hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
9d19f0ff06adc850dcf2436e1f6a4aeadf9e7144
1,130
py
Python
example/undistort_ir_images.py
greeknerd1/stereo-rectify
98a23c3ff96dd4344ecad13d4ff145060c8fb992
[ "MIT" ]
null
null
null
example/undistort_ir_images.py
greeknerd1/stereo-rectify
98a23c3ff96dd4344ecad13d4ff145060c8fb992
[ "MIT" ]
null
null
null
example/undistort_ir_images.py
greeknerd1/stereo-rectify
98a23c3ff96dd4344ecad13d4ff145060c8fb992
[ "MIT" ]
null
null
null
#!/usr/bin/env python import cv2 import numpy as np import os import glob import itertools import json from numpy.core.fromnumeric import argmax #SECTION 1: UNDISTORT FISHEYE #Read in OpenCV compatible instrinsics & distortion coeffs COLOR_INTRINSIC = np.load('./savedCoeff/colorIntr.npy') COLOR_DIST = np.load('./savedCoeff/colorDist.npy') IR_INTRINSIC = np.load('./savedCoeff/irIntr.npy') IR_DIST = np.load('./savedCoeff/irDist.npy') print('Undistorting images-----------------') imageDir = 'december_callibration_images' ir_images = glob.glob('./' + imageDir + '/ir-*.png') DIMS = (1024, 1024) IDENTITY = np.eye(3) for i in range(len(ir_images)): ir_img = cv2.imread(ir_images[i], cv2.IMREAD_UNCHANGED) new_K, roi = cv2.getOptimalNewCameraMatrix(IR_INTRINSIC, IR_DIST, DIMS, 1) map1, map2 = cv2.initUndistortRectifyMap(IR_INTRINSIC, IR_DIST, IDENTITY, new_K, DIMS, cv2.CV_32FC1) undistorted_ir_img = cv2.remap(ir_img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT) #save the undistorted image cv2.imwrite('./undistorted_december_ir_images/' + 'ir-' + str(i) + '.png', undistorted_ir_img)
36.451613
115
0.752212
0
0
0
0
0
0
0
0
370
0.327434
9d1ab6609be43e89cc309b21cfc303cd71c0ffae
5,617
py
Python
tests/tensor/test_tensor_data.py
aspfohl/tinytorch
99ac1847b798f755d12876667ec7c3a6c7149857
[ "MIT" ]
null
null
null
tests/tensor/test_tensor_data.py
aspfohl/tinytorch
99ac1847b798f755d12876667ec7c3a6c7149857
[ "MIT" ]
null
null
null
tests/tensor/test_tensor_data.py
aspfohl/tinytorch
99ac1847b798f755d12876667ec7c3a6c7149857
[ "MIT" ]
null
null
null
import pytest from hypothesis import given from hypothesis.strategies import data from numpy import array, array_equal from tests.strategies import indices, tensor_data from tinytorch.tensor.data import ( IndexingError, TensorData, broadcast_index, shape_broadcast, ) # Check basic properties of layout and strides. def test_layout(): "Test basis properties of layout and strides" data = [0] * 3 * 5 tensor_data = TensorData(data, (3, 5), (5, 1)) assert tensor_data.is_contiguous() assert tensor_data.shape == (3, 5) assert tensor_data.index((1, 0)) == 5 assert tensor_data.index((1, 2)) == 7 tensor_data = TensorData(data, (5, 3), (1, 5)) assert tensor_data.shape == (5, 3) assert not tensor_data.is_contiguous() data = [0] * 4 * 2 * 2 tensor_data = TensorData(data, (4, 2, 2)) assert tensor_data.strides == (4, 2, 1) @pytest.mark.xfail def test_layout_bad(): "Test basis properties of layout and strides" data = [0] * 3 * 5 TensorData(data, (3, 5), (6,)) @given(tensor_data()) def test_enumeration(tensor_data): "Test enumeration of tensor_datas." indices = list(tensor_data.indices()) # Check that enough positions are enumerated. assert len(indices) == tensor_data.size # Check that all positions are enumerated only once. assert len(set(tensor_data.indices())) == len(indices) # Check that all indices are within the shape. for ind in tensor_data.indices(): for i, p in enumerate(ind): assert p >= 0 assert p < tensor_data.shape[i] @given(tensor_data()) def test_index(tensor_data): "Test enumeration of tensor_data." # Check that all indices are within the size. for ind in tensor_data.indices(): pos = tensor_data.index(ind) assert pos >= 0 and pos < tensor_data.size base = [0] * tensor_data.dims with pytest.raises(IndexingError): base[0] = -1 tensor_data.index(tuple(base)) if tensor_data.dims > 1: with pytest.raises(IndexingError): base = [0] * (tensor_data.dims - 1) tensor_data.index(tuple(base)) @given(data()) def test_permute(data): td = data.draw(tensor_data()) ind = data.draw(indices(td)) td_rev = td.permute(*list(reversed(range(td.dims)))) assert td.index(ind) == td_rev.index(tuple(reversed(ind))) td2 = td_rev.permute(*list(reversed(range(td_rev.dims)))) assert td.index(ind) == td2.index(ind) # Check basic properties of broadcasting. def test_broadcast_index_smaller(): "Tests broadcast mapping between higher and lower dim tensors" out_index = array([0, 0]) def _broadcast_index(big_index): return broadcast_index( big_index=big_index, big_shape=array([2, 2, 3]), shape=array([2, 1]), out_index=out_index, ) for big_index, expected_out_index in ( ([0, 0, 0], [0, 0]), ([0, 0, 1], [0, 0]), ([0, 0, 2], [0, 0]), ([0, 1, 0], [1, 0]), ([0, 1, 1], [1, 0]), ([0, 1, 2], [1, 0]), ([1, 0, 0], [0, 0]), ([1, 0, 1], [0, 0]), ([1, 0, 2], [0, 0]), ([1, 1, 0], [1, 0]), ([1, 1, 1], [1, 0]), ([1, 1, 2], [1, 0]), ): print(big_index, expected_out_index) _broadcast_index(big_index=array(big_index)) assert array_equal(out_index, expected_out_index) def test_broadcast_index(): out_index = array([0, 0]) def _broadcast_index(big_index): return broadcast_index( big_index=big_index, big_shape=array([3, 2]), shape=array([3, 1]), out_index=out_index, ) for big_index, expected_out_index in ( ([0, 0], [0, 0]), ([0, 1], [0, 0]), ([1, 0], [1, 0]), ([1, 1], [1, 0]), ([2, 0], [2, 0]), ([2, 1], [2, 0]), ): _broadcast_index(big_index=array(big_index)) assert array_equal(out_index, array(expected_out_index)) def test_broadcast_index_constant(): out_index = array([0]) def _broadcast_index(big_index): return broadcast_index( big_index=big_index, big_shape=array([3, 2]), shape=array([1]), out_index=out_index, ) expected_out_index = array([0]) for big_index in ([0, 0, 0], [0, 0, 1], [0, 0, 2], [1, 0, 0], [1, 0, 1], [1, 0, 2]): _broadcast_index(big_index=array(big_index)) assert array_equal(out_index, expected_out_index) @pytest.mark.parametrize( "shape1, shape2, expected_return", ( ((1,), (5, 5), (5, 5)), ((5, 5), (1,), (5, 5)), ((1, 5, 5), (5, 5), (1, 5, 5)), ((5, 1, 5, 1), (1, 5, 1, 5), (5, 5, 5, 5)), ((2, 5), (5,), (2, 5)), ), ) def test_shape_broadcast(shape1, shape2, expected_return): c = shape_broadcast(shape1, shape2) assert c == expected_return @pytest.mark.parametrize( "shape1, shape2", ( # 2nd-indexed dimension (7 and 5) can't be broadcasted ((5, 7, 5, 1), (1, 5, 1, 5)), # 2nd-indexed dimension (2 and 5) can't be broadcasted ((5, 2), (5,)), # shape1 can't be empty (tuple(), (1,)), # shape2 can't be empty ((1,), tuple()), # multiples don't work ((4,), (2,)), ), ) def test_shape_broadcast_errors(shape1, shape2): with pytest.raises(IndexingError): c = shape_broadcast(shape1, shape2) print(c) @given(tensor_data()) def test_string(tensor_data): tensor_data.to_string()
27.534314
88
0.574862
0
0
0
0
2,632
0.468578
0
0
722
0.128538
9d1aff1bfb4da29713d9d7f9b89454bc608165f8
359
py
Python
terra_layer/apps.py
Terralego/terra-layer
6564a63d389503d3ae1f63ce46e674b228d6764b
[ "MIT" ]
1
2019-08-08T15:17:32.000Z
2019-08-08T15:17:32.000Z
terra_layer/apps.py
Terralego/terra-layer
6564a63d389503d3ae1f63ce46e674b228d6764b
[ "MIT" ]
65
2019-10-21T10:05:00.000Z
2022-03-08T14:08:27.000Z
terra_layer/apps.py
Terralego/terra-layer
6564a63d389503d3ae1f63ce46e674b228d6764b
[ "MIT" ]
null
null
null
from django.apps import AppConfig from terra_accounts.permissions_mixins import PermissionRegistrationMixin class TerraLayerConfig(PermissionRegistrationMixin, AppConfig): name = "terra_layer" permissions = ( ("DataLayer", "can_manage_layers", "Can manage layers"), ("DataSource", "can_manage_sources", "Can manage sources"), )
29.916667
73
0.740947
248
0.690808
0
0
0
0
0
0
114
0.317549
9d1d92e0aac0102261fb87134d9195f41601abbb
2,813
py
Python
aps/tokenizer/word.py
ishine/aps
c814dc5a8b0bff5efa7e1ecc23c6180e76b8e26c
[ "Apache-2.0" ]
117
2021-02-02T13:38:16.000Z
2022-03-16T05:40:25.000Z
aps/tokenizer/word.py
ishine/aps
c814dc5a8b0bff5efa7e1ecc23c6180e76b8e26c
[ "Apache-2.0" ]
3
2021-11-11T07:07:31.000Z
2021-11-20T15:25:42.000Z
aps/tokenizer/word.py
ishine/aps
c814dc5a8b0bff5efa7e1ecc23c6180e76b8e26c
[ "Apache-2.0" ]
19
2021-02-04T10:04:25.000Z
2022-02-16T05:24:44.000Z
#!/usr/bin/env python # Copyright 2021 Jian Wu # License: Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) from typing import List, Union from aps.tokenizer.base import TokenizerAbc, ApsTokenizer class WordBasedTokenizer(TokenizerAbc): """ Word based (word, character) tokenizer Args: filter_words (list): filter those words char (bool): use character unit or word unit space (str): insert space symbol between words """ def __init__(self, filter_words: List[str] = [], char: bool = False, space: str = ""): super(WordBasedTokenizer, self).__init__() self.char = char self.space = space self.filter_words = filter_words def encode(self, utt: Union[str, List[str]]) -> List[str]: if isinstance(utt, str): raw_tokens = utt.split() else: raw_tokens = utt kept_tokens = [] for tok in raw_tokens: # remove tokens is_filter_tok = tok in self.filter_words if is_filter_tok: continue # word => char if self.char and not is_filter_tok: toks = [t for t in tok] else: toks = [tok] kept_tokens += toks if self.space: kept_tokens += [self.space] if self.space: # remove last one kept_tokens = kept_tokens[:-1] return kept_tokens def decode(self, utt: Union[str, List[str]]) -> List[str]: if isinstance(utt, str): enc_tokens = utt.split() else: enc_tokens = utt if not self.char: return enc_tokens if self.space: strs = "".join(enc_tokens).replace(self.space, " ") else: strs = " ".join(enc_tokens) return strs.split(" ") @ApsTokenizer.register("word") class WordTokenizer(WordBasedTokenizer): """ Word tokenizer Args: filter_words (list): filter those words """ def __init__(self, filter_words: List[str] = []): super(WordTokenizer, self).__init__(filter_words=filter_words, char=False, space="") @ApsTokenizer.register("char") class CharTokenizer(WordBasedTokenizer): """ Character tokenizer Args: filter_words (list): filter those words space (str): insert space symbol between words """ def __init__(self, filter_words: List[str] = [], space: str = "<space>"): super(CharTokenizer, self).__init__(filter_words=filter_words, char=True, space=space)
30.247312
77
0.539637
2,537
0.901884
0
0
886
0.314966
0
0
649
0.230715
9d1d953211acad0e8c4ba6634015c410a59e3522
1,736
py
Python
tests/test_session.py
StenSipma/astrometry-client
11d5b0cd0ae41a18b5bbd7f5570af60dbfbd9cc6
[ "MIT" ]
1
2020-08-06T17:55:52.000Z
2020-08-06T17:55:52.000Z
tests/test_session.py
StenSipma/astrometry-client
11d5b0cd0ae41a18b5bbd7f5570af60dbfbd9cc6
[ "MIT" ]
1
2021-12-18T17:03:21.000Z
2021-12-19T12:33:16.000Z
tests/test_session.py
StenSipma/astrometry-client
11d5b0cd0ae41a18b5bbd7f5570af60dbfbd9cc6
[ "MIT" ]
null
null
null
import os from unittest import mock import pytest import requests from constants import VALID_KEY from utils import FunctionCalledException, function_called_raiser from astrometry_net_client import Session from astrometry_net_client.exceptions import APIKeyError, LoginFailedException some_key = "somekey" # Start of tests def test_session_key_input_invalid(): with pytest.raises(APIKeyError): Session() def test_session_key_input_string(): s = Session(some_key) assert not s.logged_in assert s.api_key == some_key def test_session_key_input_file(): s = Session(key_location="./tests/data/testkey") assert not s.logged_in assert s.api_key == some_key @mock.patch.dict(os.environ, {"ASTROMETRY_API_KEY": some_key}) def test_session_key_input_environment(): s = Session() assert not s.logged_in assert s.api_key == some_key def test_valid_session_login(mock_server, monkeypatch): session = Session(api_key=VALID_KEY) session.login() # login for the first time assert session.logged_in assert getattr(session, "key", None) # token exists original_key = session.key # We patch the post call to send an error if it is called. monkeypatch.setattr(requests, "post", function_called_raiser) session.login() # login should not be done now, as it is already done assert session.logged_in assert session.key == original_key # Here we force the login which should raise the patched exception with pytest.raises(FunctionCalledException): session.login(force=True) def test_invalid_session_login(mock_server): session = Session(api_key="invalid_key") with pytest.raises(LoginFailedException): session.login()
27.555556
78
0.75
0
0
0
0
182
0.104839
0
0
308
0.177419
9d1e173ec4f6da5495185d4e64e6ce6be159c672
2,184
py
Python
all_repos_depends/lang/python.py
mxr/all-repos-depends
dcf715dbfb7182899e2412dbfaaf1ef4cc50865c
[ "MIT" ]
11
2018-04-23T06:41:55.000Z
2022-01-27T13:37:59.000Z
all_repos_depends/lang/python.py
mxr/all-repos-depends
dcf715dbfb7182899e2412dbfaaf1ef4cc50865c
[ "MIT" ]
2
2018-04-23T06:03:18.000Z
2018-04-23T06:03:51.000Z
all_repos_depends/lang/python.py
mxr/all-repos-depends
dcf715dbfb7182899e2412dbfaaf1ef4cc50865c
[ "MIT" ]
2
2021-02-01T15:02:14.000Z
2021-09-25T15:49:44.000Z
import ast import os.path from typing import Iterable from packaging.requirements import InvalidRequirement from packaging.requirements import Requirement from packaging.utils import canonicalize_name from all_repos_depends.errors import DependsError from all_repos_depends.types import Depends NAME = 'python' def to_name(s: str) -> str: return s.lower().replace('_', '-') def load_setup_py_ast() -> ast.AST: with open('setup.py', 'rb') as f: try: return ast.parse(f.read(), filename='setup.py') except SyntaxError: raise DependsError('Had setup.py but could not be parsed') def node_is_setup_call(node: ast.Call) -> bool: return ( # setup( (isinstance(node.func, ast.Name) and node.func.id == 'setup') or # setuptools.setup( ( isinstance(node.func, ast.Attribute) and isinstance(node.func.value, ast.Name) and node.func.value.id == 'setuptools' and node.func.attr == 'setup' ) ) def to_depends(relationship: str, requirement_s: str) -> Depends: try: req = Requirement(requirement_s) except InvalidRequirement: return Depends(relationship, NAME, requirement_s, ' (unable to parse)') spec_parts = [] if req.extras: spec_parts.append('[{}]'.format(','.join(sorted(req.extras)))) if req.specifier: spec_parts.append(str(req.specifier)) if req.marker: spec_parts.append(f';{req.marker}') spec = ''.join(spec_parts) return Depends(relationship, NAME, canonicalize_name(req.name), spec) def from_reqs_file(relationship: str, filename: str) -> Iterable[Depends]: with open(filename) as f: for line in f: line, _, _ = line.partition('#') line = line.strip() # local editable paths aren't all that interesting if line.startswith('-e '): _, _, path = line.partition(' ') path = os.path.join(os.path.dirname(filename), path) if os.path.exists(path): continue if line: yield to_depends(relationship, line)
29.513514
79
0.617674
0
0
570
0.260989
0
0
0
0
237
0.108516
9d1fd039657947bcd1efbe3cb094639c4aa0c630
2,829
py
Python
mac/macos_app_audit.py
airdata/scripts
b24d62d70bbc70f02b3758ea14e47cc2b34646a9
[ "Apache-2.0" ]
null
null
null
mac/macos_app_audit.py
airdata/scripts
b24d62d70bbc70f02b3758ea14e47cc2b34646a9
[ "Apache-2.0" ]
null
null
null
mac/macos_app_audit.py
airdata/scripts
b24d62d70bbc70f02b3758ea14e47cc2b34646a9
[ "Apache-2.0" ]
null
null
null
from os import listdir from os.path import isfile, join class Command(object): """ Run a command and capture it's output string, error string and exit status Source: http://stackoverflow.com/a/13848259/354247 """ def __init__(self, command): self.command = command def run(self, shell=True): import subprocess as sp process = sp.Popen(self.command, shell = shell, stdout = sp.PIPE, stderr = sp.PIPE) self.pid = process.pid self.output, self.error = process.communicate() self.failed = process.returncode return self @property def returncode(self): return self.failed default_applications = ['Utilities','App Store.app','Automator.app','Calculator.app','Calendar.app','Chess.app','Contacts.app','Dashboard.app','Dictionary.app','DVD Player.app','FaceTime.app','Font Book.app','iBooks.app','Image Capture.app','iTunes.app','Launchpad.app','Mail.app','Maps.app','Messages.app','Mission Control.app','Notes.app','Paste.app','Photo Booth.app','Photos.app','Preview.app','QuickTime Player.app','Reminders.app','Safari.app','Siri.app','Stickies.app','System Preferences.app','TextEdit.app','Time Machine.app','Utilities.app'] remaps = { "iTerm.app": "iTerm2", # brew cask install iterm2 gives iTerm.app "Alfred 3.app": "Alfred" # brew cask install alfred gives Alfred 3.app } mypath = "/Applications" installed_applications = [f for f in listdir(mypath) if not isfile(join(mypath, f))] cask_packages = Command('brew cask list').run().output.split() mac_app_store_apps = Command('mas list').run().output.splitlines() # collect applications that are not default ones. user_applications = [] for x in installed_applications: #first remap the names if(x in remaps): name = remaps[x] else: name = x #then check if they are defaults if name not in default_applications: user_applications.append(name) # determine which applications weren't installed via brew cask unmanged_applications = [] for x in user_applications: strip_dotapp = x[:-4] if (".app" in x) else x trimmed = strip_dotapp.replace(" ", "-").lower() is_casked = trimmed in cask_packages is_mas = any(strip_dotapp in s for s in mac_app_store_apps) # print('{} -> {}: {}|{}'.format(x, trimmed, is_casked, is_mas)) if(not is_casked and not is_mas): unmanged_applications.append(x) # print("-------------------") print("You have {} default applications.".format(len(default_applications))) print("Tou have {} brew cask applications.".format(len(cask_packages))) print("Tou have {} app store applications.".format(len(mac_app_store_apps))) print("You have {} user applications Applications not managed by brew cask or app store...\n------".format(len(unmanged_applications))) for x in unmanged_applications: print(x) # print(mac_app_store_apps)
41.602941
551
0.70555
606
0.21421
0
0
62
0.021916
0
0
1,308
0.462354
9d208e0e14d75f5e83f5d7ca01135d1ab258d6e8
317
py
Python
src/hark_lang/machine/stdout_item.py
krrome/teal-lang
594ac0f0baae047fdb19ac9126d174408d487905
[ "Apache-2.0" ]
85
2020-04-29T13:51:33.000Z
2020-08-28T04:40:11.000Z
src/hark_lang/machine/stdout_item.py
krrome/teal-lang
594ac0f0baae047fdb19ac9126d174408d487905
[ "Apache-2.0" ]
15
2020-05-06T07:58:18.000Z
2020-08-28T10:29:28.000Z
src/hark_lang/machine/stdout_item.py
krrome/teal-lang
594ac0f0baae047fdb19ac9126d174408d487905
[ "Apache-2.0" ]
4
2020-05-31T09:42:08.000Z
2020-08-27T17:04:26.000Z
"""StdoutItem class""" from dataclasses import asdict, dataclass from .hark_serialisable import HarkSerialisable, now_str @dataclass class StdoutItem(HarkSerialisable): thread: int text: str time: str = None def __post_init__(self): if self.time is None: self.time = now_str()
19.8125
56
0.690852
180
0.567823
0
0
191
0.602524
0
0
22
0.069401
9d20e8c21375abfa3aefb4fb09790b9ecbec1d58
6,911
py
Python
compress/algorithms/lzw.py
ShellCode33/CompressionAlgorithms
3b2e7b497ef0af4ba7ac8bc6f4d6e77ea4c4aedc
[ "MIT" ]
null
null
null
compress/algorithms/lzw.py
ShellCode33/CompressionAlgorithms
3b2e7b497ef0af4ba7ac8bc6f4d6e77ea4c4aedc
[ "MIT" ]
null
null
null
compress/algorithms/lzw.py
ShellCode33/CompressionAlgorithms
3b2e7b497ef0af4ba7ac8bc6f4d6e77ea4c4aedc
[ "MIT" ]
null
null
null
# coding: utf-8 class LZW(object): """ Implementation of the LZW algorithm. Attributes ---------- translation_dict : dict Association between repeated bytes sequences and integers. Examples -------- An array of bytes like ['\x41', '\x42', '\x43', '\x0A', '\x00'] can be represented by an integer like 256. It means that one integer is able to represent multiple bytes at once. Notes ----- On the internet we usually find this algorithm using integers that are coded on 12bits. But I think it's a waste of space and it can be optimized by sending along the encoded content, the size of the integers. So instead of sending 12 bits integers, we will be able to send smaller (and bigger) integers. The size of the integers will be determined based on the biggest integer in the dictionary. This integer will be on 5 bits, it means other integers can be coded on 2^5 = 32 bits max. Which means the biggest supported dictionary is 2^32 = 4294967296 long. Which is more than enough. """ def __init__(self, verbose=False): self.verbose = verbose self.translation_dict = None self.max_size_integer_size = 5 # The integers size is encoded on 5 bits by default self.integers_size_bits = 0 # Max value must be 2**max_size_integer_size (= 32 by default) def __build_bytes_dictionary(self, decompression=False): if decompression: self.translation_dict = {byte: bytes([byte]) for byte in range(256)} else: self.translation_dict = {bytes([byte]): byte for byte in range(256)} def __compress(self, bytes_list): self.__build_bytes_dictionary() biggest_integer = 0 compressed = [] pattern = bytes([]) for byte in bytes_list: byte_as_array = bytes([byte]) current = pattern + byte_as_array if current in self.translation_dict: pattern = current else: self.translation_dict[current] = len(self.translation_dict) compressed.append(self.translation_dict[pattern]) if biggest_integer < self.translation_dict[pattern]: biggest_integer = self.translation_dict[pattern] pattern = byte_as_array compressed.append(self.translation_dict[pattern]) if biggest_integer < self.translation_dict[pattern]: biggest_integer = self.translation_dict[pattern] if biggest_integer > 2 ** (2 ** self.max_size_integer_size): # Shouldn't happen raise ValueError("Can't encode such value... Maybe you should increase the size of max_size_integer_size.") self.integers_size_bits = biggest_integer.bit_length() if self.verbose: print("The biggest integer is {} so integers will be coded on {} bits.".format(biggest_integer, self.integers_size_bits)) return compressed def compress_file(self, input_filename, output_filename): with open(input_filename, "rb") as input_file: bytes_list = input_file.read() if not bytes_list: raise IOError("File is empty !") if self.verbose: print("Input size : {} bytes.".format(len(bytes_list))) compressed = self.__compress(bytes_list) if self.verbose: print("Assembling integers together...") # Originally, each integer was added to a big one using bits shifting, but this method was way to slow. # Strings are better for this purpose. binary_string_compressed = "1" # Padding with a 1 to keep the first zeros when converting to integer # Add binary representation of the integers bit-length binary_string_compressed += format(self.integers_size_bits, "0{}b".format(self.max_size_integer_size)) # https://waymoot.org/home/python_string/ # According to this, the fastest way to concatenate strings is to use join() on a list bin_format = "0{}b".format(self.integers_size_bits) binary_string_compressed += ''.join([format(byte, bin_format) for byte in compressed]) if self.verbose: print("Done.") big_int_compress = int(binary_string_compressed, 2) to_store_in_file = big_int_compress.to_bytes((big_int_compress.bit_length() + 7) // 8, 'big') total_file_size = len(to_store_in_file) if self.verbose: print("Output : {} bytes".format(total_file_size)) if len(bytes_list) <= total_file_size: raise Exception("Aborted. No gain, you shouldn't compress that file. (+{} bytes)".format( total_file_size - len(bytes_list))) compression_rate = 100 - total_file_size * 100 / len(bytes_list) # Print anyway, even when not in verbose mode print("Compression gain : {0:.2f}%".format(compression_rate)) with open(output_filename, "wb") as output_file: output_file.write(to_store_in_file) return compression_rate def __decompress(self, compressed_bytes_list): self.__build_bytes_dictionary(decompression=True) previous_code = compressed_bytes_list[0] decompressed = self.translation_dict[previous_code] first_byte = None for new_code in compressed_bytes_list[1:]: try: translation = self.translation_dict[new_code] except KeyError: translation = first_byte + self.translation_dict[previous_code] decompressed += translation first_byte = bytes([translation[0]]) self.translation_dict[len(self.translation_dict)] = self.translation_dict[previous_code] + first_byte previous_code = new_code return decompressed def decompress_file(self, input_filename, output_filename): with open(input_filename, "rb") as input_file: bytes_list = input_file.read() if not bytes_list: raise IOError("File is empty !") big_int_compressed = int.from_bytes(bytes_list, 'big') bits_string_compressed = format(big_int_compressed, "0b") self.integers_size_bits = int(bits_string_compressed[1:self.max_size_integer_size + 1], 2) # Skip first pad bit if self.verbose: print("Integers are {} bits long.".format(self.integers_size_bits)) compressed = [] for i in range(self.max_size_integer_size + 1, len(bits_string_compressed), self.integers_size_bits): compressed.append(int(bits_string_compressed[i:i + self.integers_size_bits], 2)) decompressed = self.__decompress(compressed) with open(output_filename, "wb") as output_file: output_file.write(decompressed)
38.825843
120
0.64911
6,892
0.997251
0
0
0
0
0
0
2,061
0.29822
9d20f94306c2d2e2215af2edce02e11edf2054d9
1,322
py
Python
app/models.py
ariqfadlan/donorojo-db-api
dd1a3241ead5738c94eb77ed0bbb23b26582618f
[ "MIT" ]
null
null
null
app/models.py
ariqfadlan/donorojo-db-api
dd1a3241ead5738c94eb77ed0bbb23b26582618f
[ "MIT" ]
null
null
null
app/models.py
ariqfadlan/donorojo-db-api
dd1a3241ead5738c94eb77ed0bbb23b26582618f
[ "MIT" ]
null
null
null
""" Contains database models """ from sqlalchemy import Column, ForeignKey, Integer, String, Float from sqlalchemy.orm import relationship from .database import Base class TouristAttraction(Base): __tablename__ = "tourist_attraction" id = Column(Integer, primary_key=True, index=True) name = Column(String(50), nullable=False) category = Column(String(255), nullable=False) address = relationship("Address", back_populates="tourist_attraction", uselist=False) location = relationship("Location", back_populates="tourist_attraction", uselist=False) class Address(Base): __tablename__ = "address" tourist_attraction_id = Column(Integer, ForeignKey("tourist_attraction.id"), primary_key=True) subvillage = Column(String(255)) village = Column(String(255)) district = Column(String(255)) regency = Column(String(255)) province = Column(String(255)) tourist_attraction = relationship("TouristAttraction", back_populates="address") class Location(Base): __tablename__ = "location" tourist_attraction_id = Column(Integer, ForeignKey("tourist_attraction.id"), primary_key=True) latitude = Column(Float, nullable=False) longitude = Column(Float, nullable=False) tourist_attraction = relationship("TouristAttraction", back_populates="location")
33.05
98
0.746596
1,148
0.868381
0
0
0
0
0
0
233
0.176248
9d2612bdf9b9d5fe13c734ed2826b9452f048d19
1,096
py
Python
hackerrank_contests/101Hack44/prime.py
rishabhiitbhu/hackerrank
acc300851c81a29472177f15fd8b56ebebe853ea
[ "MIT" ]
null
null
null
hackerrank_contests/101Hack44/prime.py
rishabhiitbhu/hackerrank
acc300851c81a29472177f15fd8b56ebebe853ea
[ "MIT" ]
null
null
null
hackerrank_contests/101Hack44/prime.py
rishabhiitbhu/hackerrank
acc300851c81a29472177f15fd8b56ebebe853ea
[ "MIT" ]
1
2020-01-30T06:47:09.000Z
2020-01-30T06:47:09.000Z
def rwh_primes2(n): correction = (n%6>1) n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6] sieve = [True] * (n//3) sieve[0] = False for i in range(int(n**0.5)//3+1): if sieve[i]: k=3*i+1|1 sieve[ ((k*k)//3) ::2*k]=[False]*((n//6-(k*k)//6-1)//k+1) sieve[(k*k+4*k-2*k*(i&1))//3::2*k]=[False]*((n//6-(k*k+4*k-2*k*(i&1))//6-1)//k+1) return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]] # a = rwh_primes2(100) # print(a) # http://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188 """ Input n>=6, Returns a list of primes, 2 <= p < n """ def sieve_for_primes_to(n): size = n//2 sieve = [1]*size limit = int(n**0.5) for i in range(1,limit): if sieve[i]: val = 2*i+1 tmp = ((size-1) - i)//val sieve[i+val::val] = [0]*tmp return [2] + [i*2+1 for i, v in enumerate(sieve) if v and i>0] print(sieve_for_primes_to(3)) print(sieve_for_primes_to(1)) print(sieve_for_primes_to(100))
33.212121
110
0.519161
0
0
0
0
0
0
0
0
200
0.182482
9d26ca6234d4434fd99a9aa1e9b161d86a72613c
2,649
py
Python
competitive_k_means.py
QLightman/competitive_k_means
264a3da409177e40f150da1107d00e149ff1e125
[ "MIT" ]
1
2019-09-03T09:56:43.000Z
2019-09-03T09:56:43.000Z
competitive_k_means.py
QLightman/competitive_k_means
264a3da409177e40f150da1107d00e149ff1e125
[ "MIT" ]
null
null
null
competitive_k_means.py
QLightman/competitive_k_means
264a3da409177e40f150da1107d00e149ff1e125
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import copy k = 4 ratio=0.95 def competitive_k_means(save_plot=False): plt.figure(figsize=(12, 12)) X, y =generate_dataset() plt.scatter(X[:,0],X[:,1],c=y,marker='+') plt.title("results from the data") if save_plot: plt.savefig("data.png") pre_center=np.empty((k,2)) for i in range (k): pre_center[i]=X[i] y_pred=distance(X,pre_center) his_y_pred=np.empty(len(X)) iteration_time=1 while np.sum(his_y_pred!=y_pred)!=0: iteration_time+=1 his_y_pred=copy.copy(y_pred) y_pred=distance(X,pre_center) plt.figure() plt.scatter(X[:,0],X[:,1],c=y_pred,marker='+') plt.scatter(pre_center[:,0],pre_center[:,1],c='r') if save_plot: plt.savefig("%dinterations.jpg"%iteration_time) plt.show() def distance(X,pre_center,competitive=True): result=np.empty(len(X)) pre_center_number=np.empty(k) for i in range(len(X)): tmp=[] for j in range (k): tmp.append(((X[i]-pre_center[j])**2).sum()) result[i]=tmp.index(min(tmp)) for i in range(k): pre_center[i]=X[result==i].mean(0) pre_center_number[i]=np.sum(result==i) print pre_center_number # implement the RPCL to k-mean so that the number # of clusters is automatically determined if competitive: minimum_distance=float('inf') minimun_index=np.array([0,0]) for i in range(k): for j in range(k): if(j<=i): continue if(((pre_center[i]-pre_center[j])**2).sum()<minimum_distance): minimum_distance=((pre_center[i]-pre_center[j])**2).sum() minimun_index[0]=i minimun_index[1]=j if(pre_center_number[minimun_index[0]]>pre_center_number[minimun_index[1]]): pre_center[minimun_index[1]]=push(pre_center[minimun_index[1]],pre_center[minimun_index[0]]) else: pre_center[minimun_index[0]]=push(pre_center[minimun_index[0]],pre_center[minimun_index[1]]) return result # push the competitive center def push(push_center,center): return (push_center-center)*(1+ratio)+center def generate_dataset(location=np.array([[0,0],[6,0],[3,5]]),n_samples=300,centers=3): y=np.empty(n_samples) X=np.empty([n_samples,2]) for i in range(n_samples): for j in range(centers): tmp=np.random.randint(0,centers) X[i]=location[tmp]+np.random.rand(2)*2 y[i]=tmp return X,y if __name__ == '__main__': competitive_k_means()
33.1125
104
0.609287
0
0
0
0
0
0
0
0
195
0.073613
9d280cecbd0d584acd8037cf6b0f18c473484417
3,031
py
Python
shiftmanager/redshift.py
whitmo/shiftmanager
49cd461854a9e8bc270b5cc6f9a2303cf87c2fb3
[ "BSD-2-Clause" ]
null
null
null
shiftmanager/redshift.py
whitmo/shiftmanager
49cd461854a9e8bc270b5cc6f9a2303cf87c2fb3
[ "BSD-2-Clause" ]
null
null
null
shiftmanager/redshift.py
whitmo/shiftmanager
49cd461854a9e8bc270b5cc6f9a2303cf87c2fb3
[ "BSD-2-Clause" ]
1
2020-09-02T04:37:37.000Z
2020-09-02T04:37:37.000Z
""" Defines a Redshift class which encapsulates a database connection and utility functions for managing that database. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import os import psycopg2 from shiftmanager.mixins import AdminMixin, ReflectionMixin, S3Mixin from shiftmanager.memoized_property import memoized_property class Redshift(AdminMixin, ReflectionMixin, S3Mixin): """Interface to Redshift. This class will default to environment params for all arguments. For methods requiring S3, aws keys are not required if you have environmental params set for boto to pick up: http://boto.readthedocs.org/en/latest/s3_tut.html#creating-a-connection Parameters ---------- database : str envvar equivalent: PGDATABASE user : str envvar equivalent: PGUSER password : str envvar equivalent: PGPASSWORD host : str envvar equivalent: PGHOST port : int envvar equivalent: PGPORT aws_access_key_id : str aws_secret_access_key : str """ @memoized_property def connection(self): """A `psycopg2.connect` connection to Redshift. Instantiation is delayed until the object is first used. """ print("Connecting to %s..." % self.host) return psycopg2.connect(user=self.user, host=self.host, port=self.port, database=self.database, password=self.password) def __init__(self, database=None, user=None, password=None, host=None, port=5439, aws_access_key_id=None, aws_secret_access_key=None): self.set_aws_credentials(aws_access_key_id, aws_secret_access_key) self.s3_conn = None self.user = user or os.environ.get('PGUSER') self.host = host or os.environ.get('PGHOST') self.port = port or os.environ.get('PGPORT') self.database = database or os.environ.get('PGDATABASE') self.password = password or os.environ.get('PGPASSWORD') self._all_privileges = None def execute(self, batch, parameters=None): """ Execute a batch of SQL statements using this instance's connection. Statements are executed within a transaction. Parameters ---------- batch : str The batch of SQL statements to execute. parameters : list or dict Values to bind to the batch, passed to `cursor.execute` """ with self.connection as conn: with conn.cursor() as curs: curs.execute(batch, parameters) def mogrify(self, batch, parameters=None, execute=False): if execute: self.execute(batch, parameters) with self.connection as conn: with conn.cursor() as curs: mogrified = curs.mogrify(batch, parameters) return mogrified
32.244681
75
0.629165
2,635
0.86935
0
0
483
0.159353
0
0
1,327
0.437809
9d2bc7d987bd63f2af30edb8519069c52527c5c7
387
py
Python
General Data Preprocessing/copyFile.py
yuxiawang1992/Python-Code
d457a1fd61742dfac08a82a26b66703e5ff6f780
[ "Apache-2.0" ]
null
null
null
General Data Preprocessing/copyFile.py
yuxiawang1992/Python-Code
d457a1fd61742dfac08a82a26b66703e5ff6f780
[ "Apache-2.0" ]
null
null
null
General Data Preprocessing/copyFile.py
yuxiawang1992/Python-Code
d457a1fd61742dfac08a82a26b66703e5ff6f780
[ "Apache-2.0" ]
null
null
null
#Python 3.4.3 #coding=gbk # copy file wangyuxia 20160920 import sys, shutil, os, string path = "E:\\test for qgis\\" target_path = "E:\\test for qgis\\HourScale\\" for i in range(2,31): for j in range(0,24): filename = 'N'+str(i).zfill(2)+str(j).zfill(2) shutil.copyfile(path+'d_02.hdr',target_path+filename+'.hdr') print("------------finished---------")
25.8
68
0.596899
0
0
0
0
0
0
0
0
158
0.408269
9d2c26cb802d2c6da46e391e982eacb22cc6b08d
3,581
py
Python
convert_to_onnx.py
bhahn2004/FaceBoxes.PyTorch
be01c2449c6efa2a976a701dd8a052aa903a32b4
[ "MIT" ]
null
null
null
convert_to_onnx.py
bhahn2004/FaceBoxes.PyTorch
be01c2449c6efa2a976a701dd8a052aa903a32b4
[ "MIT" ]
null
null
null
convert_to_onnx.py
bhahn2004/FaceBoxes.PyTorch
be01c2449c6efa2a976a701dd8a052aa903a32b4
[ "MIT" ]
null
null
null
import sys from scipy.special import softmax import torch.onnx import onnxruntime as ort import numpy as np import tensorflow as tf from tensorflow.keras import backend as K from pytorch2keras.converter import pytorch_to_keras from models.faceboxes import FaceBoxes input_dim = 1024 num_classes = 2 model_path = "weights/FaceBoxesProd.pth" net = FaceBoxes('train', input_dim, num_classes) def check_keys(model, pretrained_state_dict): ckpt_keys = set(pretrained_state_dict.keys()) model_keys = set(model.state_dict().keys()) used_pretrained_keys = model_keys & ckpt_keys unused_pretrained_keys = ckpt_keys - model_keys missing_keys = model_keys - ckpt_keys print('Missing keys:{}'.format(len(missing_keys))) print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys))) print('Used keys:{}'.format(len(used_pretrained_keys))) assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' return True def remove_prefix(state_dict, prefix): ''' Old style model is stored with all names of parameters sharing common prefix 'module.' ''' print('remove prefix \'{}\''.format(prefix)) f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x return {f(key): value for key, value in state_dict.items()} def load_model(model, pretrained_path, load_to_cpu): print('Loading pretrained model from {}'.format(pretrained_path)) if load_to_cpu: pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage) else: device = torch.cuda.current_device() pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device)) if "state_dict" in pretrained_dict.keys(): pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = remove_prefix(pretrained_dict, 'module.') check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model net = load_model(net, model_path, False) net.eval() net.to("cuda") model_name = model_path.split("/")[-1].split(".")[0] onnx_model_path = f"models/onnx/base-model.onnx" # export ONNX model dummy_input = torch.randn(1, 3, input_dim, input_dim).to("cuda") torch.onnx.export(net, dummy_input, onnx_model_path, verbose=False, input_names=['input'], output_names=['output']) """ # try using pytorch2keras keras_model = pytorch_to_keras(net, dummy_input, [(3, input_dim, input_dim)]) keras_model_path = f"models/onnx/base-model" #keras_model.save(model_path) # 0. print PyTorch outputs out = net(dummy_input) dummy_input = dummy_input.cpu().detach().numpy() out = out.cpu().detach().numpy() loc = out[:, :, 2:] conf = out[:, :, :2] scores = softmax(conf, axis=-1) print(scores) # 1. check if ONNX outputs are the same ort_session = ort.InferenceSession(onnx_model_path) input_name = ort_session.get_inputs()[0].name out = ort_session.run(None, {input_name: dummy_input})[0] loc = out[:, :, 2:] conf = out[:, :, :2] scores = softmax(conf, axis=-1) print(scores) # 2. check if Keras outputs are the same keras_model_path = f"models/onnx/base-model" keras_model = tf.keras.models.load_model(keras_model_path) out = keras_model.predict(dummy_input) loc = out[:, :, 2:] conf = out[:, :, :2] scores = softmax(conf, axis=-1) print(scores) # 3. check if intermediate results of Keras are the same test_fn = K.function([keras_model.input], [keras_model.get_layer('334').output[0]]) test_out = test_fn(dummy_input) print(np.round(np.array(test_out), 4)[:30]) """
33.46729
115
0.729405
0
0
0
0
0
0
0
0
1,589
0.443731
9d2c9923a0dda16187c578d67868231654968587
358
py
Python
setup.py
kckaiwei/pysteamcmd
273f114352975268b01cb8007cc2336115aea4fc
[ "MIT" ]
null
