3%
@1072ps - 0.694ns - 64.7%
@938ps - 0.638ns - 68.0%
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 0
@3300ps - 2.084ns - 63.2% - single tap - 20ps
@2500ps - 2.084ns - 81.9% - single tap - 19ps
@1875ps - 1.676ns - 89.4% - single tap - 15ps
@1500ps - 1.444ns - 96.3% - single tap - 11ps
@1250ps - 1.276ns - 102.1% - single tap - 9ps
@1072ps - 1.164ns - 108.6% - single tap - 8ps
@938ps - 1.076ns - 114.7% - single tap - 7ps
*/
// Fraction of a full DDR_TCK period
localparam real PO_STG1_INTRINSIC_DELAY = 0;
localparam real PO_STG2_FINE_INTRINSIC_DELAY = 0.4218*FREQ_REF_PERIOD + 200 + 42; // 42ps fudge factor
localparam real PO_STG2_COARSE_INTRINSIC_DELAY = 0.2256*FREQ_REF_PERIOD + 200 + 29; // 29ps fudge factor
localparam real PO_STG2_INTRINSIC_DELAY = PO_STG2_FINE_INTRINSIC_DELAY +
(PO_CTL_COARSE_BYPASS == "TRUE" ? 30 : PO_STG2_COARSE_INTRINSIC_DELAY);
// When the PO_STG2_INTRINSIC_DELAY is approximately equal to tCK, then the Phaser Out's circular buffer can
// go metastable. The circular buffer must be prevented from getting into a metastable state. To accomplish this,
// a default programmed value must be programmed into the stage 2 delay. This delay is only needed at reset, adjustments
// to the stage 2 delay can be made after reset is removed.
localparam real PO_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PO_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PO_CIRC_BUF_META_ZONE = 200.0;
localparam PO_CIRC_BUF_EARLY = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? 1'b1 : 1'b0;
localparam real PO_CIRC_BUF_OFFSET = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? DDR_TCK - PO_STG2_INTRINSIC_DELAY : PO_STG2_INTRINSIC_DELAY - DDR_TCK;
// If the stage 2 intrinsic delay is less than the clock period, then see if it is less than the threshold
// If it is not more than the threshold than we must push the delay after the clock period plus a guardband.
//A change in PO_CIRC_BUF_DELAY value will affect the localparam TAP_DEC value(=PO_CIRC_BUF_DELAY - 31) in ddr_phy_ck_addr_cmd_delay.v. Update TAP_DEC value when PO_CIRC_BUF_DELAY is updated.
localparam integer PO_CIRC_BUF_DELAY = 60;
//localparam integer PO_CIRC_BUF_DELAY = PO_CIRC_BUF_EARLY ? (PO_CIRC_BUF_OFFSET > PO_CIRC_BUF_META_ZONE) ? 0 :
// (PO_CIRC_BUF_META_ZONE + PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE :
// (PO_CIRC_BUF_META_ZONE - PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE;
localparam real PI_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PI_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PI_MAX_STG2_DELAY = (PI_S2_TAPS/2 - 1) * PI_S2_TAPS_SIZE;
localparam real PI_INTRINSIC_DELAY = PI_STG1_INTRINSIC_DELAY + PI_STG2_INTRINSIC_DELAY;
localparam real PO_INTRINSIC_DELAY = PO_STG1_INTRINSIC_DELAY + PO_STG2_INTRINSIC_DELAY;
localparam real PO_DELAY = PO_INTRINSIC_DELAY + (PO_CIRC_BUF_DELAY*PO_S2_TAPS_SIZE);
localparam RCLK_BUFIO_DELAY = 1200; // estimate of clock insertion delay of rclk through BUFIO to ioi
// The PI_OFFSET is the difference between the Phaser Out delay path and the intrinsic delay path
// of the Phaser_In that drives the rclk. The objective is to align either the rising edges of the
// oserdes_oclk and the rclk or to align the rising to falling edges depending on which adjustment
// is within the range of the stage 2 delay line in the Phaser_In.
localparam integer RCLK_DELAY_INT= (PI_INTRINSIC_DELAY + RCLK_BUFIO_DELAY);
localparam integer PO_DELAY_INT = PO_DELAY;
localparam PI_OFFSET = (PO_DELAY_INT % DDR_TCK) - (RCLK_DELAY_INT % DDR_TCK);
// if pi_offset >= 0 align to oclk posedge by delaying pi path to where oclk is
// if pi_offset < 0 align to oclk negedge by delaying pi path the additional distance to next oclk edge.
// note that in this case PI_OFFSET is negative so invert before subtracting.
localparam real PI_STG2_DELAY_CAND = PI_OFFSET >= 0
? PI_OFFSET
: ((-PI_OFFSET) < DDR_TCK/2) ?
(DDR_TCK/2 - (- PI_OFFSET)) :
(DDR_TCK - (- PI_OFFSET)) ;
localparam real PI_STG2_DELAY =
(PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY ?
PI_MAX_STG2_DELAY : PI_STG2_DELAY_CAND);
localparam integer DEFAULT_RCLK_DELAY = PI_STG2_DELAY / PI_S2_TAPS_SIZE;
localparam LP_RCLK_SELECT_EDGE = (RCLK_SELECT_EDGE != 4'b1111 ) ? RCLK_SELECT_EDGE : (PI_OFFSET >= 0 ? RCLK_POS_EDGE : (PI_OFFSET <= TCK/2 ? RCLK_NEG_EDGE : RCLK_POS_EDGE));
localparam integer L_PHY_0_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_1_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_2_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam L_PHY_0_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
wire _phy_clk;
wire [2:0] mcGo_w;
wire [HIGHEST_BANK-1:0] ref_dll_lock_w;
reg [15:0] mcGo_r;
assign ref_dll_lock = & ref_dll_lock_w;
initial begin
if ( SYNTHESIS == "FALSE" ) begin
$display("%m : BYTE_LANES_B0 = %x BYTE_LANES_B1 = %x DATA_CTL_B0 = %x DATA_CTL_B1 = %x", BYTE_LANES_B0, BYTE_LANES_B1, DATA_CTL_B0, DATA_CTL_B1);
$display("%m : HIGHEST_LANE = %d HIGHEST_LANE_B0 = %d HIGHEST_LANE_B1 = %d", HIGHEST_LANE, HIGHEST_LANE_B0, HIGHEST_LANE_B1);
$display("%m : HIGHEST_BANK = %d", HIGHEST_BANK);
$display("%m : FREQ_REF_PERIOD = %0.2f ", FREQ_REF_PERIOD);
$display("%m : DDR_TCK = %0d ", DDR_TCK);
$display("%m : PO_S2_TAPS_SIZE = %0.2f ", PO_S2_TAPS_SIZE);
$display("%m : PO_CIRC_BUF_EARLY = %0d ", PO_CIRC_BUF_EARLY);
$display("%m : PO_CIRC_BUF_OFFSET = %0.2f ", PO_CIRC_BUF_OFFSET);
$display("%m : PO_CIRC_BUF_META_ZONE = %0.2f ", PO_CIRC_BUF_META_ZONE);
$display("%m : PO_STG2_FINE_INTR_DLY = %0.2f ", PO_STG2_FINE_INTRINSIC_DELAY);
$display("%m : PO_STG2_COARSE_INTR_DLY = %0.2f ", PO_STG2_COARSE_INTRINSIC_DELAY);
$display("%m : PO_STG2_INTRINSIC_DELAY = %0.2f ", PO_STG2_INTRINSIC_DELAY);
$display("%m : PO_CIRC_BUF_DELAY = %0d ", PO_CIRC_BUF_DELAY);
$display("%m : PO_INTRINSIC_DELAY = %0.2f ", PO_INTRINSIC_DELAY);
$display("%m : PO_DELAY = %0.2f ", PO_DELAY);
$display("%m : PO_OCLK_DELAY = %0d ", PHY_0_A_PO_OCLK_DELAY);
$display("%m : L_PHY_0_PO_FINE_DELAY = %0d ", L_PHY_0_PO_FINE_DELAY);
$display("%m : PI_STG1_INTRINSIC_DELAY = %0.2f ", PI_STG1_INTRINSIC_DELAY);
$display("%m : PI_STG2_INTRINSIC_DELAY = %0.2f ", PI_STG2_INTRINSIC_DELAY);
$display("%m : PI_INTRINSIC_DELAY = %0.2f ", PI_INTRINSIC_DELAY);
$display("%m : PI_MAX_STG2_DELAY = %0.2f ", PI_MAX_STG2_DELAY);
$display("%m : PI_OFFSET = %0.2f ", PI_OFFSET);
if ( PI_OFFSET < 0) $display("%m : a negative PI_OFFSET means that rclk path is longer than oclk path so rclk will be delayed to next oclk edge and the negedge of rclk may be used.");
$display("%m : PI_STG2_DELAY = %0.2f ", PI_STG2_DELAY);
$display("%m :PI_STG2_DELAY_CAND = %0.2f ",PI_STG2_DELAY_CAND);
$display("%m : DEFAULT_RCLK_DELAY = %0d ", DEFAULT_RCLK_DELAY);
$display("%m : RCLK_SELECT_EDGE = %0b ", LP_RCLK_SELECT_EDGE);
end // SYNTHESIS
if ( PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY) $display("WARNING: %m: The required delay though the phaser_in to internally match the aux_out clock to ddr clock exceeds the maximum allowable delay. The clock edge will occur at the output registers of aux_out %0.2f ps before the ddr clock edge. If aux_out is used for memory inputs, this may violate setup or hold time.", PI_STG2_DELAY_CAND - PI_MAX_STG2_DELAY);
end
assign sync_pulse_split = sync_pulse;
assign mem_refclk_split = mem_refclk;
assign freq_refclk_split = freq_refclk;
assign mem_refclk_div4_split = mem_refclk_div4;
assign phy_ctl_clk_split0 = _phy_clk;
assign phy_ctl_wd_split0 = phy_ctl_wd;
assign phy_ctl_wr_split0 = phy_ctl_wr;
assign phy_clk_split0 = phy_clk;
assign phy_cmd_wr_en_split0 = phy_cmd_wr_en;
assign phy_data_wr_en_split0 = phy_data_wr_en;
assign phy_rd_en_split0 = phy_rd_en;
assign phy_dout_split0 = phy_dout;
assign phy_ctl_clk_split1 = phy_clk;
assign phy_ctl_wd_split1 = phy_ctl_wd;
assign phy_data_offset_1_split1 = data_offset_1;
assign phy_ctl_wr_split1 = phy_ctl_wr;
assign phy_clk_split1 = phy_clk;
assign phy_cmd_wr_en_split1 = phy_cmd_wr_en;
assign phy_data_wr_en_split1 = phy_data_wr_en;
assign phy_rd_en_split1 = phy_rd_en;
assign phy_dout_split1 = phy_dout;
assign phy_ctl_clk_split2 = phy_clk;
assign phy_ctl_wd_split2 = phy_ctl_wd;
assign phy_data_offset_2_split2 = data_offset_2;
assign phy_ctl_wr_split2 = phy_ctl_wr;
assign phy_clk_split2 = phy_clk;
assign phy_cmd_wr_en_split2 = phy_cmd_wr_en;
assign phy_data_wr_en_split2 = phy_data_wr_en;
assign phy_rd_en_split2 = phy_rd_en;
assign phy_dout_split2 = phy_dout;
// these wires are needed to coerce correct synthesis
// the synthesizer did not always see the widths of the
// parameters as 4 bits.
wire [3:0] blb0 = BYTE_LANES_B0;
wire [3:0] blb1 = BYTE_LANES_B1;
wire [3:0] blb2 = BYTE_LANES_B2;
wire [3:0] dcb0 = DATA_CTL_B0;
wire [3:0] dcb1 = DATA_CTL_B1;
wire [3:0] dcb2 = DATA_CTL_B2;
assign pi_dqs_found_all = & (pi_dqs_found_lanes | ~ {blb2, blb1, blb0} | ~ {dcb2, dcb1, dcb0});
assign pi_dqs_found_any = | (pi_dqs_found_lanes & {blb2, blb1, blb0} & {dcb2, dcb1, dcb0});
assign pi_phase_locked_all = & pi_phase_locked_all_w[HIGHEST_BANK-1:0];
assign calib_zero_inputs_int = {3'bxxx, calib_zero_inputs};
//Added to remove concadination in the instantiation
assign calib_sel_byte0 = {calib_zero_inputs_int[0], calib_sel[1:0]} ;
assign calib_sel_byte1 = {calib_zero_inputs_int[1], calib_sel[1:0]} ;
assign calib_sel_byte2 = {calib_zero_inputs_int[2], calib_sel[1:0]} ;
assign calib_zero_lanes_int = calib_zero_lanes;
assign phy_ctl_ready = &phy_ctl_ready_w[HIGHEST_BANK-1:0];
assign phy_ctl_mstr_empty = phy_ctl_empty[MASTER_PHY_CTL];
assign of_ctl_a_full = |of_ctl_a_full_v;
assign of_ctl_full = |of_ctl_full_v;
assign of_data_a_full = |of_data_a_full_v;
assign of_data_full = |of_data_full_v;
assign pre_data_a_full= |pre_data_a_full_v;
// if if_empty_def == 1, empty is asserted only if all are empty;
// this allows the user to detect a skewed fifo depth and self-clear
// if desired. It avoids a reset to clear the flags.
assign if_empty = !if_empty_def ? |if_empty_v : &if_empty_v;
assign if_empty_or = |if_empty_or_v;
assign if_empty_and = &if_empty_and_v;
assign if_a_empty = |if_a_empty_v;
generate
genvar i;
for (i = 0; i != NUM_DDR_CK; i = i + 1) begin : ddr_clk_gen
case ((GENERATE_DDR_CK_MAP >> (16*i)) & 16'hffff)
16'h3041: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3042: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3043: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3044: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3141: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3142: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3143: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3144: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3241: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3242: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3243: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3244: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
default : initial $display("ERROR: mc_phy ddr_clk_gen : invalid specification for parameter GENERATE_DDR_CK_MAP , clock index = %d, spec= %x (hex) ", i, (( GENERATE_DDR_CK_MAP >> (16 * i )) & 16'hffff ));
endcase
end
endgenerate
//assign rclk = rclk_w[RCLK_SELECT_BANK];
reg rst_auxout;
reg rst_auxout_r;
reg rst_auxout_rr;
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout_r <= #(1) 1'b1;
rst_auxout_rr <= #(1) 1'b1;
end
else begin
rst_auxout_r <= #(1) rst;
rst_auxout_rr <= #(1) rst_auxout_r;
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
else begin
always @(negedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
localparam L_RESET_SELECT_BANK =
(BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK) ? 0 : RCLK_SELECT_BANK;
always @(*) begin
rst_out = rst_out_w[L_RESET_SELECT_BANK] & ddr_rst_in_n;
end
always @(posedge phy_clk) begin
if ( rst)
mcGo_r <= #(1) 0;
else
mcGo_r <= #(1) (mcGo_r << 1) | &mcGo_w;
end
assign mcGo = mcGo_r[15];
generate
// this is an optional 1 clock delay to add latency to the phy_control programming path
if (PHYCTL_CMD_FIFO == "TRUE") begin : cmd_fifo_soft
reg [31:0] phy_wd_reg = 0;
reg [3:0] aux_in1_reg = 0;
reg [3:0] aux_in2_reg = 0;
reg sfifo_ready = 0;
assign _phy_ctl_wd = phy_wd_reg;
assign aux_in_[1] = aux_in1_reg;
assign aux_in_[2] = aux_in2_reg;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[1] = |_phy_ctl_full_p;
assign phy_ctl_full[2] = |_phy_ctl_full_p;
assign phy_ctl_full[3] = |_phy_ctl_full_p;
assign _phy_clk = phy_clk;
always @(posedge phy_clk) begin
phy_wd_reg <= #1 phy_ctl_wd;
aux_in1_reg <= #1 aux_in_1;
aux_in2_reg <= #1 aux_in_2;
sfifo_ready <= #1 phy_ctl_wr;
end
end
else if (PHYCTL_CMD_FIFO == "FALSE") begin
assign _phy_ctl_wd = phy_ctl_wd;
assign aux_in_[1] = aux_in_1;
assign aux_in_[2] = aux_in_2;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[3:1] = 3'b000;
assign _phy_clk = phy_clk;
end
endgenerate
// instance of four-lane phy
generate
if (HIGHEST_BANK == 3) begin : banks_3
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[5:4] = {byte_rd_en_v[0],byte_rd_en_v[1]};
end
else if (HIGHEST_BANK == 2) begin : banks_2
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],1'b1};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],1'b1};
end
else begin : banks_1
assign byte_rd_en_oth_banks[1:0] = {1'b1,1'b1};
end
if ( BYTE_LANES_B0 != 0) begin : ddr_phy_4lanes_0
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B0), /* four bits, one per lanes */
.DATA_CTL_N (PHY_0_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_0_PO_FINE_DELAY),
.BITLANES (PHY_0_BITLANES),
.BITLANES_OUTONLY (PHY_0_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_0_BYTELANES_DDR_CK),
.LAST_BANK (PHY_0_IS_LAST_BANK),
.LANE_REMAP (PHY_0_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_0_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_0_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_0_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_0_IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_0_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_0_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_0_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_0_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_0_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_0_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_0_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_0_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_0_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_0_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_0_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_0_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_0_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_0_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_0_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_0_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_0_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_0_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_0_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_0_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_0_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_0_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_0_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_0_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_0_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_0_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_0_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_0_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_0_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_0_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_0_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_0_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_0_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_0_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_0_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_0_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_0_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_0_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_0_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_0_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_0_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_0_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_0_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_0_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_0_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_0_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_0_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_0_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_0_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_0_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_0_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split0),
.phy_ctl_clk (phy_ctl_clk_split0),
.phy_ctl_wd (phy_ctl_wd_split0),
.data_offset (phy_ctl_wd_split0[PC_DATA_OFFSET_RANGE_HI : PC_DATA_OFFSET_RANGE_LO]),
.phy_ctl_wr (phy_ctl_wr_split0),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split0[HIGHEST_LANE_B0*80-1:0]),
.phy_cmd_wr_en (phy_cmd_wr_en_split0),
.phy_data_wr_en (phy_data_wr_en_split0),
.phy_rd_en (phy_rd_en_split0),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[0]),
.rclk (),
.rst_out (rst_out_w[0]),
.mcGo (mcGo_w[0]),
.ref_dll_lock (ref_dll_lock_w[0]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[1:0]),
.if_a_empty (if_a_empty_v[0]),
.if_empty (if_empty_v[0]),
.byte_rd_en (byte_rd_en_v[0]),
.if_empty_or (if_empty_or_v[0]),
.if_empty_and (if_empty_and_v[0]),
.of_ctl_a_full (of_ctl_a_full_v[0]),
.of_data_a_full (of_data_a_full_v[0]),
.of_ctl_full (of_ctl_full_v[0]),
.of_data_full (of_data_full_v[0]),
.pre_data_a_full (pre_data_a_full_v[0]),
.phy_din (phy_din[HIGHEST_LANE_B0*80-1:0]),
.phy_ctl_a_full (_phy_ctl_a_full_p[0]),
.phy_ctl_full (_phy_ctl_full_p[0]),
.phy_ctl_empty (phy_ctl_empty[0]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B0*10-1:0]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B0-1:0]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B0-1:0]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B0-1:0]),
.aux_out (aux_out_[3:0]),
.phy_ctl_ready (phy_ctl_ready_w[0]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte0),
.calib_zero_ctrl (calib_zero_ctrl[0]),
.calib_zero_lanes (calib_zero_lanes_int[3:0]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[0]),
.po_fine_enable (po_fine_enable[0]),
.po_fine_inc (po_fine_inc[0]),
.po_coarse_inc (po_coarse_inc[0]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[0]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[0]),
.po_fine_overflow (po_fine_overflow_w[0]),
.po_counter_read_val (po_counter_read_val_w[0]),
.pi_rst_dqs_find (pi_rst_dqs_find[0]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[0]),
.pi_counter_read_val (pi_counter_read_val_w[0]),
.pi_dqs_found (pi_dqs_found_w[0]),
.pi_dqs_found_all (pi_dqs_found_all_w[0]),
.pi_dqs_found_any (pi_dqs_found_any_w[0]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[0]),
.pi_phase_locked (pi_phase_locked_w[0]),
.pi_phase_locked_all (pi_phase_locked_all_w[0]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[0] <= #100 0;
aux_out[2] <= #100 0;
end
else begin
aux_out[0] <= #100 aux_out_[0];
aux_out[2] <= #100 aux_out_[2];
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
end
else begin
if ( HIGHEST_BANK > 0) begin
assign phy_din[HIGHEST_LANE_B0*80-1:0] = 0;
assign _phy_ctl_a_full_p[0] = 0;
assign of_ctl_a_full_v[0] = 0;
assign of_ctl_full_v[0] = 0;
assign of_data_a_full_v[0] = 0;
assign of_data_full_v[0] = 0;
assign pre_data_a_full_v[0] = 0;
assign if_empty_v[0] = 0;
assign byte_rd_en_v[0] = 1;
always @(*)
aux_out[3:0] = 0;
end
assign pi_dqs_found_w[0] = 1;
assign pi_dqs_found_all_w[0] = 1;
assign pi_dqs_found_any_w[0] = 0;
assign pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_out_of_range_w[0] = 0;
assign pi_phase_locked_w[0] = 1;
assign po_fine_overflow_w[0] = 0;
assign po_coarse_overflow_w[0] = 0;
assign po_fine_overflow_w[0] = 0;
assign pi_fine_overflow_w[0] = 0;
assign po_counter_read_val_w[0] = 0;
assign pi_counter_read_val_w[0] = 0;
assign mcGo_w[0] = 1;
if ( RCLK_SELECT_BANK == 0)
always @(*)
aux_out[3:0] = 0;
end
if ( BYTE_LANES_B1 != 0) begin : ddr_phy_4lanes_1
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B1), /* four bits, one per lanes */
.DATA_CTL_N (PHY_1_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_1_PO_FINE_DELAY),
.BITLANES (PHY_1_BITLANES),
.BITLANES_OUTONLY (PHY_1_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_1_BYTELANES_DDR_CK),
.LAST_BANK (PHY_1_IS_LAST_BANK ),
