hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
19ebb2a3f5203d8e575a8e0bab417177a0a48924
5,010
py
Python
third_party/unidecode/x0bd.py
asysc2020/contentbox
5c155976e0ce7ea308d62293ab89624d97b21d09
[ "Apache-2.0" ]
39
2015-06-10T23:18:07.000Z
2021-10-21T04:29:06.000Z
third_party/unidecode/x0bd.py
asysc2020/contentbox
5c155976e0ce7ea308d62293ab89624d97b21d09
[ "Apache-2.0" ]
2
2016-08-22T12:38:10.000Z
2017-01-26T18:37:33.000Z
third_party/unidecode/x0bd.py
asysc2020/contentbox
5c155976e0ce7ea308d62293ab89624d97b21d09
[ "Apache-2.0" ]
26
2015-06-10T22:09:15.000Z
2021-06-27T15:45:15.000Z
data = ( 'bols', # 0x00 'bolt', # 0x01 'bolp', # 0x02 'bolh', # 0x03 'bom', # 0x04 'bob', # 0x05 'bobs', # 0x06 'bos', # 0x07 'boss', # 0x08 'bong', # 0x09 'boj', # 0x0a 'boc', # 0x0b 'bok', # 0x0c 'bot', # 0x0d 'bop', # 0x0e 'boh', # 0x0f 'bwa', # 0x10 'bwag', # 0x11 'bwagg', # 0x12 'bwags', # 0x13 'bwan', # 0x14 'bwanj', # 0x15 'bwanh', # 0x16 'bwad', # 0x17 'bwal', # 0x18 'bwalg', # 0x19 'bwalm', # 0x1a 'bwalb', # 0x1b 'bwals', # 0x1c 'bwalt', # 0x1d 'bwalp', # 0x1e 'bwalh', # 0x1f 'bwam', # 0x20 'bwab', # 0x21 'bwabs', # 0x22 'bwas', # 0x23 'bwass', # 0x24 'bwang', # 0x25 'bwaj', # 0x26 'bwac', # 0x27 'bwak', # 0x28 'bwat', # 0x29 'bwap', # 0x2a 'bwah', # 0x2b 'bwae', # 0x2c 'bwaeg', # 0x2d 'bwaegg', # 0x2e 'bwaegs', # 0x2f 'bwaen', # 0x30 'bwaenj', # 0x31 'bwaenh', # 0x32 'bwaed', # 0x33 'bwael', # 0x34 'bwaelg', # 0x35 'bwaelm', # 0x36 'bwaelb', # 0x37 'bwaels', # 0x38 'bwaelt', # 0x39 'bwaelp', # 0x3a 'bwaelh', # 0x3b 'bwaem', # 0x3c 'bwaeb', # 0x3d 'bwaebs', # 0x3e 'bwaes', # 0x3f 'bwaess', # 0x40 'bwaeng', # 0x41 'bwaej', # 0x42 'bwaec', # 0x43 'bwaek', # 0x44 'bwaet', # 0x45 'bwaep', # 0x46 'bwaeh', # 0x47 'boe', # 0x48 'boeg', # 0x49 'boegg', # 0x4a 'boegs', # 0x4b 'boen', # 0x4c 'boenj', # 0x4d 'boenh', # 0x4e 'boed', # 0x4f 'boel', # 0x50 'boelg', # 0x51 'boelm', # 0x52 'boelb', # 0x53 'boels', # 0x54 'boelt', # 0x55 'boelp', # 0x56 'boelh', # 0x57 'boem', # 0x58 'boeb', # 0x59 'boebs', # 0x5a 'boes', # 0x5b 'boess', # 0x5c 'boeng', # 0x5d 'boej', # 0x5e 'boec', # 0x5f 'boek', # 0x60 'boet', # 0x61 'boep', # 0x62 'boeh', # 0x63 'byo', # 0x64 'byog', # 0x65 'byogg', # 0x66 'byogs', # 0x67 'byon', # 0x68 'byonj', # 0x69 'byonh', # 0x6a 'byod', # 0x6b 'byol', # 0x6c 'byolg', # 0x6d 'byolm', # 0x6e 'byolb', # 0x6f 'byols', # 0x70 'byolt', # 0x71 'byolp', # 0x72 'byolh', # 0x73 'byom', # 0x74 'byob', # 0x75 'byobs', # 0x76 'byos', # 0x77 'byoss', # 0x78 'byong', # 0x79 'byoj', # 0x7a 'byoc', # 0x7b 'byok', # 0x7c 'byot', # 0x7d 'byop', # 0x7e 'byoh', # 0x7f 'bu', # 0x80 'bug', # 0x81 'bugg', # 0x82 'bugs', # 0x83 'bun', # 0x84 'bunj', # 0x85 'bunh', # 0x86 'bud', # 0x87 'bul', # 0x88 'bulg', # 0x89 'bulm', # 0x8a 'bulb', # 0x8b 'buls', # 0x8c 'bult', # 0x8d 'bulp', # 0x8e 'bulh', # 0x8f 'bum', # 0x90 'bub', # 0x91 'bubs', # 0x92 'bus', # 0x93 'buss', # 0x94 'bung', # 0x95 'buj', # 0x96 'buc', # 0x97 'buk', # 0x98 'but', # 0x99 'bup', # 0x9a 'buh', # 0x9b 'bweo', # 0x9c 'bweog', # 0x9d 'bweogg', # 0x9e 'bweogs', # 0x9f 'bweon', # 0xa0 'bweonj', # 0xa1 'bweonh', # 0xa2 'bweod', # 0xa3 'bweol', # 0xa4 'bweolg', # 0xa5 'bweolm', # 0xa6 'bweolb', # 0xa7 'bweols', # 0xa8 'bweolt', # 0xa9 'bweolp', # 0xaa 'bweolh', # 0xab 'bweom', # 0xac 'bweob', # 0xad 'bweobs', # 0xae 'bweos', # 0xaf 'bweoss', # 0xb0 'bweong', # 0xb1 'bweoj', # 0xb2 'bweoc', # 0xb3 'bweok', # 0xb4 'bweot', # 0xb5 'bweop', # 0xb6 'bweoh', # 0xb7 'bwe', # 0xb8 'bweg', # 0xb9 'bwegg', # 0xba 'bwegs', # 0xbb 'bwen', # 0xbc 'bwenj', # 0xbd 'bwenh', # 0xbe 'bwed', # 0xbf 'bwel', # 0xc0 'bwelg', # 0xc1 'bwelm', # 0xc2 'bwelb', # 0xc3 'bwels', # 0xc4 'bwelt', # 0xc5 'bwelp', # 0xc6 'bwelh', # 0xc7 'bwem', # 0xc8 'bweb', # 0xc9 'bwebs', # 0xca 'bwes', # 0xcb 'bwess', # 0xcc 'bweng', # 0xcd 'bwej', # 0xce 'bwec', # 0xcf 'bwek', # 0xd0 'bwet', # 0xd1 'bwep', # 0xd2 'bweh', # 0xd3 'bwi', # 0xd4 'bwig', # 0xd5 'bwigg', # 0xd6 'bwigs', # 0xd7 'bwin', # 0xd8 'bwinj', # 0xd9 'bwinh', # 0xda 'bwid', # 0xdb 'bwil', # 0xdc 'bwilg', # 0xdd 'bwilm', # 0xde 'bwilb', # 0xdf 'bwils', # 0xe0 'bwilt', # 0xe1 'bwilp', # 0xe2 'bwilh', # 0xe3 'bwim', # 0xe4 'bwib', # 0xe5 'bwibs', # 0xe6 'bwis', # 0xe7 'bwiss', # 0xe8 'bwing', # 0xe9 'bwij', # 0xea 'bwic', # 0xeb 'bwik', # 0xec 'bwit', # 0xed 'bwip', # 0xee 'bwih', # 0xef 'byu', # 0xf0 'byug', # 0xf1 'byugg', # 0xf2 'byugs', # 0xf3 'byun', # 0xf4 'byunj', # 0xf5 'byunh', # 0xf6 'byud', # 0xf7 'byul', # 0xf8 'byulg', # 0xf9 'byulm', # 0xfa 'byulb', # 0xfb 'byuls', # 0xfc 'byult', # 0xfd 'byulp', # 0xfe 'byulh', # 0xff )
19.343629
20
0.436128
0
0
0
0
0
0
0
0
3,461
0.690818
19ecf7e3e7e37b889b168edf93836870ccf82afb
55
py
Python
social/backends/azuread.py
raccoongang/python-social-auth
81c0a542d158772bd3486d31834c10af5d5f08b0
[ "BSD-3-Clause" ]
1,987
2015-01-01T16:12:45.000Z
2022-03-29T14:24:25.000Z
social/backends/azuread.py
raccoongang/python-social-auth
81c0a542d158772bd3486d31834c10af5d5f08b0
[ "BSD-3-Clause" ]
731
2015-01-01T22:55:25.000Z
2022-03-10T15:07:51.000Z
virtual/lib/python3.6/site-packages/social/backends/azuread.py
dennismwaniki67/awards
80ed10541f5f751aee5f8285ab1ad54cfecba95f
[ "MIT" ]
1,082
2015-01-01T16:27:26.000Z
2022-03-22T21:18:33.000Z
from social_core.backends.azuread import AzureADOAuth2
27.5
54
0.890909
0
0
0
0
0
0
0
0
0
0
19ed8ee16410261911df594fb0af9ff20f20ca7e
6,556
py
Python
pystitchy/grid.py
iht/Stitchy-Studio
f7faf846d7ce498ef5945caaff2b09f9108e2919
[ "MIT" ]
1
2021-02-28T17:27:16.000Z
2021-02-28T17:27:16.000Z
pystitchy/grid.py
iht/Stitchy-Studio
f7faf846d7ce498ef5945caaff2b09f9108e2919
[ "MIT" ]
null
null
null
pystitchy/grid.py
iht/Stitchy-Studio
f7faf846d7ce498ef5945caaff2b09f9108e2919
[ "MIT" ]
null
null
null
# Copyright (c) 2012 Israel Herraiz <[email protected]> # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import wx import numpy from numpy import zeros class Grid: def __init__ (self): self._xcells = 120 self._ycells = 80 self._xsize = 1200 self._ysize = 800 self._xoffset = self._xsize / self._xcells * 5 self._yoffset = self._xoffset self._zoom_factor = 100 self._init_matrix () def _init_matrix (self): self._cells = zeros ((self._xcells, self._ycells), dtype=numpy.bool) self._colors = {} for x in range (self._xcells): for y in range (self._ycells): self._colors[(x,y)] = [] def decrease_zoom (self): self._xsize = self._xsize - self._zoom_factor self._ysize = self._ysize - self._zoom_factor self._xoffset = self._xsize / self._xcells * 5 self._yoffset = self._xoffset def increase_zoom (self): self._xsize = self._xsize + self._zoom_factor self._ysize = self._ysize + self._zoom_factor self._xoffset = self._xsize / self._xcells * 5 self._yoffset = self._xoffset def get_size (self): return (self._xsize + self._xoffset, self._ysize + self._yoffset) def draw_grid(self, dc): step = self._xsize / self._xcells boldstep = step * 10 # Vertical lines dc.SetPen (wx.Pen(wx.LIGHT_GREY, 1)) for x in range(self._xcells+1): xsize = x*step ysize = step * self._ycells dc.DrawLine(self._xoffset + xsize, self._yoffset, xsize + self._xoffset, ysize + self._yoffset) # Draw bold lines dc.SetPen (wx.Pen(wx.BLACK,1)) for x in range((self._xcells)/10+1): xsize = x*boldstep ysize = step * self._ycells dc.DrawLine(xsize + self._xoffset, self._yoffset, xsize + self._xoffset, ysize + self._yoffset) # Horizontal lines dc.SetPen (wx.Pen(wx.LIGHT_GREY, 1)) for y in range(self._ycells+1): ysize = y*step xsize = self._xcells*step dc.DrawLine(self._xoffset, ysize + self._yoffset, xsize + self._xoffset, ysize + self._yoffset) # Draw bold lines dc.SetPen (wx.Pen(wx.BLACK,1)) for y in range((self._ycells)/10+1): ysize = y*boldstep xsize = self._xcells*step dc.DrawLine(self._xoffset, ysize + self._yoffset, xsize + self._xoffset, ysize + self._yoffset) for x in range(self._xcells): for y in range(self._ycells): if self._cells[x][y]: self._paint_cell (x, y, dc, self._colors[(x,y)][-1]) def add_cell (self, xcell, ycell, dc, color, erase): if not erase: if xcell >= 0 and ycell >= 0 and xcell < self._xcells and ycell < self._ycells: self._cells[xcell][ycell] = True if not len(self._colors[(xcell,ycell)]): self._colors[(xcell,ycell)].append(color) elif self._colors[(xcell,ycell)][-1] != color: self._colors[(xcell,ycell)].append(color) self._paint_cell (xcell, ycell, dc, color) else: if xcell >= 0 and ycell >= 0 and xcell < self._xcells and ycell < self._ycells: self._cells[xcell][ycell] = False if not len(self._colors[(xcell,ycell)]): self._colors[(xcell,ycell)].append(None) elif self._colors[(xcell,ycell)][-1]: self._colors[(xcell,ycell)].append(None) self._paint_cell (xcell, ycell, dc, None, erase) return len(self._colors[(xcell,ycell)])-1 def get_color_by_mouse (self, x, y): step = self._xsize / self._xcells xcell = int((x - self._xoffset)/step) ycell = int((y - self._yoffset)/step) try: c = self._colors[(xcell, ycell)][-1] if c: # Return a copy of the color, otherwise two consecutive colors in the same # cell would have the same colour, due to Python's pass by reference r, g, b = c.Get() return wx.Colour(r, g, b) else: return c except KeyError: return None except IndexError: return None def get_color_by_index (self, xcell, ycell, i): return self._colors[(xcell,ycell)][i] def mouse2cell (self, mousex, mousey): step = self._xsize / self._xcells xcell = int((mousex - self._xoffset)/step) ycell = int((mousey - self._yoffset)/step) return (xcell, ycell) def cell2mouse (self, xcell, ycell): step = self._xsize / self._xcells mousex = int(xcell*step + self._xoffset) mousey = int(ycell*step + self._yoffset) return (mousex, mousey) def _paint_cell (self, xcell, ycell, dc, color, erase = False): step = self._xsize / self._xcells px = xcell * step + self._xoffset py = ycell * step + self._yoffset if not erase: dc.SetPen (wx.Pen(color)) dc.SetBrush (wx.Brush (color)) else: dc.SetPen (wx.WHITE_PEN) dc.SetBrush (wx.WHITE_BRUSH) dc.DrawRectangle(px + 1,py + 1,step - 1,step - 1)
33.968912
107
0.585265
5,395
0.82291
0
0
0
0
0
0
1,301
0.198444
19eeab362b9fb0e2d6b801d0a756ec8fc09dd20a
2,837
py
Python
usps_tools/exceptions.py
pedrovagner/usps-tools
6a241fda35db6590684a534b9c3cf78a589ea09d
[ "MIT" ]
null
null
null
usps_tools/exceptions.py
pedrovagner/usps-tools
6a241fda35db6590684a534b9c3cf78a589ea09d
[ "MIT" ]
null
null
null
usps_tools/exceptions.py
pedrovagner/usps-tools
6a241fda35db6590684a534b9c3cf78a589ea09d
[ "MIT" ]
null
null
null
import traceback from typing import Optional from .i18n import _ class UspsToolsException(Exception): """ Base class for all errors. """ def __init__(self, message: Optional[str] = None, origin: Exception = None): """ :param message: :param origin: """ super().__init__(message or _("An error happened in UspsTools.")) self.origin = origin @property def traceback_msg(self) -> str: """ :return: """ return traceback.format_exc() class ConnectionFail(UspsToolsException): """ Erro de conexão com o servidor. """ def __init__(self, message: str = None, origin: Exception = None): """ :param message: :param origin: """ msg = str(origin) if origin else message if message else "Erro de conexão." super().__init__(msg, origin) class XmlLoadError(UspsToolsException): """ Não foi possível criar o objeto com o XML da resposta. """ def __init__(self, message: str = None, origin: Exception = None): """ :param message: :param origin: """ msg = str(origin) if origin else message if message else "Não foi possível instanciar o JSON da resposta." super().__init__(msg, origin) class XmlResponseError(UspsToolsException): """ Resposta não retornou um XML válido. """ def __init__(self, message: str = None, origin: Exception = None): """ :param message: :param origin: """ msg = str(origin) if origin else message if message else "Resposta não retornou um JSON válido." super().__init__(msg, origin) class Timeout(UspsToolsException): """ Servidor demorou muito para responder a requisição. """ def __init__(self, message: str = None, origin: Exception = None): """ :param message: :param origin: """ msg = str(origin) if origin else message if message else "Erro de esgotamento (timeout)." super().__init__(msg, origin) class ValidationError(UspsToolsException): """ Erro de validação (marshmallow.exceptions.ValidationError). """ def __init__(self, message: str = None, origin: Exception = None): """ :param message: :param origin: """ msg = str(origin) if origin else message if message else _("Validation error.") super().__init__(msg, origin) class NotFoundError(UspsToolsException): """ Procura não encontrou o objeto. """ def __init__(self, message: str = None, origin: Exception = None): """ :param message: :param origin: """ msg = str(origin) if origin else message if message else "Erro de validação." super().__init__(msg, origin)
27.813725
114
0.601692
2,768
0.969867
0
0
124
0.043448
0
0
1,093
0.382971
19effa59bdd92c4854c56be758df2693cacdcb3d
1,158
py
Python
scraper/engine.py
pesya/scraper
c088dc3dc613fec94e297ac71302d2305b44b14c
[ "BSD-3-Clause" ]
null
null
null
scraper/engine.py
pesya/scraper
c088dc3dc613fec94e297ac71302d2305b44b14c
[ "BSD-3-Clause" ]
null
null
null
scraper/engine.py
pesya/scraper
c088dc3dc613fec94e297ac71302d2305b44b14c
[ "BSD-3-Clause" ]
null
null
null
import sys import csv import requests from parsel import Selector from scraper.parser import get_features_from_item start_url = 'http://www.world-art.ru/animation/rating_top.php' SIGN_STDOUT = '-' FORMAT_CSV = 'csv' FORMAT_JL = 'jl' def parse(url: str, out_path: str, out_format: str): """ gets link and returns the response """ response = requests.get(url) assert response.status_code == 200, f'bad status code: {response.status_code}' response_html = Selector(response.text) links_to_films = response_html.xpath('//td[@class="review"]/a[@class="review"]/@href').getall() out_file = sys.stdout if out_path == SIGN_STDOUT else open(out_path, 'w', buffering=1, newline='') for link in links_to_films: item_response = requests.get(link) assert response.status_code == 200, f'bad status code: {item_response.status_code}' item = get_features_from_item(item_response) if out_format == FORMAT_CSV: item_writer = csv.writer(out_file, delimiter=' ', quotechar=',', quoting=csv.QUOTE_MINIMAL) item_writer.writerow(item.values()) out_file.close() return
28.243902
103
0.69171
0
0
0
0
0
0
0
0
260
0.224525
19f24b3bd880d9e6bed48acb8886bc868d4be2dd
14,592
py
Python
gui/python/photogate/photogate/photogate_app.py
iorodeo/photogate_software
c9a97dc3da644fe093397dd11024825ba0d79519
[ "Apache-2.0" ]
1
2020-07-23T19:02:50.000Z
2020-07-23T19:02:50.000Z
gui/python/photogate/photogate/photogate_app.py
iorodeo/photogate_software
c9a97dc3da644fe093397dd11024825ba0d79519
[ "Apache-2.0" ]
null
null
null
gui/python/photogate/photogate/photogate_app.py
iorodeo/photogate_software
c9a97dc3da644fe093397dd11024825ba0d79519
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import os import sys import serial.tools.list_ports from PyQt4 import QtCore from PyQt4 import QtGui from photogate_ui import Ui_PhotogateMainWindow from photogate_serial import PhotogateDevice from photogate_serial import getListOfPorts import dependency_hack try: import scipy.io HAVE_SCIPY_IO = True except ImportError: HAVE_SCIPY_IO = False class PhotogateMainWindow(QtGui.QMainWindow, Ui_PhotogateMainWindow): PORT_MONITOR_TIMER_DT = 1000 DATA_ACQUISITION_TIMER_DT = 10 NOT_AVAILABLE_STR = '' FILE_TYPE_TO_FILTER = { '.txt' : "Text (*.txt);;All files (*.*)", '.mat' : "Mat (*.mat);;All files (*.*)", '.csv' : "CSV (*.csv);;All files (*.*)", } def __init__(self,parent=None): super(PhotogateMainWindow,self).__init__(parent) self.setupUi(self) self.connectWidgets() self.initialize() def connectWidgets(self): self.connectPushButton.pressed.connect(self.connectPressed_Callback) self.connectPushButton.clicked.connect(self.connectClicked_Callback) self.resetPushButton.clicked.connect(self.resetClicked_Callback) self.actionSaveMat.triggered.connect(self.saveMat_Callback) self.actionSaveTxt.triggered.connect(self.saveTxt_Callback) self.actionSaveCsv.triggered.connect(self.saveCsv_Callback) def main(self): self.show() self.raise_() def initialize(self): self.dev = None self.lastDataDict = None self.userHome = os.getenv('USERPROFILE') if self.userHome is None: self.userHome = os.getenv('HOME') self.lastSaveDir = self.userHome self.populatePortComboBox() self.updateWidgetEnabled() self.setupTimers() self.portMonitorTimer.start() self.statusbar.showMessage('Not Connected') def setupTimers(self): self.portMonitorTimer = QtCore.QTimer(self) self.portMonitorTimer.setInterval(self.PORT_MONITOR_TIMER_DT) self.portMonitorTimer.timeout.connect(self.portMonitorTimer_Callback) self.dataAcquisitionTimer = QtCore.QTimer(self) self.dataAcquisitionTimer.setInterval(self.DATA_ACQUISITION_TIMER_DT) self.dataAcquisitionTimer.setSingleShot(True); # Serial communications sets the pacing self.dataAcquisitionTimer.timeout.connect(self.dataAcquisitionTimer_Callback) def portMonitorTimer_Callback(self): self.populatePortComboBox() def dataAcquisitionTimer_Callback(self): if self.dev is not None: try: dataDict = self.dev.getData() except: self.statusbar.showMessage('Data Acquistion Error') dataDict = {} if dataDict: self.setRunTime(dataDict) self.setMode(dataDict) self.setStatusbarMessage(dataDict) if self.lastDataDict is not None: if self.lastDataDict['running']: self.setDataText(dataDict) else: self.setDataText(dataDict) self.lastDataDict = dataDict self.updateSaveWidgetEnabled() self.dataAcquisitionTimer.start() def connectPressed_Callback(self): if self.dev is None: self.connectPushButton.setText('Disconnect') self.connectPushButton.setFlat(True) self.portComboBox.setEnabled(False) self.statusbar.showMessage('Connecting...') def connectClicked_Callback(self): if self.dev is None: self.connectDevice() else: self.disconnectDevice() self.updateWidgetEnabled() self.connectPushButton.setFlat(False) def resetClicked_Callback(self): if self.dev is not None: self.dev.reset() def fileSaveDialog(self,fileExt): dialog = QtGui.QFileDialog() dialog.setFileMode(QtGui.QFileDialog.AnyFile) if os.path.isdir(self.lastSaveDir): saveDir = self.lastSaveDir else: saveDir = self.userHome fileNameFullPath = dialog.getSaveFileName( None, 'Select {0} file'.format(fileExt), saveDir, self.FILE_TYPE_TO_FILTER[fileExt], options=QtGui.QFileDialog.DontUseNativeDialog, ) fileNameFullPath = str(fileNameFullPath) if fileNameFullPath: # Extract last save path and check for file extension filePath, fileName = os.path.split(fileNameFullPath) self.lastSaveDir = filePath fileName = autoAddFileExtension(fileName,fileExt) fileNameFullPath = os.path.join(filePath,fileName) return fileNameFullPath def saveMat_Callback(self): if not HAVE_SCIPY_IO: return fileExt = '.mat' dataDict = self.lastDataDict fileNameFullPath = self.fileSaveDialog(fileExt) if fileNameFullPath: matDict = self.getMatDict(dataDict) scipy.io.savemat(fileNameFullPath,matDict) def getMatDict(self,dataDict): matDict = {} for i, photogateDict in enumerate(dataDict['photogates']): if photogateDict['isConnected']: entryTime, exitTime, timeInGate = getPhotogateTimes(photogateDict) matDict['photogate{0}'.format(i)] = { 'entryTime' : entryTime, 'exitTime' : exitTime, 'timeInGate' : timeInGate, } if dataDict['operatingMode'] == 'TWO_PHOTOGATE': timeBetweenGates = getTimeBetweenGates(dataDict['photogates']) matDict['timeBetweenGates'] = timeBetweenGates return matDict def saveTxt_Callback(self): fileExt = '.txt' dataStr = self.getDataStr(self.lastDataDict) fileNameFullPath = self.fileSaveDialog(fileExt) if fileNameFullPath: with open(fileNameFullPath,'w') as f: f.write(dataStr) def saveCsv_Callback(self): fileExt = '.csv' dataDict = self.lastDataDict fileNameFullPath = self.fileSaveDialog(fileExt) if fileNameFullPath: csvDataStr = self.getCsvDataStr(dataDict) with open(fileNameFullPath,'w') as f: f.write(csvDataStr) def getCsvDataStr(self,dataDict): dataStrList = ['field,value'] for i,photogateDict in enumerate(dataDict['photogates']): if photogateDict['isConnected']: entryTime, exitTime, timeInGate = getPhotogateTimes(photogateDict) dataStrList.append('"photogate {0} enter",{1}'.format(i,entryTime)) dataStrList.append('"photogate {0} exit",{1}'.format(i,exitTime)) dataStrList.append('"photogate {0} in-gate",{1}'.format(i,timeInGate)) if dataDict['operatingMode'] == 'TWO_PHOTOGATE': timeBetweenGates = getTimeBetweenGates(dataDict['photogates']) dataStrList.append('"between gates",{0}'.format(timeBetweenGates)) dataStr = '\n'.join(dataStrList) return dataStr def connectDevice(self): port = str(self.portComboBox.currentText()) try: self.dev = PhotogateDevice(port) except Exception, e: msgTitle = 'Connection Error' msgText = 'unable to connect to device: {0}'.format(str(e)) QtGui.QMessageBox.warning(self,msgTitle, msgText) self.connectPushButton.setText('Connect') self.statusbar.showMessage('Not Connected') self.dev = None if self.dev is not None: self.portMonitorTimer.stop() self.dataAcquisitionTimer.start() self.statusbar.showMessage('Connected') def disconnectDevice(self): if self.dev is not None: try: self.dev.close() except: pass self.dev = None self.dataAcquisitionTimer.stop() self.portMonitorTimer.start() self.connectPushButton.setText('Connect') self.statusbar.showMessage('Not Connected') def updateWidgetEnabled(self): if self.dev is None: self.portComboBox.setEnabled(True) self.infoFrame.setEnabled(False) self.dataText.setEnabled(False) self.resetPushButton.setEnabled(False) else: self.portComboBox.setEnabled(False) self.infoFrame.setEnabled(True) self.dataText.setEnabled(True) self.resetPushButton.setEnabled(True) self.updateSaveWidgetEnabled() def updateSaveWidgetEnabled(self): if self.lastDataDict is not None: if not self.lastDataDict['running'] and not self.lastDataDict['timeout']: if HAVE_SCIPY_IO: self.actionSaveMat.setEnabled(True) self.actionSaveTxt.setEnabled(True) self.actionSaveCsv.setEnabled(True) else: self.actionSaveMat.setEnabled(False) self.actionSaveTxt.setEnabled(False) self.actionSaveCsv.setEnabled(False) else: self.actionSaveMat.setEnabled(False) self.actionSaveTxt.setEnabled(False) self.actionSaveCsv.setEnabled(False) def populatePortComboBox(self): currPort = str(self.portComboBox.currentText()) self.portComboBox.clear() portNameList = getListOfPorts() for portName in portNameList: self.portComboBox.addItem(portName) try: index = portNameList.index(currPort) except ValueError: index = 0 self.portComboBox.setCurrentIndex(index) def setRunTime(self,dataDict): runTime = uSecToSec(float(dataDict['runTime'])) runTimeLabelStr = 'Time: {0:2.2f}'.format(runTime) self.timeLabel.setText(runTimeLabelStr) def setMode(self,dataDict): modeRaw = dataDict['operatingMode'] if modeRaw == 'TWO_PHOTOGATE': mode = 'Two Photogates' elif modeRaw == 'ONE_PHOTOGATE': mode = 'One Photogate' elif modeRaw == 'NO_PHOTOGATE': mode = 'No Photogates' else: mode = 'Unknown' modeLabelStr = 'Mode: {0}'.format(mode) self.modeLabel.setText(modeLabelStr) def setStatusbarMessage(self,dataDict): running = dataDict['running'] timeout = dataDict['timeout'] if running: message = 'Running' else: if timeout: message = 'Stopped, Timeout' else: message = 'Measurement Complete' self.statusbar.showMessage(message) def getDataStr(self,dataDict): dataStrList = [] infoStr = 'Timing Data (units = s, resolution = 10us)' dataStrList.append(infoStr) dataStrList.append(' ') # Add photogate data for i, photogateDict in enumerate(dataDict['photogates']): if photogateDict['isConnected']: dataStrList.append('Photogate: {0}'.format(i+1)) photogateDataStr = self.getPhotogateDataStr(photogateDict) dataStrList.append(photogateDataStr) dataStrList.append(' ') # Add time between gates if in two photogate mode if dataDict['operatingMode'] == 'TWO_PHOTOGATE': if dataDict['running'] or dataDict['timeout']: timeBetweenStr = self.NOT_AVAILABLE_STR else: timeBetween = getTimeBetweenGates(dataDict['photogates']) timeBetweenStr = '{0:1.5f}'.format(timeBetween) timeBetweenStr = 'between-gates: {0}'.format(timeBetweenStr) dataStrList.append(timeBetweenStr) dataStr = '\n'.join(dataStrList) return dataStr def setDataText(self,dataDict): dataStr = self.getDataStr(dataDict) self.dataText.clear() self.dataText.setPlainText(dataStr) def getPhotogateDataStr(self,photogateDict, indent=2): indentStr = ' '*indent dataStrList = [] entryTime, exitTime, timeInGate = getPhotogateTimes(photogateDict) # Add entry time if photogateDict['hasEntryTime']: entryTimeStr = '{0:1.5f}'.format(entryTime) else: entryTimeStr = self.NOT_AVAILABLE_STR entryTimeStr = '{0}enter: {1}'.format(indentStr, entryTimeStr) dataStrList.append(entryTimeStr) # Add exit time if photogateDict['hasExitTime']: exitTimeStr ='{0:1.5f}'.format(exitTime) else: exitTimeStr = self.NOT_AVAILABLE_STR exitTimeStr = '{0}exit: {1}'.format(indentStr, exitTimeStr) dataStrList.append(exitTimeStr) # Add time in-gate if photogateDict['isDone']: timeInGateStr = '{0:1.5f}'.format(timeInGate) else: timeInGateStr = self.NOT_AVAILABLE_STR timeInGateStr = '{0}in-gate: {1}'.format(indentStr, timeInGateStr) dataStrList.append(timeInGateStr) dataStr = '\n'.join(dataStrList) return dataStr # Utility functions # ----------------------------------------------------------------------------- def getPhotogateTimes(photogateDict): entryTime = uSecToSec(float(photogateDict['entryTime'])) exitTime = uSecToSec(float(photogateDict['exitTime'])) timeInGate = exitTime - entryTime return entryTime, exitTime, timeInGate def getTimeBetweenGates(photogateList): entryTime0 = uSecToSec(float(photogateList[0]['entryTime'])) entryTime1 = uSecToSec(float(photogateList[1]['entryTime'])) timeBetween = entryTime1 - entryTime0 return timeBetween def autoAddFileExtension(fileName,autoExt): fileNameBase, fileNameExt = os.path.splitext(fileName) if not fileNameExt: # Only add extension if there isn't one already fileName = '{0}{1}'.format(fileNameBase,autoExt) return fileName def uSecToSec(value): return (1.0e-6)*value def runPhotogateApp(): app = QtGui.QApplication(sys.argv) mainWindow = PhotogateMainWindow() mainWindow.main() app.exec_() # ----------------------------------------------------------------------------- if __name__ == '__main__': runPhotogateApp()
37.22449
94
0.614172
13,025
0.892612
0
0
0
0
0
0
1,714
0.117462
19f364dac17ba32accfedb9fef8b6459dc8369f0
114
py
Python
playground/step2/test1.py
jhson989/jhML
eb8b76d3b47df858e82cd971bb32794e12de4747
[ "Apache-2.0" ]
null
null
null
playground/step2/test1.py
jhson989/jhML
eb8b76d3b47df858e82cd971bb32794e12de4747
[ "Apache-2.0" ]
null
null
null
playground/step2/test1.py
jhson989/jhML
eb8b76d3b47df858e82cd971bb32794e12de4747
[ "Apache-2.0" ]
null
null
null
from core import Variable from operation import * a = Variable(2) b = square(a) c = square(b) print(c.data)
8.769231
25
0.675439
0
0
0
0
0
0
0
0
0
0
19f3a16361bc6bc5804201c9d2a4c2d8f966a4a0
106
py
Python
sharepoint/__init__.py
nessalc/python-sharepoint
d264cf5be56c8f9f619a4f72fd039c167cd01ba8
[ "MIT" ]
1
2019-06-03T03:16:44.000Z
2019-06-03T03:16:44.000Z
sharepoint/__init__.py
nessalc/python-sharepoint
d264cf5be56c8f9f619a4f72fd039c167cd01ba8
[ "MIT" ]
null
null
null
sharepoint/__init__.py
nessalc/python-sharepoint
d264cf5be56c8f9f619a4f72fd039c167cd01ba8
[ "MIT" ]
null
null
null
name = 'sharepoint' from .sharepoint import SharePointSite __author__='James Classen' __version__='0.0.2'
21.2
38
0.792453
0
0
0
0
0
0
0
0
34
0.320755
19f6250f9d15cae4fb338cfbac1c36e435b2c1ca
3,188
py
Python
third_party/nkata/tests/transformvideo_test.py
google/offline-content-packager
5a023eeeed4973e452309b434a59ce745487fdd6
[ "Apache-2.0" ]
32
2016-05-31T13:01:46.000Z
2022-03-18T11:17:36.000Z
third_party/nkata/tests/transformvideo_test.py
google/offline-content-packager
5a023eeeed4973e452309b434a59ce745487fdd6
[ "Apache-2.0" ]
null
null
null
third_party/nkata/tests/transformvideo_test.py
google/offline-content-packager
5a023eeeed4973e452309b434a59ce745487fdd6
[ "Apache-2.0" ]
29
2016-06-08T18:11:00.000Z
2021-09-28T04:14:34.000Z
# Copyright 2015 The Offline Content Packager Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from os import makedirs from os.path import dirname from os.path import isdir from os.path import join import shutil import tempfile import unittest import jinja2 from scripts.transformations import VideoTransformation import yaml class VideoTestCase(unittest.TestCase): def setUp(self): self.src_dir = tempfile.mkdtemp() self.dst_dir = tempfile.mkdtemp() self.tracking_code = "123456" self.video_subtitle = "test subtitle" self.video_summary = "test summary" self.video_name = "test_video" self.setUpMetadata() self.JINJA_ENVIRONMENT = jinja2.Environment( loader=jinja2.FileSystemLoader(self.src_dir), extensions=["jinja2.ext.autoescape"], autoescape=False) def setUpTemplate(self, template, content): template = join(self.src_dir, template) template_dir = dirname(template) if not isdir(template_dir): makedirs(template_dir) with open(template, "w") as f: f.write(content) def setUpMetadata(self): self.meta_data_content = { "title": "test video", "description": "test description", "sub_title": "test subtitle", "tags": "", "image_src": "" } self.metadata_file = join(self.src_dir, "video.yaml") f = open(self.metadata_file, "w") yaml.dump(self.meta_data_content, f) self.meta_data = {self.video_name: self.metadata_file} def createInstance(self): return VideoTransformation(self.tracking_code, self.JINJA_ENVIRONMENT) def tearDown(self): shutil.rmtree(self.src_dir) shutil.rmtree(self.dst_dir) def test_generate_html(self): html_name = "test_output.html" video_source = "/test/file/path/video_source.avi" video_type = "video/test" video_info = ("video_title", "video_subtitle", "video_description") template_content = ("{{ video_name }} / {{ video_type}} /" " {{ video_source }} / {{ tracking_code }}") expected_output = "%s / %s / %s / %s" % (self.video_name, video_type, video_source, self.tracking_code) self.setUpTemplate("templates/video.html", template_content) transformation = self.createInstance() video_detail = (self.video_name, video_source, video_type, video_info) transformation.generate_html(self.dst_dir, html_name, video_detail, None) # assert the output with open(join(self.dst_dir, "html_files", html_name), "r") as f: output = f.read() self.assertEquals(output, expected_output) if __name__ == "__main__": unittest.main()
32.20202
78
0.69542
2,283
0.716123
0
0
0
0
0
0
1,074
0.336888
19f6287b8eec32e7e9ec1cec1c39636f68949b75
2,308
py
Python
src/E_get_mpns_v8_analyses_answers/query_mpns_v8_name_relationships.py
feiphoon/mpns-pipeline
d34a8609dc4cb04ccc3f5c9b79a52bfeecdb38f6
[ "MIT" ]
1
2022-03-28T10:46:58.000Z
2022-03-28T10:46:58.000Z
src/E_get_mpns_v8_analyses_answers/query_mpns_v8_name_relationships.py
feiphoon/mpns-pipeline
d34a8609dc4cb04ccc3f5c9b79a52bfeecdb38f6
[ "MIT" ]
null
null
null
src/E_get_mpns_v8_analyses_answers/query_mpns_v8_name_relationships.py
feiphoon/mpns-pipeline
d34a8609dc4cb04ccc3f5c9b79a52bfeecdb38f6
[ "MIT" ]
null
null
null
from pathlib import Path from pyspark.sql import SparkSession, functions as f from pyspark.sql.dataframe import DataFrame # Monkeypatch in case I don't use Spark 3.0 def transform(self, f): return f(self) DataFrame.transform = transform def query_mpns_v8_name_relationships( input_filepath: str, output_filepath: str, sample_run: bool, ) -> None: spark = SparkSession.builder.appName( "query_mpns_v8_name_relationships" ).getOrCreate() if sample_run: name_relationships_df: DataFrame = spark.read.json(input_filepath) else: name_relationships_df: DataFrame = spark.read.parquet(input_filepath) plants_with_minimum_relationships_df: DataFrame = name_relationships_df.transform( lambda df: get_plants_with_minimum_relationships(df) ) write_query_results(plants_with_minimum_relationships_df, output_filepath) def write_query_results(df: DataFrame, output_filepath: Path) -> None: output_filepath_parent: Path = Path(output_filepath).parents[0] output_filepath_parent.mkdir(parents=True, exist_ok=True) # Coalesce to 1 JSON file df.coalesce(1).write.format("json").mode("overwrite").save(output_filepath) def get_plants_with_minimum_relationships(df: DataFrame) -> DataFrame: df = df.filter( (f.col("synonym_count") >= 1) & (f.col("scm_non_scientific_name_count") >= 1) & (f.col("com_non_scientific_name_count") >= 1) & (f.col("pha_non_scientific_name_count") >= 1) ) return df.sort(df.synonym_count.asc(), df.scm_com_pha.asc()) # Sample/demo purposes mpns_v8_name_relationships_filepath: str = ( "data/analysis/mpns/sample_mpns_v8/name_relationships/" ) output_filepath: str = "data/analysis/mpns/sample_mpns_v8/name_relationships/query/" query_mpns_v8_name_relationships( input_filepath=mpns_v8_name_relationships_filepath, output_filepath=output_filepath, sample_run=True, ) # # Real data # mpns_v8_name_relationships_filepath: str = ( # "data/analysis/mpns/mpns_v8/name_relationships/" # ) # output_filepath: str = "data/analysis/mpns/mpns_v8/name_relationships/query/" # query_mpns_v8_name_relationships( # input_filepath=mpns_v8_name_relationships_filepath, # output_filepath=output_filepath, # sample_run=False, # )
30.368421
86
0.747834
0
0
0
0
0
0
0
0
717
0.310659
19f803a96ec5d364efd732c5edf09bf82c3dfe31
124
py
Python
library_homework/my_project/my_program.py
Tommy3121173/tommy
429aefb377f84a1d49e85f825a32ac2c160ebc85
[ "MIT" ]
null
null
null
library_homework/my_project/my_program.py
Tommy3121173/tommy
429aefb377f84a1d49e85f825a32ac2c160ebc85
[ "MIT" ]
null
null
null
library_homework/my_project/my_program.py
Tommy3121173/tommy
429aefb377f84a1d49e85f825a32ac2c160ebc85
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed May 23 16:56:57 2018 @author: tommy_mizuki """ import my_library my_func(1,2)
11.272727
35
0.645161
0
0
0
0
0
0
0
0
89
0.717742
19f8e4fcaecd9a3968eed26a324bf80026d1583f
246
py
Python
algorithm/python/BAEKJOON_1436.py
cjsrhd94/TIL
b91bab7d99d10c63f91af0790cb28ec3d228b68b
[ "MIT" ]
1
2021-08-19T06:23:00.000Z
2021-08-19T06:23:00.000Z
algorithm/python/BAEKJOON_1436.py
cjsrhd94/TIL
b91bab7d99d10c63f91af0790cb28ec3d228b68b
[ "MIT" ]
null
null
null
algorithm/python/BAEKJOON_1436.py
cjsrhd94/TIL
b91bab7d99d10c63f91af0790cb28ec3d228b68b
[ "MIT" ]
null
null
null
n = int(input()) count = 0 number = 0 while True: if '666' in str(number): #문자열로 변경하였을때 '666'이 포함되어있다면 count를 세준다. count += 1 if count == n: #count가 입력값과 동일할 때 print -> n번째 값 출력 print(number) break number += 1
24.6
68
0.565041
0
0
0
0
0
0
0
0
152
0.477987
19f91845aaff11955f6b430aa3684474c464bf80
3,599
py
Python
cacheTraceAnalysis/plot/reqRate.py
Thesys-lab/cacheWorkloadAnalysisOSDI20
cfc5bbb5c8d909571546c78c247561c9db449469
[ "Apache-2.0" ]
6
2020-11-12T07:51:02.000Z
2022-03-27T20:20:01.000Z
cacheTraceAnalysis/plot/reqRate.py
Thesys-lab/InMemoryCachingWorkloadAnalysis
5f6f9f7e29a164478f3fc28eb64c170bbbafdec7
[ "Apache-2.0" ]
null
null
null
cacheTraceAnalysis/plot/reqRate.py
Thesys-lab/InMemoryCachingWorkloadAnalysis
5f6f9f7e29a164478f3fc28eb64c170bbbafdec7
[ "Apache-2.0" ]
1
2021-12-31T01:16:09.000Z
2021-12-31T01:16:09.000Z
""" plot request rate """ import os, sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../")) from utils.common import * def _cal_req_rate(trace_reader, window): metadata_name = "reqRateList_w{}_{}.pickle".format(window, trace_reader.trace_path.split("/")[-1]) loaded = load_metadata(metadata_name) if loaded is not None: return loaded start_ts = -1 req_cnt_list, obj_cnt_list, req_Gbps_list, obj_Gbps_list = [], [], [], [] req_cnt, obj_cnt, req_byte, obj_byte = 0, 0, 0, 0 seen_obj = set() for req in trace_reader: if start_ts == -1: start_ts = req.real_time req_cnt += req.cnt req_byte += req.req_size if req.obj_id not in seen_obj: obj_cnt += 1 obj_byte += req.req_size seen_obj.add(req.obj_id) if (req.real_time - start_ts)//window > len(req_cnt_list): req_cnt_list.append(req_cnt/window) obj_cnt_list.append(obj_cnt/window) req_Gbps_list.append(req_byte/GB/window*8) obj_Gbps_list.append(obj_byte/GB/window*8) req_cnt, obj_cnt, req_byte, obj_byte = 0, 0, 0, 0 seen_obj.clear() trace_reader.reset() save_metadata((req_cnt_list, obj_cnt_list, req_Gbps_list, obj_Gbps_list), metadata_name) return req_cnt_list, obj_cnt_list, req_Gbps_list, obj_Gbps_list def plot_req_rate(trace_reader, window, plot_type=("cnt", "byte")): COLOR = JPlot.get_color(2) req_cnt_list, obj_cnt_list, req_Gbps_list, obj_Gbps_list = _cal_req_rate(trace_reader, window) ret_dict = { "mean_req_cnt": sum(req_cnt_list)/len(req_cnt_list), "mean_obj_cnt": sum(obj_cnt_list)/len(obj_cnt_list), "mean_req_Gbps": sum(req_Gbps_list)/len(req_Gbps_list), "mean_obj_Gbps": sum(obj_Gbps_list)/len(obj_Gbps_list), } if "cnt" in plot_type or plot_type == "cnt": plt.plot([i*window/3600 for i in range(len(req_cnt_list))], [i/1000 for i in req_cnt_list], nomarker=True, label="request", color=next(COLOR), linewidth=1) plt.plot([i*window/3600 for i in range(len(obj_cnt_list))], [i/1000 for i in obj_cnt_list], nomarker=True, label="object", color=next(COLOR), linewidth=1) plt.xlabel("Time (Hour)") plt.ylabel("Request rate (K QPS)") plt.legend() plt.savefig("{}/{}_reqRateCnt_w{}.png".format(FIG_DIR, trace_reader.trace_path.split("/")[-1], window), no_save_plot_data=True) plt.clf() COLOR = JPlot.get_color(2) if "byte" in plot_type or plot_type == "byte": y1, y2, ylabel = req_Gbps_list, obj_Gbps_list, "Request rate (Gbps)" if sum(req_Gbps_list)/len(req_Gbps_list) < 1: y1 = [i*1024 for i in req_Gbps_list] y2 = [i*1024 for i in obj_Gbps_list] ylabel = "Request rate (Mbps)" plt.plot([i*window/3600 for i in range(len(req_Gbps_list))], y1, nomarker=True, color=next(COLOR), label="request", linewidth=1) plt.plot([i*window/3600 for i in range(len(obj_Gbps_list))], y2, nomarker=True, color=next(COLOR), label="object", linewidth=1) plt.xlabel("Time (Hour)") plt.ylabel(ylabel) plt.legend() plt.savefig("{}/{}_reqRateTraffic_w{}.png".format(FIG_DIR, trace_reader.trace_path.split("/")[-1], window), no_save_plot_data=True) plt.clf() return ret_dict if __name__ == "__main__": import argparse ap = argparse.ArgumentParser() ap.add_argument("--trace", type=str, help="trace path") ap.add_argument("--type", type=str, default="cnt", help="plot type") ap.add_argument("--window", type=int, default=60, help="the size of window in sec") p = ap.parse_args() plot_req_rate(TwrShortBinTraceReader(p.trace), p.window, plot_type=(p.type, ))
38.698925
159
0.689358
0
0
0
0
0
0
0
0
430
0.119478
19f928aecd4ff7011c0373aab909dea8913438c6
1,373
py
Python
config.py
ShallweJohn/MonsterBlog
f3bd0bdab99af6ba06b7b8fb0eaa6770115fc9c5
[ "MIT" ]
null
null
null
config.py
ShallweJohn/MonsterBlog
f3bd0bdab99af6ba06b7b8fb0eaa6770115fc9c5
[ "MIT" ]
3
2021-03-18T20:36:25.000Z
2021-09-07T23:54:49.000Z
config.py
ShallweJohn/MonsterBlog
f3bd0bdab99af6ba06b7b8fb0eaa6770115fc9c5
[ "MIT" ]
null
null
null
import os import redis import logging class Config(object): #配置数据库连接 SQLALCHEMY_DATABASE_URI = 'mysql://root:[email protected]:3306/data_monster' SQLALCHEMY_TRACK_MODIFICATIONS = False #配置redis数据库 REDIS_HOST = '127.0.0.1' REDIS_PORT = 6379 # 配置flask_session SESSION_TYPE = 'redis' SESSION_USE_SIGNER = True SESSION_REDIS = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT) PERMENANT_SESSION_LIFETIME = 86400 * 7 SECRET_KEY = os.environ.get('SECRET_KEY') or 'hard to guess string' MAIL_SERVER = os.environ.get('MAIL_SERVER', 'smtp.163.com') MAIL_PORT = int(os.environ.get('MAIL_PORT', '465')) MAIL_USE_SSL = True MAIL_USERNAME = '[email protected]' MAIL_PASSWORD = 'jiangizhang92' MONSTER_MAIL_SUBJECT_PREFIX = '[MONSTER]' MONSTER_MAIL_SENDER = 'MONSTER Admin <[email protected]>' MONSTER_ADMIN = os.environ.get('MONSTER_ADMIN') SQLALCHEMY_TRACK_MODIFICATIONS = False @staticmethod def init_app(app): pass # 配置日志登记 LOG_LEVEL = logging.DEBUG class ProductionConfig(Config): DEBUG = False LOG_LEVEL = logging.ERROR class DevelopmentConfig(Config): DEBUG = True LOG_LEVEL = logging.DEBUG config = { 'development': DevelopmentConfig, 'production': ProductionConfig, 'default': DevelopmentConfig }
19.614286
81
0.699927
1,226
0.867657
0
0
49
0.034678
0
0
373
0.263977
19fac7af0c83f21b636a9b1fa9c53ac1705d1cfb
5,097
py
Python
utils.py
sjenni/DeepBilevel
9db6c9d81188e891104677a7ffc4b045421fb097
[ "MIT" ]
8
2019-10-23T12:16:13.000Z
2020-11-16T02:20:28.000Z
utils.py
sjenni/DeepBilevel
9db6c9d81188e891104677a7ffc4b045421fb097
[ "MIT" ]
null
null
null
utils.py
sjenni/DeepBilevel
9db6c9d81188e891104677a7ffc4b045421fb097
[ "MIT" ]
4
2020-02-06T14:54:47.000Z
2020-10-25T03:03:04.000Z
