hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
deca8e26bb6a2a9ae53903a22809984f7a74b454
26,490
py
Python
project.py
PetruSicoe/Python101-GameProject
82121a8e110ee484acdf85843725882d60957b25
[ "CC-BY-4.0" ]
null
null
null
project.py
PetruSicoe/Python101-GameProject
82121a8e110ee484acdf85843725882d60957b25
[ "CC-BY-4.0" ]
null
null
null
project.py
PetruSicoe/Python101-GameProject
82121a8e110ee484acdf85843725882d60957b25
[ "CC-BY-4.0" ]
null
null
null
#!/usr/bin/env python3 from random import randrange import random import pygame, sys from pygame.locals import * import string pygame.font.init() MENU_WIDTH = 1000 MENU_HEIGHT = 1000 GUESS_WIDTH = 1000 GUESS_HEIGHT = 650 HANGMAN_WIDTH = 1300 HANGMAN_HEIGHT = 720 BLACK = (0,0,0) WHITE = (255,255,255) RED = (255,0,0) GREEN = (0,255,0) LIGHT_YELLOW = (255, 255, 102) frame_rate = pygame.time.Clock() back_ground = pygame.image.load("image_kids.jpg") back_ground_guess = pygame.image.load("schoolboard.jpg") class GameObject: def __init__(self, position): self.position = position def input(self): pass def draw(self): pass class Menu(GameObject): def __init__(self): self.window = pygame.display.set_mode((MENU_WIDTH,MENU_HEIGHT)) pygame.display.set_caption('Meniu Joc') #butoanele de accesare ale paginilor jocurilor self.color_hang = (203, 195, 227) self.color_hang_hover = (140,106,189) self.left_hang = MENU_WIDTH / 4 + 100 self.top_hang = MENU_HEIGHT / 3 self.width_hang = 250 self.heigth_hang = 120 self.color_guess = (51, 255, 153) self.color_guess_hover = (37, 186, 132) self.left_guess = MENU_WIDTH / 4 + 20 self.top_guess = MENU_HEIGHT / 2 + 50 self.width_guess = 470 self.heigth_guess = 120 #[left, top, width, height] self.hang_rect = pygame.Rect(self.left_hang, self.top_hang, self.width_hang, self.heigth_hang) self.guess_rect = pygame.Rect(self.left_guess, self.top_guess, self.width_guess, self.heigth_guess) def input(self): for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONDOWN: mouse = pygame.mouse.get_pos() if self.left_hang <= mouse[0] <= self.left_hang + self.width_hang and self.top_hang <= mouse[1] <= self.top_hang + self.heigth_hang: hangman = Hangman() hangman.run() pygame.quit() sys.exit() elif self.left_guess <= mouse[0] <= self.left_guess + self.width_guess and self.top_guess <= mouse[1] <= self.top_guess + self.heigth_guess: guess = GuessTheNumber() guess.run() pygeme.quit() sys.exit() if event.type == KEYDOWN: if event.key == K_ESCAPE: pygame.quit() sys.exit() if event.type == pygame.QUIT: pygame.quit() sys.exit() def draw(self): image_rect = back_ground.get_rect() self.window.fill(BLACK) self.window.blit(back_ground, image_rect) #fonturi self.font = pygame.font.SysFont('Comic Sans MS',50) #titlul title_x_pos = MENU_WIDTH / 6 + 50 title_y_pos = MENU_HEIGHT / 6 self.img = self.font.render('Childhood\'s Gamechest', True, BLACK) self.window.blit(self.img, (title_x_pos , title_y_pos )) #draw de buton Hangman. Schimb culoarea daca e hover mouse = pygame.mouse.get_pos() if self.left_hang <= mouse[0] <= self.left_hang + self.width_hang and self.top_hang <= mouse[1] <= self.top_hang + self.heigth_hang: pygame.draw.rect(self.window, self.color_hang_hover, self.hang_rect) else: pygame.draw.rect(self.window, self.color_hang, self.hang_rect) #pun text pe buton self.hang_button = self.font.render('Hangman', True, BLACK) self.window.blit(self.hang_button, (self.left_hang + 15, self.top_hang + 20)) #draw de buton guess the number if self.left_guess <= mouse[0] <= self.left_guess + self.width_guess and self.top_guess <= mouse[1] <= self.top_guess + self.heigth_guess: pygame.draw.rect(self.window, self.color_guess_hover, self.guess_rect) else: pygame.draw.rect(self.window, self.color_guess, self.guess_rect) #pun text pe buton self.guess_button = self.font.render('Guess the Number', True, BLACK) self.window.blit(self.guess_button, (self.left_guess + 15, self.top_guess + 20)) pygame.display.update() pygame.time.Clock().tick(60) def run(self): while True: self.input() self.draw() class Hangman(GameObject): def __init__(self): self.window = pygame.display.set_mode((HANGMAN_WIDTH, HANGMAN_HEIGHT)) pygame.display.set_caption('Hangman') self.text = '' self.guess_text = '' self.current_letter = '' #fonturi self.input_font = pygame.font.SysFont('Comic Sans MS',100) self.letters_font = pygame.font.SysFont('Comic Sans MS',35) self.title_font = pygame.font.SysFont('Algerian',100) #imagine background self.hang_background = pygame.image.load("papyrus.jpg") #import de imagini care arata stadiul in functie de numarul de vieti self.zero_img = pygame.image.load("0.jpg") self.zero_img = pygame.transform.scale(self.zero_img, (self.zero_img.get_size()[0] + 100, self.zero_img.get_size()[1] + 100)) self.three_img = pygame.image.load("3.jpg") self.three_img = pygame.transform.scale(self.three_img, (self.three_img.get_size()[0] + 100, self.three_img.get_size()[1] + 100)) self.five_img = pygame.image.load("5.jpg") self.five_img = pygame.transform.scale(self.five_img, (self.five_img.get_size()[0] + 100, self.five_img.get_size()[1] + 100)) self.six_img = pygame.image.load("6.jpg") self.six_img = pygame.transform.scale(self.six_img, (self.six_img.get_size()[0] + 100, self.six_img.get_size()[1] + 100)) self.seven_img = pygame.image.load("7.jpg") self.seven_img = pygame.transform.scale(self.seven_img, (self.seven_img.get_size()[0] + 100, self.seven_img.get_size()[1] + 100)) self.eight_img = pygame.image.load("8.jpg") self.eight_img = pygame.transform.scale(self.eight_img, (self.eight_img.get_size()[0] + 100, self.eight_img.get_size()[1] + 100)) self.nine_img = pygame.image.load("9.jpg") self.nine_img = pygame.transform.scale(self.nine_img, (self.nine_img.get_size()[0] + 100, self.nine_img.get_size()[1] + 100)) self.ten_img = pygame.image.load("10.jpg") self.ten_img = pygame.transform.scale(self.ten_img, (self.ten_img.get_size()[0] + 100, self.ten_img.get_size()[1] + 100)) #loc unde pun litera curenta self.input_box = pygame.Rect(100, 400, 200, 200) self.active_box = False #culori pt input box self.color_inactive = (64, 64, 64) self.color_active = (224, 224, 224) self.nr_lives = 6 self.won = False self.lost = False self.timer_index = 0 #fisier cu cuvintele de ghicit. Aleg unul random dintre ele with open("hangman_input.txt") as file: lines = file.readlines() words = lines[randrange(len(lines))].strip("\n") words = words.split() self.guess_text = words[randrange(len(words))] print("de ghicit: " + self.guess_text) #fac o lista de tupluri cu litera, spatiul ei dedicat si daca e ghicita sau nu self.letters= [] for i in range(len(self.guess_text)): self.letters.append( (self.guess_text[i], pygame.Rect(10 + 100 * i, 200, 50 , 50), False) ) #Menu Button self.color_menu = (203, 195, 227) self.color_menu_hover = (140, 106, 189) self.left_menu = HANGMAN_WIDTH / 2 - 200 self.top_menu = HANGMAN_HEIGHT / 2 + 100 self.width_menu = 300 self.heigth_menu = 120 self.menu_rect = pygame.Rect(self.left_menu, self.top_menu, self.width_menu, self.heigth_menu) def input(self): #pentru inchiderea meniului for event in pygame.event.get(): #activarea buttonului de inchidere if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == KEYDOWN: if event.key == K_ESCAPE: menu = Menu() menu.run() pygame.quit() sys.exit() #putem modifica ceva din input box, daca este selectata if self.active_box: if event.key == pygame.K_RETURN: #la enter procesez litera din input box if len(self.text) > 0: if self.text in self.guess_text: pos = self.guess_text.find(self.text) while pos != -1: self.letters[pos] = (self.letters[pos][0], self.letters[pos][1], True) pos = self.guess_text.find(self.text, pos + 1, len(self.guess_text)) #verific daca toate casutele sunt completate. Daca sunt, am castigat just_won = True for k in self.letters: if not k[2]: just_won = False if just_won: self.won = True else: self.nr_lives -= 1 if self.nr_lives == 0: self.lost = True self.text = '' elif event.key == pygame.K_BACKSPACE: self.text = self.text[:-1] else: self.current_letter = event.unicode.upper() #doar o litera trebuie sa fie in casuta if len(self.text) >= 1: self.text = self.text[:-1] self.text += self.current_letter if event.type == pygame.MOUSEBUTTONDOWN: if self.input_box.collidepoint(event.pos): #fac toggle self.active_box = not self.active_box else: self.active_box = False if self.menu_rect.collidepoint(event.pos): if self.won or self.lost: menu = Menu() menu.run() pygame.quit() sys.exit() def draw(self): image_rect = self.hang_background.get_rect() self.window.fill(BLACK) self.window.blit(self.hang_background, image_rect) #desenex imaginea ce reprezinta starea + numarul de vieti if self.nr_lives == 6: image_rect = self.zero_img.get_rect() hang_img = self.zero_img elif self.nr_lives == 5: image_rect = self.five_img.get_rect() hang_img = self.five_img elif self.nr_lives == 4: image_rect = self.six_img.get_rect() hang_img = self.six_img elif self.nr_lives == 3: image_rect = self.seven_img.get_rect() hang_img = self.seven_img elif self.nr_lives == 2: image_rect = self.eight_img.get_rect() hang_img = self.eight_img elif self.nr_lives == 1: image_rect = self.nine_img.get_rect() hang_img = self.nine_img else: image_rect = self.ten_img.get_rect() hang_img = self.ten_img image_rect.x = 880 image_rect.y = 300 self.window.blit(hang_img, image_rect) #titlul title_x_pos = HANGMAN_WIDTH / 3 - 30 title_y_pos = 30 self.title = self.title_font.render('HANGMAN', True, BLACK) self.window.blit(self.title, (title_x_pos , title_y_pos )) if not self.won and not self.lost: #literele ghicite/neghicite for i in range(len(self.letters)): pygame.draw.rect(self.window, self.color_inactive, self.letters[i][1]) text_surface = self.letters_font.render(self.letters[i][0],True, self.color_active) if self.letters[i][2] == True: self.window.blit(text_surface, (self.letters[i][1].x + 15, self.letters[i][1].y + 5)) if not self.active_box: pygame.draw.rect(self.window, self.color_inactive, self.input_box) else: pygame.draw.rect(self.window, self.color_active, self.input_box) if len(self.text) > 0: text_surface = self.input_font.render(self.text,True, BLACK) self.window.blit(text_surface, (self.input_box.x + 65, self.input_box.y + 20)) #caz daca am castigat if self.won: #afisez mesaj if self.timer_index < 1: self.timer_index += 0.01 text_surface = self.title_font.render("You win", True, GREEN) self.window.blit(text_surface, (400, 400)) else: #pun buton meniu dupa ce expira timpul mouse = pygame.mouse.get_pos() if self.left_menu <= mouse[0] <= self.left_menu + self.width_menu and self.top_menu <= mouse[1] <= self.top_menu + self.heigth_menu: pygame.draw.rect(self.window, self.color_menu_hover, self.menu_rect) else: pygame.draw.rect(self.window, self.color_menu, self.menu_rect) #pun text pe buton self.menu_button = self.letters_font.render('Back to Menu', True, self.color_inactive) self.window.blit(self.menu_button, (self.left_menu + 30, self.top_menu + 30)) #caz daca am pierdut if self.lost: #afisez mesaj if self.timer_index < 1: self.timer_index += 0.01 text_surface = self.title_font.render("You lost", True, RED) self.window.blit(text_surface, (400, 400)) else: #pun buton meniu dupa ce expira timpul mouse = pygame.mouse.get_pos() if self.left_menu <= mouse[0] <= self.left_menu + self.width_menu and self.top_menu <= mouse[1] <= self.top_menu + self.heigth_menu: pygame.draw.rect(self.window, self.color_menu_hover, self.menu_rect) else: pygame.draw.rect(self.window, self.color_menu, self.menu_rect) #pun text pe buton self.menu_button = self.letters_font.render('Back to Menu', True, self.color_inactive) self.window.blit(self.menu_button, (self.left_menu + 30, self.top_menu + 30)) pygame.display.update() pygame.time.Clock().tick(60) def run(self): while True: self.input() self.draw() class GuessTheNumber(GameObject): def __init__(self): self.window = pygame.display.set_mode((GUESS_WIDTH, GUESS_HEIGHT)) pygame.display.set_caption('Guess the Number') self.index = 0 self.lives = 2 self.winner_text = '' self.losing_text = '' #fonturi self.intro_font = pygame.font.SysFont('Comic Sans MS', 50) self.number_font = pygame.font.SysFont('Comic Sans MS', 30) self.lives_font = pygame.font.SysFont('Comic Sans MS', 20) self.message_font = pygame.font.SysFont('Comic Sans MS', 40) #culori self.card_color = (194, 175, 161) self.card_hover = (175, 122, 90) self.choice = -1 #init cartonasele #1 self.left_card_one = GUESS_WIDTH / 4 + 70 self.top_card_one = GUESS_HEIGHT / 3 self.width_card_one = 100 self.height_card_one = 70 self.card_one_rect = pygame.Rect(self.left_card_one, self.top_card_one, self.width_card_one, self.height_card_one) self.rand_1 = randrange(5) #2 self.left_card_two = GUESS_WIDTH / 4 + 320 self.top_card_two = GUESS_HEIGHT / 3 self.width_card_two = 100 self.height_card_two = 70 self.card_two_rect = pygame.Rect(self.left_card_two, self.top_card_two, self.width_card_two, self.height_card_two) self.rand_2 = randrange(6, 10) #3 self.left_card_three = GUESS_WIDTH / 4 + 70 self.top_card_three = GUESS_HEIGHT / 3 + 170 self.width_card_three = 100 self.height_card_three = 70 self.card_three_rect = pygame.Rect(self.left_card_three, self.top_card_three, self.width_card_three, self.height_card_three) self.rand_3 = randrange(25, 35) #4 self.left_card_four = GUESS_WIDTH / 4 + 320 self.top_card_four = GUESS_HEIGHT / 3 + 170 self.width_card_four = 100 self.height_card_four = 70 self.card_four_rect = pygame.Rect(self.left_card_four, self.top_card_four, self.width_card_four, self.height_card_four) self.rand_4 = randrange(10, 20) #pun toate randomurile intr-o lista self.randoms_list = ['button_1', 'button_2', 'button_3', 'button_4'] self.to_guess = random.choice(self.randoms_list) #butoane final #REPLAY self.left_replay = GUESS_WIDTH - 150 self.top_replay = GUESS_HEIGHT / 2 - 80 self.width_replay = 60 self.height_replay = 45 self.replay_rect = pygame.Rect(self.left_replay, self.top_replay, self.width_replay, self.height_replay) #MENU self.left_menu = GUESS_WIDTH - 150 self.top_menu = GUESS_HEIGHT / 2 self.width_menu = 60 self.height_menu = 45 self.menu_rect = pygame.Rect(self.left_menu, self.top_menu, self.width_menu, self.height_menu) self.timer_index = 0 def input(self): for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit if event.type == pygame.MOUSEBUTTONDOWN: #verific pe ce cartonas a dat click jucatorul/daca click MENU/REPLAY if self.card_one_rect.collidepoint(event.pos): if self.randoms_list[0] == self.to_guess: self.choice = 1 else: self.choice = 0 self.lives -= 1 elif self.card_two_rect.collidepoint(event.pos): if self.randoms_list[1] == self.to_guess: self.choice = 1 else: self.choice = 0 self.lives -= 1 elif self.card_three_rect.collidepoint(event.pos): if self.randoms_list[2] == self.to_guess: self.choice = 1 else: self.choice = 0 self.lives -= 1 elif self.card_four_rect.collidepoint(event.pos): if self.randoms_list[3] == self.to_guess: self.choice = 1 else: self.choice = 0 self.lives -= 1 elif self.menu_rect.collidepoint(event.pos): menu = Menu() menu.run() pygame.quit() sys.exit() elif self.replay_rect.collidepoint(event.pos): guess = GuessTheNumber() guess.run() pygame.quit() sys.exit() def draw(self): image_rect = back_ground_guess.get_rect() self.window.fill(BLACK) self.window.blit(back_ground_guess, image_rect) #afisez titlul welcome_text = self.intro_font.render('Welcome to GuessTheNumber!', True, WHITE) self.window.blit(welcome_text, (150, 25)) #afisez numarul de vieti lives_text = self.lives_font.render(f'lives: {self.lives}', True, LIGHT_YELLOW) self.window.blit(lives_text, (680, 150)) mouse = pygame.mouse.get_pos() #afisez cartonasele #1 if self.left_card_one <= mouse[0] <= self.left_card_one + self.width_card_one and self.top_card_one <= mouse[1] <= self.top_card_one + self.height_card_one: pygame.draw.rect(self.window, self.card_hover, self.card_one_rect) else: pygame.draw.rect(self.window, self.card_color, self.card_one_rect) self.button_1 = self.number_font.render(str(self.rand_1), True, BLACK) self.window.blit(self.button_1, (self.card_one_rect.x + 40, self.card_one_rect.y + 10)) #2 if self.left_card_two <= mouse[0] <= self.left_card_two + self.width_card_two and self.top_card_two <= mouse[1] <= self.top_card_two + self.height_card_two: pygame.draw.rect(self.window, self.card_hover, self.card_two_rect) else: pygame.draw.rect(self.window, self.card_color, self.card_two_rect) self.button_2 = self.number_font.render(str(self.rand_2), True, BLACK) self.window.blit(self.button_2, (self.card_two_rect.x + 40, self.card_two_rect.y + 10)) #3 if self.left_card_three <= mouse[0] <= self.left_card_three + self.width_card_three and self.top_card_three <= mouse[1] <= self.top_card_three + self.height_card_three: pygame.draw.rect(self.window, self.card_hover, self.card_three_rect) else: pygame.draw.rect(self.window, self.card_color, self.card_three_rect) self.button_3 = self.number_font.render(str(self.rand_3), True, BLACK) self.window.blit(self.button_3, (self.card_three_rect.x + 40, self.card_three_rect.y + 10)) #4 if self.left_card_four <= mouse[0] <= self.left_card_four + self.width_card_four and self.top_card_four <= mouse[1] <= self.top_card_four + self.height_card_four: pygame.draw.rect(self.window, self.card_hover, self.card_four_rect) else: pygame.draw.rect(self.window, self.card_color, self.card_four_rect) self.button_4 = self.number_font.render(str(self.rand_4), True, BLACK) self.window.blit(self.button_4, (self.card_four_rect.x + 40, self.card_four_rect.y + 10)) if self.choice == 1: self.winner_text = self.message_font.render('Wow, you won!', True, LIGHT_YELLOW) self.window.blit(self.winner_text, (400, 300)) #buton replay if self.left_replay <= mouse[0] <= self.left_replay + self.width_replay and self.top_replay <= mouse[1] <= self.top_replay + self.height_replay: pygame.draw.rect(self.window, self.card_hover, self.replay_rect) else: pygame.draw.rect(self.window, self.card_color, self.replay_rect) self.replay_b = self.lives_font.render('Replay', True, BLACK) self.window.blit(self.replay_b, (self.replay_rect.x + 1, self.replay_rect.y + 10)) #buton MENU if self.left_menu <= mouse[0] <= self.left_menu + self.width_menu and self.top_menu <= mouse[1] <= self.top_menu + self.height_menu: pygame.draw.rect(self.window, self.card_hover, self.menu_rect) else: pygame.draw.rect(self.window, self.card_color, self.menu_rect) self.menu_b = self.lives_font.render('Menu', True, BLACK) self.window.blit(self.menu_b, (self.menu_rect.x + 1, self.menu_rect.y + 10)) elif self.choice == 0: mouse = pygame.mouse.get_pos() if self.lives == 1: if self.timer_index < 1: self.losing_text = self.message_font.render('Oopsey, only one life left!', True, LIGHT_YELLOW) self.window.blit(self.losing_text, (300, 300)) self.timer_index+=0.01 elif self.lives == 0: self.losing_text = self.message_font.render('Game over ya loser', True, LIGHT_YELLOW) self.window.blit(self.losing_text, (350, 300)) #buton replay if self.left_replay <= mouse[0] <= self.left_replay + self.width_replay and self.top_replay <= mouse[1] <= self.top_replay + self.height_replay: pygame.draw.rect(self.window, self.card_hover, self.replay_rect) else: pygame.draw.rect(self.window, self.card_color, self.replay_rect) self.replay_b = self.lives_font.render('Replay', True, BLACK) self.window.blit(self.replay_b, (self.replay_rect.x + 1, self.replay_rect.y + 10)) #buton MENU if self.left_menu <= mouse[0] <= self.left_menu + self.width_menu and self.top_menu <= mouse[1] <= self.top_menu + self.height_menu: pygame.draw.rect(self.window, self.card_hover, self.menu_rect) else: pygame.draw.rect(self.window, self.card_color, self.menu_rect) self.menu_b = self.lives_font.render('Menu', True, BLACK) self.window.blit(self.menu_b, (self.menu_rect.x + 1, self.menu_rect.y + 10)) pygame.display.update() pygame.time.Clock().tick(60) def run(self): while True: self.input() self.draw() if __name__ == "__main__": menu = Menu() menu.run()
40.197269
177
0.555795
25,848
0.975764
0
0
0
0
0
0
2,007
0.075764
decaa14b52fa5524baf2d5d190931296e44de823
2,018
py
Python
Modules/CrossMapLRN.py
EmilPi/PuzzleLib
31aa0fab3b5e9472b9b9871ca52e4d94ea683fa9
[ "Apache-2.0" ]
52
2020-02-28T20:40:15.000Z
2021-08-25T05:35:17.000Z
Modules/CrossMapLRN.py
EmilPi/PuzzleLib
31aa0fab3b5e9472b9b9871ca52e4d94ea683fa9
[ "Apache-2.0" ]
2
2021-02-14T15:57:03.000Z
2021-10-05T12:21:34.000Z
Modules/CrossMapLRN.py
EmilPi/PuzzleLib
31aa0fab3b5e9472b9b9871ca52e4d94ea683fa9
[ "Apache-2.0" ]
8
2020-02-28T20:40:11.000Z
2020-07-09T13:27:23.000Z
import numpy as np from PuzzleLib.Backend import gpuarray from PuzzleLib.Backend.Dnn import crossMapLRN, crossMapLRNBackward from PuzzleLib.Modules.LRN import LRN class CrossMapLRN(LRN): def __init__(self, N=5, alpha=1e-4, beta=0.75, K=2.0, name=None): super().__init__(N, alpha, beta, K, name) self.gradUsesOutData = True def updateData(self, data): self.data, self.workspace = crossMapLRN(data, N=self.N, alpha=self.alpha, beta=self.beta, K=self.K, test=not self.train) def updateGrad(self, grad): self.grad = crossMapLRNBackward(self.inData, self.data, grad, self.workspace, N=self.N, alpha=self.alpha, beta=self.beta, K=self.K) def unittest(): maps = 10 data = gpuarray.to_gpu(np.random.randn(1, maps, 1, 1).astype(np.float32)) crossMapLrn = CrossMapLRN() crossMapLrn(data) lookBehind = int((crossMapLrn.N - 1) / 2) lookAhead = crossMapLrn.N - lookBehind hostData = data.get().reshape(maps, ).astype(np.float32) norms = np.empty((maps, ), dtype=np.float32) for i in range(maps): norm = 0.0 for j in range(max(0, i - lookBehind), min(maps, i + lookAhead)): norm += hostData[j]**2 norms[i] = crossMapLrn.K + norm * crossMapLrn.alpha / crossMapLrn.N hostOutData = hostData / norms**crossMapLrn.beta assert np.allclose(hostOutData, crossMapLrn.data.get().reshape(maps, ).astype(np.float32)) grad = gpuarray.to_gpu(np.random.randn(1, maps, 1, 1).astype(np.float32)) crossMapLrn.backward(grad) hostGrad = grad.get().reshape(maps, ).astype(np.float32) hostInGrad = np.zeros((maps, ), dtype=np.float32) k = 2.0 * crossMapLrn.alpha * crossMapLrn.beta / crossMapLrn.N for i in range(maps): hostInGrad[i] += hostGrad[i] / norms[i]**crossMapLrn.beta for j in range(max(0, i - lookBehind), min(maps, i + lookAhead)): hostInGrad[j] -= hostGrad[i] * k * hostData[i] * hostData[j] / norms[i]**(crossMapLrn.beta+1) assert np.allclose(hostInGrad, crossMapLrn.grad.get().reshape(maps, ).astype(np.float32)) if __name__ == "__main__": unittest()
32.031746
101
0.700198
505
0.250248
0
0
0
0
0
0
10
0.004955
decc19f50e9a41be1bc95cb6e0bf5f4f77162b78
4,802
py
Python
src/metrics.py
enryH/specpride
1bedd87dc8f31a6b86426c6e03dc0c27706bc9aa
[ "Apache-2.0" ]
2
2020-01-14T12:02:52.000Z
2020-01-14T14:03:30.000Z
src/metrics.py
enryH/specpride
1bedd87dc8f31a6b86426c6e03dc0c27706bc9aa
[ "Apache-2.0" ]
5
2019-12-09T10:59:10.000Z
2020-01-16T14:32:00.000Z
src/metrics.py
enryH/specpride
1bedd87dc8f31a6b86426c6e03dc0c27706bc9aa
[ "Apache-2.0" ]
9
2020-01-14T12:26:54.000Z
2020-01-16T08:26:06.000Z
import copy from typing import Iterable import numba as nb import numpy as np import spectrum_utils.spectrum as sus def dot(spectrum1: sus.MsmsSpectrum, spectrum2: sus.MsmsSpectrum, fragment_mz_tolerance: float) -> float: """ Compute the dot product between the given spectra. Parameters ---------- spectrum1 : sus.MsmsSpectrum The first spectrum. spectrum2 : sus.MsmsSpectrum The second spectrum. fragment_mz_tolerance : float The fragment m/z tolerance used to match peaks. Returns ------- float The dot product similarity between the given spectra. """ return _dot(spectrum1.mz, _norm_intensity(np.copy(spectrum1.intensity)), spectrum2.mz, _norm_intensity(np.copy(spectrum2.intensity)), fragment_mz_tolerance) @nb.njit def _norm_intensity(spectrum_intensity: np.ndarray) -> np.ndarray: """ Normalize spectrum peak intensities. Parameters ---------- spectrum_intensity : np.ndarray The spectrum peak intensities to be normalized. Returns ------- np.ndarray The normalized peak intensities. """ return spectrum_intensity / np.linalg.norm(spectrum_intensity) @nb.njit def _dot(mz: np.ndarray, intensity: np.ndarray, mz_other: np.ndarray, intensity_other: np.ndarray, fragment_mz_tol: float) -> float: """ Compute the dot product between the given spectra. Note: Spectrum intensities should be normalized prior to computing the dot product. Parameters ---------- mz : np.ndarray The first spectrum's m/z values. intensity : np.ndarray The first spectrum's intensity values. mz_other : np.ndarray The second spectrum's m/z values. intensity_other : np.ndarray The second spectrum's intensity values. fragment_mz_tol : float The fragment m/z tolerance used to match peaks in both spectra with each other. Returns ------- float The dot product between both spectra. """ fragment_i, fragment_other_i, score = 0, 0, 0. for fragment_i in range(len(mz)): while (fragment_other_i < len(mz_other) - 1 and mz_other[fragment_other_i] < mz[fragment_i] - fragment_mz_tol): fragment_other_i += 1 if (abs(mz[fragment_i] - mz_other[fragment_other_i]) <= fragment_mz_tol and fragment_other_i < len(mz_other)): score += intensity[fragment_i] * intensity_other[fragment_other_i] fragment_other_i += 1 return score def avg_dot(representative: sus.MsmsSpectrum, cluster_spectra: Iterable[sus.MsmsSpectrum], fragment_mz_tolerance: float) -> float: """ Compute the average dot product between the cluster representative and all cluster members. Parameters ---------- representative : sus.MsmsSpectrum The cluster representative spectrum. cluster_spectra : Iterable[sus.MsmsSpectrum] The cluster member spectra. fragment_mz_tolerance : float Fragment m/z tolerance used during spectrum comparison. Returns ------- float The average dot product between the cluster representative and all cluster members. """ return np.mean([dot(representative, spectrum, fragment_mz_tolerance) for spectrum in cluster_spectra]) def fraction_by(representative: sus.MsmsSpectrum, cluster_spectra: Iterable[sus.MsmsSpectrum], fragment_mz_tolerance: float) -> float: """ Compute the fraction of intensity that is explained by the b and y-ions of the representative spectrum. This will be 0 if no peptide sequence is associated with the representative spectrum. Parameters ---------- representative : sus.MsmsSpectrum The cluster representative spectrum. cluster_spectra : Iterable[sus.MsmsSpectrum] The cluster member spectra. Ignored. fragment_mz_tolerance : float Fragment m/z tolerance used to annotate the peaks of the representative spectrum. Returns ------- float The fraction of intensity that is explained by the b and y-ions of the representative spectrum. """ if representative.peptide is None: return 0 representative = (copy.copy(representative) .remove_precursor_peak(fragment_mz_tolerance, 'Da') .annotate_peptide_fragments(fragment_mz_tolerance, 'Da')) annotated_peaks = [i for i, annot in enumerate(representative.annotation) if annot is not None] return (representative.intensity[annotated_peaks].sum() / representative.intensity.sum())
31.592105
79
0.660975
0
0
0
0
1,760
0.366514
0
0
2,598
0.541025
deccbee42c5be781692fc226272ac89e27a4e7a6
797
py
Python
examples/multi-class_neural_network.py
sun1638650145/classicML
7e0c2155bccb6e491a150ee689d3786526b74565
[ "Apache-2.0" ]
12
2020-05-10T12:11:06.000Z
2021-10-31T13:23:55.000Z
examples/multi-class_neural_network.py
sun1638650145/classicML
7e0c2155bccb6e491a150ee689d3786526b74565
[ "Apache-2.0" ]
null
null
null
examples/multi-class_neural_network.py
sun1638650145/classicML
7e0c2155bccb6e491a150ee689d3786526b74565
[ "Apache-2.0" ]
2
2021-01-17T06:22:05.000Z
2021-01-18T14:32:51.000Z
""" 这个例子将展示如何使用BP神经网络构建多分类的神经网络. """ import sys import classicML as cml DATASET_PATH = './datasets/iris_dataset.csv' CALLBACKS = [cml.callbacks.History(loss_name='categorical_crossentropy', metric_name='accuracy')] # 读取数据 ds = cml.data.Dataset(label_mode='one-hot', standardization=True, name='iris') ds.from_csv(DATASET_PATH) # 生成神经网络 model = cml.BPNN(seed=2021) model.compile(network_structure=[4, 2, 3], optimizer='sgd', loss='categorical_crossentropy', metric='accuracy') # 训练神经网络 model.fit(ds.x, ds.y, epochs=1000, verbose=True, callbacks=CALLBACKS) # 可视化历史记录(如果您使用的是MacOS, 请注释掉此句, 这句是为了在CI上测试用的.) if sys.platform != 'darwin': cml.plots.plot_history(CALLBACKS[0])
28.464286
72
0.644918
0
0
0
0
0
0
0
0
378
0.4017
decdd56ee9283490fb231ea62e1de89aa2fa1fee
2,596
py
Python
pool/serializer/PoolSerializer.py
salran40/POAP
9ff2ab68b55aeffe104d127c4beb8b1372b2c8de
[ "Apache-2.0" ]
null
null
null
pool/serializer/PoolSerializer.py
salran40/POAP
9ff2ab68b55aeffe104d127c4beb8b1372b2c8de
[ "Apache-2.0" ]
null
null
null
pool/serializer/PoolSerializer.py
salran40/POAP
9ff2ab68b55aeffe104d127c4beb8b1372b2c8de
[ "Apache-2.0" ]
null
null
null
__author__ = "arunrajms" from rest_framework import serializers from pool.models import Pool from rest_framework.validators import UniqueValidator import re TYPE_CHOICES = ['Integer','IP','IPv6','AutoGenerate','Vlan','MgmtIP'] PUT_TYPE_CHOICES = ['Integer','IP','IPv6','Vlan','MgmtIP'] SCOPE_CHOICES = ['global','fabric','switch'] class JSONSerializerField(serializers.Field): """ Serializer for JSONField -- required to make field writable""" def to_internal_value(self, data): return data def to_representation(self, value): return value class PoolRange(serializers.Serializer): start = serializers.CharField(max_length=24, required=True) end = serializers.CharField(max_length=24, required=True) class PoolSerializer(serializers.Serializer): id = serializers.IntegerField(read_only=True) name = serializers.CharField(max_length=100,required=True, \ validators=[UniqueValidator(queryset=Pool.objects.all())]) type = serializers.ChoiceField(TYPE_CHOICES) range = PoolRange(required=False, many=True) available = serializers.IntegerField(read_only=True) used = serializers.IntegerField(read_only=True) scope = serializers.ChoiceField(SCOPE_CHOICES) def create(self,validated_data): ''' TBD ''' return Pool.objects.create(**validated_data) class PoolGetSerializer(serializers.Serializer): id = serializers.IntegerField(read_only=True) name = serializers.CharField(max_length=100,required=True) type = serializers.CharField(max_length=100) range = JSONSerializerField()#serializers.CharField(max_length=500) used = serializers.IntegerField() available = serializers.IntegerField() scope = serializers.CharField() class PoolGetDetailSerializer(serializers.Serializer): value = serializers.CharField(max_length=100) assigned = serializers.CharField(max_length=100,required=False) lastmodified = serializers.CharField(max_length=100) class PoolPutSerializer(serializers.Serializer): id = serializers.IntegerField(read_only=True) name = serializers.CharField(max_length=100,required=True) type = serializers.ChoiceField(PUT_TYPE_CHOICES) range = PoolRange(required=False, many=True) #available = serializers.IntegerField(read_only=True) #used = serializers.IntegerField(read_only=True) #scope = serializers.ChoiceField(SCOPE_CHOICES) def create(self,validated_data): ''' TBD ''' return Pool.objects.create(**validated_data)
36.56338
91
0.724961
2,225
0.857088
0
0
0
0
0
0
421
0.162173
dece77460bb0515a4dff433a0f6f8e80d7adc76c
3,735
py
Python
yiffscraper/downloader.py
ScraperT/yiffscraper
49482a544fc7f11e6ea5db2626dbc2404529d656
[ "MIT" ]
42
2019-12-23T23:55:12.000Z
2022-02-07T04:12:59.000Z
yiffscraper/downloader.py
arin17bishwa/yiffscraper
49482a544fc7f11e6ea5db2626dbc2404529d656
[ "MIT" ]
7
2020-01-12T13:04:56.000Z
2020-05-18T07:11:51.000Z
yiffscraper/downloader.py
arin17bishwa/yiffscraper
49482a544fc7f11e6ea5db2626dbc2404529d656
[ "MIT" ]
7
2020-03-12T03:47:53.000Z
2020-07-26T08:05:55.000Z
import os import platform from datetime import datetime import time from pathlib import Path import asyncio from dateutil.parser import parse as parsedate from dateutil import tz import aiohttp def longpath(p): if p is None or platform.system() != "Windows": return Path(p) return Path("\\\\?\\" + str(Path.cwd() / p)) class UrlItem: __slots__ = ("url", "size", "lastModified", "path") def __init__(self, url, size, lastModified, path=None): self.url = url self.size = size self.lastModified = lastModified self.path = longpath(path) def needsUpdate(self): if self.path is None: return False fileLastModified = getFileTime(self.path) if self.lastModified is None or fileLastModified is None: return True return self.lastModified > fileLastModified @classmethod async def fetchMetadata(cls, session, url, path): async with session.head(url, allow_redirects=True) as response: try: response.raise_for_status() except aiohttp.ClientResponseError as e: # I don't like returning Exceptions, but I can't find a better way to pass a single error in an async loop return (None, e) size = int(response.headers.get("content-length", 0)) lastModified = parsedateOrNone(response.headers.get("last-modified", None)) return (cls(url, size, lastModified, path), None) async def download(self, session, update): if self.path is None: return if update and not await self.needsUpdate(): return self.path.parent.mkdir(parents=True, exist_ok=True) async with session.get(self.url) as response: try: response.raise_for_status() except aiohttp.ClientResponseError as e: # I don't like returning Exceptions, but I can't find a better way to pass a single error in an async loop return (self, e) with open(self.path, "wb") as out_file: while True: chunk = await response.content.read(8192) if not chunk: break out_file.write(chunk) url_timestamp = getTimestamp(self.lastModified) os.utime(self.path, (url_timestamp, url_timestamp)) return (self, None) @classmethod async def fetchAllMetadata(cls, items): async with newSession() as session: tasks = [cls.fetchMetadata(session, i.url, i.path) for i in items] for task in asyncio.as_completed(tasks): urlitem = await task yield urlitem @classmethod async def downloadAll(cls, urlitems, update): async with newSession() as session: tasks = [urlitem.download(session, update) for urlitem in urlitems] for task in asyncio.as_completed(tasks): yield await task def __len__(self): return self.size def getFileTime(path): try: file_datetime = datetime.fromtimestamp(os.path.getmtime(path), tz=tz.tzutc()) except FileNotFoundError: file_datetime = None return file_datetime def getTimestamp(t): if t is None: return None timestamp = time.mktime(t.timetuple()) return timestamp def parsedateOrNone(dateString): if dateString is None: return None return parsedate(dateString) def newSession(): connector = aiohttp.connector.TCPConnector(limit=25, limit_per_host=10) timeout = aiohttp.ClientTimeout(total=None) return aiohttp.ClientSession(connector=connector, timeout=timeout)
31.923077
122
0.626774
2,735
0.732262
537
0.143775
1,191
0.318876
2,081
0.557162
296
0.07925
decfc0841b9274cca97b69d13faf37aa2232005f
58
py
Python
tests/cases/print.py
wisn/py2many
e33871a3e54971407319e9df28dcadcdc3a49140
[ "MIT" ]
1
2021-05-14T00:35:04.000Z
2021-05-14T00:35:04.000Z
tests/cases/print.py
wisn/py2many
e33871a3e54971407319e9df28dcadcdc3a49140
[ "MIT" ]
null
null
null
tests/cases/print.py
wisn/py2many
e33871a3e54971407319e9df28dcadcdc3a49140
[ "MIT" ]
null
null
null
def main(): print(2) print("b") print(2, "b")
11.6
17
0.448276
0
0
0
0
0
0
0
0
6
0.103448
ded08df80894e1241c99188254ecd7f7c259352b
380
py
Python
linked_lists/find_loop.py
maanavshah/coding-interview
4c842cdbc6870da79684635f379966d1caec2162
[ "MIT" ]
null
null
null
linked_lists/find_loop.py
maanavshah/coding-interview
4c842cdbc6870da79684635f379966d1caec2162
[ "MIT" ]
null
null
null
linked_lists/find_loop.py
maanavshah/coding-interview
4c842cdbc6870da79684635f379966d1caec2162
[ "MIT" ]
null
null
null
# O(n) time | O(1) space class LinkedList: def __init__(self, value): self.value = value self.next = None def findLoop(head): slow = head.next fast = head.next.next while fast != slow: slow = slow.next fast = fast.next.next fast = head while fast != slow: slow = slow.next fast = fast.next return fast
20
30
0.560526
100
0.263158
0
0
0
0
0
0
24
0.063158
ded4491d8cef57cccb094e0f83641638968be15a
3,066
py
Python
src/tests/attention_test.py
feperessim/attention_keras
322a16ee147122026b63305aaa5e899d9e5de883
[ "MIT" ]
422
2019-03-17T13:08:59.000Z
2022-03-31T12:08:29.000Z
src/tests/attention_test.py
JKhodadadi/attention_keras
322a16ee147122026b63305aaa5e899d9e5de883
[ "MIT" ]
51
2019-03-17T20:08:11.000Z
2022-03-18T03:51:42.000Z
src/tests/attention_test.py
JKhodadadi/attention_keras
322a16ee147122026b63305aaa5e899d9e5de883
[ "MIT" ]
285
2019-03-17T19:06:22.000Z
2022-03-31T02:29:17.000Z
import pytest from layers.attention import AttentionLayer from tensorflow.keras.layers import Input, GRU, Dense, Concatenate, TimeDistributed from tensorflow.keras.models import Model import tensorflow as tf def test_attention_layer_standalone_fixed_b_fixed_t(): """ Tests fixed batch size and time steps Encoder and decoder has variable seq length and latent dim """ inp1 = Input(batch_shape=(5,10,15)) inp2 = Input(batch_shape=(5,15,25)) out, e_out = AttentionLayer()([inp1, inp2]) assert out.shape == tf.TensorShape([inp2.shape[0], inp2.shape[1], inp1.shape[2]]) assert e_out.shape == tf.TensorShape([inp1.shape[0], inp2.shape[1], inp1.shape[1]]) def check_tensorshape_equal(shape1, shape2): print(shape1, shape2) equal = [] for s1, s2 in zip(shape1, shape2): if (s1 == s2) == None: equal.append(True) else: equal.append(s1==s2) return all(equal) def test_attention_layer_standalone_none_b_fixed_t(): inp1 = Input(shape=(10, 15)) inp2 = Input(shape=(15, 25)) out, e_out = AttentionLayer()([inp1, inp2]) assert check_tensorshape_equal(out.shape, tf.TensorShape([None, inp2.shape[1], inp1.shape[2]])) assert check_tensorshape_equal(e_out.shape, tf.TensorShape([None, inp2.shape[1], inp1.shape[1]])) def test_attention_layer_standalone_none_b_none_t(): inp1 = Input(shape=(None, 15)) inp2 = Input(shape=(None, 25)) out, e_out = AttentionLayer()([inp1, inp2]) assert check_tensorshape_equal(out.shape, tf.TensorShape([None, None, inp1.shape[2]])) assert check_tensorshape_equal(e_out.shape, tf.TensorShape([None, None, None])) '''def test_attention_layer_nmt_none_b_fixed_t(): encoder_inputs = Input(shape=(12, 75), name='encoder_inputs') decoder_inputs = Input(shape=(16 - 1, 80), name='decoder_inputs') # Encoder GRU encoder_gru = GRU(32, return_sequences=True, return_state=True, name='encoder_gru') encoder_out, encoder_state = encoder_gru(encoder_inputs) # Set up the decoder GRU, using `encoder_states` as initial state. decoder_gru = GRU(32, return_sequences=True, return_state=True, name='decoder_gru') decoder_out, decoder_state = decoder_gru(decoder_inputs, initial_state=encoder_state) # Attention layer attn_layer = AttentionLayer(name='attention_layer') attn_out, attn_states = attn_layer([encoder_out, decoder_out]) # Concat attention input and decoder GRU output decoder_concat_input = Concatenate(axis=-1, name='concat_layer')([decoder_out, attn_out]) # Dense layer dense = Dense(80, activation='softmax', name='softmax_layer') dense_time = TimeDistributed(dense, name='time_distributed_layer') decoder_pred = dense_time(decoder_concat_input) # Full model full_model = Model(inputs=[encoder_inputs, decoder_inputs], outputs=decoder_pred) full_model.compile(optimizer='adam', loss='categorical_crossentropy') assert decoder_pred.shape == tf.TensorShape([]) def test_attention_layer_nmt_none_b_none_t(): pass'''
37.390244
101
0.7182
0
0
0
0
0
0
0
0
1,513
0.493477
ded5e7681d684ad45f836b0b523b89035ed45f16
1,572
py
Python
Python/9248_Suffix_Array/9248_suffix_array_lcp_array.py
ire4564/Baekjoon_Solutions
3e6689efa30d6b850cdc29570c76408a1e1b2b49
[ "Apache-2.0" ]
4
2020-11-17T09:52:29.000Z
2020-12-13T11:36:14.000Z
Python/9248_Suffix_Array/9248_suffix_array_lcp_array.py
ire4564/Baekjoon_Solutions
3e6689efa30d6b850cdc29570c76408a1e1b2b49
[ "Apache-2.0" ]
2
2020-11-19T11:21:02.000Z
2020-11-19T22:07:15.000Z
Python/9248_Suffix_Array/9248_suffix_array_lcp_array.py
ire4564/Baekjoon_Solutions
3e6689efa30d6b850cdc29570c76408a1e1b2b49
[ "Apache-2.0" ]
12
2020-11-17T06:55:13.000Z
2021-05-16T14:39:37.000Z
from itertools import zip_longest, islice def to_int_keys_best(l): seen = set() ls = [] for e in l: if not e in seen: ls.append(e) seen.add(e) ls.sort() index = {v: i for i, v in enumerate(ls)} return [index[v] for v in l] def suffix_array_best(s): n = len(s) k = 1 line = to_int_keys_best(s) while max(line) < n - 1: line = to_int_keys_best( [a * (n + 1) + b + 1 for (a, b) in zip_longest(line, islice(line, k, None), fillvalue=-1)]) k <<= 1 return line def lcp_array(s, sa): n = len(s) k = 0 lcp = [0] * n rank = [0] * n for i in range(n): rank[sa[i]] = i for i in range(n): if rank[i] == n - 1: k = 0 continue j = sa[rank[i] + 1] while i + k < n and j + k < n and s[i + k] == s[j + k]: k += 1 lcp[rank[i]] = k; if k: k -= 1 return lcp def inverse_array(l): n = len(l) ans = [0] * n for i in range(n): ans[l[i]] = i return ans if __name__ == '__main__': L = input() inverse_suffix_array = suffix_array_best(L) suffix_array = inverse_array(inverse_suffix_array) for item in suffix_array: print(item + 1, end=' ') LCP = lcp_array(L, suffix_array) LCP.pop() LCP.insert(0, 'x') print() for item in LCP: print(item, end=' ')
20.684211
64
0.448473
0
0
0
0
0
0
0
0
19
0.012087
ded667020b68f181edc8b21f22dbb71557c2c7cc
1,329
py
Python
lgr/tools/compare/utils.py
ron813c/lgr-core
68ba730bf7f9e61cb97c9c08f61bc58b8ea24e7b
[ "BSD-3-Clause" ]
7
2017-07-10T22:39:52.000Z
2021-06-25T20:19:28.000Z
lgr/tools/compare/utils.py
ron813c/lgr-core
68ba730bf7f9e61cb97c9c08f61bc58b8ea24e7b
[ "BSD-3-Clause" ]
13
2016-10-26T19:42:00.000Z
2021-12-13T19:43:42.000Z
lgr/tools/compare/utils.py
ron813c/lgr-core
68ba730bf7f9e61cb97c9c08f61bc58b8ea24e7b
[ "BSD-3-Clause" ]
8
2016-11-07T15:40:27.000Z
2020-09-22T13:48:52.000Z
# -*- coding: utf-8 -*- """ utils.py - Definition of utility functions. """ from collections import namedtuple from lgr.utils import format_cp VariantProperties = namedtuple('VariantProperties', ['cp', 'type', 'when', 'not_when', 'comment']) def display_variant(variant): """ Nicely display a variant. :param variant: The variant to display. """ return "Variant {}: type={} - when={} - not-when={} - comment={}".format( format_cp(variant.cp), variant.type, variant.when, variant.not_when, variant.comment) def compare_objects(first, second, cmp_fct): """ Compare two objects, possibly None. :param first: First object. :param second: Second object. :param cmp_fct: A comparison function. :return: The "greatest" object according to `cmp_fct`, None if both values are None. >>> compare_objects(1, 2, max) 2 >>> compare_objects(1, 2, min) 1 >>> compare_objects(None, None, max) is None True >>> compare_objects(1, None, min) 1 >>> compare_objects(None, 1, min) 1 """ if first is None: return second if second is None: return first return cmp_fct(first, second)
24.611111
77
0.574116
0
0
0
0
0
0
0
0
764
0.574868
ded78378f0da72d7d6e0a021bbb1b4a6004db8f0
2,386
py
Python
tests/test__file_object.py
StateArchivesOfNorthCarolina/tomes_metadata
8b73096c1b16e0db2895a6c01d4fc4fd9621cf55
[ "MIT" ]
null
null
null
tests/test__file_object.py
StateArchivesOfNorthCarolina/tomes_metadata
8b73096c1b16e0db2895a6c01d4fc4fd9621cf55
[ "MIT" ]
2
2018-09-12T20:36:22.000Z
2018-09-13T20:14:50.000Z
tests/test__file_object.py
StateArchivesOfNorthCarolina/tomes-packager
8b73096c1b16e0db2895a6c01d4fc4fd9621cf55
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # import modules. import sys; sys.path.append("..") import hashlib import json import logging import os import plac import unittest import warnings from tomes_packager.lib.directory_object import * from tomes_packager.lib.file_object import * # enable logging. logging.basicConfig(level=logging.DEBUG) class Test_FileObject(unittest.TestCase): def setUp(self): # set attributes. self.sample_file = __file__ self.sample_dir = os.path.dirname(self.sample_file) self.dir_obj = DirectoryObject(self.sample_dir) self.file_obj = FileObject(self.sample_file, self.dir_obj, self.dir_obj, 0) def test__mimetype(self): """ Is the MIME type for @self.file_obj correct? """ # get mime via mimetypes.guess_type. mime = mimetypes.guess_type(self.sample_file)[0] # make sure the FileObject mimetype is the same. self.assertEqual(mime, self.file_obj.mimetype()) def test__checksum(self): """ Is the SHA-1 hash for @self.file_obj correct? """ # get SHA-1 value of @self.sample_file via hashlib. sha1 = hashlib.sha1() with open(self.sample_file, "rb") as f: sha1.update(f.read()) sha1 = sha1.hexdigest() # get FileObject SHA-1 hash and suppress ResourceWarning in unittest. with warnings.catch_warnings(): warnings.simplefilter("ignore") sha1_obj = self.file_obj.checksum("SHA-1") # make sure hashes are equal. self.assertEqual(sha1, sha1_obj) # CLI. def main(filepath:("file path")): "Converts a file to a FolderObject and prints its attributes to screen as JSON.\ \nexample: `python3 test__file_object.py sample_files/sample_rdf.xlsx`" # convert @filepath to a FileObject. dir_obj = DirectoryObject(os.path.dirname(filepath)) file_obj = FileObject(filepath, dir_obj, dir_obj, 0) # collect @file_obj attributes. fdict = {} for att in file_obj.__dict__: if att[0] == "_": continue try: val = getattr(file_obj, att)() except TypeError: val = getattr(file_obj, att) fdict[att] = str(val) # convert @fdict to JSON. js = json.dumps(fdict, indent=2) print(js) if __name__ == "__main__": plac.call(main)
27.744186
84
0.642079
1,267
0.531014
0
0
0
0
0
0
712
0.298407
ded98a6b09e99064104171c0327f9f5f8f68c1fa
244
py
Python
tests/test_helpers.py
c137digital/unv_web
52bea090c630b4e2a393c70907d35c9558d259fa
[ "MIT" ]
null
null
null
tests/test_helpers.py
c137digital/unv_web
52bea090c630b4e2a393c70907d35c9558d259fa
[ "MIT" ]
null
null
null
tests/test_helpers.py
c137digital/unv_web
52bea090c630b4e2a393c70907d35c9558d259fa
[ "MIT" ]
null
null
null
from unv.web.helpers import url_with_domain, url_for_static def test_url_with_domain(): assert url_with_domain('/path') == 'https://app.local/path' def test_simple_static_url(): assert url_for_static('asd.txt') == '/static/asd.txt'
24.4
63
0.737705
0
0
0
0
0
0
0
0
57
0.233607
deda4206dc73f8dbe4b33d7d756e79510962b4d8
10,829
py
Python
game.py
IliketoTranslate/Pickaxe-clicker
e74ebd66842bd47c4ed1c4460e9f45e30a2ad1d7
[ "MIT" ]
null
null
null
game.py
IliketoTranslate/Pickaxe-clicker
e74ebd66842bd47c4ed1c4460e9f45e30a2ad1d7
[ "MIT" ]
null
null
null
game.py
IliketoTranslate/Pickaxe-clicker
e74ebd66842bd47c4ed1c4460e9f45e30a2ad1d7
[ "MIT" ]
null
null
null
import pygame icon = pygame.image.load("diamond_pickaxe.png") screen_weight = 1750 screen_height = 980 pygame.init() window = pygame.display.set_mode((screen_weight, screen_height)) pygame.display.set_caption('Pickaxe clicker') pygame.display.set_icon(icon) # zmienne wytrzymałość_kilofa = 50 max_wytrzymałość_kilofa = 50 dodaj2 = 1 record = 0 game_version = "0.2.2" last_update = "28.01.2022" x_for_kilof = 400 y_for_kilof = 400 x_for_button1 = 1030 y_for_button1 = 80 x_for_button2 = 1030 y_for_button2 = 800 boost = 1 doswiadczenie = 0 dodaj = 1 max_dodaj = 1 kilof_upgrade = 100 choosed_kilof = 1 # obiekty kilof = pygame.image.load("Drewniany_kilof.png") kilof2 = pygame.image.load("Kamienny_kilof.png") kilof3 = pygame.image.load("Zelazny_kilof.png") kilof4 = pygame.image.load("Zloty_kilof.png") kilof5 = pygame.image.load("Diamentowy_kilof.png") button_upgrade = pygame.image.load("Button_upgrade.png") button_upgrade_clicked = pygame.image.load("Button_upgrade_clicked.png") button_upgrade2 = pygame.image.load("Button_upgrade2.png") button_upgrade2_clicked = pygame.image.load("Button_upgrade2_clicked.png") button_restart = pygame.image.load("Button_restart.png") tlo = pygame.image.load("tlo.png") tlo = pygame.transform.scale(tlo, (screen_weight, screen_height)) # skalowanie # hitboxy kilof_hitbox = pygame.rect.Rect(x_for_kilof, y_for_kilof, 160, 160) # tworzy hitbox do kilofa button_upgrade_hitbox = pygame.rect.Rect(x_for_button1, y_for_button1, 650, 100) # tworzy hitbox do przycisku button_upgrade2_hitbox = pygame.rect.Rect(x_for_button2, y_for_button2, 650, 100) # funkcje def draw_object(object, x, y) : window.blit(object, (x, y)) # rysowanie objektu def draw_hitbox(object) : pygame.draw.rect(window, (93, 32, 32), object) def zdarzenia_z_myszką() : wytrzymałość_kilofa = 50 max_wytrzymałość_kilofa = 50 dodaj2 = 1 record = 0 game_version = "0.2.2" last_update = "28.01.2022" x_for_kilof = 400 y_for_kilof = 400 x_for_button1 = 1030 y_for_button1 = 80 x_for_button2 = 1030 y_for_button2 = 800 boost = 1 doswiadczenie = 0 dodaj = 1 max_dodaj = 1 kilof_upgrade = 100 choosed_kilof = 1 kilof_upgrade2 = kilof_upgrade - 1 if wytrzymałość_kilofa == 0 : dodaj = 0 dodaj2 = 0 else : dodaj2 = 1 dodaj = max_dodaj if choosed_kilof > 0 and choosed_kilof < 5 : if button_upgrade2_hitbox.collidepoint(pygame.mouse.get_pos()) and doswiadczenie > kilof_upgrade2 : # jeżeli mysz dotyka hitboxa if pygame.mouse.get_pressed()[0]: # jeżeli naciśnieto lewy przycisk myszy doswiadczenie = doswiadczenie - kilof_upgrade if wytrzymałość_kilofa == 0 : choosed_kilof = 1 kilof_upgrade = 100 dodaj = 0 dodaj2 = 0 wytrzymałość_kilofa = max_wytrzymałość_kilofa else : dodaj2 = 1 choosed_kilof += 1 max_wytrzymałość_kilofa = max_wytrzymałość_kilofa * 2 kilof_upgrade = kilof_upgrade * 2 wytrzymałość_kilofa = max_wytrzymałość_kilofa pygame.time.wait(50) else : max_wytrzymałość_kilofa = 800 kilof_upgrade = 10000000000 if button_upgrade2_hitbox.collidepoint(pygame.mouse.get_pos()) and doswiadczenie > kilof_upgrade2 : # jeżeli mysz dotyka hitboxa if pygame.mouse.get_pressed()[0]: # jeżeli naciśnieto lewy przycisk myszy wytrzymałość_kilofa = max_wytrzymałość_kilofa pygame.time.wait(50) if kilof_hitbox.collidepoint(pygame.mouse.get_pos()): if pygame.mouse.get_pressed()[0]: pygame.time.wait(100) doswiadczenie += dodaj wytrzymałość_kilofa = wytrzymałość_kilofa - dodaj2 boost2 = boost - 1 if button_upgrade_hitbox.collidepoint(pygame.mouse.get_pos()) and doswiadczenie > boost2: if pygame.mouse.get_pressed()[0]: max_dodaj += choosed_kilof doswiadczenie = doswiadczenie - boost boost = boost * 2 pygame.time.wait(100) if button_upgrade2_hitbox.collidepoint(pygame.mouse.get_pos()): draw_object(button_upgrade2_clicked, x_for_button2, y_for_button2) # rysowanie przycisku draw_object(text_kilof, 1040, 840) # rysowanie tekstu 2 else : draw_object(button_upgrade2, x_for_button2, y_for_button2) # rysowanie przycisku draw_object(text_kilof, 1040, 840) # rysowanie tekstu 2 if button_upgrade_hitbox.collidepoint(pygame.mouse.get_pos()): draw_object(button_upgrade_clicked, x_for_button1, y_for_button1) # rysowanie przycisku draw_object(text_ulepszenie, 1040, 110) # rysowanie tekstu 2 else : draw_object(button_upgrade, x_for_button1, y_for_button1) # rysowanie przycisku draw_object(text_ulepszenie, 1040, 110) # rysowanie tekstu 2 run = True while run: pygame.time.Clock().tick(100) # maksymalnie 100 fps for event in pygame.event.get(): if event.type == pygame.QUIT: # jeśli gracz zamknie okienko run = False keys = pygame.key.get_pressed() if keys[pygame.K_ESCAPE] : run = False # napisy kilof_upgrade2 = kilof_upgrade - 1 text_wersja = pygame.font.Font.render(pygame.font.SysFont("Freemono", 50), f"Version : {game_version} | Last update : {last_update}", True, (255, 200, 100)) # generowanie tekstu text_doswiadczenie = pygame.font.Font.render(pygame.font.SysFont("Dyuthi", 72), f"Doswiadczenie : {doswiadczenie}", True, (100, 100, 100)) # generowanie tekstu text_kilof = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Kup kilof | Koszt : {kilof_upgrade}", True, (255, 255, 255)) # generowanie tekstu text_WIP = pygame.font.Font.render(pygame.font.SysFont("Waree", 25), f"W I P (WORK IN PROGRESS)", True, (255, 255, 255)) # generowanie tekstu 2 text_wytrzymałość_kilofa = pygame.font.Font.render(pygame.font.SysFont("Dyuthi", 50), f"Wytrzymalosc kilofa : {wytrzymałość_kilofa}", True, (255, 255, 255)) # generowanie tekstu 2 text_record = pygame.font.Font.render(pygame.font.SysFont("Liberation Serif", 50), f"Record : {record}", True, (150, 150, 150)) if choosed_kilof > 0 and choosed_kilof < 5 : if doswiadczenie > kilof_upgrade2 : text_kilof = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Kup kilof | Koszt : {kilof_upgrade}, Dostepne", True, (255, 255, 255)) # generowanie tekstu 2 else : text_kilof = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Kup kilof | Koszt : {kilof_upgrade}, Niedostepne", True, (255, 255, 255)) # generowanie tekstu 2 elif choosed_kilof == 5 : text_kilof = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Nie ma wiecej dostepnych kilofow", True, (255, 255, 255)) # generowanie tekstu 2 boost2 = boost - 1 if doswiadczenie > boost2 : text_ulepszenie = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Ulepszenie kilofa | Koszt : {boost}, Dostepne", True, (255, 255, 255)) # generowanie tekstu else : text_ulepszenie = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Ulepszenie kilofa | Koszt : {boost}, Niedostepne", True, (255, 255, 255)) # generowanie tekstu window.blit(tlo, (0, 0)) # rysowanie tła # rysowanie hitboxów draw_hitbox(kilof_hitbox) # rysowanie hitboxu do kilofa draw_hitbox(button_upgrade_hitbox) # rysowanie hitboxu do przycisku upgrade draw_hitbox(button_upgrade2_hitbox) # rysowanie hitboxu do przycisku upgrade2 # rysowanie obiektów if choosed_kilof == 1 : draw_object(kilof, x_for_kilof, y_for_kilof) # rysowanie kilofu elif choosed_kilof == 2 : draw_object(kilof2, x_for_kilof, y_for_kilof) elif choosed_kilof == 3 : draw_object(kilof3, x_for_kilof, y_for_kilof) elif choosed_kilof == 4 : draw_object(kilof4, x_for_kilof, y_for_kilof) elif choosed_kilof == 5 or choosed_kilof > 5 : draw_object(kilof5, x_for_kilof, y_for_kilof) draw_object(button_upgrade, x_for_button1, y_for_button1) # rysowanie przycisku draw_object(button_upgrade2, x_for_button2, y_for_button2) # rysowanie przycisku 2 draw_object(button_restart, 0, 0) draw_object(text_doswiadczenie, 224, 100) # rysowanie tekstu draw_object(text_ulepszenie, 1040, 110) # rysowanie tekstu 2 draw_object(text_wersja, 10, 5) # rysowanie tekstu 3 draw_object(text_kilof, 1040, 840) draw_object(text_WIP, 1170, 750) draw_object(text_wytrzymałość_kilofa, 250, 300) draw_object(text_record, 1280, 0) # sprawdzanie zdarzeń z myszką zdarzenia_z_myszką() # sprawdzanie if doswiadczenie > record : record = doswiadczenie #if x_for_button1 > 80 : #if x_for_button2 > 800 : # wydrukuj pygame.display.update()
49.447489
296
0.576138
0
0
0
0
0
0
0
0
2,020
0.18527
dedba85b4c2428f8778fd3f7f0d4d19fee14a759
4,383
py
Python
tests/test_predictor.py
WeijieChen2017/pytorch-3dunet
15c782481cb7bc3e2083a80bcc8b114cc8697c20
[ "MIT" ]
1
2021-08-04T04:03:37.000Z
2021-08-04T04:03:37.000Z
tests/test_predictor.py
LalithShiyam/pytorch-3dunet
f6b6c13cb0bb6194e95976b0245b76aaa9e9a496
[ "MIT" ]
null
null
null
tests/test_predictor.py
LalithShiyam/pytorch-3dunet
f6b6c13cb0bb6194e95976b0245b76aaa9e9a496
[ "MIT" ]
1
2022-03-14T04:43:24.000Z
2022-03-14T04:43:24.000Z
import os from tempfile import NamedTemporaryFile import h5py import numpy as np import torch from skimage.metrics import adapted_rand_error from torch.utils.data import DataLoader from pytorch3dunet.datasets.hdf5 import StandardHDF5Dataset from pytorch3dunet.datasets.utils import prediction_collate, get_test_loaders from pytorch3dunet.predict import _get_output_file, _get_predictor from pytorch3dunet.unet3d.model import get_model from pytorch3dunet.unet3d.predictor import EmbeddingsPredictor from pytorch3dunet.unet3d.utils import remove_halo class FakePredictor(EmbeddingsPredictor): def __init__(self, model, loader, output_file, config, clustering, iou_threshold=0.7, **kwargs): super().__init__(model, loader, output_file, config, clustering, iou_threshold=iou_threshold, **kwargs) def _embeddings_to_segmentation(self, embeddings): return embeddings class FakeModel: def __call__(self, input): return input def eval(self): pass class TestPredictor: def test_stanard_predictor(self, tmpdir, test_config): # Add output dir test_config['loaders']['output_dir'] = tmpdir # create random dataset tmp = NamedTemporaryFile(delete=False) with h5py.File(tmp.name, 'w') as f: shape = (32, 64, 64) f.create_dataset('raw', data=np.random.rand(*shape)) # Add input file test_config['loaders']['test']['file_paths'] = [tmp.name] # Create the model with random weights model = get_model(test_config) # Create device and update config device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu') test_config['device'] = device model = model.to(device) for test_loader in get_test_loaders(test_config): output_file = _get_output_file(dataset=test_loader.dataset, output_dir=tmpdir) predictor = _get_predictor(model, test_loader, output_file, test_config) # run the model prediction on the entire dataset and save to the 'output_file' H5 predictor.predict() def test_embeddings_predictor(self, tmpdir): config = { 'model': {'output_heads': 1}, 'device': torch.device('cpu') } slice_builder_config = { 'name': 'SliceBuilder', 'patch_shape': (64, 200, 200), 'stride_shape': (40, 150, 150) } transformer_config = { 'raw': [ {'name': 'ToTensor', 'expand_dims': False, 'dtype': 'long'} ] } gt_file = 'resources/sample_ovule.h5' output_file = os.path.join(tmpdir, 'output_segmentation.h5') dataset = StandardHDF5Dataset(gt_file, phase='test', slice_builder_config=slice_builder_config, transformer_config=transformer_config, mirror_padding=None, raw_internal_path='label') loader = DataLoader(dataset, batch_size=1, num_workers=1, shuffle=False, collate_fn=prediction_collate) predictor = FakePredictor(FakeModel(), loader, output_file, config, clustering='meanshift', bandwidth=0.5) predictor.predict() with h5py.File(gt_file, 'r') as f: with h5py.File(output_file, 'r') as g: gt = f['label'][...] segm = g['segmentation/meanshift'][...] arand_error = adapted_rand_error(gt, segm)[0] assert arand_error < 0.1 def test_remove_halo(self): patch_halo = (4, 4, 4) shape = (128, 128, 128) input = np.random.randint(0, 10, size=(1, 16, 16, 16)) index = (slice(0, 1), slice(12, 28), slice(16, 32), slice(16, 32)) u_patch, u_index = remove_halo(input, index, shape, patch_halo) assert np.array_equal(input[:, 4:12, 4:12, 4:12], u_patch) assert u_index == (slice(0, 1), slice(16, 24), slice(20, 28), slice(20, 28)) index = (slice(0, 1), slice(112, 128), slice(112, 128), slice(112, 128)) u_patch, u_index = remove_halo(input, index, shape, patch_halo) assert np.array_equal(input[:, 4:16, 4:16, 4:16], u_patch) assert u_index == (slice(0, 1), slice(116, 128), slice(116, 128), slice(116, 128))
35.346774
114
0.62423
3,823
0.872234
0
0
0
0
0
0
524
0.119553
dedbd6180bc5f6b44a69dd4d23b7983f144a3239
2,560
py
Python
catalog/views.py
DigimundoTesca/Tv-Mundo
09904759d1f4f9bf2d5c7c31b97af82c3c963bfd
[ "MIT" ]
null
null
null
catalog/views.py
DigimundoTesca/Tv-Mundo
09904759d1f4f9bf2d5c7c31b97af82c3c963bfd
[ "MIT" ]
6
2017-09-19T07:26:14.000Z
2017-09-27T10:06:49.000Z
catalog/views.py
DigimundoTesca/Tv-Mundo
09904759d1f4f9bf2d5c7c31b97af82c3c963bfd
[ "MIT" ]
null
null
null
from django.shortcuts import render, get_object_or_404 from django.contrib.auth.decorators import login_required from catalog.models import Videos, Category, Docs, Subscriber from django.contrib.auth.decorators import login_required @login_required def home(request): template = 'home.html' category = Category.objects.all() videos = Videos.objects.all() grade = Subscriber.objects.get(user=request.user) context = { 'grade': grade, 'videos': videos, 'title': "Tv Mundo", 'category' : category, } return render(request, template, context) @login_required def block(request, name): template = 'block.html' cat = Category.objects.all() selCat = cat.get(title=name) title = name context = { 'title': title, 'category': cat, 'selCat': selCat, } return render(request, template, context) @login_required def catalog(request): template = 'catalog.html' category = Category.objects.all() videos = Videos.objects.all() docs = Docs.objects.all() title = 'Catalogo' context = { 'docs' : docs, 'videos' : videos, 'category' : category, 'title': title, } return render(request, template, context) @login_required def videos(request, name, pk=0): template = 'videos.html' videos = Videos.objects.filter(category__title=name).filter(status=True) category = Category.objects.all() docs = Docs.objects.filter(category__title=name) title = name if pk == '0': s_vid = videos[:1].get() else: s_vid = videos.filter(pk=pk) s_vid = s_vid[:1].get() context = { 's_vid': s_vid, 'videos': videos, 'docs':docs, 'category': category, 'title': title, } return render(request, template, context) @login_required def images(request, name, pk=None): template = 'images.html' docs = Docs.objects.filter(category__title=name).filter(kind="IMG") category = Category.objects.all() title = name context = { 'category': category, 'docs': docs, 'title': title, } return render(request, template, context) @login_required def docs(request, name, pk=None): template = 'documents.html' docs = Docs.objects.all().filter(category__title=name) category = Category.objects.all() title = name context = { 'category': category, 'docs': docs, 'title': title, } return render(request, template, context)
24.380952
76
0.622656
0
0
0
0
2,311
0.902734
0
0
279
0.108984
dedc38f09d494832d839db3e999852609e6a45ac
519
py
Python
python/database/get_twitter_predict_by_order.py
visdata/DeepClue
8d80ecd783919c97ba225db67664a0dfe5f3fb37
[ "Apache-2.0" ]
1
2020-12-06T08:04:32.000Z
2020-12-06T08:04:32.000Z
python/database/get_twitter_predict_by_order.py
visdata/DeepClue
8d80ecd783919c97ba225db67664a0dfe5f3fb37
[ "Apache-2.0" ]
null
null
null
python/database/get_twitter_predict_by_order.py
visdata/DeepClue
8d80ecd783919c97ba225db67664a0dfe5f3fb37
[ "Apache-2.0" ]
null
null
null
import MySQLdb db = MySQLdb.connect('localhost', 'root', 'vis_2014', 'FinanceVis') cursor = db.cursor() sql = 'select predict_news_word from all_twitter where symbol=%s order by predict_news_word+0 desc' cursor.execute(sql, ('AAPL', )) results = cursor.fetchall() file_twitter_predict = open('twitter_predict_AAPL.csv', 'wb') for row in results: predict = row[0] if row[0] is None: predict = 'NULL' file_twitter_predict.write(predict+'\n') file_twitter_predict.close() cursor.close() db.close()
25.95
99
0.714836
0
0
0
0
0
0
0
0
178
0.342967
dedd33f5b7d0869e4ad454abba7866e56edaacbb
301
py
Python
examples/matplotlib/mpl_plot_dot.py
sudojarvis/arviz
73531be4f23df7d764b2e3bec8c5ef5cb882590d
[ "Apache-2.0" ]
1,159
2018-04-03T08:50:54.000Z
2022-03-31T18:03:52.000Z
examples/matplotlib/mpl_plot_dot.py
sudojarvis/arviz
73531be4f23df7d764b2e3bec8c5ef5cb882590d
[ "Apache-2.0" ]
1,656
2018-03-23T14:15:05.000Z
2022-03-31T14:00:28.000Z
examples/matplotlib/mpl_plot_dot.py
sudojarvis/arviz
73531be4f23df7d764b2e3bec8c5ef5cb882590d
[ "Apache-2.0" ]
316
2018-04-03T14:25:52.000Z
2022-03-25T10:41:29.000Z
""" Dot Plot ========= _thumb: .2, .8 _example_title: Plot distribution. """ import matplotlib.pyplot as plt import numpy as np import arviz as az az.style.use("arviz-darkgrid") data = np.random.normal(0, 1, 1000) az.plot_dot(data, dotcolor="C1", point_interval=True, figsize=(12, 6)) plt.show()
15.842105
70
0.69103
0
0
0
0
0
0
0
0
97
0.322259
dedeaccf1b8d4bb294ba8b9e2278d86179d43f0e
405
py
Python
kattis/solutions/alphabetspam.py
yifeng-pan/competitive_programming
c59edb1e08aa2db2158a814e3d34f4302658d98e
[ "Unlicense" ]
null
null
null
kattis/solutions/alphabetspam.py
yifeng-pan/competitive_programming
c59edb1e08aa2db2158a814e3d34f4302658d98e
[ "Unlicense" ]
null
null
null
kattis/solutions/alphabetspam.py
yifeng-pan/competitive_programming
c59edb1e08aa2db2158a814e3d34f4302658d98e
[ "Unlicense" ]
null
null
null
# https://open.kattis.com/problems/alphabetspam import sys import math xs = input() white = 0 lower = 0 higher =0 other = 0 for i in xs: if i == '_': white += 1 elif ('a' <= i) & (i <= 'z'): lower += 1 elif ('A' <= i) & (i <= "Z"): higher += 1 else: other += 1 print(white / len(xs)) print(lower / len(xs)) print(higher /len(xs)) print(other / len(xs))
15.576923
47
0.511111
0
0
0
0
0
0
0
0
62
0.153086
dee0061d48e6e49cac68657f95ed5ac4927eaa8e
3,813
py
Python
src/chain_orientation_three_vars_symbolic.py
Scriddie/Varsortability
357213d5ceefb6362060c56e12c18b41dc689306
[ "MIT" ]
4
2021-12-08T07:54:00.000Z
2022-03-09T07:55:21.000Z
src/chain_orientation_three_vars_symbolic.py
Scriddie/Varsortability
357213d5ceefb6362060c56e12c18b41dc689306
[ "MIT" ]
null
null
null
src/chain_orientation_three_vars_symbolic.py
Scriddie/Varsortability
357213d5ceefb6362060c56e12c18b41dc689306
[ "MIT" ]
1
2022-03-09T07:55:43.000Z
2022-03-09T07:55:43.000Z
import numpy as np from sympy import simplify, sqrt, symbols from sympy.stats import Normal, covariance as cov, variance as var def regcoeffs(x, y, z): covxy = cov(x, y) covyz = cov(y, z) varx = var(x) vary = var(y) varz = var(z) # forward f1 = simplify(covxy / varx) f2 = simplify(covyz / vary) # backward b1 = simplify(covyz / varz) b2 = simplify(covxy / vary) return f1, f2, b1, b2 if __name__ == "__main__": ab, bc, a, b, c = symbols([ "beta_{A_to_B}", "beta_{B_to_C}", "sigma_A", "sigma_B", "sigma_C"]) Na = Normal('Na', 0, 1) Nb = Normal('Nb', 0, 1) Nc = Normal('Nc', 0, 1) # SEM # A -> B -> C # raw A = a * Na B = ab * A + b * Nb C = bc * B + c * Nc # standardized As = A / sqrt(var(A)) Bs = B / sqrt(var(B)) Cs = C / sqrt(var(C)) # scale-harmonized Am = a * Na Bm = (ab / (ab**2 + 1)**(1/2)) * Am + b * Nb Cm = (bc / (bc**2 + 1)**(1/2)) * Bm + c * Nc # forward/backward coefficients in raw setting f1, f2, b1, b2 = regcoeffs(A, B, C) # forward/backward coefficients in standardized setting f1s, f2s, b1s, b2s = regcoeffs(As, Bs, Cs) # forward/backward coefficients in scale-harmonized setting f1m, f2m, b1m, b2m = regcoeffs(Am, Bm, Cm) for weight_range in [(0.5, 2), (0.5, .9), (.1, .9)]: raw = { 'f1<f2,b1>b2': 0, 'f1>f2,b1<b2': 0, 'other': 0 } std = { 'f1<f2,b1>b2': 0, 'f1>f2,b1<b2': 0, 'other': 0 } moj = { 'f1<f2,b1>b2': 0, 'f1>f2,b1<b2': 0, 'other': 0 } for _ in range(100000): # draw model parameters a_to_b, b_to_c = np.random.uniform(*weight_range, size=2) sA, sB, sC = np.random.uniform(0.5, 2, size=3) a_to_b *= np.random.choice([-1, 1]) b_to_c *= np.random.choice([-1, 1]) subs = { ab: a_to_b, bc: b_to_c, a: sA, b: sB, c: sC, } # raw if (abs(f1.subs(subs)) < abs(f2.subs(subs)) and abs(b1.subs(subs)) > abs(b2.subs(subs))): raw['f1<f2,b1>b2'] += 1 elif (abs(f1.subs(subs)) > abs(f2.subs(subs)) and abs(b1.subs(subs)) < abs(b2.subs(subs))): raw['f1>f2,b1<b2'] += 1 else: raw['other'] += 1 # standardized if (abs(f1s.subs(subs)) < abs(f2s.subs(subs)) and abs(b1s.subs(subs)) > abs(b2s.subs(subs))): std['f1<f2,b1>b2'] += 1 elif (abs(f1s.subs(subs)) > abs(f2s.subs(subs)) and abs(b1s.subs(subs)) < abs(b2s.subs(subs))): std['f1>f2,b1<b2'] += 1 else: std['other'] += 1 # scale-harmonized if (abs(f1m.subs(subs)) < abs(f2m.subs(subs)) and abs(b1m.subs(subs)) > abs(b2m.subs(subs))): moj['f1<f2,b1>b2'] += 1 elif (abs(f1m.subs(subs)) > abs(f2m.subs(subs)) and abs(b1m.subs(subs)) < abs(b2m.subs(subs))): moj['f1>f2,b1<b2'] += 1 else: moj['other'] += 1 print('weight_range', weight_range) raw['correct'] = raw['f1<f2,b1>b2'] + raw['other'] / 2 print('raw\t\t', raw) std['correct'] = std['f1<f2,b1>b2'] + std['other'] / 2 print('standardized\t', std) moj['correct'] = moj['f1<f2,b1>b2'] + moj['other'] / 2 print('Mooij-scaled\t', moj) print()
