hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
72395e4c87b9f1d8044b25a00bbab7ea6fe4633a
337
py
Python
tests/graphql/readme_forum/readme_forum_permissions/models.py
karlosss/simple_api
03f87035c648f161d5e7a59b24f4e04bd34399f1
[ "MIT" ]
2
2020-11-13T14:00:06.000Z
2020-12-19T11:50:22.000Z
tests/graphql/readme_forum/readme_forum_permissions/models.py
ladal1/simple_api
1b5d560476bccad9f68a7331d092dbdb68c48bf7
[ "MIT" ]
5
2021-02-04T14:27:43.000Z
2021-06-04T23:22:24.000Z
tests/graphql/readme_forum/readme_forum_permissions/models.py
ladal1/simple_api
1b5d560476bccad9f68a7331d092dbdb68c48bf7
[ "MIT" ]
1
2021-01-06T13:54:38.000Z
2021-01-06T13:54:38.000Z
from django.contrib.auth.models import User from django.db.models import Model, CharField, TextField, ForeignKey, CASCADE class Post(Model): title = CharField(max_length=50) author = ForeignKey(User, on_delete=CASCADE) content = TextField() def __str__(self): return "{} by {}".format(self.title, self.author)
28.083333
77
0.712166
212
0.62908
0
0
0
0
0
0
10
0.029674
723b9095a8d15e2c9c1b3f5d5be4c81a6f6e858e
2,304
py
Python
streamlit_app.py
fhebal/nlp-medical-notes
f1fed9e34ba47da14220b5719f28c1e720302f45
[ "MIT" ]
null
null
null
streamlit_app.py
fhebal/nlp-medical-notes
f1fed9e34ba47da14220b5719f28c1e720302f45
[ "MIT" ]
null
null
null
streamlit_app.py
fhebal/nlp-medical-notes
f1fed9e34ba47da14220b5719f28c1e720302f45
[ "MIT" ]
null
null
null
import streamlit as st import yaml from load_css import local_css import tensorflow as tf import tensorflow_hub as hub import tensorflow_text as text import numpy as np from random import sample import os local_css("style.css") prediction_key = { 0:'Gastroenterology', 1:'Neurology', 2:'Orthopedic', 3:'Radiology', 4:'Urology' } class Highlighter(): def __init__(self): self.start = "<span class='highlight blue'><span class='bold'>" self.end = "</span></span>" def highlight_match(self, text, config): for value in config: text = text.replace(" "+value+" ", "{0}"+value+"{1}") text = "<div>" + text.format(self.start, self.end) + "</div>" return text # Load model from file model = tf.keras.models.load_model('/home/muody/saved_model/my_model', compile=False) # load data def load_data(): data_path = '/home/muody/data/medicalnotes/dataset/unlabeled-test-data/' files = os.listdir(data_path) sample_file = data_path + sample(files, 1)[0] with open(sample_file, 'r') as stream: sample_data = stream.read() sample_data = sample_data.replace('\n','') sample_data = sample_data.replace('</B>','') sample_data = sample_data.replace('<B>','') return sample_data def main(): # INPUT DATA #sample = st.text_input('Input your sentence here:') sample = load_data() prediction_arr = tf.sigmoid(model.predict(tf.convert_to_tensor([sample]))).numpy() prediction_num = np.argmax(prediction_arr) prediction = prediction_key[prediction_num] prediction_text = "<div>Prediction: <span class='highlight red'><span class='bold'>" + prediction + '</span></span></div>' st.markdown(prediction_text, unsafe_allow_html=True) st.write('\n') for key, value in prediction_key.items(): st.write(value, prediction_arr[0][key]) label = prediction_num with open("config/{}.yaml".format(label), 'r') as stream: try: config = stream.read().splitlines() except yaml.YAMLError as exc: print(exc) highlighter = Highlighter() t = highlighter.highlight_match(sample, config) st.markdown(t, unsafe_allow_html=True) if st.button("New Text Sample"): main()
29.538462
126
0.647569
382
0.165799
0
0
0
0
0
0
512
0.222222
723d7e8a6d6158d63e1b5536dbcf3fd946d29dec
2,440
py
Python
tests/test_functions.py
aerial-defence/pytak
e20c2dedfee88489bf21ad931970c2cb982d72ed
[ "Apache-2.0" ]
null
null
null
tests/test_functions.py
aerial-defence/pytak
e20c2dedfee88489bf21ad931970c2cb982d72ed
[ "Apache-2.0" ]
null
null
null
tests/test_functions.py
aerial-defence/pytak
e20c2dedfee88489bf21ad931970c2cb982d72ed
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Python Team Awareness Kit (PyTAK) Module Tests.""" import asyncio import urllib import pytest import pytak __author__ = 'Greg Albrecht W2GMD <[email protected]>' __copyright__ = 'Copyright 2022 Greg Albrecht' __license__ = 'Apache License, Version 2.0' def test_parse_cot_url_https_noport(): test_url1: str = 'https://www.example.com/' cot_url1: urllib.parse.ParseResult = urllib.parse.urlparse(test_url1) host1, port1 = pytak.parse_cot_url(cot_url1) assert 'www.example.com' == host1 assert 8087 == port1 def test_parse_cot_url_tls_noport(): test_url1: str = 'tls://www.example.com' cot_url1: urllib.parse.ParseResult = urllib.parse.urlparse(test_url1) host1, port1 = pytak.parse_cot_url(cot_url1) assert 'www.example.com' == host1 assert 8087 == port1 def test_parse_cot_url_udp_port(): test_url1: str = 'udp://www.example.com:9999' cot_url1: urllib.parse.ParseResult = urllib.parse.urlparse(test_url1) host1, port1 = pytak.parse_cot_url(cot_url1) assert 'www.example.com' == host1 assert 9999 == port1 def test_parse_cot_url_udp_broadcast(): test_url1: str = 'udp+broadcast://www.example.com' cot_url1: urllib.parse.ParseResult = urllib.parse.urlparse(test_url1) host1, port1 = pytak.parse_cot_url(cot_url1) assert 'www.example.com' == host1 assert 6969 == port1 def test_split_host(): test_host1 = 'www.example.com' test_port1 = '9999' combined_host_port = ':'.join([test_host1, test_port1]) addr, port = pytak.split_host(combined_host_port) assert 'www.example.com' == addr assert 9999 == port def test_split_host_port(): test_host1 = 'www.example.com' test_port1 = '9999' addr, port = pytak.split_host(test_host1, test_port1) assert 'www.example.com' == addr assert 9999 == port def test_split_host_only(): test_host1 = 'www.example.com' addr, port = pytak.split_host(test_host1) assert 'www.example.com' == addr assert pytak.DEFAULT_COT_PORT == port def test_split_host(): test_host1 = 'www.example.com' test_port1 = '9999' combined_host_port = ':'.join([test_host1, test_port1]) addr, port = pytak.split_host(combined_host_port) assert 'www.example.com' == addr assert 9999 == port def test_hello_event(): event = pytak.hello_event('taco') assert b'taco' in event assert b't-x-d-d' in event
29.047619
73
0.702049
0
0
0
0
0
0
0
0
554
0.227049
723d802339794483e5614abac1a27413e8db4aa8
1,054
py
Python
tests/test_aoc_day_02.py
ladokp/AdventOfCode2021
03f8b9f8579ae562d5f2784a131370a32ed19f8b
[ "BSD-2-Clause" ]
null
null
null
tests/test_aoc_day_02.py
ladokp/AdventOfCode2021
03f8b9f8579ae562d5f2784a131370a32ed19f8b
[ "BSD-2-Clause" ]
null
null
null
tests/test_aoc_day_02.py
ladokp/AdventOfCode2021
03f8b9f8579ae562d5f2784a131370a32ed19f8b
[ "BSD-2-Clause" ]
null
null
null
# test_aoc_day_02.py import pytest import solution.aoc_day_02 as aoc @pytest.fixture def test_solution(): return aoc.AocSolution(test_suffix="_test") @pytest.fixture def exercise_solution(): return aoc.AocSolution() def test_parse_test_solution(test_solution): """Test that input is parsed properly""" assert test_solution.data == [ ("forward", 5), ("down", 5), ("forward", 8), ("up", 3), ("down", 8), ("forward", 2), ] def test_part1_test_solution(test_solution): """Test part 1 on example input""" assert test_solution.part1() == 150 def test_part2_test_solution(test_solution): """Test part 2 on example input""" assert test_solution.part2() == 900 def test_part1_exercise_solution(exercise_solution): """Test part 1 on exercise_solution input""" assert exercise_solution.part1() == 1383564 def test_part2_exercise_solution(exercise_solution): """Test part 2 on exercise_solution input""" assert exercise_solution.part2() == 1488311643
22.425532
52
0.683112
0
0
0
0
153
0.145161
0
0
266
0.252372
723e3c60c657572c4703c5d71bdcbccb656fe914
18,265
py
Python
src/elora/elora.py
morelandjs/elora
e902c40d66b0bf95a8d2374afa0cc165b87c9b82
[ "MIT" ]
1
2021-07-26T20:36:32.000Z
2021-07-26T20:36:32.000Z
src/elora/elora.py
morelandjs/elora
e902c40d66b0bf95a8d2374afa0cc165b87c9b82
[ "MIT" ]
null
null
null
src/elora/elora.py
morelandjs/elora
e902c40d66b0bf95a8d2374afa0cc165b87c9b82
[ "MIT" ]
null
null
null
from operator import add, sub import numpy as np from scipy.stats import norm class Elora: def __init__(self, times, labels1, labels2, values, biases=0): """ Elo regressor algorithm for paired comparison time series prediction Author: J. Scott Moreland Args: times (array of np.datetime64): comparison datetimes labels1 (array of str): comparison labels for first entity labels2 (array of str): comparison labels for second entity values (array of float): comparison outcome values biases (array of float or scalar, optional): comparison bias corrections Attributes: examples (np.recarray): time-sorted numpy record array of (time, label1, label2, bias, value, value_pred) samples first_update_time (np.datetime64): time of the first comparison last_update_time (np.datetime64): time of the last comparison labels (array of string): unique compared entity labels median_value (float): median expected comparison value """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels1 = np.array(labels1, dtype='str', ndmin=1) labels2 = np.array(labels2, dtype='str', ndmin=1) values = np.array(values, dtype='float', ndmin=1) if np.isscalar(biases): biases = np.full_like(times, biases, dtype='float') else: biases = np.array(biases, dtype='float', ndmin=1) self.first_update_time = times.min() self.last_update_time = times.max() self.labels = np.union1d(labels1, labels2) self.median_value = np.median(values) prior = self.median_value * np.ones_like(values, dtype=float) self.examples = np.sort( np.rec.fromarrays([ times, labels1, labels2, biases, values, prior, ], names=( 'time', 'label1', 'label2', 'bias', 'value', 'value_pred' )), order=['time', 'label1', 'label2'], axis=0) @property def initial_rating(self): """ Customize this function for a given subclass. It computes the initial rating, equal to the rating one would expect if all labels were interchangeable. Default behavior is to return one-half the median outcome value if the labels commute, otherwise 0. """ return .5*self.median_value if self.commutes else 0 def regression_coeff(self, elapsed_time): """ Customize this function for a given subclass. It computes the regression coefficient—prefactor multiplying the rating of each team evaluated at each update—as a function of elapsed time since the last rating update for that label. Default behavior is to return 1, i.e. no rating regression. """ return 1.0 def evolve_rating(self, rating, elapsed_time): """ Evolves 'state' to 'time', applying rating regression if necessary, and returns the evolved rating. Args: state (dict): state dictionary {'time': time, 'rating': rating} time (np.datetime64): time to evaluate state Returns: state (dict): evolved state dictionary {'time': time, 'rating': rating} """ regress = self.regression_coeff(elapsed_time) return regress * rating + (1.0 - regress) * self.initial_rating def fit(self, k, commutes, scale=1, burnin=0): """ Primary routine that performs model calibration. It is called recursively by the `fit` routine. Args: k (float): coefficient that multiplies the prediction error to determine the rating update. commutes (bool): false if the observed values change sign under label interchange and true otheriwse. """ self.commutes = commutes self.scale = scale self.commutator = 0. if commutes else self.median_value self.compare = add if commutes else sub record = {label: [] for label in self.labels} prior_state_dict = {} for idx, example in enumerate(self.examples): time, label1, label2, bias, value, value_pred = example default = (time, self.initial_rating) prior_time1, prior_rating1 = prior_state_dict.get(label1, default) prior_time2, prior_rating2 = prior_state_dict.get(label2, default) rating1 = self.evolve_rating(prior_rating1, time - prior_time1) rating2 = self.evolve_rating(prior_rating2, time - prior_time2) value_pred = self.compare(rating1, rating2) + self.commutator + bias self.examples[idx]['value_pred'] = value_pred rating_change = k * (value - value_pred) rating1 += rating_change rating2 += rating_change if self.commutes else -rating_change record[label1].append((time, rating1)) record[label2].append((time, rating2)) prior_state_dict[label1] = (time, rating1) prior_state_dict[label2] = (time, rating2) for label in record.keys(): record[label] = np.rec.array( record[label], dtype=[ ('time', 'datetime64[s]'), ('rating', 'float')]) self.record = record residuals = np.rec.fromarrays([ self.examples.time, self.examples.value - self.examples.value_pred ], names=('time', 'residual')) return residuals def get_rating(self, times, labels): """ Query label state(s) at the specified time accounting for rating regression. Args: times (array of np.datetime64): Comparison datetimes labels (array of string): Comparison entity labels Returns: rating (array): ratings for each time and label pair """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels = np.array(labels, dtype='str', ndmin=1) ratings = np.empty_like(times, dtype='float') for idx, (time, label) in enumerate(zip(times, labels)): try: label_record = self.record[label] index = label_record.time.searchsorted(time) prev_index = max(index - 1, 0) prior_state = label_record[prev_index] rating = self.evolve_rating( prior_state.rating, time - prior_state.time) except KeyError: rating = self.initial_rating ratings[idx] = rating return ratings def cdf(self, x, times, labels1, labels2, biases=0): """ Computes the comulative distribution function (CDF) for each comparison, i.e. prob(value < x). Args: x (array of float): threshold of comparison for each value times (array of np.datetime64): comparison datetimes labels1 (array of str): comparison labels for first entity labels2 (array of str): comparison labels for second entity values (array of float): comparison value observed outcomes biases (array of float): comparison bias correct factors, default value is 0 Returns: y (array of float): cumulative distribution function value for each input """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels1 = np.array(labels1, dtype='str', ndmin=1) labels2 = np.array(labels2, dtype='str', ndmin=1) if np.isscalar(biases): biases = np.full_like(times, biases, dtype='float') else: biases = np.array(biases, dtype='float', ndmin=1) ratings1 = self.get_rating(times, labels1) ratings2 = self.get_rating(times, labels2) loc = self.compare(ratings1, ratings2) + self.commutator + biases return norm.cdf(x, loc=loc, scale=self.scale) def sf(self, x, times, labels1, labels2, biases=0): """ Computes the survival function (SF) for each comparison, i.e. prob(value > x). Args: x (array of float): threshold of comparison for each value times (array of np.datetime64): comparison datetimes labels1 (array of str): comparison labels for first entity labels2 (array of str): comparison labels for second entity values (array of float): comparison value observed outcomes biases (array of float): comparison bias correct factors, default value is 0 Returns: y (array of float): survival function value for each input """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels1 = np.array(labels1, dtype='str', ndmin=1) labels2 = np.array(labels2, dtype='str', ndmin=1) if np.isscalar(biases): biases = np.full_like(times, biases, dtype='float') else: biases = np.array(biases, dtype='float', ndmin=1) ratings1 = self.get_rating(times, labels1) ratings2 = self.get_rating(times, labels2) loc = self.compare(ratings1, ratings2) + self.commutator + biases return np.squeeze(norm.sf(x, loc=loc, scale=self.scale)) def pdf(self, x, times, labels1, labels2, biases=0): """ Computes the probability distribution function (PDF) for each comparison, i.e. P(x). Args: x (array of float): input values times (array of np.datetime64): comparison datetimes labels1 (array of str): comparison labels for first entity labels2 (array of str): comparison labels for second entity values (array of float): comparison value observed outcomes biases (array of float): comparison bias correct factors, default value is 0 Returns: y (array of float): probability density at each input """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels1 = np.array(labels1, dtype='str', ndmin=1) labels2 = np.array(labels2, dtype='str', ndmin=1) if np.isscalar(biases): biases = np.full_like(times, biases, dtype='float') else: biases = np.array(biases, dtype='float', ndmin=1) ratings1 = self.get_rating(times, labels1) ratings2 = self.get_rating(times, labels2) loc = self.compare(ratings1, ratings2) + self.commutator + biases return np.squeeze(norm.pdf(x, loc=loc, scale=self.scale)) def percentile(self, p, times, labels1, labels2, biases=0): """ Computes percentiles p of the probability distribution. Args: p (array of float): percentiles to evaluate (in range [0, 100]) times (array of np.datetime64): comparison datetimes labels1 (array of str): comparison labels for first entity labels2 (array of str): comparison labels for second entity values (array of float): comparison value observed outcomes biases (array of float): comparison bias correct factors, default value is 0 Returns: x (array of float): values of the distribution corresponding to each percentile """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels1 = np.array(labels1, dtype='str', ndmin=1) labels2 = np.array(labels2, dtype='str', ndmin=1) if np.isscalar(biases): biases = np.full_like(times, biases, dtype='float') else: biases = np.array(biases, dtype='float', ndmin=1) ratings1 = self.get_rating(times, labels1) ratings2 = self.get_rating(times, labels2) loc = self.compare(ratings1, ratings2) + self.commutator + biases p = np.true_divide(p, 100.0) if np.count_nonzero(p < 0.0) or np.count_nonzero(p > 1.0): raise ValueError("percentiles must be in the range [0, 100]") return np.squeeze(norm.ppf(p, loc=loc, scale=self.scale)) def quantile(self, q, times, labels1, labels2, biases=0): """ Computes quantiles q of the probability distribution. Same as percentiles but accepts values [0, 1]. Args: q (array of float): quantiles to evaluate (in range [0, 1]) times (array of np.datetime64): comparison datetimes labels1 (array of str): comparison labels for first entity labels2 (array of str): comparison labels for second entity values (array of float): comparison value observed outcomes biases (array of float): comparison bias correct factors, default value is 0 Returns: x (array of float): values of the distribution corresponding to each quantile """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels1 = np.array(labels1, dtype='str', ndmin=1) labels2 = np.array(labels2, dtype='str', ndmin=1) if np.isscalar(biases): biases = np.full_like(times, biases, dtype='float') else: biases = np.array(biases, dtype='float', ndmin=1) ratings1 = self.get_rating(times, labels1) ratings2 = self.get_rating(times, labels2) loc = self.compare(ratings1, ratings2) + self.commutator + biases return np.squeeze( norm.ppf(q, loc=loc[:, np.newaxis], scale=self.scale)) def mean(self, times, labels1, labels2, biases=0): """ Computes the mean of the probability distribution. Args: times (array of np.datetime64): comparison datetimes labels1 (array of str): comparison labels for first entity labels2 (array of str): comparison labels for second entity values (array of float): comparison value observed outcomes biases (array of float): comparison bias correct factors, default value is 0 Returns: y (array of float): mean of the probability distribution """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels1 = np.array(labels1, dtype='str', ndmin=1) labels2 = np.array(labels2, dtype='str', ndmin=1) if np.isscalar(biases): biases = np.full_like(times, biases, dtype='float') else: biases = np.array(biases, dtype='float', ndmin=1) ratings1 = self.get_rating(times, labels1) ratings2 = self.get_rating(times, labels2) loc = self.compare(ratings1, ratings2) + self.commutator + biases return np.squeeze(loc) def residuals(self, y_true=None, standardize=False): """ Computes residuals of the model predictions for each training example Args: standardize (bool): if True, the residuals are standardized to unit variance Returns: residuals (array of float): residuals for each example """ y_pred = self.mean( self.examples.time, self.examples.label1, self.examples.label2, self.examples.bias) if y_true is None: y_true = self.examples.value residuals = y_true - y_pred if standardize is True: quantiles = [.159, .841] qlo, qhi = self.quantile( quantiles, self.examples.time, self.examples.label1, self.examples.label2, self.examples.bias ).T residuals /= .5*abs(qhi - qlo) return residuals def rank(self, time): """ Ranks labels by comparing mean of each label to the average label. Args: time (np.datetime64): time at which the ranking should be computed. Returns: label rankings (list of tuples): returns a rank sorted list of (label, rank) pairs, where rank is the comparison value of the specified summary statistic. """ ranked_list = [ (label, self.get_rating(time, label).item()) for label in self.labels] return sorted(ranked_list, key=lambda v: v[1], reverse=True) def sample(self, times, labels1, labels2, biases=0, size=1): """ Draw random samples from the predicted comparison probability distribution. Args: times (array_like of np.datetime64): list of datetimes. labels1 (array_like of string): list of first entity labels. labels2 (array_like of string): list of second entity labels. biases (array_like of float, optional): single bias number or list of bias numbers which match the comparison inputs. Default is 0, in which case no bias is used. size (int, optional): number of samples to be drawn. default is 1, in which case a single value is returned. Returns: x (array of float): random samples for the comparison outcome """ times = np.array(times, dtype='datetime64[s]', ndmin=1) labels1 = np.array(labels1, dtype='str', ndmin=1) labels2 = np.array(labels2, dtype='str', ndmin=1) ratings1 = self.get_rating(times, labels1) ratings2 = self.get_rating(times, labels2) if np.isscalar(biases): biases = np.full_like(times, biases, dtype='float') else: biases = np.array(biases, dtype='float', ndmin=1) if size < 1 or not isinstance(size, int): raise ValueError("sample size must be a positive integer") loc = self.compare(ratings1, ratings2) + self.commutator + biases return norm.rvs(loc=loc, scale=self.scale, size=size)
36.750503
80
0.594854
18,187
0.995512
0
0
417
0.022826
0
0
8,791
0.481198
723f049018f7dbaf5f55c465cf88ce5aa8c8ec4d
48
py
Python
atcoder/abc179/a.py
sugitanishi/competitive-programming
51af65fdce514ece12f8afbf142b809d63eefb5d
[ "MIT" ]
null
null
null
atcoder/abc179/a.py
sugitanishi/competitive-programming
51af65fdce514ece12f8afbf142b809d63eefb5d
[ "MIT" ]
null
null
null
atcoder/abc179/a.py
sugitanishi/competitive-programming
51af65fdce514ece12f8afbf142b809d63eefb5d
[ "MIT" ]
null
null
null
s=input() print(s+'s' if s[-1]!='s' else s+'es')
24
38
0.520833
0
0
0
0
0
0
0
0
10
0.208333
723fcadfa719088f86b59d8093c6f9655d115794
48,147
py
Python
steady_cell_phenotype/poly.py
knappa/steadycellphenotype
b033f01ebc1fa062d310296f19f2f11b484cb557
[ "MIT" ]
1
2021-12-13T22:20:19.000Z
2021-12-13T22:20:19.000Z
steady_cell_phenotype/poly.py
knappa/steadycellphenotype
b033f01ebc1fa062d310296f19f2f11b484cb557
[ "MIT" ]
5
2021-04-07T01:47:19.000Z
2021-11-17T01:46:19.000Z
steady_cell_phenotype/poly.py
knappa/steadycellphenotype
b033f01ebc1fa062d310296f19f2f11b484cb557
[ "MIT" ]
null
null
null
from __future__ import annotations import operator from enum import Enum from itertools import product from typing import Dict, Union import numpy as np class Operation(Enum): PLUS = 'PLUS' MINUS = 'MINUS' TIMES = 'TIMES' EXP = 'EXP' MAX = 'MAX' MIN = 'MIN' CONT = 'CONT' NOT = 'NOT' #################################################################################################### def h(x, fx): """helper function as in the PLoS article, doi:10.1371/journal.pcbi.1005352.t003 pg 16/24""" fx = fx % 3 x = x % 3 if fx > x: return x + 1 elif fx < x: return x - 1 else: return x #################################################################################################### # monomial and sparse polynomial classes. These should be faster than the sympy versions due to # their reduced scope. #################################################################################################### class Expression(object): def __add__(self, other): return BinaryOperation('PLUS', self, other) __radd__ = __add__ def __sub__(self, other): return BinaryOperation('MINUS', self, other) def __mul__(self, other): return BinaryOperation('TIMES', self, other) __rmul__ = __mul__ def __neg__(self): return UnaryRelation('MINUS', self) def __pow__(self, power, modulo=None): return BinaryOperation('EXP', self, power) # def __divmod__(self, other): # raise NotImplementedError("division, modulus not implemented") # def __truediv__(self, other): # raise NotImplementedError("truediv not implemented") # def __floordiv__(self, other): # raise NotImplementedError("floordiv not implemented") def eval(self, variable_dict): """ evaluates the expression. variable_dict is expected to be a dict containing str:Expression or Monomial:Expression pairs. The latter are constrained to be of single-variable type. :param variable_dict: a dictionary of taking either single-term monomials or string (variable names) to ints :return: evaluated expression """ raise NotImplementedError("eval() unimplemented in " + str(type(self))) def is_constant(self): raise NotImplementedError("is_constant() unimplemented in " + str(type(self))) def as_c_expression(self): raise NotImplementedError("as_c_expression() unimplemented in " + str(type(self))) def as_polynomial(self) -> Union[int, Expression]: raise NotImplementedError("as_polynomial() unimplemented in " + str(type(self))) # def as_sympy(self): # """ # converts to sympy expression # # Returns # ------- # sympy expression # """ # raise NotImplementedError("as_sympy() unimplemented in " + str(type(self))) def as_numpy_str(self, variables) -> str: """ returns numpy-based function of variables, with order corresponding to that given in the variables parameter Parameters ---------- variables Returns ------- lambda with len(variables) parameters """ raise NotImplementedError("as_numpy_str() unimplemented in " + str(type(self))) def get_variable_set(self): """ returns a set containing all variable which occur in this expression """ raise NotImplementedError("get_var_set() unimplemented in " + str(type(self))) def num_variables(self): """ returns the number of variables which occur in this expression """ return len(self.get_variable_set()) def rename_variables(self, name_dict: Dict[str, str]): """ rename variables """ raise NotImplementedError("rename_variables() unimplemented in " + str(type(self))) def continuous_function_version(self, control_variable): """ Wrap this equation with the 'continuity controller' i.e. return CONT(control_variable,self) :param control_variable: variable or string :return: functional continuous version """ if self.is_constant(): return self if isinstance(control_variable, str): control_variable = Monomial.as_var(control_variable) return Function('CONT', [control_variable, self]) #################################################################################################### # # the following method converts a system of equations into one which is "continuous" in the sense # that application of the system does not change the per-coordinate values by more than 1. This is # accomplished by a type of curve fitting. Fortunately, the formula for this # # g(x) = sum_{c\in \F_3^n} h(c) prod_{j=0}^n (1-(x_j-c_j)**2) # # (as seen in the PLoS article, doi:10.1371/journal.pcbi.1005352.t003 pg 16/24) admits a recursive # formulation. That is, for a polynomial x_k = f_k(x_0,x_1,...,x_l) we can select one of the # variables, say x_0 and reduce the polynomial each of 3-ways x_0=0, x_0=1, and x_0=2. This # correspondingly divides the sum into those which have each of the 3 types of terms # (1-(x_0-c_0)**2) for c_0=0, c_0=1, and c_0=2 # # fortunately, (1-(x_j-0)**2)+(1-(x_j-1)**2)+(1-(x_j-2)**2) = 1 so if the evaluations of f become # constant or even simply eliminate a variable, we need no longer consider that variable. # # recursion proceeds by eliminating variables in this manner, multiplying by the appropriate fitting # term (1-(x_j-c_j)**2) (c_j being the evaluated value of x_j) on the way up. # # this comment is not really the place for a full proof of this method, but the proof is easily # obtained from the above. # #################################################################################################### def continuous_polynomial_version(self, control_variable): if self.is_constant(): return self if isinstance(control_variable, str): control_variable = Monomial.as_var(control_variable) # as the control variable is special (due to use in the 'h' function), # we will need to go through the procedure for it separately, first accumulator = Mod3Poly.zero() for control_variable_value in range(3): evaluated_poly = self.eval({control_variable: control_variable_value}) if is_integer(evaluated_poly) or evaluated_poly.is_constant(): computed_value = int(evaluated_poly) continuous_value = h(control_variable_value, computed_value) accumulator += continuous_value * (1 - (control_variable - control_variable_value) ** 2) else: accumulator += evaluated_poly.continuous_version_helper(control_variable_value) * \ (1 - (control_variable - control_variable_value) ** 2) return accumulator def continuous_version_helper(self, control_variable_value): # find some free variable free_variable = tuple(self.get_variable_set())[0] if isinstance(free_variable, str): free_variable = Monomial.as_var(free_variable) # iterate over the ways of setting that variable: 0, 1, 2 accumulator = Mod3Poly.zero() for free_variable_value in range(3): evaluated_poly = self.eval({free_variable: free_variable_value}) if is_integer(evaluated_poly) or evaluated_poly.is_constant(): computed_value = int(evaluated_poly) continuous_value = h(control_variable_value, computed_value) accumulator += \ continuous_value * (1 - (free_variable - free_variable_value) ** 2) else: accumulator += evaluated_poly.continuous_version_helper(control_variable_value) * \ (1 - (free_variable - free_variable_value) ** 2) return accumulator #################################################################################################### def rename_helper(expression: Union[Expression, int], name_dict: Dict[str, str]): if is_integer(expression): return expression else: return expression.rename_variables(name_dict=name_dict) #################################################################################################### # actions on expressions, suitable for conversion to polynomial form. Not best for simulator. def mod_3(n): return n % 3 def not3(n): value = 2 + 2 * n if is_integer(value) or value.is_constant(): return mod_3(int(value)) else: return value def max3(a, b): value = a + b + 2 * a * b + (a ** 2) * b + a * (b ** 2) + (a ** 2) * (b ** 2) if is_integer(value) or value.is_constant(): return mod_3(int(value)) else: return value def min3(a, b): value = a * b + 2 * (a ** 2) * b + 2 * a * (b ** 2) + 2 * (a ** 2) * (b ** 2) if is_integer(value) or value.is_constant(): return mod_3(int(value)) else: return value def is_integer(x): return isinstance(x, int) or isinstance(x, np.integer) #################################################################################################### class Function(Expression): def __init__(self, function_name, expression_list): self._function_name = function_name self._expression_list = expression_list def rename_variables(self, name_dict: Dict[str, str]): renamed_parameters = [rename_helper(expr, name_dict) for expr in self._expression_list] return Function(self._function_name, renamed_parameters) def eval(self, variable_dict): # evaluate function parameters evaluated_expressions = [expr if is_integer(expr) else expr.eval(variable_dict) for expr in self._expression_list] # simplify constants to ints, if possible evaluated_expressions = [int(expr) if is_integer(expr) or expr.is_constant() else expr for expr in evaluated_expressions] if self._function_name == 'MAX': assert len(evaluated_expressions) == 2, "wrong number of arguments for MAX" expr_one, expr_two = evaluated_expressions # if it can be computed directly, do it. otherwise, return in function form if is_integer(expr_one) and is_integer(expr_two): expr_one = mod_3(expr_one) expr_two = mod_3(expr_two) return max(expr_one, expr_two) elif is_integer(expr_one) and expr_one == 2: return 2 elif is_integer(expr_one) and expr_one == 0: return expr_two elif is_integer(expr_two) and expr_two == 2: return 2 elif is_integer(expr_two) and expr_two == 0: return expr_one else: return Function('MAX', [expr_one, expr_two]) elif self._function_name == 'MIN': assert len(evaluated_expressions) == 2, "wrong number of arguments for MIN" expr_one, expr_two = evaluated_expressions # if it can be computed directly, do it. otherwise, return in function form if is_integer(expr_one) and is_integer(expr_two): expr_one = mod_3(expr_one) expr_two = mod_3(expr_two) return min(expr_one, expr_two) elif is_integer(expr_one) and expr_one == 2: return expr_two elif is_integer(expr_one) and expr_one == 0: return 0 elif is_integer(expr_two) and expr_two == 2: return expr_one elif is_integer(expr_two) and expr_two == 0: return 0 else: return Function('MIN', [expr_one, expr_two]) elif self._function_name == 'CONT': assert len(evaluated_expressions) == 2, "wrong number of arguments for CONT" ctrl_var, expr = evaluated_expressions if is_integer(ctrl_var): raise Exception("Unsupported; nonsense") return Function('CONT', [ctrl_var, expr]) elif self._function_name == 'NOT': assert len(evaluated_expressions) == 1, "wrong number of arguments for NOT" expr = evaluated_expressions[0] # if it can be computed directly, do it. otherwise, return in function form if is_integer(expr): return not3(int(expr)) else: return Function('NOT', [expr]) else: raise Exception("cannot evaluate unknown function " + self._function_name) def is_constant(self): return all(is_integer(expr) or expr.is_constant() for expr in self._expression_list) def __str__(self): return self._function_name + "(" + ",".join([str(exp) for exp in self._expression_list]) + ")" __repr__ = __str__ def as_c_expression(self): c_exprs = [str(expr) if is_integer(expr) else expr.as_c_expression() for expr in self._expression_list] if self._function_name == 'MAX': func_name = 'mod3max' elif self._function_name == 'MIN': func_name = 'mod3min' elif self._function_name == 'CONT': func_name = 'mod3continuity' elif self._function_name == 'NOT': func_name = 'mod3not' else: raise Exception("Unknown binary relation: " + self._function_name) return func_name + '(' + ",".join(c_exprs) + ')' def as_polynomial(self): expressions_as_polynomials = [mod_3(expr) if is_integer(expr) else expr.as_polynomial() for expr in self._expression_list] if self._function_name == 'MAX': assert len(expressions_as_polynomials) == 2, "wrong number of arguments for MAX" return max3(expressions_as_polynomials[0], expressions_as_polynomials[1]) elif self._function_name == 'MIN': assert len(expressions_as_polynomials) == 2, "wrong number of arguments for MIN" return min3(expressions_as_polynomials[0], expressions_as_polynomials[1]) elif self._function_name == 'CONT': assert len(expressions_as_polynomials) == 2, "wrong number of arguments for CONT" return expressions_as_polynomials[1].continuous_polynomial_version(expressions_as_polynomials[0]) elif self._function_name == 'NOT': assert len(expressions_as_polynomials) == 1, "wrong number of arguments for NOT" return not3(expressions_as_polynomials[0]) else: raise Exception("cannot evaluate unknown function " + self._function_name + " as a polynomial") # def as_sympy(self): # # def cont_sympy(control, expr): # return expr if is_integer(expr) \ # else expr.continuous_polynomial_version(control) # # def not_sympy(expr): # return 1 - expr # # # tuples are param-count, function # functions = {'MAX': (2, sympy.Max), # 'MIN': (2, sympy.Min), # 'CONT': (2, cont_sympy), # 'NOT': (1, not_sympy)} # # if self._function_name not in functions: # raise Exception("cannot evaluate unknown function " + self._function_name + " as a sympy expression") # # if len(self._expression_list) != functions[self._function_name][0]: # raise Exception(f"Wrong number of arguments for {self._function_name}") # # function = functions[self._function_name][1] # # sympy_expressions = [sympy.Mod(expr, 3) if is_integer(expr) # else sympy.Mod(expr.as_sympy(), 3) # for expr in self._expression_list] # return function(*sympy_expressions) def as_numpy_str(self, variables) -> str: np_parameter_strings = [str(expr) if is_integer(expr) else expr.as_numpy_str(variables) for expr in self._expression_list] # this one is slow # continuous_str = "( (({1})>({0})) * (({0})+1) + (({1})<({0})) * (({0})-1) + (({1})==({0}))*({0}) )" continuous_str = "( {0}+np.sign(np.mod({1},3)-np.mod({0},3)) )" max_str = "np.maximum(np.mod({0},3),np.mod({1},3))" min_str = "np.minimum(np.mod({0},3),np.mod({1},3))" not_str = "(2-({0}))" # tuples are param-count, function function_strings = {'MAX': (2, max_str), 'MIN': (2, min_str), 'CONT': (2, continuous_str), 'NOT': (1, not_str)} if self._function_name not in function_strings: raise Exception("cannot evaluate unknown function " + self._function_name + " as a numpy function") if len(self._expression_list) != function_strings[self._function_name][0]: raise Exception(f"Wrong number of arguments for {self._function_name}") function = function_strings[self._function_name][1] return function.format(*np_parameter_strings) def get_variable_set(self): var_set = set() for expr in self._expression_list: if not is_integer(expr): var_set = var_set.union(expr.get_variable_set()) return var_set class BinaryOperation(Expression): def __init__(self, relation_name, left_expression: Union[Expression, int], right_expression: Union[Expression, int]): self.relation_name = relation_name self._left_expression: Union[Expression, int] = left_expression self._right_expression: Union[Expression, int] = right_expression def rename_variables(self, name_dict: Dict[str, str]): renamed_left_expression = rename_helper(self._left_expression, name_dict) renamed_right_expression = rename_helper(self._right_expression, name_dict) return BinaryOperation(self.relation_name, left_expression=renamed_left_expression, right_expression=renamed_right_expression) def is_constant(self): return (is_integer(self._left_expression) or self._left_expression.is_constant()) and \ (is_integer(self._right_expression) or self._right_expression.is_constant()) def eval(self, variable_dict): """ evaluate parameters, making them ints if possible :param variable_dict: a dictionary of taking either single-term monomials or string (variable names) to ints :return: evaluated expression """ evaled_left_expr = self._left_expression if is_integer(self._left_expression) \ else self._left_expression.eval(variable_dict) evaled_left_expr = int(evaled_left_expr) \ if is_integer(evaled_left_expr) or evaled_left_expr.is_constant() \ else evaled_left_expr evaled_right_expr = self._right_expression if is_integer(self._right_expression) \ else self._right_expression.eval(variable_dict) evaled_right_expr = int(evaled_right_expr) \ if is_integer(evaled_right_expr) or evaled_right_expr.is_constant() \ else evaled_right_expr if self.relation_name == 'PLUS': return evaled_left_expr + evaled_right_expr elif self.relation_name == 'MINUS': return evaled_left_expr - evaled_right_expr elif self.relation_name == 'TIMES': return evaled_left_expr * evaled_right_expr elif self.relation_name == 'EXP': return evaled_left_expr ** evaled_right_expr else: raise Exception("cannot evaluate unknown binary op: " + self.relation_name) def __str__(self): short_relation_name = "?" if self.relation_name == 'PLUS': short_relation_name = '+' elif self.relation_name == 'MINUS': short_relation_name = '-' elif self.relation_name == 'TIMES': short_relation_name = '*' elif self.relation_name == 'EXP': short_relation_name = '^' left_side = str(self._left_expression) if isinstance(self._left_expression, BinaryOperation): left_side = "(" + left_side + ")" right_side = str(self._right_expression) if isinstance(self._right_expression, BinaryOperation): right_side = "(" + right_side + ")" return left_side + short_relation_name + right_side __repr__ = __str__ def as_c_expression(self): if is_integer(self._left_expression): left_c_expr = str(self._left_expression) else: left_c_expr = self._left_expression.as_c_expression() if is_integer(self._right_expression): right_c_expr = str(self._right_expression) else: right_c_expr = self._right_expression.as_c_expression() if self.relation_name == 'PLUS': return '(' + left_c_expr + ')+(' + right_c_expr + ')' elif self.relation_name == 'MINUS': return '(' + left_c_expr + ')-(' + right_c_expr + ')' elif self.relation_name == 'TIMES': return '(' + left_c_expr + ')*(' + right_c_expr + ')' elif self.relation_name == 'EXP': return 'mod3pow(' + left_c_expr + ',' + right_c_expr + ')' else: raise Exception("Unknown binary relation: " + self.relation_name) def as_polynomial(self): if is_integer(self._left_expression): left_poly = self._left_expression else: left_poly = self._left_expression.as_polynomial() if is_integer(self._right_expression): right_poly = self._right_expression else: right_poly = self._right_expression.as_polynomial() if self.relation_name == 'PLUS': return left_poly + right_poly elif self.relation_name == 'MINUS': return left_poly - right_poly elif self.relation_name == 'TIMES': return left_poly * right_poly elif self.relation_name == 'EXP': # simplify the exponent = 0, 1 cases if is_integer(right_poly): if right_poly == 0: return 1 elif right_poly == 1: return left_poly else: return left_poly ** right_poly else: return left_poly ** right_poly else: raise Exception("Unknown binary relation: " + self.relation_name) # def as_sympy(self): # """ # Convert to sympy expression # Returns # ------- # sympy expression # """ # # def simple_pow(left_exp, right_exp): # # simplify the exponent = 0, 1 cases # if is_integer(right_exp): # if right_exp == 0: # return 1 # elif right_exp == 1: # return left_exp # else: # return left_exp ** right_exp # else: # return left_exp ** right_exp # # relations = {'PLUS': operator.add, # 'MINUS': operator.sub, # 'TIMES': operator.mul, # 'EXP': simple_pow} # # if self.relation_name not in relations: # raise Exception("Unknown binary relation: " + self.relation_name) # # lhs = self._left_expression if is_integer(self._left_expression) else self._left_expression.as_sympy() # rhs = self._right_expression if is_integer(self._right_expression) else self._right_expression.as_sympy() # # return relations[self.relation_name](lhs, rhs) def as_numpy_str(self, variables) -> str: """ Convert to numpy function Parameters ---------- variables Returns ------- str version of numpy function """ relations = {'PLUS': "(({0})+({1}))", 'MINUS': "(({0})-({1}))", 'TIMES': "(({0})*({1}))", 'EXP': "(({0})**({1}))"} if self.relation_name not in relations: raise Exception("Unknown binary relation: " + self.relation_name) lhs = str(self._left_expression) if is_integer(self._left_expression) \ else self._left_expression.as_numpy_str(variables) rhs = str(self._right_expression) if is_integer(self._right_expression) \ else self._right_expression.as_numpy_str(variables) return relations[self.relation_name].format(lhs, rhs) def get_variable_set(self): var_set = set() if not is_integer(self._left_expression): var_set = var_set.union(self._left_expression.get_variable_set()) if not is_integer(self._right_expression): var_set = var_set.union(self._right_expression.get_variable_set()) return var_set class UnaryRelation(Expression): def __init__(self, relation_name, expr): self._relation_name = relation_name self._expr = expr def rename_variables(self, name_dict: Dict[str, str]): return UnaryRelation(relation_name=self._relation_name, expr=rename_helper(self._expr, name_dict)) def is_constant(self): return self._expr.is_constant() def eval(self, variable_dict): if self._relation_name == 'MINUS': if is_integer(self._expr): return (-1) * self._expr elif type(self._expr) == Expression: evaluated_subexpression = self._expr.eval(variable_dict) if is_integer(evaluated_subexpression) or evaluated_subexpression.is_constant(): return (-1) * int(evaluated_subexpression) else: return (-1) * evaluated_subexpression else: raise Exception("UnaryRelation in bad state with unknown unary relation name") def __str__(self) -> str: short_rel_name = str(self._relation_name) if self._relation_name == 'MINUS': short_rel_name = '-' return short_rel_name + ( "(" + str(self._expr) + ")" if type(self._expr) == BinaryOperation else str(self._expr)) __repr__ = __str__ def as_c_expression(self): if is_integer(self._expr): c_exp = str(mod_3(self._expr)) else: c_exp = self._expr.as_c_expression() if self._relation_name == 'MINUS': return '-(' + c_exp + ')' else: raise Exception("Unknown binary relation: " + self._relation_name) def as_polynomial(self): if is_integer(self._expr) or self._expr.is_constant(): poly = mod_3(int(self._expr)) else: poly = self._expr.as_polynomial() if self._relation_name == 'MINUS': return (-1) * poly else: raise Exception("Unknown unary relation: " + self._relation_name) def as_sympy(self): """ Convert to sympy expression Returns ------- sympy expression """ relations = {'MINUS': operator.neg} if self._relation_name not in relations: raise Exception("Unknown unary relation: " + self._relation_name) expr = self._expr if is_integer(self._expr) else self._expr.as_sympy() return relations[self._relation_name](expr) def as_numpy_str(self, variables): """ Convert to numpy function Parameters ---------- variables Returns ------- str numpy-representation """ relations = {'MINUS': "(-({0}))"} if self._relation_name not in relations: raise Exception("Unknown unary relation: " + self._relation_name) expr_str = str(self._expr) if is_integer(self._expr) \ else self._expr.as_numpy_str(variables) return relations[self._relation_name].format(expr_str) def get_variable_set(self): if is_integer(self._expr): return set() else: return self._expr.get_variable_set() #################################################################################################### class Monomial(Expression): """A class to encapsulate monomials reduced by x^3-x==0 for all variables x""" def __init__(self, power_dict: dict): # copy over only those terms which actually appear self._power_dict = {str(var): power_dict[var] for var in power_dict if power_dict[var] != 0} for var in self._power_dict.keys(): # while self._power_dict[var] < 0: # self._power_dict[var] += 2 <--- replace with below assert self._power_dict[var] > 0 # b/c x^-1 isn't exactly x (i.e. when x=0) # while self._power_dict[var] >= 3: # self._power_dict[var] -= 2 <--- replace with below self._power_dict[var] = 1 + ((-1 + self._power_dict[var]) % 2) def rename_variables(self, name_dict: Dict[str, str]): # this ends up a little more complicated than I was originally thinking, b/c # I would like to allow two variables to be updated to the same new name renamed_dict = dict() for variable, exponent in self._power_dict.items(): name = variable if variable in name_dict: name = name_dict[variable] if name in renamed_dict: renamed_dict[name] += self._power_dict[variable] renamed_dict[name] = 1 + ((-1 + renamed_dict[name]) % 2) else: renamed_dict[name] = self._power_dict[variable] return Monomial(power_dict=renamed_dict) def as_polynomial(self): return self def is_constant(self): return len(self._power_dict) == 0 def num_variables(self): return len(self._power_dict) def variable_list(self): return self._power_dict.keys() def eval(self, variable_dict: Dict): """evaluates the monomial. variable_dict is expected to be a dict containing str:Expression or Monomial:Expression pairs. The latter are constrained to be of single-variable type. """ if type(variable_dict) != dict: raise Exception("eval is not defined on this input") # sanitize inputs sanitized_variable_dict = dict() for variable, quantity in variable_dict.items(): if type(variable) == str: sanitized_variable_dict.update({variable: variable_dict[variable]}) elif type(variable) == Monomial: if variable.num_variables() != 1: raise Exception( "We do not know how to evaluate monomials of zero or several variables to a single number") else: variable_as_str = list(variable.variable_list())[0] sanitized_variable_dict.update({variable_as_str: variable_dict[variable]}) variable_dict = sanitized_variable_dict accumulator = Mod3Poly.one() for variable, quantity in self._power_dict.items(): if variable in variable_dict.keys(): accumulator *= variable_dict[variable] ** self._power_dict[variable] else: accumulator *= Monomial.as_var(variable) ** self._power_dict[variable] return accumulator def get_variable_set(self): """ returns a set containing all variable which occur in this monomial """ return {var for var in self._power_dict if self._power_dict[var] != 0} @staticmethod def unit(): """produces the unit, 1, as a monomial""" return Monomial(dict()) @staticmethod def as_var(var_name: str): return Monomial({var_name: 1}) def __mul__(self, other) -> Expression: if isinstance(other, Monomial): result_power_dict = self._power_dict.copy() for key in other._power_dict.keys(): if key in result_power_dict.keys(): result_power_dict[key] += other._power_dict[key] while result_power_dict[key] >= 3: result_power_dict[key] -= 2 else: result_power_dict[key] = other._power_dict[key] return Monomial(result_power_dict) elif isinstance(other, Mod3Poly) or is_integer(other): return self.as_poly() * other else: return BinaryOperation('TIMES', self, other) # raise TypeError("unsupported operand type(s) for *: '{}' and '{}'".format(self.__class__, type(other))) __rmul__ = __mul__ def __neg__(self): return (-1) * self def __pow__(self, power, **kwargs): if type(power) == Mod3Poly and power.is_constant(): power = power[Monomial.unit()] assert is_integer(power) if power == 0: return Monomial.unit() elif power == 1: return self elif power == 2: return self * self # Now handle higher powers; probably not going to happen too much for this application # (int) half power root int_root = self ** (power // 2) if power % 2 == 0: return int_root * int_root else: return int_root * int_root * self def as_poly(self): """converts this monomial to a polynomial with only one term""" return Mod3Poly({self: 1}) def __add__(self, other): if isinstance(other, Mod3Poly): return other + self.as_poly() elif isinstance(other, Monomial): return self.as_poly() + other.as_poly() elif is_integer(other): return self.as_poly() + other elif isinstance(other, Expression): return BinaryOperation("PLUS", self, other) else: raise TypeError("unsupported operand type(s) for +: '{}' and '{}'".format(self.__class__, type(other))) def __radd__(self, other): return self + other def __sub__(self, other): return self + ((-1) * other) def __rsub__(self, other): return ((-1) * self) + other def __eq__(self, other): if type(other) == str: other = Monomial.as_var(other) if type(other) == Monomial: return self._power_dict == other._power_dict elif type(other) == Mod3Poly: if len(other.coeff_dict) == 1: monomial, coeff = list(other.coeff_dict)[0] return coeff == 1 and monomial == self else: return False elif is_integer(other) and self == Monomial.unit(): return other == 1 else: return False def __ne__(self, other): if type(other) == str: other = Monomial.as_var(other) return not (self == other) def __lt__(self, other): self_vars = set(self._power_dict.keys()) if type(other) == str: other = Monomial.as_var(other) other_vars = set(other._power_dict.keys()) # if we have a var that they don't we cannot be "smaller" if len(self_vars - other_vars) > 0: return False # check that we do not exceed and are smaller at least once at_least_once_less = False for var in self_vars: if self._power_dict[var] > other._power_dict[var]: return False elif self._power_dict[var] < other._power_dict[var]: at_least_once_less = True return at_least_once_less or len(other_vars - self_vars) > 0 def __le__(self, other): self_vars = set(self._power_dict.keys()) if type(other) == str: other = Monomial.as_var(other) other_vars = set(other._power_dict.keys()) # if we have a var that they don't we cannot be "smaller" if len(self_vars - other_vars) > 0: return False # check that we do not exceed for var in self_vars: if self._power_dict[var] > other._power_dict[var]: return False return True def __gt__(self, other): self_vars = set(self._power_dict.keys()) if type(other) == str: other = Monomial.as_var(other) other_vars = set(other._power_dict.keys()) # if they have a var that they don't we cannot be "greater" if len(other_vars - self_vars) > 0: return False # check that we are not smaller and are greater at least once at_least_once_greater = False for var in other_vars: if self._power_dict[var] < other._power_dict[var]: return False elif self._power_dict[var] > other._power_dict[var]: at_least_once_greater = True return at_least_once_greater or len(self_vars - other_vars) > 0 def __ge__(self, other): self_vars = set(self._power_dict.keys()) if type(other) == str: other = Monomial.as_var(other) other_vars = set(other._power_dict.keys()) # if they have a var that they don't we cannot be "greater" if len(other_vars - self_vars) > 0: return False # check that we are not smaller for var in other_vars: if self._power_dict[var] < other._power_dict[var]: return False return True def __hash__(self): return sum(hash(k) for k in self._power_dict.keys()) + \ sum(hash(v) for v in self._power_dict.values()) def __str__(self): if self._power_dict == {}: return "1" else: variables = sorted(self._power_dict.keys()) return "*".join([str(var) + "^" + str(self._power_dict[var]) if self._power_dict[var] > 1 else str(var) for var in variables]) __repr__ = __str__ def as_c_expression(self): if self._power_dict == {}: return "1" else: variables = sorted(self._power_dict.keys()) return "*".join(["mod3pow(" + str(var) + "," + str(self._power_dict[var]) + ")" if self._power_dict[var] > 1 else str(var) for var in variables if self._power_dict[var] != 0]) # def as_sympy(self): # # sympy empty product is 1, consistent with power_dict # return sympy.prod([sympy.Symbol(var, integer=True) ** pow # for var, pow in self._power_dict.items()]) # # Fun fact: sympy doesn't recognize Symbol(var) and Symbol(var, integer=True) to be the same def as_numpy_str(self, variables) -> str: if len(self._power_dict) == 0: return "1" return '(' + \ '*'.join(["1".format(variables.index(var), self._power_dict[var]) if self._power_dict[var] == 0 else "state[{0}]".format(variables.index(var)) if self._power_dict[var] == 1 else "(state[{0}]**{1})".format(variables.index(var), self._power_dict[var]) for var in self._power_dict]) + \ ')' #################################################################################################### class Mod3Poly(Expression): """a sparse polynomial class""" def __init__(self, coeffs: Union[Dict, int]): if type(coeffs) == dict: self.coeff_dict = {monomial: coeffs[monomial] for monomial in coeffs if coeffs[monomial] != 0} elif is_integer(coeffs): self.coeff_dict = {Monomial.unit(): (coeffs % 3)} else: raise TypeError("unsupported initialization type for '{}': '{}'".format(self.__class__, type(coeffs))) def rename_variables(self, name_dict: Dict[str, str]): return Mod3Poly(coeffs={monomial.rename_variables(name_dict): coeff for monomial, coeff in self.coeff_dict.items()}) @staticmethod def zero(): return Mod3Poly({Monomial.unit(): 0}) @staticmethod def one(): return Mod3Poly({Monomial.unit(): 1}) def as_polynomial(self): return self def __int__(self): self.__clear_zero_monomials() if len(self.coeff_dict) > 1 or (len(self.coeff_dict) == 1 and Monomial.unit() not in self.coeff_dict): raise Exception("cannot cast non-constant polynomial to int") if Monomial.unit() in self.coeff_dict: return self.coeff_dict[Monomial.unit()] else: return 0 def eval(self, variable_dict): """evaluates the polynomial. variable_dict is expected to be a dict containing str:Expression or Monomial:Expression pairs. The latter are constrained to be of single-variable type. """ if type(variable_dict) != dict: raise Exception("Mod3Poly.eval is not defined on this input") accumulator = Mod3Poly.zero() for monomial, coeff in self.coeff_dict.items(): accumulator += coeff * monomial.eval(variable_dict) return accumulator def get_variable_set(self): """return a set containing all variables which occur in this polynomial""" var_set = set() for monomial in self.coeff_dict: var_set = var_set.union(monomial.get_variable_set()) return var_set def __clear_zero_monomials(self): """purge unneeded data""" self.coeff_dict = {monomial: self.coeff_dict[monomial] for monomial in self.coeff_dict if self.coeff_dict[monomial] != 0} # assure at least one entry if len(self.coeff_dict) == 0: self.coeff_dict = {Monomial.unit(): 0} def is_constant(self): # possibly unnecessary self.__clear_zero_monomials() num_nonzero_monomial = len(self.coeff_dict) if num_nonzero_monomial > 1: return False elif num_nonzero_monomial == 0: return True else: # only one entry return Monomial.unit() in self.coeff_dict def __getitem__(self, index): if index in self.coeff_dict: return self.coeff_dict[index] else: return 0 def __setitem__(self, index, value): self.coeff_dict[index] = value def __add__(self, other): if is_integer(other): self_copy = Mod3Poly(self.coeff_dict) self_copy[Monomial.unit()] = (self_copy[Monomial.unit()] + other) % 3 return self_copy elif isinstance(other, Monomial): self_copy = Mod3Poly(self.coeff_dict) self_copy[other] += 1 return self_copy elif isinstance(other, Mod3Poly): self_copy = Mod3Poly(self.coeff_dict) for key in other.coeff_dict.keys(): if key in self_copy.coeff_dict.keys(): self_copy[key] = (self_copy[key] + other[key]) % 3 else: self_copy[key] = other[key] return self_copy elif isinstance(other, Expression): return BinaryOperation('PLUS', self, other) else: raise TypeError("unsupported operand type(s) for +: '{}' and '{}'".format(self.__class__, type(other))) __radd__ = __add__ def __sub__(self, other): if is_integer(other): self_copy = Mod3Poly(self.coeff_dict) self_copy[Monomial.unit()] = (self_copy[Monomial.unit()] - other) % 3 return self_copy elif isinstance(other, Mod3Poly) or isinstance(other, Monomial): self_copy = Mod3Poly(self.coeff_dict) if isinstance(other, Monomial): other = other.as_poly() for key in other.coeff_dict.keys(): if key in self_copy.coeff_dict.keys(): self_copy[key] = (self_copy[key] - other[key]) % 3 else: self_copy[key] = other[key] return self_copy else: raise TypeError("unsupported operand type(s) for +: '{}' and '{}'".format(self.__class__, type(other))) def __rsub__(self, other): return other + ((-1) * self) def __mul__(self, other): if is_integer(other): return Mod3Poly({key: (self.coeff_dict[key] * other) % 3 for key in self.coeff_dict}) elif isinstance(other, Monomial): return Mod3Poly({(other * monomial): self.coeff_dict[monomial] for monomial in self.coeff_dict}) elif isinstance(other, Mod3Poly): accumulator = Mod3Poly.zero() for self_mono, other_mono in product(self.coeff_dict.keys(), other.coeff_dict.keys()): monomial_prod = self_mono * other_mono accumulator[monomial_prod] = (accumulator[monomial_prod] + self[self_mono] * other[other_mono]) % 3 return accumulator else: return BinaryOperation('TIMES', self, other) __rmul__ = __mul__ def __pow__(self, power, **kwargs): if type(power) == Mod3Poly and power.is_constant(): power = power[Monomial.unit()] assert is_integer(power) if power == 0: return Monomial.unit().as_poly() elif power == 1: return self elif power == 2: return self * self # Now handle higher powers; probably not going to happen too much for this application # (int) half power root int_root = self ** (power // 2) if power % 2 == 0: return int_root * int_root else: return int_root * int_root * self def __str__(self): accumulator = "" for monomial in sorted(self.coeff_dict.keys()): if monomial == Monomial.unit(): if self[monomial] != 0: accumulator += str(self[monomial]) else: if len(accumulator) > 0 and self[monomial] != 0: accumulator += "+" if self[monomial] == 1: accumulator += str(monomial) elif self[monomial] == 2: accumulator += "2*" accumulator += str(monomial) if len(accumulator) > 0: return accumulator else: return "0" __repr__ = __str__ def as_c_expression(self): accumulator = "" for monomial in sorted(self.coeff_dict.keys()): if monomial == Monomial.unit(): if self[monomial] != 0: accumulator += str(self[monomial]) else: if len(accumulator) > 0 and self[monomial] != 0: accumulator += "+" if self[monomial] == 1: accumulator += monomial.as_c_expression() elif self[monomial] == 2: accumulator += "2*" accumulator += monomial.as_c_expression() if len(accumulator) > 0: return accumulator else: return "0" # def as_sympy(self): # return sum([coeff * expr.as_sympy() for expr, coeff in self.coeff_dict.items()]) def as_numpy_str(self, variables) -> str: return '(' + \ "+".join(["({0}*({1}))".format(coeff, expr.as_numpy_str(variables)) for expr, coeff in self.coeff_dict.items()]) + \ ')'
38.985425
117
0.577897
45,795
0.95115
0
0
343
0.007124
0
0
12,263
0.254699
72404631e2e0ae2fb28f9c18c6b107f7f88a83f4
23,165
py
Python
django_tidb/features.py
killuminatixhr/django-tidb
8de093dd7242fc70a5b9b5240711bef00722ff03
[ "Apache-2.0" ]
17
2021-07-30T17:02:53.000Z
2021-12-10T02:28:59.000Z
django_tidb/features.py
killuminatixhr/django-tidb
8de093dd7242fc70a5b9b5240711bef00722ff03
[ "Apache-2.0" ]
7
2021-08-02T09:56:27.000Z
2022-03-23T03:36:07.000Z
django_tidb/features.py
killuminatixhr/django-tidb
8de093dd7242fc70a5b9b5240711bef00722ff03
[ "Apache-2.0" ]
6
2021-07-30T10:04:15.000Z
2022-03-29T05:44:37.000Z