.LANE_REMAP (PHY_1_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_1_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_1_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_1_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_1_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_1_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_1_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_1_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_1_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_1_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_1_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_1_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_1_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_1_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_1_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_1_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_1_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_1_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_1_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_1_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_1_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_1_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_1_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_1_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_1_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_1_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_1_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_1_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_1_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_1_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_1_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_1_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_1_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_1_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_1_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_1_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_1_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_1_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_1_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_1_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_1_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_1_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_1_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_1_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_1_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_1_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_1_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_1_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_1_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_1_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_1_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_1_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_1_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_1_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_1_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_1_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split1),
.phy_ctl_clk (phy_ctl_clk_split1),
.phy_ctl_wd (phy_ctl_wd_split1),
.data_offset (phy_data_offset_1_split1),
.phy_ctl_wr (phy_ctl_wr_split1),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split1[HIGHEST_LANE_B1*80+320-1:320]),
.phy_cmd_wr_en (phy_cmd_wr_en_split1),
.phy_data_wr_en (phy_data_wr_en_split1),
.phy_rd_en (phy_rd_en_split1),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[1]),
.rclk (),
.rst_out (rst_out_w[1]),
.mcGo (mcGo_w[1]),
.ref_dll_lock (ref_dll_lock_w[1]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[3:2]),
.if_a_empty (if_a_empty_v[1]),
.if_empty (if_empty_v[1]),
.byte_rd_en (byte_rd_en_v[1]),
.if_empty_or (if_empty_or_v[1]),
.if_empty_and (if_empty_and_v[1]),
.of_ctl_a_full (of_ctl_a_full_v[1]),
.of_data_a_full (of_data_a_full_v[1]),
.of_ctl_full (of_ctl_full_v[1]),
.of_data_full (of_data_full_v[1]),
.pre_data_a_full (pre_data_a_full_v[1]),
.phy_din (phy_din[HIGHEST_LANE_B1*80+320-1:320]),
.phy_ctl_a_full (_phy_ctl_a_full_p[1]),
.phy_ctl_full (_phy_ctl_full_p[1]),
.phy_ctl_empty (phy_ctl_empty[1]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B1*10+40-1:40]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B1+4-1:4]),
.aux_out (aux_out_[7:4]),
.phy_ctl_ready (phy_ctl_ready_w[1]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte1),
.calib_zero_ctrl (calib_zero_ctrl[1]),
.calib_zero_lanes (calib_zero_lanes_int[7:4]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[1]),
.po_fine_enable (po_fine_enable[1]),
.po_fine_inc (po_fine_inc[1]),
.po_coarse_inc (po_coarse_inc[1]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[1]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[1]),
.po_fine_overflow (po_fine_overflow_w[1]),
.po_counter_read_val (po_counter_read_val_w[1]),
.pi_rst_dqs_find (pi_rst_dqs_find[1]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[1]),
.pi_counter_read_val (pi_counter_read_val_w[1]),
.pi_dqs_found (pi_dqs_found_w[1]),
.pi_dqs_found_all (pi_dqs_found_all_w[1]),
.pi_dqs_found_any (pi_dqs_found_any_w[1]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[1]),
.pi_phase_locked (pi_phase_locked_w[1]),
.pi_phase_locked_all (pi_phase_locked_all_w[1]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[4] <= #100 0;
aux_out[6] <= #100 0;
end
else begin
aux_out[4] <= #100 aux_out_[4];
aux_out[6] <= #100 aux_out_[6];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
end
else begin
if ( HIGHEST_BANK > 1) begin
assign phy_din[HIGHEST_LANE_B1*80+320-1:320] = 0;
assign _phy_ctl_a_full_p[1] = 0;
assign of_ctl_a_full_v[1] = 0;
assign of_ctl_full_v[1] = 0;
assign of_data_a_full_v[1] = 0;
assign of_data_full_v[1] = 0;
assign pre_data_a_full_v[1] = 0;
assign if_empty_v[1] = 0;
assign byte_rd_en_v[1] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
always @(*)
aux_out[7:4] = 0;
end
assign pi_dqs_found_w[1] = 1;
assign pi_dqs_found_all_w[1] = 1;
assign pi_dqs_found_any_w[1] = 0;
assign pi_dqs_out_of_range_w[1] = 0;
assign pi_phase_locked_w[1] = 1;
assign po_coarse_overflow_w[1] = 0;
assign po_fine_overflow_w[1] = 0;
assign pi_fine_overflow_w[1] = 0;
assign po_counter_read_val_w[1] = 0;
assign pi_counter_read_val_w[1] = 0;
assign mcGo_w[1] = 1;
end
if ( BYTE_LANES_B2 != 0) begin : ddr_phy_4lanes_2
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B2), /* four bits, one per lanes */
.DATA_CTL_N (PHY_2_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_2_PO_FINE_DELAY),
.BITLANES (PHY_2_BITLANES),
.BITLANES_OUTONLY (PHY_2_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_2_BYTELANES_DDR_CK),
.LAST_BANK (PHY_2_IS_LAST_BANK ),
.LANE_REMAP (PHY_2_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_2_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_2_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_2_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_2_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_2_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_2_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_2_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_2_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_2_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_2_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_2_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_2_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_2_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_2_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_2_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_2_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_2_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_2_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_2_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_2_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_2_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_2_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_2_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_2_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_2_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_2_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_2_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_2_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_2_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_2_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_2_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_2_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_2_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_2_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_2_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_2_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_2_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_2_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_2_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_2_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_2_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_2_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_2_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_2_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_2_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_2_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_2_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_2_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_2_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_2_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_2_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_2_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_2_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_2_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_2_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split2),
.phy_ctl_clk (phy_ctl_clk_split2),
.phy_ctl_wd (phy_ctl_wd_split2),
.data_offset (phy_data_offset_2_split2),
.phy_ctl_wr (phy_ctl_wr_split2),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split2[HIGHEST_LANE_B2*80+640-1:640]),
.phy_cmd_wr_en (phy_cmd_wr_en_split2),
.phy_data_wr_en (phy_data_wr_en_split2),
.phy_rd_en (phy_rd_en_split2),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[2]),
.rclk (),
.rst_out (rst_out_w[2]),
.mcGo (mcGo_w[2]),
.ref_dll_lock (ref_dll_lock_w[2]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[5:4]),
.if_a_empty (if_a_empty_v[2]),
.if_empty (if_empty_v[2]),
.byte_rd_en (byte_rd_en_v[2]),
.if_empty_or (if_empty_or_v[2]),
.if_empty_and (if_empty_and_v[2]),
.of_ctl_a_full (of_ctl_a_full_v[2]),
.of_data_a_full (of_data_a_full_v[2]),
.of_ctl_full (of_ctl_full_v[2]),
.of_data_full (of_data_full_v[2]),
.pre_data_a_full (pre_data_a_full_v[2]),
.phy_din (phy_din[HIGHEST_LANE_B2*80+640-1:640]),
.phy_ctl_a_full (_phy_ctl_a_full_p[2]),
.phy_ctl_full (_phy_ctl_full_p[2]),
.phy_ctl_empty (phy_ctl_empty[2]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B2*10+80-1:80]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B2-1+8:8]),
.aux_out (aux_out_[11:8]),
.phy_ctl_ready (phy_ctl_ready_w[2]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte2),
.calib_zero_ctrl (calib_zero_ctrl[2]),
.calib_zero_lanes (calib_zero_lanes_int[11:8]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[2]),
.po_fine_enable (po_fine_enable[2]),
.po_fine_inc (po_fine_inc[2]),
.po_coarse_inc (po_coarse_inc[2]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[2]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[2]),
.po_fine_overflow (po_fine_overflow_w[2]),
.po_counter_read_val (po_counter_read_val_w[2]),
.pi_rst_dqs_find (pi_rst_dqs_find[2]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[2]),
.pi_counter_read_val (pi_counter_read_val_w[2]),
.pi_dqs_found (pi_dqs_found_w[2]),
.pi_dqs_found_all (pi_dqs_found_all_w[2]),
.pi_dqs_found_any (pi_dqs_found_any_w[2]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[2]),
.pi_phase_locked (pi_phase_locked_w[2]),
.pi_phase_locked_all (pi_phase_locked_all_w[2]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[8] <= #100 0;
aux_out[10] <= #100 0;
end
else begin
aux_out[8] <= #100 aux_out_[8];
aux_out[10] <= #100 aux_out_[10];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
end
else begin
if ( HIGHEST_BANK > 2) begin
assign phy_din[HIGHEST_LANE_B2*80+640-1:640] = 0;
assign _phy_ctl_a_full_p[2] = 0;
assign of_ctl_a_full_v[2] = 0;
assign of_ctl_full_v[2] = 0;
assign of_data_a_full_v[2] = 0;
assign of_data_full_v[2] = 0;
assign pre_data_a_full_v[2] = 0;
assign if_empty_v[2] = 0;
assign byte_rd_en_v[2] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
always @(*)
aux_out[11:8] = 0;
end
assign pi_dqs_found_w[2] = 1;
assign pi_dqs_found_all_w[2] = 1;
assign pi_dqs_found_any_w[2] = 0;
assign pi_dqs_out_of_range_w[2] = 0;
assign pi_phase_locked_w[2] = 1;
assign po_coarse_overflow_w[2] = 0;
assign po_fine_overflow_w[2] = 0;
assign po_counter_read_val_w[2] = 0;
assign pi_counter_read_val_w[2] = 0;
assign mcGo_w[2] = 1;
end
endgenerate
generate
// for single bank , emit an extra phaser_in to generate rclk
// so that auxout can be placed in another region
// if desired
if ( BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK>0)
begin : phaser_in_rclk
localparam L_EXTRA_PI_FINE_DELAY = DEFAULT_RCLK_DELAY;
PHASER_IN_PHY #(
.BURST_MODE ( PHY_0_A_BURST_MODE),
.CLKOUT_DIV ( PHY_0_A_PI_CLKOUT_DIV),
.FREQ_REF_DIV ( PHY_0_A_PI_FREQ_REF_DIV),
.REFCLK_PERIOD ( L_FREQ_REF_PERIOD_NS),
.FINE_DELAY ( L_EXTRA_PI_FINE_DELAY),
.OUTPUT_CLK_SRC ( RCLK_PI_OUTPUT_CLK_SRC)
) phaser_in_rclk (
.DQSFOUND (),
.DQSOUTOFRANGE (),
.FINEOVERFLOW (),
.PHASELOCKED (),
.ISERDESRST (),
.ICLKDIV (),
.ICLK (),
.COUNTERREADVAL (),
.RCLK (),
.WRENABLE (),
.BURSTPENDINGPHY (),
.ENCALIBPHY (),
.FINEENABLE (0),
.FREQREFCLK (freq_refclk),
.MEMREFCLK (mem_refclk),
.RANKSELPHY (0),
.PHASEREFCLK (),
.RSTDQSFIND (0),
.RST (rst),
.FINEINC (),
.COUNTERLOADEN (),
.COUNTERREADEN (),
.COUNTERLOADVAL (),
.SYNCIN (sync_pulse),
.SYSCLK (phy_clk)
);
end
endgenerate
always @(*) begin
case (calib_sel[5:3])
3'b000: begin
po_coarse_overflow = po_coarse_overflow_w[0];
po_fine_overflow = po_fine_overflow_w[0];
po_counter_read_val = po_counter_read_val_w[0];
pi_fine_overflow = pi_fine_overflow_w[0];
pi_counter_read_val = pi_counter_read_val_w[0];
pi_phase_locked = pi_phase_locked_w[0];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[0];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[0];
end
3'b001: begin
po_coarse_overflow = po_coarse_overflow_w[1];
po_fine_overflow = po_fine_overflow_w[1];
po_counter_read_val = po_counter_read_val_w[1];
pi_fine_overflow = pi_fine_overflow_w[1];
pi_counter_read_val = pi_counter_read_val_w[1];
pi_phase_locked = pi_phase_locked_w[1];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[1];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[1];
end
3'b010: begin
po_coarse_overflow = po_coarse_overflow_w[2];
po_fine_overflow = po_fine_overflow_w[2];
po_counter_read_val = po_counter_read_val_w[2];
pi_fine_overflow = pi_fine_overflow_w[2];
pi_counter_read_val = pi_counter_read_val_w[2];
pi_phase_locked = pi_phase_locked_w[2];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[2];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[2];
end
default: begin
po_coarse_overflow = 0;
po_fine_overflow = 0;
po_counter_read_val = 0;
pi_fine_overflow = 0;
pi_counter_read_val = 0;
pi_phase_locked = 0;
pi_dqs_found = 0;
pi_dqs_out_of_range = 0;
end
endcase
end
endmodule
|
module mig_7series_v2_3_ddr_mc_phy
#(
// five fields, one per possible I/O bank, 4 bits in each field, 1 per lane data=1/ctl=0
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf,
parameter RCLK_SELECT_BANK = 0,
parameter RCLK_SELECT_LANE = "B",
parameter RCLK_SELECT_EDGE = 4'b1111,
parameter GENERATE_DDR_CK_MAP = "0B",
parameter BYTELANES_DDR_CK = 72'h00_0000_0000_0000_0002,
parameter USE_PRE_POST_FIFO = "TRUE",
parameter SYNTHESIS = "FALSE",
parameter PO_CTL_COARSE_BYPASS = "FALSE",
parameter PI_SEL_CLK_OFFSET = 6,
parameter PHYCTL_CMD_FIFO = "FALSE",
parameter PHY_CLK_RATIO = 4, // phy to controller divide ratio
// common to all i/o banks
parameter PHY_FOUR_WINDOW_CLOCKS = 63,
parameter PHY_EVENTS_DELAY = 18,
parameter PHY_COUNT_EN = "TRUE",
parameter PHY_SYNC_MODE = "TRUE",
parameter PHY_DISABLE_SEQ_MATCH = "FALSE",
parameter MASTER_PHY_CTL = 0,
// common to instance 0
parameter PHY_0_BITLANES = 48'hdffd_fffe_dfff,
parameter PHY_0_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_0_LANE_REMAP = 16'h3210,
parameter PHY_0_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_0_IODELAY_GRP = "IODELAY_MIG",
parameter FPGA_SPEED_GRADE = 1,
parameter BANK_TYPE = "HP_IO", // # = "HP_IO", "HPL_IO", "HR_IO", "HRL_IO"
parameter NUM_DDR_CK = 1,
parameter PHY_0_DATA_CTL = DATA_CTL_B0,
parameter PHY_0_CMD_OFFSET = 0,
parameter PHY_0_RD_CMD_OFFSET_0 = 0,
parameter PHY_0_RD_CMD_OFFSET_1 = 0,
parameter PHY_0_RD_CMD_OFFSET_2 = 0,
parameter PHY_0_RD_CMD_OFFSET_3 = 0,
parameter PHY_0_RD_DURATION_0 = 0,
parameter PHY_0_RD_DURATION_1 = 0,
parameter PHY_0_RD_DURATION_2 = 0,
parameter PHY_0_RD_DURATION_3 = 0,
parameter PHY_0_WR_CMD_OFFSET_0 = 0,
parameter PHY_0_WR_CMD_OFFSET_1 = 0,
parameter PHY_0_WR_CMD_OFFSET_2 = 0,
parameter PHY_0_WR_CMD_OFFSET_3 = 0,
parameter PHY_0_WR_DURATION_0 = 0,
parameter PHY_0_WR_DURATION_1 = 0,
parameter PHY_0_WR_DURATION_2 = 0,
parameter PHY_0_WR_DURATION_3 = 0,
parameter PHY_0_AO_WRLVL_EN = 0,
parameter PHY_0_AO_TOGGLE = 4'b0101, // odd bits are toggle (CKE)
parameter PHY_0_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_0_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_0_A_PI_FREQ_REF_DIV = "NONE",
parameter PHY_0_A_PI_CLKOUT_DIV = 2,
parameter PHY_0_A_PO_CLKOUT_DIV = 2,
parameter PHY_0_A_BURST_MODE = "TRUE",
parameter PHY_0_A_PI_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OCLK_DELAY = 25,
parameter PHY_0_B_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_C_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_D_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_A_PO_OCLKDELAY_INV = "FALSE",
parameter PHY_0_A_OF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_IF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_OSERDES_DATA_RATE = "UNDECLARED",
parameter PHY_0_A_OSERDES_DATA_WIDTH = "UNDECLARED",
parameter PHY_0_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_A_IDELAYE2_IDELAY_TYPE = "VARIABLE",
parameter PHY_0_A_IDELAYE2_IDELAY_VALUE = 00,
parameter PHY_0_B_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_B_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_C_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_C_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_D_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_D_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
// common to instance 1
parameter PHY_1_BITLANES = PHY_0_BITLANES,
parameter PHY_1_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_1_LANE_REMAP = 16'h3210,
parameter PHY_1_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_1_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_1_DATA_CTL = DATA_CTL_B1,
parameter PHY_1_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_1_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_1_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_1_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_1_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_1_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_1_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_1_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_1_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_1_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_1_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_1_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_1_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_1_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_1_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_1_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_1_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_1_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_1_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_1_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_1_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_1_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_1_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV,
parameter PHY_1_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_1_A_BURST_MODE = PHY_0_A_BURST_MODE,
parameter PHY_1_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_1_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC ,
parameter PHY_1_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_1_B_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_C_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_D_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_1_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_B_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_B_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_C_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_C_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_D_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_D_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_1_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
// common to instance 2