import tensorflow as tf from tensorflow.python import pywrap_tensorflow from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import saver as tf_saver def average_gradients(tower_grads): """Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over individual gradients. The inner list is over the gradient calculation for each tower. Returns: List of pairs of (gradient, variable) where the gradient has been averaged across all towers. """ average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, _ in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(axis=0, values=grads) grad = tf.reduce_mean(grad, 0) # Keep in mind that the Variables are redundant because they are shared # across towers. So .. we will just return the first tower's pointer to # the Variable. v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads def montage_tf(imgs, num_h, num_w): """Makes a montage of imgs that can be used in image_summaries. Args: imgs: Tensor of images num_h: Number of images per column num_w: Number of images per row Returns: A montage of num_h*num_w images """ imgs = tf.unstack(imgs) img_rows = [None] * num_h for r in range(num_h): img_rows[r] = tf.concat(axis=1, values=imgs[r * num_w:(r + 1) * num_w]) montage = tf.concat(axis=0, values=img_rows) return tf.expand_dims(montage, 0) def remove_missing(var_list, model_path): reader = pywrap_tensorflow.NewCheckpointReader(model_path) if isinstance(var_list, dict): var_dict = var_list else: var_dict = {var.op.name: var for var in var_list} available_vars = {} for var in var_dict: if reader.has_tensor(var): available_vars[var] = var_dict[var] else: logging.warning( 'Variable %s missing in checkpoint %s', var, model_path) var_list = available_vars return var_list def assign_from_checkpoint_fn(model_path, var_list, ignore_missing_vars=False, reshape_variables=False): """Returns a function that assigns specific variables from a checkpoint. Args: model_path: The full path to the model checkpoint. To get latest checkpoint use `model_path = tf.train.latest_checkpoint(checkpoint_dir)` var_list: A list of `Variable` objects or a dictionary mapping names in the checkpoint to the correspoing variables to initialize. If empty or None, it would return no_op(), None. ignore_missing_vars: Boolean, if True it would ignore variables missing in the checkpoint with a warning instead of failing. reshape_variables: Boolean, if True it would automatically reshape variables which are of different shape then the ones stored in the checkpoint but which have the same number of elements. Returns: A function that takes a single argument, a `tf.Session`, that applies the assignment operation. Raises: ValueError: If the checkpoint specified at `model_path` is missing one of the variables in `var_list`. """ if ignore_missing_vars: var_list = remove_missing(var_list, model_path) saver = tf_saver.Saver(var_list, reshape=reshape_variables) def callback(session): saver.restore(session, model_path) return callback def get_variables_to_train(trainable_scopes=None): """Returns a list of variables to train. Returns: A list of variables to train by the optimizer. """ if trainable_scopes is None: variables_to_train = tf.trainable_variables() else: scopes = [scope.strip() for scope in trainable_scopes.split(',')] variables_to_train = [] for scope in scopes: variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope) variables_to_train.extend(variables) print('Variables to train: {}'.format([v.op.name for v in variables_to_train])) return variables_to_train def get_checkpoint_path(checkpoint_dir): ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if not ckpt: print("No checkpoint in {}".format(checkpoint_dir)) return None return ckpt.model_checkpoint_path
36.148936
84
0.673141
0
0
0
0
0
0
0
0
2,455
0.481656
19fb5606842651b084278976b916a2b6ffe5d1f9
328
py
Python
configuration/mmd_configuration.py
matthewfaw/mixnmatch
11b923b941198c02e380011853beb70169f024ac
[ "Apache-2.0" ]
1
2020-11-16T04:59:48.000Z
2020-11-16T04:59:48.000Z
configuration/mmd_configuration.py
matthewfaw/mixnmatch
11b923b941198c02e380011853beb70169f024ac
[ "Apache-2.0" ]
null
null
null
configuration/mmd_configuration.py
matthewfaw/mixnmatch
11b923b941198c02e380011853beb70169f024ac
[ "Apache-2.0" ]
1
2019-12-03T21:43:02.000Z
2019-12-03T21:43:02.000Z
class MMDConfiguration: def __init__(self, mmd_rbf_gamma, mmd_rbf_ncomponents, mmd_representative_set_size): self.mmd_rbf_gamma=mmd_rbf_gamma self.mmd_rbf_ncomponents=mmd_rbf_ncomponents self.mmd_representative_set_size=mmd_representative_set_size
32.8
68
0.685976
326
0.993902
0
0
0
0
0
0
0
0
19fb9cf0c33a5df90f7ff935997f2b53b4510673
1,234
py
Python
paralleldomain/model/annotation/polygon_2d.py
parallel-domain/pd-sdk
20e3d052a5cb612a2dd84bda7b1b5487a6a60edc
[ "Apache-2.0" ]
10
2021-11-17T17:23:49.000Z
2022-03-18T09:51:23.000Z
paralleldomain/model/annotation/polygon_2d.py
parallel-domain/pd-sdk
20e3d052a5cb612a2dd84bda7b1b5487a6a60edc
[ "Apache-2.0" ]
3
2021-12-02T17:16:20.000Z
2022-01-07T12:47:13.000Z
paralleldomain/model/annotation/polygon_2d.py
parallel-domain/pd-sdk
20e3d052a5cb612a2dd84bda7b1b5487a6a60edc
[ "Apache-2.0" ]
2
2022-03-09T07:03:54.000Z
2022-03-23T15:53:48.000Z
from dataclasses import dataclass from typing import List from paralleldomain.model.annotation.common import Annotation from paralleldomain.model.annotation.polyline_2d import Polyline2D @dataclass class Polygon2D(Polyline2D): """A closed polygon made a collection of 2D Lines. Args: lines: :attr:`~.Polygon2D.lines` class_id: :attr:`~.Polygon2D.class_id` instance_id: :attr:`~.Polygon2D.instance_id` attributes: :attr:`~.Polygon2D.attributes` Attributes: lines: Ordered list of :obj:`Line2D` instances class_id: Class ID of the polygon. Can be used to lookup more details in :obj:`ClassMap`. instance_id: Instance ID of annotated object. Can be used to cross-reference with other instance annotation types, e.g., :obj:`InstanceSegmentation2D` or :obj:`InstanceSegmentation3D`. If unknown defaults to -1. attributes: Dictionary of arbitrary object attributes. """ ... @dataclass class Polygons2D(Annotation): """Collection of 2D Polygons Args: polygons: :attr:`~.Polygons2D.polygons` Attributes: polygons: Ordered list of :obj:`Polygon2D` instances """ polygons: List[Polygon2D]
29.380952
114
0.691248
1,018
0.824959
0
0
1,040
0.842788
0
0
911
0.73825
19fd46480858b4a1d5b5836cc3a46a14d32272f9
828
py
Python
tests/backup_bsps.py
LaudateCorpus1/bsp_tool
e8c2489ac3bda5a4467f1dce220a76bbf4ce5b19
[ "MIT" ]
null
null
null
tests/backup_bsps.py
LaudateCorpus1/bsp_tool
e8c2489ac3bda5a4467f1dce220a76bbf4ce5b19
[ "MIT" ]
null
null
null
tests/backup_bsps.py
LaudateCorpus1/bsp_tool
e8c2489ac3bda5a4467f1dce220a76bbf4ce5b19
[ "MIT" ]
null
null
null
import os import shutil import sys from maplist import installed_games backup_dir = "F:/bsps" if len(sys.argv) == 2: backup_dir = sys.argv[1] print(f"Making backups in '{backup_dir}'") i = 0 for base_dir, game_dir in installed_games: i += 1 print(f"Backing up ({i}/{len(installed_games)}) {game_dir}...") for map_dir in installed_games[(base_dir, game_dir)]: src_dir = os.path.join(base_dir, game_dir, map_dir) dest_dir = os.path.join(backup_dir, game_dir, map_dir) os.makedirs(dest_dir, exist_ok=True) try: # note the missed file(s) and continue shutil.copytree(src_dir, dest_dir, dirs_exist_ok=True) except shutil.Error as err: print(f"*** ERROR *** {err}") except FileNotFoundError as err: print(f"*** ERROR *** {err}")
30.666667
67
0.642512
0
0
0
0
0
0
0
0
182
0.219807
19fe235467f017d20a959660a872441f0b170a74
770
py
Python
infobip_channels/whatsapp/models/response/get_templates.py
infobip-community/infobip-api-python-sdk
5ffc5ab877ee1748aa29391f991c8c5324387487
[ "MIT" ]
null
null
null
infobip_channels/whatsapp/models/response/get_templates.py
infobip-community/infobip-api-python-sdk
5ffc5ab877ee1748aa29391f991c8c5324387487
[ "MIT" ]
null
null
null
infobip_channels/whatsapp/models/response/get_templates.py
infobip-community/infobip-api-python-sdk
5ffc5ab877ee1748aa29391f991c8c5324387487
[ "MIT" ]
null
null
null
from typing import List, Optional from pydantic import AnyHttpUrl from infobip_channels.core.models import CamelCaseModel, ResponseBase class Button(CamelCaseModel): text: str type: str phone_number: Optional[str] = None url: Optional[AnyHttpUrl] = None class Header(CamelCaseModel): format: str text: Optional[str] = None class Structure(CamelCaseModel): header: Optional[Header] = None body: str footer: Optional[str] = None type: str buttons: Optional[List[Button]] = None class Template(CamelCaseModel): id: str business_account_id: int name: str language: str status: str category: str structure: Structure class GetTemplatesResponseOK(ResponseBase): templates: List[Template]
19.25
69
0.711688
617
0.801299
0
0
0
0
0
0
0
0
19ff517f6d368213182e5f5031c40842eae17a49
1,391
py
Python
examples/server.py
fhamborg/Giveme5W
b5f49712654ab466e605716b4cd9f8dce9bcdd88
[ "Apache-2.0" ]
16
2018-03-28T11:20:11.000Z
2020-09-17T19:39:25.000Z
examples/server.py
fhamborg/Giveme5W
b5f49712654ab466e605716b4cd9f8dce9bcdd88
[ "Apache-2.0" ]
3
2018-03-15T10:17:29.000Z
2018-05-16T13:14:28.000Z
examples/server.py
fhamborg/Giveme5W
b5f49712654ab466e605716b4cd9f8dce9bcdd88
[ "Apache-2.0" ]
6
2018-05-08T12:53:51.000Z
2021-09-25T03:21:02.000Z
import logging from flask import Flask, request, jsonify from extractor.document import Document from extractor.five_w_extractor import FiveWExtractor app = Flask(__name__) log = logging.getLogger(__name__) host = None port = 5000 debug = False options = None extractor = FiveWExtractor() ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) log.addHandler(ch) log.setLevel(logging.DEBUG) def run(): log.info("starting server on port %i", port) app.run(host, port, debug) log.info("server has stopped") @app.route('/extract', methods=['GET', 'POST']) def extract(): json_article = request.get_json() if not json_article: log.warning("received no article") return jsonify({"error": "no article defined"}) article = {} if json_article.get('title'): article['title'] = json_article.get('title') article['description'] = json_article.get('description') article['text'] = json_article.get('text') else: article['title'] = json_article['articletext'] article['description'] = None article['text'] = None log.debug("retrieved raw article for extraction: %s", json_article['title']) document = Document(article['title'], article['description'], article['text']) extractor.parse(document) return jsonify(document.questions) if __name__ == "__main__": run()
26.245283
82
0.675054
0
0
0
0
827
0.594536
0
0
300
0.215672
19ffa347e490ab19819ef9b329ffa153417391c5
826
py
Python
CPAC/utils/tests/test_symlinks.py
Lawreros/C-PAC
ce26ba9a38cbd401cd405150eeed23b805007724
[ "BSD-3-Clause" ]
125
2015-03-04T09:14:46.000Z
2022-03-29T07:46:12.000Z
CPAC/utils/tests/test_symlinks.py
Lawreros/C-PAC
ce26ba9a38cbd401cd405150eeed23b805007724
[ "BSD-3-Clause" ]
1,018
2015-01-04T16:01:29.000Z
2022-03-31T19:23:09.000Z
CPAC/utils/tests/test_symlinks.py
Lawreros/C-PAC
ce26ba9a38cbd401cd405150eeed23b805007724
[ "BSD-3-Clause" ]
117
2015-01-10T08:05:52.000Z
2022-01-18T05:16:51.000Z
import os import tempfile import pkg_resources as p from CPAC.utils.symlinks import create_symlinks mocked_outputs = \ p.resource_filename( "CPAC", os.path.join( 'utils', 'tests', 'test_symlinks-outputs.txt' ) ) def test_symlinks(): temp_dir = tempfile.mkdtemp(suffix='test_symlinks') paths = [] with open(mocked_outputs, 'r') as f: for path in f.readlines(): path = path.strip() if path: paths += [path] create_symlinks( temp_dir, 'sym_links', 'pipeline_benchmark-FNIRT', '1019436_1', paths ) print("Links created at", temp_dir) # TODO test the generated links # Normal resource case # Several resources within same key case # QC case
19.666667
55
0.579903
0
0
0
0
0
0
0
0
233
0.282082
c200bfcfb3506f7b5d5aa61e676f674b8d4fef20
14,488
py
Python
web/migrations/0001_initial.py
jmason-ebi/pdx
aec38d74a78c907041332f4623c01047f45f3f0a
[ "Apache-2.0" ]
null
null
null
web/migrations/0001_initial.py
jmason-ebi/pdx
aec38d74a78c907041332f4623c01047f45f3f0a
[ "Apache-2.0" ]
null
null
null
web/migrations/0001_initial.py
jmason-ebi/pdx
aec38d74a78c907041332f4623c01047f45f3f0a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2016-09-09 15:33 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import django_extensions.db.fields class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='DataSource', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('name', models.CharField(max_length=200)), ('description', models.TextField()), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='HostStrain', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('name', models.TextField()), ('accession', models.TextField()), ('humanized', models.TextField()), ('humanization_protocol', models.TextField()), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='ImplantationSite', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('name', models.CharField(max_length=255)), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='ImplantationType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('name', models.CharField(max_length=255)), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='Marker', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('gene', models.CharField(max_length=255)), ('details', models.TextField(blank=True, null=True)), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='Patient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('external_id', models.CharField(blank=True, max_length=10)), ('sex', models.CharField(blank=True, max_length=10, null=True)), ('age', models.IntegerField(blank=True, null=True)), ('race', models.TextField(blank=True, null=True)), ('ethnicity', models.TextField(blank=True, null=True)), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='PatientSnapshot', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('age', models.IntegerField(blank=True, null=True)), ('stage', models.TextField(blank=True, null=True)), ('patient', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='web.Patient')), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='PdxStrain', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('external_id', models.CharField(max_length=100)), ('passage_number', models.CharField(blank=True, max_length=25, null=True)), ('lag_time', models.CharField(blank=True, max_length=25, null=True)), ('doubling_time', models.CharField(blank=True, max_length=25, null=True)), ('metastases', models.SmallIntegerField(blank=True, choices=[(1, 'Yes'), (0, 'No'), (3, 'Unknown')], default=None, null=True)), ('data_source', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='web.DataSource')), ('host_strain', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='web.HostStrain')), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='Regime', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('regime', models.TextField()), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='Response', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('result', models.TextField()), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='Treatment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('drug', models.TextField()), ('dose', models.TextField()), ('regime', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='web.Regime')), ('response', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='web.Response')), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='Tumor', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('source_tumor_id', models.CharField(blank=True, max_length=255, null=True)), ('tumor_type', models.CharField(blank=True, max_length=255, null=True)), ('diagnosis', models.CharField(blank=True, max_length=255, null=True)), ('tissue_of_origin', models.CharField(blank=True, max_length=100, null=True)), ('classification', models.CharField(blank=True, max_length=100, null=True)), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.CreateModel( name='TumorHistology', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('description', models.TextField()), ('image', models.ImageField(upload_to='histology')), ], options={ 'verbose_name_plural': 'Tumor Histology Images', }, ), migrations.CreateModel( name='Validation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('status', models.CharField(blank=True, max_length=100, null=True)), ('result', models.TextField()), ('pdx_strain', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='web.PdxStrain')), ], options={ 'ordering': ('-modified', '-created'), 'abstract': False, 'get_latest_by': 'modified', }, ), migrations.AddField( model_name='tumor', name='histology', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='web.TumorHistology'), ), migrations.AddField( model_name='tumor', name='patient_snapshot', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='web.PatientSnapshot'), ), migrations.AddField( model_name='pdxstrain', name='human_tumor', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='human_tumor', to='web.Tumor'), ), migrations.AddField( model_name='pdxstrain', name='implantation_site', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='web.ImplantationSite'), ), migrations.AddField( model_name='pdxstrain', name='implantation_type', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='web.ImplantationType'), ), migrations.AddField( model_name='pdxstrain', name='mouse_tumor', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='mouse_tumor', to='web.Tumor'), ), migrations.AddField( model_name='pdxstrain', name='treatment', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='web.Treatment'), ), migrations.AddField( model_name='patient', name='prior_treatment', field=models.ManyToManyField(to='web.Treatment'), ), migrations.AddField( model_name='marker', name='tumor', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='web.Tumor'), ), ]
50.835088
143
0.574752
14,262
0.984401
0
0
0
0
0
0
2,708
0.186913
c202c2c6ef86a127b7a659f1ab70e457fb054b54
4,799
py
Python
dserve/__init__.py
JIC-CSB/dserve
5f20d9de8ffb52f98ef9c68b327fe1ca9fcee17e
[ "MIT" ]
null
null
null
dserve/__init__.py
JIC-CSB/dserve
5f20d9de8ffb52f98ef9c68b327fe1ca9fcee17e
[ "MIT" ]
null
null
null
dserve/__init__.py
JIC-CSB/dserve
5f20d9de8ffb52f98ef9c68b327fe1ca9fcee17e
[ "MIT" ]
null
null
null
"""Script for running the dserve server.""" import os from flask import ( Flask, jsonify, send_file, abort, request, ) from flask_cors import CORS, cross_origin app = Flask(__name__) cors = CORS(app) @app.route("/") @cross_origin() def root(): content = { "_links": { "self": {"href": "/"}, "items": {"href": "/items"}, "overlays": {"href": "/overlays"} }, "uuid": app._dataset._admin_metadata["uuid"], "dtool_version": app._dataset._admin_metadata["dtool_version"], "name": app._dataset._admin_metadata["name"], "creator_username": app._dataset._admin_metadata["creator_username"], } return jsonify(content) def items_root(): items = [] for i in app._dataset.manifest["file_list"]: item = { "_links": {"self": {"href": "/items/{}".format(i["hash"])}}, "identifier": i["hash"], } items.append(item) content = { "_links": { "self": {"href": "/items"}, }, "_embedded": { "items": items, } } return jsonify(content) def specific_item(identifier): try: app._dataset.item_from_identifier(identifier) except KeyError: abort(404) content = { "_links": { "self": {"href": "/items/{}".format(identifier)}, "content": {"href": "/items/{}/raw".format(identifier)}, "overlays": {"href": "/items/{}/overlays".format(identifier)}, }, } overlays = app._dataset.access_overlays() for overlay_name, overlay in overlays.items(): content[overlay_name] = overlay[identifier] return jsonify(content) @app.route("/items") @app.route("/items/<identifier>") @cross_origin() def items(identifier=None): if identifier is None: return items_root() else: return specific_item(identifier) @app.route("/items/<identifier>/raw") @cross_origin() def raw_item(identifier): try: item = app._dataset.item_from_identifier(identifier) except KeyError: abort(404) item_path = os.path.join( app._dataset._abs_path, app._dataset.data_directory, item["path"] ) return send_file(item_path, item["mimetype"]) @app.route("/items/<identifier>/overlays") @cross_origin() def item_overlays(identifier): try: app._dataset.item_from_identifier(identifier) except KeyError: abort(404) content = { "_links": { "self": {"href": "/items/{}/overlays".format(identifier)}, }, } overlays = app._dataset.access_overlays() for overlay_name in overlays.keys(): href = "/overlays/{}/{}".format(overlay_name, identifier) content["_links"][overlay_name] = {"href": href} return jsonify(content) @app.route("/overlays/<overlay>/<identifier>", methods=["GET", "PUT"]) @cross_origin() def item_overlay_content(overlay, identifier): overlays = app._dataset.access_overlays() try: requested_overlay = overlays[overlay] requested_overlay[identifier] except KeyError: abort(404) if request.method == "PUT": if not request.is_json: abort(422) new_value = request.get_json() requested_overlay[identifier] = new_value try: app._dataset.persist_overlay( overlay, requested_overlay, overwrite=True) except KeyError: abort(405) return "", 201 elif request.method == "GET": value = requested_overlay[identifier] return jsonify(value) def overlay_root(): overlays = app._dataset.access_overlays() content = { "_links": { "self": {"href": "/overlays"}}, } for overlay_name in overlays.keys(): value = {"href": "/overlays/{}".format(overlay_name)} content["_links"][overlay_name] = value return jsonify(content) def specific_overlay(overlay_name): overlays = app._dataset.access_overlays() try: overlay = overlays[overlay_name] except KeyError: abort(404) return jsonify(overlay) def creaate_new_overlay(overlay_name): empty_overlay = app._dataset.empty_overlay() try: app._dataset.persist_overlay(overlay_name, empty_overlay) except IOError: abort(409) return "", 201 @app.route("/overlays") @app.route("/overlays/<overlay_name>", methods=["GET", "PUT"]) @cross_origin() def overalys(overlay_name=None): if overlay_name is None: return overlay_root() else: if request.method == "PUT": return creaate_new_overlay(overlay_name) elif request.method == "GET": return specific_overlay(overlay_name)
25.526596
77
0.600542
0
0
0
0
2,794
0.582205
0
0
761
0.158575
c203136ec3038930bc5926aaf959f30e095e46a5
1,610
py
Python
kkutil/security.py
kaka19ace/kkutils
1ac449488d85ba2c6b18c5dc9cf77a0bc36579b1
[ "MIT" ]
1
2015-12-13T18:42:52.000Z
2015-12-13T18:42:52.000Z
kkutil/security.py
kaka19ace/kkutil
1ac449488d85ba2c6b18c5dc9cf77a0bc36579b1
[ "MIT" ]
null
null
null
kkutil/security.py
kaka19ace/kkutil
1ac449488d85ba2c6b18c5dc9cf77a0bc36579b1
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # """ util regex tool refs: http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks """ import re INJECTION_REGEX = re.compile( r"(%27)|(\')|(\-\-)|(%23)|(#)|" # Regex for detection of SQL meta-characters r"\w*((%27)|(\'))\s+((%6F)|o|(%4F))((%72)|r|(%52))\s*|" # Modified regex for detection of SQL meta-characters eg: ' or 1 = 1' detect word 'or', r"((%3D)|(=))[^\n]*((%27)|(\')|(\-\-)|(%3B)|(;))" # Regex for typical SQL Injection attack eg: '= 1 --' r"((%27)|(\'))union|" # Regex for detecting SQL Injection with the UNION keyword r"((%27)|(\'))select|" # Regex for detecting SQL Injection with the UNION keyword r"((%27)|(\'))insert|" # Regex for detecting SQL Injection with the UNION keyword r"((%27)|(\'))update|" # Regex for detecting SQL Injection with the UNION keyword r"((%27)|(\'))drop", # Regex for detecting SQL Injection with the UNION keyword re.IGNORECASE ) CSS_ATTACK_REGREX = re.compile(r"((%3C)|<)((%2F)|/)*[a-z0-9%]+((%3E)|>)", re.IGNORECASE) CSS_IMG_SRC_ATTACK_REGEX = re.compile( r"((%3C)|<)((%69)|i|(%49))((%6D)|m|(%4D))((%67)|g|(%47))[^\n]+((%3E)|>)", re.IGNORECASE ) CSS_PARANOID_ATTACK_REGEX = re.compile("((%3C)|<)[^\n]+((%3E)|>)", re.IGNORECASE) def is_injection_string(s): return True if INJECTION_REGEX.match(s) else False def is_css_attack_string(s): if CSS_ATTACK_REGREX.match(s) or \ CSS_IMG_SRC_ATTACK_REGEX.match(s) or \ CSS_PARANOID_ATTACK_REGEX.match(s): return True return False
35
148
0.608075
0
0
0
0
0
0
0
0
1,026
0.637267
c204bfd19101390dbf534e7049d9b49aef3685e3
1,520
py
Python
update_eeprom_rc.py
rkojedzinszky/thermo-sensor
f0b5aa6dbf231b566e00a683c5bb1551569d2463
[ "BSD-3-Clause" ]
2
2019-04-25T17:38:02.000Z
2020-03-03T22:50:04.000Z
update_eeprom_rc.py
rkojedzinszky/thermo-sensor
f0b5aa6dbf231b566e00a683c5bb1551569d2463
[ "BSD-3-Clause" ]
null
null
null
update_eeprom_rc.py
rkojedzinszky/thermo-sensor
f0b5aa6dbf231b566e00a683c5bb1551569d2463
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python REGISTERS = { 'IOCFG2': 0x00, 'IOCFG1': 0x01, 'IOCFG0': 0x02, 'FIFOTHR': 0x03, 'SYNC1': 0x04, 'SYNC0': 0x05, 'PKTLEN': 0x06, 'PKTCTRL1': 0x07, 'PKTCTRL0': 0x08, 'ADDR': 0x09, 'CHANNR': 0x0A, 'FSCTRL1': 0x0B, 'FSCTRL0': 0x0C, 'FREQ2': 0x0D, 'FREQ1': 0x0E, 'FREQ0': 0x0F, 'MDMCFG4': 0x10, 'MDMCFG3': 0x11, 'MDMCFG2': 0x12, 'MDMCFG1': 0x13, 'MDMCFG0': 0x14, 'DEVIATN': 0x15, 'MCSM2': 0x16, 'MCSM1': 0x17, 'MCSM0': 0x18, 'FOCCFG': 0x19, 'BSCFG': 0x1A, 'AGCCTRL2': 0x1B, 'AGCCTRL1': 0x1C, 'AGCCTRL0': 0x1D, 'WOREVT1': 0x1E, 'WOREVT0': 0x1F, 'WORCTRL': 0x20, 'FREND1': 0x21, 'FREND0': 0x22, 'FSCAL3': 0x23, 'FSCAL2': 0x24, 'FSCAL1': 0x25, 'FSCAL0': 0x26, 'RCCTRL1': 0x27, 'RCCTRL0': 0x28, 'FSTEST': 0x29, 'PTEST': 0x2A, 'AGCTEST': 0x2B, 'TEST2': 0x2C, 'TEST1': 0x2D, 'TEST0': 0x2E, 'PATABLE': 0x3E, } if __name__ == '__main__': import sys import re with open('eeprom', 'r+b') as fh: fh.seek(20) for line in sys.stdin: if re.match('^\s*#', line): continue m = re.match('(?P<reg>\w+)\s+(?P<value>[0-9a-fA-F]+)', line) if not m: continue m = m.groupdict() fh.write(chr(REGISTERS[m['reg']])) fh.write(chr(int(m['value'], 16))) fh.write(b"\xff" * (512 - fh.tell()))
20.540541
72
0.484211
0
0
0
0
0
0
0
0
505
0.332237
c205b5f889cdcc188c5b89c3efa9505bfb938fe3
384
py
Python
UsefulLink.py
qyu6/TAILab
6c3e7a7e2e49f7c673ab46b90c1568a96cce75b7
[ "Apache-2.0" ]
1
2022-01-10T15:14:55.000Z
2022-01-10T15:14:55.000Z
UsefulLink.py
qyu6/TAILab
6c3e7a7e2e49f7c673ab46b90c1568a96cce75b7
[ "Apache-2.0" ]
null
null
null
UsefulLink.py
qyu6/TAILab
6c3e7a7e2e49f7c673ab46b90c1568a96cce75b7
[ "Apache-2.0" ]
null
null
null
''' @func:to store useful links module @create:2021.10.20 ''' def usefullink(): import streamlit as st st.write('[1].在线Latex公式编辑器') st.write('https://latex.codecogs.com/eqneditor/editor.php?lang=zh-cn') st.write('[2].装饰Github README.md文件的logo') st.write('https://shields.io/') st.write('[3].号称全世界最好的翻译器') st.write('https://www.deepl.com/translator')
25.6
74
0.65625
0
0
0
0
0
0
0
0
288
0.669767
c2065e5fc7e61fdabd4ab6fd12c1ead2ad9d477a
78,713
py
Python
htdeblur/acquisition/motion.py
zfphil/htdeblur
ac557284f9913292721a6b9f943ff9b921043978
[ "BSD-3-Clause" ]
2
2020-01-16T18:30:55.000Z
2020-02-06T08:33:51.000Z
htdeblur/acquisition/motion.py
zfphil/htdeblur
ac557284f9913292721a6b9f943ff9b921043978
[ "BSD-3-Clause" ]
null
null
null
htdeblur/acquisition/motion.py
zfphil/htdeblur
ac557284f9913292721a6b9f943ff9b921043978
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2017 Regents of the University of California # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with # the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os, sys, time, copy, collections, math, json import numpy as np import scipy as sp import matplotlib from matplotlib import pyplot as plt import llops as yp # Custom scale bar object from matplotlib_scalebar.scalebar import ScaleBar # Libwallerlab imports from llops import display from llops import Roi class StopAndStareAcquisition(): # Initialization def __init__(self, hardware_controller_list, system_metadata, illumination_type='bf', illumination_sequence=None, frame_spacing_mm=1, object_size_mm=(0.5, 0.5), reuse_illumination_sequence=True, max_exposure_time_s=2, exposure_time_pad_s=0.0, velocity_mm_s=None, exposure_time_s=None, debug=False, trigger_mode='software', motion_acceleration_mm_s_2=1e3, flip_pathway=False, acquisition_timeout_s=3, illumination_na_pad=0.03, illumination_color={'w': 127}, settle_time_s=0): # Parse options self.illumination_type = illumination_type self.settle_time_s = settle_time_s self.object_size_mm = object_size_mm self.frame_spacing_mm = frame_spacing_mm self.flip_pathway = flip_pathway self.exposure_time_pad_s = exposure_time_pad_s self.debug = debug self.motion_acceleration_mm_s_2 = motion_acceleration_mm_s_2 self.velocity_mm_s = velocity_mm_s self.max_exposure_time_s = max_exposure_time_s self.illumination_na_pad = illumination_na_pad self.illumination_color = illumination_color self.acquisition_timeout_s = acquisition_timeout_s # Define controller objects, which act as hardware interfaces. # These should be in an ordered dictionary because the order which they # are initialized matters when using a mix of hardware and software triggering. self.hardware_controller_list = collections.OrderedDict() # First add hardware triggered elements so they perform their set-up before we trigger software elements for controller in hardware_controller_list: if controller.trigger_mode is 'hardware': self.hardware_controller_list[controller.type] = controller controller.reset() controller.seq_clear() # Then, add software triggered elements for controller in hardware_controller_list: if controller.trigger_mode is 'software': self.hardware_controller_list[controller.type] = controller controller.reset() controller.seq_clear() # Check to be sure a sequence acquisition is not running assert 'camera' in self.hardware_controller_list, 'Did not find camera controller!' # Store metadata object self.metadata = system_metadata # Ensure we have all necessary metadata for basic acquisition assert self.metadata.objective.na is not None, 'Missing objective.na in metadata.' assert self.metadata.objective.mag is not None, 'Missing objective.mag in metadata.' assert self.metadata.camera.pixel_size_um is not None, 'Missing pixel size in metadata.' # Update effective pixel size (for scale bar) self.metadata.system.eff_pixel_size_um = self.metadata.camera.pixel_size_um / (self.metadata.objective.mag * self.metadata.system.mag) # Trigger Constants self.TRIG_MODE_EVERY_PATTERN = 1 self.TRIG_MODE_ITERATION = -1 self.TRIG_MODE_START = -2 # Frame state time sequence, will default to a sequence of one exposure time per frame if left as None self.time_sequence_s = None self.exposure_time_s = None self.hardware_sequence_timing = None # Turn off fast sequencing for illumination by default since this is only avaolable with certain LED arrays if 'illumination' in self.hardware_controller_list: self.hardware_controller_list['illumination'].use_fast_sequence = False # print(type(self.)) self.metadata.type = 'stop and stare' assert 'illumination' in self.hardware_controller_list, 'Stop and Stare acquisition requires programmable light source' assert 'position' in self.hardware_controller_list, 'Stop and Stare acquisition requires programmable positioning device' # Generate motion pathway self.hardware_controller_list['position'].state_sequence = self.genStopAndStarePathwayRaster( self.object_size_mm, self.frame_spacing_mm) # Generate illumination sequence illuminaiton_pattern_sequence = [self.illumination_type] * \ len(self.hardware_controller_list['position'].state_sequence) self.hardware_controller_list['illumination'].state_sequence = self.genMultiContrastSequence( illuminaiton_pattern_sequence) # Tell device not to use feedback self.hardware_controller_list['illumination'].trigger_wait_flag = False self.hardware_controller_list['illumination'].command('trs.0.500.0') self.hardware_controller_list['illumination'].command('trs.1.500.0') self.hardware_controller_list['position'].goToPosition((0,0)) self.hardware_controller_list['position'].command('ENCODER X 1') self.hardware_controller_list['position'].command('ENCODER Y 1') self.hardware_controller_list['position'].command('ENCW X 100') self.hardware_controller_list['position'].command('ENCW Y 100') def acquire(self, exposure_time_ms=50): # Allocate memory for frames if self.hardware_controller_list['camera'].isSequenceRunning(): self.hardware_controller_list['camera'].sequenceStop() self.hardware_controller_list['camera'].setBufferSizeMb( 20 * len(self.hardware_controller_list['position'].state_sequence)) # Set camera exposure self.hardware_controller_list['camera'].setExposure(exposure_time_ms / 1e3) self.hardware_controller_list['camera'].setTriggerMode('hardware') self.hardware_controller_list['camera'].runSequence() self.hardware_controller_list['illumination'].bf() # Snap one image to ensure all acquisitons are started self.hardware_controller_list['camera'].snap() # generate frame_list t0 = time.time() frames_acquired = 0 frame_list = [] for frame in yp.display.progressBar(self.hardware_controller_list['position'].state_sequence, name='Frames Acquired'): pos = frame['states'] x = pos[0][0]['value']['x'] y = pos[0][0]['value']['y'] self.hardware_controller_list['position'].goToPosition((x, y), blocking=True) time.sleep(self.settle_time_s) frame_list.append(self.hardware_controller_list['camera'].snap()) frames_acquired += 1 # print('Acquired %d of %d frames' % (frames_acquired, len(self.hardware_controller_list['position'].state_sequence))) t_acq_sns = time.time() - t0 print("Acquisition took %.4f seconds" % (t_acq_sns)) # Create dataset from htdeblur.mddataset import MotionDeblurDataset dataset = MotionDeblurDataset() # Assign acquisition time self.metadata.acquisition_time_s = t_acq_sns # Apply simple geometric transformations if self.metadata.camera.transpose: frame_list = frame_list.transpose(0, 2, 1) if self.metadata.camera.flip_x: frame_list = np.flip(frame_list, 2) if self.metadata.camera.flip_y: frame_list = np.flip(frame_list, 1) # Assign dataset.frame_list = [frame for frame in frame_list] # Set frame state list self.n_frames = len(self.hardware_controller_list['position'].state_sequence) frame_state_list = [] for frame_index in range(self.n_frames): single_frame_state_list = {} # Loop over hardware controllers and record their state sequences for hardware_controller_name in self.hardware_controller_list: hardware_controller = self.hardware_controller_list[hardware_controller_name] if hardware_controller.state_sequence is not None: single_frame_state_list[hardware_controller_name] = hardware_controller.state_sequence[frame_index] # Record time_sequence_s single_frame_state_list['time_sequence_s'] = [0] # Add to list of all frames frame_state_list.append(single_frame_state_list) dataset.metadata = self.metadata dataset.type = 'stop_and_stare' dataset.frame_state_list = frame_state_list return dataset def genStopAndStarePathwayRaster(self, object_size_mm, frame_spacing_mm, major_axis=1, include_minor_axis=False): # Determine major axis if major_axis is None: major_axis = np.argmax(np.asarray(object_size_mm)) if object_size_mm[0] == object_size_mm[1]: major_axis = 1 # Detemine number of measurements measurement_count = np.ceil(np.asarray(object_size_mm) / np.asarray(frame_spacing_mm) ).astype(np.int) # two components in x and y # Determine slightly smaller frame spacing for optimal coverage of object frame_spacing_mm = (object_size_mm[0] / measurement_count[0], object_size_mm[1] / measurement_count[1]) # Error checking assert np.any(measurement_count > 1), "image_size must be smaller than object_size!" print("Image size requires %d x %d images" % (measurement_count[0], measurement_count[1])) # This variable will be populated by the loop below raster_segments = np.zeros((measurement_count[0] * 2, 2)) # Generate raster points raster_end_point_list = [] pathway = [] linear_segment_index = 0 # This variable keeps track of linear segments, for use with path planning for row in np.arange(measurement_count[0]): if row % 2 == 0: for index, col in enumerate(range(measurement_count[1])): # Add pathway to list pathway.append({'x_start': frame_spacing_mm[1] * col, 'y_start': frame_spacing_mm[0] * row, 'x_end': frame_spacing_mm[1] * col, 'y_end': frame_spacing_mm[0] * row, 'linear_segment_index': linear_segment_index}) else: for index, col in enumerate(reversed(range(measurement_count[1]))): # Add pathway to list frame_spacing_mm[0] * row pathway.append({'x_start': frame_spacing_mm[1] * col, 'y_start': frame_spacing_mm[0] * row, 'x_end': frame_spacing_mm[1] * col, 'y_end': frame_spacing_mm[0] * row, 'linear_segment_index': linear_segment_index}) linear_segment_index += 1 # make the center the mean of the pathway path_means = [] for path in pathway: path_mean = ((path['y_start']), (path['x_start'])) path_means.append(path_mean) # mean = np.sum(np.asarray(path_means), axis=1) / len(path_means) mean = np.sum(np.asarray(path_means), axis=0) / len(path_means) for path in pathway: path['x_start'] -= mean[1] path['x_end'] -= mean[1] path['y_start'] -= mean[0] path['y_end'] -= mean[0] # return pathway state_sequence = [] for path in pathway: # Store common information about this frame common_state_dict = {} common_state_dict['frame_time'] = self.hardware_controller_list['camera'].getExposure() common_state_dict['led_update_rate_us'] = None common_state_dict['linear_segment_index'] = None common_state_dict['frame_distance'] = 0 common_state_dict['exposure_distance'] = 0 common_state_dict['velocity'] = self.velocity_mm_s common_state_dict['acceleration'] = self.motion_acceleration_mm_s_2 common_state_dict['n_blur_positions_exposure'] = 1 common_state_dict['position_delta_x_mm'] = 0 common_state_dict['position_delta_y_mm'] = 0 path_dict = {'value': {'time_index' : 0, 'x': path['x_start'], 'y': path['y_start']}} state_sequence.append({'states' : [[path_dict]], 'common' : common_state_dict}) return(state_sequence) def plotPathway(self): sequence_list = self.hardware_controller_list['position'].state_sequence point_list_start = [] point_list_end = [] for sequence in sequence_list: start_pos = (sequence['states'][0][0]['value']['x'], sequence['states'][0][0]['value']['y']) end_pos = (sequence['states'][-1][0]['value']['x'], sequence['states'][-1][0]['value']['y']) point_list_start.append(start_pos) point_list_end.append(end_pos) point_list_start = np.asarray(point_list_start) point_list_end = np.asarray(point_list_end) plt.figure() for index in range(len(point_list_start)): plt.scatter(point_list_start[index, 0], point_list_start[index, 1], c='b') plt.scatter(point_list_end[index, 0], point_list_end[index, 1], c='r') plt.plot([point_list_start[index, 0], point_list_end[index, 0]], [point_list_start[index, 1], point_list_end[index, 1]], c='y') plt.xlabel('Position X (mm)') plt.ylabel('Position Y (mm)') plt.title('Pathway (b is start, y/o is end)') plt.gca().invert_yaxis() def genMultiContrastSequence(self, illumination_pattern_sequence, n_acquisitions=1, darkfield_annulus_width_na=0.1): led_list = np.arange(self.metadata.illumination.state_list.design.shape[0]) bf_mask = self.metadata.illumination.state_list.design[:, 0] ** 2 \ + self.metadata.illumination.state_list.design[:, 1] ** 2 < ( self.metadata.objective.na + self.illumination_na_pad) ** 2 led_list_bf = led_list[bf_mask] led_list_df = led_list[~bf_mask] led_list_an = led_list[~bf_mask & (self.metadata.illumination.state_list.design[:, 0] ** 2 + self.metadata.illumination.state_list.design[:, 1] ** 2 < (self.metadata.objective.na + darkfield_annulus_width_na) ** 2)] illumination_sequence = [] self.pattern_type_list = [] pattern_dict = {'dpc.top': np.ndarray.tolist(led_list_bf[self.metadata.illumination.state_list.design[bf_mask, 1] > 0]), 'dpc.bottom': np.ndarray.tolist(led_list_bf[self.metadata.illumination.state_list.design[bf_mask, 1] < 0]), 'dpc.left': np.ndarray.tolist(led_list_bf[self.metadata.illumination.state_list.design[bf_mask, 0] > 0]), 'dpc.right': np.ndarray.tolist(led_list_bf[self.metadata.illumination.state_list.design[bf_mask, 0] < 0]), 'single': [0], 'bf': np.ndarray.tolist(led_list_bf), 'df': np.ndarray.tolist(led_list_df), 'an': np.ndarray.tolist(led_list_an), 'full': np.ndarray.tolist(led_list) } # DPC does not flicker patterns within frames n_time_points_per_frame = 1 illumination_state_list = [] # Write image sequence to list for acquisition_index in range(n_acquisitions): # Loop over DPC patterns (frames) for frame_index, pattern in enumerate(illumination_pattern_sequence): single_frame_state_list_illumination = [] # Loop over time points (irrelevent for dpc) for time_index in range(n_time_points_per_frame): time_point_state_list = [] # Loop over DPC patterns (which are themselves frames) for led_idx in pattern_dict[pattern]: values_dict = {} for color_name in self.illumination_color: values_dict[color_name] = self.illumination_color[color_name] led_dict = { 'index': int(led_idx), 'time_index': 0, 'value': values_dict } # Append this to list with elements for each interframe time point time_point_state_list.append(led_dict) # Append to frame_dict single_frame_state_list_illumination.append(time_point_state_list) # Define illumination sequence illumination_state_list.append({'states' : single_frame_state_list_illumination, 'common' : {}}) # Define illumination list self.state_list = self.metadata.illumination.state_list.design return illumination_state_list class MotionDeblurAcquisition(): # Initialization def __init__(self, hardware_controller_list, system_metadata, illumination_sequence=None, motion_path_type='linear', use_l1_distance_for_motion_calculations=True, blur_vector_method='pseudo_random', kernel_pulse_count=150, saturation_factor=1.0, frame_spacing_mm=1, object_size_mm=(0.5, 0.5), reuse_illumination_sequence=True, max_exposure_time_s=2, max_velocity_mm_s=40.0, max_led_update_rate_us=0.01, exposure_time_pad_s=0.0, velocity_mm_s=None, exposure_time_s=None, debug=False, motion_acceleration_mm_s_2=1e3, extra_run_up_time_s=0, flip_pathway=False, segment_delay_s=0, initial_auto_exposure=False, acquisition_timeout_s=3, illumination_sequence_count=1, illumination_na_pad=0.03, illumination_color={'w': 127}, only_store_first_and_last_position=True): # Parse options self.motion_path_type = motion_path_type self.object_size_mm = object_size_mm self.frame_spacing_mm = frame_spacing_mm self.flip_pathway = flip_pathway self.use_l1_distance_for_motion_calculations = use_l1_distance_for_motion_calculations self.velocity_mm_s = velocity_mm_s self.exposure_time_pad_s = exposure_time_pad_s self.debug = debug self.motion_acceleration_mm_s_2 = motion_acceleration_mm_s_2 self.max_led_update_rate_us = max_led_update_rate_us self.max_exposure_time_s = max_exposure_time_s self.max_velocity_mm_s = max_velocity_mm_s self.illumination_na_pad = illumination_na_pad self.saturation_factor = saturation_factor self.reuse_illumination_sequence = reuse_illumination_sequence self.blur_vector_method = blur_vector_method self.kernel_pulse_count = kernel_pulse_count self.illumination_color = illumination_color self.extra_run_up_time_s = extra_run_up_time_s self.initial_auto_exposure = initial_auto_exposure self.acquisition_timeout_s = acquisition_timeout_s self.segment_delay_s = segment_delay_s self.only_store_first_and_last_position = only_store_first_and_last_position self.illumination_sequence = illumination_sequence self.illumination_sequence_count = illumination_sequence_count # Define controller objects, which act as hardware interfaces. # These should be in an ordered dictionary because the order which they # are initialized matters when using a mix of hardware and software triggering. self.hardware_controller_list = collections.OrderedDict() # First add hardware triggered elements so they perform their set-up before we trigger software elements for controller in hardware_controller_list: if hasattr(controller, 'trigger_mode'): if controller.trigger_mode is 'hardware': self.hardware_controller_list[controller.type] = controller