module_content
stringlengths
18
1.05M
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module e0 (x, y); input [31:0] x; output [31:0] y; assign y = {x[1:0],x[31:2]} ^ {x[12:0],x[31:13]} ^ {x[21:0],x[31:22]}; endmodule
module e1 (x, y); input [31:0] x; output [31:0] y; assign y = {x[5:0],x[31:6]} ^ {x[10:0],x[31:11]} ^ {x[24:0],x[31:25]}; endmodule
module ch (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = z ^ (x & (y ^ z)); endmodule
module maj (x, y, z, o); input [31:0] x, y, z; output [31:0] o; assign o = (x & y) | (z & (x | y)); endmodule
module s0 (x, y); input [31:0] x; output [31:0] y; assign y[31:29] = x[6:4] ^ x[17:15]; assign y[28:0] = {x[3:0], x[31:7]} ^ {x[14:0],x[31:18]} ^ x[31:3]; endmodule
module s1 (x, y); input [31:0] x; output [31:0] y; assign y[31:22] = x[16:7] ^ x[18:9]; assign y[21:0] = {x[6:0],x[31:17]} ^ {x[8:0],x[31:19]} ^ x[31:10]; endmodule
module input wire load_a_i, input wire load_b_i, input wire [EW-1:0] Data_A_i, input wire [EW-1:0] Data_B_i, input wire Add_Subt_i, ///////////////////////////////////////////////////////////////////77 output wire [EW-1:0] Data_Result_o, output wire Overflow_flag_o, output wire Underflow_flag_o ); //wire [EW-1:0] Data_B; wire [EW:0] Data_S; /////////////////////////////////////////7 //genvar j; //for (j=0; j<EW; j=j+1)begin // assign Data_B[j] = PreData_B_i[j] ^ Add_Subt_i; //end ///////////////////////////////////////// add_sub_carry_out #(.W(EW)) exp_add_subt( .op_mode (Add_Subt_i), .Data_A (Data_A_i), .Data_B (Data_B_i), .Data_S (Data_S) ); //assign Overflow_flag_o = 1'b0; //assign Underflow_flag_o = 1'b0; Comparators #(.W_Exp(EW+1)) array_comparators( .exp(Data_S), .overflow(Overflow_flag), .underflow(Underflow_flag) ); RegisterAdd #(.W(EW)) exp_result( .clk (clk), .rst (rst), .load (load_a_i), .D (Data_S[EW-1:0]), .Q (Data_Result_o) ); RegisterAdd #(.W(1)) Overflow ( .clk(clk), .rst(rst), .load(load_a_i), .D(Overflow_flag), .Q(Overflow_flag_o) ); RegisterAdd #(.W(1)) Underflow ( .clk(clk), .rst(rst), .load(load_b_i), .D(Underflow_flag), .Q(Underflow_flag_o) ); endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module vga ( // Wishbone signals input wb_clk_i, // 25 Mhz VDU clock input wb_rst_i, input [15:0] wb_dat_i, output [15:0] wb_dat_o, input [16:1] wb_adr_i, input wb_we_i, input wb_tga_i, input [ 1:0] wb_sel_i, input wb_stb_i, input wb_cyc_i, output wb_ack_o, // VGA pad signals output [ 3:0] vga_red_o, output [ 3:0] vga_green_o, output [ 3:0] vga_blue_o, output horiz_sync, output vert_sync, // CSR SRAM master interface output [17:1] csrm_adr_o, output [ 1:0] csrm_sel_o, output csrm_we_o, output [15:0] csrm_dat_o, input [15:0] csrm_dat_i ); // Registers and nets // // csr address reg [17:1] csr_adr_i; reg csr_stb_i; // Config wires wire [15:0] conf_wb_dat_o; wire conf_wb_ack_o; // Mem wires wire [15:0] mem_wb_dat_o; wire mem_wb_ack_o; // LCD wires wire [17:1] csr_adr_o; wire [15:0] csr_dat_i; wire csr_stb_o; wire v_retrace; wire vh_retrace; wire w_vert_sync; // VGA configuration registers wire shift_reg1; wire graphics_alpha; wire memory_mapping1; wire [ 1:0] write_mode; wire [ 1:0] raster_op; wire read_mode; wire [ 7:0] bitmask; wire [ 3:0] set_reset; wire [ 3:0] enable_set_reset; wire [ 3:0] map_mask; wire x_dotclockdiv2; wire chain_four; wire [ 1:0] read_map_select; wire [ 3:0] color_compare; wire [ 3:0] color_dont_care; // Wishbone master to SRAM wire [17:1] wbm_adr_o; wire [ 1:0] wbm_sel_o; wire wbm_we_o; wire [15:0] wbm_dat_o; wire [15:0] wbm_dat_i; wire wbm_stb_o; wire wbm_ack_i; wire stb; // CRT wires wire [ 5:0] cur_start; wire [ 5:0] cur_end; wire [15:0] start_addr; wire [ 4:0] vcursor; wire [ 6:0] hcursor; wire [ 6:0] horiz_total; wire [ 6:0] end_horiz; wire [ 6:0] st_hor_retr; wire [ 4:0] end_hor_retr; wire [ 9:0] vert_total; wire [ 9:0] end_vert; wire [ 9:0] st_ver_retr; wire [ 3:0] end_ver_retr; // attribute_ctrl wires wire [3:0] pal_addr; wire pal_we; wire [7:0] pal_read; wire [7:0] pal_write; // dac_regs wires wire dac_we; wire [1:0] dac_read_data_cycle; wire [7:0] dac_read_data_register; wire [3:0] dac_read_data; wire [1:0] dac_write_data_cycle; wire [7:0] dac_write_data_register; wire [3:0] dac_write_data; // Module instances // vga_config_iface config_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wb_dat_i (wb_dat_i), .wb_dat_o (conf_wb_dat_o), .wb_adr_i (wb_adr_i[4:1]), .wb_we_i (wb_we_i), .wb_sel_i (wb_sel_i), .wb_stb_i (stb & wb_tga_i), .wb_ack_o (conf_wb_ack_o), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .x_dotclockdiv2 (x_dotclockdiv2), .chain_four (chain_four), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .cur_start (cur_start), .cur_end (cur_end), .start_addr (start_addr), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_lcd lcd ( .clk (wb_clk_i), .rst (wb_rst_i), .shift_reg1 (shift_reg1), .graphics_alpha (graphics_alpha), .pal_addr (pal_addr), .pal_we (pal_we), .pal_read (pal_read), .pal_write (pal_write), .dac_we (dac_we), .dac_read_data_cycle (dac_read_data_cycle), .dac_read_data_register (dac_read_data_register), .dac_read_data (dac_read_data), .dac_write_data_cycle (dac_write_data_cycle), .dac_write_data_register (dac_write_data_register), .dac_write_data (dac_write_data), .csr_adr_o (csr_adr_o), .csr_dat_i (csr_dat_i), .csr_stb_o (csr_stb_o), .vga_red_o (vga_red_o), .vga_green_o (vga_green_o), .vga_blue_o (vga_blue_o), .horiz_sync (horiz_sync), .vert_sync (w_vert_sync), .cur_start (cur_start), .cur_end (cur_end), .vcursor (vcursor), .hcursor (hcursor), .horiz_total (horiz_total), .end_horiz (end_horiz), .st_hor_retr (st_hor_retr), .end_hor_retr (end_hor_retr), .vert_total (vert_total), .end_vert (end_vert), .st_ver_retr (st_ver_retr), .end_ver_retr (end_ver_retr), .x_dotclockdiv2 (x_dotclockdiv2), .v_retrace (v_retrace), .vh_retrace (vh_retrace) ); vga_cpu_mem_iface cpu_mem_iface ( .wb_clk_i (wb_clk_i), .wb_rst_i (wb_rst_i), .wbs_adr_i (wb_adr_i), .wbs_sel_i (wb_sel_i), .wbs_we_i (wb_we_i), .wbs_dat_i (wb_dat_i), .wbs_dat_o (mem_wb_dat_o), .wbs_stb_i (stb & !wb_tga_i), .wbs_ack_o (mem_wb_ack_o), .wbm_adr_o (wbm_adr_o), .wbm_sel_o (wbm_sel_o), .wbm_we_o (wbm_we_o), .wbm_dat_o (wbm_dat_o), .wbm_dat_i (wbm_dat_i), .wbm_stb_o (wbm_stb_o), .wbm_ack_i (wbm_ack_i), .chain_four (chain_four), .memory_mapping1 (memory_mapping1), .write_mode (write_mode), .raster_op (raster_op), .read_mode (read_mode), .bitmask (bitmask), .set_reset (set_reset), .enable_set_reset (enable_set_reset), .map_mask (map_mask), .read_map_select (read_map_select), .color_compare (color_compare), .color_dont_care (color_dont_care) ); vga_mem_arbitrer mem_arbitrer ( .clk_i (wb_clk_i), .rst_i (wb_rst_i), .wb_adr_i (wbm_adr_o), .wb_sel_i (wbm_sel_o), .wb_we_i (wbm_we_o), .wb_dat_i (wbm_dat_o), .wb_dat_o (wbm_dat_i), .wb_stb_i (wbm_stb_o), .wb_ack_o (wbm_ack_i), .csr_adr_i (csr_adr_i), .csr_dat_o (csr_dat_i), .csr_stb_i (csr_stb_i), .csrm_adr_o (csrm_adr_o), .csrm_sel_o (csrm_sel_o), .csrm_we_o (csrm_we_o), .csrm_dat_o (csrm_dat_o), .csrm_dat_i (csrm_dat_i) ); // Continous assignments assign wb_dat_o = wb_tga_i ? conf_wb_dat_o : mem_wb_dat_o; assign wb_ack_o = wb_tga_i ? conf_wb_ack_o : mem_wb_ack_o; assign stb = wb_stb_i & wb_cyc_i; assign vert_sync = ~graphics_alpha ^ w_vert_sync; // Behaviour // csr_adr_i always @(posedge wb_clk_i) csr_adr_i <= wb_rst_i ? 17'h0 : csr_adr_o + start_addr[15:1]; // csr_stb_i always @(posedge wb_clk_i) csr_stb_i <= wb_rst_i ? 1'b0 : csr_stb_o; endmodule