# Copyright 2021 PingCAP, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # See the License for the specific language governing permissions and # limitations under the License. import operator from django.db.backends.mysql.features import ( DatabaseFeatures as MysqlDatabaseFeatures, ) from django.utils.functional import cached_property class DatabaseFeatures(MysqlDatabaseFeatures): has_select_for_update = True supports_transactions = False uses_savepoints = False can_release_savepoints = False atomic_transactions = False supports_atomic_references_rename = False can_clone_databases = False can_rollback_ddl = False order_by_nulls_first = True supports_foreign_keys = False indexes_foreign_keys = False create_test_procedure_without_params_sql = None create_test_procedure_with_int_param_sql = None test_collations = { 'ci': 'utf8mb4_general_ci', 'non_default': 'utf8mb4_bin', } @cached_property def django_test_skips(self): skips = { "This doesn't work on MySQL.": { 'db_functions.comparison.test_greatest.GreatestTests.test_coalesce_workaround', 'db_functions.comparison.test_least.LeastTests.test_coalesce_workaround', }, 'Running on MySQL requires utf8mb4 encoding (#18392).': { 'model_fields.test_textfield.TextFieldTests.test_emoji', 'model_fields.test_charfield.TestCharField.test_emoji', }, "MySQL doesn't support functional indexes on a function that " "returns JSON": { 'schema.tests.SchemaTests.test_func_index_json_key_transform', }, "MySQL supports multiplying and dividing DurationFields by a " "scalar value but it's not implemented (#25287).": { 'expressions.tests.FTimeDeltaTests.test_durationfield_multiply_divide', }, "tidb": { # "Expression #5 of SELECT list is not in GROUP BY clause and contains nonaggregated column # 'test_django_tests.aggregation_regress_alfa.id' which is not functionally dependent on columns in # GROUP BY clause; this is incompatible with sql_mode=only_full_group_by" 'aggregation.tests.AggregateTestCase.test_annotate_defer_select_related', 'aggregation_regress.tests.AggregationTests.test_aggregate_duplicate_columns_select_related', 'aggregation_regress.tests.AggregationTests.test_boolean_conversion', 'aggregation_regress.tests.AggregationTests.test_more_more', 'aggregation_regress.tests.JoinPromotionTests.test_ticket_21150', 'annotations.tests.NonAggregateAnnotationTestCase.test_annotation_aggregate_with_m2o', 'defer_regress.tests.DeferAnnotateSelectRelatedTest.test_defer_annotate_select_related', 'queries.test_explain.ExplainTests', 'queries.test_qs_combinators.QuerySetSetOperationTests.' 'test_union_with_values_list_and_order_on_annotation', 'queries.test_qs_combinators.QuerySetSetOperationTests.test_union_with_values_list_and_order', 'queries.test_qs_combinators.QuerySetSetOperationTests.test_ordering_subqueries', 'queries.test_qs_combinators.QuerySetSetOperationTests.test_ordering_by_f_expression_and_alias', 'queries.test_qs_combinators.QuerySetSetOperationTests.test_ordering_by_f_expression', 'queries.test_qs_combinators.QuerySetSetOperationTests.test_ordering_by_alias', 'queries.test_qs_combinators.QuerySetSetOperationTests.test_ordering', 'queries.test_qs_combinators.QuerySetSetOperationTests.test_order_by_same_type', 'queries.test_qs_combinators.QuerySetSetOperationTests.test_combining_multiple_models', # is unrelation with tidb 'file_uploads.tests.DirectoryCreationTests.test_readonly_root', 'cache.tests.CacheMiddlewareTest.test_cache_page_timeout', # RuntimeError: A durable atomic block cannot be nested within another atomic block. 'transactions.tests.DisableDurabiltityCheckTests.test_nested_both_durable', 'transactions.tests.DisableDurabiltityCheckTests.test_nested_inner_durable', # wrong test result '.test_no_duplicates_for_non_unique_related_object_in_search_fields', 'transaction_hooks.tests.TestConnectionOnCommit.test_inner_savepoint_does_not_affect_outer', 'filtered_relation.tests.FilteredRelationTests.test_select_for_update', 'filtered_relation.tests.FilteredRelationTests.test_union', 'fixtures_regress.tests.TestFixtures.test_loaddata_raises_error_when_fixture_has_invalid_foreign_key', 'introspection.tests.IntrospectionTests.test_get_table_description_nullable', # django.db.transaction.TransactionManagementError: An error occurred in the current transaction. You # can't execute queries until the end of the 'atomic' block. 'transaction_hooks.tests.TestConnectionOnCommit.test_inner_savepoint_rolled_back_with_outer', 'transaction_hooks.tests.TestConnectionOnCommit.test_discards_hooks_from_rolled_back_savepoint', 'transaction_hooks.tests.TestConnectionOnCommit.test_inner_savepoint_rolled_back_with_outer', # AssertionError: True is not false 'sites_tests.tests.CreateDefaultSiteTests.test_multi_db_with_router', # AssertionError: {} != {'example2.com': <Site: example2.com>} 'sites_tests.tests.SitesFrameworkTests.test_clear_site_cache_domain', # AttributeError: 'NoneType' object has no attribute 'ping' 'servers.test_liveserverthread.LiveServerThreadTest.test_closes_connections', 'test_utils.tests.TestBadSetUpTestData.test_failure_in_setUpTestData_should_rollback_transaction', 'test_utils.test_testcase.TestDataTests.test_undeepcopyable_warning', 'test_utils.test_testcase.TestDataTests.test_class_attribute_identity', 'test_utils.tests.CaptureOnCommitCallbacksTests.test_execute', 'test_utils.tests.CaptureOnCommitCallbacksTests.test_no_arguments', 'test_utils.tests.CaptureOnCommitCallbacksTests.test_pre_callback', 'test_utils.tests.CaptureOnCommitCallbacksTests.test_using', # [planner:3065]Expression #1 of ORDER BY clause is not in SELECT list, references column '' which is # not in SELECT list; this is incompatible with 'ordering.tests.OrderingTests.test_orders_nulls_first_on_filtered_subquery', # You have an error in your SQL syntax 'schema.tests.SchemaTests.test_func_index_cast', 'schema.tests.SchemaTests.test_add_field_binary', 'schema.tests.SchemaTests.test_add_textfield_default_nullable', 'schema.tests.SchemaTests.test_add_textfield_unhashable_default', # Unsupported modify column: this column has primary key flag 'schema.tests.SchemaTests.test_alter_auto_field_to_char_field', # Unsupported modify column: can't remove auto_increment without @@tidb_allow_remove_auto_inc enabled 'schema.tests.SchemaTests.test_alter_auto_field_to_integer_field', # 'Unsupported modify column: this column has primary key flag 'schema.tests.SchemaTests.test_alter_autofield_pk_to_smallautofield_pk_sequence_owner', # Found wrong number (0) of check constraints for schema_author.height 'schema.tests.SchemaTests.test_alter_field_default_dropped', # Unsupported modify column: can't set auto_increment 'schema.tests.SchemaTests.test_alter_int_pk_to_autofield_pk', 'schema.tests.SchemaTests.test_alter_int_pk_to_bigautofield_pk', # Unsupported drop primary key when the table's pkIsHandle is true 'schema.tests.SchemaTests.test_alter_int_pk_to_int_unique', # Unsupported drop integer primary key 'schema.tests.SchemaTests.test_alter_not_unique_field_to_primary_key', # Unsupported modify column: can't set auto_increment 'schema.tests.SchemaTests.test_alter_smallint_pk_to_smallautofield_pk', # BLOB/TEXT/JSON column 'address' can't have a default value 'schema.tests.SchemaTests.test_alter_text_field_to_not_null_with_default_value', # Unsupported modify column: this column has primary key flag 'schema.tests.SchemaTests.test_char_field_pk_to_auto_field', # Unsupported modify charset from utf8mb4 to utf8 'schema.tests.SchemaTests.test_ci_cs_db_collation', # Unsupported drop integer primary key 'schema.tests.SchemaTests.test_primary_key', # wrong result 'schema.tests.SchemaTests.test_alter_pk_with_self_referential_field', 'schema.tests.SchemaTests.test_db_table', 'schema.tests.SchemaTests.test_indexes', 'schema.tests.SchemaTests.test_inline_fk', 'schema.tests.SchemaTests.test_remove_constraints_capital_letters', 'schema.tests.SchemaTests.test_remove_db_index_doesnt_remove_custom_indexes', 'schema.tests.SchemaTests.test_rename_column_renames_deferred_sql_references', 'schema.tests.SchemaTests.test_rename_referenced_field', 'schema.tests.SchemaTests.test_rename_table_renames_deferred_sql_references', 'schema.tests.SchemaTests.test_add_field_remove_field', # Unknown column 'annotations_publisher.id' in 'where clause' 'annotations.tests.NonAggregateAnnotationTestCase.test_annotation_filter_with_subquery', # Duplicate entry 'admin' for key 'username' 'auth_tests.test_admin_multidb.MultiDatabaseTests.test_add_view', # Duplicate entry 'app_b-examplemodelb' for key 'django_content_type_app_label_model_76bd3d3b_uniq' 'auth_tests.test_models.LoadDataWithNaturalKeysAndMultipleDatabasesTestCase' '.test_load_data_with_user_permissions', 'auth_tests.test_views.ChangelistTests.test_view_user_password_is_readonly', 'auth_tests.test_migrations.MultiDBProxyModelAppLabelTests', 'auth_tests.test_management.GetDefaultUsernameTestCase.test_with_database', 'backends.base.test_base.ExecuteWrapperTests.test_nested_wrapper_invoked', 'backends.base.test_base.ExecuteWrapperTests.test_outer_wrapper_blocks', 'backends.tests.FkConstraintsTests.test_check_constraints', 'backends.tests.FkConstraintsTests.test_check_constraints_sql_keywords', # ignore multi database 'contenttypes_tests.test_models.ContentTypesMultidbTests.test_multidb', # ContentType matching query does not exist. 'contenttypes_tests.test_models.ContentTypesTests.test_app_labeled_name', # IntegrityError not raised 'constraints.tests.CheckConstraintTests.test_database_constraint', 'constraints.tests.CheckConstraintTests.test_database_constraint_expression', 'constraints.tests.CheckConstraintTests.test_database_constraint_expressionwrapper', 'constraints.tests.CheckConstraintTests.test_database_constraint_unicode', # Cannot assign "<Book: Book object (90)>": the current database router prevents this relation. 'prefetch_related.tests.MultiDbTests.test_using_is_honored_custom_qs', # django.http.response.Http404: No Article matches the given query. 'get_object_or_404.tests.GetObjectOr404Tests.test_get_object_or_404', # django.db.transaction.TransactionManagementError: An error occurred in the current transaction. # You can't execute queries until the end of the 'atomic' block. 'get_or_create.tests.UpdateOrCreateTests.test_integrity', 'get_or_create.tests.UpdateOrCreateTests.test_manual_primary_key_test', 'get_or_create.tests.UpdateOrCreateTestsWithManualPKs.test_create_with_duplicate_primary_key', 'db_functions.text.test_chr.ChrTests.test_non_ascii', 'db_functions.text.test_sha224.SHA224Tests.test_basic', 'db_functions.text.test_sha224.SHA224Tests.test_transform', 'db_functions.text.test_sha256.SHA256Tests.test_basic', 'db_functions.text.test_sha256.SHA256Tests.test_transform', 'db_functions.text.test_sha384.SHA384Tests.test_basic', 'db_functions.text.test_sha384.SHA384Tests.test_transform', 'db_functions.text.test_sha512.SHA512Tests.test_basic', 'db_functions.text.test_sha512.SHA512Tests.test_transform', 'db_functions.comparison.test_greatest.GreatestTests.test_basic', 'db_functions.comparison.test_least.LeastTests.test_basic', 'db_functions.datetime.test_extract_trunc.DateFunctionTests.test_trunc_time_func', 'migrations.test_commands.MigrateTests.test_migrate_fake_initial_case_insensitive', 'migrations.test_commands.MigrateTests.test_migrate_fake_split_initial', 'migrations.test_commands.MigrateTests.test_migrate_plan', 'migrations.test_executor.ExecutorTests.test_alter_id_type_with_fk', 'migrations.test_operations.OperationTests.test_add_binaryfield', 'migrations.test_operations.OperationTests.test_add_textfield', 'migrations.test_operations.OperationTests.test_alter_field_pk', 'migrations.test_operations.OperationTests.test_alter_field_reloads_state_on_fk_target_changes', 'migrations.test_operations.OperationTests.test_autofield__bigautofield_foreignfield_growth', 'migrations.test_operations.OperationTests.test_rename_field_reloads_state_on_fk_target_changes', 'migrations.test_operations.OperationTests.test_smallfield_autofield_foreignfield_growth', 'migrations.test_operations.OperationTests.test_smallfield_bigautofield_foreignfield_growth', 'migrations.test_loader.RecorderTests.test_apply', 'migrations.test_commands.MigrateTests.test_migrate_fake_initial', 'migrations.test_commands.MigrateTests.test_migrate_initial_false', 'migrations.test_commands.MigrateTests.test_migrate_syncdb_app_label', 'migrations.test_commands.MigrateTests.test_migrate_syncdb_deferred_sql_executed_with_schemaeditor', 'migrations.test_operations.OperationTests.test_add_constraint', 'migrations.test_operations.OperationTests.test_add_constraint_combinable', 'migrations.test_operations.OperationTests.test_add_constraint_percent_escaping', 'migrations.test_operations.OperationTests.test_add_or_constraint', 'migrations.test_operations.OperationTests.test_create_model_with_constraint', 'migrations.test_operations.OperationTests.test_remove_constraint', # An error occurred in the current transaction. You can't execute queries until the end of the # 'atomic' block." not found in 'Save with update_fields did not affect any rows. 'basic.tests.SelectOnSaveTests.test_select_on_save_lying_update', 'admin_views.test_multidb.MultiDatabaseTests.test_add_view', 'admin_views.test_multidb.MultiDatabaseTests.test_change_view', 'admin_views.test_multidb.MultiDatabaseTests.test_delete_view', 'admin_views.test_autocomplete_view.AutocompleteJsonViewTests.test_to_field_resolution_with_fk_pk', 'admin_views.test_autocomplete_view.AutocompleteJsonViewTests.test_to_field_resolution_with_mti', 'admin_views.tests.AdminSearchTest.test_exact_matches', 'admin_views.tests.AdminSearchTest.test_no_total_count', 'admin_views.tests.AdminSearchTest.test_search_on_sibling_models', 'admin_views.tests.GroupAdminTest.test_group_permission_performance', 'admin_views.tests.UserAdminTest.test_user_permission_performance', 'multiple_database.tests.AuthTestCase.test_dumpdata', # about Pessimistic/Optimistic Transaction Model 'select_for_update.tests.SelectForUpdateTests.test_raw_lock_not_available', } } if self.connection.tidb_version == (5, 0, 3): skips.update({ "tidb503": { 'expressions_window.tests.WindowFunctionTests.test_subquery_row_range_rank', 'schema.tests.SchemaTests.test_alter_textual_field_keep_null_status', # Unsupported modify column: column type conversion # between 'varchar' and 'non-varchar' is currently unsupported yet 'schema.tests.SchemaTests.test_alter', 'schema.tests.SchemaTests.test_alter_field_type_and_db_collation', 'schema.tests.SchemaTests.test_alter_textual_field_keep_null_status', } }) if self.connection.tidb_version == (4, 0, 0): skips.update({ "tidb400": { 'admin_filters.tests.ListFiltersTests.test_relatedfieldlistfilter_reverse_relationships', 'admin_filters.tests.ListFiltersTests.test_emptylistfieldfilter_reverse_relationships', 'aggregation.test_filter_argument.FilteredAggregateTests.test_filtered_numerical_aggregates', 'aggregation_regress.tests.AggregationTests.test_stddev', 'aggregation_regress.tests.AggregationTests.test_aggregate_fexpr', 'annotations.tests.NonAggregateAnnotationTestCase.test_raw_sql_with_inherited_field', 'auth_tests.test_models.UserWithPermTestCase.test_basic', 'generic_relations_regress.tests.GenericRelationTests.test_ticket_20378', 'queries.test_bulk_update.BulkUpdateNoteTests.test_functions', 'queries.tests.TestTicket24605.test_ticket_24605', 'queries.tests.Queries6Tests.test_tickets_8921_9188', 'schema.tests.SchemaTests.test_add_field_default_nullable' } }) if self.connection.tidb_version < (5,): skips.update({ "tidb4": { # Unsupported modify column 'schema.tests.SchemaTests.test_rename', 'schema.tests.SchemaTests.test_m2m_rename_field_in_target_model', 'schema.tests.SchemaTests.test_alter_textual_field_keep_null_status', 'schema.tests.SchemaTests.test_alter_text_field_to_time_field', 'schema.tests.SchemaTests.test_alter_text_field_to_datetime_field', 'schema.tests.SchemaTests.test_alter_text_field_to_date_field', 'schema.tests.SchemaTests.test_alter_field_type_and_db_collation', # wrong result 'expressions_window.tests.WindowFunctionTests.test_subquery_row_range_rank', 'migrations.test_operations.OperationTests.test_alter_fk_non_fk', 'migrations.test_operations.OperationTests' '.test_alter_field_reloads_state_on_fk_with_to_field_target_changes', 'model_fields.test_integerfield.PositiveIntegerFieldTests.test_negative_values', } }) if self.connection.tidb_version >= (4, 0, 5) and self.connection.tidb_version <= (4, 0, 9): skips['tidb4'].add('lookup.tests.LookupTests.test_regex') return skips @cached_property def update_can_self_select(self): return True @cached_property def can_introspect_foreign_keys(self): return False @cached_property def can_return_columns_from_insert(self): return False can_return_rows_from_bulk_insert = property(operator.attrgetter('can_return_columns_from_insert')) @cached_property def has_zoneinfo_database(self): return self.connection.tidb_server_data['has_zoneinfo_database'] @cached_property def is_sql_auto_is_null_enabled(self): return self.connection.tidb_server_data['sql_auto_is_null'] @cached_property def supports_over_clause(self): return True supports_frame_range_fixed_distance = property(operator.attrgetter('supports_over_clause')) @cached_property def supports_column_check_constraints(self): return True supports_table_check_constraints = property(operator.attrgetter('supports_column_check_constraints')) @cached_property def can_introspect_check_constraints(self): return False @cached_property def has_select_for_update_skip_locked(self): return False @cached_property def has_select_for_update_nowait(self): return False @cached_property def has_select_for_update_of(self): return False @cached_property def supports_explain_analyze(self): return True @cached_property def supported_explain_formats(self): return {'DOT', 'ROW', 'BRIEF'} @cached_property def ignores_table_name_case(self): return self.connection.tidb_server_data['lower_case_table_names'] @cached_property def supports_default_in_lead_lag(self): return True @cached_property def supports_json_field(self): return False @cached_property def can_introspect_json_field(self): return self.supports_json_field and self.can_introspect_check_constraints @cached_property def supports_index_column_ordering(self): return False @cached_property def supports_expression_indexes(self): return self.connection.tidb_version >= (5, 1, )
55.286396
118
0.699763
22,492
0.970948
0
0
21,442
0.925621
0
0
15,536
0.670667
72404d3d39210b175e825c5b94b9e21a7e2698f1
421
py
Python
src/combine_npy.py
hongli-ma/RNANetMotif
34b4de443ec7edb59f4e4e06b17686543c438366
[ "MIT" ]
null
null
null
src/combine_npy.py
hongli-ma/RNANetMotif
34b4de443ec7edb59f4e4e06b17686543c438366
[ "MIT" ]
null
null
null
src/combine_npy.py
hongli-ma/RNANetMotif
34b4de443ec7edb59f4e4e06b17686543c438366
[ "MIT" ]
null
null
null
import numpy as np import sys import glob rbp=sys.argv[1] kmer=sys.argv[2] pfile_list=glob.glob("result_VDM3_"+rbp+"_positive_"+kmer+"_*.npy") pfile1=np.load(pfile_list[0]) psha=np.shape(pfile1) pmatrix=np.zeros(psha) for pfile in pfile_list: file=np.load(pfile) # file=np.fromfile(pfile,dtype=np.float32) pmatrix+=file np.save("positive_"+rbp+"_vdm3_nopaircontrol_distance_matrix_"+kmer+"mer.npy",pmatrix)
23.388889
86
0.750594
0
0
0
0
0
0
0
0
134
0.31829
7241a2c99b3dfd4732a6af0ad6cf19b2e1c6a517
1,238
py
Python
fgvcdata/__init__.py
catalys1/fgvc-data-pytorch
e2666d011c71308c4975776fbc41e947424f0723
[ "MIT" ]
4
2020-07-05T10:19:20.000Z
2021-09-15T08:22:36.000Z
fgvcdata/__init__.py
catalys1/fgvc-data-pytorch
e2666d011c71308c4975776fbc41e947424f0723
[ "MIT" ]
1
2020-11-13T22:01:47.000Z
2020-11-13T22:01:47.000Z
fgvcdata/__init__.py
catalys1/fgvc-data-pytorch
e2666d011c71308c4975776fbc41e947424f0723
[ "MIT" ]
null
null
null
'''A common interface to FGVC datasets. Currently supported datasets are - CUB Birds - CUB Birds with expert labels - NA Birds - Stanford Cars - Stanford Dogs - Oxford Flowers - Oxford FGVC Aircraft - Tsinghua Dogs Datasets are constructed and used following the pytorch data.utils.data.Dataset paradigm, and have the signature fgvcdata.Dataset(root='path/to/data/'[,transform[,target_transform[,train]]]) `root` is the path to the base folder for the dataset. Additionally, `root` can end in `/train` or `/test`, to indicate whether to use train or test data -- even if the root folder does not contain `train` or `test` subfolders. The use of training or test data can also be specified through the use of the `train` flag (the path extension on `root` takes precedence). `transform` and `target_transform` are optional callables that preprocess data and targets respectively. It is common to use the torchvision.transforms module for this. ''' from .birds import * from .cars import * from .dogs import * from .aircraft import * from .flowers import * from .icub import * IMAGENET_STATS = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) datasets = [] for f in [birds,icub,cars,dogs,aircraft,flowers]: datasets += f.__all__
29.47619
79
0.747981
0
0
0
0
0
0
0
0
952
0.768982
72422e4892bc1b2767ffe8812f2e9e5e44e84b64
10,491
py
Python
app/auth/api.py
Anti-Counter021/Anti-YouTube-back-end
eca9b26b4a1feb7e516c0164e86c5d6444af8db5
[ "MIT" ]
null
null
null
app/auth/api.py
Anti-Counter021/Anti-YouTube-back-end
eca9b26b4a1feb7e516c0164e86c5d6444af8db5
[ "MIT" ]
null
null
null
app/auth/api.py
Anti-Counter021/Anti-YouTube-back-end
eca9b26b4a1feb7e516c0164e86c5d6444af8db5
[ "MIT" ]
null
null
null
from typing import List from celery.result import AsyncResult from fastapi import APIRouter, status, Depends, Form, UploadFile, File, Request, WebSocket from fastapi.responses import RedirectResponse from app.auth import service from app.auth.models import User from app.auth.permission import is_active from app.auth.schemas import ( RegisterUser, VerificationUUID, Tokens, RefreshToken, AccessToken, Password, ChangeUserDataResponse, ChangeUserData, Channel, ChangePassword, Tasks, ) from app.config import oauth from app.db import async_session from app.schemas import Message from app.videos.schemas import GetVideo, SubscriptionsVideos auth_router = APIRouter() @auth_router.post( '/refresh', status_code=status.HTTP_200_OK, response_model=AccessToken, description='Refresh token', response_description='Access token', name='Refresh token', ) async def refresh(schema: RefreshToken): async with async_session() as session: async with session.begin(): return await service.refresh(session, schema) @auth_router.post( '/register', status_code=status.HTTP_201_CREATED, response_model=Message, description='Registration new user', response_description='User has been registration', name='Registration', ) async def register(schema: RegisterUser): async with async_session() as session: async with session.begin(): return await service.register(session, schema) @auth_router.post( '/activate', status_code=status.HTTP_200_OK, response_model=Message, description='Activation account', response_description='Account activated', name='Activation account', ) async def activate(schema: VerificationUUID): async with async_session() as session: async with session.begin(): return await service.activate(session, schema) @auth_router.post( '/login', response_model=Tokens, status_code=status.HTTP_200_OK, description='Login', response_description='Tokens', name='Login', ) async def login(username: str = Form(...), password: str = Form(...)): async with async_session() as session: async with session.begin(): return await service.login(session, username, password) @auth_router.post( '/follow', response_model=Message, status_code=status.HTTP_200_OK, description='Follow', response_description='Follow', name='Follow', ) async def follow(to_id: int, user: User = Depends(is_active)): async with async_session() as session: async with session.begin(): return await service.follow(session, to_id, user) @auth_router.post( '/unfollow', response_model=Message, status_code=status.HTTP_200_OK, description='Unfollow', response_description='Unfollow', name='Unfollow', ) async def unfollow(to_id: int, user: User = Depends(is_active)): async with async_session() as session: async with session.begin(): return await service.unfollow(session, to_id, user) @auth_router.get( '/request-password-reset', response_model=Message, status_code=status.HTTP_200_OK, description='Request reset password', response_description='Request reset password', name='Request reset password', ) async def create_reset_password(email: str): async with async_session() as session: async with session.begin(): return await service.create_reset_password(session, email) @auth_router.post( '/password-reset', response_model=Message, status_code=status.HTTP_200_OK, description='Reset password', response_description='Reset password', name='Reset password', ) async def verify_password_reset(token: str, schema: Password): async with async_session() as session: async with session.begin(): return await service.verify_password_reset(session, token, schema) @auth_router.post( '/username', response_model=Message, status_code=status.HTTP_200_OK, description='Get username from email', response_description='Get username from email', name='Get username', ) async def get_username(email: str): async with async_session() as session: async with session.begin(): return await service.get_username(session, email) @auth_router.get( '/change-data', response_model=ChangeUserDataResponse, status_code=status.HTTP_200_OK, description='Get user data', response_description='Get user data', name='Get user data', ) async def get_data(user: User = Depends(is_active)): return await service.get_data(user) @auth_router.put( '/change-data', response_model=ChangeUserDataResponse, status_code=status.HTTP_200_OK, description='Change user data', response_description='Change user data', name='Change user data', ) async def change_data(schema: ChangeUserData, user: User = Depends(is_active)): async with async_session() as session: async with session.begin(): return await service.change_data(session, schema, user) @auth_router.post( '/avatar', response_model=ChangeUserDataResponse, status_code=status.HTTP_200_OK, description='Upload avatar', response_description='Upload avatar', name='Upload avatar', ) async def upload_avatar(avatar: UploadFile = File(...), user: User = Depends(is_active)): async with async_session() as session: async with session.begin(): return await service.upload_avatar(session, avatar, user) @auth_router.get( '/history', response_model=List[GetVideo], status_code=status.HTTP_200_OK, description='Get history', response_description='Get history', name='History', ) async def get_history(user: User = Depends(is_active)): async with async_session() as session: async with session.begin(): return await service.get_history(session, user) @auth_router.get( '/channel', response_model=Channel, status_code=status.HTTP_200_OK, description='Get channel', response_description='Get channel', name='Get channel', ) async def get_channel(pk: int, request: Request): async with async_session() as session: async with session.begin(): return await service.get_channel(session, pk, request) @auth_router.get( '/channel/videos/{pk}', response_model=List[GetVideo], status_code=status.HTTP_200_OK, description='Get channel videos', response_description='Get channel videos', name='Get channel videos', ) async def get_channel_videos(pk: int): async with async_session() as session: async with session.begin(): return await service.get_channel_videos(session, pk) @auth_router.get( '/followed', response_model=List[SubscriptionsVideos], status_code=status.HTTP_200_OK, description='Subscriptions', response_description='Subscriptions', name='Subscriptions', ) async def subscriptions(user: User = Depends(is_active)): async with async_session() as session: async with session.begin(): return await service.subscriptions(session, user) @auth_router.put( '/change-password', response_model=Message, status_code=status.HTTP_200_OK, description='Change password', response_description='Change password', name='Change password', ) async def change_password(schema: ChangePassword, user: User = Depends(is_active)): async with async_session() as session: async with session.begin(): return await service.change_password(session, schema, user) @auth_router.post( '/2-auth', response_model=Tokens, status_code=status.HTTP_200_OK, description='2-step login', response_description='2-step login', name='2-step login', ) async def two_auth(username: str = Form(...), password: str = Form(...), code: str = Form(...)): async with async_session() as session: async with session.begin(): return await service.two_auth(session, username, password, code) @auth_router.get( '/2-auth-toggle', response_model=Message, status_code=status.HTTP_200_OK, description='On/off 2-step', response_description='On/off 2-step', name='On/off 2-step', ) async def toggle_2step_auth(user: User = Depends(is_active)): async with async_session() as session: async with session.begin(): return await service.toggle_2step_auth(session, user) @auth_router.get( '/google-login', description='Google login', response_description='Google login', name='Google login', status_code=status.HTTP_200_OK, ) async def google_login(request: Request): redirect_uri = 'http://localhost:8000/api/v1/auth/google-auth' return await oauth.google.authorize_redirect(request, redirect_uri) @auth_router.get( '/google-auth', response_class=RedirectResponse, description='Google auth', response_description='Google auth', name='Google auth', status_code=status.HTTP_200_OK, ) async def google_auth(request: Request): async with async_session() as session: async with session.begin(): token = await oauth.google.authorize_access_token(request) user = await oauth.google.parse_id_token(request, token) return await service.google_auth(session, user) @auth_router.post( '/export', response_model=Tasks, status_code=status.HTTP_200_OK, description='Export data', response_description='Export data', name='Export data', ) async def export(user: User = Depends(is_active)): async with async_session() as session: async with session.begin(): return await service.export(session, user) @auth_router.websocket('/task-status') async def task_status(websocket: WebSocket): await websocket.accept() while True: task_id = await websocket.receive_text() task = AsyncResult(task_id) if task.status == 'PENDING': response = { 'state': task.state, 'progress': 0, } await websocket.send_json(response) else: response = { 'state': task.state, 'progress': task.info.get('progress', 0), } await websocket.send_json(response) if task.info.get('progress') == 100: break
29.304469
96
0.691354
0
0
0
0
9,708
0.925365
5,090
0.485178
1,417
0.135068
7242536c3707c16822eadee50c71c7b05cdd3796
7,768
py
Python
concourse/steps/scan_container_images.py
jia-jerry/cc-utils
01322d2acb7343c92138dcf0b6ac913b276525bc
[ "Apache-2.0" ]
null
null
null
concourse/steps/scan_container_images.py
jia-jerry/cc-utils
01322d2acb7343c92138dcf0b6ac913b276525bc
[ "Apache-2.0" ]
null
null
null
concourse/steps/scan_container_images.py
jia-jerry/cc-utils
01322d2acb7343c92138dcf0b6ac913b276525bc
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 SAP SE or an SAP affiliate company. All rights reserved. This file is licensed # under the Apache Software License, v. 2 except as noted otherwise in the LICENSE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import textwrap import typing import tabulate import clamav.util import mailutil from concourse.model.traits.image_scan import Notify from product.model import ComponentName, UploadResult class MailRecipients(object): def __init__( self, root_component_name: str, protecode_cfg, protecode_group_id: int, protecode_group_url: str, cfg_set, result_filter=None, recipients: typing.List[str]=[], recipients_component: ComponentName=None, ): self._root_component_name = root_component_name self._result_filter = result_filter self._protecode_results = [] self._clamav_results = [] self._cfg_set = cfg_set if not bool(recipients) ^ bool(recipients_component): raise ValueError('exactly one of recipients, component_name must be given') self._recipients = recipients self._recipients_component= recipients_component self._protecode_cfg = protecode_cfg self._protecode_group_id = protecode_group_id self._protecode_group_url = protecode_group_url @functools.lru_cache() def resolve_recipients(self): if not self._recipients_component: return self._recipients # XXX it should not be necessary to pass github_cfg return mailutil.determine_mail_recipients( github_cfg_name=self._cfg_set.github().name(), component_names=(self._recipients_component.name(),), ) def add_protecode_results(self, results: typing.Iterable[typing.Tuple[UploadResult, int]]): print(f'adding protecode results for {self}') for result in results: if self._result_filter: if not self._result_filter(component=result[0].component): print(f'did not match: {result[0].component.name()}') continue self._protecode_results.append(result) def add_clamav_results(self, results): for result in results: self._clamav_results.append(result) def has_results(self): if self._protecode_results: return True if self._clamav_results: return True def mail_body(self): parts = [] parts.append(self._mail_disclaimer()) parts.append(protecode_results_table( protecode_cfg=self._protecode_cfg, upload_results=self._protecode_results, ) ) parts.append(self._clamav_report()) return ''.join(parts) def _mail_disclaimer(self): return textwrap.dedent(f''' <div> <p> Note: you receive this E-Mail, because you were configured as a mail recipient in repository "{self._root_component_name}" (see .ci/pipeline_definitions) To remove yourself, search for your e-mail address in said file and remove it. </p> <p> The following components in Protecode-group <a href="{self._protecode_group_url}">{self._protecode_group_id}</a> were found to contain critical vulnerabilities: </p> </div> ''') def _clamav_report(self): if not self._clamav_results: return textwrap.dedent(f''' <p>Scanned all container image(s) for matching virus signatures without any matches (id est: all container images seem to be free of known malware) ''') result = '<p><div>Virus Scanning Results</div>' return result + tabulate.tabulate( self._clamav_results, headers=('Image-Reference', 'Scanning Result'), tablefmt='html', ) def __repr__(self): if self._recipients_component: descr = f'component {self._recipients_component.name()}' else: descr = 'for all results' return 'MailRecipients: ' + descr def mail_recipients( notification_policy: Notify, root_component_name:str, protecode_cfg, protecode_group_id: int, protecode_group_url: str, cfg_set, email_recipients: typing.Iterable[str]=(), components: typing.Iterable[ComponentName]=(), ): mail_recps_ctor = functools.partial( MailRecipients, root_component_name=root_component_name, protecode_cfg=protecode_cfg, protecode_group_id=protecode_group_id, protecode_group_url=protecode_group_url, cfg_set=cfg_set, ) notification_policy = Notify(notification_policy) if notification_policy == Notify.EMAIL_RECIPIENTS: if not email_recipients: raise ValueError('at least one email_recipient must be specified') # exactly one MailRecipients, catching all (hence no filter) yield mail_recps_ctor( recipients=email_recipients, ) elif notification_policy == Notify.NOBODY: return elif notification_policy == Notify.COMPONENT_OWNERS: def make_comp_filter(own_component): def comp_filter(component): print(f'filter: component: {own_component.name()} - other: {component.name()}') return own_component.name() == component.name() # only care about matching results return comp_filter for comp in components: yield mail_recps_ctor( recipients_component=comp, result_filter=make_comp_filter(own_component=comp) ) else: raise NotImplementedError() def virus_scan_images(image_references: typing.Iterable[str]): for image_reference in image_references: status, signature = clamav.util.scan_container_image(image_reference=image_reference) if clamav.util.result_ok(status=status, signature=signature): continue yield (image_reference, f'{status}: {signature}') def protecode_results_table(protecode_cfg, upload_results: typing.Iterable[UploadResult]): def result_to_tuple(upload_result: UploadResult): # upload_result tuple of product.model.UploadResult and CVE Score upload_result, greatest_cve = upload_result # protecode.model.AnalysisResult analysis_result = upload_result.result name = analysis_result.display_name() analysis_url = \ f'{protecode_cfg.api_url()}/products/{analysis_result.product_id()}/#/analysis' link_to_analysis_url = f'<a href="{analysis_url}">{name}</a>' custom_data = analysis_result.custom_data() if custom_data is not None: image_reference = custom_data.get('IMAGE_REFERENCE') else: image_reference = None return [link_to_analysis_url, greatest_cve, image_reference] table = tabulate.tabulate( map(result_to_tuple, upload_results), headers=('Component Name', 'Greatest CVE', 'Container Image Reference'), tablefmt='html', ) return table
36.299065
99
0.660788
3,806
0.489959
1,944
0.250257
382
0.049176
0
0
2,415
0.310891
72430bcb51d12558e07e88c7e1a6d221c05d6f85
647
py
Python
py/cv/video.py
YodaEmbedding/experiments
567c6a1c18fac2d951fe2af54aaa4917b7d529d2
[ "MIT" ]
null
null
null
py/cv/video.py
YodaEmbedding/experiments
567c6a1c18fac2d951fe2af54aaa4917b7d529d2
[ "MIT" ]
null
null
null
py/cv/video.py
YodaEmbedding/experiments
567c6a1c18fac2d951fe2af54aaa4917b7d529d2
[ "MIT" ]
null
null
null
import cv2 import numpy as np height = 500 width = 700 gray = np.zeros((height, width), dtype=np.uint8) # fourcc = cv2.VideoWriter_fourcc(*"MJPG") # filename = "output.avi" fourcc = cv2.VideoWriter_fourcc(*"MP4V") filename = "output.mp4" writer = cv2.VideoWriter( filename, fourcc, fps=30, frameSize=(width, height), isColor=False ) # NOTE isColor doesn't seem to influence resulting file size xs = np.arange(width // 10) ys = np.arange(height // 10) locations = np.dstack(np.meshgrid(ys, xs)).reshape(-1, 2) for y, x in locations: gray[y, x] = 255 # gray_3c = cv2.merge([gray, gray, gray]) writer.write(gray) writer.release()
24.884615
70
0.689335
0
0
0
0
0
0
0
0
186
0.287481
72450375a565716f2e2d7e0a06b152a00332048e
1,062
py
Python
po/loginpage.py
imzengyang/datadrivertestexample
a37520c2f5f0ae6dfbcaaa371586ba7e98540537
[ "MIT" ]
1
2018-06-03T05:31:46.000Z
2018-06-03T05:31:46.000Z
po/loginpage.py
imzengyang/datadrivertestexample
a37520c2f5f0ae6dfbcaaa371586ba7e98540537
[ "MIT" ]
null
null
null
po/loginpage.py
imzengyang/datadrivertestexample
a37520c2f5f0ae6dfbcaaa371586ba7e98540537
[ "MIT" ]
null
null
null
from po.base import BasePage from po.base import InvalidPageException class LoginPage(BasePage): _login_view_locator = ".active" _login_name_selector = "#name" _login_passwd_selector = "#pass" _login_btn_selector = ".span-primary" _login_error_msg_selector='.alert strong' def __init__(self, driver): super(LoginPage, self).__init__(driver) def user_login(self,username,passwd): self.driver.find_element_by_css_selector(self._login_name_selector).send_keys(username) self.driver.find_element_by_css_selector(self._login_passwd_selector).send_keys(passwd) self.driver.find_element_by_css_selector(self._login_btn_selector).click() @property def error_msg(self): return self.driver.find_element_by_css_selector(self._login_error_msg_selector).text.strip() # def _validate_page(self, driver): # try: # driver.find_element_by_css_selector(self._product_view_locator).text # except: # raise InvalidPageException('login page not loaded')
33.1875
100
0.733522
990
0.932203
0
0
135
0.127119
0
0
251
0.236347
724561c601c848d5d6d0e629507abb99ee03ff0a
1,329
py
Python
app.py
jesseokeya/linkedin-scraper
6b9d5af5167c8c936db63a855a9885728efbfeb5
[ "MIT" ]
null
null
null
app.py
jesseokeya/linkedin-scraper
6b9d5af5167c8c936db63a855a9885728efbfeb5
[ "MIT" ]
1
2020-01-04T19:33:58.000Z
2021-09-07T15:03:03.000Z
app.py
jesseokeya/linkedin-scraper
6b9d5af5167c8c936db63a855a9885728efbfeb5
[ "MIT" ]
1
2021-12-02T06:51:46.000Z
2021-12-02T06:51:46.000Z
from lib import Scrape from typing import List from os import environ def main(): seconds: int = 60 username: str = environ.get('EMAIL') password: str = environ.get('PASSWORD') # Navigates to Linkedin's website scraper = Scrape() # Takes in credentials to login into the url sepecified scraper.login(username=username, password=password) # Navigate to specified pages on the website scraper.navigate_to('profile', duration=2) scraper.navigate_to( multiple=['notifications', 'messages', 'network', 'jobs', 'home'], duration=2 ) # Scroll to the bottom of page for 10 seconds # The longer you scroll the more data you collect from linkedin scraper.scroll_to_bottom(10) # Returns a list of all images on website images: List[str] = scraper.retrieve_images() # Returns a list of all videos on website videos: List[str] = scraper.retrieve_videos() # Build data scrapped into a set file_data: set = { 'images': images, 'videos': videos } # print scrapped information before saving to file print(file_data) # create and write file data to json file scraper.write_file(file_data, 'data.json') # Uncomment to end the selenium chrome driver after 60 seconds # scraper.end(seconds) main()
27.122449
74
0.678706
0
0
0
0
0
0
0
0
628
0.472536
724593364a3fe88c699961a3b8ddb8f17f617e15
100
py
Python
Loops/for_in.py
1302580MK/Udemy_Python
c7aef0645ae15a954c2356ba96288deaa087fb32
[ "MIT" ]
null
null
null
Loops/for_in.py
1302580MK/Udemy_Python
c7aef0645ae15a954c2356ba96288deaa087fb32
[ "MIT" ]
null
null
null
Loops/for_in.py
1302580MK/Udemy_Python
c7aef0645ae15a954c2356ba96288deaa087fb32
[ "MIT" ]
null
null
null
var1 = "hello world" # left what you get from the right for character in var1: print(character)
20
34
0.72
0
0
0
0
0
0
0
0
47
0.47
7247650bb946b4cd8155dc4709b0e70976c42ea4
546
py
Python
forum/migrations/0003_auto_20190307_1825.py
AdityaJ42/DJ-Comps-Book-Exchange
12bba45f016e1b708477c642c2595b7f15e3dcfc
[ "MIT" ]
null
null
null
forum/migrations/0003_auto_20190307_1825.py
AdityaJ42/DJ-Comps-Book-Exchange
12bba45f016e1b708477c642c2595b7f15e3dcfc
[ "MIT" ]
null
null
null
forum/migrations/0003_auto_20190307_1825.py
AdityaJ42/DJ-Comps-Book-Exchange
12bba45f016e1b708477c642c2595b7f15e3dcfc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2019-03-07 12:55 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('forum', '0002_upvote'), ] operations = [ migrations.AlterField( model_name='upvote', name='comment', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='upvotes', to='forum.Comment'), ), ]
24.818182
125
0.64652
355
0.650183
0
0
0
0
0
0
132
0.241758
724a427f96e1eeeba039df150a14e4acaeb34725
495
py
Python
datahub/event/migrations/0018_move_to_metadata_trade_agreement.py
Staberinde/data-hub-api
3d0467dbceaf62a47158eea412a3dba827073300
[ "MIT" ]
6
2019-12-02T16:11:24.000Z
2022-03-18T10:02:02.000Z
datahub/event/migrations/0018_move_to_metadata_trade_agreement.py
Staberinde/data-hub-api
3d0467dbceaf62a47158eea412a3dba827073300
[ "MIT" ]
1,696
2019-10-31T14:08:37.000Z
2022-03-29T12:35:57.000Z
datahub/event/migrations/0018_move_to_metadata_trade_agreement.py
Staberinde/data-hub-api
3d0467dbceaf62a47158eea412a3dba827073300
[ "MIT" ]
9
2019-11-22T12:42:03.000Z
2021-09-03T14:25:05.000Z
# Generated by Django 3.1.7 on 2021-04-08 11:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('metadata', '0009_tradeagreement'), ('event', '0017_add_related_trade_agreement_fields'), ] operations = [ migrations.AlterField( model_name='event', name='related_trade_agreements', field=models.ManyToManyField(blank=True, to='metadata.TradeAgreement'), ), ]
24.75
83
0.638384
402
0.812121
0
0
0
0
0
0
184
0.371717
724a51915fb64beb06bbeb6fa5488524f3f99f3f
16,905
py
Python
pbs/scripts/update_burn_dataOLD.py
jawaidm/pbs
87f5c535c976d6a5eccbfbbf2073589b6e366d04
[ "Apache-2.0" ]
null
null
null
pbs/scripts/update_burn_dataOLD.py
jawaidm/pbs
87f5c535c976d6a5eccbfbbf2073589b6e366d04
[ "Apache-2.0" ]
12
2019-10-22T23:16:38.000Z
2022-03-11T23:17:45.000Z
pbs/scripts/update_burn_dataOLD.py
jawaidm/pbs
87f5c535c976d6a5eccbfbbf2073589b6e366d04
[ "Apache-2.0" ]
5
2019-12-19T06:18:42.000Z
2022-01-07T01:16:18.000Z
''' ---------------------------------------------------------------------------------------- This script will update the Prescribed Burn System's ePFP data according to txt input files found in the relevant scripts folder. It requires user input of the Corporate Executive Approval date, which it will then use to set PREVIOUS_YEAR, TARGET_YEAR, DATE_APPROVED and DATE_APPROVED_TO variables used by relevant functions in the script. Sample output below: Please enter the date that the Burn Program was approved by Corporate Executive (dd/mm/yyyy): 03/07/2019 Script will run with the following details: - Previous Year: 2018/2019 - Target Year: 2019/2020 - Script Data Folder: pbs/scripts/eofy_data/2019 Do you wish to continue [y/n]? y Updating financial year and setting planning status modified date for carry over currently approved ePFPs from 2018/2019. Total prescriptions in query: 331 Financial year for ABC_123(2013/2014) is not 2018/2019 or already in 2019/2020. Updated financial year and set planning status modified date for 330 carry over currently approved ePFPs Applying corporate approval and setting planning status modified date for ePFPs currently seeking approval in 2019/2020. Total prescriptions in query: 51 Applied corporate approval and set planning status modified date for 51 ePFPs that were seeking approval Updating financial year only selected ePFPs from 2018/2019 Total prescriptions in query: 330 Financial year for ABC_123(2013/2014) is not 2018/2019. Updated financial year only for 0 ePFPs 329 records already in 2019/2020 Updating priority for selected ePFPs in 2019/2020 Financial year for ABC_123(2013/2014) is not 2019/2020. Updated priority for 412 ePFPs (expected 412) Updating area for selected ePFPs in 2019/2020 Financial year for ABC_123(2013/2014) is not 2019/2020. Updated area for 412 ePFPs (expected 412) Updating perimeters for selected ePFPs in 2019/2020 Financial year for ABC_123(2013/2014) is not 2019/2020. Updated perimeter for 412 ePFPs (expected 412) Updating overall rationale for selected ePFPs in 2019/2020 Financial year for ABC_123(2013/2014) is not 2019/2020. Updated rationale for 168 ePFPs (expected 168) ---------------------------------------------------------------------------------------- ''' import os import sys import confy from django.db import transaction from django.core.wsgi import get_wsgi_application from decimal import Decimal import csv from datetime import datetime, date import pytz application = get_wsgi_application() # This is so models get loaded. try: confy.read_environment_file('.env') except: print('ERROR: Script must be runs from PROJECT BASE_DIR') exit() proj_path = os.getcwd() sys.path.append(proj_path) os.chdir(proj_path) # ---------------------------------------------------------------------------------------- # Script starts here # ---------------------------------------------------------------------------------------- from pbs.prescription.models import Prescription def read_ids(filename): return [i[0] for i in list(csv.reader(open(filename), delimiter=',', quotechar='"'))] def read_ids_pipe_separated(filename): return [i[0] for i in list(csv.reader(open(filename), delimiter='|', quotechar='"'))] def read_id_tuples(filename): return [tuple(i) for i in list(csv.reader(open(filename), delimiter=',', quotechar='"'))] def read_id_tuples_pipe_separated(filename): return [tuple(i) for i in list(csv.reader(open(filename), delimiter='|', quotechar='"'))] def carryover_currently_approved(ids): # Used to update the financial year of existing corporate approved ePFPs from previous year # Also updates the date modified of the Planning Status (approval date) print('\nUpdating financial year and setting planning status ' 'modified date for carry over currently approved ePFPs from {}.'.format(PREVIOUS_YEAR)) count = 0 print('Total prescriptions in query: {}'.format(Prescription.objects.filter(burn_id__in=ids).count())) for p in Prescription.objects.filter(burn_id__in=ids).order_by('burn_id'): # Only update if the ePFP is in PREVIOUS_YEAR or if it has already been changed to TARGET_YEAR # and no remaining records for PREVIOUS_YEAR exist if (p.financial_year == PREVIOUS_YEAR or (p.financial_year == TARGET_YEAR and Prescription.objects.filter(burn_id=p.burn_id, financial_year=PREVIOUS_YEAR).count() == 0)): if p.planning_status != 3: # only apply if corporate approved print('Planning status for {} is not currently corporate approved.'.format(str(p.burn_id))) else: if p.status != 2: # burn status must not be closed p.financial_year = TARGET_YEAR p.planning_status_modified = DATE_APPROVED p.save() count += 1 else: print('Burn status for {} is closed'.format(str(p.burn_id))) else: print('Financial year for {}({}) is not {} or already in {}.' .format(str(p.burn_id), p.financial_year, PREVIOUS_YEAR, TARGET_YEAR)) print('Updated financial year and set planning status modified date ' 'for {} carry over currently approved ePFPs'.format(count)) def update_seeking_approval(ids): # Used to apply corporate approval to ePFPs (usually for list of ePFPs currently seeking approval) # Also updates the date modified of the Planning Status (approval date) print('\nApplying corporate approval and setting planning status' ' modified date for ePFPs currently seeking approval in {}.'.format(TARGET_YEAR)) count = 0 print('Total prescriptions in query: {}'.format(Prescription.objects.filter(burn_id__in=ids).count())) for p in Prescription.objects.filter(burn_id__in=ids).order_by('burn_id'): # Only update if the ePFP is in PREVIOUS_YEAR or if it has already been changed to TARGET_YEAR # and no remaining records for PREVIOUS_YEAR exist if (p.financial_year == PREVIOUS_YEAR or (p.financial_year == TARGET_YEAR and Prescription.objects.filter(burn_id=p.burn_id, financial_year=PREVIOUS_YEAR).count() == 0)): if p.planning_status != 2: # only apply if seeking corporate approval print('Planning status for {} is not currently seeking corporate approval.'.format(str(p.burn_id))) else: if p.status != 2: # burn status must not be closed p.planning_status = 3 # corporate approved p.planning_status_modified = DATE_APPROVED p.save() count += 1 else: print('Burn status for {} is closed'.format(str(p.burn_id))) else: print('Financial year for {}({}) is not {} or already in {}.' .format(str(p.burn_id), p.financial_year, PREVIOUS_YEAR, TARGET_YEAR)) print('Applied corporate approval and set planning status modified date ' 'for {} ePFPs that were seeking approval'.format(count)) def update_financial_year(ids): # Used to update the financial year of existing ePFPs from previous year print('\nUpdating financial year only selected ePFPs from {}'.format(PREVIOUS_YEAR)) count = 0 already_in_target_year = 0 print('Total prescriptions in query: {}'.format(Prescription.objects.filter(burn_id__in=ids).count())) for p in Prescription.objects.filter(burn_id__in=ids).order_by('burn_id'): if p.financial_year != PREVIOUS_YEAR: if p.financial_year == TARGET_YEAR: already_in_target_year += 1 else: print('Financial year for {}({}) is not {}.'.format(str(p.burn_id), p.financial_year, PREVIOUS_YEAR)) else: p.financial_year = TARGET_YEAR p.save() count += 1 print('Updated financial year only for {} ePFPs'.format(count)) print('{} records already in {}'.format(already_in_target_year, TARGET_YEAR)) def update_seeking_approval_2(ids): # Used to apply corporate approval to ePFPs (usually for list of ePFPs currently seeking approval) # from previous year # Also updates the date modified of the Planning Status (approval date) # and updates the valid_to date of an existing approval to enable access to the ePFP # as part of the Daily Burn Program 268 process print('\nApplying corporate approval and setting planning status modified date ' 'for ePFPs currently seeking approval in {}.'.format(TARGET_YEAR)) print('Also set valid_to date for approval for Daily Burn Program access') count = 0 print('Total prescriptions in query: {}'.format(Prescription.objects.filter(burn_id__in=ids).count())) for p in Prescription.objects.filter(burn_id__in=ids).order_by('burn_id'): if p.financial_year != TARGET_YEAR: print('Financial year for {}({}) is not {}.'.format(str(p.burn_id), p.financial_year, TARGET_YEAR)) else: if p.planning_status != 2: # only apply if seeking corporate approval print('Planning status for {} is not currently seeking corporate approval.'.format(str(p.burn_id))) else: if p.status != 2: # burn status must not be closed p.planning_status = 3 # corporate approved p.financial_year = TARGET_YEAR # season p.planning_status_modified = DATE_APPROVED # approval date a = p.approval_set.all() if len(a) > 0: a[0].valid_to = DATE_APPROVED_TO # approved until date a[0].save() p.save() count += 1 else: print('Burn status for {} is closed'.format(str(p.burn_id))) print('Applied corporate approval and set planning status modified date ' 'for {} ePFPs that were seeking approval'.format(count)) def update_burn_priority(id_priority_pairs): # Used to update the priority of the listed ePFPs print('\nUpdating priority for selected ePFPs in {}'.format(TARGET_YEAR)) count = 0 data_count = 0 for burn_id, priority in id_priority_pairs: for p in Prescription.objects.filter(burn_id=burn_id).order_by('burn_id'): if p.financial_year != TARGET_YEAR: print('Financial year for {}({}) is not {}.'.format(str(p.burn_id), p.financial_year, TARGET_YEAR)) else: p.priority = int(priority) p.save() count += 1 data_count += 1 print 'Updated priority for {} ePFPs (expected {})'.format(count, data_count) def update_burn_areas(id_burn_area_pairs): # Used to update the area of the listed ePFPs print('\nUpdating area for selected ePFPs in {}'.format(TARGET_YEAR)) count = 0 data_count = 0 for burn_id, area in id_burn_area_pairs: for p in Prescription.objects.filter(burn_id=burn_id).order_by('burn_id'): if p.financial_year != TARGET_YEAR: print('Financial year for {}({}) is not {}.'.format(str(p.burn_id), p.financial_year, TARGET_YEAR)) else: p.area = Decimal(area) p.save() count += 1 data_count += 1 print 'Updated area for {} ePFPs (expected {})'.format(count, data_count) def update_burn_perimeters(id_perimeter_pairs): # Used to update the perimeters of the listed ePFPs print('\nUpdating perimeters for selected ePFPs in {}'.format(TARGET_YEAR)) count = 0 data_count = 0 for burn_id, perimeter in id_perimeter_pairs: for p in Prescription.objects.filter(burn_id=burn_id).order_by('burn_id'): if p.financial_year != TARGET_YEAR: print('Financial year for {}({}) is not {}.'.format(str(p.burn_id), p.financial_year, TARGET_YEAR)) else: p.perimeter = Decimal(perimeter) p.save() count += 1 data_count += 1 print 'Updated perimeter for {} ePFPs (expected {})'.format(count, data_count) def update_overall_rationales(id_overall_rationale_pairs): # Used to update the overall rationale of the listed ePFPs print('\nUpdating overall rationale for selected ePFPs in {}'.format(TARGET_YEAR)) count = 0 data_count = 0 for burn_id, rationale in id_overall_rationale_pairs: for p in Prescription.objects.filter(burn_id=burn_id).order_by('burn_id'): if p.financial_year != TARGET_YEAR: print('Financial year for {}({}) is not {}.'.format(str(p.burn_id), p.financial_year, TARGET_YEAR)) else: p.rationale = rationale p.save() count += 1 data_count += 1 print 'Updated rationale for {} ePFPs (expected {})'.format(count, data_count) def print_burnstate_reviewed(ids): count = 0 for p in Prescription.objects.filter(burn_id__in=ids, financial_year=TARGET_YEAR).order_by('burn_id'): if p.burnstate.all(): # and not reviewable(p): print p.burn_id, ';', [i.record for i in p.burnstate.all()], ';', reviewable(p) def delete_burnstate_unreviewed(ids): count = 0 for p in Prescription.objects.filter(burn_id__in=ids, financial_year=TARGET_YEAR).order_by('burn_id'): if p.burnstate.all() and not reviewable(p): b = p.burnstate.all() b.delete() def reviewable(prescription): p = Prescription.objects.filter( id=prescription.id, approval_status=Prescription.APPROVAL_APPROVED, status=Prescription.STATUS_OPEN, ignition_status__in=[Prescription.IGNITION_NOT_STARTED, Prescription.IGNITION_COMMENCED], financial_year=TARGET_YEAR ).order_by('burn_id') return True if p else False if __name__ == "__main__": try: SCRIPT_FOLDER = 'pbs/scripts' DATE_APPROVED_INPUT = raw_input("Please enter the date that the Burn Program was approved " "by Corporate Executive (dd/mm/yyyy): ") DATE_APPROVED = datetime.strptime(DATE_APPROVED_INPUT, '%d/%m/%Y').replace(tzinfo=pytz.UTC) if DATE_APPROVED.month != 7 or DATE_APPROVED.year != date.today().year: print('Can only run this script in July of the current year') sys.exit() DATE_APPROVED_TO = date(DATE_APPROVED.year, 9, 30) PREVIOUS_YEAR = '{}/{}'.format(DATE_APPROVED.year-1, DATE_APPROVED.year) TARGET_YEAR = '{}/{}'.format(DATE_APPROVED.year, DATE_APPROVED.year+1) SCRIPT_DATA_FOLDER = '{}/eofy_data/{}'.format(SCRIPT_FOLDER, TARGET_YEAR.split('/')[0]) except BaseException: print('Error') sys.exit() print('\nScript will run with the following details:') print(' - Previous Year: {}'.format(PREVIOUS_YEAR)) print(' - Target Year: {}'.format(TARGET_YEAR)) print(' - Script Data Folder: {}/'.format(SCRIPT_DATA_FOLDER)) CONTINUE_INPUT = raw_input("Do you wish to continue [y/n]? ") if CONTINUE_INPUT == 'y': try: with transaction.atomic(): corp_approved_carryover_ids = read_ids('{}/corp_approved_carryover.txt'.format(SCRIPT_DATA_FOLDER)) carryover_currently_approved(corp_approved_carryover_ids) seeking_approval_ids = read_ids('{}/approve_seeking_approval.txt'.format(SCRIPT_DATA_FOLDER)) update_seeking_approval(seeking_approval_ids) update_financial_year_ids = read_ids('{}/financial_year_only.txt'.format(SCRIPT_DATA_FOLDER)) update_financial_year(update_financial_year_ids) burn_priority_tuples = read_id_tuples('{}/burn_priority.txt'.format(SCRIPT_DATA_FOLDER)) update_burn_priority(burn_priority_tuples) burn_area_tuples = read_id_tuples('{}/burn_areas.txt'.format(SCRIPT_DATA_FOLDER)) update_burn_areas(burn_area_tuples) burn_perimeter_tuples = read_id_tuples('{}/burn_perimeters.txt'.format(SCRIPT_DATA_FOLDER)) update_burn_perimeters(burn_perimeter_tuples) overall_rationale_tuples = read_id_tuples_pipe_separated('{}/overall_rationales.txt' .format(SCRIPT_DATA_FOLDER)) update_overall_rationales(overall_rationale_tuples) except BaseException: print('Error') else: sys.exit()
47.089136
125
0.644898
0
0
0
0
0
0
0
0
6,924
0.409583
724b92184d8f2e9819e55008805cce856be796bd
4,012
py
Python
learnware/algorithm/anomaly_detect/iforest.py
marvinren/aiops_gaussian_learnware
47683546d6648a38bb71988c33f959cf7308376f
[ "Apache-2.0" ]
null
null
null
learnware/algorithm/anomaly_detect/iforest.py
marvinren/aiops_gaussian_learnware
47683546d6648a38bb71988c33f959cf7308376f
[ "Apache-2.0" ]
null
null
null
learnware/algorithm/anomaly_detect/iforest.py
marvinren/aiops_gaussian_learnware
47683546d6648a38bb71988c33f959cf7308376f
[ "Apache-2.0" ]
null
null
null
import numpy as np from scipy.stats import binom from sklearn.ensemble import IsolationForest from sklearn.preprocessing import MinMaxScaler from scipy.special import erf from learnware.algorithm.anomaly_detect.base import BaseAnomalyDetect class iForest(BaseAnomalyDetect): def __init__(self, n_estimators=100, max_samples="auto", contamination=0.1, max_features=1., bootstrap=False, n_jobs=1, behaviour='old', random_state=None, verbose=0): super(iForest, self).__init__() self.contamination = contamination self.n_estimators = n_estimators self.max_samples = max_samples self.max_features = max_features self.bootstrap = bootstrap self.n_jobs = n_jobs self.behaviour = behaviour self.random_state = random_state self.verbose = verbose # 内部算法的检测器 self.detector_ = None self.decision_scores_ = None self.threshold_ = None self.labels_ = None def fit(self, X, y=None): self.detector_ = IsolationForest(n_estimators=self.n_estimators, max_samples=self.max_samples, contamination=self.contamination, max_features=self.max_features, bootstrap=self.bootstrap, n_jobs=self.n_jobs, random_state=self.random_state, verbose=self.verbose) X = self._data_type_transform(X) self.detector_.fit(X, y=None, sample_weight=None) self.decision_function(X) self._decision_threshold_process() return self def predict(self, X, return_confidence=False): X = self._data_type_transform(X) if self.detector_ is None: raise EOFError("detector not found, please fit the train data.") pred_score = self.decision_function(X) prediction = np.ones_like(pred_score, dtype=int) prediction[pred_score < self.threshold_] = -1 if return_confidence: confidence = self.predict_confidence(X) return prediction, confidence return prediction def decision_function(self, X): if self.detector_ is None: raise EOFError("detector not found, please fit the train data.") self.decision_scores_ = self.detector_.decision_function(X) return self.decision_scores_ def _decision_threshold_process(self): self.threshold_ = np.percentile(self.decision_scores_, 100 * self.contamination) self.labels_ = (self.decision_scores_ > self.threshold_).astype( 'int').ravel() self._mu = np.mean(self.decision_scores_) self._sigma = np.std(self.decision_scores_) return self def predict_confidence(self, X): n = len(self.decision_scores_) test_scores = self.decision_function(X) count_instances = np.vectorize( lambda x: np.count_nonzero(self.decision_scores_ <= x)) n_instances = count_instances(test_scores) # Derive the outlier probability using Bayesian approach posterior_prob = np.vectorize(lambda x: (1 + x) / (2 + n))(n_instances) # Transform the outlier probability into a confidence value confidence = np.vectorize( lambda p: 1 - binom.cdf(n - np.int(n * self.contamination), n, p))( posterior_prob) prediction = (test_scores > self.threshold_).astype('int').ravel() np.place(confidence, prediction == 0, 1 - confidence[prediction == 0]) return confidence def _data_type_transform(self, X): if type(X) is list: return np.array(X).reshape(-1, 1) return X
37.148148
79
0.598704
3,783
0.939176
0
0
0
0
0
0
258
0.064052
724cda3b3a14ff18ab5608878c35ee486f9afa69
217
py
Python
noxfile.py
rshnn/Practical-RL
f7688e224a342c7f67478f2c4cd6bb7b1a122205
[ "MIT" ]
3
2022-02-14T17:59:56.000Z
2022-02-15T10:08:43.000Z
noxfile.py
rshnn/Practical-RL
f7688e224a342c7f67478f2c4cd6bb7b1a122205
[ "MIT" ]
21
2021-11-02T21:35:26.000Z
2022-01-17T18:50:42.000Z
noxfile.py
rshnn/Practical-RL
f7688e224a342c7f67478f2c4cd6bb7b1a122205
[ "MIT" ]
2
2021-11-24T15:25:17.000Z
2022-02-14T19:04:56.000Z
from nox import session @session(reuse_venv=True) def docs(session): session.install("jupyter-book", "sphinx-sitemap", "jupyterbook-latex") # we need _config.yml _toc.yml session.run("jb", "build", ".")
24.111111
74
0.686636
0
0
0
0
190
0.875576
0
0
93
0.428571
724da380c925fd0be608bd11f30b6d426eb5746d
27
py
Python
megnet/data/__init__.py
abdalazizrashid/megnet
8ad0fca246465bd57d66392f790c5310c610dfff
[ "BSD-3-Clause" ]
367
2018-12-13T14:49:00.000Z
2022-03-31T10:17:04.000Z
megnet/data/__init__.py
kdmsit/MEGNet
4f3c76c6b99edcb41d52ae5e8ae9dc89956d33d1
[ "MIT" ]
162
2019-02-08T20:38:12.000Z
2022-03-31T21:13:06.000Z
megnet/data/__init__.py
kdmsit/MEGNet
4f3c76c6b99edcb41d52ae5e8ae9dc89956d33d1
[ "MIT" ]
119
2018-12-17T10:16:12.000Z
2022-03-31T17:26:57.000Z
""" Data manipulations """
6.75
18
0.62963
0
0
0
0
0
0
0
0
26
0.962963
7252008c26b1662083a1400694c806c34e33ed67
910
py
Python
graviteeio_cli/lint/functions/length.py
gravitee-io/gravitee-cli
8e3bf9f2c0c2873e0f6e67f8fcaf0d3b6c44b3ca
[ "Apache-2.0" ]
12
2019-05-29T20:06:01.000Z
2020-10-07T07:40:27.000Z
graviteeio_cli/lint/functions/length.py
gravitee-io/graviteeio-cli
0e0069b00ce40813efc7d40142a6dc4b4ec7a261
[ "Apache-2.0" ]
41
2019-11-04T18:18:18.000Z
2021-04-22T16:12:51.000Z
graviteeio_cli/lint/functions/length.py
gravitee-io/gravitee-cli
8e3bf9f2c0c2873e0f6e67f8fcaf0d3b6c44b3ca
[ "Apache-2.0" ]
6
2019-06-18T04:27:49.000Z
2021-06-02T17:52:24.000Z
from graviteeio_cli.lint.types.function_result import FunctionResult def length(value, **kwargs): """Count the length of a string an or array, the number of properties in an object, or a numeric value, and define minimum and/or maximum values.""" min = None max = None if "min" in kwargs and type(kwargs["min"]) is int: min = kwargs["min"] if "max" in kwargs and type(kwargs["max"]) is int: max = kwargs["max"] value_length = 0 if value: if type(value) is (int or float): value_length = value else: value_length = len(value) results = [] if min and value_length < min: results.append( FunctionResult("min length is {}".format(min)) ) if max and value_length > max: results.append( FunctionResult("max length is {}".format(max)) ) return results
26
152
0.597802
0
0
0
0
0
0
0
0
214
0.235165
a0c60f619b683347cb7cc9f4f6e9936af96f0dbd
27,874
py
Python
smartrecruiters_python_client/apis/analytics_api.py
roksela/smartrecruiters-python-client
6d0849d173a3d6718b5f0769098f4c76857f637d
[ "MIT" ]
5
2018-03-27T08:20:13.000Z
2022-03-30T06:23:38.000Z
smartrecruiters_python_client/apis/analytics_api.py
roksela/smartrecruiters-python-client
6d0849d173a3d6718b5f0769098f4c76857f637d
[ "MIT" ]
null
null
null
smartrecruiters_python_client/apis/analytics_api.py
roksela/smartrecruiters-python-client
6d0849d173a3d6718b5f0769098f4c76857f637d
[ "MIT" ]
2
2018-12-05T04:48:37.000Z
2020-12-17T12:12:12.000Z
# coding: utf-8 """ Unofficial python library for the SmartRecruiters API The SmartRecruiters API provides a platform to integrate services or applications, build apps and create fully customizable career sites. It exposes SmartRecruiters functionality and allows to connect and build software enhancing it. OpenAPI spec version: 1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class AnalyticsApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def analytics_applications(self, **kwargs): """ Get the list of applications. Get the list of applications. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Applications Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/applications-data-service/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_applications(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str date_format: Defines response date format :return: ApplicationsReport If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.analytics_applications_with_http_info(**kwargs) else: (data) = self.analytics_applications_with_http_info(**kwargs) return data def analytics_applications_with_http_info(self, **kwargs): """ Get the list of applications. Get the list of applications. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Applications Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/applications-data-service/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_applications_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str date_format: Defines response date format :return: ApplicationsReport If the method is called asynchronously, returns the request thread. """ all_params = ['date_format'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method analytics_applications" % key ) params[key] = val del params['kwargs'] collection_formats = {} resource_path = '/analytics/applications'.replace('{format}', 'json') path_params = {} query_params = {} if 'date_format' in params: query_params['dateFormat'] = params['date_format'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json; charset=utf-8', 'text/csv']) # Authentication setting auth_settings = ['key'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ApplicationsReport', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def analytics_hiring_team(self, **kwargs): """ Get the list of hiring team members. Get the list of hiring team members. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Hiring Team Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/hiring-team-data-service/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_hiring_team(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: HiringTeamReport If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.analytics_hiring_team_with_http_info(**kwargs) else: (data) = self.analytics_hiring_team_with_http_info(**kwargs) return data def analytics_hiring_team_with_http_info(self, **kwargs): """ Get the list of hiring team members. Get the list of hiring team members. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Hiring Team Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/hiring-team-data-service/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_hiring_team_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: HiringTeamReport If the method is called asynchronously, returns the request thread. """ all_params = [] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method analytics_hiring_team" % key ) params[key] = val del params['kwargs'] collection_formats = {} resource_path = '/analytics/hiring-team'.replace('{format}', 'json') path_params = {} query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json; charset=utf-8', 'text/csv']) # Authentication setting auth_settings = ['key'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='HiringTeamReport', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def analytics_interviews(self, **kwargs): """ Get the list of interviews. Get the list of interviews. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Interviews Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/interviews-data-service/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_interviews(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str date_format: Defines response date format :return: InterviewsReport If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.analytics_interviews_with_http_info(**kwargs) else: (data) = self.analytics_interviews_with_http_info(**kwargs) return data def analytics_interviews_with_http_info(self, **kwargs): """ Get the list of interviews. Get the list of interviews. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Interviews Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/interviews-data-service/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_interviews_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str date_format: Defines response date format :return: InterviewsReport If the method is called asynchronously, returns the request thread. """ all_params = ['date_format'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method analytics_interviews" % key ) params[key] = val del params['kwargs'] collection_formats = {} resource_path = '/analytics/interviews'.replace('{format}', 'json') path_params = {} query_params = {} if 'date_format' in params: query_params['dateFormat'] = params['date_format'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json; charset=utf-8', 'text/csv']) # Authentication setting auth_settings = ['key'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='InterviewsReport', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def analytics_job_fields(self, **kwargs): """ Get the list of job fields. Get the list of job fields. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Job Fields Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/job-fields-data-service/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_job_fields(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: JobFieldsReport If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.analytics_job_fields_with_http_info(**kwargs) else: (data) = self.analytics_job_fields_with_http_info(**kwargs) return data def analytics_job_fields_with_http_info(self, **kwargs): """ Get the list of job fields. Get the list of job fields. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Job Fields Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/job-fields-data-service/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_job_fields_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: JobFieldsReport If the method is called asynchronously, returns the request thread. """ all_params = [] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method analytics_job_fields" % key ) params[key] = val del params['kwargs'] collection_formats = {} resource_path = '/analytics/job-fields'.replace('{format}', 'json') path_params = {} query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json; charset=utf-8', 'text/csv']) # Authentication setting auth_settings = ['key'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='JobFieldsReport', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def analytics_jobs(self, **kwargs): """ Get the list of jobs. Get the list of jobs. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Jobs Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/jobs-data-service/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_jobs(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str date_format: Defines response date format :return: JobsReport If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.analytics_jobs_with_http_info(**kwargs) else: (data) = self.analytics_jobs_with_http_info(**kwargs) return data def analytics_jobs_with_http_info(self, **kwargs): """ Get the list of jobs. Get the list of jobs. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Jobs Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/jobs-data-service/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_jobs_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str date_format: Defines response date format :return: JobsReport If the method is called asynchronously, returns the request thread. """ all_params = ['date_format'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method analytics_jobs" % key ) params[key] = val del params['kwargs'] collection_formats = {} resource_path = '/analytics/jobs'.replace('{format}', 'json') path_params = {} query_params = {} if 'date_format' in params: query_params['dateFormat'] = params['date_format'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json; charset=utf-8', 'text/csv']) # Authentication setting auth_settings = ['key'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='JobsReport', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def analytics_positions(self, **kwargs): """ Get the list of job positions. Get the list of job positions. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Positions Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/positions/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_positions(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str date_format: Defines response date format :return: PositionsReport If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.analytics_positions_with_http_info(**kwargs) else: (data) = self.analytics_positions_with_http_info(**kwargs) return data def analytics_positions_with_http_info(self, **kwargs): """ Get the list of job positions. Get the list of job positions. Fore more comprehensive description see [Analytics API](https://dev.smartrecruiters.com/customer-api/analytics-api/) and [Positions Data Service](https://dev.smartrecruiters.com/customer-api/analytics-api/positions/). This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.analytics_positions_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str date_format: Defines response date format :return: PositionsReport If the method is called asynchronously, returns the request thread. """ all_params = ['date_format'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method analytics_positions" % key ) params[key] = val del params['kwargs'] collection_formats = {} resource_path = '/analytics/positions'.replace('{format}', 'json') path_params = {} query_params = {} if 'date_format' in params: query_params['dateFormat'] = params['date_format'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json; charset=utf-8', 'text/csv']) # Authentication setting auth_settings = ['key'] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PositionsReport', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
44.10443
280
0.583052
27,222
0.976609
0
0
0
0
0
0
15,054
0.540073
a0c68d4449b586355649b08e113c775fd8d862f6
398
py
Python
Timofei-Khirianov-2019/lesson_001/003_anketa.py
anklav24/Python-Education
49ebcfabda1376390ee71e1fe321a51e33831f9e
[ "Apache-2.0" ]
null
null
null
Timofei-Khirianov-2019/lesson_001/003_anketa.py
anklav24/Python-Education
49ebcfabda1376390ee71e1fe321a51e33831f9e
[ "Apache-2.0" ]
null
null
null
Timofei-Khirianov-2019/lesson_001/003_anketa.py
anklav24/Python-Education
49ebcfabda1376390ee71e1fe321a51e33831f9e
[ "Apache-2.0" ]
null
null
null
name = input('Hello! What is your name? : ') print('Nice to meet you,', name + '!') print() age = int(input('How old are you ' + name + '? : ')) print() x = age + 1 print('А я думал тебе', x, end=' ') if x >= 11 and x <= 19: print('лет', end='') elif x % 10 == 1: print('год', end='') elif x % 10 >= 2 and x % 10 <= 4: print('года', end='') else: print('лет', end='') print('!')