controller.reset() controller.seq_clear() # Then, add software triggered elements for controller in hardware_controller_list: self.hardware_controller_list[controller.type] = controller controller.reset() controller.seq_clear() # Check to be sure a sequence acquisition is not running assert 'camera' in self.hardware_controller_list, 'Did not find camera controller!' # Store metadata object self.metadata = system_metadata # Ensure we have all necessary metadata for basic acquisition assert self.metadata.objective.na is not None, 'Missing objective.na in metadata.' assert self.metadata.objective.mag is not None, 'Missing objective.mag in metadata.' assert self.metadata.camera.pixel_size_um is not None, 'Missing pixel size in metadata.' # Update effective pixel size (for scale bar) self.metadata.system.eff_pixel_size_um = self.metadata.camera.pixel_size_um / (self.metadata.objective.mag * self.metadata.system.mag) # Trigger Constants self.TRIG_MODE_EVERY_PATTERN = 1 self.TRIG_MODE_ITERATION = -1 self.TRIG_MODE_START = -2 # Frame state time sequence, will default to a sequence of one exposure time per frame if left as None self.time_sequence_s = None self.exposure_time_s = None self.hardware_sequence_timing = None # Turn off fast sequencing for illumination by default since this is only avaolable with certain LED arrays if 'illumination' in self.hardware_controller_list: self.hardware_controller_list['illumination'].use_fast_sequence = False # Set metadata type self.metadata.type = 'motiondeblur' assert 'illumination' in self.hardware_controller_list, 'Motion deblur object requires programmable light source' assert 'position' in self.hardware_controller_list, 'Motion deblur object requires motion stage' # Initialize state_sequence self.state_sequence = [] # Generate position sequence self.hardware_controller_list['position'].state_sequence, self.time_sequence_s = self.genMotionPathway( pathway_type=self.motion_path_type, frame_spacing_mm=frame_spacing_mm) # Generate illumination sequence self.hardware_controller_list['illumination'].state_sequence = self.genMotionIlluminationSequenceRandom(illumination_sequence=illumination_sequence, sequence_count=self.illumination_sequence_count) # Set up subframe captures self.subframe_capture_count = len(self.hardware_controller_list['illumination'].state_sequence[0]) self.force_preload_all_frames = True self.hardware_controller_list['position'].continuous_states_between_frames = True # Configure illuination to use fast sequence updating if specified in options self.hardware_controller_list['illumination'].use_fast_sequence = True # Set bit depth self.illumination_sequence_bit_depth = 1 # Set extra options for position controller self.hardware_controller_list['position'].extra_run_up_time_s = self.extra_run_up_time_s # Calculate effective pixel size if it hasn't already been calculated self.metadata.system.eff_pixel_size_um = self.metadata.camera.pixel_size_um / \ (self.metadata.objective.mag * self.metadata.system.mag) def preAcquire(self): ''' This method sets up the camera for an acquisition ''' # Check that the length of motion, illuimination, pupil, and focal sequences are same (or None) frame_counts = [] for hardware_controller_name in list(self.hardware_controller_list): # Get controller object from dictionary hardware_controller = self.hardware_controller_list[hardware_controller_name] if hardware_controller.state_sequence is not None: # Reset Controller hardware_controller.reset() # Get number of frames in sequence. If there is no sequence, remove this element from hw_controller_list if hardware_controller.type is not 'camera': if hardware_controller.state_sequence is not None: frame_counts.append(len(hardware_controller.state_sequence)) else: self.hardware_controller_list.pop(hardware_controller_name) else: # Remove this controller from the list if hardware_controller_name is not 'camera': del self.hardware_controller_list[hardware_controller_name] # Turn on hardware triggering for initialization self.hardware_controller_list['camera'].setTriggerMode('hardware') # Set illumination parameters if 'illumination' in self.hardware_controller_list: # self.hardware_controller_list['illumination'].setColor(self.illumination_color) self.hardware_controller_list['illumination'].setSequenceBitDepth( self.illumination_sequence_bit_depth) # Ensure all hardware elements have the same number of frames if len(frame_counts) > 0: if not np.sum(np.mean(np.asarray(frame_counts)) == np.asarray(frame_counts)) == len(frame_counts): raise ValueError('Sequence lengths are not the same (or None).') else: self.n_frames = frame_counts[0] else: raise ValueError('No sequence provided!') # Initialize frame_list self.frame_list = np.zeros((self.n_frames, self.hardware_controller_list['camera'].getImageHeight(), self.hardware_controller_list['camera'].getImageWidth()), dtype=np.uint16) # Apply simple geometric transformations if self.metadata.camera.transpose: self.frame_list = self.frame_list.transpose(0, 2, 1) if self.metadata.camera.flip_x: self.frame_list = np.flip(self.frame_list, 2) if self.metadata.camera.flip_y: self.frame_list = np.flip(self.frame_list, 1) # Generate frame_state_list frame_state_list = [] if self.time_sequence_s is None: self.time_sequence_s = [] for _ in range(self.n_frames): self.time_sequence_s.append([0]) # Loop over frames for frame_index in range(self.n_frames): single_frame_state_list = {} # Loop over hardware controllers and record their state sequences for hardware_controller_name in self.hardware_controller_list: hardware_controller = self.hardware_controller_list[hardware_controller_name] if hardware_controller.state_sequence is not None: single_frame_state_list[hardware_controller_name] = hardware_controller.state_sequence[frame_index] # Record time_sequence_s single_frame_state_list['time_sequence_s'] = self.time_sequence_s[frame_index] # Add to list of all frames frame_state_list.append(single_frame_state_list) self.frame_state_list = frame_state_list # Perform auto-exposure if user desires if self.initial_auto_exposure: # Illuminate with first pattern if 'illumination' in self.hardware_controller_list: self.hardware_controller_list['illumination'].sequenceReset() self.hardware_controller_list['illumination'].time_sequence_s = [[0]] self.hardware_controller_list['illumination'].preloadSequence(0) self.hardware_controller_list['illumination'].sequenceStep() # Small delay to ensure illumination gets updated time.sleep(0.1) # Run Auto-Exposure self.hardware_controller_list['camera'].autoExposure() # Set camera memory footprint if (self.hardware_controller_list['camera'].getBufferTotalCapacity() < self.frame_list.shape[0]): self.frame_size_mb = int( np.ceil(float(self.frame_list.shape[0] / 1e6) * float(self.frame_list.shape[1]) * float(self.frame_list.shape[2]) * 2)) print('Allocating %dmb for frames' % self.frame_size_mb) self.hardware_controller_list['camera'].setBufferSizeMb(self.frame_size_mb) assert self.hardware_controller_list['camera'].getBufferTotalCapacity( ) >= self.frame_list.shape[0], 'Buffer size too small!' # Store initial time (acquisition start) t0 = time.time() # Tell camera to start waiting for frames self.hardware_controller_list['camera'].runSequence() # Keep track of how many images we have acquired self.total_frame_count = 0 def acquire(self, dataset=None, reset_devices=False): ''' This is a generic acquisition class, where LEDs are updated according to the sequence variable. ''' # Call preacquire. which initializes hardware and variables self.preAcquire() # Determine which frames can be preloaded before serial acquisition. If each frame is only one state, we assume that we can preload all frames. But, if the state of any hardware element changes within any frame, we will assume we can't preload the frames frame_count = 0 linear_segment_list = [] for frame_state in self.hardware_controller_list['position'].state_sequence: if frame_state['common']['linear_segment_index'] >= 0: frame_count += 1 if frame_state['common']['linear_segment_index'] not in linear_segment_list: linear_segment_list.append(frame_state['common']['linear_segment_index']) print("Found %d segments and %d frames" % (len(linear_segment_list), frame_count)) t_start = time.time() for linear_segment_index in linear_segment_list: self.frames_to_acquire = [] # Determine which linear segments to run for frame_index, frame_state in enumerate(self.hardware_controller_list['position'].state_sequence): if frame_state['common']['linear_segment_index'] == linear_segment_index: self.frames_to_acquire += [frame_index] self.n_frames_to_acquire = len(self.frames_to_acquire) x_start = self.hardware_controller_list['position'].state_sequence[self.frames_to_acquire[0]]['states'][0][0]['value']['x'] y_start = self.hardware_controller_list['position'].state_sequence[self.frames_to_acquire[0]]['states'][0][0]['value']['y'] x_end = self.hardware_controller_list['position'].state_sequence[self.frames_to_acquire[-1]]['states'][0][0]['value']['x'] y_end = self.hardware_controller_list['position'].state_sequence[self.frames_to_acquire[-1]]['states'][0][0]['value']['y'] print('Starting linear segment %d which has %d frames moving from (%.4f, %.4f)mm to (%.4f, %.4f)mm' % (linear_segment_index, self.n_frames_to_acquire, x_start, y_start, x_end, y_end)) frame_has_multiple_states = [] for frame_index in self.frames_to_acquire: number_of_states_in_current_frame = 0 for hardware_controller_name in self.hardware_controller_list: if hardware_controller_name is not 'camera' and self.hardware_controller_list[hardware_controller_name].state_sequence is not None: # Check if this frame can be preloaded (if it has more than one state, it can't be preloaded) number_of_states_in_current_frame = max(number_of_states_in_current_frame, len( self.hardware_controller_list[hardware_controller_name].state_sequence[frame_index]['states'])) # Check that the length of time_sequence_s matches the max number of state changes within this frame if number_of_states_in_current_frame > 1: frame_has_multiple_states.append(True) assert self.time_sequence_s is not None, "time_sequence_s can not be None if any frame has multiple states!" assert len(self.time_sequence_s[frame_index]) == number_of_states_in_current_frame, "time_sequence_s for frame %d is of wrong length!" % len( self.time_sequence_s[frame_index]['states']) else: frame_has_multiple_states.append(False) # Determine if the entire multi-frame sequence can be preloaded (this will be False if ther eis only one system state (e.g. LED pattern) within each frame) all_frames_will_be_preloaded = (not any(frame_has_multiple_states)) or self.force_preload_all_frames # Determine optimal exposure time for all frames if self.exposure_time_s is not None: self.hardware_controller_list['camera'].setExposure(self.exposure_time_s) elif self.time_sequence_s is not None and max(self.time_sequence_s[0]) > 0: frame_exposures = [] for frame_index in range(self.n_frames_to_acquire): frame_exposures.append(max(self.time_sequence_s[frame_index])) self.exposure_time_s = sum(frame_exposures) / (self.n_frames_to_acquire) self.hardware_controller_list['camera'].setExposure(self.exposure_time_s) else: self.exposure_time_s = self.hardware_controller_list['camera'].getExposure() # Check that exposure time is correct assert abs(self.exposure_time_s - self.hardware_controller_list['camera'].getExposure( )) < 1e-3, "Desired exposure time %.2f is not equal to device exposure %.2f. This is probably a MM issue" % (self.exposure_time_s, self.hardware_controller_list['camera'].getExposure()) # print('Using exposure time %.2fs (%d ms)' % (self.exposure_time_s, int(self.exposure_time_s * 1000))) # Check that time_sequence_s for multiple frames exists if there are inter-frame state changes if (not any(frame_has_multiple_states)) or self.time_sequence_s is None: self.time_sequence_s = [self.exposure_time_s] # Configure hardware triggering trigger_output_settings = [0, 0] trigger_input_settings = [0, 0] for hardware_controller_name in self.hardware_controller_list: hardware_controller = self.hardware_controller_list[hardware_controller_name] if hasattr(hardware_controller, 'trigger_mode') and 'hardware' in hardware_controller.trigger_mode: # Check that trigger pins are configured assert hardware_controller.trigger_pin is not None, 'Trigger pin must be configured for hardware triggering!' # Determine if we're performing preloadable acquisitions or not if self.subframe_capture_count > 1: if self.reuse_illumination_sequence: if hardware_controller_name == 'camera': if self.illumination_sequence_count == 1: trigger_output_settings[hardware_controller.trigger_pin] = self.TRIG_MODE_ITERATION trigger_input_settings[hardware_controller.trigger_pin] = self.TRIG_MODE_ITERATION else: trigger_output_settings[hardware_controller.trigger_pin] = len(self.hardware_controller_list['position'].state_sequence[0]['states']) // self.illumination_sequence_count trigger_input_settings[hardware_controller.trigger_pin] = len(self.hardware_controller_list['position'].state_sequence[0]['states']) // self.illumination_sequence_count elif hardware_controller_name == 'position': trigger_output_settings[hardware_controller.trigger_pin] = self.TRIG_MODE_START trigger_input_settings[hardware_controller.trigger_pin] = self.TRIG_MODE_START else: if hardware_controller_name == 'camera': trigger_output_settings[hardware_controller.trigger_pin] = self.subframe_capture_count trigger_input_settings[hardware_controller.trigger_pin] = self.subframe_capture_count elif hardware_controller_name == 'position': trigger_output_settings[hardware_controller.trigger_pin] = self.TRIG_MODE_START trigger_input_settings[hardware_controller.trigger_pin] = self.TRIG_MODE_START # Case where there is only one system state wihtin each frame (trigger each frame) elif all_frames_will_be_preloaded: trigger_output_settings[hardware_controller.trigger_pin] = self.TRIG_MODE_EVERY_PATTERN trigger_input_settings[hardware_controller.trigger_pin] = self.TRIG_MODE_EVERY_PATTERN # Case where we only want to trigger on first frame. This is probably not a good default. else: trigger_output_settings[hardware_controller.trigger_pin] = self.TRIG_MODE_ITERATION trigger_input_settings[hardware_controller.trigger_pin] = self.TRIG_MODE_ITERATION # Check that this hardware controller is ready for a sequence, if it is sequencable. if hardware_controller.state_sequence is not None: # Reset controller sequence to initial state hardware_controller.sequenceReset() time.sleep(0.1) # Wait until initialization is complete initialization_wait_time = 0 for hardware_controller_name in self.hardware_controller_list: while not self.hardware_controller_list[hardware_controller_name].isReadyForSequence(): time.sleep(0.05) initialization_wait_time += 0.05 if initialization_wait_time > self.acquisition_timeout_s: raise ValueError('Pre-acquisiton isReadyForSequence timeout for %s' % hardware_controller_name) # Tell the hardware controller about the acquisition time sequence if len(hardware_controller.state_sequence) == len(self.time_sequence_s): hardware_controller.time_sequence_s = [self.time_sequence_s[i] for i in self.frames_to_acquire] else: hardware_controller.time_sequence_s = [ [self.hardware_controller_list['camera'].getExposure()]] * self.n_frames_to_acquire # Set up triggering for hardware acquision self.hardware_controller_list['illumination'].trigger_output_settings = trigger_output_settings self.hardware_controller_list['illumination'].trigger_input_settings = trigger_input_settings # Determine which sequences get preloaded if all_frames_will_be_preloaded: # One system state per acquisition frame_preload_sequence = [-1] # Preload all frames at once else: frame_preload_sequence = range(self.n_frames_to_acquire) # Preload each frame serially # Loop over frames to capture (may only execute once if we're preloading all frames) for preload_index in frame_preload_sequence: # Loop over hardware controllers, preload, and determine necessary exposure time (if using inter-frame state changes) for hardware_controller_name in self.hardware_controller_list: # If we're using the motion stage, calculate the mechanical delay if hardware_controller_name == 'position': # Get velocity and acceleration from state sequence if preload_index == -1: index = 0 else: index = preload_index velocity = self.hardware_controller_list[hardware_controller_name].state_sequence[0]['common']['velocity'] acceleration = self.hardware_controller_list[hardware_controller_name].acceleration jerk = self.hardware_controller_list[hardware_controller_name].jerk # Calculate spin-up time and distance # http://www.wolframalpha.com/input/?i=v+%3D+t+*+(a+%2B+0.5*j+*+t)+solve+for+t # http://www.wolframalpha.com/input/?i=v+%3D+t+*+(a+%2B+(1%2F8)*j+*+t)+solve+for+t # Good reference: # http://www.et.byu.edu/~ered/ME537/Notes/Ch5.pdf # Total period if False: # First period (acceleration of acceleration) t_1 = acceleration / jerk # x_1 = 1/6 * jerk * t_1 ** 3 x_1 = acceleration ** 2 / (6 * jerk) * t_1 # v_1 = 1/2 * jerk * t_1 ** 2 v_1 = acceleration ** 2 / (2 * jerk) # Second period (linear region) dv = velocity - 2 * v_1 assert dv > 0 t_2 = dv / acceleration x_2 = v_1 * t_2 + 1/2 * acceleration * t_2 ** 2 v_2 = velocity - v_1 # Third period (decelleration of acceleration) t_3 = acceleration / jerk x_3 = (v_2 + acceleration ** 2 / (3 * jerk)) * t_3 v_3 = v_1 # Calculate spin-up distance and time spin_up_time_s = t_1 + t_2 + t_3 spin_up_distance_mm = x_1 + x_2 + x_3 assert (v_1 + v_2 + v_3 - velocity) < 1e-1, "Calculated velocity is %.4f, desired is %.4f" % (v_1 + v_2 + v_3, velocity) else: spin_up_time_s = velocity / acceleration spin_up_distance_mm = 1/2 * acceleration * spin_up_time_s ** 2 # Add extra spin_up time spin_up_time_s += self.extra_run_up_time_s spin_up_distance_mm += self.extra_run_up_time_s * velocity # spin_up_distance_mm = 0 spin_up_time_s = max(spin_up_time_s, 0.0001) self.hardware_controller_list['illumination'].setupTriggering(self.hardware_controller_list['position'].trigger_pin, int( self.hardware_controller_list['position'].trigger_pulse_width_us), int(spin_up_time_s * 1e6)) # convert to seconds # Tell motion stage to offset it's positions by these amounts self.hardware_controller_list['position'].preload_run_up_distance_mm = spin_up_distance_mm else: # no delay for other components self.hardware_controller_list[hardware_controller_name].trigger_start_delay_s = 0 if hardware_controller_name is not 'camera' and self.hardware_controller_list[hardware_controller_name].state_sequence is not None: if hardware_controller_name is not 'illumination' or linear_segment_index == 0: if hardware_controller_name == 'illumination' and self.reuse_illumination_sequence: self.hardware_controller_list[hardware_controller_name].preloadSequence(0) else: state_sequence_used = [ self.hardware_controller_list[hardware_controller_name].state_sequence[i] for i in self.frames_to_acquire] self.hardware_controller_list[hardware_controller_name].preloadSequence( preload_index, state_sequence=state_sequence_used) if preload_index < 0 or self.reuse_illumination_sequence: frames_to_wait_for = self.n_frames_to_acquire # wait for all frames else: frames_to_wait_for = 1 # Set trigger frame time based on first pathway TODO: This is a hack if 'position' in self.hardware_controller_list: self.hardware_controller_list['illumination'].trigger_frame_time_s[self.hardware_controller_list['camera'] .trigger_pin] = self.hardware_controller_list['position'].state_sequence[0]['common']['frame_time'] * 1e6 # Tell stage to start moving self.hardware_controller_list['position'].runSequence() if linear_segment_index == 0: t_start = time.time() # Tell illumination to start moving if self.reuse_illumination_sequence: self.hardware_controller_list['illumination'].runSequence( n_acquisitions=1 * self.n_frames_to_acquire) else: self.hardware_controller_list['illumination'].runSequence(n_acquisitions=1) # Wait for frames to be captured t_frame = time.time() frame_count = 0 while frame_count < frames_to_wait_for: if self.total_frame_count + frame_count == frames_to_wait_for: break else: if self.total_frame_count + frame_count == self.hardware_controller_list['camera'].getBufferSizeFrames(): time.sleep(0.01) if (time.time() - t_frame) > self.acquisition_timeout_s: print(self.hardware_controller_list['illumination'].response()) raise ValueError('Acquisition timeout (Total frame count: %d, Buffer size: %d, preload index %d, frames to wait for: %d)' % ( self.total_frame_count, self.hardware_controller_list['camera'].getBufferSizeFrames(), preload_index, frames_to_wait_for)) else: if ((self.total_frame_count + frame_count) % int((self.n_frames) / min(10, self.n_frames_to_acquire))) == 0: print('Acquired %d of %d frames' % ( self.hardware_controller_list['camera'].getBufferSizeFrames(), self.n_frames_to_acquire)) frame_count = self.hardware_controller_list['camera'].getBufferSizeFrames( ) - self.total_frame_count self.total_frame_count = self.hardware_controller_list['camera'].getBufferSizeFrames() t_frame = time.time() # Get sequence timing information time.sleep(0.1) print(self.hardware_controller_list['illumination'].response()) # Wait for hardware to stop for hardware_controller_name in self.hardware_controller_list: while not self.hardware_controller_list[hardware_controller_name].isReadyForSequence(): time.sleep(0.05) self.sequence_timing_dict = {} # Reset sequences for hardware_controller_name in self.hardware_controller_list: if hardware_controller_name is not 'camera': self.hardware_controller_list[hardware_controller_name].sequenceReset() # Let user know we're finished print('Finished linear segment %d' % linear_segment_index) time.sleep(self.segment_delay_s) t_acq = time.time() - t_start self.metadata.acquisition_time_s = t_acq print("Acquisition took %.4f seconds" % (t_acq)) # Call post-acquire functions dataset = self.postAcquire(dataset=dataset, reset_devices=reset_devices) # Return return dataset def postAcquire(self, dataset=None, reset_devices=True): """Post-acquisition steps for resetting hardware and preparing dataset.""" # Stop acquisition # self.hardware_controller_list['camera'].sequenceStop() # Parse dataset if dataset is None: from htdeblur.mddataset import MotionDeblurDataset dataset = MotionDeblurDataset() # Read frames and timestamps from buffer (self.frame_list, elapsed_frame_time_ms) = self.hardware_controller_list['camera'].readFramesFromBuffer() # Apply simple geometric transformations if self.metadata.camera.transpose: self.frame_list = self.frame_list.transpose(0, 2, 1) if self.metadata.camera.flip_x: self.frame_list = np.flip(self.frame_list, 2) if self.metadata.camera.flip_y: self.frame_list = np.flip(self.frame_list, 1) # Let user know we're finished print('Read frames from buffer.') # Store camera timing in a standardized timing dict self.sequence_timing_dict = {} self.sequence_timing_dict['sequence_timing'] = [] for frame_index, frame_time in enumerate(elapsed_frame_time_ms): timing_dict = {'trigger_number' : 0, 'acquisition_number' : frame_index, 'camera_start_time_us' : frame_time * 1000} self.sequence_timing_dict['sequence_timing'].append(timing_dict) # Reset all hardware elements if reset_devices: for hardware_controller_name in self.hardware_controller_list: self.hardware_controller_list[hardware_controller_name].reset() if self.only_store_first_and_last_position: for frame_state in self.frame_state_list[1:]: frame_state['position']['states'] = [frame_state['position']['states'][0], frame_state['position']['states'][-1]] # Remove repeated illumination patterns and time_sequence_s if we used the same illumination for each pulse if self.reuse_illumination_sequence: for frame_state in self.frame_state_list[1:]: frame_state['time_sequence_s'] = 'see_frame_#1' frame_state['illumination'] = 'see_frame_#1' # Illuminate with brightfield to indicate we're Finished self.hardware_controller_list['illumination'].bf() self.hardware_controller_list['position'].goToPosition((0,0)) # Save results to an itoools.Dataset object dataset.frame_list = self.frame_list dataset.frame_state_list = self.frame_state_list dataset.metadata = self.metadata dataset.type = 'motion_deblur' # Return return dataset def genMotionPathway(self, n_acquisitions=1, pathway_type='raster', frame_spacing_mm=1.): ''' This function generates a few example motion pathways. ''' if pathway_type is 'raster': pathway = self.genMotionPathwayRaster(self.object_size_mm, self.frame_spacing_mm) elif (pathway_type is 'linear') or (pathway_type is 'linear_x'): # predefine linear y sequence n_frames = int(math.ceil(self.object_size_mm[1] / self.frame_spacing_mm[1])) pathway = [] for frame_index in range(n_frames): pathway.append({'x_start': frame_index * self.frame_spacing_mm[1], 'x_end': (frame_index + 1) * self.frame_spacing_mm[1], 'y_start': 0, 'y_end': 0, 'linear_segment_index': 0}) elif pathway_type in ['linear_y']: # predefine linear y sequence n_frames = int(np.ceil(self.object_size_mm[0] / self.frame_spacing_mm[0])) pathway = [] for frame_index in range(n_frames): pathway.append({'y_start': -frame_index * self.frame_spacing_mm[0], 'y_end': -(frame_index + 1) * self.frame_spacing_mm[0], 'x_start': 0, 'x_end': 0, 'linear_segment_index': 0}) elif pathway_type is 'linear_diag': # predefine linear y sequence n_frames = int(np.ceil(self.object_size_mm[0] / self.frame_spacing_mm[0])) pathway = [] for frame_index in range(n_frames): pathway.append({'y_start': frame_index * self.frame_spacing_mm[0], 'y_end': (frame_index + 1) * self.frame_spacing_mm[0], 'x_start': frame_index * self.frame_spacing_mm[0], 'x_end': (frame_index + 1) * self.frame_spacing_mm[0], 'linear_segment_index': 0}) else: raise ValueError('Pathway type %s is not implemented.' % pathway_type) # make the center the mean of the pathway path_xmin = 1e8 path_ymin = 1e8 path_xmax = -1e8 path_ymax = -1e8 for path in pathway: path_mean = ((path['y_start']), (path['y_start'])) path_xmin = min(path_xmin, min([path['x_start'], path['x_end']])) path_xmax = max(path_xmax, max([path['x_start'], path['x_end']])) path_ymin = min(path_ymin, min([path['y_start'], path['y_end']])) path_ymax = max(path_ymax, max([path['y_start'], path['y_end']])) mean = ((path_ymax + path_ymin) / 2, (path_xmax + path_xmin) / 2) for path in pathway: path['x_start'] = path['x_start'] - mean[1] path['x_end'] = path['x_end'] - mean[1] path['y_start'] = path['y_start'] - mean[0] path['y_end'] = path['y_end'] - mean[0] # Flip pathway if user desired if self.flip_pathway: for path in pathway: path['x_start'] *= -1 path['x_end'] *= -1 path['y_start'] *= -1 path['y_end'] *= -1 position_state_list = [] time_sequence_s = [] # Write image sequence to list for acquisition_index in range(n_acquisitions): # Loop over DPC patterns (frames) for frame_index, position in enumerate(pathway): # define distance in terms of l1 or l2 distance distance_l2 = float(np.sqrt((position['x_end'] - position['x_start']) ** 2 + (position['y_end'] - position['y_start']) ** 2)) distance_l1 = float(abs(position['x_end'] - position['x_start']) + abs(position['y_end'] - position['y_start'])) if self.use_l1_distance_for_motion_calculations: position['frame_distance'] = int(round(distance_l1 * 1000)) / 1000 # round to nearest um else: position['frame_distance'] = int(round(distance_l2 * 1000)) / 1000 # round to nearest um # Determine number of qunatifiable positions in pathway position['n_blur_positions_frame'] = int( math.floor(position['frame_distance'] / (self.metadata.system.eff_pixel_size_um / 1000))) # Determine necessary velocity if self.velocity_mm_s is not None: position['velocity_mm_s'] = self.velocity_mm_s else: position['velocity_mm_s'] = self.max_velocity_mm_s # Use fastest speed possible # Calculate time between frames position['frame_time_s'] = position['frame_distance'] / position['velocity_mm_s'] # t = x / v # Determine camera exposure time for this frame position['exposure_time_s'] = int(math.floor((self.hardware_controller_list['camera'].calcExposureTimeFromBusyTime( position['frame_time_s']) - self.exposure_time_pad_s) * 1000)) / 1000 # round to nearest ms # Determine LED update rate dx_pixel = position['frame_distance'] / position['n_blur_positions_frame'] dt_pixel_raw = dx_pixel / position['velocity_mm_s'] position['led_update_rate_us'] = math.ceil(dt_pixel_raw * 1e6) # Round up to integer us # Determine new velocity (ps / update rate) new_velocity_mm_s = (self.metadata.system.eff_pixel_size_um / 1e3) / (position['led_update_rate_us'] / 1e6) if self.debug > 0: print('Reducing velocity to %.4f mm/s from %.4f mm/s to match illumination update rate of %d us' % (new_velocity_mm_s, position['velocity_mm_s'], position['led_update_rate_us'])) position['velocity_mm_s'] = new_velocity_mm_s # Update frame time based on velocity position['frame_time_s'] = position['frame_distance'] / position['velocity_mm_s'] # Determine number of pixels in exposure time position['n_blur_positions_exposure'] = math.floor(position['exposure_time_s'] / (position['led_update_rate_us'] / 1e6)) # Determine the distance traveled during the exposure time position['exposure_distance'] = position['n_blur_positions_exposure'] * position['led_update_rate_us'] / 1e6 * position['velocity_mm_s'] # Store acceleration position['acceleration_mm_s_2'] = self.motion_acceleration_mm_s_2 # Print information about this pattern if self.debug > 0: print('Segment %d, index %d will require %d blur positions per frame (%d during exposure), %.2fms exposure time (%.2fms total frame time), scan %.2fmm (%.2fmm with exposure), move at %.2fmm/s, and update speed %dus' % (position['linear_segment_index'], frame_index, position['n_blur_positions_frame'],position['n_blur_positions_exposure'], 1000. * position['exposure_time_s'], 1000. * position['frame_time_s'], position['frame_distance'], position['exposure_distance'], position['velocity_mm_s'], position['led_update_rate_us'])) # Check that all blur parameters are valid assert position['led_update_rate_us'] >= self.max_led_update_rate_us, "LED Array update rate (%dms) < max update rate (%dms)" % ( position['led_update_rate_us'], self.max_led_update_rate_us) assert position['exposure_time_s'] <= self.max_exposure_time_s, "Exposure time (%.3fs) > max_exposure_time_s (%.3f)" % ( position['exposure_time_s'], self.max_exposure_time_s) assert position['velocity_mm_s'] <= self.max_velocity_mm_s, "Velocity (%.3fs) > max_velocity_mm_s (%.3f)" % ( position['velocity_mm_s'], self.max_velocity_mm_s) # List for this positions single_frame_state_list_position = [] single_frame_time_sequence_s = [] # Determine movement direction direction = np.asarray((position['y_end'] - position['y_start'], position['x_end'] - position['x_start'])) direction /= np.linalg.norm(direction) # Store common information about this frame common_state_dict = {} common_state_dict['frame_time'] = position['frame_time_s'] common_state_dict['led_update_rate_us'] = position['led_update_rate_us'] common_state_dict['linear_segment_index'] = position['linear_segment_index'] common_state_dict['frame_distance'] = position['frame_distance'] common_state_dict['exposure_distance'] = position['exposure_distance'] common_state_dict['velocity'] = position['velocity_mm_s'] common_state_dict['acceleration'] = position['acceleration_mm_s_2'] common_state_dict['n_blur_positions_exposure'] = position['n_blur_positions_exposure'] common_state_dict['position_delta_x_mm'] = direction[1] * position['velocity_mm_s'] * position['led_update_rate_us'] / 1e6 common_state_dict['position_delta_y_mm'] = direction[0] * position['velocity_mm_s'] * position['led_update_rate_us'] / 1e6 # Loop over time points (irrelevent for dpc) for time_index in range(position['n_blur_positions_exposure']): time_point_state_list = [] x = position['x_start'] + direction[1] * abs(common_state_dict['position_delta_x_mm']) * time_index y = position['y_start'] + direction[0] * abs(common_state_dict['position_delta_x_mm']) * time_index # Append this to list with elements for each interframe time point time_point_state_list.append({'time_index': time_index, 'value': {'x': x, 'y': y}}) # Append to frame_dict single_frame_state_list_position.append(time_point_state_list) single_frame_time_sequence_s.append((time_index + 1) * position['led_update_rate_us'] / 1e6) # Define illumination sequence position_state_list.append({'states' : single_frame_state_list_position, 'common' : common_state_dict}) # Define time_sequence time_sequence_s.append(single_frame_time_sequence_s) # for state in position_state_list: # print(state['states'][0][0]['value']['x'] - state['states'][-1][0]['value']['x']) return (position_state_list, time_sequence_s) def genMotionPathwayRaster(self, object_size_mm, frame_spacing_mm, major_axis=None, include_minor_axis=False): # Hard-code major axis since the rest of the code doesn't respect it for now _major_axis = 1 # Detemine number of measurements measurement_count = np.ceil(np.asarray(object_size_mm) / np.asarray(frame_spacing_mm)).astype(np.int) # two components in x and y # Error checking assert np.any(measurement_count > 1), "image_size must be smaller than object_size!" print("Image size requires %d x %d images" % (measurement_count[0], measurement_count[1])) # If number of measurements along major axis is odd, center this row offset = [0, 0] offset[_major_axis] -= frame_spacing_mm[_major_axis] / 2 # Generate raster points raster_end_point_list = [] pathway = [] linear_segment_index = 0 # This variable keeps track of linear segments, for use with path planning for row in np.arange(measurement_count[0]): if row % 2 == 0: for index, col in enumerate(range(measurement_count[1])): # Add pathway to list pathway.append({'x_start': frame_spacing_mm[1] * col + offset[1], 'y_start': frame_spacing_mm[0] * row + offset[0], 'x_end': frame_spacing_mm[1] * (col + 1) + offset[1], 'y_end': frame_spacing_mm[0] * row + offset[0], 'linear_segment_index': linear_segment_index}) # Add minor stride if row < (measurement_count[0] - 1) and include_minor_axis: pathway.append({'x_start': frame_spacing_mm[1] * (measurement_count[1] - 1) + offset[1], 'y_start': frame_spacing_mm[0] * row + offset[0], 'x_end': frame_spacing_mm[1] * (measurement_count[1] - 1) + offset[1], 'y_end': frame_spacing_mm[0] * (row + 1) + offset[0], 'linear_segment_index': -1 * (linear_segment_index + 1)}) else: for index, col in enumerate(reversed(range(measurement_count[1]))): # Add pathway to list pathway.append({'x_start': frame_spacing_mm[1] * col - offset[1], 'y_start': frame_spacing_mm[0] * row - offset[0], 'x_end': frame_spacing_mm[1] * (col - 1) - offset[1], 'y_end': frame_spacing_mm[0] * row - offset[0], 'linear_segment_index': linear_segment_index}) # Add minor stride if row < (measurement_count[0] - 1) and include_minor_axis: pathway.append({'x_start': - offset[1], 'y_start': frame_spacing_mm[0] * row - offset[0], 'x_end': 0 - offset[1], 'y_end': frame_spacing_mm[0] * (row + 1) - offset[0], 'linear_segment_index': -1 * (linear_segment_index + 1)}) linear_segment_index += 1 print('Generated motion pathway with %d linear segments' % (linear_segment_index)) return pathway def plotPathway(self): sequence_list = self.hardware_controller_list['position'].state_sequence point_list_start = [] point_list_end = [] for sequence in sequence_list: start_pos = (sequence['states'][0][0]['value']['x'], sequence['states'][0][0]['value']['y']) end_pos = (sequence['states'][-1][0]['value']['x'], sequence['states'][-1][0]['value']['y']) point_list_start.append(start_pos) point_list_end.append(end_pos) point_list_start = np.asarray(point_list_start) point_list_end = np.asarray(point_list_end) plt.figure() for index in range(len(point_list_start)): plt.scatter(point_list_start[index, 0], point_list_start[index, 1], c='b') plt.scatter(point_list_end[index, 0], point_list_end[index, 1], c='r') plt.plot([point_list_start[index, 0], point_list_end[index, 0]], [point_list_start[index, 1], point_list_end[index, 1]], c='y') plt.xlabel('Position X (mm)') plt.ylabel('Position Y (mm)') plt.title('Pathway (b is start, y/o is end)') plt.gca().invert_yaxis() def genMotionIlluminationSequenceRandom(self, sequence_count=1, illumination_sequence=None): led_list = np.arange(self.metadata.illumination.state_list.design.shape[0]) bf_mask = self.metadata.illumination.state_list.design[:, 0] ** 2 \ + self.metadata.illumination.state_list.design[:, 1] ** 2 < ( self.metadata.objective.na + self.illumination_na_pad) ** 2 illumination_state_list = [] linear_segments_processed = {} # Loop over DPC patterns (frames) for frame_index, frame_position_dict in enumerate(self.hardware_controller_list['position'].state_sequence): frame_position_list = frame_position_dict['states'] # Get number of positions in blur kernel from this frame. Divide into subsequences pattern_count = len(frame_position_list) // sequence_count # Determine the number of non-zero illumination positions pattern_count_used = int(round(pattern_count * self.saturation_factor)) # Place patterns at the END of the full sequence pattern_count_start = 0 # Get linear segment index current_segment_index = frame_position_dict['common']['linear_segment_index'] if not self.reuse_illumination_sequence or frame_index == 0: blur_vector_full = [] # Generate several blur vectors for _ in range(sequence_count): # Use provided illumination seqence if given if illumination_sequence: blur_vector = illumination_sequence else: blur_vector = np.zeros(pattern_count) # Generate blur vector blur_vector = np.zeros(pattern_count) if self.blur_vector_method == 'strobe': blur_vector = np.zeros(pattern_count) blur_vector[pattern_count_start + pattern_count_used // 2] = 1 elif self.blur_vector_method == 'center': blur_vector = np.zeros(pattern_count) # Determine distance traveled within this frame (including readout time) frame_pixel_count = round(frame_position_list[0][0]['frame_distance'] / (self.metadata.system.eff_pixel_size_um / 1000)) exposure_pixel_count = round(frame_position_list[0][0]['exposure_distance'] / (self.metadata.system.eff_pixel_size_um / 1000)) if not frame_pixel_count // 2 < exposure_pixel_count: print("WARNING: Camera will not expose during center flash (%d pixels, %d pixels used of %d pixels total)" % (frame_pixel_count // 2, exposure_pixel_count, pattern_count)) blur_vector[pattern_count_used] = 1 else: # Set center position to be on blur_vector[frame_pixel_count // 2] = 1 elif self.blur_vector_method == 'start_end': blur_vector = np.zeros(pattern_count) blur_vector[pattern_count_start] = 1 blur_vector[pattern_count_start + pattern_count_used - 1] = 1 elif self.blur_vector_method == 'start_middle_end': blur_vector = np.zeros(pattern_count) blur_vector[pattern_count_start] = 1 blur_vector[pattern_count_start + pattern_count_used // 2] = 1 blur_vector[pattern_count_start + pattern_count_used - 1] = 1 elif self.blur_vector_method == 'tens': blur_vector = np.zeros(pattern_count) blur_vector[pattern_count_start] = 1 blur_vector[pattern_count_start + 10] = 1 blur_vector[pattern_count_start + 20] = 1 blur_vector[pattern_count_start + 30] = 1 blur_vector[pattern_count_start + 40] = 1 elif self.blur_vector_method == 'twenties': blur_vector = np.zeros(pattern_count) blur_vector[pattern_count_start + 0] = 1 blur_vector[pattern_count_start + 20] = 1 blur_vector[pattern_count_start + 40] = 1 blur_vector[pattern_count_start + 60] = 1 blur_vector[pattern_count_start + 80] = 1 blur_vector[pattern_count_start + 100] = 1 blur_vector[pattern_count_start + 120] = 1 blur_vector[pattern_count_start + 140] = 1 blur_vector[pattern_count_start + 160] = 1 blur_vector[pattern_count_start + 180] = 1 elif self.blur_vector_method == 'quarters': blur_vector = np.zeros(pattern_count) blur_vector[pattern_count_start] = 1 blur_vector[pattern_count_start + pattern_count_used // 4] = 1 blur_vector[pattern_count_start + pattern_count_used // 2] = 1 blur_vector[pattern_count_start + pattern_count_used // 2 + pattern_count_used // 4] = 1 blur_vector[pattern_count_start + pattern_count_used - 1] = 1 elif self.blur_vector_method == 'random': blur_vector[pattern_count_start:pattern_count_start + pattern_count_used] = np.random.rand(pattern_count_used) elif self.blur_vector_method == 'constant': blur_vector[pattern_count_start:pattern_count_start + pattern_count_used] = np.ones(pattern_count_used) elif self.blur_vector_method in ['coded', 'pseudo_random']: if self.kernel_pulse_count is not None: pulse_count = self.kernel_pulse_count else: pulse_count = pattern_count_used // 2 from htdeblur import blurkernel blur_vector_tmp, kappa = blurkernel.vector(pulse_count, kernel_length=pattern_count_used) blur_vector[pattern_count_start:pattern_count_start + pattern_count_used] = blur_vector_tmp else: raise ValueError('Invalid blur kernel method: %s' % self.blur_vector_method) # Append to blur_vector_full blur_vector_full += list(blur_vector) # Ensure the pattern is the correct length if len(blur_vector_full) < len(frame_position_list): blur_vector_full += [0] * (len(frame_position_list) - len(blur_vector_full)) elif len(blur_vector_full) > len(frame_position_list): raise ValueError # Assign linear_segments_processed[str(frame_index)] = blur_vector_full else: blur_vector_full = linear_segments_processed['0'] single_frame_state_list_illumination = [] # Loop over time points (irrelevent for dpc) for time_index, illumination_value in enumerate(blur_vector_full): time_point_state_list = [] # Loop over DPC patterns (which are themselves frames) # for led_number in led_list[bf_mask]: led_number = -1 values_dict = {} for color_name in self.illumination_color: values_dict[color_name] = self.illumination_color[color_name] * illumination_value led_dict = { 'index': int(led_number), 'time_index': time_index, 'value': values_dict } # Append this to list with elements for each interframe time point time_point_state_list.append(led_dict) # Append to frame_dict single_frame_state_list_illumination.append(time_point_state_list) # Define illumination sequence illumination_state_list.append({'states' : single_frame_state_list_illumination, 'common' : {}}) return(illumination_state_list)
54.284828
757
0.612656
76,891
0.976853
0
0
0
0
0
0
19,483
0.247519
c2094cbd00b0292a602f2ea788a9486c162b5e7e
2,053
py
Python
leetcode/weekly150/last_substring.py
jan25/code_sorted
f405fd0898f72eb3d5428f9e10aefb4a009d5089
[ "Unlicense" ]
2
2018-01-18T11:01:36.000Z
2021-12-20T18:14:48.000Z
leetcode/weekly150/last_substring.py
jan25/code_sorted
f405fd0898f72eb3d5428f9e10aefb4a009d5089
[ "Unlicense" ]
null
null
null
leetcode/weekly150/last_substring.py
jan25/code_sorted
f405fd0898f72eb3d5428f9e10aefb4a009d5089
[ "Unlicense" ]
null
null
null
''' https://leetcode.com/contest/weekly-contest-150/problems/last-substring-in-lexicographical-order/ SA algorithm mostly copied from https://cp-algorithms.com/string/suffix-array.html Status: tle. probably py3 lists ''' class SuffixArray: def __init__(self, s): self.s = s self.n = len(s) self.p = [0] * self.n self.c = [0] * self.n c = self.preprocess() self.process(c) def preprocess(self): counter = [0] * 260 for c in self.s: counter[ord(c)] += 1 for i in range(1, len(counter)): counter[i] += counter[i - 1] for i in range(self.n): c = ord(self.s[i]) counter[c] -= 1 self.p[counter[c]] = i c = 0 self.c[0] = c for i in range(1, self.n): if self.s[self.p[i]] != self.s[self.p[i - 1]]: c += 1 self.c[self.p[i]] = c return c + 1 def process(self, c): cn = [0] * self.n i = 0 pn = [0] * self.n while (1 << i) < self.n: for j in range(self.n): pn[j] = self.p[j] - (1 << i) if pn[j] < 0: pn[j] += self.n counter = [0] * c for j in range(self.n): counter[self.c[pn[j]]] += 1 for j in range(1, c): counter[j] += counter[j - 1] for j in range(self.n - 1, -1, -1): counter[self.c[pn[j]]] -= 1 self.p[counter[self.c[pn[j]]]] = pn[j] cn[self.p[0]] = 0 c = 1 for j in range(1, self.n): a = [self.c[self.p[j]], self.c[(self.p[j] + (1 << i)) % self.n]] b = [self.c[self.p[j - 1]], self.c[(self.p[j - 1] + (1 << i)) % self.n]] if a != b: c += 1 cn[self.p[j]] = c - 1 self.c, cn = cn, self.c i += 1 class Solution: def lastSubstring(self, s: str) -> str: sa = SuffixArray(s) return s[sa.p[-1]:]
31.584615
97
0.431076
1,827
0.889917
0
0
0
0
0
0
221
0.107647
c20c7d9e299f07af3208c0a8aedd483571769bbb
18,555
py
Python
schemagen/schemagen.py
GoZaddy/SchemaGen
c8374382f6b52ad3cec398c77fd5bc90fe891818
[ "MIT" ]
3
2021-03-26T22:51:41.000Z
2021-03-27T15:17:24.000Z
schemagen/schemagen.py
GoZaddy/SchemaGen
c8374382f6b52ad3cec398c77fd5bc90fe891818
[ "MIT" ]
null
null
null
schemagen/schemagen.py
GoZaddy/SchemaGen
c8374382f6b52ad3cec398c77fd5bc90fe891818
[ "MIT" ]
null
null
null
from antlr4 import * from .antlr import GraphQLLexer, GraphQLListener, GraphQLParser from .codegen import CodegenTool, Class, String, ClassInstance, IfElse, If, Method, Expr, Variable import re from math import floor from datetime import datetime from .utils import strip_string_quotes, camel_case_to_snake_case, process_input_value_definition from .errors import ParsingError GraphQLParser = GraphQLParser.GraphQLParser graphene = 'graphene' built_in_scalars = [ 'Int', 'Float', 'String', 'Boolean', 'ID', 'Date', 'Datetime', 'Time' 'Decimal', 'JSONString', 'Base64', ] class SchemaGen(GraphQLListener.GraphQLListener): """ SchemaGen is the entry point through which the package is used. Attributes: input_file: a string containing the name of the GraphQL schema file output_file: an optional string containing the name of the file to which the result of the code generation should be written to. """ def __init__(self, input_file: str, output_file: str = None): if output_file is None: output_file = input_file.split(sep='.')[0] + '_' + str(floor(datetime.now().timestamp())) + '.py' is_valid_file_name = re.match("\w+.py$", output_file) if is_valid_file_name is None: raise Exception('File is not a python file') self.output_file = output_file self.input_file = input_file self.codegen = CodegenTool(output_file=self.output_file) super().__init__() def enterTypeDefinition(self, ctx: GraphQLParser.TypeDefinitionContext): for child in ctx.children: # type definition is for an Object Type Definition if isinstance(child, GraphQLParser.ObjectTypeDefinitionContext) or isinstance(child, GraphQLParser.InterfaceTypeDefinitionContext): is_object_type = isinstance(child, GraphQLParser.ObjectTypeDefinitionContext) is_interface = isinstance(child, GraphQLParser.InterfaceTypeDefinitionContext) type_class = Class(name=child.name().getText(), add_init_method=False) if is_object_type: type_class.base_class = "ObjectType" elif is_interface: type_class.base_class = "Interface" is_mutation = False if type_class.name == 'Mutation': is_mutation = True is_object_type = False meta_class = Class(name='meta') # create map for methods to be resolved methods_to_be_resolved = {} # get type description desc = child.description() if desc: meta_class.add_class_variable('description', String(strip_string_quotes(desc.getText()))) # get implemented interfaces if is_object_type or is_mutation: if child.implementsInterfaces() is not None: interfaces = child.implementsInterfaces().getText().split(sep='implements') interfaces = interfaces[1].split(sep='&') interface_string = '' for i in interfaces: interface_string = interface_string + i + ',' meta_class.add_class_variable('interfaces', f"({interface_string})") # get fields of the ObjectType or Interface if child.fieldsDefinition(): fields = child.fieldsDefinition().fields if not is_mutation: for field in fields: # get field name and type field_name = camel_case_to_snake_case(field.name().getText()) field_type = field.type_().getText() field_required = False # get field description field_desc = field.description() if field_desc is not None: field_desc = String(strip_string_quotes(field_desc.getText())) else: field_desc = '' if is_interface: if field_type.lower() == type_class.name.lower(): field_type = 'lambda: ' + field_type # if field is a required field if field_type[len(field_type) - 1] == '!': field_required = True field_code = ClassInstance('Field', field_type[:-1], required=True) else: field_code = ClassInstance('Field', field_type) # if field is a list type if field.type_().listType() is not None: list_type_named_type = field.type_().listType().type_().getText() if is_interface: if list_type_named_type.lower() == type_class.name.lower(): list_type_named_type = 'lambda: ' + list_type_named_type if list_type_named_type[len(list_type_named_type) - 1] == '!': field_code = ClassInstance('List', str(ClassInstance('NonNull', list_type_named_type[:-1])), required=field_required) else: field_code = ClassInstance('List', list_type_named_type, required=field_required) # get field arguments if is_object_type: args = field.argumentsDefinition() args_string = [] if args is not None: args = args.args for arg in args: # add info to method_to_be_resolved map if field_name not in methods_to_be_resolved: methods_to_be_resolved[field_name] = [arg.name().getText()] else: methods_to_be_resolved[field_name].append(arg.name().getText()) processed_arg = process_input_value_definition(arg) args_string.append( f"{String(processed_arg['name'])}: {str(processed_arg['arg_impl'])}") field_code.add_kwarg('args', "{" + ', '.join(args_string) + "}") if field_desc != '': field_code.add_kwarg(key='description', value=field_desc) type_class.class_variables[field_name] = str(field_code) else: for field in fields: # get field name and type field_name = camel_case_to_snake_case(field.name().getText()) field_type = field.type_().getText() field_required = False field_class = Class(field.name().getText(), add_init_method=False, base_class='Mutation') argument_class = Class(name='arguments') # get field description field_desc = field.description() if field_desc is not None: field_desc = String(strip_string_quotes(field_desc.getText())) else: field_desc = '' # if field is a required field if field_type[len(field_type) - 1] == '!': field_required = True field_code = ClassInstance('Field', field_type[:-1], required=True) else: field_code = ClassInstance('Field', field_type) # if field is a list type if field.type_().listType() is not None: list_type_named_type = field.type_().listType().type_().getText() if list_type_named_type[len(list_type_named_type) - 1] == '!': field_code = ClassInstance('List', str(ClassInstance('NonNull', list_type_named_type[:-1])), required=field_required) else: field_code = ClassInstance('List', list_type_named_type, required=field_required) # get field arguments args = field.argumentsDefinition() arg_list = [] if args is not None: args = args.args for arg in args: processed_arg = process_input_value_definition(arg) argument_class.add_class_variable(processed_arg['name'], str(processed_arg['arg_impl'])) arg_list.append(processed_arg['name']) field_class.add_sub_class(argument_class) field_class.add_method( method=Method( name='mutate', arguments=['root', 'info'] + arg_list ) ) if field_desc != '': field_code.add_kwarg(key='description', value=field_desc) # write mutation classes for the mutation's fields self.codegen.write_class(field_class) type_class.class_variables[field_name] = str(field_code) # add resolver methods if not is_mutation: for method in methods_to_be_resolved: type_class.add_method(method_name='resolve_' + method, arguments_names=['info'] + methods_to_be_resolved[method]) if type_class.name == 'Query': for var in type_class.class_variables: if var not in methods_to_be_resolved: type_class.add_method(method_name='resolve_' + var, arguments_names=['info']) if len(meta_class.class_variables) != 0: type_class.add_sub_class(meta_class) self.codegen.write_class(type_class) # type definition is for an EnumTypeDefinition elif isinstance(child, GraphQLParser.EnumTypeDefinitionContext): enum_class = Class(name=child.name().getText(), base_class="Enum", add_init_method=False) meta_class = Class(name='meta') # get enum description desc = child.description() if desc: meta_class.add_class_variable('description', String(strip_string_quotes(desc.getText()))) # get fields of the Enum fields = child.enumValuesDefinition().fields fields_and_desc = {} for field in fields: # get field name and type enum_value = field.enumValue().getText() # get enum description field_desc = field.description() if field_desc is not None: field_desc = String(strip_string_quotes(field_desc.getText())) else: field_desc = '' if field_desc != '': # do something fields_and_desc[enum_value] = field_desc # add enums as class variables to main class enum_class.add_class_variable(enum_value, String(enum_value)) if fields_and_desc: # add enums description method = Method( name='description', decorators=['@property'], arguments=[] ) if_else = IfElse( indent_level=method.get_indent_level() + 1, else_action=[Expr("pass")], ) for i in fields_and_desc: if_else.add_elif(If( expr=Expr(f"self == {enum_class.name}.{i}"), action=[Expr(f"return {fields_and_desc[i]}")] )) method.set_body([if_else]) enum_class.add_method(method=method) if len(meta_class.class_variables) != 0: enum_class.add_sub_class(meta_class) self.codegen.write_class(enum_class) # type definition is for an EnumTypeDefinition elif isinstance(child, GraphQLParser.ScalarTypeDefinitionContext): if child.name().getText().capitalize() in built_in_scalars: continue scalar_class = Class(name=child.name().getText(), base_class="Scalar", add_init_method=False) desc = child.description() if desc is not None: scalar_class.description = strip_string_quotes(desc.getText()) serialize_method = Method( name='serialize', arguments=['val'], decorators=['@staticmethod'], body=[Expr('# write method body'), Expr('pass')], is_static=True ) parse_literal_method = Method( name='parse_literal', arguments=['node'], decorators=['@staticmethod'], body=[Expr('# write method body'), Expr('pass')], is_static=True ) parse_value_method = Method( name='parse_value', arguments=['value'], decorators=['@staticmethod'], body=[Expr('# write method body'), Expr('pass')], is_static=True ) scalar_class.add_method(method=serialize_method) scalar_class.add_method(method=parse_literal_method) scalar_class.add_method(method=parse_value_method) self.codegen.write_class(scalar_class) elif isinstance(child, GraphQLParser.UnionTypeDefinitionContext): union_class = Class(name=child.name().getText(), base_class='Union') meta_class = Class(name='Meta') unions = child.unionMemberTypes().getText() if unions[0] == '=': unions = unions[1:] unions = ', '.join(unions.split(sep='|')) meta_class.add_class_variable(variable_name='types', variable_value=f"({unions})") desc = child.description() if desc is not None: meta_class.add_class_variable(variable_name='description', variable_value=String(strip_string_quotes(desc.getText()))) union_class.add_sub_class(meta_class) self.codegen.write_class(union_class) print(unions) elif isinstance(child, GraphQLParser.InputObjectTypeDefinitionContext): type_class = Class(name=child.name().getText(), base_class="InputObjectType", add_init_method=False) meta_class = Class(name='meta') # get type description desc = child.description() if desc: meta_class.add_class_variable('description', String(strip_string_quotes(desc.getText()))) # get fields if child.inputFieldsDefinition(): fields = child.inputFieldsDefinition().fields for field in fields: processed_ivd = process_input_value_definition(field) type_class.add_class_variable(processed_ivd['name'], str(processed_ivd['arg_impl'])) if len(meta_class.class_variables) != 0: type_class.add_sub_class(meta_class) self.codegen.write_class(type_class) else: print(type(child)) def enterSchemaDefinition(self, ctx: GraphQLParser.SchemaDefinitionContext): schema_obj = ClassInstance('Schema') fields = ctx.fields for field in fields: schema_obj.add_kwarg(strip_string_quotes(field.operationType().getText()), strip_string_quotes(field.namedType().getText())) var = Variable( name='schema', value=schema_obj ) self.codegen.write_variable(var) def __call__(self): try: self.codegen.import_package(package=graphene, mode=2, object='*') input_stream = FileStream(self.input_file) lexer = GraphQLLexer.GraphQLLexer(input_stream) stream = CommonTokenStream(lexer) parser = GraphQLParser(stream) tree = parser.document() walker = ParseTreeWalker() walker.walk(self, tree) except Exception as err: raise ParsingError(str(err))
46.156716
136
0.492643
17,935
0.966586
0
0
0
0
0
0
2,159
0.116357
c20cac9dd66122173bfd30ba53957fea5bb5307b
2,231
py
Python
app/api/views.py
rickywang432/flask
c956dee6c7dfbb57a5fcd247d23af37e20b96da7
[ "MIT" ]
null
null
null
app/api/views.py
rickywang432/flask
c956dee6c7dfbb57a5fcd247d23af37e20b96da7
[ "MIT" ]
1
2021-06-02T02:01:38.000Z
2021-06-02T02:01:38.000Z
app/api/views.py
rickywang432/flask
c956dee6c7dfbb57a5fcd247d23af37e20b96da7
[ "MIT" ]
null
null
null
from flask import Flask, request, jsonify,Blueprint from flask_marshmallow import Marshmallow from app.models import User, Group, Role from app import ma api = Blueprint('api', __name__) class UserSchema(ma.Schema): class Meta: # Fields to expose fields = ('id', 'confirmed','first_name','last_name', 'email', 'active') user_schema = UserSchema() users_schema = UserSchema(many=True) class GroupSchema(ma.Schema): users = ma.Nested(UserSchema, many=True) class Meta: # Fields to expose fields = ('id', 'name','users') group_schema = GroupSchema() groups_schema = GroupSchema(many=True) class RoleSchema(ma.Schema): users = ma.Nested(UserSchema, many=True) class Meta: # Fields to expose fields = ('id', 'name','default','permissions','users') role_schema = RoleSchema() roles_schema = RoleSchema(many=True) @api.route("/user", methods=["GET"]) def get_user(): all_users = User.query.all() result = users_schema.dump(all_users) return jsonify(result) # endpoint to get user detail by id @api.route('/user/<int:id>', methods=["GET"]) def user_detail(id): user = User.query.get(id) return user_schema.jsonify(user) @api.route("/group", methods=["GET"]) def get_group(): all_groups = Group.query.all() result = groups_schema.dump(all_groups) return jsonify(result) # endpoint to get group detail by id @api.route('/group/<int:id>', methods=["GET"]) def group_detail_id(id): group = Group.query.get(id) return group_schema.jsonify(group) @api.route('/group/<string:name>', methods=["GET"]) def group_detail_name(name): group = Group.query.filter_by(name=name).first() return group_schema.jsonify(group) @api.route("/role", methods=["GET"]) def get_role(): all_roles = Role.query.all() result = roles_schema.dump(all_roles) return jsonify(result) # endpoint to get group detail by id @api.route('/role/<int:id>', methods=["GET"]) def role_detail_id(id): role = Role.query.get(id) return role_schema.jsonify(role) @api.route('/role/<string:name>', methods=["GET"]) def role_detail_name(name): role = Role.query.filter_by(name=name).first() return role_schema.jsonify(role)
26.247059
80
0.685791
491
0.220081
0
0
1,217
0.545495
0
0
429
0.19229
c20d8ed82808f42c1ce9f7452c5668af8015a2b5
2,335
py
Python
setup.py
maljovec/samply
9364c2f671c02cb7bab484c0e856a0a0ca6ecc40
[ "BSD-3-Clause" ]
null
null
null
setup.py
maljovec/samply
9364c2f671c02cb7bab484c0e856a0a0ca6ecc40
[ "BSD-3-Clause" ]
2
2019-02-21T00:28:36.000Z
2019-11-09T04:35:39.000Z
setup.py
maljovec/samplers
9364c2f671c02cb7bab484c0e856a0a0ca6ecc40
[ "BSD-3-Clause" ]
null
null
null
""" Setup script for samply """ from setuptools import setup import re extra_args = {} def get_property(prop, project): """ Helper function for retrieving properties from a project's __init__.py file @In, prop, string representing the property to be retrieved @In, project, string representing the project from which we will retrieve the property @Out, string, the value of the found property """ result = re.search( r'{}\s*=\s*[\'"]([^\'"]*)[\'"]'.format(prop), open(project + "/__init__.py").read(), ) return result.group(1) VERSION = get_property("__version__", "samply") def long_description(): """ Reads the README.rst file and extracts the portion tagged between specific LONG_DESCRIPTION comment lines. """ description = "" recording = False with open("README.rst") as f: for line in f: if "END_LONG_DESCRIPTION" in line: return description elif "LONG_DESCRIPTION" in line: recording = True continue if recording: description += line # Consult here: https://packaging.python.org/tutorials/distributing-packages/ setup( name="samply", packages=["samply"], version=VERSION, description="A library for computing samplings in arbitrary dimensions", long_description=long_description(), author="Dan Maljovec", author_email="[email protected]", license="BSD", test_suite="samply.tests", url="https://github.com/maljovec/samply", download_url="https://github.com/maljovec/samply/archive/" + VERSION + ".tar.gz", keywords=[""], # Consult here: https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Science/Research", "License :: OSI Approved :: BSD License", "Programming Language :: C++", "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "Topic :: Scientific/Engineering :: Mathematics", ], setup_requires=["scipy", "numpy", "sklearn", "pyDOE", "ghalton"], install_requires=["scipy", "numpy", "sklearn", "pyDOE", "ghalton"], python_requires=">=2.7, <4", )
29.935897
77
0.615418
0
0
0
0
0
0
0
0
1,334
0.571306
c20db92c5e61a54ef4ff2401b5df9360bca3d9b1
4,353
py
Python
数据结构实践课/实验3/文本格式化.py
TD21forever/hdu-term-project-helper
f42f553efd1d7b59162d3fc793ac14ae30850efd
[ "Apache-2.0" ]
17
2021-01-09T06:49:09.000Z
2022-02-23T01:36:20.000Z
数据结构实践课/实验3/文本格式化.py
TD21forever/hdu-term-project-helper
f42f553efd1d7b59162d3fc793ac14ae30850efd
[ "Apache-2.0" ]
null
null
null
数据结构实践课/实验3/文本格式化.py
TD21forever/hdu-term-project-helper
f42f553efd1d7b59162d3fc793ac14ae30850efd
[ "Apache-2.0" ]
1
2021-06-22T12:56:16.000Z
2021-06-22T12:56:16.000Z
# -*- coding: utf-8 -*- # @Author: TD21forever # @Date: 2018-11-14 15:41:57 # @Last Modified by: TD21forever # @Last Modified time: 2018-11-15 16:50:48 file = open('input.txt','r')#读取文件 #预处理 传入字符串 def preprocess(article): article = article.strip() article = article.replace(",", ", ") article = article.replace(" ,", ",") article = article.replace(".", ". ") article = article.replace(" .", ".") article = article.replace("?", "? ") article = article.replace(" ?", "?") return article def operate(line_num=5,word_in_line=55,margin=2,heading_len=3,footing_len=3,start_page_num=1,file = file): flag = 0 article = file.read()#读到文件里的字符串 file.close() f = open ('out.txt','a') article = preprocess(article) word_list = article.split()#分割每个单词,形成列表 str_info = " ".join(word_list)#目的是去掉连续的空格 str_info = str_info.replace("@", "\n @") start = 0 end = word_in_line while end < len(str_info): for i in range(heading_len):#顶部的空格 print("\n",end="",file = f) for one in range(line_num):#每一行 line = str_info[start:end] temp = end if end<=len(str_info): if str_info[temp-1] != " " or str_info[temp-1] not in word_list:#如果一行的最后一个不是空格说明那个单词被拆开了 # 另一个条件是防止出现as被分开的这种情况 while str_info[temp] != " ":#下一行的第一个字母不是空格,就把这个字母加到上一行的末尾 line = line + (str_info[temp]) temp+=1 line = line + (str_info[temp])#temp最后移到空格,空格放在上一行的末尾 end = temp+1 print(" "*margin,end="",file = f)#每一行开头的空格 print(line,file = f)#打印一页 start = end end+=word_in_line elif one+1 < line_num:#如果每页的行数还没有得到要求 line = str_info[start:] print(" "*margin,end="",file=f)#每一行开头的空格 print(line,file = f)#打印一页 flag = 1 for i in range(footing_len):#底部空格 if footing_len >=3 : if i==1: print(" "*((word_in_line+margin)//2),str(start_page_num),end = "",file = f) print("\n",end = "",file = f) break else:#如果这一页的行数已经达到了,那就另起一页 for i in range(footing_len):#底部空格 if footing_len >=3 : if i==1: print(" "*((word_in_line+margin)//2),str(start_page_num),end = "",file = f) print("\n",end = "",file = f) for i in range(heading_len):#顶部的空格 print("\n",end="",file = f) line = str_info[start:] print(" "*margin,end="",file = f)#每一行开头的空格 print(line,file = f)#打印一页 for i in range(footing_len):#底部空格 if footing_len >=3 : if i==1: print(" "*((word_in_line+margin)//2),str(start_page_num+1),end = "",file = f) print("\n",end = "",file = f) flag = 1 if flag == 1: break for i in range(footing_len):#底部空格 if footing_len >=3 : if i==1: print(" "*((word_in_line+margin)//2),str(start_page_num),end = "",file = f) print("\n",end = "",file = f) start_page_num+=1 if __name__ == '__main__': while True: print("欢迎使用文本格式化工具") print("您可以给出的参数有\n1.每页内文字的行数\n2.每页内文字所占最大字符数\n3.每页文字前的固定空格数\n4.每页页顶所空行数\n5.每页页底所空行数\n6.起始页号\n") ans = "no" ans = input("是否要使用默认的参数5,55,2,3,3,1?,请输入yes或no:") if ans == 'yes': operate() else: print("请输入参数\n") a = int(input("1.每页内文字的行数")) b = int(input("2.每页内文字所占最大字符数")) if b>80: b = int(input("每页内文字所占最大字符数小于80,请重新输入:")) c = int(input("3.每页文字前的固定空格数")) d = int(input("4.每页页顶所空行数")) e = int(input("5.每页页页底所空行数")) ff = int(input("6.起始页号")) operate(a,b,c,d,e,ff) f.close()
34.824
107
0.464278
0
0
0
0
0
0
0
0
1,649
0.321255
c210287e380e114135144808518dac8414c8a7fc
1,405
py
Python
authors/apps/authentication/tests/test_models.py
C3real-kill3r/binary-jungle-backend
5333138fbce901e75accf5487b10990979afa571
[ "MIT" ]
null
null
null
authors/apps/authentication/tests/test_models.py
C3real-kill3r/binary-jungle-backend
5333138fbce901e75accf5487b10990979afa571
[ "MIT" ]
8
2020-02-12T03:04:07.000Z
2022-03-12T00:07:31.000Z
authors/apps/authentication/tests/test_models.py
C3real-kill3r/binary-jungle-backend
5333138fbce901e75accf5487b10990979afa571
[ "MIT" ]
null
null
null
from django.test import TestCase from authors.apps.authentication.models import ( User ) class UserModelTest(TestCase): """ This tests the User model class, ability to create a user and create a super user. """ def test_create_user(self): """ Checks whether a user can be created with username email and password :return: """ self.assertIsInstance( User.objects.create_user(username="username", email="[email protected]", password="password"), User) def test_cannot_create_user_without_email(self): """ Ensure a user cannot be created without an email :return: """ with self.assertRaises(TypeError): User.objects.create_user(username="username", password="password", email=None) def test_create_superuser(self): """ Ensure a superuser can be created :return: """ user = User.objects.create_superuser(username="admin", email="[email protected]", password="password") self.assertTrue(user.is_staff) self.assertTrue(user.is_superuser) def test_cannot_create_superuser_without_password(self): """ Ensures a superuser must have a password :return: """ with self.assertRaises(TypeError): User.objects.create_superuser(username="admin", email="[email protected]")
30.543478
112
0.64484
1,308
0.930961
0
0
0
0
0
0
570
0.405694
c213671e056f4ccf87fd3dab05b33b16957f6f48
5,908
py
Python
simulations/MonteCarlo_function.py
chengning-zhang/Statistical-methods-for-combining-multiple-tests-a-Wrapper-
42b5aabf6a0619fa7fe18a034926236d133a35d8
[ "MIT" ]
1
2020-11-24T02:58:58.000Z
2020-11-24T02:58:58.000Z
simulations/MonteCarlo_function.py
chengning-zhang/Combining-multiple-tests-Wrapper-
42b5aabf6a0619fa7fe18a034926236d133a35d8
[ "MIT" ]
null
null
null
simulations/MonteCarlo_function.py
chengning-zhang/Combining-multiple-tests-Wrapper-
42b5aabf6a0619fa7fe18a034926236d133a35d8
[ "MIT" ]
null
null
null
#!/usr/bin/env python #-*- coding:utf-8 -*- """ Created on Nov 23, 2020 @author: Chengning Zhang """ ## simulation for Scenario A: generate X0 and X1. def MonteCarlo_1(T, n0, n1, u0, u1, sigma0, sigma1, log_bool = False): """simulation for first scenario: multivarite normal with equal variance T: number of simulation n0: sample size of class 0 n1: sample size of class 1 """ AUC = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} ## same num as simulation time methods = ['suliu', 'logistic', 'stepwise','min-max', 'rf', 'svml', 'svmr'] for i in range(T): ### one monto carlo simulation of size n0 + n1 #i = 10 np.random.seed(seed= 100*i+ 4*i) X0 = multivariate_normal(u0, sigma0, size = n0) X1 = multivariate_normal(u1, sigma1, size = n1) if log_bool: X0 = np.exp(X0) X1 = np.exp(X1) # X = np.concatenate([X0,X1]) y = [0] * n0 y.extend([1]*n1); y = np.array(y) ## X,y is one simulation X = pd.DataFrame(data = X); y = pd.Series(y) ## within that particular MC simulation, do 10 folds CV cv = StratifiedKFold(n_splits= 10, shuffle=True, random_state=42) AUC_folds = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} # same number as folders # for folder, (train_index, val_index) in enumerate(cv.split(X, y)): X_train,X_val = X.iloc[train_index],X.iloc[val_index] y_train,y_val = y.iloc[train_index],y.iloc[val_index] # X0_train, X1_train = helper(X_train, y_train); X0_val, X1_val = helper(X_val, y_val) for method in methods: model = AllMethod(method= method, bool_trans= False).fit(X0_train,X1_train) _,_, auc = model.predict(X0_val,X1_val) AUC_folds[method].append(auc) #print(AUC_folds) for key, val in AUC_folds.items(): AUC[key].append( np.mean(np.array(val) )) print({key: (np.mean(np.array(val)) ,np.std(np.array(val))) for key,val in AUC.items()}) return AUC ## Simulation scenario B: generate X first, then generate bernulli Y via logit(P(Y=1|X)) = ... def MonteCarlo_2(T, n, u, sigma): """simulation for last scenario: generate X first from normal, then generate y via logit(Y|X) = 10* ((sinpi*x1) + ... ) T: number of simulation n: sample size u: mean for X sigma: variance for X """ AUC = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} ## same num as simulation time methods = ['suliu', 'logistic', 'stepwise','min-max', 'rf', 'svml', 'svmr'] for i in range(T): ### one monto carlo simulation of size n0 + n1 #i = 10 print(i) np.random.seed(seed= 100*i+ 4*i) X = multivariate_normal(u, sigma, size = n) X_trans = [ 10*sum(list(map(lambda x: np.sin(np.pi*x) , ele))) for ele in X] p = list(map(lambda x: 1 / (1 + np.exp(-x)), X_trans)) y = bernoulli.rvs(p, size= n) X = pd.DataFrame(data = X); y = pd.Series(y) ## within that particular MC simulation, do 10 folds CV cv = StratifiedKFold(n_splits= 10, shuffle=True, random_state=42) AUC_folds = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} # same number as folders # for folder, (train_index, val_index) in enumerate(cv.split(X, y)): X_train,X_val = X.iloc[train_index],X.iloc[val_index] y_train,y_val = y.iloc[train_index],y.iloc[val_index] # X0_train, X1_train = helper(X_train, y_train); X0_val, X1_val = helper(X_val, y_val) for method in methods: model = AllMethod(method= method, bool_trans= False).fit(X0_train,X1_train) _,_, auc = model.predict(X0_val,X1_val) AUC_folds[method].append(auc) #print(AUC_folds) for key, val in AUC_folds.items(): AUC[key].append( np.mean(np.array(val) )) print({key: (np.mean(np.array(val)) ,np.std(np.array(val))) for key,val in AUC.items()}) return AUC ## Simulation scenario B: generate X first, then generate bernulli Y via logit(P(Y=1|X)) = ... def MonteCarlo_3(T, n, u, sigma): """simulation for last scenario: generate X first from normal, then generate y via logit(Y|X) = 10* ((sinpi*x1) + ... ) T: number of simulation n: sample size """ AUC = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} ## same num as simulation time methods = ['suliu', 'logistic', 'stepwise','min-max', 'rf', 'svml', 'svmr'] for i in range(T): ### one monto carlo simulation of size n0 + n1 np.random.seed(seed= 100*i+ 4*i) X = multivariate_normal(u, sigma, size = n); #X = np.exp(X) X_trans = [ele[0] - ele[1] - ele[2]+ (ele[0] - ele[1])**2 - ele[3]**4 for ele in X] ## x1 - x2 - x3 + (x1-x2)^2 - x4^4 p = list(map(lambda x: 1 / (1 + np.exp(-x)), X_trans)) y = bernoulli.rvs(p, size= n) X = pd.DataFrame(data = X); y = pd.Series(y) ## within that particular MC simulation, do 10 folds CV cv = StratifiedKFold(n_splits= 10, shuffle=True, random_state=42) AUC_folds = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} # same number as folders # for folder, (train_index, val_index) in enumerate(cv.split(X, y)): X_train,X_val = X.iloc[train_index],X.iloc[val_index] y_train,y_val = y.iloc[train_index],y.iloc[val_index] # X0_train, X1_train = helper(X_train, y_train); X0_val, X1_val = helper(X_val, y_val) for method in methods: model = AllMethod(method= method, bool_trans= False).fit(X0_train,X1_train) _,_, auc = model.predict(X0_val,X1_val) AUC_folds[method].append(auc) #print(AUC_folds) for key, val in AUC_folds.items(): AUC[key].append( np.mean(np.array(val) )) print({key: (np.mean(np.array(val)) ,np.std(np.array(val))) for key,val in AUC.items()}) return AUC
46.15625
128
0.609682
0
0
0
0
0
0
0
0
1,954
0.330738
c213c3cc512fab07ba3d806bd3d3286525745450
389
py
Python
crawler/robo_proxy.py
xliangwu/com.caveup.machine_learn
793131c4767f45d468a813752c07d02f623a7b99
[ "Apache-2.0" ]
1
2018-09-19T06:27:14.000Z
2018-09-19T06:27:14.000Z
crawler/robo_proxy.py
xliangwu/com.caveup.machine_learn
793131c4767f45d468a813752c07d02f623a7b99
[ "Apache-2.0" ]
null
null
null
crawler/robo_proxy.py
xliangwu/com.caveup.machine_learn
793131c4767f45d468a813752c07d02f623a7b99
[ "Apache-2.0" ]
null
null
null
import requests def pages_crawler(): http_header = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36', } url = r'https://robo.datayes.com/v2/indicator_library' response = requests.get(url, headers=http_header) print(response.text) if __name__ == '__main__': pages_crawler()
24.3125
135
0.676093
0
0
0
0
0
0
0
0
182
0.467866
c2145a28b8098d26c67f49818369dff92c2ac06b
11,662
py
Python
apiosintDS/apiosintDS.py
davidonzo/apiosintDS
b5bb1c42e1a3d984a69e8794a4c5da6969dcd917
[ "MIT" ]
13
2019-10-15T06:54:49.000Z
2022-03-28T23:23:29.000Z
apiosintDS/apiosintDS.py
davidonzo/apiosintDS
b5bb1c42e1a3d984a69e8794a4c5da6969dcd917
[ "MIT" ]
1
2019-11-12T15:00:53.000Z
2019-11-14T09:37:46.000Z
apiosintDS/apiosintDS.py
davidonzo/apiosintDS
b5bb1c42e1a3d984a69e8794a4c5da6969dcd917
[ "MIT" ]
4
2019-12-05T05:34:07.000Z
2022-03-24T09:59:26.000Z
import sys import logging import pytz logging.basicConfig(format='%(levelname)s: %(message)s') if (sys.version_info < (3, 0)):#NO MORE PYTHON 2!!! https://pythonclock.org/ logging.error(" ########################### ERROR ###########################") logging.error(" =============================================================") logging.error(" Invalid python version detected: "+str(sys.version_info[0])+"."+str(sys.version_info[1])) logging.error(" =============================================================") logging.error(" It seems your are still using python 2 even if you should") logging.error(" now it will be retire next 2020.") logging.error(" For more info please read https://pythonclock.org/") logging.error(" =============================================================") logging.error(" Try again typing: python3 /path/to/"+sys.argv[0]) logging.error(" =============================================================") logging.error(" ########################### ERROR ###########################") exit(0) import tempfile import argparse import os import requests import re import json italyTZ = pytz.timezone("Europe/Rome") from apiosintDS.modules import listutils, dosearch try: from urllib.parse import urlparse except ImportError as ierror: logging.error(ierror) logging.error("To run this script you need to install the \"urllib\" module") logging.error("Try typing: \"pip3 install urllib3\"") exit(0) try: import validators except ImportError as e: logging.error(e) logging.error("To run this script you need to install the \"validators\" module") logging.error("Try typing: \"pip3 install validators\"") exit(0) import platform if platform.system() not in ['Linux']: logging.warning("Script not testes on "+platform.system()+" systems. Use at your own risks.") scriptinfo = {"scriptname": "DigitalSide-API", "majorversion": "1", "minorversion": "8.3", "license": "MIT", "licenseurl": "https://raw.githubusercontent.com/davidonzo/Threat-Intel/master/LICENSE", "author": "Davide Baglieri", "mail": "info[at]digitalside.it", "pgp": "30B31BDA", "fingerprint": "0B4C F801 E8FF E9A3 A602 D2C7 9C36 93B2 30B3 1BDA", "git": "https://github.com/davidonzo/Threat-Intel/blob/master/tools/DigitalSide-API/v1", "DSProjectHP": "https://osint.digitalside.it", "DSGitHubHP": "https://github.com/davidonzo/Threat-Intel"} def checkfile(file): if os.path.isfile(file) == False: msg = "File not found: %r." % file raise argparse.ArgumentTypeError(msg) else: lines = [line.rstrip('\n') for line in open(file)] if len(lines) == 0: msg2 = "File is empty or unreadable: %r." % file raise argparse.ArgumentTypeError(msg2) return lines def writablefile(file): if os.path.isfile(file) == True: msg = "File %r already exists. Please, delete it first." % file raise argparse.ArgumentTypeError(msg) else: try: f = open(file, "w+") f.close() except: msg2 = "File is empty or unreadable: %r." % file raise argparse.ArgumentTypeError(msg2) return file def writablecache(tmpdir): if os.path.isfile(tmpdir): msg = "%r seems to be a file, not a directory." % tmpdir raise argparse.ArgumentTypeError(msg) elif os.path.exists(tmpdir) == False: msg = "%r directory not found." % tmpdir raise argparse.ArgumentTypeError(msg) elif os.access(tmpdir, os.W_OK) == False: msg = "%r directory not found." % tmpdir raise argparse.ArgumentTypeError(msg) return tmpdir def filebspath(directory, file): _BSR = os.path.abspath(os.path.dirname(__file__)) return os.path.join(_BSR, directory, file) def info(): htext = scriptinfo["scriptname"]+" v."+scriptinfo["majorversion"]+"."+scriptinfo["minorversion"]+"." htext += "\nOn demand query API for OSINT.digitalside.it project.\n" htext += "You can query for souspicious domains, urls and IPv4.\n\n" htext += "For more information read the README.md file and the JSON schema hosted on GitHub.com:\n" htext += " - "+scriptinfo["git"]+"/README.md\n" htext += " - "+scriptinfo["git"]+"/schema.json\n" htext += "\n" htext += "This file is part of the OSINT.digitalside.it project.\n" htext += "For more information about the project please visit the following links:\n" htext += " - "+scriptinfo["DSProjectHP"]+"\n" htext += " - "+scriptinfo["DSGitHubHP"]+"\n" htext += "\n" htext += "This software is released under the "+scriptinfo["license"]+" license\n" htext += " - "+scriptinfo["licenseurl"]+"\n" htext += "\n" htext += "Coded with love by\n "+scriptinfo["author"]+" <"+scriptinfo["mail"]+">\n" htext += " PGP "+scriptinfo["pgp"]+"\n" htext += " Fingerprint "+scriptinfo["fingerprint"] htext += "\n" return htext def schema(): try: schema = open(filebspath('schema', 'schema.json'), "r") content = schema.read() schema.close() return content except IOError as e: logging.error(e) logging.error("Unable to load schema file.") exit(1) def request(entities=list, cache=False, cachedirectory=None, clearcache=False, verbose=False, *args, **kwargs): if isinstance(entities, list): if clearcache and ((not cache) or (cache == False)): logging.error("Unable to clear cache with cache disabled. Please set the cache to 'True'") exit(1) if cachedirectory and ((not cache) or (cache == False)): logging.error("Unable to use a cache directory with the cache option disabled. Please set the cache to 'True'") exit(1) if cache and not cachedirectory: logging.error("When using apiosintDS as python library, you always have to specify the temporary files directory to be used.") exit(1) if cache: try: writablecache(cachedirectory) except Exception as clearcacheerror: logging.error(clearcacheerror) exit(1) lutils = listutils.listutils(None, entities, cache, cachedirectory, clearcache) makelist = lutils.prepareLists() if isinstance(makelist, dict): serarch = dosearch.dosearch(makelist, verbose) results = serarch.prepareResults() if isinstance(results, dict): return results else: logging.error("create_request must return a dict.") else: logging.error("create_request must return a dict.") else: logging.error("entities must be an instance of list.") exit(1) def main(): parserdescription = scriptinfo["scriptname"]+" v."+scriptinfo["majorversion"]+"."+scriptinfo["minorversion"]+"." parserdescription +=" On demand query API for OSINT.digitalside.it project." parserdescription +=" You can query for souspicious domains, urls and IPv4." parser = argparse.ArgumentParser(description=parserdescription) parser.add_argument("-e","--entity", type=str, action="store", metavar="[IPv4|domain|url|hash]", dest="ITEM", help="Single item to search. Supported entities are IPv4/FQDN/URLs and file hashes in md5, sha1 or sha256. It can't be used in combination with the --file option.", default=None) parser.add_argument("-f","--file", type=checkfile, action="store", metavar="/path/to/file.txt", dest="FILE", help="Path to file containing entities to search. Supported entities are IPv4/FQDN/URLs. It can't be used in combination with the --entity option.", default=None) parser.add_argument("-o", "--output", type=writablefile, action="store", metavar="/path/to/output.json", dest="OUTPUT", help="Path to output file (/path/to/output.json). If not specified the output will be redirect to the STDOUT.", default=None) parser.add_argument("-v", "--verbose", action="store_true", dest="VERBOSE", help="Include unmatched results in report.") parser.add_argument("-c","--cache", action="store_true", dest="CACHE", help="Enable cache mode. Downloaded lists will be stored a won't be downloaded for the next 4 hours.") parser.add_argument("-cd","--cachedirectory", type=writablecache, action="store", metavar="/path/to/cachedir", dest="DIRECTORY", help="The cache directory where the script check for cached lists files and where them will be stored on cache creation or update. Must be specified the same every script run unless your are using the system temp directory. Default is '"+tempfile.gettempdir()+"'", default=tempfile.gettempdir()) parser.add_argument("-cc","--clearcache", action="store_true", dest="CLEARCACHE", help="Force the script to download updated lists even if the 3 hours timeout has not yet been reached. Must be used in combination with --cache.") parser.add_argument("-i","--info", action="store_true", dest="INFO", help="Print information about the program.") parser.add_argument("-s","--schema", action="store_true", dest="SCHEMA", help="Display the response json schema.") try: args = parser.parse_args() if (args.INFO): sys.stdout.write(info()) exit(1) if (args.SCHEMA): try: schema = open(filebspath('schema', 'schema.json'), "r") for schemaline in schema.readlines(): sys.stdout.write(schemaline) schema.close() exit(0) except IOError as e: logging.error(e) logging.error("Unable to load schema file.") exit(1) if (args.ITEM == None) and (args.FILE == None): parser.error("No targets selected! Please, specify one option between --entity and --file.\nTry option -h or --help.") exit(1) elif (args.ITEM != None) and (args.FILE != None): parser.error("Too much targets selected! Sorry, you can't specify both options --entity and --file.\nTry option -h or --help.") exit(1) elif args.CLEARCACHE and not args.CACHE: args.CLEARCACHE = False logging.warning("Expected -c or --cache option declared. Ignoring all cache settings.\nTry option -h or --help.") lutils = listutils.listutils(args.ITEM, args.FILE, args.CACHE, args.DIRECTORY, args.CLEARCACHE) makelist = lutils.prepareLists() if isinstance(makelist, dict): serarch = dosearch.dosearch(makelist, args.VERBOSE) results = serarch.prepareResults() if isinstance(results, dict): output = json.dumps(results, indent=4, separators=(",", ": ")) if args.OUTPUT == None: sys.stdout.write(output) else: fileoutput = open(args.OUTPUT, "w+") fileoutput.write(output) fileoutput.close() logging.info("Output saved in file: "+args.OUTPUT) else: logging.error("'results' is not an dict. Quit!") else: logging.error("'makelist' is not an dict. Quit!") except argparse.ArgumentError as e: logging.error(e) parser.error("Unexpected Error.\nTry option -h or --help.") exit(2) if __name__ == '__main__': main()
51.149123
428
0.607271
0
0
0
0
0
0
0
0
4,918
0.421712
c215424b83f6d390aecbd0efbacc856a6c8e7a5e
38
py
Python
sqlcouch/exceptions.py
dimagi/sqlcouch
ff264740d223185d80e0bf8ea11f6f3c8f3d7e7b
[ "BSD-3-Clause" ]
1
2016-03-01T10:20:20.000Z
2016-03-01T10:20:20.000Z
sqlcouch/exceptions.py
dimagi/sqlcouch
ff264740d223185d80e0bf8ea11f6f3c8f3d7e7b
[ "BSD-3-Clause" ]
null
null
null
sqlcouch/exceptions.py
dimagi/sqlcouch
ff264740d223185d80e0bf8ea11f6f3c8f3d7e7b
[ "BSD-3-Clause" ]
null
null
null
class NoMoreData(Exception): pass
12.666667
28
0.736842
37
0.973684
0
0
0
0
0
0
0
0
c2160b83bdfd16bb5fd59f1cfbfcbb7c7d36395f
3,327
py
Python
5-3_stock inventory.py
hkrsmk/python
1ee1b0adc911b62af3911428f441c6c59e1b345f
[ "Unlicense" ]
null
null
null
5-3_stock inventory.py
hkrsmk/python
1ee1b0adc911b62af3911428f441c6c59e1b345f
[ "Unlicense" ]
null
null
null
5-3_stock inventory.py
hkrsmk/python
1ee1b0adc911b62af3911428f441c6c59e1b345f
[ "Unlicense" ]
null
null
null
#Stock inventory control system. def menu(): print("""1. Add New Stock 2. Update existing stock 3. Sell stock, even though 2 will work too 8. Display Inventory 9. Exit""") while True: try: choice = int(input("Please select an option")) break except: print("Invalid choice, please try again") return choice #======================================= 1 =========================== def newStock(): newstock = input("Enter new stock name") if newstock in myStock: print("Stock already there") else: myStock[newstock]=0 print("new stock", newstock.center(10, ' '), "added") #======================================= 2 =========================== def addVolume(): stock_bought = input("Enter stock name you're buying") if stock_bought not in myStock: print("Stock ain't there. add first") else: while True: try: qty = int(input("How many? positive for buy. negative for sell")) myStock[stock_bought] += qty print(stock_bought, "is now", myStock[stock_bought]) break except: print("Invalid quantity!") #======================================= 3 ============================ def sell(): selling = input("Stock name you're selling?") if selling not in myStock: print("You don't have this?") elif myStock[selling]<=0: print(selling.center(10, ' '), "outta stock") else: while True: try: qty = int(input("how many sold?")) if myStock[selling] < qty: print("u selling > you have, not allowed!") raise "Error" myStock[selling] -= qty print(selling, "is now", myStock[selling]) break except: print("Invalid qty") #main prog below choice = 0 myStock = {} #empty dictionary for myStock try: infile = open("myStock.txt","r") read1LineStock = infile.readline() #read first line while read1LineStock !=" ": #while the file has not ended, myStock[read1LineStock.split(",")[0]] = int(read1LineStock.split(",")[1]) read1LineStock = infile.readline() print(myStock) #place item 0 in the split up sentence as the name for the item for myStock, #and whatever number you can find in item 1 of the split up sentence (ignore '\n') #as the 'quantity' for myStock. #eg myStock['apple'] = '1' #then, read the next line. infile.close() except: print("Welcome to the stock management system!") while choice != 9: choice = menu() #rmb to return choice to the global choice. #the choice inside menu() is a LOCAL choice. if choice ==1: newStock() elif choice ==2: addVolume() elif choice ==3: sell() #======================================= 8 =========================== elif choice ==8: print(myStock) #======================================= 9 =========================== print("Have a noice day")
30.522936
87
0.479411
0
0
0
0
0
0
0
0
1,468
0.441238
c21a45651bf528b945d22bdb962a7e3a45ad0e4d
91
py
Python
backend/gunicorn_config_worker.py
matan-h/futurecoder
5117cbab7ed2bc41fe9d4763038d9c4a0aba064e
[ "MIT" ]
null
null
null
backend/gunicorn_config_worker.py
matan-h/futurecoder
5117cbab7ed2bc41fe9d4763038d9c4a0aba064e
[ "MIT" ]
1
2022-02-28T01:35:27.000Z
2022-02-28T01:35:27.000Z
backend/gunicorn_config_worker.py
matan-h/futurecoder
5117cbab7ed2bc41fe9d4763038d9c4a0aba064e
[ "MIT" ]
null
null
null
bind = "0.0.0.0:5000" threads = 10 worker_class = "gthread" accesslog = '-' errorlog = '-'
15.166667
24
0.626374
0
0
0
0
0
0
0
0
29
0.318681
c21a8492971d5deb4f24b54f0d01b958dad6c817
1,780
py
Python
2017/day23.py
andypymont/adventofcode
912aa48fc5b31ec9202fb9654380991fc62afcd1
[ "MIT" ]
null
null
null
2017/day23.py
andypymont/adventofcode
912aa48fc5b31ec9202fb9654380991fc62afcd1
[ "MIT" ]
null
null
null
2017/day23.py
andypymont/adventofcode
912aa48fc5b31ec9202fb9654380991fc62afcd1
[ "MIT" ]
null
null
null
""" 2017 Day 23 https://adventofcode.com/2017/day/23 """ from typing import Dict import aocd # type: ignore class Program: def __init__(self, text: str): self.registers: Dict[str, int] = {} self.commands = text.split("\n") self.position = 0 self.mul_count = 0 def get(self, key: str) -> int: try: return int(key) except ValueError: return self.registers.get(key, 0) def run_command(self, pos: int) -> None: command = self.commands[pos] instruction, *args = command.split(" ") if instruction == "set": self.registers[args[0]] = self.get(args[1]) elif instruction == "sub": self.registers[args[0]] = self.get(args[0]) - self.get(args[1]) elif instruction == "mul": self.registers[args[0]] = self.get(args[0]) * self.get(args[1]) self.mul_count += 1 elif instruction == "jnz": if self.get(args[0]) != 0: self.position += self.get(args[1]) - 1 def run(self) -> None: while self.position < len(self.commands): self.run_command(self.position) self.position += 1 def prime(number: int) -> bool: for factor in range(2, (number // 2) + 1): if number % factor == 0: return False return True def run_program() -> int: return sum(1 for b in range(107900, 124901, 17) if not prime(b)) def main() -> None: """ Calculate and output the solutions based on the real puzzle input. """ data = aocd.get_data(year=2017, day=23) program = Program(data) program.run() print(f"Part 1: {program.mul_count}") print(f"Part 2: {run_program()}") if __name__ == "__main__": main()
25.797101
75
0.561798
1,094
0.614607
0
0
0
0
0
0
245
0.13764
c21ace7559f52cf54fe988e11522102469f04048
1,641
py
Python
src/simulator/wsn/test.py
liuliuliu0605/Federated-Learning-PyTorch
04169455917ae50a8fea2dabd756a0ca1774e5d5
[ "MIT" ]
null
null
null
src/simulator/wsn/test.py
liuliuliu0605/Federated-Learning-PyTorch
04169455917ae50a8fea2dabd756a0ca1774e5d5
[ "MIT" ]
null
null
null
src/simulator/wsn/test.py
liuliuliu0605/Federated-Learning-PyTorch
04169455917ae50a8fea2dabd756a0ca1774e5d5
[ "MIT" ]
null
null
null
import sys from sklearn.datasets import make_blobs from src.simulator.wsn.network import Network from src.simulator.wsn.utils import * from src.simulator.wsn.fcm import * from src.simulator.wsn.direct_communication import * from src.utils import complete, star seed = 1 np.random.seed(seed ) logging.basicConfig(stream=sys.stderr, level=logging.INFO) traces = {} topo = complete(cf.NB_CLUSTERS) # topo = independent(cf.NB_CLUSTERS) # topo = star(cf.NB_CLUSTERS) # topo = ring(cf.NB_CLUSTERS) centers = [[50, 225], [25, 110], [125, 20], [220, 80], [200, 225]] X, y = make_blobs(n_samples=100, centers=centers, n_features=2, random_state=seed, cluster_std=15) traces = {} network = Network(init_nodes=X, topo=topo) # network = Network(topo=topo) for routing_topology in ['FCM']:#, 'DC']: network.reset() routing_protocol_class = eval(routing_topology) network.init_routing_protocol(routing_protocol_class()) # traces[routing_topology] = network.simulate() for i in range(1000): print("--------Round %d--------"% i) network.activate_mix() traces[routing_topology] = network.simulate_one_round() network.deactivate_mix() if len(network.get_alive_nodes()) == 0 : break # plot_clusters(network) # plot_time_of_death(network) # print(network.energy_dis) # print(network.energy_dis['inter-comm']/ network.energy_dis['intra-comm']) print("All death round: ", i) print("First death round: ", network.first_depletion) print("Energy:", network.energy_dis) plot_traces(traces)
32.176471
80
0.672151
0
0
0
0
0
0
0
0
425
0.258988
c21c3b472b61858775a3801d8a7ee0aff0f5536a
4,149
py
Python
src/dewloosh/geom/cell.py
dewloosh/dewloosh-geom
5c97fbab4b68f4748bf4309184b9e0e877f94cd6
[ "MIT" ]
2
2021-12-11T17:25:51.000Z
2022-01-06T15:36:27.000Z
src/dewloosh/geom/cell.py
dewloosh/dewloosh-geom
5c97fbab4b68f4748bf4309184b9e0e877f94cd6
[ "MIT" ]
null
null
null
src/dewloosh/geom/cell.py
dewloosh/dewloosh-geom
5c97fbab4b68f4748bf4309184b9e0e877f94cd6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- try: from collections.abc import Iterable except ImportError: from collections import Iterable import numpy as np from numpy import ndarray from dewloosh.math.array import atleast1d from dewloosh.math.utils import to_range from .celldata import CellData from .utils import jacobian_matrix_bulk, points_of_cells, pcoords_to_coords_1d class PolyCell(CellData): NNODE = None NDIM = None def __init__(self, *args, topo: ndarray=None, i: ndarray=None, **kwargs): if isinstance(topo, ndarray): kwargs['nodes'] = topo if isinstance(i, ndarray): kwargs['id'] = i super().__init__(*args, **kwargs) def jacobian_matrix(self, *args, dshp=None, ecoords=None, topo=None, **kwargs): ecoords = self.local_coordinates(topo=topo) if ecoords is None else ecoords return jacobian_matrix_bulk(dshp, ecoords) def jacobian(self, *args, jac=None, **kwargs): return np.linalg.det(jac) def points_of_cells(self, *args, target=None, **kwargs): assert target is None topo = kwargs.get('topo', self.nodes.to_numpy()) coords = kwargs.get('coords', self.pointdata.x.to_numpy()) return points_of_cells(coords, topo) def local_coordinates(self, *args, **kwargs): frames = kwargs.get('frames', self.frames.to_numpy()) topo = kwargs.get('_topo', self.nodes.to_numpy()) coords = self.pointdata.x.to_numpy() return points_of_cells(coords, topo, local_axes=frames) def coords(self, *args, **kwargs): return self.points_of_cells(*args, **kwargs) class PolyCell1d(PolyCell): NDIM = 1 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # NOTE The functionality of `pcoords_to_coords_1d` needs to be generalized # for higher order cells. def points_of_cells(self, *args, points=None, cells=None, target='global', rng=None, flatten=False, **kwargs): if isinstance(target, str): assert target.lower() in ['global', 'g'] else: raise NotImplementedError topo = kwargs.get('topo', self.nodes.to_numpy()) coords = kwargs.get('coords', self.pointdata.x.to_numpy()) ecoords = points_of_cells(coords, topo) if points is None and cells is None: return ecoords # points or cells is not None if cells is not None: cells = atleast1d(cells) conds = np.isin(cells, self.id.to_numpy()) cells = atleast1d(cells[conds]) if len(cells) == 0: return {} ecoords = ecoords[cells] topo = topo[cells] else: cells = np.s_[:] if points is None: points = np.array(self.lcoords()).flatten() rng = [-1, 1] else: rng = np.array([0, 1]) if rng is None else np.array(rng) points, rng = to_range(points, source=rng, target=[0, 1]).flatten(), [0, 1] datacoords = pcoords_to_coords_1d(points, ecoords) # (nE * nP, nD) if not flatten: nE = ecoords.shape[0] nP = points.shape[0] datacoords = datacoords.reshape(nE, nP, datacoords.shape[-1]) # (nE, nP, nD) # values : (nE, nP, nDOF, nRHS) or (nE, nP * nDOF, nRHS) if isinstance(cells, slice): # results are requested on all elements data = datacoords elif isinstance(cells, Iterable): data = {c : datacoords[i] for i, c in enumerate(cells)} else: raise TypeError("Invalid data type <> for cells.".format(type(cells))) return data class PolyCell2d(PolyCell): NDIM = 2 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class PolyCell3d(PolyCell): NDIM = 3 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
33.192
89
0.577489
3,721
0.896843
0
0
0
0
0
0
387
0.093275
c2221b8872b6350f052296a7af3215fb075a5795
30
py
Python
src/python/src/rmq/items/__init__.py
halimov-oa/scrapy-boilerplate
fe3c552fed26bedb0618c245ab923aa34a89ac9d
[ "MIT" ]
34
2019-12-13T10:31:39.000Z
2022-03-09T15:59:07.000Z
src/python/src/rmq/items/__init__.py
halimov-oa/scrapy-boilerplate
fe3c552fed26bedb0618c245ab923aa34a89ac9d
[ "MIT" ]
49
2020-02-25T19:41:09.000Z
2022-02-27T12:05:25.000Z
src/python/src/rmq/items/__init__.py
halimov-oa/scrapy-boilerplate
fe3c552fed26bedb0618c245ab923aa34a89ac9d
[ "MIT" ]
23
2019-12-23T15:19:42.000Z
2022-03-09T16:00:15.000Z
from .rmq_item import RMQItem
15
29
0.833333
0
0
0
0
0
0
0
0
0
0
c22246e42a11a496e2843439e4ad4abd332a1d57
968
py
Python
softlearning/environments/mujoco_safety_gym/envs/fetch/slide.py
anyboby/mbpo
98b75cb4cb13a2640fce1fbe1ddef466b864342e
[ "MIT" ]
5
2020-02-12T17:09:09.000Z
2021-09-29T16:06:40.000Z
softlearning/environments/mujoco_safety_gym/envs/fetch/slide.py
anyboby/mbpo
98b75cb4cb13a2640fce1fbe1ddef466b864342e
[ "MIT" ]
10
2020-08-31T02:50:02.000Z
2022-02-09T23:36:43.000Z
softlearning/environments/mujoco_safety_gym/envs/fetch/slide.py
anyboby/mbpo
98b75cb4cb13a2640fce1fbe1ddef466b864342e
[ "MIT" ]
2
2022-03-15T01:45:26.000Z
2022-03-15T06:46:47.000Z
import os import numpy as np from gym import utils from mujoco_safety_gym.envs import fetch_env # Ensure we get the path separator correct on windows MODEL_XML_PATH = os.path.join('fetch', 'slide.xml') class FetchSlideEnv(fetch_env.FetchEnvNew, utils.EzPickle): def __init__(self, reward_type='sparse'): initial_qpos = { 'robot0:slide0': 0.05, 'robot0:slide1': 0.48, 'robot0:slide2': 0.0, 'object0:joint': [1.7, 1.1, 0.41, 1., 0., 0., 0.], } fetch_env.FetchEnvNew.__init__( self, MODEL_XML_PATH, has_object=True, block_gripper=True, n_substeps=20, gripper_extra_height=-0.02, target_in_the_air=False, target_offset=np.array([0.4, 0.0, 0.0]), obj_range=0.1, target_range=0.3, distance_threshold=0.05, additional_objects=False, number_of_objects = 0, initial_qpos=initial_qpos, reward_type=reward_type) utils.EzPickle.__init__(self)
37.230769
105
0.66219
760
0.785124
0
0
0
0
0
0
139
0.143595
c222e22c9b1710ce4667ef563dce67f96dc33915
163
py
Python
packages/raspi_ip/setup.py
atoy322/PiDrive
8758f4b5dae4a0187ce0a769c4146628c88015de
[ "MIT" ]
null
null
null
packages/raspi_ip/setup.py
atoy322/PiDrive
8758f4b5dae4a0187ce0a769c4146628c88015de
[ "MIT" ]
2
2021-09-21T06:32:58.000Z
2021-09-22T23:15:18.000Z
packages/raspi_ip/setup.py
atoy322/PiDrive
8758f4b5dae4a0187ce0a769c4146628c88015de
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup( name="raspi_ip", version="1.0.0", author="atoy322", description="", long_description="" )
14.818182
43
0.644172
0
0
0
0
0
0
0
0
30
0.184049
c223b2854d4053fb4e412891092b11e58745c844
339
py
Python
kiteconnect/__version__.py
AnjayGoel/pykiteconnect
e33833a86d3e6483f2cff1be8bed74f40d5771c5
[ "MIT" ]
1
2022-02-05T08:43:37.000Z
2022-02-05T08:43:37.000Z
kiteconnect/__version__.py
AnjayGoel/pykiteconnect
e33833a86d3e6483f2cff1be8bed74f40d5771c5
[ "MIT" ]
null
null
null
kiteconnect/__version__.py
AnjayGoel/pykiteconnect
e33833a86d3e6483f2cff1be8bed74f40d5771c5
[ "MIT" ]
null
null
null
__title__ = "open_kite_connect" __description__ = "Fork of the official Kite Connect python client, allowing free access to the api." __url__ = "https://kite.trade" __download_url__ = "https://github.com/AnjayGoel/pykiteconnect" __version__ = "4.0.0" __author__ = "Anjay Goel" __author_email__ = "[email protected]" __license__ = "MIT"
37.666667
101
0.766962
0
0
0
0
0
0
0
0
212
0.625369
c223dd7e30b36ebfa0f41bf3e5a06ae1a6e0b5cd
1,679
py
Python
CrsData/pipelines.py
DivineEnder/CrsData
cd0cf14e79b4a3bbf7347b8612a5b67e2a185208
[ "MIT" ]
null
null
null
CrsData/pipelines.py
DivineEnder/CrsData
cd0cf14e79b4a3bbf7347b8612a5b67e2a185208
[ "MIT" ]
null
null
null
CrsData/pipelines.py
DivineEnder/CrsData
cd0cf14e79b4a3bbf7347b8612a5b67e2a185208
[ "MIT" ]
null
null
null
# @Author: DivineEnder # @Date: 2018-03-08 22:24:45 # @Email: [email protected] # @Last modified by: DivineEnder # @Last modified time: 2018-03-11 01:25:41 # -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html from dotenv import load_dotenv, find_dotenv from Utils import connection_utils as glc from psycopg2.extensions import AsIs import os class CrsdataPipeline(object): def open_spider(self, spider): # Load the environment file # This load makes sure passwords are not stored on github # Basically here for security reasons load_dotenv(find_dotenv()) # Generate a new database connection (will default to credentials loaded from the env file) self.connection = glc.open_new_connection(host = os.environ.get("DBHOST"), port = os.environ.get("DBPORT"), user = os.environ.get("DBUSER"), password = os.environ.get("DBPASS"), dbname = os.environ.get("DBNAME")) # Generate a new cursor from the previously generated connection self.cursor = glc.open_new_cursor(self.connection) def process_item(self, course, spider): # input() # <---- Debugging print (the god) # Insert course into database self.cursor.execute("""INSERT INTO courses (%s) VALUES %s ON CONFLICT (crn) DO NOTHING""",( AsIs(','.join(course.keys())), tuple([course[field] for field in course.keys()]) )) # Commit all changes to the database self.connection.commit() return course def close_spider(self, spider): # Close DB connection and cursor glc.close_cursor(self.cursor) glc.close_connection(self.connection)
34.265306
214
0.731983
1,181
0.703395
0
0
0
0
0
0
876
0.521739
c224e7c1cff16812960fb4cd9afab8ab99e06afc
2,227
py
Python
index_to_csv.py
grenzi/photoindexer
d10b3b6f347168706dc9c2673a29102fd73f31e1
[ "Apache-2.0" ]
null
null
null
index_to_csv.py
grenzi/photoindexer
d10b3b6f347168706dc9c2673a29102fd73f31e1
[ "Apache-2.0" ]
null
null
null
index_to_csv.py
grenzi/photoindexer
d10b3b6f347168706dc9c2673a29102fd73f31e1
[ "Apache-2.0" ]
null
null
null
import os import json from enum import Enum from datetime import datetime,date import logging import pathlib from tqdm import tqdm from datastructures import Volume, IndexedFile,load_index_if_exists, save_index from os import listdir from os.path import isfile, join import itertools import csv logger = logging.getLogger() handler = logging.StreamHandler() formatter = logging.Formatter( '%(asctime)s %(name)-12s %(levelname)-8s %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.INFO) ############################################################################### index_dir = os.path.join(os.getcwd(), 'index') logger.info('finding index files') indexfiles = list([f for f in listdir(index_dir) if isfile(join(index_dir, f)) and f[-4:]=='json']) columns = ['VolumeName', 'VolumeSerialNumber', 'Directory', 'Name', 'InodeNumber', 'Modified On', 'Created On', 'SHA256'] exif_columns=set() logger.info('parsing index files') #Pass 1 = collect keys for index_file in indexfiles: index = load_index_if_exists(os.path.join(index_dir, index_file)) for vol in index: for ixf in vol.files: if ixf.EXIF is not None: for i in ixf.EXIF.keys(): exif_columns.add(i) logger.info('writing csv') #Pass 2 = write header with open(os.path.join(os.getcwd(), 'index.csv'), mode='w', encoding='utf-8', newline='') as f: writer = csv.writer(f) writer.writerow(columns+list(exif_columns)) #and now rows for index_file in indexfiles: index = load_index_if_exists(os.path.join(index_dir, index_file)) for vol in index: for ixf in vol.files: row = [ vol.VolumeName, vol.VolumeSerialNumber, ixf.Directory, ixf.Name, ixf.st_ino, ixf.st_mtime.strftime("%c"), ixf.st_ctime.strftime("%c"), ixf.SHA256 ] for ec in exif_columns: row.append(ixf.EXIF.get(ec, None)) writer.writerow(row)
35.349206
122
0.58599
0
0
0
0
0
0
0
0
387
0.173776
c2253045dcaa56a5991a62320574be6662b1c519
1,056
py
Python
tests/test_wrapper.py
waysup/Jike-Metro
b8ead80dddd5d695784c5587edfd8df87c55a4e6
[ "MIT" ]
193
2018-04-04T02:27:51.000Z
2022-03-14T03:26:44.000Z
tests/test_wrapper.py
BeiFenKu/Jike-Metro
e97fd0a751dca28a39d0e9fb94fbd696d5ee07b3
[ "MIT" ]
16
2018-04-04T05:58:15.000Z
2021-01-08T02:56:57.000Z
tests/test_wrapper.py
BeiFenKu/Jike-Metro
e97fd0a751dca28a39d0e9fb94fbd696d5ee07b3
[ "MIT" ]
24
2018-04-06T09:34:58.000Z
2021-03-02T02:10:07.000Z
import unittest from collections import namedtuple from jike.objects.wrapper import * class TestWrapper(unittest.TestCase): def setUp(self): self.Test = namedtuple('Test', ['id', 'content', 'other', 'none']) def test_repr_namedtuple(self): self.Test.__repr__ = repr_namedtuple test = self.Test(**{'id': 'a', 'content': 'b', 'other': 'c', 'none': None}) self.assertEqual(repr(test), 'Test(id=a, content=b)') def test_str_namedtuple(self): self.Test.__str__ = str_namedtuple test = self.Test(**{'id': 'a', 'content': 'b', 'other': 'c', 'none': None}) self.assertEqual(str(test), 'Test(id=a, content=b, other=c)') def test_namedtuple_with_defaults(self): Test = namedtuple_with_defaults(self.Test) test = Test(**{'id': 'a', 'content': 'b', 'other': 'c'}) self.assertEqual(test.id, 'a') self.assertEqual(test.content, 'b') self.assertEqual(test.other, 'c') self.assertIsNone(test.none) if __name__ == '__main__': unittest.main()
34.064516
83
0.61553
918
0.869318
0
0
0
0
0
0
205
0.194129
c225d7cd38555d8a71f34fd96c413aa41e8e84be
10,125
py
Python
storm_control/hal4000/illumination/illuminationChannelUI.py
shiwei23/STORM6
669067503ebd164b575ce529fcc4a9a3f576b3d7
[ "MIT" ]
47
2015-02-11T16:05:54.000Z
2022-03-26T14:13:12.000Z
storm_control/hal4000/illumination/illuminationChannelUI.py
shiwei23/STORM6
669067503ebd164b575ce529fcc4a9a3f576b3d7
[ "MIT" ]
110
2015-01-30T03:53:41.000Z
2021-11-03T15:58:44.000Z
storm_control/hal4000/illumination/illuminationChannelUI.py
shiwei23/STORM6
669067503ebd164b575ce529fcc4a9a3f576b3d7
[ "MIT" ]
61
2015-01-09T18:31:27.000Z
2021-12-21T13:07:51.000Z
#!/usr/bin/env python """ The various ChannelUI classes. Hazen 04/17 """ import os from PyQt5 import QtCore, QtWidgets def loadStyleSheet(name): text = "" with open(os.path.join(os.path.dirname(__file__), name)) as fp: text += fp.read() return text class ChannelUI(QtWidgets.QFrame): """ A QWidget for displaying the UI elements associated with an illumination channel. """ onOffChange = QtCore.pyqtSignal(object) powerChange = QtCore.pyqtSignal(int) def __init__(self, name = "", color = None, **kwds): super().__init__(**kwds) self.enabled = True # FIXME: These styles could be better.. self.disabled_style = loadStyleSheet("disabled_style.qss") self.enabled_style = "QFrame { background-color: rgb(" + color + ");}\n" self.enabled_style += loadStyleSheet("enabled_style.qss") self.setFixedWidth(50) self.setLineWidth(2) self.setStyleSheet(self.enabled_style) self.main_layout = QtWidgets.QVBoxLayout(self) self.main_layout.setContentsMargins(0,0,0,0) self.main_layout.setSpacing(1) # Text label. self.wavelength_label = QtWidgets.QLabel(self) self.wavelength_label.setText(name) self.wavelength_label.setAlignment(QtCore.Qt.AlignCenter) self.main_layout.addWidget(self.wavelength_label) # Container for the power slider (if any). self.slider_widget = QtWidgets.QWidget(self) # # FIXME: This is a mistake if none of the channels have a power # slider. # self.slider_widget.setMinimumHeight(150) self.slider_layout = QtWidgets.QVBoxLayout(self.slider_widget) self.slider_layout.setContentsMargins(0,0,0,0) self.slider_layout.setSpacing(1) self.main_layout.addWidget(self.slider_widget) # Power on/off radio button. self.on_off_button = QtWidgets.QRadioButton(self) self.main_layout.addWidget(self.on_off_button) self.main_layout.setAlignment(self.on_off_button, QtCore.Qt.AlignCenter) # Spacer at the bottom. self.spacer_item = QtWidgets.QSpacerItem(1, 1, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.main_layout.addItem(self.spacer_item) # Connect signals self.on_off_button.clicked.connect(self.handleOnOffChange) def disableChannel(self): """ Disables all the UI elements of the channel. """ self.setOnOff(False) self.setStyleSheet(self.disabled_style) self.setFrameShadow(QtWidgets.QFrame.Sunken) self.on_off_button.setCheckable(False) self.enabled = False def enableChannel(self, was_on = False): """ Enables all the UI elements of the channel. """ self.setStyleSheet(self.enabled_style) self.setFrameShadow(QtWidgets.QFrame.Raised) self.on_off_button.setCheckable(True) self.setOnOff(was_on) self.enabled = True def getAmplitude(self): if self.on_off_button.isChecked(): return 1.0 else: return 0.0 def handleOnOffChange(self, on_off): """ Called when the on/off radio button is pressed. """ self.onOffChange.emit(on_off) def isEnabled(self): return self.enabled def isOn(self): return self.on_off_button.isChecked() def newSettings(self, on, power): self.setOnOff(on) def remoteIncPower(self, power_inc): pass def remoteSetPower(self, new_power): if self.enabled: if (new_power > 0.5): self.setOnOff(True) else: self.setOnOff(False) def setOnOff(self, state): if (state != self.on_off_button.isChecked()): self.on_off_button.setChecked(state) self.handleOnOffChange(state) def setupButtons(self, button_data): pass def startFilm(self): self.on_off_button.setEnabled(False) def stopFilm(self): self.on_off_button.setEnabled(True) class ChannelUIAdjustable(ChannelUI): """ A QWidget for displaying the UI elements associated with an adjustable illumination channel. """ def __init__(self, **kwds): super().__init__(**kwds) self.buttons = [] self.max_amplitude = 1 self.min_amplitude = 0 # Current power label. self.power_label = QtWidgets.QLabel(self.slider_widget) self.power_label.setAlignment(QtCore.Qt.AlignCenter) self.slider_layout.addWidget(self.power_label) # Slider for controlling the power. self.powerslider = QtWidgets.QSlider(self.slider_widget) self.powerslider.setOrientation(QtCore.Qt.Vertical) self.powerslider.setSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Expanding) self.slider_layout.addWidget(self.powerslider) # FIXME: If I knew what I was doing I should be able to do this # using the stylesheet? self.powerslider.setFixedWidth(25) self.slider_layout.setAlignment(self.powerslider, QtCore.Qt.AlignHCenter) def configureSlider(self, minimum, maximum): """ This is called once we have obtained amplitude functionality that backs the slider. The functionality sets the range for the slider. """ self.max_amplitude = maximum self.min_amplitude = minimum self.powerslider.setMaximum(maximum) self.powerslider.setMinimum(minimum) page_step = 0.1 * (maximum - minimum) if (page_step > 1.0): self.powerslider.setPageStep(page_step) self.powerslider.setSingleStep(1) # # Why 2? We need the initial value to be a number that is not # the default power, otherwise the slider text won't get updated # at start-up. # self.setAmplitude(2) self.powerslider.valueChanged.connect(self.handleAmplitudeChange) def disableChannel(self): super().disableChannel() self.powerslider.setEnabled(False) for button in self.buttons: button.setEnabled(False) def enableChannel(self, was_on = False): super().enableChannel(was_on) self.powerslider.setEnabled(True) for button in self.buttons: button.setEnabled(True) def getAmplitude(self): return self.powerslider.value() def handleAmplitudeChange(self, amplitude): self.powerChange.emit(amplitude) def newSettings(self, on, power): self.setOnOff(on) self.setAmplitude(power) def remoteIncPower(self, power_inc): if self.enabled: self.setAmplitude(self.powerslider.value() + power_inc) def remoteSetPower(self, new_power): if self.enabled: self.setAmplitude(new_power) def setAmplitude(self, amplitude): if (amplitude != self.powerslider.value()): self.powerslider.setValue(amplitude) def setupButtons(self, button_data): # Remove spacer at the end. self.main_layout.removeItem(self.spacer_item) # Make sure we have enough buttons. while (len(self.buttons) < len(button_data)): new_button = PowerButton(parent = self) new_button.powerChange.connect(self.setAmplitude) self.layout().addWidget(new_button) self.buttons.append(new_button) #self.cur_y += 22 # Hide all the buttons. for button in self.buttons: button.hide() # Set text and value of the buttons we'll use & show them. amp_range = float(self.max_amplitude - self.min_amplitude) for i in range(len(button_data)): self.buttons[i].setText(button_data[i][0]) self.buttons[i].setValue(int(round(button_data[i][1] * amp_range + self.min_amplitude))) self.buttons[i].show() # Add spacer again. self.main_layout.addItem(self.spacer_item) # Resize based on number of visible buttons. #self.setFixedSize(48, 248 + 22 * len(button_data)) def updatePowerText(self, new_text): self.power_label.setText(new_text) class PowerButton(QtWidgets.QPushButton): """ A push button specialized for amplitude / power control. """ powerChange = QtCore.pyqtSignal(int) def __init__(self, **kwds): super().__init__(**kwds) self.value = 0.0 self.clicked.connect(self.handleClicked) def handleClicked(self, boolean): self.powerChange.emit(self.value) def setValue(self, value): self.value = value # # The MIT License # # Copyright (c) 2017 Zhuang Lab, Harvard University # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #
32.041139
100
0.645136
8,704
0.859654
0
0
0
0
0
0
2,737
0.270321
c229b5ef4f038beb67f6eb13b6306e08e27df0c9
4,051
py
Python
3-compressor/compress.py
JamesG3/Search-Engine
790f32c7833eb82d9b01b84af634e650ef7a9e75
[ "BSD-2-Clause" ]
null
null
null
3-compressor/compress.py
JamesG3/Search-Engine
790f32c7833eb82d9b01b84af634e650ef7a9e75
[ "BSD-2-Clause" ]
null
null
null
3-compressor/compress.py
JamesG3/Search-Engine
790f32c7833eb82d9b01b84af634e650ef7a9e75
[ "BSD-2-Clause" ]
null
null
null
import sys import struct from io import FileIO, BufferedWriter import S9Compressor as S9 BLOCKSIZE = (64*1024) / 4 # number of Int LexiPos = 0 # record the current position for new lexicon writing lexiconBuffer = [] IIBuffer = [] WriteThreshold = 0 def docidPrepare(docidList): # calculate the diff, return the shorter version list res = [docidList[0]] for i in xrange(1, len(docidList)): res.append(docidList[i] - docidList[i-1]) return res def blockPacker(chunks, chunksInfo): TotalSize = 0 # total size for this term's inverted index blocks = [] # [[metadata, block], [metadata, block], ...] metadata = [0] # [metadata size, [last docid, chunk size], [last docid, chunk size], ...] currentTotalSize = 1 # number of Int, initialize 1 because of the metadata size block = [] for i in xrange(len(chunksInfo)): if (currentTotalSize + 2 + chunksInfo[i][0]) <= BLOCKSIZE: currentTotalSize += (2 + chunksInfo[i][0]) metadata[0] += 1 metadata.append(chunksInfo[i][::-1]) block.append(chunks[i]) else: # when current block is full blocks.append([metadata,block]) # add block to blocks TotalSize += currentTotalSize metadata = [0] # initialize currentTotalSize = 1 block = [] currentTotalSize += (2 + chunksInfo[i][0]) metadata[0] += 1 metadata.append(chunksInfo[i][::-1]) block.append(chunks[i]) blocks.append([metadata,block]) TotalSize += currentTotalSize return TotalSize, blocks def compress(docidList, freqList): docLen = len(docidList) chunks = [] # [chunk, chunk, ...] chunksInfo = [] # [[chunksize, lastdocId], ...] for i in xrange(docLen/128 + 1): tmpdocidList = docidList[i*128 : (i+1)*128] tmpfreqList = freqList[i*128 : (i+1)*128] if len(tmpdocidList) == 0: break lastdocId = tmpdocidList[-1] tmpLen = len(tmpdocidList) tmpdocidList = docidPrepare(tmpdocidList) tmpList = tmpdocidList + tmpfreqList chunk = S9.encoder(tmpList, tmpLen * 2) chunks.append(chunk) chunksInfo.append([len(chunk), lastdocId]) return blockPacker(chunks, chunksInfo) def writeLexicon(): # outLexFile = open("newLexicon.txt", 'a') with BufferedWriter(FileIO("newLexicon.txt", "a")) as outLexFile: for item in lexiconBuffer: outLexFile.write(item[0] + ':' + str(item[1]) + ',' + str(item[2])+ ',' + str(item[3])) outLexFile.write('\n') del lexiconBuffer[:] outLexFile.close() return def writeNewII(): # newII = open("InvertIndex.txt", 'ab') with BufferedWriter(FileIO("InvertIndex.txt", "ab")) as newII: def writeByte(Integer): return newII.write(struct.pack('I', Integer)[::-1]) for blocks in IIBuffer: for block in blocks: writeByte(block[0][0]) # write size of metadata header for number in [item for sublist in block[0][1:] for item in sublist]: # flatten the tmpList writeByte(number) for number in [item for sublist in block[1] for item in sublist]: # flatten the list writeByte(number) del IIBuffer[:] newII.close() return def main(): global LexiPos global WriteThreshold LexFile = open("Lexicon.txt", 'r') iiFile = open("origInvertedIndex.txt","rb") for line in LexFile: docidList = [] freqList = [] lexInfo = line.split(":") IndexInfo = lexInfo[-1].split(",") IndexInfo = [int(item) for item in IndexInfo] # [head, tail, number of docs] iiFile.seek(4*IndexInfo[0],0) for i in xrange(IndexInfo[-1]): docidList.append(struct.unpack('<I', iiFile.read(4)[::-1])[0]) freqList.append(struct.unpack('<I', iiFile.read(4)[::-1])[0]) compressedII = compress(docidList, freqList) # compress data into blocks TotalSize, blocks = compressedII[0], compressedII[1] IIBuffer.append(blocks) lexiconBuffer.append([lexInfo[0], LexiPos, LexiPos+TotalSize, IndexInfo[-1]]) LexiPos += TotalSize WriteThreshold += TotalSize if WriteThreshold > 10000000: print "writing..." WriteThreshold = 0 # reset WriteThreshold writeLexicon() writeNewII() writeLexicon() writeNewII() iiFile.close() LexFile.close() main()
26.827815
96
0.674155
0
0
0
0
0
0
0
0
809
0.199704
c22ad6cee4570624757675e6c7ad19a18a8249f2
5,028
py
Python
DataProcess/ultimate_subimage.py
EmmaAlexander/possum-tools
051ebca682cd97b68fa2a89c9d67e99cf85b09c7
[ "MIT" ]
5
2021-11-18T13:27:30.000Z
2021-12-05T00:15:33.000Z
DataProcess/ultimate_subimage.py
EmmaAlexander/possum-tools
051ebca682cd97b68fa2a89c9d67e99cf85b09c7
[ "MIT" ]
null
null
null
DataProcess/ultimate_subimage.py
EmmaAlexander/possum-tools
051ebca682cd97b68fa2a89c9d67e99cf85b09c7
[ "MIT" ]
null
null
null
#CASA script to create cutouts of fits cubes directoryA = '/Volumes/TARDIS/Work/askap/' directoryB = '/Volumes/NARNIA/pilot_cutouts/' import numpy as np sources=np.loadtxt('/Users/emma/GitHub/possum-tools/DataProcess/pilot_sources.txt',dtype='str') for i in range(0,sources.shape[0]): objectname=sources[i,0] POSSUMSB=sources[i,3] EMUSB=sources[i,4] ra=sources[i,1] dec=sources[i,2] sourcecentre=ra+','+dec fov=sources[i,6]#arcsec print(objectname) region='centerbox[['+sourcecentre+'], ['+fov+'arcsec, '+fov+'arcsec]]' possum_outfile=directoryB+objectname+'/'+objectname+'_POSSUM.fits' emu_outfile=directoryB+objectname+'/'+objectname+'_EMU.fits' #POSSUM if POSSUMSB == '5038': #this is the Early Science data possum_cont_filename = '/Volumes/NARNIA/PawseySync/DRAGN_1_0p8_A/DRAGN_1_0p8_A/image.i.SB5038.cont.restored.fits' else: possum_cont_filename = directoryA +'fullfields/image.i.SB'+POSSUMSB+'.cont.taylor.0.restored.fits' if POSSUMSB == '10035': print('Skipping POSSUM: bad SB10035') else: imsubimage(imagename=possum_cont_filename,outfile='possum_cont_temp',region=region,overwrite=True,dropdeg=True) exportfits(imagename='possum_cont_temp',fitsimage=possum_outfile,overwrite=True) #cubes i_filename = '/Volumes/NARNIA/leakage_corrected/image.restored.i.SB'+POSSUMSB+'.contcube.linmos.13arcsec.leakage.zernike.holoI.fits' q_filename = '/Volumes/NARNIA/leakage_corrected/image.restored.q.SB'+POSSUMSB+'.contcube.linmos.13arcsec.leakage.zernike.holoI.fits' u_filename = '/Volumes/NARNIA/leakage_corrected/image.restored.u.SB'+POSSUMSB+'.contcube.linmos.13arcsec.leakage.zernike.holoI.fits' imsubimage(imagename=i_filename,outfile='i_im_temp',region=region,overwrite=True,dropdeg=True) imsubimage(imagename=q_filename,outfile='q_im_temp',region=region,overwrite=True,dropdeg=True) imsubimage(imagename=u_filename,outfile='u_im_temp',region=region,overwrite=True,dropdeg=True) exportfits(imagename='i_im_temp',fitsimage=objectname+'_POSSUM_i.fits',overwrite=True) exportfits(imagename='q_im_temp',fitsimage=objectname+'_POSSUM_q.fits',overwrite=True) exportfits(imagename='u_im_temp',fitsimage=objectname+'_POSSUM_u.fits',overwrite=True) #EMU if EMUSB != 'NaN': if EMUSB=='10083': i_EMU_filename = '/Volumes/NARNIA/fullfields/image.restored.i.SB10083.contcube.conv.fits' q_EMU_filename = '/Volumes/NARNIA/fullfields/image.restored.q.SB10083.contcube.conv.fits' u_EMU_filename = '/Volumes/NARNIA/fullfields/image.restored.u.SB10083.contcube.conv.fits' cont_EMU_filename= '/Volumes/NARNIA/fullfields/image.i.SB10083.cont.taylor.0.restored.conv.fits' imsubimage(imagename=i_EMU_filename,outfile='i_EMU_im_temp',region=region,overwrite=True,dropdeg=True) imsubimage(imagename=q_EMU_filename,outfile='q_EMU_im_temp',region=region,overwrite=True,dropdeg=True) imsubimage(imagename=u_EMU_filename,outfile='u_EMU_im_temp',region=region,overwrite=True,dropdeg=True) imsubimage(imagename=cont_EMU_filename,outfile='EMU_cont_im_temp',region=region,overwrite=True,dropdeg=True) exportfits(imagename='i_EMU_im_temp',fitsimage=objectname+'_EMU_i.fits',overwrite=True) exportfits(imagename='q_EMU_im_temp',fitsimage=objectname+'_EMU_q.fits',overwrite=True) exportfits(imagename='u_EMU_im_temp',fitsimage=objectname+'_EMU_u.fits',overwrite=True) exportfits(imagename='EMU_cont_im_temp',fitsimage=emu_outfile,overwrite=True) elif EMUSB=='10635': i_EMU_filename = '/Volumes/NARNIA/fullfields/image.restored.i.SB10635.contcube.v2.conv.fits' q_EMU_filename = '/Volumes/NARNIA/fullfields/image.restored.q.SB10635.contcube.v2.conv.fits' u_EMU_filename = '/Volumes/NARNIA/fullfields/image.restored.u.SB10635.contcube.v2.conv.fits' cont_EMU_filename= '/Volumes/NARNIA/fullfields/image.i.SB10635.cont.taylor.0.restored.fits' imsubimage(imagename=i_EMU_filename,outfile='i_EMU_im_temp',region=region,overwrite=True,dropdeg=True) imsubimage(imagename=q_EMU_filename,outfile='q_EMU_im_temp',region=region,overwrite=True,dropdeg=True) imsubimage(imagename=u_EMU_filename,outfile='u_EMU_im_temp',region=region,overwrite=True,dropdeg=True) imsubimage(imagename=cont_EMU_filename,outfile='EMU_cont_im_temp',region=region,overwrite=True,dropdeg=True) exportfits(imagename='i_EMU_im_temp',fitsimage=objectname+'_EMU_i.fits',overwrite=True) exportfits(imagename='q_EMU_im_temp',fitsimage=objectname+'_EMU_q.fits',overwrite=True) exportfits(imagename='u_EMU_im_temp',fitsimage=objectname+'_EMU_u.fits',overwrite=True) exportfits(imagename='EMU_cont_im_temp',fitsimage=emu_outfile,overwrite=True) else: #no cubes emu_filename= directoryA +'fullfields/image.i.SB'+EMUSB+'.cont.taylor.0.restored.fits' imsubimage(imagename=emu_filename,outfile='emu_cont_temp',region=region,overwrite=True,dropdeg=True) exportfits(imagename='emu_cont_temp',fitsimage=emu_outfile,overwrite=True) os.system("rm -r emu_cont_temp") #tidy up os.system("rm -r *_temp") os.system("mv *{}* {}/".format(objectname,objectname))
57.136364
134
0.793755
0
0
0
0
0
0
0
0
2,054
0.408512
c22b8b9f23f5fc7b3cfeba52a978e7ba6441ed61
92
py
Python
cv_comparison_slider_window/__init__.py
Kazuhito00/cv-comparison-slider-window
215cd91c1832b419af9fb99b484ce8c2a9e79a37
[ "MIT" ]
2
2020-11-14T09:09:02.000Z
2020-11-14T10:54:57.000Z
cv_comparison_slider_window/__init__.py
Kazuhito00/cv-comparison-slider-window
215cd91c1832b419af9fb99b484ce8c2a9e79a37
[ "MIT" ]
null
null
null
cv_comparison_slider_window/__init__.py
Kazuhito00/cv-comparison-slider-window
215cd91c1832b419af9fb99b484ce8c2a9e79a37
[ "MIT" ]
null
null
null
from cv_comparison_slider_window.cv_comparison_slider_window import CvComparisonSliderWindow
92
92
0.956522
0
0
0
0
0
0
0
0
0
0
c22bb60421f79ce3a2d29c04e35af61e67fb09d3
1,207
py
Python
telegram_ecommerce/filters/decorators.py
Anonylions/telegram_ecommerce
f5382886bbebf607c735e2f451774c56df8d6011
[ "MIT" ]
10
2020-11-20T20:55:52.000Z
2022-02-10T20:25:45.000Z
telegram_ecommerce/filters/decorators.py
Anonylions/telegram_ecommerce
f5382886bbebf607c735e2f451774c56df8d6011
[ "MIT" ]
1
2022-02-16T10:28:18.000Z
2022-02-16T10:35:31.000Z
telegram_ecommerce/filters/decorators.py
Anonylions/telegram_ecommerce
f5382886bbebf607c735e2f451774c56df8d6011
[ "MIT" ]
8
2021-05-01T01:13:09.000Z
2022-03-13T14:00:01.000Z
from ..language import get_text from ..database.query import ( user_exist, is_admin) END = -1 def warning_the_user_that_already_have_an_account(update, context): text = get_text("user_have_account", context) update.message.reply_text(text) return END def warning_the_user_that_he_dont_have_an_account(update, context): text = get_text("user_dont_have_account", context) update.message.reply_text(text) return END def execute_if_user_exist(callback): def execute_warning_if_user_dont_exist(update, context): user_id = update.effective_user.id if user_exist(user_id): return callback(update, context) else: return warning_the_user_that_he_dont_have_an_account( update, context) return execute_warning_if_user_dont_exist def execute_if_user_dont_exist(callback): def execute_warning_if_user_exist(update, context): user_id = update.effective_user.id if user_exist(user_id): return warning_the_user_that_already_have_an_account( update, context) else: return callback(update, context) return execute_warning_if_user_exist
26.822222
67
0.71831
0
0
0
0
0
0
0
0
43
0.035626
c22fbe148dfbc37e36952003c17c1b1180d11337
63
py
Python
albow/demo/openGL/__init__.py
hasii2011/albow-python-3
04b9d42705b370b62f0e49d10274eebf3ac54bc1
[ "MIT" ]
6
2019-04-30T23:50:39.000Z
2019-11-04T06:15:02.000Z
albow/demo/openGL/__init__.py
hasii2011/albow-python-3
04b9d42705b370b62f0e49d10274eebf3ac54bc1
[ "MIT" ]
73
2019-05-12T18:43:14.000Z
2021-04-13T19:19:03.000Z
albow/demo/openGL/__init__.py
hasii2011/albow-python-3
04b9d42705b370b62f0e49d10274eebf3ac54bc1
[ "MIT" ]
null
null
null
"""" This package contains the OpenGL demonstration classes """
21
54
0.761905
0
0
0
0
0
0
0
0
63
1
c2306615617cec84564c5dcb8ee8a144809be27e
1,640
py
Python
openhab2/scripts/readNilan.py
starze/openhab2
e4eeeecd829cdf286372067bd61561e63fed6e1a
[ "MIT" ]
10
2017-04-04T08:28:54.000Z
2021-02-24T04:36:07.000Z
openhab2/scripts/readNilan.py
starze/openhab2
e4eeeecd829cdf286372067bd61561e63fed6e1a
[ "MIT" ]
2
2017-04-18T13:33:12.000Z
2018-06-05T21:27:18.000Z
openhab2/scripts/readNilan.py
starze/openhab2
e4eeeecd829cdf286372067bd61561e63fed6e1a
[ "MIT" ]
7
2017-04-17T18:02:19.000Z
2020-09-25T21:28:08.000Z
#!/usr/bin/env python3 # -*- coding: ISO-8859-1 -*- # https://github.com/starze/openhab2 # https://github.com/roggmaeh/nilan-openhab import minimalmodbus import serial import os, sys import csv import httplib2 minimalmodbus.CLOSE_PORT_AFTER_EACH_CALL = True instrument = minimalmodbus.Instrument('/dev/ttyUSB0', 30, mode='rtu') # port name, slave address (in decimal) instrument.serial.port instrument.serial.baudrate = 19200 # Baud instrument.serial.bytesize = 8 instrument.serial.parity = serial.PARITY_EVEN instrument.serial.stopbits = 1 instrument.serial.timeout = 2 # seconds #instrument.debug = True h = httplib2.Http() with open('nilan_modbus.csv') as csvfile: reader = csv.DictReader(csvfile, delimiter=',') for row in reader: if row['Register Type'] == "Input": fc = 4 elif row['Register Type'] == "Holding": fc = 3 if row['Unit'] == "text" or row['Unit'] == "ascii": strRet = instrument.read_string(int(row['Address']), numberOfRegisters=1, functioncode=fc) lst = list(strRet) strRet = lst[1] + lst[0] elif row['Scale'] == "100": strRet = instrument.read_register(int(row['Address']), numberOfDecimals=2, functioncode=fc) else: strRet = instrument.read_register(int(row['Address']), numberOfDecimals=0, functioncode=fc) if row['Unit'] == "%" or row['Unit'] == "°C": print("%s: %s %s" % (row['Name'], strRet, row['Unit'])) h.request("http://localhost:8080/rest/items/" + row['Name'] + "/state", "PUT", body=str(strRet)) else: print("%s: %s" % (row['Name'], strRet)) h.request("http://localhost:8080/rest/items/" + row['Name'] + "/state", "PUT", body=str(strRet))
34.166667
109
0.675
0
0
0
0
0
0
0
0
523
0.318708
c230b7732d9a3dd108e45e13abd94ad053baac7e
2,316
py
Python
face_signin/prepare_training.py
sribs/FaceRecognition
68284173195d55f32a353fe3d78a53c25fbf1363
[ "Apache-2.0" ]
null
null
null
face_signin/prepare_training.py
sribs/FaceRecognition
68284173195d55f32a353fe3d78a53c25fbf1363
[ "Apache-2.0" ]
null
null
null
face_signin/prepare_training.py
sribs/FaceRecognition
68284173195d55f32a353fe3d78a53c25fbf1363
[ "Apache-2.0" ]
null
null
null
import cv2 import numpy as np import os def prepare_training_data(data_folder_path): #------STEP-1-------- #get the directories (one directory for each subject) in data folder dirs = sorted(os.listdir(data_folder_path)) #print(dirs) faces = [] labels = [] for label,count in zip(dirs,range(len(dirs))): subject_dir_path = data_folder_path+"/"+label for image_name in os.listdir(subject_dir_path): #ignore system files like .DS_Store if image_name.startswith("."): continue; #build image path #sample image path = training-data/s1/1.pgm image_path = subject_dir_path + "/" + image_name #read image image = cv2.imread(image_path) #display an image window to show the image #print("Training label :",label) cv2.waitKey(100) #detect face face, rect = detect_face(image) #------STEP-4-------- #for the purpose of this tutorial #we will ignore faces that are not detected if face is not None: #add face to list of faces faces.append(face) #add label for this face labels.append(count) print("Data Prepared for Training") cv2.destroyAllWindows() cv2.waitKey(1) cv2.destroyAllWindows() return faces, labels def detect_face(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #load OpenCV face detector, I am using LBP which is fast #there is also a more accurate but slow: Haar classifier face_cascade = cv2.CascadeClassifier('opencv-files/lbpcascade_frontalface.xml') #let's detect multiscale images(some images may be closer to camera than others) #result is a list of faces faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5); #if no faces are detected then return original img if (len(faces) == 0): return None, None #under the assumption that there will be only one face, #extract the face area x, y, w, h = faces[0] #return only the face part of the image return gray[y:y+w, x:x+h], faces[0]
31.297297
85
0.593264
0
0
0
0
0
0
0
0
926
0.399827
c230e009f1c0351446c02fccceb30b7ead29e784
138
py
Python
randomselection.py
Ristinoa/cs257
e7c31f995d08661114d868a55448c628b4cc9327
[ "MIT" ]
null
null
null
randomselection.py
Ristinoa/cs257
e7c31f995d08661114d868a55448c628b4cc9327
[ "MIT" ]
null
null
null
randomselection.py
Ristinoa/cs257
e7c31f995d08661114d868a55448c628b4cc9327
[ "MIT" ]
null
null
null
"randompicker.py" import random "A very short practice program designed to spit out a random, user-determined sample of input names"
13.8
39
0.775362
0
0
0
0
0
0
0
0
17
0.123188
c2318081600b41f253e54a78d1001f4ddb857e30
15,873
py
Python
fisspy/analysis/tdmap.py
SNU-sunday/FISS-PYTHON
f79420debef476a904356d42542cb6472990bb2f
[ "BSD-2-Clause" ]
3
2017-02-18T06:42:08.000Z
2021-01-05T04:15:08.000Z
fisspy/analysis/tdmap.py
SNU-sunday/fisspy
f79420debef476a904356d42542cb6472990bb2f
[ "BSD-2-Clause" ]
1
2019-06-30T10:35:27.000Z
2019-06-30T10:35:27.000Z
fisspy/analysis/tdmap.py
SNU-sunday/FISS-PYTHON
f79420debef476a904356d42542cb6472990bb2f
[ "BSD-2-Clause" ]
1
2017-02-23T05:24:13.000Z
2017-02-23T05:24:13.000Z
from __future__ import absolute_import, division import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec from fisspy.analysis.filter import FourierFilter from interpolation.splines import LinearSpline from matplotlib.animation import FuncAnimation import astropy.units as u from astropy.time import Time __author__= "Juhyung Kang" __email__ = "[email protected]" class TDmap: """ Make Time-Distance map for given slit position Parameters ---------- data : `~numpy.ndarray` 3-dimensional data array (time, y, x). header : '~astropy.io.fits.header.Header Header of data. tarr : `~numpy.ndarray`, optional Array of time (unit: second). filterRange : `list`, optional List of range of Fourier bandpass filters Returns ------- td : `~fisspy.analysis.tdmap.TDmap` A new time distance class object. Examples -------- """ def __init__(self, data, header, tarr=None, filterRange=None, cmap=None): self.data = data self.header = header self.nx = self.header['naxis1'] self.ny = self.header['naxis2'] self.nt = self.header['naxis3'] self.dx = self.header['cdelt1'] self.dy = self.header['cdelt2'] self.dt = self.header['cdelt3'] self.rx = self.header['crval1'] self.ry = self.header['crval2'] self.cmap = cmap if not np.any(tarr): tarr = np.arange(0, self.nt*self.dt, self.dt) self._tarr = tarr self.Time = Time(self.header['sttime']) + tarr*u.second self.extent = [self.rx-self.nx/2*self.dx, self.rx+self.nx/2*self.dx, self.ry-self.ny/2*self.dy, self.ry+self.ny/2*self.dy] self._xarr = np.linspace(self.extent[0]+self.dx*0.5, self.extent[1]-self.dx*0.5, self.nx) self._yarr = np.linspace(self.extent[2]+self.dy*0.5, self.extent[3]-self.dy*0.5, self.ny) self.smin = [self._tarr[0], self.extent[2]+0.5*self.dy, self.extent[0]+0.5*self.dx] self.smax = [self._tarr[-1], self.extent[3]-0.5*self.dy, self.extent[1]-0.5*self.dx] self.order = [self.nt, self.ny, self.nx] self._tname = ['ori'] if not filterRange: self.nfilter = 1 self.fdata = np.empty([1, self.nt, self.ny, self.nx]) else: self.nfilter = len(filterRange)+1 self.fdata = np.empty([self.nfilter, self.nt, self.ny, self.nx]) for n, fR in enumerate(filterRange): self._tname += ['%.1f - %.1f mHZ'%(fR[0], fR[1])] self.fdata[n+1] = FourierFilter(self.data, self.nt, self.dt*1e-3, fR) self.fdata[0] = self.data self.interp = [] for data in self.fdata: self.interp += [LinearSpline(self.smin, self.smax, self.order, data)] def get_TD(self, R, xc, yc, angle): self.R = R self.xc = xc self.yc = yc self.angle = angle ang = np.deg2rad(self.angle) nl = int(np.ceil(2*R/self.dx)) self.x1 = -R*np.cos(ang) + xc self.x2 = R*np.cos(ang) + xc self.y1 = -R*np.sin(ang) + yc self.y2 = R*np.sin(ang) + yc x = np.linspace(self.x1, self.x2, nl) y = np.linspace(self.y1, self.y2, nl) oiarr = np.empty([nl, self.nt, 3]) oiarr[:,:,0] = self._tarr oiarr[:,:,1] = y[:,None] oiarr[:,:,2] = x[:,None] iarr = oiarr.reshape([nl*self.nt, 3]) td = self.interp[self.filterNum-1](iarr) return td.reshape([nl, self.nt]) def imshow(self, R=5, xc=None, yc=None, angle=0, t=0, filterNum=1, fps=10, cmap=plt.cm.gray, interpolation='bilinear'): try: plt.rcParams['keymap.back'].remove('left') plt.rcParams['keymap.forward'].remove('right') except: pass if not xc: xc = self.rx if not yc: yc = self.ry self.R = self._R0 = R self.angle = self._angle0 = angle self.xc = self._xc0 = xc self.yc = self._yc0 = yc self.filterNum = self._filterNum0 = filterNum self.t = self._t0 = t self.fps = fps self.pause = 'ini' self.pos = [] self.mark = [] self.hlines = [] tpix = np.abs(self._tarr-self.t).argmin() self.td = self.get_TD(R,xc,yc,angle) self.tdextent = [self._tarr[0]-0.5*self.dt, self._tarr[-1]+0.5*self.dt, -self.R, self.R] if not self.cmap: self.cmap = cmap self.fig= plt.figure(figsize=[14,9]) self.fig.canvas.set_window_title('%s ~ %s'%(self.Time[0], self.Time[-1])) gs = gridspec.GridSpec(5, self.nfilter) self.axTD = self.fig.add_subplot(gs[3:, :]) self.axTD.set_xlabel('Time (sec)') self.axTD.set_ylabel('Distance (arcsec)') self.axTD.set_title('%i: %s, ' 'Time: %s, ' 'tpix: %i'%(filterNum, self._tname[filterNum-1], self.Time[tpix].value, tpix)) self.imTD = self.axTD.imshow(self.td, extent=self.tdextent, origin='lower', cmap=self.cmap, interpolation=interpolation) self.axRaster = [] self.im = [] for i in range(self.nfilter): if i == 0: self.axRaster += [self.fig.add_subplot(gs[:3, i])] self.axRaster[i].set_xlabel('X (arcsec)') self.axRaster[i].set_ylabel('Y (arcsec)') else: self.axRaster += [self.fig.add_subplot(gs[:3, i], sharex=self.axRaster[0], sharey=self.axRaster[0])] self.axRaster[i].tick_params(labelleft=False, labelbottom=False) self.axRaster[i].set_title('%i: %s'%(i+1, self._tname[i])) self.im += [self.axRaster[i].imshow(self.fdata[i, tpix], extent=self.extent, origin='lower', cmap=self.cmap, interpolation=interpolation)] self.slit = self.axRaster[filterNum-1].plot([self.x1, self.x2], [self.y1, self.y2], color='k')[0] self.center = self.axRaster[filterNum-1].scatter(self.xc, self.yc, 100, marker='+', c='k') self.top = self.axRaster[filterNum-1].scatter(self.x2, self.y2, 100, marker='+', c='b', label='%.1f'%self.R) self.bottom = self.axRaster[filterNum-1].scatter(self.x1, self.y1, 100, marker='+', c='r', label='-%.1f'%self.R) self.tslit = self.axTD.axvline(self.t, ls='dashed', c='lime') self.leg = self.axRaster[filterNum-1].legend() self.axTD.set_aspect(adjustable='box', aspect='auto') self.imTD.set_clim(self.fdata[filterNum-1,0].min(), self.fdata[filterNum-1,0].max()) self.fig.tight_layout() self.fig.canvas.mpl_connect('key_press_event', self._onKey) plt.show() def _onKey(self, event): if event.key == 'up': if self.angle < 360: self.angle += 1 else: self.angle = 1 elif event.key == 'down': if self.angle > 0: self.angle -=1 else: self.angle = 359 elif event.key == 'right': if self.t < self._tarr[-1]: self.t += self.dt else: self.t = self._tarr[0] elif event.key == 'left': if self.t > self._tarr[0]: self.t -= self.dt else: self.t = self._tarr[-1] elif event.key == 'ctrl+right': if self.xc < self._xarr[-1]: self.xc += self.dx else: self.xc = self._xarr[0] elif event.key == 'ctrl+left': if self.xc > self._xarr[0]: self.xc -= self.dx else: self.xc = self._xarr[-1] elif event.key == 'ctrl+up': if self.yc < self._yarr[-1]: self.yc += self.dy else: self.yc = self._yarr[0] elif event.key == 'ctrl+down': if self.yc > self._yarr[0]: self.yc -= self.dy else: self.yc = self._yarr[-1] elif event.key == 'ctrl++': self.R += self.dx elif event.key == 'ctrl+-': self.R -= self.dx elif event.key == ' ' and event.inaxes in self.axRaster: self.xc = event.xdata self.yc = event.ydata elif event.key == ' ' and event.inaxes == self.axTD: self.t = event.xdata elif event.key == 'x' and event.inaxes == self.axTD: self.pos += [event.ydata] ang = np.deg2rad(self.angle) xp = self.pos[-1]*np.cos(ang) + self.xc yp = self.pos[-1]*np.sin(ang) + self.yc self.mark += [self.axRaster[self.filterNum-1].scatter(xp, yp, 100, marker='+', c='lime')] self.hlines += [self.axTD.axhline(self.pos[-1], ls='dashed', c='lime')] elif event.key == 'enter': if self.pause == 'ini': self.ani = FuncAnimation(self.fig, self._chTime, frames=self._tarr, blit=False, interval=1e3/self.fps, repeat=True) # cache_frame_data=False) self.pause = False else: self.pause ^= True if self.pause: self.ani.event_source.stop() else: self.ani.event_source.start(1e3/self.fps) for iid in range(self.nfilter): if event.key == 'ctrl+%i'%(iid+1): self.filterNum = iid+1 tpix = np.abs(self._tarr-self.t).argmin() self.changeSlit(self.R, self.xc, self.yc, self.angle) self.axTD.set_title('%i: %s, ' 'Time: %s, ' 'tpix: %i'%(self.filterNum, self._tname[self.filterNum-1], self.Time[tpix].value, tpix)) self._filterNum0 = self.filterNum self.imTD.set_clim(self.im[self.filterNum-1].get_clim()) if self.xc != self._xc0 or self.yc != self._yc0 or \ self.angle != self._angle0 or self.R != self._R0: self.changeSlit(self.R, self.xc, self.yc, self.angle) self._R0 = self.R self._xc0 = self.xc self._yc0 = self.yc self._angle0 = self.angle if self.t != self._t0: self._chTime(self.t) self._t0 = self.t self.fig.canvas.draw_idle() def changeSlit(self, R, xc, yc, angle): td = self.get_TD(R, xc, yc, angle) self.tdextent[2] = -R self.tdextent[3] = R self.axTD.set_ylim(-R, R) ang = np.deg2rad(self.angle) if self.filterNum != self._filterNum0: self.leg.remove() self.slit.remove() self.bottom.remove() self.center.remove() self.top.remove() self.slit = self.axRaster[self.filterNum-1].plot([self.x1, self.x2], [self.y1, self.y2], color='k')[0] self.center = self.axRaster[self.filterNum-1].scatter(self.xc, self.yc, 100, marker='+', c='k') self.top = self.axRaster[self.filterNum-1].scatter(self.x2, self.y2, 100, marker='+', c='b', label='%.1f'%self.R) self.bottom = self.axRaster[self.filterNum-1].scatter(self.x1, self.y1, 100, marker='+', c='r', label='-%.1f'%self.R) for n, pos in enumerate(self.pos): self.mark[n].remove() xp = pos*np.cos(ang) + self.xc yp = pos*np.sin(ang) + self.yc self.mark[n] = self.axRaster[self.filterNum-1].scatter(xp, yp, 100, marker='+', c='lime') else: self.slit.set_xdata([self.x1, self.x2]) self.slit.set_ydata([self.y1, self.y2]) self.bottom.set_offsets([self.x1, self.y1]) self.top.set_offsets([self.x2, self.y2]) self.center.set_offsets([self.xc, self.yc]) # change marker for n, pos in enumerate(self.pos): xp = pos*np.cos(ang) + self.xc yp = pos*np.sin(ang) + self.yc self.mark[n].set_offsets([xp, yp]) self.hlines[n].set_ydata(pos) self.top.set_label('%.1f'%self.R) self.bottom.set_label('-%.1f'%self.R) self.imTD.set_data(td) self.leg = self.axRaster[self.filterNum-1].legend() def _chTime(self, t): self.t = t tpix = np.abs(self._tarr-t).argmin() self.axTD.set_title('%i: %s, ' 'Time: %s, ' 'tpix: %i'%(self.filterNum, self._tname[self.filterNum-1], self.Time[tpix].value, tpix)) self.tslit.set_xdata(self.t) for n, im in enumerate(self.im): im.set_data(self.fdata[n, tpix]) def set_clim(self, cmin, cmax, frame): self.im[frame-1].set_clim(cmin, cmax) if self.filterNum == frame: self.imTD.set_clim(cmin, cmax) def remove_Mark(self): for n in range(len(self.pos)): self.mark[n].remove() self.hlines[n].remove() self.pos = [] self.mark = [] self.hlines = [] def savefig(self, filename, **kwargs): self.fig.save(filename, **kwargs) def saveani(self, filename, **kwargs): fps = kwargs.pop('fps', self.fps) self.ani.save(filename, fps=fps, **kwargs)
41.015504
86
0.449001
15,476
0.974989
0
0
0
0
0
0
1,279
0.080577
c231926cf5107bb89588302bb3bc85d7ec967624
2,806
py
Python
Graphy/setup.py
andrepbento/OpenTracingProcessor
9e4b01cb59cecbfa04af8d5d93e3b7deb76d9ee6
[ "MIT" ]
4
2021-03-06T13:50:58.000Z
2022-03-28T15:17:07.000Z
Graphy/setup.py
andrepbento/OpenTracingProcessor
9e4b01cb59cecbfa04af8d5d93e3b7deb76d9ee6
[ "MIT" ]
null
null
null
Graphy/setup.py
andrepbento/OpenTracingProcessor
9e4b01cb59cecbfa04af8d5d93e3b7deb76d9ee6
[ "MIT" ]
null
null
null
""" Author: André Bento Date last modified: 26-02-2019 """ import subprocess import sys from os.path import dirname, abspath, join from setuptools import find_packages, Command, setup from setuptools.command.test import test as TestCommand this_dir = abspath(dirname(__file__)) NAME = 'graphy' VERSION = '0.0.1' # Readme with open(join(this_dir, 'README.md'), encoding='utf-8') as file: readme = file.read() # License with open(join(this_dir, 'LICENSE'), encoding='utf-8') as file: license_file = file.read() # Requirements with open(join(this_dir, 'requirements.txt')) as file: requirements = file.read().splitlines() class Install(Command): user_options = [ ['pip3', 'install', '-r', 'requirements.txt'] ] def initialize_options(self): pass def finalize_options(self): pass def run_install(self): for command in self.user_options: subprocess.run(command) class Run(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): print() from graphy.app import Graphy Graphy.run() class Test(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass to py.test")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = [] def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest err = pytest.main(self.pytest_args) sys.exit(err) setup( name=NAME, version=VERSION, description='A micro-services system monitor command line program in Python.', long_description=readme, # long_description_content_type='text/markdown', url='https://github.com/andrepbento/MScThesis/tree/master/Graphy', author='André Bento', author_email='[email protected]', license=license_file, classifiers=[ # How mature is this project? Common values are # 1 - Project setup # 2 - Prototype # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 2 - Prototype', 'Intended Audience :: Developers', 'Topic :: Observing and Controlling Performance in Micro-services', 'License :: MIT License', 'Programming Language :: Python :: 3.6', ], keywords='cli', packages=find_packages(exclude=('tests*', 'docs')), install_requires=requirements, tests_require=['pytest'], extras_require={ 'test': ['coverage', 'pytest', 'pytest-cov'], }, cmdclass={ 'install': Install, 'run': Run, 'test': Test }, )
24.189655
82
0.62794
993
0.353632
0
0
0
0
0
0
882
0.314103
c232029579d8b288e2ac9ed43b03f0690df1e9c2
1,317
py
Python
polaris/polaris/sep24/tzinfo.py
yuriescl/django-polaris
8806d0e4e8baaddbffbceb3609786d2436b8abe1
[ "Apache-2.0" ]
81
2019-11-16T21:47:22.000Z
2022-02-17T07:35:02.000Z
polaris/polaris/sep24/tzinfo.py
yuriescl/django-polaris
8806d0e4e8baaddbffbceb3609786d2436b8abe1
[ "Apache-2.0" ]
491
2019-11-10T23:44:30.000Z
2022-03-20T00:25:02.000Z
polaris/polaris/sep24/tzinfo.py
yuriescl/django-polaris
8806d0e4e8baaddbffbceb3609786d2436b8abe1
[ "Apache-2.0" ]
89
2019-11-18T21:31:01.000Z
2022-03-28T13:47:41.000Z
import pytz from datetime import datetime, timedelta, timezone from rest_framework.decorators import api_view, parser_classes, renderer_classes from rest_framework.parsers import JSONParser from rest_framework.renderers import JSONRenderer from rest_framework.request import Request from rest_framework.response import Response from django.contrib.sessions.backends.db import SessionStore from polaris.utils import render_error_response, getLogger logger = getLogger(__name__) @api_view(["POST"]) @parser_classes([JSONParser]) @renderer_classes([JSONRenderer]) def post_tzinfo(request: Request) -> Response: if not ( request.data.get("sessionId") and request.data.get("sessionOffset") is not None ): return render_error_response("missing required parameters") now = datetime.now(timezone.utc) offset = timedelta(minutes=request.data["sessionOffset"]) zone = None for tz in map(pytz.timezone, pytz.all_timezones_set): if now.astimezone(tz).utcoffset() == offset: zone = tz.zone break if not zone: return render_error_response("no timezones matched with offset") session = SessionStore(session_key=request.data["sessionId"]) session["timezone"] = zone session.save() return Response({"status": "ok", "tz": zone})
34.657895
87
0.741838
0
0
0
0
833
0.632498
0
0
147
0.111617
c2321c74ae596a68d5084730c6df5fe1a40a8090
1,615
py
Python
utils/fundoptutils.py
joshualee155/FundOptimizer
da842de6c99f89c767d03c9ef1b392237b726a3f
[ "MIT" ]
2
2021-01-03T00:46:51.000Z
2021-09-01T02:48:51.000Z
utils/fundoptutils.py
joshualee155/FundOptimizer
da842de6c99f89c767d03c9ef1b392237b726a3f
[ "MIT" ]
null
null
null
utils/fundoptutils.py
joshualee155/FundOptimizer
da842de6c99f89c767d03c9ef1b392237b726a3f
[ "MIT" ]
1
2021-08-28T11:04:00.000Z
2021-08-28T11:04:00.000Z
import pandas as pd import datetime as dt class FundType( object ): OF = 'Open Ended Fund' ETF = 'Exchange Traded Fund' LOF = 'Listed Open Ended Fund' MMF = 'Money Market Fund' def getFundType( fundCode ): fundTypeDf = pd.read_csv( 'refData/fund_list.csv', names = [ 'fundCode', 'fundType' ] ) fundTypeDf[ 'fundCode' ] = fundTypeDf[ 'fundCode' ].apply( lambda x: str(x).zfill(6) ) fundTypeDf.drop_duplicates( subset = [ 'fundCode' ], inplace = True ) fundTypeDf.set_index( 'fundCode', drop = True, inplace = True ) try: sType = fundTypeDf[ 'fundType' ][ fundCode ] if sType == 'OF': return FundType.OF elif sType == 'ETF': return FundType.ETF elif sType == 'LOF': return FundType.LOF elif sType == 'MMF': return FundType.MMF else: raise NameError( "Unknown fund type %s" % sType ) except KeyError: return FundType.OF def str2date( sDate ): """ Convert a string date to datetime.date """ try: dateTime = dt.datetime.strptime( sDate, "%Y%m%d" ) except ValueError: dateTime = dt.datetime.strptime( sDate, "%Y-%m-%d" ) return dateTime.date() def getHolidays( startDate, endDate ): """ Return China exchange holidays ( non-trading days ) from `startDate` to `endDate` """ with open( 'refData/holidays.txt', 'r' ) as f: holidays = f.read().strip().split('\n') holidays = [ date for date in map( str2date, holidays ) if date >= startDate and date <= endDate ] return holidays
30.471698
102
0.596285
160
0.099071
0
0
0
0
0
0
414
0.256347
c2329a7b9e06911a1ed82d81214f1385b352823d
398
py
Python
Http-api-auth0-jwt/src/list-all-unicorns.py
JimmyDqv/blogs-and-sessions-code
737a2e88f3fd84bd8426be609f7474374d4ac4d6
[ "MIT" ]
2
2021-07-08T10:31:11.000Z
2022-01-07T23:04:31.000Z
Http-api-auth0-jwt/src/list-all-unicorns.py
JimmyDqv/blogs-and-sessions-code
737a2e88f3fd84bd8426be609f7474374d4ac4d6
[ "MIT" ]
null
null
null
Http-api-auth0-jwt/src/list-all-unicorns.py
JimmyDqv/blogs-and-sessions-code
737a2e88f3fd84bd8426be609f7474374d4ac4d6
[ "MIT" ]
null
null
null
import json def lambda_handler(event, context): unicorns = [ { "name": "Gaia", "gift": "Speed" }, { "name": "Magestic", "gift": "Magic" }, { "name": "Sparkles", "gift": "Glitter" } ] return { 'statusCode': 200, 'body': json.dumps(unicorns) }
15.92
36
0.371859
0
0
0
0
0
0
0
0
103
0.258794
c232b3257fa969c4deba44d282906664d6091820
253
py
Python
examples/http_server.py
srossross/uvio
f4d55ad5ea5900a2a8b9c1249484ed621dc30055
[ "MIT" ]
3
2016-03-23T08:12:03.000Z
2018-10-06T02:46:54.000Z
examples/http_server.py
srossross/uvio
f4d55ad5ea5900a2a8b9c1249484ed621dc30055
[ "MIT" ]
null
null
null
examples/http_server.py
srossross/uvio
f4d55ad5ea5900a2a8b9c1249484ed621dc30055
[ "MIT" ]
null
null
null
import uvio async def route(req): pass async def handler(req, res): await route(req, res)() res.end("Yes") @uvio.run async def main(): server = await uvio.http.listen(handler, host='127.0.0.1', port=80) print("server", server)
14.882353
71
0.632411
0
0
0
0
129
0.509881
224
0.885375
24
0.094862
c2334b533c25c85bcfe5823b2fbd3fe0b9cec5f6
7,933
py
Python
ui/django_site_v2/data_cube_ui/utils/dc_mosaic.py
ceos-seo/Data_Cube_v2
81c3be66153ea123b5d21cf9ec7f59ccb7a2050a
[ "Apache-2.0" ]
27
2016-08-16T18:22:47.000Z
2018-08-25T17:18:15.000Z
ui/django_site_v2/data_cube_ui/utils/dc_mosaic.py
data-cube/CEOS-cube
31baeba08d8e8470c4663c18aaf9056431d9c49f
[ "Apache-2.0" ]
null
null
null
ui/django_site_v2/data_cube_ui/utils/dc_mosaic.py
data-cube/CEOS-cube
31baeba08d8e8470c4663c18aaf9056431d9c49f
[ "Apache-2.0" ]
27
2016-08-26T18:14:40.000Z
2021-12-24T08:41:29.000Z
# Copyright 2016 United States Government as represented by the Administrator # of the National Aeronautics and Space Administration. All Rights Reserved. # # Portion of this code is Copyright Geoscience Australia, Licensed under the # Apache License, Version 2.0 (the "License"); you may not use this file # except in compliance with the License. You may obtain a copy of the License # at # # http://www.apache.org/licenses/LICENSE-2.0 # # The CEOS 2 platform is licensed under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import gdal, osr import collections import gc import numpy as np import xarray as xr from datetime import datetime import collections from collections import OrderedDict import datacube from . import dc_utilities as utilities # Author: KMF # Creation date: 2016-06-14 # Modified by: AHDS # Last modified date: def create_mosaic_iterative(dataset_in, clean_mask=None, no_data=-9999, intermediate_product=None): """ Description: Creates a most recent - oldest mosaic of the input dataset. If no clean mask is given, the 'cf_mask' variable must be included in the input dataset, as it will be used to create a clean mask ----- Inputs: dataset_in (xarray.Dataset) - dataset retrieved from the Data Cube; should contain coordinates: time, latitude, longitude variables: variables to be mosaicked If user does not provide a clean_mask, dataset_in must also include the cf_mask variable Optional Inputs: clean_mask (nd numpy array with dtype boolean) - true for values user considers clean; if user does not provide a clean mask, one will be created using cfmask no_data (int/float) - no data pixel value; default: -9999 Output: dataset_out (xarray.Dataset) - mosaicked data with coordinates: latitude, longitude variables: same as dataset_in """ # Create clean_mask from cfmask if none given if clean_mask is None: cfmask = dataset_in.cf_mask clean_mask = utilities.create_cfmask_clean_mask(cfmask) dataset_in = dataset_in.drop('cf_mask') #masks data with clean_mask. all values that are clean_mask==False are set to nodata. for key in list(dataset_in.data_vars): dataset_in[key].values[np.invert(clean_mask)] = no_data if intermediate_product is not None: dataset_out = intermediate_product.copy(deep=True) else: dataset_out = None for index in reversed(range(len(clean_mask))): dataset_slice = dataset_in.isel(time=index).astype("int16").drop('time') if dataset_out is None: dataset_out = dataset_slice.copy(deep=True) #clear out the params as they can't be written to nc. dataset_out.attrs = OrderedDict() else: for key in list(dataset_in.data_vars): dataset_out[key].values[dataset_out[key].values==-9999] = dataset_slice[key].values[dataset_out[key].values==-9999] return dataset_out def create_median_mosaic(dataset_in, clean_mask=None, no_data=-9999, intermediate_product=None): """ Description: Method for calculating the median pixel value for a given dataset. ----- Input: dataset_in (xarray dataset) - the set of data with clouds and no data removed. Optional Inputs: no_data (int/float) - no data value. """ # Create clean_mask from cfmask if none given if clean_mask is None: cfmask = dataset_in.cf_mask clean_mask = utilities.create_cfmask_clean_mask(cfmask) dataset_in = dataset_in.drop('cf_mask') #required for np.nan dataset_in = dataset_in.astype("float64") for key in list(dataset_in.data_vars): dataset_in[key].values[np.invert(clean_mask)] = no_data dataset_out = dataset_in.isel(time=0).drop('time').copy(deep=True) dataset_out.attrs = OrderedDict() # Loop over every key. for key in list(dataset_in.data_vars): dataset_in[key].values[dataset_in[key].values==no_data] = np.nan dataset_out[key].values = np.nanmedian(dataset_in[key].values, axis=0) dataset_out[key].values[dataset_out[key].values==np.nan] = no_data return dataset_out.astype('int16') def create_max_ndvi_mosaic(dataset_in, clean_mask=None, no_data=-9999, intermediate_product=None): """ Description: Method for calculating the pixel value for the max ndvi value. ----- Input: dataset_in (xarray dataset) - the set of data with clouds and no data removed. Optional Inputs: no_data (int/float) - no data value. """ # Create clean_mask from cfmask if none given if clean_mask is None: cfmask = dataset_in.cf_mask clean_mask = utilities.create_cfmask_clean_mask(cfmask) dataset_in = dataset_in.drop('cf_mask') for key in list(dataset_in.data_vars): dataset_in[key].values[np.invert(clean_mask)] = no_data if intermediate_product is not None: dataset_out = intermediate_product.copy(deep=True) else: dataset_out = None for timeslice in range(clean_mask.shape[0]): dataset_slice = dataset_in.isel(time=timeslice).astype("float64").drop('time') ndvi = (dataset_slice.nir - dataset_slice.red) / (dataset_slice.nir + dataset_slice.red) ndvi.values[np.invert(clean_mask)[timeslice,::]] = -1000000000 dataset_slice['ndvi'] = ndvi if dataset_out is None: dataset_out = dataset_slice.copy(deep=True) #clear out the params as they can't be written to nc. dataset_out.attrs = OrderedDict() else: for key in list(dataset_slice.data_vars): dataset_out[key].values[dataset_slice.ndvi.values > dataset_out.ndvi.values] = dataset_slice[key].values[dataset_slice.ndvi.values > dataset_out.ndvi.values] return dataset_out def create_min_ndvi_mosaic(dataset_in, clean_mask=None, no_data=-9999, intermediate_product=None): """ Description: Method for calculating the pixel value for the min ndvi value. ----- Input: dataset_in (xarray dataset) - the set of data with clouds and no data removed. Optional Inputs: no_data (int/float) - no data value. """ # Create clean_mask from cfmask if none given if clean_mask is None: cfmask = dataset_in.cf_mask clean_mask = utilities.create_cfmask_clean_mask(cfmask) dataset_in = dataset_in.drop('cf_mask') for key in list(dataset_in.data_vars): dataset_in[key].values[np.invert(clean_mask)] = no_data if intermediate_product is not None: dataset_out = intermediate_product.copy(deep=True) else: dataset_out = None for timeslice in range(clean_mask.shape[0]): dataset_slice = dataset_in.isel(time=timeslice).astype("float64").drop('time') ndvi = (dataset_slice.nir - dataset_slice.red) / (dataset_slice.nir + dataset_slice.red) ndvi.values[np.invert(clean_mask)[timeslice,::]] = 1000000000 dataset_slice['ndvi'] = ndvi if dataset_out is None: dataset_out = dataset_slice.copy(deep=True) #clear out the params as they can't be written to nc. dataset_out.attrs = OrderedDict() else: for key in list(dataset_slice.data_vars): dataset_out[key].values[dataset_slice.ndvi.values < dataset_out.ndvi.values] = dataset_slice[key].values[dataset_slice.ndvi.values < dataset_out.ndvi.values] return dataset_out
40.682051
173
0.704399
0
0
0
0
0
0
0
0
3,318
0.418253
c234a2bf9d847b0178d0e12fe82918d472e89c91
2,014
py
Python
plotter.py
keshavbantu/covclass
e27cfb4ff8e7e6f076c3429aa1c4696e173bc3a4
[ "MIT" ]
null
null
null
plotter.py
keshavbantu/covclass
e27cfb4ff8e7e6f076c3429aa1c4696e173bc3a4
[ "MIT" ]
null
null
null
plotter.py
keshavbantu/covclass
e27cfb4ff8e7e6f076c3429aa1c4696e173bc3a4
[ "MIT" ]
null
null
null
import cleaner as dataStream import plotly.graph_objects as go import plotly.io as pio #DONUT PLOT - CONDITIONS ----------------------------------------- labels = ['Diabetes','Hypertension','Coronary Heart(D)','Chronic Kidney(D)','No Conditions','Obstructive Pulmonary(D)'] values = dataStream.PIEList fig_cond = go.Figure(data=[go.Pie(labels=labels, values=values, hole=.3)]) #fig_cond.show() pio.write_html(fig_cond, file="templates/cond.html") #GROUP BAR PLOT - SYMPTOMS --------------------------------------- symplabel=['Symptoms'] fig_symp = go.Figure(data=[ go.Bar(name='Fever', x=symplabel, y=dataStream.Fever), go.Bar(name='Cough', x=symplabel, y=dataStream.Cough), go.Bar(name='Breathlessness', x=symplabel, y=dataStream.Breathlessness), go.Bar(name='Severe Acute Respiratory Syndrome', x=symplabel, y=dataStream.SARI), go.Bar(name='Influenza-like Illness', x=symplabel, y=dataStream.ILI), go.Bar(name='Asymptomatic', x=symplabel, y=dataStream.NONE_sym) ]) fig_symp.update_layout(barmode='group') #fig_symp.show() pio.write_html(fig_symp, file="templates/symp.html") #STACK BAR PLOT - AGE DATA ------------------------------------------ fig_age = go.Figure() fig_age.add_trace(go.Bar( y=['0 to 10', '10 to 20', '20 to 30','30 to 40', '40 to 50', '50 to 60','60 to 70', '70 to 80', '80 to 90','90 to 100'], x=dataStream.maleAgeList, name='Male Deaths', orientation='h', marker=dict( color='rgba(61, 112, 242, 0.6)', line=dict(color='rgba(61, 112, 242, 1.0)', width=2) ) )) fig_age.add_trace(go.Bar( y=['0 to 10', '10 to 20', '20 to 30','30 to 40', '40 to 50', '50 to 60','60 to 70', '70 to 80', '80 to 90','90 to 100'], x=dataStream.femaleAgeList, name='Female Deaths', orientation='h', marker=dict( color='rgba(242, 61, 221, 0.6)', line=dict(color='rgba(242, 61, 221, 1.0)', width=2) ) )) fig_age.update_layout(barmode='stack') #fig_age.show() pio.write_html(fig_age, file="templates/age.html")
38
124
0.627607
0
0
0
0
0
0
0
0
874
0.433962
c235b37d33733193984303077c70e9f3d941faa4
1,847
py
Python
pyglare/scene/objects.py
keyvank/pyglare
9e26ae444ff4481f0f50d7344d2a5a881d04fe64
[ "MIT" ]
6
2017-01-13T22:32:55.000Z
2022-03-27T22:19:49.000Z
pyglare/scene/objects.py
keyvank/pyglare
9e26ae444ff4481f0f50d7344d2a5a881d04fe64
[ "MIT" ]
1
2016-09-13T17:59:41.000Z
2016-09-13T18:05:20.000Z
pyglare/scene/objects.py
keyvank/pyglare
9e26ae444ff4481f0f50d7344d2a5a881d04fe64
[ "MIT" ]
null
null
null
from ..math import geometry as geo from ..image.color import Color import math class Material: def __init__(self,color,diffuse_rate,specular_rate,specular_exponent,reflection_rate): self.color = color self.diffuse_rate = diffuse_rate self.specular_rate = specular_rate self.specular_exponent = specular_exponent self.reflection_rate = reflection_rate class Object: def __init__(self,material): self.material=material def intersection(self,ray): '''Considering intersection point is: landa * ray, returns landa if there is intersection or None''' pass def normal_at(self,position): '''Returns normal vector of this shape on a position''' pass def color_at(self,position): pass class Plane(Object): def __init__(self,material,normal,intercept): super().__init__(material) self.math_repr = geo.Plane(normal,intercept) def intersection(self,ray): return self.math_repr.intersection(ray) def normal_at(self,position): return self.math_repr.normal def color_at(self,position): return self.material.color class CheckerboardUpPlane(Plane): def __init__(self,material,intercept,cell_size,cell_color): super().__init__(material,geo.Vector(0,1,0),intercept) self.cell_size = cell_size self.cell_color = cell_color def color_at(self,position): checker=math.floor(position.x/self.cell_size)+math.floor(position.z/self.cell_size) if checker%2 == 0: return self.material.color else: return self.cell_color class Sphere(Object): def __init__(self,material,position,radius): super().__init__(material) self.math_repr = geo.Sphere(position,radius) def intersection(self,ray): return self.math_repr.intersection(ray) def normal_at(self,position): return (position-self.math_repr.position).normalize() def color_at(self,position): return self.material.color
24.959459
102
0.7634
1,757
0.951272
0
0
0
0
0
0
155
0.08392
c235c83aedce86f0591eb9d244db1ef5424b59b5
1,401
py
Python
Led.py
Zico56/raspberry-gt500
85e29ec8bb604fab9c0eb37b63e85b8058baf2b2
[ "Xnet", "X11" ]
null
null
null
Led.py
Zico56/raspberry-gt500
85e29ec8bb604fab9c0eb37b63e85b8058baf2b2
[ "Xnet", "X11" ]
null
null
null
Led.py
Zico56/raspberry-gt500
85e29ec8bb604fab9c0eb37b63e85b8058baf2b2
[ "Xnet", "X11" ]
null
null
null
import time from tkinter import * from PIL import Image, ImageTk from Configuration import config class Led: imageOn = Image.open(config.get('APPLICATION', 'LED_ON_IMG')) imageOff = Image.open(config.get('APPLICATION', 'LED_OFF_IMG')) STATE_ON = "ON" STATE_OFF = "OFF" def __init__(self, parent): self.state = Led.STATE_OFF self.img = ImageTk.PhotoImage(Led.imageOff) self.label = Label(parent, image=self.img, bg="black") self.label.image = self.img self.label.pack() def swithOn(self): self.img = ImageTk.PhotoImage(Led.imageOn) self.label.configure(image=self.img) self.state = Led.STATE_ON def swithOff(self): self.img = ImageTk.PhotoImage(Led.imageOff) self.label.configure(image=self.img) self.state = Led.STATE_OFF # deprecated: use swithOn/swithOff methods instead ''' def changeColor(self): if ( self.state == Led.STATE_OFF): self.img = ImageTk.PhotoImage(Led.imageOn) self.label.configure(image=self.img) self.state = Led.STATE_ON elif ( self.state == Led.STATE_ON): self.img = ImageTk.PhotoImage(Led.imageOff) self.label.configure(image=self.img) self.state = Led.STATE_OFF else: raise Exception('Unknow led state') '''
31.840909
67
0.615989
1,302
0.929336
0
0
0
0
0
0
590
0.421128
c236c320912188a01c92278b510292a2d1855a42
249
py
Python
tests/accounts/model/test_social_security_number.py
Hyaxia/Bank-DDD-CQRS-ES
116e3eb3e93d549c1da53e6d506ab47667d77445
[ "MIT" ]
8
2020-10-27T09:46:20.000Z
2022-01-27T12:16:48.000Z
tests/accounts/model/test_social_security_number.py
Hyaxia/Bank-DDD-CQRS-ES
116e3eb3e93d549c1da53e6d506ab47667d77445
[ "MIT" ]
null
null
null
tests/accounts/model/test_social_security_number.py
Hyaxia/Bank-DDD-CQRS-ES
116e3eb3e93d549c1da53e6d506ab47667d77445
[ "MIT" ]
2
2021-05-29T08:11:48.000Z
2021-07-26T04:44:53.000Z
import pytest from bank_ddd_es_cqrs.accounts import SocialSecurityNumber def test_social_security_number_throws_app_exception_with_status_422_if_too_much_digits(): with pytest.raises(ValueError) as e: SocialSecurityNumber(1324352351)
27.666667
90
0.84739
0
0
0
0
0
0
0
0
0
0
c236d3b1e5bb73ed1d08dc25325aad2b8f8b0b9e
358
py
Python
setup.py
jjakimoto/rl_traders.py
d5411c96d49ba6a54751d12cdd11974e5cc1a8aa
[ "MIT" ]
2
2018-10-07T14:16:32.000Z
2019-01-28T00:14:29.000Z
setup.py
jjakimoto/rl_traders.py
d5411c96d49ba6a54751d12cdd11974e5cc1a8aa
[ "MIT" ]
null
null
null
setup.py
jjakimoto/rl_traders.py
d5411c96d49ba6a54751d12cdd11974e5cc1a8aa
[ "MIT" ]
1
2019-11-05T00:51:20.000Z
2019-11-05T00:51:20.000Z
from setuptools import setup from setuptools import find_packages setup(name='rl_traders', version='0.1.0', description='Reinforcement Learning for Trading', url='https://github.com/jjakimoto/rl_traders.git', author='jjakimoto', author_email='[email protected]', license='MIT', packages=find_packages() )
27.538462
56
0.678771
0
0
0
0
0
0
0
0
139
0.388268
c239846032333fb5d26b1c1eb5b5c8a5cf233d15
2,219
py
Python
Music/__init__.py
izazkhan8293/Musicheu
9cd33a71868b8b850d6fd78eaac05dda0713b7cc
[ "Apache-2.0" ]
null
null
null
Music/__init__.py
izazkhan8293/Musicheu
9cd33a71868b8b850d6fd78eaac05dda0713b7cc
[ "Apache-2.0" ]
null
null
null
Music/__init__.py
izazkhan8293/Musicheu
9cd33a71868b8b850d6fd78eaac05dda0713b7cc
[ "Apache-2.0" ]
null
null
null
from pyrogram import Client import asyncio from Music.config import API_ID, API_HASH, BOT_TOKEN, MONGO_DB_URI, SUDO_USERS from motor.motor_asyncio import AsyncIOMotorClient as MongoClient import time import uvloop from Music import config import importlib from pyrogram import Client as Bot from Music.config import API_ID, API_HASH, BOT_TOKEN, MONGO_DB_URI, SUDO_USERS, LOG_GROUP_ID, OWNER_ID from pyrogram import Client from aiohttp import ClientSession from motor.motor_asyncio import AsyncIOMotorClient as MongoClient import time def initialize(): global dbb dbb = {} initialize() MONGODB_CLI = MongoClient(MONGO_DB_URI) db = MONGODB_CLI.wbb SUDOERS = SUDO_USERS OWNER = OWNER_ID async def load_sudoers(): global SUDOERS sudoersdb = db.sudoers sudoers = await sudoersdb.find_one({"sudo": "sudo"}) sudoers = [] if not sudoers else sudoers["sudoers"] for user_id in SUDOERS: if user_id not in sudoers: sudoers.append(user_id) await sudoersdb.update_one( {"sudo": "sudo"}, {"$set": {"sudoers": sudoers}}, upsert=True ) SUDOERS = (SUDOERS + sudoers) if sudoers else SUDOERS loop = asyncio.get_event_loop() loop.run_until_complete(load_sudoers()) Music_START_TIME = time.time() loop = asyncio.get_event_loop() BOT_ID = 0 BOT_NAME = "" BOT_USERNAME = "" ASSID = 0 ASSNAME = "" ASSUSERNAME = "" ASSMENTION = "" app = Client( 'MusicBot', API_ID, API_HASH, bot_token=BOT_TOKEN, ) aiohttpsession = ClientSession() client = Client(config.SESSION_NAME, config.API_ID, config.API_HASH) def all_info(app, client): global BOT_ID, BOT_NAME, BOT_USERNAME global ASSID, ASSNAME, ASSMENTION, ASSUSERNAME getme = app.get_me() getme1 = client.get_me() BOT_ID = getme.id ASSID = getme1.id if getme.last_name: BOT_NAME = getme.first_name + " " + getme.last_name else: BOT_NAME = getme.first_name BOT_USERNAME = getme.username ASSNAME = ( f"{getme1.first_name} {getme1.last_name}" if getme1.last_name else getme1.first_name ) ASSUSERNAME = getme1.username ASSMENTION = getme1.mention app.start() client.start() all_info(app, client)
28.448718
102
0.708878
0
0
0
0
0
0
473
0.213159
112
0.050473
c23a870064fefb4e740984ad848e886ea4aa0cd9
9,372
py
Python
test.py
ZJianjin/Traffic4cast2020_lds
6cb76e885a9539e485c055222be77f41a559c507
[ "Apache-2.0" ]
3
2020-12-10T13:43:08.000Z
2021-01-17T04:36:34.000Z
test.py
ZJianjin/Traffic4cast2020_lds
6cb76e885a9539e485c055222be77f41a559c507
[ "Apache-2.0" ]
null
null
null
test.py
ZJianjin/Traffic4cast2020_lds
6cb76e885a9539e485c055222be77f41a559c507
[ "Apache-2.0" ]
null
null
null
import random from random import shuffle import numpy as np import tensorflow as tf from tensorflow.python.tools import freeze_graph import datetime import time import queue import threading import logging from PIL import Image import itertools import yaml import re import os import glob import shutil import sys import copy import h5py from net_all import * from trainer_all import * season = None use_mask = True use_flip = False use_time = True model_name = 'neta' train_winter = ['-01-', '-02-', '-03-'] train_summer = ['-05-', '-04-', '-06-'] test_winter = ['-11-', '-12-'] test_summer = ['-07-', '-08-', '-09-', '-10-'] SEED = 0 num_train_file = 285 num_frame_per_day = 288 num_frame_before = 12 num_frame_sequence = 24 target_frames = [0, 1, 2, 5, 8, 11] num_sequence_per_day = num_frame_per_day - num_frame_sequence + 1 height = 495 width = 436 num_channel = 9 num_channel_discretized = 8 # 4 * 2 visual_input_channels = 115 # 12 * 8 visual_output_channels = 6 * 8 # 6 * 8 vector_input_channels = 1 # start time point import json # n = 1 s = 255 e = 85 w = 170 tv = 16 ##############################Set the path############################################## data_root = './data' model_root = './jianjzhmodelstest' log_root = './output' ##############################Set the path############################################## # target_city = 'ISTANBUL' # ['BERLIN', 'MOSCOW', 'ISTANBUL'] # test_start_index_list = np.array([ 18, 57, 114, 174, 222], np.int32) # 'BERLIN' # test_start_index_list = np.array([ 45, 102, 162, 210, 246], np.int32) # 'Moscow' # 'Istanbul' input_static_data_path = data_root + '/' + target_city + '/' + target_city + '_static_2019.h5' input_mask_data_path = data_root + '/maskdata/' input_train_data_folder_path = data_root + '/' + target_city + '/training' input_val_data_folder_path = data_root + '/' + target_city + '/validation' input_test_data_folder_path = data_root + '/' + target_city + '/testing' save_model_path = model_root + '/' + target_city + str(season) + str(use_flip) + str(use_mask) summary_path = log_root + '/' + target_city + str(season) + str(use_flip) + str(use_mask) # batch_size_test = 5 learning_rate = 3e-4 load_model_path = model_root + '/' + 'ISTANBULneta' # load_model_path = '' is_training = False # premodel = os.path.join(model_root, 'BERLINneta', 'model-58000.cptk') global_step = 60000 def write_data(data, filename): f = h5py.File(filename, 'w', libver='latest') dset = f.create_dataset('array', shape=(data.shape), data=data, compression='gzip', compression_opts=9) f.close() def get_data_filepath_list(input_data_folder_path): data_filepath_list = [] for filename in os.listdir(input_data_folder_path): if filename.split('.')[-1] != 'h5': continue data_filepath_list.append(os.path.join(input_data_folder_path, filename)) data_filepath_list = sorted(data_filepath_list) return data_filepath_list def get_static_data(input_static_data_path): fr = h5py.File(input_static_data_path, 'r') data = fr['array'].value / 255.0 return data def get_mask_data(input_mask_data_path, city): map_0 = np.load(input_mask_data_path + city + 'map_0.npy') map_1 = np.load(input_mask_data_path + city + 'map_1.npy') map_2 = np.load(input_mask_data_path + city + 'map_2.npy') map_3 = np.load(input_mask_data_path + city + 'map_3.npy') result = np.concatenate([map_0, map_0, map_1, map_1, map_2, map_2, map_3, map_3], axis=-1) return result if __name__ == '__main__': random.seed(SEED) np.random.seed(SEED) tf.set_random_seed(SEED) trainer = Trainer(height, width, visual_input_channels, visual_output_channels, vector_input_channels, learning_rate, save_model_path, load_model_path, summary_path, is_training, use_mask, model_name) tf.reset_default_graph() test_data_filepath_list = get_data_filepath_list(input_test_data_folder_path) if season == 'winter': tmp = [] for i in test_data_filepath_list: if any([j in i for j in test_winter]): tmp.append(i) data_filepath_list = tmp elif season == 'summer': tmp = [] for i in test_data_filepath_list: if any([j in i for j in test_summer]): tmp.append(i) data_filepath_list = tmp print('test_data_filepath_list\t', len(test_data_filepath_list), ) test_output_filepath_list = list() for test_data_filepath in test_data_filepath_list: filename = test_data_filepath.split('/')[-1] test_output_filepath_list.append('output/' + target_city + '/' + target_city + '_test' + '/' + filename) static_data = get_static_data(input_static_data_path) mask_data = get_mask_data(input_mask_data_path, target_city) try: if not os.path.exists('output'): os.makedirs('output') if not os.path.exists('output/' + target_city): os.makedirs('output/' + target_city) if not os.path.exists('output/' + target_city + '/' + target_city + '_test'): os.makedirs('output/' + target_city + '/' + target_city + '_test') except Exception: print('output path not made') exit(-1) with open('test_data.json') as f: test_json = json.load(f) for i in range(len(test_data_filepath_list)): file_path = test_data_filepath_list[i] out_file_path = test_output_filepath_list[i] fr = h5py.File(file_path, 'r') a_group_key = list(fr.keys())[0] data = fr[a_group_key] # assert data.shape[0] == num_frame_per_day data = np.array(data, np.uint8) test_data_batch_list = [] test_data_time_list = [] test_data_mask_list = [] batch_size_test = data.shape[0] for j in range(batch_size_test): test_data_time_list.append(float(j) / float(num_frame_per_day)) data_sliced = data[:, :, :, :, :num_channel] if use_time: for time_dict in test_json: time_data = list(time_dict.keys())[0] if time_data in file_path: time_data = time_dict[time_data] break time_id = np.ones_like(data_sliced)[:, :, :, :, :1] for m in range(len(time_data)): for n in range(num_frame_before): time_id[m, n] = time_id[m, n] * (time_data[m] + n) / 288.0 * 255.0 data_sliced = np.concatenate([data_sliced, time_id], axis=-1) data_mask = (np.max(data_sliced, axis=4) == 0) test_data_mask_list = data_mask[:, :, :, :] test_data_batch_list.append(data_sliced) test_data_time_list = np.asarray(test_data_time_list, np.float32) input_time = np.reshape(test_data_time_list, (batch_size_test, 1)) test_data_mask = test_data_mask_list input_data = np.concatenate(test_data_batch_list, axis=0).astype(np.float32) input_data[:, :, :, :, :] = input_data[:, :, :, :, :] / 255.0 input_data = np.moveaxis(input_data, 1, -1).reshape((batch_size_test, height, width, -1)) static_data_tmp = np.tile(static_data, [batch_size_test, 1, 1, 1]) input_data = np.concatenate([input_data, static_data_tmp], axis=-1) # input_data_mask = np.zeros((batch_size_test, num_frame_before, height, width, num_channel_discretized), np.bool) # input_data_mask[test_data_mask[:, :num_frame_before, :, :], :] = True # input_data_mask = np.moveaxis(input_data_mask, 1, -1).reshape((batch_size_test, height, width, -1)) # input_data[input_data_mask] = -1.0 true_label_mask = np.ones((batch_size_test, height, width, visual_output_channels), dtype=np.float32) if use_mask: orig_label_mask = np.tile(mask_data, [1, 1, 1, len(target_frames)]) else: orig_label_mask = np.ones((batch_size_test, height, width, visual_output_channels), dtype=np.float32) prediction_list = [] # print(input_data.shape) # assert 0 import scipy.misc as misc # trainer.load_model(premodel) # print('load model') for b in range(batch_size_test): run_out_one = trainer.infer(input_data[b, :, :, :][np.newaxis, :, :, :], input_time[b, :][np.newaxis, :], true_label_mask[b, :, :, :][np.newaxis, :, :, :], global_step) prediction_one = run_out_one['predict'] prediction_list.append(prediction_one) # print(input_data[b,:,:,:].shape) # for t in range(3): # misc.imsave('output_'+str(b)+'_'+str(t)+'.png', np.reshape(prediction_one, [495, 436, 3, 8])[:, :, t, 0]) # assert 0 prediction = np.concatenate(prediction_list, axis=0) prediction = np.moveaxis(np.reshape(prediction, ( batch_size_test, height, width, num_channel_discretized, len(target_frames),)), -1, 1) prediction = prediction.astype(np.float32) * 255.0 prediction = np.rint(prediction) prediction = np.clip(prediction, 0.0, 255.0).astype(np.uint8) assert prediction.shape == (batch_size_test, len(target_frames), height, width, num_channel_discretized) write_data(prediction, out_file_path)
37.94332
122
0.636364
0
0
0
0
0
0
0
0
1,666
0.177764
c23bc080151d66518c85923b1ce1c8be7c0ff949
3,037
py
Python
python/python-010/rds.py
suzuxander/suzuxander_samples
736224dae91b432ef3ec796f5eda23417865f142
[ "MIT" ]
null
null
null
python/python-010/rds.py
suzuxander/suzuxander_samples
736224dae91b432ef3ec796f5eda23417865f142
[ "MIT" ]
null
null
null
python/python-010/rds.py
suzuxander/suzuxander_samples
736224dae91b432ef3ec796f5eda23417865f142
[ "MIT" ]
null
null
null
from troposphere import Template, Ref, Parameter, GetAtt from troposphere.ec2 import SecurityGroup from troposphere.rds import DBSubnetGroup, DBInstance def create_rds_template(): template = Template() vpc = template.add_parameter( parameter=Parameter( title='Vpc', Type='String' ) ) subnet_a = template.add_parameter( parameter=Parameter( title='SubnetA', Type='String' ) ) subnet_b = template.add_parameter( parameter=Parameter( title='SubnetB', Type='String' ) ) master_user_name = template.add_parameter( parameter=Parameter( title='DBMasterUserName', Type='String' ) ) master_user_password = template.add_parameter( parameter=Parameter( title='DBMasterUserPassword', Type='String' ) ) storage_size = template.add_parameter( parameter=Parameter( title='StorageSize', Default='20', Type='String' ) ) instance_class = template.add_parameter( parameter=Parameter( title='InstanceClass', Default='db.t2.micro', Type='String' ) ) engine_version = template.add_parameter( parameter=Parameter( title='EngineVersion', Default='5.7.26', Type='String' ) ) security_group = template.add_resource( resource=SecurityGroup( title='SampleSecurityGroup', GroupDescription='sample-rds', SecurityGroupIngress=[ { 'IpProtocol': 'tcp', 'FromPort': 3306, 'ToPort': 3306, 'CidrIp': '0.0.0.0/0', } ], VpcId=Ref(vpc) ) ) db_subnet_group = template.add_resource( resource=DBSubnetGroup( title='SampleDBSubnetGroup', DBSubnetGroupDescription='sample-rds', DBSubnetGroupName='sample-rds', SubnetIds=[Ref(subnet_a), Ref(subnet_b)] ) ) template.add_resource( resource=DBInstance( title='SampleDBInstance', DBSubnetGroupName=Ref(db_subnet_group), # VPCSecurityGroups=[Ref(security_group)], VPCSecurityGroups=[GetAtt(security_group, 'GroupId')], AllocatedStorage=Ref(storage_size), DBInstanceClass=Ref(instance_class), DBInstanceIdentifier='sample-rds', DBName='sample_rds', Engine='mysql', EngineVersion=Ref(engine_version), MasterUsername=Ref(master_user_name), MasterUserPassword=Ref(master_user_password), PubliclyAccessible=True ) ) with open('./rds.yml', mode='w') as file: file.write(template.to_yaml()) if __name__ == '__main__': create_rds_template()
25.957265
66
0.55186
0
0
0
0
0
0
0
0
451
0.148502
c23f39dcaa9bc21fb37ef18d6de38e47058d0da3
514
py
Python
hlwtadmin/migrations/0044_gigfinderurl_ignore_periods.py
Kunstenpunt/havelovewilltravel
6a27824b4d3d8b1bf19e0bc0d0648f0f4e8abc83
[ "Apache-2.0" ]
1
2020-10-16T16:29:01.000Z
2020-10-16T16:29:01.000Z
hlwtadmin/migrations/0044_gigfinderurl_ignore_periods.py
Kunstenpunt/havelovewilltravel
6a27824b4d3d8b1bf19e0bc0d0648f0f4e8abc83
[ "Apache-2.0" ]
365
2020-02-03T12:46:53.000Z
2022-02-27T17:20:46.000Z
hlwtadmin/migrations/0044_gigfinderurl_ignore_periods.py
Kunstenpunt/havelovewilltravel
6a27824b4d3d8b1bf19e0bc0d0648f0f4e8abc83
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.0.7 on 2021-01-26 09:57 import django.contrib.postgres.fields from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('hlwtadmin', '0043_auto_20210126_0833'), ] operations = [ migrations.AddField( model_name='gigfinderurl', name='ignore_periods', field=django.contrib.postgres.fields.ArrayField(base_field=models.DateTimeField(), blank=True, null=True, size=2), ), ]
25.7
126
0.659533
383
0.745136
0
0
0
0
0
0
113
0.219844
c23fbfd17a95b6fdf7b229efd815b011116431cc
1,855
py
Python
conanfile.py
ltjax/nativefiledialog-extended
2dc958b98f41e081189e84b56f9f250e1b30f92e
[ "Zlib" ]
null
null
null
conanfile.py
ltjax/nativefiledialog-extended
2dc958b98f41e081189e84b56f9f250e1b30f92e
[ "Zlib" ]
null
null
null
conanfile.py
ltjax/nativefiledialog-extended
2dc958b98f41e081189e84b56f9f250e1b30f92e
[ "Zlib" ]
null
null
null
from conans import ConanFile, CMake, tools class NativeFileDialogExtendedConan(ConanFile): name = "nativefiledialog-extended" version = "1.0" license = "zlib" author = "Marius Elvert [email protected]" url = "https://github.com/ltjax/nativefiledialog-extended" description = "Small C and C++ libraries that portably invoke native file open, folder select and save dialogs." topics = ("file-dialog",) settings = "os", "compiler", "build_type", "arch" options = {"shared": [True, False]} default_options = {"shared":False} generators = "cmake" exports_sources = "src/*", "test/*", "CMakeLists.txt" def _configured_cmake(self): cmake = CMake(self) cmake.configure(source_folder=".", defs={}) return cmake def build(self): self._configured_cmake().build() def package(self): self._configured_cmake().install() def package_info(self): self.cpp_info.libs = ["nfd"] if self.settings.os == "Linux": self._add_libraries_from_pc("gtk+-3.0") elif self.settings.os == "Macos": frameworks = ["AppKit"] for framework in frameworks: self.cpp_info.exelinkflags.append("-framework {0}".format(framework)) self.cpp_info.sharedlinkflags.append("-framework {0}".format(framework)) def _add_libraries_from_pc(self, library): pkg_config = tools.PkgConfig(library) libs = [lib[2:] for lib in pkg_config.libs_only_l] # cut -l prefix lib_paths = [lib[2:] for lib in pkg_config.libs_only_L] # cut -L prefix self.cpp_info.libs.extend(libs) self.cpp_info.libdirs.extend(lib_paths) self.cpp_info.sharedlinkflags.extend(pkg_config.libs_only_other) self.cpp_info.exelinkflags.extend(pkg_config.libs_only_other)
40.326087
116
0.654447
1,810
0.975741
0
0
0
0
0
0
433
0.233423
c24130645b33d6b4c145bae50da7d266149801e6
960
py
Python
hackerearth/Algorithms/New World/solution.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
4
2020-07-24T01:59:50.000Z
2021-07-24T15:14:08.000Z
hackerearth/Algorithms/New World/solution.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
null
null
null
hackerearth/Algorithms/New World/solution.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
null
null
null
""" # Sample code to perform I/O: name = input() # Reading input from STDIN print('Hi, %s.' % name) # Writing output to STDOUT # Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail """ # Write your code here import bisect def check(arr, x, ln, val): count = 0 i = 0 while i < ln - 1: index = bisect.bisect(arr, arr[i] + x) - 1 if index > i: i = index count += 1 else: return False return count <= val t = int(input()) for _ in range(t): n, k = map(int, input().strip().split()) stones = list(map(int, input().strip().split())) low = 1 high = stones[-1] - stones[0] # Location of all stones are given in ascending order. while low <= high: mid = (low + high) // 2 if check(stones, mid, n, k): high = mid - 1 else: low = mid + 1 print(low)
24
94
0.527083
0
0
0
0
0
0
0
0
328
0.341667
c2416fc1e551162c64c074b04f41a960aa792575
712
py
Python
core/departments/urls.py
IvanRch/bsuphys
105715cde8fc8e9a42019ed4b650fe00b94fa132
[ "Apache-2.0" ]
1
2022-01-04T07:04:46.000Z
2022-01-04T07:04:46.000Z
core/departments/urls.py
IvanRch/bsuphys
105715cde8fc8e9a42019ed4b650fe00b94fa132
[ "Apache-2.0" ]
1
2020-02-17T19:06:03.000Z
2020-02-17T19:06:03.000Z
core/departments/urls.py
IvanRch/bsuphys
105715cde8fc8e9a42019ed4b650fe00b94fa132
[ "Apache-2.0" ]
1
2021-07-08T13:21:04.000Z
2021-07-08T13:21:04.000Z
from django.urls import path, re_path from . import views app_name = "departments" urlpatterns = [path("", views.departmentList, name="energy department"), path( "<slug:department>/", views.department_detail, name="department_detail", ), path( "<slug:department>/staff/", views.department_detail_staff, name="department_detail", ), path( "<slug:department>/thesis/", views.department_detail_thesis, name="department_detail", ), path( "<slug:department>/directions/", views.department_detail_directions, name="department_detail", ), ]
25.428571
72
0.573034
0
0
0
0
0
0
0
0
214
0.300562
c2456834188f5aaff78f04e88343303b398c8b26
432
py
Python
18th May Assignments/case study 1/question_5.py
JangirSumit/data_science
a1957122f8a4c66e3b4c7b7c93a74c53a2db1fe4
[ "MIT" ]
15
2019-05-05T04:48:42.000Z
2022-02-15T12:08:33.000Z
18th May Assignments/case study 1/question_5.py
JangirSumit/data_science
a1957122f8a4c66e3b4c7b7c93a74c53a2db1fe4
[ "MIT" ]
null
null
null
18th May Assignments/case study 1/question_5.py
JangirSumit/data_science
a1957122f8a4c66e3b4c7b7c93a74c53a2db1fe4
[ "MIT" ]
53
2019-11-10T05:09:25.000Z
2022-03-28T01:26:32.000Z
# 5. How do you Count The Number Of Times Each Value Appears In An Array Of Integers? # [0, 5, 4, 0, 4, 4, 3, 0, 0, 5, 2, 1, 1, 9] # Answer should be array([4, 2, 1, 1, 3, 2, 0, 0, 0, 1]) which means 0 comes 4 times, 1 comes 2 times, 2 comes 1 time, 3 comes 1 time and so on. array = [0, 5, 4, 0, 4, 4, 3, 0, 0, 5, 2, 1, 1, 9] count_array_elements = [array.count(a) for a in set(array)] print(count_array_elements)
43.2
144
0.601852
0
0
0
0
0
0
0
0
287
0.664352
c246213af42c94a04ec5e4409ced7cd800cf77ef
4,957
py
Python
pvp-tic-tac-toe.py
lsfidelis/pvp-tic-tac-toe
6ed73e5a053cc22a092c7b56d774503f57a859ab
[ "MIT" ]
null
null
null
pvp-tic-tac-toe.py
lsfidelis/pvp-tic-tac-toe
6ed73e5a053cc22a092c7b56d774503f57a859ab
[ "MIT" ]
null
null
null
pvp-tic-tac-toe.py
lsfidelis/pvp-tic-tac-toe
6ed73e5a053cc22a092c7b56d774503f57a859ab
[ "MIT" ]
null
null
null
from time import sleep print("Welcome to Tic Tac Toe! \nWe'll be playing in a sec, but, first..") general_board = {'7': ' ', '8': ' ', '9': ' ', '4': ' ', '5': ' ', '6': ' ', '1': ' ', '2': ' ', '3': ' '} # prints board structure def show_board(board): print('\t\t', board['7'], '|', board['8'], '|', board['9']) print('\t\t', '--+---+--') print('\t\t', board['4'], '|', board['5'], '|', board['6']) print('\t\t', '--+---+--') print('\t\t', board['1'], '|', board['2'], '|', board['3']) # Choose which player goes first def game(): while True: player = str(input("Choose which player goes first: (X/O) ")).strip().upper()[0] if player not in "XO": print('\nInvalid choice. Try again.') continue else: break # Validates index to insert player symbol (X/O) turns_count = 0 while True: if turns_count == 9: print("\t\n ***** GAME OVER! It's a Tie! *****") break show_board(general_board) print(f"\nIt's {player}'s turn.", end=' ') move = input('Move to which place? ') if 0 < int(move) < 10: if general_board[move] == ' ': turns_count += 1 general_board[move] = player elif general_board[move] != ' ': print('\n ---> Place already filled. Try again.\n') continue else: print('\n ---> Invalid place. Try again.\n') continue # Adds +1 to turns; Minimum tunrs to win the game = 5 if turns_count >= 5: if general_board['1'] == general_board['2'] == general_board['3'] != ' ': show_board(general_board) print(f'\t***** {player} is the winner! *****') print('-' * 35) # Bottom Horizontal break elif general_board['4'] == general_board['5'] == general_board['6'] != ' ': show_board(general_board) print(f'\t***** {player} is the winner! *****') print('-' * 35) # Middle Horizontal break elif general_board['7'] == general_board['8'] == general_board['9'] != ' ': show_board(general_board) print(f'\t***** {player} is the winner! *****') print('-' * 35) # Top Horizontal break elif general_board['1'] == general_board['4'] == general_board['7'] != ' ': show_board(general_board) print(f'\t***** {player} is the winner! *****') print('-' * 35) # Left Vertical break elif general_board['2'] == general_board['5'] == general_board['8'] != ' ': show_board(general_board) print(f'\t***** {player} is the winner! *****') print('-' * 35) # Middle Vertical break elif general_board['3'] == general_board['6'] == general_board['9'] != ' ': show_board(general_board) print(f'\t***** {player} is the winner! *****') print('-' * 35) # Right Vertical break elif general_board['1'] == general_board['5'] == general_board['9'] != ' ': show_board(general_board) print(f'\t***** {player} is the winner! *****') print('-' * 35) # Right-left Diagonal break elif general_board['7'] == general_board['5'] == general_board['3'] != ' ': show_board(general_board) print(f'\t***** {player} is the winner! *****') print('-' * 35) # Left-right Diagonal break # Changes player turn if player == 'X': player = 'O' elif player == 'O': player = 'X' # Clear the board and reset the game def restart(): while True: reset_game = str(input('Do you want to continue? (y/n)')).strip().lower()[0] board_keys = list() for keys in general_board.keys(): board_keys.append(keys) if reset_game not in 'yn': print(f'\nError: {reset_game} is not a valid choice. Please, try again.') continue elif reset_game in 'n': break elif reset_game in 'y': print('\033[31m----- Restarting Tic Tac Toe... -----\033[m') sleep(1) for keys in general_board.keys(): general_board[keys] = ' ' game() if __name__ == "__main__": game() restart()
35.92029
89
0.435747
0
0
0
0
0
0
0
0
1,456
0.293726
c24663b502469b48e008fb30a563fba0b901fd18
7,119
py
Python
total_tolles_ferleihsystem/auth_providers/ldap_auth_provider.py
spethso/Verleihsystem-TTF
39179f9ac5b07f5106e555f82f3c9011d33805bd
[ "MIT" ]
1
2019-03-17T08:11:14.000Z
2019-03-17T08:11:14.000Z
total_tolles_ferleihsystem/auth_providers/ldap_auth_provider.py
spethso/Verleihsystem-TTF
39179f9ac5b07f5106e555f82f3c9011d33805bd
[ "MIT" ]
60
2018-06-12T14:46:50.000Z
2020-11-16T00:50:37.000Z
total_tolles_ferleihsystem/auth_providers/ldap_auth_provider.py
FIUS/ttf-backend
39179f9ac5b07f5106e555f82f3c9011d33805bd
[ "MIT" ]
1
2019-12-02T19:25:59.000Z
2019-12-02T19:25:59.000Z
""" Auth Providers which provides LDAP login """ from typing import List, Dict from ldap3 import Connection, Server, AUTO_BIND_TLS_BEFORE_BIND, SUBTREE from ldap3.core.exceptions import LDAPSocketOpenError, LDAPBindError from ..login import LoginProvider from .. import APP, AUTH_LOGGER class LDAPAuthProvider(LoginProvider, provider_name="LDAP"): """ Login Provider with connection to LDAP Server """ ldap_uri: str #The URL of the ldpa server port: int #The port of the ldap server. Use None for default. ssl: bool #Whether to use ssl for the connection. start_tls: bool #Whether to upgrade connection with StartTLS once bound. user_search_base: str #The search base for users. group_search_base: str #The search base for groups. user_rdn: str #The RDN for users. user_uid_field: str # The field of a user, which is the name, that is i the group_membership_field group_membership_field: str #The field of a group, which contains the username moderator_filter: str #A moderator must match this filter admin_filter: str #A admininstrator must match this filter moderator_group_filter: str # A moderator must be in at least one of the matched groups admin_group_filter: str # A admin must be in at least one of the matched groups server: Server = None known_users: Dict[str, bool] def __init__(self): self.ldap_uri: str = APP.config["LDAP_URI"] #The URL of the ldpa server self.port: int = APP.config["LDAP_PORT"] #The port of the ldap server. Use None for default. self.ssl: bool = APP.config["LDAP_SSL"] #Whether to use ssl for the connection. self.start_tls: bool = APP.config["LDAP_START_TLS"] #Whether to upgrade connection with StartTLS once bound. self.user_search_base: str = APP.config["LDAP_USER_SEARCH_BASE"] #The search base for users. self.group_search_base: str = APP.config["LDAP_GROUP_SEARCH_BASE"] #The search base for groups. self.user_rdn: str = APP.config["LDAP_USER_RDN"] #The RDN for users. # The field of a user, which is the name, that is i the group_membership_field self.user_uid_field: str = APP.config["LDAP_USER_UID_FIELD"] #The field of a group, which contains the username self.group_membership_field: str = APP.config["LDAP_GROUP_MEMBERSHIP_FIELD"] self.moderator_filter: str = APP.config["LDAP_MODERATOR_FILTER"] #A moderator must match this filter self.admin_filter: str = APP.config["LDAP_ADMIN_FILTER"] #A admininstrator must match this filter # A moderator must be in at least one of the matched groups self.moderator_group_filter: str = APP.config["LDAP_MODERATOR_GROUP_FILTER"] # A admin must be in at least one of the matched groups self.admin_group_filter: str = APP.config["LDAP_ADMIN_GROUP_FILTER"] self.server: Server = None self.known_users = {} def init(self) -> None: self.server = Server(self.ldap_uri, port=self.port, use_ssl=self.ssl) def valid_user(self, user_id: str) -> bool: return True @classmethod def combine_filters(cls, filters: List[str]) -> str: """ Combines the given filters with a or """ non_empty_filters = list(filter(None, filters)) if not non_empty_filters: return "" elif len(non_empty_filters) == 1: return non_empty_filters.pop() else: return "(|" + ''.join(non_empty_filters) + ")" def valid_password(self, user_id: str, password: str) -> bool: try: user_str = self.user_rdn + "=" + user_id + "," + self.user_search_base with Connection(self.server, user=user_str, password=password, auto_bind=AUTO_BIND_TLS_BEFORE_BIND, read_only=True) as conn: user_base_filter = "(" + self.user_rdn + "=" + user_id + ")" user_filter = user_base_filter all_users_filter = self.combine_filters([self.moderator_filter, self.admin_filter]) if all_users_filter: user_filter = "(&" + all_users_filter + user_base_filter + ")" if not conn.search(self.user_search_base, user_filter, search_scope=SUBTREE, attributes=[self.user_uid_field]): AUTH_LOGGER.info("User %s is not in the user filter", user_id) return False user_uid = str(conn.entries.pop()[self.user_uid_field]) group_base_filter = "(" + self.group_membership_field + "=" + user_uid + ")" group_filter = group_base_filter all_groups_filter = self.combine_filters([self.moderator_group_filter, self.admin_group_filter]) if all_groups_filter: group_filter = "(&" + all_groups_filter + group_base_filter + ")" if not conn.search(self.group_search_base, group_filter, search_scope=SUBTREE): AUTH_LOGGER.info("User %s is not in any group of the group filter", user_id) return False admin_user_filter = user_base_filter all_admin_users_filter = self.combine_filters([self.admin_filter]) if all_admin_users_filter: admin_user_filter = "(&" + all_admin_users_filter + user_base_filter + ")" admin_group_filter = group_base_filter all_admin_groups_filter = self.combine_filters([self.admin_group_filter]) if all_admin_groups_filter: admin_group_filter = "(&" + all_admin_groups_filter + group_base_filter + ")" in_admin_user_filter = conn.search(self.user_search_base, admin_user_filter, search_scope=SUBTREE) in_admin_group_filter = conn.search(self.group_search_base, admin_group_filter, search_scope=SUBTREE) if (in_admin_user_filter and in_admin_group_filter): self.known_users[user_id] = True else: self.known_users[user_id] = False AUTH_LOGGER.debug("Valid login from user %s. User in admin user filter: %s. User in admin group: %s", user_id, str(in_admin_user_filter), str(in_admin_group_filter)) return True except LDAPSocketOpenError as error: raise ConnectionError("Unable to connect to LDAP Server.") from error except LDAPBindError: return False return False def is_admin(self, user_id: str) -> bool: return self.known_users[user_id] def is_moderator(self, user_id: str) -> bool: return True
47.46
118
0.61975
6,828
0.959123
0
0
409
0.057452
0
0
1,822
0.255935
c247338889dd4aef3193b428e74aac5424652e3f
4,117
py
Python
md2html.py
osfans/yancheng
1f5cec75c8d97006f8b2ee4b1b36b7dc78930ef0
[ "Apache-2.0" ]
4
2017-01-26T03:25:24.000Z
2019-04-15T14:11:46.000Z
md2html.py
osfans/yancheng
1f5cec75c8d97006f8b2ee4b1b36b7dc78930ef0
[ "Apache-2.0" ]
1
2016-12-02T04:26:31.000Z
2016-12-05T05:02:39.000Z
md2html.py
osfans/xu
1f5cec75c8d97006f8b2ee4b1b36b7dc78930ef0
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import re, os, glob template = """ <!doctype html> <html> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> <style> body { font-family: PMingLiu, HanaMinA, HanaMinB, Helvetica, arial, sans-serif; writing-mode: vertical-rl; -webkit-writing-mode: vertical-rl; } .sm { margin: 20px 0 10px; padding: 0; font-weight: bold; font-size: 30px; border-left: 1px solid #cccccc; margin: 0 5px; cursor: text; position: static; clear: both; text-align: right; } .sd, .sd2, .zy, .zi, .zi1, .yi { font-size: 10px; text-align: center; cursor: text; float: left; margin-left: 10px; margin-right: 10px; line-height: 10px; letter-spacing: 0.35em; } .sd, .sd2 { margin-right: 25px; clear: both; } .sd2 { margin-right: 20px; } .zi, .zi1 { padding-top: 20px; padding-bottom: 10px; font-size: 20px; line-height: 20px; } .zi1 { padding-top: 10px; } .yi { min-height: 40px; text-align: left; line-height: 12px; margin-right: 8px; } .clear { clear: both; } </style> <title>徐氏類音字彙</title> </head> <body> %s </body> </html> """ lines = list() def append(fmt, s): #print(s) lines.append(fmt % s) def parse(s): s = s.strip().strip("`").replace("〜", "—").replace("~", "—").replace("※", "").replace(" ", "") if "(" in s: s = re.sub("(.[\?=]?)((.+?))", r'<a title="\2">\1</a>', s) return s def break_yi(yi): n = len(yi) if 0 < n < 4: yi = yi + (4-n) * " " n = 4 if n > 0 and '<' not in yi: yi = yi[:(n+1)//2]+"<br/>"+yi[(n+1)//2:] return yi def md2html(filename): sm = "" sd = "" zi_count = 0 zi_single = "" lines.clear() for line in open(filename, encoding="U8"): line = line.strip() if line: if line.startswith(">") or line.startswith("---") : continue if line.startswith("##"): line = line[2:].strip() if line == sd: continue sd = line zi_count = 0 elif line.startswith("#"): line = line[1:].strip() if line == sm: continue sm = line append("<div class=sm>%s</div>", sm) else: zi, yi= "", "" if line.startswith("`"): yi = line #無字 elif line.count("`") == 2: zi, yi = line.split("`", 1) if zi or yi: zi = parse(zi) yi = parse(yi) if not yi: zi_single += zi continue if zi: zi = zi_single + zi zi_single = "" yi = break_yi(yi) zi_count+=1 if zi_count == 1: sd_title = sd if not zi: sd_title = yi yi = "" if len(sd_title) == 2: sd_title = sd[0]+"<br/>" + sd[1] append("<div class=sd2>%s</div>", sd_title) else: append("<div class=sd>%s</div>", sd_title) append("<div class=zy><div class=zi1>%s</div><div class=yi>%s</div></div>",(zi, yi)) else: append("<div class=zy><div class=zi>%s</div><div class=yi>%s</div></div>",(zi, yi)) target = open("docs/" + os.path.basename(filename).replace(".md", ".html"), "w", encoding="U8") target.write(template % ("\n".join(lines))) target.close() def copy_readme(): target = open("README.md", "w", encoding="U8") target.write(open("wiki/Home.md", encoding="U8").read().replace("/osfans/xu/wiki/", "https://osfans.github.io/xu/")) target.close() copy_readme() for filename in glob.glob("wiki/??.md"): md2html(filename)
24.360947
120
0.459072
0
0
0
0
0
0
0
0
1,646
0.396531
c2478e02ca506e0323d992197336faa1570d5c97
2,460
py
Python
plugin_hide_run_panel/__init__.py
Holt59/modorganizer-python_plugins
f3404b1c3d9b8f5a6aa2133b47f7fc0218c18dc9
[ "MIT" ]
null
null
null
plugin_hide_run_panel/__init__.py
Holt59/modorganizer-python_plugins
f3404b1c3d9b8f5a6aa2133b47f7fc0218c18dc9
[ "MIT" ]
null
null
null
plugin_hide_run_panel/__init__.py
Holt59/modorganizer-python_plugins
f3404b1c3d9b8f5a6aa2133b47f7fc0218c18dc9
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- from PyQt5.QtCore import QCoreApplication from PyQt5.QtWidgets import QMainWindow, QFrame import mobase class HideRunPanelPlugin(mobase.IPlugin): _runFrame: QFrame def __init__(self): super().__init__() def init(self, organizer: mobase.IOrganizer): """ For a IPlugin, the only place where things can be done is in init(). """ self._organizer = organizer # mobase.IOrganizer has a few callbacks available: # onUserInterfaceInitialized is called when the UI has been initialized, so # we can use it to retrieve the actual run frame from the main window. Trying # to access the main window in init() would not work since the main window is # not yet created. self._organizer.onUserInterfaceInitialized(self._onUiInit) # We add a callback when plugin change to hide/show the run frame depending # on the setting. self._organizer.onPluginSettingChanged(self._onPluginSettingChanged) return True def _onUiInit(self, mainWindow: QMainWindow): self._runFrame = mainWindow.findChild(QFrame, "startGroup") # type: ignore self._onPluginSettingChanged( self.name(), "visible", None, self._organizer.pluginSetting(self.name(), "visible"), ) def _onPluginSettingChanged( self, pluginName: str, pluginKey: str, oldValue, newValue ): """ Note: oldValue and newValue are Union type (mobase.MoVariant), but MovVariant is not actually in mobase, so we cannot specify it currently. """ if pluginName == self.name() and pluginKey == "visible": self._runFrame.setVisible(newValue) # type: ignore def name(self): return "Hide Run Panel" def author(self): return "Holt59" def description(self): return self._tr("Hide the run panel") def version(self): return mobase.VersionInfo(1, 0, 0, mobase.ReleaseType.final) def isActive(self): return True def settings(self): # We have a single setting indicating if the run frame should be visible or # not. We use this in _onPluginSettingChanged. return [mobase.PluginSetting("visible", "run frame visible", False)] def _tr(self, str): return QCoreApplication.translate("HideRunPanelPlugin", str) def createPlugin(): return HideRunPanelPlugin()
31.948052
85
0.660976
2,271
0.923171
0
0
0
0
0
0
925
0.376016
c24ab458d07762596a9a0b958ea5ceac2489021a
164
py
Python
nnet/learning_rate_func/__init__.py
zhaoyan1117/NeuralNet
a0343dd469e981bf9b4f18db0209ca9bfaf58c4f
[ "BSD-2-Clause" ]
null
null
null
nnet/learning_rate_func/__init__.py
zhaoyan1117/NeuralNet
a0343dd469e981bf9b4f18db0209ca9bfaf58c4f
[ "BSD-2-Clause" ]
null
null
null
nnet/learning_rate_func/__init__.py
zhaoyan1117/NeuralNet
a0343dd469e981bf9b4f18db0209ca9bfaf58c4f
[ "BSD-2-Clause" ]
null
null
null
from ._inv_prop_lr import InvPropLR from ._constant_lr import ConstantLR from ._step_size_lr import StepSizeLR from ._dynamic_step_size_lr import DynamicStepSizeLR
32.8
52
0.878049
0
0
0
0
0
0
0
0
0
0
c24d4c5a8f9125c9ef834c785c10d1d380869f30
8,645
py
Python
src/utils/strava.py
adrigrillo/endomondo-strava-migrator
398ff4a0db4a8a5a3a4f0d8fb53157ffeeb88079
[ "MIT" ]
2
2020-12-08T20:51:38.000Z
2021-01-03T20:42:10.000Z
src/utils/strava.py
adrigrillo/endomondo-strava-migrator
398ff4a0db4a8a5a3a4f0d8fb53157ffeeb88079
[ "MIT" ]
1
2020-12-08T21:09:50.000Z
2020-12-08T21:30:35.000Z
src/utils/strava.py
adrigrillo/endomondo-strava-migrator
398ff4a0db4a8a5a3a4f0d8fb53157ffeeb88079
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ utils/strava.py ================= Utility class to Strava API """ import json import time from configparser import ConfigParser, NoOptionError from datetime import datetime from pathlib import Path from typing import Tuple from loguru import logger from stravalib import Client, exc from utils.parameters import SECRET from utils.constants import CONFIG_PATH, CODE_ID_FILE_NAME, TOKEN_FILE_NAME from utils.files_handler import check_folder from utils.parameters import STRAVA, CLIENT_ID def get_client_id(app_config: ConfigParser) -> int: """ Obtains the client ID from the configuration file. Args: app_config (ConfigParser): app configuration. Returns: int: client id from the configuration file. Raises: NoOptionError: If the `client_id` key is not present in the configuration. ValueError: If the client id is not an integer. """ try: client_id = app_config.getint(STRAVA, CLIENT_ID) except NoOptionError: raise ValueError('The client id has not been set in the configuration.') except ValueError: logger.exception('Invalid client id format.') raise return client_id def get_secret(app_config: ConfigParser) -> str: """ Obtains the secret from the configuration file. Args: app_config (ConfigParser): app configuration. Returns: str: secret from the configuration file. Raises: NoOptionError: If the `secret` key is not present in the configuration. """ try: secret = app_config.get(STRAVA, SECRET) except NoOptionError: raise ValueError('The client id has not been set in the configuration.') return secret def get_strava_token_from_code_id(config: ConfigParser) -> str: """ Method that interchange the temporary authentication code obtained when `src/request_auth.py` is executed. The method reads the file `config/code_id.txt` that contains the temporal authentication and generates the POST request to obtain the final access token which is saved in `config/token.json`. This method requires the Strava application `client_id` and `secret` that has to be set in the configuration file (`config/config.ini`). Args: config (ConfigParser): app configuration. Returns: str: Strava access token. Raises: ValueError: If no token is found in the configuration. """ code_id_path = Path(CONFIG_PATH, CODE_ID_FILE_NAME) if not code_id_path.is_file(): raise ValueError('The file with the temporal authentication code (`config/code_id.txt`)' 'was NOT found. Execute `request_auth.py` to obtain the temporal access.') with open(code_id_path, 'r') as file: logger.debug('The file with the temporal authentication code (`config/code_id.txt`)' 'was found.') code_id = file.read() if not code_id: raise ValueError('No valid temporal code access found. Rerun `request_auth.py` ' 'to obtain the temporal access.') client = Client() token = client.exchange_code_for_token(client_id=get_client_id(config), client_secret=get_secret(config), code=code_id) logger.debug('Obtained access until {}:\n' '- token: {}.' '- refresh token: {}.', datetime.utcfromtimestamp(int(token['expires_at'])).strftime('%d-%m-%Y %H:%M:%S'), token['access_token'], token['refresh_token']) # Save JSON with the response save_path = Path(check_folder(CONFIG_PATH), TOKEN_FILE_NAME) with open(save_path, 'w') as file: logger.info('Writing token information to `{}`.', save_path) json.dump(token, file, indent=4) return token['access_token'] def get_strava_client(config: ConfigParser) -> Client: """ Checks the authentication token and generates the Strava client. Args: config (ConfigParser): app configuration. Returns: if exist, strava client configured with the authentication token. """ token_file_path = Path(check_folder(CONFIG_PATH), TOKEN_FILE_NAME) if token_file_path.is_file(): logger.debug('The token info file (`config/token.json`) was found.') with open(token_file_path, 'r') as file: token_data = json.load(file) token = token_data.get('access_token') # If the file exists but no access token found, check against the temporary auth if not token: logger.warning('The token info file (`config/token.json`) was found' ' but the access token could not be read.') token = get_strava_token_from_code_id(config) else: logger.info('The token info file (`config/token.json`) was NOT found. ' 'Retrieving from the temporal authentication code.') token = get_strava_token_from_code_id(config) client = Client(access_token=token) return client def upload_activity(client: Client, activity_type: str, file_path: Path) -> bool: """ Helper method to upload the activity to Strava. This method will handle the different possibilities when uploading an activity. Args: client (Client): configured Strava client. activity_type (str): Strava activity string. file_path (Path): Path to the `*.tcx` activity file. Returns: bool: True if the activity have been uploaded successfully. False otherwise. Raises: RateLimitExceeded: When the API limits have been reached. Generally when more than 1000 petitions have been done during the day. ConnectionError: When it has been impossible to connect the Strava servers. Exception: Unknown exceptions that will be logged in detail. """ try: activity_file = open(file_path, 'r') client.upload_activity( activity_file=activity_file, data_type='tcx', activity_type=activity_type, private=False ) except exc.ActivityUploadFailed: logger.exception('Error uploading the activity `{}`.', file_path.stem) return False except exc.RateLimitExceeded: logger.exception('Exceeded the API rate limit.') raise except ConnectionError: logger.exception('No internet connection.') raise except Exception: logger.exception('Unknown exception') raise # If no error return true logger.debug('Activity `{}` uploaded sucessfully.', file_path.stem) return True def handle_rate_limit(start_time: float, requests: int) -> Tuple[float, int]: """ Method to handle the 15 minutes API limit. This method will check the elapsed time since the first request and the number of them. Three cases are possible: - Less than 15 minutes elapsed from the first request and less than 100 requests -> continue. - More than 15 minutes elapsed from the first request and less than 100 requests -> reset timer and request number to count from 0 again. - Less than 15 minutes elapsed from the first request but more than 100 requests -> sleep until the 15 minutes block is over and reset timer and request number to count from 0 again. Args: start_time (float): timestamp of the first request of the block. requests (int): number of request done in the block. Returns: float, int: updated start time and number of requests following the possible cases. """ requests += 1 elapsed_time = time.time() - start_time if elapsed_time <= 60 * 15: if requests >= 100: remaining_time_stopped = 60 * 15 - elapsed_time mins, secs = divmod(remaining_time_stopped, 60) logger.warning('The number of allowed request per 15 minutes have' 'been reached. Sleeping for {:0.0f} minutes, {:0.1f} seconds.', mins, secs) time.sleep(remaining_time_stopped) # Reset values. Include petition to be processed logger.info('Waiting time elapsed. Continuing with the process.') requests = 1 start_time = time.time() else: logger.debug('15 minutes have been elapsed. Resetting requests and time.') # Reset values. Include petition to be processed requests = 1 start_time = time.time() return start_time, requests
36.020833
99
0.65587
0
0
0
0
0
0
0
0
4,769
0.551648
df9a160281e97721997326dd0b0903a52cd73273
5,293
py
Python
train_synthText.py
skyatmoon/Detailed-Handwriting-detection
1eb7ba8087290cbdd3fbc2c092fbdbc2b715fc9c
[ "MIT" ]
1
2020-12-08T01:24:34.000Z
2020-12-08T01:24:34.000Z
train_synthText.py
skyatmoon/Detailed-Handwriting-detection
1eb7ba8087290cbdd3fbc2c092fbdbc2b715fc9c
[ "MIT" ]
null
null
null
train_synthText.py
skyatmoon/Detailed-Handwriting-detection
1eb7ba8087290cbdd3fbc2c092fbdbc2b715fc9c
[ "MIT" ]
null
null
null