null
null
setup.py
kckaiwei/pysteamcmd
273f114352975268b01cb8007cc2336115aea4fc
[ "MIT" ]
null
null
null
setup.py
kckaiwei/pysteamcmd
273f114352975268b01cb8007cc2336115aea4fc
[ "MIT" ]
null
null
null
from setuptools import setup setup(name='pysteamcmd', version='0.1.2', description='Python package to install and utilize steamcmd', url='http://github.com/f0rkz/pysteamcmd', author='f0rkz', author_email='[email protected]', license='MIT', packages=['pysteamcmd'], install_requires=[], zip_safe=False)
27.538462
67
0.648045
0
0
0
0
0
0
0
0
147
0.410615
9d2f4723ec751e23b2b4a9d81dfaceee08d127d9
3,292
py
Python
x2py/links/strategies/buffer_transform_strategy.py
jaykang920/x2py
b8bd473f94ff4b9576e984cc384f4159ab71278d
[ "MIT" ]
null
null
null
x2py/links/strategies/buffer_transform_strategy.py
jaykang920/x2py
b8bd473f94ff4b9576e984cc384f4159ab71278d
[ "MIT" ]
1
2019-06-05T09:35:09.000Z
2020-07-02T09:46:46.000Z
x2py/links/strategies/buffer_transform_strategy.py
jaykang920/x2py
b8bd473f94ff4b9576e984cc384f4159ab71278d
[ "MIT" ]
null
null
null
# Copyright (c) 2017, 2018 Jae-jun Kang # See the file LICENSE for details. from x2py.event_factory import EventFactory from x2py.links.link_events import * from x2py.links.strategy import ChannelStrategy from x2py.util.trace import Trace class BufferTransformStrategy(ChannelStrategy): EventFactory.register_type(HandshakeReq) EventFactory.register_type(HandshakeResp) EventFactory.register_type(HandshakeAck) def __init__(self, buffer_transform=None): self.buffer_transform = buffer_transform def before_session_setup(self, session): session_strategy = BufferTransformSessionStrategy() session_strategy.session = session session.channel_strategy = session_strategy def init_handshake(self, session): if self.buffer_transform is None: return session_strategy = session.channel_strategy buffer_transform = self.buffer_transform.clone() session_strategy.buffer_transform = buffer_transform session.send(HandshakeReq().setattrs( _transform = False, data = buffer_transform.init_handshake() )) def cleanup(self): if self.buffer_transform is None: return self.buffer_transform.cleanup() self.buffer_transform = None class BufferTransformSessionStrategy(ChannelStrategy.SubStrategy): def __init__(self): self.buffer_transform = None self.rx_transform_ready = False self.tx_transform_ready = False def process(self, event): type_id = event.type_id() if type_id == LinkEventType.HANDSHAKE_REQ: response = None try: response = self.buffer_transform.handshake(event.data) except Exception as ex: Trace.error("{} error handshaking {}", self.link.name, ex) self.session.send(HandshakeResp().setattrs( _transform = False, data = response )) elif type_id == LinkEventType.HANDSHAKE_RESP: result = False try: result = self.buffer_transform.fini_handshake(event.data) except Exception as ex: Trace.error("{} error finishing handshake {}", self.link.name, ex) if result: self.rx_transform_ready = True self.session.send(HandshakeAck().setattrs( _transform = False, result = result )) elif type_id == LinkEventType.HANDSHAKE_ACK: result = event.result if result: self.tx_transform_ready = True self.session.link.on_connect(result, self.session) else: return False return True def cleanup(self): if self.buffer_transform is None: return self.buffer_transform.cleanup() self.buffer_transform = None def before_send(self, buffer): if self.tx_transform_ready: buffer = self.buffer_transform.transform(buffer) return True, buffer return False, buffer def after_receive(self, buffer): if self.rx_transform_ready: buffer = self.buffer_transform.inverse_transform(buffer) return buffer
33.591837
82
0.637303
3,047
0.925577
0
0
0
0
0
0
132
0.040097
9d2ffa602fd2739373ede0b55f827179feb8572a
5,632
py
Python
ignite_trainer/_visdom.py
jinczing/AudioCLIP
b080fc946599290c91f9d3b203295e5968af1bf6
[ "MIT" ]
304
2021-06-28T09:59:13.000Z
2022-03-30T17:33:52.000Z
ignite_trainer/_visdom.py
AK391/AudioCLIP
45327aa203839bfeb58681dd36c04fd493ee72f4
[ "MIT" ]
176
2021-07-23T08:30:21.000Z
2022-03-14T12:29:06.000Z
ignite_trainer/_visdom.py
AK391/AudioCLIP
45327aa203839bfeb58681dd36c04fd493ee72f4
[ "MIT" ]
34
2021-06-29T11:50:19.000Z
2022-03-02T12:01:36.000Z
import os import sys import json import time import tqdm import socket import subprocess import numpy as np import visdom from typing import Tuple from typing import Optional def calc_ytick_range(vis: visdom.Visdom, window_name: str, env: Optional[str] = None) -> Tuple[float, float]: lower_bound, upper_bound = -1.0, 1.0 stats = vis.get_window_data(win=window_name, env=env) if stats: stats = json.loads(stats) stats = [np.array(item['y']) for item in stats['content']['data']] stats = [item[item != np.array([None])].astype(np.float16) for item in stats] if stats: q25s = np.array([np.quantile(item, 0.25) for item in stats if len(item) > 0]) q75s = np.array([np.quantile(item, 0.75) for item in stats if len(item) > 0]) if q25s.shape == q75s.shape and len(q25s) > 0: iqrs = q75s - q25s lower_bounds = q25s - 1.5 * iqrs upper_bounds = q75s + 1.5 * iqrs stats_sanitized = list() idx = 0 for item in stats: if len(item) > 0: item_sanitized = item[(item >= lower_bounds[idx]) & (item <= upper_bounds[idx])] stats_sanitized.append(item_sanitized) idx += 1 stats_sanitized = np.array(stats_sanitized) q25_sanitized = np.array([np.quantile(item, 0.25) for item in stats_sanitized]) q75_sanitized = np.array([np.quantile(item, 0.75) for item in stats_sanitized]) iqr_sanitized = np.sum(q75_sanitized - q25_sanitized) lower_bound = np.min(q25_sanitized) - 1.5 * iqr_sanitized upper_bound = np.max(q75_sanitized) + 1.5 * iqr_sanitized return lower_bound, upper_bound def plot_line(vis: visdom.Visdom, window_name: str, env: Optional[str] = None, line_label: Optional[str] = None, x: Optional[np.ndarray] = None, y: Optional[np.ndarray] = None, x_label: Optional[str] = None, y_label: Optional[str] = None, width: int = 576, height: int = 416, draw_marker: bool = False) -> str: empty_call = not vis.win_exists(window_name) if empty_call and (x is not None or y is not None): return window_name if x is None: x = np.ones(1) empty_call = empty_call & True if y is None: y = np.full(1, np.nan) empty_call = empty_call & True if x.shape != y.shape: x = np.ones_like(y) opts = { 'showlegend': True, 'markers': draw_marker, 'markersize': 5, } if empty_call: opts['title'] = window_name opts['width'] = width opts['height'] = height window_name = vis.line( X=x, Y=y, win=window_name, env=env, update='append', name=line_label, opts=opts ) xtickmin, xtickmax = 0.0, np.max(x) * 1.05 ytickmin, ytickmax = calc_ytick_range(vis, window_name, env) opts = { 'showlegend': True, 'xtickmin': xtickmin, 'xtickmax': xtickmax, 'ytickmin': ytickmin, 'ytickmax': ytickmax, 'xlabel': x_label, 'ylabel': y_label } window_name = vis.update_window_opts(win=window_name, opts=opts, env=env) return window_name def create_summary_window(vis: visdom.Visdom, visdom_env_name: str, experiment_name: str, summary: str) -> str: return vis.text( text=summary, win=experiment_name, env=visdom_env_name, opts={'title': 'Summary', 'width': 576, 'height': 416}, append=vis.win_exists(experiment_name, visdom_env_name) ) def connection_is_alive(host: str, port: int) -> bool: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: try: sock.connect((host, port)) sock.shutdown(socket.SHUT_RDWR) return True except socket.error: return False def get_visdom_instance(host: str = 'localhost', port: int = 8097, env_name: str = 'main', env_path: str = 'visdom_env') -> Tuple[visdom.Visdom, Optional[int]]: vis_pid = None if not connection_is_alive(host, port): if any(host.strip('/').endswith(lh) for lh in ['127.0.0.1', 'localhost']): os.makedirs(env_path, exist_ok=True) tqdm.tqdm.write('Starting visdom on port {}'.format(port), end='') vis_args = [ sys.executable, '-m', 'visdom.server', '-port', str(port), '-env_path', os.path.join(os.getcwd(), env_path) ] vis_proc = subprocess.Popen(vis_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) time.sleep(2.0) vis_pid = vis_proc.pid tqdm.tqdm.write('PID -> {}'.format(vis_pid)) trials_left = 5 while not connection_is_alive(host, port): time.sleep(1.0) tqdm.tqdm.write('Trying to connect ({} left)...'.format(trials_left)) trials_left -= 1 if trials_left < 1: raise RuntimeError('Visdom server is not running. Please run "python -m visdom.server".') vis = visdom.Visdom( server='http://{}'.format(host), port=port, env=env_name ) return vis, vis_pid
29.333333
109
0.552734
0
0
0
0
0
0
0
0
424
0.075284
9d3007ae1a0b21a2c5b82a4a63774e81f6aa5a00
4,960
py
Python
anonybot.py
sp0oks/anonybot
864688f04231e3088737b12caed76f61a5128993
[ "MIT" ]
5
2019-12-17T17:53:51.000Z
2020-09-06T07:51:23.000Z
anonybot.py
CptSpookz/anonybot
864688f04231e3088737b12caed76f61a5128993
[ "MIT" ]
null
null
null
anonybot.py
CptSpookz/anonybot
864688f04231e3088737b12caed76f61a5128993
[ "MIT" ]
2
2020-01-20T01:01:20.000Z
2020-09-06T07:51:25.000Z
import os import time from sqlalchemy import create_engine, BigInteger, UnicodeText, Column, Integer from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, scoped_session from sqlalchemy.exc import SQLAlchemyError from aiogram import Bot, Dispatcher, executor, types from aiogram.utils.exceptions import ChatNotFound from dotenv import load_dotenv load_dotenv() # Database configuration DB = os.getenv('DB_ADDR') ENGINE = create_engine(DB) Base = declarative_base() Session = scoped_session(sessionmaker(bind=ENGINE)) class Msg(Base): __tablename__ = 'messages' id = Column(Integer, primary_key=True) user_id = Column(BigInteger) text = Column(UnicodeText(4096)) # Bot configuration USAGE = """\ /status -- show how many messages are pending /receive -- receive pending messages /send [user_id] -- reply to message to send it to given user /drop -- drop all pending messages /help -- shows this message """ TOKEN = os.getenv('BOT_TOKEN') bot = Bot(token=TOKEN) dp = Dispatcher(bot) @dp.message_handler(commands=['send']) async def send_msg(message: types.Message): if message.chat.type == 'private': session = Session() args = message.get_args().split() if len(args) >= 1: try: receiver = int(args[0]) except ValueError: await message.reply('You need to specify a Telegram id as the receiver.') return if message.reply_to_message is not None: msg = Msg(user_id=receiver, text=message.reply_to_message.text) try: session.add(msg) session.commit() try: await bot.send_message(receiver, 'You have a new message!') await message.reply('Message was sent.') except ChatNotFound: session.flush() await message.reply('This user id does not exist.') except SQLAlchemyError as err: session.rollback() print(f'[{time.asctime()}]: {err}') await message.reply('Something happened, message could not be sent.\nTry sending the message again.') else: await message.reply('You must reply to the message you want to send.') else: await message.reply('You must provide a receiver to the message.') @dp.message_handler(commands=['receive']) async def receive_msg(message: types.Message): if message.chat.type == 'private': session = Session() msgs = session.query(Msg).filter_by(user_id=message.from_user.id).all() if len(msgs) > 0: for i, msg in enumerate(msgs, 1): text = f'#{i}: {msg.text}' await message.reply(text, parse_mode=types.message.ParseMode.MARKDOWN, reply=False) try: session.query(Msg).filter_by(user_id=message.from_user.id).delete() session.commit() except SQLAlchemyError as err: session.rollback() print(f'[{time.asctime()}]: {err}') await message.reply('Something happened, could not drop messages.') else: await message.reply('Your inbox is currently empty.') @dp.message_handler(commands=['drop']) async def drop_msg(message: types.Message): if message.chat.type == 'private': session = Session() msgs = session.query(Msg).filter_by(user_id=message.from_user.id).count() try: session.query(Msg).filter_by(user_id=message.from_user.id).delete() session.commit() await message.reply(f'Dropped {msgs} messages.') except SQLAlchemyError as err: session.rollback() print(f'[{time.asctime()}]: {err}') await message.reply(f'Something happened, could not drop messages.') @dp.message_handler(commands=['status']) async def status(message: types.Message): if message.chat.type == 'private': session = Session() msgs = session.query(Msg).filter_by(user_id=message.from_user.id).count() text = f'You have {msgs} pending messages.' await message.reply(text) @dp.message_handler(commands=['help']) async def start(message: types.Message): if message.chat.type == 'private': await message.reply(text=USAGE) @dp.message_handler(commands=['start']) async def start(message: types.Message): if message.chat.type == 'private': text = f'Hello, this is Anonybot.\n'+USAGE session = Session() msgs = session.query(Msg).filter_by(user_id=message.from_user.id).count() text += f'\nYou have {msgs} pending messages.' await message.reply(text=text, reply=False) if __name__ == '__main__': Base.metadata.create_all(ENGINE) executor.start_polling(dp)
36.20438
121
0.626008
161
0.03246
0
0
3,793
0.764718
3,553
0.716331
1,052
0.212097
9d303166d818d8f8f693a98022e31dfc5961d444
2,912
py
Python
tests/test_doc_cvnn_example.py
saugatkandel/cvnn
f6d7b5c17fd064a7eaa60e7af922914a974eb69a
[ "MIT" ]
38
2020-09-16T14:47:36.000Z
2022-03-30T13:35:05.000Z
tests/test_doc_cvnn_example.py
saugatkandel/cvnn
f6d7b5c17fd064a7eaa60e7af922914a974eb69a
[ "MIT" ]
25
2020-10-03T19:30:16.000Z
2022-03-29T15:24:44.000Z
tests/test_doc_cvnn_example.py
saugatkandel/cvnn
f6d7b5c17fd064a7eaa60e7af922914a974eb69a
[ "MIT" ]
9
2021-01-18T10:48:57.000Z
2022-02-11T10:34:52.000Z
import numpy as np import cvnn.layers as complex_layers import tensorflow as tf from pdb import set_trace def get_dataset(): (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.cifar10.load_data() train_images = train_images.astype(dtype=np.complex64) / 255.0 test_images = test_images.astype(dtype=np.complex64) / 255.0 return (train_images, train_labels), (test_images, test_labels) def test_cifar(): (train_images, train_labels), (test_images, test_labels) = get_dataset() # Create your model model = tf.keras.models.Sequential() model.add(complex_layers.ComplexInput(input_shape=(32, 32, 3))) # Always use ComplexInput at the start model.add(complex_layers.ComplexConv2D(32, (3, 3), activation='cart_relu')) model.add(complex_layers.ComplexAvgPooling2D((2, 2))) model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu')) model.add(complex_layers.ComplexFlatten()) model.add(complex_layers.ComplexDense(64, activation='cart_relu')) model.add(complex_layers.ComplexDense(10, activation='convert_to_real_with_abs')) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # model.summary() history = model.fit(train_images, train_labels, epochs=1, validation_data=(test_images, test_labels)) test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) def test_regression(): input_shape = (4, 28, 28, 3) x = tf.cast(tf.random.normal(input_shape), tf.complex64) model = tf.keras.models.Sequential() model.add(complex_layers.ComplexInput(input_shape=input_shape[1:])) model.add(complex_layers.ComplexFlatten()) model.add(complex_layers.ComplexDense(units=64, activation='cart_relu')) model.add(complex_layers.ComplexDense(units=10, activation='linear')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) y = model(x) assert y.dtype == np.complex64 def test_functional_api(): inputs = complex_layers.complex_input(shape=(128, 128, 3)) c0 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(inputs) c1 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(c0) c2 = complex_layers.ComplexMaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid')(c1) t01 = complex_layers.ComplexConv2DTranspose(5, kernel_size=2, strides=(2, 2), activation='cart_relu')(c2) concat01 = tf.keras.layers.concatenate([t01, c1], axis=-1) c3 = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(concat01) out = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(c3) model = tf.keras.Model(inputs, out) if __name__ == '__main__': test_functional_api() test_regression() test_cifar()
45.5
109
0.730426
0
0
0
0
0
0
0
0
282
0.096841
9d31c3b53c5a416e56a025e297cf9e335432c27b
2,580
py
Python
gkutils/commonutils/getCSVColumnSubset.py
genghisken/gkutils
0c8aa06d813de72b1cd9cba11219a78952799420
[ "MIT" ]
null
null
null
gkutils/commonutils/getCSVColumnSubset.py
genghisken/gkutils
0c8aa06d813de72b1cd9cba11219a78952799420
[ "MIT" ]
1
2021-11-19T19:28:52.000Z
2021-11-19T19:29:57.000Z
gkutils/commonutils/getCSVColumnSubset.py
genghisken/gkutils
0c8aa06d813de72b1cd9cba11219a78952799420
[ "MIT" ]
null
null
null
"""Write a subset of keys from one CSV to another. Don't use lots of memory. Usage: %s <filename> <outputfile> [--columns=<columns>] [--htm] [--racol=<racol>] [--deccol=<deccol>] [--filtercol=<filtercol>] %s (-h | --help) %s --version Options: -h --help Show this screen. --version Show version. --columns=<columns> Comma separated (no spaces) columns. --htm Generate HTM IDs and add to the column subset. --racol=<racol> RA column, ignored if htm not specified [default: ra] --deccol=<deccol> Declination column, ignored if htm not specified [default: dec] --filtercol=<filtercol> Only write the row when this column is not blank. """ import sys __doc__ = __doc__ % (sys.argv[0], sys.argv[0], sys.argv[0]) from docopt import docopt from gkutils.commonutils import Struct, readGenericDataFile, cleanOptions import csv from gkhtm._gkhtm import htmName def getColumnSubset(options): # DictReader doesn't burden the memory - so let's use it to select our column subset. data = csv.DictReader(open(options.filename), delimiter=',') columns = options.columns.split(',') if options.htm: columns.append('htm10') columns.append('htm13') columns.append('htm16') with open(options.outputfile, 'w') as f: w = csv.DictWriter(f, columns, delimiter = ',') w.writeheader() for row in data: # TO FIX - code is very inefficient. HTMs generated regardless of filtercol. Silly! trimmedRow = {key: row[key] for key in options.columns.split(',')} if options.htm: htm16Name = htmName(16, float(row[options.racol]), float(row[options.deccol])) trimmedRow['htm10'] = htm16Name[0:12] trimmedRow['htm13'] = htm16Name[12:15] trimmedRow['htm16'] = htm16Name[15:18] try: if options.filtercol: if trimmedRow[options.filtercol] and trimmedRow[options.filtercol] != 'null': w.writerow(trimmedRow) else: w.writerow(trimmedRow) except KeyError as e: w.writerow(trimmedRow) return def main(argv = None): opts = docopt(__doc__, version='0.1') opts = cleanOptions(opts) # Use utils.Struct to convert the dict into an object for compatibility with old optparse code. options = Struct(**opts) getColumnSubset(options) if __name__ == '__main__': main()
35.342466
122
0.605039
0
0
0
0
0
0
0
0
1,098
0.425581
9d3448187e277186c37746a8eee21eed655db199
1,030
py
Python
questions/univalued-binary-tree/Solution.py
marcus-aurelianus/leetcode-solutions
8b43e72fe1f51c84abc3e89b181ca51f09dc7ca6
[ "MIT" ]
141
2017-12-12T21:45:53.000Z
2022-03-25T07:03:39.000Z
questions/univalued-binary-tree/Solution.py
marcus-aurelianus/leetcode-solutions
8b43e72fe1f51c84abc3e89b181ca51f09dc7ca6
[ "MIT" ]
32
2015-10-05T14:09:52.000Z
2021-05-30T10:28:41.000Z
questions/univalued-binary-tree/Solution.py
marcus-aurelianus/leetcode-solutions
8b43e72fe1f51c84abc3e89b181ca51f09dc7ca6
[ "MIT" ]
56
2015-09-30T05:23:28.000Z
2022-03-08T07:57:11.000Z
""" A binary tree is univalued if every node in the tree has the same value. Return true if and only if the given tree is univalued.   Example 1: Input: [1,1,1,1,1,null,1] Output: true Example 2: Input: [2,2,2,5,2] Output: false   Note: The number of nodes in the given tree will be in the range [1, 100]. Each node's value will be an integer in the range [0, 99]. """ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def isUnivalTree(self, root): """ :type root: TreeNode :rtype: bool """ if root is None: return True if root.left is not None: if root.val != root.left.val: return False if root.right is not None: if root.val != root.right.val: return False return self.isUnivalTree(root.left) and self.isUnivalTree(root.right)
20.196078
77
0.586408
470
0.454985
0
0
0
0
0
0
618
0.598258
9d35413c71268ad28c881bbed6ac0a459290c12c
495
py
Python
chargingMethod.py
IllllIIlI/TeamProjPrac
da0a3e5ea9f6204c35c4a969eb522da05f5fc05c
[ "MIT" ]
null
null
null
chargingMethod.py
IllllIIlI/TeamProjPrac
da0a3e5ea9f6204c35c4a969eb522da05f5fc05c
[ "MIT" ]
null
null
null
chargingMethod.py
IllllIIlI/TeamProjPrac
da0a3e5ea9f6204c35c4a969eb522da05f5fc05c
[ "MIT" ]
null
null
null
def guide(): print("If you want to be informed about how to charge the electric vehicle, please enter Y.") answer = input() if answer == "Y": print("1.Stop in front of the charger\n" "2.Check the charging connector for my car\n" "3.Connect to the vehicle\n" "4.Set charge amount\n" "5.Pay the charging fee with the previously issued charging card or credit card\n" "6.Clean up connectors and instruments after charging is completed")
61.875
97
0.656566
0
0
0
0
0
0
0
0
368
0.743434
9d35852cc4326c58c6eb53f1d5a84c6b35a5e6fb
1,006
py
Python
src/python/WMComponent/DBS3Buffer/MySQL/DBSBufferFiles/GetParentStatus.py
khurtado/WMCore
f74e252412e49189a92962945a94f93bec81cd1e
[ "Apache-2.0" ]
21
2015-11-19T16:18:45.000Z
2021-12-02T18:20:39.000Z
src/python/WMComponent/DBS3Buffer/MySQL/DBSBufferFiles/GetParentStatus.py
khurtado/WMCore
f74e252412e49189a92962945a94f93bec81cd1e
[ "Apache-2.0" ]
5,671
2015-01-06T14:38:52.000Z
2022-03-31T22:11:14.000Z
src/python/WMComponent/DBS3Buffer/MySQL/DBSBufferFiles/GetParentStatus.py
khurtado/WMCore
f74e252412e49189a92962945a94f93bec81cd1e
[ "Apache-2.0" ]
67
2015-01-21T15:55:38.000Z
2022-02-03T19:53:13.000Z
#!/usr/bin/env python """ _GetParentStatus_ MySQL implementation of DBSBufferFile.GetParentStatus """ from WMCore.Database.DBFormatter import DBFormatter class GetParentStatus(DBFormatter): sql = """SELECT status FROM dbsbuffer_file INNER JOIN dbsbuffer_file_parent ON dbsbuffer_file.id = dbsbuffer_file_parent.parent WHERE dbsbuffer_file_parent.child = (SELECT id FROM dbsbuffer_file WHERE lfn = :lfn)""" def format(self, results): """ _format_ Format the query results into a list of LFNs. """ results = DBFormatter.format(self, results) status = [] for result in results: status.append(result[0]) return status def execute(self, lfn, conn = None, transaction = False): result = self.dbi.processData(self.sql, {"lfn": lfn}, conn = conn, transaction = transaction) return self.format(result)
27.189189
74
0.614314
845
0.83996
0
0
0
0
0
0
463
0.460239
9d364f1bcfe20f4a4dd1ba1db0e841b93b086bab
1,672
py
Python
yagoMoviesDown.py
afshinsadeghi/DBPediaDownloder
f9c98cab6fc7ce1d4f1c707ce1491c5dacbaf2cc
[ "Apache-2.0" ]
1
2019-04-02T11:12:52.000Z
2019-04-02T11:12:52.000Z
yagoMoviesDown.py
afshinsadeghi/DBPediaDownloder
f9c98cab6fc7ce1d4f1c707ce1491c5dacbaf2cc
[ "Apache-2.0" ]
null
null
null
yagoMoviesDown.py
afshinsadeghi/DBPediaDownloder
f9c98cab6fc7ce1d4f1c707ce1491c5dacbaf2cc
[ "Apache-2.0" ]
null
null
null
import os from time import sleep import requests querysub0 = 'https://linkeddata1.calcul.u-psud.fr/sparql?default-graph-uri=&query=construct%7B+%3Fs+%3Fp+%3Fo%7D+where+%7B+%0D%0Aselect+distinct+%3Fs+%3Fp+%3Fo+where+%7B%0D%0A%7B%0D%0A%3Fs1+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2FactedIn%3E+++%3Fs+.%0D%0A%3Fs2+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2Fdirected%3E+++%3Fs+.%0D%0A%3Fs+++%3Fp+++%3Fo.%0D%0A%7D+Union%7B%0D%0A%3Fs+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2FactedIn%3E+++%3Fs3+.%0D%0A%3Fs4+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2Fdirected%3E+++%3Fs3+.%0D%0A%3Fs+++%3Fp+++%3Fo.%0D%0A%7D+Union%7B%0D%0A%3Fs7+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2FactedIn%3E+++%3Fs5+.%0D%0A%3Fs+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2Fdirected%3E+++%3Fs5+.%0D%0A%3Fs+++%3Fp+++%3Fo.%7D+%0D%0A%7D%0D%0ALimit+10000+offset+' querysub1 = '+%7D%0D%0A&format=text%2Fplain&timeout=0' def download_big_file(counter): link = querysub0 + str(counter * 10000) + querysub1 local_filename = "YagoMovie" + str(counter) + ".nt" r = requests.get(link, stream=True) with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) print local_filename, " is downloaded." for counter in range(1, 700, 1): sleep(10) # sleep so to let the server breath download_big_file(counter) print "making yagoMovies.nt ..." os.system('find . -name "*.nt" -size -15 -delete') os.system("cat *.nt > a.ntt") os.system("rm *.nt") os.system("mv a.ntt yagoMovies.nt") print "yagoMovies.nt is created. have fun!"
59.714286
819
0.692584
0
0
0
0
0
0
0
0
1,109
0.663278
9d3825f401efd886ac45bc856e7732ecfff783b3
1,418
py
Python
src/TestValues/TestProtractor3D.py
SvenKratz/Protractor3D
39b6c877cc88cae028ca938e994034b83fcccb68
[ "MIT" ]
4
2018-02-06T14:41:26.000Z
2020-03-19T14:16:05.000Z
src/TestValues/TestProtractor3D.py
SvenKratz/Protractor3D
39b6c877cc88cae028ca938e994034b83fcccb68
[ "MIT" ]
null
null
null
src/TestValues/TestProtractor3D.py
SvenKratz/Protractor3D
39b6c877cc88cae028ca938e994034b83fcccb68
[ "MIT" ]
null
null
null
''' Created on Apr 12, 2011 @author: svenkratz ''' import TestGestures import Protractor3D.Protractor3D from Protractor3D.Protractor3D import * def triplify(g): out = [] if len(g) % 3 != 0: print "Warning: Data not divisible by 3" for k in xrange(len(g)/3): out = out + [[g[3*k], g[3*k+1], g[3*k+2]]] return out triangle = triplify(TestGestures.Triangle) print triangle circle1 = triplify(TestGestures.Circle_1) circle2 = triplify(TestGestures.Circle_2) rectangle = triplify(TestGestures.Rectangle) p_triangle = Protractor3D(triangle) p_circle1 = Protractor3D(circle1) p_circle2 = Protractor3D(circle2) p_rectangle = Protractor3D(rectangle) #print p_circle1.trace # #print "Trace", p_triangle.trace #print "Resampled", p_triangle.resampled #print "Scaled", p_triangle.scaled #print "Centered", p_triangle.centered #print "Template", p_triangle.template print "========== Evaluations ==============" Protractor3D.DEBUG = 5 gesturesAndNames = [(p_triangle,"Triangle"), (p_circle1,"Circle1"), ( p_circle2, "Circle2") , (p_rectangle, "Rectangle")] while gesturesAndNames != []: gesture = gesturesAndNames[0] templates = gesturesAndNames[1:] gesturesAndNames = templates if len(templates) != 0: for t in templates: print "=======================================" print "Results for", gesture[1]," <---> ", t[1] gesture[0].protractor3D_classify(gesture[0].template, t[0].template)
22.507937
121
0.693935
0
0
0
0
0
0
0
0
431
0.303949
9d3874299d6c36b60cba6fdb324222e4353364ea
481
py
Python
tests/test_actor.py
sdss/HAL
c7a2111f8737a498a124f5571d6f0e6b46e5c371
[ "BSD-3-Clause" ]
null
null
null
tests/test_actor.py
sdss/HAL
c7a2111f8737a498a124f5571d6f0e6b46e5c371
[ "BSD-3-Clause" ]
2
2022-01-14T04:50:58.000Z
2022-02-28T22:31:06.000Z
tests/test_actor.py
sdss/HAL
c7a2111f8737a498a124f5571d6f0e6b46e5c371
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # @Author: José Sánchez-Gallego ([email protected]) # @Date: 2021-03-24 # @Filename: test_hal.py # @License: BSD 3-clause (http://www.opensource.org/licenses/BSD-3-Clause) import pytest from hal import __version__ pytestmark = [pytest.mark.asyncio] async def test_version(actor): await actor.invoke_mock_command("version") assert len(actor.mock_replies) == 2 assert actor.mock_replies[-1]["version"] == __version__
20.913043
74
0.706861
0
0
0
0
0
0
179
0.3706
231
0.478261
9d3a4036188d6088bc1ce4cfe8dfff01c0a9fdb1
490
py
Python
day_07/puzzles.py
electronsandstuff/Advent-of-Code-2021
9c23872640e8d092088dcb6d5cb845cd11d98994
[ "BSD-3-Clause" ]
null
null
null
day_07/puzzles.py
electronsandstuff/Advent-of-Code-2021
9c23872640e8d092088dcb6d5cb845cd11d98994
[ "BSD-3-Clause" ]
null
null
null
day_07/puzzles.py
electronsandstuff/Advent-of-Code-2021
9c23872640e8d092088dcb6d5cb845cd11d98994
[ "BSD-3-Clause" ]
null
null
null
import numpy as np def crab_fuel(n): return (n**2 + n) // 2 if __name__ == '__main__': with open('input.txt') as f: pin = np.array([int(x) for x in f.read().split(',')]) distances = np.abs(pin[None, :] - np.arange(pin.max() + 1)[:, None]) total_fuel = np.sum(distances, axis=1) print(f'Solution 1: {total_fuel.min()}') distances_v2 = crab_fuel(distances) total_fuel_v2 = np.sum(distances_v2, axis=1) print(f'Solution 2: {total_fuel_v2.min()}')
25.789474
72
0.608163
0
0
0
0
0
0
0
0
93
0.189796
9d3ac14e7019eef027448de09382a14cd8c888c7
352
py
Python
radical_translations/core/migrations/0033_delete_work.py
kingsdigitallab/radical_translations
c18ca1ccc0ab2d88ae472dc2eda58e2ff9dcc76a
[ "MIT" ]
3
2022-02-08T18:03:44.000Z
2022-03-18T18:10:43.000Z
radical_translations/core/migrations/0033_delete_work.py
kingsdigitallab/radical_translations
c18ca1ccc0ab2d88ae472dc2eda58e2ff9dcc76a
[ "MIT" ]
19
2020-05-11T15:36:35.000Z
2022-02-08T11:26:40.000Z
radical_translations/core/migrations/0033_delete_work.py
kingsdigitallab/radical_translations
c18ca1ccc0ab2d88ae472dc2eda58e2ff9dcc76a
[ "MIT" ]
null
null
null
# Generated by Django 2.2.10 on 2020-05-18 10:49 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('events', '0008_alter_field_classification_on_event'), ('core', '0032_delete_instance'), ] operations = [ migrations.DeleteModel( name='Work', ), ]
19.555556
63
0.616477
266
0.755682
0
0
0
0
0
0
132
0.375
9d3b2ee3ee8d1f5868d497f89b1766382405982d
16,114
py
Python
sampling.py
bigdata-inha/FedDC
c90c48fc7e35b6cb80890194c8cdfb0d412a0819
[ "MIT" ]
null
null
null
sampling.py
bigdata-inha/FedDC
c90c48fc7e35b6cb80890194c8cdfb0d412a0819
[ "MIT" ]
null
null
null
sampling.py
bigdata-inha/FedDC
c90c48fc7e35b6cb80890194c8cdfb0d412a0819
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Python version: 3.6 import numpy as np from torchvision import datasets, transforms import logging import random import torch # Settings for a multiplicative linear congruential generator (aka Lehmer # generator) suggested in 'Random Number Generators: Good # Ones are Hard to Find' by Park and Miller. MLCG_MODULUS = 2**(31) - 1 MLCG_MULTIPLIER = 16807 # Default quantiles for federated evaluations. DEFAULT_QUANTILES = (0.0, 0.25, 0.5, 0.75, 1.0) def mnist_iid(dataset, num_users): """ Sample I.I.D. client data from MNIST dataset :param dataset: :param num_users: :return: dict of image index """ num_items = int(len(dataset) / num_users) dict_users, all_idxs = {}, [i for i in range(len(dataset))] for i in range(num_users): dict_users[i] = set(np.random.choice(all_idxs, num_items, replace=False)) all_idxs = list(set(all_idxs) - dict_users[i]) return dict_users def mnist_noniid(dataset, num_users): """ Sample non-I.I.D client data from MNIST dataset :param dataset: :param num_users: :return: """ # 60,000 training imgs --> 200 imgs/shard X 300 shards num_shards, num_imgs = 200, 300 idx_shard = [i for i in range(num_shards)] dict_users = {i: np.array([]) for i in range(num_users)} idxs = np.arange(num_shards * num_imgs) labels = dataset.train_labels.numpy() # sort labels idxs_labels = np.vstack((idxs, labels)) idxs_labels = idxs_labels[:, idxs_labels[1, :].argsort()] idxs = idxs_labels[0, :] # divide and assign 2 shards/client for i in range(num_users): rand_set = set(np.random.choice(idx_shard, 2, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) return dict_users def mnist_noniid_unequal(dataset, num_users): """ Sample non-I.I.D client data from MNIST dataset s.t clients have unequal amount of data :param dataset: :param num_users: :returns a dict of clients with each clients assigned certain number of training imgs """ # 60,000 training imgs --> 50 imgs/shard X 1200 shards num_shards, num_imgs = 1200, 50 idx_shard = [i for i in range(num_shards)] dict_users = {i: np.array([]) for i in range(num_users)} idxs = np.arange(num_shards * num_imgs) labels = dataset.train_labels.numpy() # sort labels idxs_labels = np.vstack((idxs, labels)) idxs_labels = idxs_labels[:, idxs_labels[1, :].argsort()] idxs = idxs_labels[0, :] # Minimum and maximum shards assigned per client: min_shard = 1 max_shard = 30 # Divide the shards into random chunks for every client # s.t the sum of these chunks = num_shards random_shard_size = np.random.randint(min_shard, max_shard + 1, size=num_users) random_shard_size = np.around(random_shard_size / sum(random_shard_size) * num_shards) random_shard_size = random_shard_size.astype(int) # Assign the shards randomly to each client if sum(random_shard_size) > num_shards: for i in range(num_users): # First assign each client 1 shard to ensure every client has # atleast one shard of data rand_set = set(np.random.choice(idx_shard, 1, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) random_shard_size = random_shard_size - 1 # Next, randomly assign the remaining shards for i in range(num_users): if len(idx_shard) == 0: continue shard_size = random_shard_size[i] if shard_size > len(idx_shard): shard_size = len(idx_shard) rand_set = set(np.random.choice(idx_shard, shard_size, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) else: for i in range(num_users): shard_size = random_shard_size[i] rand_set = set(np.random.choice(idx_shard, shard_size, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) if len(idx_shard) > 0: # Add the leftover shards to the client with minimum images: shard_size = len(idx_shard) # Add the remaining shard to the client with lowest data k = min(dict_users, key=lambda x: len(dict_users.get(x))) rand_set = set(np.random.choice(idx_shard, shard_size, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[k] = np.concatenate( (dict_users[k], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) return dict_users def cifar_iid(dataset, num_users, args): """ Sample I.I.D. client data from CIFAR10 dataset :param dataset: :param num_users: :return: dict of image index """ torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) num_items = int(len(dataset) / num_users) # dict_users란? 0~100의 유저들에게 50000개 데이터를 100개씩 할당. 유저마다 indx를 가지고 있는 list dict_users, all_idxs = {}, [i for i in range(len(dataset))] for i in range(num_users): dict_users[i] = set(np.random.choice(all_idxs, num_items, replace=False)) all_idxs = list(set(all_idxs) - dict_users[i]) return dict_users def imagenet_noniid(dataset, num_users, args, class_num=2): """ Sample non-I.I.D client data from CIFAR10 dataset :param dataset: :param num_users: :return: """ #num_shards -> 총클래스 개수/ num_imgs ->한명당 가지는 데이터개수.but imagenet은 클래스마다 다름.세어줘야함 / # idxs 총데이터수 torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) # 아직 한 유저당 클래스 한개만 들어가는 경우 발생. #idx_shards ->유저당 가지는 랜덤시드 n개(n개는 클래스 개수임.) -> 클래스2 x 유저수100 = 200 #num_imgs -> 전체데이터셋중 유저 한명이 가지는 한 클래스 데이터 수. 5만/100 =500, 2개클래스 500개 num_shards, num_imgs = num_users*class_num, int(len(dataset)/num_users/class_num) idx_shard = [i for i in range(num_shards)] dict_users = {i: np.array([]) for i in range(num_users)} idxs = np.arange(num_shards * num_imgs) # labels = dataset.train_labels.numpy() labels = np.array(dataset.targets) # sort labels idxs = np.argsort(labels) class_count = [0 for i in range(num_shards)] for i in labels: class_count[i] += 1 accumulate_class_count = [0 for i in range(num_shards)] for c in range(num_shards): if c==0: accumulate_class_count[c] = class_count[0] else: accumulate_class_count[c] = accumulate_class_count[c-1] + class_count[c] idx_shuffle = np.random.permutation(idx_shard) client_class_set = [] for i in range(num_users): user_class_set = idx_shuffle[i*class_num:(i+1)*class_num] client_class_set.append(user_class_set) for class_seed in user_class_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[accumulate_class_count[class_seed] -class_count[class_seed] :accumulate_class_count[class_seed]]), axis=0) return dict_users,client_class_set def cifar10_iid(train_dataset, num_users, args): torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) n_dataset = len(train_dataset) idxs = np.random.permutation(n_dataset) batch_idxs = np.array_split(idxs, num_users) net_dataidx_map = {i: batch_idxs[i] for i in range(num_users)} return net_dataidx_map def record_net_data_stats(y_train, net_dataidx_map): net_cls_counts = {} for net_i, dataidx in net_dataidx_map.items(): unq, unq_cnt = np.unique(y_train[dataidx], return_counts=True) tmp = {unq[i]: unq_cnt[i] for i in range(len(unq))} net_cls_counts[net_i] = tmp logging.debug('Data statistics: %s' % str(net_cls_counts)) return net_cls_counts def partition_data(train_dataset, partition, num_uers, alpha, args): torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) train_labels = np.array(train_dataset.targets) num_train = len(train_dataset) if partition == "homo": idxs = np.random.permutation(num_train) batch_idxs = np.array_split(idxs, num_uers) net_dataidx_map = {i: batch_idxs[i] for i in range(num_uers)} elif partition == "dirichlet": min_size = 0 K = args.num_classes N = len(train_labels) # train data 수 ex)cifar- 50000 net_dataidx_map = {} while min_size < 10: idx_batch = [[] for _ in range(num_uers)] # for each class in the dataset for k in range(K): idx_k = np.where(train_labels == k)[0] np.random.shuffle(idx_k) proportions = np.random.dirichlet(np.repeat(alpha, num_uers)) ## Balance proportions = np.array([p * (len(idx_j) < N / num_uers) for p, idx_j in zip(proportions, idx_batch)]) proportions = proportions / proportions.sum() proportions = (np.cumsum(proportions) * len(idx_k)).astype(int)[:-1] idx_batch = [idx_j + idx.tolist() for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))] min_size = min([len(idx_j) for idx_j in idx_batch]) for j in range(num_uers): np.random.shuffle(idx_batch[j]) net_dataidx_map[j] = idx_batch[j] elif partition > "noniid-#label0" and partition <= "noniid-#label9": num = eval(partition[13:]) K = 10 if num == 10: net_dataidx_map ={i:np.ndarray(0,dtype=np.int64) for i in range(num_uers)} for i in range(10): idx_k = np.where(train_labels==i)[0] np.random.shuffle(idx_k) split = np.array_split(idx_k,num_uers) for j in range(num_uers): net_dataidx_map[j]=np.append(net_dataidx_map[j],split[j]) else: times=[0 for i in range(10)] contain=[] for i in range(num_uers): current=[i%K] times[i%K]+=1 j=1 while (j<num): ind=random.randint(0,K-1) if (ind not in current): j=j+1 current.append(ind) times[ind]+=1 contain.append(current) net_dataidx_map ={i:np.ndarray(0,dtype=np.int64) for i in range(num_uers)} for i in range(K): idx_k = np.where(train_labels==i)[0] np.random.shuffle(idx_k) split = np.array_split(idx_k,times[i]) ids=0 for j in range(num_uers): if i in contain[j]: net_dataidx_map[j]=np.append(net_dataidx_map[j],split[ids]) ids+=1 traindata_cls_counts = record_net_data_stats(train_labels, net_dataidx_map) #print(traindata_cls_counts) # return (X_train, y_train, X_test, y_test, net_dataidx_map, traindata_cls_counts) # 이전 버전return y_train, net_dataidx_map, traindata_cls_counts return net_dataidx_map def cifar_noniid(dataset, num_users, args, class_num=2): """ Sample non-I.I.D client data from CIFAR10 dataset :param dataset: :param num_users: :return: """ torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) # 아직 한 유저당 클래스 한개만 들어가는 경우 발생. #idx_shards ->유저당 갖는 랜덤시드 n개(n개는 클래스 개수임.) -> 클래스2 x 유저수100 = 200 #num_imgs -> 전체데이터셋중 유저 한명이 가지는 한 클래스 데이터 수. 5만/100 =500, 2개클래스 500개 num_shards, num_imgs = num_users*class_num, int(len(dataset)/num_users/class_num) idx_shard = [i for i in range(num_shards)] dict_users = {i: np.array([]) for i in range(num_users)} idxs = np.arange(num_shards * num_imgs) # labels = dataset.train_labels.numpy() labels = np.array(dataset.targets) #sort_index = np.argsort(labels) # sort labels idxs_labels = np.vstack((idxs, labels)) idxs_labels = idxs_labels[:, idxs_labels[1, :].argsort()] idxs = idxs_labels[0, :] user_classs_dict = [] # divide and assign for i in range(num_users): # 200중에 2개 랜덤 선택. rand_set = set(np.random.choice(idx_shard, class_num, replace=False)) if class_num > 1 and i != num_users-1: while dataset.targets[idxs[list(rand_set)[1] * num_imgs]] == dataset.targets[idxs[list(rand_set)[0] *num_imgs]]: rand_set = set(np.random.choice(idx_shard, class_num, replace=False)) #print(dataset.targets[idxs[list(rand_set)[1] * num_imgs]]) #print(dataset.targets[idxs[list(rand_set)[0] * num_imgs]]) #print('\t') user_classs_dict.append(rand_set) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) # for data_idx, j in enumerate(dict_users[i]): # print(i, data_idx, dataset.targets[int(j)]) return dict_users, user_classs_dict class client_choice(object): def __init__(self, args, num_users): self.args =args self.num_users = num_users self.mlcg_start = np.random.RandomState(args.seed).randint(1, MLCG_MODULUS - 1) def client_sampling(self, num_users, m, random_seed, round_num): # Settings for a multiplicative linear congruential generator (aka Lehmer # generator) suggested in 'Random Number Generators: Good # Ones are Hard to Find' by Park and Miller. pseudo_random_int = pow(MLCG_MULTIPLIER, round_num, MLCG_MODULUS) * self.mlcg_start % MLCG_MODULUS random_state = np.random.RandomState(pseudo_random_int) return random_state.choice(num_users, m, replace=False) if __name__ == '__main__': dataset_train = datasets.MNIST('./data/mnist/', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) num = 100 d = mnist_noniid(dataset_train, num)