parameter PHY_2_BITLANES = PHY_0_BITLANES,
parameter PHY_2_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_2_LANE_REMAP = 16'h3210,
parameter PHY_2_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_2_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_2_DATA_CTL = DATA_CTL_B2,
parameter PHY_2_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_2_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_2_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_2_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_2_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_2_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_2_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_2_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_2_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_2_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_2_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_2_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_2_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_2_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_2_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_2_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_2_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_2_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_2_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_2_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_2_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_2_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_2_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV ,
parameter PHY_2_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_2_A_BURST_MODE = PHY_0_A_BURST_MODE ,
parameter PHY_2_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_2_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC,
parameter PHY_2_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_2_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_2_B_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_C_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_D_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_2_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_B_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_B_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_C_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_C_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_D_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_D_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) || (BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : "TRUE",
parameter PHY_1_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) && ((BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0))) ? "FALSE" : ((PHY_0_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter PHY_2_IS_LAST_BANK = (BYTE_LANES_B2 != 0) && ((BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : ((PHY_0_IS_LAST_BANK || PHY_1_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter TCK = 2500,
// local computational use, do not pass down
parameter N_LANES = (0+BYTE_LANES_B0[0]) + (0+BYTE_LANES_B0[1]) + (0+BYTE_LANES_B0[2]) + (0+BYTE_LANES_B0[3])
+ (0+BYTE_LANES_B1[0]) + (0+BYTE_LANES_B1[1]) + (0+BYTE_LANES_B1[2]) + (0+BYTE_LANES_B1[3]) + (0+BYTE_LANES_B2[0]) + (0+BYTE_LANES_B2[1]) + (0+BYTE_LANES_B2[2]) + (0+BYTE_LANES_B2[3])
, // must not delete comma for syntax
parameter HIGHEST_BANK = (BYTE_LANES_B4 != 0 ? 5 : (BYTE_LANES_B3 != 0 ? 4 : (BYTE_LANES_B2 != 0 ? 3 : (BYTE_LANES_B1 != 0 ? 2 : 1)))),
parameter HIGHEST_LANE_B0 = ((PHY_0_IS_LAST_BANK == "FALSE") ? 4 : BYTE_LANES_B0[3] ? 4 : BYTE_LANES_B0[2] ? 3 : BYTE_LANES_B0[1] ? 2 : BYTE_LANES_B0[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B1 = (HIGHEST_BANK > 2) ? 4 : ( BYTE_LANES_B1[3] ? 4 : BYTE_LANES_B1[2] ? 3 : BYTE_LANES_B1[1] ? 2 : BYTE_LANES_B1[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B2 = (HIGHEST_BANK > 3) ? 4 : ( BYTE_LANES_B2[3] ? 4 : BYTE_LANES_B2[2] ? 3 : BYTE_LANES_B2[1] ? 2 : BYTE_LANES_B2[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B3 = 0,
parameter HIGHEST_LANE_B4 = 0,
parameter HIGHEST_LANE = (HIGHEST_LANE_B4 != 0) ? (HIGHEST_LANE_B4+16) : ((HIGHEST_LANE_B3 != 0) ? (HIGHEST_LANE_B3 + 12) : ((HIGHEST_LANE_B2 != 0) ? (HIGHEST_LANE_B2 + 8) : ((HIGHEST_LANE_B1 != 0) ? (HIGHEST_LANE_B1 + 4) : HIGHEST_LANE_B0))),
parameter LP_DDR_CK_WIDTH = 2,
parameter GENERATE_SIGNAL_SPLIT = "FALSE"
,parameter CKE_ODT_AUX = "FALSE"
)
(
input rst,
input ddr_rst_in_n ,
input phy_clk,
input freq_refclk,
input mem_refclk,
input mem_refclk_div4,
input pll_lock,
input sync_pulse,
input auxout_clk,
input idelayctrl_refclk,
input [HIGHEST_LANE*80-1:0] phy_dout,
input phy_cmd_wr_en,
input phy_data_wr_en,
input phy_rd_en,
input [31:0] phy_ctl_wd,
input [3:0] aux_in_1,
input [3:0] aux_in_2,
input [5:0] data_offset_1,
input [5:0] data_offset_2,
input phy_ctl_wr,
input if_rst,
input if_empty_def,
input cke_in,
input idelay_ce,
input idelay_ld,
input idelay_inc,
input phyGo,
input input_sink,
output if_a_empty,
output if_empty /* synthesis syn_maxfan = 3 */,
output if_empty_or,
output if_empty_and,
output of_ctl_a_full,
output of_data_a_full,
output of_ctl_full,
output of_data_full,
output pre_data_a_full,
output [HIGHEST_LANE*80-1:0] phy_din,
output phy_ctl_a_full,
output wire [3:0] phy_ctl_full,
output [HIGHEST_LANE*12-1:0] mem_dq_out,
output [HIGHEST_LANE*12-1:0] mem_dq_ts,
input [HIGHEST_LANE*10-1:0] mem_dq_in,
output [HIGHEST_LANE-1:0] mem_dqs_out,
output [HIGHEST_LANE-1:0] mem_dqs_ts,
input [HIGHEST_LANE-1:0] mem_dqs_in,
(* IOB = "FORCE" *) output reg [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out, // to memory, odt , 4 per phy controller
output phy_ctl_ready, // to fabric
output reg rst_out, // to memory
output [(NUM_DDR_CK * LP_DDR_CK_WIDTH)-1:0] ddr_clk,
// output rclk,
output mcGo,
output ref_dll_lock,
// calibration signals
input phy_write_calib,
input phy_read_calib,
input [5:0] calib_sel,
input [HIGHEST_BANK-1:0]calib_zero_inputs, // bit calib_sel[2], one per bank
input [HIGHEST_BANK-1:0]calib_zero_ctrl, // one bit per bank, zero's only control lane calibration inputs
input [HIGHEST_LANE-1:0] calib_zero_lanes, // one bit per lane
input calib_in_common,
input [2:0] po_fine_enable,
input [2:0] po_coarse_enable,
input [2:0] po_fine_inc,
input [2:0] po_coarse_inc,
input po_counter_load_en,
input [2:0] po_sel_fine_oclk_delay,
input [8:0] po_counter_load_val,
input po_counter_read_en,
output reg po_coarse_overflow,
output reg po_fine_overflow,
output reg [8:0] po_counter_read_val,
input [HIGHEST_BANK-1:0] pi_rst_dqs_find,
input pi_fine_enable,
input pi_fine_inc,
input pi_counter_load_en,
input pi_counter_read_en,
input [5:0] pi_counter_load_val,
output reg pi_fine_overflow,
output reg [5:0] pi_counter_read_val,
output reg pi_phase_locked,
output pi_phase_locked_all,
output reg pi_dqs_found,
output pi_dqs_found_all,
output pi_dqs_found_any,
output [HIGHEST_LANE-1:0] pi_phase_locked_lanes,
output [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg pi_dqs_out_of_range,
input [29:0] fine_delay,
input fine_delay_sel
);
wire [7:0] calib_zero_inputs_int ;
wire [HIGHEST_BANK*4-1:0] calib_zero_lanes_int ;
//Added the temporary variable for concadination operation
wire [2:0] calib_sel_byte0 ;
wire [2:0] calib_sel_byte1 ;
wire [2:0] calib_sel_byte2 ;
wire [4:0] po_coarse_overflow_w;
wire [4:0] po_fine_overflow_w;
wire [8:0] po_counter_read_val_w[4:0];
wire [4:0] pi_fine_overflow_w;
wire [5:0] pi_counter_read_val_w[4:0];
wire [4:0] pi_dqs_found_w;
wire [4:0] pi_dqs_found_all_w;
wire [4:0] pi_dqs_found_any_w;
wire [4:0] pi_dqs_out_of_range_w;
wire [4:0] pi_phase_locked_w;
wire [4:0] pi_phase_locked_all_w;
wire [4:0] rclk_w;
wire [HIGHEST_BANK-1:0] phy_ctl_ready_w;
wire [(LP_DDR_CK_WIDTH*24)-1:0] ddr_clk_w [HIGHEST_BANK-1:0];
wire [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out_;
wire [3:0] if_q0;
wire [3:0] if_q1;
wire [3:0] if_q2;
wire [3:0] if_q3;
wire [3:0] if_q4;
wire [7:0] if_q5;
wire [7:0] if_q6;
wire [3:0] if_q7;
wire [3:0] if_q8;
wire [3:0] if_q9;
wire [31:0] _phy_ctl_wd;
wire [3:0] aux_in_[4:1];
wire [3:0] rst_out_w;
wire freq_refclk_split;
wire mem_refclk_split;
wire mem_refclk_div4_split;
wire sync_pulse_split;
wire phy_clk_split0;
wire phy_ctl_clk_split0;
wire [31:0] phy_ctl_wd_split0;
wire phy_ctl_wr_split0;
wire phy_ctl_clk_split1;
wire phy_clk_split1;
wire [31:0] phy_ctl_wd_split1;
wire phy_ctl_wr_split1;
wire [5:0] phy_data_offset_1_split1;
wire phy_ctl_clk_split2;
wire phy_clk_split2;
wire [31:0] phy_ctl_wd_split2;
wire phy_ctl_wr_split2;
wire [5:0] phy_data_offset_2_split2;
wire [HIGHEST_LANE*80-1:0] phy_dout_split0;
wire phy_cmd_wr_en_split0;
wire phy_data_wr_en_split0;
wire phy_rd_en_split0;
wire [HIGHEST_LANE*80-1:0] phy_dout_split1;
wire phy_cmd_wr_en_split1;
wire phy_data_wr_en_split1;
wire phy_rd_en_split1;
wire [HIGHEST_LANE*80-1:0] phy_dout_split2;
wire phy_cmd_wr_en_split2;
wire phy_data_wr_en_split2;
wire phy_rd_en_split2;
wire phy_ctl_mstr_empty;
wire [HIGHEST_BANK-1:0] phy_ctl_empty;
wire _phy_ctl_a_full_f;
wire _phy_ctl_a_empty_f;
wire _phy_ctl_full_f;
wire _phy_ctl_empty_f;
wire [HIGHEST_BANK-1:0] _phy_ctl_a_full_p;
wire [HIGHEST_BANK-1:0] _phy_ctl_full_p;
wire [HIGHEST_BANK-1:0] of_ctl_a_full_v;
wire [HIGHEST_BANK-1:0] of_ctl_full_v;
wire [HIGHEST_BANK-1:0] of_data_a_full_v;
wire [HIGHEST_BANK-1:0] of_data_full_v;
wire [HIGHEST_BANK-1:0] pre_data_a_full_v;
wire [HIGHEST_BANK-1:0] if_empty_v;
wire [HIGHEST_BANK-1:0] byte_rd_en_v;
wire [HIGHEST_BANK*2-1:0] byte_rd_en_oth_banks;
wire [HIGHEST_BANK-1:0] if_empty_or_v;
wire [HIGHEST_BANK-1:0] if_empty_and_v;
wire [HIGHEST_BANK-1:0] if_a_empty_v;
localparam IF_ARRAY_MODE = "ARRAY_MODE_4_X_4";
localparam IF_SYNCHRONOUS_MODE = "FALSE";
localparam IF_SLOW_WR_CLK = "FALSE";
localparam IF_SLOW_RD_CLK = "FALSE";
localparam PHY_MULTI_REGION = (HIGHEST_BANK > 1) ? "TRUE" : "FALSE";
localparam RCLK_NEG_EDGE = 3'b000;
localparam RCLK_POS_EDGE = 3'b111;
localparam LP_PHY_0_BYTELANES_DDR_CK = BYTELANES_DDR_CK & 24'hFF_FFFF;
localparam LP_PHY_1_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 24) & 24'hFF_FFFF;
localparam LP_PHY_2_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 48) & 24'hFF_FFFF;
// hi, lo positions for data offset field, MIG doesn't allow defines
localparam PC_DATA_OFFSET_RANGE_HI = 22;
localparam PC_DATA_OFFSET_RANGE_LO = 17;
/* Phaser_In Output source coding table
"PHASE_REF" : 4'b0000;
"DELAYED_MEM_REF" : 4'b0101;
"DELAYED_PHASE_REF" : 4'b0011;
"DELAYED_REF" : 4'b0001;
"FREQ_REF" : 4'b1000;
"MEM_REF" : 4'b0010;
*/
localparam RCLK_PI_OUTPUT_CLK_SRC = "DELAYED_MEM_REF";
localparam DDR_TCK = TCK;
localparam real FREQ_REF_PERIOD = DDR_TCK / (PHY_0_A_PI_FREQ_REF_DIV == "DIV2" ? 2 : 1);
localparam real L_FREQ_REF_PERIOD_NS = FREQ_REF_PERIOD /1000.0;
localparam PO_S3_TAPS = 64 ; // Number of taps per clock cycle in OCLK_DELAYED delay line
localparam PI_S2_TAPS = 128 ; // Number of taps per clock cycle in stage 2 delay line
localparam PO_S2_TAPS = 128 ; // Number of taps per clock cycle in sta
/*
Intrinsic delay of Phaser In Stage 1
@3300ps - 1.939ns - 58.8%
@2500ps - 1.657ns - 66.3%
@1875ps - 1.263ns - 67.4%
@1500ps - 1.021ns - 68.1%
@1250ps - 0.868ns - 69.4%
@1072ps - 0.752ns - 70.1%
@938ps - 0.667ns - 71.1%
*/
// If we use the Delayed Mem_Ref_Clk in the RCLK Phaser_In, then the Stage 1 intrinsic delay is 0.0
// Fraction of a full DDR_TCK period
localparam real PI_STG1_INTRINSIC_DELAY = (RCLK_PI_OUTPUT_CLK_SRC == "DELAYED_MEM_REF") ? 0.0 :
((DDR_TCK < 1005) ? 0.667 :
(DDR_TCK < 1160) ? 0.752 :
(DDR_TCK < 1375) ? 0.868 :
(DDR_TCK < 1685) ? 1.021 :
(DDR_TCK < 2185) ? 1.263 :
(DDR_TCK < 2900) ? 1.657 :
(DDR_TCK < 3100) ? 1.771 : 1.939)*1000;
/*
Intrinsic delay of Phaser In Stage 2
@3300ps - 0.912ns - 27.6% - single tap - 13ps
@3000ps - 0.848ns - 28.3% - single tap - 11ps
@2500ps - 1.264ns - 50.6% - single tap - 19ps
@1875ps - 1.000ns - 53.3% - single tap - 15ps
@1500ps - 0.848ns - 56.5% - single tap - 11ps
@1250ps - 0.736ns - 58.9% - single tap - 9ps
@1072ps - 0.664ns - 61.9% - single tap - 8ps
@938ps - 0.608ns - 64.8% - single tap - 7ps
*/
// Intrinsic delay = (.4218 + .0002freq(MHz))period(ps)
localparam real PI_STG2_INTRINSIC_DELAY = (0.4218*FREQ_REF_PERIOD + 200) + 16.75; // 12ps fudge factor
/*
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 1
@3300ps - 1.294ns - 39.2%
@2500ps - 1.294ns - 51.8%
@1875ps - 1.030ns - 54.9%
@1500ps - 0.878ns - 58.5%
@1250ps - 0.766ns - 61.3%
@1072ps - 0.694ns - 64.7%
@938ps - 0.638ns - 68.0%
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 0
@3300ps - 2.084ns - 63.2% - single tap - 20ps
@2500ps - 2.084ns - 81.9% - single tap - 19ps
@1875ps - 1.676ns - 89.4% - single tap - 15ps
@1500ps - 1.444ns - 96.3% - single tap - 11ps
@1250ps - 1.276ns - 102.1% - single tap - 9ps
@1072ps - 1.164ns - 108.6% - single tap - 8ps
@938ps - 1.076ns - 114.7% - single tap - 7ps
*/
// Fraction of a full DDR_TCK period
localparam real PO_STG1_INTRINSIC_DELAY = 0;
localparam real PO_STG2_FINE_INTRINSIC_DELAY = 0.4218*FREQ_REF_PERIOD + 200 + 42; // 42ps fudge factor
localparam real PO_STG2_COARSE_INTRINSIC_DELAY = 0.2256*FREQ_REF_PERIOD + 200 + 29; // 29ps fudge factor
localparam real PO_STG2_INTRINSIC_DELAY = PO_STG2_FINE_INTRINSIC_DELAY +
(PO_CTL_COARSE_BYPASS == "TRUE" ? 30 : PO_STG2_COARSE_INTRINSIC_DELAY);
// When the PO_STG2_INTRINSIC_DELAY is approximately equal to tCK, then the Phaser Out's circular buffer can
// go metastable. The circular buffer must be prevented from getting into a metastable state. To accomplish this,
// a default programmed value must be programmed into the stage 2 delay. This delay is only needed at reset, adjustments
// to the stage 2 delay can be made after reset is removed.
localparam real PO_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PO_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PO_CIRC_BUF_META_ZONE = 200.0;
localparam PO_CIRC_BUF_EARLY = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? 1'b1 : 1'b0;
localparam real PO_CIRC_BUF_OFFSET = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? DDR_TCK - PO_STG2_INTRINSIC_DELAY : PO_STG2_INTRINSIC_DELAY - DDR_TCK;
// If the stage 2 intrinsic delay is less than the clock period, then see if it is less than the threshold
// If it is not more than the threshold than we must push the delay after the clock period plus a guardband.
//A change in PO_CIRC_BUF_DELAY value will affect the localparam TAP_DEC value(=PO_CIRC_BUF_DELAY - 31) in ddr_phy_ck_addr_cmd_delay.v. Update TAP_DEC value when PO_CIRC_BUF_DELAY is updated.
localparam integer PO_CIRC_BUF_DELAY = 60;
//localparam integer PO_CIRC_BUF_DELAY = PO_CIRC_BUF_EARLY ? (PO_CIRC_BUF_OFFSET > PO_CIRC_BUF_META_ZONE) ? 0 :
// (PO_CIRC_BUF_META_ZONE + PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE :
// (PO_CIRC_BUF_META_ZONE - PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE;
localparam real PI_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PI_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PI_MAX_STG2_DELAY = (PI_S2_TAPS/2 - 1) * PI_S2_TAPS_SIZE;
localparam real PI_INTRINSIC_DELAY = PI_STG1_INTRINSIC_DELAY + PI_STG2_INTRINSIC_DELAY;
localparam real PO_INTRINSIC_DELAY = PO_STG1_INTRINSIC_DELAY + PO_STG2_INTRINSIC_DELAY;
localparam real PO_DELAY = PO_INTRINSIC_DELAY + (PO_CIRC_BUF_DELAY*PO_S2_TAPS_SIZE);
localparam RCLK_BUFIO_DELAY = 1200; // estimate of clock insertion delay of rclk through BUFIO to ioi
// The PI_OFFSET is the difference between the Phaser Out delay path and the intrinsic delay path
// of the Phaser_In that drives the rclk. The objective is to align either the rising edges of the
// oserdes_oclk and the rclk or to align the rising to falling edges depending on which adjustment
// is within the range of the stage 2 delay line in the Phaser_In.
localparam integer RCLK_DELAY_INT= (PI_INTRINSIC_DELAY + RCLK_BUFIO_DELAY);
localparam integer PO_DELAY_INT = PO_DELAY;
localparam PI_OFFSET = (PO_DELAY_INT % DDR_TCK) - (RCLK_DELAY_INT % DDR_TCK);
// if pi_offset >= 0 align to oclk posedge by delaying pi path to where oclk is
// if pi_offset < 0 align to oclk negedge by delaying pi path the additional distance to next oclk edge.
// note that in this case PI_OFFSET is negative so invert before subtracting.
localparam real PI_STG2_DELAY_CAND = PI_OFFSET >= 0
? PI_OFFSET
: ((-PI_OFFSET) < DDR_TCK/2) ?
(DDR_TCK/2 - (- PI_OFFSET)) :
(DDR_TCK - (- PI_OFFSET)) ;
localparam real PI_STG2_DELAY =
(PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY ?
PI_MAX_STG2_DELAY : PI_STG2_DELAY_CAND);
localparam integer DEFAULT_RCLK_DELAY = PI_STG2_DELAY / PI_S2_TAPS_SIZE;
localparam LP_RCLK_SELECT_EDGE = (RCLK_SELECT_EDGE != 4'b1111 ) ? RCLK_SELECT_EDGE : (PI_OFFSET >= 0 ? RCLK_POS_EDGE : (PI_OFFSET <= TCK/2 ? RCLK_NEG_EDGE : RCLK_POS_EDGE));
localparam integer L_PHY_0_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_1_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_2_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam L_PHY_0_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
wire _phy_clk;
wire [2:0] mcGo_w;
wire [HIGHEST_BANK-1:0] ref_dll_lock_w;
reg [15:0] mcGo_r;
assign ref_dll_lock = & ref_dll_lock_w;
initial begin
if ( SYNTHESIS == "FALSE" ) begin
$display("%m : BYTE_LANES_B0 = %x BYTE_LANES_B1 = %x DATA_CTL_B0 = %x DATA_CTL_B1 = %x", BYTE_LANES_B0, BYTE_LANES_B1, DATA_CTL_B0, DATA_CTL_B1);
$display("%m : HIGHEST_LANE = %d HIGHEST_LANE_B0 = %d HIGHEST_LANE_B1 = %d", HIGHEST_LANE, HIGHEST_LANE_B0, HIGHEST_LANE_B1);
$display("%m : HIGHEST_BANK = %d", HIGHEST_BANK);
$display("%m : FREQ_REF_PERIOD = %0.2f ", FREQ_REF_PERIOD);
$display("%m : DDR_TCK = %0d ", DDR_TCK);
$display("%m : PO_S2_TAPS_SIZE = %0.2f ", PO_S2_TAPS_SIZE);
$display("%m : PO_CIRC_BUF_EARLY = %0d ", PO_CIRC_BUF_EARLY);
$display("%m : PO_CIRC_BUF_OFFSET = %0.2f ", PO_CIRC_BUF_OFFSET);
$display("%m : PO_CIRC_BUF_META_ZONE = %0.2f ", PO_CIRC_BUF_META_ZONE);
$display("%m : PO_STG2_FINE_INTR_DLY = %0.2f ", PO_STG2_FINE_INTRINSIC_DELAY);
$display("%m : PO_STG2_COARSE_INTR_DLY = %0.2f ", PO_STG2_COARSE_INTRINSIC_DELAY);
$display("%m : PO_STG2_INTRINSIC_DELAY = %0.2f ", PO_STG2_INTRINSIC_DELAY);
$display("%m : PO_CIRC_BUF_DELAY = %0d ", PO_CIRC_BUF_DELAY);
$display("%m : PO_INTRINSIC_DELAY = %0.2f ", PO_INTRINSIC_DELAY);
$display("%m : PO_DELAY = %0.2f ", PO_DELAY);
$display("%m : PO_OCLK_DELAY = %0d ", PHY_0_A_PO_OCLK_DELAY);
$display("%m : L_PHY_0_PO_FINE_DELAY = %0d ", L_PHY_0_PO_FINE_DELAY);
$display("%m : PI_STG1_INTRINSIC_DELAY = %0.2f ", PI_STG1_INTRINSIC_DELAY);
$display("%m : PI_STG2_INTRINSIC_DELAY = %0.2f ", PI_STG2_INTRINSIC_DELAY);
$display("%m : PI_INTRINSIC_DELAY = %0.2f ", PI_INTRINSIC_DELAY);
$display("%m : PI_MAX_STG2_DELAY = %0.2f ", PI_MAX_STG2_DELAY);
$display("%m : PI_OFFSET = %0.2f ", PI_OFFSET);
if ( PI_OFFSET < 0) $display("%m : a negative PI_OFFSET means that rclk path is longer than oclk path so rclk will be delayed to next oclk edge and the negedge of rclk may be used.");
$display("%m : PI_STG2_DELAY = %0.2f ", PI_STG2_DELAY);
$display("%m :PI_STG2_DELAY_CAND = %0.2f ",PI_STG2_DELAY_CAND);
$display("%m : DEFAULT_RCLK_DELAY = %0d ", DEFAULT_RCLK_DELAY);
$display("%m : RCLK_SELECT_EDGE = %0b ", LP_RCLK_SELECT_EDGE);
end // SYNTHESIS
if ( PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY) $display("WARNING: %m: The required delay though the phaser_in to internally match the aux_out clock to ddr clock exceeds the maximum allowable delay. The clock edge will occur at the output registers of aux_out %0.2f ps before the ddr clock edge. If aux_out is used for memory inputs, this may violate setup or hold time.", PI_STG2_DELAY_CAND - PI_MAX_STG2_DELAY);
end
assign sync_pulse_split = sync_pulse;
assign mem_refclk_split = mem_refclk;
assign freq_refclk_split = freq_refclk;
assign mem_refclk_div4_split = mem_refclk_div4;
assign phy_ctl_clk_split0 = _phy_clk;
assign phy_ctl_wd_split0 = phy_ctl_wd;
assign phy_ctl_wr_split0 = phy_ctl_wr;
assign phy_clk_split0 = phy_clk;
assign phy_cmd_wr_en_split0 = phy_cmd_wr_en;
assign phy_data_wr_en_split0 = phy_data_wr_en;
assign phy_rd_en_split0 = phy_rd_en;
assign phy_dout_split0 = phy_dout;
assign phy_ctl_clk_split1 = phy_clk;
assign phy_ctl_wd_split1 = phy_ctl_wd;
assign phy_data_offset_1_split1 = data_offset_1;
assign phy_ctl_wr_split1 = phy_ctl_wr;
assign phy_clk_split1 = phy_clk;
assign phy_cmd_wr_en_split1 = phy_cmd_wr_en;
assign phy_data_wr_en_split1 = phy_data_wr_en;
assign phy_rd_en_split1 = phy_rd_en;
assign phy_dout_split1 = phy_dout;
assign phy_ctl_clk_split2 = phy_clk;
assign phy_ctl_wd_split2 = phy_ctl_wd;
assign phy_data_offset_2_split2 = data_offset_2;
assign phy_ctl_wr_split2 = phy_ctl_wr;
assign phy_clk_split2 = phy_clk;
assign phy_cmd_wr_en_split2 = phy_cmd_wr_en;
assign phy_data_wr_en_split2 = phy_data_wr_en;
assign phy_rd_en_split2 = phy_rd_en;
assign phy_dout_split2 = phy_dout;
// these wires are needed to coerce correct synthesis
// the synthesizer did not always see the widths of the
// parameters as 4 bits.