""" Author: brooklyn train with synthText """ import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import os from net.craft import CRAFT import sys from utils.cal_loss import cal_synthText_loss from dataset.synthDataset import SynthDataset import argparse from eval import eval_net device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') parser = argparse.ArgumentParser(description='CRAFT Train Fine-Tuning') parser.add_argument('--gt_path', default='/media/brooklyn/EEEEE142EEE10425/SynthText/gt.mat', type=str, help='SynthText gt.mat') parser.add_argument('--synth_dir', default='/media/brooklyn/EEEEE142EEE10425/SynthText', type=str, help='SynthText image dir') parser.add_argument('--label_size', default=96, type=int, help='target label size') parser.add_argument('--batch_size', default=16, type=int, help='training data batch size') parser.add_argument('--test_batch_size', default=16, type=int, help='test data batch size') parser.add_argument('--test_interval', default=40, type=int, help='test interval') parser.add_argument('--max_iter', default=50000, type=int, help='max iteration') parser.add_argument('--lr', default=0.0001, type=float, help='initial learning rate') parser.add_argument('--epochs', default=500, type=int, help='training epochs') parser.add_argument('--test_iter', default=10, type=int, help='test iteration') args = parser.parse_args() image_transform = transforms.Compose([ transforms.Resize((args.label_size * 2, args.label_size * 2)), transforms.ToTensor() ]) label_transform = transforms.Compose([ transforms.Resize((args.label_size,args.label_size)), transforms.ToTensor() ]) def train(net, epochs, batch_size, test_batch_size, lr, test_interval, max_iter, model_save_path, save_weight=True): train_data = SynthDataset(image_transform=image_transform, label_transform=label_transform, file_path=args.gt_path, image_dir=args.synth_dir) steps_per_epoch = 1000 #选取SynthText部分数据作为训练集 train_num = batch_size * steps_per_epoch train_data = torch.utils.data.Subset(train_data, range(train_num)) #划分训练集、验证集 train_num = len(train_data) test_iter = 10 val_num = test_batch_size * test_iter train_data, val_data = torch.utils.data.random_split(train_data, [train_num - val_num, val_num]) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) val_loader = torch.utils.data.DataLoader(val_data, batch_size=test_batch_size, shuffle=False) criterion = nn.MSELoss(reduction='none') optimizer = optim.Adam(net.parameters(), lr=lr) for epoch in range(epochs): print('epoch = ', epoch) for i, (images, labels_region, labels_affinity, _) in enumerate(train_loader): iter = epoch * steps_per_epoch + i #更新学习率 if iter != 0 and iter % 10000 == 0: for param in optimizer.param_groups: param['lr'] *= 0.8 images = images.to(device) labels_region = labels_region.to(device) labels_affinity = labels_affinity.to(device) labels_region = torch.squeeze(labels_region, 1) labels_affinity = torch.squeeze(labels_affinity, 1) #前向传播 y, _ = net(images) score_text = y[:, :, :, 0] score_link = y[:, :, :, 1] #联合损失 ohem loss loss = cal_synthText_loss(criterion, score_text, score_link, labels_region, labels_affinity, device) #反向传播 optimizer.zero_grad() #梯度清零 loss.backward() #计算梯度 optimizer.step() #更新权重 #打印损失和学习率信息 if i % 10 == 0: print('i = ', i,': loss = ', loss.item(), ' lr = ', lr) #计算验证损失 if i != 0 and i % test_interval == 0: test_loss = eval_net(net, val_loader, criterion, device) print('test: i = ', i, 'test_loss = ', test_loss, 'lr = ', lr) if save_weight: torch.save(net.state_dict(), model_save_path + 'epoch_' + str(epoch) + '_iter' + str(i) + '.pth') #保存最后训练模型 if iter == max_iter: if save_weight: torch.save(net.state_dict(), model_save_path + 'final.pth') if __name__ == "__main__": batch_size = args.batch_size test_batch_size = args.test_batch_size epochs = args.epochs # 遍历数据集次数 lr = args.lr # 学习率 test_interval = args.test_interval #测试间隔 max_iter = args.max_iter net = CRAFT(pretrained=True) # craft模型 net = net.to(device) model_save_prefix = 'checkpoints/craft_netparam_' try: train(net=net, batch_size=batch_size, test_batch_size=test_batch_size, lr=lr, test_interval=test_interval, max_iter=max_iter, epochs=epochs, model_save_path=model_save_prefix) except KeyboardInterrupt: torch.save(net.state_dict(), 'INTERRUPTED1.pth') print('Saved interrupt') try: sys.exit(0) except SystemExit: os._exit(0)
37.807143
128
0.642736
0
0
0
0
0
0
0
0
992
0.18132
df9b4ebedd02514962424a1cc0a1b5aae502b670
1,896
py
Python
friendcircle/models.py
jossafossa/Project24_backend
bb5cc91d21c9f93034b85b3e94e829f7ab33c565
[ "MIT" ]
null
null
null
friendcircle/models.py
jossafossa/Project24_backend
bb5cc91d21c9f93034b85b3e94e829f7ab33c565
[ "MIT" ]
9
2019-12-04T23:15:59.000Z
2022-02-10T09:08:38.000Z
friendcircle/models.py
jossafossa/Project24_backend
bb5cc91d21c9f93034b85b3e94e829f7ab33c565
[ "MIT" ]
null
null
null
from django.db import models class FriendCircle(models.Model): name = models.CharField(blank=True, max_length=255) description = models.CharField(blank=True, max_length=1000) interests = models.ManyToManyField('interests.Interest', blank=True) members = models.ManyToManyField( 'users.CustomUser', through='friendcircle.FriendCircleMembership', through_fields=('friendcircle', 'user'), related_name='memberships', ) def __str__(self): return self.name # Keeps track of FriendCircle memberships class FriendCircleMembership(models.Model): user = models.ForeignKey('users.CustomUser', on_delete=models.CASCADE) friendcircle = models.ForeignKey('friendcircle.FriendCircle', on_delete=models.CASCADE) startdate = models.DateTimeField(auto_now_add=True) enddate = models.DateTimeField(null=True, blank=True) def __str__(self): return self.user.name + " member at " + self.friendcircle.name class Meta: unique_together = (('user', 'friendcircle')) MATCH_STATUS = ( ('O', 'Not swiped',), ('V', 'Swiped Right',), ('X', 'Swiped Left',), ) # Keeps track of matches. If both parties swiped right, the user can be added to FriendCircleMembership class FriendCircleMatcher(models.Model): user = models.ForeignKey('users.CustomUser', on_delete=models.CASCADE) user_match_status = models.CharField(max_length=1, choices=MATCH_STATUS, default="O") friendcircle = models.ForeignKey('friendcircle.FriendCircle', on_delete=models.CASCADE) friendcircle_match_status = models.CharField(max_length=1, choices=MATCH_STATUS, default="O") def __str__(self): return self.user.email + " + " + self.friendcircle.name class Meta: unique_together = (('user', 'friendcircle'))
35.773585
103
0.68038
1,611
0.849684
0
0
0
0
0
0
454
0.239451
df9d6d03fbed45db8f46a22336474ebb4831783c
474
py
Python
components/collector/tests/source_collectors/jira/test_issues.py
m-zakeri/quality-time
531931f0d8d4f5d262ea98445868158e41d268da
[ "Apache-2.0" ]
null
null
null
components/collector/tests/source_collectors/jira/test_issues.py
m-zakeri/quality-time
531931f0d8d4f5d262ea98445868158e41d268da
[ "Apache-2.0" ]
null
null
null
components/collector/tests/source_collectors/jira/test_issues.py
m-zakeri/quality-time
531931f0d8d4f5d262ea98445868158e41d268da
[ "Apache-2.0" ]
null
null
null
"""Unit tests for the Jira issues collector.""" from .base import JiraTestCase class JiraIssuesTest(JiraTestCase): """Unit tests for the Jira issue collector.""" METRIC_TYPE = "issues" async def test_issues(self): """Test that the issues are returned.""" issues_json = dict(total=1, issues=[self.issue()]) response = await self.get_response(issues_json) self.assert_measurement(response, value="1", entities=[self.entity()])
29.625
78
0.679325
391
0.824895
0
0
0
0
271
0.57173
144
0.303797
df9e429f72ebf0471ad51a2d2296ecb2934b944d
1,485
py
Python
cf_xarray/tests/test_coding.py
rcaneill/cf-xarray
210e997ab5e550e411ec1a4e789aac28e77bacff
[ "Apache-2.0" ]
null
null
null
cf_xarray/tests/test_coding.py
rcaneill/cf-xarray
210e997ab5e550e411ec1a4e789aac28e77bacff
[ "Apache-2.0" ]
null
null
null
cf_xarray/tests/test_coding.py
rcaneill/cf-xarray
210e997ab5e550e411ec1a4e789aac28e77bacff
[ "Apache-2.0" ]
null
null
null
import numpy as np import pandas as pd import pytest import xarray as xr import cf_xarray as cfxr @pytest.mark.parametrize( "mindex", [ pd.MultiIndex.from_product([["a", "b"], [1, 2]], names=("lat", "lon")), pd.MultiIndex.from_arrays( [["a", "b", "c", "d"], [1, 2, 4, 10]], names=("lat", "lon") ), pd.MultiIndex.from_arrays( [["a", "b", "b", "a"], [1, 2, 1, 2]], names=("lat", "lon") ), ], ) @pytest.mark.parametrize("idxnames", ["foo", "landpoint", ("landpoint",), None]) def test_compression_by_gathering_multi_index_roundtrip(mindex, idxnames): dim = "foo" if idxnames == "foo" else "landpoint" dataset = xr.Dataset( data_vars={"landsoilt": (dim, np.random.randn(4), {"foo": "bar"})}, coords={ dim: (dim, mindex, {"long_name": "land point number"}), "coord1": (dim, [1, 2, 3, 4], {"foo": "baz"}), }, attrs={"dataset": "test dataset"}, ) dataset.lat.attrs["standard_name"] = "latitude" dataset.lon.attrs["standard_name"] = "longitude" encoded = cfxr.encode_multi_index_as_compress(dataset, idxnames) roundtrip = cfxr.decode_compress_to_multi_index(encoded, idxnames) assert "compress" not in roundtrip[dim].encoding xr.testing.assert_identical(roundtrip, dataset) dataset[dim].attrs["compress"] = "lat lon" with pytest.raises(ValueError): cfxr.encode_multi_index_as_compress(dataset, idxnames)
34.534884
80
0.60404
0
0
0
0
1,383
0.931313
0
0
298
0.200673
dfa1fd750ebe41f9f5e5dbc785b717257dc70d9d
1,908
py
Python
slack_bolt/adapter/socket_mode/base_handler.py
hirosassa/bolt-python
befc3a1463f3ac8dbb780d66decc304e2bdf3e7a
[ "MIT" ]
504
2020-08-07T05:02:57.000Z
2022-03-31T14:32:46.000Z
slack_bolt/adapter/socket_mode/base_handler.py
hirosassa/bolt-python
befc3a1463f3ac8dbb780d66decc304e2bdf3e7a
[ "MIT" ]
560
2020-08-07T01:16:06.000Z
2022-03-30T00:40:56.000Z
slack_bolt/adapter/socket_mode/base_handler.py
hirosassa/bolt-python
befc3a1463f3ac8dbb780d66decc304e2bdf3e7a
[ "MIT" ]
150
2020-08-07T09:41:14.000Z
2022-03-30T04:54:51.000Z
"""The base class of Socket Mode client implementation. If you want to build asyncio-based ones, use `AsyncBaseSocketModeHandler` instead. """ import logging import signal import sys from threading import Event from slack_sdk.socket_mode.client import BaseSocketModeClient from slack_sdk.socket_mode.request import SocketModeRequest from slack_bolt import App from slack_bolt.util.utils import get_boot_message class BaseSocketModeHandler: app: App # type: ignore client: BaseSocketModeClient def handle(self, client: BaseSocketModeClient, req: SocketModeRequest) -> None: """Handles Socket Mode envelope requests through a WebSocket connection. Args: client: this Socket Mode client instance req: the request data """ raise NotImplementedError() def connect(self): """Establishes a new connection with the Socket Mode server""" self.client.connect() def disconnect(self): """Disconnects the current WebSocket connection with the Socket Mode server""" self.client.disconnect() def close(self): """Disconnects from the Socket Mode server and cleans the resources this instance holds up""" self.client.close() def start(self): """Establishes a new connection and then blocks the current thread to prevent the termination of this process. If you don't want to block the current thread, use `#connect()` method instead. """ self.connect() if self.app.logger.level > logging.INFO: print(get_boot_message()) else: self.app.logger.info(get_boot_message()) if sys.platform == "win32": # Ctrl+C etc does not work on Windows OS # see https://bugs.python.org/issue35935 for details signal.signal(signal.SIGINT, signal.SIG_DFL) Event().wait()
32.896552
101
0.678197
1,492
0.781971
0
0
0
0
0
0
892
0.467505
dfa2ba545c720071817fb0691cb4e7c5aad3c2a5
8,344
py
Python
project/pfasst/transfer_tools.py
amit17133129/pyMG-2016
b82a60811bb0a8b91d8793c47177a240221f9176
[ "BSD-2-Clause" ]
2
2016-04-04T15:20:50.000Z
2020-08-01T19:28:55.000Z
project/pfasst/transfer_tools.py
amit17133129/pyMG-2016
b82a60811bb0a8b91d8793c47177a240221f9176
[ "BSD-2-Clause" ]
1
2020-10-02T05:44:45.000Z
2020-10-02T05:44:45.000Z
project/pfasst/transfer_tools.py
amit17133129/pyMG-2016
b82a60811bb0a8b91d8793c47177a240221f9176
[ "BSD-2-Clause" ]
11
2016-03-26T18:37:06.000Z
2020-10-01T19:44:55.000Z
# coding=utf-8 import numpy as np import scipy.interpolate as intpl import scipy.sparse as sprs def to_sparse(D, format="csc"): """ Transform dense matrix to sparse matrix of return_type bsr_matrix(arg1[, shape, dtype, copy, blocksize]) Block Sparse Row matrix coo_matrix(arg1[, shape, dtype, copy]) A sparse matrix in COOrdinate format. csc_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix dia_matrix(arg1[, shape, dtype, copy]) Sparse matrix with DIAgonal storage dok_matrix(arg1[, shape, dtype, copy]) Dictionary Of Keys based sparse matrix. lil_matrix(arg1[, shape, dtype, copy]) Row-based linked list sparse matrix :param D: Dense matrix :param format: how to save the sparse matrix :return: sparse version """ if format == "bsr": return sprs.bsr_matrix(D) elif format == "coo": return sprs.coo_matrix(D) elif format == "csc": return sprs.csc_matrix(D) elif format == "csr": return sprs.csr_matrix(D) elif format == "dia": return sprs.dia_matrix(D) elif format == "dok": return sprs.dok_matrix(D) elif format == "lil": return sprs.lil_matrix(D) else: return to_dense(D) def to_dense(D): if sprs.issparse(D): return D.toarray() elif isinstance(D, np.ndarray): return D def next_neighbors_periodic(p, ps, k, T=None): """ This function gives for a value p the k points next to it which are found in in the vector ps and the points which are found periodically. :param p: value :param ps: ndarray, vector where to find the next neighbors :param k: integer, number of neighbours :return: ndarray, with the k next neighbors and an array containing the """ if T is None: T = ps[-1]-2*ps[0]+ps[1] p_bar = p - np.floor(p/T)*T ps = ps - ps[0] distance_to_p = [] for tk in ps: d1 = tk+T-p_bar d2 = tk-p_bar d3 = tk-T-p_bar min_d = min([np.abs(d1), np.abs(d2), np.abs(d3)]) if np.abs(d1) == min_d: distance_to_p.append(d1) elif np.abs(d2) == min_d: distance_to_p.append(d2) else: distance_to_p.append(d3) distance_to_p = np.asarray(distance_to_p) value_index = [] for d,i in zip(distance_to_p, range(distance_to_p.size)): value_index.append((d, i)) # sort by distance value_index_sorted_by_abs = sorted(value_index,cmp=lambda x,y:cmp(np.abs(x),np.abs(y)), key=lambda s: s[0]) if k % 2 == 1: value_index_sorted_by_sign =sorted(value_index_sorted_by_abs[0:k+1], key=lambda s: s[0])[:k] else: value_index_sorted_by_sign =sorted(value_index_sorted_by_abs[0:k], key=lambda s: s[0]) return map(lambda s: s[1], value_index_sorted_by_sign), map(lambda s: s[0]+p, value_index_sorted_by_sign) def next_neighbors(p, ps, k): """ This function gives for a value p the k points next to it which are found in in the vector ps :param p: value :param ps: ndarray, vector where to find the next neighbors :param k: integer, number of neighbours :return: ndarray, with the k next neighbors """ distance_to_p = np.abs(ps-p) # zip it value_index = [] for d,i in zip(distance_to_p, range(distance_to_p.size)): value_index.append((d,i)) # sort by distance value_index_sorted = sorted(value_index, key=lambda s: s[0]) # take first k indices with least distance and sort them return sorted(map(lambda s: s[1], value_index_sorted[0:k])) def continue_periodic_array(arr,nn,T): nn = np.asarray(nn) d_nn = nn[1:]-nn[:-1] if np.all(d_nn == np.ones(nn.shape[0]-1)): return arr[nn] else: cont_arr = [arr[nn[0]]] shift = 0. for n,d in zip(nn[1:],d_nn): if d != 1: shift = -T cont_arr.append(arr[n]+shift) return np.asarray(cont_arr) def restriction_matrix_1d(fine_grid, coarse_grid, k=2, return_type="csc", periodic=False, T=1.0): """ We construct the restriction matrix between two 1d grids, using lagrange interpolation. :param fine_grid: a one dimensional 1d array containing the nodes of the fine grid :param coarse_grid: a one dimensional 1d array containing the nodes of the coarse grid :param k: order of the restriction :return: a restriction matrix """ M = np.zeros((coarse_grid.size, fine_grid.size)) n_g = coarse_grid.size for i, p in zip(range(n_g), coarse_grid): if periodic: nn, cont_arr = next_neighbors_periodic(p, fine_grid, k, T) circulating_one = np.asarray([1.0]+[0.0]*(k-1)) lag_pol = [] for l in range(k): lag_pol.append(intpl.lagrange(cont_arr, np.roll(circulating_one, l))) M[i, nn] = np.asarray(map(lambda x: x(p), lag_pol)) else: nn = next_neighbors(p, fine_grid, k) # construct the lagrange polynomials for the k neighbors circulating_one = np.asarray([1.0]+[0.0]*(k-1)) lag_pol = [] for l in range(k): lag_pol.append(intpl.lagrange(fine_grid[nn], np.roll(circulating_one, l))) M[i, nn] = np.asarray(map(lambda x: x(p), lag_pol)) return to_sparse(M, return_type) def interpolation_matrix_1d(fine_grid, coarse_grid, k=2, return_type="csc", periodic=False, T=1.0): """ We construct the interpolation matrix between two 1d grids, using lagrange interpolation. :param fine_grid: a one dimensional 1d array containing the nodes of the fine grid :param coarse_grid: a one dimensional 1d array containing the nodes of the coarse grid :param k: order of the restriction :return: a interpolation matrix """ M = np.zeros((fine_grid.size, coarse_grid.size)) n_f = fine_grid.size for i, p in zip(range(n_f), fine_grid): if periodic: nn,cont_arr = next_neighbors_periodic(p, coarse_grid, k, T) circulating_one = np.asarray([1.0]+[0.0]*(k-1)) lag_pol = [] for l in range(k): lag_pol.append(intpl.lagrange(cont_arr, np.roll(circulating_one, l))) M[i, nn] = np.asarray(map(lambda x: x(p), lag_pol)) else: nn = next_neighbors(p, coarse_grid, k) # construct the lagrange polynomials for the k neighbors circulating_one = np.asarray([1.0]+[0.0]*(k-1)) lag_pol = [] for l in range(k): lag_pol.append(intpl.lagrange(coarse_grid[nn], np.roll(circulating_one, l))) M[i, nn] = np.asarray(map(lambda x: x(p), lag_pol)) return to_sparse(M, return_type) def kron_on_list(matrix_list): """ :param matrix_list: a list of sparse matrices :return: a matrix """ if len(matrix_list) == 2: return sprs.kron(matrix_list[0], matrix_list[1]) elif len(matrix_list) == 1: return matrix_list[0] else: return sprs.kron(matrix_list[0], kron_on_list(matrix_list[1:])) def matrixN(tau, rows=-1, last_value=1.0): n = tau.shape[0] if rows == -1: rows = n N = np.zeros((rows, n)) # construct the lagrange polynomials circulating_one = np.asarray([1.0]+[0.0]*(n-1)) lag_pol = [] for i in range(n): lag_pol.append(intpl.lagrange(tau, np.roll(circulating_one, i))) N[:, i] = -np.ones(rows)*lag_pol[-1](last_value) return N def interpolate_to_t_end(nodes_on_unit, values): """ Assume a GaussLegendre nodes, we are interested in the value at the end of the interval, but we now only the values in the interior of the interval. We compute the value by legendre interpolation. :param nodes_on_unit: nodes transformed to the unit interval :param values: values on those nodes :return: interpolation to the end of the interval """ n = nodes_on_unit.shape[0] circulating_one = np.asarray([1.0]+[0.0]*(n-1)) lag_pol = [] result = np.zeros(values[0].shape) for i in range(n): lag_pol.append(intpl.lagrange(nodes_on_unit, np.roll(circulating_one, i))) result += values[i]*lag_pol[-1](1.0) return result
36.920354
111
0.628715
0
0
0
0
0
0
0
0
2,896
0.347076
dfa3a2fa2289a9c892b09c29ede2ebe39a3dd0c8
7,266
py
Python
python/trees/rbtree_graphviz.py
rcanepa/cs-fundamentals
b362fc206417501e53a5739df1edf7568901eef8
[ "MIT" ]
null
null
null
python/trees/rbtree_graphviz.py
rcanepa/cs-fundamentals
b362fc206417501e53a5739df1edf7568901eef8
[ "MIT" ]
null
null
null
python/trees/rbtree_graphviz.py
rcanepa/cs-fundamentals
b362fc206417501e53a5739df1edf7568901eef8
[ "MIT" ]
null
null
null
"""rbtree_graphviz.py - create a graphviz representation of a LLRBT. The purpose of this module is to visually show how the shape of a LLRBT changes when keys are inserted in it. For every insert, sub graph (tree) is added to the main graph. `initialization_list` holds the values that are inserted in the tree. This list can be changed for a list of anything that can be compared with > == <. For example, with `initialization_list = range(50)` keys from 0 to 49 will be inserted in the tree. Consider that for every key, a graph is going to be generated. """ from graphviz import Digraph from trees.rbtree import LLRBT, is_red NODE_SHAPE = "circle" NONE_NODE_SHAPE = "point" TITLE_SHAPE = "box" RED_COLOR = "#b8000f" DEFAULT_GRAPH_NODE_ATTR = { "shape": NODE_SHAPE, "color": "black", "style": "filled", "fillcolor": "#cfd3d6", } RED_NODE_ATTR = { "fontcolor": "white", "fillcolor": RED_COLOR } DEFAULT_GRAPH_EDGE_ATTR = { "color": "black", "arrowhead": "vee", "style": "solid", } def add_node(graph, node): """Add `node` to `graph`. `node` is a tuple with the following shape: (node_id, {<node attributes>}, {<graph's node attributes>}) ^ ^ ^ string see graphviz documentation""" node_id, node_attr, graph_node_attr = node graph.node(node_id, **node_attr, **graph_node_attr) return graph def add_edge(graph, edge): """Add edge from `edge[0]` to `edge[1]` to `graph`. `edge` is a tuple with the following shape: (source_node_id, destiny_node_id, {<graph's edge attributes>}) ^ ^ ^ string string see graphviz documentation""" source_node_id, destiny_node_id, graph_edge_attr = edge graph.edge(source_node_id, destiny_node_id, **graph_edge_attr) return graph def generate_graph(tree, initialization_list, format="pdf"): if initialization_list is None or len(initialization_list) == 0: raise Exception("You can't generate a graph with an empty tree.") if not isinstance(tree, LLRBT): raise Exception("You need to provide an instance of a Leaf Leaning Red Black Tree (LLRBT).") for value in initialization_list: tree.insert(value) graph = Digraph(format="pdf", node_attr=DEFAULT_GRAPH_NODE_ATTR, edge_attr=DEFAULT_GRAPH_EDGE_ATTR) # Iterate over all keys and create nodes and edges. for idx, node in enumerate(tree.pre_order_traversal()): node_id = str(node.value) node_label = str(node.value) if is_red(node): add_node(graph, (node_id, {"label": node_label}, RED_NODE_ATTR)) else: add_node(graph, (node_id, {"label": node_label}, {})) # Create edge between node and its left child. if node.left: node_left_id = str(node.left.value) add_edge(graph, (node_id, node_left_id, {})) # Node doesn't have a left child so we put a dot in its place. else: null_node_value = "left-null-" + str(idx) add_node(graph, (null_node_value, {}, {"shape": NONE_NODE_SHAPE})) add_edge(graph, (node_id, null_node_value, {})) # Create edge between node and its right child. if node.right: node_right_id = str(node.right.value) add_edge(graph, (node_id, node_right_id, {})) # Node doesn't have a left child so we put a dot in its place. else: null_node_value = "right-null-" + str(idx) add_node(graph, (null_node_value, {}, {"shape": NONE_NODE_SHAPE})) add_edge(graph, (node_id, null_node_value, {})) return graph def generate_graph_per_insert(tree, initialization_list, format="pdf"): if initialization_list is None or len(initialization_list) == 0: raise Exception("You can't generate a graph with an empty tree.") if not isinstance(tree, LLRBT): raise Exception("You need to provide an instance of a Leaf Leaning Red Black Tree (LLRBT).") main_graph = Digraph(format=format, node_attr=DEFAULT_GRAPH_NODE_ATTR, edge_attr=DEFAULT_GRAPH_EDGE_ATTR) main_graph.attr(rankdir="TB", newrank="true") # print sub graph from top to bottom # For every key to be inserted, create a sub graph representing # the tree after the insertion. for graph_number, value in enumerate(initialization_list): tree.insert(value) # Create sub graph. sub_graph_name = "cluster_" + str(graph_number) with main_graph.subgraph(name=sub_graph_name) as sub_graph: sub_graph.attr(label="Inserting = " + str(value), fontsize="12") # Iterate over all keys and fill the sub graph. for idx, node in enumerate(tree.pre_order_traversal()): node_id = str(graph_number) + "." + str(node.value) node_label = str(node.value) if is_red(node): add_node(sub_graph, (node_id, {"label": node_label}, RED_NODE_ATTR)) else: add_node(sub_graph, (node_id, {"label": node_label}, {})) # Create edge between node and its left child. if node.left: node_left_id = str(graph_number) + "." + str(node.left.value) # Paint edge red if the left child is red. if is_red(node.left): add_edge(sub_graph, (node_id, node_left_id, {})) else: add_edge(sub_graph, (node_id, node_left_id, {})) # Node doesn't have a left child so we put a dot in its place. else: null_node_id = str(graph_number) + "-left-null-" + str(idx) add_node(sub_graph, (null_node_id, {}, {"shape": NONE_NODE_SHAPE})) add_edge(sub_graph, (node_id, null_node_id, {})) # Create edge between node and its right child. if node.right: node_right_id = str(graph_number) + "." + str(node.right.value) # Paint edge red if the right child is red. if is_red(node.right): add_edge(sub_graph, (node_id, node_right_id, {})) else: add_edge(sub_graph, (node_id, node_right_id, {})) # Node doesn't have a left child so we put a dot in its place. else: null_node_id = str(graph_number) + "-right-null-" + str(idx) add_node(sub_graph, (null_node_id, {}, {"shape": NONE_NODE_SHAPE})) add_edge(sub_graph, (node_id, null_node_id, {})) return main_graph if __name__ == "__main__": initialization_list = ["Z", "W", "F", "D", "S", "E", "A", "R", "C", "H", "X", "M", "P", "L"] # initialization_list = ["A", "B", "C", "D"] tree = LLRBT() # graph = generate_graph(tree, initialization_list) graph = generate_graph_per_insert(tree, initialization_list) print(graph.source) graph.render("trees/rbtree.gv", view=True)
38.648936
100
0.597991
0
0
0
0
0
0
0
0
2,603
0.358244
dfa4028f5508da847e15896d92223ad5641ce047
87
py
Python
sampledata/exceptions.py
jespino/sampledata
18682f878787f296adc90eb3ab6d236a863954bf
[ "BSD-3-Clause" ]
3
2015-06-19T08:50:50.000Z
2019-05-30T07:40:59.000Z
sampledata/exceptions.py
jespino/sampledata
18682f878787f296adc90eb3ab6d236a863954bf
[ "BSD-3-Clause" ]
4
2015-06-19T09:20:09.000Z
2017-03-10T17:15:21.000Z
sampledata/exceptions.py
jespino/sampledata
18682f878787f296adc90eb3ab6d236a863954bf
[ "BSD-3-Clause" ]
4
2015-06-19T07:25:27.000Z
2022-02-15T10:09:12.000Z
class ParameterError(Exception): pass class NotChoicesFound(Exception): pass
12.428571
33
0.747126
83
0.954023
0
0
0
0
0
0
0
0
dfa5cb1adcaf33702f7f2c3cd145a0c36382a865
97
py
Python
students/K33421/Samoshchenkov_Alexei/lr_2/hw_system/apps.py
Vivasus/ITMO_ICT_WebDevelopment_2020-2021
833d7ac1d40d9f7456a3c6b104a0e53c652d0035
[ "MIT" ]
null
null
null
students/K33421/Samoshchenkov_Alexei/lr_2/hw_system/apps.py
Vivasus/ITMO_ICT_WebDevelopment_2020-2021
833d7ac1d40d9f7456a3c6b104a0e53c652d0035
[ "MIT" ]
null
null
null
students/K33421/Samoshchenkov_Alexei/lr_2/hw_system/apps.py
Vivasus/ITMO_ICT_WebDevelopment_2020-2021
833d7ac1d40d9f7456a3c6b104a0e53c652d0035
[ "MIT" ]
null
null
null
from django.apps import AppConfig class HwSystemConfig(AppConfig): name = 'hw_system'
16.166667
34
0.721649
56
0.57732
0
0
0
0
0
0
11
0.113402
dfa771b70b06ebdb06698f8a6ef450643663f3e9
5,721
py
Python
azure_sftp_plugin/hooks/adls_gen2_hook.py
christo-olivier/airflow_azure_sftp_plugin
1d483be6419744909af2fa940cd50880ed8d5890
[ "Apache-2.0" ]
null
null
null
azure_sftp_plugin/hooks/adls_gen2_hook.py
christo-olivier/airflow_azure_sftp_plugin
1d483be6419744909af2fa940cd50880ed8d5890
[ "Apache-2.0" ]
null
null
null
azure_sftp_plugin/hooks/adls_gen2_hook.py
christo-olivier/airflow_azure_sftp_plugin
1d483be6419744909af2fa940cd50880ed8d5890
[ "Apache-2.0" ]
null
null
null
from pathlib import Path from typing import Generator from airflow.hooks.base_hook import BaseHook from azure.storage.filedatalake import FileSystemClient from azure.storage.filedatalake._generated.models._models_py3 import ( StorageErrorException, ) class ADLSGen2Hook(BaseHook): """ Hook to interact with the Azure Data Lake Gen 2 storage service. :param container: Name of the ADLS Gen 2 container to be used. :param azure_data_lake_conn_id: Reference to the Azure Data Lake connection. storage_account_name and storage_account_key should be in the `login` and `password` fields of the azure data lake connection. """ def __init__( self, container: str, azure_data_lake_conn_id: str = "azure_data_lake_default" ): self.container = container self.conn_id = azure_data_lake_conn_id self.connection = self.get_conn() def __enter__(self): return self def __exit__(self, *args): self.connection.close() def get_conn(self) -> FileSystemClient: """ Return an Azure Data Lake Service Client object. :return: FileSystemClient """ conn = self.get_connection(self.conn_id) file_system_client = FileSystemClient( account_url=f"https://{conn.login}.dfs.core.windows.net", file_system_name=self.container, credential=conn.password, ) return file_system_client def check_for_file(self, file_path: str, recursive: bool = True) -> bool: """ Check if a file exists in on Azure Data Lake. :param file_path: File path on Azure Data Lake. :param recursive: Specify if the path should be traversed recursively. :return: bool """ try: return file_path in self.list_files(path=file_path, recursive=recursive) except StorageErrorException: return False def list_files( self, path: str, recursive: bool = True ) -> Generator[str, None, None]: """ List files in an Azure Data Lake Store Gen 2 container. :param path: The path in the container that needs to be listed. :param recursive: Specify if the path should be traversed recursively. :return: Generator """ # Create generator of path names instead of path objects and yield # the value from it. yield from ( path.name for path in self.connection.get_paths(path=path, recursive=recursive) ) def delete_file(self, remote_path: str) -> None: """ Delete a file from ADLS. :param remote_path: Remote path where the file is located on ADLS. :return: None """ self.connection.delete_file(file=remote_path) def download_file( self, local_path: str, remote_path: str, overwrite: bool = True ) -> None: """ Download a file from ADLS to the local path. :param local_path: Local path where the file is to be downloaded to. :param remote_path: Remote path where the file is located on ADLS. :param overwrite: Should the file be overwritten if it already exists in the local path. :return: None """ # Check if the local file exists and if overwrite is `True` otherwise # raise an exception if not overwrite: path = Path(local_path) if path.exists(): msg = f"`{local_path}` already exists and overwrite is set to False." raise FileExistsError(msg) # Check the file exists on ADLS if not self.check_for_file(file_path=remote_path, recursive=False): raise FileNotFoundError(f"`{remote_path}` does not exist.") with open(local_path, "wb") as fout: file_client = self.connection.get_file_client(file_path=remote_path) download = file_client.download_file() download.readinto(fout) def upload_file( self, local_path: str, remote_path: str, overwrite: bool = True ) -> None: """ Upload a file from the local path to the remote path on Azure Data Lake. :param local_path: Local path where the file is located. :param remote_path: Remote path where the file is to be uploaded to. :param overwrite: Should the file be overwritten if it already exists in the remote path. :return: None """ # If `overwrite` is not True then check to see if the file exist and # raise an excption if it does. # NB this is required as the current Microsoft SDK's does not provide # an elegant way of uploading files that dont exist on ADLS yet. It # raises a generic error which is too broad. The only way to deal # with this is to manually check if a file already exists and raise an # exception if the user specifies `overwrite` to be False. if not overwrite: if self.check_for_file(file_path=remote_path, recursive=False): raise FileExistsError(f"`{remote_path}` already exists on ADLS.") # As above, overwrite is set to True as otherwise new files will fail # to upload to ADLS. The previous check will make sure no existing files # are overwritten if the user does not want this to happen. with open(local_path, "rb") as fin: file_client = self.connection.get_file_client(file_path=remote_path) file_client.upload_data(fin.read(), overwrite=True)
39.729167
86
0.632582
5,463
0.954903
606
0.105926
0
0
0
0
3,004
0.525083
dfa9f05edc79136d5654d284a464ccb459169f40
536
py
Python
phr/ciudadano/migrations/0044_ciudadano_codigo_asegurado.py
richardqa/django-ex
e5b8585f28a97477150ac5daf5e55c74b70d87da
[ "CC0-1.0" ]
null
null
null
phr/ciudadano/migrations/0044_ciudadano_codigo_asegurado.py
richardqa/django-ex
e5b8585f28a97477150ac5daf5e55c74b70d87da
[ "CC0-1.0" ]
null
null
null
phr/ciudadano/migrations/0044_ciudadano_codigo_asegurado.py
richardqa/django-ex
e5b8585f28a97477150ac5daf5e55c74b70d87da
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-07-14 17:10 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ciudadano', '0043_ciudadanorn_numero_dni_ciudadano'), ] operations = [ migrations.AddField( model_name='ciudadano', name='codigo_asegurado', field=models.CharField(blank=True, max_length=24, null=True, verbose_name='Código de asegurado'), ), ]
26.8
109
0.654851
379
0.705773
0
0
0
0
0
0
172
0.320298
dfad270ef93b37ed6df9bcf779f6cf41ac7ec78e
2,499
py
Python
graphtiny/service.py
Canicio/pyqtgraph-tiny
b88ebe8a2e6ad860ca4857b527adccbbde14851d
[ "MIT" ]
1
2018-03-17T12:36:56.000Z
2018-03-17T12:36:56.000Z
graphtiny/service.py
Canicio/pyqtgraph-tiny
b88ebe8a2e6ad860ca4857b527adccbbde14851d
[ "MIT" ]
1
2017-08-08T18:31:31.000Z
2017-08-08T18:31:31.000Z
graphtiny/service.py
Canicio/graphtiny
b88ebe8a2e6ad860ca4857b527adccbbde14851d
[ "MIT" ]
null
null
null
from time import sleep import pyqtgraph as pg import threading from graphtiny.api import IChart, IDataStreamWindow from graphtiny.domain import DataStreamWindow, Chart class FuncThread(threading.Thread): def __init__(self, t, *a) -> None: self._t = t self._a = a threading.Thread.__init__(self) def run(self) -> None: self._t(*self._a) class ChartService(IChart): def set_data_stream(self, chart: Chart, x, y) -> None: chart.x[chart.ptr] = x chart.y[chart.ptr] = y chart.ptr += 1 class DataStreamWindowService(IDataStreamWindow): def launch_window(self, window: DataStreamWindow) -> None: calculating_thread = FuncThread(self.__raise_thread_with_window, window) calculating_thread.start() sleep(1) def __raise_thread_with_window(self, window: DataStreamWindow) -> None: window.qapp = pg.mkQApp() window.win = pg.GraphicsWindow() # raise window! if window.background_color: window.win.setBackground(window.background_color) if window.coordinate_system_color: pg.setConfigOption('foreground', window.coordinate_system_color) i = 0 for chart in window.charts_list: if i % window.columns_display == 0 and i >= window.columns_display: window.win.nextRow() chart.plot = window.win.addPlot() if chart.downsampling: chart.plot.setDownsampling(mode=chart.downsampling) if chart.clipToView: chart.plot.setClipToView(True) if chart.left_label: if chart.left_label_units: chart.plot.setLabel('left', chart.left_label, chart.left_label_units) else: chart.plot.setLabel('left', chart.left_label) if chart.bottom_label: if chart.bottom_label_units: chart.plot.setLabel('bottom', chart.bottom_label, chart.bottom_label_units) else: chart.plot.setLabel('bottom', chart.bottom_label) chart.curve = chart.plot.plot() if chart.line_color: chart.curve.setPen(chart.line_color) i += 1 while window.win.isVisible(): # refresh data for chart in window.charts_list: chart.curve.setData(chart.x[:chart.ptr], chart.y[:chart.ptr]) window.qapp.processEvents()
34.232877
95
0.612645
2,321
0.928772
0
0
0
0
0
0
69
0.027611
dfad2ce40cf4b3e7c6bdab613bdf207aa9161bc1
2,576
py
Python
backend/app/app/api/deps.py
totalhack/zillion-web
e567c04d3564aec8105d54533d318b79d943c9c6
[ "MIT" ]
3
2020-10-01T11:28:02.000Z
2020-10-31T15:35:51.000Z
backend/app/app/api/deps.py
totalhack/zillion-web
e567c04d3564aec8105d54533d318b79d943c9c6
[ "MIT" ]
1
2022-02-09T04:19:20.000Z
2022-02-09T13:56:40.000Z
backend/app/app/api/deps.py
totalhack/zillion-web
e567c04d3564aec8105d54533d318b79d943c9c6
[ "MIT" ]
null
null
null
from typing import Generator, Dict, Any from fastapi import Depends, HTTPException, status from fastapi.security import OAuth2PasswordBearer from jose import jwt from pydantic import ValidationError from sqlalchemy.orm import Session from tlbx import json, pp from zillion.configs import load_warehouse_config, zillion_config from zillion.model import Warehouses from zillion.warehouse import Warehouse from app import app from app import crud, models, schemas from app.core import security from app.core.config import settings from app.db.session import SessionLocal reusable_oauth2 = OAuth2PasswordBearer( tokenUrl=f"{settings.API_V1_STR}/login/access-token" ) warehouses = {} @app.on_event("startup") async def init_warehouses(): global warehouses warehouses = get_warehouses() def get_db() -> Generator: try: db = SessionLocal() yield db finally: db.close() def get_warehouses() -> Dict[str, Any]: """NOTE: this assumes Zillion Web DB is same as Zillion DB""" global warehouses if warehouses: # TODO: cache control? return warehouses print("Building warehouses...") db = SessionLocal() try: result = db.query(Warehouses).all() for row in result: warehouses[row.id] = Warehouse.load(row.id) pp(warehouses) return warehouses finally: db.close() def get_current_user( db: Session = Depends(get_db), token: str = Depends(reusable_oauth2) ) -> models.User: try: payload = jwt.decode( token, settings.SECRET_KEY, algorithms=[security.ALGORITHM] ) token_data = schemas.TokenPayload(**payload) except (jwt.JWTError, ValidationError): raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail="Could not validate credentials", ) user = crud.user.get(db, id=token_data.sub) if not user: raise HTTPException(status_code=404, detail="User not found") return user def get_current_active_user( current_user: models.User = Depends(get_current_user), ) -> models.User: if not crud.user.is_active(current_user): raise HTTPException(status_code=400, detail="Inactive user") return current_user def get_current_active_superuser( current_user: models.User = Depends(get_current_user), ) -> models.User: if not crud.user.is_superuser(current_user): raise HTTPException( status_code=400, detail="The user doesn't have enough privileges" ) return current_user
27.115789
77
0.69604
0
0
112
0.043478
109
0.042314
84
0.032609
263
0.102096
dfaff48e9268da391e5354a533c983a642617b56
517
py
Python
matching_operators.py
DeadManPoe/PyMatcher
fa0301033d6a9476920519c867bc5e66db7793b7
[ "MIT" ]
null
null
null
matching_operators.py
DeadManPoe/PyMatcher
fa0301033d6a9476920519c867bc5e66db7793b7
[ "MIT" ]
null
null
null
matching_operators.py
DeadManPoe/PyMatcher
fa0301033d6a9476920519c867bc5e66db7793b7
[ "MIT" ]
null
null
null
def match_plus(string, matching_value): matches = match_star(string, matching_value) return matches != 0, matches def match_star(string, matching_value): found_occurrences = 0 for i, char in enumerate(string): if not match_identity(char, matching_value): return found_occurrences found_occurrences += 1 return found_occurrences def match_identity(string, matching_value): if matching_value == '.': return string != '' return string == matching_value
28.722222
52
0.694391
0
0
0
0
0
0
0
0
5
0.009671
dfb0e4025d32f8743112eeea3ef16b5393035552
212
py
Python
BufferStockModel/run.py
bbardoczy/ConsumptionSavingNotebooks
91811f784ec61fe2f11f8c9e0e172d085574f57c
[ "MIT" ]
1
2022-03-09T14:43:29.000Z
2022-03-09T14:43:29.000Z
BufferStockModel/run.py
bbardoczy/ConsumptionSavingNotebooks
91811f784ec61fe2f11f8c9e0e172d085574f57c
[ "MIT" ]
null
null
null
BufferStockModel/run.py
bbardoczy/ConsumptionSavingNotebooks
91811f784ec61fe2f11f8c9e0e172d085574f57c
[ "MIT" ]
null
null
null
from BufferStockModel import BufferStockModelClass updpar = dict() updpar["Np"] = 1500 updpar["Nm"] = 1500 updpar["Na"] = 1500 model = BufferStockModelClass(name="baseline",solmethod="egm",**updpar) model.test()
26.5
71
0.745283
0
0
0
0
0
0
0
0
27
0.127358
dfb2125e655f351b14d7a2e313cfea92c5b3d51d
4,629
py
Python
pcie_bw.py
pcie-bench/pcie-model
5bb1a71684c51f4bbbab2b9673c6bbc3dcf57b11
[ "Apache-2.0" ]
30
2018-12-05T22:02:26.000Z
2022-03-13T17:09:51.000Z
pcie_bw.py
pcie-bench/pcie-model
5bb1a71684c51f4bbbab2b9673c6bbc3dcf57b11
[ "Apache-2.0" ]
null
null
null
pcie_bw.py
pcie-bench/pcie-model
5bb1a71684c51f4bbbab2b9673c6bbc3dcf57b11
[ "Apache-2.0" ]
13
2018-12-28T14:31:48.000Z
2022-02-25T11:24:36.000Z
#! /usr/bin/env python3 # ## Copyright (C) 2015-2018 Rolf Neugebauer. All rights reserved. ## Copyright (C) 2015 Netronome Systems, Inc. All rights reserved. ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. """A simple script to generate data for PCIe and ethernet bandwidth estimates""" import sys from optparse import OptionParser from model import pcie, eth, mem_bw # pylint: disable=too-many-locals OUT_FILE = "pcie_bw.dat" def main(): """Main""" usage = """usage: %prog [options]""" parser = OptionParser(usage) parser.add_option('--mps', dest='MPS', type="int", action='store', default=256, help='Set the maximum payload size of the link') parser.add_option('--mrrs', dest='MRRS', type="int", action='store', default=512, help='Set the maximum read request size of the link') parser.add_option('--rcb', dest='RCB', type="int", action='store', default=64, help='Set the read completion boundary of the link') parser.add_option('--lanes', dest='lanes', type="string", action='store', default='x8', help='Set num lanes (x2, x4, x8, x16, or x32)') parser.add_option('--gen', dest='gen', type="string", action='store', default='gen3', help='Set PCIe version (gen1, gen2, gen3, gen4, or gen5)') parser.add_option('--addr', dest='addr', type="int", action='store', default=64, help='Set the number of address bits (32 or 64)') parser.add_option('--ecrc', dest='ecrc', type="int", action='store', default=0, help='Use ECRC (0 or 1)') parser.add_option('-o', '--outfile', dest='FILE', default=OUT_FILE, action='store', help='File where to write the data to') (options, _) = parser.parse_args() pciecfg = pcie.Cfg(version=options.gen, lanes=options.lanes, addr=options.addr, ecrc=options.ecrc, mps=options.MPS, mrrs=options.MRRS, rcb=options.RCB) print("PCIe Config:") pciecfg.pp() ethcfg = eth.Cfg('40GigE') tlp_bw = pciecfg.TLP_bw bw_spec = pcie.BW_Spec(tlp_bw, tlp_bw, pcie.BW_Spec.BW_RAW) dat = open(options.FILE, "w") dat.write("\"Payload(Bytes)\" " "\"PCIe Write BW\" " "\"PCIe Write Trans/s\" " "\"PCIe Read BW\" " "\"PCIe Read Trans/s\" " "\"PCIe Read/Write BW\" " "\"PCIe Read/Write Trans/s\" " "\"40G Ethernet BW\" " "\"40G Ethernet PPS\" " "\"40G Ethernet Frame time (ns)\" " "\n") for size in range(1, 1500 + 1): wr_bw = mem_bw.write(pciecfg, bw_spec, size) rd_bw = mem_bw.read(pciecfg, bw_spec, size) rdwr_bw = mem_bw.read_write(pciecfg, bw_spec, size) wr_trans = (wr_bw.tx_eff * 1000 * 1000 * 1000 / 8) / size rd_trans = (rd_bw.rx_eff * 1000 * 1000 * 1000 / 8) / size rdwr_trans = (rdwr_bw.tx_eff * 1000 * 1000 * 1000 / 8) / size if size >= 64: eth_bw = ethcfg.bps_ex(size) / (1000 * 1000 * 1000.0) eth_pps = ethcfg.pps_ex(size) eth_lat = 1.0 * 1000 * 1000 * 1000 / eth_pps dat.write("%d %.2f %.1f %.2f %.1f %.2f %.1f %.2f %d %.2f\n" % (size, wr_bw.tx_eff, wr_trans, rd_bw.rx_eff, rd_trans, rdwr_bw.tx_eff, rdwr_trans, eth_bw, eth_pps, eth_lat)) else: dat.write("%d %.2f %.1f %.2f %.1f %.2f %.1f\n" % (size, wr_bw.tx_eff, wr_trans, rd_bw.rx_eff, rd_trans, rdwr_bw.tx_eff, rdwr_trans)) dat.close() if __name__ == '__main__': sys.exit(main())
38.575
80
0.534241
0
0
0
0
0
0
0
0
1,777
0.383884