37.561772
151
0.608353
744
0.044944
0
0
0
0
0
0
3,615
0.218376
9d3ca477c6b29581c9b909f6a0a67fb1fa79ccca
2,502
py
Python
codeforcesRating/codeforcesRating.py
gaurav512/Python-Scripts
46483ab09cccef380c8425d6924507e029745479
[ "MIT" ]
3
2020-05-23T14:31:35.000Z
2020-11-12T12:56:08.000Z
codeforcesRating/codeforcesRating.py
gaurav512/Python-Scripts
46483ab09cccef380c8425d6924507e029745479
[ "MIT" ]
null
null
null
codeforcesRating/codeforcesRating.py
gaurav512/Python-Scripts
46483ab09cccef380c8425d6924507e029745479
[ "MIT" ]
null
null
null
#! /usr/bin/python3 # Author: gaurav512 ''' Script written to scrape basic information about a Codeforces profile given the user id Usage: Enter the userid as command line argument OR as the input after running the following in terminal- python3 codeforces.py [userid] ''' import requests, bs4, sys def getDetails(userid): url = 'http://www.codeforces.com/profile/'+userid headers = {'User-Agent' : 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:73.0) Gecko/20100101 Firefox/73.0'} res = requests.get(url, headers=headers) try: res.raise_for_status() except: print('Cannot access codeforces') return soup = bs4.BeautifulSoup(res.text, 'html.parser') # Getting the rating of the user title = soup.select('.user-rank > span:nth-child(1)') if not title: print(f'User \'{userid}\' not found') return None title = title[0].text print('Title:\t\t',title) # Getting the name and place of the user (if updated on profile) elem = soup.select('.main-info > div:nth-child(3) > div:nth-child(1)') if elem: content = elem[0].text.split(',') name = content[0] print('Name:\t\t',name) if len(content) > 1: place = ','.join(content[1:]).lstrip() print('Place: \t', place) # Getting organization of the user (if updated on profile) elem2 = soup.select('.main-info > div:nth-child(3) > div:nth-child(2)') if elem2: organization = elem2[0].text pos = organization.find(' ') print('Organization:\t', organization[pos+1:]) # If the user is unrated then return back if title.strip() == 'Unrated': return None # Following code snippet takes care of the inconsistent css selectors on the Codeforces site due to display of badges in some profiles rating_selector = '.info > ul:nth-child(2) > li:nth-child(1) > span:nth-child(2)' if soup.select('div.badge:nth-child(1) > img:nth-child(1)'): rating_selector = rating_selector[:21]+'3'+rating_selector[22:] # Fetch the rating of the user rating = soup.select(rating_selector)[0].text print('Rating:\t\t', rating) # Fetch the highest title achieved by the user highestTitle = soup.select('span.smaller > span:nth-child(1)')[0].text print('Highest Title:\t', highestTitle[:-2].title()) # Fetch the highest rating achieved by the user highestRating = soup.select('span.smaller > span:nth-child(2)')[0].text print('Highest Rating:\t', highestRating) def main(): if len(sys.argv) > 1: userid = sys.argv[1] else: userid = input() getDetails(userid) if __name__ == '__main__': main()
30.144578
136
0.691847
0
0
0
0
0
0
0
0
1,359
0.543165
9d3e62b9c9792273ad0f8b50076e62ff7aa9fb5b
566
py
Python
tests/test_combinator.py
BrunoSanchez/capsule_N1
a5ee3b74afc27de1a954ae2f9f96c278a4723226
[ "BSD-3-Clause" ]
12
2017-04-13T06:49:42.000Z
2019-11-19T09:27:43.000Z
tests/test_combinator.py
BrunoSanchez/capsule_N1
a5ee3b74afc27de1a954ae2f9f96c278a4723226
[ "BSD-3-Clause" ]
56
2017-09-05T16:00:57.000Z
2020-11-20T18:02:58.000Z
tests/test_combinator.py
BrunoSanchez/capsule_N1
a5ee3b74afc27de1a954ae2f9f96c278a4723226
[ "BSD-3-Clause" ]
5
2017-10-08T16:55:40.000Z
2020-09-22T14:04:53.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # test_combinator.py # # Copyright 2020 QuatroPe # # This file is part of ProperImage (https://github.com/quatrope/ProperImage) # License: BSD-3-Clause # Full Text: https://github.com/quatrope/ProperImage/blob/master/LICENSE.txt # """ test_combinator module from ProperImage for analysis of astronomical images Written by Bruno SANCHEZ PhD of Astromoy - UNC [email protected] Instituto de Astronomia Teorica y Experimental (IATE) UNC Cordoba - Argentina Of 301 """ class CombinatorBase(object): pass
17.151515
76
0.740283
39
0.068905
0
0
0
0
0
0
511
0.902827
9d3f7a7d27e1b7136efc12dc236457c627b3164e
1,025
py
Python
ch09-linear_model/src/score_card.py
ahitboyZBW/book-ml-sem
73208e7e492c9cbe82c4aaa6459a41e3ac1317be
[ "MIT" ]
137
2020-10-26T11:11:46.000Z
2022-03-29T01:21:22.000Z
ch09-linear_model/src/score_card.py
zengzhongjie/book-ml-sem
5d452a427db5ee65538d968ba5b938af013bb87c
[ "MIT" ]
4
2021-01-18T08:57:04.000Z
2021-07-29T02:39:00.000Z
ch09-linear_model/src/score_card.py
zengzhongjie/book-ml-sem
5d452a427db5ee65538d968ba5b938af013bb87c
[ "MIT" ]
46
2020-10-26T11:11:57.000Z
2022-03-08T00:15:32.000Z
def cal_A_B(pdo=20, base_score=500, odds=1 / 50): B = pdo / np.log(2) A = base_score + B * np.log(odds) return A, B ''' parameter --------- df:变量的woe,要求与模型训练logit时的列顺序一样 logit:sklearn中的逻辑回归模型,带截距 return ------ 新增每行数据的评分列:Score example: df= cal_score(df,logit) ''' def cal_score_byadd(df, logit, A=387.123, B=28.854): def _cal_woe_score(x, beta, n, B, beta0, A): ''' 只计算总分''' score = 0.0 for cc in x.index.tolist(): score += x[cc] * beta[cc] score = A - B * (beta0 + score) return score beta = dict(zip(df.columns.tolist(), logit.coef_[0])) n = df.shape[1] beta0 = logit.intercept_[0] df['Score'] = df.apply(lambda x: _cal_woe_score(x, beta, n, B, beta0, A), axis=1) return df def cal_score_byodds(df, logit, A=387.123, B=28.854): beta0 = logit.intercept_[0] prob_01 = logit.predict_proba(df) df['Score'] = A - B * np.log(prob_01[:, 1] / prob_01[:, 0]) return df
21.808511
77
0.559024
0
0
0
0
0
0
0
0
273
0.244843
9d41431a104dca3b80f9642ad172c2f1314cf033
3,790
py
Python
Tools/ecl_ekf/batch_process_logdata_ekf.py
lgarciaos/Firmware
26dba1407bd1fbc65c23870a22fed904afba6347
[ "BSD-3-Clause" ]
4,224
2015-01-02T11:51:02.000Z
2020-10-27T23:42:28.000Z
Tools/ecl_ekf/batch_process_logdata_ekf.py
choudhary0parivesh/Firmware
02f4ad61ec8eb4f7906dd06b4eb1fd6abb994244
[ "BSD-3-Clause" ]
11,736
2015-01-01T11:59:16.000Z
2020-10-28T17:13:38.000Z
Tools/ecl_ekf/batch_process_logdata_ekf.py
choudhary0parivesh/Firmware
02f4ad61ec8eb4f7906dd06b4eb1fd6abb994244
[ "BSD-3-Clause" ]
11,850
2015-01-02T14:54:47.000Z
2020-10-28T16:42:47.000Z
#! /usr/bin/env python3 """ Runs process_logdata_ekf.py on the .ulg files in the supplied directory. ulog files are skipped from the analysis, if a corresponding .pdf file already exists (unless the overwrite flag was set). """ # -*- coding: utf-8 -*- import argparse import os, glob from process_logdata_ekf import process_logdata_ekf def get_arguments(): parser = argparse.ArgumentParser(description='Analyse the estimator_status and ekf2_innovation message data for the' ' .ulg files in the specified directory') parser.add_argument("directory_path") parser.add_argument('-o', '--overwrite', action='store_true', help='Whether to overwrite an already analysed file. If a file with .pdf extension exists for a .ulg' 'file, the log file will be skipped from analysis unless this flag has been set.') parser.add_argument('--no-plots', action='store_true', help='Whether to only analyse and not plot the summaries for developers.') parser.add_argument('--check-level-thresholds', type=str, default=None, help='The csv file of fail and warning test thresholds for analysis.') parser.add_argument('--check-table', type=str, default=None, help='The csv file with descriptions of the checks.') parser.add_argument('--no-sensor-safety-margin', action='store_true', help='Whether to not cut-off 5s after take-off and 5s before landing ' '(for certain sensors that might be influence by proximity to ground).') return parser.parse_args() def main() -> None: args = get_arguments() if args.check_level_thresholds is not None: check_level_dict_filename = args.check_level_thresholds else: file_dir = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) check_level_dict_filename = os.path.join(file_dir, "check_level_dict.csv") if args.check_table is not None: check_table_filename = args.check_table else: file_dir = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) check_table_filename = os.path.join(file_dir, "check_table.csv") ulog_directory = args.directory_path # get all the ulog files found in the specified directory and in subdirectories ulog_files = glob.glob(os.path.join(ulog_directory, '**/*.ulg'), recursive=True) print("found {:d} .ulg files in {:s}".format(len(ulog_files), ulog_directory)) # remove the files already analysed unless the overwrite flag was specified. A ulog file is consired to be analysed if # a corresponding .pdf file exists.' if not args.overwrite: print("skipping already analysed ulg files.") ulog_files = [ulog_file for ulog_file in ulog_files if not os.path.exists('{}.pdf'.format(ulog_file))] n_files = len(ulog_files) print("analysing the {:d} .ulg files".format(n_files)) i = 1 n_skipped = 0 # analyse all ulog files for ulog_file in ulog_files: print('analysing file {:d}/{:d}: {:s}'.format(i, n_files, ulog_file)) try: _ = process_logdata_ekf( ulog_file, check_level_dict_filename, check_table_filename, plot=not args.no_plots, sensor_safety_margins=not args.no_sensor_safety_margin) except Exception as e: print(str(e)) print('an exception occurred, skipping file {:s}'.format(ulog_file)) n_skipped = n_skipped + 1 i = i + 1 print('{:d}/{:d} files analysed, {:d} skipped.'.format(n_files-n_skipped, n_files, n_skipped)) if __name__ == '__main__': main()
43.563218
125
0.656201
0
0
0
0
0
0
0
0
1,542
0.40686
9d429d9ff49854612f73350299d50ebaeb16c00a
1,468
py
Python
goodok_mlu/trackers/neptune.py
roma-goodok/ml_utils
c1d6630021a519102b5c4e029cecccdd8a0da946
[ "MIT" ]
null
null
null
goodok_mlu/trackers/neptune.py
roma-goodok/ml_utils
c1d6630021a519102b5c4e029cecccdd8a0da946
[ "MIT" ]
null
null
null
goodok_mlu/trackers/neptune.py
roma-goodok/ml_utils
c1d6630021a519102b5c4e029cecccdd8a0da946
[ "MIT" ]
1
2021-03-29T13:15:02.000Z
2021-03-29T13:15:02.000Z
import inspect import warnings from pathlib import Path def send_model_code(model, model_config, logdir, NEPTUNE_ON=False, exp=None): model_init = None model_forward = None model_config_s = None try: model_init = inspect.getsource(model.__init__) except Exception as e: warnings.warn(f"Can't save model_init: {e}", UserWarning) try: model_forward = inspect.getsource(model.forward) except Exception as e: warnings.warn(f"Can't save model_forward: {e}", UserWarning) try: model_config_s = str(model_config) except Exception as e: warnings.warn(f"Can't save model_config: {e}", UserWarning) def save_and_send(src, fnbase): if src is not None: fn = Path(logdir) / fnbase with open(fn, 'w') as f: f.write(src) if NEPTUNE_ON and exp is not None: exp.send_artifact(fn) save_and_send(model_init, 'model_init.py') save_and_send(model_forward, 'model_forward.py') save_and_send(model_config_s, 'model_config.txt') def log_and_send_string(value, name='example.txt', logdir=None, NEPTUNE_ON=False, exp=None): def save_and_send(src, fnbase): if src is not None: fn = Path(logdir) / fnbase with open(fn, 'w') as f: f.write(src) if NEPTUNE_ON and exp is not None: exp.send_artifact(fn) save_and_send(value, name)
30.583333
92
0.632834
0
0
0
0
0
0
0
0
162
0.110354
9d433078a8277e748b8b40142b8dbbea8d970588
63
py
Python
python/testData/intentions/returnTypeInPy3AnnotationNoColon_after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/intentions/returnTypeInPy3AnnotationNoColon_after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/intentions/returnTypeInPy3AnnotationNoColon_after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
def foo() -> object: @decorator def bar(): pass
15.75
20
0.492063
0
0
0
0
38
0.603175
0
0
0
0
9d438aadf58244488ff98e5078d8104573590578
3,099
py
Python
pkgs/sdk-pkg/src/genie/libs/sdk/libs/abstracted_libs/iosxr/subsection.py
jbronikowski/genielibs
200a34e5fe4838a27b5a80d5973651b2e34ccafb
[ "Apache-2.0" ]
94
2018-04-30T20:29:15.000Z
2022-03-29T13:40:31.000Z
pkgs/sdk-pkg/src/genie/libs/sdk/libs/abstracted_libs/iosxr/subsection.py
jbronikowski/genielibs
200a34e5fe4838a27b5a80d5973651b2e34ccafb
[ "Apache-2.0" ]
67
2018-12-06T21:08:09.000Z
2022-03-29T18:00:46.000Z
pkgs/sdk-pkg/src/genie/libs/sdk/libs/abstracted_libs/iosxr/subsection.py
jbronikowski/genielibs
200a34e5fe4838a27b5a80d5973651b2e34ccafb
[ "Apache-2.0" ]
49
2018-06-29T18:59:03.000Z
2022-03-10T02:07:59.000Z
# Python import logging from os import path # Abstract from genie.abstract import Lookup # Parser from genie.libs import parser from genie.metaparser.util.exceptions import SchemaEmptyParserError # unicon from unicon.eal.dialogs import Statement, Dialog log = logging.getLogger(__name__) def save_device_information(device, **kwargs): """Install the commit packages. This is for IOSXR devices. Args: Mandatory: device (`obj`) : Device object. Returns: True: Result is PASSED False: Result is PASSX Raises: None Example: >>> save_device_information(device=Device()) """ # Checking the config-register has 0x2 # if not configure 0x2 # RP/0/RSP1/CPU0:PE1#admin config-register 0x2 if device.is_ha: conn = device.active else: conn = device # Install commit ( when thre are package to bring up features) # from admin prompt conn.admin_execute('install commit') def get_default_dir(device): """ Get the default directory of this device Args: Mandatory: device (`obj`) : Device object. Returns: default_dir (`str`): Default directory of the system Raises: Exception Example: >>> get_default_dir(device=device) """ try: lookup = Lookup.from_device(device) parsed_dict = lookup.parser.show_platform.Dir(device=device).parse() if ":" in parsed_dict['dir']['dir_name']: default_dir = parsed_dict['dir']['dir_name'] else: default_dir = '' except SchemaEmptyParserError as e: raise Exception("No output when executing 'dir' command") from e except Exception as e: raise Exception("Unable to execute 'dir' command") from e # Return default_dir to caller log.info("Default directory on '{d}' is '{dir}'".format(d=device.name, dir=default_dir)) return default_dir def configure_replace(device, file_location, timeout=60, file_name=None): """Configure replace on device Args: device (`obj`): Device object file_location (`str`): File location timeout (`int`): Timeout value in seconds file_name (`str`): File name Returns: None Raises: pyATS Results """ if file_name: file_location = '{}{}'.format( file_location, file_name) try: # check if file exist device.execute.error_pattern.append('.*Path does not exist.*') device.execute("dir {}".format(file_location)) except Exception: raise Exception("File {} does not exist".format(file_location)) dialog = Dialog([ Statement(pattern=r'\[no\]', action='sendline(y)', loop_continue=True, continue_timer=False)]) device.configure("load {}\ncommit replace".format(file_location), timeout=timeout, reply=dialog)
26.042017
77
0.601162
0
0
0
0
0
0
0
0
1,476
0.476283
9d4487b1ae1496a3f2089388dee11fd461798de0
2,933
py
Python
whisper_scalability/plot.py
Evalir/research
0128cdc7c3cecaad4cc057886fd84e79b78f6b9c
[ "MIT" ]
42
2019-08-03T18:04:47.000Z
2022-02-28T14:24:56.000Z
whisper_scalability/plot.py
Evalir/research
0128cdc7c3cecaad4cc057886fd84e79b78f6b9c
[ "MIT" ]
88
2019-10-03T23:11:12.000Z
2022-03-30T05:28:44.000Z
whisper_scalability/plot.py
Evalir/research
0128cdc7c3cecaad4cc057886fd84e79b78f6b9c
[ "MIT" ]
3
2019-09-03T17:19:39.000Z
2021-12-27T16:53:44.000Z
import matplotlib.pyplot as plt import numpy as np from labellines import labelLines # # Trying to get interpolation to work but getting error: # # ValueError: The number of derivatives at boundaries does not match: expected 1, got 0+0 # from scipy.interpolate import make_interp_spline, BSpline # n_users = np.array([100, 10000, 1000000]) # bw_case8 = np.array([1, 1.5, 98.1]) # # 300 represents number of points to make between T.min and T.max # n_users_new = np.linspace(n_users.min(), n_users.max(), 300) # spl8 = make_interp_spline(n_users, bw_case8, k=3) # type: BSpline # bw_case8_smooth = spl8(n_users_new) # plt.plot(n_users_new, bw_case8_smooth, label='case 8', linewidth=2) n_users = [100, 10000, 1000000] bw_case1 = [1, 1, 1] bw_case2 = [97.7, 9.5*1000, 935.7*1000] bw_case3 = [49.3, 4.*10008, 476.8*1000] bw_case4 = [1, 1.5, 98.1] bw_case5 = [10.7, 978, 95.5*1000] bw_case6 = [21.5, 1.9*1000, 190.9*1000] bw_case7 = [3.9, 284.8, 27.8*1000] bw_case8 = [1, 1.5, 98.1] plt.xlim(100, 10**6) plt.ylim(1, 10**6) plt.plot(n_users, bw_case1, label='case 1', linewidth=4, linestyle='dashed') plt.plot(n_users, bw_case2, label='case 2', linewidth=4, linestyle='dashed') plt.plot(n_users, bw_case3, label='case 3', linewidth=4, linestyle='dashed') plt.plot(n_users, bw_case4, label='case 4', linewidth=4, linestyle='dashed') plt.plot(n_users, bw_case5, label='case 5', linewidth=4) plt.plot(n_users, bw_case6, label='case 6', linewidth=4) plt.plot(n_users, bw_case7, label='case 7', linewidth=4) plt.plot(n_users, bw_case8, label='case 8', linewidth=4) #labelLines(plt.gca().get_lines(),zorder=0) case1 = "Case 1. Only receiving messages meant for you [naive case]" case2 = "Case 2. Receiving messages for everyone [naive case]" case3 = "Case 3. All private messages go over one discovery topic [naive case]" case4 = "Case 4. All private messages partitioned into shards [naive case]" case5 = "Case 5. Case 4 + All messages passed through bloom filter" case6 = "Case 6. Case 5 + Benign duplicate receives" case7 = "Case 7. Case 6 + Mailserver case under good conditions with small bloom fp and mostly offline" case8 = "Case 8. Waku - No metadata protection with bloom filter and one node connected; static shard" plt.xlabel('number of users (log)') plt.ylabel('mb/day (log)') plt.legend([case1, case2, case3, case4, case5, case6, case7, case8], loc='upper left') plt.xscale('log') plt.yscale('log') plt.axhspan(0, 10, facecolor='0.2', alpha=0.2, color='blue') plt.axhspan(10, 30, facecolor='0.2', alpha=0.2, color='green') plt.axhspan(30, 100, facecolor='0.2', alpha=0.2, color='orange') plt.axhspan(100, 10**6, facecolor='0.2', alpha=0.2, color='red') #plt.axvspan(0, 10**2+3, facecolor='0.2', alpha=0.5) #plt.axvspan(10**4, 10**4+10**2, facecolor='0.2', alpha=0.5) #plt.axvspan(10**6, 10**6+10**4, facecolor='0.2', alpha=0.5) #for i in range(0, 5): # plt.axhspan(i, i+.2, facecolor='0.2', alpha=0.5) plt.show()
41.309859
103
0.703034
0
0
0
0
0
0
0
0
1,626
0.554381
9d44910e8c82debe9ba07f0a00ed736a65d972a9
2,000
py
Python
polydomino/search.py
PsiACE/polydomino
ade7cdb303cb4073d8c075659a5494392d31f8b4
[ "MIT" ]
null
null
null
polydomino/search.py
PsiACE/polydomino
ade7cdb303cb4073d8c075659a5494392d31f8b4
[ "MIT" ]
null
null
null
polydomino/search.py
PsiACE/polydomino
ade7cdb303cb4073d8c075659a5494392d31f8b4
[ "MIT" ]
null
null
null
# import the necessary packages import argparse import cv2 import numpy as np from polydomino.colordescriptor import ColorDescriptor from polydomino.searcher import Searcher # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument( "-i", "--index", required=True, help="Path to where the computed index will be stored", ) ap.add_argument("-q", "--query", required=True, help="Path to the query image") ap.add_argument( "-fm", "--features", required=True, help="Method to get features of pics", ) ap.add_argument( "-sm", "--searcher", required=True, help="Method to search pics", ) # ap.add_argument("-r", "--result-path", required=True, help="Path to the result path") args = vars(ap.parse_args()) # initialize the image descriptor cd = ColorDescriptor((8, 12, 3)) # load the query image and describe it query = cv2.imread(args["query"]) if args["features"] == "color-moments": features = cd.color_moments(query) elif args["features"] == "hsv-describe": features = cd.hsv_describe(query) elif args["features"] == "gray-matrix": features = cd.gray_matrix(query) elif args["features"] == "humoments": features = cd.humoments(query) elif args["features"] == "ahash": features = cd.ahash(query) elif args["features"] == "phash": features = cd.phash(query) elif args["features"] == "dhash": features = cd.dhash(query) elif args["features"] == "mse": features = cd.mse(query) elif args["features"] == "hog": features = cd.hog(query) else: print("Sorry, we don't support this method.") exit(1) # perform the search method = args["searcher"] searcher = Searcher(args["index"]) results = searcher.search(features, method) print(results) # display the query cv2.namedWindow("Query", 0) cv2.resizeWindow("Query", 640, 480) cv2.imshow("Query", query) # loop over the results for (score, resultID) in results: result = cv2.imread(resultID) cv2.imshow("Result", result) cv2.waitKey(0)
30.30303
87
0.6935
0
0
0
0
0
0
0
0
760
0.38
9d44ee135064ae4d96e5b84d0ccf61816f50cfb1
1,253
py
Python
irekua_dev_tools/cli.py
CONABIO-audio/irekua-dev-tools
87485592b7d4793c5e1f6eda2e00247810bfc99c
[ "BSD-4-Clause" ]
null
null
null
irekua_dev_tools/cli.py
CONABIO-audio/irekua-dev-tools
87485592b7d4793c5e1f6eda2e00247810bfc99c
[ "BSD-4-Clause" ]
null
null
null
irekua_dev_tools/cli.py
CONABIO-audio/irekua-dev-tools
87485592b7d4793c5e1f6eda2e00247810bfc99c
[ "BSD-4-Clause" ]
null
null
null
import click from irekua_dev_tools.utils import load_config from irekua_dev_tools.utils import get_working_directory from irekua_dev_tools.utils import load_environment_variables from irekua_dev_tools.utils import load_repository_info from . import git from . import dev from . import config from . import db from .extra import clean @click.group() @click.pass_context @click.option('--config-file', '-c', 'config_file', type=click.Path()) @click.option('--target', '-t', type=click.Path(exists=True)) @click.option('--default-config', '-dc', 'default_config', is_flag=True) def cli(ctx, config_file, target, default_config): config = load_config(path=config_file, aux_config=not default_config) repository_info = load_repository_info( method=config['repositories']['method'], repository_file=config['repositories']['repository_file']) load_environment_variables(config) ctx.ensure_object(dict) ctx.obj['config'] = config ctx.obj['repository_info'] = repository_info if target is None: target = get_working_directory(ctx.obj['config']) ctx.obj['target'] = target cli.add_command(dev.cli) cli.add_command(git.cli) cli.add_command(config.cli) cli.add_command(db.cli) cli.add_command(clean)
29.833333
73
0.751796
0
0
0
0
786
0.627294
0
0
179
0.142857
9d451d7664d2140e40043248faa30a6b327e59ee
2,880
py
Python
optimism/test/testMinimizeScalar.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
null
null
null
optimism/test/testMinimizeScalar.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
1
2022-03-12T00:01:12.000Z
2022-03-12T00:01:12.000Z
optimism/test/testMinimizeScalar.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
3
2021-12-23T19:53:31.000Z
2022-03-27T23:12:03.000Z
from optimism.JaxConfig import * from optimism import MinimizeScalar from optimism.test import TestFixture from optimism.material import J2Plastic def f(x): return 0.25*x**4 - 50.0*x**2 + 2.0 df = jacfwd(f) class TestMinimizeScalarFixture(TestFixture.TestFixture): def setUp(self): self.minimize_scalar_jitted = jit(MinimizeScalar.minimize_scalar, static_argnums=(0,4)) def test_solves_quadratic_problem_in_one_iteration(self): f = lambda x: x*x x0 = 3.5 settings = MinimizeScalar.get_settings(tol=1e-8, max_iters=1) x = MinimizeScalar.minimize_scalar(f, x0, diffArgs=tuple(), nondiffArgs=tuple(), settings=settings) self.assertNear(x, 0.0, 12) def test_does_not_converge_to_saddle_point(self): x0 = -0.001 settings = MinimizeScalar.get_settings(tol=1e-10, max_iters=30) x = MinimizeScalar.minimize_scalar(f, x0, diffArgs=tuple(), nondiffArgs=tuple(), settings=settings) r = np.abs(df(x)) self.assertLess(r, settings.tol) self.assertNear(x, -10.0, 9) def notest_jit(self): x0 = -0.001 settings = MinimizeScalar.get_settings(tol=1e-10, max_iters=30) x = self.minimize_scalar_jitted(f, x0, diffArgs=tuple(), nondiffArgs=tuple(), settings=settings) print("x={:1.13e}".format(x)) self.assertNear(x, -1.0, 9) def notest_grad(self): def g(x,c): return 0.25*x**4 - 0.5*(c*x)**2 + 2.0 c = -2.0 x0 = -3.0 settings = MinimizeScalar.get_settings(tol=1e-10, max_iters=30) x = MinimizeScalar.minimize_scalar(g, x0, diffArgs=(c,), nondiffArgs=tuple(), settings=settings) print("x={:1.13e}".format(x)) self.assertNear(x, c, 10) def notest_stiff_problem(self): E = 69.0 Y0 = 350.0 n = 3.0 eps0 = 1.0 e = 1.01*Y0/E def Wp(ep): w = np.where(ep > 0.0, Y0*ep + Y0*eps0*n/(n + 1.0)*(ep/eps0)**(1+1/n), Y0*ep) return w W = lambda ep: 0.5*E*(e - ep)**2 + Wp(ep) settings = MinimizeScalar.get_settings(tol=1e-8*Y0, max_iters=30) ep = MinimizeScalar.minimize_scalar(W, 1e-15, diffArgs=tuple(), nondiffArgs=tuple(), settings=settings) print("ep = ", ep) yield_func = grad(W) print("r=", -yield_func(ep)) if __name__ == '__main__': TestFixture.unittest.main()
34.698795
95
0.515278
2,600
0.902778
0
0
0
0
0
0
45
0.015625
9d46c2badf319d174f35513f77f2237bac4308e9
2,709
py
Python
anima/ui/review_dialog.py
MehmetErer/anima
f92ae599b5a4c181fc8e131a9ccdde537e635303
[ "MIT" ]
101
2015-02-08T22:20:11.000Z
2022-03-21T18:56:42.000Z
anima/ui/review_dialog.py
MehmetErer/anima
f92ae599b5a4c181fc8e131a9ccdde537e635303
[ "MIT" ]
23
2016-11-30T08:33:21.000Z
2021-01-26T12:11:12.000Z
anima/ui/review_dialog.py
MehmetErer/anima
f92ae599b5a4c181fc8e131a9ccdde537e635303
[ "MIT" ]
27
2015-01-03T06:49:45.000Z
2021-12-28T03:30:54.000Z
# -*- coding: utf-8 -*- """ import datetime from anima import defaults defaults.timing_resolution = datetime.timedelta(minutes=10) from anima.ui import SET_PYSIDE2 SET_PYSIDE2() from anima.ui.widgets.review import APPROVE, REQUEST_REVISION from anima.ui import review_dialog review_dialog.UI(review_type=REQUEST_REVISION) """ from anima.ui.lib import QtCore, QtWidgets from anima.ui.base import ui_caller, AnimaDialogBase def UI(app_in=None, executor=None, **kwargs): """ :param app_in: A Qt Application instance, which you can pass to let the UI be attached to the given applications event process. :param executor: Instead of calling app.exec_ the UI will call this given function. It also passes the created app instance to this executor. """ return ui_caller(app_in, executor, ReviewDialog, **kwargs) class ReviewDialog(QtWidgets.QDialog, AnimaDialogBase): """review dialog """ def __init__(self, task=None, reviewer=None, review_type=None, parent=None): super(ReviewDialog, self).__init__(parent=parent) self.task = task self.reviewer = reviewer self.review_type = review_type self.main_layout = None self.button_box = None self._setup_ui() def _setup_ui(self): """set up the ui elements """ self.setWindowTitle("Review Dialog") self.resize(550, 350) self.main_layout = QtWidgets.QVBoxLayout(self) # Review from anima.ui.widgets.review import ReviewWidget self.review_widget = ReviewWidget( parent=self, task=self.task, reviewer=self.reviewer, review_type=self.review_type, ) self.main_layout.addWidget(self.review_widget) # Button Box self.button_box = QtWidgets.QDialogButtonBox(self) self.button_box.setOrientation(QtCore.Qt.Horizontal) self.button_box.setStandardButtons( QtWidgets.QDialogButtonBox.Cancel | QtWidgets.QDialogButtonBox.Ok ) self.main_layout.addWidget(self.button_box) # setup signals from functools import partial self.button_box.accepted.connect(partial(self.accept)) self.button_box.rejected.connect(partial(self.reject)) def accept(self): """runs when the dialog is accepted """ # finalize the review review = self.review_widget.finalize_review() if review: QtWidgets.QMessageBox.information( self, "Success", "Review is created!" ) # do the default behaviour super(ReviewDialog, self).accept()
29.769231
80
0.655592
1,861
0.686969
0
0
0
0
0
0
864
0.318937
9d47cbe33f2156eddf7fcd553e506425ed8d1607
12,737
py
Python
squares/dsl/interpreter.py
Vivokas20/SKEL
d8766ceaa8aa766ea3580bbb61b747572ebfe77c
[ "Apache-2.0" ]
1
2022-01-20T14:57:30.000Z
2022-01-20T14:57:30.000Z
squares/dsl/interpreter.py
Vivokas20/SKEL
d8766ceaa8aa766ea3580bbb61b747572ebfe77c
[ "Apache-2.0" ]
null
null
null
squares/dsl/interpreter.py
Vivokas20/SKEL
d8766ceaa8aa766ea3580bbb61b747572ebfe77c
[ "Apache-2.0" ]
null
null
null
import math import re from itertools import permutations from logging import getLogger from typing import Tuple, Union from rpy2 import robjects from rpy2.rinterface_lib.embedded import RRuntimeError from z3 import BitVecVal from .. import util, results from ..decider import RowNumberInfo from ..program import LineInterpreter from ..tyrell.interpreter import InterpreterError logger = getLogger('squares.interpreter') def get_type(df, index): _script = f'sapply({df}, class)[{index}]' ret_val = robjects.r(_script) return ret_val[0] class RedudantError(InterpreterError): def __init__(self, *args): pass def add_quotes(string: str) -> str: new_string = "" if string != '': string = string.replace(" ", "").replace("\"", "").replace("'","").split(",") for s in string: if "=" in s: new = s.split("=") new_string += "'" + new[0] + "'" + " = " + "'" + new[1] + "'" + "," else: new_string += "'" + s + "'" + "," new_string = new_string[:-1] return new_string def eval_decorator(func): def wrapper(self, args, key): if key and not self.final_interpretation and util.get_config().cache_ops: if not key in self.cache: name = util.get_fresh_name() self.try_execute(func(self, name, args)) # if robjects.r(f'all_equal({name}, {args[0]}, convert=T, ignore_row_order=T)')[0] is True: # results.redundant_lines += 1 # raise RedudantError() self.cache[key] = name return self.cache[key] name = util.get_fresh_name() script = func(self, name, args) if self.final_interpretation: self.program += script self.try_execute(script) return name return wrapper class SquaresInterpreter(LineInterpreter): def __init__(self, problem, final_interpretation=False): self.problem = problem self.program = '' self.final_interpretation = final_interpretation self.cache = {} def try_execute(self, script): try: # print("SCRIPT_EXEC") # print(script, end='') robjects.r(script) except (Exception, RRuntimeError) as e: # logger.error("Error while evaluating program") # logger.error("%s", str(e)) raise InterpreterError(e) @eval_decorator def eval_filter(self, name, args): return f'{name} <- {args[0]} %>% filter({args[1]})\n' @eval_decorator def eval_filters(self, name, args): return f'{name} <- {args[0]} %>% filter({args[1]} {args[3]} {args[2]})\n' @eval_decorator def eval_summarise(self, name, args): if args[2]: args2 = args[2].replace("'", "") else: args2 = args[2] re_object = re.fullmatch(r'([A-Za-z_]+)\$([A-Za-z_]+)', args[1]) if re_object: return f'{name} <- {args[0]} %>% group_by({args2}) %>% summarise_{re_object.groups()[0]}({re_object.groups()[1]}) %>% ungroup()\n' else: return f'{name} <- {args[0]} %>% group_by({args2}) %>% summarise({args[1]}) %>% ungroup()\n' @eval_decorator def eval_mutate(self, name, args): re_object = re.fullmatch(r'([A-Za-z_]+)\$([A-Za-z_]+)', args[1]) if re_object: return f'{name} <- {args[0]} %>% mutate_{re_object.groups()[0]}({re_object.groups()[1]})\n' else: return f'{name} <- {args[0]} %>% mutate({args[1]})\n' @eval_decorator def eval_inner_join(self, name, args): if args[2] and "'" not in args[2]: args2 = add_quotes(args[2]) else: args2 = args[2] _script = f"{name} <- inner_join({args[0]}, {args[1]}, by=c({args2}), suffix = c('', '.other'), na_matches='{util.get_config().na_matches}')" for pair in args2.split(','): if '=' in pair: A, B = pair.split('=') A = A.strip()[1:-1] B = B.strip()[1:-1] if A.strip() != B.strip(): _script += f' %>% mutate({B} = {A})' return _script + '\n' @eval_decorator def eval_natural_join(self, name, args): if robjects.r(f'length(intersect(colnames({args[0]}), colnames({args[1]})))')[0] > 0: return f'{name} <- inner_join({args[0]}, {args[1]}, na_matches="{util.get_config().na_matches}")\n' else: return f'{name} <- full_join({args[0]}, {args[1]}, by=character(), na_matches="{util.get_config().na_matches}")\n' @eval_decorator def eval_natural_join3(self, name, args): _script = f'{name} <- ' if robjects.r(f'length(intersect(colnames({args[0]}), colnames({args[1]})))')[0] > 0: _script += f'inner_join({args[0]}, {args[1]}, na_matches="{util.get_config().na_matches}") ' else: _script += f'full_join({args[0]}, {args[1]}, by=character(), na_matches="{util.get_config().na_matches}") ' if robjects.r(f'length(intersect(union(colnames({args[0]}), colnames({args[1]})), colnames({args[2]})))')[0] > 0: _script += f'%>% inner_join({args[2]}, na_matches="{util.get_config().na_matches}")\n' else: _script += f'%>% full_join({args[2]}, by=character(), na_matches="{util.get_config().na_matches}")\n' return _script @eval_decorator def eval_natural_join4(self, name, args): _script = f'{name} <- ' if robjects.r(f'length(intersect(colnames({args[0]}), colnames({args[1]})))')[0] > 0: _script += f'inner_join({args[0]}, {args[1]}, na_matches="{util.get_config().na_matches}") ' else: _script += f'full_join({args[0]}, {args[1]}, by=character(), na_matches="{util.get_config().na_matches}") ' if robjects.r(f'length(intersect(union(colnames({args[0]}), colnames({args[1]})), colnames({args[2]})))')[0] > 0: _script += f'%>% inner_join({args[2]}, na_matches="{util.get_config().na_matches}") ' else: _script += f'%>% full_join({args[2]}, by=character(), na_matches="{util.get_config().na_matches}") ' if robjects.r(f'length(intersect(union(union(colnames({args[0]}), colnames({args[1]})), colnames({args[2]})), colnames({args[3]})))')[0] > 0: _script += f'%>% inner_join({args[3]}, na_matches="{util.get_config().na_matches}")\n' else: _script += f'%>% full_join({args[3]}, by=character(), na_matches="{util.get_config().na_matches}")\n' return _script @eval_decorator def eval_anti_join(self, name, args): if args[2] and "'" not in args[2]: args2 = add_quotes(args[2]) else: args2 = args[2] return f'{name} <- anti_join({args[0]}, {args[1]}, by=c({args2}), na_matches="{util.get_config().na_matches}")\n' @eval_decorator def eval_left_join(self, name, args): return f'{name} <- left_join({args[0]}, {args[1]}, na_matches="{util.get_config().na_matches}")\n' @eval_decorator def eval_union(self, name, args): return f'{name} <- bind_rows({args[0]}, {args[1]})\n' @eval_decorator def eval_intersect(self, name, args): return f'{name} <- intersect(select({args[0]},{args[2]}), select({args[1]}, {args[2]}))\n' @eval_decorator def eval_semi_join(self, name, args): return f'{name} <- semi_join({args[0]}, {args[1]}, na_matches="{util.get_config().na_matches}")\n' @eval_decorator def eval_cross_join(self, name, args): _script = f'{name} <- full_join({args[0]}, {args[1]}, by=character(), suffix = c("", ".other"), na_matches="{util.get_config().na_matches}")' if args[2] != '': _script += f' %>% filter({args[2]})' return _script + '\n' @eval_decorator def eval_unite(self, name, args): return f'{name} <- unite({args[0]}, {args[1]}, {args[1]}, {args[2]}, sep=":", remove=F)\n' def apply_row(self, val): df = robjects.r(val) return df.nrow def apply_col(self, val): df = robjects.r(val) return df.ncol def apply_columns(self, val): a = list(robjects.r(f'colnames({val})')) bools = list(map(lambda c: c in a, self.problem.all_columns)) raise NotImplementedError() def equals(self, actual: str, expect: str, *args) -> Tuple[bool, float, Union[RowNumberInfo, None]]: if robjects.r(f'nrow({actual})')[0] == 0: results.empty_output += 1 # with rpy2.robjects.conversion.localconverter(robjects.default_converter + pandas2ri.converter): # print(robjects.conversion.rpy2py(robjects.r(actual))) score = robjects.r(f'ue <- {expect} %>% unlist %>% unique;length(intersect({actual} %>% unlist %>% unique, ue)) / length(ue)')[0] if math.isnan(score): score = 0 if not util.get_config().subsume_conditions and score < 1: return False, score, None sketch_cols = None sketch_distinct = None sketch_order = None if self.problem.sketch and self.problem.sketch.select: if "cols" in self.problem.sketch.select: sketch_cols = tuple(self.problem.sketch.select["cols"]) if "distinct" in self.problem.sketch.select: sketch_distinct = self.problem.sketch.select["distinct"] if "arrange" in self.problem.sketch.select: sketch_order = self.problem.sketch.select["arrange"] # The columns are already described in the output so we don't need to use them a_cols = list(robjects.r(f'colnames({actual})')) e_cols = list(robjects.r(f'colnames({expect})')) expected_n = int(robjects.r(f'nrow({expect})')[0]) result = None if sketch_cols: selected_columns = [sketch_cols] else: selected_columns = permutations(a_cols, len(e_cols)) for combination in selected_columns: for d in sketch_distinct if sketch_distinct is not None else ['', ' %>% distinct()']: _script = f'out <- {actual} %>% select({", ".join(map(lambda pair: f"{pair[0]} = {pair[1]}" if pair[0] != pair[1] else pair[0], zip(e_cols, combination)))}){d}' try: robjects.r(_script) if self.test_equality('out', expect, False): if self.final_interpretation: if sketch_order != []: # None implies that there is no sketch so it must be [] to ensure there is no order by if sketch_order: perms = sketch_order else: perms = util.get_permutations(e_cols, len(e_cols)) for perm in perms: name = util.get_fresh_name() new_script = f'{name} <- out %>% arrange({perm})' robjects.r(new_script) if self.test_equality(name, expect, True): _script += f' %>% arrange({perm})' break self.program += _script + '\n' return True, score, None except: continue finally: if util.get_config().subsume_conditions and result != RowNumberInfo.UNKNOWN: actual_n = int(robjects.r(f'nrow(out)')[0]) if actual_n > expected_n: if result is None or result == RowNumberInfo.LESS_ROWS: result = RowNumberInfo.LESS_ROWS else: result = RowNumberInfo.UNKNOWN if actual_n < expected_n: if result is None or result == RowNumberInfo.MORE_ROWS: result = RowNumberInfo.MORE_ROWS else: result = RowNumberInfo.UNKNOWN return False, score, result def test_equality(self, actual: str, expect: str, keep_order: bool = False) -> bool: if not keep_order: _script = f'all_equal({actual}, {expect}, convert=T)' else: _script = f'all_equal({actual}, {expect}, convert=T, ignore_row_order=T)' try: return robjects.r(_script)[0] is True except: return False