19.9
52
0.502513
0
0
0
0
0
0
0
0
151
0.35782
a0c69fd6e11617fc5f9eb586f7c2029856d0877b
2,399
py
Python
Technical_Indicators/rainbow_charts.py
vhn0912/Finance
39cf49d4d778d322537531cee4ce3981cc9951f9
[ "MIT" ]
441
2020-04-22T02:21:19.000Z
2022-03-29T15:00:24.000Z
Technical_Indicators/rainbow_charts.py
happydasch/Finance
4f6c5ea8f60fb0dc3b965ffb9628df83c2ecef35
[ "MIT" ]
5
2020-07-06T15:19:58.000Z
2021-07-23T18:32:29.000Z
Technical_Indicators/rainbow_charts.py
happydasch/Finance
4f6c5ea8f60fb0dc3b965ffb9628df83c2ecef35
[ "MIT" ]
111
2020-04-21T11:40:39.000Z
2022-03-20T07:26:17.000Z
import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") import yfinance as yf yf.pdr_override() import datetime as dt # input symbol = 'AAPL' start = dt.date.today() - dt.timedelta(days = 365*2) end = dt.date.today() # Read data df = yf.download(symbol,start,end) # R=red, O=orange, Y=yellow, G=green, B=blue, I = indigo, and V=violet df['Red'] = df['Adj Close'].rolling(2).mean() df['Orange'] = df['Red'].rolling(2).mean() df['Yellow'] = df['Orange'].rolling(2).mean() df['Green'] = df['Yellow'].rolling(2).mean() df['Blue'] = df['Green'].rolling(2).mean() df['Indigo'] = df['Blue'].rolling(2).mean() df['Violet'] = df['Indigo'].rolling(2).mean() df = df.dropna() colors = ['k','r', 'orange', 'yellow', 'g', 'b', 'indigo', 'violet'] df[['Adj Close','Red','Orange','Yellow','Green','Blue','Indigo','Violet']].plot(colors=colors, figsize=(18,12)) plt.fill_between(df.index, df['Low'], df['High'], color='grey', alpha=0.4) plt.plot(df['Low'], c='darkred', linestyle='--', drawstyle="steps") plt.plot(df['High'], c='forestgreen', linestyle='--', drawstyle="steps") plt.title('Rainbow Charts') plt.legend(loc='best') plt.xlabel('Date') plt.ylabel('Price') plt.show() # ## Candlestick with Rainbow from matplotlib import dates as mdates dfc = df.copy() dfc['VolumePositive'] = dfc['Open'] < dfc['Adj Close'] #dfc = dfc.dropna() dfc = dfc.reset_index() dfc['Date'] = mdates.date2num(dfc['Date'].tolist()) from mplfinance.original_flavor import candlestick_ohlc fig, ax1 = plt.subplots(figsize=(20,12)) candlestick_ohlc(ax1,dfc.values, width=0.5, colorup='g', colordown='r', alpha=1.0) #colors = ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet'] #labels = ['Red', 'Orange', 'Yellow', 'Green', 'Blue', 'Indigo', 'Violet'] for i in dfc[['Red', 'Orange', 'Yellow', 'Green', 'Blue', 'Indigo', 'Violet']]: ax1.plot(dfc['Date'], dfc[i], color=i, label=i) ax1.xaxis_date() ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) ax1.grid(True, which='both') ax1.minorticks_on() ax1v = ax1.twinx() colors = dfc.VolumePositive.map({True: 'g', False: 'r'}) ax1v.bar(dfc.Date, dfc['Volume'], color=colors, alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ax1.set_xlabel('Date') ax1.legend(loc='best') plt.show()
36.348485
111
0.667361
0
0
0
0
0
0
0
0
794
0.330971
a0c8d55fb37c691da19d42d22717e7769ad0fbbf
1,670
py
Python
UpWork_Projects/pdf_downloader.py
SurendraTamang/Web-Scrapping
2bb60cce9010b4b68f5c11bf295940832bb5df50
[ "MIT" ]
null
null
null
UpWork_Projects/pdf_downloader.py
SurendraTamang/Web-Scrapping
2bb60cce9010b4b68f5c11bf295940832bb5df50
[ "MIT" ]
null
null
null
UpWork_Projects/pdf_downloader.py
SurendraTamang/Web-Scrapping
2bb60cce9010b4b68f5c11bf295940832bb5df50
[ "MIT" ]
1
2022-01-18T17:15:51.000Z
2022-01-18T17:15:51.000Z
import requests from urllib.request import urlopen from urllib.request import urlretrieve import cgi import os.path def retrive_file_name(url): #url = 'https://material.ibear.pt/BTHorarios2019/FileGet.aspx?FileId=5601' remotefile = urlopen(url) blah = remotefile.info()['Content-Disposition'] _, params = cgi.parse_header(blah) filename = params["filename"] #urlretrieve(url, filename) return filename def pdf_downloader(): for i in range (0,10000): cntr = '' l = len(str(i)) if l<4: for _ in range(0,(4-l)): cntr += '0' cntr += str(i) else: cntr = str(i) try: url = f"https://material.ibear.pt/BTHorarios2019/FileGet.aspx?FileId={cntr}" response = requests.get(url) if response.status_code == 200: file_name = retrive_file_name(url) file_path1 = f'D:/upworkWorkspace/25032020_pdf_downloader/downloads/{file_name}' file_path2 = f'D:/upworkWorkspace/25032020_pdf_downloader/downloads/copy_{cntr}_{file_name}' if not os.path.isfile(file_path1) and not os.path.isfile(file_path2): print(file_name) with open(file_path1, 'wb') as f: f.write(response.content) else: print(f'copy_{cntr}_{file_name}') with open(file_path2, 'wb') as f: f.write(response.content) else: print("Counter: ", cntr) except: pass pdf_downloader()
33.4
108
0.552096
0
0
0
0
0
0
0
0
398
0.238323
a0cab7a3ae269edaac7fa1a7d902a54bd96a752d
13,282
py
Python
backend/app/vta/texdf/tex_df.py
megagonlabs/leam
f19830d4d6935bece7d163abbc533cfb4bc2e729
[ "Apache-2.0" ]
7
2020-09-14T07:03:51.000Z
2022-01-13T10:11:53.000Z
backend/app/vta/texdf/tex_df.py
megagonlabs/leam
f19830d4d6935bece7d163abbc533cfb4bc2e729
[ "Apache-2.0" ]
null
null
null
backend/app/vta/texdf/tex_df.py
megagonlabs/leam
f19830d4d6935bece7d163abbc533cfb4bc2e729
[ "Apache-2.0" ]
1
2020-09-07T22:26:27.000Z
2020-09-07T22:26:27.000Z
import spacy import json, os import dill as pickle import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sqlalchemy import create_engine, select, MetaData, Table, Column, Integer, String from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from typing import List, Dict, Any from flask import current_app from app.models import Dataset # from vta.operators import featurize # from vta.operators import clean # from vta.operators import select # from vta import spacy_nlp from .tex_column import TexColumn from .tex_metadata import MetadataItem from .tex_vis import TexVis from ..types import VTAColumnType, VisType class TexDF: dataset_name: str data_view: pd.DataFrame table_view: [] table_links: [] columns: Dict[str, TexColumn] visualizations: List[TexVis] coordination_indexes: Dict[str, Dict] udf: Dict[str, Any] # TODO: specify typing of function expected def __init__(self, df, name): self.dataset_name = name self.data_view = df self.table_view = [] self.table_links = [] self.columns = {i: TexColumn(i, VTAColumnType.TEXT) for i in df.columns} self.visualizations = [] self.coordination_indexes = {} self.udf = {} # self.cached_visual_encodings = {i: {} for i in self.df.columns} # self.view_indexes = {} self.update_table_view() if os.path.exists("/app/UI_QUEUE.pkl"): self.UI_QUEUE = pickle.load(open("UI_QUEUE.pkl", "rb")) else: self.UI_QUEUE = [] pickle.dump(self.UI_QUEUE, open("/app/UI_QUEUE.pkl", "wb")) def get_dataview_column(self, col_name: str) -> pd.Series: return self.data_view[col_name] def get_column_type(self, col_name: str) -> VTAColumnType: return self.columns[col_name].col_type def get_column_types(self, col_names: List[str]) -> List[VTAColumnType]: return [self.columns[col].col_type for col in col_names] def get_all_column_types(self) -> List[str]: return [self.columns[col].col_type.value for col in self.columns.keys()] def get_table_view(self): return self.table_view def get_table_view_columns(self): return [i for i in self.data_view.columns] def get_vis(self, i): return self.visualizations[i] def get_visualizations(self): vis_list = [i.to_dict() for i in self.visualizations] return vis_list def get_column_metadata(self, col_name: str) -> TexColumn: return self.columns[col_name] def get_all_metadata(self): # metadata will be a table with 3 columns: tag | data_type | data all_metadata = [] for _, col in self.columns.items(): for _, md in col.metadata.items(): all_metadata.append( {"tag": md.tag, "type": md.md_type.value, "value": md.value} ) return all_metadata def print_metadata(self): # metadata will be a table with 3 columns: tag | data_type | data pretty_print = "" for _, col in self.columns.items(): for _, md in col.metadata.items(): col_metadata_item = {} col_metadata_item["column"] = col.col_name col_metadata_item["tag_name"] = md.tag col_metadata_item["metadata_type"] = md.md_type.value col_metadata_item["value"] = str(md.value)[:80] + "..." pretty_print += str(col_metadata_item) + "\n\n" print(pretty_print) def get_vis_lookup_table(self, vis_idx): return self.visualizations[vis_idx].row_lookup_table def get_coordination_idx(self, metadata_name): return self.coordination_indexes[metadata_name] def get_vis_links(self, vis_idx): if vis_idx == "table": return self.table_links return self.visualizations[vis_idx].links def get_columns_vega_format(self, columns, data_type, md_tag=None): # Take in list of columns, output data from those columns formatted # in vega-lite format: [{"id": 1, "x": 0.3}, {"id": 2, "x": 0.7}, ...] vega_rows = [] if data_type == "dataview": for _, row in self.data_view[columns].iterrows(): vega_row = {c: row[c] for c in columns} vega_rows.append(vega_row) elif data_type == "metadata": col_name = columns[0] data = self.get_column_metadata(col_name).get_metadata_by_tag(md_tag) # add some way to handle different types of metadata if md_tag == "top_scores": tw_list = [(k, v) for k, v in data.value.items()] tw_list = sorted(tw_list, key=lambda word: word[1], reverse=True) tw_list = [(v[0], v[1], i + 1) for i, v in enumerate(tw_list)] # log.info("top words list:") # log.info(tw_list) for v in tw_list: vega_rows.append({"topword": v[0], "score": v[1], "order": v[2]}) else: print("data is: ") print(data.value) assert isinstance(data.value, dict) for label, count in data.value.items(): vega_rows.append({"label": label, "count": count}) return vega_rows def get_udf(self, func_name): return self.udf[func_name] # TODO: specify a certain function params/return values def add_udf(self, func): self.udf[func.__name__] = func self.checkpoint_texdf() def print_udfs(self): print(self.udf) def rename_column(self, old_col, new_col): self.data_view = self.data_view.rename(columns={old_col: new_col}) self.columns[new_col] = self.columns[old_col] del self.columns[old_col] self.update_table_view() task = {"view": "table", "type": "update_column"} self.add_to_uiq(task) self.checkpoint_texdf() # TODO: add regex to this def replace_column_value(self, col_name, old_value, new_value): # data_view["category"].replace("ham", 0, inplace=True) self.data_view[col_name].replace(old_value, new_value, inplace=True) self.update_table_view() task = {"view": "table", "type": "update_column"} self.add_to_uiq(task) self.checkpoint_texdf() def select_vis_element(self, vis_idx, item_idx): # TODO: add support for words in select like in topwords tf-idf barchart # TODO: add support for linking, where we might generate many new select ui tasks if vis_idx == "table": task = {"view": "table", "type": "select", "rows": item_idx} else: task = { "view": "datavis", "type": "select", "vis_idx": vis_idx, "rows": item_idx, } self.add_to_uiq(task) self.checkpoint_texdf() def add_coord_idx(self, metadata, coord_idx): self.coordination_indexes[metadata] = coord_idx self.checkpoint_texdf() def remove_vis(self, vis_idx): if vis_idx < 0 or vis_idx >= len(self.visualizations): return # remove vis in place and save del self.visualizations[vis_idx] for v in self.visualizations: if vis_idx in v.links: v.links.remove(vis_idx) # update the rest of the links to correspond to their new positions for v in self.visualizations: for link_idx, link in enumerate(v.links): if vis_idx > link: pass elif vis_idx < link: v.links[link_idx] = link - 1 else: raise Exception( "there should be no link with vis idx %d it was deleted", vis_idx, ) task = { "view": "table", "type": "update_vis", } # change this to be related to vis self.add_to_uiq(task) self.checkpoint_texdf() def remove_link(self, src, target): if src == "table": vis_obj = self.table_links else: vis_obj = self.visualizations[src].links if target in vis_obj: vis_obj.remove(target) self.checkpoint_texdf() def add_uni_link(self, src, target): if src == "table": vis_obj = self.table_links else: vis_obj = self.visualizations[src].links if target not in vis_obj: vis_obj.append(target) self.checkpoint_texdf() def add_bi_link(self, src, target): if src == "table": vis_obj_src = self.table_links else: vis_obj_src = self.visualizations[src].links if target == "table": vis_obj_target = self.table_links else: vis_obj_target = self.visualizations[target].links if target not in vis_obj_src: vis_obj_src.append(target) if src not in vis_obj_target: vis_obj_target.append(src) self.checkpoint_texdf() def add_visualization(self, columns, vis_type, selection=None, md_tag=None): # if aggregate type vis, using metadata, if not using column(s) if vis_type == VisType.tw_barchart or vis_type == VisType.barchart: data_type = "metadata" vis_data = self.get_columns_vega_format(columns, data_type, md_tag=md_tag) else: data_type = "dataview" vis_data = self.get_columns_vega_format(columns, data_type) col_types = self.get_column_types(columns) new_vis = TexVis( vis_type, columns, col_types, vis_data, selection_type=selection, md_tag=md_tag, ) self.visualizations.append(new_vis) vis_index = len(self.visualizations) - 1 task = { "view": "datavis", "type": "add_vis", "idx": vis_index, "vis_type": new_vis.vis_type.value, "selection_type": new_vis.selection_type, } self.add_to_uiq(task) self.checkpoint_texdf() def update_table_view(self): readable_df = self.data_view.copy() for k, v in self.columns.items(): col_type = v.col_type if col_type == VTAColumnType.VECTOR: is_column_list = type(readable_df[k][0]) == list row_vectors = ( readable_df[k].map(lambda r: np.array(r).tolist()) if is_column_list else readable_df[k].map(lambda r: r.toarray().tolist()) ) row_vectors = ( row_vectors if is_column_list else [r[0] for r in row_vectors] ) row_string_vectors = [[str(f)[:6] for f in r] for r in row_vectors] row_string_vectors = map(lambda r: r[:6], row_string_vectors) row_string_vectors = [ ", ".join(r) + ", ..." for r in row_string_vectors ] readable_df[k] = row_string_vectors elif col_type == VTAColumnType.FLOAT: float_column = readable_df[k] row_floats = [round(f, 5) for f in float_column] readable_df[k] = row_floats self.table_view = readable_df.values.tolist() def update_dataview_column( self, col_name: str, col_type: VTAColumnType, new_column: Any ): self.data_view[col_name] = new_column col = self.columns[col_name] col.col_type = col_type self.update_table_view() task = {"view": "table", "type": "update_column"} self.add_to_uiq(task) self.checkpoint_texdf() def create_dataview_column( self, new_col_name: str, col_type: VTAColumnType, new_column: Any ): self.data_view[new_col_name] = new_column self.columns[new_col_name] = TexColumn(new_col_name, col_type) task = {"view": "table", "type": "create_column"} self.add_to_uiq(task) self.update_table_view() self.checkpoint_texdf() # make sure that an aggregate is returning a data structure with the corresponding rows included # b/c will use those to determine coordination def add_metadata( self, col_name: str, tag: str, md_type: VTAColumnType, md_value: Any ): new_metadata = MetadataItem(tag, col_name, md_type, md_value) col = self.columns[col_name] col.metadata[tag] = new_metadata task = {"view": "table", "type": "add_metadata"} self.add_to_uiq(task) # TODO: update table view to create presentable version of metadata??? self.checkpoint_texdf() def add_to_uiq(self, task): self.UI_QUEUE.append(task) pickle.dump(self.UI_QUEUE, open("UI_QUEUE.pkl", "wb")) def checkpoint_texdf(self): name = self.dataset_name.split(".")[0] dataframe_pkl_file = "/app/" + name + ".pkl" pickle.dump(self, open(dataframe_pkl_file, "wb"))
37.840456
100
0.595844
12,568
0.946243
0
0
0
0
0
0
2,040
0.153591
a0cc5ea31e6d19f7b084b456d80ccf0e5baf6865
1,604
py
Python
orders-api/orders_api/models.py
kelvinducray/fastapi-orders-api
37176329f717adf8ad8749be4ed50f7c875b0cf5
[ "MIT" ]
null
null
null
orders-api/orders_api/models.py
kelvinducray/fastapi-orders-api
37176329f717adf8ad8749be4ed50f7c875b0cf5
[ "MIT" ]
null
null
null
orders-api/orders_api/models.py
kelvinducray/fastapi-orders-api
37176329f717adf8ad8749be4ed50f7c875b0cf5
[ "MIT" ]
null
null
null
from uuid import uuid4 from sqlalchemy import Boolean, Column, DateTime, Integer, String from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.orm import relationship from .database import Base class Customers(Base): __tablename__ = "customers" id = Column(UUID(as_uuid=True), primary_key=True, default=uuid4) first_name = Column(String) last_name = Column(String) email = Column(String, unique=True) class Orders(Base): __tablename__ = "customer_orders" id = Column(UUID(as_uuid=True), primary_key=True, default=uuid4) order_date = Column(DateTime) customer_id = Column(Integer, unique=True) product_id = Column(String) is_active = Column(Boolean, default=True) class Products(Base): __tablename__ = "products" id = Column(UUID(as_uuid=True), primary_key=True, default=uuid4) product_name = Column(String, unique=True) product_price = Column(String) is_active = Column(Boolean, default=True) # class User(Base): # __tablename__ = "users" # id = Column(Integer, primary_key=True, index=True) # email = Column(String, unique=True, index=True) # hashed_password = Column(String) # is_active = Column(Boolean, default=True) # items = relationship("Item", back_populates="owner") # class Item(Base): # __tablename__ = "items" # id = Column(Integer, primary_key=True, index=True) # title = Column(String, index=True) # description = Column(String, index=True) # owner_id = Column(Integer, ForeignKey("users.id")) # owner = relationship("User", back_populates="items")
27.655172
68
0.704489
763
0.475686
0
0
0
0
0
0
642
0.400249
a0cc745e3a8e279006b132f30ea4111764df2ce1
32,293
py
Python
src/ID_meshes.py
faycalki/tainted-paths
81cecf6c1fba903ec3b8043e22652d222892609d
[ "MIT" ]
4
2019-09-26T21:34:32.000Z
2021-11-18T19:31:15.000Z
src/ID_meshes.py
faycalki/tainted-paths
81cecf6c1fba903ec3b8043e22652d222892609d
[ "MIT" ]
null
null
null
src/ID_meshes.py
faycalki/tainted-paths
81cecf6c1fba903ec3b8043e22652d222892609d
[ "MIT" ]
null
null
null
mesh_pic_bandits = 0 mesh_pic_mb_warrior_1 = 1 mesh_pic_messenger = 2 mesh_pic_prisoner_man = 3 mesh_pic_prisoner_fem = 4 mesh_pic_prisoner_wilderness = 5 mesh_pic_siege_sighted = 6 mesh_pic_siege_sighted_fem = 7 mesh_pic_camp = 8 mesh_pic_payment = 9 mesh_pic_escape_1 = 10 mesh_pic_escape_1_fem = 11 mesh_pic_victory = 12 mesh_pic_defeat = 13 mesh_pic_wounded = 14 mesh_pic_wounded_fem = 15 mesh_pic_steppe_bandits = 16 mesh_pic_mountain_bandits = 17 mesh_pic_sea_raiders = 18 mesh_pic_deserters = 19 mesh_pic_forest_bandits = 20 mesh_pic_cattle = 21 mesh_pic_looted_village = 22 mesh_pic_village_p = 23 mesh_pic_village_s = 24 mesh_pic_village_w = 25 mesh_pic_recruits = 26 mesh_pic_arms_swadian = 27 mesh_pic_castle1 = 28 mesh_pic_castledes = 29 mesh_pic_castlesnow = 30 mesh_pic_charge = 31 mesh_pic_khergit = 32 mesh_pic_nord = 33 mesh_pic_rhodock = 34 mesh_pic_sally_out = 35 mesh_pic_siege_attack = 36 mesh_pic_swad = 37 mesh_pic_town1 = 38 mesh_pic_towndes = 39 mesh_pic_townriot = 40 mesh_pic_townsnow = 41 mesh_pic_vaegir = 42 mesh_pic_villageriot = 43 mesh_pic_sarranid_encounter = 44 mesh_pic_mort = 45 mesh_mp_score_a = 46 mesh_mp_score_b = 47 mesh_portrait_blend_out = 48 mesh_load_window = 49 mesh_checkbox_off = 50 mesh_checkbox_on = 51 mesh_white_plane = 52 mesh_white_dot = 53 mesh_player_dot = 54 mesh_flag_infantry = 55 mesh_flag_archers = 56 mesh_flag_cavalry = 57 mesh_inv_slot = 58 mesh_mp_ingame_menu = 59 mesh_mp_inventory_left = 60 mesh_mp_inventory_right = 61 mesh_mp_inventory_choose = 62 mesh_mp_inventory_slot_glove = 63 mesh_mp_inventory_slot_horse = 64 mesh_mp_inventory_slot_armor = 65 mesh_mp_inventory_slot_helmet = 66 mesh_mp_inventory_slot_boot = 67 mesh_mp_inventory_slot_empty = 68 mesh_mp_inventory_slot_equip = 69 mesh_mp_inventory_left_arrow = 70 mesh_mp_inventory_right_arrow = 71 mesh_mp_ui_host_main = 72 mesh_mp_ui_host_maps_1 = 73 mesh_mp_ui_host_maps_2 = 74 mesh_mp_ui_host_maps_3 = 75 mesh_mp_ui_host_maps_4 = 76 mesh_mp_ui_host_maps_5 = 77 mesh_mp_ui_host_maps_6 = 78 mesh_mp_ui_host_maps_7 = 79 mesh_mp_ui_host_maps_8 = 80 mesh_mp_ui_host_maps_9 = 81 mesh_mp_ui_host_maps_10 = 82 mesh_mp_ui_host_maps_11 = 83 mesh_mp_ui_host_maps_12 = 84 mesh_mp_ui_host_maps_13 = 85 mesh_mp_ui_host_maps_randomp = 86 mesh_mp_ui_host_maps_randoms = 87 mesh_mp_ui_command_panel = 88 mesh_mp_ui_command_border_l = 89 mesh_mp_ui_command_border_r = 90 mesh_mp_ui_welcome_panel = 91 mesh_flag_project_sw = 92 mesh_flag_project_vg = 93 mesh_flag_project_kh = 94 mesh_flag_project_nd = 95 mesh_flag_project_rh = 96 mesh_flag_project_sr = 97 mesh_flag_projects_end = 98 mesh_flag_project_sw_miss = 99 mesh_flag_project_vg_miss = 100 mesh_flag_project_kh_miss = 101 mesh_flag_project_nd_miss = 102 mesh_flag_project_rh_miss = 103 mesh_flag_project_sr_miss = 104 mesh_flag_project_misses_end = 105 mesh_color_picker = 106 mesh_custom_map_banner_01 = 107 mesh_custom_map_banner_02 = 108 mesh_custom_map_banner_03 = 109 mesh_custom_banner_01 = 110 mesh_custom_banner_02 = 111 mesh_custom_banner_bg = 112 mesh_custom_banner_fg01 = 113 mesh_custom_banner_fg02 = 114 mesh_custom_banner_fg03 = 115 mesh_custom_banner_fg04 = 116 mesh_custom_banner_fg05 = 117 mesh_custom_banner_fg06 = 118 mesh_custom_banner_fg07 = 119 mesh_custom_banner_fg08 = 120 mesh_custom_banner_fg09 = 121 mesh_custom_banner_fg10 = 122 mesh_custom_banner_fg11 = 123 mesh_custom_banner_fg12 = 124 mesh_custom_banner_fg13 = 125 mesh_custom_banner_fg14 = 126 mesh_custom_banner_fg15 = 127 mesh_custom_banner_fg16 = 128 mesh_custom_banner_fg17 = 129 mesh_custom_banner_fg18 = 130 mesh_custom_banner_fg19 = 131 mesh_custom_banner_fg20 = 132 mesh_custom_banner_fg21 = 133 mesh_custom_banner_fg22 = 134 mesh_custom_banner_fg23 = 135 mesh_custom_banner_charge_01 = 136 mesh_custom_banner_charge_02 = 137 mesh_custom_banner_charge_03 = 138 mesh_custom_banner_charge_04 = 139 mesh_custom_banner_charge_05 = 140 mesh_custom_banner_charge_06 = 141 mesh_custom_banner_charge_07 = 142 mesh_custom_banner_charge_08 = 143 mesh_custom_banner_charge_09 = 144 mesh_custom_banner_charge_10 = 145 mesh_custom_banner_charge_11 = 146 mesh_custom_banner_charge_12 = 147 mesh_custom_banner_charge_13 = 148 mesh_custom_banner_charge_14 = 149 mesh_custom_banner_charge_15 = 150 mesh_custom_banner_charge_16 = 151 mesh_custom_banner_charge_17 = 152 mesh_custom_banner_charge_18 = 153 mesh_custom_banner_charge_19 = 154 mesh_custom_banner_charge_20 = 155 mesh_custom_banner_charge_21 = 156 mesh_custom_banner_charge_22 = 157 mesh_custom_banner_charge_23 = 158 mesh_custom_banner_charge_24 = 159 mesh_custom_banner_charge_25 = 160 mesh_custom_banner_charge_26 = 161 mesh_custom_banner_charge_27 = 162 mesh_custom_banner_charge_28 = 163 mesh_custom_banner_charge_29 = 164 mesh_custom_banner_charge_30 = 165 mesh_custom_banner_charge_31 = 166 mesh_custom_banner_charge_32 = 167 mesh_custom_banner_charge_33 = 168 mesh_custom_banner_charge_34 = 169 mesh_custom_banner_charge_35 = 170 mesh_custom_banner_charge_36 = 171 mesh_custom_banner_charge_37 = 172 mesh_custom_banner_charge_38 = 173 mesh_custom_banner_charge_39 = 174 mesh_custom_banner_charge_40 = 175 mesh_custom_banner_charge_41 = 176 mesh_custom_banner_charge_42 = 177 mesh_custom_banner_charge_43 = 178 mesh_custom_banner_charge_44 = 179 mesh_custom_banner_charge_45 = 180 mesh_custom_banner_charge_46 = 181 mesh_tableau_mesh_custom_banner = 182 mesh_tableau_mesh_custom_banner_square = 183 mesh_tableau_mesh_custom_banner_tall = 184 mesh_tableau_mesh_custom_banner_short = 185 mesh_tableau_mesh_shield_round_1 = 186 mesh_tableau_mesh_shield_round_2 = 187 mesh_tableau_mesh_shield_round_3 = 188 mesh_tableau_mesh_shield_round_4 = 189 mesh_tableau_mesh_shield_round_5 = 190 mesh_tableau_mesh_shield_small_round_1 = 191 mesh_tableau_mesh_shield_small_round_2 = 192 mesh_tableau_mesh_shield_small_round_3 = 193 mesh_tableau_mesh_shield_kite_1 = 194 mesh_tableau_mesh_shield_kite_2 = 195 mesh_tableau_mesh_shield_kite_3 = 196 mesh_tableau_mesh_shield_kite_4 = 197 mesh_tableau_mesh_shield_heater_1 = 198 mesh_tableau_mesh_shield_heater_2 = 199 mesh_tableau_mesh_shield_pavise_1 = 200 mesh_tableau_mesh_shield_pavise_2 = 201 mesh_heraldic_armor_bg = 202 mesh_tableau_mesh_heraldic_armor_a = 203 mesh_tableau_mesh_heraldic_armor_b = 204 mesh_tableau_mesh_heraldic_armor_c = 205 mesh_tableau_mesh_heraldic_armor_d = 206 mesh_outer_terrain_plain_1 = 207 mesh_banner_a01 = 208 mesh_banner_a02 = 209 mesh_banner_a03 = 210 mesh_banner_a04 = 211 mesh_banner_a05 = 212 mesh_banner_a06 = 213 mesh_banner_a07 = 214 mesh_banner_a08 = 215 mesh_banner_a09 = 216 mesh_banner_a10 = 217 mesh_banner_a11 = 218 mesh_banner_a12 = 219 mesh_banner_a13 = 220 mesh_banner_a14 = 221 mesh_banner_a15 = 222 mesh_banner_a16 = 223 mesh_banner_a17 = 224 mesh_banner_a18 = 225 mesh_banner_a19 = 226 mesh_banner_a20 = 227 mesh_banner_a21 = 228 mesh_banner_b01 = 229 mesh_banner_b02 = 230 mesh_banner_b03 = 231 mesh_banner_b04 = 232 mesh_banner_b05 = 233 mesh_banner_b06 = 234 mesh_banner_b07 = 235 mesh_banner_b08 = 236 mesh_banner_b09 = 237 mesh_banner_b10 = 238 mesh_banner_b11 = 239 mesh_banner_b12 = 240 mesh_banner_b13 = 241 mesh_banner_b14 = 242 mesh_banner_b15 = 243 mesh_banner_b16 = 244 mesh_banner_b17 = 245 mesh_banner_b18 = 246 mesh_banner_b19 = 247 mesh_banner_b20 = 248 mesh_banner_b21 = 249 mesh_banner_c01 = 250 mesh_banner_c02 = 251 mesh_banner_c03 = 252 mesh_banner_c04 = 253 mesh_banner_c05 = 254 mesh_banner_c06 = 255 mesh_banner_c07 = 256 mesh_banner_c08 = 257 mesh_banner_c09 = 258 mesh_banner_c10 = 259 mesh_banner_c11 = 260 mesh_banner_c12 = 261 mesh_banner_c13 = 262 mesh_banner_c14 = 263 mesh_banner_c15 = 264 mesh_banner_c16 = 265 mesh_banner_c17 = 266 mesh_banner_c18 = 267 mesh_banner_c19 = 268 mesh_banner_c20 = 269 mesh_banner_c21 = 270 mesh_banner_d01 = 271 mesh_banner_d02 = 272 mesh_banner_d03 = 273 mesh_banner_d04 = 274 mesh_banner_d05 = 275 mesh_banner_d06 = 276 mesh_banner_d07 = 277 mesh_banner_d08 = 278 mesh_banner_d09 = 279 mesh_banner_d10 = 280 mesh_banner_d11 = 281 mesh_banner_d12 = 282 mesh_banner_d13 = 283 mesh_banner_d14 = 284 mesh_banner_d15 = 285 mesh_banner_d16 = 286 mesh_banner_d17 = 287 mesh_banner_d18 = 288 mesh_banner_d19 = 289 mesh_banner_d20 = 290 mesh_banner_d21 = 291 mesh_banner_e01 = 292 mesh_banner_e02 = 293 mesh_banner_e03 = 294 mesh_banner_e04 = 295 mesh_banner_e05 = 296 mesh_banner_e06 = 297 mesh_banner_e07 = 298 mesh_banner_e08 = 299 mesh_banner_e09 = 300 mesh_banner_e10 = 301 mesh_banner_e11 = 302 mesh_banner_e12 = 303 mesh_banner_e13 = 304 mesh_banner_e14 = 305 mesh_banner_e15 = 306 mesh_banner_e16 = 307 mesh_banner_e17 = 308 mesh_banner_e18 = 309 mesh_banner_e19 = 310 mesh_banner_e20 = 311 mesh_banner_e21 = 312 mesh_banner_f01 = 313 mesh_banner_f02 = 314 mesh_banner_f03 = 315 mesh_banner_f04 = 316 mesh_banner_f05 = 317 mesh_banner_f06 = 318 mesh_banner_f07 = 319 mesh_banner_f08 = 320 mesh_banner_f09 = 321 mesh_banner_f10 = 322 mesh_banner_f11 = 323 mesh_banner_f12 = 324 mesh_banner_f13 = 325 mesh_banner_f14 = 326 mesh_banner_f15 = 327 mesh_banner_f16 = 328 mesh_banner_f17 = 329 mesh_banner_f18 = 330 mesh_banner_f19 = 331 mesh_banner_f20 = 332 mesh_banner_h01 = 333 mesh_banner_h02 = 334 mesh_banner_h03 = 335 mesh_banner_h04 = 336 mesh_banner_h05 = 337 mesh_banner_h06 = 338 mesh_banner_h07 = 339 mesh_banner_h08 = 340 mesh_banner_h09 = 341 mesh_banner_h10 = 342 mesh_banner_h11 = 343 mesh_banner_h12 = 344 mesh_banner_h13 = 345 mesh_banner_h14 = 346 mesh_banner_h15 = 347 mesh_banner_h16 = 348 mesh_banner_h17 = 349 mesh_banner_h18 = 350 mesh_banner_h19 = 351 mesh_banner_h20 = 352 mesh_banner_h21 = 353 mesh_banner_i01 = 354 mesh_banner_i02 = 355 mesh_banner_i03 = 356 mesh_banner_i04 = 357 mesh_banner_i05 = 358 mesh_banner_i06 = 359 mesh_banner_i07 = 360 mesh_banner_i08 = 361 mesh_banner_i09 = 362 mesh_banner_i10 = 363 mesh_banner_i11 = 364 mesh_banner_i12 = 365 mesh_banner_i13 = 366 mesh_banner_i14 = 367 mesh_banner_i15 = 368 mesh_banner_i16 = 369 mesh_banner_i17 = 370 mesh_banner_i18 = 371 mesh_banner_i19 = 372 mesh_banner_i20 = 373 mesh_banner_i21 = 374 mesh_banner_k01 = 375 mesh_banner_k02 = 376 mesh_banner_k03 = 377 mesh_banner_k04 = 378 mesh_banner_k05 = 379 mesh_banner_k06 = 380 mesh_banner_k07 = 381 mesh_banner_k08 = 382 mesh_banner_k09 = 383 mesh_banner_k10 = 384 mesh_banner_k11 = 385 mesh_banner_k12 = 386 mesh_banner_k13 = 387 mesh_banner_k14 = 388 mesh_banner_k15 = 389 mesh_banner_k16 = 390 mesh_banner_k17 = 391 mesh_banner_k18 = 392 mesh_banner_k19 = 393 mesh_banner_k20 = 394 mesh_banner_g01 = 395 mesh_banner_g02 = 396 mesh_banner_g03 = 397 mesh_banner_g04 = 398 mesh_banner_g05 = 399 mesh_banner_g06 = 400 mesh_banner_g07 = 401 mesh_banner_g08 = 402 mesh_banner_g09 = 403 mesh_banner_g10 = 404 mesh_banner_kingdom_a = 405 mesh_banner_kingdom_b = 406 mesh_banner_kingdom_c = 407 mesh_banner_kingdom_d = 408 mesh_banner_kingdom_e = 409 mesh_banner_kingdom_f = 410 mesh_banner_kingdom_g = 411 mesh_banner_kingdom_h = 412 mesh_banner_kingdom_i = 413 mesh_banner_kingdom_j = 414 mesh_banner_kingdom_k = 415 mesh_banner_kingdom_l = 416 mesh_banner_kingdom_ll = 417 mesh_banner_kingdom_m = 418 mesh_banner_kingdom_n = 419 mesh_banner_kingdom_o = 420 mesh_banner_kingdom_p = 421 mesh_banner_kingdom_q = 422 mesh_banner_kingdom_r = 423 mesh_banner_kingdom_s = 424 mesh_banner_kingdom_t = 425 mesh_banner_kingdom_u = 426 mesh_banner_kingdom_v = 427 mesh_banner_kingdom_w = 428 mesh_banner_kingdom_x = 429 mesh_banner_kingdom_y = 430 mesh_banner_kingdom_z = 431 mesh_banner_kingdom_2a = 432 mesh_banner_kingdom_2b = 433 mesh_banner_kingdom_2c = 434 mesh_banner_kingdom_2d = 435 mesh_banner_k21 = 436 mesh_arms_a01 = 437 mesh_arms_a02 = 438 mesh_arms_a03 = 439 mesh_arms_a04 = 440 mesh_arms_a05 = 441 mesh_arms_a06 = 442 mesh_arms_a07 = 443 mesh_arms_a08 = 444 mesh_arms_a09 = 445 mesh_arms_a10 = 446 mesh_arms_a11 = 447 mesh_arms_a12 = 448 mesh_arms_a13 = 449 mesh_arms_a14 = 450 mesh_arms_a15 = 451 mesh_arms_a16 = 452 mesh_arms_a17 = 453 mesh_arms_a18 = 454 mesh_arms_a19 = 455 mesh_arms_a20 = 456 mesh_arms_a21 = 457 mesh_arms_b01 = 458 mesh_arms_b02 = 459 mesh_arms_b03 = 460 mesh_arms_b04 = 461 mesh_arms_b05 = 462 mesh_arms_b06 = 463 mesh_arms_b07 = 464 mesh_arms_b08 = 465 mesh_arms_b09 = 466 mesh_arms_b10 = 467 mesh_arms_b11 = 468 mesh_arms_b12 = 469 mesh_arms_b13 = 470 mesh_arms_b14 = 471 mesh_arms_b15 = 472 mesh_arms_b16 = 473 mesh_arms_b17 = 474 mesh_arms_b18 = 475 mesh_arms_b19 = 476 mesh_arms_b20 = 477 mesh_arms_b21 = 478 mesh_arms_c01 = 479 mesh_arms_c02 = 480 mesh_arms_c03 = 481 mesh_arms_c04 = 482 mesh_arms_c05 = 483 mesh_arms_c06 = 484 mesh_arms_c07 = 485 mesh_arms_c08 = 486 mesh_arms_c09 = 487 mesh_arms_c10 = 488 mesh_arms_c11 = 489 mesh_arms_c12 = 490 mesh_arms_c13 = 491 mesh_arms_c14 = 492 mesh_arms_c15 = 493 mesh_arms_c16 = 494 mesh_arms_c17 = 495 mesh_arms_c18 = 496 mesh_arms_c19 = 497 mesh_arms_c20 = 498 mesh_arms_c21 = 499 mesh_arms_d01 = 500 mesh_arms_d02 = 501 mesh_arms_d03 = 502 mesh_arms_d04 = 503 mesh_arms_d05 = 504 mesh_arms_d06 = 505 mesh_arms_d07 = 506 mesh_arms_d08 = 507 mesh_arms_d09 = 508 mesh_arms_d10 = 509 mesh_arms_d11 = 510 mesh_arms_d12 = 511 mesh_arms_d13 = 512 mesh_arms_d14 = 513 mesh_arms_d15 = 514 mesh_arms_d16 = 515 mesh_arms_d17 = 516 mesh_arms_d18 = 517 mesh_arms_d19 = 518 mesh_arms_d20 = 519 mesh_arms_d21 = 520 mesh_arms_e01 = 521 mesh_arms_e02 = 522 mesh_arms_e03 = 523 mesh_arms_e04 = 524 mesh_arms_e05 = 525 mesh_arms_e06 = 526 mesh_arms_e07 = 527 mesh_arms_e08 = 528 mesh_arms_e09 = 529 mesh_arms_e10 = 530 mesh_arms_e11 = 531 mesh_arms_e12 = 532 mesh_arms_e13 = 533 mesh_arms_e14 = 534 mesh_arms_e15 = 535 mesh_arms_e16 = 536 mesh_arms_e17 = 537 mesh_arms_e18 = 538 mesh_arms_e19 = 539 mesh_arms_e20 = 540 mesh_arms_e21 = 541 mesh_arms_f01 = 542 mesh_arms_f02 = 543 mesh_arms_f03 = 544 mesh_arms_f04 = 545 mesh_arms_f05 = 546 mesh_arms_f06 = 547 mesh_arms_f07 = 548 mesh_arms_f08 = 549 mesh_arms_f09 = 550 mesh_arms_f10 = 551 mesh_arms_f11 = 552 mesh_arms_f12 = 553 mesh_arms_f13 = 554 mesh_arms_f14 = 555 mesh_arms_f15 = 556 mesh_arms_f16 = 557 mesh_arms_f17 = 558 mesh_arms_f18 = 559 mesh_arms_f19 = 560 mesh_arms_f20 = 561 mesh_arms_h01 = 562 mesh_arms_h02 = 563 mesh_arms_h03 = 564 mesh_arms_h04 = 565 mesh_arms_h05 = 566 mesh_arms_h06 = 567 mesh_arms_h07 = 568 mesh_arms_h08 = 569 mesh_arms_h09 = 570 mesh_arms_h10 = 571 mesh_arms_h11 = 572 mesh_arms_h12 = 573 mesh_arms_h13 = 574 mesh_arms_h14 = 575 mesh_arms_h15 = 576 mesh_arms_h16 = 577 mesh_arms_h17 = 578 mesh_arms_h18 = 579 mesh_arms_h19 = 580 mesh_arms_h20 = 581 mesh_arms_h21 = 582 mesh_arms_i01 = 583 mesh_arms_i02 = 584 mesh_arms_i03 = 585 mesh_arms_i04 = 586 mesh_arms_i05 = 587 mesh_arms_i06 = 588 mesh_arms_i07 = 589 mesh_arms_i08 = 590 mesh_arms_i09 = 591 mesh_arms_i10 = 592 mesh_arms_i11 = 593 mesh_arms_i12 = 594 mesh_arms_i13 = 595 mesh_arms_i14 = 596 mesh_arms_i15 = 597 mesh_arms_i16 = 598 mesh_arms_i17 = 599 mesh_arms_i18 = 600 mesh_arms_i19 = 601 mesh_arms_i20 = 602 mesh_arms_i21 = 603 mesh_arms_k01 = 604 mesh_arms_k02 = 605 mesh_arms_k03 = 606 mesh_arms_k04 = 607 mesh_arms_k05 = 608 mesh_arms_k06 = 609 mesh_arms_k07 = 610 mesh_arms_k08 = 611 mesh_arms_k09 = 612 mesh_arms_k10 = 613 mesh_arms_k11 = 614 mesh_arms_k12 = 615 mesh_arms_k13 = 616 mesh_arms_k14 = 617 mesh_arms_k15 = 618 mesh_arms_k16 = 619 mesh_arms_k17 = 620 mesh_arms_k18 = 621 mesh_arms_k19 = 622 mesh_arms_k20 = 623 mesh_arms_g01 = 624 mesh_arms_g02 = 625 mesh_arms_g03 = 626 mesh_arms_g04 = 627 mesh_arms_g05 = 628 mesh_arms_g06 = 629 mesh_arms_g07 = 630 mesh_arms_g08 = 631 mesh_arms_g09 = 632 mesh_arms_g10 = 633 mesh_arms_kingdom_a = 634 mesh_arms_kingdom_b = 635 mesh_arms_kingdom_c = 636 mesh_arms_kingdom_d = 637 mesh_arms_kingdom_e = 638 mesh_arms_kingdom_f = 639 mesh_arms_kingdom_g = 640 mesh_arms_kingdom_h = 641 mesh_arms_kingdom_i = 642 mesh_arms_kingdom_j = 643 mesh_arms_kingdom_k = 644 mesh_arms_kingdom_l = 645 mesh_arms_kingdom_ll = 646 mesh_arms_kingdom_m = 647 mesh_arms_kingdom_n = 648 mesh_arms_kingdom_o = 649 mesh_arms_kingdom_p = 650 mesh_arms_kingdom_q = 651 mesh_arms_kingdom_r = 652 mesh_arms_kingdom_s = 653 mesh_arms_kingdom_t = 654 mesh_arms_kingdom_u = 655 mesh_arms_kingdom_v = 656 mesh_arms_kingdom_w = 657 mesh_arms_kingdom_x = 658 mesh_arms_kingdom_y = 659 mesh_arms_kingdom_z = 660 mesh_arms_kingdom_2a = 661 mesh_arms_kingdom_2b = 662 mesh_arms_kingdom_2c = 663 mesh_arms_kingdom_2d = 664 mesh_arms_k21 = 665 mesh_banners_default_a = 666 mesh_banners_default_b = 667 mesh_banners_default_c = 668 mesh_banners_default_d = 669 mesh_banners_default_e = 670 mesh_troop_label_banner = 671 mesh_ui_kingdom_shield_1 = 672 mesh_ui_kingdom_shield_2 = 673 mesh_ui_kingdom_shield_3 = 674 mesh_ui_kingdom_shield_4 = 675 mesh_ui_kingdom_shield_5 = 676 mesh_ui_kingdom_shield_6 = 677 mesh_ui_kingdom_shield_7 = 678 mesh_ui_kingdom_shield_8 = 679 mesh_ui_kingdom_shield_9 = 680 mesh_ui_kingdom_shield_10 = 681 mesh_ui_kingdom_shield_11 = 682 mesh_ui_kingdom_shield_12 = 683 mesh_ui_kingdom_shield_13 = 684 mesh_ui_kingdom_shield_14 = 685 mesh_ui_kingdom_shield_15 = 686 mesh_ui_kingdom_shield_16 = 687 mesh_ui_kingdom_shield_17 = 688 mesh_ui_kingdom_shield_18 = 689 mesh_ui_kingdom_shield_19 = 690 mesh_ui_kingdom_shield_20 = 691 mesh_ui_kingdom_shield_21 = 692 mesh_ui_kingdom_shield_22 = 693 mesh_ui_kingdom_shield_23 = 694 mesh_ui_kingdom_shield_24 = 695 mesh_ui_kingdom_shield_25 = 696 mesh_ui_kingdom_shield_26 = 697 mesh_ui_kingdom_shield_27 = 698 mesh_ui_kingdom_shield_28 = 699 mesh_ui_kingdom_shield_29 = 700 mesh_ui_kingdom_shield_30 = 701 mesh_ui_kingdom_shield_31 = 702 mesh_mouse_arrow_down = 703 mesh_mouse_arrow_right = 704 mesh_mouse_arrow_left = 705 mesh_mouse_arrow_up = 706 mesh_mouse_arrow_plus = 707 mesh_mouse_left_click = 708 mesh_mouse_right_click = 709 mesh_status_ammo_ready = 710 mesh_main_menu_background = 711 mesh_loading_background = 712 mesh_ui_quick_battle_a = 713 mesh_white_bg_plane_a = 714 mesh_cb_ui_icon_infantry = 715 mesh_cb_ui_icon_archer = 716 mesh_cb_ui_icon_horseman = 717 mesh_cb_ui_main = 718 mesh_cb_ui_maps_scene_01 = 719 mesh_cb_ui_maps_scene_02 = 720 mesh_cb_ui_maps_scene_03 = 721 mesh_cb_ui_maps_scene_04 = 722 mesh_cb_ui_maps_scene_05 = 723 mesh_cb_ui_maps_scene_06 = 724 mesh_cb_ui_maps_scene_07 = 725 mesh_cb_ui_maps_scene_08 = 726 mesh_cb_ui_maps_scene_09 = 727 mesh_mp_ui_host_maps_14 = 728 mesh_mp_ui_host_maps_15 = 729 mesh_ui_kingdom_shield_7 = 730 mesh_flag_project_rb = 731 mesh_flag_project_rb_miss = 732 mesh_mp_ui_host_maps_16 = 733 mesh_mp_ui_host_maps_17 = 734 mesh_mp_ui_host_maps_18 = 735 mesh_mp_ui_host_maps_19 = 736 mesh_mp_ui_host_maps_20 = 737 mesh_pic_mb_warrior_2 = 738 mesh_pic_mb_warrior_3 = 739 mesh_pic_mb_warrior_4 = 740 mesh_pic_mercenary = 741 mesh_facegen_board = 742 mesh_status_background = 743 mesh_status_health_bar = 744 mesh_game_log_window = 745 mesh_restore_game_panel = 746 mesh_message_window = 747 mesh_party_window_b = 748 mesh_party_member_button = 749 mesh_party_member_button_pressed = 750 mesh_longer_button = 751 mesh_longer_button_down = 752 mesh_button_1 = 753 mesh_button_1_down = 754 mesh_used_button = 755 mesh_used_button_down = 756 mesh_longer_button = 757 mesh_longer_button_down = 758 mesh_options_window = 759 mesh_message_window = 760 mesh_note_window = 761 mesh_left_button = 762 mesh_left_button_down = 763 mesh_left_button_hl = 764 mesh_right_button = 765 mesh_right_button_down = 766 mesh_right_button_hl = 767 mesh_center_button = 768 mesh_drop_button = 769 mesh_drop_button_down = 770 mesh_drop_button_hl = 771 mesh_drop_button_child = 772 mesh_drop_button_child_down = 773 mesh_drop_button_child_hl = 774 mesh_num_1 = 775 mesh_num_2 = 776 mesh_num_3 = 777 mesh_num_4 = 778 mesh_num_5 = 779 mesh_num_6 = 780 mesh_num_7 = 781 mesh_num_8 = 782 mesh_num_9 = 783 mesh_num_10 = 784 mesh_num_11 = 785 mesh_num_12 = 786 mesh_num_13 = 787 mesh_num_14 = 788 mesh_num_15 = 789 mesh_num_16 = 790 mesh_num_17 = 791 mesh_num_18 = 792 mesh_num_19 = 793 mesh_num_20 = 794 mesh_num_21 = 795 mesh_num_22 = 796 mesh_num_23 = 797 mesh_num_24 = 798 mesh_num_25 = 799 mesh_num_26 = 800 mesh_num_27 = 801 mesh_num_28 = 802 mesh_num_29 = 803 mesh_num_30 = 804 mesh_num_31 = 805 mesh_num_32 = 806 mesh_num_33 = 807 mesh_num_34 = 808 mesh_num_35 = 809 mesh_num_36 = 810 mesh_num_37 = 811 mesh_num_38 = 812 mesh_num_39 = 813 mesh_num_40 = 814 mesh_num_41 = 815 mesh_num_42 = 816 mesh_num_43 = 817 mesh_num_44 = 818 mesh_num_45 = 819 mesh_num_46 = 820 mesh_num_47 = 821 mesh_num_48 = 822 mesh_message_window = 823 mesh_face_gen_window = 824 mesh_order_frame = 825 mesh_tableau_mesh_early_transitional_heraldic_banner = 826 mesh_tableau_mesh_early_transitional_heraldic = 827 mesh_tableau_mesh_samurai_heraldic_flag = 828 mesh_tableau_mesh_banner_spear = 829 mesh_invisi_st_plane_fullsc = 830 mesh_bt_flag_1 = 831 mesh_bt_flag_2 = 832 mesh_bt_flag_3 = 833 mesh_pic_bt_crossbow = 834 mesh_pic_bt_shield = 835 mesh_pic_bt_horse_archer = 836 mesh_pic_bt_twohand = 837 mesh_pic_bt_bow = 838 mesh_pic_bt_horse = 839 mesh_pic_bt_musket = 840 mesh_pic_bt_leader = 841 mesh_bt_cion_tier1 = 842 mesh_bt_cion_tier2 = 843 mesh_bt_cion_tier3 = 844 mesh_bt_cion_tier4 = 845 mesh_bt_cion_tier5 = 846 mesh_bt_cion_tier6 = 847 mesh_pic_bt_charge_auto = 848 mesh_pic_bt_hold = 849 mesh_pic_bt_followme = 850 mesh_pic_bt_unite = 851 mesh_pic_bt_divide = 852 mesh_pic_bt_advan = 853 mesh_pic_bt_fall = 854 mesh_pic_bt_holdfire = 855 mesh_pic_bt_anyw = 856 mesh_pic_bt_clicked = 857 mesh_pic_bt_return = 858 mesh_pic_camp_meet = 859 mesh_pic_meetlady = 860 mesh_pic_meetlady2 = 861 mesh_pic_meetlady3 = 862 mesh_1pic_ruin_0 = 863 mesh_1pic_ruin_1 = 864 mesh_1pic_ruin_2 = 865 mesh_1pic_ruin_3 = 866 mesh_1pic_ruin_4 = 867 mesh_1pic_ruin_5 = 868 mesh_1pic_ruin_6 = 869 mesh_1pic_ruin_7 = 870 mesh_1pic_ruin_8 = 871 mesh_1pic_ruin_9 = 872 mesh_1pic_ruin_10 = 873 mesh_1pic_ruin_11 = 874 mesh_1pic_ruin_12 = 875 mesh_1pic_ruin_13 = 876 mesh_1pic_ruin_14 = 877 mesh_1pic_ruin_15 = 878 mesh_1pic_ruin_16 = 879 mesh_1pic_ruin_17 = 880 mesh_1pic_ruin_18 = 881 mesh_1pic_ruin_19 = 882 mesh_1pic_ruin_20 = 883 mesh_1pic_ruin_21 = 884 mesh_1pic_ruin_22 = 885 mesh_1pic_ruin_23 = 886 mesh_1pic_ruin_24 = 887 mesh_1pic_ruin_25 = 888 mesh_1pic_ruin_26 = 889 mesh_1pic_ruin_27 = 890 mesh_1pic_ruin_28 = 891 mesh_1pic_ruin_29 = 892 mesh_1pic_ruin_30 = 893 mesh_1pic_ruin_31 = 894 mesh_1pic_ruin_32 = 895 mesh_1pic_ruin_33 = 896 mesh_1pic_ruin_34 = 897 mesh_1pic_ruin_35 = 898 mesh_1pic_ruin_36 = 899 mesh_1pic_ruin_37 = 900 mesh_1pic_ruin_38 = 901 mesh_1pic_ruin_39 = 902 mesh_1pic_ruin_40 = 903 mesh_1pic_ruin_41 = 904 mesh_1pic_ruin_42 = 905 mesh_1pic_ruin_43 = 906 mesh_1pic_ruin_44 = 907 mesh_1pic_ruin_45 = 908 mesh_1pic_ruin_46 = 909 mesh_1pic_ruin_47 = 910 mesh_1pic_ruin_48 = 911 mesh_1pic_ruin_49 = 912 mesh_1pic_ruin_50 = 913 mesh_1pic_ruin_51 = 914 mesh_1pic_ruin_52 = 915 mesh_1pic_ruin_53 = 916 mesh_1pic_ruin_54 = 917 mesh_1pic_ruin_55 = 918 mesh_1pic_ruin_56 = 919 mesh_1pic_ruin_57 = 920 mesh_1pic_ruin_58 = 921 mesh_1pic_ruin_59 = 922 mesh_1pic_ruin_60 = 923 mesh_1pic_ruin_61 = 924 mesh_1pic_ruin_62 = 925 mesh_1pic_ruin_63 = 926 mesh_1pic_ruin_64 = 927 mesh_1pic_ruin_65 = 928 mesh_1pic_ruin_66 = 929 mesh_1pic_ruin_67 = 930 mesh_1pic_ruin_68 = 931 mesh_1pic_ruin_69 = 932 mesh_1pic_ruin_70 = 933 mesh_1pic_ruin_71 = 934 mesh_1pic_ruin_72 = 935 mesh_1pic_ruin_73 = 936 mesh_1pic_ruin_74 = 937 mesh_1pic_ruin_75 = 938 mesh_1pic_ruin_76 = 939 mesh_1pic_ruin_77 = 940 mesh_1pic_ruin_78 = 941 mesh_1pic_ruin_79 = 942 mesh_1pic_ruin_80 = 943 mesh_1pic_ruin_81 = 944 mesh_1pic_ruin_82 = 945 mesh_1pic_ruin_83 = 946 mesh_1pic_ruin_84 = 947 mesh_1pic_ruin_85 = 948 mesh_1pic_ruin_86 = 949 mesh_1pic_ruin_87 = 950 mesh_1pic_ruin_88 = 951 mesh_1pic_ruin_89 = 952 mesh_1pic_ruin_90 = 953 mesh_1pic_ruin_91 = 954 mesh_1pic_ruin_92 = 955 mesh_1pic_ruin_93 = 956 mesh_1pic_ruin_94 = 957 mesh_1pic_ruin_95 = 958 mesh_1pic_ruin_96 = 959 mesh_1pic_ruin_97 = 960 mesh_1pic_ruin_98 = 961 mesh_1pic_ruin_99 = 962 mesh_1pic_ruin_100 = 963 mesh_1pic_ruin_101 = 964 mesh_1pic_ruin_102 = 965 mesh_1pic_ruin_103 = 966 mesh_1pic_ruin_104 = 967 mesh_1pic_ruin_105 = 968 mesh_1pic_ruin_106 = 969 mesh_1pic_ruin_107 = 970 mesh_1pic_ruin_108 = 971 mesh_1pic_ruin_109 = 972 mesh_1pic_ruin_110 = 973 mesh_1pic_ruin_111 = 974 mesh_1pic_ruin_112 = 975 mesh_1pic_ruin_113 = 976 mesh_1pic_ruin_114 = 977 mesh_1pic_ruin_115 = 978 mesh_1pic_ruin_116 = 979 mesh_1pic_ruin_117 = 980 mesh_1pic_ruin_118 = 981 mesh_1pic_ruin_119 = 982 mesh_1pic_ruin_120 = 983 mesh_1pic_ruin_121 = 984 mesh_1pic_ruin_122 = 985 mesh_1pic_ruin_123 = 986 mesh_1pic_ruin_124 = 987 mesh_1pic_ruin_125 = 988 mesh_1pic_ruin_126 = 989 mesh_1pic_ruin_127 = 990 mesh_1pic_ruin_128 = 991 mesh_1pic_ruin_129 = 992 mesh_1pic_ruin_130 = 993 mesh_1pic_ruin_131 = 994 mesh_1pic_ruin_132 = 995 mesh_1pic_ruin_133 = 996 mesh_1pic_ruin_134 = 997 mesh_1pic_ruin_135 = 998 mesh_1pic_ruin_136 = 999 mesh_1pic_ruin_137 = 1000 mesh_1pic_ruin_138 = 1001 mesh_1pic_ruin_139 = 1002 mesh_1pic_ruin_140 = 1003 mesh_1pic_ruin_141 = 1004 mesh_1pic_ruin_142 = 1005 mesh_1pic_ruin_143 = 1006 mesh_1pic_ruin_144 = 1007 mesh_1pic_ruin_145 = 1008 mesh_1pic_ruin_146 = 1009 mesh_1pic_ruin_ex1 = 1010 mesh_1pic_ruin_ex2 = 1011 mesh_1pic_ruin_ex3 = 1012 mesh_1pic_ruin_ex4 = 1013 mesh_1pic_ruin_ex5 = 1014 mesh_1pic_ruin_ex6 = 1015 mesh_1pic_ruin_ex7 = 1016 mesh_1pic_ruin_ex8 = 1017 mesh_1pic_ruin_ex9 = 1018 mesh_1pic_ruin_ex10 = 1019 mesh_1pic_ruin_ex11 = 1020 mesh_1pic_ruin_ex12 = 1021 mesh_1pic_ruin_ex13 = 1022 mesh_1pic_ruin_ex14 = 1023 mesh_1pic_ruin_ex15 = 1024 mesh_1pic_ruin_ex16 = 1025 mesh_1pic_ruin_ex17 = 1026 mesh_1pic_ruin_ex18 = 1027 mesh_1pic_ruin_ex19 = 1028 mesh_1pic_ruin_ex20 = 1029 mesh_1pic_ruin_ex21 = 1030 mesh_1pic_ruin_ex22 = 1031 mesh_1pic_ruin_ex23 = 1032 mesh_1pic_ruin_ex24 = 1033 mesh_1pic_ruin_ex25 = 1034 mesh_pic_encounter1 = 1035 mesh_pic_encounter2 = 1036 mesh_pic_encounter3 = 1037 mesh_pic_xex8 = 1038 mesh_pic_xex9 = 1039 mesh_pic_xex10 = 1040 mesh_pic_xex11 = 1041 mesh_pic_xex12 = 1042 mesh_pic_xex13 = 1043 mesh_pic_xex14 = 1044 mesh_st_tercio = 1045 mesh_st_pincer_movement = 1046 mesh_encounter4vik = 1047 mesh_encounter5pirate = 1048 mesh_pic_ship_shipyard = 1049 mesh_st_pic_plain = 1050 mesh_st_pic_desert = 1051 mesh_st_pic_mount = 1052 mesh_st_pic_snow = 1053 mesh_st_pic_sea = 1054 mesh_st_lancecharge = 1055 mesh_st_ccccharge = 1056 mesh_st_viking = 1057 mesh_black_st_plane = 1058 mesh_invisi_st_plane = 1059 mesh_pic_invisi_backgrounds = 1060 mesh_pic_policy_choose_prt = 1061 mesh_pic_policy_choose_prt_bk = 1062 mesh_pic_religion_screenn = 1063 mesh_pic_gbt_punch = 1064 mesh_pic_gbt_lick = 1065 mesh_pic_gbt_finger = 1066 mesh_pic_gbt_love = 1067 mesh_pic_gbt_place = 1068 mesh_pic_gbt_bed_sheet = 1069 mesh_pic_money_bag = 1070 mesh_pic_sea_backg = 1071 mesh_tableau_mesh_flag = 1072 mesh_pic_backg_inv = 1073 mesh_pic_library = 1074 mesh_pic_fuck_back = 1075 mesh_pic_ghost_ship_encount = 1076 mesh_pic_visit_train = 1077 mesh_pic_weknow = 1078 mesh_pic_bank_back = 1079 mesh_pic_wm_blank = 1080 mesh_pic_wm_horse = 1081 mesh_pic_wm_finewood = 1082 mesh_pic_wm_iron = 1083 mesh_pic_wm_elephant = 1084 mesh_pic_wm_whale = 1085 mesh_pic_wm_fish = 1086 mesh_pic_wm_maize = 1087 mesh_pic_wm_copper = 1088 mesh_pic_wm_marble = 1089 mesh_pic_wm_pearl = 1090 mesh_pic_wm_gem = 1091 mesh_pic_wm_ceramic = 1092 mesh_pic_wm_gold = 1093 mesh_pic_wm_silver = 1094 mesh_pic_wm_ivory = 1095 mesh_pic_wm_coffee = 1096 mesh_pic_wm_cacao = 1097 mesh_pic_wm_silk = 1098 mesh_pic_wm_nutmeg = 1099 mesh_pic_wm_allspice = 1100 mesh_pic_wm_cinnamon = 1101 mesh_pic_wm_clove = 1102 mesh_pic_wm_pepper = 1103 mesh_pic_wm_tabaco = 1104 mesh_pic_wm_tea = 1105 mesh_pic_marry = 1106 mesh_pic_religion_symbol_0 = 1107 mesh_pic_religion_symbol_1 = 1108 mesh_pic_religion_symbol_2 = 1109 mesh_pic_religion_symbol_3 = 1110 mesh_pic_religion_symbol_4 = 1111 mesh_pic_religion_symbol_5 = 1112 mesh_pic_religion_symbol_6 = 1113 mesh_pic_religion_symbol_7 = 1114 mesh_pic_religion_symbol_8 = 1115 mesh_pic_religion_symbol_9 = 1116 mesh_pic_religion_symbol_10 = 1117 mesh_pic_religion_symbol_11 = 1118 mesh_pic_religion_symbol_12 = 1119 mesh_pic_religion_symbol_13 = 1120 mesh_pic_religion_symbol_14 = 1121 mesh_pic_religion_symbol_15 = 1122 mesh_pic_religion_symbol_16 = 1123 mesh_pic_disaster_volcano = 1124 mesh_pic_disaster_earthquake = 1125 mesh_pic_disaster_storm = 1126 mesh_pic_disaster_typhoon = 1127 mesh_pic_disaster_fire = 1128 mesh_pic_disaster_sand = 1129 mesh_pic_disaster_tides = 1130 mesh_pic_disaster_ice = 1131 mesh_pic_disaster_flood = 1132 mesh_flag_div_1 = 1133 mesh_flag_div_2 = 1134 mesh_flag_div_3 = 1135 mesh_flag_div_4 = 1136 mesh_flag_div_5 = 1137 mesh_flag_div_6 = 1138 mesh_flag_div_7 = 1139 mesh_flag_div_8 = 1140 mesh_flag_div_9 = 1141 mesh_pic_battle_tile_2 = 1142 mesh_pic_battle_tile_3 = 1143 mesh_pic_battle_tile_4 = 1144 mesh_pic_battle_tile_5 = 1145 mesh_pic_battle_tile_6 = 1146 mesh_pic_battle_tile_7 = 1147 mesh_pic_battle_tile_8 = 1148 mesh_pic_battle_tile_9 = 1149 mesh_pic_battle_tile_10 = 1150 mesh_pic_battle_tile_11 = 1151 mesh_pic_battle_tile_s1 = 1152 mesh_pic_battle_tile_s2 = 1153 mesh_pic_battle_tile_s3 = 1154 mesh_pic_battle_tile_s4 = 1155 mesh_pic_battle_tile_n1 = 1156 mesh_pic_gameover = 1157 mesh_pic_cla_mercernary = 1158 mesh_pic_cla_merchant = 1159 mesh_pic_cla_adventurer = 1160 mesh_pic_cla_lord = 1161 mesh_pic_cla_bandit = 1162 mesh_pic_cla_pirate = 1163 mesh_pic_ptown_euro = 1164 mesh_pic_ptown_snow = 1165 mesh_pic_ptown_roman = 1166 mesh_pic_ptown_arab = 1167 mesh_pic_ptown_wooden = 1168 mesh_pic_ptown_asia = 1169 mesh_pic_ptown_asia_2 = 1170 mesh_pic_ptown_jap = 1171 mesh_pic_ptown_uurt = 1172 mesh_pic_ptown_teepee = 1173 mesh_pic_meetlady4 = 1174 mesh_pic_battle_formation_backriver = 1175 mesh_pic_battle_formation_sideattack = 1176 mesh_pic_battle_formation_backattack = 1177 mesh_pic_battle_formation_8door = 1178 mesh_pic_battle_formation_encampment = 1179 mesh_pic_battle_formation_lionheart = 1180 mesh_pic_battle_formation_mangudai = 1181 mesh_pic_battle_formation_pincer = 1182 mesh_pic_battle_formation_base = 1183 mesh_OrteliusWorldMap1570 = 1184 mesh_pic_portrait_yoritomo = 1185 mesh_pic_portrait_munemori = 1186 mesh_pic_portrait_xiaozong = 1187 mesh_pic_portrait_shizong = 1188 mesh_pic_portrait_genghiskhan = 1189 mesh_pic_portrait_philip_ii = 1190 mesh_pic_portrait_richard_i = 1191 mesh_pic_portrait_barbarossa = 1192 mesh_pic_portrait_alfonso_viii = 1193 mesh_pic_portrait_yaqub = 1194 mesh_pic_portrait_baldwin = 1195 mesh_pic_portrait_saladin = 1196 mesh_pic_portrait_tekish = 1197 mesh_pic_portrait_ghiyath = 1198 mesh_pic_portrait_akbar = 1199 mesh_pic_portrait_ivan = 1200 mesh_pic_portrait_frederick_ii = 1201 mesh_pic_portrait_maxi = 1202 mesh_pic_portrait_john_iii = 1203 mesh_pic_portrait_selimii = 1204 mesh_pic_portrait_stephen = 1205 mesh_pic_portrait_elizabeth = 1206 mesh_pic_portrait_philip = 1207 mesh_pic_portrait_sebastian = 1208 mesh_pic_portrait_william = 1209 mesh_pic_portrait_wanli = 1210 mesh_pic_portrait_oda = 1211 mesh_town_t_plain = 1212 mesh_town_t_water = 1213 mesh_town_t_hill = 1214 mesh_town_t_desert = 1215 mesh_town_t_snow = 1216 mesh_town_t_mountain = 1217 mesh_town_t_mil = 1218 mesh_town_t_ore = 1219 mesh_town_t_horse = 1220 mesh_town_t_holy = 1221 mesh_town_t_pasture = 1222 mesh_town_t_mine = 1223 mesh_town_t_market = 1224 mesh_town_t_barrack = 1225 mesh_town_t_farm = 1226 mesh_town_t_hall = 1227 mesh_town_t_prison = 1228 mesh_town_t_library = 1229 mesh_town_t_temple = 1230 mesh_town_t_smithy = 1231 mesh_white_plane_upper = 1232 mesh_white_plane_center = 1233 mesh_town_e_onehand = 1234 mesh_town_e_twohand = 1235 mesh_town_e_polearm = 1236 mesh_town_e_bow = 1237 mesh_town_e_crossbow = 1238 mesh_town_e_arquebus = 1239 mesh_town_e_ammo = 1240 mesh_town_e_light = 1241 mesh_town_e_heavy = 1242 mesh_town_e_horse = 1243 mesh_town_e_siege = 1244 mesh_town_e_wood = 1245 mesh_town_e_shipammo = 1246 mesh_town_d_onehand = 1247 mesh_town_d_twohand = 1248 mesh_town_d_polearm = 1249 mesh_town_d_bow = 1250 mesh_town_d_crossbow = 1251 mesh_town_d_arquebus = 1252 mesh_town_d_ammo = 1253 mesh_town_d_light = 1254 mesh_town_d_heavy = 1255 mesh_town_d_horse = 1256 mesh_town_d_siege = 1257 mesh_town_d_wood = 1258 mesh_town_d_shipammo = 1259 mesh_status_troop_ratio_bar = 1260 mesh_status_troop_ratio_bar_button = 1261
25.528063
58
0.843619
0
0
0
0
0
0
0
0
0
0
a0cc84ea1f11da3af87cb6aff03136b234f94184
30,936
py
Python
q2_longitudinal/_vega.py
thermokarst/q2-longitudinal
1967617214417b7097ce96e4a7dfdfbb5fd17faf
[ "BSD-3-Clause" ]
null
null
null
q2_longitudinal/_vega.py
thermokarst/q2-longitudinal
1967617214417b7097ce96e4a7dfdfbb5fd17faf
[ "BSD-3-Clause" ]
null
null
null
q2_longitudinal/_vega.py
thermokarst/q2-longitudinal
1967617214417b7097ce96e4a7dfdfbb5fd17faf
[ "BSD-3-Clause" ]
null
null
null
# ---------------------------------------------------------------------------- # Copyright (c) 2017-2018, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import json import pandas as pd def _render_volatility_spec(data: pd.DataFrame, individual_id: str, state: str, default_group: str, group_columns: list, default_metric: str, metric_columns: list, yscale: str) -> str: # Double-quotes for many of the strings below, just so that we don't have # to escape the single quotes - it is already hard enough to read when # wrapped. opacity_test = ("!length(data('selected')) || " "indata('selected', 'value', datum.value)") group_test = ("!length(data('selected')) || " "indata('selected', 'value', datum.groupByVal)") error_bar_test = 'showErrorBars && (%s)' % group_test metric_signal = {'signal': 'metric'} group_signal = {'signal': 'grouper'} # This looks grosser than it is (you can't do variable assignment in a # vega expr, so no temp helper vars) - basically find the min and max # extents of the metric in question for the y-axis rendering, including # the 3x stdev (depending on the spread this could be beyond the metric's # own limits. domain_expr = ("[min(data('globalVals')[0].cl0," "data('globalVals')[0].minY)," "max(data('globalVals')[0].cl3," "data('globalVals')[0].maxY)]") # These templates customize the tooltips mean_signal = ('{"title": "group mean", "group": datum.groupByVal,' ' "state": datum["%s"], "count": datum.count,' ' "mean": datum.mean, "ci0": datum.ci0, "ci1": datum.ci1}' % state) marks = [ { 'type': 'rule', 'from': { 'data': 'globalVals', }, 'encode': { 'update': { 'strokeWidth': { 'value': 2, }, 'x': { 'scale': 'x', 'field': 'minX', }, 'x2': { 'scale': 'x', 'field': 'maxX', }, 'y': { 'scale': 'y', 'field': 'mean', }, 'strokeOpacity': [ { 'test': 'showGlobalMean', 'value': 1.0, }, { 'value': 0.0, }, ], }, }, }, { 'type': 'rule', 'from': { 'data': 'globalVals', }, 'encode': { 'update': { 'strokeWidth': { 'value': 2, }, 'strokeDash': { 'value': [8, 8], }, 'x': { 'scale': 'x', 'field': 'minX', }, 'x2': { 'scale': 'x', 'field': 'maxX', }, 'y': { 'scale': 'y', 'field': 'cl0', }, 'strokeOpacity': [ { 'test': 'showGlobalControlLimits', 'value': 1.0, }, { 'value': 0.0, }, ], }, }, }, { 'type': 'rule', 'from': { 'data': 'globalVals', }, 'encode': { 'update': { 'strokeWidth': { 'value': 2, }, 'strokeDash': { 'value': [6, 2], }, 'x': { 'scale': 'x', 'field': 'minX', }, 'x2': { 'scale': 'x', 'field': 'maxX', }, 'y': { 'scale': 'y', 'field': 'cl1', }, 'strokeOpacity': [ { 'test': 'showGlobalControlLimits', 'value': 1.0, }, { 'value': 0.0, }, ], }, }, }, { 'type': 'rule', 'from': { 'data': 'globalVals', }, 'encode': { 'update': { 'strokeWidth': { 'value': 2, }, 'strokeDash': { 'value': [6, 2], }, 'x': { 'scale': 'x', 'field': 'minX', }, 'x2': { 'scale': 'x', 'field': 'maxX', }, 'y': { 'scale': 'y', 'field': 'cl2', }, 'strokeOpacity': [ { 'test': 'showGlobalControlLimits', 'value': 1.0, }, { 'value': 0.0, }, ], }, }, }, { 'type': 'rule', 'from': { 'data': 'globalVals', }, 'encode': { 'update': { 'strokeWidth': { 'value': 2, }, 'strokeDash': { 'value': [8, 8], }, 'x': { 'scale': 'x', 'field': 'minX', }, 'x2': { 'scale': 'x', 'field': 'maxX', }, 'y': { 'scale': 'y', 'field': 'cl3', }, 'strokeOpacity': [ { 'test': 'showGlobalControlLimits', 'value': 1.0, }, { 'value': 0.0, }, ], }, }, }, { 'type': 'group', 'from': { 'facet': { 'name': 'series', 'data': 'aggBy', 'groupby': 'groupByVal', }, }, 'marks': [ { 'type': 'line', 'from': { 'data': 'series', }, 'sort': { 'field': 'datum.%s' % state, 'order': 'ascending', }, 'encode': { 'update': { 'x': { 'scale': 'x', 'field': state, }, 'y': { 'scale': 'y', 'field': 'mean', }, 'stroke': { 'scale': 'color', 'field': 'groupByVal', }, 'strokeWidth': { 'signal': 'meanLineThickness', }, 'opacity': [ { 'test': group_test, 'signal': 'meanLineOpacity', }, { 'value': 0.0, }, ], }, }, }, # Need to add symbols into plot for mouseover # https://github.com/vega/vega-tooltip/issues/120 { 'type': 'symbol', 'from': { 'data': 'series', }, 'encode': { 'update': { 'tooltip': { 'signal': mean_signal, }, 'x': { 'scale': 'x', 'field': state, }, 'y': { 'scale': 'y', 'field': 'mean', }, 'stroke': { 'scale': 'color', 'field': 'groupByVal', }, 'fill': { 'scale': 'color', 'field': 'groupByVal', }, 'size': { 'signal': 'meanSymbolSize', }, 'opacity': [ { 'test': group_test, 'signal': 'meanSymbolOpacity', }, { 'value': 0.0, }, ], }, }, }, { 'type': 'rect', 'from': { 'data': 'series', }, 'encode': { 'update': { 'width': { 'value': 2.0, }, 'x': { 'scale': 'x', 'field': state, 'band': 0.5, }, 'y': { 'scale': 'y', 'field': 'ci0', }, 'y2': { 'scale': 'y', 'field': 'ci1', }, 'fill': { 'scale': 'color', 'field': 'groupByVal', }, 'opacity': [ { 'test': error_bar_test, 'value': 1.0, }, { 'value': 0.0, }, ], }, }, }, ], }, ] signals = [ { 'name': 'grouper', 'value': default_group, 'bind': { 'input': 'select', 'element': '#group-column', 'options': group_columns, } }, { 'name': 'metric', 'value': default_metric, 'bind': { 'input': 'select', 'element': '#metric-column', 'options': metric_columns, }, }, { 'name': 'width', 'value': '', 'bind': { 'input': 'text', }, 'on': [ { 'events': { 'source': 'window', 'type': 'resize', }, 'update': 'containerSize()[0]', }, ], }, { 'name': 'showErrorBars', 'value': False, 'bind': { 'input': 'checkbox', 'element': '#toggle-error-bars', }, }, { 'name': 'showGlobalMean', 'value': False, 'bind': { 'input': 'checkbox', 'element': '#toggle-global-mean', }, }, { 'name': 'showGlobalControlLimits', 'value': False, 'bind': { 'input': 'checkbox', 'element': '#toggle-global-control-limits', }, }, { 'name': 'meanLineThickness', 'value': 3, 'bind': { 'input': 'range', 'min': 0.1, 'max': 10, 'step': 0.1, 'element': '#mean-line-thickness', }, }, { 'name': 'meanLineOpacity', 'value': 1.0, 'bind': { 'input': 'range', 'min': 0.0, 'max': 1.0, 'step': 0.01, 'element': '#mean-line-opacity', }, }, { 'name': 'meanSymbolSize', 'value': 50.0, 'bind': { 'input': 'range', 'min': 0.0, 'max': 500.0, 'step': 1.0, 'element': '#mean-symbol-size', }, }, { 'name': 'meanSymbolOpacity', 'value': 0.0, 'bind': { 'input': 'range', 'min': 0.0, 'max': 1.0, 'step': 0.01, 'element': '#mean-symbol-opacity', }, }, { 'name': 'colorScheme', 'value': 'category10', 'bind': { 'input': 'select', 'element': '#color-scheme', 'options': [ 'accent', 'category10', 'category20', 'category20b', 'category20c', 'dark2', 'paired', 'pastel1', 'pastel2', 'set1', 'set2', 'set3', 'tableau10', 'tableau20', ], } }, { 'name': 'clear', 'value': True, 'on': [ { 'events': 'mouseup[!event.item]', 'update': 'true', 'force': True, }, ], }, { 'name': 'shift', 'value': False, 'on': [ { 'events': '@legendSymbol:click, @legendLabel:click', 'update': 'event.shiftKey', 'force': True, }, ], }, { 'name': 'clicked', 'value': None, 'on': [ { 'events': '@legendSymbol:click, @legendLabel:click', 'update': '{value: datum.value}', 'force': True, }, ], }] if individual_id: spaghetti_signal = ('{"title": "spaghetti", "individual_id": ' 'datum["%s"], "group": datum.groupByVal, "state": ' 'datum["%s"], "metric": datum.metricVal}' % (individual_id, state)) marks.append({ 'type': 'group', 'from': { 'facet': { 'name': 'spaghettis', 'data': 'individual', 'groupby': individual_id, }, }, 'marks': [ { 'type': 'line', 'from': { 'data': 'spaghettis', }, 'sort': { 'field': 'datum.%s' % state, 'order': 'ascending', }, 'encode': { 'update': { 'strokeWidth': { 'signal': 'spaghettiLineThickness', }, 'x': { 'scale': 'x', 'field': state, }, 'y': { 'scale': 'y', 'field': metric_signal, }, 'stroke': { 'scale': 'color', 'field': group_signal, }, 'opacity': [ { 'test': group_test, 'signal': 'spaghettiLineOpacity', }, { 'value': 0.0, }, ], }, }, }, # Need to add symbols into plot for mouseover # https://github.com/vega/vega-tooltip/issues/120 { 'type': 'symbol', 'from': { 'data': 'spaghettis', }, 'encode': { 'update': { 'tooltip': { 'signal': spaghetti_signal, }, 'size': { 'signal': 'spaghettiSymbolSize', }, 'x': { 'scale': 'x', 'field': state, }, 'y': { 'scale': 'y', 'field': metric_signal, }, 'stroke': { 'scale': 'color', 'field': group_signal, }, 'fill': { 'scale': 'color', 'field': group_signal, }, 'opacity': [ { 'test': group_test, 'signal': 'spaghettiSymbolOpacity', }, { 'value': 0.0, }, ], }, }, }, ], }) signals.extend([ { 'name': 'spaghettiLineThickness', 'value': 0.5, 'bind': { 'input': 'range', 'min': 0.1, 'max': 10, 'step': 0.1, 'element': '#spaghetti-line-thickness', }, }, { 'name': 'spaghettiLineOpacity', 'value': 0.5, 'bind': { 'input': 'range', 'min': 0.0, 'max': 1.0, 'step': 0.01, 'element': '#spaghetti-line-opacity', }, }, { 'name': 'spaghettiSymbolSize', 'value': 50.0, 'bind': { 'input': 'range', 'min': 0.0, 'max': 500.0, 'step': 1.0, 'element': '#spaghetti-symbol-size', }, }, { 'name': 'spaghettiSymbolOpacity', 'value': 0.0, 'bind': { 'input': 'range', 'min': 0.0, 'max': 1.0, 'step': 0.01, 'element': '#spaghetti-symbol-opacity', }, }]) # Just a quick note, order doesn't matter here (JSON documents are not # ordered) - this will render out stochastically, which is fine - vega # knows what to do. spec = { # This `$schema` is only fetched as part of the interactive vega # editor, which opens up outside of the visualization - this doesn't # appear to create any kind of XHR side-effect when loading the # visualization in an offline context. '$schema': 'https://vega.github.io/schema/vega/v3.0.json', 'autosize': { 'type': 'fit-x', 'contains': 'padding', 'resize': True, }, # These dimensions are here for when the viz is opened in the # Vega Editor. 'width': 800, 'height': 400, 'signals': signals, 'scales': [ { 'name': 'x', 'type': 'linear', 'range': 'width', 'nice': True, 'domain': { 'data': 'individual', 'field': state, 'sort': True, }, }, { 'name': 'y', # Signal registration on this param is currently blocked by # https://github.com/vega/vega/issues/525, which is why this # setting is still a QIIME 2 param to this viz. 'type': yscale, 'range': 'height', 'nice': True, 'domain': { 'signal': domain_expr, 'sort': True, }, }, { 'name': 'color', 'type': 'ordinal', 'range': { 'scheme': { 'signal': 'colorScheme', }, }, 'domain': { 'data': 'individual', 'field': 'groupByVal', }, }, ], 'axes': [ { 'orient': 'bottom', 'scale': 'x', 'title': state, }, { 'orient': 'left', 'scale': 'y', 'title': metric_signal, }, ], 'legends': [ { 'stroke': 'color', 'title': group_signal, 'encode': { 'symbols': { 'name': 'legendSymbol', 'interactive': True, 'update': { 'fill': { 'value': 'transparent', }, 'strokeWidth': { 'value': 2, }, 'opacity': [ { 'test': opacity_test, 'value': 1.0, }, { 'value': 0.15, }, ], 'size': { 'value': 100, }, }, }, 'labels': { 'name': 'legendLabel', 'interactive': True, 'update': { 'opacity': [ { 'test': opacity_test, 'value': 1, }, { 'value': 0.25, }, ], }, }, }, }, ], 'marks': marks, 'data': [ { 'name': 'individual', 'values': data.to_dict('record'), 'transform': [ { 'type': 'formula', 'as': 'groupByVal', 'expr': 'datum[grouper]', }, { 'type': 'formula', 'as': 'metricVal', 'expr': 'datum[metric]', }, ], }, { 'name': 'globalVals', 'source': 'individual', 'transform': [ { 'type': 'aggregate', 'ops': [ 'mean', 'min', 'max', 'stdev', 'min', 'max', ], 'fields': [ metric_signal, state, state, metric_signal, metric_signal, metric_signal, ], 'as': [ 'mean', 'minX', 'maxX', 'stdev', 'minY', 'maxY', ] }, { 'type': 'formula', 'as': 'cl0', 'expr': 'datum.mean - (3 * datum.stdev)' }, { 'type': 'formula', 'as': 'cl1', 'expr': 'datum.mean - (2 * datum.stdev)' }, { 'type': 'formula', 'as': 'cl2', 'expr': 'datum.mean + (2 * datum.stdev)' }, { 'type': 'formula', 'as': 'cl3', 'expr': 'datum.mean + (3 * datum.stdev)' }, { 'type': 'formula', 'as': 'ext', 'expr': '[datum.cl0, datum.cl3]', }, ], }, { 'name': 'aggBy', 'source': 'individual', 'transform': [ { 'type': 'aggregate', 'groupby': [ 'groupByVal', state, ], 'ops': [ 'mean', # TODO: parameterize these intervals # I don't see an easy way at the moment to define # your own confidence interval in vega. 'ci0', 'ci1', 'count', ], 'fields': [ metric_signal, metric_signal, metric_signal, metric_signal, ], 'as': [ 'mean', 'ci0', 'ci1', 'count', ], }, ], }, { 'name': 'selected', 'on': [ { 'trigger': 'clear', 'remove': True }, { 'trigger': '!shift', 'remove': True }, { 'trigger': '!shift && clicked', 'insert': 'clicked' }, { 'trigger': 'shift && clicked', 'toggle': 'clicked' }, ], }, ], } return json.dumps(spec)
33.699346
79
0.230185
0
0
0
0
0
0
0
0
8,414
0.271981
a0ce075406a832ed84007060dd79bad299dae4e6
11,696
py
Python
state_workflow_sdk/api/state_workflow/state_workflow_client.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
5
2019-07-31T04:11:05.000Z
2021-01-07T03:23:20.000Z
state_workflow_sdk/api/state_workflow/state_workflow_client.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
state_workflow_sdk/api/state_workflow/state_workflow_client.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os import sys import state_workflow_sdk.api.state_workflow.callback_pb2 import state_workflow_sdk.api.state_workflow.createStateWorkflow_pb2 import state_workflow_sdk.model.state_workflow.stateWorkflow_pb2 import state_workflow_sdk.api.state_workflow.deleteStateWorkflow_pb2 import google.protobuf.empty_pb2 import state_workflow_sdk.api.state_workflow.filterInstanceOfStateWorkflow_pb2 import state_workflow_sdk.api.state_workflow.searchStateWorkflow_pb2 import state_workflow_sdk.api.state_workflow.transitWorkflowStatus_pb2 import state_workflow_sdk.utils.http_util import google.protobuf.json_format class StateWorkflowClient(object): def __init__(self, server_ip="", server_port=0, service_name="", host=""): """ 初始化client :param server_ip: 指定sdk请求的server_ip,为空时走名字服务路由 :param server_port: 指定sdk请求的server_port,与server_ip一起使用, 为空时走名字服务路由 :param service_name: 指定sdk请求的service_name, 为空时按契约名称路由。如果server_ip和service_name同时设置,server_ip优先级更高 :param host: 指定sdk请求服务的host名称, 如cmdb.easyops-only.com """ if server_ip == "" and server_port != 0 or server_ip != "" and server_port == 0: raise Exception("server_ip和server_port必须同时指定") self._server_ip = server_ip self._server_port = server_port self._service_name = service_name self._host = host def callback_state_workflow(self, request, org, user, timeout=10): # type: (state_workflow_sdk.api.state_workflow.callback_pb2.CallbackStateWorkflowRequest, int, str, int) -> state_workflow_sdk.api.state_workflow.callback_pb2.CallbackStateWorkflowResponse """ 状态工作流执行回调 :param request: callback_state_workflow请求 :param org: 客户的org编号,为数字 :param user: 调用api使用的用户名 :param timeout: 调用超时时间,单位秒 :return: state_workflow_sdk.api.state_workflow.callback_pb2.CallbackStateWorkflowResponse """ headers = {"org": org, "user": user} route_name = "" server_ip = self._server_ip if self._service_name != "": route_name = self._service_name elif self._server_ip != "": route_name = "easyops.api.state_workflow.state_workflow.CallbackStateWorkflow" uri = "/api/v1/stateWorkflow/callback" requestParam = request rsp_obj = state_workflow_sdk.utils.http_util.do_api_request( method="POST", src_name="logic.state_workflow_sdk", dst_name=route_name, server_ip=server_ip, server_port=self._server_port, host=self._host, uri=uri, params=google.protobuf.json_format.MessageToDict( requestParam, preserving_proto_field_name=True), headers=headers, timeout=timeout, ) rsp = state_workflow_sdk.api.state_workflow.callback_pb2.CallbackStateWorkflowResponse() google.protobuf.json_format.ParseDict(rsp_obj["data"], rsp, ignore_unknown_fields=True) return rsp def create_state_workflow(self, request, org, user, timeout=10): # type: (state_workflow_sdk.api.state_workflow.createStateWorkflow_pb2.CreateStateWorkflowRequest, int, str, int) -> state_workflow_sdk.model.state_workflow.stateWorkflow_pb2.StateWorkflow """ 创建状态工作流 :param request: create_state_workflow请求 :param org: 客户的org编号,为数字 :param user: 调用api使用的用户名 :param timeout: 调用超时时间,单位秒 :return: state_workflow_sdk.model.state_workflow.stateWorkflow_pb2.StateWorkflow """ headers = {"org": org, "user": user} route_name = "" server_ip = self._server_ip if self._service_name != "": route_name = self._service_name elif self._server_ip != "": route_name = "easyops.api.state_workflow.state_workflow.CreateStateWorkflow" uri = "/api/v1/stateWorkflow" requestParam = request rsp_obj = state_workflow_sdk.utils.http_util.do_api_request( method="POST", src_name="logic.state_workflow_sdk", dst_name=route_name, server_ip=server_ip, server_port=self._server_port, host=self._host, uri=uri, params=google.protobuf.json_format.MessageToDict( requestParam, preserving_proto_field_name=True), headers=headers, timeout=timeout, ) rsp = state_workflow_sdk.model.state_workflow.stateWorkflow_pb2.StateWorkflow() google.protobuf.json_format.ParseDict(rsp_obj["data"], rsp, ignore_unknown_fields=True) return rsp def delete_state_workflow(self, request, org, user, timeout=10): # type: (state_workflow_sdk.api.state_workflow.deleteStateWorkflow_pb2.DeleteStateWorkflowRequest, int, str, int) -> google.protobuf.empty_pb2.Empty """ 删除状态工作流 :param request: delete_state_workflow请求 :param org: 客户的org编号,为数字 :param user: 调用api使用的用户名 :param timeout: 调用超时时间,单位秒 :return: google.protobuf.empty_pb2.Empty """ headers = {"org": org, "user": user} route_name = "" server_ip = self._server_ip if self._service_name != "": route_name = self._service_name elif self._server_ip != "": route_name = "easyops.api.state_workflow.state_workflow.DeleteStateWorkflow" uri = "/api/v1/stateWorkflow/{instanceId}".format( instanceId=request.instanceId, ) requestParam = request rsp_obj = state_workflow_sdk.utils.http_util.do_api_request( method="DELETE", src_name="logic.state_workflow_sdk", dst_name=route_name, server_ip=server_ip, server_port=self._server_port, host=self._host, uri=uri, params=google.protobuf.json_format.MessageToDict( requestParam, preserving_proto_field_name=True), headers=headers, timeout=timeout, ) rsp = google.protobuf.empty_pb2.Empty() google.protobuf.json_format.ParseDict(rsp_obj, rsp, ignore_unknown_fields=True) return rsp def filter_instance_of_state_workflow(self, request, org, user, timeout=10): # type: (state_workflow_sdk.api.state_workflow.filterInstanceOfStateWorkflow_pb2.FilterInstanceOfStateWorkflowRequest, int, str, int) -> state_workflow_sdk.api.state_workflow.filterInstanceOfStateWorkflow_pb2.FilterInstanceOfStateWorkflowResponse """ 按工作流filter过滤实例 :param request: filter_instance_of_state_workflow请求 :param org: 客户的org编号,为数字 :param user: 调用api使用的用户名 :param timeout: 调用超时时间,单位秒 :return: state_workflow_sdk.api.state_workflow.filterInstanceOfStateWorkflow_pb2.FilterInstanceOfStateWorkflowResponse """ headers = {"org": org, "user": user} route_name = "" server_ip = self._server_ip if self._service_name != "": route_name = self._service_name elif self._server_ip != "": route_name = "easyops.api.state_workflow.state_workflow.FilterInstanceOfStateWorkflow" uri = "/api/v1/stateWorkflow/instance/filter" requestParam = request rsp_obj = state_workflow_sdk.utils.http_util.do_api_request( method="POST", src_name="logic.state_workflow_sdk", dst_name=route_name, server_ip=server_ip, server_port=self._server_port, host=self._host, uri=uri, params=google.protobuf.json_format.MessageToDict( requestParam, preserving_proto_field_name=True), headers=headers, timeout=timeout, ) rsp = state_workflow_sdk.api.state_workflow.filterInstanceOfStateWorkflow_pb2.FilterInstanceOfStateWorkflowResponse() google.protobuf.json_format.ParseDict(rsp_obj["data"], rsp, ignore_unknown_fields=True) return rsp def search_state_workflow(self, request, org, user, timeout=10): # type: (state_workflow_sdk.api.state_workflow.searchStateWorkflow_pb2.SearchStateWorkflowRequest, int, str, int) -> state_workflow_sdk.model.state_workflow.stateWorkflow_pb2.StateWorkflow """ 搜索状态工作流 :param request: search_state_workflow请求 :param org: 客户的org编号,为数字 :param user: 调用api使用的用户名 :param timeout: 调用超时时间,单位秒 :return: state_workflow_sdk.model.state_workflow.stateWorkflow_pb2.StateWorkflow """ headers = {"org": org, "user": user} route_name = "" server_ip = self._server_ip if self._service_name != "": route_name = self._service_name elif self._server_ip != "": route_name = "easyops.api.state_workflow.state_workflow.SearchStateWorkflow" uri = "/api/v1/stateWorkflow/_search" requestParam = request rsp_obj = state_workflow_sdk.utils.http_util.do_api_request( method="POST", src_name="logic.state_workflow_sdk", dst_name=route_name, server_ip=server_ip, server_port=self._server_port, host=self._host, uri=uri, params=google.protobuf.json_format.MessageToDict( requestParam, preserving_proto_field_name=True), headers=headers, timeout=timeout, ) rsp = state_workflow_sdk.model.state_workflow.stateWorkflow_pb2.StateWorkflow() google.protobuf.json_format.ParseDict(rsp_obj["data"], rsp, ignore_unknown_fields=True) return rsp def transit_state_workflow_status(self, request, org, user, timeout=10): # type: (state_workflow_sdk.api.state_workflow.transitWorkflowStatus_pb2.TransitStateWorkflowStatusRequest, int, str, int) -> state_workflow_sdk.api.state_workflow.transitWorkflowStatus_pb2.TransitStateWorkflowStatusResponse """ 实例属性状态切换 :param request: transit_state_workflow_status请求 :param org: 客户的org编号,为数字 :param user: 调用api使用的用户名 :param timeout: 调用超时时间,单位秒 :return: state_workflow_sdk.api.state_workflow.transitWorkflowStatus_pb2.TransitStateWorkflowStatusResponse """ headers = {"org": org, "user": user} route_name = "" server_ip = self._server_ip if self._service_name != "": route_name = self._service_name elif self._server_ip != "": route_name = "easyops.api.state_workflow.state_workflow.TransitStateWorkflowStatus" uri = "/api/v1/stateWorkflow/transit" requestParam = request rsp_obj = state_workflow_sdk.utils.http_util.do_api_request( method="POST", src_name="logic.state_workflow_sdk", dst_name=route_name, server_ip=server_ip, server_port=self._server_port, host=self._host, uri=uri, params=google.protobuf.json_format.MessageToDict( requestParam, preserving_proto_field_name=True), headers=headers, timeout=timeout, ) rsp = state_workflow_sdk.api.state_workflow.transitWorkflowStatus_pb2.TransitStateWorkflowStatusResponse() google.protobuf.json_format.ParseDict(rsp_obj["data"], rsp, ignore_unknown_fields=True) return rsp