28.455224
69
0.441385
0
0
0
0
0
0
0
0
713
0.186992
dee00922a67f6dff4732cf526028648896d0fc92
2,290
py
Python
Phototweet.py
sbamueller/RasperryPi_BildFeinstaub
3666db384ead64893b3c548065aa31cef6c126af
[ "Apache-2.0" ]
null
null
null
Phototweet.py
sbamueller/RasperryPi_BildFeinstaub
3666db384ead64893b3c548065aa31cef6c126af
[ "Apache-2.0" ]
null
null
null
Phototweet.py
sbamueller/RasperryPi_BildFeinstaub
3666db384ead64893b3c548065aa31cef6c126af
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2.7 # coding=<UTF-8> # tweetpic.py take a photo with the Pi camera and tweet it # by Alex Eames http://raspi.tv/?p=5918 import tweepy from subprocess import call from datetime import datetime import requests import json i = datetime.now() #take time and date for filename now = i.strftime('%Y%m%d-%H%M%S') photo_name = now + '.jpg' cmd = 'raspistill -t 500 -w 1024 -h 768 -o /home/pi/Pictures' + photo_name call ([cmd], shell=True) #shoot the photo def pick_values(sensor): # Sensordaten fr SDS011 und DHT11 abfragen # dazu die api von luftdaten.info nutzen # Peter Furle @Alpensichtung Hotzenwald 04 2017 r = requests.get(sensor) json_string = r.text parsed_json = json.loads(json_string) # pretty print um uberhaupt zu verstehen was da passiert # print json.dumps(parsed_json, sort_keys=True, indent=4, separators=(',','$ l = len(parsed_json)-1 a = len(parsed_json[l]['sensordatavalues']) if a == 1: result=(parsed_json[l]['sensordatavalues'][0]['value_type'])+": "+(pars$ if a == 2: result=(parsed_json[l]['sensordatavalues'][0]['value_type'])+": "+(pars$ result=result+" "+(parsed_json[l]['sensordatavalues'][1]['value_type'])$ return(result) # Freiburger Sensor von sbamueller url = 'http://api.luftdaten.info/static/v1/sensor/534/' tweet = pick_values(url) url = 'http://api.luftdaten.info/static/v1/sensor/533/' tweet = tweet + " " + pick_values(url) # Texte 140 Zeichen Tweets tweet = tweet.replace('temperature: ','| Temp C:') tweet = tweet.replace('P1:','| PM10:') tweet = tweet.replace('P2:','PM2.5:') #print(tweet) # Consumer keys and access tokens, used for OAuth CONSUMER_KEY = 'ihrKey' CONSUMER_SECRET = 'ihrKey' ACCESS_KEY = 'ihrKey' ACCESS_SECRET = 'ihrKey' # OAuth process, using the keys and tokens auth = tweepy.OAuthHandler(CONSUMER_KEY , CONSUMER_SECRET) auth.set_access_token(ACCESS_KEY , ACCESS_SECRET) # Creation of the actual interface, using authentication api = tweepy.API(auth) # Send the tweet with photo photo_path = '/home/pi/Pictures' + photo_name status = 'Blick auf Freiburg mit Feinstaubwerten, Temp & Luftfeuchte ' + i.strf$ status = status + tweet api.update_with_media(photo_path, status=status)
31.369863
80
0.691266
0
0
0
0
0
0
0
0
1,174
0.512664
dee0dfeab71167aee2a17e14945c71c0e31e66be
1,762
py
Python
jaffalearn/logging.py
tqbl/jaffalearn
a5bb79fcb3e84fd6e17b6356429e5885386a5a58
[ "0BSD" ]
null
null
null
jaffalearn/logging.py
tqbl/jaffalearn
a5bb79fcb3e84fd6e17b6356429e5885386a5a58
[ "0BSD" ]
null
null
null
jaffalearn/logging.py
tqbl/jaffalearn
a5bb79fcb3e84fd6e17b6356429e5885386a5a58
[ "0BSD" ]
null
null
null
from pathlib import Path import pandas as pd from torch.utils.tensorboard import SummaryWriter class Logger: def __init__(self, system, log_dir, overwrite=False): self.log_path = Path(log_dir) / 'history.csv' self.system = system self.tb_writer = None # Remove any previous TensorBoard log files if overwrite: for path in self.log_path.parent.glob('*tfevents*'): print(f'Deleting {path}') path.unlink() # Read from existing log file if applicable if overwrite or not self.log_path.exists(): self.history = pd.DataFrame() self.history.index.name = 'epoch' else: self.history = pd.read_csv(self.log_path, index_col=0) def __call__(self): self.step() def step(self): # Print results to stdout results = self.system.summarize_results() print(', '.join(['{}: {:.4f}'.format(k, v) for k, v in results.items()])) # Write results to TensorBoard log file epoch = len(self.history) if self.tb_writer is None: self.tb_writer = SummaryWriter(self.log_path.parent) for key, value in results.items(): self.tb_writer.add_scalar(key, value, epoch) self.tb_writer.file_writer.flush() # Write results to CSV file self.history = self.history.append(results, ignore_index=True) self.history.to_csv(self.log_path) self.system.clear_results() def truncate(self, epoch): self.history = self.history.iloc[:epoch] self.history.to_csv(self.log_path) def close(self): if self.tb_writer is not None: self.tb_writer.close()
30.37931
70
0.605562
1,662
0.943246
0
0
0
0
0
0
243
0.137911
dee0ea830b4e14533eb75ccbf58b75a95766df8d
3,369
py
Python
python/soma_workflow/constants.py
denisri/soma-workflow
bc6f2f50d34437e86e850cb0d05ff26b041d560d
[ "CECILL-B" ]
null
null
null
python/soma_workflow/constants.py
denisri/soma-workflow
bc6f2f50d34437e86e850cb0d05ff26b041d560d
[ "CECILL-B" ]
44
2018-10-30T16:57:10.000Z
2022-03-15T10:54:57.000Z
python/soma_workflow/constants.py
populse/soma-workflow
e6d3e3c33ad41107ee3c959adc4832e6edd047f4
[ "CECILL-B" ]
null
null
null
# -*- coding: utf-8 -*- ''' author: Soizic Laguitton organization: I2BM, Neurospin, Gif-sur-Yvette, France organization: CATI, France organization: IFR 49 License: `CeCILL version 2 <http://www.cecill.info/licences/Licence_CeCILL_V2-en.html>`_ ''' # # Soma-workflow constants # # ''' Job status: ''' NOT_SUBMITTED = "not_submitted" UNDETERMINED = "undetermined" QUEUED_ACTIVE = "queued_active" SYSTEM_ON_HOLD = "system_on_hold" USER_ON_HOLD = "user_on_hold" USER_SYSTEM_ON_HOLD = "user_system_on_hold" RUNNING = "running" SYSTEM_SUSPENDED = "system_suspended" USER_SUSPENDED = "user_suspended" USER_SYSTEM_SUSPENDED = "user_system_suspended" DONE = "done" FAILED = "failed" DELETE_PENDING = "delete_pending" KILL_PENDING = "kill_pending" SUBMISSION_PENDING = "submission_pending" WARNING = "warning" JOB_STATUS = [NOT_SUBMITTED, UNDETERMINED, QUEUED_ACTIVE, SYSTEM_ON_HOLD, USER_ON_HOLD, USER_SYSTEM_ON_HOLD, RUNNING, SYSTEM_SUSPENDED, USER_SUSPENDED, USER_SYSTEM_SUSPENDED, DONE, FAILED, DELETE_PENDING, KILL_PENDING, SUBMISSION_PENDING, WARNING] ''' Exit job status: ''' EXIT_UNDETERMINED = "exit_status_undetermined" EXIT_ABORTED = "aborted" EXIT_NOTRUN = "aborted_before_running" FINISHED_REGULARLY = "finished_regularly" FINISHED_TERM_SIG = "finished_signal" FINISHED_UNCLEAR_CONDITIONS = "finished_unclear_condition" USER_KILLED = "killed_by_user" JOB_EXIT_STATUS = [EXIT_UNDETERMINED, EXIT_ABORTED, FINISHED_REGULARLY, FINISHED_TERM_SIG, FINISHED_UNCLEAR_CONDITIONS, USER_KILLED, EXIT_NOTRUN] ''' File transfer status: ''' FILES_DO_NOT_EXIST = "do not exist" FILES_ON_CLIENT = "on client side" FILES_ON_CR = "on computing resource side" FILES_ON_CLIENT_AND_CR = "on both sides" TRANSFERING_FROM_CLIENT_TO_CR = "transfering client->cr" TRANSFERING_FROM_CR_TO_CLIENT = "transfering cr->client" FILES_UNDER_EDITION = "under edition" FILE_TRANSFER_STATUS = [FILES_DO_NOT_EXIST, FILES_ON_CLIENT, FILES_ON_CR, FILES_ON_CLIENT_AND_CR, TRANSFERING_FROM_CLIENT_TO_CR, TRANSFERING_FROM_CR_TO_CLIENT, FILES_UNDER_EDITION] ''' Transfer type ''' TR_FILE_C_TO_CR = "file transfer form client to cr" TR_DIR_C_TO_CR = "dir transfer from client to cr" TR_MFF_C_TO_CR = "multi file format from client to cr" TR_FILE_CR_TO_C = "file transfer form cr to client" TR_DIR_CR_TO_C = "dir transfer from cr to client" TR_MFF_CR_TO_C = "multi file format from cr to client" TRANSFER_TYPES = [TR_FILE_C_TO_CR, TR_DIR_C_TO_CR, TR_MFF_C_TO_CR, TR_FILE_CR_TO_C, TR_DIR_CR_TO_C, TR_MFF_CR_TO_C] ''' Workflow status: ''' WORKFLOW_NOT_STARTED = "worklflow_not_started" WORKFLOW_IN_PROGRESS = "workflow_in_progress" WORKFLOW_DONE = "workflow_done" WORKFLOW_STATUS = [WORKFLOW_NOT_STARTED, WORKFLOW_IN_PROGRESS, WORKFLOW_DONE, DELETE_PENDING, WARNING]
28.310924
88
0.655091
0
0
0
0
0
0
0
0
1,168
0.34669
dee4241a76fbf19cf565aab66e0521ce2380cc65
250
py
Python
test/tests/global_and_local.py
kevinxucs/pyston
bdb87c1706ac74a0d15d9bc2bae53798678a5f14
[ "Apache-2.0" ]
1
2015-11-06T03:39:51.000Z
2015-11-06T03:39:51.000Z
test/tests/global_and_local.py
kevinxucs/pyston
bdb87c1706ac74a0d15d9bc2bae53798678a5f14
[ "Apache-2.0" ]
null
null
null
test/tests/global_and_local.py
kevinxucs/pyston
bdb87c1706ac74a0d15d9bc2bae53798678a5f14
[ "Apache-2.0" ]
null
null
null
# expected: fail # - this particular check isn't implemented yet # I would have expected this to be valid, but cPython and pypy err out saying "name 'x' is local and global" print "first" x = 1 def f(x): global x print "calling" f(2) print x
16.666667
108
0.696
0
0
0
0
0
0
0
0
187
0.748
dee46fc1a2825aedf140afa6a83cd03a303bce36
1,980
py
Python
lab4_2/helpers/scanner.py
cinnamonbreakfast/flcd
f9168c1965976e9ae9477ee6b163a026f61acb1b
[ "MIT" ]
null
null
null
lab4_2/helpers/scanner.py
cinnamonbreakfast/flcd
f9168c1965976e9ae9477ee6b163a026f61acb1b
[ "MIT" ]
null
null
null
lab4_2/helpers/scanner.py
cinnamonbreakfast/flcd
f9168c1965976e9ae9477ee6b163a026f61acb1b
[ "MIT" ]
null
null
null
res_words = [] seps = [] ops = [] def load_dom(): with open('data/tokens', 'r') as f: for i in range(7): separator = f.readline().strip() if separator == "_": # Special case [SPACE] separator = " " seps.append(separator) for i in range(15): ops.append(f.readline().strip()) for i in range(21): res_words.append(f.readline().strip()) def getStringToken(line, index): token = '' quotes = 0 while index < len(line) and quotes < 2: if line[index] == '\'': quotes += 1 token += line[index] index += 1 return token, index def isPartOfOperator(char): for op in ops: if char in op: return True return False def getOperatorToken(line, index): token = '' try: num = int(line[index:]) token +=line index += 1 return token, index except: pass while index < len(line) and isPartOfOperator(line[index]): token += line[index] index += 1 return token, index def tokenize(line): token = '' index = 0 tokens = [] while index < len(line): if isPartOfOperator(line[index]): if token: tokens.append(token) token, index = getOperatorToken(line, index) tokens.append(token) token = '' elif line[index] == '\'': if token: tokens.append(token) token, index = getStringToken(line, index) tokens.append(token) token = '' elif line[index] in seps: if token: tokens.append(token) token, index = line[index], index + 1 tokens.append(token) token = '' else: token += line[index] index += 1 if token: tokens.append(token) return tokens
22.5
74
0.491414
0
0
0
0
0
0
0
0
64
0.032323
dee4deb771683414d1b0181d259bc1acc86fbf9f
1,101
py
Python
fastspider/item/item.py
coco369/fastspider
464ba47176c005ed97005a79c5c4eee0bf0740b6
[ "MIT" ]
6
2021-08-09T01:35:44.000Z
2022-02-15T08:14:29.000Z
fastspider/item/item.py
coco369/fastspider
464ba47176c005ed97005a79c5c4eee0bf0740b6
[ "MIT" ]
null
null
null
fastspider/item/item.py
coco369/fastspider
464ba47176c005ed97005a79c5c4eee0bf0740b6
[ "MIT" ]
4
2021-08-13T06:41:13.000Z
2021-12-07T15:53:56.000Z
# encoding=utf-8 """ Auth: coco369 Email: [email protected] CreateTime: 2021/07/30 Desc: fastspider核心代码, 实体Item """ class BaseItemMetaClass(type): def __new__(cls, name, bases, attrs): attrs.setdefault("__name__", None) attrs.setdefault("__table_name__", None) attrs.setdefault("__update_key__", None) attrs.setdefault("__unique_key__", None) return type.__new__(cls, name, bases, attrs) class Item(metaclass=BaseItemMetaClass): """ 定义继承的元类, 子类直接拥有元类中的属性。 """ def __init__(self): pass def __setitem__(self, key, value): self.__class__.__dict__[key] = value def __getitem__(self, key): return self.__class__.__dict__[key] @property def item_name(self): return self.__class__.__name__ @property def table_name(self): return self.__table_name__ @table_name.setter def table_name(self, name): self.__table_name__ = name @property def to_dict(self): item_property = {} for key, values in self.__dict__.items(): if key not in ("__name__", "__table_name__", "__update_key__", "__unique_key__"): item_property[key] = values return item_property
20.018182
84
0.728429
1,018
0.882914
0
0
435
0.377277
0
0
316
0.274068
dee8b0a49fcef498a3468a8ea4df153befa037f5
26,370
py
Python
src/third_party/wiredtiger/test/suite/run.py
benety/mongo
203430ac9559f82ca01e3cbb3b0e09149fec0835
[ "Apache-2.0" ]
null
null
null
src/third_party/wiredtiger/test/suite/run.py
benety/mongo
203430ac9559f82ca01e3cbb3b0e09149fec0835
[ "Apache-2.0" ]
null
null
null
src/third_party/wiredtiger/test/suite/run.py
benety/mongo
203430ac9559f82ca01e3cbb3b0e09149fec0835
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Public Domain 2014-present MongoDB, Inc. # Public Domain 2008-2014 WiredTiger, Inc. # # This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # [TEST_TAGS] # ignored_file # [END_TAGS] # # run.py # Command line test runner # from __future__ import print_function import glob, json, os, random, re, sys if sys.version_info[0] <= 2: print('WiredTiger requires Python version 3.0 or above') sys.exit(1) # Set paths suitedir = sys.path[0] wt_disttop = os.path.dirname(os.path.dirname(suitedir)) wt_3rdpartydir = os.path.join(wt_disttop, 'test', '3rdparty') # Check for a local build that contains the wt utility. First check if the # supplied an explicit build directory ('WT_BUILDDIR'), then the current # working directory, and finally in the disttop directory. # This isn't ideal - if a user has multiple builds in a tree we # could pick the wrong one. We also need to account for the fact that there # may be an executable 'wt' file the build directory. env_builddir = os.getenv('WT_BUILDDIR') curdir = os.getcwd() if env_builddir and os.path.isfile(os.path.join(env_builddir, 'wt')): wt_builddir = env_builddir elif os.path.isfile(os.path.join(curdir, 'wt')): wt_builddir = curdir elif os.path.isfile(os.path.join(curdir, 'wt.exe')): wt_builddir = curdir elif os.path.isfile(os.path.join(wt_disttop, 'wt')): wt_builddir = wt_disttop elif os.path.isfile(os.path.join(wt_disttop, 'wt.exe')): wt_builddir = wt_disttop else: print('Unable to find useable WiredTiger build') sys.exit(1) # Cannot import wiredtiger and supporting utils until we set up paths # We want our local tree in front of any installed versions of WiredTiger. # Don't change sys.path[0], it's the dir containing the invoked python script. sys.path.insert(1, os.path.join(wt_builddir, 'lang', 'python')) # Append to a colon separated path in the environment def append_env_path(name, value): path = os.environ.get(name) if path == None: v = value else: v = path + ':' + value os.environ[name] = v # If we built with libtool, explicitly put its install directory in our library # search path. This only affects library loading for subprocesses, like 'wt'. libsdir = os.path.join(wt_builddir, '.libs') if os.path.isdir(libsdir): append_env_path('LD_LIBRARY_PATH', libsdir) if sys.platform == "darwin": append_env_path('DYLD_LIBRARY_PATH', libsdir) # Add all 3rd party directories: some have code in subdirectories for d in os.listdir(wt_3rdpartydir): for subdir in ('lib', 'python', ''): if os.path.exists(os.path.join(wt_3rdpartydir, d, subdir)): sys.path.insert(1, os.path.join(wt_3rdpartydir, d, subdir)) break # unittest will be imported later, near to when it is needed. unittest = None def usage(): print('Usage:\n\ $ cd build\n\ $ python ../test/suite/run.py [ options ] [ tests ]\n\ \n\ Options:\n\ --asan run with an ASAN enabled shared library\n\ -b K/N | --batch K/N run batch K of N, 0 <= K < N. The tests\n\ are split into N batches and the Kth is run.\n\ -C file | --configcreate file create a config file for controlling tests\n\ -c file | --config file use a config file for controlling tests\n\ -D dir | --dir dir use dir rather than WT_TEST.\n\ dir is removed/recreated as a first step.\n\ -d | --debug run with \'pdb\', the python debugger\n\ -n | --dry-run perform a dry-run, listing all scenarios to\n\ be run without executing any.\n\ -g | --gdb all subprocesses (like calls to wt) use gdb\n\ -h | --help show this message\n\ | --hook name[=arg] set up hooks from hook_<name>.py, with optional arg\n\ -j N | --parallel N run all tests in parallel using N processes\n\ -l | --long run the entire test suite\n\ | --noremove do not remove WT_TEST or -D target before run\n\ -p | --preserve preserve output files in WT_TEST/<testname>\n\ -r N | --random-sample N randomly sort scenarios to be run, then\n\ execute every Nth (2<=N<=1000) scenario.\n\ -s N | --scenario N use scenario N (N can be symbolic, number, or\n\ list of numbers and ranges in the form 1,3-5,7)\n\ -t | --timestamp name WT_TEST according to timestamp\n\ -v N | --verbose N set verboseness to N (0<=N<=3, default=1)\n\ -i | --ignore-stdout dont fail on unexpected stdout or stderr\n\ -R | --randomseed run with random seeds for generates random numbers\n\ -S | --seed run with two seeds that generates random numbers, \n\ format "seed1.seed2", seed1 or seed2 can\'t be zero\n\ -z | --zstd run the zstd tests\n\ \n\ Tests:\n\ may be a file name in test/suite: (e.g. test_base01.py)\n\ may be a subsuite name (e.g. \'base\' runs test_base*.py)\n\ \n\ When -C or -c are present, there may not be any tests named.\n\ When -s is present, there must be a test named.\n\ ') # Find an executable of the given name in the execution path. def which(name): path = os.getenv('PATH') for pathdir in path.split(os.path.pathsep): fname = os.path.join(pathdir, name) if os.path.exists(fname) and os.access(fname, os.X_OK): return fname return None # Follow a symbolic link, returning the target def follow_symlinks(pathname): return os.path.realpath(pathname) # Find all instances of a filename under a directory def find(topdir, filename): results = [] for root, dirs, files in os.walk(topdir, followlinks=True): if filename in files: results.append(os.path.join(root, filename)) return results # Show an environment variable if verbose enough. def show_env(verbose, envvar): if verbose >= 2: print(envvar + "=" + os.getenv(envvar)) # capture the category (AKA 'subsuite') part of a test name, # e.g. test_util03 -> util reCatname = re.compile(r"test_([^0-9]+)[0-9]*") # Look for a list of the form 0-9,11,15-17. def parse_int_list(str): # Use a dictionary as the result set to avoid repeated list scans. # (Only the keys are used; the values are ignored.) ret = {} # Divide the input into ranges separated by commas. for r in str.split(","): # Split the range we got (if it is one). bounds = r.split("-") if len(bounds) == 1 and bounds[0].isdigit(): # It's a single number with no dash. scenario = int(bounds[0]) ret[scenario] = True continue if len(bounds) == 2 and bounds[0].isdigit() and bounds[1].isdigit(): # It's two numbers separated by a dash. for scenario in range(int(bounds[0]), int(bounds[1]) + 1): ret[scenario] = True continue # It's not valid syntax; give up. return None return ret def restrictScenario(testcases, restrict): if restrict == '': return testcases else: scenarios = parse_int_list(restrict) if scenarios is not None: return [t for t in testcases if hasattr(t, 'scenario_number') and t.scenario_number in scenarios] else: return [t for t in testcases if hasattr(t, 'scenario_name') and t.scenario_name == restrict] def addScenarioTests(tests, loader, testname, scenario): loaded = loader.loadTestsFromName(testname) tests.addTests(restrictScenario(generate_scenarios(loaded), scenario)) def configRecord(cmap, tup): """ Records this tuple in the config. It is marked as None (appearing as null in json), so it can be easily adjusted in the output file. """ tuplen = len(tup) pos = 0 for name in tup: last = (pos == tuplen - 1) pos += 1 if not name in cmap: if last: cmap[name] = {"run":None} else: cmap[name] = {"run":None, "sub":{}} if not last: cmap = cmap[name]["sub"] def configGet(cmap, tup): """ Answers the question, should we do this test, given this config file? Following the values of the tuple through the map, returning the first non-null value. If all values are null, return True (handles tests that may have been added after the config was generated). """ for name in tup: if not name in cmap: return True run = cmap[name]["run"] if "run" in cmap[name] else None if run != None: return run cmap = cmap[name]["sub"] if "sub" in cmap[name] else {} return True def configApplyInner(suites, configmap, configwrite): newsuite = unittest.TestSuite() for s in suites: if type(s) is unittest.TestSuite: newsuite.addTest(configApplyInner(s, configmap, configwrite)) else: modname = s.__module__ catname = re.sub(reCatname, r"\1", modname) classname = s.__class__.__name__ methname = s._testMethodName tup = (catname, modname, classname, methname) add = True if configwrite: configRecord(configmap, tup) else: add = configGet(configmap, tup) if add: newsuite.addTest(s) return newsuite def configApply(suites, configfilename, configwrite): configmap = None if not configwrite: with open(configfilename, 'r') as f: line = f.readline() while line != '\n' and line != '': line = f.readline() configmap = json.load(f) else: configmap = {} newsuite = configApplyInner(suites, configmap, configwrite) if configwrite: with open(configfilename, 'w') as f: f.write("""# Configuration file for wiredtiger test/suite/run.py, # generated with '-C filename' and consumed with '-c filename'. # This shows the hierarchy of tests, and can be used to rerun with # a specific subset of tests. The value of "run" controls whether # a test or subtests will be run: # # true turn on a test and all subtests (overriding values beneath) # false turn on a test and all subtests (overriding values beneath) # null do not effect subtests # # If a test does not appear, or is marked as '"run": null' all the way down, # then the test is run. # # The remainder of the file is in JSON format. # !!! There must be a single blank line following this line!!! """) json.dump(configmap, f, sort_keys=True, indent=4) return newsuite def testsFromArg(tests, loader, arg, scenario): # If a group of test is mentioned, do all tests in that group # e.g. 'run.py base' groupedfiles = glob.glob(suitedir + os.sep + 'test_' + arg + '*.py') if len(groupedfiles) > 0: for file in groupedfiles: testsFromArg(tests, loader, os.path.basename(file), scenario) return # Explicit test class names if not arg[0].isdigit(): if arg.endswith('.py'): arg = arg[:-3] addScenarioTests(tests, loader, arg, scenario) return # Deal with ranges if '-' in arg: start, end = (int(a) for a in arg.split('-')) else: start, end = int(arg), int(arg) for t in xrange(start, end+1): addScenarioTests(tests, loader, 'test%03d' % t, scenario) def error(exitval, prefix, msg): print('*** ERROR: {}: {}'.format(prefix, msg.replace('\n', '\n*** '))) sys.exit(exitval) if __name__ == '__main__': # Turn numbers and ranges into test module names preserve = timestamp = debug = dryRun = gdbSub = lldbSub = longtest = zstdtest = ignoreStdout = False removeAtStart = True asan = False parallel = 0 random_sample = 0 batchtotal = batchnum = 0 seed = seedw = seedz = 0 configfile = None configwrite = False dirarg = None scenario = '' verbose = 1 args = sys.argv[1:] testargs = [] hook_names = [] while len(args) > 0: arg = args.pop(0) from unittest import defaultTestLoader as loader # Command line options if arg[0] == '-': option = arg[1:] if option == '-asan': asan = True continue if option == '-batch' or option == 'b': if batchtotal != 0 or len(args) == 0: usage() sys.exit(2) # Batch expects an argument that has int slash int. # For example "-b 4/12" try: left, right = args.pop(0).split('/') batchnum = int(left) batchtotal = int(right) except: print('batch argument should be nnn/nnn') usage() sys.exit(2) if batchtotal <= 0 or batchnum < 0 or batchnum >= batchtotal: usage() sys.exit(2) continue if option == '-dir' or option == 'D': if dirarg != None or len(args) == 0: usage() sys.exit(2) dirarg = args.pop(0) continue if option == '-debug' or option == 'd': debug = True continue if option == '-dry-run' or option == 'n': dryRun = True continue if option == '-gdb' or option == 'g': gdbSub = True continue if option == '-lldb': lldbSub = True continue if option == '-help' or option == 'h': usage() sys.exit(0) if option == '-hook': if len(args) == 0: usage() sys.exit(2) hook_names.append(args.pop(0)) continue if option == '-long' or option == 'l': longtest = True continue if option == '-zstd' or option == 'z': zstdtest = True continue if option == '-noremove': removeAtStart = False continue if option == '-random-sample' or option == 'r': if len(args) == 0: usage() sys.exit(2) random_sample = int(args.pop(0)) if random_sample < 2 or random_sample > 1000: usage() sys.exit(2) continue if option == '-parallel' or option == 'j': if parallel != 0 or len(args) == 0: usage() sys.exit(2) parallel = int(args.pop(0)) continue if option == '-preserve' or option == 'p': preserve = True continue if option == '-scenario' or option == 's': if scenario != '' or len(args) == 0: usage() sys.exit(2) scenario = args.pop(0) continue if option == '-timestamp' or option == 't': timestamp = True continue if option == '-verbose' or option == 'v': if len(args) == 0: usage() sys.exit(2) verbose = int(args.pop(0)) if verbose > 3: verbose = 3 if verbose < 0: verbose = 0 continue if option == '--ignore-stdout' or option == 'i': ignoreStdout = True continue if option == '-config' or option == 'c': if configfile != None or len(args) == 0: usage() sys.exit(2) configfile = args.pop(0) continue if option == '-configcreate' or option == 'C': if configfile != None or len(args) == 0: usage() sys.exit(2) configfile = args.pop(0) configwrite = True continue if option == '-randomseed' or option == 'R': seedw = random.randint(1, 0xffffffff) seedz = random.randint(1, 0xffffffff) continue if option == '-seed' or option == 'S': if seed != 0 or len(args) == 0: usage() sys.exit(2) seed = args.pop(0) [seedw, seedz] = seed.split('.') if seedw == 0 or seedz == 0: usage() sys.exit(2) continue print('unknown arg: ' + arg) usage() sys.exit(2) testargs.append(arg) if asan: # To run ASAN, we need to ensure these environment variables are set: # ASAN_SYMBOLIZER_PATH full path to the llvm-symbolizer program # LD_LIBRARY_PATH includes path with wiredtiger shared object # LD_PRELOAD includes the ASAN runtime library # # Note that LD_LIBRARY_PATH has already been set above. The trouble with # simply setting these variables in the Python environment is that it's # too late. LD_LIBRARY_PATH is commonly cached by the shared library # loader at program startup, and that's already been done before Python # begins execution. Likewise, any preloading indicated by LD_PRELOAD # has already been done. # # Our solution is to set the variables as appropriate, and then restart # Python with the same argument list. The shared library loader will # have everything it needs on the second go round. # # Note: If the ASAN stops the program with the error: # Shadow memory range interleaves with an existing memory mapping. # ASan cannot proceed correctly. # # try rebuilding with the clang options: # "-mllvm -asan-force-dynamic-shadow=1" # and make sure that clang is used for all compiles. # # We'd like to show this as a message, but there's no good way to # detect this error from here short of capturing/parsing all output # from the test run. ASAN_ENV = "__WT_TEST_SUITE_ASAN" # if set, we've been here before ASAN_SYMBOLIZER_PROG = "llvm-symbolizer" ASAN_SYMBOLIZER_ENV = "ASAN_SYMBOLIZER_PATH" LD_PRELOAD_ENV = "LD_PRELOAD" SO_FILE_NAME = "libclang_rt.asan-x86_64.so" if not os.environ.get(ASAN_ENV): if verbose >= 2: print('Enabling ASAN environment and rerunning python') os.environ[ASAN_ENV] = "1" show_env(verbose, "LD_LIBRARY_PATH") if not os.environ.get(ASAN_SYMBOLIZER_ENV): os.environ[ASAN_SYMBOLIZER_ENV] = which(ASAN_SYMBOLIZER_PROG) if not os.environ.get(ASAN_SYMBOLIZER_ENV): error(ASAN_SYMBOLIZER_ENV, 'symbolizer program not found in PATH') show_env(verbose, ASAN_SYMBOLIZER_ENV) if not os.environ.get(LD_PRELOAD_ENV): symbolizer = follow_symlinks(os.environ[ASAN_SYMBOLIZER_ENV]) bindir = os.path.dirname(symbolizer) sofiles = [] if os.path.basename(bindir) == 'bin': libdir = os.path.join(os.path.dirname(bindir), 'lib') sofiles = find(libdir, SO_FILE_NAME) if len(sofiles) != 1: if len(sofiles) == 0: fmt = 'ASAN shared library file not found.\n' + \ 'Set {} to the file location and rerun.' error(3, SO_FILE_NAME, fmt.format(LD_PRELOAD_ENV)) else: fmt = 'multiple ASAN shared library files found\n' + \ 'under {}, expected just one.\n' + \ 'Set {} to the correct file location and rerun.' error(3, SO_FILE_NAME, fmt.format(libdir, LD_PRELOAD_ENV)) os.environ[LD_PRELOAD_ENV] = sofiles[0] show_env(verbose, LD_PRELOAD_ENV) # Restart python! python = sys.executable os.execl(python, python, *sys.argv) elif verbose >= 2: print('Python restarted for ASAN') # We don't import wttest until after ASAN environment variables are set. import wttest # Use the same version of unittest found by wttest.py unittest = wttest.unittest tests = unittest.TestSuite() from testscenarios.scenarios import generate_scenarios import wthooks hookmgr = wthooks.WiredTigerHookManager(hook_names) # All global variables should be set before any test classes are loaded. # That way, verbose printing can be done at the class definition level. wttest.WiredTigerTestCase.globalSetup(preserve, removeAtStart, timestamp, gdbSub, lldbSub, verbose, wt_builddir, dirarg, longtest, zstdtest, ignoreStdout, seedw, seedz, hookmgr) # Without any tests listed as arguments, do discovery if len(testargs) == 0: if scenario != '': sys.stderr.write( 'run.py: specifying a scenario requires a test name\n') usage() sys.exit(2) from discover import defaultTestLoader as loader suites = loader.discover(suitedir) # If you have an empty Python file, it comes back as an empty entry in suites # and then the sort explodes. Drop empty entries first. Note: this converts # suites to a list, but the sort does that anyway. Also note: there seems to be # no way to count other than iteration; there's a count method but it also # returns zero for test files that contain a test class with no test functions, # and it's not clear that dropping those here is correct. def isempty(s): count = 0 for c in s: count += 1 return (count == 0) suites = [s for s in suites if not isempty(s)] suites = sorted(suites, key=lambda c: str(list(c)[0])) if configfile != None: suites = configApply(suites, configfile, configwrite) tests.addTests(restrictScenario(generate_scenarios(suites), '')) else: for arg in testargs: testsFromArg(tests, loader, arg, scenario) tests = hookmgr.filter_tests(tests) # Shuffle the tests and create a new suite containing every Nth test from # the original suite if random_sample > 0: random_sample_tests = [] for test in tests: random_sample_tests.append(test) random.shuffle(random_sample_tests) tests = unittest.TestSuite(random_sample_tests[::random_sample]) if debug: import pdb pdb.set_trace() if batchtotal != 0: # For test batching, we want to split up all the tests evenly, and # spread out the tests, so each batch contains tests of all kinds. We'd # like to prioritize the lowest scenario numbers first, so if there's a # failure, we won't have to do all X thousand of some test's scenarios # before we see a failure in the next test. To that end, we define a # sort function that sorts by scenario first, and test name second. hugetests = set() def get_sort_keys(test): s = 0 name = test.simpleName() if hasattr(test, 'scenario_number'): s = test.scenario_number if s > 1000: hugetests.add(name) # warn for too many scenarios return (s, test.simpleName()) # sort by scenario number first all_tests = sorted(tests, key = get_sort_keys) if not longtest: for name in hugetests: print("WARNING: huge test " + name + " has > 1000 scenarios.\n" + "That is only appropriate when using the --long option.\n" + "The number of scenarios for the test should be pruned") # At this point we have an ordered list of all the tests. # Break it into just our batch. tests = unittest.TestSuite(all_tests[batchnum::batchtotal]) if dryRun: for line in tests: print(line) else: result = wttest.runsuite(tests, parallel) sys.exit(0 if result.wasSuccessful() else 1) sys.exit(0)
40.631741
105
0.573834
0
0
0
0
0
0
0
0
11,091
0.420592
dee9227b4b6629ca39d002a84205390a69b06f7b
29,997
py
Python
Code/Minner/SumDialog.py
lizhangjie316/Minner
f6aebd51cef981d726b53db8d62d1b1703fe2649
[ "MIT" ]
1
2020-11-05T07:11:33.000Z
2020-11-05T07:11:33.000Z
Code/Minner0827/ui/SumDialog.py
lizhangjie316/Minner
f6aebd51cef981d726b53db8d62d1b1703fe2649
[ "MIT" ]
null
null
null
Code/Minner0827/ui/SumDialog.py
lizhangjie316/Minner
f6aebd51cef981d726b53db8d62d1b1703fe2649
[ "MIT" ]
1
2020-11-05T07:19:44.000Z
2020-11-05T07:19:44.000Z
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'SumDialog.ui' # # Created by: PyQt5 UI code generator 5.15.0 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets from SumAllTable import DataGridAll class Sum_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(1214, 675) Dialog.setStyleSheet("background-color:#555555\n" "") self.gridLayout_2 = QtWidgets.QGridLayout(Dialog) self.gridLayout_2.setObjectName("gridLayout_2") self.label_20 = QtWidgets.QLabel(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_20.sizePolicy().hasHeightForWidth()) self.label_20.setSizePolicy(sizePolicy) self.label_20.setMinimumSize(QtCore.QSize(0, 30)) self.label_20.setMaximumSize(QtCore.QSize(16777215, 30)) self.label_20.setStyleSheet("QLabel{\n" " border:none;\n" " font-size:16px;\n" " font-weight:400;\n" " background-color: qlineargradient(x1:0, y1:0, x2:0, y2:1,stop:0 #777777,stop:1 #000000);\n" " color:white;\n" " }") self.label_20.setObjectName("label_20") self.gridLayout_2.addWidget(self.label_20, 0, 0, 1, 2) self.widget = QtWidgets.QWidget(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget.sizePolicy().hasHeightForWidth()) self.widget.setSizePolicy(sizePolicy) self.widget.setMaximumSize(QtCore.QSize(16777215, 740)) self.widget.setStyleSheet("background-color:#444444") self.widget.setObjectName("widget") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.widget) self.verticalLayout_2.setObjectName("verticalLayout_2") self.label = QtWidgets.QLabel(self.widget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label.sizePolicy().hasHeightForWidth()) self.label.setSizePolicy(sizePolicy) self.label.setMinimumSize(QtCore.QSize(0, 30)) self.label.setMaximumSize(QtCore.QSize(16777215, 30)) self.label.setStyleSheet("QLabel {\n" " border-radius: 3px;\n" " color:white;\n" " background:#444444;\n" "}") self.label.setObjectName("label") self.verticalLayout_2.addWidget(self.label) self.widget_2 = QtWidgets.QWidget(self.widget) self.widget_2.setMinimumSize(QtCore.QSize(0, 250)) self.widget_2.setStyleSheet("background-color: rgb(85, 85, 85);") self.widget_2.setObjectName("widget_2") self.widget_3 = QtWidgets.QWidget(self.widget_2) self.widget_3.setGeometry(QtCore.QRect(40, 20, 381, 41)) self.widget_3.setObjectName("widget_3") self.label_2 = QtWidgets.QLabel(self.widget_3) self.label_2.setGeometry(QtCore.QRect(20, 10, 72, 15)) self.label_2.setStyleSheet("QLabel {\n" " border-radius: 3px;\n" " color:white;\n" "}") self.label_2.setObjectName("label_2") self.comboBox = QtWidgets.QComboBox(self.widget_3) self.comboBox.setGeometry(QtCore.QRect(170, 10, 161, 22)) self.comboBox.setStyleSheet("background-color:#444444;") self.comboBox.setObjectName("comboBox") self.widget_4 = QtWidgets.QWidget(self.widget_2) self.widget_4.setGeometry(QtCore.QRect(40, 70, 381, 41)) self.widget_4.setObjectName("widget_4") self.label_3 = QtWidgets.QLabel(self.widget_4) self.label_3.setGeometry(QtCore.QRect(20, 10, 91, 16)) self.label_3.setStyleSheet("QLabel {\n" " border-radius: 3px;\n" " color:white;\n" "}") self.label_3.setObjectName("label_3") self.comboBox_2 = QtWidgets.QComboBox(self.widget_4) self.comboBox_2.setGeometry(QtCore.QRect(170, 10, 161, 22)) self.comboBox_2.setStyleSheet("background-color:#444444;") self.comboBox_2.setObjectName("comboBox_2") self.pushButton = QtWidgets.QPushButton(self.widget_2) self.pushButton.setGeometry(QtCore.QRect(170, 180, 93, 28)) self.pushButton.setStyleSheet("QPushButton{\n" " border:none;\n" " background-color: qlineargradient(x1:0, y1:0, x2:0, y2:1,stop:0 rgb(96,157,200),stop:1 rgb(0,94,150));\n" " font-size:15px;\n" " color:white;\n" " width:120px;\n" " height:40px;\n" " text-align:center;\n" " border-radius:5px;\n" " }\n" "QPushButton:hover{\n" " color:#0caaff\n" "}\n" "QPushButton:pressed{\n" "background-color: rgb(50, 88, 138)\n" "}\n" "QPushButton:disabled{\n" "color:rgb(172, 172, 172);\n" "background-color:rgb(93, 93, 93)\n" "}") self.pushButton.setObjectName("pushButton") self.verticalLayout_2.addWidget(self.widget_2) self.gridLayout_2.addWidget(self.widget, 1, 0, 1, 1) self.widget_11 = QtWidgets.QWidget(Dialog) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget_11.sizePolicy().hasHeightForWidth()) self.widget_11.setSizePolicy(sizePolicy) self.widget_11.setMinimumSize(QtCore.QSize(720, 0)) self.widget_11.setMaximumSize(QtCore.QSize(16777215, 740)) self.widget_11.setStyleSheet("background-color:#444444") self.widget_11.setObjectName("widget_11") self.gridLayout_8 = QtWidgets.QGridLayout(self.widget_11) self.gridLayout_8.setObjectName("gridLayout_8") self.label_63 = QtWidgets.QLabel(self.widget_11) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_63.sizePolicy().hasHeightForWidth()) self.label_63.setSizePolicy(sizePolicy) self.label_63.setMinimumSize(QtCore.QSize(0, 30)) self.label_63.setMaximumSize(QtCore.QSize(16777215, 30)) self.label_63.setStyleSheet("QLabel {\n" " border-radius: 3px;\n" " color:white;\n" " background:#444444;\n" "}") self.label_63.setObjectName("label_63") self.gridLayout_8.addWidget(self.label_63, 0, 0, 1, 1) self.widget_15 = QtWidgets.QWidget(self.widget_11) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget_15.sizePolicy().hasHeightForWidth()) self.widget_15.setSizePolicy(sizePolicy) self.widget_15.setMinimumSize(QtCore.QSize(0, 480)) self.widget_15.setStyleSheet("QWidget{\n" "background-color:#555555\n" "}\n" "QPushButton{\n" " border:none;\n" " background-color: qlineargradient(x1:0, y1:0, x2:0, y2:1,stop:0 rgb(96,157,200),stop:1 rgb(0,94,150));\n" " font-size:15px;\n" " color:white;\n" " width:120px;\n" " height:40px;\n" " text-align:center;\n" " border-radius:5px;\n" " }\n" "QPushButton:hover{\n" " color:#0caaff\n" "}\n" "QPushButton:pressed{\n" "background-color: rgb(50, 88, 138)\n" "}\n" "QPushButton:disabled{\n" "color:rgb(172, 172, 172);\n" "background-color:rgb(93, 93, 93)\n" "}\n" "\n" "QLable{\n" "color:white;\n" "background:#222222;\n" "}") self.widget_15.setObjectName("widget_15") self.verticalLayout = QtWidgets.QVBoxLayout(self.widget_15) self.verticalLayout.setObjectName("verticalLayout") self.datagridall=DataGridAll() self.verticalLayout.addWidget(self.datagridall) self.gridLayout_8.addWidget(self.widget_15, 1, 0, 1, 1) self.gridLayout_2.addWidget(self.widget_11, 1, 1, 2, 1) self.widget_5 = QtWidgets.QWidget(Dialog) self.widget_5.setStyleSheet("background-color:#444444") self.widget_5.setObjectName("widget_5") self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.widget_5) self.verticalLayout_3.setObjectName("verticalLayout_3") self.tabWidget = QtWidgets.QTabWidget(self.widget_5) self.tabWidget.setStyleSheet("QTabWidget{\n" "background-color:#666666;\n" "}\n" "QTabWidget::pane{\n" "\n" "border-top: 1px solid;\n" "\n" "border-color: #333333;\n" "\n" "}\n" "\n" "QTabBar::tab {\n" "min-width:80px;\n" "min-height:30px;\n" "color: white;\n" "background:#666666;\n" "\n" "border: 0px solid;\n" "\n" "}\n" "\n" "QTabBar::tab:selected{\n" "min-width:85px;\n" "min-height:30px;\n" "color: white;\n" "background:#009DE2;\n" "border: 0px solid;\n" "border-bottom: 2px solid;\n" "}\n" "") self.tabWidget.setObjectName("tabWidget") self.tab = QtWidgets.QWidget() self.tab.setObjectName("tab") self.horizontalLayout = QtWidgets.QHBoxLayout(self.tab) self.horizontalLayout.setObjectName("horizontalLayout") self.widget_6 = QtWidgets.QWidget(self.tab) self.widget_6.setStyleSheet("background-color: rgb(85, 85, 85);") self.widget_6.setObjectName("widget_6") self.gridLayout = QtWidgets.QGridLayout(self.widget_6) self.gridLayout.setObjectName("gridLayout") self.label_5 = QtWidgets.QLabel(self.widget_6) self.label_5.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_5.setObjectName("label_5") self.gridLayout.addWidget(self.label_5, 1, 0, 1, 1) self.label_14 = QtWidgets.QLabel(self.widget_6) self.label_14.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_14.setObjectName("label_14") self.gridLayout.addWidget(self.label_14, 5, 1, 1, 1) self.label_12 = QtWidgets.QLabel(self.widget_6) self.label_12.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_12.setObjectName("label_12") self.gridLayout.addWidget(self.label_12, 3, 1, 1, 1) self.label_8 = QtWidgets.QLabel(self.widget_6) self.label_8.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_8.setObjectName("label_8") self.gridLayout.addWidget(self.label_8, 4, 0, 1, 1) self.label_13 = QtWidgets.QLabel(self.widget_6) self.label_13.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_13.setObjectName("label_13") self.gridLayout.addWidget(self.label_13, 4, 1, 1, 1) self.label_11 = QtWidgets.QLabel(self.widget_6) self.label_11.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_11.setObjectName("label_11") self.gridLayout.addWidget(self.label_11, 2, 1, 1, 1) self.label_7 = QtWidgets.QLabel(self.widget_6) self.label_7.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_7.setObjectName("label_7") self.gridLayout.addWidget(self.label_7, 3, 0, 1, 1) self.label_10 = QtWidgets.QLabel(self.widget_6) self.label_10.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_10.setObjectName("label_10") self.gridLayout.addWidget(self.label_10, 1, 1, 1, 1) self.label_4 = QtWidgets.QLabel(self.widget_6) self.label_4.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_4.setObjectName("label_4") self.gridLayout.addWidget(self.label_4, 0, 0, 1, 1) self.label_6 = QtWidgets.QLabel(self.widget_6) self.label_6.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_6.setObjectName("label_6") self.gridLayout.addWidget(self.label_6, 2, 0, 1, 1) self.label_9 = QtWidgets.QLabel(self.widget_6) self.label_9.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_9.setObjectName("label_9") self.gridLayout.addWidget(self.label_9, 5, 0, 1, 1) self.horizontalLayout.addWidget(self.widget_6) self.tabWidget.addTab(self.tab, "") self.tab_2 = QtWidgets.QWidget() self.tab_2.setObjectName("tab_2") self.widget_7 = QtWidgets.QWidget(self.tab_2) self.widget_7.setGeometry(QtCore.QRect(10, 10, 431, 171)) self.widget_7.setStyleSheet("background-color: rgb(85, 85, 85);") self.widget_7.setObjectName("widget_7") self.gridLayout_3 = QtWidgets.QGridLayout(self.widget_7) self.gridLayout_3.setContentsMargins(0, 0, 0, 0) self.gridLayout_3.setObjectName("gridLayout_3") self.label_15 = QtWidgets.QLabel(self.widget_7) self.label_15.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_15.setObjectName("label_15") self.gridLayout_3.addWidget(self.label_15, 0, 0, 1, 1) self.label_16 = QtWidgets.QLabel(self.widget_7) self.label_16.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_16.setObjectName("label_16") self.gridLayout_3.addWidget(self.label_16, 1, 0, 1, 1) self.label_17 = QtWidgets.QLabel(self.widget_7) self.label_17.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_17.setObjectName("label_17") self.gridLayout_3.addWidget(self.label_17, 1, 1, 1, 1) self.label_18 = QtWidgets.QLabel(self.widget_7) self.label_18.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_18.setObjectName("label_18") self.gridLayout_3.addWidget(self.label_18, 2, 0, 1, 1) self.label_19 = QtWidgets.QLabel(self.widget_7) self.label_19.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_19.setObjectName("label_19") self.gridLayout_3.addWidget(self.label_19, 2, 1, 1, 1) self.label_21 = QtWidgets.QLabel(self.widget_7) self.label_21.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_21.setObjectName("label_21") self.gridLayout_3.addWidget(self.label_21, 3, 0, 1, 1) self.label_22 = QtWidgets.QLabel(self.widget_7) self.label_22.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_22.setObjectName("label_22") self.gridLayout_3.addWidget(self.label_22, 3, 1, 1, 1) self.label_23 = QtWidgets.QLabel(self.widget_7) self.label_23.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_23.setObjectName("label_23") self.gridLayout_3.addWidget(self.label_23, 4, 0, 1, 1) self.label_24 = QtWidgets.QLabel(self.widget_7) self.label_24.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_24.setObjectName("label_24") self.gridLayout_3.addWidget(self.label_24, 4, 1, 1, 1) self.label_25 = QtWidgets.QLabel(self.widget_7) self.label_25.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_25.setObjectName("label_25") self.gridLayout_3.addWidget(self.label_25, 5, 0, 1, 1) self.label_26 = QtWidgets.QLabel(self.widget_7) self.label_26.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_26.setObjectName("label_26") self.gridLayout_3.addWidget(self.label_26, 5, 1, 1, 1) self.tabWidget.addTab(self.tab_2, "") self.tab_5 = QtWidgets.QWidget() self.tab_5.setObjectName("tab_5") self.widget_8 = QtWidgets.QWidget(self.tab_5) self.widget_8.setGeometry(QtCore.QRect(10, 10, 431, 171)) self.widget_8.setStyleSheet("background-color: rgb(85, 85, 85);") self.widget_8.setObjectName("widget_8") self.gridLayout_4 = QtWidgets.QGridLayout(self.widget_8) self.gridLayout_4.setContentsMargins(0, 0, 0, 0) self.gridLayout_4.setObjectName("gridLayout_4") self.label_27 = QtWidgets.QLabel(self.widget_8) self.label_27.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_27.setObjectName("label_27") self.gridLayout_4.addWidget(self.label_27, 0, 0, 1, 1) self.label_28 = QtWidgets.QLabel(self.widget_8) self.label_28.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_28.setObjectName("label_28") self.gridLayout_4.addWidget(self.label_28, 1, 0, 1, 1) self.label_29 = QtWidgets.QLabel(self.widget_8) self.label_29.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_29.setObjectName("label_29") self.gridLayout_4.addWidget(self.label_29, 1, 1, 1, 1) self.label_30 = QtWidgets.QLabel(self.widget_8) self.label_30.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_30.setObjectName("label_30") self.gridLayout_4.addWidget(self.label_30, 2, 0, 1, 1) self.label_31 = QtWidgets.QLabel(self.widget_8) self.label_31.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_31.setObjectName("label_31") self.gridLayout_4.addWidget(self.label_31, 2, 1, 1, 1) self.label_32 = QtWidgets.QLabel(self.widget_8) self.label_32.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_32.setObjectName("label_32") self.gridLayout_4.addWidget(self.label_32, 3, 0, 1, 1) self.label_33 = QtWidgets.QLabel(self.widget_8) self.label_33.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_33.setObjectName("label_33") self.gridLayout_4.addWidget(self.label_33, 3, 1, 1, 1) self.label_34 = QtWidgets.QLabel(self.widget_8) self.label_34.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_34.setObjectName("label_34") self.gridLayout_4.addWidget(self.label_34, 4, 0, 1, 1) self.label_35 = QtWidgets.QLabel(self.widget_8) self.label_35.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_35.setObjectName("label_35") self.gridLayout_4.addWidget(self.label_35, 4, 1, 1, 1) self.label_36 = QtWidgets.QLabel(self.widget_8) self.label_36.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_36.setObjectName("label_36") self.gridLayout_4.addWidget(self.label_36, 5, 0, 1, 1) self.label_37 = QtWidgets.QLabel(self.widget_8) self.label_37.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_37.setObjectName("label_37") self.gridLayout_4.addWidget(self.label_37, 5, 1, 1, 1) self.tabWidget.addTab(self.tab_5, "") self.tab_6 = QtWidgets.QWidget() self.tab_6.setObjectName("tab_6") self.widget_9 = QtWidgets.QWidget(self.tab_6) self.widget_9.setGeometry(QtCore.QRect(10, 10, 431, 171)) self.widget_9.setStyleSheet("background-color: rgb(85, 85, 85);") self.widget_9.setObjectName("widget_9") self.gridLayout_5 = QtWidgets.QGridLayout(self.widget_9) self.gridLayout_5.setContentsMargins(0, 0, 0, 0) self.gridLayout_5.setObjectName("gridLayout_5") self.label_38 = QtWidgets.QLabel(self.widget_9) self.label_38.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_38.setObjectName("label_38") self.gridLayout_5.addWidget(self.label_38, 0, 0, 1, 1) self.label_39 = QtWidgets.QLabel(self.widget_9) self.label_39.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_39.setObjectName("label_39") self.gridLayout_5.addWidget(self.label_39, 1, 0, 1, 1) self.label_40 = QtWidgets.QLabel(self.widget_9) self.label_40.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_40.setObjectName("label_40") self.gridLayout_5.addWidget(self.label_40, 1, 1, 1, 1) self.label_41 = QtWidgets.QLabel(self.widget_9) self.label_41.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_41.setObjectName("label_41") self.gridLayout_5.addWidget(self.label_41, 2, 0, 1, 1) self.label_42 = QtWidgets.QLabel(self.widget_9) self.label_42.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_42.setObjectName("label_42") self.gridLayout_5.addWidget(self.label_42, 2, 1, 1, 1) self.label_43 = QtWidgets.QLabel(self.widget_9) self.label_43.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_43.setObjectName("label_43") self.gridLayout_5.addWidget(self.label_43, 3, 0, 1, 1) self.label_44 = QtWidgets.QLabel(self.widget_9) self.label_44.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_44.setObjectName("label_44") self.gridLayout_5.addWidget(self.label_44, 3, 1, 1, 1) self.label_45 = QtWidgets.QLabel(self.widget_9) self.label_45.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_45.setObjectName("label_45") self.gridLayout_5.addWidget(self.label_45, 4, 0, 1, 1) self.label_46 = QtWidgets.QLabel(self.widget_9) self.label_46.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_46.setObjectName("label_46") self.gridLayout_5.addWidget(self.label_46, 4, 1, 1, 1) self.label_47 = QtWidgets.QLabel(self.widget_9) self.label_47.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_47.setObjectName("label_47") self.gridLayout_5.addWidget(self.label_47, 5, 0, 1, 1) self.label_48 = QtWidgets.QLabel(self.widget_9) self.label_48.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_48.setObjectName("label_48") self.gridLayout_5.addWidget(self.label_48, 5, 1, 1, 1) self.tabWidget.addTab(self.tab_6, "") self.tab_7 = QtWidgets.QWidget() self.tab_7.setObjectName("tab_7") self.widget_10 = QtWidgets.QWidget(self.tab_7) self.widget_10.setGeometry(QtCore.QRect(10, 10, 431, 171)) self.widget_10.setStyleSheet("background-color: rgb(85, 85, 85);") self.widget_10.setObjectName("widget_10") self.gridLayout_6 = QtWidgets.QGridLayout(self.widget_10) self.gridLayout_6.setContentsMargins(0, 0, 0, 0) self.gridLayout_6.setObjectName("gridLayout_6") self.label_49 = QtWidgets.QLabel(self.widget_10) self.label_49.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_49.setObjectName("label_49") self.gridLayout_6.addWidget(self.label_49, 0, 0, 1, 1) self.label_50 = QtWidgets.QLabel(self.widget_10) self.label_50.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_50.setObjectName("label_50") self.gridLayout_6.addWidget(self.label_50, 1, 0, 1, 1) self.label_51 = QtWidgets.QLabel(self.widget_10) self.label_51.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_51.setObjectName("label_51") self.gridLayout_6.addWidget(self.label_51, 1, 1, 1, 1) self.label_52 = QtWidgets.QLabel(self.widget_10) self.label_52.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_52.setObjectName("label_52") self.gridLayout_6.addWidget(self.label_52, 2, 0, 1, 1) self.label_53 = QtWidgets.QLabel(self.widget_10) self.label_53.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_53.setObjectName("label_53") self.gridLayout_6.addWidget(self.label_53, 2, 1, 1, 1) self.label_54 = QtWidgets.QLabel(self.widget_10) self.label_54.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_54.setObjectName("label_54") self.gridLayout_6.addWidget(self.label_54, 3, 0, 1, 1) self.label_55 = QtWidgets.QLabel(self.widget_10) self.label_55.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_55.setObjectName("label_55") self.gridLayout_6.addWidget(self.label_55, 3, 1, 1, 1) self.label_56 = QtWidgets.QLabel(self.widget_10) self.label_56.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_56.setObjectName("label_56") self.gridLayout_6.addWidget(self.label_56, 4, 0, 1, 1) self.label_57 = QtWidgets.QLabel(self.widget_10) self.label_57.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_57.setObjectName("label_57") self.gridLayout_6.addWidget(self.label_57, 4, 1, 1, 1) self.label_58 = QtWidgets.QLabel(self.widget_10) self.label_58.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_58.setObjectName("label_58") self.gridLayout_6.addWidget(self.label_58, 5, 0, 1, 1) self.label_59 = QtWidgets.QLabel(self.widget_10) self.label_59.setStyleSheet("QLabel {\n" " color:white;\n" "}") self.label_59.setObjectName("label_59") self.gridLayout_6.addWidget(self.label_59, 5, 1, 1, 1) self.tabWidget.addTab(self.tab_7, "") self.verticalLayout_3.addWidget(self.tabWidget) self.gridLayout_2.addWidget(self.widget_5, 2, 0, 1, 1) self.retranslateUi(Dialog) self.tabWidget.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Dialog")) self.label_20.setText(_translate("Dialog", " 分割统计")) self.label.setText(_translate("Dialog", "统计设置")) self.label_2.setText(_translate("Dialog", "摄像头ID:")) self.label_3.setText(_translate("Dialog", "摄像头点位:")) self.pushButton.setText(_translate("Dialog", "统计")) self.label_63.setText(_translate("Dialog", "统计设置")) self.label_5.setText(_translate("Dialog", "(1)20+:")) self.label_14.setText(_translate("Dialog", "%")) self.label_12.setText(_translate("Dialog", "%")) self.label_8.setText(_translate("Dialog", "(4)2+:")) self.label_13.setText(_translate("Dialog", "%")) self.label_11.setText(_translate("Dialog", "%")) self.label_7.setText(_translate("Dialog", "(3)5+:")) self.label_10.setText(_translate("Dialog", "%")) self.label_4.setText(_translate("Dialog", "平均矿石尺寸占比:")) self.label_6.setText(_translate("Dialog", "(2)10+:")) self.label_9.setText(_translate("Dialog", "(5)平均尺寸:")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab), _translate("Dialog", "1分钟")) self.label_15.setText(_translate("Dialog", "平均矿石尺寸占比:")) self.label_16.setText(_translate("Dialog", "(1)20+:")) self.label_17.setText(_translate("Dialog", "%")) self.label_18.setText(_translate("Dialog", "(2)10+:")) self.label_19.setText(_translate("Dialog", "%")) self.label_21.setText(_translate("Dialog", "(3)5+:")) self.label_22.setText(_translate("Dialog", "%")) self.label_23.setText(_translate("Dialog", "(4)2+:")) self.label_24.setText(_translate("Dialog", "%")) self.label_25.setText(_translate("Dialog", "(5)平均尺寸:")) self.label_26.setText(_translate("Dialog", "%")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2), _translate("Dialog", "5分钟")) self.label_27.setText(_translate("Dialog", "平均矿石尺寸占比:")) self.label_28.setText(_translate("Dialog", "(1)20+:")) self.label_29.setText(_translate("Dialog", "%")) self.label_30.setText(_translate("Dialog", "(2)10+:")) self.label_31.setText(_translate("Dialog", "%")) self.label_32.setText(_translate("Dialog", "(3)5+:")) self.label_33.setText(_translate("Dialog", "%")) self.label_34.setText(_translate("Dialog", "(4)2+:")) self.label_35.setText(_translate("Dialog", "%")) self.label_36.setText(_translate("Dialog", "(5)平均尺寸:")) self.label_37.setText(_translate("Dialog", "%")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_5), _translate("Dialog", "10分钟")) self.label_38.setText(_translate("Dialog", "平均矿石尺寸占比:")) self.label_39.setText(_translate("Dialog", "(1)20+:")) self.label_40.setText(_translate("Dialog", "%")) self.label_41.setText(_translate("Dialog", "(2)10+:")) self.label_42.setText(_translate("Dialog", "%")) self.label_43.setText(_translate("Dialog", "(3)5+:")) self.label_44.setText(_translate("Dialog", "%")) self.label_45.setText(_translate("Dialog", "(4)2+:")) self.label_46.setText(_translate("Dialog", "%")) self.label_47.setText(_translate("Dialog", "(5)平均尺寸:")) self.label_48.setText(_translate("Dialog", "%")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_6), _translate("Dialog", "15分钟")) self.label_49.setText(_translate("Dialog", "平均矿石尺寸占比:")) self.label_50.setText(_translate("Dialog", "(1)20+:")) self.label_51.setText(_translate("Dialog", "%")) self.label_52.setText(_translate("Dialog", "(2)10+:")) self.label_53.setText(_translate("Dialog", "%")) self.label_54.setText(_translate("Dialog", "(3)5+:")) self.label_55.setText(_translate("Dialog", "%")) self.label_56.setText(_translate("Dialog", "(4)2+:")) self.label_57.setText(_translate("Dialog", "%")) self.label_58.setText(_translate("Dialog", "(5)平均尺寸:")) self.label_59.setText(_translate("Dialog", "%")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_7), _translate("Dialog", "30分钟"))
43.791241
116
0.657432
29,828
0.987649
0
0
0
0
0
0
6,849
0.226781
deeb28c75145a6bebc3771235fab7a32732db4c0
684
py
Python
models/t_complex_gateway.py
THM-MA/XSDATA-waypoint
dd94442f9d6677c525bf3ebb03c15fec52fa1079
[ "MIT" ]
null
null
null
models/t_complex_gateway.py
THM-MA/XSDATA-waypoint
dd94442f9d6677c525bf3ebb03c15fec52fa1079
[ "MIT" ]
null
null
null
models/t_complex_gateway.py
THM-MA/XSDATA-waypoint
dd94442f9d6677c525bf3ebb03c15fec52fa1079
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from typing import Optional from .t_expression import TExpression from .t_gateway import TGateway __NAMESPACE__ = "http://www.omg.org/spec/BPMN/20100524/MODEL" @dataclass class TComplexGateway(TGateway): class Meta: name = "tComplexGateway" activation_condition: Optional[TExpression] = field( default=None, metadata={ "name": "activationCondition", "type": "Element", "namespace": "http://www.omg.org/spec/BPMN/20100524/MODEL", } ) default: Optional[str] = field( default=None, metadata={ "type": "Attribute", } )
24.428571
71
0.622807
468
0.684211
0
0
479
0.700292
0
0
177
0.258772
deebcfc8092fc857d0a9f335ddd1bffc49d0f520
2,371
py
Python
fixture/orm.py
NovikovMA/python_training_mantis
c8de0ec193e2ec644d8053f8e1b7fc1ee8fb1525
[ "Apache-2.0" ]
null
null
null
fixture/orm.py
NovikovMA/python_training_mantis
c8de0ec193e2ec644d8053f8e1b7fc1ee8fb1525
[ "Apache-2.0" ]
null
null
null
fixture/orm.py
NovikovMA/python_training_mantis
c8de0ec193e2ec644d8053f8e1b7fc1ee8fb1525
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- __author__ = 'M.Novikov' from model.project import Project # Проекты Mantis from pony.orm import * # Работа с базой данных from pymysql.converters import decoders # Преобразование данных class ORMFixture: db = Database() # Структура объектов, привязываемых к базе данных class ORMProject(db.Entity): # Проект Mantis _table_ = "mantis_project_table" # Наименование связываемой таблицы базы данных id = PrimaryKey(int, column="id") # Идентификатор name = Optional(str, column="name") # Название description = Optional(str, column="description") # Описание # Создание фикстуры работы с базой данных def __init__(self, host, name, user, password): self.db.bind("mysql", host=host, database=name, user=user, password=password, conv=decoders) # Подключение к базе данных с разрешением преобразования данных в извесные форматы self.db.generate_mapping() # Сопоставление объектов класса и таблиц базы данных #sql_debug(True) # Вывод формируемых sql-запросов в консоль # Уничтожение фикстуры работы с базой данных def destroy(self): pass # Преобразование объектов ORMGroup (текущий формат) к формату объектов model (общий формат) def convert_project_to_model(self, projects): def convert(project): # Преобразование одного ORM-объекта проекта Mantis в формат модели проекта Mantis return Project(id=project.id, name=project.name, description=project.description) return list(map(convert, projects)) # Преобразованный список проектов # Получение списка проектов @db_session # Метка выполнения функции в рамках единой сессии def get_project_list(self): return self.convert_project_to_model(select(p for p in ORMFixture.ORMProject)) # Получение (запрос к базе) списка проектов
59.275
186
0.567693
2,601
0.869318
0
0
360
0.120321
0
0
1,568
0.524064
deecfb2ff8809fa583a186388e95973a391ea0c6
3,577
py
Python
volDB/migrations/0001_initial.py
leg2015/CSCapstone19Volunteers
ae0fcf1e8ce4fafe8578edd0a3943574703046fa
[ "MIT" ]
4
2020-01-13T23:30:34.000Z
2021-03-17T21:23:57.000Z
volDB/migrations/0001_initial.py
leg2015/CSCapstone19Volunteers
ae0fcf1e8ce4fafe8578edd0a3943574703046fa
[ "MIT" ]
5
2020-02-12T03:25:17.000Z
2021-06-10T22:29:16.000Z
volDB/migrations/0001_initial.py
leg2015/CSCapstone19Volunteers
ae0fcf1e8ce4fafe8578edd0a3943574703046fa
[ "MIT" ]
null
null
null
# Generated by Django 2.1.7 on 2019-02-23 18:47 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Address', fields=[ ('addressID', models.AutoField(db_column='addressID', primary_key=True, serialize=False)), ('street', models.CharField(db_column='street', max_length=100)), ('city', models.CharField(db_column='city', max_length=20)), ('state', models.CharField(db_column='state', max_length=20)), ('zipCode', models.IntegerField(db_column='zipCode')), ], ), migrations.CreateModel( name='Category', fields=[ ('category', models.CharField(db_column='category', max_length=20)), ('categoryID', models.AutoField(db_column='categoryID', primary_key=True, serialize=False)), ], ), migrations.CreateModel( name='Email', fields=[ ('email', models.EmailField(db_column='email', max_length=254)), ('emailID', models.AutoField(db_column='emailID', primary_key=True, serialize=False)), ], ), migrations.CreateModel( name='Location', fields=[ ('location', models.CharField(db_column='location', max_length=20)), ('locationID', models.AutoField(db_column='locationID', primary_key=True, serialize=False)), ], ), migrations.CreateModel( name='Organization', fields=[ ('name', models.CharField(db_column='orgName', max_length=100)), ('orgID', models.AutoField(db_column='orgID', primary_key=True, serialize=False)), ('mission', models.TextField(db_column='missionStatement')), ('opportunities', models.TextField(db_column='volOpportunities')), ('website', models.URLField(db_column='volURL')), ('notes', models.TextField(db_column='notes')), ], ), migrations.CreateModel( name='Phone', fields=[ ('phoneID', models.AutoField(db_column='phoneID', primary_key=True, serialize=False)), ('phone', models.CharField(db_column='phone', max_length=10)), ('orgid', models.ForeignKey(db_column='orgID', on_delete=django.db.models.deletion.DO_NOTHING, to='volDB.Organization')), ], ), migrations.AddField( model_name='location', name='orgID', field=models.ForeignKey(db_column='orgID', on_delete=django.db.models.deletion.DO_NOTHING, to='volDB.Organization'), ), migrations.AddField( model_name='email', name='orgID', field=models.ForeignKey(db_column='orgID', on_delete=django.db.models.deletion.DO_NOTHING, to='volDB.Organization'), ), migrations.AddField( model_name='category', name='orgID', field=models.ForeignKey(db_column='orgID', on_delete=django.db.models.deletion.DO_NOTHING, to='volDB.Organization'), ), migrations.AddField( model_name='address', name='orgID', field=models.ForeignKey(db_column='orgID', on_delete=django.db.models.deletion.DO_NOTHING, to='volDB.Organization'), ), ]
41.593023
137
0.574224
3,451
0.964775
0
0
0
0
0
0
664
0.18563
deedff750596df4bfdfcd2656752ec59911b5e80
2,713
py
Python
crawler/page_fetcher.py
AssisRaphael/PageColector
6753376996f12ee1cced96b89a3e34d6fdf66529
[ "MIT" ]
null
null
null
crawler/page_fetcher.py
AssisRaphael/PageColector
6753376996f12ee1cced96b89a3e34d6fdf66529
[ "MIT" ]
null
null
null
crawler/page_fetcher.py
AssisRaphael/PageColector
6753376996f12ee1cced96b89a3e34d6fdf66529
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup from threading import Thread import requests from urllib.parse import urlparse,urljoin from urllib import parse class PageFetcher(Thread): def __init__(self, obj_scheduler): self.obj_scheduler = obj_scheduler def request_url(self,obj_url): """ Faz a requisição e retorna o conteúdo em binário da URL passada como parametro obj_url: Instancia da classe ParseResult com a URL a ser requisitada. """ url = parse.urlunparse(obj_url) if "http" not in url: url = "http:" + url response = requests.get(url) response.headers['User-Agent'] = self.obj_scheduler.str_usr_agent if response.headers['content-type'].find('text/html') == -1: return None return response.content def discover_links(self,obj_url,int_depth,bin_str_content): """ Retorna os links do conteúdo bin_str_content da página já requisitada obj_url """ soup = BeautifulSoup(bin_str_content,features="lxml") for link in soup.select('a'): try: obj_new_url = urlparse(link['href']) except: continue if obj_new_url.netloc == '': if "http" in obj_new_url.path: obj_new_url = urlparse(obj_new_url.path) else: obj_new_url = urlparse(urljoin(parse.urlunparse(obj_url), parse.urlunparse(obj_new_url))) # print('rrr: ', obj_new_url.netloc+obj_new_url.path) if obj_new_url.netloc != obj_url.netloc: int_new_depth = 0 else: int_new_depth = int_depth + 1 yield obj_new_url,int_new_depth def crawl_new_url(self): """ Coleta uma nova URL, obtendo-a do escalonador """ obj_url, int_depth = self.obj_scheduler.get_next_url() bin_str_content = self.request_url(obj_url) if bin_str_content is not None: #print(obj_url) multi_obj = self.discover_links(obj_url, int_depth, bin_str_content) while True: try: url, depth = next(multi_obj) #print(url) print(parse.urlunparse(url)) self.obj_scheduler.add_new_page(url, depth) except StopIteration: break def run(self): """ Executa coleta enquanto houver páginas a serem coletadas """ while not self.obj_scheduler.has_finished_crawl(): self.crawl_new_url()
33.085366
109
0.570586
2,576
0.946711
964
0.354282
0
0
0
0
607
0.22308
def0c98ea1f503e25e5a4f61d70a095d8ff1d77d
141
py
Python
app/celery_worker.py
cjarv/celery_dev
1c0489ccf456249d5bd8d21da40ebe4572842af6
[ "MIT" ]
null
