module_content
stringlengths 18
1.05M
|
---|
module mem_window (
clk,
reset,
// Memory slave port
s1_address,
s1_read,
s1_readdata,
s1_readdatavalid,
s1_write,
s1_writedata,
s1_burstcount,
s1_byteenable,
s1_waitrequest,
// Configuration register slave port
cra_write,
cra_writedata,
cra_byteenable,
// Bridged master port to memory
m1_address,
m1_read,
m1_readdata,
m1_readdatavalid,
m1_write,
m1_writedata,
m1_burstcount,
m1_byteenable,
m1_waitrequest
);
parameter PAGE_ADDRESS_WIDTH = 20;
parameter MEM_ADDRESS_WIDTH = 32;
parameter NUM_BYTES = 32;
parameter BURSTCOUNT_WIDTH = 1;
parameter CRA_BITWIDTH = 32;
localparam ADDRESS_SHIFT = $clog2(NUM_BYTES);
localparam PAGE_ID_WIDTH = MEM_ADDRESS_WIDTH - PAGE_ADDRESS_WIDTH - ADDRESS_SHIFT;
localparam DATA_WIDTH = NUM_BYTES * 8;
input clk;
input reset;
// Memory slave port
input [PAGE_ADDRESS_WIDTH-1:0] s1_address;
input s1_read;
output [DATA_WIDTH-1:0] s1_readdata;
output s1_readdatavalid;
input s1_write;
input [DATA_WIDTH-1:0] s1_writedata;
input [BURSTCOUNT_WIDTH-1:0] s1_burstcount;
input [NUM_BYTES-1:0] s1_byteenable;
output s1_waitrequest;
// Bridged master port to memory
output [MEM_ADDRESS_WIDTH-1:0] m1_address;
output m1_read;
input [DATA_WIDTH-1:0] m1_readdata;
input m1_readdatavalid;
output m1_write;
output [DATA_WIDTH-1:0] m1_writedata;
output [BURSTCOUNT_WIDTH-1:0] m1_burstcount;
output [NUM_BYTES-1:0] m1_byteenable;
input m1_waitrequest;
// CRA slave
input cra_write;
input [CRA_BITWIDTH-1:0] cra_writedata;
input [CRA_BITWIDTH/8-1:0] cra_byteenable;
// Architecture
// CRA slave allows the master to change the active page
reg [PAGE_ID_WIDTH-1:0] page_id;
reg [CRA_BITWIDTH-1:0] cra_writemask;
integer i;
always@*
for (i=0; i<CRA_BITWIDTH; i=i+1)
cra_writemask[i] = cra_byteenable[i/8] & cra_write;
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
page_id <= {PAGE_ID_WIDTH{1'b0}};
else
page_id <= (cra_writedata & cra_writemask) | (page_id & ~cra_writemask);
end
// The s1 port bridges to the m1 port - with the page ID tacked on to the address
assign m1_address = {page_id, s1_address, {ADDRESS_SHIFT{1'b0}}};
assign m1_read = s1_read;
assign s1_readdata = m1_readdata;
assign s1_readdatavalid = m1_readdatavalid;
assign m1_write = s1_write;
assign m1_writedata = s1_writedata;
assign m1_burstcount = s1_burstcount;
assign m1_byteenable = s1_byteenable;
assign s1_waitrequest = m1_waitrequest;
endmodule
|
module mem_window (
clk,
reset,
// Memory slave port
s1_address,
s1_read,
s1_readdata,
s1_readdatavalid,
s1_write,
s1_writedata,
s1_burstcount,
s1_byteenable,
s1_waitrequest,
// Configuration register slave port
cra_write,
cra_writedata,
cra_byteenable,
// Bridged master port to memory
m1_address,
m1_read,
m1_readdata,
m1_readdatavalid,
m1_write,
m1_writedata,
m1_burstcount,
m1_byteenable,
m1_waitrequest
);
parameter PAGE_ADDRESS_WIDTH = 20;
parameter MEM_ADDRESS_WIDTH = 32;
parameter NUM_BYTES = 32;
parameter BURSTCOUNT_WIDTH = 1;
parameter CRA_BITWIDTH = 32;
localparam ADDRESS_SHIFT = $clog2(NUM_BYTES);
localparam PAGE_ID_WIDTH = MEM_ADDRESS_WIDTH - PAGE_ADDRESS_WIDTH - ADDRESS_SHIFT;
localparam DATA_WIDTH = NUM_BYTES * 8;
input clk;
input reset;
// Memory slave port
input [PAGE_ADDRESS_WIDTH-1:0] s1_address;
input s1_read;
output [DATA_WIDTH-1:0] s1_readdata;
output s1_readdatavalid;
input s1_write;
input [DATA_WIDTH-1:0] s1_writedata;
input [BURSTCOUNT_WIDTH-1:0] s1_burstcount;
input [NUM_BYTES-1:0] s1_byteenable;
output s1_waitrequest;
// Bridged master port to memory
output [MEM_ADDRESS_WIDTH-1:0] m1_address;
output m1_read;
input [DATA_WIDTH-1:0] m1_readdata;
input m1_readdatavalid;
output m1_write;
output [DATA_WIDTH-1:0] m1_writedata;
output [BURSTCOUNT_WIDTH-1:0] m1_burstcount;
output [NUM_BYTES-1:0] m1_byteenable;
input m1_waitrequest;
// CRA slave
input cra_write;
input [CRA_BITWIDTH-1:0] cra_writedata;
input [CRA_BITWIDTH/8-1:0] cra_byteenable;
// Architecture
// CRA slave allows the master to change the active page
reg [PAGE_ID_WIDTH-1:0] page_id;
reg [CRA_BITWIDTH-1:0] cra_writemask;
integer i;
always@*
for (i=0; i<CRA_BITWIDTH; i=i+1)
cra_writemask[i] = cra_byteenable[i/8] & cra_write;
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
page_id <= {PAGE_ID_WIDTH{1'b0}};
else
page_id <= (cra_writedata & cra_writemask) | (page_id & ~cra_writemask);
end
// The s1 port bridges to the m1 port - with the page ID tacked on to the address
assign m1_address = {page_id, s1_address, {ADDRESS_SHIFT{1'b0}}};
assign m1_read = s1_read;
assign s1_readdata = m1_readdata;
assign s1_readdatavalid = m1_readdatavalid;
assign m1_write = s1_write;
assign m1_writedata = s1_writedata;
assign m1_burstcount = s1_burstcount;
assign m1_byteenable = s1_byteenable;
assign s1_waitrequest = m1_waitrequest;
endmodule
|
module export_master (
clk,
reset,
address,
read,
readdata,
readdatavalid,
write,
writedata,
burstcount,
byteenable,
waitrequest,
burstbegin,
export_address,
export_read,
export_readdata,
export_readdatavalid,
export_write,
export_writedata,
export_burstcount,
export_burstbegin,
export_byteenable,
export_waitrequest,
interrupt,
export_interrupt
);
parameter NUM_BYTES = 4;
parameter BYTE_ADDRESS_WIDTH = 32;
parameter WORD_ADDRESS_WIDTH = 32;
parameter BURSTCOUNT_WIDTH = 1;
localparam DATA_WIDTH = NUM_BYTES * 8;
localparam ADDRESS_SHIFT = BYTE_ADDRESS_WIDTH - WORD_ADDRESS_WIDTH;
input clk;
input reset;
input [WORD_ADDRESS_WIDTH-1:0] address;
input read;
output [DATA_WIDTH-1:0] readdata;
output readdatavalid;
input write;
input [DATA_WIDTH-1:0] writedata;
input [BURSTCOUNT_WIDTH-1:0] burstcount;
input burstbegin;
input [NUM_BYTES-1:0] byteenable;
output waitrequest;
output interrupt;
output [BYTE_ADDRESS_WIDTH-1:0] export_address;
output export_read;
input [DATA_WIDTH-1:0] export_readdata;
input export_readdatavalid;
output export_write;
output [DATA_WIDTH-1:0] export_writedata;
output [BURSTCOUNT_WIDTH-1:0] export_burstcount;
output export_burstbegin;
output [NUM_BYTES-1:0] export_byteenable;
input export_waitrequest;
input export_interrupt;
assign export_address = address << ADDRESS_SHIFT;
assign export_read = read;
assign readdata = export_readdata;
assign readdatavalid = export_readdatavalid;
assign export_write = write;
assign export_writedata = writedata;
assign export_burstcount = burstcount;
assign export_burstbegin = burstbegin;
assign export_byteenable = byteenable;
assign interrupt = export_interrupt;
assign waitrequest = export_waitrequest;
endmodule
|
module read_burst_control (
address,
length,
maximum_burst_count,
short_first_access_enable,
short_last_access_enable,
short_first_and_last_access_enable,
burst_count
);
parameter BURST_ENABLE = 1; // set to 0 to hardwire the address and write signals straight out
parameter BURST_COUNT_WIDTH = 3;
parameter WORD_SIZE_LOG2 = 2; // log2(DATA WIDTH/8)
parameter ADDRESS_WIDTH = 32;
parameter LENGTH_WIDTH = 32;
parameter BURST_WRAPPING_SUPPORT = 1; // set 1 for on, set 0 for off. This parameter can't be enabled when hte master supports programmable burst.
localparam BURST_OFFSET_WIDTH = (BURST_COUNT_WIDTH == 1)? 1: (BURST_COUNT_WIDTH-1);
input [ADDRESS_WIDTH-1:0] address;
input [LENGTH_WIDTH-1:0] length;
input [BURST_COUNT_WIDTH-1:0] maximum_burst_count; // will be either a hardcoded input or programmable
input short_first_access_enable;
input short_last_access_enable;
input short_first_and_last_access_enable;
output wire [BURST_COUNT_WIDTH-1:0] burst_count;
wire [BURST_COUNT_WIDTH-1:0] posted_burst; // when the burst statemachine is used this will be the burst count posted to the fabric
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count; // muxes posted_burst, posted_burst_d1, and '1' since we need to be able to post bursts of '1' for short accesses
wire burst_of_one_enable; // asserted when partial word accesses are occuring
wire short_burst_enable;
wire [BURST_OFFSET_WIDTH-1:0] burst_offset;
assign burst_offset = address[BURST_OFFSET_WIDTH+WORD_SIZE_LOG2-1:WORD_SIZE_LOG2];
// for unaligned or partial transfers we must use a burst length of 1 so that
assign burst_of_one_enable = (short_first_access_enable == 1) | (short_last_access_enable == 1) | (short_first_and_last_access_enable == 1) | // when performing partial accesses use a burst length of 1
((BURST_WRAPPING_SUPPORT == 1) & (burst_offset != 0)); // when the burst boundary offset is non-zero then the master isn't in burst alignment yet as so a burst of 1 needs to be posted
assign short_burst_enable = ((length >> WORD_SIZE_LOG2) < maximum_burst_count);
always @ (maximum_burst_count or length or short_burst_enable or burst_of_one_enable)
begin
case ({short_burst_enable, burst_of_one_enable})
2'b00 : internal_burst_count = maximum_burst_count;
2'b01 : internal_burst_count = 1; // this is when the master starts unaligned
2'b10 : internal_burst_count = ((length >> WORD_SIZE_LOG2) & {(BURST_COUNT_WIDTH-1){1'b1}}); // this could be followed by a burst of 1 if there are a few bytes leftover
2'b11 : internal_burst_count = 1; // burst of 1 needs to win, this is when the master starts with very little data to transfer
endcase
end
generate
if (BURST_ENABLE == 1)
begin
assign burst_count = internal_burst_count;
end
else
begin
assign burst_count = 1; // this will be stubbed at the top level but will be used for the address and pending reads incrementing
end
endgenerate
endmodule
|
module channel_demux
#(parameter NUM_CHAN = 2) ( //usb Side
input [31:0]usbdata_final,
input WR_final,
// TX Side
input reset,
input txclk,
output reg [NUM_CHAN:0] WR_channel,
output reg [31:0] ram_data,
output reg [NUM_CHAN:0] WR_done_channel );
/* Parse header and forward to ram */
reg [2:0]reader_state;
reg [4:0]channel ;
reg [6:0]read_length ;
// States
parameter IDLE = 3'd0;
parameter HEADER = 3'd1;
parameter WAIT = 3'd2;
parameter FORWARD = 3'd3;
`define CHANNEL 20:16
`define PKT_SIZE 127
wire [4:0] true_channel;
assign true_channel = (usbdata_final[`CHANNEL] == 5'h1f) ?
NUM_CHAN : (usbdata_final[`CHANNEL]);
always @(posedge txclk)
begin
if (reset)
begin
reader_state <= IDLE;
WR_channel <= 0;
WR_done_channel <= 0;
end
else
case (reader_state)
IDLE: begin
if (WR_final)
reader_state <= HEADER;
end
// Store channel and forware header
HEADER: begin
channel <= true_channel;
WR_channel[true_channel] <= 1;
ram_data <= usbdata_final;
read_length <= 7'd0 ;
reader_state <= WAIT;
end
WAIT: begin
WR_channel[channel] <= 0;
if (read_length == `PKT_SIZE)
reader_state <= IDLE;
else if (WR_final)
reader_state <= FORWARD;
end
FORWARD: begin
WR_channel[channel] <= 1;
ram_data <= usbdata_final;
read_length <= read_length + 7'd1;
reader_state <= WAIT;
end
default:
begin
//error handling
reader_state <= IDLE;
end
endcase
end
endmodule
|
module channel_demux
#(parameter NUM_CHAN = 2) ( //usb Side
input [31:0]usbdata_final,
input WR_final,
// TX Side
input reset,
input txclk,
output reg [NUM_CHAN:0] WR_channel,
output reg [31:0] ram_data,
output reg [NUM_CHAN:0] WR_done_channel );
/* Parse header and forward to ram */
reg [2:0]reader_state;
reg [4:0]channel ;
reg [6:0]read_length ;
// States
parameter IDLE = 3'd0;
parameter HEADER = 3'd1;
parameter WAIT = 3'd2;
parameter FORWARD = 3'd3;
`define CHANNEL 20:16
`define PKT_SIZE 127
wire [4:0] true_channel;
assign true_channel = (usbdata_final[`CHANNEL] == 5'h1f) ?
NUM_CHAN : (usbdata_final[`CHANNEL]);
always @(posedge txclk)
begin
if (reset)
begin
reader_state <= IDLE;
WR_channel <= 0;
WR_done_channel <= 0;
end
else
case (reader_state)
IDLE: begin
if (WR_final)
reader_state <= HEADER;
end
// Store channel and forware header
HEADER: begin
channel <= true_channel;
WR_channel[true_channel] <= 1;
ram_data <= usbdata_final;
read_length <= 7'd0 ;
reader_state <= WAIT;
end
WAIT: begin
WR_channel[channel] <= 0;
if (read_length == `PKT_SIZE)
reader_state <= IDLE;
else if (WR_final)
reader_state <= FORWARD;
end
FORWARD: begin
WR_channel[channel] <= 1;
ram_data <= usbdata_final;
read_length <= read_length + 7'd1;
reader_state <= WAIT;
end
default:
begin
//error handling
reader_state <= IDLE;
end
endcase
end
endmodule
|
module read_master (
clk,
reset,
// descriptor commands sink port
snk_command_data,
snk_command_valid,
snk_command_ready,
// response source port
src_response_data,
src_response_valid,
src_response_ready,
// data path sink port
src_data,
src_valid,
src_ready,
src_sop,
src_eop,
src_empty,
src_error,
src_channel,
// data path master port
master_address,
master_read,
master_byteenable,
master_readdata,
master_waitrequest,
master_readdatavalid,
master_burstcount
);
parameter UNALIGNED_ACCESSES_ENABLE = 0; // when enabled allows transfers to begin from off word boundaries
parameter ONLY_FULL_ACCESS_ENABLE = 0; // when enabled allows transfers to end with partial access, master achieve a much higher fmax when this is enabled
parameter STRIDE_ENABLE = 0; // stride support can only be enabled when unaligned accesses is disabled
parameter STRIDE_WIDTH = 1; // when stride support is enabled this value controls the rate in which the address increases (in words), the stride width + log2(byte enable width) + 1 cannot exceed address width
parameter PACKET_ENABLE = 0;
parameter ERROR_ENABLE = 0;
parameter ERROR_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when error enable is turned on
parameter CHANNEL_ENABLE = 0;
parameter CHANNEL_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when the channel enable is turned on
parameter DATA_WIDTH = 32;
parameter BYTE_ENABLE_WIDTH = 4; // set by the .tcl file (hidden in GUI)
parameter BYTE_ENABLE_WIDTH_LOG2 = 2; // set by the .tcl file (hidden in GUI)
parameter ADDRESS_WIDTH = 32; // set in the .tcl file (hidden in GUI) by the address span of the master
parameter LENGTH_WIDTH = 32; // GUI setting with warning if ADDRESS_WIDTH < LENGTH_WIDTH (waste of logic for the length counter)
parameter FIFO_DEPTH = 32;
parameter FIFO_DEPTH_LOG2 = 5; // set by the .tcl file (hidden in GUI)
parameter FIFO_SPEED_OPTIMIZATION = 1; // set by the .tcl file (hidden in GUI) The default will be on since it only impacts the latency of the entire transfer by 1 clock cycle and adds very little additional logic.
parameter SYMBOL_WIDTH = 8; // set in the .tcl file (hidden in GUI)
parameter NUMBER_OF_SYMBOLS = 4; // set in the .tcl file (hidden in GUI)
parameter NUMBER_OF_SYMBOLS_LOG2 = 2; // set by the .tcl file (hidden in GUI)
parameter BURST_ENABLE = 0; // when enabled stride must be disabled, 1 to enable, 0 to disable
parameter MAX_BURST_COUNT = 2; // must be a power of 2, when BURST_ENABLE = 0 set maximum_burst_count to 1 (will be automatically done by .tcl file)
parameter MAX_BURST_COUNT_WIDTH = 2; // set by the .tcl file (hidden in GUI) = log2(maximum_burst_count) + 1
parameter PROGRAMMABLE_BURST_ENABLE = 0; // when enabled the user must set the burst count, if 0 is set then the value "maximum_burst_count" will be used instead
parameter BURST_WRAPPING_SUPPORT = 1; // will only be used when bursting is enabled. This cannot be enabled with programmable burst capabilities. Enabling it will make sure the master gets back into burst alignment (data width in bytes * maximum burst count alignment)
localparam FIFO_USE_MEMORY = 1; // set to 0 to use LEs instead, not exposed since FPGAs have a lot of memory these days
localparam BIG_ENDIAN_ACCESS = 0; // hiding this since it can blow your foot off if you are not careful. It's big endian with respect to the write master width and not necessarily to the width of the data type used by a host CPU.
// handy mask for seperating the word address from the byte address bits, so for 32 bit masters this mask is 0x3, for 64 bit masters it'll be 0x7
localparam LSB_MASK = {BYTE_ENABLE_WIDTH_LOG2{1'b1}};
// when packet data is supported then we need to buffer the empty, eop, sop, error, and channel bits
localparam FIFO_WIDTH = DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 2 + ERROR_WIDTH + CHANNEL_WIDTH;
localparam ADDRESS_INCREMENT_WIDTH = (BYTE_ENABLE_WIDTH_LOG2 + MAX_BURST_COUNT_WIDTH + STRIDE_WIDTH);
localparam FIXED_STRIDE = 1'b1; // default stride distance used when stride is disabled. 1 means increment the address by a word (i.e. sequential transfer)
input clk;
input reset;
// descriptor commands sink port
input [255:0] snk_command_data;
input snk_command_valid;
output reg snk_command_ready;
// response source port
output wire [255:0] src_response_data;
output reg src_response_valid;
input src_response_ready;
// data path source port
output wire [DATA_WIDTH-1:0] src_data;
output wire src_valid;
input src_ready;
output wire src_sop;
output wire src_eop;
output wire [NUMBER_OF_SYMBOLS_LOG2-1:0] src_empty;
output wire [ERROR_WIDTH-1:0] src_error;
output wire [CHANNEL_WIDTH-1:0] src_channel;
// master inputs and outputs
input master_waitrequest;
output wire [ADDRESS_WIDTH-1:0] master_address;
output wire master_read;
output wire [BYTE_ENABLE_WIDTH-1:0] master_byteenable;
input [DATA_WIDTH-1:0] master_readdata;
input master_readdatavalid;
output wire [MAX_BURST_COUNT_WIDTH-1:0] master_burstcount;
// internal signals
wire [63:0] descriptor_address;
wire [31:0] descriptor_length;
wire [15:0] descriptor_stride;
wire [7:0] descriptor_channel;
wire descriptor_generate_sop;
wire descriptor_generate_eop;
wire [7:0] descriptor_error;
wire [7:0] descriptor_programmable_burst_count;
wire descriptor_early_done_enable;
wire sw_stop_in;
wire sw_reset_in;
reg early_done_enable_d1;
reg [ERROR_WIDTH-1:0] error_d1;
reg [MAX_BURST_COUNT_WIDTH-1:0] programmable_burst_count_d1;
wire [MAX_BURST_COUNT_WIDTH-1:0] maximum_burst_count;
reg generate_sop_d1;
reg generate_eop_d1;
reg [ADDRESS_WIDTH-1:0] address_counter;
reg [LENGTH_WIDTH-1:0] length_counter;
reg [CHANNEL_WIDTH-1:0] channel_d1;
reg [STRIDE_WIDTH-1:0] stride_d1;
wire [STRIDE_WIDTH-1:0] stride_amount; // either set to be stride_d1 or hardcoded to 1 depending on the parameterization
reg [BYTE_ENABLE_WIDTH_LOG2-1:0] start_byte_address; // used to determine how far out of alignment the master starts
reg first_access; // used to determine if the first read is occuring
wire first_word_boundary_not_reached; // set when the first access doesn't reach the next word boundary
reg first_word_boundary_not_reached_d1;
reg [FIFO_DEPTH_LOG2:0] pending_reads_counter;
reg [FIFO_DEPTH_LOG2:0] pending_reads_mux;
wire [FIFO_WIDTH-1:0] fifo_write_data;
wire [FIFO_WIDTH-1:0] fifo_read_data;
wire fifo_write;
wire fifo_read;
wire fifo_empty;
wire fifo_full;
wire [FIFO_DEPTH_LOG2-1:0] fifo_used;
wire too_many_pending_reads;
wire read_complete; // handy signal for determining when a read has occured and completed
wire address_increment_enable;
wire [ADDRESS_INCREMENT_WIDTH-1:0] address_increment; // amount of bytes to increment the address
wire [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer;
wire short_first_access_enable; // when starting unaligned and the amount of data to transfer reaches the next word boundary
wire short_last_access_enable; // when address is aligned (can be an unaligned buffer transfer) but the amount of data doesn't reach the next word boundary
wire short_first_and_last_access_enable; // when starting unaligned and the amount of data to transfer doesn't reach the next word boundary
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_access_size;
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_last_access_size;
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_and_last_access_size;
reg [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer_mux;
wire go;
wire done; // asserted when last read is issued
reg done_d1;
wire done_strobe;
wire all_reads_returned; // asserted when last read returns
reg all_reads_returned_d1;
wire all_reads_returned_strobe;
reg all_reads_returned_strobe_d1;
reg all_reads_returned_strobe_d2; // used to trigger src_response_ready later than when the last read returns since the MM to ST has two pipeline stages
wire [DATA_WIDTH-1:0] MM_to_ST_adapter_dataout;
wire [DATA_WIDTH-1:0] MM_to_ST_adapter_dataout_rearranged;
wire MM_to_ST_adapter_sop;
wire MM_to_ST_adapter_eop;
wire [NUMBER_OF_SYMBOLS_LOG2-1:0] MM_to_ST_adapter_empty;
wire masked_sop;
wire masked_eop;
reg flush;
reg stopped;
wire length_sync_reset;
wire set_src_response_valid;
reg master_read_reg;
/********************************************* REGISTERS **************************************************/
// registering descriptor information
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
error_d1 <= 0;
generate_sop_d1 <= 0;
generate_eop_d1 <= 0;
channel_d1 <= 0;
stride_d1 <= 0;
programmable_burst_count_d1 <= 0;
early_done_enable_d1 <= 0;
end
else if (go == 1)
begin
error_d1 <= descriptor_error[ERROR_WIDTH-1:0];
generate_sop_d1 <= descriptor_generate_sop;
generate_eop_d1 <= descriptor_generate_eop;
channel_d1 <= descriptor_channel[CHANNEL_WIDTH-1:0];
stride_d1 <= descriptor_stride[STRIDE_WIDTH-1:0];
programmable_burst_count_d1 <= (descriptor_programmable_burst_count == 0)? MAX_BURST_COUNT : descriptor_programmable_burst_count;
early_done_enable_d1 <= ((UNALIGNED_ACCESSES_ENABLE == 1) | (PACKET_ENABLE == 1))? 0 : descriptor_early_done_enable; // early done cannot be used when unaligned data or packet support is enabled
end
end
// master word increment counter
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
address_counter <= 0;
end
else
begin
if (go == 1)
begin
address_counter <= descriptor_address[ADDRESS_WIDTH-1:0];
end
else if (address_increment_enable == 1)
begin
address_counter <= address_counter + address_increment;
end
end
end
// master byte address, used to determine how far out of alignment the master began transfering data
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
start_byte_address <= 0;
end
else if (go == 1)
begin
start_byte_address <= descriptor_address[BYTE_ENABLE_WIDTH_LOG2-1:0];
end
end
// first_access will be asserted only for the first read of a transaction, this will be used to determine what value will be used to increment the counters
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
first_access <= 0;
end
else
begin
if (go == 1)
begin
first_access <= 1;
end
else if ((first_access == 1) & (address_increment_enable == 1))
begin
first_access <= 0;
end
end
end
// this register is used to determine if the first word boundary will be reached
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
first_word_boundary_not_reached_d1 <= 0;
end
else if (go == 1)
begin
first_word_boundary_not_reached_d1 <= first_word_boundary_not_reached;
end
end
// master length logic, this will typically be the critical path followed by the FIFO
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
length_counter <= 0;
end
else
begin
if (length_sync_reset == 1)
begin
length_counter <= 0;
end
else if (go == 1)
begin
length_counter <= descriptor_length[LENGTH_WIDTH-1:0];
end
else if (address_increment_enable == 1)
begin
length_counter <= length_counter - bytes_to_transfer; // not using address_increment because stride might be enabled
end
end
end
// the pending reads counter is used to determine how many outstanding reads are posted. This will be used to determine
// if more reads can be posted based on the number of unused words in the FIFO.
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
pending_reads_counter <= 0;
end
else
begin
pending_reads_counter <= pending_reads_mux;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
done_d1 <= 1; // master is done coming out of reset (need this to be set high so that done_strobe doesn't fire)
end
else
begin
done_d1 <= done;
end
end
// this is the 'final done' condition, since reads are pipelined need to make sure they have all returned before the master is really done.
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
all_reads_returned_d1 <= 1;
end
else
begin
all_reads_returned_d1 <= all_reads_returned;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
flush <= 0;
end
else
begin
if ((pending_reads_counter == 0) & (flush == 1))
begin
flush <= 0;
end
else if ((sw_reset_in == 1) & ((read_complete == 1) | (snk_command_ready == 1) | (master_read_reg == 0)))
begin
flush <= 1; // will be used to reset the length counter to 0 and flush out pending reads (by letting them return without buffering them)
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped <= 0;
end
else
begin
if ((sw_stop_in == 0) | (sw_reset_in == 1))
begin
stopped <= 0;
end
else if ((sw_stop_in == 1) & ((read_complete == 1) | (snk_command_ready == 1) | (master_read_reg == 0)))
begin
stopped <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
snk_command_ready <= 1; // have to start ready to take commands
end
else
begin
if (go == 1)
begin
snk_command_ready <= 0;
end
else if ((src_response_ready == 1) & (src_response_valid == 1)) // need to make sure the response is popped before accepting more commands
begin
snk_command_ready <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
all_reads_returned_strobe_d1 <= 0;
all_reads_returned_strobe_d2 <= 0;
end
else
begin
all_reads_returned_strobe_d1 <= all_reads_returned_strobe;
all_reads_returned_strobe_d2 <= all_reads_returned_strobe_d1;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
src_response_valid <= 0;
end
else
begin
if (flush == 1)
begin
src_response_valid <= 0;
end
else if (set_src_response_valid == 1) // all the reads have returned with MM to ST adapter latency taken into consideration
begin
src_response_valid <= 1; // will be set only once
end
else if ((src_response_valid == 1) & (src_response_ready == 1))
begin
src_response_valid <= 0; // will be reset only once when the dispatcher captures the data
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
master_read_reg <= 0;
end
else
begin
if ((done == 0) & (too_many_pending_reads == 0) & (sw_stop_in == 0) & (sw_reset_in == 0))
begin
master_read_reg <= 1;
end
else if ((done == 1) | ((read_complete == 1) & ((too_many_pending_reads == 1) | (sw_stop_in == 1))))
begin
master_read_reg <= 0;
end
end
end
/******************************************* END REGISTERS ************************************************/
/************************************** MODULE INSTANTIATIONS *********************************************/
// This block is pipelined and can't throttle the reads
MM_to_ST_Adapter the_MM_to_ST_adapter (
.clk (clk),
.reset (reset),
.length (descriptor_length[LENGTH_WIDTH-1:0]),
.length_counter (length_counter),
.address (descriptor_address[ADDRESS_WIDTH-1:0]),
.reads_pending (pending_reads_counter),
.start (go),
.readdata (master_readdata),
.readdatavalid (master_readdatavalid),
.fifo_data (MM_to_ST_adapter_dataout),
.fifo_write (fifo_write),
.fifo_empty (MM_to_ST_adapter_empty),
.fifo_sop (MM_to_ST_adapter_sop),
.fifo_eop (MM_to_ST_adapter_eop)
);
defparam the_MM_to_ST_adapter.DATA_WIDTH = DATA_WIDTH;
defparam the_MM_to_ST_adapter.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_MM_to_ST_adapter.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_MM_to_ST_adapter.BYTE_ADDRESS_WIDTH = BYTE_ENABLE_WIDTH_LOG2;
defparam the_MM_to_ST_adapter.READS_PENDING_WIDTH = FIFO_DEPTH_LOG2 + 1;
defparam the_MM_to_ST_adapter.EMPTY_WIDTH = NUMBER_OF_SYMBOLS_LOG2;
defparam the_MM_to_ST_adapter.PACKET_SUPPORT = PACKET_ENABLE;
defparam the_MM_to_ST_adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE;
defparam the_MM_to_ST_adapter.FULL_WORD_ACCESS_ONLY = ONLY_FULL_ACCESS_ENABLE;
// buffered sop, eop, empty, data (in that order). sop, eop, and empty are only buffered when packet support is enabled
scfifo the_master_to_st_fifo (
.aclr (reset),
.clock (clk),
.data (fifo_write_data),
.full (fifo_full),
.empty (fifo_empty),
.usedw (fifo_used),
.q (fifo_read_data),
.rdreq (fifo_read),
.wrreq (fifo_write)
);
defparam the_master_to_st_fifo.lpm_width = FIFO_WIDTH;
defparam the_master_to_st_fifo.lpm_numwords = FIFO_DEPTH;
defparam the_master_to_st_fifo.lpm_widthu = FIFO_DEPTH_LOG2;
defparam the_master_to_st_fifo.lpm_showahead = "ON"; // slower but doesn't require complex control logic to time with waitrequest
defparam the_master_to_st_fifo.use_eab = (FIFO_USE_MEMORY == 1)? "ON" : "OFF";
defparam the_master_to_st_fifo.add_ram_output_register = (FIFO_SPEED_OPTIMIZATION == 1)? "ON" : "OFF";
defparam the_master_to_st_fifo.underflow_checking = "OFF";
defparam the_master_to_st_fifo.overflow_checking = "OFF";
// burst block that takes the length and short access enables and forms a burst count based on them. If any of the short access bits are asserted the block will default to a burst count of 1
read_burst_control the_read_burst_control (
.address (master_address),
.length (length_counter),
.maximum_burst_count (maximum_burst_count),
.short_first_access_enable (short_first_access_enable),
.short_last_access_enable (short_last_access_enable),
.short_first_and_last_access_enable (short_first_and_last_access_enable),
.burst_count (master_burstcount)
);
defparam the_read_burst_control.BURST_ENABLE = BURST_ENABLE;
defparam the_read_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH;
defparam the_read_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits
defparam the_read_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_read_burst_control.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_read_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT;
/************************************ END MODULE INSTANTIATIONS *******************************************/
/******************************** CONTROL AND COMBINATIONAL SIGNALS ***************************************/
// breakout the descriptor information into more manageable names
assign descriptor_address = {snk_command_data[140:109], snk_command_data[31:0]}; // 64-bit addressing support
assign descriptor_length = snk_command_data[63:32];
assign descriptor_channel = snk_command_data[71:64];
assign descriptor_generate_sop = snk_command_data[72];
assign descriptor_generate_eop = snk_command_data[73];
assign descriptor_programmable_burst_count = snk_command_data[83:76];
assign descriptor_stride = snk_command_data[99:84];
assign descriptor_error = snk_command_data[107:100];
assign descriptor_early_done_enable = snk_command_data[108];
assign sw_stop_in = snk_command_data[74];
assign sw_reset_in = snk_command_data[75];
assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled
assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT;
// swap the bytes if big endian is enabled
generate
if (BIG_ENDIAN_ACCESS == 1)
begin
genvar j;
for(j=0; j < DATA_WIDTH; j = j + 8)
begin: byte_swap
assign MM_to_ST_adapter_dataout_rearranged[j +8 -1: j] = MM_to_ST_adapter_dataout[DATA_WIDTH -j -1: DATA_WIDTH -j - 8];
end
end
else
begin
assign MM_to_ST_adapter_dataout_rearranged = MM_to_ST_adapter_dataout;
end
endgenerate
assign masked_sop = MM_to_ST_adapter_sop & generate_sop_d1;
assign masked_eop = MM_to_ST_adapter_eop & generate_eop_d1;
assign fifo_write_data = {error_d1, channel_d1, masked_sop, masked_eop, ((masked_eop == 1)? MM_to_ST_adapter_empty : {NUMBER_OF_SYMBOLS_LOG2{1'b0}} ), MM_to_ST_adapter_dataout_rearranged};
// Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before sending them to the data stream
generate
genvar i;
for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width
begin: symbol_swap
assign src_data[i +SYMBOL_WIDTH -1: i] = fifo_read_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH];
end
endgenerate
assign src_empty = (PACKET_ENABLE == 1)? fifo_read_data[(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 - 1) : DATA_WIDTH] : 0;
assign src_eop = (PACKET_ENABLE == 1)? fifo_read_data[DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2] : 0;
assign src_sop = (PACKET_ENABLE == 1)? fifo_read_data[DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 1] : 0;
assign src_channel = (CHANNEL_ENABLE == 1)? fifo_read_data[(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH + 1): (DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 2)] : 0;
assign src_error = (ERROR_ENABLE == 1)? fifo_read_data[(FIFO_WIDTH-1):(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH + 2)] : 0;
assign short_first_access_size = BYTE_ENABLE_WIDTH - (address_counter & LSB_MASK);
assign short_last_access_size = length_counter & LSB_MASK;
assign short_first_and_last_access_size = length_counter & LSB_MASK;
/* special case transfer enables and counter increment values (address and length counter)
short_first_access_enable is for transfers that start unaligned but reach the next word boundary
short_last_access_enable is for transfers that are not the first transfer but don't end on a word boundary
short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (aligned or unaligned)
*/
generate
if (UNALIGNED_ACCESSES_ENABLE == 1)
begin
assign short_first_access_enable = ((address_counter & LSB_MASK) != 0) & (first_access == 1) & (first_word_boundary_not_reached_d1 == 0);
assign short_last_access_enable = (first_access == 0) & (length_counter < BYTE_ENABLE_WIDTH);
assign short_first_and_last_access_enable = (first_access == 1) & (first_word_boundary_not_reached_d1 == 1);
assign bytes_to_transfer = bytes_to_transfer_mux;
assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled
end
else if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = 0;
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = BYTE_ENABLE_WIDTH * master_burstcount;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount * master_burstcount; // stride must be a static '1' when bursting is enabled
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH * master_burstcount; // stride must be a static '1' when bursting is enabled
end
end
else // must be aligned but can end with any number of bytes
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = length_counter < BYTE_ENABLE_WIDTH; // less than a word to transfer
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = bytes_to_transfer_mux;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount * master_burstcount; // stride must be a static '1' when bursting is enabled
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH * master_burstcount; // stride must be a static '1' when bursting is enabled
end
end
endgenerate
// the burst count will be 1 for all short accesses
always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size or master_burstcount)
begin
case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable})
3'b001: bytes_to_transfer_mux = short_first_access_size;
3'b010: bytes_to_transfer_mux = short_last_access_size;
3'b100: bytes_to_transfer_mux = short_first_and_last_access_size;
default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH * master_burstcount; // this is the only time master_burstcount can be a value other than 1
endcase
end
always @ (master_readdatavalid or read_complete or pending_reads_counter or master_burstcount)
begin
case ({master_readdatavalid, read_complete})
2'b00: pending_reads_mux = pending_reads_counter; // no read posted and no read data returned
2'b01: pending_reads_mux = (pending_reads_counter + master_burstcount); // read posted and no read data returned
2'b10: pending_reads_mux = (pending_reads_counter - 1'b1); // no read posted but read data returned
2'b11: pending_reads_mux = (pending_reads_counter + master_burstcount - 1'b1); // read posted and read data returned
endcase
end
assign src_valid = (fifo_empty == 0);
assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size
(((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary
assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero)
assign done = (length_counter == 0); // all reads are posted but the master is not done since there could be reads pending
assign done_strobe = (done == 1) & (done_d1 == 0);
assign fifo_read = (src_valid == 1) & (src_ready == 1);
assign length_sync_reset = (flush == 1) & (pending_reads_counter == 0); // resetting the length counter will trigger the done condition
assign too_many_pending_reads = (({fifo_full,fifo_used} + pending_reads_counter) > (FIFO_DEPTH - (maximum_burst_count << 1))); // making sure a full burst can be posted, using 2x maximum_burst_count since the read signal is pipelined and so this signal will be late using maximum_burst_count alone
assign read_complete = (master_read == 1) & (master_waitrequest == 0);
assign address_increment_enable = read_complete;
assign master_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // master always asserts all byte enables and filters the data as it comes in (may lead to destructive reads in some cases)
generate if (DATA_WIDTH > 8)
begin
assign master_address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer
end
else
begin
assign master_address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time
end
endgenerate
assign master_read = master_read_reg & (done == 0); // need to mask the read with done so that it doesn't issue one extra read at the end
assign all_reads_returned = (done == 1) & (pending_reads_counter == 0);
assign all_reads_returned_strobe = (all_reads_returned == 1) & (all_reads_returned_d1 == 0);
// for now the done and early done strobes are the same. Both will be triggered when the last data returns
generate
if (UNALIGNED_ACCESSES_ENABLE == 1) // need to use the delayed strobe since there are two stages of pipelining in the MM to ST adapter
begin
assign src_response_data = {{252{1'b0}}, all_reads_returned_strobe_d2, done_strobe, stopped, flush}; // 252 zeros: done strobe: early done strobe: stop state: reset delayed
end
else
begin
assign src_response_data = {{252{1'b0}}, all_reads_returned_strobe, done_strobe, stopped, flush}; // 252 zeros: done strobe: early done strobe: stop state: reset delayed
end
endgenerate
assign set_src_response_valid = (UNALIGNED_ACCESSES_ENABLE == 1)? all_reads_returned_strobe_d2 : // all the reads have returned with MM to ST adapter latency taken into consideration
(early_done_enable_d1 == 1)? done_strobe : all_reads_returned_strobe; // when early done is enabled then the done strobe is sufficient to trigger the next command can enter, otherwise need to wait for the pending reads to return
/****************************** END CONTROL AND COMBINATIONAL SIGNALS *************************************/
endmodule
|
module pll (
inclk0,
c0);
input inclk0;
output c0;
endmodule
|
module pll (
inclk0,
c0);
input inclk0;
output c0;
endmodule
|
module pll (
inclk0,
c0);
input inclk0;
output c0;
endmodule
|
module phase_acc (clk,reset,enable,strobe,serial_addr,serial_data,serial_strobe,phase);
parameter FREQADDR = 0;
parameter PHASEADDR = 0;
parameter resolution = 32;
input clk, reset, enable, strobe;
input [6:0] serial_addr;
input [31:0] serial_data;
input serial_strobe;
output reg [resolution-1:0] phase;
wire [resolution-1:0] freq;
setting_reg #(FREQADDR) sr_rxfreq0(.clock(clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(freq));
always @(posedge clk)
if(reset)
phase <= #1 32'b0;
else if(serial_strobe & (serial_addr == PHASEADDR))
phase <= #1 serial_data;
else if(enable & strobe)
phase <= #1 phase + freq;
endmodule
|
module phase_acc (clk,reset,enable,strobe,serial_addr,serial_data,serial_strobe,phase);
parameter FREQADDR = 0;
parameter PHASEADDR = 0;
parameter resolution = 32;
input clk, reset, enable, strobe;
input [6:0] serial_addr;
input [31:0] serial_data;
input serial_strobe;
output reg [resolution-1:0] phase;
wire [resolution-1:0] freq;
setting_reg #(FREQADDR) sr_rxfreq0(.clock(clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(freq));
always @(posedge clk)
if(reset)
phase <= #1 32'b0;
else if(serial_strobe & (serial_addr == PHASEADDR))
phase <= #1 serial_data;
else if(enable & strobe)
phase <= #1 phase + freq;
endmodule
|
module bustri (
data,
enabledt,
tridata);
input [15:0] data;
input enabledt;
inout [15:0] tridata;
lpm_bustri lpm_bustri_component (
.tridata (tridata),
.enabledt (enabledt),
.data (data));
defparam
lpm_bustri_component.lpm_width = 16,
lpm_bustri_component.lpm_type = "LPM_BUSTRI";
endmodule
|
module bustri (
data,
enabledt,
tridata);
input [15:0] data;
input enabledt;
inout [15:0] tridata;
lpm_bustri lpm_bustri_component (
.tridata (tridata),
.enabledt (enabledt),
.data (data));
defparam
lpm_bustri_component.lpm_width = 16,
lpm_bustri_component.lpm_type = "LPM_BUSTRI";
endmodule
|
module bustri (
data,
enabledt,
tridata);
input [15:0] data;
input enabledt;
inout [15:0] tridata;
lpm_bustri lpm_bustri_component (
.tridata (tridata),
.enabledt (enabledt),
.data (data));
defparam
lpm_bustri_component.lpm_width = 16,
lpm_bustri_component.lpm_type = "LPM_BUSTRI";
endmodule
|
module sub32_add_sub_cqa
(
aclr,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clken;
input clock;
input [31:0] dataa;
input [31:0] datab;
output [31:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [0:0] wire_add_sub_cella_15cout;
wire [0:0] wire_add_sub_cella_16cout;
wire [0:0] wire_add_sub_cella_17cout;
wire [0:0] wire_add_sub_cella_18cout;
wire [0:0] wire_add_sub_cella_19cout;
wire [0:0] wire_add_sub_cella_20cout;
wire [0:0] wire_add_sub_cella_21cout;
wire [0:0] wire_add_sub_cella_22cout;
wire [0:0] wire_add_sub_cella_23cout;
wire [0:0] wire_add_sub_cella_24cout;
wire [0:0] wire_add_sub_cella_25cout;
wire [0:0] wire_add_sub_cella_26cout;
wire [0:0] wire_add_sub_cella_27cout;
wire [0:0] wire_add_sub_cella_28cout;
wire [0:0] wire_add_sub_cella_29cout;
wire [0:0] wire_add_sub_cella_30cout;
wire [31:0] wire_add_sub_cella_dataa;
wire [31:0] wire_add_sub_cella_datab;
wire [31:0] wire_add_sub_cella_regout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(1'b1),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "69b2",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "69b2",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "69b2",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "69b2",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "69b2",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_15cout[0:0]),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "69b2",
add_sub_cella_15.operation_mode = "arithmetic",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_16
(
.aclr(aclr),
.cin(wire_add_sub_cella_15cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_16cout[0:0]),
.dataa(wire_add_sub_cella_dataa[16:16]),
.datab(wire_add_sub_cella_datab[16:16]),
.ena(clken),
.regout(wire_add_sub_cella_regout[16:16]));
defparam
add_sub_cella_16.cin_used = "true",
add_sub_cella_16.lut_mask = "69b2",
add_sub_cella_16.operation_mode = "arithmetic",
add_sub_cella_16.sum_lutc_input = "cin",
add_sub_cella_16.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_17
(
.aclr(aclr),
.cin(wire_add_sub_cella_16cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_17cout[0:0]),
.dataa(wire_add_sub_cella_dataa[17:17]),
.datab(wire_add_sub_cella_datab[17:17]),
.ena(clken),
.regout(wire_add_sub_cella_regout[17:17]));
defparam
add_sub_cella_17.cin_used = "true",
add_sub_cella_17.lut_mask = "69b2",
add_sub_cella_17.operation_mode = "arithmetic",
add_sub_cella_17.sum_lutc_input = "cin",
add_sub_cella_17.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_18
(
.aclr(aclr),
.cin(wire_add_sub_cella_17cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_18cout[0:0]),
.dataa(wire_add_sub_cella_dataa[18:18]),
.datab(wire_add_sub_cella_datab[18:18]),
.ena(clken),
.regout(wire_add_sub_cella_regout[18:18]));
defparam
add_sub_cella_18.cin_used = "true",
add_sub_cella_18.lut_mask = "69b2",
add_sub_cella_18.operation_mode = "arithmetic",
add_sub_cella_18.sum_lutc_input = "cin",
add_sub_cella_18.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_19
(
.aclr(aclr),
.cin(wire_add_sub_cella_18cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_19cout[0:0]),
.dataa(wire_add_sub_cella_dataa[19:19]),
.datab(wire_add_sub_cella_datab[19:19]),
.ena(clken),
.regout(wire_add_sub_cella_regout[19:19]));
defparam
add_sub_cella_19.cin_used = "true",
add_sub_cella_19.lut_mask = "69b2",
add_sub_cella_19.operation_mode = "arithmetic",
add_sub_cella_19.sum_lutc_input = "cin",
add_sub_cella_19.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_20
(
.aclr(aclr),
.cin(wire_add_sub_cella_19cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_20cout[0:0]),
.dataa(wire_add_sub_cella_dataa[20:20]),
.datab(wire_add_sub_cella_datab[20:20]),
.ena(clken),
.regout(wire_add_sub_cella_regout[20:20]));
defparam
add_sub_cella_20.cin_used = "true",
add_sub_cella_20.lut_mask = "69b2",
add_sub_cella_20.operation_mode = "arithmetic",
add_sub_cella_20.sum_lutc_input = "cin",
add_sub_cella_20.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_21
(
.aclr(aclr),
.cin(wire_add_sub_cella_20cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_21cout[0:0]),
.dataa(wire_add_sub_cella_dataa[21:21]),
.datab(wire_add_sub_cella_datab[21:21]),
.ena(clken),
.regout(wire_add_sub_cella_regout[21:21]));
defparam
add_sub_cella_21.cin_used = "true",
add_sub_cella_21.lut_mask = "69b2",
add_sub_cella_21.operation_mode = "arithmetic",
add_sub_cella_21.sum_lutc_input = "cin",
add_sub_cella_21.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_22
(
.aclr(aclr),
.cin(wire_add_sub_cella_21cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_22cout[0:0]),
.dataa(wire_add_sub_cella_dataa[22:22]),
.datab(wire_add_sub_cella_datab[22:22]),
.ena(clken),
.regout(wire_add_sub_cella_regout[22:22]));
defparam
add_sub_cella_22.cin_used = "true",
add_sub_cella_22.lut_mask = "69b2",
add_sub_cella_22.operation_mode = "arithmetic",
add_sub_cella_22.sum_lutc_input = "cin",
add_sub_cella_22.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_23
(
.aclr(aclr),
.cin(wire_add_sub_cella_22cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_23cout[0:0]),
.dataa(wire_add_sub_cella_dataa[23:23]),
.datab(wire_add_sub_cella_datab[23:23]),
.ena(clken),
.regout(wire_add_sub_cella_regout[23:23]));
defparam
add_sub_cella_23.cin_used = "true",
add_sub_cella_23.lut_mask = "69b2",
add_sub_cella_23.operation_mode = "arithmetic",
add_sub_cella_23.sum_lutc_input = "cin",
add_sub_cella_23.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_24
(
.aclr(aclr),
.cin(wire_add_sub_cella_23cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_24cout[0:0]),
.dataa(wire_add_sub_cella_dataa[24:24]),
.datab(wire_add_sub_cella_datab[24:24]),
.ena(clken),
.regout(wire_add_sub_cella_regout[24:24]));
defparam
add_sub_cella_24.cin_used = "true",
add_sub_cella_24.lut_mask = "69b2",
add_sub_cella_24.operation_mode = "arithmetic",
add_sub_cella_24.sum_lutc_input = "cin",
add_sub_cella_24.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_25
(
.aclr(aclr),
.cin(wire_add_sub_cella_24cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_25cout[0:0]),
.dataa(wire_add_sub_cella_dataa[25:25]),
.datab(wire_add_sub_cella_datab[25:25]),
.ena(clken),
.regout(wire_add_sub_cella_regout[25:25]));
defparam
add_sub_cella_25.cin_used = "true",
add_sub_cella_25.lut_mask = "69b2",
add_sub_cella_25.operation_mode = "arithmetic",
add_sub_cella_25.sum_lutc_input = "cin",
add_sub_cella_25.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_26
(
.aclr(aclr),
.cin(wire_add_sub_cella_25cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_26cout[0:0]),
.dataa(wire_add_sub_cella_dataa[26:26]),
.datab(wire_add_sub_cella_datab[26:26]),
.ena(clken),
.regout(wire_add_sub_cella_regout[26:26]));
defparam
add_sub_cella_26.cin_used = "true",
add_sub_cella_26.lut_mask = "69b2",
add_sub_cella_26.operation_mode = "arithmetic",
add_sub_cella_26.sum_lutc_input = "cin",
add_sub_cella_26.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_27
(
.aclr(aclr),
.cin(wire_add_sub_cella_26cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_27cout[0:0]),
.dataa(wire_add_sub_cella_dataa[27:27]),
.datab(wire_add_sub_cella_datab[27:27]),
.ena(clken),
.regout(wire_add_sub_cella_regout[27:27]));
defparam
add_sub_cella_27.cin_used = "true",
add_sub_cella_27.lut_mask = "69b2",
add_sub_cella_27.operation_mode = "arithmetic",
add_sub_cella_27.sum_lutc_input = "cin",
add_sub_cella_27.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_28
(
.aclr(aclr),
.cin(wire_add_sub_cella_27cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_28cout[0:0]),
.dataa(wire_add_sub_cella_dataa[28:28]),
.datab(wire_add_sub_cella_datab[28:28]),
.ena(clken),
.regout(wire_add_sub_cella_regout[28:28]));
defparam
add_sub_cella_28.cin_used = "true",
add_sub_cella_28.lut_mask = "69b2",
add_sub_cella_28.operation_mode = "arithmetic",
add_sub_cella_28.sum_lutc_input = "cin",
add_sub_cella_28.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_29
(
.aclr(aclr),
.cin(wire_add_sub_cella_28cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_29cout[0:0]),
.dataa(wire_add_sub_cella_dataa[29:29]),
.datab(wire_add_sub_cella_datab[29:29]),
.ena(clken),
.regout(wire_add_sub_cella_regout[29:29]));
defparam
add_sub_cella_29.cin_used = "true",
add_sub_cella_29.lut_mask = "69b2",
add_sub_cella_29.operation_mode = "arithmetic",
add_sub_cella_29.sum_lutc_input = "cin",
add_sub_cella_29.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_30
(
.aclr(aclr),
.cin(wire_add_sub_cella_29cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_30cout[0:0]),
.dataa(wire_add_sub_cella_dataa[30:30]),
.datab(wire_add_sub_cella_datab[30:30]),
.ena(clken),
.regout(wire_add_sub_cella_regout[30:30]));
defparam
add_sub_cella_30.cin_used = "true",
add_sub_cella_30.lut_mask = "69b2",
add_sub_cella_30.operation_mode = "arithmetic",
add_sub_cella_30.sum_lutc_input = "cin",
add_sub_cella_30.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_31
(
.aclr(aclr),
.cin(wire_add_sub_cella_30cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[31:31]),
.datab(wire_add_sub_cella_datab[31:31]),
.ena(clken),
.regout(wire_add_sub_cella_regout[31:31]));
defparam
add_sub_cella_31.cin_used = "true",
add_sub_cella_31.lut_mask = "6969",
add_sub_cella_31.operation_mode = "normal",
add_sub_cella_31.sum_lutc_input = "cin",
add_sub_cella_31.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_regout;
endmodule
|
module sub32 (
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] dataa;
input [31:0] datab;
input clock;
input aclr;
input clken;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
sub32_add_sub_cqa sub32_add_sub_cqa_component (
.dataa (dataa),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule
|
module sub32_add_sub_cqa
(
aclr,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clken;
input clock;
input [31:0] dataa;
input [31:0] datab;
output [31:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [0:0] wire_add_sub_cella_15cout;
wire [0:0] wire_add_sub_cella_16cout;
wire [0:0] wire_add_sub_cella_17cout;
wire [0:0] wire_add_sub_cella_18cout;
wire [0:0] wire_add_sub_cella_19cout;
wire [0:0] wire_add_sub_cella_20cout;
wire [0:0] wire_add_sub_cella_21cout;
wire [0:0] wire_add_sub_cella_22cout;
wire [0:0] wire_add_sub_cella_23cout;
wire [0:0] wire_add_sub_cella_24cout;
wire [0:0] wire_add_sub_cella_25cout;
wire [0:0] wire_add_sub_cella_26cout;
wire [0:0] wire_add_sub_cella_27cout;
wire [0:0] wire_add_sub_cella_28cout;
wire [0:0] wire_add_sub_cella_29cout;
wire [0:0] wire_add_sub_cella_30cout;
wire [31:0] wire_add_sub_cella_dataa;
wire [31:0] wire_add_sub_cella_datab;
wire [31:0] wire_add_sub_cella_regout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(1'b1),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "69b2",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "69b2",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "69b2",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "69b2",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "69b2",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_15cout[0:0]),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "69b2",
add_sub_cella_15.operation_mode = "arithmetic",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_16
(
.aclr(aclr),
.cin(wire_add_sub_cella_15cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_16cout[0:0]),
.dataa(wire_add_sub_cella_dataa[16:16]),
.datab(wire_add_sub_cella_datab[16:16]),
.ena(clken),
.regout(wire_add_sub_cella_regout[16:16]));
defparam
add_sub_cella_16.cin_used = "true",
add_sub_cella_16.lut_mask = "69b2",
add_sub_cella_16.operation_mode = "arithmetic",
add_sub_cella_16.sum_lutc_input = "cin",
add_sub_cella_16.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_17
(
.aclr(aclr),
.cin(wire_add_sub_cella_16cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_17cout[0:0]),
.dataa(wire_add_sub_cella_dataa[17:17]),
.datab(wire_add_sub_cella_datab[17:17]),
.ena(clken),
.regout(wire_add_sub_cella_regout[17:17]));
defparam
add_sub_cella_17.cin_used = "true",
add_sub_cella_17.lut_mask = "69b2",
add_sub_cella_17.operation_mode = "arithmetic",
add_sub_cella_17.sum_lutc_input = "cin",
add_sub_cella_17.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_18
(
.aclr(aclr),
.cin(wire_add_sub_cella_17cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_18cout[0:0]),
.dataa(wire_add_sub_cella_dataa[18:18]),
.datab(wire_add_sub_cella_datab[18:18]),
.ena(clken),
.regout(wire_add_sub_cella_regout[18:18]));
defparam
add_sub_cella_18.cin_used = "true",
add_sub_cella_18.lut_mask = "69b2",
add_sub_cella_18.operation_mode = "arithmetic",
add_sub_cella_18.sum_lutc_input = "cin",
add_sub_cella_18.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_19
(
.aclr(aclr),
.cin(wire_add_sub_cella_18cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_19cout[0:0]),
.dataa(wire_add_sub_cella_dataa[19:19]),
.datab(wire_add_sub_cella_datab[19:19]),
.ena(clken),
.regout(wire_add_sub_cella_regout[19:19]));
defparam
add_sub_cella_19.cin_used = "true",
add_sub_cella_19.lut_mask = "69b2",
add_sub_cella_19.operation_mode = "arithmetic",
add_sub_cella_19.sum_lutc_input = "cin",
add_sub_cella_19.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_20
(
.aclr(aclr),
.cin(wire_add_sub_cella_19cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_20cout[0:0]),
.dataa(wire_add_sub_cella_dataa[20:20]),
.datab(wire_add_sub_cella_datab[20:20]),
.ena(clken),
.regout(wire_add_sub_cella_regout[20:20]));
defparam
add_sub_cella_20.cin_used = "true",
add_sub_cella_20.lut_mask = "69b2",
add_sub_cella_20.operation_mode = "arithmetic",
add_sub_cella_20.sum_lutc_input = "cin",
add_sub_cella_20.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_21
(
.aclr(aclr),
.cin(wire_add_sub_cella_20cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_21cout[0:0]),
.dataa(wire_add_sub_cella_dataa[21:21]),
.datab(wire_add_sub_cella_datab[21:21]),
.ena(clken),
.regout(wire_add_sub_cella_regout[21:21]));
defparam
add_sub_cella_21.cin_used = "true",
add_sub_cella_21.lut_mask = "69b2",
add_sub_cella_21.operation_mode = "arithmetic",
add_sub_cella_21.sum_lutc_input = "cin",
add_sub_cella_21.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_22
(
.aclr(aclr),
.cin(wire_add_sub_cella_21cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_22cout[0:0]),
.dataa(wire_add_sub_cella_dataa[22:22]),
.datab(wire_add_sub_cella_datab[22:22]),
.ena(clken),
.regout(wire_add_sub_cella_regout[22:22]));
defparam
add_sub_cella_22.cin_used = "true",
add_sub_cella_22.lut_mask = "69b2",
add_sub_cella_22.operation_mode = "arithmetic",
add_sub_cella_22.sum_lutc_input = "cin",
add_sub_cella_22.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_23
(
.aclr(aclr),
.cin(wire_add_sub_cella_22cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_23cout[0:0]),
.dataa(wire_add_sub_cella_dataa[23:23]),
.datab(wire_add_sub_cella_datab[23:23]),
.ena(clken),
.regout(wire_add_sub_cella_regout[23:23]));
defparam
add_sub_cella_23.cin_used = "true",
add_sub_cella_23.lut_mask = "69b2",
add_sub_cella_23.operation_mode = "arithmetic",
add_sub_cella_23.sum_lutc_input = "cin",
add_sub_cella_23.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_24
(
.aclr(aclr),
.cin(wire_add_sub_cella_23cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_24cout[0:0]),
.dataa(wire_add_sub_cella_dataa[24:24]),
.datab(wire_add_sub_cella_datab[24:24]),
.ena(clken),
.regout(wire_add_sub_cella_regout[24:24]));
defparam
add_sub_cella_24.cin_used = "true",
add_sub_cella_24.lut_mask = "69b2",
add_sub_cella_24.operation_mode = "arithmetic",
add_sub_cella_24.sum_lutc_input = "cin",
add_sub_cella_24.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_25
(
.aclr(aclr),
.cin(wire_add_sub_cella_24cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_25cout[0:0]),
.dataa(wire_add_sub_cella_dataa[25:25]),
.datab(wire_add_sub_cella_datab[25:25]),
.ena(clken),
.regout(wire_add_sub_cella_regout[25:25]));
defparam
add_sub_cella_25.cin_used = "true",
add_sub_cella_25.lut_mask = "69b2",
add_sub_cella_25.operation_mode = "arithmetic",
add_sub_cella_25.sum_lutc_input = "cin",
add_sub_cella_25.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_26
(
.aclr(aclr),
.cin(wire_add_sub_cella_25cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_26cout[0:0]),
.dataa(wire_add_sub_cella_dataa[26:26]),
.datab(wire_add_sub_cella_datab[26:26]),
.ena(clken),
.regout(wire_add_sub_cella_regout[26:26]));
defparam
add_sub_cella_26.cin_used = "true",
add_sub_cella_26.lut_mask = "69b2",
add_sub_cella_26.operation_mode = "arithmetic",
add_sub_cella_26.sum_lutc_input = "cin",
add_sub_cella_26.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_27
(
.aclr(aclr),
.cin(wire_add_sub_cella_26cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_27cout[0:0]),
.dataa(wire_add_sub_cella_dataa[27:27]),
.datab(wire_add_sub_cella_datab[27:27]),
.ena(clken),
.regout(wire_add_sub_cella_regout[27:27]));
defparam
add_sub_cella_27.cin_used = "true",
add_sub_cella_27.lut_mask = "69b2",
add_sub_cella_27.operation_mode = "arithmetic",
add_sub_cella_27.sum_lutc_input = "cin",
add_sub_cella_27.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_28
(
.aclr(aclr),
.cin(wire_add_sub_cella_27cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_28cout[0:0]),
.dataa(wire_add_sub_cella_dataa[28:28]),
.datab(wire_add_sub_cella_datab[28:28]),
.ena(clken),
.regout(wire_add_sub_cella_regout[28:28]));
defparam
add_sub_cella_28.cin_used = "true",
add_sub_cella_28.lut_mask = "69b2",
add_sub_cella_28.operation_mode = "arithmetic",
add_sub_cella_28.sum_lutc_input = "cin",
add_sub_cella_28.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_29
(
.aclr(aclr),
.cin(wire_add_sub_cella_28cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_29cout[0:0]),
.dataa(wire_add_sub_cella_dataa[29:29]),
.datab(wire_add_sub_cella_datab[29:29]),
.ena(clken),
.regout(wire_add_sub_cella_regout[29:29]));
defparam
add_sub_cella_29.cin_used = "true",
add_sub_cella_29.lut_mask = "69b2",
add_sub_cella_29.operation_mode = "arithmetic",
add_sub_cella_29.sum_lutc_input = "cin",
add_sub_cella_29.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_30
(
.aclr(aclr),
.cin(wire_add_sub_cella_29cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_30cout[0:0]),
.dataa(wire_add_sub_cella_dataa[30:30]),
.datab(wire_add_sub_cella_datab[30:30]),
.ena(clken),
.regout(wire_add_sub_cella_regout[30:30]));
defparam
add_sub_cella_30.cin_used = "true",
add_sub_cella_30.lut_mask = "69b2",
add_sub_cella_30.operation_mode = "arithmetic",
add_sub_cella_30.sum_lutc_input = "cin",
add_sub_cella_30.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_31
(
.aclr(aclr),
.cin(wire_add_sub_cella_30cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[31:31]),
.datab(wire_add_sub_cella_datab[31:31]),
.ena(clken),
.regout(wire_add_sub_cella_regout[31:31]));
defparam
add_sub_cella_31.cin_used = "true",
add_sub_cella_31.lut_mask = "6969",
add_sub_cella_31.operation_mode = "normal",
add_sub_cella_31.sum_lutc_input = "cin",
add_sub_cella_31.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_regout;
endmodule
|
module sub32 (
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] dataa;
input [31:0] datab;
input clock;
input aclr;
input clken;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
sub32_add_sub_cqa sub32_add_sub_cqa_component (
.dataa (dataa),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule
|
module rx_chain
(input clock,
input reset,
input enable,
input wire [7:0] decim_rate,
input sample_strobe,
input decimator_strobe,
output wire hb_strobe,
input [6:0] serial_addr, input [31:0] serial_data, input serial_strobe,
input wire [15:0] i_in,
input wire [15:0] q_in,
output wire [15:0] i_out,
output wire [15:0] q_out,
output wire [15:0] debugdata,output wire [15:0] debugctrl
);
parameter FREQADDR = 0;
parameter PHASEADDR = 0;
wire [31:0] phase;
wire [15:0] bb_i, bb_q;
wire [15:0] hb_in_i, hb_in_q;
assign debugdata = hb_in_i;
`ifdef RX_NCO_ON
phase_acc #(FREQADDR,PHASEADDR,32) rx_phase_acc
(.clk(clock),.reset(reset),.enable(enable),
.serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe),
.strobe(sample_strobe),.phase(phase) );
cordic rx_cordic
( .clock(clock),.reset(reset),.enable(enable),
.xi(i_in),.yi(q_in),.zi(phase[31:16]),
.xo(bb_i),.yo(bb_q),.zo() );
`else
assign bb_i = i_in;
assign bb_q = q_in;
assign sample_strobe = 1;
`endif // !`ifdef RX_NCO_ON
`ifdef RX_CIC_ON
cic_decim cic_decim_i_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i),.signal_out(hb_in_i) );
`else
assign hb_in_i = bb_i;
assign decimator_strobe = sample_strobe;
`endif
`ifdef RX_HB_ON
halfband_decim hbd_i_0
( .clock(clock),.reset(reset),.enable(enable),
.strobe_in(decimator_strobe),.strobe_out(hb_strobe),
.data_in(hb_in_i),.data_out(i_out),.debugctrl(debugctrl) );
`else
assign i_out = hb_in_i;
assign hb_strobe = decimator_strobe;
`endif
`ifdef RX_CIC_ON
cic_decim cic_decim_q_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q),.signal_out(hb_in_q) );
`else
assign hb_in_q = bb_q;
`endif
`ifdef RX_HB_ON
halfband_decim hbd_q_0
( .clock(clock),.reset(reset),.enable(enable),
.strobe_in(decimator_strobe),.strobe_out(),
.data_in(hb_in_q),.data_out(q_out) );
`else
assign q_out = hb_in_q;
`endif
endmodule
|
module my_dcm (
input CLKIN,
output CLKFX,
output LOCKED,
input RST,
output[7:0] STATUS
);
// DCM: Digital Clock Manager Circuit
// Spartan-3
// Xilinx HDL Language Template, version 11.1
DCM #(
.SIM_MODE("SAFE"), // Simulation: "SAFE" vs. "FAST", see "Synthesis and Simulation Design Guide" for details
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE(1), // Can be any integer from 1 to 32
.CLKFX_MULTIPLY(4), // Can be any integer from 2 to 32
.CLKIN_DIVIDE_BY_2("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(41.667), // Specify period of input clock
.CLKOUT_PHASE_SHIFT("NONE"), // Specify phase shift of NONE, FIXED or VARIABLE
.CLK_FEEDBACK("NONE"), // Specify clock feedback of NONE, 1X or 2X
.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
// an integer from 0 to 15
.DFS_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for frequency synthesis
.DLL_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for DLL
.DUTY_CYCLE_CORRECTION("TRUE"), // Duty cycle correction, TRUE or FALSE
.FACTORY_JF(16'hFFFF), // FACTORY JF values
// .LOC("DCM_X0Y0"),
.PHASE_SHIFT(0), // Amount of fixed phase shift from -255 to 255
.STARTUP_WAIT("TRUE") // Delay configuration DONE until DCM LOCK, TRUE/FALSE
) DCM_inst (
.CLK0(CLK0), // 0 degree DCM CLK output
.CLK180(CLK180), // 180 degree DCM CLK output
.CLK270(CLK270), // 270 degree DCM CLK output
.CLK2X(CLK2X), // 2X DCM CLK output
.CLK2X180(CLK2X180), // 2X, 180 degree DCM CLK out
.CLK90(CLK90), // 90 degree DCM CLK output
.CLKDV(CLKDV), // Divided DCM CLK out (CLKDV_DIVIDE)
.CLKFX(CLKFX), // DCM CLK synthesis out (M/D)
.CLKFX180(CLKFX180), // 180 degree CLK synthesis out
.LOCKED(LOCKED), // DCM LOCK status output
.PSDONE(PSDONE), // Dynamic phase adjust done output
.STATUS(STATUS), // 8-bit DCM status bits output
.CLKFB(CLKFB), // DCM clock feedback
.CLKIN(CLKIN), // Clock input (from IBUFG, BUFG or DCM)
.PSCLK(PSCLK), // Dynamic phase adjust clock input
.PSEN(PSEN), // Dynamic phase adjust enable input
.PSINCDEC(PSINCDEC), // Dynamic phase adjust increment/decrement
.RST(RST) // DCM asynchronous reset input
);
endmodule
|
module my_dcm (
input CLKIN,
output CLKFX,
output LOCKED,
input RST,
output[7:0] STATUS
);
// DCM: Digital Clock Manager Circuit
// Spartan-3
// Xilinx HDL Language Template, version 11.1
DCM #(
.SIM_MODE("SAFE"), // Simulation: "SAFE" vs. "FAST", see "Synthesis and Simulation Design Guide" for details
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE(1), // Can be any integer from 1 to 32
.CLKFX_MULTIPLY(4), // Can be any integer from 2 to 32
.CLKIN_DIVIDE_BY_2("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(41.667), // Specify period of input clock
.CLKOUT_PHASE_SHIFT("NONE"), // Specify phase shift of NONE, FIXED or VARIABLE
.CLK_FEEDBACK("NONE"), // Specify clock feedback of NONE, 1X or 2X
.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
// an integer from 0 to 15
.DFS_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for frequency synthesis
.DLL_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for DLL
.DUTY_CYCLE_CORRECTION("TRUE"), // Duty cycle correction, TRUE or FALSE
.FACTORY_JF(16'hFFFF), // FACTORY JF values
// .LOC("DCM_X0Y0"),
.PHASE_SHIFT(0), // Amount of fixed phase shift from -255 to 255
.STARTUP_WAIT("TRUE") // Delay configuration DONE until DCM LOCK, TRUE/FALSE
) DCM_inst (
.CLK0(CLK0), // 0 degree DCM CLK output
.CLK180(CLK180), // 180 degree DCM CLK output
.CLK270(CLK270), // 270 degree DCM CLK output
.CLK2X(CLK2X), // 2X DCM CLK output
.CLK2X180(CLK2X180), // 2X, 180 degree DCM CLK out
.CLK90(CLK90), // 90 degree DCM CLK output
.CLKDV(CLKDV), // Divided DCM CLK out (CLKDV_DIVIDE)
.CLKFX(CLKFX), // DCM CLK synthesis out (M/D)
.CLKFX180(CLKFX180), // 180 degree CLK synthesis out
.LOCKED(LOCKED), // DCM LOCK status output
.PSDONE(PSDONE), // Dynamic phase adjust done output
.STATUS(STATUS), // 8-bit DCM status bits output
.CLKFB(CLKFB), // DCM clock feedback
.CLKIN(CLKIN), // Clock input (from IBUFG, BUFG or DCM)
.PSCLK(PSCLK), // Dynamic phase adjust clock input
.PSEN(PSEN), // Dynamic phase adjust enable input
.PSINCDEC(PSINCDEC), // Dynamic phase adjust increment/decrement
.RST(RST) // DCM asynchronous reset input
);
endmodule
|
module my_dcm (
input CLKIN,
output CLKFX,
output LOCKED,
input RST,
output[7:0] STATUS
);
// DCM: Digital Clock Manager Circuit
// Spartan-3
// Xilinx HDL Language Template, version 11.1
DCM #(
.SIM_MODE("SAFE"), // Simulation: "SAFE" vs. "FAST", see "Synthesis and Simulation Design Guide" for details
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE(1), // Can be any integer from 1 to 32
.CLKFX_MULTIPLY(4), // Can be any integer from 2 to 32
.CLKIN_DIVIDE_BY_2("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(41.667), // Specify period of input clock
.CLKOUT_PHASE_SHIFT("NONE"), // Specify phase shift of NONE, FIXED or VARIABLE
.CLK_FEEDBACK("NONE"), // Specify clock feedback of NONE, 1X or 2X
.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
// an integer from 0 to 15
.DFS_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for frequency synthesis
.DLL_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for DLL
.DUTY_CYCLE_CORRECTION("TRUE"), // Duty cycle correction, TRUE or FALSE
.FACTORY_JF(16'hFFFF), // FACTORY JF values
// .LOC("DCM_X0Y0"),
.PHASE_SHIFT(0), // Amount of fixed phase shift from -255 to 255
.STARTUP_WAIT("TRUE") // Delay configuration DONE until DCM LOCK, TRUE/FALSE
) DCM_inst (
.CLK0(CLK0), // 0 degree DCM CLK output
.CLK180(CLK180), // 180 degree DCM CLK output
.CLK270(CLK270), // 270 degree DCM CLK output
.CLK2X(CLK2X), // 2X DCM CLK output
.CLK2X180(CLK2X180), // 2X, 180 degree DCM CLK out
.CLK90(CLK90), // 90 degree DCM CLK output
.CLKDV(CLKDV), // Divided DCM CLK out (CLKDV_DIVIDE)
.CLKFX(CLKFX), // DCM CLK synthesis out (M/D)
.CLKFX180(CLKFX180), // 180 degree CLK synthesis out
.LOCKED(LOCKED), // DCM LOCK status output
.PSDONE(PSDONE), // Dynamic phase adjust done output
.STATUS(STATUS), // 8-bit DCM status bits output
.CLKFB(CLKFB), // DCM clock feedback
.CLKIN(CLKIN), // Clock input (from IBUFG, BUFG or DCM)
.PSCLK(PSCLK), // Dynamic phase adjust clock input
.PSEN(PSEN), // Dynamic phase adjust enable input
.PSINCDEC(PSINCDEC), // Dynamic phase adjust increment/decrement
.RST(RST) // DCM asynchronous reset input
);
endmodule
|
module my_dcm (
input CLKIN,
output CLKFX,
output LOCKED,
input RST,
output[7:0] STATUS
);
// DCM: Digital Clock Manager Circuit
// Spartan-3
// Xilinx HDL Language Template, version 11.1
DCM #(
.SIM_MODE("SAFE"), // Simulation: "SAFE" vs. "FAST", see "Synthesis and Simulation Design Guide" for details
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE(1), // Can be any integer from 1 to 32
.CLKFX_MULTIPLY(4), // Can be any integer from 2 to 32
.CLKIN_DIVIDE_BY_2("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(41.667), // Specify period of input clock
.CLKOUT_PHASE_SHIFT("NONE"), // Specify phase shift of NONE, FIXED or VARIABLE
.CLK_FEEDBACK("NONE"), // Specify clock feedback of NONE, 1X or 2X
.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
// an integer from 0 to 15
.DFS_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for frequency synthesis
.DLL_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for DLL
.DUTY_CYCLE_CORRECTION("TRUE"), // Duty cycle correction, TRUE or FALSE
.FACTORY_JF(16'hFFFF), // FACTORY JF values
// .LOC("DCM_X0Y0"),
.PHASE_SHIFT(0), // Amount of fixed phase shift from -255 to 255
.STARTUP_WAIT("TRUE") // Delay configuration DONE until DCM LOCK, TRUE/FALSE
) DCM_inst (
.CLK0(CLK0), // 0 degree DCM CLK output
.CLK180(CLK180), // 180 degree DCM CLK output
.CLK270(CLK270), // 270 degree DCM CLK output
.CLK2X(CLK2X), // 2X DCM CLK output
.CLK2X180(CLK2X180), // 2X, 180 degree DCM CLK out
.CLK90(CLK90), // 90 degree DCM CLK output
.CLKDV(CLKDV), // Divided DCM CLK out (CLKDV_DIVIDE)
.CLKFX(CLKFX), // DCM CLK synthesis out (M/D)
.CLKFX180(CLKFX180), // 180 degree CLK synthesis out
.LOCKED(LOCKED), // DCM LOCK status output
.PSDONE(PSDONE), // Dynamic phase adjust done output
.STATUS(STATUS), // 8-bit DCM status bits output
.CLKFB(CLKFB), // DCM clock feedback
.CLKIN(CLKIN), // Clock input (from IBUFG, BUFG or DCM)
.PSCLK(PSCLK), // Dynamic phase adjust clock input
.PSEN(PSEN), // Dynamic phase adjust enable input
.PSINCDEC(PSINCDEC), // Dynamic phase adjust increment/decrement
.RST(RST) // DCM asynchronous reset input
);
endmodule
|
module my_dcm (
input CLKIN,
output CLKFX,
output LOCKED,
input RST,
output[7:0] STATUS
);
// DCM: Digital Clock Manager Circuit
// Spartan-3
// Xilinx HDL Language Template, version 11.1
DCM #(
.SIM_MODE("SAFE"), // Simulation: "SAFE" vs. "FAST", see "Synthesis and Simulation Design Guide" for details
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE(1), // Can be any integer from 1 to 32
.CLKFX_MULTIPLY(4), // Can be any integer from 2 to 32
.CLKIN_DIVIDE_BY_2("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(41.667), // Specify period of input clock
.CLKOUT_PHASE_SHIFT("NONE"), // Specify phase shift of NONE, FIXED or VARIABLE
.CLK_FEEDBACK("NONE"), // Specify clock feedback of NONE, 1X or 2X
.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
// an integer from 0 to 15
.DFS_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for frequency synthesis
.DLL_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for DLL
.DUTY_CYCLE_CORRECTION("TRUE"), // Duty cycle correction, TRUE or FALSE
.FACTORY_JF(16'hFFFF), // FACTORY JF values
// .LOC("DCM_X0Y0"),
.PHASE_SHIFT(0), // Amount of fixed phase shift from -255 to 255
.STARTUP_WAIT("TRUE") // Delay configuration DONE until DCM LOCK, TRUE/FALSE
) DCM_inst (
.CLK0(CLK0), // 0 degree DCM CLK output
.CLK180(CLK180), // 180 degree DCM CLK output
.CLK270(CLK270), // 270 degree DCM CLK output
.CLK2X(CLK2X), // 2X DCM CLK output
.CLK2X180(CLK2X180), // 2X, 180 degree DCM CLK out
.CLK90(CLK90), // 90 degree DCM CLK output
.CLKDV(CLKDV), // Divided DCM CLK out (CLKDV_DIVIDE)
.CLKFX(CLKFX), // DCM CLK synthesis out (M/D)
.CLKFX180(CLKFX180), // 180 degree CLK synthesis out
.LOCKED(LOCKED), // DCM LOCK status output
.PSDONE(PSDONE), // Dynamic phase adjust done output
.STATUS(STATUS), // 8-bit DCM status bits output
.CLKFB(CLKFB), // DCM clock feedback
.CLKIN(CLKIN), // Clock input (from IBUFG, BUFG or DCM)
.PSCLK(PSCLK), // Dynamic phase adjust clock input
.PSEN(PSEN), // Dynamic phase adjust enable input
.PSINCDEC(PSINCDEC), // Dynamic phase adjust increment/decrement
.RST(RST) // DCM asynchronous reset input
);
endmodule
|
module halfband_interp
(input clock, input reset, input enable,
input strobe_in, input strobe_out,
input [15:0] signal_in_i, input [15:0] signal_in_q,
output reg [15:0] signal_out_i, output reg [15:0] signal_out_q,
output wire [12:0] debug);
wire [15:0] coeff_ram_out;
wire [15:0] data_ram_out_i;
wire [15:0] data_ram_out_q;
wire [3:0] data_rd_addr;
reg [3:0] data_wr_addr;
reg [2:0] coeff_rd_addr;
wire filt_done;
wire [15:0] mac_out_i;
wire [15:0] mac_out_q;
reg [15:0] delayed_middle_i, delayed_middle_q;
wire [7:0] shift = 8'd9;
reg stb_out_happened;
wire [15:0] data_ram_out_i_b;
always @(posedge clock)
if(strobe_in)
stb_out_happened <= #1 1'b0;
else if(strobe_out)
stb_out_happened <= #1 1'b1;
assign debug = {filt_done,data_rd_addr,data_wr_addr,coeff_rd_addr};
wire [15:0] signal_out_i = stb_out_happened ? mac_out_i : delayed_middle_i;
wire [15:0] signal_out_q = stb_out_happened ? mac_out_q : delayed_middle_q;
/* always @(posedge clock)
if(reset)
begin
signal_out_i <= #1 16'd0;
signal_out_q <= #1 16'd0;
end
else if(strobe_in)
begin
signal_out_i <= #1 delayed_middle_i; // Multiply by 1 for middle coeff
signal_out_q <= #1 delayed_middle_q;
end
//else if(filt_done&stb_out_happened)
else if(stb_out_happened)
begin
signal_out_i <= #1 mac_out_i;
signal_out_q <= #1 mac_out_q;
end
*/
always @(posedge clock)
if(reset)
coeff_rd_addr <= #1 3'd0;
else if(coeff_rd_addr != 3'd0)
coeff_rd_addr <= #1 coeff_rd_addr + 3'd1;
else if(strobe_in)
coeff_rd_addr <= #1 3'd1;
reg filt_done_d1;
always@(posedge clock)
filt_done_d1 <= #1 filt_done;
always @(posedge clock)
if(reset)
data_wr_addr <= #1 4'd0;
//else if(strobe_in)
else if(filt_done & ~filt_done_d1)
data_wr_addr <= #1 data_wr_addr + 4'd1;
always @(posedge clock)
if(coeff_rd_addr == 3'd7)
begin
delayed_middle_i <= #1 data_ram_out_i_b;
// delayed_middle_q <= #1 data_ram_out_q_b;
end
// always @(posedge clock)
// if(reset)
// data_rd_addr <= #1 4'd0;
// else if(strobe_in)
// data_rd_addr <= #1 data_wr_addr + 4'd1;
// else if(!filt_done)
// data_rd_addr <= #1 data_rd_addr + 4'd1;
// else
// data_rd_addr <= #1 data_wr_addr;
wire [3:0] data_rd_addr1 = data_wr_addr + {1'b0,coeff_rd_addr};
wire [3:0] data_rd_addr2 = data_wr_addr + 15 - {1'b0,coeff_rd_addr};
// always @(posedge clock)
// if(reset)
// filt_done <= #1 1'b1;
// else if(strobe_in)
// filt_done <= #1 1'b0;
// else if(coeff_rd_addr == 4'd0)
// filt_done <= #1 1'b1;
assign filt_done = (coeff_rd_addr == 3'd0);
coeff_ram coeff_ram ( .clock(clock),.rd_addr({1'b0,coeff_rd_addr}),.rd_data(coeff_ram_out) );
ram16_2sum data_ram_i ( .clock(clock),.write(strobe_in),.wr_addr(data_wr_addr),.wr_data(signal_in_i),
.rd_addr1(data_rd_addr1),.rd_addr2(data_rd_addr2),.rd_data(data_ram_out_i_b),.sum(data_ram_out_i));
ram16_2sum data_ram_q ( .clock(clock),.write(strobe_in),.wr_addr(data_wr_addr),.wr_data(signal_in_q),
.rd_addr1(data_rd_addr1),.rd_addr2(data_rd_addr2),.rd_data(data_ram_out_q));
mac mac_i (.clock(clock),.reset(reset),.enable(~filt_done),.clear(strobe_in),
.x(data_ram_out_i),.y(coeff_ram_out),.shift(shift),.z(mac_out_i) );
mac mac_q (.clock(clock),.reset(reset),.enable(~filt_done),.clear(strobe_in),
.x(data_ram_out_q),.y(coeff_ram_out),.shift(shift),.z(mac_out_q) );
endmodule
|
module halfband_interp
(input clock, input reset, input enable,
input strobe_in, input strobe_out,
input [15:0] signal_in_i, input [15:0] signal_in_q,
output reg [15:0] signal_out_i, output reg [15:0] signal_out_q,
output wire [12:0] debug);
wire [15:0] coeff_ram_out;
wire [15:0] data_ram_out_i;
wire [15:0] data_ram_out_q;
wire [3:0] data_rd_addr;
reg [3:0] data_wr_addr;
reg [2:0] coeff_rd_addr;
wire filt_done;
wire [15:0] mac_out_i;
wire [15:0] mac_out_q;
reg [15:0] delayed_middle_i, delayed_middle_q;
wire [7:0] shift = 8'd9;
reg stb_out_happened;
wire [15:0] data_ram_out_i_b;
always @(posedge clock)
if(strobe_in)
stb_out_happened <= #1 1'b0;
else if(strobe_out)
stb_out_happened <= #1 1'b1;
assign debug = {filt_done,data_rd_addr,data_wr_addr,coeff_rd_addr};
wire [15:0] signal_out_i = stb_out_happened ? mac_out_i : delayed_middle_i;
wire [15:0] signal_out_q = stb_out_happened ? mac_out_q : delayed_middle_q;
/* always @(posedge clock)
if(reset)
begin
signal_out_i <= #1 16'd0;
signal_out_q <= #1 16'd0;
end
else if(strobe_in)
begin
signal_out_i <= #1 delayed_middle_i; // Multiply by 1 for middle coeff
signal_out_q <= #1 delayed_middle_q;
end
//else if(filt_done&stb_out_happened)
else if(stb_out_happened)
begin
signal_out_i <= #1 mac_out_i;
signal_out_q <= #1 mac_out_q;
end
*/
always @(posedge clock)
if(reset)
coeff_rd_addr <= #1 3'd0;
else if(coeff_rd_addr != 3'd0)
coeff_rd_addr <= #1 coeff_rd_addr + 3'd1;
else if(strobe_in)
coeff_rd_addr <= #1 3'd1;
reg filt_done_d1;
always@(posedge clock)
filt_done_d1 <= #1 filt_done;
always @(posedge clock)
if(reset)
data_wr_addr <= #1 4'd0;
//else if(strobe_in)
else if(filt_done & ~filt_done_d1)
data_wr_addr <= #1 data_wr_addr + 4'd1;
always @(posedge clock)
if(coeff_rd_addr == 3'd7)
begin
delayed_middle_i <= #1 data_ram_out_i_b;
// delayed_middle_q <= #1 data_ram_out_q_b;
end
// always @(posedge clock)
// if(reset)
// data_rd_addr <= #1 4'd0;
// else if(strobe_in)
// data_rd_addr <= #1 data_wr_addr + 4'd1;
// else if(!filt_done)
// data_rd_addr <= #1 data_rd_addr + 4'd1;
// else
// data_rd_addr <= #1 data_wr_addr;
wire [3:0] data_rd_addr1 = data_wr_addr + {1'b0,coeff_rd_addr};
wire [3:0] data_rd_addr2 = data_wr_addr + 15 - {1'b0,coeff_rd_addr};
// always @(posedge clock)
// if(reset)
// filt_done <= #1 1'b1;
// else if(strobe_in)
// filt_done <= #1 1'b0;
// else if(coeff_rd_addr == 4'd0)
// filt_done <= #1 1'b1;
assign filt_done = (coeff_rd_addr == 3'd0);
coeff_ram coeff_ram ( .clock(clock),.rd_addr({1'b0,coeff_rd_addr}),.rd_data(coeff_ram_out) );
ram16_2sum data_ram_i ( .clock(clock),.write(strobe_in),.wr_addr(data_wr_addr),.wr_data(signal_in_i),
.rd_addr1(data_rd_addr1),.rd_addr2(data_rd_addr2),.rd_data(data_ram_out_i_b),.sum(data_ram_out_i));
ram16_2sum data_ram_q ( .clock(clock),.write(strobe_in),.wr_addr(data_wr_addr),.wr_data(signal_in_q),
.rd_addr1(data_rd_addr1),.rd_addr2(data_rd_addr2),.rd_data(data_ram_out_q));
mac mac_i (.clock(clock),.reset(reset),.enable(~filt_done),.clear(strobe_in),
.x(data_ram_out_i),.y(coeff_ram_out),.shift(shift),.z(mac_out_i) );
mac mac_q (.clock(clock),.reset(reset),.enable(~filt_done),.clear(strobe_in),
.x(data_ram_out_q),.y(coeff_ram_out),.shift(shift),.z(mac_out_q) );
endmodule
|
module halfband_interp
(input clock, input reset, input enable,
input strobe_in, input strobe_out,
input [15:0] signal_in_i, input [15:0] signal_in_q,
output reg [15:0] signal_out_i, output reg [15:0] signal_out_q,
output wire [12:0] debug);
wire [15:0] coeff_ram_out;
wire [15:0] data_ram_out_i;
wire [15:0] data_ram_out_q;
wire [3:0] data_rd_addr;
reg [3:0] data_wr_addr;
reg [2:0] coeff_rd_addr;
wire filt_done;
wire [15:0] mac_out_i;
wire [15:0] mac_out_q;
reg [15:0] delayed_middle_i, delayed_middle_q;
wire [7:0] shift = 8'd9;
reg stb_out_happened;
wire [15:0] data_ram_out_i_b;
always @(posedge clock)
if(strobe_in)
stb_out_happened <= #1 1'b0;
else if(strobe_out)
stb_out_happened <= #1 1'b1;
assign debug = {filt_done,data_rd_addr,data_wr_addr,coeff_rd_addr};
wire [15:0] signal_out_i = stb_out_happened ? mac_out_i : delayed_middle_i;
wire [15:0] signal_out_q = stb_out_happened ? mac_out_q : delayed_middle_q;
/* always @(posedge clock)
if(reset)
begin
signal_out_i <= #1 16'd0;
signal_out_q <= #1 16'd0;
end
else if(strobe_in)
begin
signal_out_i <= #1 delayed_middle_i; // Multiply by 1 for middle coeff
signal_out_q <= #1 delayed_middle_q;
end
//else if(filt_done&stb_out_happened)
else if(stb_out_happened)
begin
signal_out_i <= #1 mac_out_i;
signal_out_q <= #1 mac_out_q;
end
*/
always @(posedge clock)
if(reset)
coeff_rd_addr <= #1 3'd0;
else if(coeff_rd_addr != 3'd0)
coeff_rd_addr <= #1 coeff_rd_addr + 3'd1;
else if(strobe_in)
coeff_rd_addr <= #1 3'd1;
reg filt_done_d1;
always@(posedge clock)
filt_done_d1 <= #1 filt_done;
always @(posedge clock)
if(reset)
data_wr_addr <= #1 4'd0;
//else if(strobe_in)
else if(filt_done & ~filt_done_d1)
data_wr_addr <= #1 data_wr_addr + 4'd1;
always @(posedge clock)
if(coeff_rd_addr == 3'd7)
begin
delayed_middle_i <= #1 data_ram_out_i_b;
// delayed_middle_q <= #1 data_ram_out_q_b;
end
// always @(posedge clock)
// if(reset)
// data_rd_addr <= #1 4'd0;
// else if(strobe_in)
// data_rd_addr <= #1 data_wr_addr + 4'd1;
// else if(!filt_done)
// data_rd_addr <= #1 data_rd_addr + 4'd1;
// else
// data_rd_addr <= #1 data_wr_addr;
wire [3:0] data_rd_addr1 = data_wr_addr + {1'b0,coeff_rd_addr};
wire [3:0] data_rd_addr2 = data_wr_addr + 15 - {1'b0,coeff_rd_addr};
// always @(posedge clock)
// if(reset)
// filt_done <= #1 1'b1;
// else if(strobe_in)
// filt_done <= #1 1'b0;
// else if(coeff_rd_addr == 4'd0)
// filt_done <= #1 1'b1;
assign filt_done = (coeff_rd_addr == 3'd0);
coeff_ram coeff_ram ( .clock(clock),.rd_addr({1'b0,coeff_rd_addr}),.rd_data(coeff_ram_out) );
ram16_2sum data_ram_i ( .clock(clock),.write(strobe_in),.wr_addr(data_wr_addr),.wr_data(signal_in_i),
.rd_addr1(data_rd_addr1),.rd_addr2(data_rd_addr2),.rd_data(data_ram_out_i_b),.sum(data_ram_out_i));
ram16_2sum data_ram_q ( .clock(clock),.write(strobe_in),.wr_addr(data_wr_addr),.wr_data(signal_in_q),
.rd_addr1(data_rd_addr1),.rd_addr2(data_rd_addr2),.rd_data(data_ram_out_q));
mac mac_i (.clock(clock),.reset(reset),.enable(~filt_done),.clear(strobe_in),
.x(data_ram_out_i),.y(coeff_ram_out),.shift(shift),.z(mac_out_i) );
mac mac_q (.clock(clock),.reset(reset),.enable(~filt_done),.clear(strobe_in),
.x(data_ram_out_q),.y(coeff_ram_out),.shift(shift),.z(mac_out_q) );
endmodule
|
module add32_add_sub_nq7
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [7:0] wire_add_sub_cella_dataa;
wire [7:0] wire_add_sub_cella_datab;
stratix_lcell add_sub_cella_0
(
.cin(1'b0),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "9696",
add_sub_cella_7.operation_mode = "normal",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule
|
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] sub_wire0;
wire [7:0] result = sub_wire0[7:0];
add32_add_sub_nq7 add32_add_sub_nq7_component (
.dataa (dataa),
.datab (datab),
.result (sub_wire0));
endmodule
|
module add32_add_sub_nq7
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [7:0] wire_add_sub_cella_dataa;
wire [7:0] wire_add_sub_cella_datab;
stratix_lcell add_sub_cella_0
(
.cin(1'b0),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "9696",
add_sub_cella_7.operation_mode = "normal",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule
|
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
wire [7:0] sub_wire0;
wire [7:0] result = sub_wire0[7:0];
add32_add_sub_nq7 add32_add_sub_nq7_component (
.dataa (dataa),
.datab (datab),
.result (sub_wire0));
endmodule
|
module as members of the synchronizer
// to enable automatic metastability MTBF analysis.
(* altera_attribute = {"-name SYNCHRONIZER_IDENTIFICATION FORCED_IF_ASYNCHRONOUS; -name DONT_MERGE_REGISTER ON; -name PRESERVE_REGISTER ON "} *) reg din_s1;
(* altera_attribute = {"-name SYNCHRONIZER_IDENTIFICATION FORCED_IF_ASYNCHRONOUS; -name DONT_MERGE_REGISTER ON; -name PRESERVE_REGISTER ON"} *) reg [depth-2:0] dreg;
//synthesis translate_off
initial begin
if (depth <2) begin
$display("%m: Error: synchronizer length: %0d less than 2.", depth);
end
end
// the first synchronizer register is either a simple D flop for synthesis
// and non-metastable simulation or a D flop with a method to inject random
// metastable events resulting in random delay of [0,1] cycles
`ifdef __ALTERA_STD__METASTABLE_SIM
reg[31:0] RANDOM_SEED = 123456;
wire next_din_s1;
wire dout;
reg din_last;
reg random;
event metastable_event; // hook for debug monitoring
initial begin
$display("%m: Info: Metastable event injection simulation mode enabled");
end
always @(posedge clk) begin
if (reset_n == 0)
random <= $random(RANDOM_SEED);
else
random <= $random;
end
assign next_din_s1 = (din_last ^ din) ? random : din;
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_last <= 1'b0;
else
din_last <= din;
end
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_s1 <= 1'b0;
else
din_s1 <= next_din_s1;
end
`else
//synthesis translate_on
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
din_s1 <= 1'b0;
else
din_s1 <= din;
end
//synthesis translate_off
`endif
`ifdef __ALTERA_STD__METASTABLE_SIM_VERBOSE
always @(*) begin
if (reset_n && (din_last != din) && (random != din)) begin
$display("%m: Verbose Info: metastable event @ time %t", $time);
->metastable_event;
end
end
`endif
//synthesis translate_on
// the remaining synchronizer registers form a simple shift register
// of length depth-1
generate
if (depth < 3) begin
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
dreg <= {depth-1{1'b0}};
else
dreg <= din_s1;
end
end else begin
always @(posedge clk or negedge reset_n) begin
if (reset_n == 0)
dreg <= {depth-1{1'b0}};
else
dreg <= {dreg[depth-3:0], din_s1};
end
end
endgenerate
assign dout = dreg[depth-2];
endmodule
|
module accum32_accum_nta
(
aclr,
clken,
clock,
data,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clken;
input clock;
input [31:0] data;
output [31:0] result;
wire [0:0] wire_acc_cella_0cout;
wire [0:0] wire_acc_cella_1cout;
wire [0:0] wire_acc_cella_2cout;
wire [0:0] wire_acc_cella_3cout;
wire [0:0] wire_acc_cella_4cout;
wire [0:0] wire_acc_cella_5cout;
wire [0:0] wire_acc_cella_6cout;
wire [0:0] wire_acc_cella_7cout;
wire [0:0] wire_acc_cella_8cout;
wire [0:0] wire_acc_cella_9cout;
wire [0:0] wire_acc_cella_10cout;
wire [0:0] wire_acc_cella_11cout;
wire [0:0] wire_acc_cella_12cout;
wire [0:0] wire_acc_cella_13cout;
wire [0:0] wire_acc_cella_14cout;
wire [0:0] wire_acc_cella_15cout;
wire [0:0] wire_acc_cella_16cout;
wire [0:0] wire_acc_cella_17cout;
wire [0:0] wire_acc_cella_18cout;
wire [0:0] wire_acc_cella_19cout;
wire [0:0] wire_acc_cella_20cout;
wire [0:0] wire_acc_cella_21cout;
wire [0:0] wire_acc_cella_22cout;
wire [0:0] wire_acc_cella_23cout;
wire [0:0] wire_acc_cella_24cout;
wire [0:0] wire_acc_cella_25cout;
wire [0:0] wire_acc_cella_26cout;
wire [0:0] wire_acc_cella_27cout;
wire [0:0] wire_acc_cella_28cout;
wire [0:0] wire_acc_cella_29cout;
wire [0:0] wire_acc_cella_30cout;
wire [31:0] wire_acc_cella_dataa;
wire [31:0] wire_acc_cella_datab;
wire [31:0] wire_acc_cella_datac;
wire [31:0] wire_acc_cella_regout;
wire sload;
stratix_lcell acc_cella_0
(
.aclr(aclr),
.cin(1'b0),
.clk(clock),
.cout(wire_acc_cella_0cout[0:0]),
.dataa(wire_acc_cella_dataa[0:0]),
.datab(wire_acc_cella_datab[0:0]),
.datac(wire_acc_cella_datac[0:0]),
.ena(clken),
.regout(wire_acc_cella_regout[0:0]),
.sload(sload));
defparam
acc_cella_0.cin_used = "true",
acc_cella_0.lut_mask = "96e8",
acc_cella_0.operation_mode = "arithmetic",
acc_cella_0.sum_lutc_input = "cin",
acc_cella_0.synch_mode = "on",
acc_cella_0.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_1
(
.aclr(aclr),
.cin(wire_acc_cella_0cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_1cout[0:0]),
.dataa(wire_acc_cella_dataa[1:1]),
.datab(wire_acc_cella_datab[1:1]),
.datac(wire_acc_cella_datac[1:1]),
.ena(clken),
.regout(wire_acc_cella_regout[1:1]),
.sload(sload));
defparam
acc_cella_1.cin_used = "true",
acc_cella_1.lut_mask = "96e8",
acc_cella_1.operation_mode = "arithmetic",
acc_cella_1.sum_lutc_input = "cin",
acc_cella_1.synch_mode = "on",
acc_cella_1.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_2
(
.aclr(aclr),
.cin(wire_acc_cella_1cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_2cout[0:0]),
.dataa(wire_acc_cella_dataa[2:2]),
.datab(wire_acc_cella_datab[2:2]),
.datac(wire_acc_cella_datac[2:2]),
.ena(clken),
.regout(wire_acc_cella_regout[2:2]),
.sload(sload));
defparam
acc_cella_2.cin_used = "true",
acc_cella_2.lut_mask = "96e8",
acc_cella_2.operation_mode = "arithmetic",
acc_cella_2.sum_lutc_input = "cin",
acc_cella_2.synch_mode = "on",
acc_cella_2.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_3
(
.aclr(aclr),
.cin(wire_acc_cella_2cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_3cout[0:0]),
.dataa(wire_acc_cella_dataa[3:3]),
.datab(wire_acc_cella_datab[3:3]),
.datac(wire_acc_cella_datac[3:3]),
.ena(clken),
.regout(wire_acc_cella_regout[3:3]),
.sload(sload));
defparam
acc_cella_3.cin_used = "true",
acc_cella_3.lut_mask = "96e8",
acc_cella_3.operation_mode = "arithmetic",
acc_cella_3.sum_lutc_input = "cin",
acc_cella_3.synch_mode = "on",
acc_cella_3.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_4
(
.aclr(aclr),
.cin(wire_acc_cella_3cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_4cout[0:0]),
.dataa(wire_acc_cella_dataa[4:4]),
.datab(wire_acc_cella_datab[4:4]),
.datac(wire_acc_cella_datac[4:4]),
.ena(clken),
.regout(wire_acc_cella_regout[4:4]),
.sload(sload));
defparam
acc_cella_4.cin_used = "true",
acc_cella_4.lut_mask = "96e8",
acc_cella_4.operation_mode = "arithmetic",
acc_cella_4.sum_lutc_input = "cin",
acc_cella_4.synch_mode = "on",
acc_cella_4.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_5
(
.aclr(aclr),
.cin(wire_acc_cella_4cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_5cout[0:0]),
.dataa(wire_acc_cella_dataa[5:5]),
.datab(wire_acc_cella_datab[5:5]),
.datac(wire_acc_cella_datac[5:5]),
.ena(clken),
.regout(wire_acc_cella_regout[5:5]),
.sload(sload));
defparam
acc_cella_5.cin_used = "true",
acc_cella_5.lut_mask = "96e8",
acc_cella_5.operation_mode = "arithmetic",
acc_cella_5.sum_lutc_input = "cin",
acc_cella_5.synch_mode = "on",
acc_cella_5.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_6
(
.aclr(aclr),
.cin(wire_acc_cella_5cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_6cout[0:0]),
.dataa(wire_acc_cella_dataa[6:6]),
.datab(wire_acc_cella_datab[6:6]),
.datac(wire_acc_cella_datac[6:6]),
.ena(clken),
.regout(wire_acc_cella_regout[6:6]),
.sload(sload));
defparam
acc_cella_6.cin_used = "true",
acc_cella_6.lut_mask = "96e8",
acc_cella_6.operation_mode = "arithmetic",
acc_cella_6.sum_lutc_input = "cin",
acc_cella_6.synch_mode = "on",
acc_cella_6.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_7
(
.aclr(aclr),
.cin(wire_acc_cella_6cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_7cout[0:0]),
.dataa(wire_acc_cella_dataa[7:7]),
.datab(wire_acc_cella_datab[7:7]),
.datac(wire_acc_cella_datac[7:7]),
.ena(clken),
.regout(wire_acc_cella_regout[7:7]),
.sload(sload));
defparam
acc_cella_7.cin_used = "true",
acc_cella_7.lut_mask = "96e8",
acc_cella_7.operation_mode = "arithmetic",
acc_cella_7.sum_lutc_input = "cin",
acc_cella_7.synch_mode = "on",
acc_cella_7.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_8
(
.aclr(aclr),
.cin(wire_acc_cella_7cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_8cout[0:0]),
.dataa(wire_acc_cella_dataa[8:8]),
.datab(wire_acc_cella_datab[8:8]),
.datac(wire_acc_cella_datac[8:8]),
.ena(clken),
.regout(wire_acc_cella_regout[8:8]),
.sload(sload));
defparam
acc_cella_8.cin_used = "true",
acc_cella_8.lut_mask = "96e8",
acc_cella_8.operation_mode = "arithmetic",
acc_cella_8.sum_lutc_input = "cin",
acc_cella_8.synch_mode = "on",
acc_cella_8.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_9
(
.aclr(aclr),
.cin(wire_acc_cella_8cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_9cout[0:0]),
.dataa(wire_acc_cella_dataa[9:9]),
.datab(wire_acc_cella_datab[9:9]),
.datac(wire_acc_cella_datac[9:9]),
.ena(clken),
.regout(wire_acc_cella_regout[9:9]),
.sload(sload));
defparam
acc_cella_9.cin_used = "true",
acc_cella_9.lut_mask = "96e8",
acc_cella_9.operation_mode = "arithmetic",
acc_cella_9.sum_lutc_input = "cin",
acc_cella_9.synch_mode = "on",
acc_cella_9.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_10
(
.aclr(aclr),
.cin(wire_acc_cella_9cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_10cout[0:0]),
.dataa(wire_acc_cella_dataa[10:10]),
.datab(wire_acc_cella_datab[10:10]),
.datac(wire_acc_cella_datac[10:10]),
.ena(clken),
.regout(wire_acc_cella_regout[10:10]),
.sload(sload));
defparam
acc_cella_10.cin_used = "true",
acc_cella_10.lut_mask = "96e8",
acc_cella_10.operation_mode = "arithmetic",
acc_cella_10.sum_lutc_input = "cin",
acc_cella_10.synch_mode = "on",
acc_cella_10.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_11
(
.aclr(aclr),
.cin(wire_acc_cella_10cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_11cout[0:0]),
.dataa(wire_acc_cella_dataa[11:11]),
.datab(wire_acc_cella_datab[11:11]),
.datac(wire_acc_cella_datac[11:11]),
.ena(clken),
.regout(wire_acc_cella_regout[11:11]),
.sload(sload));
defparam
acc_cella_11.cin_used = "true",
acc_cella_11.lut_mask = "96e8",
acc_cella_11.operation_mode = "arithmetic",
acc_cella_11.sum_lutc_input = "cin",
acc_cella_11.synch_mode = "on",
acc_cella_11.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_12
(
.aclr(aclr),
.cin(wire_acc_cella_11cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_12cout[0:0]),
.dataa(wire_acc_cella_dataa[12:12]),
.datab(wire_acc_cella_datab[12:12]),
.datac(wire_acc_cella_datac[12:12]),
.ena(clken),
.regout(wire_acc_cella_regout[12:12]),
.sload(sload));
defparam
acc_cella_12.cin_used = "true",
acc_cella_12.lut_mask = "96e8",
acc_cella_12.operation_mode = "arithmetic",
acc_cella_12.sum_lutc_input = "cin",
acc_cella_12.synch_mode = "on",
acc_cella_12.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_13
(
.aclr(aclr),
.cin(wire_acc_cella_12cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_13cout[0:0]),
.dataa(wire_acc_cella_dataa[13:13]),
.datab(wire_acc_cella_datab[13:13]),
.datac(wire_acc_cella_datac[13:13]),
.ena(clken),
.regout(wire_acc_cella_regout[13:13]),
.sload(sload));
defparam
acc_cella_13.cin_used = "true",
acc_cella_13.lut_mask = "96e8",
acc_cella_13.operation_mode = "arithmetic",
acc_cella_13.sum_lutc_input = "cin",
acc_cella_13.synch_mode = "on",
acc_cella_13.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_14
(
.aclr(aclr),
.cin(wire_acc_cella_13cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_14cout[0:0]),
.dataa(wire_acc_cella_dataa[14:14]),
.datab(wire_acc_cella_datab[14:14]),
.datac(wire_acc_cella_datac[14:14]),
.ena(clken),
.regout(wire_acc_cella_regout[14:14]),
.sload(sload));
defparam
acc_cella_14.cin_used = "true",
acc_cella_14.lut_mask = "96e8",
acc_cella_14.operation_mode = "arithmetic",
acc_cella_14.sum_lutc_input = "cin",
acc_cella_14.synch_mode = "on",
acc_cella_14.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_15
(
.aclr(aclr),
.cin(wire_acc_cella_14cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_15cout[0:0]),
.dataa(wire_acc_cella_dataa[15:15]),
.datab(wire_acc_cella_datab[15:15]),
.datac(wire_acc_cella_datac[15:15]),
.ena(clken),
.regout(wire_acc_cella_regout[15:15]),
.sload(sload));
defparam
acc_cella_15.cin_used = "true",
acc_cella_15.lut_mask = "96e8",
acc_cella_15.operation_mode = "arithmetic",
acc_cella_15.sum_lutc_input = "cin",
acc_cella_15.synch_mode = "on",
acc_cella_15.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_16
(
.aclr(aclr),
.cin(wire_acc_cella_15cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_16cout[0:0]),
.dataa(wire_acc_cella_dataa[16:16]),
.datab(wire_acc_cella_datab[16:16]),
.datac(wire_acc_cella_datac[16:16]),
.ena(clken),
.regout(wire_acc_cella_regout[16:16]),
.sload(sload));
defparam
acc_cella_16.cin_used = "true",
acc_cella_16.lut_mask = "96e8",
acc_cella_16.operation_mode = "arithmetic",
acc_cella_16.sum_lutc_input = "cin",
acc_cella_16.synch_mode = "on",
acc_cella_16.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_17
(
.aclr(aclr),
.cin(wire_acc_cella_16cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_17cout[0:0]),
.dataa(wire_acc_cella_dataa[17:17]),
.datab(wire_acc_cella_datab[17:17]),
.datac(wire_acc_cella_datac[17:17]),
.ena(clken),
.regout(wire_acc_cella_regout[17:17]),
.sload(sload));
defparam
acc_cella_17.cin_used = "true",
acc_cella_17.lut_mask = "96e8",
acc_cella_17.operation_mode = "arithmetic",
acc_cella_17.sum_lutc_input = "cin",
acc_cella_17.synch_mode = "on",
acc_cella_17.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_18
(
.aclr(aclr),
.cin(wire_acc_cella_17cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_18cout[0:0]),
.dataa(wire_acc_cella_dataa[18:18]),
.datab(wire_acc_cella_datab[18:18]),
.datac(wire_acc_cella_datac[18:18]),
.ena(clken),
.regout(wire_acc_cella_regout[18:18]),
.sload(sload));
defparam
acc_cella_18.cin_used = "true",
acc_cella_18.lut_mask = "96e8",
acc_cella_18.operation_mode = "arithmetic",
acc_cella_18.sum_lutc_input = "cin",
acc_cella_18.synch_mode = "on",
acc_cella_18.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_19
(
.aclr(aclr),
.cin(wire_acc_cella_18cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_19cout[0:0]),
.dataa(wire_acc_cella_dataa[19:19]),
.datab(wire_acc_cella_datab[19:19]),
.datac(wire_acc_cella_datac[19:19]),
.ena(clken),
.regout(wire_acc_cella_regout[19:19]),
.sload(sload));
defparam
acc_cella_19.cin_used = "true",
acc_cella_19.lut_mask = "96e8",
acc_cella_19.operation_mode = "arithmetic",
acc_cella_19.sum_lutc_input = "cin",
acc_cella_19.synch_mode = "on",
acc_cella_19.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_20
(
.aclr(aclr),
.cin(wire_acc_cella_19cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_20cout[0:0]),
.dataa(wire_acc_cella_dataa[20:20]),
.datab(wire_acc_cella_datab[20:20]),
.datac(wire_acc_cella_datac[20:20]),
.ena(clken),
.regout(wire_acc_cella_regout[20:20]),
.sload(sload));
defparam
acc_cella_20.cin_used = "true",
acc_cella_20.lut_mask = "96e8",
acc_cella_20.operation_mode = "arithmetic",
acc_cella_20.sum_lutc_input = "cin",
acc_cella_20.synch_mode = "on",
acc_cella_20.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_21
(
.aclr(aclr),
.cin(wire_acc_cella_20cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_21cout[0:0]),
.dataa(wire_acc_cella_dataa[21:21]),
.datab(wire_acc_cella_datab[21:21]),
.datac(wire_acc_cella_datac[21:21]),
.ena(clken),
.regout(wire_acc_cella_regout[21:21]),
.sload(sload));
defparam
acc_cella_21.cin_used = "true",
acc_cella_21.lut_mask = "96e8",
acc_cella_21.operation_mode = "arithmetic",
acc_cella_21.sum_lutc_input = "cin",
acc_cella_21.synch_mode = "on",
acc_cella_21.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_22
(
.aclr(aclr),
.cin(wire_acc_cella_21cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_22cout[0:0]),
.dataa(wire_acc_cella_dataa[22:22]),
.datab(wire_acc_cella_datab[22:22]),
.datac(wire_acc_cella_datac[22:22]),
.ena(clken),
.regout(wire_acc_cella_regout[22:22]),
.sload(sload));
defparam
acc_cella_22.cin_used = "true",
acc_cella_22.lut_mask = "96e8",
acc_cella_22.operation_mode = "arithmetic",
acc_cella_22.sum_lutc_input = "cin",
acc_cella_22.synch_mode = "on",
acc_cella_22.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_23
(
.aclr(aclr),
.cin(wire_acc_cella_22cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_23cout[0:0]),
.dataa(wire_acc_cella_dataa[23:23]),
.datab(wire_acc_cella_datab[23:23]),
.datac(wire_acc_cella_datac[23:23]),
.ena(clken),
.regout(wire_acc_cella_regout[23:23]),
.sload(sload));
defparam
acc_cella_23.cin_used = "true",
acc_cella_23.lut_mask = "96e8",
acc_cella_23.operation_mode = "arithmetic",
acc_cella_23.sum_lutc_input = "cin",
acc_cella_23.synch_mode = "on",
acc_cella_23.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_24
(
.aclr(aclr),
.cin(wire_acc_cella_23cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_24cout[0:0]),
.dataa(wire_acc_cella_dataa[24:24]),
.datab(wire_acc_cella_datab[24:24]),
.datac(wire_acc_cella_datac[24:24]),
.ena(clken),
.regout(wire_acc_cella_regout[24:24]),
.sload(sload));
defparam
acc_cella_24.cin_used = "true",
acc_cella_24.lut_mask = "96e8",
acc_cella_24.operation_mode = "arithmetic",
acc_cella_24.sum_lutc_input = "cin",
acc_cella_24.synch_mode = "on",
acc_cella_24.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_25
(
.aclr(aclr),
.cin(wire_acc_cella_24cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_25cout[0:0]),
.dataa(wire_acc_cella_dataa[25:25]),
.datab(wire_acc_cella_datab[25:25]),
.datac(wire_acc_cella_datac[25:25]),
.ena(clken),
.regout(wire_acc_cella_regout[25:25]),
.sload(sload));
defparam
acc_cella_25.cin_used = "true",
acc_cella_25.lut_mask = "96e8",
acc_cella_25.operation_mode = "arithmetic",
acc_cella_25.sum_lutc_input = "cin",
acc_cella_25.synch_mode = "on",
acc_cella_25.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_26
(
.aclr(aclr),
.cin(wire_acc_cella_25cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_26cout[0:0]),
.dataa(wire_acc_cella_dataa[26:26]),
.datab(wire_acc_cella_datab[26:26]),
.datac(wire_acc_cella_datac[26:26]),
.ena(clken),
.regout(wire_acc_cella_regout[26:26]),
.sload(sload));
defparam
acc_cella_26.cin_used = "true",
acc_cella_26.lut_mask = "96e8",
acc_cella_26.operation_mode = "arithmetic",
acc_cella_26.sum_lutc_input = "cin",
acc_cella_26.synch_mode = "on",
acc_cella_26.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_27
(
.aclr(aclr),
.cin(wire_acc_cella_26cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_27cout[0:0]),
.dataa(wire_acc_cella_dataa[27:27]),
.datab(wire_acc_cella_datab[27:27]),
.datac(wire_acc_cella_datac[27:27]),
.ena(clken),
.regout(wire_acc_cella_regout[27:27]),
.sload(sload));
defparam
acc_cella_27.cin_used = "true",
acc_cella_27.lut_mask = "96e8",
acc_cella_27.operation_mode = "arithmetic",
acc_cella_27.sum_lutc_input = "cin",
acc_cella_27.synch_mode = "on",
acc_cella_27.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_28
(
.aclr(aclr),
.cin(wire_acc_cella_27cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_28cout[0:0]),
.dataa(wire_acc_cella_dataa[28:28]),
.datab(wire_acc_cella_datab[28:28]),
.datac(wire_acc_cella_datac[28:28]),
.ena(clken),
.regout(wire_acc_cella_regout[28:28]),
.sload(sload));
defparam
acc_cella_28.cin_used = "true",
acc_cella_28.lut_mask = "96e8",
acc_cella_28.operation_mode = "arithmetic",
acc_cella_28.sum_lutc_input = "cin",
acc_cella_28.synch_mode = "on",
acc_cella_28.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_29
(
.aclr(aclr),
.cin(wire_acc_cella_28cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_29cout[0:0]),
.dataa(wire_acc_cella_dataa[29:29]),
.datab(wire_acc_cella_datab[29:29]),
.datac(wire_acc_cella_datac[29:29]),
.ena(clken),
.regout(wire_acc_cella_regout[29:29]),
.sload(sload));
defparam
acc_cella_29.cin_used = "true",
acc_cella_29.lut_mask = "96e8",
acc_cella_29.operation_mode = "arithmetic",
acc_cella_29.sum_lutc_input = "cin",
acc_cella_29.synch_mode = "on",
acc_cella_29.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_30
(
.aclr(aclr),
.cin(wire_acc_cella_29cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_30cout[0:0]),
.dataa(wire_acc_cella_dataa[30:30]),
.datab(wire_acc_cella_datab[30:30]),
.datac(wire_acc_cella_datac[30:30]),
.ena(clken),
.regout(wire_acc_cella_regout[30:30]),
.sload(sload));
defparam
acc_cella_30.cin_used = "true",
acc_cella_30.lut_mask = "96e8",
acc_cella_30.operation_mode = "arithmetic",
acc_cella_30.sum_lutc_input = "cin",
acc_cella_30.synch_mode = "on",
acc_cella_30.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_31
(
.aclr(aclr),
.cin(wire_acc_cella_30cout[0:0]),
.clk(clock),
.dataa(wire_acc_cella_dataa[31:31]),
.datab(wire_acc_cella_datab[31:31]),
.datac(wire_acc_cella_datac[31:31]),
.ena(clken),
.regout(wire_acc_cella_regout[31:31]),
.sload(sload));
defparam
acc_cella_31.cin_used = "true",
acc_cella_31.lut_mask = "9696",
acc_cella_31.operation_mode = "normal",
acc_cella_31.sum_lutc_input = "cin",
acc_cella_31.synch_mode = "on",
acc_cella_31.lpm_type = "stratix_lcell";
assign
wire_acc_cella_dataa = data,
wire_acc_cella_datab = wire_acc_cella_regout,
wire_acc_cella_datac = data;
assign
result = wire_acc_cella_regout,
sload = 1'b0;
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
accum32_accum_nta accum32_accum_nta_component (
.clken (clken),
.aclr (aclr),
.clock (clock),
.data (data),
.result (sub_wire0));
endmodule
|
module accum32_accum_nta
(
aclr,
clken,
clock,
data,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clken;
input clock;
input [31:0] data;
output [31:0] result;
wire [0:0] wire_acc_cella_0cout;
wire [0:0] wire_acc_cella_1cout;
wire [0:0] wire_acc_cella_2cout;
wire [0:0] wire_acc_cella_3cout;
wire [0:0] wire_acc_cella_4cout;
wire [0:0] wire_acc_cella_5cout;
wire [0:0] wire_acc_cella_6cout;
wire [0:0] wire_acc_cella_7cout;
wire [0:0] wire_acc_cella_8cout;
wire [0:0] wire_acc_cella_9cout;
wire [0:0] wire_acc_cella_10cout;
wire [0:0] wire_acc_cella_11cout;
wire [0:0] wire_acc_cella_12cout;
wire [0:0] wire_acc_cella_13cout;
wire [0:0] wire_acc_cella_14cout;
wire [0:0] wire_acc_cella_15cout;
wire [0:0] wire_acc_cella_16cout;
wire [0:0] wire_acc_cella_17cout;
wire [0:0] wire_acc_cella_18cout;
wire [0:0] wire_acc_cella_19cout;
wire [0:0] wire_acc_cella_20cout;
wire [0:0] wire_acc_cella_21cout;
wire [0:0] wire_acc_cella_22cout;
wire [0:0] wire_acc_cella_23cout;
wire [0:0] wire_acc_cella_24cout;
wire [0:0] wire_acc_cella_25cout;
wire [0:0] wire_acc_cella_26cout;
wire [0:0] wire_acc_cella_27cout;
wire [0:0] wire_acc_cella_28cout;
wire [0:0] wire_acc_cella_29cout;
wire [0:0] wire_acc_cella_30cout;
wire [31:0] wire_acc_cella_dataa;
wire [31:0] wire_acc_cella_datab;
wire [31:0] wire_acc_cella_datac;
wire [31:0] wire_acc_cella_regout;
wire sload;
stratix_lcell acc_cella_0
(
.aclr(aclr),
.cin(1'b0),
.clk(clock),
.cout(wire_acc_cella_0cout[0:0]),
.dataa(wire_acc_cella_dataa[0:0]),
.datab(wire_acc_cella_datab[0:0]),
.datac(wire_acc_cella_datac[0:0]),
.ena(clken),
.regout(wire_acc_cella_regout[0:0]),
.sload(sload));
defparam
acc_cella_0.cin_used = "true",
acc_cella_0.lut_mask = "96e8",
acc_cella_0.operation_mode = "arithmetic",
acc_cella_0.sum_lutc_input = "cin",
acc_cella_0.synch_mode = "on",
acc_cella_0.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_1
(
.aclr(aclr),
.cin(wire_acc_cella_0cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_1cout[0:0]),
.dataa(wire_acc_cella_dataa[1:1]),
.datab(wire_acc_cella_datab[1:1]),
.datac(wire_acc_cella_datac[1:1]),
.ena(clken),
.regout(wire_acc_cella_regout[1:1]),
.sload(sload));
defparam
acc_cella_1.cin_used = "true",
acc_cella_1.lut_mask = "96e8",
acc_cella_1.operation_mode = "arithmetic",
acc_cella_1.sum_lutc_input = "cin",
acc_cella_1.synch_mode = "on",
acc_cella_1.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_2
(
.aclr(aclr),
.cin(wire_acc_cella_1cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_2cout[0:0]),
.dataa(wire_acc_cella_dataa[2:2]),
.datab(wire_acc_cella_datab[2:2]),
.datac(wire_acc_cella_datac[2:2]),
.ena(clken),
.regout(wire_acc_cella_regout[2:2]),
.sload(sload));
defparam
acc_cella_2.cin_used = "true",
acc_cella_2.lut_mask = "96e8",
acc_cella_2.operation_mode = "arithmetic",
acc_cella_2.sum_lutc_input = "cin",
acc_cella_2.synch_mode = "on",
acc_cella_2.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_3
(
.aclr(aclr),
.cin(wire_acc_cella_2cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_3cout[0:0]),
.dataa(wire_acc_cella_dataa[3:3]),
.datab(wire_acc_cella_datab[3:3]),
.datac(wire_acc_cella_datac[3:3]),
.ena(clken),
.regout(wire_acc_cella_regout[3:3]),
.sload(sload));
defparam
acc_cella_3.cin_used = "true",
acc_cella_3.lut_mask = "96e8",
acc_cella_3.operation_mode = "arithmetic",
acc_cella_3.sum_lutc_input = "cin",
acc_cella_3.synch_mode = "on",
acc_cella_3.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_4
(
.aclr(aclr),
.cin(wire_acc_cella_3cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_4cout[0:0]),
.dataa(wire_acc_cella_dataa[4:4]),
.datab(wire_acc_cella_datab[4:4]),
.datac(wire_acc_cella_datac[4:4]),
.ena(clken),
.regout(wire_acc_cella_regout[4:4]),
.sload(sload));
defparam
acc_cella_4.cin_used = "true",
acc_cella_4.lut_mask = "96e8",
acc_cella_4.operation_mode = "arithmetic",
acc_cella_4.sum_lutc_input = "cin",
acc_cella_4.synch_mode = "on",
acc_cella_4.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_5
(
.aclr(aclr),
.cin(wire_acc_cella_4cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_5cout[0:0]),
.dataa(wire_acc_cella_dataa[5:5]),
.datab(wire_acc_cella_datab[5:5]),
.datac(wire_acc_cella_datac[5:5]),
.ena(clken),
.regout(wire_acc_cella_regout[5:5]),
.sload(sload));
defparam
acc_cella_5.cin_used = "true",
acc_cella_5.lut_mask = "96e8",
acc_cella_5.operation_mode = "arithmetic",
acc_cella_5.sum_lutc_input = "cin",
acc_cella_5.synch_mode = "on",
acc_cella_5.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_6
(
.aclr(aclr),
.cin(wire_acc_cella_5cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_6cout[0:0]),
.dataa(wire_acc_cella_dataa[6:6]),
.datab(wire_acc_cella_datab[6:6]),
.datac(wire_acc_cella_datac[6:6]),
.ena(clken),
.regout(wire_acc_cella_regout[6:6]),
.sload(sload));
defparam
acc_cella_6.cin_used = "true",
acc_cella_6.lut_mask = "96e8",
acc_cella_6.operation_mode = "arithmetic",
acc_cella_6.sum_lutc_input = "cin",
acc_cella_6.synch_mode = "on",
acc_cella_6.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_7
(
.aclr(aclr),
.cin(wire_acc_cella_6cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_7cout[0:0]),
.dataa(wire_acc_cella_dataa[7:7]),
.datab(wire_acc_cella_datab[7:7]),
.datac(wire_acc_cella_datac[7:7]),
.ena(clken),
.regout(wire_acc_cella_regout[7:7]),
.sload(sload));
defparam
acc_cella_7.cin_used = "true",
acc_cella_7.lut_mask = "96e8",
acc_cella_7.operation_mode = "arithmetic",
acc_cella_7.sum_lutc_input = "cin",
acc_cella_7.synch_mode = "on",
acc_cella_7.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_8
(
.aclr(aclr),
.cin(wire_acc_cella_7cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_8cout[0:0]),
.dataa(wire_acc_cella_dataa[8:8]),
.datab(wire_acc_cella_datab[8:8]),
.datac(wire_acc_cella_datac[8:8]),
.ena(clken),
.regout(wire_acc_cella_regout[8:8]),
.sload(sload));
defparam
acc_cella_8.cin_used = "true",
acc_cella_8.lut_mask = "96e8",
acc_cella_8.operation_mode = "arithmetic",
acc_cella_8.sum_lutc_input = "cin",
acc_cella_8.synch_mode = "on",
acc_cella_8.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_9
(
.aclr(aclr),
.cin(wire_acc_cella_8cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_9cout[0:0]),
.dataa(wire_acc_cella_dataa[9:9]),
.datab(wire_acc_cella_datab[9:9]),
.datac(wire_acc_cella_datac[9:9]),
.ena(clken),
.regout(wire_acc_cella_regout[9:9]),
.sload(sload));
defparam
acc_cella_9.cin_used = "true",
acc_cella_9.lut_mask = "96e8",
acc_cella_9.operation_mode = "arithmetic",
acc_cella_9.sum_lutc_input = "cin",
acc_cella_9.synch_mode = "on",
acc_cella_9.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_10
(
.aclr(aclr),
.cin(wire_acc_cella_9cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_10cout[0:0]),
.dataa(wire_acc_cella_dataa[10:10]),
.datab(wire_acc_cella_datab[10:10]),
.datac(wire_acc_cella_datac[10:10]),
.ena(clken),
.regout(wire_acc_cella_regout[10:10]),
.sload(sload));
defparam
acc_cella_10.cin_used = "true",
acc_cella_10.lut_mask = "96e8",
acc_cella_10.operation_mode = "arithmetic",
acc_cella_10.sum_lutc_input = "cin",
acc_cella_10.synch_mode = "on",
acc_cella_10.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_11
(
.aclr(aclr),
.cin(wire_acc_cella_10cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_11cout[0:0]),
.dataa(wire_acc_cella_dataa[11:11]),
.datab(wire_acc_cella_datab[11:11]),
.datac(wire_acc_cella_datac[11:11]),
.ena(clken),
.regout(wire_acc_cella_regout[11:11]),
.sload(sload));
defparam
acc_cella_11.cin_used = "true",
acc_cella_11.lut_mask = "96e8",
acc_cella_11.operation_mode = "arithmetic",
acc_cella_11.sum_lutc_input = "cin",
acc_cella_11.synch_mode = "on",
acc_cella_11.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_12
(
.aclr(aclr),
.cin(wire_acc_cella_11cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_12cout[0:0]),
.dataa(wire_acc_cella_dataa[12:12]),
.datab(wire_acc_cella_datab[12:12]),
.datac(wire_acc_cella_datac[12:12]),
.ena(clken),
.regout(wire_acc_cella_regout[12:12]),
.sload(sload));
defparam
acc_cella_12.cin_used = "true",
acc_cella_12.lut_mask = "96e8",
acc_cella_12.operation_mode = "arithmetic",
acc_cella_12.sum_lutc_input = "cin",
acc_cella_12.synch_mode = "on",
acc_cella_12.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_13
(
.aclr(aclr),
.cin(wire_acc_cella_12cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_13cout[0:0]),
.dataa(wire_acc_cella_dataa[13:13]),
.datab(wire_acc_cella_datab[13:13]),
.datac(wire_acc_cella_datac[13:13]),
.ena(clken),
.regout(wire_acc_cella_regout[13:13]),
.sload(sload));
defparam
acc_cella_13.cin_used = "true",
acc_cella_13.lut_mask = "96e8",
acc_cella_13.operation_mode = "arithmetic",
acc_cella_13.sum_lutc_input = "cin",
acc_cella_13.synch_mode = "on",
acc_cella_13.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_14
(
.aclr(aclr),
.cin(wire_acc_cella_13cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_14cout[0:0]),
.dataa(wire_acc_cella_dataa[14:14]),
.datab(wire_acc_cella_datab[14:14]),
.datac(wire_acc_cella_datac[14:14]),
.ena(clken),
.regout(wire_acc_cella_regout[14:14]),
.sload(sload));
defparam
acc_cella_14.cin_used = "true",
acc_cella_14.lut_mask = "96e8",
acc_cella_14.operation_mode = "arithmetic",
acc_cella_14.sum_lutc_input = "cin",
acc_cella_14.synch_mode = "on",
acc_cella_14.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_15
(
.aclr(aclr),
.cin(wire_acc_cella_14cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_15cout[0:0]),
.dataa(wire_acc_cella_dataa[15:15]),
.datab(wire_acc_cella_datab[15:15]),
.datac(wire_acc_cella_datac[15:15]),
.ena(clken),
.regout(wire_acc_cella_regout[15:15]),
.sload(sload));
defparam
acc_cella_15.cin_used = "true",
acc_cella_15.lut_mask = "96e8",
acc_cella_15.operation_mode = "arithmetic",
acc_cella_15.sum_lutc_input = "cin",
acc_cella_15.synch_mode = "on",
acc_cella_15.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_16
(
.aclr(aclr),
.cin(wire_acc_cella_15cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_16cout[0:0]),
.dataa(wire_acc_cella_dataa[16:16]),
.datab(wire_acc_cella_datab[16:16]),
.datac(wire_acc_cella_datac[16:16]),
.ena(clken),
.regout(wire_acc_cella_regout[16:16]),
.sload(sload));
defparam
acc_cella_16.cin_used = "true",
acc_cella_16.lut_mask = "96e8",
acc_cella_16.operation_mode = "arithmetic",
acc_cella_16.sum_lutc_input = "cin",
acc_cella_16.synch_mode = "on",
acc_cella_16.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_17
(
.aclr(aclr),
.cin(wire_acc_cella_16cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_17cout[0:0]),
.dataa(wire_acc_cella_dataa[17:17]),
.datab(wire_acc_cella_datab[17:17]),
.datac(wire_acc_cella_datac[17:17]),
.ena(clken),
.regout(wire_acc_cella_regout[17:17]),
.sload(sload));
defparam
acc_cella_17.cin_used = "true",
acc_cella_17.lut_mask = "96e8",
acc_cella_17.operation_mode = "arithmetic",
acc_cella_17.sum_lutc_input = "cin",
acc_cella_17.synch_mode = "on",
acc_cella_17.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_18
(
.aclr(aclr),
.cin(wire_acc_cella_17cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_18cout[0:0]),
.dataa(wire_acc_cella_dataa[18:18]),
.datab(wire_acc_cella_datab[18:18]),
.datac(wire_acc_cella_datac[18:18]),
.ena(clken),
.regout(wire_acc_cella_regout[18:18]),
.sload(sload));
defparam
acc_cella_18.cin_used = "true",
acc_cella_18.lut_mask = "96e8",
acc_cella_18.operation_mode = "arithmetic",
acc_cella_18.sum_lutc_input = "cin",
acc_cella_18.synch_mode = "on",
acc_cella_18.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_19
(
.aclr(aclr),
.cin(wire_acc_cella_18cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_19cout[0:0]),
.dataa(wire_acc_cella_dataa[19:19]),
.datab(wire_acc_cella_datab[19:19]),
.datac(wire_acc_cella_datac[19:19]),
.ena(clken),
.regout(wire_acc_cella_regout[19:19]),
.sload(sload));
defparam
acc_cella_19.cin_used = "true",
acc_cella_19.lut_mask = "96e8",
acc_cella_19.operation_mode = "arithmetic",
acc_cella_19.sum_lutc_input = "cin",
acc_cella_19.synch_mode = "on",
acc_cella_19.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_20
(
.aclr(aclr),
.cin(wire_acc_cella_19cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_20cout[0:0]),
.dataa(wire_acc_cella_dataa[20:20]),
.datab(wire_acc_cella_datab[20:20]),
.datac(wire_acc_cella_datac[20:20]),
.ena(clken),
.regout(wire_acc_cella_regout[20:20]),
.sload(sload));
defparam
acc_cella_20.cin_used = "true",
acc_cella_20.lut_mask = "96e8",
acc_cella_20.operation_mode = "arithmetic",
acc_cella_20.sum_lutc_input = "cin",
acc_cella_20.synch_mode = "on",
acc_cella_20.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_21
(
.aclr(aclr),
.cin(wire_acc_cella_20cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_21cout[0:0]),
.dataa(wire_acc_cella_dataa[21:21]),
.datab(wire_acc_cella_datab[21:21]),
.datac(wire_acc_cella_datac[21:21]),
.ena(clken),
.regout(wire_acc_cella_regout[21:21]),
.sload(sload));
defparam
acc_cella_21.cin_used = "true",
acc_cella_21.lut_mask = "96e8",
acc_cella_21.operation_mode = "arithmetic",
acc_cella_21.sum_lutc_input = "cin",
acc_cella_21.synch_mode = "on",
acc_cella_21.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_22
(
.aclr(aclr),
.cin(wire_acc_cella_21cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_22cout[0:0]),
.dataa(wire_acc_cella_dataa[22:22]),
.datab(wire_acc_cella_datab[22:22]),
.datac(wire_acc_cella_datac[22:22]),
.ena(clken),
.regout(wire_acc_cella_regout[22:22]),
.sload(sload));
defparam
acc_cella_22.cin_used = "true",
acc_cella_22.lut_mask = "96e8",
acc_cella_22.operation_mode = "arithmetic",
acc_cella_22.sum_lutc_input = "cin",
acc_cella_22.synch_mode = "on",
acc_cella_22.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_23
(
.aclr(aclr),
.cin(wire_acc_cella_22cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_23cout[0:0]),
.dataa(wire_acc_cella_dataa[23:23]),
.datab(wire_acc_cella_datab[23:23]),
.datac(wire_acc_cella_datac[23:23]),
.ena(clken),
.regout(wire_acc_cella_regout[23:23]),
.sload(sload));
defparam
acc_cella_23.cin_used = "true",
acc_cella_23.lut_mask = "96e8",
acc_cella_23.operation_mode = "arithmetic",
acc_cella_23.sum_lutc_input = "cin",
acc_cella_23.synch_mode = "on",
acc_cella_23.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_24
(
.aclr(aclr),
.cin(wire_acc_cella_23cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_24cout[0:0]),
.dataa(wire_acc_cella_dataa[24:24]),
.datab(wire_acc_cella_datab[24:24]),
.datac(wire_acc_cella_datac[24:24]),
.ena(clken),
.regout(wire_acc_cella_regout[24:24]),
.sload(sload));
defparam
acc_cella_24.cin_used = "true",
acc_cella_24.lut_mask = "96e8",
acc_cella_24.operation_mode = "arithmetic",
acc_cella_24.sum_lutc_input = "cin",
acc_cella_24.synch_mode = "on",
acc_cella_24.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_25
(
.aclr(aclr),
.cin(wire_acc_cella_24cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_25cout[0:0]),
.dataa(wire_acc_cella_dataa[25:25]),
.datab(wire_acc_cella_datab[25:25]),
.datac(wire_acc_cella_datac[25:25]),
.ena(clken),
.regout(wire_acc_cella_regout[25:25]),
.sload(sload));
defparam
acc_cella_25.cin_used = "true",
acc_cella_25.lut_mask = "96e8",
acc_cella_25.operation_mode = "arithmetic",
acc_cella_25.sum_lutc_input = "cin",
acc_cella_25.synch_mode = "on",
acc_cella_25.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_26
(
.aclr(aclr),
.cin(wire_acc_cella_25cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_26cout[0:0]),
.dataa(wire_acc_cella_dataa[26:26]),
.datab(wire_acc_cella_datab[26:26]),
.datac(wire_acc_cella_datac[26:26]),
.ena(clken),
.regout(wire_acc_cella_regout[26:26]),
.sload(sload));
defparam
acc_cella_26.cin_used = "true",
acc_cella_26.lut_mask = "96e8",
acc_cella_26.operation_mode = "arithmetic",
acc_cella_26.sum_lutc_input = "cin",
acc_cella_26.synch_mode = "on",
acc_cella_26.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_27
(
.aclr(aclr),
.cin(wire_acc_cella_26cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_27cout[0:0]),
.dataa(wire_acc_cella_dataa[27:27]),
.datab(wire_acc_cella_datab[27:27]),
.datac(wire_acc_cella_datac[27:27]),
.ena(clken),
.regout(wire_acc_cella_regout[27:27]),
.sload(sload));
defparam
acc_cella_27.cin_used = "true",
acc_cella_27.lut_mask = "96e8",
acc_cella_27.operation_mode = "arithmetic",
acc_cella_27.sum_lutc_input = "cin",
acc_cella_27.synch_mode = "on",
acc_cella_27.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_28
(
.aclr(aclr),
.cin(wire_acc_cella_27cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_28cout[0:0]),
.dataa(wire_acc_cella_dataa[28:28]),
.datab(wire_acc_cella_datab[28:28]),
.datac(wire_acc_cella_datac[28:28]),
.ena(clken),
.regout(wire_acc_cella_regout[28:28]),
.sload(sload));
defparam
acc_cella_28.cin_used = "true",
acc_cella_28.lut_mask = "96e8",
acc_cella_28.operation_mode = "arithmetic",
acc_cella_28.sum_lutc_input = "cin",
acc_cella_28.synch_mode = "on",
acc_cella_28.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_29
(
.aclr(aclr),
.cin(wire_acc_cella_28cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_29cout[0:0]),
.dataa(wire_acc_cella_dataa[29:29]),
.datab(wire_acc_cella_datab[29:29]),
.datac(wire_acc_cella_datac[29:29]),
.ena(clken),
.regout(wire_acc_cella_regout[29:29]),
.sload(sload));
defparam
acc_cella_29.cin_used = "true",
acc_cella_29.lut_mask = "96e8",
acc_cella_29.operation_mode = "arithmetic",
acc_cella_29.sum_lutc_input = "cin",
acc_cella_29.synch_mode = "on",
acc_cella_29.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_30
(
.aclr(aclr),
.cin(wire_acc_cella_29cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_30cout[0:0]),
.dataa(wire_acc_cella_dataa[30:30]),
.datab(wire_acc_cella_datab[30:30]),
.datac(wire_acc_cella_datac[30:30]),
.ena(clken),
.regout(wire_acc_cella_regout[30:30]),
.sload(sload));
defparam
acc_cella_30.cin_used = "true",
acc_cella_30.lut_mask = "96e8",
acc_cella_30.operation_mode = "arithmetic",
acc_cella_30.sum_lutc_input = "cin",
acc_cella_30.synch_mode = "on",
acc_cella_30.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_31
(
.aclr(aclr),
.cin(wire_acc_cella_30cout[0:0]),
.clk(clock),
.dataa(wire_acc_cella_dataa[31:31]),
.datab(wire_acc_cella_datab[31:31]),
.datac(wire_acc_cella_datac[31:31]),
.ena(clken),
.regout(wire_acc_cella_regout[31:31]),
.sload(sload));
defparam
acc_cella_31.cin_used = "true",
acc_cella_31.lut_mask = "9696",
acc_cella_31.operation_mode = "normal",
acc_cella_31.sum_lutc_input = "cin",
acc_cella_31.synch_mode = "on",
acc_cella_31.lpm_type = "stratix_lcell";
assign
wire_acc_cella_dataa = data,
wire_acc_cella_datab = wire_acc_cella_regout,
wire_acc_cella_datac = data;
assign
result = wire_acc_cella_regout,
sload = 1'b0;
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
accum32_accum_nta accum32_accum_nta_component (
.clken (clken),
.aclr (aclr),
.clock (clock),
.data (data),
.result (sub_wire0));
endmodule
|
module accum32_accum_nta
(
aclr,
clken,
clock,
data,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clken;
input clock;
input [31:0] data;
output [31:0] result;
wire [0:0] wire_acc_cella_0cout;
wire [0:0] wire_acc_cella_1cout;
wire [0:0] wire_acc_cella_2cout;
wire [0:0] wire_acc_cella_3cout;
wire [0:0] wire_acc_cella_4cout;
wire [0:0] wire_acc_cella_5cout;
wire [0:0] wire_acc_cella_6cout;
wire [0:0] wire_acc_cella_7cout;
wire [0:0] wire_acc_cella_8cout;
wire [0:0] wire_acc_cella_9cout;
wire [0:0] wire_acc_cella_10cout;
wire [0:0] wire_acc_cella_11cout;
wire [0:0] wire_acc_cella_12cout;
wire [0:0] wire_acc_cella_13cout;
wire [0:0] wire_acc_cella_14cout;
wire [0:0] wire_acc_cella_15cout;
wire [0:0] wire_acc_cella_16cout;
wire [0:0] wire_acc_cella_17cout;
wire [0:0] wire_acc_cella_18cout;
wire [0:0] wire_acc_cella_19cout;
wire [0:0] wire_acc_cella_20cout;
wire [0:0] wire_acc_cella_21cout;
wire [0:0] wire_acc_cella_22cout;
wire [0:0] wire_acc_cella_23cout;
wire [0:0] wire_acc_cella_24cout;
wire [0:0] wire_acc_cella_25cout;
wire [0:0] wire_acc_cella_26cout;
wire [0:0] wire_acc_cella_27cout;
wire [0:0] wire_acc_cella_28cout;
wire [0:0] wire_acc_cella_29cout;
wire [0:0] wire_acc_cella_30cout;
wire [31:0] wire_acc_cella_dataa;
wire [31:0] wire_acc_cella_datab;
wire [31:0] wire_acc_cella_datac;
wire [31:0] wire_acc_cella_regout;
wire sload;
stratix_lcell acc_cella_0
(
.aclr(aclr),
.cin(1'b0),
.clk(clock),
.cout(wire_acc_cella_0cout[0:0]),
.dataa(wire_acc_cella_dataa[0:0]),
.datab(wire_acc_cella_datab[0:0]),
.datac(wire_acc_cella_datac[0:0]),
.ena(clken),
.regout(wire_acc_cella_regout[0:0]),
.sload(sload));
defparam
acc_cella_0.cin_used = "true",
acc_cella_0.lut_mask = "96e8",
acc_cella_0.operation_mode = "arithmetic",
acc_cella_0.sum_lutc_input = "cin",
acc_cella_0.synch_mode = "on",
acc_cella_0.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_1
(
.aclr(aclr),
.cin(wire_acc_cella_0cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_1cout[0:0]),
.dataa(wire_acc_cella_dataa[1:1]),
.datab(wire_acc_cella_datab[1:1]),
.datac(wire_acc_cella_datac[1:1]),
.ena(clken),
.regout(wire_acc_cella_regout[1:1]),
.sload(sload));
defparam
acc_cella_1.cin_used = "true",
acc_cella_1.lut_mask = "96e8",
acc_cella_1.operation_mode = "arithmetic",
acc_cella_1.sum_lutc_input = "cin",
acc_cella_1.synch_mode = "on",
acc_cella_1.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_2
(
.aclr(aclr),
.cin(wire_acc_cella_1cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_2cout[0:0]),
.dataa(wire_acc_cella_dataa[2:2]),
.datab(wire_acc_cella_datab[2:2]),
.datac(wire_acc_cella_datac[2:2]),
.ena(clken),
.regout(wire_acc_cella_regout[2:2]),
.sload(sload));
defparam
acc_cella_2.cin_used = "true",
acc_cella_2.lut_mask = "96e8",
acc_cella_2.operation_mode = "arithmetic",
acc_cella_2.sum_lutc_input = "cin",
acc_cella_2.synch_mode = "on",
acc_cella_2.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_3
(
.aclr(aclr),
.cin(wire_acc_cella_2cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_3cout[0:0]),
.dataa(wire_acc_cella_dataa[3:3]),
.datab(wire_acc_cella_datab[3:3]),
.datac(wire_acc_cella_datac[3:3]),
.ena(clken),
.regout(wire_acc_cella_regout[3:3]),
.sload(sload));
defparam
acc_cella_3.cin_used = "true",
acc_cella_3.lut_mask = "96e8",
acc_cella_3.operation_mode = "arithmetic",
acc_cella_3.sum_lutc_input = "cin",
acc_cella_3.synch_mode = "on",
acc_cella_3.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_4
(
.aclr(aclr),
.cin(wire_acc_cella_3cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_4cout[0:0]),
.dataa(wire_acc_cella_dataa[4:4]),
.datab(wire_acc_cella_datab[4:4]),
.datac(wire_acc_cella_datac[4:4]),
.ena(clken),
.regout(wire_acc_cella_regout[4:4]),
.sload(sload));
defparam
acc_cella_4.cin_used = "true",
acc_cella_4.lut_mask = "96e8",
acc_cella_4.operation_mode = "arithmetic",
acc_cella_4.sum_lutc_input = "cin",
acc_cella_4.synch_mode = "on",
acc_cella_4.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_5
(
.aclr(aclr),
.cin(wire_acc_cella_4cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_5cout[0:0]),
.dataa(wire_acc_cella_dataa[5:5]),
.datab(wire_acc_cella_datab[5:5]),
.datac(wire_acc_cella_datac[5:5]),
.ena(clken),
.regout(wire_acc_cella_regout[5:5]),
.sload(sload));
defparam
acc_cella_5.cin_used = "true",
acc_cella_5.lut_mask = "96e8",
acc_cella_5.operation_mode = "arithmetic",
acc_cella_5.sum_lutc_input = "cin",
acc_cella_5.synch_mode = "on",
acc_cella_5.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_6
(
.aclr(aclr),
.cin(wire_acc_cella_5cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_6cout[0:0]),
.dataa(wire_acc_cella_dataa[6:6]),
.datab(wire_acc_cella_datab[6:6]),
.datac(wire_acc_cella_datac[6:6]),
.ena(clken),
.regout(wire_acc_cella_regout[6:6]),
.sload(sload));
defparam
acc_cella_6.cin_used = "true",
acc_cella_6.lut_mask = "96e8",
acc_cella_6.operation_mode = "arithmetic",
acc_cella_6.sum_lutc_input = "cin",
acc_cella_6.synch_mode = "on",
acc_cella_6.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_7
(
.aclr(aclr),
.cin(wire_acc_cella_6cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_7cout[0:0]),
.dataa(wire_acc_cella_dataa[7:7]),
.datab(wire_acc_cella_datab[7:7]),
.datac(wire_acc_cella_datac[7:7]),
.ena(clken),
.regout(wire_acc_cella_regout[7:7]),
.sload(sload));
defparam
acc_cella_7.cin_used = "true",
acc_cella_7.lut_mask = "96e8",
acc_cella_7.operation_mode = "arithmetic",
acc_cella_7.sum_lutc_input = "cin",
acc_cella_7.synch_mode = "on",
acc_cella_7.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_8
(
.aclr(aclr),
.cin(wire_acc_cella_7cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_8cout[0:0]),
.dataa(wire_acc_cella_dataa[8:8]),
.datab(wire_acc_cella_datab[8:8]),
.datac(wire_acc_cella_datac[8:8]),
.ena(clken),
.regout(wire_acc_cella_regout[8:8]),
.sload(sload));
defparam
acc_cella_8.cin_used = "true",
acc_cella_8.lut_mask = "96e8",
acc_cella_8.operation_mode = "arithmetic",
acc_cella_8.sum_lutc_input = "cin",
acc_cella_8.synch_mode = "on",
acc_cella_8.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_9
(
.aclr(aclr),
.cin(wire_acc_cella_8cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_9cout[0:0]),
.dataa(wire_acc_cella_dataa[9:9]),
.datab(wire_acc_cella_datab[9:9]),
.datac(wire_acc_cella_datac[9:9]),
.ena(clken),
.regout(wire_acc_cella_regout[9:9]),
.sload(sload));
defparam
acc_cella_9.cin_used = "true",
acc_cella_9.lut_mask = "96e8",
acc_cella_9.operation_mode = "arithmetic",
acc_cella_9.sum_lutc_input = "cin",
acc_cella_9.synch_mode = "on",
acc_cella_9.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_10
(
.aclr(aclr),
.cin(wire_acc_cella_9cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_10cout[0:0]),
.dataa(wire_acc_cella_dataa[10:10]),
.datab(wire_acc_cella_datab[10:10]),
.datac(wire_acc_cella_datac[10:10]),
.ena(clken),
.regout(wire_acc_cella_regout[10:10]),
.sload(sload));
defparam
acc_cella_10.cin_used = "true",
acc_cella_10.lut_mask = "96e8",
acc_cella_10.operation_mode = "arithmetic",
acc_cella_10.sum_lutc_input = "cin",
acc_cella_10.synch_mode = "on",
acc_cella_10.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_11
(
.aclr(aclr),
.cin(wire_acc_cella_10cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_11cout[0:0]),
.dataa(wire_acc_cella_dataa[11:11]),
.datab(wire_acc_cella_datab[11:11]),
.datac(wire_acc_cella_datac[11:11]),
.ena(clken),
.regout(wire_acc_cella_regout[11:11]),
.sload(sload));
defparam
acc_cella_11.cin_used = "true",
acc_cella_11.lut_mask = "96e8",
acc_cella_11.operation_mode = "arithmetic",
acc_cella_11.sum_lutc_input = "cin",
acc_cella_11.synch_mode = "on",
acc_cella_11.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_12
(
.aclr(aclr),
.cin(wire_acc_cella_11cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_12cout[0:0]),
.dataa(wire_acc_cella_dataa[12:12]),
.datab(wire_acc_cella_datab[12:12]),
.datac(wire_acc_cella_datac[12:12]),
.ena(clken),
.regout(wire_acc_cella_regout[12:12]),
.sload(sload));
defparam
acc_cella_12.cin_used = "true",
acc_cella_12.lut_mask = "96e8",
acc_cella_12.operation_mode = "arithmetic",
acc_cella_12.sum_lutc_input = "cin",
acc_cella_12.synch_mode = "on",
acc_cella_12.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_13
(
.aclr(aclr),
.cin(wire_acc_cella_12cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_13cout[0:0]),
.dataa(wire_acc_cella_dataa[13:13]),
.datab(wire_acc_cella_datab[13:13]),
.datac(wire_acc_cella_datac[13:13]),
.ena(clken),
.regout(wire_acc_cella_regout[13:13]),
.sload(sload));
defparam
acc_cella_13.cin_used = "true",
acc_cella_13.lut_mask = "96e8",
acc_cella_13.operation_mode = "arithmetic",
acc_cella_13.sum_lutc_input = "cin",
acc_cella_13.synch_mode = "on",
acc_cella_13.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_14
(
.aclr(aclr),
.cin(wire_acc_cella_13cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_14cout[0:0]),
.dataa(wire_acc_cella_dataa[14:14]),
.datab(wire_acc_cella_datab[14:14]),
.datac(wire_acc_cella_datac[14:14]),
.ena(clken),
.regout(wire_acc_cella_regout[14:14]),
.sload(sload));
defparam
acc_cella_14.cin_used = "true",
acc_cella_14.lut_mask = "96e8",
acc_cella_14.operation_mode = "arithmetic",
acc_cella_14.sum_lutc_input = "cin",
acc_cella_14.synch_mode = "on",
acc_cella_14.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_15
(
.aclr(aclr),
.cin(wire_acc_cella_14cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_15cout[0:0]),
.dataa(wire_acc_cella_dataa[15:15]),
.datab(wire_acc_cella_datab[15:15]),
.datac(wire_acc_cella_datac[15:15]),
.ena(clken),
.regout(wire_acc_cella_regout[15:15]),
.sload(sload));
defparam
acc_cella_15.cin_used = "true",
acc_cella_15.lut_mask = "96e8",
acc_cella_15.operation_mode = "arithmetic",
acc_cella_15.sum_lutc_input = "cin",
acc_cella_15.synch_mode = "on",
acc_cella_15.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_16
(
.aclr(aclr),
.cin(wire_acc_cella_15cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_16cout[0:0]),
.dataa(wire_acc_cella_dataa[16:16]),
.datab(wire_acc_cella_datab[16:16]),
.datac(wire_acc_cella_datac[16:16]),
.ena(clken),
.regout(wire_acc_cella_regout[16:16]),
.sload(sload));
defparam
acc_cella_16.cin_used = "true",
acc_cella_16.lut_mask = "96e8",
acc_cella_16.operation_mode = "arithmetic",
acc_cella_16.sum_lutc_input = "cin",
acc_cella_16.synch_mode = "on",
acc_cella_16.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_17
(
.aclr(aclr),
.cin(wire_acc_cella_16cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_17cout[0:0]),
.dataa(wire_acc_cella_dataa[17:17]),
.datab(wire_acc_cella_datab[17:17]),
.datac(wire_acc_cella_datac[17:17]),
.ena(clken),
.regout(wire_acc_cella_regout[17:17]),
.sload(sload));
defparam
acc_cella_17.cin_used = "true",
acc_cella_17.lut_mask = "96e8",
acc_cella_17.operation_mode = "arithmetic",
acc_cella_17.sum_lutc_input = "cin",
acc_cella_17.synch_mode = "on",
acc_cella_17.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_18
(
.aclr(aclr),
.cin(wire_acc_cella_17cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_18cout[0:0]),
.dataa(wire_acc_cella_dataa[18:18]),
.datab(wire_acc_cella_datab[18:18]),
.datac(wire_acc_cella_datac[18:18]),
.ena(clken),
.regout(wire_acc_cella_regout[18:18]),
.sload(sload));
defparam
acc_cella_18.cin_used = "true",
acc_cella_18.lut_mask = "96e8",
acc_cella_18.operation_mode = "arithmetic",
acc_cella_18.sum_lutc_input = "cin",
acc_cella_18.synch_mode = "on",
acc_cella_18.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_19
(
.aclr(aclr),
.cin(wire_acc_cella_18cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_19cout[0:0]),
.dataa(wire_acc_cella_dataa[19:19]),
.datab(wire_acc_cella_datab[19:19]),
.datac(wire_acc_cella_datac[19:19]),
.ena(clken),
.regout(wire_acc_cella_regout[19:19]),
.sload(sload));
defparam
acc_cella_19.cin_used = "true",
acc_cella_19.lut_mask = "96e8",
acc_cella_19.operation_mode = "arithmetic",
acc_cella_19.sum_lutc_input = "cin",
acc_cella_19.synch_mode = "on",
acc_cella_19.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_20
(
.aclr(aclr),
.cin(wire_acc_cella_19cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_20cout[0:0]),
.dataa(wire_acc_cella_dataa[20:20]),
.datab(wire_acc_cella_datab[20:20]),
.datac(wire_acc_cella_datac[20:20]),
.ena(clken),
.regout(wire_acc_cella_regout[20:20]),
.sload(sload));
defparam
acc_cella_20.cin_used = "true",
acc_cella_20.lut_mask = "96e8",
acc_cella_20.operation_mode = "arithmetic",
acc_cella_20.sum_lutc_input = "cin",
acc_cella_20.synch_mode = "on",
acc_cella_20.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_21
(
.aclr(aclr),
.cin(wire_acc_cella_20cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_21cout[0:0]),
.dataa(wire_acc_cella_dataa[21:21]),
.datab(wire_acc_cella_datab[21:21]),
.datac(wire_acc_cella_datac[21:21]),
.ena(clken),
.regout(wire_acc_cella_regout[21:21]),
.sload(sload));
defparam
acc_cella_21.cin_used = "true",
acc_cella_21.lut_mask = "96e8",
acc_cella_21.operation_mode = "arithmetic",
acc_cella_21.sum_lutc_input = "cin",
acc_cella_21.synch_mode = "on",
acc_cella_21.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_22
(
.aclr(aclr),
.cin(wire_acc_cella_21cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_22cout[0:0]),
.dataa(wire_acc_cella_dataa[22:22]),
.datab(wire_acc_cella_datab[22:22]),
.datac(wire_acc_cella_datac[22:22]),
.ena(clken),
.regout(wire_acc_cella_regout[22:22]),
.sload(sload));
defparam
acc_cella_22.cin_used = "true",
acc_cella_22.lut_mask = "96e8",
acc_cella_22.operation_mode = "arithmetic",
acc_cella_22.sum_lutc_input = "cin",
acc_cella_22.synch_mode = "on",
acc_cella_22.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_23
(
.aclr(aclr),
.cin(wire_acc_cella_22cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_23cout[0:0]),
.dataa(wire_acc_cella_dataa[23:23]),
.datab(wire_acc_cella_datab[23:23]),
.datac(wire_acc_cella_datac[23:23]),
.ena(clken),
.regout(wire_acc_cella_regout[23:23]),
.sload(sload));
defparam
acc_cella_23.cin_used = "true",
acc_cella_23.lut_mask = "96e8",
acc_cella_23.operation_mode = "arithmetic",
acc_cella_23.sum_lutc_input = "cin",
acc_cella_23.synch_mode = "on",
acc_cella_23.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_24
(
.aclr(aclr),
.cin(wire_acc_cella_23cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_24cout[0:0]),
.dataa(wire_acc_cella_dataa[24:24]),
.datab(wire_acc_cella_datab[24:24]),
.datac(wire_acc_cella_datac[24:24]),
.ena(clken),
.regout(wire_acc_cella_regout[24:24]),
.sload(sload));
defparam
acc_cella_24.cin_used = "true",
acc_cella_24.lut_mask = "96e8",
acc_cella_24.operation_mode = "arithmetic",
acc_cella_24.sum_lutc_input = "cin",
acc_cella_24.synch_mode = "on",
acc_cella_24.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_25
(
.aclr(aclr),
.cin(wire_acc_cella_24cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_25cout[0:0]),
.dataa(wire_acc_cella_dataa[25:25]),
.datab(wire_acc_cella_datab[25:25]),
.datac(wire_acc_cella_datac[25:25]),
.ena(clken),
.regout(wire_acc_cella_regout[25:25]),
.sload(sload));
defparam
acc_cella_25.cin_used = "true",
acc_cella_25.lut_mask = "96e8",
acc_cella_25.operation_mode = "arithmetic",
acc_cella_25.sum_lutc_input = "cin",
acc_cella_25.synch_mode = "on",
acc_cella_25.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_26
(
.aclr(aclr),
.cin(wire_acc_cella_25cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_26cout[0:0]),
.dataa(wire_acc_cella_dataa[26:26]),
.datab(wire_acc_cella_datab[26:26]),
.datac(wire_acc_cella_datac[26:26]),
.ena(clken),
.regout(wire_acc_cella_regout[26:26]),
.sload(sload));
defparam
acc_cella_26.cin_used = "true",
acc_cella_26.lut_mask = "96e8",
acc_cella_26.operation_mode = "arithmetic",
acc_cella_26.sum_lutc_input = "cin",
acc_cella_26.synch_mode = "on",
acc_cella_26.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_27
(
.aclr(aclr),
.cin(wire_acc_cella_26cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_27cout[0:0]),
.dataa(wire_acc_cella_dataa[27:27]),
.datab(wire_acc_cella_datab[27:27]),
.datac(wire_acc_cella_datac[27:27]),
.ena(clken),
.regout(wire_acc_cella_regout[27:27]),
.sload(sload));
defparam
acc_cella_27.cin_used = "true",
acc_cella_27.lut_mask = "96e8",
acc_cella_27.operation_mode = "arithmetic",
acc_cella_27.sum_lutc_input = "cin",
acc_cella_27.synch_mode = "on",
acc_cella_27.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_28
(
.aclr(aclr),
.cin(wire_acc_cella_27cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_28cout[0:0]),
.dataa(wire_acc_cella_dataa[28:28]),
.datab(wire_acc_cella_datab[28:28]),
.datac(wire_acc_cella_datac[28:28]),
.ena(clken),
.regout(wire_acc_cella_regout[28:28]),
.sload(sload));
defparam
acc_cella_28.cin_used = "true",
acc_cella_28.lut_mask = "96e8",
acc_cella_28.operation_mode = "arithmetic",
acc_cella_28.sum_lutc_input = "cin",
acc_cella_28.synch_mode = "on",
acc_cella_28.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_29
(
.aclr(aclr),
.cin(wire_acc_cella_28cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_29cout[0:0]),
.dataa(wire_acc_cella_dataa[29:29]),
.datab(wire_acc_cella_datab[29:29]),
.datac(wire_acc_cella_datac[29:29]),
.ena(clken),
.regout(wire_acc_cella_regout[29:29]),
.sload(sload));
defparam
acc_cella_29.cin_used = "true",
acc_cella_29.lut_mask = "96e8",
acc_cella_29.operation_mode = "arithmetic",
acc_cella_29.sum_lutc_input = "cin",
acc_cella_29.synch_mode = "on",
acc_cella_29.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_30
(
.aclr(aclr),
.cin(wire_acc_cella_29cout[0:0]),
.clk(clock),
.cout(wire_acc_cella_30cout[0:0]),
.dataa(wire_acc_cella_dataa[30:30]),
.datab(wire_acc_cella_datab[30:30]),
.datac(wire_acc_cella_datac[30:30]),
.ena(clken),
.regout(wire_acc_cella_regout[30:30]),
.sload(sload));
defparam
acc_cella_30.cin_used = "true",
acc_cella_30.lut_mask = "96e8",
acc_cella_30.operation_mode = "arithmetic",
acc_cella_30.sum_lutc_input = "cin",
acc_cella_30.synch_mode = "on",
acc_cella_30.lpm_type = "stratix_lcell";
stratix_lcell acc_cella_31
(
.aclr(aclr),
.cin(wire_acc_cella_30cout[0:0]),
.clk(clock),
.dataa(wire_acc_cella_dataa[31:31]),
.datab(wire_acc_cella_datab[31:31]),
.datac(wire_acc_cella_datac[31:31]),
.ena(clken),
.regout(wire_acc_cella_regout[31:31]),
.sload(sload));
defparam
acc_cella_31.cin_used = "true",
acc_cella_31.lut_mask = "9696",
acc_cella_31.operation_mode = "normal",
acc_cella_31.sum_lutc_input = "cin",
acc_cella_31.synch_mode = "on",
acc_cella_31.lpm_type = "stratix_lcell";
assign
wire_acc_cella_dataa = data,
wire_acc_cella_datab = wire_acc_cella_regout,
wire_acc_cella_datac = data;
assign
result = wire_acc_cella_regout,
sload = 1'b0;
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
wire [31:0] sub_wire0;
wire [31:0] result = sub_wire0[31:0];
accum32_accum_nta accum32_accum_nta_component (
.clken (clken),
.aclr (aclr),
.clock (clock),
.data (data),
.result (sub_wire0));
endmodule
|
module spi(
input clk,
input SCK,
input MOSI,
inout MISO,
input SSEL,
output cmd_ready,
output param_ready,
output [7:0] cmd_data,
output [7:0] param_data,
output endmessage,
output startmessage,
input [7:0] input_data,
output [31:0] byte_cnt,
output [2:0] bit_cnt
);
reg [7:0] cmd_data_r;
reg [7:0] param_data_r;
reg [2:0] SSELr;
reg [2:0] SSELSCKr;
always @(posedge clk) SSELr <= {SSELr[1:0], SSEL};
always @(posedge SCK) SSELSCKr <= {SSELSCKr[1:0], SSEL};
wire SSEL_inactive = SSELr[1];
wire SSEL_active = ~SSELr[1]; // SSEL is active low
wire SSEL_startmessage = (SSELr[2:1]==2'b10); // message starts at falling edge
wire SSEL_endmessage = (SSELr[2:1]==2'b01); // message stops at rising edge
assign endmessage = SSEL_endmessage;
assign startmessage = SSEL_startmessage;
// bit count for one SPI byte + byte count for the message
reg [2:0] bitcnt;
initial bitcnt = 3'b000;
wire bitcnt_msb = bitcnt[2];
reg [2:0] bitcnt_wrap_r;
always @(posedge clk) bitcnt_wrap_r <= {bitcnt_wrap_r[1:0], bitcnt_msb};
wire byte_received_sync = (bitcnt_wrap_r[2:1] == 2'b10);
reg [31:0] byte_cnt_r;
reg byte_received; // high when a byte has been received
reg [7:0] byte_data_received;
assign bit_cnt = bitcnt;
always @(posedge SCK) begin
if(SSELSCKr[1]) bitcnt <= 3'b000;
else bitcnt <= bitcnt + 3'b001;
end
always @(posedge SCK) begin
if(~SSELSCKr[1])
byte_data_received <= {byte_data_received[6:0], MOSI};
if(~SSELSCKr[1] && bitcnt==3'b111)
byte_received <= 1'b1;
else byte_received <= 1'b0;
end
//reg [2:0] byte_received_r;
//always @(posedge clk) byte_received_r <= {byte_received_r[1:0], byte_received};
//wire byte_received_sync = (byte_received_r[2:1] == 2'b01);
always @(posedge clk) begin
if(SSEL_inactive)
byte_cnt_r <= 16'h0000;
else if(byte_received_sync)
byte_cnt_r <= byte_cnt_r + 16'h0001;
end
reg [7:0] byte_data_sent;
assign MISO = ~SSEL ? input_data[7-bitcnt] : 1'bZ; // send MSB first
reg cmd_ready_r;
reg param_ready_r;
reg cmd_ready_r2;
reg param_ready_r2;
assign cmd_ready = cmd_ready_r;
assign param_ready = param_ready_r;
assign cmd_data = cmd_data_r;
assign param_data = param_data_r;
assign byte_cnt = byte_cnt_r;
always @(posedge clk) cmd_ready_r2 = byte_received_sync && byte_cnt_r == 32'h0;
always @(posedge clk) param_ready_r2 = byte_received_sync && byte_cnt_r > 32'h0;
// fill registers
always @(posedge clk) begin
if (SSEL_startmessage)
cmd_data_r <= 8'h00;
else if(cmd_ready_r2)
cmd_data_r <= byte_data_received;
else if(param_ready_r2)
param_data_r <= byte_data_received;
end
// delay ready signals by one clock
always @(posedge clk) begin
cmd_ready_r <= cmd_ready_r2;
param_ready_r <= param_ready_r2;
end
endmodule
|
module fifo( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 16;
parameter depth = 1024;
parameter addr_bits = 10;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [width-1:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [width-1:0] q;
output rdfull;
output rdempty;
output reg [addr_bits-1:0] rdusedw;
output wrfull;
output wrempty;
output reg [addr_bits-1:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [addr_bits-1:0] rdptr;
reg [addr_bits-1:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule
|
module bidir_reg
( inout wire [15:0] tristate,
input wire [15:0] oe,
input wire [15:0] reg_val );
// This would be much cleaner if all the tools
// supported "for generate"........
assign tristate[0] = oe[0] ? reg_val[0] : 1'bz;
assign tristate[1] = oe[1] ? reg_val[1] : 1'bz;
assign tristate[2] = oe[2] ? reg_val[2] : 1'bz;
assign tristate[3] = oe[3] ? reg_val[3] : 1'bz;
assign tristate[4] = oe[4] ? reg_val[4] : 1'bz;
assign tristate[5] = oe[5] ? reg_val[5] : 1'bz;
assign tristate[6] = oe[6] ? reg_val[6] : 1'bz;
assign tristate[7] = oe[7] ? reg_val[7] : 1'bz;
assign tristate[8] = oe[8] ? reg_val[8] : 1'bz;
assign tristate[9] = oe[9] ? reg_val[9] : 1'bz;
assign tristate[10] = oe[10] ? reg_val[10] : 1'bz;
assign tristate[11] = oe[11] ? reg_val[11] : 1'bz;
assign tristate[12] = oe[12] ? reg_val[12] : 1'bz;
assign tristate[13] = oe[13] ? reg_val[13] : 1'bz;
assign tristate[14] = oe[14] ? reg_val[14] : 1'bz;
assign tristate[15] = oe[15] ? reg_val[15] : 1'bz;
endmodule
|
module bidir_reg
( inout wire [15:0] tristate,
input wire [15:0] oe,
input wire [15:0] reg_val );
// This would be much cleaner if all the tools
// supported "for generate"........
assign tristate[0] = oe[0] ? reg_val[0] : 1'bz;
assign tristate[1] = oe[1] ? reg_val[1] : 1'bz;
assign tristate[2] = oe[2] ? reg_val[2] : 1'bz;
assign tristate[3] = oe[3] ? reg_val[3] : 1'bz;
assign tristate[4] = oe[4] ? reg_val[4] : 1'bz;
assign tristate[5] = oe[5] ? reg_val[5] : 1'bz;
assign tristate[6] = oe[6] ? reg_val[6] : 1'bz;
assign tristate[7] = oe[7] ? reg_val[7] : 1'bz;
assign tristate[8] = oe[8] ? reg_val[8] : 1'bz;
assign tristate[9] = oe[9] ? reg_val[9] : 1'bz;
assign tristate[10] = oe[10] ? reg_val[10] : 1'bz;
assign tristate[11] = oe[11] ? reg_val[11] : 1'bz;
assign tristate[12] = oe[12] ? reg_val[12] : 1'bz;
assign tristate[13] = oe[13] ? reg_val[13] : 1'bz;
assign tristate[14] = oe[14] ? reg_val[14] : 1'bz;
assign tristate[15] = oe[15] ? reg_val[15] : 1'bz;
endmodule
|
module mylpm_addsub (
add_sub,
dataa,
datab,
clock,
result);
input add_sub;
input [15:0] dataa;
input [15:0] datab;
input clock;
output [15:0] result;
wire [15:0] sub_wire0;
wire [15:0] result = sub_wire0[15:0];
lpm_add_sub lpm_add_sub_component (
.dataa (dataa),
.add_sub (add_sub),
.datab (datab),
.clock (clock),
.result (sub_wire0));
defparam
lpm_add_sub_component.lpm_width = 16,
lpm_add_sub_component.lpm_direction = "UNUSED",
lpm_add_sub_component.lpm_type = "LPM_ADD_SUB",
lpm_add_sub_component.lpm_hint = "ONE_INPUT_IS_CONSTANT=NO",
lpm_add_sub_component.lpm_pipeline = 1;
endmodule
|
module dspclkpll (
inclk0,
c0,
c1);
input inclk0;
output c0;
output c1;
wire [5:0] sub_wire0;
wire [0:0] sub_wire5 = 1'h0;
wire [1:1] sub_wire2 = sub_wire0[1:1];
wire [0:0] sub_wire1 = sub_wire0[0:0];
wire c0 = sub_wire1;
wire c1 = sub_wire2;
wire sub_wire3 = inclk0;
wire [1:0] sub_wire4 = {sub_wire5, sub_wire3};
altpll altpll_component (
.inclk (sub_wire4),
.clk (sub_wire0)
// synopsys translate_off
,
.fbin (),
.pllena (),
.clkswitch (),
.areset (),
.pfdena (),
.clkena (),
.extclkena (),
.scanclk (),
.scanaclr (),
.scandata (),
.scanread (),
.scanwrite (),
.extclk (),
.clkbad (),
.activeclock (),
.locked (),
.clkloss (),
.scandataout (),
.scandone (),
.sclkout1 (),
.sclkout0 (),
.enable0 (),
.enable1 ()
// synopsys translate_on
);
defparam
altpll_component.clk1_divide_by = 1,
altpll_component.clk1_phase_shift = "0",
altpll_component.clk0_duty_cycle = 50,
altpll_component.lpm_type = "altpll",
altpll_component.clk0_multiply_by = 1,
altpll_component.inclk0_input_frequency = 15625,
altpll_component.clk0_divide_by = 1,
altpll_component.clk1_duty_cycle = 50,
altpll_component.pll_type = "AUTO",
altpll_component.clk1_multiply_by = 2,
altpll_component.clk0_time_delay = "0",
altpll_component.intended_device_family = "Cyclone",
altpll_component.operation_mode = "NORMAL",
altpll_component.compensate_clock = "CLK0",
altpll_component.clk1_time_delay = "0",
altpll_component.clk0_phase_shift = "0";
endmodule
|
module dspclkpll (
inclk0,
c0,
c1);
input inclk0;
output c0;
output c1;
wire [5:0] sub_wire0;
wire [0:0] sub_wire5 = 1'h0;
wire [1:1] sub_wire2 = sub_wire0[1:1];
wire [0:0] sub_wire1 = sub_wire0[0:0];
wire c0 = sub_wire1;
wire c1 = sub_wire2;
wire sub_wire3 = inclk0;
wire [1:0] sub_wire4 = {sub_wire5, sub_wire3};
altpll altpll_component (
.inclk (sub_wire4),
.clk (sub_wire0)
// synopsys translate_off
,
.fbin (),
.pllena (),
.clkswitch (),
.areset (),
.pfdena (),
.clkena (),
.extclkena (),
.scanclk (),
.scanaclr (),
.scandata (),
.scanread (),
.scanwrite (),
.extclk (),
.clkbad (),
.activeclock (),
.locked (),
.clkloss (),
.scandataout (),
.scandone (),
.sclkout1 (),
.sclkout0 (),
.enable0 (),
.enable1 ()
// synopsys translate_on
);
defparam
altpll_component.clk1_divide_by = 1,
altpll_component.clk1_phase_shift = "0",
altpll_component.clk0_duty_cycle = 50,
altpll_component.lpm_type = "altpll",
altpll_component.clk0_multiply_by = 1,
altpll_component.inclk0_input_frequency = 15625,
altpll_component.clk0_divide_by = 1,
altpll_component.clk1_duty_cycle = 50,
altpll_component.pll_type = "AUTO",
altpll_component.clk1_multiply_by = 2,
altpll_component.clk0_time_delay = "0",
altpll_component.intended_device_family = "Cyclone",
altpll_component.operation_mode = "NORMAL",
altpll_component.compensate_clock = "CLK0",
altpll_component.clk1_time_delay = "0",
altpll_component.clk0_phase_shift = "0";
endmodule
|
module dspclkpll (
inclk0,
c0,
c1);
input inclk0;
output c0;
output c1;
wire [5:0] sub_wire0;
wire [0:0] sub_wire5 = 1'h0;
wire [1:1] sub_wire2 = sub_wire0[1:1];
wire [0:0] sub_wire1 = sub_wire0[0:0];
wire c0 = sub_wire1;
wire c1 = sub_wire2;
wire sub_wire3 = inclk0;
wire [1:0] sub_wire4 = {sub_wire5, sub_wire3};
altpll altpll_component (
.inclk (sub_wire4),
.clk (sub_wire0)
// synopsys translate_off
,
.fbin (),
.pllena (),
.clkswitch (),
.areset (),
.pfdena (),
.clkena (),
.extclkena (),
.scanclk (),
.scanaclr (),
.scandata (),
.scanread (),
.scanwrite (),
.extclk (),
.clkbad (),
.activeclock (),
.locked (),
.clkloss (),
.scandataout (),
.scandone (),
.sclkout1 (),
.sclkout0 (),
.enable0 (),
.enable1 ()
// synopsys translate_on
);
defparam
altpll_component.clk1_divide_by = 1,
altpll_component.clk1_phase_shift = "0",
altpll_component.clk0_duty_cycle = 50,
altpll_component.lpm_type = "altpll",
altpll_component.clk0_multiply_by = 1,
altpll_component.inclk0_input_frequency = 15625,
altpll_component.clk0_divide_by = 1,
altpll_component.clk1_duty_cycle = 50,
altpll_component.pll_type = "AUTO",
altpll_component.clk1_multiply_by = 2,
altpll_component.clk0_time_delay = "0",
altpll_component.intended_device_family = "Cyclone",
altpll_component.operation_mode = "NORMAL",
altpll_component.compensate_clock = "CLK0",
altpll_component.clk1_time_delay = "0",
altpll_component.clk0_phase_shift = "0";
endmodule
|
module strobe_gen
( input clock,
input reset,
input enable,
input [7:0] rate, // Rate should be 1 LESS THAN your desired divide ratio
input strobe_in,
output wire strobe );
// parameter width = 8;
reg [7:0] counter;
assign strobe = ~|counter && enable && strobe_in;
always @(posedge clock)
if(reset | ~enable)
counter <= #1 8'd0;
else if(strobe_in)
if(counter == 0)
counter <= #1 rate;
else
counter <= #1 counter - 8'd1;
endmodule
|
module cordic(clock, reset, enable, xi, yi, zi, xo, yo, zo );
parameter bitwidth = 16;
parameter zwidth = 16;
input clock;
input reset;
input enable;
input [bitwidth-1:0] xi, yi;
output [bitwidth-1:0] xo, yo;
input [zwidth-1:0] zi;
output [zwidth-1:0] zo;
reg [bitwidth+1:0] x0,y0;
reg [zwidth-2:0] z0;
wire [bitwidth+1:0] x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12;
wire [bitwidth+1:0] y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12;
wire [zwidth-2:0] z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12;
wire [bitwidth+1:0] xi_ext = {{2{xi[bitwidth-1]}},xi};
wire [bitwidth+1:0] yi_ext = {{2{yi[bitwidth-1]}},yi};
// Compute consts. Would be easier if vlog had atan...
// see gen_cordic_consts.py
`define c00 16'd8192
`define c01 16'd4836
`define c02 16'd2555
`define c03 16'd1297
`define c04 16'd651
`define c05 16'd326
`define c06 16'd163
`define c07 16'd81
`define c08 16'd41
`define c09 16'd20
`define c10 16'd10
`define c11 16'd5
`define c12 16'd3
`define c13 16'd1
`define c14 16'd1
`define c15 16'd0
`define c16 16'd0
always @(posedge clock)
if(reset)
begin
x0 <= #1 0; y0 <= #1 0; z0 <= #1 0;
end
else if(enable)
begin
z0 <= #1 zi[zwidth-2:0];
case (zi[zwidth-1:zwidth-2])
2'b00, 2'b11 :
begin
x0 <= #1 xi_ext;
y0 <= #1 yi_ext;
end
2'b01, 2'b10 :
begin
x0 <= #1 -xi_ext;
y0 <= #1 -yi_ext;
end
endcase // case(zi[zwidth-1:zwidth-2])
end // else: !if(reset)
// FIXME need to handle variable number of stages
// FIXME should be able to narrow zwidth but quartus makes it bigger...
// This would be easier if arrays worked better in vlog...
cordic_stage #(bitwidth+2,zwidth-1,0) cordic_stage0 (clock,reset,enable,x0,y0,z0,`c00,x1,y1,z1);
cordic_stage #(bitwidth+2,zwidth-1,1) cordic_stage1 (clock,reset,enable,x1,y1,z1,`c01,x2,y2,z2);
cordic_stage #(bitwidth+2,zwidth-1,2) cordic_stage2 (clock,reset,enable,x2,y2,z2,`c02,x3,y3,z3);
cordic_stage #(bitwidth+2,zwidth-1,3) cordic_stage3 (clock,reset,enable,x3,y3,z3,`c03,x4,y4,z4);
cordic_stage #(bitwidth+2,zwidth-1,4) cordic_stage4 (clock,reset,enable,x4,y4,z4,`c04,x5,y5,z5);
cordic_stage #(bitwidth+2,zwidth-1,5) cordic_stage5 (clock,reset,enable,x5,y5,z5,`c05,x6,y6,z6);
cordic_stage #(bitwidth+2,zwidth-1,6) cordic_stage6 (clock,reset,enable,x6,y6,z6,`c06,x7,y7,z7);
cordic_stage #(bitwidth+2,zwidth-1,7) cordic_stage7 (clock,reset,enable,x7,y7,z7,`c07,x8,y8,z8);
cordic_stage #(bitwidth+2,zwidth-1,8) cordic_stage8 (clock,reset,enable,x8,y8,z8,`c08,x9,y9,z9);
cordic_stage #(bitwidth+2,zwidth-1,9) cordic_stage9 (clock,reset,enable,x9,y9,z9,`c09,x10,y10,z10);
cordic_stage #(bitwidth+2,zwidth-1,10) cordic_stage10 (clock,reset,enable,x10,y10,z10,`c10,x11,y11,z11);
cordic_stage #(bitwidth+2,zwidth-1,11) cordic_stage11 (clock,reset,enable,x11,y11,z11,`c11,x12,y12,z12);
assign xo = x12[bitwidth:1];
assign yo = y12[bitwidth:1];
//assign xo = x12[bitwidth+1:2]; // CORDIC gain is ~1.6, plus gain from rotating vectors
//assign yo = y12[bitwidth+1:2];
assign zo = z12;
endmodule
|
module cordic(clock, reset, enable, xi, yi, zi, xo, yo, zo );
parameter bitwidth = 16;
parameter zwidth = 16;
input clock;
input reset;
input enable;
input [bitwidth-1:0] xi, yi;
output [bitwidth-1:0] xo, yo;
input [zwidth-1:0] zi;
output [zwidth-1:0] zo;
reg [bitwidth+1:0] x0,y0;
reg [zwidth-2:0] z0;
wire [bitwidth+1:0] x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12;
wire [bitwidth+1:0] y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12;
wire [zwidth-2:0] z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12;
wire [bitwidth+1:0] xi_ext = {{2{xi[bitwidth-1]}},xi};
wire [bitwidth+1:0] yi_ext = {{2{yi[bitwidth-1]}},yi};
// Compute consts. Would be easier if vlog had atan...
// see gen_cordic_consts.py
`define c00 16'd8192
`define c01 16'd4836
`define c02 16'd2555
`define c03 16'd1297
`define c04 16'd651
`define c05 16'd326
`define c06 16'd163
`define c07 16'd81
`define c08 16'd41
`define c09 16'd20
`define c10 16'd10
`define c11 16'd5
`define c12 16'd3
`define c13 16'd1
`define c14 16'd1
`define c15 16'd0
`define c16 16'd0
always @(posedge clock)
if(reset)
begin
x0 <= #1 0; y0 <= #1 0; z0 <= #1 0;
end
else if(enable)
begin
z0 <= #1 zi[zwidth-2:0];
case (zi[zwidth-1:zwidth-2])
2'b00, 2'b11 :
begin
x0 <= #1 xi_ext;
y0 <= #1 yi_ext;
end
2'b01, 2'b10 :
begin
x0 <= #1 -xi_ext;
y0 <= #1 -yi_ext;
end
endcase // case(zi[zwidth-1:zwidth-2])
end // else: !if(reset)
// FIXME need to handle variable number of stages
// FIXME should be able to narrow zwidth but quartus makes it bigger...
// This would be easier if arrays worked better in vlog...
cordic_stage #(bitwidth+2,zwidth-1,0) cordic_stage0 (clock,reset,enable,x0,y0,z0,`c00,x1,y1,z1);
cordic_stage #(bitwidth+2,zwidth-1,1) cordic_stage1 (clock,reset,enable,x1,y1,z1,`c01,x2,y2,z2);
cordic_stage #(bitwidth+2,zwidth-1,2) cordic_stage2 (clock,reset,enable,x2,y2,z2,`c02,x3,y3,z3);
cordic_stage #(bitwidth+2,zwidth-1,3) cordic_stage3 (clock,reset,enable,x3,y3,z3,`c03,x4,y4,z4);
cordic_stage #(bitwidth+2,zwidth-1,4) cordic_stage4 (clock,reset,enable,x4,y4,z4,`c04,x5,y5,z5);
cordic_stage #(bitwidth+2,zwidth-1,5) cordic_stage5 (clock,reset,enable,x5,y5,z5,`c05,x6,y6,z6);
cordic_stage #(bitwidth+2,zwidth-1,6) cordic_stage6 (clock,reset,enable,x6,y6,z6,`c06,x7,y7,z7);
cordic_stage #(bitwidth+2,zwidth-1,7) cordic_stage7 (clock,reset,enable,x7,y7,z7,`c07,x8,y8,z8);
cordic_stage #(bitwidth+2,zwidth-1,8) cordic_stage8 (clock,reset,enable,x8,y8,z8,`c08,x9,y9,z9);
cordic_stage #(bitwidth+2,zwidth-1,9) cordic_stage9 (clock,reset,enable,x9,y9,z9,`c09,x10,y10,z10);
cordic_stage #(bitwidth+2,zwidth-1,10) cordic_stage10 (clock,reset,enable,x10,y10,z10,`c10,x11,y11,z11);
cordic_stage #(bitwidth+2,zwidth-1,11) cordic_stage11 (clock,reset,enable,x11,y11,z11,`c11,x12,y12,z12);
assign xo = x12[bitwidth:1];
assign yo = y12[bitwidth:1];
//assign xo = x12[bitwidth+1:2]; // CORDIC gain is ~1.6, plus gain from rotating vectors
//assign yo = y12[bitwidth+1:2];
assign zo = z12;
endmodule
|
module cordic(clock, reset, enable, xi, yi, zi, xo, yo, zo );
parameter bitwidth = 16;
parameter zwidth = 16;
input clock;
input reset;
input enable;
input [bitwidth-1:0] xi, yi;
output [bitwidth-1:0] xo, yo;
input [zwidth-1:0] zi;
output [zwidth-1:0] zo;
reg [bitwidth+1:0] x0,y0;
reg [zwidth-2:0] z0;
wire [bitwidth+1:0] x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12;
wire [bitwidth+1:0] y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12;
wire [zwidth-2:0] z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12;
wire [bitwidth+1:0] xi_ext = {{2{xi[bitwidth-1]}},xi};
wire [bitwidth+1:0] yi_ext = {{2{yi[bitwidth-1]}},yi};
// Compute consts. Would be easier if vlog had atan...
// see gen_cordic_consts.py
`define c00 16'd8192
`define c01 16'd4836
`define c02 16'd2555
`define c03 16'd1297
`define c04 16'd651
`define c05 16'd326
`define c06 16'd163
`define c07 16'd81
`define c08 16'd41
`define c09 16'd20
`define c10 16'd10
`define c11 16'd5
`define c12 16'd3
`define c13 16'd1
`define c14 16'd1
`define c15 16'd0
`define c16 16'd0
always @(posedge clock)
if(reset)
begin
x0 <= #1 0; y0 <= #1 0; z0 <= #1 0;
end
else if(enable)
begin
z0 <= #1 zi[zwidth-2:0];
case (zi[zwidth-1:zwidth-2])
2'b00, 2'b11 :
begin
x0 <= #1 xi_ext;
y0 <= #1 yi_ext;
end
2'b01, 2'b10 :
begin
x0 <= #1 -xi_ext;
y0 <= #1 -yi_ext;
end
endcase // case(zi[zwidth-1:zwidth-2])
end // else: !if(reset)
// FIXME need to handle variable number of stages
// FIXME should be able to narrow zwidth but quartus makes it bigger...
// This would be easier if arrays worked better in vlog...
cordic_stage #(bitwidth+2,zwidth-1,0) cordic_stage0 (clock,reset,enable,x0,y0,z0,`c00,x1,y1,z1);
cordic_stage #(bitwidth+2,zwidth-1,1) cordic_stage1 (clock,reset,enable,x1,y1,z1,`c01,x2,y2,z2);
cordic_stage #(bitwidth+2,zwidth-1,2) cordic_stage2 (clock,reset,enable,x2,y2,z2,`c02,x3,y3,z3);
cordic_stage #(bitwidth+2,zwidth-1,3) cordic_stage3 (clock,reset,enable,x3,y3,z3,`c03,x4,y4,z4);
cordic_stage #(bitwidth+2,zwidth-1,4) cordic_stage4 (clock,reset,enable,x4,y4,z4,`c04,x5,y5,z5);
cordic_stage #(bitwidth+2,zwidth-1,5) cordic_stage5 (clock,reset,enable,x5,y5,z5,`c05,x6,y6,z6);
cordic_stage #(bitwidth+2,zwidth-1,6) cordic_stage6 (clock,reset,enable,x6,y6,z6,`c06,x7,y7,z7);
cordic_stage #(bitwidth+2,zwidth-1,7) cordic_stage7 (clock,reset,enable,x7,y7,z7,`c07,x8,y8,z8);
cordic_stage #(bitwidth+2,zwidth-1,8) cordic_stage8 (clock,reset,enable,x8,y8,z8,`c08,x9,y9,z9);
cordic_stage #(bitwidth+2,zwidth-1,9) cordic_stage9 (clock,reset,enable,x9,y9,z9,`c09,x10,y10,z10);
cordic_stage #(bitwidth+2,zwidth-1,10) cordic_stage10 (clock,reset,enable,x10,y10,z10,`c10,x11,y11,z11);
cordic_stage #(bitwidth+2,zwidth-1,11) cordic_stage11 (clock,reset,enable,x11,y11,z11,`c11,x12,y12,z12);
assign xo = x12[bitwidth:1];
assign yo = y12[bitwidth:1];
//assign xo = x12[bitwidth+1:2]; // CORDIC gain is ~1.6, plus gain from rotating vectors
//assign yo = y12[bitwidth+1:2];
assign zo = z12;
endmodule
|
module cordic(clock, reset, enable, xi, yi, zi, xo, yo, zo );
parameter bitwidth = 16;
parameter zwidth = 16;
input clock;
input reset;
input enable;
input [bitwidth-1:0] xi, yi;
output [bitwidth-1:0] xo, yo;
input [zwidth-1:0] zi;
output [zwidth-1:0] zo;
reg [bitwidth+1:0] x0,y0;
reg [zwidth-2:0] z0;
wire [bitwidth+1:0] x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12;
wire [bitwidth+1:0] y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12;
wire [zwidth-2:0] z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12;
wire [bitwidth+1:0] xi_ext = {{2{xi[bitwidth-1]}},xi};
wire [bitwidth+1:0] yi_ext = {{2{yi[bitwidth-1]}},yi};
// Compute consts. Would be easier if vlog had atan...
// see gen_cordic_consts.py
`define c00 16'd8192
`define c01 16'd4836
`define c02 16'd2555
`define c03 16'd1297
`define c04 16'd651
`define c05 16'd326
`define c06 16'd163
`define c07 16'd81
`define c08 16'd41
`define c09 16'd20
`define c10 16'd10
`define c11 16'd5
`define c12 16'd3
`define c13 16'd1
`define c14 16'd1
`define c15 16'd0
`define c16 16'd0
always @(posedge clock)
if(reset)
begin
x0 <= #1 0; y0 <= #1 0; z0 <= #1 0;
end
else if(enable)
begin
z0 <= #1 zi[zwidth-2:0];
case (zi[zwidth-1:zwidth-2])
2'b00, 2'b11 :
begin
x0 <= #1 xi_ext;
y0 <= #1 yi_ext;
end
2'b01, 2'b10 :
begin
x0 <= #1 -xi_ext;
y0 <= #1 -yi_ext;
end
endcase // case(zi[zwidth-1:zwidth-2])
end // else: !if(reset)
// FIXME need to handle variable number of stages
// FIXME should be able to narrow zwidth but quartus makes it bigger...
// This would be easier if arrays worked better in vlog...
cordic_stage #(bitwidth+2,zwidth-1,0) cordic_stage0 (clock,reset,enable,x0,y0,z0,`c00,x1,y1,z1);
cordic_stage #(bitwidth+2,zwidth-1,1) cordic_stage1 (clock,reset,enable,x1,y1,z1,`c01,x2,y2,z2);
cordic_stage #(bitwidth+2,zwidth-1,2) cordic_stage2 (clock,reset,enable,x2,y2,z2,`c02,x3,y3,z3);
cordic_stage #(bitwidth+2,zwidth-1,3) cordic_stage3 (clock,reset,enable,x3,y3,z3,`c03,x4,y4,z4);
cordic_stage #(bitwidth+2,zwidth-1,4) cordic_stage4 (clock,reset,enable,x4,y4,z4,`c04,x5,y5,z5);
cordic_stage #(bitwidth+2,zwidth-1,5) cordic_stage5 (clock,reset,enable,x5,y5,z5,`c05,x6,y6,z6);
cordic_stage #(bitwidth+2,zwidth-1,6) cordic_stage6 (clock,reset,enable,x6,y6,z6,`c06,x7,y7,z7);
cordic_stage #(bitwidth+2,zwidth-1,7) cordic_stage7 (clock,reset,enable,x7,y7,z7,`c07,x8,y8,z8);
cordic_stage #(bitwidth+2,zwidth-1,8) cordic_stage8 (clock,reset,enable,x8,y8,z8,`c08,x9,y9,z9);
cordic_stage #(bitwidth+2,zwidth-1,9) cordic_stage9 (clock,reset,enable,x9,y9,z9,`c09,x10,y10,z10);
cordic_stage #(bitwidth+2,zwidth-1,10) cordic_stage10 (clock,reset,enable,x10,y10,z10,`c10,x11,y11,z11);
cordic_stage #(bitwidth+2,zwidth-1,11) cordic_stage11 (clock,reset,enable,x11,y11,z11,`c11,x12,y12,z12);
assign xo = x12[bitwidth:1];
assign yo = y12[bitwidth:1];
//assign xo = x12[bitwidth+1:2]; // CORDIC gain is ~1.6, plus gain from rotating vectors
//assign yo = y12[bitwidth+1:2];
assign zo = z12;
endmodule
|
module fifo_4k_a_gray2bin_9m4
(
bin,
gray) /* synthesis synthesis_clearbox=1 */;
output [11:0] bin;
input [11:0] gray;
wire xor0;
wire xor1;
wire xor10;
wire xor2;
wire xor3;
wire xor4;
wire xor5;
wire xor6;
wire xor7;
wire xor8;
wire xor9;
assign
bin = {gray[11], xor10, xor9, xor8, xor7, xor6, xor5, xor4, xor3, xor2, xor1, xor0},
xor0 = (gray[0] ^ xor1),
xor1 = (gray[1] ^ xor2),
xor10 = (gray[11] ^ gray[10]),
xor2 = (gray[2] ^ xor3),
xor3 = (gray[3] ^ xor4),
xor4 = (gray[4] ^ xor5),
xor5 = (gray[5] ^ xor6),
xor6 = (gray[6] ^ xor7),
xor7 = (gray[7] ^ xor8),
xor8 = (gray[8] ^ xor9),
xor9 = (gray[9] ^ xor10);
endmodule
|
module fifo_4k_a_graycounter_826
(
aclr,
clock,
cnt_en,
q) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clock;
input cnt_en;
output [11:0] q;
wire [0:0] wire_countera_0cout;
wire [0:0] wire_countera_1cout;
wire [0:0] wire_countera_2cout;
wire [0:0] wire_countera_3cout;
wire [0:0] wire_countera_4cout;
wire [0:0] wire_countera_5cout;
wire [0:0] wire_countera_6cout;
wire [0:0] wire_countera_7cout;
wire [0:0] wire_countera_8cout;
wire [0:0] wire_countera_9cout;
wire [0:0] wire_countera_10cout;
wire [11:0] wire_countera_regout;
wire wire_parity_cout;
wire wire_parity_regout;
wire [11:0] power_modified_counter_values;
wire sclr;
wire updown;
cyclone_lcell countera_0
(
.aclr(aclr),
.cin(wire_parity_cout),
.clk(clock),
.combout(),
.cout(wire_countera_0cout[0:0]),
.dataa(cnt_en),
.datab(wire_countera_regout[0:0]),
.ena(1'b1),
.regout(wire_countera_regout[0:0]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_0.cin_used = "true",
countera_0.lut_mask = "c6a0",
countera_0.operation_mode = "arithmetic",
countera_0.sum_lutc_input = "cin",
countera_0.synch_mode = "on",
countera_0.lpm_type = "cyclone_lcell";
cyclone_lcell countera_1
(
.aclr(aclr),
.cin(wire_countera_0cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_1cout[0:0]),
.dataa(power_modified_counter_values[0]),
.datab(power_modified_counter_values[1]),
.ena(1'b1),
.regout(wire_countera_regout[1:1]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_1.cin_used = "true",
countera_1.lut_mask = "6c50",
countera_1.operation_mode = "arithmetic",
countera_1.sum_lutc_input = "cin",
countera_1.synch_mode = "on",
countera_1.lpm_type = "cyclone_lcell";
cyclone_lcell countera_2
(
.aclr(aclr),
.cin(wire_countera_1cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_2cout[0:0]),
.dataa(power_modified_counter_values[1]),
.datab(power_modified_counter_values[2]),
.ena(1'b1),
.regout(wire_countera_regout[2:2]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_2.cin_used = "true",
countera_2.lut_mask = "6c50",
countera_2.operation_mode = "arithmetic",
countera_2.sum_lutc_input = "cin",
countera_2.synch_mode = "on",
countera_2.lpm_type = "cyclone_lcell";
cyclone_lcell countera_3
(
.aclr(aclr),
.cin(wire_countera_2cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_3cout[0:0]),
.dataa(power_modified_counter_values[2]),
.datab(power_modified_counter_values[3]),
.ena(1'b1),
.regout(wire_countera_regout[3:3]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_3.cin_used = "true",
countera_3.lut_mask = "6c50",
countera_3.operation_mode = "arithmetic",
countera_3.sum_lutc_input = "cin",
countera_3.synch_mode = "on",
countera_3.lpm_type = "cyclone_lcell";
cyclone_lcell countera_4
(
.aclr(aclr),
.cin(wire_countera_3cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_4cout[0:0]),
.dataa(power_modified_counter_values[3]),
.datab(power_modified_counter_values[4]),
.ena(1'b1),
.regout(wire_countera_regout[4:4]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_4.cin_used = "true",
countera_4.lut_mask = "6c50",
countera_4.operation_mode = "arithmetic",
countera_4.sum_lutc_input = "cin",
countera_4.synch_mode = "on",
countera_4.lpm_type = "cyclone_lcell";
cyclone_lcell countera_5
(
.aclr(aclr),
.cin(wire_countera_4cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_5cout[0:0]),
.dataa(power_modified_counter_values[4]),
.datab(power_modified_counter_values[5]),
.ena(1'b1),
.regout(wire_countera_regout[5:5]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_5.cin_used = "true",
countera_5.lut_mask = "6c50",
countera_5.operation_mode = "arithmetic",
countera_5.sum_lutc_input = "cin",
countera_5.synch_mode = "on",
countera_5.lpm_type = "cyclone_lcell";
cyclone_lcell countera_6
(
.aclr(aclr),
.cin(wire_countera_5cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_6cout[0:0]),
.dataa(power_modified_counter_values[5]),
.datab(power_modified_counter_values[6]),
.ena(1'b1),
.regout(wire_countera_regout[6:6]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_6.cin_used = "true",
countera_6.lut_mask = "6c50",
countera_6.operation_mode = "arithmetic",
countera_6.sum_lutc_input = "cin",
countera_6.synch_mode = "on",
countera_6.lpm_type = "cyclone_lcell";
cyclone_lcell countera_7
(
.aclr(aclr),
.cin(wire_countera_6cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_7cout[0:0]),
.dataa(power_modified_counter_values[6]),
.datab(power_modified_counter_values[7]),
.ena(1'b1),
.regout(wire_countera_regout[7:7]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_7.cin_used = "true",
countera_7.lut_mask = "6c50",
countera_7.operation_mode = "arithmetic",
countera_7.sum_lutc_input = "cin",
countera_7.synch_mode = "on",
countera_7.lpm_type = "cyclone_lcell";
cyclone_lcell countera_8
(
.aclr(aclr),
.cin(wire_countera_7cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_8cout[0:0]),
.dataa(power_modified_counter_values[7]),
.datab(power_modified_counter_values[8]),
.ena(1'b1),
.regout(wire_countera_regout[8:8]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_8.cin_used = "true",
countera_8.lut_mask = "6c50",
countera_8.operation_mode = "arithmetic",
countera_8.sum_lutc_input = "cin",
countera_8.synch_mode = "on",
countera_8.lpm_type = "cyclone_lcell";
cyclone_lcell countera_9
(
.aclr(aclr),
.cin(wire_countera_8cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_9cout[0:0]),
.dataa(power_modified_counter_values[8]),
.datab(power_modified_counter_values[9]),
.ena(1'b1),
.regout(wire_countera_regout[9:9]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_9.cin_used = "true",
countera_9.lut_mask = "6c50",
countera_9.operation_mode = "arithmetic",
countera_9.sum_lutc_input = "cin",
countera_9.synch_mode = "on",
countera_9.lpm_type = "cyclone_lcell";
cyclone_lcell countera_10
(
.aclr(aclr),
.cin(wire_countera_9cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_10cout[0:0]),
.dataa(power_modified_counter_values[9]),
.datab(power_modified_counter_values[10]),
.ena(1'b1),
.regout(wire_countera_regout[10:10]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_10.cin_used = "true",
countera_10.lut_mask = "6c50",
countera_10.operation_mode = "arithmetic",
countera_10.sum_lutc_input = "cin",
countera_10.synch_mode = "on",
countera_10.lpm_type = "cyclone_lcell";
cyclone_lcell countera_11
(
.aclr(aclr),
.cin(wire_countera_10cout[0:0]),
.clk(clock),
.combout(),
.cout(),
.dataa(power_modified_counter_values[11]),
.ena(1'b1),
.regout(wire_countera_regout[11:11]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datab(1'b1),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_11.cin_used = "true",
countera_11.lut_mask = "5a5a",
countera_11.operation_mode = "normal",
countera_11.sum_lutc_input = "cin",
countera_11.synch_mode = "on",
countera_11.lpm_type = "cyclone_lcell";
cyclone_lcell parity
(
.aclr(aclr),
.cin(updown),
.clk(clock),
.combout(),
.cout(wire_parity_cout),
.dataa(cnt_en),
.datab(wire_parity_regout),
.ena(1'b1),
.regout(wire_parity_regout),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
parity.cin_used = "true",
parity.lut_mask = "6682",
parity.operation_mode = "arithmetic",
parity.synch_mode = "on",
parity.lpm_type = "cyclone_lcell";
assign
power_modified_counter_values = {wire_countera_regout[11:0]},
q = power_modified_counter_values,
sclr = 1'b0,
updown = 1'b1;
endmodule
|
module fifo_4k_a_graycounter_3r6
(
aclr,
clock,
cnt_en,
q) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clock;
input cnt_en;
output [11:0] q;
wire [0:0] wire_countera_0cout;
wire [0:0] wire_countera_1cout;
wire [0:0] wire_countera_2cout;
wire [0:0] wire_countera_3cout;
wire [0:0] wire_countera_4cout;
wire [0:0] wire_countera_5cout;
wire [0:0] wire_countera_6cout;
wire [0:0] wire_countera_7cout;
wire [0:0] wire_countera_8cout;
wire [0:0] wire_countera_9cout;
wire [0:0] wire_countera_10cout;
wire [11:0] wire_countera_regout;
wire wire_parity_cout;
wire wire_parity_regout;
wire [11:0] power_modified_counter_values;
wire sclr;
wire updown;
cyclone_lcell countera_0
(
.aclr(aclr),
.cin(wire_parity_cout),
.clk(clock),
.combout(),
.cout(wire_countera_0cout[0:0]),
.dataa(cnt_en),
.datab(wire_countera_regout[0:0]),
.ena(1'b1),
.regout(wire_countera_regout[0:0]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_0.cin_used = "true",
countera_0.lut_mask = "c6a0",
countera_0.operation_mode = "arithmetic",
countera_0.sum_lutc_input = "cin",
countera_0.synch_mode = "on",
countera_0.lpm_type = "cyclone_lcell";
cyclone_lcell countera_1
(
.aclr(aclr),
.cin(wire_countera_0cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_1cout[0:0]),
.dataa(power_modified_counter_values[0]),
.datab(power_modified_counter_values[1]),
.ena(1'b1),
.regout(wire_countera_regout[1:1]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_1.cin_used = "true",
countera_1.lut_mask = "6c50",
countera_1.operation_mode = "arithmetic",
countera_1.sum_lutc_input = "cin",
countera_1.synch_mode = "on",
countera_1.lpm_type = "cyclone_lcell";
cyclone_lcell countera_2
(
.aclr(aclr),
.cin(wire_countera_1cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_2cout[0:0]),
.dataa(power_modified_counter_values[1]),
.datab(power_modified_counter_values[2]),
.ena(1'b1),
.regout(wire_countera_regout[2:2]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_2.cin_used = "true",
countera_2.lut_mask = "6c50",
countera_2.operation_mode = "arithmetic",
countera_2.sum_lutc_input = "cin",
countera_2.synch_mode = "on",
countera_2.lpm_type = "cyclone_lcell";
cyclone_lcell countera_3
(
.aclr(aclr),
.cin(wire_countera_2cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_3cout[0:0]),
.dataa(power_modified_counter_values[2]),
.datab(power_modified_counter_values[3]),
.ena(1'b1),
.regout(wire_countera_regout[3:3]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_3.cin_used = "true",
countera_3.lut_mask = "6c50",
countera_3.operation_mode = "arithmetic",
countera_3.sum_lutc_input = "cin",
countera_3.synch_mode = "on",
countera_3.lpm_type = "cyclone_lcell";
cyclone_lcell countera_4
(
.aclr(aclr),
.cin(wire_countera_3cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_4cout[0:0]),
.dataa(power_modified_counter_values[3]),
.datab(power_modified_counter_values[4]),
.ena(1'b1),
.regout(wire_countera_regout[4:4]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_4.cin_used = "true",
countera_4.lut_mask = "6c50",
countera_4.operation_mode = "arithmetic",
countera_4.sum_lutc_input = "cin",
countera_4.synch_mode = "on",
countera_4.lpm_type = "cyclone_lcell";
cyclone_lcell countera_5
(
.aclr(aclr),
.cin(wire_countera_4cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_5cout[0:0]),
.dataa(power_modified_counter_values[4]),
.datab(power_modified_counter_values[5]),
.ena(1'b1),
.regout(wire_countera_regout[5:5]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_5.cin_used = "true",
countera_5.lut_mask = "6c50",
countera_5.operation_mode = "arithmetic",
countera_5.sum_lutc_input = "cin",
countera_5.synch_mode = "on",
countera_5.lpm_type = "cyclone_lcell";
cyclone_lcell countera_6
(
.aclr(aclr),
.cin(wire_countera_5cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_6cout[0:0]),
.dataa(power_modified_counter_values[5]),
.datab(power_modified_counter_values[6]),
.ena(1'b1),
.regout(wire_countera_regout[6:6]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_6.cin_used = "true",
countera_6.lut_mask = "6c50",
countera_6.operation_mode = "arithmetic",
countera_6.sum_lutc_input = "cin",
countera_6.synch_mode = "on",
countera_6.lpm_type = "cyclone_lcell";
cyclone_lcell countera_7
(
.aclr(aclr),
.cin(wire_countera_6cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_7cout[0:0]),
.dataa(power_modified_counter_values[6]),
.datab(power_modified_counter_values[7]),
.ena(1'b1),
.regout(wire_countera_regout[7:7]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_7.cin_used = "true",
countera_7.lut_mask = "6c50",
countera_7.operation_mode = "arithmetic",
countera_7.sum_lutc_input = "cin",
countera_7.synch_mode = "on",
countera_7.lpm_type = "cyclone_lcell";
cyclone_lcell countera_8
(
.aclr(aclr),
.cin(wire_countera_7cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_8cout[0:0]),
.dataa(power_modified_counter_values[7]),
.datab(power_modified_counter_values[8]),
.ena(1'b1),
.regout(wire_countera_regout[8:8]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_8.cin_used = "true",
countera_8.lut_mask = "6c50",
countera_8.operation_mode = "arithmetic",
countera_8.sum_lutc_input = "cin",
countera_8.synch_mode = "on",
countera_8.lpm_type = "cyclone_lcell";
cyclone_lcell countera_9
(
.aclr(aclr),
.cin(wire_countera_8cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_9cout[0:0]),
.dataa(power_modified_counter_values[8]),
.datab(power_modified_counter_values[9]),
.ena(1'b1),
.regout(wire_countera_regout[9:9]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_9.cin_used = "true",
countera_9.lut_mask = "6c50",
countera_9.operation_mode = "arithmetic",
countera_9.sum_lutc_input = "cin",
countera_9.synch_mode = "on",
countera_9.lpm_type = "cyclone_lcell";
cyclone_lcell countera_10
(
.aclr(aclr),
.cin(wire_countera_9cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_10cout[0:0]),
.dataa(power_modified_counter_values[9]),
.datab(power_modified_counter_values[10]),
.ena(1'b1),
.regout(wire_countera_regout[10:10]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_10.cin_used = "true",
countera_10.lut_mask = "6c50",
countera_10.operation_mode = "arithmetic",
countera_10.sum_lutc_input = "cin",
countera_10.synch_mode = "on",
countera_10.lpm_type = "cyclone_lcell";
cyclone_lcell countera_11
(
.aclr(aclr),
.cin(wire_countera_10cout[0:0]),
.clk(clock),
.combout(),
.cout(),
.dataa(power_modified_counter_values[11]),
.ena(1'b1),
.regout(wire_countera_regout[11:11]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datab(1'b1),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_11.cin_used = "true",
countera_11.lut_mask = "5a5a",
countera_11.operation_mode = "normal",
countera_11.sum_lutc_input = "cin",
countera_11.synch_mode = "on",
countera_11.lpm_type = "cyclone_lcell";
cyclone_lcell parity
(
.aclr(aclr),
.cin(updown),
.clk(clock),
.combout(),
.cout(wire_parity_cout),
.dataa(cnt_en),
.datab((~ wire_parity_regout)),
.ena(1'b1),
.regout(wire_parity_regout),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
parity.cin_used = "true",
parity.lut_mask = "9982",
parity.operation_mode = "arithmetic",
parity.synch_mode = "on",
parity.lpm_type = "cyclone_lcell";
assign
power_modified_counter_values = {wire_countera_regout[11:1], (~ wire_countera_regout[0])},
q = power_modified_counter_values,
sclr = 1'b0,
updown = 1'b1;
endmodule
|
module fifo_4k_altsyncram_8pl
(
address_a,
address_b,
clock0,
clock1,
clocken1,
data_a,
q_b,
wren_a) /* synthesis synthesis_clearbox=1 */;
input [11:0] address_a;
input [11:0] address_b;
input clock0;
input clock1;
input clocken1;
input [15:0] data_a;
output [15:0] q_b;
input wren_a;
wire [0:0] wire_ram_block3a_0portbdataout;
wire [0:0] wire_ram_block3a_1portbdataout;
wire [0:0] wire_ram_block3a_2portbdataout;
wire [0:0] wire_ram_block3a_3portbdataout;
wire [0:0] wire_ram_block3a_4portbdataout;
wire [0:0] wire_ram_block3a_5portbdataout;
wire [0:0] wire_ram_block3a_6portbdataout;
wire [0:0] wire_ram_block3a_7portbdataout;
wire [0:0] wire_ram_block3a_8portbdataout;
wire [0:0] wire_ram_block3a_9portbdataout;
wire [0:0] wire_ram_block3a_10portbdataout;
wire [0:0] wire_ram_block3a_11portbdataout;
wire [0:0] wire_ram_block3a_12portbdataout;
wire [0:0] wire_ram_block3a_13portbdataout;
wire [0:0] wire_ram_block3a_14portbdataout;
wire [0:0] wire_ram_block3a_15portbdataout;
wire [11:0] address_a_wire;
wire [11:0] address_b_wire;
cyclone_ram_block ram_block3a_0
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[0]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_0portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_0.connectivity_checking = "OFF",
ram_block3a_0.logical_ram_name = "ALTSYNCRAM",
ram_block3a_0.mixed_port_feed_through_mode = "dont_care",
ram_block3a_0.operation_mode = "dual_port",
ram_block3a_0.port_a_address_width = 12,
ram_block3a_0.port_a_data_width = 1,
ram_block3a_0.port_a_first_address = 0,
ram_block3a_0.port_a_first_bit_number = 0,
ram_block3a_0.port_a_last_address = 4095,
ram_block3a_0.port_a_logical_ram_depth = 4096,
ram_block3a_0.port_a_logical_ram_width = 16,
ram_block3a_0.port_b_address_clear = "none",
ram_block3a_0.port_b_address_clock = "clock1",
ram_block3a_0.port_b_address_width = 12,
ram_block3a_0.port_b_data_out_clear = "none",
ram_block3a_0.port_b_data_out_clock = "none",
ram_block3a_0.port_b_data_width = 1,
ram_block3a_0.port_b_first_address = 0,
ram_block3a_0.port_b_first_bit_number = 0,
ram_block3a_0.port_b_last_address = 4095,
ram_block3a_0.port_b_logical_ram_depth = 4096,
ram_block3a_0.port_b_logical_ram_width = 16,
ram_block3a_0.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_0.ram_block_type = "auto",
ram_block3a_0.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_1
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[1]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_1portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_1.connectivity_checking = "OFF",
ram_block3a_1.logical_ram_name = "ALTSYNCRAM",
ram_block3a_1.mixed_port_feed_through_mode = "dont_care",
ram_block3a_1.operation_mode = "dual_port",
ram_block3a_1.port_a_address_width = 12,
ram_block3a_1.port_a_data_width = 1,
ram_block3a_1.port_a_first_address = 0,
ram_block3a_1.port_a_first_bit_number = 1,
ram_block3a_1.port_a_last_address = 4095,
ram_block3a_1.port_a_logical_ram_depth = 4096,
ram_block3a_1.port_a_logical_ram_width = 16,
ram_block3a_1.port_b_address_clear = "none",
ram_block3a_1.port_b_address_clock = "clock1",
ram_block3a_1.port_b_address_width = 12,
ram_block3a_1.port_b_data_out_clear = "none",
ram_block3a_1.port_b_data_out_clock = "none",
ram_block3a_1.port_b_data_width = 1,
ram_block3a_1.port_b_first_address = 0,
ram_block3a_1.port_b_first_bit_number = 1,
ram_block3a_1.port_b_last_address = 4095,
ram_block3a_1.port_b_logical_ram_depth = 4096,
ram_block3a_1.port_b_logical_ram_width = 16,
ram_block3a_1.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_1.ram_block_type = "auto",
ram_block3a_1.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_2
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[2]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_2portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_2.connectivity_checking = "OFF",
ram_block3a_2.logical_ram_name = "ALTSYNCRAM",
ram_block3a_2.mixed_port_feed_through_mode = "dont_care",
ram_block3a_2.operation_mode = "dual_port",
ram_block3a_2.port_a_address_width = 12,
ram_block3a_2.port_a_data_width = 1,
ram_block3a_2.port_a_first_address = 0,
ram_block3a_2.port_a_first_bit_number = 2,
ram_block3a_2.port_a_last_address = 4095,
ram_block3a_2.port_a_logical_ram_depth = 4096,
ram_block3a_2.port_a_logical_ram_width = 16,
ram_block3a_2.port_b_address_clear = "none",
ram_block3a_2.port_b_address_clock = "clock1",
ram_block3a_2.port_b_address_width = 12,
ram_block3a_2.port_b_data_out_clear = "none",
ram_block3a_2.port_b_data_out_clock = "none",
ram_block3a_2.port_b_data_width = 1,
ram_block3a_2.port_b_first_address = 0,
ram_block3a_2.port_b_first_bit_number = 2,
ram_block3a_2.port_b_last_address = 4095,
ram_block3a_2.port_b_logical_ram_depth = 4096,
ram_block3a_2.port_b_logical_ram_width = 16,
ram_block3a_2.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_2.ram_block_type = "auto",
ram_block3a_2.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_3
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[3]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_3portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_3.connectivity_checking = "OFF",
ram_block3a_3.logical_ram_name = "ALTSYNCRAM",
ram_block3a_3.mixed_port_feed_through_mode = "dont_care",
ram_block3a_3.operation_mode = "dual_port",
ram_block3a_3.port_a_address_width = 12,
ram_block3a_3.port_a_data_width = 1,
ram_block3a_3.port_a_first_address = 0,
ram_block3a_3.port_a_first_bit_number = 3,
ram_block3a_3.port_a_last_address = 4095,
ram_block3a_3.port_a_logical_ram_depth = 4096,
ram_block3a_3.port_a_logical_ram_width = 16,
ram_block3a_3.port_b_address_clear = "none",
ram_block3a_3.port_b_address_clock = "clock1",
ram_block3a_3.port_b_address_width = 12,
ram_block3a_3.port_b_data_out_clear = "none",
ram_block3a_3.port_b_data_out_clock = "none",
ram_block3a_3.port_b_data_width = 1,
ram_block3a_3.port_b_first_address = 0,
ram_block3a_3.port_b_first_bit_number = 3,
ram_block3a_3.port_b_last_address = 4095,
ram_block3a_3.port_b_logical_ram_depth = 4096,
ram_block3a_3.port_b_logical_ram_width = 16,
ram_block3a_3.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_3.ram_block_type = "auto",
ram_block3a_3.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_4
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[4]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_4portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_4.connectivity_checking = "OFF",
ram_block3a_4.logical_ram_name = "ALTSYNCRAM",
ram_block3a_4.mixed_port_feed_through_mode = "dont_care",
ram_block3a_4.operation_mode = "dual_port",
ram_block3a_4.port_a_address_width = 12,
ram_block3a_4.port_a_data_width = 1,
ram_block3a_4.port_a_first_address = 0,
ram_block3a_4.port_a_first_bit_number = 4,
ram_block3a_4.port_a_last_address = 4095,
ram_block3a_4.port_a_logical_ram_depth = 4096,
ram_block3a_4.port_a_logical_ram_width = 16,
ram_block3a_4.port_b_address_clear = "none",
ram_block3a_4.port_b_address_clock = "clock1",
ram_block3a_4.port_b_address_width = 12,
ram_block3a_4.port_b_data_out_clear = "none",
ram_block3a_4.port_b_data_out_clock = "none",
ram_block3a_4.port_b_data_width = 1,
ram_block3a_4.port_b_first_address = 0,
ram_block3a_4.port_b_first_bit_number = 4,
ram_block3a_4.port_b_last_address = 4095,
ram_block3a_4.port_b_logical_ram_depth = 4096,
ram_block3a_4.port_b_logical_ram_width = 16,
ram_block3a_4.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_4.ram_block_type = "auto",
ram_block3a_4.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_5
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[5]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_5portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_5.connectivity_checking = "OFF",
ram_block3a_5.logical_ram_name = "ALTSYNCRAM",
ram_block3a_5.mixed_port_feed_through_mode = "dont_care",
ram_block3a_5.operation_mode = "dual_port",
ram_block3a_5.port_a_address_width = 12,
ram_block3a_5.port_a_data_width = 1,
ram_block3a_5.port_a_first_address = 0,
ram_block3a_5.port_a_first_bit_number = 5,
ram_block3a_5.port_a_last_address = 4095,
ram_block3a_5.port_a_logical_ram_depth = 4096,
ram_block3a_5.port_a_logical_ram_width = 16,
ram_block3a_5.port_b_address_clear = "none",
ram_block3a_5.port_b_address_clock = "clock1",
ram_block3a_5.port_b_address_width = 12,
ram_block3a_5.port_b_data_out_clear = "none",
ram_block3a_5.port_b_data_out_clock = "none",
ram_block3a_5.port_b_data_width = 1,
ram_block3a_5.port_b_first_address = 0,
ram_block3a_5.port_b_first_bit_number = 5,
ram_block3a_5.port_b_last_address = 4095,
ram_block3a_5.port_b_logical_ram_depth = 4096,
ram_block3a_5.port_b_logical_ram_width = 16,
ram_block3a_5.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_5.ram_block_type = "auto",
ram_block3a_5.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_6
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[6]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_6portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_6.connectivity_checking = "OFF",
ram_block3a_6.logical_ram_name = "ALTSYNCRAM",
ram_block3a_6.mixed_port_feed_through_mode = "dont_care",
ram_block3a_6.operation_mode = "dual_port",
ram_block3a_6.port_a_address_width = 12,
ram_block3a_6.port_a_data_width = 1,
ram_block3a_6.port_a_first_address = 0,
ram_block3a_6.port_a_first_bit_number = 6,
ram_block3a_6.port_a_last_address = 4095,
ram_block3a_6.port_a_logical_ram_depth = 4096,
ram_block3a_6.port_a_logical_ram_width = 16,
ram_block3a_6.port_b_address_clear = "none",
ram_block3a_6.port_b_address_clock = "clock1",
ram_block3a_6.port_b_address_width = 12,
ram_block3a_6.port_b_data_out_clear = "none",
ram_block3a_6.port_b_data_out_clock = "none",
ram_block3a_6.port_b_data_width = 1,
ram_block3a_6.port_b_first_address = 0,
ram_block3a_6.port_b_first_bit_number = 6,
ram_block3a_6.port_b_last_address = 4095,
ram_block3a_6.port_b_logical_ram_depth = 4096,
ram_block3a_6.port_b_logical_ram_width = 16,
ram_block3a_6.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_6.ram_block_type = "auto",
ram_block3a_6.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_7
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[7]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_7portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_7.connectivity_checking = "OFF",
ram_block3a_7.logical_ram_name = "ALTSYNCRAM",
ram_block3a_7.mixed_port_feed_through_mode = "dont_care",
ram_block3a_7.operation_mode = "dual_port",
ram_block3a_7.port_a_address_width = 12,
ram_block3a_7.port_a_data_width = 1,
ram_block3a_7.port_a_first_address = 0,
ram_block3a_7.port_a_first_bit_number = 7,
ram_block3a_7.port_a_last_address = 4095,
ram_block3a_7.port_a_logical_ram_depth = 4096,
ram_block3a_7.port_a_logical_ram_width = 16,
ram_block3a_7.port_b_address_clear = "none",
ram_block3a_7.port_b_address_clock = "clock1",
ram_block3a_7.port_b_address_width = 12,
ram_block3a_7.port_b_data_out_clear = "none",
ram_block3a_7.port_b_data_out_clock = "none",
ram_block3a_7.port_b_data_width = 1,
ram_block3a_7.port_b_first_address = 0,
ram_block3a_7.port_b_first_bit_number = 7,
ram_block3a_7.port_b_last_address = 4095,
ram_block3a_7.port_b_logical_ram_depth = 4096,
ram_block3a_7.port_b_logical_ram_width = 16,
ram_block3a_7.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_7.ram_block_type = "auto",
ram_block3a_7.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_8
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[8]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_8portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_8.connectivity_checking = "OFF",
ram_block3a_8.logical_ram_name = "ALTSYNCRAM",
ram_block3a_8.mixed_port_feed_through_mode = "dont_care",
ram_block3a_8.operation_mode = "dual_port",
ram_block3a_8.port_a_address_width = 12,
ram_block3a_8.port_a_data_width = 1,
ram_block3a_8.port_a_first_address = 0,
ram_block3a_8.port_a_first_bit_number = 8,
ram_block3a_8.port_a_last_address = 4095,
ram_block3a_8.port_a_logical_ram_depth = 4096,
ram_block3a_8.port_a_logical_ram_width = 16,
ram_block3a_8.port_b_address_clear = "none",
ram_block3a_8.port_b_address_clock = "clock1",
ram_block3a_8.port_b_address_width = 12,
ram_block3a_8.port_b_data_out_clear = "none",
ram_block3a_8.port_b_data_out_clock = "none",
ram_block3a_8.port_b_data_width = 1,
ram_block3a_8.port_b_first_address = 0,
ram_block3a_8.port_b_first_bit_number = 8,
ram_block3a_8.port_b_last_address = 4095,
ram_block3a_8.port_b_logical_ram_depth = 4096,
ram_block3a_8.port_b_logical_ram_width = 16,
ram_block3a_8.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_8.ram_block_type = "auto",
ram_block3a_8.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_9
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[9]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_9portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_9.connectivity_checking = "OFF",
ram_block3a_9.logical_ram_name = "ALTSYNCRAM",
ram_block3a_9.mixed_port_feed_through_mode = "dont_care",
ram_block3a_9.operation_mode = "dual_port",
ram_block3a_9.port_a_address_width = 12,
ram_block3a_9.port_a_data_width = 1,
ram_block3a_9.port_a_first_address = 0,
ram_block3a_9.port_a_first_bit_number = 9,
ram_block3a_9.port_a_last_address = 4095,
ram_block3a_9.port_a_logical_ram_depth = 4096,
ram_block3a_9.port_a_logical_ram_width = 16,
ram_block3a_9.port_b_address_clear = "none",
ram_block3a_9.port_b_address_clock = "clock1",
ram_block3a_9.port_b_address_width = 12,
ram_block3a_9.port_b_data_out_clear = "none",
ram_block3a_9.port_b_data_out_clock = "none",
ram_block3a_9.port_b_data_width = 1,
ram_block3a_9.port_b_first_address = 0,
ram_block3a_9.port_b_first_bit_number = 9,
ram_block3a_9.port_b_last_address = 4095,
ram_block3a_9.port_b_logical_ram_depth = 4096,
ram_block3a_9.port_b_logical_ram_width = 16,
ram_block3a_9.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_9.ram_block_type = "auto",
ram_block3a_9.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_10
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[10]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_10portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_10.connectivity_checking = "OFF",
ram_block3a_10.logical_ram_name = "ALTSYNCRAM",
ram_block3a_10.mixed_port_feed_through_mode = "dont_care",
ram_block3a_10.operation_mode = "dual_port",
ram_block3a_10.port_a_address_width = 12,
ram_block3a_10.port_a_data_width = 1,
ram_block3a_10.port_a_first_address = 0,
ram_block3a_10.port_a_first_bit_number = 10,
ram_block3a_10.port_a_last_address = 4095,
ram_block3a_10.port_a_logical_ram_depth = 4096,
ram_block3a_10.port_a_logical_ram_width = 16,
ram_block3a_10.port_b_address_clear = "none",
ram_block3a_10.port_b_address_clock = "clock1",
ram_block3a_10.port_b_address_width = 12,
ram_block3a_10.port_b_data_out_clear = "none",
ram_block3a_10.port_b_data_out_clock = "none",
ram_block3a_10.port_b_data_width = 1,
ram_block3a_10.port_b_first_address = 0,
ram_block3a_10.port_b_first_bit_number = 10,
ram_block3a_10.port_b_last_address = 4095,
ram_block3a_10.port_b_logical_ram_depth = 4096,
ram_block3a_10.port_b_logical_ram_width = 16,
ram_block3a_10.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_10.ram_block_type = "auto",
ram_block3a_10.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_11
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[11]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_11portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_11.connectivity_checking = "OFF",
ram_block3a_11.logical_ram_name = "ALTSYNCRAM",
ram_block3a_11.mixed_port_feed_through_mode = "dont_care",
ram_block3a_11.operation_mode = "dual_port",
ram_block3a_11.port_a_address_width = 12,
ram_block3a_11.port_a_data_width = 1,
ram_block3a_11.port_a_first_address = 0,
ram_block3a_11.port_a_first_bit_number = 11,
ram_block3a_11.port_a_last_address = 4095,
ram_block3a_11.port_a_logical_ram_depth = 4096,
ram_block3a_11.port_a_logical_ram_width = 16,
ram_block3a_11.port_b_address_clear = "none",
ram_block3a_11.port_b_address_clock = "clock1",
ram_block3a_11.port_b_address_width = 12,
ram_block3a_11.port_b_data_out_clear = "none",
ram_block3a_11.port_b_data_out_clock = "none",
ram_block3a_11.port_b_data_width = 1,
ram_block3a_11.port_b_first_address = 0,
ram_block3a_11.port_b_first_bit_number = 11,
ram_block3a_11.port_b_last_address = 4095,
ram_block3a_11.port_b_logical_ram_depth = 4096,
ram_block3a_11.port_b_logical_ram_width = 16,
ram_block3a_11.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_11.ram_block_type = "auto",
ram_block3a_11.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_12
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[12]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_12portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_12.connectivity_checking = "OFF",
ram_block3a_12.logical_ram_name = "ALTSYNCRAM",
ram_block3a_12.mixed_port_feed_through_mode = "dont_care",
ram_block3a_12.operation_mode = "dual_port",
ram_block3a_12.port_a_address_width = 12,
ram_block3a_12.port_a_data_width = 1,
ram_block3a_12.port_a_first_address = 0,
ram_block3a_12.port_a_first_bit_number = 12,
ram_block3a_12.port_a_last_address = 4095,
ram_block3a_12.port_a_logical_ram_depth = 4096,
ram_block3a_12.port_a_logical_ram_width = 16,
ram_block3a_12.port_b_address_clear = "none",
ram_block3a_12.port_b_address_clock = "clock1",
ram_block3a_12.port_b_address_width = 12,
ram_block3a_12.port_b_data_out_clear = "none",
ram_block3a_12.port_b_data_out_clock = "none",
ram_block3a_12.port_b_data_width = 1,
ram_block3a_12.port_b_first_address = 0,
ram_block3a_12.port_b_first_bit_number = 12,
ram_block3a_12.port_b_last_address = 4095,
ram_block3a_12.port_b_logical_ram_depth = 4096,
ram_block3a_12.port_b_logical_ram_width = 16,
ram_block3a_12.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_12.ram_block_type = "auto",
ram_block3a_12.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_13
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[13]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_13portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_13.connectivity_checking = "OFF",
ram_block3a_13.logical_ram_name = "ALTSYNCRAM",
ram_block3a_13.mixed_port_feed_through_mode = "dont_care",
ram_block3a_13.operation_mode = "dual_port",
ram_block3a_13.port_a_address_width = 12,
ram_block3a_13.port_a_data_width = 1,
ram_block3a_13.port_a_first_address = 0,
ram_block3a_13.port_a_first_bit_number = 13,
ram_block3a_13.port_a_last_address = 4095,
ram_block3a_13.port_a_logical_ram_depth = 4096,
ram_block3a_13.port_a_logical_ram_width = 16,
ram_block3a_13.port_b_address_clear = "none",
ram_block3a_13.port_b_address_clock = "clock1",
ram_block3a_13.port_b_address_width = 12,
ram_block3a_13.port_b_data_out_clear = "none",
ram_block3a_13.port_b_data_out_clock = "none",
ram_block3a_13.port_b_data_width = 1,
ram_block3a_13.port_b_first_address = 0,
ram_block3a_13.port_b_first_bit_number = 13,
ram_block3a_13.port_b_last_address = 4095,
ram_block3a_13.port_b_logical_ram_depth = 4096,
ram_block3a_13.port_b_logical_ram_width = 16,
ram_block3a_13.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_13.ram_block_type = "auto",
ram_block3a_13.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_14
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[14]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_14portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_14.connectivity_checking = "OFF",
ram_block3a_14.logical_ram_name = "ALTSYNCRAM",
ram_block3a_14.mixed_port_feed_through_mode = "dont_care",
ram_block3a_14.operation_mode = "dual_port",
ram_block3a_14.port_a_address_width = 12,
ram_block3a_14.port_a_data_width = 1,
ram_block3a_14.port_a_first_address = 0,
ram_block3a_14.port_a_first_bit_number = 14,
ram_block3a_14.port_a_last_address = 4095,
ram_block3a_14.port_a_logical_ram_depth = 4096,
ram_block3a_14.port_a_logical_ram_width = 16,
ram_block3a_14.port_b_address_clear = "none",
ram_block3a_14.port_b_address_clock = "clock1",
ram_block3a_14.port_b_address_width = 12,
ram_block3a_14.port_b_data_out_clear = "none",
ram_block3a_14.port_b_data_out_clock = "none",
ram_block3a_14.port_b_data_width = 1,
ram_block3a_14.port_b_first_address = 0,
ram_block3a_14.port_b_first_bit_number = 14,
ram_block3a_14.port_b_last_address = 4095,
ram_block3a_14.port_b_logical_ram_depth = 4096,
ram_block3a_14.port_b_logical_ram_width = 16,
ram_block3a_14.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_14.ram_block_type = "auto",
ram_block3a_14.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_15
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[11:0]}),
.portadatain({data_a[15]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[11:0]}),
.portbdataout(wire_ram_block3a_15portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_15.connectivity_checking = "OFF",
ram_block3a_15.logical_ram_name = "ALTSYNCRAM",
ram_block3a_15.mixed_port_feed_through_mode = "dont_care",
ram_block3a_15.operation_mode = "dual_port",
ram_block3a_15.port_a_address_width = 12,
ram_block3a_15.port_a_data_width = 1,
ram_block3a_15.port_a_first_address = 0,
ram_block3a_15.port_a_first_bit_number = 15,
ram_block3a_15.port_a_last_address = 4095,
ram_block3a_15.port_a_logical_ram_depth = 4096,
ram_block3a_15.port_a_logical_ram_width = 16,
ram_block3a_15.port_b_address_clear = "none",
ram_block3a_15.port_b_address_clock = "clock1",
ram_block3a_15.port_b_address_width = 12,
ram_block3a_15.port_b_data_out_clear = "none",
ram_block3a_15.port_b_data_out_clock = "none",
ram_block3a_15.port_b_data_width = 1,
ram_block3a_15.port_b_first_address = 0,
ram_block3a_15.port_b_first_bit_number = 15,
ram_block3a_15.port_b_last_address = 4095,
ram_block3a_15.port_b_logical_ram_depth = 4096,
ram_block3a_15.port_b_logical_ram_width = 16,
ram_block3a_15.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_15.ram_block_type = "auto",
ram_block3a_15.lpm_type = "cyclone_ram_block";
assign
address_a_wire = address_a,
address_b_wire = address_b,
q_b = {wire_ram_block3a_15portbdataout[0], wire_ram_block3a_14portbdataout[0], wire_ram_block3a_13portbdataout[0], wire_ram_block3a_12portbdataout[0], wire_ram_block3a_11portbdataout[0], wire_ram_block3a_10portbdataout[0], wire_ram_block3a_9portbdataout[0], wire_ram_block3a_8portbdataout[0], wire_ram_block3a_7portbdataout[0], wire_ram_block3a_6portbdataout[0], wire_ram_block3a_5portbdataout[0], wire_ram_block3a_4portbdataout[0], wire_ram_block3a_3portbdataout[0], wire_ram_block3a_2portbdataout[0], wire_ram_block3a_1portbdataout[0], wire_ram_block3a_0portbdataout[0]};
endmodule
|
module fifo_4k_dffpipe_bb3
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;
input clock;
input clrn;
input [11:0] d;
output [11:0] q;
wire [11:0] wire_dffe4a_D;
reg [11:0] dffe4a;
wire ena;
wire prn;
wire sclr;
// synopsys translate_off
initial
dffe4a[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[0:0] <= 1'b1;
else if (clrn == 1'b0) dffe4a[0:0] <= 1'b0;
else if (ena == 1'b1) dffe4a[0:0] <= wire_dffe4a_D[0:0];
// synopsys translate_off
initial
dffe4a[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[1:1] <= 1'b1;
else if (clrn == 1'b0) dffe4a[1:1] <= 1'b0;
else if (ena == 1'b1) dffe4a[1:1] <= wire_dffe4a_D[1:1];
// synopsys translate_off
initial
dffe4a[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[2:2] <= 1'b1;
else if (clrn == 1'b0) dffe4a[2:2] <= 1'b0;
else if (ena == 1'b1) dffe4a[2:2] <= wire_dffe4a_D[2:2];
// synopsys translate_off
initial
dffe4a[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[3:3] <= 1'b1;
else if (clrn == 1'b0) dffe4a[3:3] <= 1'b0;
else if (ena == 1'b1) dffe4a[3:3] <= wire_dffe4a_D[3:3];
// synopsys translate_off
initial
dffe4a[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[4:4] <= 1'b1;
else if (clrn == 1'b0) dffe4a[4:4] <= 1'b0;
else if (ena == 1'b1) dffe4a[4:4] <= wire_dffe4a_D[4:4];
// synopsys translate_off
initial
dffe4a[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[5:5] <= 1'b1;
else if (clrn == 1'b0) dffe4a[5:5] <= 1'b0;
else if (ena == 1'b1) dffe4a[5:5] <= wire_dffe4a_D[5:5];
// synopsys translate_off
initial
dffe4a[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[6:6] <= 1'b1;
else if (clrn == 1'b0) dffe4a[6:6] <= 1'b0;
else if (ena == 1'b1) dffe4a[6:6] <= wire_dffe4a_D[6:6];
// synopsys translate_off
initial
dffe4a[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[7:7] <= 1'b1;
else if (clrn == 1'b0) dffe4a[7:7] <= 1'b0;
else if (ena == 1'b1) dffe4a[7:7] <= wire_dffe4a_D[7:7];
// synopsys translate_off
initial
dffe4a[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[8:8] <= 1'b1;
else if (clrn == 1'b0) dffe4a[8:8] <= 1'b0;
else if (ena == 1'b1) dffe4a[8:8] <= wire_dffe4a_D[8:8];
// synopsys translate_off
initial
dffe4a[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[9:9] <= 1'b1;
else if (clrn == 1'b0) dffe4a[9:9] <= 1'b0;
else if (ena == 1'b1) dffe4a[9:9] <= wire_dffe4a_D[9:9];
// synopsys translate_off
initial
dffe4a[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[10:10] <= 1'b1;
else if (clrn == 1'b0) dffe4a[10:10] <= 1'b0;
else if (ena == 1'b1) dffe4a[10:10] <= wire_dffe4a_D[10:10];
// synopsys translate_off
initial
dffe4a[11:11] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[11:11] <= 1'b1;
else if (clrn == 1'b0) dffe4a[11:11] <= 1'b0;
else if (ena == 1'b1) dffe4a[11:11] <= wire_dffe4a_D[11:11];
assign
wire_dffe4a_D = (d & {12{(~ sclr)}});
assign
ena = 1'b1,
prn = 1'b1,
q = dffe4a,
sclr = 1'b0;
endmodule
|
module fifo_4k_dffpipe_em2
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;
input clock;
input clrn;
input [11:0] d;
output [11:0] q;
wire [11:0] wire_dffe6a_D;
reg [11:0] dffe6a;
wire ena;
wire prn;
wire sclr;
// synopsys translate_off
initial
dffe6a[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[0:0] <= 1'b1;
else if (clrn == 1'b0) dffe6a[0:0] <= 1'b0;
else if (ena == 1'b1) dffe6a[0:0] <= wire_dffe6a_D[0:0];
// synopsys translate_off
initial
dffe6a[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[1:1] <= 1'b1;
else if (clrn == 1'b0) dffe6a[1:1] <= 1'b0;
else if (ena == 1'b1) dffe6a[1:1] <= wire_dffe6a_D[1:1];
// synopsys translate_off
initial
dffe6a[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[2:2] <= 1'b1;
else if (clrn == 1'b0) dffe6a[2:2] <= 1'b0;
else if (ena == 1'b1) dffe6a[2:2] <= wire_dffe6a_D[2:2];
// synopsys translate_off
initial
dffe6a[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[3:3] <= 1'b1;
else if (clrn == 1'b0) dffe6a[3:3] <= 1'b0;
else if (ena == 1'b1) dffe6a[3:3] <= wire_dffe6a_D[3:3];
// synopsys translate_off
initial
dffe6a[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[4:4] <= 1'b1;
else if (clrn == 1'b0) dffe6a[4:4] <= 1'b0;
else if (ena == 1'b1) dffe6a[4:4] <= wire_dffe6a_D[4:4];
// synopsys translate_off
initial
dffe6a[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[5:5] <= 1'b1;
else if (clrn == 1'b0) dffe6a[5:5] <= 1'b0;
else if (ena == 1'b1) dffe6a[5:5] <= wire_dffe6a_D[5:5];
// synopsys translate_off
initial
dffe6a[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[6:6] <= 1'b1;
else if (clrn == 1'b0) dffe6a[6:6] <= 1'b0;
else if (ena == 1'b1) dffe6a[6:6] <= wire_dffe6a_D[6:6];
// synopsys translate_off
initial
dffe6a[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[7:7] <= 1'b1;
else if (clrn == 1'b0) dffe6a[7:7] <= 1'b0;
else if (ena == 1'b1) dffe6a[7:7] <= wire_dffe6a_D[7:7];
// synopsys translate_off
initial
dffe6a[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[8:8] <= 1'b1;
else if (clrn == 1'b0) dffe6a[8:8] <= 1'b0;
else if (ena == 1'b1) dffe6a[8:8] <= wire_dffe6a_D[8:8];
// synopsys translate_off
initial
dffe6a[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[9:9] <= 1'b1;
else if (clrn == 1'b0) dffe6a[9:9] <= 1'b0;
else if (ena == 1'b1) dffe6a[9:9] <= wire_dffe6a_D[9:9];
// synopsys translate_off
initial
dffe6a[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[10:10] <= 1'b1;
else if (clrn == 1'b0) dffe6a[10:10] <= 1'b0;
else if (ena == 1'b1) dffe6a[10:10] <= wire_dffe6a_D[10:10];
// synopsys translate_off
initial
dffe6a[11:11] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[11:11] <= 1'b1;
else if (clrn == 1'b0) dffe6a[11:11] <= 1'b0;
else if (ena == 1'b1) dffe6a[11:11] <= wire_dffe6a_D[11:11];
assign
wire_dffe6a_D = (d & {12{(~ sclr)}});
assign
ena = 1'b1,
prn = 1'b1,
q = dffe6a,
sclr = 1'b0;
endmodule
|
module fifo_4k_alt_synch_pipe_em2
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="X_ON_VIOLATION_OPTION=OFF" */;
input clock;
input clrn;
input [11:0] d;
output [11:0] q;
wire [11:0] wire_dffpipe5_q;
fifo_4k_dffpipe_em2 dffpipe5
(
.clock(clock),
.clrn(clrn),
.d(d),
.q(wire_dffpipe5_q));
assign
q = wire_dffpipe5_q;
endmodule
|
module fifo_4k_add_sub_b18
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [11:0] dataa;
input [11:0] datab;
output [11:0] result;
wire [11:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [11:0] wire_add_sub_cella_dataa;
wire [11:0] wire_add_sub_cella_datab;
cyclone_lcell add_sub_cella_0
(
.cin(1'b1),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_8
(
.cin(wire_add_sub_cella_7cout[0:0]),
.combout(wire_add_sub_cella_combout[8:8]),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_9
(
.cin(wire_add_sub_cella_8cout[0:0]),
.combout(wire_add_sub_cella_combout[9:9]),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_10
(
.cin(wire_add_sub_cella_9cout[0:0]),
.combout(wire_add_sub_cella_combout[10:10]),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "69b2",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_11
(
.cin(wire_add_sub_cella_10cout[0:0]),
.combout(wire_add_sub_cella_combout[11:11]),
.cout(),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "6969",
add_sub_cella_11.operation_mode = "normal",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "cyclone_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule
|
module fifo_4k_dcfifo_6cq
(
aclr,
data,
q,
rdclk,
rdempty,
rdreq,
rdusedw,
wrclk,
wrfull,
wrreq,
wrusedw) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF;{ -from \"rdptr_g|power_modified_counter_values\" -to \"ws_dgrp|dffpipe5|dffe6a\" }CUT=ON;{ -from \"delayed_wrptr_g\" -to \"rs_dgwp|dffpipe5|dffe6a\" }CUT=ON" */;
input aclr;
input [15:0] data;
output [15:0] q;
input rdclk;
output rdempty;
input rdreq;
output [11:0] rdusedw;
input wrclk;
output wrfull;
input wrreq;
output [11:0] wrusedw;
wire [11:0] wire_rdptr_g_gray2bin_bin;
wire [11:0] wire_rs_dgwp_gray2bin_bin;
wire [11:0] wire_wrptr_g_gray2bin_bin;
wire [11:0] wire_ws_dgrp_gray2bin_bin;
wire [11:0] wire_rdptr_g_q;
wire [11:0] wire_rdptr_g1p_q;
wire [11:0] wire_wrptr_g1p_q;
wire [15:0] wire_fifo_ram_q_b;
reg [11:0] delayed_wrptr_g;
reg [11:0] wrptr_g;
wire [11:0] wire_rs_brp_q;
wire [11:0] wire_rs_bwp_q;
wire [11:0] wire_rs_dgwp_q;
wire [11:0] wire_ws_brp_q;
wire [11:0] wire_ws_bwp_q;
wire [11:0] wire_ws_dgrp_q;
wire [11:0] wire_rdusedw_sub_result;
wire [11:0] wire_wrusedw_sub_result;
reg wire_rdempty_eq_comp_aeb_int;
wire wire_rdempty_eq_comp_aeb;
wire [11:0] wire_rdempty_eq_comp_dataa;
wire [11:0] wire_rdempty_eq_comp_datab;
reg wire_wrfull_eq_comp_aeb_int;
wire wire_wrfull_eq_comp_aeb;
wire [11:0] wire_wrfull_eq_comp_dataa;
wire [11:0] wire_wrfull_eq_comp_datab;
wire int_rdempty;
wire int_wrfull;
wire valid_rdreq;
wire valid_wrreq;
fifo_4k_a_gray2bin_9m4 rdptr_g_gray2bin
(
.bin(wire_rdptr_g_gray2bin_bin),
.gray(wire_rdptr_g_q));
fifo_4k_a_gray2bin_9m4 rs_dgwp_gray2bin
(
.bin(wire_rs_dgwp_gray2bin_bin),
.gray(wire_rs_dgwp_q));
fifo_4k_a_gray2bin_9m4 wrptr_g_gray2bin
(
.bin(wire_wrptr_g_gray2bin_bin),
.gray(wrptr_g));
fifo_4k_a_gray2bin_9m4 ws_dgrp_gray2bin
(
.bin(wire_ws_dgrp_gray2bin_bin),
.gray(wire_ws_dgrp_q));
fifo_4k_a_graycounter_826 rdptr_g
(
.aclr(aclr),
.clock(rdclk),
.cnt_en(valid_rdreq),
.q(wire_rdptr_g_q));
fifo_4k_a_graycounter_3r6 rdptr_g1p
(
.aclr(aclr),
.clock(rdclk),
.cnt_en(valid_rdreq),
.q(wire_rdptr_g1p_q));
fifo_4k_a_graycounter_3r6 wrptr_g1p
(
.aclr(aclr),
.clock(wrclk),
.cnt_en(valid_wrreq),
.q(wire_wrptr_g1p_q));
fifo_4k_altsyncram_8pl fifo_ram
(
.address_a(wrptr_g),
.address_b(((wire_rdptr_g_q & {12{int_rdempty}}) | (wire_rdptr_g1p_q & {12{(~ int_rdempty)}}))),
.clock0(wrclk),
.clock1(rdclk),
.clocken1((valid_rdreq | int_rdempty)),
.data_a(data),
.q_b(wire_fifo_ram_q_b),
.wren_a(valid_wrreq));
// synopsys translate_off
initial
delayed_wrptr_g = 0;
// synopsys translate_on
always @ ( posedge wrclk or posedge aclr)
if (aclr == 1'b1) delayed_wrptr_g <= 12'b0;
else delayed_wrptr_g <= wrptr_g;
// synopsys translate_off
initial
wrptr_g = 0;
// synopsys translate_on
always @ ( posedge wrclk or posedge aclr)
if (aclr == 1'b1) wrptr_g <= 12'b0;
else if (valid_wrreq == 1'b1) wrptr_g <= wire_wrptr_g1p_q;
fifo_4k_dffpipe_bb3 rs_brp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(wire_rdptr_g_gray2bin_bin),
.q(wire_rs_brp_q));
fifo_4k_dffpipe_bb3 rs_bwp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(wire_rs_dgwp_gray2bin_bin),
.q(wire_rs_bwp_q));
fifo_4k_alt_synch_pipe_em2 rs_dgwp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(delayed_wrptr_g),
.q(wire_rs_dgwp_q));
fifo_4k_dffpipe_bb3 ws_brp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_ws_dgrp_gray2bin_bin),
.q(wire_ws_brp_q));
fifo_4k_dffpipe_bb3 ws_bwp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_wrptr_g_gray2bin_bin),
.q(wire_ws_bwp_q));
fifo_4k_alt_synch_pipe_em2 ws_dgrp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_rdptr_g_q),
.q(wire_ws_dgrp_q));
fifo_4k_add_sub_b18 rdusedw_sub
(
.dataa(wire_rs_bwp_q),
.datab(wire_rs_brp_q),
.result(wire_rdusedw_sub_result));
fifo_4k_add_sub_b18 wrusedw_sub
(
.dataa(wire_ws_bwp_q),
.datab(wire_ws_brp_q),
.result(wire_wrusedw_sub_result));
always @(wire_rdempty_eq_comp_dataa or wire_rdempty_eq_comp_datab)
if (wire_rdempty_eq_comp_dataa == wire_rdempty_eq_comp_datab)
begin
wire_rdempty_eq_comp_aeb_int = 1'b1;
end
else
begin
wire_rdempty_eq_comp_aeb_int = 1'b0;
end
assign
wire_rdempty_eq_comp_aeb = wire_rdempty_eq_comp_aeb_int;
assign
wire_rdempty_eq_comp_dataa = wire_rs_dgwp_q,
wire_rdempty_eq_comp_datab = wire_rdptr_g_q;
always @(wire_wrfull_eq_comp_dataa or wire_wrfull_eq_comp_datab)
if (wire_wrfull_eq_comp_dataa == wire_wrfull_eq_comp_datab)
begin
wire_wrfull_eq_comp_aeb_int = 1'b1;
end
else
begin
wire_wrfull_eq_comp_aeb_int = 1'b0;
end
assign
wire_wrfull_eq_comp_aeb = wire_wrfull_eq_comp_aeb_int;
assign
wire_wrfull_eq_comp_dataa = wire_ws_dgrp_q,
wire_wrfull_eq_comp_datab = wire_wrptr_g1p_q;
assign
int_rdempty = wire_rdempty_eq_comp_aeb,
int_wrfull = wire_wrfull_eq_comp_aeb,
q = wire_fifo_ram_q_b,
rdempty = int_rdempty,
rdusedw = wire_rdusedw_sub_result,
valid_rdreq = rdreq,
valid_wrreq = wrreq,
wrfull = int_wrfull,
wrusedw = wire_wrusedw_sub_result;
endmodule
|
module fifo_4k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire [11:0] rdusedw = sub_wire4[11:0];
fifo_4k_dcfifo_6cq fifo_4k_dcfifo_6cq_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4));
endmodule
|
module axi_crossbar_v2_1_wdata_mux #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of W-channel payload.
parameter integer C_NUM_SLAVE_SLOTS = 1, // Number of S_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_WMESG_WIDTH-1:0] S_WMESG,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_WLAST,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG,
output wire M_WLAST,
output wire M_WVALID,
input wire M_WREADY,
// Write Command Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // SI-slot index from AW arbiter
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_SLAVE_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_SLAVE_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
wire m_valid_i;
wire m_last_i;
wire [C_NUM_SLAVE_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
generate
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (0)
)
wmux_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// Instantiate MUX
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (C_SELECT_WIDTH),
.C_DATA_WIDTH (C_WMESG_WIDTH)
) mux_w
(
.S (m_select_enc),
.A (S_WMESG),
.O (M_WMESG),
.OE (1'b1)
);
assign m_last_i = |(S_WLAST & m_select_hot);
assign m_valid_i = |(S_WVALID & m_select_hot);
assign m_aready = m_valid_i & m_avalid & m_last_i & M_WREADY;
assign M_WLAST = m_last_i;
assign M_WVALID = m_valid_i & m_avalid;
assign S_WREADY = m_select_hot & {C_NUM_SLAVE_SLOTS{m_avalid & M_WREADY}};
end else begin : gen_no_wmux
assign S_AREADY = 1'b1;
assign M_WVALID = S_WVALID;
assign S_WREADY = M_WREADY;
assign M_WLAST = S_WLAST;
assign M_WMESG = S_WMESG;
end
endgenerate
endmodule
|
module axi_crossbar_v2_1_wdata_mux #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of W-channel payload.
parameter integer C_NUM_SLAVE_SLOTS = 1, // Number of S_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_WMESG_WIDTH-1:0] S_WMESG,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_WLAST,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG,
output wire M_WLAST,
output wire M_WVALID,
input wire M_WREADY,
// Write Command Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // SI-slot index from AW arbiter
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_SLAVE_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_SLAVE_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
wire m_valid_i;
wire m_last_i;
wire [C_NUM_SLAVE_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
generate
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (0)
)
wmux_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// Instantiate MUX
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (C_SELECT_WIDTH),
.C_DATA_WIDTH (C_WMESG_WIDTH)
) mux_w
(
.S (m_select_enc),
.A (S_WMESG),
.O (M_WMESG),
.OE (1'b1)
);
assign m_last_i = |(S_WLAST & m_select_hot);
assign m_valid_i = |(S_WVALID & m_select_hot);
assign m_aready = m_valid_i & m_avalid & m_last_i & M_WREADY;
assign M_WLAST = m_last_i;
assign M_WVALID = m_valid_i & m_avalid;
assign S_WREADY = m_select_hot & {C_NUM_SLAVE_SLOTS{m_avalid & M_WREADY}};
end else begin : gen_no_wmux
assign S_AREADY = 1'b1;
assign M_WVALID = S_WVALID;
assign S_WREADY = M_WREADY;
assign M_WLAST = S_WLAST;
assign M_WMESG = S_WMESG;
end
endgenerate
endmodule
|
module axi_crossbar_v2_1_wdata_mux #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of W-channel payload.
parameter integer C_NUM_SLAVE_SLOTS = 1, // Number of S_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_WMESG_WIDTH-1:0] S_WMESG,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_WLAST,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG,
output wire M_WLAST,
output wire M_WVALID,
input wire M_WREADY,
// Write Command Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // SI-slot index from AW arbiter
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_SLAVE_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_SLAVE_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
wire m_valid_i;
wire m_last_i;
wire [C_NUM_SLAVE_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
generate
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (0)
)
wmux_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// Instantiate MUX
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (C_SELECT_WIDTH),
.C_DATA_WIDTH (C_WMESG_WIDTH)
) mux_w
(
.S (m_select_enc),
.A (S_WMESG),
.O (M_WMESG),
.OE (1'b1)
);
assign m_last_i = |(S_WLAST & m_select_hot);
assign m_valid_i = |(S_WVALID & m_select_hot);
assign m_aready = m_valid_i & m_avalid & m_last_i & M_WREADY;
assign M_WLAST = m_last_i;
assign M_WVALID = m_valid_i & m_avalid;
assign S_WREADY = m_select_hot & {C_NUM_SLAVE_SLOTS{m_avalid & M_WREADY}};
end else begin : gen_no_wmux
assign S_AREADY = 1'b1;
assign M_WVALID = S_WVALID;
assign S_WREADY = M_WREADY;
assign M_WLAST = S_WLAST;
assign M_WMESG = S_WMESG;
end
endgenerate
endmodule
|
module axi_crossbar_v2_1_wdata_mux #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of W-channel payload.
parameter integer C_NUM_SLAVE_SLOTS = 1, // Number of S_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_WMESG_WIDTH-1:0] S_WMESG,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_WLAST,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG,
output wire M_WLAST,
output wire M_WVALID,
input wire M_WREADY,
// Write Command Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // SI-slot index from AW arbiter
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_SLAVE_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_SLAVE_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
wire m_valid_i;
wire m_last_i;
wire [C_NUM_SLAVE_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
generate
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (0)
)
wmux_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// Instantiate MUX
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (C_SELECT_WIDTH),
.C_DATA_WIDTH (C_WMESG_WIDTH)
) mux_w
(
.S (m_select_enc),
.A (S_WMESG),
.O (M_WMESG),
.OE (1'b1)
);
assign m_last_i = |(S_WLAST & m_select_hot);
assign m_valid_i = |(S_WVALID & m_select_hot);
assign m_aready = m_valid_i & m_avalid & m_last_i & M_WREADY;
assign M_WLAST = m_last_i;
assign M_WVALID = m_valid_i & m_avalid;
assign S_WREADY = m_select_hot & {C_NUM_SLAVE_SLOTS{m_avalid & M_WREADY}};
end else begin : gen_no_wmux
assign S_AREADY = 1'b1;
assign M_WVALID = S_WVALID;
assign S_WREADY = M_WREADY;
assign M_WLAST = S_WLAST;
assign M_WMESG = S_WMESG;
end
endgenerate
endmodule
|
module axi_crossbar_v2_1_wdata_mux #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of W-channel payload.
parameter integer C_NUM_SLAVE_SLOTS = 1, // Number of S_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_WMESG_WIDTH-1:0] S_WMESG,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_WLAST,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG,
output wire M_WLAST,
output wire M_WVALID,
input wire M_WREADY,
// Write Command Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // SI-slot index from AW arbiter
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_SLAVE_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_SLAVE_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
wire m_valid_i;
wire m_last_i;
wire [C_NUM_SLAVE_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
generate
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (0)
)
wmux_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// Instantiate MUX
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (C_SELECT_WIDTH),
.C_DATA_WIDTH (C_WMESG_WIDTH)
) mux_w
(
.S (m_select_enc),
.A (S_WMESG),
.O (M_WMESG),
.OE (1'b1)
);
assign m_last_i = |(S_WLAST & m_select_hot);
assign m_valid_i = |(S_WVALID & m_select_hot);
assign m_aready = m_valid_i & m_avalid & m_last_i & M_WREADY;
assign M_WLAST = m_last_i;
assign M_WVALID = m_valid_i & m_avalid;
assign S_WREADY = m_select_hot & {C_NUM_SLAVE_SLOTS{m_avalid & M_WREADY}};
end else begin : gen_no_wmux
assign S_AREADY = 1'b1;
assign M_WVALID = S_WVALID;
assign S_WREADY = M_WREADY;
assign M_WLAST = S_WLAST;
assign M_WMESG = S_WMESG;
end
endgenerate
endmodule
|
module serial_io
( input master_clk,
input serial_clock,
input serial_data_in,
input enable,
input reset,
inout wire serial_data_out,
output reg [6:0] serial_addr,
output reg [31:0] serial_data,
output wire serial_strobe,
input wire [31:0] readback_0,
input wire [31:0] readback_1,
input wire [31:0] readback_2,
input wire [31:0] readback_3,
input wire [31:0] readback_4,
input wire [31:0] readback_5,
input wire [31:0] readback_6,
input wire [31:0] readback_7
);
reg is_read;
reg [7:0] ser_ctr;
reg write_done;
assign serial_data_out = is_read ? serial_data[31] : 1'bz;
always @(posedge serial_clock, posedge reset, negedge enable)
if(reset)
ser_ctr <= #1 8'd0;
else if(~enable)
ser_ctr <= #1 8'd0;
else if(ser_ctr == 39)
ser_ctr <= #1 8'd0;
else
ser_ctr <= #1 ser_ctr + 8'd1;
always @(posedge serial_clock, posedge reset, negedge enable)
if(reset)
is_read <= #1 1'b0;
else if(~enable)
is_read <= #1 1'b0;
else if((ser_ctr == 7)&&(serial_addr[6]==1))
is_read <= #1 1'b1;
always @(posedge serial_clock, posedge reset)
if(reset)
begin
serial_addr <= #1 7'b0;
serial_data <= #1 32'b0;
write_done <= #1 1'b0;
end
else if(~enable)
begin
//serial_addr <= #1 7'b0;
//serial_data <= #1 32'b0;
write_done <= #1 1'b0;
end
else
begin
if(~is_read && (ser_ctr == 39))
write_done <= #1 1'b1;
else
write_done <= #1 1'b0;
if(is_read & (ser_ctr==8))
case (serial_addr)
7'd1: serial_data <= #1 readback_0;
7'd2: serial_data <= #1 readback_1;
7'd3: serial_data <= #1 readback_2;
7'd4: serial_data <= #1 readback_3;
7'd5: serial_data <= #1 readback_4;
7'd6: serial_data <= #1 readback_5;
7'd7: serial_data <= #1 readback_6;
7'd8: serial_data <= #1 readback_7;
default: serial_data <= #1 32'd0;
endcase // case(serial_addr)
else if(ser_ctr >= 8)
serial_data <= #1 {serial_data[30:0],serial_data_in};
else if(ser_ctr < 8)
serial_addr <= #1 {serial_addr[5:0],serial_data_in};
end // else: !if(~enable)
reg enable_d1, enable_d2;
always @(posedge master_clk)
begin
enable_d1 <= #1 enable;
enable_d2 <= #1 enable_d1;
end
assign serial_strobe = enable_d2 & ~enable_d1;
endmodule
|
module axi_crossbar_v2_1_axi_crossbar # (
parameter C_FAMILY = "rtl",
// FPGA Base Family. Current version: virtex6 or spartan6.
parameter integer C_NUM_SLAVE_SLOTS = 1,
// Number of Slave Interface (SI) slots for connecting
// to master IP. Range: 1-16.
parameter integer C_NUM_MASTER_SLOTS = 2,
// Number of Master Interface (MI) slots for connecting
// to slave IP. Range: 1-16.
parameter integer C_AXI_ID_WIDTH = 1,
// Width of ID signals propagated by the Interconnect.
// Width of ID signals produced on all MI slots.
// Range: 1-32.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of s_axi_awaddr, s_axi_araddr, m_axi_awaddr and
// m_axi_araddr for all SI/MI slots.
// Range: 1-64.
parameter integer C_AXI_DATA_WIDTH = 32,
// Data width of the internal interconnect write and read
// data paths.
// Range: 32, 64, 128, 256, 512, 1024.
parameter integer C_AXI_PROTOCOL = 0,
// 0 = "AXI4",
// 1 = "AXI3",
// 2 = "AXI4LITE"
// Propagate WID only when C_AXI_PROTOCOL = 1.
parameter integer C_NUM_ADDR_RANGES = 1,
// Number of BASE/HIGH_ADDR pairs per MI slot.
// Range: 1-16.
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = 128'h00000000001000000000000000000000,
// Base address of each range of each MI slot.
// For unused ranges, set C_M_AXI_BASE_ADDR[mm*aa*64 +: C_AXI_ADDR_WIDTH] = {C_AXI_ADDR_WIDTH{1'b1}}.
// (Bit positions above C_AXI_ADDR_WIDTH are ignored.)
// Format: C_NUM_MASTER_SLOTS{C_NUM_ADDR_RANGES{Bit64}}.
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*32-1:0] C_M_AXI_ADDR_WIDTH = 64'H0000000c0000000c,
// Number of low-order address bits that are used to select locations within each address range of each MI slot.
// The High address of each range is derived as BASE_ADDR + 2**C_M_AXI_ADDR_WIDTH -1.
// For used address ranges, C_M_AXI_ADDR_WIDTH must be > 0.
// For unused ranges, set C_M_AXI_ADDR_WIDTH to 32'h00000000.
// Format: C_NUM_MASTER_SLOTS{C_NUM_ADDR_RANGES{Bit32}}.
// Range: 0 - C_AXI_ADDR_WIDTH.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_BASE_ID = 32'h00000000,
// Base ID of each SI slot.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0 to 2**C_AXI_ID_WIDTH-1.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = 32'h00000000,
// Number of low-order ID bits a connected master may vary to select a transaction thread.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0 - C_AXI_ID_WIDTH.
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Dont propagate.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_BUSER_WIDTH = 1,
// Width of BUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = 64'hFFFFFFFFFFFFFFFF,
// Multi-pathway write connectivity from each SI slot (N) to each
// MI slot (M):
// 0 = no pathway required; 1 = pathway required. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = 64'hFFFFFFFFFFFFFFFF,
// Multi-pathway read connectivity from each SI slot (N) to each
// MI slot (M):
// 0 = no pathway required; 1 = pathway required. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
parameter integer C_R_REGISTER = 0,
// Insert register slice on R channel in the crossbar. (Valid only for SASD)
// Range: Reg-slice type (0-8).
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = 32'h00000000,
// 0 = Implement separate command queues per ID thread.
// 1 = Force corresponding SI slot to be single-threaded. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0, 1
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = 32'H00000002,
// Maximum number of active write transactions that each SI
// slot can accept. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = 32'H00000002,
// Maximum number of active read transactions that each SI
// slot can accept. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = 64'H0000000400000004,
// Maximum number of data-active write transactions that
// each MI slot can generate at any one time. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = 64'H0000000400000004,
// Maximum number of active read transactions that
// each MI slot can generate at any one time. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = 32'h00000000,
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0-15.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = 32'h00000000,
// Indicates whether each MI slot connects to a secure slave
// (allows only TrustZone secure access).
// Format: C_NUM_MASTER_SLOTS{Bit32}.
// Range: 0, 1
parameter integer C_CONNECTIVITY_MODE = 1
// 0 = Shared-Address Shared-Data (SASD).
// 1 = Shared-Address Multi-Data (SAMD).
// Default 1 (on) for simulation; default 0 (off) for implementation.
)
(
// Global Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_awsize,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_awburst,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awcache,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_awprot,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awregion,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awqos,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_awvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wlast,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_bresp,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_bvalid,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_arsize,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_arburst,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arcache,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_arprot,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arregion,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arqos,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_arvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_rresp,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rlast,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rvalid,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rready,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_awsize,
output wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_awburst,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awcache,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_awprot,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awregion,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awqos,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_awvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_awready,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wlast,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wready,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_bresp,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_bvalid,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_bready,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_arsize,
output wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_arburst,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arcache,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_arprot,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arregion,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arqos,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_arvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_arready,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_rresp,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rlast,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rvalid,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rready
);
localparam [64:0] P_ONES = {65{1'b1}};
localparam [C_NUM_SLAVE_SLOTS*64-1:0] P_S_AXI_BASE_ID = f_base_id(0);
localparam [C_NUM_SLAVE_SLOTS*64-1:0] P_S_AXI_HIGH_ID = f_high_id(0);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam [2:0] P_AXILITE_SIZE = 3'b010;
localparam [1:0] P_INCR = 2'b01;
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXI_SUPPORTS_WRITE = f_m_supports_write(0);
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXI_SUPPORTS_READ = f_m_supports_read(0);
localparam [C_NUM_SLAVE_SLOTS-1:0] P_S_AXI_SUPPORTS_WRITE = f_s_supports_write(0);
localparam [C_NUM_SLAVE_SLOTS-1:0] P_S_AXI_SUPPORTS_READ = f_s_supports_read(0);
localparam integer C_DEBUG = 1;
localparam integer P_RANGE_CHECK = 1;
// 1 (non-zero) = Detect and issue DECERR on the following conditions:
// a. address range mismatch (no valid MI slot)
// b. Burst or >32-bit transfer to AxiLite slave
// c. TrustZone access violation
// d. R/W direction unsupported by target
// 0 = Pass all transactions (no DECERR):
// a. Omit DECERR detection and response logic
// b. Omit address decoder and propagate s_axi_a*REGION to m_axi_a*REGION
// when C_NUM_MASTER_SLOTS=1 and C_NUM_ADDR_RANGES=1.
// c. Unpredictable target MI-slot if address mismatch and >1 MI-slot
// d. Transaction corruption if any burst or >32-bit transfer to AxiLite slave
// Illegal combination: P_RANGE_CHECK = 0 && C_M_AXI_SECURE != 0.
localparam integer P_ADDR_DECODE = ((P_RANGE_CHECK == 1) || (C_NUM_MASTER_SLOTS > 1) || (C_NUM_ADDR_RANGES > 1)) ? 1 : 0; // Always 1
localparam [C_NUM_MASTER_SLOTS*32-1:0] P_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}};
// Transaction error detection (per MI-slot)
// 0 = None; 1 = AXI4Lite burst violation
// Format: C_NUM_MASTER_SLOTS{Bit32};
localparam integer P_LEN = (C_AXI_PROTOCOL == P_AXI3) ? 4 : 8;
localparam integer P_LOCK = (C_AXI_PROTOCOL == P_AXI3) ? 2 : 1;
localparam P_FAMILY = ((C_FAMILY == "virtex7") || (C_FAMILY == "kintex7") || (C_FAMILY == "artix7") || (C_FAMILY == "zynq")) ? C_FAMILY : "rtl";
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Widths of all write issuance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [(C_NUM_MASTER_SLOTS+1)*32-1:0] f_write_issue_width_vec
(input null_arg);
integer mi;
reg [(C_NUM_MASTER_SLOTS+1)*32-1:0] result;
begin
result = 0;
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result[mi*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_M_AXI_WRITE_ISSUING[mi*32+:32]);
end
result[C_NUM_MASTER_SLOTS*32+:32] = 32'h0;
f_write_issue_width_vec = result;
end
endfunction
// Widths of all read issuance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [(C_NUM_MASTER_SLOTS+1)*32-1:0] f_read_issue_width_vec
(input null_arg);
integer mi;
reg [(C_NUM_MASTER_SLOTS+1)*32-1:0] result;
begin
result = 0;
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result[mi*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_M_AXI_READ_ISSUING[mi*32+:32]);
end
result[C_NUM_MASTER_SLOTS*32+:32] = 32'h0;
f_read_issue_width_vec = result;
end
endfunction
// Widths of all write acceptance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [C_NUM_SLAVE_SLOTS*32-1:0] f_write_accept_width_vec
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_S_AXI_WRITE_ACCEPTANCE[si*32+:32]);
end
f_write_accept_width_vec = result;
end
endfunction
// Widths of all read acceptance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [C_NUM_SLAVE_SLOTS*32-1:0] f_read_accept_width_vec
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_S_AXI_READ_ACCEPTANCE[si*32+:32]);
end
f_read_accept_width_vec = result;
end
endfunction
// Convert C_S_AXI_BASE_ID vector from Bit32 to Bit64 format
function [C_NUM_SLAVE_SLOTS*64-1:0] f_base_id
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*64-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*64+:C_AXI_ID_WIDTH] = C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH];
end
f_base_id = result;
end
endfunction
// Construct P_S_HIGH_ID vector
function [C_NUM_SLAVE_SLOTS*64-1:0] f_high_id
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*64-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*64+:C_AXI_ID_WIDTH] = (C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? {C_AXI_ID_WIDTH{1'b1}} :
(C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] | ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]}));
end
f_high_id = result;
end
endfunction
// Construct P_M_HIGH_ADDR vector
function [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] f_high_addr
(input null_arg);
integer ar;
reg [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] result;
begin
result = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}};
for (ar=0; ar<C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES; ar=ar+1) begin
result[ar*64+:C_AXI_ADDR_WIDTH] = (C_M_AXI_ADDR_WIDTH[ar*32+:32] == 0) ? 64'h00000000_00000000 :
({1'b0, C_M_AXI_ADDR_WIDTH[ar*32+:31]} >= C_AXI_ADDR_WIDTH) ? {C_AXI_ADDR_WIDTH{1'b1}} :
(C_M_AXI_BASE_ADDR[ar*64+:C_AXI_ADDR_WIDTH] | ~(P_ONES << {1'b0, C_M_AXI_ADDR_WIDTH[ar*32+:7]}));
end
f_high_addr = result;
end
endfunction
// Generate a mask of valid ID bits for a given SI slot.
function [C_AXI_ID_WIDTH-1:0] f_thread_id_mask
(input integer si);
begin
f_thread_id_mask =
(C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? {C_AXI_ID_WIDTH{1'b0}} :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? {C_AXI_ID_WIDTH{1'b1}} :
({C_AXI_ID_WIDTH{1'b0}} | ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]}));
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID (
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer si
);
begin
f_extend_ID =
(C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? s_id :
(C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] | (s_id & ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]})));
end
endfunction
// Bit vector of SI slots with at least one write connection.
function [C_NUM_SLAVE_SLOTS-1:0] f_s_supports_write
(input null_arg);
integer mi;
reg [C_NUM_SLAVE_SLOTS-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS{1'b0}};
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result = result | C_M_AXI_WRITE_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS];
end
f_s_supports_write = result;
end
endfunction
// Bit vector of SI slots with at least one read connection.
function [C_NUM_SLAVE_SLOTS-1:0] f_s_supports_read
(input null_arg);
integer mi;
reg [C_NUM_SLAVE_SLOTS-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS{1'b0}};
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result = result | C_M_AXI_READ_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS];
end
f_s_supports_read = result;
end
endfunction
// Bit vector of MI slots with at least one write connection.
function [C_NUM_MASTER_SLOTS-1:0] f_m_supports_write
(input null_arg);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_supports_write[mi] = (|C_M_AXI_WRITE_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS]);
end
end
endfunction
// Bit vector of MI slots with at least one read connection.
function [C_NUM_MASTER_SLOTS-1:0] f_m_supports_read
(input null_arg);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_supports_read[mi] = (|C_M_AXI_READ_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS]);
end
end
endfunction
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] si_cb_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] si_cb_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_awburst ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_awlock ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awcache ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_awprot ;
// wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awregion ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awqos ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] si_cb_awuser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_awvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_awready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_wid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] si_cb_wdata ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] si_cb_wstrb ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wlast ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] si_cb_wuser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_bid ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_bresp ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] si_cb_buser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_bvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_bready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] si_cb_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] si_cb_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_arburst ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_arlock ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arcache ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_arprot ;
// wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arregion ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arqos ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] si_cb_aruser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_arvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_arready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_rid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] si_cb_rdata ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_rresp ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rlast ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] si_cb_ruser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_awid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] cb_mi_awaddr ;
wire [C_NUM_MASTER_SLOTS*8-1:0] cb_mi_awlen ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_awsize ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_awburst ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_awlock ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awcache ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_awprot ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awregion ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awqos ;
wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] cb_mi_awuser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_awvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_awready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_wid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] cb_mi_wdata ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] cb_mi_wstrb ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wlast ;
wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] cb_mi_wuser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_bid ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_bresp ;
wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] cb_mi_buser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_bvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_bready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_arid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] cb_mi_araddr ;
wire [C_NUM_MASTER_SLOTS*8-1:0] cb_mi_arlen ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_arsize ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_arburst ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_arlock ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arcache ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_arprot ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arregion ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arqos ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] cb_mi_aruser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_arvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_arready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_rid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] cb_mi_rdata ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_rresp ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rlast ;
wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] cb_mi_ruser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rready ;
genvar slot;
generate
for (slot=0;slot<C_NUM_SLAVE_SLOTS;slot=slot+1) begin : gen_si_tieoff
assign si_cb_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (s_axi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign si_cb_awlen[slot*8+:8] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awlen[slot*P_LEN+:P_LEN] : 0 ;
assign si_cb_awsize[slot*3+:3] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awsize[slot*3+:3] : P_AXILITE_SIZE ;
assign si_cb_awburst[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awburst[slot*2+:2] : P_INCR ;
assign si_cb_awlock[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? {1'b0, s_axi_awlock[slot*P_LOCK+:1]} : 0 ;
assign si_cb_awcache[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awcache[slot*4+:4] : 0 ;
assign si_cb_awprot[slot*3+:3] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awprot[slot*3+:3] : 0 ;
assign si_cb_awqos[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awqos[slot*4+:4] : 0 ;
// assign si_cb_awregion[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? s_axi_awregion[slot*4+:4] : 0 ;
assign si_cb_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] : 0 ;
assign si_cb_awvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awvalid[slot*1+:1] : 0 ;
assign si_cb_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI3) ) ? (s_axi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign si_cb_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] : 0 ;
assign si_cb_wlast[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_wlast[slot*1+:1] : 1'b1 ;
assign si_cb_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] : 0 ;
assign si_cb_wvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wvalid[slot*1+:1] : 0 ;
assign si_cb_bready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_bready[slot*1+:1] : 0 ;
assign si_cb_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (s_axi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign si_cb_arlen[slot*8+:8] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arlen[slot*P_LEN+:P_LEN] : 0 ;
assign si_cb_arsize[slot*3+:3] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arsize[slot*3+:3] : P_AXILITE_SIZE ;
assign si_cb_arburst[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arburst[slot*2+:2] : P_INCR ;
assign si_cb_arlock[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? {1'b0, s_axi_arlock[slot*P_LOCK+:1]} : 0 ;
assign si_cb_arcache[slot*4+:4] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arcache[slot*4+:4] : 0 ;
assign si_cb_arprot[slot*3+:3] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_arprot[slot*3+:3] : 0 ;
assign si_cb_arqos[slot*4+:4] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arqos[slot*4+:4] : 0 ;
// assign si_cb_arregion[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? s_axi_arregion[slot*4+:4] : 0 ;
assign si_cb_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] : 0 ;
assign si_cb_arvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_arvalid[slot*1+:1] : 0 ;
assign si_cb_rready[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_rready[slot*1+:1] : 0 ;
assign s_axi_awready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_awready[slot*1+:1] : 0 ;
assign s_axi_wready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_wready[slot*1+:1] : 0 ;
assign s_axi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (si_cb_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign s_axi_bresp[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_bresp[slot*2+:2] : 0 ;
assign s_axi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? si_cb_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] : 0 ;
assign s_axi_bvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_bvalid[slot*1+:1] : 0 ;
assign s_axi_arready[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_arready[slot*1+:1] : 0 ;
assign s_axi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (si_cb_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign s_axi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign s_axi_rresp[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rresp[slot*2+:2] : 0 ;
assign s_axi_rlast[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? si_cb_rlast[slot*1+:1] : 0 ;
assign s_axi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? si_cb_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] : 0 ;
assign s_axi_rvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rvalid[slot*1+:1] : 0 ;
end // gen_si_tieoff
for (slot=0;slot<C_NUM_MASTER_SLOTS;slot=slot+1) begin : gen_mi_tieoff
assign m_axi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign m_axi_awlen[slot*P_LEN+:P_LEN] = (~P_M_AXI_SUPPORTS_WRITE[slot]) ? 0 : (C_AXI_PROTOCOL==P_AXI4 ) ? cb_mi_awlen[slot*8+:8] : (C_AXI_PROTOCOL==P_AXI3) ? cb_mi_awlen[slot*8+:4] : 0 ;
assign m_axi_awsize[slot*3+:3] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awsize[slot*3+:3] : 0 ;
assign m_axi_awburst[slot*2+:2] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awburst[slot*2+:2] : 0 ;
assign m_axi_awlock[slot*P_LOCK+:P_LOCK] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awlock[slot*2+:1] : 0 ;
assign m_axi_awcache[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awcache[slot*4+:4] : 0 ;
assign m_axi_awprot[slot*3+:3] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awprot[slot*3+:3] : 0 ;
assign m_axi_awregion[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? cb_mi_awregion[slot*4+:4] : 0 ;
assign m_axi_awqos[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awqos[slot*4+:4] : 0 ;
assign m_axi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] : 0 ;
assign m_axi_awvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awvalid[slot*1+:1] : 0 ;
assign m_axi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign m_axi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] : 0 ;
assign m_axi_wlast[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_wlast[slot*1+:1] : 0 ;
assign m_axi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] : 0 ;
assign m_axi_wvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wvalid[slot*1+:1] : 0 ;
assign m_axi_bready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_bready[slot*1+:1] : 0 ;
assign m_axi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign m_axi_arlen[slot*P_LEN+:P_LEN] = (~P_M_AXI_SUPPORTS_READ[slot]) ? 0 : (C_AXI_PROTOCOL==P_AXI4 ) ? cb_mi_arlen[slot*8+:8] : (C_AXI_PROTOCOL==P_AXI3) ? cb_mi_arlen[slot*8+:4] : 0 ;
assign m_axi_arsize[slot*3+:3] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arsize[slot*3+:3] : 0 ;
assign m_axi_arburst[slot*2+:2] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arburst[slot*2+:2] : 0 ;
assign m_axi_arlock[slot*P_LOCK+:P_LOCK] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arlock[slot*2+:1] : 0 ;
assign m_axi_arcache[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arcache[slot*4+:4] : 0 ;
assign m_axi_arprot[slot*3+:3] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_arprot[slot*3+:3] : 0 ;
assign m_axi_arregion[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? cb_mi_arregion[slot*4+:4] : 0 ;
assign m_axi_arqos[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arqos[slot*4+:4] : 0 ;
assign m_axi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] : 0 ;
assign m_axi_arvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_arvalid[slot*1+:1] : 0 ;
assign m_axi_rready[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_rready[slot*1+:1] : 0 ;
assign cb_mi_awready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_awready[slot*1+:1] : 0 ;
assign cb_mi_wready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_wready[slot*1+:1] : 0 ;
assign cb_mi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign cb_mi_bresp[slot*2+:2] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_bresp[slot*2+:2] : 0 ;
assign cb_mi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? m_axi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] : 0 ;
assign cb_mi_bvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_bvalid[slot*1+:1] : 0 ;
assign cb_mi_arready[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_arready[slot*1+:1] : 0 ;
assign cb_mi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign cb_mi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign cb_mi_rresp[slot*2+:2] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rresp[slot*2+:2] : 0 ;
assign cb_mi_rlast[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_rlast[slot*1+:1] : 1'b1 ;
assign cb_mi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? m_axi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] : 0 ;
assign cb_mi_rvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rvalid[slot*1+:1] : 0 ;
end // gen_mi_tieoff
if ((C_CONNECTIVITY_MODE==0) || (C_AXI_PROTOCOL==P_AXILITE)) begin : gen_sasd
axi_crossbar_v2_1_crossbar_sasd #
(
.C_FAMILY (P_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_M_AXI_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_M_AXI_HIGH_ADDR (f_high_addr(0)),
.C_S_AXI_BASE_ID (P_S_AXI_BASE_ID),
.C_S_AXI_HIGH_ID (P_S_AXI_HIGH_ID),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_S_AXI_SUPPORTS_WRITE (P_S_AXI_SUPPORTS_WRITE),
.C_S_AXI_SUPPORTS_READ (P_S_AXI_SUPPORTS_READ),
.C_M_AXI_SUPPORTS_WRITE (P_M_AXI_SUPPORTS_WRITE),
.C_M_AXI_SUPPORTS_READ (P_M_AXI_SUPPORTS_READ),
.C_S_AXI_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_R_REGISTER (C_R_REGISTER),
.C_RANGE_CHECK (P_RANGE_CHECK),
.C_ADDR_DECODE (P_ADDR_DECODE),
.C_M_AXI_ERR_MODE (P_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
crossbar_sasd_0
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (si_cb_awid ),
.S_AXI_AWADDR (si_cb_awaddr ),
.S_AXI_AWLEN (si_cb_awlen ),
.S_AXI_AWSIZE (si_cb_awsize ),
.S_AXI_AWBURST (si_cb_awburst ),
.S_AXI_AWLOCK (si_cb_awlock ),
.S_AXI_AWCACHE (si_cb_awcache ),
.S_AXI_AWPROT (si_cb_awprot ),
// .S_AXI_AWREGION (si_cb_awregion ),
.S_AXI_AWQOS (si_cb_awqos ),
.S_AXI_AWUSER (si_cb_awuser ),
.S_AXI_AWVALID (si_cb_awvalid ),
.S_AXI_AWREADY (si_cb_awready ),
.S_AXI_WID (si_cb_wid ),
.S_AXI_WDATA (si_cb_wdata ),
.S_AXI_WSTRB (si_cb_wstrb ),
.S_AXI_WLAST (si_cb_wlast ),
.S_AXI_WUSER (si_cb_wuser ),
.S_AXI_WVALID (si_cb_wvalid ),
.S_AXI_WREADY (si_cb_wready ),
.S_AXI_BID (si_cb_bid ),
.S_AXI_BRESP (si_cb_bresp ),
.S_AXI_BUSER (si_cb_buser ),
.S_AXI_BVALID (si_cb_bvalid ),
.S_AXI_BREADY (si_cb_bready ),
.S_AXI_ARID (si_cb_arid ),
.S_AXI_ARADDR (si_cb_araddr ),
.S_AXI_ARLEN (si_cb_arlen ),
.S_AXI_ARSIZE (si_cb_arsize ),
.S_AXI_ARBURST (si_cb_arburst ),
.S_AXI_ARLOCK (si_cb_arlock ),
.S_AXI_ARCACHE (si_cb_arcache ),
.S_AXI_ARPROT (si_cb_arprot ),
// .S_AXI_ARREGION (si_cb_arregion ),
.S_AXI_ARQOS (si_cb_arqos ),
.S_AXI_ARUSER (si_cb_aruser ),
.S_AXI_ARVALID (si_cb_arvalid ),
.S_AXI_ARREADY (si_cb_arready ),
.S_AXI_RID (si_cb_rid ),
.S_AXI_RDATA (si_cb_rdata ),
.S_AXI_RRESP (si_cb_rresp ),
.S_AXI_RLAST (si_cb_rlast ),
.S_AXI_RUSER (si_cb_ruser ),
.S_AXI_RVALID (si_cb_rvalid ),
.S_AXI_RREADY (si_cb_rready ),
.M_AXI_AWID (cb_mi_awid ),
.M_AXI_AWADDR (cb_mi_awaddr ),
.M_AXI_AWLEN (cb_mi_awlen ),
.M_AXI_AWSIZE (cb_mi_awsize ),
.M_AXI_AWBURST (cb_mi_awburst ),
.M_AXI_AWLOCK (cb_mi_awlock ),
.M_AXI_AWCACHE (cb_mi_awcache ),
.M_AXI_AWPROT (cb_mi_awprot ),
.M_AXI_AWREGION (cb_mi_awregion ),
.M_AXI_AWQOS (cb_mi_awqos ),
.M_AXI_AWUSER (cb_mi_awuser ),
.M_AXI_AWVALID (cb_mi_awvalid ),
.M_AXI_AWREADY (cb_mi_awready ),
.M_AXI_WID (cb_mi_wid ),
.M_AXI_WDATA (cb_mi_wdata ),
.M_AXI_WSTRB (cb_mi_wstrb ),
.M_AXI_WLAST (cb_mi_wlast ),
.M_AXI_WUSER (cb_mi_wuser ),
.M_AXI_WVALID (cb_mi_wvalid ),
.M_AXI_WREADY (cb_mi_wready ),
.M_AXI_BID (cb_mi_bid ),
.M_AXI_BRESP (cb_mi_bresp ),
.M_AXI_BUSER (cb_mi_buser ),
.M_AXI_BVALID (cb_mi_bvalid ),
.M_AXI_BREADY (cb_mi_bready ),
.M_AXI_ARID (cb_mi_arid ),
.M_AXI_ARADDR (cb_mi_araddr ),
.M_AXI_ARLEN (cb_mi_arlen ),
.M_AXI_ARSIZE (cb_mi_arsize ),
.M_AXI_ARBURST (cb_mi_arburst ),
.M_AXI_ARLOCK (cb_mi_arlock ),
.M_AXI_ARCACHE (cb_mi_arcache ),
.M_AXI_ARPROT (cb_mi_arprot ),
.M_AXI_ARREGION (cb_mi_arregion ),
.M_AXI_ARQOS (cb_mi_arqos ),
.M_AXI_ARUSER (cb_mi_aruser ),
.M_AXI_ARVALID (cb_mi_arvalid ),
.M_AXI_ARREADY (cb_mi_arready ),
.M_AXI_RID (cb_mi_rid ),
.M_AXI_RDATA (cb_mi_rdata ),
.M_AXI_RRESP (cb_mi_rresp ),
.M_AXI_RLAST (cb_mi_rlast ),
.M_AXI_RUSER (cb_mi_ruser ),
.M_AXI_RVALID (cb_mi_rvalid ),
.M_AXI_RREADY (cb_mi_rready )
);
end else begin : gen_samd
axi_crossbar_v2_1_crossbar #
(
.C_FAMILY (P_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_S_AXI_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_M_AXI_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_M_AXI_HIGH_ADDR (f_high_addr(0)),
.C_S_AXI_BASE_ID (P_S_AXI_BASE_ID),
.C_S_AXI_HIGH_ID (P_S_AXI_HIGH_ID),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_S_AXI_SUPPORTS_WRITE (P_S_AXI_SUPPORTS_WRITE),
.C_S_AXI_SUPPORTS_READ (P_S_AXI_SUPPORTS_READ),
.C_M_AXI_SUPPORTS_WRITE (P_M_AXI_SUPPORTS_WRITE),
.C_M_AXI_SUPPORTS_READ (P_M_AXI_SUPPORTS_READ),
.C_M_AXI_WRITE_CONNECTIVITY (C_M_AXI_WRITE_CONNECTIVITY),
.C_M_AXI_READ_CONNECTIVITY (C_M_AXI_READ_CONNECTIVITY),
.C_S_AXI_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD),
.C_S_AXI_WRITE_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE),
.C_S_AXI_READ_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE),
.C_M_AXI_WRITE_ISSUING (C_M_AXI_WRITE_ISSUING),
.C_M_AXI_READ_ISSUING (C_M_AXI_READ_ISSUING),
.C_S_AXI_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (P_RANGE_CHECK),
.C_ADDR_DECODE (P_ADDR_DECODE),
.C_W_ISSUE_WIDTH (f_write_issue_width_vec(0) ),
.C_R_ISSUE_WIDTH (f_read_issue_width_vec(0) ),
.C_W_ACCEPT_WIDTH (f_write_accept_width_vec(0)),
.C_R_ACCEPT_WIDTH (f_read_accept_width_vec(0)),
.C_M_AXI_ERR_MODE (P_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
crossbar_samd
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (si_cb_awid ),
.S_AXI_AWADDR (si_cb_awaddr ),
.S_AXI_AWLEN (si_cb_awlen ),
.S_AXI_AWSIZE (si_cb_awsize ),
.S_AXI_AWBURST (si_cb_awburst ),
.S_AXI_AWLOCK (si_cb_awlock ),
.S_AXI_AWCACHE (si_cb_awcache ),
.S_AXI_AWPROT (si_cb_awprot ),
// .S_AXI_AWREGION (si_cb_awregion ),
.S_AXI_AWQOS (si_cb_awqos ),
.S_AXI_AWUSER (si_cb_awuser ),
.S_AXI_AWVALID (si_cb_awvalid ),
.S_AXI_AWREADY (si_cb_awready ),
.S_AXI_WID (si_cb_wid ),
.S_AXI_WDATA (si_cb_wdata ),
.S_AXI_WSTRB (si_cb_wstrb ),
.S_AXI_WLAST (si_cb_wlast ),
.S_AXI_WUSER (si_cb_wuser ),
.S_AXI_WVALID (si_cb_wvalid ),
.S_AXI_WREADY (si_cb_wready ),
.S_AXI_BID (si_cb_bid ),
.S_AXI_BRESP (si_cb_bresp ),
.S_AXI_BUSER (si_cb_buser ),
.S_AXI_BVALID (si_cb_bvalid ),
.S_AXI_BREADY (si_cb_bready ),
.S_AXI_ARID (si_cb_arid ),
.S_AXI_ARADDR (si_cb_araddr ),
.S_AXI_ARLEN (si_cb_arlen ),
.S_AXI_ARSIZE (si_cb_arsize ),
.S_AXI_ARBURST (si_cb_arburst ),
.S_AXI_ARLOCK (si_cb_arlock ),
.S_AXI_ARCACHE (si_cb_arcache ),
.S_AXI_ARPROT (si_cb_arprot ),
// .S_AXI_ARREGION (si_cb_arregion ),
.S_AXI_ARQOS (si_cb_arqos ),
.S_AXI_ARUSER (si_cb_aruser ),
.S_AXI_ARVALID (si_cb_arvalid ),
.S_AXI_ARREADY (si_cb_arready ),
.S_AXI_RID (si_cb_rid ),
.S_AXI_RDATA (si_cb_rdata ),
.S_AXI_RRESP (si_cb_rresp ),
.S_AXI_RLAST (si_cb_rlast ),
.S_AXI_RUSER (si_cb_ruser ),
.S_AXI_RVALID (si_cb_rvalid ),
.S_AXI_RREADY (si_cb_rready ),
.M_AXI_AWID (cb_mi_awid ),
.M_AXI_AWADDR (cb_mi_awaddr ),
.M_AXI_AWLEN (cb_mi_awlen ),
.M_AXI_AWSIZE (cb_mi_awsize ),
.M_AXI_AWBURST (cb_mi_awburst ),
.M_AXI_AWLOCK (cb_mi_awlock ),
.M_AXI_AWCACHE (cb_mi_awcache ),
.M_AXI_AWPROT (cb_mi_awprot ),
.M_AXI_AWREGION (cb_mi_awregion ),
.M_AXI_AWQOS (cb_mi_awqos ),
.M_AXI_AWUSER (cb_mi_awuser ),
.M_AXI_AWVALID (cb_mi_awvalid ),
.M_AXI_AWREADY (cb_mi_awready ),
.M_AXI_WID (cb_mi_wid ),
.M_AXI_WDATA (cb_mi_wdata ),
.M_AXI_WSTRB (cb_mi_wstrb ),
.M_AXI_WLAST (cb_mi_wlast ),
.M_AXI_WUSER (cb_mi_wuser ),
.M_AXI_WVALID (cb_mi_wvalid ),
.M_AXI_WREADY (cb_mi_wready ),
.M_AXI_BID (cb_mi_bid ),
.M_AXI_BRESP (cb_mi_bresp ),
.M_AXI_BUSER (cb_mi_buser ),
.M_AXI_BVALID (cb_mi_bvalid ),
.M_AXI_BREADY (cb_mi_bready ),
.M_AXI_ARID (cb_mi_arid ),
.M_AXI_ARADDR (cb_mi_araddr ),
.M_AXI_ARLEN (cb_mi_arlen ),
.M_AXI_ARSIZE (cb_mi_arsize ),
.M_AXI_ARBURST (cb_mi_arburst ),
.M_AXI_ARLOCK (cb_mi_arlock ),
.M_AXI_ARCACHE (cb_mi_arcache ),
.M_AXI_ARPROT (cb_mi_arprot ),
.M_AXI_ARREGION (cb_mi_arregion ),
.M_AXI_ARQOS (cb_mi_arqos ),
.M_AXI_ARUSER (cb_mi_aruser ),
.M_AXI_ARVALID (cb_mi_arvalid ),
.M_AXI_ARREADY (cb_mi_arready ),
.M_AXI_RID (cb_mi_rid ),
.M_AXI_RDATA (cb_mi_rdata ),
.M_AXI_RRESP (cb_mi_rresp ),
.M_AXI_RLAST (cb_mi_rlast ),
.M_AXI_RUSER (cb_mi_ruser ),
.M_AXI_RVALID (cb_mi_rvalid ),
.M_AXI_RREADY (cb_mi_rready )
);
end // gen_samd
// end // gen_crossbar
endgenerate
endmodule
|
module axi_crossbar_v2_1_axi_crossbar # (
parameter C_FAMILY = "rtl",
// FPGA Base Family. Current version: virtex6 or spartan6.
parameter integer C_NUM_SLAVE_SLOTS = 1,
// Number of Slave Interface (SI) slots for connecting
// to master IP. Range: 1-16.
parameter integer C_NUM_MASTER_SLOTS = 2,
// Number of Master Interface (MI) slots for connecting
// to slave IP. Range: 1-16.
parameter integer C_AXI_ID_WIDTH = 1,
// Width of ID signals propagated by the Interconnect.
// Width of ID signals produced on all MI slots.
// Range: 1-32.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of s_axi_awaddr, s_axi_araddr, m_axi_awaddr and
// m_axi_araddr for all SI/MI slots.
// Range: 1-64.
parameter integer C_AXI_DATA_WIDTH = 32,
// Data width of the internal interconnect write and read
// data paths.
// Range: 32, 64, 128, 256, 512, 1024.
parameter integer C_AXI_PROTOCOL = 0,
// 0 = "AXI4",
// 1 = "AXI3",
// 2 = "AXI4LITE"
// Propagate WID only when C_AXI_PROTOCOL = 1.
parameter integer C_NUM_ADDR_RANGES = 1,
// Number of BASE/HIGH_ADDR pairs per MI slot.
// Range: 1-16.
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = 128'h00000000001000000000000000000000,
// Base address of each range of each MI slot.
// For unused ranges, set C_M_AXI_BASE_ADDR[mm*aa*64 +: C_AXI_ADDR_WIDTH] = {C_AXI_ADDR_WIDTH{1'b1}}.
// (Bit positions above C_AXI_ADDR_WIDTH are ignored.)
// Format: C_NUM_MASTER_SLOTS{C_NUM_ADDR_RANGES{Bit64}}.
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*32-1:0] C_M_AXI_ADDR_WIDTH = 64'H0000000c0000000c,
// Number of low-order address bits that are used to select locations within each address range of each MI slot.
// The High address of each range is derived as BASE_ADDR + 2**C_M_AXI_ADDR_WIDTH -1.
// For used address ranges, C_M_AXI_ADDR_WIDTH must be > 0.
// For unused ranges, set C_M_AXI_ADDR_WIDTH to 32'h00000000.
// Format: C_NUM_MASTER_SLOTS{C_NUM_ADDR_RANGES{Bit32}}.
// Range: 0 - C_AXI_ADDR_WIDTH.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_BASE_ID = 32'h00000000,
// Base ID of each SI slot.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0 to 2**C_AXI_ID_WIDTH-1.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = 32'h00000000,
// Number of low-order ID bits a connected master may vary to select a transaction thread.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0 - C_AXI_ID_WIDTH.
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Dont propagate.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_BUSER_WIDTH = 1,
// Width of BUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = 64'hFFFFFFFFFFFFFFFF,
// Multi-pathway write connectivity from each SI slot (N) to each
// MI slot (M):
// 0 = no pathway required; 1 = pathway required. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = 64'hFFFFFFFFFFFFFFFF,
// Multi-pathway read connectivity from each SI slot (N) to each
// MI slot (M):
// 0 = no pathway required; 1 = pathway required. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
parameter integer C_R_REGISTER = 0,
// Insert register slice on R channel in the crossbar. (Valid only for SASD)
// Range: Reg-slice type (0-8).
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = 32'h00000000,
// 0 = Implement separate command queues per ID thread.
// 1 = Force corresponding SI slot to be single-threaded. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0, 1
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = 32'H00000002,
// Maximum number of active write transactions that each SI
// slot can accept. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = 32'H00000002,
// Maximum number of active read transactions that each SI
// slot can accept. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = 64'H0000000400000004,
// Maximum number of data-active write transactions that
// each MI slot can generate at any one time. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = 64'H0000000400000004,
// Maximum number of active read transactions that
// each MI slot can generate at any one time. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = 32'h00000000,
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0-15.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = 32'h00000000,
// Indicates whether each MI slot connects to a secure slave
// (allows only TrustZone secure access).
// Format: C_NUM_MASTER_SLOTS{Bit32}.
// Range: 0, 1
parameter integer C_CONNECTIVITY_MODE = 1
// 0 = Shared-Address Shared-Data (SASD).
// 1 = Shared-Address Multi-Data (SAMD).
// Default 1 (on) for simulation; default 0 (off) for implementation.
)
(
// Global Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_awsize,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_awburst,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awcache,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_awprot,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awregion,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awqos,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_awvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wlast,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_bresp,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_bvalid,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_arsize,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_arburst,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arcache,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_arprot,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arregion,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arqos,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_arvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_rresp,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rlast,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rvalid,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rready,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_awsize,
output wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_awburst,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awcache,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_awprot,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awregion,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awqos,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_awvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_awready,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wlast,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wready,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_bresp,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_bvalid,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_bready,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_arsize,
output wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_arburst,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arcache,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_arprot,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arregion,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arqos,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_arvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_arready,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_rresp,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rlast,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rvalid,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rready
);
localparam [64:0] P_ONES = {65{1'b1}};
localparam [C_NUM_SLAVE_SLOTS*64-1:0] P_S_AXI_BASE_ID = f_base_id(0);
localparam [C_NUM_SLAVE_SLOTS*64-1:0] P_S_AXI_HIGH_ID = f_high_id(0);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam [2:0] P_AXILITE_SIZE = 3'b010;
localparam [1:0] P_INCR = 2'b01;
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXI_SUPPORTS_WRITE = f_m_supports_write(0);
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXI_SUPPORTS_READ = f_m_supports_read(0);
localparam [C_NUM_SLAVE_SLOTS-1:0] P_S_AXI_SUPPORTS_WRITE = f_s_supports_write(0);
localparam [C_NUM_SLAVE_SLOTS-1:0] P_S_AXI_SUPPORTS_READ = f_s_supports_read(0);
localparam integer C_DEBUG = 1;
localparam integer P_RANGE_CHECK = 1;
// 1 (non-zero) = Detect and issue DECERR on the following conditions:
// a. address range mismatch (no valid MI slot)
// b. Burst or >32-bit transfer to AxiLite slave
// c. TrustZone access violation
// d. R/W direction unsupported by target
// 0 = Pass all transactions (no DECERR):
// a. Omit DECERR detection and response logic
// b. Omit address decoder and propagate s_axi_a*REGION to m_axi_a*REGION
// when C_NUM_MASTER_SLOTS=1 and C_NUM_ADDR_RANGES=1.
// c. Unpredictable target MI-slot if address mismatch and >1 MI-slot
// d. Transaction corruption if any burst or >32-bit transfer to AxiLite slave
// Illegal combination: P_RANGE_CHECK = 0 && C_M_AXI_SECURE != 0.
localparam integer P_ADDR_DECODE = ((P_RANGE_CHECK == 1) || (C_NUM_MASTER_SLOTS > 1) || (C_NUM_ADDR_RANGES > 1)) ? 1 : 0; // Always 1
localparam [C_NUM_MASTER_SLOTS*32-1:0] P_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}};
// Transaction error detection (per MI-slot)
// 0 = None; 1 = AXI4Lite burst violation
// Format: C_NUM_MASTER_SLOTS{Bit32};
localparam integer P_LEN = (C_AXI_PROTOCOL == P_AXI3) ? 4 : 8;
localparam integer P_LOCK = (C_AXI_PROTOCOL == P_AXI3) ? 2 : 1;
localparam P_FAMILY = ((C_FAMILY == "virtex7") || (C_FAMILY == "kintex7") || (C_FAMILY == "artix7") || (C_FAMILY == "zynq")) ? C_FAMILY : "rtl";
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Widths of all write issuance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [(C_NUM_MASTER_SLOTS+1)*32-1:0] f_write_issue_width_vec
(input null_arg);
integer mi;
reg [(C_NUM_MASTER_SLOTS+1)*32-1:0] result;
begin
result = 0;
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result[mi*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_M_AXI_WRITE_ISSUING[mi*32+:32]);
end
result[C_NUM_MASTER_SLOTS*32+:32] = 32'h0;
f_write_issue_width_vec = result;
end
endfunction
// Widths of all read issuance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [(C_NUM_MASTER_SLOTS+1)*32-1:0] f_read_issue_width_vec
(input null_arg);
integer mi;
reg [(C_NUM_MASTER_SLOTS+1)*32-1:0] result;
begin
result = 0;
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result[mi*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_M_AXI_READ_ISSUING[mi*32+:32]);
end
result[C_NUM_MASTER_SLOTS*32+:32] = 32'h0;
f_read_issue_width_vec = result;
end
endfunction
// Widths of all write acceptance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [C_NUM_SLAVE_SLOTS*32-1:0] f_write_accept_width_vec
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_S_AXI_WRITE_ACCEPTANCE[si*32+:32]);
end
f_write_accept_width_vec = result;
end
endfunction
// Widths of all read acceptance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [C_NUM_SLAVE_SLOTS*32-1:0] f_read_accept_width_vec
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_S_AXI_READ_ACCEPTANCE[si*32+:32]);
end
f_read_accept_width_vec = result;
end
endfunction
// Convert C_S_AXI_BASE_ID vector from Bit32 to Bit64 format
function [C_NUM_SLAVE_SLOTS*64-1:0] f_base_id
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*64-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*64+:C_AXI_ID_WIDTH] = C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH];
end
f_base_id = result;
end
endfunction
// Construct P_S_HIGH_ID vector
function [C_NUM_SLAVE_SLOTS*64-1:0] f_high_id
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*64-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*64+:C_AXI_ID_WIDTH] = (C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? {C_AXI_ID_WIDTH{1'b1}} :
(C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] | ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]}));
end
f_high_id = result;
end
endfunction
// Construct P_M_HIGH_ADDR vector
function [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] f_high_addr
(input null_arg);
integer ar;
reg [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] result;
begin
result = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}};
for (ar=0; ar<C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES; ar=ar+1) begin
result[ar*64+:C_AXI_ADDR_WIDTH] = (C_M_AXI_ADDR_WIDTH[ar*32+:32] == 0) ? 64'h00000000_00000000 :
({1'b0, C_M_AXI_ADDR_WIDTH[ar*32+:31]} >= C_AXI_ADDR_WIDTH) ? {C_AXI_ADDR_WIDTH{1'b1}} :
(C_M_AXI_BASE_ADDR[ar*64+:C_AXI_ADDR_WIDTH] | ~(P_ONES << {1'b0, C_M_AXI_ADDR_WIDTH[ar*32+:7]}));
end
f_high_addr = result;
end
endfunction
// Generate a mask of valid ID bits for a given SI slot.
function [C_AXI_ID_WIDTH-1:0] f_thread_id_mask
(input integer si);
begin
f_thread_id_mask =
(C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? {C_AXI_ID_WIDTH{1'b0}} :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? {C_AXI_ID_WIDTH{1'b1}} :
({C_AXI_ID_WIDTH{1'b0}} | ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]}));
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID (
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer si
);
begin
f_extend_ID =
(C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? s_id :
(C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] | (s_id & ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]})));
end
endfunction
// Bit vector of SI slots with at least one write connection.
function [C_NUM_SLAVE_SLOTS-1:0] f_s_supports_write
(input null_arg);
integer mi;
reg [C_NUM_SLAVE_SLOTS-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS{1'b0}};
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result = result | C_M_AXI_WRITE_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS];
end
f_s_supports_write = result;
end
endfunction
// Bit vector of SI slots with at least one read connection.
function [C_NUM_SLAVE_SLOTS-1:0] f_s_supports_read
(input null_arg);
integer mi;
reg [C_NUM_SLAVE_SLOTS-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS{1'b0}};
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result = result | C_M_AXI_READ_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS];
end
f_s_supports_read = result;
end
endfunction
// Bit vector of MI slots with at least one write connection.
function [C_NUM_MASTER_SLOTS-1:0] f_m_supports_write
(input null_arg);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_supports_write[mi] = (|C_M_AXI_WRITE_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS]);
end
end
endfunction
// Bit vector of MI slots with at least one read connection.
function [C_NUM_MASTER_SLOTS-1:0] f_m_supports_read
(input null_arg);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_supports_read[mi] = (|C_M_AXI_READ_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS]);
end
end
endfunction
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] si_cb_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] si_cb_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_awburst ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_awlock ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awcache ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_awprot ;
// wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awregion ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awqos ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] si_cb_awuser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_awvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_awready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_wid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] si_cb_wdata ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] si_cb_wstrb ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wlast ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] si_cb_wuser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_bid ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_bresp ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] si_cb_buser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_bvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_bready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] si_cb_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] si_cb_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_arburst ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_arlock ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arcache ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_arprot ;
// wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arregion ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arqos ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] si_cb_aruser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_arvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_arready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_rid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] si_cb_rdata ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_rresp ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rlast ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] si_cb_ruser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_awid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] cb_mi_awaddr ;
wire [C_NUM_MASTER_SLOTS*8-1:0] cb_mi_awlen ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_awsize ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_awburst ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_awlock ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awcache ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_awprot ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awregion ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awqos ;
wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] cb_mi_awuser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_awvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_awready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_wid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] cb_mi_wdata ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] cb_mi_wstrb ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wlast ;
wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] cb_mi_wuser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_bid ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_bresp ;
wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] cb_mi_buser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_bvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_bready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_arid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] cb_mi_araddr ;
wire [C_NUM_MASTER_SLOTS*8-1:0] cb_mi_arlen ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_arsize ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_arburst ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_arlock ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arcache ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_arprot ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arregion ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arqos ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] cb_mi_aruser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_arvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_arready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_rid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] cb_mi_rdata ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_rresp ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rlast ;
wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] cb_mi_ruser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rready ;
genvar slot;
generate
for (slot=0;slot<C_NUM_SLAVE_SLOTS;slot=slot+1) begin : gen_si_tieoff
assign si_cb_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (s_axi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign si_cb_awlen[slot*8+:8] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awlen[slot*P_LEN+:P_LEN] : 0 ;
assign si_cb_awsize[slot*3+:3] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awsize[slot*3+:3] : P_AXILITE_SIZE ;
assign si_cb_awburst[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awburst[slot*2+:2] : P_INCR ;
assign si_cb_awlock[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? {1'b0, s_axi_awlock[slot*P_LOCK+:1]} : 0 ;
assign si_cb_awcache[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awcache[slot*4+:4] : 0 ;
assign si_cb_awprot[slot*3+:3] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awprot[slot*3+:3] : 0 ;
assign si_cb_awqos[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awqos[slot*4+:4] : 0 ;
// assign si_cb_awregion[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? s_axi_awregion[slot*4+:4] : 0 ;
assign si_cb_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] : 0 ;
assign si_cb_awvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awvalid[slot*1+:1] : 0 ;
assign si_cb_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI3) ) ? (s_axi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign si_cb_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] : 0 ;
assign si_cb_wlast[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_wlast[slot*1+:1] : 1'b1 ;
assign si_cb_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] : 0 ;
assign si_cb_wvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wvalid[slot*1+:1] : 0 ;
assign si_cb_bready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_bready[slot*1+:1] : 0 ;
assign si_cb_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (s_axi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign si_cb_arlen[slot*8+:8] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arlen[slot*P_LEN+:P_LEN] : 0 ;
assign si_cb_arsize[slot*3+:3] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arsize[slot*3+:3] : P_AXILITE_SIZE ;
assign si_cb_arburst[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arburst[slot*2+:2] : P_INCR ;
assign si_cb_arlock[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? {1'b0, s_axi_arlock[slot*P_LOCK+:1]} : 0 ;
assign si_cb_arcache[slot*4+:4] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arcache[slot*4+:4] : 0 ;
assign si_cb_arprot[slot*3+:3] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_arprot[slot*3+:3] : 0 ;
assign si_cb_arqos[slot*4+:4] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arqos[slot*4+:4] : 0 ;
// assign si_cb_arregion[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? s_axi_arregion[slot*4+:4] : 0 ;
assign si_cb_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] : 0 ;
assign si_cb_arvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_arvalid[slot*1+:1] : 0 ;
assign si_cb_rready[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_rready[slot*1+:1] : 0 ;
assign s_axi_awready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_awready[slot*1+:1] : 0 ;
assign s_axi_wready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_wready[slot*1+:1] : 0 ;
assign s_axi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (si_cb_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign s_axi_bresp[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_bresp[slot*2+:2] : 0 ;
assign s_axi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? si_cb_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] : 0 ;
assign s_axi_bvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_bvalid[slot*1+:1] : 0 ;
assign s_axi_arready[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_arready[slot*1+:1] : 0 ;
assign s_axi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (si_cb_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign s_axi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign s_axi_rresp[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rresp[slot*2+:2] : 0 ;
assign s_axi_rlast[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? si_cb_rlast[slot*1+:1] : 0 ;
assign s_axi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? si_cb_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] : 0 ;
assign s_axi_rvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rvalid[slot*1+:1] : 0 ;
end // gen_si_tieoff
for (slot=0;slot<C_NUM_MASTER_SLOTS;slot=slot+1) begin : gen_mi_tieoff
assign m_axi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign m_axi_awlen[slot*P_LEN+:P_LEN] = (~P_M_AXI_SUPPORTS_WRITE[slot]) ? 0 : (C_AXI_PROTOCOL==P_AXI4 ) ? cb_mi_awlen[slot*8+:8] : (C_AXI_PROTOCOL==P_AXI3) ? cb_mi_awlen[slot*8+:4] : 0 ;
assign m_axi_awsize[slot*3+:3] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awsize[slot*3+:3] : 0 ;
assign m_axi_awburst[slot*2+:2] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awburst[slot*2+:2] : 0 ;
assign m_axi_awlock[slot*P_LOCK+:P_LOCK] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awlock[slot*2+:1] : 0 ;
assign m_axi_awcache[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awcache[slot*4+:4] : 0 ;
assign m_axi_awprot[slot*3+:3] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awprot[slot*3+:3] : 0 ;
assign m_axi_awregion[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? cb_mi_awregion[slot*4+:4] : 0 ;
assign m_axi_awqos[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awqos[slot*4+:4] : 0 ;
assign m_axi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] : 0 ;
assign m_axi_awvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awvalid[slot*1+:1] : 0 ;
assign m_axi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign m_axi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] : 0 ;
assign m_axi_wlast[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_wlast[slot*1+:1] : 0 ;
assign m_axi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] : 0 ;
assign m_axi_wvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wvalid[slot*1+:1] : 0 ;
assign m_axi_bready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_bready[slot*1+:1] : 0 ;
assign m_axi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign m_axi_arlen[slot*P_LEN+:P_LEN] = (~P_M_AXI_SUPPORTS_READ[slot]) ? 0 : (C_AXI_PROTOCOL==P_AXI4 ) ? cb_mi_arlen[slot*8+:8] : (C_AXI_PROTOCOL==P_AXI3) ? cb_mi_arlen[slot*8+:4] : 0 ;
assign m_axi_arsize[slot*3+:3] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arsize[slot*3+:3] : 0 ;
assign m_axi_arburst[slot*2+:2] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arburst[slot*2+:2] : 0 ;
assign m_axi_arlock[slot*P_LOCK+:P_LOCK] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arlock[slot*2+:1] : 0 ;
assign m_axi_arcache[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arcache[slot*4+:4] : 0 ;
assign m_axi_arprot[slot*3+:3] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_arprot[slot*3+:3] : 0 ;
assign m_axi_arregion[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? cb_mi_arregion[slot*4+:4] : 0 ;
assign m_axi_arqos[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arqos[slot*4+:4] : 0 ;
assign m_axi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] : 0 ;
assign m_axi_arvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_arvalid[slot*1+:1] : 0 ;
assign m_axi_rready[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_rready[slot*1+:1] : 0 ;
assign cb_mi_awready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_awready[slot*1+:1] : 0 ;
assign cb_mi_wready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_wready[slot*1+:1] : 0 ;
assign cb_mi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign cb_mi_bresp[slot*2+:2] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_bresp[slot*2+:2] : 0 ;
assign cb_mi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? m_axi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] : 0 ;
assign cb_mi_bvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_bvalid[slot*1+:1] : 0 ;
assign cb_mi_arready[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_arready[slot*1+:1] : 0 ;
assign cb_mi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign cb_mi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign cb_mi_rresp[slot*2+:2] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rresp[slot*2+:2] : 0 ;
assign cb_mi_rlast[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_rlast[slot*1+:1] : 1'b1 ;
assign cb_mi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? m_axi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] : 0 ;
assign cb_mi_rvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rvalid[slot*1+:1] : 0 ;
end // gen_mi_tieoff
if ((C_CONNECTIVITY_MODE==0) || (C_AXI_PROTOCOL==P_AXILITE)) begin : gen_sasd
axi_crossbar_v2_1_crossbar_sasd #
(
.C_FAMILY (P_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_M_AXI_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_M_AXI_HIGH_ADDR (f_high_addr(0)),
.C_S_AXI_BASE_ID (P_S_AXI_BASE_ID),
.C_S_AXI_HIGH_ID (P_S_AXI_HIGH_ID),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_S_AXI_SUPPORTS_WRITE (P_S_AXI_SUPPORTS_WRITE),
.C_S_AXI_SUPPORTS_READ (P_S_AXI_SUPPORTS_READ),
.C_M_AXI_SUPPORTS_WRITE (P_M_AXI_SUPPORTS_WRITE),
.C_M_AXI_SUPPORTS_READ (P_M_AXI_SUPPORTS_READ),
.C_S_AXI_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_R_REGISTER (C_R_REGISTER),
.C_RANGE_CHECK (P_RANGE_CHECK),
.C_ADDR_DECODE (P_ADDR_DECODE),
.C_M_AXI_ERR_MODE (P_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
crossbar_sasd_0
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (si_cb_awid ),
.S_AXI_AWADDR (si_cb_awaddr ),
.S_AXI_AWLEN (si_cb_awlen ),
.S_AXI_AWSIZE (si_cb_awsize ),
.S_AXI_AWBURST (si_cb_awburst ),
.S_AXI_AWLOCK (si_cb_awlock ),
.S_AXI_AWCACHE (si_cb_awcache ),
.S_AXI_AWPROT (si_cb_awprot ),
// .S_AXI_AWREGION (si_cb_awregion ),
.S_AXI_AWQOS (si_cb_awqos ),
.S_AXI_AWUSER (si_cb_awuser ),
.S_AXI_AWVALID (si_cb_awvalid ),
.S_AXI_AWREADY (si_cb_awready ),
.S_AXI_WID (si_cb_wid ),
.S_AXI_WDATA (si_cb_wdata ),
.S_AXI_WSTRB (si_cb_wstrb ),
.S_AXI_WLAST (si_cb_wlast ),
.S_AXI_WUSER (si_cb_wuser ),
.S_AXI_WVALID (si_cb_wvalid ),
.S_AXI_WREADY (si_cb_wready ),
.S_AXI_BID (si_cb_bid ),
.S_AXI_BRESP (si_cb_bresp ),
.S_AXI_BUSER (si_cb_buser ),
.S_AXI_BVALID (si_cb_bvalid ),
.S_AXI_BREADY (si_cb_bready ),
.S_AXI_ARID (si_cb_arid ),
.S_AXI_ARADDR (si_cb_araddr ),
.S_AXI_ARLEN (si_cb_arlen ),
.S_AXI_ARSIZE (si_cb_arsize ),
.S_AXI_ARBURST (si_cb_arburst ),
.S_AXI_ARLOCK (si_cb_arlock ),
.S_AXI_ARCACHE (si_cb_arcache ),
.S_AXI_ARPROT (si_cb_arprot ),
// .S_AXI_ARREGION (si_cb_arregion ),
.S_AXI_ARQOS (si_cb_arqos ),
.S_AXI_ARUSER (si_cb_aruser ),
.S_AXI_ARVALID (si_cb_arvalid ),
.S_AXI_ARREADY (si_cb_arready ),
.S_AXI_RID (si_cb_rid ),
.S_AXI_RDATA (si_cb_rdata ),
.S_AXI_RRESP (si_cb_rresp ),
.S_AXI_RLAST (si_cb_rlast ),
.S_AXI_RUSER (si_cb_ruser ),
.S_AXI_RVALID (si_cb_rvalid ),
.S_AXI_RREADY (si_cb_rready ),
.M_AXI_AWID (cb_mi_awid ),
.M_AXI_AWADDR (cb_mi_awaddr ),
.M_AXI_AWLEN (cb_mi_awlen ),
.M_AXI_AWSIZE (cb_mi_awsize ),
.M_AXI_AWBURST (cb_mi_awburst ),
.M_AXI_AWLOCK (cb_mi_awlock ),
.M_AXI_AWCACHE (cb_mi_awcache ),
.M_AXI_AWPROT (cb_mi_awprot ),
.M_AXI_AWREGION (cb_mi_awregion ),
.M_AXI_AWQOS (cb_mi_awqos ),
.M_AXI_AWUSER (cb_mi_awuser ),
.M_AXI_AWVALID (cb_mi_awvalid ),
.M_AXI_AWREADY (cb_mi_awready ),
.M_AXI_WID (cb_mi_wid ),
.M_AXI_WDATA (cb_mi_wdata ),
.M_AXI_WSTRB (cb_mi_wstrb ),
.M_AXI_WLAST (cb_mi_wlast ),
.M_AXI_WUSER (cb_mi_wuser ),
.M_AXI_WVALID (cb_mi_wvalid ),
.M_AXI_WREADY (cb_mi_wready ),
.M_AXI_BID (cb_mi_bid ),
.M_AXI_BRESP (cb_mi_bresp ),
.M_AXI_BUSER (cb_mi_buser ),
.M_AXI_BVALID (cb_mi_bvalid ),
.M_AXI_BREADY (cb_mi_bready ),
.M_AXI_ARID (cb_mi_arid ),
.M_AXI_ARADDR (cb_mi_araddr ),
.M_AXI_ARLEN (cb_mi_arlen ),
.M_AXI_ARSIZE (cb_mi_arsize ),
.M_AXI_ARBURST (cb_mi_arburst ),
.M_AXI_ARLOCK (cb_mi_arlock ),
.M_AXI_ARCACHE (cb_mi_arcache ),
.M_AXI_ARPROT (cb_mi_arprot ),
.M_AXI_ARREGION (cb_mi_arregion ),
.M_AXI_ARQOS (cb_mi_arqos ),
.M_AXI_ARUSER (cb_mi_aruser ),
.M_AXI_ARVALID (cb_mi_arvalid ),
.M_AXI_ARREADY (cb_mi_arready ),
.M_AXI_RID (cb_mi_rid ),
.M_AXI_RDATA (cb_mi_rdata ),
.M_AXI_RRESP (cb_mi_rresp ),
.M_AXI_RLAST (cb_mi_rlast ),
.M_AXI_RUSER (cb_mi_ruser ),
.M_AXI_RVALID (cb_mi_rvalid ),
.M_AXI_RREADY (cb_mi_rready )
);
end else begin : gen_samd
axi_crossbar_v2_1_crossbar #
(
.C_FAMILY (P_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_S_AXI_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_M_AXI_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_M_AXI_HIGH_ADDR (f_high_addr(0)),
.C_S_AXI_BASE_ID (P_S_AXI_BASE_ID),
.C_S_AXI_HIGH_ID (P_S_AXI_HIGH_ID),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_S_AXI_SUPPORTS_WRITE (P_S_AXI_SUPPORTS_WRITE),
.C_S_AXI_SUPPORTS_READ (P_S_AXI_SUPPORTS_READ),
.C_M_AXI_SUPPORTS_WRITE (P_M_AXI_SUPPORTS_WRITE),
.C_M_AXI_SUPPORTS_READ (P_M_AXI_SUPPORTS_READ),
.C_M_AXI_WRITE_CONNECTIVITY (C_M_AXI_WRITE_CONNECTIVITY),
.C_M_AXI_READ_CONNECTIVITY (C_M_AXI_READ_CONNECTIVITY),
.C_S_AXI_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD),
.C_S_AXI_WRITE_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE),
.C_S_AXI_READ_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE),
.C_M_AXI_WRITE_ISSUING (C_M_AXI_WRITE_ISSUING),
.C_M_AXI_READ_ISSUING (C_M_AXI_READ_ISSUING),
.C_S_AXI_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (P_RANGE_CHECK),
.C_ADDR_DECODE (P_ADDR_DECODE),
.C_W_ISSUE_WIDTH (f_write_issue_width_vec(0) ),
.C_R_ISSUE_WIDTH (f_read_issue_width_vec(0) ),
.C_W_ACCEPT_WIDTH (f_write_accept_width_vec(0)),
.C_R_ACCEPT_WIDTH (f_read_accept_width_vec(0)),
.C_M_AXI_ERR_MODE (P_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
crossbar_samd
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (si_cb_awid ),
.S_AXI_AWADDR (si_cb_awaddr ),
.S_AXI_AWLEN (si_cb_awlen ),
.S_AXI_AWSIZE (si_cb_awsize ),
.S_AXI_AWBURST (si_cb_awburst ),
.S_AXI_AWLOCK (si_cb_awlock ),
.S_AXI_AWCACHE (si_cb_awcache ),
.S_AXI_AWPROT (si_cb_awprot ),
// .S_AXI_AWREGION (si_cb_awregion ),
.S_AXI_AWQOS (si_cb_awqos ),
.S_AXI_AWUSER (si_cb_awuser ),
.S_AXI_AWVALID (si_cb_awvalid ),
.S_AXI_AWREADY (si_cb_awready ),
.S_AXI_WID (si_cb_wid ),
.S_AXI_WDATA (si_cb_wdata ),
.S_AXI_WSTRB (si_cb_wstrb ),
.S_AXI_WLAST (si_cb_wlast ),
.S_AXI_WUSER (si_cb_wuser ),
.S_AXI_WVALID (si_cb_wvalid ),
.S_AXI_WREADY (si_cb_wready ),
.S_AXI_BID (si_cb_bid ),
.S_AXI_BRESP (si_cb_bresp ),
.S_AXI_BUSER (si_cb_buser ),
.S_AXI_BVALID (si_cb_bvalid ),
.S_AXI_BREADY (si_cb_bready ),
.S_AXI_ARID (si_cb_arid ),
.S_AXI_ARADDR (si_cb_araddr ),
.S_AXI_ARLEN (si_cb_arlen ),
.S_AXI_ARSIZE (si_cb_arsize ),
.S_AXI_ARBURST (si_cb_arburst ),
.S_AXI_ARLOCK (si_cb_arlock ),
.S_AXI_ARCACHE (si_cb_arcache ),
.S_AXI_ARPROT (si_cb_arprot ),
// .S_AXI_ARREGION (si_cb_arregion ),
.S_AXI_ARQOS (si_cb_arqos ),
.S_AXI_ARUSER (si_cb_aruser ),
.S_AXI_ARVALID (si_cb_arvalid ),
.S_AXI_ARREADY (si_cb_arready ),
.S_AXI_RID (si_cb_rid ),
.S_AXI_RDATA (si_cb_rdata ),
.S_AXI_RRESP (si_cb_rresp ),
.S_AXI_RLAST (si_cb_rlast ),
.S_AXI_RUSER (si_cb_ruser ),
.S_AXI_RVALID (si_cb_rvalid ),
.S_AXI_RREADY (si_cb_rready ),
.M_AXI_AWID (cb_mi_awid ),
.M_AXI_AWADDR (cb_mi_awaddr ),
.M_AXI_AWLEN (cb_mi_awlen ),
.M_AXI_AWSIZE (cb_mi_awsize ),
.M_AXI_AWBURST (cb_mi_awburst ),
.M_AXI_AWLOCK (cb_mi_awlock ),
.M_AXI_AWCACHE (cb_mi_awcache ),
.M_AXI_AWPROT (cb_mi_awprot ),
.M_AXI_AWREGION (cb_mi_awregion ),
.M_AXI_AWQOS (cb_mi_awqos ),
.M_AXI_AWUSER (cb_mi_awuser ),
.M_AXI_AWVALID (cb_mi_awvalid ),
.M_AXI_AWREADY (cb_mi_awready ),
.M_AXI_WID (cb_mi_wid ),
.M_AXI_WDATA (cb_mi_wdata ),
.M_AXI_WSTRB (cb_mi_wstrb ),
.M_AXI_WLAST (cb_mi_wlast ),
.M_AXI_WUSER (cb_mi_wuser ),
.M_AXI_WVALID (cb_mi_wvalid ),
.M_AXI_WREADY (cb_mi_wready ),
.M_AXI_BID (cb_mi_bid ),
.M_AXI_BRESP (cb_mi_bresp ),
.M_AXI_BUSER (cb_mi_buser ),
.M_AXI_BVALID (cb_mi_bvalid ),
.M_AXI_BREADY (cb_mi_bready ),
.M_AXI_ARID (cb_mi_arid ),
.M_AXI_ARADDR (cb_mi_araddr ),
.M_AXI_ARLEN (cb_mi_arlen ),
.M_AXI_ARSIZE (cb_mi_arsize ),
.M_AXI_ARBURST (cb_mi_arburst ),
.M_AXI_ARLOCK (cb_mi_arlock ),
.M_AXI_ARCACHE (cb_mi_arcache ),
.M_AXI_ARPROT (cb_mi_arprot ),
.M_AXI_ARREGION (cb_mi_arregion ),
.M_AXI_ARQOS (cb_mi_arqos ),
.M_AXI_ARUSER (cb_mi_aruser ),
.M_AXI_ARVALID (cb_mi_arvalid ),
.M_AXI_ARREADY (cb_mi_arready ),
.M_AXI_RID (cb_mi_rid ),
.M_AXI_RDATA (cb_mi_rdata ),
.M_AXI_RRESP (cb_mi_rresp ),
.M_AXI_RLAST (cb_mi_rlast ),
.M_AXI_RUSER (cb_mi_ruser ),
.M_AXI_RVALID (cb_mi_rvalid ),
.M_AXI_RREADY (cb_mi_rready )
);
end // gen_samd
// end // gen_crossbar
endgenerate
endmodule
|
module axi_crossbar_v2_1_axi_crossbar # (
parameter C_FAMILY = "rtl",
// FPGA Base Family. Current version: virtex6 or spartan6.
parameter integer C_NUM_SLAVE_SLOTS = 1,
// Number of Slave Interface (SI) slots for connecting
// to master IP. Range: 1-16.
parameter integer C_NUM_MASTER_SLOTS = 2,
// Number of Master Interface (MI) slots for connecting
// to slave IP. Range: 1-16.
parameter integer C_AXI_ID_WIDTH = 1,
// Width of ID signals propagated by the Interconnect.
// Width of ID signals produced on all MI slots.
// Range: 1-32.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of s_axi_awaddr, s_axi_araddr, m_axi_awaddr and
// m_axi_araddr for all SI/MI slots.
// Range: 1-64.
parameter integer C_AXI_DATA_WIDTH = 32,
// Data width of the internal interconnect write and read
// data paths.
// Range: 32, 64, 128, 256, 512, 1024.
parameter integer C_AXI_PROTOCOL = 0,
// 0 = "AXI4",
// 1 = "AXI3",
// 2 = "AXI4LITE"
// Propagate WID only when C_AXI_PROTOCOL = 1.
parameter integer C_NUM_ADDR_RANGES = 1,
// Number of BASE/HIGH_ADDR pairs per MI slot.
// Range: 1-16.
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = 128'h00000000001000000000000000000000,
// Base address of each range of each MI slot.
// For unused ranges, set C_M_AXI_BASE_ADDR[mm*aa*64 +: C_AXI_ADDR_WIDTH] = {C_AXI_ADDR_WIDTH{1'b1}}.
// (Bit positions above C_AXI_ADDR_WIDTH are ignored.)
// Format: C_NUM_MASTER_SLOTS{C_NUM_ADDR_RANGES{Bit64}}.
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*32-1:0] C_M_AXI_ADDR_WIDTH = 64'H0000000c0000000c,
// Number of low-order address bits that are used to select locations within each address range of each MI slot.
// The High address of each range is derived as BASE_ADDR + 2**C_M_AXI_ADDR_WIDTH -1.
// For used address ranges, C_M_AXI_ADDR_WIDTH must be > 0.
// For unused ranges, set C_M_AXI_ADDR_WIDTH to 32'h00000000.
// Format: C_NUM_MASTER_SLOTS{C_NUM_ADDR_RANGES{Bit32}}.
// Range: 0 - C_AXI_ADDR_WIDTH.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_BASE_ID = 32'h00000000,
// Base ID of each SI slot.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0 to 2**C_AXI_ID_WIDTH-1.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = 32'h00000000,
// Number of low-order ID bits a connected master may vary to select a transaction thread.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0 - C_AXI_ID_WIDTH.
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Dont propagate.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_BUSER_WIDTH = 1,
// Width of BUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = 64'hFFFFFFFFFFFFFFFF,
// Multi-pathway write connectivity from each SI slot (N) to each
// MI slot (M):
// 0 = no pathway required; 1 = pathway required. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = 64'hFFFFFFFFFFFFFFFF,
// Multi-pathway read connectivity from each SI slot (N) to each
// MI slot (M):
// 0 = no pathway required; 1 = pathway required. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
parameter integer C_R_REGISTER = 0,
// Insert register slice on R channel in the crossbar. (Valid only for SASD)
// Range: Reg-slice type (0-8).
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = 32'h00000000,
// 0 = Implement separate command queues per ID thread.
// 1 = Force corresponding SI slot to be single-threaded. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0, 1
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = 32'H00000002,
// Maximum number of active write transactions that each SI
// slot can accept. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = 32'H00000002,
// Maximum number of active read transactions that each SI
// slot can accept. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = 64'H0000000400000004,
// Maximum number of data-active write transactions that
// each MI slot can generate at any one time. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = 64'H0000000400000004,
// Maximum number of active read transactions that
// each MI slot can generate at any one time. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = 32'h00000000,
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0-15.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = 32'h00000000,
// Indicates whether each MI slot connects to a secure slave
// (allows only TrustZone secure access).
// Format: C_NUM_MASTER_SLOTS{Bit32}.
// Range: 0, 1
parameter integer C_CONNECTIVITY_MODE = 1
// 0 = Shared-Address Shared-Data (SASD).
// 1 = Shared-Address Multi-Data (SAMD).
// Default 1 (on) for simulation; default 0 (off) for implementation.
)
(
// Global Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_awsize,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_awburst,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awcache,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_awprot,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awregion,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awqos,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_awvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wlast,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_bresp,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_bvalid,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_arsize,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_arburst,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arcache,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_arprot,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arregion,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arqos,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_arvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_rresp,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rlast,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rvalid,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rready,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_awsize,
output wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_awburst,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awcache,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_awprot,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awregion,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awqos,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_awvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_awready,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wlast,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wready,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_bresp,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_bvalid,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_bready,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_arsize,
output wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_arburst,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arcache,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_arprot,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arregion,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arqos,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_arvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_arready,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_rresp,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rlast,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rvalid,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rready
);
localparam [64:0] P_ONES = {65{1'b1}};
localparam [C_NUM_SLAVE_SLOTS*64-1:0] P_S_AXI_BASE_ID = f_base_id(0);
localparam [C_NUM_SLAVE_SLOTS*64-1:0] P_S_AXI_HIGH_ID = f_high_id(0);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam [2:0] P_AXILITE_SIZE = 3'b010;
localparam [1:0] P_INCR = 2'b01;
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXI_SUPPORTS_WRITE = f_m_supports_write(0);
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXI_SUPPORTS_READ = f_m_supports_read(0);
localparam [C_NUM_SLAVE_SLOTS-1:0] P_S_AXI_SUPPORTS_WRITE = f_s_supports_write(0);
localparam [C_NUM_SLAVE_SLOTS-1:0] P_S_AXI_SUPPORTS_READ = f_s_supports_read(0);
localparam integer C_DEBUG = 1;
localparam integer P_RANGE_CHECK = 1;
// 1 (non-zero) = Detect and issue DECERR on the following conditions:
// a. address range mismatch (no valid MI slot)
// b. Burst or >32-bit transfer to AxiLite slave
// c. TrustZone access violation
// d. R/W direction unsupported by target
// 0 = Pass all transactions (no DECERR):
// a. Omit DECERR detection and response logic
// b. Omit address decoder and propagate s_axi_a*REGION to m_axi_a*REGION
// when C_NUM_MASTER_SLOTS=1 and C_NUM_ADDR_RANGES=1.
// c. Unpredictable target MI-slot if address mismatch and >1 MI-slot
// d. Transaction corruption if any burst or >32-bit transfer to AxiLite slave
// Illegal combination: P_RANGE_CHECK = 0 && C_M_AXI_SECURE != 0.
localparam integer P_ADDR_DECODE = ((P_RANGE_CHECK == 1) || (C_NUM_MASTER_SLOTS > 1) || (C_NUM_ADDR_RANGES > 1)) ? 1 : 0; // Always 1
localparam [C_NUM_MASTER_SLOTS*32-1:0] P_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}};
// Transaction error detection (per MI-slot)
// 0 = None; 1 = AXI4Lite burst violation
// Format: C_NUM_MASTER_SLOTS{Bit32};
localparam integer P_LEN = (C_AXI_PROTOCOL == P_AXI3) ? 4 : 8;
localparam integer P_LOCK = (C_AXI_PROTOCOL == P_AXI3) ? 2 : 1;
localparam P_FAMILY = ((C_FAMILY == "virtex7") || (C_FAMILY == "kintex7") || (C_FAMILY == "artix7") || (C_FAMILY == "zynq")) ? C_FAMILY : "rtl";
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Widths of all write issuance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [(C_NUM_MASTER_SLOTS+1)*32-1:0] f_write_issue_width_vec
(input null_arg);
integer mi;
reg [(C_NUM_MASTER_SLOTS+1)*32-1:0] result;
begin
result = 0;
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result[mi*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_M_AXI_WRITE_ISSUING[mi*32+:32]);
end
result[C_NUM_MASTER_SLOTS*32+:32] = 32'h0;
f_write_issue_width_vec = result;
end
endfunction
// Widths of all read issuance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [(C_NUM_MASTER_SLOTS+1)*32-1:0] f_read_issue_width_vec
(input null_arg);
integer mi;
reg [(C_NUM_MASTER_SLOTS+1)*32-1:0] result;
begin
result = 0;
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result[mi*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_M_AXI_READ_ISSUING[mi*32+:32]);
end
result[C_NUM_MASTER_SLOTS*32+:32] = 32'h0;
f_read_issue_width_vec = result;
end
endfunction
// Widths of all write acceptance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [C_NUM_SLAVE_SLOTS*32-1:0] f_write_accept_width_vec
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_S_AXI_WRITE_ACCEPTANCE[si*32+:32]);
end
f_write_accept_width_vec = result;
end
endfunction
// Widths of all read acceptance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [C_NUM_SLAVE_SLOTS*32-1:0] f_read_accept_width_vec
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_S_AXI_READ_ACCEPTANCE[si*32+:32]);
end
f_read_accept_width_vec = result;
end
endfunction
// Convert C_S_AXI_BASE_ID vector from Bit32 to Bit64 format
function [C_NUM_SLAVE_SLOTS*64-1:0] f_base_id
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*64-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*64+:C_AXI_ID_WIDTH] = C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH];
end
f_base_id = result;
end
endfunction
// Construct P_S_HIGH_ID vector
function [C_NUM_SLAVE_SLOTS*64-1:0] f_high_id
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*64-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*64+:C_AXI_ID_WIDTH] = (C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? {C_AXI_ID_WIDTH{1'b1}} :
(C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] | ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]}));
end
f_high_id = result;
end
endfunction
// Construct P_M_HIGH_ADDR vector
function [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] f_high_addr
(input null_arg);
integer ar;
reg [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] result;
begin
result = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}};
for (ar=0; ar<C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES; ar=ar+1) begin
result[ar*64+:C_AXI_ADDR_WIDTH] = (C_M_AXI_ADDR_WIDTH[ar*32+:32] == 0) ? 64'h00000000_00000000 :
({1'b0, C_M_AXI_ADDR_WIDTH[ar*32+:31]} >= C_AXI_ADDR_WIDTH) ? {C_AXI_ADDR_WIDTH{1'b1}} :
(C_M_AXI_BASE_ADDR[ar*64+:C_AXI_ADDR_WIDTH] | ~(P_ONES << {1'b0, C_M_AXI_ADDR_WIDTH[ar*32+:7]}));
end
f_high_addr = result;
end
endfunction
// Generate a mask of valid ID bits for a given SI slot.
function [C_AXI_ID_WIDTH-1:0] f_thread_id_mask
(input integer si);
begin
f_thread_id_mask =
(C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? {C_AXI_ID_WIDTH{1'b0}} :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? {C_AXI_ID_WIDTH{1'b1}} :
({C_AXI_ID_WIDTH{1'b0}} | ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]}));
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID (
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer si
);
begin
f_extend_ID =
(C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? s_id :
(C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] | (s_id & ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]})));
end
endfunction
// Bit vector of SI slots with at least one write connection.
function [C_NUM_SLAVE_SLOTS-1:0] f_s_supports_write
(input null_arg);
integer mi;
reg [C_NUM_SLAVE_SLOTS-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS{1'b0}};
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result = result | C_M_AXI_WRITE_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS];
end
f_s_supports_write = result;
end
endfunction
// Bit vector of SI slots with at least one read connection.
function [C_NUM_SLAVE_SLOTS-1:0] f_s_supports_read
(input null_arg);
integer mi;
reg [C_NUM_SLAVE_SLOTS-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS{1'b0}};
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result = result | C_M_AXI_READ_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS];
end
f_s_supports_read = result;
end
endfunction
// Bit vector of MI slots with at least one write connection.
function [C_NUM_MASTER_SLOTS-1:0] f_m_supports_write
(input null_arg);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_supports_write[mi] = (|C_M_AXI_WRITE_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS]);
end
end
endfunction
// Bit vector of MI slots with at least one read connection.
function [C_NUM_MASTER_SLOTS-1:0] f_m_supports_read
(input null_arg);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_supports_read[mi] = (|C_M_AXI_READ_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS]);
end
end
endfunction
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] si_cb_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] si_cb_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_awburst ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_awlock ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awcache ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_awprot ;
// wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awregion ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awqos ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] si_cb_awuser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_awvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_awready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_wid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] si_cb_wdata ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] si_cb_wstrb ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wlast ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] si_cb_wuser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_bid ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_bresp ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] si_cb_buser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_bvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_bready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] si_cb_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] si_cb_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_arburst ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_arlock ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arcache ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_arprot ;
// wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arregion ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arqos ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] si_cb_aruser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_arvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_arready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_rid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] si_cb_rdata ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_rresp ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rlast ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] si_cb_ruser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_awid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] cb_mi_awaddr ;
wire [C_NUM_MASTER_SLOTS*8-1:0] cb_mi_awlen ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_awsize ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_awburst ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_awlock ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awcache ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_awprot ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awregion ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awqos ;
wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] cb_mi_awuser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_awvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_awready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_wid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] cb_mi_wdata ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] cb_mi_wstrb ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wlast ;
wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] cb_mi_wuser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_bid ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_bresp ;
wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] cb_mi_buser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_bvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_bready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_arid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] cb_mi_araddr ;
wire [C_NUM_MASTER_SLOTS*8-1:0] cb_mi_arlen ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_arsize ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_arburst ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_arlock ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arcache ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_arprot ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arregion ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arqos ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] cb_mi_aruser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_arvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_arready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_rid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] cb_mi_rdata ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_rresp ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rlast ;
wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] cb_mi_ruser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rready ;
genvar slot;
generate
for (slot=0;slot<C_NUM_SLAVE_SLOTS;slot=slot+1) begin : gen_si_tieoff
assign si_cb_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (s_axi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign si_cb_awlen[slot*8+:8] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awlen[slot*P_LEN+:P_LEN] : 0 ;
assign si_cb_awsize[slot*3+:3] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awsize[slot*3+:3] : P_AXILITE_SIZE ;
assign si_cb_awburst[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awburst[slot*2+:2] : P_INCR ;
assign si_cb_awlock[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? {1'b0, s_axi_awlock[slot*P_LOCK+:1]} : 0 ;
assign si_cb_awcache[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awcache[slot*4+:4] : 0 ;
assign si_cb_awprot[slot*3+:3] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awprot[slot*3+:3] : 0 ;
assign si_cb_awqos[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awqos[slot*4+:4] : 0 ;
// assign si_cb_awregion[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? s_axi_awregion[slot*4+:4] : 0 ;
assign si_cb_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] : 0 ;
assign si_cb_awvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awvalid[slot*1+:1] : 0 ;
assign si_cb_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI3) ) ? (s_axi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign si_cb_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] : 0 ;
assign si_cb_wlast[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_wlast[slot*1+:1] : 1'b1 ;
assign si_cb_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] : 0 ;
assign si_cb_wvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wvalid[slot*1+:1] : 0 ;
assign si_cb_bready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_bready[slot*1+:1] : 0 ;
assign si_cb_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (s_axi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign si_cb_arlen[slot*8+:8] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arlen[slot*P_LEN+:P_LEN] : 0 ;
assign si_cb_arsize[slot*3+:3] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arsize[slot*3+:3] : P_AXILITE_SIZE ;
assign si_cb_arburst[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arburst[slot*2+:2] : P_INCR ;
assign si_cb_arlock[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? {1'b0, s_axi_arlock[slot*P_LOCK+:1]} : 0 ;
assign si_cb_arcache[slot*4+:4] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arcache[slot*4+:4] : 0 ;
assign si_cb_arprot[slot*3+:3] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_arprot[slot*3+:3] : 0 ;
assign si_cb_arqos[slot*4+:4] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arqos[slot*4+:4] : 0 ;
// assign si_cb_arregion[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? s_axi_arregion[slot*4+:4] : 0 ;
assign si_cb_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] : 0 ;
assign si_cb_arvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_arvalid[slot*1+:1] : 0 ;
assign si_cb_rready[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_rready[slot*1+:1] : 0 ;
assign s_axi_awready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_awready[slot*1+:1] : 0 ;
assign s_axi_wready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_wready[slot*1+:1] : 0 ;
assign s_axi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (si_cb_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign s_axi_bresp[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_bresp[slot*2+:2] : 0 ;
assign s_axi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? si_cb_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] : 0 ;
assign s_axi_bvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_bvalid[slot*1+:1] : 0 ;
assign s_axi_arready[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_arready[slot*1+:1] : 0 ;
assign s_axi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (si_cb_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign s_axi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign s_axi_rresp[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rresp[slot*2+:2] : 0 ;
assign s_axi_rlast[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? si_cb_rlast[slot*1+:1] : 0 ;
assign s_axi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? si_cb_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] : 0 ;
assign s_axi_rvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rvalid[slot*1+:1] : 0 ;
end // gen_si_tieoff
for (slot=0;slot<C_NUM_MASTER_SLOTS;slot=slot+1) begin : gen_mi_tieoff
assign m_axi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign m_axi_awlen[slot*P_LEN+:P_LEN] = (~P_M_AXI_SUPPORTS_WRITE[slot]) ? 0 : (C_AXI_PROTOCOL==P_AXI4 ) ? cb_mi_awlen[slot*8+:8] : (C_AXI_PROTOCOL==P_AXI3) ? cb_mi_awlen[slot*8+:4] : 0 ;
assign m_axi_awsize[slot*3+:3] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awsize[slot*3+:3] : 0 ;
assign m_axi_awburst[slot*2+:2] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awburst[slot*2+:2] : 0 ;
assign m_axi_awlock[slot*P_LOCK+:P_LOCK] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awlock[slot*2+:1] : 0 ;
assign m_axi_awcache[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awcache[slot*4+:4] : 0 ;
assign m_axi_awprot[slot*3+:3] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awprot[slot*3+:3] : 0 ;
assign m_axi_awregion[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? cb_mi_awregion[slot*4+:4] : 0 ;
assign m_axi_awqos[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awqos[slot*4+:4] : 0 ;
assign m_axi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] : 0 ;
assign m_axi_awvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awvalid[slot*1+:1] : 0 ;
assign m_axi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign m_axi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] : 0 ;
assign m_axi_wlast[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_wlast[slot*1+:1] : 0 ;
assign m_axi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] : 0 ;
assign m_axi_wvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wvalid[slot*1+:1] : 0 ;
assign m_axi_bready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_bready[slot*1+:1] : 0 ;
assign m_axi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign m_axi_arlen[slot*P_LEN+:P_LEN] = (~P_M_AXI_SUPPORTS_READ[slot]) ? 0 : (C_AXI_PROTOCOL==P_AXI4 ) ? cb_mi_arlen[slot*8+:8] : (C_AXI_PROTOCOL==P_AXI3) ? cb_mi_arlen[slot*8+:4] : 0 ;
assign m_axi_arsize[slot*3+:3] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arsize[slot*3+:3] : 0 ;
assign m_axi_arburst[slot*2+:2] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arburst[slot*2+:2] : 0 ;
assign m_axi_arlock[slot*P_LOCK+:P_LOCK] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arlock[slot*2+:1] : 0 ;
assign m_axi_arcache[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arcache[slot*4+:4] : 0 ;
assign m_axi_arprot[slot*3+:3] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_arprot[slot*3+:3] : 0 ;
assign m_axi_arregion[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? cb_mi_arregion[slot*4+:4] : 0 ;
assign m_axi_arqos[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arqos[slot*4+:4] : 0 ;
assign m_axi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] : 0 ;
assign m_axi_arvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_arvalid[slot*1+:1] : 0 ;
assign m_axi_rready[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_rready[slot*1+:1] : 0 ;
assign cb_mi_awready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_awready[slot*1+:1] : 0 ;
assign cb_mi_wready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_wready[slot*1+:1] : 0 ;
assign cb_mi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign cb_mi_bresp[slot*2+:2] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_bresp[slot*2+:2] : 0 ;
assign cb_mi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? m_axi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] : 0 ;
assign cb_mi_bvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_bvalid[slot*1+:1] : 0 ;
assign cb_mi_arready[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_arready[slot*1+:1] : 0 ;
assign cb_mi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign cb_mi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign cb_mi_rresp[slot*2+:2] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rresp[slot*2+:2] : 0 ;
assign cb_mi_rlast[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_rlast[slot*1+:1] : 1'b1 ;
assign cb_mi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? m_axi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] : 0 ;
assign cb_mi_rvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rvalid[slot*1+:1] : 0 ;
end // gen_mi_tieoff
if ((C_CONNECTIVITY_MODE==0) || (C_AXI_PROTOCOL==P_AXILITE)) begin : gen_sasd
axi_crossbar_v2_1_crossbar_sasd #
(
.C_FAMILY (P_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_M_AXI_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_M_AXI_HIGH_ADDR (f_high_addr(0)),
.C_S_AXI_BASE_ID (P_S_AXI_BASE_ID),
.C_S_AXI_HIGH_ID (P_S_AXI_HIGH_ID),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_S_AXI_SUPPORTS_WRITE (P_S_AXI_SUPPORTS_WRITE),
.C_S_AXI_SUPPORTS_READ (P_S_AXI_SUPPORTS_READ),
.C_M_AXI_SUPPORTS_WRITE (P_M_AXI_SUPPORTS_WRITE),
.C_M_AXI_SUPPORTS_READ (P_M_AXI_SUPPORTS_READ),
.C_S_AXI_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_R_REGISTER (C_R_REGISTER),
.C_RANGE_CHECK (P_RANGE_CHECK),
.C_ADDR_DECODE (P_ADDR_DECODE),
.C_M_AXI_ERR_MODE (P_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
crossbar_sasd_0
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (si_cb_awid ),
.S_AXI_AWADDR (si_cb_awaddr ),
.S_AXI_AWLEN (si_cb_awlen ),
.S_AXI_AWSIZE (si_cb_awsize ),
.S_AXI_AWBURST (si_cb_awburst ),
.S_AXI_AWLOCK (si_cb_awlock ),
.S_AXI_AWCACHE (si_cb_awcache ),
.S_AXI_AWPROT (si_cb_awprot ),
// .S_AXI_AWREGION (si_cb_awregion ),
.S_AXI_AWQOS (si_cb_awqos ),
.S_AXI_AWUSER (si_cb_awuser ),
.S_AXI_AWVALID (si_cb_awvalid ),
.S_AXI_AWREADY (si_cb_awready ),
.S_AXI_WID (si_cb_wid ),
.S_AXI_WDATA (si_cb_wdata ),
.S_AXI_WSTRB (si_cb_wstrb ),
.S_AXI_WLAST (si_cb_wlast ),
.S_AXI_WUSER (si_cb_wuser ),
.S_AXI_WVALID (si_cb_wvalid ),
.S_AXI_WREADY (si_cb_wready ),
.S_AXI_BID (si_cb_bid ),
.S_AXI_BRESP (si_cb_bresp ),
.S_AXI_BUSER (si_cb_buser ),
.S_AXI_BVALID (si_cb_bvalid ),
.S_AXI_BREADY (si_cb_bready ),
.S_AXI_ARID (si_cb_arid ),
.S_AXI_ARADDR (si_cb_araddr ),
.S_AXI_ARLEN (si_cb_arlen ),
.S_AXI_ARSIZE (si_cb_arsize ),
.S_AXI_ARBURST (si_cb_arburst ),
.S_AXI_ARLOCK (si_cb_arlock ),
.S_AXI_ARCACHE (si_cb_arcache ),
.S_AXI_ARPROT (si_cb_arprot ),
// .S_AXI_ARREGION (si_cb_arregion ),
.S_AXI_ARQOS (si_cb_arqos ),
.S_AXI_ARUSER (si_cb_aruser ),
.S_AXI_ARVALID (si_cb_arvalid ),
.S_AXI_ARREADY (si_cb_arready ),
.S_AXI_RID (si_cb_rid ),
.S_AXI_RDATA (si_cb_rdata ),
.S_AXI_RRESP (si_cb_rresp ),
.S_AXI_RLAST (si_cb_rlast ),
.S_AXI_RUSER (si_cb_ruser ),
.S_AXI_RVALID (si_cb_rvalid ),
.S_AXI_RREADY (si_cb_rready ),
.M_AXI_AWID (cb_mi_awid ),
.M_AXI_AWADDR (cb_mi_awaddr ),
.M_AXI_AWLEN (cb_mi_awlen ),
.M_AXI_AWSIZE (cb_mi_awsize ),
.M_AXI_AWBURST (cb_mi_awburst ),
.M_AXI_AWLOCK (cb_mi_awlock ),
.M_AXI_AWCACHE (cb_mi_awcache ),
.M_AXI_AWPROT (cb_mi_awprot ),
.M_AXI_AWREGION (cb_mi_awregion ),
.M_AXI_AWQOS (cb_mi_awqos ),
.M_AXI_AWUSER (cb_mi_awuser ),
.M_AXI_AWVALID (cb_mi_awvalid ),
.M_AXI_AWREADY (cb_mi_awready ),
.M_AXI_WID (cb_mi_wid ),
.M_AXI_WDATA (cb_mi_wdata ),
.M_AXI_WSTRB (cb_mi_wstrb ),
.M_AXI_WLAST (cb_mi_wlast ),
.M_AXI_WUSER (cb_mi_wuser ),
.M_AXI_WVALID (cb_mi_wvalid ),
.M_AXI_WREADY (cb_mi_wready ),
.M_AXI_BID (cb_mi_bid ),
.M_AXI_BRESP (cb_mi_bresp ),
.M_AXI_BUSER (cb_mi_buser ),
.M_AXI_BVALID (cb_mi_bvalid ),
.M_AXI_BREADY (cb_mi_bready ),
.M_AXI_ARID (cb_mi_arid ),
.M_AXI_ARADDR (cb_mi_araddr ),
.M_AXI_ARLEN (cb_mi_arlen ),
.M_AXI_ARSIZE (cb_mi_arsize ),
.M_AXI_ARBURST (cb_mi_arburst ),
.M_AXI_ARLOCK (cb_mi_arlock ),
.M_AXI_ARCACHE (cb_mi_arcache ),
.M_AXI_ARPROT (cb_mi_arprot ),
.M_AXI_ARREGION (cb_mi_arregion ),
.M_AXI_ARQOS (cb_mi_arqos ),
.M_AXI_ARUSER (cb_mi_aruser ),
.M_AXI_ARVALID (cb_mi_arvalid ),
.M_AXI_ARREADY (cb_mi_arready ),
.M_AXI_RID (cb_mi_rid ),
.M_AXI_RDATA (cb_mi_rdata ),
.M_AXI_RRESP (cb_mi_rresp ),
.M_AXI_RLAST (cb_mi_rlast ),
.M_AXI_RUSER (cb_mi_ruser ),
.M_AXI_RVALID (cb_mi_rvalid ),
.M_AXI_RREADY (cb_mi_rready )
);
end else begin : gen_samd
axi_crossbar_v2_1_crossbar #
(
.C_FAMILY (P_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_S_AXI_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_M_AXI_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_M_AXI_HIGH_ADDR (f_high_addr(0)),
.C_S_AXI_BASE_ID (P_S_AXI_BASE_ID),
.C_S_AXI_HIGH_ID (P_S_AXI_HIGH_ID),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_S_AXI_SUPPORTS_WRITE (P_S_AXI_SUPPORTS_WRITE),
.C_S_AXI_SUPPORTS_READ (P_S_AXI_SUPPORTS_READ),
.C_M_AXI_SUPPORTS_WRITE (P_M_AXI_SUPPORTS_WRITE),
.C_M_AXI_SUPPORTS_READ (P_M_AXI_SUPPORTS_READ),
.C_M_AXI_WRITE_CONNECTIVITY (C_M_AXI_WRITE_CONNECTIVITY),
.C_M_AXI_READ_CONNECTIVITY (C_M_AXI_READ_CONNECTIVITY),
.C_S_AXI_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD),
.C_S_AXI_WRITE_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE),
.C_S_AXI_READ_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE),
.C_M_AXI_WRITE_ISSUING (C_M_AXI_WRITE_ISSUING),
.C_M_AXI_READ_ISSUING (C_M_AXI_READ_ISSUING),
.C_S_AXI_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (P_RANGE_CHECK),
.C_ADDR_DECODE (P_ADDR_DECODE),
.C_W_ISSUE_WIDTH (f_write_issue_width_vec(0) ),
.C_R_ISSUE_WIDTH (f_read_issue_width_vec(0) ),
.C_W_ACCEPT_WIDTH (f_write_accept_width_vec(0)),
.C_R_ACCEPT_WIDTH (f_read_accept_width_vec(0)),
.C_M_AXI_ERR_MODE (P_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
crossbar_samd
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (si_cb_awid ),
.S_AXI_AWADDR (si_cb_awaddr ),
.S_AXI_AWLEN (si_cb_awlen ),
.S_AXI_AWSIZE (si_cb_awsize ),
.S_AXI_AWBURST (si_cb_awburst ),
.S_AXI_AWLOCK (si_cb_awlock ),
.S_AXI_AWCACHE (si_cb_awcache ),
.S_AXI_AWPROT (si_cb_awprot ),
// .S_AXI_AWREGION (si_cb_awregion ),
.S_AXI_AWQOS (si_cb_awqos ),
.S_AXI_AWUSER (si_cb_awuser ),
.S_AXI_AWVALID (si_cb_awvalid ),
.S_AXI_AWREADY (si_cb_awready ),
.S_AXI_WID (si_cb_wid ),
.S_AXI_WDATA (si_cb_wdata ),
.S_AXI_WSTRB (si_cb_wstrb ),
.S_AXI_WLAST (si_cb_wlast ),
.S_AXI_WUSER (si_cb_wuser ),
.S_AXI_WVALID (si_cb_wvalid ),
.S_AXI_WREADY (si_cb_wready ),
.S_AXI_BID (si_cb_bid ),
.S_AXI_BRESP (si_cb_bresp ),
.S_AXI_BUSER (si_cb_buser ),
.S_AXI_BVALID (si_cb_bvalid ),
.S_AXI_BREADY (si_cb_bready ),
.S_AXI_ARID (si_cb_arid ),
.S_AXI_ARADDR (si_cb_araddr ),
.S_AXI_ARLEN (si_cb_arlen ),
.S_AXI_ARSIZE (si_cb_arsize ),
.S_AXI_ARBURST (si_cb_arburst ),
.S_AXI_ARLOCK (si_cb_arlock ),
.S_AXI_ARCACHE (si_cb_arcache ),
.S_AXI_ARPROT (si_cb_arprot ),
// .S_AXI_ARREGION (si_cb_arregion ),
.S_AXI_ARQOS (si_cb_arqos ),
.S_AXI_ARUSER (si_cb_aruser ),
.S_AXI_ARVALID (si_cb_arvalid ),
.S_AXI_ARREADY (si_cb_arready ),
.S_AXI_RID (si_cb_rid ),
.S_AXI_RDATA (si_cb_rdata ),
.S_AXI_RRESP (si_cb_rresp ),
.S_AXI_RLAST (si_cb_rlast ),
.S_AXI_RUSER (si_cb_ruser ),
.S_AXI_RVALID (si_cb_rvalid ),
.S_AXI_RREADY (si_cb_rready ),
.M_AXI_AWID (cb_mi_awid ),
.M_AXI_AWADDR (cb_mi_awaddr ),
.M_AXI_AWLEN (cb_mi_awlen ),
.M_AXI_AWSIZE (cb_mi_awsize ),
.M_AXI_AWBURST (cb_mi_awburst ),
.M_AXI_AWLOCK (cb_mi_awlock ),
.M_AXI_AWCACHE (cb_mi_awcache ),
.M_AXI_AWPROT (cb_mi_awprot ),
.M_AXI_AWREGION (cb_mi_awregion ),
.M_AXI_AWQOS (cb_mi_awqos ),
.M_AXI_AWUSER (cb_mi_awuser ),
.M_AXI_AWVALID (cb_mi_awvalid ),
.M_AXI_AWREADY (cb_mi_awready ),
.M_AXI_WID (cb_mi_wid ),
.M_AXI_WDATA (cb_mi_wdata ),
.M_AXI_WSTRB (cb_mi_wstrb ),
.M_AXI_WLAST (cb_mi_wlast ),
.M_AXI_WUSER (cb_mi_wuser ),
.M_AXI_WVALID (cb_mi_wvalid ),
.M_AXI_WREADY (cb_mi_wready ),
.M_AXI_BID (cb_mi_bid ),
.M_AXI_BRESP (cb_mi_bresp ),
.M_AXI_BUSER (cb_mi_buser ),
.M_AXI_BVALID (cb_mi_bvalid ),
.M_AXI_BREADY (cb_mi_bready ),
.M_AXI_ARID (cb_mi_arid ),
.M_AXI_ARADDR (cb_mi_araddr ),
.M_AXI_ARLEN (cb_mi_arlen ),
.M_AXI_ARSIZE (cb_mi_arsize ),
.M_AXI_ARBURST (cb_mi_arburst ),
.M_AXI_ARLOCK (cb_mi_arlock ),
.M_AXI_ARCACHE (cb_mi_arcache ),
.M_AXI_ARPROT (cb_mi_arprot ),
.M_AXI_ARREGION (cb_mi_arregion ),
.M_AXI_ARQOS (cb_mi_arqos ),
.M_AXI_ARUSER (cb_mi_aruser ),
.M_AXI_ARVALID (cb_mi_arvalid ),
.M_AXI_ARREADY (cb_mi_arready ),
.M_AXI_RID (cb_mi_rid ),
.M_AXI_RDATA (cb_mi_rdata ),
.M_AXI_RRESP (cb_mi_rresp ),
.M_AXI_RLAST (cb_mi_rlast ),
.M_AXI_RUSER (cb_mi_ruser ),
.M_AXI_RVALID (cb_mi_rvalid ),
.M_AXI_RREADY (cb_mi_rready )
);
end // gen_samd
// end // gen_crossbar
endgenerate
endmodule
|
module axi_crossbar_v2_1_axi_crossbar # (
parameter C_FAMILY = "rtl",
// FPGA Base Family. Current version: virtex6 or spartan6.
parameter integer C_NUM_SLAVE_SLOTS = 1,
// Number of Slave Interface (SI) slots for connecting
// to master IP. Range: 1-16.
parameter integer C_NUM_MASTER_SLOTS = 2,
// Number of Master Interface (MI) slots for connecting
// to slave IP. Range: 1-16.
parameter integer C_AXI_ID_WIDTH = 1,
// Width of ID signals propagated by the Interconnect.
// Width of ID signals produced on all MI slots.
// Range: 1-32.
parameter integer C_AXI_ADDR_WIDTH = 32,
// Width of s_axi_awaddr, s_axi_araddr, m_axi_awaddr and
// m_axi_araddr for all SI/MI slots.
// Range: 1-64.
parameter integer C_AXI_DATA_WIDTH = 32,
// Data width of the internal interconnect write and read
// data paths.
// Range: 32, 64, 128, 256, 512, 1024.
parameter integer C_AXI_PROTOCOL = 0,
// 0 = "AXI4",
// 1 = "AXI3",
// 2 = "AXI4LITE"
// Propagate WID only when C_AXI_PROTOCOL = 1.
parameter integer C_NUM_ADDR_RANGES = 1,
// Number of BASE/HIGH_ADDR pairs per MI slot.
// Range: 1-16.
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = 128'h00000000001000000000000000000000,
// Base address of each range of each MI slot.
// For unused ranges, set C_M_AXI_BASE_ADDR[mm*aa*64 +: C_AXI_ADDR_WIDTH] = {C_AXI_ADDR_WIDTH{1'b1}}.
// (Bit positions above C_AXI_ADDR_WIDTH are ignored.)
// Format: C_NUM_MASTER_SLOTS{C_NUM_ADDR_RANGES{Bit64}}.
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*32-1:0] C_M_AXI_ADDR_WIDTH = 64'H0000000c0000000c,
// Number of low-order address bits that are used to select locations within each address range of each MI slot.
// The High address of each range is derived as BASE_ADDR + 2**C_M_AXI_ADDR_WIDTH -1.
// For used address ranges, C_M_AXI_ADDR_WIDTH must be > 0.
// For unused ranges, set C_M_AXI_ADDR_WIDTH to 32'h00000000.
// Format: C_NUM_MASTER_SLOTS{C_NUM_ADDR_RANGES{Bit32}}.
// Range: 0 - C_AXI_ADDR_WIDTH.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_BASE_ID = 32'h00000000,
// Base ID of each SI slot.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0 to 2**C_AXI_ID_WIDTH-1.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = 32'h00000000,
// Number of low-order ID bits a connected master may vary to select a transaction thread.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0 - C_AXI_ID_WIDTH.
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Dont propagate.
parameter integer C_AXI_AWUSER_WIDTH = 1,
// Width of AWUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_ARUSER_WIDTH = 1,
// Width of ARUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_WUSER_WIDTH = 1,
// Width of WUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_RUSER_WIDTH = 1,
// Width of RUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter integer C_AXI_BUSER_WIDTH = 1,
// Width of BUSER signals for all SI slots and MI slots.
// Range: 1-1024.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = 64'hFFFFFFFFFFFFFFFF,
// Multi-pathway write connectivity from each SI slot (N) to each
// MI slot (M):
// 0 = no pathway required; 1 = pathway required. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = 64'hFFFFFFFFFFFFFFFF,
// Multi-pathway read connectivity from each SI slot (N) to each
// MI slot (M):
// 0 = no pathway required; 1 = pathway required. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
parameter integer C_R_REGISTER = 0,
// Insert register slice on R channel in the crossbar. (Valid only for SASD)
// Range: Reg-slice type (0-8).
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = 32'h00000000,
// 0 = Implement separate command queues per ID thread.
// 1 = Force corresponding SI slot to be single-threaded. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0, 1
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = 32'H00000002,
// Maximum number of active write transactions that each SI
// slot can accept. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = 32'H00000002,
// Maximum number of active read transactions that each SI
// slot can accept. (Valid only for SAMD)
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = 64'H0000000400000004,
// Maximum number of data-active write transactions that
// each MI slot can generate at any one time. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = 64'H0000000400000004,
// Maximum number of active read transactions that
// each MI slot can generate at any one time. (Valid only for SAMD)
// Format: C_NUM_MASTER_SLOTS{Bit32};
// Range: 1-32.
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = 32'h00000000,
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 0-15.
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = 32'h00000000,
// Indicates whether each MI slot connects to a secure slave
// (allows only TrustZone secure access).
// Format: C_NUM_MASTER_SLOTS{Bit32}.
// Range: 0, 1
parameter integer C_CONNECTIVITY_MODE = 1
// 0 = Shared-Address Shared-Data (SASD).
// 1 = Shared-Address Multi-Data (SAMD).
// Default 1 (on) for simulation; default 0 (off) for implementation.
)
(
// Global Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_awsize,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_awburst,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awcache,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_awprot,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awregion,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_awqos,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_awvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wlast,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_bresp,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_bvalid,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_arsize,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_arburst,
input wire [C_NUM_SLAVE_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arcache,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] s_axi_arprot,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arregion,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] s_axi_arqos,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_arvalid,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] s_axi_rresp,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rlast,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rvalid,
input wire [C_NUM_SLAVE_SLOTS-1:0] s_axi_rready,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_awsize,
output wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_awburst,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awcache,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_awprot,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awregion,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_awqos,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_awvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_awready,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wlast,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_wready,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_bresp,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_bvalid,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_bready,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_arsize,
output wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_arburst,
output wire [C_NUM_MASTER_SLOTS*((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arcache,
output wire [C_NUM_MASTER_SLOTS*3-1:0] m_axi_arprot,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arregion,
output wire [C_NUM_MASTER_SLOTS*4-1:0] m_axi_arqos,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_arvalid,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_arready,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [C_NUM_MASTER_SLOTS*2-1:0] m_axi_rresp,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rlast,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rvalid,
output wire [C_NUM_MASTER_SLOTS-1:0] m_axi_rready
);
localparam [64:0] P_ONES = {65{1'b1}};
localparam [C_NUM_SLAVE_SLOTS*64-1:0] P_S_AXI_BASE_ID = f_base_id(0);
localparam [C_NUM_SLAVE_SLOTS*64-1:0] P_S_AXI_HIGH_ID = f_high_id(0);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam [2:0] P_AXILITE_SIZE = 3'b010;
localparam [1:0] P_INCR = 2'b01;
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXI_SUPPORTS_WRITE = f_m_supports_write(0);
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXI_SUPPORTS_READ = f_m_supports_read(0);
localparam [C_NUM_SLAVE_SLOTS-1:0] P_S_AXI_SUPPORTS_WRITE = f_s_supports_write(0);
localparam [C_NUM_SLAVE_SLOTS-1:0] P_S_AXI_SUPPORTS_READ = f_s_supports_read(0);
localparam integer C_DEBUG = 1;
localparam integer P_RANGE_CHECK = 1;
// 1 (non-zero) = Detect and issue DECERR on the following conditions:
// a. address range mismatch (no valid MI slot)
// b. Burst or >32-bit transfer to AxiLite slave
// c. TrustZone access violation
// d. R/W direction unsupported by target
// 0 = Pass all transactions (no DECERR):
// a. Omit DECERR detection and response logic
// b. Omit address decoder and propagate s_axi_a*REGION to m_axi_a*REGION
// when C_NUM_MASTER_SLOTS=1 and C_NUM_ADDR_RANGES=1.
// c. Unpredictable target MI-slot if address mismatch and >1 MI-slot
// d. Transaction corruption if any burst or >32-bit transfer to AxiLite slave
// Illegal combination: P_RANGE_CHECK = 0 && C_M_AXI_SECURE != 0.
localparam integer P_ADDR_DECODE = ((P_RANGE_CHECK == 1) || (C_NUM_MASTER_SLOTS > 1) || (C_NUM_ADDR_RANGES > 1)) ? 1 : 0; // Always 1
localparam [C_NUM_MASTER_SLOTS*32-1:0] P_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}};
// Transaction error detection (per MI-slot)
// 0 = None; 1 = AXI4Lite burst violation
// Format: C_NUM_MASTER_SLOTS{Bit32};
localparam integer P_LEN = (C_AXI_PROTOCOL == P_AXI3) ? 4 : 8;
localparam integer P_LOCK = (C_AXI_PROTOCOL == P_AXI3) ? 2 : 1;
localparam P_FAMILY = ((C_FAMILY == "virtex7") || (C_FAMILY == "kintex7") || (C_FAMILY == "artix7") || (C_FAMILY == "zynq")) ? C_FAMILY : "rtl";
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Widths of all write issuance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [(C_NUM_MASTER_SLOTS+1)*32-1:0] f_write_issue_width_vec
(input null_arg);
integer mi;
reg [(C_NUM_MASTER_SLOTS+1)*32-1:0] result;
begin
result = 0;
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result[mi*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_M_AXI_WRITE_ISSUING[mi*32+:32]);
end
result[C_NUM_MASTER_SLOTS*32+:32] = 32'h0;
f_write_issue_width_vec = result;
end
endfunction
// Widths of all read issuance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [(C_NUM_MASTER_SLOTS+1)*32-1:0] f_read_issue_width_vec
(input null_arg);
integer mi;
reg [(C_NUM_MASTER_SLOTS+1)*32-1:0] result;
begin
result = 0;
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result[mi*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_M_AXI_READ_ISSUING[mi*32+:32]);
end
result[C_NUM_MASTER_SLOTS*32+:32] = 32'h0;
f_read_issue_width_vec = result;
end
endfunction
// Widths of all write acceptance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [C_NUM_SLAVE_SLOTS*32-1:0] f_write_accept_width_vec
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_S_AXI_WRITE_ACCEPTANCE[si*32+:32]);
end
f_write_accept_width_vec = result;
end
endfunction
// Widths of all read acceptance counters implemented in axi_crossbar_v2_1_crossbar (before counter carry-out bit)
function [C_NUM_SLAVE_SLOTS*32-1:0] f_read_accept_width_vec
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*32+:32] = (C_AXI_PROTOCOL == P_AXILITE) ? 32'h0 : f_ceil_log2(C_S_AXI_READ_ACCEPTANCE[si*32+:32]);
end
f_read_accept_width_vec = result;
end
endfunction
// Convert C_S_AXI_BASE_ID vector from Bit32 to Bit64 format
function [C_NUM_SLAVE_SLOTS*64-1:0] f_base_id
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*64-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*64+:C_AXI_ID_WIDTH] = C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH];
end
f_base_id = result;
end
endfunction
// Construct P_S_HIGH_ID vector
function [C_NUM_SLAVE_SLOTS*64-1:0] f_high_id
(input null_arg);
integer si;
reg [C_NUM_SLAVE_SLOTS*64-1:0] result;
begin
result = 0;
for (si=0; si<C_NUM_SLAVE_SLOTS; si=si+1) begin
result[si*64+:C_AXI_ID_WIDTH] = (C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? {C_AXI_ID_WIDTH{1'b1}} :
(C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] | ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]}));
end
f_high_id = result;
end
endfunction
// Construct P_M_HIGH_ADDR vector
function [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] f_high_addr
(input null_arg);
integer ar;
reg [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] result;
begin
result = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}};
for (ar=0; ar<C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES; ar=ar+1) begin
result[ar*64+:C_AXI_ADDR_WIDTH] = (C_M_AXI_ADDR_WIDTH[ar*32+:32] == 0) ? 64'h00000000_00000000 :
({1'b0, C_M_AXI_ADDR_WIDTH[ar*32+:31]} >= C_AXI_ADDR_WIDTH) ? {C_AXI_ADDR_WIDTH{1'b1}} :
(C_M_AXI_BASE_ADDR[ar*64+:C_AXI_ADDR_WIDTH] | ~(P_ONES << {1'b0, C_M_AXI_ADDR_WIDTH[ar*32+:7]}));
end
f_high_addr = result;
end
endfunction
// Generate a mask of valid ID bits for a given SI slot.
function [C_AXI_ID_WIDTH-1:0] f_thread_id_mask
(input integer si);
begin
f_thread_id_mask =
(C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? {C_AXI_ID_WIDTH{1'b0}} :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? {C_AXI_ID_WIDTH{1'b1}} :
({C_AXI_ID_WIDTH{1'b0}} | ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]}));
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID (
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer si
);
begin
f_extend_ID =
(C_S_AXI_THREAD_ID_WIDTH[si*32+:32] == 0) ? C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] :
({1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:31]} >= C_AXI_ID_WIDTH) ? s_id :
(C_S_AXI_BASE_ID[si*32+:C_AXI_ID_WIDTH] | (s_id & ~(P_ONES << {1'b0, C_S_AXI_THREAD_ID_WIDTH[si*32+:6]})));
end
endfunction
// Bit vector of SI slots with at least one write connection.
function [C_NUM_SLAVE_SLOTS-1:0] f_s_supports_write
(input null_arg);
integer mi;
reg [C_NUM_SLAVE_SLOTS-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS{1'b0}};
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result = result | C_M_AXI_WRITE_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS];
end
f_s_supports_write = result;
end
endfunction
// Bit vector of SI slots with at least one read connection.
function [C_NUM_SLAVE_SLOTS-1:0] f_s_supports_read
(input null_arg);
integer mi;
reg [C_NUM_SLAVE_SLOTS-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS{1'b0}};
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
result = result | C_M_AXI_READ_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS];
end
f_s_supports_read = result;
end
endfunction
// Bit vector of MI slots with at least one write connection.
function [C_NUM_MASTER_SLOTS-1:0] f_m_supports_write
(input null_arg);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_supports_write[mi] = (|C_M_AXI_WRITE_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS]);
end
end
endfunction
// Bit vector of MI slots with at least one read connection.
function [C_NUM_MASTER_SLOTS-1:0] f_m_supports_read
(input null_arg);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_supports_read[mi] = (|C_M_AXI_READ_CONNECTIVITY[mi*32+:C_NUM_SLAVE_SLOTS]);
end
end
endfunction
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] si_cb_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] si_cb_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_awburst ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_awlock ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awcache ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_awprot ;
// wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awregion ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_awqos ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] si_cb_awuser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_awvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_awready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_wid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] si_cb_wdata ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] si_cb_wstrb ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wlast ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] si_cb_wuser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_wready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_bid ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_bresp ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] si_cb_buser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_bvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_bready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] si_cb_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] si_cb_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_arburst ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_arlock ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arcache ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] si_cb_arprot ;
// wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arregion ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] si_cb_arqos ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] si_cb_aruser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_arvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_arready ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] si_cb_rid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] si_cb_rdata ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] si_cb_rresp ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rlast ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] si_cb_ruser ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rvalid ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_cb_rready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_awid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] cb_mi_awaddr ;
wire [C_NUM_MASTER_SLOTS*8-1:0] cb_mi_awlen ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_awsize ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_awburst ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_awlock ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awcache ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_awprot ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awregion ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_awqos ;
wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] cb_mi_awuser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_awvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_awready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_wid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] cb_mi_wdata ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] cb_mi_wstrb ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wlast ;
wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] cb_mi_wuser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_wready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_bid ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_bresp ;
wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] cb_mi_buser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_bvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_bready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_arid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] cb_mi_araddr ;
wire [C_NUM_MASTER_SLOTS*8-1:0] cb_mi_arlen ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_arsize ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_arburst ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_arlock ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arcache ;
wire [C_NUM_MASTER_SLOTS*3-1:0] cb_mi_arprot ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arregion ;
wire [C_NUM_MASTER_SLOTS*4-1:0] cb_mi_arqos ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] cb_mi_aruser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_arvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_arready ;
wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] cb_mi_rid ;
wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] cb_mi_rdata ;
wire [C_NUM_MASTER_SLOTS*2-1:0] cb_mi_rresp ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rlast ;
wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] cb_mi_ruser ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rvalid ;
wire [C_NUM_MASTER_SLOTS-1:0] cb_mi_rready ;
genvar slot;
generate
for (slot=0;slot<C_NUM_SLAVE_SLOTS;slot=slot+1) begin : gen_si_tieoff
assign si_cb_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (s_axi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign si_cb_awlen[slot*8+:8] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awlen[slot*P_LEN+:P_LEN] : 0 ;
assign si_cb_awsize[slot*3+:3] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awsize[slot*3+:3] : P_AXILITE_SIZE ;
assign si_cb_awburst[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awburst[slot*2+:2] : P_INCR ;
assign si_cb_awlock[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? {1'b0, s_axi_awlock[slot*P_LOCK+:1]} : 0 ;
assign si_cb_awcache[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awcache[slot*4+:4] : 0 ;
assign si_cb_awprot[slot*3+:3] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awprot[slot*3+:3] : 0 ;
assign si_cb_awqos[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_awqos[slot*4+:4] : 0 ;
// assign si_cb_awregion[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? s_axi_awregion[slot*4+:4] : 0 ;
assign si_cb_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] : 0 ;
assign si_cb_awvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_awvalid[slot*1+:1] : 0 ;
assign si_cb_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI3) ) ? (s_axi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign si_cb_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] : 0 ;
assign si_cb_wlast[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_wlast[slot*1+:1] : 1'b1 ;
assign si_cb_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] : 0 ;
assign si_cb_wvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_wvalid[slot*1+:1] : 0 ;
assign si_cb_bready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? s_axi_bready[slot*1+:1] : 0 ;
assign si_cb_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (s_axi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign si_cb_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign si_cb_arlen[slot*8+:8] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arlen[slot*P_LEN+:P_LEN] : 0 ;
assign si_cb_arsize[slot*3+:3] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arsize[slot*3+:3] : P_AXILITE_SIZE ;
assign si_cb_arburst[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arburst[slot*2+:2] : P_INCR ;
assign si_cb_arlock[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? {1'b0, s_axi_arlock[slot*P_LOCK+:1]} : 0 ;
assign si_cb_arcache[slot*4+:4] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arcache[slot*4+:4] : 0 ;
assign si_cb_arprot[slot*3+:3] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_arprot[slot*3+:3] : 0 ;
assign si_cb_arqos[slot*4+:4] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? s_axi_arqos[slot*4+:4] : 0 ;
// assign si_cb_arregion[slot*4+:4] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? s_axi_arregion[slot*4+:4] : 0 ;
assign si_cb_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? s_axi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] : 0 ;
assign si_cb_arvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_arvalid[slot*1+:1] : 0 ;
assign si_cb_rready[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? s_axi_rready[slot*1+:1] : 0 ;
assign s_axi_awready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_awready[slot*1+:1] : 0 ;
assign s_axi_wready[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_wready[slot*1+:1] : 0 ;
assign s_axi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (si_cb_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign s_axi_bresp[slot*2+:2] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_bresp[slot*2+:2] : 0 ;
assign s_axi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = (P_S_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? si_cb_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] : 0 ;
assign s_axi_bvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_WRITE[slot] ) ? si_cb_bvalid[slot*1+:1] : 0 ;
assign s_axi_arready[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_arready[slot*1+:1] : 0 ;
assign s_axi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? (si_cb_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] & f_thread_id_mask(slot)) : 0 ;
assign s_axi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign s_axi_rresp[slot*2+:2] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rresp[slot*2+:2] : 0 ;
assign s_axi_rlast[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? si_cb_rlast[slot*1+:1] : 0 ;
assign s_axi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = (P_S_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? si_cb_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] : 0 ;
assign s_axi_rvalid[slot*1+:1] = (P_S_AXI_SUPPORTS_READ[slot] ) ? si_cb_rvalid[slot*1+:1] : 0 ;
end // gen_si_tieoff
for (slot=0;slot<C_NUM_MASTER_SLOTS;slot=slot+1) begin : gen_mi_tieoff
assign m_axi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awaddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign m_axi_awlen[slot*P_LEN+:P_LEN] = (~P_M_AXI_SUPPORTS_WRITE[slot]) ? 0 : (C_AXI_PROTOCOL==P_AXI4 ) ? cb_mi_awlen[slot*8+:8] : (C_AXI_PROTOCOL==P_AXI3) ? cb_mi_awlen[slot*8+:4] : 0 ;
assign m_axi_awsize[slot*3+:3] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awsize[slot*3+:3] : 0 ;
assign m_axi_awburst[slot*2+:2] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awburst[slot*2+:2] : 0 ;
assign m_axi_awlock[slot*P_LOCK+:P_LOCK] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awlock[slot*2+:1] : 0 ;
assign m_axi_awcache[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awcache[slot*4+:4] : 0 ;
assign m_axi_awprot[slot*3+:3] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awprot[slot*3+:3] : 0 ;
assign m_axi_awregion[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? cb_mi_awregion[slot*4+:4] : 0 ;
assign m_axi_awqos[slot*4+:4] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_awqos[slot*4+:4] : 0 ;
assign m_axi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_awuser[slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH] : 0 ;
assign m_axi_awvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_awvalid[slot*1+:1] : 0 ;
assign m_axi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_wid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign m_axi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wstrb[slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] : 0 ;
assign m_axi_wlast[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_wlast[slot*1+:1] : 0 ;
assign m_axi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_wuser[slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] : 0 ;
assign m_axi_wvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_wvalid[slot*1+:1] : 0 ;
assign m_axi_bready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? cb_mi_bready[slot*1+:1] : 0 ;
assign m_axi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign m_axi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_araddr[slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH] : 0 ;
assign m_axi_arlen[slot*P_LEN+:P_LEN] = (~P_M_AXI_SUPPORTS_READ[slot]) ? 0 : (C_AXI_PROTOCOL==P_AXI4 ) ? cb_mi_arlen[slot*8+:8] : (C_AXI_PROTOCOL==P_AXI3) ? cb_mi_arlen[slot*8+:4] : 0 ;
assign m_axi_arsize[slot*3+:3] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arsize[slot*3+:3] : 0 ;
assign m_axi_arburst[slot*2+:2] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arburst[slot*2+:2] : 0 ;
assign m_axi_arlock[slot*P_LOCK+:P_LOCK] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arlock[slot*2+:1] : 0 ;
assign m_axi_arcache[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arcache[slot*4+:4] : 0 ;
assign m_axi_arprot[slot*3+:3] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_arprot[slot*3+:3] : 0 ;
assign m_axi_arregion[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL==P_AXI4) ) ? cb_mi_arregion[slot*4+:4] : 0 ;
assign m_axi_arqos[slot*4+:4] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? cb_mi_arqos[slot*4+:4] : 0 ;
assign m_axi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? cb_mi_aruser[slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH] : 0 ;
assign m_axi_arvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_arvalid[slot*1+:1] : 0 ;
assign m_axi_rready[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? cb_mi_rready[slot*1+:1] : 0 ;
assign cb_mi_awready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_awready[slot*1+:1] : 0 ;
assign cb_mi_wready[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_wready[slot*1+:1] : 0 ;
assign cb_mi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_bid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign cb_mi_bresp[slot*2+:2] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_bresp[slot*2+:2] : 0 ;
assign cb_mi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = (P_M_AXI_SUPPORTS_WRITE[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? m_axi_buser[slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] : 0 ;
assign cb_mi_bvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_WRITE[slot] ) ? m_axi_bvalid[slot*1+:1] : 0 ;
assign cb_mi_arready[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_arready[slot*1+:1] : 0 ;
assign cb_mi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_rid[slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] : 0 ;
assign cb_mi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rdata[slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] : 0 ;
assign cb_mi_rresp[slot*2+:2] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rresp[slot*2+:2] : 0 ;
assign cb_mi_rlast[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) ) ? m_axi_rlast[slot*1+:1] : 1'b1 ;
assign cb_mi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = (P_M_AXI_SUPPORTS_READ[slot] && (C_AXI_PROTOCOL!=P_AXILITE) && (C_AXI_SUPPORTS_USER_SIGNALS!=0) ) ? m_axi_ruser[slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] : 0 ;
assign cb_mi_rvalid[slot*1+:1] = (P_M_AXI_SUPPORTS_READ[slot] ) ? m_axi_rvalid[slot*1+:1] : 0 ;
end // gen_mi_tieoff
if ((C_CONNECTIVITY_MODE==0) || (C_AXI_PROTOCOL==P_AXILITE)) begin : gen_sasd
axi_crossbar_v2_1_crossbar_sasd #
(
.C_FAMILY (P_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_M_AXI_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_M_AXI_HIGH_ADDR (f_high_addr(0)),
.C_S_AXI_BASE_ID (P_S_AXI_BASE_ID),
.C_S_AXI_HIGH_ID (P_S_AXI_HIGH_ID),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_S_AXI_SUPPORTS_WRITE (P_S_AXI_SUPPORTS_WRITE),
.C_S_AXI_SUPPORTS_READ (P_S_AXI_SUPPORTS_READ),
.C_M_AXI_SUPPORTS_WRITE (P_M_AXI_SUPPORTS_WRITE),
.C_M_AXI_SUPPORTS_READ (P_M_AXI_SUPPORTS_READ),
.C_S_AXI_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_R_REGISTER (C_R_REGISTER),
.C_RANGE_CHECK (P_RANGE_CHECK),
.C_ADDR_DECODE (P_ADDR_DECODE),
.C_M_AXI_ERR_MODE (P_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
crossbar_sasd_0
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (si_cb_awid ),
.S_AXI_AWADDR (si_cb_awaddr ),
.S_AXI_AWLEN (si_cb_awlen ),
.S_AXI_AWSIZE (si_cb_awsize ),
.S_AXI_AWBURST (si_cb_awburst ),
.S_AXI_AWLOCK (si_cb_awlock ),
.S_AXI_AWCACHE (si_cb_awcache ),
.S_AXI_AWPROT (si_cb_awprot ),
// .S_AXI_AWREGION (si_cb_awregion ),
.S_AXI_AWQOS (si_cb_awqos ),
.S_AXI_AWUSER (si_cb_awuser ),
.S_AXI_AWVALID (si_cb_awvalid ),
.S_AXI_AWREADY (si_cb_awready ),
.S_AXI_WID (si_cb_wid ),
.S_AXI_WDATA (si_cb_wdata ),
.S_AXI_WSTRB (si_cb_wstrb ),
.S_AXI_WLAST (si_cb_wlast ),
.S_AXI_WUSER (si_cb_wuser ),
.S_AXI_WVALID (si_cb_wvalid ),
.S_AXI_WREADY (si_cb_wready ),
.S_AXI_BID (si_cb_bid ),
.S_AXI_BRESP (si_cb_bresp ),
.S_AXI_BUSER (si_cb_buser ),
.S_AXI_BVALID (si_cb_bvalid ),
.S_AXI_BREADY (si_cb_bready ),
.S_AXI_ARID (si_cb_arid ),
.S_AXI_ARADDR (si_cb_araddr ),
.S_AXI_ARLEN (si_cb_arlen ),
.S_AXI_ARSIZE (si_cb_arsize ),
.S_AXI_ARBURST (si_cb_arburst ),
.S_AXI_ARLOCK (si_cb_arlock ),
.S_AXI_ARCACHE (si_cb_arcache ),
.S_AXI_ARPROT (si_cb_arprot ),
// .S_AXI_ARREGION (si_cb_arregion ),
.S_AXI_ARQOS (si_cb_arqos ),
.S_AXI_ARUSER (si_cb_aruser ),
.S_AXI_ARVALID (si_cb_arvalid ),
.S_AXI_ARREADY (si_cb_arready ),
.S_AXI_RID (si_cb_rid ),
.S_AXI_RDATA (si_cb_rdata ),
.S_AXI_RRESP (si_cb_rresp ),
.S_AXI_RLAST (si_cb_rlast ),
.S_AXI_RUSER (si_cb_ruser ),
.S_AXI_RVALID (si_cb_rvalid ),
.S_AXI_RREADY (si_cb_rready ),
.M_AXI_AWID (cb_mi_awid ),
.M_AXI_AWADDR (cb_mi_awaddr ),
.M_AXI_AWLEN (cb_mi_awlen ),
.M_AXI_AWSIZE (cb_mi_awsize ),
.M_AXI_AWBURST (cb_mi_awburst ),
.M_AXI_AWLOCK (cb_mi_awlock ),
.M_AXI_AWCACHE (cb_mi_awcache ),
.M_AXI_AWPROT (cb_mi_awprot ),
.M_AXI_AWREGION (cb_mi_awregion ),
.M_AXI_AWQOS (cb_mi_awqos ),
.M_AXI_AWUSER (cb_mi_awuser ),
.M_AXI_AWVALID (cb_mi_awvalid ),
.M_AXI_AWREADY (cb_mi_awready ),
.M_AXI_WID (cb_mi_wid ),
.M_AXI_WDATA (cb_mi_wdata ),
.M_AXI_WSTRB (cb_mi_wstrb ),
.M_AXI_WLAST (cb_mi_wlast ),
.M_AXI_WUSER (cb_mi_wuser ),
.M_AXI_WVALID (cb_mi_wvalid ),
.M_AXI_WREADY (cb_mi_wready ),
.M_AXI_BID (cb_mi_bid ),
.M_AXI_BRESP (cb_mi_bresp ),
.M_AXI_BUSER (cb_mi_buser ),
.M_AXI_BVALID (cb_mi_bvalid ),
.M_AXI_BREADY (cb_mi_bready ),
.M_AXI_ARID (cb_mi_arid ),
.M_AXI_ARADDR (cb_mi_araddr ),
.M_AXI_ARLEN (cb_mi_arlen ),
.M_AXI_ARSIZE (cb_mi_arsize ),
.M_AXI_ARBURST (cb_mi_arburst ),
.M_AXI_ARLOCK (cb_mi_arlock ),
.M_AXI_ARCACHE (cb_mi_arcache ),
.M_AXI_ARPROT (cb_mi_arprot ),
.M_AXI_ARREGION (cb_mi_arregion ),
.M_AXI_ARQOS (cb_mi_arqos ),
.M_AXI_ARUSER (cb_mi_aruser ),
.M_AXI_ARVALID (cb_mi_arvalid ),
.M_AXI_ARREADY (cb_mi_arready ),
.M_AXI_RID (cb_mi_rid ),
.M_AXI_RDATA (cb_mi_rdata ),
.M_AXI_RRESP (cb_mi_rresp ),
.M_AXI_RLAST (cb_mi_rlast ),
.M_AXI_RUSER (cb_mi_ruser ),
.M_AXI_RVALID (cb_mi_rvalid ),
.M_AXI_RREADY (cb_mi_rready )
);
end else begin : gen_samd
axi_crossbar_v2_1_crossbar #
(
.C_FAMILY (P_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_S_AXI_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_M_AXI_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_M_AXI_HIGH_ADDR (f_high_addr(0)),
.C_S_AXI_BASE_ID (P_S_AXI_BASE_ID),
.C_S_AXI_HIGH_ID (P_S_AXI_HIGH_ID),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_S_AXI_SUPPORTS_WRITE (P_S_AXI_SUPPORTS_WRITE),
.C_S_AXI_SUPPORTS_READ (P_S_AXI_SUPPORTS_READ),
.C_M_AXI_SUPPORTS_WRITE (P_M_AXI_SUPPORTS_WRITE),
.C_M_AXI_SUPPORTS_READ (P_M_AXI_SUPPORTS_READ),
.C_M_AXI_WRITE_CONNECTIVITY (C_M_AXI_WRITE_CONNECTIVITY),
.C_M_AXI_READ_CONNECTIVITY (C_M_AXI_READ_CONNECTIVITY),
.C_S_AXI_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD),
.C_S_AXI_WRITE_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE),
.C_S_AXI_READ_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE),
.C_M_AXI_WRITE_ISSUING (C_M_AXI_WRITE_ISSUING),
.C_M_AXI_READ_ISSUING (C_M_AXI_READ_ISSUING),
.C_S_AXI_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (P_RANGE_CHECK),
.C_ADDR_DECODE (P_ADDR_DECODE),
.C_W_ISSUE_WIDTH (f_write_issue_width_vec(0) ),
.C_R_ISSUE_WIDTH (f_read_issue_width_vec(0) ),
.C_W_ACCEPT_WIDTH (f_write_accept_width_vec(0)),
.C_R_ACCEPT_WIDTH (f_read_accept_width_vec(0)),
.C_M_AXI_ERR_MODE (P_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
crossbar_samd
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (si_cb_awid ),
.S_AXI_AWADDR (si_cb_awaddr ),
.S_AXI_AWLEN (si_cb_awlen ),
.S_AXI_AWSIZE (si_cb_awsize ),
.S_AXI_AWBURST (si_cb_awburst ),
.S_AXI_AWLOCK (si_cb_awlock ),
.S_AXI_AWCACHE (si_cb_awcache ),
.S_AXI_AWPROT (si_cb_awprot ),
// .S_AXI_AWREGION (si_cb_awregion ),
.S_AXI_AWQOS (si_cb_awqos ),
.S_AXI_AWUSER (si_cb_awuser ),
.S_AXI_AWVALID (si_cb_awvalid ),
.S_AXI_AWREADY (si_cb_awready ),
.S_AXI_WID (si_cb_wid ),
.S_AXI_WDATA (si_cb_wdata ),
.S_AXI_WSTRB (si_cb_wstrb ),
.S_AXI_WLAST (si_cb_wlast ),
.S_AXI_WUSER (si_cb_wuser ),
.S_AXI_WVALID (si_cb_wvalid ),
.S_AXI_WREADY (si_cb_wready ),
.S_AXI_BID (si_cb_bid ),
.S_AXI_BRESP (si_cb_bresp ),
.S_AXI_BUSER (si_cb_buser ),
.S_AXI_BVALID (si_cb_bvalid ),
.S_AXI_BREADY (si_cb_bready ),
.S_AXI_ARID (si_cb_arid ),
.S_AXI_ARADDR (si_cb_araddr ),
.S_AXI_ARLEN (si_cb_arlen ),
.S_AXI_ARSIZE (si_cb_arsize ),
.S_AXI_ARBURST (si_cb_arburst ),
.S_AXI_ARLOCK (si_cb_arlock ),
.S_AXI_ARCACHE (si_cb_arcache ),
.S_AXI_ARPROT (si_cb_arprot ),
// .S_AXI_ARREGION (si_cb_arregion ),
.S_AXI_ARQOS (si_cb_arqos ),
.S_AXI_ARUSER (si_cb_aruser ),
.S_AXI_ARVALID (si_cb_arvalid ),
.S_AXI_ARREADY (si_cb_arready ),
.S_AXI_RID (si_cb_rid ),
.S_AXI_RDATA (si_cb_rdata ),
.S_AXI_RRESP (si_cb_rresp ),
.S_AXI_RLAST (si_cb_rlast ),
.S_AXI_RUSER (si_cb_ruser ),
.S_AXI_RVALID (si_cb_rvalid ),
.S_AXI_RREADY (si_cb_rready ),
.M_AXI_AWID (cb_mi_awid ),
.M_AXI_AWADDR (cb_mi_awaddr ),
.M_AXI_AWLEN (cb_mi_awlen ),
.M_AXI_AWSIZE (cb_mi_awsize ),
.M_AXI_AWBURST (cb_mi_awburst ),
.M_AXI_AWLOCK (cb_mi_awlock ),
.M_AXI_AWCACHE (cb_mi_awcache ),
.M_AXI_AWPROT (cb_mi_awprot ),
.M_AXI_AWREGION (cb_mi_awregion ),
.M_AXI_AWQOS (cb_mi_awqos ),
.M_AXI_AWUSER (cb_mi_awuser ),
.M_AXI_AWVALID (cb_mi_awvalid ),
.M_AXI_AWREADY (cb_mi_awready ),
.M_AXI_WID (cb_mi_wid ),
.M_AXI_WDATA (cb_mi_wdata ),
.M_AXI_WSTRB (cb_mi_wstrb ),
.M_AXI_WLAST (cb_mi_wlast ),
.M_AXI_WUSER (cb_mi_wuser ),
.M_AXI_WVALID (cb_mi_wvalid ),
.M_AXI_WREADY (cb_mi_wready ),
.M_AXI_BID (cb_mi_bid ),
.M_AXI_BRESP (cb_mi_bresp ),
.M_AXI_BUSER (cb_mi_buser ),
.M_AXI_BVALID (cb_mi_bvalid ),
.M_AXI_BREADY (cb_mi_bready ),
.M_AXI_ARID (cb_mi_arid ),
.M_AXI_ARADDR (cb_mi_araddr ),
.M_AXI_ARLEN (cb_mi_arlen ),
.M_AXI_ARSIZE (cb_mi_arsize ),
.M_AXI_ARBURST (cb_mi_arburst ),
.M_AXI_ARLOCK (cb_mi_arlock ),
.M_AXI_ARCACHE (cb_mi_arcache ),
.M_AXI_ARPROT (cb_mi_arprot ),
.M_AXI_ARREGION (cb_mi_arregion ),
.M_AXI_ARQOS (cb_mi_arqos ),
.M_AXI_ARUSER (cb_mi_aruser ),
.M_AXI_ARVALID (cb_mi_arvalid ),
.M_AXI_ARREADY (cb_mi_arready ),
.M_AXI_RID (cb_mi_rid ),
.M_AXI_RDATA (cb_mi_rdata ),
.M_AXI_RRESP (cb_mi_rresp ),
.M_AXI_RLAST (cb_mi_rlast ),
.M_AXI_RUSER (cb_mi_ruser ),
.M_AXI_RVALID (cb_mi_rvalid ),
.M_AXI_RREADY (cb_mi_rready )
);
end // gen_samd
// end // gen_crossbar
endgenerate
endmodule
|
module cordic_stage( clock, reset, enable, xi,yi,zi,constant,xo,yo,zo);
parameter bitwidth = 16;
parameter zwidth = 16;
parameter shift = 1;
input clock;
input reset;
input enable;
input [bitwidth-1:0] xi,yi;
input [zwidth-1:0] zi;
input [zwidth-1:0] constant;
output [bitwidth-1:0] xo,yo;
output [zwidth-1:0] zo;
wire z_is_pos = ~zi[zwidth-1];
reg [bitwidth-1:0] xo,yo;
reg [zwidth-1:0] zo;
always @(posedge clock)
if(reset)
begin
xo <= #1 0;
yo <= #1 0;
zo <= #1 0;
end
else if(enable)
begin
xo <= #1 z_is_pos ?
xi - {{shift+1{yi[bitwidth-1]}},yi[bitwidth-2:shift]} :
xi + {{shift+1{yi[bitwidth-1]}},yi[bitwidth-2:shift]};
yo <= #1 z_is_pos ?
yi + {{shift+1{xi[bitwidth-1]}},xi[bitwidth-2:shift]} :
yi - {{shift+1{xi[bitwidth-1]}},xi[bitwidth-2:shift]};
zo <= #1 z_is_pos ?
zi - constant :
zi + constant;
end
endmodule
|
module cordic_stage( clock, reset, enable, xi,yi,zi,constant,xo,yo,zo);
parameter bitwidth = 16;
parameter zwidth = 16;
parameter shift = 1;
input clock;
input reset;
input enable;
input [bitwidth-1:0] xi,yi;
input [zwidth-1:0] zi;
input [zwidth-1:0] constant;
output [bitwidth-1:0] xo,yo;
output [zwidth-1:0] zo;
wire z_is_pos = ~zi[zwidth-1];
reg [bitwidth-1:0] xo,yo;
reg [zwidth-1:0] zo;
always @(posedge clock)
if(reset)
begin
xo <= #1 0;
yo <= #1 0;
zo <= #1 0;
end
else if(enable)
begin
xo <= #1 z_is_pos ?
xi - {{shift+1{yi[bitwidth-1]}},yi[bitwidth-2:shift]} :
xi + {{shift+1{yi[bitwidth-1]}},yi[bitwidth-2:shift]};
yo <= #1 z_is_pos ?
yi + {{shift+1{xi[bitwidth-1]}},xi[bitwidth-2:shift]} :
yi - {{shift+1{xi[bitwidth-1]}},xi[bitwidth-2:shift]};
zo <= #1 z_is_pos ?
zi - constant :
zi + constant;
end
endmodule
|
module cordic_stage( clock, reset, enable, xi,yi,zi,constant,xo,yo,zo);
parameter bitwidth = 16;
parameter zwidth = 16;
parameter shift = 1;
input clock;
input reset;
input enable;
input [bitwidth-1:0] xi,yi;
input [zwidth-1:0] zi;
input [zwidth-1:0] constant;
output [bitwidth-1:0] xo,yo;
output [zwidth-1:0] zo;
wire z_is_pos = ~zi[zwidth-1];
reg [bitwidth-1:0] xo,yo;
reg [zwidth-1:0] zo;
always @(posedge clock)
if(reset)
begin
xo <= #1 0;
yo <= #1 0;
zo <= #1 0;
end
else if(enable)
begin
xo <= #1 z_is_pos ?
xi - {{shift+1{yi[bitwidth-1]}},yi[bitwidth-2:shift]} :
xi + {{shift+1{yi[bitwidth-1]}},yi[bitwidth-2:shift]};
yo <= #1 z_is_pos ?
yi + {{shift+1{xi[bitwidth-1]}},xi[bitwidth-2:shift]} :
yi - {{shift+1{xi[bitwidth-1]}},xi[bitwidth-2:shift]};
zo <= #1 z_is_pos ?
zi - constant :
zi + constant;
end
endmodule
|
module axi_crossbar_v2_1_wdata_router #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of all data signals
parameter integer C_NUM_MASTER_SLOTS = 1, // Number of M_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of S_ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_WMESG_WIDTH-1:0] S_WMESG,
input wire S_WLAST,
input wire S_WVALID,
output wire S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG, // Broadcast to all MI-slots
output wire M_WLAST, // Broadcast to all MI-slots
output wire [C_NUM_MASTER_SLOTS-1:0] M_WVALID, // Per MI-slot
input wire [C_NUM_MASTER_SLOTS-1:0] M_WREADY, // Per MI-slot
// Address Arbiter Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // Target MI-slot index from SI-side AW command
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_MASTER_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_MASTER_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
//---------------------------------------------------------------------------
// Internal signal declarations
//---------------------------------------------------------------------------
wire [C_NUM_MASTER_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
//---------------------------------------------------------------------------
// Router
//---------------------------------------------------------------------------
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (1)
)
wrouter_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// W-channel payload and LAST are broadcast to all MI-slot's W-mux
assign M_WMESG = S_WMESG;
assign M_WLAST = S_WLAST;
// Assert m_aready when last beat acknowledged by slave
assign m_aready = m_avalid & S_WVALID & S_WLAST & (|(M_WREADY & m_select_hot));
// M_WVALID is generated per MI-slot (including error handler at slot C_NUM_MASTER_SLOTS).
// The slot selected by the head of the queue (m_select_enc) is enabled.
assign M_WVALID = {C_NUM_MASTER_SLOTS{S_WVALID & m_avalid}} & m_select_hot;
// S_WREADY is muxed from the MI slot selected by the head of the queue (m_select_enc).
assign S_WREADY = m_avalid & (|(M_WREADY & m_select_hot));
endmodule
|
module axi_crossbar_v2_1_wdata_router #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of all data signals
parameter integer C_NUM_MASTER_SLOTS = 1, // Number of M_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of S_ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_WMESG_WIDTH-1:0] S_WMESG,
input wire S_WLAST,
input wire S_WVALID,
output wire S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG, // Broadcast to all MI-slots
output wire M_WLAST, // Broadcast to all MI-slots
output wire [C_NUM_MASTER_SLOTS-1:0] M_WVALID, // Per MI-slot
input wire [C_NUM_MASTER_SLOTS-1:0] M_WREADY, // Per MI-slot
// Address Arbiter Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // Target MI-slot index from SI-side AW command
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_MASTER_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_MASTER_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
//---------------------------------------------------------------------------
// Internal signal declarations
//---------------------------------------------------------------------------
wire [C_NUM_MASTER_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
//---------------------------------------------------------------------------
// Router
//---------------------------------------------------------------------------
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (1)
)
wrouter_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// W-channel payload and LAST are broadcast to all MI-slot's W-mux
assign M_WMESG = S_WMESG;
assign M_WLAST = S_WLAST;
// Assert m_aready when last beat acknowledged by slave
assign m_aready = m_avalid & S_WVALID & S_WLAST & (|(M_WREADY & m_select_hot));
// M_WVALID is generated per MI-slot (including error handler at slot C_NUM_MASTER_SLOTS).
// The slot selected by the head of the queue (m_select_enc) is enabled.
assign M_WVALID = {C_NUM_MASTER_SLOTS{S_WVALID & m_avalid}} & m_select_hot;
// S_WREADY is muxed from the MI slot selected by the head of the queue (m_select_enc).
assign S_WREADY = m_avalid & (|(M_WREADY & m_select_hot));
endmodule
|
module axi_crossbar_v2_1_wdata_router #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of all data signals
parameter integer C_NUM_MASTER_SLOTS = 1, // Number of M_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of S_ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_WMESG_WIDTH-1:0] S_WMESG,
input wire S_WLAST,
input wire S_WVALID,
output wire S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG, // Broadcast to all MI-slots
output wire M_WLAST, // Broadcast to all MI-slots
output wire [C_NUM_MASTER_SLOTS-1:0] M_WVALID, // Per MI-slot
input wire [C_NUM_MASTER_SLOTS-1:0] M_WREADY, // Per MI-slot
// Address Arbiter Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // Target MI-slot index from SI-side AW command
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_MASTER_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_MASTER_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
//---------------------------------------------------------------------------
// Internal signal declarations
//---------------------------------------------------------------------------
wire [C_NUM_MASTER_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
//---------------------------------------------------------------------------
// Router
//---------------------------------------------------------------------------
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (1)
)
wrouter_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// W-channel payload and LAST are broadcast to all MI-slot's W-mux
assign M_WMESG = S_WMESG;
assign M_WLAST = S_WLAST;
// Assert m_aready when last beat acknowledged by slave
assign m_aready = m_avalid & S_WVALID & S_WLAST & (|(M_WREADY & m_select_hot));
// M_WVALID is generated per MI-slot (including error handler at slot C_NUM_MASTER_SLOTS).
// The slot selected by the head of the queue (m_select_enc) is enabled.
assign M_WVALID = {C_NUM_MASTER_SLOTS{S_WVALID & m_avalid}} & m_select_hot;
// S_WREADY is muxed from the MI slot selected by the head of the queue (m_select_enc).
assign S_WREADY = m_avalid & (|(M_WREADY & m_select_hot));
endmodule
|
module axi_crossbar_v2_1_wdata_router #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of all data signals
parameter integer C_NUM_MASTER_SLOTS = 1, // Number of M_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of S_ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_WMESG_WIDTH-1:0] S_WMESG,
input wire S_WLAST,
input wire S_WVALID,
output wire S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG, // Broadcast to all MI-slots
output wire M_WLAST, // Broadcast to all MI-slots
output wire [C_NUM_MASTER_SLOTS-1:0] M_WVALID, // Per MI-slot
input wire [C_NUM_MASTER_SLOTS-1:0] M_WREADY, // Per MI-slot
// Address Arbiter Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // Target MI-slot index from SI-side AW command
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_MASTER_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_MASTER_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
//---------------------------------------------------------------------------
// Internal signal declarations
//---------------------------------------------------------------------------
wire [C_NUM_MASTER_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
//---------------------------------------------------------------------------
// Router
//---------------------------------------------------------------------------
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (1)
)
wrouter_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// W-channel payload and LAST are broadcast to all MI-slot's W-mux
assign M_WMESG = S_WMESG;
assign M_WLAST = S_WLAST;
// Assert m_aready when last beat acknowledged by slave
assign m_aready = m_avalid & S_WVALID & S_WLAST & (|(M_WREADY & m_select_hot));
// M_WVALID is generated per MI-slot (including error handler at slot C_NUM_MASTER_SLOTS).
// The slot selected by the head of the queue (m_select_enc) is enabled.
assign M_WVALID = {C_NUM_MASTER_SLOTS{S_WVALID & m_avalid}} & m_select_hot;
// S_WREADY is muxed from the MI slot selected by the head of the queue (m_select_enc).
assign S_WREADY = m_avalid & (|(M_WREADY & m_select_hot));
endmodule
|
module axi_crossbar_v2_1_wdata_router #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of all data signals
parameter integer C_NUM_MASTER_SLOTS = 1, // Number of M_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of S_ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_WMESG_WIDTH-1:0] S_WMESG,
input wire S_WLAST,
input wire S_WVALID,
output wire S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG, // Broadcast to all MI-slots
output wire M_WLAST, // Broadcast to all MI-slots
output wire [C_NUM_MASTER_SLOTS-1:0] M_WVALID, // Per MI-slot
input wire [C_NUM_MASTER_SLOTS-1:0] M_WREADY, // Per MI-slot
// Address Arbiter Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // Target MI-slot index from SI-side AW command
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_MASTER_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_MASTER_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
//---------------------------------------------------------------------------
// Internal signal declarations
//---------------------------------------------------------------------------
wire [C_NUM_MASTER_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
//---------------------------------------------------------------------------
// Router
//---------------------------------------------------------------------------
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (1)
)
wrouter_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// W-channel payload and LAST are broadcast to all MI-slot's W-mux
assign M_WMESG = S_WMESG;
assign M_WLAST = S_WLAST;
// Assert m_aready when last beat acknowledged by slave
assign m_aready = m_avalid & S_WVALID & S_WLAST & (|(M_WREADY & m_select_hot));
// M_WVALID is generated per MI-slot (including error handler at slot C_NUM_MASTER_SLOTS).
// The slot selected by the head of the queue (m_select_enc) is enabled.
assign M_WVALID = {C_NUM_MASTER_SLOTS{S_WVALID & m_avalid}} & m_select_hot;
// S_WREADY is muxed from the MI slot selected by the head of the queue (m_select_enc).
assign S_WREADY = m_avalid & (|(M_WREADY & m_select_hot));
endmodule
|
module axi_crossbar_v2_1_wdata_router #
(
parameter C_FAMILY = "none", // FPGA Family.
parameter integer C_WMESG_WIDTH = 1, // Width of all data signals
parameter integer C_NUM_MASTER_SLOTS = 1, // Number of M_* ports.
parameter integer C_SELECT_WIDTH = 1, // Width of S_ASELECT.
parameter integer C_FIFO_DEPTH_LOG = 0 // Queue depth = 2**C_FIFO_DEPTH_LOG.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Slave Data Ports
input wire [C_WMESG_WIDTH-1:0] S_WMESG,
input wire S_WLAST,
input wire S_WVALID,
output wire S_WREADY,
// Master Data Ports
output wire [C_WMESG_WIDTH-1:0] M_WMESG, // Broadcast to all MI-slots
output wire M_WLAST, // Broadcast to all MI-slots
output wire [C_NUM_MASTER_SLOTS-1:0] M_WVALID, // Per MI-slot
input wire [C_NUM_MASTER_SLOTS-1:0] M_WREADY, // Per MI-slot
// Address Arbiter Ports
input wire [C_SELECT_WIDTH-1:0] S_ASELECT, // Target MI-slot index from SI-side AW command
input wire S_AVALID,
output wire S_AREADY
);
localparam integer P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG <= 5) ? C_FIFO_DEPTH_LOG : 5; // Max depth = 32
// Decode select input to 1-hot
function [C_NUM_MASTER_SLOTS-1:0] f_decoder (
input [C_SELECT_WIDTH-1:0] sel
);
integer i;
begin
for (i=0; i<C_NUM_MASTER_SLOTS; i=i+1) begin
f_decoder[i] = (sel == i);
end
end
endfunction
//---------------------------------------------------------------------------
// Internal signal declarations
//---------------------------------------------------------------------------
wire [C_NUM_MASTER_SLOTS-1:0] m_select_hot;
wire [C_SELECT_WIDTH-1:0] m_select_enc;
wire m_avalid;
wire m_aready;
//---------------------------------------------------------------------------
// Router
//---------------------------------------------------------------------------
// SI-side write command queue
axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (C_SELECT_WIDTH),
.C_FIFO_DEPTH_LOG (P_FIFO_DEPTH_LOG),
.C_USE_FULL (1)
)
wrouter_aw_fifo
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (S_ASELECT),
.S_VALID (S_AVALID),
.S_READY (S_AREADY),
.M_MESG (m_select_enc),
.M_VALID (m_avalid),
.M_READY (m_aready)
);
assign m_select_hot = f_decoder(m_select_enc);
// W-channel payload and LAST are broadcast to all MI-slot's W-mux
assign M_WMESG = S_WMESG;
assign M_WLAST = S_WLAST;
// Assert m_aready when last beat acknowledged by slave
assign m_aready = m_avalid & S_WVALID & S_WLAST & (|(M_WREADY & m_select_hot));
// M_WVALID is generated per MI-slot (including error handler at slot C_NUM_MASTER_SLOTS).
// The slot selected by the head of the queue (m_select_enc) is enabled.
assign M_WVALID = {C_NUM_MASTER_SLOTS{S_WVALID & m_avalid}} & m_select_hot;
// S_WREADY is muxed from the MI slot selected by the head of the queue (m_select_enc).
assign S_WREADY = m_avalid & (|(M_WREADY & m_select_hot));
endmodule
|
module cic_dec_shifter(rate,signal_in,signal_out);
parameter bw = 16;
parameter maxbitgain = 28;
input [7:0] rate;
input wire [bw+maxbitgain-1:0] signal_in;
output reg [bw-1:0] signal_out;
function [4:0] bitgain;
input [7:0] rate;
case(rate)
// Exact Cases -- N*log2(rate)
8'd4 : bitgain = 8;
8'd8 : bitgain = 12;
8'd16 : bitgain = 16;
8'd32 : bitgain = 20;
8'd64 : bitgain = 24;
8'd128 : bitgain = 28;
// Nearest without overflow -- ceil(N*log2(rate))
8'd5 : bitgain = 10;
8'd6 : bitgain = 11;
8'd7 : bitgain = 12;
8'd9 : bitgain = 13;
8'd10,8'd11 : bitgain = 14;
8'd12,8'd13 : bitgain = 15;
8'd14,8'd15 : bitgain = 16;
8'd17,8'd18,8'd19 : bitgain = 17;
8'd20,8'd21,8'd22 : bitgain = 18;
8'd23,8'd24,8'd25,8'd26 : bitgain = 19;
8'd27,8'd28,8'd29,8'd30,8'd31 : bitgain = 20;
8'd33,8'd34,8'd35,8'd36,8'd37,8'd38 : bitgain = 21;
8'd39,8'd40,8'd41,8'd42,8'd43,8'd44,8'd45 : bitgain = 22;
8'd46,8'd47,8'd48,8'd49,8'd50,8'd51,8'd52,8'd53 : bitgain = 23;
8'd54,8'd55,8'd56,8'd57,8'd58,8'd59,8'd60,8'd61,8'd62,8'd63 : bitgain = 24;
8'd65,8'd66,8'd67,8'd68,8'd69,8'd70,8'd71,8'd72,8'd73,8'd74,8'd75,8'd76 : bitgain = 25;
8'd77,8'd78,8'd79,8'd80,8'd81,8'd82,8'd83,8'd84,8'd85,8'd86,8'd87,8'd88,8'd89,8'd90 : bitgain = 26;
8'd91,8'd92,8'd93,8'd94,8'd95,8'd96,8'd97,8'd98,8'd99,8'd100,8'd101,8'd102,8'd103,8'd104,8'd105,8'd106,8'd107 : bitgain = 27;
default : bitgain = 28;
endcase // case(rate)
endfunction // bitgain
wire [4:0] shift = bitgain(rate+1);
// We should be able to do this, but can't ....
// assign signal_out = signal_in[shift+bw-1:shift];
always @*
case(shift)
5'd8 : signal_out = signal_in[8+bw-1:8];
5'd10 : signal_out = signal_in[10+bw-1:10];
5'd11 : signal_out = signal_in[11+bw-1:11];
5'd12 : signal_out = signal_in[12+bw-1:12];
5'd13 : signal_out = signal_in[13+bw-1:13];
5'd14 : signal_out = signal_in[14+bw-1:14];
5'd15 : signal_out = signal_in[15+bw-1:15];
5'd16 : signal_out = signal_in[16+bw-1:16];
5'd17 : signal_out = signal_in[17+bw-1:17];
5'd18 : signal_out = signal_in[18+bw-1:18];
5'd19 : signal_out = signal_in[19+bw-1:19];
5'd20 : signal_out = signal_in[20+bw-1:20];
5'd21 : signal_out = signal_in[21+bw-1:21];
5'd22 : signal_out = signal_in[22+bw-1:22];
5'd23 : signal_out = signal_in[23+bw-1:23];
5'd24 : signal_out = signal_in[24+bw-1:24];
5'd25 : signal_out = signal_in[25+bw-1:25];
5'd26 : signal_out = signal_in[26+bw-1:26];
5'd27 : signal_out = signal_in[27+bw-1:27];
5'd28 : signal_out = signal_in[28+bw-1:28];
default : signal_out = signal_in[28+bw-1:28];
endcase // case(shift)
endmodule
|
module cic_dec_shifter(rate,signal_in,signal_out);
parameter bw = 16;
parameter maxbitgain = 28;
input [7:0] rate;
input wire [bw+maxbitgain-1:0] signal_in;
output reg [bw-1:0] signal_out;
function [4:0] bitgain;
input [7:0] rate;
case(rate)
// Exact Cases -- N*log2(rate)
8'd4 : bitgain = 8;
8'd8 : bitgain = 12;
8'd16 : bitgain = 16;
8'd32 : bitgain = 20;
8'd64 : bitgain = 24;
8'd128 : bitgain = 28;
// Nearest without overflow -- ceil(N*log2(rate))
8'd5 : bitgain = 10;
8'd6 : bitgain = 11;
8'd7 : bitgain = 12;
8'd9 : bitgain = 13;
8'd10,8'd11 : bitgain = 14;
8'd12,8'd13 : bitgain = 15;
8'd14,8'd15 : bitgain = 16;
8'd17,8'd18,8'd19 : bitgain = 17;
8'd20,8'd21,8'd22 : bitgain = 18;
8'd23,8'd24,8'd25,8'd26 : bitgain = 19;
8'd27,8'd28,8'd29,8'd30,8'd31 : bitgain = 20;
8'd33,8'd34,8'd35,8'd36,8'd37,8'd38 : bitgain = 21;
8'd39,8'd40,8'd41,8'd42,8'd43,8'd44,8'd45 : bitgain = 22;
8'd46,8'd47,8'd48,8'd49,8'd50,8'd51,8'd52,8'd53 : bitgain = 23;
8'd54,8'd55,8'd56,8'd57,8'd58,8'd59,8'd60,8'd61,8'd62,8'd63 : bitgain = 24;
8'd65,8'd66,8'd67,8'd68,8'd69,8'd70,8'd71,8'd72,8'd73,8'd74,8'd75,8'd76 : bitgain = 25;
8'd77,8'd78,8'd79,8'd80,8'd81,8'd82,8'd83,8'd84,8'd85,8'd86,8'd87,8'd88,8'd89,8'd90 : bitgain = 26;
8'd91,8'd92,8'd93,8'd94,8'd95,8'd96,8'd97,8'd98,8'd99,8'd100,8'd101,8'd102,8'd103,8'd104,8'd105,8'd106,8'd107 : bitgain = 27;
default : bitgain = 28;
endcase // case(rate)
endfunction // bitgain
wire [4:0] shift = bitgain(rate+1);
// We should be able to do this, but can't ....
// assign signal_out = signal_in[shift+bw-1:shift];
always @*
case(shift)
5'd8 : signal_out = signal_in[8+bw-1:8];
5'd10 : signal_out = signal_in[10+bw-1:10];
5'd11 : signal_out = signal_in[11+bw-1:11];
5'd12 : signal_out = signal_in[12+bw-1:12];
5'd13 : signal_out = signal_in[13+bw-1:13];
5'd14 : signal_out = signal_in[14+bw-1:14];
5'd15 : signal_out = signal_in[15+bw-1:15];
5'd16 : signal_out = signal_in[16+bw-1:16];
5'd17 : signal_out = signal_in[17+bw-1:17];
5'd18 : signal_out = signal_in[18+bw-1:18];
5'd19 : signal_out = signal_in[19+bw-1:19];
5'd20 : signal_out = signal_in[20+bw-1:20];
5'd21 : signal_out = signal_in[21+bw-1:21];
5'd22 : signal_out = signal_in[22+bw-1:22];
5'd23 : signal_out = signal_in[23+bw-1:23];
5'd24 : signal_out = signal_in[24+bw-1:24];
5'd25 : signal_out = signal_in[25+bw-1:25];
5'd26 : signal_out = signal_in[26+bw-1:26];
5'd27 : signal_out = signal_in[27+bw-1:27];
5'd28 : signal_out = signal_in[28+bw-1:28];
default : signal_out = signal_in[28+bw-1:28];
endcase // case(shift)
endmodule
|
module mac (input clock, input reset, input enable, input clear,
input signed [15:0] x, input signed [15:0] y,
input [7:0] shift, output [15:0] z );
reg signed [30:0] product;
reg signed [39:0] z_int;
reg signed [15:0] z_shift;
reg enable_d1;
always @(posedge clock)
enable_d1 <= #1 enable;
always @(posedge clock)
if(reset | clear)
z_int <= #1 40'd0;
else if(enable_d1)
z_int <= #1 z_int + {{9{product[30]}},product};
always @(posedge clock)
product <= #1 x*y;
always @* // FIXME full case? parallel case?
case(shift)
//8'd0 : z_shift <= z_int[39:24];
//8'd1 : z_shift <= z_int[38:23];
//8'd2 : z_shift <= z_int[37:22];
//8'd3 : z_shift <= z_int[36:21];
//8'd4 : z_shift <= z_int[35:20];
//8'd5 : z_shift <= z_int[34:19];
8'd6 : z_shift <= z_int[33:18];
8'd7 : z_shift <= z_int[32:17];
8'd8 : z_shift <= z_int[31:16];
8'd9 : z_shift <= z_int[30:15];
8'd10 : z_shift <= z_int[29:14];
8'd11 : z_shift <= z_int[28:13];
//8'd12 : z_shift <= z_int[27:12];
//8'd13 : z_shift <= z_int[26:11];
//8'd14 : z_shift <= z_int[25:10];
//8'd15 : z_shift <= z_int[24:9];
//8'd16 : z_shift <= z_int[23:8];
//8'd17 : z_shift <= z_int[22:7];
//8'd18 : z_shift <= z_int[21:6];
//8'd19 : z_shift <= z_int[20:5];
//8'd20 : z_shift <= z_int[19:4];
//8'd21 : z_shift <= z_int[18:3];
//8'd22 : z_shift <= z_int[17:2];
//8'd23 : z_shift <= z_int[16:1];
//8'd24 : z_shift <= z_int[15:0];
default : z_shift <= z_int[15:0];
endcase // case(shift)
// FIXME do we need to saturate?
//assign z = z_shift;
assign z = z_int[15:0];
endmodule
|
module dpram(wclk,wdata,waddr,wen,rclk,rdata,raddr);
parameter depth = 4;
parameter width = 16;
parameter size = 16;
input wclk;
input [width-1:0] wdata;
input [depth-1:0] waddr;
input wen;
input rclk;
output reg [width-1:0] rdata;
input [depth-1:0] raddr;
reg [width-1:0] ram [0:size-1];
always @(posedge wclk)
if(wen)
ram[waddr] <= #1 wdata;
always @(posedge rclk)
rdata <= #1 ram[raddr];
endmodule
|
module dpram(wclk,wdata,waddr,wen,rclk,rdata,raddr);
parameter depth = 4;
parameter width = 16;
parameter size = 16;
input wclk;
input [width-1:0] wdata;
input [depth-1:0] waddr;
input wen;
input rclk;
output reg [width-1:0] rdata;
input [depth-1:0] raddr;
reg [width-1:0] ram [0:size-1];
always @(posedge wclk)
if(wen)
ram[waddr] <= #1 wdata;
always @(posedge rclk)
rdata <= #1 ram[raddr];
endmodule
|
module dpram(wclk,wdata,waddr,wen,rclk,rdata,raddr);
parameter depth = 4;
parameter width = 16;
parameter size = 16;
input wclk;
input [width-1:0] wdata;
input [depth-1:0] waddr;
input wen;
input rclk;
output reg [width-1:0] rdata;
input [depth-1:0] raddr;
reg [width-1:0] ram [0:size-1];
always @(posedge wclk)
if(wen)
ram[waddr] <= #1 wdata;
always @(posedge rclk)
rdata <= #1 ram[raddr];
endmodule
|
module dpram(wclk,wdata,waddr,wen,rclk,rdata,raddr);
parameter depth = 4;
parameter width = 16;
parameter size = 16;
input wclk;
input [width-1:0] wdata;
input [depth-1:0] waddr;
input wen;
input rclk;
output reg [width-1:0] rdata;
input [depth-1:0] raddr;
reg [width-1:0] ram [0:size-1];
always @(posedge wclk)
if(wen)
ram[waddr] <= #1 wdata;
always @(posedge rclk)
rdata <= #1 ram[raddr];
endmodule
|
module dpram(wclk,wdata,waddr,wen,rclk,rdata,raddr);
parameter depth = 4;
parameter width = 16;
parameter size = 16;
input wclk;
input [width-1:0] wdata;
input [depth-1:0] waddr;
input wen;
input rclk;
output reg [width-1:0] rdata;
input [depth-1:0] raddr;
reg [width-1:0] ram [0:size-1];
always @(posedge wclk)
if(wen)
ram[waddr] <= #1 wdata;
always @(posedge rclk)
rdata <= #1 ram[raddr];
endmodule
|
module mylpm_addsub (
add_sub,
dataa,
datab,
clock,
result);
input add_sub;
input [15:0] dataa;
input [15:0] datab;
input clock;
output [15:0] result;
endmodule
|
module clk_doubler (
inclk0,
c0);
input inclk0;
output c0;
wire [5:0] sub_wire0;
wire [0:0] sub_wire4 = 1'h0;
wire [0:0] sub_wire1 = sub_wire0[0:0];
wire c0 = sub_wire1;
wire sub_wire2 = inclk0;
wire [1:0] sub_wire3 = {sub_wire4, sub_wire2};
altpll altpll_component (
.inclk (sub_wire3),
.clk (sub_wire0)
// synopsys translate_off
,
.activeclock (),
.areset (),
.clkbad (),
.clkena (),
.clkloss (),
.clkswitch (),
.enable0 (),
.enable1 (),
.extclk (),
.extclkena (),
.fbin (),
.locked (),
.pfdena (),
.pllena (),
.scanaclr (),
.scanclk (),
.scandata (),
.scandataout (),
.scandone (),
.scanread (),
.scanwrite (),
.sclkout0 (),
.sclkout1 ()
// synopsys translate_on
);
defparam
altpll_component.clk0_duty_cycle = 50,
altpll_component.lpm_type = "altpll",
altpll_component.clk0_multiply_by = 2,
altpll_component.inclk0_input_frequency = 15625,
altpll_component.clk0_divide_by = 1,
altpll_component.pll_type = "AUTO",
altpll_component.intended_device_family = "Cyclone",
altpll_component.operation_mode = "NORMAL",
altpll_component.compensate_clock = "CLK0",
altpll_component.clk0_phase_shift = "0";
endmodule
|
module fifo_2k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [10:0] rdusedw;
output wrfull;
output [10:0] wrusedw;
endmodule
|
module fifo_4k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
endmodule
|
module fifo_4k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
endmodule
|
module fifo_4k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
endmodule
|
module fifo_4k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
endmodule
|
module fifo_4k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
endmodule
|
module fifo_4k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
endmodule
|
module fifo_4k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
endmodule
|
module fifo_4k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
endmodule
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.