module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, step, dir); parameter W=10; parameter F=11; parameter T=4; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; input [15:0] din; reg Spolarity; reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout; wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}}; wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir; wire [W+F-1:0] pos0, pos1, pos2, pos3; reg [F:0] vel0, vel1, vel2, vel3; reg [T-1:0] dirtime, steptime; reg [1:0] tap; reg [10:0] div2048; wire stepcnt = ~|(div2048[5:0]); always @(posedge clk) begin div2048 <= div2048 + 1'd1; end wire do_enable_wdt, do_tristate; wdt w(clk, do_enable_wdt, &div2048, do_tristate); stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap); stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap); stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap); stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; wire[15:0] EPP_dataword = {EPP_datain, lowbyte}; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) vel0 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[5:0], lowbyte }; end else if(addr_reg[3:0] == 4'd11) begin tap <= lowbyte[7:6]; steptime <= lowbyte[T-1:0]; Spolarity <= EPP_datain[7]; // EPP_datain[6] is do_enable_wdt dirtime <= EPP_datain[T-1:0]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= pos0; else if(addr_reg[4:2] == 3'd1) data_buf <= pos1; else if(addr_reg[4:2] == 3'd2) data_buf <= pos2; else if(addr_reg[4:2] == 3'd3) data_buf <= pos3; else if(addr_reg[4:2] == 3'd4) data_buf <= din; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; // assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; // assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]); assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]); assign nConfig = epp_nReset; // 1'b1; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; endmodule
module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, step, dir); parameter W=10; parameter F=11; parameter T=4; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; input [15:0] din; reg Spolarity; reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout; wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}}; wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir; wire [W+F-1:0] pos0, pos1, pos2, pos3; reg [F:0] vel0, vel1, vel2, vel3; reg [T-1:0] dirtime, steptime; reg [1:0] tap; reg [10:0] div2048; wire stepcnt = ~|(div2048[5:0]); always @(posedge clk) begin div2048 <= div2048 + 1'd1; end wire do_enable_wdt, do_tristate; wdt w(clk, do_enable_wdt, &div2048, do_tristate); stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap); stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap); stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap); stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; wire[15:0] EPP_dataword = {EPP_datain, lowbyte}; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) vel0 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[5:0], lowbyte }; end else if(addr_reg[3:0] == 4'd11) begin