null
null
app/celery_worker.py
cjarv/celery_dev
1c0489ccf456249d5bd8d21da40ebe4572842af6
[ "MIT" ]
null
null
null
app/celery_worker.py
cjarv/celery_dev
1c0489ccf456249d5bd8d21da40ebe4572842af6
[ "MIT" ]
null
null
null
from factories.celery import create_celery from factories.application import create_application celery = create_celery(create_application())
35.25
52
0.87234
0
0
0
0
0
0
0
0
0
0
def0d455f3332a2d6ded90d585855fcbfa88a92a
2,098
py
Python
simublocks/dialog/importCodeDialog.py
bentoavb/simublocks
9d4a5600b8aecd2d188e9191d78789a1bd725ab8
[ "MIT" ]
2
2020-05-14T12:34:43.000Z
2020-06-11T23:48:09.000Z
simublocks/dialog/importCodeDialog.py
bentoavb/simublocks
9d4a5600b8aecd2d188e9191d78789a1bd725ab8
[ "MIT" ]
null
null
null
simublocks/dialog/importCodeDialog.py
bentoavb/simublocks
9d4a5600b8aecd2d188e9191d78789a1bd725ab8
[ "MIT" ]
1
2020-05-12T07:01:28.000Z
2020-05-12T07:01:28.000Z
# MIT License # # Copyright (c) 2020 Anderson Vitor Bento # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import tkinter as tk from tkinter.scrolledtext import ScrolledText from simublocks.dialog.dialogTools import dialogTools class importCodeDialog(object): def __init__(self, code): root = self.root = tk.Tk() root.resizable(0,0) root.title("Import Code and Packages") self.inputCode = ScrolledText(root, height=5,width=50) self.inputCode.insert(tk.END, code) self.inputCode.grid(row=0, column=0,columnspan=2) tk.Button(root, width=11, text="Save", command=self.save_button).grid(row=1, column=0) tk.Button(root, width=11, text="Cancel", command=self.cancel_button).grid(row=1, column=1) dialogTools.center(root) def save_button(self): self.returning = { 'code': self.inputCode.get(1.0, tk.END), 'status': 'ok' } self.root.quit() def cancel_button(self): self.returning = { 'status': 'cancel' } self.root.quit()
38.851852
98
0.704957
860
0.409914
0
0
0
0
0
0
1,168
0.556721
def0f90a3cae5abac2b0927d079c001b98668c18
1,365
py
Python
python-socket-mult-thread/server.py
Programmer-Edilson/min-projects
62dfa55e8875b3d0d3e6cc9cb504c3f3f7da064e
[ "MIT" ]
1
2021-02-28T17:33:59.000Z
2021-02-28T17:33:59.000Z
python-socket-mult-thread/server.py
Programmer-Edilson/min-projects
62dfa55e8875b3d0d3e6cc9cb504c3f3f7da064e
[ "MIT" ]
null
null
null
python-socket-mult-thread/server.py
Programmer-Edilson/min-projects
62dfa55e8875b3d0d3e6cc9cb504c3f3f7da064e
[ "MIT" ]
null
null
null
import socket import os from _thread import start_new_thread ip = "localhost" port = 1234 global number_of_connections number_of_connections = 0 server = socket.socket() server.bind((ip, port)) server.listen(5) def handle_client(socket_client): global number_of_connections msg = "You are connected!" socket_client.send(msg.encode()) name = socket_client.recv(1024) print("[#] client name:", name.decode()) while True: request = socket_client.recv(1024) print("[{}] : ".format(name.decode()), request.decode()) msg = request.decode() msg = msg.upper() socket_client.send(msg.encode()) if not request: print("[#] {} desconnected".format(name.decode())) number_of_connections -= 1 print("[#] clients connected : ", number_of_connections) break socket_client.close() def engine(): global number_of_connections print("[#] waiting for clients...") while True: client, address = server.accept() connection = (address[0], address[1]) print("[#] new connection {} : {}".format(address[0], address[1])) start_new_thread(handle_client, (client, )) number_of_connections += 1 print("[#] clients connected : ", number_of_connections) server.close() engine()
24.375
74
0.621245
0
0
0
0
0
0
0
0
187
0.136996
def2f40bc3a8f54d1a406e95811076ed0688d708
658
py
Python
delete_unuse_callkit.py
eyolo2021/ios-ui-sdk-set
a8897320c356ddd6dbfe964ef68eb76701759f03
[ "MIT" ]
14
2021-03-06T08:47:30.000Z
2022-02-11T09:42:24.000Z
delete_unuse_callkit.py
eyolo2021/ios-ui-sdk-set
a8897320c356ddd6dbfe964ef68eb76701759f03
[ "MIT" ]
3
2021-03-19T11:12:42.000Z
2021-11-29T14:56:33.000Z
delete_unuse_callkit.py
Zuzi007/ios-ui-sdk-set
2e51added5d697b4d1ab1ba2887ad297b408e7b0
[ "MIT" ]
12
2021-07-02T02:44:52.000Z
2022-03-01T05:15:22.000Z
#coding=utf-8 import os delete_files=["RCCall.mm","RCCXCall.m"] start_key = "RCCallKit_Delete_Start" end_key = "RCCallKit_Delete_end" def delete_used(file_path): print(file_path) f = open(file_path,"r") lines = f.readlines() f.close() # print(lines) result = [] flag = False for l in lines: if start_key in l: flag = True elif end_key in l: flag = False if flag is True: continue result.append(l) f = open(file_path,"w") f.writelines(result) f.close() for root,dirs,files in os.walk("./CallKit"): for file in files: if file in delete_files: print("will delete %s" % file) delete_used(os.path.join(root,file))
15.666667
44
0.674772
0
0
0
0
0
0
0
0
129
0.196049
def6b9e9ff86d2545be01b4fc202577ea606b159
525
py
Python
global_setting.py
aixiwang/mqtt_datajs
91091d63f73e64916e6ca3fa5e9279dd361d3c86
[ "BSD-3-Clause" ]
null
null
null
global_setting.py
aixiwang/mqtt_datajs
91091d63f73e64916e6ca3fa5e9279dd361d3c86
[ "BSD-3-Clause" ]
null
null
null
global_setting.py
aixiwang/mqtt_datajs
91091d63f73e64916e6ca3fa5e9279dd361d3c86
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python #-*- coding: utf-8 -*- #--------------------------------------- # # Copyright(c) Aixi Wang 2014-2015 #--------------------------------------- # v1 -- initial version #--------------------------------------- #----------------------- # mail #----------------------- global mail_sender,mail_smtpserver,mail_username,mail_password global mail_enable,mail_to mail_to = '[email protected]' mail_username = '[email protected]' mail_password = 'xxx' mail_smtpserver = 'xxx.xxx.xxx' mail_sender = '[email protected]' mail_enable = 1
23.863636
62
0.493333
0
0
0
0
0
0
0
0
327
0.622857
def712afd23e0562bd689a7a3ab2431ec0fae53a
631
py
Python
Chatbot_Rest/urls.py
chenpocufa/Chatbot_CN
5e13c129c159143610f4dfc99478d401dd5777e6
[ "Apache-2.0" ]
1
2019-08-02T06:09:34.000Z
2019-08-02T06:09:34.000Z
Chatbot_Rest/urls.py
yuxuan2015/Chatbot_CN
1adf1c01d3eced5f0644102bdec9be22705b6f3f
[ "Apache-2.0" ]
null
null
null
Chatbot_Rest/urls.py
yuxuan2015/Chatbot_CN
1adf1c01d3eced5f0644102bdec9be22705b6f3f
[ "Apache-2.0" ]
null
null
null
#-*- coding:utf-8 _*- """ @author:charlesXu @file: urls.py @desc: 接口url @time: 2019/05/10 """ # =============== # # apis 下面的路由 # # =============== from django.urls import path from intent_rest_controller import intent_controller from entity_extraction_controller import entity_ext_controller from bot_controller import get_chat_msg # 聊天 from time_convert_server import time_convert # 时间转换器 urlpatterns = [ path('entity', entity_ext_controller), # 实体抽取 path('intent', intent_controller), # 意图识别 path('chat', get_chat_msg), # chatbot接口 path('time_convert', time_convert) # 时间转换器 ]
21.033333
62
0.667195
0
0
0
0
0
0
0
0
282
0.409289
def7709b7d7d970c7608ad7be378d822d2e33518
14,334
py
Python
tests/frameworks/test_wsgi.py
tirkarthi/python-sensor
9872d146ac00baff2673fde5ba97fdbe596869a4
[ "MIT" ]
61
2017-09-27T02:50:17.000Z
2022-03-22T12:13:37.000Z
tests/frameworks/test_wsgi.py
tirkarthi/python-sensor
9872d146ac00baff2673fde5ba97fdbe596869a4
[ "MIT" ]
82
2017-07-11T13:47:33.000Z
2022-03-22T10:10:38.000Z
tests/frameworks/test_wsgi.py
takeaway/python-sensor
52d6eaa2d6a8e625201bad36ac2448201c4bd63d
[ "MIT" ]
27
2017-09-11T16:22:32.000Z
2022-03-11T17:21:49.000Z
# (c) Copyright IBM Corp. 2021 # (c) Copyright Instana Inc. 2020 from __future__ import absolute_import import time import urllib3 import unittest import tests.apps.flask_app from ..helpers import testenv from instana.singletons import agent, tracer class TestWSGI(unittest.TestCase): def setUp(self): """ Clear all spans before a test run """ self.http = urllib3.PoolManager() self.recorder = tracer.recorder self.recorder.clear_spans() time.sleep(0.1) def tearDown(self): """ Do nothing for now """ return None def test_vanilla_requests(self): response = self.http.request('GET', testenv["wsgi_server"] + '/') spans = self.recorder.queued_spans() self.assertEqual(1, len(spans)) self.assertIsNone(tracer.active_span) self.assertEqual(response.status, 200) def test_get_request(self): with tracer.start_active_span('test'): response = self.http.request('GET', testenv["wsgi_server"] + '/') spans = self.recorder.queued_spans() self.assertEqual(3, len(spans)) self.assertIsNone(tracer.active_span) wsgi_span = spans[0] urllib3_span = spans[1] test_span = spans[2] assert response self.assertEqual(200, response.status) assert 'X-INSTANA-T' in response.headers assert(int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(response.headers['X-INSTANA-T'], wsgi_span.t) assert 'X-INSTANA-S' in response.headers assert(int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(response.headers['X-INSTANA-S'], wsgi_span.s) assert 'X-INSTANA-L' in response.headers self.assertEqual(response.headers['X-INSTANA-L'], '1') assert 'Server-Timing' in response.headers server_timing_value = "intid;desc=%s" % wsgi_span.t self.assertEqual(response.headers['Server-Timing'], server_timing_value) # Same traceId self.assertEqual(test_span.t, urllib3_span.t) self.assertEqual(urllib3_span.t, wsgi_span.t) # Parent relationships self.assertEqual(urllib3_span.p, test_span.s) self.assertEqual(wsgi_span.p, urllib3_span.s) self.assertIsNone(wsgi_span.sy) self.assertIsNone(urllib3_span.sy) self.assertIsNone(test_span.sy) # Error logging self.assertIsNone(test_span.ec) self.assertIsNone(urllib3_span.ec) self.assertIsNone(wsgi_span.ec) # wsgi self.assertEqual("wsgi", wsgi_span.n) self.assertEqual('127.0.0.1:' + str(testenv['wsgi_port']), wsgi_span.data["http"]["host"]) self.assertEqual('/', wsgi_span.data["http"]["url"]) self.assertEqual('GET', wsgi_span.data["http"]["method"]) self.assertEqual(200, wsgi_span.data["http"]["status"]) self.assertIsNone(wsgi_span.data["http"]["error"]) self.assertIsNone(wsgi_span.stack) def test_synthetic_request(self): headers = { 'X-INSTANA-SYNTHETIC': '1' } with tracer.start_active_span('test'): response = self.http.request('GET', testenv["wsgi_server"] + '/', headers=headers) spans = self.recorder.queued_spans() self.assertEqual(3, len(spans)) self.assertIsNone(tracer.active_span) wsgi_span = spans[0] urllib3_span = spans[1] test_span = spans[2] self.assertTrue(wsgi_span.sy) self.assertIsNone(urllib3_span.sy) self.assertIsNone(test_span.sy) def test_complex_request(self): with tracer.start_active_span('test'): response = self.http.request('GET', testenv["wsgi_server"] + '/complex') spans = self.recorder.queued_spans() self.assertEqual(5, len(spans)) self.assertIsNone(tracer.active_span) spacedust_span = spans[0] asteroid_span = spans[1] wsgi_span = spans[2] urllib3_span = spans[3] test_span = spans[4] assert response self.assertEqual(200, response.status) assert 'X-INSTANA-T' in response.headers assert(int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(response.headers['X-INSTANA-T'], wsgi_span.t) assert 'X-INSTANA-S' in response.headers assert(int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(response.headers['X-INSTANA-S'], wsgi_span.s) assert 'X-INSTANA-L' in response.headers self.assertEqual(response.headers['X-INSTANA-L'], '1') assert 'Server-Timing' in response.headers server_timing_value = "intid;desc=%s" % wsgi_span.t self.assertEqual(response.headers['Server-Timing'], server_timing_value) # Same traceId trace_id = test_span.t self.assertEqual(trace_id, urllib3_span.t) self.assertEqual(trace_id, wsgi_span.t) self.assertEqual(trace_id, asteroid_span.t) self.assertEqual(trace_id, spacedust_span.t) # Parent relationships self.assertEqual(urllib3_span.p, test_span.s) self.assertEqual(wsgi_span.p, urllib3_span.s) self.assertEqual(asteroid_span.p, wsgi_span.s) self.assertEqual(spacedust_span.p, asteroid_span.s) # Error logging self.assertIsNone(test_span.ec) self.assertIsNone(urllib3_span.ec) self.assertIsNone(wsgi_span.ec) self.assertIsNone(asteroid_span.ec) self.assertIsNone(spacedust_span.ec) # wsgi self.assertEqual("wsgi", wsgi_span.n) self.assertEqual('127.0.0.1:' + str(testenv['wsgi_port']), wsgi_span.data["http"]["host"]) self.assertEqual('/complex', wsgi_span.data["http"]["url"]) self.assertEqual('GET', wsgi_span.data["http"]["method"]) self.assertEqual(200, wsgi_span.data["http"]["status"]) self.assertIsNone(wsgi_span.data["http"]["error"]) self.assertIsNone(wsgi_span.stack) def test_custom_header_capture(self): # Hack together a manual custom headers list agent.options.extra_http_headers = [u'X-Capture-This', u'X-Capture-That'] request_headers = {} request_headers['X-Capture-This'] = 'this' request_headers['X-Capture-That'] = 'that' with tracer.start_active_span('test'): response = self.http.request('GET', testenv["wsgi_server"] + '/', headers=request_headers) spans = self.recorder.queued_spans() self.assertEqual(3, len(spans)) self.assertIsNone(tracer.active_span) wsgi_span = spans[0] urllib3_span = spans[1] test_span = spans[2] assert response self.assertEqual(200, response.status) assert 'X-INSTANA-T' in response.headers assert(int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(response.headers['X-INSTANA-T'], wsgi_span.t) assert 'X-INSTANA-S' in response.headers assert(int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(response.headers['X-INSTANA-S'], wsgi_span.s) assert 'X-INSTANA-L' in response.headers self.assertEqual(response.headers['X-INSTANA-L'], '1') assert 'Server-Timing' in response.headers server_timing_value = "intid;desc=%s" % wsgi_span.t self.assertEqual(response.headers['Server-Timing'], server_timing_value) # Same traceId self.assertEqual(test_span.t, urllib3_span.t) self.assertEqual(urllib3_span.t, wsgi_span.t) # Parent relationships self.assertEqual(urllib3_span.p, test_span.s) self.assertEqual(wsgi_span.p, urllib3_span.s) # Error logging self.assertIsNone(test_span.ec) self.assertIsNone(urllib3_span.ec) self.assertIsNone(wsgi_span.ec) # wsgi self.assertEqual("wsgi", wsgi_span.n) self.assertEqual('127.0.0.1:' + str(testenv['wsgi_port']), wsgi_span.data["http"]["host"]) self.assertEqual('/', wsgi_span.data["http"]["url"]) self.assertEqual('GET', wsgi_span.data["http"]["method"]) self.assertEqual(200, wsgi_span.data["http"]["status"]) self.assertIsNone(wsgi_span.data["http"]["error"]) self.assertIsNone(wsgi_span.stack) assert "X-Capture-This" in wsgi_span.data["http"]["header"] self.assertEqual("this", wsgi_span.data["http"]["header"]["X-Capture-This"]) assert "X-Capture-That" in wsgi_span.data["http"]["header"] self.assertEqual("that", wsgi_span.data["http"]["header"]["X-Capture-That"]) def test_secret_scrubbing(self): with tracer.start_active_span('test'): response = self.http.request('GET', testenv["wsgi_server"] + '/?secret=shhh') spans = self.recorder.queued_spans() self.assertEqual(3, len(spans)) self.assertIsNone(tracer.active_span) wsgi_span = spans[0] urllib3_span = spans[1] test_span = spans[2] assert response self.assertEqual(200, response.status) assert 'X-INSTANA-T' in response.headers assert(int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(response.headers['X-INSTANA-T'], wsgi_span.t) assert 'X-INSTANA-S' in response.headers assert(int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(response.headers['X-INSTANA-S'], wsgi_span.s) assert 'X-INSTANA-L' in response.headers self.assertEqual(response.headers['X-INSTANA-L'], '1') assert 'Server-Timing' in response.headers server_timing_value = "intid;desc=%s" % wsgi_span.t self.assertEqual(response.headers['Server-Timing'], server_timing_value) # Same traceId self.assertEqual(test_span.t, urllib3_span.t) self.assertEqual(urllib3_span.t, wsgi_span.t) # Parent relationships self.assertEqual(urllib3_span.p, test_span.s) self.assertEqual(wsgi_span.p, urllib3_span.s) # Error logging self.assertIsNone(test_span.ec) self.assertIsNone(urllib3_span.ec) self.assertIsNone(wsgi_span.ec) # wsgi self.assertEqual("wsgi", wsgi_span.n) self.assertEqual('127.0.0.1:' + str(testenv['wsgi_port']), wsgi_span.data["http"]["host"]) self.assertEqual('/', wsgi_span.data["http"]["url"]) self.assertEqual('secret=<redacted>', wsgi_span.data["http"]["params"]) self.assertEqual('GET', wsgi_span.data["http"]["method"]) self.assertEqual(200, wsgi_span.data["http"]["status"]) self.assertIsNone(wsgi_span.data["http"]["error"]) self.assertIsNone(wsgi_span.stack) def test_with_incoming_context(self): request_headers = dict() request_headers['X-INSTANA-T'] = '0000000000000001' request_headers['X-INSTANA-S'] = '0000000000000001' response = self.http.request('GET', testenv["wsgi_server"] + '/', headers=request_headers) assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(1, len(spans)) wsgi_span = spans[0] self.assertEqual(wsgi_span.t, '0000000000000001') self.assertEqual(wsgi_span.p, '0000000000000001') assert 'X-INSTANA-T' in response.headers assert(int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(response.headers['X-INSTANA-T'], wsgi_span.t) assert 'X-INSTANA-S' in response.headers assert(int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(response.headers['X-INSTANA-S'], wsgi_span.s) assert 'X-INSTANA-L' in response.headers self.assertEqual(response.headers['X-INSTANA-L'], '1') assert 'Server-Timing' in response.headers server_timing_value = "intid;desc=%s" % wsgi_span.t self.assertEqual(response.headers['Server-Timing'], server_timing_value) def test_with_incoming_mixed_case_context(self): request_headers = dict() request_headers['X-InSTANa-T'] = '0000000000000001' request_headers['X-instana-S'] = '0000000000000001' response = self.http.request('GET', testenv["wsgi_server"] + '/', headers=request_headers) assert response self.assertEqual(200, response.status) spans = self.recorder.queued_spans() self.assertEqual(1, len(spans)) wsgi_span = spans[0] self.assertEqual(wsgi_span.t, '0000000000000001') self.assertEqual(wsgi_span.p, '0000000000000001') assert 'X-INSTANA-T' in response.headers assert(int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(response.headers['X-INSTANA-T'], wsgi_span.t) assert 'X-INSTANA-S' in response.headers assert(int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(response.headers['X-INSTANA-S'], wsgi_span.s) assert 'X-INSTANA-L' in response.headers self.assertEqual(response.headers['X-INSTANA-L'], '1') assert 'Server-Timing' in response.headers server_timing_value = "intid;desc=%s" % wsgi_span.t self.assertEqual(response.headers['Server-Timing'], server_timing_value) def test_response_headers(self): with tracer.start_active_span('test'): response = self.http.request('GET', testenv["wsgi_server"] + '/') spans = self.recorder.queued_spans() self.assertEqual(3, len(spans)) self.assertIsNone(tracer.active_span) wsgi_span = spans[0] urllib3_span = spans[1] test_span = spans[2] assert response self.assertEqual(200, response.status) assert 'X-INSTANA-T' in response.headers assert(int(response.headers['X-INSTANA-T'], 16)) self.assertEqual(response.headers['X-INSTANA-T'], wsgi_span.t) assert 'X-INSTANA-S' in response.headers assert(int(response.headers['X-INSTANA-S'], 16)) self.assertEqual(response.headers['X-INSTANA-S'], wsgi_span.s) assert 'X-INSTANA-L' in response.headers self.assertEqual(response.headers['X-INSTANA-L'], '1') assert 'Server-Timing' in response.headers server_timing_value = "intid;desc=%s" % wsgi_span.t self.assertEqual(response.headers['Server-Timing'], server_timing_value)
36.943299
102
0.647133
14,078
0.98214
0
0
0
0
0
0
2,584
0.180271
def7ae196a0259e7e64d4dfd6522b1ee72138646
16,178
py
Python
api/yolo_minimal/utils.py
simonsmh/www
1741545e636540b9eb250840347f091082fe301a
[ "MIT" ]
5
2015-12-19T11:18:54.000Z
2016-08-27T02:21:59.000Z
api/yolo_minimal/utils.py
simonsmh/www
1741545e636540b9eb250840347f091082fe301a
[ "MIT" ]
null
null
null
api/yolo_minimal/utils.py
simonsmh/www
1741545e636540b9eb250840347f091082fe301a
[ "MIT" ]
1
2020-10-30T13:25:33.000Z
2020-10-30T13:25:33.000Z
import math import os import random import cv2 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision def xyxy2xywh(x): # Transform box coordinates from [x1, y1, x2, y2] (where xy1=top-left, xy2=bottom-right) to [x, y, w, h] y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xywh2xyxy(x): # Transform box coordinates from [x, y, w, h] to [x1, y1, x2, y2] (where xy1=top-left, xy2=bottom-right) y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape gain = max(img1_shape) / max(img0_shape) # gain = old / new pad = ( (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2, ) # wh padding coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain clip_coords(coords, img0_shape) coords[:, 2] -= coords[:, 0] # xyxy2xywh coords[:, 3] -= coords[:, 1] return coords def clip_coords(boxes, img_shape): # Clip bounding xyxy bounding boxes to image shape (height, width) boxes[:, 0].clamp_(0, img_shape[1]) # x1 boxes[:, 1].clamp_(0, img_shape[0]) # y1 boxes[:, 2].clamp_(0, img_shape[1]) # x2 boxes[:, 3].clamp_(0, img_shape[0]) # y2 def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.t() # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * ( torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1) ).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 union = (w1 * h1 + 1e-16) + w2 * h2 - inter iou = inter / union # iou if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min( b1_x1, b2_x1 ) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + 1e-16 # convex area return iou - (c_area - union) / c_area # GIoU if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 # convex diagonal squared c2 = cw ** 2 + ch ** 2 + 1e-16 # centerpoint distance squared rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ( (b2_y1 + b2_y2) - (b1_y1 + b1_y2) ) ** 2 / 4 if DIoU: return iou - rho2 / c2 # DIoU elif ( CIoU ): # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow( torch.atan(w2 / h2) - torch.atan(w1 / h1), 2 ) with torch.no_grad(): alpha = v / (1 - iou + v) return iou - (rho2 / c2 + v * alpha) # CIoU return iou def box_iou(box1, box2): # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ def box_area(box): # box = 4xn return (box[2] - box[0]) * (box[3] - box[1]) area1 = box_area(box1.t()) area2 = box_area(box2.t()) # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) inter = ( ( torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2]) ) .clamp(0) .prod(2) ) return inter / ( area1[:, None] + area2 - inter ) # iou = inter / (area1 + area2 - inter) def wh_iou(wh1, wh2): # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 wh1 = wh1[:, None] # [N,1,2] wh2 = wh2[None] # [1,M,2] inter = torch.min(wh1, wh2).prod(2) # [N,M] return inter / ( wh1.prod(2) + wh2.prod(2) - inter ) # iou = inter / (area1 + area2 - inter) def non_max_suppression( prediction, conf_thres=0.1, iou_thres=0.6, multi_label=True, classes=None, agnostic=False, ): """ Performs Non-Maximum Suppression on inference results Returns detections with shape: nx6 (x1, y1, x2, y2, conf, cls) """ # Box constraints min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height method = "merge" nc = prediction[0].shape[1] - 5 # number of classes multi_label &= nc > 1 # multiple labels per box output = [None] * len(prediction) for xi, x in enumerate(prediction): # image index, image inference # Apply conf constraint x = x[x[:, 4] > conf_thres] # Apply width-height constraint x = x[((x[:, 2:4] > min_wh) & (x[:, 2:4] < max_wh)).all(1)] # If none remain process next image if not x.shape[0]: continue # Compute conf x[..., 5:] *= x[..., 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero().t() x = torch.cat((box[i], x[i, j + 5].unsqueeze(1), j.float().unsqueeze(1)), 1) else: # best class only conf, j = x[:, 5:].max(1) x = torch.cat((box, conf.unsqueeze(1), j.float().unsqueeze(1)), 1) # Filter by class if classes: x = x[(j.view(-1, 1) == torch.tensor(classes, device=j.device)).any(1)] # Apply finite constraint if not torch.isfinite(x).all(): x = x[torch.isfinite(x).all(1)] # If none remain process next image n = x.shape[0] # number of boxes if not n: continue # Sort by confidence # if method == 'fast_batch': # x = x[x[:, 4].argsort(descending=True)] # Batched NMS c = x[:, 5] * 0 if agnostic else x[:, 5] # classes boxes, scores = ( x[:, :4].clone() + c.view(-1, 1) * max_wh, x[:, 4], ) # boxes (offset by class), scores if method == "merge": # Merge NMS (boxes merged using weighted mean) i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) if n < 1e4: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) # weights = (box_iou(boxes, boxes).tril_() > iou_thres) * scores.view(-1, 1) # box weights # weights /= weights.sum(0) # normalize # x[:, :4] = torch.mm(weights.T, x[:, :4]) weights = (box_iou(boxes[i], boxes) > iou_thres) * scores[ None ] # box weights x[i, :4] = torch.mm( weights / weights.sum(1, keepdim=True), x[:, :4] ).float() # merged boxes elif method == "vision": i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) elif method == "fast": # FastNMS from https://github.com/dbolya/yolact iou = box_iou(boxes, boxes).triu_(diagonal=1) # upper triangular iou matrix i = iou.max(0)[0] < iou_thres output[xi] = x[i] return output def model_info(model, verbose=False): # Plots a line-by-line description of a PyTorch model n_p = sum(x.numel() for x in model.parameters()) # number parameters n_g = sum( x.numel() for x in model.parameters() if x.requires_grad ) # number gradients if verbose: print( "%5s %40s %9s %12s %20s %10s %10s" % ("layer", "name", "gradient", "parameters", "shape", "mu", "sigma") ) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace("module_list.", "") print( "%5g %40s %9s %12g %20s %10.3g %10.3g" % ( i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), ) ) try: # FLOPS from thop import profile macs, _ = profile(model, inputs=(torch.zeros(1, 3, 480, 640),)) fs = ", %.1f GFLOPS" % (macs / 1e9 * 2) except: fs = "" if verbose: print( "Model Summary: %g layers, %g parameters, %g gradients%s" % (len(list(model.parameters())), n_p, n_g, fs) ) def fuse_conv_and_bn(conv, bn): # https://tehnokv.com/posts/fusing-batchnorm-and-conv/ with torch.no_grad(): # init fusedconv = torch.nn.Conv2d( conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, bias=True, ) # prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size())) # prepare spatial bias if conv.bias is not None: b_conv = conv.bias else: b_conv = torch.zeros(conv.weight.size(0)) b_bn = bn.bias - bn.weight.mul(bn.running_mean).div( torch.sqrt(bn.running_var + bn.eps) ) fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fusedconv def scale_img(img, ratio=1.0, same_shape=True): # img(16,3,256,416), r=ratio # scales img(bs,3,y,x) by ratio h, w = img.shape[2:] s = (int(h * ratio), int(w * ratio)) # new size img = F.interpolate(img, size=s, mode="bilinear", align_corners=False) # resize if not same_shape: # pad/crop img gs = 64 # (pixels) grid size h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean def parse_model_cfg(path): # Parse the yolo *.cfg file and return module definitions path may be 'cfg/yolov3.cfg', 'yolov3.cfg', or 'yolov3' if not path.endswith(".cfg"): # add .cfg suffix if omitted path += ".cfg" if not os.path.exists(path) and os.path.exists( "cfg" + os.sep + path ): # add cfg/ prefix if omitted path = "cfg" + os.sep + path with open(path, "r") as f: lines = f.read().split("\n") lines = [x for x in lines if x and not x.startswith("#")] lines = [x.rstrip().lstrip() for x in lines] # get rid of fringe whitespaces mdefs = [] # module definitions for line in lines: if line.startswith("["): # This marks the start of a new block mdefs.append({}) mdefs[-1]["type"] = line[1:-1].rstrip() if mdefs[-1]["type"] == "convolutional": mdefs[-1][ "batch_normalize" ] = 0 # pre-populate with zeros (may be overwritten later) else: key, val = line.split("=") key = key.rstrip() if key == "anchors": # return nparray mdefs[-1][key] = np.array([float(x) for x in val.split(",")]).reshape( (-1, 2) ) # np anchors elif (key in ["from", "layers", "mask"]) or ( key == "size" and "," in val ): # return array mdefs[-1][key] = [int(x) for x in val.split(",")] else: val = val.strip() if val.isnumeric(): # return int or float mdefs[-1][key] = ( int(val) if (int(val) - float(val)) == 0 else float(val) ) else: mdefs[-1][key] = val # return string # Check all fields are supported supported = [ "type", "batch_normalize", "filters", "size", "stride", "pad", "activation", "layers", "groups", "from", "mask", "anchors", "classes", "num", "jitter", "ignore_thresh", "truth_thresh", "random", "stride_x", "stride_y", "weights_type", "weights_normalization", "scale_x_y", "beta_nms", "nms_kind", "iou_loss", "iou_normalizer", "cls_normalizer", "iou_thresh", ] f = [] # fields for x in mdefs[1:]: [f.append(k) for k in x if k not in f] u = [x for x in f if x not in supported] # unsupported fields assert not any(u), ( "Unsupported fields %s in %s. See https://github.com/ultralytics/yolov3/issues/631" % (u, path) ) return mdefs def letterbox( img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, ): # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = new_shape ratio = new_shape[0] / shape[1], new_shape[1] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color ) # add border return img, ratio, (dw, dh) def get_file_location(path): if not os.path.exists(path) and os.path.exists( os.path.split(os.path.realpath(__file__))[0] + os.sep + path ): # add $PWD/ prefix if omitted return os.path.split(os.path.realpath(__file__))[0] + os.sep + path else: return
34.49467
117
0.52627
0
0
0
0
0
0
0
0
4,764
0.294474
def8727d101b934efb5715bc01f3842eeeee3ee3
4,934
py
Python
ec2stack/__init__.py
sureshanaparti/cloudstack-ec2stack
8e07435d3d04357995f2a5d337adef62ecbfdd8d
[ "Apache-2.0" ]
13
2015-05-06T13:38:13.000Z
2021-11-09T21:39:01.000Z
ec2stack/__init__.py
sureshanaparti/cloudstack-ec2stack
8e07435d3d04357995f2a5d337adef62ecbfdd8d
[ "Apache-2.0" ]
3
2015-08-21T17:31:20.000Z
2021-07-07T08:39:11.000Z
ec2stack/__init__.py
sureshanaparti/cloudstack-ec2stack
8e07435d3d04357995f2a5d337adef62ecbfdd8d
[ "Apache-2.0" ]
17
2015-07-24T06:00:59.000Z
2021-11-09T21:38:52.000Z
#!/usr/bin/env python # encoding: utf-8 # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # """This module creates the flask application. """ import os import sys import argparse from alembic import command from alembic.config import Config as AlembicConfig from flask import Flask from ConfigParser import SafeConfigParser from ec2stack.controllers import * from ec2stack.core import DB from ec2stack.models import User def create_app(settings=None): """ Creates a flask application. @param settings: Settings override object. @return: The flask application. """ app = Flask(__name__) if settings: app.config.from_object(settings) else: args = _generate_args() profile = args.pop('profile') app.config['DEBUG'] = args.pop('debug') config_file = _load_config_file() database_uri = _load_database() _config_from_config_profile(config_file, profile, app) app.config['SQLALCHEMY_DATABASE_URI'] = database_uri DB.init_app(app) default_controller = __import__( 'ec2stack.controllers.' + 'default', None, None, 'DEFAULT' ) default_controller = getattr(default_controller, 'DEFAULT') app.register_blueprint(default_controller) return app def _generate_args(): """ Generate command line arguments for ec2stack-configure. @return: args. """ parser = argparse.ArgumentParser() parser.add_argument( '-p', '--profile', required=False, help='The profile to run ec2stack with, default is initial', default='initial' ) parser.add_argument( '-d', '--debug', required=False, help='Turn debug on for application', default=False ) args = parser.parse_args() return vars(args) def _load_config_file(): """ Checks that the user's configuration file exists and returns its path. @return: The path to the user's configuration file. """ config_file = os.path.join( os.path.expanduser('~'), '.ec2stack/ec2stack.conf' ) if not os.path.exists(config_file): sys.exit('No configuration found, please run ec2stack-configure') return config_file def _config_from_config_profile(config_file, profile, app): """ Configures ec2stack app based on configuration profile. @param config_file: current config file configuration. @param profile: the profile to set the attribute in. """ config = SafeConfigParser() config.read(config_file) if not config.has_section(profile): sys.exit('No profile matching ' + profile + ' found in configuration, please run ec2stack-configure -p ' + profile) for attribute in config.options(profile): app.config[attribute.upper()] = config.get(profile, attribute) instance_type_map = {} instance_section = profile + "instancemap" if config.has_section(instance_section): for attribute in config.options(instance_section): instance_type_map[attribute] = config.get( instance_section, attribute) app.config['INSTANCE_TYPE_MAP'] = instance_type_map resource_type_map = {} resource_section = profile + "resourcemap" if config.has_section(resource_section): for attribute in config.options(resource_section): resource_type_map[attribute] = config.get( resource_section, attribute) app.config['RESOURCE_TYPE_MAP '] = resource_type_map def _load_database(): """ Checks that the user's database exists and returns its uri. @return: The uri to the user's database. """ database_file = os.path.join( os.path.expanduser('~'), '.ec2stack/ec2stack.sqlite' ) if not os.path.exists(database_file): directory = os.path.join(os.path.dirname(__file__), '../migrations') config = AlembicConfig(os.path.join( directory, 'alembic.ini' )) config.set_main_option('script_location', directory) command.upgrade(config, 'head', sql=False, tag=None) return 'sqlite:///' + database_file
28.356322
88
0.676125
0
0
0
0
0
0
0
0
2,086
0.422781
def8fdb574ef8e8309feae4ee72edbfe9a0a3beb
926
py
Python
schematics_proto3/unset.py
mlga/schematics-proto3
588fe5bc212e203688166638a1c52dfeda931403
[ "MIT" ]
null
null
null
schematics_proto3/unset.py
mlga/schematics-proto3
588fe5bc212e203688166638a1c52dfeda931403
[ "MIT" ]
11
2020-04-09T13:33:54.000Z
2020-08-19T17:38:26.000Z
schematics_proto3/unset.py
mlga/schematics-proto3
588fe5bc212e203688166638a1c52dfeda931403
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- """ Test module docstring. """ import threading from typing import Type class UnsetType: """ Test docstring. """ __slots__ = [] _instance: 'UnsetType' = None _lock: threading.Lock = threading.Lock() def __str__(self): return 'Unset' def __repr__(self): return 'Unset' def __eq__(self, other): return self is other def __ne__(self, other): return self is not other def __len__(self): return 0 def __bool__(self): return False def __hash__(self): return hash(self._lock) __nonzero__ = __bool__ def __new__(cls: Type['UnsetType']): if cls._instance is None: with cls._lock: if cls._instance is None: cls._instance = super().__new__(cls) return cls._instance Unset = UnsetType() # pylint: disable=invalid-name
17.807692
56
0.580994
774
0.835853
0
0
0
0
0
0
149
0.160907
def92f706f99835e10af1d0e6310107f2432dbe5
193
py
Python
aws_lambda_powertools/event_handler/__init__.py
nayaverdier/aws-lambda-powertools-python
cd15ee97746356a84c6f196dbd2d26a34ea50411
[ "Apache-2.0", "MIT-0" ]
1,208
2020-05-20T19:06:29.000Z
2022-03-30T14:17:47.000Z
aws_lambda_powertools/event_handler/__init__.py
nayaverdier/aws-lambda-powertools-python
cd15ee97746356a84c6f196dbd2d26a34ea50411
[ "Apache-2.0", "MIT-0" ]
859
2020-05-22T09:59:54.000Z
2022-03-31T08:31:30.000Z
aws_lambda_powertools/event_handler/__init__.py
nayaverdier/aws-lambda-powertools-python
cd15ee97746356a84c6f196dbd2d26a34ea50411
[ "Apache-2.0", "MIT-0" ]
163
2020-05-18T21:08:25.000Z
2022-03-28T12:03:37.000Z
""" Event handler decorators for common Lambda events """ from .api_gateway import ApiGatewayResolver from .appsync import AppSyncResolver __all__ = ["AppSyncResolver", "ApiGatewayResolver"]
21.444444
51
0.797927
0
0
0
0
0
0
0
0
94
0.487047
def98cf0f4126cdcda2bee2e5c8d96a01bc4937b
1,351
py
Python
solutions/5/guillaume/LookAhead.py
larsbratholm/champs_kaggle
fda4f213d02fd5e0138a86c52b4140c9f94fec6e
[ "MIT" ]
9
2020-08-14T23:11:16.000Z
2021-08-09T16:23:43.000Z
solutions/5/guillaume/LookAhead.py
larsbratholm/champs_kaggle
fda4f213d02fd5e0138a86c52b4140c9f94fec6e
[ "MIT" ]
1
2020-11-19T09:29:14.000Z
2020-11-19T09:29:14.000Z
solutions/5/guillaume/LookAhead.py
larsbratholm/champs_kaggle
fda4f213d02fd5e0138a86c52b4140c9f94fec6e
[ "MIT" ]
2
2020-09-09T02:53:57.000Z
2020-12-06T08:20:52.000Z
import itertools as it from torch.optim import Optimizer class LookAhead(Optimizer): def __init__(self, base_optimizer,alpha=0.5, k=6): if not 0.0 <= alpha <= 1.0: raise ValueError(f'Invalid slow update rate: {alpha}') if not 1 <= k: raise ValueError(f'Invalid lookahead steps: {k}') self.optimizer = base_optimizer self.param_groups = self.optimizer.param_groups self.alpha = alpha self.k = k for group in self.param_groups: group["step_counter"] = 0 self.slow_weights = [[p.clone().detach() for p in group['params']] for group in self.param_groups] for w in it.chain(*self.slow_weights): w.requires_grad = False def step(self, closure=None): loss = None if closure is not None: loss = closure() loss = self.optimizer.step() for group,slow_weights in zip(self.param_groups,self.slow_weights): group['step_counter'] += 1 if group['step_counter'] % self.k != 0: continue for p,q in zip(group['params'],slow_weights): if p.grad is None: continue q.data.add_(self.alpha,p.data - q.data) p.data.copy_(q.data) return loss
37.527778
75
0.559585
1,293
0.957069
0
0
0
0
0
0
125
0.092524
defcc91baa71d0c94f476ef6cc3d35765b3516a0
2,263
py
Python
addexp.py
Shajm44n/Expense
db3355d4d81d5dd57ceea81b1170724b8893e523
[ "MIT" ]
null
null
null
addexp.py
Shajm44n/Expense
db3355d4d81d5dd57ceea81b1170724b8893e523
[ "MIT" ]
null
null
null
addexp.py
Shajm44n/Expense
db3355d4d81d5dd57ceea81b1170724b8893e523
[ "MIT" ]
null
null
null
from tkinter import * # import expdate import mysql.connector db_connect=mysql.connector.connect(host="localhost",user="root",password="maan",database="expense") db_cursor=db_connect.cursor() def add_expense(day,month,year): print("add exp") window=Tk() window.title("Expense list") l_message=Label(window) l_msg=Label(window) print(day) print(month) print(year) l_trans=Label(window,text="Transport :") e_trans=Entry(window) l_food=Label(window,text="Food :") e_food=Entry(window) l_home=Label(window,text="Home :") e_home=Entry(window) l_ent=Label(window,text="Entertainment :") e_ent=Entry(window) l_utl=Label(window,text="Utilities :") e_utl=Entry(window) l_health=Label(window,text="Health :") e_health=Entry(window) l_oth=Label(window,text="Others :") e_oth=Entry(window) def enter_data(): trans=int(e_trans.get()) food=int(e_food.get()) home=int(e_home.get()) ent=int(e_ent.get()) utl=int(e_utl.get()) health=int(e_health.get()) other=int(e_oth.get()) total=trans+food+home+ent+utl+health+other print(total) db_cursor.execute(f"insert into daily(day,month,year,Transport,Food,Home,Entertainment,Utilities,Health,Others,Total)values('{day}','{month}','{year}','{trans}','{food}','{home}','{ent}','{utl}','{health}','{other}','{total}')") db_connect.commit() db_connect.close() l_msg.config(text=" Data has been Updated!") add_exp= Button(window, text= "add expense", command= enter_data) add_exp.pack(pady=30) l_trans.place(x =20,y=50) e_trans.place(x =120,y=50) l_food.place(x =20,y=70) e_food.place(x =120,y=70) l_home.place(x =20,y=90) e_home.place(x =120,y=90) l_ent.place(x =20,y=110) e_ent.place(x =120,y=110) l_utl.place(x =20,y=130) e_utl.place(x =120,y=130) l_health.place(x =20,y=150) e_health.place(x =120,y=150) l_oth.place(x =20,y=170) e_oth.place(x =120,y=170) l_message.place(x=50,y=100) l_msg.place(x=120,y=170) exit_button = Button(window, text="Exit", command=window.destroy) exit_button.pack(pady=200) window.geometry("800x800") window.mainloop()
32.797101
236
0.643836
0
0
0
0
0
0
0
0
412
0.182059
defd13835bf657af58b23494bf16c9abcbbae2e8
1,217
py
Python
BlackJack/UserInterface/BlackJackUI.py
Kasyx709/BlackJack
a99cd9327e466ed51dadbf4b5407c2370f998b82
[ "MIT" ]
null
null
null
BlackJack/UserInterface/BlackJackUI.py
Kasyx709/BlackJack
a99cd9327e466ed51dadbf4b5407c2370f998b82
[ "MIT" ]
null
null
null
BlackJack/UserInterface/BlackJackUI.py
Kasyx709/BlackJack
a99cd9327e466ed51dadbf4b5407c2370f998b82
[ "MIT" ]
null
null
null
from __future__ import division from BlackJack.UserInterface import tk from BlackJack.UserInterface import tkFont from BlackJack.UserInterface import BlackJackWindows from BlackJack.UserInterface import SelectGameType from BlackJack.UserInterface import Helpers class BlackJackUI(object): def __init__(self): super().__init__() self.root = tk.Tk() self.root.font = tkFont.Font(family='Garamond', size=16, weight='bold') self.root.option_add("*Font", self.root.font) self.root.wm_minsize(1312, 558) self.root.wm_resizable(width=1, height=1) self.root.wm_title('BlackJack - 2019') # self.root.overrideredirect(True) self.root.geometry("+250+250") self.root.wm_attributes("-topmost", True) self.root.configure(background='Green') self.root.withdraw() SelectGameType(parent=BlackJackWindows(self.root)) self.root.bind("<ButtonPress-1>", lambda event: Helpers.start_xy(event, self.root)) self.root.bind("<ButtonRelease-1>", lambda event: Helpers.stop_xy(event, self.root)) self.root.bind("<B1-Motion>", lambda event: Helpers.configure_xy(event, self.root)) self.root.mainloop()
40.566667
92
0.696795
951
0.78143
0
0
0
0
0
0
151
0.124076
defd4d718f41568b76388eb0230161d0d48bb24e
263
py
Python
winecasino/core/entities/__init__.py
harlov/winecasino
ae29b2c8f75bfd05ad141fd3b596f1db7c103690
[ "MIT" ]
null
null
null
winecasino/core/entities/__init__.py
harlov/winecasino
ae29b2c8f75bfd05ad141fd3b596f1db7c103690
[ "MIT" ]
null
null
null
winecasino/core/entities/__init__.py
harlov/winecasino
ae29b2c8f75bfd05ad141fd3b596f1db7c103690
[ "MIT" ]
null
null
null
from .country import Country from .game import Game from .game import Bid from .user import User from .grape import Grape from .wine import Wine from .base import new_id __all__ = [ "new_id", "Country", "Game", "Grape", "User", "Wine", ]
15.470588
28
0.653992
0
0
0
0
0
0
0
0
42
0.159696
defdbd583ad5f6b3a08353cba72476c7dbaff00c
295
py
Python
download-deveres/para-execicios-curso-em-video/exe019.py
Hugo-Oliveira-RDO11/meus-deveres
b5e41015e2cb95946262678e82197e5f47d56271
[ "MIT" ]
null
null
null
download-deveres/para-execicios-curso-em-video/exe019.py
Hugo-Oliveira-RDO11/meus-deveres
b5e41015e2cb95946262678e82197e5f47d56271
[ "MIT" ]
null
null
null
download-deveres/para-execicios-curso-em-video/exe019.py
Hugo-Oliveira-RDO11/meus-deveres
b5e41015e2cb95946262678e82197e5f47d56271
[ "MIT" ]
null
null
null
import random p = str(input('digite o nome do primeiro aluno :')) s = str(input('o nome do segundo aluno :')) t = str(input('o nome do terceiro aluno :')) q = str(input('o nome do quato aluno :')) lista = [p, s, t, q] aluno = random.choice(lista) print('o aluno sorteado foi {}'.format(aluno))
29.5
51
0.657627
0
0
0
0
0
0
0
0
140
0.474576
defde4b16a7fe68a1c0b7ba26a303a5bb6a695bc
12,389
py
Python
cma-evolve.py
simondlevy/CMA-Gym
ce0056873d42eae2b6769fe22fcf872459694f30
[ "Apache-2.0" ]
null
null
null
cma-evolve.py
simondlevy/CMA-Gym
ce0056873d42eae2b6769fe22fcf872459694f30
[ "Apache-2.0" ]
null
null
null
cma-evolve.py
simondlevy/CMA-Gym
ce0056873d42eae2b6769fe22fcf872459694f30
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import gym import torch import numpy as np import multiprocessing as mp import os import pickle import sys import time import logging import cma import argparse from torchmodel import StandardFCNet def _makedir(name): if not os.path.exists(name): os.makedirs(name) def get_logger(): _makedir('log') _makedir('data') logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s: %(message)s') logger = logging.getLogger('MAIN') logger.setLevel(logging.DEBUG) return logger class Task: def __init__(self, envname, hidden_size, max_steps, target, pop_size, reps, test_reps, weight_decay, noise_std, sigma): self.task = envname self.env_fn = lambda: gym.make(self.task) self.repetitions = reps self.test_repetitions = test_reps env = self.env_fn() self.action_dim = env.action_space.shape[0] self.state_dim = env.observation_space.shape[0] self.reward_to_fitness = lambda r: r self.max_steps = max_steps self.pop_size = pop_size self.num_workers = mp.cpu_count() self.action_clip = lambda a: np.clip(a, -1, 1) self.target = target self.hidden_size = hidden_size self.model_fn = lambda: StandardFCNet(self.state_dim, self.action_dim, self.hidden_size) model = self.model_fn() self.initial_weight = model.get_weight() self.weight_decay = weight_decay self.action_noise_std = noise_std self.sigma = sigma self.tag = 'CMA-%d' % (hidden_size) class BaseModel: def get_weight(self): weight = [] for param in self.parameters(): weight.append(param.data.numpy().flatten()) weight = np.concatenate(weight, 0) return weight def set_weight(self, solution): offset = 0 for param in self.parameters(): param_shape = param.data.numpy().shape param_size = np.prod(param_shape) src_param = solution[offset: offset + param_size] if len(param_shape) > 1: src_param = src_param.reshape(param_shape) param.data = torch.FloatTensor(src_param) offset += param_size assert offset == len(solution) class Normalizer: def __init__(self, filter_mean=True): self.m = 0 self.v = 0 self.n = 0. self.filter_mean = filter_mean def state_dict(self): return {'m': self.m, 'v': self.v, 'n': self.n} def load_state_dict(self, saved): self.m = saved['m'] self.v = saved['v'] self.n = saved['n'] def __call__(self, o): self.m = self.m * (self.n / (self.n + 1)) + o * 1 / (1 + self.n) self.v = self.v * (self.n / (self.n + 1)) + (o - self.m) ** 2 * 1 / (1 + self.n) self.std = (self.v + 1e-6) ** .5 # std self.n += 1 if self.filter_mean: o_ = (o - self.m) / self.std else: o_ = o / self.std return o_ class StaticNormalizer: def __init__(self, o_size): self.offline_stats = SharedStats(o_size) self.online_stats = SharedStats(o_size) def __call__(self, o_): o = torch.FloatTensor([o_] if np.isscalar(o_) else o_) self.online_stats.feed(o) if self.offline_stats.n[0] == 0: return o_ std = (self.offline_stats.v + 1e-6) ** .5 o = (o - self.offline_stats.m) / std o = o.numpy() if np.isscalar(o_): o = np.asscalar(o) else: o = o.reshape(o_.shape) return o class SharedStats: def __init__(self, o_size): self.m = torch.zeros(o_size) self.v = torch.zeros(o_size) self.n = torch.zeros(1) self.m.share_memory_() self.v.share_memory_() self.n.share_memory_() def feed(self, o): n = self.n[0] new_m = self.m * (n / (n + 1)) + o / (n + 1) self.v.copy_(self.v * (n / (n + 1)) + (o - self.m) * (o - new_m) / (n + 1)) self.m.copy_(new_m) self.n.add_(1) def zero(self): self.m.zero_() self.v.zero_() self.n.zero_() def load(self, stats): self.m.copy_(stats.m) self.v.copy_(stats.v) self.n.copy_(stats.n) def merge(self, B): A = self n_A = self.n[0] n_B = B.n[0] n = n_A + n_B delta = B.m - A.m m = A.m + delta * n_B / n v = A.v * n_A + B.v * n_B + delta * delta * n_A * n_B / n v /= n self.m.copy_(m) self.v.copy_(v) self.n.add_(B.n) def state_dict(self): return {'m': self.m.numpy(), 'v': self.v.numpy(), 'n': self.n.numpy()} def load_state_dict(self, saved): self.m = torch.FloatTensor(saved['m']) self.v = torch.FloatTensor(saved['v']) self.n = torch.FloatTensor(saved['n']) def fitness_shift(x): x = np.asarray(x).flatten() ranks = np.empty(len(x)) ranks[x.argsort()] = np.arange(len(x)) ranks /= (len(x) - 1) ranks -= .5 return ranks class Worker(mp.Process): def __init__(self, id, task_q, result_q, stop): mp.Process.__init__(self) self.id = id self.task_q = task_q self.result_q = result_q self.stop = stop def run(self): np.random.seed() while not self.stop.value: if self.task_q.empty(): continue id, solution = self.task_q.get() fitness, steps = self.evalfun(solution) self.result_q.put([id, fitness, steps]) class Evaluator: def __init__(self, config, state_normalizer): self.model = config.model_fn() self.repetitions = config.repetitions self.env = config.env_fn() self.state_normalizer = state_normalizer self.config = config def eval(self, solution): self.model.set_weight(solution) rewards = [] steps = [] for i in range(self.repetitions): reward, step = self.single_run() rewards.append(reward) steps.append(step) return -np.mean(rewards), np.sum(steps) def single_run(self): state = self.env.reset() total_reward = 0 steps = 0 while True: state = self.state_normalizer(state) action = self.model(np.stack([state])).data.numpy().flatten() action += np.random.randn(len(action)) * self.config.action_noise_std action = self.config.action_clip(action) state, reward, done, info = self.env.step(action) steps += 1 total_reward += reward if done: return total_reward, steps class CMAWorker(Worker): def __init__(self, id, state_normalizer, task_q, result_q, stop, config): Worker.__init__(self, id, task_q, result_q, stop) self.evalfun = Evaluator(config, state_normalizer).eval def train(config, logger): task_queue = mp.SimpleQueue() result_queue = mp.SimpleQueue() stop = mp.Value('i', False) stats = SharedStats(config.state_dim) normalizers = [StaticNormalizer(config.state_dim) for _ in range(config.num_workers)] for normalizer in normalizers: normalizer.offline_stats.load(stats) workers = [CMAWorker(id, normalizers[id], task_queue, result_queue, stop, config) for id in range(config.num_workers)] for w in workers: w.start() opt = cma.CMAOptions() opt['tolfun'] = -config.target opt['popsize'] = config.pop_size opt['verb_disp'] = 0 opt['verb_log'] = 0 opt['maxiter'] = sys.maxsize es = cma.CMAEvolutionStrategy(config.initial_weight, config.sigma, opt) total_steps = 0 initial_time = time.time() training_rewards = [] training_steps = [] training_timestamps = [] test_mean, test_std = test(config, config.initial_weight, stats) logger.info('total steps %8d, %+4.0f(%+4.0f)' % (total_steps, test_mean, test_std)) training_rewards.append(test_mean) training_steps.append(0) training_timestamps.append(0) while True: solutions = es.ask() for id, solution in enumerate(solutions): task_queue.put((id, solution)) while not task_queue.empty(): continue result = [] while len(result) < len(solutions): if result_queue.empty(): continue result.append(result_queue.get()) result = sorted(result, key=lambda x: x[0]) total_steps += np.sum([r[2] for r in result]) cost = [r[1] for r in result] best_solution = solutions[np.argmin(cost)] elapsed_time = time.time() - initial_time test_mean, test_std = test(config, best_solution, stats) best = -np.min(cost) logger.info('total steps = %8d test = %+4.0f (%4.0f) best = %+4.0f (%+4.0f) elapased time = %4.0f sec' % (total_steps, test_mean, test_std, best, config.target, elapsed_time)) training_rewards.append(test_mean) training_steps.append(total_steps) training_timestamps.append(elapsed_time) #with open('data/%s-best_solution_%s.bin' % (TAG, config.task), 'wb') as f: # XXX gets stuck # pickle.dump(solutions[np.argmin(result)], f) if best > config.target: logger.info('Best score of %f exceeds target %f' % (best, config.target)) break if config.max_steps and total_steps > config.max_steps: logger.info('Maximum number of steps exceeded') stop.value = True break cost = fitness_shift(cost) es.tell(solutions, cost) # es.disp() for normalizer in normalizers: stats.merge(normalizer.online_stats) normalizer.online_stats.zero() for normalizer in normalizers: normalizer.offline_stats.load(stats) stop.value = True for w in workers: w.join() return [training_rewards, training_steps, training_timestamps] def test(config, solution, stats): normalizer = StaticNormalizer(config.state_dim) normalizer.offline_stats.load_state_dict(stats.state_dict()) evaluator = Evaluator(config, normalizer) evaluator.model.set_weight(solution) rewards = [] for i in range(config.test_repetitions): reward, _ = evaluator.single_run() rewards.append(reward) return np.mean(rewards), np.std(rewards) / config.repetitions def multi_runs(task, logger, runs=1): if not os.path.exists('log'): os.makedirs('log') fh = logging.FileHandler('log/%s-%s.txt' % (task.tag, task.task)) fh.setLevel(logging.DEBUG) logger.addHandler(fh) stats = [] for run in range(runs): logger.info('Run %3d/%3d' % (run+1, runs)) stats.append(train(task, logger)) with open('data/%s-stats-%s.bin' % (task.tag, task.task), 'wb') as f: pickle.dump(stats, f) def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--env', help='environment ID', type=str, default='Pendulum-v0') parser.add_argument('--nhid', help='# of hidden units', type=int, default=64) parser.add_argument('--target', help='reward goal', type=float, default=-np.inf) parser.add_argument('--max-steps', help='maximum number of steps', type=int, default=int(2e7)) parser.add_argument('--pop-size', help='population size', type=int, default=64) parser.add_argument('--reps', help='repetitions', type=int, default=10) parser.add_argument('--test-reps', help='test repetitions', type=int, default=10) parser.add_argument('--weight-decay', help='weight decay', type=float, default=0.005) parser.add_argument('--noise-std', help='noise standard deviation', type=float, default=0) parser.add_argument('--sigma', help='sigma', type=float, default=1) args = parser.parse_args() task = Task(args.env, args.nhid, args.max_steps, args.target, args.pop_size, args.reps, args.test_reps, args.weight_decay, args.noise_std, args.sigma) logger = get_logger() p = mp.Process(target=multi_runs, args=(task,logger)) p.start() p.join() if __name__ == '__main__': main()
33.574526
123
0.600291
6,318
0.509969
0
0
0
0
0
0
909
0.073372
defec38e9abb5a9b6de6de6949355eb8f83f8c74
342
py
Python
src/arcclimate/temperature.py
youworks/arcclimate
62a9eece267e42ccddfc5145e8ee50776470f7bf
[ "MIT" ]
null
null
null
src/arcclimate/temperature.py
youworks/arcclimate
62a9eece267e42ccddfc5145e8ee50776470f7bf
[ "MIT" ]
null
null
null
src/arcclimate/temperature.py
youworks/arcclimate
62a9eece267e42ccddfc5145e8ee50776470f7bf
[ "MIT" ]
1
2022-03-08T01:04:47.000Z
2022-03-08T01:04:47.000Z
""" 気温の関するモジュール """ import numpy as np def get_corrected_TMP(TMP: np.ndarray, ele_gap: float) -> np.ndarray: """気温の標高補正 Args: TMP (np.ndarray): 気温 [℃] ele_gap (np.ndarray): 標高差 [m] Returns: np.ndarray: 標高補正後の気温 [C] Notes: 気温減率の平均値を0.0065℃/mとする。 """ return TMP + ele_gap * -0.0065
15.545455
69
0.564327
0
0
0
0
0
0
0
0
301
0.693548
defeff29d76d14fa0aceaad7cd54a55164f7136c
2,386
py
Python
rastervision/data/label_store/default.py
carderne/raster-vision
915fbcd3263d8f2193e65c2cd0eb53e050a47a01
[ "Apache-2.0" ]
4
2019-03-11T12:38:15.000Z
2021-04-06T14:57:52.000Z
rastervision/data/label_store/default.py
carderne/raster-vision
915fbcd3263d8f2193e65c2cd0eb53e050a47a01
[ "Apache-2.0" ]
null
null
null
rastervision/data/label_store/default.py
carderne/raster-vision
915fbcd3263d8f2193e65c2cd0eb53e050a47a01
[ "Apache-2.0" ]
1
2019-10-29T09:22:09.000Z
2019-10-29T09:22:09.000Z
from abc import (ABC, abstractmethod) import os import rastervision as rv class LabelStoreDefaultProvider(ABC): @staticmethod @abstractmethod def is_default_for(task_type): """Returns True if this label store is the default for this tasks_type""" pass @staticmethod @abstractmethod def handles(task_type, s): """Returns True of this provider is a default for this task_type and string""" pass @abstractmethod def construct(s=None): """Construts a default LabelStore based on the string. """ pass class ObjectDetectionGeoJSONStoreDefaultProvider(LabelStoreDefaultProvider): @staticmethod def is_default_for(task_type): return task_type == rv.OBJECT_DETECTION @staticmethod def handles(task_type, uri): if task_type == rv.OBJECT_DETECTION: ext = os.path.splitext(uri)[1] return ext.lower() in ['.json', '.geojson'] return False @staticmethod def construct(uri=None): b = rv.LabelStoreConfig.builder(rv.OBJECT_DETECTION_GEOJSON) if uri: b = b.with_uri(uri) return b.build() class ChipClassificationGeoJSONStoreDefaultProvider(LabelStoreDefaultProvider): @staticmethod def is_default_for(task_type): return task_type == rv.CHIP_CLASSIFICATION @staticmethod def handles(task_type, uri): if task_type == rv.CHIP_CLASSIFICATION: ext = os.path.splitext(uri)[1] return ext.lower() in ['.json', '.geojson'] return False @staticmethod def construct(uri=None): b = rv.LabelStoreConfig.builder(rv.CHIP_CLASSIFICATION_GEOJSON) if uri: b = b.with_uri(uri) return b.build() class SemanticSegmentationRasterStoreDefaultProvider( LabelStoreDefaultProvider): @staticmethod def is_default_for(task_type): return task_type == rv.SEMANTIC_SEGMENTATION @staticmethod def handles(task_type, uri): if task_type == rv.SEMANTIC_SEGMENTATION: ext = os.path.splitext(uri)[1] return ext.lower() in ['.tiff', '.tif'] return False @staticmethod def construct(uri=None): b = rv.LabelStoreConfig.builder(rv.SEMANTIC_SEGMENTATION_RASTER) if uri: b = b.with_uri(uri) return b.build()
27.425287
86
0.65088
2,299
0.963537
0
0
1,950
0.817267
0
0
264
0.110645
720247461650041909a7ce79fd85da841234a38b
6,425
py
Python
app.py
aniketjana03/TimeSheet
519b3bdad79dedb7210747906bf4b8e24e64691a
[ "Apache-2.0" ]
null
null
null
app.py
aniketjana03/TimeSheet
519b3bdad79dedb7210747906bf4b8e24e64691a
[ "Apache-2.0" ]
null
null
null
app.py
aniketjana03/TimeSheet
519b3bdad79dedb7210747906bf4b8e24e64691a
[ "Apache-2.0" ]
null
null
null
import sys import os from flask import Flask, flash, redirect, render_template, request, url_for, session from flaskext.mysql import MySQL from flask_login import LoginManager from flask_bcrypt import Bcrypt from flask_session import Session from database import Database from makedb import MakeDB from helpers import generate_weekID import pymysql from boto.s3.connection import S3Connection # init flask app app = Flask(__name__) app.config['TESTING'] = False # session secret key app.secret_key = os.environ.get('SECRETKEYFLASK') # Ensure templates are auto-reloaded app.config["TEMPLATES_AUTO_RELOAD"] = True app.config["SESSION_PERMANENT"] = False app.config["SESSION_TYPE"] = "filesystem" Session(app) # Password Hashing bcrypt = Bcrypt(app) # init MySQL database mysql = MySQL() mysql.init_app(app) #Make database if not EXISTS MakeDB() @app.route("/", methods=["GET", "POST"]) def index(): #Call DB class to init database db=Database() if not session.get("user_id"): return redirect("/login") current_user = session["user_id"] if request.method == "POST": weekDates={} dayStatus={} days=["statusSaturday", "statusSunday", "statusMonday", "statusTuesday", "statusWednesday", "statusThursday", "statusFriday"] for i in range(0,7): weekDates[i]=request.form.get(f'td{i+1}') dayStatus[i]=request.form.get(days[i]) if not weekDates[i]: flash("Please select date from datepicker!") return redirect(url_for("index")) if not dayStatus[i]: flash("Please select day status for all dates!") return redirect(url_for("index")) # DEBUG print(weekDates, file=sys.stderr) print(dayStatus, file=sys.stderr) weekID = generate_weekID(weekDates) try: db.timesheet_target(current_user, dayStatus, weekID) finally: db.close_cursor() flash(f'Timesheet successfully submitted for the week starting on {weekDates[0]}!') return redirect(url_for("index")) else: return render_template("timesheet.html", user = current_user) @app.route("/login", methods=["GET", "POST"]) def login(): """ User logs in here """ error = None # Forget past user ids session.clear() #Call DB class to init database db=Database() # If user reached route via post method if request.method == "POST": email = request.form.get("email") email = email.strip() password = request.form.get("password") # print(username, password) if not email: # Return error message TODO error = "Please enter Email ID!" # return render_template('login.html', error=error) flash("Please enter Email ID!") return redirect(url_for("login")) elif not password: # Return error message TODO error = "Please enter password!" # return render_template('login.html', error=error) flash("Please enter password!") return redirect(url_for("/")) # Check login credentials from database try: rows = db.check_credentials_from_email(email) #DEBUG print(rows, file=sys.stderr) if len(rows)!=1 or not (bcrypt.check_password_hash(rows[0]["user_password"],password) or not (rows[0]["email_id"]==email)): error = "Invalid credentials" flash("Invalid credentials") # return redirect(url_for("login")) return render_template("login.html", error=error) # Remember which user has logged in session["user_id"] = rows[0]["EmployeeID"] finally: db.close_cursor() # redirect to main page flash('You were successfully logged in') return redirect("/") # User reached route via get method else: return render_template("login.html") @app.route("/logout") def logout(): # session.pop('username', None) session.clear() # redirect to main page return redirect("/") @app.route("/register", methods=['GET', 'POST']) def register(): error = None db=Database() if request.method == "POST": email = request.form.get("email") email=email.strip() password = request.form.get("password") confirm = request.form.get("confirm") if not request.form.get("first"): # Return error message TODO error = "First Name field missing" return error elif not request.form.get("last"): # Return error message TODO error = "Last Name field missing" return error elif not email: # Return error message TODO error = "Email field missing" return error elif not password: # Return error message TODO error = "Password field missing" return error elif not confirm: # Return error message TODO error = "Confirm password field missing" return error elif not request.form.get("dob"): # Return error message TODO error = "D.O.B. field missing" return error elif password != confirm: # Return error message # TODO error = "Passwords do not match" flash(error) return redirect(url_for("register")) try: # Check if user is in our database rows = db.check_exist(email) if len(rows)!=0: error = "User already exists" flash(error) return redirect(url_for("register")) else: # insert user details in database pw_hash = bcrypt.generate_password_hash(password) db.insert_user(email, pw_hash) emp_id = db.return_emp_id(email) db.insert_employee_details(emp_id, request.form.get("first").strip(), request.form.get("last").strip(), request.form.get("dob")) finally: db.close_cursor() flash("You have successfully registered!") return redirect(url_for("login")) else: return render_template("register.html") if __name__ == "__main__": app.run()
32.125
144
0.598599
0
0
0
0
5,525
0.859922
0
0
2,088
0.324981
7202ced44b536e7785d48d42a3fe09355e98fc12
448
py
Python
guestbook/models.py
Bespolezniy/geek-world
8fbaf451b4e87e48e73eb289035ec0ea68ea0e68
[ "MIT" ]
null
null
null
guestbook/models.py
Bespolezniy/geek-world
8fbaf451b4e87e48e73eb289035ec0ea68ea0e68
[ "MIT" ]
null
null
null
guestbook/models.py
Bespolezniy/geek-world
8fbaf451b4e87e48e73eb289035ec0ea68ea0e68
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class GuestBook(models.Model): user = models.CharField(max_length=15, verbose_name="User") date = models.DateTimeField(db_index=True, auto_now_add=True, verbose_name="Published") content = models.TextField(verbose_name="Content") class Meta: ordering = ["-date"] verbose_name = "Guest book entry" verbose_name_plural = "Guest book entries"
37.333333
92
0.694196
386
0.861607
0
0
0
0
0
0
98
0.21875
72043f3633eddba64964dbbdb6f17d84cf1d6267
34,859
py
Python
PA1/PA1_Q2/P21CS007_VGG16.py
aryachiranjeev/Dependable-AI
750570572c1baaa2590a89c0982e2f71b15b48b9
[ "MIT" ]
null
null
null
PA1/PA1_Q2/P21CS007_VGG16.py
aryachiranjeev/Dependable-AI
750570572c1baaa2590a89c0982e2f71b15b48b9
[ "MIT" ]
null
null
null
PA1/PA1_Q2/P21CS007_VGG16.py
aryachiranjeev/Dependable-AI
750570572c1baaa2590a89c0982e2f71b15b48b9