42.885522
176
0.544241
10,933
0.858365
0
0
5,494
0.431342
0
0
4,216
0.331004
9d4857e094a5401228d6f2b6484e13982abb69b9
7,869
py
Python
src/data_preparation/process_airbnb_data.py
ejgenc/Data-Analysis_Istanbul-Health-Tourism
34b9838690ca640c6a7a60f63eb2f51983ec46ef
[ "MIT" ]
1
2020-11-18T15:27:53.000Z
2020-11-18T15:27:53.000Z
src/data_preparation/process_airbnb_data.py
ejgenc/Data-Analysis_Istanbul-Health-Tourism
34b9838690ca640c6a7a60f63eb2f51983ec46ef
[ "MIT" ]
null
null
null
src/data_preparation/process_airbnb_data.py
ejgenc/Data-Analysis_Istanbul-Health-Tourism
34b9838690ca640c6a7a60f63eb2f51983ec46ef
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ ------ What is this file? ------ This script targets the istanbul_airbnb_raw.csv file. It cleans the .csv file in order to prepare it for further analysis """ #%% --- Import Required Packages --- import os import pathlib from pathlib import Path # To wrap around filepaths import numpy as np import pandas as pd from matplotlib import pyplot as plt from scipy.stats import iqr from src.helper_functions.data_preparation_helper_functions import sample_and_read_from_df from src.helper_functions.data_preparation_helper_functions import report_null_values #%% --- Set proper directory to assure integration with doit --- abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) #%% --- Import Data --- import_fp = Path("../../data/raw/istanbul_airbnb_raw.csv") airbnb = pd.read_csv(import_fp, encoding='utf-8-sig') #%% --- Get a general sense of the datasets --- # Shape of the data print(airbnb.shape) # 16251 rows, 16 cols # First few lines print(airbnb.head()) #Not much info, let's print the columns airbnb_columns = airbnb.columns #%% --- Clean the dataset: Relevant - Irrelevant Columns --- airbnb_unwanted_columns = ["neighbourhood_group", "last_review", "number_of_reviews", "minimum_nights", "reviews_per_month", "calculated_host_listings_count", "availability_365"] #Drop unwanted columns airbnb.drop(columns = airbnb_unwanted_columns, axis = 1, inplace = True) # Check shape now print(airbnb.shape) # 16251 rows, 9 cols #%% --- Clean the dataset: Further Troubleshooting --- #I want to be able to randomly take n samples from each dataset and then print them #on a clean format to see the potential problems #If i had something to test for, i'd strive for somewhat of a representative sample size #while sampling. However, i think the best to do here would be to print what i can read #because i don't have any computational measure to test for something: sample_and_read_from_df(airbnb, 20) #SPOTTED PROBLEMS: # dataframe airbnb column neigborhood is not properly formatted: # Formatting fixes # should actually be called "district_tr" # There should be an accompanying "district_eng" column. #%% --- Fix column naming --- #I can use either dataframe.columns attribute to assign new columns #or i can pass a dictionary with old names/new names into dataframe.rename() airbnb_columns_in_english = ["listing_id", "name", "host_id", "host_name", "district_eng", "latitude", "longitude", "room_type", "price"] airbnb.columns = airbnb_columns_in_english #%% --- One-off fix for districts named "Eyup" --- eyup_mask = airbnb.loc[:,"district_eng"] == "Eyup" airbnb.loc[eyup_mask, "district_eng"] = "Eyupsultan" #%% --- Add a new "district_tr" column airbnb.loc[:,"district_tr"] = airbnb.loc[:,"district_eng"].str.lower().str.capitalize() #I will be using df.map() method, so i'll need two dataframes: one for existing values - tr values #and one for exixsting values - eng values unique_districts_tr_corrected = ["Kadıköy", "Fatih", "Tuzla", "Gaziosmanpaşa", "Üsküdar", "Adalar", "Sarıyer", "Arnavutköy", "Silivri", "Çatalca", "Küçükçekmece", "Beyoğlu", "Şile", "Kartal", "Şişli", "Beşiktaş", "Kağıthane", "Esenyurt", "Bahçelievler", "Avcılar", "Başakşehir", "Sultangazi", "Maltepe", "Sancaktepe", "Beykoz", "Büyükçekmece", "Bakırköy", "Pendik", "Bağcılar", "Esenler", "Beylikdüzü", "Ümraniye", "Eyüpsultan", "Çekmeköy", "Ataşehir", "Sultanbeyli", "Zeytinburnu", "Güngören", "Bayrampaşa"] unique_districts_eng_corrected = ["Kadikoy", "Fatih", "Tuzla", "Gaziosmanpasa", "Uskudar", "Adalar", "Sariyer", "Arnavutkoy", "Silivri", "Catalca", "Kucukcekmece", "Beyoglu", "Sile", "Kartal", "Sisli", "Besiktas", "Kagithane", "Esenyurt", "Bahcelievler", "Avcilar", "Basaksehir", "Sultangazi", "Maltepe", "Sancaktepe", "Beykoz", "Buyukcekmece", "Bakirkoy", "Pendik", "Bagcilar", "Esenler", "Beylikduzu", "Umraniye", "Eyupsultan", "Cekmekoy", "Atasehir", "Sultanbeyli", "Zeytinburnu", "Gungoren", "Bayrampasa"] airbnb_unique_districts_dict_tr = dict(zip(unique_districts_eng_corrected, unique_districts_tr_corrected)) airbnb.loc[:,"district_tr"] = airbnb.loc[:,"district_tr"].map(airbnb_unique_districts_dict_tr) #%% --- EDA: Explore Missing Values --- #Let's check null values first null_report = report_null_values(airbnb) #We have so few missing values, dropping them won't affect our quality at all. # Let's do exactly that. airbnb.dropna(axis = 0, inplace = True) #%% --- EDA: Explore Datatype agreement --- #Now, let's check data type agreement for each column. data_types = airbnb.dtypes # The data types with "object" warrant further investigation #They could just be strings, but mixed data types also show as "object" # Let's select "object" data types and query once again. airbnb_dtype_object_only = airbnb.select_dtypes(include = ["object"]) print(airbnb_dtype_object_only.columns) #As all the column names seem to accomodate only strings, we can be #pretty sure that showing up as object is correct behavior. #%% --- EDA - Explore Outliers in price --- fig = plt.figure(figsize = (19.20, 10.80)) ax = fig.add_subplot(1,1,1) ax.hist(x = airbnb.loc[:,"price"], bins = 20) #Our histogram is very wonky. It's obvious that there are some issues. Let's see: # It doesn't make sense for a airbnb room to cost 0 liras. That's for sure. print(airbnb.loc[:,"price"].sort_values().head(20)) #What about maxes? print(airbnb.loc[:,"price"].sort_values(ascending = False).head(30)) #There are some very high maxes, that's for sure. Let's try to make heads and tails of #what these houses are: possible_outliers = airbnb.sort_values(by = "price", axis = 0, ascending = False).head(30) # A qualitative analysis of such houses show that there really aappears to be a problem #with pricing. Let's calculate the IQR to drop the outliers: #Calculate the iqr price_iqr = iqr(airbnb.loc[:,"price"], axis = 0) #Calculate q3 and q1 q1 = airbnb["price"].quantile(0.25) q3 = airbnb["price"].quantile(0.75) #Create min and max mask min_mask = airbnb.loc[:,"price"] >= q1 - (1.5 * price_iqr) max_mask = airbnb.loc[:,"price"] <= q3 + (1.5 * price_iqr) #Combine masks combined_mask = min_mask & max_mask #Create subset airbnb_within_iqr = airbnb.loc[combined_mask] fig = plt.figure(figsize = (19.20, 10.80)) ax = fig.add_subplot(1,1,1) ax.hist(x = airbnb_within_iqr.loc[:,"price"], bins = 20) #Alright, limiting our data to an IQR appears to omit a whole lot of data. #I am sure that some of the outliers we have are errors of entry. #However, the only ones that we can conclusively prove are the entries that are rated at 0. #We'll drop these #Create a mask for zeros zero_mask = (airbnb.loc[:,"price"] > 0) #Filter using the mask airbnb = airbnb.loc[zero_mask,:] # #%% --- Export Data --- export_fp = Path("../../data/processed/istanbul_airbnb_processed.csv") airbnb.to_csv(export_fp, encoding='utf-8-sig', index = False)
38.199029
106
0.641632
0
0
0
0
0
0
0
0
4,484
0.566877
9d4ac45e3a86ef95dc9b84f578aa4f83f679c9b6
3,695
py
Python
py/shure.py
dman776/micboard
166987dfad529dc35654f402fdbbde7f16b60f77
[ "MIT" ]
44
2019-08-30T02:51:59.000Z
2022-03-15T13:47:18.000Z
py/shure.py
dman776/micboard
166987dfad529dc35654f402fdbbde7f16b60f77
[ "MIT" ]
21
2019-09-01T16:17:22.000Z
2022-02-01T15:47:55.000Z
py/shure.py
dman776/micboard
166987dfad529dc35654f402fdbbde7f16b60f77
[ "MIT" ]
16
2019-09-01T01:40:09.000Z
2022-03-15T17:12:28.000Z
import time import select import queue import atexit import sys import logging from networkdevice import ShureNetworkDevice from channel import chart_update_list, data_update_list # from mic import WirelessMic # from iem import IEM NetworkDevices = [] DeviceMessageQueue = queue.Queue() def get_network_device_by_ip(ip): return next((x for x in NetworkDevices if x.ip == ip), None) def get_network_device_by_slot(slot): for networkdevice in NetworkDevices: for channel in networkdevice.channels: if channel.slot == slot: return channel def check_add_network_device(ip, type): net = get_network_device_by_ip(ip) if net: return net net = ShureNetworkDevice(ip, type) NetworkDevices.append(net) return net def watchdog_monitor(): for rx in (rx for rx in NetworkDevices if rx.rx_com_status == 'CONNECTED'): if (int(time.perf_counter()) - rx.socket_watchdog) > 5: logging.debug('disconnected from: %s', rx.ip) rx.socket_disconnect() for rx in (rx for rx in NetworkDevices if rx.rx_com_status == 'CONNECTING'): if (int(time.perf_counter()) - rx.socket_watchdog) > 2: rx.socket_disconnect() for rx in (rx for rx in NetworkDevices if rx.rx_com_status == 'DISCONNECTED'): if (int(time.perf_counter()) - rx.socket_watchdog) > 20: rx.socket_connect() def WirelessQueryQueue(): while True: for rx in (rx for rx in NetworkDevices if rx.rx_com_status == 'CONNECTED'): strings = rx.get_query_strings() for string in strings: rx.writeQueue.put(string) time.sleep(10) def ProcessRXMessageQueue(): while True: rx, msg = DeviceMessageQueue.get() rx.parse_raw_rx(msg) def SocketService(): for rx in NetworkDevices: rx.socket_connect() while True: watchdog_monitor() readrx = [rx for rx in NetworkDevices if rx.rx_com_status in ['CONNECTING', 'CONNECTED']] writerx = [rx for rx in readrx if not rx.writeQueue.empty()] read_socks, write_socks, error_socks = select.select(readrx, writerx, readrx, .2) for rx in read_socks: try: data = rx.f.recv(1024).decode('UTF-8') except: rx.socket_disconnect() break # print("read: {} data: {}".format(rx.ip,data)) d = '>' if rx.type == 'uhfr': d = '*' data = [e+d for e in data.split(d) if e] for line in data: # rx.parse_raw_rx(line) DeviceMessageQueue.put((rx, line)) rx.socket_watchdog = int(time.perf_counter()) rx.set_rx_com_status('CONNECTED') for rx in write_socks: string = rx.writeQueue.get() logging.debug("write: %s data: %s", rx.ip, string) try: if rx.type in ['qlxd', 'ulxd', 'axtd', 'p10t']: rx.f.sendall(bytearray(string, 'UTF-8')) elif rx.type == 'uhfr': rx.f.sendto(bytearray(string, 'UTF-8'), (rx.ip, 2202)) except: logging.warning("TX ERROR IP: %s String: %s", rx.ip, string) for rx in error_socks: rx.set_rx_com_status('DISCONNECTED') # @atexit.register def on_exit(): connected = [rx for rx in NetworkDevices if rx.rx_com_status == 'CONNECTED'] for rx in connected: rx.disable_metering() time.sleep(50) print("IT DONE!") sys.exit(0) # atexit.register(on_exit) # signal.signal(signal.SIGTERM, on_exit) # signal.signal(signal.SIGINT, on_exit)
29.56
97
0.603518
0
0
0
0
0
0
0
0
494
0.133694
9d4cf41e0ad2b23397f4ee9bbfa792895ce345d0
277
py
Python
alviscorpus/status.py
Bibliome/alviscorpus
ec7bf45efbc6a3cd864fda48e0066090cfb93313
[ "MIT" ]
null
null
null
alviscorpus/status.py
Bibliome/alviscorpus
ec7bf45efbc6a3cd864fda48e0066090cfb93313
[ "MIT" ]
null
null
null
alviscorpus/status.py
Bibliome/alviscorpus
ec7bf45efbc6a3cd864fda48e0066090cfb93313
[ "MIT" ]
null
null
null
import enum class Status(enum.Enum): QUEUED = 'queued' STARTED = 'started' FINISHED = 'finished' ERROR = 'error' def __str__(self): return self.value QUEUED = Status.QUEUED STARTED = Status.STARTED FINISHED = Status.FINISHED ERROR = Status.ERROR
17.3125
26
0.67148
166
0.599278
0
0
0
0
0
0
34
0.122744
9d4d51c8583e8a9e583bab2100d07d40d0fad696
977
py
Python
01_simulate_competition_experiment.py
stevenshave/competition-label-affinity
2383309e852954a1bd88c6364087c3d57e7acec0
[ "MIT" ]
null
null
null
01_simulate_competition_experiment.py
stevenshave/competition-label-affinity
2383309e852954a1bd88c6364087c3d57e7acec0
[ "MIT" ]
null
null
null
01_simulate_competition_experiment.py
stevenshave/competition-label-affinity
2383309e852954a1bd88c6364087c3d57e7acec0
[ "MIT" ]
null
null
null
"""Simulation 1:1:1 comptition binding""" import numpy as np from high_accuracy_binding_equations import * # We can choose to work in a common unit, typically nM, or uM, as long as all # numbers are in the same unit, the result is valid. We assume uM for all # concentrations bellow. # First, lets simulate a few single points from three different systems # p, l and i are protrin, ligand and inhibitor concentrations respectively # kdpl is the dissociation constant (KD) of the protein-ligand interaction # kdpi is the dissociation constant (KD) of the protein-inhibitor interaction # We can either expand the dictionary with ** as shown in the example with # system1, or we can pass arguments to competition_pl with the following # singature: competition_pl(p, l , i, kdpl, kdpi) system1={"p":1, "l":2, "i":10, "kdpl":0.1, "kdpi":10} pl_conc=competition_pl(**system1) print(f"pl_conc = {round(pl_conc,4)}, fraction ligand bound = {round(pl_conc/system1['l'],4)}")
36.185185
95
0.745138
0
0
0
0
0
0
0
0
816
0.83521
9d50b18aa63e6f3b4b6406ced31f91d878b8ae26
773
py
Python
e_vae_proj/qualitative/mnist/btcvae/gen_train.py
kuangdai/disentangling-vae
9a5f9da44a82a2c643b7289c4945320621b86247
[ "MIT" ]
1
2021-06-30T08:58:49.000Z
2021-06-30T08:58:49.000Z
e_vae_proj/qualitative/mnist/btcvae/gen_train.py
kuangdai/disentangling-vae
9a5f9da44a82a2c643b7289c4945320621b86247
[ "MIT" ]
null
null
null
e_vae_proj/qualitative/mnist/btcvae/gen_train.py
kuangdai/disentangling-vae
9a5f9da44a82a2c643b7289c4945320621b86247
[ "MIT" ]
null
null
null
import numpy as np from pathlib import Path import sys if __name__ == '__main__': # absolute path my_path = Path(__file__).parent.resolve().expanduser() main_path = my_path.parent.parent seed = 0 nlat = 10 alpha = 1.0 beta = 6.0 gamma = 1.0 epochs = 100 # cmd template cmd = f'python main.py btcvae_mnist_{epochs}ep/z{nlat}_a{alpha}_b{beta}_g{gamma}_s{seed} -s {seed} ' \ f'--checkpoint-every 25 -d mnist -e {epochs} -b 64 --lr 0.0005 ' \ f'-z {nlat} -l btcvae --btcvae-A {alpha} --btcvae-B {beta} --btcvae-G {gamma} ' \ f'--no-test\n' with open(my_path / f'train_beta{beta}.sh', 'w') as f: unnormalized_beta = beta * nlat f.write(cmd)
28.62963
107
0.564036
0
0
0
0
0
0
0
0
317
0.410091
9d5197f8d1796538860fe2f3fb98a1af46c8ef38
3,331
py
Python
tests/test_load.py
tom3131/simfin
8ef5a2b0dd67ddcd3f8b92b5cd45c1a483eeada1
[ "MIT" ]
231
2019-09-25T13:30:00.000Z
2022-03-26T08:00:47.000Z
tests/test_load.py
tom3131/simfin
8ef5a2b0dd67ddcd3f8b92b5cd45c1a483eeada1
[ "MIT" ]
11
2019-10-01T14:50:15.000Z
2022-02-23T10:35:47.000Z
tests/test_load.py
tom3131/simfin
8ef5a2b0dd67ddcd3f8b92b5cd45c1a483eeada1
[ "MIT" ]
36
2019-09-30T16:14:48.000Z
2022-03-19T19:59:30.000Z
########################################################################## # # Unit tests (pytest) for load.py # ########################################################################## # SimFin - Simple financial data for Python. # www.simfin.com - www.github.com/simfin/simfin # See README.md for instructions and LICENSE.txt for license details. ########################################################################## import simfin as sf from simfin.datasets import iter_all_datasets ########################################################################## # Test configuration. # Set data directory. sf.set_data_dir(data_dir='~/simfin_data/') # Load API key or use default 'free' if key-file doesn't exist. sf.load_api_key(path='~/simfin_api_key.txt', default_key='free') # Set number of days before refreshing data from SimFin server. refresh_days = 30 ########################################################################## # Helper functions. def _create_kwargs(variant, market): """ Create a dict with keyword args for sf.load() functions that take variant, market and refresh_days as kwargs. """ kwargs = \ { 'variant': variant, 'market': market, 'refresh_days': refresh_days, } return kwargs ########################################################################## # Test functions. def test_load(): """Test simfin.bulk.load()""" for dataset, variant, market in iter_all_datasets(): sf.load(dataset=dataset, variant=variant, market=market, refresh_days=refresh_days) def test_load_income(): """Test simfin.bulk.load_income()""" for dataset, variant, market in iter_all_datasets(datasets='income'): kwargs = _create_kwargs(variant=variant, market=market) sf.load_income(**kwargs) sf.load_income_banks(**kwargs) sf.load_income_insurance(**kwargs) def test_load_balance(): """Test simfin.bulk.load_balance()""" for dataset, variant, market in iter_all_datasets(datasets='balance'): kwargs = _create_kwargs(variant=variant, market=market) sf.load_balance(**kwargs) sf.load_balance_banks(**kwargs) sf.load_balance_insurance(**kwargs) def test_load_cashflow(): """Test simfin.bulk.load_cashflow()""" for dataset, variant, market in iter_all_datasets(datasets='cashflow'): kwargs = _create_kwargs(variant=variant, market=market) sf.load_cashflow(**kwargs) sf.load_cashflow_banks(**kwargs) sf.load_cashflow_insurance(**kwargs) def test_load_shareprices(): """Test simfin.bulk.load_shareprices()""" for dataset, variant, market in iter_all_datasets(datasets='shareprices'): kwargs = _create_kwargs(variant=variant, market=market) sf.load_shareprices(**kwargs) def test_load_companies(): """Test simfin.bulk.load_companies()""" for dataset, variant, market in iter_all_datasets(datasets='companies'): kwargs = _create_kwargs(variant=variant, market=market) sf.load_companies(**kwargs) def test_load_industries(): """Test simfin.bulk.load_industries()""" sf.load_industries(refresh_days=refresh_days) ##########################################################################
31.424528
78
0.576403
0
0
0
0
0
0
0
0
1,432
0.429901
9d5477ef2956d3615e64662b0ab23440b2cbff69
447
py
Python
lab/__init__.py
patel-zeel/lab
cc0df2c03196863041e78fa4179445341e86958c
[ "MIT" ]
36
2018-05-08T20:54:21.000Z
2022-02-24T09:15:58.000Z
lab/__init__.py
patel-zeel/lab
cc0df2c03196863041e78fa4179445341e86958c
[ "MIT" ]
4
2021-06-24T11:59:29.000Z
2022-02-01T15:51:30.000Z
lab/__init__.py
patel-zeel/lab
cc0df2c03196863041e78fa4179445341e86958c
[ "MIT" ]
3
2021-02-14T13:00:26.000Z
2021-12-10T08:55:17.000Z
import sys from plum import Dispatcher B = sys.modules[__name__] # Allow both import styles. dispatch = Dispatcher() # This dispatch namespace will be used everywhere. from .generic import * from .shaping import * from .linear_algebra import * from .random import * from .numpy import * from .types import * from .control_flow import * # Fix namespace issues with `B.bvn_cdf` simply by setting it explicitly. B.bvn_cdf = B.generic.bvn_cdf
22.35
75
0.756152
0
0
0
0
0
0
0
0
149
0.333333
9d556827bb836c6e6f6530ec156f0777935a5dea
1,514
py
Python
async_nbgrader/apps/exportapp.py
IllumiDesk/async_nbgrader
427e1b634277c043a1ed9f00bf7e417e0f611aca
[ "Apache-2.0" ]
2
2021-06-23T17:58:22.000Z
2021-09-27T10:00:01.000Z
async_nbgrader/apps/exportapp.py
IllumiDesk/async-nbgrader
427e1b634277c043a1ed9f00bf7e417e0f611aca
[ "Apache-2.0" ]
6
2021-06-17T21:40:24.000Z
2021-11-11T17:48:15.000Z
async_nbgrader/apps/exportapp.py
IllumiDesk/async-nbgrader
427e1b634277c043a1ed9f00bf7e417e0f611aca
[ "Apache-2.0" ]
2
2021-06-10T18:16:22.000Z
2021-06-17T02:52:45.000Z
# coding: utf-8 from nbgrader.api import Gradebook from nbgrader.apps import ExportApp as BaseExportApp from traitlets import Instance from traitlets import Type from traitlets import default from ..plugins import CanvasCsvExportPlugin from ..plugins import CustomExportPlugin aliases = { "log-level": "Application.log_level", "db": "CourseDirectory.db_url", "to": "CanvasCsvExportPlugin.to", "canvas_import": "CanvasCsvExportPlugin.canvas_import", "exporter": "ExportApp.plugin_class", "assignment": "CanvasCsvExportPlugin.assignment", "student": "CanvasCsvExportPlugin.student", "course": "CourseDirectory.course_id", } flags = {} class ExportApp(BaseExportApp): """Custom nbgrader export app to export grades from a Canvas LMS course. """ name = "async_nbgrader-export" aliases = aliases plugin_class = Type( CanvasCsvExportPlugin, klass=CustomExportPlugin, help="The plugin class for exporting the grades.", ).tag(config=True) plugin_inst = Instance(CustomExportPlugin).tag(config=False) @default("classes") def _classes_default(self): classes = super(ExportApp, self)._classes_default() classes.append(ExportApp) classes.append(CustomExportPlugin) return classes def start(self): super(ExportApp, self).start() self.init_plugin() with Gradebook(self.coursedir.db_url, self.coursedir.course_id) as gb: self.plugin_inst.export(gb)
27.527273
78
0.703435
842
0.556143
0
0
211
0.139366
0
0
474
0.313078
9d55833e8ac84841e916071829ab4546156cae04
2,810
py
Python
django_ocr_server/conf.py
shmakovpn/django_ocr_server
4d694629c39c18a6c13bcdfafdb8258b78e5a859
[ "Apache-2.0" ]
17
2019-12-04T03:14:56.000Z
2022-03-27T07:05:19.000Z
django_ocr_server/conf.py
shmakovpn/django_ocr_server
4d694629c39c18a6c13bcdfafdb8258b78e5a859
[ "Apache-2.0" ]
1
2020-04-17T07:32:30.000Z
2020-04-17T07:32:30.000Z
django_ocr_server/conf.py
shmakovpn/django_ocr_server
4d694629c39c18a6c13bcdfafdb8258b78e5a859
[ "Apache-2.0" ]
5
2020-03-16T10:43:03.000Z
2021-07-14T14:43:49.000Z
""" django_ocr_server/conf.py +++++++++++++++++++++++++ The settings manager for **django_ocr_server**. Usage: .. code-block:: python from django_ocr_server.conf import ocr_settings # Next line will print a value of **OCR_TESSERACT_LANG** # using the variable from the Django's *settings.py* file # if the variable is set there. # Or the default value of **OCR_TESSERACT_LANG** from # *django_ocr_server/default_settings.py* otherwise. print(ocr_settings.OCR_TESSERACT_LANG) | Author: shmakovpn <[email protected]> | Date: 2021-01-20 """ from typing import List from datetime import timedelta from django.conf import settings as _s import django_ocr_server.default_settings as _ds class DjangoOcrSettings: """The settings manager of **django_ocr_server**""" @property def OCR_STORE_FILES(_) -> bool: return bool(getattr(_s, 'OCR_STORE_FILES', _ds.OCR_STORE_FILES)) @property def OCR_FILE_PREVIEW(_) -> bool: return bool(getattr(_s, 'OCR_FILE_PREVIEW', _ds.OCR_FILE_PREVIEW)) @property def OCR_TESSERACT_LANG(_) -> str: return str(getattr(_s, 'OCR_TESSERACT_LANG', _ds.OCR_TESSERACT_LANG)) @property def OCR_STORE_PDF(_) -> bool: return bool(getattr(_s, 'OCR_STORE_PDF', _ds.OCR_STORE_PDF)) @property def OCR_STORE_FILES_DISABLED_LABEL(_) -> str: return str( getattr(_s, 'OCR_STORE_FILES_LABEL', _ds.OCR_STORE_FILES_DISABLED_LABEL)) @property def OCR_STORE_PDF_DISABLED_LABEL(_) -> str: return str( getattr(_s, 'OCR_FILE_REMOVED_LABEL', _ds.OCR_FILE_REMOVED_LABEL)) @property def OCR_FILE_REMOVED_LABEL(_) -> str: return str( getattr(_s, 'OCR_FILE_REMOVED_LABEL', _ds.OCR_FILE_REMOVED_LABEL)) @property def OCR_PDF_REMOVED_LABEL(_) -> str: return str( getattr(_s, 'OCR_PDF_REMOVED_LABEL', _ds.OCR_PDF_REMOVED_LABEL)) @property def OCR_ALLOWED_FILE_TYPES(_) -> List[str]: return list( getattr(_s, 'OCR_ALLOWED_FILE_TYPES', _ds.OCR_ALLOWED_FILE_TYPES)) @property def OCR_FILES_UPLOAD_TO(_) -> str: return str(getattr(_s, 'OCR_FILES_UPLOAD_TO', _ds.OCR_FILES_UPLOAD_TO)) @property def OCR_PDF_UPLOAD_TO(_) -> str: return str(getattr(_s, 'OCR_PDF_UPLOAD_TO', _ds.OCR_PDF_UPLOAD_TO)) @property def OCR_FILES_TTL(_) -> timedelta: return getattr(_s, 'OCR_FILES_TTL', _ds.OCR_FILES_TTL) @property def OCR_PDF_TTL(_) -> timedelta: return getattr(_s, 'ocr_pdf_ttl', _ds.OCR_PDF_TTL) @property def OCR_TTL(_) -> timedelta: return getattr(_s, 'OCR_TTL', _ds.OCR_TTL) ocr_settings: DjangoOcrSettings = DjangoOcrSettings() """The instance of settings manager of **django_ocr_server**"""
29.893617
79
0.687544
1,993
0.709253
0
0
1,830
0.651246
0
0
930
0.330961
9d56f0959997626e16345a92ca50c1b01d2ed5e6
105
py
Python
ibms_project/sfm/apps.py
mohdbakhrayba/ibms
029e1f3bf108586289c65bb1d547f86851f9494f
[ "Apache-2.0" ]
null
null
null
ibms_project/sfm/apps.py
mohdbakhrayba/ibms
029e1f3bf108586289c65bb1d547f86851f9494f
[ "Apache-2.0" ]
null
null
null
ibms_project/sfm/apps.py
mohdbakhrayba/ibms
029e1f3bf108586289c65bb1d547f86851f9494f
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig class SFMConfig(AppConfig): name = 'sfm' verbose_name = 'SFM'
17.5
33
0.704762
69
0.657143
0
0
0
0
0
0
10
0.095238
9d5735cba5c6faf4bc0915b6d346541d85cbb4ac
15,960
py
Python
torsion/model/symmetry_function.py
hnlab/TorsionNet
e81ab624f1340765345b34240a049a8cc5f4d581
[ "MIT" ]
15
2021-01-15T01:54:26.000Z
2022-03-31T16:00:52.000Z
torsion/model/symmetry_function.py
hnlab/TorsionNet
e81ab624f1340765345b34240a049a8cc5f4d581
[ "MIT" ]
2
2021-07-21T22:42:09.000Z
2021-11-22T06:39:20.000Z
torsion/model/symmetry_function.py
hnlab/TorsionNet
e81ab624f1340765345b34240a049a8cc5f4d581
[ "MIT" ]
6
2021-01-16T04:07:17.000Z
2022-02-23T02:11:49.000Z
import math import numpy as np from openeye import oechem from torsion.inchi_keys import get_torsion_oeatom_list, get_torsion_oebond def GetPairwiseDistanceMatrix(icoords, jcoords): ''' input: two sets of coordinates, icoords, jcoords; each of which are a list of OEDoubleArray(3) containing x, y, and z component output: xij - the x component of the distance matrix yij - the y component of the distance matrix zij - the z component of the distance matrix rij - the distance matrix rij2 - square of the distance matrix ''' nullRet = [None, None, None, None, None] ni = len(icoords) nj = len(jcoords) try: iArrayX = np.array([c[0] for c in icoords]) iArrayY = np.array([c[1] for c in icoords]) iArrayZ = np.array([c[2] for c in icoords]) iArrayX = np.repeat(iArrayX, nj) iArrayY = np.repeat(iArrayY, nj) iArrayZ = np.repeat(iArrayZ, nj) iArrayX = iArrayX.reshape(ni, nj) iArrayY = iArrayY.reshape(ni, nj) iArrayZ = iArrayZ.reshape(ni, nj) jArrayX = np.array([c[0] for c in jcoords]) jArrayY = np.array([c[1] for c in jcoords]) jArrayZ = np.array([c[2] for c in jcoords]) jArrayX = np.repeat(jArrayX, ni) jArrayY = np.repeat(jArrayY, ni) jArrayZ = np.repeat(jArrayZ, ni) jArrayX = jArrayX.reshape(nj, ni) jArrayY = jArrayY.reshape(nj, ni) jArrayZ = jArrayZ.reshape(nj, ni) jArrayX = np.transpose(jArrayX) jArrayY = np.transpose(jArrayY) jArrayZ = np.transpose(jArrayZ) ijArrayX = jArrayX - iArrayX ijArrayY = jArrayY - iArrayY ijArrayZ = jArrayZ - iArrayZ rijArraySq = (ijArrayX * ijArrayX) + (ijArrayY * ijArrayY) + (ijArrayZ * ijArrayZ) rijArray = np.sqrt(rijArraySq) return ijArrayX, ijArrayY, ijArrayZ, rijArray, rijArraySq except: return nullRet def GetThetaIJKMatrix(iCoords, jCoords, kCoords): ''' Using the given input, calculates a matrix of angles ijk iCoords -> OEDoubleArray containing x, y, and z component of the reference coordinate jCoordsList -> list of N OEDoubleArrays, each OEDoubleArray is of size 3 kCoordsList -> list of M OEDoubleArrays, each OEDoubleArray is of size 3 return a N-by-M matrix of angle theta_ijk ''' jiArrayX, jiArrayY, jiArrayZ, rjiArray, rjiArraySq \ = GetPairwiseDistanceMatrix(jCoords, iCoords) jkArrayX, jkArrayY, jkArrayZ, rjkArray, rjkArraySq \ = GetPairwiseDistanceMatrix(jCoords, kCoords) if jCoords == kCoords: rjkArray = np.eye(len(jCoords)) + np.sqrt(rjkArraySq) else: rjkArray = np.sqrt(rjkArraySq) if jCoords == iCoords: rjiArray = np.eye(len(jCoords)) + np.sqrt(rjiArraySq) else: rjiArray = np.sqrt(rjiArraySq) jiArrayX = jiArrayX / rjiArray jiArrayY = jiArrayY / rjiArray jiArrayZ = jiArrayZ / rjiArray jkArrayX = jkArrayX / rjkArray jkArrayY = jkArrayY / rjkArray jkArrayZ = jkArrayZ / rjkArray dotProduct = (jiArrayX * jkArrayX) + (jiArrayY * jkArrayY) + (jiArrayZ * jkArrayZ) dotProduct = np.select([dotProduct <= -1.0, dotProduct >= 1.0, np.abs(dotProduct) < 1.0], [-0.999, 0.999, dotProduct]) theta_ijk = np.arccos(dotProduct) return theta_ijk def GetThetaIJKLMatrix(mol, iAtoms, jAtom, kAtom, lAtoms, transform=True): ''' Using the given input, calculates a matrix of torsion angles around jk jAtom, kAtom -> OEAtombase, middle two atoms of the torsion iAtoms -> list of N OEAtombase lAtoms -> list of M OEAtombase return a N-by-M matrix of angle theta_ijkl ''' torsions = [] for iAtom in iAtoms: for lAtom in lAtoms: tor_angle = oechem.OEGetTorsion(mol, iAtom, jAtom, kAtom, lAtom) if not transform: torsions.append(tor_angle) else: torsions.append((math.pi + tor_angle) / 4.0) theta_ijkl = np.array(torsions) theta_ijkl = theta_ijkl.reshape(len(iAtoms), len(lAtoms)) return theta_ijkl class SymmetryFunction: def __init__(self): self.rcMax = 8.0 # distance cutoff for symmetry functions self.ita = 0.0001 self.rcMin = 1.0 self.rcIncr = 0.5 self.rsVec = [0.0] self.theta_s_Vec = [0.0] self.rsVec_tor = [2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0] self.theta_s_Vec_tor = [0.0] self.rcRadVec = [1.5, 2.0, 2.5, 3.0, 4.0, 6.0, 10.0] self.rcAngVec = [4.5] self.rcTorVec = [2.5, 3.5, 5.0, 10.0] self.rs = 0.0 # parameter determining shape of the function self.itaVec = [0.0001] # parameter determining shape of the function self.lambda1 = 0.5 # parameter for angular symmetry function self.chi = 0.5 # parameter for angular symmetry function self.elemList = [oechem.OEElemNo_H, oechem.OEElemNo_C, oechem.OEElemNo_N, oechem.OEElemNo_O, oechem.OEElemNo_F, oechem.OEElemNo_S, oechem.OEElemNo_Cl, "pc", "nc"] def GetEnvAtomCoords(self, elem, refAtom, envMol, envAtoms): elemEnvList = [] for envAtom in envAtoms: if envAtom == refAtom: continue if elem == 'pc' and envAtom.GetFormalCharge() >= 1: elemEnvList.append(envAtom) elif elem == 'nc' and envAtom.GetFormalCharge() <= -1: elemEnvList.append(envAtom) elif envAtom.GetAtomicNum() == elem: elemEnvList.append(envAtom) coordsList = [] for elemEnvAtom in elemEnvList: coords = oechem.OEDoubleArray(3) if envMol.GetCoords(elemEnvAtom, coords): coordsList.append(coords) return coordsList def GetTorsionEnvAtoms(self, elem, bgnAtom, endAtom, envMol): elemEnvList = [] for envAtom in oechem.OEGetSubtree(bgnAtom, endAtom): if elem == 'pc' and envAtom.GetFormalCharge() >= 1: elemEnvList.append(envAtom) elif elem == 'nc' and envAtom.GetFormalCharge() <= -1: elemEnvList.append(envAtom) elif envAtom.GetAtomicNum() == elem: elemEnvList.append(envAtom) coordsList = [] for elemEnvAtom in elemEnvList: coords = oechem.OEDoubleArray(3) if envMol.GetCoords(elemEnvAtom, coords): coordsList.append(coords) return elemEnvList, coordsList def CalculateTorsionSymmetryFunction(self, envMol, num_iter): ''' Takes refAtom coordinates from refMol as reference and calculates the angular symmetry function using envMol atoms Functional form is described in the DFT-NN review article by Behler, page 30, equations 25 and 26 ''' tsf = [] elemList = self.elemList nullRet = [] bond = get_torsion_oebond(envMol) if bond is None: return nullRet jAtom = bond.GetBgn() jcoords = oechem.OEDoubleArray(3) if not envMol.GetCoords(bond.GetBgn(), jcoords): return nullRet kAtom = bond.GetEnd() kcoords = oechem.OEDoubleArray(3) if not envMol.GetCoords(bond.GetEnd(), kcoords): return nullRet # tsf.append(bond.GetBgn().GetAtomicNum() * bond.GetEnd().GetAtomicNum()); for inum, iElem in enumerate(elemList): if num_iter == 1: iAtoms, icoords = self.GetTorsionEnvAtoms(iElem, bond.GetBgn(), bond.GetEnd(), envMol) else: iAtoms, icoords = self.GetTorsionEnvAtoms(iElem, bond.GetEnd(), bond.GetBgn(), envMol) if len(icoords) == 0: for ita in self.itaVec: for rc in self.rcTorVec: for num1, _ in enumerate(elemList): if num1 < inum: continue tsf.append(0.0) continue _, _, _, rij, _ = GetPairwiseDistanceMatrix(icoords, [jcoords]) for lnum, lElem in enumerate(elemList): if lnum < inum: continue if num_iter == 1: lAtoms, lcoords = self.GetTorsionEnvAtoms(lElem, bond.GetEnd(), bond.GetBgn(), envMol) else: lAtoms, lcoords = self.GetTorsionEnvAtoms(lElem, bond.GetBgn(), bond.GetEnd(), envMol) if len(lcoords) == 0: for ita in self.itaVec: for rc in self.rcTorVec: tsf.append(0.0) continue _, _, _, rkl, _ = GetPairwiseDistanceMatrix([kcoords], lcoords) _, _, _, ril, _ = GetPairwiseDistanceMatrix(icoords, lcoords) theta_ijkl = GetThetaIJKLMatrix(envMol, iAtoms, jAtom, kAtom, lAtoms) # angular symmetry function for ita in self.itaVec: for rc in self.rcTorVec: rijMat = np.repeat(rij, rkl.size) rijMat = rijMat.reshape(rij.size, rkl.size) rklMat = np.repeat(rkl, rij.size) rklMat = rklMat.reshape(rkl.size, rij.size) rklMat = np.transpose(rklMat) fcRij = np.select([rijMat <= rc, rijMat > rc], [0.5 * (np.cos(np.pi * rijMat / rc) + 1.0), 0.0]) fcRkl = np.select([rklMat <= rc, rklMat > rc], [0.5 * (np.cos(np.pi * rklMat / rc) + 1.0), 0.0]) fcRil = np.select([ril <= rc, ril > rc], [0.5 * (np.cos(np.pi * ril / rc) + 1.0), 0.0]) exponent = ita * (np.square(rijMat) + np.square(rklMat) + np.square(ril)) term1 = np.power((1 + self.lambda1 * np.cos(theta_ijkl)), self.chi) term2 = np.exp(-exponent) term3 = (fcRij * fcRkl) * fcRil sumIL = np.sum(term1 * term2 * term3) coeff = np.power(2, 1 - self.chi) * sumIL tsf.append(coeff * jAtom.GetAtomicNum() * kAtom.GetAtomicNum()) a, b, c, d = get_torsion_oeatom_list(envMol) tsf.append(oechem.OEGetDistance2(envMol, a, d)) tsf.append(oechem.OEGetDistance2(envMol, b, c)) tsf.append(oechem.OEGetTorsion(envMol, a, b, c, d)) tsf.append(a.GetAtomicNum() * d.GetAtomicNum()) tsf.append(b.GetAtomicNum() * c.GetAtomicNum()) return tsf def GetTorsionCenterAsOEMol(self, mol): refCoords = oechem.OEDoubleArray(3) try: torsion_atoms = get_torsion_oeatom_list(mol) bgnCoords = mol.GetCoords(torsion_atoms[1]) endCoords = mol.GetCoords(torsion_atoms[2]) refCoords[0] = (bgnCoords[0] + endCoords[0]) / 2.0 refCoords[1] = (bgnCoords[1] + endCoords[1]) / 2.0 refCoords[2] = (bgnCoords[2] + endCoords[2]) / 2.0 except Exception as e: print(e) return None refMol = oechem.OEMol() refAtom = refMol.NewAtom(oechem.OEElemNo_C) refMol.SetCoords(refAtom, refCoords) refMol.Sweep() return refMol def CalculateSymmetryFunction(self, envMol): ''' Takes refAtom coordinates from refMol as reference and calculates the angular symmetry function using envMol atoms Functional form is described in the DFT-NN review article by Behler, page 30, equations 25 and 26 ''' refMol = self.GetTorsionCenterAsOEMol(envMol) _, b, c, _ = get_torsion_oeatom_list(envMol) refAtom = refMol.GetAtom(oechem.OEHasAtomIdx(0)) rsf = [] asf = [] elemList = self.elemList nullRet = [[], []] icoords = oechem.OEDoubleArray(3) if not refMol.GetCoords(refAtom, icoords): return nullRet for jnum, jElem in enumerate(elemList): jcoords = self.GetEnvAtomCoords(jElem, refAtom, envMol, envMol.GetAtoms()) if len(jcoords) == 0: for ita in self.itaVec: for rc in self.rcRadVec: rsf.append(0.0) # radial for rc in self.rcAngVec: for num1, _ in enumerate(elemList): if num1 < jnum: continue asf.append(0.0) # angular continue #ijX, ijY, ijZ, rij, rij2 = GetPairwiseDistanceMatrix([icoords], jcoords) _, _, _, rij, _ = GetPairwiseDistanceMatrix([icoords], jcoords) for ita in self.itaVec: expArg = ita * ((rij - self.rs) * (rij - self.rs)) expTerm = np.exp(-expArg) # radial symmetry function for rc in self.rcRadVec: fc = np.select([rij <= rc, rij > rc], [0.5 * (np.cos(np.pi * rij / rc) + 1.0), 0.0]) prod = expTerm * fc coeff = np.sum(prod) rsf.append(coeff * b.GetAtomicNum() * c.GetAtomicNum()) for knum, kElem in enumerate(elemList): if knum < jnum: continue kcoords = self.GetEnvAtomCoords(kElem, refAtom, envMol, envMol.GetAtoms()) if len(kcoords) == 0: for ita in self.itaVec: for rc in self.rcAngVec: asf.append(0.0) # angular continue _, _, _, rik, _ = GetPairwiseDistanceMatrix([icoords], kcoords) _, _, _, rjk, _ = GetPairwiseDistanceMatrix(jcoords, kcoords) theta_ijk = GetThetaIJKMatrix([icoords], jcoords, kcoords) # angular symmetry function for ita in self.itaVec: for rc in self.rcAngVec: rijMat = np.repeat(rij, rik.size) rijMat = rijMat.reshape(rij.size, rik.size) rikMat = np.repeat(rik, rij.size) rikMat = rikMat.reshape(rik.size, rij.size) rikMat = np.transpose(rikMat) fcRij = np.select([rijMat <= rc, rijMat > rc], [0.5 * (np.cos(np.pi * rijMat / rc) + 1.0), 0.0]) fcRik = np.select([rikMat <= rc, rikMat > rc], [0.5 * (np.cos(np.pi * rikMat / rc) + 1.0), 0.0]) fcRjk = np.select([rjk <= rc, rjk > rc], [0.5 * (np.cos(np.pi * rjk / rc) + 1.0), 0.0]) exponent = ita * (np.square(rijMat) + np.square(rikMat) + np.square(rjk)) term1 = np.power((1 + self.lambda1 * np.cos(theta_ijk)), self.chi) term2 = np.exp(-exponent) term3 = (fcRij * fcRjk) * fcRik sumJK = np.sum(term1 * term2 * term3) coeff = np.power(2, 1 - self.chi) * sumJK asf.append(coeff * b.GetAtomicNum() * c.GetAtomicNum()) return rsf, asf def get_sf_elements(mol): sfObj = SymmetryFunction() oechem.OEAssignFormalCharges(mol) oechem.OEAssignHybridization(mol) rsf, asf = sfObj.CalculateSymmetryFunction(mol) tsf1 = sfObj.CalculateTorsionSymmetryFunction(mol, 1) tsf2 = sfObj.CalculateTorsionSymmetryFunction(mol, 2) tsf = [] for elem1, elem2 in zip(tsf1, tsf2): tsf.append(elem1 + elem2) sf_elements = rsf sf_elements.extend(asf) sf_elements.extend(tsf) return sf_elements