tap <= lowbyte[7:6]; steptime <= lowbyte[T-1:0]; Spolarity <= EPP_datain[7]; // EPP_datain[6] is do_enable_wdt dirtime <= EPP_datain[T-1:0]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= pos0; else if(addr_reg[4:2] == 3'd1) data_buf <= pos1; else if(addr_reg[4:2] == 3'd2) data_buf <= pos2; else if(addr_reg[4:2] == 3'd3) data_buf <= pos3; else if(addr_reg[4:2] == 3'd4) data_buf <= din; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; // assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; // assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]); assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]); assign nConfig = epp_nReset; // 1'b1; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; endmodule
module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, step, dir); parameter W=10; parameter F=11; parameter T=4; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; input [15:0] din; reg Spolarity; reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout; wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}}; wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir; wire [W+F-1:0] pos0, pos1, pos2, pos3; reg [F:0] vel0, vel1, vel2, vel3; reg [T-1:0] dirtime, steptime; reg [1:0] tap; reg [10:0] div2048; wire stepcnt = ~|(div2048[5:0]); always @(posedge clk) begin div2048 <= div2048 + 1'd1; end wire do_enable_wdt, do_tristate; wdt w(clk, do_enable_wdt, &div2048, do_tristate); stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap); stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap); stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap); stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; wire[15:0] EPP_dataword = {EPP_datain, lowbyte}; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) vel0 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[5:0], lowbyte }; end else if(addr_reg[3:0] == 4'd11) begin tap <= lowbyte[7:6]; steptime <= lowbyte[T-1:0]; Spolarity <= EPP_datain[7]; // EPP_datain[6] is do_enable_wdt dirtime <= EPP_datain[T-1:0]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= pos0; else if(addr_reg[4:2] == 3'd1) data_buf <= pos1; else if(addr_reg[4:2] == 3'd2) data_buf <= pos2; else if(addr_reg[4:2] == 3'd3) data_buf <= pos3; else if(addr_reg[4:2] == 3'd4) data_buf <= din; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; // assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; // assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]); assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]); assign nConfig = epp_nReset; // 1'b1; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; endmodule
module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, step, dir); parameter W=10; parameter F=11; parameter T=4; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; input [15:0] din; reg Spolarity; reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout; wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}}; wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir; wire [W+F-1:0] pos0, pos1, pos2, pos3; reg [F:0] vel0, vel1, vel2, vel3; reg [T-1:0] dirtime, steptime; reg [1:0] tap; reg [10:0] div2048; wire stepcnt = ~|(div2048[5:0]); always @(posedge clk) begin div2048 <= div2048 + 1'd1; end wire do_enable_wdt, do_tristate; wdt w(clk, do_enable_wdt, &div2048, do_tristate); stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap); stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap); stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap); stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; wire[15:0] EPP_dataword = {EPP_datain, lowbyte}; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) vel0 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[5:0], lowbyte }; end else if(addr_reg[3:0] == 4'd11) begin tap <= lowbyte[7:6]; steptime <= lowbyte[T-1:0]; Spolarity <= EPP_datain[7]; // EPP_datain[6] is do_enable_wdt dirtime <= EPP_datain[T-1:0]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= pos0; else if(addr_reg[4:2] == 3'd1) data_buf <= pos1; else if(addr_reg[4:2] == 3'd2) data_buf <= pos2; else if(addr_reg[4:2] == 3'd3) data_buf <= pos3; else if(addr_reg[4:2] == 3'd4) data_buf <= din; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; // assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; // assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]); assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]); assign nConfig = epp_nReset; // 1'b1; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; endmodule
module main(clk, led, nConfig, epp_nReset, pport_data, nWrite, nWait, nDataStr, nAddrStr, dout, din, step, dir); parameter W=10; parameter F=11; parameter T=4; input clk; output led, nConfig; inout [7:0] pport_data; input nWrite; output nWait; input nDataStr, nAddrStr, epp_nReset; input [15:0] din; reg Spolarity; reg[13:0] real_dout; output [13:0] dout = do_tristate ? 14'bZ : real_dout; wire[3:0] real_step; output [3:0] step = do_tristate ? 4'bZ : real_step ^ {4{Spolarity}}; wire[3:0] real_dir; output [3:0] dir = do_tristate ? 4'bZ : real_dir; wire [W+F-1:0] pos0, pos1, pos2, pos3; reg [F:0] vel0, vel1, vel2, vel3; reg [T-1:0] dirtime, steptime; reg [1:0] tap; reg [10:0] div2048; wire stepcnt = ~|(div2048[5:0]); always @(posedge clk) begin div2048 <= div2048 + 1'd1; end wire do_enable_wdt, do_tristate; wdt w(clk, do_enable_wdt, &div2048, do_tristate); stepgen #(W,F,T) s0(clk, stepcnt, pos0, vel0, dirtime, steptime, real_step[0], real_dir[0], tap); stepgen #(W,F,T) s1(clk, stepcnt, pos1, vel1, dirtime, steptime, real_step[1], real_dir[1], tap); stepgen #(W,F,T) s2(clk, stepcnt, pos2, vel2, dirtime, steptime, real_step[2], real_dir[2], tap); stepgen #(W,F,T) s3(clk, stepcnt, pos3, vel3, dirtime, steptime, real_step[3], real_dir[3], tap); // EPP stuff wire EPP_write = ~nWrite; wire EPP_read = nWrite; wire EPP_addr_strobe = ~nAddrStr; wire EPP_data_strobe = ~nDataStr; wire EPP_strobe = EPP_data_strobe | EPP_addr_strobe; wire EPP_wait; assign nWait = ~EPP_wait; wire [7:0] EPP_datain = pport_data; wire [7:0] EPP_dataout; assign pport_data = EPP_dataout; reg [4:0] EPP_strobe_reg; always @(posedge clk) EPP_strobe_reg <= {EPP_strobe_reg[3:0], EPP_strobe}; wire EPP_strobe_edge1 = (EPP_strobe_reg[2:1]==2'b01); // reg led; assign EPP_wait = EPP_strobe_reg[4]; wire[15:0] EPP_dataword = {EPP_datain, lowbyte}; reg[4:0] addr_reg; reg[7:0] lowbyte; always @(posedge clk) if(EPP_strobe_edge1 & EPP_write & EPP_addr_strobe) begin addr_reg <= EPP_datain[4:0]; end else if(EPP_strobe_edge1 & !EPP_addr_strobe) addr_reg <= addr_reg + 4'd1; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_write & EPP_data_strobe) begin if(addr_reg[3:0] == 4'd1) vel0 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd3) vel1 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd5) vel2 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd7) vel3 <= EPP_dataword[F:0]; else if(addr_reg[3:0] == 4'd9) begin real_dout <= { EPP_datain[5:0], lowbyte }; end else