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[2]: import numpy as np import pandas as pd import random import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.keras.layers import Dense,Flatten,GlobalAveragePooling2D,Input,Lambda from tensorflow.keras.models import Model,load_model import tensorflow.keras.backend as K from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.models import Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications.vgg16 import preprocess_input from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical from sklearn.metrics import accuracy_score,confusion_matrix from skimage.color import rgb2gray import cv2 from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image # In[110]: def brute_vgg16(): (x_train, y_train_without_one_hot), (x_test, y_test_without_one_hot) = tf.keras.datasets.cifar10.load_data() y_train = to_categorical(y_train_without_one_hot) y_test = to_categorical(y_test_without_one_hot) x_train,x_valid,y_train,y_valid = train_test_split(x_train,y_train,test_size = 0.2,shuffle=True,random_state = 42) print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape) print(x_valid.shape) print(y_valid.shape) vgg16 = VGG16(include_top=True,weights = None, input_shape = (32,32,3)) out = Dense(10,activation='softmax',name = 'fc3')(vgg16.get_layer('fc2').output) brute_model = Model(inputs = vgg16.input,outputs = out) epochs = 20 learning_rate = 0.1 decay_rate = learning_rate/epochs sgd = tf.keras.optimizers.SGD(lr=learning_rate, decay=decay_rate, momentum=0.9, nesterov=False) brute_model.compile(loss = 'categorical_crossentropy',optimizer = 'sgd',metrics=['accuracy']) #tf.keras.optimizers.Adam(learning_rate=0.0001) history = brute_model.fit(x_train, y_train, validation_data=(x_valid, y_valid), epochs=epochs, batch_size=16) brute_model.save("vgg16_cifar10") y_pred_train = brute_model.predict(x_train) predictions_train = np.argmax(y_pred_train,axis=1) print("training accuracy:",accuracy_score(np.argmax(y_train,axis=1),predictions_train)) y_pred_test = brute_model.predict(x_test) prediction_test = np.argmax(y_pred_test,axis=1) print("test accuracy:",accuracy_score(np.argmax(y_test,axis=1),prediction_test)) # plot loss during training plt.subplot(211) plt.title('Loss') plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() # plot accuracy during training plt.subplot(212) plt.title('Accuracy') plt.plot(history.history['accuracy'], label='train') plt.plot(history.history['val_accuracy'], label='test') plt.legend() plt.show() return brute_model # In[150]: def test_brute_model_on_gray_scale_test_images(brute_model): (x_train, y_train_without_one_hot), (x_test, y_test_without_one_hot) = tf.keras.datasets.cifar10.load_data() y_test = to_categorical(y_test_without_one_hot) def gray_images(x_test): gray_x_test = [] for i in x_test: gray_scale = rgb2gray(i) gray_x_test.append(np.dstack((gray_scale,gray_scale,gray_scale))) gray_x_test = np.array(gray_x_test) print(gray_x_test.shape) return gray_x_test gray_x_test = gray_images(x_test) y_pred_test = brute_model.predict(gray_x_test) prediction_test = np.argmax(y_pred_test,axis=1) print("test accuracy:",accuracy_score(np.argmax(y_test,axis=1),prediction_test)*100,"%") print("gray scale confusion matrix:\n",confusion_matrix(np.argmax(y_test,axis=1),prediction_test)) # In[112]: def class_wise_accuracy(models): labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] (x_train, y_train_without_one_hot), (x_test, y_test_without_one_hot) = tf.keras.datasets.cifar10.load_data() y_test = to_categorical(y_test_without_one_hot) y_pred_test = models.predict(x_test) prediction_test = np.argmax(y_pred_test,axis=1) print("test accuracy:",accuracy_score(np.argmax(y_test,axis=1),prediction_test)*100,"%") confus_matrix = confusion_matrix(np.argmax(y_test,axis=1),prediction_test) print("confusion_matrix:\n",confus_matrix) class_accuracy = [] class_TP = [] for i in range(confus_matrix.shape[0]): for j in range(confus_matrix.shape[1]): if i == j: TP = confus_matrix[i][j] class_TP.append(TP) for k in range(confus_matrix.shape[1]): ca = (class_TP[k] / confus_matrix[:,k].sum())*100 class_accuracy.append(ca) print("class ",k," accuracy ",labels[k]," :",ca,"%") class_accuracy = np.array(class_accuracy) return class_accuracy # In[113]: def bias_metrics(class_accuracy,models): dob = np.std(class_accuracy) print("Degree of Bias:",dob) (x_train, y_train_without_one_hot), (x_test, y_test_without_one_hot) = tf.keras.datasets.cifar10.load_data() y_pred_test = models.predict(x_test) prediction_test = np.argmax(y_pred_test,axis=1) from sklearn.metrics import confusion_matrix confuse_matrix = confusion_matrix(y_test_without_one_hot, prediction_test) print("confusion_matrix:\n",confuse_matrix) FP = confuse_matrix.sum(axis=0) - np.diag(confuse_matrix) FN = confuse_matrix.sum(axis=1) - np.diag(confuse_matrix) TP = np.diag(confuse_matrix) TN = confuse_matrix.sum() - (FP+FN+TP) FP=FP.astype(float) TP=TP.astype(float) FN=FN.astype(float) TN=TN.astype(float) FNR = FN/(TP+FN) FPR = FP/(TN+FN) print("FPR:",FPR) print("FNR:",FNR) AFR = ((FPR.sum()/10)+(FNR.sum()/10))/2 print("AFR:",AFR) # In[151]: test_brute_model_on_gray_scale_test_images(brute_model) # In[115]: #brute model print("/nbrute model/n") brute_model = brute_vgg16() test_brute_model_on_gray_scale_test_images(brute_model) class_accuracy_brute_model = class_wise_accuracy(brute_model) bias_metrics(class_accuracy_brute_model,brute_model) # In[40]: def create_results(brute_model): (x_train, y_train_without_one_hot), (x_test, y_test_without_one_hot) = tf.keras.datasets.cifar10.load_data() y_train = to_categorical(y_train_without_one_hot) y_test = to_categorical(y_test_without_one_hot) y_pred_test = brute_model.predict(x_test) prediction_test = np.argmax(y_pred_test,axis=1) df = pd.DataFrame(np.hstack((y_test_without_one_hot,prediction_test.reshape(len(prediction_test),1))),columns=['y_test','y_test_pred'],index=None) print(df.head()) df.to_csv("y_test_prediction_test.csv",index=False) correct_idxes = [] incorrect_idxes = [] for i in range(len(prediction_test)): if y_test_without_one_hot[i] == prediction_test[i]: correct_idxes.append(i) elif y_test_without_one_hot[i] != prediction_test[i]: incorrect_idxes.append(i) cv2.imwrite("correct"+str(int(y_test_without_one_hot[correct_idxes[0]][0]))+".jpg",x_test[correct_idxes[0]]) cv2.imwrite("correct"+str(int(y_test_without_one_hot[correct_idxes[1]][0]))+".jpg",x_test[correct_idxes[1]]) cv2.imwrite("incorrect"+str(int(y_test_without_one_hot[incorrect_idxes[0]][0]))+".jpg",x_test[incorrect_idxes[0]]) cv2.imwrite("incorrect"+str(int(y_test_without_one_hot[incorrect_idxes[1]][0]))+".jpg",x_test[incorrect_idxes[1]]) # In[68]: class GradCAM: def __init__(self, model, classIdx, layerName=None): self.model = model self.classIdx = classIdx self.layerName = layerName if self.layerName is None: self.layerName = self.find_target_layer() def find_target_layer(self): for layer in reversed(self.model.layers): if len(layer.output_shape) == 4: return layer.name raise ValueError("Could not find 4D layer. Cannot apply GradCAM.") def compute_heatmap(self, image, eps=1e-8): gradModel = Model(inputs=[self.model.inputs],outputs=[self.model.get_layer(self.layerName).output, self.model.output]) with tf.GradientTape() as tape: inputs = tf.cast(image, tf.float32) (convOutputs, predictions) = gradModel(inputs) loss = predictions[:, tf.argmax(predictions[0])] grads = tape.gradient(loss, convOutputs) castConvOutputs = tf.cast(convOutputs > 0, "float32") castGrads = tf.cast(grads > 0, "float32") guidedGrads = castConvOutputs * castGrads * grads convOutputs = convOutputs[0] guidedGrads = guidedGrads[0] weights = tf.reduce_mean(guidedGrads, axis=(0, 1)) cam = tf.reduce_sum(tf.multiply(weights, convOutputs), axis=-1) (w, h) = (image.shape[2], image.shape[1]) heatmap = cv2.resize(cam.numpy(), (w, h)) numer = heatmap - np.min(heatmap) denom = (heatmap.max() - heatmap.min()) + eps heatmap = numer / denom heatmap = (heatmap * 255).astype("uint8") return heatmap def overlay_heatmap(self, heatmap, image, alpha=0.5,colormap=cv2.COLORMAP_VIRIDIS): heatmap = cv2.applyColorMap(heatmap, colormap) output = cv2.addWeighted(image, alpha, heatmap, 1 - alpha, 0) return (heatmap, output) def make_gradCAM(img_path,brute_model,classified,layer_name="block5_conv3"): image = cv2.imread(img_path) image = cv2.resize(image, (32, 32)) image = np.expand_dims(image, axis=0) preds = brute_model.predict(image) i = np.argmax(preds[0]) icam = GradCAM(brute_model, i,layer_name) heatmap = icam.compute_heatmap(image) heatmap = cv2.resize(heatmap, (32, 32)) image = cv2.imread(img_path) image = cv2.resize(image, (32, 32)) (heatmap, output) = icam.overlay_heatmap(heatmap, image, alpha=0.5) fig, ax = plt.subplots(1, 3) ax[0].imshow(heatmap) ax[1].imshow(image) ax[2].imshow(output) plt.savefig("GradCAM_"+ str(classified)+str(img_path[-5])+".jpg") plt.show() plt.close() layer_names = ["block5_conv3","block4_conv2"] for l in layer_names: print("layer name:",l) make_gradCAM("/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/correct_actual7pred7.jpg",brute_model,classified="correct",layer_name=l) make_gradCAM("/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/correct_actual8pred8.jpg",brute_model,classified="correct",layer_name=l) make_gradCAM("/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/incorrect_actual3pred0.jpg",brute_model,classified="incorrect",layer_name=l) make_gradCAM("/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/incorrect_actual5pred4.jpg",brute_model,classified="incorrect",layer_name =l) # In[161]: def grad_cam_pp(model, img,layer_name="block5_conv3", label_name=None,category_id=None): img_tensor = np.expand_dims(img, axis=0) conv_layer = model.get_layer(layer_name) heatmap_model = Model([model.inputs], [conv_layer.output, model.output]) with tf.GradientTape() as gtape1: with tf.GradientTape() as gtape2: with tf.GradientTape() as gtape3: conv_output, predictions = heatmap_model(img_tensor) if category_id==None: category_id = np.argmax(predictions[0]) output = predictions[:, category_id] conv_first_grad = gtape3.gradient(output, conv_output) conv_second_grad = gtape2.gradient(conv_first_grad, conv_output) conv_third_grad = gtape1.gradient(conv_second_grad, conv_output) global_sum = np.sum(conv_output, axis=(0, 1, 2)) alpha_num = conv_second_grad[0] alpha_denom = conv_second_grad[0]*2.0 + conv_third_grad[0]*global_sum alpha_denom = np.where(alpha_denom != 0.0, alpha_denom, 1e-10) alphas = alpha_num/alpha_denom alpha_normalization_constant = np.sum(alphas, axis=(0,1)) alphas /= alpha_normalization_constant weights = np.maximum(conv_first_grad[0], 0.0) deep_linearization_weights = np.sum(weights*alphas, axis=(0,1)) grad_CAM_map = np.sum(deep_linearization_weights*conv_output[0], axis=2) heatmap = np.maximum(grad_CAM_map, 0) max_heat = np.max(heatmap) if max_heat == 0: max_heat = 1e-10 heatmap /= max_heat return heatmap def superimpose(img, cam): heatmap = cv2.resize(cam, (img.shape[1], img.shape[0])) heatmap = np.uint8(255 * heatmap) heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) heatmap = cv2.cvtColor(heatmap,cv2.COLOR_BGR2RGB) superimposed_img = heatmap * .5 + img * .5 superimposed_img = np.minimum(superimposed_img, 255.0).astype(np.uint8) return img, heatmap, superimposed_img def plot(img,cam): img = cv2.resize(img, (32, 32)) img, heatmap, superimposed_img = superimpose(img, cam) fig, axs = plt.subplots(ncols=3, figsize=(9, 4)) axs[0].imshow(img) axs[0].set_title('original image') axs[0].axis('off') axs[1].imshow(heatmap) axs[1].set_title('heatmap') axs[1].axis('off') axs[2].imshow(superimposed_img) axs[2].set_title('superimposed image') axs[2].axis('off') plt.show() plt.close() layer_names = ["block5_conv3","block4_conv2"] for l in layer_names: print("layer name:",l) img_path1 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/correct_actual7pred7.jpg" img_path2 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/correct_actual8pred8.jpg" img_path3 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/incorrect_actual3pred0.jpg" img_path4 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/incorrect_actual5pred4.jpg" img1 = cv2.imread(img_path1) cam1 = grad_cam_pp(brute_model, img1,layer_name=l, label_name=labels,category_id=int(img_path1[-5])) plot(img1,cam1) img2 = cv2.imread(img_path2) cam2 = grad_cam_pp(brute_model, img2,layer_name=l, label_name=labels,category_id=int(img_path2[-5])) plot(img2,cam2) img3 = cv2.imread(img_path3) cam3 = grad_cam_pp(brute_model, img3,layer_name=l, label_name=labels,category_id=int(img_path3[-5])) plot(img3,cam3) img4 = cv2.imread(img_path4) cam4 = grad_cam_pp(brute_model, img4,layer_name=l, label_name=labels,category_id=int(img_path4[-5])) plot(img4,cam4) # In[162]: def preprocessed_data_model(): (x_train, y_train_without_one_hot), (x_test, y_test_without_one_hot) = tf.keras.datasets.cifar10.load_data() y_train = to_categorical(y_train_without_one_hot) y_test = to_categorical(y_test_without_one_hot) x_train,x_valid,y_train,y_valid = train_test_split(x_train,y_train,test_size = 0.2,shuffle=True,random_state = 42) print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape) print(x_valid.shape) print(y_valid.shape) train_datagen = ImageDataGenerator(featurewise_center=True,featurewise_std_normalization=True,horizontal_flip=True, rotation_range=20) train_datagen.fit(x_train) valid_datagen = ImageDataGenerator(featurewise_center=True,featurewise_std_normalization=True) valid_datagen.fit(x_valid) test_datagen = ImageDataGenerator(featurewise_center=True,featurewise_std_normalization=True) test_datagen.fit(x_test) train_generator = train_datagen.flow(x_train, y_train, batch_size=16) valid_generator = valid_datagen.flow(x_valid, y_valid, batch_size=16) test_generator = test_datagen.flow(x_test, y_test, batch_size=16) vgg16 = VGG16(include_top=True,weights = None, input_shape = (32,32,3)) out = Dense(10,activation='softmax',name = 'fc3')(vgg16.get_layer('fc2').output) preprocessed_model = Model(inputs = vgg16.input,outputs = out) epochs = 20 learning_rate = 0.1 decay_rate = learning_rate/epochs sgd = tf.keras.optimizers.SGD(lr=learning_rate, decay=decay_rate, momentum=0.9, nesterov=False) preprocessed_model.compile(loss = 'categorical_crossentropy',optimizer = 'sgd',metrics=['accuracy']) history = preprocessed_model.fit(x=train_generator,steps_per_epoch=len(train_generator),validation_data=valid_generator,validation_steps=len(valid_generator),epochs=epochs) # model evaluation _, test_accuracy = preprocessed_model.evaluate_generator(test_generator, steps=len(test_generator),verbose=0) print("test accuracy:",test_accuracy) train_datagen = ImageDataGenerator(featurewise_center=True,featurewise_std_normalization=True,horizontal_flip=True, rotation_range=20) train_datagen.fit(x_train) test_datagen = ImageDataGenerator(featurewise_center=True,featurewise_std_normalization=True) test_datagen.fit(x_test) train_generator = train_datagen.flow(x_train, y_train, batch_size=16) test_generator = test_datagen.flow(x_test, y_test, batch_size=16) _, train_accuracy = preprocessed_model.evaluate_generator(train_generator, steps=len(train_generator),verbose=0) print("train accuracy:",train_accuracy) y_pred_test = preprocessed_model.predict(x=test_generator, steps=len(test_generator)) predictions_test = np.argmax(y_pred_test, axis=1) preprocessed_model.save("vgg16_cifar10_preprocessed_rot_new") plt.subplot(211) plt.title('Loss') plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() plt.savefig("loss_preprocess_flip_rot.png") plt.close() plt.subplot(212) plt.title('Accuracy') plt.plot(history.history['accuracy'], label='train') plt.plot(history.history['val_accuracy'], label='test') plt.legend() plt.savefig("accuracy_preprocess_flip_rot.png") plt.close() return preprocessed_model # In[38]: def preprocess_helper(): (x_train, y_train_without_one_hot), (x_test, y_test_without_one_hot) = tf.keras.datasets.cifar10.load_data() y_test = to_categorical(y_test_without_one_hot) test_datagen = ImageDataGenerator(featurewise_center=True,featurewise_std_normalization=True) test_datagen.fit(x_test) test_generator = test_datagen.flow(x_test, y_test, batch_size=16) x_test_preprocessed = [] y_test_preprocessed = [] for i in range(len(test_generator)): for img in test_generator[i][0]: x_test_preprocessed.append(img) for lb in test_generator[i][1]: y_test_preprocessed.append(lb) x_test_preprocessed = np.array(x_test_preprocessed) y_test_preprocessed = np.array(y_test_preprocessed) return x_test_preprocessed,y_test_preprocessed def class_wise_accuracy_preprocess(models,x_test,y_test): labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] y_test_without_one_hot = np.argmax(y_test,axis=1) y_pred_test = models.predict(x_test) prediction_test = np.argmax(y_pred_test,axis=1) print("test accuracy:",accuracy_score(np.argmax(y_test,axis=1),prediction_test)*100,"%") confus_matrix = confusion_matrix(np.argmax(y_test,axis=1),prediction_test) print("confusion_matrix:\n",confus_matrix) class_accuracy = [] class_TP = [] for i in range(confus_matrix.shape[0]): for j in range(confus_matrix.shape[1]): if i == j: TP = confus_matrix[i][j] class_TP.append(TP) for k in range(confus_matrix.shape[1]): ca = (class_TP[k] / confus_matrix[:,k].sum())*100 class_accuracy.append(ca) print("class ",k," accuracy ",labels[k]," :",ca,"%") class_accuracy = np.array(class_accuracy) return class_accuracy def bias_metrics_preprocess(class_accuracy,models,x_test,y_test): dob = np.std(class_accuracy) print("Degree of Bias:",dob) y_test_without_one_hot = np.argmax(y_test,axis=1) y_pred_test = models.predict(x_test) prediction_test = np.argmax(y_pred_test,axis=1) from sklearn.metrics import confusion_matrix confuse_matrix = confusion_matrix(y_test_without_one_hot, prediction_test) print("confusion_matrix:\n",confuse_matrix) FP = confuse_matrix.sum(axis=0) - np.diag(confuse_matrix) FN = confuse_matrix.sum(axis=1) - np.diag(confuse_matrix) TP = np.diag(confuse_matrix) TN = confuse_matrix.sum() - (FP+FN+TP) FP=FP.astype(float) TP=TP.astype(float) FN=FN.astype(float) TN=TN.astype(float) FNR = FN/(TP+FN) FPR = FP/(TN+FN) print("FPR:",FPR) print("FNR:",FNR) AFR = ((FPR.sum()/10)+(FNR.sum()/10))/2 print("AFR:",AFR) def create_results_preprocess(models,x_test,y_test): y_test_without_one_hot = np.argmax(y_test,axis=1) print(y_test.shape) print(x_test.shape) y_pred_test = models.predict(x_test) prediction_test = np.argmax(y_pred_test,axis=1) df = pd.DataFrame(np.hstack((y_test_without_one_hot.reshape(len(y_test_without_one_hot),1),prediction_test.reshape(len(prediction_test),1))),columns=['y_test','y_test_pred'],index=None) print(df.head()) df.to_csv("y_test_prediction_test.csv",index=False) correct_idxes = [] incorrect_idxes = [] for i in range(len(prediction_test)): if y_test_without_one_hot[i] == prediction_test[i]: correct_idxes.append(i) elif y_test_without_one_hot[i] != prediction_test[i]: incorrect_idxes.append(i) # In[39]: #preporocess model print("\npreporocess model\n") preprocessed_model = preprocessed_data_model() x_test_preprocessed,y_test_preprocessed = preprocess_helper() preprocessed_model1 = tf.keras.models.load_model("/home/euclid/Desktop/Chiranjeev/DAI/vgg16_cifar10_preprocessed_rot_new") class_accuracy_preprocessed_model1 = class_wise_accuracy_preprocess(preprocessed_model1, x_test_preprocessed,y_test_preprocessed) bias_metrics_preprocess(class_accuracy_preprocessed_model1,preprocessed_model1, x_test_preprocessed,y_test_preprocessed) create_results_preprocess(preprocessed_model1, x_test_preprocessed,y_test_preprocessed) # In[118]: def method_model(): (x_train, y_train_without_one_hot), (x_test, y_test_without_one_hot) = tf.keras.datasets.cifar10.load_data() y_train = to_categorical(y_train_without_one_hot) y_test = to_categorical(y_test_without_one_hot) x_train,x_valid,y_train,y_valid = train_test_split(x_train,y_train,test_size = 0.2,shuffle=True,random_state = 42) print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape) print(x_valid.shape) print(y_valid.shape) vgg16 = VGG16(include_top=True,weights = None, input_shape = (32,32,3)) out = Dense(10,activation='softmax',name = 'fc3')(vgg16.get_layer('fc2').output) kl_model = Model(inputs = vgg16.input,outputs = out) epochs = 20 learning_rate = 0.01 decay_rate = learning_rate/epochs sgd = tf.keras.optimizers.SGD(lr=learning_rate, decay=decay_rate, momentum=0.9, nesterov=False) kl_model.compile(loss = 'kullback_leibler_divergence',optimizer = 'sgd',metrics=['accuracy']) #tf.keras.optimizers.Adam(learning_rate=0.0001) history = kl_model.fit(x_train, y_train, validation_data=(x_valid, y_valid), epochs=epochs, batch_size=16) kl_model.save("vgg16_cifar10_method") y_pred_train = kl_model.predict(x_train) predictions_train = np.argmax(y_pred_train,axis=1) print("training accuracy:",accuracy_score(np.argmax(y_train,axis=1),predictions_train)) y_pred_test = kl_model.predict(x_test) prediction_test = np.argmax(y_pred_test,axis=1) print("test accuracy:",accuracy_score(np.argmax(y_test,axis=1),prediction_test)) plt.subplot(211) plt.title('Loss') plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() plt.subplot(212) plt.title('Accuracy') plt.plot(history.history['accuracy'], label='train') plt.plot(history.history['val_accuracy'], label='test') plt.legend() plt.show() return kl_model # In[119]: #method model print("/nmethod model/n") kl_model = method_model() class_accuracy_kl_model = class_wise_accuracy(kl_model) bias_metrics(class_accuracy_kl_model,kl_model) create_results(kl_model) # In[120]: print("\npreprocessed model\n") class_accuracy_preprocessed = class_wise_accuracy(preprocessed_model) print("each class accuracies preprocessed",class_accuracy_preprocessed) bias_metrics(class_accuracy_preprocessed,preprocessed_model) print("\nmethod model\n") class_accuracy_method = class_wise_accuracy(kl_model) print("each class accuracies mehtod",class_accuracy_method) bias_metrics(class_accuracy_method,kl_model) # In[187]: def check_bias_by_counting(filename): df = pd.read_csv(filename) #gender 0 (g1) male race1_correct_g1 = 0 race2_correct_g1 = 0 race3_correct_g1 = 0 race4_correct_g1 = 0 age_0_28_correct_g1 = 0 age_29_56_correct_g1 = 0 age_57_84_correct_g1 = 0 age_85_116_correct_g1 = 0 race1_incorrect_g1 = 0 race2_incorrect_g1 = 0 race3_incorrect_g1 = 0 race4_incorrect_g1 = 0 age_0_28_incorrect_g1 = 0 age_29_56_incorrect_g1 = 0 age_57_84_incorrect_g1 = 0 age_85_116_incorrect_g1 = 0 #gender 1 (g2) female race1_correct_g2 = 0 race2_correct_g2 = 0 race3_correct_g2 = 0 race4_correct_g2 = 0 age_0_28_correct_g2 = 0 age_29_56_correct_g2 = 0 age_57_84_correct_g2 = 0 age_85_116_correct_g2 = 0 race1_incorrect_g2 = 0 race2_incorrect_g2 = 0 race3_incorrect_g2 = 0 race4_incorrect_g2 = 0 age_0_28_incorrect_g2 = 0 age_29_56_incorrect_g2 = 0 age_57_84_incorrect_g2 = 0 age_85_116_incorrect_g2 = 0 df_np = df.iloc[:,:].values for i in range(len(df_np)): #correct predictions if df_np[i][2] == df_np[i][4]: #male if df_np[i][2] == 0: # age groups if df_np[i][1] == 0: age_0_28_correct_g1 += 1 elif df_np[i][1] == 1: age_29_56_correct_g1+=1 elif df_np[i][1] == 2: age_57_84_correct_g1 += 1 elif df_np[i][1] == 3: age_85_116_correct_g1 += 1 #race groups if df_np[i][3] == 0: race1_correct_g1 += 1 elif df_np[i][3] == 1: race2_correct_g1+=1 elif df_np[i][3] == 2: race3_correct_g1 += 1 elif df_np[i][3] == 3: race4_correct_g1 += 1 #female elif df_np[i][2] == 1: # age groups if df_np[i][1] == 0: age_0_28_correct_g2 += 1 elif df_np[i][1] == 1: age_29_56_correct_g2+=1 elif df_np[i][1] == 2: age_57_84_correct_g2 += 1 elif df_np[i][1] == 3: age_85_116_correct_g2 += 1 #race groups if df_np[i][3] == 0: race1_correct_g2 += 1 elif df_np[i][3] == 1: race2_correct_g2+=1 elif df_np[i][3] == 2: race3_correct_g2 += 1 elif df_np[i][3] == 3: race4_correct_g2 += 1 elif df_np[i][2] != df_np[i][4]: #male if df_np[i][2] == 0: # age groups if df_np[i][1] == 0: age_0_28_incorrect_g1 += 1 elif df_np[i][1] == 1: age_29_56_incorrect_g1+=1 elif df_np[i][1] == 2: age_57_84_incorrect_g1 += 1 elif df_np[i][1] == 3: age_85_116_incorrect_g1 += 1 #race groups if df_np[i][3] == 0: race1_incorrect_g1 += 1 elif df_np[i][3] == 1: race2_incorrect_g1+=1 elif df_np[i][3] == 2: race3_incorrect_g1 += 1 elif df_np[i][3] == 3: race4_incorrect_g1 += 1 #female elif df_np[i][2] == 1: # age groups if df_np[i][1] == 0: age_0_28_incorrect_g2 += 1 elif df_np[i][1] == 1: age_29_56_incorrect_g2+=1 elif df_np[i][1] == 2: age_57_84_incorrect_g2 += 1 elif df_np[i][1] == 3: age_85_116_incorrect_g2 += 1 #race groups if df_np[i][3] == 0: race1_incorrect_g2 += 1 elif df_np[i][3] == 1: race2_incorrect_g2+=1 elif df_np[i][3] == 2: race3_incorrect_g2 += 1 elif df_np[i][3] == 3: race4_incorrect_g2 += 1 print("DoB") #gender 1 race1_accuracy_g1 = (race1_correct_g1/(race1_correct_g1+race1_incorrect_g1))*100 race2_accuracy_g1 = (race2_correct_g1/(race2_correct_g1+race2_incorrect_g1))*100 race3_accuracy_g1 = (race3_correct_g1/(race3_correct_g1+race3_incorrect_g1))*100 race4_accuracy_g1 = (race4_correct_g1/(race4_correct_g1+race4_incorrect_g1))*100 print("race1_accuracy_g1:",race1_accuracy_g1) print("race2_accuracy_g1:",race2_accuracy_g1) print("race3_accuracy_g1:",race3_accuracy_g1) print("race4_accuracy_g1:",race4_accuracy_g1) age_0_28_accuracy_g1 = (age_0_28_correct_g1/(age_0_28_correct_g1+age_0_28_incorrect_g1))*100 age_29_56_accuracy_g1 = (age_29_56_correct_g1/(age_29_56_correct_g1+age_29_56_incorrect_g1))*100 age_57_84_accuracy_g1 = (age_57_84_correct_g1/(age_57_84_correct_g1+age_57_84_incorrect_g1))*100 age_85_116_accuracy_g1 = (age_85_116_correct_g1/(age_85_116_correct_g1+age_85_116_incorrect_g1))*100 print("age_0_28_accuracy_g1:",age_0_28_accuracy_g1) print("age_29_56_accuracy_g1:",age_29_56_accuracy_g1) print("age_57_84_accuracy_g1:",age_57_84_accuracy_g1) print("age_85_116_accuracy_g1:",age_85_116_accuracy_g1) #gender2 race1_accuracy_g2 = (race1_correct_g2/(race1_correct_g2+race1_incorrect_g2))*100 race2_accuracy_g2 = (race2_correct_g2/(race2_correct_g2+race2_incorrect_g2))*100 race3_accuracy_g2 = (race3_correct_g2/(race3_correct_g2+race3_incorrect_g2))*100 race4_accuracy_g2 = (race4_correct_g2/(race4_correct_g2+race4_incorrect_g2))*100 print("race1_accuracy_g2:",race1_accuracy_g2) print("race2_accuracy_g2:",race2_accuracy_g2) print("race3_accuracy_g2:",race3_accuracy_g2) print("race4_accuracy_g2:",race4_accuracy_g2) age_0_28_accuracy_g2 = (age_0_28_correct_g2/(age_0_28_correct_g2+age_0_28_incorrect_g2))*100 age_29_56_accuracy_g2 = (age_29_56_correct_g2/(age_29_56_correct_g2+age_29_56_incorrect_g2))*100 age_57_84_accuracy_g2 = (age_57_84_correct_g2/(age_57_84_correct_g2+age_57_84_incorrect_g2))*100 age_85_116_accuracy_g2 = (age_85_116_correct_g2/(age_85_116_correct_g2+age_85_116_incorrect_g2))*100 print("age_0_28_accuracy_g2:",age_0_28_accuracy_g2) print("age_29_56_accuracy_g2:",age_29_56_accuracy_g2) print("age_57_84_accuracy_g2:",age_57_84_accuracy_g2) print("age_85_116_accuracy_g2:",age_85_116_accuracy_g2) print("DoB across race") dob_across_race1 = np.std(np.array([race1_accuracy_g1,race1_accuracy_g2])) dob_across_race2 = np.std(np.array([race2_accuracy_g1,race2_accuracy_g2])) dob_across_race3 = np.std(np.array([race3_accuracy_g1,race3_accuracy_g2])) dob_across_race4 = np.std(np.array([race4_accuracy_g1,race4_accuracy_g2])) dob_across_race_overall = (dob_across_race1+dob_across_race2+dob_across_race3+dob_across_race4)/4 dob_across_race_overall print("dob_across_race_overall:",dob_across_race_overall) print("DoB across age") dob_across_age_0_28 = np.std(np.array([age_0_28_accuracy_g1,age_0_28_accuracy_g2])) dob_across_age_29_56 = np.std(np.array([age_29_56_accuracy_g1,age_29_56_accuracy_g2])) dob_across_age_57_84 = np.std(np.array([age_57_84_accuracy_g1,age_57_84_accuracy_g2])) dob_across_age_85_116 = np.std(np.array([age_85_116_accuracy_g1,age_85_116_accuracy_g2])) dob_across_age_overall = (dob_across_age_0_28+dob_across_age_29_56+dob_across_age_57_84+dob_across_age_85_116)/4 print("dob_across_age_overall:",dob_across_age_overall) return dob_across_race1,dob_across_race2,dob_across_race3,dob_across_race4,dob_across_age_0_28,dob_across_age_29_56,dob_across_age_57_84,dob_across_age_85_116,dob_across_race_overall,dob_across_age_overall # In[200]: print("cross entropy loss") filename1 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q1/categorical_cross_entropy/test_gender_across_race_age_y_test_pred2_optimizer2_45.csv" dob_across_race1,dob_across_race2,dob_across_race3,dob_across_race4,dob_across_age_0_28,dob_across_age_29_56,dob_across_age_57_84,dob_across_age_85_116,dob_across_race_overall,dob_across_age_overall = check_bias_by_counting(filename1) print("\nfocal loss") filename2 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q1/focal_loss/test_gender_across_race_age_y_test_pred2_optimizer2_45_focal_loss.csv" dob_across_race1,dob_across_race2,dob_across_race3,dob_across_race4,dob_across_age_0_28,dob_across_age_29_56,dob_across_age_57_84,dob_across_age_85_116,dob_across_race_overall,dob_across_age_overall = check_bias_by_counting(filename2) print("\nLinearsvm") filename3 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q1/svm/test_gender_across_race_age_y_test_pred2_optimizer2_svm.csv" dob_across_race1,dob_across_race2,dob_across_race3,dob_across_race4,dob_across_age_0_28,dob_across_age_29_56,dob_across_age_57_84,dob_across_age_85_116,dob_across_race_overall,dob_across_age_overall = check_bias_by_counting(filename3)
33.16746
235
0.685304
1,889
0.05419
0
0
0
0
0
0
3,936
0.112912
72045094280bf8b19ef8956f47fe38ea87d738b3
1,027
py
Python
notebooks/general.py
transientlunatic/grasshopper
1d3822427970d200341ff9d2823949fb4b27e001
[ "0BSD" ]
3
2020-09-26T01:27:13.000Z
2020-09-30T05:47:42.000Z
notebooks/general.py
transientlunatic/gravpy
1d3822427970d200341ff9d2823949fb4b27e001
[ "0BSD" ]
null
null
null
notebooks/general.py
transientlunatic/gravpy
1d3822427970d200341ff9d2823949fb4b27e001
[ "0BSD" ]
null
null
null
import numpy as np import astropy.units as u def snr(signal, detector): """ Calculate the SNR of a signal in a given detector, assuming that it has been detected with an optimal filter. See e.g. arxiv.org/abs/1408.0740 Parameters ---------- signal : Source A Source object which describes the source producing the signal, e.g. a CBC. detector : Detector A Detector object describing the instrument making the observation e.g. aLIGO. Returns ------- SNR : float The signal-to-noise ratio of the signal in the detector. """ if signal.ncycles(): ncycles = np.sqrt(2*signal.ncycles(detector.frequencies)) else: ncycles = 1 noise = detector.psd(detector.frequencies) ampli = signal.raw_strain(detector.frequencies) * ncycles fraction = 4*(np.abs(ampli)**2 / noise) fraction[np.isnan(fraction)]=0 return np.sqrt(np.trapz(fraction, x=detector.frequencies, dx=0.01*u.hertz))
30.205882
79
0.635833
0
0
0
0
0
0
0
0
558
0.54333
72082ffdc0eb8ab81095d7d094328792a40cbcea
6,898
py
Python
dlfairness/original_code/FairALM/Experiments-CelebA/results/quantitative_results/plot_celeba.py
lin-tan/fairness-variance
7f6aee23160707ffe78f429e5d960022ea1c9fe4
[ "BSD-3-Clause" ]
null
null
null
dlfairness/original_code/FairALM/Experiments-CelebA/results/quantitative_results/plot_celeba.py
lin-tan/fairness-variance
7f6aee23160707ffe78f429e5d960022ea1c9fe4
[ "BSD-3-Clause" ]
null
null
null
dlfairness/original_code/FairALM/Experiments-CelebA/results/quantitative_results/plot_celeba.py
lin-tan/fairness-variance
7f6aee23160707ffe78f429e5d960022ea1c9fe4
[ "BSD-3-Clause" ]
null
null
null
''' Script to plot the accuracy and the fairness measures for different algorithms from the log files ''' import matplotlib matplotlib.use('agg') from matplotlib import pyplot as plt import os print(os.getcwd()) import numpy as np plt.style.use('ggplot') def create_acc_lists(filepath): train_acc = [] train_ddp = [] train_deo = [] valid_acc = [] valid_ddp = [] valid_deo = [] with open(filepath) as fp: line = fp.readline() cnt = 1 while line: #if 'Epoch: 040/100' in line: # break if 'Train Acc' in line: line = line.strip() linesegs = line.split(' | ') train_acc.append(float(linesegs[1].split(': ')[1].strip('%'))) train_ddp.append(float(linesegs[2].split(': ')[1].strip('%'))) train_deo.append(float(linesegs[3].split(': ')[1].strip('%'))) elif 'Valid Acc' in line: line = line.strip() linesegs = line.split(' | ') valid_acc.append(float(linesegs[1].split(': ')[1].strip('%'))) valid_ddp.append(float(linesegs[2].split(': ')[1].strip('%'))) valid_deo.append(float(linesegs[3].split(': ')[1].strip('%'))) line = fp.readline() cnt += 1 return train_acc, train_ddp, train_deo, valid_acc, valid_ddp, valid_deo def color(R, G, B): return (float(R)/255, float(G)/255, float(B)/255) def BLUE(): return color(0, 77, 128) def RED(): return color(181, 23, 0) def make_plot_helper(arr, legends, xlabel, ylabel, outname): epoch_list = np.arange(1, arr.shape[1] + 1) fig, axs = plt.subplots(1, 1, figsize=(5,4), sharey=False) fig.patch.set_visible(False) axs.set_facecolor(color(240, 240, 240)) axs.tick_params(axis='x', colors='black') axs.tick_params(axis='y', colors='black') axs.xaxis.label.set_color('black') axs.yaxis.label.set_color('black') axs.set_ylim([0, arr.max() + 15]) #plt.gca().set_color_cycle(['red', 'blue', 'green', 'yellow']) colors=[RED(), BLUE()] for value, legend, c in zip(arr, legends, colors): plt.plot(epoch_list, value, label=legend, color=c) axs.set_xlabel(xlabel, fontweight='bold') axs.set_ylabel(ylabel, fontweight='bold') title = ylabel.replace("%", "").upper() #plt.title(title, fontweight='bold')#, x=0.7, y=0.1) leg = axs.legend(loc='upper right', frameon=False) for line in leg.get_lines(): line.set_linewidth(4.0) fig.tight_layout() outname.replace('$', '_') fig.savefig(outname, bbox_inches='tight') print('Plotted ' + outname) def make_plot(list1, list2, legend1, legend2, plot_type, suffix=None): arr1 = np.array(list1) arr2 = np.array(list2) legend = [legend1, legend2] arr = np.array([arr1, arr2]) xlabel = 'Epochs' if plot_type == 'acc': arr = 100 - arr ylabel = 'Error %' if plot_type == 'acc' else 'DEO' legend1 = '_'.join(legend1.split(' ')) legend2 = '_'.join(legend2.split(' ')) #pdb.set_trace() if 'penalty' in legend2: legend2 = 'l2_penalty' if 'penalty' in legend1: legend1 = 'l2_penalty' outname = '_'.join([legend1, legend2, plot_type]) if suffix is not None: outname += '_' + suffix make_plot_helper(arr, legend, xlabel, ylabel, outname) def gen_main_plots(): # Used in the main paper for generating plots file_name = 'no_1p_lr0p01.txt' _, _, _, no_acc, _, no_deo = create_acc_lists(file_name) file_name = 'with_1p_fairalm_eta60_inner5_lr0p01.txt' _, _, _, fair_acc, _, fair_deo = create_acc_lists(file_name) file_name = 'with_1e_L2_PENALTY_eta0p01_lr0p01.txt' _, _, _, l2_acc, _, l2_deo = create_acc_lists(file_name) MEDIUM_SIZE = 12 plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('legend', fontsize=MEDIUM_SIZE) # legend fontsize make_plot(no_acc, fair_acc, 'Unconstrained', 'FairALM', 'acc') make_plot(no_deo, fair_deo, 'Unconstrained', 'FairALM', 'deo') make_plot(no_acc, l2_acc, 'Unconstrained', '$\ell_2$ penalty', 'acc') make_plot(no_deo, l2_deo, 'Unconstrained', '$\ell_2$ penalty', 'deo') def gen_fair_alm_plots(no_filename, fair_alm_filename, suffix): _, _, _, no_acc, _, no_deo = create_acc_lists(no_filename) _, _, _, fair_acc, _, fair_deo = create_acc_lists(fair_alm_filename) make_plot(no_acc, fair_acc, 'Unconstrained', 'FairALM', 'acc', suffix) make_plot(no_deo, fair_deo, 'Unconstrained', 'FairALM', 'deo', suffix) def gen_l2_plots(no_filename, l2_filename, suffix): _, _, _, no_acc, _, no_deo = create_acc_lists(no_filename) _, _, _, l2_acc, _, l2_deo = create_acc_lists(l2_filename) make_plot(no_acc, l2_acc, 'Unconstrained', "$\ell_2$ penalty", 'acc', suffix) make_plot(no_deo, l2_deo, 'Unconstrained', "$\ell_2$ penalty", 'deo', suffix) def gen_l2_fair_alm_plots(l2_filename, fair_alm_filename, suffix): _, _, _, l2_acc, _, l2_deo = create_acc_lists(l2_filename) _, _, _, fair_acc, _, fair_deo = create_acc_lists(fair_alm_filename) make_plot(l2_acc, fair_acc, "$\ell_2$ penalty", 'FairALM', 'acc', suffix) make_plot(l2_deo, fair_deo, "$\ell_2$ penalty", 'FairALM', 'deo', suffix) def gen_all_plots(): MEDIUM_SIZE = 14 BIGGER_SIZE = 16 plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('legend', fontsize=MEDIUM_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) file_name = 'no_1p_lr0p01.txt' fair_alm_filenames = {'eta60': 'FAIR_ALM_eta60_inner5_lr0p01.txt', 'eta40': 'FAIR_ALM_eta40_inner5_lr0p01.txt', 'eta45': 'FAIR_ALM_eta45_lr0p01.txt', 'eta50': 'FAIR_ALM_eta50_lr0p01.txt', 'eta80': 'FAIR_ALM_eta80_inner5_lr0p01.txt', 'eta20': 'FAIR_ALM_eta20_inner5_lr0p01.txt'} l2_filenames = {'eta0p01': 'L2_PENALTY_eta0p01_lr0p01.txt', 'eta0p001': 'L2_PENALTY_eta0p001_lr0p01.txt', 'eta0p1': 'L2_PENALTY_eta0p1_lr0p01.txt', 'eta1': 'L2_PENALTY_eta1_lr0p01.txt'} for eta, name in fair_alm_filenames.items(): gen_fair_alm_plots(file_name, name, eta) for eta, name in l2_filenames.items(): gen_l2_plots(file_name, name, eta) for l2_eta, l2_name in l2_filenames.items(): for alm_eta, alm_name in fair_alm_filenames.items(): gen_l2_fair_alm_plots(l2_name, alm_name, l2_eta+'_'+alm_eta) if __name__ == "__main__": gen_all_plots()
36.691489
81
0.621919
0
0
0
0
0
0
0
0
1,634
0.23688
72085eb6f35c638ad1743b5ae7bd6a8de18fc6f3
682
py
Python
conqueror/scraper/base_yandex.py
piotrmaslanka/yandex-conqueror
cd0b50a43e25551f91150e0bee4f9cd307e4adce
[ "MIT" ]
12
2022-03-01T22:45:05.000Z
2022-03-16T05:46:24.000Z
conqueror/scraper/base_yandex.py
piotrmaslanka/yandex-conqueror
cd0b50a43e25551f91150e0bee4f9cd307e4adce
[ "MIT" ]
1
2022-03-02T10:18:05.000Z
2022-03-02T11:03:52.000Z
conqueror/scraper/base_yandex.py
piotrmaslanka/yandex-conqueror
cd0b50a43e25551f91150e0bee4f9cd307e4adce
[ "MIT" ]
1
2022-03-02T10:18:35.000Z
2022-03-02T10:18:35.000Z
import requests from satella.coding.decorators import retry @retry(3, exc_classes=requests.RequestException) def get_yandex_request(url, arguments) -> dict: """ Return a JSON object querying Yandex at provided parameters. Handling CSRF will be done automatically. :param url: URL to ask :param arguments: dictionary of arguments to add :return: object returned via endpoint """ resp = requests.get(url, params=arguments) resp.raise_for_status() data = resp.json() if list(data.keys()) == ['csrfToken']: arguments['csrfToken'] = data['csrfToken'] return get_yandex_request(url, arguments) else: return data
28.416667
64
0.692082
0
0
0
0
619
0.907625
0
0
279
0.409091
72097fdf43f5937088d329748fec0dc61447255f
6,142
py
Python
engine/azbatchengine.py
asedighi/azure_realtime_batch
c2cf4c8edc2bbded8377842fcad6370fd35af44e
[ "MIT" ]
3
2020-05-08T16:20:07.000Z
2021-10-06T11:16:10.000Z
engine/azbatchengine.py
asedighi/azure_realtime_batch
c2cf4c8edc2bbded8377842fcad6370fd35af44e
[ "MIT" ]
null
null
null
engine/azbatchengine.py
asedighi/azure_realtime_batch
c2cf4c8edc2bbded8377842fcad6370fd35af44e
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation # # All rights reserved. # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # @author: asedighi import asyncio import sys sys.path.append('.') sys.path.append('..') sys.path.append('/mnt/resource/batch/tasks/shared/') sys.path.append('/mnt/resource/batch/tasks/shared/engine') sys.path.append('/mnt/resource/batch/tasks/shared/batchwrapper') sys.path.append('/mnt/resource/batch/tasks/shared/tasks') from batchwrapper.config import getRandomizer from batchwrapper.config import AzureCredentials from batchwrapper.config import ReadConfig from batchwrapper.config import TaskConfig from batchwrapper.config import find_file_path import argparse import ntpath from engine.taskengine import task_loop from subprocess import * from azure.storage.blob import BlobServiceClient from azure.servicebus import ServiceBusClient import os class AzureBatchEngine(): def __init__(self): os.chdir('/mnt/resource/batch/tasks/shared/engine') configuration = AzureCredentials() self.storage_string = configuration.getStorageConnectionString() self.servicebus_string = configuration.get_service_bus_connection_string() self.blob_service_client = BlobServiceClient.from_connection_string(self.storage_string) self.service_bus_client = ServiceBusClient.from_connection_string(self.servicebus_string) task = TaskConfig() self.container_name = task.getOutputContainer() paged_cont = self.blob_service_client.list_containers(name_starts_with=self.container_name) counter = 0 for i in paged_cont: counter += 1 if counter == 0: self.blob_container_client = self.blob_service_client.create_container(self.container_name) print("\tCreated {}... ".format(self.container_name)) else: self.blob_container_client = self.blob_service_client.get_container_client(self.container_name) print("\tContainer {} exists already... ".format(self.container_name)) print("Output Container to be used is: {}... ".format(self.container_name)) self.file_list_to_upload = list() self.result_to_upload = '' def getOutputContainer(self): return self.container_name def readJsonConfigFile(self, name=''): if name == '': return return ReadConfig(name) def java_runner(self, args) -> list: #print("argumet is of type in java runner", type(args)) #print("argumet is ", args) os.chdir('/mnt/resource/batch/tasks/shared/tasks') process = Popen(args, stdout=PIPE, stderr=PIPE) ret = [] while process.poll() is None: line = process.stdout.readline() if line != b'' and len(line) > 0 and line.endswith(b'\n'): ret.append(line[:-1].decode('utf-8')) stdout, stderr = process.communicate() ret += stdout.split(b'\n') if stderr != b'': ret += stderr.split(b'\n') ret.remove(b'') return ret def do(self): #in_data = ' '.join(args[1:]) #in_data = args[1:] #print("setting arguments to: ", in_data) #task_command = (args[0], in_data) task_loop(self, "../tasks") #self.uploadResultData() self.uploadFiles() def do_action(self, *args): pass def addFileToUpload(self, file_name=''): #/mnt/batch/tasks/workitems/<job id>/job-<#>/<task id>/wd #/mnt/batch/tasks/shared name = find_file_path(file_name, "../") print("Found file to upload: {}".format(name)) if name != '': self.file_list_to_upload.extend([name]) print("Will upload: {}".format(self.file_list_to_upload)) def dataToUpload(self, data: str =''): if data != '': self.result_to_upload = data self.uploadResultData() def uploadResultData(self): ##print("the current working directory for uploading results is: {}".format(os.getcwd())) filen = "result_" + getRandomizer() + ".txt" if self.result_to_upload != '': text_file = open(filen, "w") n = text_file.write(self.result_to_upload) text_file.close() self.addFileToUpload(filen) def uploadFiles(self): for output_file in self.file_list_to_upload: print('Uploading file {} to container [{}]...'.format(output_file, self.container_name)) self.blob_client = self.blob_service_client.get_blob_client(container=self.container_name, blob=ntpath.basename(output_file)) # Upload the created file with open(output_file, "rb") as data: self.blob_client.upload_blob(data) self.file_list_to_upload.remove(output_file) if __name__ == '__main__': print("Starting engine ...") #all_input = sys.argv[1:]; #data_input = ' '.join(all_input[1:]) #foo = (all_input[0], data_input) #print(foo) #exit(1) engine = AzureBatchEngine() engine.do()
29.38756
137
0.667209
3,986
0.648974
0
0
0
0
0
0
2,214
0.360469
720a41d918f83d5bbf26dfd204b04b9dc1b4ac43
1,090
py
Python
j.py
chirag127/Language-Translator-Using-Tkinter-in-Python
c790a0672c770cf703559d99c74ad581643f4d2f
[ "MIT" ]
null
null
null
j.py
chirag127/Language-Translator-Using-Tkinter-in-Python
c790a0672c770cf703559d99c74ad581643f4d2f
[ "MIT" ]
null
null
null
j.py
chirag127/Language-Translator-Using-Tkinter-in-Python
c790a0672c770cf703559d99c74ad581643f4d2f
[ "MIT" ]
null
null
null
import tkinter as tk import sys class PrintLogger(): # create file like object def __init__(self, textbox): # pass reference to text widget self.textbox = textbox # keep ref def write(self, text): self.textbox.insert(tk.END, text) # write text to textbox # could also scroll to end of textbox here to make sure always visible def flush(self): # needed for file like object pass if __name__ == '__main__': while True: try: def do_something(): print('i did something') # root.after(1000, do_something) print("qiaulfskhdnliukf") root = tk.Tk() t = tk.Text() t.pack() # create instance of file like object pl = PrintLogger(t) # replace sys.stdout with our object sys.stdout = pl # now we can print to stdout or file print('hello world') print('hello world') root.mainloop() except: print("exception")
24.772727
82
0.542202
395
0.362385
0
0
0
0
0
0
411
0.377064
720b01f5be1444386ad583c605e2465546f819c4
2,695
py
Python
byteweiser.py
urbanware-org/byteweiser
fc90d17b51ead44af53401dc9c8ca5f0efc5e72e
[ "MIT" ]
3
2017-11-27T00:35:04.000Z
2017-12-13T22:41:31.000Z
byteweiser.py
urbanware-org/byteweiser
fc90d17b51ead44af53401dc9c8ca5f0efc5e72e
[ "MIT" ]
1
2017-03-08T19:04:49.000Z
2017-03-08T19:04:49.000Z
byteweiser.py
urbanware-org/byteweiser
fc90d17b51ead44af53401dc9c8ca5f0efc5e72e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ============================================================================ # ByteWeiser - Byte comparison and replacement tool # Main script # Copyright (C) 2021 by Ralf Kilian # Distributed under the MIT License (https://opensource.org/licenses/MIT) # # GitHub: https://github.com/urbanware-org/byteweiser # GitLab: https://gitlab.com/urbanware-org/byteweiser # ============================================================================ import os import sys def main(): from core import clap from core import common from core import main try: p = clap.Parser() except Exception as e: print("%s: error: %s" % (os.path.basename(sys.argv[0]), e)) sys.exit(1) p.set_description("Compare two files and replace different bytes.") p.set_epilog("Further information and usage examples can be found " "inside the documentation file for this script.") # Required arguments p.add_avalue("-i", "--input-file", "source file where to read the data " "from", "input_file", None, True) p.add_avalue("-o", "--output-file", "destination file where to write " "data into", "output_file", None, True) # Optional arguments p.add_avalue("-b", "--buffer-size", "buffer size in bytes", "buffer_size", 4096, False) p.add_switch(None, "--no-hashes", "do not use file hash comparison", "no_hash", True, False) p.add_switch(None, "--no-progress", "do not display the process " "percentage", "no_progress", True, False) p.add_switch("-q", "--quiet", "disable output", "quiet", True, False) p.add_switch("-s", "--simulate", "do not change the output file", "simulate", True, False) p.add_switch(None, "--version", "print the version number and exit", None, True, False) if len(sys.argv) == 1: p.error("At least one required argument is missing.") elif ("-h" in sys.argv) or ("--help" in sys.argv): p.print_help() sys.exit(0) elif "--version" in sys.argv: print(common.get_version()) sys.exit(0) args = p.parse_args() try: hashes = not args.no_hash progress = not args.no_progress verbose = not args.quiet byteweiser = main.ByteWeiser() byteweiser.compare_and_replace(args.input_file, args.output_file, args.buffer_size, args.simulate, verbose, progress, hashes) except Exception as e: p.error(e) if __name__ == "__main__": main() # EOF
34.551282
78
0.562152
0
0
0
0
0
0
0
0
1,234
0.457885
720b83b3d481df1e875ae4b17eade77f3a7f0679
9,798
py
Python
scripts/st_dashboard.py
rsmith49/simple-budget-pld
1bee5a26f53aa4a5b0aab49ee4c158b5ecb7c743
[ "Apache-2.0" ]
1
2022-01-01T14:44:40.000Z
2022-01-01T14:44:40.000Z
scripts/st_dashboard.py
rsmith49/simple-budget-pld
1bee5a26f53aa4a5b0aab49ee4c158b5ecb7c743
[ "Apache-2.0" ]
null
null
null
scripts/st_dashboard.py
rsmith49/simple-budget-pld
1bee5a26f53aa4a5b0aab49ee4c158b5ecb7c743
[ "Apache-2.0" ]
null
null
null
import altair as alt import os import pandas as pd import streamlit as st import sys from datetime import datetime from dateutil.relativedelta import relativedelta from dotenv import load_dotenv from plaid.api_client import ApiClient from plaid.exceptions import ApiException from pathlib import Path from traceback import format_exc from urllib.error import URLError sys.path.append(os.getcwd()) load_dotenv() from src.budget import Budget from src.transactions import get_transactions_df from src.user_modifications import transform_pipeline from src.views import top_vendors EXISTING_TRANSACTIONS_FILE = f"{Path.home()}/.ry-n-shres-budget-app/all_transactions.csv" TRANSACTION_GRACE_BUFFER = relativedelta(days=10) # How far before latest transaction to pull from @st.cache( hash_funcs={ApiClient: lambda *args, **kwargs: 0} ) def get_transaction_data(): try: existing_df = pd.read_csv(EXISTING_TRANSACTIONS_FILE) existing_df['date'] = existing_df['date'].astype(str) except FileNotFoundError: existing_df = None # Get Plaid output now = datetime.now().strftime('%Y-%m-%d') if existing_df is not None: latest_date = existing_df['date'].max() start_date = (datetime.strptime(latest_date, '%Y-%m-%d') - TRANSACTION_GRACE_BUFFER).strftime('%Y-%m-%d') latest_transactions_df = get_transactions_df(start_date, now) latest_transactions_df['date'] = latest_transactions_df['date'].astype(str) all_transactions_df = pd.concat([ existing_df[existing_df['date'] < start_date], latest_transactions_df ]) else: all_transactions_df = get_transactions_df( '2016-01-01', now ) os.makedirs(EXISTING_TRANSACTIONS_FILE[:EXISTING_TRANSACTIONS_FILE.rfind("/")], exist_ok=True) all_transactions_df.to_csv(EXISTING_TRANSACTIONS_FILE, index=False) # Fix for Streamlit Cache issues all_transactions_df = all_transactions_df.drop( ['payment_meta', 'location'], axis=1 ) all_transactions_df['category'] = all_transactions_df['category'].astype(str) return all_transactions_df def write_df(df: pd.DataFrame): """Helper function to st.write a DF with amount stylized to dollars""" st.dataframe( df.style.format({ col_name: "{:,.2f}" for col_name in ["amount", "Total Spent"] }) ) # TODO: Make non-budgeted columns show up on bar chart, just without ticks # TODO: Make all-time a budget period option (figure out what to do about this - maybe it only shows up for one month?) # TODO: Allow you to set custom start date for your budget period (i.e. make your monthly spending start on the 3rd) # TODO: Fix the duplicate charge issue with pending charges def single_inc_spending_summary(df: pd.DataFrame, date_inc_key: str, curr_date: str, is_current: bool = False) -> None: """Creates display for a single date increment Parameters ---------- df Transactions Dataframe date_inc_key The key for date increment (one of week, month, year) curr_date The selected date increment value is_current Whether the date represents the most recent date increment """ budget = Budget(df) curr_df = df[df[date_inc_key] == curr_date] total_spending_str = f"{curr_df['amount'].sum():,.2f}" if budget.budget_plan: show_budget = st.checkbox("Budget View", value=True) total_budget = budget.total_limit(date_inc_key) if budget.budget_plan and show_budget: metric_col1, metric_col2 = st.columns(2) with metric_col1: st.metric(f"Total Spending", total_spending_str) with metric_col2: st.metric(f"Total Budget", f"{total_budget:,.2f}") simple_summary = budget.simple_summary(date_inc_key, curr_date) bar = alt.Chart(simple_summary).mark_bar().encode( y="category", x="spent", tooltip=alt.Tooltip(field="spent", aggregate="sum", type="quantitative"), ).properties( height=alt.Step(60) ) ticks = alt.Chart(simple_summary).mark_tick( color="red", thickness=3, size=60 * 0.9, ).encode( y="category", x="total_budget", tooltip=alt.Tooltip(field="total_budget", aggregate="sum", type="quantitative") ) if is_current: ticks += alt.Chart(simple_summary).mark_tick( color="white", thickness=2, size=60 * 0.9, ).encode( y="category", x="projected_budget", ) st.altair_chart(bar + ticks, use_container_width=True) else: st.metric(f"Total Spending", total_spending_str) chart = alt.Chart(curr_df).mark_bar().encode( x=alt.X("sum(amount)", axis=alt.Axis(title='Spent')), y=alt.Y("category_1", axis=alt.Axis(title="Category")), tooltip=alt.Tooltip(field="amount", aggregate="sum", type="quantitative"), ).properties( height=alt.Step(40), ) st.altair_chart(chart, use_container_width=True) with st.expander("Largest Transactions"): write_df( curr_df[["date", "amount", "name", "category_1", "category_2"]].sort_values( by="amount", ascending=False ) ) def df_for_certain_categories(df: pd.DataFrame) -> pd.DataFrame: """Helper function to get a DF filtered by any user selected categories""" categories = st.multiselect( f"Select any categories to only see spending for", options=sorted(df['category_1'].unique()), default=[], ) if len(categories) > 0: bool_key = df['category_1'] == 'NOT_A CATEGORY' for cat in categories: bool_key = bool_key | (df['category_1'] == cat) df = df[bool_key] return df def main(): try: st.set_page_config(initial_sidebar_state="collapsed") try: df = get_transaction_data().copy() except ApiException as e: # TODO: Check e for if it is item expiration st.write("Error accessing Plaid - using old transaction data for now") st.error(f"{e}") try: df = pd.read_csv(EXISTING_TRANSACTIONS_FILE) except FileNotFoundError: st.write("Could not find existing transactions file - cannot run this app") raise e df = transform_pipeline(df) # Organizing Page st.write("# Budget Display") date_inc = st.sidebar.selectbox( f"Select the timespan (week, month, year) that you would like to use to view your spending by", ["Month", "Week", "Year"], ) date_inc_key = date_inc.lower() date_inc_label = date_inc[0].upper() + date_inc[1:] categories_to_ignore = st.sidebar.multiselect( "Any categories to ignore in calculations", options=sorted(df["category_1"].unique()), default=["Income"] ) start_date = st.sidebar.select_slider( f"Enter a Start Date for viewing your spending", sorted(df["date"].unique()) ) end_date = st.sidebar.select_slider( f"Enter an End Date to view your spending until", sorted(df["date"].unique()), value=df["date"].max() ) if start_date is not None: df = df[df['date'] >= start_date] if end_date is not None: df = df[df['date'] <= end_date] # Preprocessing if len(categories_to_ignore): for category in categories_to_ignore: df = df[df['category_1'] != category] df['week'] = df['date'].apply(lambda x: datetime.strptime(x, '%Y-%m-%d').strftime('%Y-%V')) if 'month' not in df: df['month'] = df['date'].apply(lambda x: x[:7]) df['year'] = df['date'].apply(lambda x: x[:4]) # Data Viz st.write(f"## Single {date_inc_label} in Spending") available_date_incs = sorted(df[date_inc_key].unique(), reverse=True) curr_date = st.selectbox( f"Pick a {date_inc_label}", options=available_date_incs, format_func=lambda label: f"{label}      ({df[df[date_inc_key] == label]['amount'].sum():,.2f})" ) single_inc_spending_summary( df, date_inc_key, curr_date, is_current=curr_date == max(available_date_incs) ) st.write(f"## {date_inc_label}ly Spending History") history_df = df_for_certain_categories(df) st.bar_chart(history_df.groupby(date_inc_key).sum("amount").sort_index(ascending=False)) st.write(f"## Most Expensive Single {date_inc} Categories") write_df(top_vendors(df, groupby=[date_inc_key, 'category_1'])) st.write("## All Transactions") write_df(df) # TODO: Figure out how we want to show the various conflicting budget periods # - Do we want the triple layered bar chart still? (spending / projected / limit) # - Do we just want 2 views? How can we give category level info well return except URLError as e: st.error( """ **This demo requires internet access.** Connection error: %s """ % e.reason ) except Exception as e: st.error(f""" Something Broke :( Error: {e} Traceback: {format_exc()} """) if __name__ == "__main__": main()
33.101351
119
0.610431
0
0
0
0
1,400
0.142813
0
0
3,021
0.308171
720ee96617fe84100cbf9c9517c56d368835bd2c
16,818
py
Python
scripts/devvnet_manager.py
spmckenney/Devv-Core
eb30ae3a092e3fe0f9f756f5f31bdce4f6215b98
[ "MIT" ]
null
null
null
scripts/devvnet_manager.py
spmckenney/Devv-Core
eb30ae3a092e3fe0f9f756f5f31bdce4f6215b98
[ "MIT" ]
null
null
null
scripts/devvnet_manager.py
spmckenney/Devv-Core
eb30ae3a092e3fe0f9f756f5f31bdce4f6215b98
[ "MIT" ]
null
null
null
import yaml import argparse import sys import os import subprocess import time def get_devvnet(filename): with open(filename, "r") as f: buf = ''.join(f.readlines()) conf = yaml.load(buf, Loader=yaml.Loader) # Set bind_port values port = conf['devvnet']['base_port'] for a in conf['devvnet']['shards']: for b in a['process']: port = port + 1 b['bind_port'] = port return(conf['devvnet']) class Devvnet(object): _base_port = 0 _password_file = "" _working_dir = "" _config_file = "" _host = "" _host_index_map = {} def __init__(self, devvnet): self._devvnet = devvnet self._shards = [] self._host_index_map = devvnet['host_index_map'] try: self._base_port = devvnet['base_port'] self._working_dir = devvnet['working_dir'] self._password_file = devvnet['password_file'] self._config_file = devvnet['config_file'] self._host = devvnet['host'] except KeyError: pass current_port = self._base_port for i in self._devvnet['shards']: print("Adding shard {}".format(i['shard_index'])) s = Shard(i, self._host_index_map, self._config_file, self._password_file) current_port = s.initialize_bind_ports(current_port) s.evaluate_hostname(self._host) s.connect_shard_nodes() self._shards.append(s) for i,shard in enumerate(self._shards): print("shard: "+ str(shard)) for i2,node in enumerate(shard.get_nodes()): node.grill_raw_subs(shard.get_index()) for rsub in node.get_raw_subs(): print("Getting for shard/name/node_index {}/{}/{}".format(rsub.get_shard_index(), rsub._name, rsub._node_index)) n = self.get_shard(rsub.get_shard_index()).get_node(rsub._name, rsub._node_index) node.add_subscriber(n.get_host(), n.get_port()) node.add_working_dir(self._working_dir) def __str__(self): s = "Devvnet\n" s += "base_port : "+str(self._base_port)+"\n" s += "working_dir : "+str(self._working_dir)+"\n" for shard in self._shards: s += str(shard) return s def get_shard(self, index): return self._shards[index] def get_shards(self): return self._shards def get_num_nodes(self): count = 0 for shard in self._shards: count += shard.get_num_nodes() return count class Shard(object): _shard_index = 0; _working_dir = "" _shard = None _nodes = [] _host = "" def __init__(self, shard, host_index_map, config_file, password_file): self._shard = shard self._nodes = get_nodes(shard, host_index_map) self._shard_index = self._shard['shard_index'] try: self._host = self._shard['host'] except: pass try: self._config_file = self._shard['config_file'] except: self._config_file = config_file try: self._password_file = self._shard['password_file'] except: self._password_file = password_file try: self._name = self._shard['t1'] self._type = "T1" except: try: self._name = self._shard['t2'] self._type = 'T2' except: print("Error: Shard type neither Tier1 (t1) or Tier2 (t2)") for n in self._nodes: n.set_config_file(self._config_file) n.set_password_file(self._password_file) n.set_type(self._type) #self._connect_shard_nodes() def __str__(self): s = "type: " + self._type + "\n" s += "index: " + str(self._shard_index) + "\n" for node in self._nodes: s += " " + str(node) + "\n" return s def initialize_bind_ports(self, port_num): current_port = port_num for node in self._nodes: node.set_port(current_port) current_port = current_port + 1 return current_port def connect_shard_nodes(self): v_index = [i for i,x in enumerate(self._nodes) if x.is_validator()] a_index = [i for i,x in enumerate(self._nodes) if x.is_announcer()] r_index = [i for i,x in enumerate(self._nodes) if x.is_repeater()] for i in v_index: host = self._nodes[i].get_host() port = self._nodes[i].get_port() #print("setting port to {}".format(port)) for j in v_index: if i == j: continue self._nodes[j].add_subscriber(host, port) for k in a_index: announcer = self._nodes[k] if self._nodes[i].get_index() == announcer.get_index(): self._nodes[i].add_subscriber(announcer.get_host(), announcer.get_port()) break for l in r_index: #print(type(self._nodes[i].get_index())) #if self._nodes[i].get_index() == self._nodes[l].get_index(): self._nodes[l].add_subscriber(host, port) def evaluate_hostname(self, host): if self._host == "": self._host = host for node in self._nodes: node.set_host(node.get_host().replace("${node_index}", str(node.get_index()))) if node.get_host().find("format") > 0: #print("formatting") node.set_host(eval(node.get_host())) node.evaluate_hostname(self._host) def get_nodes(self): return self._nodes def get_num_nodes(self): return len(self._nodes) def get_node(self, name, index): node = [x for x in self._nodes if (x.get_name() == name and x.get_index() == index)] if len(node) == 0: return None if len(node) != 1: raise("WOOP: identical nodes? ") return node[0] #node = [y for y in nodes if y.get_index() == index #shard1_validators = [x for x in conf['devvnet']['shards'][1]['process'] if x['name'] == 'validator'] def get_index(self): return self._shard_index class RawSub(): def __init__(self, name, shard_index, node_index): self._name = name self._shard_index = shard_index self._node_index = node_index def __str__(self): sub = "({}:{}:{})".format(self._name, self._shard_index, self._node_index) return sub def get_shard_index(self): return self._shard_index def substitute_node_index(self, node_index): if self._node_index == "${node_index}": self._node_index = int(node_index) else: print("WARNING: not subbing "+str(self._node_index)+" with "+str(node_index)) return class Sub(): def __init__(self, host, port): self._host = host self._port = port def __str__(self): sub = "({}:{})".format(self.get_host(), str(self.get_port())) return sub def __eq__(self, other): if self._host != other.get_host(): return False if self._port != other.get_port(): return False return True def get_host(self): return self._host def set_host(self, hostname): self._host = hostname def get_port(self): return self._port def set_port(self, port): self._port = port class Node(): def __init__(self, shard_index, index, name, host, port = 0): self._name = name self._type = "" self._shard_index = int(shard_index) self._index = int(index) self._host = host self._bind_port = int(port) self._subscriber_list = [] self._raw_sub_list = [] self._working_dir = "" def __str__(self): subs = "s[" for sub in self._subscriber_list: subs += str(sub) subs += "]" rawsubs = "r[" for rawsub in self._raw_sub_list: rawsubs += str(rawsub) rawsubs += "]" s = "node({}:{}:{}:{}:{}) {} {}".format(self._name, self._index, self._host, self._bind_port, self._working_dir, subs, rawsubs) return s def add_working_dir(self, directory): wd = directory.replace("${name}", self._name) wd = wd.replace("${shard_index}", str(self._shard_index)) wd = wd.replace("${node_index}", str(self.get_index())) self._working_dir = wd def is_validator(self): return(self._name == "validator") def is_announcer(self): return(self._name == "announcer") def is_repeater(self): return(self._name == "repeater") def add_subscriber(self, host, port): self._subscriber_list.append(Sub(host,port)) def add_raw_sub(self, name, shard_index, node_index): rs = RawSub(name,shard_index, node_index) #print("adding rawsub: "+str(rs)) self._raw_sub_list.append(rs) def evaluate_hostname(self, host): for sub in self._subscriber_list: sub.set_host(sub.get_host().replace("${node_index}", str(self.get_index()))) if sub.get_host().find("format") > 0: print("formatting") sub.set_host(eval(sub.get_host())) def grill_raw_subs(self, shard_index): for sub in self._raw_sub_list: sub.substitute_node_index(self._index) #d = subs.replace("${node_index}", str(self._index)) print("up "+str(sub)) def get_raw_subs(self): return self._raw_sub_list def get_type(self): return self._type def set_type(self, type): self._type = type def get_name(self): return self._name def get_shard_index(self): return self._shard_index def get_index(self): return self._index def get_host(self): return self._host def set_host(self, host): self._host = host def get_port(self): return self._bind_port def set_port(self, port): self._bind_port = port def get_config_file(self): return self._config_file def set_config_file(self, config): self._config_file = config def get_password_file(self): return self._password_file def set_password_file(self, file): self._password_file = file def get_subscriber_list(self): return self._subscriber_list def get_working_dir(self): return self._working_dir def set_working_dir(self, working_dir): self._working_dir = working_dir def get_nodes(yml_dict, host_index_map): nodes = [] shard_index = yml_dict['shard_index'] try: host_index_map = yml_dict['host_index_map'] print("Using shard's {} for shard {}".format(host_index_map, shard_index)) except: print("Using devvnet host_index_map ({}) for shard {}".format(host_index_map, shard_index)) for proc in yml_dict['process']: try: print("creating {} {} processes".format(len(host_index_map), proc['name'])) for node_index in host_index_map: node = Node(shard_index, node_index, proc['name'], host_index_map[node_index], proc['bind_port']) try: rawsubs = proc['subscribe'] for sub in proc['subscribe']: try: si = sub['shard_index'] except: si = yml_dict['shard_index'] node.add_raw_sub(sub['name'], si, sub['node_index']) except: pass nodes.append(node) except: nodes.append(Node(shard_index, ind, proc['name'], proc['host'], proc['bind_port'])) print("creating a "+proc['name']+" process") return nodes def run_validator(node): # ./devcash --node-index 0 --config ../opt/basic_shard.conf --config ../opt/default_pass.conf --host-list tcp://localhost:56551 --host-list tcp://localhost:56552 --host-list tcp://localhost:57550 --bind-endpoint tcp://*:56550 cmd = [] cmd.append("./devcash") cmd.extend(["--shard-index", str(node.get_shard_index())]) cmd.extend(["--node-index", str(node.get_index())]) cmd.extend(["--num-consensus-threads", "1"]) cmd.extend(["--num-validator-threads", "1"]) cmd.extend(["--config", node.get_config_file()]) cmd.extend(["--config", node.get_password_file()]) cmd.extend(["--bind-endpoint", "tcp://*:" + str(node.get_port())]) for sub in node.get_subscriber_list(): cmd.extend(["--host-list", "tcp://" + sub.get_host() + ":" + str(sub.get_port())]) return cmd def run_announcer(node): # ./announcer --node-index 0 --shard-index 1 --mode T2 --stop-file /tmp/stop-devcash-announcer.ctl --inn-keys ../opt/inn.key --node-keys ../opt/node.key --bind-endpoint 'tcp://*:50020' --working-dir ../../tmp/working/input/laminar4/ --key-pass password --separate-ops true cmd = [] cmd.append("./pb_announcer") cmd.extend(["--shard-index", str(node.get_shard_index())]) cmd.extend(["--node-index", str(node.get_index())]) cmd.extend(["--config", node.get_config_file()]) cmd.extend(["--config", node.get_password_file()]) cmd.extend(["--mode", node.get_type()]) cmd.extend(["--bind-endpoint", "tcp://*:" + str(node.get_port())]) cmd.extend(["--separate-ops", "true"]) cmd.extend(["--start-delay", str(30)]) cmd.extend(["--protobuf-endpoint", "tcp://*:" + str(node.get_port() + 100)]) return cmd def run_repeater(node): # ./repeater --node-index 0 --shard-index 1 --mode T2 --stop-file /tmp/stop-devcash-repeater.ctl --inn-keys ../opt/inn.key --node-keys ../opt/node.key --working-dir ../../tmp/working/output/repeater --host-list tcp://localhost:56550 --key-pass password cmd = [] cmd.append("./repeater") cmd.extend(["--shard-index", str(node.get_shard_index())]) cmd.extend(["--node-index", str(node.get_index())]) cmd.extend(["--num-consensus-threads", "1"]) cmd.extend(["--num-validator-threads", "1"]) cmd.extend(["--mode", node.get_type()]) cmd.extend(["--working-dir", node.get_working_dir()]) cmd.extend(["--protobuf-endpoint", "tcp://*:" + str(node.get_port() + 200)]) for sub in node.get_subscriber_list(): cmd.extend(["--host-list", "tcp://" + sub.get_host() + ":" + str(sub.get_port())]) return cmd if __name__ == '__main__': parser = argparse.ArgumentParser(description='Launch a devvnet.') parser.add_argument('--logdir', action="store", dest='logdir', help='Directory to log output') parser.add_argument('--start-processes', action="store_true", dest='start', default=True, help='Start the processes') parser.add_argument('--hostname', action="store", dest='hostname', default=None, help='Debugging output') parser.add_argument('--debug', action="store_true", dest='start', default=False, help='Debugging output') parser.add_argument('devvnet', action="store", help='YAML file describing the devvnet') args = parser.parse_args() print(args) print("logdir: " + args.logdir) print("start: " + str(args.start)) print("hostname: " + str(args.hostname)) print("devvnet: " + args.devvnet) devvnet = get_devvnet(args.devvnet) d = Devvnet(devvnet) num_nodes = d.get_num_nodes() logfiles = [] cmds = [] for s in d.get_shards(): for n in s.get_nodes(): if args.hostname and (args.hostname != n.get_host()): continue if n.get_name() == 'validator': cmds.append(run_validator(n)) elif n.get_name() == 'repeater': cmds.append(run_repeater(n)) elif n.get_name() == 'announcer': cmds.append(run_announcer(n)) logfiles.append(os.path.join(args.logdir, n.get_name()+"_s"+ str(n.get_shard_index())+"_n"+ str(n.get_index())+"_output.log")) ps = [] for index,cmd in enumerate(cmds): print("Node " + str(index) + ":") print(" Command: ", *cmd) print(" Logfile: ", logfiles[index]) if args.start: with open(logfiles[index], "w") as outfile: ps.append(subprocess.Popen(cmd, stdout=outfile, stderr=outfile)) time.sleep(1.5) if args.start: for p in ps: print("Waiting for nodes ... ctl-c to exit.") p.wait() print("Goodbye.")
33.171598
276
0.576347
10,288
0.611726
0
0
0
0
0
0
3,179
0.189024
72103568b2899de2bb48ee1f49834b293ab3bb81
5,896
py
Python
run_qasm.py
t-imamichi/qiskit-utility
2e71d0457bba0e6eb91daa9dbb32f52d87fe9f0b
[ "Apache-2.0" ]
6
2019-02-27T11:53:18.000Z
2022-03-02T21:28:05.000Z
run_qasm.py
t-imamichi/qiskit-utility
2e71d0457bba0e6eb91daa9dbb32f52d87fe9f0b
[ "Apache-2.0" ]
null
null
null
run_qasm.py
t-imamichi/qiskit-utility
2e71d0457bba0e6eb91daa9dbb32f52d87fe9f0b
[ "Apache-2.0" ]
2
2019-05-03T23:52:03.000Z
2020-12-22T12:12:38.000Z
#!/usr/bin/env python # coding: utf-8 # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. ''' This tool submits a QASM file to any backend and show the result. It requires 'Qconfig.py' to set a token of IBM Quantum Experience. It supports the following backends: ibmqx2(5 qubits), ibmqx4(5 qubits), ibmqx5(16 qubits), simulator(32 qubits). see https://quantumexperience.ng.bluemix.net/qx/devices for more details of the backends. Examples: $ python run_qasm.py -b # show backend information $ python run_qasm.py -c # show remaining credits $ python run_qasm.py -l 10 # show job list (10 jobs) $ python run_qasm.py -j (job id) # show the result of a job $ python run_qasm.py -q (qasm file) # submit a qasm file $ python run_qasm.py -z -l 10 # show job list (10 jobs) of qconsole $ python run_qasm.py -z -d ibmq_20_tokyo -q (qasm file) # submit a qasm file to ibmq_20_tokyo ''' import json import time from argparse import ArgumentParser from IBMQuantumExperience import IBMQuantumExperience try: import Qconfig except ImportError: raise RuntimeError('You need "Qconfig.py" with a token in the same directory.') def options(): parser = ArgumentParser() parser.add_argument('-q', '--qasm', action='store', help='QASM file') parser.add_argument('-d', '--device', action='store', default='sim', help='choose a device to run the input (sim [default], qx2, qx4, qx5, hpc)') parser.add_argument('-s', '--shots', action='store', default=1000, type=int, help='Number of shots (default: 1000)') parser.add_argument('-i', '--interval', action='store', default=2, type=int, help='Interval time to poll a result (default: 2)') parser.add_argument('-l', '--job-list', action='store', default=10, type=int, help='Number of jobs to show') parser.add_argument('-j', '--jobid', action='store', type=str, help='Get job information') parser.add_argument('-z', '--qconsole', action='store_true', help='Use qconsole instead of QX') parser.add_argument('-b', '--backends', action='store_true', help='Show backends information') parser.add_argument('-m', '--disable-multishotopt', action='store_true', help='Disable multi-shot optimization') parser.add_argument('-c', '--credits', action='store_true', help='Show my credits') parser.add_argument('-v', '--verbose', action='store_true', help='verbose') args = parser.parse_args() if args.verbose: print('options:', args) return args class JobManager: def __init__(self, qconsole=False): site = 'qconsole' if qconsole else 'qx' self._api = IBMQuantumExperience(Qconfig.APItoken[site], Qconfig.config[site]) @staticmethod def read_asm(infilename): with open(infilename) as infile: return ''.join(infile.readlines()) def run_qasm(self, qasm, device='sim', shots=1000, verbose=True, interval=2, multishotopt=True): qasms = [{'qasm': qasm}] devices = {'sim': 'ibmq_qasm_simulator', 'qx2': 'ibmqx2', 'qx4': 'ibmqx4', 'qx5': 'ibmqx5'} if device in devices: dev = devices[device] else: dev = device hpc = None if dev == 'ibmq_qasm_simulator': hpc = {'multishot_optimization': multishotopt, 'omp_num_threads': 1} out = self._api.run_job(job=qasms, backend=dev, shots=shots, max_credits=5, hpc=hpc) if 'error' in out: print(out['error']['message']) return None jobid = out['id'] print('job id:', jobid) results = self._api.get_job(jobid) if verbose: print(results['status']) while results['status'] == 'RUNNING': time.sleep(interval) results = self._api.get_job(jobid) if verbose: print(results['status']) return results def get_job_list(self, n_jobs): jobs = self._api.get_jobs(limit=n_jobs) tab = {} for v in jobs: job_id = v['id'] status = v['status'] cdate = v['creationDate'] tab[cdate] = (status, job_id) for cdate, v in sorted(tab.items()): print('{}\t{}\t{}'.format(cdate, *v)) def get_job(self, job_id): result = self._api.get_job(job_id) print(json.dumps(result, sort_keys=True, indent=2)) def get_credits(self): print('credits :', self._api.get_my_credits()) def available_backends(self, verbose=False): tab = {} for e in self._api.available_backends() + self._api.available_backend_simulators(): status = self._api.backend_status(e['name']) try: tab[e['name']] = [':', str(e['nQubits']) + ' qubits,', e['description'], status] except KeyError: tab[e['name']] = [':', status] if verbose: tab[e['name']].append(e) for k, v in sorted(tab.items()): print(k, *v) def main(): args = options() jm = JobManager(args.qconsole) if args.backends: jm.available_backends(args.verbose) if args.credits: jm.get_credits() if args.qasm: qasm = jm.read_asm(args.qasm) interval = max(1, args.interval) results = jm.run_qasm(qasm=qasm, device=args.device, shots=args.shots, interval=interval, multishotopt=not args.disable_multishotopt) print(json.dumps(results, indent=2, sort_keys=True)) elif args.jobid: jm.get_job(args.jobid) elif args.job_list > 0: jm.get_job_list(args.job_list) if __name__ == '__main__': main()
39.046358
116
0.608887
2,503
0.424525
0
0
131
0.022218
0
0
2,064
0.350068
72118299f37a0a55a9f0a207024fcdd8ae01fcd7
445
py
Python
alembic/versions/175f5441bd46_adding_usrname_column.py
thiere18/fastapi-boilerplate
6760e0e49caa915563d44897262d493b012207c0
[ "MIT" ]
5
2021-12-10T17:35:31.000Z
2021-12-30T18:36:23.000Z
alembic/versions/175f5441bd46_adding_usrname_column.py
thiere18/fastapi-boilerplate
6760e0e49caa915563d44897262d493b012207c0
[ "MIT" ]
1
2021-11-21T13:59:03.000Z
2021-11-21T13:59:03.000Z
alembic/versions/175f5441bd46_adding_usrname_column.py
thiere18/fastapi-boilerplate
6760e0e49caa915563d44897262d493b012207c0
[ "MIT" ]
1
2021-12-07T14:08:12.000Z
2021-12-07T14:08:12.000Z
"""adding usrname column Revision ID: 175f5441bd46 Revises: 186abcf43cae Create Date: 2021-11-20 22:54:04.157131 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '175f5441bd46' down_revision = '186abcf43cae' branch_labels = None depends_on = None def upgrade(): op.add_column('users', sa.Column('username', sa.String(255),nullable=False) ) pass def downgrade(): pass
16.481481
79
0.72809
0
0
0
0
0
0
0
0
203
0.45618
7211ad9fb739bb9a8cf35bb0752773293df5ab6b
2,356
py
Python
api/teams/models.py
wepickheroes/wepickheroes.github.io
032c2a75ef058aaceb795ce552c52fbcc4cdbba3
[ "MIT" ]
3
2018-02-15T20:04:23.000Z
2018-09-29T18:13:55.000Z
api/teams/models.py
wepickheroes/wepickheroes.github.io
032c2a75ef058aaceb795ce552c52fbcc4cdbba3
[ "MIT" ]
5
2018-01-31T02:01:15.000Z
2018-05-11T04:07:32.000Z
api/teams/models.py
prattl/wepickheroes
032c2a75ef058aaceb795ce552c52fbcc4cdbba3
[ "MIT" ]
null
null
null
from django.conf import settings from django.contrib.auth import get_user_model from django.db import models from nucleus.models import ( AbstractBaseModel, EmailRecord, TeamMember, ) User = get_user_model() class Team(AbstractBaseModel): name = models.CharField(max_length=255) logo_url = models.CharField(max_length=255, null=True, blank=True) players = models.ManyToManyField(User, through='nucleus.TeamMember', related_name='teams') captain = models.ForeignKey(User, null=True, blank=True, related_name='teams_captain_of', on_delete=models.SET_NULL) creator = models.ForeignKey(User, null=True, blank=True, related_name='teams_created', on_delete=models.SET_NULL) def save(self, *args, **kwargs): adding = self._state.adding super().save(*args, **kwargs) if adding: if self.captain: TeamMember.objects.create(team=self, player=self.captain) elif self.creator: TeamMember.objects.create(team=self, player=self.creator) def __str__(self): return self.name INVITE_TEMPLATE = """Hello, You've been invited to join a team on push.gg. Click the link below to sign up: {signup_link} - Push League """ class TeamInvite(AbstractBaseModel): team = models.ForeignKey('teams.Team', on_delete=models.CASCADE) player_email = models.EmailField() player = models.ForeignKey(User, null=True, blank=True, on_delete=models.SET_NULL) def save(self, *args, **kwargs): try: previous_self = TeamInvite.objects.get(pk=self.pk) except TeamInvite.DoesNotExist: previous_self = None new_instance = not previous_self super().save(*args, **kwargs) if new_instance: self.send_email() def send_email(self): subject = "You have been invited to a team on push.gg" email_body = INVITE_TEMPLATE.format( signup_link="", ) self.player.email_user( "You have been invited to a team on push.gg", email_body, ) EmailRecord.objects.create( to=self.player_email, from_address=settings.DEFAULT_FROM_EMAIL, subject=subject, text_content=email_body )
29.45
94
0.639219
1,983
0.841681
0
0
0
0
0
0
286
0.121392
7211e7dcde6526670f3ae011a8fd15606f93b81e
1,826
py
Python
tables_io/lazy_modules.py
LSSTDESC/tables_io
1c2f119c928d05d237b1c8509e340d29650ceb8b
[ "MIT" ]
1
2021-08-13T15:41:58.000Z
2021-08-13T15:41:58.000Z
tables_io/lazy_modules.py
LSSTDESC/tables_io
1c2f119c928d05d237b1c8509e340d29650ceb8b
[ "MIT" ]
18
2021-08-12T00:09:36.000Z
2022-02-24T21:11:18.000Z
tables_io/lazy_modules.py
LSSTDESC/tables_io
1c2f119c928d05d237b1c8509e340d29650ceb8b
[ "MIT" ]
null
null
null
""" Lazy loading modules """ import sys import importlib.util class DeferredModuleError: """ Class to throw an error if you try to use a modules that wasn't loaded """ def __init__(self, moduleName): self._moduleName = moduleName @property def moduleName(self): """ Return the name of the module this is associated to """ return self._moduleName def __getattr__(self, item): raise ImportError("Module %s was not loaded, so call to %s.%s fails" % (self.moduleName, self.moduleName, item)) def lazyImport(modulename): """ This will allow us to lazy import various modules Parameters ---------- modulename : `str` The name of the module in question Returns ------- module : `importlib.LazyModule` A lazy loader for the module in question """ try: return sys.modules[modulename] except KeyError: spec = importlib.util.find_spec(modulename) if spec is None: print("Can't find module %s" % modulename) return DeferredModuleError(modulename) module = importlib.util.module_from_spec(spec) loader = importlib.util.LazyLoader(spec.loader) # Make module with proper locking and get it inserted into sys.modules. loader.exec_module(module) try: _ = dir(module) except ValueError: pass return module tables = lazyImport('tables') apTable = lazyImport('astropy.table') fits = lazyImport('astropy.io.fits') h5py = lazyImport('h5py') pd = lazyImport('pandas') pq = lazyImport('pyarrow.parquet') HAS_TABLES = tables is not None HAS_PQ = pq is not None HAS_FITS = fits is not None HAS_ASTROPY = apTable is not None HAS_HDF5 = h5py is not None HAS_PANDAS = pd is not None
26.852941
82
0.645126
506
0.277108
0
0
135
0.073932
0
0
647
0.354326
721392272e51a8013f6d83d05f9c457dc8ce2f53
4,811
py
Python
print_results.py
MicImbriani/Keras-PRBX
ab9dd8196e6f184336f5b30715635670d3586136
[ "CC0-1.0" ]
1
2021-09-18T12:42:28.000Z
2021-09-18T12:42:28.000Z
print_results.py
MicImbriani/SkinLesion-Segm-Classif-UNet-FocusNet-ResNet50
ab9dd8196e6f184336f5b30715635670d3586136
[ "CC0-1.0" ]
null
null
null
print_results.py
MicImbriani/SkinLesion-Segm-Classif-UNet-FocusNet-ResNet50
ab9dd8196e6f184336f5b30715635670d3586136
[ "CC0-1.0" ]
null
null
null
import numpy as np from keras.optimizers import Adam, SGD from tensorflow.keras.metrics import AUC import metrics from networks.unet_nn import unet from networks.unet_res_se_nn import unet_res_se from networks.focus import get_focusnetAlpha from networks.resnet import get_res from data_processing.generate_new_dataset import generate_targets from tensorflow.keras.applications.resnet50 import preprocess_input ########### SEGMENTATION ########### # U-Net model = unet(batch_norm=False) model.load_weights("/var/tmp/mi714/NEW/models/UNET/unet10/unet10_weights.h5") # U-Net BatchNorm # model = unet(batch_norm=True) # model.load_weights("/var/tmp/mi714/NEW/models/UNET_BN/unet_bn10/unet_bn10_weights.h5") # U-Net Res SE # model = unet_res_se() # model.load_weights("/var/tmp/mi714/NEW/models/UNET_RES_SE/unet_res_se10/unet_res_se10_weights.h5") #Focusnet # model = get_focusnetAlpha() # model.load_weights("/var/tmp/mi714/NEW/models/FOCUS/focusnet10/focusnet10_weights.h5") ########### CLASSIFICATION ########### # model = get_res() # Original # model.load_weights("/var/tmp/mi714/NEW/models/RESNETS/RESNET_OG/resnet_og10/resnet_og10_weights.h5") # U-Net # model.load_weights("/var/tmp/mi714/NEW/models/RESNETS/RESNET_UNET_BN/resnet_unet10/resnet_unet10_weights.h5") # U-Net BatchNorm # model.load_weights("/var/tmp/mi714/NEW/models/RESNETS/RESNET_UNET_BN/resnet_unet_bn10/resnet_unet_bn10_weights.h5") # Res SE U-Net # model.load_weights("/var/tmp/mi714/NEW/models/RESNETS/RESNET_UNET_RES_SE/resnet_unet_res_se10/resnet_unet_res_se10_weights.h5") # FocusNet # model.load_weights("/var/tmp/mi714/NEW/models/RESNETS/RESNET_FOCUSNET/resnet_focusnet7/resnet_focusnet7_weights.h5") # Data, Masks & Classification target labels # trainData = np.load('/var/tmp/mi714/test_new_npy2/data.npy') # valData = np.load('/var/tmp/mi714/test_new_npy2/dataval.npy') testData = np.load('/var/tmp/mi714/NEW/npy_dataset/datatest.npy') # Segmentation masks # trainMask = np.load('/var/tmp/mi714/test_new_npy2/dataMask.npy') # valMask = np.load('/var/tmp/mi714/test_new_npy2/dataMaskval.npy') testMask = np.load('/var/tmp/mi714/NEW/npy_dataset/dataMasktest.npy') ########### SEGMENTATION ########### X = testData y = testMask X = X.astype('float32') y /= 255. # scale masks to [0, 1] my_adam = Adam(lr=0.00001, beta_1=0.9, beta_2=0.999, epsilon=1e-07) model.compile(optimizer=my_adam, loss=metrics.focal_loss, metrics=[metrics.dice_coef_loss, metrics.jaccard_coef_loss, metrics.true_positive, metrics.true_negative, ]) score = model.evaluate(X, y, verbose=1) dice_coef_loss = score[1] jac_indx_loss = score[2] true_positive = score[3] true_negative = score[4] print(f""" RESULTS: Dice Coefficient Loss: {dice_coef_loss} Jaccard Index Loss: {jac_indx_loss} True Positive: {true_positive} True Negative: {true_negative} """) ########### CLASSIFICATION ########### # # Classification data # # x_train = np.concatenate((trainData,)*3, axis=-1) # # x_train = preprocess_input(x_train) # # x_val = np.concatenate((valData,)*3, axis=-1) # # x_val = preprocess_input(x_val) # x_test = np.concatenate((testData,)*3, axis=-1) # x_test = preprocess_input(x_test) # # Classification target labels # path = "/var/tmp/mi714/NEW/aug_dataset/" # # y_train = generate_targets(path + "ISIC-2017_Training_Data", # # path + "ISIC-2017_Training_Part3_GroundTruth.csv") # # y_val = generate_targets(path + "ISIC-2017_Validation_Data", # # path + "ISIC-2017_Validation_Part3_GroundTruth.csv") # y_test = generate_targets(path + "ISIC-2017_Test_v2_Data", # path + "ISIC-2017_Test_v2_Part3_GroundTruth.csv") # X = x_test # y = y_test # my_adam = Adam(lr=0.00001, beta_1=0.9, beta_2=0.999, epsilon=1e-07) # # Compile model and print summary # rocauc = AUC(num_thresholds=200, # curve="ROC", # summation_method="interpolation", # name=None, # dtype=None, # thresholds=None, # multi_label=False, # label_weights=None, # ) # model.compile(loss='categorical_crossentropy', # optimizer=my_adam, # metrics=[metrics.sensitivity, # metrics.specificity, # rocauc, # 'acc' # ]) # score = model.evaluate(X, y, verbose=1) # binary_ce = score[0] # sensitivity = score[1] # specificity = score[2] # rocauc = score[3] # acc = score[4] # print(f""" # RESULTS: # Binary Cross-Entropy Loss: {binary_ce} # Sensitivity: {sensitivity} # Specificity: {specificity} # AUC ROC: {rocauc} # Accuracy: {acc} # """)
29.335366
129
0.675327
0
0
0
0
0
0
0
0
3,616
0.751611
72140b20f916fb997edbec8a00bb1402df3614ca
9,466
py
Python
game.py
distortedsignal/bohnanza
dfbcfafbdd07cb924cbbc2adc36db7e51673e546
[ "Apache-2.0" ]
null
null
null
game.py
distortedsignal/bohnanza
dfbcfafbdd07cb924cbbc2adc36db7e51673e546
[ "Apache-2.0" ]
null
null
null
game.py
distortedsignal/bohnanza
dfbcfafbdd07cb924cbbc2adc36db7e51673e546
[ "Apache-2.0" ]
null
null
null
""" An implementation of Bohnanza @author: David Kelley, 2018 """ import random from collections import defaultdict class Card: """Card Object Name and point thresholds are the only properties. The point thresholds are organized the way they are on the card - to get 1 point, you need th number of cards listed first in the point_thresholds, 2 for the 2nd, ... """ types = {'garden':[2, 2, 3], 'red': [2, 3, 4, 5], 'black-eyed': [2, 4, 5, 6], 'soy': [2, 4, 6, 7], 'green': [3, 5, 6, 7], 'stink': [3, 5, 7, 8], 'chili': [3, 6, 8, 9], 'blue': [4, 6, 8, 10]} def __init__(self,name): self.name = name self.point_thresholds = self.types[self.name] def __repr__(self): return self.name def __eq__(self, card2): return self.name == card2.name class Deck: types = {'garden': 6, 'red': 8, 'black-eyed': 10, 'soy': 12, 'green': 14, 'stink': 16, 'chili': 18, 'blue': 20} def __init__(self): cards = [Card(name) for name in self.types.keys() for i in range(0, self.types[name]) ] self.draw_order = random.sample(cards, len(cards)) self.discard_order = [] self.completed_rounds = 0 def __repr__(self): str_out = ("Deck with:\n Draw pile: " + str(len(self.draw_order)) + " cards\n Discard pile: " + str(len(self.discard_order)) + " cards\n") return str_out def draw(self, nCards): """Get nCards from the deck If there are no cards left, you get only as many as are available """ out = [] for iC in range(nCards): out.append(self.draw_single()) return out def draw_single(self): """Get a single card from the deeck""" if len(self.draw_order) == 0: # Shuffle the discard pile if the draw pile is empty self.draw_order = random.sample( self.discard_order, len(self.discard_order)) self.discard_order = [] self.completed_rounds += 1 if len(self.draw_order) == 0: return [] else: return self.draw_order.pop(0) def discard(self, c): if isinstance(c, list): for iCard in c: self.discard_order.append(iCard) else: self.discard_order.append(c) class Player: """Generic player class. Should be subtyped later for new strategies. Each player type must implement the following methods: plant: takes an array of cards and plants them """ def __init__(self, seat, strat): self.hand = [] self.fields = [[], []] self.points = 0 self.point_discards = [] self.seat = seat self.strategy = strat def __repr__(self): names = [] for iField in range(2): if len(self.fields[iField]) == 0: names.append("[Empty]") else: names.append(str(self.fields[iField][0]) + \ "(" + str(len(self.fields[iField])) + ")") return ("Player " + str(self.seat+1) + ".\nHand: " + str(self.hand) + "\nField 1: " + names[0] + "\nField 2: " + names[1] + "\n") def plant_from_hand(self, game_state): """Get strategy's choice and execute""" if len(self.hand) == 0: return field_to_plant, cards = self.strategy.plant_from_hand(self) for (iField, iCard) in zip(field_to_plant, cards): self.plant_field(iField, iCard, game_state) self.hand.pop(0) def plant_from_draw(self, cards, game_state): """Get strategy's choice and execute""" field_to_plant, cards = \ self.strategy.plant_from_trade(self, cards) for (iField, iCard) in zip(field_to_plant, cards): self.plant_field(iField, iCard, game_state) def plant_field(self, field_num, card, game_state): """Put card down on field, harvest if neccessary""" if len(self.fields[field_num]) > 0 and \ card != self.fields[field_num][0]: self.harvest_field(field_num, game_state) self.fields[field_num].append(card) def harvest_field(self, field_num, game_state): """Get points, discard cards to correct place""" nBeans = len(self.fields[field_num]) if nBeans == 0: return [] nPoints = sum([i <= nBeans for i in self.fields[field_num][0].point_thresholds]) self.points += nPoints for_discard = self.fields[field_num][0:(nBeans-nPoints)] for_points = self.fields[field_num][(nBeans-nPoints):] if len(for_discard) + len(for_points) != nBeans: print('error') raise AssertionError("Improper harvest.") # Handle cards from field game_state._deck.discard(for_discard) self.point_discards.extend(for_points) # Empty the field self.fields[field_num] = [] class Game: def __init__(self, player_strats): self._deck = Deck() self._players = [Player(i, player_strats[i]) for i in range(len(player_strats))] self.deal_game(len(self._players)) def __repr__(self): return "Bohnanza game with \n" + str(self._players) + " players." def run(self): active_player = 0 round_number = 1 empty_deck = False while not (self.game_over() or empty_deck): empty_deck = self.turn(active_player) active_player += 1 if active_player >= len(self._players): active_player = 0 round_number += 1 points = [p.points for p in self._players] return points # print("GAME OVER\nPlayer points: " + \ # str([p.points for p in self._players])) def deal_game(self, nPlayers): """Initial game setup""" for iPlayer in range(0,nPlayers): self._players[iPlayer].hand.extend(self._deck.draw(5)) def game_over(self): """The game is over after completing 3 times through the deck""" return len(self._deck.draw_order) == 0 and \ self._deck.completed_rounds >= 2 def turn(self, player_num): """Have a player take a turn""" self.gamestate_is_valid() # Step 1: Plant fron hand self._players[player_num].plant_from_hand(self) self.gamestate_is_valid() # Step 2: Draw new cards & trade faceup_cards = self._deck.draw(2) if (len(faceup_cards) != 2) or any([not card for card in faceup_cards]): self._deck.discard(faceup_cards) return 1 # trade_spec = self._strategy[player_num].trade(faceup_cards) # self.execute_trade(trade_spec) self.gamestate_is_valid(faceup_cards) # Step 3: Plant new cards self._players[player_num].plant_from_draw(faceup_cards, self) self.gamestate_is_valid() # Step 4: Draw new cards new_cards = self._deck.draw(3) if (len(new_cards) != 3) or any([not card for card in new_cards]): self._deck.discard(new_cards) return 1 self._players[player_num].hand.extend(new_cards) self.gamestate_is_valid() def gamestate_is_valid(self, addl_cards=[], throw_exception=False): """ If !throw_exception, returns a boolean of if the game state is valid If throw_exception, throws an exception if the game state is not valid """ original_types = Deck.types current_cards = defaultdict(int) for card in self._deck.draw_order: current_cards[card.name] += 1 for card in self._deck.discard_order: current_cards[card.name] += 1 for card in addl_cards: current_cards[card.name] += 1 for player in self._players: for card in player.hand: current_cards[card.name] += 1 for card in player.point_discards: current_cards[card.name] += 1 for field in player.fields: for card in field: current_cards[card.name] += 1 for key in original_types: if original_types[key] != current_cards[key]: if not throw_exception: return False raise AssertionError("not all cards are present") return True class Strategy: def __init__(self, seat): self.name = "Generic" def __repr__(self): return self.name + " player." def plant_from_hand(self, cards, player): """Return a list of which field to put cards in for the given player """ pass def plant_from_trade(self, cards, player): """Return a list of which field to put cards in for the given player """ pass def trade(self, cards): """Trade with other players. Still working out what the mechanics of this are """ pass
34.421818
88
0.555145
9,299
0.982358
0
0
0
0
0
0
2,132
0.225227
72155749ca290c85d0fa365110369fcce2862271
1,872
py
Python
pytype/tests/test_calls.py
JelleZijlstra/pytype
962a0ebc05bd24dea172381b2bedcc547ba53dd5
[ "Apache-2.0" ]
11
2017-02-12T12:19:50.000Z
2022-03-06T08:56:48.000Z
pytype/tests/test_calls.py
JelleZijlstra/pytype
962a0ebc05bd24dea172381b2bedcc547ba53dd5
[ "Apache-2.0" ]
null
null
null
pytype/tests/test_calls.py
JelleZijlstra/pytype
962a0ebc05bd24dea172381b2bedcc547ba53dd5
[ "Apache-2.0" ]
2
2017-06-27T14:41:57.000Z
2021-12-05T11:27:33.000Z
"""Tests for calling other functions, and the corresponding checks.""" from pytype import utils from pytype.tests import test_inference class CallsTest(test_inference.InferenceTest): """Tests for checking function calls.""" def testOptional(self): with utils.Tempdir() as d: d.create_file("mod.pyi", """ def foo(x: int, y: int = ..., z: int = ...) -> int """) self.assertNoErrors("""\ import mod mod.foo(1) mod.foo(1, 2) mod.foo(1, 2, 3) """, pythonpath=[d.path]) def testMissing(self): with utils.Tempdir() as d: d.create_file("mod.pyi", """ def foo(x, y) -> int """) _, errors = self.InferAndCheck("""\ import mod mod.foo(1) """, pythonpath=[d.path]) self.assertErrorLogIs(errors, [(2, "missing-parameter")]) def testExtraneous(self): with utils.Tempdir() as d: d.create_file("mod.pyi", """ def foo(x, y) -> int """) _, errors = self.InferAndCheck("""\ import mod mod.foo(1, 2, 3) """, pythonpath=[d.path]) self.assertErrorLogIs(errors, [(2, "wrong-arg-count")]) def testMissingKwOnly(self): with utils.Tempdir() as d: d.create_file("mod.pyi", """ def foo(x, y, *, z) -> int """) _, errors = self.InferAndCheck("""\ import mod mod.foo(1, 2) """, pythonpath=[d.path]) self.assertErrorLogIs(errors, [(2, "missing-parameter", r"\bz\b")]) def testExtraKeyword(self): with utils.Tempdir() as d: d.create_file("mod.pyi", """ def foo(x, y) -> int """) _, errors = self.InferAndCheck("""\ import mod mod.foo(1, 2, z=3) """, pythonpath=[d.path]) self.assertErrorLogIs(errors, [(2, "wrong-keyword-args")]) if __name__ == "__main__": test_inference.main()
26.742857
73
0.553953
1,678
0.896368
0
0
0
0
0
0
818
0.436966
7216c0aa91d2cb7e990847e2823233ead4e36ab3
724
py
Python
test/test_learning_00.py
autodrive/NAIST_DeepLearning
ac2c0512c43f71ea7df68567c5e24e689ac18aea
[ "Apache-2.0" ]
1
2018-09-26T01:52:35.000Z
2018-09-26T01:52:35.000Z
test/test_learning_00.py
autodrive/NAIST_DeepLearning
ac2c0512c43f71ea7df68567c5e24e689ac18aea
[ "Apache-2.0" ]
5
2015-12-31T10:56:43.000Z
2018-11-16T08:57:12.000Z
test/test_learning_00.py
autodrive/NAIST_DeepLearning
ac2c0512c43f71ea7df68567c5e24e689ac18aea
[ "Apache-2.0" ]
1
2018-09-26T01:52:37.000Z
2018-09-26T01:52:37.000Z
import unittest import lecture1_code00 as dl from sklearn.datasets.samples_generator import make_blobs class TestDeepLearning(unittest.TestCase): def setUp(self): self.X, self.Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) def tearDown(self): del self.X del self.Y def test_linear_model_00(self): x = [1.0, -1.0] w = [1, 1, 0] result = dl.linear_model(w, x) self.assertAlmostEqual(x[0]*w[0] + x[1]*w[1] + w[2] * 1, result,) x3 = [1.0, -1.0, 1.0] w3 = [1, 2, 1, 0.5] result3 = dl.linear_model(w3, x3) self.assertAlmostEqual(x3[0]*w3[0] + x3[1]*w3[1] + x3[2] * w3[2] + w3[3] * 1.0, result3,)
27.846154
97
0.585635
618
0.853591
0
0
0
0
0
0
0
0
7217f6133fa71477eb286daa69250fadb04142e7
2,389
py
Python
edumediaitem/views_manage.py
shagun30/djambala-2
06f14e3dd237d7ebf535c62172cfe238c3934f4d
[ "BSD-3-Clause" ]
null
null
null
edumediaitem/views_manage.py
shagun30/djambala-2
06f14e3dd237d7ebf535c62172cfe238c3934f4d
[ "BSD-3-Clause" ]
null
null
null
edumediaitem/views_manage.py
shagun30/djambala-2
06f14e3dd237d7ebf535c62172cfe238c3934f4d
[ "BSD-3-Clause" ]
null
null
null
#-*-coding: utf-8 -*- """ /dms/edumediaitem/views_manage.py .. enthaelt den View fuer die Management-Ansicht des Medienpaketes Django content Management System Hans Rauch [email protected] Die Programme des dms-Systems koennen frei genutzt und den spezifischen Beduerfnissen entsprechend angepasst werden. 0.01 11.09.2007 Beginn der Arbeit """ from django.utils.translation import ugettext as _ from dms.queries import get_site_url from dms.roles import require_permission from dms.roles import UserEditPerms from dms.folder.views_manage import do_manage from dms_ext.extension import * # dms-Funktionen ueberschreiben # ----------------------------------------------------- @require_permission('perm_edit_folderish') def edumediaitem_manage(request, item_container): """ Pflegemodus des Medienpakets """ user_perms = UserEditPerms(request.user.username, request.path) add_ons = {} add_ons[0] = [ { 'url' : get_site_url(item_container, 'index.html/add/edufileitem/'), 'info': _(u'Datei')}, { 'url' : get_site_url(item_container, 'index.html/add/edutextitem/'), 'info': _(u'Textdokument')}, { 'url' : get_site_url(item_container, 'index.html/add/edulinkitem/'), 'info': _(u'Verweis')}, ] add_ons[1] = [ { 'url' : get_site_url(item_container, 'index.html/add/imagethumb/?' + \ 'max_width=120&max_height=80'), 'info': _(u'Minibild für Verweise etc.')}, { 'url' : get_site_url(item_container, 'index.html/add/image/'), 'info': _(u'Bild, Foto, Grafik')}, ] add_ons[2] = [ { 'url' : get_site_url(item_container, 'index.html/add/userfolder/'), 'info': _(u'Community-Mitglieder eintragen, löschen, Rechte ändern ...')}, ] add_ons[3] = [] app_name = 'edumediaitem' my_title = _(u'Medienpaket pflegen') my_title_own = _(u'Eigene Ressourcen etc. pflegen') dont = { 'navigation_left_mode': False, } return do_manage(request, item_container, user_perms, add_ons, app_name, my_title, my_title_own, dont)
38.532258
95
0.577648
0
0
0
0
1,654
0.691472
0
0
1,001
0.418478
721813c43ddcb76146e7ed608cacf427665451b5
414
py
Python
crop_yield_prediction/models/deep_gaussian_process/__init__.py
facebookresearch/Context-Aware-Representation-Crop-Yield-Prediction
9c29459e9521303f40d9d6aaa938da0c23ab4ad8
[ "MIT" ]
12
2020-09-17T21:55:18.000Z
2022-01-14T21:05:23.000Z
crop_yield_prediction/models/deep_gaussian_process/__init__.py
hulaba/Context-Aware-Representation-Crop-Yield-Prediction
9c29459e9521303f40d9d6aaa938da0c23ab4ad8
[ "MIT" ]
null
null
null
crop_yield_prediction/models/deep_gaussian_process/__init__.py
hulaba/Context-Aware-Representation-Crop-Yield-Prediction
9c29459e9521303f40d9d6aaa938da0c23ab4ad8
[ "MIT" ]
5
2020-10-10T10:18:14.000Z
2021-12-21T07:36:27.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .feature_engineering import get_features_for_deep_gaussian from .convnet import ConvModel from .rnn import RNNModel __all__ = ['get_features_for_deep_gaussian', 'ConvModel', 'RNNModel']
29.571429
65
0.748792
0
0
0
0
0
0
0
0
247
0.596618
7218bf5a5c0b747c4d1438e666c01d7117d13c58
3,546
py
Python
projector_server/projects/views.py
changyang-liu/Projector
4924400f54e0ce823fd488f9cfd0f7e52d2df55f
[ "MIT" ]
null
null
null
projector_server/projects/views.py
changyang-liu/Projector
4924400f54e0ce823fd488f9cfd0f7e52d2df55f
[ "MIT" ]
2
2021-06-10T19:12:07.000Z
2021-09-22T19:00:50.000Z
projector_server/projects/views.py
CS97-Projector/Projector
4924400f54e0ce823fd488f9cfd0f7e52d2df55f
[ "MIT" ]
null
null
null
from django.http import HttpResponse, JsonResponse, Http404 from django.core.exceptions import PermissionDenied from rest_framework.parsers import JSONParser, FormParser, MultiPartParser from rest_framework.permissions import IsAuthenticatedOrReadOnly from rest_framework import generics from rest_framework.response import Response from projects.models import Project from projects.serializers import ProjectSerializer from projects.permissions import IsOwnerOrReadOnly from django.contrib.auth.models import User class BaseProjectView(generics.ListCreateAPIView): """ View all projects (GET) or create a new project (POST) """ parser_classes = [FormParser, MultiPartParser] permission_classes = [IsAuthenticatedOrReadOnly] queryset = Project.objects.all() serializer_class = ProjectSerializer def perform_create(self, serializer): serializer.save(owner=self.request.user) class DetailedProjectView(generics.RetrieveUpdateDestroyAPIView): """ View a particular project (GET), edit a project (PUT) or delete a project (DELETE) """ parser_classes = [FormParser, MultiPartParser] permission_classes = [IsOwnerOrReadOnly] queryset = Project.objects.all() serializer_class = ProjectSerializer class JoinProjectView(generics.UpdateAPIView): """ Update a particular project's join request list or member list (PATCH) """ permission_classes = [IsAuthenticatedOrReadOnly] queryset = Project.objects.all() serializer_class = ProjectSerializer def update(self, request, *args, **kwargs): project = self.get_object() user = request.data.get('user') updateType = request.data.get('type') userObject = User.objects.get(id__exact=user['id']) if updateType == "Join Request": # Only add user to join request list if not already in it # Users cannot join for each other if request.user not in project.join_requests.all(): project.join_requests.add(request.user) elif updateType == "Cancel Request": # Only project owner or requester can cancel request if request.user != project.owner and request.user != userObject: raise PermissionDenied # Only remove user from join request list if already in it if userObject in project.join_requests.all(): project.join_requests.remove(userObject) elif updateType == "Accept": # Only owner can accept if request.user != project.owner: raise PermissionDenied project.join_requests.remove(userObject) project.members.add(userObject) else: content = {"error": "Invalid update type"} return Response(content, status=400) return super().update(request, *args, **kwargs) class LikesView(generics.UpdateAPIView): """ View for liking a project """ permission_classes = [IsAuthenticatedOrReadOnly] queryset = Project.objects.all() serializer_class = ProjectSerializer def update(self, request, *args, **kwargs): project = self.get_object() if request.user not in project.liked_by.all(): project.liked_by.add(request.user) project.likes = project.likes + 1 project.save() else: content = {"error": "Already liked this project"} return Response(content, status=400) return super().update(request, *args, **kwargs)
38.129032
86
0.683305
3,019
0.851382
0
0
0
0
0
0
636
0.179357
721a5ce052e7d21ea063652b0a161c21042f7f06
1,089
py
Python
tests/test_muduapiclient.py
hanqingliu/mudu-api-python-client
92541df27a518dad5312b39749dfbb8bd471a6b8
[ "Apache-2.0" ]
null
null
null
tests/test_muduapiclient.py
hanqingliu/mudu-api-python-client
92541df27a518dad5312b39749dfbb8bd471a6b8
[ "Apache-2.0" ]
null
null
null
tests/test_muduapiclient.py
hanqingliu/mudu-api-python-client
92541df27a518dad5312b39749dfbb8bd471a6b8
[ "Apache-2.0" ]
null
null
null
import ddt import mock from unittest import TestCase from muduapiclient.client import MuduApiClient, gen_signed_params import time @ddt.ddt class MuduApiClientTests(TestCase): @ddt.unpack @ddt.data( ('ACCESS_KEY', 'SECRET_KEY', {'page':1, 'live_status':2}), ) def test_gen_signed_params(self, ak, sk, kwargs): original_time = time.time time.time = mock.Mock(return_value='1234567890') signed_params = gen_signed_params(ak, sk, kwargs) time.time = original_time self.assertIn('sign', signed_params) self.assertEqual(signed_params['sign'], 'af7470c6f59d051c633401d1fd0b86fd1aa05352') self.assertNotIn('secret_key', signed_params) @ddt.unpack @ddt.data( ('ACCESS_KEY', 'SECRET_KEY', {'page':1, 'live_status':2}), ('507cfcdfe351e13e6f1c8ba87b80969f', 'SECRET_KEY', {'page':1, 'live_status':4}), ) def test_call_live(self, ak, sk, kwargs): api = MuduApiClient(ak, sk) response = api.call('POST', 'live', 'List', **kwargs) self.assertIn('code', response)
33
91
0.662994
947
0.869605
0
0
956
0.87787
0
0
253
0.232323
721b25bd54ec37339248810e92f0fd66777d24b1
586
py
Python
Projectreview/Projectreview/urls.py
bestgunman/Gitwaxingproduct
44c5fdd57aaa87765929e12a828d1cd17cfbbc0d
[ "MIT" ]
1
2017-01-30T07:02:51.000Z
2017-01-30T07:02:51.000Z
Projectreview/Projectreview/urls.py
bestgunman/Gitwaxingproduct
44c5fdd57aaa87765929e12a828d1cd17cfbbc0d
[ "MIT" ]
null
null
null
Projectreview/Projectreview/urls.py
bestgunman/Gitwaxingproduct
44c5fdd57aaa87765929e12a828d1cd17cfbbc0d
[ "MIT" ]
null
null
null
from django.conf.urls import url, include from django.contrib import admin from django.conf import settings from django.conf.urls.static import static from productapp.views import product_list from reviewapp.views import index urlpatterns = [ url(r'^$', index, name='index'), url(r'^admin/', admin.site.urls), url(r'^review/', include('reviewapp.urls')), url(r'^product/', include('productapp.urls')), url(r'^account/', include('accountapp.urls')), ] if settings.DEBUG: urlpatterns += static( settings.MEDIA_URL, document_root=settings.MEDIA_ROOT )
30.842105
61
0.711604
0
0
0
0
0
0
0
0
107
0.182594
721e9bba1e7ea66054b20c27b7571b65855aeaa1
5,970
py
Python
ttt.py
YukkuriC/PyTicTacToe
c38b330faeb956d82b401e5863c4982f725e5dab
[ "MIT" ]
null
null
null
ttt.py
YukkuriC/PyTicTacToe
c38b330faeb956d82b401e5863c4982f725e5dab
[ "MIT" ]
null
null
null
ttt.py
YukkuriC/PyTicTacToe
c38b330faeb956d82b401e5863c4982f725e5dab
[ "MIT" ]
null
null
null
__doc__ = ''' 井字棋基础设施 包含棋盘类与单局游戏运行内核 ''' from threading import Thread from time import process_time if 'enums': OK = 0 # 游戏继续 ENDGAME = 1 # 形成三连 DRAW = 2 # 棋盘已满平局 INVALID = -1 # 非法返回值(类型错误/出界) CONFILCT = -2 # 冲突落子(下于已有棋子位置) ERROR = -3 # 代码报错 TIMEOUT = -4 # 代码超时 class Board: """ 基础棋盘类,用于计算局面情形+发放双方玩家所用局面 使用数字1、2分别代表不同方玩家落子 """ def __init__(self): self.pool = {} # 仅填充1/2的字典 self.history = [] # 落子历史 def get_board(self, plr: int): """ 为指定玩家编号返回其局面字典 字典键为2长度元组,每位数字(0,1,2)分别代表行号与列号 返回对象中包含3*3棋盘位置,对应值均为字符串,含义如下: "S": 我方落子 "F": 对方落子 "E": 空 """ res = {} for x in range(3): for y in range(3): if (x, y) in self.pool: res[x, y] = 'S' if self.pool[x, y] == plr else 'F' else: res[x, y] = 'E' return res def drop(self, plr, pos): """ 指定玩家编号plr在指定位置pos落子 返回落子结果 """ if self._drop_data_check(pos): # 非法落子检查 self.history.append('INVALID') return INVALID self.history.append(pos) if pos in self.pool: # 冲突落子检查 return CONFILCT self.pool[pos] = plr # 落子,检查游戏结束状态 return self._check_endgame() def _drop_data_check(self, pos): """ 检验落子位置对象是否符合要求 要求: * 必须为列表或元组 * 长度必须为2 * 每位均为int,取值只可为0,1,2 """ if not isinstance(pos, (list, tuple)): return INVALID if len(pos) != 2: return INVALID for i in pos: if not (isinstance(i, int) and 0 <= i <= 2): return INVALID return OK def _check_endgame(self): """ 检查游戏状态是否结束 """ for x in range(3): if self._3_equal(self.pool.get((x, i)) for i in range(3)): # axis 0 return ENDGAME if self._3_equal(self.pool.get((i, x)) for i in range(3)): # axis 1 return ENDGAME if self._3_equal(self.pool.get((i, i)) for i in range(3)): # 正对角线 return ENDGAME if self._3_equal(self.pool.get((i, 2 - i)) for i in range(3)): # 反对角线 return ENDGAME return OK # 不执行平局判断 def _3_equal(self, row): """ 辅助函数:检查一行3数(非空)相等状态 """ row = iter(row) n1 = next(row) if not n1: return False for n in row: if n != n1: return False return True class Game: """ 井字棋游戏对象 接收运行双方代码并收集结果 codes: 双方代码模块,其中包含play函数,可接收Board.get_board结果作为参数并返回落子位置 names: 双方代码模块名称 timeout: 时间限制 """ def __init__(self, codes, names=['code1', 'code2'], timeout=10): self.codes = codes self.names = names self.timeout = timeout @staticmethod def _stringfy_error(e): return '%s: %s' % ( type(e).__name__, e, ) @staticmethod def _thread_wrap(code, board, thr_output: dict): """ 线程内运行代码,输出结果 输入: code: 待运行模块 board: 当前局面 output: 容纳返回值的字典 "result": 模块play函数运行结果 "error": 捕捉的运行异常 "dt": 运行用时 """ res = { "result": None, "error": None, } try: t1 = process_time() output = code.play(board) t2 = process_time() res['result'] = output except Exception as e: t2 = process_time() res['error'] = Game._stringfy_error(e) res['dt'] = t2 - t1 thr_output.update(res) def _get_result(self, winner, reason, extra=None): """ 构造比赛结果字典 "orders": 该局落子顺序 "winner": 胜者 0 - 先手胜 1 - 后手胜 None - 平局 "reason": 终局原因序号 "extra": 额外描述 "timeouts": 双方使用时间历史 """ return { 'names': self.names, 'orders': self.board.history, 'winner': winner, 'reason': reason, 'extra': extra, 'timeouts': self.timeout_history, } def match(self): """ 运行一场比赛 返回值: 比赛结果字典 """ self.board = Board() timeouts = [self.timeout] * 2 self.timeout_history = [] for nround in range(9): # 构造当局进程 plr_idx = nround % 2 thread_output = {} frame = self.board.get_board(plr_idx + 1) thr = Thread(target=self._thread_wrap, args=(self.codes[plr_idx], frame, thread_output)) # 限时运行 thr.start() thr.join(timeouts[plr_idx]) # 判断线程死循环 if thr.is_alive(): return self._get_result(1 - plr_idx, TIMEOUT, '死循环') # 计时统计,判断超时 timeouts[plr_idx] -= thread_output['dt'] if timeouts[plr_idx] < 0: return self._get_result(1 - plr_idx, TIMEOUT) self.timeout_history.append(timeouts.copy()) # 判断报错 if thread_output['error']: return self._get_result( 1 - plr_idx, ERROR, thread_output['error'], ) # 落子判断 res = self.board.drop(plr_idx + 1, thread_output['result']) if res == OK: # 继续循环 continue return self._get_result( plr_idx if res == ENDGAME else 1 - plr_idx, res, ) return self._get_result(None, DRAW) # 平局 if __name__ == '__main__': import codes.dumb_ordered as plr1, codes.dumb_random as plr2 game = Game([plr1, plr2]) print(game.match())
25.512821
78
0.469514
6,440
0.915553
0
0
931
0.132357
0
0
2,595
0.368922
721ec82c86e8517afd6fcd583254496b9ad3500f
400
py
Python
cursoemvideo/ex008.py
rafaelsantosmg/cev_python3
2fa2561b46409bebbd6a2020c60aa8f946fe6244
[ "MIT" ]
1
2021-03-22T03:08:41.000Z
2021-03-22T03:08:41.000Z
cursoemvideo/ex008.py
rafaelsantosmg/cev_python3
2fa2561b46409bebbd6a2020c60aa8f946fe6244
[ "MIT" ]
null
null
null
cursoemvideo/ex008.py
rafaelsantosmg/cev_python3
2fa2561b46409bebbd6a2020c60aa8f946fe6244
[ "MIT" ]
null
null
null
"""Escreva um programa que leia o valor em metros e o exiba convertido em centímetros e milímetros""" from utilidadescev.dado import leia_real n = leia_real('Digite a metragem: ') km = n / 1000 hec = n / 100 dam = n / 10 dec = n * 10 cent = n * 100 mil = n * 1000 print(f'{km:.3f}km') print(f'{hec:.2f}hm') print(f'{dam:.1f}dam') print(f'{dec:.0f}dm') print(f'{cent:.0f}cm ') print(f'{mil:.0f}mm')
22.222222
101
0.6525
0
0
0
0
0
0
0
0
210
0.522388
72207e110b7ba0434449b56ad831fee21813b6dc
1,015
py
Python
Minor Project/Weather GUI/pyowm_helper.py
ComputerScientist-01/Technocolabs-Internship-Project
3675cc6b9a40a885a29b105ec9b29945a1e4620c
[ "MIT" ]
4
2020-07-08T11:32:29.000Z
2021-08-05T02:54:02.000Z
Minor Project/Weather GUI/pyowm_helper.py
ComputerScientist-01/Technocolabs-Internship-Project
3675cc6b9a40a885a29b105ec9b29945a1e4620c
[ "MIT" ]
null
null
null
Minor Project/Weather GUI/pyowm_helper.py
ComputerScientist-01/Technocolabs-Internship-Project
3675cc6b9a40a885a29b105ec9b29945a1e4620c
[ "MIT" ]
null
null
null
import os import pyowm from datetime import datetime from timezone_conversion import gmt_to_eastern #API_KEY = os.environ['API_KEY'] owm=pyowm.OWM('0833f103dc7c2924da06db624f74565c') mgr=owm.weather_manager() def get_temperature(): days = [] dates = [] temp_min = [] temp_max = [] forecaster = mgr.forecast_at_place('New York, US', '3h') forecast=forecaster.forecast for weather in forecast: day = gmt_to_eastern(weather.reference_time()) date = day.date() if date not in dates: dates.append(date) temp_min.append(None) temp_max.append(None) days.append(date) temperature = weather.temperature('fahrenheit')['temp'] if not temp_min[-1] or temperature < temp_min[-1]: temp_min[-1] = temperature if not temp_max[-1] or temperature > temp_max[-1]: temp_max[-1] = temperature return(days, temp_min, temp_max) if __name__ == '__main__': get_temperature()
28.194444
63
0.639409
0
0
0
0
0
0
0
0
112
0.110345
7221d6876591c7703ef947738f8354cdcf1efa5d
82,647
py
Python
MCDR.py
Qltan/MCDR
ad8abfafcbe19dd50f31fc4122faf3eb633be9d5
[ "MIT" ]
null
null
null
MCDR.py
Qltan/MCDR
ad8abfafcbe19dd50f31fc4122faf3eb633be9d5
[ "MIT" ]
null
null
null
MCDR.py
Qltan/MCDR
ad8abfafcbe19dd50f31fc4122faf3eb633be9d5
[ "MIT" ]
null
null
null
import copy import datetime import json import math import multiprocessing import numpy as np import os import pandas as pd import pydotplus import random import re import time from math import * from sklearn import metrics _CLUSTER_DATA = './bike_sharing_data/mydata' RATEDATA = './bike_sharing_data/mydata/' rateName = 'rental_return_rate_cluster_6_month_678_timedelta_5.json' # STATION_STATUS = './station_status_by_id' def getMonthCluster(): cluster = '6' month = 678 return month, cluster def getCluster(): with open(os.path.join(_CLUSTER_DATA, 'clusters.json'), 'r') as f: clusters = json.load(f) del clusters['5']['402'] del clusters['5']['491'] return clusters def getRateData(): with open(os.path.join(RATEDATA, rateName), 'r') as f: rateData = json.load(f) return rateData def getPositionAndStations_id(): clusters = getCluster() month, cluster = getMonthCluster() use_cluster = clusters[cluster] stations_id = [] position = {} for key, values in use_cluster.items(): stations_id.append(key) position[key] = values['position'] return position, stations_id def getInitialInfo(): month, cluster = getMonthCluster() pattern2 = re.compile('^cluster_[0-9]+_') filelist2 = os.listdir(_CLUSTER_DATA) for filename in filelist2: if filename == 'cluster_6_month_678_initialStationInfo.json': cluster1 = filename.split('_')[1] month1 = filename.split('_')[3] if cluster1 == str(cluster) and month1 == str(month): print(filename) with open(os.path.join(_CLUSTER_DATA, filename), 'r') as f: initialInfo = json.load(f) return initialInfo def haversine_array(lat1, lng1, lat2, lng2): lat1, lng1, lat2, lng2 = map(np.radians, (lat1, lng1, lat2, lng2)) # print lat1, lng1, lat2, lng2 a = lat1 - lat2 b = lng1 - lng2 s = 2 * asin(sqrt(pow(sin(a / 2), 2) + cos(lat1) * cos(lat2) * pow(sin(b / 2), 2))) earth_radius = 6378.137 s = s * earth_radius if s < 0: return round(-s, 3) else: return round(s, 3) return h def manhattan_distance(lat1, lng1, lat2, lng2): a = haversine_array(lat1, lng1, lat1, lng2) b = haversine_array(lat1, lng1, lat2, lng1) return a + b def getNeighbor(stations_id, position): neighbor = {} maxDis = 0 for station_id1 in stations_id: nei = [] for station_id2 in stations_id: d = manhattan_distance(position[str(station_id1)][0], position[str(station_id1)][1], position[str(station_id2)][0], position[str(station_id2)][1]) if 0.6 > d > 0: nei.append(str(station_id2)) if d > maxDis: maxDis = d neighbor[str(station_id1)] = nei return neighbor def getOlderNeighbor(stations_id, position): neighbor = {} maxDis = 0 for station_id1 in stations_id: nei = [] for station_id2 in stations_id: d = manhattan_distance(position[str(station_id1)][0], position[str(station_id1)][1], position[str(station_id2)][0], position[str(station_id2)][1]) if 0.9 > d > 0: nei.append(str(station_id2)) if d > maxDis: maxDis = d neighbor[str(station_id1)] = nei return neighbor def getMonthDayAndHour(): # month, day and hour used in this experiment mon = 8 day = 99 hour = 7 return mon, day, hour def getStation_status(): monDay = {'6': 30, '7': 31, '8': 31} mon, day, hour = getMonthDayAndHour() initialByDay = {} totalDocksDict = {} initialInfo = getInitialInfo() position, stations_id = getPositionAndStations_id() for station_id, values in initialInfo.items(): totD = values['totalDocks'] totalDocksDict[str(station_id)] = totD for day in range(0, monDay[str(mon)]): sta = {} for station_id, values in initialInfo.items(): inf = values['info'] monInf = inf[str(mon)] sta[str(station_id)] = monInf[day] initialByDay[str(day + 1)] = sta station_status = {} for day in range(0, monDay[str(mon)]): station_status1 = {} for station_id in stations_id: stationInf = initialByDay[str(day + 1)][str(station_id)][str(day + 1)][str(hour)] station_status1[str(station_id)] = stationInf station_status[str(day + 1)] = station_status1 return station_status, totalDocksDict ########################### # MCTS algorithm class BikeSystem(object): def __init__(self, availStations=[]): self.availStations = copy.deepcopy(availStations) def update(self, station_id): self.availStations.remove(str(station_id)) class MCTS(object): def __init__(self, availStations, time=6, max_actions=1000): self.availStations = availStations self.calculation_time = float(time) self.max_actions = max_actions self.confident = 8 self.equivalence = 10000 # calc beta self.max_depth = 1 self.fileCount = 0 def get_action(self, rootStationId, starttime, neighbor, rateData, station_status, totalDocksDict, day, olderNeighbor): # rootStationId: current truck parking station position, stations_id = getPositionAndStations_id() if len(self.availStations) == 1: return self.availStations[0] self.visited_times = {} # key: station_id, value: visited times simulations = 0 begin = time.time() Q = {str(sta_id): -99999 for sta_id in self.availStations} # recalculation Q value balanceBikeNums = {str(sta_id): 0 for sta_id in self.availStations} countmax = 0 count = 0 expandStaSet = set() # self.fileCount = 0 while simulations < self.max_actions + 1: availStations_copy = copy.deepcopy(self.availStations) countmax, count = self.run_simulation(availStations_copy, rootStationId, Q, starttime, balanceBikeNums, neighbor, simulations, expandStaSet, countmax, count, rateData, station_status, totalDocksDict, day, olderNeighbor, position) simulations += 1 # select the station with the maximum Q value maxQ, selected_station_id = self.select_one_station(Q, starttime, rateData, totalDocksDict, station_status, day, rootStationId) print("total simulations=", simulations) print("Time spent in the simulation process:", str(time.time() - begin)) print('Maximum number of access to uct:' + str(countmax)) print('Total number of access to uct:' + str(count)) print('Maximum Q:', maxQ) print('Maximum depth searched:', self.max_depth) return selected_station_id def select_one_station(self, Q, starttime, rateData, totalDocksDict, station_status, day, rootStationId): notInServiceLevalStas = [] t_interval = starttime / 5 mon = 8 hour = 7 month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') for sta in self.availStations: rateDict = rateData[str(sta)] if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] availableBikes = station_status[str(day)][str(sta)]['availableBikes'] availableDocks = station_status[str(day)][str(sta)]['availableDocks'] totalDocks = totalDocksDict[str(sta)] for i in np.arange(0, int(t_interval)): # real-time bikes docks deltaNum = rental_rate_0[i] - return_rate_0[i] if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) realBikes = availableBikes realDocks = availableDocks totalDocks = totalDocksDict[str(sta)] serviceLevel = [] for docks in range(1, int(totalDocks)): availableBikes = int(totalDocks) - docks availableDocks = docks flag = 0 for j in np.arange(int(t_interval), int(t_interval) + 24): if j >= 48: break else: deltaNum = rental_rate_0[j] - return_rate_0[j] if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes <= 1: flag = 1 break availableDocks = float(availableDocks) + deltaNum if availableDocks >= float(totalDocks) - 1: flag = 1 break else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks <= 1: flag = 1 break availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes >= float(totalDocks) - 1: flag = 1 break if flag == 0: serviceLevel.append(int(totalDocks) - int(docks)) if serviceLevel == [] or float(realBikes) < min(serviceLevel) or float(realBikes) > max(serviceLevel): notInServiceLevalStas.append(sta) if not notInServiceLevalStas: maxQ, sta_id = max((Q[str(sta_id)], sta_id) for sta_id in self.availStations) else: maxQ, sta_id = max((Q[str(sta_id)], sta_id) for sta_id in notInServiceLevalStas) if maxQ == -99999: minDis = 10000 print(notInServiceLevalStas) position, stations_id = getPositionAndStations_id() for sta in notInServiceLevalStas: dis = manhattan_distance(position[str(rootStationId)][0], position[str(rootStationId)][1], position[str(sta)][0], position[str(sta)][1]) if dis < minDis: minDis = dis sta_id = sta # maxQ, sta_id = max((Q[str(sta_id)], sta_id) for sta_id in self.availStations) if sta_id == '238': print(Q) print('Q[238]:' + str(Q['238'])) return maxQ, sta_id def run_simulation(self, availStations, rootStationId, Q, starttime, balanceBikeNums, neighbor, simulations, expandStaSet, countmax, count2, rateData, station_status, totalDocksDict, day, olderNeighbor, position): # conduct run_simulation and get a path """ MCTS main process """ visited_times = self.visited_times # availStations = bikeSystem.availStations visited_paths = [] cumulativeDis = [] # The total travel distance of the truck expand = True selectedSta = rootStationId dropNum = 0 pickNum = 0 # simulation count = 0 countRequestFlag = 0 neiStaQ = [] for t in range(1, self.max_actions + 1): lastStation = selectedSta if all(visited_times.get(station_id) for station_id in availStations): # UCB log_total = log(sum(visited_times[str(sta_id)] for sta_id in availStations)) value, sta_id = max(( Q[str(sta_id)] + sqrt(self.confident * log_total / visited_times[str(sta_id)]), sta_id) for sta_id in availStations) selectedSta = sta_id count += 1 count2 += 1 else: availNeighbor = [sta_id for sta_id in neighbor[str(lastStation)] if sta_id in availStations] if len(availNeighbor) and random.random() < 0: selectedSta = random.choice(availNeighbor) else: selectedSta = random.choice(availStations) # bikeSystem.update(selectedSta) availStations.remove(str(selectedSta)) # Expand if expand is True and str(selectedSta) not in visited_times: expand = False visited_times[str(selectedSta)] = 0 expandStaSet.add(str(selectedSta)) if t > self.max_depth: self.max_depth = t visited_paths.append(selectedSta) is_full = not len(availStations) isRequest, endtime, dropNum0, pickNum0, real_bikes, real_docks = self.getRequest(lastStation, selectedSta, Q, starttime, cumulativeDis, rateData, station_status, totalDocksDict, day, position) starttime = endtime if isRequest: availselectedStaNeighbor = [sta_id for sta_id in olderNeighbor[str(selectedSta)] if sta_id in availStations] # neiStaQ = {str(sta):0 for sta in availselectedStaNeighbor} for neiSta in availselectedStaNeighbor: cumulativeDisCopy = copy.deepcopy(cumulativeDis) diss = [] dis = manhattan_distance(position[str(selectedSta)][0], position[str(selectedSta)][1], position[str(neiSta)][0], position[str(neiSta)][1]) # cumulativeDisCopy.append(dis) cumulativeDisCopy.append(dis) v = 7 # 10m/s == 36km/h truck speed t = dis * 1000 / v t_arrive = starttime + round(t / 60) t_interval = round(t_arrive / 5) serviceLevel, real_bikess, real_dockss = self.getServiceLevel(neiSta, t_interval, rateData, station_status, totalDocksDict, day) dropNum = 0 pickNum = 0 if not serviceLevel: # return>>rental pickNum = real_bikes else: minBikes = min(serviceLevel) maxBikes = max(serviceLevel) if minBikes <= real_bikes <= maxBikes: pass else: if real_bikes < minBikes: dropNum = minBikes - real_bikes # TN if real_bikes > maxBikes: pickNum = real_bikes - maxBikes balanceBikeNumss = dropNum + pickNum flag = -1 if dropNum > 0: flag = 0 elif pickNum > 0: flag = 1 neiStaQ.append(self.getScore(cumulativeDisCopy, balanceBikeNumss, real_bikess, real_dockss, flag)) if is_full or isRequest: break if count > countmax: countmax = count # Back-propagation balanceBikeNums[str(selectedSta)] = dropNum0 + pickNum0 flag = -1 if dropNum0 > 0: flag = 0 elif pickNum0 > 0: flag = 1 # if selectedSta=='229': # print('real_docks:'+str(real_docks)) for sta_id in visited_paths: if sta_id not in visited_times: continue visited_times[str(sta_id)] += 1 if isRequest: if not neiStaQ: neiStaQ.append(0) score = self.getScore(cumulativeDis, balanceBikeNums[str(selectedSta)], real_bikes, real_docks, flag) + np.mean(neiStaQ) Q[str(sta_id)] = (abs(Q[str(sta_id)]) * (visited_times[str(sta_id)] - 1) + score) / visited_times[str(sta_id)] Q[str(sta_id)] = round(Q[str(sta_id)], 4) log_dir = './bike_sharing_data/mydata/log/' + str(self.fileCount + 1) if not os.path.exists(log_dir): os.makedirs(log_dir) with open(log_dir + '/' + str(simulations + 1) + '.json', 'w') as f: json.dump(Q, f) return countmax, count2 def getScore(self, cumulativeDis, balanceNums, real_bikes, real_docks, flag): disScore = 0 numScore = 0 score = 0 if sum(cumulativeDis) <= 300: disScore = 10 elif sum(cumulativeDis) <= 600: disScore = 6 elif sum(cumulativeDis) <= 1000: disScore = 4 elif sum(cumulativeDis) <= 1500: disScore = 2 elif sum(cumulativeDis) <= 2000: disScore = 0 else: disScore = -5 # dis = sum(cumulativeDis) # if dis>=3000: # disScore = -10 # elif dis>=2000: # disScore = 20-10*(dis/1000) # elif dis>=0: # disScore = 10-5*(dis/1000) if balanceNums == 0: numScore = 0 elif balanceNums <= 3: numScore = 2 elif balanceNums <= 6: numScore = 4 elif balanceNums <= 10: numScore = 6 else: numScore = 10 # if balanceNums >=10: # numScore = 10 # else: # numScore = balanceNums urgencyScore = 0 if flag == 0 and real_bikes <= 1: urgencyScore = 10 elif flag == 1 and real_docks <= 1: urgencyScore = 10 elif flag == -1: return 0 score = 0.5 * disScore + 0.5 * numScore + urgencyScore return score def getRequest(self, lastStation, selectedSta, Q, starttime, cumulativeDis, rateData, station_status, totalDocksDict, day, position): dis = manhattan_distance(position[str(lastStation)][0], position[str(lastStation)][1], position[str(selectedSta)][0], position[str(selectedSta)][1]) cumulativeDis.append(round(dis * 1000, 3)) noise = abs(np.random.normal(loc=0.0, scale=2)) v = 7 # 8m/s == 36km/h t = dis * 1000 / v # t_arrive = starttime + round(t / 60) t_interval = round(t_arrive / 5) serviceLevel, real_bikes, real_docks = self.getServiceLevel(selectedSta, t_interval, rateData, station_status, totalDocksDict, day) dropNum = 0 pickNum = 0 endtime = t_arrive if not serviceLevel: # return>>rental endtime = t_arrive + real_bikes * 0.3 + noise pickNum = real_bikes return True, endtime, dropNum, pickNum, real_bikes, real_docks else: minBikes = min(serviceLevel) maxBikes = max(serviceLevel) if minBikes <= real_bikes <= maxBikes: endtime = t_arrive + noise return False, endtime, dropNum, pickNum, real_bikes, real_docks else: if real_bikes < minBikes: dropNum = minBikes - real_bikes endtime = t_arrive + dropNum * 0.3 + noise # drop/take time (30s) if real_bikes > maxBikes: pickNum = real_bikes - maxBikes endtime = t_arrive + pickNum * 0.3 + noise return True, endtime, dropNum, pickNum, real_bikes, real_docks def getServiceLevel(self, selectedSta, t_interval, rateData, station_status, totalDocksDict, day): # mon,day,hour = getMonthDayAndHour() mon = 8 hour = 7 rateDict = rateData[str(selectedSta)] t_intervalFlag = 0 if hour == 7: t_intervalFlag = 0 elif hour == 8: t_intervalFlag = 12 elif hour == 9: t_intervalFlag = 24 month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] iniBikes = station_status[str(day)][str(selectedSta)]['availableBikes'] iniDocks = station_status[str(day)][str(selectedSta)]['availableDocks'] totalDocks = totalDocksDict[str(selectedSta)] serviceLevel = [] availableBikes = iniBikes # print('selectedSta:'+str(selectedSta)) availableDocks = iniDocks # print('selectedSta:'+str(selectedSta)) # print('iniBikes:'+str(iniBikes)) for i in np.arange(int(t_intervalFlag), int(t_interval) + int(t_intervalFlag)): # real-time bikes docks deltaNum = 0 deltaNum = rental_rate_0[i] - return_rate_0[i] if float(availableBikes) < 1.0: pass # rental_lost += deltNum if float(availableDocks) < 1.0: pass # return_lost += deltNum if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) realBikes = availableBikes realDocks = availableDocks for docks in range(1, int(totalDocks)): availableBikes = int(totalDocks) - docks availableDocks = docks flag = 0 for j in np.arange(int(t_intervalFlag) + int(t_interval), int(t_interval) + int(t_intervalFlag) + 24): deltaNum = 0 if j >= 48: break else: try: deltaNum = rental_rate_0[j] - return_rate_0[j] except: print('raredata error! j:' + str(j)) if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes <= 1: flag = 1 # print('availableBikes:'+str(availableBikes)) break availableDocks = float(availableDocks) + deltaNum if availableDocks >= float(totalDocks) - 1: flag = 1 # print('availaableDocks:'+str(availableDocks)) break else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks <= 1: # print('availableDocks:'+str(availableDocks)) flag = 1 break availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes >= float(totalDocks) - 1: # print('availableBikes:'+str(availableBikes)) flag = 1 break if flag == 0: serviceLevel.append(int(totalDocks) - int(docks)) return serviceLevel, math.floor(float(realBikes)), math.floor(float(realDocks)) def start(availStations, neighbor, lostNums, visitedPath, cumulativeDis, startStation, balanceNum, mutex, realtimeBikes, day, olderNeighbor): print("start running, the process number is %d" % (os.getpid())) mcts = MCTS(availStations) selectedSta = startStation starttime = 0 rateData = getRateData() station_status, totalDocksDict = getStation_status() # visitedPath = [] # cumulativeDis = [] info = {} visitedPath.append(selectedSta) totalLost = 0 print('start station:' + str(selectedSta)) # lostNums = {} isRequest, starttime, dropNum, pickNum, rentalLost, returnLost, realbikes = getRequest(selectedSta, selectedSta, starttime, cumulativeDis, rateData, station_status, totalDocksDict, day) lostNums[str(selectedSta)] = float(rentalLost) + float(returnLost) totalLost += lostNums[str(selectedSta)] info['time'] = starttime info['realbikes'] = realbikes realtimeBikes[str(selectedSta)] = info if int(dropNum) > 0: balanceNum[str(selectedSta)] = -int(dropNum) elif int(pickNum) > 0: balanceNum[str(selectedSta)] = int(pickNum) else: balanceNum[str(selectedSta)] = 0 if isRequest: print('sub-process:pid=%d' % os.getpid()) print('balance station:' + str(selectedSta) + ' dropNum:' + str(dropNum) + ' pickNum:' + str(pickNum)) print('customer loss:' + str(lostNums[str(selectedSta)])) print('current time:' + str(starttime) + ' min') print('travel distance:') print(cumulativeDis) # bikeSystem.update(selectedSta) availStations.remove(str(selectedSta)) mcts.fileCount = 0 while 1: lastSta = selectedSta info = {} mutex.acquire() if not len(availStations): print('There are no stations need to be balanced') lostNums['totalLost'] = totalLost mutex.release() break selectedSta = mcts.get_action(lastSta, starttime, neighbor, rateData, station_status, totalDocksDict, day, olderNeighbor) mcts.fileCount += 1 print('through station:' + str(selectedSta)) # bikeSystem.update(selectedSta) availStations.remove(str(selectedSta)) mutex.release() visitedPath.append(selectedSta) isRequest, starttime, dropNum, pickNum, rentalLost, returnLost, realbikes = getRequest(lastSta, selectedSta, starttime, cumulativeDis, rateData, station_status, totalDocksDict, day) lostNums[str(selectedSta)] = float(rentalLost) + float(returnLost) totalLost += lostNums[str(selectedSta)] info['time'] = starttime info['realbikes'] = realbikes realtimeBikes[str(selectedSta)] = info if int(dropNum) > 0: balanceNum[str(selectedSta)] = -int(dropNum) elif int(pickNum) > 0: balanceNum[str(selectedSta)] = int(pickNum) else: balanceNum[str(selectedSta)] = 0 if isRequest: print('sub-process:pid=%d' % os.getpid()) print('balance station:' + str(selectedSta) + ' dropNum:' + str(dropNum) + ' pickNum:' + str(pickNum)) print('customer loss:' + str(lostNums[str(selectedSta)])) print('current time:' + str(starttime) + ' min') print('travel distance:') print(cumulativeDis) if not len(availStations): print('There are no stations need to be balanced') lostNums['totalLost'] = totalLost break print('****************************************************') def getRequest(lastStation, selectedSta, starttime, cumulativeDis, rateData, station_status, totalDocksDict, day): position, stations_id = getPositionAndStations_id() dis = manhattan_distance(position[str(lastStation)][0], position[str(lastStation)][1], position[str(selectedSta)][0], position[str(selectedSta)][1]) cumulativeDis.append(round(dis * 1000, 3)) noise = abs(abs(np.random.normal(loc=0.0, scale=2))) v = 7 # 10m/s == 36km/h t = dis * 1000 / v t_arrive = starttime + t // 60 t_interval = t_arrive // 5 dropNum = 0 pickNum = 0 realbikes = 0 serviceLevel, real_bikes, real_docks, rentalLost, returnLost = getServiceLevel(selectedSta, t_interval, rateData, station_status, totalDocksDict, day) if not serviceLevel: # return>>rental print('serviceLevel is null') endtime = t_arrive + real_bikes * 0.3 + noise pickNum = real_bikes realbikes = 0 return True, endtime, dropNum, pickNum, realbikes, returnLost, realbikes else: minBikes = min(serviceLevel) maxBikes = max(serviceLevel) endtime = t_arrive if minBikes <= real_bikes <= maxBikes: endtime = t_arrive + noise if selectedSta == '127': print('dropNum:' + str(dropNum)) print('pickNum:' + str(pickNum)) realbikes = real_bikes return False, endtime, dropNum, pickNum, rentalLost, returnLost, realbikes else: if real_bikes < minBikes: dropNum = minBikes - real_bikes endtime = t_arrive + dropNum * 0.3 + noise if real_bikes > maxBikes: pickNum = real_bikes - maxBikes endtime = t_arrive + pickNum * 0.3 + noise if selectedSta == '127': print('dropNum:' + str(dropNum)) print('pickNum:' + str(pickNum)) if pickNum != 0: realbikes = maxBikes elif dropNum != 0: realbikes = minBikes return True, endtime, dropNum, pickNum, rentalLost, returnLost, realbikes def getServiceLevel(selectedSta, t_interval, rateData, station_status, totalDocksDict, day): # mon,day,hour = getMonthDayAndHour() mon = 8 hour = 7 rateDict = rateData[str(selectedSta)] t_intervalFlag = 0 if hour == 7: t_intervalFlag = 0 elif hour == 8: t_intervalFlag = 12 elif hour == 9: t_intervalFlag = 24 month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] iniBikes = station_status[str(day)][str(selectedSta)]['availableBikes'] iniDocks = station_status[str(day)][str(selectedSta)]['availableDocks'] totalDocks = totalDocksDict[str(selectedSta)] serviceLevel = [] availableBikes = iniBikes availableDocks = iniDocks if selectedSta == '127': print('iniBikes:' + str(availableBikes)) print('iniDocks:' + str(availableDocks)) print('t_interval:' + str(t_interval)) print(totalDocks) rentalLost = 0 returnLost = 0 for i in np.arange(int(t_intervalFlag), int(t_interval) + int(t_intervalFlag)): # real-time bikes docks deltaNum = 0 deltaNum = rental_rate_0[i] - return_rate_0[i] if float(availableBikes) < 1.0 and deltaNum > 0: rentalLost += deltaNum pass # rental_lost += deltNum if float(availableDocks) < 1.0 and deltaNum < 0: returnLost += abs(deltaNum) pass # return_lost += deltNum if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) if selectedSta == '127': print('realBikes:' + str(availableBikes)) print('realDocks:' + str(availableDocks)) realBikes = availableBikes realDocks = availableDocks for docks in range(1, int(totalDocks)): availableBikes = int(totalDocks) - docks availableDocks = docks flag = 0 for j in np.arange(int(t_intervalFlag) + int(t_interval), int(t_interval) + int(t_intervalFlag) + 24): deltaNum = 0 if j >= 48: break else: deltaNum = rental_rate_0[j] - return_rate_0[j] if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes <= 1: flag = 1 # print('availableBikes:'+str(availableBikes)) break availableDocks = float(availableDocks) + deltaNum if availableDocks >= float(totalDocks) - 1: flag = 1 # print('availableDocks:'+str(availableDocks)) break else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks <= 1: # print('availableDocks:'+str(availableDocks)) flag = 1 break availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes >= float(totalDocks) - 1: # print('availableBikes:'+str(availableBikes)) flag = 1 break if flag == 0: serviceLevel.append(int(totalDocks) - int(docks)) if selectedSta == '127': print(serviceLevel) return serviceLevel, math.floor(float(realBikes)), math.floor(float(realDocks)), rentalLost, returnLost def mctsAlgorithm(): experiment_path = './bike_sharing_data/mydata/experiment_result2' # month, day, hour = getMonthDayAndHour() month = 8 hour = 7 day1 = [i for i in range(1, 32)] day2 = [5, 6, 12, 13, 19, 20, 26, 27] # The weekend of August! days = [i for i in day1 if i not in day2] # 11 -> 1 for day in days: position, stations_id = getPositionAndStations_id() availStations = stations_id availStations = multiprocessing.Manager().list(availStations) realtimeBikes = multiprocessing.Manager().dict() lostNums1 = multiprocessing.Manager().dict() visitedPath1 = multiprocessing.Manager().list() cumulativeDis1 = multiprocessing.Manager().list() balanceNum1 = multiprocessing.Manager().dict() lostNums2 = multiprocessing.Manager().dict() visitedPath2 = multiprocessing.Manager().list() cumulativeDis2 = multiprocessing.Manager().list() balanceNum2 = multiprocessing.Manager().dict() neighbor = getNeighbor(stations_id, position) olderNeighbor = getOlderNeighbor(stations_id, position) startStation1 = '237' startStation2 = '369' mutex = multiprocessing.Lock() p1 = multiprocessing.Process(target=start, args=( availStations, neighbor, lostNums1, visitedPath1, cumulativeDis1, startStation1, balanceNum1, mutex, realtimeBikes, day, olderNeighbor)) p2 = multiprocessing.Process(target=start, args=( availStations, neighbor, lostNums2, visitedPath2, cumulativeDis2, startStation2, balanceNum2, mutex, realtimeBikes, day, olderNeighbor)) p1.start() p2.start() p1.join() p2.join() print('customer loss:' + str(lostNums1)) print('through station:' + str(visitedPath1)) print('balanced number:' + str(balanceNum1)) print('travel distance:' + str(cumulativeDis1)) print('customer loss:' + str(lostNums2)) print('through station:' + str(visitedPath2)) print('balanced number:' + str(balanceNum2)) print('travel distance:' + str(cumulativeDis2)) print('pre-process:pid=%d' % os.getpid()) print('real status of stations:' + str(realtimeBikes)) filename = 'result_month_' + str(month) + '_day_' + str(day) + '_hour_' + str(hour) + '.json' realtimeBikes1 = {} for sta, dicts in realtimeBikes.items(): realtimeBikes1[str(sta)] = dicts experimentResult = {} resultTruck1 = {} resultTruck2 = {} lostNums11 = {} balanceNum11 = {} for sta, num in lostNums1.items(): lostNums11[str(sta)] = num for sta, num in balanceNum1.items(): balanceNum11[str(sta)] = num resultTruck1['lostUsers'] = lostNums11 resultTruck1['visitedPath'] = list(visitedPath1) resultTruck1['balanceNum'] = balanceNum11 resultTruck1['travelDis'] = list(cumulativeDis1) lostNums22 = {} balanceNum22 = {} for sta, num in lostNums2.items(): lostNums22[str(sta)] = num for sta, num in balanceNum2.items(): balanceNum22[str(sta)] = num resultTruck2['lostUsers'] = lostNums22 resultTruck2['visitedPath'] = list(visitedPath2) resultTruck2['balanceNum'] = balanceNum22 resultTruck2['travelDis'] = list(cumulativeDis2) experimentResult['truck1'] = resultTruck1 experimentResult['truck2'] = resultTruck2 experimentResult['afterBalanceRealBikes'] = realtimeBikes1 experiment_path = './bike_sharing_data/mydata/experiment_result2/epsilon_0' if not os.path.exists(experiment_path): os.makedirs(experiment_path) with open(os.path.join(experiment_path, filename), 'w') as f: json.dump(experimentResult, f) print('day' + str(day) + 'finished!') def noRepositionStart(lostNums): starttime = 0 position, stations_id = getPositionAndStations_id() rateData = getRateData() station_status, totalDocksDict = getStation_status() # mon,day2,hour = getMonthDayAndHour() mon = 8 for day in range(1, 32): totalLost = 0 lost = {} for station_id in stations_id: rateDict = rateData[str(station_id)] month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] iniBikes = station_status[str(day)][str(station_id)]['availableBikes'] iniDocks = station_status[str(day)][str(station_id)]['availableDocks'] totalDocks = totalDocksDict[str(station_id)] availableBikes = iniBikes availableDocks = iniDocks rentalLost = 0 returnLost = 0 for i in np.arange(0, 48): deltaNum = 0 deltaNum = rental_rate_0[i] - return_rate_0[i] if deltaNum > 0 and (deltaNum - float(availableBikes)) > 0: rentalLost += (deltaNum - float(availableBikes)) pass # rental_lost += deltNum if deltaNum < 0 and (abs(deltaNum) - float(availableDocks)) > 0: returnLost += (abs(deltaNum) - float(availableDocks)) pass # return_lost += deltNum if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) lost[str(station_id)] = rentalLost + returnLost totalLost += lost[str(station_id)] lost['totalLost'] = totalLost print(totalLost) lostNums[str(day)] = lost def noReposition(): experiment_path = './bike_sharing_data/mydata/noReposition' if not os.path.exists(experiment_path): os.makedirs(experiment_path) # month,day,hour = getMonthDayAndHour() month = 8 hour = 7 lostNums = {} noRepositionStart(lostNums) print(lostNums) filename = 'noRepositionLost_month_' + str(month) + '_hour_' + str(78910) + '.json' with open(os.path.join(experiment_path, filename), 'w') as f: json.dump(lostNums, f) def staticRepositionStart(lostNums): position, stations_id = getPositionAndStations_id() rateData = getRateData() station_status, totalDocksDict = getStation_status() mon, day, hour = getMonthDayAndHour() for day in range(1, 32): totalLost = 0 lost = {} for station_id in stations_id: rateDict = rateData[str(station_id)] month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] totalDocks = totalDocksDict[str(station_id)] serviceLevel = [] for docks in range(1, int(totalDocks)): availableBikes = int(totalDocks) - docks availableDocks = docks flag = 0 for j in np.arange(0, 19): deltaNum = 0 deltaNum = rental_rate_0[j] - return_rate_0[j] if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes <= 1: flag = 1 # print('availableBikes:'+str(availableBikes)) break availableDocks = float(availableDocks) + deltaNum if availableDocks >= float(totalDocks) - 1: flag = 1 # print('availableDocks:'+str(availableDocks)) break else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks <= 1: # print('availableDocks:'+str(availableDocks)) flag = 1 break availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes >= float(totalDocks) - 1: # print('availableBikes:'+str(availableBikes)) flag = 1 break if flag == 0: serviceLevel.append(int(totalDocks) - int(docks)) iniBikes = serviceLevel[random.choice(range(0, len(serviceLevel)))] iniDocks = int(totalDocks) - iniBikes availableBikes = iniBikes availableDocks = iniDocks # if station_id == '127': # print('iniBikes:' + str(availableBikes)) # print('iniDocks:' + str(availableDocks)) # print(totalDocks) rentalLost = 0 returnLost = 0 for i in np.arange(0, 48): # real-time bikes docks deltaNum = 0 deltaNum = rental_rate_0[i] - return_rate_0[i] if deltaNum > 0 and (deltaNum - float(availableBikes)) > 0: rentalLost += (deltaNum - float(availableBikes)) pass # rental_lost += deltNum if deltaNum < 0 and (abs(deltaNum) - float(availableDocks)) > 0: returnLost += (abs(deltaNum) - float(availableDocks)) pass # return_lost += deltNum if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) lost[str(station_id)] = rentalLost + returnLost totalLost += lost[str(station_id)] lost['totalLost'] = totalLost print(totalLost) lostNums[str(day)] = lost def staticReposition(): experiment_path = './bike_sharing_data/mydata/staticReposition' if not os.path.exists(experiment_path): os.makedirs(experiment_path) month, day, hour = getMonthDayAndHour() lostNums = {} staticRepositionStart(lostNums) print(lostNums) filename = 'staticRepositionLost_month_' + str(month) + '_hour_' + str(78910) + '.json' with open(os.path.join(experiment_path, filename), 'w') as f: json.dump(lostNums, f) def nearestNeihborRepositionStart(startStation, availStations, mutex, realtimeBikes, day, beforeBalancedTotalLost): position, stations_id = getPositionAndStations_id() rateData = getRateData() station_status, totalDocksDict = getStation_status() # mon, day, hour = getMonthDayAndHour() mon = 8 hour = 7 dropStation = [] pickStation = [] balanceStas = [] for sta in availStations: iniBikes = station_status[str(day)][str(sta)]['availableBikes'] iniDocks = station_status[str(day)][str(sta)]['availableDocks'] if int(iniBikes) < 5: dropStation.append(str(sta)) balanceStas.append(str(sta)) if int(iniDocks) < 5: pickStation.append(str(sta)) balanceStas.append(str(sta)) # balanceSta = startStation starttime = 0 v = 7 while True: if starttime > 80: break info = {} diss = [] minDis = 10 pickNum = 0 dropNum = 0 print('balanceStas' + str(balanceStas)) if not balanceStas: break mutex.acquire() balanceStas = [s for s in balanceStas if s in availStations] if not balanceStas: break for sta in balanceStas: dis = manhattan_distance(position[str(startStation)][0], position[str(startStation)][1], position[sta][0], position[sta][1]) if dis < minDis: minDis = dis balanceSta = sta startStation = balanceSta availStations.remove(str(balanceSta)) mutex.release() rateDict = rateData[str(balanceSta)] month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] totalDocks = totalDocksDict[str(balanceSta)] t_travel = dis * 1000 / v t_min = math.ceil(t_travel / 60) t = starttime + t_min t_interval = t / 5 availableBikes = station_status[str(day)][str(balanceSta)]['availableBikes'] availableDocks = station_status[str(day)][str(balanceSta)]['availableDocks'] rentalLost = 0 returnLost = 0 for i in np.arange(0, int(t_interval)): # real-time bikes docks deltaNum = 0 deltaNum = rental_rate_0[i] - return_rate_0[i] if float(availableBikes) < 1.0 and deltaNum > 0: rentalLost += deltaNum pass # rental_lost += deltNum if float(availableDocks) < 1.0 and deltaNum < 0: returnLost += abs(deltaNum) pass # return_lost += deltNum if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) realBikes = availableBikes realDocks = availableDocks beforeBalancedTotalLost.value = beforeBalancedTotalLost.value + returnLost + rentalLost noise = abs(np.random.normal(loc=0.0, scale=2)) if balanceSta in dropStation: if float(realBikes) >= 12: endtime = t + noise dropNum = 0 info['realbikes'] = realBikes else: dropNum = 12 - int(realBikes) endtime = t + dropNum * 0.3 + noise info['realbikes'] = 12 if balanceSta in pickStation: if float(realDocks) >= 12: endtime = t + noise pickNum = 0 info['realbikes'] = float(totalDocks) - float(realDocks) else: pickNum = 12 - int(realDocks) endtime = t + pickNum * 0.3 + noise info['realbikes'] = float(totalDocks) - 12 info['time'] = endtime realtimeBikes[str(balanceSta)] = info staLost = {} starttime = endtime print('drop:' + str(dropNum)) print('pick:' + str(pickNum)) print('distance:' + str(minDis)) print('starttime:' + str(starttime)) print(realtimeBikes) balanceStas = [] pickStation = [] dropStation = [] for sta in availStations: t_interval = starttime / 5 iniBikes = station_status[str(day)][str(sta)]['availableBikes'] iniDocks = station_status[str(day)][str(sta)]['availableDocks'] availableBikes = iniBikes availableDocks = iniDocks rateDict = rateData[str(sta)] month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] for i in np.arange(0, int(t_interval)): # real-time bikes docks deltaNum = rental_rate_0[i] - return_rate_0[i] if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) realBikes = availableBikes realDocks = availableDocks if float(realBikes) < 5: dropStation.append(str(sta)) balanceStas.append(str(sta)) if float(realDocks) < 5: pickStation.append(str(sta)) balanceStas.append(str(sta)) # getNearestNeighborLost(realtimeBikes,rateData,totalDocksDict,lostNums,station_status) # print(dropStation) # print(pickStation) # print(diss) def getNearestNeighborLost(realtimeBikes, day): rateData = getRateData() station_status, totalDocksDict = getStation_status() # mon,day,hour = getMonthDayAndHour() mon = 8 hour = 7 position, stations_id = getPositionAndStations_id() balancedSta = [] totalLost = 0 lostNums = {} for sta, values in realtimeBikes.items(): balancedSta.append(sta) rentalLost = 0 returnLost = 0 time = values['time'] realbikes = values['realbikes'] time_interval = time / 5 rateDict = rateData[str(sta)] month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] totalDocks = int(totalDocksDict[str(sta)]) availableBikes = realbikes availableDocks = float(totalDocks) - float(realbikes) for i in np.arange(int(time_interval), 48): # real-time bikes docks deltaNum = 0 deltaNum = rental_rate_0[i] - return_rate_0[i] if deltaNum > 0 and (deltaNum - float(availableBikes)) > 0: rentalLost += (deltaNum - float(availableBikes)) pass # rental_lost += deltNum if deltaNum < 0 and (abs(deltaNum) - float(availableDocks)) > 0: returnLost += (abs(deltaNum) - float(availableDocks)) pass # return_lost += deltNum if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) lostNums[str(sta)] = rentalLost + returnLost totalLost += lostNums[str(sta)] leftStations = [sta for sta in stations_id if sta not in balancedSta] for sta in leftStations: rateDict = rateData[str(sta)] month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] iniBikes = station_status[str(day)][str(sta)]['availableBikes'] iniDocks = station_status[str(day)][str(sta)]['availableDocks'] totalDocks = totalDocksDict[str(sta)] availableBikes = iniBikes availableDocks = iniDocks rentalLost = 0 returnLost = 0 for i in np.arange(0, 48): # real-time bikes docks deltaNum = 0 deltaNum = rental_rate_0[i] - return_rate_0[i] if deltaNum > 0 and (deltaNum - float(availableBikes)) > 0: rentalLost += (deltaNum - float(availableBikes)) pass # rental_lost += deltNum if deltaNum < 0 and (abs(deltaNum) - float(availableDocks)) > 0: returnLost += (abs(deltaNum) - float(availableDocks)) pass # return_lost += deltNum if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) lostNums[str(sta)] = rentalLost + returnLost totalLost += lostNums[str(sta)] lostNums['totalLost'] = totalLost print(totalLost) return lostNums def nearestNeihborReposition(): experiment_path = './bike_sharing_data/mydata/nearestNeihborReposition' if not os.path.exists(experiment_path): os.makedirs(experiment_path) # month, day, hour = getMonthDayAndHour() mon = 8 hour = 7 for day in range(1, 32): realtimeBikes = multiprocessing.Manager().dict() position, stations_id = getPositionAndStations_id() availStations = multiprocessing.Manager().list(stations_id) beforeBalancedTotalLost = multiprocessing.Value("d", 0) startStation1 = '237' startStation2 = '369' lostNums = {} mutex = multiprocessing.Lock() p1 = multiprocessing.Process(target=nearestNeihborRepositionStart, args=( startStation1, availStations, mutex, realtimeBikes, day, beforeBalancedTotalLost)) p2 = multiprocessing.Process(target=nearestNeihborRepositionStart, args=( startStation2, availStations, mutex, realtimeBikes, day, beforeBalancedTotalLost)) p1.start() p2.start() p1.join(9) p2.join(9) print(realtimeBikes) lostNums = getNearestNeighborLost(realtimeBikes, day) lostNums['totalLost'] += beforeBalancedTotalLost.value print(lostNums) filename = 'nearestNeihborRepositionLost_month_' + str(mon) + '_day_' + str(day) + '_hour_' + str( 78910) + '.json' with open(os.path.join(experiment_path, filename), 'w') as f: json.dump(lostNums, f) print('day' + str(day) + 'finished!') def nearestNeihborBaseServiceLevelRepositionStart(startStation, availStations, mutex, realtimeBikes, visitedPath, visitedDis, balanceNum, beforeBalancedTotalLost, day): position, stations_id = getPositionAndStations_id() rateData = getRateData() station_status, totalDocksDict = getStation_status() # mon, day, hour = getMonthDayAndHour() mon = 8 hour = 7 dropStation = [] pickStation = [] balanceStas = [] for sta in stations_id: iniBikes = station_status[str(day)][str(sta)]['availableBikes'] iniDocks = station_status[str(day)][str(sta)]['availableDocks'] totalDocks = totalDocksDict[str(sta)] serviceLevel = [] rateDict = rateData[str(sta)] month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] for docks in range(1, int(totalDocks)): availableBikes = int(totalDocks) - docks availableDocks = docks flag = 0 for j in np.arange(0, 19): deltaNum = 0 if j >= 48: break else: deltaNum = rental_rate_0[j] - return_rate_0[j] if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes <= 1: flag = 1 break availableDocks = float(availableDocks) + deltaNum if availableDocks >= float(totalDocks) - 1: flag = 1 break else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks <= 1: flag = 1 break availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes >= float(totalDocks) - 1: flag = 1 break if flag == 0: serviceLevel.append(int(totalDocks) - int(docks)) if not serviceLevel: pickStation.append(str(sta)) balanceStas.append(str(sta)) else: if float(iniBikes) < min(serviceLevel): dropStation.append(str(sta)) balanceStas.append(str(sta)) if float(iniDocks) > max(serviceLevel): pickStation.append(str(sta)) balanceStas.append(str(sta)) # balanceSta = startStation visitedPath.append(startStation) starttime = 0 v = 7 while True: info = {} minDis = 10 pickNum = 0 dropNum = 0 print('balanceStas' + str(balanceStas)) if not balanceStas: break mutex.acquire() balanceStas = [s for s in balanceStas if s in availStations] if not balanceStas: break for sta in balanceStas: dis = manhattan_distance(position[str(startStation)][0], position[str(startStation)][1], position[sta][0], position[sta][1]) if dis < minDis: minDis = dis balanceSta = sta startStation = balanceSta availStations.remove(str(balanceSta)) mutex.release() rateDict = rateData[str(balanceSta)] month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] totalDocks = totalDocksDict[str(balanceSta)] t_travel = dis * 1000 / v t_min = math.ceil(t_travel / 60) t = starttime + t_min t_interval = t / 5 availableBikes = station_status[str(day)][str(balanceSta)]['availableBikes'] availableDocks = station_status[str(day)][str(balanceSta)]['availableDocks'] rentalLost = 0 returnLost = 0 for i in np.arange(0, int(t_interval)): # real-time bikes docks deltaNum = rental_rate_0[i] - return_rate_0[i] if float(availableBikes) < 1.0 and deltaNum > 0: rentalLost += deltaNum pass # rental_lost += deltNum if float(availableDocks) < 1.0 and deltaNum < 0: returnLost += abs(deltaNum) pass # return_lost += deltNum if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) mutex.acquire() beforeBalancedTotalLost.value = beforeBalancedTotalLost.value + rentalLost + returnLost mutex.release() realBikes = availableBikes realDocks = availableDocks totalDocks = totalDocksDict[str(balanceSta)] serviceLevel = [] for docks in range(1, int(totalDocks)): availableBikes = int(totalDocks) - docks availableDocks = docks flag = 0 for j in np.arange(0, 19): if j >= 48: break else: deltaNum = rental_rate_0[j] - return_rate_0[j] if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes <= 1: flag = 1 break availableDocks = float(availableDocks) + deltaNum if availableDocks >= float(totalDocks) - 1: flag = 1 break else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks <= 1: flag = 1 break availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes >= float(totalDocks) - 1: # print('availableBikes:'+str(availableBikes)) flag = 1 break if flag == 0: serviceLevel.append(int(totalDocks) - int(docks)) noise = abs(np.random.normal(loc=0.0, scale=2)) if balanceSta in dropStation: if min(serviceLevel) <= float(realBikes) <= max(serviceLevel): endtime = t + noise dropNum = 0 info['realbikes'] = realBikes else: dropNum = min(serviceLevel) - math.floor(float(realBikes)) endtime = t + dropNum * 0.3 + noise info['realbikes'] = min(serviceLevel) if balanceSta in pickStation: if float(realBikes) <= max(serviceLevel): endtime = t + noise pickNum = 0 info['realbikes'] = float(realBikes) else: pickNum = math.floor(float(realBikes)) - max(serviceLevel) endtime = t + pickNum * 0.3 + noise info['realbikes'] = max(serviceLevel) info['time'] = endtime realtimeBikes[str(balanceSta)] = info starttime = endtime print('balanceSta:' + str(balanceSta)) print('drop:' + str(dropNum)) print('pick:' + str(pickNum)) print('distance:' + str(minDis)) print('starttime:' + str(starttime)) print(realtimeBikes) visitedPath.append(balanceSta) visitedDis.append(minDis) if int(dropNum) > 0: balanceNum[str(balanceSta)] = -dropNum elif int(pickNum) > 0: balanceNum[str(balanceSta)] = pickNum else: balanceNum[str(balanceSta)] = 0 balanceStas = [] pickStation = [] dropStation = [] for sta in availStations: t_interval = starttime / 5 iniBikes = station_status[str(day)][str(sta)]['availableBikes'] iniDocks = station_status[str(day)][str(sta)]['availableDocks'] availableBikes = iniBikes availableDocks = iniDocks totalDocks = totalDocksDict[str(sta)] rateDict = rateData[str(sta)] month = str(mon) if int(mon) >= 10 else '0' + str(mon) day1 = str(day) if int(day) >= 10 else '0' + str(day) date = '2017-' + str(month) + '-' + str(day1) date = datetime.datetime.strptime(date, '%Y-%m-%d') if date.weekday() < 5: rental_rate_0 = rateDict['rental_rate_0'] return_rate_0 = rateDict['return_rate_0'] elif date.weekday() < 7: rental_rate_0 = rateDict['rental_rate_1'] return_rate_0 = rateDict['return_rate_1'] for i in np.arange(0, int(t_interval)): # real-time bikes docks deltaNum = rental_rate_0[i] - return_rate_0[i] if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes < 0: availableBikes = 0 availableDocks = float(availableDocks) + deltaNum if availableDocks > float(totalDocks): availableBikes = 0 availableDocks = float(totalDocks) else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks < 0: availableDocks = 0 availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes > float(totalDocks): availableDocks = 0 availableBikes = float(totalDocks) realBikes = availableBikes realDocks = availableDocks serviceLevel = [] for docks in range(1, int(totalDocks)): availableBikes = int(totalDocks) - docks availableDocks = docks flag = 0 for j in np.arange(0, 19): deltaNum = 0 if j >= 48: break else: deltaNum = rental_rate_0[j] - return_rate_0[j] if deltaNum > 0: availableBikes = float(availableBikes) - deltaNum if availableBikes <= 1: flag = 1 break availableDocks = float(availableDocks) + deltaNum if availableDocks >= float(totalDocks) - 1: flag = 1 break else: availableDocks = float(availableDocks) - abs(deltaNum) if availableDocks <= 1: flag = 1 break availableBikes = float(availableBikes) + abs(deltaNum) if availableBikes >= float(totalDocks) - 1: # print('availableBikes:'+str(availableBikes)) flag = 1 break if flag == 0: serviceLevel.append(int(totalDocks) - int(docks)) if not serviceLevel: pickStation.append(str(sta)) balanceStas.append(str(sta)) else: if float(realBikes) < min(serviceLevel): dropStation.append(str(sta)) balanceStas.append(str(sta)) if float(realBikes) > max(serviceLevel): pickStation.append(str(sta)) balanceStas.append(str(sta)) print('dropStation:' + str(dropStation)) print('pickStation:' + str(pickStation)) def nearestNeihborBaseServiceLevelReposition(): experiment_path = './bike_sharing_data/mydata/nearestNeihborRepositionBasedService' if not os.path.exists(experiment_path): os.makedirs(experiment_path) # month, day, hour = getMonthDayAndHour() mon = 8 hour = 7 for day in range(1, 32): realtimeBikes = multiprocessing.Manager().dict() visitedPath1 = multiprocessing.Manager().list() visitedDis1 = multiprocessing.Manager().list() balanceNum1 = multiprocessing.Manager().dict() visitedPath2 = multiprocessing.Manager().list() visitedDis2 = multiprocessing.Manager().list() balanceNum2 = multiprocessing.Manager().dict() position, stations_id = getPositionAndStations_id() availStations = multiprocessing.Manager().list(stations_id) beforeBalancedTotalLost = multiprocessing.Value("d", 0) startStation1 = '237' startStation2 = '369' lostNums = {} mutex = multiprocessing.Lock() p1 = multiprocessing.Process(target=nearestNeihborBaseServiceLevelRepositionStart, args=( startStation1, availStations, mutex, realtimeBikes, visitedPath1, visitedDis1, balanceNum1, beforeBalancedTotalLost, day)) p2 = multiprocessing.Process(target=nearestNeihborBaseServiceLevelRepositionStart, args=( startStation2, availStations, mutex, realtimeBikes, visitedPath2, visitedDis2, balanceNum2, beforeBalancedTotalLost, day)) p1.start() p2.start() p1.join(8) p2.join(8) print(realtimeBikes) lostNums = getNearestNeighborLost(realtimeBikes, day) experimentResult = {} truck1 = {} truck2 = {} truck1['visitedPath'] = list(visitedPath1) truck1['visitedDis'] = list(visitedDis1) balanceNum11 = {} for sta, values in balanceNum1.items(): balanceNum11[str(sta)] = values truck1['balanceNum'] = balanceNum11 truck2['visitedPath'] = list(visitedPath2) truck2['visitedDis'] = list(visitedDis2) balanceNum22 = {} for sta, values in balanceNum2.items(): balanceNum22[str(sta)] = values truck2['balanceNum'] = balanceNum22 experimentResult['truck1'] = truck1 experimentResult['truck2'] = truck2 lostNums['totalLost'] += beforeBalancedTotalLost.value experimentResult['lost'] = lostNums print('through stations:' + str(visitedPath1)) print('balanced number:' + str(balanceNum1)) print('travel distance:' + str(visitedDis1)) print('through stations:' + str(visitedPath2)) print('balanced number:' + str(balanceNum2)) print('travel distance:' + str(visitedDis2)) print("beforeBalancedTotalLost:" + str(beforeBalancedTotalLost.value)) print('total customer loss:' + str(lostNums['totalLost'])) print('lostNums:' + str(lostNums)) filename = 'nearestNeihborRepositionResult_month_' + str(mon) + '_day_' + str(day) + '_hour_' + str( 78910) + '.json' with open(os.path.join(experiment_path, filename), 'w') as f: json.dump(experimentResult, f) print('day' + str(day) + 'finished!') if __name__ == '__main__': mctsAlgorithm() # noReposition() # staticReposition() # nearestNeihborReposition() # nearestNeihborBaseServiceLevelReposition()
42.77795
121
0.527799
21,888
0.264837
0
0
0
0
0
0
7,757
0.093857
7222707469c1717bc369a16b35dc8703f4ba96c7
4,692
py
Python
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Components/Energy/Storages/Batteries/Constant_Mass/Lithium_Ion_LiFePO4_18650.py
Vinicius-Tanigawa/Undergraduate-Research-Project
e92372f07882484b127d7affe305eeec2238b8a9
[ "MIT" ]
null
null
null
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Components/Energy/Storages/Batteries/Constant_Mass/Lithium_Ion_LiFePO4_18650.py
Vinicius-Tanigawa/Undergraduate-Research-Project
e92372f07882484b127d7affe305eeec2238b8a9
[ "MIT" ]
null
null
null
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Components/Energy/Storages/Batteries/Constant_Mass/Lithium_Ion_LiFePO4_18650.py
Vinicius-Tanigawa/Undergraduate-Research-Project
e92372f07882484b127d7affe305eeec2238b8a9
[ "MIT" ]
null
null
null
## @ingroup Components-Energy-Storages-Batteries-Constant_Mass # Lithium_Ion_LiFePO4_18650.py # # Created: Feb 2020, M. Clarke # Modified: Sep 2021, R. Erhard # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- # suave imports from SUAVE.Core import Units from .Lithium_Ion import Lithium_Ion # package imports import numpy as np ## @ingroup Components-Energy-Storages-Batteries-Constant_Mass class Lithium_Ion_LiFePO4_18650(Lithium_Ion): """ Specifies discharge/specific energy characteristics specific 18650 lithium-iron-phosphate-oxide battery cells. Assumptions: N/A Source: # Cell Information Saw, L. H., Yonghuang Ye, and A. A. O. Tay. "Electrochemical–thermal analysis of 18650 Lithium Iron Phosphate cell." Energy Conversion and Management 75 (2013): 162-174. # Electrode Area Muenzel, Valentin, et al. "A comparative testing study of commercial 18650-format lithium-ion battery cells." Journal of The Electrochemical Society 162.8 (2015): A1592. # Cell Thermal Conductivities (radial) Murashko, Kirill A., Juha Pyrhönen, and Jorma Jokiniemi. "Determination of the through-plane thermal conductivity and specific heat capacity of a Li-ion cylindrical cell." International Journal of Heat and Mass Transfer 162 (2020): 120330. (axial) Saw, L. H., Yonghuang Ye, and A. A. O. Tay. "Electrochemical–thermal analysis of 18650 Lithium Iron Phosphate cell." Energy Conversion and Management 75 (2013): 162-174. Inputs: None Outputs: None Properties Used: N/A """ def __defaults__(self): self.tag = 'Lithium_Ion_LiFePO4_Cell' self.cell.diameter = 0.0185 # [m] self.cell.height = 0.0653 # [m] self.cell.mass = 0.03 * Units.kg # [kg] self.cell.surface_area = (np.pi*self.cell.height*self.cell.diameter) + (0.5*np.pi*self.cell.diameter**2) # [m^2] self.cell.volume = np.pi*(0.5*self.cell.diameter)**2*self.cell.height # [m^3] self.cell.density = self.cell.mass/self.cell.volume # [kg/m^3] self.cell.electrode_area = 0.0342 # [m^2] # estimated self.cell.max_voltage = 3.6 # [V] self.cell.nominal_capacity = 1.5 # [Amp-Hrs] self.cell.nominal_voltage = 3.6 # [V] self.cell.charging_voltage = self.cell.nominal_voltage # [V] self.watt_hour_rating = self.cell.nominal_capacity * self.cell.nominal_voltage # [Watt-hours] self.specific_energy = self.watt_hour_rating*Units.Wh/self.cell.mass # [J/kg] self.specific_power = self.specific_energy/self.cell.nominal_capacity # [W/kg] self.ragone.const_1 = 88.818 * Units.kW/Units.kg self.ragone.const_2 = -.01533 / (Units.Wh/Units.kg) self.ragone.lower_bound = 60. * Units.Wh/Units.kg self.ragone.upper_bound = 225. * Units.Wh/Units.kg self.resistance = 0.022 # [Ohms] self.specific_heat_capacity = 1115 # [J/kgK] self.cell.specific_heat_capacity = 1115 # [J/kgK] self.cell.radial_thermal_conductivity = 0.475 # [J/kgK] self.cell.axial_thermal_conductivity = 37.6 # [J/kgK] return
53.931034
136
0.449915
4,187
0.89142
0
0
0
0
0
0
1,953
0.415797
7222d418de71e1a6408735de5ac964a29e9e3865
83,182
py
Python
motor/__init__.py
globocom/motor
a1c91ab7b223bb1ada742605e2e8d11a39fe5f1e
[ "Apache-2.0" ]
null
null
null
motor/__init__.py
globocom/motor
a1c91ab7b223bb1ada742605e2e8d11a39fe5f1e
[ "Apache-2.0" ]
null
null
null
motor/__init__.py
globocom/motor
a1c91ab7b223bb1ada742605e2e8d11a39fe5f1e
[ "Apache-2.0" ]
null
null
null
# Copyright 2011-2012 10gen, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Motor, an asynchronous driver for MongoDB and Tornado.""" import collections import functools import inspect import socket import time import warnings import weakref from tornado import ioloop, iostream, gen, stack_context from tornado.concurrent import Future import greenlet import bson import pymongo import pymongo.auth import pymongo.common import pymongo.database import pymongo.errors import pymongo.mongo_client import pymongo.mongo_replica_set_client import pymongo.son_manipulator from pymongo.pool import _closed, SocketInfo import gridfs from pymongo.database import Database from pymongo.collection import Collection from pymongo.cursor import Cursor, _QUERY_OPTIONS from gridfs import grid_file import util __all__ = ['MotorClient', 'MotorReplicaSetClient', 'Op'] version_tuple = (0, 1, '+') def get_version_string(): if isinstance(version_tuple[-1], basestring): return '.'.join(map(str, version_tuple[:-1])) + version_tuple[-1] return '.'.join(map(str, version_tuple)) version = get_version_string() """Current version of Motor.""" # TODO: ensure we're doing # timeouts as efficiently as possible, test performance hit with timeouts # from registering and cancelling timeouts HAS_SSL = True try: import ssl except ImportError: ssl = None HAS_SSL = False def check_deprecated_kwargs(kwargs): if 'safe' in kwargs: raise pymongo.errors.ConfigurationError( "Motor does not support 'safe', use 'w'") if 'slave_okay' in kwargs or 'slaveok' in kwargs: raise pymongo.errors.ConfigurationError( "Motor does not support 'slave_okay', use read_preference") callback_type_error = TypeError("callback must be a callable") def motor_sock_method(method): """Wrap a MotorSocket method to pause the current greenlet and arrange for the greenlet to be resumed when non-blocking I/O has completed. """ @functools.wraps(method) def _motor_sock_method(self, *args, **kwargs): child_gr = greenlet.getcurrent() main = child_gr.parent assert main, "Should be on child greenlet" timeout_object = None if self.timeout: def timeout_err(): # Running on the main greenlet. If a timeout error is thrown, # we raise the exception on the child greenlet. Closing the # IOStream removes callback() from the IOLoop so it isn't # called. self.stream.set_close_callback(None) self.stream.close() child_gr.throw(socket.timeout("timed out")) timeout_object = self.stream.io_loop.add_timeout( time.time() + self.timeout, timeout_err) # This is run by IOLoop on the main greenlet when operation # completes; switch back to child to continue processing def callback(result=None): self.stream.set_close_callback(None) if timeout_object: self.stream.io_loop.remove_timeout(timeout_object) child_gr.switch(result) # Run on main greenlet def closed(): if timeout_object: self.stream.io_loop.remove_timeout(timeout_object) # The child greenlet might have died, e.g.: # - An operation raised an error within PyMongo # - PyMongo closed the MotorSocket in response # - MotorSocket.close() closed the IOStream # - IOStream scheduled this closed() function on the loop # - PyMongo operation completed (with or without error) and # its greenlet terminated # - IOLoop runs this function if not child_gr.dead: child_gr.throw(socket.error("error")) self.stream.set_close_callback(closed) try: kwargs['callback'] = callback # method is MotorSocket.open(), recv(), etc. method() begins a # non-blocking operation on an IOStream and arranges for # callback() to be executed on the main greenlet once the # operation has completed. method(self, *args, **kwargs) # Pause child greenlet until resumed by main greenlet, which # will pass the result of the socket operation (data for recv, # number of bytes written for sendall) to us. return main.switch() except socket.error: # TODO: delete raise except IOError, e: # If IOStream raises generic IOError (e.g., if operation # attempted on closed IOStream), then substitute socket.error, # since socket.error is what PyMongo's built to handle. For # example, PyMongo will catch socket.error, close the socket, # and raise AutoReconnect. raise socket.error(str(e)) return _motor_sock_method class MotorSocket(object): """Replace socket with a class that yields from the current greenlet, if we're on a child greenlet, when making blocking calls, and uses Tornado IOLoop to schedule child greenlet for resumption when I/O is ready. We only implement those socket methods actually used by pymongo. """ def __init__( self, sock, io_loop, use_ssl, certfile, keyfile, ca_certs, cert_reqs): self.use_ssl = use_ssl self.certfile = certfile self.keyfile = keyfile self.ca_certs = ca_certs self.cert_reqs = cert_reqs self.timeout = None if self.use_ssl: # TODO: use full SSL options. self.stream = iostream.SSLIOStream(sock, io_loop=io_loop) else: self.stream = iostream.IOStream(sock, io_loop=io_loop) def setsockopt(self, *args, **kwargs): self.stream.socket.setsockopt(*args, **kwargs) def settimeout(self, timeout): # IOStream calls socket.setblocking(False), which does settimeout(0.0). # We must not allow pymongo to set timeout to some other value (a # positive number or None) or the socket will start blocking again. # Instead, we simulate timeouts by interrupting ourselves with # callbacks. self.timeout = timeout @motor_sock_method def connect(self, pair, callback): """ :Parameters: - `pair`: A tuple, (host, port) """ self.stream.connect(pair, callback) def sendall(self, data): assert greenlet.getcurrent().parent, "Should be on child greenlet" try: self.stream.write(data) except IOError, e: # PyMongo is built to handle socket.error here, not IOError raise socket.error(str(e)) if self.stream.closed(): # Something went wrong while writing raise socket.error("write error") @motor_sock_method def recv(self, num_bytes, callback): self.stream.read_bytes(num_bytes, callback) def close(self): sock = self.stream.socket try: self.stream.close() except KeyError: # Tornado's _impl (epoll, kqueue, ...) has already removed this # file descriptor from its dict. pass finally: # Sometimes necessary to avoid ResourceWarnings in Python 3: # specifically, if the fd is closed from the OS's view, then # stream.close() throws an exception, but the socket still has an # fd and so will print a ResourceWarning. In that case, calling # sock.close() directly clears the fd and does not raise an error. if sock: sock.close() def fileno(self): return self.stream.socket.fileno() class MotorPool(object): def __init__( self, io_loop, pair, max_size, net_timeout, conn_timeout, use_ssl, use_greenlets, ssl_keyfile=None, ssl_certfile=None, ssl_cert_reqs=None, ssl_ca_certs=None, wait_queue_timeout=None, wait_queue_multiple=None): """ A pool of MotorSockets. :Parameters: - `io_loop`: An IOLoop instance - `pair`: a (hostname, port) tuple - `max_size`: The maximum number of open sockets. Calls to `get_socket` will block if this is set, this pool has opened `max_size` sockets, and there are none idle. Set to `None` to disable. - `net_timeout`: timeout in seconds for operations on open connection - `conn_timeout`: timeout in seconds for establishing connection - `use_ssl`: bool, if True use an encrypted connection - `use_greenlets`: ignored. - `ssl_keyfile`: The private keyfile used to identify the local connection against mongod. If included with the ``certfile` then only the ``ssl_certfile`` is needed. Implies ``ssl=True``. - `ssl_certfile`: The certificate file used to identify the local connection against mongod. Implies ``ssl=True``. - `ssl_cert_reqs`: Specifies whether a certificate is required from the other side of the connection, and whether it will be validated if provided. It must be one of the three values ``ssl.CERT_NONE`` (certificates ignored), ``ssl.CERT_OPTIONAL`` (not required, but validated if provided), or ``ssl.CERT_REQUIRED`` (required and validated). If the value of this parameter is not ``ssl.CERT_NONE``, then the ``ssl_ca_certs`` parameter must point to a file of CA certificates. Implies ``ssl=True``. - `ssl_ca_certs`: The ca_certs file contains a set of concatenated "certification authority" certificates, which are used to validate certificates passed from the other end of the connection. Implies ``ssl=True``. - `wait_queue_timeout`: (integer) How long (in milliseconds) a callback will wait for a socket from the pool if the pool has no free sockets. - `wait_queue_multiple`: (integer) Multiplied by max_pool_size to give the number of callbacks allowed to wait for a socket at one time. """ self.io_loop = io_loop self.sockets = set() self.pair = pair self.max_size = max_size self.net_timeout = net_timeout self.conn_timeout = conn_timeout self.wait_queue_timeout = wait_queue_timeout self.wait_queue_multiple = wait_queue_multiple self.use_ssl = use_ssl self.ssl_keyfile = ssl_keyfile self.ssl_certfile = ssl_certfile self.ssl_cert_reqs = ssl_cert_reqs self.ssl_ca_certs = ssl_ca_certs # Keep track of resets, so we notice sockets created before the most # recent reset and close them. self.pool_id = 0 if HAS_SSL and use_ssl and not ssl_cert_reqs: self.ssl_cert_reqs = ssl.CERT_NONE self.motor_sock_counter = 0 self.queue = collections.deque() # Timeout handles to expire waiters after wait_queue_timeout. self.waiter_timeouts = {} if self.wait_queue_multiple is None: self.max_waiters = None else: self.max_waiters = self.max_size * self.wait_queue_multiple def reset(self): self.pool_id += 1 sockets, self.sockets = self.sockets, set() for sock_info in sockets: sock_info.close() def create_connection(self, pair): """Connect to `pair` and return the socket object. This is a modified version of create_connection from CPython >=2.6. """ host, port = pair or self.pair # Check if dealing with a unix domain socket if host.endswith('.sock'): if not hasattr(socket, "AF_UNIX"): raise pymongo.errors.ConnectionFailure( "UNIX-sockets are not supported on this system") addrinfos = [(socket.AF_UNIX, socket.SOCK_STREAM, 0, host)] else: # Don't try IPv6 if we don't support it. Also skip it if host # is 'localhost' (::1 is fine). Avoids slow connect issues # like PYTHON-356. family = socket.AF_INET if socket.has_ipv6 and host != 'localhost': family = socket.AF_UNSPEC # TODO: use Tornado 3's async resolver. addrinfos = [ (af, socktype, proto, sa) for af, socktype, proto, dummy, sa in socket.getaddrinfo(host, port, family, socket.SOCK_STREAM)] err = None for res in addrinfos: af, socktype, proto, sa = res sock = None try: sock = socket.socket(af, socktype, proto) motor_sock = MotorSocket( sock, self.io_loop, use_ssl=self.use_ssl, certfile=self.ssl_certfile, keyfile=self.ssl_keyfile, ca_certs=self.ssl_ca_certs, cert_reqs=self.ssl_cert_reqs) if af != getattr(socket, 'AF_UNIX', None): sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) motor_sock.settimeout(self.conn_timeout or 20.0) # Important to increment the count before beginning to connect. self.motor_sock_counter += 1 # MotorSocket pauses this greenlet and resumes when connected. motor_sock.connect(sa) return motor_sock except socket.error, e: self.motor_sock_counter -= 1 err = e if sock is not None: sock.close() if err is not None: raise err else: # This likely means we tried to connect to an IPv6 only # host with an OS/kernel or Python interpreter that doesn't # support IPv6. The test case is Jython2.5.1 which doesn't # support IPv6 at all. raise socket.error('getaddrinfo failed') def connect(self, pair): """Connect to Mongo and return a new connected MotorSocket. Note that the pool does not keep a reference to the socket -- you must call maybe_return_socket() when you're done with it. """ child_gr = greenlet.getcurrent() main = child_gr.parent assert main, "Should be on child greenlet" if self.max_size and self.motor_sock_counter >= self.max_size: if self.max_waiters and len(self.queue) >= self.max_waiters: raise self._create_wait_queue_timeout() waiter = stack_context.wrap(child_gr.switch) self.queue.append(waiter) if self.wait_queue_timeout is not None: deadline = time.time() + self.wait_queue_timeout timeout = self.io_loop.add_timeout( deadline, functools.partial( child_gr.throw, pymongo.errors.ConnectionFailure, self._create_wait_queue_timeout())) self.waiter_timeouts[waiter] = timeout # Yield until maybe_return_socket passes spare socket in. return main.switch() else: motor_sock = self.create_connection(pair) motor_sock.settimeout(self.net_timeout) return SocketInfo(motor_sock, self.pool_id) def get_socket(self, pair=None, force=False): """Get a socket from the pool. Returns a :class:`SocketInfo` object wrapping a connected :class:`MotorSocket`, and a bool saying whether the socket was from the pool or freshly created. :Parameters: - `pair`: optional (hostname, port) tuple - `force`: optional boolean, forces a connection to be returned without blocking, even if `max_size` has been reached. """ forced = False if force: # If we're doing an internal operation, attempt to play nicely with # max_size, but if there is no open "slot" force the connection # and mark it as forced so we don't decrement motor_sock_counter # when it's returned. if self.motor_sock_counter >= self.max_size: forced = True if self.sockets: sock_info, from_pool = self.sockets.pop(), True sock_info = self._check(sock_info, pair) else: sock_info, from_pool = self.connect(pair), False sock_info.forced = forced sock_info.last_checkout = time.time() return sock_info def async_get_socket(self, pair=None): """Get a ``Future`` which will resolve to a socket.""" loop = self.io_loop future = Future() def _get_socket(): # Runs on child greenlet. try: result = self.get_socket(pair) loop.add_callback(functools.partial(future.set_result, result)) except Exception, e: loop.add_callback(functools.partial(future.set_exception, e)) # Start running the operation on a greenlet. greenlet.greenlet(_get_socket).switch() return future def start_request(self): raise NotImplementedError("Motor doesn't implement requests") in_request = end_request = start_request def discard_socket(self, sock_info): """Close and discard the active socket.""" sock_info.close() def maybe_return_socket(self, sock_info): """Return the socket to the pool. In PyMongo this method only returns the socket if it's not the request socket, but Motor doesn't do requests. """ if sock_info.closed: if not sock_info.forced: self.motor_sock_counter -= 1 return # Give it to the greenlet at the head of the line, or return it to the # pool, or discard it. if self.queue: waiter = self.queue.popleft() if waiter in self.waiter_timeouts: self.io_loop.remove_timeout(self.waiter_timeouts.pop(waiter)) with stack_context.NullContext(): self.io_loop.add_callback(functools.partial(waiter, sock_info)) elif (len(self.sockets) < self.max_size and sock_info.pool_id == self.pool_id): self.sockets.add(sock_info) else: sock_info.close() if not sock_info.forced: self.motor_sock_counter -= 1 if sock_info.forced: sock_info.forced = False def _check(self, sock_info, pair): """This side-effecty function checks if this pool has been reset since the last time this socket was used, or if the socket has been closed by some external network error, and if so, attempts to create a new socket. If this connection attempt fails we reset the pool and reraise the error. Checking sockets lets us avoid seeing *some* :class:`~pymongo.errors.AutoReconnect` exceptions on server hiccups, etc. We only do this if it's been > 1 second since the last socket checkout, to keep performance reasonable - we can't avoid AutoReconnects completely anyway. """ error = False if sock_info.closed: error = True elif self.pool_id != sock_info.pool_id: sock_info.close() error = True elif time.time() - sock_info.last_checkout > 1: if _closed(sock_info.sock): sock_info.close() error = True if not error: return sock_info else: try: return self.connect(pair) except socket.error: self.reset() raise def __del__(self): # Avoid ResourceWarnings in Python 3. for sock_info in self.sockets: sock_info.close() def _create_wait_queue_timeout(self): return pymongo.errors.ConnectionFailure( 'Timed out waiting for socket from pool with max_size %r and' ' wait_queue_timeout %r' % ( self.max_size, self.wait_queue_timeout)) def callback_from_future(future): """Return a callback that sets a Future's result or exception""" def callback(result, error): if error: future.set_exception(error) else: future.set_result(result) return callback def asynchronize(motor_class, sync_method, has_write_concern, doc=None): """Decorate `sync_method` so it accepts a callback or returns a Future. The method runs on a child greenlet and calls the callback or resolves the Future when the greenlet completes. :Parameters: - `motor_class`: Motor class being created, e.g. MotorClient. - `sync_method`: Bound method of pymongo Collection, Database, MongoClient, or Cursor - `has_write_concern`: Whether the method accepts getLastError options - `doc`: Optionally override sync_method's docstring """ @functools.wraps(sync_method) def method(self, *args, **kwargs): check_deprecated_kwargs(kwargs) loop = self.get_io_loop() callback = kwargs.pop('callback', None) if callback: if not callable(callback): raise callback_type_error future = None else: future = Future() def call_method(): # Runs on child greenlet. # TODO: ew, performance? try: result = sync_method(self.delegate, *args, **kwargs) if callback: # Schedule callback(result, None) on main greenlet. loop.add_callback(functools.partial( callback, result, None)) else: # Schedule future to be resolved on main greenlet. loop.add_callback(functools.partial( future.set_result, result)) except Exception, e: if callback: loop.add_callback(functools.partial( callback, None, e)) else: loop.add_callback(functools.partial( future.set_exception, e)) # Start running the operation on a greenlet. greenlet.greenlet(call_method).switch() return future # This is for the benefit of motor_extensions.py, which needs this info to # generate documentation with Sphinx. method.is_async_method = True method.has_write_concern = has_write_concern name = sync_method.__name__ if name.startswith('__') and not name.endswith("__"): # Mangle, e.g. Cursor.__die -> Cursor._Cursor__die classname = motor_class.__delegate_class__.__name__ name = '_%s%s' % (classname, name) method.pymongo_method_name = name if doc is not None: method.__doc__ = doc return method class MotorAttributeFactory(object): """Used by Motor classes to mark attributes that delegate in some way to PyMongo. At module import time, each Motor class is created, and MotorMeta calls create_attribute() for each attr to create the final class attribute. """ def create_attribute(self, cls, attr_name): raise NotImplementedError class Async(MotorAttributeFactory): def __init__(self, attr_name, has_write_concern): """A descriptor that wraps a PyMongo method, such as insert or remove, and returns an asynchronous version of the method, which accepts a callback or returns a Future. :Parameters: - `attr_name`: The name of the attribute on the PyMongo class, if different from attribute on the Motor class - `has_write_concern`: Whether the method accepts getLastError options """ super(Async, self).__init__() self.attr_name = attr_name self.has_write_concern = has_write_concern def create_attribute(self, cls, attr_name): name = self.attr_name or attr_name if name.startswith('__'): # Mangle: __simple_command becomes _MongoClient__simple_command. name = '_%s%s' % (cls.__delegate_class__.__name__, name) method = getattr(cls.__delegate_class__, name) return asynchronize(cls, method, self.has_write_concern) def wrap(self, original_class): return WrapAsync(self, original_class) def unwrap(self, motor_class): return UnwrapAsync(self, motor_class) class WrapBase(MotorAttributeFactory): def __init__(self, prop): super(WrapBase, self).__init__() self.property = prop class WrapAsync(WrapBase): def __init__(self, prop, original_class): """Like Async, but before it executes the callback or resolves the Future, checks if result is a PyMongo class and wraps it in a Motor class. E.g., Motor's map_reduce should pass a MotorCollection instead of a PyMongo Collection to the Future. Uses the wrap() method on the owner object to do the actual wrapping. E.g., Database.create_collection returns a Collection, so MotorDatabase has: create_collection = AsyncCommand().wrap(Collection) Once Database.create_collection is done, Motor calls MotorDatabase.wrap() on its result, transforming the result from Collection to MotorCollection, which is passed to the callback or Future. :Parameters: - `prop`: An Async, the async method to call before wrapping its result in a Motor class. """ super(WrapAsync, self).__init__(prop) self.original_class = original_class def create_attribute(self, cls, attr_name): async_method = self.property.create_attribute(cls, attr_name) original_class = self.original_class @functools.wraps(async_method) def wrapper(self, *args, **kwargs): callback = kwargs.pop('callback', None) def done_callback(result, error): if error: callback(None, error) return # Don't call isinstance(), not checking subclasses. if result.__class__ == original_class: # Delegate to the current object to wrap the result. new_object = self.wrap(result) else: new_object = result callback(new_object, None) if callback: if not callable(callback): raise callback_type_error async_method(self, *args, callback=done_callback, **kwargs) else: future = Future() # The final callback run from inside done_callback. callback = callback_from_future(future) async_method(self, *args, callback=done_callback, **kwargs) return future return wrapper class UnwrapAsync(WrapBase): def __init__(self, prop, motor_class): """Like Async, but checks if arguments are Motor classes and unwraps them. E.g., Motor's drop_database takes a MotorDatabase, unwraps it, and passes a PyMongo Database instead. """ super(UnwrapAsync, self).__init__(prop) self.motor_class = motor_class def create_attribute(self, cls, attr_name): f = self.property.create_attribute(cls, attr_name) motor_class = self.motor_class def _unwrap_obj(obj): if isinstance(motor_class, basestring): # Delayed reference - e.g., drop_database is defined before # MotorDatabase is, so it was initialized with # unwrap('MotorDatabase') instead of unwrap(MotorDatabase). actual_motor_class = globals()[motor_class] else: actual_motor_class = motor_class # Don't call isinstance(), not checking subclasses. if obj.__class__ == actual_motor_class: return obj.delegate else: return obj @functools.wraps(f) def _f(*args, **kwargs): # Call _unwrap_obj on each arg and kwarg before invoking f. args = [_unwrap_obj(arg) for arg in args] kwargs = dict([ (key, _unwrap_obj(value)) for key, value in kwargs.items()]) return f(*args, **kwargs) return _f class AsyncRead(Async): def __init__(self, attr_name=None): """A descriptor that wraps a PyMongo read method like find_one() that returns a Future. """ Async.__init__(self, attr_name=attr_name, has_write_concern=False) class AsyncWrite(Async): def __init__(self, attr_name=None): """A descriptor that wraps a PyMongo write method like update() that accepts getLastError options and returns a Future. """ Async.__init__(self, attr_name=attr_name, has_write_concern=True) class AsyncCommand(Async): def __init__(self, attr_name=None): """A descriptor that wraps a PyMongo command like copy_database() that returns a Future and does not accept getLastError options. """ Async.__init__(self, attr_name=attr_name, has_write_concern=False) def check_delegate(obj, attr_name): if not obj.delegate: raise pymongo.errors.InvalidOperation( "Call open() on %s before accessing attribute '%s'" % ( obj.__class__.__name__, attr_name)) class ReadOnlyPropertyDescriptor(object): def __init__(self, attr_name): self.attr_name = attr_name def __get__(self, obj, objtype): if obj: check_delegate(obj, self.attr_name) return getattr(obj.delegate, self.attr_name) else: # We're accessing this property on a class, e.g. when Sphinx wants # MotorGridOut.md5.__doc__ return getattr(objtype.__delegate_class__, self.attr_name) def __set__(self, obj, val): raise AttributeError class ReadOnlyProperty(MotorAttributeFactory): """Creates a readonly attribute on the wrapped PyMongo object""" def create_attribute(self, cls, attr_name): return ReadOnlyPropertyDescriptor(attr_name) DelegateMethod = ReadOnlyProperty """A method on the wrapped PyMongo object that does no I/O and can be called synchronously""" class ReadWritePropertyDescriptor(ReadOnlyPropertyDescriptor): def __set__(self, obj, val): check_delegate(obj, self.attr_name) setattr(obj.delegate, self.attr_name, val) class ReadWriteProperty(MotorAttributeFactory): """Creates a mutable attribute on the wrapped PyMongo object""" def create_attribute(self, cls, attr_name): return ReadWritePropertyDescriptor(attr_name) class MotorMeta(type): """Initializes a Motor class, calling create_attribute() on all its MotorAttributeFactories to create the actual class attributes. """ def __new__(cls, class_name, bases, attrs): new_class = type.__new__(cls, class_name, bases, attrs) # If new_class has no __delegate_class__, then it's a base like # MotorClientBase; don't try to update its attrs, we'll use them # for its subclasses like MotorClient. if getattr(new_class, '__delegate_class__', None): for base in reversed(inspect.getmro(new_class)): # Turn attribute factories into real methods or descriptors. for name, attr in base.__dict__.items(): if isinstance(attr, MotorAttributeFactory): new_class_attr = attr.create_attribute(new_class, name) setattr(new_class, name, new_class_attr) return new_class class MotorBase(object): __metaclass__ = MotorMeta def __eq__(self, other): if ( isinstance(other, self.__class__) and hasattr(self, 'delegate') and hasattr(other, 'delegate') ): return self.delegate == other.delegate return NotImplemented name = ReadOnlyProperty() get_document_class = ReadOnlyProperty() set_document_class = ReadOnlyProperty() document_class = ReadWriteProperty() read_preference = ReadWriteProperty() tag_sets = ReadWriteProperty() secondary_acceptable_latency_ms = ReadWriteProperty() write_concern = ReadWriteProperty() def __repr__(self): return '%s(%r)' % (self.__class__.__name__, self.delegate) class MotorOpenable(object): """Base class for Motor objects that can be initialized in two stages: basic setup in __init__ and setup requiring I/O in open(), which creates the delegate object. """ __metaclass__ = MotorMeta __delegate_class__ = None def __init__(self, delegate, io_loop, *args, **kwargs): if io_loop: if not isinstance(io_loop, ioloop.IOLoop): raise TypeError( "io_loop must be instance of IOLoop, not %r" % io_loop) self.io_loop = io_loop else: self.io_loop = ioloop.IOLoop.current() self.delegate = delegate # Store args and kwargs for when open() is called self._init_args = args self._init_kwargs = kwargs def get_io_loop(self): return self.io_loop def open(self, callback=None): """Actually initialize. Takes an optional callback, or returns a Future that resolves to self when opened. :Parameters: - `callback`: Optional function taking parameters (self, error) """ if callback and not callable(callback): raise callback_type_error if callback: self._open(callback=callback) else: future = Future() self._open(callback=callback_from_future(future)) return future def _open(self, callback): if self.delegate: callback(self, None) # Already open def _connect(): # Run on child greenlet try: args, kwargs = self._delegate_init_args() self.delegate = self.__delegate_class__(*args, **kwargs) callback(self, None) except Exception, e: callback(None, e) # Actually connect on a child greenlet gr = greenlet.greenlet(_connect) gr.switch() def _delegate_init_args(self): """Return args, kwargs to create a delegate object""" return self._init_args, self._init_kwargs class MotorClientBase(MotorOpenable, MotorBase): """MotorClient and MotorReplicaSetClient common functionality. """ database_names = AsyncRead() server_info = AsyncRead() alive = AsyncRead() close_cursor = AsyncCommand() drop_database = AsyncCommand().unwrap('MotorDatabase') disconnect = DelegateMethod() tz_aware = ReadOnlyProperty() close = DelegateMethod() is_primary = ReadOnlyProperty() is_mongos = ReadOnlyProperty() max_bson_size = ReadOnlyProperty() max_pool_size = ReadOnlyProperty() get_default_database = DelegateMethod() _ensure_connected = AsyncCommand() def __init__(self, delegate, io_loop, *args, **kwargs): check_deprecated_kwargs(kwargs) super(MotorClientBase, self).__init__( delegate, io_loop, *args, **kwargs) def open_sync(self): """Synchronous open(), returning self. Under the hood, this method creates a new Tornado IOLoop, runs :meth:`open` on the loop, and deletes the loop when :meth:`open` completes. """ if self.connected: return self # Run a private IOLoop until connected or error private_loop = ioloop.IOLoop() standard_loop, self.io_loop = self.io_loop, private_loop try: private_loop.run_sync(self.open) return self finally: # Replace the private IOLoop with the default loop self.io_loop = standard_loop if self.delegate: self.delegate.pool_class = functools.partial( MotorPool, self.io_loop) for pool in self._get_pools(): pool.io_loop = self.io_loop pool.reset() # Clean up file descriptors. private_loop.close() def sync_client(self): """Get a PyMongo MongoClient / MongoReplicaSetClient with the same configuration as this MotorClient / MotorReplicaSetClient. """ return self.__delegate_class__( *self._init_args, **self._init_kwargs) def __getattr__(self, name): if not self.connected: msg = ( "Can't access attribute '%s' on %s before calling open()" " or open_sync()" % (name, self.__class__.__name__)) raise pymongo.errors.InvalidOperation(msg) return MotorDatabase(self, name) __getitem__ = __getattr__ @property def connected(self): """True after :meth:`open` or :meth:`open_sync` completes""" return self.delegate is not None @gen.coroutine def _copy_database( self, _callback, from_name, to_name, from_host, username, password): pool, sock_info = None, None try: if not isinstance(from_name, basestring): raise TypeError("from_name must be an instance " "of %s" % (basestring.__name__,)) if not isinstance(to_name, basestring): raise TypeError("to_name must be an instance " "of %s" % (basestring.__name__,)) pymongo.database._check_name(to_name) yield self._ensure_connected(True) pool = self._get_primary_pool() sock_info = yield self._async_get_socket(pool) copydb_command = bson.SON([ ('copydb', 1), ('fromdb', from_name), ('todb', to_name)]) if from_host is not None: copydb_command['fromhost'] = from_host if username is not None: getnonce_command = bson.SON( [('copydbgetnonce', 1), ('fromhost', from_host)]) response, ms = yield self._simple_command( sock_info, 'admin', getnonce_command) nonce = response['nonce'] copydb_command['username'] = username copydb_command['nonce'] = nonce copydb_command['key'] = pymongo.auth._auth_key( nonce, username, password) result = yield self._simple_command( sock_info, 'admin', copydb_command) if _callback: _callback(result, None) else: raise gen.Return(result) except Exception, e: if _callback: _callback(None, e) else: raise finally: if pool and sock_info: pool.maybe_return_socket(sock_info) def copy_database( self, from_name, to_name, from_host=None, username=None, password=None, callback=None): """Copy a database, potentially from another host. Accepts an optional callback, and returns a ``Future``. Raises :class:`~pymongo.errors.InvalidName` if `to_name` is not a valid database name. If `from_host` is ``None`` the current host is used as the source. Otherwise the database is copied from `from_host`. If the source database requires authentication, `username` and `password` must be specified. :Parameters: - `from_name`: the name of the source database - `to_name`: the name of the target database - `from_host` (optional): host name to copy from - `username` (optional): username for source database - `password` (optional): password for source database - `callback`: Optional function taking parameters (response, error) """ # PyMongo's implementation uses requests, so rewrite for Motor. if callback: if not callable(callback): raise callback_type_error future = self._copy_database( callback, from_name, to_name, from_host, username, password) if not callback: return future def _delegate_init_args(self): """Override MotorOpenable._delegate_init_args to ensure auto_start_request is False and _pool_class is MotorPool. """ kwargs = self._init_kwargs.copy() kwargs['auto_start_request'] = False kwargs['_pool_class'] = functools.partial(MotorPool, self.io_loop) return self._init_args, kwargs class MotorClient(MotorClientBase): __delegate_class__ = pymongo.mongo_client.MongoClient kill_cursors = AsyncCommand() fsync = AsyncCommand() unlock = AsyncCommand() nodes = ReadOnlyProperty() host = ReadOnlyProperty() port = ReadOnlyProperty() _simple_command = AsyncCommand(attr_name='__simple_command') def __init__(self, *args, **kwargs): """Create a new connection to a single MongoDB instance at *host:port*. :meth:`open` or :meth:`open_sync` must be called before using a new MotorClient. No property access is allowed before the connection is opened. MotorClient takes the same constructor arguments as `MongoClient`_, as well as: :Parameters: - `io_loop` (optional): Special :class:`tornado.ioloop.IOLoop` instance to use instead of default .. _MongoClient: http://api.mongodb.org/python/current/api/pymongo/mongo_client.html """ super(MotorClient, self).__init__( None, kwargs.pop('io_loop', None), *args, **kwargs) def _get_pools(self): # TODO: expose the PyMongo pool, or otherwise avoid this return [self.delegate._MongoClient__pool] def _get_primary_pool(self): # TODO: expose the PyMongo pool, or otherwise avoid this return self.delegate._MongoClient__pool def _async_get_socket(self, pool): """Return a ``Future`` that will resolve to a socket.""" # MongoClient passes host and port into the pool for each call to # get_socket. return pool.async_get_socket((self.host, self.port)) class MotorReplicaSetClient(MotorClientBase): __delegate_class__ = pymongo.mongo_replica_set_client.MongoReplicaSetClient primary = ReadOnlyProperty() secondaries = ReadOnlyProperty() arbiters = ReadOnlyProperty() hosts = ReadOnlyProperty() seeds = ReadOnlyProperty() close = DelegateMethod() _simple_command = AsyncCommand(attr_name='__simple_command') def __init__(self, *args, **kwargs): """Create a new connection to a MongoDB replica set. :meth:`open` or :meth:`open_sync` must be called before using a new MotorReplicaSetClient. No property access is allowed before the connection is opened. MotorReplicaSetClient takes the same constructor arguments as `MongoReplicaSetClient`_, as well as: :Parameters: - `io_loop` (optional): Special :class:`tornado.ioloop.IOLoop` instance to use instead of default .. _MongoReplicaSetClient: http://api.mongodb.org/python/current/api/pymongo/mongo_replica_set_client.html """ super(MotorReplicaSetClient, self).__init__( None, kwargs.pop('io_loop', None), *args, **kwargs) def open_sync(self): """Synchronous open(), returning self. Under the hood, this method creates a new Tornado IOLoop, runs :meth:`open` on the loop, and deletes the loop when :meth:`open` completes. """ super(MotorReplicaSetClient, self).open_sync() # We need to wait for open_sync() to complete and restore the # original IOLoop before starting the monitor. self.delegate._MongoReplicaSetClient__monitor.start_motor(self.io_loop) return self def open(self, callback=None): """Actually initialize. Takes an optional callback, or returns a Future that resolves to self when opened. :Parameters: - `callback`: Optional function taking parameters (self, error) """ if callback and not callable(callback): raise callback_type_error def opened(self, error): if error: callback(None, error) else: try: monitor = self.delegate._MongoReplicaSetClient__monitor monitor.start_motor(self.io_loop) except Exception, e: callback(None, e) else: callback(self, None) # No errors if callback: super(MotorReplicaSetClient, self)._open(callback=opened) else: future = Future() # The final callback run from inside opened callback = callback_from_future(future) super(MotorReplicaSetClient, self)._open(callback=opened) return future def _delegate_init_args(self): # This _monitor_class will be passed to PyMongo's # MongoReplicaSetClient when we create it. args, kwargs = super( MotorReplicaSetClient, self)._delegate_init_args() kwargs['_monitor_class'] = MotorReplicaSetMonitor return args, kwargs def _get_pools(self): # TODO: expose the PyMongo RSC members, or otherwise avoid this. rs_state = self.delegate._MongoReplicaSetClient__rs_state return [member.pool for member in rs_state._members] def _get_primary_pool(self): # TODO: expose the PyMongo RSC members, or otherwise avoid this. rs_state = self.delegate._MongoReplicaSetClient__rs_state if rs_state.primary_member: return rs_state.primary_member.pool def _async_get_socket(self, pool): """Return a ``Future`` that will resolve to a socket.""" # MongoReplicaSetClient sets pools' host and port when it creates them. return pool.async_get_socket() # PyMongo uses a background thread to regularly inspect the replica set and # monitor it for changes. In Motor, use a periodic callback on the IOLoop to # monitor the set. class MotorReplicaSetMonitor(pymongo.mongo_replica_set_client.Monitor): def __init__(self, rsc): msg = ( "First argument to MotorReplicaSetMonitor must be" " MongoReplicaSetClient, not %r" % rsc) assert isinstance( rsc, pymongo.mongo_replica_set_client.MongoReplicaSetClient), msg # Super makes two MotorGreenletEvents: self.event and self.refreshed. # We only use self.refreshed. pymongo.mongo_replica_set_client.Monitor.__init__( self, rsc, event_class=util.MotorGreenletEvent) self.timeout_obj = None self.started = False def shutdown(self, dummy=None): if self.timeout_obj: self.io_loop.remove_timeout(self.timeout_obj) self.stopped = True def refresh(self): assert greenlet.getcurrent().parent, "Should be on child greenlet" try: self.rsc.refresh() except pymongo.errors.AutoReconnect: pass # RSC has been collected or there # was an unexpected error. except: return finally: # Switch to greenlets blocked in wait_for_refresh(). self.refreshed.set(self.io_loop) self.timeout_obj = self.io_loop.add_timeout( time.time() + self._refresh_interval, self.async_refresh) def async_refresh(self): greenlet.greenlet(self.refresh).switch() def start(self): """No-op: PyMongo thinks this starts the monitor, but Motor starts the monitor separately to ensure it uses the right IOLoop.""" pass def start_sync(self): """No-op: PyMongo thinks this starts the monitor, but Motor starts the monitor separately to ensure it uses the right IOLoop.""" pass def start_motor(self, io_loop): self.io_loop = io_loop self.started = True self.timeout_obj = self.io_loop.add_timeout( time.time() + self._refresh_interval, self.async_refresh) def schedule_refresh(self): self.refreshed.clear() if self.io_loop and self.async_refresh: if self.timeout_obj: self.io_loop.remove_timeout(self.timeout_obj) self.io_loop.add_callback(self.async_refresh) def join(self, timeout=None): # PyMongo calls join() after shutdown() -- this is not a thread, so # shutdown works immediately and join is unnecessary pass def wait_for_refresh(self, timeout_seconds): # self.refreshed is a util.MotorGreenletEvent. self.refreshed.wait(self.io_loop, timeout_seconds) def is_alive(self): return self.started and not self.stopped isAlive = is_alive class MotorDatabase(MotorBase): __delegate_class__ = Database set_profiling_level = AsyncCommand() reset_error_history = AsyncCommand() add_user = AsyncCommand() remove_user = AsyncCommand() logout = AsyncCommand() command = AsyncCommand() authenticate = AsyncCommand() eval = AsyncCommand() create_collection = AsyncCommand().wrap(Collection) drop_collection = AsyncCommand().unwrap('MotorCollection') validate_collection = AsyncRead().unwrap('MotorCollection') collection_names = AsyncRead() current_op = AsyncRead() profiling_level = AsyncRead() profiling_info = AsyncRead() error = AsyncRead() last_status = AsyncRead() previous_error = AsyncRead() dereference = AsyncRead() incoming_manipulators = ReadOnlyProperty() incoming_copying_manipulators = ReadOnlyProperty() outgoing_manipulators = ReadOnlyProperty() outgoing_copying_manipulators = ReadOnlyProperty() def __init__(self, connection, name): if not isinstance(connection, MotorClientBase): raise TypeError("First argument to MotorDatabase must be " "MotorClientBase, not %r" % connection) self.connection = connection self.delegate = Database(connection.delegate, name) def __getattr__(self, name): return MotorCollection(self, name) __getitem__ = __getattr__ def wrap(self, collection): # Replace pymongo.collection.Collection with MotorCollection return self[collection.name] def add_son_manipulator(self, manipulator): """Add a new son manipulator to this database. Newly added manipulators will be applied before existing ones. :Parameters: - `manipulator`: the manipulator to add """ # We override add_son_manipulator to unwrap the AutoReference's # database attribute. if isinstance(manipulator, pymongo.son_manipulator.AutoReference): db = manipulator.database if isinstance(db, MotorDatabase): manipulator.database = db.delegate self.delegate.add_son_manipulator(manipulator) def get_io_loop(self): return self.connection.get_io_loop() class MotorCollection(MotorBase): __delegate_class__ = Collection create_index = AsyncCommand() drop_indexes = AsyncCommand() drop_index = AsyncCommand() drop = AsyncCommand() ensure_index = AsyncCommand() reindex = AsyncCommand() rename = AsyncCommand() find_and_modify = AsyncCommand() map_reduce = AsyncCommand().wrap(Collection) update = AsyncWrite() insert = AsyncWrite() remove = AsyncWrite() save = AsyncWrite() index_information = AsyncRead() count = AsyncRead() options = AsyncRead() group = AsyncRead() distinct = AsyncRead() inline_map_reduce = AsyncRead() find_one = AsyncRead() aggregate = AsyncRead() uuid_subtype = ReadWriteProperty() full_name = ReadOnlyProperty() def __init__(self, database, name=None, *args, **kwargs): if isinstance(database, Collection): # Short cut self.delegate = Collection elif not isinstance(database, MotorDatabase): raise TypeError("First argument to MotorCollection must be " "MotorDatabase, not %r" % database) else: self.database = database self.delegate = Collection(self.database.delegate, name) def __getattr__(self, name): # dotted collection name, like foo.bar return MotorCollection( self.database, self.name + '.' + name ) def find(self, *args, **kwargs): """Create a :class:`MotorCursor`. Same parameters as for PyMongo's `find`_. Note that :meth:`find` does not take a `callback` parameter, nor does it return a Future, because :meth:`find` merely creates a :class:`MotorCursor` without performing any operations on the server. :class:`MotorCursor` methods such as :meth:`~MotorCursor.to_list` or :meth:`~MotorCursor.count` perform actual operations. .. _find: http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find """ if 'callback' in kwargs: raise pymongo.errors.InvalidOperation( "Pass a callback to each, to_list, or count, not to find.") cursor = self.delegate.find(*args, **kwargs) return MotorCursor(cursor, self) def wrap(self, collection): # Replace pymongo.collection.Collection with MotorCollection return self.database[collection.name] def get_io_loop(self): return self.database.get_io_loop() class MotorCursorChainingMethod(MotorAttributeFactory): def create_attribute(self, cls, attr_name): cursor_method = getattr(Cursor, attr_name) @functools.wraps(cursor_method) def return_clone(self, *args, **kwargs): cursor_method(self.delegate, *args, **kwargs) return self # This is for the benefit of motor_extensions.py return_clone.is_motorcursor_chaining_method = True return_clone.pymongo_method_name = attr_name return return_clone class MotorCursor(MotorBase): __delegate_class__ = Cursor count = AsyncRead() distinct = AsyncRead() explain = AsyncRead() _refresh = AsyncRead() cursor_id = ReadOnlyProperty() alive = ReadOnlyProperty() batch_size = MotorCursorChainingMethod() add_option = MotorCursorChainingMethod() remove_option = MotorCursorChainingMethod() limit = MotorCursorChainingMethod() skip = MotorCursorChainingMethod() max_scan = MotorCursorChainingMethod() sort = MotorCursorChainingMethod() hint = MotorCursorChainingMethod() where = MotorCursorChainingMethod() _Cursor__die = AsyncCommand() def __init__(self, cursor, collection): """You don't construct a MotorCursor yourself, but acquire one from :meth:`MotorCollection.find`. .. note:: There is no need to manually close cursors; they are closed by the server after being fully iterated with :meth:`to_list`, :meth:`each`, or :meth:`fetch_next`, or automatically closed by the client when the :class:`MotorCursor` is cleaned up by the garbage collector. """ self.delegate = cursor self.collection = collection self.started = False self.closed = False def _get_more(self, callback): """ Get a batch of data asynchronously, either performing an initial query or getting more data from an existing cursor. :Parameters: - `callback`: function taking parameters (batch_size, error) """ if not self.alive: raise pymongo.errors.InvalidOperation( "Can't call get_more() on a MotorCursor that has been" " exhausted or killed.") self.started = True self._refresh(callback=callback) @property def fetch_next(self): """A Future used with `gen.coroutine`_ to asynchronously retrieve the next document in the result set, fetching a batch of documents from the server if necessary. Resolves to ``False`` if there are no more documents, otherwise :meth:`next_object` is guaranteed to return a document. .. _`gen.coroutine`: http://tornadoweb.org/en/stable/gen.html .. testsetup:: fetch_next MongoClient().test.test_collection.remove() collection = MotorClient().open_sync().test.test_collection .. doctest:: fetch_next >>> @gen.coroutine ... def f(): ... yield collection.insert([{'_id': i} for i in range(5)]) ... cursor = collection.find().sort([('_id', 1)]) ... while (yield cursor.fetch_next): ... doc = cursor.next_object() ... sys.stdout.write(str(doc['_id']) + ', ') ... print 'done' ... >>> IOLoop.current().run_sync(f) 0, 1, 2, 3, 4, done .. note:: While it appears that fetch_next retrieves each document from the server individually, the cursor actually fetches documents efficiently in `large batches`_. .. _`large batches`: http://docs.mongodb.org/manual/core/read-operations/#cursor-behaviors """ future = Future() if not self._buffer_size() and self.alive: if self.delegate._Cursor__empty: # Special case, limit of 0 future.set_result(False) return future def cb(batch_size, error): if error: future.set_exception(error) else: future.set_result(bool(batch_size)) self._get_more(cb) return future elif self._buffer_size(): future.set_result(True) return future else: # Dead future.set_result(False) return future def next_object(self): """Get a document from the most recently fetched batch, or ``None``. See :attr:`fetch_next`. """ # __empty is a special case: limit of 0 if self.delegate._Cursor__empty or not self._buffer_size(): return None return self.delegate.next() def each(self, callback): """Iterates over all the documents for this cursor. `each` returns immediately, and `callback` is executed asynchronously for each document. `callback` is passed ``(None, None)`` when iteration is complete. Cancel iteration early by returning ``False`` from the callback. (Only ``False`` cancels iteration: returning ``None`` or 0 does not.) .. testsetup:: each MongoClient().test.test_collection.remove() collection = MotorClient().open_sync().test.test_collection .. doctest:: each >>> from tornado.ioloop import IOLoop >>> collection = MotorClient().open_sync().test.collection >>> def inserted(result, error): ... global cursor ... if error: ... raise error ... cursor = collection.find().sort([('_id', 1)]) ... cursor.each(callback=each) ... >>> def each(result, error): ... if error: ... raise error ... elif result: ... sys.stdout.write(str(result['_id']) + ', ') ... else: ... # Iteration complete ... IOLoop.current().stop() ... print 'done' ... >>> collection.insert( ... [{'_id': i} for i in range(5)], callback=inserted) >>> IOLoop.current().start() 0, 1, 2, 3, 4, done .. note:: Unlike other Motor methods, ``each`` requires a callback and does not return a Future, so it cannot be used with ``gen.coroutine.`` :meth:`to_list` or :attr:`fetch_next` are much easier to use. :Parameters: - `callback`: function taking (document, error) """ if not callable(callback): raise callback_type_error self._each_got_more(callback, None, None) def _each_got_more(self, callback, batch_size, error): if error: callback(None, error) return add_callback = self.get_io_loop().add_callback while self._buffer_size() > 0: try: doc = self.delegate.next() # decrements self.buffer_size except StopIteration: # Special case: limit of 0 add_callback(functools.partial(callback, None, None)) self.close() return # Quit if callback returns exactly False (not None). Note we # don't close the cursor: user may want to resume iteration. if callback(doc, None) is False: return if self.alive and (self.cursor_id or not self.started): self._get_more(functools.partial(self._each_got_more, callback)) else: # Complete add_callback(functools.partial(callback, None, None)) def to_list(self, length, callback=None): """Get a list of documents. .. testsetup:: to_list MongoClient().test.test_collection.remove() collection = MotorClient().open_sync().test.test_collection .. doctest:: to_list >>> @gen.coroutine ... def f(): ... yield collection.insert([{'_id': i} for i in range(4)]) ... cursor = collection.find().sort([('_id', 1)]) ... docs = yield cursor.to_list(length=2) ... while docs: ... print docs ... docs = yield cursor.to_list(length=2) ... ... print 'done' ... >>> ioloop.IOLoop.current().run_sync(f) [{u'_id': 0}, {u'_id': 1}] [{u'_id': 2}, {u'_id': 3}] done :Parameters: - `length`: maximum number of documents to return for this call - `callback` (optional): function taking (document, error) If a callback is passed, returns None, else returns a Future. .. versionchanged:: 0.2 `length` parameter is no longer optional. """ length = pymongo.common.validate_positive_integer('length', length) if (self.delegate._Cursor__query_flags & _QUERY_OPTIONS['tailable_cursor']): raise pymongo.errors.InvalidOperation( "Can't call to_list on tailable cursor") if callback and not callable(callback): raise callback_type_error # Special case: limit of 0. if self.delegate._Cursor__empty: if callback: callback([], None) else: future = Future() future.set_result([]) return future the_list = [] if callback: self._to_list_got_more(callback, the_list, length, None, None) else: future = Future() self._to_list_got_more( callback_from_future(future), the_list, length, None, None) return future def _to_list_got_more(self, callback, the_list, length, batch_size, error): if error: callback(None, error) return collection = self.collection fix_outgoing = collection.database.delegate._fix_outgoing if length is None: # No maximum length, get all results, apply outgoing manipulators results = (fix_outgoing(data, collection) for data in self.delegate._Cursor__data) the_list.extend(results) self.delegate._Cursor__data.clear() else: while self._buffer_size() > 0 and len(the_list) < length: the_list.append(fix_outgoing(self.delegate._Cursor__data.popleft(), collection)) if (not self.delegate._Cursor__killed and (self.cursor_id or not self.started) and (length is None or length > len(the_list))): get_more_cb = functools.partial( self._to_list_got_more, callback, the_list, length) self._get_more(callback=get_more_cb) else: callback(the_list, None) def clone(self): """Get a clone of this cursor.""" return MotorCursor(self.delegate.clone(), self.collection) def rewind(self): """Rewind this cursor to its unevaluated state.""" self.delegate.rewind() self.started = False return self def get_io_loop(self): return self.collection.get_io_loop() def close(self, callback=None): """Explicitly kill this cursor on the server. If iterating with :meth:`each`, cease. :Parameters: - `callback` (optional): function taking (result, error). If a callback is passed, returns None, else returns a Future. """ self.closed = True return self._Cursor__die(callback=callback) def __getitem__(self, index): """Get a slice of documents from this cursor. Raises :class:`~pymongo.errors.InvalidOperation` if this cursor has already been used. To get a single document use an integral index, e.g.: .. testsetup:: getitem MongoClient().test.test_collection.remove() collection = MotorClient().open_sync().test.test_collection .. doctest:: getitem >>> @gen.coroutine ... def fifth_item(): ... yield collection.insert([{'i': i} for i in range(10)]) ... cursor = collection.find().sort([('i', 1)])[5] ... yield cursor.fetch_next ... doc = cursor.next_object() ... print doc['i'] ... >>> IOLoop.current().run_sync(fifth_item) 5 Any limit previously applied to this cursor will be ignored. The cursor returns ``None`` if the index is greater than or equal to the length of the result set. .. doctest:: getitem >>> @gen.coroutine ... def one_thousandth_item(): ... cursor = collection.find().sort([('i', 1)])[1000] ... yield cursor.fetch_next ... print cursor.next_object() ... >>> IOLoop.current().run_sync(one_thousandth_item) None To get a slice of documents use a slice index like ``cursor[start:end]``. .. doctest:: getitem >>> @gen.coroutine ... def second_through_fifth_item(): ... cursor = collection.find().sort([('i', 1)])[2:6] ... while (yield cursor.fetch_next): ... doc = cursor.next_object() ... sys.stdout.write(str(doc['i']) + ', ') ... print 'done' ... >>> IOLoop.current().run_sync(second_through_fifth_item) 2, 3, 4, 5, done This will apply a skip of 2 and a limit of 4 to the cursor. Using a slice index overrides prior limits or skips applied to this cursor (including those applied through previous calls to this method). Raises :class:`~pymongo.errors.IndexError` when the slice has a step, a negative start value, or a stop value less than or equal to the start value. :Parameters: - `index`: An integer or slice index to be applied to this cursor """ self._check_not_started() if isinstance(index, slice): # Slicing a cursor does no I/O - it just sets skip and limit - so # we can slice it immediately. self.delegate[index] return self else: if not isinstance(index, (int, long)): raise TypeError("index %r cannot be applied to MotorCursor " "instances" % index) # Get one document, force hard limit of 1 so server closes cursor # immediately return self[self.delegate._Cursor__skip + index:].limit(-1) def _buffer_size(self): # TODO: expose so we don't have to use double-underscore hack return len(self.delegate._Cursor__data) def _check_not_started(self): if self.started: raise pymongo.errors.InvalidOperation( "MotorCursor already started") def __copy__(self): return MotorCursor(self.delegate.__copy__(), self.collection) def __deepcopy__(self, memo): return MotorCursor(self.delegate.__deepcopy__(memo), self.collection) def __del__(self): # This MotorCursor is deleted on whatever greenlet does the last # decref, or (if it's referenced from a cycle) whichever is current # when the GC kicks in. We may need to send the server a killCursors # message, but in Motor only direct children of the main greenlet can # do I/O. First, do a quick check whether the cursor is still alive on # the server: if self.cursor_id and self.alive: if greenlet.getcurrent().parent: # We're on a child greenlet, send the message. self.delegate.close() else: # We're on the main greenlet, start the operation on a child. self.close() class MotorGridOut(MotorOpenable): """Class to read data out of GridFS. Application developers should generally not need to instantiate this class directly - instead see the methods provided by :class:`~motor.MotorGridFS`. """ __delegate_class__ = gridfs.GridOut __getattr__ = DelegateMethod() _id = ReadOnlyProperty() filename = ReadOnlyProperty() name = ReadOnlyProperty() content_type = ReadOnlyProperty() length = ReadOnlyProperty() chunk_size = ReadOnlyProperty() upload_date = ReadOnlyProperty() aliases = ReadOnlyProperty() metadata = ReadOnlyProperty() md5 = ReadOnlyProperty() tell = DelegateMethod() seek = DelegateMethod() read = AsyncRead() readline = AsyncRead() def __init__( self, root_collection, file_id=None, file_document=None, io_loop=None ): if isinstance(root_collection, grid_file.GridOut): # Short cut super(MotorGridOut, self).__init__(root_collection, io_loop) else: if not isinstance(root_collection, MotorCollection): raise TypeError( "First argument to MotorGridOut must be " "MotorCollection, not %r" % root_collection) assert io_loop is None, \ "Can't override IOLoop for MotorGridOut" super(MotorGridOut, self).__init__( None, root_collection.get_io_loop(), root_collection.delegate, file_id, file_document) @gen.coroutine def stream_to_handler(self, request_handler): """Write the contents of this file to a :class:`tornado.web.RequestHandler`. This method will call `flush` on the RequestHandler, so ensure all headers have already been set. For a more complete example see the implementation of :class:`~motor.web.GridFSHandler`. Returns a Future. .. code-block:: python class FileHandler(tornado.web.RequestHandler): @tornado.web.asynchronous @gen.coroutine def get(self, filename): db = self.settings['db'] fs = yield motor.MotorGridFS(db()).open() try: gridout = yield fs.get_last_version(filename) except gridfs.NoFile: raise tornado.web.HTTPError(404) self.set_header("Content-Type", gridout.content_type) self.set_header("Content-Length", gridout.length) yield gridout.stream_to_handler(self) self.finish() .. seealso:: Tornado `RequestHandler <http://tornadoweb.org/en/stable/web.html#request-handlers>`_ """ written = 0 while written < self.length: # Reading chunk_size at a time minimizes buffering chunk = yield self.read(self.chunk_size) # write() simply appends the output to a list; flush() sends it # over the network and minimizes buffering in the handler. request_handler.write(chunk) request_handler.flush() written += len(chunk) class MotorGridIn(MotorOpenable): __delegate_class__ = gridfs.GridIn __getattr__ = DelegateMethod() closed = ReadOnlyProperty() close = AsyncCommand() write = AsyncCommand().unwrap(MotorGridOut) writelines = AsyncCommand().unwrap(MotorGridOut) _id = ReadOnlyProperty() md5 = ReadOnlyProperty() filename = ReadOnlyProperty() name = ReadOnlyProperty() content_type = ReadOnlyProperty() length = ReadOnlyProperty() chunk_size = ReadOnlyProperty() upload_date = ReadOnlyProperty() def __init__(self, root_collection, **kwargs): """ Class to write data to GridFS. If instantiating directly, you must call :meth:`open` before using the `MotorGridIn` object. However, application developers should not generally need to instantiate this class - see :meth:`~motor.MotorGridFS.new_file`. Any of the file level options specified in the `GridFS Spec <http://dochub.mongodb.org/core/gridfsspec>`_ may be passed as keyword arguments. Any additional keyword arguments will be set as additional fields on the file document. Valid keyword arguments include: - ``"_id"``: unique ID for this file (default: :class:`~bson.objectid.ObjectId`) - this ``"_id"`` must not have already been used for another file - ``"filename"``: human name for the file - ``"contentType"`` or ``"content_type"``: valid mime-type for the file - ``"chunkSize"`` or ``"chunk_size"``: size of each of the chunks, in bytes (default: 256 kb) - ``"encoding"``: encoding used for this file. In Python 2, any :class:`unicode` that is written to the file will be converted to a :class:`str`. In Python 3, any :class:`str` that is written to the file will be converted to :class:`bytes`. :Parameters: - `root_collection`: A :class:`MotorCollection`, the root collection to write to - `**kwargs` (optional): file level options (see above) """ if isinstance(root_collection, grid_file.GridIn): # Short cut MotorOpenable.__init__( self, root_collection, kwargs.pop('io_loop', None)) else: if not isinstance(root_collection, MotorCollection): raise TypeError( "First argument to MotorGridIn must be " "MotorCollection, not %r" % root_collection) assert 'io_loop' not in kwargs, ( "Can't override IOLoop for MotorGridIn") MotorOpenable.__init__( self, None, root_collection.get_io_loop(), root_collection.delegate, **kwargs) MotorGridIn.set = asynchronize( MotorGridIn, gridfs.GridIn.__setattr__, False, doc=""" Set an arbitrary metadata attribute on the file. Stores value on the server as a key-value pair within the file document once the file is closed. If the file is already closed, calling `set` will immediately update the file document on the server. Metadata set on the file appears as attributes on a :class:`~MotorGridOut` object created from the file. :Parameters: - `name`: Name of the attribute, will be stored as a key in the file document on the server - `value`: Value of the attribute - `callback`: Optional callback to execute once attribute is set. """) class MotorGridFS(MotorOpenable): __delegate_class__ = gridfs.GridFS new_file = AsyncRead().wrap(grid_file.GridIn) get = AsyncRead().wrap(grid_file.GridOut) get_version = AsyncRead().wrap(grid_file.GridOut) get_last_version = AsyncRead().wrap(grid_file.GridOut) list = AsyncRead() exists = AsyncRead() delete = AsyncCommand() def __init__(self, database, collection="fs"): """ An instance of GridFS on top of a single Database. You must call :meth:`open` before using the `MotorGridFS` object. :Parameters: - `database`: a :class:`MotorDatabase` - `collection` (optional): A string, name of root collection to use, such as "fs" or "my_files" .. mongodoc:: gridfs """ if not isinstance(database, MotorDatabase): raise TypeError("First argument to MotorGridFS must be " "MotorDatabase, not %r" % database) self.collection = database[collection] MotorOpenable.__init__( self, None, database.get_io_loop(), database.delegate, collection) @gen.coroutine def _put(self, data, _callback, **kwargs): try: grid_file = yield MotorGridIn(self.collection, **kwargs).open() # w >= 1 necessary to avoid running 'filemd5' command before # all data is written, especially with sharding. if 0 == self.collection.write_concern.get('w'): raise pymongo.errors.ConfigurationError( "Motor does not allow unacknowledged put() to GridFS") try: yield grid_file.write(data) finally: yield grid_file.close() except Exception, e: if _callback: _callback(None, e) else: raise else: if _callback: _callback(grid_file._id, None) else: raise gen.Return(grid_file._id) def put(self, data, callback=None, **kwargs): """Put data into GridFS as a new file. Equivalent to doing: .. code-block:: python @gen.coroutine def f(data, **kwargs): try: f = yield my_gridfs.new_file(**kwargs) yield f.write(data) finally: yield f.close() `data` can be either an instance of :class:`str` (:class:`bytes` in python 3) or a file-like object providing a :meth:`read` method. If an `encoding` keyword argument is passed, `data` can also be a :class:`unicode` (:class:`str` in python 3) instance, which will be encoded as `encoding` before being written. Any keyword arguments will be passed through to the created file - see :meth:`~MotorGridIn` for possible arguments. Returns the ``"_id"`` of the created file. If the ``"_id"`` of the file is manually specified, it must not already exist in GridFS. Otherwise :class:`~gridfs.errors.FileExists` is raised. :Parameters: - `data`: data to be written as a file. - `callback`: Optional function taking parameters (_id, error) - `**kwargs` (optional): keyword arguments for file creation """ # PyMongo's implementation uses requests, so rewrite for Motor. if callback and not callable(callback): raise callback_type_error future = self._put(data, _callback=callback, **kwargs) if not callback: return future def wrap(self, obj): if obj.__class__ is grid_file.GridIn: return MotorGridIn(obj, io_loop=self.get_io_loop()) elif obj.__class__ is grid_file.GridOut: return MotorGridOut(obj, io_loop=self.get_io_loop()) def Op(fn, *args, **kwargs): """Obsolete; here for backwards compatibility with Motor 0.1. Op had been necessary for ease-of-use with Tornado 2 and @gen.engine. But Motor 0.2 is built for Tornado 3, @gen.coroutine, and Futures, so motor.Op is deprecated. """ msg = "motor.Op is deprecated, simply call %s and yield its Future." % ( fn.__name__) warnings.warn(msg, DeprecationWarning, stacklevel=2) result = fn(*args, **kwargs) assert isinstance(result, Future) return result
36.936945
118
0.608112
73,020
0.877834
4,509
0.054206
13,003
0.15632
0
0
36,141
0.434481
72230a4712ff2722d5fd895c22c3d235aabfdf44
3,544
py
Python
del_dupli_in_fasta.py
ba1/BioParsing
8a0257d4765a7bc86fef7688762abbeaaf3cef07
[ "MIT" ]
1
2017-06-19T15:15:26.000Z
2017-06-19T15:15:26.000Z
del_dupli_in_fasta.py
ba1/BioParsing
8a0257d4765a7bc86fef7688762abbeaaf3cef07
[ "MIT" ]
null
null
null
del_dupli_in_fasta.py
ba1/BioParsing
8a0257d4765a7bc86fef7688762abbeaaf3cef07
[ "MIT" ]
null
null
null
''' Created on Oct 20, 2015 @author: bardya ''' import os import argparse from Bio import SeqIO def parse_args(): parser = argparse.ArgumentParser(description='Delete all duplicate entries (header+sequence) in fasta. If only sequence identical, add "| duplicate" to header.') parser.add_argument('-i', dest='infilepath', metavar='<fasta_file_path>', type=argparse.FileType('rt'), help='path to an fasta file') parser.add_argument('-o', dest='outfilepath', metavar='<fasta_file_path>', type=argparse.FileType('w'), help='path to desired output fasta file') parser.add_argument('-m', dest='mode', metavar='<header|sequence>', type=str, choices=["header", "Header", "sequence", "Sequence"], default="header", help='mode headers checks for "headers and then sequence". Mode sequence searches only for sequence duplicates') parser.add_argument('-k', dest='keep_flag', action="store_true", help='with this options nothing gets deleted. Headers get count number attached to end of the line to make them unique.') parser.add_argument('-rn', dest='rename_flag', action="store_true", help='with this options nothing gets deleted. Headers get replaced by an integer reflecting the count') parser.add_argument('--version', action='version', version='0.12') return parser.parse_args() def readfasta(seqdbfile, keep_flag=False, rename_flag=False): from collections import Counter try: seqs = SeqIO.parse(seqdbfile, "fasta") except: seqs = SeqIO.parse(seqdbfile, "clustal") seqlst = [] dupcount = 0 modcount = 0 for seq in seqs: currIDlst = [e.id for e in seqlst] if rename_flag: seq.id = ">" + str(Counter(seqlst)[str(seq.id)] + 1) modcount += 1 continue if seq.id in currIDlst: ind = currIDlst.index(seq.id) if keep_flag: seq.id = str(seq.id) + "_" + str(Counter(seqlst)[str(seq.id)] + 1) modcount += 1 continue if seqlst[ind].seq == seq.seq: dupcount += 1 continue else: seq.id = str(seq.id) + "_" + str(Counter(seqlst)[str(seq.id)] + 1) modcount += 1 seqlst.append(seq) stats_dict = {"delentries":dupcount, "numofseqs":len(seqlst), "modentries":modcount} return seqlst, stats_dict def printStats(stats_dict): outp = """ #Entries remaining in output:\t{numofseqs} #Entries deleted:\t{delentries} #Headers modified:\t{modentries} """.format(**stats_dict) print(outp) def writefasta(outfile, seqlst): count = SeqIO.write(seqlst, outfile, "fasta") outfile.close() if __name__ == '__main__': args = parse_args() try: inputfile = open(args.infilepath.name, 'r') outputfile = open(args.outfilepath.name, 'w') # if not os.path.basename(args.outfilepath.name) == "basename": # outputfile = open(args.outfilepath.name, 'w') # else: # outputfile = open(os.path.join(os.path.dirname(args.outfilepath.name),os.path.basename(args.infilepath.name) + '_consensus.faa'), 'w') except: print('IOError occured') seqlst, stats_dict = readfasta(args.infilepath.name, keep_flag=args.keep_flag, rename_flag=args.rename_flag) printStats(stats_dict) writefasta(outputfile, seqlst)
35.79798
165
0.615406
0
0
0
0
0
0
0
0
1,285
0.362585
7224268eb003eeb3fc96967b78416eccf0509110
491
py
Python
lclpy/aidfunc/logging.py
nobody1570/lspy
1cf6efbafbbf8ddb54ba7a875e82c562f010edd1
[ "MIT" ]
3
2021-11-27T22:11:38.000Z
2022-02-10T11:42:06.000Z
lclpy/aidfunc/logging.py
nobody1570/lspy
1cf6efbafbbf8ddb54ba7a875e82c562f010edd1
[ "MIT" ]
null
null
null
lclpy/aidfunc/logging.py
nobody1570/lspy
1cf6efbafbbf8ddb54ba7a875e82c562f010edd1
[ "MIT" ]
null
null
null
def log_improvement(value): """function to log improvements to the command line. Parameters ---------- value : int or float The value for the improvement """ print("Improvement : " + str(value)) def log_passed_worse(value): """function to log the passing of worse solutions to the command line. Parameters ---------- value : int or float The value for the improvement """ print("Passed worse: " + str(value))
18.185185
74
0.592668
0
0
0
0
0
0
0
0
368
0.749491
72244921b06692f1b6e6b261aabc73be9e8ccb0e
897
py
Python
tests/test_as_class_methods.py
pokidovea/immobilus
42f115a13b4aa060b7ed186e81fe56e1a07c4b2d
[ "Apache-2.0" ]
13
2016-11-26T16:13:11.000Z
2021-12-21T11:10:50.000Z
tests/test_as_class_methods.py
pokidovea/immobilus
42f115a13b4aa060b7ed186e81fe56e1a07c4b2d
[ "Apache-2.0" ]
20
2017-03-06T00:50:22.000Z
2019-08-26T20:12:39.000Z
tests/test_as_class_methods.py
pokidovea/immobilus
42f115a13b4aa060b7ed186e81fe56e1a07c4b2d
[ "Apache-2.0" ]
6
2017-08-28T07:23:54.000Z
2021-12-03T13:03:50.000Z
# https://github.com/pokidovea/immobilus/issues/30 from immobilus import immobilus # noqa from immobilus.logic import fake_time, fake_localtime, fake_gmtime, fake_strftime, fake_mktime from datetime import datetime class SomeClass(object): method = None def test_fake_time(): SomeClass.method = fake_time instance = SomeClass() instance.method() def test_fake_localtime(): SomeClass.method = fake_localtime instance = SomeClass() instance.method(12345) def test_fake_gmtime(): SomeClass.method = fake_gmtime instance = SomeClass() instance.method(12345) def test_fake_strftime(): SomeClass.method = fake_strftime instance = SomeClass() instance.method('%H:%M') def test_fake_mktime(): SomeClass.method = fake_mktime timetuple = datetime.utcnow().timetuple() instance = SomeClass() instance.method(timetuple)
18.6875
94
0.723523
42
0.046823
0
0
0
0
0
0
63
0.070234
722517ddb7cf57ba0cdaeeaa839501f03c9155b4
322
py
Python
plotter/plotter.py
kalinkinisaac/modular
301d26ad222a5ef3278aaf251908e0a8537bb58f
[ "MIT" ]
null
null
null
plotter/plotter.py
kalinkinisaac/modular
301d26ad222a5ef3278aaf251908e0a8537bb58f
[ "MIT" ]
null
null
null
plotter/plotter.py
kalinkinisaac/modular
301d26ad222a5ef3278aaf251908e0a8537bb58f
[ "MIT" ]
null
null
null
import abc class Plotter(abc.ABC): def __init__(self, ax=None, bokeh_fig=None): if not ax and not bokeh_fig: raise ValueError('ax or bokeh_fig should be provided.') self._ax = ax self._bokeh_fig = bokeh_fig def plot(self, *args, **kwargs): raise NotImplementedError
23
67
0.63354
308
0.956522
0
0
0
0
0
0
37
0.114907
72279efb6ba56531335b2f093691a4196e8f4923
2,531
py
Python
ardupilot/Tools/autotest/param_metadata/wikiemit.py
quadrotor-IITKgp/emulate_GPS
3c888d5b27b81fb17e74d995370f64bdb110fb65
[ "MIT" ]
1
2021-07-17T11:37:16.000Z
2021-07-17T11:37:16.000Z
ardupilot/Tools/autotest/param_metadata/wikiemit.py
arl-kgp/emulate_GPS
3c888d5b27b81fb17e74d995370f64bdb110fb65
[ "MIT" ]
null
null
null
ardupilot/Tools/autotest/param_metadata/wikiemit.py
arl-kgp/emulate_GPS
3c888d5b27b81fb17e74d995370f64bdb110fb65
[ "MIT" ]
null
null
null
#!/usr/bin/env python import re from param import * from emit import Emit # Emit docs in a form acceptable to the APM wiki site class WikiEmit(Emit): def __init__(self): wiki_fname = 'Parameters.wiki' self.f = open(wiki_fname, mode='w') preamble = '''#summary Dynamically generated list of documented parameters = Table of Contents = <wiki:toc max_depth="4" /> = Vehicles = ''' self.f.write(preamble) def close(self): self.f.close def camelcase_escape(self, word): if re.match(r"([A-Z][a-z]+[A-Z][a-z]*)", word.strip()): return "!"+word else: return word def wikichars_escape(self, text): for c in "*,{,},[,],_,=,#,^,~,!,@,$,|,<,>,&,|,\,/".split(','): text = re.sub("\\"+c, '`'+c+'`', text) return text def emit_comment(self, s): self.f.write("\n\n=" + s + "=\n\n") def start_libraries(self): self.emit_comment("Libraries") def emit(self, g, f): t = "\n\n== %s Parameters ==\n" % (self.camelcase_escape(g.name)) for param in g.params: if hasattr(param, 'DisplayName'): t += "\n\n=== %s (%s) ===" % (self.camelcase_escape(param.DisplayName),self.camelcase_escape(param.name)) else: t += "\n\n=== %s ===" % self.camelcase_escape(param.name) if hasattr(param, 'Description'): t += "\n\n_%s_\n" % self.wikichars_escape(param.Description) else: t += "\n\n_TODO: description_\n" for field in param.__dict__.keys(): if field not in ['name', 'DisplayName', 'Description', 'User'] and field in known_param_fields: if field == 'Values' and Emit.prog_values_field.match(param.__dict__[field]): t+= " * Values \n" values = (param.__dict__[field]).split(',') t+="|| *Value* || *Meaning* ||\n" for value in values: v = value.split(':') t+="|| "+v[0]+" || "+self.camelcase_escape(v[1])+" ||\n" else: t += " * %s: %s\n" % (self.camelcase_escape(field), self.wikichars_escape(param.__dict__[field])) #print t self.f.write(t)
34.671233
121
0.468589
2,393
0.945476
0
0
0
0
0
0
646
0.255235
722ad974ef9283199399d93bbd17a334c7d31249
1,038
py
Python
master.py
iAzurel/thepicturesorter
21a3aee26adcfca0838db63be1434f7c49cd9548
[ "MIT" ]
null
null
null
master.py
iAzurel/thepicturesorter
21a3aee26adcfca0838db63be1434f7c49cd9548
[ "MIT" ]
null
null
null
master.py
iAzurel/thepicturesorter
21a3aee26adcfca0838db63be1434f7c49cd9548
[ "MIT" ]
null
null
null
#!/usr/bin/env python from PIL import Image import os, os.path import cv2 import sys # Detect faces, then returns number of faces. def detect_face(image_path, face_cascade): img = cv2.imread(image_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Change the values based on needs. faces = face_cascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=7, minSize=(30, 30), flags = cv2.cv.CV_HAAR_SCALE_IMAGE ) return faces # Moves pictures based on detection of faces. def imagesChecker(): imgs_path = '/home/murtaza/Documents/thepicturesorter/Pictures/' nofacesdir = '/home/murtaza/Documents/thepicturesorter/NoFaces/' face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') imgs = os.listdir(imgs_path) for i in range (0, len(imgs)): faces = detect_face(imgs_path + '/' + imgs[i], face_cascade) if len(faces) == 0: os.rename(os.path.abspath(imgs_path + imgs[i]), nofacesdir + imgs[i]) def main(): imagesChecker() if __name__ == "__main__": main()
23.590909
76
0.716763
0
0
0
0
0
0
0
0
299
0.288054
722c1e45a1768734b80ecc9c4958f9182d017de1
1,241
py
Python
src/si/supervised/Ensemble.py
pg42862/Sistemas_Inteligentes_para_a_MBIONF
5dd5b487da5b3c6a0989274598c911cc639138a3
[ "Apache-2.0" ]
null
null
null
src/si/supervised/Ensemble.py
pg42862/Sistemas_Inteligentes_para_a_MBIONF
5dd5b487da5b3c6a0989274598c911cc639138a3
[ "Apache-2.0" ]
null
null
null
src/si/supervised/Ensemble.py
pg42862/Sistemas_Inteligentes_para_a_MBIONF
5dd5b487da5b3c6a0989274598c911cc639138a3
[ "Apache-2.0" ]
1
2021-11-15T16:15:50.000Z
2021-11-15T16:15:50.000Z
from.Model import Model import numpy as np def majority(values): return max(set(values), key=values.count)#melhor valor def average(values): return sum(values)/len(values)#ou a media class Ensemble(Model): def __init__(self, models, fvote, score): super(Ensemble, self).__init__() self.models = models#lista de modelos self.fvote = fvote#majority ou average self.score = score def fit(self, dataset): self.dataset = dataset for model in self.models: model.fit(dataset) self.is_fitted = True def predict(self, x): assert self.is_fitted, 'Model not fitted' preds = [model.predict(x) for model in self.models]#return de uma lista com o predict the x a partir dos diferentes modelos na lista vote = self.fvote(preds)#vai realizar o majority ou o average dos valores do predict escolhendo o melhor return vote def cost(self, X=None, Y=None): X = X if X is not None else self.dataset.X Y = Y if Y is not None else self.dataset.Y Y_pred = np.ma.apply_along_axis(self.predict, axis=0, arr=X.T)#arr e masked #Y_pred e o nosso masked return self.score(Y, Y_pred)#accuracy_score
32.657895
140
0.65834
1,044
0.841257
0
0
0
0
0
0
292
0.235294
722cd36e985871c8a2f5b1f558365071a7104a73
11,915
py
Python
pygto900.py
marissakotze/timDIMM
dde00a3bb6ca7c3d9b71e24f9363350a0e2a323f
[ "BSD-3-Clause" ]
1
2021-06-06T15:26:36.000Z
2021-06-06T15:26:36.000Z
pygto900.py
marissakotze/timDIMM
dde00a3bb6ca7c3d9b71e24f9363350a0e2a323f
[ "BSD-3-Clause" ]
null
null
null
pygto900.py
marissakotze/timDIMM
dde00a3bb6ca7c3d9b71e24f9363350a0e2a323f
[ "BSD-3-Clause" ]
3
2015-07-29T15:16:35.000Z
2017-12-01T13:02:36.000Z
#!/usr/bin/env python """pygto900 contains commands to interface with a astro-physics gto900 mount """ import serial import io import sys import string import math import time from binutils import * from datetime import datetime from astropy.coordinates import Angle def airmass(a): ang = Angle(90, unit='degree') - a return 1.0/math.cos(ang.radian) class GTO900: def __init__(self, port="/dev/ttyUSB1"): ''' we use the py27-serial package to implement communication.to the telescope. The port may change ''' self.ser = serial.Serial(port, baudrate=9600, bytesize=8, timeout=3) self.catalog={} def __enter__(self): self.clear() self.long_format() self.set_current_date() self.set_local_time() return self def __exit__(self, errtype, value, traceback): self.close() if errtype is not None: raise def command(self, command): self.ser.write(command) def read(self): resp = self.ser.readline() return resp.strip('#') def close(self): self.clear() self.ser.close() #check the result def check(self): result = self.ser.read(1) self.clear() return result #clear all the values def clear(self): self.command('#') #set the format as long def long_format(self): self.command("#:U#") # set the offset from greenwich mean time def set_gmt_offset(hrs): self.command("#:SG %s#" % hrs) return self.check() # set the current longitude def set_longitude(d, m, s): long_str = "%d*%02d:%02d" % (d, m, s) self.command("#:Sg %s#" % long_str ) return self.check() # set the current latitude def set_latitude(d, m, s): lat_str = "%d*%02d:%02d" % (d, m, s) self.command("#:St %s#" % lat_str) return self.check() # set current date (MM/DD/YY) def set_current_date(self): ut = datetime.utcnow() date_str = ut.strftime("%m/%d/%Y") self.command("#:SC %s#" % date_str) blah = self.read() return self.read() # set local time (HH:MM:SS) def set_local_time(self): sast = datetime.now() time_str = sast.strftime("%H:%M:%S") self.command("#:SL %s#" % time_str) return self.check() # get UTC offset from GTO900 def get_UTC_offset(self): self.command("#:GG#") output = self.read() #sign, h, m, s, ds = string.scan(/(.)(\d+):(\d+):(\d+).(\d+)/)[0] return output # get current site longitude def get_longitude(self): self.command("#:Gg#") output = self.read() # sign, d, m, s = string.scan(/(.)(\d+)\*(\d+):(\d+)/)[0] # output = sign + d + ":" + m + ":" + s return output.replace('*', ':') # get current site latitude def get_latitude(self): self.command("#:Gt#") output = self.read() return output.replace('*', ':') # get local time def get_local_time(self): self.command("#:GL#") output = self.read() return output # get local date def get_local_date(self): self.command("#:GC#") output = self.read() output = output.replace(':', '/') return output # get LST def lst(self): self.command("#:GS#") return self.read() #get RA def ra(self): self.command("#:GR#") return self.read() #get dec def dec(self): self.command("#:GD#") d = self.read() d = d.replace('*', ':') return d # read the current altitude from the GTO900 def alt(self): self.command("#:GA#") output = self.read() return output.replace('*', ':') # calculate current GTO900 airmass def airmass(self): a = Angle(self.alt(), unit='degree') return airmass(a) # read the current azimuth from the GTO900 def az(self): self.command("#:GZ#") output = self.read() if output: return output.replace('*',':') else: return None # command the GTO900 to slew to the target RA and Dec def slew(self): self.command("#:MS#") result=self.read() if result: print 'Slewing...' else: print result # command the GTO900 to move in the given direction at # the current guide or centering rate def move(self, mdir): if mdir in ["e","n","s","w"]: self.command("#:M%s#" % mdir) # command the GTO900 to move in the given direction at # the current guide or centering rate # for a given number of ms def move_ms(self,mdir, ms): if mdir in ["e","n","s","w"]: self.command("#:M%s%s#" % (mdir, ms)) # swap north-south buttons def swap_ns(self): self.command("#:NS#") # swap east-west buttons def swap_ew(self): self.command("#:EW#") # command the GTO900 to stop motion in the given direction def halt(self, mdir): if mdir in ["e","n","s","w"]: self.command("#:Q%s#" % mdir) # command the GTO900 to halt all mount motion def haltall(self): self.command("#:Q#") # select guide rate def select_guide_rate(self, rate=''): if rate in ['', '0', '1', '2']: self.command("#:RG%s#" % rate) # select centering rate def select_center_rate(self, rate=''): if rate in ['', '0', '1', '2']: self.command("#:RC%s#" % rate) # set centering rate def set_center_rate(self, rate): if rate > 0 and rate < 256: self.command("#:Rc%s#" % rate) # select slew rate def select_slew_rate(self, rate=''): if rate in ['', '0', '1', '2']: self.command("#:RS%s#" % rate) # set slew rate def set_slew_rate(self, rate): if rate > 0 and rate <= 1200: self.command("#:Rs %s#" % rate) # select tracking rate def select_tracking_rate(self, rate=''): if rate in ['', '0', '1', '2', '9']: self.command("#:RS%s#" % rate) # set RA tracking rate def set_RA_rate(self, rate): self.command("#:RR %s#" % rate) # set Dec tracking rate def set_Dec_rate(self,rate): self.command("#:RD %s#" % rate) # set amount of Dec backlash compensation (in seconds) def set_Dec_backlash(self,sec): self.command("#:Bd 00*00:%s#" % sec) return self.read() # set amount of RA backlash compensation (in seconds) def set_RA_backlash(self, sec): self.command("#:Br 00:00:%s#" %sec) return self.read() # invoke parked mode def park_mode(self): self.command("#:KA#") # park off def park_off(self): self.command("#PO:#") # query pier def pier(self): self.command("#:pS#") return self.read() # sync mount def sync(self): self.command("#:CM#") return self.read() # re-cal mount def recal(self): self.command("#:CMR#") return self.read() # define commanded RA def command_ra(self, h, m, s): r_str = "%02d:%02d:%02d" % (h,m,s) self.command("#:Sr %s#" % r_str) return self.check() def command_ra_raw(self, r): self.command("#:Sr %s#" % r) return self.check() # define commanded Dec def command_dec(self, d, m, s): d_str = "%d*%02d:%02d" % (d,m,s) self.command("#:Sd %s#" % d_str) return self.check() def command_dec_raw(self, d): self.command("#:Sd %s#" % d) return self.check() # define commanded Alt def command_alt(self, d, m, s): alt_str = "+%d*%02d:%02d" % (d,m,s) self.command("#:Sa %s#" % alt_str) return self.check() # define commanded Az def command_az(self, d, m, s): az_str = "%d*%02d:%02d" % (d,m,s) self.command("#:Sz %s#" % az_str) return self.check() # increase reticle brightness def increase_reticle_brightness(self): self.command("#:B+#") # decrease reticle brightness def decrease_reticle_brightness(self): self.command("#:B-#") # command the focuser to move inward (toward the primary) def focus_in(self): self.command("#:F+#") # command the focuser to move outward (away from the primary) def focus_out(self): self.command("#:F-#") # focus fast def focus_fast(self): self.command("#:FF#") # focus slow def focus_slow(self): self.command("#FS#") # halt all focuser motion def focus_halt(self): self.command("#:FQ#") # get telescope firmware def get_firmware(self): self.command("#:V#") return self.read() # startup procedure def startup(self): self.clear() self.clear() self.clear() self.long_format() def status(g): """Chck the values for the telescope""" ra = g.ra() dec = g.dec() lst = g.lst() ha = Angle('%s hour' % lst) - Angle('%s hour' % ra) alt = g.alt() az = g.az() a = Angle(alt, unit='degree') z = airmass(a) p = g.pier() return ra,dec,ha,lst,alt,az,z,p def slew(g, ra, dec, niter=100): """Slew to a location Paramters --------- ra: astropy.coordinates.Angle Right Ascension of source dec: astropy.coordinates.Angle Declination of source niter: int Number of loops to attempt if monitoring progress """ g.command_ra(ra.hms[0], ra.hms[1], ra.hms[2]) g.command_dec(dec.dms[0], dec.dms[1], dec.dms[2]) g.slew() for i in range(niter): try: r = Angle(g.ra(), unit='hour') d = Angle(g.dec(), unit='degree') except Exception,e: print e continue dist = ((r.degree - ra.degree)**2 + (d.degree-dec.degree)**2)**0.5 if dist < 1.0/60.0: print 'Done Slewing' return else: print '%5.2f degrees to go until target' % dist return def init(g): """Initialize the telescope""" print "Initializing mount...." g.startup() return def nudge(g, mdir): """Nudge the telescope in one direction""" g.set_center_rate(10) g.move(mdir) time.sleep(1) g.halt(mdir) time.sleep(1) def usage(): """Print the usage string""" usage_str = """ Usage for pygto900: python pygto900 [init/status/log/move/nudge/slew/sync/park/help] [optional] """ print usage_str if __name__=='__main__': task = sys.argv[1].lower() if len(sys.argv) < 2: usage() exit() if task in ['help']: usage() exit() with GTO900() as g: if task == 'status': results = status(g) output ="At RA = %s, Dec = %s, HA = %s, LST = %s, Alt = %s, Az = %s, secz = %.2f, on the %s side of the pier" % results print output elif task == 'log': results = status(g) print '%s %s %s %s %s %s %.2f %s' % results elif task == 'init': init(g) elif task == 'park': g.park_mode() elif task == 'park_off': g.park_off() elif task == 'sync': g.sync() elif task == 'move': g.move(sys.argv[2]) elif task == 'nudge': nudge(g, sys.argv[2]) elif task == 'slew': ra = Angle(sys.argv[2], unit='hour') dec = Angle(sys.argv[3], unit='degree') slew(g, ra, dec) elif task == 'help': usage() else: usage() #y=GTO900() #print y.ra(), y.dec() #y.lst(), y.get_local_time(), y.get_local_date() #print y.get_UTC_offset(), y.get_longitude(), y.get_latitude() #print y.command_ra(12,01,34) #print y.command_dec(-37,01,34) #print y.slew() #print y.ra(), y.dec() #print y.alt(), y.az() #print y.move('e') #print y.alt(), y.az()
24.56701
130
0.544943
8,531
0.715988
0
0
0
0
0
0
3,834
0.321779
7230fd2e2774f3460096d023d321613a2a314e63
2,850
py
Python
webscripts/plotlygraphs.py
KathrynDH/DataDashboard
1bf61497480f778a1c7cc9ce9fc7fb48b3067606
[ "MIT" ]
null
null
null
webscripts/plotlygraphs.py
KathrynDH/DataDashboard
1bf61497480f778a1c7cc9ce9fc7fb48b3067606
[ "MIT" ]
null
null
null
webscripts/plotlygraphs.py
KathrynDH/DataDashboard
1bf61497480f778a1c7cc9ce9fc7fb48b3067606
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Jun 23 15:56:55 2021 @author: Kathryn Haske Create plotly graphs for webpage """ import pandas as pd import plotly.graph_objs as go def line_graph(x_list, df, name_col, y_cols, chart_title, x_label, y_label): """ Function to create plotly line graph Args: x_list (list): graph x values df (Pandas DataFrame): dataframe to use for series and y-values name_col (string): df column to use for series names y_cols (int or slice object): df column numbers to use for y-values chart_title (string): title for chart x_label (string): label for x-axis y_label (string): label for y-axis Returns: dictionary for plotly line graph """ graph = [] for index, row in df.iterrows(): graph.append(go.Scatter( x = x_list, y = row.tolist()[y_cols], mode = 'lines', name = row[name_col] )) graph_layout = dict(title = chart_title, xaxis = dict(title = x_label), yaxis = dict(title = y_label), ) return dict(data=graph, layout=graph_layout) def scatter_plot(x_vals, y_vals, names, chart_title, x_label, y_label): """ Function to create plotly scatter plot Args: x_vals (list): graph x values y_vals (list): graph y values names (list of strings): title for each marker chart_title (string): title for chart x_label (string): label for x-axis y_label (string): label for y-axis Returns: dictionary for plotly scatter plot """ graph= [go.Scatter( x = x_vals, y = y_vals, mode = 'markers', text=names, marker=dict( color=y_vals, #set color equal to a variable colorscale='Viridis' # plotly colorscale ) )] graph_layout = dict(title = chart_title, xaxis = dict(title = x_label), yaxis = dict(title = y_label), ) return dict(data=graph, layout=graph_layout) def bar_chart(x_vals, y_vals, chart_title, x_label, y_label): """ Function to create plotly bar graph Args: x_vals (list): graph x values y_vals (list): graph y values chart_title (string): title for chart x_label (string): label for x-axis y_label (string): label for y-axis Returns: dictionary for plotly bar graph """ graph = [go.Bar( x = x_vals, y = y_vals )] graph_layout = dict(title = chart_title, xaxis = dict(title = x_label), yaxis = dict(title = y_label), ) return dict(data=graph, layout=graph_layout)
27.403846
76
0.567018
0
0
0
0
0
0
0
0
1,431
0.502105
72314feeba462045a5c4c66db5b70dc7ce89e3a1
2,505
py
Python
jsl/experimental/seql/agents/bfgs_agent.py
AdrienCorenflos/JSL
8a3ba27179a2bd90207214fccb81df884b05c3d0
[ "MIT" ]
null
null
null
jsl/experimental/seql/agents/bfgs_agent.py
AdrienCorenflos/JSL
8a3ba27179a2bd90207214fccb81df884b05c3d0
[ "MIT" ]
null
null
null
jsl/experimental/seql/agents/bfgs_agent.py
AdrienCorenflos/JSL
8a3ba27179a2bd90207214fccb81df884b05c3d0
[ "MIT" ]
null
null
null
import jax.numpy as jnp from jax import vmap from jax.scipy.optimize import minimize import chex import typing_extensions from typing import Any, NamedTuple import warnings from jsl.experimental.seql.agents.agent_utils import Memory from jsl.experimental.seql.agents.base import Agent from jsl.experimental.seql.utils import posterior_noise, mse Params = Any class ModelFn(typing_extensions.Protocol): def __call__(self, params: chex.Array, inputs: chex.Array): ... class ObjectiveFn(typing_extensions.Protocol): def __call__(self, params: chex.Array, inputs: chex.Array, outputs: chex.Array, model_fn: ModelFn): ... class BeliefState(NamedTuple): params: Params class Info(NamedTuple): # True if optimization succeeded success: bool ''' 0 means converged (nominal) 1=max BFGS iters reached 3=zoom failed 4=saddle point reached 5=max line search iters reached -1=undefined ''' status: int # final function value. loss: float def bfgs_agent(objective_fn: ObjectiveFn = mse, model_fn: ModelFn = lambda mu, x: x @ mu, obs_noise: float = 0.01, buffer_size: int = jnp.inf, threshold: int = 1): assert threshold <= buffer_size memory = Memory(buffer_size) def init_state(x: chex.Array): return BeliefState(jnp.squeeze(x)) def update(belief: BeliefState, x: chex.Array, y: chex.Array): assert buffer_size >= len(x) x_, y_ = memory.update(x, y) if len(x_) < threshold: warnings.warn("There should be more data.", UserWarning) info = Info(False, -1, jnp.inf) return belief, info optimize_results = minimize(objective_fn, belief.params, (x_, y_, model_fn), method="BFGS") info = Info(optimize_results.success, optimize_results.status, optimize_results.fun) return BeliefState(optimize_results.x), info def predict(belief: BeliefState, x: chex.Array): d, *_ = x.shape noise = obs_noise * jnp.eye(d) return model_fn(belief.params, x), noise return Agent(init_state, update, predict)
26.09375
68
0.578842
744
0.297006
0
0
0
0
0
0
259
0.103393
72320fd783db7905693b184e50b586992cf4d02b
2,379
py
Python
abusech/urlhaus.py
threatlead/abusech
6c62f51f773cb17ac6943d87fb697ce1e9dae049
[ "MIT" ]
null
null
null
abusech/urlhaus.py
threatlead/abusech
6c62f51f773cb17ac6943d87fb697ce1e9dae049
[ "MIT" ]
null
null
null
abusech/urlhaus.py
threatlead/abusech
6c62f51f773cb17ac6943d87fb697ce1e9dae049
[ "MIT" ]
null
null
null
from .abusech import AbuseCh from collections import namedtuple from datetime import datetime class UrlHaus(AbuseCh): base_url = 'https://urlhaus.abuse.ch' urls = namedtuple('UrlHaus', ['id', 'date_added', 'url', 'url_status', 'threat', 'tags', 'urlhaus_link', 'reporter']) payloads = namedtuple('Payload', ['timestamp', 'url', 'type', 'md5', 'sha256', 'signature']) def parse_url_csv(self, urllist): data = [] for row in urllist: data.append(self.urls( id=int(row[0].strip('"')), date_added=datetime.strptime(row[1].strip('"'), self.date_format), url=row[2].strip('"'), url_status=row[3].strip('"'), threat=row[4].strip('"'), tags=row[5].strip('"'), urlhaus_link=row[6].strip('"'), reporter=row[7].strip('"') )) return data def get_data_dump(self): response = self.get_url(url='{0}/downloads/csv/'.format(self.base_url)) urllist = self.parse_validate_csv(response=response, columns=8) return self.parse_url_csv(urllist=urllist) def get_recent_urls(self): response = self.get_url(url='{0}/downloads/csv_recent/'.format(self.base_url)) urllist = self.parse_validate_csv(response=response, columns=8) return self.parse_url_csv(urllist=urllist) def get_online_urls(self): response = self.get_url(url='{0}/downloads/csv_online/'.format(self.base_url)) urllist = self.parse_validate_csv(response=response, columns=8) return self.parse_url_csv(urllist=urllist) def get_payloads(self): response = self.get_url(url='{0}/downloads/payloads/'.format(self.base_url)) urllist = self.parse_validate_csv(response=response, columns=6) data = [] for row in urllist: data.append(self.payloads( timestamp=datetime.strptime(row[0].strip('"'), self.date_format), url=row[1].strip('"'), type=row[2].strip('"').lower(), md5=row[3].strip('"') if len(row[3].strip('"')) == 32 else None, sha256=row[4].strip('"') if len(row[4].strip('"')) == 64 else None, signature=None if row[5].strip('"').lower() == "none" else row[5].strip('"').lower(), )) return data
43.254545
121
0.584279
2,282
0.959227
0
0
0
0
0
0
317
0.133249
7232736c521560e15f88e41ebeb5b1e597203059
114
py
Python
ufmt/tests/__init__.py
pmeier/ufmt
29385731d3399d065968921b7502d321acf6faef
[ "MIT" ]
null
null
null
ufmt/tests/__init__.py
pmeier/ufmt
29385731d3399d065968921b7502d321acf6faef
[ "MIT" ]
null
null
null
ufmt/tests/__init__.py
pmeier/ufmt
29385731d3399d065968921b7502d321acf6faef
[ "MIT" ]
null
null
null
# Copyright 2021 John Reese # Licensed under the MIT license from .cli import CliTest from .core import CoreTest
19
32
0.789474
0
0
0
0
0
0
0
0
59
0.517544
7233257f2eb3efc2be88861adf3e83bb76f78498
442
py
Python
tests/components/eafm/conftest.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
2
2021-05-19T19:05:08.000Z
2021-06-06T06:51:05.000Z
tests/components/eafm/conftest.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
56
2020-08-03T07:30:54.000Z
2022-03-31T06:02:04.000Z
tests/components/eafm/conftest.py
erogleva/core
994ae09f69afe772150a698953c0d7386a745de2
[ "Apache-2.0" ]
2
2020-12-25T16:31:22.000Z
2020-12-30T20:53:56.000Z
"""eafm fixtures.""" import pytest from tests.async_mock import patch @pytest.fixture() def mock_get_stations(): """Mock aioeafm.get_stations.""" with patch("homeassistant.components.eafm.config_flow.get_stations") as patched: yield patched @pytest.fixture() def mock_get_station(): """Mock aioeafm.get_station.""" with patch("homeassistant.components.eafm.sensor.get_station") as patched: yield patched
22.1
84
0.719457
0
0
328
0.742081
364
0.823529
0
0
189
0.427602
7233678cd98a3bf61296f7c1aa2006b01024a6ac
5,894
py
Python
thorbanks/checks.py
Jyrno42/django-thorbanks
a8e2daf20b981aecb0c8ee76b0474b6c8e2baad1
[ "BSD-3-Clause" ]
6
2015-06-15T12:47:05.000Z
2019-04-24T01:32:12.000Z
thorbanks/checks.py
Jyrno42/django-thorbanks
a8e2daf20b981aecb0c8ee76b0474b6c8e2baad1
[ "BSD-3-Clause" ]
13
2015-12-23T14:29:26.000Z
2021-02-18T18:35:56.000Z
thorbanks/checks.py
Jyrno42/django-thorbanks
a8e2daf20b981aecb0c8ee76b0474b6c8e2baad1
[ "BSD-3-Clause" ]
3
2016-08-08T10:35:39.000Z
2020-12-29T23:10:55.000Z
import os from django.conf import settings from django.core.checks import Error, register from thorbanks.settings import configure, parse_banklinks @register def check_model_settings(app_configs, **kwargs): issues = [] manual_models = getattr(settings, "THORBANKS_MANUAL_MODELS", None) if manual_models is None: # No manual models # If no manual models then we need to ensure that `thorbanks_models` is configured correctly if "thorbanks_models" not in settings.INSTALLED_APPS: issues.append( Error( "thorbanks_models must be added to settings.INSTALLED_APPS when not using THORBANKS_MANUAL_MODELS", id="thorbanks.E001", ) ) migration_modules = getattr(settings, "MIGRATION_MODULES", {}) if not migration_modules.get("thorbanks_models", ""): issues.append( Error( "Thorbanks is missing from settings.MIGRATION_MODULES", hint="Add it to your settings like this - `MIGRATION_MODULES = " '{ "thorbanks_models": "shop.thorbanks_migrations" }.', id="thorbanks.E002", ) ) else: if manual_models is not None and not isinstance(manual_models, dict): issues.append( Error( "settings.THORBANKS_MANUAL_MODELS must be a dict", hint="See docstring of thorbanks.settings.get_model.", id="thorbanks.E003", ) ) if "thorbanks_models" in settings.INSTALLED_APPS: issues.append( Error( "thorbanks_models should not be added to " "settings.INSTALLED_APPS when using THORBANKS_MANUAL_MODELS", id="thorbanks.E011", ) ) return issues @register def check_banklink_settings(app_configs, **kwargs): issues = [] links = parse_banklinks(getattr(settings, "BANKLINKS", None)) if links and isinstance(links, dict): # Verify it contains valid data for bank_name, data in links.items(): if len(bank_name) > 16: issues.append( Error( "settings.BANKLINKS keys are limited to 16 characters ({})".format( bank_name ), hint="See docstring of thorbanks.settings.parse_banklinks.", id="thorbanks.E005", ) ) if not isinstance(data, dict): issues.append( Error( "settings.BANKLINKS['{}'] must be a dict with settings for the bank".format( bank_name ), hint="See docstring of thorbanks.settings.parse_banklinks.", id="thorbanks.E006", ) ) continue required_keys = [ "REQUEST_URL", "PRIVATE_KEY", "PUBLIC_KEY", "CLIENT_ID", "BANK_ID", "PROTOCOL", "PRINTABLE_NAME", "IMAGE_PATH", "TYPE", "ORDER", ] if data["PROTOCOL"] == "ipizza": for key in required_keys: if key not in data or data[key] is None: issues.append( Error( "settings.BANKLINKS['{}']: {} is required".format( bank_name, key ), hint="See docstring of thorbanks.settings.parse_banklinks.", id="thorbanks.E007", ) ) if data["PUBLIC_KEY"] is not None and not os.path.isfile( data["PUBLIC_KEY"] ): issues.append( Error( "settings.BANKLINKS['{}']: PUBLIC_KEY file `{}` does not exist".format( bank_name, data["PUBLIC_KEY"] ), hint="See docstring of thorbanks.settings.parse_banklinks.", id="thorbanks.E008", ) ) if data["PRIVATE_KEY"] is not None and not os.path.isfile( data["PRIVATE_KEY"] ): issues.append( Error( "settings.BANKLINKS['{}']: PRIVATE_KEY file `{}` does not exist".format( bank_name, data["PRIVATE_KEY"] ), hint="See docstring of thorbanks.settings.parse_banklinks.", id="thorbanks.E009", ) ) else: issues.append( Error( "settings.BANKLINKS['{}']: PROTOCOL must be ipizza".format( bank_name ), hint="See docstring of thorbanks.settings.parse_banklinks.", id="thorbanks.E010", ) ) else: issues.append( Error( "settings.BANKLINKS must be a dict", hint="See docstring of thorbanks.settings.parse_banklinks for reference.", id="thorbanks.E004", ) ) configure() return issues
35.293413
119
0.449779
0
0
0
0
5,738
0.973532
0
0
1,868
0.316932
72349a7b999fcd7724c457b5d3ee54f95ec82969
36,028
py
Python
otk/trains.py
draustin/otk
c6e91423ec79b85b380ee9385f6d27c91f92503d
[ "MIT" ]
7
2020-05-17T14:26:42.000Z
2022-02-14T04:52:54.000Z
otk/trains.py
uamhforever/otk
c6e91423ec79b85b380ee9385f6d27c91f92503d
[ "MIT" ]
17
2020-04-10T22:50:00.000Z
2020-06-18T04:54:19.000Z
otk/trains.py
uamhforever/otk
c6e91423ec79b85b380ee9385f6d27c91f92503d
[ "MIT" ]
1
2022-02-14T04:52:45.000Z
2022-02-14T04:52:45.000Z
"""Defining and analysing axisymmetric optical systems.""" import itertools from functools import singledispatch from dataclasses import dataclass from abc import ABC, abstractmethod from typing import Sequence, Tuple, Mapping import numpy as np import scipy.optimize from . import abcd, paraxial, functions, ri from .functions import calc_sphere_sag # TODO Make Interface composition of Surface and refractive indeices. @dataclass class Interface: """An interface between two media in an axisymmetric optical system. Attributes: n1: Refractive index on first side. n2: Index on second side. roc (scalar): Radius of curvature. radius (scalar): Radius/half-diagonal of interface. """ n1: ri.Index n2: ri.Index roc: float radius: float def __post_init__(self): self.sag = functions.calc_sphere_sag(self.roc, self.radius) def __str__(self): return '%s - ROC %.3g mm, radius %.3g mm - %s'%(self.n1, self.roc*1e3, self.radius*1e3, self.n2) # # def __repr__(self): # return 'Interface(n1=%r, n2=%r, roc=%g, radius=%g)'%(self.n1, self.n2, self.roc, self.radius) def get_abcd(self, lamb): return abcd.curved_interface(self.n1(lamb), self.n2(lamb), self.roc) def make_parameter_string(self): if np.isfinite(self.roc): return 'ROC %.3f mm'%(self.roc*1e3) else: return 'plane' def reverse(self): return Interface(self.n2, self.n1, -self.roc, self.radius) def get_points(self, num_points=32): """Returns (num_points, 2) array.""" x = np.linspace(-self.radius, self.radius, num_points) # TODO use calc_sag. h = calc_sphere_sag(self.roc, x) xys = np.c_[x, h] return xys def calc_sag(self, rho, derivative: bool = False): """Calculate sag of surface. Positive ROC means positive sag. Args: rho: Distance from center. derivative: If True, derivative is returned as well. """ sag = functions.calc_sphere_sag(self.roc, rho) if derivative: grad_sag = functions.calc_sphere_sag(self.roc, rho, True) return sag, grad_sag else: return sag def calc_aperture(self, x, y, shape: str): """Returns binary aperture mask at (x, y).""" if shape == 'circle': return x**2 + y**2 <= self.radius elif shape == 'square': half_side = self.radius/2**0.5 return (abs(x) <= half_side) & (abs(y) <= half_side) else: raise ValueError(f'Unknown shape {shape}.') def calc_mask(self, lamb, rho, derivative: bool = False): n1 = self.n1(lamb) n2 = self.n2(lamb) jdeltak = 2.j*np.pi/lamb*(n1 - n2) sag, grad_sag = self.calc_sag(rho, True) f = np.exp(jdeltak*sag) if derivative: gradf = jdeltak*grad_sag*f return f, gradf else: return f @dataclass class ConicInterface(Interface): """An Interface with conic and aspheric terms. We take kappa as defined in Spencer and Murty, JOSA 52(6) p 672, 1962. Note that in some other contexts, k = kappa - 1 is used as the conic constant. This is the case in Zemax i.e. kappa here equals Zemax conic constant plus 1. Useful links: https://www.iap.uni-jena.de/iapmedia/de/Lecture/Advanced+Lens+Design1393542000/ALD13_Advanced+Lens+Design+7+_+Aspheres+and+freeforms.pdf Args: n1: Index on first side. n2: Index on second side. roc (scalar): Radius of curvature. kappa (scalar): Conic parameter. Special values: kappa < 0: Hyperboloid. kappa = 0: Paraboloid. 0 < kappa < 1: Elipsoid of revolution about major axis. kappa = 1: Sphere kappa > 1: Elipsoid of revolution about minor axis. alphas (sequence): Second and higher order coefficients. """ kappa: float alphas: Sequence def __post_init__(self): self.alphas = np.asarray(self.alphas) def __str__(self): return '%s - ROC %g mm, radius %g mm, kappa %.3f, alphas %s - %s)'%( self.n1, self.roc*1e3, self.radius*1e3, self.kappa, ', '.join('%g'%v for v in self.alphas), self.n2) # # def __repr__(self): # return 'ConicInterface(%r, %r, %r, %r, %r, %r)'%( # self.n1, self.n2, self.roc, self.radius, self.kappa, self.alphas) def reverse(self): return ConicInterface(self.n2, self.n1, -self.roc, self.radius, self.kappa, -self.alphas) def calc_sag(self, rho, derivative: bool = False): """Calculate sag of surface. Positive ROC means positive sag. Args: rho: Distance from center. derivative: If True, tuple of sag and its derivative is returned. """ sag = functions.calc_conic_sag(self.roc, self.kappa, self.alphas, rho, False) if derivative: grad_sag = functions.calc_conic_sag(self.roc, self.kappa, self.alphas, rho, True) return sag, grad_sag else: return sag @dataclass class Train: """Immutable class representing a sequence of Interfaces with defined spaces in between and at the ends. Systems that begins and/or ends on an interface is handled as special cases by setting the first and/or last element of spaces to zero. TODO If needed, many methods are candidates for memoization. TODO make frozen TODO add make method instead of correcting in post_init (cleaner type checking). """ interfaces: Tuple[Interface] spaces: Tuple[float] def __post_init__(self): assert len(self.spaces) == len(self.interfaces) + 1 # assert interfaces[0].n1 is None # assert interfaces[-1].n2 is None for i0, i1 in zip(self.interfaces[:-1], self.interfaces[1:]): assert i0.n2 == i1.n1 self.interfaces = tuple(self.interfaces) self.spaces = tuple(float(space) for space in self.spaces) self.length = sum(self.spaces) # self.mf = self._calc_abcd() # self.mb = np.linalg.inv(self.mf) def __str__(self): def format_space(s): return f'{s*1e3:.3g} mm' return format_space(self.spaces[0]) + ' / ' + ' / '.join(f'{i} / {format_space(s)}' for i, s in zip(self.interfaces, self.spaces[1:])) def make_parameter_strings(self): strs = ['total length %.3f mm'%(self.length*1e3)] interface = self.interfaces[0] strs.append('%s, thickness %.3f mm'%(interface.n1, self.spaces[0]*1e3)) for interface, space in zip(self.interfaces, self.spaces[1:]): strs.append(interface.make_parameter_string()) strs.append('%s, thickness %.3f mm'%(interface.n2, space*1e3)) return tuple(strs) def pad(self, space0, space1=None): if space1 is None: space1 = space0 spaces = (self.spaces[0] + space0,) + self.spaces[1:-1] + (self.spaces[-1] + space1,) return Train(self.interfaces, spaces) def pad_to_transform(self, lamb=None): """Pad first and last space so train performs Fourier transform. Returns: train: Same as original except that first and last space are modified. """ return self.pad(*self.get_working_distances( lamb)) # ws = self.working_distances # spaces = (self.spaces[0] + ws[0],) + self.spaces[1:-1] + (self.spaces[-1] + ws[1],) # return Train(self.interfaces, spaces) def calc_abcd(self, lamb=None): m = abcd.propagation(self.spaces[0]) for interface, space in zip(self.interfaces, self.spaces[1:]): # Apply interface. m = np.matmul(interface.get_abcd(lamb), m) # Propagate to next surface (or exit surface). m = np.matmul(abcd.propagation(space), m) return m def calc_abcd_bi(self, lamb=None): mf = self.calc_abcd(lamb) mb = np.linalg.inv(mf) return mf, mb def get_focal_lengths(self, lamb=None): """Rear and front focal lengths.""" mf, mb = self.calc_abcd_bi(lamb) return np.asarray((1/mb[1, 0], -1/mf[1, 0])) def get_effective_focal_length(self, lamb=None): focal_lengths = self.get_focal_lengths(lamb) efl = focal_lengths[0]/self.interfaces[0].n1(lamb) assert np.isclose(focal_lengths[1]/self.interfaces[-1].n2(lamb), efl) return efl def get_working_distances(self, lamb=None): # Move this into abcd module? mf, mb = self.calc_abcd_bi(lamb) wf = -mf[0, 0]/mf[1, 0] wb = mb[0, 0]/mb[1, 0] return wb, wf def get_principal_planes(self, lamb=None): """Calculate principal planes. The distances are defined from the ends of the system, including the first and last spaces. They are positive to the right. Returns: ppb, ppf: Distances to principal planes before and after the system. """ fb, ff = self.get_focal_lengths(lamb) wb, wf = self.get_working_distances(lamb) ppb = fb - wb ppf = wf - ff return ppb, ppf def get_petzval_sum(self, lamb=None): """Calculate Petzval sum of train. Args: lamb (scalar): Wavelength. Returns: scalar: Petzval sum. """ ns = itertools.chain((i.n1 for i in self.interfaces), [self.interfaces[-1].n2]) n0s = [n(lamb) for n in ns] rocs = [i.roc for i in self.interfaces] return paraxial.calc_multi_element_lens_petzval_sum(n0s, rocs) @classmethod def make_singlet_transform1(cls, n: ri.Index, ws: Tuple[float, float], f: float, radius: float, lamb: float = None, interface_class=Interface, interface_args=None, interface_kwargs=None, n_ext: ri.Index = ri.vacuum) -> 'Train': """Make a singlet Fourier transform given working distances and focal length. Args: n (ri.Index): Defines refractive index. w (scalar of pair of scalars): Working distance(s). f (scalar): Transform focal length. lamb (scalar): Design wavelength. Returns: roc: radius of curvature d: center thickness """ try: ws = ws[0], ws[1] except TypeError: ws = ws, ws if interface_args is None: interface_args = (), () if interface_kwargs is None: interface_kwargs = {}, {} rocs, d = paraxial.design_singlet_transform(n(lamb), ws, f, n_ext(lamb)) interfaces = (interface_class(n_ext, n, rocs[0], radius, *interface_args[0], **interface_kwargs[0]), interface_class(n, n_ext, rocs[1], radius, *interface_args[1], **interface_kwargs[1])) train = cls(interfaces, (ws[0], d, ws[1])) return train @classmethod def make_singlet_transform2(cls, n, f, shape, thickness, radius, lamb=None): """Make singlet transform given shape and thickness. Args: n: Refractive index. f: Focal length. shape: Coddington shape factor. 0 = symmetric. +1 is convex-plano, -1 is plano-convex. thickness: Center thickness. lamb (scalar): Design wavelength. Returns: Train object, including working distances. """ n0 = n(lamb) rocs = paraxial.design_singlet(n0, f, shape, thickness) f, h1, h2 = paraxial.calc_thick_spherical_lens(n0, *rocs, thickness) interfaces = Interface(ri.vacuum, n, rocs[0], radius), Interface(n, ri.vacuum, rocs[1], radius) train = Train(interfaces, (f - h1, thickness, f + h2)) assert np.allclose(train.get_focal_lengths(lamb), (f, f)) assert np.allclose(train.get_working_distances(lamb), (0, 0)) return train @classmethod def design_singlet(cls, n:ri.Index, f:float, shape:float, thickness:float, radius:float, lamb=None, ne=ri.vacuum): """Make train representing a singlet lens. Args: n: Lens refractive index. f: Focal length, inverse of lens power. Sometimes called effective focal length. Distance to focus of parallel rays divided by external refractive index. shape: Coddington shape factor. 0 = symmetric. +1 is convex-plano, -1 is plano-convex. thickness: Center thickness. radius: Radius/half-diagonal. lamb: Design wavelength. ne: External refractive index. Returns: Train: First and last space is zero. """ n0 = n(lamb) ne0 = ne(lamb) rocs = paraxial.design_singlet(n0, f, shape, thickness, ne0) f_, h1, h2 = paraxial.calc_thick_spherical_lens(n0, *rocs, thickness, ne0) assert np.isclose(f_, f) interfaces = Interface(ne, n, rocs[0], radius), Interface(n, ne, rocs[1], radius) train = Train(interfaces, (0, thickness, 0)) assert np.allclose(train.get_focal_lengths(lamb)/ne0, f) return train def make_singlet_transform_conic(cls, n, ws, f, radius, lamb=None, kappas=(1, 1), alphass=((), ())): return cls.make_singlet_transform1(n, ws, f, lamb, radius, ConicInterface, list(zip(kappas, alphass))) def reverse(self): interfaces = tuple(i.reverse() for i in self.interfaces[::-1]) return Train(interfaces, self.spaces[::-1]) def __add__(self, other): interfaces = self.interfaces + other.interfaces if len(self.interfaces) > 0 and len(other.interfaces) > 0: assert self.interfaces[-1].n2 == other.interfaces[0].n1 spaces = self.spaces[:-1] + (self.spaces[-1] + other.spaces[0],) + other.spaces[1:] return Train(interfaces, spaces) def pad_to_half_transform(self, lamb: float = None, inner_space: float = None, f: float = None): """Adjust input and output space to perform half of a lens. Only one of inner_space and f should be given. Args: lamb: Design wavelength. inner_space: Space added between self and reversed self. f: Focal length of resulting transform. Returns: train """ if inner_space is None: # Need to add the inner principal plane distances. inner_space = paraxial.infer_combined_lens_separation(*self.get_focal_lengths(lamb), f) + 2* \ self.get_principal_planes(lamb)[1] else: assert f is None pair = (self + Train([], [inner_space]) + self.reverse()).pad_to_transform(lamb) train = Train(self.interfaces, (pair.spaces[0],) + self.spaces[1:-1] + (self.spaces[-1] + inner_space/2,)) return train def make_html_table(self, doc, lamb=None): """Make HTML table list spaces and interfaces. Args: doc (yattag.Doc object): Table is added to this. """ with doc.tag('table', cellspacing=10): doc.line('caption', 'List of material, its thickness, and profile of the following interface') with doc.tag('tr'): doc.line('th', 'Color') doc.line('th', 'Material') doc.line('th', 'Index') doc.line('th', 'Thickness (mm)') doc.line('th', 'ROC (mm)') n = self.interfaces[0].n1 for space, interface in zip(self.spaces, self.interfaces + (None,)): with doc.tag('tr'): color = n.section_color if color is None: color = (1, 1, 1) # doc.line('td', ' ', bgcolor='rgb(%d,%d,%d)'%tuple(int(round(c*255)) for c in color), width=100) doc.line('td', ' ', style='background-color:rgb(%d,%d,%d)'%tuple(int(round(c*255)) for c in color), width=100) doc.line('td', n.name) doc.line('td', n(lamb)) doc.line('td', '%.3f'%(space*1e3)) if interface is not None: doc.line('td', '%.3f mm'%(interface.roc*1e3)) n = interface.n2 def subset(self, start: int = None, stop: int = None): """Make train consisting of interval subset of interfaces.""" if start is None: start = 0 if stop is None: stop = len(self.interfaces) if stop < 0: spaces_stop = stop + len(self.spaces) else: spaces_stop = stop + 1 return Train(self.interfaces[start:stop], self.spaces[start:spaces_stop]) def crop_to_finite(self) -> 'Train': # Crop to exclude surfaces of infinite thickness. infs = [n for n, space in enumerate(self.spaces) if np.isinf(space)] if len(infs) == 0: cropped = self else: if len(infs) == 1: inf = infs[0] if inf < len(self.spaces)/2: spaces = (0.,) + self.spaces[inf + 1:] interfaces = self.interfaces[inf:] else: spaces = self.spaces[:inf] + (0.,) interfaces = self.interfaces[:inf] else: raise ValueError(f"Don't know how to handle {len(infs)} surfaces with infinite thickness.") cropped = Train(interfaces, spaces) return cropped def consolidate(self) -> 'Train': """Remove interfaces with same material on either side.""" # Remove same material interfaces space = self.spaces[0] n = self.interfaces[0].n1 spaces = [] interfaces = [] for next_space, interface in zip(self.spaces[1:], self.interfaces): if interface.n2 == n: space += next_space else: spaces.append(space) interfaces.append(interface) space = next_space n = interface.n2 spaces.append(space) return Train(interfaces, spaces) class Surface(ABC): """An axisymmetric surface between two media. TODO define radius. Is sag constant outside this i.e. is sag(rho) = sag(radius) for rho > radius?""" roc: float radius: float def __init__(self, roc: float, radius: float): self.roc = float(roc) self.radius = float(radius) def __eq__(self, other): return type(self) is type(other) and self.roc == other.roc and self.radius == other.radius def isclose(self, other): return np.isclose(self.roc, other.roc) and np.isclose(self.radius, other.radius) @property @abstractmethod def sag_range(self) -> np.ndarray: """Returns minimum and maximum sag. TODO must be tight bound? Convert to method so can specify rho interval?""" pass @abstractmethod def to_interface(self, n1: ri.Index, n2: ri.Index): pass @abstractmethod def reverse(self) -> 'Surface': pass @abstractmethod def calc_sag(self, rho, derivative: bool = False): """Calculate sag of surface. Positive ROC means positive sag. Args: rho: Distance from center. derivative: If True, derivative is returned as well. """ pass class SphericalSurface(Surface): @property def sag_range(self) -> np.ndarray: # TODO this assumes monotonicity sag = self.calc_sag(self.radius) return np.asarray((min(sag, 0), max(sag, 0))) def to_interface(self, n1, n2): return Interface(n1, n2, self.roc, self.radius) def reverse(self) -> 'SphericalSurface': return SphericalSurface(-self.roc, self.radius) def __repr__(self): return f'SphericalSurface(roc={self.roc}, radius={self.radius})' # TODO move to rt1 # def make_profile(self): # if np.isfinite(self.roc): # return rt1.SphericalProfile(self.roc) # else: # return rt1.PlanarProfile() def calc_sag(self, rho, derivative: bool = False): """Calculate sag of surface. Positive ROC means positive sag. Args: rho: Distance from center. derivative: If True, derivative is returned as well. """ sag = functions.calc_sphere_sag(self.roc, rho) if derivative: grad_sag = functions.calc_sphere_sag(self.roc, rho, True) return sag, grad_sag else: return sag @singledispatch def to_surface(obj, *args, **kwargs) -> Surface: raise NotImplementedError @to_surface.register def _(obj: Interface, radius: float=None) -> Surface: if radius is None: radius = obj.radius return SphericalSurface(obj.roc, radius) class ConicSurface(Surface): def __init__(self, roc: float, radius: float, kappa: float, alphas: Sequence[float] = None): Surface.__init__(self, roc, radius) self.kappa = kappa if alphas is None: alphas = [] self.alphas = np.asarray(alphas) def to_interface(self, n1, n2): return ConicInterface(n1, n2, self.roc, self.radius, self.kappa, self.alphas) def reverse(self) -> 'ConicSurface': return ConicSurface(-self.roc, self.radius, self.kappa, -self.alphas) # TODO move to rt1 # def make_profile(self): # return rt1.ConicProfile(self.roc, self.kappa, self.alphas) @property def sag_range(self) -> np.ndarray: s = self.calc_sag(self.radius) return np.array((min(s, 0), max(s, 0))) def __repr__(self): return f'ConicSurface(roc={self.roc}, radius={self.radius}, kappa={self.kappa}, alphas={self.alphas})' def __eq__(self, other): return Surface.__eq__(self, other) and self.kappa == other.kappa and np.array_equal(self.alphas, other.alphas) def isclose(self, other): return Surface.isclose(self, other) and np.isclose(self.kappa, other.kappa) and np.allclose(self.alphas, other.alphas) def calc_sag(self, rho, derivative: bool = False): """Calculate sag of surface. Positive ROC means positive sag. Args: rho: Distance from center. derivative: If True, tuple of sag and its derivative is returned. """ sag = functions.calc_conic_sag(self.roc, self.kappa, self.alphas, rho, False) if derivative: grad_sag = functions.calc_conic_sag(self.roc, self.kappa, self.alphas, rho, True) return sag, grad_sag else: return sag @to_surface.register def _(obj: ConicInterface, radius: float=None) -> ConicSurface: if radius is None: radius = obj.radius return ConicSurface(obj.roc, radius, obj.kappa, obj.alphas) class SegmentedInterface(Interface): def __init__(self, n1, n2, segments: Sequence[Surface], sags: Sequence[float]): radius = sum(s.radius for s in segments) Interface.__init__(self, n1, n2, segments[0].roc, radius) if sags is None: sags = np.zeros((len(segments),)) sags = np.asarray(sags) assert len(sags) == len(segments) self.segments = segments self.sags = sags def __repr__(self): return 'SegmentedInterface(%r, %r, %r, %r)'%(self.n1, self.n2, self.segments, self.sags) def __str__(self): # TODO improve return '%s - (%s) - %s'%(self.n1, ', '.join(str(s) for s in self.segments), self.n2) def reverse(self): segments = [s.reverse() for s in self.segments] return SegmentedInterface(self.n2, self.n1, segments, -self.sags) # TODO move to rt1 # def make_profile(self): # # TODO move to single dispatch in rt # assert len(self.segments) == 2 # profiles = [s.make_profile() for s in self.segments] # boundary = rt1.CircleBoundary(self.segments[0].radius*2) # return rt1.BinaryProfile(profiles, boundary) def calc_sag(self, rho, derivative: bool = False): raise NotImplementedError() # TODO make radius of each segment the outer radius rather than the incremental radius. class SegmentedSurface(Surface): def __init__(self, segments: Sequence[Surface], sags: Sequence[float]): radius = sum(s.radius for s in segments) Surface.__init__(self, segments[0].roc, radius) sags = np.asarray(sags) assert len(sags) == len(segments) self.segments = tuple(segments) self.sags = sags def __repr__(self): return f'SegmentedSurface({self.segments}, {self.sags})' #def __str__(self): # return ', '.join(str(s) for s in self.segments) def reverse(self) -> 'SegmentedSurface': segments = [s.reverse() for s in self.segments] return SegmentedSurface(segments) def to_interface(self, n1, n2): return SegmentedInterface(n1, n2, self.segments, self.sags) def calc_sag(self, rho: float, derivative: bool = False): rho = float(rho) rho0 = 0 for segment in self.segments: rho0 += segment.radius if rho <= rho0: return segment.calc_sag(rho) # TODO clamp? return self.segments[-1].calc_sag(rho) @property def sag_range(self) -> np.ndarray: rngs = [segment.sag_range for segment in self.segments] return np.array((min(rng[0] for rng in rngs), max(rng[1] for rng in rngs))) @to_surface.register def _(obj: SegmentedInterface, radius: float=None) -> SegmentedSurface: # TODO sort this out if radius is None: radius = obj.radius return SegmentedSurface(obj.segments, obj.sags) class Singlet: """A singlet. Attributes: surfaces: Front and back surfaces. thickness: Center thickness. n: Defines internal refractive index. """ surfaces: Tuple[Surface, Surface] thickness: float n: ri.Index radius: float def __init__(self, surfaces: Tuple[Surface, Surface], thickness: float, n: ri.Index): self.surfaces = surfaces self.thickness = float(thickness) self.n = n self.radius = surfaces[0].radius assert surfaces[1].radius == self.radius def make_interfaces(self, n1, n2=None): if n2 is None: n2 = n1 return self.surfaces[0].to_interface(n1, self.n), self.surfaces[1].to_interface(self.n, n2) def __repr__(self): return f'Singlet(surfaces=({self.surfaces[0]}, {self.surfaces[1]}), thickness={self.thickness}, n={self.n})' def reverse(self) -> 'Singlet': return Singlet((self.surfaces[1].reverse(), self.surfaces[0].reverse()), self.thickness, self.n) @classmethod def from_focal_length(cls, f: float, n: ri.Index, center_thickness: float, radius: float, shape_factor: float = 0, n_external: ri.Index = ri.vacuum, lamb: float = None): rocs = paraxial.design_singlet(n(lamb), f, shape_factor, center_thickness, n_external(lamb)) return cls.from_rocs(rocs, n, center_thickness, radius) @classmethod def from_rocs(cls, rocs: Tuple[float, float], n: ri.Index, center_thickness: float, radius: float): return cls(tuple(SphericalSurface(roc, radius) for roc in rocs), center_thickness, n) def to_train(self, n1: ri.Index, n2: ri.Index = None) -> Train: """Convert singlet to train. Args: n1: Initial external refractive index. n2: Final external refractive index. Defaults to n1. Returns: self as a train, with zero initial and final spaces. """ if n2 is None: n2 = n1 interfaces = self.surfaces[0].to_interface(n1, self.n), self.surfaces[1].to_interface(self.n, n2) return Train(interfaces, (0, self.thickness, 0)) class SingletSequence: def __init__(self, singlets: Sequence[Singlet], spaces: Sequence[float], n_external: ri.Index = ri.vacuum): """A sequence of singlets in a homogeneous medium with external and internal spaces. The first and last spaces must be included i.e. len(spaces) = len(singlets) + 1. """ assert len(spaces) == len(singlets) + 1 self.singlets = tuple(singlets) self.spaces = tuple(spaces) self.n_external = n_external self.center_length = sum(self.spaces) + sum(s.thickness for s in self.singlets) def to_train(self): interfaces = [i for singlet in self.singlets for i in singlet.make_interfaces(self.n_external)] spaces = self.spaces[:1] + tuple( s for singlet, space in zip(self.singlets, self.spaces[1:]) for s in (singlet.thickness, space)) return Train(interfaces, spaces) def __add__(self, other): assert self.n_external == other.n_external spaces = self.spaces[:-1] + (self.spaces[-1] + other.spaces[0],) + other.spaces[1:] return SingletSequence(self.singlets + other.singlets, spaces, self.n_external) def __repr__(self): return f'SingletSequence(({", ".join(repr(e) for e in self.singlets)}), ({", ".join("%.3f mm"%(s*1e3) for s in self.spaces)}), {self.n_external})' def __str__(self): def format_space(s): return f'{s*1e3:.3g} mm' return '(' + format_space(self.spaces[0]) + ' / ' + ' / '.join(f'{singlet} / {format_space(space)}' for singlet, space in zip(self.singlets, self.spaces[1:])) + ') in ' + str(self.n_external) def reverse(self): singlets = tuple(s.reverse() for s in self.singlets[::-1]) return SingletSequence(singlets, self.spaces[::-1], self.n_external) def split(self, index: int, frac: float = 0.5) -> Tuple['SingletSequence', 'SingletSequence']: before = SingletSequence(self.singlets[:index], self.spaces[:index] + (self.spaces[index]*frac,), self.n_external) after = SingletSequence(self.singlets[index:], (self.spaces[index]*(1 - frac),) + self.spaces[index+1:], self.n_external) return before, after @classmethod def from_train(cls, train: Train, radii='equal'): assert len(train.interfaces)%2 == 0 n_external = train.interfaces[0].n1 assert all(i.n1 == n_external for i in train.interfaces[::2]) assert all(i.n2 == n_external for i in train.interfaces[1::2]) singlets = [] spaces = [] for i1, i2, space1, space2 in zip(train.interfaces[::2], train.interfaces[1::2], train.spaces[::2], train.spaces[1::2]): spaces.append(space1) n = i1.n2 thickness = space2 if radii == 'max': radius = max((i1.radius, i2.radius)) elif radii == 'equal': radius = i1.radius assert np.isclose(radius, i2.radius) else: radius = radii singlets.append(Singlet((to_surface(i1, radius=radius), to_surface(i2, radius=radius)), thickness, n)) spaces.append(train.spaces[-1]) return cls(singlets, spaces, n_external) @classmethod def from_train2(cls, train: Train, radii_mode: str = 'equal'): singlets = [] spaces = [] space = train.spaces[0] index0 = 0 n_external = train.interfaces[0].n1 while index0 < len(train.interfaces): interface0 = train.interfaces[index0] if interface0.n1 != interface0.n2 and interface0.n2 != n_external: spaces.append(space) space = 0 radius = interface0.radius for index1 in range(index0 + 1, len(train.interfaces)): interface1 = train.interfaces[index1] if radii_mode == 'max': radius = max(radius, interface1.radius) elif radii_mode == 'equal': if radius != interface1.radius: raise ValueError(f'Singlet that starts at interface {index0} has radius {radius} but interface {index1} has radius {interface1.radius}.') else: raise ValueError(f'Unknown radii_mode {radii_mode}.') if interface1.n2 != interface0.n2: thickness = sum(train.spaces[index0+1 : index1+1]) # TODO tidy this up after reimplementing Interface as composition of Surface. def pad(i: Interface): outer_radius = radius - i.radius if outer_radius > 1e-6: # TODO civilize outer_surface = SphericalSurface(np.inf, outer_radius) outer_sag = i.calc_sag(i.radius) i = SegmentedInterface(i.n1, i.n2, (to_surface(i), outer_surface), (0, outer_sag)) return i interface0 = pad(interface0) interface1 = pad(interface1) singlets.append(Singlet((to_surface(interface0, radius=radius), to_surface(interface1, radius=radius)), thickness, interface0.n2)) break else: raise ValueError(f'Singlet that starts at interface {index0} does not finish.') index0 = index1 else: index0 += 1 space += train.spaces[index0] spaces.append(space) return cls(singlets, spaces, n_external) @classmethod def design_symmetric_singlet_transform(cls, n: ri.Index, f_transform: float, working_distance: float, min_thickness: float, field_radius: float, shape_factor: float = 0, n_external: ri.Index = ri.vacuum, lamb: float = None) -> 'SingletSequence': """Design a symmetric Fourier transform consisting of a pair of singlets. Args: n: Refractive index of singlets. f_transform: Focal length of transform. working_distance: Distance from focal planes to first piece of glass. min_thickness: Minimum thickness of singlets i.e. edge thickness since they are positive. field_radius: Radius of input field - determines lens sizes. shape_factor: Coddington shape factor - positive means convex-plano. n_external: Index of external medium. lamb: Design wavelength. Returns: Half of the transform i.e. first space is on-axis working distance and last space is to midpoint of transform pair. """ tan_theta = field_radius/f_transform def make_half_transform_train(curvature): rocs = paraxial.calc_rocs(curvature, shape_factor) edge_propagation_distance = working_distance + functions.calc_sphere_sag(max(rocs[0], 0), field_radius) radius = field_radius + edge_propagation_distance*tan_theta thickness = paraxial.calc_center_thickness(rocs, radius, min_thickness) singlet = Singlet(tuple(SphericalSurface(roc, radius) for roc in rocs), thickness, n) sequence = SingletSequence((singlet,), (0, 0), n_external) train = sequence.to_train() half_transform_train = train.pad_to_half_transform(lamb, f=f_transform) return half_transform_train def calc_error(curvature): train = make_half_transform_train(curvature) space0 = working_distance - functions.calc_sphere_sag(min(train.interfaces[0].roc, 0), field_radius) error = train.spaces[0] - space0 return error curvature_guess = 1/((n(lamb) - n_external(lamb))*f_transform) curvature = scipy.optimize.fsolve(calc_error, curvature_guess) train = make_half_transform_train(curvature) sequence = cls.from_train(train) return sequence
39.634763
199
0.601865
34,771
0.96511
0
0
26,073
0.723687
0
0
10,545
0.292689
723547959ebc4a91f17440d870c4a23f152e86d1
4,705
py
Python
rm_protection/rm_p.py
https-waldoww90-wadewilson-com/rm-protection
4dcc678fa687373fb4439c5c4409f7649e653084
[ "MIT" ]
490
2017-02-03T14:15:50.000Z
2022-03-31T02:57:20.000Z
rm_protection/rm_p.py
https-waldoww90-wadewilson-com/rm-protection
4dcc678fa687373fb4439c5c4409f7649e653084
[ "MIT" ]
8
2017-02-03T16:13:53.000Z
2017-05-28T05:20:45.000Z
rm_protection/rm_p.py
alanzchen/rm-protection
4dcc678fa687373fb4439c5c4409f7649e653084
[ "MIT" ]
41
2017-02-04T15:13:26.000Z
2021-12-19T08:58:38.000Z
from sys import argv, exit from os.path import expanduser as expu, expandvars as expv from os.path import basename, dirname, abspath, isdir, exists from subprocess import Popen, PIPE from builtins import input from rm_protection.config import Config c = Config() evaledpaths = [] def pprint(msg): global c print(c.rm_prefix + msg) def ask(evalpath, parent=False): global evaledpaths if evalpath in evaledpaths: return True else: with open(evalpath, "r") as f: question = f.readline().rstrip("\n") answer = f.readline().rstrip("\n") try: flags = f.readline().rstrip("\n") except: flags = '' if parent and 'R' not in flags: pprint(original_path(evalpath) + ' is protected but flag "R" is missing') evaledpaths.append(evalpath) return True else: if parent: pprint('The parent directory ' + original_path(evalpath) + ' is protected') pprint(original_path(evalpath) + ": " + question) if input("Answer: ") == answer: evaledpaths.append(evalpath) return True else: if parent: return False else: pprint("Wrong answer! " + original_path(evalpath) + " will not be removed") pprint("The answer is stored in " + evalpath) return False def original_path(evalpath): global c basepath = dirname(evalpath) filename = basename(evalpath)[1:-len(c.suffix)] if basepath == '/': return basepath + filename else: return basepath + '/' + filename def ask_in(q, a): return bool(input(q) in a) def gen_evalpaths(path): paths = {} path = dirname(path) while path != '/': evalpath = gen_eval(path) paths[path] = evalpath path = dirname(path) return paths def gen_eval(path): global c basedir = dirname(path) if basedir == '/': basedir = '' return basedir + "/." + basename(path) + c.suffix def parent_clear(file_evalpaths, path): for filepath in file_evalpaths: parent_eval = file_evalpaths[filepath] if exists(parent_eval): if not ask(parent_eval, parent=True): pprint(path + ' will not be removed') return False return True def rm(rm_args=None): global c global evaledpaths args = '' paths = [] evalpaths = [] option_end = False if not rm_args: rm_args = argv[1:] for arg in rm_args: if arg == '--': option_end = True elif (arg.startswith("-") and not option_end) or arg in c.invalid: pass else: path = abspath(expv(expu(arg))) file_evalpaths = gen_evalpaths(path) evalpath = gen_eval(path) if c.suffix in arg: pprint(path + " is a protection file") if ask_in(q="Do you want to remove it? (y/n) ", a="Yesyes"): args += arg + ' ' else: pprint(path + " will not be removed") continue if exists(evalpath): if ask(evalpath): paths.append(path) evalpaths.append(evalpath) else: continue if not parent_clear(file_evalpaths, path): continue if isdir(path): find_exec = "find " + path + " -name " + "\".*" + c.suffix + "\"" + " -print" out, err = Popen(find_exec, shell=True, stdout=PIPE, stderr=PIPE, universal_newlines=True).communicate() for pfile in iter(out.splitlines()): pprint("A protected file or directory is found inside " + path) if not ask(pfile): pprint("Terminated due to potentially dangerous action") exit(1) args += bash_path(arg) + ' ' Popen("rm " + args, shell=True).wait() remove_protection_files = '' for evalpath, path in zip(evalpaths, paths): if exists(evalpath) and not exists(path): remove_protection_files += bash_path(evalpath) + ' ' if remove_protection_files: Popen("rm " + remove_protection_files, shell=True).wait() evaledpaths = [] def bash_path(path): for sym in "\\#;,\'\"|{}[]() *&?@<>=!": path = ("\\"+sym).join(path.split(sym)) return path if __name__ == "__main__": rm()
30.953947
120
0.530287
0
0
0
0
0
0
0
0
504
0.10712
72381b6de058125b33932e8f4cd988e19b104ff7
6,856
py
Python
src/text_normalizer/tokenization/_tokenize.py
arkataev/text_normalizer
a99326e31012157980d014c9730ac94bd1d18c1d
[ "MIT" ]
null
null
null
src/text_normalizer/tokenization/_tokenize.py
arkataev/text_normalizer
a99326e31012157980d014c9730ac94bd1d18c1d
[ "MIT" ]
null
null
null
src/text_normalizer/tokenization/_tokenize.py
arkataev/text_normalizer
a99326e31012157980d014c9730ac94bd1d18c1d
[ "MIT" ]
null
null
null
"""Модуль для создания и работы с токенами""" import logging import re import string from enum import IntEnum from functools import lru_cache from typing import Tuple, Iterator from nltk.corpus import stopwords from nltk.tokenize import ToktokTokenizer from nltk.tokenize.api import TokenizerI from ..config import RegexConfigType, PipelineConfigType, load_regex_conf, load_conf __all__ = [ 'sent_tokenize', 'TokTok', 'token_type', 'to_token', 'TokenType', 'iTokenTuple', 'russian_stopwords', 'replace_bigrams', 'KILO_POSTFIX', 'init_cache', 'cache_clear', 'get_tokenizer' ] logger = logging.getLogger('rtn') # Символ, которым токенизатор будет выделять токены с "тысячным" префиксом (e.g. 5к, 5 к ) KILO_POSTFIX = '%' russian_stopwords = stopwords.words("russian") _spaces = string.whitespace _punct = set(f'{string.punctuation}{"«»…=#-——–``"}{string.whitespace}') _isolating_punct = {'"', "'", '{', '}', '[', ']', '(', ')', '«', '»'} _synonyms = load_conf(PipelineConfigType.SYNONIMS) _regex_time = load_regex_conf(RegexConfigType.TIME) class TokenType(IntEnum): """ Типы токенов. NB! IntEnum позволяет быстро проверять соответствие типа токена >>> TokenType.NUM == TokenType.NUM True >>> [TokenType.TXT, TokenType.PUNKT] == [TokenType.TXT, TokenType.PUNKT] True """ NONE = 0 TXT = 1 PUNKT = 2 DATE = 3 NUM = 4 TIME = 5 PHONE = 6 EMOJI = 7 URL = 8 EMAIL = 9 PUNKT_ISO = 10 # изолирующая пунктуация (e.g. "", (), [] etc.) SPACE = 11 CARDNUM = 12 class iTokenTuple(Tuple): """ Интерфейс для создания и работы с токенами. NB! Данный класс НЕ следует использовать в качестве конструктора, т.к это значительно замедлит создание объектов. Оптимальнее - возвращать из функций, реализующих данный интерфейс, простые картежи с элементами нужного типа в нужном порядке. """ _value: str _type: TokenType class RegexTokenType: """ Определитель типа токена на основе регулярных выражений. Проверяет совпадения токена против фиксированного списка регулярных выражений. Если совпадение найдено, возвращается соответствующий тип токена, иначе - специальный тип TokeType.NONE >>> tok_rextype = RegexTokenType() >>> tok_rextype('20.10.2020') TokenType.DATE >>> tok_rextype('[email protected]') TokenType.EMAIL >>> tok_rextype('https://pypi.org/') TokenType.URL """ def __init__(self): self.regex = { TokenType.DATE: load_regex_conf(RegexConfigType.DATE), TokenType.EMAIL: load_regex_conf(RegexConfigType.EMAIL), TokenType.URL: load_regex_conf(RegexConfigType.URL), TokenType.TIME: load_regex_conf(RegexConfigType.TIME), } def __call__(self, token: str) -> TokenType: r = self.regex for key in r: if r[key].match(token): return key return TokenType.NONE class TokTok(TokenizerI): """ В качестве основы используется набор регулярных выражений и упрощенный алгоритм обработки строки из токенизатора `TokTok <https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.toktok>`_. """ def __init__(self): self._regexes = ToktokTokenizer.TOKTOK_REGEXES[:] self._regexes[2] = (_regex_time, r"(\1)") self._regexes.insert(3, (re.compile(r"(?<![а-яА-Я])([а-яА-Я]{1})(\/)([а-яА-Я]{1})"), r"\1\3 ")) self._regexes.insert(4, (re.compile(r"(\d)(-)([а-яА-Я]+)"), r"\1\3 ")) self._regexes.append((re.compile(r"(-«»)"), r" \1 ")) self._regexes.append((re.compile(r"\s+(-)(\w+)"), r" \1 \2 ")) self._regexes.append((re.compile(r"(\w+)(-)\s"), r" \1 \2 ")) self._regexes.append((re.compile(r"(?<=[а-яА-я])([/\\])"), r" \1 ")) self._regexes.append((re.compile(r"([=…№\-——'\s]+)(\d+)([=…№\-——'\s]+)"), r" \1 \2 \3")) # Выделение токенов с "тысячным" префиксом (e.g. 5к, 5 к ) self._regexes.append((re.compile(r"(\d)\s?[кk]"), rf"{KILO_POSTFIX}\1{KILO_POSTFIX}")) self._regexes.append(ToktokTokenizer.FUNKY_PUNCT_2) def tokenize(self, text: str) -> [str]: for regexp, subsitution in self._regexes: text = regexp.sub(subsitution, text) text = text.strip() return text.split() @lru_cache(maxsize=1) def get_tokenizer() -> TokenizerI: return TokTok() @lru_cache(maxsize=1) def get_regex_type() -> RegexTokenType: return RegexTokenType() def sent_tokenize(sentence: str, tokenizer: TokenizerI) -> Iterator[iTokenTuple]: """ Создает итератор картежей с токеном и типом токена из предложения :param sentence: предложение :param tokenizer: токенизатор поддерживающий интерфейс NLTK-TokenizerI """ return map(to_token, tokenizer.tokenize(sentence)) def token_type(token_string: str) -> TokenType: """Определить тип токена""" if not token_string: return TokenType.NONE if token_string in _spaces: # "in" works faster then calling a method ' '.isspace() return TokenType.SPACE elif token_string in _isolating_punct: return TokenType.PUNKT_ISO elif token_string in _punct: return TokenType.PUNKT elif token_string.isnumeric(): return TokenType.NUM rextype = get_regex_type() type_ = rextype(token_string) if type_ is not TokenType.NONE: return type_ return TokenType.TXT def to_token(token_string: str) -> iTokenTuple: """ Создать токен из строки >>> to_token('.') ('.', TokenType.PUNKT) >>> to_token('1ый') ('1', TokenType.NUM) >>> to_token('[email protected]') ('[email protected]', TokenType.EMAIL) :param token_string: строка без пробелов """ return token_string, token_type(token_string) def replace_bigrams(tokens: Iterator[iTokenTuple]) -> Iterator[iTokenTuple]: """ Заменить биграммы на токены из словаря. Служит для быстрой замены токенов вроде "когда то" на "когда-то", а также прочих биграмм. >>> from text_normalizer.tokenization import replace_bigrams >>> replace_bigrams(iter(['окко', TokenType.TXT), ('тв', TokenType.TXT)])) ('окко-тв', TokenType.TXT) """ crnt = None buffer = [] for token, _type in tokens: crnt, prev = token, crnt synonym = _synonyms.get(f'{crnt}', crnt) if prev: bigram = _synonyms.get(f'{prev} {crnt}') if bigram: buffer[-1] = (bigram, _type) continue buffer.append((synonym, _type)) yield from buffer def init_cache(): get_regex_type() get_tokenizer() logger.debug('Cache initiated') def cache_clear(): get_regex_type.cache_clear() get_tokenizer.cache_clear() logger.debug('Cache cleared')
27.534137
107
0.641774
3,939
0.497411
898
0.113398
165
0.020836
0
0
4,001
0.505241
723871eadc62b9694db68243f51e537122c22e01
299
py
Python
tests/data/test_to_array.py
maki-nage/rxsci
64c9956752cbdd4c65aa9f054b6b28318a056625
[ "MIT" ]
3
2021-05-03T13:40:46.000Z
2022-03-06T07:59:30.000Z
tests/data/test_to_array.py
maki-nage/rxsci
64c9956752cbdd4c65aa9f054b6b28318a056625
[ "MIT" ]
9
2020-10-22T21:08:10.000Z
2021-08-05T09:01:26.000Z
tests/data/test_to_array.py
maki-nage/rxsci
64c9956752cbdd4c65aa9f054b6b28318a056625
[ "MIT" ]
2
2021-01-05T16:48:54.000Z
2021-08-07T12:51:01.000Z
from array import array import rx import rxsci as rs def test_to_array(): actual_result = [] source = [1, 2, 3, 4] rx.from_(source).pipe( rs.data.to_array('d') ).subscribe( on_next=actual_result.append ) assert actual_result == [array('d', [1, 2, 3, 4])]
17.588235
54
0.595318
0
0
0
0
0
0
0
0
6
0.020067
7239365caa1436583482800c75a7cb1d2a4fbe35
18,942
py
Python
pi/los.py
Coding-Badly/Little-Oven
3d1178f495aea1180e25bddbb4f139d8e37e6a65
[ "Apache-2.0" ]
null
null
null
pi/los.py
Coding-Badly/Little-Oven
3d1178f495aea1180e25bddbb4f139d8e37e6a65
[ "Apache-2.0" ]
null
null
null
pi/los.py
Coding-Badly/Little-Oven
3d1178f495aea1180e25bddbb4f139d8e37e6a65
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 """============================================================================= los for Little-Oven. los (Little Oven Setup) prepares a Raspberry Pi for Little-Oven development. This module does the actual work. los (no extension) is a bash script that creates a service that runs this code. Running the following puts the whole mess in motion... curl -s "https://raw.githubusercontent.com/Coding-Badly/Little-Oven/master/pi/los" | bash journalctl -u los.service ---------------------------------------------------------------------------- Copyright 2019 Brian Cook (aka Coding-Badly) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =============================================================================""" import grp import json import os import pathlib import pwd import requests import stat import subprocess import time import uuid class CurrentStepManager(): def __init__(self): self._path_step = pathlib.Path('los.step') self._current_step = None def get_current_step(self): if self._current_step is None: try: current_step_text = self._path_step.read_text() self._current_step = int(current_step_text) except FileNotFoundError: self._current_step = 1 return self._current_step def increment_current_step(self): _ = self.get_current_step() self._current_step += 1 self._path_step.write_text(str(self._current_step)) class DirectoryMaker(): def __init__(self, default_final_mode=0o700): self._default_final_mode = default_final_mode self._uid = pwd.getpwnam("pi").pw_uid self._gid = grp.getgrnam("pi").gr_gid def mkdir(self, path, parents=False, final_mode=None): final_mode = self._default_final_mode if final_mode is None else final_mode path.mkdir(mode=0o777, parents=parents, exist_ok=True) os.chown(str(path), self._uid, self._gid) path.chmod(final_mode) def chown(self, path): os.chown(str(path), self._uid, self._gid) def wall(text): subprocess.run(['wall',text], check=True) def wall_and_print(text, step=None): if step is not None: text = 'Step #{}: {}'.format(int(step), text) wall(text) print(text) def update_then_upgrade(): time.sleep(5.0) wall('Update the APT package list.') subprocess.run(['apt-get','-y','update'], check=True) wall('Upgrade APT packages.') subprocess.run(['apt-get','-y','upgrade'], check=True) def simple_get(source_url, destination_path): r = requests.get(source_url, stream=True) r.raise_for_status() with destination_path.open('wb') as f: for chunk in r.iter_content(64*1024): f.write(chunk) def check_global_config(): global global_config if path_los_json.exists(): with path_los_json.open() as f: global_config = json.load(f) else: global_config = dict() csm = CurrentStepManager() path_los_json = pathlib.Path('los.json') check_global_config() MODE_EXECUTABLE = stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IXOTH need_reboot = False go_again = True while go_again: go_again = False if csm.get_current_step() == 1: wall_and_print('Ensure the operating system is up-to-date.', csm.get_current_step()) update_then_upgrade() need_reboot = True csm.increment_current_step() elif csm.get_current_step() == 2: wall_and_print('Install Git.', csm.get_current_step()) subprocess.run(['apt-get','-y','install','git'], check=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 3: wall_and_print('Install Python development.', csm.get_current_step()) subprocess.run(['apt-get','-y','install','python3-dev'], check=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 4: wall_and_print('Ensure the operating system is up-to-date again.', csm.get_current_step()) update_then_upgrade() need_reboot = True csm.increment_current_step() elif csm.get_current_step() == 5: wall_and_print('Install pip.', csm.get_current_step()) path_get_pip = pathlib.Path('get-pip.py') simple_get('https://bootstrap.pypa.io/get-pip.py', path_get_pip) subprocess.run(['python3',str(path_get_pip)], check=True) path_get_pip.unlink() go_again = True csm.increment_current_step() elif csm.get_current_step() == 6: wall_and_print('Install Python modules required by this module.', csm.get_current_step()) subprocess.run(['pip','install', 'xkcdpass'], check=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 7: wall_and_print('Get the global configuration file.', csm.get_current_step()) base_url = os.environ.get('LOS_BASE_URL', 'https://raw.githubusercontent.com/Coding-Badly/Little-Oven/master/pi') get_this = base_url + '/' + 'los.json' try: simple_get(get_this, path_los_json) except requests.exceptions.HTTPError: pass check_global_config() go_again = True csm.increment_current_step() elif csm.get_current_step() == 8: wall_and_print('Set the password using the https://xkcd.com/936/ technique.', csm.get_current_step()) from xkcdpass import xkcd_password as xp wordfile = xp.locate_wordfile() mywords = xp.generate_wordlist(wordfile=wordfile, min_length=5, max_length=8) new_password = xp.generate_xkcdpassword(mywords, delimiter=',', numwords=3) wall_and_print(' The new password is...') wall_and_print(' {}'.format(new_password)) # fix: Send the new password to a repository. new_password = 'whatever' # rmv pi_new_password = ('pi:' + new_password).encode('ascii') subprocess.run("chpasswd", input=pi_new_password, check=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 9: wall_and_print('Change the hostname.', csm.get_current_step()) path_hostname = pathlib.Path('/etc/hostname') path_hostname.write_text('Little-Oven\n') subprocess.run(['sed','-i',"s/raspberrypi/Little-Oven/",'/etc/hosts'], check=True) need_reboot = True csm.increment_current_step() elif csm.get_current_step() == 10: wall_and_print('Change the timezone.', csm.get_current_step()) # Why localtime has to be removed... # https://bugs.launchpad.net/ubuntu/+source/tzdata/+bug/1554806 # date "+%Z %z" pathlib.Path('/etc/timezone').write_text('America/Chicago\n') pathlib.Path('/etc/localtime').unlink() subprocess.run(['dpkg-reconfigure','-f','noninteractive','tzdata'], check=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 11: wall_and_print('Change the keyboard layout.', csm.get_current_step()) # debconf-get-selections | grep keyboard-configuration # The top entry is suspect. "gb" was the value after changing # keyboards using dpkg-reconfigure. keyboard_conf = """ keyboard-configuration\tkeyboard-configuration/xkb-keymap\tselect\tus keyboard-configuration\tkeyboard-configuration/layoutcode\tstring\tus keyboard-configuration\tkeyboard-configuration/layout\tselect\tEnglish (US) keyboard-configuration\tkeyboard-configuration/variant\tselect\tEnglish (US) """.encode("ascii") subprocess.run("debconf-set-selections", input=keyboard_conf, check=True) subprocess.run(['dpkg-reconfigure','-f','noninteractive','keyboard-configuration'], check=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 12: wall_and_print('Change the locale.', csm.get_current_step()) # locale locale_conf = """ locales\tlocales/locales_to_be_generated\tmultiselect\ten_US.UTF-8 UTF-8 locales\tlocales/default_environment_locale\tselect\ten_US.UTF-8 """.encode("ascii") subprocess.run("debconf-set-selections", input=locale_conf, check=True) subprocess.run(['sed','-i',"s/^# en_US.UTF-8 UTF-8/en_US.UTF-8 UTF-8/",'/etc/locale.gen'], check=True) subprocess.run(['dpkg-reconfigure','-f','noninteractive','locales'], check=True) subprocess.run(['update-locale','LANG=en_US.UTF-8'], check=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 13: wall_and_print('Configure Git.', csm.get_current_step()) this_mac = format(uuid.getnode(), 'X') config_by_this_mac = global_config.get(this_mac, None) config_github = config_by_this_mac.get('github', None) if config_by_this_mac else None if config_github: # Set basic Git configuration. git_user_name = config_github.get('user.name', 'Git User Name Goes Here') git_user_email = config_github.get('user.email', '[email protected]') git_core_editor = config_github.get('core.editor', 'nano') subprocess.run(['git','config','--system','user.name',git_user_name], check=True) subprocess.run(['git','config','--system','user.email',git_user_email], check=True) subprocess.run(['git','config','--system','core.editor',git_core_editor], check=True) # Ensure the .ssh directory exists. path_dot_ssh = pathlib.Path('/home/pi/.ssh') # https://superuser.com/questions/215504/permissions-on-private-key-in-ssh-folder dm = DirectoryMaker() dm.mkdir(path_dot_ssh) # Add a Github section to the .ssh/config file. path_ssh_config = path_dot_ssh / 'config' with path_ssh_config.open('at') as f: f.write('Host github.com\n') f.write(' User git\n') f.write(' Hostname github.com\n') f.write(' PreferredAuthentications publickey\n') f.write(' IdentityFile ~/.ssh/github/id_rsa\n') dm.chown(path_ssh_config) # Create a github subdirectory for the Github key pair. path_github = path_dot_ssh / 'github' dm.mkdir(path_github) # Generate the Github key pair. path_id_rsa = path_github / 'id_rsa' # ssh-keygen -t rsa -C "[email protected]" -b 1024 -N '' -f ~/.ssh/github/id_rsa subprocess.run(['ssh-keygen','-t','rsa','-C',git_user_email,'-b','4096','-N','','-f',str(path_id_rsa)], check=True) dm.chown(path_id_rsa) dm.chown(path_id_rsa.with_suffix('.pub')) go_again = True csm.increment_current_step() elif csm.get_current_step() == 14: # wall_and_print('Install PiFace Digital 2 packages from GitHub.', csm.get_current_step()) # # Common # subprocess.run(['git','clone','git://github.com/piface/pifacecommon.git','/home/pi/python-things/pifacecommon'], check=True) # subprocess.run(['python3','/home/pi/python-things/pifacecommon/setup.py','install'], cwd='/home/pi/python-things/pifacecommon/', check=True) # #subprocess.run(['rm','-rf','/home/pi/python-things/pifacecommon'], check=True) # # Digital I/O # subprocess.run(['git','clone','git://github.com/piface/pifacedigitalio.git','/home/pi/python-things/pifacedigitalio'], check=True) # subprocess.run(['python3','/home/pi/python-things/pifacedigitalio/setup.py','install'], cwd='/home/pi/python-things/pifacedigitalio/', check=True) # #subprocess.run(['rm','-rf','/home/pi/python-things/pifacedigitalio'], check=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 15: # wall_and_print('Install python-dispatch package from GitHub.', csm.get_current_step()) # subprocess.run(['git','clone','https://github.com/Coding-Badly/python-dispatch.git','/home/pi/python-things/python-dispatch'], check=True) # subprocess.run(['python3','/home/pi/python-things/python-dispatch/setup.py','install'], cwd='/home/pi/python-things/python-dispatch/', check=True) # #subprocess.run(['rm','-rf','/home/pi/python-dispatch'], check=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 16: wall_and_print('Clone the Little Oven.', csm.get_current_step()) # git clone [email protected]:Coding-Badly/Little-Oven.git /home/pi/Little-Oven # git clone https://github.com/Coding-Badly/Little-Oven.git /home/pi/Little-Oven subprocess.run(['git','clone','https://github.com/Coding-Badly/Little-Oven.git','/home/pi/Little-Oven'], check=True) try: subprocess.run(['git','checkout','-t','remotes/origin/master'], cwd='/home/pi/Little-Oven', stderr=subprocess.PIPE, check=True) except subprocess.CalledProcessError as exc: if not "already exists" in exc.stderr.decode("utf-8"): raise # Change the remote url to use ssh. # git remote set-url origin [email protected]:Coding-Badly/Little-Oven.git subprocess.run(['git','remote','set-url','origin','[email protected]:Coding-Badly/Little-Oven.git'], cwd='/home/pi/Little-Oven', check=True) # Use pip to install dependencies. path_requirements = pathlib.Path('/home/pi/Little-Oven/requirements.txt') if path_requirements.exists(): subprocess.run(['pip','install','-U','-r',str(path_requirements)], check=True) # Fix ownership of the Little-Oven repository. subprocess.run(['chown','-R','pi:pi','/home/pi/Little-Oven'], check=True) # Prepare the cache directory. dm = DirectoryMaker(default_final_mode=0o755) path_cache = pathlib.Path('/var/cache/Rowdy Dog Software/Little-Oven/pans') dm.mkdir(path_cache, parents=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 17: # wall_and_print('Install PiFace Digital 2 initialization service.', csm.get_current_step()) # subprocess.run(['cp','/home/pi/Little-Oven/pi/init_PiFace_Digital_2.service','/etc/systemd/system/init_PiFace_Digital_2.service'], check=True) # subprocess.run(['systemctl','enable','init_PiFace_Digital_2.service'], check=True) # need_reboot = True go_again = True csm.increment_current_step() elif csm.get_current_step() == 18: wall_and_print('Configure Rust to be easily installed.', csm.get_current_step()) # Download rustup.sh to a common location and make it Read + Execute # for everyone. Writable for the owner (root). path_rustup_sh = pathlib.Path('/usr/local/bin/rustup.sh') simple_get('https://sh.rustup.rs', path_rustup_sh) path_rustup_sh.chmod(MODE_EXECUTABLE) go_again = True csm.increment_current_step() elif csm.get_current_step() == 19: wall_and_print('Install FUSE (support for VeraCrypt).', csm.get_current_step()) subprocess.run(['apt-get','-y','install','fuse'], check=True) go_again = True csm.increment_current_step() elif csm.get_current_step() == 20: wall_and_print('Configure VeraCrypt to be easily installed.', csm.get_current_step()) # Prepare a directory for the VeraCrypt files. dm = DirectoryMaker(default_final_mode=0o755) path_temp = pathlib.Path('./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW') dm.mkdir(path_temp, parents=True) # Download the install script path_tar_bz2 = path_temp / 'veracrypt-setup.tar.bz2' simple_get('https://launchpad.net/veracrypt/trunk/1.21/+download/veracrypt-1.21-raspbian-setup.tar.bz2', path_tar_bz2) # Extract the contents subprocess.run(['tar','xvfj',str(path_tar_bz2),'-C',str(path_temp)], check=True) path_src = path_temp / 'veracrypt-1.21-setup-console-armv7' path_dst = pathlib.Path('/usr/local/bin/veracrypt-setup') # Copy the console setup to a location on the PATH subprocess.run(['cp',str(path_src),str(path_dst)], check=True) # Remove the temporary directory subprocess.run(['rm','-rf',str(path_temp)], check=True) # Run the install script #subprocess.run(['bash',str(path_setup),'--quiet'], check=True) # mkdir veracrypt_CErQ2nnwvZCVeKQHhLV24TWW # wget --output-document=./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW/veracrypt-setup.tar.bz2 https://launchpad.net/veracrypt/trunk/1.21/+download/veracrypt-1.21-raspbian-setup.tar.bz2 # tar xvfj ./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW/veracrypt-setup.tar.bz2 -C ./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW # ./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW/veracrypt-1.21-setup-console-armv7 --check # ./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW/veracrypt-1.21-setup-console-armv7 --quiet # rm -rf veracrypt_CErQ2nnwvZCVeKQHhLV24TWW go_again = True csm.increment_current_step() elif csm.get_current_step() == 21: wall_and_print('Check for Rust and VeraCrypt after login.', csm.get_current_step()) # Write the following to /etc/profile.d/check_for_rust_and_veracrypt.sh and make it # executable. check_for_rust_and_veracrypt = """#!/bin/bash if [ ! -e $HOME/.cargo ]; then rustup.sh -y fi if ! command -v veracrypt; then veracrypt-setup fi """ path_check_for = pathlib.Path('/etc/profile.d/check_for_rust_and_veracrypt.sh') path_check_for.write_text(check_for_rust_and_veracrypt) path_check_for.chmod(MODE_EXECUTABLE) go_again = True csm.increment_current_step() #elif csm.get_current_step() == 20: # wall_and_print('One last reboot for good measure.', csm.get_current_step()) # need_reboot = True # csm.increment_current_step() # fix: Configure Little-Oven to automatically run on boot. else: wall_and_print('Little-Oven installed. Disabling the los service.') subprocess.run(['systemctl','disable','los.service'], check=True) if need_reboot: wall_and_print('REBOOT!') time.sleep(5.0) subprocess.run(['reboot'], check=True)
50.244032
184
0.658853
1,208
0.063774
0
0
0
0
0
0
8,598
0.453912