41.183099
254
0.658516
11,655
0.946945
0
0
0
0
0
0
4,782
0.388528
a0ceec8ec85ef44ddb9d9cd56199a36790b171fc
4,171
py
Python
tests/contour_classifiers/test_randomforest.py
yamathcy/motif
3f43568e59f0879fbab5ef278e9e687b7cac3dd6
[ "MIT" ]
21
2016-08-22T22:00:49.000Z
2020-03-29T04:15:19.000Z
tests/contour_classifiers/test_randomforest.py
yamathcy/motif
3f43568e59f0879fbab5ef278e9e687b7cac3dd6
[ "MIT" ]
22
2016-08-28T01:07:08.000Z
2018-02-07T14:38:26.000Z
tests/contour_classifiers/test_randomforest.py
yamathcy/motif
3f43568e59f0879fbab5ef278e9e687b7cac3dd6
[ "MIT" ]
3
2017-01-12T10:04:27.000Z
2022-01-06T13:25:48.000Z
"""Test for motif.classify.mvgaussian """ from __future__ import print_function import unittest import numpy as np from motif.contour_classifiers import random_forest def array_equal(array1, array2): return np.all(np.isclose(array1, array2)) class TestRandomForest(unittest.TestCase): def setUp(self): self.clf = random_forest.RandomForest( n_estimators=2, n_iter_search=1, random_state=6 ) def test_n_estimators(self): expected = 2 actual = self.clf.n_estimators self.assertEqual(expected, actual) def test_n_jobs(self): expected = -1 actual = self.clf.n_jobs self.assertEqual(expected, actual) def test_class_weight(self): expected = 'balanced' actual = self.clf.class_weight self.assertEqual(expected, actual) def test_n_iter_search(self): expected = 1 actual = self.clf.n_iter_search self.assertEqual(expected, actual) def test_clf(self): expected = None actual = self.clf.clf self.assertEqual(expected, actual) def test_predict_error(self): with self.assertRaises(ReferenceError): self.clf.predict(np.array([0, 0, 0])) def test_fit(self): X = np.array([ [1.0, 2.0], [0.0, 0.0], [0.5, 0.7], [0.0, 0.0], [1.0, 2.5], [-1.0, 2.1], [1.2, 1.2], [1.0, 1.0], [4.0, 0.0], [-1.0, -1.0] ]) Y = np.array([0, 1, 0, 1, 0, 0, 1, 1, 0, 1]) self.clf.fit(X, Y) self.assertIsNotNone(self.clf.clf) def test_predict(self): X = np.array([ [1.0, 2.0], [0.0, 0.0], [0.5, 0.7], [0.0, 0.0], [1.0, 2.5], [-1.0, 2.1], [1.2, 1.2], [1.0, 1.0], [4.0, 0.0], [-1.0, -1.0] ]) Y = np.array([0, 1, 0, 1, 0, 0, 1, 1, 0, 1]) self.clf.fit(X, Y) actual = self.clf.predict( np.array([[1.0, 2.0], [1.0, 3.0], [-2.0, -2.0]]) ) expected = np.array([0.0, 0.0, 1.0]) self.assertTrue(array_equal(actual, expected)) def test_predict_discrete_label(self): X = np.array([ [1.0, 2.0], [0.0, 0.0], [0.5, 0.7], [0.0, 0.0], [1.0, 2.5], [-1.0, 2.1], [1.2, 1.2], [1.0, 1.0], [4.0, 0.0], [-1.0, -1.0] ]) Y = np.array([0, 1, 0, 1, 0, 0, 1, 1, 0, 1]) self.clf.fit(X, Y) actual = self.clf.predict_discrete_label( np.array([[1.0, 2.0], [1.0, 3.0], [-2.0, -2.0]]) ) expected = np.array([0, 0, 1]) self.assertTrue(array_equal(actual, expected)) def test_threshold(self): expected = 0.5 actual = self.clf.threshold self.assertEqual(expected, actual) def test_get_id(self): expected = 'random_forest' actual = self.clf.get_id() self.assertEqual(expected, actual) def test_score(self): predicted_scores = np.array([0.0, 0.25, 1.0, 0.5, 0.9]) y_pred = np.array([0, 0, 1, 1, 1]) y_target = np.array([0, 0, 1, 1, 1]) expected = { 'accuracy': 1.0, 'mcc': 1.0, 'precision': np.array([1.0, 1.0]), 'recall': np.array([1.0, 1.0]), 'f1': np.array([1.0, 1.0]), 'support': np.array([2, 3]), 'confusion matrix': np.array([[2, 0], [0, 3]]), 'auc score': 1.0 } actual = self.clf.score(y_pred, y_target, y_prob=predicted_scores) self.assertEqual(expected['accuracy'], actual['accuracy']) self.assertAlmostEqual(expected['mcc'], actual['mcc'], places=1) self.assertTrue( array_equal(expected['precision'], actual['precision']) ) self.assertTrue(array_equal(expected['recall'], actual['recall'])) self.assertTrue(array_equal(expected['f1'], actual['f1'])) self.assertTrue(array_equal(expected['support'], actual['support'])) self.assertTrue(array_equal( expected['confusion matrix'], actual['confusion matrix'] )) self.assertEqual(expected['auc score'], actual['auc score'])
32.585938
76
0.529369
3,919
0.939583
0
0
0
0
0
0
294
0.070487
a0cf8257e1729da63a070f7fb21ed2b3279418e3
7,365
py
Python
awsenv/profile.py
KensoDev/awsenv
4bf759106d2e0d79221d0ca9188ed7686e119b2c
[ "Apache-2.0" ]
6
2016-09-11T08:39:50.000Z
2018-10-22T13:41:34.000Z
awsenv/profile.py
KensoDev/awsenv
4bf759106d2e0d79221d0ca9188ed7686e119b2c
[ "Apache-2.0" ]
1
2017-01-09T23:58:20.000Z
2017-01-09T23:58:20.000Z
awsenv/profile.py
KensoDev/awsenv
4bf759106d2e0d79221d0ca9188ed7686e119b2c
[ "Apache-2.0" ]
5
2017-01-09T23:26:12.000Z
2021-09-08T09:35:59.000Z
""" Profile-aware session wrapper. """ from os import environ from botocore.exceptions import ProfileNotFound from botocore.session import Session from awsenv.cache import CachedSession def get_default_profile_name(): """ Get the default profile name from the environment. """ return environ.get("AWS_DEFAULT_PROFILE", "default") class AWSSession(object): """ AWS session wrapper. """ def __init__(self, profile=None): self.profile = profile self.session = Session(profile=self.profile) @property def access_key_id(self): return None @property def secret_access_key(self): return None @property def region_name(self): return environ.get("AWS_REGION", environ.get("AWS_DEFAULT_REGION", "us-west-2")) @property def session_token(self): return None def create_client(self, service_name, api_version=None, use_ssl=True, verify=None, endpoint_url=None, config=None): """ Create a service from the wrapped session. Automatically populates the region name, access key, secret key, and session token. Allows other parameters to be passed. """ return self.session.create_client( service_name=service_name, region_name=self.region_name, aws_access_key_id=self.access_key_id, aws_secret_access_key=self.secret_access_key, aws_session_token=self.session_token, api_version=api_version, use_ssl=use_ssl, verify=verify, endpoint_url=endpoint_url, config=config, ) class AWSProfile(AWSSession): """ AWS profile configuration. """ def __init__(self, profile, session_duration, cached_session, account_id=None): """ Configure a session for a profile. :param profile: the name of the profile to use, if any :param session_duration: the duration of the session (in seconds) must be in the range 900-3600 :param cached_session: the cached session to use, if any :param account_id: the account id for profile auto-generation (if any) """ self.session_duration = session_duration self.cached_session = cached_session self.account_id = account_id super(AWSProfile, self).__init__(profile) @property def access_key_id(self): return self.merged_config.get("aws_access_key_id") @property def secret_access_key(self): return self.merged_config.get("aws_secret_access_key") @property def region_name(self): return self.merged_config.get("region") @property def role_arn(self): return self.profile_config.get("role_arn") @property def session_token(self): return self.cached_session.token if self.cached_session else None @property def session_name(self): return self.cached_session.name if self.cached_session else None @property def profile_config(self): """ Return the loaded configuration for the profile. """ try: return self.session.get_scoped_config() except ProfileNotFound: if self.account_id is None: raise # attempt to generate the profile configuration self.session._profile_map[self.profile] = dict( role_arn="arn:aws:iam::{}:role/{}".format( self.account_id, self.profile, ), source_profile=get_default_profile_name(), ) return self.session.get_scoped_config() @property def source_profile_config(self): """ Return the loaded configuration for the source profile, if any. """ source_profile_name = self.profile_config.get("source_profile") all_profiles = self.session.full_config["profiles"] return all_profiles.get(source_profile_name, {}) @property def merged_config(self): """ Merged the profile and source configurations along with the current credentials. """ result = self.source_profile_config.copy() result.update(self.profile_config) if self.session._credentials: result.update( aws_access_key_id=self.session._credentials.access_key, aws_secret_access_key=self.session._credentials.secret_key, aws_session_token=self.session._credentials.token, ) # Override with AWS_REGION environment variable region_from_envvar = environ.get("AWS_REGION") if region_from_envvar: result.update(region=region_from_envvar) return result def to_envvars(self): return { "AWS_ACCESS_KEY_ID": self.access_key_id, "AWS_DEFAULT_REGION": self.region_name, "AWS_PROFILE": self.profile, "AWS_SECRET_ACCESS_KEY": self.secret_access_key, "AWS_SESSION_NAME": self.session_name, "AWS_SESSION_TOKEN": self.session_token, } def update_credentials(self): """ Update the profile's credentials by assuming a role, if necessary. """ if not self.role_arn: return if self.cached_session is not None: # use current role access_key, secret_key = self.current_role() else: # assume role to get a new token access_key, secret_key = self.assume_role() if access_key and secret_key: self.session.set_credentials( access_key=access_key, secret_key=secret_key, token=self.cached_session.token if self.cached_session else None, ) def current_role(self): """ Load credentials for the current role. """ return ( environ.get("AWS_ACCESS_KEY_ID", self.access_key_id), environ.get("AWS_SECRET_ACCESS_KEY", self.secret_access_key), ) def assume_role(self): """ Assume a role. """ # we need to pass in the regions and keys because botocore does not # automatically merge configuration from the source_profile sts_client = self.session.create_client( service_name="sts", region_name=self.region_name, aws_access_key_id=self.access_key_id, aws_secret_access_key=self.secret_access_key, ) session_name = CachedSession.make_name() result = sts_client.assume_role(**{ "RoleArn": self.role_arn, "RoleSessionName": session_name, "DurationSeconds": self.session_duration, }) # update the cached session self.cached_session = CachedSession( name=session_name, token=result["Credentials"]["SessionToken"], profile=self.profile, ) return ( result["Credentials"]["AccessKeyId"], result["Credentials"]["SecretAccessKey"], )
31.075949
91
0.60611
7,009
0.951663
0
0
2,657
0.36076
0
0
2,003
0.271962
a0d0d288568d1ad31c787944a756b68fdcfc394c
13,358
py
Python
cail/algo/twoiwil.py
Stanford-ILIAD/Confidence-Aware-Imitation-Learning
1d8af0e4ab87a025885133a2384d5a937329b2f5
[ "MIT" ]
16
2021-10-30T15:19:37.000Z
2022-03-23T12:57:49.000Z
cail/algo/twoiwil.py
syzhang092218-source/Confidence-Aware-Imitation-Learning
1d8af0e4ab87a025885133a2384d5a937329b2f5
[ "MIT" ]
null
null
null
cail/algo/twoiwil.py
syzhang092218-source/Confidence-Aware-Imitation-Learning
1d8af0e4ab87a025885133a2384d5a937329b2f5
[ "MIT" ]
2
2021-11-29T11:28:16.000Z
2022-03-06T14:12:47.000Z
import torch import os import torch.nn.functional as F import numpy as np import copy from torch import nn from torch.optim import Adam from torch.autograd import Variable from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from typing import Tuple from .ppo import PPO, PPOExpert from .utils import CULoss from cail.network import AIRLDiscrim, Classifier from cail.buffer import SerializedBuffer class TwoIWIL(PPO): """ Implementation of 2IWIL, using PPO-based AIRL as the backbone IL algorithm Reference: ---------- [1] Wu, Y.-H., Charoenphakdee, N., Bao, H., Tangkaratt, V.,and Sugiyama, M. Imitation learning from imperfect demonstration. In International Conference on MachineLearning, pp. 6818–6827, 2019. Parameters ---------- buffer_exp: SerializedBuffer buffer of demonstrations state_shape: np.array shape of the state space action_shape: np.array shape of the action space device: torch.device cpu or cuda seed: int random seed gamma: float discount factor rollout_length: int rollout length of the buffer mix_buffer: int times for rollout buffer to mix batch_size: int batch size for sampling from current policy and demonstrations lr_actor: float learning rate of the actor lr_critic: float learning rate of the critic lr_disc: float learning rate of the discriminator units_actor: tuple hidden units of the actor units_critic: tuple hidden units of the critic units_disc_r: tuple hidden units of the discriminator r units_disc_v: tuple hidden units of the discriminator v epoch_ppo: int at each update period, update ppo for these times epoch_disc: int at each update period, update the discriminator for these times clip_eps: float clip coefficient in PPO's objective lambd: float lambd factor coef_ent: float entropy coefficient max_grad_norm: float maximum gradient norm classifier_iter: int iteration of training the classifier lr_classifier: float learning rate of the classifier """ def __init__( self, buffer_exp: SerializedBuffer, state_shape: np.array, action_shape: np.array, device: torch.device, seed: int, gamma: float = 0.995, rollout_length: int = 10000, mix_buffer: int = 1, batch_size: int = 64, lr_actor: float = 3e-4, lr_critic: float = 3e-4, lr_disc: float = 3e-4, units_actor: tuple = (64, 64), units_critic: tuple = (64, 64), units_disc_r: tuple = (100, 100), units_disc_v: tuple = (100, 100), epoch_ppo: int = 50, epoch_disc: int = 10, clip_eps: float = 0.2, lambd: float = 0.97, coef_ent: float = 0.0, max_grad_norm: float = 10.0, classifier_iter: int = 25000, lr_classifier: float = 3e-4 ): super().__init__( state_shape, action_shape, device, seed, gamma, rollout_length, mix_buffer, lr_actor, lr_critic, units_actor, units_critic, epoch_ppo, clip_eps, lambd, coef_ent, max_grad_norm ) # expert's buffer self.buffer_exp = buffer_exp # discriminator self.disc = AIRLDiscrim( state_shape=state_shape, gamma=gamma, hidden_units_r=units_disc_r, hidden_units_v=units_disc_v, hidden_activation_r=nn.ReLU(inplace=True), hidden_activation_v=nn.ReLU(inplace=True) ).to(device) self.learning_steps_disc = 0 self.optim_disc = Adam(self.disc.parameters(), lr=lr_disc) self.batch_size = batch_size self.epoch_disc = epoch_disc # classifier self.classifier = Classifier(state_shape, action_shape).to(device) self.n_label_traj = self.buffer_exp.n_traj self.classifier_iter = classifier_iter self.optim_classifier = Adam(self.classifier.parameters(), lr=lr_classifier) self.train_classifier() self.save_classifier = False # label conf states_exp, action_exp, _, _, _ = self.buffer_exp.get() self.conf = torch.sigmoid(self.classifier(torch.cat((states_exp, action_exp), dim=-1))) def train_classifier(self): """Train a classifier""" print('Training classifier') label_traj_states = copy.deepcopy(self.buffer_exp.traj_states) label_traj_actions = copy.deepcopy(self.buffer_exp.traj_actions) label_traj_rewards = copy.deepcopy(self.buffer_exp.traj_rewards) # use ranking to label confidence conf_gap = 1.0 / float(self.n_label_traj - 1) ranking = np.argsort(label_traj_rewards) traj_lengths = np.asarray([i.shape[0] for i in label_traj_states]) n_label_demos = traj_lengths.sum() label = np.zeros(n_label_demos) ptr = 0 for i in range(traj_lengths.shape[0]): label[ptr: ptr + traj_lengths[i]] = ranking[i] * conf_gap ptr += traj_lengths[i] label = torch.from_numpy(label).to(self.device) label_traj = torch.cat((torch.cat(label_traj_states), torch.cat(label_traj_actions)), dim=-1) batch = min(128, label_traj.shape[0]) ubatch = int(batch / label_traj.shape[0] * self.buffer_exp.buffer_size) loss_fun = CULoss(label, beta=1 - self.buffer_exp.label_ratio, device=self.device, non=True) # start training for i_iter in tqdm(range(self.classifier_iter)): idx = np.random.choice(label_traj.shape[0], batch) labeled = self.classifier(Variable(label_traj[idx, :])) smp_conf = label[idx] states_exp, actions_exp, _, _, _ = self.buffer_exp.sample(ubatch) unlabeled = self.classifier(torch.cat((states_exp, actions_exp), dim=-1)) self.optim_classifier.zero_grad() risk = loss_fun(smp_conf, labeled, unlabeled) risk.backward() self.optim_classifier.step() if i_iter % 2000 == 0: tqdm.write(f'iteration: {i_iter}\tcu loss: {risk.data.item():.3f}') self.classifier = self.classifier.eval() print("Classifier finished training") def sample_exp( self, batch_size: int ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Sample from expert's demonstrations Parameters ---------- batch_size: int number of samples Returns ------- states: torch.Tensor expert's states actions: torch.Tensor expert's actions dones: torch.Tensor expert's dones next_states: torch.Tensor expert's next states conf: torch.Tensor confidence of expert's demonstrations """ # Samples from expert's demonstrations. all_states_exp, all_actions_exp, _, all_dones_exp, all_next_states_exp = \ self.buffer_exp.get() all_conf = Variable(self.conf) all_conf_mean = Variable(all_conf.mean()) conf = all_conf / all_conf_mean with torch.no_grad(): self.conf = conf idxes = np.random.randint(low=0, high=all_states_exp.shape[0], size=batch_size) return ( all_states_exp[idxes], all_actions_exp[idxes], all_dones_exp[idxes], all_next_states_exp[idxes], self.conf[idxes] ) def update(self, writer: SummaryWriter): """ Update the algorithm Parameters ---------- writer: SummaryWriter writer for logs """ self.learning_steps += 1 for _ in range(self.epoch_disc): self.learning_steps_disc += 1 # samples from current policy's trajectories states, _, _, dones, log_pis, next_states = self.buffer.sample(self.batch_size) # samples from expert's demonstrations states_exp, actions_exp, dones_exp, next_states_exp, conf = self.sample_exp(self.batch_size) # calculate log probabilities of expert actions with torch.no_grad(): log_pis_exp = self.actor.evaluate_log_pi(states_exp, actions_exp) # update discriminator self.update_disc( states, dones, log_pis, next_states, states_exp, dones_exp, log_pis_exp, next_states_exp, conf, writer ) # we don't use reward signals here states, actions, _, dones, log_pis, next_states = self.buffer.get() # calculate rewards rewards = self.disc.calculate_reward( states, dones, log_pis, next_states) # update PPO using estimated rewards self.update_ppo( states, actions, rewards, dones, log_pis, next_states, writer) def update_disc( self, states: torch.Tensor, dones: torch.Tensor, log_pis: torch.Tensor, next_states: torch.Tensor, states_exp: torch.Tensor, dones_exp: torch.Tensor, log_pis_exp: torch.Tensor, next_states_exp: torch.Tensor, conf: torch.Tensor, writer: SummaryWriter ): """ Update the discriminator Parameters ---------- states: torch.Tensor states sampled from current IL policy dones: torch.Tensor dones sampled from current IL policy log_pis: torch.Tensor log(\pi(s|a)) sampled from current IL policy next_states: torch.Tensor next states sampled from current IL policy states_exp: torch.Tensor states sampled from demonstrations dones_exp: torch.Tensor dones sampled from demonstrations log_pis_exp: torch.Tensor log(\pi(s|a)) sampled from demonstrations next_states_exp: torch.Tensor next states sampled from demonstrations conf: torch.Tensor learned confidence of the demonstration samples writer: SummaryWriter writer for logs """ # output of discriminator is (-inf, inf), not [0, 1] logits_pi = self.disc(states, dones, log_pis, next_states) logits_exp = self.disc(states_exp, dones_exp, log_pis_exp, next_states_exp) # discriminator is to maximize E_{\pi} [log(1 - D)] + E_{exp} [log(D)] loss_pi = -F.logsigmoid(-logits_pi).mean() loss_exp = -(F.logsigmoid(logits_exp).mul(conf)).mean() loss_disc = loss_pi + loss_exp self.optim_disc.zero_grad() loss_disc.backward() self.optim_disc.step() if self.learning_steps_disc % self.epoch_disc == 0: writer.add_scalar( 'loss/disc', loss_disc.item(), self.learning_steps) # discriminator's accuracies with torch.no_grad(): acc_pi = (logits_pi < 0).float().mean().item() acc_exp = (logits_exp > 0).float().mean().item() writer.add_scalar('stats/acc_pi', acc_pi, self.learning_steps) writer.add_scalar('stats/acc_exp', acc_exp, self.learning_steps) def save_models(self, save_dir: str): """ Save the model Parameters ---------- save_dir: str path to save """ if not os.path.isdir(save_dir): os.mkdir(save_dir) torch.save(self.disc.state_dict(), f'{save_dir}/disc.pkl') torch.save(self.actor.state_dict(), f'{save_dir}/actor.pkl') if not self.save_classifier: torch.save(self.classifier.state_dict(), f'{save_dir}/../classifier.pkl') self.save_classifier = True class TwoIWILExpert(PPOExpert): """ Well-trained 2IWIL agent Parameters ---------- state_shape: np.array shape of the state space action_shape: np.array shape of the action space device: torch.device cpu or cuda path: str path to the well-trained weights units_actor: tuple hidden units of the actor """ def __init__( self, state_shape: np.array, action_shape: np.array, device: torch.device, path: str, units_actor: tuple = (64, 64) ): super(TwoIWILExpert, self).__init__( state_shape=state_shape, action_shape=action_shape, device=device, path=path, units_actor=units_actor )
34.786458
105
0.586166
12,914
0.966617
0
0
0
0
0
0
4,756
0.355988
a0d0f0826bf05af84c68e2d12e3788dc07ebfcd6
7,327
py
Python
data/generation_scripts/MantaFlow/scripts3D/compactifyData.py
tum-pbs/VOLSIM
795a31c813bf072eb88289126d7abd9fba8b0e54
[ "MIT" ]
7
2022-01-28T09:40:15.000Z
2022-03-07T01:52:00.000Z
data/generation_scripts/MantaFlow/scripts3D/compactifyData.py
tum-pbs/VOLSIM
795a31c813bf072eb88289126d7abd9fba8b0e54
[ "MIT" ]
null
null
null
data/generation_scripts/MantaFlow/scripts3D/compactifyData.py
tum-pbs/VOLSIM
795a31c813bf072eb88289126d7abd9fba8b0e54
[ "MIT" ]
1
2022-03-14T22:08:47.000Z
2022-03-14T22:08:47.000Z
import numpy as np import os, shutil import imageio baseDir = "data/train_verbose" outDir = "data/train" #baseDir = "data/test_verbose" #outDir = "data/test" outDirVidCopy = "data/videos" combineVidsAll = {"smoke" : ["densMean", "densSlice", "velMean", "velSlice", "presMean", "presSlice"], "liquid": ["flagsMean", "flagsSlice", "velMean", "velSlice", "phiMean", "phiSlice"] } convertData = True processVid = True copyVidOnly = False ignoreTop = ["shapes", "waves"] ignoreSim = [] ignoreFrameDict = {} excludeIgnoreFrame = False topDirs = os.listdir(baseDir) topDirs.sort() #shutil.rmtree(outDir) #os.makedirs(outDir) # top level folders for topDir in topDirs: mantaMsg("\n" + topDir) if ignoreTop and any( item in topDir for item in ignoreTop ) : mantaMsg("Ignored") continue simDir = os.path.join(baseDir, topDir) sims = os.listdir(simDir) sims.sort() # sim_000000 folders for sim in sims: if ignoreSim and any( item in sim for item in ignoreSim ) : mantaMsg(sim + " - Ignored") continue currentDir = os.path.join(simDir, sim) files = os.listdir(currentDir) files.sort() destDir = os.path.join(outDir, topDir, sim) #if os.path.isdir(destDir): # shutil.rmtree(destDir) if not os.path.isdir(destDir): os.makedirs(destDir) # single files for file in files: filePath = os.path.join(currentDir, file) # copy src folder to destination if os.path.isdir(filePath) and file == "src": dest = os.path.join(destDir, "src") if not os.path.isdir(dest): shutil.copytree(filePath, dest, symlinks=False) # combine video files elif os.path.isdir(filePath) and file == "render": if not processVid: continue dest = os.path.join(destDir, "render") if copyVidOnly: shutil.copytree(filePath, dest, symlinks=False) continue if not os.path.isdir(dest): os.makedirs(dest) #mantaMsg(file) renderDir = os.path.join(currentDir, "render") vidFiles = os.listdir(renderDir) if "smoke" in topDir: combineVids = combineVidsAll["smoke"] elif "liquid" in topDir: combineVids = combineVidsAll["liquid"] else: combineVids = [""] for vidFile in vidFiles: if combineVids[0] + "00.mp4" not in vidFile: continue vidLine = [] for combineVid in combineVids: # find all video part files corresponding to current one vidParts = [] i = 0 while os.path.exists(os.path.join(renderDir, vidFile.replace(combineVids[0]+"00.mp4", combineVid+"%02d.mp4" % i))): vidParts.append(vidFile.replace(combineVids[0]+"00.mp4", combineVid+"%02d.mp4" % i)) i += 1 assert len(vidParts) == 11 # combine each video part file loadedVids = [] for part in vidParts: currentFile = os.path.join(renderDir, part) loaded = imageio.mimread(currentFile) #mantaMsg(len(loaded)) #mantaMsg(loaded[0].shape) loadedVids.append(loaded) #temp1 = np.concatenate(loadedVids[0:4], axis=2) #temp2 = np.concatenate(loadedVids[4:8], axis=2) #temp3 = np.concatenate(loadedVids[8:11]+[np.zeros_like(loadedVids[0])], axis=2) #vidLine.append(np.concatenate([temp1, temp2, temp3], axis=1)) vidLine.append(np.concatenate(loadedVids, axis=2)) combined = np.concatenate(vidLine, axis=1) # save combined file if combineVids[0] == "": newName = os.path.join(dest, "%s_%s_%s.mp4" % (topDir, sim, vidFile.replace("00.mp4", ".mp4"))) else: newName = os.path.join(dest, "%s_%s.mp4" % (topDir, sim)) imageio.mimwrite(newName, combined, quality=6, fps=11, ffmpeg_log_level="error") # save copy if combineVids[0] == "": newNameCopy = os.path.join(outDirVidCopy, "%s_%s_%s.mp4" % (topDir, sim, vidFile.replace("00.mp4", ".mp4"))) else: newNameCopy = os.path.join(outDirVidCopy, "%s_%s.mp4" % (topDir, sim)) imageio.mimwrite(newNameCopy, combined, quality=6, fps=11, ffmpeg_log_level="error") # copy description files to destination elif os.path.splitext(filePath)[1] == ".json" or os.path.splitext(filePath)[1] == ".py" or os.path.splitext(filePath)[1] == ".log": shutil.copy(filePath, destDir) # ignore other dirs and non .npz files elif os.path.isdir(filePath) or os.path.splitext(filePath)[1] != ".npz" or "part00" not in file: continue # combine part files else: if not convertData: continue if ignoreFrameDict: filterFrames = [] for key, value in ignoreFrameDict.items(): if key in topDir: filterFrames = value break assert (filterFrames != []), "Keys in filterFrameDict don't match dataDir structure!" # continue for frames when excluding or including according to filter if excludeIgnoreFrame == any( item in file for item in filterFrames ): continue # find all part files corresponding to current one parts = [file] i = 1 while os.path.exists(os.path.join(currentDir, file.replace("part00", "part%02d" % i))): parts.append(file.replace("part00", "part%02d" % i)) i += 1 assert len(parts) == 11 # combine each part file domain = np.load(os.path.join(currentDir, parts[0]))['arr_0'] res = domain.shape[0] combined = np.zeros([len(parts), res, res, res, domain.shape[3]]) for f in range(len(parts)): currentFile = os.path.join(currentDir, parts[f]) loaded = np.load(currentFile)['arr_0'] combined[f] = loaded # save combined file newName = file.replace("_part00", "") np.savez_compressed( os.path.join(destDir, newName), combined ) loaded = np.load( os.path.join(destDir, newName) )['arr_0'] mantaMsg(os.path.join(sim, newName) + "\t" + str(loaded.shape))
43.613095
153
0.512079
0
0
0
0
0
0
0
0
1,519
0.207315
a0d159678318f4de46108d8e3c19f4a355d8744f
14,238
py
Python
qiskit/aqua/operators/base_operator.py
Sahar2/qiskit-aqua
a228fbe6b9613cff43e47796a7e4843deba2b051
[ "Apache-2.0" ]
null
null
null
qiskit/aqua/operators/base_operator.py
Sahar2/qiskit-aqua
a228fbe6b9613cff43e47796a7e4843deba2b051
[ "Apache-2.0" ]
null
null
null
qiskit/aqua/operators/base_operator.py
Sahar2/qiskit-aqua
a228fbe6b9613cff43e47796a7e4843deba2b051
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. from abc import ABC, abstractmethod import warnings from qiskit import QuantumCircuit class BaseOperator(ABC): """Operators relevant for quantum applications.""" @abstractmethod def __init__(self, basis=None, z2_symmetries=None, name=None): """Constructor.""" self._basis = basis self._z2_symmetries = z2_symmetries self._name = name if name is not None else '' @property def name(self): return self._name @name.setter def name(self, new_value): self._name = new_value @property def basis(self): return self._basis @property def z2_symmetries(self): return self._z2_symmetries @abstractmethod def __add__(self, other): """Overload + operation.""" raise NotImplementedError @abstractmethod def __iadd__(self, other): """Overload += operation.""" raise NotImplementedError @abstractmethod def __sub__(self, other): """Overload - operation.""" raise NotImplementedError @abstractmethod def __isub__(self, other): """Overload -= operation.""" raise NotImplementedError @abstractmethod def __neg__(self): """Overload unary - .""" raise NotImplementedError @abstractmethod def __eq__(self, other): """Overload == operation.""" raise NotImplementedError @abstractmethod def __str__(self): """Overload str().""" raise NotImplementedError @abstractmethod def __mul__(self, other): """Overload *.""" raise NotImplementedError @abstractmethod def construct_evaluation_circuit(self, wave_function): """Build circuits to compute the expectation w.r.t the wavefunction.""" raise NotImplementedError @abstractmethod def evaluate_with_result(self, result): """ Consume the result from the quantum computer to build the expectation, will be only used along with the `construct_evaluation_circuit` method. """ raise NotImplementedError @abstractmethod def evolve(self): """ Time evolution, exp^(-jt H). """ raise NotImplementedError @abstractmethod def print_details(self): raise NotImplementedError @abstractmethod def _scaling_weight(self, scaling_factor): # TODO: will be removed after the deprecated method is removed. raise NotImplementedError @abstractmethod def chop(self, threshold, copy=False): raise NotImplementedError def print_operators(self, mode='paulis'): warnings.warn("print_operators() is deprecated and it will be removed after 0.6, " "Use `print_details()` instead", DeprecationWarning) return self.print_details() @property def coloring(self): warnings.warn("coloring is removed, " "Use the `TPBGroupedWeightedPauliOperator` class to group a paulis directly", DeprecationWarning) return None def _to_dia_matrix(self, mode=None): warnings.warn("_to_dia_matrix method is removed, use the `MatrixOperator` class to get diagonal matrix. And " "the current deprecated method does NOT modify the original object, it returns the dia_matrix", DeprecationWarning) from .op_converter import to_matrix_operator mat_op = to_matrix_operator(self) return mat_op.dia_matrix def enable_summarize_circuits(self): warnings.warn("enable_summarize_circuits method is removed. Enable the summary at QuantumInstance", DeprecationWarning) def disable_summarize_circuits(self): warnings.warn("disable_summarize_circuits method is removed. Disable the summary at QuantumInstance", DeprecationWarning) @property def representations(self): warnings.warn("representations method is removed. each operator is self-defined, ", DeprecationWarning) return None def eval(self, operator_mode, input_circuit, backend, backend_config=None, compile_config=None, run_config=None, qjob_config=None, noise_config=None): warnings.warn("eval method is removed. please use `construct_evaluate_circuit` and submit circuit by yourself " "then, use the result along with `evaluate_with_result` to get mean and std. " "Furthermore, if you compute the expectation against a statevector (numpy array), you can " "use evaluate_with_statevector directly.", DeprecationWarning) return None, None def convert(self, input_format, output_format, force=False): warnings.warn("convert method is removed. please use the conversion functions in the " "qiskit.aqua.operators.op_converter module. There are different `to_xxx_operator` functions" " And the current deprecated method does NOT modify the original object, it returns.", DeprecationWarning) from .op_converter import to_weighted_pauli_operator, to_matrix_operator, to_tpb_grouped_weighted_pauli_operator from .tpb_grouped_weighted_pauli_operator import TPBGroupedWeightedPauliOperator if output_format == 'paulis': return to_weighted_pauli_operator(self) elif output_format == 'grouped_paulis': return to_tpb_grouped_weighted_pauli_operator(self, TPBGroupedWeightedPauliOperator.sorted_grouping) elif output_format == 'matrix': return to_matrix_operator(self) def two_qubit_reduced_operator(self, m, threshold=10 ** -13): warnings.warn("two_qubit_reduced_operator method is deprecated and it will be removed after 0.6. " "Now it is moved to the `Z2Symmetries` class as a classmethod. """ "Z2Symmeteries.two_qubit_reduction(num_particles)", DeprecationWarning) from .op_converter import to_weighted_pauli_operator from .weighted_pauli_operator import Z2Symmetries return Z2Symmetries.two_qubit_reduction(to_weighted_pauli_operator(self), m) @staticmethod def qubit_tapering(operator, cliffords, sq_list, tapering_values): warnings.warn("qubit_tapering method is deprecated and it will be removed after 0.6. " "Now it is moved to the `Z2Symmetries` class.", DeprecationWarning) from .op_converter import to_weighted_pauli_operator from .weighted_pauli_operator import Z2Symmetries sq_paulis = [x.paulis[1][1] for x in cliffords] symmetries = [x.paulis[0][1] for x in cliffords] tmp_op = to_weighted_pauli_operator(operator) z2_symmetries = Z2Symmetries(symmetries, sq_paulis, sq_list, tapering_values) return z2_symmetries.taper(tmp_op) def scaling_coeff(self, scaling_factor): warnings.warn("scaling_coeff method is deprecated and it will be removed after 0.6. " "Use `* operator` with the scalar directly.", DeprecationWarning) self._scaling_weight(scaling_factor) return self def zeros_coeff_elimination(self): warnings.warn("zeros_coeff_elimination method is deprecated and it will be removed after 0.6. " "Use chop(0.0) to remove terms with 0 weight.", DeprecationWarning) self.chop(0.0) return self @staticmethod def construct_evolution_circuit(slice_pauli_list, evo_time, num_time_slices, state_registers, ancillary_registers=None, ctl_idx=0, unitary_power=None, use_basis_gates=True, shallow_slicing=False): from .common import evolution_instruction warnings.warn("The `construct_evolution_circuit` method is deprecated, use the `evolution_instruction` in " "the qiskit.aqua.operators.common module instead.", DeprecationWarning) if state_registers is None: raise ValueError('Quantum state registers are required.') qc_slice = QuantumCircuit(state_registers) if ancillary_registers is not None: qc_slice.add_register(ancillary_registers) controlled = ancillary_registers is not None inst = evolution_instruction(slice_pauli_list, evo_time, num_time_slices, controlled, 2 ** ctl_idx, use_basis_gates, shallow_slicing) qc_slice.append(inst, [q for qreg in qc_slice.qregs for q in qreg]) qc_slice = qc_slice.decompose() return qc_slice @staticmethod def row_echelon_F2(matrix_in): from .common import row_echelon_F2 warnings.warn("The `row_echelon_F2` method is deprecated, use the row_echelon_F2 function in " "the qiskit.aqua.operators.common module instead.", DeprecationWarning) return row_echelon_F2(matrix_in) @staticmethod def kernel_F2(matrix_in): from .common import kernel_F2 warnings.warn("The `kernel_F2` method is deprecated, use the kernel_F2 function in " "the qiskit.aqua.operators.common module instead.", DeprecationWarning) return kernel_F2(matrix_in) def find_Z2_symmetries(self): warnings.warn("The `find_Z2_symmetries` method is deprecated and it will be removed after 0.6, " "Use the class method in the `Z2Symmetries` class instead", DeprecationWarning) from .weighted_pauli_operator import Z2Symmetries from .op_converter import to_weighted_pauli_operator wp_op = to_weighted_pauli_operator(self) self._z2_symmetries = Z2Symmetries.find_Z2_symmetries(wp_op) return self._z2_symmetries.symmetries, self._z2_symmetries.sq_paulis, \ self._z2_symmetries.cliffords, self._z2_symmetries.sq_list def to_grouped_paulis(self): warnings.warn("to_grouped_paulis method is deprecated and it will be removed after 0.6. And the current " "deprecated method does NOT modify the original object, it returns the grouped weighted pauli " "operator. Please check the qiskit.aqua.operators.op_convertor for converting to different " "types of operators. For grouping paulis, you can create your own grouping func to create the " "class you need.", DeprecationWarning) from .op_converter import to_tpb_grouped_weighted_pauli_operator from .tpb_grouped_weighted_pauli_operator import TPBGroupedWeightedPauliOperator return to_tpb_grouped_weighted_pauli_operator(self, grouping_func=TPBGroupedWeightedPauliOperator.sorted_grouping) def to_paulis(self): warnings.warn("to_paulis method is deprecated and it will be removed after 0.6. And the current deprecated " "method does NOT modify the original object, it returns the weighted pauli operator." "Please check the qiskit.aqua.operators.op_convertor for converting to different types of " "operators", DeprecationWarning) from .op_converter import to_weighted_pauli_operator return to_weighted_pauli_operator(self) def to_matrix(self): warnings.warn("to_matrix method is deprecated and it will be removed after 0.6. And the current deprecated " "method does NOT modify the original object, it returns the matrix operator." "Please check the qiskit.aqua.operators.op_convertor for converting to different types of " "operators", DeprecationWarning) from .op_converter import to_matrix_operator return to_matrix_operator(self) def to_weighted_pauli_operator(self): warnings.warn("to_weighted_apuli_operator method is temporary helper method and it will be removed after 0.6. " "Please check the qiskit.aqua.operators.op_convertor for converting to different types of " "operators", DeprecationWarning) from .op_converter import to_weighted_pauli_operator return to_weighted_pauli_operator(self) def to_matrix_operator(self): warnings.warn("to_matrix_operator method is temporary helper method and it will be removed after 0.6. " "Please check the qiskit.aqua.operators.op_convertor for converting to different types of " "operators", DeprecationWarning) from .op_converter import to_matrix_operator return to_matrix_operator(self) def to_tpb_grouped_weighted_pauli_operator(self): warnings.warn("to_tpb_grouped_weighted_pauli_operator method is temporary helper method and it will be " "removed after 0.6. Please check the qiskit.aqua.operators.op_convertor for converting to " "different types of operators", DeprecationWarning) from .op_converter import to_tpb_grouped_weighted_pauli_operator from .tpb_grouped_weighted_pauli_operator import TPBGroupedWeightedPauliOperator return to_tpb_grouped_weighted_pauli_operator( self, grouping_func=TPBGroupedWeightedPauliOperator.sorted_grouping)
44.633229
122
0.666877
13,645
0.958351
0
0
5,336
0.374772
0
0
5,017
0.352367
a0d37d7e9574c755f53a5c193de3f30cb81ee61a
4,447
py
Python
DataAnalysis/utils.py
Timlo512/AnomalyStockDetection
29f9aaef14f1d9823980d8022cdce1f7f6310813
[ "MIT" ]
2
2020-12-19T05:24:29.000Z
2021-05-15T19:35:40.000Z
DataAnalysis/utils.py
Timlo512/AnomalyStockDetection
29f9aaef14f1d9823980d8022cdce1f7f6310813
[ "MIT" ]
null
null
null
DataAnalysis/utils.py
Timlo512/AnomalyStockDetection
29f9aaef14f1d9823980d8022cdce1f7f6310813
[ "MIT" ]
5
2020-11-21T02:25:13.000Z
2022-01-31T12:46:02.000Z
import pandas as pd import numpy as np from sklearn.metrics import confusion_matrix import re def convert_data_sparse_matrix(df, row_label = 'stock_code', col_label = 'name_of_ccass_participant', value_label = 'shareholding'): """ Pivot table """ try: # Prepare zero matrix row_dim = len(df[row_label].unique()) col_dim = len(df[col_label].unique()) sparse_matrix = np.zeros((row_dim, col_dim)) # Prepare label to index dictionaries row_ind_dict = {label: ind for ind, label in enumerate(sorted(df[row_label].unique().tolist()))} col_ind_dict = {label: ind for ind, label in enumerate(sorted(df[col_label].unique().tolist()))} # Transform row_label column and col_label column to index df['row_ind'] = df[row_label].apply(lambda x: row_ind_dict[x]) df['col_ind'] = df[col_label].apply(lambda x: col_ind_dict[x]) for ind, row in df.iterrows(): # Get index and shareholding row_ind = row['row_ind'] col_ind = row['col_ind'] value = row[value_label] # Assign to sparse matrix sparse_matrix[row_ind, col_ind] += value return sparse_matrix, row_ind_dict, col_ind_dict except Exception as e: print(e) return None def load_data(data_path): # Read csv files df = pd.read_csv(data_path) # Convert stock code to formatted string df['stock_code'] = df['stock_code'].apply(lambda x: ('00000' + str(x))[-5:]) return df def f_score(y_truth, y_pred, beta = 1): try: # Run confusion_matrix tn, fp, fn, tp = confusion_matrix(y_truth, y_pred).ravel() precision_value = precision(tp, fp) recall_value = recall(tp, fn) # print recall print('True positive: {}, True Negative: {}, False Positive: {}, False Negative: {}'.format(tp, tn, fp, fn)) print('Precision is ', format(precision_value * 100, '.2f'), '%') print('Recall is ', format(recall_value * 100, '.2f'), '%') return (1 + beta**2) * (precision_value * recall_value) / ((beta**2 * precision_value + recall_value)) except Exception as e: print(e) return None def precision(tp, fp): return tp / (tp + fp) def recall(tp, fn): return tp / (tp + fn) def get_truth_label(path, threshold = 0.3): # Load dataset df = pd.read_csv(path) # preprocess the data in order to get a proper data structure df = df.set_index('Unnamed: 0').transpose().dropna() df = df.reset_index() df['index'] = df['index'].apply(lambda x: retrieve_stock_code(x)) df = df.set_index('index') # Define col_dim and empty dataframe col_dim = len(df.columns) temp = pd.DataFrame() # Create a list of column name without the first element first_dim = df.columns[0] col_list = df.columns.to_list() col_list.remove(first_dim) for col in col_list: # Assign the col to second_dim, as current date second_dim = col # Calculate the daily % change of stock price temp[col] = (df[second_dim] - df[first_dim]) / df[first_dim] # Assign the col to first dim, as previous date first_dim = col result = np.sum(temp > threshold, axis = 1) return {stock_code:1 if count > 0 else 0 for stock_code, count in result.items()} def retrieve_stock_code(x): d = re.search('[0-9]*', x) if d: return ('00000' + d.group(0))[-5:] else: return None def cluster_predict(label, min_pts = 'auto'): """ Input: an array of clsutered label for each instance return: an array of anomal label for each instance """ try: # Get Unqiue label and its counts (unique, counts) = np.unique(label, return_counts = True) # Define minimum points that it should have in a cluster, if auto, it will take the min count if min_pts == 'auto': min_pts = min(counts) print('Minimum points of a cluster among the clusters: ', min_pts) else: min_pts = int(min_pts) # Prepare label_dict for mapping label_dict = {label: 0 if count > min_pts else 1 for label, count in zip(unique, counts)} # Map label_dict to label return np.array([label_dict[i] for i in label]) except Exception as e: print(e) return None
32.698529
132
0.614796
0
0
0
0
0
0
0
0
1,263
0.284012
a0d5155e320c1b2b6704a06d42d9b58088cb485b
1,429
py
Python
scripts/prepare_upload_files.py
MaayanLab/scAVI
7f3f83657d749520243535581db1080075e48aa5
[ "Apache-2.0" ]
3
2020-01-23T08:48:33.000Z
2021-07-21T02:42:28.000Z
scripts/prepare_upload_files.py
MaayanLab/scAVI
7f3f83657d749520243535581db1080075e48aa5
[ "Apache-2.0" ]
21
2019-10-25T15:38:37.000Z
2022-01-27T16:04:04.000Z
scripts/prepare_upload_files.py
MaayanLab/scAVI
7f3f83657d749520243535581db1080075e48aa5
[ "Apache-2.0" ]
1
2019-10-24T18:15:26.000Z
2019-10-24T18:15:26.000Z
''' Prepare some files to test the upload functionality. ''' import sys sys.path.append('../') from database import * from pymongo import MongoClient mongo = MongoClient(MONGOURI) db = mongo['SCV'] coll = db['dataset'] from gene_expression import * expr_df, meta_doc = load_read_counts_and_meta(organism='mouse', gse='GSE96870') # rename the samples expr_df.columns = ['sample_%d' % i for i in range(len(expr_df.columns))] meta_df = pd.DataFrame(meta_doc['meta_df']) meta_df.index = expr_df.columns meta_df.index.name = 'sample_ID' # parse the meta_df a bit meta_df['Sample_characteristics_ch1'] = meta_df['Sample_characteristics_ch1'].map(lambda x:x.split('\t')) keys_from_char_ch1 = [item.split(': ')[0] for item in meta_df['Sample_characteristics_ch1'][0]] for i, key in enumerate(keys_from_char_ch1): meta_df[key] = meta_df['Sample_characteristics_ch1'].map(lambda x:x[i].split(': ')[1]) # drop unnecessary columns in meta_df meta_df = meta_df.drop(['Sample_characteristics_ch1', 'Sample_relation', 'Sample_geo_accession', 'Sample_supplementary_file_1'], axis=1) # fake a column of continuous values meta_df['random_continuous_attr'] = np.random.randn(meta_df.shape[0]) meta_df.to_csv('../data/sample_metadata.csv') # raw read counts expr_df.to_csv('../data/sample_read_counts_%dx%d.csv' % expr_df.shape) # CPMs expr_df = compute_CPMs(expr_df) expr_df.to_csv('../data/sample_CPMs_%dx%d.csv' % expr_df.shape)
30.404255
105
0.751575
0
0
0
0
0
0
0
0
611
0.427572
a0d646ba03a4465fe2514a5e2b0f73386fb45c4c
2,321
py
Python
app/api/V1/views/products.py
Paulvitalis200/Store-Manager-API
d61e91bff7fc242da2a93d1caf1012465c7c904a
[ "MIT" ]
null
null
null
app/api/V1/views/products.py
Paulvitalis200/Store-Manager-API
d61e91bff7fc242da2a93d1caf1012465c7c904a
[ "MIT" ]
4
2018-10-21T18:28:03.000Z
2018-10-24T12:48:24.000Z
app/api/V1/views/products.py
Paulstar200/Store-Manager-API
d61e91bff7fc242da2a93d1caf1012465c7c904a
[ "MIT" ]
null
null
null
from flask import Flask, request from flask_restful import Resource, reqparse from flask_jwt_extended import create_access_token, jwt_required from app.api.V1.models import Product, products class PostProduct(Resource): parser = reqparse.RequestParser() parser.add_argument('name', required=True, help='Product name cannot be blank', type=str) parser.add_argument('price', required=True, help=' Product price cannot be blank or a word', type=int) parser.add_argument('quantity', required=True, help='Product quantity cannot be blank or a word', type=int) @jwt_required def post(self): # input validation data = request.get_json() args = PostProduct.parser.parse_args() name = args.get('name').strip() # removes whitespace price = args.get('price') quantity = args.get('quantity') payload = ['name', 'price', 'quantity'] if not name or not price or not quantity: return {'message': 'Product name, price and quantity are all required'}, 400 else: # Check if the item is not required for item in data.keys(): if item not in payload: return {"message": "The field '{}' is not required for the products".format(item)}, 400 try: product = Product.create_product(name, price, quantity) return { 'message': 'Product created successfully!', 'product': product, 'status': 'ok' }, 201 except Exception as my_exception: print(my_exception) return {'message': 'Something went wrong.'}, 500 class GetAllProducts(Resource): # Both attendant and store owner can get products @jwt_required def get(self): products = Product.get_products() if len(products) == 0: return {'message': "No products created yet."} return { 'message': 'Products successfully retrieved!', 'products': products }, 200 # Get a single specific product class GetEachProduct(Resource): @jwt_required def get(self, product_id): try: return products[product_id - 1] except IndexError: return {"message": "No item with that ID in stock"}
35.166667
111
0.616545
2,088
0.899612
0
0
1,577
0.679449
0
0
677
0.291685
a0d68497a4530b9b9bb8366ff9da7d608dd9a751
1,155
py
Python
51-100/p87.py
YiWeiShen/Project-Euler-Hints
a79cacab075dd98d393516f083aaa7ffc6115a06
[ "MIT" ]
1
2019-02-25T13:00:31.000Z
2019-02-25T13:00:31.000Z
51-100/p87.py
YiWeiShen/Project-Euler-Hints
a79cacab075dd98d393516f083aaa7ffc6115a06
[ "MIT" ]
null
null
null
51-100/p87.py
YiWeiShen/Project-Euler-Hints
a79cacab075dd98d393516f083aaa7ffc6115a06
[ "MIT" ]
null
null
null
import time from multiprocessing.pool import Pool def is_prime(num): for i in range(2, int(num**0.5+1)): if num % i == 0: return None return num if __name__ == '__main__': t = time.time() p1 = Pool(processes=30) p2 = Pool(processes=30) p3 = Pool(processes=30) num1 = range(2, 7072) num2 = range(2, 369) num3 = range(2, 85) prime_list1 = p1.map(is_prime, num1) p1.close() p1.join() prime_list2 = p2.map(is_prime, num2) p2.close() p2.join() prime_list3 = p3.map(is_prime, num3) p3.close() p3.join() prime_list1_clear = [x for x in prime_list1 if x is not None] prime_list2_clear = [x for x in prime_list2 if x is not None] prime_list3_clear = [x for x in prime_list3 if x is not None] result_list = [] for i in prime_list1_clear: print(i) for j in prime_list2_clear: for k in prime_list3_clear: test_num = i**2 + j**3 + k**4 if test_num < 50000000: result_list.append(test_num) print(str(len(list(set(result_list))))) print('time:'+str(time.time()-t))
26.860465
65
0.587013
0
0
0
0
0
0
0
0
17
0.014719
a0d6b47a07ed18120ebb9b10352d658a22a11ecb
267
py
Python
Clean Word/index.py
Sudani-Coder/python
9c35f04a0521789ba91b7058695139ed074f7796
[ "MIT" ]
null
null
null
Clean Word/index.py
Sudani-Coder/python
9c35f04a0521789ba91b7058695139ed074f7796
[ "MIT" ]
null
null
null
Clean Word/index.py
Sudani-Coder/python
9c35f04a0521789ba91b7058695139ed074f7796
[ "MIT" ]
null
null
null
# recursion function (Clean Word) def CleanWord(word): if len(word) == 1: return word elif word[0] == word[1]: return CleanWord(word[1:]) else: return word[0] + CleanWord(word[1:]) print(CleanWord("wwwooooorrrrllddd"))
19.071429
44
0.58427
0
0
0
0
0
0
0
0
52
0.194757
a0d7aa3f87b3b51ae56654591cba7faff73f9f8f
665
py
Python
commands/rotatecamera.py
1757WestwoodRobotics/mentorbot
3db344f3b35c820ada4e1aef3eca9b1fc4c5b85a
[ "MIT" ]
2
2021-11-13T20:18:44.000Z
2021-11-13T20:27:04.000Z
commands/rotatecamera.py
1757WestwoodRobotics/mentorbot
3db344f3b35c820ada4e1aef3eca9b1fc4c5b85a
[ "MIT" ]
null
null
null
commands/rotatecamera.py
1757WestwoodRobotics/mentorbot
3db344f3b35c820ada4e1aef3eca9b1fc4c5b85a
[ "MIT" ]
1
2021-11-14T01:38:53.000Z
2021-11-14T01:38:53.000Z
import typing from commands2 import CommandBase from subsystems.cameracontroller import CameraSubsystem class RotateCamera(CommandBase): def __init__(self, camera: CameraSubsystem, leftRight: typing.Callable[[], float], upDown: typing.Callable[[], float]) -> None: CommandBase.__init__(self) self.setName(__class__.__name__) self.camera = camera self.leftRight = leftRight self.upDown = upDown self.addRequirements([self.camera]) self.setName(__class__.__name__) def execute(self) -> None: self.camera.setCameraRotation(self.leftRight(), self.upDown())
28.913043
70
0.667669
557
0.837594
0
0
0
0
0
0
0
0
a0d85ead79155e87bca877ab2df552ddd4292930
8,188
py
Python
instapp/views.py
uwamahororachel/instagram
d5b7127e62047287dfadec15743676df48f278a9
[ "MIT" ]
null
null
null
instapp/views.py
uwamahororachel/instagram
d5b7127e62047287dfadec15743676df48f278a9
[ "MIT" ]
null
null
null
instapp/views.py
uwamahororachel/instagram
d5b7127e62047287dfadec15743676df48f278a9
[ "MIT" ]
null
null
null
from django.shortcuts import render,redirect from django.http import HttpResponse, Http404,HttpResponseRedirect import datetime as dt from .models import Post,Comment,Follow,Profile from django.contrib.auth.decorators import login_required from .forms import NewPostForm, NewCommentForm, AddProfileForm from django.contrib.auth.models import User def signup(request): if request.user.is_authenticated(): return redirect('insta') else: if request.method == 'POST': form = SignupForm(request.POST) if form.is_valid(): user = form.save(commit=False) user.save() new_profile = Profile(user=user) else: form = SignupForm() return render(request, 'registration/registration_form.html',{'form':form}) @login_required(login_url='/accounts/login/') def insta(request): title='Instapp' users = User.objects.all() current_user = request.user profile = Profile.objects.filter(user=current_user).first() if profile == None: my_profile = None else: my_profile=profile comments = Comment.objects.all().order_by('-date_posted') posts = Post.objects.all().order_by('-date_posted') for post in posts: if request.method=='POST' and 'post' in request.POST: posted=request.POST.get("post") for post in posts: if (int(post.id)==int(posted)): post.like+=1 post.save() return redirect('insta') return render(request, 'index.html', {"posts": posts, 'comments':comments,'users':users,'user':current_user,'my_profile':my_profile,'title':title}) @login_required(login_url='/accounts/login/') def new_post(request): current_user = request.user profile = Profile.get_profile(current_user) if profile == None: return redirect('add_profile') else: if request.method == 'POST': form = NewPostForm(request.POST, request.FILES) if form.is_valid(): post = form.save(commit=False) post.user = current_user post.profile = profile post.save() return redirect('insta') else: form = NewPostForm() return render(request, 'newPost.html', {"form": form}) @login_required(login_url='/accounts/login/') def single_post(request, post_id): post = Post.objects.get(pk=post_id) comments = Comment.get_comments_by_post(post_id).order_by('-date_posted') current_user = request.user if request.method == 'POST': form = NewCommentForm(request.POST) if form.is_valid(): new_comment = form.save(commit=False) new_comment.user = current_user new_comment.post = post new_comment.save() return redirect('single_post',post_id=post_id) if request.method=='POST' and 'post' in request.POST: posted=request.POST.get("post") for post in posts: if (int(post.id)==int(posted)): post.like+=1 post.save() return redirect('single_post',post_id=post_id) else: form = NewCommentForm() return render(request, 'post.html', {'post':post, 'form':form,'comments':comments}) @login_required(login_url='/accounts/login/') def my_profile(request): current_user = request.user profile = Profile.objects.get(user=current_user) count = Post.objects.filter(profile=profile).count comments = Comment.objects.all().order_by('-date_posted') posts = None if profile == None: return redirect('add_profile') else: posts = Post.get_posts_by_id(profile.id).order_by('-date_posted') for post in posts: if request.method=='POST' and 'post' in request.POST: posted=request.POST.get("post") for post in posts: if (int(post.id)==int(posted)): post.like+=1 post.save() return redirect('profile', profile_id=profile_id) return render(request, 'profile.html', {"posts": posts, "profile": profile, 'count':count,'comments':comments}) @login_required(login_url='/accounts/login/') def update_post(request,post_id): post= Post.objects.get(pk=post_id).order_by('-date_posted') if request.method == 'POST': form = NewPostForm(request.POST) if form.is_valid(): post.caption=form_data.cleaned_data[caption] post=post.update_post(post_id,caption) return redirect('my_profile') else: form = NewPostForm() return render(request, 'postUpdate.html',{'form':form,'post':post}) def delete_post(request,post_id): post= Post.objects.get(pk=post_id) post.delete_post() return redirect('my_profile') return render(request, 'my_profile') @login_required(login_url='/accounts/login/') def new_post(request): current_user = request.user profile = Profile.get_profile(current_user) if profile == None: return redirect('add_profile') else: if request.method == 'POST': form = NewPostForm(request.POST, request.FILES) if form.is_valid(): post = form.save(commit=False) post.user = current_user post.profile = profile post.save() return redirect('insta') else: form = NewPostForm() return render(request, 'newPost.html', {"form": form}) @login_required(login_url='/accounts/login/') def add_profile(request): current_user = request.user if request.method == 'POST': form = AddProfileForm(request.POST, request.FILES) if form.is_valid(): new_profile = form.save(commit=False) new_profile.user = current_user new_profile.save() return redirect('my_profile') else: form = AddProfileForm() return render(request, 'addProfile.html', {"form": form}) @login_required(login_url='/accounts/login/') def update_profile(request): current_user = request.user if request.method == 'POST': form = AddProfileForm(request.POST, request.FILES) if form.is_valid(): new_profile = form.save(commit=False) new_profile.user = current_user new_profile.save() return redirect('my_profile') else: form = AddProfileForm() return render(request, 'addProfile.html', {"form": form}) @login_required(login_url='/accounts/login/') def search_results(request): if 'user' in request.GET and request.GET["user"]: search_term = request.GET.get("user") profiles = Profile.find_profile(search_term) message = f"{search_term}" return render(request, 'search.html',{"results": profiles, "message":message}) else: message = "You haven't searched for any term" return render(request, 'search.html',{"message":message}) @login_required(login_url='/accounts/login/') def profile(request, profile_id): profile = Profile.get_profile_id(profile_id) posts = Post.objects.filter(profile=profile.id).order_by('-date_posted') count = Post.objects.filter(profile=profile).count comments = Comment.objects.all().order_by('-date_posted') for post in posts: if request.method=='POST' and 'post' in request.POST: posted=request.POST.get("post") for post in posts: if (int(post.id)==int(posted)): post.like+=1 post.save() return redirect('profile', profile_id=profile_id) return render(request, 'userProfile.html', {"posts": posts, "profile": profile, 'count':count,'comments':comments}) @login_required(login_url='/accounts/login/') def follow(request, profile_id): current_user = request.user profile = Profile.get_profile_id(profile_id) follow_user = Follow(user=current_user, profile=profile) follow_user.save() myprofile_id= str(profile.id) return redirect('insta')
36.882883
151
0.626282
0
0
0
0
7,171
0.875794
0
0
1,083
0.132267
a0d898d83393f9e2a6f4299d21f948ceddccd556
238
py
Python
2008/wxpytris/wxpytris.py
mikiec84/code-for-blog
79b2264f9a808eb14f624cb3c5ae7624038c043a
[ "Unlicense" ]
1,199
2015-01-06T14:09:37.000Z
2022-03-29T19:39:51.000Z
2008/wxpytris/wxpytris.py
mikiec84/code-for-blog
79b2264f9a808eb14f624cb3c5ae7624038c043a
[ "Unlicense" ]
25
2016-07-29T15:44:01.000Z
2021-11-19T16:21:01.000Z
2008/wxpytris/wxpytris.py
mikiec84/code-for-blog
79b2264f9a808eb14f624cb3c5ae7624038c043a
[ "Unlicense" ]
912
2015-01-04T00:39:50.000Z
2022-03-29T06:50:22.000Z
import sys import wx sys.path.insert(0, 'lib.zip') from lib.TetrisGame import TetrisGame if __name__ == '__main__': app = wx.PySimpleApp() frame = TetrisGame(None) frame.Show(True) app.MainLoop()
11.9
38
0.617647
0
0
0
0
0
0
0
0
19
0.079832
a0d89d58810bc392058c43540e5719fda8ed9934
6,822
py
Python
cfg.py
alexandonian/relational-set-abstraction
8af6a6a58883ce59c7b29e4161ff970e3bded642
[ "MIT" ]
9
2020-09-17T23:09:42.000Z
2021-12-29T09:56:24.000Z
cfg.py
alexandonian/relational-set-abstraction
8af6a6a58883ce59c7b29e4161ff970e3bded642
[ "MIT" ]
null
null
null
cfg.py
alexandonian/relational-set-abstraction
8af6a6a58883ce59c7b29e4161ff970e3bded642
[ "MIT" ]
1
2021-01-16T07:19:42.000Z
2021-01-16T07:19:42.000Z
import argparse import torch import logger import models import utils NUM_NODES = { 'moments': 391, 'multimoments': 391, 'kinetics': 608, } CRITERIONS = { 'CE': {'func': torch.nn.CrossEntropyLoss}, 'MSE': {'func': torch.nn.MSELoss}, 'BCE': {'func': torch.nn.BCEWithLogitsLoss}, } OPTIMIZERS = { 'SGD': { 'func': torch.optim.SGD, 'lr': 0.001, 'momentum': 0.9, 'weight_decay': 5e-4, }, 'Adam': {'func': torch.optim.Adam, 'weight_decay': 5e-4}, } SCHEDULER_DEFAULTS = {'CosineAnnealingLR': {'T_max': 100}} METAFILE_FILE = { 'moments': { 'train': 'metadata/moments_train_abstraction_sets.json', 'val': 'metadata/moments_val_abstraction_sets.json', }, 'kinetics': { 'train': 'metadata/kinetics_train_abstraction_sets.json', 'val': 'metadata/kinetics_val_abstraction_sets.json', }, } FEATURES_FILE = { 'moments': { 'train': 'metadata/resnet3d50_moments_train_features.pth', 'val': 'metadata/resnet3d50_moments_val_features.pth', 'test': 'metadata/resnet3d50_moments_test_features.pth', }, 'kinetics': { 'train': 'metadata/resnet3d50_kinetics_train_features.pth', 'val': 'metadata/resnet3d50_kinetics_val_features.pth', 'test': 'metadata/resnet3d50_kinetics_test_features.pth', }, } EMBEDDING_FILE = { 'moments': { 'train': 'metadata/moments_train_embeddings.pth', 'val': 'metadata/moments_val_embeddings.pth', }, 'kinetics': { 'train': 'metadata/kinetics_train_embeddings.pth', 'val': 'metadata/kinetics_val_embeddings.pth', 'test': 'metadata/kinetics_test_embeddings.pth', }, } EMBEDDING_CATEGORIES_FILE = { 'moments': 'metadata/moments_category_embeddings.pth', 'kinetics': 'metadata/kinetics_category_embeddings.pth', } LIST_FILE = { 'moments': { 'train': 'metadata/moments_train_listfile.txt', 'val': 'metadata/moments_val_listfile.txt', 'test': 'metadata/moments_test_listfile.txt', }, 'kinetics': { 'train': 'metadata/kinetics_train_listfile.txt', 'val': 'metadata/kinetics_val_listfile.txt', 'test': 'metadata/kinetics_test_listfile.txt', }, } RANKING_FILE = { 'moments': 'metadata/moments_human_abstraction_sets.json', 'kinetics': 'metadata/kinetics_human_abstraction_sets.json', } GRAPH_FILE = { 'moments': 'metadata/moments_graph.json', 'kinetics': 'metadata/kinetics_graph.json', } def parse_args(): parser = argparse.ArgumentParser(description="Abstraction Experiments") parser.add_argument( '-e', '--experiment', type=str, default='AbstractionEmbedding', help="name of experiment to run", ) parser.add_argument( '-i', '--exp_id', type=str, help="unique name or id of particular experimental run", ) parser.add_argument( '-d', '--dataset', type=str, default='moments', choices=['moments', 'kinetics'], help='name of dataset', ) parser.add_argument( '-m', '--model_name', type=str, default='AbstractionEmbeddingModule', help='class name of model to instantiate', ) parser.add_argument( '-b', '--batch_size', type=int, default=256, help='number of elements (sets) in batch', ) parser.add_argument('--optimizer', type=str, default='Adam') parser.add_argument('--criterion', nargs='+', default=['MSE', 'CE']) parser.add_argument('-l', '--loss_weights', nargs='+', default=[1, 1], type=float) parser.add_argument('--lr', type=float, default=0.0001) parser.add_argument('-s', '--scales', nargs='+', default=[1, 2, 3, 4], type=int) parser.add_argument('-r', '--resume', type=str, default=None) parser.add_argument('--log_dir', type=str, default='logs') parser.add_argument('--checkpoint_dir', type=str, default='checkpoints') parser.add_argument('--output_dir', type=str, default='outputs') parser.add_argument('--metadata_dir', type=str, default='metadata') parser.add_argument('--logger_name', type=str, default='AbstractionLogger') parser.add_argument('--num_epochs', type=int, default=60) parser.add_argument('--start_epoch', type=int, default=0) parser.add_argument('--max_step', type=int, default=None) parser.add_argument('--val_freq', type=int, default=1) parser.add_argument('--log_freq', type=int, default=20) parser.add_argument('--checkpoint_freq', type=int, default=1000) parser.add_argument('--cudnn_enabled', default=True, type=utils.str2bool) parser.add_argument('--cudnn_benchmark', default=True, type=utils.str2bool) parser.add_argument('--clip_gradient', type=int, default=20) parser.add_argument('--evaluate', action='store_true') parser.add_argument('-bm', '--basemodel_name', type=str, default='resnet3d50') parser.add_argument('--prefix', type=str, default='') parser.add_argument('--return_metric', type=str, default='top1@abstr') args = parser.parse_args() return args def get_model(model_name, dataset_name, scales=4, basemodel='resnet3d50'): feature_dim = {'resnet3d50': 2048}.get(basemodel, 2048) model_dict = { 'AbstractionEmbeddingModule': { 'func': models.AbstractionEmbeddingModule, 'in_features': feature_dim, 'out_features': feature_dim, 'num_nodes': NUM_NODES[dataset_name], 'embedding_dim': 300, 'bottleneck_dim': 512, 'scales': scales, }, }.get(model_name) model_func = model_dict.pop('func') return model_func(**model_dict) def get_criterion(names=['CE', 'MSE'], cuda=True): criterions = {name: CRITERIONS[name]['func']() for name in names} if cuda: criterions = {name: crit.cuda() for name, crit in criterions.items()} return criterions def get_optimizer(model, optimizer_name, lr=0.001): optim_dict = OPTIMIZERS[optimizer_name] optim_func = optim_dict.pop('func', torch.optim.Adam) optimizer = optim_func(model.parameters(), **{**optim_dict, 'lr': lr}) return optimizer def get_scheduler(optimizer, scheduler_name='CosineAnnealingLR', **kwargs): sched_func = getattr(torch.optim.lr_scheduler, scheduler_name) func_kwargs, _ = utils.split_kwargs_by_func(sched_func, kwargs) sched_kwargs = {**SCHEDULER_DEFAULTS.get(scheduler_name, {}), **func_kwargs} scheduler = sched_func(optimizer, **sched_kwargs) return scheduler def get_logger(args): logger_func = getattr(logger, args.logger_name) logger_dict, _ = utils.split_kwargs_by_func(logger_func, vars(args).copy()) return logger_func(**logger_dict)
32.956522
86
0.650836
0
0
0
0
0
0
0
0
2,540
0.372325
a0dac9d01fbc63e4052a6ea761aeaa779debac1b
2,021
py
Python
Spider/SpiderLab/lab3/lab3/spiders/spider_msg.py
JimouChen/python-application
b7b16506a17e2c304d1c5fabd6385e96be211c56
[ "Apache-2.0" ]
1
2020-08-09T12:47:27.000Z
2020-08-09T12:47:27.000Z
Spider/SpiderLab/lab3/lab3/spiders/spider_msg.py
JimouChen/Python_Application
b7b16506a17e2c304d1c5fabd6385e96be211c56
[ "Apache-2.0" ]
null
null
null
Spider/SpiderLab/lab3/lab3/spiders/spider_msg.py
JimouChen/Python_Application
b7b16506a17e2c304d1c5fabd6385e96be211c56
[ "Apache-2.0" ]
null
null
null
import scrapy from bs4 import BeautifulSoup from lab3.items import Lab3Item class QuoteSpider(scrapy.Spider): name = 'quotes' start_urls = ['http://quotes.toscrape.com/page/1/'] page_num = 1 # 对爬取到的信息进行解析 def parse(self, response, **kwargs): soup = BeautifulSoup(response.body, 'html.parser') nodes = soup.find_all('div', {'class': 'quote'}) for node in nodes: text = node.find('span', {'class': 'text'}).text author = node.find('small', {'class': 'author'}).text tags = node.find_all('a', {'class': 'tag'}) tags_list = [] for tag in tags: tags_list.append(tag.text) # 接下来找作者链接,进去爬取里面的信息 author_link = 'http://quotes.toscrape.com/' + node.find_all('span')[1].a['href'] # 抛给author_parse进行处理 yield response.follow(author_link, self.author_parse) # print('{0:<4}:{1:<20} said:{2:<20}\n{3}'.format(self.page_num, author, text, tags_list)) item = Lab3Item(author=author, text=text, tags=tags_list) yield item print('=' * 80 + 'page:',self.page_num,'saved successfully!' + '=' * 80) # 下面爬取下一页的链接 try: self.page_num += 1 url = soup.find('li', {'class': 'next'}).a['href'] if url: next_link = 'http://quotes.toscrape.com/' + url yield scrapy.Request(next_link, callback=self.parse) except Exception: print('所有页面信息爬取结束!!!') def author_parse(self, response, **kwargs): soup = BeautifulSoup(response.body, 'html.parser') author_name = soup.find_all('div', {'class': 'author-details'})[0].find('h3').text birthday = soup.find('span').text bio = soup.find('div', {'class': 'author-description'}).text # print('{}: {}\n{}\n{}\n'.format(self.page_num, author_name, birthday, bio)) item = Lab3Item(name=author_name, birthday=birthday, bio=bio) yield item
40.42
102
0.568036
2,058
0.963032
1,880
0.879738
0
0
0
0
705
0.329902
a0db51a733ae0c8c54da89e34dba10cbd38f7150
1,236
py
Python
Aditya/Parametric_Models/WeiExpLog.py
cipheraxat/Survival-Analysis
fb7ecbe4a61fc72785a4327c86e0f81a58c5b3df
[ "Apache-2.0" ]
7
2020-06-14T20:43:55.000Z
2020-06-23T06:07:08.000Z
Aditya/Parametric_Models/WeiExpLog.py
Abhijit2505/Survival-Analysis
94c0c386aacfe03a9f2f018511236292f36c4ed9
[ "Apache-2.0" ]
14
2020-06-20T06:28:50.000Z
2020-09-08T15:54:29.000Z
Aditya/Parametric_Models/WeiExpLog.py
Abhijit2505/Survival-Analysis
94c0c386aacfe03a9f2f018511236292f36c4ed9
[ "Apache-2.0" ]
9
2020-06-19T03:50:21.000Z
2021-05-10T18:19:26.000Z
import matplotlib.pyplot as plt from lifelines import (WeibullFitter, ExponentialFitter, LogNormalFitter, LogLogisticFitter) import pandas as pd data = pd.read_csv('Dataset/telco_customer.csv') data['tenure'] = pd.to_numeric(data['tenure']) data = data[data['tenure'] > 0] # Replace yes and No in the Churn column to 1 and 0. 1 for the event and 0 for the censured data. data['Churn'] = data['Churn'].apply(lambda x: 1 if x == 'Yes' else 0) fig, axes = plt.subplots(2, 2, figsize=( 16, 12)) T = data['tenure'] E = data['Churn'] wbf = WeibullFitter().fit(T, E, label='WeibullFitter') ef = ExponentialFitter().fit(T, E, label='ExponentialFitter') lnf = LogNormalFitter().fit(T, E, label='LogNormalFitter') llf = LogLogisticFitter().fit(T, E, label='LogLogisticFitter') wbf.plot_cumulative_hazard(ax=axes[0][0]) ef.plot_cumulative_hazard(ax=axes[0][1]) lnf.plot_cumulative_hazard(ax=axes[1][0]) llf.plot_cumulative_hazard(ax=axes[1][1]) plt.suptitle( 'Parametric Model Implementation of cumulative hazard function on the Telco dataset') fig.text(0.5, 0.04, 'Timeline', ha='center') fig.text(0.04, 0.5, 'Probability', va='center', rotation='vertical') plt.savefig('Images/WeiExpLogx.jpeg') plt.show()
34.333333
97
0.711974
0
0
0
0
0
0
0
0
410
0.331715
a0de95c4112c071280835a86de6b15a92fec2e83
2,260
py
Python
spoteno/steps/numbers.py
Z-80/spoteno
5d2ae7da437cfd8f9cf351b9602269c115dcd46f
[ "MIT" ]
2
2020-01-16T10:23:05.000Z
2021-11-17T15:44:29.000Z
spoteno/steps/numbers.py
Z-80/spoteno
5d2ae7da437cfd8f9cf351b9602269c115dcd46f
[ "MIT" ]
null
null
null
spoteno/steps/numbers.py
Z-80/spoteno
5d2ae7da437cfd8f9cf351b9602269c115dcd46f
[ "MIT" ]
2
2021-03-25T12:06:36.000Z
2021-11-17T15:44:30.000Z
import re import num2words INT_PATTERN = re.compile(r'^-?[0-9]+$') FLOAT_PATTERN = re.compile(r'^-?[0-9]+[,\.][0-9]+$') ORDINAL_PATTERN = re.compile(r'^[0-9]+\.?$') NUM_PATTERN = re.compile(r'^-?[0-9]+([,\.][0-9]+$)?') class NumberToWords: def __init__(self, lang_code): self.lang_code = lang_code def run(self, token): float_match = FLOAT_PATTERN.match(token) if float_match is not None: out = [] if token.startswith('-'): out.append('minus') token = token[1:] num_word = num2words.num2words( float(token.replace(',', '.')), lang=self.lang_code ).lower() out.extend(num_word.split(' ')) return out int_match = INT_PATTERN.match(token) if int_match is not None: out = [] if token.startswith('-'): out.append('minus') token = token[1:] num_word = num2words.num2words( int(token.replace(',', '.')), lang=self.lang_code ).lower() out.extend(num_word.split(' ')) return out return [token] class OrdinalNumberToWords: def __init__(self, lang_code): self.lang_code = lang_code def run(self, token): match = ORDINAL_PATTERN.match(token) if match is not None: num_word = num2words.num2words( int(token[:-1]), lang=self.lang_code, to='ordinal' ).lower() return num_word.split(' ') return [token] class SplitNumberSuffix: """ If any of the given strings is directly connected to a number it is separated. "2000%" -> "2000" "%" But not "2000%ff" """ def __init__(self, suffixes): self.suffixes = sorted(suffixes, reverse=True) def run(self, token): for s in self.suffixes: if token.endswith(s): should_be_number = token[:-len(s)] match = NUM_PATTERN.match(should_be_number) if match is not None: return [token[:-len(s)], token[-len(s):]] return [token]
23.541667
61
0.511504
2,029
0.897788
0
0
0
0
0
0
275
0.121681
a0e1d41f3732cef98c2895b100facec425069d9c
4,252
py
Python
src/django_website/django_website/tests/test_views.py
jdheinz/project-ordo_ab_chao
4063f93b297bab43cff6ca64fa5ba103f0c75158
[ "MIT" ]
2
2019-09-23T18:42:32.000Z
2019-09-27T00:33:38.000Z
src/django_website/django_website/tests/test_views.py
jdheinz/project-ordo_ab_chao
4063f93b297bab43cff6ca64fa5ba103f0c75158
[ "MIT" ]
6
2021-03-19T03:25:33.000Z
2022-02-10T08:48:14.000Z
src/django_website/django_website/tests/test_views.py
jdheinz/project-ordo_ab_chao
4063f93b297bab43cff6ca64fa5ba103f0c75158
[ "MIT" ]
6
2019-09-23T18:53:41.000Z
2020-02-06T00:20:06.000Z
from django.test import TransactionTestCase from django.test import TestCase from django.urls import reverse from home_page.models import Search from ebaysdk.finding import Connection as finding class PageTest(TransactionTestCase): def test_home_page_status_code_1(self): response = self.client.get('/') self.assertEquals(response.status_code, 200) def test_home_page_status_code_2(self): response = self.client.get('/home/') self.assertEquals(response.status_code, 200) def test_home_page_view_url_by_name(self): response = self.client.get(reverse('home')) self.assertEquals(response.status_code, 200) def test_home_page_contains_correct_html(self): response = self.client.get('/') self.assertContains(response, 'Please enter key search words below:') def test_home_page_does_not_contain_incorrect_html(self): response = self.client.get('/') self.assertNotContains( response, 'Hi there! I should not be on the page.') def test_graphs_page_status_code(self): response = self.client.get('/graphs/') self.assertEquals(response.status_code, 200) def test_graphs_page_view_url_by_name(self): response = self.client.get(reverse('graphs')) self.assertEquals(response.status_code, 200) def test_contact_page_status_code(self): response = self.client.get('/contact/') self.assertEquals(response.status_code, 200) def test_contact_page_view_url_by_name(self): response = self.client.get(reverse('contact')) self.assertEquals(response.status_code, 200) def test_about_page_status_code(self): response = self.client.get('/about/') self.assertEquals(response.status_code, 200) def test_about_page_view_url_by_name(self): response = self.client.get(reverse('about')) self.assertEquals(response.status_code, 200) def test_about_page_contains_correct_html(self): response = self.client.get('/about/') self.assertContains(response, 'ordo_ab_chao team members:') def test_about_page_does_not_contain_incorrect_html(self): response = self.client.get('/about/') self.assertNotContains( response, 'Hi there! I should not be on the page.') def test_blog_page_status_code(self): response = self.client.get('/blog/') self.assertEquals(response.status_code, 200) def test_blog_page_view_url_by_name(self): response = self.client.get(reverse('blog')) self.assertEquals(response.status_code, 200) def test_aboutWebsite_page_status_code(self): response = self.client.get('/about website/') self.assertEquals(response.status_code, 200) def test_aboutWebsite_page_view_url_by_name(self): response = self.client.get(reverse('about website')) self.assertEquals(response.status_code, 200) def test_directions_page_status_code(self): response = self.client.get('/directions/') self.assertEquals(response.status_code, 200) def test_directions_page_view_url_by_name(self): response = self.client.get(reverse('directions')) self.assertEquals(response.status_code, 200) class SearchModelTest(TestCase): def test_keywords_respresentation(self): keywords1 = Search(search="1986 Fleer Jordan") keywords2 = Search(search=1986) self.assertEquals(str(keywords1), keywords1.search) self.assertNotEquals(keywords2, keywords2.search) class TestEbayAPI(TestCase): def test_ebay_api_request_status_code(self): api = finding(appid='JohnHein-homepage-PRD-392e94856-07aba7fe', config_file=None, siteid='EBAY-US') keywords = Search(search="1986 Fleer Jordan PSA 10") api_request = {'keywords':keywords, 'itemFilter':[{'name':'SoldItemsOnly', 'value':True},]} response = api.execute('findCompletedItems', api_request) self.assertEqual(response.status_code, 200)
38.654545
107
0.670508
3,972
0.934149
0
0
0
0
0
0
479
0.112653
a0e28476be0fa65ebedd554ed275a8386f751e73
869
py
Python
tests/string/generate_string.py
om719/Bloom-Filter-CPP
8093448b3ea357831b6de25aee9e0e7271b762fa
[ "MIT" ]
3
2021-05-31T18:41:34.000Z
2021-06-01T04:44:15.000Z
tests/string/generate_string.py
om719/Bloom-Filter-CPP
8093448b3ea357831b6de25aee9e0e7271b762fa
[ "MIT" ]
null
null
null
tests/string/generate_string.py
om719/Bloom-Filter-CPP
8093448b3ea357831b6de25aee9e0e7271b762fa
[ "MIT" ]
2
2021-05-31T18:41:48.000Z
2021-05-31T18:47:14.000Z
from key_generator.key_generator import generate all_sizes_required = [(100, '100'), (500, '500'), (1000, '1K'), (5000, '5K'), (10000, '10K'), (50000, '50K'), (100000, '100K'), (500000, '500K')] for file_size in all_sizes_required: OUTPUT_PATH = "./string_test_" + file_size[1] + ".txt" STRING_COUNT = file_size[0] output_file = open(OUTPUT_PATH, "w") for i in range(STRING_COUNT): string = "" recipient = generate( num_of_atom = 1, type_of_value = "hex", capital = "mix", extras = ["-", "_"], seed = i ).get_key() domain = generate( num_of_atom = 2, separator = ".", min_atom_len = 3, max_atom_len = 5, type_of_value = "hex", capital = "mix", extras = ["-"], seed = i ).get_key() string = recipient + "@" + domain output_file.write(string + "\n") output_file.close() print("Done with " + OUTPUT_PATH)
22.868421
145
0.611047
0
0
0
0
0
0
0
0
118
0.135788
a0e444f5e01631d54753ab517309246502cc9089
4,950
py
Python
resources/portfolio_book.py
basgir/bibliotek
42456ced804a2c9570227b393de662847283c76f
[ "MIT" ]
null
null
null
resources/portfolio_book.py
basgir/bibliotek
42456ced804a2c9570227b393de662847283c76f
[ "MIT" ]
null
null
null
resources/portfolio_book.py
basgir/bibliotek
42456ced804a2c9570227b393de662847283c76f
[ "MIT" ]
null
null
null
########################################### # Author : Bastien Girardet, Deborah De Wolff # Date : 13.05.2018 # Course : Applications in Object-oriented Programming and Databases # Teachers : Binswanger Johannes, Zürcher Ruben # Project : Bibliotek # Name : portfolio_book.py Portfolio_book Flask_restful resource # ######################################### from flask_restful import Resource, reqparse from models.portfolio_book import PortfolioBookModel from models.book import BookModel class PortfolioBook(Resource): """PortfolioBook. Resource that helps with dealing with Http request for a portfolio_book provided an id. HTTP GET call : /portfolios/<int:portfolioId>/books HTTP DELETE call : /portfolios/<int:portfolioId>/books """ # we parse the args parser = reqparse.RequestParser() # The parser require some arguments that ifnot fulfilled, return an error parser.add_argument('bookId', type=int, required=True, help="Each relation does have a book id" ) parser.add_argument('portfolioId', type=int, required=True, help="Each relation does have a portfolio id" ) def get(self, portfolioId): """GET request that deals with requests that look for a portfolio book relation given a portfolioId""" # Call the model to find the portfolio book relations that has a specific portfolio Id portfolio_book = PortfolioBookModel.find_by_portfolio_id(portfolioId) # If found if portfolio_book: # We return the list of relations as json return {'Portfolio Book of Portfolio {}'.format(portfolioId): list(map(lambda x: x.json(), portfolio_book))}, 201 else: # If not found we return an error return {'message': 'This portofolio does not exist or does not have any book in the portfolio'}, 404 def delete(self, portfolioId): """DELETE request that deals with the deletion of all relations that belongs to a portfolioId""" # Call the model to find all entries that have a certain portfolioId portfolio_book = PortfolioBookModel.find_by_portfolio_id(portfolioId) # if found if portfolio_book: # we delete portfolio_book.delete_from_db() return {"Portfolio relations deleted"}, 201 else: # Else error return {'message': 'This Portfolio relations does not exist or does not have any book in the portfolio'}, 404 class PortfolioBookList(Resource): """Portfoliobook. Resource that deals with requests that insert new portfolio _ book relations into the database. HTTP GET call : /portoflio/books """ def get(self): """GET request that returns the list of all the portfolio book relations""" # return all as json return {'Portfolio Books': list(map(lambda x: x.json(), PortfolioBookModel.query.all()))},200 class PortfolioBookEdit(Resource): """Book. Resource that helps with dealing with Http request that create or delete portfolio book relations provided a portfolioId and bookId. HTTP POST call : /portfolios/<int:portfolioId>/books/<int:bookId> HTTP DELETE call : /portfolios/<int:portfolioId>/books/<int:bookId> """ def post(self, portfolioId, bookId): """POST request create a portfolio_book relation provided a portfolioId and a bookId""" relation = PortfolioBookModel.does_this_relation_exists(portfolioId, bookId) # Check if the relation already exists if relation: return {"message": "The relation already exists"}, 500 else: try: # Call the model by providing the two arguments relation = PortfolioBookModel(bookId,portfolioId) # Save and commit relation.save_to_db() except: return {"message": "An error occurred inserting the relation portfolio_book. Check whether the book or the portofolio do exist"}, 500 # return the json return relation.json(), 201 def delete(self, portfolioId, bookId): """DELETE request that delete a portfolio_book relation provided a portfolioId and a bookId""" # Fetch the relation relation = PortfolioBookModel.find_by_portfolio_and_book(portfolioId, bookId) # if exists if relation: try: # we delete it relation.delete_from_db() return {'message': 'Relation deleted'} except: return {'message': 'Error while deleting the relation.'} else: # if not found return {'message' : 'Relation not found'}, 404
40.57377
149
0.625051
4,442
0.897192
0
0
0
0
0
0
2,676
0.540497
a0e4dae891748b8a01307ae7aac7bc7715d4cc4e
9,199
py
Python
examples/the-feeling-of-success/run_experiments.py
yujialuo/erdos
7a631b55895f1a473b0f4d38a0d6053851e65b5d
[ "Apache-2.0" ]
null
null
null
examples/the-feeling-of-success/run_experiments.py
yujialuo/erdos
7a631b55895f1a473b0f4d38a0d6053851e65b5d
[ "Apache-2.0" ]
null
null
null
examples/the-feeling-of-success/run_experiments.py
yujialuo/erdos
7a631b55895f1a473b0f4d38a0d6053851e65b5d
[ "Apache-2.0" ]
null
null
null
import logging from absl import app from sensor_msgs.msg import Image from insert_table_op import InsertTableOperator from insert_block_op import InsertBlockOperator from init_robot_op import InitRobotOperator from gel_sight_op import GelSightOperator from mock_loc_obj_op import MockLocateObjectOperator from goto_xyz_op import GoToXYZOperator from move_above_object_op import MoveAboveObjectOperator from mock_gripper_op import MockGripperOperator from mock_grasp_object_op import MockGraspObjectOperator from raise_object_op import RaiseObjectOperator from mock_predict_grip_op import MockPredictGripOperator from random_position_op import RandomPositionOperator from mock_ungrasp_object_op import MockUngraspObjectOperator import erdos.graph from erdos.ros.ros_subscriber_op import ROSSubscriberOp logger = logging.getLogger(__name__) table_init_arguments = {"_x": 0.75, "_y": 0.0, "_z": 0.0, "ref_frame": "world"} block_init_arguments = { "_x": 0.4225, "_y": 0.1265, "_z": 0.7725, "ref_frame": "world" } robot_init_arguments = { "joint_angles": { 'right_j0': -0.041662954890248294, 'right_j1': -1.0258291091425074, 'right_j2': 0.0293680414401436, 'right_j3': 2.17518162913313, 'right_j4': -0.06703022873354225, 'right_j5': 0.3968371433926965, 'right_j6': 1.7659649178699421 }, "limb_name": "right" } def construct_graph(graph): logger.info("Starting the construction of the graph.") # First, insert the table in the world. insert_table_op = graph.add( InsertTableOperator, init_args=table_init_arguments) # Now, insert the block in the world. insert_block_op = graph.add( InsertBlockOperator, init_args=block_init_arguments) graph.connect([insert_table_op], [insert_block_op]) # Initialize the robot and move it to the rest position. init_robot_op = graph.add( InitRobotOperator, init_args=robot_init_arguments) graph.connect([insert_block_op], [init_robot_op]) # Initialize the gelsight operators and connect them to the rostopics. gel_sight_topics = [("/gelsightA/image_raw", Image, "gelsightA"), ("/gelsightB/image_raw", Image, "gelsightB")] ros_gel_sight_op = graph.add( ROSSubscriberOp, name='ros_gel_sight', init_args={'ros_topics_type': gel_sight_topics}, setup_args={'ros_topics_type': gel_sight_topics}) gel_sight_a = graph.add( GelSightOperator, name="gelsight-a-op", init_args={'output_name': "gelsight-stream-a"}, setup_args={ 'input_name': "gelsightA", 'output_name': "gelsight-stream-a" }) gel_sight_b = graph.add( GelSightOperator, name="gelsight-b-op", init_args={'output_name': "gelsight-stream-b"}, setup_args={ 'input_name': "gelsightB", 'output_name': "gelsight-stream-b" }) graph.connect([ros_gel_sight_op], [gel_sight_a]) graph.connect([ros_gel_sight_op], [gel_sight_b]) # Retrieve the kinect images from the rostopics and feed them to the # object locator. ros_kinect_topics = [("/kinectA/image_raw", Image, "image-stream"), ("/kinectA/depth_raw", Image, "depth-stream")] ros_kinect_op = graph.add( ROSSubscriberOp, name='ros_kinect', init_args={'ros_topics_type': ros_kinect_topics}, setup_args={'ros_topics_type': ros_kinect_topics}) locate_object_op = graph.add( MockLocateObjectOperator, name='locate-object-op', init_args={ 'image_stream_name': 'image-stream', 'depth_stream_name': 'depth-stream', 'trigger_stream_name': InitRobotOperator.stream_name }, setup_args={ 'image_stream_name': 'image-stream', 'depth_stream_name': 'depth-stream', 'trigger_stream_name': InitRobotOperator.stream_name }) graph.connect([ros_kinect_op, init_robot_op], [locate_object_op]) # Move the Sawyer arm above the detected object. goto_xyz_move_above_op = graph.add( GoToXYZOperator, name='goto-xyz', init_args={ 'limb_name': 'right', 'output_stream_name': 'goto-move-above' }, setup_args={ 'input_stream_name': MoveAboveObjectOperator.goto_stream_name, 'output_stream_name': 'goto-move-above' }) move_above_object_op = graph.add( MoveAboveObjectOperator, name='controller', setup_args={ 'trigger_stream_name': MockLocateObjectOperator.stream_name, 'goto_xyz_stream_name': 'goto-move-above' }) graph.connect([locate_object_op, goto_xyz_move_above_op], [move_above_object_op]) graph.connect([move_above_object_op], [goto_xyz_move_above_op]) # Closes the gripper. gripper_close_op = graph.add( MockGripperOperator, name="gripper-close-op", init_args={ 'gripper_speed': 0.25, 'output_stream_name': 'gripper_close_stream' }, setup_args={ 'gripper_stream': MockGraspObjectOperator.gripper_stream, 'output_stream_name': 'gripper_close_stream' }) grasp_object_op = graph.add( MockGraspObjectOperator, name='mock-grasp-object', setup_args={ 'trigger_stream_name': MoveAboveObjectOperator.stream_name, 'gripper_stream_name': 'gripper_close_stream' }) graph.connect([move_above_object_op, gripper_close_op], [grasp_object_op]) graph.connect([grasp_object_op], [gripper_close_op]) # Raises the object. raise_object_op = graph.add( RaiseObjectOperator, name='raise-object', setup_args={ 'location_stream_name': MockLocateObjectOperator.stream_name, 'trigger_stream_name': MockGraspObjectOperator. action_complete_stream_name }) goto_xyz_raise_op = graph.add( GoToXYZOperator, name="goto-xyz-raise", init_args={ 'limb_name': 'right', 'output_stream_name': 'goto_xyz_raise' }, setup_args={ 'input_stream_name': RaiseObjectOperator.stream_name, 'output_stream_name': 'goto_xyz_raise' }) graph.connect([locate_object_op, grasp_object_op], [raise_object_op]) graph.connect([raise_object_op], [goto_xyz_raise_op]) # Predicts whether the grip was successful using the gelsight cameras. predict_grip_op = graph.add( MockPredictGripOperator, name='predict-grip-op', setup_args={ 'gel_sight_a_stream_name': 'gelsight-stream-a', 'gel_sight_b_stream_name': 'gelsight-stream-b', 'trigger_stream_name': 'goto_xyz_raise' }) graph.connect([gel_sight_a, gel_sight_b, goto_xyz_raise_op], [predict_grip_op]) # If the grip is successful, we return it to a random location. random_position_op = graph.add( RandomPositionOperator, name="random-pos-op", setup_args={ 'locate_object_stream_name': MockLocateObjectOperator.stream_name, 'trigger_stream_name': MockPredictGripOperator.success_stream_name, 'goto_xyz_stream_name': 'goto_random_pos' }) goto_xyz_random_op = graph.add( GoToXYZOperator, name="goto-xyz-random", init_args={ 'limb_name': 'right', 'output_stream_name': 'goto_random_pos' }, setup_args={ 'input_stream_name': RandomPositionOperator.position_stream_name, 'output_stream_name': 'goto_random_pos' }) graph.connect([locate_object_op, predict_grip_op, goto_xyz_random_op], [random_position_op]) graph.connect([random_position_op], [goto_xyz_random_op]) # Now, ungrasp the object. gripper_open_op = graph.add( MockGripperOperator, name="gripper-open-op", init_args={ 'gripper_speed': 0.25, 'output_stream_name': 'gripper_open_stream' }, setup_args={ 'gripper_stream': MockUngraspObjectOperator.gripper_stream, 'output_stream_name': 'gripper_open_stream' }) ungrasp_object_op = graph.add( MockUngraspObjectOperator, name = "ungrasp-object-op", setup_args = { 'trigger_stream_name': RandomPositionOperator.\ action_complete_stream_name, 'gripper_stream_name': 'gripper_open_stream' }) graph.connect([random_position_op, gripper_open_op], [ungrasp_object_op]) graph.connect([ungrasp_object_op], [gripper_open_op]) logger.info("Finished constructing the execution graph!") def main(argv): # Create the graph. graph = erdos.graph.get_current_graph() construct_graph(graph) # Execute the graph. graph.execute("ros") try: while True: pass except KeyboardInterrupt: pass if __name__ == "__main__": app.run(main)
35.245211
79
0.655941
0
0
0
0
0
0
0
0
2,636
0.286553
a0e5feb7c20a84c78be8423f81add0bb2c5c4589
2,686
py
Python
junction/tickets/migrations/0001_initial.py
theSage21/junction
ac713edcf56c41eb3f066da776a0a5d24e55b46a
[ "MIT" ]
192
2015-01-12T06:21:24.000Z
2022-03-10T09:57:37.000Z
junction/tickets/migrations/0001_initial.py
theSage21/junction
ac713edcf56c41eb3f066da776a0a5d24e55b46a
[ "MIT" ]
621
2015-01-01T09:19:17.000Z
2021-05-28T09:27:35.000Z
junction/tickets/migrations/0001_initial.py
theSage21/junction
ac713edcf56c41eb3f066da776a0a5d24e55b46a
[ "MIT" ]
207
2015-01-05T16:39:06.000Z
2022-02-15T13:18:15.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals import jsonfield.fields from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name="Ticket", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ( "created_at", models.DateTimeField(auto_now_add=True, verbose_name="Created At"), ), ( "modified_at", models.DateTimeField( auto_now=True, verbose_name="Last Modified At" ), ), ("order_no", models.CharField(max_length=255)), ("order_cost", models.FloatField()), ("ticket_no", models.CharField(max_length=255)), ("name", models.CharField(max_length=255)), ("email", models.EmailField(max_length=75)), ("city", models.CharField(max_length=255, null=True, blank=True)), ("zipcode", models.IntegerField(null=True, blank=True)), ("address", models.CharField(max_length=255, null=True, blank=True)), ("status", models.CharField(max_length=255)), ("others", jsonfield.fields.JSONField()), ( "created_by", models.ForeignKey( related_name="created_ticket_set", verbose_name="Created By", blank=True, on_delete=models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, null=True, ), ), ( "modified_by", models.ForeignKey( related_name="updated_ticket_set", verbose_name="Modified By", blank=True, on_delete=models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, null=True, ), ), ], options={"abstract": False}, bases=(models.Model,), ), ]
35.813333
87
0.44341
2,520
0.938198
0
0
0
0
0
0
280
0.104244
a0e63766143621d523ba6066faa521d14ec9c390
1,300
py
Python
src/bin/calc_stats.py
sw005320/PytorchWaveNetVocoder
b92d7af7d5f2794291e0d462694c0719f75ca469
[ "Apache-2.0" ]
1
2021-01-18T06:22:30.000Z
2021-01-18T06:22:30.000Z
src/bin/calc_stats.py
sw005320/PytorchWaveNetVocoder
b92d7af7d5f2794291e0d462694c0719f75ca469
[ "Apache-2.0" ]
null
null
null
src/bin/calc_stats.py
sw005320/PytorchWaveNetVocoder
b92d7af7d5f2794291e0d462694c0719f75ca469
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2017 Tomoki Hayashi (Nagoya University) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) from __future__ import print_function import argparse import numpy as np from sklearn.preprocessing import StandardScaler from utils import read_hdf5 from utils import read_txt from utils import write_hdf5 def main(): parser = argparse.ArgumentParser() parser.add_argument( "--feats", default=None, required=True, help="name of the list of hdf5 files") parser.add_argument( "--stats", default=None, required=True, help="filename of hdf5 format") args = parser.parse_args() # read list and define scaler filenames = read_txt(args.feats) scaler = StandardScaler() print("number of training utterances =", len(filenames)) # process over all of data for filename in filenames: feat = read_hdf5(filename, "/feat_org") scaler.partial_fit(feat[:, 1:]) # add uv term mean = np.zeros((feat.shape[1])) scale = np.ones((feat.shape[1])) mean[1:] = scaler.mean_ scale[1:] = scaler.scale_ # write to hdf5 write_hdf5(args.stats, "/mean", mean) write_hdf5(args.stats, "/scale", scale) if __name__ == "__main__": main()
24.074074
60
0.665385
0
0
0
0
0
0
0
0
381
0.293077
a0e69b24115a09b931149b369f1062a566ff2b61
727
py
Python
python/p002.py
RUiNtheExtinct/project-euler
5c3e64c7dfcbf52d5213df88d2310550f4ee9ce1
[ "MIT" ]
null
null
null
python/p002.py
RUiNtheExtinct/project-euler
5c3e64c7dfcbf52d5213df88d2310550f4ee9ce1
[ "MIT" ]
null
null
null
python/p002.py
RUiNtheExtinct/project-euler
5c3e64c7dfcbf52d5213df88d2310550f4ee9ce1
[ "MIT" ]
null
null
null
# from decimal import Decimal import collections as coll import sys import math as mt # import random as rd # import bisect as bi import time sys.setrecursionlimit(1000000) # import numpy as np def uno(): return int(sys.stdin.readline().strip()) def dos(): return sys.stdin.readline().strip() def tres(): return map(int, sys.stdin.readline().strip().split()) def cuatro(): return sys.stdin.readline().strip().split() # Starting Time time1 = time.time() ######## CODE STARTS FROM HERE ######## n = uno() a, b, c, ans = 0, 1, 0, 0 while c <= n: c = a + b if ~c & 1: ans += c b, a = c, b print(ans) # End Time time2 = time.time() print("\nTime Taken:", (time2 - time1) * 1000)
14.836735
57
0.612105
0
0
0
0
0
0
0
0
170
0.233838
a0e7af4439dc68e76e3dc02f0c28bddc41d0fe5c
7,662
py
Python
robosuite/models/objects/xml_objects.py
ClaireLC/robosuite
b5c37f1110aefc02106ffd2aed0dfb106bc1bb33
[ "MIT" ]
1
2021-12-22T13:10:46.000Z
2021-12-22T13:10:46.000Z
robosuite/models/objects/xml_objects.py
wangcongrobot/robosuite-jr
738be7a3a83447e78763f6a082faafc8b479c95d
[ "MIT" ]
null
null
null
robosuite/models/objects/xml_objects.py
wangcongrobot/robosuite-jr
738be7a3a83447e78763f6a082faafc8b479c95d
[ "MIT" ]
1
2020-12-29T01:38:01.000Z
2020-12-29T01:38:01.000Z
from robosuite.models.objects import MujocoXMLObject from robosuite.utils.mjcf_utils import xml_path_completion, array_to_string, string_to_array class BottleObject(MujocoXMLObject): """ Bottle object """ def __init__(self): super().__init__(xml_path_completion("objects/bottle.xml")) class CanObject(MujocoXMLObject): """ Coke can object (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/can.xml")) class LemonObject(MujocoXMLObject): """ Lemon object """ def __init__(self): super().__init__(xml_path_completion("objects/lemon.xml")) class MilkObject(MujocoXMLObject): """ Milk carton object (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/milk.xml")) class BreadObject(MujocoXMLObject): """ Bread loaf object (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/bread.xml")) class CerealObject(MujocoXMLObject): """ Cereal box object (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/cereal.xml")) class SquareNutObject(MujocoXMLObject): """ Square nut object (used in SawyerNutAssembly) """ def __init__(self): super().__init__(xml_path_completion("objects/square-nut.xml")) class RoundNutObject(MujocoXMLObject): """ Round nut (used in SawyerNutAssembly) """ def __init__(self): super().__init__(xml_path_completion("objects/round-nut.xml")) class MilkVisualObject(MujocoXMLObject): """ Visual fiducial of milk carton (used in SawyerPickPlace). Fiducial objects are not involved in collision physics. They provide a point of reference to indicate a position. """ def __init__(self): super().__init__(xml_path_completion("objects/milk-visual.xml")) class BreadVisualObject(MujocoXMLObject): """ Visual fiducial of bread loaf (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/bread-visual.xml")) class CerealVisualObject(MujocoXMLObject): """ Visual fiducial of cereal box (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/cereal-visual.xml")) class CanVisualObject(MujocoXMLObject): """ Visual fiducial of coke can (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/can-visual.xml")) class PlateWithHoleObject(MujocoXMLObject): """ Square plate with a hole in the center (used in BaxterPegInHole) """ def __init__(self): super().__init__(xml_path_completion("objects/plate-with-hole.xml")) class DoorPullNoLatchObject(MujocoXMLObject): """ Door: pull with no latch """ def __init__(self): #super().__init__(xml_path_completion("objects/door_dapg.xml")) super().__init__(xml_path_completion("objects/door_pull_no_latch.xml")) def set_goal_xpos(self, x_delta, y_delta): """ Sets x,y position of goal site in door model with x and y offset from door center""" door_center_site = self.worldbody.find("./body/body/body/site[@name='door_center']") door_center_pos = string_to_array(door_center_site.get("pos")) goal_site = self.worldbody.find("./body/body/body/site[@name='goal']") goal_site.set("pos", array_to_string([door_center_pos[0] + x_delta, door_center_pos[1] + y_delta, -1.0])) @property def handle_contact_geoms(self): return[ "handle_base", "handle", ] @property def door_contact_geoms(self): return[ "door_box", "door_r_cyl", "door_l_cyl", "l_frame", "r_frame", ] class DoorPullWithLatchObject(MujocoXMLObject): """ Door: pull with latch """ def __init__(self): #super().__init__(xml_path_completion("objects/door_dapg.xml")) super().__init__(xml_path_completion("objects/door_pull_with_latch.xml")) def set_goal_xpos(self, x_delta, y_delta): """ Sets x,y position of goal site in door model with x and y offset from door center""" door_center_site = self.worldbody.find("./body/body/body/site[@name='door_center']") door_center_pos = string_to_array(door_center_site.get("pos")) goal_site = self.worldbody.find("./body/body/body/site[@name='goal']") goal_site.set("pos", array_to_string([door_center_pos[0] + x_delta, door_center_pos[1] + y_delta, -1.0])) @property def handle_contact_geoms(self): return[ "handle_base", "handle", ] @property def door_contact_geoms(self): return[ "door_box", "door_r_cyl", "door_l_cyl", "l_frame", "r_frame", ] class DoorPullNoLatchRoomObject(MujocoXMLObject): """ Door: pull with latch with walls """ def __init__(self): super().__init__(xml_path_completion("objects/door_pull_no_latch_room.xml")) def set_goal_xpos(self, x_delta, y_delta): """ Sets x,y position of goal site in door model with x and y offset from door center""" door_center_site = self.worldbody.find("./body/body/body/site[@name='door_center']") door_center_pos = string_to_array(door_center_site.get("pos")) goal_site = self.worldbody.find("./body/body/body/site[@name='goal']") goal_site.set("pos", array_to_string([door_center_pos[0] + x_delta, door_center_pos[1] + y_delta, -1.0])) @property def handle_contact_geoms(self): return[ "handle_base", "handle", ] @property def door_contact_geoms(self): return[ "door_box", "door_r_cyl", "door_l_cyl", "l_frame", "r_frame", ] @property def wall_contact_geoms(self): return[ "wall_g0", "wall_g1", "wall_g2", "wall_g3", ] class DoorPullNoLatchRoomWideObject(MujocoXMLObject): """ Door: pull with no latch with walls """ def __init__(self): super().__init__(xml_path_completion("objects/door_pull_no_latch_room_wide.xml")) def set_goal_xpos(self, x_delta, y_delta): """ Sets x,y position of goal site in door model with x and y offset from door center""" door_center_site = self.worldbody.find("./body/body/body/site[@name='door_center']") door_center_pos = string_to_array(door_center_site.get("pos")) goal_site = self.worldbody.find("./body/body/body/site[@name='goal']") goal_site.set("pos", array_to_string([door_center_pos[0] + x_delta, door_center_pos[1] + y_delta, -1.0])) @property def handle_contact_geoms(self): return[ "handle_base", "handle", ] @property def door_contact_geoms(self): return[ "door_box", "door_r_cyl", "door_l_cyl", "l_frame", "r_frame", ] @property def wall_contact_geoms(self): return[ "wall_g0", "wall_g1", "wall_g2", "wall_g3", ] class EmptyWithGoalObject(MujocoXMLObject): """ Empty arena with goal site """ def __init__(self): super().__init__(xml_path_completion("objects/empty_with_goal.xml")) def set_goal_xpos(self, x_delta, y_delta): """ Sets x,y position of goal site in door model with x and y offset from door center""" goal_site = self.worldbody.find("./body/body/site[@name='goal']") goal_site.set("pos", array_to_string([x_delta, y_delta, 0]))
26.512111
111
0.658053
7,467
0.97455
0
0
1,362
0.17776
0
0
2,891
0.377317
a0e9174ff5dee90055733752e0b8cd4f3423f64e
1,654
py
Python
SoftUni-Python-Programming-Course/Exam-Preparation/medicines_in_carton.py
vladislav-karamfilov/Python-Playground
ed83a693d37ff0c1565ece49d2a5d9ecd32c9aac
[ "MIT" ]
1
2019-04-07T23:10:27.000Z
2019-04-07T23:10:27.000Z
SoftUni-Python-Programming-Course/Exam-Preparation/medicines_in_carton.py
vladislav-karamfilov/Python-Playground
ed83a693d37ff0c1565ece49d2a5d9ecd32c9aac
[ "MIT" ]
null
null
null
SoftUni-Python-Programming-Course/Exam-Preparation/medicines_in_carton.py
vladislav-karamfilov/Python-Playground
ed83a693d37ff0c1565ece49d2a5d9ecd32c9aac
[ "MIT" ]
null
null
null
# Problem description: http://python3.softuni.bg/student/lecture/assignment/56b749af7e4f59b649b7e626/ class Medicine: def __init__(self, name, w, h, d): self.name = name self.w = w self.h = h self.d = d def can_be_put_in_carton(self, carton_w, carton_h, carton_d): sorted_medicine_dimensions = sorted([self.w, self.h, self.d]) sorted_carton_dimensions = sorted([carton_w, carton_h, carton_d]) return all(sorted_medicine_dimensions[d] <= sorted_carton_dimensions[d] for d in range(3)) def read_medicines(medicines_file_path): result = [] with open(medicines_file_path, encoding='utf-8') as f: for line in f: if line: medicine_info = line.split(',') medicine_name = ''.join(medicine_info[:-3]) medicine_w = float(medicine_info[-3]) medicine_h = float(medicine_info[-2]) medicine_d = float(medicine_info[-1]) result.append(Medicine(medicine_name, medicine_w, medicine_h, medicine_d)) return result def main(): try: carton_w = float(input()) carton_h = float(input()) carton_d = float(input()) medicines_file_path = input() medicines = read_medicines(medicines_file_path) except: print('INVALID INPUT') return medicines_that_can_be_put_in_carton = \ [medicine for medicine in medicines if medicine.can_be_put_in_carton(carton_w, carton_h, carton_d)] for medicine in medicines_that_can_be_put_in_carton: print(medicine.name) if __name__ == '__main__': main()
29.535714
107
0.638452
447
0.270254
0
0
0
0
0
0
138
0.083434
a0e9473241e626ba8085d5563079fd7bc9d6eeb6
1,111
py
Python
var/app_template/views.py
michailbrynard/django-skeleton
772cd579cad1b8853ed6f1a2c14cbacac2ba41da
[ "MIT" ]
null
null
null
var/app_template/views.py
michailbrynard/django-skeleton
772cd579cad1b8853ed6f1a2c14cbacac2ba41da
[ "MIT" ]
null
null
null
var/app_template/views.py
michailbrynard/django-skeleton
772cd579cad1b8853ed6f1a2c14cbacac2ba41da
[ "MIT" ]
null
null
null
# LOGGING # ---------------------------------------------------------------------------------------------------------------------# import logging logger = logging.getLogger('django') # IMPORTS # ---------------------------------------------------------------------------------------------------------------------# # shortcuts from django.shortcuts import render # contrib.auth from django.contrib.auth.decorators import login_required # views.generic from django.views.generic import DetailView # from .models import * # GENERIC CLASS BASED VIEWS # ---------------------------------------------------------------------------------------------------------------------# class BasicModelView(DetailView): model = BasicModel # CUSTOM VIEWS # ---------------------------------------------------------------------------------------------------------------------# @login_required def about(request): # Context variables to pass on to template context = { 'val1': 'Hello', 'val2': 'World!' } # Render the template return render(request, 'app_name/about_page.html', context)
32.676471
120
0.407741
56
0.050405
0
0
245
0.220522
0
0
705
0.634563
a0e9bc2b96c3d8a0da5092d2ce1abf89a56a046d
858
py
Python
circuitpy_examples/week1/04_ramp_LED_brightness.py
WSU-Physics/phys150
043ebf8212b56a988ef8e41a4464400bec5a7dc1
[ "MIT" ]
null
null
null
circuitpy_examples/week1/04_ramp_LED_brightness.py
WSU-Physics/phys150
043ebf8212b56a988ef8e41a4464400bec5a7dc1
[ "MIT" ]
null
null
null
circuitpy_examples/week1/04_ramp_LED_brightness.py
WSU-Physics/phys150
043ebf8212b56a988ef8e41a4464400bec5a7dc1
[ "MIT" ]
null
null
null
# Adam Beardsley # starting from from adafruit example # https://learn.adafruit.com/welcome-to-circuitpython/creating-and-editing-code # import board import digitalio import time led = digitalio.DigitalInOut(board.LED) led.direction = digitalio.Direction.OUTPUT ramp_time = 3 # Time to ramp up, in seconds period = 0.01 # Time per cycle, in seconds step = period / ramp_time # how much to increment the brightness each cycle while True: brightness = 0 # Start off while brightness < 1: T_on = brightness * period T_off = period - T_on led.value = True time.sleep(T_on) led.value = False time.sleep(T_off) brightness += step # Convince yourself the expression for step (line 14) is correct # How can you *test* that step is correct? # Can you reverse the program (start bright, get dim)
28.6
79
0.698135
0
0
0
0
0
0
0
0
409
0.47669
a0ead277852aac4f9b24d58dbb1630e69b9f9cac
1,099
py
Python
__main__.py
Makeeyaf/SiteChecker
969bdedd2d5df36220ff9fcc41e44cf1db0cca00
[ "MIT" ]
1
2021-01-06T01:45:41.000Z
2021-01-06T01:45:41.000Z
__main__.py
Makeeyaf/SiteChecker
969bdedd2d5df36220ff9fcc41e44cf1db0cca00
[ "MIT" ]
2
2021-01-03T13:25:39.000Z
2021-01-03T15:57:01.000Z
__main__.py
Makeeyaf/SiteChecker
969bdedd2d5df36220ff9fcc41e44cf1db0cca00
[ "MIT" ]
null
null
null
import argparse from site_checker import SiteChecker if __name__ == "__main__": parser = argparse.ArgumentParser(description="Check sites text.") parser.add_argument("config", type=str, nargs=1, help="Path to config json file.") parser.add_argument( "-a", dest="apiKey", type=str, nargs=1, required=True, help="Pushbullet API key.", ) parser.add_argument( "-m", dest="maxFailCount", type=int, nargs=1, help="Max fail count." ) parser.add_argument( "-u", dest="updateCycle", type=int, nargs=1, help="Update cycle in second" ) parser.add_argument( "-v", dest="isVerbose", action="store_true", help="Verbose mode." ) parser.add_argument( "-q", dest="isQuiet", action="store_true", help="Quiet mode. Does not call pushbullet", ) args = parser.parse_args() k = SiteChecker( args.config[0], args.apiKey[0], args.isQuiet, args.isVerbose, args.maxFailCount, args.updateCycle, ) k.check()
26.166667
86
0.586897
0
0
0
0
0
0
0
0
278
0.252957
a0eb34e703fb20df0982cbdc1702ff56c69d7bb6
1,563
py
Python
autop-listener/autop-listener.py
yuriel-v/ansible
f6e8fcb1edfbef550da2fe217cfd84941523f692
[ "MIT" ]
null
null
null
autop-listener/autop-listener.py
yuriel-v/ansible
f6e8fcb1edfbef550da2fe217cfd84941523f692
[ "MIT" ]
null
null
null
autop-listener/autop-listener.py
yuriel-v/ansible
f6e8fcb1edfbef550da2fe217cfd84941523f692
[ "MIT" ]
null
null
null
import os from pathlib import Path from datetime import datetime from json import dumps import flask as fsk from flask import request, jsonify, Response app = fsk.Flask(__name__) app.config['DEBUG'] = False homedir = os.getenv('HOME') @app.route('/provision', methods=['POST']) def auto_provision(): Path(f'{homedir}/log/ansible').mkdir(parents=True, exist_ok=True) req = request.get_json() try: vm_type = req.pop('type') vm_ip = req.pop('ip') if not isinstance(req['extras'], dict): raise Exception("Invalid extras element type") except Exception: return Response('{"response": "Wrongly formatted request"}', 400) req['extras']['global_vm_shortname'] = req['extras'].pop('desc') req['extras']['global_vm_hostname'] = req['extras'].pop('name') extra_vars = str(dumps(req['extras'])).replace('"', '\\"') ansible_command = "tmux send-keys -t autopshell " ansible_command += f"'ansible-playbook {homedir}/ansible/global.yml -i {vm_ip}, --tags \"{vm_type}\" --extra-vars \"{extra_vars}\" " ansible_command += f"| tee {homedir}/log/ansible/{req['extras']['global_vm_hostname']}-{datetime.now().isoformat()}.log' C-m" os.system(ansible_command) return jsonify({'response': 'Ansible command fired'}) @app.route('/getkey', methods=['GET']) def get_public_key(): with open(f'{homedir}/.ssh/ansible/id_ansible.pub', 'r') as pkfile: return jsonify({'publickey': pkfile.readline().rstrip()}) if __name__ == "__main__": app.run(host='0.0.0.0', port=4960)
32.5625
136
0.658989
0
0
0
0
1,252
0.801024
0
0
616
0.394114
a0ed35cd2a2fcaf79d84a20f492250006d069eb3
3,586
py
Python
dz_se_comm.py
strebrah/Solaredge_Domoticz_Modbus
802bfde4f4b458ad0d30d3a9433315e12e3aa837
[ "MIT" ]
null
null
null
dz_se_comm.py
strebrah/Solaredge_Domoticz_Modbus
802bfde4f4b458ad0d30d3a9433315e12e3aa837
[ "MIT" ]
null
null
null
dz_se_comm.py
strebrah/Solaredge_Domoticz_Modbus
802bfde4f4b458ad0d30d3a9433315e12e3aa837
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 #################################################################################################### # Created by EH (NL) https://github.com/strebrah/Solaredge_Domoticz_Modbus # # Date: August 2020 # # Version: 0.1 # # Designed for python 3.7 (based on the requirements of the 'solaredge_modbus' library.) # # Thanks to Niels for the 'solaredge_modbus' library https://pypi.org/project/solaredge-modbus/ # # Capabilities: # # * Creating a hardware device in Domoticz # # * Creating sensors for the data types in Domoticz # # * Sending the solaredge modbus data to Domoticz # # How to use # # 1. Enter your configuration in the 'dz_se_settings.ini' file # # 2. configure crontab task for periodic data transfer to Domoticz. # # example: # # sudo crontab -e # # for example, every minute # # */1 * * * * /usr/bin/python3 /home/pi/domoticz/scripts/python/dz_se_comm.py # #################################################################################################### import requests import configparser import time import solaredge_modbus from dz_se_lib import domoticz_create_hardware from dz_se_lib import domoticz_create_devices from dz_se_lib import domoticz_retrieve_device_idx from dz_se_lib import domoticz_transceive_data from dz_se_lib import get_path_to_init_file if __name__ == "__main__": settings = configparser.ConfigParser() settings._interpolation = configparser.ExtendedInterpolation() settings.read(get_path_to_init_file()) domoticz_ip = settings.get('GENERAL SETTINGS', 'domoticz_ip') domoticz_port = settings.get('GENERAL SETTINGS', 'domoticz_port') inverter = solaredge_modbus.Inverter(host=settings.get('GENERAL SETTINGS', 'solaredge_inverter_ip'), port=settings.get('GENERAL SETTINGS', 'solaredge_inverter_port'), timeout=1, unit=1) # Get values from Solaredge inverter over TCP Modbus if settings.get('GENERAL SETTINGS', 'domoticz_solaredge_comm_init_done') == '0': session = requests.Session() # SET HARDWARE IN DOMOTICZ DOMOTICZ_HW_IDX = domoticz_create_hardware(domoticz_ip, domoticz_port, settings, session) # CREATE DEVICES IN DOMOTICZ domoticz_create_devices(domoticz_ip, domoticz_port, settings, session, DOMOTICZ_HW_IDX) # GET ALL SENSOR IDX VALUES AND STORE domoticz_retrieve_device_idx(domoticz_ip, domoticz_port, settings, session) session.close() else: time.sleep(0.5) session = requests.Session() domoticz_transceive_data(domoticz_ip, domoticz_port, settings, session, inverter) session.close()
59.766667
118
0.499721
0
0
0
0
0
0
0
0
2,202
0.614055
a0edb39559fc23e931152b94ffea25ac01150fa0
10,632
py
Python
parse_mitchell.py
cfwelch/targeted_sentiment
1c1b063339cdead8f5860df784a0fa170bcdd3ef
[ "MIT" ]
1
2020-12-28T13:51:02.000Z
2020-12-28T13:51:02.000Z
parse_mitchell.py
cfwelch/targeted_sentiment
1c1b063339cdead8f5860df784a0fa170bcdd3ef
[ "MIT" ]
2
2018-04-23T02:13:44.000Z
2018-04-25T04:58:35.000Z
parse_mitchell.py
cfwelch/targeted_sentiment
1c1b063339cdead8f5860df784a0fa170bcdd3ef
[ "MIT" ]
null
null
null
import senti_lexis import datetime, string, numpy, spwrap, random time, sys, re from sklearn import svm from sklearn import cross_validation from sklearn.feature_extraction.text import CountVectorizer from sklearn.cross_validation import KFold from scipy.sparse import csr_matrix def main(): for i in range(1, 11): runfold(i) def runfold(fold): # read files found_ents = open("fold" + str(fold) + "_found_entities") train_file = open("../../data/Open Domain Targeted Sentiment/en/10-fold/train." + str(fold)) test_file = open("../../data/Open Domain Targeted Sentiment/en/10-fold/test." + str(fold)) train_lines = train_file.readlines() test_lines = test_file.readlines() found_lines = found_ents.readlines() train_file.close() test_file.close() found_ents.close() # evaluation metrics ent_guessed = 0 ent_actual = 0 ent_correct = 0 # compute utterances = list() tlist = list() targets = list() sents = list() ents = list() for line in train_lines: tl = line.strip() if tl == "": if tlist: utterances.append(tlist) tlist = list() else: if not tl.startswith("## Tweet"): tlist.append(tl.split("\t")) if tlist: utterances.append(tlist) tlist = list() splitpoint = len(utterances) for line in test_lines: tl = line.strip() if tl == "": if tlist: utterances.append(tlist) tlist = list() else: if not tl.startswith("## Tweet"): tlist.append(tl.split("\t")) if tlist: utterances.append(tlist) #cprint("Utterances: " + str(len(utterances))) ######## figure out what to do with the predicted entities print("LEN OF FLINES: " + str(len(found_lines))) print("LEN OF UTTERANCES: " + str(len(utterances) - splitpoint)) found_entities = list() for f_line in found_lines: PTZ = f_line.strip();#.split("::::::") if PTZ != "[]":#PTZ[0] partf = PTZ[2:-2].split("', '");#PTZ[0] found_entities.append(partf) else: found_entities.append([]) print("LEN OF PARSED FLINES: " + str(len(found_entities))) #split tlist into targets and sents splitpoint2 = 0 count = 0 for utt in utterances: sent = "" target = list() ent = list() f_ents = None if count >= splitpoint: f_ents = found_entities[count - splitpoint] _t = None for i in utt: if sent != "": sent += " " sent += i[0] if i[1] == "B-ORGANIZATION" or i[1] == "B-PERSON": #if i[1][0] == "B": target.append(i[0]) ent.append(i[2]) #print(str(i[0]) + ":" + str(i[1][0]) + ":" + str(i[2])) ## Figure out if entity was missed or not #### debug if block #if f_ents != None: # print(ent) # print(target) # print(f_ents) # if count == 2117: # break if f_ents != None: #ent_guessed += len(f_ents);#overcounts by including _ #ent_actual += len(target);#overcounts by including _ for T_T in range(0, len(target)): if ent[T_T] != "_" and ent[T_T] != "neutral": ent_actual += 1 TOTEST_targets = list() TOTEST_ents = list() for T_T in f_ents: if T_T in target: idx = target.index(T_T) TOTEST_targets.append(T_T) TOTEST_ents.append(ent[idx]) if ent[idx] != "_" and ent[idx] != "neutral": ent_guessed += 1 else: ent_guessed += 1 #print(TOTEST_targets) #print(TOTEST_ents) ents.extend(TOTEST_ents) for a in range(0, len(TOTEST_ents)): sents.append(sent) targets.extend(TOTEST_targets) else: ents.extend(ent) for a in range(0, len(ent)): sents.append(sent) targets.extend(target) ######## split point counters if count > splitpoint and splitpoint2 == 0: splitpoint2 = len(targets) count += 1 #return;######################################################################## #print("SPLIT POINT 1: " + str(splitpoint)) #print("SPLIT POINT 2: " + str(splitpoint2)) print("LEN TARGETS: " + str(len(targets)));#ntities print("LEN SENTS: " + str(len(sents)));#sentences print("LEN ENTS: " + str(len(ents)));#sentiments print("LEN REAL TARGETS: " + str(len(found_entities)))#real entities # Generate vocab cv = set() regex = re.compile(r"[^a-zA-Z0-9_\~\- ]+") for sent in range(0, len(sents)): parts = sents[sent].split(" ") for part in range(0, len(parts)): thepart = regex.sub("", parts[part]) # corner case for hyphens hps = thepart.split("-") if len(hps) > 1: for hi in range(0, len(hps)): cv.add(hps[hi].lower()) # end corner case for hyphens thepart = thepart.lower() cv.add(thepart) for sent in range(0, len(sents)): tokenSent = sents[sent] tokenSent = tokenSent.replace(targets[sent], " ~~t~~ " + targets[sent]) parts = regex.sub("", tokenSent) parts = re.split(" |-", parts) while "" in parts: parts.remove("") windowFeatures = [] done = False while not done: for part in range(0, len(parts)): if "~~t~~" == parts[part]: windowFeatures += [part] parts.remove(parts[part]) #print("parts?: " + str(parts)) break if part == len(parts) - 1: done = True for part in range(0, len(parts)): thepart = parts[part].lower() if thepart not in cv: cv.add(thepart) cv = list(cv) #cprint("Vocabulary Size: " + str(len(cv))) # Generate the feature vectors xtc = [] xtcT = [] train_ents = [] test_ents = [] for sent in range(0, len(sents)): # add token boundaries to the sentence tokenSent = sents[sent] #print(targets[sent]) tokenSent = tokenSent.replace(targets[sent], " ~~t~~ " + targets[sent]) #print(tokenSent) parts = regex.sub("", tokenSent) # this handles split and hyphen corner case parts = re.split(" |-", parts) # remove empty parts from the sentence while "" in parts: parts.remove("") # locate window feature indicies windowFeatures = [] done = False while not done: for part in range(0, len(parts)): if "~~t~~" == parts[part]: windowFeatures += [part] parts.remove(parts[part]) #print("parts?: " + str(parts)) break if part == len(parts) - 1: done = True #print("window features: " + str(windowFeatures)) #print("parts: " + str(parts)) row = [] featureMap = {} Nflag = 0 for part in range(0, len(parts)): #thepart = regex.sub("", parts[part]) #thepart = thepart.lower() thepart = parts[part].lower() if thepart not in cv: cv.append(thepart) theid = cv.index(thepart) #print(theid) mindist = 999 for wf in range(0, len(windowFeatures)): ############################################################## ## This is the distance measure for window linear distance! distance = abs(windowFeatures[wf] - part) ############################################################## ## This is the distance measure for dependency tree distnace! ## distance = spwrap.treeDistance(parts[windowFeatures[wf]], parts[part], dparse) ############################################################## if distance < mindist: mindist = distance mindist += 1 sentiz = senti_lexis.lexCounts(thepart) if theid in featureMap: # featureMap[theid] += 1.0 / mindist featureMap[theid][0] += 2.0 - mindist / 7.0 featureMap[theid][1] += (2.0 - mindist / 7.0) * sentiz[0] featureMap[theid][2] += (2.0 - mindist / 7.0) * sentiz[1] featureMap[theid][3] += (2.0 - mindist / 7.0) * sentiz[2] if Nflag > 0: featureMap[theid][4] = 1.0 else: # featureMap[theid] = 1.0 / mindist # count, positive, negative, neutral, negate featureMap[theid] = [0, 0, 0, 0, 0] featureMap[theid][0] = 2.0 - mindist / 7.0 featureMap[theid][1] = (2.0 - mindist / 7.0) * sentiz[0] featureMap[theid][2] = (2.0 - mindist / 7.0) * sentiz[1] featureMap[theid][3] = (2.0 - mindist / 7.0) * sentiz[2] if Nflag > 0: featureMap[theid][4] = 1.0 if Nflag > 0: Nflag -= 1 if senti_lexis.lexNegate(thepart): Nflag = 2 for i in range(0, len(cv)): if i in featureMap: row.extend(featureMap[i]) else: row.extend([0, 0, 0, 0, 0]) if sent < splitpoint2: #print("ROW: " + str(len(row))) #print("LABEL: " + str(ents[sent])) xtc.append(row) train_ents.append(ents[sent]) else: xtcT.append(row) test_ents.append(ents[sent]) dist = numpy.array(ents) #print((dist=="neutral").sum()) #print((dist=="negative").sum()) #print((dist=="positive").sum()) #print((dist=="_").sum()) #print("LENTR: " + str(len(xtc))) #print("LENTE: " + str(len(xtcT))) print("LEN TRAIN ENTS: " + str(len(train_ents))) print("LEN TEST ENTS: " + str(len(test_ents))) #do gridsearch + evaluation bestC = 0 bestGamma = 0 bestScore = 0 xtest = list() xtrain = list() ytest = list() ytrain = list() # do train-test split for j in range(0, len(xtc)): LB = train_ents[j] if LB != "_" and LB != "neutral": xtrain.append(xtc[j]) ytrain.append(LB) for j in range(0, len(xtcT)): LB = test_ents[j] if LB != "_" and LB != "neutral": xtest.append(xtcT[j]) ytest.append(LB) score = 0 print("LEN TRAIN: " + str(len(ytrain))) print("LEN TEST: " + str(len(ytest))) #print(xtrain) #print(len(xtrain)) #print(len(xtrain[0])) #print(len(xtrain[1])) #print(len(xtrain[2])) #print(len(xtrain[3])) #print(len(xtrain[4])) #for __ in xtrain: #if len(__) != 56410: # print len(__) for gamma in numpy.linspace(0.0001, 0.05, 10):#10steps for C in numpy.linspace(0.1, 10, 10):#10steps #gamma = 0.005644444444444444 #C = 6.0 xtrain = csr_matrix(xtrain) xtest = csr_matrix(xtest) clf = svm.SVC(gamma=gamma, C=C) testout = clf.fit(xtrain, ytrain) score = clf.score(xtest, ytest) if score > bestScore: bestC = C bestGamma = gamma bestScore = score cprint("Cross Validation Score: " + str(score)) cprint("Gamma = " + str(gamma) + " and C = " + str(C)) ################ THIS IS FOR NORMAL EVALUATION ################ xtrain = csr_matrix(xtrain) xtest = csr_matrix(xtest) clf = svm.SVC(gamma=bestGamma, C=bestC) testout = clf.fit(xtrain, ytrain) bestScore = clf.score(xtest, ytest) #print(clf.predict(xtest)) ent_correct = (clf.predict(xtest) == ytest).sum() cprint("Actual Score: " + str(bestScore)) ############################################################### print(str(ent_guessed) + "\t" + str(ent_actual) + "\t" + str(ent_correct)) #print("ENT GUESSED: " + str(ent_guessed)) #print("ENT ACTUAL: " + str(ent_actual)) #print("ENT CORRECT: " + str(ent_correct)) def cprint(msg): tmsg = msg st = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') tmsg = str(st) + ": " + str(tmsg) print(tmsg) log_file = open("open_domain.log", "a") log_file.write(tmsg + "\n") log_file.flush() log_file.close() if __name__ == "__main__": main()
28.891304
93
0.60506
0
0
0
0
0
0
0
0
3,360
0.316027
a0ee65cec9b822e4705a0e2c457a3bbab820bf6b
1,314
py
Python
cryptographyMachine/cryptographyMachine.py
anuranjan08/CryptoMachine
5a1d68adbe88708f21902d1d44a636c043f6ed28
[ "MIT" ]
null
null
null
cryptographyMachine/cryptographyMachine.py
anuranjan08/CryptoMachine
5a1d68adbe88708f21902d1d44a636c043f6ed28
[ "MIT" ]
null
null
null
cryptographyMachine/cryptographyMachine.py
anuranjan08/CryptoMachine
5a1d68adbe88708f21902d1d44a636c043f6ed28
[ "MIT" ]
null
null
null
def machine(): keys='abcdefghijklmnopqrstuvwxyz !' values=keys[-1]+keys[0:-1] """ In encrytpDict: In decryptDict: keys Values keys Values 'a' '!' '!' 'a' 'b' 'a' 'a' 'b' . . . . . . . . . . . . """ encryptDict=dict(zip(keys,values)) decryptDict=dict(zip(values,keys)) """ Asking user for the user input and the mode. """ message=input("Please enter your secret message") mode=input("Please enter your mode: Encode(E) or Decode(D)") """ if the mode is encryption(E)/decryption(D): We will create a listin which we run a dictionary comprehension and if that particular letter is there in encrytion/decryption dictionary , we will fetch the value of that letter and we will append that to list.Similary for other letters in the message. """ if mode.upper()=='E': newMessage=''.join([encryptDict[letter] for letter in message.lower()]) elif mode.upper()=='D': newMessage=''.join([decryptDict[letter] for letter in message.lower()]) else: print("Please enter a correct choice") return newMessage print(machine())
27.375
89
0.547945
0
0
0
0
0
0
0
0
843
0.641553
a0ee8d887762a2061e866ff6d3e72e86639288e1
645
py
Python
tests/test_ioeeg_abf.py
wonambi-python/wonambi
4e2834cdd799576d1a231ecb48dfe4da1364fe3a
[ "BSD-3-Clause" ]
63
2017-12-30T08:11:17.000Z
2022-01-28T10:34:20.000Z
tests/test_ioeeg_abf.py
wonambi-python/wonambi
4e2834cdd799576d1a231ecb48dfe4da1364fe3a
[ "BSD-3-Clause" ]
23
2017-09-08T08:29:49.000Z
2022-03-17T08:19:13.000Z
tests/test_ioeeg_abf.py
wonambi-python/wonambi
4e2834cdd799576d1a231ecb48dfe4da1364fe3a
[ "BSD-3-Clause" ]
12
2017-09-18T12:48:36.000Z
2021-09-22T07:16:07.000Z
from numpy import isnan from wonambi import Dataset from .paths import axon_abf_file d = Dataset(axon_abf_file) def test_abf_read(): assert len(d.header['chan_name']) == 1 assert d.header['start_time'].minute == 47 data = d.read_data(begtime=1, endtime=2) assert data.data[0][0, 0] == 2.1972655922581912 markers = d.read_markers() assert len(markers) == 0 def test_abf_boundary(): data = d.read_data(begsam=-10, endsam=5) assert isnan(data.data[0][0, :10]).all() n_smp = d.header['n_samples'] data = d.read_data(begsam=n_smp - 2, endsam=n_smp + 10) assert isnan(data.data[0][0, 2:]).all()
21.5
59
0.662016
0
0
0
0
0
0
0
0
34
0.052713
a0f1fbf8cfec77c2b1ef56f17fd04592b977c305
9,115
py
Python
tests/Preprocessing_Test.py
Maxence-Labesse/MLKit
7f8d92b5d3e025dc3719c3bbaf1f2e55afda5107
[ "MIT" ]
1
2022-01-11T14:13:22.000Z
2022-01-11T14:13:22.000Z
tests/Preprocessing_Test.py
Maxence-Labesse/MLKit
7f8d92b5d3e025dc3719c3bbaf1f2e55afda5107
[ "MIT" ]
null
null
null
tests/Preprocessing_Test.py
Maxence-Labesse/MLKit
7f8d92b5d3e025dc3719c3bbaf1f2e55afda5107
[ "MIT" ]
1
2020-07-10T09:51:22.000Z
2020-07-10T09:51:22.000Z
from AutoMxL.Preprocessing.Categorical import * from AutoMxL.Preprocessing.Date import * from AutoMxL.Preprocessing.Outliers import * from AutoMxL.Preprocessing.Missing_Values import * import unittest import pandas as pd import math # test config df = pd.read_csv('tests/df_test_bis.csv') class TestMissingValues(unittest.TestCase): """ Test Missing_Values module """ def test_fill_numerical(self): """ fill_numerical function""" df_fill_all_num = fill_numerical(df, ['Age', 'Height'], method='zero', track_num_NA=True, verbose=False) self.assertIn('top_NA_Height', df_fill_all_num.columns.tolist()) self.assertIn('top_NA_Age', df_fill_all_num.columns.tolist()) self.assertEqual(df_fill_all_num.iloc[0]['Height'], 0) self.assertEqual(df_fill_all_num.iloc[1]['Age'], 0) def test_fill_categorical(self): """ fill_categorical function""" df_fill_all_cat = fill_categorical(df, l_var=['Name', 'Sexe'], method='NR', verbose=False) self.assertEqual(df_fill_all_cat.iloc[3]['Name'], 'NR') self.assertEqual(df_fill_all_cat.iloc[3]['Sexe'], 'NR') def test_NAEncoder(self): """ NAEncoder class""" NA_encoder1 = NAEncoder(replace_num_with='median', replace_cat_with='NR', track_num_NA=True) NA_encoder1.fit(df, l_var=['Name', 'Age']) df_NA1 = NA_encoder1.transform(df) # NA_encoder2 = NAEncoder(replace_num_with='zero', replace_cat_with='NR', track_num_NA=False) df_NA2 = NA_encoder2.fit_transform(df) # created features self.assertIn("top_NA_Age", df_NA1.columns.tolist()) self.assertNotIn('top_NA_Height', df_NA1.columns.tolist()) self.assertNotIn("top_NA_Age", df_NA2.columns.tolist()) # raw features contain NA self.assertEqual(get_NA_features(df), ['Name', 'Id_cat', 'Id_num', 'Verb', 'Age', 'Height', 'Sexe', 'Date_nai', 'American_date_nai']) # filled features self.assertEqual(get_NA_features(df_NA1), ['Id_cat', 'Id_num', 'Verb', 'Height', 'Sexe', 'Date_nai', 'American_date_nai']) self.assertEqual(get_NA_features(df_NA2), []) # modified values self.assertTrue(math.isnan(df['Name'][3])) self.assertTrue(math.isnan(df['Age'][1])) self.assertEqual(df_NA1['Name'][3], 'NR') self.assertEqual(df_NA1['Age'][1], 25.5) self.assertEqual(df_NA2['Name'][3], 'NR') self.assertEqual(df_NA2['Age'][1], 0) """ ------------------------------------------------------------------------------------------------ """ df_to_date = all_to_date(df, ['Date_nai', 'American_date_nai'], verbose=False) df_to_anc, new_var_list = date_to_anc(df_to_date, l_var=['American_date_nai', 'Date_nai'], date_ref='27/10/2010') class TestDate(unittest.TestCase): """ Test Date Module """ def test_all_to_date(self): """ all_to_date function """ self.assertEqual(np.dtype(df_to_date['American_date_nai']), 'datetime64[ns]') self.assertEqual(np.dtype(df_to_date['Date_nai']), 'datetime64[ns]') self.assertEqual(np.dtype(df_to_date['American_date_nai']), 'datetime64[ns]') def test_date_to_anc(self): """ date_to_anc function""" self.assertIn('anc_American_date_nai', df_to_anc.columns) self.assertIn('anc_Date_nai', df_to_anc.columns) self.assertNotIn('Date_nai', df_to_anc.columns) self.assertNotIn('American_Date_nai', df_to_anc.columns) self.assertEqual(df_to_anc['anc_Date_nai'][0], 0.0) self.assertIn('anc_American_date_nai', new_var_list) def test_DateEncoder(self): """ DateEncoder class""" Date_encoder1 = DateEncoder(method='timedelta', date_ref='27/10/2010') Date_encoder1.fit(df, l_var=['American_date_nai', 'Age']) df_date1 = Date_encoder1.transform(df) # date_encoder2 = DateEncoder(method='timedelta', date_ref='27/10/2011') df_date2 = date_encoder2.fit_transform(df) # created/removed features self.assertIn('anc_American_date_nai', df_date1.columns.tolist()) self.assertIn('Date_nai', df_date1.columns.tolist()) self.assertNotIn('anc_Date_nai', df_date1.columns.tolist()) self.assertIn('Age', df_date1.columns.tolist()) self.assertNotIn('American_date_nai', df_date2.columns.tolist()) self.assertNotIn('Date_nai', df_date2.columns.tolist()) # features formats self.assertEqual(df_date1['anc_American_date_nai'].dtype, 'float64') self.assertEqual(df_date2['anc_Date_nai'].dtype, 'float64') # features values self.assertEqual(df_date1['anc_American_date_nai'][0], 0.0) self.assertEqual(df_date2['anc_Date_nai'][0], 1.0) self.assertEqual(df_date2['anc_American_date_nai'][0], 1.0) """ ------------------------------------------------------------------------------------------------ """ class TestCategorical(unittest.TestCase): """ Test Categorical module """ def test_dummy_all_var(self): """ dummy_all_var func """ df_dummy = dummy_all_var(df, var_list=['Eyes', 'Sexe'], prefix_list=None, keep=False, verbose=False) df_dummy_pref = dummy_all_var(df, var_list=['Eyes', 'Sexe'], prefix_list=['Ey', 'Sx'], keep=True, verbose=False) # created/removed features self.assertIn('Eyes_blue', df_dummy.columns) self.assertIn('Eyes_red', df_dummy.columns) self.assertNotIn('Eyes', df_dummy.columns) self.assertNotIn('Sexe', df_dummy.columns) self.assertIn('Ey_blue', df_dummy_pref.columns) self.assertIn('Sx_M', df_dummy_pref.columns) self.assertIn('Eyes', df_dummy_pref.columns) self.assertIn('Sexe', df_dummy_pref.columns) # features values self.assertEqual(df_dummy['Eyes_blue'].tolist(), [1, 0, 0, 1, 0, 1]) self.assertEqual(df_dummy['Sexe_M'].tolist(), [1, 1, 1, 0, 0, 1]) def test_CategoricalEncoder(self): """ CategoricalEncoder """ df_pred = pd.read_csv('tests/df_test.Csv') df_pred['job'] = df_pred['job'].fillna('NR') cat_encoder1 = CategoricalEncoder(method='deep_encoder') df_cat1 = cat_encoder1.fit_transform(df_pred, target='y_yes', l_var=['job', 'education'], verbose=False) print('\n\n') # cat_encoder2 = CategoricalEncoder(method='one_hot') cat_encoder2.fit(df, l_var=['Name', 'Eyes'], verbose=False) print('\n\n') df_cat2 = cat_encoder2.transform(df) # features created/removed self.assertIn('job_0', df_cat1.columns.tolist()) self.assertIn('education_0', df_cat1.columns.tolist()) self.assertNotIn('job', df_cat1.columns.tolist()) self.assertIn('Eyes_blue', df_cat2.columns.tolist()) self.assertNotIn('Eyes', df_cat2.columns.tolist()) # features embedding self.assertEqual(list(cat_encoder1.d_embeddings.keys()), ['job', 'education']) # features values self.assertEqual(df_cat2['Eyes_green'].tolist(), [0, 0, 0, 0, 1, 0]) """ ------------------------------------------------------------------------------------------------ """ class TestOutliers(unittest.TestCase): def test_replace_category(self): """ replace_category function """ df_process_cat = replace_category(df, 'Hair', ['blond'], verbose=False) df_process_cat = replace_category(df_process_cat, 'Name', ['Tom', 'Nick'], verbose=False) # features values self.assertEqual(df_process_cat['Name'].tolist(), ['outliers', 'outliers', 'Krish', np.nan, 'John', 'Jack']) self.assertEqual(df_process_cat['Hair'].tolist(), ['brown', 'brown', 'dark', 'outliers', 'outliers', 'outliers']) def test_extrem_values(self): """ extreme_values function """ df_outlier_proc = replace_extreme_values(df, 'Height', 175, 185) self.assertEqual(df_outlier_proc['Height'].tolist()[1:], [175.0, 180.0, 185.0, 185.0, 185.0]) def test_OutlierEncode(self): """ OutlierEncodeR class """ out_encoder1 = OutliersEncoder(cat_threshold=0.25, num_xstd=1) out_encoder1.fit(df, l_var=['Height', 'Sexe', 'Hair', 'Age'], verbose=False) df_out1 = out_encoder1.transform(df, verbose=False) out_encoder2 = OutliersEncoder(cat_threshold=0.2, num_xstd=1) df_out2 = out_encoder2.fit_transform(df, verbose=False) # cat outliers self.assertEqual(list(df_out1['Hair']), ['brown', 'brown', 'dark', 'blond', 'blond', 'blond']) self.assertEqual(list(df_out1['Sexe']), ['M', 'M', 'M', np.nan, 'F', 'M']) self.assertEqual(list(df_out2['Name']), ['outliers'] * 6) # num outliers self.assertEqual(list(df_out1['Height'].round(4))[1:], [175.2177, 180.0, 188.7823, 185.0, 185.0]) self.assertEqual(list(df_out2['Unnamed: 0'].round(4)), [0.7922, 1.0, 2.0, 3.0, 4.0, 4.2078]) print('out2')
43.822115
120
0.622929
8,298
0.910368
0
0
0
0
0
0
2,510
0.27537
a0f259a7948c591dd236fbcc2a29325e01018267
218
py
Python
PythonTutor/session-4/conditionIfelse.py
krishnamanchikalapudi/examples.py
7a373d24df06b8882d07b850435b268a24317b1e
[ "MIT" ]
null
null
null
PythonTutor/session-4/conditionIfelse.py
krishnamanchikalapudi/examples.py
7a373d24df06b8882d07b850435b268a24317b1e
[ "MIT" ]
1
2020-02-14T13:24:01.000Z
2020-02-14T13:24:01.000Z
PythonTutor/session-4/conditionIfelse.py
krishnamanchikalapudi/examples.py
7a373d24df06b8882d07b850435b268a24317b1e
[ "MIT" ]
2
2020-02-14T13:21:20.000Z
2021-06-30T00:50:33.000Z
""" Session: 4 Topic: Conditional: IF ELSE statement """ x = 20 y = 100 if (x > y): print ('x > y is true') print ('new line 1') else: print('x > y is false') print('new line 2') print ('new line 3')
13.625
37
0.550459
0
0
0
0
0
0
0
0
123
0.56422
a0f3c7164fd5d0e03360ed4d29df99912a368e12
915
py
Python
day02/day02.py
pogross/adventofcode2021
33fc177d30e1104a6203e435f83594c4d3774cdb
[ "MIT" ]
null
null
null
day02/day02.py
pogross/adventofcode2021
33fc177d30e1104a6203e435f83594c4d3774cdb
[ "MIT" ]
null
null
null
day02/day02.py
pogross/adventofcode2021
33fc177d30e1104a6203e435f83594c4d3774cdb
[ "MIT" ]
null
null
null
def execute_command(command: str) -> (int): direction, magnitude = command.split(" ") horizontal, depth = 0, 0 if direction == "forward": horizontal += int(magnitude) elif direction == "up": depth -= int(magnitude) elif direction == "down": depth += int(magnitude) return horizontal, depth def chain_commands(commands: list[str]) -> (int): horizontal, depth = 0, 0 for command in commands: horizontal_change, depth_change = execute_command(command) horizontal += horizontal_change depth += depth_change return horizontal, depth if __name__ == "__main__": with open("input.txt") as f: raw = f.read() commands = [x for x in raw.split("\n")] horizontal, depth = chain_commands(commands) print(f"First answer is {horizontal*depth}") # print(f"Second answer is {count_increasing(measurements, 3)}")
26.911765
68
0.636066
0
0
0
0
0
0
0
0
148
0.161749
a0f92a83ae88dda1724d8249cb3715aea8d6c4ad
2,073
py
Python
execute.py
r-kapoor/ranking-extractions
59ed7f23d120d1bc7f0ee2af48ffa61817fd1715
[ "MIT" ]
null
null
null
execute.py
r-kapoor/ranking-extractions
59ed7f23d120d1bc7f0ee2af48ffa61817fd1715
[ "MIT" ]
null
null
null
execute.py
r-kapoor/ranking-extractions
59ed7f23d120d1bc7f0ee2af48ffa61817fd1715
[ "MIT" ]
null
null
null
import codecs import json import rank import train_ranker #Files to be present in home dir TRAINING_FILE_CITIES = 'manual_7_cities.jl' TRAINING_FILE_NAMES = 'manual_50_names.jl' TRAINING_FILE_ETHNICITIES = 'manual_50_ethnicities.jl' ACTUAL_FILE_CITIES = 'manual_50_cities.jl' ACTUAL_FILE_NAMES = 'manual_50_names.jl' ACTUAL_FILE_ETHNICITIES = 'manual_50_ethnicities.jl' EMBEDDINGS_FILE = 'unigram-part-00000-v2.json' FIELD_NAMES_CITIES = { "text_field": "readability_text", "annotated_field":"annotated_cities", "correct_field":"correct_cities" } FIELD_NAMES_NAMES = { "text_field": "readability_text", "annotated_field":"annotated_names", "correct_field":"correct_names" } FIELD_NAMES_ETHNICITIES = { "text_field": "readability_text", "annotated_field":"annotated_ethnicities", "correct_field":"correct_ethnicities" } def read_embedding_file(embeddings_file): unigram_embeddings = dict() with codecs.open(embeddings_file, 'r', 'utf-8') as f: for line in f: obj = json.loads(line) for k, v in obj.items(): unigram_embeddings[k] = v return unigram_embeddings def get_texts(json_object): """ Parsing logic for getting texts """ texts = list() texts.append(json_object.get(FIELD_NAMES_CITIES['text_field'])) return texts def get_annotated_list(json_object): """ Parsing logic for getting annotated field """ return json_object.get(FIELD_NAMES_CITIES['annotated_field']) embeddings_dict = read_embedding_file(EMBEDDINGS_FILE) classifier = train_ranker.train_ranker(embeddings_dict, TRAINING_FILE_CITIES, FIELD_NAMES_CITIES) with codecs.open(ACTUAL_FILE_CITIES, 'r', 'utf-8') as f: for line in f: obj = json.loads(line) list_of_texts = get_texts(obj) annotated_list = get_annotated_list(obj) print "Annotated tokens:", print annotated_list ranked_list = rank.rank(embeddings_dict, list_of_texts, annotated_list, classifier) print "Ranked List:", print ranked_list
29.614286
97
0.721177
0
0
0
0
0
0
0
0
675
0.325615
a0f9341f558e2700ed30e7586738a7942212308d
336
py
Python
Python-codes-CeV/32-Leap_year.py
engcristian/Python
726a53e9499fd5d0594572298e59e318f98e2d36
[ "MIT" ]
1
2021-02-22T03:53:23.000Z
2021-02-22T03:53:23.000Z
Python-codes-CeV/32-Leap_year.py
engcristian/Python
726a53e9499fd5d0594572298e59e318f98e2d36
[ "MIT" ]
null
null
null
Python-codes-CeV/32-Leap_year.py
engcristian/Python
726a53e9499fd5d0594572298e59e318f98e2d36
[ "MIT" ]
null
null
null
''' Calculat the leap year''' from datetime import date year = int(input('What year do you want to analyse? Type 0 for the current year.')) if year == 0: year = date.today().year if year%4 ==0 and year%100 != 0 or year%400 == 0: print(F"The year {year} it's a LEAP year.".) else: print(F"The year {year} isn't a LEAP year.")
37.333333
84
0.645833
0
0
0
0
0
0
0
0
167
0.497024
a0f9bbfc405c03e8dff904c969ce60482f1a635c
567
py
Python
thesis/code/fairness/gen.py
fz1989/master-thesis
e47af8c90d8d18d87f906a7a4bcadb64669e70db
[ "MIT" ]
null
null
null
thesis/code/fairness/gen.py
fz1989/master-thesis
e47af8c90d8d18d87f906a7a4bcadb64669e70db
[ "MIT" ]
null
null
null
thesis/code/fairness/gen.py
fz1989/master-thesis
e47af8c90d8d18d87f906a7a4bcadb64669e70db
[ "MIT" ]
null
null
null
#!/usr/bin/env python #coding=utf-8 import numpy class Task(object): def __init__(self, cpu, mem): self.cpu = cpu self.mem = mem def __repr__(self): return ("%d,%d") % (self.cpu, self.mem) def get_task_list(): task_list = [] for i in range(0,30): cpu = numpy.random.randint(1,8) mem = numpy.random.randint(1,8) task_list.append(Task(cpu, mem)) return task_list if __name__ == "__main__": task_list = get_task_list() for task in task_list: print "%d\t%d" % (task.cpu, task.mem)
21
47
0.589065
173
0.305115
0
0
0
0
0
0
59
0.104056
a0fa30f527e6c86b6cb9dc5b7f38c0821721deb9
71
py
Python
tests/routes/__init__.py
Bachhofer/spottydata
e9334c2a32bb65018b57d83fc4522ae241427db7
[ "MIT" ]
null
null
null
tests/routes/__init__.py
Bachhofer/spottydata
e9334c2a32bb65018b57d83fc4522ae241427db7
[ "MIT" ]
null
null
null
tests/routes/__init__.py
Bachhofer/spottydata
e9334c2a32bb65018b57d83fc4522ae241427db7
[ "MIT" ]
null
null
null
# This is an empty python file to expose this directory to it's parent
35.5
70
0.774648
0
0
0
0
0
0
0
0
70
0.985915
a0fccc7e51abcecde4662d4c35aa618544e6087c
7,500
py
Python
Perceptual Hash -Asher/ex1/example_solution.py
kidist-amde/image-search-engine
467d022f7248a74822dd9ae938b5b86333ce417a
[ "MIT" ]
null
null
null
Perceptual Hash -Asher/ex1/example_solution.py
kidist-amde/image-search-engine
467d022f7248a74822dd9ae938b5b86333ce417a
[ "MIT" ]
null
null
null
Perceptual Hash -Asher/ex1/example_solution.py
kidist-amde/image-search-engine
467d022f7248a74822dd9ae938b5b86333ce417a
[ "MIT" ]
null
null
null
import os import cv2 from sklearn.cluster import KMeans, DBSCAN, MiniBatchKMeans from scipy import spatial from sklearn.preprocessing import StandardScaler import numpy as np from tqdm import tqdm import argparse parser = argparse.ArgumentParser(description='Challenge presentation example') parser.add_argument('--data_path', '-d', type=str, default='dataset', help='Dataset path') parser.add_argument('--output_dim', '-o', type=int, default=20, help='Descriptor length') parser.add_argument('--save_dir', '-s', type=str, default=None, help='Save or not gallery/query feats') parser.add_argument('--random', '-r', action='store_true', help='Random run') args = parser.parse_args() class Dataset(object): def __init__(self, data_path): self.data_path = data_path assert os.path.exists(self.data_path), 'Insert a valid path!' self.data_classes = os.listdir(self.data_path) self.data_mapping = {} for c, c_name in enumerate(self.data_classes): temp_path = os.path.join(self.data_path, c_name) temp_images = os.listdir(temp_path) for i in temp_images: img_tmp = os.path.join(temp_path, i) if img_tmp.endswith('.jpg'): if c_name == 'distractor': self.data_mapping[img_tmp] = -1 else: self.data_mapping[img_tmp] = int(c_name) print('Loaded {:d} from {:s} images'.format(len(self.data_mapping.keys()), self.data_path)) def get_data_paths(self): images = [] classes = [] for img_path in self.data_mapping.keys(): if img_path.endswith('.jpg'): images.append(img_path) classes.append(self.data_mapping[img_path]) return images, np.array(classes) def num_classes(self): return len(self.data_classes) class FeatureExtractor(object): def __init__(self, feature_extractor, model, out_dim=20, scale=None, subsample=100): self.feature_extractor = feature_extractor self.model = model self.scale = scale self.subsample = subsample def get_descriptor(self, img_path): img = cv2.imread(img_path) if self.gray: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) kp, descs = self.feature_extractor.detectAndCompute(img, None) return descs def fit_model(self, data_list): training_feats = [] # we extact SIFT descriptors for img_path in tqdm(data_list, desc='Fit extraction'): descs = self.get_descriptor(img_path) if descs is None: continue if self.subsample: # TODO: change here sub_idx = np.random.choice(np.arange(descs.shape[0]), self.subsample) descs = descs[sub_idx, :] training_feats.append(descs) training_feats = np.concatenate(training_feats) print('--> Model trained on {} features'.format(training_feats.shape)) # we fit the model self.model.fit(training_feats) print('--> Model fitted') def fit_scaler(self, data_list): features = self.extract_features(data_list) print('--> Scale trained on {}'.format(features.shape)) self.scale.fit(features) print('--> Scale fitted') def extract_features(self, data_list): # we init features features = np.zeros((len(data_list), self.model.n_clusters)) for i, img_path in enumerate(tqdm(data_list, desc='Extraction')): # get descriptor descs = self.get_descriptor(img_path) # 2220x128 descs preds = self.model.predict(descs) histo, _ = np.histogram(preds, bins=np.arange(self.model.n_clusters+1), density=True) # append histogram features[i, :] = histo return features def scale_features(self, features): # we return the normalized features return self.scale.transform(features) def topk_accuracy(gt_label, matched_label, k=1): matched_label = matched_label[:, :k] total = matched_label.shape[0] correct = 0 for q_idx, q_lbl in enumerate(gt_label): correct+= np.any(q_lbl == matched_label[q_idx, :]).item() acc_tmp = correct/total return acc_tmp def main(): data_path = 'C:/Users/21032/Desktop/dataset' # we define training dataset training_path = os.path.join(data_path, 'training') # we define validation dataset validation_path = os.path.join(data_path, 'validation') gallery_path = os.path.join(validation_path, 'gallery') query_path = os.path.join(validation_path, 'query') training_dataset = Dataset(data_path=training_path) gallery_dataset = Dataset(data_path=gallery_path) query_dataset = Dataset(data_path=query_path) # get training data and classes training_paths, training_classes = training_dataset.get_data_paths() # we get validation gallery and query data gallery_paths, gallery_classes = gallery_dataset.get_data_paths() query_paths, query_classes = query_dataset.get_data_paths() if not args.random: feature_extractor = cv2.SIFT_create() # we define model for clustering model = KMeans(n_clusters=args.output_dim, n_init=10, max_iter=5000, verbose=False) # model = MiniBatchKMeans(n_clusters=args.output_dim, random_state=0, batch_size=100, max_iter=100, verbose=False) scale = StandardScaler() # we define the feature extractor providing the model extractor = FeatureExtractor(feature_extractor=feature_extractor, model=model, scale=scale, out_dim=args.output_dim) # we fit the KMeans clustering model extractor.fit_model(training_paths) extractor.fit_scaler(training_paths) # now we can use features # we get query features query_features = extractor.extract_features(query_paths) query_features = extractor.scale_features(query_features) # we get gallery features gallery_features = extractor.extract_features(gallery_paths) gallery_features = extractor.scale_features(gallery_features) print(gallery_features.shape, query_features.shape) pairwise_dist = spatial.distance.cdist(query_features, gallery_features, 'minkowski', p=2.) print('--> Computed distances and got c-dist {}'.format(pairwise_dist.shape)) indices = np.argsort(pairwise_dist, axis=-1) else: indices = np.random.randint(len(gallery_paths), size=(len(query_paths), len(gallery_paths))) gallery_matches = gallery_classes[indices] print('########## RESULTS ##########') for k in [1, 3, 10]: topk_acc = topk_accuracy(query_classes, gallery_matches, k) print('--> Top-{:d} Accuracy: {:.3f}'.format(k, topk_acc)) if __name__ == '__main__': main()
34.246575
122
0.608133
3,471
0.4628
0
0
0
0
0
0
1,197
0.1596
a0fd132d4d35c39d83a7f211d5d4e4443ddf2030
1,399
py
Python
src/modeling/train_test.py
samsonq/Macroeconomic-Default-Analysis
1a155873f951b1584c33c2d91bd525b67f78136d
[ "MIT" ]
4
2020-06-12T22:20:48.000Z
2021-08-08T15:49:38.000Z
src/modeling/train_test.py
samsonq/Macroeconomic-Default-Analysis
1a155873f951b1584c33c2d91bd525b67f78136d
[ "MIT" ]
1
2020-04-15T07:11:43.000Z
2020-04-15T07:11:43.000Z
src/modeling/train_test.py
samsonq/Macroeconomic-Default-Analysis
1a155873f951b1584c33c2d91bd525b67f78136d
[ "MIT" ]
3
2020-09-18T02:27:58.000Z
2021-10-30T21:22:10.000Z
""" Prepare training, validation, and testing data after preprocessing of the large dataset. Used in training and evaluating models. """ import numpy as np import pandas as pd from sklearn.model_selection import train_test_split def feature_selection(data, features): """ Choose which features to use for training. :param data: preprocessed dataset :param features: list of features to use :return: data with selected features """ return data[features] def prepare_data(data, label="loan_status", valid_split=0.2, test_split=0.3): """ Splits and returns the training and validation sets for the data. :param data: preprocessed dataset :param label: label of data :param valid_split: percentage to use as validation data :param test_split: percentage to use as test data :returns: training, validation, testing sets """ X_train = data.drop(label, axis=1) # define training features set y_train = data[label] # define training label set # use part of the data as testing data X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=test_split, random_state=0) # use part of the training data as validation data X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size=valid_split, random_state=0) return X_train, X_valid, X_test, y_train, y_valid, y_test
35.871795
114
0.735525
0
0
0
0
0
0
0
0
793
0.566833
a0fd2af6803ffa9be2e8f4bfae48a6a7e68eb4ea
179,927
py
Python
cyberradiodriver/CyberRadioDriver/radio.py
CyberRadio/CyberRadioDriver
44e6fc0e805981981514e6edc18d11d5fa33e659
[ "MIT" ]
null
null
null
cyberradiodriver/CyberRadioDriver/radio.py
CyberRadio/CyberRadioDriver
44e6fc0e805981981514e6edc18d11d5fa33e659
[ "MIT" ]
null
null
null
cyberradiodriver/CyberRadioDriver/radio.py
CyberRadio/CyberRadioDriver
44e6fc0e805981981514e6edc18d11d5fa33e659
[ "MIT" ]
null
null
null
#!/usr/bin/env python ############################################################### # \package CyberRadioDriver.radio # # \brief Defines basic functionality for radio handler objects. # # \note This module defines basic behavior only. To customize # a radio handler class for a particular radio, derive a new # class from the appropriate base class. It is recommended # that behavior specific to a given radio be placed in the # module that supports that radio. # # \author NH # \author DA # \author MN # \copyright Copyright (c) 2014-2021 CyberRadio Solutions, Inc. # All rights reserved. # ############################################################### # Imports from other modules in this package from . import command from . import components from . import configKeys from . import log from . import transport # Imports from external modules # Python standard library imports import ast import copy import datetime import json import math import sys import time import traceback import threading ## # \internal # \brief Returns the MAC address and IP address for a given Ethernet interface. # # \param ifname The name of t# \author DA # \param ifname The Ethernet system interface ("eth0", for example). # \returns A 2-tuple: (MAC Address, IP Address). def getInterfaceAddresses(ifname): import socket,fcntl,struct s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s', ifname[:15])) mac = ''.join(['%02x:' % ord(char) for char in info[18:24]])[:-1] ip = socket.inet_ntoa(fcntl.ioctl( s.fileno(), 0x8915, # SIOCGIFADDR struct.pack('256s', ifname[:15]) )[20:24]) return mac,ip ## # \internal # \brief VITA 49 interface specification class. # # The _ifSpec class describes how the VITA 49 interface is set up for # a particular radio. Each radio should have its own interface # specification, implemented as a subclass of _ifSpec. # # Radio handler classes need to set static member "ifSpec" to the interface # specification class that the radio uses. class _ifSpec(): ## Whether Vita 49.1 is used vita49_1 = True ## Whether Vita 49.0 is used vita49_0 = True ## Size of the VITA 49 header, in 32-byte words headerSizeWords = 0 ## Size of the payload, in 32-byte words payloadSizeWords = 0 ## Size of the VITA 49 "tail", in 32-byte words tailSizeWords = 0 ## Byte order used by the radio. byteOrder = "little" ## Whether the I/Q data in the payload are swapped iqSwapped = False @classmethod def getFrameInfoDict(cls, self): return { "headerWords": cls.headerSizeWords, "payloadWords": cls.payloadSizeWords, "tailWords": cls.tailSizeWords, "frameSize": (cls.headerSizeWords+cls.payloadSizeWords+cls.tailSizeWords)*4, "v49.1": cls.vita49_1, "v49.0": cls.vita49_0, "byteSwap": cls.byteOrder!=sys.byteorder, "iqSwap": cls.iqSwapped, } #-- Radio Handler Objects ---------------------------------------------# ## # \brief Base radio handler class. # # This class implements the CyberRadioDriver.IRadio interface. # # To add a supported radio to this driver, derive a class from # _radio and change the static members of the new class to describe the # capabilities of that particular radio. Each supported radio should # have its own module under the CyberRadioDriver.radios package tree. # # A radio handler object maintains a series of component objects, one # per component of each type (tuner, WBDDC, NBDDC, etc.). Each component # object is responsible for managing the hardware object that it represents. # Each component object is also responsible for querying the component's # current configuration and for maintaining the object's configuration # as it changes during radio operation. # # A radio handler object also maintains its own configuration, for settings # that occur at the radio level and are not managed by a component object. # # \note Several static members of this class have no function within the # code, but instead help CyberRadioDriver.getRadioObjectDocstring() generate # appropriate documentation for derived radio handler classes. # # \implements CyberRadioDriver::IRadio class _radio(log._logger, configKeys.Configurable): _name = "NDRgeneric" ## \brief Radio uses JSON command/response interface? json = False ## \brief VITA 49 interface specification class name (see _ifSpec class). ifSpec = _ifSpec ## \brief Dictionary of VITA 49 interface specification classes, keyed by # payload type strings, for those radios that support more than one VITA # packet format. ifSpecMap = {} ## \brief Analog-to-digital Converter clock rate adcRate = 1.0 # Tuner settings ## \brief Number of tuners numTuner = 0 ## \brief Number of tuner boards numTunerBoards = 1 ## \brief Tuner index base (what number indices start at) tunerIndexBase = 0 ## \brief Tuner component type tunerType = components._tuner ## \brief Tuner index overrides. Used for radios with # WBDDC settings ## \brief Number of WBDDCs available numWbddc = numTuner ## \brief WBDDC index base (what number indices start at) wbddcIndexBase = 1 ## \brief WBDDC component type wbddcType = components._wbddc # NBDDC settings ## \brief Number of NBDDCs numNbddc = 0 ## \brief NBDDC index base (what number indices start at) nbddcIndexBase = 1 ## \brief NBDDC component type nbddcType = components._nbddc ## \brief NBDDC index list override. This is a list of discrete indices # for radios where the indices are a subset of the full index list. # This should be set to None otherwise. nbddcIndexOverride = None # FFT Processor Settings ## \brief Number of FFT Channels numFftStream = 0 ## \brief FFT stream index base (what number indices start at) fftStreamIndexBase = 0 ## \brief FFT stream component type fftStreamType = None # Transmitter settings ## \brief Number of transmitters numTxs = 0 ## \brief Transmitter index base (what number indices start at) txIndexBase = 1 ## \brief Transmitter component type txType = None # WBDUC Settings ## \brief Number of WBDUC numWbduc = 0 ## \brief WBDUC index base (what number indices start at) wbducIndexBase = 1 ## \brief WBDUC component type wbducType = None # NBDUC Settings ## \brief Number of NBDUC numNbduc = 0 ## \brief NBDUC index base (what number indices start at) nbducIndexBase = 1 ## \brief NBDUC component type nbducType = None # WBDDC Group settings ## \brief Number of WBDDC groups available numWbddcGroups = 0 ## \brief WBDDC group index base (what number indices start at) wbddcGroupIndexBase = 1 ## \brief WBDDC Group component type wbddcGroupType = None # NBDDC Group settings ## \brief Number of NBDDC groups available numNbddcGroups = 0 ## \brief NBDDC group index base (what number indices start at) nbddcGroupIndexBase = 1 ## \brief NBDDC Group component type nbddcGroupType = None # Combined DDC Group settings ## \brief Number of combined DDC groups available numCddcGroups = 0 ## \brief Combined DDC group index base (what number indices start at) cddcGroupIndexBase = 1 ## \brief Combined DDC Group component type cddcGroupType = None # WBDUC Group settings ## \brief Number of WBDUC groups available numWbducGroups = 0 ## \brief WBDUC group index base (what number indices start at) wbducGroupIndexBase = 1 ## \brief WBDUC Group component type wbducGroupType = None # Tuner Group settings ## \brief Number of tuner groups available numTunerGroups = 0 ## \brief Tuner group index base (what number indices start at) tunerGroupIndexBase = 1 ## \brief Tuner Group component type tunerGroupType = None # UDP destination information ## \brief What the UDP destination setting represents for this radio udpDestInfo = "" ## \brief Number of Gigabit Ethernet ports numGigE = 0 ## \brief Gigabit Ethernet port index base (what number indices start at) gigEIndexBase = 1 ## \brief Number of destination IP table entries for each Gigabit Ethernet port numGigEDipEntries = 0 ## \brief Gigabit Ethernet destination IP table index base (what number indices start at) gigEDipEntryIndexBase = 0 # Supported command set. Each member listed here is either a # command class (one derived from command._commandBase) or None # if the command is not supported for a given radio. ## \brief Command: Identity query idnQry = command.idn ## \brief Command: Version query verQry = command.ver ## Command: Hardware revision query hrevQry = command.hrev ## \brief Command: Status query statQry = command.stat ## \brief Command: Tuner status query tstatQry = command.tstat ## \brief Command: Time adjustment set/query tadjCmd = None ## \brief Command: Reset resetCmd = command.reset ## \brief Command: Configuration mode set/query cfgCmd = command.cfg ## \brief Command: Pulse-per-second (PPS) set/query ppsCmd = None ## \brief Command: UTC time set/query utcCmd = None ## \brief Command: Reference mode set/query refCmd = command.ref ## \brief Command: Reference bypass mode set/query rbypCmd = None ## \brief Command: Source IP address set/query sipCmd = command.sip ## \brief Command: Destination IP address set/query dipCmd = command.dip ## \brief Command: Source MAC address set/query # # \note Most radios support \e querying the source MAC address, but few # support \e setting it. smacCmd = command.smac ## \brief Command: Destination MAC address set/query dmacCmd = command.dmac ## \brief Command: Calibration frequency set/query calfCmd = None ## \brief Command: Narrowband source selection set/query nbssCmd = None ## \brief Command: Frequency normalization mode set/query fnrCmd = None ## \brief Command: GPS receiver enable set/query gpsCmd = None ## \brief Command: GPS position query gposCmd = None ## \brief Command: Reference tuning voltage set/query rtvCmd = None ## \brief Command: Radio temperature query tempCmd = None ## \brief Command: GPIO output (static) set/query gpioStaticCmd = None ## \brief Command: GPIO output (sequence) set/query gpioSeqCmd = None ## \brief Command: Gigabit Ethernet interface flow control set/query tgfcCmd = None ## \brief Coherent tuning command cohTuneCmd = None ## \brief FPGA state selection command fpgaStateCmd = None ## \brief Radio function (mode) selection command funCmd = None ## \brief Radio Cntrl command cntrlCmd = None # Mode settings ## \brief Supported reference modes refModes = {} ## \brief Supported reference bypass modes rbypModes = {} ## \brief Supported VITA 49 enabling options vitaEnableOptions = {} ## \brief Supported connection modes connectionModes = ["tty"] ## \brief Default baud rate (has no effect if radio does not use TTY) defaultBaudrate = 921600 ## \brief Default port number (has no effect if radio does not use network connections) defaultPort = 8617 ## \brief Default timeout for communications over the radio transport defaultTimeout = transport.radio_transport.defaultTimeout ## \brief Does this radio support setting the tuner bandwidth? tunerBandwithSettable = False ## \brief Tuner bandwidth (Hz) for radios that do not support setting it tunerBandwidthConstant = 40e6 ## # \brief The list of valid configuration keywords supported by this # object. Override in derived classes as needed. validConfigurationKeywords = [configKeys.CONFIG_MODE, configKeys.REFERENCE_MODE, configKeys.BYPASS_MODE, configKeys.CALIB_FREQUENCY, configKeys.FNR_MODE, configKeys.GPS_ENABLE, configKeys.REF_TUNING_VOLT, configKeys.GIGE_FLOW_CONTROL, ] ## \brief Default "set time" value setTimeDefault = False ## # \brief Constructs a radio handler object. # # \copydetails CyberRadioDriver::IRadio::\_\_init\_\_() def __init__(self, *args, **kwargs): self._setConfigLock = threading.RLock() # Set up configuration capability configKeys.Configurable.__init__(self) # Consume keyword arguments "verbose" and "logFile" for logging support log._logger.__init__(self, *args, **kwargs) # Now consume our own self.setTime = kwargs.get("setTime",self.setTimeDefault) self.logCtrl = kwargs.get("logCtrl",None) self.transportTimeout = kwargs.get("timeout", None) self.clientId = kwargs.get("clientId", None) if self.transportTimeout is None: self.transportTimeout = self.defaultTimeout self.name = "%s%s"%(self._name,"-%s"%kwargs.get("name") if "name" in kwargs else "",) self.logIfVerbose("Verbose mode!") # Communication transport in use self.transport = None self.tunerDict = {} self.wbddcDict = {} self.nbddcDict = {} self.fftStreamDict = {} self.txDict = {} self.wbducDict = {} self.nbducDict = {} self.wbddcGroupDict = {} self.nbddcGroupDict = {} self.cddcGroupDict = {} self.wbducGroupDict = {} self.tunerGroupDict = {} self.componentList = [] # Little hack to ensure numWbddc is always set (we didn't always have this attribute). if self.numWbddc is None: self.numWbddc = self.numTuner # Form the actual index lists for the different components. Now that certain components # have discrete index values rather than a full sequence, we need to store these for # later use. self.tunerIndexList = list(range(self.tunerIndexBase, self.tunerIndexBase + self.numTuner)) self.wbddcIndexList = list(range(self.wbddcIndexBase, self.wbddcIndexBase + self.numWbddc)) self.nbddcIndexList = self.nbddcIndexOverride if self.nbddcIndexOverride is not None else \ list(range(self.nbddcIndexBase, self.nbddcIndexBase + self.numNbddc)) self.fftStreamIndexList = list(range(self.fftStreamIndexBase, self.fftStreamIndexBase + self.numFftStream)) self.txIndexList = list(range(self.txIndexBase, self.txIndexBase + self.numTxs)) self.wbducIndexList = list(range(self.wbducIndexBase, self.wbddcIndexBase + self.numWbduc)) self.nbducIndexList = list(range(self.nbducIndexBase, self.nbddcIndexBase + self.numNbduc)) self.wbddcGroupIndexList = list(range(self.wbddcGroupIndexBase, self.wbddcGroupIndexBase + self.numWbddcGroups)) self.nbddcGroupIndexList = list(range(self.nbddcGroupIndexBase, self.nbddcGroupIndexBase + self.numNbddcGroups)) self.cddcGroupIndexList = list(range(self.cddcGroupIndexBase, self.cddcGroupIndexBase + self.numCddcGroups)) self.wbducGroupIndexList = list(range(self.wbducGroupIndexBase, self.wbducGroupIndexBase + self.numWbducGroups)) self.tunerGroupIndexList = list(range(self.tunerGroupIndexBase, self.tunerGroupIndexBase + self.numTunerGroups)) self.gigEIndexList = list(range(self.gigEIndexBase, self.gigEIndexBase + self.numGigE)) self.gigEDipEntryIndexList = list(range(self.gigEDipEntryIndexBase, self.gigEDipEntryIndexBase + self.numGigEDipEntries)) self.txToneGenIndexList = [] if self.numTxs == 0 else \ list(range(self.txType.toneGenIndexBase, self.txType.toneGenIndexBase + self.txType.numToneGen)) # Make component objects for objRange,objType,objDict in ( \ (self.tunerIndexList,self.tunerType,self.tunerDict), \ (self.wbddcIndexList,self.wbddcType,self.wbddcDict), \ (self.nbddcIndexList,self.nbddcType,self.nbddcDict), \ (self.fftStreamIndexList,self.fftStreamType,self.fftStreamDict), \ (self.txIndexList,self.txType,self.txDict), \ (self.wbducIndexList,self.wbducType,self.wbducDict), \ (self.nbducIndexList,self.nbducType,self.nbducDict), \ (self.wbddcGroupIndexList,self.wbddcGroupType,self.wbddcGroupDict), \ (self.nbddcGroupIndexList,self.nbddcGroupType,self.nbddcGroupDict), \ (self.cddcGroupIndexList,self.cddcGroupType,self.cddcGroupDict), \ (self.wbducGroupIndexList,self.wbducGroupType,self.wbducGroupDict), \ (self.tunerGroupIndexList,self.tunerGroupType,self.tunerGroupDict), \ ): if objType is not None: for objInd in objRange: objDict[objInd] = objType(parent=self, transport=None, index=objInd, verbose=self.verbose, logFile=self.logFile) self.componentList.append( objDict[objInd] ) self.sipTable = {} self.dipTable = {} self.versionInfo = {} # State variables # -- is the radio connected through crdd? self.isCrddConnection = False # -- crdd command prefix, which tells crdd that this isn't a pass-through # radio command. Set this to four vertical bars, because no NDR-class # radio uses them. self.crddCommandPrefix = "||||" # Set the time on the radio self.setTime = False self.connectError = "" ## # \brief Destroys a radio handler object. # # \copydetails CyberRadioDriver::IRadio::\_\_del\_\_() def __del__(self): if self.isConnected(): self.disconnect() ## # \brief Indicates whether the radio is connected. # # \copydetails CyberRadioDriver::IRadio::isConnected() def isConnected(self,): return (self.transport is not None and self.transport.connected) ## # \brief Returns version information for the radio. # # \copydetails CyberRadioDriver::IRadio::getVersionInfo() def getVersionInfo(self): # If this is a crdd connection, try to get the version info from # crdd's radio handler rather than through direct radio commands if self.isCrddConnection: # Get the radio's version information from crdd rsp = self._crddSendCommand(cmd="GETVERINFO") if rsp is not None: # Set the version info by running the first response string (the # version info dict) through ast.literal_eval(). self.versionInfo = ast.literal_eval(rsp[0]) # Query hardware for details if we don't have them already if not all([key in self.versionInfo for key in \ [configKeys.VERINFO_MODEL, configKeys.VERINFO_SN]]): cmd = self.idnQry(parent=self, query=True, verbose=self.verbose, logFile=self.logFile) cmd.send( self.sendCommand, ) self._addLastCommandErrorInfo(cmd) rspInfo = cmd.getResponseInfo() if rspInfo is not None: self.versionInfo.update(rspInfo) if not all([key in self.versionInfo for key in [configKeys.VERINFO_SW, configKeys.VERINFO_FW, configKeys.VERINFO_REF]]): cmd = self.verQry(parent=self, query=True, verbose=self.verbose, logFile=self.logFile) cmd.send( self.sendCommand, ) self._addLastCommandErrorInfo(cmd) rspInfo = cmd.getResponseInfo() if rspInfo is not None: self.versionInfo.update(rspInfo) if not all([key in self.versionInfo for key in [configKeys.VERINFO_MODEL, configKeys.VERINFO_SN, configKeys.VERINFO_UNITREV, configKeys.VERINFO_HW]]): cmd = self.hrevQry(parent=self, query=True, verbose=self.verbose, logFile=self.logFile) cmd.send( self.sendCommand, ) self._addLastCommandErrorInfo(cmd) rspInfo = cmd.getResponseInfo() if rspInfo is not None: # Don't mask previously determined model and S/N information! for key in [configKeys.VERINFO_MODEL, configKeys.VERINFO_SN]: if key in self.versionInfo and key in rspInfo: del rspInfo[key] self.versionInfo.update(rspInfo) for key in [configKeys.VERINFO_MODEL, configKeys.VERINFO_SN, configKeys.VERINFO_SW, configKeys.VERINFO_FW, configKeys.VERINFO_REF, configKeys.VERINFO_UNITREV, configKeys.VERINFO_HW]: if key not in self.versionInfo: self.versionInfo[key] = "N/A" return self.versionInfo ## # \brief Returns connection information for the radio. # # \copydetails CyberRadioDriver::IRadio::getConnectionInfo() def getConnectionInfo(self): connectionInfo = {} # Connection information connectionInfo["mode"] = self.mode if self.mode in ("tcp","udp","https"): connectionInfo["hostname"] = self.host_or_dev connectionInfo["port"] = "%d" % self.port_or_baudrate elif self.mode == "tty": connectionInfo["device"] = self.host_or_dev connectionInfo["baudrate"] = "%d" % self.port_or_baudrate return connectionInfo ## # \brief Connects to a given radio. # # \copydetails CyberRadioDriver::IRadio::connect() def connect(self,mode,host_or_dev,port_or_baudrate=None,setTime=False,initDdc=False, reset=False, fcState=None): if mode in self.connectionModes: self.mode = mode self.host_or_dev = host_or_dev self.port_or_baudrate = port_or_baudrate if self.port_or_baudrate is None: self.port_or_baudrate = self.defaultBaudrate if mode == "tty" else \ self.defaultPort self.logIfVerbose("USING PORT %r"%(self.port_or_baudrate)) if self.transport is not None: self.transport.disconnect() self.transport = None self.transport = transport.radio_transport(parent=self,verbose=self.verbose, logFile=self.logFile, logCtrl=self.logCtrl, json=self.json, timeout=self.transportTimeout) if self.transport.connect(mode, self.host_or_dev, self.port_or_baudrate): if self.isCrddConnection: self._crddInitialize() # Query the configuration if we didn't already have it if self.configuration == {}: self._queryConfiguration() for obj in self.componentList: obj.addTransport(self.transport, self.sendCommand, not self.isCrddConnection) self.getVersionInfo() if reset: self.sendReset() if setTime: self.setTimeNextPps() if initDdc: self.setDdcConfiguration(wideband=True,) self.setDdcConfiguration(wideband=False,) if fcState is not None: try: self.setTenGigFlowControlStatus(fcState) except: pass return True else: self.connectError = self.transport.connectError self.disconnect() return False else: self.log("Unsupported connection mode: %s", str(mode)) return False ## # \brief Disconnects from the radio. # # \copydetails CyberRadioDriver::IRadio::disconnect() def disconnect(self): try: self.transport.disconnect() except: self.logIfVerbose(traceback.format_exc()) #traceback.print_exc() for obj in self.componentList: obj.delTransport() self.configuration = {} ## # \brief Sends a command to the radio. # # \copydetails CyberRadioDriver::IRadio::sendCommand() def sendCommand(self,cmdString,timeout=None): # Sanity-check: Don't bother trying if we don't have a # transport object, or if it's disconnected if self.transport is None or not self.transport.isConnected(): return None # Check if this is an outgoing crdd command. These commands don't # use JSON framing, so we want to avoid trying to run it through # the JSON layer (which won't work). isCrddCommand = cmdString.startswith(self.crddCommandPrefix) try: if not isCrddCommand and self.json: if isinstance(cmdString, str): jsonCmd = json.loads(cmdString) elif isinstance(cmdString, dict): jsonCmd = cmdString jsonCmd["msg"] = command.jsonConfig.newMessageId() x = self.transport.sendCommandAndReceive(json.dumps(jsonCmd),timeout) else: x = self.transport.sendCommandAndReceive(cmdString, timeout, useJson=False) if not self.transport.connected: self.transport.disconnect() return None else: return x except: self.logIfVerbose(traceback.format_exc()) #traceback.print_exc() self.transport.disconnect() return None ## # \brief Sets the radio configuration. # # \copydetails CyberRadioDriver::IRadio::setConfiguration() def setConfiguration(self, configDict={}): if self.isCrddConnection: return self._crddSetConfiguration(configDict) else: with self._setConfigLock: self.cmdErrorInfo = [] # Normalize the incoming configuration dictionary before trying to process it. configDict2 = self._normalizeConfigDict(configDict) success = configKeys.Configurable.setConfiguration(self, **configDict2) # Tuner configuration tunerConfDict = configDict2.get(configKeys.CONFIG_TUNER,{}) for index in self.tunerIndexList: if index in tunerConfDict: confDict = tunerConfDict[index] confDict[configKeys.TUNER_INDEX] = index success &= self.setTunerConfigurationNew(**confDict) # DDC configuration for ddcType in [configKeys.CONFIG_WBDDC, configKeys.CONFIG_NBDDC]: isWideband = (ddcType == configKeys.CONFIG_WBDDC) ddcConfDict = configDict2.get(configKeys.CONFIG_DDC,{}).get(ddcType,{}) ddcIndexRange = self.wbddcIndexList if isWideband else self.nbddcIndexList for index in ddcIndexRange: if index in ddcConfDict: confDict = ddcConfDict[index] confDict[configKeys.DDC_INDEX] = index success &= self.setDdcConfigurationNew(wideband=isWideband, **confDict) # IP configuration success &= self.setIpConfigurationNew(configDict2.get(configKeys.CONFIG_IP, {})) # Transmitter configuration txConfDict = configDict2.get(configKeys.CONFIG_TX,{}) for index in self.getTransmitterIndexRange(): if index in txConfDict: confDict = txConfDict[index] confDict[configKeys.TX_INDEX] = index success &= self.setTxConfigurationNew(**confDict) for ducType in [configKeys.CONFIG_WBDUC, configKeys.CONFIG_NBDUC]: isWideband = (ducType == configKeys.CONFIG_WBDUC) ducConfDict = configDict2.get(configKeys.CONFIG_DUC,{}).get(ducType,{}) ducIndexRange = self.wbducIndexList if isWideband else self.nbducIndexList for index in ducIndexRange: if index in ducConfDict: confDict = ducConfDict[index] confDict[configKeys.DUC_INDEX] = index success &= self.setDucConfigurationNew(wideband=isWideband, **confDict) # DDC group configuration for ddcType in [configKeys.CONFIG_WBDDC_GROUP, configKeys.CONFIG_NBDDC_GROUP]: # Flag for forcing the driver to query DDCs for status information forceDdcQuery = False isWideband = (ddcType == configKeys.CONFIG_WBDDC_GROUP) ddcGroupConfDict = configDict2.get(configKeys.CONFIG_DDC_GROUP,{}).get(ddcType,{}) ddcGroupIndexRange = self.wbddcGroupIndexList if isWideband else self.nbddcGroupIndexList for index in ddcGroupIndexRange: if index in ddcGroupConfDict: confDict = ddcGroupConfDict[index] confDict[configKeys.INDEX] = index success &= self.setDdcGroupConfigurationNew(wideband=isWideband, **confDict) # Force DDC query if DDC grouping configuration gets changed forceDdcQuery = True # This section forces hardware queries to update the corresponding DDC # and DDC group configurations. if forceDdcQuery: ddcDict = self.wbddcDict if isWideband else self.nbddcDict for i in self._getIndexList(None, ddcDict): ddcDict[i]._queryConfiguration() ddcGroupDict = self.wbddcGroupDict if isWideband else self.nbddcGroupDict for i in self._getIndexList(None, ddcGroupDict): ddcGroupDict[i]._queryConfiguration() # Combined DDC group configuration for ddcType in [configKeys.CONFIG_COMBINED_DDC_GROUP]: #self.logIfVerbose("[ndr551][setConfiguration()] Configure combined DDCs") # Flag for forcing the driver to query DDCs for status information forceDdcQuery = False ddcGroupConfDict = configDict2.get(configKeys.CONFIG_DDC_GROUP,{}).get(ddcType,{}) ddcGroupIndexRange = self.cddcGroupIndexList for index in ddcGroupIndexRange: if index in ddcGroupConfDict: confDict = ddcGroupConfDict[index] confDict[configKeys.INDEX] = index #self.logIfVerbose("[ndr551][setConfiguration()] Combined DDC", index) #self.logIfVerbose("[ndr551][setConfiguration()] %s" % confDict) success &= self.setCombinedDdcGroupConfigurationNew(**confDict) # Force DDC query if DDC grouping configuration gets changed forceDdcQuery = True # This section forces hardware queries to update the corresponding DDC # and DDC group configurations. if forceDdcQuery: for isWideband in [True, False]: ddcDict = self.wbddcDict if isWideband else self.nbddcDict for i in self._getIndexList(None, ddcDict): ddcDict[i]._queryConfiguration() ddcGroupDict = self.cddcGroupDict for i in self._getIndexList(None, ddcGroupDict): ddcGroupDict[i]._queryConfiguration() # DUC configuration for ducType in [configKeys.CONFIG_WBDUC_GROUP]: # Flag for forcing the driver to query DUCs for status information forceDucQuery = False isWideband = (ducType == configKeys.CONFIG_WBDUC_GROUP) ducGroupConfDict = configDict2.get(configKeys.CONFIG_DUC_GROUP,{}).get(ducType,{}) ducGroupIndexRange = self.wbducGroupIndexList if isWideband else self.nbducGroupIndexList for index in ducGroupIndexRange: if index in ducGroupConfDict: confDict = ducGroupConfDict[index] confDict[configKeys.INDEX] = index success &= self.setDucGroupConfigurationNew(wideband=isWideband, **confDict) # Force DUC query if DUC grouping configuration gets changed forceDucQuery = True # This section forces hardware queries to update the corresponding DUC # and DUC group configurations. if forceDucQuery: ducDict = self.wbducDict if isWideband else self.nbducDict for i in self._getIndexList(None, ducDict): ducDict[i]._queryConfiguration() ducGroupDict = self.wbducGroupDict if isWideband else self.nbducGroupDict for i in self._getIndexList(None, ducGroupDict): ducGroupDict[i]._queryConfiguration() # FFT streaming configuration fftStreamConfDict = configDict2.get(configKeys.CONFIG_FFT,{}) for index in self.fftStreamIndexList: if index in fftStreamConfDict: confDict = fftStreamConfDict[index] confDict[configKeys.FFT_INDEX] = index success &= self.setFftStreamConfiguration(**confDict) # Tuner group configuration forceTunerQuery = False tunerGroupConfDict = configDict2.get(configKeys.CONFIG_TUNER_GROUP,{}) tunerGroupIndexRange = self.tunerGroupIndexList for index in tunerGroupIndexRange: if index in tunerGroupConfDict: confDict = tunerGroupConfDict[index] confDict[configKeys.INDEX] = index success &= self.setTunerGroupConfigurationNew(**confDict) # Force tuner query if tuner grouping configuration gets changed forceTunerQuery = True if forceTunerQuery: for i in self._getIndexList(None, self.tunerDict): self.tunerDict[i]._queryConfiguration() for i in self._getIndexList(None, self.tunerGroupDict): self.tunerGroupDict[i]._queryConfiguration() return success ## # \brief Sets the radio configuration based on a sequence of configuration # dictionary keys. # # \copydetails CyberRadioDriver::IRadio::setConfigurationByKeys() def setConfigurationByKeys(self, value=None, *keys): configDict = {} self._dictEnsureEntrySet(configDict, value, *keys) return self.setConfiguration(configDict) ## # \brief Gets the radio configuration. # # \copydetails CyberRadioDriver::IRadio::getConfiguration() def getConfiguration(self): ret = None if self.isCrddConnection: ret = self._crddGetConfiguration() else: self.cmdErrorInfo = [] ret = configKeys.Configurable.getConfiguration(self) # Get tuner configuration if self.numTuner > 0: ret[configKeys.CONFIG_TUNER] = self.getTunerConfigurationNew() # Get DDC configuration if self.numWbddc > 0: ret[configKeys.CONFIG_DDC] = {} # -- Wideband ret[configKeys.CONFIG_DDC][configKeys.CONFIG_WBDDC] = self.getDdcConfigurationNew(wideband=True) if self.numNbddc > 0: # -- Narrowband ret[configKeys.CONFIG_DDC][configKeys.CONFIG_NBDDC] = self.getDdcConfigurationNew(wideband=False) if self.numFftStream > 0: ret[configKeys.CONFIG_FFT] = self.getFftStreamConfiguration() # Get transmitter configuration if self.numTxs > 0: ret[configKeys.CONFIG_TX] = self.getTxConfigurationNew() # Get DUC configuration if self.numTxs > 0: ret[configKeys.CONFIG_DUC] = {} # -- Wideband ret[configKeys.CONFIG_DUC][configKeys.CONFIG_WBDUC] = self.getDucConfigurationNew(wideband=True) if self.numNbduc > 0: # -- Narrowband ret[configKeys.CONFIG_DDC][configKeys.CONFIG_NBDUC] = self.getDucConfigurationNew(wideband=False) # Get DDC group configuration if self.numWbddcGroups > 0: ret[configKeys.CONFIG_DDC_GROUP] = {} # -- Wideband ret[configKeys.CONFIG_DDC_GROUP][configKeys.CONFIG_WBDDC_GROUP] = \ self.getDdcGroupConfigurationNew(wideband=True) if self.numNbddcGroups > 0: # -- Narrowband ret[configKeys.CONFIG_DDC_GROUP][configKeys.CONFIG_NBDDC_GROUP] = \ self.getDdcGroupConfigurationNew(wideband=False) elif self.numCddcGroups > 0: ret[configKeys.CONFIG_DDC_GROUP] = {} ret[configKeys.CONFIG_DDC_GROUP][configKeys.CONFIG_COMBINED_DDC_GROUP] = \ self.getCombinedDdcGroupConfigurationNew() # Get DUC group configuration if self.numWbducGroups > 0: ret[configKeys.CONFIG_DUC_GROUP] = {} # -- Wideband ret[configKeys.CONFIG_DUC_GROUP][configKeys.CONFIG_WBDUC_GROUP] = \ self.getDucGroupConfigurationNew(wideband=True) # if self.numNbducGroups > 0: # # -- Narrowband # ret[configKeys.CONFIG_DUC_GROUP][configKeys.CONFIG_NBDUC_GROUP] = \ # self.getDucGroupConfigurationNew(wideband=False) # Get tuner group configuration if self.numTunerGroups > 0: ret[configKeys.CONFIG_TUNER_GROUP] = \ self.getTunerGroupConfigurationNew() return ret ## # \brief Gets radio configuration information based on a sequence of configuration # dictionary keys. # # \copydetails CyberRadioDriver::IRadio::getConfigurationByKeys() def getConfigurationByKeys(self, *keys): return self._dictSafeGet(self.getConfiguration(), None, *keys) ## # \brief Queries the radio hardware to get its configuration. # # \copydetails CyberRadioDriver::IRadio::queryConfiguration() def queryConfiguration(self): return self.queryConfigurationByKeys() ## # \brief Queries the radio hardware to get a subset of configuration information, # based on a sequence of configuration dictionary keys. # # \copydetails CyberRadioDriver::IRadio::queryConfigurationByKeys() def queryConfigurationByKeys(self, *keys): self.cmdErrorInfo = [] ret = {} if self.isCrddConnection: ret = self._crddQueryConfigurationByKeys(*keys) else: if len(keys) == 0: ret = configKeys.Configurable.queryConfiguration(self) # Get tuner configuration if self.numTuner > 0: if len(keys) == 0: ret[configKeys.CONFIG_TUNER] = self.queryTunerConfigurationNew(tunerIndex=None) elif len(keys) > 0 and keys[0] == configKeys.CONFIG_TUNER: tunerIndex = None if len(keys) == 1 else int(keys[1]) ret[configKeys.CONFIG_TUNER] = self.queryTunerConfigurationNew(tunerIndex=tunerIndex) # Get DDC configuration if self.numWbddc > 0: if len(keys) == 0 or keys[0] == configKeys.CONFIG_DDC: ret[configKeys.CONFIG_DDC] = {} # -- Wideband if len(keys) < 2: ret[configKeys.CONFIG_DDC][configKeys.CONFIG_WBDDC] = self.queryDdcConfigurationNew( wideband=True, ddcIndex=None) elif keys[1] == configKeys.CONFIG_WBDDC: ddcIndex = None if len(keys) == 2 else int(keys[2]) ret[configKeys.CONFIG_DDC][configKeys.CONFIG_WBDDC] = self.queryDdcConfigurationNew( wideband=True, ddcIndex=ddcIndex) # -- Narrowband if self.numNbddc > 0: if len(keys) < 2: ret[configKeys.CONFIG_DDC][configKeys.CONFIG_NBDDC] = self.queryDdcConfigurationNew( wideband=False, ddcIndex=None) elif keys[1] == configKeys.CONFIG_NBDDC: ddcIndex = None if len(keys) == 2 else int(keys[2]) ret[configKeys.CONFIG_DDC][configKeys.CONFIG_NBDDC] = self.queryDdcConfigurationNew( wideband=False, ddcIndex=ddcIndex) # Get FFT Stream configuration if self.numFftStream > 0: if len(keys) == 0: ret[configKeys.CONFIG_FFT] = self.queryFftStreamConfiguration(fftStreamIndex=None) elif len(keys) > 0 and keys[0] == configKeys.CONFIG_FFT: fftStreamIndex = None if len(keys) == 1 else int(keys[1]) ret[configKeys.CONFIG_FFT] = self.queryFftStreamConfiguration(fftStreamIndex=fftStreamIndex) # Get transmitter configuration if self.numTxs > 0: if len(keys) == 0: ret[configKeys.CONFIG_TX] = self.queryTxConfigurationNew(txIndex=None) elif len(keys) > 0 and keys[0] == configKeys.CONFIG_TX: txIndex = None if len(keys) == 1 else int(keys[1]) ret[configKeys.CONFIG_TX] = self.queryTxConfigurationNew(txIndex=txIndex) # Get DUC configuration if self.numTxs > 0: if len(keys) == 0 or keys[0] == configKeys.CONFIG_DUC: ret[configKeys.CONFIG_DUC] = {} # -- Wideband if len(keys) < 2: ret[configKeys.CONFIG_DUC][configKeys.CONFIG_WBDUC] = self.queryDucConfigurationNew( wideband=True, ducIndex=None) elif keys[1] == configKeys.CONFIG_WBDUC: ducIndex = None if len(keys) == 2 else int(keys[2]) ret[configKeys.CONFIG_DUC][configKeys.CONFIG_WBDUC] = self.queryDucConfigurationNew( wideband=True, ducIndex=ducIndex) # -- Narrowband if self.numNbduc > 0: if len(keys) < 2: ret[configKeys.CONFIG_DUC][configKeys.CONFIG_NBDUC] = self.queryDucConfigurationNew( wideband=False, ducIndex=None) elif keys[1] == configKeys.CONFIG_NBDUC: ducIndex = None if len(keys) == 2 else int(keys[2]) ret[configKeys.CONFIG_DUC][configKeys.CONFIG_NBDUC] = self.queryDucConfigurationNew( wideband=False, ducIndex=ducIndex) # Get DDC group configuration if any( [self.numWbddcGroups > 0, self.numNbddcGroups > 0, self.numCddcGroups > 0] ): if len(keys) == 0 or keys[0] == configKeys.CONFIG_DDC_GROUP: ret[configKeys.CONFIG_DDC_GROUP] = {} # -- Wideband if self.numWbddcGroups > 0: if len(keys) < 2: ret[configKeys.CONFIG_DDC_GROUP][configKeys.CONFIG_WBDDC_GROUP] = \ self.queryDdcGroupConfigurationNew(wideband=True, ddcGroupIndex=None) elif keys[1] == configKeys.CONFIG_WBDDC_GROUP: ddcGroupIndex = None if len(keys) == 2 else int(keys[2]) ret[configKeys.CONFIG_DDC_GROUP][configKeys.CONFIG_WBDDC_GROUP] = \ self.queryDdcGroupConfigurationNew(wideband=True, ddcGroupIndex=ddcGroupIndex) # -- Narrowband if self.numNbddcGroups > 0: if len(keys) < 2: ret[configKeys.CONFIG_DDC_GROUP][configKeys.CONFIG_NBDDC_GROUP] = \ self.queryDdcGroupConfigurationNew(wideband=False, ddcGroupIndex=None) elif keys[1] == configKeys.CONFIG_NBDDC_GROUP: ddcGroupIndex = None if len(keys) == 2 else int(keys[2]) ret[configKeys.CONFIG_DDC_GROUP][configKeys.CONFIG_NBDDC_GROUP] = \ self.queryDdcGroupConfigurationNew(wideband=False, ddcGroupIndex=ddcGroupIndex) # -- Combined (wideband + narrowband) if self.numCddcGroups > 0: if len(keys) < 2: ret[configKeys.CONFIG_DDC_GROUP][configKeys.CONFIG_COMBINED_DDC_GROUP] = \ self.queryCombinedDdcGroupConfigurationNew(ddcGroupIndex=None) elif keys[1] == configKeys.CONFIG_COMBINED_DDC_GROUP: ddcGroupIndex = None if len(keys) == 2 else int(keys[2]) ret[configKeys.CONFIG_DDC_GROUP][configKeys.CONFIG_COMBINED_DDC_GROUP] = \ self.queryCombinedDdcGroupConfigurationNew(ddcGroupIndex=ddcGroupIndex) # Get DUC group configuration if any( [self.numWbducGroups > 0] ): if len(keys) == 0 or keys[0] == configKeys.CONFIG_DUC_GROUP: ret[configKeys.CONFIG_DUC_GROUP] = {} # -- Wideband if self.numWbducGroups > 0: if len(keys) < 2: ret[configKeys.CONFIG_DUC_GROUP][configKeys.CONFIG_WBDUC_GROUP] = \ self.queryDucGroupConfigurationNew(wideband=True, ducGroupIndex=None) elif keys[1] == configKeys.CONFIG_WBDUC_GROUP: ducGroupIndex = None if len(keys) == 2 else int(keys[2]) ret[configKeys.CONFIG_DUC_GROUP][configKeys.CONFIG_WBDUC_GROUP] = \ self.queryDucGroupConfigurationNew(wideband=True, ducGroupIndex=ducGroupIndex) # Get tuner group configuration if self.numTunerGroups > 0: if len(keys) == 0: ret[configKeys.CONFIG_TUNER_GROUP] = self.queryTunerGroupConfigurationNew( tunerGroupIndex=None) elif len(keys) > 0 and keys[0] == configKeys.CONFIG_TUNER_GROUP: tunerGroupIndex = None if len(keys) == 1 else int(keys[1]) ret[configKeys.CONFIG_TUNER_GROUP] = self.queryTunerGroupConfigurationNew( tunerGroupIndex=tunerGroupIndex) # Query IP configuration if len(keys) == 0 or keys[0] == configKeys.CONFIG_IP: if len(keys) == 0: ret[configKeys.CONFIG_IP] = self.queryIpConfigurationNew(gigEPortIndex=None) elif len(keys) > 0 and keys[0] == configKeys.CONFIG_IP: gigEPortIndex = None if len(keys) == 1 else int(keys[1]) ret[configKeys.CONFIG_IP] = self.queryIpConfigurationNew(gigEPortIndex=gigEPortIndex) # Update the internal configuration dictionary based on query results self.configuration.update(ret) # Return the result return ret ## # \protected # \brief Queries hardware to determine the object's current configuration. def _queryConfiguration(self): # Call the base-class implementation configKeys.Configurable._queryConfiguration(self) # Override for cmdClass, configKey in [ \ (self.cfgCmd, configKeys.CONFIG_MODE), \ (self.refCmd, configKeys.REFERENCE_MODE), \ (self.rbypCmd, configKeys.BYPASS_MODE), \ (self.calfCmd, configKeys.CALIB_FREQUENCY), \ (self.fnrCmd, configKeys.FNR_MODE), \ (self.gpsCmd, configKeys.GPS_ENABLE), \ (self.rtvCmd, configKeys.REF_TUNING_VOLT), \ (self.fpgaStateCmd, configKeys.FPGA_STATE), \ (self.funCmd, configKeys.RADIO_FUNCTION), \ (self.refCmd, configKeys.STATUS_PPS_SOURCE), \ # (self.cntrlCmd, configKeys.CNTRL_IF_OUT), \ ]: if cmdClass is not None: cmd = cmdClass(parent=self, query=True, verbose=self.verbose, logFile=self.logFile) cmd.send( self.sendCommand, ) self._addLastCommandErrorInfo(cmd) rspInfo = cmd.getResponseInfo() #self.logIfVerbose("DEBUG:", cmd.mnemonic, "rspInfo=", rspInfo) if rspInfo is not None: self.configuration[configKey] = rspInfo.get(configKey, 0) # IP configuration query -- The format of this section depends on whether # the radio has Gigabit Ethernet ports on it or not. if configKeys.CONFIG_IP not in self.configuration: self.configuration[configKeys.CONFIG_IP] = {} self.configuration[configKeys.CONFIG_IP].update( self.queryIpConfigurationNew() ) ## # \protected # \brief Issues hardware commands to set the object's current configuration. def _setConfiguration(self, confDict): ret = True for cmdClass, configKey in [ \ (self.cfgCmd, configKeys.CONFIG_MODE), \ (self.refCmd, configKeys.REFERENCE_MODE), \ (self.rbypCmd, configKeys.BYPASS_MODE), \ (self.calfCmd, configKeys.CALIB_FREQUENCY), \ (self.fnrCmd, configKeys.FNR_MODE), \ (self.gpsCmd, configKeys.GPS_ENABLE), \ (self.rtvCmd, configKeys.REF_TUNING_VOLT), \ (self.fpgaStateCmd, configKeys.FPGA_STATE), \ (self.refCmd, configKeys.STATUS_PPS_SOURCE), \ (self.cntrlCmd, configKeys.CNTRL_IF_OUT), \ ]: cDict = { "parent": self, \ "verbose": self.verbose, \ "logFile": self.logFile, \ configKey: confDict.get(configKey, 0) } if configKey in confDict and cmdClass is not None and \ cmdClass.settable: cmd = cmdClass(**cDict) ret &= cmd.send( self.sendCommand, ) ret &= cmd.success self._addLastCommandErrorInfo(cmd) if ret: self.configuration[configKey] = getattr(cmd, configKey) pass return ret ## # \protected # \brief Gets whether or not the given (nested) dictionary has an entry for the given keys. # # \param dicty The dictionary to search. # \param keys A number of comma-separated search keys, each pointing to a deeper level # of the dictionary hierarchy. # \return True if the dictionary has the entry, False otherwise. def _dictHasEntry(self, dicty, *keys): ret = True keysOk = [ q != "" for q in keys ] if all(keysOk): tmp = dicty for key in keys: if key not in tmp: ret = False break else: tmp = tmp[key] else: ret = False return ret ## # \protected # \brief Ensures that we make an entry in the given dictionary with the specified keys, using # the provided default for the entry. # # @param dicty The dictionary to manipulate. # @param default The default value to use for the entry if it does not already exist. # @param keys A number of comma-separated search keys, each pointing to a deeper level # of the dictionary hierarchy. def _dictEnsureEntry(self, dicty, default, *keys): tmp = dicty # Create intermediate sub-dicts if needed for i, key in enumerate(keys): if i < len(keys)-1: if key not in tmp: #print "[DBG] sub-dict key", key, "not present" tmp[key] = {} else: #print "[DBG] sub-dict key", key, "present" pass tmp = tmp[key] else: if key not in tmp: #print "[DBG] value key", key, "not present" tmp[key] = default else: #print "[DBG] value key", key, "present" pass pass ## # \protected # \brief Ensures that a given nested dictionary item is set to the provided value, # even if the item does not already exist. # \param dicty The dictionary to manipulate. # \param value The value to set the entry to. # \param keys A number of comma-separated search keys, each pointing to a deeper level # of the dictionary hierarchy. def _dictEnsureEntrySet(self, dicty, value, *keys): self._dictEnsureEntry(dicty, value, *keys) tmp = dicty for i, key in enumerate(keys): if i < len(keys)-1: tmp = tmp[key] else: try: tmp[key] = copy.deepcopy(value) except: tmp[key] = value ## # \protected # \brief Gets a value from a dictionary in a "safe" way, using a default in case there is # no entry for the given set of keys. # # \param dicty The dictionary to query. # \param default The default value to use if the keys do not point to a valid entry. # \param keys A number of comma-separated search keys, each pointing to a deeper level # of the dictionary hierarchy. # \return The entry from the dictionary, or the default if the entry does not exist. def _dictSafeGet(self, dicty, default, *keys): ret = default if len(keys) > 0 else dicty if self._dictHasEntry(dicty, *keys): tmp = dicty for i, key in enumerate(keys): if i < len(keys)-1: tmp = tmp[key] else: ret = tmp[key] return ret ## # \internal # \brief Initializes the radio handler object after connecting to crdd. # def _crddInitialize(self): # Optionally, send crdd our client ID if self.clientId is not None: rsp = self._crddSendCommand(cmd="CLIENTID", data=self.clientId) # Get the radio's current configuration from crdd self._crddGetConfiguration() pass ## # \internal # \brief Sends a command to crdd. # \note This capability does not depend on whether the radio is JSON or not. # \param cmd Command mnemonic # \param data Data to send as a command parameter. What actually gets sent # over the link is this object's string representation. Can be None, in # which case only the command gets sent. # \returns Either a list of response strings (if the command completed # successfully), or None (if it did not). def _crddSendCommand(self, cmd, data=None): outCmd = self.crddCommandPrefix + str(cmd) if data is not None: outCmd += " " + str(data) outCmd += "\n" return self.sendCommand(outCmd) ## # \internal # \brief Unpacks the provided configuration dictionary, setting the # configuration of all components. # \param configuration Fully-specified configuration dictionary. def _crddUnpackConfiguration(self, configuration): # Unpack the full configuration fullConfiguration = copy.deepcopy(configuration) # -- Tuner configuration cDict = fullConfiguration.pop(configKeys.CONFIG_TUNER, {}) for index in list(cDict.keys()): self.tunerDict[index].configuration = cDict[index] # -- DDC configuration cDict = fullConfiguration.pop(configKeys.CONFIG_DDC, {}) for ddcType in list(cDict.keys()): ddcDict = self.wbddcDict if ddcType == "narrowband": ddcDict = self.nbddcDict for index in list(cDict[ddcType].keys()): ddcDict[index].configuration = cDict[ddcType][index] # -- FFT streams cDict = fullConfiguration.pop(configKeys.CONFIG_FFT, {}) for index in list(cDict.keys()): self.fftStreamDict[index].configuration = cDict[index] # -- TX configuration cDict = fullConfiguration.pop(configKeys.CONFIG_TX, {}) for index in list(cDict.keys()): cDict2 = cDict[index].pop(configKeys.CONFIG_CW, {}) for index2 in list(cDict2.keys()): self.txDict[index].toneGenDict[index2].configuration = cDict2[index2] self.txDict[index].configuration = cDict[index] # -- DUC configuration cDict = fullConfiguration.pop(configKeys.CONFIG_DUC, {}) for ducType in list(cDict.keys()): ducDict = self.wbducDict if ducType == "narrowband": ducDict = self.nbducDict for index in list(cDict[ducType].keys()): ducDict[index].configuration = cDict[ducType][index] # -- DDC group configuration cDict = fullConfiguration.pop(configKeys.CONFIG_DDC_GROUP, {}) for ddcType in list(cDict.keys()): ddcDict = self.wbddcGroupDict if ddcType == "narrowband": ddcDict = self.nbddcGroupDict elif ddcType == "combined": ddcDict = self.cddcGroupDict for index in list(cDict[ddcType].keys()): ddcDict[index].configuration = cDict[ddcType][index] # -- WBDUC groups cDict = fullConfiguration.pop(configKeys.CONFIG_DUC_GROUP, {}) for ducType in list(cDict.keys()): ducDict = self.wbducGroupDict #if ducType == "narrowband": # ducDict = self.nbducGroupDict for index in list(cDict[ducType].keys()): ducDict[index].configuration = cDict[ducType][index] # -- Tuner groups cDict = fullConfiguration.pop(configKeys.CONFIG_TUNER_GROUP, {}) for index in list(cDict.keys()): self.tunerGroupDict[index].configuration = cDict[index] # -- What is left after all the popping are the radio-specific # config items, and the IP config self.configuration = fullConfiguration pass ## # \internal # \brief Gets the radio's current configuration from crdd. # \note This capability does not depend on whether the radio is JSON or not. # \returns Either the returned configuration dictionary (if the command # completed successfully), or an empty dictionary (if it did not). def _crddGetConfiguration(self): ret = {} # Get the radio's current configuration from crdd rsp = self._crddSendCommand(cmd="GETCFG", data=None) # Deal with out-of-bound conditions try: if all( [ rsp is not None, rsp != "Empty Read", rsp[0] != "TIMEOUT" ] ): # Get the returned full configuration by running the first response # string (the config dict) through ast.literal_eval(). ret = ast.literal_eval(rsp[0]) # Unpack the full configuration self._crddUnpackConfiguration(ret) except: pass return ret ## # \internal # \brief Sets the radio's current configuration using crdd. # \note This capability does not depend on whether the radio is JSON or not. # \return True if all commands completed successfully, False otherwise. # Use getLastCommandErrorInfo() to retrieve any error information. def _crddSetConfiguration(self, configDict={}): ret = False # Get the radio's current configuration from crdd rsp = self._crddSendCommand(cmd="SETCFG", data=configDict) # Deal with out-of-bound conditions try: if all( [ rsp is not None, rsp != "Empty Read", rsp[0] != "TIMEOUT" ] ): #self.log("[DBG] rsp =", str(rsp)) # First response string: SUCCESS or ERROR (plus error info) ret = ( rsp[0] == "SUCCESS" ) if not ret: # Grab the error info (serialized as a list of strings) self.cmdErrorInfo = ast.literal_eval(rsp[0].replace("ERROR: ", "")) # Second response string: Updated configuration dictionary string. # Run this through ast.literal_eval(). configuration = ast.literal_eval(rsp[1]) # Unpack the full configuration self._crddUnpackConfiguration(configuration) except: pass return ret ## # \internal # \brief Queries the radio's current configuration from crdd. # \note This capability does not depend on whether the radio is JSON or not. # \param keys List of keys used to specify which configuration values to query. # \returns Either the returned configuration dictionary (if the command # completed successfully), or an empty dictionary (if it did not). def _crddQueryConfigurationByKeys(self, *keys): ret = {} # Query the radio's current configuration from crdd rsp = self._crddSendCommand(cmd="QUERYCFGK", data=list(keys)) # Deal with out-of-bound conditions try: if all( [ rsp is not None, rsp != "Empty Read", rsp[0] != "TIMEOUT" ] ): # Get the returned configuration by running the first response # string (the config dict) through ast.literal_eval(). ret = ast.literal_eval(rsp[0]) except: pass return ret ## # \internal # \brief Gets the list of currently connected data port indices from crdd. # \note This capability does not depend on whether the radio is JSON or not. # \returns Either the returned data port list (if the command # completed successfully), or an empty list (if it did not). def _crddGetConnectedDataPortIndices(self): ret = [] # Get the radio's current configuration from crdd rsp = self._crddSendCommand(cmd="QUERYCDPS", data=None) # Deal with out-of-bound conditions try: if all( [ rsp is not None, rsp != "Empty Read", rsp[0] != "TIMEOUT" ] ): # Get the returned list by running the first response # string (the data port list) through ast.literal_eval(). ret = ast.literal_eval(rsp[0]) except: pass return ret ## # \internal # \brief Helper method for converting Unicode strings to ASCII strings # during the JSON conversion process. # # The JSON-formatted string will have elements whose names # correspond to the names of this entity's attributes. # # \param data The entity being encoded as JSON. @staticmethod def encodeJsonAsAscii(data): def _foo(item): ret = item if isinstance(item, str): ret = item.encode('ascii') elif isinstance(item, list): ret = [ _foo(q) for q in item ] elif isinstance(item, dict): ret = { _foo(key): _foo(value) for key, value in item.items() } return ret adjPairs = [] for pair in data: adjPairs.append( (_foo(pair[0]), _foo(pair[1])) ) return dict(adjPairs) ## # \brief Resets the radio. # # \copydetails CyberRadioDriver::IRadio::sendReset() def sendReset(self, resetType=None): if self.resetCmd is not None: cDict = { "parent": self, "verbose": self.verbose, "logFile": self.logFile, configKeys.RESET_TYPE: resetType, } cmd = self.resetCmd(**cDict) cmd.send( self.sendCommand, ) return cmd.success else: return False #time.sleep(20) #self.connect(self.mode,self.host_or_dev,self.port_or_baudrate) ## # \brief Gets the pulse-per-second (PPS) rising edge from the radio. # # \copydetails CyberRadioDriver::IRadio::getPps() def getPps(self): if self.ppsCmd is not None: cmd = command.pps(parent=self,query=True, verbose=self.verbose, logFile=self.logFile) cmd.send(self.sendCommand, timeout=cmd.timeout) return cmd.success else: return False ## # \brief Sets the time for the next PPS rising edge on the radio. # # \copydetails CyberRadioDriver::IRadio::setTimeNextPps() def setTimeNextPps(self,checkTime=False,useGpsTime=False,newPpsTime=None): if self.ppsCmd is not None and self.utcCmd is not None: if self.getPps(): if newPpsTime is not None: nextSecond = int( _radio.timeFromString(newPpsTime, utc=True) ) cmd = self.utcCmd( parent=self, utcTime=str(nextSecond), verbose=self.verbose, logFile=self.logFile ) elif useGpsTime: cmd = self.utcCmd( parent=self, utcTime="g" ) else: nextSecond = int( math.floor( time.time() ) )+1 cmd = self.utcCmd( parent=self, utcTime=str(nextSecond), verbose=self.verbose, logFile=self.logFile ) cmd.send( self.sendCommand, timeout=cmd.timeout ) if checkTime: radioUtc = self.getTimeNextPps() self.logIfVerbose("Set time = %d & Query time = %d" % (nextSecond,radioUtc)) return radioUtc==nextSecond else: return cmd.success else: self.log("ERROR, ERROR, ERROR".center(80,"!")) return False else: return False ## # \brief Gets the current radio time. # # \copydetails CyberRadioDriver::IRadio::getTimeNow() def getTimeNow(self): if self.utcCmd is not None: cmd = self.utcCmd( parent=self, query=True, verbose=self.verbose, logFile=self.logFile ) cmd.send( self.sendCommand, timeout=cmd.timeout ) return cmd.getResponseInfo().get(configKeys.TIME_UTC, None) else: return None ## # \brief Gets the time for the next PPS rising edge on the radio. # # \copydetails CyberRadioDriver::IRadio::getTimeNextPps() def getTimeNextPps(self): if self.ppsCmd is not None and self.utcCmd is not None: if self.getPps(): cmd = self.utcCmd( parent=self, query=True, verbose=self.verbose, logFile=self.logFile ) cmd.send( self.sendCommand, timeout=cmd.timeout ) return cmd.getResponseInfo().get(configKeys.TIME_UTC, None) else: return None else: return None ## # \brief Gets the status from the radio. # # \copydetails CyberRadioDriver::IRadio::getStatus() def getStatus(self): if self.statQry is not None: cmd = self.statQry(parent=self, verbose=self.verbose, logFile=self.logFile) cmd.send( self.sendCommand ) return cmd.getResponseInfo() else: self.log("No status query available.") return None ## # \brief Gets the RF tuner status from the radio. # # \copydetails CyberRadioDriver::IRadio::getTstatus() def getTstatus(self): if self.tstatQry is not None: cmd = self.tstatQry(parent=self, verbose=self.verbose, logFile=self.logFile) cmd.send( self.sendCommand ) return cmd.getResponseInfo() else: self.log("No tuner status query available.") return None ## # \brief Sets the reference mode on the radio. # # \copydetails CyberRadioDriver::IRadio::setReferenceMode() def setReferenceMode(self,mode): try: modeInt = int(mode) if int(mode) in list(self.refModes.keys()) else None except: modeInt = None if modeInt is not None and self.refCmd is not None: self.logIfVerbose("Setting reference mode %d (%s)"%(modeInt,self.refModes.get(modeInt))) cmd = self.refCmd(parent=self, referenceMode=modeInt, verbose=self.verbose, logFile=self.logFile) ret = cmd.send( self.sendCommand ) if ret and cmd.success: self.configuration[configKeys.REFERENCE_MODE] = getattr(cmd, configKeys.REFERENCE_MODE) return cmd.success else: return False ## # \brief Sets the reference bypass mode on the radio. # # \copydetails CyberRadioDriver::IRadio::setBypassMode() def setBypassMode(self,mode): try: modeInt = int(mode) if int(mode) in list(self.rbypModes.keys()) else None except: modeInt = None if modeInt is not None and self.rbypCmd is not None: self.logIfVerbose("Setting bypass mode %d (%s)"%(modeInt,self.rbypModes.get(modeInt))) cmd = self.rbypCmd(parent=self, bypassMode=modeInt, verbose=self.verbose, logFile=self.logFile) ret = cmd.send( self.sendCommand ) if ret and cmd.success: self.configuration[configKeys.BYPASS_MODE] = getattr(cmd, configKeys.BYPASS_MODE) return cmd.success else: return False ## # \brief Sets the time adjustment for tuners on the radio. # # \copydetails CyberRadioDriver::IRadio::setTimeAdjustment() def setTimeAdjustment(self, tunerIndex=None, timeAdjustValue=0): if self.tadjCmd is not None: success = True for i in self._getIndexList(tunerIndex, self.tunerDict): # cmd = self.tadjCmd(parent=self,index=i, timingAdjustment=timeAdjustValue, # verbose=self.verbose, logFile=self.logFile) # success &= cmd.send( self.sendCommand ) success &= self.setConfiguration( { configKeys.CONFIG_TUNER : { i: { configKeys.TUNER_TIMING_ADJ: timeAdjustValue, } } } ) return success else: return False ## # \brief Sets the calibration frequency on the radio. # # \copydetails CyberRadioDriver::IRadio::setCalibrationFrequency() def setCalibrationFrequency(self, calibFrequency=0): if self.calfCmd is not None: cmd = self.calfCmd(parent=self, calibFrequency=calibFrequency, verbose=self.verbose, logFile=self.logFile) ret = cmd.send( self.sendCommand ) if ret and cmd.success: self.configuration[configKeys.CALIB_FREQUENCY] = getattr(cmd, configKeys.CALIB_FREQUENCY) return cmd.success else: return False ## # \brief Gets the current GPS position. # # \copydetails CyberRadioDriver::IRadio::getGpsPosition() def getGpsPosition(self): # Helper function that converts GPS coordinates from the NMEA # format to decimal degrees def degMinToDecimalDeg(coordinate): # Converts from [NESW](d)ddmm.mmmm(mm) format to decimal degrees # degDigits == number of digits used for degrees (2 for lat, 3 for lon) # Last (decimal places + 3) characters == Minutes ret = 0.0 # -- Get the sign from the directional indicator sgn = (-1 if coordinate[0] in ["W", "S"] else 1) # -- Find the decimal point position coord = coordinate[1:] dotPos = coord.find(".") minLen = len(coord) - dotPos + 2 min = float( coord[-minLen:] ) deg = float( coord[:-minLen] ) if deg < 0.0: ret = deg - min / 60.0 else: ret = deg + min / 60.0 ret = ret * sgn return ret if self.gposCmd is not None: cmd = self.gposCmd( parent=self, query=True, verbose=self.verbose, logFile=self.logFile ) cmd.send( self.sendCommand, timeout=cmd.timeout ) latStr = cmd.getResponseInfo().get(configKeys.GPS_LATITUDE, "N0000.000000") lonStr = cmd.getResponseInfo().get(configKeys.GPS_LONGITUDE, "E0000.000000") return ( degMinToDecimalDeg(latStr), degMinToDecimalDeg(lonStr) ) else: return (0.0, 0.0) ## # \brief Gets the current radio temperature. # # \copydetails CyberRadioDriver::IRadio::getTemperature() def getTemperature(self): if self.tempCmd is not None: cmd = self.tempCmd( parent=self, query=True, verbose=self.verbose, logFile=self.logFile ) cmd.send( self.sendCommand, timeout=cmd.timeout ) return cmd.getResponseInfo().get(configKeys.TEMPERATURE, 0) else: return 0 ## # \brief Gets the current GPIO output bits. # # \copydetails CyberRadioDriver::IRadio::getGpioOutput() def getGpioOutput(self): if self.gpioStaticCmd is not None: cmd = self.gpioStaticCmd( parent=self, query=True, verbose=self.verbose, logFile=self.logFile ) cmd.send( self.sendCommand, timeout=cmd.timeout ) return cmd.getResponseInfo().get(configKeys.GPIO_VALUE, 0) else: return 0 ## # \brief Gets the GPIO output settings for a given sequence index. # # \copydetails CyberRadioDriver::IRadio::getGpioOutputByIndex() def getGpioOutputByIndex(self, index): if self.gpioSeqCmd is not None: cmd = self.gpioSeqCmd( parent=self, query=True, index=index, verbose=self.verbose, logFile=self.logFile ) cmd.send( self.sendCommand, timeout=cmd.timeout ) return ( cmd.getResponseInfo().get(configKeys.GPIO_VALUE, 0), cmd.getResponseInfo().get(configKeys.GPIO_DURATION, 0), cmd.getResponseInfo().get(configKeys.GPIO_LOOP, 0) ) else: return (0, 0, 0) ## # \brief Sets the current GPIO output bits. # # \copydetails CyberRadioDriver::IRadio::setGpioOutput() def setGpioOutput(self, value): if self.gpioStaticCmd is not None: cmd = self.gpioStaticCmd(parent=self, value=value, verbose=self.verbose, logFile=self.logFile) ret = cmd.send( self.sendCommand ) return cmd.success else: return False ## # \brief Sets the GPIO output settings for a given sequence index. # # \copydetails CyberRadioDriver::IRadio::setGpioOutputByIndex() def setGpioOutputByIndex(self, index, value, duration, loop, go): if self.gpioSeqCmd is not None: cmd = self.gpioSeqCmd(parent=self, index=index, value=value, duration=duration, loop=loop, go=go, verbose=self.verbose, logFile=self.logFile) ret = cmd.send( self.sendCommand ) return cmd.success else: return False ## # \brief Gets the current bandwith of the given tuner. # \copydetails CyberRadioDriver::IRadio::getTunerBandwidth() def getTunerBandwidth(self, tuner): if tuner not in self.getTunerIndexRange(): raise ValueError("Invalid tuner specified") ret = self.tunerBandwidthConstant if self.tunerBandwithSettable: ifFilter = self.getConfigurationByKeys( configKeys.CONFIG_TUNER, tuner, configKeys.TUNER_IF_FILTER ) if ifFilter is not None: ret = ifFilter * 1e6 return ret ## # \brief Gets the name of the radio. # # \copydetails CyberRadioDriver::IRadio::getName() @classmethod def getName(cls): return cls._name ## # \brief Gets the number of tuners on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumTuner() @classmethod def getNumTuner(cls): return len(cls.getTunerIndexRange()) ## # \brief Gets the number of tuner boards on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumTunerBoards() @classmethod def getNumTunerBoards(cls): return cls.numTunerBoards ## # \brief Gets the index range for the tuners on the radio. # # \copydetails CyberRadioDriver::IRadio::getTunerIndexRange() @classmethod def getTunerIndexRange(cls): return list(range(cls.tunerIndexBase, cls.tunerIndexBase + cls.numTuner, 1)) ## # \brief Gets the frequency range for the tuners on the radio. # # \copydetails CyberRadioDriver::IRadio::getTunerFrequencyRange() @classmethod def getTunerFrequencyRange(cls): return cls.tunerType.frqRange ## # \brief Gets the frequency resolution for tuners on the radio. # # \copydetails CyberRadioDriver::IRadio::getTunerFrequencyRes() @classmethod def getTunerFrequencyRes(cls): return cls.tunerType.frqRes ## # \brief Gets the frequency unit for tuners on the radio. # # \copydetails CyberRadioDriver::IRadio::getTunerFrequencyUnit() @classmethod def getTunerFrequencyUnit(cls): return cls.tunerType.frqUnits ## # \brief Gets the attenuation range for the tuners on the radio. # # \copydetails CyberRadioDriver::IRadio::getTunerAttenuationRange() @classmethod def getTunerAttenuationRange(cls): return cls.tunerType.attRange ## # \brief Gets the attenuation resolution for tuners on the radio. # # \copydetails CyberRadioDriver::IRadio::getTunerAttenuationRes() @classmethod def getTunerAttenuationRes(cls): return cls.tunerType.attRes ## # \brief Gets the ifFilter list for the tuners of the radio # # \copydetails CyberRadioDriver::IRadio::getTunerIfFilterList() @classmethod def getTunerIfFilterList(cls): return cls.tunerType.ifFilters ## # \brief Gets whether or not the radio supports setting tuner # bandwidth # # \copydetails CyberRadioDriver::IRadio::isTunerBandwidthSettable() @classmethod def isTunerBandwidthSettable(cls): return cls.tunerBandwithSettable ## # \brief Gets the number of wideband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumWbddc() @classmethod def getNumWbddc(cls): return len(cls.getWbddcIndexRange()) ## # \brief Gets whether the DDCs on the radio have selectable sources. # # \copydetails CyberRadioDriver::IRadio::isDdcSelectableSource() @classmethod def isDdcSelectableSource(cls, wideband): ddcType = cls.wbddcType if wideband else cls.nbddcType return False if ddcType is None else ddcType.selectableSource ## # \brief Gets whether the wideband or narrowband DDCs on the radio are tunable. # # \copydetails CyberRadioDriver::IRadio::isNbddcTunable() @classmethod def isDdcTunable(cls, wideband): ddcType = cls.wbddcType if wideband else cls.nbddcType return False if ddcType is None else ddcType.tunable ## # \brief Gets the index range for the wideband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbddcIndexRange() @classmethod def getWbddcIndexRange(cls): return list(range(cls.wbddcIndexBase, cls.wbddcIndexBase + cls.numWbddc, 1)) ## # \brief Gets whether the wideband DDCs on the radio are tunable. # # \copydetails CyberRadioDriver::IRadio::isWbddcSelectableSource() @classmethod def isWbddcSelectableSource(cls): return False if cls.wbddcType is None else cls.wbddcType.selectableSource ## # \brief Gets whether the wideband DDCs on the radio have selectable # sources. # # \copydetails CyberRadioDriver::IRadio::isWbddcTunable() @classmethod def isWbddcTunable(cls): return False if cls.wbddcType is None else cls.wbddcType.tunable ## # \brief Gets the frequency offset range for the wideband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbddcFrequencyRange() @classmethod def getWbddcFrequencyRange(cls): return (0.0,0.0) if cls.wbddcType is None else cls.wbddcType.frqRange ## # \brief Gets the frequency offset resolution for wideband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbddcFrequencyRes() @classmethod def getWbddcFrequencyRes(cls): return 0.0 if cls.wbddcType is None else cls.wbddcType.frqRes ## # \brief Gets the allowed rate set for the wideband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbddcRateSet() @classmethod def getWbddcRateSet(cls, index=None): return cls.getDdcRateSet(True, index) ## # \brief Gets the allowed rate list for the wideband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbddcRateList() @classmethod def getWbddcRateList(cls, index=None): return cls.getDdcRateList(True, index) ## # \brief Gets the allowed rate set for the wideband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbddcBwSet() @classmethod def getWbddcBwSet(cls, index=None): return cls.getDdcBwSet(True, index) ## # \brief Gets the allowed rate list for the wideband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbddcBwList() @classmethod def getWbddcBwList(cls, index=None): return cls.getDdcBwList(True, index) ## # \brief Gets the number of narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumNbddc() @classmethod def getNumNbddc(cls): return len(cls.getNbddcIndexRange()) ## # \brief Gets the index range for the narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNbddcIndexRange() @classmethod def getNbddcIndexRange(cls): if cls.numNbddc == 0: return [] elif cls.nbddcIndexOverride is not None: return cls.nbddcIndexOverride else: return list(range(cls.nbddcIndexBase, cls.nbddcIndexBase + cls.numNbddc, 1)) ## # \brief Gets whether the narrowband DDCs on the radio are tunable. # # \copydetails CyberRadioDriver::IRadio::isNbddcTunable() @classmethod def isNbddcTunable(cls): return False if cls.nbddcType is None else cls.nbddcType.tunable ## # \brief Gets whether the narrowband DDCs on the radio have selectable # sources. # # \copydetails CyberRadioDriver::IRadio::isNbddcSelectableSource() @classmethod def isNbddcSelectableSource(cls): return False if cls.nbddcType is None else cls.nbddcType.selectableSource ## # \brief Gets the frequency offset range for the narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNbddcFrequencyRange() @classmethod def getNbddcFrequencyRange(cls): return (0.0,0.0) if cls.nbddcType is None else cls.nbddcType.frqRange ## # \brief Gets the frequency offset resolution for narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNbddcFrequencyRes() @classmethod def getNbddcFrequencyRes(cls): return 0.0 if cls.nbddcType is None else cls.nbddcType.frqRes ## # \brief Gets the allowed rate set for the narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNbddcRateSet() @classmethod def getNbddcRateSet(cls, index=None): return cls.getDdcRateSet(False, index) ## # \brief Gets the allowed rate list for the narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNbddcRateList() @classmethod def getNbddcRateList(cls, index=None): return cls.getDdcRateList(False, index) ## # \brief Gets the allowed rate set for the narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNbddcBwSet() @classmethod def getNbddcBwSet(cls, index=None): return cls.getDdcBwSet(False, index) ## # \brief Gets the allowed rate list for the narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNbddcBwList() @classmethod def getNbddcBwList(cls, index=None): return cls.getDdcBwList(False, index) ## # \brief Gets the number of narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumFftStream() @classmethod def getNumFftStream(cls): return len(cls.getFftStreamIndexRange()) ## # \brief Gets the index range for the narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getFftStreamIndexRange() @classmethod def getFftStreamIndexRange(cls): return [] if cls.numFftStream == 0 else \ list(range(cls.fftStreamIndexBase, cls.fftStreamIndexBase + cls.numFftStream, 1)) ## # \brief Gets the allowed rate set for the FFTs on the radio. # # \copydetails CyberRadioDriver::IRadio::getFftStreamRateSet() @classmethod def getFftStreamRateSet(cls,): return cls.fftStreamType.getDdcRateSet() if cls.fftStreamType is not None else {} ## # \brief Gets the allowed rate list for the FFTs on the radio. # # \copydetails CyberRadioDriver::IRadio::getFftStreamRateList() @classmethod def getFftStreamRateList(cls,): return cls.fftStreamType.getDdcRateList() if cls.fftStreamType is not None else [] ## # \brief Gets the allowed window set for the FFTs on the radio. # # \copydetails CyberRadioDriver::IRadio::getFftStreamWindowSet() @classmethod def getFftStreamWindowSet(cls,): return cls.fftStreamType.getWindowSet() if cls.fftStreamType is not None else {} ## # \brief Gets the allowed window list for the FFTs on the radio. # # \copydetails CyberRadioDriver::IRadio::getFftStreamWindowList() @classmethod def getFftStreamWindowList(cls,): return sorted(cls.fftStreamType.getWindowSet().keys()) if cls.fftStreamType is not None else [] ## # \brief Gets the allowed size set for the FFTs on the radio. # # \copydetails CyberRadioDriver::IRadio::getFftStreamSizeSet() @classmethod def getFftStreamSizeSet(cls,): return cls.fftStreamType.getSizeSet() if cls.fftStreamType is not None else {} ## # \brief Gets the allowed size list for the FFTs on the radio. # # \copydetails CyberRadioDriver::IRadio::getFftStreamSizeList() @classmethod def getFftStreamSizeList(cls,): return sorted(cls.fftStreamType.getSizeSet().keys()) if cls.fftStreamType is not None else [] ## # \brief Gets the ADC sample rate for the radio. # # \copydetails CyberRadioDriver::IRadio::getAdcRate() @classmethod def getAdcRate(cls): return cls.adcRate ## # \brief Gets the VITA 49 header size for the radio. # # \copydetails CyberRadioDriver::IRadio::getVitaHeaderSize() @classmethod def getVitaHeaderSize(cls, payloadType=None): return 4 * cls.ifSpecMap.get(payloadType, cls.ifSpec).headerSizeWords ## # \brief Gets the VITA 49 payload size for the radio. # # \copydetails CyberRadioDriver::IRadio::getVitaPayloadSize() @classmethod def getVitaPayloadSize(cls, payloadType=None): return 4 * cls.ifSpecMap.get(payloadType, cls.ifSpec).payloadSizeWords ## # \brief Gets the VITA 49 tail size for the radio. # # \copydetails CyberRadioDriver::IRadio::getVitaTailSize() @classmethod def getVitaTailSize(cls, payloadType=None): return 4 * cls.ifSpecMap.get(payloadType, cls.ifSpec).tailSizeWords ## # \brief Gets dictionary with information about VITA 49 framing. # # \copydetails CyberRadioDriver::IRadio::getVitaFrameInfoDict() @classmethod def getVitaFrameInfoDict(cls, payloadType=None): return cls.ifSpecMap.get(payloadType, cls.ifSpec).getVitaFrameInfoDict() # \brief Gets whether data coming from the radio is byte-swapped with # respect to the endianness of the host operating system. # # \copydetails CyberRadioDriver::IRadio::isByteswapped() @classmethod def isByteswapped(cls, payloadType=None): return (cls.ifSpecMap.get(payloadType, cls.ifSpec).byteOrder != sys.byteorder) ## # \brief Gets whether data coming from the radio has I and Q data swapped. # # \copydetails CyberRadioDriver::IRadio::isIqSwapped() @classmethod def isIqSwapped(cls, payloadType=None): return cls.ifSpecMap.get(payloadType, cls.ifSpec).iqSwapped ## # \brief Gets the byte order for data coming from the radio. # # \copydetails CyberRadioDriver::IRadio::getByteOrder() @classmethod def getByteOrder(cls, payloadType=None): return cls.ifSpecMap.get(payloadType, cls.ifSpec).byteOrder ## # \brief Gets the number of Gigabit Ethernet interfaces on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumGigE() @classmethod def getNumGigE(cls): return len(cls.getGigEIndexRange()) ## # \brief Gets the index range for the Gigabit Ethernet interfaces on the radio. # # \copydetails CyberRadioDriver::IRadio::getGigEIndexRange() @classmethod def getGigEIndexRange(cls): return [] if cls.numGigE == 0 else \ list(range(cls.gigEIndexBase, cls.gigEIndexBase + cls.numGigE, 1)) ## # \brief Gets the number of destination IP address table entries available for # each Gigabit Ethernet interface on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumGigEDipEntries() @classmethod def getNumGigEDipEntries(cls): return len(cls.getGigEDipEntryIndexRange()) ## # \brief Gets the index range for the destination IP address table entries # available for the Gigabit Ethernet interfaces on the radio. # # \copydetails CyberRadioDriver::IRadio::getGigEDipEntryIndexRange() @classmethod def getGigEDipEntryIndexRange(cls): return [] if cls.numGigE == 0 else \ list(range(cls.gigEDipEntryIndexBase, \ cls.gigEDipEntryIndexBase + cls.numGigEDipEntries, 1)) ## # \brief Gets the list of connection modes that the radio supports. # # \copydetails CyberRadioDriver::IRadio::getConnectionModeList() @classmethod def getConnectionModeList(cls): return [] if cls.connectionModes is None else cls.connectionModes ## # \brief Gets whether the radio supports a given connection mode. # # \copydetails CyberRadioDriver::IRadio::isConnectionModeSupported() @classmethod def isConnectionModeSupported(cls, mode): return mode in cls.getConnectionModeList() ## # \brief Gets the radio's default baud rate. # # \copydetails CyberRadioDriver::IRadio::getDefaultBaudrate() @classmethod def getDefaultBaudrate(cls): return cls.defaultBaudrate ## # \brief Gets the radio's default control port. # # \copydetails CyberRadioDriver::IRadio::getDefaultControlPort() @classmethod def getDefaultControlPort(cls): return cls.defaultPort ## # \brief Gets the allowed VITA enable options set for the radio. # # \copydetails CyberRadioDriver::IRadio::getVitaEnableOptionSet() @classmethod def getVitaEnableOptionSet(cls): return {} if cls.vitaEnableOptions is None else cls.vitaEnableOptions ## # \brief Gets the number of transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumTransmitters() @classmethod def getNumTransmitters(cls): return len(cls.getTransmitterIndexRange()) ## # \brief Gets the index range for the transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterIndexRange() @classmethod def getTransmitterIndexRange(cls): return [] if cls.numTxs == 0 else \ list(range(cls.txIndexBase, \ cls.txIndexBase + cls.numTxs, 1)) ## # \brief Gets the frequency range for the transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterFrequencyRange() @classmethod def getTransmitterFrequencyRange(cls): return (0.0,0.0) if cls.numTxs == 0 else cls.txType.frqRange ## # \brief Gets the frequency resolution for transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterFrequencyRes() @classmethod def getTransmitterFrequencyRes(cls): return None if cls.numTxs == 0 else cls.txType.frqRes ## # \brief Gets the frequency unit for transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterFrequencyUnit() @classmethod def getTransmitterFrequencyUnit(cls): return None if cls.numTxs == 0 else cls.txType.frqUnits ## # \brief Gets the attenuation range for the transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterAttenuationRange() @classmethod def getTransmitterAttenuationRange(cls): return (0.0,0.0) if cls.numTxs == 0 else cls.txType.attRange ## # \brief Gets the attenuation resolution for transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterAttenuationRes() @classmethod def getTransmitterAttenuationRes(cls): return None if cls.numTxs == 0 else cls.txType.attRes ## # \brief Gets whether transmitters on the radio support continuous-wave # (CW) tone generation. # # \copydetails CyberRadioDriver::IRadio::transmitterSupportsCW() @classmethod def transmitterSupportsCW(cls): return (cls.numTxs > 0 and issubclass(cls.txType.toneGenType, components._cwToneGen)) ## # \brief Gets the number of CW tone generators for each transmitter. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWNum() @classmethod def getTransmitterCWNum(cls): return len(cls.getTransmitterCWIndexRange()) ## # \brief Gets the CW tone generator index range for transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWIndexRange() @classmethod def getTransmitterCWIndexRange(cls): return [] if not cls.transmitterSupportsCW() else \ list(range(cls.txType.toneGenIndexBase, \ cls.txType.toneGenIndexBase + cls.txType.numToneGen, 1)) ## # \brief Gets the CW tone generator frequency range for transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWFrequencyRange() @classmethod def getTransmitterCWFrequencyRange(cls): return (0.0,0.0) if not cls.transmitterSupportsCW() else cls.txType.toneGenType.frqRange ## # \brief Gets the CW tone generator frequency resolution for transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWFrequencyRes() @classmethod def getTransmitterCWFrequencyRes(cls): return None if not cls.transmitterSupportsCW() else cls.txType.toneGenType.frqRes ## # \brief Gets the CW tone generator amplitude range for transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWAmplitudeRange() @classmethod def getTransmitterCWAmplitudeRange(cls): return (0.0,0.0) if not cls.transmitterSupportsCW() else cls.txType.toneGenType.ampRange ## # \brief Gets the CW tone generator amplitude resolution for transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWAmplitudeRes() @classmethod def getTransmitterCWAmplitudeRes(cls): return None if not cls.transmitterSupportsCW() else cls.txType.toneGenType.ampRes ## # \brief Gets the CW tone generator phase range for transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWPhaseRange() @classmethod def getTransmitterCWPhaseRange(cls): return (0.0,0.0) if not cls.transmitterSupportsCW() else cls.txType.toneGenType.phaseRange ## # \brief Gets the CW tone generator phase resolution for transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWPhaseRes() @classmethod def getTransmitterCWPhaseRes(cls): return None if not cls.transmitterSupportsCW() else cls.txType.toneGenType.phaseRes ## # \brief Gets whether transmitters on the radio support sweep functions # during continuous-wave (CW) tone generation. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWPhaseRes() @classmethod def transmitterSupportsCWSweep(cls): return cls.transmitterSupportsCW() and cls.txType.toneGenType.sweepCmd is not None ## # \brief Gets the CW tone generator sweep start frequency range for # transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWSweepStartRange() @classmethod def getTransmitterCWSweepStartRange(cls): return (0.0,0.0) if not cls.transmitterSupportsCWSweep() \ else cls.txType.toneGenType.startRange ## # \brief Gets the CW tone generator sweep start frequency resolution for # transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWSweepStartRes() @classmethod def getTransmitterCWSweepStartRes(cls): return None if not cls.transmitterSupportsCWSweep() \ else cls.txType.toneGenType.startRes ## # \brief Gets the CW tone generator sweep stop frequency range for # transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWSweepStopRange() @classmethod def getTransmitterCWSweepStopRange(cls): return (0.0,0.0) if not cls.transmitterSupportsCWSweep() \ else cls.txType.toneGenType.stopRange ## # \brief Gets the CW tone generator sweep stop frequency resolution for # transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWSweepStopRes() @classmethod def getTransmitterCWSweepStopRes(cls): return None if not cls.transmitterSupportsCWSweep() \ else cls.txType.toneGenType.stopRes ## # \brief Gets the CW tone generator sweep step frequency range for # transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWSweepStepRange() @classmethod def getTransmitterCWSweepStepRange(cls): return (0.0,0.0) if not cls.transmitterSupportsCWSweep() \ else cls.txType.toneGenType.stepRange ## # \brief Gets the CW tone generator sweep step frequency resolution for # transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWSweepStepRes() @classmethod def getTransmitterCWSweepStepRes(cls): return None if not cls.transmitterSupportsCWSweep() \ else cls.txType.toneGenType.stepRes ## # \brief Gets the CW tone generator sweep dwell time range for # transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWSweepDwellRange() @classmethod def getTransmitterCWSweepDwellRange(cls): return (0.0,0.0) if not cls.transmitterSupportsCWSweep() \ else cls.txType.toneGenType.dwellRange ## # \brief Gets the CW tone generator sweep dwell time resolution for # transmitters on the radio. # # \copydetails CyberRadioDriver::IRadio::getTransmitterCWSweepDwellRes() @classmethod def getTransmitterCWSweepDwellRes(cls): return None if not cls.transmitterSupportsCWSweep() \ else cls.txType.toneGenType.dwellRes ## # \brief Gets the number of wideband DUCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumWbduc() @classmethod def getNumWbduc(cls): return len(cls.getWbducIndexRange()) ## # \brief Gets the index range for the wideband DUCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbducIndexRange() @classmethod def getWbducIndexRange(cls): return list(range(cls.wbducIndexBase, cls.wbducIndexBase + cls.numWbduc, 1)) ## # \brief Gets the frequency offset range for the wideband DUCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbducFrequencyRange() @classmethod def getWbducFrequencyRange(cls): return (0.0,0.0) if cls.wbducType is None else cls.wbducType.frqRange ## # \brief Gets the frequency resolution for wideband DUCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbducFrequencyRes() @classmethod def getWbducFrequencyRes(cls): return 0.0 if cls.wbducType is None else cls.wbducType.frqRes ## # \brief Gets the frequency unit for wideband DUCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbducFrequencyUnit() @classmethod def getWbducFrequencyUnit(cls): return 0.0 if cls.wbducType is None else cls.wbducType.frqUnits ## # \brief Gets the attenuation range for the wideband DUCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbducAttenuationRange() @classmethod def getWbducAttenuationRange(cls): return (0.0,0.0) if cls.wbducType is None else cls.wbducType.attRange ## # \brief Gets the attenuation resolution for wideband DUCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbducAttenuationRes() @classmethod def getWbducAttenuationRes(cls): return 0.0 if cls.wbducType is None else cls.wbducType.attRes ## # \brief Gets the allowed rate set for the wideband DUCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbducRateSet() @classmethod def getWbducRateSet(cls): ducObj = cls.wbducType return ducObj.rateSet if ducObj is not None else {} ## # \brief Gets the allowed rate list for the wideband DUCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbducRateList() @classmethod def getWbducRateList(cls): ducObj = cls.wbducType if ducObj is not None: return [ducObj.rateSet[k] for k in sorted(ducObj.rateSet.keys())] else: return [] ## # \brief Gets whether or not the wideband DUCs on the radio support loading # sample snapshots. # # \copydetails CyberRadioDriver::IRadio::wbducSupportsSnapshotLoad() @classmethod def wbducSupportsSnapshotLoad(cls): return (cls.wbducType is not None and cls.wbducType.snapshotLoadCmd is not None) ## # \brief Gets whether or not the wideband DUCs on the radio support # transmitting sample snapshots. # # \copydetails CyberRadioDriver::IRadio::wbducSupportsSnapshotTransmit() @classmethod def wbducSupportsSnapshotTransmit(cls): return (cls.wbducType is not None and cls.wbducType.snapshotTxCmd is not None) ## # \brief Gets the index range for the DDC groups on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbddcGroupIndexRange() @classmethod def getDdcGroupIndexRange(cls, wideband): return cls.getWbddcGroupIndexRange() if wideband else cls.getNbddcGroupIndexRange() ## # \brief Gets the number of wideband DDC groups on the radio. # \copydetails CyberRadioDriver::IRadio::getNumWbddcGroups() @classmethod def getNumWbddcGroups(cls): return len(cls.getWbddcGroupIndexRange()) ## # \brief Gets the index range for the wideband DDC groups on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbddcGroupIndexRange() @classmethod def getWbddcGroupIndexRange(cls): return list(range(cls.wbddcGroupIndexBase, cls.wbddcGroupIndexBase + cls.numWbddcGroups, 1)) ## # \brief Gets the number of narrowband DDC groups on the radio. # \copydetails CyberRadioDriver::IRadio::getNumNbddcGroups() @classmethod def getNumNbddcGroups(cls): return len(cls.getNbddcGroupIndexRange()) ## # \brief Gets the index range for the narrowband DDC groups on the radio. # # \copydetails CyberRadioDriver::IRadio::getNbddcGroupIndexRange() @classmethod def getNbddcGroupIndexRange(cls): return list(range(cls.nbddcGroupIndexBase, cls.nbddcGroupIndexBase + cls.numNbddcGroups, 1)) ## # \brief Gets the number of combined DDC groups on the radio. # \copydetails CyberRadioDriver::IRadio::getNumCombinedDdcGroups() @classmethod def getNumCombinedDdcGroups(cls): return len(cls.getCombinedDdcGroupIndexRange()) ## # \brief Gets the index range for the combined DDC groups on the radio. # # \copydetails CyberRadioDriver::IRadio::getCombinedDdcGroupIndexRange() @classmethod def getCombinedDdcGroupIndexRange(cls): return list(range(cls.cddcGroupIndexBase, cls.cddcGroupIndexBase + cls.numCddcGroups, 1)) ## # \brief Gets the number of wideband DUC groups on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumWbducGroups() @classmethod def getNumWbducGroups(cls): return len(cls.getWbducGroupIndexRange()) ## # \brief Gets the index range for the wideband DUC groups on the radio. # # \copydetails CyberRadioDriver::IRadio::getWbducGroupIndexRange() @classmethod def getWbducGroupIndexRange(cls): return list(range(cls.wbducGroupIndexBase, cls.wbducGroupIndexBase + cls.numWbducGroups, 1)) # ------------- Deprecated/Helper Methods ----------------- # ## # \internal # \brief Define this object's string representation. def __str__(self): return self.name ## # \internal # \brief Helper function that returns an index list. def _getIndexList(self,objIndex,objDict): if objIndex is None: return list(objDict.keys()) elif type(objIndex) is int: return [objIndex,] if objIndex in list(objDict.keys()) else [] elif type(objIndex) is list: return [i for i in objIndex if i in list(objDict.keys())] else: return [] ## # \internal # \brief Helper function that "normalizes" an input configuration dictionary # section by doing the following: # <ul> # <li> Ensuring that keys for any enumerated entries are integers # <li> Expanding sub-dictionaries with the special "all" key # <li> Performing specialization for individual entries # # \param configDict The incoming configuration dictionary. # \param entryIndexList The list of entry indices (used in expanding "all" keys). # \return The new configuration dictionary. def _normalizeConfigDictSection(self, configDict, entryIndexList): newConfigDict = {} # Fix keys in config dictionary convertKeys = [] invalidKeys = [] for key in configDict: try: tmp = int(key) if tmp != key: convertKeys.append(key) except: if key != configKeys.ALL: invalidKeys.append(key) for key in invalidKeys: configDict.pop(key) for key in convertKeys: configDict[int(key)] = configDict.pop(key) if configKeys.ALL in configDict: tmpDict = configDict.pop(configKeys.ALL) for entryNum in entryIndexList: newConfigDict[entryNum] = copy.deepcopy(tmpDict) for entryNum in configDict: if entryNum in newConfigDict: self._dictUpdate(newConfigDict[entryNum], \ configDict[entryNum], \ newConfigDict[entryNum], \ list(configDict[entryNum].keys())) else: newConfigDict[entryNum] = copy.deepcopy(configDict[entryNum]) return newConfigDict ## # \internal # \brief Helper function that "normalizes" an input configuration dictionary # by doing the following: # <ul> # <li> Ensuring that keys for component enumerations are integers # <li> Expanding sub-dictionaries with the special "all" key # <li> Performing specialization for individual components or entries # \param configDict The incoming configuration dictionary. # \return The new configuration dictionary. def _normalizeConfigDict(self, configDict): newConfigDict = {} for configKey in configDict: if configKey == configKeys.CONFIG_TUNER: newConfigDict[configKeys.CONFIG_TUNER] = self._normalizeConfigDictSection( \ configDict[configKeys.CONFIG_TUNER], \ self.tunerIndexList) elif configKey == configKeys.CONFIG_DDC: newConfigDict[configKeys.CONFIG_DDC] = {} for ddcType in [configKeys.CONFIG_WBDDC, configKeys.CONFIG_NBDDC]: isWideband = (ddcType == configKeys.CONFIG_WBDDC) ddcConfDict = configDict[configKeys.CONFIG_DDC].get(ddcType,{}) ddcIndexRange = self.wbddcIndexList if isWideband else self.nbddcIndexList newConfigDict[configKeys.CONFIG_DDC][ddcType] = self._normalizeConfigDictSection(\ ddcConfDict, ddcIndexRange) elif self.numGigE > 0 and configKey == configKeys.CONFIG_IP: tmpDict = copy.deepcopy(configDict[configKeys.CONFIG_IP]) newConfigDict[configKeys.CONFIG_IP] = self._normalizeConfigDictSection( \ tmpDict, self.gigEIndexList) for gigEPortNum in self.gigEIndexList: if gigEPortNum in newConfigDict[configKeys.CONFIG_IP] and \ configKeys.IP_DEST in newConfigDict[configKeys.CONFIG_IP][gigEPortNum]: tmpDict = copy.deepcopy(newConfigDict[configKeys.CONFIG_IP][gigEPortNum][configKeys.IP_DEST]) newConfigDict[configKeys.CONFIG_IP][gigEPortNum][configKeys.IP_DEST] = \ self._normalizeConfigDictSection(tmpDict, \ self.gigEDipEntryIndexList) elif self.numTxs > 0 and configKey == configKeys.CONFIG_TX: tmpDict = copy.deepcopy(configDict[configKeys.CONFIG_TX]) newConfigDict[configKeys.CONFIG_TX] = self._normalizeConfigDictSection( \ tmpDict, \ self.txIndexList) for txNum in self.getTransmitterIndexRange(): if txNum in newConfigDict[configKeys.CONFIG_TX]: if configKeys.CONFIG_CW in newConfigDict[configKeys.CONFIG_TX][txNum]: newConfigDict[configKeys.CONFIG_TX][txNum][configKeys.CONFIG_CW] = \ self._normalizeConfigDictSection( newConfigDict[configKeys.CONFIG_TX][txNum][configKeys.CONFIG_CW], \ self.txToneGenIndexList) elif configKey == configKeys.CONFIG_DUC: newConfigDict[configKeys.CONFIG_DUC] = {} for ducType in [configKeys.CONFIG_WBDUC, configKeys.CONFIG_NBDUC]: isWideband = (ducType == configKeys.CONFIG_WBDUC) ducConfDict = configDict[configKeys.CONFIG_DUC].get(ducType,{}) ducIndexRange = self.wbducIndexList if isWideband else self.nbducIndexList newConfigDict[configKeys.CONFIG_DUC][ducType] = self._normalizeConfigDictSection(\ ducConfDict, ducIndexRange) pass elif configKey == configKeys.CONFIG_DDC_GROUP: newConfigDict[configKeys.CONFIG_DDC_GROUP] = {} for ddcType in [configKeys.CONFIG_WBDDC_GROUP, configKeys.CONFIG_NBDDC_GROUP, configKeys.CONFIG_COMBINED_DDC_GROUP]: isWideband = (ddcType == configKeys.CONFIG_WBDDC_GROUP) ddcGroupConfDict = configDict[configKeys.CONFIG_DDC_GROUP].get(ddcType,{}) ddcGroupIndexRange = self.wbddcGroupIndexList if isWideband else self.nbddcGroupIndexList if ddcType == configKeys.CONFIG_COMBINED_DDC_GROUP: ddcGroupIndexRange = self.cddcGroupIndexList newConfigDict[configKeys.CONFIG_DDC_GROUP][ddcType] = self._normalizeConfigDictSection(\ ddcGroupConfDict, ddcGroupIndexRange) elif configKey == configKeys.CONFIG_FFT: newConfigDict[configKeys.CONFIG_FFT] = self._normalizeConfigDictSection( \ configDict[configKeys.CONFIG_FFT], \ self.fftStreamIndexList) else: newConfigDict[configKey] = copy.deepcopy(configDict[configKey]) return newConfigDict ## # \brief Gets the radio configuration. # # \deprecated Use getConfiguration() instead. # # \return The dictionary of radio settings. def getAll(self): return self.getConfiguration() ## # \internal # \brief Helper function for setting the tuner configuration. # # Deprecated in favor of setConfiguration(). def setTunerConfigurationNew(self, *args, **kwargs): success = True tunerIndex = kwargs.get(configKeys.TUNER_INDEX, None) for i in self._getIndexList(tunerIndex, self.tunerDict): success &= self.tunerDict[i].setConfiguration(*args, **kwargs) self.cmdErrorInfo.extend(self.tunerDict[i].getLastCommandErrorInfo()) return success ## # \internal # \brief Helper function for getting the tuner configuration. # # Deprecated in favor of getConfiguration(). def getTunerConfigurationNew(self, tunerIndex=None): config = {} for i in self._getIndexList(tunerIndex, self.tunerDict): config[i] = self.tunerDict[i].getConfiguration() self.cmdErrorInfo.extend(self.tunerDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for querying the tuner configuration. # # Deprecated in favor of queryConfiguration(). def queryTunerConfigurationNew(self, tunerIndex=None): config = {} for i in self._getIndexList(tunerIndex, self.tunerDict): config[i] = self.tunerDict[i].queryConfiguration() self.cmdErrorInfo.extend(self.tunerDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for setting the DDC configuration. # # Deprecated in favor of setConfiguration(). def setDdcConfigurationNew(self, wideband=True, *args, **kwargs): success = True ddcDict = self.wbddcDict if wideband else self.nbddcDict ddcIndex = kwargs.get(configKeys.DDC_INDEX, None) for i in self._getIndexList(ddcIndex, ddcDict): success &= ddcDict[i].setConfiguration(*args, **kwargs) self.cmdErrorInfo.extend(ddcDict[i].getLastCommandErrorInfo()) return success ## # \internal # \brief Helper function for getting the DDC configuration. # # Deprecated in favor of getConfiguration(). def getDdcConfigurationNew(self, wideband=True, ddcIndex=None): config = {} ddcDict = self.wbddcDict if wideband else self.nbddcDict for i in self._getIndexList(ddcIndex, ddcDict): config[i] = ddcDict[i].getConfiguration() self.cmdErrorInfo.extend(ddcDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for querying the DDC configuration. # # Deprecated in favor of queryConfiguration(). def queryDdcConfigurationNew(self, wideband=True, ddcIndex=None): config = {} ddcDict = self.wbddcDict if wideband else self.nbddcDict for i in self._getIndexList(ddcIndex, ddcDict): config[i] = ddcDict[i].queryConfiguration() self.cmdErrorInfo.extend(ddcDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for setting the IP configuration. # # Deprecated in favor of setConfiguration(). def setIpConfigurationNew(self, confDict): success = True # IP configuration set -- The format of the configuration dictionary # depends on whether the radio has Gigabit Ethernet ports on it or not. # -- No GigE ports if self.numGigE == 0: for cmdClass, configKey in [ \ (self.sipCmd, configKeys.IP_SOURCE), \ (self.dipCmd, configKeys.IP_DEST), \ (self.smacCmd, configKeys.MAC_SOURCE), \ (self.dmacCmd, configKeys.MAC_DEST), \ ]: cDict = { "parent": self, \ "verbose": self.verbose, \ "logFile": self.logFile, \ configKey: confDict.get(configKey, 0) } if configKey in confDict and cmdClass is not None and \ cmdClass.settable: cmd = cmdClass(**cDict) success &= cmd.send( self.sendCommand, ) if success and cmd.success: self.configuration[configKeys.CONFIG_IP][configKey] = \ getattr(cmd, configKey) else: self.cmdErrorInfo.extend(cmd.errorInfo) pass pass # -- Has GigE ports else: for gigEPortNum in self.gigEIndexList: if gigEPortNum in confDict: # Set source IP address for this GigE port if self.sipCmd is not None and self.sipCmd.settable and \ configKeys.IP_SOURCE in confDict[gigEPortNum]: # What we do here depends on what "sourceIP" points to -- # either a string (NDR308-class) or a dictionary (NDR551-class) if isinstance(confDict[gigEPortNum][configKeys.IP_SOURCE], str): # Do it the NDR308 way cDict = { "parent": self, "verbose": self.verbose, "logFile": self.logFile, configKeys.GIGE_PORT_INDEX: gigEPortNum, configKeys.IP_SOURCE: confDict[gigEPortNum][configKeys.IP_SOURCE], } cmd = self.sipCmd(**cDict) success &= cmd.send( self.sendCommand, ) if success and cmd.success: self.configuration[configKeys.CONFIG_IP][gigEPortNum][configKeys.IP_SOURCE] = \ getattr(cmd, configKeys.IP_SOURCE) else: self.cmdErrorInfo.extend(cmd.errorInfo) else: # Do it the NDR551 way cDict = { "parent": self, "verbose": self.verbose, "logFile": self.logFile, configKeys.GIGE_PORT_INDEX: gigEPortNum, } if configKeys.GIGE_MAC_ADDR in confDict[gigEPortNum][configKeys.IP_SOURCE]: cDict[configKeys.GIGE_MAC_ADDR] = confDict[gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_MAC_ADDR] if configKeys.GIGE_IP_ADDR in confDict[gigEPortNum][configKeys.IP_SOURCE]: cDict[configKeys.GIGE_IP_ADDR] = confDict[gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_IP_ADDR] if configKeys.GIGE_NETMASK in confDict[gigEPortNum][configKeys.IP_SOURCE]: cDict[configKeys.GIGE_NETMASK] = confDict[gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_NETMASK] if configKeys.GIGE_SOURCE_PORT in confDict[gigEPortNum][configKeys.IP_SOURCE]: cDict[configKeys.GIGE_SOURCE_PORT] = confDict[gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_SOURCE_PORT] cmd = self.sipCmd(**cDict) success &= cmd.send( self.sendCommand, ) if success and cmd.success: #self.logIfVerbose("[setIpConfigurationNew()] cmd attributes = %s" % \ # cmd.attributeDump()) if configKeys.GIGE_MAC_ADDR in cmd.__dict__: self.configuration[configKeys.CONFIG_IP][gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_MAC_ADDR] = \ getattr(cmd, configKeys.GIGE_MAC_ADDR) if configKeys.GIGE_IP_ADDR in cmd.__dict__: self.configuration[configKeys.CONFIG_IP][gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_IP_ADDR] = \ getattr(cmd, configKeys.GIGE_IP_ADDR) if configKeys.GIGE_NETMASK in cmd.__dict__: self.configuration[configKeys.CONFIG_IP][gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_NETMASK] = \ getattr(cmd, configKeys.GIGE_NETMASK) if configKeys.GIGE_SOURCE_PORT in cmd.__dict__: self.configuration[configKeys.CONFIG_IP][gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_SOURCE_PORT] = \ getattr(cmd, configKeys.GIGE_SOURCE_PORT) else: if cmd.errorInfo is not None: self.cmdErrorInfo.extend(cmd.errorInfo) # Set destination IP table info for this GigE port if self.dipCmd is not None and self.dipCmd.settable and \ configKeys.IP_DEST in confDict[gigEPortNum]: for gigEDipEntryNum in self.gigEDipEntryIndexList: if gigEDipEntryNum in confDict[gigEPortNum][configKeys.IP_DEST]: cDict = { "parent": self, \ "verbose": self.verbose, \ "logFile": self.logFile, \ configKeys.GIGE_PORT_INDEX: gigEPortNum, \ configKeys.GIGE_DIP_INDEX: gigEDipEntryNum, \ } keys = [configKeys.GIGE_IP_ADDR, configKeys.GIGE_MAC_ADDR, \ configKeys.GIGE_SOURCE_PORT, configKeys.GIGE_DEST_PORT, \ configKeys.GIGE_ARP] self._dictUpdate(cDict, \ confDict[gigEPortNum][configKeys.IP_DEST][gigEDipEntryNum], \ self.configuration[configKeys.CONFIG_IP][gigEPortNum][configKeys.IP_DEST][gigEDipEntryNum], \ keys) # Don't send along MAC address if there is an ARP setting # and the ARP setting is True. This prevents errors being # triggered on radios with less permissive configurations # (like the NDR551). if configKeys.GIGE_ARP in cDict and cDict[configKeys.GIGE_ARP]: cDict.pop(configKeys.GIGE_MAC_ADDR, None) cmd = self.dipCmd(**cDict) success &= cmd.send( self.sendCommand, ) if success and cmd.success: for key in keys: if hasattr(cmd, key): self.configuration[configKeys.CONFIG_IP][gigEPortNum][configKeys.IP_DEST][gigEDipEntryNum][key] = \ getattr(cmd, key) else: if cmd.errorInfo is not None: self.cmdErrorInfo.extend(cmd.errorInfo) pass # Set flow control for this GigE port if self.tgfcCmd is not None and self.tgfcCmd.settable and \ configKeys.GIGE_FLOW_CONTROL in confDict[gigEPortNum]: cDict = { "parent": self, \ "verbose": self.verbose, \ "logFile": self.logFile, \ configKeys.GIGE_PORT_INDEX: gigEPortNum, \ configKeys.GIGE_FLOW_CONTROL: confDict[gigEPortNum][configKeys.GIGE_FLOW_CONTROL], \ } cmd = self.tgfcCmd(**cDict) success &= cmd.send( self.sendCommand, ) if success and cmd.success: self.configuration[configKeys.CONFIG_IP][gigEPortNum][configKeys.GIGE_FLOW_CONTROL] = \ getattr(cmd, configKeys.GIGE_FLOW_CONTROL) else: if cmd.errorInfo is not None: self.cmdErrorInfo.extend(cmd.errorInfo) pass return success ## # \internal # \brief Helper function for querying the IP configuration. # \param gigEPortIndex 10-Gig data port index, or None to query all data ports. def queryIpConfigurationNew(self, gigEPortIndex=None): # IP configuration query -- The format of this section depends on whether # the radio has Gigabit Ethernet ports on it or not. ret = {} # -- No GigE ports if self.numGigE == 0: ret = self._queryIpConfigurationNo10Gig() # -- Has GigE ports else: ret = self._queryIpConfiguration10Gig(gigEPortIndex=gigEPortIndex) return ret ## # \internal # \brief Helper function for querying the IP configuration for radios without # 10-Gig Ethernet interfaces. def _queryIpConfigurationNo10Gig(self): ret = {} for cmdClass, configKey in [ \ (self.sipCmd, configKeys.IP_SOURCE), \ (self.dipCmd, configKeys.IP_DEST), \ (self.smacCmd, configKeys.MAC_SOURCE), \ (self.dmacCmd, configKeys.MAC_DEST), \ ]: ret[configKey] = None if cmdClass is not None and cmdClass.queryable: cmd = cmdClass(parent=self, query=True, verbose=self.verbose, logFile=self.logFile) cmd.send( self.sendCommand, ) self._addLastCommandErrorInfo(cmd) rspInfo = cmd.getResponseInfo() if rspInfo is not None: ret[configKey] = rspInfo.get(configKey, "") return ret ## # \internal # \brief Helper function for querying the IP configuration for radios with # 10-Gig Ethernet interfaces. # \param gigEPortIndex 10-Gig data port index, or None to query all data ports. def _queryIpConfiguration10Gig(self, gigEPortIndex=None): ret = {} gigEPortIndexRange = self.getGigEIndexRange() if gigEPortIndex is None else [gigEPortIndex] for gigEPortNum in gigEPortIndexRange: ret[gigEPortNum] = {} # Query source IP address for this GigE port if self.sipCmd is not None and self.sipCmd.queryable: # Default source IP info if self.json: ret[gigEPortNum][configKeys.IP_SOURCE] = { configKeys.GIGE_MAC_ADDR: None, configKeys.GIGE_IP_ADDR: None, configKeys.GIGE_NETMASK: None, configKeys.GIGE_SOURCE_PORT: None, } else: ret[gigEPortNum][configKeys.IP_SOURCE] = None cDict = { "parent": self, \ "query": True, \ "verbose": self.verbose, \ "logFile": self.logFile, \ configKeys.GIGE_PORT_INDEX: gigEPortNum, \ } cmd = self.sipCmd(**cDict) cmd.send( self.sendCommand, ) self._addLastCommandErrorInfo(cmd) rspInfo = cmd.getResponseInfo() if rspInfo is not None: # How to parse this depends on whether the radio is JSON or not if self.json: # Do it NDR551-style ret[gigEPortNum][configKeys.IP_SOURCE] = {} ret[gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_MAC_ADDR] = \ rspInfo.get(configKeys.GIGE_MAC_ADDR, "") ret[gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_IP_ADDR] = \ rspInfo.get(configKeys.GIGE_IP_ADDR, "") ret[gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_NETMASK] = \ rspInfo.get(configKeys.GIGE_NETMASK, "") ret[gigEPortNum][configKeys.IP_SOURCE][configKeys.GIGE_SOURCE_PORT] = \ rspInfo.get(configKeys.GIGE_SOURCE_PORT, 0) else: # Do it NDR308-style ret[gigEPortNum][configKeys.IP_SOURCE] = \ rspInfo.get(configKeys.IP_SOURCE, "") # Query destination IP table for this GigE port if self.dipCmd is not None and self.dipCmd.queryable: ret[gigEPortNum][configKeys.IP_DEST] = {} for gigEDipEntryNum in self.gigEDipEntryIndexList: ret[gigEPortNum][configKeys.IP_DEST][gigEDipEntryNum] = {} cmd = self.dipCmd(**{}) for configKey in [configKeys.GIGE_IP_ADDR, \ configKeys.GIGE_MAC_ADDR, \ configKeys.GIGE_SOURCE_PORT, \ configKeys.GIGE_DEST_PORT, \ configKeys.GIGE_ARP]: if hasattr(cmd, "queryParamMap") and configKey in cmd.queryParamMap: ret[gigEPortNum][configKeys.IP_DEST][gigEDipEntryNum][configKey] = None elif hasattr(cmd, "queryResponseData") and configKey in [q[0] for q in cmd.queryResponseData]: ret[gigEPortNum][configKeys.IP_DEST][gigEDipEntryNum][configKey] = None cDict = { "parent": self, \ "query": True, \ "verbose": self.verbose, \ "logFile": self.logFile, \ configKeys.GIGE_PORT_INDEX: gigEPortNum, \ configKeys.GIGE_DIP_INDEX: gigEDipEntryNum, \ } cmd = self.dipCmd(**cDict) cmd.send( self.sendCommand, ) rspInfo = cmd.getResponseInfo() self._addLastCommandErrorInfo(cmd) if rspInfo is not None: for configKey in [configKeys.GIGE_IP_ADDR, \ configKeys.GIGE_MAC_ADDR, \ configKeys.GIGE_SOURCE_PORT, \ configKeys.GIGE_DEST_PORT, \ configKeys.GIGE_ARP]: if configKey in rspInfo: ret[gigEPortNum][configKeys.IP_DEST][gigEDipEntryNum][configKey] = \ rspInfo[configKey] return ret ## # \internal # \brief Helper function for setting the transmitter configuration. # # Deprecated in favor of setConfiguration(). def setTxConfigurationNew(self, *args, **kwargs): success = True txIndex = kwargs.get(configKeys.TX_INDEX, None) for i in self._getIndexList(txIndex, self.txDict): success &= self.txDict[i].setConfiguration(*args, **kwargs) self.cmdErrorInfo.extend(self.txDict[i].getLastCommandErrorInfo()) return success ## # \internal # \brief Helper function for getting the transmitter configuration. # # Deprecated in favor of getConfiguration(). def getTxConfigurationNew(self, txIndex=None): config = {} for i in self._getIndexList(txIndex, self.txDict): config[i] = self.txDict[i].getConfiguration() self.cmdErrorInfo.extend(self.txDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for querying the transmitter configuration. # # Deprecated in favor of getConfiguration(). def queryTxConfigurationNew(self, txIndex=None): config = {} for i in self._getIndexList(txIndex, self.txDict): config[i] = self.txDict[i].queryConfiguration() self.cmdErrorInfo.extend(self.txDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for setting the DUC configuration. # # Deprecated in favor of setConfiguration(). def setDucConfigurationNew(self, wideband=True, *args, **kwargs): success = True ducDict = self.wbducDict if wideband else self.nbducDict ducIndex = kwargs.get(configKeys.DUC_INDEX, None) for i in self._getIndexList(ducIndex, ducDict): success &= ducDict[i].setConfiguration(*args, **kwargs) self.cmdErrorInfo.extend(ducDict[i].getLastCommandErrorInfo()) return success ## # \internal # \brief Helper function for getting the DUC configuration. # # Deprecated in favor of getConfiguration(). def getDucConfigurationNew(self, wideband=True, ducIndex=None): config = {} ducDict = self.wbducDict if wideband else self.nbducDict for i in self._getIndexList(ducIndex, ducDict): config[i] = ducDict[i].getConfiguration() self.cmdErrorInfo.extend(ducDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for querying the DUC configuration. # # Deprecated in favor of getConfiguration(). def queryDucConfigurationNew(self, wideband=True, ducIndex=None): config = {} ducDict = self.wbducDict if wideband else self.nbducDict for i in self._getIndexList(ducIndex, ducDict): config[i] = ducDict[i].queryConfiguration() self.cmdErrorInfo.extend(ducDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for getting the DDC group configuration. # # Deprecated in favor of getConfiguration(). def getDdcGroupConfigurationNew(self, wideband=True, ddcGroupIndex=None): config = {} ddcGroupDict = self.wbddcGroupDict if wideband else self.nbddcGroupDict for i in self._getIndexList(ddcGroupIndex, ddcGroupDict): config[i] = ddcGroupDict[i].getConfiguration() self.cmdErrorInfo.extend(ddcGroupDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for querying the DDC group configuration. # # Deprecated in favor of queryConfiguration(). def queryDdcGroupConfigurationNew(self, wideband=True, ddcGroupIndex=None): config = {} ddcGroupDict = self.wbddcGroupDict if wideband else self.nbddcGroupDict for i in self._getIndexList(ddcGroupIndex, ddcGroupDict): config[i] = ddcGroupDict[i].queryConfiguration() self.cmdErrorInfo.extend(ddcGroupDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for setting the DDC group configuration. # # Deprecated in favor of setConfiguration(). def setDdcGroupConfigurationNew(self, wideband=True, *args, **kwargs): success = True ddcGroupDict = self.wbddcGroupDict if wideband else self.nbddcGroupDict ddcGroupIndex = kwargs.get(configKeys.INDEX, None) for i in self._getIndexList(ddcGroupIndex, ddcGroupDict): success &= ddcGroupDict[i].setConfiguration(*args, **kwargs) self.cmdErrorInfo.extend(ddcGroupDict[i].getLastCommandErrorInfo()) return success ## # \internal # \brief Helper function for getting the combined DDC group configuration. # # Deprecated in favor of getConfiguration(). def getCombinedDdcGroupConfigurationNew(self, ddcGroupIndex=None): config = {} ddcGroupDict = self.cddcGroupDict for i in self._getIndexList(ddcGroupIndex, ddcGroupDict): config[i] = ddcGroupDict[i].getConfiguration() self.cmdErrorInfo.extend(ddcGroupDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for querying the combined DDC group configuration. # # Deprecated in favor of queryConfiguration(). def queryCombinedDdcGroupConfigurationNew(self, ddcGroupIndex=None): config = {} ddcGroupDict = self.cddcGroupDict for i in self._getIndexList(ddcGroupIndex, ddcGroupDict): config[i] = ddcGroupDict[i].queryConfiguration() self.cmdErrorInfo.extend(ddcGroupDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for setting the combined DDC group configuration. # # Deprecated in favor of setConfiguration(). def setCombinedDdcGroupConfigurationNew(self, *args, **kwargs): success = True #self.logIfVerbose("[ndr551][setCombinedDdcGroupConfigurationNew()] begin") ddcGroupDict = self.cddcGroupDict ddcGroupIndex = kwargs.get(configKeys.INDEX, None) for i in self._getIndexList(ddcGroupIndex, ddcGroupDict): success &= ddcGroupDict[i].setConfiguration(*args, **kwargs) self.cmdErrorInfo.extend(ddcGroupDict[i].getLastCommandErrorInfo()) #self.logIfVerbose("[ndr551][setCombinedDdcGroupConfigurationNew()] end") return success ## # \internal # \brief Helper function for getting the DUC group configuration. # # Deprecated in favor of getConfiguration(). def getDucGroupConfigurationNew(self, wideband=True, ducGroupIndex=None): config = {} ducGroupDict = self.wbducGroupDict if wideband else self.nbducGroupDict for i in self._getIndexList(ducGroupIndex, ducGroupDict): config[i] = ducGroupDict[i].getConfiguration() self.cmdErrorInfo.extend(ducGroupDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for querying the DUC group configuration. # # Deprecated in favor of queryConfiguration(). def queryDucGroupConfigurationNew(self, wideband=True, ducGroupIndex=None): config = {} ducGroupDict = self.wbducGroupDict if wideband else self.nbducGroupDict for i in self._getIndexList(ducGroupIndex, ducGroupDict): config[i] = ducGroupDict[i].queryConfiguration() self.cmdErrorInfo.extend(ducGroupDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for setting the DUC group configuration. # # Deprecated in favor of setConfiguration(). def setDucGroupConfigurationNew(self, wideband=True, *args, **kwargs): success = True ducGroupDict = self.wbducGroupDict if wideband else self.nbducGroupDict ducGroupIndex = kwargs.get(configKeys.INDEX, None) for i in self._getIndexList(ducGroupIndex, ducGroupDict): success &= ducGroupDict[i].setConfiguration(*args, **kwargs) self.cmdErrorInfo.extend(ducGroupDict[i].getLastCommandErrorInfo()) return success ## # \internal # \brief Helper function for getting the tuner group configuration. # # Deprecated in favor of getConfiguration(). def getTunerGroupConfigurationNew(self, tunerGroupIndex=None): config = {} for i in self._getIndexList(tunerGroupIndex, self.tunerGroupDict): config[i] = self.tunerGroupDict[i].getConfiguration() self.cmdErrorInfo.extend(self.tunerGroupDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for querying the tuner group configuration. # # Deprecated in favor of queryConfiguration(). def queryTunerGroupConfigurationNew(self, tunerGroupIndex=None): config = {} for i in self._getIndexList(tunerGroupIndex, self.tunerGroupDict): config[i] = self.tunerGroupDict[i].queryConfiguration() self.cmdErrorInfo.extend(self.tunerGroupDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for setting the tuner group configuration. # # Deprecated in favor of setConfiguration(). def setTunerGroupConfigurationNew(self, *args, **kwargs): success = True tunerGroupIndex = kwargs.get(configKeys.INDEX, None) for i in self._getIndexList(tunerGroupIndex, self.tunerGroupDict): success &= self.tunerGroupDict[i].setConfiguration(*args, **kwargs) self.cmdErrorInfo.extend(self.tunerGroupDict[i].getLastCommandErrorInfo()) return success ## # \internal # \brief Helper function for setting the FFT stream configuration. # # Deprecated in favor of setConfiguration(). # def setFftStreamConfiguration(self, *args, **kwargs): success = True index = kwargs.get(configKeys.FFT_INDEX, None) for i in self._getIndexList(index, self.fftStreamDict): success &= self.fftStreamDict[i].setConfiguration(**kwargs) self.cmdErrorInfo.extend(self.fftStreamDict[i].getLastCommandErrorInfo()) return success ## # \internal # \brief Helper function for getting the FFT stream configuration. # # Deprecated in favor of getConfiguration(). def getFftStreamConfiguration(self, fftStreamIndex=None): config = {} for i in self._getIndexList(fftStreamIndex, self.fftStreamDict): config[i] = self.fftStreamDict[i].getConfiguration() self.cmdErrorInfo.extend(self.fftStreamDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for querying the FFT stream configuration. # # Deprecated in favor of queryConfiguration(). def queryFftStreamConfiguration(self, fftStreamIndex=None): config = {} for i in self._getIndexList(fftStreamIndex, self.fftStreamDict): config[i] = self.fftStreamDict[i].queryConfiguration() self.cmdErrorInfo.extend(self.fftStreamDict[i].getLastCommandErrorInfo()) return config ## # \internal # \brief Helper function for configuring the IP addresses. def configureIp(self,iface,udpBase=41000,maxUdp=None): success = True self.logIfVerbose( "configureIP CALLED" ) if type(iface) is list and len(iface)>1: self.logIfVerbose( "configuring dual interfaces %s"%repr(iface) ) maxUdp = 32 udpList = [] if type(udpBase) in (int,float): udpBase = [udpBase,udpBase] elif type(udpBase) is list: if len(udpBase)==1: udpBase.append(udpBase[0]) for index,interface in enumerate(iface): udpList.append( list(range(udpBase[index]+index*100,udpBase[index]+maxUdp+index*100)) ) mac,dip = getInterfaceAddresses(iface[index]) x = [ int(i) for i in dip.split(".") ] x[-1]+=10 sip = ".".join( [str(i) for i in x] ) sipCmd = command.radio_command( parent=self, cmdString="SIP %d,%s"%(index+1,sip), verbose=self.verbose, logFile=self.logFile ) success &= sipCmd.send( self.sendCommand ) for i in range(maxUdp): args = ", ".join( [str(i) for i in (index+1,i,dip,mac,udpList[index][i],udpList[index][i])] ) dipCmd = command.radio_command( parent=self, cmdString="DIP %s"%args, verbose=self.verbose, logFile=self.logFile ) success &= dipCmd.send( self.sendCommand ) else: self.logIfVerbose("configuring single interface %s"%repr(iface)) if type(iface) is list: iface = iface[0] if maxUdp is None: maxUdp = self.numWbddc+self.numNbddc self.udpList = [list(range(udpBase,udpBase+maxUdp)),] mac,dip = getInterfaceAddresses(iface) x = [ int(i) for i in dip.split(".") ] x[-1]+=10 sip = ".".join( [str(i) for i in x] ) for cmd in ( command.radio_command(parent=self, cmdString="SIP %s"%sip, verbose=self.verbose, logFile=self.logFile), \ command.radio_command(parent=self, cmdString="DIP %s"%dip, verbose=self.verbose, logFile=self.logFile), \ command.radio_command(parent=self, cmdString="TDMAC %s"%mac, verbose=self.verbose, logFile=self.logFile), \ ): success &= cmd.send( self.sendCommand ) return success ## # \brief Gets the number of DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNumDdc() @classmethod def getNumDdc(cls, wideband): return len(cls.getDdcIndexRange(wideband)) ## # \brief Gets the allowed rate set for the DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getDdcRateSet() @classmethod def getDdcRateSet(cls, wideband, index=None): ddcObj = cls.wbddcType if wideband else cls.nbddcType return ddcObj.getDdcRateSet(index) if ddcObj is not None else {} ## # \brief Gets the allowed rate list for the DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getDdcRateList() @classmethod def getDdcRateList(cls, wideband, index=None): ddcObj = cls.wbddcType if wideband else cls.nbddcType return ddcObj.getDdcRateList(index) if ddcObj is not None else [] ## # \brief Gets the allowed bandwidth set for the DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getDdcBwSet() @classmethod def getDdcBwSet(cls, wideband, index=None): ddcObj = cls.wbddcType if wideband else cls.nbddcType return ddcObj.getDdcBwSet(index) if ddcObj is not None else {} ## # \brief Gets the allowed bandwidth list for the DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getDdcBwList() @classmethod def getDdcBwList(cls, wideband, index=None): ddcObj = cls.wbddcType if wideband else cls.nbddcType return ddcObj.getDdcBwList(index) if ddcObj is not None else [] ## # \brief Gets the set of available DDC data formats. # # \copydetails CyberRadioDriver::IRadio::getDdcDataFormat() @classmethod def getDdcDataFormat(cls, wideband): ddcObj = cls.wbddcType if wideband else cls.nbddcType return ddcObj.getDdcDataFormat() if ddcObj is not None else {} ## # \brief Gets the frequency offset range for the narrowband DDCs on the radio. # # \copydetails CyberRadioDriver::IRadio::getNbddcFrequencyRange() @classmethod def getDdcFrequencyRange(cls, wideband, index=None): ddcType = cls.wbddcType if wideband else cls.nbddcType return (0.0,0.0) if ddcType is None else ddcType.frqRange ## # \brief Gets the list of DDC indexes for a specified type. # # \copydetails CyberRadioDriver::IRadio::getDdcIndexRange() @classmethod def getDdcIndexRange(cls, wideband): return cls.getWbddcIndexRange() if wideband else cls.getNbddcIndexRange() ## # \internal # \brief Convenience method for configuring the Ethernet addresses on a radio that does not # have Gigabit Ethernet ports. # # \param sip The source IP address. If this is None, the source IP address will not # be changed. # \param dip The destination IP address. If this is None, the destination IP address # will not be changed. # \param dmac The destination MAC address. If this is None, the destination MAC address # will not be changed. # \return True if the configuration succeeded, False otherwise. def setIpConfiguration(self, sip=None, dip=None, dmac=None): configDict = { configKeys.CONFIG_IP: { } } if sip is not None: configDict[configKeys.CONFIG_IP][configKeys.IP_SOURCE] = copy.deepcopy(sip) if dip is not None: configDict[configKeys.CONFIG_IP][configKeys.IP_DEST] = copy.deepcopy(dip) if dmac is not None: configDict[configKeys.CONFIG_IP][configKeys.MAC_DEST] = copy.deepcopy(dmac) return self._setConfiguration(configDict) ## # \internal def setDip(self,udp,dip="255.255.255.255",dmac="ff:ff:ff:ff:ff:ff",ifIndex=None,subIndex=None): pass ## # \internal # \brief Sets tuner configuration (old-style). # # \deprecated Use setConfiguration() instead. # # \param frequency Tuner frequency. # \param attenuation Tuner attenuation. # \param tunerIndex Either None (configure all tuners), an index number (configure # a specific tuner), or a list of index numbers (configure a set of tuners). # \return True if successful, False otherwise. def setTunerConfiguration(self,frequency,attenuation,tunerIndex=None): success = True for i in self._getIndexList(tunerIndex, self.tunerDict): # success &= self.tunerDict[i].setConfiguration(frequency,attenuation) success &= self.tunerDict[i].setConfiguration( **{ configKeys.TUNER_FREQUENCY: frequency, configKeys.TUNER_ATTENUATION: attenuation, } ) return success ## # \internal # \brief Gets tuner configuration (old-style). # # \deprecated Use getConfiguration() instead. # # \param tunerIndex Either None (get for all tuners), an index number (get for # a specific tuner), or a list of index numbers (get for a set of tuners). # \return A dictionary with configuration information. def getTunerConfiguration(self,tunerIndex=None): config = {} for i in self._getIndexList(tunerIndex, self.tunerDict): config[i] = self.tunerDict[i].getConfiguration() return config ## # \internal # \brief Sets tuner frequency (old-style). # # \deprecated Use setConfiguration() instead. # # \param frequency Tuner frequency. # \param tunerIndex Either None (configure all tuners), an index number (configure # a specific tuner), or a list of index numbers (configure a set of tuners). # \return True if successful, False otherwise. def setTunerFrequency(self,frequency,tunerIndex=None): success = True for i in self._getIndexList(tunerIndex, self.tunerDict): # success &= self.tunerDict[i].setFrequency(frequency) success &= self.tunerDict[i].setConfiguration( **{ configKeys.TUNER_FREQUENCY: frequency, } ) return success ## # \internal # \brief Gets tuner frequency information (old-style). # # \deprecated Use getConfiguration() instead. # # \param tunerIndex Either None (get for all tuners), an index number (get for # a specific tuner), or a list of index numbers (get for a set of tuners). # \return A dictionary with frequency information. def getTunerFrequency(self,tunerIndex=None,): frqDict = {} for i in self._getIndexList(tunerIndex, self.tunerDict): #frqDict[i] = self.tunerDict[i].getFrequency() frqDict[i] = self.tunerDict[i].configuration.get(configKeys.TUNER_FREQUENCY, None) return frqDict ## # \internal # \brief Sets tuner attenuation (old-style). # # \deprecated Use setConfiguration() instead. # # \param attenuation Tuner attenuation. # \param tunerIndex Either None (configure all tuners), an index number (configure # a specific tuner), or a list of index numbers (configure a set of tuners). # \return True if successful, False otherwise. def setTunerAttenuation(self,attenuation,tunerIndex=None): success = True for i in self._getIndexList(tunerIndex, self.tunerDict): # success &= self.tunerDict[i].setAttenuation(attenuation) success &= self.tunerDict[i].setConfiguration( **{ configKeys.TUNER_ATTENUATION: attenuation, } ) return success ## # \internal # \brief Gets tuner attenuation information (old-style). # # \deprecated Use getConfiguration() instead. # # \param tunerIndex Either None (get for all tuners), an index number (get for # a specific tuner), or a list of index numbers (get for a set of tuners). # \return A dictionary with attenuation information. def getTunerAttenuation(self,tunerIndex=None,): att = {} for i in self._getIndexList(tunerIndex, self.tunerDict): # att[i] = self.tunerDict[i].getAttenuation() att[i] = self.tunerDict[i].configuration.get(configKeys.TUNER_ATTENUATION, None) return att ## # \internal # \brief Sets DDC configuration (old-style). # # \deprecated Use setConfiguration() instead. # # \param wideband Whether the DDC is a wideband DDC. # \param ddcIndex Either None (configure all DDCs), an index number (configure # a specific DDC), or a list of index numbers (configure a set of DDCs). # \param rfIndex DDC RF index number. # \param rateIndex DDC rate index number. # \param udpDest UDP destination. # \param frequency Frequency offset. # \param enable 1 if DDC is enabled, 0 if not. # \param vitaEnable VITA 49 streaming option, as appropriate for the radio. # \param streamId VITA 49 stream ID. # \return True if successful, False otherwise. def setDdcConfiguration(self,wideband,ddcIndex=None,rfIndex=1,rateIndex=0,udpDest=0,frequency=0,enable=0,vitaEnable=0,streamId=0): success = True ddcDict = self.wbddcDict if wideband else self.nbddcDict for i in self._getIndexList(ddcIndex,ddcDict): # ddcDict[i].setConfiguration(rfIndex=rfIndex,rateIndex=rateIndex,udpDest=udpDest,frequency=frequency,enable=enable,vitaEnable=vitaEnable,streamId=streamId) success &= ddcDict[i].setConfiguration( **{ configKeys.NBDDC_RF_INDEX: rfIndex, configKeys.DDC_RATE_INDEX: rateIndex, configKeys.DDC_UDP_DESTINATION: udpDest, configKeys.DDC_FREQUENCY_OFFSET: frequency, configKeys.ENABLE: enable, configKeys.DDC_VITA_ENABLE: vitaEnable, configKeys.DDC_STREAM_ID: streamId, } ) return success ## # \brief Disables ethernet flow control on the radio. # # \copydetails CyberRadioDriver::IRadio::disableTenGigFlowControl() def disableTenGigFlowControl(self,): return self.setTenGigFlowControlStatus(False) ## # \brief Enables ethernet flow control on the radio. # # \copydetails CyberRadioDriver::IRadio::enableTenGigFlowControl() def enableTenGigFlowControl(self,): return self.setTenGigFlowControlStatus(True) ## # \brief method to enable or disable ethernet flow control on the radio. # # \copydetails CyberRadioDriver::IRadio::getTenGigFlowControlStatus() def setTenGigFlowControlStatus(self,enable=False): return False ## # \brief Queries status of flow control handling. # # \copydetails CyberRadioDriver::IRadio::getTenGigFlowControlStatus() def getTenGigFlowControlStatus(self,): return {} ## # \brief Performs coherent tuning. # # \copydetails CyberRadioDriver::IRadio::coherentTune() def coherentTune(self, cohGroup, freq): ret = True if self.cohTuneCmd is not None: cDict = { "parent": self, \ "verbose": self.verbose, \ "logFile": self.logFile, \ configKeys.TUNER_COHERENT_GROUP: cohGroup, configKeys.TUNER_FREQUENCY: freq, } cmd = self.cohTuneCmd(**cDict) ret &= cmd.send( self.sendCommand, ) self.logIfVerbose("coherentTune send result =", ret) ret &= cmd.success self.logIfVerbose("coherentTune success result =", ret) self._addLastCommandErrorInfo(cmd) if ret: self.logIfVerbose("force tuner requery") self.queryTunerConfigurationNew(tunerIndex=None) pass else: ret = False return ret ## # \brief Gets the current FPGA state. # # \copydetails CyberRadioDriver::IRadio::getFpgaState() def getFpgaState(self): ret = None if self.fpgaStateCmd is not None: ret = self.getConfigurationByKeys("fpgaState") return ret ## # \brief Sets the current FPGA state. # # \copydetails CyberRadioDriver::IRadio::setFpgaState() def setFpgaState(self, state): ret = False if self.fpgaStateCmd is not None: ret = self.setConfiguration({"fpgaState": state}) return ret # OVERRIDE ## # \brief Sets whether or not the object is in verbose mode. # # \copydetails CyberRadioDriver::IRadio::setVerbose() def setVerbose(self, verbose): # Set this object's verbose mode log._logger.setVerbose(self, verbose) # Set verbose mode on all components for obj in self.componentList: obj.setVerbose(verbose) ## # \brief Sets the log file. # # \copydetails CyberRadioDriver::IRadio::setLogFile() def setLogFile(self, logFile): # Set this object's log file log._logger.setLogFile(self, logFile) # Set log file on all components for obj in self.componentList: obj.setLogFile(logFile) ## # \brief Gets the list of connected data port interface indices. # # \copydetails CyberRadioDriver::IRadio::getConnectedDataPorts() def getConnectedDataPorts(self): ret = [] if self.isCrddConnection: ret = self._crddGetConnectedDataPortIndices() return ret ## # \internal # \brief Converts a user-specified time string into a number of seconds # since 1/1/70. # # The time string can be either: # \li Absolute time, in any supported format # \li Relative time specified as now{-n}, where n is a number of seconds # \li Relative time specified as now{-[[H:]MM:]SS} # \li "begin", which is the beginning of known time (1/1/70) # \li "end", which is the end of trackable time and far beyond the # useful life of this utility (01/18/2038) # # \throws RuntimeException if the time string format cannot be understood. # \param timestr The time string. # \param utc Whether or not the user's time string is in UTC time. # \return The time, in number of seconds since the Epoch @staticmethod def timeFromString(timestr, utc=True): ret = 0 tm = None tstr = timestr.strip() if tstr == "": ret = 0 elif tstr == "begin": ret = 0 elif tstr == "end": ret = sys.maxsize else: if tstr.find('now') != -1: tm = datetime.datetime.utcnow() if utc else datetime.datetime.now() i = tstr.find('-') if i != -1: tmp = tstr[i+1:] tm = tm - datetime.timedelta(seconds=_radio.timeSecsFromString(tmp)) else: # Replace strings "today" and "yesterday" tmToday = datetime.datetime.utcnow() if utc else datetime.datetime.now() tmYesterday = tmToday - datetime.timedelta(days=1) dateStrToday = tmToday.strftime("%Y%m%d") dateStrYesterday = tmYesterday.strftime("%Y%m%d") tstr = tstr.replace("today", dateStrToday).replace("yesterday", dateStrYesterday) # Try a series of known formats # -- Formats are 5-tuples: (format string, width, needs year, needs month, needs day) supportedFmts = [ \ ('%Y-%m-%dT%H:%M:%S%z', 24, False, False, False), \ ('%Y-%m-%dT%H:%M:%S', 19, False, False, False), \ ('%Y%m%d:%H%M%S', 15, False, False, False), \ ('%a %b %d %H:%M:%S %Y', 24, False, False, False), \ ('%b %d %H:%M:%S', 15, True, False, False), \ ('%b %d, %Y %I:%M:%S %p', 24, False, False, False), \ ('%Y-%m-%d %H:%M:%S', 19, False, False, False), \ ('%Y/%m/%d %H:%M:%S', 19, False, False, False), \ ('%Y%m%d_%H%M%S', 15, False, False, False), \ ('%m/%d/%Y %H:%M', 16, False, False, False), \ ('%m/%d/%y %H:%M:%S', 17, False, False, False), \ ('%Y%m%d', 8, False, False, False), \ ('%Y-%m-%d', 10, False, False, False), \ ('%H:%M:%S', 8, True, True, True), \ ('%H%M%S', 6, True, True, True), \ ] for fmt in supportedFmts: try: tmp = tstr[:fmt[1]].strip() #print "[DBG][timeFromString] Convert" #print "[DBG][timeFromString] -- string:", tmp #print "[DBG][timeFromString] -- format:", fmt[0] tm = datetime.datetime.strptime(tmp, fmt[0]) #print "[DBG][timeFromString] -- SUCCESS" # Replace date items from today's date as needed by the format # -- Day if fmt[4]: tm = tm.replace(day=tmToday.day) # -- Month if fmt[3]: tm = tm.replace(month=tmToday.month) # -- Year if fmt[2]: tm = tm.replace(year=tmToday.year) # But if the resulting date is in the future, then we need to dial it # back a year if tm > tmToday: tm = tm.replace(year=tmToday.year-1) break except: #print "[DBG][timeFromString] -- FAILURE" tm = None if tm is not None: ret = time.mktime(tm.timetuple()) else: raise RuntimeError("Improperly formatted time: \"" + tstr + "\"") return ret ## # Converts a time string ([+-][[H:]M:]S) to a time in seconds. # # \note Hours and minutes are not bounded in any way. These strings provide the # same result: # \li "7200" # \li "120:00" # \li "2:00:00" # # \throws RuntimeError if the time is formatted improperly. # \param timeStr The time string. # \return The number of seconds. @staticmethod def timeSecsFromString(timeStr): hrs = 0 mins = 0 secs = 0 sgn = 1 try: if "-" in timeStr: sgn = -1 tmp = timeStr.strip().translate(None, " +-") if tmp != "": vec = tmp.split(":") if vec[-1] != "": secs = int(vec[-1]) else: raise RuntimeError("Improperly formatted time: \"" + timeStr + "\"") if len(vec) > 1: if vec[-2] != "": mins = int(vec[-2]) else: raise RuntimeError("Improperly formatted time: \"" + timeStr + "\"") if len(vec) > 2: if vec[-3] != "": hrs = int(vec[-3]) else: raise RuntimeError("Improperly formatted time: \"" + timeStr + "\"") except: raise RuntimeError("Improperly formatted time: \"" + timeStr + "\"") return ( sgn * (hrs * 3600 + mins * 60 + secs) ) ## # \internal # \brief Radio handler class that supports nothing more complicated than # identifying a connected radio. # # Used internally to support radio auto-detection. # # This class implements the CyberRadioDriver.IRadio interface. # class _radio_identifier(_radio): _name = "Radio Identifier" json = False ifSpec = _ifSpec adcRate = 1.0 numTuner = 0 numTunerBoards = 0 tunerType = None numWbddc = 0 wbddcType = None numNbddc = 0 nbddcType = None numTxs = 0 txType = None numWbduc = 0 wbducType = None numNbduc = 0 nbducType = None numWbddcGroups = 0 wbddcGroupType = None numNbddcGroups = 0 nbddcGroupType = None numTunerGroups = 0 tunerGroupType = None numGigE = 0 numGigEDipEntries = 0 idnQry = command.idn verQry = command.ver hrevQry = command.hrev statQry = None tstatQry = None tadjCmd = None resetCmd = None cfgCmd = None ppsCmd = None utcCmd = None refCmd = None rbypCmd = None sipCmd = None dipCmd = None smacCmd = None dmacCmd = None calfCmd = None nbssCmd = None fnrCmd = None gpsCmd = None gposCmd = None rtvCmd = None tempCmd = None gpioStaticCmd = None gpioSeqCmd = None tgfcCmd = None refModes = {} rbypModes = {} vitaEnableOptions = {} connectionModes = ["https", "tcp", "udp", "tty"] validConfigurationKeywords = [] setTimeDefault = False # OVERRIDE ## # \protected # \brief Queries hardware to determine the object's current configuration. def _queryConfiguration(self): # Call the base-class implementation configKeys.Configurable._queryConfiguration(self) # This radio has nothing further that it can configure ## # \brief Radio function (mode) command used by JSON-based radios. # class funJSON(command._jsonCommandBase): mnemonic = "fun" queryParamMap = { configKeys.RADIO_FUNCTION: "state", } setParamMap = { configKeys.RADIO_FUNCTION: "state", } ## # \internal # \brief Radio handler class that supports nothing more complicated than # identifying a connected radio. # # Used internally to support radio auto-detection. # # This class implements the CyberRadioDriver.IRadio interface. # class _radio_identifier_json(_radio): _name = "Radio Identifier" json = True ifSpec = _ifSpec adcRate = 1.0 numTuner = 0 numTunerBoards = 0 tunerType = None numWbddc = 0 wbddcType = None numNbddc = 0 nbddcType = None numTxs = 0 txType = None numWbduc = 0 wbducType = None numNbduc = 0 nbducType = None numWbddcGroups = 0 wbddcGroupType = None numNbddcGroups = 0 nbddcGroupType = None numTunerGroups = 0 tunerGroupType = None numGigE = 0 numGigEDipEntries = 0 idnQry = None verQry = None hrevQry = None statQry = command.status_json tstatQry = None tadjCmd = None resetCmd = None cfgCmd = None ppsCmd = None utcCmd = None refCmd = None rbypCmd = None sipCmd = None dipCmd = None smacCmd = None dmacCmd = None calfCmd = None nbssCmd = None fnrCmd = None gpsCmd = None gposCmd = None rtvCmd = None tempCmd = None gpioStaticCmd = None gpioSeqCmd = None tgfcCmd = None funCmd = funJSON refModes = {} rbypModes = {} vitaEnableOptions = {} connectionModes = ["https", "tcp", "udp", "tty"] validConfigurationKeywords = [ configKeys.RADIO_FUNCTION ] setTimeDefault = False # OVERRIDE ## # \brief Returns version information for the radio. # # \copydetails CyberRadioDriver::IRadio::getVersionInfo() def getVersionInfo(self): # Query hardware for details if we don't have them already keys = [configKeys.VERINFO_MODEL, configKeys.VERINFO_SN, configKeys.VERINFO_SW, configKeys.VERINFO_FW, configKeys.VERINFO_REF, configKeys.VERINFO_UNITREV, configKeys.VERINFO_HW] if not all([key in self.versionInfo for key in keys]): cmd = self.statQry(parent=self, query=True, verbose=self.verbose, logFile=self.logFile) cmd.send( self.sendCommand, ) self._addLastCommandErrorInfo(cmd) rspInfo = cmd.getResponseInfo() if rspInfo is not None: self._dictUpdate(self.versionInfo, rspInfo, {}, keys) for key in keys: if key not in self.versionInfo: self.versionInfo[key] = "N/A" return self.versionInfo # OVERRIDE ## # \protected # \brief Queries hardware to determine the object's current configuration. def _queryConfiguration(self): # Call the base-class implementation configKeys.Configurable._queryConfiguration(self) # Call the radio function command if self.funCmd is not None: cmd = self.funCmd(parent=self, query=True, verbose=self.verbose, logFile=self.logFile) cmd.send( self.sendCommand, ) self._addLastCommandErrorInfo(cmd) rspInfo = cmd.getResponseInfo() if rspInfo is not None: for key in self.validConfigurationKeywords: val = rspInfo.get(key, None) if val is not None: self.configuration[key] = val # This radio has nothing further that it can configure #-- End Radio Handler Objects --------------------------------------------------# #-- NOTE: Radio handler objects for supporting specific radios need to be # implemented under the CyberRadioDriver.radios package tree.
43.884634
168
0.591156
175,738
0.976718
0
0
20,995
0.116686
0
0
53,714
0.298532
a0fde969f3e2acaa6481f6fe003e765cdca46b4c
1,686
py
Python
alpha_zero/NeuralNet.py
blekinge/alpha-zero-general
7cc33e9b2e40602549b59fe753956e69a56f51f1
[ "MIT" ]
null
null
null
alpha_zero/NeuralNet.py
blekinge/alpha-zero-general
7cc33e9b2e40602549b59fe753956e69a56f51f1
[ "MIT" ]
null
null
null
alpha_zero/NeuralNet.py
blekinge/alpha-zero-general
7cc33e9b2e40602549b59fe753956e69a56f51f1
[ "MIT" ]
null
null
null
from typing import List, Tuple import numpy as np from alpha_zero.Board import Board class NeuralNet(): """ This class specifies the base NeuralNet class. To define your own neural network, subclass this class and implement the functions below. The neural network does not consider the current player, and instead only deals with the canonical form of the board. See othello/NNet.py for an example implementation. """ def __init__(self, game): pass def train(self, examples: List[Tuple[Board,List[float],List[int]]]): """ This function trains the neural network with examples obtained from self-play. :param examples: a list of training examples, where each example is of form (board, pi, v). pi is the MCTS informed policy vector for the given board, and v is its value. The examples has board in its canonical form. """ pass def predict(self, board: Board) -> Tuple[np.array,float]: """ :param board: current board in its canonical form. :returns pi: a policy vector for the current board- a numpy array of length game.getActionSize :returns v: a float in [-1,1] that gives the value of the current board """ pass def save_checkpoint(self, folder: str, filename:str): """ Saves the current neural network (with its parameters) in folder/filename """ pass def load_checkpoint(self, folder: str, filename:str): """ Loads parameters of the neural network from folder/filename """ pass
31.222222
102
0.6293
1,596
0.946619
0
0
0
0
0
0
1,186
0.70344
a0fef1eaf1459e3aa6754a55ca8204b402a0ab05
785
py
Python
server/app/forms.py
zhancongc/bugaboo
ac78e7e0274492273554b089122196b7869e8bfb
[ "Apache-2.0" ]
null
null
null
server/app/forms.py
zhancongc/bugaboo
ac78e7e0274492273554b089122196b7869e8bfb
[ "Apache-2.0" ]
null
null
null
server/app/forms.py
zhancongc/bugaboo
ac78e7e0274492273554b089122196b7869e8bfb
[ "Apache-2.0" ]
null
null
null
""" Project : bugaboo Filename : forms.py Author : zhancongc Description : 表单管理 """ from flask_wtf import FlaskForm from wtforms import StringField, BooleanField, TextAreaField, SelectField, FileField, IntegerField, PasswordField, SubmitField from wtforms.validators import DataRequired class GodLoginForm(FlaskForm): """ 登陆表单 """ username = StringField('username', validators=[DataRequired()]) password = PasswordField('password', validators=[DataRequired()]) submit = SubmitField() class ExchangeAwardForm(FlaskForm): """ 登陆表单 """ awardrecord_token = StringField('awardrecord_token', validators=[DataRequired()]) exchange_token = PasswordField('exchange_token', validators=[DataRequired()]) submit = SubmitField()
23.787879
126
0.718471
491
0.606922
0
0
0
0
0
0
214
0.264524
9d006b0d7e89fe26f4e43d422a80339277272355
3,836
py
Python
synthdid/variance.py
MasaAsami/pysynthdid
01afe33ae22f513c65f9cfdec56a4b21ca547c28
[ "Apache-2.0" ]
null
null
null
synthdid/variance.py
MasaAsami/pysynthdid
01afe33ae22f513c65f9cfdec56a4b21ca547c28
[ "Apache-2.0" ]
null
null
null
synthdid/variance.py
MasaAsami/pysynthdid
01afe33ae22f513c65f9cfdec56a4b21ca547c28
[ "Apache-2.0" ]
2
2022-03-11T03:13:36.000Z
2022-03-20T22:55:13.000Z
import pandas as pd import numpy as np from tqdm import tqdm class Variance(object): def estimate_variance(self, algo="placebo", replications=200): """ # algo - placebo ## The following algorithms are omitted because they are not practical. - bootstrap - jackknife """ if algo == "placebo": Y_pre_c = self.Y_pre_c.copy() Y_post_c = self.Y_post_c.copy() assert self.n_treat < Y_pre_c.shape[1] control_names = Y_pre_c.columns result_tau_sdid = [] result_tau_sc = [] result_tau_did = [] for i in tqdm(range(replications)): # setup np.random.seed(seed=self.random_seed + i) placebo_t = np.random.choice(control_names, self.n_treat, replace=False) placebo_c = [col for col in control_names if col not in placebo_t] pla_Y_pre_t = Y_pre_c[placebo_t] pla_Y_post_t = Y_post_c[placebo_t] pla_Y_pre_c = Y_pre_c[placebo_c] pla_Y_post_c = Y_post_c[placebo_c] pla_result = pd.DataFrame( { "pla_actual_y": pd.concat([pla_Y_pre_t, pla_Y_post_t]).mean( axis=1 ) } ) post_placebo_treat = pla_result.loc[ self.post_term[0] :, "pla_actual_y" ].mean() # estimation ## sdid pla_zeta = self.est_zeta(pla_Y_pre_c) pla_hat_omega = self.est_omega(pla_Y_pre_c, pla_Y_pre_t, pla_zeta) pla_hat_lambda = self.est_lambda(pla_Y_pre_c, pla_Y_post_c) ## sc pla_hat_omega_ADH = self.est_omega_ADH(pla_Y_pre_c, pla_Y_pre_t) # prediction ## sdid pla_hat_omega = pla_hat_omega[:-1] pla_Y_c = pd.concat([pla_Y_pre_c, pla_Y_post_c]) n_features = pla_Y_pre_c.shape[1] start_w = np.repeat(1 / n_features, n_features) _intercept = (start_w - pla_hat_omega) @ pla_Y_pre_c.T @ pla_hat_lambda pla_result["sdid"] = pla_Y_c.dot(pla_hat_omega) + _intercept ## sc pla_result["sc"] = pla_Y_c.dot(pla_hat_omega_ADH) # cal tau ## sdid pre_sdid = pla_result["sdid"].head(len(pla_hat_lambda)) @ pla_hat_lambda post_sdid = pla_result.loc[self.post_term[0] :, "sdid"].mean() pre_treat = (pla_Y_pre_t.T @ pla_hat_lambda).values[0] sdid_counterfuctual_post_treat = pre_treat + (post_sdid - pre_sdid) result_tau_sdid.append( post_placebo_treat - sdid_counterfuctual_post_treat ) ## sc sc_counterfuctual_post_treat = pla_result.loc[ self.post_term[0] :, "sc" ].mean() result_tau_sc.append(post_placebo_treat - sc_counterfuctual_post_treat) # did did_post_actural_treat = ( post_placebo_treat - pla_result.loc[: self.pre_term[1], "pla_actual_y"].mean() ) did_counterfuctual_post_treat = ( pla_Y_post_c.mean(axis=1).mean() - pla_Y_pre_c.mean(axis=1).mean() ) result_tau_did.append( did_post_actural_treat - did_counterfuctual_post_treat ) return ( np.var(result_tau_sdid), np.var(result_tau_sc), np.var(result_tau_did), )
36.884615
88
0.516945
3,772
0.983316
0
0
0
0
0
0
335
0.087331
9d01bb83bee5f2c4612c59332de6ea7b9e34ac2f
681
py
Python
todo/views.py
arascch/Todo_list
a4c88abaa4e6c1e158135b4fce4bcfbf64cb86e2
[ "Apache-2.0" ]
1
2020-03-24T09:26:23.000Z
2020-03-24T09:26:23.000Z
todo/views.py
arascch/Todo_list
a4c88abaa4e6c1e158135b4fce4bcfbf64cb86e2
[ "Apache-2.0" ]
null
null
null
todo/views.py
arascch/Todo_list
a4c88abaa4e6c1e158135b4fce4bcfbf64cb86e2
[ "Apache-2.0" ]
null
null
null
from django.shortcuts import render from django.utils import timezone from todo.models import Todo from django.http import HttpResponseRedirect def home(request): todo_items = Todo.objects.all().order_by("-added_date") return render(request , 'todo/index.html' , {"todo_items":todo_items}) def add_todo(request): Current_date = timezone.now() content = request.POST["content"] created_obj = Todo.objects.create(added_date = Current_date , text = content ) length_of_todos = Todo.objects.all().count() return HttpResponseRedirect('/') def delete_todo(request , todo_id): Todo.objects.get(id = todo_id).delete() return HttpResponseRedirect('/')
35.842105
82
0.737151
0
0
0
0
0
0
0
0
57
0.0837
9d02e73cfc6d5e0a0462f594bbcafd9199cb2c88
816
py
Python
Easy/Hangman/HangMan - Stage 6.py
michael-act/HyperSkill
ce16eb3b6f755f7f8f21a57ef2679fcb8a4bd55c
[ "MIT" ]
1
2020-11-17T18:09:30.000Z
2020-11-17T18:09:30.000Z
Easy/Hangman/HangMan - Stage 6.py
michael-act/HyperSkill
ce16eb3b6f755f7f8f21a57ef2679fcb8a4bd55c
[ "MIT" ]
null
null
null
Easy/Hangman/HangMan - Stage 6.py
michael-act/HyperSkill
ce16eb3b6f755f7f8f21a57ef2679fcb8a4bd55c
[ "MIT" ]
null
null
null
import random category = ['python', 'java', 'kotlin', 'javascript'] computer = random.choice(category) hidden = list(len(computer) * "-") print("H A N G M A N") counter = 8 while counter > 0: print() print("".join(hidden)) letter = input("Input a letter: ") if (letter in hidden) or (letter in hidden and times == 7): counter -= 1 print("No improvements") elif letter in set(computer): where = 0 for i in range(computer.count(letter)): where = computer.index(letter, 0 + where) hidden[where] = letter where += where + 1 if "-" not in hidden: print() print("".join(hidden)) print("You guessed the word!") print("You survived!") break else: counter -= 1 print("No such letter in the word") print(counter) else: print("You are hanged!")