wire [3:0] blb0 = BYTE_LANES_B0;
wire [3:0] blb1 = BYTE_LANES_B1;
wire [3:0] blb2 = BYTE_LANES_B2;
wire [3:0] dcb0 = DATA_CTL_B0;
wire [3:0] dcb1 = DATA_CTL_B1;
wire [3:0] dcb2 = DATA_CTL_B2;
assign pi_dqs_found_all = & (pi_dqs_found_lanes | ~ {blb2, blb1, blb0} | ~ {dcb2, dcb1, dcb0});
assign pi_dqs_found_any = | (pi_dqs_found_lanes & {blb2, blb1, blb0} & {dcb2, dcb1, dcb0});
assign pi_phase_locked_all = & pi_phase_locked_all_w[HIGHEST_BANK-1:0];
assign calib_zero_inputs_int = {3'bxxx, calib_zero_inputs};
//Added to remove concadination in the instantiation
assign calib_sel_byte0 = {calib_zero_inputs_int[0], calib_sel[1:0]} ;
assign calib_sel_byte1 = {calib_zero_inputs_int[1], calib_sel[1:0]} ;
assign calib_sel_byte2 = {calib_zero_inputs_int[2], calib_sel[1:0]} ;
assign calib_zero_lanes_int = calib_zero_lanes;
assign phy_ctl_ready = &phy_ctl_ready_w[HIGHEST_BANK-1:0];
assign phy_ctl_mstr_empty = phy_ctl_empty[MASTER_PHY_CTL];
assign of_ctl_a_full = |of_ctl_a_full_v;
assign of_ctl_full = |of_ctl_full_v;
assign of_data_a_full = |of_data_a_full_v;
assign of_data_full = |of_data_full_v;
assign pre_data_a_full= |pre_data_a_full_v;
// if if_empty_def == 1, empty is asserted only if all are empty;
// this allows the user to detect a skewed fifo depth and self-clear
// if desired. It avoids a reset to clear the flags.
assign if_empty = !if_empty_def ? |if_empty_v : &if_empty_v;
assign if_empty_or = |if_empty_or_v;
assign if_empty_and = &if_empty_and_v;
assign if_a_empty = |if_a_empty_v;
generate
genvar i;
for (i = 0; i != NUM_DDR_CK; i = i + 1) begin : ddr_clk_gen
case ((GENERATE_DDR_CK_MAP >> (16*i)) & 16'hffff)
16'h3041: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3042: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3043: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3044: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3141: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3142: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3143: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3144: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3241: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3242: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3243: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3244: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
default : initial $display("ERROR: mc_phy ddr_clk_gen : invalid specification for parameter GENERATE_DDR_CK_MAP , clock index = %d, spec= %x (hex) ", i, (( GENERATE_DDR_CK_MAP >> (16 * i )) & 16'hffff ));
endcase
end
endgenerate
//assign rclk = rclk_w[RCLK_SELECT_BANK];
reg rst_auxout;
reg rst_auxout_r;
reg rst_auxout_rr;
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout_r <= #(1) 1'b1;
rst_auxout_rr <= #(1) 1'b1;
end
else begin
rst_auxout_r <= #(1) rst;
rst_auxout_rr <= #(1) rst_auxout_r;
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
else begin
always @(negedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
localparam L_RESET_SELECT_BANK =
(BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK) ? 0 : RCLK_SELECT_BANK;
always @(*) begin
rst_out = rst_out_w[L_RESET_SELECT_BANK] & ddr_rst_in_n;
end
always @(posedge phy_clk) begin
if ( rst)
mcGo_r <= #(1) 0;
else
mcGo_r <= #(1) (mcGo_r << 1) | &mcGo_w;
end
assign mcGo = mcGo_r[15];
generate
// this is an optional 1 clock delay to add latency to the phy_control programming path
if (PHYCTL_CMD_FIFO == "TRUE") begin : cmd_fifo_soft
reg [31:0] phy_wd_reg = 0;
reg [3:0] aux_in1_reg = 0;
reg [3:0] aux_in2_reg = 0;
reg sfifo_ready = 0;
assign _phy_ctl_wd = phy_wd_reg;
assign aux_in_[1] = aux_in1_reg;
assign aux_in_[2] = aux_in2_reg;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[1] = |_phy_ctl_full_p;
assign phy_ctl_full[2] = |_phy_ctl_full_p;
assign phy_ctl_full[3] = |_phy_ctl_full_p;
assign _phy_clk = phy_clk;
always @(posedge phy_clk) begin
phy_wd_reg <= #1 phy_ctl_wd;
aux_in1_reg <= #1 aux_in_1;
aux_in2_reg <= #1 aux_in_2;
sfifo_ready <= #1 phy_ctl_wr;
end
end
else if (PHYCTL_CMD_FIFO == "FALSE") begin
assign _phy_ctl_wd = phy_ctl_wd;
assign aux_in_[1] = aux_in_1;
assign aux_in_[2] = aux_in_2;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[3:1] = 3'b000;
assign _phy_clk = phy_clk;
end
endgenerate
// instance of four-lane phy
generate
if (HIGHEST_BANK == 3) begin : banks_3
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[5:4] = {byte_rd_en_v[0],byte_rd_en_v[1]};
end
else if (HIGHEST_BANK == 2) begin : banks_2
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],1'b1};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],1'b1};
end
else begin : banks_1
assign byte_rd_en_oth_banks[1:0] = {1'b1,1'b1};
end
if ( BYTE_LANES_B0 != 0) begin : ddr_phy_4lanes_0
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B0), /* four bits, one per lanes */
.DATA_CTL_N (PHY_0_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_0_PO_FINE_DELAY),
.BITLANES (PHY_0_BITLANES),
.BITLANES_OUTONLY (PHY_0_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_0_BYTELANES_DDR_CK),
.LAST_BANK (PHY_0_IS_LAST_BANK),
.LANE_REMAP (PHY_0_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_0_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_0_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_0_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_0_IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_0_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_0_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_0_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_0_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_0_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_0_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_0_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_0_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_0_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_0_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_0_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_0_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_0_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_0_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_0_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_0_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_0_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_0_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_0_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_0_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_0_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_0_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_0_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_0_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_0_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_0_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_0_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_0_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_0_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_0_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_0_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_0_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_0_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_0_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_0_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_0_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_0_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_0_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_0_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_0_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_0_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_0_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_0_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_0_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_0_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_0_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_0_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_0_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_0_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_0_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_0_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split0),
.phy_ctl_clk (phy_ctl_clk_split0),
.phy_ctl_wd (phy_ctl_wd_split0),
.data_offset (phy_ctl_wd_split0[PC_DATA_OFFSET_RANGE_HI : PC_DATA_OFFSET_RANGE_LO]),
.phy_ctl_wr (phy_ctl_wr_split0),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split0[HIGHEST_LANE_B0*80-1:0]),
.phy_cmd_wr_en (phy_cmd_wr_en_split0),
.phy_data_wr_en (phy_data_wr_en_split0),
.phy_rd_en (phy_rd_en_split0),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[0]),
.rclk (),
.rst_out (rst_out_w[0]),
.mcGo (mcGo_w[0]),
.ref_dll_lock (ref_dll_lock_w[0]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[1:0]),
.if_a_empty (if_a_empty_v[0]),
.if_empty (if_empty_v[0]),
.byte_rd_en (byte_rd_en_v[0]),
.if_empty_or (if_empty_or_v[0]),
.if_empty_and (if_empty_and_v[0]),
.of_ctl_a_full (of_ctl_a_full_v[0]),
.of_data_a_full (of_data_a_full_v[0]),
.of_ctl_full (of_ctl_full_v[0]),
.of_data_full (of_data_full_v[0]),
.pre_data_a_full (pre_data_a_full_v[0]),
.phy_din (phy_din[HIGHEST_LANE_B0*80-1:0]),
.phy_ctl_a_full (_phy_ctl_a_full_p[0]),
.phy_ctl_full (_phy_ctl_full_p[0]),
.phy_ctl_empty (phy_ctl_empty[0]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B0*10-1:0]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B0-1:0]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B0-1:0]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B0-1:0]),
.aux_out (aux_out_[3:0]),
.phy_ctl_ready (phy_ctl_ready_w[0]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte0),
.calib_zero_ctrl (calib_zero_ctrl[0]),
.calib_zero_lanes (calib_zero_lanes_int[3:0]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[0]),
.po_fine_enable (po_fine_enable[0]),
.po_fine_inc (po_fine_inc[0]),
.po_coarse_inc (po_coarse_inc[0]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[0]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[0]),
.po_fine_overflow (po_fine_overflow_w[0]),
.po_counter_read_val (po_counter_read_val_w[0]),
.pi_rst_dqs_find (pi_rst_dqs_find[0]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[0]),
.pi_counter_read_val (pi_counter_read_val_w[0]),
.pi_dqs_found (pi_dqs_found_w[0]),
.pi_dqs_found_all (pi_dqs_found_all_w[0]),
.pi_dqs_found_any (pi_dqs_found_any_w[0]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[0]),
.pi_phase_locked (pi_phase_locked_w[0]),
.pi_phase_locked_all (pi_phase_locked_all_w[0]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[0] <= #100 0;
aux_out[2] <= #100 0;
end
else begin
aux_out[0] <= #100 aux_out_[0];
aux_out[2] <= #100 aux_out_[2];
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
end
else begin
if ( HIGHEST_BANK > 0) begin
assign phy_din[HIGHEST_LANE_B0*80-1:0] = 0;
assign _phy_ctl_a_full_p[0] = 0;
assign of_ctl_a_full_v[0] = 0;
assign of_ctl_full_v[0] = 0;
assign of_data_a_full_v[0] = 0;
assign of_data_full_v[0] = 0;
assign pre_data_a_full_v[0] = 0;
assign if_empty_v[0] = 0;
assign byte_rd_en_v[0] = 1;
always @(*)
aux_out[3:0] = 0;
end
assign pi_dqs_found_w[0] = 1;
assign pi_dqs_found_all_w[0] = 1;
assign pi_dqs_found_any_w[0] = 0;
assign pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_out_of_range_w[0] = 0;
assign pi_phase_locked_w[0] = 1;
assign po_fine_overflow_w[0] = 0;
assign po_coarse_overflow_w[0] = 0;
assign po_fine_overflow_w[0] = 0;
assign pi_fine_overflow_w[0] = 0;
assign po_counter_read_val_w[0] = 0;
assign pi_counter_read_val_w[0] = 0;
assign mcGo_w[0] = 1;
if ( RCLK_SELECT_BANK == 0)
always @(*)
aux_out[3:0] = 0;
end
if ( BYTE_LANES_B1 != 0) begin : ddr_phy_4lanes_1
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B1), /* four bits, one per lanes */
.DATA_CTL_N (PHY_1_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_1_PO_FINE_DELAY),
.BITLANES (PHY_1_BITLANES),
.BITLANES_OUTONLY (PHY_1_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_1_BYTELANES_DDR_CK),
.LAST_BANK (PHY_1_IS_LAST_BANK ),
.LANE_REMAP (PHY_1_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_1_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_1_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_1_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_1_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_1_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_1_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_1_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_1_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_1_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_1_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_1_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_1_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_1_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_1_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_1_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_1_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_1_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_1_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_1_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_1_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_1_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_1_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_1_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_1_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_1_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_1_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_1_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_1_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_1_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_1_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_1_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_1_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_1_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_1_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_1_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_1_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_1_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_1_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_1_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_1_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_1_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_1_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_1_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_1_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_1_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_1_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_1_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_1_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_1_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_1_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_1_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_1_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_1_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_1_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_1_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split1),
.phy_ctl_clk (phy_ctl_clk_split1),
.phy_ctl_wd (phy_ctl_wd_split1),
.data_offset (phy_data_offset_1_split1),
.phy_ctl_wr (phy_ctl_wr_split1),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split1[HIGHEST_LANE_B1*80+320-1:320]),
.phy_cmd_wr_en (phy_cmd_wr_en_split1),
.phy_data_wr_en (phy_data_wr_en_split1),
.phy_rd_en (phy_rd_en_split1),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[1]),
.rclk (),
.rst_out (rst_out_w[1]),
.mcGo (mcGo_w[1]),
.ref_dll_lock (ref_dll_lock_w[1]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[3:2]),
.if_a_empty (if_a_empty_v[1]),
.if_empty (if_empty_v[1]),
.byte_rd_en (byte_rd_en_v[1]),
.if_empty_or (if_empty_or_v[1]),
.if_empty_and (if_empty_and_v[1]),
.of_ctl_a_full (of_ctl_a_full_v[1]),
.of_data_a_full (of_data_a_full_v[1]),
.of_ctl_full (of_ctl_full_v[1]),
.of_data_full (of_data_full_v[1]),
.pre_data_a_full (pre_data_a_full_v[1]),
.phy_din (phy_din[HIGHEST_LANE_B1*80+320-1:320]),
.phy_ctl_a_full (_phy_ctl_a_full_p[1]),
.phy_ctl_full (_phy_ctl_full_p[1]),
.phy_ctl_empty (phy_ctl_empty[1]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B1*10+40-1:40]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B1+4-1:4]),
.aux_out (aux_out_[7:4]),
.phy_ctl_ready (phy_ctl_ready_w[1]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte1),
.calib_zero_ctrl (calib_zero_ctrl[1]),
.calib_zero_lanes (calib_zero_lanes_int[7:4]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[1]),
.po_fine_enable (po_fine_enable[1]),
.po_fine_inc (po_fine_inc[1]),
.po_coarse_inc (po_coarse_inc[1]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[1]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[1]),
.po_fine_overflow (po_fine_overflow_w[1]),
.po_counter_read_val (po_counter_read_val_w[1]),
.pi_rst_dqs_find (pi_rst_dqs_find[1]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[1]),
.pi_counter_read_val (pi_counter_read_val_w[1]),
.pi_dqs_found (pi_dqs_found_w[1]),
.pi_dqs_found_all (pi_dqs_found_all_w[1]),
.pi_dqs_found_any (pi_dqs_found_any_w[1]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[1]),
.pi_phase_locked (pi_phase_locked_w[1]),
.pi_phase_locked_all (pi_phase_locked_all_w[1]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[4] <= #100 0;
aux_out[6] <= #100 0;
end
else begin
aux_out[4] <= #100 aux_out_[4];
aux_out[6] <= #100 aux_out_[6];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
end
else begin
if ( HIGHEST_BANK > 1) begin
assign phy_din[HIGHEST_LANE_B1*80+320-1:320] = 0;
assign _phy_ctl_a_full_p[1] = 0;
assign of_ctl_a_full_v[1] = 0;
assign of_ctl_full_v[1] = 0;
assign of_data_a_full_v[1] = 0;
assign of_data_full_v[1] = 0;
assign pre_data_a_full_v[1] = 0;
assign if_empty_v[1] = 0;
assign byte_rd_en_v[1] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
always @(*)
aux_out[7:4] = 0;
end
assign pi_dqs_found_w[1] = 1;
assign pi_dqs_found_all_w[1] = 1;
assign pi_dqs_found_any_w[1] = 0;
assign pi_dqs_out_of_range_w[1] = 0;
assign pi_phase_locked_w[1] = 1;
assign po_coarse_overflow_w[1] = 0;
assign po_fine_overflow_w[1] = 0;
assign pi_fine_overflow_w[1] = 0;
assign po_counter_read_val_w[1] = 0;
assign pi_counter_read_val_w[1] = 0;
assign mcGo_w[1] = 1;
end
if ( BYTE_LANES_B2 != 0) begin : ddr_phy_4lanes_2
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B2), /* four bits, one per lanes */
.DATA_CTL_N (PHY_2_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_2_PO_FINE_DELAY),
.BITLANES (PHY_2_BITLANES),
.BITLANES_OUTONLY (PHY_2_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_2_BYTELANES_DDR_CK),