40.507614
111
0.553446
11,286
0.707143
0
0
0
0
0
0
2,033
0.127381
9d5757c4a8bf60547e9dd883852158e386888c4b
6,785
py
Python
recommendation/recommendation.py
Jackson-Y/Machine-Learning
ea0a8c65ce93501d51fad2d73300dc0a37e2c1d8
[ "MIT" ]
4
2017-08-17T02:11:45.000Z
2017-09-25T00:46:13.000Z
recommendation/recommendation.py
Jackson-Y/Machine-Learning
ea0a8c65ce93501d51fad2d73300dc0a37e2c1d8
[ "MIT" ]
null
null
null
recommendation/recommendation.py
Jackson-Y/Machine-Learning
ea0a8c65ce93501d51fad2d73300dc0a37e2c1d8
[ "MIT" ]
null
null
null
""" 候选生成(Candidate generation) & 排序(LTR, Learning to Ranking)""" # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import argparse from operator import itemgetter from math import sqrt import pandas as pd import pymysql from sklearn.model_selection import train_test_split # from sklearn.metrics.pairwise import pairwise_distances # from sklearn.metrics import mean_squared_error class UserBasedCF(object): """ 基于用户的协同过滤 """ def __init__(self, n_similarity_users=20, n_recommendation_articles=10): self.n_similarity_users = n_similarity_users self.n_recomendation_articles = n_recommendation_articles self.train_data = {} self.test_data = {} self.user_similarity_matrix = {} self.article_count = 0 print("Number of similarity users = {}".format(self.n_similarity_users)) print("Number of recommended articles = {}".format(self.n_recomendation_articles)) def store_data_mysql2csv(self): """Store data from mysql to csv.""" sql = 'select uid,lid,ImportantDegree,LocalModifyTime from 20171020_rating' conn = pymysql.connect(host='192.168.106.231', \ user='root', password='cnkidras', \ db='recomm', charset='utf8', use_unicode=True) df = pd.read_sql(sql, con=conn) print(df.head()) df.to_csv("data.csv", index=False) conn.close() def load_data(self): """Load data from csv.""" if os.path.isfile('data.csv'): if os.path.getsize('data.csv') > 0: return self.store_data_mysql2csv() header = ['uid', 'lid', 'ImportantDegree', 'LocalModifyTime'] df = pd.read_csv('data.csv', sep=',', names=header, low_memory=False) train_data, test_data = train_test_split(df, test_size=0.2) train_data_len = 0 test_data_len = 0 for line in train_data.itertuples(): if line[1] not in self.train_data: self.train_data.setdefault(line[1], {}) self.train_data[line[1]][line[2]] = line[3] train_data_len += 1 for line in test_data.itertuples(): if line[1] not in self.test_data: self.test_data.setdefault(line[1], {}) self.test_data[line[1]][line[2]] = line[3] test_data_len += 1 print('Train data length = %s' % train_data_len) print('Test data length = %s' % test_data_len) def calc_user_similarity(self): """ 计算用户相似度 """ article_user = {} for uid, lids in self.train_data.items(): for lid in lids: if lid not in article_user: article_user[lid] = set() article_user[lid].add(uid) self.article_count = len(article_user) print("Total article numbers = %d" % self.article_count) for lid, uids in article_user.items(): for uid1 in uids: for uid2 in uids: if uid1 == uid2: continue self.user_similarity_matrix.setdefault(uid1, {}) self.user_similarity_matrix[uid1].setdefault(uid2, 0) self.user_similarity_matrix[uid1][uid2] += 1 for u, related_users in self.user_similarity_matrix.items(): for v, count in related_users.items(): self.user_similarity_matrix[u][v] = count / sqrt(len(self.train_data[u]) * len(self.train_data[v])) def recommendation(self, user): """ 为用户user推荐文献,返回推荐列表及评分。 """ K = self.n_similarity_users N = self.n_recomendation_articles rank = {} print("user: ", user) # watched_articles = self.train_data[user] watched_articles = self.train_data.get(user, {}) if watched_articles is None: print(" [x] New User. ") return [] for v, wuv in sorted(self.user_similarity_matrix[user].items(), key=itemgetter(1), reverse=True)[0:K]: for article in self.train_data[v]: if article in watched_articles: continue rank.setdefault(article, 0) rank[article] += wuv return sorted(rank.items(), key=itemgetter(1), reverse=True) def evaluate(self): """ 计算准确率、召回率、覆盖率 """ N = self.n_recomendation_articles hit = 0 recommend_count = 0 test_count = 0 all_rec_article = set() for i, user, in enumerate(self.train_data): test_articles = self.test_data.get(user, {}) recommend_articles = self.recommendation(user) for article, w in recommend_articles: if article in test_articles: hit += 1 all_rec_article.add(article) recommend_count += N test_count = len(test_articles) precision = hit / (1.0 * recommend_count) recall = hit / (1.0 * test_count) coverage = len(all_rec_article) / (1.0 * self.article_count) print('precision= %.4f\t recall=%.4f\t coverage=%.4f' % (precision, recall, coverage)) class PrintArticles(object): """ print class """ def __init__(self, lid_list): self.lid_list = lid_list def output(self): """ 在数据库中查找lid对应的文献标题,并打印。 """ conn = pymysql.connect(host='192.168.106.231', \ user='root', password='cnkidras', \ db='recomm', charset='utf8', use_unicode=True) for score_tuple in self.lid_list: sql = 'select lid,UserID,title from test where lid = %s;' % score_tuple[0] df = pd.read_sql(sql, con=conn) print(df) conn.close() FLAGS = None def main(_): """main function""" user_cf = UserBasedCF(20, 10) user_cf.load_data() user_cf.calc_user_similarity() recommended_articled = user_cf.recommendation(FLAGS.uid) print(recommended_articled[0:10]) out = PrintArticles(recommended_articled[0:10]) out.output() # user_cf.evaluate() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--uid", type=int, default=80871, help="The user who is going to be recommended articles." ) parser.add_argument( "--n", type=int, default=10, help="Number of recommended articles." ) FLAGS, unparsed = parser.parse_known_args() print("{} {}".format(sys.argv[0], unparsed)) print(FLAGS) main(FLAGS)
36.875
115
0.592336
5,535
0.797665
0
0
0
0
0
0
1,268
0.182735
9d59344dd6f980db538f0cd26f71a979f4b914e4
1,592
py
Python
orchestration/dags/twitter_streaming.py
amommendes/tweetstream
ef09928a4f3344210c597388332d18a53149bb41
[ "Apache-2.0" ]
null
null
null
orchestration/dags/twitter_streaming.py
amommendes/tweetstream
ef09928a4f3344210c597388332d18a53149bb41
[ "Apache-2.0" ]
null
null
null
orchestration/dags/twitter_streaming.py
amommendes/tweetstream
ef09928a4f3344210c597388332d18a53149bb41
[ "Apache-2.0" ]
null
null
null
from datetime import timedelta from airflow import DAG from airflow.utils.dates import days_ago from airflow.operators.python_operator import PythonOperator from tweetstream.consumers.twitter_streaming import TwitterStreamingConsumer from tweetstream.clients.spark import SparkClient default_args = { "owner": "tweeetstream", "depends_on_past": False, "start_date": days_ago(1), "email": ["[email protected]"], "email_on_failure": False, "email_on_retry": False, "retries": 1, "retry_delay": timedelta(minutes=5), } def main(): spark_client = SparkClient( session_config={ "spark.jars": "/usr/local/airflow/dags/tweetstream/libs/spark-sql-kafka-0-10_2.12-3.0.1.jar," "/usr/local/airflow/dags/tweetstream/libs/kafka-clients-2.5.0.jar," "/usr/local/airflow/dags/tweetstream/libs/spark-token-provider-kafka-0-10_2.12-3.0.1.jar," "/usr/local/airflow/dags/tweetstream/libs/commons-pool2-2.8.0.jar", "failOnDataLoss": "false", } ) spark = spark_client.get_session() consumer = TwitterStreamingConsumer( spark=spark, output_path="hdfs://hadoop:9000/twitter/consumer", checkpoint="hdfs://hadoop:9000/twitter/checkpoint", ) consumer.start() dag = DAG( dag_id="twitter_streaming", default_args=default_args, description="Tweets Streaming Consumer", schedule_interval=timedelta(days=1), ) start_job_task = PythonOperator( dag=dag, task_id="start_streaming", python_callable=main, execution_timeout=None, )
30.615385
105
0.692839
0
0
0
0
0
0
0
0
611
0.383794
9d59ba6b91ae4d068be41f7bfb3634b177f8ade2
217
py
Python
tests/expr/expr09.py
ktok07b6/polyphony
657c5c7440520db6b4985970bd50547407693ac4
[ "MIT" ]
83
2015-11-30T09:59:13.000Z
2021-08-03T09:12:28.000Z
tests/expr/expr09.py
jesseclin/polyphony
657c5c7440520db6b4985970bd50547407693ac4
[ "MIT" ]
4
2017-02-10T01:43:11.000Z
2020-07-14T03:52:25.000Z
tests/expr/expr09.py
jesseclin/polyphony
657c5c7440520db6b4985970bd50547407693ac4
[ "MIT" ]
11
2016-11-18T14:39:15.000Z
2021-02-23T10:05:20.000Z
from polyphony import testbench def expr09(a, b): return a ^ b @testbench def test(): assert 1 == expr09(0b1000, 0b1001) assert 3 == expr09(0b1000, 0b1011) assert 1 == expr09(0b1010, 0b1011) test()
16.692308
38
0.654378
0
0
0
0
139
0.640553
0
0
0
0
9d5d5a4039dbeb89722961536cacebbce65b4ec3
1,059
py
Python
setup.py
fg1/ipynb_format
58dc276fca4f1fbb179d7e84ce41d59663d011c2
[ "BSD-3-Clause" ]
null
null
null
setup.py
fg1/ipynb_format
58dc276fca4f1fbb179d7e84ce41d59663d011c2
[ "BSD-3-Clause" ]
null
null
null
setup.py
fg1/ipynb_format
58dc276fca4f1fbb179d7e84ce41d59663d011c2
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python from setuptools import setup, find_packages from codecs import open with open('README.rst', 'r', 'utf-8') as fd: long_description = fd.read() setup(name='ipynb_format', version='0.1.1', description='A code formatter for python code in ipython notebooks', long_description=long_description, url='https://github.com/fg1/ipynb_format', author='fg1', license='BSD', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', ], keywords='ipython notebook', packages=find_packages(), install_requires=['yapf'], entry_points={ 'console_scripts': [ 'ipynb_format=ipynb_format:cli', ], }, )
31.147059
74
0.588291
0
0
0
0
0
0
0
0
522
0.492918
9d5e11c9180f5fb664452c5f269722fdf9e6a4db
140
py
Python
Homework/Homework2/2_3.py
404nofound/CS521-Info-Str-Python
2ead691c519f29713419e79d600a2d2a1c87d1c1
[ "Apache-2.0" ]
null
null
null
Homework/Homework2/2_3.py
404nofound/CS521-Info-Str-Python
2ead691c519f29713419e79d600a2d2a1c87d1c1
[ "Apache-2.0" ]
null
null
null
Homework/Homework2/2_3.py
404nofound/CS521-Info-Str-Python
2ead691c519f29713419e79d600a2d2a1c87d1c1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- feet = eval(input("Enter a value for feet: ")) meter = feet * 0.305 print (feet, "feet is %.4f meters" %(meter))
17.5
46
0.585714
0
0
0
0
0
0
0
0
70
0.5
9d5e75f8cb60c04470b0412ae613020592c5aad7
16,072
py
Python
nn/units/ceecnet.py
feevos/ceecnet
9dc76f8cd16d44b264cae8c5846eefb8fcf6162d
[ "BSD-3-Clause", "MIT" ]
45
2020-09-07T01:19:44.000Z
2022-03-15T14:44:20.000Z
nn/units/ceecnet.py
xautdestiny/ceecnet
897cd5c128ffd85369732d1cac82a6ddc7643afa
[ "MIT", "BSD-3-Clause" ]
10
2020-10-02T10:14:47.000Z
2021-10-19T09:34:14.000Z
nn/units/ceecnet.py
xautdestiny/ceecnet
897cd5c128ffd85369732d1cac82a6ddc7643afa
[ "MIT", "BSD-3-Clause" ]
14
2020-09-29T02:46:18.000Z
2021-09-27T07:13:47.000Z
from mxnet import gluon from mxnet.gluon import HybridBlock from ceecnet.nn.layers.conv2Dnormed import * from ceecnet.utils.get_norm import * from ceecnet.nn.layers.attention import * class ResizeLayer(HybridBlock): """ Applies bilinear up/down sampling in spatial dims and changes number of filters as well """ def __init__(self, nfilters, height, width, _norm_type = 'BatchNorm', norm_groups=None, **kwards): super().__init__(**kwards) self.height=height self.width = width with self.name_scope(): self.conv2d = Conv2DNormed(channels=nfilters,kernel_size=3,padding=1, _norm_type=_norm_type, norm_groups = norm_groups, **kwards) def hybrid_forward(self, F, input): out = F.contrib.BilinearResize2D(input,height=self.height,width=self.width) out = self.conv2d(out) return out class ExpandLayer(HybridBlock): def __init__(self,nfilters, _norm_type = 'BatchNorm', norm_groups=None, ngroups=1,**kwards): super().__init__(**kwards) with self.name_scope(): self.conv1 = Conv2DNormed(channels=nfilters,kernel_size=3,padding=1,groups=ngroups, _norm_type=_norm_type, norm_groups = norm_groups, **kwards) self.conv2 = Conv2DNormed(channels=nfilters,kernel_size=3,padding=1,groups=ngroups,_norm_type=_norm_type, norm_groups = norm_groups,**kwards) def hybrid_forward(self, F, input): out = F.contrib.BilinearResize2D(input,scale_height=2.,scale_width=2.) out = self.conv1(out) out = F.relu(out) out = self.conv2(out) out = F.relu(out) return out class ExpandNCombine(HybridBlock): def __init__(self,nfilters, _norm_type = 'BatchNorm', norm_groups=None,ngroups=1,**kwards): super().__init__(**kwards) with self.name_scope(): self.conv1 = Conv2DNormed(channels=nfilters,kernel_size=3,padding=1,groups=ngroups,_norm_type=_norm_type, norm_groups = norm_groups,**kwards) self.conv2 = Conv2DNormed(channels=nfilters,kernel_size=3,padding=1,groups=ngroups,_norm_type=_norm_type, norm_groups = norm_groups,**kwards) def hybrid_forward(self, F, input1, input2): out = F.contrib.BilinearResize2D(input1,scale_height=2.,scale_width=2.) out = self.conv1(out) out = F.relu(out) out2 = self.conv2(F.concat(out,input2,dim=1)) out2 = F.relu(out2) return out2 class CEEC_unit_v1(HybridBlock): def __init__(self, nfilters, nheads= 1, ngroups=1, norm_type='BatchNorm', norm_groups=None, ftdepth=5, **kwards): super().__init__(**kwards) with self.name_scope(): nfilters_init = nfilters//2 self.conv_init_1 = Conv2DNormed(channels=nfilters_init, kernel_size=3,padding=1,strides=1, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups, **kwards) self.compr11 = Conv2DNormed(channels=nfilters_init*2, kernel_size=3,padding=1,strides=2, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups, **kwards) self.compr12 = Conv2DNormed(channels=nfilters_init*2, kernel_size=3,padding=1,strides=1, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups,**kwards) self.expand1 = ExpandNCombine(nfilters_init,_norm_type = norm_type, norm_groups=norm_groups,ngroups=ngroups) # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- self.conv_init_2 = Conv2DNormed(channels=nfilters_init, kernel_size=3,padding=1,strides=1, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups, **kwards)#half size self.expand2 = ExpandLayer(nfilters_init//2 ,_norm_type = norm_type, norm_groups=norm_groups,ngroups=ngroups ) self.compr21 = Conv2DNormed(channels=nfilters_init, kernel_size=3,padding=1,strides=2, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups,**kwards) self.compr22 = Conv2DNormed(channels=nfilters_init, kernel_size=3,padding=1,strides=1, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups,**kwards) # Will join with master input with concatenation -- IMPORTANT: ngroups = 1 !!!! self.collect = Conv2DNormed(channels=nfilters, kernel_size=3,padding=1,strides=1, groups=1, _norm_type=norm_type, norm_groups=norm_groups,**kwards) self.att = FTAttention2D(nkeys=nfilters,nheads=nheads,norm=norm_type, norm_groups = norm_groups,ftdepth=ftdepth) self.ratt122 = RelFTAttention2D(nkeys=nfilters_init, nheads=nheads,norm=norm_type, norm_groups = norm_groups,ftdepth=ftdepth) self.ratt211 = RelFTAttention2D(nkeys=nfilters_init, nheads=nheads,norm=norm_type, norm_groups = norm_groups,ftdepth=ftdepth) self.gamma1 = self.params.get('gamma1', shape=(1,), init=mx.init.Zero()) self.gamma2 = self.params.get('gamma2', shape=(1,), init=mx.init.Zero()) self.gamma3 = self.params.get('gamma3', shape=(1,), init=mx.init.Zero()) def hybrid_forward(self, F, input, gamma1, gamma2, gamma3): # =========== UNet branch =========== out10 = self.conv_init_1(input) out1 = self.compr11(out10) out1 = F.relu(out1) out1 = self.compr12(out1) out1 = F.relu(out1) out1 = self.expand1(out1,out10) out1 = F.relu(out1) # =========== \capNet branch =========== input = F.identity(input) # Solves a mxnet bug out20 = self.conv_init_2(input) out2 = self.expand2(out20) out2 = F.relu(out2) out2 = self.compr21(out2) out2 = F.relu(out2) out2 = self.compr22(F.concat(out2,out20,dim=1)) out2 = F.relu(out2) att = F.broadcast_mul(gamma1,self.att(input)) ratt122 = F.broadcast_mul(gamma2,self.ratt122(out1,out2,out2)) ratt211 = F.broadcast_mul(gamma3,self.ratt211(out2,out1,out1)) ones1 = F.ones_like(out10) ones2 = F.ones_like(input) # Enhanced output of 1, based on memory of 2 out122 = F.broadcast_mul(out1,ones1 + ratt122) # Enhanced output of 2, based on memory of 1 out211 = F.broadcast_mul(out2,ones1 + ratt211) out12 = F.relu(self.collect(F.concat(out122,out211,dim=1))) # Emphasize residual output from memory on input out_res = F.broadcast_mul(input + out12, ones2 + att) return out_res # ======= Definitions for CEEC unit v2 (replace concatenations with Fusion ========================= # -------------------------------------- helper functions ------------------------------------------- class Fusion(HybridBlock): def __init__(self,nfilters, kernel_size=3, padding=1,nheads=1, norm = 'BatchNorm', norm_groups=None, ftdepth=5,**kwards): super().__init__(**kwards) with self.name_scope(): self.fuse = Conv2DNormed(nfilters,kernel_size= kernel_size, padding = padding, _norm_type= norm, norm_groups=norm_groups, groups=nheads,**kwards) # Or shall I use the same? self.relatt12 = RelFTAttention2D(nkeys=nfilters, kernel_size=kernel_size, padding=padding, nheads=nheads, norm =norm, norm_groups=norm_groups,ftdepth=ftdepth,**kwards) self.relatt21 = RelFTAttention2D(nkeys=nfilters, kernel_size=kernel_size, padding=padding, nheads=nheads, norm =norm, norm_groups=norm_groups,ftdepth=ftdepth,**kwards) self.gamma1 = self.params.get('gamma1', shape=(1,), init=mx.init.Zero()) self.gamma2 = self.params.get('gamma2', shape=(1,), init=mx.init.Zero()) def hybrid_forward(self, F, input_t1, input_t2, gamma1, gamma2): # These inputs must have the same dimensionality , t1, t2 relatt12 = F.broadcast_mul(gamma1,self.relatt12(input_t1,input_t2,input_t2)) relatt21 = F.broadcast_mul(gamma2,self.relatt21(input_t2,input_t1,input_t1)) ones = F.ones_like(input_t1) # Enhanced output of 1, based on memory of 2 out12 = F.broadcast_mul(input_t1,ones + relatt12) # Enhanced output of 2, based on memory of 1 out21 = F.broadcast_mul(input_t2,ones + relatt21) fuse = self.fuse(F.concat(out12, out21,dim=1)) fuse = F.relu(fuse) return fuse class CATFusion(HybridBlock): """ Alternative to concatenation followed by normed convolution: improves performance. """ def __init__(self,nfilters_out, nfilters_in, kernel_size=3, padding=1,nheads=1, norm = 'BatchNorm', norm_groups=None, ftdepth=5,**kwards): super().__init__(**kwards) with self.name_scope(): self.fuse = Conv2DNormed(nfilters_out,kernel_size= kernel_size, padding = padding, _norm_type= norm, norm_groups=norm_groups, groups=nheads,**kwards) # Or shall I use the same? self.relatt12 = RelFTAttention2D(nkeys=nfilters_in, kernel_size=kernel_size, padding=padding, nheads=nheads, norm =norm, norm_groups=norm_groups,ftdepth=ftdepth,**kwards) self.relatt21 = RelFTAttention2D(nkeys=nfilters_in, kernel_size=kernel_size, padding=padding, nheads=nheads, norm =norm, norm_groups=norm_groups,ftdepth=ftdepth,**kwards) self.gamma1 = self.params.get('gamma1', shape=(1,), init=mx.init.Zero()) self.gamma2 = self.params.get('gamma2', shape=(1,), init=mx.init.Zero()) def hybrid_forward(self, F, input_t1, input_t2, gamma1, gamma2): # These inputs must have the same dimensionality , t1, t2 relatt12 = F.broadcast_mul(gamma1,self.relatt12(input_t1,input_t2,input_t2)) relatt21 = F.broadcast_mul(gamma2,self.relatt21(input_t2,input_t1,input_t1)) ones = F.ones_like(input_t1) # Enhanced output of 1, based on memory of 2 out12 = F.broadcast_mul(input_t1,ones + relatt12) # Enhanced output of 2, based on memory of 1 out21 = F.broadcast_mul(input_t2,ones + relatt21) fuse = self.fuse(F.concat(out12, out21,dim=1)) fuse = F.relu(fuse) return fuse class combine_layers_wthFusion(HybridBlock): def __init__(self,nfilters, nheads=1, _norm_type = 'BatchNorm', norm_groups=None,ftdepth=5, **kwards): HybridBlock.__init__(self,**kwards) with self.name_scope(): self.conv1 = Conv2DNormed(channels=nfilters,kernel_size=3,padding=1, groups=nheads, _norm_type=_norm_type, norm_groups = norm_groups, **kwards)# restore help self.conv3 = Fusion(nfilters=nfilters, kernel_size=3, padding=1, nheads=nheads, norm=_norm_type, norm_groups = norm_groups, ftdepth=ftdepth,**kwards) # process def hybrid_forward(self,F,_layer_lo, _layer_hi): up = F.contrib.BilinearResize2D(_layer_lo,scale_height=2.,scale_width=2.) up = self.conv1(up) up = F.relu(up) x = self.conv3(up,_layer_hi) return x class ExpandNCombine_V3(HybridBlock): def __init__(self,nfilters, _norm_type = 'BatchNorm', norm_groups=None,ngroups=1,ftdepth=5,**kwards): super().__init__(**kwards) with self.name_scope(): self.conv1 = Conv2DNormed(channels=nfilters,kernel_size=3,padding=1,groups=ngroups,_norm_type=_norm_type, norm_groups = norm_groups,**kwards)# restore help self.conv2 = Conv2DNormed(channels=nfilters,kernel_size=3,padding=1,groups=ngroups,_norm_type=_norm_type, norm_groups = norm_groups,**kwards)# restore help self.conv3 = Fusion(nfilters=nfilters,kernel_size=3,padding=1,nheads=ngroups,norm=_norm_type, norm_groups = norm_groups,ftdepth=ftdepth,**kwards) # process def hybrid_forward(self, F, input1, input2): out = F.contrib.BilinearResize2D(input1,scale_height=2.,scale_width=2.) out = self.conv1(out) out1 = F.relu(out) out2 = self.conv2(input2) out2 = F.relu(out2) outf = self.conv3(out1,out2) outf = F.relu(outf) return outf # ------------------------------------------------------------------------------------------------------------------- class CEEC_unit_v2(HybridBlock): def __init__(self, nfilters, nheads= 1, ngroups=1, norm_type='BatchNorm', norm_groups=None, ftdepth=5, **kwards): super().__init__(**kwards) with self.name_scope(): nfilters_init = nfilters//2 self.conv_init_1 = Conv2DNormed(channels=nfilters_init, kernel_size=3,padding=1,strides=1, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups, **kwards)#half size self.compr11 = Conv2DNormed(channels=nfilters_init*2, kernel_size=3,padding=1,strides=2, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups, **kwards)#half size self.compr12 = Conv2DNormed(channels=nfilters_init*2, kernel_size=3,padding=1,strides=1, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups,**kwards)# process self.expand1 = ExpandNCombine_V3(nfilters_init,_norm_type = norm_type, norm_groups=norm_groups,ngroups=ngroups,ftdepth=ftdepth) # restore original size + process self.conv_init_2 = Conv2DNormed(channels=nfilters_init, kernel_size=3,padding=1,strides=1, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups, **kwards)#half size self.expand2 = ExpandLayer(nfilters_init//2 ,_norm_type = norm_type, norm_groups=norm_groups,ngroups=ngroups ) self.compr21 = Conv2DNormed(channels=nfilters_init, kernel_size=3,padding=1,strides=2, groups=ngroups, _norm_type=norm_type, norm_groups=norm_groups,**kwards) self.compr22 = Fusion(nfilters=nfilters_init, kernel_size=3,padding=1, nheads=ngroups, norm=norm_type, norm_groups=norm_groups,ftdepth=ftdepth,**kwards) self.collect = CATFusion(nfilters_out=nfilters, nfilters_in=nfilters_init, kernel_size=3,padding=1,nheads=1, norm=norm_type, norm_groups=norm_groups,ftdepth=ftdepth,**kwards) self.att = FTAttention2D(nkeys=nfilters,nheads=nheads,norm=norm_type, norm_groups = norm_groups, ftdepth=ftdepth) self.ratt122 = RelFTAttention2D(nkeys=nfilters_init, nheads=nheads,norm=norm_type, norm_groups = norm_groups, ftdepth=ftdepth) self.ratt211 = RelFTAttention2D(nkeys=nfilters_init, nheads=nheads,norm=norm_type, norm_groups = norm_groups, ftdepth=ftdepth) self.gamma1 = self.params.get('gamma1', shape=(1,), init=mx.init.Zero()) self.gamma2 = self.params.get('gamma2', shape=(1,), init=mx.init.Zero()) self.gamma3 = self.params.get('gamma3', shape=(1,), init=mx.init.Zero()) def hybrid_forward(self, F, input, gamma1, gamma2, gamma3): # =========== UNet branch =========== out10 = self.conv_init_1(input) out1 = self.compr11(out10) out1 = F.relu(out1) #print (out1.shape) out1 = self.compr12(out1) out1 = F.relu(out1) #print (out1.shape) out1 = self.expand1(out1,out10) out1 = F.relu(out1) # =========== \capNet branch =========== input = F.identity(input) # Solves a mxnet bug out20 = self.conv_init_2(input) out2 = self.expand2(out20) out2 = F.relu(out2) out2 = self.compr21(out2) out2 = F.relu(out2) out2 = self.compr22(out2,out20) input = F.identity(input) # Solves a mxnet bug att = F.broadcast_mul(gamma1,self.att(input)) ratt122 = F.broadcast_mul(gamma2,self.ratt122(out1,out2,out2)) ratt211 = F.broadcast_mul(gamma3,self.ratt211(out2,out1,out1)) ones1 = F.ones_like(out10) ones2 = F.ones_like(input) # Enhanced output of 1, based on memory of 2 out122 = F.broadcast_mul(out1,ones1 + ratt122) # Enhanced output of 2, based on memory of 1 out211 = F.broadcast_mul(out2,ones1 + ratt211) out12 = self.collect(out122,out211) # includes relu, it's for fusion out_res = F.broadcast_mul(input + out12, ones2 + att) return out_res
45.659091
186
0.66059
15,527
0.96609
0
0
0
0
0
0
1,990
0.123818
9d6069e2ba0263497aa9f814cd08018989e4473f
1,928
py
Python
reviewboard/reviews/search_indexes.py
znick/reviewboard
f32320b267efcdf2feff1661eabe57f99ef490a7
[ "MIT" ]
1
2018-08-23T09:19:02.000Z
2018-08-23T09:19:02.000Z
reviewboard/reviews/search_indexes.py
klpyang/reviewboard
d7dabf36e5b492f18048dd7084026bf99d6933c5
[ "MIT" ]
null
null
null
reviewboard/reviews/search_indexes.py
klpyang/reviewboard
d7dabf36e5b492f18048dd7084026bf99d6933c5
[ "MIT" ]
1
2021-11-23T15:25:44.000Z
2021-11-23T15:25:44.000Z
from django.db.models import Q from haystack import indexes from reviewboard.reviews.models import ReviewRequest class ReviewRequestIndex(indexes.SearchIndex, indexes.Indexable): """A Haystack search index for Review Requests.""" # By Haystack convention, the full-text template is automatically # referenced at # reviewboard/templates/search/indexes/reviews/reviewrequest_text.txt text = indexes.CharField(document=True, use_template=True) # We shouldn't use 'id' as a field name because it's by default reserved # for Haystack. Hiding it will cause duplicates when updating the index. review_request_id = indexes.IntegerField(model_attr='id') summary = indexes.CharField(model_attr='summary') description = indexes.CharField(model_attr='description') testing_done = indexes.CharField(model_attr='testing_done') bug = indexes.CharField(model_attr='bugs_closed') username = indexes.CharField(model_attr='submitter__username') author = indexes.CharField(model_attr='submitter__get_full_name') file = indexes.CharField() def get_model(self): """Returns the Django model for this index.""" return ReviewRequest def get_updated_field(self): return 'last_updated' def index_queryset(self, using=None): """Index only public pending and submitted review requests.""" queryset = self.get_model().objects.public( status=None, extra_query=Q(status='P') | Q(status='S')) queryset = queryset.select_related('submitter', 'diffset_history') queryset = queryset.prefetch_related( 'diffset_history__diffsets__files') return queryset def prepare_file(self, obj): return set([ (filediff.source_file, filediff.dest_file) for diffset in obj.diffset_history.diffsets.all() for filediff in diffset.files.all() ])
39.346939
76
0.705394
1,811
0.939315
0
0
0
0
0
0
633
0.32832
19b2caec75b18b0aa3e0597b5caa0b0c55ce8cad
7,365
py
Python
gpss/transaction.py
martendo/gpss.py
52c6781bd8a65b651381ed11da9e31ddfae6e313
[ "MIT" ]
2
2021-11-28T08:48:02.000Z
2022-03-09T16:19:06.000Z
gpss/transaction.py
martendo/gpss.py
52c6781bd8a65b651381ed11da9e31ddfae6e313
[ "MIT" ]
null
null
null
gpss/transaction.py
martendo/gpss.py
52c6781bd8a65b651381ed11da9e31ddfae6e313
[ "MIT" ]
null
null
null
from .statement import Statement, StatementType from .event import Event from ._helpers import debugmsg, simulation_error class TransactionGenerator: def __init__(self, simulation, block_num, operands): self.simulation = simulation self.block = self.simulation.program[block_num] self.start_block = block_num + 1 self.operands = operands self.generated = 0 def __str__(self): return f"TransactionGenerator({','.join(map(str, self.operands))})" def prime(self): # Add initial Transaction generation event using the Offset # Interval self.add_next_event(self.operands[2]) def add_next_event(self, time=None): # If reached generation Limit Count, stop if (self.operands[3] is not None and self.generated >= self.operands[3]): return # Add event to event list to generate next Transaction if time is None: time = self.simulation.time + self.operands[0] if self.operands[1] != 0: time += self.simulation.rngs[1].randint( -self.operands[1], +self.operands[1], ) if time < self.simulation.time: simulation_error(self.simulation.parser.infile, self.block.linenum, "Cannot GENERATE a Transaction in a negative amount " f"of time ({time - self.simulation.time})") elif time == self.simulation.time and time is None: # Generate immediately, no need to add to event list self.generate() else: self.simulation.add_event(Event(time, self.generate)) def generate(self): # Generate a new Transaction debugmsg("generate:", self.simulation.time, self.operands) transaction = Transaction(self.simulation, self.start_block, self.operands[4]) self.simulation.transactions.add(transaction) self.generated += 1 # Add next Transaction generation event self.add_next_event() transaction.update() class Transaction: def __init__(self, simulation, start_block, priority): self.simulation = simulation self.current_block = start_block self.priority = priority def __str__(self): return f"Transaction({self.priority})" def update(self): while True: # Execute next block block = self.simulation.program[self.current_block] self.current_block += 1 self.current_linenum = block.linenum if block.type is StatementType.TERMINATE: self.simulation.terminate(self, block.operands[0]) return elif block.type is StatementType.QUEUE: self.simulation.queues[block.operands[0]].join(self, block.operands[1]) elif block.type is StatementType.DEPART: self.simulation.queues[block.operands[0]].depart(self, block.operands[1]) elif block.type is StatementType.ADVANCE: interval, spread = block.operands[0:2] # Add event for end of delay time = self.simulation.time + interval if spread != 0: time += self.simulation.rngs[1].randint( -spread, +spread, ) if time < self.simulation.time: simulation_error(self.simulation.parser.infile, block.linenum, "Cannot ADVANCE a negative amount of time " f"({time - self.simulation.time})") elif time == self.simulation.time: # ADVANCE 0 -> no-op continue self.simulation.add_event(Event(time, self.update)) return elif block.type is StatementType.SEIZE: # Use Facility or enter Delay Chain if busy if not self.simulation.facilities[block.operands[0]].seize(self): # Facility is busy -> wait return elif block.type is StatementType.RELEASE: self.simulation.facilities[block.operands[0]].release(self) elif block.type is StatementType.ENTER: # Enter Storage or enter Delay Chain if cannot satisfy # demand try: if not(self.simulation.storages[block.operands[0]] .enter(self, block.operands[1])): # Not enough Storage available return except KeyError: simulation_error(self.simulation.parser.infile, block.linenum, f"No Storage named \"{block.operands[0]}\"") elif block.type is StatementType.LEAVE: try: self.simulation.storages[block.operands[0]].leave( self, block.operands[1]) except KeyError: simulation_error(self.simulation.parser.infile, block.linenum, f"No Storage named \"{block.operands[0]}\"") elif block.type is StatementType.TRANSFER: if block.operands[0] is None: # Unconditional transfer mode self.current_block = ( self.simulation.labels[block.operands[1]].number) elif block.operands[0] == "BOTH": # BOTH mode if block.operands[1] != "": b_block = ( self.simulation.labels[block.operands[1]]) else: # Use sequential Block b_block = ( self.simulation.program[self.current_block]) c_block = self.simulation.labels[block.operands[2]] if not b_block.refuse(self.simulation): self.current_block = b_block.number elif not c_block.refuse(self.simulation): self.current_block = c_block.number else: # Refused entry to both Blocks, stay on this one self.current_block -= 1 self.simulation.current_events.append(self.update) return else: # Statistical transfer mode if self.simulation.rngs[1].random() < block.operands[0]: new_block = block.operands[2] else: new_block = block.operands[1] if new_block == "": # Continue to sequential Block continue self.current_block = ( self.simulation.labels[new_block].number)
41.610169
81
0.509029
7,239
0.982892
0
0
0
0
0
0
1,049
0.14243
19b32c34ea299311dabdf3d678344f668cb1f1a4
234
py
Python
stone/config.py
ichengplus/mpmatrix
41cf1ac48abe9aef1b92f1174157608a60e30da0
[ "Apache-2.0" ]
null
null
null
stone/config.py
ichengplus/mpmatrix
41cf1ac48abe9aef1b92f1174157608a60e30da0
[ "Apache-2.0" ]
3
2021-03-10T16:23:59.000Z
2022-02-13T12:02:00.000Z
stone/config.py
ichengplus/mpmatrix
41cf1ac48abe9aef1b92f1174157608a60e30da0
[ "Apache-2.0" ]
null
null
null
REDIS_URL = "redis://redis:6379/0" DEBUG = True TESTING = False JOBS = [ { 'id': 'actoken_refresh', 'func': 'actoken:refresh', 'args': None, 'trigger': 'interval', 'seconds': 7000 } ]
15.6
34
0.504274
0
0
0
0
0
0
0
0
100
0.42735
19b3b12f916bfa71763e1f5555965f2dffc3a223
727
py
Python
utils/update.py
adavila0703/warehouse-hub
29778d605e372d6d6b41d05a3637edefb047f0bc
[ "MIT" ]
null
null
null
utils/update.py
adavila0703/warehouse-hub
29778d605e372d6d6b41d05a3637edefb047f0bc
[ "MIT" ]
null
null
null
utils/update.py
adavila0703/warehouse-hub
29778d605e372d6d6b41d05a3637edefb047f0bc
[ "MIT" ]
null
null
null
from shutil import copy, copytree, rmtree import pathlib import os import time def update(): """Update is a script to auto update all the files that the user is using""" print('Warehouse Hub is updating, do not close this window...') time.sleep(3) print('Applying patch...') time.sleep(1) copy('C:/warehousehub/warehousehub.exe', pathlib.Path().absolute()) rmtree(f'{pathlib.Path().absolute()}/templates') copytree('C:/warehousehub/templates', f'{pathlib.Path().absolute()}/templates') print('Patch Completed!') print('Warehouse Hub is restarting, please wait...') os.system(f'cmd /c "{pathlib.Path().absolute()}/warehousehub.exe"') if __name__ == '__main__': update()
25.068966
83
0.672627
0
0
0
0
0
0
0
0
421
0.579092
19b3f6aeb28dd07d2770e4ea600d2a99c0c06e65
3,134
py
Python
train_video.py
jacke121/MBMD
2daf5edb4fb40ee652baead4f9332ca00fa111a5
[ "MIT" ]
220
2018-09-17T15:42:54.000Z
2021-09-13T13:14:22.000Z
train_video.py
jacke121/MBMD
2daf5edb4fb40ee652baead4f9332ca00fa111a5
[ "MIT" ]
12
2018-09-19T09:30:42.000Z
2019-07-01T04:03:51.000Z
train_video.py
jacke121/MBMD
2daf5edb4fb40ee652baead4f9332ca00fa111a5
[ "MIT" ]
60
2018-09-18T00:29:50.000Z
2021-02-22T03:55:19.000Z
import functools import tensorflow as tf from core import trainer_video, input_reader from core.model_builder import build_man_model from google.protobuf import text_format from object_detection.builders import input_reader_builder from object_detection.protos import input_reader_pb2 from object_detection.protos import model_pb2 from object_detection.protos import pipeline_pb2 from object_detection.protos import train_pb2 import os ''' lijun's code modify bb to conv1*2 conv3*2 l2 normalization to match ''' os.environ["CUDA_VISIBLE_DEVICES"]="0" #os.environ["CUDA_VISIBLE_DEVICES"]="0" tf.logging.set_verbosity(tf.logging.INFO) flags = tf.app.flags flags.DEFINE_string('train_dir', 'model/dump', 'Directory to save the checkpoints and training summaries.') flags.DEFINE_string('pipeline_config_path', 'model/ssd_mobilenet_video.config', 'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' 'file. If provided, other configs are ignored') flags.DEFINE_string('train_config_path', '', 'Path to a train_pb2.TrainConfig config file.') flags.DEFINE_string('input_config_path', '', 'Path to an input_reader_pb2.InputReader config file.') flags.DEFINE_string('model_config_path', '', 'Path to a model_pb2.DetectionModel config file.') flags.DEFINE_string('image_root', '/home/xiaobai/Documents/ILSVRC2014_DET_train/image/ILSVRC2014_DET_train', 'Root path to input images') flags.DEFINE_string('video_root', '/home/xiaobai/Documents/ILSVRC2015/', 'Root path to input videos') flags.DEFINE_string('image_tfrecord', './train_seq.record', 'Path to image tfrecord.') flags.DEFINE_string('video_tfrecord', './train_vid.record', 'Path to video tfrecord') FLAGS = flags.FLAGS def get_configs_from_pipeline_file(): """Reads training configuration from a pipeline_pb2.TrainEvalPipelineConfig. Reads training config from file specified by pipeline_config_path flag. Returns: model_config: model_pb2.DetectionModel train_config: train_pb2.TrainConfig input_config: input_reader_pb2.InputReader """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model.ssd train_config = pipeline_config.train_config input_config = pipeline_config.train_input_reader return model_config, train_config, input_config def main(_): model_config, train_config, input_config = get_configs_from_pipeline_file() model_fn = functools.partial( build_man_model, model_config=model_config, is_training=True) create_input_image_dict_fn = functools.partial( input_reader.read_video_image, FLAGS.video_tfrecord, FLAGS.image_tfrecord) trainer_video.train(model_fn, create_input_image_dict_fn, train_config, FLAGS.train_dir, FLAGS.image_root, FLAGS.video_root) if __name__ == '__main__': # update moving average tf.app.run()
35.613636
128
0.744735
0
0
0
0
0
0
0
0
1,235
0.394065
19b4fbf622ea3b5c2b94266b63984fdd1ea1e133
460
py
Python
config.py
icewing1996/biaffine-parser
f5a4ece7ba9a087d81b76dd6a8ea6aa7d90c6c82
[ "MIT" ]
1
2019-04-02T14:42:20.000Z
2019-04-02T14:42:20.000Z
config.py
icewing1996/biaffine-parser
f5a4ece7ba9a087d81b76dd6a8ea6aa7d90c6c82
[ "MIT" ]
null
null
null
config.py
icewing1996/biaffine-parser
f5a4ece7ba9a087d81b76dd6a8ea6aa7d90c6c82