24
61
0.616422
0
0
0
0
0
0
0
0
177
0.216912
9d03157b2910202ba3c53d84197f7000003a404d
6,536
py
Python
sklcc/taskEdit.py
pyxuweitao/MSZ_YCL
23323c4660f44af0a45d6ab81cd496b81976f5a0
[ "Apache-2.0" ]
null
null
null
sklcc/taskEdit.py
pyxuweitao/MSZ_YCL
23323c4660f44af0a45d6ab81cd496b81976f5a0
[ "Apache-2.0" ]
null
null
null
sklcc/taskEdit.py
pyxuweitao/MSZ_YCL
23323c4660f44af0a45d6ab81cd496b81976f5a0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ 所有任务task相关功能函数 """ __author__ = "XuWeitao" import CommonUtilities import rawSql def getTasksList(UserID): """ 获取任务列表,包括任务流水号,创建时间,最近一次修改时间,货号,色号以及到料时间和创建人 :param UserID:创建人ID,如果为ALL则返回所有的任务列表 :return:{ "SerialNo":任务流水号, "CreateTime":任务创建时间, "LastModifiedTime":最近一次修改时间, "ProductNo":货号, "ColorNo":色号, "ArriveTime":到料时间, "Name":创建人名, "GongYingShang":{"id":供应商代码, "name":供应商名称}, "WuLiao":{"id":材料名称ID, "name":材料名称, "cata":材料种类名称}, "DaoLiaoZongShu":到料总数, "DanWei":{"id":到料总数单位ID, "name":到料总数单位} "DaoLiaoZongShu2":到料总数, "DanWei":{"id":到料总数单位ID, "name":到料总数单位}, "XieZuoRen":当前任务的协作人员,不包含任务创建者 } """ raw = rawSql.Raw_sql() raw.sql = """SELECT SerialNo, CONVERT(VARCHAR(16), CreateTime, 20) CreateTime, CONVERT(VARCHAR(16), LastModifiedTime, 20) LastModifiedTime, ProductNo, ColorNo, CONVERT(VARCHAR(10), ArriveTime, 20) ArriveTime, dbo.getUserNameByUserID(UserID), SupplierID, dbo.getSupplierNameByID(SupplierID), MaterialID, dbo.getMaterialNameByID(MaterialID), dbo.getMaterialTypeNameByID(dbo.getMaterialTypeIDByMaterialID(MaterialID)), DaoLiaoZongShu, UnitID, dbo.getUnitNameByID(UnitID), DaoLiaoZongShu2, UnitID2, dbo.getUnitNameByID(UnitID2) AS DanWei2, Inspectors, UserID FROM RMI_TASK WITH(NOLOCK)""" #身为协作人也可以看到该任务 if UserID != 'ALL': raw.sql += " WHERE CHARINDEX('%s', Inspectors) > 0 AND State = 2" % UserID else: raw.sql += " WHERE State = 0" res = raw.query_all() jsonReturn = list() for row in res: #协作人以@字符分割,但是其中包含创建任务人 Inspectors = row[18].split('@') InspectorList = list() for inspectorNo in Inspectors: if inspectorNo == row[19]: continue raw.sql = "SELECT DBO.getUserNameByUserID('%s')"%inspectorNo inspectorName = raw.query_one() if inspectorName: inspectorName = inspectorName[0] InspectorList.append({'Name':inspectorName, 'ID':inspectorNo}) jsonReturn.append({ "SerialNo":row[0], "CreateTime":row[1], "LastModifiedTime":row[2], "ProductNo":row[3], "ColorNo":row[4], "ArriveTime":row[5], "Name":row[6], "GongYingShang":{"id":row[7], "name":row[8]}, "WuLiao":{"id":row[9], "name":row[10], "cata":row[11]}, "DaoLiaoZongShu":row[12], "DanWei":{"id":row[13], "name":row[14]}, "DaoLiaoZongShu2":row[15], "DanWei2":{"id":row[16], "name":row[17]}, "XieZuoRen":InspectorList }) return jsonReturn def editTaskInfo(taskInfo, userID): """ 根据isNew字段以及传入的信息来新插入或先删除再插入一个任务数据。 :param taskInfo:任务相关信息 :param userID:用户ID :return:返回编辑成功与否的标志 """ raw = rawSql.Raw_sql() #是否退回的判定 if "isReturn" in taskInfo: raw.sql = "UPDATE RMI_TASK WITH(ROWLOCK) SET State = 2 WHERE SerialNo = '%s'"%taskInfo['SerialNo'] raw.update() else: isNew = True if taskInfo['isNew'] == "True" else False #如果没有设置为None,即使前台返回null,经JSON转义仍为None taskInfo['DaoLiaoZongShu2'] = False if 'DaoLiaoZongShu2' not in taskInfo else taskInfo['DaoLiaoZongShu2'] taskInfo['DanWei2'] = {'id':None} if 'DanWei2' not in taskInfo else taskInfo['DanWei2'] #前端传来的协作者不包含当前登录人员ID if 'XieZuoRen' in taskInfo: taskInfo['XieZuoRen'].append({'ID':userID}) taskInfo['Inspectors'] = "@".join([User['ID'] for User in taskInfo['XieZuoRen']]) else: taskInfo['Inspectors'] = userID if isNew: raw.sql = """INSERT INTO RMI_TASK WITH(ROWLOCK) (CreateTime, LastModifiedTime, ProductNo, ColorNo, ArriveTime, UserID, FlowID, MaterialID, SupplierID, UnitID, DaoLiaoZongShu, DaoLiaoZongShu2, UnitID2, Inspectors) VALUES ( getdate(), getdate(),'%s','%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s', %s, %s, '%s' );""" % ( taskInfo['ProductNo'], taskInfo['ColorNo'], taskInfo['ArriveTime'][:10], userID, taskInfo['FlowID'], taskInfo['WuLiao']['id'], taskInfo['GongYingShang']['id'], taskInfo['DanWei']['id'], taskInfo['DaoLiaoZongShu'], "'"+unicode(taskInfo['DaoLiaoZongShu2'])+"'" if taskInfo['DaoLiaoZongShu2'] else "NULL", "'"+unicode(taskInfo['DanWei2']['id'])+"'" if taskInfo['DanWei2']['id'] else "NULL", taskInfo['Inspectors'] ) raw.update() #辅料表页面右上角快速新建任务流水号的返回 raw.sql = "SELECT TOP 1 SerialNo FROM RMI_TASK WHERE UserID = '%s' AND State = 2 ORDER BY CreateTime desc"%userID return raw.query_one()[0] else: raw.sql = """UPDATE RMI_TASK WITH(ROWLOCK) SET MaterialID = '%s',SupplierID = '%s', UnitID = '%s', DaoLiaoZongShu = '%s', ProductNo = '%s', ColorNo = '%s', ArriveTime = '%s', DaoLiaoZongShu2 = %s, UnitID2 = %s, Inspectors = '%s' WHERE SerialNo = '%s'""" % ( taskInfo['WuLiao']['id'], taskInfo['GongYingShang']['id'], taskInfo['DanWei']['id'], taskInfo['DaoLiaoZongShu'], taskInfo['ProductNo'], taskInfo['ColorNo'], taskInfo['ArriveTime'][:10].replace('-',''), "'"+unicode(taskInfo['DaoLiaoZongShu2'])+"'" if taskInfo['DaoLiaoZongShu2'] else "NULL", "'"+unicode(taskInfo['DanWei2']['id'])+"'" if taskInfo['DanWei2']['id'] else "NULL", taskInfo['Inspectors'], taskInfo['SerialNo']) raw.update() def getFlowList(): """ 从数据库获取所有的工作流列表 :return:返回{"name":FlowName,"value":FlowID} """ raw = rawSql.Raw_sql() raw.sql = "SELECT FlowID AS value, FlowName AS name FROM RMI_WORK_FLOW WITH(NOLOCK)" res, columns = raw.query_all(needColumnName=True) return CommonUtilities.translateQueryResIntoDict(columns, res) def commitTaskBySerialNo(SerialNo): """ 根据流水号通过任务的函数 :param SerialNo: 任务流水号 :return: """ raw = rawSql.Raw_sql() raw.sql = "UPDATE RMI_TASK SET State = 0 WHERE SerialNo = '%s'"%SerialNo raw.update() return def deleteTaskBySerialNo(SerialNo): """ 删除任务,只删除RMI_TASK表中的数据,触发器跟踪删除其他表相关信息 :param SerialNo:任务流水号 :return: """ #TODO:触发器update_other_tables_when_delete_rmi_task更新删除F01之外其他表格的数据 raw = rawSql.Raw_sql() raw.sql = "DELETE FROM RMI_TASK WHERE SerialNo='%s'"%SerialNo raw.update() #call trigger delete all task info in rmi_task_process... return def getAllMaterialByName(fuzzyName): """ 根据模糊输入获取所有材料的名称 :param fuzzyName:模糊输入 :return:{'id':材料名称ID,'name':材料名称,'cata':材料种类名称} """ raw = rawSql.Raw_sql() raw.sql = """SELECT MaterialID AS id, MaterialName AS name, dbo.getMaterialTypeNameByID(MaterialTypeID) AS cata FROM RMI_MATERIAL_NAME WITH(NOLOCK)""" if fuzzyName: raw.sql += """ WHERE MaterialName LIKE '%%%%%s%%%%'"""%fuzzyName res, cols = raw.query_all(needColumnName=True) return CommonUtilities.translateQueryResIntoDict(cols, res) else: #如果为空返回空数据,否则前端卡顿 return [{"name":u'请输入关键字', "id":"", "cata":""}]
41.106918
140
0.671665
0
0
0
0
0
0
0
0
4,903
0.657768
9d064db24d2e119266bc78323c4a529982872160
744
py
Python
Leetcoding-Actions/my-weekly-DSA-challenge/2020-w44-p0200-Number-of-Islands.py
shoaibur/SWE
1e114a2750f2df5d6c50b48c8e439224894d65da
[ "MIT" ]
1
2020-11-14T18:28:13.000Z
2020-11-14T18:28:13.000Z
Leetcoding-Actions/my-weekly-DSA-challenge/2020-w44-p0200-Number-of-Islands.py
shoaibur/SWE
1e114a2750f2df5d6c50b48c8e439224894d65da
[ "MIT" ]
null
null
null
Leetcoding-Actions/my-weekly-DSA-challenge/2020-w44-p0200-Number-of-Islands.py
shoaibur/SWE
1e114a2750f2df5d6c50b48c8e439224894d65da
[ "MIT" ]
null
null
null
class Solution: def numIslands(self, grid: List[List[str]]) -> int: ''' T: O(mn) and S: O(1) ''' if not grid: return 0 nrow, ncol = len(grid), len(grid[0]) def exploreIsland(grid, i, j): if i < 0 or i > nrow - 1 or j < 0 or j > ncol-1 or grid[i][j] == "0": return grid[i][j] = "0" for (ni, nj) in [(i-1, j), (i+1, j), (i, j-1), (i, j+1)]: exploreIsland(grid, ni, nj) count_island = 0 for i in range(nrow): for j in range(ncol): if grid[i][j] == "1": exploreIsland(grid, i, j) count_island += 1 return count_island
32.347826
81
0.415323
743
0.998656
0
0
0
0
0
0
53
0.071237
9d07e918f729733a967e2d67e465e2cf7ce7d2a4
11,417
py
Python
tensor2tensor/models/revnet.py
ysglh/tensor2tensor
f55462a9928f3f8af0b1275a4fb40d13cae6cc79
[ "Apache-2.0" ]
null
null
null
tensor2tensor/models/revnet.py
ysglh/tensor2tensor
f55462a9928f3f8af0b1275a4fb40d13cae6cc79
[ "Apache-2.0" ]
null
null
null
tensor2tensor/models/revnet.py
ysglh/tensor2tensor
f55462a9928f3f8af0b1275a4fb40d13cae6cc79
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2017 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Creates a RevNet with the bottleneck residual function. Implements the following equations described in the RevNet paper: y1 = x1 + f(x2) y2 = x2 + g(y1) However, in practice, the authors use the following equations to downsample tensors inside a RevNet block: y1 = h(x1) + f(x2) y2 = h(x2) + g(y1) In this case, h is the downsampling function used to change number of channels. These modified equations are evident in the authors' code online: https://github.com/renmengye/revnet-public For reference, the original paper can be found here: https://arxiv.org/pdf/1707.04585.pdf """ # Dependency imports from tensor2tensor.layers import common_hparams from tensor2tensor.layers import rev_block from tensor2tensor.utils import registry from tensor2tensor.utils import t2t_model import tensorflow as tf CONFIG = {'2d': {'conv': tf.layers.conv2d, 'max_pool': tf.layers.max_pooling2d, 'avg_pool': tf.layers.average_pooling2d, 'split_axis': 3, 'reduction_dimensions': [1, 2] }, '3d': {'conv': tf.layers.conv3d, 'max_pool': tf.layers.max_pooling3d, 'avg_pool': tf.layers.average_pooling2d, 'split_axis': 4, 'reduction_dimensions': [1, 2, 3] } } def f(x, depth1, depth2, dim='2d', first_batch_norm=True, layer_stride=1, training=True, padding='SAME'): """Applies bottleneck residual function for 104-layer RevNet. Args: x: input tensor depth1: Number of output channels for the first and second conv layers. depth2: Number of output channels for the third conv layer. dim: '2d' if 2-dimensional, '3d' if 3-dimensional. first_batch_norm: Whether to keep the first batch norm layer or not. Typically used in the first RevNet block. layer_stride: Stride for the first conv filter. Note that this particular 104-layer RevNet architecture only varies the stride for the first conv filter. The stride for the second conv filter is always set to 1. training: True for train phase, False for eval phase. padding: Padding for each conv layer. Returns: Output tensor after applying residual function for 104-layer RevNet. """ conv = CONFIG[dim]['conv'] with tf.variable_scope('f'): if first_batch_norm: net = tf.layers.batch_normalization(x, training=training) net = tf.nn.relu(net) else: net = x net = conv(net, depth1, 1, strides=layer_stride, padding=padding, activation=None) net = tf.layers.batch_normalization(net, training=training) net = tf.nn.relu(net) net = conv(net, depth1, 3, strides=1, padding=padding, activation=None) net = tf.layers.batch_normalization(net, training=training) net = tf.nn.relu(net) net = conv(net, depth2, 1, strides=1, padding=padding, activation=None) return net def h(x, output_channels, dim='2d', layer_stride=1, scope='h'): """Downsamples 'x' using a 1x1 convolution filter and a chosen stride. Args: x: input tensor of size [N, H, W, C] output_channels: Desired number of output channels. dim: '2d' if 2-dimensional, '3d' if 3-dimensional. layer_stride: What stride to use. Usually 1 or 2. scope: Optional variable scope for the h function. This function uses a 1x1 convolution filter and a chosen stride to downsample the input tensor x. Returns: A downsampled tensor of size [N, H/2, W/2, output_channels] if layer_stride is 2, else returns a tensor of size [N, H, W, output_channels] if layer_stride is 1. """ conv = CONFIG[dim]['conv'] with tf.variable_scope(scope): x = conv(x, output_channels, 1, strides=layer_stride, padding='SAME', activation=None) return x def init(images, num_channels, dim='2d', training=True, scope='init'): """Standard ResNet initial block used as first RevNet block. Args: images: [N, H, W, 3] tensor of input images to the model. num_channels: Output depth of convolutional layer in initial block. dim: '2d' if 2-dimensional, '3d' if 3-dimensional. training: True for train phase, False for eval phase. scope: Optional scope for the init block. Returns: Two [N, H, W, C] output activations from input images. """ conv = CONFIG[dim]['conv'] pool = CONFIG[dim]['max_pool'] with tf.variable_scope(scope): net = conv(images, num_channels, 7, strides=2, padding='SAME', activation=None) net = tf.layers.batch_normalization(net, training=training) net = tf.nn.relu(net) net = pool(net, pool_size=3, strides=2) x1, x2 = tf.split(net, 2, axis=CONFIG[dim]['split_axis']) return x1, x2 def unit(x1, x2, block_num, depth1, depth2, num_layers, dim='2d', first_batch_norm=True, stride=1, training=True): """Implements bottleneck RevNet unit from authors' RevNet-104 architecture. Args: x1: [N, H, W, C] tensor of network activations. x2: [N, H, W, C] tensor of network activations. block_num: integer ID of block depth1: First depth in bottleneck residual unit. depth2: Second depth in bottleneck residual unit. num_layers: Number of layers in the RevNet block. dim: '2d' if 2-dimensional, '3d' if 3-dimensional. first_batch_norm: Whether to keep the first batch norm layer or not. Typically used in the first RevNet block. stride: Stride for the residual function. training: True for train phase, False for eval phase. Returns: Two [N, H, W, C] output activation tensors. """ scope_name = 'unit_%d' % block_num with tf.variable_scope(scope_name): # Manual implementation of downsampling with tf.variable_scope('downsampling'): with tf.variable_scope('x1'): hx1 = h(x1, depth2, dim=dim, layer_stride=stride) fx2 = f(x2, depth1, depth2, dim=dim, layer_stride=stride, first_batch_norm=first_batch_norm, training=training) x1 = hx1 + fx2 with tf.variable_scope('x2'): hx2 = h(x2, depth2, dim=dim, layer_stride=stride) fx1 = f(x1, depth1, depth2, dim=dim, training=training) x2 = hx2 + fx1 # Full block using memory-efficient rev_block implementation. with tf.variable_scope('full_block'): residual_func = lambda x: f(x, depth1, depth2, dim=dim, training=training) x1, x2 = rev_block.rev_block(x1, x2, residual_func, residual_func, num_layers=num_layers) return x1, x2 def final_block(x1, x2, dim='2d', training=True, scope='final_block'): """Converts activations from last RevNet block to pre-logits. Args: x1: [NxHxWxC] tensor of network activations. x2: [NxHxWxC] tensor of network activations. dim: '2d' if 2-dimensional, '3d' if 3-dimensional. training: True for train phase, False for eval phase. scope: Optional variable scope for the final block. Returns: [N, hidden_dim] pre-logits tensor from activations x1 and x2. """ # Final batch norm and relu with tf.variable_scope(scope): y = tf.concat([x1, x2], axis=CONFIG[dim]['split_axis']) y = tf.layers.batch_normalization(y, training=training) y = tf.nn.relu(y) # Global average pooling net = tf.reduce_mean(y, CONFIG[dim]['reduction_dimensions'], name='final_pool', keep_dims=True) return net def revnet104(inputs, hparams, reuse=None): """Uses Tensor2Tensor memory optimized RevNet block to build a RevNet. Args: inputs: [NxHxWx3] tensor of input images to the model. hparams: HParams object that contains the following parameters, in addition to the parameters contained in the basic_params1() object in the common_hparams module: num_channels_first - A Python list where each element represents the depth of the first and third convolutional layers in the bottleneck residual unit for a given block. num_channels_second - A Python list where each element represents the depth of the second convolutional layer in the bottleneck residual unit for a given block. num_layers_per_block - A Python list containing the number of RevNet layers for each block. first_batch_norm - A Python list containing booleans representing the presence of a batch norm layer at the beginning of a given block. strides - A Python list containing integers representing the stride of the residual function for each block. num_channels_init_block - An integer representing the number of channels for the convolutional layer in the initial block. dimension - A string (either "2d" or "3d") that decides if the RevNet is 2-dimensional or 3-dimensional. reuse: Whether to reuse the default variable scope. Returns: [batch_size, hidden_dim] pre-logits tensor from the bottleneck RevNet. """ training = hparams.mode == tf.estimator.ModeKeys.TRAIN with tf.variable_scope('RevNet104', reuse=reuse): x1, x2 = init(inputs, num_channels=hparams.num_channels_init_block, dim=hparams.dim, training=training) for block_num in range(1, len(hparams.num_layers_per_block)): block = {'depth1': hparams.num_channels_first[block_num], 'depth2': hparams.num_channels_second[block_num], 'num_layers': hparams.num_layers_per_block[block_num], 'first_batch_norm': hparams.first_batch_norm[block_num], 'stride': hparams.strides[block_num]} x1, x2 = unit(x1, x2, block_num, dim=hparams.dim, training=training, **block) pre_logits = final_block(x1, x2, dim=hparams.dim, training=training) return pre_logits @registry.register_model class Revnet104(t2t_model.T2TModel): def body(self, features): return revnet104(features['inputs'], self.hparams) @registry.register_hparams def revnet_base(): """Set of hyperparameters.""" hparams = common_hparams.basic_params1() hparams.add_hparam('num_channels_first', [64, 128, 256, 416]) hparams.add_hparam('num_channels_second', [256, 512, 1024, 1664]) hparams.add_hparam('num_layers_per_block', [1, 1, 10, 1]) hparams.add_hparam('first_batch_norm', [False, True, True, True]) hparams.add_hparam('strides', [1, 2, 2, 2]) hparams.add_hparam('num_channels_init_block', 32) hparams.add_hparam('dim', '2d') hparams.optimizer = 'Momentum' hparams.learning_rate = 0.01 hparams.weight_decay = 1e-4 # Can run with a batch size of 128 with Problem ImageImagenet224 hparams.tpu_batch_size_per_shard = 128 return hparams
38.441077
80
0.681177
120
0.010511
0
0
877
0.076815
0
0
6,530
0.571954
9d08e38fa29119640133acdff959362b1c00409d
4,166
py
Python
tests/unit/test_services.py
BlooAM/Online-shopping-app
aa68d258fe32bf5a792e534dddd9def7c25460e2
[ "MIT" ]
null
null
null
tests/unit/test_services.py
BlooAM/Online-shopping-app
aa68d258fe32bf5a792e534dddd9def7c25460e2
[ "MIT" ]
null
null
null
tests/unit/test_services.py
BlooAM/Online-shopping-app
aa68d258fe32bf5a792e534dddd9def7c25460e2
[ "MIT" ]
null
null
null
import pytest from datetime import date, timedelta from adapters import repository from domain.model import Batch, OrderLine, allocate, OutOfStock from domain import model from service_layer import handlers, unit_of_work class FakeSession: def __init__(self): self.committed = False def commit(self): self.commited = True class FakeRepository(repository.AbstractRepository): def __init__(self, products): super().__init__() self._products = set(products) def _add(self, product): self._products.add(product) def _get(self, sku): return next((p for p in self._products if p.sku == sku), None) class FakeUnitOfWork(unit_of_work.AbstractUnitOfWork): def __init__(self): self.batches = FakeRepository([]) self.committed = False def _commit(self): self.committed = True def rollback(self): pass today = date.today() tomorrow = today + timedelta(days=1) later = tomorrow + timedelta(days=10) def test_add_batch(): uow = FakeUnitOfWork() handlers.add_batch("b1", "CRUNCHY-ARMCHAIR", 100, None, uow) assert uow.batches.get("b1") is not None assert uow.committed def test_prefers_current_stock_batches_to_shipments(): in_stock_batch = Batch("in-stock-batch", "RETRO-CLOCK", 100, eta=None) shipment_batch = Batch("shipment-batch", "RETRO-CLOCK", 100, eta=tomorrow) line = OrderLine("oref", "RETRO-CLOCK", 10) allocate(line, [in_stock_batch, shipment_batch]) assert in_stock_batch.available_quantity == 90 assert shipment_batch.available_quantity == 100 def test_prefers_warehouse_batches_to_shipments(): in_stock_batch = Batch("in-stock-batch", "RETRO-CLOCK", 100, eta=None) shipment_batch = Batch("shipment-batch", "RETRO-CLOCK", 100, eta=tomorrow) repo = FakeRepository([in_stock_batch, shipment_batch]) session = FakeSession() line = OrderLine('oref', "RETRO-CLOCK", 10) handlers.allocate(line, repo, session) assert in_stock_batch.available_quantity == 90 assert shipment_batch.available_quantity == 100 def test_prefers_earlier_batches(): earliest = Batch("speedy-batch", "MINIMALIST-SPOON", 100, eta=today) medium = Batch("normal-batch", "MINIMALIST-SPOON", 100, eta=tomorrow) latest = Batch("slow-batch", "MINIMALIST-SPOON", 100, eta=later) line = OrderLine("order1", "MINIMALIST-SPOON", 10) allocate(line, [medium, earliest, latest]) assert earliest.available_quantity == 90 assert medium.available_quantity == 100 assert latest.available_quantity == 100 def test_returns_allocated_batch_ref(): in_stock_batch = Batch("in-stock-batch-ref", "HIGHBROW-POSTER", 100, eta=None) shipment_batch = Batch("shipment-batch-ref", "HIGHBROW-POSTER", 100, eta=tomorrow) line = OrderLine("oref", "HIGHBROW-POSTER", 10) allocation = allocate(line, [in_stock_batch, shipment_batch]) assert allocation == in_stock_batch.reference def test_raises_out_of_stock_exception_if_cannot_allocate(): batch = Batch('batch1', 'SMALL-FORK', 10, eta=today) allocate(OrderLine('order1', 'SMALL-FORK', 10), [batch]) with pytest.raises(OutOfStock, match='SMALL-FORK'): allocate(OrderLine('order2', 'SMALL-FORK', 1), [batch]) def test_commits(): line = model.OrderLine("o1", "OMINOUS-MIRROR", 10) batch = model.Batch("b1", "OMINOUS-MIRROR", 100, eta=None) repo = FakeRepository([batch]) session = FakeSession() handlers.allocate("o1", "OMINOUS-MIRROR", 10, repo, session) assert session.committed is True def test_allocate_returns_allocation(): uow = FakeUnitOfWork() handlers.add_batch("batch1", "COMPLICATED-LAMP", 100, None, uow) result = handlers.allocate("o1", "COMPLICATED-LAMP", 10, uow) assert result == "bach1" def test_error_for_invalid_sku(): line = model.OrderLine("o1", "NONEXISTENTSKU", 10) batch = model.Batch("b1", "AREALSKU", 100, eta=None) repo = FakeRepository([batch]) with pytest.raises(handlers.InvalidSku, match="Invalid name of SKU: NONEXISTENTSKU"): handlers.allocate("o1", "NONEXISTENTSKU", 10, repo, FakeSession())
32.046154
89
0.702112
683
0.163946
0
0
0
0
0
0
675
0.162026
9d08ebe64750ed4ee86af0207bca624b0391ff75
1,786
py
Python
DQMOffline/L1Trigger/python/L1TEGammaOffline_cfi.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
DQMOffline/L1Trigger/python/L1TEGammaOffline_cfi.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
DQMOffline/L1Trigger/python/L1TEGammaOffline_cfi.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
import FWCore.ParameterSet.Config as cms electronEfficiencyThresholds = [36, 68, 128, 176] electronEfficiencyBins = [] electronEfficiencyBins.extend(list(xrange(0, 120, 10))) electronEfficiencyBins.extend(list(xrange(120, 180, 20))) electronEfficiencyBins.extend(list(xrange(180, 300, 40))) electronEfficiencyBins.extend(list(xrange(300, 400, 100))) # just copy for now photonEfficiencyThresholds = electronEfficiencyThresholds photonEfficiencyBins = electronEfficiencyBins l1tEGammaOfflineDQM = cms.EDAnalyzer( "L1TEGammaOffline", electronCollection=cms.InputTag("gedGsfElectrons"), photonCollection=cms.InputTag("photons"), caloJetCollection=cms.InputTag("ak4CaloJets"), caloMETCollection=cms.InputTag("caloMet"), conversionsCollection=cms.InputTag("allConversions"), PVCollection=cms.InputTag("offlinePrimaryVerticesWithBS"), beamSpotCollection=cms.InputTag("offlineBeamSpot"), TriggerEvent=cms.InputTag('hltTriggerSummaryAOD', '', 'HLT'), TriggerResults=cms.InputTag('TriggerResults', '', 'HLT'), # last filter of HLTEle27WP80Sequence TriggerFilter=cms.InputTag('hltEle27WP80TrackIsoFilter', '', 'HLT'), TriggerPath=cms.string('HLT_Ele27_WP80_v13'), stage2CaloLayer2EGammaSource=cms.InputTag("caloStage2Digis", "EGamma"), histFolder=cms.string('L1T/L1TEGamma'), electronEfficiencyThresholds=cms.vdouble(electronEfficiencyThresholds), electronEfficiencyBins=cms.vdouble(electronEfficiencyBins), photonEfficiencyThresholds=cms.vdouble(photonEfficiencyThresholds), photonEfficiencyBins=cms.vdouble(photonEfficiencyBins), ) l1tEGammaOfflineDQMEmu = l1tEGammaOfflineDQM.clone( stage2CaloLayer2EGammaSource=cms.InputTag("simCaloStage2Digis"), histFolder=cms.string('L1TEMU/L1TEGamma'), )
37.208333
75
0.783875
0
0
0
0
0
0
0
0
370
0.207167
9d092f6e945eea14883d51652329fcd4951dee46
18,548
py
Python
ion_networks/numba_functions.py
swillems/ion_networks
5304a92248ec007ac2253f246a3d44bdb58ae110
[ "MIT" ]
2
2020-10-28T16:11:56.000Z
2020-12-03T13:19:18.000Z
ion_networks/numba_functions.py
swillems/ion_networks
5304a92248ec007ac2253f246a3d44bdb58ae110
[ "MIT" ]
null
null
null
ion_networks/numba_functions.py
swillems/ion_networks
5304a92248ec007ac2253f246a3d44bdb58ae110
[ "MIT" ]
null
null
null
#!python # external import numpy as np import numba @numba.njit(nogil=True, cache=True) def longest_increasing_subsequence(sequence): # TODO:Docstring M = np.zeros(len(sequence) + 1, np.int64) P = np.zeros(len(sequence), np.int64) max_subsequence_length = 0 for current_index, current_element in enumerate(sequence): low_bound = 1 high_bound = max_subsequence_length while low_bound <= high_bound: mid = (low_bound + high_bound) // 2 if sequence[M[mid]] <= current_element: low_bound = mid + 1 else: high_bound = mid - 1 subsequence_length = low_bound P[current_index] = M[subsequence_length - 1] M[subsequence_length] = current_index if subsequence_length > max_subsequence_length: max_subsequence_length = subsequence_length longest_increasing_subsequence = np.repeat(0, max_subsequence_length) index = M[max_subsequence_length] for current_index in range(max_subsequence_length - 1, -1, -1): longest_increasing_subsequence[current_index] = index index = P[index] return longest_increasing_subsequence @numba.njit(nogil=True, cache=True) def increase_buffer(buffer, max_batch=10**7): new_buffer = np.empty(buffer.shape[0] + max_batch, np.int64) new_buffer[:len(buffer)] = buffer return new_buffer @numba.njit(nogil=True, cache=True) def quick_align( self_mzs, other_mzs, self_mz_order, other_mz_order, other_rt_order, ppm ): # TODO: Docstring max_mz_diff = 1 + ppm * 10**-6 low_limits = np.searchsorted( self_mzs[self_mz_order], other_mzs[other_mz_order] / max_mz_diff, "left" )[other_rt_order] high_limits = np.searchsorted( self_mzs[self_mz_order], other_mzs[other_mz_order] * max_mz_diff, "right" )[other_rt_order] diffs = high_limits - low_limits ends = np.cumsum(diffs) self_indices = np.empty(ends[-1], np.int64) for l, h, e, d in zip(low_limits, high_limits, ends, diffs): self_indices[e - d: e] = self_mz_order[l: h] selection = longest_increasing_subsequence(self_indices) self_indices_mask = np.empty(len(selection) + 2, np.int64) self_indices_mask[0] = 0 self_indices_mask[1: -1] = self_indices[selection] self_indices_mask[-1] = len(self_mzs) - 1 other_indices_mask = np.empty(len(selection) + 2, np.int64) other_indices_mask[0] = 0 other_indices = np.repeat( np.arange(len(other_rt_order)), high_limits - low_limits ) other_indices_mask[1: -1] = other_indices[selection] other_indices_mask[-1] = len(other_mzs) - 1 return self_indices_mask, other_indices_mask @numba.njit(nogil=True, cache=True) def align_coordinates( queries, lower_limits, upper_limits, self_coordinates, other_coordinates, max_errors, # kind="euclidean" ): indptr = np.zeros(len(queries), np.int64) indices = np.empty(10**7, np.int64) total = 0 for index, query in enumerate(queries): low_limit = lower_limits[query] high_limit = upper_limits[query] candidate_count = high_limit - low_limit if candidate_count == 0: continue elif (candidate_count + total) >= len(indices): indices = increase_buffer(indices) dists = other_coordinates[low_limit: high_limit] - self_coordinates[query] # TODO: what if error==0? # if kind == "euclidean": dists /= max_errors dists = dists**2 projected_dists = np.sum(dists, axis=1) projected_dists = np.sqrt(projected_dists) candidates = low_limit + np.flatnonzero(projected_dists <= 1) # elif kind == "manhattan": # projected_dists = np.all(dists < max_errors, axis=1) # candidates = low_limit + np.flatnonzero(projected_dists) candidate_count = len(candidates) indices[total: total + candidate_count] = candidates indptr[index] = candidate_count total += candidate_count return (indptr, indices[:total]) @numba.njit(nogil=True, cache=True) def make_symmetric( indptr, indices, ): # TODO: multithread? offsets = np.cumsum(np.bincount(indices)) indptr_ = indptr.copy() indptr_[1:1 + offsets.shape[0]] += offsets indptr_[1 + offsets.shape[0]:] += offsets[-1] indices_ = np.empty(indptr_[-1], np.int64) pointers_ = np.empty_like(indices_) offsets = indptr_[:-1] + np.diff(indptr) for index in range(indptr.shape[0] - 1): start = indptr[index] end = indptr[index + 1] current_indices = indices[start: end] pointers = np.arange(start, end) start_ = indptr_[index] end_ = start_ + current_indices.shape[0] indices_[start_: end_] = current_indices pointers_[start_: end_] = pointers current_offsets = offsets[current_indices] indices_[current_offsets] = index pointers_[current_offsets] = pointers offsets[current_indices] += 1 return indptr_, indices_, pointers_ @numba.njit(nogil=True, cache=True) def align_edges( queries, self_indptr, self_indices, self_pointers, other_indptr, other_indices, alignment, alignment_mask, ): self_pointers_ = np.empty(10**7, np.int64) other_pointers_ = np.empty(10**7, np.int64) pointer_offset = 0 for index in queries: possible_start = self_indptr[index] possible_end = self_indptr[index + 1] if possible_start == possible_end: continue current_index = alignment[index] current_start = other_indptr[current_index] current_end = other_indptr[current_index + 1] if current_start == current_end: continue possible_indices = self_indices[possible_start: possible_end] possible_mask = alignment_mask[possible_indices] if not np.any(possible_mask): continue possible_indices = alignment[possible_indices[possible_mask]] possible_pointers = self_pointers[possible_start: possible_end][ possible_mask ] current_indices = other_indices[current_start: current_end] candidates1 = np.searchsorted( current_indices, possible_indices, "left" ) candidates2 = np.searchsorted( current_indices, possible_indices, "right" ) overlap = np.flatnonzero(candidates2 != candidates1) overlap_count = len(overlap) if len(overlap) == 0: continue elif (overlap_count + pointer_offset) >= len(self_pointers_): self_pointers_ = increase_buffer(self_pointers_) other_pointers_ = increase_buffer(other_pointers_) self_pointers_[ pointer_offset: pointer_offset + overlap_count ] = possible_pointers[overlap] other_pointers_[ pointer_offset: pointer_offset + overlap_count ] = current_start + candidates1[overlap] pointer_offset += overlap_count return self_pointers_[:pointer_offset], other_pointers_[:pointer_offset] @numba.njit(cache=True) def find_peak_indices( input_array, output_array, max_distance, ): peaks = np.zeros(int(input_array[-1]), np.int64) current_max_mz = 0 current_max_int = 0 current_max_index = 0 for index, (intensity, mz) in enumerate(zip(output_array, input_array)): if mz > current_max_mz + max_distance: peaks[int(current_max_mz)] = current_max_index current_max_mz = mz current_max_int = intensity current_max_index = index elif intensity > current_max_int: current_max_mz = mz current_max_int = intensity current_max_index = index return peaks @numba.njit(nogil=True, cache=True) def get_unique_apex_and_count( ordered_self_indices, ordered_other_indices, return_all_counts=True ): counts = np.zeros_like(ordered_self_indices) self_max = np.max(ordered_self_indices) other_max = np.max(ordered_other_indices) unique_pair = np.zeros(counts.shape[0], np.bool_) self_frequencies = np.zeros(self_max + 1, np.int64) other_frequencies = np.zeros(other_max + 1, np.int64) self_indptr = np.empty(self_max + 2, np.int64) self_indptr[0] = 0 self_indptr[1:] = np.cumsum(np.bincount(ordered_self_indices)) self_order = np.argsort(ordered_self_indices) other_indptr = np.empty(other_max + 2, np.int64) other_indptr[0] = 0 other_indptr[1:] = np.cumsum(np.bincount(ordered_other_indices)) other_order = np.argsort(ordered_other_indices) unique_count = 0 max_count = 0 apex = 0 for i in range(counts.shape[0]): self_index = ordered_self_indices[i] other_index = ordered_other_indices[i] if ( self_frequencies[self_index] == 0 ) & ( other_frequencies[other_index] == 0 ): unique_count += 1 unique_pair[i] = True if unique_count > max_count: apex = i max_count = unique_count else: self_locs = self_order[ self_indptr[self_index]: self_indptr[self_index + 1] ] if np.any(unique_pair[self_locs]): unique_count -= 1 other_locs = other_order[ other_indptr[other_index]: other_indptr[other_index + 1] ] if np.any(unique_pair[other_locs]): unique_count -= 1 unique_pair[self_locs] = False unique_pair[other_locs] = False self_frequencies[self_index] += 1 other_frequencies[other_index] += 1 counts[i] = unique_count if not return_all_counts: counts = counts[apex: apex + 1] return apex, counts @numba.njit def cluster_network( indptr, indices, edge_pointers, selected_edges, ): node_count = indptr.shape[0] - 1 clusters = np.zeros(node_count, np.int64) cluster_number = 0 for index in range(node_count): if clusters[index] != 0: continue current_cluster = set() new_indices = set() new_indices.add(index) while len(new_indices) > 0: new_index = new_indices.pop() current_cluster.add(new_index) neighbors = indices[indptr[new_index]: indptr[new_index + 1]] pointers = edge_pointers[indptr[new_index]: indptr[new_index + 1]] selected = selected_edges[pointers] new_indices |= set(neighbors[selected]) - current_cluster cluster_number += 1 for i in current_cluster: clusters[i] = cluster_number return clusters @numba.njit() def __get_candidate_peptide_indices_for_edges( indptr, indices, low_peptide_indices, high_peptide_indices, database_peptides, max_batch ): # TODO: Docstring result_indptr = np.empty(indptr[-1], np.int64) result_indices = np.empty(max_batch, np.int64) current_index = 0 for start, end, low, high in zip( indptr[:-1], indptr[1:], low_peptide_indices, high_peptide_indices, ): if (low == high) or (start == end): result_indptr[start:end] = current_index continue if ( (end - start) * (high - low) + current_index ) >= result_indices.shape[0]: new_result_indices = np.empty( max_batch + result_indices.shape[0], np.int64 ) new_result_indices[:result_indices.shape[0]] = result_indices result_indices = new_result_indices peptide_candidates = database_peptides[low: high] peptide_candidates_set = set(peptide_candidates) neighbors = indices[start: end] for i, neighbor in enumerate(neighbors): neighbor_low = low_peptide_indices[neighbor] neighbor_high = high_peptide_indices[neighbor] if neighbor_low == neighbor_high: result_indptr[start + i] = current_index continue neighbor_peptide_candidates = database_peptides[ neighbor_low: neighbor_high ] for neighbor_peptide_candidate in neighbor_peptide_candidates: if neighbor_peptide_candidate in peptide_candidates_set: result_indices[ current_index ] = neighbor_peptide_candidate current_index += 1 result_indptr[start + i] = current_index result_indptr[1:] = result_indptr[:-1] result_indptr[0] = 0 return result_indptr, result_indices[:current_index] @numba.njit(cache=True, nogil=True) def annotate_mgf( queries, spectra_indptr, low_limits, high_limits, peptide_pointers, min_score=0 ): peptide_count = np.max(peptide_pointers) + 1 count = 0 for s in queries: count += spectra_indptr[s + 1] - spectra_indptr[s] score_results = np.empty(count, np.float64) fragment_results = np.empty(count, np.int64) index_results = np.empty(count, np.int64) count_results = np.empty(count, np.int64) candidate_counts = np.empty(count, np.int64) spectrum_sizes = np.empty(count, np.int64) current_i = 0 candidates = np.empty(peptide_count, np.int64) for spectrum_index in queries: spectrum_start = spectra_indptr[spectrum_index] spectrum_end = spectra_indptr[spectrum_index + 1] spectrum_size = spectrum_end - spectrum_start if spectrum_size == 0: continue candidates[:] = 0 for ion_index in range(spectrum_start, spectrum_end): peptide_low = low_limits[ion_index] peptide_high = high_limits[ion_index] if peptide_low == peptide_high: continue peptides = peptide_pointers[peptide_low: peptide_high] candidates[peptides] += 1 for ion_index in range(spectrum_start, spectrum_end): peptide_low = low_limits[ion_index] peptide_high = high_limits[ion_index] if peptide_low == peptide_high: continue ( score, max_count, max_fragment, candidate_count ) = score_regression_estimator( candidates[peptide_pointers[peptide_low: peptide_high]], peptide_low, peptide_count ) if score > min_score: score_results[current_i] = score fragment_results[current_i] = max_fragment index_results[current_i] = ion_index count_results[current_i] = max_count candidate_counts[current_i] = candidate_count spectrum_sizes[current_i] = spectrum_size current_i += 1 return ( score_results[:current_i], fragment_results[:current_i], index_results[:current_i], count_results[:current_i], candidate_counts[:current_i], spectrum_sizes[:current_i], ) @numba.njit(cache=True, nogil=True) def annotate_network( queries, indptr, indices, edge_pointers, selected_edges, low_limits, high_limits, peptide_pointers, ): peptide_count = np.max(peptide_pointers) + 1 count = len(queries) score_results = np.empty(count, np.float64) fragment_results = np.empty(count, np.int64) index_results = np.empty(count, np.int64) count_results = np.empty(count, np.int64) candidate_counts = np.empty(count, np.int64) neighbor_counts = np.empty(count, np.int64) current_i = 0 for ion_index in queries: peptide_low = low_limits[ion_index] peptide_high = high_limits[ion_index] if peptide_low == peptide_high: continue ion_start = indptr[ion_index] ion_end = indptr[ion_index + 1] good_neighbors = selected_edges[edge_pointers[ion_start: ion_end]] neighbor_count = np.sum(good_neighbors) if neighbor_count == 0: continue neighbors = indices[ion_start: ion_end][good_neighbors] candidates = np.zeros(peptide_count, np.int64) for neighbor_ion_index in neighbors: neighbor_peptide_low = low_limits[neighbor_ion_index] neighbor_peptide_high = high_limits[neighbor_ion_index] if neighbor_peptide_low == neighbor_peptide_high: continue peptides = peptide_pointers[ neighbor_peptide_low: neighbor_peptide_high ] candidates[peptides] += 1 ( score, max_count, max_fragment, candidate_count ) = score_regression_estimator( candidates[peptide_pointers[peptide_low: peptide_high]] + 1, peptide_low, peptide_count ) if score > 0: score_results[current_i] = score fragment_results[current_i] = max_fragment index_results[current_i] = ion_index count_results[current_i] = max_count candidate_counts[current_i] = candidate_count neighbor_counts[current_i] = neighbor_count current_i += 1 return ( score_results[:current_i], fragment_results[:current_i], index_results[:current_i], count_results[:current_i], candidate_counts[:current_i], neighbor_counts[:current_i], ) @numba.njit(cache=True, nogil=True) def score_regression_estimator(candidates, offset, peptide_count): frequencies = np.bincount(candidates) frequencies = np.cumsum(frequencies[::-1])[::-1] max_count = len(frequencies) - 1 max_fragment = offset + np.flatnonzero(candidates == max_count)[0] if frequencies[-1] != 1: score = 0 elif frequencies[1] == 1: # score = 1 - 2**(-np.log2(peptide_count) * (max_count - 1)) score = 1 - peptide_count**(1 - max_count) else: x0 = 2 + np.flatnonzero(frequencies[2:] == 1)[0] y0 = np.log2(frequencies[1]) slope = y0 / (x0 - 1) score = 1 - 2**(-slope * (max_count - x0)) return score, max_count, max_fragment, len(candidates)
34.864662
82
0.630418
0
0
0
0
18,456
0.99504
0
0
389
0.020973
9d099c325b8e8eb13555bc61afea2a208b9050c9
241
py
Python
Programming Fundamentals/Dictionaries/bakery.py
antonarnaudov/SoftUniProjects
01cbdce2b350b57240045d1bc3e21d34f9d0351d
[ "MIT" ]
null
null
null
Programming Fundamentals/Dictionaries/bakery.py
antonarnaudov/SoftUniProjects
01cbdce2b350b57240045d1bc3e21d34f9d0351d
[ "MIT" ]
null
null
null
Programming Fundamentals/Dictionaries/bakery.py
antonarnaudov/SoftUniProjects
01cbdce2b350b57240045d1bc3e21d34f9d0351d
[ "MIT" ]
null
null
null
def result(elements): bakery = {} for i in range(0, len(elements), 2): key = elements[i] value = elements[i + 1] bakery[key] = int(value) return bakery tokens = input().split(' ') print(result(tokens))
18.538462
40
0.564315
0
0
0
0
0
0
0
0
3
0.012448
9d0ab807d87d356a4a4fb529654e22486400f676
1,525
py
Python
vtrace/const.py
rnui2k/vivisect
b7b00f2d03defef28b4b8c912e3a8016e956c5f7
[ "ECL-2.0", "Apache-2.0" ]
716
2015-01-01T14:41:11.000Z
2022-03-28T06:51:50.000Z
vtrace/const.py
rnui2k/vivisect
b7b00f2d03defef28b4b8c912e3a8016e956c5f7
[ "ECL-2.0", "Apache-2.0" ]
266
2015-01-01T15:07:27.000Z
2022-03-30T15:19:26.000Z
vtrace/const.py
rnui2k/vivisect
b7b00f2d03defef28b4b8c912e3a8016e956c5f7
[ "ECL-2.0", "Apache-2.0" ]
159
2015-01-01T16:19:44.000Z
2022-03-21T21:55:34.000Z
# Order must match format junk # NOTIFY_ALL is kinda special, if you registerNotifier # with it, you get ALL notifications. NOTIFY_ALL = 0 # Get all notifications NOTIFY_SIGNAL = 1 # Callback on signal/exception NOTIFY_BREAK = 2 # Callback on breakpoint / sigtrap NOTIFY_STEP = 3 # Callback on singlestep complete NOTIFY_SYSCALL = 4 # Callback on syscall (linux only for now) NOTIFY_CONTINUE = 5 # Callback on continue (not done for step) NOTIFY_EXIT = 6 # Callback on process exit NOTIFY_ATTACH = 7 # Callback on successful attach NOTIFY_DETACH = 8 # Callback on impending process detach # The following notifiers are *only* available on some platforms # (and may be kinda faked out ala library load events on posix) NOTIFY_LOAD_LIBRARY = 9 NOTIFY_UNLOAD_LIBRARY = 10 NOTIFY_CREATE_THREAD = 11 NOTIFY_EXIT_THREAD = 12 NOTIFY_DEBUG_PRINT = 13 # Some platforms support this (win32). NOTIFY_MAX = 20 # File Descriptor / Handle Types FD_UNKNOWN = 0 # Unknown or we don't have a type for it FD_FILE = 1 FD_SOCKET = 2 FD_PIPE = 3 FD_LOCK = 4 # Win32 Mutant/Lock/Semaphore FD_EVENT = 5 # Win32 Event/KeyedEvent FD_THREAD = 6 # Win32 Thread FD_REGKEY = 7 # Win32 Registry Key # Vtrace Symbol Types SYM_MISC = -1 SYM_GLOBAL = 0 # Global (mostly vars) SYM_LOCAL = 1 # Locals SYM_FUNCTION = 2 # Functions SYM_SECTION = 3 # Binary section SYM_META = 4 # Info that we enumerate # Vtrace Symbol Offsets VSYM_NAME = 0 VSYM_ADDR = 1 VSYM_SIZE = 2 VSYM_TYPE = 3 VSYM_FILE = 4
33.152174
66
0.733115
0
0
0
0
0
0
0
0
869
0.569836
9d0d12599f8d63386d38681b6e12a10636886357
3,248
py
Python
src/ezdxf/groupby.py
jkjt/ezdxf
2acc5611b81476ea16b98063b9f55446a9182b81
[ "MIT" ]
515
2017-01-25T05:46:52.000Z
2022-03-29T09:52:27.000Z
src/ezdxf/groupby.py
jkjt/ezdxf
2acc5611b81476ea16b98063b9f55446a9182b81
[ "MIT" ]
417
2017-01-25T10:01:17.000Z
2022-03-29T09:22:04.000Z
src/ezdxf/groupby.py
jkjt/ezdxf
2acc5611b81476ea16b98063b9f55446a9182b81
[ "MIT" ]
149
2017-02-01T15:52:02.000Z
2022-03-17T10:33:38.000Z
# Purpose: Grouping entities by DXF attributes or a key function. # Copyright (c) 2017-2021, Manfred Moitzi # License: MIT License from typing import Iterable, Hashable, Dict, List, TYPE_CHECKING from ezdxf.lldxf.const import DXFValueError, DXFAttributeError if TYPE_CHECKING: from ezdxf.eztypes import DXFEntity, KeyFunc def groupby( entities: Iterable["DXFEntity"], dxfattrib: str = "", key: "KeyFunc" = None ) -> Dict[Hashable, List["DXFEntity"]]: """ Groups a sequence of DXF entities by a DXF attribute like ``'layer'``, returns a dict with `dxfattrib` values as key and a list of entities matching this `dxfattrib`. A `key` function can be used to combine some DXF attributes (e.g. layer and color) and should return a hashable data type like a tuple of strings, integers or floats, `key` function example:: def group_key(entity: DXFEntity): return entity.dxf.layer, entity.dxf.color For not suitable DXF entities return ``None`` to exclude this entity, in this case it's not required, because :func:`groupby` catches :class:`DXFAttributeError` exceptions to exclude entities, which do not provide layer and/or color attributes, automatically. Result dict for `dxfattrib` = ``'layer'`` may look like this:: { '0': [ ... list of entities ], 'ExampleLayer1': [ ... ], 'ExampleLayer2': [ ... ], ... } Result dict for `key` = `group_key`, which returns a ``(layer, color)`` tuple, may look like this:: { ('0', 1): [ ... list of entities ], ('0', 3): [ ... ], ('0', 7): [ ... ], ('ExampleLayer1', 1): [ ... ], ('ExampleLayer1', 2): [ ... ], ('ExampleLayer1', 5): [ ... ], ('ExampleLayer2', 7): [ ... ], ... } All entity containers (modelspace, paperspace layouts and blocks) and the :class:`~ezdxf.query.EntityQuery` object have a dedicated :meth:`groupby` method. Args: entities: sequence of DXF entities to group by a DXF attribute or a `key` function dxfattrib: grouping DXF attribute like ``'layer'`` key: key function, which accepts a :class:`DXFEntity` as argument and returns a hashable grouping key or ``None`` to ignore this entity """ if all((dxfattrib, key)): raise DXFValueError( "Specify a dxfattrib or a key function, but not both." ) if dxfattrib != "": key = lambda entity: entity.dxf.get_default(dxfattrib) if key is None: raise DXFValueError( "no valid argument found, specify a dxfattrib or a key function, " "but not both." ) result: Dict[Hashable, List["DXFEntity"]] = dict() for dxf_entity in entities: if not dxf_entity.is_alive: continue try: group_key = key(dxf_entity) except DXFAttributeError: # ignore DXF entities, which do not support all query attributes continue if group_key is not None: group = result.setdefault(group_key, []) group.append(dxf_entity) return result
35.692308
79
0.601293
0
0
0
0
0
0
0
0
2,292
0.705665
9d0e38af685d991cde1a6a41f4c243ad673af7b8
1,839
py
Python
tests/test_basic.py
nk412/companycase
5b93478a79293a4bc93112b805eff56c44756f18
[ "MIT" ]
7
2016-09-08T15:25:33.000Z
2022-02-01T13:21:40.000Z
tests/test_basic.py
nk412/companycase
5b93478a79293a4bc93112b805eff56c44756f18
[ "MIT" ]
1
2016-07-12T10:36:02.000Z
2016-07-12T10:36:02.000Z
tests/test_basic.py
nk412/companycase
5b93478a79293a4bc93112b805eff56c44756f18
[ "MIT" ]
2
2016-09-17T17:41:28.000Z
2020-02-29T22:58:09.000Z
# coding=utf-8 import unittest from companycase import CompanyCase class TestEnglishCCase(unittest.TestCase): @classmethod def setUpClass(cls): cls.ccase = CompanyCase() def test_simple(self): self.assertEqual(self.ccase.apply("foobar ltd"), "Foobar LTD") self.assertEqual(self.ccase.apply("hsbc bank (uk) ltd"), "HSBC Bank (UK) LTD") self.assertEqual(self.ccase.apply("AXA INSURANCE"), "AXA Insurance") def test_abbreviations(self): s = 'ltd plc llc and of' expected = 'LTD PLC LLC and of' self.assertEqual(self.ccase.apply(s, 0.0), expected) self.assertEqual(self.ccase.apply(s, 1.0), expected) def test_threshold(self): s = 'hello there nk' self.assertEqual(self.ccase.apply(s), "Hello There NK") self.assertEqual(self.ccase.apply(s, 0.0), "Hello There Nk") self.assertEqual(self.ccase.apply(s, 1.0), "HELLO THERE NK") def test_force_case(self): self.ccase.force_case_for_words(['fOO', 'bAr']) s = 'foo bar limited plc ltd' self.assertEqual(self.ccase.apply(s), "fOO bAr Limited PLC LTD") self.assertEqual(self.ccase.apply(s, 0.0), "fOO bAr Limited PLC LTD") self.assertEqual(self.ccase.apply(s, 1.0), "fOO bAr LIMITED PLC LTD") def test_unicode(self): self.assertEqual(self.ccase.apply(u"foobar ltd"), "Foobar LTD") self.assertEqual(self.ccase.apply(u"hsbc bank (uk) ltd"), "HSBC Bank (UK) LTD") self.assertEqual(self.ccase.apply(u"AXA INSURANCE"), "AXA Insurance") self.assertEqual(self.ccase.apply(u"tromsø, arctic explorers plc"), u'Tromsø, Arctic Explorers PLC') self.assertEqual(self.ccase.apply(u"tromsø, arctic explorers plc", 1.0), u'TROMSØ, ARCTIC EXPLORERS PLC') if __name__ == '__main__': unittest.main()
39.12766
113
0.659598
1,724
0.935431
0
0
71
0.038524
0
0
557
0.302225
9d0eed15b3c0630d157c26b0aac4e458a282e19f
8,527
py
Python
main_single.py
wang-chen/AirLoop
12fb442c911002427a51f00d43f747ef593bd186
[ "BSD-3-Clause" ]
39
2021-09-28T19:48:13.000Z
2022-03-17T06:44:19.000Z
main_single.py
wang-chen/AirLoop
12fb442c911002427a51f00d43f747ef593bd186
[ "BSD-3-Clause" ]
null
null
null
main_single.py
wang-chen/AirLoop
12fb442c911002427a51f00d43f747ef593bd186
[ "BSD-3-Clause" ]
3
2021-10-04T01:26:17.000Z
2022-02-12T04:48:50.000Z
#!/usr/bin/env python3 import os import tqdm import torch import random import numpy as np import torch.nn as nn import configargparse import torch.optim as optim from tensorboard import program from torch.utils.tensorboard import SummaryWriter import yaml from models import FeatureNet from datasets import get_dataset from losses import MemReplayLoss from utils.evaluation import RecognitionEvaluator from utils.misc import save_model, load_model, GlobalStepCounter, ProgressBarDescription @torch.no_grad() def evaluate(net, loader, counter, args, writer=None): net.eval() evaluator = RecognitionEvaluator(loader=loader, args=args) for images, aux, env_seq in tqdm.tqdm(loader): images = images.to(args.device) gd = net(images) evaluator.observe(gd, aux, images, env_seq) evaluator.report() def train(model, loader, optimizer, counter, args, writer=None): model.train() if 'train' in args.task: criterion = MemReplayLoss(writer=writer, viz_start=args.viz_start, viz_freq=args.viz_freq, counter=counter, args=args) last_env = None for epoch in range(args.epoch): enumerator = tqdm.tqdm(loader) pbd = ProgressBarDescription(enumerator) for images, aux, env_seq in enumerator: images = images.to(args.device) loss = criterion(model, images, aux, env_seq[0]) # in case loss is manually set to 0 to skip batches if loss.requires_grad and not loss.isnan(): loss.backward() optimizer.step(closure=criterion.ll_loss) optimizer.zero_grad() # save model on env change for env-incremental tasks if 'seq' in args.task and last_env != env_seq[0][0]: if last_env is not None: save_model(model, '%s.%s' % (args.save, last_env)) last_env = env_seq[0][0] if (args.save_freq is not None and counter.steps % args.save_freq == 0) \ or (args.save_steps is not None and counter.steps in args.save_steps): save_model(model, '%s.step%d' % (args.save, counter.steps)) pbd.update(loss) counter.step() if 'seq' in args.task: if args.save is not None: save_model(model, '%s.%s' % (args.save, last_env)) if args.ll_method is not None: criterion.ll_loss.save(task=last_env) else: save_model(model, '%s.epoch%d' % (args.save, epoch)) def main(args): if args.deterministic >= 1: torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) np.random.seed(args.seed) random.seed(args.seed) if args.deterministic >= 2: torch.backends.cudnn.benchmark = False if args.deterministic >= 3: torch.set_deterministic(True) loader = get_dataset(args) if args.devices is None: args.devices = ['cuda:%d' % i for i in range(torch.cuda.device_count())] if torch.cuda.is_available() else ['cpu'] args.device = args.devices[0] model = FeatureNet(args.gd_dim).to(args.device) if args.load: load_model(model, args.load, device=args.device) if not args.no_parallel: model = nn.DataParallel(model, device_ids=args.devices) writer = None if args.log_dir is not None: log_dir = args.log_dir # timestamp runs into the same logdir if os.path.exists(log_dir) and os.path.isdir(log_dir): from datetime import datetime log_dir = os.path.join(log_dir, datetime.now().strftime('%b%d_%H-%M-%S')) writer = SummaryWriter(log_dir) tb = program.TensorBoard() tb.configure(argv=[None, '--logdir', log_dir, '--bind_all', '--samples_per_plugin=images=50']) print(('TensorBoard at %s \n' % tb.launch())) step_counter = GlobalStepCounter(initial_step=1) if 'train' in args.task: optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.w_decay) train(model, loader, optimizer, step_counter, args, writer) if 'eval' in args.task: evaluate(model, loader, step_counter, args, writer) def run(args=None): # Arguements parser = configargparse.ArgumentParser(description='Feature Graph Networks', default_config_files=['./config/config.yaml']) # general parser.add_argument("--config", is_config_file=True, help="Config file path") parser.add_argument("--task", type=str, choices=['train-seq', 'train-joint', 'eval'], default='train-seq', help="Task to perform") parser.add_argument("--catalog-dir", type=str, default='./.cache/catalog', help='Processed dataset catalog') parser.add_argument("--no-parallel", action='store_true', help="DataParallel") parser.add_argument("--devices", type=str, nargs='+', default=None, help="Available devices") parser.add_argument("--deterministic", type=int, default=3, help='Level of determinism.') parser.add_argument("--seed", type=int, default=0, help='Random seed.') parser.add_argument("--ll-config", type=str, help='Config file for lifelong losses') parser.add_argument("--print-configs", action='store_true', help='Print parsed configs to console') # dataset parser.add_argument("--dataset-root", type=str, default='/data/datasets/', help="Home for all datasets") parser.add_argument("--dataset", type=str, choices=['tartanair', 'nordland', 'robotcar'], default='tartanair', help="Dataset to use") parser.add_argument("--include", type=str, default=None, help="Regex for sequences to include") parser.add_argument("--exclude", type=str, default=None, help="Regex for sequences to exclude") parser.add_argument('--scale', type=float, default=0.5, help='Image scale') parser.add_argument("--num-workers", type=int, default=4, help="Number of workers in dataloader") # model parser.add_argument("--gd-dim", type=int, default=1024, help="Global descriptor dimension") # training parser.add_argument("--load", type=str, default=None, help="load pretrained model") parser.add_argument("--save", type=str, default=None, help="Model save path") parser.add_argument("--save-freq", type=int, help="Model saving frequency") parser.add_argument("--save-steps", type=int, nargs="+", help="Specific steps to save model") parser.add_argument("--ll-method", type=str, help="Lifelong learning method") parser.add_argument("--ll-weight-dir", type=str, default=None, help="Load directory for regularization weights") parser.add_argument("--ll-weight-load", type=str, nargs='+', help="Environment names for regularization weights") parser.add_argument("--ll-strength", type=float, nargs='+', help="Weights of lifelong losses") parser.add_argument("--batch-size", type=int, default=8, help="Minibatch size") parser.add_argument("--lr", type=float, default=2e-3, help="Learning rate") parser.add_argument("--w-decay", type=float, default=0, help="Weight decay of optim") parser.add_argument("--epoch", type=int, default=15, help="Number of epoches") parser.add_argument("--mem-size", type=int, default=1000, help="Memory size") parser.add_argument("--log-dir", type=str, default=None, help="Tensorboard Log dir") parser.add_argument("--viz-start", type=int, default=np.inf, help='Visualize starting from iteration') parser.add_argument("--viz-freq", type=int, default=1, help='Visualize every * iteration(s)') # evaluation parser.add_argument("--eval-split-seed", type=int, default=42, help='Seed for splitting the dataset') parser.add_argument("--eval-percentage", type=float, default=0.2, help='Percentage of sequences for eval') parser.add_argument("--eval-save", type=str, help='Raw evaluation result save path') parser.add_argument("--eval-desc-save", type=str, help='Generated global descriptor save path') parser.add_argument("--eval-gt-dir", type=str, help='Evaluation groundtruth save directory') parserd_args = parser.parse_args(args) # domain specific configs if parserd_args.ll_config is not None and parserd_args.ll_method is not None: with open(parserd_args.ll_config, 'r') as f: for k, v in yaml.safe_load(f)[parserd_args.ll_method].items(): setattr(parserd_args, k.replace('-', '_'), v) if parserd_args.print_configs: print("Training config:", parserd_args) main(parserd_args) if __name__ == "__main__": run()
45.844086
137
0.673273
0
0
0
0
345
0.04046
0
0
2,094
0.245573
9d0fc4d37e8008ce4ffedc8ff1748729bd11a8f1
271
py
Python
skilletlib/skillet/__init__.py
annabarone/skilletlib
d1298218a1a0be35eb9fac2ae79323df600d8900
[ "Apache-2.0" ]
6
2020-04-27T18:08:02.000Z
2022-01-14T13:27:19.000Z
skilletlib/skillet/__init__.py
annabarone/skilletlib
d1298218a1a0be35eb9fac2ae79323df600d8900
[ "Apache-2.0" ]
85
2019-10-28T19:13:55.000Z
2021-07-14T13:00:28.000Z
skilletlib/skillet/__init__.py
annabarone/skilletlib
d1298218a1a0be35eb9fac2ae79323df600d8900
[ "Apache-2.0" ]
7
2019-12-05T20:17:16.000Z
2021-12-09T01:16:58.000Z
# from .panos import PanosSkillet # from .docker import DockerSkillet # from .pan_validation import PanValidationSkillet # from .python3 import Python3Skillet # from .rest import RestSkillet # from .template import TemplateSkillet # from .workflow import WorkflowSkillet
33.875
50
0.819188
0
0
0
0
0
0
0
0
264
0.97417
9d10f233df729f37438c93bc6d49f9504b03d459
1,192
py
Python
Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/rss_proxy/views.py
osoco/better-ways-of-thinking-about-software
83e70d23c873509e22362a09a10d3510e10f6992
[ "MIT" ]
3
2021-12-15T04:58:18.000Z
2022-02-06T12:15:37.000Z
Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/rss_proxy/views.py
osoco/better-ways-of-thinking-about-software
83e70d23c873509e22362a09a10d3510e10f6992
[ "MIT" ]
null
null
null
Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/rss_proxy/views.py
osoco/better-ways-of-thinking-about-software
83e70d23c873509e22362a09a10d3510e10f6992
[ "MIT" ]
1
2019-01-02T14:38:50.000Z
2019-01-02T14:38:50.000Z
""" Views for the rss_proxy djangoapp. """ import requests from django.conf import settings from django.core.cache import cache from django.http import HttpResponse, HttpResponseNotFound from lms.djangoapps.rss_proxy.models import WhitelistedRssUrl CACHE_KEY_RSS = "rss_proxy.{url}" def proxy(request): """ Proxy requests for the given RSS url if it has been whitelisted. """ url = request.GET.get('url') if url and WhitelistedRssUrl.objects.filter(url=url).exists(): # Check cache for RSS if the given url is whitelisted cache_key = CACHE_KEY_RSS.format(url=url) status_code = 200 rss = cache.get(cache_key, '') print(cache_key) print('Cached rss: %s' % rss) if not rss: # Go get the RSS from the URL if it was not cached resp = requests.get(url) status_code = resp.status_code if status_code == 200: # Cache RSS rss = resp.content cache.set(cache_key, rss, settings.RSS_PROXY_CACHE_TIMEOUT) return HttpResponse(rss, status=status_code, content_type='application/xml') return HttpResponseNotFound()
29.8
84
0.653523
0
0
0
0
0
0
0
0
293
0.245805
9d1115c99ef6af6ee80e12df2bf5eac7ff811ea7
149
py
Python
CorePythonProg/ch02/0206.py
mallius/CppPrimer
0285fabe5934492dfed0a9cf67ba5650982a5f76
[ "MIT" ]
null
null
null
CorePythonProg/ch02/0206.py
mallius/CppPrimer
0285fabe5934492dfed0a9cf67ba5650982a5f76
[ "MIT" ]
null
null
null
CorePythonProg/ch02/0206.py
mallius/CppPrimer
0285fabe5934492dfed0a9cf67ba5650982a5f76
[ "MIT" ]
1
2022-01-25T15:51:34.000Z
2022-01-25T15:51:34.000Z
#!/usr/bin/env python numTemp = raw_input('Enter a number: ') num = int(numTemp) if num > 0: print '>0' elif num ==0: print '0' else: print '<0'
13.545455
39
0.61745
0
0
0
0
0
0
0
0
50
0.33557
9d123f052b89aece17eb457b8ad9cafa6d71e501
314
py
Python
bootcamp/accounts/urls.py
elbakouchi/bootcamp
2c7a0cd2ddb7632acb3009f94d728792ddf9644f
[ "MIT" ]
null
null
null
bootcamp/accounts/urls.py
elbakouchi/bootcamp
2c7a0cd2ddb7632acb3009f94d728792ddf9644f
[ "MIT" ]
null
null
null
bootcamp/accounts/urls.py
elbakouchi/bootcamp
2c7a0cd2ddb7632acb3009f94d728792ddf9644f
[ "MIT" ]
null
null
null
from django.conf.urls import url from .views import * app_name = "accounts" urlpatterns = [ url(r"^signup/$", CustomSignupView.as_view(), name="custom_signup"), url(r"^destroy/$", AjaxLogoutView.as_view(), name="destroy"), url(r"^(?P<username>[\w.@+-]+)/$", ProfileView.as_view(), name="profile"), ]
28.545455
78
0.652866
0
0
0
0
0
0
0
0
97
0.308917
9d1277aded11ab70c99a610d14fb0758ed951638
8,195
py
Python
utils/mininet/mininet_builder.py
jstavr/SDN_Project
9fe5a65f46eadf15e1da43d9f8125b8c15161bbd
[ "Apache-2.0" ]
null
null
null
utils/mininet/mininet_builder.py
jstavr/SDN_Project
9fe5a65f46eadf15e1da43d9f8125b8c15161bbd
[ "Apache-2.0" ]
null
null
null
utils/mininet/mininet_builder.py
jstavr/SDN_Project
9fe5a65f46eadf15e1da43d9f8125b8c15161bbd
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python Description: Load topology in Mininet Author: James Hongyi Zeng (hyzeng_at_stanford.edu) ''' from argparse import ArgumentParser from socket import gethostbyname from os import getuid from mininet.log import lg, info from mininet.cli import CLI from mininet.net import Mininet from mininet.topo import Topo from mininet.link import Link, Intf from mininet.node import Host, OVSKernelSwitch, Controller, RemoteController class StanfordTopo( Topo ): "Topology for Stanford backbone" PORT_ID_MULTIPLIER = 1 INTERMEDIATE_PORT_TYPE_CONST = 1 OUTPUT_PORT_TYPE_CONST = 2 PORT_TYPE_MULTIPLIER = 10000 SWITCH_ID_MULTIPLIER = 100000 DUMMY_SWITCH_BASE = 1000 PORT_MAP_FILENAME = "data/port_map.txt" TOPO_FILENAME = "data/backbone_topology.tf" dummy_switches = set() def __init__( self ): # Read topology info ports = self.load_ports(self.PORT_MAP_FILENAME) links = self.load_topology(self.TOPO_FILENAME) switches = ports.keys() # Add default members to class. super( StanfordTopo, self ).__init__() # Create switch nodes for s in switches: self.add_switch( "s%s" % s ) # Wire up switches self.create_links(links, ports) # Wire up hosts host_id = len(switches) + 1 for s in switches: # Edge ports for port in ports[s]: self.add_host( "h%s" % host_id ) self.add_link( "h%s" % host_id, "s%s" % s, 0, port ) host_id += 1 # Consider all switches and hosts 'on' # self.enable_all() def load_ports(self, filename): ports = {} f = open(filename, 'r') for line in f: if not line.startswith("$") and line != "": tokens = line.strip().split(":") port_flat = int(tokens[1]) dpid = port_flat / self.SWITCH_ID_MULTIPLIER port = port_flat % self.PORT_TYPE_MULTIPLIER if dpid not in ports.keys(): ports[dpid] = set() if port not in ports[dpid]: ports[dpid].add(port) f.close() return ports def load_topology(self, filename): links = set() f = open(filename, 'r') for line in f: if line.startswith("link"): tokens = line.split('$') src_port_flat = int(tokens[1].strip('[]').split(', ')[0]) dst_port_flat = int(tokens[7].strip('[]').split(', ')[0]) links.add((src_port_flat, dst_port_flat)) f.close() return links def create_links(self, links, ports): '''Generate dummy switches For example, interface A1 connects to B1 and C1 at the same time. Since Mininet uses veth, which supports point to point communication only, we need to manually create dummy switches @param links link info from the file @param ports port info from the file ''' # First pass, find special ports with more than 1 peer port first_pass = {} for (src_port_flat, dst_port_flat) in links: src_dpid = src_port_flat / self.SWITCH_ID_MULTIPLIER dst_dpid = dst_port_flat / self.SWITCH_ID_MULTIPLIER src_port = src_port_flat % self.PORT_TYPE_MULTIPLIER dst_port = dst_port_flat % self.PORT_TYPE_MULTIPLIER if (src_dpid, src_port) not in first_pass.keys(): first_pass[(src_dpid, src_port)] = set() first_pass[(src_dpid, src_port)].add((dst_dpid, dst_port)) if (dst_dpid, dst_port) not in first_pass.keys(): first_pass[(dst_dpid, dst_port)] = set() first_pass[(dst_dpid, dst_port)].add((src_dpid, src_port)) # Second pass, create new links for those special ports dummy_switch_id = self.DUMMY_SWITCH_BASE for (dpid, port) in first_pass.keys(): # Special ports! if(len(first_pass[(dpid,port)])>1): self.add_switch( "s%s" % dummy_switch_id ) self.dummy_switches.add(dummy_switch_id) self.add_link( node1="s%s" % dpid, node2="s%s" % dummy_switch_id, port1=port, port2=1 ) dummy_switch_port = 2 for (dst_dpid, dst_port) in first_pass[(dpid,port)]: first_pass[(dst_dpid, dst_port)].discard((dpid,port)) self.add_link( node1="s%s" % dummy_switch_id, node2="s%s" % dst_dpid, port1=dummy_switch_port, port2=dst_port) ports[dst_dpid].discard(dst_port) dummy_switch_port += 1 dummy_switch_id += 1 first_pass[(dpid,port)] = set() ports[dpid].discard(port) # Third pass, create the remaining links for (dpid, port) in first_pass.keys(): for (dst_dpid, dst_port) in first_pass[(dpid,port)]: self.add_link( node1="s%s" % dpid, node2="s%s" % dst_dpid, port1=port, port2=dst_port ) ports[dst_dpid].discard(dst_port) ports[dpid].discard(port) class StanfordMininet ( Mininet ): def build( self ): super( StanfordMininet, self ).build() # FIXME: One exception... Dual links between yoza and yozb # Need _manual_ modification for different topology files!!! self.topo.add_link( node1="s%s" % 15, node2="s%s" % 16, port1=7, port2=4 ) def StanfordTopoTest( controller_ip, controller_port, dummy_controller_ip, dummy_controller_port ): topo = StanfordTopo() main_controller = lambda a: RemoteController( a, ip=controller_ip, port=controller_port) net = StanfordMininet( topo=topo, switch=OVSKernelSwitch, controller=main_controller) net.start() # These switches should be set to a local controller.. dummy_switches = topo.dummy_switches dummyClass = lambda a: RemoteController( a, ip=dummy_controller_ip, port=dummy_controller_port) dummy_controller = net.addController( name='dummy_controller', controller=dummyClass) dummy_controller.start() for dpid in dummy_switches: switch = net.nameToNode["s%s" % dpid] switch.pause() switch.start( [dummy_controller] ) # Turn on STP for switchName in topo.switches(): switch = net.nameToNode[switchName] cmd = "ovs-vsctl set Bridge %s stp_enable=true" % switch.name switch.cmd(cmd) switch.cmd('ovs-vsctl set Bridge s1 other_config:stp-priority=0x10') CLI( net ) net.stop() if __name__ == '__main__': if getuid()!=0: print "Please run this script as root / use sudo." exit(-1) lg.setLogLevel( 'info') description = "Put Stanford backbone in Mininet" parser = ArgumentParser(description=description) parser.add_argument("-c", dest="controller_name", default="localhost", help="Controller's hostname or IP") parser.add_argument("-p", dest="controller_port",type=int, default=6633, help="Controller's port") parser.add_argument("-c2", dest="dummy_controller_name", default="localhost", help="Dummy controller's hostname or IP") parser.add_argument("-p2", dest="dummy_controller_port",type=int, default=6633, help="Dummy ontroller's port") args = parser.parse_args() print description print "Starting with primary controller %s:%d" % (args.controller_name, args.controller_port) print "Starting with dummy controller %s:%d" % (args.dummy_controller_name, args.dummy_controller_port) Mininet.init() StanfordTopoTest(gethostbyname(args.controller_name), args.controller_port, gethostbyname(args.dummy_controller_name), args.dummy_controller_port)
39.210526
150
0.598292
0
0
0
0
0
0
0
0
2,758
0.336547
9d1338f96592532b4f49b0f4d8c0180dee99ffe0
1,833
py
Python
tests/integration/test_translated_content.py
asmeurer/nikola
ea1c651bfed0fd6337f1d22cf8dd99899722912c
[ "MIT" ]
1,901
2015-01-02T02:49:51.000Z
2022-03-30T23:31:35.000Z
tests/integration/test_translated_content.py
asmeurer/nikola
ea1c651bfed0fd6337f1d22cf8dd99899722912c
[ "MIT" ]
1,755
2015-01-01T08:17:16.000Z
2022-03-24T18:02:22.000Z
tests/integration/test_translated_content.py
asmeurer/nikola
ea1c651bfed0fd6337f1d22cf8dd99899722912c
[ "MIT" ]
421
2015-01-02T18:06:37.000Z
2022-03-28T23:18:54.000Z
""" Test a site with translated content. Do not test titles as we remove the translation. """ import io import os import shutil import lxml.html import pytest import nikola.plugins.command.init from nikola import __main__ from .helper import cd from .test_empty_build import ( # NOQA test_archive_exists, test_avoid_double_slash_in_rss, test_check_files, test_check_links, test_index_in_sitemap, ) def test_translated_titles(build, output_dir, other_locale): """Check that translated title is picked up.""" normal_file = os.path.join(output_dir, "pages", "1", "index.html") translated_file = os.path.join(output_dir, other_locale, "pages", "1", "index.html") # Files should be created assert os.path.isfile(normal_file) assert os.path.isfile(translated_file) # And now let's check the titles with io.open(normal_file, "r", encoding="utf8") as inf: doc = lxml.html.parse(inf) assert doc.find("//title").text == "Foo | Demo Site" with io.open(translated_file, "r", encoding="utf8") as inf: doc = lxml.html.parse(inf) assert doc.find("//title").text == "Bar | Demo Site" @pytest.fixture(scope="module") def build(target_dir, test_dir): """Build the site.""" init_command = nikola.plugins.command.init.CommandInit() init_command.create_empty_site(target_dir) init_command.create_configuration(target_dir) src = os.path.join(test_dir, "..", "data", "translated_titles") for root, dirs, files in os.walk(src): for src_name in files: rel_dir = os.path.relpath(root, src) dst_file = os.path.join(target_dir, rel_dir, src_name) src_file = os.path.join(root, src_name) shutil.copy2(src_file, dst_file) with cd(target_dir): __main__.main(["build"])
29.095238
88
0.681942
0
0
0
0
663
0.361702
0
0
383
0.208947
9d13de1d5fcb7bb17eb81bbe83f7d14929b0ec78
8,826
py
Python
src/train.py
weiyi1991/UA_Concurrent
11238c778c60095abf326800d6e6a13a643bf071
[ "MIT" ]
null
null
null
src/train.py
weiyi1991/UA_Concurrent
11238c778c60095abf326800d6e6a13a643bf071
[ "MIT" ]
1
2020-09-02T12:24:59.000Z
2020-09-02T12:24:59.000Z
src/train.py
weiyi1991/UA_Concurrent
11238c778c60095abf326800d6e6a13a643bf071
[ "MIT" ]
null
null
null
import argparse import os import torch import torch.nn.functional as F from model_ST import * import data import numpy as np import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader import sys from predict import evaluate_MA from tensorboardX import SummaryWriter # print model parameter def print_model(model): print('=================== Print model parameters ================') print(model.state_dict().keys()) for i, j in model.named_parameters(): print(i) print(j) # Training settings parser = argparse.ArgumentParser(description='Relation network for concurrent activity detection') parser.add_argument('--BATCH_SIZE', type=int, default=256, help='Training batch size. Default=256') parser.add_argument('--save_every', type=int, default=5, help='Save model every save_every epochs. Defualt=5') parser.add_argument('--EPOCH', type=int, default=500, help='Number of epochs to train. Default=600') parser.add_argument('--LR', type=float, default=0.001, help='Learning Rate. Default=0.001') parser.add_argument('--TRAIN', action='store_true', default=True, help='Train or test? ') parser.add_argument('--DEBUG', action='store_true', default=False, help='Debug mode (load less data)? Defualt=False') parser.add_argument('--clip_grad', type=float, default=5.0, help='Gradient clipping parameter. Default=5,0') parser.add_argument('--dataPath', type=str, default='/home/yi/PycharmProjects/relation_network/data/UCLA/new273', help='path to the data folder') parser.add_argument('--checkpoint', type=str, help='Checkpoint folder name under ./model/') parser.add_argument('--verbose', type=int, default=1, help='Print verbose information? Default=True') # model parameters parser.add_argument('--n_input', type=int, default=37, help='Input feature vector size. Default=37') parser.add_argument('--n_hidden', type=int, default=128, help='Hidden units for LSTM baseline. Default=128') parser.add_argument('--n_layers', type=int, default=2, help='LSTM layer number. Default=2') parser.add_argument('--n_class', type=int, default=12, help='Class label number. Default=12') parser.add_argument('--use_lstm', action='store_true', default=True, help='Use LSTM for relation network classifier. Default=True') parser.add_argument('--df', type=int, default=64, help='Relation feature dimension. Default=64') parser.add_argument('--dk', type=int, default=8, help='Key feature dim. Default=8') parser.add_argument('--nr', type=int, default=4, help='Multihead number. Default=4') opt = parser.parse_args() checkpoint_dir = './model/{}/'.format(opt.checkpoint) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) orig_stdout = sys.stdout f = open(checkpoint_dir + '/parameter.txt', 'w') sys.stdout = f print(opt) f.close() sys.stdout = orig_stdout # data preparation train_dataset = data.ConActDataset(opt.dataPath) test_dataset = data.ConActDataset(opt.dataPath, train=not opt.TRAIN) writer = SummaryWriter() # only take few sequences for debuging debug_seq = 3 if opt.DEBUG: train_data = [] for i in range(debug_seq): input, labels = train_dataset[i] train_data.append((input, labels)) print("%s loaded." % train_dataset.seq_list[i]) else: print('Loading training data ----------------------') train_data = [] train_labels = [] for i, (input, labels) in enumerate(train_dataset): train_data.append((input, labels)) train_labels.append(labels) print("%s loaded." % train_dataset.seq_list[i]) print('Loading testing data ----------------------') test_data = [] for i, (input, labels) in enumerate(test_dataset): test_data.append((input, labels)) print("%s loaded." % test_dataset.seq_list[i]) # for model_lstm if opt.use_lstm: rnn = RNN(opt.n_input, opt.n_hidden, opt.n_layers, opt.n_class, opt.BATCH_SIZE, opt.df, opt.dk, opt.nr).cuda() # use lstm as classifier else: rnn = RNN(opt.n_input, opt.n_hidden, opt.n_layers, opt.n_class, opt.use_lstm).cuda() # use fc as classifier print(rnn.state_dict().keys()) optimizer = torch.optim.Adam(rnn.parameters(), lr=opt.LR) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5) # set up scheduler # Keep track of losses for plotting best_loss = 10000 all_losses = [] current_loss = 3 FAA = [] # false area ration on test set INTAP = [] # overall interval AP on test set save_epoch = [] # list to save the model saving epoch # train model total_step = len(train_data) for epoch in range(opt.EPOCH): all_losses.append(current_loss) current_loss = 0 for i, (input, labels) in enumerate(train_data): optimizer.zero_grad() feats = torch.from_numpy(input).float() nframes, _ = input.shape feats = feats.reshape(-1, nframes, 273).cuda() #feats = feats.reshape(-1, nframes, opt.n_input*6).cuda() # change label 0 to -1 labels[labels<1]=-1 labels = torch.from_numpy(labels) labels = labels.float().cuda() # Forward pass outputs = rnn(feats) outputs = torch.squeeze(outputs) loss = F.mse_loss(outputs, labels) # print model parameter if loss is NaN if opt.verbose > 0: if torch.isnan(loss): print_model(rnn) print('Epoch {}, step {}'.format(epoch+1, i+1)) raw_input("Press Enter to continue ...") # Backward and optimize loss.backward() # This line is used to prevent the vanishing / exploding gradient problem torch.nn.utils.clip_grad_norm_(rnn.parameters(), opt.clip_grad) optimizer.step() print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch + 1, opt.EPOCH, i + 1, total_step, loss.item())) current_loss = current_loss + loss.item() writer.add_scalar('loss/loss', current_loss, epoch) scheduler.step(current_loss) # update lr if needed # save model parameters and loss figure if ((epoch+1) % opt.save_every) == 0: # compute false area on test set if not opt.DEBUG: false_area, overall_IAPlist = evaluate_MA(rnn, test_data) FAA.append(torch.sum(false_area).item()) INTAP.append(overall_IAPlist[-2]) # get the interval AP at threshold 0.8 save_epoch.append(epoch+1) if FAA[-1] == min(FAA): # if has the minimum test error, save model checkpoint_dir = './model/{}/'.format(opt.checkpoint) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) if epoch > 100: model_str = checkpoint_dir + 'net-best.pth' torch.save(rnn, model_str) checkpoint_dir = './model/{}/'.format(opt.checkpoint) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) if opt.verbose == 2: print('Making dir: {}'.format(checkpoint_dir)) model_str = checkpoint_dir + 'net-{}'.format(str(epoch+1)) if opt.verbose > 0: print('Model saved to: {}.pth'.format(model_str)) if epoch >= 100: torch.save(rnn, model_str+'.pth') # save interval AP np.savetxt(model_str + 'AP.csv', np.asarray(overall_IAPlist), fmt='%0.5f') # save miss detection np.savetxt(model_str + 'MD.txt', np.asarray(FAA), fmt='%0.5f') # draw miss detection v.s. epoch figure fig, ax1 = plt.subplots() color = 'tab:red' ax1.plot(range(epoch+1), all_losses, color=color) ax1.set_xlabel('Epochs') ax1.set_ylabel('Loss', color=color) ax2 = ax1.twinx() color = 'tab:blue' ax2.set_ylabel('Miss detection area ratio', color=color) ax2.plot(save_epoch, FAA, 'bd') fig.savefig(model_str+'.png') plt.close() # draw intervalAP v.s. epoch figure fig1, ax3 = plt.subplots() color = 'tab:red' ax3.plot(range(epoch+1), all_losses, color=color) ax3.set_xlabel('Epochs') ax3.set_ylabel('Loss', color=color) ax4 = ax3.twinx() color = 'tab:blue' ax4.set_ylabel('Overall interval AP', color=color) ax4.plot(save_epoch, INTAP, 'bd') fig1.savefig(model_str+'_AP.png') plt.close() # print the loss on training set and evaluation metrics on test set to file orig_stdout = sys.stdout f = open(checkpoint_dir + '/loss.txt', 'w') sys.stdout = f print('Loss over epochs:') print(all_losses) if not opt.DEBUG: print('Miss detection area ratio:') print(FAA) f.close() sys.stdout = orig_stdout
41.051163
140
0.643327
0
0
0
0
0
0
0
0
2,575
0.291752
9d192ebb1226024bcb7fe7faa5cd19ef549419f8
130
py
Python
illud/exceptions/quit_exception.py
AustinScola/illud
a6aca1de38bbe9d5a795aaa084bcbd6731767d18
[ "MIT" ]
1
2020-12-05T00:59:15.000Z
2020-12-05T00:59:15.000Z
illud/exceptions/quit_exception.py
AustinScola/illud
a6aca1de38bbe9d5a795aaa084bcbd6731767d18
[ "MIT" ]
112
2021-01-15T21:42:27.000Z
2021-04-17T19:11:21.000Z
illud/exceptions/quit_exception.py
AustinScola/illud
a6aca1de38bbe9d5a795aaa084bcbd6731767d18
[ "MIT" ]
null
null
null
"""Raised to quit.""" from illud.exception import IlludException class QuitException(IlludException): """Raised to quit."""
18.571429
42
0.723077
62
0.476923
0
0
0
0
0
0
42
0.323077