if(addr_reg[3:0] == 4'd11) begin tap <= lowbyte[7:6]; steptime <= lowbyte[T-1:0]; Spolarity <= EPP_datain[7]; // EPP_datain[6] is do_enable_wdt dirtime <= EPP_datain[T-1:0]; end else lowbyte <= EPP_datain; end end reg [31:0] data_buf; always @(posedge clk) begin if(EPP_strobe_edge1 & EPP_read && addr_reg[1:0] == 2'd0) begin if(addr_reg[4:2] == 3'd0) data_buf <= pos0; else if(addr_reg[4:2] == 3'd1) data_buf <= pos1; else if(addr_reg[4:2] == 3'd2) data_buf <= pos2; else if(addr_reg[4:2] == 3'd3) data_buf <= pos3; else if(addr_reg[4:2] == 3'd4) data_buf <= din; end end // the addr_reg test looks funny because it is auto-incremented in an always // block so "1" reads the low byte, "2 and "3" read middle bytes, and "0" // reads the high byte I have a feeling that I'm doing this in the wrong way. wire [7:0] data_reg = addr_reg[1:0] == 2'd1 ? data_buf[7:0] : (addr_reg[1:0] == 2'd2 ? data_buf[15:8] : (addr_reg[1:0] == 2'd3 ? data_buf[23:16] : data_buf[31:24])); wire [7:0] EPP_data_mux = data_reg; assign EPP_dataout = (EPP_read & EPP_wait) ? EPP_data_mux : 8'hZZ; // assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; // assign led = do_tristate ? 1'BZ : (real_step[0] ^ real_dir[0]); assign led = do_tristate ? 1'bZ : (real_step[0] ^ real_dir[0]); assign nConfig = epp_nReset; // 1'b1; assign do_enable_wdt = EPP_strobe_edge1 & EPP_write & EPP_data_strobe & (addr_reg[3:0] == 4'd9) & EPP_datain[6]; endmodule
module ddc(input clock, input reset, input enable, input [3:0] rate1, input [3:0] rate2, output strobe, input [31:0] freq, input [15:0] i_in, input [15:0] q_in, output [15:0] i_out, output [15:0] q_out ); parameter bw = 16; parameter zw = 16; wire [15:0] i_cordic_out, q_cordic_out; wire [31:0] phase; wire strobe1, strobe2; reg [3:0] strobe_ctr1,strobe_ctr2; always @(posedge clock) if(reset | ~enable) strobe_ctr2 <= #1 4'd0; else if(strobe2) strobe_ctr2 <= #1 4'd0; else strobe_ctr2 <= #1 strobe_ctr2 + 4'd1; always @(posedge clock) if(reset | ~enable) strobe_ctr1 <= #1 4'd0; else if(strobe1) strobe_ctr1 <= #1 4'd0; else if(strobe2) strobe_ctr1 <= #1 strobe_ctr1 + 4'd1; assign strobe2 = enable & ( strobe_ctr2 == rate2 ); assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 ); assign strobe = strobe1; function [2:0] log_ceil; input [3:0] val; log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1; endfunction wire [2:0] shift1 = log_ceil(rate1); wire [2:0] shift2 = log_ceil(rate2); cordic #(.bitwidth(bw),.zwidth(zw),.stages(16)) cordic(.clock(clock), .reset(reset), .enable(enable), .xi(i_in), .yi(q_in), .zi(phase[31:32-zw]), .xo(i_cordic_out), .yo(q_cordic_out), .zo() ); cic_decim_2stage #(.bw(bw),.N(4)) decim_i(.clock(clock),.reset(reset),.enable(enable), .strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1), .signal_in(i_cordic_out),.signal_out(i_out)); cic_decim_2stage #(.bw(bw),.N(4)) decim_q(.clock(clock),.reset(reset),.enable(enable), .strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1), .signal_in(q_cordic_out),.signal_out(q_out)); phase_acc #(.resolution(32)) nco (.clk(clock),.reset(reset),.enable(enable), .freq(freq),.phase(phase)); endmodule