.LAST_BANK (PHY_2_IS_LAST_BANK ),
.LANE_REMAP (PHY_2_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_2_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_2_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_2_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_2_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_2_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_2_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_2_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_2_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_2_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_2_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_2_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_2_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_2_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_2_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_2_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_2_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_2_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_2_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_2_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_2_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_2_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_2_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_2_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_2_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_2_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_2_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_2_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_2_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_2_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_2_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_2_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_2_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_2_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_2_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_2_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_2_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_2_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_2_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_2_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_2_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_2_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_2_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_2_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_2_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_2_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_2_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_2_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_2_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_2_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_2_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_2_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_2_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_2_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_2_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_2_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split2),
.phy_ctl_clk (phy_ctl_clk_split2),
.phy_ctl_wd (phy_ctl_wd_split2),
.data_offset (phy_data_offset_2_split2),
.phy_ctl_wr (phy_ctl_wr_split2),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split2[HIGHEST_LANE_B2*80+640-1:640]),
.phy_cmd_wr_en (phy_cmd_wr_en_split2),
.phy_data_wr_en (phy_data_wr_en_split2),
.phy_rd_en (phy_rd_en_split2),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[2]),
.rclk (),
.rst_out (rst_out_w[2]),
.mcGo (mcGo_w[2]),
.ref_dll_lock (ref_dll_lock_w[2]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[5:4]),
.if_a_empty (if_a_empty_v[2]),
.if_empty (if_empty_v[2]),
.byte_rd_en (byte_rd_en_v[2]),
.if_empty_or (if_empty_or_v[2]),
.if_empty_and (if_empty_and_v[2]),
.of_ctl_a_full (of_ctl_a_full_v[2]),
.of_data_a_full (of_data_a_full_v[2]),
.of_ctl_full (of_ctl_full_v[2]),
.of_data_full (of_data_full_v[2]),
.pre_data_a_full (pre_data_a_full_v[2]),
.phy_din (phy_din[HIGHEST_LANE_B2*80+640-1:640]),
.phy_ctl_a_full (_phy_ctl_a_full_p[2]),
.phy_ctl_full (_phy_ctl_full_p[2]),
.phy_ctl_empty (phy_ctl_empty[2]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B2*10+80-1:80]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B2-1+8:8]),
.aux_out (aux_out_[11:8]),
.phy_ctl_ready (phy_ctl_ready_w[2]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte2),
.calib_zero_ctrl (calib_zero_ctrl[2]),
.calib_zero_lanes (calib_zero_lanes_int[11:8]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[2]),
.po_fine_enable (po_fine_enable[2]),
.po_fine_inc (po_fine_inc[2]),
.po_coarse_inc (po_coarse_inc[2]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[2]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[2]),
.po_fine_overflow (po_fine_overflow_w[2]),
.po_counter_read_val (po_counter_read_val_w[2]),
.pi_rst_dqs_find (pi_rst_dqs_find[2]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[2]),
.pi_counter_read_val (pi_counter_read_val_w[2]),
.pi_dqs_found (pi_dqs_found_w[2]),
.pi_dqs_found_all (pi_dqs_found_all_w[2]),
.pi_dqs_found_any (pi_dqs_found_any_w[2]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[2]),
.pi_phase_locked (pi_phase_locked_w[2]),
.pi_phase_locked_all (pi_phase_locked_all_w[2]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[8] <= #100 0;
aux_out[10] <= #100 0;
end
else begin
aux_out[8] <= #100 aux_out_[8];
aux_out[10] <= #100 aux_out_[10];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
end
else begin
if ( HIGHEST_BANK > 2) begin
assign phy_din[HIGHEST_LANE_B2*80+640-1:640] = 0;
assign _phy_ctl_a_full_p[2] = 0;
assign of_ctl_a_full_v[2] = 0;
assign of_ctl_full_v[2] = 0;
assign of_data_a_full_v[2] = 0;
assign of_data_full_v[2] = 0;
assign pre_data_a_full_v[2] = 0;
assign if_empty_v[2] = 0;
assign byte_rd_en_v[2] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
always @(*)
aux_out[11:8] = 0;
end
assign pi_dqs_found_w[2] = 1;
assign pi_dqs_found_all_w[2] = 1;
assign pi_dqs_found_any_w[2] = 0;
assign pi_dqs_out_of_range_w[2] = 0;
assign pi_phase_locked_w[2] = 1;
assign po_coarse_overflow_w[2] = 0;
assign po_fine_overflow_w[2] = 0;
assign po_counter_read_val_w[2] = 0;
assign pi_counter_read_val_w[2] = 0;
assign mcGo_w[2] = 1;
end
endgenerate
generate
// for single bank , emit an extra phaser_in to generate rclk
// so that auxout can be placed in another region
// if desired
if ( BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK>0)
begin : phaser_in_rclk
localparam L_EXTRA_PI_FINE_DELAY = DEFAULT_RCLK_DELAY;
PHASER_IN_PHY #(
.BURST_MODE ( PHY_0_A_BURST_MODE),
.CLKOUT_DIV ( PHY_0_A_PI_CLKOUT_DIV),
.FREQ_REF_DIV ( PHY_0_A_PI_FREQ_REF_DIV),
.REFCLK_PERIOD ( L_FREQ_REF_PERIOD_NS),
.FINE_DELAY ( L_EXTRA_PI_FINE_DELAY),
.OUTPUT_CLK_SRC ( RCLK_PI_OUTPUT_CLK_SRC)
) phaser_in_rclk (
.DQSFOUND (),
.DQSOUTOFRANGE (),
.FINEOVERFLOW (),
.PHASELOCKED (),
.ISERDESRST (),
.ICLKDIV (),
.ICLK (),
.COUNTERREADVAL (),
.RCLK (),
.WRENABLE (),
.BURSTPENDINGPHY (),
.ENCALIBPHY (),
.FINEENABLE (0),
.FREQREFCLK (freq_refclk),
.MEMREFCLK (mem_refclk),
.RANKSELPHY (0),
.PHASEREFCLK (),
.RSTDQSFIND (0),
.RST (rst),
.FINEINC (),
.COUNTERLOADEN (),
.COUNTERREADEN (),
.COUNTERLOADVAL (),
.SYNCIN (sync_pulse),
.SYSCLK (phy_clk)
);
end
endgenerate
always @(*) begin
case (calib_sel[5:3])
3'b000: begin
po_coarse_overflow = po_coarse_overflow_w[0];
po_fine_overflow = po_fine_overflow_w[0];
po_counter_read_val = po_counter_read_val_w[0];
pi_fine_overflow = pi_fine_overflow_w[0];
pi_counter_read_val = pi_counter_read_val_w[0];
pi_phase_locked = pi_phase_locked_w[0];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[0];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[0];
end
3'b001: begin
po_coarse_overflow = po_coarse_overflow_w[1];
po_fine_overflow = po_fine_overflow_w[1];
po_counter_read_val = po_counter_read_val_w[1];
pi_fine_overflow = pi_fine_overflow_w[1];
pi_counter_read_val = pi_counter_read_val_w[1];
pi_phase_locked = pi_phase_locked_w[1];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[1];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[1];
end
3'b010: begin
po_coarse_overflow = po_coarse_overflow_w[2];
po_fine_overflow = po_fine_overflow_w[2];
po_counter_read_val = po_counter_read_val_w[2];
pi_fine_overflow = pi_fine_overflow_w[2];
pi_counter_read_val = pi_counter_read_val_w[2];
pi_phase_locked = pi_phase_locked_w[2];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[2];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[2];
end
default: begin
po_coarse_overflow = 0;
po_fine_overflow = 0;
po_counter_read_val = 0;
pi_fine_overflow = 0;
pi_counter_read_val = 0;
pi_phase_locked = 0;
pi_dqs_found = 0;
pi_dqs_out_of_range = 0;
end
endcase
end
endmodule
|
module mig_7series_v2_3_ddr_if_post_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input [3:0] empty_in,
input rd_en_in,
input [WIDTH-1:0] d_in, // write data from controller
output empty_out,
output byte_rd_en,
output [WIDTH-1:0] d_out // write data to OUT_FIFO
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
(((DEPTH == 3) || (DEPTH == 4)) ? 2 : 'bx);
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1];
(* max_fanout = 40 *) reg [4:0] my_empty /* synthesis syn_maxfan = 3 */;
(* max_fanout = 40 *) reg [1:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
// Register duplication to reduce the fan out
(* KEEP = "TRUE" *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 40 *) wire wr_en /* synthesis syn_maxfan = 10 */;
task updt_ptrs;
input rd;
input wr;
reg [1:0] next_rd_ptr;
reg [1:0] next_wr_ptr;
begin
next_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
next_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
casez ({rd, wr, my_empty[1], my_full[1]})
4'b00zz: ; // No access, do nothing
4'b0100: begin
// Write when neither empty, nor full; check for full
wr_ptr <= #TCQ next_wr_ptr;
my_full[0] <= #TCQ (next_wr_ptr == rd_ptr);
my_full[1] <= #TCQ (next_wr_ptr == rd_ptr);
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0110: begin
// Write when empty; no need to check for full
wr_ptr <= #TCQ next_wr_ptr;
my_empty <= #TCQ 5'b00000;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b1000: begin
// Read when neither empty, nor full; check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_empty[0] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[1] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[2] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[3] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[4] <= #TCQ (next_rd_ptr == wr_ptr);
end
4'b1001: begin
// Read when full; no need to check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_full[0] <= #TCQ 1'b0;
my_full[1] <= #TCQ 1'b0;
end
4'b1100, 4'b1101, 4'b1110: begin
// Read and write when empty, full, or neither empty/full; no need
// to check for empty or full conditions
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
wr_ptr <= #TCQ next_wr_ptr;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0101, 4'b1010: ;
// Read when empty, Write when full; Keep all pointers the same
// and don't change any of the flags (i.e. ignore the read/write).
// This might happen because a faulty DQS_FOUND calibration could
// result in excessive skew between when the various IN_FIFO's
// first become not empty. In this case, the data going to each
// post-FIFO/IN_FIFO should be read out and discarded
// synthesis translate_off
default: begin
// Covers any other cases, in particular for simulation if
// any signals are X's
$display("ERR %m @%t: Bad access: rd:%b,wr:%b,empty:%b,full:%b",
$time, rd, wr, my_empty[1], my_full[1]);
rd_ptr <= #TCQ 2'bxx;
rd_ptr_timing <= #TCQ 2'bxx;
wr_ptr <= #TCQ 2'bxx;
end
// synthesis translate_on
endcase
end
endtask
assign d_out = my_empty[4] ? d_in : mem_out;//mem[rd_ptr];
// The combined IN_FIFO + post FIFO is only "empty" when both are empty
assign empty_out = empty_in[0] & my_empty[0];
assign byte_rd_en = !empty_in[3] || !my_empty[3];
always @(posedge clk)
if (rst) begin
my_empty <= #TCQ 5'b11111;
my_full <= #TCQ 2'b00;
rd_ptr <= #TCQ 'b0;
rd_ptr_timing <= #TCQ 'b0;
wr_ptr <= #TCQ 'b0;
end else begin
// Special mode: If IN_FIFO has data, and controller is reading at
// the same time, then operate post-FIFO in "passthrough" mode (i.e.
// don't update any of the read/write pointers, and route IN_FIFO
// data to post-FIFO data)
if (my_empty[1] && !my_full[1] && rd_en_in && !empty_in[1]) ;
else
// Otherwise, we're writing to FIFO when IN_FIFO is not empty,
// and reading from the FIFO based on the rd_en_in signal (read
// enable from controller). The functino updt_ptrs should catch
// an illegal conditions.
updt_ptrs(rd_en_in, !empty_in[1]);
end
assign wr_en = (!empty_in[2] & ((!rd_en_in & !my_full[0]) |
(rd_en_in & !my_empty[2])));
always @ (posedge clk)
begin
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
end
assign mem_out = mem[rd_ptr_timing];
endmodule
|
module mig_7series_v2_3_ddr_if_post_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input [3:0] empty_in,
input rd_en_in,
input [WIDTH-1:0] d_in, // write data from controller
output empty_out,
output byte_rd_en,
output [WIDTH-1:0] d_out // write data to OUT_FIFO
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
(((DEPTH == 3) || (DEPTH == 4)) ? 2 : 'bx);
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1];
(* max_fanout = 40 *) reg [4:0] my_empty /* synthesis syn_maxfan = 3 */;
(* max_fanout = 40 *) reg [1:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
// Register duplication to reduce the fan out
(* KEEP = "TRUE" *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 40 *) wire wr_en /* synthesis syn_maxfan = 10 */;
task updt_ptrs;
input rd;
input wr;
reg [1:0] next_rd_ptr;
reg [1:0] next_wr_ptr;
begin
next_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
next_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
casez ({rd, wr, my_empty[1], my_full[1]})
4'b00zz: ; // No access, do nothing
4'b0100: begin
// Write when neither empty, nor full; check for full
wr_ptr <= #TCQ next_wr_ptr;
my_full[0] <= #TCQ (next_wr_ptr == rd_ptr);
my_full[1] <= #TCQ (next_wr_ptr == rd_ptr);
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0110: begin
// Write when empty; no need to check for full
wr_ptr <= #TCQ next_wr_ptr;
my_empty <= #TCQ 5'b00000;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b1000: begin
// Read when neither empty, nor full; check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_empty[0] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[1] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[2] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[3] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[4] <= #TCQ (next_rd_ptr == wr_ptr);
end
4'b1001: begin
// Read when full; no need to check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_full[0] <= #TCQ 1'b0;
my_full[1] <= #TCQ 1'b0;
end
4'b1100, 4'b1101, 4'b1110: begin
// Read and write when empty, full, or neither empty/full; no need
// to check for empty or full conditions
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
wr_ptr <= #TCQ next_wr_ptr;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0101, 4'b1010: ;
// Read when empty, Write when full; Keep all pointers the same
// and don't change any of the flags (i.e. ignore the read/write).
// This might happen because a faulty DQS_FOUND calibration could
// result in excessive skew between when the various IN_FIFO's
// first become not empty. In this case, the data going to each
// post-FIFO/IN_FIFO should be read out and discarded
// synthesis translate_off
default: begin
// Covers any other cases, in particular for simulation if
// any signals are X's
$display("ERR %m @%t: Bad access: rd:%b,wr:%b,empty:%b,full:%b",
$time, rd, wr, my_empty[1], my_full[1]);
rd_ptr <= #TCQ 2'bxx;
rd_ptr_timing <= #TCQ 2'bxx;
wr_ptr <= #TCQ 2'bxx;
end
// synthesis translate_on
endcase
end
endtask
assign d_out = my_empty[4] ? d_in : mem_out;//mem[rd_ptr];
// The combined IN_FIFO + post FIFO is only "empty" when both are empty
assign empty_out = empty_in[0] & my_empty[0];
assign byte_rd_en = !empty_in[3] || !my_empty[3];
always @(posedge clk)
if (rst) begin
my_empty <= #TCQ 5'b11111;
my_full <= #TCQ 2'b00;
rd_ptr <= #TCQ 'b0;
rd_ptr_timing <= #TCQ 'b0;
wr_ptr <= #TCQ 'b0;
end else begin
// Special mode: If IN_FIFO has data, and controller is reading at
// the same time, then operate post-FIFO in "passthrough" mode (i.e.
// don't update any of the read/write pointers, and route IN_FIFO
// data to post-FIFO data)
if (my_empty[1] && !my_full[1] && rd_en_in && !empty_in[1]) ;
else
// Otherwise, we're writing to FIFO when IN_FIFO is not empty,
// and reading from the FIFO based on the rd_en_in signal (read
// enable from controller). The functino updt_ptrs should catch
// an illegal conditions.
updt_ptrs(rd_en_in, !empty_in[1]);
end
assign wr_en = (!empty_in[2] & ((!rd_en_in & !my_full[0]) |
(rd_en_in & !my_empty[2])));
always @ (posedge clk)
begin
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
end
assign mem_out = mem[rd_ptr_timing];
endmodule
|
module outputs)
wire ktap_at_left_edge; // From u_ocd_mux of mig_7series_v2_3_ddr_phy_ocd_mux.v
wire ktap_at_right_edge; // From u_ocd_mux of mig_7series_v2_3_ddr_phy_ocd_mux.v
wire lim2init_prech_req; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire [5:0] lim2ocal_stg3_left_lim; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire [5:0] lim2ocal_stg3_right_lim;// From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2poc_ktap_right; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2poc_rdy; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2stg2_dec; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2stg2_inc; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2stg3_dec; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2stg3_inc; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim_start; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire [1:0] match; // From u_ocd_data of mig_7series_v2_3_ddr_phy_ocd_data.v
wire mmcm_edge_detect_done; // From u_poc of mig_7series_v2_3_poc_top.v
wire mmcm_edge_detect_rdy; // From u_ocd_mux of mig_7series_v2_3_ddr_phy_ocd_mux.v
wire mmcm_lbclk_edge_aligned;// From u_poc of mig_7series_v2_3_poc_top.v
wire [1:0] ninety_offsets; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd2stg2_dec; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd2stg2_inc; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd2stg3_dec; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd2stg3_inc; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd_cntlr2stg2_dec; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire ocd_edge_detect_rdy; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd_ktap_left; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd_ktap_right; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd_prech_req; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire phy_rddata_en_1; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire phy_rddata_en_2; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire phy_rddata_en_3; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire po_rdy; // From u_ocd_mux of mig_7series_v2_3_ddr_phy_ocd_mux.v
wire poc_backup; // From u_poc of mig_7series_v2_3_poc_top.v
wire reset_scan; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire [TAPCNTRWIDTH-1:0] rise_lead_right; // From u_poc of mig_7series_v2_3_poc_top.v
wire [TAPCNTRWIDTH-1:0] rise_trail_right; // From u_poc of mig_7series_v2_3_poc_top.v
wire samp_done; // From u_ocd_samp of mig_7series_v2_3_ddr_phy_ocd_samp.v
wire [1:0] samp_result; // From u_ocd_samp of mig_7series_v2_3_ddr_phy_ocd_samp.v
wire scan_done; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire scan_right; // From u_ocd_edge of mig_7series_v2_3_ddr_phy_ocd_edge.v
wire scanning_right; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire [5:0] simp_stg3_final_sel; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire [5:0] stg3; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire taps_set; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire use_noise_window; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire [5:0] wl_po_fine_cnt_sel; // From u_ocd_mux of mig_7series_v2_3_ddr_phy_ocd_mux.v
// End of automatics
wire [DQS_WIDTH*6-1:0] simp_stg3_final, cmplx_stg3_final;
wire ocal_scan_win_not_found;
output [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
output [255:0] dbg_phy_oclkdelay_cal;
output [16*DRAM_WIDTH-1:0] dbg_oclkdelay_rd_data;
output oclkdelay_calib_done;
output f2o;
output f2z;
output o2f;
output z2f;
output [5:0] fuzz2oneeighty;
output [5:0] fuzz2zero;
output [5:0] oneeighty2fuzz;
output [5:0] zero2fuzz;
output lim_done;
output [255:0] dbg_ocd_lim;
// Debug signals
assign dbg_phy_oclkdelay_cal[0] = f2o;
assign dbg_phy_oclkdelay_cal[1] = f2z;
assign dbg_phy_oclkdelay_cal[2] = o2f;
assign dbg_phy_oclkdelay_cal[3] = z2f;
assign dbg_phy_oclkdelay_cal[4+:6] = fuzz2oneeighty;
assign dbg_phy_oclkdelay_cal[10+:6] = fuzz2zero;
assign dbg_phy_oclkdelay_cal[16+:6] = oneeighty2fuzz;
assign dbg_phy_oclkdelay_cal[22+:6] = zero2fuzz;
assign dbg_phy_oclkdelay_cal[28+:3] = oclkdelay_calib_cnt;
assign dbg_phy_oclkdelay_cal[31] = oclkdelay_calib_start;
assign dbg_phy_oclkdelay_cal[32] = lim_done;
assign dbg_phy_oclkdelay_cal[33+:6] =lim2ocal_stg3_left_lim ;
assign dbg_phy_oclkdelay_cal[39+:6] = lim2ocal_stg3_right_lim ;
assign dbg_phy_oclkdelay_cal[45+:8] = po_counter_read_val[8:0];
assign dbg_phy_oclkdelay_cal[53+:54] = simp_stg3_final[DQS_WIDTH*6-1:0];
assign dbg_phy_oclkdelay_cal[107] = ocal_scan_win_not_found;
assign dbg_phy_oclkdelay_cal[108] = oclkdelay_center_calib_start;
assign dbg_phy_oclkdelay_cal[109] = oclkdelay_center_calib_done;
assign dbg_phy_oclkdelay_cal[115:110] = stg3[5:0];
mig_7series_v2_3_ddr_phy_ocd_lim #
(/*AUTOINSTPARAM*/
// Parameters
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.TAPCNTRWIDTH (TAPCNTRWIDTH),
.TAPSPERKCLK (TAPSPERKCLK),
.TCQ (TCQ),
.TDQSS_DEGREES (),
.BYPASS_COMPLEX_OCAL (BYPASS_COMPLEX_OCAL)) // Templated
u_ocd_lim
(/*AUTOINST*/
// Outputs
.lim2init_prech_req (lim2init_prech_req),
.lim2init_write_request (lim2init_write_request),
.lim2ocal_stg3_left_lim (lim2ocal_stg3_left_lim[5:0]),
.lim2ocal_stg3_right_lim (lim2ocal_stg3_right_lim[5:0]),
.lim2poc_ktap_right (lim2poc_ktap_right),
.lim2poc_rdy (lim2poc_rdy),
.lim2stg2_dec (lim2stg2_dec),
.lim2stg2_inc (lim2stg2_inc),
.lim2stg3_dec (lim2stg3_dec),
.lim2stg3_inc (lim2stg3_inc),
.lim_done (lim_done),
// Inputs
.clk (clk),
.lim_start (lim_start),
.oclkdelay_calib_done (oclkdelay_calib_done),
.oclkdelay_init_val (oclkdelay_init_val[5:0]),
.po_rdy (po_rdy),
.poc2lim_detect_done (mmcm_edge_detect_done), // Templated
.poc2lim_fall_align_taps_lead ({TAPCNTRWIDTH{1'b0}}), // Templated
.poc2lim_fall_align_taps_trail ({TAPCNTRWIDTH{1'b0}}), // Templated
.poc2lim_rise_align_taps_lead (rise_lead_right), // Templated
.poc2lim_rise_align_taps_trail (rise_trail_right), // Templated
.prech_done (prech_done),
.rst (rst),
.simp_stg3_final_sel (simp_stg3_final_sel[5:0]),
.wl_po_fine_cnt (wl_po_fine_cnt_sel[5:0]),
.oclkdelay_calib_cnt (oclkdelay_calib_cnt[DQS_CNT_WIDTH:0]),
.dbg_ocd_lim (dbg_ocd_lim)); // Templated
/*mig_7series_v2_3_poc_top AUTO_TEMPLATE(
.CCENABLE (0),
.SCANFROMRIGHT (1),
.pd_out (metaQ),); */
mig_7series_v2_3_poc_top #
(/*AUTOINSTPARAM*/
// Parameters
.CCENABLE (0), // Templated
.MMCM_SAMP_WAIT (MMCM_SAMP_WAIT),
.PCT_SAMPS_SOLID (PCT_SAMPS_SOLID),
.POC_USE_METASTABLE_SAMP (POC_USE_METASTABLE_SAMP),
.SAMPCNTRWIDTH (SAMPCNTRWIDTH),
.SAMPLES (SAMPLES),
.SCANFROMRIGHT (1), // Templated
.TAPCNTRWIDTH (TAPCNTRWIDTH),
.TAPSPERKCLK (TAPSPERKCLK),
.TCQ (TCQ))
u_poc
(/*AUTOINST*/
// Outputs
.mmcm_edge_detect_done (mmcm_edge_detect_done),
.mmcm_lbclk_edge_aligned (mmcm_lbclk_edge_aligned),
.poc_backup (poc_backup),
.poc_error (poc_error),
.psen (psen),
.psincdec (psincdec),
.rise_lead_right (rise_lead_right[TAPCNTRWIDTH-1:0]),
.rise_trail_right (rise_trail_right[TAPCNTRWIDTH-1:0]),
// Inputs
.clk (clk),
.ktap_at_left_edge (ktap_at_left_edge),
.ktap_at_right_edge (ktap_at_right_edge),
.mmcm_edge_detect_rdy (mmcm_edge_detect_rdy),
.ninety_offsets (ninety_offsets[1:0]),
.pd_out (metaQ), // Templated
.poc_sample_pd (poc_sample_pd),
.psdone (psdone),
.rst (rst),
.use_noise_window (use_noise_window));
mig_7series_v2_3_ddr_phy_ocd_mux #
(/*AUTOINSTPARAM*/
// Parameters
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.TCQ (TCQ))
u_ocd_mux
(/*AUTOINST*/
// Outputs
.ktap_at_left_edge (ktap_at_left_edge),
.ktap_at_right_edge (ktap_at_right_edge),
.mmcm_edge_detect_rdy (mmcm_edge_detect_rdy),
.oclk_prech_req (oclk_prech_req),
.po_en_stg23 (po_en_stg23),
.po_en_stg3 (po_en_stg3),
.po_rdy (po_rdy),
.po_stg23_incdec (po_stg23_incdec),
.po_stg23_sel (po_stg23_sel),
.po_stg3_incdec (po_stg3_incdec),
.wl_po_fine_cnt_sel (wl_po_fine_cnt_sel[5:0]),
// Inputs
.clk (clk),
.lim2init_prech_req (lim2init_prech_req),
.lim2poc_ktap_right (lim2poc_ktap_right),
.lim2poc_rdy (lim2poc_rdy),
.lim2stg2_dec (lim2stg2_dec),
.lim2stg2_inc (lim2stg2_inc),
.lim2stg3_dec (lim2stg3_dec),
.lim2stg3_inc (lim2stg3_inc),
.ocd2stg2_dec (ocd2stg2_dec),
.ocd2stg2_inc (ocd2stg2_inc),
.ocd2stg3_dec (ocd2stg3_dec),
.ocd2stg3_inc (ocd2stg3_inc),
.ocd_cntlr2stg2_dec (ocd_cntlr2stg2_dec),
.ocd_edge_detect_rdy (ocd_edge_detect_rdy),
.ocd_ktap_left (ocd_ktap_left),
.ocd_ktap_right (ocd_ktap_right),
.ocd_prech_req (ocd_prech_req),
.oclkdelay_calib_cnt (oclkdelay_calib_cnt[DQS_CNT_WIDTH:0]),
.rst (rst),
.wl_po_fine_cnt (wl_po_fine_cnt[6*DQS_WIDTH-1:0]));
mig_7series_v2_3_ddr_phy_ocd_data #
(/*AUTOINSTPARAM*/
// Parameters
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.TCQ (TCQ),
.nCK_PER_CLK (nCK_PER_CLK))
u_ocd_data
(/*AUTOINST*/
// Outputs
.match (match[1:0]),
// Inputs
.clk (clk),
.complex_oclkdelay_calib_start (complex_oclkdelay_calib_start),
.oclkdelay_calib_cnt (oclkdelay_calib_cnt[DQS_CNT_WIDTH:0]),
.phy_rddata (phy_rddata[2*nCK_PER_CLK*DQ_WIDTH-1:0]),
.phy_rddata_en_1 (phy_rddata_en_1),
.prbs_ignore_first_byte (prbs_ignore_first_byte),
.prbs_ignore_last_bytes (prbs_ignore_last_bytes),
.prbs_o (prbs_o[2*nCK_PER_CLK*DQ_WIDTH-1:0]),
.rst (rst));
mig_7series_v2_3_ddr_phy_ocd_samp #
(/*AUTOINSTPARAM*/
// Parameters
.OCAL_SIMPLE_SCAN_SAMPS (OCAL_SIMPLE_SCAN_SAMPS),
.SCAN_PCT_SAMPS_SOLID (SCAN_PCT_SAMPS_SOLID),
.SIM_CAL_OPTION (SIM_CAL_OPTION),
.TCQ (TCQ),
.nCK_PER_CLK (nCK_PER_CLK))
u_ocd_samp
(/*AUTOINST*/
// Outputs
.oclk_calib_resume (oclk_calib_resume),
.rd_victim_sel (rd_victim_sel[2:0]),
.samp_done (samp_done),
.samp_result (samp_result[1:0]),
// Inputs
.clk (clk),
.complex_oclkdelay_calib_start (complex_oclkdelay_calib_start),
.match (match[1:0]),
.ocal_num_samples_inc (ocal_num_samples_inc),
.phy_rddata_en_1 (phy_rddata_en_1),
.reset_scan (reset_scan),
.rst (rst),
.taps_set (taps_set));
mig_7series_v2_3_ddr_phy_ocd_edge #
(/*AUTOINSTPARAM*/
// Parameters
.TCQ (TCQ))
u_ocd_edge
(/*AUTOINST*/
// Outputs
.f2o (f2o),
.f2z (f2z),
.fuzz2oneeighty (fuzz2oneeighty[5:0]),
.fuzz2zero (fuzz2zero[5:0]),
.o2f (o2f),
.oneeighty2fuzz (oneeighty2fuzz[5:0]),
.scan_right (scan_right),
.z2f (z2f),
.zero2fuzz (zero2fuzz[5:0]),
// Inputs
.clk (clk),
.phy_rddata_en_2 (phy_rddata_en_2),
.reset_scan (reset_scan),
.samp_done (samp_done),
.samp_result (samp_result[1:0]),
.scanning_right (scanning_right),
.stg3 (stg3[5:0]));
mig_7series_v2_3_ddr_phy_ocd_cntlr #
(/*AUTOINSTPARAM*/
// Parameters
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.TCQ (TCQ))
u_ocd_cntlr
(/*AUTOINST*/
// Outputs
.complex_oclkdelay_calib_done (complex_oclkdelay_calib_done),
.complex_wrlvl_final (complex_wrlvl_final),
.lim_start (lim_start),
.ocd_cntlr2stg2_dec (ocd_cntlr2stg2_dec),
.ocd_prech_req (ocd_prech_req),
.oclk_init_delay_done (oclk_init_delay_done),
.oclkdelay_calib_cnt (oclkdelay_calib_cnt[DQS_CNT_WIDTH:0]),
.oclkdelay_calib_done (oclkdelay_calib_done),
.phy_rddata_en_1 (phy_rddata_en_1),
.phy_rddata_en_2 (phy_rddata_en_2),
.phy_rddata_en_3 (phy_rddata_en_3),
.reset_scan (reset_scan),
.wrlvl_final (wrlvl_final),
// Inputs
.clk (clk),
.complex_oclkdelay_calib_start (complex_oclkdelay_calib_start),
.lim_done (lim_done),
.oclkdelay_calib_start (oclkdelay_calib_start),
.phy_rddata_en (phy_rddata_en),
.po_counter_read_val (po_counter_read_val[8:0]),
.po_rdy (po_rdy),
.prech_done (prech_done),
.rst (rst),
.scan_done (scan_done));
mig_7series_v2_3_ddr_phy_ocd_po_cntlr #
(/*AUTOINSTPARAM*/
// Parameters
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.TCQ (TCQ),
.nCK_PER_CLK (nCK_PER_CLK))
u_ocd_po_cntlr
(.cmplx_stg3_final (cmplx_stg3_final[DQS_WIDTH*6-1:0]),
.ocal_scan_win_not_found (ocal_scan_win_not_found),
.simp_stg3_final (simp_stg3_final[DQS_WIDTH*6-1:0]),
/*AUTOINST*/
// Outputs
.ninety_offsets (ninety_offsets[1:0]),
.ocal_num_samples_done_r (ocal_num_samples_done_r),
.ocd2stg2_dec (ocd2stg2_dec),
.ocd2stg2_inc (ocd2stg2_inc),
.ocd2stg3_dec (ocd2stg3_dec),
.ocd2stg3_inc (ocd2stg3_inc),
.ocd_edge_detect_rdy (ocd_edge_detect_rdy),
.ocd_ktap_left (ocd_ktap_left),
.ocd_ktap_right (ocd_ktap_right),
.oclk_center_write_resume (oclk_center_write_resume),
.oclkdelay_center_calib_done (oclkdelay_center_calib_done),
.oclkdelay_center_calib_start (oclkdelay_center_calib_start),
.scan_done (scan_done),
.scanning_right (scanning_right),
.simp_stg3_final_sel (simp_stg3_final_sel[5:0]),
.stg3 (stg3[5:0]),
.taps_set (taps_set),
.use_noise_window (use_noise_window),
// Inputs
.clk (clk),
.complex_oclkdelay_calib_start (complex_oclkdelay_calib_start),
.f2o (f2o),
.f2z (f2z),
.fuzz2oneeighty (fuzz2oneeighty[5:0]),
.fuzz2zero (fuzz2zero[5:0]),
.lim2ocal_stg3_left_lim (lim2ocal_stg3_left_lim[5:0]),
.lim2ocal_stg3_right_lim (lim2ocal_stg3_right_lim[5:0]),
.mmcm_edge_detect_done (mmcm_edge_detect_done),
.mmcm_lbclk_edge_aligned (mmcm_lbclk_edge_aligned),
.o2f (o2f),
.oclkdelay_calib_cnt (oclkdelay_calib_cnt[DQS_CNT_WIDTH:0]),
.oclkdelay_init_val (oclkdelay_init_val[5:0]),
.oneeighty2fuzz (oneeighty2fuzz[5:0]),
.phy_rddata_en_3 (phy_rddata_en_3),
.po_counter_read_val (po_counter_read_val[8:0]),
.po_rdy (po_rdy),
.poc_backup (poc_backup),
.reset_scan (reset_scan),
.rst (rst),
.samp_done (samp_done),
.scan_right (scan_right),
.wl_po_fine_cnt_sel (wl_po_fine_cnt_sel[5:0]),
.z2f (z2f),
.zero2fuzz (zero2fuzz[5:0]));
endmodule
|
module outputs)
wire ktap_at_left_edge; // From u_ocd_mux of mig_7series_v2_3_ddr_phy_ocd_mux.v
wire ktap_at_right_edge; // From u_ocd_mux of mig_7series_v2_3_ddr_phy_ocd_mux.v
wire lim2init_prech_req; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire [5:0] lim2ocal_stg3_left_lim; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire [5:0] lim2ocal_stg3_right_lim;// From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2poc_ktap_right; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2poc_rdy; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2stg2_dec; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2stg2_inc; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2stg3_dec; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim2stg3_inc; // From u_ocd_lim of mig_7series_v2_3_ddr_phy_ocd_lim.v
wire lim_start; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire [1:0] match; // From u_ocd_data of mig_7series_v2_3_ddr_phy_ocd_data.v
wire mmcm_edge_detect_done; // From u_poc of mig_7series_v2_3_poc_top.v
wire mmcm_edge_detect_rdy; // From u_ocd_mux of mig_7series_v2_3_ddr_phy_ocd_mux.v
wire mmcm_lbclk_edge_aligned;// From u_poc of mig_7series_v2_3_poc_top.v
wire [1:0] ninety_offsets; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd2stg2_dec; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd2stg2_inc; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd2stg3_dec; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd2stg3_inc; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd_cntlr2stg2_dec; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire ocd_edge_detect_rdy; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd_ktap_left; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd_ktap_right; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire ocd_prech_req; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire phy_rddata_en_1; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire phy_rddata_en_2; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire phy_rddata_en_3; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire po_rdy; // From u_ocd_mux of mig_7series_v2_3_ddr_phy_ocd_mux.v
wire poc_backup; // From u_poc of mig_7series_v2_3_poc_top.v
wire reset_scan; // From u_ocd_cntlr of mig_7series_v2_3_ddr_phy_ocd_cntlr.v
wire [TAPCNTRWIDTH-1:0] rise_lead_right; // From u_poc of mig_7series_v2_3_poc_top.v
wire [TAPCNTRWIDTH-1:0] rise_trail_right; // From u_poc of mig_7series_v2_3_poc_top.v
wire samp_done; // From u_ocd_samp of mig_7series_v2_3_ddr_phy_ocd_samp.v
wire [1:0] samp_result; // From u_ocd_samp of mig_7series_v2_3_ddr_phy_ocd_samp.v
wire scan_done; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire scan_right; // From u_ocd_edge of mig_7series_v2_3_ddr_phy_ocd_edge.v
wire scanning_right; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire [5:0] simp_stg3_final_sel; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire [5:0] stg3; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire taps_set; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire use_noise_window; // From u_ocd_po_cntlr of mig_7series_v2_3_ddr_phy_ocd_po_cntlr.v
wire [5:0] wl_po_fine_cnt_sel; // From u_ocd_mux of mig_7series_v2_3_ddr_phy_ocd_mux.v
// End of automatics
wire [DQS_WIDTH*6-1:0] simp_stg3_final, cmplx_stg3_final;
wire ocal_scan_win_not_found;
output [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
output [255:0] dbg_phy_oclkdelay_cal;
output [16*DRAM_WIDTH-1:0] dbg_oclkdelay_rd_data;
output oclkdelay_calib_done;
output f2o;
output f2z;
output o2f;
output z2f;
output [5:0] fuzz2oneeighty;
output [5:0] fuzz2zero;
output [5:0] oneeighty2fuzz;
output [5:0] zero2fuzz;
output lim_done;
output [255:0] dbg_ocd_lim;
// Debug signals
assign dbg_phy_oclkdelay_cal[0] = f2o;
assign dbg_phy_oclkdelay_cal[1] = f2z;
assign dbg_phy_oclkdelay_cal[2] = o2f;
assign dbg_phy_oclkdelay_cal[3] = z2f;
assign dbg_phy_oclkdelay_cal[4+:6] = fuzz2oneeighty;
assign dbg_phy_oclkdelay_cal[10+:6] = fuzz2zero;
assign dbg_phy_oclkdelay_cal[16+:6] = oneeighty2fuzz;
assign dbg_phy_oclkdelay_cal[22+:6] = zero2fuzz;
assign dbg_phy_oclkdelay_cal[28+:3] = oclkdelay_calib_cnt;
assign dbg_phy_oclkdelay_cal[31] = oclkdelay_calib_start;
assign dbg_phy_oclkdelay_cal[32] = lim_done;
assign dbg_phy_oclkdelay_cal[33+:6] =lim2ocal_stg3_left_lim ;
assign dbg_phy_oclkdelay_cal[39+:6] = lim2ocal_stg3_right_lim ;
assign dbg_phy_oclkdelay_cal[45+:8] = po_counter_read_val[8:0];
assign dbg_phy_oclkdelay_cal[53+:54] = simp_stg3_final[DQS_WIDTH*6-1:0];
assign dbg_phy_oclkdelay_cal[107] = ocal_scan_win_not_found;
assign dbg_phy_oclkdelay_cal[108] = oclkdelay_center_calib_start;
assign dbg_phy_oclkdelay_cal[109] = oclkdelay_center_calib_done;
assign dbg_phy_oclkdelay_cal[115:110] = stg3[5:0];
mig_7series_v2_3_ddr_phy_ocd_lim #
(/*AUTOINSTPARAM*/
// Parameters
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.TAPCNTRWIDTH (TAPCNTRWIDTH),
.TAPSPERKCLK (TAPSPERKCLK),
.TCQ (TCQ),
.TDQSS_DEGREES (),
.BYPASS_COMPLEX_OCAL (BYPASS_COMPLEX_OCAL)) // Templated
u_ocd_lim
(/*AUTOINST*/
// Outputs
.lim2init_prech_req (lim2init_prech_req),
.lim2init_write_request (lim2init_write_request),
.lim2ocal_stg3_left_lim (lim2ocal_stg3_left_lim[5:0]),
.lim2ocal_stg3_right_lim (lim2ocal_stg3_right_lim[5:0]),
.lim2poc_ktap_right (lim2poc_ktap_right),
.lim2poc_rdy (lim2poc_rdy),
.lim2stg2_dec (lim2stg2_dec),
.lim2stg2_inc (lim2stg2_inc),
.lim2stg3_dec (lim2stg3_dec),
.lim2stg3_inc (lim2stg3_inc),
.lim_done (lim_done),
// Inputs
.clk (clk),
.lim_start (lim_start),
.oclkdelay_calib_done (oclkdelay_calib_done),
.oclkdelay_init_val (oclkdelay_init_val[5:0]),
.po_rdy (po_rdy),
.poc2lim_detect_done (mmcm_edge_detect_done), // Templated
.poc2lim_fall_align_taps_lead ({TAPCNTRWIDTH{1'b0}}), // Templated
.poc2lim_fall_align_taps_trail ({TAPCNTRWIDTH{1'b0}}), // Templated
.poc2lim_rise_align_taps_lead (rise_lead_right), // Templated
.poc2lim_rise_align_taps_trail (rise_trail_right), // Templated
.prech_done (prech_done),
.rst (rst),
.simp_stg3_final_sel (simp_stg3_final_sel[5:0]),
.wl_po_fine_cnt (wl_po_fine_cnt_sel[5:0]),
.oclkdelay_calib_cnt (oclkdelay_calib_cnt[DQS_CNT_WIDTH:0]),
.dbg_ocd_lim (dbg_ocd_lim)); // Templated
/*mig_7series_v2_3_poc_top AUTO_TEMPLATE(
.CCENABLE (0),
.SCANFROMRIGHT (1),
.pd_out (metaQ),); */
mig_7series_v2_3_poc_top #
(/*AUTOINSTPARAM*/
// Parameters
.CCENABLE (0), // Templated
.MMCM_SAMP_WAIT (MMCM_SAMP_WAIT),
.PCT_SAMPS_SOLID (PCT_SAMPS_SOLID),
.POC_USE_METASTABLE_SAMP (POC_USE_METASTABLE_SAMP),
.SAMPCNTRWIDTH (SAMPCNTRWIDTH),
.SAMPLES (SAMPLES),
.SCANFROMRIGHT (1), // Templated
.TAPCNTRWIDTH (TAPCNTRWIDTH),
.TAPSPERKCLK (TAPSPERKCLK),
.TCQ (TCQ))
u_poc
(/*AUTOINST*/
// Outputs
.mmcm_edge_detect_done (mmcm_edge_detect_done),
.mmcm_lbclk_edge_aligned (mmcm_lbclk_edge_aligned),
.poc_backup (poc_backup),
.poc_error (poc_error),
.psen (psen),
.psincdec (psincdec),
.rise_lead_right (rise_lead_right[TAPCNTRWIDTH-1:0]),
.rise_trail_right (rise_trail_right[TAPCNTRWIDTH-1:0]),
// Inputs
.clk (clk),
.ktap_at_left_edge (ktap_at_left_edge),
.ktap_at_right_edge (ktap_at_right_edge),
.mmcm_edge_detect_rdy (mmcm_edge_detect_rdy),
.ninety_offsets (ninety_offsets[1:0]),
.pd_out (metaQ), // Templated
.poc_sample_pd (poc_sample_pd),
.psdone (psdone),
.rst (rst),
.use_noise_window (use_noise_window));
mig_7series_v2_3_ddr_phy_ocd_mux #
(/*AUTOINSTPARAM*/
// Parameters
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.TCQ (TCQ))
u_ocd_mux
(/*AUTOINST*/
// Outputs
.ktap_at_left_edge (ktap_at_left_edge),
.ktap_at_right_edge (ktap_at_right_edge),
.mmcm_edge_detect_rdy (mmcm_edge_detect_rdy),
.oclk_prech_req (oclk_prech_req),
.po_en_stg23 (po_en_stg23),
.po_en_stg3 (po_en_stg3),
.po_rdy (po_rdy),
.po_stg23_incdec (po_stg23_incdec),
.po_stg23_sel (po_stg23_sel),
.po_stg3_incdec (po_stg3_incdec),
.wl_po_fine_cnt_sel (wl_po_fine_cnt_sel[5:0]),
// Inputs
.clk (clk),
.lim2init_prech_req (lim2init_prech_req),
.lim2poc_ktap_right (lim2poc_ktap_right),
.lim2poc_rdy (lim2poc_rdy),
.lim2stg2_dec (lim2stg2_dec),
.lim2stg2_inc (lim2stg2_inc),
.lim2stg3_dec (lim2stg3_dec),
.lim2stg3_inc (lim2stg3_inc),
.ocd2stg2_dec (ocd2stg2_dec),
.ocd2stg2_inc (ocd2stg2_inc),
.ocd2stg3_dec (ocd2stg3_dec),
.ocd2stg3_inc (ocd2stg3_inc),
.ocd_cntlr2stg2_dec (ocd_cntlr2stg2_dec),
.ocd_edge_detect_rdy (ocd_edge_detect_rdy),
.ocd_ktap_left (ocd_ktap_left),
.ocd_ktap_right (ocd_ktap_right),
.ocd_prech_req (ocd_prech_req),
.oclkdelay_calib_cnt (oclkdelay_calib_cnt[DQS_CNT_WIDTH:0]),
.rst (rst),
.wl_po_fine_cnt (wl_po_fine_cnt[6*DQS_WIDTH-1:0]));
mig_7series_v2_3_ddr_phy_ocd_data #
(/*AUTOINSTPARAM*/
// Parameters
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.TCQ (TCQ),
.nCK_PER_CLK (nCK_PER_CLK))
u_ocd_data
(/*AUTOINST*/
// Outputs
.match (match[1:0]),
// Inputs
.clk (clk),
.complex_oclkdelay_calib_start (complex_oclkdelay_calib_start),
.oclkdelay_calib_cnt (oclkdelay_calib_cnt[DQS_CNT_WIDTH:0]),
.phy_rddata (phy_rddata[2*nCK_PER_CLK*DQ_WIDTH-1:0]),
.phy_rddata_en_1 (phy_rddata_en_1),
.prbs_ignore_first_byte (prbs_ignore_first_byte),
.prbs_ignore_last_bytes (prbs_ignore_last_bytes),
.prbs_o (prbs_o[2*nCK_PER_CLK*DQ_WIDTH-1:0]),
.rst (rst));
mig_7series_v2_3_ddr_phy_ocd_samp #
(/*AUTOINSTPARAM*/
// Parameters
.OCAL_SIMPLE_SCAN_SAMPS (OCAL_SIMPLE_SCAN_SAMPS),
.SCAN_PCT_SAMPS_SOLID (SCAN_PCT_SAMPS_SOLID),
.SIM_CAL_OPTION (SIM_CAL_OPTION),
.TCQ (TCQ),
.nCK_PER_CLK (nCK_PER_CLK))
u_ocd_samp
(/*AUTOINST*/
// Outputs
.oclk_calib_resume (oclk_calib_resume),
.rd_victim_sel (rd_victim_sel[2:0]),
.samp_done (samp_done),
.samp_result (samp_result[1:0]),
// Inputs
.clk (clk),
.complex_oclkdelay_calib_start (complex_oclkdelay_calib_start),
.match (match[1:0]),
.ocal_num_samples_inc (ocal_num_samples_inc),
.phy_rddata_en_1 (phy_rddata_en_1),
.reset_scan (reset_scan),
.rst (rst),
.taps_set (taps_set));
mig_7series_v2_3_ddr_phy_ocd_edge #
(/*AUTOINSTPARAM*/
// Parameters
.TCQ (TCQ))
u_ocd_edge
(/*AUTOINST*/
// Outputs
.f2o (f2o),
.f2z (f2z),
.fuzz2oneeighty (fuzz2oneeighty[5:0]),
.fuzz2zero (fuzz2zero[5:0]),
.o2f (o2f),
.oneeighty2fuzz (oneeighty2fuzz[5:0]),
.scan_right (scan_right),
.z2f (z2f),
.zero2fuzz (zero2fuzz[5:0]),
// Inputs
.clk (clk),
.phy_rddata_en_2 (phy_rddata_en_2),
.reset_scan (reset_scan),
.samp_done (samp_done),
.samp_result (samp_result[1:0]),
.scanning_right (scanning_right),
.stg3 (stg3[5:0]));
mig_7series_v2_3_ddr_phy_ocd_cntlr #
(/*AUTOINSTPARAM*/
// Parameters
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.TCQ (TCQ))
u_ocd_cntlr
(/*AUTOINST*/
// Outputs
.complex_oclkdelay_calib_done (complex_oclkdelay_calib_done),
.complex_wrlvl_final (complex_wrlvl_final),
.lim_start (lim_start),
.ocd_cntlr2stg2_dec (ocd_cntlr2stg2_dec),
.ocd_prech_req (ocd_prech_req),
.oclk_init_delay_done (oclk_init_delay_done),
.oclkdelay_calib_cnt (oclkdelay_calib_cnt[DQS_CNT_WIDTH:0]),
.oclkdelay_calib_done (oclkdelay_calib_done),
.phy_rddata_en_1 (phy_rddata_en_1),
.phy_rddata_en_2 (phy_rddata_en_2),
.phy_rddata_en_3 (phy_rddata_en_3),
.reset_scan (reset_scan),
.wrlvl_final (wrlvl_final),
// Inputs
.clk (clk),
.complex_oclkdelay_calib_start (complex_oclkdelay_calib_start),
.lim_done (lim_done),
.oclkdelay_calib_start (oclkdelay_calib_start),
.phy_rddata_en (phy_rddata_en),
.po_counter_read_val (po_counter_read_val[8:0]),
.po_rdy (po_rdy),
.prech_done (prech_done),
.rst (rst),
.scan_done (scan_done));
mig_7series_v2_3_ddr_phy_ocd_po_cntlr #
(/*AUTOINSTPARAM*/
// Parameters
.DQS_CNT_WIDTH (DQS_CNT_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.TCQ (TCQ),
.nCK_PER_CLK (nCK_PER_CLK))
u_ocd_po_cntlr
(.cmplx_stg3_final (cmplx_stg3_final[DQS_WIDTH*6-1:0]),
.ocal_scan_win_not_found (ocal_scan_win_not_found),
.simp_stg3_final (simp_stg3_final[DQS_WIDTH*6-1:0]),
/*AUTOINST*/
// Outputs
.ninety_offsets (ninety_offsets[1:0]),
.ocal_num_samples_done_r (ocal_num_samples_done_r),
.ocd2stg2_dec (ocd2stg2_dec),
.ocd2stg2_inc (ocd2stg2_inc),
.ocd2stg3_dec (ocd2stg3_dec),
.ocd2stg3_inc (ocd2stg3_inc),
.ocd_edge_detect_rdy (ocd_edge_detect_rdy),
.ocd_ktap_left (ocd_ktap_left),
.ocd_ktap_right (ocd_ktap_right),
.oclk_center_write_resume (oclk_center_write_resume),
.oclkdelay_center_calib_done (oclkdelay_center_calib_done),
.oclkdelay_center_calib_start (oclkdelay_center_calib_start),
.scan_done (scan_done),
.scanning_right (scanning_right),
.simp_stg3_final_sel (simp_stg3_final_sel[5:0]),
.stg3 (stg3[5:0]),
.taps_set (taps_set),
.use_noise_window (use_noise_window),
// Inputs
.clk (clk),
.complex_oclkdelay_calib_start (complex_oclkdelay_calib_start),
.f2o (f2o),
.f2z (f2z),
.fuzz2oneeighty (fuzz2oneeighty[5:0]),
.fuzz2zero (fuzz2zero[5:0]),
.lim2ocal_stg3_left_lim (lim2ocal_stg3_left_lim[5:0]),
.lim2ocal_stg3_right_lim (lim2ocal_stg3_right_lim[5:0]),
.mmcm_edge_detect_done (mmcm_edge_detect_done),
.mmcm_lbclk_edge_aligned (mmcm_lbclk_edge_aligned),
.o2f (o2f),
.oclkdelay_calib_cnt (oclkdelay_calib_cnt[DQS_CNT_WIDTH:0]),
.oclkdelay_init_val (oclkdelay_init_val[5:0]),
.oneeighty2fuzz (oneeighty2fuzz[5:0]),
.phy_rddata_en_3 (phy_rddata_en_3),
.po_counter_read_val (po_counter_read_val[8:0]),
.po_rdy (po_rdy),
.poc_backup (poc_backup),
.reset_scan (reset_scan),
.rst (rst),
.samp_done (samp_done),
.scan_right (scan_right),
.wl_po_fine_cnt_sel (wl_po_fine_cnt_sel[5:0]),
.z2f (z2f),
.zero2fuzz (zero2fuzz[5:0]));
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_mux #
(parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
ktap_at_left_edge, ktap_at_right_edge, mmcm_edge_detect_rdy,
po_stg3_incdec, po_en_stg3, po_en_stg23, po_stg23_sel,
po_stg23_incdec, po_rdy, wl_po_fine_cnt_sel, oclk_prech_req,
// Inputs
clk, rst, ocd_ktap_right, ocd_ktap_left, lim2poc_ktap_right,
lim2poc_rdy, ocd_edge_detect_rdy, lim2stg2_inc, lim2stg2_dec,
lim2stg3_inc, lim2stg3_dec, ocd2stg2_inc, ocd2stg2_dec,
ocd_cntlr2stg2_dec, ocd2stg3_inc, ocd2stg3_dec, wl_po_fine_cnt,
oclkdelay_calib_cnt, lim2init_prech_req, ocd_prech_req
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
localparam PO_WAIT = 15;
localparam POW_WIDTH = clogb2(PO_WAIT);
localparam ONE = 1;
localparam TWO = 2;
input clk;
input rst;
input ocd_ktap_right, ocd_ktap_left;
input lim2poc_ktap_right;
output ktap_at_left_edge, ktap_at_right_edge;
assign ktap_at_left_edge = ocd_ktap_left;
assign ktap_at_right_edge = lim2poc_ktap_right || ocd_ktap_right;
input lim2poc_rdy;
input ocd_edge_detect_rdy;
output mmcm_edge_detect_rdy;
assign mmcm_edge_detect_rdy = lim2poc_rdy || ocd_edge_detect_rdy;
// po_stg3_incdec and po_en_stg3 are deprecated and should be removed.
output po_stg3_incdec;
output po_en_stg3;
assign po_stg3_incdec = 1'b0;
assign po_en_stg3 = 1'b0;
reg [1:0] po_setup_ns, po_setup_r;
always @(posedge clk) po_setup_r <= #TCQ po_setup_ns;
input lim2stg2_inc;
input lim2stg2_dec;
input lim2stg3_inc;
input lim2stg3_dec;
input ocd2stg2_inc;
input ocd2stg2_dec;
input ocd_cntlr2stg2_dec;
input ocd2stg3_inc;
input ocd2stg3_dec;
wire setup_po =
lim2stg2_inc || lim2stg2_dec || lim2stg3_inc || lim2stg3_dec ||
ocd2stg2_inc || ocd2stg2_dec || ocd2stg3_inc || ocd2stg3_dec || ocd_cntlr2stg2_dec;
always @(*) begin
po_setup_ns = po_setup_r;
if (rst) po_setup_ns = 2'b00;
else if (setup_po) po_setup_ns = 2'b11;
else if (|po_setup_r) po_setup_ns = po_setup_r - 2'b01;
end
reg po_en_stg23_r;
wire po_en_stg23_ns = ~rst && po_setup_r == 2'b01;
always @(posedge clk) po_en_stg23_r <= #TCQ po_en_stg23_ns;
output po_en_stg23;
assign po_en_stg23 = po_en_stg23_r;
wire sel_stg3 = lim2stg3_inc || lim2stg3_dec || ocd2stg3_inc || ocd2stg3_dec;
reg [POW_WIDTH-1:0] po_wait_r, po_wait_ns;
reg po_stg23_sel_r;
// Reset to zero at the end. Makes adjust stg2 at end of centering
// get the correct value of po_counter_read_val.
wire po_stg23_sel_ns = ~rst && (setup_po
? sel_stg3
? 1'b1
: 1'b0
: po_stg23_sel_r && !(po_wait_r == ONE[POW_WIDTH-1:0]));
always @(posedge clk) po_stg23_sel_r <= #TCQ po_stg23_sel_ns;
output po_stg23_sel;
assign po_stg23_sel = po_stg23_sel_r;
wire po_inc = lim2stg2_inc || lim2stg3_inc || ocd2stg2_inc || ocd2stg3_inc;
reg po_stg23_incdec_r;
wire po_stg23_incdec_ns = ~rst && (setup_po ? po_inc ? 1'b1 : 1'b0 : po_stg23_incdec_r);
always @(posedge clk) po_stg23_incdec_r <= #TCQ po_stg23_incdec_ns;
output po_stg23_incdec;
assign po_stg23_incdec = po_stg23_incdec_r;
always @(posedge clk) po_wait_r <= #TCQ po_wait_ns;
always @(*) begin
po_wait_ns = po_wait_r;
if (rst) po_wait_ns = {POW_WIDTH{1'b0}};
else if (po_en_stg23_r) po_wait_ns = PO_WAIT[POW_WIDTH-1:0] - ONE[POW_WIDTH-1:0];
else if (po_wait_r != {POW_WIDTH{1'b0}}) po_wait_ns = po_wait_r - ONE[POW_WIDTH-1:0];
end
wire po_rdy_ns = ~(setup_po || |po_setup_r || |po_wait_ns);
reg po_rdy_r;
always @(posedge clk) po_rdy_r <= #TCQ po_rdy_ns;
output po_rdy;
assign po_rdy = po_rdy_r;
input [6*DQS_WIDTH-1:0] wl_po_fine_cnt;
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
wire [6*DQS_WIDTH-1:0] wl_po_fine_shifted = wl_po_fine_cnt >> oclkdelay_calib_cnt*6;
output [5:0] wl_po_fine_cnt_sel;
assign wl_po_fine_cnt_sel = wl_po_fine_shifted[5:0];
input lim2init_prech_req;
input ocd_prech_req;
output oclk_prech_req;
assign oclk_prech_req = ocd_prech_req || lim2init_prech_req;
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] - 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] - 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] - 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] - 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] - 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] - 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] - 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] - 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] - 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] - 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_dqs_found_cal #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter nCL = 5, // Read CAS latency
parameter AL = "0",
parameter nCWL = 5, // Write CAS latency
parameter DRAM_TYPE = "DDR3", // Memory I/F type: "DDR3", "DDR2"
parameter RANKS = 1, // # of memory ranks in the system
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter SIM_CAL_OPTION = "NONE", // Performs all calibration steps
parameter NUM_DQSFOUND_CAL = 3, // Number of times to iterate
parameter N_CTL_LANES = 3, // Number of control byte lanes
parameter HIGHEST_LANE = 12, // Sum of byte lanes (Data + Ctrl)
parameter HIGHEST_BANK = 3, // Sum of I/O Banks
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf
)
(
input clk,
input rst,
input dqsfound_retry,
// From phy_init
input pi_dqs_found_start,
input detect_pi_found_dqs,
input prech_done,
// DQSFOUND per Phaser_IN
input [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal,
// To phy_init
output [5:0] rd_data_offset_0,
output [5:0] rd_data_offset_1,
output [5:0] rd_data_offset_2,
output pi_dqs_found_rank_done,
output pi_dqs_found_done,
output reg pi_dqs_found_err,
output [6*RANKS-1:0] rd_data_offset_ranks_0,
output [6*RANKS-1:0] rd_data_offset_ranks_1,
output [6*RANKS-1:0] rd_data_offset_ranks_2,
output reg dqsfound_retry_done,
output reg dqs_found_prech_req,
//To MC
output [6*RANKS-1:0] rd_data_offset_ranks_mc_0,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_1,
output [6*RANKS-1:0] rd_data_offset_ranks_mc_2,
input [8:0] po_counter_read_val,
output rd_data_offset_cal_done,
output fine_adjust_done,
output [N_CTL_LANES-1:0] fine_adjust_lane_cnt,
output reg ck_po_stg2_f_indec,
output reg ck_po_stg2_f_en,
output [255:0] dbg_dqs_found_cal
);
// For non-zero AL values
localparam nAL = (AL == "CL-1") ? nCL - 1 : 0;
// Adding the register dimm latency to write latency
localparam CWL_M = (REG_CTRL == "ON") ? nCWL + nAL + 1 : nCWL + nAL;
// Added to reduce simulation time
localparam LATENCY_FACTOR = 13;
localparam NUM_READS = (SIM_CAL_OPTION == "NONE") ? 7 : 1;
localparam [19:0] DATA_PRESENT = {(DATA_CTL_B4[3] & BYTE_LANES_B4[3]),
(DATA_CTL_B4[2] & BYTE_LANES_B4[2]),
(DATA_CTL_B4[1] & BYTE_LANES_B4[1]),
(DATA_CTL_B4[0] & BYTE_LANES_B4[0]),
(DATA_CTL_B3[3] & BYTE_LANES_B3[3]),
(DATA_CTL_B3[2] & BYTE_LANES_B3[2]),
(DATA_CTL_B3[1] & BYTE_LANES_B3[1]),
(DATA_CTL_B3[0] & BYTE_LANES_B3[0]),
(DATA_CTL_B2[3] & BYTE_LANES_B2[3]),
(DATA_CTL_B2[2] & BYTE_LANES_B2[2]),
(DATA_CTL_B2[1] & BYTE_LANES_B2[1]),
(DATA_CTL_B2[0] & BYTE_LANES_B2[0]),
(DATA_CTL_B1[3] & BYTE_LANES_B1[3]),
(DATA_CTL_B1[2] & BYTE_LANES_B1[2]),
(DATA_CTL_B1[1] & BYTE_LANES_B1[1]),
(DATA_CTL_B1[0] & BYTE_LANES_B1[0]),
(DATA_CTL_B0[3] & BYTE_LANES_B0[3]),
(DATA_CTL_B0[2] & BYTE_LANES_B0[2]),
(DATA_CTL_B0[1] & BYTE_LANES_B0[1]),
(DATA_CTL_B0[0] & BYTE_LANES_B0[0])};
localparam FINE_ADJ_IDLE = 4'h0;
localparam RST_POSTWAIT = 4'h1;
localparam RST_POSTWAIT1 = 4'h2;
localparam RST_WAIT = 4'h3;
localparam FINE_ADJ_INIT = 4'h4;
localparam FINE_INC = 4'h5;
localparam FINE_INC_WAIT = 4'h6;
localparam FINE_INC_PREWAIT = 4'h7;
localparam DETECT_PREWAIT = 4'h8;
localparam DETECT_DQSFOUND = 4'h9;
localparam PRECH_WAIT = 4'hA;
localparam FINE_DEC = 4'hB;
localparam FINE_DEC_WAIT = 4'hC;
localparam FINE_DEC_PREWAIT = 4'hD;
localparam FINAL_WAIT = 4'hE;
localparam FINE_ADJ_DONE = 4'hF;
integer k,l,m,n,p,q,r,s;
reg dqs_found_start_r;
reg [6*HIGHEST_BANK-1:0] rd_byte_data_offset[0:RANKS-1];
reg rank_done_r;
reg rank_done_r1;
reg dqs_found_done_r;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r1;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r2;
(* ASYNC_REG = "TRUE" *) reg [HIGHEST_LANE-1:0] pi_dqs_found_lanes_r3;
reg init_dqsfound_done_r;
reg init_dqsfound_done_r1;
reg init_dqsfound_done_r2;
reg init_dqsfound_done_r3;
reg init_dqsfound_done_r4;
reg init_dqsfound_done_r5;
reg [1:0] rnk_cnt_r;
reg [2:0 ] final_do_index[0:RANKS-1];
reg [5:0 ] final_do_max[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset[0:RANKS-1];
reg [6*HIGHEST_BANK-1:0] final_data_offset_mc[0:RANKS-1];
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r;
reg [HIGHEST_BANK-1:0] pi_rst_stg1_cal_r1;
reg [10*HIGHEST_BANK-1:0] retry_cnt;
reg dqsfound_retry_r1;
wire [4*HIGHEST_BANK-1:0] pi_dqs_found_lanes_int;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_all_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank;
reg [HIGHEST_BANK-1:0] pi_dqs_found_any_bank_r;
reg [HIGHEST_BANK-1:0] pi_dqs_found_err_r;
// CK/Control byte lanes fine adjust stage
reg fine_adjust;
reg [N_CTL_LANES-1:0] ctl_lane_cnt;
reg [3:0] fine_adj_state_r;
reg fine_adjust_done_r;
reg rst_dqs_find;
reg rst_dqs_find_r1;
reg rst_dqs_find_r2;
reg [5:0] init_dec_cnt;
reg [5:0] dec_cnt;
reg [5:0] inc_cnt;
reg final_dec_done;
reg init_dec_done;
reg first_fail_detect;
reg second_fail_detect;
reg [5:0] first_fail_taps;
reg [5:0] second_fail_taps;
reg [5:0] stable_pass_cnt;
reg [3:0] detect_rd_cnt;
//***************************************************************************
// Debug signals
//
//***************************************************************************
assign dbg_dqs_found_cal[5:0] = first_fail_taps;
assign dbg_dqs_found_cal[11:6] = second_fail_taps;
assign dbg_dqs_found_cal[12] = first_fail_detect;
assign dbg_dqs_found_cal[13] = second_fail_detect;
assign dbg_dqs_found_cal[14] = fine_adjust_done_r;
assign pi_dqs_found_rank_done = rank_done_r;
assign pi_dqs_found_done = dqs_found_done_r;
generate
genvar rnk_cnt;
if (HIGHEST_BANK == 3) begin // Three Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][17:12];
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][17:12];
end
end else if (HIGHEST_BANK == 2) begin // Two Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][11:6];
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][11:6];
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end else begin // Single Bank Interface
for (rnk_cnt = 0; rnk_cnt < RANKS; rnk_cnt = rnk_cnt + 1) begin: rnk_loop
assign rd_data_offset_ranks_0[6*rnk_cnt+:6] = final_data_offset[rnk_cnt][5:0];
assign rd_data_offset_ranks_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_2[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_0[6*rnk_cnt+:6] = final_data_offset_mc[rnk_cnt][5:0];
assign rd_data_offset_ranks_mc_1[6*rnk_cnt+:6] = 'd0;
assign rd_data_offset_ranks_mc_2[6*rnk_cnt+:6] = 'd0;
end
end
endgenerate
// final_data_offset is used during write calibration and during
// normal operation. One rd_data_offset value per rank for entire
// interface
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][12+:6] :
final_data_offset[rnk_cnt_r][12+:6];
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][6+:6] :
final_data_offset[rnk_cnt_r][6+:6];
assign rd_data_offset_2 = 'd0;
end else begin
assign rd_data_offset_0 = (~init_dqsfound_done_r2) ? rd_byte_data_offset[rnk_cnt_r][0+:6] :
final_data_offset[rnk_cnt_r][0+:6];
assign rd_data_offset_1 = 'd0;
assign rd_data_offset_2 = 'd0;
end
endgenerate
assign rd_data_offset_cal_done = init_dqsfound_done_r;
assign fine_adjust_lane_cnt = ctl_lane_cnt;
//**************************************************************************
// DQSFOUND all and any generation
// pi_dqs_found_all_bank[x] asserted when all Phaser_INs in Bankx are
// asserted
// pi_dqs_found_any_bank[x] asserted when at least one Phaser_IN in Bankx
// is asserted
//**************************************************************************
generate
if ((HIGHEST_LANE == 4) || (HIGHEST_LANE == 8) || (HIGHEST_LANE == 12))
assign pi_dqs_found_lanes_int = pi_dqs_found_lanes_r3;
else if ((HIGHEST_LANE == 7) || (HIGHEST_LANE == 11))
assign pi_dqs_found_lanes_int = {1'b0, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 6) || (HIGHEST_LANE == 10))
assign pi_dqs_found_lanes_int = {2'b00, pi_dqs_found_lanes_r3};
else if ((HIGHEST_LANE == 5) || (HIGHEST_LANE == 9))
assign pi_dqs_found_lanes_int = {3'b000, pi_dqs_found_lanes_r3};
endgenerate
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < HIGHEST_BANK; k = k + 1) begin: rst_pi_dqs_found
pi_dqs_found_all_bank[k] <= #TCQ 'b0;
pi_dqs_found_any_bank[k] <= #TCQ 'b0;
end
end else if (pi_dqs_found_start) begin
for (p = 0; p < HIGHEST_BANK; p = p +1) begin: assign_pi_dqs_found
pi_dqs_found_all_bank[p] <= #TCQ (!DATA_PRESENT[4*p+0] | pi_dqs_found_lanes_int[4*p+0]) &
(!DATA_PRESENT[4*p+1] | pi_dqs_found_lanes_int[4*p+1]) &
(!DATA_PRESENT[4*p+2] | pi_dqs_found_lanes_int[4*p+2]) &
(!DATA_PRESENT[4*p+3] | pi_dqs_found_lanes_int[4*p+3]);
pi_dqs_found_any_bank[p] <= #TCQ (DATA_PRESENT[4*p+0] & pi_dqs_found_lanes_int[4*p+0]) |
(DATA_PRESENT[4*p+1] & pi_dqs_found_lanes_int[4*p+1]) |
(DATA_PRESENT[4*p+2] & pi_dqs_found_lanes_int[4*p+2]) |
(DATA_PRESENT[4*p+3] & pi_dqs_found_lanes_int[4*p+3]);
end
end
end
always @(posedge clk) begin
pi_dqs_found_all_bank_r <= #TCQ pi_dqs_found_all_bank;
pi_dqs_found_any_bank_r <= #TCQ pi_dqs_found_any_bank;
end
//*****************************************************************************
// Counter to increase number of 4 back-to-back reads per rd_data_offset and
// per CK/A/C tap value
//*****************************************************************************
always @(posedge clk) begin
if (rst || (detect_rd_cnt == 'd0))
detect_rd_cnt <= #TCQ NUM_READS;
else if (detect_pi_found_dqs && (detect_rd_cnt > 'd0))
detect_rd_cnt <= #TCQ detect_rd_cnt - 1;
end
//**************************************************************************
// Adjust Phaser_Out stage 2 taps on CK/Address/Command/Controls
//
//**************************************************************************
assign fine_adjust_done = fine_adjust_done_r;
always @(posedge clk) begin
rst_dqs_find_r1 <= #TCQ rst_dqs_find;
rst_dqs_find_r2 <= #TCQ rst_dqs_find_r1;
end
always @(posedge clk) begin
if(rst)begin
fine_adjust <= #TCQ 1'b0;
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ FINE_ADJ_IDLE;
fine_adjust_done_r <= #TCQ 1'b0;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b0;
init_dec_cnt <= #TCQ 'd31;
dec_cnt <= #TCQ 'd0;
inc_cnt <= #TCQ 'd0;
init_dec_done <= #TCQ 1'b0;
final_dec_done <= #TCQ 1'b0;
first_fail_detect <= #TCQ 1'b0;
second_fail_detect <= #TCQ 1'b0;
first_fail_taps <= #TCQ 'd0;
second_fail_taps <= #TCQ 'd0;
stable_pass_cnt <= #TCQ 'd0;
dqs_found_prech_req<= #TCQ 1'b0;
end else begin
case (fine_adj_state_r)
FINE_ADJ_IDLE: begin
if (init_dqsfound_done_r5) begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
rst_dqs_find <= #TCQ 1'b0;
end else begin
fine_adjust <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
rst_dqs_find <= #TCQ 1'b1;
end
end
end
RST_WAIT: begin
if (~(|pi_dqs_found_any_bank) && rst_dqs_find_r2) begin
rst_dqs_find <= #TCQ 1'b0;
if (|init_dec_cnt)
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else if (final_dec_done)
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
else
fine_adj_state_r <= #TCQ RST_POSTWAIT;
end
end
RST_POSTWAIT: begin
fine_adj_state_r <= #TCQ RST_POSTWAIT1;
end
RST_POSTWAIT1: begin
fine_adj_state_r <= #TCQ FINE_ADJ_INIT;
end
FINE_ADJ_INIT: begin
//if (detect_pi_found_dqs && (inc_cnt < 'd63))
fine_adj_state_r <= #TCQ FINE_INC;
end
FINE_INC: begin
fine_adj_state_r <= #TCQ FINE_INC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b1;
ck_po_stg2_f_en <= #TCQ 1'b1;
if (ctl_lane_cnt == N_CTL_LANES-1)
inc_cnt <= #TCQ inc_cnt + 1;
end
FINE_INC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_INC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
end
FINE_INC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_INC;
end
DETECT_PREWAIT: begin
if (detect_pi_found_dqs && (detect_rd_cnt == 'd1))
fine_adj_state_r <= #TCQ DETECT_DQSFOUND;
else
fine_adj_state_r <= #TCQ DETECT_PREWAIT;
end
DETECT_DQSFOUND: begin
if (detect_pi_found_dqs && ~(&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ 'd0;
if (~first_fail_detect && (inc_cnt == 'd63)) begin
// First failing tap detected at 63 taps
// then decrement to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else if (~first_fail_detect && (inc_cnt > 'd30) && (stable_pass_cnt > 'd29)) begin
// First failing tap detected at greater than 30 taps
// then stop looking for second edge and decrement
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ (inc_cnt>>1) + 1;
end else if (~first_fail_detect || (first_fail_detect && (stable_pass_cnt < 'd30) && (inc_cnt <= 'd32))) begin
// First failing tap detected, continue incrementing
// until either second failing tap detected or 63
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt > 'd32) && (inc_cnt < 'd63) && (stable_pass_cnt < 'd30)) begin
// Consecutive 30 taps of passing region was not found
// continue incrementing
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
rst_dqs_find <= #TCQ 1'b1;
if ((inc_cnt == 'd36) || (inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else
fine_adj_state_r <= #TCQ RST_WAIT;
end else if (first_fail_detect && (inc_cnt == 'd63)) begin
if (stable_pass_cnt < 'd30) begin
// Consecutive 30 taps of passing region was not found
// from tap 0 to 63 so decrement back to 31
first_fail_detect <= #TCQ 1'b1;
first_fail_taps <= #TCQ inc_cnt;
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ 'd32;
end else begin
// Consecutive 30 taps of passing region was found
// between first_fail_taps and 63
fine_adj_state_r <= #TCQ FINE_DEC;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end else begin
// Second failing tap detected, decrement to center of
// failing taps
second_fail_detect <= #TCQ 1'b1;
second_fail_taps <= #TCQ inc_cnt;
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
fine_adj_state_r <= #TCQ FINE_DEC;
end
end else if (detect_pi_found_dqs && (&pi_dqs_found_all_bank)) begin
stable_pass_cnt <= #TCQ stable_pass_cnt + 1;
if ((inc_cnt == 'd12) || (inc_cnt == 'd24) || (inc_cnt == 'd36) ||
(inc_cnt == 'd48) || (inc_cnt == 'd60)) begin
dqs_found_prech_req <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ PRECH_WAIT;
end else if (inc_cnt < 'd63) begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end else begin
fine_adj_state_r <= #TCQ FINE_DEC;
if (~first_fail_detect || (first_fail_taps > 'd33))
// No failing taps detected, decrement by 31
dec_cnt <= #TCQ 'd32;
//else if (first_fail_detect && (stable_pass_cnt > 'd28))
// // First failing tap detected between 0 and 34
// // decrement midpoint between 63 and failing tap
// dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
else
// First failing tap detected
// decrement to midpoint between 63 and failing tap
dec_cnt <= #TCQ ((inc_cnt - first_fail_taps)>>1);
end
end
end
PRECH_WAIT: begin
if (prech_done) begin
dqs_found_prech_req <= #TCQ 1'b0;
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
end
FINE_DEC: begin
fine_adj_state_r <= #TCQ FINE_DEC_WAIT;
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b1;
if ((ctl_lane_cnt == N_CTL_LANES-1) && (init_dec_cnt > 'd0))
init_dec_cnt <= #TCQ init_dec_cnt - 1;
else if ((ctl_lane_cnt == N_CTL_LANES-1) && (dec_cnt > 'd0))
dec_cnt <= #TCQ dec_cnt - 1;
end
FINE_DEC_WAIT: begin
ck_po_stg2_f_indec <= #TCQ 1'b0;
ck_po_stg2_f_en <= #TCQ 1'b0;
if (ctl_lane_cnt != N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ ctl_lane_cnt + 1;
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
end else if (ctl_lane_cnt == N_CTL_LANES-1) begin
ctl_lane_cnt <= #TCQ 'd0;
if ((dec_cnt > 'd0) || (init_dec_cnt > 'd0))
fine_adj_state_r <= #TCQ FINE_DEC_PREWAIT;
else begin
fine_adj_state_r <= #TCQ FINAL_WAIT;
if ((init_dec_cnt == 'd0) && ~init_dec_done)
init_dec_done <= #TCQ 1'b1;
else
final_dec_done <= #TCQ 1'b1;
end
end
end
FINE_DEC_PREWAIT: begin
fine_adj_state_r <= #TCQ FINE_DEC;
end
FINAL_WAIT: begin
rst_dqs_find <= #TCQ 1'b1;
fine_adj_state_r <= #TCQ RST_WAIT;
end
FINE_ADJ_DONE: begin
if (&pi_dqs_found_all_bank) begin
fine_adjust_done_r <= #TCQ 1'b1;
rst_dqs_find <= #TCQ 1'b0;
fine_adj_state_r <= #TCQ FINE_ADJ_DONE;
end
end
endcase
end
end
//*****************************************************************************
always@(posedge clk)
dqs_found_start_r <= #TCQ pi_dqs_found_start;
always @(posedge clk) begin
if (rst)
rnk_cnt_r <= #TCQ 2'b00;
else if (init_dqsfound_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r;
else if (rank_done_r)
rnk_cnt_r <= #TCQ rnk_cnt_r + 1;
end
//*****************************************************************
// Read data_offset calibration done signal
//*****************************************************************
always @(posedge clk) begin
if (rst || (|pi_rst_stg1_cal_r))
init_dqsfound_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank) begin
if (rnk_cnt_r == RANKS-1)
init_dqsfound_done_r <= #TCQ 1'b1;
else
init_dqsfound_done_r <= #TCQ 1'b0;
end
end
always @(posedge clk) begin
if (rst ||
(init_dqsfound_done_r && (rnk_cnt_r == RANKS-1)))
rank_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && ~(&pi_dqs_found_all_bank_r))
rank_done_r <= #TCQ 1'b1;
else
rank_done_r <= #TCQ 1'b0;
end
always @(posedge clk) begin
pi_dqs_found_lanes_r1 <= #TCQ pi_dqs_found_lanes;
pi_dqs_found_lanes_r2 <= #TCQ pi_dqs_found_lanes_r1;
pi_dqs_found_lanes_r3 <= #TCQ pi_dqs_found_lanes_r2;
init_dqsfound_done_r1 <= #TCQ init_dqsfound_done_r;
init_dqsfound_done_r2 <= #TCQ init_dqsfound_done_r1;
init_dqsfound_done_r3 <= #TCQ init_dqsfound_done_r2;
init_dqsfound_done_r4 <= #TCQ init_dqsfound_done_r3;
init_dqsfound_done_r5 <= #TCQ init_dqsfound_done_r4;
rank_done_r1 <= #TCQ rank_done_r;
dqsfound_retry_r1 <= #TCQ dqsfound_retry;
end
always @(posedge clk) begin
if (rst)
dqs_found_done_r <= #TCQ 1'b0;
else if (&pi_dqs_found_all_bank && (rnk_cnt_r == RANKS-1) && init_dqsfound_done_r1 &&
(fine_adj_state_r == FINE_ADJ_DONE))
dqs_found_done_r <= #TCQ 1'b1;
else
dqs_found_done_r <= #TCQ 1'b0;
end
generate
if (HIGHEST_BANK == 3) begin // Three I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[2] || fine_adjust)
pi_rst_stg1_cal_r[2] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[2]) ||
(pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2]) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[2] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[2] && ~pi_dqs_found_all_bank[2])
pi_rst_stg1_cal_r1[2] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[20+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[2])
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10] + 1;
else
retry_cnt[20+:10] <= #TCQ retry_cnt[20+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[2] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[2] && (retry_cnt[20+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[2] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: three_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: three_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (s = 0; s < RANKS; s = s + 1) begin: three_bank2_rst_loop
rd_byte_data_offset[s][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][12+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][12+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[2] &&
//(rd_byte_data_offset[rnk_cnt_r][12+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][12+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][12+:6] - 1;
end
//*****************************************************************************
// Two I/O Bank Interface
//*****************************************************************************
end else if (HIGHEST_BANK == 2) begin // Two I/O Bank interface
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[1] || fine_adjust)
pi_rst_stg1_cal_r[1] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[1]) ||
(pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1]) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[1] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[1] && ~pi_dqs_found_all_bank[1])
pi_rst_stg1_cal_r1[1] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[10+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[1])
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10] + 1;
else
retry_cnt[10+:10] <= #TCQ retry_cnt[10+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[1] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[1] && (retry_cnt[10+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[1] <= #TCQ 1'b1;
end
// Read data offset value for all DQS in a Bank
always @(posedge clk) begin
if (rst) begin
for (q = 0; q < RANKS; q = q + 1) begin: two_bank0_rst_loop
rd_byte_data_offset[q][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][0+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r][0+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][0+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][0+:6] - 1;
end
always @(posedge clk) begin
if (rst) begin
for (r = 0; r < RANKS; r = r + 1) begin: two_bank1_rst_loop
rd_byte_data_offset[r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r][6+:6] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r][6+:6] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[1] &&
//(rd_byte_data_offset[rnk_cnt_r][6+:6] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r][6+:6]
<= #TCQ rd_byte_data_offset[rnk_cnt_r][6+:6] - 1;
end
//*****************************************************************************
// One I/O Bank Interface
//*****************************************************************************
end else begin // One I/O Bank Interface
// Read data offset value for all DQS in Bank0
always @(posedge clk) begin
if (rst) begin
for (l = 0; l < RANKS; l = l + 1) begin: bank_rst_loop
rd_byte_data_offset[l] <= #TCQ nCL + nAL + LATENCY_FACTOR;
end
end else if ((rank_done_r1 && ~init_dqsfound_done_r) ||
(rd_byte_data_offset[rnk_cnt_r] < (nCL + nAL - 1)))
rd_byte_data_offset[rnk_cnt_r] <= #TCQ nCL + nAL + LATENCY_FACTOR;
else if (dqs_found_start_r && ~pi_dqs_found_all_bank[0] &&
//(rd_byte_data_offset[rnk_cnt_r] > (nCL + nAL -1)) &&
(detect_pi_found_dqs && (detect_rd_cnt == 'd1)) && ~init_dqsfound_done_r && ~fine_adjust)
rd_byte_data_offset[rnk_cnt_r]
<= #TCQ rd_byte_data_offset[rnk_cnt_r] - 1;
end
// Reset read data offset calibration in all DQS Phaser_INs
// in a Bank after the read data offset value for a rank is determined
// or if within a Bank DQSFOUND is not asserted for all DQSs
always @(posedge clk) begin
if (rst || pi_rst_stg1_cal_r1[0] || fine_adjust)
pi_rst_stg1_cal_r[0] <= #TCQ 1'b0;
else if ((pi_dqs_found_start && ~dqs_found_start_r) ||
//(dqsfound_retry[0]) ||
(pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0]) ||
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_rst_stg1_cal_r[0] <= #TCQ 1'b1;
end
always @(posedge clk) begin
if (rst || fine_adjust)
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
else if (pi_rst_stg1_cal_r[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b1;
else if (~pi_dqs_found_any_bank_r[0] && ~pi_dqs_found_all_bank[0])
pi_rst_stg1_cal_r1[0] <= #TCQ 1'b0;
end
//*****************************************************************************
// Retry counter to track number of DQSFOUND retries
//*****************************************************************************
always @(posedge clk) begin
if (rst || rank_done_r)
retry_cnt[0+:10] <= #TCQ 'b0;
else if ((rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)) &&
~pi_dqs_found_all_bank[0])
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10] + 1;
else
retry_cnt[0+:10] <= #TCQ retry_cnt[0+:10];
end
// Error generation in case pi_dqs_found_all_bank
// is not asserted even with 3 dqfound retries
always @(posedge clk) begin
if (rst)
pi_dqs_found_err_r[0] <= #TCQ 1'b0;
else if (~pi_dqs_found_all_bank[0] && (retry_cnt[0+:10] == NUM_DQSFOUND_CAL) &&
(rd_byte_data_offset[rnk_cnt_r][0+:6] < (nCL + nAL - 1)))
pi_dqs_found_err_r[0] <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk) begin
if (rst)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b0}};
else if (rst_dqs_find)
pi_rst_stg1_cal <= #TCQ {HIGHEST_BANK{1'b1}};
else
pi_rst_stg1_cal <= #TCQ pi_rst_stg1_cal_r;
end
// Final read data offset value to be used during write calibration and
// normal operation
generate
genvar i;
genvar j;
for (i = 0; i < RANKS; i = i + 1) begin: rank_final_loop
reg [5:0] final_do_cand [RANKS-1:0];
// combinatorially select the candidate offset for the bank
// indexed by final_do_index
if (HIGHEST_BANK == 3) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = final_data_offset[i][17:12];
default: final_do_cand[i] = 'd0;
endcase
end
end else if (HIGHEST_BANK == 2) begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = final_data_offset[i][11:6];
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end else begin
always @(*) begin
case (final_do_index[i])
3'b000: final_do_cand[i] = final_data_offset[i][5:0];
3'b001: final_do_cand[i] = 'd0;
3'b010: final_do_cand[i] = 'd0;
default: final_do_cand[i] = 'd0;
endcase
end
end
always @(posedge clk) begin
if (rst)
final_do_max[i] <= #TCQ 0;
else begin
final_do_max[i] <= #TCQ final_do_max[i]; // default
case (final_do_index[i])
3'b000: if ( | DATA_PRESENT[3:0])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b001: if ( | DATA_PRESENT[7:4])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
3'b010: if ( | DATA_PRESENT[11:8])
if (final_do_max[i] < final_do_cand[i])
if (CWL_M % 2) // odd latency CAS slot 1
final_do_max[i] <= #TCQ final_do_cand[i] - 1;
else
final_do_max[i] <= #TCQ final_do_cand[i];
default:
final_do_max[i] <= #TCQ final_do_max[i];
endcase
end
end
always @(posedge clk)
if (rst) begin
final_do_index[i] <= #TCQ 0;
end
else begin
final_do_index[i] <= #TCQ final_do_index[i] + 1;
end
for (j = 0; j < HIGHEST_BANK; j = j + 1) begin: bank_final_loop
always @(posedge clk) begin
if (rst) begin
final_data_offset[i][6*j+:6] <= #TCQ 'b0;
end
else begin
//if (dqsfound_retry[j])
// final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
//else
if (init_dqsfound_done_r && ~init_dqsfound_done_r1) begin
if ( DATA_PRESENT [ j*4+:4] != 0) begin // has a data lane
final_data_offset[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
if (CWL_M % 2) // odd latency CAS slot 1
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6] - 1;
else // even latency CAS slot 0
final_data_offset_mc[i][6*j+:6] <= #TCQ rd_byte_data_offset[i][6*j+:6];
end
end
else if (init_dqsfound_done_r5 ) begin
if ( DATA_PRESENT [ j*4+:4] == 0) begin // all control lanes
final_data_offset[i][6*j+:6] <= #TCQ final_do_max[i];
final_data_offset_mc[i][6*j+:6] <= #TCQ final_do_max[i];
end
end
end
end
end
end
endgenerate
// Error generation in case pi_found_dqs signal from Phaser_IN
// is not asserted when a common rddata_offset value is used
always @(posedge clk) begin
pi_dqs_found_err <= #TCQ |pi_dqs_found_err_r;
end
endmodule
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.