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- class Config(object): # [Network] n_embed = 100 n_tag_embed = 100 embed_dropout = 0.33 n_lstm_hidden = 400 n_lstm_layers = 3 lstm_dropout = 0.33 n_mlp_arc = 500 n_mlp_rel = 100 mlp_dropout = 0.33 # [Optimizer] lr = 2e-3 beta_1 = 0.9 beta_2 = 0.9 epsilon = 1e-12 decay = .75 decay_steps = 5000 # [Run] batch_size = 200 epochs = 1000 patience = 100
15.862069
24
0.558696
433
0.941304
0
0
0
0
0
0
54
0.117391
19b7ef31e8ac32e464e2b7f9641c6ad98cd6de46
3,301
py
Python
conf_dblp.py
AmiraKetfi/ScientificProductScraper
c700fb579ac47266e76ec834ccbd8674abeaff50
[ "MIT" ]
4
2018-04-04T12:10:59.000Z
2020-02-22T17:26:14.000Z
conf_dblp.py
AmiraKetfi/ScientificProductScraper
c700fb579ac47266e76ec834ccbd8674abeaff50
[ "MIT" ]
null
null
null
conf_dblp.py
AmiraKetfi/ScientificProductScraper
c700fb579ac47266e76ec834ccbd8674abeaff50
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sat Mar 17 23:01:40 2018 @author: pc """ import scholarly,re,urllib.request,nltk import bs4 as bs # ============================================================================= # #Probléme les derniere conf ne se rajoute pas # ============================================================================= def find_ComputerScienceConferences_Workshops_names_DBLP(url_deb): page=urllib.request.urlopen(url_deb).read() c,soup=0,bs.BeautifulSoup(page,'lxml') for p in soup.find_all('a'): if c==1 and p.text!="[previous 100 entries]": print(p.text) # s1=p.get("href") # if re.search(r"http://dblp.uni-trier.de/db/conf/.",s1): # publication_conf_dblp(s1) if p.text=="[next 100 entries]": c,s=1,p.get("href") url_a="http://dblp.uni-trier.de/db/conf/"+s if (p.text=="[previous 100 entries]")and(c==1): find_ComputerScienceConferences_Workshops_names_DBLP(url_a) def Timeline_of_conferences(url_deb): page=urllib.request.urlopen(url_deb).read() soup=bs.BeautifulSoup(page,'lxml') last_s="" for q in soup.find_all('a'): s=q.get("href") if re.search(r"http://dblp.uni-trier.de/db/conf/.*/.*\.html",s): if last_s!=s: fichier = open("Lien_de_toutes_les_conf.txt", "a") fichier.write("\n"+s) fichier.close() last_s=s def publication_conf_dblp(url): fichier = open("conf.txt", "w") fichier.close() fichier = open("publisher.txt", "w") fichier.close() fichier = open("Date.txt", "w") fichier.close() fichier = open("isbn.txt", "w") fichier.close() page=urllib.request.urlopen(url).read() soup=bs.BeautifulSoup(page,'lxml') c=0 for p in soup.find_all('span'): s1=p.get("class") try: if s1[0]=='title': fichier = open("conf.txt", "a") fichier.write("\n"+p.text) fichier.close() except TypeError: print("\t") s2=p.get("itemprop") try: if s2=="publisher": fichier = open("publisher.txt", "a") fichier.write("\n"+p.text) fichier.close() if s2=="datePublished": fichier = open("Date.txt", "a") fichier.write("\n"+p.text) fichier.close() if s2=="isbn": fichier = open("isbn.txt", "a") fichier.write("\n"+p.text) fichier.close() if s2=="pagination": fichier = open("pages.txt", "a") fichier.write("\n"+p.text) fichier.close() except TypeError: print("\t") # pass url_deb='https://dblp.uni-trier.de/db/conf/' url_deb2='http://dblp.uni-trier.de/db/conf/3dim/3dimpvt2012.html' url_deb3='http://dblp.uni-trier.de/db/conf/3dpvt/' #Timeline_of_conferences(url_deb2) publication_conf_dblp(url_deb3) #find_ComputerScienceConferences_Workshops_names_DBLP(url_deb)
38.383721
124
0.499546
0
0
0
0
0
0
0
0
1,151
0.348577
19b8ce0aa97bf71df30c5a8e086263306534c4c7
4,540
py
Python
src/robot.py
FROG3160/FRC2018-ARWING
6635274d79839ea92d8591af2c8e51f8e1112ec1
[ "MIT" ]
1
2019-01-15T00:47:16.000Z
2019-01-15T00:47:16.000Z
src/robot.py
FROG3160/FRC2018-ARWING
6635274d79839ea92d8591af2c8e51f8e1112ec1
[ "MIT" ]
18
2018-02-15T01:07:03.000Z
2018-04-10T00:25:59.000Z
src/robot.py
FROG3160/FRC2018-ARWING
6635274d79839ea92d8591af2c8e51f8e1112ec1
[ "MIT" ]
4
2018-01-31T01:53:44.000Z
2018-02-16T00:30:14.000Z
#!/usr/bin/env python3 """ Main code for Robot """ import wpilib import robotmap from wpilib import Joystick from subsystems.drivetrain import DriveTrain as Drive from subsystems.grabber import cubeGrabber from subsystems.elevator import Elevator from subsystems.climber import Climber from subsystems.autonomous import Autonomous from wpilib.sendablechooser import SendableChooser # from robotpy_ext.common_drivers.navx import AHRS class Robot(wpilib.IterativeRobot): def robotInit(self): """ This function is called upon program startup and should be used for any initialization code. """ self.pneumaticControlModuleCANID = robotmap.PCM self.kDriveTrain = robotmap.DriveTrain self.kCubeGrabber = robotmap.CubeGrabber self.kElevator = robotmap.Elevator self.kSticks = robotmap.Sticks self.kClimber = robotmap.Climber self.dStick = Joystick(self.kSticks['drive']) self.cStick = Joystick(self.kSticks['control']) self.drive = Drive(self) self.cubeGrabber = cubeGrabber(self) self.elevator = Elevator(self) self.climber = Climber(self) self.sendableChooser() def robotPeriodic(self): pass def disabledInit(self): pass def disabledPeriodic(self): self.drive.stop() def autonomousInit(self): """This function is run once each time the robot enters autonomous mode.""" self.autonomous = Autonomous(self) self.autonomous.reset() self.drive.autoInit() def autonomousPeriodic(self): """This function is called periodically during autonomous.""" #self.autonomous.testMove(self.autonomous.WALL_TO_SCALE, -1, False) #self.autonomous.testAngle(-90, -1) #self.elevator.setElevatorPosition(self.elevator.kScale) #self.autonomous.start() self.autonomous.run() #self.elevator.setElevatorPosition(-20000) #self.autonomous.telemetry() def teleopInit(self): self.drive.teleInit() def teleopPeriodic(self): """This function is called periodically during operator control.""" speed = (self.dStick.getY() * -1)**3 rotation = self.dStick.getTwist()/(1.1+self.dStick.getRawAxis(3)) # self.drive.moveSpeed(speed, speed) self.drive.arcadeWithRPM(speed, rotation, 2800) self.cubeGrabber.grabberFunction() # self.elevator.elevatorFunction() #self.elevator.telemetry() self.climber.climberFunction() def testInit(self): pass def testPeriodic(self): wpilib.LiveWindow.setEnabled(True) pass def sendableChooser(self): self.startingChooser = SendableChooser() self.startingChooser.addDefault('Move Forward Only', '!') self.startingChooser.addObject('Starting Left', 'L') self.startingChooser.addObject('Starting Middle', 'M') self.startingChooser.addObject('Starting Right', 'R') wpilib.SmartDashboard.putData('Starting Side', self.startingChooser) self.startingDelayChooser = SendableChooser() self.startingDelayChooser.addDefault('0', 0) self.startingDelayChooser.addObject('1', 1) self.startingDelayChooser.addObject('2', 2) self.startingDelayChooser.addObject('3', 3) self.startingDelayChooser.addObject('4', 4) self.startingDelayChooser.addObject('5', 5) self.startingDelayChooser.addObject('6', 6) self.startingDelayChooser.addObject('7', 7) self.startingDelayChooser.addObject('8', 8) self.startingDelayChooser.addObject('9', 9) self.startingDelayChooser.addObject('10', 10) self.startingDelayChooser.addObject('11', 11) self.startingDelayChooser.addObject('12', 12) self.startingDelayChooser.addObject('13', 13) self.startingDelayChooser.addObject('14', 14) self.startingDelayChooser.addObject('15', 15) wpilib.SmartDashboard.putData('Delay Time(sec)', self.startingDelayChooser) self.switchOrScale = SendableChooser() self.switchOrScale.addDefault('Switch', 'Switch') self.switchOrScale.addObject('Scale', 'Scale') wpilib.SmartDashboard.putData('Switch or Scale', self.switchOrScale) if __name__ == "__main__": wpilib.run(Robot)
32.661871
83
0.652643
4,053
0.892731
0
0
0
0
0
0
989
0.217841
19b94d7c9d394f09ecf7228b67004f998dd55522
1,764
py
Python
api/attomized_avm.py
johncoleman83/attom_python_client
2fad572162f481a71cccf6003da4cbd8ec4477d4
[ "MIT" ]
null
null
null
api/attomized_avm.py
johncoleman83/attom_python_client
2fad572162f481a71cccf6003da4cbd8ec4477d4
[ "MIT" ]
null
null
null
api/attomized_avm.py
johncoleman83/attom_python_client
2fad572162f481a71cccf6003da4cbd8ec4477d4
[ "MIT" ]
1
2020-11-20T19:28:36.000Z
2020-11-20T19:28:36.000Z
#!/usr/bin/env python3 """ ATTOM API https://api.developer.attomdata.com """ import requests from urllib.parse import quote, urlencode from api import api PATH = "attomavm/detail" def get_avm_by_address(number_street, city_state): """ API request to get attomavm/detail """ params = urlencode( { "address1": number_street, "address2": city_state, } ) url = "{}/{}?{}".format(api.ATTOM_URL, PATH, params) r = requests.get(url, headers=api.headers) return r.json() def get_building_from(p, all_beds, all_baths, all_building_sizes): b = { 'size': p.get('building', {}).get('size', {}).get('livingsize', None), 'baths': p.get('building', {}).get('rooms', {}).get('bathstotal', None), 'beds': p.get('building', {}).get('rooms', {}).get('beds', None), 'bsmt': p.get('building', {}).get('interior', {}).get('bsmtsize', None), } if b.get('beds'): all_beds.append(b.get('beds')) if b.get('baths'): all_baths.append(b.get('baths')) if b.get('size'): all_building_sizes.append(b.get('size')) return b def get_sale_from(p, all_sale_values): sale = { 'saleamt': p.get('sale', {}).get('amount', {}).get('saleamt', None), 'saledate': p.get('sale', {}).get('amount', {}).get('salerecdate', None), } if sale.get('saleamt') == 0: sale['saleamt'] = None if sale.get('saleamt'): all_sale_values.append(sale.get('saleamt')) return sale def get_address_from(p): return p.get('address', {}).get('line1', "NULL") def get_lot_from(p): return p.get('lot', {}).get('lotsize2', "NULL") def get_market_value_from(p): return p.get('assessment', {}).get('market', {}).get('mktttlvalue', None) def get_avm_from(p): return p.get('avm', {}).get('amount', {}).get('value', None)
27.138462
77
0.620181
0
0
0
0
0
0
0
0
542
0.307256
19b9c7cf12ec5b8b173b1bc2764d7bfc2577385f
7,064
py
Python
idmap/models.py
tkhyn/django-idmap
383124fc4bd537d053f9d4c0d02a498f66831baa
[ "BSD-2-Clause" ]
1
2021-04-24T16:35:15.000Z
2021-04-24T16:35:15.000Z
idmap/models.py
tkhyn/django-idmap
383124fc4bd537d053f9d4c0d02a498f66831baa
[ "BSD-2-Clause" ]
null
null
null
idmap/models.py
tkhyn/django-idmap
383124fc4bd537d053f9d4c0d02a498f66831baa
[ "BSD-2-Clause" ]
1
2021-02-27T14:45:48.000Z
2021-02-27T14:45:48.000Z
import django from django.db import models from django.db.models.base import ModelBase from django.utils import six from .manager import IdMapManager from . import tls # thread local storage META_VALUES = { 'use_strong_refs': False, 'multi_db': False } class IdMapModelBase(ModelBase): def __new__(mcs, name, bases, attrs): meta = attrs.get('Meta', type('Meta', (object,), {})) meta_values = {} for attr, default in six.iteritems(META_VALUES): try: meta_values[attr] = getattr(meta, attr) delattr(meta, attr) except AttributeError: pass if django.VERSION < (1, 10): # these attributes are only supported from 1.10 onwards # if they are still defined when calling super.__new__ this raises # an exception for attr in ['base_manager_name', 'default_manager_name']: try: delattr(meta, attr) except AttributeError: pass cls = super(IdMapModelBase, mcs).__new__(mcs, name, bases, attrs) for attr in six.iterkeys(META_VALUES): try: # value defined in the class' own Meta setattr(cls._meta, attr, meta_values[attr]) except KeyError: # value not defined, look into bases' Meta for base in cls.mro()[1:]: try: setattr(cls._meta, attr, getattr(base._meta, attr)) break except AttributeError: pass else: setattr(cls._meta, attr, META_VALUES[attr]) return cls class IdMapModel(six.with_metaclass(IdMapModelBase, models.Model)): """ Abstract class to derive any idmap-enabled model from Meta can set ``use_strong_refs`` to True if one should use strong references (= kept in cache until explicitly flushed) for stored instances, and ``multi_db`` to True if the model is used in several databases """ objects = IdMapManager() class Meta: # does not inherit from base_class.Meta but that's not an issue abstract = True base_manager_name = 'objects' default_manager_name = 'objects' # OVERRIDES @classmethod def from_db(cls, db, field_names, values): """ This method will either create an instance (by calling the default implementation) or try to retrieve one from the class-wide cache by infering the pk value from args and kwargs. The cache is then populated whenever possible (ie when it is possible to infer the pk value). """ try: is_deferred = cls is models.DEFERRED except AttributeError: # django < 1.10 is_deferred = cls._deferred if is_deferred: args = () kwargs = dict(zip(field_names, values)) else: args = values kwargs = {} instance_key = cls._get_cache_key(args, kwargs) def create_instance(): inst = cls(*args, **kwargs) inst._state.adding = False inst._state.db = db cls.cache_instance(inst) return inst # depending on the arguments, we might not be able to infer the PK # in that case, we create a new instance if instance_key is None: return create_instance() else: instance = cls.get_cached_instance(instance_key, db) if instance is None: return create_instance() else: return instance def refresh_from_db(self, using=None, fields=None): self.flush_cached_instance(self) super(IdMapModel, self).refresh_from_db(using, fields) self.cache_instance(self) # DJANGO-IDMAP METHODS @classmethod def _get_cache_key(cls, args, kwargs): """ This method is used by the caching subsystem to infer the PK value from the constructor arguments. It is used to decide if an instance has to be built or is already in the cache. """ result = None # Quick hack for my composites work for now. if hasattr(cls._meta, 'pks'): pk = cls._meta.pks[0] else: pk = cls._meta.pk pk_position = getattr(cls._meta, 'pk_pos', None) if pk_position is None: # the pk position could not be extracted from _meta # calculate it ... pk_position = cls._meta.fields.index(pk) # ... and store it setattr(cls._meta, 'pk_pos', pk_position) if len(args) > pk_position: # if it's in the args, we can get it easily by index result = args[pk_position] elif pk.attname in kwargs: # retrieve the pk value. Note that we use attname instead of name, # to handle the case where the pk is a ForeignKey. result = kwargs[pk.attname] elif pk.name != pk.attname and pk.name in kwargs: # ok we couldn't find the value, but maybe it's a FK and we can # find the corresponding object instead result = kwargs[pk.name] if result is not None and isinstance(result, models.Model): # if the pk value happens to be a model instance (which can # happen with a FK), we'd rather use its own pk as the key result = result._get_pk_val() return result @classmethod def get_cached_instance(cls, pk, db=None): """ Method to retrieve a cached instance by pk value and db. Returns None when not found (which will always be the case when caching is disabled for this class). Please note that the lookup will be done even when instance caching is disabled. """ return tls.get_cached_instance(cls, pk, db) @classmethod def cache_instance(cls, instance): """ Method to store an instance in the cache. """ pk = instance._get_pk_val() if pk is not None: tls.cache_instance(cls, instance) @classmethod def flush_cached_instance(cls, instance): """ Method to flush an instance from the cache. The instance will always be flushed from the cache, since this is most likely called from delete(), and we want to make sure we don't cache dead objects. """ tls.flush_cached_instance(cls, instance) @classmethod def flush_instance_cache(cls, db=None, flush_sub=False): tls.get_cache(cls, flush=db) if flush_sub: for s in cls.__subclasses__(): s.flush_instance_cache(db, flush_sub) def save(self, *args, **kwargs): """ Caches the instance on save """ super(IdMapModel, self).save(*args, **kwargs) self.__class__.cache_instance(self)
33.799043
80
0.58876
6,792
0.961495
0
0
4,246
0.601076
0
0
2,559
0.362259
19bbd9ee5d1a69e647b6029452a9fd29e645da59
1,345
py
Python
test_search_in_rotated_sorted_array.py
jaebradley/leetcode.py
64634cc7d0e975ddd163f35acb18cc92960b8eb5
[ "MIT" ]
null
null
null
test_search_in_rotated_sorted_array.py
jaebradley/leetcode.py
64634cc7d0e975ddd163f35acb18cc92960b8eb5
[ "MIT" ]
2
2019-11-13T19:55:49.000Z
2019-11-13T19:55:57.000Z
test_search_in_rotated_sorted_array.py
jaebradley/leetcode.py
64634cc7d0e975ddd163f35acb18cc92960b8eb5
[ "MIT" ]
null
null
null
from unittest import TestCase from search_in_rotated_sorted_array import Solution class TestSearchInRotatedSortedArray(TestCase): def test_0_when_first_element_is_target(self): self.assertEqual(Solution().search([1, 2, 3, 4, 5, 6, 7], 1), 0) def test_end_index_last_element_is_target(self): self.assertEqual(Solution().search([1, 2, 3, 4, 5, 6, 7], 7), 6) def test_middle_index_is_target(self): self.assertEqual(Solution().search([1, 2, 3, 4, 5, 6, 7], 4), 3) def test_0_when_first_element_is_target_when_rotated(self): self.assertEqual(Solution().search([5, 6, 7, 1, 2, 3, 4], 5), 0) def test_two_element_descending_second_element(self): self.assertEqual(Solution().search([2, 1], 1), 1) def test_two_element_descending_first_element(self): self.assertEqual(Solution().search([2, 1], 2), 0) def test_two_element_ascending_first_element(self): self.assertEqual(Solution().search([1, 2], 1), 0) def test_two_element_ascending_second_element(self): self.assertEqual(Solution().search([1, 2], 2), 1) def test_unable_to_find_element(self): self.assertEqual(Solution().search([1, 2, 3, 4, 5, 6], 7), -1) def test_target_element_is_right_of_pivot(self): self.assertEqual(Solution().search([4, 5, 6, 7, 0, 1, 2], 0), 4)
37.361111
72
0.684758
1,259
0.936059
0
0
0
0
0
0
0
0
19bd0b651a92c3989a6dcd3e14655ea86b1f4a83
2,501
py
Python
pyrfu/pyrf/ts_skymap.py
ablotekar/irfu-python
740cb51ca9ce2ab0d62cb6fef3a7a722d430d79e
[ "MIT" ]
2
2020-11-27T11:35:42.000Z
2021-07-17T11:08:10.000Z
pyrfu/pyrf/ts_skymap.py
ablotekar/irfu-python
740cb51ca9ce2ab0d62cb6fef3a7a722d430d79e
[ "MIT" ]
1
2021-12-04T07:55:48.000Z
2021-12-10T12:45:27.000Z
pyrfu/pyrf/ts_skymap.py
ablotekar/irfu-python
740cb51ca9ce2ab0d62cb6fef3a7a722d430d79e
[ "MIT" ]
2
2021-07-17T11:08:12.000Z
2021-07-18T18:41:42.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # 3rd party imports import numpy as np import xarray as xr __author__ = "Louis Richard" __email__ = "[email protected]" __copyright__ = "Copyright 2020-2021" __license__ = "MIT" __version__ = "2.3.7" __status__ = "Prototype" def ts_skymap(time, data, energy, phi, theta, **kwargs): r"""Creates a skymap of the distribution function. Parameters ---------- time : ndarray List of times. data : ndarray Values of the distribution function. energy : ndarray Energy levels. phi : ndarray Azimuthal angles. theta : ndarray Elevation angles. Other Parameters --------------- **kwargs Hash table of keyword arguments with : * energy0 : ndarray Energy table 0 (odd time indices). * energy1 : ndarray Energy table 1 (even time indices). * esteptable : ndarray Time series of the stepping table between energies (burst). Returns ------- out : xarray.Dataset Skymap of the distribution function. """ energy0, energy1, esteptable = [None] * 3 energy0_ok, energy1_ok, esteptable_ok = [False] * 3 if energy is None: if "energy0" in kwargs: energy0, energy0_ok = [kwargs["energy0"], True] if "energy1" in kwargs: energy1, energy1_ok = [kwargs["energy1"], True] if "esteptable" in kwargs: esteptable, esteptable_ok = [kwargs["esteptable"], True] if not energy0_ok and not energy1_ok and not esteptable_ok: raise ValueError("Energy input required") energy = np.tile(energy0, (len(esteptable), 1)) energy[esteptable == 1] = np.tile(energy1, (int(np.sum(esteptable)), 1)) if phi.ndim == 1: phi = np.tile(phi, (len(time), 1)) out_dict = {"data": (["time", "idx0", "idx1", "idx2"], data), "phi": (["time", "idx1"], phi), "theta": (["idx2"], theta), "energy": (["time", "idx0"], energy), "time": time, "idx0": np.arange(energy.shape[1]), "idx1": np.arange(phi.shape[1]), "idx2": np.arange(len(theta))} out = xr.Dataset(out_dict) if energy0_ok: out.attrs["energy0"] = energy0 if energy1_ok: out.attrs["energy1"] = energy1 if energy0_ok: out.attrs["esteptable"] = esteptable return out
26.892473
79
0.562575
0
0
0
0
0
0
0
0
1,161
0.464214
19be0f2de874f8b441c89b5d8fd8cac69393789a
2,037
py
Python
src/log_utils.py
alexklwong/calibrated-backprojection-network
57dbec03c6da94ee0cd020b6de5f02e7e8ee726e
[ "Intel" ]
38
2021-08-28T06:01:25.000Z
2022-03-03T03:23:23.000Z
src/log_utils.py
alexklwong/calibrated-backprojection-network
57dbec03c6da94ee0cd020b6de5f02e7e8ee726e
[ "Intel" ]
14
2021-11-15T12:30:34.000Z
2022-03-30T14:03:16.000Z
src/log_utils.py
alexklwong/calibrated-backprojection-network
57dbec03c6da94ee0cd020b6de5f02e7e8ee726e
[ "Intel" ]
9
2021-10-19T23:45:07.000Z
2021-12-20T07:45:37.000Z
''' Author: Alex Wong <[email protected]> If you use this code, please cite the following paper: A. Wong, and S. Soatto. Unsupervised Depth Completion with Calibrated Backprojection Layers. https://arxiv.org/pdf/2108.10531.pdf @inproceedings{wong2021unsupervised, title={Unsupervised Depth Completion with Calibrated Backprojection Layers}, author={Wong, Alex and Soatto, Stefano}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={12747--12756}, year={2021} } ''' import os import torch import numpy as np from matplotlib import pyplot as plt def log(s, filepath=None, to_console=True): ''' Logs a string to either file or console Arg(s): s : str string to log filepath output filepath for logging to_console : bool log to console ''' if to_console: print(s) if filepath is not None: if not os.path.isdir(os.path.dirname(filepath)): os.makedirs(os.path.dirname(filepath)) with open(filepath, 'w+') as o: o.write(s + '\n') else: with open(filepath, 'a+') as o: o.write(s + '\n') def colorize(T, colormap='magma'): ''' Colorizes a 1-channel tensor with matplotlib colormaps Arg(s): T : torch.Tensor[float32] 1-channel tensor colormap : str matplotlib colormap ''' cm = plt.cm.get_cmap(colormap) shape = T.shape # Convert to numpy array and transpose if shape[0] > 1: T = np.squeeze(np.transpose(T.cpu().numpy(), (0, 2, 3, 1))) else: T = np.squeeze(np.transpose(T.cpu().numpy(), (0, 2, 3, 1)), axis=-1) # Colorize using colormap and transpose back color = np.concatenate([ np.expand_dims(cm(T[n, ...])[..., 0:3], 0) for n in range(T.shape[0])], axis=0) color = np.transpose(color, (0, 3, 1, 2)) # Convert back to tensor return torch.from_numpy(color.astype(np.float32))
26.802632
92
0.60972
0
0
0
0
0
0
0
0
1,069
0.524791
19c214d222aa500c556609e883b1ff02ba286869
788
py
Python
add-two-numbers/add-two-numbers.py
shaurya-src/code-leet
f642b81eb7bead46c66404bd48ca74bdfeb2abbb
[ "MIT" ]
null
null
null
add-two-numbers/add-two-numbers.py
shaurya-src/code-leet
f642b81eb7bead46c66404bd48ca74bdfeb2abbb
[ "MIT" ]
null
null
null
add-two-numbers/add-two-numbers.py
shaurya-src/code-leet
f642b81eb7bead46c66404bd48ca74bdfeb2abbb
[ "MIT" ]
null
null
null
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]: a = self.get_num(l1) b = self.get_num(l2) total = str(a+b)[::-1] res = ListNode(total[0]) itr = res for i in range(1, len(total)): curr = ListNode(total[i]) itr.next = curr itr = itr.next return res def get_num(self, ll): if not ll: return 0 num = "" curr = ll while curr: num += str(curr.val) curr = curr.next return int(num[::-1])
28.142857
98
0.497462
637
0.808376
0
0
0
0
0
0
148
0.187817
19c251bd8c7eb79b25c470c6951dca0f932a8918
2,834
py
Python
likedtweets.py
PoliTwit1984/Politwitverse
837dd2d05b3977aa24a70f52a3b951ef22c51dc6
[ "MIT" ]
3
2022-01-05T07:12:14.000Z
2022-02-19T20:58:25.000Z
likedtweets.py
PoliTwit1984/Politwitverse
837dd2d05b3977aa24a70f52a3b951ef22c51dc6
[ "MIT" ]
25
2022-01-05T08:23:59.000Z
2022-02-07T01:25:39.000Z
likedtweets.py
PoliTwit1984/Politwitverse
837dd2d05b3977aa24a70f52a3b951ef22c51dc6
[ "MIT" ]
1
2022-02-01T22:39:57.000Z
2022-02-01T22:39:57.000Z
import time import re import tweepy import preprocessor as p import config import string consumer_key = config.consumer_key consumer_secret = config.consumer_secret access_token = config.access_token access_token_secret = config.access_token_secret bearer_token = config.bearer_token username = config.username password = config.password def clean_text(text): """ Function to clean the text. Parameters: text: the raw text as a string value that needs to be cleaned Returns: cleaned_text: the cleaned text as string """ # convert to lower case cleaned_text = text.lower() # remove HTML tags html_pattern = re.compile('<.*?>') cleaned_text = re.sub(html_pattern, '', cleaned_text) # remove punctuations cleaned_text = cleaned_text.translate( str.maketrans('', '', string.punctuation)) return cleaned_text.strip() def remove_whitespace(text): return " ".join(text.split()) def clean_tweets(tweet_text): # URL p.OPT.URL # Mention p.OPT.MENTION # Hashtag p.OPT.HASHTAG # Reserved Words p.OPT.RESERVED # Emoji p.OPT.EMOJI # Smiley p.OPT.SMILEY # Number p.OPT.NUMBER p.set_options(p.OPT.URL, p.OPT.MENTION, p.OPT.EMOJI, p.OPT.SMILEY) clean_tweet_text = p.clean(tweet_text) clean_tweet_text = remove_whitespace(clean_tweet_text) clean_tweet_text = clean_tweet_text.replace('&amp', "") return(clean_tweet_text) def makeitastring(wannabestring): convertedstring = ','.join(map(str, wannabestring)) return(convertedstring) client = tweepy.Client(bearer_token=bearer_token) list_id = "1467207384011526144" # all missouri legislators response = client.get_list_members(list_id, max_results = 100) users = response.data metadata = response.meta next_token = metadata.get("next_token") print(next_token) while next_token is not None: for user in users: string = str(user.name)+","+str(user.id)+","+str(user.username)+"\n" with open('moleglistmembership.txt', 'a') as f: f.write(string) response = client.get_list_members(list_id, pagination_token = next_token, max_results = 100) users = response.data metadata = response.meta next_token = metadata.get("next_token") print(next_token) # tweet_text = tweet.text # tweet_clean_text = clean_tweets(tweet.text) # tweet_created_at = tweet.created_at # tweet_clean_text = clean_text(tweet_clean_text) # print(tweet_clean_text) # print('\n') # print(tweet_created_at) # print('\n') # print('-----------------------------------------------------------------') # with open('molegmembership.txt', 'a') as f: # f.write(tweet_clean_text) # f.write('\n') # response = client.get_list_tweets(list_id, max_results=100)
26.485981
97
0.677135
0
0
0
0
0
0
0
0
1,056
0.372618
19c32bbd1169664ffd8d06d663183110a2d5e53c
391
py
Python
src/app/migrations/0004_history_missed.py
deadlock-delegate/arkdelegates
8a5262f51b519ba3bc10094756c8866fc550df65
[ "MIT" ]
2
2018-05-22T13:47:09.000Z
2018-05-23T12:45:05.000Z
src/app/migrations/0004_history_missed.py
deadlock-delegate/arkdelegates
8a5262f51b519ba3bc10094756c8866fc550df65
[ "MIT" ]
21
2018-05-08T12:56:46.000Z
2020-06-05T18:59:38.000Z
src/app/migrations/0004_history_missed.py
deadlock-delegate/arkdelegates
8a5262f51b519ba3bc10094756c8866fc550df65
[ "MIT" ]
4
2018-05-04T15:00:59.000Z
2019-02-13T02:39:07.000Z
# Generated by Django 2.0.3 on 2018-03-14 09:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0003_delegate_public_key'), ] operations = [ migrations.AddField( model_name='history', name='missed', field=models.FloatField(blank=True, null=True), ), ]
20.578947
59
0.595908
298
0.762148
0
0
0
0
0
0
95
0.242967
19c43d42b7108f348940b9fd8fc9fb33a8830e2c
2,112
py
Python
audclass.py
theunafraid/audiofeedback-prevention
0dd3e8ab7b5a65aff214e74b7bd7869366b1b7b5
[ "Apache-2.0" ]
1
2022-01-20T08:30:20.000Z
2022-01-20T08:30:20.000Z
audclass.py
theunafraid/audiofeedback-prevention
0dd3e8ab7b5a65aff214e74b7bd7869366b1b7b5
[ "Apache-2.0" ]
null
null
null
audclass.py
theunafraid/audiofeedback-prevention
0dd3e8ab7b5a65aff214e74b7bd7869366b1b7b5
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf import numpy as np from tensorflow.python.ops.gen_batch_ops import batch from model import AudioClass from qrnn import QRNN from numpy.random import seed from numpy.random import randn from random import randint from lstmfcn import LSTM_FCN import librosa import os def getData(): outX = [] outY = [] for i in range(10): values = randn(16000) outX.append(np.array(values)) pos = randint(0, 2) outY1=np.zeros(3) outY1[pos] = 1.0 outY.append(outY1) outX = np.array(outX) return outX, np.array(outY) def readFileData(dir, filename): class_id = (filename.split('-')[1]).split('.')[0] # print("found class : ", class_id, flush=True) filepath = dir + '/'+filename data, sample_rate = librosa.load(filepath,sr=16000) # a = np.vstack(data) # print(a.shape) return np.vstack(data), int(class_id) def getDataFromFolder(folder): outX = [] outY = [] files = os.listdir(folder) print("files : ", files) for file in files: if os.path.isfile(folder + "/" +file): data, classid = readFileData(folder, file) # print("data ", data) # print("classid ", classid) outX.append(np.asarray(data).astype(np.float32))#np.array(data)) # pos = randint(0, 2) outY1=np.zeros(3) outY1[classid] = 1.0 outY.append(outY1) #print(outX, flush=True) outX = np.asarray(outX).astype(np.float32) #np.array(outX, dtype="object") return outX, np.array(outY) def main(): try: model = QRNN(16000, 5120) #16000)#AudioClass(3) model.printmodel() # return X, Y = getDataFromFolder("./audio/ds_0.3s/300ms_additional/") #print(Y.shape) #print(X.shape) #print(Y) #print(X) # return epochs = 350 batch = 8 model.train(X, Y, epochs, batch) print("save model...", flush=True) model.save("./qrnn.h5") except Exception as ex: print(ex) if __name__ == "__main__": main()
26.734177
78
0.588542
0
0
0
0
0
0
0
0
404
0.191288
19c4cd4bbbc8cea75d64211787db92e8b023d09a
3,135
py
Python
pytanga/components/OpenConfig/routing/ospfv2/ospfv2Interface.py
renatoalmeidaoliveira/Pytanga
aa02f1c0f2573da1330d1d246ab780fa3be336a5
[ "MIT" ]
null
null
null
pytanga/components/OpenConfig/routing/ospfv2/ospfv2Interface.py
renatoalmeidaoliveira/Pytanga
aa02f1c0f2573da1330d1d246ab780fa3be336a5
[ "MIT" ]
null
null
null
pytanga/components/OpenConfig/routing/ospfv2/ospfv2Interface.py
renatoalmeidaoliveira/Pytanga
aa02f1c0f2573da1330d1d246ab780fa3be336a5
[ "MIT" ]
null
null
null
from pytanga.components import AbstractComponent class ospfv2InterfaceComponent(AbstractComponent): def __init__( self, if_id, network_type=None, priority=None, multi_area_adjacency_primary=None, authentication_type=None, metric=None, passive=None, hide_network=None): self._xmlns = {} self.attributes = self.setAttributes(if_id, network_type, priority, multi_area_adjacency_primary, authentication_type, metric, passive, hide_network) self.parent_xmlns = {} self._children: List[AbstractComponent] = [] self.childrenData = [] self.tag = 'interface' @property def xmlns(self): return self._xmlns @xmlns.setter def xmlns(self, xmlns): self._xmlns = xmlns def setAttributes(self, if_id, network_type, priority, multi_area_adjacency_primary, authentication_type, metric, passive, hide_network): atributes = { 'id': if_id } atributes['config'] = {} if(network_type): attributes['config']['network-type'] = { 'keys': { 'xmlns:oc-ospf-types': 'http://openconfig.net/yang/ospf-types' }, 'value': f"oc-ospf-types:{network_type}" } if(priority): atributes['config']['priority'] = priority if(multi_area_adjacency_primary): atributes['config']['multi-area-adjacency-primary'] = multi_area_adjacency_primary if(authentication_type): atributes['config']['authentication-type'] = authentication_type if(metric): atributes['config']['metric'] = metric if(passive): atributes['config']['passive'] = passive if(hide_network): atributes['config']['hide-network'] = hide_network if(atributes['config'] == {}): del atributes['config'] return atributes def add(self, component) -> None: self._children.append(component) def remove(self, component) -> None: self._children.remove(component) def is_composite(self) -> bool: return False def getXMLNS(self): childrenData = [] for child in self._children: self.parent_xmlns.update(child.getXMLNS()) return self.parent_xmlns def parse(self, serializer): self.childrenData = [] self.getXMLNS() for child in self._children: self.childrenData.append(child.parse(serializer)) return serializer.parse(self)
32.319588
94
0.500797
3,082
0.983094
0
0
126
0.040191
0
0
305
0.097289
19c79aebe6cccec71cf534b0497f44d1a8496883
4,127
py
Python
python_implementation/matriz/quadrada.py
SousaPedro11/algoritmos
86a3601912778d120b9ec8094267c26a7eb6d153
[ "MIT" ]
null
null
null
python_implementation/matriz/quadrada.py
SousaPedro11/algoritmos
86a3601912778d120b9ec8094267c26a7eb6d153
[ "MIT" ]
null
null
null
python_implementation/matriz/quadrada.py
SousaPedro11/algoritmos
86a3601912778d120b9ec8094267c26a7eb6d153
[ "MIT" ]
null
null
null
import math from typing import List, Tuple def __cria_matriz_quadrada(tamanho: int = 20) -> List[List[str]]: matriz = [] for _ in range(tamanho): linha = ['0' for _ in range(tamanho)] matriz.append(linha) return matriz def __diagonais(matriz: List[List[str]]) -> Tuple[list, list]: tamanho = len(matriz) diagonal_principal = [] diagonal_secundaria = [] top, bottom, right, left = 'B', 'A', 'Y', 'X' if tamanho >= 20: ponto_medio = math.ceil(tamanho / 2) diagonal_principal = [j for j in range(tamanho)] diagonal_secundaria = [j for j in range(tamanho)[::-1]] for i, j in enumerate(diagonal_secundaria): matriz[i][j] = right if (i < ponto_medio) else left for i, j in enumerate(diagonal_principal): matriz[i][j] = top if (j < ponto_medio) else bottom return diagonal_principal, diagonal_secundaria def __quadrantes(matriz: List[List[str]], diagonal_p: list, diagonal_s: list) -> None: tamanho = len(matriz) if tamanho >= 20: for i in range(tamanho): elemento_dp = diagonal_p[i] elemento_ds = diagonal_s[i] for j in range(tamanho): if elemento_dp < j < elemento_ds: matriz[i][j] = 'B' elif elemento_ds < j < elemento_dp: matriz[i][j] = 'A' elif j < elemento_dp and j < elemento_ds: matriz[i][j] = 'X' elif j > elemento_dp and j > elemento_ds: matriz[i][j] = 'Y' def __imprime_matriz(matriz: List[List[str]]) -> None: try: print(f'Matriz de tamanho: {len(matriz)}') for linha in matriz: print(' '.join(linha)) print('\n') except ValueError as e: print(e) def __define_tamanho(msg: str) -> int: while True: try: tamanho = int(input(f'{msg}: ')) break except ValueError: print('O valor informado não é um inteiro!') return tamanho def __define_matriz_maior() -> List[List[str]]: print('MATRIZ MAIOR') tamanho = __define_tamanho( msg='Defina a ordem de uma matriz quadrada (inteiro maior ou igual a 20)', ) while tamanho < 20: print('Valor informado menor que 20!') tamanho = __define_tamanho( msg='Defina a ordem de uma matriz quadrada (inteiro maior ou igual a 20)', ) matriz = __cria_matriz_quadrada(tamanho) diagonal_principal, diagonal_secundaria = __diagonais(matriz) __quadrantes(matriz, diagonal_principal, diagonal_secundaria) __imprime_matriz(matriz) return matriz def __define_matriz_menor(len_matriz_maior: int) -> List[List[str]]: print('MATRIZ MENOR') tamanho = __define_tamanho( msg=f'Defina a ordem de uma matriz quadrada (inteiro menor que {len_matriz_maior})', ) while tamanho >= len_matriz_maior: print(f'Valor informado maior que {len_matriz_maior}!') tamanho = __define_tamanho( msg=f'Defina a ordem de uma matriz quadrada (inteiro menor que {len_matriz_maior})', ) matriz = __cria_matriz_quadrada(tamanho) __imprime_matriz(matriz) return matriz def __gera_matriz_concentrica(matriz_maior: List[List[str]], matriz_menor: List[List[str]]) -> None: if len(matriz_menor) > len(matriz_maior): raise ValueError('Matriz menor declarada no local errado!') print('MATRIZ CONCENTRICA') maior = matriz_maior.copy() menor = matriz_menor.copy() ponto_medio_maior = math.ceil(len(maior) / 2) ponto_medio_menor = math.ceil(len(menor) / 2) diferenca = ponto_medio_maior - ponto_medio_menor for i, linha in enumerate(menor): for j, coluna in enumerate(linha): maior[i + diferenca][j + diferenca] = coluna __imprime_matriz(maior) def solucao_problema(): matriz_maior = __define_matriz_maior() matriz_menor = __define_matriz_menor(len(matriz_maior)) __gera_matriz_concentrica(matriz_maior, matriz_menor) if __name__ == '__main__': solucao_problema()
33.282258
100
0.628544
0
0
0
0
0
0
0
0
593
0.143618
19c7ee6d99159a70af01f16f7e183bb9ec3972a5
7,017
py
Python
app_mongo.py
emmpets/MongoProject
cbef19b590503825158909703125b34c1bf536ec
[ "Apache-2.0" ]
null
null
null
app_mongo.py
emmpets/MongoProject
cbef19b590503825158909703125b34c1bf536ec
[ "Apache-2.0" ]
null
null
null
app_mongo.py
emmpets/MongoProject
cbef19b590503825158909703125b34c1bf536ec
[ "Apache-2.0" ]
null
null
null
from pymongo import MongoClient import pymongo from datetime import datetime,time import time from bson.code import Code mongo_client=MongoClient('mongodb://localhost:27017/') db=mongo_client.mydb db_col=db.things dbc = mongo_client.mydb.things print mongo_client print(db) print("connected") def first_querry(): all_count = db.things.find().count() return all_count def second_querry(): allusers = first_querry() pipeline = [ {"$group": {"_id": "$id_member", "count": {"$sum": 1}}}, {"$sort": {"count": -1}}, {"$limit": 10} ] result = list(db.things.aggregate(pipeline)) sum1 = 0 for plithos in result: sum1 = sum1 + plithos['count'] percentage = 100.0 * sum1 / allusers return percentage def third_querry(): result3a = db.things.find({}, {"timestamp": 1}).sort("timestamp", pymongo.DESCENDING).limit(1) for row in result3a: # print("The last message published on:"), str(row["timestamp"]) tmax = row["timestamp"] result3b = db.things.find({"timestamp": {'$ne': None}}, {"timestamp": 1}).sort("timestamp", pymongo.ASCENDING).limit(1) for rb in result3b: # print("The earliest message published on:"), str(rb["timestamp"]) tmin = rb["timestamp"] return (tmax,tmin) def fourth_querry(): tmax, tmin = third_querry() dmax = datetime.strptime(tmax, "%Y-%m-%d %H:%M:%S") secondmax = time.mktime(dmax.timetuple()) dmin = datetime.strptime(tmin, "%Y-%m-%d %H:%M:%S") secondmin = time.mktime(dmin.timetuple()) all_plithos_msg = db.things.find().count() deltatimemean = ((secondmax - secondmin) / (all_plithos_msg - 1)) return deltatimemean data = dbc.find() def fifth_querry(data): sum_of_texts = 0 for row in data: if 'text' in row: sum_of_texts += len(str(row["text"]).encode('utf-8')) average_tweet_size = sum_of_texts / db.things.count() return average_tweet_size def sixth_querry(): mapperUni = Code(""" function() { var thisText = this.text; var splitStr = thisText.toString().split(" "); for(i=0 ; i< splitStr.length ;i++){ var clean1 = splitStr[i].replace(/[.,-\/#!$%\^&\*;:{}=\-_`~()]/g,""); var clean2 = clean1.replace(/\s{2,}/g," "); var cleanStr = clean2.trim(); if (cleanStr.length>0) emit(cleanStr,1); } } """) reducerUni = Code(""" function(key, value) { return Array.sum(value); } """) unigram_counter = dbc.map_reduce(mapperUni, reducerUni, 'uniCounter') unigram_list = list(db.uniCounter.find().sort('value', -1).limit(10)) for uni in unigram_list: print ('Unigram' + uni['_id'] + 'has' + str(uni['value']) + 'appearances') def seventh_querry(): mapperBi = Code(""" function() { var tempText = this.text; var splitText = tempText.toString().split(" "); for(i=0 ; i<splitText.length-1 ;i++){ punctText = splitText[i].trim(); punctText2 = splitText[i+1].trim(); var punctRem = punctText.replace(/[.,-\/#!$%\^&\*;:{}=\-_`~()]/g,""); var punctRem2 = punctText2.replace(/[.,-\/#!$%\^&\*;:{}=\-_`~()]/g,""); var firstStr = punctRem.replace(/\s{2,}/g," "); var secStr = punctRem2.replace(/\s{2,}/g," "); finalStr = (firstStr + ' ' + secStr).trim(); if (finalStr !== '') emit(finalStr,1); } } """) reducerBi = Code(""" function(key, value) { return Array.sum(value); } """) bigram_counter = dbc.map_reduce(mapperBi, reducerBi, 'bigramCounter') bigram_list = list(db.bigramCounter.find().sort('value', -1).limit(10)) for bigrams in bigram_list: print ('Bigram' + bigrams['_id'] + 'has' + str(bigrams['value']) + 'appearances') def eight_querry(data): sum_of_hashes_per_text = 0 for row in data: if 'text' in row: sum_of_hashes_per_text += str(row['text']).count('#') average_hashes_size = sum_of_hashes_per_text / db.things.count() return average_hashes_size def ninth_querry(): mapperMap = Code(""" function() { var ukCenterLat = '54.749991'; var ukCenterLng = '-3.867188'; var currentLng = this.geo_lng; var currentLat = this.geo_lat; var loc = ""; if (currentLng < ukCenterLng && currentLat >= ukCenterLat) { loc = "North-West"; }else if(currentLng < ukCenterLng && currentLat < ukCenterLat){ loc = "South-West"; }else if (currentLng >= ukCenterLng && currentLat >= ukCenterLat) { loc = "North-East"; }else if (currentLng >= ukCenterLng && currentLat < ukCenterLat){ loc = "South-East"; } emit(loc, 1); } """) reducerMap = Code(""" function(key, value) { return Array.sum(value); } """) LocationCounter = dbc.map_reduce(mapperMap, reducerMap, 'geoLocDistr') topLocation = db.geoLocDistr.find().sort('value', -1).limit(1) print('Most of the messages were published in' + topLocation[0]['_id'] + ' with ' + str( topLocation[0]['value']) + ' tweets') ans=True while ans: print(""" 1.How many unique users are there? 2.How many tweets (%) did the top 10 users (measured by the number of messages) publish? 3.What was the earliest and latest date (YYYY-MM-DD HH:MM:SS) that a message was published? 4.What is the mean time delta between all messages? 5.What is the mean length of a message? 6.What are the 10 most common unigram within the messages? 7.What are the 10 most common bigram within the messages? 8.What is the average number of hashtags (#) used within a message? 10.Exit/Quit """) ans = raw_input("What would you like to do? ") if ans == "1": print "The summary of all unique users is: ", first_querry() elif ans == "2": print("The percentage of the ALL messages of top ten user"), second_querry(), "%", elif ans == "3": print"The last message published on:", third_querry()[0] print"The earliest message published on:", third_querry()[1] elif ans == "4": print"The mean time delta between all messages is :", fourth_querry() elif ans == "5": print"The mean length of the messages is :", fifth_querry(data) elif ans == "6": print"The 10 most common unigrams within the messages are:", sixth_querry() elif ans == "7": print"The 10 most common bigrams within the messages are:", seventh_querry() elif ans == "8": print"The average number of hashtags (#) used within a message is:", eight_querry(data) elif ans == "9": ninth_querry() elif ans == "10": print("\n Goodbye") ans = None else: print("\n Not Valid Choice Try again")
30.11588
110
0.584865
0
0
0
0
0
0
0
0
3,612
0.51475
19c9e0f683fb12bcf45633873b78ecba612bb09f
7,399
py
Python
theseus/util/serialize.py
shiplift/theseus
9324d67e6e0c6b93a7734a5531838c5a909a1424
[ "0BSD" ]
null
null
null
theseus/util/serialize.py
shiplift/theseus
9324d67e6e0c6b93a7734a5531838c5a909a1424
[ "0BSD" ]
null
null
null
theseus/util/serialize.py
shiplift/theseus
9324d67e6e0c6b93a7734a5531838c5a909a1424
[ "0BSD" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ serialize provide means to persist and recreate the currently known set of W_Tags and all shapes and transformations reachable from there. The rmarshal modules is used for serialization; the format is marshal_proto = ( int, # number of shapes [ # shape list ( # a shape int, # id (str, int), # tag [int], # structure: list of id's { # _hist (int, int) : # index, id int # count }, { # transformation_rules (int, int) : # index, id int # id } ) ], { (str, int) : # name arity int #id } ) The serialized tree is written to a '.docked' files """ import os.path from rpython.rlib.streamio import open_file_as_stream from rpython.rlib.rmarshal import get_marshaller, get_unmarshaller from rpython.rlib.debug import debug_start, debug_stop, debug_print from theseus.model import W_Tag from theseus.shape import in_storage_shape, CompoundShape marshal_proto = ( int, # number of shapes [ # shape list ( # a shape int, # id (str, int), # tag [int], # structure: list of id's { # _hist (int, int) : # index, id int # count }, { # transformation_rules (int, int) : # index, id int # id } ) ], { (str, int) : # name arity int #id } ) marshaller = get_marshaller(marshal_proto) unmarshaller = get_unmarshaller(marshal_proto) def punch_shape(s, registry): """ Punch a shape to a tuple for marshalling. See slurp_shapes, configure_shapes for inverse. Format is ( # a shape int, # id (str, int), # tag [int], # structure: list of id's { # _hist (int, int) : # index, id int # count }, { # transformation_rules (int, int) : # index, id int # id } ) """ if s == in_storage_shape: return (0, ('', 0), [], {}, {}) else: assert isinstance(s, CompoundShape) my_index = registry.index(s) hist = {} for (index, shape), count in s._hist.items(): shape_id = registry.index(shape) hist[(index, shape_id)] = count trans = {} for (index, shape), to_shape in s.transformation_rules.items(): shape_id = registry.index(shape) to_shape_id = registry.index(to_shape) trans[(index, registry.index(shape))] = registry.index(to_shape) punchee = ( registry.index(s), (s._tag.name, s._tag.arity()), [registry.index(subshape) for subshape in s._structure], hist, trans ) return punchee def recreate_shape(shape_desc, tags, registry): """ Recreate a shape from its punched format; see punch_shape. Does not handle history and transformations. See configure_shape(s). """ id, tag, structure_ids = shape_desc structure = [None] * len(structure_ids) for structure_index, sub_id in enumerate(structure_ids): assert sub_id < id subshape = registry[sub_id] assert subshape is not None structure[structure_index] = subshape return CompoundShape(tags[tag], structure) def configure_shape(shape, hist, trans, registry): """ Reconfigure a shape from its punched format; see punch_shape. Does _only_ handle history and transformations. See configure_shapes. """ assert isinstance(shape, CompoundShape) shape._hist = {} for (index, s_id), count in hist.items(): k = (index, registry[s_id]) shape._hist[k] = count shape.transformation_rules = {} for (index, s_id), to_s_id in trans.items(): k = (index, registry[s_id]) shape.transformation_rules[k] = registry[to_s_id] def configure_shapes(shapes, registry): """ Reconfigure all shapes. Does _only_ handle history and transformations. See configure_shapes. """ for id, _tag, _structure_ids, hist, trans in shapes: if id == 0: continue # in_storage_shape, no configure configure_shape(registry[id], hist, trans, registry) def slurp_registry(shapes, registry, tags_slurp, tags): """ Slurp all shapes from their punched format (see punch_shape) not including history or transformation """ known_ids = [0] for default_id in tags_slurp.values(): known_ids.append(default_id) for id, tag, structure_ids, _hist, _trans in shapes: if id in known_ids: continue assert registry[id] is None registry[id] = recreate_shape((id, tag, structure_ids), tags, registry) def punch_tags(tags): """ Punch all tags into marshallable format: ( int, # number of shapes [ # shape list ], { (str, int) : # name arity int #id } ) """ reg = [in_storage_shape] + CompoundShape._shapes punch_reg = [punch_shape(s, reg) for s in reg] res = {} for key, value in tags.items(): res[key] = reg.index(value.default_shape) return (len(punch_reg), punch_reg, res) def slurp_tags(un_tags): """ Slurp all tags from their punched format (see punch_tag). Recursively slurps shapes and then configures them. """ num_shapes, shapes_slurp, tags_slurp = un_tags registry = [None] * num_shapes registry[0] = in_storage_shape tags = {} for (name, arity), default_id in tags_slurp.items(): tag = W_Tag(name, arity) tags[(name, arity)] = tag registry[default_id] = tag.default_shape slurp_registry(shapes_slurp, registry, tags_slurp, tags) configure_shapes(shapes_slurp, registry) return tags def come_up(basename): """ Bring up previously marshalled Tags, shapes and transformations from '.docked' file un-marshalling, slurping and replacement of current Tags. """ from theseus.shape import CompoundShape # later # from os import stat # statres = stat(path) debug_start("theseus-come-up") path = basename + '.docked' if not os.path.exists(path): return try: f = open_file_as_stream(path, buffering=0) except OSError as e: os.write(2, "Error(come_up)%s -- %s\n" % (os.strerror(e.errno), path)) return try: res = unmarshaller(f.readall()) finally: f.close() del CompoundShape._shapes[:] W_Tag.tags.clear() new_tags = slurp_tags(res) for key, value in new_tags.items(): W_Tag.tags[key] = value debug_stop("theseus-come-up") def settle(basename): """ Settle Tags, shapes and transformations to a '.docked' file punching and marshalling all current Tags. """ debug_start("theseus-settle") path = basename + '.docked' buf = [] marshaller(buf, punch_tags(W_Tag.tags)) try: f = open_file_as_stream(path, mode="w", buffering=0) except OSError as e: os.write(2, "Error(settle)%s -- %s\n" % (os.strerror(e.errno), path)) return try: f.write(''.join(buf)) finally: f.close() debug_stop("theseus-settle")
27.403704
79
0.592783
0
0
0
0
0
0
0
0
2,814
0.380322
19cc7f391c49230cd25af4f7949e261ca27ffe2b
1,359
py
Python
external_scripts/run2.py
AAS97/tokenizRE
0186a2b533edaa0045b16b0b111b9637248e5046
[ "MIT" ]
null
null
null
external_scripts/run2.py
AAS97/tokenizRE
0186a2b533edaa0045b16b0b111b9637248e5046
[ "MIT" ]
null
null
null
external_scripts/run2.py
AAS97/tokenizRE
0186a2b533edaa0045b16b0b111b9637248e5046
[ "MIT" ]
null
null
null
from web3 import Web3, HTTPProvider import json import os w3 = Web3(HTTPProvider("http://127.0.0.1:7545", request_kwargs={'timeout': 60})) print(f"Web3 is connected : {w3.isConnected()}") accounts = w3.eth.accounts # ------------------------------- get contract ------------------------------- # abi_path = "./vapp/src/contracts/" with open(os.path.join(abi_path, 'TokenHolderPayer.json'), "r") as file: property_contract_compiled = json.load(file) property_contract_abi = property_contract_compiled['abi'] contract_address = "0xE5972821D1218120C4E98986A3eEc997931690b4" property_contract = w3.eth.contract(address=contract_address, abi=property_contract_abi) # ------------------- buy some token from realestate agent ------------------- # amount = 500 # Allow token to be sent property_contract.functions.increaseAllowance(accounts[1], amount).transact({'from':accounts[0], 'gas': 420000, 'gasPrice': 21000}) balance = property_contract.functions.balanceOf(accounts[1]).call() print(f"initial balance {balance}") tx_hash = property_contract.functions.transferFrom(accounts[0], accounts[1], 500).transact({'from':accounts[1], 'gas': 420000, 'gasPrice': 21000}) receipt = w3.eth.waitForTransactionReceipt(tx_hash) balance = property_contract.functions.balanceOf(accounts[1]).call() print(f"final balance {balance}")
37.75
146
0.693893
0
0
0
0
0
0
0
0
451
0.331862
19cc949ad53b4cdcbc1b975b94608f7737a43f64
825
py
Python
main.py
cltl-students/hamersma-agression-causes
11cbfd94031a0a3c84a27afa20d8a539acdab609
[ "MIT" ]
null
null
null
main.py
cltl-students/hamersma-agression-causes
11cbfd94031a0a3c84a27afa20d8a539acdab609
[ "MIT" ]
null
null
null
main.py
cltl-students/hamersma-agression-causes
11cbfd94031a0a3c84a27afa20d8a539acdab609
[ "MIT" ]
null
null
null
from preprocessing import preprocess from approach1_rulebased import get_predictions_rulebased from approach2_machine_learning import get_predictions_ml from bertopic_clustering import cluster_precursors def main(): '''Main function to use from commandline, preprocess input to generate embeddings, detect agression clauses using provided approach, extract features and labels from training and features from input data, trains a model and classifies test data using the trained model, evaluates predictions and goldlabels from input''' inputfile = 'sample_input.xls' preprocess(inputfile) get_predictions_rulebased() get_predictions_ml() ### only clusters with enough data, else everything in outlier cluster cluster_precursors() if __name__ == '__main__': main()
43.421053
118
0.778182
0
0
0
0
0
0
0
0
429
0.52
19cd9765a8c1a72e36854304f427fda7349e31d0
8,985
pyw
Python
12th project cs/Gui pages.pyw
Jatin-Ya/ChatApp-12th-project-
77ced9b18205728334f4370fbce8d74687bc5373
[ "Apache-2.0" ]
null
null
null
12th project cs/Gui pages.pyw
Jatin-Ya/ChatApp-12th-project-
77ced9b18205728334f4370fbce8d74687bc5373
[ "Apache-2.0" ]
null
null
null
12th project cs/Gui pages.pyw
Jatin-Ya/ChatApp-12th-project-
77ced9b18205728334f4370fbce8d74687bc5373
[ "Apache-2.0" ]
null
null
null
from tkinter import * import threading import sql_manager as ss def temp(er,s): er.destroy() s.sperson() def temp2(er,s): er.destroy() s.w.destroy() def close_w(self): self.w.destroy() class GUI: def __init__(self): self.w=Tk() p1 = PhotoImage(file = 'logo.png') self.w.iconphoto(True, p1) self.w.withdraw() self.welcome=Toplevel() self.welcome.title("WELCOME") self.welcome.configure(width=400,height=400) photo= PhotoImage(file = "logo.png") l=Label(self.welcome,image=photo) l.place(relheight=0.8,relwidth=1) lb=Label(self.welcome,text = "Welcome to CHATROOM \n -by JATIN YADAV",font="ALGERIAN 20 bold") lb.place(relheight=0.2,relwidth=1,rely=0.8) thread1=threading.Thread(target=self.y) thread1.start() self.login=Toplevel() self.login.title("Login") self.login.resizable(width=False,height=False) self.login.configure(width=400,height=400) self.t=Label(self.login,text = "Login to continue",font="Arial 20 bold") self.t.place(relheight=0.15,relx=0.2,rely=0.001) self.uidlabel=Label(self.login,text="UID : ",font="Helvetica 12") self.uidlabel.place(relheight=0.2,relx=0.1,rely=0.1) self.uidentry=Entry(self.login,font="Helvetica 14") self.uidentry.place(relheight=0.1,relwidth=0.5,relx=0.4,rely=0.15) self.passwordlabel=Label(self.login,text="PASSWORD : ",font="Helvetica 12") self.passwordlabel.place(relheight=0.2,relx=0.1,rely=0.26) self.passwordentry=Entry(self.login,font="Helvetica 14") self.passwordentry.place(relheight=0.1,relwidth=0.5,relx=0.4,rely=0.3) self.next = Button(self.login,text = "LOGIN",font = "Helvetica 14 bold",bg="red", \ command = lambda: self.Next(self.uidentry.get(),self.passwordentry.get())) self.next.place(relheight=0.2,relwidth=0.6,relx=0.25,rely=0.6) self.login.protocol("WM_DELETE_WINDOW",lambda : close_w(self)) self.login.withdraw() self.w.mainloop() def y(self): def fo(): self.welcome.destroy() self.login.deiconify() WAIT_TIME_SECONDS = 3 ticker = threading.Event() if not ticker.wait(WAIT_TIME_SECONDS): fo() def Next(self,uid,password): self.login.destroy() self.uid=uid self.password=password c=ss.entrycheck(uid,password) if c: self.sperson() else: err2=Toplevel() err2.title("ERROR") err2.resizable(width=False,height=False) err2.configure(width=800,height=200) e=Label(err2,text = "ERROR \n YOUR DATA DOESN'T EXIST",font="Arial 30 bold") e.place(relwidth=1,relheight=0.8) ext2 = Button(err2,text ="EXIT",font = "Helvetica 14 bold",bg="red", \ command=lambda : temp2(err2,self)) ext2.place(relheight=0.2,relwidth=1,rely=0.8) err2.protocol("WM_DELETE_WINDOW",lambda : close_w(self)) def sperson(self): self.sp=Toplevel() self.sp.title("RECEIVER DETAILS") self.sp.resizable(width=False,height=False) self.sp.configure(width=400,height=400) self.st=Label(self.sp,text = "Enter receivers details",font="Arial 20 bold") self.st.place(relheight=0.15,relx=0.2,rely=0.001) self.uidlabel2=Label(self.sp,text="UID : ",font="Helvetica 12") self.uidlabel2.place(relheight=0.2,relx=0.1,rely=0.1) self.uidentry2=Entry(self.sp,font="Helvetica 14") self.uidentry2.place(relheight=0.1,relwidth=0.5,relx=0.4,rely=0.15) self.next2 = Button(self.sp,text = "NEXT",font = "Helvetica 14 bold",bg="red", \ command = lambda: self.Next2(self.uidentry2.get())) self.next2.place(relheight=0.2,relwidth=0.6,relx=0.25,rely=0.6) self.sp.protocol("WM_DELETE_WINDOW",lambda : close_w(self)) def Next2(self,uid): self.sp.destroy() self.uid2=uid c=ss.check2(uid) if c: self.layout() else: err2=Toplevel() err2.title("ERROR") err2.resizable(width=False,height=False) err2.configure(width=800,height=200) e=Label(err2,text = "ERROR \n THIS USER DOESN'T EXIST",font="Arial 30 bold") e.place(relwidth=1,relheight=0.8) ext2 = Button(err2,text ="BACK",font = "Helvetica 14 bold",bg="red", \ command=lambda : temp(err2,self)) ext2.place(relheight=0.2,relwidth=1,rely=0.8) err2.protocol("WM_DELETE_WINDOW",lambda : close_w(self)) def layout(self): self.sname=ss.fetch_name(self.uid) self.rname=ss.fetch_name(self.uid2) self.w.deiconify() self.w.title("CHATROOM | JATIN YADAV") self.w.configure(width=800,height=750,bg="gray27") self.Headframe=Frame(self.w, width=800,height=37.5,bg="gray27") self.Headframe.place(relwidth=1,relx=0,rely=0) sender_label=Label(self.Headframe,text="SENDER : "+self.sname,width=150, \ font="arial 16 bold",height=37,bg="SteelBlue3") sender_label.place(relx=0.01,rely=0.01,relheight=0.9,relwidth=0.3) reciver_label=Label(self.Headframe,text="RECIVER : "+self.rname,width=150, \ font="arial 16 bold",height=37,bg="SteelBlue3") reciver_label.place(relx=0.65,rely=0.01,relheight=1,relwidth=0.3) self.historybutton=Button(self.w,text="CHAT HISTORY",font="arial 16 bold", \ bg="lime green",command=lambda : self.history()) self.historybutton.place(relheight=0.04,relwidth=0.4,relx=0.25,rely=0.06) self.textconsole=Text(self.w,width=30,height=5,bg="black",fg="white", \ font="Courier 14") self.textconsole.place(relwidth=0.95,relheight=0.7,rely=0.1) scrollbar=Scrollbar(self.textconsole) scrollbar.place(relheight=1,relx=0.97) scrollbar.config(command=self.textconsole.yview) self.bottomframe=Frame(self.w,width=800,height=140,bg="gray27") self.bottomframe.place(relwidth=1,rely=0.81) self.msgtxt=Text(self.bottomframe,width=30,height=5,bg="aquamarine",font="arial 14") self.msgtxt.place(relwidth=0.7,relheight=0.98,rely=0.01,relx=0.01) self.sendbutton=Button(self.bottomframe,text="SEND",font="arial 16 bold", \ bg="lime green",command=lambda : self.sendmsg(self.msgtxt.get("0.1","end-1c"))) self.sendbutton.place(relheight=0.9,relwidth=0.2,relx=0.75,rely=0.01) self.textconsole.config(cursor = "arrow") self.textconsole.config(state='disable') thread=threading.Thread(target=self.x) thread.start() def sndbutton(self,msg): snd=threading.Thread(target=self.sendmsg,args=(msg,)) snd.start() def x(self): def foo(): self.recmsg() WAIT_TIME_SECONDS = 1 ticker = threading.Event() while not ticker.wait(WAIT_TIME_SECONDS): foo() def sendmsg(self,msg): self.textconsole.config(state='normal') self.textconsole.insert(END,self.sname+"->"+msg+"\n") self.textconsole.config(state='disable') self.msgtxt.delete('1.0',END) ss.postmsg(msg) def recmsg(self): msglist=ss.getmsg() if len(msglist)!=0: self.textconsole.config(state='normal') for i in msglist: self.textconsole.insert(END,self.rname+"->"+i+"\n") self.textconsole.config(state='disable') else : pass def history(self): self.chathist=Toplevel() self.chathist.title("CHAT HISTORY") self.chathist.configure(width=400,height=400) messages_list=ss.getmessages() textconsole=Text(self.chathist,width=30,height=5,bg="black",fg="white") textconsole.place(relwidth=0.95,relheight=0.7,rely=0.1) for i in messages_list: textconsole.insert(END,ss.fetch_name(i[0])+"->"+i[1]+"\n") textconsole.config(state='disable') textconsole.config(cursor = "arrow") scrollbar=Scrollbar(textconsole) scrollbar.place(relheight=1,relx=0.97) scrollbar.config(command=textconsole.yview) g=GUI()
35.654762
111
0.575292
8,720
0.970506
0
0
0
0
0
0
987
0.10985
19cea24c1060f2d6ff7113c23c57266d177697db
1,528
py
Python
19/19a.py
jamOne-/adventofcode2018
d51c01578ae7e4f30824c4f6ace66958491c1ed4
[ "MIT" ]
null
null
null
19/19a.py
jamOne-/adventofcode2018
d51c01578ae7e4f30824c4f6ace66958491c1ed4
[ "MIT" ]
null
null
null
19/19a.py
jamOne-/adventofcode2018
d51c01578ae7e4f30824c4f6ace66958491c1ed4
[ "MIT" ]
null
null
null
import sys OPERATIONS = { 'addr': lambda a, b, c, registers: registers[a] + registers[b], 'addi': lambda a, b, c, registers: registers[a] + b, 'mulr': lambda a, b, c, registers: registers[a] * registers[b], 'muli': lambda a, b, c, registers: registers[a] * b, 'banr': lambda a, b, c, registers: registers[a] & registers[b], 'bani': lambda a, b, c, registers: registers[a] & b, 'borr': lambda a, b, c, registers: registers[a] | registers[b], 'bori': lambda a, b, c, registers: registers[a] | b, 'setr': lambda a, b, c, registers: registers[a], 'seti': lambda a, b, c, registers: a, 'grir': lambda a, b, c, registers: 1 if a > registers[b] else 0, 'gtri': lambda a, b, c, registers: 1 if registers[a] > b else 0, 'gtrr': lambda a, b, c, registers: 1 if registers[a] > registers[b] else 0, 'eqir': lambda a, b, c, registers: 1 if a == registers[b] else 0, 'eqri': lambda a, b, c, registers: 1 if registers[a] == b else 0, 'eqrr': lambda a, b, c, registers: 1 if registers[a] == registers[b] else 0 } def solve(puzzle_input): lines = [line.strip() for line in puzzle_input] ip_register = int(lines[0].split(' ')[1]) instructions = lines[1:] registers = [0] * 6 while registers[ip_register] < len(instructions): instruction = instructions[registers[ip_register]] op_code, *abc = instruction.split(' ') a, b, c = tuple(map(int, abc)) registers[c] = OPERATIONS[op_code](a, b, c, registers) registers[ip_register] += 1 return registers[0] print(solve(sys.stdin))
36.380952
77
0.633508
0
0
0
0
0
0
0
0
102
0.066754
19d1e57d2a97ef66002ffa2d6966b97f5f533bee
1,878
py
Python
examples/websocket_echo_server.py
HMXHIU/VeryPowerfulAgents
06abd52776aeaf701637533f760176459c9c361c
[ "MIT" ]
2
2021-11-30T16:14:01.000Z
2022-03-04T09:20:51.000Z
examples/websocket_echo_server.py
HMXHIU/VeryPowerfulAgents
06abd52776aeaf701637533f760176459c9c361c
[ "MIT" ]
8
2021-02-10T15:43:49.000Z
2021-02-10T16:00:16.000Z
examples/websocket_echo_server.py
HMXHIU/VeryPowerfulAgents
06abd52776aeaf701637533f760176459c9c361c
[ "MIT" ]
1
2021-01-01T12:31:48.000Z
2021-01-01T12:31:48.000Z
from aiohttp import web from agents import Agent class WebServer(Agent): html = """ <!DOCTYPE html> <html> <head> <title>WebSocket Echo</title> </head> <body> <h1>WebSocket Echo</h1> <form action="" onsubmit="sendMessage(event)"> <input type="text" id="messageText" autocomplete="off"/> <button>Send</button> </form> <ul id='messages'> </ul> <script> var ws = new WebSocket("ws://{}:{}{}"); ws.onmessage = function(event) {{ var messages = document.getElementById('messages') var message = document.createElement('li') var content = document.createTextNode(event.data) message.appendChild(content) messages.appendChild(message) }}; function sendMessage(event) {{ var input = document.getElementById("messageText") ws.send(input.value) input.value = '' event.preventDefault() }} </script> </body> </html> """ def setup(self, host, port, route): self.host = host self.port = port self.route = route self.create_webserver(host, port) self.create_route("GET", "/", self.echo) self.rtx, self.connections = self.create_websocket(route) self.disposables.append(self.rtx.subscribe(lambda msg: self.rtx.on_next(msg))) async def echo(self, request): return web.Response( text=self.html.format(self.host, self.port, self.route), content_type="text/html", ) if __name__ == "__main__": webserver = WebServer("127.0.0.1", 8080, "/ws")
30.786885
86
0.510117
1,744
0.928647
0
0
0
0
176
0.093717
1,208
0.643237
19d3c2532fdc242dd0fdaf80342fa01cfdf2a61d
5,401
py
Python
janaganana/tables.py
deshetti/janaganana
f29ced95fc9f8b98f77560d9afdbd999510dd497
[ "MIT" ]
11
2017-02-16T20:45:54.000Z
2021-12-31T01:08:40.000Z
janaganana/tables.py
deshetti/janaganana
f29ced95fc9f8b98f77560d9afdbd999510dd497
[ "MIT" ]
18
2017-02-15T20:24:29.000Z
2022-03-29T21:54:36.000Z
janaganana/tables.py
deshetti/janaganana
f29ced95fc9f8b98f77560d9afdbd999510dd497
[ "MIT" ]
13
2017-02-16T20:45:25.000Z
2020-09-23T21:40:57.000Z
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. # Household tables FieldTable(['rural population'], universe='Population', table_per_level=False) FieldTable(['area', 'sex'], universe='Population', table_per_level=False) FieldTable(['census_year', 'measure'], universe='A2-Decadal Variation', table_per_level=False) FieldTable(['census_year', 'sex_vis'], universe='VISUAL', table_per_level=False) FieldTable(['area', 'sex', 'literacy'], universe='Population', table_per_level=False) FieldTable(['area','village_town_comparison'], universe='A3APPENDIX', table_per_level=False) FieldTable(['religion', 'area', 'sex'], universe='Religion', table_per_level=False) FieldTable(['age', 'area', 'sex'], universe='Age', table_per_level=False) FieldTable(['village_town_measures','area'], universe='A1-', table_per_level=False) FieldTable(['education', 'area', 'sex'], universe='Education', table_per_level=False) FieldTable(['houseless_population','area', 'sex'], universe='A7-Houseless', table_per_level=False) FieldTable(['sc_houseless_population','area', 'sex'], universe='A8-SC_Houseless', table_per_level=False) FieldTable(['st_houseless_population','area', 'sex'], universe='A9-ST_Houseless', table_per_level=False) FieldTable(['village_measures','population_range'], universe='A3-Inhabited Villages', table_per_level=False) FieldTable(['maritalstatus', 'area', 'sex'], universe='Relation', table_per_level=False) FieldTable(['workertype','age_group','area','sex'], universe='B1-Workerstype', table_per_level=False) FieldTable(['sc_workertype','age_group','area','sex'], universe='B1SC-Workerstype', table_per_level=False) FieldTable(['st_workertype','age_group','area','sex'], universe='B1ST-Workerstype', table_per_level=False) FieldTable(['workers', 'area', 'workerssex'], universe='Workers', table_per_level=False) FieldTable(['workertype','education_level', 'area', 'sex'], universe='B3', table_per_level=False) FieldTable(['education_level', 'area', 'sex_vis'], universe='VISUAL', table_per_level=False) FieldTable(['sc_workertype','education_level', 'area', 'sex'], universe='B3SC', table_per_level=False) FieldTable(['st_workertype','education_level', 'area', 'sex'], universe='B3ST', table_per_level=False) FieldTable(['nonworkertype', 'age_group','area','sex'], universe='B13', table_per_level=False) FieldTable(['nonworkertype_vis', 'age_group','area','sex'], universe='VISUAL', table_per_level=False) FieldTable(['sc_nonworkertype', 'age_group','area','sex'], universe='B13SC', table_per_level=False) FieldTable(['st_nonworkertype', 'age_group','area','sex'], universe='B13ST', table_per_level=False) FieldTable(['religion','nonworkertype','age_group','area', 'sex'], universe='B14', table_per_level=False) FieldTable(['religion','area', 'sex'], universe='C1', table_per_level=False) FieldTable(['religious_community','area', 'sex'], universe='C1APPENDIX', table_per_level=False) FieldTable(['age_group','marital_status','area', 'sex'], universe='C2', table_per_level=False) FieldTable(['religion','marital_status','area', 'sex'], universe='C3', table_per_level=False) FieldTable(['mother_tongue_vis','area', 'sex'], universe='VISUAL', table_per_level=False) FieldTable(['disability','age_group','area', 'sex'], universe='c20', table_per_level=False) FieldTable(['mother_tongue','area', 'sex'], universe='c16', table_per_level=False) FieldTable(['educational_institution','age','area', 'sex'], universe='c10', table_per_level=False) FieldTable(['sc_educational_institution','age','area', 'sex'], universe='c10sc', table_per_level=False) FieldTable(['st_educational_institution','age','area', 'sex'], universe='c10st', table_per_level=False) FieldTable(['economic_activity','age','area', 'sex'], universe='c12', table_per_level=False) FieldTable(['marriage_duration','age','area', 'sex'], universe='c4', table_per_level=False) FieldTable(['parity','age','area'], universe='F1', table_per_level=False) FieldTable(['sc_parity','age','area'], universe='F1sc', table_per_level=False) FieldTable(['st_parity','age','area'], universe='F1st', table_per_level=False) FieldTable(['parity_vis','age','area'], universe='VISUAL', table_per_level=False) FieldTable(['surviving_children','age','area'], universe='F5', table_per_level=False) FieldTable(['sc_surviving_children','age','area'], universe='F5SC', table_per_level=False) FieldTable(['st_surviving_children','age','area'], universe='F5ST', table_per_level=False) FieldTable(['household_size','area'], universe='HH1', table_per_level=False) FieldTable(['household_size_vis','area'], universe='VISUAL', table_per_level=False) FieldTable(['sc_household_size','area'], universe='HH1SC', table_per_level=False) FieldTable(['st_household_size','area'], universe='HH1ST', table_per_level=False) FieldTable(['household_workers','workers_in_household','area'], universe='HH11', table_per_level=False) FieldTable(['household_size','available_for_work','area'], universe='HH12', table_per_level=False) FieldTable(['sevenyearsandabove','literates_in_household','area'], universe='HH08', table_per_level=False) FieldTable(['age','area', 'head','household_marital_status'], universe='HH06', table_per_level=False) FieldTable(['houseless_households','area'], universe='HH02', table_per_level=False) FieldTable(['households_size','aged_persons','area'], universe='HH05', table_per_level=False)
66.679012
108
0.755601
0
0
0
0
0
0
0
0
2,377
0.440104
19d4df790639614b567c8829dbce219210c26642
585
py
Python
src/weekly-reset.py
SlimeeGameS/VirginityBot
a1745893f21a16112bbf775fb2aff199c14dbbbb
[ "CC0-1.0" ]
null
null
null
src/weekly-reset.py
SlimeeGameS/VirginityBot
a1745893f21a16112bbf775fb2aff199c14dbbbb
[ "CC0-1.0" ]
14
2020-03-26T01:02:31.000Z
2021-03-24T23:48:44.000Z
src/weekly-reset.py
SlimeeGameS/VirginityBot
a1745893f21a16112bbf775fb2aff199c14dbbbb
[ "CC0-1.0" ]
2
2020-08-09T19:08:41.000Z
2021-05-12T17:44:28.000Z
import os import asyncio import logging from pony.orm import * import logger from database import start_orm, get_biggest_virgin, Guild, Virgin logger = logging.getLogger('virginity-bot') async def reset_weekly_virginity(): with db_session: virgins = Virgin.select() for virgin in virgins: virgin.total_vc_time = 0 virgin.virginity_score = 0 commit() async def main(): logger.info('Running weekly reset') start_orm() await reset_weekly_virginity() if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
18.870968
65
0.729915
0
0
0
0
0
0
292
0.499145
47
0.080342
19d525875da360fb20fb2929a08fff78176398d0
1,165
py
Python
hardhat/recipes/racket.py
stangelandcl/hardhat
1ad0c5dec16728c0243023acb9594f435ef18f9c
[ "MIT" ]
null
null
null
hardhat/recipes/racket.py
stangelandcl/hardhat
1ad0c5dec16728c0243023acb9594f435ef18f9c
[ "MIT" ]
null
null
null
hardhat/recipes/racket.py
stangelandcl/hardhat
1ad0c5dec16728c0243023acb9594f435ef18f9c
[ "MIT" ]
null
null
null
import os import shutil from .base import GnuRecipe class RacketRecipe(GnuRecipe): def __init__(self, *args, **kwargs): super(RacketRecipe, self).__init__(*args, **kwargs) self.sha256 = 'bf2bce50b02c626666a8d2093638893e' \ '8beb8b2a19cdd43efa151a686c88edcf' self.depends = ['libffi'] self.name = 'racket' self.version = '6.6' self.url = 'http://mirror.racket-lang.org/installers/$version/' \ 'racket-$version-src.tgz' self.configure_args = self.shell_args + [ '../src/configure', '--prefix=%s' % self.prefix_dir] # -O3 generates SIGSEGVs self.environment['CFLAGS'] = '-O2' self.environment['CXXFLAGS'] = '-O2' def patch(self): self.directory = os.path.join(self.directory, 'build') os.makedirs(self.directory) def clean(self): super(RacketRecipe, self).clean() dirs = ['include', 'etc', 'share/doc', 'share', 'lib'] for dir in dirs: d = os.path.join(self.prefix_dir, dir, 'racket') if os.path.exists(d): shutil.rmtree(d)
31.486486
73
0.572532
1,110
0.95279
0
0
0
0
0
0
301
0.258369
19d5619a8ce652fe7933c1843f9585227eb325de
3,257
py
Python
lichess-gist.py
swimmy4days/lichess-gist
b70e605345f789e032291253df506384ccbaa270
[ "MIT" ]
null
null
null
lichess-gist.py
swimmy4days/lichess-gist
b70e605345f789e032291253df506384ccbaa270
[ "MIT" ]
null
null
null
lichess-gist.py
swimmy4days/lichess-gist
b70e605345f789e032291253df506384ccbaa270
[ "MIT" ]
null
null
null
import os import sys import berserk from github import Github, InputFileContent, Gist SEPARATOR = "." PADDING = {"puzzle": 0, "crazyhouse": 0, "chess960": 0, "kingOfTheHill": 0, "threeCheck": 2, "antichess": 0, "atomic": 0, "horde": 0, "racingKings": 0, "ultraBullet": 0, "blitz": 1, "classical": 1, "rapid": 0, "bullet": 0, "correspondence": 3} emojis = {"puzzle": "🧩", "crazyhouse": "🤪", "chess960": "9️⃣6️⃣0️⃣", "kingOfTheHill": "👑", "threeCheck": "3️⃣", "antichess": "", "atomic": "⚛", "horde": "🐎", "racingKings": "🏁", "ultraBullet": "🚅", "blitz": "⚡", "classical": "🏛", "rapid": "⏰", "bullet": "🚂", "correspondence": "🤼‍♂️"} ENV_VAR_GIST_ID = "GIST_ID" ENV_VAR_GITHUB_TOKEN = "GH_TOKEN" ENV_VAR_LICHESS_USERNAME = "LICHESS_USERNAME" REQUIRED_ENVS = [ ENV_VAR_GIST_ID, ENV_VAR_GITHUB_TOKEN, ENV_VAR_LICHESS_USERNAME ] def check_vars() -> bool: env_vars_absent = [ env for env in REQUIRED_ENVS if env not in os.environ or len(os.environ[env]) == 0 ] if env_vars_absent: print( f"Please define {env_vars_absent} in your github secrets. Aborting...") return False return True def init() -> tuple: gh_gist = Github(ENV_VAR_GITHUB_TOKEN).get_gist(ENV_VAR_GIST_ID) lichess_acc = berserk.Client().users.get_public_data(ENV_VAR_LICHESS_USERNAME) return (gh_gist, lichess_acc) def get_rating(acc: dict) -> list: ratings = [] for key in acc['perfs'].keys(): prov = '?' try: acc['perfs'][key]['prov'] except KeyError: prov = "" ratings.append((key, acc['perfs'][key]['rating'], prov, acc['perfs'][key]['games'])) ratings.sort(key=lambda k: k[1], reverse=True) return ratings def fromated_line(variant: str, games: str, rating_prov: str, max_line_length: int) -> str: separation = max_line_length - ( len(variant) + len(games) + len(rating_prov) + 4 # emojis and brackets ) separator = f" {SEPARATOR * separation} " return variant + f"({games})" + separator + rating_prov def update_gist(gist: Gist, text: str) -> bool: gist.edit(description="", files={list(gist.files.keys())[0]: InputFileContent(content=text)}) def main(): if not check_vars(): return global ENV_VAR_GIST_ID, ENV_VAR_GITHUB_TOKEN, ENV_VAR_LICHESS_USERNAME ENV_VAR_GIST_ID = os.environ[ENV_VAR_GIST_ID] ENV_VAR_GITHUB_TOKEN = os.environ[ENV_VAR_GITHUB_TOKEN] ENV_VAR_LICHESS_USERNAME = os.environ[ENV_VAR_LICHESS_USERNAME] gist, lichess_acc = init() rating = get_rating(lichess_acc) content = [fromated_line((emojis[line[0]] + line[0]), str(line[3]), str(line[1]) + line[2] + " 📈", 52 + PADDING[line[0]]) for line in rating] print("\n".join(content)) update_gist(gist, "\n".join(content)) if __name__ == "__main__": # test with python lichess-gist.py test <gist> <github-token> <user> if len(sys.argv) > 1: os.environ[ENV_VAR_GIST_ID] = sys.argv[2] os.environ[ENV_VAR_GITHUB_TOKEN] = sys.argv[3] os.environ[ENV_VAR_LICHESS_USERNAME] = sys.argv[4] main() # %%
31.317308
118
0.612834
0
0
0
0
0
0
0
0
753
0.227149
19d5e02630a84a1866bbfe9f9deb571cc98a96cc
951
py
Python
alembic/versions/60c735df8d2f_.py
brouberol/grand-cedre
05f18d1f8b7253ffa7fb5b33b30ceadcc93c4e93
[ "BSD-3-Clause" ]
null
null
null
alembic/versions/60c735df8d2f_.py
brouberol/grand-cedre
05f18d1f8b7253ffa7fb5b33b30ceadcc93c4e93
[ "BSD-3-Clause" ]
22
2019-09-03T20:08:42.000Z
2022-03-11T23:58:02.000Z
alembic/versions/60c735df8d2f_.py
brouberol/grand-cedre
05f18d1f8b7253ffa7fb5b33b30ceadcc93c4e93
[ "BSD-3-Clause" ]
null
null
null
"""empty message Revision ID: 60c735df8d2f Revises: 88bb7e12da60 Create Date: 2019-09-06 08:27:03.082097 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "60c735df8d2f" down_revision = "88bb7e12da60" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column("invoices", sa.Column("payed_at", sa.Date(), nullable=True)) op.add_column("invoices", sa.Column("check_number", sa.String(), nullable=True)) op.add_column( "invoices", sa.Column("wire_transfer_number", sa.String(), nullable=True) ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column("invoices", "wire_transfer_number") op.drop_column("invoices", "check_number") op.drop_column("invoices", "payed_at") # ### end Alembic commands ###
27.171429
84
0.690852
0
0
0
0
0
0
0
0
512
0.538381
19d5e29e652c7abc55afdd0fed0c5112571018a1
3,640
py
Python
python/genre_classifier.py
nscharrenberg/Aliran
628de0476b8f8b413a6fdddf5392c590e8b27654
[ "MIT" ]
null
null
null
python/genre_classifier.py
nscharrenberg/Aliran
628de0476b8f8b413a6fdddf5392c590e8b27654
[ "MIT" ]
null
null
null
python/genre_classifier.py
nscharrenberg/Aliran
628de0476b8f8b413a6fdddf5392c590e8b27654
[ "MIT" ]
null
null
null
import scipy.io.wavfile as wav import numpy as np import os import pickle import random import operator from python_speech_features import mfcc dataset = [] training_set = [] test_set = [] # Get the distance between feature vectors def distance(instance1, instance2, k): mm1 = instance1[0] cm1 = instance1[1] mm2 = instance2[0] cm2 = instance2[1] dist = np.trace(np.dot(np.linalg.inv(cm2), cm1)) dist += (np.dot(np.dot((mm2 - mm1).transpose(), np.linalg.inv(cm2)), mm2 - mm1)) dist += np.log(np.linalg.det(cm2)) - np.log(np.linalg.det(cm1)) dist -= k return dist # Find Neighbors def get_neighbors(training_dataset, instance, k): distances = [] for i in range(len(training_dataset)): dist = distance(training_dataset[i], instance, k) + distance(instance, training_dataset[i], k) distances.append((training_dataset[i][2], dist)) distances.sort(key=operator.itemgetter(1)) neighbors = [] for i in range(k): neighbors.append(distances[i][0]) return neighbors # Identify the Nearest Neighbor (Genres) def nearest_genre(neighbors): class_vote = {} for i in range(len(neighbors)): res = neighbors[i] if res in class_vote: class_vote[res] += 1 else: class_vote[res] = 1 sorted_vote = sorted(class_vote.items(), key=operator.itemgetter(1), reverse=True) return sorted_vote[0][0] # Model Evaluation to get the accuracy def get_accuracy(temp_test_set, temp_predictions): correct = 0 for i in range(len(temp_test_set)): if temp_test_set[i][-1] == temp_predictions[i]: correct += 1 return 1.0 * correct / len(temp_test_set) # Extract features from the audio files and store them in a model file def extract_features(filename): directory = "Data/genres_original/" f = open(filename, "wb") it = 0 for tempDir in os.listdir(directory): it += 1 if it == 11: break for file in os.listdir(directory + tempDir): try: print(file) (rate, sig) = wav.read(directory + tempDir + "/" + file) mfcc_feat = mfcc(sig, rate, winlen=0.020, appendEnergy=False) covariance = np.cov(np.matrix.transpose(mfcc_feat)) mean_matrix = mfcc_feat.mean(0) feature = (mean_matrix, covariance, it) pickle.dump(feature, f) except EOFError: f.close() f.close() # Load in the Dataset def load_dataset(filename, split, tr_set, te_set): with open(filename, "rb") as f: while True: try: dataset.append(pickle.load(f)) except EOFError: f.close() break for i in range(len(dataset)): if random.random() < split: tr_set.append(dataset[i]) else: te_set.append(dataset[i]) if __name__ == '__main__': print('Starting....') local_filename = "dataset.aliran" extracting = False if extracting: print('Extracting Features...') print('Building Model...') extract_features(local_filename) print('Loading Dataset...') load_dataset(local_filename, 0.66, training_set, test_set) print('Making a prediction...') print('(This may take a few minutes)') predictions = [] for x in range(len(test_set)): predictions.append(nearest_genre(get_neighbors(training_set, test_set[x], 5))) accuracy = get_accuracy(test_set, predictions) print('Prediction Accuracy is:') print(accuracy)
26.376812
102
0.613462
0
0
0
0
0
0
0
0
444
0.121978
19d94ed3daa7c3c452d53a4b890d6a26c3139991
1,653
py
Python
run.py
dkosilov/reconciler_anchor_salesforce
5cf6a8ccaedce84e7dab6c32955c644ede0c6e07
[ "Xnet", "X11" ]
1
2020-09-22T11:49:07.000Z
2020-09-22T11:49:07.000Z
run.py
dkosilov/reconciler_anchor_salesforce
5cf6a8ccaedce84e7dab6c32955c644ede0c6e07
[ "Xnet", "X11" ]
null
null
null
run.py
dkosilov/reconciler_anchor_salesforce
5cf6a8ccaedce84e7dab6c32955c644ede0c6e07
[ "Xnet", "X11" ]
null
null
null
import argparse from libs.data_model import AnchorNorthstarDataframe, SalesForceDataframe, \ AnchorSalesforceAccountsDataframe, AnchorSalesforceContactsDataframe from libs.utils import save_dataframes_to_excel parser = argparse.ArgumentParser(description='Reconcile accounts and contacts between Anchor and Salesforce') parser.add_argument('-a', '--anchor-file', help='Path to Anchor Excel workbook', required=True) parser.add_argument('-n', '--northstar-file', help='Path to Northstar Excel workbook', required=True) parser.add_argument('-s', '--salesforce-file', help='Path to Salesforce Excel workbook', required=True) parser.add_argument('-t', '--account-name-match-ratio-threshold', type=int, help='Account names with specified (or above) similarity ratio will be used for joining Anchor and ' 'Salesforce account data. Number between 0 and 100.', default=75) parser.add_argument('-r', '--result-file', help='Path to result Excel workbook. The file will have 2 spreadsheets for accounts and ' 'contacts reconciliation', required=True) args = parser.parse_args() anchor_ns = AnchorNorthstarDataframe(args.anchor_file, args.northstar_file) salesforce = SalesForceDataframe(args.salesforce_file) anchor_sf_accounts = AnchorSalesforceAccountsDataframe(anchor_ns, salesforce, args.account_name_match_ratio_threshold) anchor_sf_contacts = AnchorSalesforceContactsDataframe(anchor_ns, salesforce) save_dataframes_to_excel(args.result_file, {'Accounts': anchor_sf_accounts.df, 'Contacts': anchor_sf_contacts.df}, wrap_text=False)
57
120
0.754991
0
0
0
0
0
0
0
0
564
0.341198
19db3143b0967735343ec7fb40012d028a989ea5
1,650
py
Python
billrelease.py
arby36/BillAi
e5c10c35279a1669d218439671e03bc17acb7fdc
[ "MIT" ]
null
null
null
billrelease.py
arby36/BillAi
e5c10c35279a1669d218439671e03bc17acb7fdc
[ "MIT" ]
null
null
null
billrelease.py
arby36/BillAi
e5c10c35279a1669d218439671e03bc17acb7fdc
[ "MIT" ]
null
null
null
def bill(): print("I am bill, please input your name") name = str(raw_input()) print("Hi %s" % name) print("Now input a command") a = raw_input("Command line:") a = a.lower() if a == "": print("You inputed nothing") bill() if a == "help": print("The commands in my database are help, hello, do this * math problem, do this division math problem") bill() if a == "hello": print("Hello %s!" % name) bill() if a == "do this * math problem": print("Type no. 1") b = int(raw_input("Please type an integer")) print("Type no. 2") c = int(raw_input("Please type an integer")) print("Computing...") d = b * c print("The answer is %d" % d) bill() if a == "do this division math problem": print("Type no. 1") e = int(raw_input("Please type an integer")) print("Type no. 2") f = int(raw_input("Please type an integer")) print("Computing...") g = e * f print("The answer is %d" % g) bill() if a == "multiply my name": name * 100 bill() if a == "open database": print("Openining database") bill_database() else: print("That command is not in my database") def bill_database(): print("Welcome to the bill Profile database, input your first name (Sorry, this command has been discontinued in the release version.") a = str(raw_input("Enter Here:")) a = a.lower() print("Information for %s" % a) a = a.lower() bill() bill()
27.966102
139
0.527273
0
0
0
0
0
0
0
0
738
0.447273
19ddf831a5a3b46c86717f74ec094bf9d7bcc0cd
757
py
Python
homeworks/hw05/tests/q3b1.py
cwakamiya/ieor135
084490380f265225927d11b43d948c1206b0aab8
[ "Apache-2.0" ]
28
2020-06-15T23:53:36.000Z
2022-03-19T09:27:02.000Z
homeworks/hw05/tests/q3b1.py
cwakamiya/ieor135
084490380f265225927d11b43d948c1206b0aab8
[ "Apache-2.0" ]
4
2020-06-24T22:20:31.000Z
2022-02-28T01:37:36.000Z
homeworks/hw05/tests/q3b1.py
cwakamiya/ieor135
084490380f265225927d11b43d948c1206b0aab8
[ "Apache-2.0" ]
78
2020-06-19T09:41:01.000Z
2022-02-05T00:13:29.000Z
test = { 'name': 'q3b1', 'points': 2, 'suites': [ { 'cases': [ { 'code': '>>> 4 <= ' "sum(list(X1.describe().loc['mean'])) " '<= 9\n' 'True', 'hidden': False, 'locked': False}, { 'code': '>>> len(X1) == 768\nTrue', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
47.3125
86
0.211361
0
0
0
0
0
0
0
0
213
0.281374
19e32a5576ac8d30a109ed4090fee43e0912beb9
3,050
py
Python
scanpy/api/__init__.py
gioelelm/scanpy
97391a0e7908b9644b2d6640c8e26d37bdc7811e
[ "BSD-3-Clause" ]
null
null
null
scanpy/api/__init__.py
gioelelm/scanpy
97391a0e7908b9644b2d6640c8e26d37bdc7811e
[ "BSD-3-Clause" ]
null
null
null
scanpy/api/__init__.py
gioelelm/scanpy
97391a0e7908b9644b2d6640c8e26d37bdc7811e
[ "BSD-3-Clause" ]
1
2019-02-18T07:39:59.000Z
2019-02-18T07:39:59.000Z
"""Scanpy's high-level API provides an overview of all features relevant to pratical use:: import scanpy.api as sc .. raw:: html <h3>Preprocessing tools</h3> Filtering of highly-variable genes, batch-effect correction, per-cell (UMI) normalization, preprocessing recipes. .. raw:: html <h4>Basic Preprocessing</h4> .. autosummary:: :toctree: . pp.filter_cells pp.filter_genes pp.filter_genes_dispersion pp.log1p pp.pca pp.normalize_per_cell pp.regress_out pp.scale pp.subsample .. raw:: html <h4>Recipes</h4> .. autosummary:: :toctree: . pp.recipe_zheng17 pp.recipe_weinreb16 .. raw:: html <h3>Machine Learning and Statistics tools<h3> .. raw:: html <h4>Visualization</h4> .. autosummary:: :toctree: . tl.pca tl.tsne tl.diffmap tl.draw_graph .. raw:: html <h4>Branching trajectories and pseudotime, clustering, differential expression</h4> .. autosummary:: :toctree: . tl.aga tl.louvain tl.dpt tl.rank_genes_groups .. raw:: html <h4>Simulations</h4> .. autosummary:: :toctree: . tl.sim .. raw:: html <h3>Generic methods</h3> .. raw:: html <h4>Reading and Writing</h4> .. autosummary:: :toctree: . read write read_10x_h5 .. raw:: html <h4>Data Structures</h4> .. autosummary:: :toctree: . AnnData DataGraph .. raw:: html <h3>Plotting</h3> .. raw:: html <h4>Generic plotting with AnnData</h4> .. autosummary:: :toctree: . pl.scatter pl.violin pl.ranking .. raw:: html <h4>Plotting tool results</h4> Methods that extract and visualize tool-specific annotation in an AnnData object. .. raw:: html <h5>Visualization</h5> .. autosummary:: :toctree: . pl.pca pl.pca_loadings pl.pca_scatter pl.pca_variance_ratio pl.tsne pl.diffmap pl.draw_graph .. raw:: html <h5>Branching trajectories and pseudotime, clustering, differential expression</h5> .. autosummary:: :toctree: . pl.aga pl.aga_graph pl.aga_path pl.louvain pl.dpt pl.dpt_scatter pl.dpt_groups_pseudotime pl.dpt_timeseries pl.rank_genes_groups pl.rank_genes_groups_violin .. raw:: html <h5>Simulations</h5> .. autosummary:: :toctree: . pl.sim .. raw:: html <h4>Builtin datasets</h4> Simple functions that provide annotated datasets for benchmarking. See `here <https://scanpy.readthedocs.io/en/latest/examples.html>`_ for extensive documented tutorials and use cases. All of these functions return an Annotated Data object. .. autosummary:: :toctree: . datasets.paul15 datasets.toggleswitch datasets.krumsiek11 datasets.blobs datasets.moignard15 """ from .. import __version__ from .. import settings from .. import logging from . import tl tools = tl from . import pl plotting = pl from . import pp preprocessing = pp from ..readwrite import read, read_10x_h5, write, read_params, write_params from . import datasets from ..data_structs import AnnData, DataGraph from .. import utils
14.95098
113
0.679016
0
0
0
0
0
0
0
0
2,712
0.88918
19e36b29ee592d089dc07f0b81f9a1312e103cce
34,894
py
Python
sw/EdgeBERT/transformers/src/transformers/modeling_highway_albert.py
yihuajack/EdgeBERT
a51ae7557187e3251f4b11bc13ef9cbd336019ff
[ "Apache-2.0" ]
8
2021-11-01T01:38:04.000Z
2022-03-20T16:03:39.000Z
sw/EdgeBERT/transformers/src/transformers/modeling_highway_albert.py
yihuajack/EdgeBERT
a51ae7557187e3251f4b11bc13ef9cbd336019ff
[ "Apache-2.0" ]
1
2021-11-19T08:04:02.000Z
2021-12-19T07:21:48.000Z
sw/EdgeBERT/transformers/src/transformers/modeling_highway_albert.py
yihuajack/EdgeBERT
a51ae7557187e3251f4b11bc13ef9cbd336019ff
[ "Apache-2.0" ]
5
2021-11-19T07:52:44.000Z
2022-02-10T08:23:19.000Z
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from .modeling_albert import AlbertPreTrainedModel, AlbertLayerNorm, AlbertLayerGroup from .modeling_bert import BertEmbeddings from .modeling_highway_bert import BertPooler import numpy as np def entropy(x): # x: torch.Tensor, logits BEFORE softmax exp_x = torch.exp(x) A = torch.sum(exp_x, dim=1) # sum of exp(x_i) B = torch.sum(x*exp_x, dim=1) # sum of x_i * exp(x_i) return torch.log(A) - B/A class AlbertEmbeddings(BertEmbeddings): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): #super(AlbertEmbeddings, self).__init__() super().__init__(config) #self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) #self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) #self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file #self.LayerNorm = AlbertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.LayerNorm = AlbertLayerNorm(config.embedding_size, eps=config.layer_norm_eps) #self.dropout = nn.Dropout(config.hidden_dropout_prob) #def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): # if input_ids is not None: # input_shape = input_ids.size() # else: # input_shape = inputs_embeds.size()[:-1] # # seq_length = input_shape[1] # device = input_ids.device if input_ids is not None else inputs_embeds.device # if position_ids is None: # position_ids = torch.arange(seq_length, dtype=torch.long, device=device) # position_ids = position_ids.unsqueeze(0).expand(input_shape) # if token_type_ids is None: # token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # # if inputs_embeds is None: # inputs_embeds = self.word_embeddings(input_ids) # position_embeddings = self.position_embeddings(position_ids) # token_type_embeddings = self.token_type_embeddings(token_type_ids) # # embeddings = inputs_embeds + position_embeddings + token_type_embeddings # embeddings = self.LayerNorm(embeddings) # #embeddings = self.dropout(embeddings) # return embeddings class AlbertTransformer(nn.Module): def __init__(self, config, params): super().__init__() self.config = config self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size) self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config, params) for _ in range(config.num_hidden_groups)]) self.entropy_predictor = config.entropy_predictor if config.entropy_predictor: self.lookup_table = np.loadtxt(config.lookup_table_file, delimiter=",") self.predict_layer = config.predict_layer self.predict_average_layers = config.predict_average_layers self.extra_layer=config.extra_layer self.get_predict_acc=config.get_predict_acc self.no_ee_before=config.no_ee_before #self.layer = nn.ModuleList([AlbertLayer(config) for _ in range(config.num_hidden_layers)]) ### try grouping for efficiency if config.one_class: self.highway = nn.ModuleList([AlbertHighway(config) for _ in range(config.num_hidden_groups)]) self.early_exit_entropy = [-1 for _ in range(config.num_hidden_groups)] else: self.highway = nn.ModuleList([AlbertHighway(config) for _ in range(config.num_hidden_layers)]) self.early_exit_entropy = [-1 for _ in range(config.num_hidden_layers)] def set_early_exit_entropy(self, x): print(x) if (type(x) is float) or (type(x) is int): for i in range(len(self.early_exit_entropy)): self.early_exit_entropy[i] = x else: self.early_exit_entropy = x def init_highway_pooler(self, pooler): loaded_model = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name]) def forward(self, hidden_states, attention_mask=None, head_mask=None): hidden_states = self.embedding_hidden_mapping_in(hidden_states) all_attentions = () all_highway_exits = () #if self.output_hidden_states: # all_hidden_states = (hidden_states,) #for i,layer_module in enumerate(self.albert_layer_groups): #for i, layer_module in enumerate(self.layer): for i in range(self.config.num_hidden_layers): # Number of layers in a hidden group layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) # Index of the hidden group group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups)) layer_group_output = self.albert_layer_groups[group_idx]( hidden_states, attention_mask, head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group], ) hidden_states = layer_group_output[0] #stopped here if self.output_attentions: all_attentions = all_attentions + layer_group_output[-1] #added this section current_outputs = (hidden_states,) if self.output_hidden_states: current_outputs = current_outputs + (all_hidden_states,) if self.output_attentions: current_outputs = current_outputs + (all_attentions,) if self.config.one_class: highway_exit = self.highway[group_idx](current_outputs) else: highway_exit = self.highway[i](current_outputs) #added this section if not self.training: highway_logits = highway_exit[0] highway_entropy = entropy(highway_logits) highway_exit = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy all_highway_exits = all_highway_exits + (highway_exit,) if self.config.one_class: ent_ = self.early_exit_entropy[group_idx] else: ent_ = self.early_exit_entropy[i] if not self.entropy_predictor: if highway_entropy < ent_: new_output = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(new_output, i+1) elif (self.get_predict_acc): if i==0: count = 0 check_ee = 0 if self.predict_layer-1 == i: if self.predict_average_layers: if i == 0: hw_ent_temp = highway_entropy.cpu().numpy()[0] else: hw_ent_temp = hw_ent_temp + highway_entropy.cpu().numpy()[0] hw_ent = hw_ent_temp / float((i+1)) else: hw_ent = highway_entropy.cpu().numpy()[0] #hash into lookup table w/ highway_entropy idx = (np.abs(self.lookup_table[:,0] - hw_ent)).argmin() entropy_layers = np.transpose(self.lookup_table[idx,1:]) below_thresh = entropy_layers < ent_ k = np.argmax(below_thresh) # k is number of remaining layers if (np.sum(below_thresh) == 0): #never hit threshold k = entropy_layers.shape[0] - 1 k = k + self.predict_layer count = count + 1 #print(idx) #print(self.lookup_table[idx,:]) #print(k) if ((highway_entropy < ent_) or (i == self.config.num_hidden_layers-1)) and not check_ee: j = i # j is hw exit layer count = count + 1 check_ee = 1 if count == 2: new_output = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) #return abs value of diff between j and k if j>k: raise HighwayException(new_output, (j-k) + 1) else: raise HighwayException(new_output, (k-j) + 1) else: if (i < self.predict_layer - 1): # before predict layer #exit here???? if highway_entropy < ent_: new_output = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(new_output, i+1) if self.predict_average_layers: # predict layer if i == 0: hw_ent_temp = highway_entropy.cpu().numpy()[0] else: hw_ent_temp = hw_ent_temp + highway_entropy.cpu().numpy()[0] if (i == self.predict_layer - 1): # predict layer if highway_entropy < ent_: new_output = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(new_output, i+1) if self.predict_average_layers: if i == 0: hw_ent_temp = highway_entropy.cpu().numpy()[0] else: hw_ent_temp = hw_ent_temp + highway_entropy.cpu().numpy()[0] hw_ent = hw_ent_temp / float((i+1)) else: hw_ent = highway_entropy.cpu().numpy()[0] #hash into lookup table w/ highway_entropy idx = (np.abs(self.lookup_table[:,0] - hw_ent)).argmin() entropy_layers = np.transpose(self.lookup_table[idx,1:]) below_thresh = entropy_layers < ent_ k = np.argmax(below_thresh) # k is number of remaining layers if (np.sum(below_thresh) == 0): #never hit threshold k = entropy_layers.shape[0] - 1 # other layers (count down and then trigger highway exit if layer < self.num_hidden_layers) elif ((i >= self.predict_layer) and (i < self.config.num_hidden_layers - 2)): if (self.extra_layer): if k == 0: if highway_entropy < ent_: new_output = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(new_output, i+1) elif k==-1: new_output = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(new_output, i+1) else: if (not self.no_ee_before): if highway_entropy < ent_: new_output = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(new_output, i+1) if k == 0: #exit after counting down layers (CHECK CORRECT # OF LAYERS) new_output = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(new_output, i+1) k = k - 1 else: all_highway_exits = all_highway_exits + (highway_exit,) #use this???? # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) outputs = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions) class AlbertModel(AlbertPreTrainedModel): def __init__(self, config, params): super().__init__(config, params) self.config = config self.embeddings = AlbertEmbeddings(config) self.embeddings.requires_grad_(requires_grad=False) self.encoder = AlbertTransformer(config, params) self.pooler = nn.Linear(config.hidden_size, config.hidden_size) self.pooler_activation = nn.Tanh() self.init_weights() def init_highway_pooler(self): self.encoder.init_highway_pooler(self.pooler) def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers. These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer, while [2,3] correspond to the two inner groups of the second hidden layer. Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more information about head pruning """ for layer, heads in heads_to_prune.items(): group_idx = int(layer / self.config.inner_group_num) inner_group_idx = int(layer - group_idx * self.config.inner_group_num) self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads) #@add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, ): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Example:: from transformers import AlbertModel, AlbertTokenizer import torch tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertModel.from_pretrained('albert-base-v2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = ( head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) ) # We can specify head_mask for each layer head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) #CHECK THIS encoder_outputs = self.encoder(embedding_output, extended_attention_mask, head_mask=head_mask) sequence_output = encoder_outputs[0] pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) outputs = (sequence_output, pooled_output) + encoder_outputs[1:] # add hidden_states and attentions if they are here return outputs class HighwayException(Exception): def __init__(self, message, exit_layer): self.message = message self.exit_layer = exit_layer # start from 1! class AlbertHighway(nn.Module): r"""A module to provide a shortcut from the output of one non-final BertLayer in BertEncoder to cross-entropy computation in BertForSequenceClassification """ def __init__(self, config): #super().__init__(config) ### super(AlbertHighway, self).__init__() self.pooler = nn.Linear(config.hidden_size, config.hidden_size) self.pooler_activation = nn.Tanh() ## # self.pooler = BertPooler(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) def forward(self, encoder_outputs): # Pooler pooler_input = encoder_outputs[0] # pooler_output = self.pooler(pooler_input) # "return" pooler_output #adding here: pooler_input = self.pooler(pooler_input[:,0]) pooler_output = self.pooler_activation(pooler_input) # BertModel bmodel_output = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bodel_output # Dropout and classification pooled_output = bmodel_output[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) return logits, pooled_output class AlbertForSequenceClassification(AlbertPreTrainedModel): def __init__(self, config, params): super().__init__(config, params) self.num_labels = config.num_labels self.num_layers = config.num_hidden_layers self.albert = AlbertModel(config, params) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.init_weights() #@add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_layer=-1, train_highway=False ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification (or regression if config.num_labels==1) loss. logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import AlbertTokenizer, AlbertForSequenceClassification import torch tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertForSequenceClassification.from_pretrained('albert-base-v2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ exit_layer = self.num_layers try: outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: outputs = e.message exit_layer = e.exit_layer logits = outputs[0] if not self.training: original_entropy = entropy(logits) highway_entropy = [] highway_logits_all = [] if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) # work with highway exits highway_losses = [] for highway_exit in outputs[-1]: highway_logits = highway_exit[0] if not self.training: highway_logits_all.append(highway_logits) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() highway_loss = loss_fct(highway_logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() highway_loss = loss_fct(highway_logits.view(-1, self.num_labels), labels.view(-1)) highway_losses.append(highway_loss) if train_highway: outputs = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: outputs = (loss,) + outputs if not self.training: outputs = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: outputs = (outputs[0],) +\ (highway_logits_all[output_layer],) +\ outputs[2:] ## use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions) class AlbertForQuestionAnswering(AlbertPreTrainedModel): def __init__(self, config, params): super().__init__(config) self.num_labels = config.num_labels self.num_layers = config.num_hidden_layers #self.albert = AlbertModel(config) self.albert = AlbertModel(config, params) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() # @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_layer=-1, train_highway=False ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_scores ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-start scores (before SoftMax). end_scores: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-end scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: # The checkpoint albert-base-v2 is not fine-tuned for question answering. Please see the # examples/run_squad.py example to see how to fine-tune a model to a question answering task. from transformers import AlbertTokenizer, AlbertForQuestionAnswering import torch tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertForQuestionAnswering.from_pretrained('albert-base-v2') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" input_dict = tokenizer.encode_plus(question, text, return_tensors='pt') start_scores, end_scores = model(**input_dict) """ exit_layer = self.num_layers try: outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) outputs = (start_logits, end_logits,) + outputs[2:] except HighwayException as e: outputs = e.message exit_layer = e.exit_layer start_logits = outputs[0] end_logits = outputs[1] if not self.training: # original_start_entropy = entropy(start_logits) # original_end_entropy = entropy(end_logits) original_entropy = entropy(logits) highway_entropy = [] # highway_start_logits_all = [] # highway_end_logits_all = [] highway_logits_all = [] if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 # outputs = (total_loss,) + outputs # work with highway exits highway_losses = [] for highway_exit in outputs[-1]: highway_logits = highway_exit[0] highway_start_logits, highway_end_logits = highway_logits.split(1, dim=-1) highway_start_logits = highway_start_logits.squeeze(-1) highway_end_logits = highway_end_logits.squeeze(-1) if not self.training: highway_logits_all.append(highway_logits) highway_entropy.append(highway_exit[1]) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(highway_start_logits, start_positions) end_loss = loss_fct(highway_end_logits, end_positions) highway_loss = (start_loss + end_loss) / 2 highway_losses.append(highway_loss) if train_highway: outputs = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: outputs = (total_loss,) + outputs if not self.training: outputs = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: outputs = (outputs[0],) +\ (highway_logits_all[output_layer],) +\ outputs[2:] ## use the highway of the last layer return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
46.963661
148
0.611366
34,370
0.984983
0
0
0
0
0
0
12,966
0.371583
19e3c7e8cb0d8e13048dc4a21c8f8d2b1867724a
1,809
py
Python
tests/test_sar.py
chris-angeli-rft/cloud-custodian
5ff331b114a591dbaf6d672e30ceefb7ae64a5dd
[ "Apache-2.0" ]
8
2021-05-18T02:22:03.000Z
2021-09-11T02:49:04.000Z
tests/test_sar.py
chris-angeli-rft/cloud-custodian
5ff331b114a591dbaf6d672e30ceefb7ae64a5dd
[ "Apache-2.0" ]
1
2021-04-26T04:38:35.000Z
2021-04-26T04:38:35.000Z
tests/test_sar.py
chris-angeli-rft/cloud-custodian
5ff331b114a591dbaf6d672e30ceefb7ae64a5dd
[ "Apache-2.0" ]
1
2021-11-10T02:28:47.000Z
2021-11-10T02:28:47.000Z
# Copyright 2020 Kapil Thangavelu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .common import BaseTest class SARTest(BaseTest): def test_query(self): factory = self.replay_flight_data('test_sar_query_app') p = self.load_policy({ 'name': 'test-sar', 'resource': 'aws.serverless-app'}, session_factory=factory) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual(resources[0]['Name'], 'GitterArchive') def test_cross_account(self): factory = self.replay_flight_data('test_sar_cross_account') p = self.load_policy({ 'name': 'test-sar', 'resource': 'aws.serverless-app', 'filters': [{ 'type': 'cross-account', 'whitelist_orgids': ['o-4adkskbcff'] }]}, session_factory=factory) resources = p.run() self.assertEqual(len(resources), 1) self.maxDiff = None self.assertEqual( resources[0]['CrossAccountViolations'], [ {'Actions': ['serverlessrepo:Deploy'], 'Effect': 'Allow', 'Principal': {'AWS': ['112233445566']}, 'StatementId': 'b364d84f-62d2-411c-9787-3636b2b1975c'} ])
35.470588
74
0.616363
1,199
0.662797
0
0
0
0
0
0
934
0.516307
19e3cc99b66e2939b99c81e570efb9afd33fa23d
5,773
py
Python
rovina.py
Pandoro/tools
631c6036cb74dc845668fd912588fd31aae46f8b
[ "MIT" ]
1
2019-04-22T16:38:03.000Z
2019-04-22T16:38:03.000Z
rovina.py
afcarl/tools-Pandoro
631c6036cb74dc845668fd912588fd31aae46f8b
[ "MIT" ]
2
2018-03-13T10:49:48.000Z
2018-03-13T10:54:01.000Z
rovina.py
afcarl/tools-Pandoro
631c6036cb74dc845668fd912588fd31aae46f8b
[ "MIT" ]
2
2018-03-08T19:40:10.000Z
2018-06-11T14:43:49.000Z
import json import os import sys sys.path.append('/usr/lib/python2.7/dist-packages') import cv2 import numpy as np from tqdm import * import dataset_utils class Rovina(object): def __init__(self, config_filename): self.config_filename = config_filename with open(config_filename) as config_file: self.config = json.load(config_file) if self.config['use_relative_paths']: self.root_folder = os.path.dirname(config_filename) else: self.root_folder = '' #Used if we want to use the "flipped" version of the camera 0. self.folder_postfix = self.config['flipped_post_fix'] image_f = self.config['image_folder'] if image_f is not None: image_f += self.folder_postfix self.image_folder = os.path.join(self.root_folder, image_f) self.image_extension = self.config['image_extension'] else: self.image_folder = None obj_label_f = self.config['object_label_folder'] if obj_label_f is not None: obj_label_f += self.folder_postfix self.obj_label_folder = os.path.join(self.root_folder, obj_label_f) self.obj_label_extension = self.config['object_label_extension'] else: self.obj_label_folder = None mat_label_f = self.config['material_label_folder'] if mat_label_f is not None: mat_label_f += self.folder_postfix self.mat_label_folder = os.path.join(self.root_folder, mat_label_f) self.mat_label_extension = self.config['material_label_extension'] else: self.mat_label_folder = None calib_f = self.config.get('calibration_folder') if calib_f is not None: calib_f += self.folder_postfix self.calibration_folder = os.path.join(self.root_folder, calib_f) self.calibration_extension = self.config.get('calibration_extension') else: self.calibration_folder = None depth_f = self.config.get('depth_folder') if depth_f is not None: depth_f += self.folder_postfix self.depth_folder = os.path.join(self.root_folder, depth_f) self.depth_extension = self.config.get('depth_extension') else: self.depth_folder = None self.train_filenames = self.config['train_images'] self.test_filenames = self.config['test_images'] self.dataset = self.config['dataset_name'] self.color_coding = { 'mat' : dataset_utils.LabelConversion(self.config['material_color_coding']), 'obj' : dataset_utils.LabelConversion(self.config['object_color_coding'])} self.class_count = {k : self.color_coding[k].class_count for k in self.color_coding.keys()} self.class_names = {k : self.color_coding[k].class_names for k in self.color_coding.keys()} def label_to_rgb(self, image, type): return self.color_coding[type].label_to_rgb(image) def rgb_to_label(self, image, type): return self.color_coding[type].rgb_to_label(image) def get_data(self, data_type, color_images=True, mat_label_images=True, obj_label_images=True, calibrations=False, depth=False): file_list = [] for t in data_type: list_type = t + '_images' if list_type in self.config: file_list += self.config[list_type] else: raise Exception('The config does not contain a list for the entry: \'{0}_images\' \nConfig file located at: {1}'.format(t, self.config_filename)) return_list = [] if color_images: images = [] for fn in tqdm(file_list): i_n = os.path.join(self.image_folder, fn+self.image_extension) images.append(self.load_color(i_n)) return_list.append(images) if mat_label_images: mat_labels = [] for fn in tqdm(file_list): mat_l_n = os.path.join(self.mat_label_folder, fn+self.mat_label_extension) mat_labels.append(self.load_labels(mat_l_n, 'mat')) return_list.append(mat_labels) if obj_label_images: obj_labels = [] for fn in tqdm(file_list): obj_l_n = os.path.join(self.obj_label_folder, fn+self.obj_label_extension) obj_labels.append(self.load_labels(obj_l_n, 'obj')) return_list.append(obj_labels) if calibrations: calibration_data = [] for fn in tqdm(file_list): c_n = os.path.join(self.calibration_folder, fn+self.calibration_extension) calibration_data.append(self.load_calibration(c_n)) return_list.append(calibration_data) if depth: depth_data = [] for fn in tqdm(file_list): d_n = os.path.join(self.depth_folder, fn+self.depth_extension) depth_data.append(self.load_depth(d_n)) return_list.append(depth_data) if len(return_list) == 1: return return_list[0] else: return return_list def load_color(self, file_name): return cv2.imread(file_name)[:,:,::-1] # flip bgr to rgb def load_labels(self, file_name, type): rgb = cv2.imread(file_name)[:,:,::-1] return self.rgb_to_label(rgb, type) def load_calibration(self, file_name): with open(file_name) as calib_file: return json.load(calib_file) def load_depth(self, file_name): d = cv2.imread(file_name, cv2.CV_LOAD_IMAGE_UNCHANGED) if d.dtype == np.uint16: d = d.astype(np.float32)/256. return d
37.245161
161
0.625498
5,611
0.971938
0
0
0
0
0
0
562
0.09735
19e85b96640382129fd31d8131a6692e41afddf9
4,952
py
Python
gpgLabs/GPR/GPRlab1.py
victortocantins/gpgLabs
310b69c681dd1ebf91ba8be2b5ac27adf5fc0f12
[ "MIT" ]
null
null
null
gpgLabs/GPR/GPRlab1.py
victortocantins/gpgLabs
310b69c681dd1ebf91ba8be2b5ac27adf5fc0f12
[ "MIT" ]
null
null
null
gpgLabs/GPR/GPRlab1.py
victortocantins/gpgLabs
310b69c681dd1ebf91ba8be2b5ac27adf5fc0f12
[ "MIT" ]
null
null
null
import numpy as np from scipy.constants import mu_0, epsilon_0 import matplotlib.pyplot as plt from PIL import Image import warnings warnings.filterwarnings('ignore') from ipywidgets import interact, interactive, IntSlider, widget, FloatText, FloatSlider, fixed from .Wiggle import wiggle, PrimaryWave, ReflectedWave import requests from io import BytesIO ######################################## # DOWNLOAD FUNCTIONS ######################################## def downloadRadargramImage(URL): urlObj = requests.get(URL) imgcmp = Image.open(BytesIO(urlObj.content)) return imgcmp ######################################## # WIDGETS ######################################## def PrimaryWidget(dataFile,timeFile): i = interact(PrimaryWidgetFcn, epsrL = (1, 10, 1), epsrH = (1, 20, 1), tinterpL = (0, 150, 2), tinterpH = (0, 150, 2), dFile = fixed(dataFile), tFile = fixed(timeFile)) return i def PrimaryFieldWidget(radargramImage): i = interact(PrimaryFieldWidgetFcn, tinterp = (0, 80, 2), epsr = (1, 40, 1), radgramImg = fixed(radargramImage)) return i def PipeWidget(radargramImage): i = interact(PipeWidgetFcn, epsr = (0, 100, 1), h=(0.1, 2.0, 0.1), xc=(0., 40., 0.2), r=(0.1, 3, 0.1), imgcmp=fixed(radargramImage)) return i def WallWidget(radargramImagePath): i = interact(WallWidgetFcn, epsr = (0, 100, 1), h=(0.1, 2.0, 0.1), x1=(1, 35, 1), x2=(20, 40, 1), imgcmp=fixed(radargramImagePath)) return i ######################################## # FUNCTIONS ######################################## def PrimaryWidgetFcn(tinterpL, epsrL, tinterpH, epsrH, dFile, tFile): data = np.load(dFile) time = np.load(tFile) dt = time[1]-time[0] v1 = 1./np.sqrt(epsilon_0*epsrL*mu_0) v2 = 1./np.sqrt(epsilon_0*epsrH*mu_0) dx = 0.3 nano = 1e9 xorig = np.arange(data.shape[0])*dx out1 = PrimaryWave(xorig, v1, tinterpL/nano) out2 = ReflectedWave(xorig, v2, tinterpH/nano) kwargs = { 'skipt':1, 'scale': 0.5, 'lwidth': 0.1, 'dx': dx, 'sampr': dt*nano, } extent = [0., 30, 300, 0] fig, ax1 = plt.subplots(1,1, figsize = (8,5)) ax1.invert_yaxis() ax1.axis(extent) ax1.set_xlabel('Offset (m)') ax1.set_ylabel('Time (ns)') ax1.set_title('Shot Gather') wiggle(data, ax = ax1, **kwargs) ax1.plot(xorig, out1*nano, 'b', lw = 2) ax1.plot(xorig, out2*nano, 'r', lw = 2) plt.show() def PrimaryFieldWidgetFcn(tinterp, epsr, radgramImg): imgcmp = Image.open(radgramImg) fig = plt.figure(figsize = (6,7)) ax = plt.subplot(111) plt.imshow(imgcmp, extent = [0, 150, 150, 0]) x = np.arange(81)*0.1 xconvert = x*150./8. v = 1./np.sqrt(mu_0*epsilon_0*epsr) nano = 1e9 # tinterp = 30 y = (1./v*x)*nano + tinterp plt.plot(xconvert, y, lw = 2) plt.xticks(np.arange(11)*15, np.arange(11)*0.8+2.4) #+2.4 for offset correction plt.xlim(0., 150.) plt.ylim(146.,0.) plt.ylabel('Time (ns)') plt.xlabel('Offset (m)') plt.show() def PipeWidgetFcn(epsr, h, xc, r, imgcmp): # imgcmp = Image.open(dataImage) imgcmp = imgcmp.resize((600, 800)) fig = plt.figure(figsize = (9,11)) ax = plt.subplot(111) plt.imshow(imgcmp, extent = [0, 400, 250, 0]) x = np.arange(41)*1. xconvert = x*10. v = 1./np.sqrt(mu_0*epsilon_0*epsr) nano = 1e9 time = (np.sqrt(((x-xc)**2+4*h**2)) - r)/v plt.plot(xconvert, time*nano, 'r--',lw = 2) plt.xticks(np.arange(11)*40, np.arange(11)*4.0 ) plt.xlim(0., 400) plt.ylim(240., 0.) plt.ylabel('Time (ns)') plt.xlabel('Survey line location (m)') plt.show() def WallWidgetFcn(epsr, h, x1, x2, imgcmp): # imgcmp = Image.open(dataImage) imgcmp = imgcmp.resize((600, 800)) fig = plt.figure(figsize = (9,11)) ax = plt.subplot(111) plt.imshow(imgcmp, extent = [0, 400, 250, 0]) x = np.arange(41)*1. ind1 = x <= x1 ind2 = x >= x2 ind3 = np.logical_not(np.logical_or(ind1, ind2)) scale = 10. xconvert = x*scale v = 1./np.sqrt(mu_0*epsilon_0*epsr) nano = 1e9 def arrival(x, xc, h, v): return (np.sqrt(((x-xc)**2+4*h**2)))/v plt.plot(xconvert[ind1], arrival(x[ind1], x1, h, v)*nano, 'b--',lw = 2) plt.plot(xconvert[ind2], arrival(x[ind2], x2, h, v)*nano, 'b--',lw = 2) plt.plot(np.r_[x1*scale, x2*scale], np.r_[2.*h/v, 2.*h/v]*nano, 'b--',lw = 2) # plt.plot(xconvert[ind3], arrival(x[ind3], xc?, h, v)*nano, 'r--',lw = 2) plt.xticks(np.arange(11)*40, np.arange(11)*4.0 ) plt.xlim(0., 400) plt.ylim(240., 0.) plt.ylabel('Time (ns)') plt.xlabel('Survey line location (m)') plt.show()
24.636816
94
0.544628
0
0
0
0
0
0
0
0
693
0.139943