module ddc(input clock, input reset, input enable, input [3:0] rate1, input [3:0] rate2, output strobe, input [31:0] freq, input [15:0] i_in, input [15:0] q_in, output [15:0] i_out, output [15:0] q_out ); parameter bw = 16; parameter zw = 16; wire [15:0] i_cordic_out, q_cordic_out; wire [31:0] phase; wire strobe1, strobe2; reg [3:0] strobe_ctr1,strobe_ctr2; always @(posedge clock) if(reset | ~enable) strobe_ctr2 <= #1 4'd0; else if(strobe2) strobe_ctr2 <= #1 4'd0; else strobe_ctr2 <= #1 strobe_ctr2 + 4'd1; always @(posedge clock) if(reset | ~enable) strobe_ctr1 <= #1 4'd0; else if(strobe1) strobe_ctr1 <= #1 4'd0; else if(strobe2) strobe_ctr1 <= #1 strobe_ctr1 + 4'd1; assign strobe2 = enable & ( strobe_ctr2 == rate2 ); assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 ); assign strobe = strobe1; function [2:0] log_ceil; input [3:0] val; log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1; endfunction wire [2:0] shift1 = log_ceil(rate1); wire [2:0] shift2 = log_ceil(rate2); cordic #(.bitwidth(bw),.zwidth(zw),.stages(16)) cordic(.clock(clock), .reset(reset), .enable(enable), .xi(i_in), .yi(q_in), .zi(phase[31:32-zw]), .xo(i_cordic_out), .yo(q_cordic_out), .zo() ); cic_decim_2stage #(.bw(bw),.N(4)) decim_i(.clock(clock),.reset(reset),.enable(enable), .strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1), .signal_in(i_cordic_out),.signal_out(i_out)); cic_decim_2stage #(.bw(bw),.N(4)) decim_q(.clock(clock),.reset(reset),.enable(enable), .strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1), .signal_in(q_cordic_out),.signal_out(q_out)); phase_acc #(.resolution(32)) nco (.clk(clock),.reset(reset),.enable(enable), .freq(freq),.phase(phase)); endmodule
module ddc(input clock, input reset, input enable, input [3:0] rate1, input [3:0] rate2, output strobe, input [31:0] freq, input [15:0] i_in, input [15:0] q_in, output [15:0] i_out, output [15:0] q_out ); parameter bw = 16; parameter zw = 16; wire [15:0] i_cordic_out, q_cordic_out; wire [31:0] phase; wire strobe1, strobe2; reg [3:0] strobe_ctr1,strobe_ctr2; always @(posedge clock) if(reset | ~enable) strobe_ctr2 <= #1 4'd0; else if(strobe2) strobe_ctr2 <= #1 4'd0; else strobe_ctr2 <= #1 strobe_ctr2 + 4'd1; always @(posedge clock) if(reset | ~enable) strobe_ctr1 <= #1 4'd0; else if(strobe1) strobe_ctr1 <= #1 4'd0; else if(strobe2) strobe_ctr1 <= #1 strobe_ctr1 + 4'd1; assign strobe2 = enable & ( strobe_ctr2 == rate2 ); assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 ); assign strobe = strobe1; function [2:0] log_ceil; input [3:0] val; log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1; endfunction wire [2:0] shift1 = log_ceil(rate1); wire [2:0] shift2 = log_ceil(rate2); cordic #(.bitwidth(bw),.zwidth(zw),.stages(16)) cordic(.clock(clock), .reset(reset), .enable(enable), .xi(i_in), .yi(q_in), .zi(phase[31:32-zw]), .xo(i_cordic_out), .yo(q_cordic_out), .zo() ); cic_decim_2stage #(.bw(bw),.N(4)) decim_i(.clock(clock),.reset(reset),.enable(enable), .strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1), .signal_in(i_cordic_out),.signal_out(i_out)); cic_decim_2stage #(.bw(bw),.N(4)) decim_q(.clock(clock),.reset(reset),.enable(enable), .strobe1(1'b1),.strobe2(strobe2),.strobe3(strobe1),.shift1(shift2),.shift2(shift1), .signal_in(q_cordic_out),.signal_out(q_out)); phase_acc #(.resolution(32)) nco (.clk(clock),.reset(reset),.enable(enable), .freq(freq),.phase(phase)); endmodule
module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
module mux(opA,opB,sum,dsp_sel,out); input [3:0] opA,opB; input [4:0] sum; input [1:0] dsp_sel; output [3:0] out; reg cout; always @ (sum) begin if (sum[4] == 1) cout <= 4'b0001; else cout <= 4'b0000; end reg out; always @(dsp_sel,sum,cout,opB,opA) begin if (dsp_sel == 2'b00) out <= sum[3:0]; else if (dsp_sel == 2'b01) out <= cout; else if (dsp_sel == 2'b10) out <= opB; else if (dsp_sel == 2'b11) out <= opA; end endmodule
module Rotate_Mux_Array #(parameter SWR=26) ( input wire [SWR-1:0] Data_i, input wire select_i, output wire [SWR-1:0] Data_o ); genvar j;//Create a variable for the loop FOR generate for (j=0; j <= SWR-1; j=j+1) begin // generate enough Multiplexers modules for each bit case (j) SWR-1-j:begin assign Data_o[j]=Data_i[SWR-1-j]; end default:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (Data_i[SWR-1-j]), .S (Data_o[j]) ); end endcase end endgenerate endmodule
module Rotate_Mux_Array #(parameter SWR=26) ( input wire [SWR-1:0] Data_i, input wire select_i, output wire [SWR-1:0] Data_o ); genvar j;//Create a variable for the loop FOR generate for (j=0; j <= SWR-1; j=j+1) begin // generate enough Multiplexers modules for each bit case (j) SWR-1-j:begin assign Data_o[j]=Data_i[SWR-1-j]; end default:begin Multiplexer_AC #(.W(1)) rotate_mux( .ctrl(select_i), .D0 (Data_i[j]), .D1 (Data_i[SWR-1-j]), .S (Data_o[j]) ); end endcase end endgenerate endmodule
module quad(clk, A, B, Z, zr, out); parameter W=14; input clk, A, B, Z, zr; reg [(W-1):0] c, i; reg zl; output [2*W:0] out = { zl, i, c }; // reg [(W-1):0] c, i; reg zl; reg [2:0] Ad, Bd; reg [2:0] Zc; always @(posedge clk) Ad <= {Ad[1:0], A}; always @(posedge clk) Bd <= {Bd[1:0], B}; wire good_one = &Zc; wire good_zero = ~|Zc; reg last_good; wire index_pulse = good_one && ! last_good; wire count_enable = Ad[1] ^ Ad[2] ^ Bd[1] ^ Bd[2]; wire count_direction = Ad[1] ^ Bd[2]; always @(posedge clk) begin if(Z && !good_one) Zc <= Zc + 2'b1; else if(!good_zero) Zc <= Zc - 2'b1; if(good_one) last_good <= 1; else if(good_zero) last_good <= 0; if(count_enable) begin if(count_direction) c <= c + 1'd1; else c <= c - 1'd1; end if(index_pulse) begin i <= c; zl <= 1; end else if(zr) begin zl <= 0; end end endmodule
module quad(clk, A, B, Z, zr, out); parameter W=14; input clk, A, B, Z, zr; reg [(W-1):0] c, i; reg zl; output [2*W:0] out = { zl, i, c }; // reg [(W-1):0] c, i; reg zl; reg [2:0] Ad, Bd; reg [2:0] Zc; always @(posedge clk) Ad <= {Ad[1:0], A}; always @(posedge clk) Bd <= {Bd[1:0], B}; wire good_one = &Zc; wire good_zero = ~|Zc; reg last_good; wire index_pulse = good_one && ! last_good; wire count_enable = Ad[1] ^ Ad[2] ^ Bd[1] ^ Bd[2]; wire count_direction = Ad[1] ^ Bd[2]; always @(posedge clk) begin if(Z && !good_one) Zc <= Zc + 2'b1; else if(!good_zero) Zc <= Zc - 2'b1; if(good_one) last_good <= 1; else if(good_zero) last_good <= 0; if(count_enable) begin if(count_direction) c <= c + 1'd1; else c <= c - 1'd1; end if(index_pulse) begin i <= c; zl <= 1; end else if(zr) begin zl <= 0; end end endmodule
module quad(clk, A, B, Z, zr, out); parameter W=14; input clk, A, B, Z, zr; reg [(W-1):0] c, i; reg zl; output [2*W:0] out = { zl, i, c }; // reg [(W-1):0] c, i; reg zl; reg [2:0] Ad, Bd; reg [2:0] Zc; always @(posedge clk) Ad <= {Ad[1:0], A}; always @(posedge clk) Bd <= {Bd[1:0], B}; wire good_one = &Zc; wire good_zero = ~|Zc; reg last_good; wire index_pulse = good_one && ! last_good; wire count_enable = Ad[1] ^ Ad[2] ^ Bd[1] ^ Bd[2]; wire count_direction = Ad[1] ^ Bd[2]; always @(posedge clk) begin if(Z && !good_one) Zc <= Zc + 2'b1; else if(!good_zero) Zc <= Zc - 2'b1; if(good_one) last_good <= 1; else if(good_zero) last_good <= 0; if(count_enable) begin if(count_direction) c <= c + 1'd1; else c <= c - 1'd1; end if(index_pulse) begin i <= c; zl <= 1; end else if(zr) begin zl <= 0; end end endmodule
module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule