hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
9646e8e2458a9b399cec0bf5ce7ece6cbbdffad6
1,938
py
Python
temp/src/square.py
wvu-irl/smart-2
b39b6d477b5259b3bf0d96180a154ee1dafae0ac
[ "MIT" ]
null
null
null
temp/src/square.py
wvu-irl/smart-2
b39b6d477b5259b3bf0d96180a154ee1dafae0ac
[ "MIT" ]
null
null
null
temp/src/square.py
wvu-irl/smart-2
b39b6d477b5259b3bf0d96180a154ee1dafae0ac
[ "MIT" ]
null
null
null
#!/usr/bin/env python import rospy from geometry_msgs.msg import Twist from math import radians import os import numpy as np from nav_msgs.msg import Odometry class DrawASquare(): def __init__(self): # initiliaze rospy.init_node('drawasquare', anonymous=True) # What to do you ctrl + c rospy.on_shutdown(self.shutdown) self.cmd_vel = rospy.Publisher('cmd_vel', Twist, queue_size=10) # 10 HZ r = rospy.Rate(10); # create two different Twist() variables. One for moving forward. One for turning 45 degrees. # let's go forward at 0.2 m/s move_cmd = Twist() move_cmd.linear.x = 0.25 # by default angular.z is 0 so setting this isn't required #let's turn at 45 deg/s turn_cmd = Twist() turn_cmd.linear.x = 0 turn_cmd.angular.z = radians(45); #45 deg/s in radians/s #two keep drawing squares. Go forward for 4 seconds (40 x 10 HZ) then turn for 2 second count = 0 while not rospy.is_shutdown(): # go forward 1 m (4 seconds * 0.25 m / seconds) rospy.loginfo("Going Straight") for x in range(0,40): self.cmd_vel.publish(move_cmd) r.sleep() # turn 90 degrees rospy.loginfo("Turning") for x in range(0,20): self.cmd_vel.publish(turn_cmd) r.sleep() count = count + 1 if(count == 4): #count = 0 shutdown(self) if(count == 0): rospy.loginfo("TurtleBot should be close to the original starting position (but it's probably way off)") def shutdown(self): # stop turtlebot rospy.loginfo("Stop Drawing Squares") self.cmd_vel.publish(Twist()) rospy.sleep(1) if __name__ == '__main__': try: DrawASquare() except: rospy.loginfo("node terminated.")
27.685714
120
0.583591
1,657
0.855005
0
0
0
0
0
0
660
0.340557
96484d835344ea1b7665583dd26015806d06751a
4,233
py
Python
ellipses/script_train_radon_tiramisu_jitter_v6.py
jmaces/robust-nets
25d49302f9fa5fcc9ded2727de75e96e25243d09
[ "MIT" ]
14
2020-11-10T07:37:23.000Z
2022-03-21T15:19:22.000Z
ellipses/script_train_radon_tiramisu_jitter_v6.py
jmaces/robust-nets
25d49302f9fa5fcc9ded2727de75e96e25243d09
[ "MIT" ]
null
null
null
ellipses/script_train_radon_tiramisu_jitter_v6.py
jmaces/robust-nets
25d49302f9fa5fcc9ded2727de75e96e25243d09
[ "MIT" ]
2
2021-03-13T14:39:36.000Z
2022-02-17T06:44:29.000Z
import os import matplotlib as mpl import torch import torchvision from data_management import IPDataset, Jitter, SimulateMeasurements from networks import IterativeNet, Tiramisu from operators import Radon # ----- load configuration ----- import config # isort:skip # ----- global configuration ----- mpl.use("agg") device = torch.device("cuda:0") torch.cuda.set_device(0) # ----- measurement configuration ----- theta = torch.linspace(0, 180, 61)[:-1] # 60 lines, exclude endpoint OpA = Radon(config.n, theta) # ----- network configuration ----- subnet_params = { "in_channels": 1, "out_channels": 1, "drop_factor": 0.0, "down_blocks": (5, 7, 9, 12, 15), "up_blocks": (15, 12, 9, 7, 5), "pool_factors": (2, 2, 2, 2, 2), "bottleneck_layers": 20, "growth_rate": 16, "out_chans_first_conv": 16, } subnet = Tiramisu it_net_params = { "num_iter": 1, "lam": 0.0, "lam_learnable": False, "final_dc": False, "resnet_factor": 1.0, "operator": OpA, "inverter": OpA.inv, } # ----- training configuration ----- mseloss = torch.nn.MSELoss(reduction="sum") def loss_func(pred, tar): return mseloss(pred, tar) / pred.shape[0] train_phases = 1 train_params = { "num_epochs": [19], "batch_size": [10], "loss_func": loss_func, "save_path": [ os.path.join( config.RESULTS_PATH, "Radon_Tiramisu_jitter_v6_" "train_phase_{}".format((i + 1) % (train_phases + 1)), ) for i in range(train_phases + 1) ], "save_epochs": 1, "optimizer": torch.optim.Adam, "optimizer_params": [{"lr": 8e-5, "eps": 2e-4, "weight_decay": 5e-4}], "scheduler": torch.optim.lr_scheduler.StepLR, "scheduler_params": {"step_size": 1, "gamma": 1.0}, "acc_steps": [1], "train_transform": torchvision.transforms.Compose( [SimulateMeasurements(OpA), Jitter(5e2, 0.0, 1.0)] ), "val_transform": torchvision.transforms.Compose( [SimulateMeasurements(OpA)], ), "train_loader_params": {"shuffle": True, "num_workers": 0}, "val_loader_params": {"shuffle": False, "num_workers": 0}, } # ----- data configuration ----- train_data_params = { "path": config.DATA_PATH, "device": device, } train_data = IPDataset val_data_params = { "path": config.DATA_PATH, "device": device, } val_data = IPDataset # ------ save hyperparameters ------- os.makedirs(train_params["save_path"][-1], exist_ok=True) with open( os.path.join(train_params["save_path"][-1], "hyperparameters.txt"), "w" ) as file: for key, value in subnet_params.items(): file.write(key + ": " + str(value) + "\n") for key, value in it_net_params.items(): file.write(key + ": " + str(value) + "\n") for key, value in train_params.items(): file.write(key + ": " + str(value) + "\n") for key, value in train_data_params.items(): file.write(key + ": " + str(value) + "\n") for key, value in val_data_params.items(): file.write(key + ": " + str(value) + "\n") file.write("train_phases" + ": " + str(train_phases) + "\n") # ------ construct network and train ----- subnet_tmp = subnet(**subnet_params).to(device) it_net_tmp = IterativeNet( subnet_tmp, **{ "num_iter": 1, "lam": 0.0, "lam_learnable": False, "final_dc": False, "resnet_factor": 1.0, "operator": OpA, "inverter": OpA.inv, } ).to(device) it_net_tmp.load_state_dict( torch.load( "results/Radon_Tiramisu_jitter_v4_train_phase_1/model_weights.pt", map_location=torch.device(device), ) ) subnet = it_net_tmp.subnet it_net = IterativeNet(subnet, **it_net_params).to(device) train_data = train_data("train", **train_data_params) val_data = val_data("val", **val_data_params) for i in range(train_phases): train_params_cur = {} for key, value in train_params.items(): train_params_cur[key] = ( value[i] if isinstance(value, (tuple, list)) else value ) print("Phase {}:".format(i + 1)) for key, value in train_params_cur.items(): print(key + ": " + str(value)) it_net.train_on(train_data, val_data, **train_params_cur)
27.309677
75
0.617056
0
0
0
0
0
0
0
0
1,183
0.279471
964933bf3abeb9eecd5bbbd430d2ba1f1f9daec5
142
py
Python
Python practice/Mit opencourceware(2.7)/quiz1_p2.py
chiranjeevbitp/Python27new
d366efee57857402bae16cabf1df94c657490750
[ "bzip2-1.0.6" ]
null
null
null
Python practice/Mit opencourceware(2.7)/quiz1_p2.py
chiranjeevbitp/Python27new
d366efee57857402bae16cabf1df94c657490750
[ "bzip2-1.0.6" ]
null
null
null
Python practice/Mit opencourceware(2.7)/quiz1_p2.py
chiranjeevbitp/Python27new
d366efee57857402bae16cabf1df94c657490750
[ "bzip2-1.0.6" ]
null
null
null
#import pdb T = (0.1, 0.1) x = 0.0 for i in range(len(T)): for j in T: x += i + j print x print i #pdb.set_trace()
14.2
24
0.464789
0
0
0
0
0
0
0
0
29
0.204225
964a16c465623ad04aac69e828d235990e03190f
13,029
py
Python
invMLEnc_toy/main.py
Lupin1998/inv-ML
9f3db461911748292dff18024587538eb66d44bf
[ "MIT" ]
1
2021-12-14T09:16:17.000Z
2021-12-14T09:16:17.000Z
invMLEnc_toy/main.py
Lupin1998/inv-ML
9f3db461911748292dff18024587538eb66d44bf
[ "MIT" ]
null
null
null
invMLEnc_toy/main.py
Lupin1998/inv-ML
9f3db461911748292dff18024587538eb66d44bf
[ "MIT" ]
2
2021-12-14T09:10:00.000Z
2022-01-21T16:57:44.000Z
import os import numpy as np import random as rd import time import argparse import torch import torch.utils.data from torch import optim import dataset import gifploter from trainer.InvML_trainer import InvML_trainer from generator.samplegenerater import SampleIndexGenerater def PlotLatenSpace(model, batch_size, datas, labels, loss_caler, gif_ploter, device, path='./', name='no name', indicator=True, full=True, save_plot=True): """use to test the model and plot the latent space Arguments: model {torch model} -- a model need to train batch_size {int} -- batch size datas {tensor} -- the train data labels {label} -- the train label, for unsuprised method, it is only used in plot fig Keyword Arguments: path {str} -- the path to save the fig (default: {'./'}) name {str} -- the name of current fig (default: {'no name'}) indicator {bool} -- a flag to calculate the indicator (default: {True}) """ model.eval() train_loss_sum = [0, 0, 0, 0, 0, 0] num_train_sample = datas.shape[0] if full == True: for batch_idx in torch.arange(0, (num_train_sample-1)//batch_size + 1): start_number = (batch_idx * batch_size).int() end_number = torch.min(torch.tensor( [batch_idx*batch_size+batch_size, num_train_sample])).int() data = datas[start_number:end_number].float() label = labels[start_number:end_number] data = data.to(device) label = label.to(device) # train info train_info = model(data) loss_dict = loss_caler.CalLosses(train_info) if type(train_info) == type(dict()): train_info = train_info['output'] for i, k in enumerate(list(loss_dict.keys())): train_loss_sum[i] += loss_dict[k].item() if batch_idx == 0: latent_point = [] for train_info_item in train_info: latent_point.append(train_info_item.detach().cpu().numpy()) label_point = label.cpu().detach().numpy() else: for i, train_info_item in enumerate(train_info): latent_point_c = train_info_item.detach().cpu().numpy() latent_point[i] = np.concatenate( (latent_point[i], latent_point_c), axis=0) label_point = np.concatenate( (label_point, label.cpu().detach().numpy()), axis=0) gif_ploter.AddNewFig( latent_point, label_point, title_=path+'/'+name + '__AE_' + str(4)[:4] + '__MAE_'+ str(4)[:4], loss=train_loss_sum, save=save_plot ) else: data = datas.to(device) label = labels.to(device) eval_info = model(data) if type(eval_info) == type(dict()): eval_info = eval_info['output'] latent_point = [] for info_item in eval_info: latent_point.append(info_item.detach().cpu().numpy()) label_point = label.cpu().detach().numpy() gif_ploter.AddNewFig( latent_point, label_point, title_=path+'/'+'result', loss=None, save=save_plot ) def SaveParam(path, param): """save the current param in the path """ for v, k in param.items(): print('{v}:{k}'.format(v=v, k=k)) print('{v}:{k}'.format(v=v, k=k), file=open(path+'/param.txt', 'a')) def SetSeed(seed): """function used to set a random seed """ SEED = seed torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) rd.seed(SEED) np.random.seed(SEED) def SetParam(mode='encoder'): # config param param = dict( # regular default params EPOCHS = 8000, LEARNINGRATE = 1e-3, BATCHSIZE = 800, N_dataset = 800, regularB = 3, gradualchanging = [600, 1200], epcilon = 0.23, MAEK = 10, LOGINTERVAL = 1.0, PlotForloop = 2000, sampleMethod = 'normal', # 'normal', 'near' # choose Noise = 0.0, NetworkStructure = dict( layer = [3, 100, 100, 100, 100, 2], relu = [1, 1, 1, 1, 0], Enc_require_gard = [1, 1, 1, 1, 1], Dec_require_gard = [0, 0, 0, 0, 0], inv_Enc = 0, inv_Dec = 1, ), # Extra Head (DR project) ExtraHead = dict( layer = [], # None weight = [], #[0, 0, 0, 0, 0, 0], ), # ReLU ReluType = dict( type = "Leaky", # "InvLeaky" Enc_alpha = 0.1, Dec_alpha = 10, ), # LIS LISWeght = dict( cross = [0,], enc_forward = [0, 0, 0, 0, 0], dec_forward = [0, 0, 0, 0, 0], enc_backward = [0, 0, 0, 0, 0], dec_backward = [0, 0, 0, 0, 0], each = [0, 0, 0, 0, 0], # [dist, angle, push] cross_w = [1, 1, 1], enc_forward_w = [1, 1, 1], dec_forward_w = [1, 1, 1], enc_backward_w = [1, 1, 1], dec_backward_w = [1, 1, 1], each_w = [1, 1, 1], # [start, end, mode] LIS_gradual = [0, 0, 1], push_gradual = dict( # add 0716 cross_w = [500, 1000, 0], # 1 -> 0 enc_w = [500, 1000, 0], dec_w = [500, 1000, 0], each_w = [500, 1000, 0], extra_w = [500, 1000, 0], ), ), # AE layer AEWeight = dict( each = [], AE_gradual = [0, 0, 1], # [start, end, mode] ), # Orth OrthWeight = dict( each = [0, 0, 0, 0, 0], Orth_gradual = [0, 0, 1], # [start, end, mode] ), ) # cmd argsparse parser = argparse.ArgumentParser() parser.add_argument("-D", "--DATASET", default='SwissRoll', type=str, choices=[ 'sphere', 'mnist','Fmnist', 'SwissRoll', 'SCurve']) parser.add_argument("-M", "--Model", default='MLP', choices=['MLP', 'InvMLP']) parser.add_argument("-SD", "--SEED", default=0, type=int) # new params parser.add_argument("-Name", "--ExpName", default="Inv", type=str) parser.add_argument("-R", "--ratio", default={"AE":0.005, "dist":1, "angle":0, "push":1, "orth":0, "pad":1, }, type=dict, help='the weight for each loss [ae, dist, ang, mutex, orth]') parser.add_argument("-Mode", "--InverseMode", default={ "mode": "pinverse", # ["pinverse", "CSinverse", "ZeroPadding"], "ZeroPadding" has jump in Enc "padding": [0, 0, 0, 0, 0], "pad_w": [0, 0, 0, 0, 0], "pad_gradual": [0, 0, 1], # [start, end, mode] "p_gradual": [2000, 4000, 0], # p-norm: p=2 -> p=1 }, type=dict) ### new 0716 # useless param parser.add_argument("-NAME", "--SaveName", default="None", type=str) parser.add_argument("-T", "--Test", default=1, type=int, choices=[1, 2, 3, 4, 5, 6, 7, 8]) args = parser.parse_args() # to param dict args = parser.parse_args() args = args.__dict__ param.update(args) # use config file to update param: param['Test'] from test_config import import_test_config new_param = import_test_config(param['Test'], mode=mode) param.update(new_param) # save name if param["SaveName"] == "None": path_file = "./{}".format(param['Model']) for k in param['ratio'].keys(): path_file += '_'+k+str(param['ratio'][k]) else: path_file = param["SaveName"] path = os.path.join(param['ExpName'], path_file) if not os.path.exists(path): os.makedirs(path) return param, path def SetModel(param): from models.InvML_MLP import InvML_MLP from loss.InvML_loss import InvMLLosses if param['Model'] == 'MLP': Model = InvML_MLP(param).to(device) param['index'] = Model.plot_index_list loss = InvMLLosses(args=param, cuda=device) return Model, loss def SetModelVAE(param): from models.VAE import VAE_MLP from loss.VAE_loss import VAEloss Model = VAE_MLP(param).to(device) loss = VAEloss() return Model, loss def single_test(new_param=dict(), mode='encoder', device='cuda'): param, path = SetParam(mode) SetSeed(param['SEED']) # updata new params param.update(new_param) # load the data train_data, train_label, test_data, test_label = dataset.LoadData( dataname=param['DATASET'], train_number=param['N_dataset'], test_number=param['N_dataset'], noise=param['Noise'], randomstate=param['SEED'], remove='star' ) param['BATCHSIZE'] = min(param['BATCHSIZE'], train_data.shape[0]) # init the model, set mode Model, loss_caler = SetModel(param) Model.SetMode(mode) # optimizer = optim.Adam(Model.parameters(), lr=param['LEARNINGRATE']) # ori optimizer = optim.Adam(filter(lambda p: p.requires_grad, Model.parameters()), lr=param['LEARNINGRATE']) sample_index_generater_train = SampleIndexGenerater( train_data, param['BATCHSIZE'], method=param['sampleMethod'], choos_center='normal' ) gif_ploter = gifploter.GIFPloter(param, Model) # load .pth of pertrained encoder if mode == 'decoder': checkpoint = torch.load(param["ExpName"]+".pth") state_dict = checkpoint['state_dict'] # choose param for this Model model_dict = Model.state_dict() pretrained = {k: v for k, v in state_dict.items() if k in model_dict} model_dict.update(pretrained) Model.load_state_dict(model_dict) print('load encoder model:', param["ExpName"]+".pth") # training for epoch in range(param['EPOCHS'] + 1): # start a trainer loss_sum = InvML_trainer(Model, loss_caler, epoch, train_data, train_label, optimizer, device, sample_index_generater_train, batch_size=param['BATCHSIZE'], verbose=epoch % param['PlotForloop']==0) # update plot loss loss_interval = 200 if epoch == 0 or epoch % loss_interval == 0 and epoch % param['PlotForloop'] != 0: gif_ploter.update_loss(loss_sum) # plot GIF if epoch % param['PlotForloop'] == 0 and epoch > 0: # transfer if mode == 'encoder': Model.params_transfer() # plot name = 'epoch_' + str(epoch).zfill(5) PlotLatenSpace( Model, param['BATCHSIZE'], train_data, train_label, loss_caler, gif_ploter, device, path=path, name=name, indicator=False ) # save .pth if mode == 'encoder': state = {'state_dict': Model.state_dict()} torch.save(state, param["ExpName"]+"_Dec"+".pth") print('save encoder model as ', param["ExpName"]+"_Dec"+".pth") # test test_data = test_data.float() data = test_data.to(device) label = test_label.to(device) Model.eval() test_info = Model(data) # plot test img (True/False) plot_test = False if mode == 'decoder': plot_test = True if plot_test: name = 'test_result' PlotLatenSpace( Model, param['BATCHSIZE'], data, label, loss_caler, gif_ploter, device, path=path, name=name, indicator=False, full=False, ) return param["ExpName"], param["Test"] if __name__ == '__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 1. test encoder new_param = {} expName, testName = single_test(new_param, "encoder", device) # expName, testName = "Orth", 1 # decoder for 1 # expName, testName = "Orth2", 2 # decoder for 2 # expName, testName = "Orth3", 3 # decoder for 3 # expName, testName = "Orth4", 4 # decoder for 4 # test decoder based on encoder param new_param = {"ExpName": expName+"_Dec", "Test": testName} # 2. test decoder _,_ = single_test(new_param, "decoder", device)
34.468254
126
0.523985
0
0
0
0
0
0
0
0
2,753
0.211298
964a55bd656809ac77520d02fe3eb7d52ed867d8
16,896
py
Python
backend/openweathermap.py
tangb/cleepmod-openweathermap
cbef1cad7af36ac6b801cb0df6651dd732b4a160
[ "MIT" ]
null
null
null
backend/openweathermap.py
tangb/cleepmod-openweathermap
cbef1cad7af36ac6b801cb0df6651dd732b4a160
[ "MIT" ]
null
null
null
backend/openweathermap.py
tangb/cleepmod-openweathermap
cbef1cad7af36ac6b801cb0df6651dd732b4a160
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import json import time import requests from cleep.exception import CommandError, MissingParameter from cleep.libs.internals.task import Task from cleep.core import CleepModule from cleep.common import CATEGORIES __all__ = ["Openweathermap"] class Openweathermap(CleepModule): """ OpenWeatherMap application. Returns current weather conditions and forecast. Note: https://openweathermap.org/api """ MODULE_AUTHOR = "Cleep" MODULE_VERSION = "1.2.3" MODULE_DEPS = [] MODULE_CATEGORY = CATEGORIES.SERVICE MODULE_DESCRIPTION = "Gets weather conditions using OpenWeatherMap service" MODULE_LONGDESCRIPTION = ( "This application gets data from OpenWeatherMap online service and displays it directly on your device " "dashboard.<br>OpenWeatherMap allows to get for free current weather condition and 5 days forecast.<br> " "This application also broadcasts weather event on all your devices." ) MODULE_TAGS = ["weather", "forecast"] MODULE_URLINFO = "https://github.com/tangb/cleepapp-openweathermap" MODULE_URLHELP = None MODULE_URLSITE = "https://openweathermap.org/" MODULE_URLBUGS = "https://github.com/tangb/cleepapp-openweathermap/issues" MODULE_CONFIG_FILE = "openweathermap.conf" DEFAULT_CONFIG = {"apikey": None} OWM_WEATHER_URL = "https://api.openweathermap.org/data/2.5/weather" OWM_FORECAST_URL = "https://api.openweathermap.org/data/2.5/forecast" OWM_ICON_URL = "https://openweathermap.org/img/wn/%s.png" OWM_TASK_DELAY = 900 OWM_PREVENT_FLOOD = 15 OWM_WEATHER_CODES = { 200: "Thunderstorm with light rain", 201: "Thunderstorm with rain", 202: "Thunderstorm with heavy rain", 210: "Light thunderstorm", 211: "Thunderstorm", 212: "Heavy thunderstorm", 221: "Ragged thunderstorm", 230: "Thunderstorm with light drizzle", 231: "Thunderstorm with drizzle", 232: "Thunderstorm with heavy drizzle", 300: "Light intensity drizzle", 301: "Drizzle", 302: "Heavy intensity drizzle", 310: "Light intensity drizzle rain", 311: "Drizzle rain", 312: "Heavy intensity drizzle rain", 313: "Shower rain and drizzle", 314: "Heavy shower rain and drizzle", 321: "Shower drizzle", 500: "Light rain", 501: "Moderate rain", 502: "Heavy intensity rain", 503: "Very heavy rain", 504: "Extreme rain", 511: "Freezing rain", 520: "Light intensity shower rain", 521: "Shower rain", 522: "Heavy intensity shower rain", 531: "Ragged shower rain", 600: "Light snow", 601: "Snow", 602: "Heavy snow", 611: "Sleet", 612: "Shower sleet", 615: "Light rain and snow", 616: "Rain and snow", 620: "Light shower snow", 621: "Shower snow", 622: "Heavy shower snow", 701: "Mist", 711: "Smoke", 721: "Haze", 731: "Sand, dust whirls", 741: "Fog", 751: "Sand", 761: "Dust", 762: "Volcanic ash", 771: "Squalls", 781: "Tornado", 800: "Clear sky", 801: "Few clouds", 802: "Scattered clouds", 803: "Broken clouds", 804: "Overcast clouds", 900: "Tornado", 901: "Tropical storm", 902: "Hurricane", 903: "Cold", 904: "Hot", 905: "Windy", 906: "Hail", 951: "Calm", 952: "Light breeze", 953: "Gentle breeze", 954: "Moderate breeze", 955: "Fresh breeze", 956: "Strong breeze", 957: "High wind, near gale", 958: "Gale", 959: "Severe gale", 960: "Storm", 961: "Violent storm", 962: "Hurricane", } OWM_WIND_DIRECTIONS = [ "N", "NNE", "NE", "ENE", "E", "ESE", "SE", "SSE", "S", "SSW", "SW", "WSW", "W", "WNW", "NW", "NNW", "N", ] def __init__(self, bootstrap, debug_enabled): """ Constructor Args: bootstrap (dict): bootstrap objects debug_enabled (bool): flag to set debug level to logger """ # init CleepModule.__init__(self, bootstrap, debug_enabled) # members self.weather_task = None self.__owm_uuid = None self.__forecast = [] # events self.openweathermap_weather_update = self._get_event( "openweathermap.weather.update" ) def _configure(self): """ Configure module """ # add openweathermap device if self._get_device_count() == 0: owm = { "type": "openweathermap", "name": "OpenWeatherMap", "lastupdate": None, "celsius": None, "fahrenheit": None, "humidity": None, "pressure": None, "windspeed": None, "winddirection": None, "code": None, "condition": None, "icon": None, } self._add_device(owm) # get device uuid devices = self.get_module_devices() self.__owm_uuid = list(devices.keys())[0] def _on_start(self): """ Module starts """ # update weather conditions self._force_weather_update() # start weather task self._start_weather_task() def _on_stop(self): """ Module stops """ self._stop_weather_task() def _force_weather_update(self): """ Force weather update according to last update to not flood owm api """ # get devices if not provided devices = self.get_module_devices() last_update = devices[self.__owm_uuid].get("lastupdate") if last_update is None or last_update + self.OWM_PREVENT_FLOOD < time.time(): self._weather_task() def _start_weather_task(self): """ Start weather task """ if self.weather_task is None: self.weather_task = Task( self.OWM_TASK_DELAY, self._weather_task, self.logger ) self.weather_task.start() def _stop_weather_task(self): """ Stop weather task """ if self.weather_task is not None: self.weather_task.stop() def _restart_weather_task(self): """ Restart weather task """ self._stop_weather_task() self._start_weather_task() def _owm_request(self, url, params): """ Request OWM api Args: url (string): request url params (dict): dict of parameters Returns: tuple: request response:: ( status (int): request status code, data (dict): request response data ) """ status = None resp_data = None try: self.logger.debug("Request params: %s" % params) resp = requests.get(url, params=params) resp_data = resp.json() self.logger.debug("Response data: %s" % resp_data) status = resp.status_code if status != 200: self.logger.error("OWM api response [%s]: %s" % (status, resp_data)) except Exception: self.logger.exception("Error while requesting OWM API:") return (status, resp_data) def _get_weather(self, apikey): """ Get weather condition Args: apikey (string): OWM apikey Returns: dict: weather conditions (see http://openweathermap.org/current#parameter for output format) Raises: InvalidParameter: if input parameter is invalid CommandError: if command failed """ # check parameter self._check_parameters([{"name": "apikey", "value": apikey, "type": str}]) # get position infos from parameters app resp = self.send_command("get_position", "parameters") self.logger.debug("Get position from parameters module resp: %s" % resp) if not resp or resp.error: raise Exception( "Unable to get device position (%s)" % resp.error if resp else "No response" ) position = resp.data # request api (status, resp) = self._owm_request( self.OWM_WEATHER_URL, { "appid": apikey, "lat": position["latitude"], "lon": position["longitude"], "units": "metric", "mode": "json", }, ) self.logger.debug("OWM response: %s" % (resp)) # handle errors if status == 401: raise Exception("Invalid OWM api key") if status != 200: raise Exception("Error requesting openweathermap api (status %s)" % status) if not isinstance(resp, dict) or "cod" not in resp: raise Exception("Invalid OWM api response format. Is API changed?") if resp["cod"] != 200: # cod is int for weather request raise Exception( resp["message"] if "message" in resp else "Unknown error from api" ) return resp def _get_forecast(self, apikey): """ Get forecast (5 days with 3 hours step) Args: apikey (string): OWM apikey Returns: dict: forecast (see http://openweathermap.org/forecast5 for output format) Raises: InvalidParameter: if input parameter is invalid CommandError: if command failed """ # check parameter self._check_parameters([{"name": "apikey", "value": apikey, "type": str}]) # get position infos from parameters app resp = self.send_command("get_position", "parameters") self.logger.debug("Get position from parameters module resp: %s" % resp) if not resp or resp.error: raise Exception( "Unable to get device position (%s)" % resp.error if resp else "No response" ) position = resp.data # request api (status, resp) = self._owm_request( self.OWM_FORECAST_URL, { "appid": apikey, "lat": position["latitude"], "lon": position["longitude"], "units": "metric", "mode": "json", }, ) self.logger.trace("OWM response: %s" % (resp)) # handle errors if status == 401: raise Exception("Invalid OWM api key") if status != 200: raise Exception("Error requesting openweathermap api (status %s)" % status) if "cod" not in resp: raise Exception("Invalid OWM api response format. Is API changed?") if resp["cod"] != "200": # cod is string for forecast request raise Exception( "API message: %s" % resp["message"] if "message" in resp else "Unknown error from api" ) if "list" not in resp or len(resp["list"]) == 0: raise Exception("No forecast data retrieved") return resp["list"] def _weather_task(self): """ Weather task in charge to refresh weather condition every hours Send openweathermap.weather.update event with following data:: { lastupdate (int): timestamp, icon (string): openweathermap icon, condition (string): openweathermap condition string (english), code (int): openweather condition code, celsius (float): current temperature in celsius, fahrenheit (float): current temperature in fahrenheit, pressure (float): current pressure, humidity (float): current humidity, windspeed (float): current wind speed, winddirection (string): current wind direction, winddegrees (float): current wind degrees } """ try: self.logger.debug("Update weather conditions") # get api key config = self._get_config() if config["apikey"] is None or len(config["apikey"]) == 0: self.logger.debug("No apikey configured") return # apikey configured, get weather weather = self._get_weather(config["apikey"]) self.logger.debug("Weather: %s" % weather) self.__forecast = self._get_forecast(config["apikey"]) self.logger.debug("Forecast: %s" % self.__forecast) # save current weather conditions device = self._get_devices()[self.__owm_uuid] device["lastupdate"] = int(time.time()) if "weather" in weather and len(weather["weather"]) > 0: icon = weather["weather"][0].get("icon") device["icon"] = self.OWM_ICON_URL % icon or "unknown" wid = weather["weather"][0].get("id") device["condition"] = self.OWM_WEATHER_CODES[wid] if wid else "?" device["code"] = int(wid) if wid else 0 else: device["icon"] = self.OWM_ICON_URL % "unknown" device["condition"] = "?" device["code"] = 0 if "main" in weather: device["celsius"] = weather["main"].get("temp", 0.0) device["fahrenheit"] = ( weather["main"].get("temp", 0.0) * 9.0 / 5.0 + 32.0 ) device["pressure"] = weather["main"].get("pressure", 0.0) device["humidity"] = weather["main"].get("humidity", 0.0) else: device["celsius"] = 0.0 device["fahrenheit"] = 0.0 device["pressure"] = 0.0 device["humidity"] = 0.0 if "wind" in weather: device["windspeed"] = weather["wind"].get("speed", 0.0) device["winddegrees"] = weather["wind"].get("deg", 0) index = int(round((weather["wind"].get("deg", 0) % 360) / 22.5) + 1) device["winddirection"] = self.OWM_WIND_DIRECTIONS[ 0 if index >= 17 else index ] else: device["windspeed"] = 0.0 device["winddegrees"] = 0.0 device["winddirection"] = "N" self._update_device(self.__owm_uuid, device) # and emit event event_keys = [ "icon", "condition", "code", "celsius", "fahrenheit", "pressure", "humidity", "windspeed", "winddegrees", "winddirection", "lastupdate", ] self.openweathermap_weather_update.send( params={k: v for k, v in device.items() if k in event_keys}, device_id=self.__owm_uuid, ) except Exception: self.logger.exception("Exception during weather task:") def set_apikey(self, apikey): """ Set openweathermap apikey Args: apikey (string): OWM apikey Returns: bool: True if apikey saved successfully Raises: CommandError: if error occured while using apikey to get current weather """ self._check_parameters([{"name": "apikey", "value": apikey, "type": str}]) # test apikey (should raise exception if error) self._get_weather(apikey) # test succeed, update weather right now and restart task self._restart_weather_task() self._force_weather_update() # save config return self._update_config({"apikey": apikey}) def get_weather(self): """ Return current weather conditions Useful to use it in action script Returns: dict: device information """ return self._get_devices()[self.__owm_uuid] def get_forecast(self): """ Return last forecast information. May be empty if cleep just restarted. Returns: list: list of forecast data (every 3 hours) """ return self.__forecast
32
113
0.533381
16,603
0.982659
0
0
0
0
0
0
7,512
0.444602
964a8ebce3df5d896031c77dad18e3a15b609702
527
py
Python
tests/test_wps_dummy.py
f-PLT/emu
c0bb27d57afcaa361772ce99eaf11f706983b3b2
[ "Apache-2.0" ]
3
2015-11-10T10:08:07.000Z
2019-09-09T20:41:25.000Z
tests/test_wps_dummy.py
f-PLT/emu
c0bb27d57afcaa361772ce99eaf11f706983b3b2
[ "Apache-2.0" ]
76
2015-02-01T23:17:17.000Z
2021-12-20T14:17:59.000Z
tests/test_wps_dummy.py
f-PLT/emu
c0bb27d57afcaa361772ce99eaf11f706983b3b2
[ "Apache-2.0" ]
8
2016-10-13T16:44:02.000Z
2020-12-22T18:36:53.000Z
from pywps import Service from pywps.tests import assert_response_success from .common import client_for, get_output from emu.processes.wps_dummy import Dummy def test_wps_dummy(): client = client_for(Service(processes=[Dummy()])) datainputs = "input1=10;input2=2" resp = client.get( service='WPS', request='Execute', version='1.0.0', identifier='dummyprocess', datainputs=datainputs) assert_response_success(resp) assert get_output(resp.xml) == {'output1': '11', 'output2': '1'}
31
68
0.705882
0
0
0
0
0
0
0
0
80
0.151803
964ae4268e2f7a93ee8eacf634fa2376a1e04d95
476
py
Python
test/talker.py
cjds/rosgo
2a832421948707baca6413fe4394e28ed0c36d86
[ "Apache-2.0" ]
148
2016-02-16T18:29:34.000Z
2022-03-18T13:13:46.000Z
test/talker.py
cjds/rosgo
2a832421948707baca6413fe4394e28ed0c36d86
[ "Apache-2.0" ]
24
2018-12-21T19:32:15.000Z
2021-01-20T00:27:51.000Z
test/talker.py
cjds/rosgo
2a832421948707baca6413fe4394e28ed0c36d86
[ "Apache-2.0" ]
45
2015-11-16T06:31:10.000Z
2022-03-28T12:46:44.000Z
#!/usr/bin/env python import rospy from std_msgs.msg import String def talker(): pub = rospy.Publisher('chatter', String) rospy.init_node('talker', anonymous=True) while not rospy.is_shutdown(): str = "%s: hello world %s" % (rospy.get_name(), rospy.get_time()) rospy.loginfo(str) pub.publish(String(str)) rospy.sleep(1.0) if __name__ == '__main__': try: talker() except rospy.ROSInterruptException: pass
22.666667
73
0.628151
0
0
0
0
0
0
0
0
68
0.142857
964b60ee1051cb3579b95c9af76b42037448ddeb
9,365
py
Python
point_to_box/model.py
BavarianToolbox/point_to_box
6769739361410499596f53a60704cbedae56bd81
[ "Apache-2.0" ]
null
null
null
point_to_box/model.py
BavarianToolbox/point_to_box
6769739361410499596f53a60704cbedae56bd81
[ "Apache-2.0" ]
null
null
null
point_to_box/model.py
BavarianToolbox/point_to_box
6769739361410499596f53a60704cbedae56bd81
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/02_model.ipynb (unless otherwise specified). __all__ = ['EfficientLoc', 'CIoU'] # Cell #export from efficientnet_pytorch import EfficientNet import copy import time import math import torch import torch.optim as opt from torch.utils.data import DataLoader from torchvision import transforms # Cell class EfficientLoc(): def __init__(self, version = 'efficientnet-b0', in_channels = 4, out_features = 4, export = False): """ EfficientLoc model class for loading, training, and exporting models """ self.version = version # self.inter_channels = versoin_dict([version]) # TODO # check version is compliant self.in_channels = in_channels self.out_features = out_features self.export = export self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.data_parallel = False self.model = self.get_model(version = self.version, in_channels = self.in_channels, out_features = self.out_features) def get_model(self, version, in_channels, out_features): """ Adjusts efficient net model architecture for point-to-box data """ version_chnls = { 'efficientnet-b0': 1280, 'efficientnet-b1': 1280, 'efficientnet-b2': 1408, 'efficientnet-b3': 1536, 'efficientnet-b4': 1792 # 'efficientnet-b5': 456 # 'efficientnet-b6': 528 # 'efficientnet-b7': 600 # 'efficientnet-b8': 672 # 'efficientnet-l2': 800 } inter_channel = version_chnls[version] model = EfficientNet.from_pretrained(version, include_top = False) # adjust in channels in conv stem model._change_in_channels(in_channels) # if self.export: model.set_swish(memory_efficient= (not self.export)) model = torch.nn.Sequential( model, # torch.nn.AdaptiveAvgPool2d(), torch.nn.Dropout(0.2), torch.nn.Flatten(), torch.nn.Linear(inter_channel, out_features), # torch.nn.Linear(100, out_features), torch.nn.Sigmoid() ) for param in model.parameters(): param.requires_grad = True if torch.cuda.device_count() > 1: print(f'Using {torch.cuda.device_count()} GPUs') model = torch.nn.DataParallel(model) self.data_parallel = True model.to(self.device) return model def train(self, dataloaders, criterion, optimizer, num_epochs, ds_sizes, print_every = 100, scheduler=None): """ Training function for model **Params** loaders : dict of val/train DataLoaders criterion : loss function optimizer : training optimizer num_epochs : number of training epochs ds_sizes : dict of number of samples in print_every : batch_interval for intermediate loss printing scheduler : Optional learning rate scheduler """ train_start = time.time() best_model_wts = copy.deepcopy(self.model.state_dict()) best_loss = 10000000.0 for epoch in range(num_epochs): print(f'Epoch {epoch + 1}/{num_epochs}') print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: phase_start = time.time() if phase == 'train': self.model.train() else: self.model.eval() inter_loss = 0. running_loss = 0. batches_past = 0 # Iterate over data. for i, (inputs, labels) in enumerate(dataloaders[phase]): inputs = inputs.to(self.device) labels = labels.to(self.device) # zero the parameter gradients optimizer.zero_grad() # forward, only track history in train phase with torch.set_grad_enabled(phase == 'train'): outputs = self.model(inputs) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() inter_loss += loss.item() if (i+1) % print_every == 0: inter_loss = inter_loss / ((i+1-batches_past) * inputs.shape[0]) print(f'Intermediate loss: {inter_loss:.6f}') inter_loss = 0. batches_past = i+1 if phase == 'train' and scheduler is not None: scheduler.step() epoch_loss = running_loss / ds_sizes[phase] phase_duration = time.time() - phase_start phase_duration = f'{(phase_duration // 60):.0f}m {(phase_duration % 60):.0f}s' print('-' * 5) print(f'{phase} Phase Duration: {phase_duration} Average Loss: {epoch_loss:.6f} in ') print('-' * 5) # deep copy the model if phase == 'val' and epoch_loss < best_loss: best_loss = epoch_loss best_model_wts = copy.deepcopy(self.model.state_dict()) time_elapsed = time.time() - train_start print(f'Training complete in {(time_elapsed // 60):.0f}m {(time_elapsed % 60):.0f}s') print(f'Best val Loss: {best_loss:.4f}') # load best model weights self.model.load_state_dict(best_model_wts) def save(self, dst, info = None): """Save model and optimizer state dict **Params** dst : destination file path including .pth file name info : Optional dictionary with model info """ if info: torch.save(info, dst) else: model_dict = self.model.state_dict() if self.data_parallel: model_dict = self.model.module.state_dict() torch.save({ 'base_arch' : self.version, 'model_state_dict' : model_dict, }, dst) def load(self, model_state_dict): """Load model weights from state-dict""" self.model.load_state_dict(model_state_dict) def _export(self, dst, dummy, verbose = True): """Export model as onnx graph **Params** dst : destination including .onnx file name dummy : dummy variable for export structure, shape (B,C,W,H) """ self.model.eval() torch.onnx.export(self.model, dummy, dst, verbose = verbose) # Cell class CIoU(torch.nn.Module): """Complete IoU loss class""" def __init__(self) -> None: super(CIoU, self).__init__() def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: return self.ciou(input, target) # return F.l1_loss(input, target, reduction=self.reduction) def ciou(self, bboxes1, bboxes2): bboxes1 = torch.sigmoid(bboxes1) bboxes2 = torch.sigmoid(bboxes2) rows = bboxes1.shape[0] cols = bboxes2.shape[0] cious = torch.zeros((rows, cols)) if rows * cols == 0: return cious exchange = False if bboxes1.shape[0] > bboxes2.shape[0]: bboxes1, bboxes2 = bboxes2, bboxes1 cious = torch.zeros((cols, rows)) exchange = True w1 = torch.exp(bboxes1[:, 2]) h1 = torch.exp(bboxes1[:, 3]) w2 = torch.exp(bboxes2[:, 2]) h2 = torch.exp(bboxes2[:, 3]) area1 = w1 * h1 area2 = w2 * h2 center_x1 = bboxes1[:, 0] center_y1 = bboxes1[:, 1] center_x2 = bboxes2[:, 0] center_y2 = bboxes2[:, 1] inter_l = torch.max(center_x1 - w1 / 2,center_x2 - w2 / 2) inter_r = torch.min(center_x1 + w1 / 2,center_x2 + w2 / 2) inter_t = torch.max(center_y1 - h1 / 2,center_y2 - h2 / 2) inter_b = torch.min(center_y1 + h1 / 2,center_y2 + h2 / 2) inter_area = torch.clamp((inter_r - inter_l),min=0) * torch.clamp((inter_b - inter_t),min=0) c_l = torch.min(center_x1 - w1 / 2,center_x2 - w2 / 2) c_r = torch.max(center_x1 + w1 / 2,center_x2 + w2 / 2) c_t = torch.min(center_y1 - h1 / 2,center_y2 - h2 / 2) c_b = torch.max(center_y1 + h1 / 2,center_y2 + h2 / 2) inter_diag = (center_x2 - center_x1)**2 + (center_y2 - center_y1)**2 c_diag = torch.clamp((c_r - c_l),min=0)**2 + torch.clamp((c_b - c_t),min=0)**2 union = area1+area2-inter_area u = (inter_diag) / c_diag iou = inter_area / union v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(w2 / h2) - torch.atan(w1 / h1)), 2) with torch.no_grad(): S = (iou>0.5).float() alpha= S*v/(1-iou+v) cious = iou - u - alpha * v cious = torch.clamp(cious,min=-1.0,max = 1.0) if exchange: cious = cious.T return torch.sum(1-cious)
33.091873
112
0.553017
9,004
0.961452
0
0
0
0
0
0
2,450
0.261612
964d531f50577c7580159804463196dbab58e21c
7,643
py
Python
Receptive_Field_PyNN/2rtna_connected_to_4ReceptiveFields/anmy_TDXY.py
mahmoud-a-ali/Thesis_sample_codes
02a912dd012291b00c89db195b4cba2ebb4d35fe
[ "MIT" ]
null
null
null
Receptive_Field_PyNN/2rtna_connected_to_4ReceptiveFields/anmy_TDXY.py
mahmoud-a-ali/Thesis_sample_codes
02a912dd012291b00c89db195b4cba2ebb4d35fe
[ "MIT" ]
null
null
null
Receptive_Field_PyNN/2rtna_connected_to_4ReceptiveFields/anmy_TDXY.py
mahmoud-a-ali/Thesis_sample_codes
02a912dd012291b00c89db195b4cba2ebb4d35fe
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Jun 2 13:09:55 2018 @author: mali """ #import time import pickle import pyNN.utility.plotting as plot import matplotlib.pyplot as plt import comn_conversion as cnvrt import prnt_plt_anmy as ppanmy # file and folder names ======================================================= fldr_name = 'rslts/icub64x64/' pickle_filename = 'TDXY.pickle' file_pth = cnvrt.read_flenfldr_ncrntpth(fldr_name, pickle_filename ) with open(file_pth , 'rb') as tdxy: TDXY = pickle.load( tdxy ) print '### lenght of TDXY : {}'.format( len(TDXY) ) # 2+ 2*n_orn ) pop = TDXY[0] t_ist = 1040 print 'check pop: L_rtna_TDXY' print '### T : {}'.format(pop[0][t_ist]) # dimension 4 x t_stp x depend print '### 1D : {}'.format(pop[1][t_ist]) # dimension 4 x t_stp x depend print '### X : {}'.format(pop[2][t_ist]) # dimension 4 x t_stp x depend print '### Y : {}'.format(pop[3][t_ist]) # dimension 4 x t_stp x depend print pop[0] print pop[1] #required variables============================================================ n_rtna = 2 # till now should be two n_orn = 4 rtna_w = 64 rtna_h = 64 krnl_sz = 5 rf_w = rtna_w - krnl_sz +1 rf_h = rtna_h - krnl_sz +1 subplt_rws = n_rtna subplt_cls = n_orn+1 ########### to make animation fast as scale now in micro second ############### #first to scale be divide over 10 or 100 ====================================== T=TDXY[0][0] t10u=T [0:T[-1]:100] #print '### t_10u : {}'.format(t10u) # second find all times has spikes any one of the rtna or rf ================== t_spks=[] for pop in range ( len(TDXY) ): for inst in range( len(TDXY[pop][0]) ): if TDXY[pop][2][inst]!=[] : t_spks.append( TDXY[pop][0][inst] ) print pop, TDXY[pop][0][inst] t_spks.sort() for each in t_spks: count = t_spks.count(each) if count > 1: t_spks.remove(each) print 't_spks : {}'.format( t_spks ) #animate the rtna_rf ========================================================= #print 'abplt_rw, sbplt_cl, rtna_w, rtna_h, rf_w, rf_h: {}, {}, {}, {}, {}, {} '.format(subplt_rws, subplt_cls, rtna_w, rtna_h, rf_w, rf_h) fig, axs = plt.subplots(subplt_rws, subplt_cls, sharex=False, sharey=False) #, figsize=(12,5)) axs = ppanmy.init_fig_mxn_sbplt_wxh_res (fig, axs, rtna_h, rtna_w, rf_w, rf_h, subplt_rws, subplt_cls) plt.grid(True) plt.show(block=False) plt.pause(.01) #for i in t_spks: #t10u: # axs = ppanmy.init_fig_mxn_sbplt_wxh_res (fig, axs, rtna_h, rtna_w, rf_w, rf_h, subplt_rws, subplt_cls) # plt.suptitle('rtna_rf_orn_3: t= {} usec'.format( i ) ) # if subplt_rws==1: # axs[0].scatter( TDXY[0][2][i], TDXY[0][3][i] ) # for col in range (subplt_cls): # axs[col].scatter( TDXY[col+1][2][i], TDXY[col+1][3][i] ) ## plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) # plt.show(block=False) # plt.pause(2) # for col in range(subplt_cls): # axs[col].cla() # # elif subplt_rws==2: # for col in range (subplt_cls): # axs[0][0].scatter( TDXY[0][2][i], TDXY[0][3][i] ) # axs[1][0].scatter( TDXY[1][2][i], TDXY[1][3][i] ) # for col in range(1,n_orn+1): # row=0 # axs[row][col].scatter( TDXY[col+1][2][i], TDXY[col+1][3][i] ) # for col in range(1,n_orn): # row=1 # axs[row][col].scatter( TDXY[n_orn+1+col][2][i], TDXY[n_orn+1+col][3][i] ) ## plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) # plt.show(block=False) # plt.pause(2) # for row in range(subplt_rws): # for col in range (subplt_cls): # axs[row][col].cla() # print '##### required variables: \n n_rtna={}, TDXY_len={}, rtna_w={}, rtna_h={}, krnl_sz={}, rf_w={} , rf_h={}'.format( n_rtna , len(TDXY), rtna_w, rtna_h, krnl_sz, rf_w , rf_h ) plt.show(block=False) last_t_spks=-310 for i in range( len(t_spks) ): #t10u: # plt.pause(2) if t_spks[i]-last_t_spks > 300: #clear if subplt_rws==2: for row in range(subplt_rws): for col in range (subplt_cls): axs[row][col].cla() elif subplt_rws==1: for col in range(subplt_cls): axs[col].cla() axs = ppanmy.init_fig_mxn_sbplt_wxh_res (fig, axs, rtna_h, rtna_w, rf_w, rf_h, subplt_rws, subplt_cls) plt.suptitle('rtna_rf_orn: t= {} usec'.format( t_spks[i] ) ) plt.pause(1.5) #-------------------------------------------------------------------------- if subplt_rws==1: axs[0].scatter( TDXY[0][2][t_spks[i]], TDXY[0][3][t_spks[i]] ) for col in range (subplt_cls): axs[col].scatter( TDXY[col+1][2][t_spks[i]], TDXY[col+1][3][t_spks[i]] ) # plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) elif subplt_rws==2: for col in range (subplt_cls): axs[0][0].scatter( TDXY[0][2][t_spks[i]], TDXY[0][3][t_spks[i]] ) axs[1][0].scatter( TDXY[1][2][t_spks[i]], TDXY[1][3][t_spks[i]] ) for col in range(1,n_orn+1): row=0 axs[row][col].scatter( TDXY[col+1][2][t_spks[i]], TDXY[col+1][3][t_spks[i]] ) for col in range(1,n_orn+1): row=1 axs[row][col].scatter( TDXY[n_orn+1+col][2][t_spks[i]], TDXY[n_orn+1+col][3][t_spks[i]] ) # plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) #-------------------------------------------------------------------------- plt.pause(.5) else: #==================================================================== #-------------------------------------------------------------------------- if subplt_rws==1: axs[0].scatter( TDXY[0][2][t_spks[i]], TDXY[0][3][t_spks[i]] ) for col in range (subplt_cls): axs[col].scatter( TDXY[col+1][2][t_spks[i]], TDXY[col+1][3][t_spks[i]] ) # plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) elif subplt_rws==2: for col in range (subplt_cls): axs[0][0].scatter( TDXY[0][2][t_spks[i]], TDXY[0][3][t_spks[i]] ) axs[1][0].scatter( TDXY[1][2][t_spks[i]], TDXY[1][3][t_spks[i]] ) for col in range(1,n_orn+1): row=0 axs[row][col].scatter( TDXY[col+1][2][t_spks[i]], TDXY[col+1][3][t_spks[i]] ) for col in range(1,n_orn+1): row=1 axs[row][col].scatter( TDXY[n_orn+1+col][2][t_spks[i]], TDXY[n_orn+1+col][3][t_spks[i]] ) # plt.savefig( 'fgrs/anmy_1/{}_t{}.png'.format(vrjn, i) ) #-------------------------------------------------------------------------- plt.pause(.5) last_t_spks = t_spks[i] # suing builtin animation function =========================================== #strt_tm = TDXY[0][0][0] #stop_tm = TDXY[0][0][-1] #print '\n### n_orn x n_rtna : {}x{}'.format(n_orn, n_rtna) #print '\n### strt_tm - stop_tm : {} - {}'.format(strt_tm, stop_tm) #ppanmy.anmy_rtna_rf_orn( TDXY, rtna_h, rtna_w, n_rtna, krnl_sz, strt_tm , stop_tm)
37.282927
180
0.483056
0
0
0
0
0
0
0
0
3,708
0.48515
964d60906285ddfcdeb808da94455db7bd3067ea
5,998
py
Python
meAdota/settings.py
guipeeix7/website
4081899060e69688314a5577ceab5c7b840e7b7f
[ "MIT" ]
6
2020-10-19T23:13:07.000Z
2020-12-02T19:08:32.000Z
meAdota/settings.py
guipeeix7/website
4081899060e69688314a5577ceab5c7b840e7b7f
[ "MIT" ]
69
2020-10-23T03:52:47.000Z
2020-12-04T01:12:49.000Z
meAdota/settings.py
guipeeix7/website
4081899060e69688314a5577ceab5c7b840e7b7f
[ "MIT" ]
1
2020-12-08T22:10:08.000Z
2020-12-08T22:10:08.000Z
""" Django settings for meAdota project. Generated by 'django-admin startproject' using Django 3.1.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Load dotenv import os from dotenv import load_dotenv load_dotenv() # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.getenv("SECRET_KEY") # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', 'localhost'] STATIC_ROOT = '' STATIC_URL = '/static/' STATICFILES_DIRS = ('static',) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites', 'allauth', 'allauth.account', 'allauth.socialaccount', 'django_countries', 'cpf_field', 'django_filters', # AllAuth [custom providers] 'allauth.socialaccount.providers.facebook', 'allauth.socialaccount.providers.google', 'allauth.socialaccount.providers.twitter', #my apps 'users', 'pets', 'crispy_forms', ] CRISPY_TEMPLATE_PACK = 'bootstrap4' SITE_ID = 1 AUTH_USER_MODEL = 'users.User' #verify email EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' #check email on console ACCOUNT_EMAIL_VERIFICATION = True ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USER_MODEL_USERNAME_FIELD = None ACCOUNT_LOGOUT_ON_GET = True MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'meAdota.urls' ACCOUNT_FORMS = { 'login': 'users.forms.MyLoginForm', # 'signup': 'allauth.account.forms.SignupForm', 'signup': 'users.forms.MyCustomSignupForm', 'add_email': 'allauth.account.forms.AddEmailForm', 'change_password': 'allauth.account.forms.ChangePasswordForm', 'set_password': 'allauth.account.forms.SetPasswordForm', 'reset_password': 'allauth.account.forms.ResetPasswordForm', 'reset_password_from_key': 'allauth.account.forms.ResetPasswordKeyForm', 'disconnect': 'allauth.socialaccount.forms.DisconnectForm', } SOCIALACCOUNT_PROVIDERS = { 'facebook': { 'METHOD': 'oauth2', 'SDK_URL': '//connect.facebook.net/{locale}/sdk.js', 'SCOPE': ['email', 'public_profile'], 'AUTH_PARAMS': {'auth_type': 'reauthenticate'}, 'INIT_PARAMS': {'cookie': True}, 'FIELDS': [ 'id', 'first_name', 'last_name', 'middle_name', 'name', 'name_format', 'picture', 'short_name' ], 'EXCHANGE_TOKEN': True, 'LOCALE_FUNC': lambda request: 'en_US', 'VERIFIED_EMAIL': False, 'VERSION': 'v7.0', }, 'google': { 'SCOPE': [ 'profile', 'email', ], 'AUTH_PARAMS': { 'access_type': 'online', } } } LOGIN_REDIRECT_URL ='/' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [str(BASE_DIR / "templates"), str(BASE_DIR / "templates/account")], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] AUTHENTICATION_BACKENDS = [ # Needed to login by username in Django admin, regardless of `allauth` 'django.contrib.auth.backends.ModelBackend', # `allauth` specific authentication methods, such as login by e-mail 'allauth.account.auth_backends.AuthenticationBackend', ] WSGI_APPLICATION = 'meAdota.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': os.getenv("DATABASE_NAME"), 'USER': os.getenv("DATABASE_USER"), 'PASSWORD': os.getenv("DATABASE_PASSWORD"), 'HOST': os.getenv("DATABASE_HOST"), 'PORT': os.getenv("DATABASE_PORT"), } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
27.140271
91
0.672391
0
0
0
0
0
0
0
0
3,932
0.655552
964eca76f4c35f59907bf26e2512971b1aa50b0f
1,098
py
Python
Machine Learning/Regression/reg.py
brett-harvey/Brett-s-AI-Library
43f9bfd5eca92b9e28c6d4532afb943d03d80b67
[ "MIT" ]
null
null
null
Machine Learning/Regression/reg.py
brett-harvey/Brett-s-AI-Library
43f9bfd5eca92b9e28c6d4532afb943d03d80b67
[ "MIT" ]
null
null
null
Machine Learning/Regression/reg.py
brett-harvey/Brett-s-AI-Library
43f9bfd5eca92b9e28c6d4532afb943d03d80b67
[ "MIT" ]
null
null
null
from sklearn import preprocessing, svm from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn import cross_validation import pandas as pd import numpy as np import quandl import math df = quandl.get('WIKI/GOOGL') df = df[['Adj. Open', 'Adj. High', 'Adj. Low', 'Adj. Close', 'Adj. Volume']] df['HL_PCT'] = (df['Adj. High'] - df['Adj. Low']) / df['Adj. Close'] * 100.0 df['PCT_change'] = (df['Adj. Close'] - df['Adj. Open']) / df['Adj. Open'] * 100.0 df = df[['Adj. Close', 'HL_PCT', 'PCT_change', 'Adj. Volume']] forecast_col = 'Adj. Close' df.fillna(-99999, inplace = True) forecast_out = int(math.ceil(0.01 * len(df))) print(forecast_out) df['label'] = df[forecast_col].shift(-forecast_out) df.dropna(inplace = True) X = np.array(df.drop(['label'],1)) y = np.array(df['label']) X = preprocessing.scale(X) y = np.array(df['label']) X_train, X_test, y_train, y_test = cross_validation.train_test_split(X,y, test_size = 0.2) clf = LinearRegression() clf.fit(X_train, y_train) accuracy = clf.score(X_test,y_test) print(accuracy)
29.675676
90
0.6949
0
0
0
0
0
0
0
0
241
0.21949
964ed654a2da39f4913b8a0e948783cdb15246e1
12,126
py
Python
src/app.py
tatianamaia/Corona
d944395d8b7b7a740b57e9bb7895f0835bc63d10
[ "MIT" ]
null
null
null
src/app.py
tatianamaia/Corona
d944395d8b7b7a740b57e9bb7895f0835bc63d10
[ "MIT" ]
null
null
null
src/app.py
tatianamaia/Corona
d944395d8b7b7a740b57e9bb7895f0835bc63d10
[ "MIT" ]
null
null
null
import datetime import os import yaml import numpy as np import pandas as pd import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output from scipy.integrate import solve_ivp from scipy.optimize import minimize import plotly.graph_objs as go ENV_FILE = '../env.yaml' with open(ENV_FILE) as f: params = yaml.load(f, Loader=yaml.FullLoader) # Initialisation des chemins vers les fichiers ROOT_DIR = os.path.dirname(os.path.abspath(ENV_FILE)) DATA_FILE = os.path.join(ROOT_DIR, params['directories']['processed'], params['files']['all_data']) #Lecture du fihcier de données epidemie_df = (pd.read_csv(DATA_FILE, parse_dates=['Last Update']) .assign(day=lambda _df:_df['Last Update'].dt.date) .drop_duplicates(subset=['Country/Region', 'Province/State', 'day']) [lambda df: df['day'] <= datetime.date(2020,3,20)] ) # replacing Mainland china with just China cases = ['Confirmed', 'Deaths', 'Recovered'] # After 14/03/2020 the names of the countries are quite different epidemie_df['Country/Region'] = epidemie_df['Country/Region'].replace('Mainland China', 'China') # filling missing values epidemie_df[['Province/State']] = epidemie_df[['Province/State']].fillna('') epidemie_df[cases] = epidemie_df[cases].fillna(0) countries=[{'label':c, 'value': c} for c in epidemie_df['Country/Region'].unique()] app = dash.Dash('C0VID-19 Explorer') app.layout = html.Div([ html.H1(['C0VID-19 Explorer'], style={'textAlign': 'center', 'color': 'navy', 'font-weight': 'bold'}), dcc.Tabs([ dcc.Tab(label='Time', children=[ dcc.Markdown(""" Select a country: """,style={'textAlign': 'left', 'color': 'navy', 'font-weight': 'bold'} ), html.Div([ dcc.Dropdown( id='country', options=countries, placeholder="Select a country...", ) ]), html.Div([ dcc.Markdown("""You can select a second country:""", style={'textAlign': 'left', 'color': 'navy', 'font-weight': 'bold'} ), dcc.Dropdown( id='country2', options=countries, placeholder="Select a country...", ) ]), html.Div([dcc.Markdown("""Cases: """, style={'textAlign': 'left', 'color': 'navy', 'font-weight': 'bold'} ), dcc.RadioItems( id='variable', options=[ {'label':'Confirmed', 'value': 'Confirmed'}, {'label':'Deaths', 'value': 'Deaths'}, {'label':'Recovered', 'value': 'Recovered'} ], value='Confirmed', labelStyle={'display': 'inline-block'} ) ]), html.Div([ dcc.Graph(id='graph1') ]) ]), dcc.Tab(label='Map', children=[ #html.H6(['COVID-19 in numbers:']), dcc.Markdown(""" **COVID-19** This is a graph that shows the evolution of the COVID-19 around the world ** Cases:** """, style={'textAlign': 'left', 'color': 'navy', 'font-weight': 'bold'} ), dcc.Dropdown(id="value-selected", value='Confirmed', options=[{'label': "Deaths ", 'value': 'Deaths'}, {'label': "Confirmed", 'value': 'Confirmed'}, {'label': "Recovered", 'value': 'Recovered'}], placeholder="Select a country...", style={"display": "inline-block", "margin-left": "auto", "margin-right": "auto", "width": "70%"}, className="six columns"), dcc.Graph(id='map1'), dcc.Slider( id='map_day', min=0, max=(epidemie_df['day'].max() - epidemie_df['day'].min()).days, value=0, marks={i:str(i) for i, date in enumerate(epidemie_df['day'].unique())} ) ]), dcc.Tab(label='SIR Model', children=[ dcc.Markdown(""" **SIR model** S(Susceptible)I(Infectious)R(Recovered) is a model describing the dynamics of infectious disease. The model divides the population into compartments. Each compartment is expected to have the same characteristics. SIR represents the three compartments segmented by the model. **Select a country:** """, style={'textAlign': 'left', 'color': 'navy'}), html.Div([ dcc.Dropdown( id='Country', value='Portugal', options=countries), ]), dcc.Markdown("""Select:""", style={'textAlign': 'left', 'color': 'navy'}), dcc.Dropdown(id='cases', options=[ {'label': 'Confirmed', 'value': 'Confirmed'}, {'label': 'Deaths', 'value': 'Deaths'}, {'label': 'Recovered', 'value': 'Recovered'}], value=['Confirmed','Deaths','Recovered'], multi=True), dcc.Markdown(""" **Select your paramaters:** """, style={'textAlign': 'left', 'color': 'navy'}), html.Label( style={'textAlign': 'left', 'color': 'navy', "width": "20%"}), html.Div([ dcc.Markdown(""" Beta: """, style={'textAlign': 'left', 'color': 'navy'}), dcc.Input( id='input-beta', type ='number', placeholder='Input Beta', min =-50, max =100, step =0.01, value=0.45 ) ]), html.Div([ dcc.Markdown(""" Gamma: """, style={'textAlign': 'left', 'color': 'navy'}), dcc.Input( id='input-gamma', type ='number', placeholder='Input Gamma', min =-50, max =100, step =0.01, value=0.55 ) ]), html.Div([ dcc.Markdown(""" Population: """, style={'textAlign': 'left', 'color': 'navy'}), dcc.Input( id='input-pop',placeholder='Population', type ='number', min =1000, max =1000000000000000, step =1000, value=1000, ) ]), html.Div([ dcc.RadioItems(id='variable2', options=[ {'label':'Optimize','value':'optimize'}], value='Confirmed', labelStyle={'display':'inline-block','color': 'navy', "width": "20%"}) ]), html.Div([ dcc.Graph(id='graph2') ]), ]) ]), ]) @app.callback( Output('graph1', 'figure'), [ Input('country','value'), Input('country2','value'), Input('variable','value'), ] ) def update_graph(country, country2, variable): print(country) if country is None: graph_df = epidemie_df.groupby('day').agg({variable:'sum'}).reset_index() else: graph_df=(epidemie_df[epidemie_df['Country/Region'] == country] .groupby(['Country/Region', 'day']) .agg({variable:'sum'}) .reset_index() ) if country2 is not None: graph2_df=(epidemie_df[epidemie_df['Country/Region'] == country2] .groupby(['Country/Region', 'day']) .agg({variable:'sum'}) .reset_index() ) return { 'data':[ dict( x=graph_df['day'], y=graph_df[variable], type='line', name=country if country is not None else 'Total' ) ] + ([ dict( x=graph2_df['day'], y=graph2_df[variable], type='line', name=country2 ) ] if country2 is not None else []) } @app.callback( Output('map1', 'figure'), [ Input('map_day','value'), Input("value-selected", "value") ] ) def update_map(map_day,selected): day= epidemie_df['day'].sort_values(ascending=False).unique()[map_day] map_df = (epidemie_df[epidemie_df['day'] == day] .groupby(['Country/Region']) .agg({selected:'sum', 'Latitude': 'mean', 'Longitude': 'mean'}) .reset_index() ) return { 'data':[ dict( type='scattergeo', lon=map_df['Longitude'], lat=map_df['Latitude'], text=map_df.apply(lambda r: r['Country/Region'] + '(' + str(r[selected]) + ')', axis=1), mode='markers', marker=dict( size=np.maximum(map_df[selected]/ 1_000, 10) ) ) ], 'layout': dict( title=str(day), geo=dict(showland=True) ) } @app.callback( Output('graph2', 'figure'), [ Input('input-beta', 'value'), Input('input-gamma','value'), Input('input-pop','value'), Input('Country','value') #Input('variable2','value') ] ) def update_model(beta, gamma, population, Country): print(Country) country=Country country_df = (epidemie_df[epidemie_df['Country/Region'] == country] .groupby(['Country/Region', 'day']) .agg({'Confirmed': 'sum', 'Deaths': 'sum', 'Recovered': 'sum'}) .reset_index()) country_df['Infected'] = country_df['Confirmed'].diff() steps = len(country_df['Infected']) def SIR(t, y): S = y[0]; I = y[1]; R = y[2] return([-beta*S*I, beta*S*I-gamma*I, gamma*I]) solution = solve_ivp(SIR, [0, steps], [population, 1, 0], t_eval=np.arange(0, steps, 1)) #def sumsq_error(parameters): #beta, gamma = parameters #def SIR(t,y): #S=y[0] #I=y[1] #R=y[2] #return([-beta*S*I, beta*S*I-gamma*I, gamma*I]) #solution = solve_ivp(SIR,[0,nb_steps-1],[total_population,1,0],t_eval=np.arange(0,nb_steps,1)) #return(sum((solution.y[1]-infected_population)**2)) #msol = minimize(sumsq_error,[0.001,0.1],method='Nelder-Mead') #if variable2 == 'optimize': #gamma,beta == msol.x return { 'data': [ dict( x=solution.t, y=solution.y[0], type='line', name=country+': Susceptible') ] + ([ dict( x=solution.t, y=solution.y[1], type='line', name=country+': Infected') ]) + ([ dict( x=solution.t, y=solution.y[2], type='line', name=country+': Recovered') ]) + ([ dict( x=solution.t, y=country_df['Infected'], type='line', name=country+': Original Data(Infected)') ]) } if __name__ == '__main__': app.run_server(debug=True)
34.547009
289
0.455303
0
0
0
0
4,447
0.366702
0
0
3,928
0.323905
964f51bb97bc51b17e213093a0a26eca6712c8ec
1,014
py
Python
tests/io/test_kepseismic.py
jorgemarpa/lightkurve
86320a67eabb3a93f60e9faff0447e4b235bccf2
[ "MIT" ]
235
2018-01-22T01:22:10.000Z
2021-02-02T04:57:26.000Z
tests/io/test_kepseismic.py
jorgemarpa/lightkurve
86320a67eabb3a93f60e9faff0447e4b235bccf2
[ "MIT" ]
847
2018-01-22T05:49:16.000Z
2021-02-10T17:05:19.000Z
tests/io/test_kepseismic.py
jorgemarpa/lightkurve
86320a67eabb3a93f60e9faff0447e4b235bccf2
[ "MIT" ]
121
2018-01-22T01:11:19.000Z
2021-01-26T21:07:07.000Z
import pytest from astropy.io import fits import numpy as np from lightkurve.io.kepseismic import read_kepseismic_lightcurve from lightkurve.io.detect import detect_filetype @pytest.mark.remote_data def test_detect_kepseismic(): """Can we detect the correct format for KEPSEISMIC files?""" url = "https://archive.stsci.edu/hlsps/kepseismic/001200000/92147/20d-filter/hlsp_kepseismic_kepler_phot_kplr001292147-20d_kepler_v1_cor-filt-inp.fits" f = fits.open(url) assert detect_filetype(f) == "KEPSEISMIC" @pytest.mark.remote_data def test_read_kepseismic(): """Can we read KEPSEISMIC files?""" url = "https://archive.stsci.edu/hlsps/kepseismic/001200000/92147/20d-filter/hlsp_kepseismic_kepler_phot_kplr001292147-20d_kepler_v1_cor-filt-inp.fits" with fits.open(url, mode="readonly") as hdulist: fluxes = hdulist[1].data["FLUX"] lc = read_kepseismic_lightcurve(url) flux_lc = lc.flux.value # print(flux_lc, fluxes) assert np.sum(fluxes) == np.sum(flux_lc)
32.709677
155
0.757396
0
0
0
0
833
0.821499
0
0
437
0.430966
964fab6dbeeb71e25e526001be717823ea172dc3
32
py
Python
backend/appengine/routes/gallerys/model.py
SamaraCardoso27/eMakeup
02c3099aca85b5f54214c3a32590e80eb61621e7
[ "MIT" ]
null
null
null
backend/appengine/routes/gallerys/model.py
SamaraCardoso27/eMakeup
02c3099aca85b5f54214c3a32590e80eb61621e7
[ "MIT" ]
null
null
null
backend/appengine/routes/gallerys/model.py
SamaraCardoso27/eMakeup
02c3099aca85b5f54214c3a32590e80eb61621e7
[ "MIT" ]
null
null
null
__author__ = 'Samara Cardoso'
8
29
0.71875
0
0
0
0
0
0
0
0
16
0.5
965034c03fdf2183dfe02406617dfa08e3bd353a
1,153
py
Python
recipes/Python/223585_Stable_deep_sorting_dottedindexed_attributes/recipe-223585.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/223585_Stable_deep_sorting_dottedindexed_attributes/recipe-223585.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/223585_Stable_deep_sorting_dottedindexed_attributes/recipe-223585.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
def sortByAttrs(seq, attrs): listComp = ['seq[:] = [('] for attr in attrs: listComp.append('seq[i].%s, ' % attr) listComp.append('i, seq[i]) for i in xrange(len(seq))]') exec('%s' % ''.join(listComp)) seq.sort() seq[:] = [obj[-1] for obj in seq] return # # begin test code # from random import randint class a: def __init__(self): self.x = (randint(1, 5), randint(1, 5)) class b: def __init__(self): self.x = randint(1, 5) self.y = (a(), a()) class c: def __init__(self, arg): self.x = arg self.y = b() if __name__ == '__main__': aList = [c(1), c(2), c(3), c(4), c(5), c(6)] print '\n...to be sorted by obj.y.y[1].x[1]' print ' then, as needed, by obj.y.x' print ' then, as needed, by obj.x\n\n ', for i in range(6): print '(' + str(aList[i].y.y[1].x[1]) + ',', print str(aList[i].y.x) + ',', print str(aList[i].x) + ') ', sortByAttrs(aList, ['y.y[1].x[1]', 'y.x', 'x']) print '\n\n...now sorted by listed attributes.\n\n ', for i in range(6): print '(' + str(aList[i].y.y[1].x[1]) + ',', print str(aList[i].y.x) + ',', print str(aList[i].x) + ') ', print # # end test code #
18.015625
58
0.542064
211
0.183001
0
0
0
0
0
0
325
0.281873
9650401ec27713e595c5dbc7faa0b1080d66e16e
1,710
py
Python
spirit/topic/forms.py
ImaginaryLandscape/Spirit
58b563c1b2290a95219257045afaa4f08ac94cbf
[ "MIT" ]
974
2015-01-02T12:56:00.000Z
2022-03-24T00:01:54.000Z
spirit/topic/forms.py
ImaginaryLandscape/Spirit
58b563c1b2290a95219257045afaa4f08ac94cbf
[ "MIT" ]
247
2015-01-07T02:59:26.000Z
2022-02-23T08:27:57.000Z
spirit/topic/forms.py
ImaginaryLandscape/Spirit
58b563c1b2290a95219257045afaa4f08ac94cbf
[ "MIT" ]
366
2015-01-08T10:22:25.000Z
2022-02-21T12:58:31.000Z
# -*- coding: utf-8 -*- from django import forms from django.utils.translation import gettext_lazy as _ from django.utils.encoding import smart_bytes from django.utils import timezone from ..core import utils from ..core.utils.forms import NestedModelChoiceField from ..category.models import Category from .models import Topic class TopicForm(forms.ModelForm): topic_hash = forms.CharField( max_length=32, widget=forms.HiddenInput, required=False) class Meta: model = Topic fields = ('title', 'category') def __init__(self, user, *args, **kwargs): super(TopicForm, self).__init__(*args, **kwargs) self.user = user self.fields['category'] = NestedModelChoiceField( queryset=Category.objects.visible().opened().ordered(), related_name='category_set', parent_field='parent_id', label_field='title', label=_("Category"), empty_label=_("Choose a category")) if self.instance.pk and not user.st.is_moderator: del self.fields['category'] def get_category(self): return self.cleaned_data['category'] def get_topic_hash(self): topic_hash = self.cleaned_data.get('topic_hash', None) if topic_hash: return topic_hash return utils.get_hash(( smart_bytes(self.cleaned_data['title']), smart_bytes('category-{}'.format(self.cleaned_data['category'].pk)))) def save(self, commit=True): if not self.instance.pk: self.instance.user = self.user self.instance.reindex_at = timezone.now() return super(TopicForm, self).save(commit)
29.482759
81
0.64269
1,377
0.805263
0
0
0
0
0
0
173
0.10117
965076565be0243a0d0b837e3affc60f4cce7858
7,931
py
Python
OST_helper/parameter.py
HomeletW/OST
5e359d00a547af194a2a1a2591a53c93d8f40b84
[ "MIT" ]
1
2020-07-31T16:43:13.000Z
2020-07-31T16:43:13.000Z
OST_helper/parameter.py
HomeletW/OST
5e359d00a547af194a2a1a2591a53c93d8f40b84
[ "MIT" ]
null
null
null
OST_helper/parameter.py
HomeletW/OST
5e359d00a547af194a2a1a2591a53c93d8f40b84
[ "MIT" ]
null
null
null
# constant import json import logging import os import platform import subprocess from datetime import date from os.path import exists, expanduser, isdir, isfile, join, abspath, dirname from PIL import Image logging.basicConfig( style="{", format="{threadName:<10s} <{levelname:<7s}> [{asctime:<15s}] {message}", level=logging.DEBUG ) # paths CCCL_PATH = None SETTING_PATH = None APP_LOGO = None OST_SAMPLE = None DEFAULT_OST_PATH = None TFONT = None DEFAULT_COORDINATES_PATH = None # os DEVICE_OS = platform.system() # ost sample OST_SAMPLE_IMAGE = None # today today = None PRODUCTION_SUCCESS = 0 PRODUCTION_FILE_EXISTS = 1 PRODUCTION_FILE_NOT_RECOGNIZED = 2 def update_today(): global today day = date.today() year, month, day = day.year, day.month, day.day today = str(year), str(month), str(day) update_today() def from_json(path): with open(path, "r") as js: data = json.load(js) return data def to_json(path, data): with open(path, "w+") as js: json.dump(data, js, indent=4) def get_desktop_directory(): if DEVICE_OS in ["Linux", "Darwin"]: home_dir = join(expanduser("~"), "Desktop") elif DEVICE_OS in ["Windows"]: home_dir = join(os.environ["USERPROFILE"], "Desktop") else: home_dir = None if home_dir is not None and isdir(home_dir): return home_dir else: return "/" def open_path(abs_path): if not exists(abs_path): raise ValueError("Path Not Exist!") if DEVICE_OS in ["Darwin"]: subprocess.Popen(["open", "-R", "{}".format(abs_path)]) elif DEVICE_OS in ["Windows"]: subprocess.Popen('cmd /c start "START" "{}"'.format(abs_path)) elif DEVICE_OS in ["Linux"]: subprocess.Popen(["nautilus", "--browser", "{}".format(abs_path)]) else: raise Exception( "Not Supported Operating System [{}]!".format(DEVICE_OS)) DEFAULT_DIR = get_desktop_directory() # "course_code": ["course_title", "course_level", "credit", "compulsory"] default_common_course_code_library = { } default_setting = { "draw_ost_template": True, "smart_fill": True, "train": True, "json_dir": DEFAULT_DIR, "img_dir": DEFAULT_DIR, "last_session": None, } default_ost = { "OST_date_of_issue": today, "name": ["", ""], "OEN": "", "student_number": "", "gender": "", "date_of_birth": ["", "", ""], "name_of_district_school_board": "Toronto Private Inspected", "district_school_board_number": "", "name_of_school": "", "school_number": "", "date_of_entry": ["", "", ""], "community_involvement_flag": False, "provincial_secondary_school_literacy_requirement_flag": False, "specialized_program": "", "diploma_or_certificate": "Ontario Secondary School Diploma", "diploma_or_certificate_date_of_issue": ["", ""], "authorization": "", "course_list": [], "course_font_size": 50, "course_spacing": 5, } default_coordinates = { "Size": (3300, 2532), "Offset": (0, 0), # (x, y, width, height) "OST_DateOfIssue": (2301, 73, 532, 85, 55), "Page_1": (2826, 73, 183, 85, 50), "Page_2": (3046, 73, 183, 85, 50), "Surname": (85, 204, 645, 94, 50), "GivenName": (730, 204, 772, 94, 50), "OEN": (1502, 204, 537, 94, 50), "StudentNumber": (2039, 204, 538, 94, 50), "Gender": (2577, 204, 136, 94, 50), "DateOfBirth_Y": (2713, 228, 202, 70, 40), "DateOfBirth_M": (2915, 228, 202, 70, 40), "DateOfBirth_D": (3117, 228, 147, 70, 40), "NameOfDSB": (85, 336, 1023, 100, 50), "NumberOfDSB": (1108, 338, 397, 100, 50), "NameOfSchool": (1505, 338, 807, 100, 50), "NumberOfSchool": (2311, 338, 402, 100, 50), "DateOfEntry_Y": (2713, 368, 202, 70, 40), "DateOfEntry_M": (2915, 368, 202, 70, 40), "DateOfEntry_D": (3117, 368, 147, 70, 40), # (x, y, width, height) "Course": (35, 564, 3230, 1419), # (x_offset, width) "Course_date_offset": (35 - 35, 268), "Course_level_offset": (306 - 35, 183), "Course_title_offset": (491 - 35, 1637), "Course_code_offset": (2131 - 35, 244), "Course_percentage_offset": (2378 - 35, 175), "Course_credit_offset": (2563 - 35, 183), "Course_compulsory_offset": (2748 - 35, 207), "Course_note_offset": (2965 - 35, 299), "SummaryOfCredit": (2562, 1992, 184, 69, 55), "SummaryOfCompulsory": (2748, 1992, 207, 69, 55), "CommunityInvolvement_True": (75, 2125), "CommunityInvolvement_False": (385, 2125), "ProvincialSecondarySchoolLiteracy_True": (623, 2125), "ProvincialSecondarySchoolLiteracy_False": (1173, 2125), "SpecializedProgram": (1436, 2104, 1828, 96, 40), "DiplomaOrCertificate": (77, 2240, 1622, 90, 40), "DiplomaOrCertificate_DateOfIssue_Y": (1702, 2273, 180, 57, 40), "DiplomaOrCertificate_DateOfIssue_M": (1885, 2273, 180, 57, 40), "Authorization": (2070, 2240, 1148, 90, 40), } COMMON_COURSE_CODE_LIBRARY = None SETTING = None DEFAULT_OST_INFO = None COORDINATES = None def finalize(): logger = logging.getLogger() # save CCCL to_json(CCCL_PATH, COMMON_COURSE_CODE_LIBRARY) logger.info("Common Course Code Library saved!") # save setting to_json(SETTING_PATH, SETTING) logger.info("Setting saved!") def initialize(resource_path): global COMMON_COURSE_CODE_LIBRARY global SETTING global DEFAULT_OST_INFO global COORDINATES global CCCL_PATH global SETTING_PATH global APP_LOGO global OST_SAMPLE global DEFAULT_OST_PATH global TFONT global DEFAULT_COORDINATES_PATH global OST_SAMPLE_IMAGE CCCL_PATH = join(resource_path, "CCCL.json") SETTING_PATH = join(resource_path, "setting.json") APP_LOGO = join(resource_path, "logo.ico") OST_SAMPLE = join(resource_path, "ost_sample.png") DEFAULT_OST_PATH = join(resource_path, "default_ost.json") TFONT = join(resource_path, "font.ttf") DEFAULT_COORDINATES_PATH = join(resource_path, "default_coordinates.json") OST_SAMPLE_IMAGE = Image.open(OST_SAMPLE) logger = logging.getLogger() # initialize CCCL try: COMMON_COURSE_CODE_LIBRARY = from_json(CCCL_PATH) logger.info(f"Loaded CCCL [{len(COMMON_COURSE_CODE_LIBRARY)} courses]!") except Exception: COMMON_COURSE_CODE_LIBRARY = default_common_course_code_library logger.warning("No CCCL found, restoring from default...") # initialize settings try: SETTING = from_json(SETTING_PATH) if not isdir(SETTING["json_dir"]): SETTING["json_dir"] = DEFAULT_DIR logger.warning("json dir no longer is dir, resetting to default") if not isdir(SETTING["img_dir"]): SETTING["img_dir"] = DEFAULT_DIR logger.warning("image dir no longer is dir, resetting to default") if SETTING["last_session"] is not None and not isfile( SETTING["last_session"]): SETTING["last_session"] = None logger.warning( "last session ost file no longer exist, resetting to default") logger.info("Loaded setting!") except Exception: SETTING = default_setting logger.info("No setting found, restoring from default...") # initialize OST from OST_helper.data_handler.Data import OST_info try: DEFAULT_OST_INFO = OST_info.from_json(DEFAULT_OST_PATH) DEFAULT_OST_INFO.update_date_of_issue(today) logger.info("Loaded ost!") except Exception: DEFAULT_OST_INFO = OST_info.from_data(default_ost) logger.warning("No default OST info found, using default...") # initialize coordinate try: COORDINATES = from_json(DEFAULT_COORDINATES_PATH) logger.info("Loaded coordinates!") except Exception: COORDINATES = default_coordinates logger.warning("No default coordinates found, using default...")
30.980469
80
0.651998
0
0
0
0
0
0
0
0
2,544
0.320767
96519d3044209db1a7fd83988e9afafa3678e598
398
py
Python
examples/compat/ggplot_point.py
azjps/bokeh
13375db53d4c60216f3bcf5aacccb081cf19450a
[ "BSD-3-Clause" ]
1
2017-04-27T09:15:48.000Z
2017-04-27T09:15:48.000Z
app/static/libs/bokeh/examples/compat/ggplot_point.py
TBxy/bokeh_start_app
755494f6bc60e92ce17022bbd7f707a39132cbd0
[ "MIT" ]
null
null
null
app/static/libs/bokeh/examples/compat/ggplot_point.py
TBxy/bokeh_start_app
755494f6bc60e92ce17022bbd7f707a39132cbd0
[ "MIT" ]
1
2021-09-09T03:33:04.000Z
2021-09-09T03:33:04.000Z
from ggplot import aes, geom_point, ggplot, mtcars import matplotlib.pyplot as plt from pandas import DataFrame from bokeh import mpl from bokeh.plotting import output_file, show g = ggplot(mtcars, aes(x='wt', y='mpg', color='qsec')) + geom_point() g.make() plt.title("Point ggplot-based plot in Bokeh.") output_file("ggplot_point.html", title="ggplot_point.py example") show(mpl.to_bokeh())
23.411765
69
0.751256
0
0
0
0
0
0
0
0
94
0.236181
965346317a700c60ccb16c29a2836bf7e207f10e
14,194
py
Python
src/train_tune.py
vanang/korquad-challenge
c5df887aaa7f6b68edb5d46ad12d42097132df46
[ "Apache-2.0" ]
null
null
null
src/train_tune.py
vanang/korquad-challenge
c5df887aaa7f6b68edb5d46ad12d42097132df46
[ "Apache-2.0" ]
null
null
null
src/train_tune.py
vanang/korquad-challenge
c5df887aaa7f6b68edb5d46ad12d42097132df46
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[1]: from __future__ import absolute_import, division, print_function import argparse import logging import os import random import sys from io import open import numpy as np import torch import json from torch.utils.data import (DataLoader, SequentialSampler, RandomSampler, TensorDataset) from tqdm import tqdm, trange import ray from ray import tune from ray.tune.schedulers import HyperBandScheduler from models.modeling_bert import QuestionAnswering, Config from utils.optimization import AdamW, WarmupLinearSchedule from utils.tokenization import BertTokenizer from utils.korquad_utils import (read_squad_examples, convert_examples_to_features, RawResult, write_predictions) from debug.evaluate_korquad import evaluate as korquad_eval if sys.version_info[0] == 2: import cPickle as pickle else: import pickle # In[2]: logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) # In[3]: def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) # In[4]: from ray import tune from ray.tune import track from ray.tune.schedulers import HyperBandScheduler from ray.tune.suggest.bayesopt import BayesOptSearch ray.shutdown() ray.init(webui_host='127.0.0.1') # In[5]: search_space = { "max_seq_length": 512, "doc_stride": 128, "max_query_length": tune.sample_from(lambda _: int(np.random.uniform(50, 100))), #tune.uniform(50, 100), "train_batch_size": 32, "learning_rate": tune.loguniform(5e-4, 5e-7, 10), "num_train_epochs": tune.grid_search([4, 8, 12, 16]), "max_grad_norm": 1.0, "adam_epsilon": 1e-6, "warmup_proportion": 0.1, "n_best_size": tune.sample_from(lambda _: int(np.random.uniform(50, 100))), #tune.uniform(50, 100), "max_answer_length": tune.sample_from(lambda _: int(np.random.uniform(12, 25))), #tune.uniform(12, 25), "seed": tune.sample_from(lambda _: int(np.random.uniform(1e+6, 1e+8))) } # In[ ]: def load_and_cache_examples(predict_file, max_seq_length, doc_stride, max_query_length, tokenizer): # Load data features from cache or dataset file examples = read_squad_examples(input_file=predict_file, is_training=False, version_2_with_negative=False) features = convert_examples_to_features(examples=examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=False) return examples, features # In[ ]: def evaluate(predict_file, batch_size, device, output_dir, n_best_size, max_answer_length, model, eval_examples, eval_features): """ Eval """ all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) sampler = SequentialSampler(dataset) dataloader = DataLoader(dataset, sampler=sampler, batch_size=batch_size) logger.info("***** Evaluating *****") logger.info(" Num features = %d", len(dataset)) logger.info(" Batch size = %d", batch_size) model.eval() all_results = [] # set_seed(args) # Added here for reproductibility (even between python 2 and 3) logger.info("Start evaluating!") for input_ids, input_mask, segment_ids, example_indices in tqdm(dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) with torch.no_grad(): batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask) for i, example_index in enumerate(example_indices): start_logits = batch_start_logits[i].detach().cpu().tolist() end_logits = batch_end_logits[i].detach().cpu().tolist() eval_feature = eval_features[example_index.item()] unique_id = int(eval_feature.unique_id) all_results.append(RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) output_prediction_file = os.path.join(output_dir, "predictions.json") output_nbest_file = os.path.join(output_dir, "nbest_predictions.json") write_predictions(eval_examples, eval_features, all_results, n_best_size, max_answer_length, False, output_prediction_file, output_nbest_file, None, False, False, 0.0) expected_version = 'KorQuAD_v1.0' with open(predict_file) as dataset_file: dataset_json = json.load(dataset_file) read_version = "_".join(dataset_json['version'].split("_")[:-1]) if (read_version != expected_version): logger.info('Evaluation expects ' + expected_version + ', but got dataset with ' + read_version, file=sys.stderr) dataset = dataset_json['data'] with open(os.path.join(output_dir, "predictions.json")) as prediction_file: predictions = json.load(prediction_file) _eval = korquad_eval(dataset, predictions) logger.info(json.dumps(_eval)) return _eval # In[6]: def train_korquad(train_config): # setup basepath = '/jupyterhome/enpline_bert_competition/korquad-challenge/src' logger.info("train_config : %s" % str(train_config)) output_dir='output' checkpoint=os.path.join(basepath,'data/bert_small_ckpt.bin') model_config=os.path.join(basepath,'data/bert_small.json') vocab_file=os.path.join(basepath,'data/ko_vocab_32k.txt') train_file=os.path.join(basepath, 'data/KorQuAD_v1.0_train.json') predict_file=os.path.join(basepath, 'data/KorQuAD_v1.0_dev.json') null_score_diff_threshold = 0.0 no_cuda = False verbose_logging = False fp16 = True fp16_opt_level = 'O2' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() print("device: {} n_gpu: {}, 16-bits training: {}".format(device, n_gpu, fp16)) random.seed(train_config['seed']) np.random.seed(train_config['seed']) torch.manual_seed(train_config['seed']) if n_gpu > 0: torch.cuda.manual_seed_all(train_config['seed']) if not os.path.exists(output_dir): os.makedirs(output_dir) tokenizer = BertTokenizer(vocab_file, max_len=train_config['max_seq_length'], do_basic_tokenize=True) # Prepare model config = Config.from_json_file(model_config) model = QuestionAnswering(config) model.bert.load_state_dict(torch.load(checkpoint)) num_params = count_parameters(model) logger.info("Total Parameter: %d" % num_params) logger.info("Hyper-parameters: %s" % str(train_config)) paramfile_path = os.path.join(output_dir, 'hyperparameters.txt') with open(paramfile_path, "w") as paramfile: logger.info("writing hyperparameters at",paramfile_path) paramfile.write("%s" % str(train_config)) model.to(device) cached_train_features_file = train_file + '_{0}_{1}_{2}'.format(str(train_config['max_seq_length']), str(train_config['doc_stride']), str(train_config['max_query_length'])) train_examples = read_squad_examples(input_file=train_file, is_training=True, version_2_with_negative=False) try: with open(cached_train_features_file, "rb") as reader: train_features = pickle.load(reader) except: train_features = convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=train_config['max_seq_length'], doc_stride=train_config['doc_stride'], max_query_length=train_config['max_query_length'], is_training=True) logger.info(" Saving train features into cached file %s", cached_train_features_file) with open(cached_train_features_file, "wb") as writer: pickle.dump(train_features, writer) num_train_optimization_steps = int(len(train_features) / train_config['train_batch_size']) * train_config['num_train_epochs'] # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=train_config['learning_rate'], eps=train_config['adam_epsilon']) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=num_train_optimization_steps*0.1, t_total=num_train_optimization_steps) if fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=fp16_opt_level) logger.info("***** Running training *****") logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) logger.info(" Batch size = %d", train_config['train_batch_size']) logger.info(" Num steps = %d", num_train_optimization_steps) num_train_step = num_train_optimization_steps all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long) all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=train_config['train_batch_size']) model.train() global_step = 0 epoch = 0 output_model_file = '' # training # for epoch_idx in trange(int(train_config['num_train_epochs'])): # iter_bar = tqdm(train_dataloader, desc="Train(XX Epoch) Step(XX/XX) (Mean loss=X.X) (loss=X.X)") for epoch_idx in range(int(train_config['num_train_epochs'])): tr_step, total_loss, mean_loss = 0, 0., 0. for step, batch in enumerate(train_dataloader): if n_gpu == 1: batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self input_ids, input_mask, segment_ids, start_positions, end_positions = batch loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), train_config['max_grad_norm']) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), train_config['max_grad_norm']) scheduler.step() optimizer.step() optimizer.zero_grad() global_step += 1 tr_step += 1 total_loss += loss mean_loss = total_loss / tr_step # iter_bar.set_description("Train Step(%d / %d) (Mean loss=%5.5f) (loss=%5.5f)" % # (global_step, num_train_step, mean_loss, loss.item())) epoch += 1 logger.info("** ** * Saving file * ** **") model_checkpoint = "korquad_%d.bin" % (epoch) logger.info(model_checkpoint) #save the last model output_model_file = os.path.join(output_dir, model_checkpoint) if n_gpu > 1: torch.save(model.module.state_dict(), output_model_file) else: torch.save(model.state_dict(), output_model_file) # Evaluate with final model examples, features = load_and_cache_examples(predict_file, train_config['max_seq_length'], train_config['doc_stride'], train_config['max_query_length'], tokenizer) eval = evaluate(predict_file=predict_file, batch_size=16, device=device, output_dir=output_dir, n_best_size=train_config['n_best_size'], max_answer_length=train_config['max_answer_length'], model=model, eval_examples=examples, eval_features=features) logger.info("-" * 16, 'evaltion', "-" * 16) logger.info(eval) track.log(f1 = eval['f1']) # In[ ]: analysis = tune.run(train_korquad, config=search_space, scheduler=HyperBandScheduler(metric='f1', mode='max'), resources_per_trial={'gpu':1}) # In[ ]: dfs = analysis.trial_dataframes # In[ ]: # ax = None # for d in dfs.values(): # ax = d.mean_loss.plot(ax=ax, legend=True) # ax.set_xlabel("Epochs") # ax.set_ylabel("Mean Loss")
38.994505
193
0.659222
0
0
0
0
0
0
0
0
2,677
0.188601
9655150c478e5c7edceea8519f955d5cbf7c2792
3,604
py
Python
BuyandBye_project/users/forms.py
sthasam2/BuyandBye
07a998f289f9ae87b234cd6ca653a4fdb2765b95
[ "MIT" ]
1
2019-12-26T16:52:10.000Z
2019-12-26T16:52:10.000Z
BuyandBye_project/users/forms.py
sthasam2/buyandbye
07a998f289f9ae87b234cd6ca653a4fdb2765b95
[ "MIT" ]
13
2021-06-02T03:51:06.000Z
2022-03-12T00:53:22.000Z
BuyandBye_project/users/forms.py
sthasam2/buyandbye
07a998f289f9ae87b234cd6ca653a4fdb2765b95
[ "MIT" ]
null
null
null
from datetime import date from django import forms from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from phonenumber_field.formfields import PhoneNumberField from .models import Profile from .options import STATE_CHOICES, YEARS from .utils import AgeValidator class UserRegisterForm(UserCreationForm): first_name = forms.CharField( max_length=30, widget=forms.TextInput(attrs={"placeholder": "Given name"}) ) middle_name = forms.CharField( max_length=30, required=False, widget=forms.TextInput(attrs={"placeholder": "Middle name"}), ) last_name = forms.CharField( max_length=30, widget=forms.TextInput(attrs={"placeholder": "Surname"}) ) date_of_birth = forms.DateField( label="Date of Birth", initial=date.today(), required=True, help_text="Age must be above 16", validators=[AgeValidator], widget=forms.SelectDateWidget(years=YEARS), ) email = forms.EmailField( max_length=150, widget=forms.TextInput(attrs={"placeholder": "e.g. [email protected]"}), ) address1 = forms.CharField( max_length=100, help_text="Street, District", widget=forms.TextInput(attrs={"placeholder": "Street, District"}), ) address2 = forms.CharField( max_length=100, help_text="State", widget=forms.Select(attrs={"placeholder": "State"}, choices=STATE_CHOICES), ) phone = PhoneNumberField( required=False, initial="+977", help_text="Phone number must contain country calling code (e.g. +97798XXYYZZSS)", ) class Meta: model = User fields = [ "first_name", "middle_name", "last_name", "date_of_birth", "username", "email", "phone", "password1", "password2", "address1", "address2", ] # widget={ # 'username': forms.TextInput(attrs={'placeholder': 'Enter desired username.'}), # } class UserUpdateForm(forms.ModelForm): class Meta: model = User fields = [ "username", ] class ProfileUpdateForm(forms.ModelForm): first_name = forms.CharField( max_length=30, widget=forms.TextInput(attrs={"placeholder": "Given name"}) ) middle_name = forms.CharField( max_length=30, required=False, widget=forms.TextInput(attrs={"placeholder": "Middle name"}), ) last_name = forms.CharField( max_length=30, widget=forms.TextInput(attrs={"placeholder": "Surname"}) ) email = forms.EmailField( max_length=150, widget=forms.TextInput(attrs={"placeholder": "e.g. [email protected]"}), ) address1 = forms.CharField( max_length=100, help_text="Street, District", widget=forms.TextInput(attrs={"placeholder": "Street, District"}), ) address2 = forms.CharField( max_length=100, help_text="State", widget=forms.Select(attrs={"placeholder": "State"}, choices=STATE_CHOICES), ) phone = PhoneNumberField( required=False, help_text="Phone number must contain country calling code (e.g. +97798XXYYZZSS)", ) class Meta: model = Profile fields = [ "first_name", "middle_name", "last_name", "email", "address1", "address2", "phone", "image", ]
29.064516
92
0.59434
3,283
0.910932
0
0
0
0
0
0
850
0.235849
96565fe229818a242f95852b7feea959f0bbeb31
10,110
py
Python
kolab/tokibi/tokibi.py
oshiooshi/kolab
5f34614a995b2a31156b65e6eb9d512b9867540e
[ "MIT" ]
null
null
null
kolab/tokibi/tokibi.py
oshiooshi/kolab
5f34614a995b2a31156b65e6eb9d512b9867540e
[ "MIT" ]
null
null
null
kolab/tokibi/tokibi.py
oshiooshi/kolab
5f34614a995b2a31156b65e6eb9d512b9867540e
[ "MIT" ]
null
null
null
import sys import pegtree as pg from pegtree.visitor import ParseTreeVisitor import random # from . import verb import verb EMPTY = tuple() # オプション OPTION = { 'Simple': False, # シンプルな表現を優先する 'Block': False, # Expressionに <e> </e> ブロックをつける 'EnglishFirst': False, # 英訳の精度を優先する 'ShuffleSynonym': True, # 同音異議語をシャッフルする 'MultipleSentence': False, # 複数行モード 'ShuffleOrder': True, # 順序も入れ替える 'Verbose': True, # デバッグ出力あり } # {心が折れた|やる気が失せた}フリをする # 現状:[猫|ネコ] -> ランダム # 将来: 猫 -> 異音同義語(synonyms) -> ランダム (自動的) これをどう作るか? # 順番を入れ替える -> NSuffix(「に」のように助詞) # [ネコ|ネコ|] -> 省略可能 # 雑音を入れる <- BERT # Aに Bを 足す 「Aに」を取り除く -> Bを 足す -> Aがありませんよ。 # randomize RandomIndex = 0 def randomize(): global RandomIndex if OPTION['ShuffleSynonym']: RandomIndex = random.randint(1, 1789) else: RandomIndex = 0 def random_index(arraysize: int, seed): if OPTION['ShuffleSynonym']: return (RandomIndex + seed) % arraysize return 0 def alt(s: str): if '|' in s: ss = s.split('|') if OPTION['EnglishFirst']: return ss[-1] # 最後が英語 return ss[random_index(len(ss), len(s))] return s def choice(ss: list): return ss[random_index(len(ss), 17)] # def conjugate(w, mode=0, vpos=None): # suffix = '' # if mode & verb.CASE == verb.CASE: # if RandomIndex % 2 != 0: # mode = (mode & ~verb.CASE) | verb.NOUN # suffix = alt('とき、|場合、|際、') # else: # suffix = '、' # if mode & verb.THEN == verb.THEN: # if RandomIndex % 2 != 0: # mode = (mode & ~verb.THEN) | verb._I # suffix = '、' # return verb.conjugate(w, mode, vpos) + suffix # NExpr def identity(e): return e class NExpr(object): subs: tuple def __init__(self, subs=EMPTY): self.subs = tuple(NWord(s) if isinstance(s, str) else s for s in subs) def apply(self, dict_or_func=identity): if len(self.subs) > 0: (e.apply(dict_or_func) for e in self.subs) return self def generate(self): ss = [] c = 0 while c < 5: randomize() buffers = [] self.emit(buffers) s = ''.join(buffers) if s not in ss: ss.append(s) else: c += 1 return ss class NWord(NExpr): w: str def __init__(self, w): NExpr.__init__(self) self.w = str(w) def __repr__(self): if '|' in self.w: return '[' + self.w + ']' return self.w def apply(self, dict_or_func=identity): if not isinstance(dict_or_func, dict): return dict_or_func(self) return self def emit(self, buffers): buffers.append(alt(self.w)) class NVerb(NExpr): w: str vpos: str mode: int def __init__(self, w, vpos, mode=0): NExpr.__init__(self) self.w = str(w) self.vpos = vpos self.mode = mode def __repr__(self): return verb.conjugate(self.w, self.mode, self.vpos) def apply(self, dict_or_func=identity): if not isinstance(dict_or_func, dict): return dict_or_func(self) return self def emit(self, buffers): buffers.append(verb.conjugate(self.w, self.mode|verb.POL, self.vpos)) class NChoice(NExpr): def __init__(self, *subs): NExpr.__init__(self, subs) def __repr__(self): ss = [] for p in self.subs: ss.append(repr(p)) return ' | '.join(ss) def apply(self, dict_or_func=identity): return NChoice(*(e.apply(dict_or_func) for e in self.subs)) def emit(self, buffers): choice(self.subs).emit(buffers) class NPhrase(NExpr): def __init__(self, *subs): NExpr.__init__(self, subs) def __repr__(self): ss = [] for p in self.subs: ss.append(grouping(p)) return ' '.join(ss) def apply(self, dict_or_func=identity): return NPhrase(*(e.apply(dict_or_func) for e in self.subs)) def emit(self, buffers): for p in self.subs: p.emit(buffers) def grouping(e): if isinstance(e, NPhrase): return '{' + repr(e) + '}' return repr(e) class NOrdered(NExpr): def __init__(self, *subs): NExpr.__init__(self, subs) def __repr__(self): ss = [] for p in self.subs: ss.append(grouping(p)) return '/'.join(ss) def apply(self, dict_or_func=identity): return NOrdered(*(e.apply(dict_or_func) for e in self.subs)) def emit(self, buffers): subs = list(self.subs) if OPTION['ShuffleOrder']: random.shuffle(subs) for p in subs: p.emit(buffers) class NClause(NExpr): # 名詞節 〜する(verb)+名詞(noun) def __init__(self, verb, noun): NExpr.__init__(self, (verb,noun)) def __repr__(self): return grouping(self.subs[0]) + grouping(self.subs[1]) def apply(self, dict_or_func=identity): return NClause(*(e.apply(dict_or_func) for e in self.subs)) def emit(self, buffers): verb = self.subs[0] noun = self.subs[1] if isinstance(verb, NClause): verb.subs[0].emit(buffers) else: verb.emit(buffers) noun.emit(buffers) class NSuffix(NExpr): suffix: str def __init__(self, e, suffix): NExpr.__init__(self, (e,)) self.suffix = suffix def __repr__(self): return grouping(self.subs[0]) + self.suffix def apply(self, dict_or_func=identity): return NSuffix(self.subs[0].apply(dict_or_func), self.suffix) def emit(self, buffers): self.subs[0].emit(buffers) buffers.append(self.suffix) neko = NWord('猫|ねこ|ネコ') print('@', neko, neko.generate()) wo = NSuffix(neko, 'を') print('@', wo, wo.generate()) ni = NSuffix(neko, 'に') print('@', ni, ni.generate()) ageru = NVerb('あげる', 'V1', 0) e = NPhrase(NOrdered(ni, wo), ageru) print('@', e, e.generate()) class NLiteral(NExpr): w: str def __init__(self, w): NExpr.__init__(self) self.w = str(w) def __repr__(self): return self.w def apply(self, dict_or_func=identity): if not isinstance(dict_or_func): return dict_or_func(self) def emit(self, buffers): buffers.append(self.w) class NSymbol(NExpr): index: int w: str def __init__(self, index, w): NExpr.__init__(self) self.index = index self.w = str(w) def __repr__(self): return self.w def apply(self, dict_or_func=identity): if isinstance(dict_or_func, dict): if self.index in dict_or_func: return dict_or_func[self.index] if self.w in dict_or_func: return dict_or_func[self.w] return self else: return dict_or_func(self) def emit(self, buffers): buffers.append(self.w) ## ここから下は気にしなくていいです。 ## テキストを NExpr (構文木)に変換しています。 peg = pg.grammar('tokibi.pegtree') tokibi_parser = pg.generate(peg) class TokibiReader(ParseTreeVisitor): def __init__(self, synonyms=None): ParseTreeVisitor.__init__(self) self.indexes = {} self.synonyms = {} if synonyms is None else synonyms def parse(self, s): tree = tokibi_parser(s) self.indexes = {} nexpr = self.visit(tree) return nexpr #, self.indexes # [#NPhrase [#NOrdered [#NSuffix [#NSymbol 'str'][# 'が']][#NSuffix [#NSymbol 'prefix'][# 'で']]][#NWord '始まるかどうか']] def acceptNChoice(self, tree): ne = NChoice(*(self.visit(t) for t in tree)) return ne def acceptNPhrase(self, tree): ne = NPhrase(*(self.visit(t) for t in tree)) if len(ne.subs) == 1: return ne.subs[0] return ne def acceptNClause(self, tree): ne = NClause(self.visit(tree[0]), self.visit(tree[1])) return ne def acceptNOrdered(self, tree): ne = NOrdered(*(self.visit(t) for t in tree)) return ne def acceptNSuffix(self, tree): t = self.visit(tree[0]) suffix = str(tree[1]) return NSuffix(t, suffix) def acceptNSymbol(self, tree): s = str(tree) if s not in self.indexes: self.indexes[s] = len(self.indexes) return NSymbol(self.indexes[s], s) def acceptNLiteral(self, tree): s = str(tree) return NLiteral(s) def acceptNWord(self, tree): s = str(tree) w, vpos, mode = verb.parse(s.split('|')[0]) if vpos.startswith('V') or vpos == 'ADJ': return NVerb(w, vpos, mode) return NWord(s) def acceptNPiece(self, tree): s = str(tree) return NWord(s) tokibi_reader = TokibiReader() def parse(s, synonyms=None): if synonyms is not None: tokibi_reader.synonyms = synonyms if s.endswith('かどうか'): s = s[:-4] e = tokibi_reader.parse(s) e = NClause(e, NWord('かどうか')) else: e = tokibi_reader.parse(s) #print(grouping(e[0])) return e def read_tsv(filename): with open(filename) as f: for line in f.readlines(): line = line.strip() if line == '' or line.startswith('#'): continue if '#' in line: line = line.split('#')[1].strip() e = parse(line) print(e, e.generate()) # t = parse('{心が折れた|やる気が失せた}気がする') # print(t, t.generate()) # t = parse('望遠鏡で{子犬が泳ぐ}のを見る') # print(t) # if __name__ == '__main__': # if len(sys.argv) > 1: # read_tsv(sys.argv[1]) # else: # e = parse('望遠鏡で/{[子犬|Puppy]が泳ぐ}[様子|の]を見る') # print(e, e.generate()) # e2 = parse('[猫|ねこ]が/[虎|トラ]と等しくないかどうか') # #e2, _ = parse('{Aと/B(子犬)を/順に/[ひとつずつ]表示した}結果') # e = parse('Aを調べる') # e = e.apply({0: e2}) # print(e, e.generate()) # e = parse('A(事実)を調べる') # e = e.apply({0: e2}) # print(e, e.generate())
24.128878
114
0.559149
6,600
0.610659
0
0
0
0
0
0
2,565
0.237324
96566f3a27305df43ef46e729f0d4af5e2007006
1,275
py
Python
kaggle_downloader/kaggle_downloader.py
lars-reimann/kaggle-downloader
583e68ee1c4860a153ae38f2a1cdba108ea8cb5a
[ "MIT" ]
null
null
null
kaggle_downloader/kaggle_downloader.py
lars-reimann/kaggle-downloader
583e68ee1c4860a153ae38f2a1cdba108ea8cb5a
[ "MIT" ]
3
2021-08-05T11:05:32.000Z
2022-03-01T13:05:18.000Z
kaggle_downloader/kaggle_downloader.py
lars-reimann/kaggle-downloader
583e68ee1c4860a153ae38f2a1cdba108ea8cb5a
[ "MIT" ]
null
null
null
from typing import Callable, Union from kaggle import KaggleApi from kaggle.models.kaggle_models_extended import Competition, Kernel class KaggleDownloader: def __init__(self) -> None: self.client = KaggleApi() self.client.authenticate() def fetch_competition_refs(self) -> list[str]: return self._fetch_all_pages( lambda page: self.client.competitions_list(page=page) ) def fetch_kernel_refs(self, competition_ref: str) -> list[str]: return self._fetch_all_pages( lambda page: self.client.kernels_list( competition=competition_ref, page=page, page_size=100 ) ) def fetch_notebook(self, kernel_ref: str) -> dict: user_name, kernel_slug = kernel_ref.split("/") return self.client.kernel_pull(user_name, kernel_slug) @staticmethod def _fetch_all_pages( fetcher: Callable[[int], list[Union[Kernel, Competition]]] ) -> list[str]: result = [] page = 1 while True: # noinspection PyUnresolvedReferences batch = [it.ref for it in fetcher(page)] if len(batch) == 0: break result += batch page += 1 return result
27.717391
69
0.614902
1,138
0.892549
0
0
416
0.326275
0
0
40
0.031373
96578d44622fea775471eea152128045fac7dede
1,281
py
Python
trip/urls.py
tboonma/thairepose
89aff7836a29bfee58a633db10c19d5e1ce4475f
[ "MIT" ]
4
2021-11-07T05:50:41.000Z
2021-12-01T08:57:12.000Z
trip/urls.py
tboonma/thairepose
89aff7836a29bfee58a633db10c19d5e1ce4475f
[ "MIT" ]
111
2021-10-19T09:24:14.000Z
2021-11-28T18:02:21.000Z
trip/urls.py
tboonma/thairepose
89aff7836a29bfee58a633db10c19d5e1ce4475f
[ "MIT" ]
2
2021-11-28T06:37:03.000Z
2022-01-16T18:17:02.000Z
from django.urls import path from . import views app_name = 'trip' urlpatterns = [ path('', views.index, name='index'), path('tripblog/', views.AllTrip.as_view(), name="tripplan"), path('likereview/', views.like_comment_view, name="like_comment"), path('tripdetail/<int:pk>/', views.trip_detail, name="tripdetail"), path('addpost/', views.add_post, name="addpost"), path('likepost/', views.like_post, name="like_trip"), path('tripdetail/edit/<int:pk>', views.edit_post, name='editpost'), path('tripdetail/<int:pk>/remove', views.delete_post, name='deletepost'), path('category/<category>', views.CatsListView.as_view(), name='category'), path('addcomment/', views.post_comment, name="add_comment"), path('action/gettripqueries', views.get_trip_queries, name='get-trip-query'), # 127.0.0.1/domnfoironkwe_0394 path('place/<str:place_id>/', views.place_info, name='place-detail'), path('place/<str:place_id>/like', views.place_like, name='place-like'), path('place/<str:place_id>/dislike', views.place_dislike, name='place-dislike'), path('place/<str:place_id>/addreview', views.place_review, name='place-review'), path('place/<str:place_id>/removereview', views.place_remove_review, name='place-remove-review'), ]
53.375
101
0.698673
0
0
0
0
0
0
0
0
563
0.4395
9657e65ccf97f075f8a25b19bf95a3ca2e2decf0
5,010
py
Python
tests/test_rpc.py
tzoiker/aio-pika
5a04853006310d2fbf458c449b0ea98427668fe8
[ "Apache-2.0" ]
null
null
null
tests/test_rpc.py
tzoiker/aio-pika
5a04853006310d2fbf458c449b0ea98427668fe8
[ "Apache-2.0" ]
null
null
null
tests/test_rpc.py
tzoiker/aio-pika
5a04853006310d2fbf458c449b0ea98427668fe8
[ "Apache-2.0" ]
null
null
null
import asyncio import logging import pytest from aio_pika import Message, connect_robust from aio_pika.exceptions import DeliveryError from aio_pika.patterns.rpc import RPC, log as rpc_logger from tests import AMQP_URL from tests.test_amqp import BaseTestCase pytestmark = pytest.mark.asyncio def rpc_func(*, foo, bar): assert not foo assert not bar return {'foo': 'bar'} class TestCase(BaseTestCase): async def test_simple(self): channel = await self.create_channel() rpc = await RPC.create(channel, auto_delete=True) await rpc.register('test.rpc', rpc_func, auto_delete=True) result = await rpc.proxy.test.rpc(foo=None, bar=None) self.assertDictEqual(result, {'foo': 'bar'}) await rpc.unregister(rpc_func) await rpc.close() # Close already closed await rpc.close() async def test_error(self): channel = await self.create_channel() rpc = await RPC.create(channel, auto_delete=True) await rpc.register('test.rpc', rpc_func, auto_delete=True) with pytest.raises(AssertionError): await rpc.proxy.test.rpc(foo=True, bar=None) await rpc.unregister(rpc_func) await rpc.close() async def test_unroutable(self): channel = await self.create_channel() rpc = await RPC.create(channel, auto_delete=True) await rpc.register('test.rpc', rpc_func, auto_delete=True) with pytest.raises(DeliveryError): await rpc.proxy.unroutable() await rpc.unregister(rpc_func) await rpc.close() async def test_timed_out(self): channel = await self.create_channel() rpc = await RPC.create(channel, auto_delete=True) await rpc.register('test.rpc', rpc_func, auto_delete=True) await channel.declare_queue( 'test.timed_out', auto_delete=True, arguments={ 'x-dead-letter-exchange': RPC.DLX_NAME, } ) with pytest.raises(asyncio.TimeoutError): await rpc.call('test.timed_out', expiration=1) await rpc.unregister(rpc_func) await rpc.close() async def test_close_twice(self): channel = await self.create_channel() rpc = await RPC.create(channel, auto_delete=True) await rpc.close() await rpc.close() async def test_init_twice(self): channel = await self.create_channel() rpc = await RPC.create(channel, auto_delete=True) await rpc.initialize() await rpc.close() async def test_send_unknown_message(self): channel = await self.create_channel() rpc = await RPC.create(channel, auto_delete=True) with self.assertLogs(rpc_logger, logging.WARNING) as capture: await channel.default_exchange.publish( Message(b''), routing_key=rpc.result_queue.name ) await asyncio.sleep(0.5, loop=self.loop) self.assertIn('Unknown message: ', capture.output[0]) with self.assertLogs(rpc_logger, logging.WARNING) as capture: await channel.default_exchange.publish( Message(b''), routing_key='should-returned' ) await asyncio.sleep(0.5, loop=self.loop) self.assertIn('Unknown message was returned: ', capture.output[0]) await rpc.close() async def test_close_cancelling(self): channel = await self.create_channel() rpc = await RPC.create(channel, auto_delete=True) async def sleeper(): await asyncio.sleep(60, loop=self.loop) method_name = self.get_random_name('test', 'sleeper') await rpc.register(method_name, sleeper, auto_delete=True) tasks = set() for _ in range(10): tasks.add(self.loop.create_task(rpc.call(method_name))) await rpc.close() logging.info("Waiting for results") for task in tasks: with pytest.raises(asyncio.CancelledError): await task async def test_register_twice(self): channel = await self.create_channel() rpc = await RPC.create(channel, auto_delete=True) await rpc.register('test.sleeper', lambda x: None, auto_delete=True) with pytest.raises(RuntimeError): await rpc.register( 'test.sleeper', lambda x: None, auto_delete=True ) await rpc.register( 'test.one', rpc_func, auto_delete=True ) with pytest.raises(RuntimeError): await rpc.register( 'test.two', rpc_func, auto_delete=True ) await rpc.unregister(rpc_func) await rpc.unregister(rpc_func) await rpc.close() class TestCaseRobust(TestCase): async def create_connection(self, cleanup=True): client = await connect_robust(str(AMQP_URL), loop=self.loop) if cleanup: self.addCleanup(client.close) return client
28.146067
76
0.633533
4,613
0.920758
0
0
0
0
4,494
0.897006
296
0.059082
96588284712f2b02b4c2431118e6f0abd22431a0
8,331
py
Python
tests/python/pants_test/base/test_cmd_line_spec_parser.py
dturner-tw/pants
3a04f2e46bf2b8fb0a7999c09e4ffdf9057ed33f
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/base/test_cmd_line_spec_parser.py
dturner-tw/pants
3a04f2e46bf2b8fb0a7999c09e4ffdf9057ed33f
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/base/test_cmd_line_spec_parser.py
dturner-tw/pants
3a04f2e46bf2b8fb0a7999c09e4ffdf9057ed33f
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os import re from pants.base.cmd_line_spec_parser import CmdLineSpecParser from pants.build_graph.address import Address from pants.build_graph.build_file_aliases import BuildFileAliases from pants.build_graph.target import Target from pants_test.base_test import BaseTest class CmdLineSpecParserTest(BaseTest): @property def alias_groups(self): return BuildFileAliases( targets={ 'generic': Target } ) def setUp(self): super(CmdLineSpecParserTest, self).setUp() def add_target(path, name): self.add_to_build_file(path, 'generic(name="{name}")\n'.format(name=name)) add_target('BUILD', 'root') add_target('a', 'a') add_target('a', 'b') add_target('a/b', 'b') add_target('a/b', 'c') self.spec_parser = CmdLineSpecParser(self.build_root, self.address_mapper) def test_normal(self): self.assert_parsed(cmdline_spec=':root', expected=[':root']) self.assert_parsed(cmdline_spec='//:root', expected=[':root']) self.assert_parsed(cmdline_spec='a', expected=['a']) self.assert_parsed(cmdline_spec='a:a', expected=['a']) self.assert_parsed(cmdline_spec='a/b', expected=['a/b']) self.assert_parsed(cmdline_spec='a/b:b', expected=['a/b']) self.assert_parsed(cmdline_spec='a/b:c', expected=['a/b:c']) def test_sibling(self): self.assert_parsed(cmdline_spec=':', expected=[':root']) self.assert_parsed(cmdline_spec='//:', expected=[':root']) self.assert_parsed(cmdline_spec='a:', expected=['a', 'a:b']) self.assert_parsed(cmdline_spec='//a:', expected=['a', 'a:b']) self.assert_parsed(cmdline_spec='a/b:', expected=['a/b', 'a/b:c']) self.assert_parsed(cmdline_spec='//a/b:', expected=['a/b', 'a/b:c']) def test_sibling_or_descendents(self): self.assert_parsed(cmdline_spec='::', expected=[':root', 'a', 'a:b', 'a/b', 'a/b:c']) self.assert_parsed(cmdline_spec='//::', expected=[':root', 'a', 'a:b', 'a/b', 'a/b:c']) self.assert_parsed(cmdline_spec='a::', expected=['a', 'a:b', 'a/b', 'a/b:c']) self.assert_parsed(cmdline_spec='//a::', expected=['a', 'a:b', 'a/b', 'a/b:c']) self.assert_parsed(cmdline_spec='a/b::', expected=['a/b', 'a/b:c']) self.assert_parsed(cmdline_spec='//a/b::', expected=['a/b', 'a/b:c']) def test_absolute(self): self.assert_parsed(cmdline_spec=os.path.join(self.build_root, 'a'), expected=['a']) self.assert_parsed(cmdline_spec=os.path.join(self.build_root, 'a:a'), expected=['a']) self.assert_parsed(cmdline_spec=os.path.join(self.build_root, 'a:'), expected=['a', 'a:b']) self.assert_parsed(cmdline_spec=os.path.join(self.build_root, 'a::'), expected=['a', 'a:b', 'a/b', 'a/b:c']) double_absolute = '/' + os.path.join(self.build_root, 'a') self.assertEquals('//', double_absolute[:2], 'A sanity check we have a leading-// absolute spec') with self.assertRaises(self.spec_parser.BadSpecError): self.spec_parser.parse_addresses(double_absolute).next() with self.assertRaises(self.spec_parser.BadSpecError): self.spec_parser.parse_addresses('/not/the/buildroot/a').next() def test_cmd_line_affordances(self): self.assert_parsed(cmdline_spec='./:root', expected=[':root']) self.assert_parsed(cmdline_spec='//./:root', expected=[':root']) self.assert_parsed(cmdline_spec='//./a/../:root', expected=[':root']) self.assert_parsed(cmdline_spec=os.path.join(self.build_root, './a/../:root'), expected=[':root']) self.assert_parsed(cmdline_spec='a/', expected=['a']) self.assert_parsed(cmdline_spec='./a/', expected=['a']) self.assert_parsed(cmdline_spec=os.path.join(self.build_root, './a/'), expected=['a']) self.assert_parsed(cmdline_spec='a/b/:b', expected=['a/b']) self.assert_parsed(cmdline_spec='./a/b/:b', expected=['a/b']) self.assert_parsed(cmdline_spec=os.path.join(self.build_root, './a/b/:b'), expected=['a/b']) def test_cmd_line_spec_list(self): self.assert_parsed_list(cmdline_spec_list=['a', 'a/b'], expected=['a', 'a/b']) self.assert_parsed_list(cmdline_spec_list=['::'], expected=[':root', 'a', 'a:b', 'a/b', 'a/b:c']) def test_does_not_exist(self): with self.assertRaises(self.spec_parser.BadSpecError): self.spec_parser.parse_addresses('c').next() with self.assertRaises(self.spec_parser.BadSpecError): self.spec_parser.parse_addresses('c:').next() with self.assertRaises(self.spec_parser.BadSpecError): self.spec_parser.parse_addresses('c::').next() def assert_parsed(self, cmdline_spec, expected): def sort(addresses): return sorted(addresses, key=lambda address: address.spec) self.assertEqual(sort(Address.parse(addr) for addr in expected), sort(self.spec_parser.parse_addresses(cmdline_spec))) def assert_parsed_list(self, cmdline_spec_list, expected): def sort(addresses): return sorted(addresses, key=lambda address: address.spec) self.assertEqual(sort(Address.parse(addr) for addr in expected), sort(self.spec_parser.parse_addresses(cmdline_spec_list))) def test_spec_excludes(self): expected_specs = [':root', 'a', 'a:b', 'a/b', 'a/b:c'] # This bogus BUILD file gets in the way of parsing. self.add_to_build_file('some/dir', 'COMPLETELY BOGUS BUILDFILE)\n') with self.assertRaises(CmdLineSpecParser.BadSpecError): self.assert_parsed_list(cmdline_spec_list=['::'], expected=expected_specs) # Test absolute path in spec_excludes. self.spec_parser = CmdLineSpecParser(self.build_root, self.address_mapper, spec_excludes=[os.path.join(self.build_root, 'some')]) self.assert_parsed_list(cmdline_spec_list=['::'], expected=expected_specs) # Test relative path in spec_excludes. self.spec_parser = CmdLineSpecParser(self.build_root, self.address_mapper, spec_excludes=['some']) self.assert_parsed_list(cmdline_spec_list=['::'], expected=expected_specs) def test_exclude_target_regexps(self): expected_specs = [':root', 'a', 'a:b', 'a/b', 'a/b:c'] # This bogus BUILD file gets in the way of parsing. self.add_to_build_file('some/dir', 'COMPLETELY BOGUS BUILDFILE)\n') with self.assertRaises(CmdLineSpecParser.BadSpecError): self.assert_parsed_list(cmdline_spec_list=['::'], expected=expected_specs) self.spec_parser = CmdLineSpecParser(self.build_root, self.address_mapper, exclude_target_regexps=[r'.*some/dir.*']) self.assert_parsed_list(cmdline_spec_list=['::'], expected=expected_specs) class CmdLineSpecParserBadBuildTest(BaseTest): def setUp(self): super(CmdLineSpecParserBadBuildTest, self).setUp() self.add_to_build_file('bad/a', 'a_is_bad') self.add_to_build_file('bad/b', 'b_is_bad') self.spec_parser = CmdLineSpecParser(self.build_root, self.address_mapper) self.NO_FAIL_FAST_RE = re.compile(r"""^-------------------- .* Exception message: name 'a_is_bad' is not defined while executing BUILD file BuildFile\((/[^/]+)*/bad/a/BUILD, FileSystemProjectTree\(.*\)\) Loading addresses from 'bad/a' failed\. .* Exception message: name 'b_is_bad' is not defined while executing BUILD file BuildFile\((/[^/]+)*T/bad/b/BUILD, FileSystemProjectTree\(.*\)\) Loading addresses from 'bad/b' failed\. Invalid BUILD files for \[::\]$""", re.DOTALL) self.FAIL_FAST_RE = """^name 'a_is_bad' is not defined while executing BUILD file BuildFile\((/[^/]+)*/bad/a/BUILD\, FileSystemProjectTree\(.*\)\) Loading addresses from 'bad/a' failed.$""" def test_bad_build_files(self): with self.assertRaisesRegexp(self.spec_parser.BadSpecError, self.NO_FAIL_FAST_RE): list(self.spec_parser.parse_addresses('::')) def test_bad_build_files_fail_fast(self): with self.assertRaisesRegexp(self.spec_parser.BadSpecError, self.FAIL_FAST_RE): list(self.spec_parser.parse_addresses('::', True))
42.723077
101
0.680471
7,744
0.92954
0
0
120
0.014404
0
0
1,887
0.226503
9658caeffcd376fc80bf7f4677ee09db9594f2eb
655
py
Python
code/strats/switcher.py
Barigamb738/PrisonersDilemmaTournament
22834192a30cbefdef4f06f41eea5ef7ec3a0652
[ "MIT" ]
23
2021-05-20T07:34:33.000Z
2021-06-20T13:09:04.000Z
code/strats/switcher.py
Barigamb738/PrisonersDilemmaTournament
22834192a30cbefdef4f06f41eea5ef7ec3a0652
[ "MIT" ]
19
2021-05-21T04:10:55.000Z
2021-06-13T15:17:52.000Z
code/strats/switcher.py
Barigamb738/PrisonersDilemmaTournament
22834192a30cbefdef4f06f41eea5ef7ec3a0652
[ "MIT" ]
43
2021-05-21T02:24:35.000Z
2021-06-24T21:08:11.000Z
def strategy(history, memory): round = history.shape[1] GRUDGE = 0 LASTACTION = 1 if round == 0: mem = [] mem.append(False) mem.append(0) return "cooperate", mem mem = memory if mem[GRUDGE]: return "defect", mem if round >= 5: sin = 0 for i in range(1, 5): if history[1, -i] == 0: sin += 1 if sin == 4: mem[GRUDGE] = True return "defect", mem if mem[LASTACTION] == 0: mem[LASTACTION] = 1 return "cooperate", mem else: mem[LASTACTION] = 0 return "defect", mem
24.259259
36
0.464122
0
0
0
0
0
0
0
0
46
0.070229
965a2d366a9e0c3114e09f3517d25bed152a9d40
2,363
py
Python
pull_into_place/commands/run_additional_metrics.py
Kortemme-Lab/pull_into_place
0019a6cec2a6130ebbaa49d7ab67d4c840fbe33c
[ "MIT" ]
3
2018-05-31T18:46:46.000Z
2020-05-04T03:27:38.000Z
pull_into_place/commands/run_additional_metrics.py
Kortemme-Lab/pull_into_place
0019a6cec2a6130ebbaa49d7ab67d4c840fbe33c
[ "MIT" ]
14
2016-09-14T00:16:49.000Z
2018-04-11T03:04:21.000Z
pull_into_place/commands/run_additional_metrics.py
Kortemme-Lab/pull_into_place
0019a6cec2a6130ebbaa49d7ab67d4c840fbe33c
[ "MIT" ]
1
2017-11-27T07:35:56.000Z
2017-11-27T07:35:56.000Z
#!/usr/bin/env python2 """\ Run additional filters on a folder of pdbs and copy the results back into the original pdb. Usage: pull_into_place run_additional_metrics <directory> [options] Options: --max-runtime TIME [default: 12:00:00] The runtime limit for each design job. The default value is set pretty low so that the short queue is available by default. This should work fine more often than not, but you also shouldn't be surprised if you need to increase this. --max-memory MEM [default: 2G] The memory limit for each design job. --mkdir Make the directory corresponding to this step in the pipeline, but don't do anything else. This is useful if you want to create custom input files for just this step. --test-run Run on the short queue with a limited number of iterations. This option automatically clears old results. --clear Clear existing results before submitting new jobs. To use this class: 1. You need to initiate it with the directory where your pdb files to be rerun are. 2. You need to use the setters for the Rosetta executable and the metric. """ from klab import docopt, scripting, cluster from pull_into_place import pipeline, big_jobs @scripting.catch_and_print_errors() def main(): args = docopt.docopt(__doc__) cluster.require_qsub() # Setup the workspace. workspace = pipeline.AdditionalMetricWorkspace(args['<directory>']) workspace.check_paths() workspace.check_rosetta() workspace.make_dirs() if args['--mkdir']: return if args['--clear'] or args['--test-run']: workspace.clear_outputs() # Decide which inputs to use. inputs = workspace.unclaimed_inputs nstruct = len(inputs) * len(args['--nstruct']) if not inputs: print """\ All the input structures have already been (or are already being) designed. If you want to rerun all the inputs from scratch, use the --clear flag.""" raise SystemExit # Submit the design job. big_jobs.submit( 'pip_add_metrics.py', workspace, inputs=inputs, nstruct=nstruct, max_runtime=args['--max-runtime'], max_memory=args['--max-memory'], test_run=args['--test-run'] )
28.130952
77
0.66314
0
0
0
0
1,036
0.438426
0
0
1,570
0.66441
965a870632eb281fc73c846d9b482a54e2ad0de9
827
py
Python
setup.py
japherwocky/cl3ver
148242feb676cc675bbdf11ae39c3179b9a6ffe1
[ "MIT" ]
1
2017-04-01T00:15:38.000Z
2017-04-01T00:15:38.000Z
setup.py
japherwocky/cl3ver
148242feb676cc675bbdf11ae39c3179b9a6ffe1
[ "MIT" ]
null
null
null
setup.py
japherwocky/cl3ver
148242feb676cc675bbdf11ae39c3179b9a6ffe1
[ "MIT" ]
null
null
null
from distutils.core import setup setup( name = 'cl3ver', packages = ['cl3ver'], license = 'MIT', install_requires = ['requests'], version = '0.2', description = 'A python 3 wrapper for the cleverbot.com API', author = 'Japhy Bartlett', author_email = '[email protected]', url = 'https://github.com/japherwocky/cl3ver', download_url = 'https://github.com/japherwocky/cl3ver/tarball/0.2.tar.gz', keywords = ['cleverbot', 'wrapper', 'clever', 'chatbot', 'cl3ver'], classifiers =[ 'Programming Language :: Python :: 3 :: Only', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Natural Language :: English', ], )
39.380952
84
0.541717
0
0
0
0
0
0
0
0
410
0.495768
966165e75931deeaee2d1ab429f5cda6020e085f
19,860
py
Python
linux-distro/package/nuxleus/Source/Vendor/Microsoft/IronPython-2.0.1/Lib/headstock/example/microblog/microblog/jabber/pubsub.py
mdavid/nuxleus
653f1310d8bf08eaa5a7e3326c2349e56a6abdc2
[ "BSD-3-Clause" ]
1
2017-03-28T06:41:51.000Z
2017-03-28T06:41:51.000Z
linux-distro/package/nuxleus/Source/Vendor/Microsoft/IronPython-2.0.1/Lib/headstock/example/microblog/microblog/jabber/pubsub.py
mdavid/nuxleus
653f1310d8bf08eaa5a7e3326c2349e56a6abdc2
[ "BSD-3-Clause" ]
null
null
null
linux-distro/package/nuxleus/Source/Vendor/Microsoft/IronPython-2.0.1/Lib/headstock/example/microblog/microblog/jabber/pubsub.py
mdavid/nuxleus
653f1310d8bf08eaa5a7e3326c2349e56a6abdc2
[ "BSD-3-Clause" ]
1
2016-12-13T21:08:58.000Z
2016-12-13T21:08:58.000Z
# -*- coding: utf-8 -*- import re from Axon.Component import component from Kamaelia.Util.Backplane import PublishTo, SubscribeTo from Axon.Ipc import shutdownMicroprocess, producerFinished from Kamaelia.Protocol.HTTP.HTTPClient import SimpleHTTPClient from headstock.api.jid import JID from headstock.api.im import Message, Body from headstock.api.pubsub import Node, Item, Message from headstock.api.discovery import * from headstock.lib.utils import generate_unique from bridge import Element as E from bridge.common import XMPP_CLIENT_NS, XMPP_ROSTER_NS, \ XMPP_LAST_NS, XMPP_DISCO_INFO_NS, XMPP_DISCO_ITEMS_NS,\ XMPP_PUBSUB_NS from amplee.utils import extract_url_trail, get_isodate,\ generate_uuid_uri from amplee.error import ResourceOperationException from microblog.atompub.resource import ResourceWrapper from microblog.jabber.atomhandler import FeedReaderComponent __all__ = ['DiscoHandler', 'ItemsHandler', 'MessageHandler'] publish_item_rx = re.compile(r'\[(.*)\] ([\w ]*)') retract_item_rx = re.compile(r'\[(.*)\] ([\w:\-]*)') geo_rx = re.compile(r'(.*) ([\[\.|\d,|\-\]]*)') GEORSS_NS = u"http://www.georss.org/georss" GEORSS_PREFIX = u"georss" class DiscoHandler(component): Inboxes = {"inbox" : "", "control" : "", "initiate" : "", "jid" : "", "error" : "", "features.result": "", "items.result": "", "items.error" : "", "docreate" : "", "docreatecollection": "", "dodelete" : "", "dounsubscribe" : "", "dosubscribe" : "", "subscribed": "", "subscriptions.result": "", "affiliations.result": "", "created": "", "deleted" : ""} Outboxes = {"outbox" : "", "signal" : "Shutdown signal", "message" : "", "features-disco": "headstock.api.discovery.FeaturesDiscovery query to the server", "features-announce": "headstock.api.discovery.FeaturesDiscovery informs"\ "the other components about the features instance received from the server", "items-disco" : "", "create-node" : "", "delete-node" : "", "subscribe-node" : "", "unsubscribe-node" : "", "subscriptions-disco": "", "affiliations-disco" : ""} def __init__(self, from_jid, atompub, host='localhost', session_id=None, profile=None): super(DiscoHandler, self).__init__() self.from_jid = from_jid self.atompub = atompub self.xmpphost = host self.session_id = session_id self.profile = profile self._collection = None self.pubsub_top_level_node = u'home/%s/%s' % (self.xmpphost, self.from_jid.node) @property def collection(self): # Lazy loading of collection if not self._collection: self._collection = self.atompub.get_collection(self.profile.username) return self._collection def initComponents(self): sub = SubscribeTo("JID.%s" % self.session_id) self.link((sub, 'outbox'), (self, 'jid')) self.addChildren(sub) sub.activate() pub = PublishTo("DISCO_FEAT.%s" % self.session_id) self.link((self, 'features-announce'), (pub, 'inbox')) self.addChildren(pub) pub.activate() sub = SubscribeTo("BOUND.%s" % self.session_id) self.link((sub, 'outbox'), (self, 'initiate')) self.addChildren(sub) sub.activate() return 1 def main(self): yield self.initComponents() while 1: if self.dataReady("control"): mes = self.recv("control") if isinstance(mes, shutdownMicroprocess) or isinstance(mes, producerFinished): self.send(producerFinished(), "signal") break if self.dataReady("jid"): self.from_jid = self.recv('jid') self.pubsub_top_level_node = u'home/%s/%s' % (self.xmpphost, self.from_jid.node) if self.dataReady("initiate"): self.recv("initiate") p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=self.pubsub_top_level_node) self.send(p, "create-node") yield 1 #d = FeaturesDiscovery(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost) #self.send(d, "features-disco") d = SubscriptionsDiscovery(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost) self.send(d, "subscriptions-disco") d = AffiliationsDiscovery(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost) self.send(d, "affiliations-disco") n = ItemsDiscovery(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=self.pubsub_top_level_node) self.send(n, "items-disco") # The response to our discovery query # is a a headstock.api.discovery.FeaturesDiscovery instance. # What we immediatly do is to notify all handlers # interested in that event about it. if self.dataReady('features.result'): disco = self.recv('features.result') for feature in disco.features: print " ", feature.var self.send(disco, 'features-announce') if self.dataReady('items.result'): items = self.recv('items.result') print "%s has %d item(s)" % (items.node_name, len(items.items)) #for item in items.items: #n = ItemsDiscovery(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, # node_name=item.node) #self.send(n, "items-disco") if self.dataReady('items.error'): items_disco = self.recv('items.error') print "DISCO ERROR: ", items_disco.node_name, items_disco.error if items_disco.error.condition == 'item-not-found': p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=items_disco.node_name) self.send(p, "create-node") yield 1 if self.dataReady('subscriptions.result'): subscriptions = self.recv('subscriptions.result') for sub in subscriptions.subscriptions: print "Subscription: %s (%s)" % (sub.node, sub.state) if self.dataReady('affiliations.result'): affiliations = self.recv('affiliations.result') for aff in affiliations.affiliations: print "Affiliation: %s %s" % (aff.node, aff.affiliation) if self.dataReady('docreate'): nodeid = self.recv('docreate').strip() p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=nodeid) self.send(p, "create-node") if self.dataReady('docreatecollection'): nodeid = self.recv('docreatecollection').strip() p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=nodeid) p.set_default_collection_conf() self.send(p, "create-node") if self.dataReady('dodelete'): nodeid = self.recv('dodelete').strip() p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=nodeid) self.send(p, "delete-node") if self.dataReady('dosubscribe'): nodeid = self.recv('dosubscribe').strip() p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=nodeid, sub_jid=self.from_jid.nodeid()) self.send(p, "subscribe-node") if self.dataReady('dounsubscribe'): nodeid = self.recv('dounsubscribe').strip() p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=nodeid, sub_jid=self.from_jid.nodeid()) self.send(p, "unsubscribe-node") if self.dataReady('created'): node = self.recv('created') print "Node created: %s" % node.node_name p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=node.node_name, sub_jid=self.from_jid.nodeid()) self.send(p, "subscribe-node") if self.dataReady('subscribed'): node = self.recv('subscribed') print "Node subscribed: %s" % node.node_name if self.dataReady('deleted'): node = self.recv('deleted') print "Node deleted: %s" % node.node_name if self.dataReady('error'): node = self.recv('error') print node.error if not self.anyReady(): self.pause() yield 1 class ItemsHandler(component): Inboxes = {"inbox" : "", "topublish" : "", "todelete" : "", "topurge": "", "control" : "", "xmpp.result": "", "published": "", "publish.error": "", "retract.error": "", "jid" : "", "_feedresponse": "", "_delresponse": ""} Outboxes = {"outbox" : "", "publish" : "", "delete" : "", "purge" : "", "signal" : "Shutdown signal", "_feedrequest": "", "_delrequest": ""} def __init__(self, from_jid, atompub, host='localhost', session_id=None, profile=None): super(ItemsHandler, self).__init__() self.from_jid = from_jid self.atompub = atompub self.xmpphost = host self.session_id = session_id self.profile = profile self._collection = None self.pubsub_top_level_node = u'home/%s/%s' % (self.xmpphost, self.from_jid.node) @property def collection(self): # Lazy loading of collection if not self._collection: self._collection = self.atompub.get_collection(self.profile.username) return self._collection def initComponents(self): sub = SubscribeTo("JID.%s" % self.session_id) self.link((sub, 'outbox'), (self, 'jid')) self.addChildren(sub) sub.activate() feedreader = FeedReaderComponent(use_etags=False) self.addChildren(feedreader) feedreader.activate() client = SimpleHTTPClient() self.addChildren(client) self.link((self, '_feedrequest'), (client, 'inbox')) self.link((client, 'outbox'), (feedreader, 'inbox')) self.link((feedreader, 'outbox'), (self, '_feedresponse')) client.activate() client = SimpleHTTPClient() self.addChildren(client) self.link((self, '_delrequest'), (client, 'inbox')) self.link((client, 'outbox'), (self, '_delresponse')) client.activate() return 1 def make_entry(self, msg, node): uuid = generate_uuid_uri() entry = E.load('./entry.atom').xml_root entry.get_child('id', ns=entry.xml_ns).xml_text = uuid dt = get_isodate() entry.get_child('author', ns=entry.xml_ns).get_child('name', ns=entry.xml_ns).xml_text = unicode(self.profile.username) entry.get_child('published', ns=entry.xml_ns).xml_text = dt entry.get_child('updated', ns=entry.xml_ns).xml_text = dt entry.get_child('content', ns=entry.xml_ns).xml_text = unicode(msg) if node != self.pubsub_top_level_node: tag = extract_url_trail(node) E(u'category', namespace=entry.xml_ns, prefix=entry.xml_prefix, attributes={u'term': unicode(tag)}, parent=entry) return uuid, entry def add_geo_point(self, entry, long, lat): E(u'point', prefix=GEORSS_PREFIX, namespace=GEORSS_NS, content=u'%s %s' % (unicode(long), unicode(lat)), parent=entry) def main(self): yield self.initComponents() while 1: if self.dataReady("control"): mes = self.recv("control") if isinstance(mes, shutdownMicroprocess) or isinstance(mes, producerFinished): self.send(producerFinished(), "signal") break if self.dataReady("jid"): self.from_jid = self.recv('jid') self.pubsub_top_level_node = u'home/%s/%s' % (self.xmpphost, self.from_jid.node) if self.dataReady("topublish"): message = self.recv("topublish") node = self.pubsub_top_level_node m = geo_rx.match(message) long = lat = None if not m: m = publish_item_rx.match(message) if m: node, message = m.groups() else: message, long_lat = m.groups() long, lat = long_lat.strip('[').rstrip(']').split(',') uuid, entry = self.make_entry(message, node) if long and lat: self.add_geo_point(entry, long, lat) i = Item(id=uuid, payload=entry) p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=unicode(node), item=i) self.send(p, "publish") yield 1 if self.dataReady("todelete"): item_id = self.recv("todelete") node = self.pubsub_top_level_node m = retract_item_rx.match(item_id) if m: node, item_id = m.groups() i = Item(id=unicode(item_id)) p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=unicode(node), item=i) self.send(p, "delete") yield 1 if self.dataReady("topurge"): node_id = self.recv("topurge") p = Node(unicode(self.from_jid), u'pubsub.%s' % self.xmpphost, node_name=node_id) self.send(p, "purge") params = {'url': '%s/feed' % (self.collection.get_base_edit_uri().rstrip('/')), 'method': 'GET'} self.send(params, '_feedrequest') if self.dataReady("published"): node = self.recv("published") print "Item published: %s" % node if self.dataReady("publish.error"): node = self.recv("publish.error") print node.error if self.dataReady("retract.error"): node = self.recv("retract.error") print node.error if self.dataReady("_feedresponse"): feed = self.recv("_feedresponse") for entry in feed.entries: for link in entry.links: if link.rel == 'edit': params = {'url': link.href, 'method': 'DELETE'} self.send(params, '_delrequest') if self.dataReady("_delresponse"): self.recv("_delresponse") if not self.anyReady(): self.pause() yield 1 class MessageHandler(component): Inboxes = {"inbox" : "", "control" : "", "jid" : "", "_response" : ""} Outboxes = {"outbox" : "", "signal" : "Shutdown signal", "items-disco" : "", "_request": ""} def __init__(self, from_jid, atompub, host='localhost', session_id=None, profile=None): super(MessageHandler, self).__init__() self.from_jid = from_jid self.atompub = atompub self.xmpphost = host self.session_id = session_id self.profile = profile self._collection = None @property def collection(self): # Lazy loading of collection if not self._collection: self._collection = self.atompub.get_collection(self.profile.username) return self._collection def initComponents(self): sub = SubscribeTo("JID.%s" % self.session_id) self.link((sub, 'outbox'), (self, 'jid')) self.addChildren(sub) sub.activate() client = SimpleHTTPClient() self.addChildren(client) self.link((self, '_request'), (client, 'inbox')) self.link((client, 'outbox'), (self, '_response')) client.activate() return 1 def main(self): yield self.initComponents() while 1: if self.dataReady("control"): mes = self.recv("control") if isinstance(mes, shutdownMicroprocess) or isinstance(mes, producerFinished): self.send(producerFinished(), "signal") break if self.dataReady("jid"): self.from_jid = self.recv('jid') if self.dataReady("_response"): #discard the HTTP response for now member_entry = self.recv("_response") if self.dataReady("inbox"): msg = self.recv("inbox") collection = self.collection if collection: for item in msg.items: if item.event == 'item' and item.payload: print "Published item: %s" % item.id member = collection.get_member(item.id) if not member: if isinstance(item.payload, list): body = item.payload[0].xml() else: body = item.payload.xml() params = {'url': collection.get_base_edit_uri(), 'method': 'POST', 'postbody': body, 'extraheaders': {'content-type': 'application/atom+xml;type=entry', 'content-length': str(len(body)), 'slug': item.id}} self.send(params, '_request') elif item.event == 'retract': print "Removed item: %s" % item.id params = {'url': '%s/%s' % (collection.get_base_edit_uri().rstrip('/'), item.id.encode('utf-8')), 'method': 'DELETE'} self.send(params, '_request') if not self.anyReady(): self.pause() yield 1
39.72
127
0.507049
18,671
0.940131
11,582
0.583182
657
0.033082
0
0
3,829
0.1928
96616a7644cba49b6924d5d5a5b5f061a8473987
7,865
py
Python
examples/task_sequence_labeling_ner_lstm_crf.py
lonePatient/TorchBlocks
4a65d746cc8a396cb7df73ed4644d97ddf843e29
[ "MIT" ]
82
2020-06-23T05:51:08.000Z
2022-03-29T08:11:08.000Z
examples/task_sequence_labeling_ner_lstm_crf.py
lonePatient/TorchBlocks
4a65d746cc8a396cb7df73ed4644d97ddf843e29
[ "MIT" ]
null
null
null
examples/task_sequence_labeling_ner_lstm_crf.py
lonePatient/TorchBlocks
4a65d746cc8a396cb7df73ed4644d97ddf843e29
[ "MIT" ]
22
2020-06-23T05:51:10.000Z
2022-03-18T07:01:43.000Z
import os import json from torchblocks.metrics import SequenceLabelingScore from torchblocks.trainer import SequenceLabelingTrainer from torchblocks.callback import TrainLogger from torchblocks.processor import SequenceLabelingProcessor, InputExample from torchblocks.utils import seed_everything, dict_to_text, build_argparse from torchblocks.utils import prepare_device, get_checkpoints from torchblocks.data import CNTokenizer from torchblocks.data import Vocabulary, VOCAB_NAME from torchblocks.models.nn.lstm_crf import LSTMCRF from torchblocks.models.bases import TrainConfig from torchblocks.models.bases import WEIGHTS_NAME MODEL_CLASSES = { 'lstm-crf': (TrainConfig, LSTMCRF, CNTokenizer) } def build_vocab(data_dir, vocab_dir): ''' 构建vocab ''' vocab = Vocabulary() vocab_path = os.path.join(vocab_dir, VOCAB_NAME) if os.path.exists(vocab_path): vocab.load_vocab(str(vocab_path)) else: files = ["train.json", "dev.json", "test.json"] for file in files: with open(os.path.join(data_dir, file), 'r') as fr: for line in fr: line = json.loads(line.strip()) text = line['text'] vocab.update(list(text)) vocab.build_vocab() vocab.save_vocab(vocab_path) print("vocab size: ", len(vocab)) class CluenerProcessor(SequenceLabelingProcessor): def get_labels(self): """See base class.""" # 默认第一个为X return ["X", "B-address", "B-book", "B-company", 'B-game', 'B-government', 'B-movie', 'B-name', 'B-organization', 'B-position', 'B-scene', "I-address", "I-book", "I-company", 'I-game', 'I-government', 'I-movie', 'I-name', 'I-organization', 'I-position', 'I-scene', "S-address", "S-book", "S-company", 'S-game', 'S-government', 'S-movie', 'S-name', 'S-organization', 'S-position', 'S-scene', 'O', "[START]", "[END]"] def read_data(self, input_file): """Reads a json list file.""" lines = [] with open(input_file, 'r') as f: for line in f: line = json.loads(line.strip()) text = line['text'] label_entities = line.get('label', None) labels = ['O'] * len(text) if label_entities is not None: for key, value in label_entities.items(): for sub_name, sub_index in value.items(): for start_index, end_index in sub_index: assert text[start_index:end_index + 1] == sub_name if start_index == end_index: labels[start_index] = 'S-' + key else: labels[start_index] = 'B-' + key labels[start_index + 1:end_index + 1] = ['I-' + key] * (len(sub_name) - 1) lines.append({"text": text, "labels": labels}) return lines def create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line['text'] labels = line['labels'] examples.append(InputExample(guid=guid, texts=[text_a, None], label_ids=labels)) return examples def main(): parser = build_argparse() parser.add_argument('--markup', type=str, default='bios', choices=['bios', 'bio']) parser.add_argument('--use_crf', action='store_true', default=True) args = parser.parse_args() # output dir if args.model_name is None: args.model_name = args.model_path.split("/")[-1] args.output_dir = args.output_dir + '{}'.format(args.model_name) os.makedirs(args.output_dir, exist_ok=True) # logging prefix = "_".join([args.model_name, args.task_name]) logger = TrainLogger(log_dir=args.output_dir, prefix=prefix) # device logger.info("initializing device") args.device, args.n_gpu = prepare_device(args.gpu, args.local_rank) # build vocab build_vocab(args.data_dir, vocab_dir=args.model_path) seed_everything(args.seed) args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] # data processor logger.info("initializing data processor") tokenizer = tokenizer_class.from_pretrained(args.model_path, do_lower_case=args.do_lower_case) processor = CluenerProcessor(data_dir=args.data_dir, tokenizer=tokenizer, prefix=prefix,add_special_tokens=False) label_list = processor.get_labels() num_labels = len(label_list) id2label = {i: label for i, label in enumerate(label_list)} args.id2label = id2label args.num_labels = num_labels # model logger.info("initializing model and config") config = config_class.from_pretrained(args.model_path, num_labels=num_labels, cache_dir=args.cache_dir if args.cache_dir else None) model = model_class.from_pretrained(args.model_path, config=config) model.to(args.device) # Trainer logger.info("initializing traniner") trainer = SequenceLabelingTrainer(args=args, logger=logger, collate_fn=processor.collate_fn, input_keys=processor.get_input_keys(), metrics=[SequenceLabelingScore(id2label, markup=args.markup)]) # do train if args.do_train: train_dataset = processor.create_dataset(args.train_max_seq_length, 'train.json', 'train', ) eval_dataset = processor.create_dataset(args.eval_max_seq_length, 'dev.json', 'dev') trainer.train(model, train_dataset=train_dataset, eval_dataset=eval_dataset) # do eval if args.do_eval and args.local_rank in [-1, 0]: results = {} eval_dataset = processor.create_dataset(args.eval_max_seq_length, 'dev.json', 'dev') checkpoints = [args.output_dir] if args.eval_all_checkpoints or args.checkpoint_number > 0: checkpoints = get_checkpoints(args.output_dir, args.checkpoint_number, WEIGHTS_NAME) logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("/")[-1].split("-")[-1] model = model_class.from_pretrained(checkpoint, config=config) model.to(args.device) trainer.evaluate(model, eval_dataset, save_preds=True, prefix=str(global_step)) if global_step: result = {"{}_{}".format(global_step, k): v for k, v in trainer.records['result'].items()} results.update(result) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") dict_to_text(output_eval_file, results) # do predict if args.do_predict: test_dataset = processor.create_dataset(args.eval_max_seq_length, 'test.json', 'test') if args.checkpoint_number == 0: raise ValueError("checkpoint number should > 0,but get %d", args.checkpoint_number) checkpoints = get_checkpoints(args.output_dir, args.checkpoint_number, WEIGHTS_NAME) for checkpoint in checkpoints: global_step = checkpoint.split("/")[-1].split("-")[-1] model = model_class.from_pretrained(checkpoint) model.to(args.device) trainer.predict(model, test_dataset=test_dataset, prefix=str(global_step)) if __name__ == "__main__": main()
46.264706
118
0.614495
2,212
0.280675
0
0
0
0
0
0
1,107
0.140464
966233a14411c83da996b856512cb5f8c21c76c2
277
py
Python
teachers/views.py
xuhairmeer/school-management
36394c841a61e46bc00e1dc21bcfcdd5fa6f6918
[ "bzip2-1.0.6" ]
null
null
null
teachers/views.py
xuhairmeer/school-management
36394c841a61e46bc00e1dc21bcfcdd5fa6f6918
[ "bzip2-1.0.6" ]
9
2021-03-19T08:15:07.000Z
2022-03-12T00:13:19.000Z
teachers/views.py
muhammadzuhair95/school-management
36394c841a61e46bc00e1dc21bcfcdd5fa6f6918
[ "bzip2-1.0.6" ]
null
null
null
# Create your views here. from django.urls import reverse_lazy from django.views import generic from forms.forms import UserCreateForm class SignUp(generic.CreateView): form_class = UserCreateForm success_url = reverse_lazy('home') template_name = 'signup.html'
23.083333
38
0.776173
138
0.498195
0
0
0
0
0
0
44
0.158845
9662ad75421db9c9fefe25e938e00f34ee4e0c42
1,466
py
Python
Code/Main.py
iqbalsublime/EPCMS
d2a745bda9a1d256d8834d1fa1105bb2bab79e3f
[ "MIT" ]
null
null
null
Code/Main.py
iqbalsublime/EPCMS
d2a745bda9a1d256d8834d1fa1105bb2bab79e3f
[ "MIT" ]
null
null
null
Code/Main.py
iqbalsublime/EPCMS
d2a745bda9a1d256d8834d1fa1105bb2bab79e3f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Nov 20 01:33:18 2019 @author: iqbalsublime """ from Customer import Customer from Restaurent import Restaurent from Reserve import Reserve from Menu import Menu from Order import Order cust1= Customer(1,"Iqbal", "0167****671") rest1= Restaurent(1,"Farmgate", "102 Kazi Nazrul Islam Ave, Dhaka") reserve1=Reserve(1, "20-11-2019",cust1, rest1) """ print("******Reservation*******") print("Reserve ID:{}, Date: {} Customer Name: {}, Mobile:{}, Branch: {}".format(reserve1.reserveid, reserve1.date, reserve1.customer.name, reserve1.customer.mobile, reserve1.restaurent.bname)) #print(reserve1.description()) print("******Reservation*******") """ menu1= Menu(1,"Burger", 160,"Fast Food",4) menu2= Menu(2,"Pizza", 560,"Fast Food",2) menu3= Menu(3,"Biriani", 220,"Indian",1) menu4= Menu(4,"Pitha", 50,"Bangla",5) order1= Order(1,"20-11-2019", cust1) order1.addMenu(menu1) order1.addMenu(menu2) order1.addMenu(menu3) order1.addMenu(menu4) print("******Invoice*******") print("Order ID:{}, Date: {} Customer Name: {}, Mobile:{}".format(order1.oid, order1.date, order1.Customer.name, order1.Customer.mobile)) totalBill=0.0 serial=1 print("SL---Food----Price---Qy----total") for order in order1.menus: print(serial,order.name, order.price, order.quantity, (order.price*order.quantity)) totalBill=totalBill+(order.price*order.quantity) print("Grand Total :", totalBill) print("******Invoice*******")
30.541667
100
0.680764
0
0
0
0
0
0
0
0
697
0.475443
966342122018d47e80bbaf5398de1bb1a30423a0
4,544
py
Python
venv/Lib/site-packages/twisted/logger/_io.py
AironMattos/Web-Scraping-Project
89290fd376e2b42258c49e3ce2c3669932e03ad3
[ "MIT" ]
2
2021-05-30T16:35:00.000Z
2021-06-03T12:23:33.000Z
Lib/site-packages/twisted/logger/_io.py
Jriszz/guacamole-python
cf0dfcaaa7d85c3577571954fc5b2b9dcf55ba17
[ "MIT" ]
20
2021-05-03T18:02:23.000Z
2022-03-12T12:01:04.000Z
Lib/site-packages/twisted/logger/_io.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
2
2021-05-29T21:12:22.000Z
2021-05-30T04:56:50.000Z
# -*- test-case-name: twisted.logger.test.test_io -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ File-like object that logs. """ import sys from typing import AnyStr, Iterable, Optional from constantly import NamedConstant from incremental import Version from twisted.python.deprecate import deprecatedProperty from ._levels import LogLevel from ._logger import Logger class LoggingFile: """ File-like object that turns C{write()} calls into logging events. Note that because event formats are L{str}, C{bytes} received via C{write()} are converted to C{str}, which is the opposite of what C{file} does. @ivar softspace: Attribute to make this class more file-like under Python 2; value is zero or one. Do not use. """ _softspace = 0 @deprecatedProperty(Version("Twisted", 21, 2, 0)) def softspace(self): return self._softspace @softspace.setter # type: ignore[no-redef] def softspace(self, value): self._softspace = value def __init__( self, logger: Logger, level: NamedConstant = LogLevel.info, encoding: Optional[str] = None, ) -> None: """ @param logger: the logger to log through. @param level: the log level to emit events with. @param encoding: The encoding to expect when receiving bytes via C{write()}. If L{None}, use C{sys.getdefaultencoding()}. """ self.level = level self.log = logger if encoding is None: self._encoding = sys.getdefaultencoding() else: self._encoding = encoding self._buffer = "" self._closed = False @property def closed(self) -> bool: """ Read-only property. Is the file closed? @return: true if closed, otherwise false. """ return self._closed @property def encoding(self) -> str: """ Read-only property. File encoding. @return: an encoding. """ return self._encoding @property def mode(self) -> str: """ Read-only property. File mode. @return: "w" """ return "w" @property def newlines(self) -> None: """ Read-only property. Types of newlines encountered. @return: L{None} """ return None @property def name(self) -> str: """ The name of this file; a repr-style string giving information about its namespace. @return: A file name. """ return "<{} {}#{}>".format( self.__class__.__name__, self.log.namespace, self.level.name, ) def close(self) -> None: """ Close this file so it can no longer be written to. """ self._closed = True def flush(self) -> None: """ No-op; this file does not buffer. """ pass def fileno(self) -> int: """ Returns an invalid file descriptor, since this is not backed by an FD. @return: C{-1} """ return -1 def isatty(self) -> bool: """ A L{LoggingFile} is not a TTY. @return: C{False} """ return False def write(self, message: AnyStr) -> None: """ Log the given message. @param message: The message to write. """ if self._closed: raise ValueError("I/O operation on closed file") if isinstance(message, bytes): text = message.decode(self._encoding) else: text = message lines = (self._buffer + text).split("\n") self._buffer = lines[-1] lines = lines[0:-1] for line in lines: self.log.emit(self.level, format="{log_io}", log_io=line) def writelines(self, lines: Iterable[AnyStr]) -> None: """ Log each of the given lines as a separate message. @param lines: Data to write. """ for line in lines: self.write(line) def _unsupported(self, *args: object) -> None: """ Template for unsupported operations. @param args: Arguments. """ raise OSError("unsupported operation") read = _unsupported next = _unsupported readline = _unsupported readlines = _unsupported xreadlines = _unsupported seek = _unsupported tell = _unsupported truncate = _unsupported
24.170213
80
0.567342
4,135
0.909991
0
0
1,219
0.268266
0
0
2,058
0.452905
96636c79f61d2c52c4c27582d3d3210f08ece747
3,547
py
Python
bot/exts/cricket.py
ShakyaMajumdar/ShaqqueBot
f618ae21e4bf700d86674399670634e8d1cc1dc9
[ "MIT" ]
null
null
null
bot/exts/cricket.py
ShakyaMajumdar/ShaqqueBot
f618ae21e4bf700d86674399670634e8d1cc1dc9
[ "MIT" ]
null
null
null
bot/exts/cricket.py
ShakyaMajumdar/ShaqqueBot
f618ae21e4bf700d86674399670634e8d1cc1dc9
[ "MIT" ]
null
null
null
from dataclasses import dataclass # from pprint import pprint import aiohttp import discord from discord.ext import commands from bot import constants API_URL = "https://livescore6.p.rapidapi.com/matches/v2/" LIVE_MATCHES_URL = API_URL + "list-live" HEADERS = { "x-rapidapi-key": constants.RAPIDAPI_KEY, "x-rapidapi-host": constants.RAPIDAPI_LIVESCORE6_HOST, } @dataclass class CricketMatch: format: str match_no: str teams: tuple[str, str] summary: str scores: dict status: str _eid: str class Cricket(commands.Cog): def __init__(self, bot: commands.Bot): self.bot = bot @staticmethod def get_live_matches_list_embed(matches: list[CricketMatch]) -> discord.Embed: embed = discord.Embed(title="Current Live Matches:", colour=discord.Colour.random()) for match in matches: match_info = f"""\ {match.teams[0]}: {match.scores['T1I1']} {match.teams[1]}: {match.scores['T2I1']} """ if "test" in match.format.lower(): match_info += f"""\ {match.teams[0]}: {match.scores['T1I2']} {match.teams[1]}: {match.scores['T2I2']} """ match_info += f"""\ {match.summary} {match.status} """ embed.add_field( name="{} vs {}: {}".format(*match.teams, match.match_no or match.format), value=match_info, inline=False ) return embed @commands.command() async def live_scores(self, ctx: commands.Context) -> None: """Sends information about ongoing cricket matches.""" querystring = {"Category": "cricket"} async with aiohttp.ClientSession() as session: async with session.get( LIVE_MATCHES_URL, headers=HEADERS, params=querystring ) as response: response = await response.json() # pprint(response) if not response: await ctx.send("No matches in progress currently!") return matches = [ CricketMatch( format=match["EtTx"], teams=( match["T1"][0]["Nm"], match["T2"][0]["Nm"], ), summary=match["ECo"], _eid=match["Eid"], status=match["EpsL"], scores={ "T1I1": f"{match.get('Tr1C1', '-')}/" f"{match.get('Tr1CW1', '-')} " f"({match.get('Tr1CO1', '-')})", "T2I1": f"{match.get('Tr2C1', '-')}/" f"{match.get('Tr2CW1', '-')} " f"({match.get('Tr2CO1', '-')})", "T1I2": f"{match.get('Tr1C2', '-')}/" f"{match.get('Tr1CW2', '-')} " f"({match.get('Tr1CO2', '-')})", "T2I2": f"{match.get('Tr2C2', '-')}/" f"{match.get('Tr2CW2', '-')} " f"({match.get('Tr2CO2', '-')})", }, match_no=match.get("ErnInf", ""), ) for match in map(lambda m: m["Events"][0], response["Stages"]) ] await ctx.send(embed=self.get_live_matches_list_embed(matches)) def setup(bot: commands.Bot): """Add Cricket Cog.""" bot.add_cog(Cricket(bot))
32.842593
120
0.480124
3,068
0.864956
0
0
2,973
0.838173
2,034
0.573442
981
0.276572
96640311a4d3b46c933f3f768041f09fa3a2cb24
3,588
py
Python
u24_lymphocyte/third_party/treeano/sandbox/nodes/update_dropout.py
ALSM-PhD/quip_classification
7347bfaa5cf11ae2d7a528fbcc43322a12c795d3
[ "BSD-3-Clause" ]
45
2015-04-26T04:45:51.000Z
2022-01-24T15:03:55.000Z
u24_lymphocyte/third_party/treeano/sandbox/nodes/update_dropout.py
ALSM-PhD/quip_classification
7347bfaa5cf11ae2d7a528fbcc43322a12c795d3
[ "BSD-3-Clause" ]
8
2018-07-20T20:54:51.000Z
2020-06-12T05:36:04.000Z
u24_lymphocyte/third_party/treeano/sandbox/nodes/update_dropout.py
ALSM-PhD/quip_classification
7347bfaa5cf11ae2d7a528fbcc43322a12c795d3
[ "BSD-3-Clause" ]
22
2018-05-21T23:57:20.000Z
2022-02-21T00:48:32.000Z
""" technique that randomly 0's out the update deltas for each parameter """ import theano import theano.tensor as T from theano.sandbox.rng_mrg import MRG_RandomStreams import treeano import treeano.nodes as tn fX = theano.config.floatX @treeano.register_node("update_dropout") class UpdateDropoutNode(treeano.Wrapper1NodeImpl): hyperparameter_names = ("update_dropout_probability", "rescale_updates") def mutate_update_deltas(self, network, update_deltas): if network.find_hyperparameter(["deterministic"]): return p = network.find_hyperparameter(["update_dropout_probability"], 0) if p == 0: return rescale_updates = network.find_hyperparameter(["rescale_updates"], False) keep_prob = 1 - p rescale_factor = 1 / keep_prob srng = MRG_RandomStreams() # TODO parameterize search tags (to affect not only "parameters"s) vws = network.find_vws_in_subtree(tags={"parameter"}, is_shared=True) for vw in vws: if vw.variable not in update_deltas: continue mask = srng.binomial(size=(), p=keep_prob, dtype=fX) if rescale_updates: mask *= rescale_factor update_deltas[vw.variable] *= mask @treeano.register_node("momentum_update_dropout") class MomentumUpdateDropoutNode(treeano.Wrapper1NodeImpl): """ randomly 0's out the update deltas for each parameter with momentum like update dropout, but with some probability (momentum), whether or not an update is dropped out is kept the same as the previous iteration """ hyperparameter_names = ("update_dropout_probability", "rescale_updates", "update_dropout_momentum") def mutate_update_deltas(self, network, update_deltas): if network.find_hyperparameter(["deterministic"]): return p = network.find_hyperparameter(["update_dropout_probability"], 0) if p == 0: return rescale_updates = network.find_hyperparameter(["rescale_updates"], False) momentum = network.find_hyperparameter(["update_dropout_momentum"]) keep_prob = 1 - p rescale_factor = 1 / keep_prob srng = MRG_RandomStreams() # TODO parameterize search tags (to affect not only "parameters"s) vws = network.find_vws_in_subtree(tags={"parameter"}, is_shared=True) for vw in vws: if vw.variable not in update_deltas: continue is_kept = network.create_vw( "momentum_update_dropout_is_kept(%s)" % vw.name, shape=(), is_shared=True, tags={"state"}, # TODO: Should this be a random bool with prob p for each? default_inits=[treeano.inits.ConstantInit(1)]).variable keep_mask = srng.binomial(size=(), p=keep_prob, dtype=fX) momentum_mask = srng.binomial(size=(), p=momentum, dtype=fX) new_is_kept = (momentum_mask * is_kept + (1 - momentum_mask) * keep_mask) mask = new_is_kept if rescale_updates: mask *= rescale_factor update_deltas[is_kept] = new_is_kept - is_kept update_deltas[vw.variable] *= mask
36.612245
75
0.593924
3,250
0.905797
0
0
3,341
0.931159
0
0
871
0.242754
966403bf90394bfb6b137e41500328a65675b400
822
py
Python
zeromq/test/manifest.py
brettin/liquidhandling
7a96e2881ffaa0326514cf5d97ba49d65ad42a14
[ "MIT" ]
null
null
null
zeromq/test/manifest.py
brettin/liquidhandling
7a96e2881ffaa0326514cf5d97ba49d65ad42a14
[ "MIT" ]
null
null
null
zeromq/test/manifest.py
brettin/liquidhandling
7a96e2881ffaa0326514cf5d97ba49d65ad42a14
[ "MIT" ]
null
null
null
import os import os.path from datetime import datetime import time from stat import * import pathlib import json def generateFileManifest(filename, manifest_filename=None): string = "" data = {} if os.path.isfile(filename): f = pathlib.Path(filename) data[os.path.abspath(filename)] = { 'ctime': [str(f.stat().st_ctime), str(datetime.fromtimestamp(f.stat().st_ctime))], 'mtime':[str(f.stat().st_mtime), str(datetime.fromtimestamp(f.stat().st_mtime))] } json_data = json.dumps(data) if manifest_filename != None: with open(manifest_filename, "w+") as manifest_file: manifest_file.write(json_data) else: print ("skipping bad filename: {}".format(filename)) return data
26.516129
102
0.611922
0
0
0
0
0
0
0
0
47
0.057178
9665d6688a28f3e81d1997d0e6bd30513e85d853
1,111
py
Python
shops/shop_util/test_shop_names.py
ikp4success/shopasource
9a9ed5c58a8b37b6ff169b45f7fdfcb44809fd88
[ "Apache-2.0" ]
3
2019-12-04T07:08:55.000Z
2020-12-08T01:38:46.000Z
shops/shop_util/test_shop_names.py
ikp4success/shopasource
9a9ed5c58a8b37b6ff169b45f7fdfcb44809fd88
[ "Apache-2.0" ]
null
null
null
shops/shop_util/test_shop_names.py
ikp4success/shopasource
9a9ed5c58a8b37b6ff169b45f7fdfcb44809fd88
[ "Apache-2.0" ]
null
null
null
from enum import Enum class TestShopNames(Enum): AMAZON = ("AMAZON",) TARGET = ("TARGET",) WALMART = ("WALMART",) TJMAXX = ("TJMAXX",) GOOGLE = ("GOOGLE",) NEWEGG = ("NEWEGG",) HM = ("HM",) MICROCENTER = ("MICROCENTER",) FASHIONNOVA = ("FASHIONNOVA",) SIXPM = ("SIXPM",) POSHMARK = ("POSHMARK",) MACYS = ("MACYS",) ASOS = ("ASOS",) JCPENNEY = ("JCPENNEY",) KOHLS = "KOHLS" FOOTLOCKER = ("FOOTLOCKER",) BESTBUY = ("BESTBUY",) EBAY = ("EBAY",) KMART = ("KMART",) BIGLOTS = ("BIGLOTS",) BURLINGTON = ("BURLINGTON",) MVMTWATCHES = ("MVMTWATCHES",) BOOHOO = ("BOOHOO",) FOREVER21 = ("FOREVER21",) STYLERUNNER = ("STYLERUNNER",) LEVI = ("LEVI",) ZARA = ("ZARA",) NORDSTROM = "NORDSTROM" NORDSTROMRACK = "NORDSTROMRACK" HAUTELOOK = "HAUTELOOK" SAKSFIFTHAVENUE = "SAKSFIFTHAVENUE" EXPRESS = "EXPRESS" CHARLOTTERUSSE = "CHARLOTTERUSSE" ALDO = "ALDO" SHOPQUEEN = "SHOPQUEEN" NIKE = "NIKE" ADIDAS = "ADIDAS" DICKSSPORTINGGOODS = "DICKSSPORTINGGOODS" BINK = "BINK"
25.25
45
0.568857
1,086
0.977498
0
0
0
0
0
0
374
0.336634
9666c26fde73b6b01161a9c3fc47311bfae3372e
2,477
py
Python
package_manager/util_test.py
shahriak/dotnet5
6b96c38b0f351b79750bd2b8bc0f77dc434afe00
[ "Apache-2.0" ]
10,302
2018-04-17T17:06:57.000Z
2022-03-31T17:29:36.000Z
package_manager/util_test.py
unasuke/distroless
859ce06093a899f31fffc1cd151cf9867faf49d5
[ "Apache-2.0" ]
623
2018-04-17T20:43:43.000Z
2022-03-30T13:08:57.000Z
package_manager/util_test.py
unasuke/distroless
859ce06093a899f31fffc1cd151cf9867faf49d5
[ "Apache-2.0" ]
726
2018-05-09T16:20:46.000Z
2022-03-31T15:09:07.000Z
import unittest import os from six import StringIO from package_manager import util CHECKSUM_TXT = "1915adb697103d42655711e7b00a7dbe398a33d7719d6370c01001273010d069" DEBIAN_JESSIE_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" VERSION_ID="8" VERSION="Debian GNU/Linux 8 (jessie)" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ DEBIAN_STRETCH_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" VERSION_ID="9" VERSION="Debian GNU/Linux 9 (stretch)" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ DEBIAN_BUSTER_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" VERSION_ID="10" VERSION="Debian GNU/Linux 10 (buster)" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ # VERSION and VERSION_ID aren't set on unknown distros DEBIAN_UNKNOWN_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ osReleaseForDistro = { "jessie": DEBIAN_JESSIE_OS_RELEASE, "stretch": DEBIAN_STRETCH_OS_RELEASE, "buster": DEBIAN_BUSTER_OS_RELEASE, "???": DEBIAN_UNKNOWN_OS_RELEASE, } class TestUtil(unittest.TestCase): def test_sha256(self): current_dir = os.path.dirname(__file__) filename = os.path.join(current_dir, 'testdata', 'checksum.txt') actual = util.sha256_checksum(filename) self.assertEqual(CHECKSUM_TXT, actual) def test_generate_debian_os_release(self): for distro, expected_output in osReleaseForDistro.items(): output_file = StringIO() util.generate_os_release(distro, output_file) self.assertEqual(expected_output, output_file.getvalue()) if __name__ == '__main__': unittest.main()
34.887324
86
0.774727
558
0.225273
0
0
0
0
0
0
1,526
0.616068
9667f9974ca754b017d3785df5cd5e5a88c0fff5
9,337
py
Python
testscripts/RDKB/component/TAD/TS_TAD_Download_SetInvalidDiagnosticsState.py
cablelabs/tools-tdkb
1fd5af0f6b23ce6614a4cfcbbaec4dde430fad69
[ "Apache-2.0" ]
null
null
null
testscripts/RDKB/component/TAD/TS_TAD_Download_SetInvalidDiagnosticsState.py
cablelabs/tools-tdkb
1fd5af0f6b23ce6614a4cfcbbaec4dde430fad69
[ "Apache-2.0" ]
null
null
null
testscripts/RDKB/component/TAD/TS_TAD_Download_SetInvalidDiagnosticsState.py
cablelabs/tools-tdkb
1fd5af0f6b23ce6614a4cfcbbaec4dde430fad69
[ "Apache-2.0" ]
null
null
null
########################################################################## # If not stated otherwise in this file or this component's Licenses.txt # file the following copyright and licenses apply: # # Copyright 2016 RDK Management # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################## ''' <?xml version='1.0' encoding='utf-8'?> <xml> <id></id> <!-- Do not edit id. This will be auto filled while exporting. If you are adding a new script keep the id empty --> <version>2</version> <!-- Do not edit version. This will be auto incremented while updating. If you are adding a new script you can keep the vresion as 1 --> <name>TS_TAD_Download_SetInvalidDiagnosticsState</name> <!-- If you are adding a new script you can specify the script name. Script Name should be unique same as this file name with out .py extension --> <primitive_test_id> </primitive_test_id> <!-- Do not change primitive_test_id if you are editing an existing script. --> <primitive_test_name>TADstub_Get</primitive_test_name> <!-- --> <primitive_test_version>3</primitive_test_version> <!-- --> <status>FREE</status> <!-- --> <synopsis>To check if Diagnostics state of download can be set with invalid value. Requested and Canceled are the only writable values.If the test fails,set any writable parameter and check if the DiagnosticsState changes to None</synopsis> <!-- --> <groups_id /> <!-- --> <execution_time>1</execution_time> <!-- --> <long_duration>false</long_duration> <!-- --> <advanced_script>false</advanced_script> <!-- execution_time is the time out time for test execution --> <remarks>RDKB doesn't support Download Diagnostics feature till now</remarks> <!-- Reason for skipping the tests if marked to skip --> <skip>false</skip> <!-- --> <box_types> </box_types> <rdk_versions> <rdk_version>RDKB</rdk_version> <!-- --> </rdk_versions> <test_cases> <test_case_id>TC_TAD_34</test_case_id> <test_objective>To check if Diagnostics state of download can be set with invalid value. Requested and Canceled are the only writable values.If the test fails,set any writable parameter and check if the DiagnosticsState changes to None</test_objective> <test_type>Positive</test_type> <test_setup>XB3,Emulator</test_setup> <pre_requisite>1.Ccsp Components should be in a running state else invoke cosa_start.sh manually that includes all the ccsp components. 2.TDK Agent should be in running state or invoke it through StartTdk.sh script</pre_requisite> <api_or_interface_used>TADstub_Get</api_or_interface_used> <input_parameters>Device.IP.Diagnostics.DownloadDiagnostics.DiagnosticsState Device.IP.Diagnostics.DownloadDiagnostics.Interface Device.IP.Diagnostics.DownloadDiagnostics.DownloadURL</input_parameters> <automation_approch>1. Load TAD modules 2. From script invoke TADstub_Set to set all the writable parameters 3. Check whether the result params get changed along with the download DignosticsState 4. Validation of the result is done within the python script and send the result status to Test Manager. 5.Test Manager will publish the result in GUI as PASS/FAILURE based on the response from TAD stub.</automation_approch> <except_output>CheckPoint 1: The output should be logged in the Agent console/Component log CheckPoint 2: Stub function result should be success and should see corresponding log in the agent console log CheckPoint 3: TestManager GUI will publish the result as PASS in Execution/Console page of Test Manager</except_output> <priority>High</priority> <test_stub_interface>None</test_stub_interface> <test_script>TS_TAD_Download_SetInvalidDiagnosticsState</test_script> <skipped>No</skipped> <release_version></release_version> <remarks></remarks> </test_cases> <script_tags /> </xml> ''' # use tdklib library,which provides a wrapper for tdk testcase script import tdklib; #Test component to be tested obj = tdklib.TDKScriptingLibrary("tad","1"); #IP and Port of box, No need to change, #This will be replaced with correspoing Box Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_TAD_SetInvalidDownloadDiagnosticsState'); #Get the result of connection with test component and DUT loadmodulestatus =obj.getLoadModuleResult(); print "[LIB LOAD STATUS] : %s" %loadmodulestatus ; if "SUCCESS" in loadmodulestatus.upper(): #Set the result status of execution obj.setLoadModuleStatus("SUCCESS"); tdkTestObj = obj.createTestStep('TADstub_Set'); tdkTestObj.addParameter("ParamName","Device.IP.Diagnostics.DownloadDiagnostics.DiagnosticsState"); tdkTestObj.addParameter("ParamValue","Completed"); tdkTestObj.addParameter("Type","string"); expectedresult="FAILURE"; tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 1:Set DiagnosticsState of download as completed"; print "EXPECTED RESULT 1: DiagnosticsState of download must be Requested or Canceled"; print "ACTUAL RESULT 1: Can not set diagnosticsState of download as completed, details : %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('TADstub_Set'); tdkTestObj.addParameter("ParamName","Device.IP.Diagnostics.DownloadDiagnostics.Interface"); tdkTestObj.addParameter("ParamValue","Interface_erouter0"); tdkTestObj.addParameter("Type","string"); expectedresult="SUCCESS"; tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 2: Set the interface of Download"; print "EXPECTED RESULT 2: Should set the interface of Download "; print "ACTUAL RESULT 2: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep('TADstub_Get'); tdkTestObj.addParameter("paramName","Device.IP.Diagnostics.DownloadDiagnostics.DiagnosticsState"); expectedresult="SUCCESS"; tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details= tdkTestObj.getResultDetails(); if expectedresult in actualresult and details=="None": #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 3 :Get DiagnosticsState of download as None"; print "EXPECTED RESULT 3 :Should get the DiagnosticsState of download as None "; print "ACTUAL RESULT 3 :The DiagnosticsState of download is , details : %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 3 :Get DiagnosticsState of download as None"; print "EXPECTED RESULT 3 :Should get the Diagnostics State of download as None"; print "ACTUAL RESULT 3 :The DiagnosticsState of download is , details : %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 2: Set the interface of Download"; print "EXPECTED RESULT 2: Should set the interface of Download "; print "ACTUAL RESULT 2: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 1:Set DiagnosticsState of download as completed"; print "EXPECTED RESULT 1: DiagnosticsState of download must be Requested or Canceled"; print "ACTUAL RESULT 1: DiagnosticsState of download is set as completed, details : %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; obj.unloadModule("tad"); else: print "Failed to load tad module"; obj.setLoadModuleStatus("FAILURE"); print "Module loading failed";
49.402116
256
0.698297
0
0
0
0
0
0
0
0
6,949
0.744243
966918b396e78cd0cc9c87fbc4a01ea21e115709
2,926
py
Python
Tutorials/tutorial_01_intro.py
mseinstein/openCV
94bfd55e0d77fd78f2669244bbab5d9ea8f32666
[ "MIT" ]
null
null
null
Tutorials/tutorial_01_intro.py
mseinstein/openCV
94bfd55e0d77fd78f2669244bbab5d9ea8f32666
[ "MIT" ]
null
null
null
Tutorials/tutorial_01_intro.py
mseinstein/openCV
94bfd55e0d77fd78f2669244bbab5d9ea8f32666
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Sep 01 14:09:03 2017 @author: BJ """ import cv2 import os from matplotlib import pyplot as plt os.chdir('E:\\GitHub\\openCV\\Tutorials') # %% IMAGES # Load color image # Add the flags 1, 0 or -1, to load a color image, load an image in # grayscale mode or load image as is, respectively img = cv2.imread('LegoAd.jpg',1) # Display an image # The first argument is the window name (string), the second argument is the image cv2.imshow('image',img) # You can display multiple windows using different window names cv2.imshow('image2',img) # Displaying an image using Matplotlib # OpenCV loads color in BGR, while matplotlib displays in RGB, so to use # matplotlib you need to reverse the order of the color layers plt.imshow(img[:,:,::-1],interpolation = 'bicubic') # note there is an argument in imshow to set the colormap, this is ignored if # the input is 3D as it assumes the third dimension directly specifies the RGB # values plt.imshow(img[:,:,::-1], cmap= "Greys", interpolation = 'bicubic') # you can remove the tick marks using the following code plt.xticks([]), plt.yticks([]) # Here is a list of the full matplot lib colormaps # https://matplotlib.org/examples/color/colormaps_reference.html # Closing an image # To close a specific window use the following command withi its name as the argument cv2.destroyWindow('image2') # To close all windows use the following command with no arguments cv2.destroyAllWindows() # Writing an image # The first argument is the name of the file to write and the second arguemnt # is the image cv2.imwrite('testimg.jpg',img) # Resizing and image img = cv2.imread('LegoAd.jpg',1) # need to declare window before showing image cv2.namedWindow('image',cv2.WINDOW_NORMAL) cv2.imshow('image',img) img_height = 600 img_width = int(img_height*float(img.shape[0])/img.shape[1]) cv2.resizeWindow('image', img_height,img_width) # %% VIDEO # You first need to create a capture object with the argument either being the # name of the video file or the index of the capture device (starting from 0) # only need more indexes when have additional video capture equipment attached cap = cv2.VideoCapture(0) while(True): # Capture frame-by-frame # frame returns the captured image and ret is a boolean which returns TRUE # if frame is read correctly ret, frame = cap.read() # Our operations on the frame come here gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # gray2 = frame # Display the resulting frame cv2.imshow('frame',gray) # Wait for the signal to stop the capture # The argument is waitKey is the length of time to wait for the input before # moving onto the next line of code # when running on 64-bit you need to add 0xFF if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() #cv2.destroyWindow('frame')
31.462366
85
0.726931
0
0
0
0
0
0
0
0
2,114
0.722488
966a5cfd248281b2c96521b02313c0a59ac99d4a
625
py
Python
mutational_landscape/migrations/0003_auto_20220225_1650.py
protwis/Protwis
fdcad0a2790721b02c0d12d8de754313714c575e
[ "Apache-2.0" ]
null
null
null
mutational_landscape/migrations/0003_auto_20220225_1650.py
protwis/Protwis
fdcad0a2790721b02c0d12d8de754313714c575e
[ "Apache-2.0" ]
null
null
null
mutational_landscape/migrations/0003_auto_20220225_1650.py
protwis/Protwis
fdcad0a2790721b02c0d12d8de754313714c575e
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.2.1 on 2022-02-25 15:50 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('mutational_landscape', '0002_auto_20180117_1457'), ] operations = [ migrations.RemoveField( model_name='diseasemutations', name='protein', ), migrations.RemoveField( model_name='diseasemutations', name='residue', ), migrations.DeleteModel( name='CancerMutations', ), migrations.DeleteModel( name='DiseaseMutations', ), ]
22.321429
60
0.5712
540
0.864
0
0
0
0
0
0
183
0.2928
966a7103f706d3acd97c7d32abf73b5779105922
491
py
Python
redis_benchmarks_specification/__init__.py
LaudateCorpus1/redis-benchmarks-specification
71a7e28cd130499f02dacc00bdeca2eadfa62619
[ "Apache-2.0" ]
4
2022-01-24T10:15:55.000Z
2022-03-15T09:40:16.000Z
redis_benchmarks_specification/__init__.py
LaudateCorpus1/redis-benchmarks-specification
71a7e28cd130499f02dacc00bdeca2eadfa62619
[ "Apache-2.0" ]
27
2021-08-13T14:20:36.000Z
2021-09-21T16:49:40.000Z
redis_benchmarks_specification/__init__.py
LaudateCorpus1/redis-benchmarks-specification
71a7e28cd130499f02dacc00bdeca2eadfa62619
[ "Apache-2.0" ]
1
2022-02-02T14:07:55.000Z
2022-02-02T14:07:55.000Z
# Apache License Version 2.0 # # Copyright (c) 2021., Redis Labs # All rights reserved. # # This attribute is the only one place that the version number is written down, # so there is only one place to change it when the version number changes. import pkg_resources PKG_NAME = "redis-benchmarks-specification" try: __version__ = pkg_resources.get_distribution(PKG_NAME).version except (pkg_resources.DistributionNotFound, AttributeError): __version__ = "99.99.99" # like redis
30.6875
79
0.763747
0
0
0
0
0
0
0
0
295
0.600815
966aec55e4c71e579f2f8dad4a1f0d280f90e1cf
1,354
py
Python
rest_framework_helpers/fields/relation.py
Apkawa/django-rest-framework-helpers
f4b24bf326e081a215ca5c1c117441ea8f78cbb4
[ "MIT" ]
null
null
null
rest_framework_helpers/fields/relation.py
Apkawa/django-rest-framework-helpers
f4b24bf326e081a215ca5c1c117441ea8f78cbb4
[ "MIT" ]
null
null
null
rest_framework_helpers/fields/relation.py
Apkawa/django-rest-framework-helpers
f4b24bf326e081a215ca5c1c117441ea8f78cbb4
[ "MIT" ]
null
null
null
# coding: utf-8 from __future__ import unicode_literals from collections import OrderedDict import six from django.db.models import Model from rest_framework import serializers class SerializableRelationField(serializers.RelatedField): def __init__(self, serializer, serializer_function=None, *args, **kwargs): super(SerializableRelationField, self).__init__(*args, **kwargs) self.serializer = serializer self.serializer_function = serializer_function or self.do_serialize def to_representation(self, value): if isinstance(value, Model): return self.serializer_function(value, self.serializer) return value def to_internal_value(self, data): return self.serializer.Meta.model.objects.get(id=data) def do_serialize(self, obj, serializer=None): if not serializer: return obj.pk return serializer(obj).data @property def choices(self): queryset = self.get_queryset() if queryset is None: # Ensure that field.choices returns something sensible # even when accessed with a read-only field. return {} return OrderedDict([ ( six.text_type(item.pk), self.display_value(item) ) for item in queryset ])
30.088889
78
0.655096
1,172
0.865583
0
0
433
0.319793
0
0
113
0.083456
966b4317dba886d84d6b354c4c49cfcc2476c374
10,426
py
Python
examples/guojiadianwang/devops/devopsPro.py
peng5550/DecryptLogin
43be0f3d9b68e4ea171cd4c3c200d29a4409d2e4
[ "MIT" ]
null
null
null
examples/guojiadianwang/devops/devopsPro.py
peng5550/DecryptLogin
43be0f3d9b68e4ea171cd4c3c200d29a4409d2e4
[ "MIT" ]
null
null
null
examples/guojiadianwang/devops/devopsPro.py
peng5550/DecryptLogin
43be0f3d9b68e4ea171cd4c3c200d29a4409d2e4
[ "MIT" ]
null
null
null
import requests from utils import loginFile, dataAnalysis import os import datetime from dateutil.relativedelta import relativedelta import json from utils.logCls import Logger dirpath = os.path.dirname(__file__) cookieFile = f"{dirpath}/utils/cookies.txt" dataFile = f"{dirpath}/datas" class DevopsProject: def __init__(self, logFileName): # 初始化搜索起始与截止时间 self.endDate = datetime.datetime.today().date() self.startDate = self.endDate - relativedelta(months=+1) # log日志 self.logger = Logger("[告警信息通报({}-{})]".format(self.startDate, self.endDate), logFileName) def _load_cookies(self): print("----------_load_cookies----------") # 加载cookie if not os.path.exists(cookieFile): return False # 3、判断cookies是否过期 try: with open(cookieFile, "r")as f: cookies = f.read() if self.login_check(cookies): return cookies else: return except Exception as e: print(e.args) os.remove(cookieFile) self.logger.get_log().debug("[cookies过期]") return False def login_check(self, cookies): # cookie验证是否有效 self.logger.get_log().debug("[正在验证cookie]") headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh-TW;q=0.9,zh;q=0.8,en-US;q=0.7,en;q=0.6', 'Cache-Control': 'max-age=0', 'Connection': 'keep-alive', 'Cookie': cookies, 'Host': 'xt.devops123.net', 'Referer': 'http://xt.devops123.net/Welcome/login/', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36' } checkUrl = "http://xt.devops123.net/portal/substation_list/991" response = requests.get(checkUrl, headers=headers) if response.status_code == 200: if "管理面板" in response.text: self.logger.get_log().debug("[加载cookie成功]") return True else: self.logger.get_log().debug("[加载失败, 正在进行登录]") return False raise response.raise_for_status() def login(self): # 登录 cookies = self._load_cookies() if cookies: return cookies cookies = loginFile.loginDevops().login() return cookies def getReportData(self, cookies): self.logger.get_log().debug("[正在搜索告警信息]") self.searchTime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') # 搜索告警信息 downloadUrl = "http://xt.devops123.net/alarm?selCity=&selCounty=0&selSubstation=&selRoom=&level=1&selDevModel=&selStatus%5B%5D=unresolved&reportDate={}%E8%87%B3{}&selSignalName=&substationType%5B%5D=A%E7%BA%A7%E5%B1%80%E7%AB%99&substationType%5B%5D=B%E7%BA%A7%E5%B1%80%E7%AB%99&substationType%5B%5D=C%E7%BA%A7%E5%B1%80%E7%AB%99&substationType%5B%5D=D%E7%BA%A7%E5%B1%80%E7%AB%99&substationType%5B%5D=D1%E7%BA%A7%E5%B1%80%E7%AB%99&word=&export=exporttoexcel" headers = { 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Referer': 'http://xt.devops123.net/alarm?level=1', 'Cookie': cookies, 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh-TW;q=0.9,zh;q=0.8,en-US;q=0.7,en;q=0.6' } response = requests.get(downloadUrl.format(str(self.startDate), str(self.endDate)), headers=headers) return response.text def getDingDingInfo(self, cityName): # 加载钉钉机器人信息 with open("utils/dingdingRobotInfo.json", "r", encoding="utf-8")as f: robotInfo = json.loads(f.read()) if cityName in list(robotInfo.keys()): SECRET = robotInfo.get(cityName)[0] WEBHOOK = robotInfo.get(cityName)[1] return SECRET, WEBHOOK else: self.logger.get_log().debug("[没有该{}对应的钉钉信息,请检查dingdingRobotInfo.json文件]".format(cityName)) return def detail_data(self, dataList, monitorInfo, warn5=False, byhour=False): if warn5: for data in dataList: k, group = data SECRET, WEBHOOK = self.getDingDingInfo(k) htmlPath = dataAnalysis.data2html(k, group, dataFile, k2="超过5天告警信息汇总") imgFile = dataAnalysis.html2image(htmlPath) imgUrl = dataAnalysis.img2url(imgFile) sendTitle = f"{k}-{'超过5天告警信息汇总'}\n\n- 数据提取时间:{self.searchTime}\n- 上报时间段:\t{self.startDate}至{self.endDate} \n" sendText = sendTitle + "\n".join( [f"- {k}:\t{v}条" for k, v in group.groupby("信号名称")["信号名称"].count().sort_values(ascending=False).to_dict().items()]) yield k, SECRET, WEBHOOK, imgUrl, sendText else: for data in dataList: k, group = data if byhour: group = group.loc[group["信号名称"].isin(monitorInfo)] SECRET, WEBHOOK = self.getDingDingInfo(k) htmlPath = dataAnalysis.data2html(k, group, dataFile) imgFile = dataAnalysis.html2image(htmlPath) imgUrl = dataAnalysis.img2url(imgFile) sendText = "\n".join([f"- {k}:\t{v}条" for k, v in group.groupby("区域")["区域"].count().to_dict().items()]) yield k, SECRET, WEBHOOK, imgUrl, sendText def reportTotal(self, totalInfo, monitorInfo): self.logger.get_log().debug("正在汇总信息...") cityNames = ["乌鲁木齐", "昌吉", "吐鲁番", "奎屯", "博州", "哈密", "塔城", "阿勒泰", "伊犁", "巴州", "和田", "阿克苏", "石河子", "喀什", "克州", "克拉玛依"] totalSendTextByCity = {} summaryInfo = dataAnalysis.dataSummary(totalInfo) for city in cityNames: summaryText = "\n".join([f"- {k} : {v}条" for k, v in summaryInfo.get(city, {}).items() if k in monitorInfo]) if summaryText: totalSendText = f"{self.startDate}至{self.endDate}\n- #告警消息汇总#\n- 数据提取时间:{self.searchTime}\n- #按照信号名称汇总如下#\n" + summaryText else: totalSendText = f"{self.startDate}至{self.endDate}\n- 数据提取时间:{self.searchTime}\n" + "无告警信息." totalSendTextByCity[city] = totalSendText return totalSendTextByCity def monitorByHour(self): try: monitorInfo = ["通信状态", "烟感", "温度", "交流输入停电警告", "交流输入停电告警", "蓄电池组总电压过低", "水浸", "电池熔丝故障告警", "蓄电池总电压过高"] self.logger.get_log().debug("[正在登录]") new_cookie = self.login() # 获取excel的xml self.logger.get_log().debug("[进入【温度】【交流输入停电告警】【蓄电池组总电压过低】监控...(监控频率:每小时一次)]") xmlData = self.getReportData(new_cookie) # 分析xml if dataAnalysis.parseData(xmlData, dataFile): totalInfo, warn5days, dataList = dataAnalysis.parseData(xmlData, dataFile, byhour=True) totalSendTextByCity = self.reportTotal(totalInfo, monitorInfo) self.logger.get_log().debug("[发送告警信息]") for k, SECRET, WEBHOOK, imgUrl, sendText in self.detail_data(dataList, monitorInfo, byhour=True): totalSendText = totalSendTextByCity.get(k) if "无告警信息" in totalSendText: dataAnalysis.sendMessage(SECRET, WEBHOOK, totalSendText, imgUrl="") self.logger.get_log().debug(totalSendText) else: sendTextTotal = f"{totalSendText}\n{'- #按照县汇总如下#'}\n{sendText}" dataAnalysis.sendMessage(SECRET, WEBHOOK, sendTextTotal, imgUrl) self.logger.get_log().debug(sendTextTotal) self.logger.get_log().debug("[告警信息发送结束]") dataAnalysis.clearDir(dataFile) except Exception as e: self.logger.get_log().debug(e.args) def monitorByDay(self): try: self.logger.get_log().debug("[进入【通信状态】【烟感】【水浸】【电池熔丝故障告警】【蓄电池总电压过高】【手动控制状态】【启动电池电压低】监控...(监控频率:每天一次)]") monitorInfo = ["通信状态", "烟感", "水浸", "电池熔丝故障告警", "蓄电池总电压过高", "手动控制状态", "启动电池电压低", "交流输入停电警告", "交流输入停电告警", "温度", "蓄电池组总电压过低"] new_cookie = self.login() # 获取excel的xml xmlData = self.getReportData(new_cookie) # 分析xml if dataAnalysis.parseData(xmlData, dataFile): totalInfo, warn5days, dataList = dataAnalysis.parseData(xmlData, dataFile) totalSendTextByCity = self.reportTotal(totalInfo, monitorInfo) self.logger.get_log().debug("[汇总告警时间超过5天的信息]") for k, SECRET, WEBHOOK, imgUrl, sendText in self.detail_data(warn5days, monitorInfo, warn5=True): self.logger.get_log().debug(sendText) dataAnalysis.sendMessage(SECRET, WEBHOOK, sendText, imgUrl) self.logger.get_log().debug("[汇总告警信息]") for k1, SECRET, WEBHOOK, imgUrl, sendText in self.detail_data(dataList, monitorInfo): totalSendText = totalSendTextByCity.get(k1) if "无告警信息" in totalSendText: dataAnalysis.sendMessage(SECRET, WEBHOOK, totalSendText, imgUrl="") self.logger.get_log().debug(totalSendText) else: sendTextTotal = f"{totalSendText}\n{'- #按照县汇总如下#'}\n{sendText}" self.logger.get_log().debug(sendTextTotal) dataAnalysis.sendMessage(SECRET, WEBHOOK, sendTextTotal, imgUrl) self.logger.get_log().debug("告警信息发送结束") except Exception as e: self.logger.get_log().debug(e.args) def main(self): # 主函数 self.monitorByDay() # self.monitorByHour() if __name__ == '__main__': demo = DevopsProject("test") demo.main()
45.929515
464
0.579513
11,114
0.967781
1,484
0.129223
0
0
0
0
3,888
0.338558
966b98dbd5e0be6079948a6cd3ac31f277a97210
6,186
py
Python
ezalor.py
WellerV/EzalorTools
8279c401c9970087af955ac094fe4ebd105e8174
[ "Apache-2.0" ]
13
2018-02-07T06:34:14.000Z
2020-03-04T08:12:08.000Z
ezalor.py
WellerV/EzalorTools
8279c401c9970087af955ac094fe4ebd105e8174
[ "Apache-2.0" ]
null
null
null
ezalor.py
WellerV/EzalorTools
8279c401c9970087af955ac094fe4ebd105e8174
[ "Apache-2.0" ]
2
2018-03-01T09:02:38.000Z
2021-02-16T12:16:28.000Z
#!/usr/bin/env python # -*- coding:utf-8 -*- # Copyright (c) 2018 - huwei <[email protected]> """ This is a python script for the ezalor tools which is used to io monitor. You can use the script to open or off the switch, or point the package name which you want to monitor it only. The core function is to export data what ezalor is record. """ import os import re import sys, getopt import sqlite3 import subprocess import xlsxwriter as xw from markhelper import MarkHelper from record import Record from style import Style from datetime import datetime DB_NAME_REG = "^ezalor_{0}(.*).db$" tableheaders = ["path", "process", "thread", "processId", "threadId", "readCount", "readBytes", "readTime", "writeCount", "writeBytes", "writeTime", "stacktrace", "openTime", "closeTime", "mark"] envDir = "/sdcard/ezalor/" AUTOCOLUMN_WIDTH_INDEXS = [0, 1, 2, 12, 13, 14] def print_help_and_exit(): print("\n" "This is a python script for the ezalor tools which is used to io monitor.You can use the script to open or\n" "off the switch, or point the package name which you want to monitor it only.The core function is to export\n" "data what ezalor is record.\n" "\n" "Usage : ezalor [Options] [Args]\n" "\n" " Options:\n" " -h, --help :Print the message and exit\n" " -e, --export [packageName] [exportPath] :export a html to the path\n" "\n" " Examples:\n" " ezalor -e com.wellerv.ezalor.sample export excel\n" ) sys.exit(0) def write_to_file(path, content): if ("." == path): htmlPath = "export.html" else: htmlPath = path + "export.html" fo = open(htmlPath, "w") fo.write(content) fo.close() return htmlPath def export(packageName, path): print("export to path:" + path + " begin.") workbook = xw.Workbook(path) # style style = Style(workbook) worksheet = workbook.add_worksheet("ioHistory") # get process by packageName processes = get_process_by_package(packageName) # init column_max_width_array column_max_width_array = [0] * len(AUTOCOLUMN_WIDTH_INDEXS) # loop create table group by process row = 0 for process in processes: row = create_table(worksheet, style, process, row, get_data_by_process(packageName, process), column_max_width_array) # auto fit column width auto_fit_column_width(worksheet, column_max_width_array) workbook.close() print("\nexport successful:" + path) def auto_fit_column_width(worksheet, column_max_width_array): # set column width for j in range(len(column_max_width_array)): worksheet.set_column(AUTOCOLUMN_WIDTH_INDEXS[j], AUTOCOLUMN_WIDTH_INDEXS[j], column_max_width_array[j]) def get_data_by_process(packageName, process): # pull db file from mobile os.system("adb pull /sdcard/ezalor/" + packageName + "/ezalor_" + process + ".db ezalor.db") # fetch data from db file cursor = get_cursor("ezalor.db") cursor.execute("select * from iohistory") results = cursor.fetchall() # clear db file os.remove("ezalor.db") return results def create_table(worksheet, style, process, row, data, column_max_width_array): # write a title of table worksheet.set_row(row, 24) worksheet.merge_range(row, 0, row, 14, process + " ioHistory", style.title) row += 1 # write headers of table for index, item in enumerate(tableheaders): worksheet.write(row, index, tableheaders[index], style.table_headers) row += 1 for recordFieldValues in data: # fill the mark record = Record(recordFieldValues) mark = MarkHelper.get_io_mark(record, style) for column, columnValue in enumerate(recordFieldValues): value = get_value(column, recordFieldValues) worksheet.write(row, column, value, mark.style) # get max width if (column in AUTOCOLUMN_WIDTH_INDEXS): i = AUTOCOLUMN_WIDTH_INDEXS.index(column) column_max_width_array[i] = max(column_max_width_array[i], len(value)) # write mark column += 1 if (column in AUTOCOLUMN_WIDTH_INDEXS): i = AUTOCOLUMN_WIDTH_INDEXS.index(column) column_max_width_array[i] = max(column_max_width_array[i], len(mark.message)) worksheet.write(row, column, mark.message, mark.style) row += 1 return row def get_value(column, record): if column == 13 or column == 12: java_timestamp = record[column] return datetime.fromtimestamp(java_timestamp / 1000.0).strftime('%Y-%m-%d %H:%M:%S.%f')[:-3] return record[column] def get_process_by_package(packageName): # exec adb shell ls dbDir = envDir + packageName results = subprocess.getstatusoutput("adb shell ls " + dbDir) # get db fileName by reg files = [] if (results[0] == 0): for file in results[1].split("\n"): print(file) if (re.match(DB_NAME_REG.format(packageName), file)): files.append(re.findall(r"ezalor_(.+?).db", file)[0]) return files # os.system("rm " + path + "ezalor.db") def get_cursor(dbpath): conn = sqlite3.connect(dbpath) return conn.cursor() def main(argv): try: opts, args = getopt.getopt(argv, "hs:e:", ["help", "switch", "export"]) except getopt.GetoptError: print_help_and_exit() if len(opts) == 0: print_help_and_exit() return for opt, arg in opts: if opt in ("-h", "--help"): print_help_and_exit() elif opt in ("-e", "--export"): if (len(arg) == 0): print_help_and_exit() packageName = arg filename = packageName + datetime.now().strftime("%Y-%m-%d %H:%M:%S") + ".xlsx" outPath = filename if len(args) == 0 \ else args[0] + "/" + filename export(packageName, outPath) if __name__ == "__main__": main(sys.argv[1:])
32.387435
120
0.624313
0
0
0
0
0
0
0
0
1,832
0.296153
966b9c223ecd09480f1a0fd34d6be56ce22a2ada
11,772
py
Python
revisions/models.py
debrouwere/django-revisions
d5b95806c65e66a720a2d9ec2f5ffb16698d9275
[ "BSD-2-Clause-FreeBSD" ]
6
2015-11-05T11:48:46.000Z
2021-04-14T07:10:16.000Z
revisions/models.py
debrouwere/django-revisions
d5b95806c65e66a720a2d9ec2f5ffb16698d9275
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
revisions/models.py
debrouwere/django-revisions
d5b95806c65e66a720a2d9ec2f5ffb16698d9275
[ "BSD-2-Clause-FreeBSD" ]
1
2019-02-13T21:01:48.000Z
2019-02-13T21:01:48.000Z
# encoding: utf-8 import uuid import difflib from datetime import date from django.db import models from django.utils.translation import ugettext as _ from django.core.exceptions import ImproperlyConfigured, ValidationError from django.db import IntegrityError from django.contrib.contenttypes.models import ContentType from revisions import managers, utils import inspect # the crux of all errors seems to be that, with VersionedBaseModel, # doing setattr(self, self.pk_name, None) does _not_ lead to creating # a new object, and thus versioning as a whole doesn't work # the only thing lacking from the VersionedModelBase is a version id. # You may use VersionedModelBase if you need to specify your own # AutoField (e.g. using UUIDs) or if you're trying to adapt an existing # model to ``django-revisions`` and have an AutoField not named # ``vid``. class VersionedModelBase(models.Model, utils.ClonableMixin): @classmethod def get_base_model(cls): base = cls while isinstance(base._meta.pk, models.OneToOneField): base = base._meta.pk.rel.to return base @property def base_model(self): return self.get_base_model() @property def pk_name(self): return self.base_model._meta.pk.attname # For UUIDs in particular, we need a way to know the order of revisions # e.g. through a ``changed`` datetime field. @classmethod def get_comparator_name(cls): if hasattr(cls.Versioning, 'comparator'): return cls.Versioning.comparator else: return cls.get_base_model()._meta.pk.attname @property def comparator_name(self): return self.get_comparator_name() @property def comparator(self): return getattr(self, self.comparator_name) @classmethod def get_implementations(cls): models = [contenttype.model_class() for contenttype in ContentType.objects.all()] return [model for model in models if isinstance(model, cls)] @property def _base_model(self): base = self while isinstance(base._meta.pk, models.OneToOneField): base = base._meta.pk.rel.to return base @property def _base_table(self): return self._base_model._meta.db_table # content bundle id cid = models.CharField(max_length=36, editable=False, null=True, db_index=True) # managers latest = managers.LatestManager() objects = models.Manager() # all related revisions, plus easy shortcuts to the previous and next revision def get_revisions(self): qs = self.__class__.objects.filter(cid=self.cid).order_by(self.comparator_name) try: qs.prev = qs.filter(**{self.comparator_name + '__lt': self.comparator}).order_by('-' + self.comparator_name)[0] except IndexError: qs.prev = None try: qs.next = qs.filter(**{self.comparator_name + '__gt': self.comparator})[0] except IndexError: qs.next = None return qs def check_if_latest_revision(self): return self.comparator >= max([version.comparator for version in self.get_revisions()]) @classmethod def fetch(cls, criterion): if isinstance(criterion, int) or isinstance(criterion, str): return cls.objects.get(pk=criterion) elif isinstance(criterion, models.Model): return criterion elif isinstance(criterion, date): pub_date = cls.Versioning.publication_date if pub_date: return cls.objects.filter(**{pub_date + '__lte': criterion}).order('-' + self.comparator_name)[0] else: raise ImproperlyConfigured("""Please specify which field counts as the publication date for this model. You can do so inside a Versioning class. Read the docs for more info.""") else: raise TypeError("Can only fetch an object using a primary key, a date or a datetime object.") def revert_to(self, criterion): revert_to_obj = self.__class__.fetch(criterion) # You can only revert a model instance back to a previous instance. # Not any ol' object will do, and we check for that. if revert_to_obj.pk not in self.get_revisions().values_list('pk', flat=True): raise IndexError("Cannot revert to a primary key that is not part of the content bundle.") else: return revert_to_obj.revise() def get_latest_revision(self): return self.get_revisions().order_by('-' + self.comparator)[0] def make_current_revision(self): if not self.check_if_latest_revision(): self.save() def show_diff_to(self, to, field): frm = unicode(getattr(self, field)).split() to = unicode(getattr(to, field)).split() differ = difflib.HtmlDiff() return differ.make_table(frm, to) def _get_unique_checks(self, exclude=[]): # for parity with Django's unique_together notation shortcut def parse_shortcut(unique_together): unique_together = tuple(unique_together) if len(unique_together) and isinstance(unique_together[0], basestring): unique_together = (unique_together, ) return unique_together # Django actually checks uniqueness for a single field in the very same way it # does things for unique_together, something we happily take advantage of unique = tuple([(field,) for field in getattr(self.Versioning, 'unique', ())]) unique_together = \ unique + \ parse_shortcut(getattr(self.Versioning, 'unique_together', ())) + \ parse_shortcut(getattr(self._meta, 'unique_together', ())) model = self.__class__() model._meta.unique_together = unique_together return models.Model._get_unique_checks(model, exclude) def _get_attribute_history(self, name): if self.__dict__.get(name, False): return [(version.__dict__[name], version) for version in self.get_revisions()] else: raise AttributeError(name) def _get_related_objects(self, relatedmanager): """ This method extends a regular related-manager by also including objects that are related to other versions of the same content, instead of just to this one object. """ related_model = relatedmanager.model related_model_name = related_model._meta.module_name # The foreign key field name on related objects often, by convention, # coincides with the name of the class it relates to, but not always, # e.g. you could do something like # class Book(models.Model): # thingmabob = models.ForeignKey(Author) # # There is, afaik, no elegant way to get a RelatedManager to tell us that # related objects refer to this class by 'thingmabob', leading to this # kind of convoluted deep dive into the internals of the related class. # # By all means, I'd welcome suggestions for prettier code. ref_name = self._meta._name_map[related_model_name][0].field.name pks = [story.pk for story in self.get_revisions()] objs = related_model._default_manager.filter(**{ref_name + '__in': pks}) return objs def __getattr__(self, name): # we catch all lookups that start with 'related_' if name.startswith('related_'): related_name = "_".join(name.split("_")[1:]) attribute = getattr(self, related_name, False) # we piggyback off of an existing relationship, # so the attribute has to exist and it has to be a # RelatedManager or ManyRelatedManager if attribute: # (we check the module instead of using isinstance, since # ManyRelatedManager is created using a factory so doesn't # actually exist inside of the module) if attribute.__class__.__dict__['__module__'] == 'django.db.models.fields.related': return self._get_related_objects(attribute) if name.endswith('_history'): attribute = name.replace('_history', '') return self._get_attribute_history(attribute) raise AttributeError(name) def prepare_for_writing(self): """ This method allows you to clear out certain fields in the model that are specific to each revision, like a log message. """ for field in self.Versioning.clear_each_revision: super(VersionedModelBase, self).__setattr__(field, '') def validate_bundle(self): # uniqueness constraints per bundle can't be checked at the database level, # which means we'll have to do so in the save method if getattr(self.Versioning, 'unique_together', None) or getattr(self.Versioning, 'unique', None): # replace ValidationError with IntegrityError because this is what users will expect try: self.validate_unique() except ValidationError, error: raise IntegrityError(error) def revise(self): self.validate_bundle() return self.clone() def save(self, *vargs, **kwargs): # The first revision of a piece of content won't have a bundle id yet, # and because the object isn't persisted in the database, there's no # primary key either, so we use a UUID as the bundle ID. # # (Note for smart alecks: Django chokes on using super/save() more than # once in the save method, so doing a preliminary save to get the PK # and using that value for a bundle ID is rather hard.) if not self.cid: self.cid = uuid.uuid4().hex self.validate_bundle() super(VersionedModelBase, self).save(*vargs, **kwargs) def delete_revision(self, *vargs, **kwargs): super(VersionedModelBase, self).delete(*vargs, **kwargs) def delete(self, *vargs, **kwargs): for revision in self.get_revisions(): revision.delete_revision(*vargs, **kwargs) class Meta: abstract = True class Versioning: clear_each_revision = [] publication_date = None unique_together = () class VersionedModel(VersionedModelBase): vid = models.AutoField(primary_key=True) class Meta: abstract = True class TrashableModel(models.Model): """ Users wanting a version history may also expect a trash bin that allows them to recover deleted content, as is e.g. the case in WordPress. This is that thing. """ _is_trash = models.BooleanField(db_column='is_trash', default=False, editable=False) @property def is_trash(self): return self._is_trash def get_content_bundle(self): if isinstance(self, VersionedModelBase): return self.get_revisions() else: return [self] def delete(self): """ It makes no sense to trash individual revisions: either you keep a version history or you don't. If you want to undo a revision, you should use obj.revert_to(preferred_revision) instead. """ for obj in self.get_content_bundle(): obj._is_trash = True obj.save() def delete_permanently(self): for obj in self.get_content_bundle(): super(TrashableModel, obj).delete() class Meta: abstract = True
39.503356
123
0.641777
10,909
0.92669
0
0
2,094
0.17788
0
0
3,788
0.32178
966c228f07ae23bcd47d41a07f74a33292ad5f8f
1,260
py
Python
noir/templating.py
gi0baro/noir
b187922d4f6055dbcb745c5299db907aac574398
[ "BSD-3-Clause" ]
2
2021-06-10T13:09:27.000Z
2021-06-11T09:37:02.000Z
noir/templating.py
gi0baro/noir
b187922d4f6055dbcb745c5299db907aac574398
[ "BSD-3-Clause" ]
null
null
null
noir/templating.py
gi0baro/noir
b187922d4f6055dbcb745c5299db907aac574398
[ "BSD-3-Clause" ]
null
null
null
import json import os from typing import Any, Dict, Optional import tomlkit import yaml from renoir.apis import Renoir, ESCAPES, MODES from renoir.writers import Writer as _Writer from .utils import adict, obj_to_adict class Writer(_Writer): @staticmethod def _to_unicode(data): if data is None: return "" if isinstance(data, bool): return str(data).lower() return _Writer._to_unicode(data) class Templater(Renoir): _writers = {**Renoir._writers, **{ESCAPES.common: Writer}} def _indent(text: str, spaces: int = 2) -> str: offset = " " * spaces rv = f"\n{offset}".join(text.split("\n")) return rv def _to_json(obj: Any, indent: Optional[int] = None) -> str: return json.dumps(obj, indent=indent) def _to_toml(obj: Any) -> str: return tomlkit.dumps(obj) def _to_yaml(obj: Any) -> str: return yaml.dump(obj) def base_ctx(ctx: Dict[str, Any]): ctx.update( env=obj_to_adict(os.environ), indent=_indent, to_json=_to_json, to_toml=_to_toml, to_yaml=_to_yaml ) yaml.add_representer(adict, yaml.representer.Representer.represent_dict) templater = Templater(mode=MODES.plain, adjust_indent=True, contexts=[base_ctx])
21.355932
80
0.666667
314
0.249206
0
0
200
0.15873
0
0
22
0.01746
966d171d2b44d0254f7759c28f9717f4faa2dc4c
3,904
py
Python
GUI/lib/plotData.py
apajon/GUIPythonEncodeur
05b58809ed7a287369c5bfa04b5fb69f5d9e36aa
[ "MIT" ]
null
null
null
GUI/lib/plotData.py
apajon/GUIPythonEncodeur
05b58809ed7a287369c5bfa04b5fb69f5d9e36aa
[ "MIT" ]
4
2021-06-03T23:34:17.000Z
2021-06-04T21:31:19.000Z
GUI/lib/plotData.py
apajon/GUIPythonEncodeur
05b58809ed7a287369c5bfa04b5fb69f5d9e36aa
[ "MIT" ]
null
null
null
# Copyright (c) 2021 Adrien Pajon ([email protected]) # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from api_phidget_n_MQTT.src.lib_global_python import searchLoggerFile def PlotData(config): ############ # Encoder's resolution in mm per pulse # Encoder_mm_per_Pulse = 0.02 Encoder_mm_per_Pulse = config.getfloat('encoder', 'resolution') print("encoder resolution : " + str(Encoder_mm_per_Pulse)) ############ # search for the last logger file based on the indentation # filename="Logger_encoder_07.txt" filename = searchLoggerFile.searchLoggerFile(config) print(filename) try: data = np.genfromtxt(filename, delimiter=",", names=True) except: return False # convert the number of pulse position change into mm PositionChange_mm = data['PositionChange'] * Encoder_mm_per_Pulse # recorded time when datas are received in s time = data['TimeRecording'] time -= time[0] # the beginning time at 0 # vel is the velocity measured by the encoder # as the positionChange_mm is in mm and the TimeChange is in ms # the velocity is given in m/s # If a 'detach' from the encoder, TimeChange=0 and vel will be Inf vel = np.divide(PositionChange_mm, data['TimeChange']) ############ # initialize the plot fig, ax1 = plt.subplots() # plot the encoder velocity in time color = 'tab:blue' lns1 = ax1.plot(time, vel, label="Velocity", color=color) ax1.set_xlabel("time[s]") ax1.set_ylabel("Velocity[m/s]", color=color) color = 'tab:blue' ax1.tick_params(axis='y', labelcolor=color) ax1.grid() # # Create a Rectangle patch # rect = patches.Rectangle((0,0),20,0.2,linewidth=1,edgecolor='k',facecolor='tab:grey') # # Add the patch to the Axes # ax1.add_patch(rect) # Draw a grey rectangle patch for each detach of the encoder aka 'missing values' aka TimeChange=0 for k in np.argwhere(data['TimeChange'] == 0): if k == 0: rect = patches.Rectangle((time[k], 0), time[k + 1] - time[k], 2, linewidth=1, edgecolor='k', facecolor='tab:grey') ax1.add_patch(rect) lns3 = rect elif k != len(data['TimeChange']): if k == np.argwhere(data['TimeChange'] == 0)[0]: rect = patches.Rectangle((time[k - 1], 0), time[k + 1] - time[k - 1], 2, linewidth=1, edgecolor='k', facecolor='tab:grey') lns3 = ax1.add_patch(rect) else: rect = patches.Rectangle((time[k - 1], 0), time[k + 1] - time[k - 1], 2, linewidth=1, edgecolor='k', facecolor='tab:grey') ax1.add_patch(rect) # plot the encoder distance measured in m ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis color = 'tab:red' ax2.set_ylabel('Position[m]', color=color) # we already handled the x-label with ax1 lns2 = ax2.plot(time, np.cumsum(PositionChange_mm / 1000), color=color, label="Position") ax2.tick_params(axis='y', labelcolor=color) plt.title("velocity and position measured by encoder \n in file : " + filename) # Legend manage if there is no missing value meaning lns3 does not exist try: lns = [lns1[0], lns2[0], lns3] labs = ('Velocity', 'Position', 'Missing velocity') except: lns = [lns1[0], lns2[0]] labs = ('Velocity', 'Position') ax1.legend(lns, labs) # , loc=0) fig.tight_layout() # otherwise the right y-label is slightly clipped figManager = plt.get_current_fig_manager() figManager.window.showMaximized() plt.show() return True
38.27451
116
0.619365
0
0
0
0
0
0
0
0
1,651
0.4229
966d9c6d207cc79829fc35c116bf0cff41eb5f9c
4,945
py
Python
nova/tests/unit/objects/test_resource.py
Nexenta/nova
ccecb507ff4bdcdd23d90e7b5b02a22c5a46ecc3
[ "Apache-2.0" ]
1
2021-06-10T17:08:15.000Z
2021-06-10T17:08:15.000Z
nova/tests/unit/objects/test_resource.py
Nexenta/nova
ccecb507ff4bdcdd23d90e7b5b02a22c5a46ecc3
[ "Apache-2.0" ]
2
2021-03-31T20:04:16.000Z
2021-12-13T20:45:03.000Z
nova/tests/unit/objects/test_resource.py
Nexenta/nova
ccecb507ff4bdcdd23d90e7b5b02a22c5a46ecc3
[ "Apache-2.0" ]
1
2021-11-12T03:55:41.000Z
2021-11-12T03:55:41.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from oslo_serialization import jsonutils from oslo_utils.fixture import uuidsentinel as uuids import six from nova.objects import resource from nova.tests.unit.objects import test_objects fake_resources = resource.ResourceList(objects=[ resource.Resource(provider_uuid=uuids.rp, resource_class='CUSTOM_RESOURCE', identifier='foo'), resource.Resource(provider_uuid=uuids.rp, resource_class='CUSTOM_RESOURCE', identifier='bar')]) fake_vpmems = [ resource.LibvirtVPMEMDevice( label='4GB', name='ns_0', devpath='/dev/dax0.0', size=4292870144, align=2097152), resource.LibvirtVPMEMDevice( label='4GB', name='ns_1', devpath='/dev/dax0.0', size=4292870144, align=2097152)] fake_instance_extras = { 'resources': jsonutils.dumps(fake_resources.obj_to_primitive()) } class TestResourceObject(test_objects._LocalTest): def _create_resource(self, metadata=None): fake_resource = resource.Resource(provider_uuid=uuids.rp, resource_class='bar', identifier='foo') if metadata: fake_resource.metadata = metadata return fake_resource def _test_set_malformed_resource_class(self, rc): try: resource.Resource(provider_uuid=uuids.rp, resource_class=rc, identifier='foo') except ValueError as e: self.assertEqual('Malformed Resource Class %s' % rc, six.text_type(e)) else: self.fail('Check malformed resource class failed.') def _test_set_formed_resource_class(self, rc): resource.Resource(provider_uuid=uuids.rp, resource_class=rc, identifier='foo') def test_set_malformed_resource_classes(self): malformed_resource_classes = ['!', ';', ' '] for rc in malformed_resource_classes: self._test_set_malformed_resource_class(rc) def test_set_formed_resource_classes(self): formed_resource_classes = ['resource', 'RESOURCE', '0123'] for rc in formed_resource_classes: self._test_set_formed_resource_class(rc) def test_equal_without_metadata(self): resource_0 = resource.Resource(provider_uuid=uuids.rp, resource_class='bar', identifier='foo') resource_1 = resource.Resource(provider_uuid=uuids.rp, resource_class='bar', identifier='foo') self.assertEqual(resource_0, resource_1) def test_not_equal_without_matadata(self): self.assertNotEqual(fake_resources[0], fake_resources[1]) def test_equal_with_vpmem_metadata(self): resource_0 = self._create_resource(metadata=fake_vpmems[0]) resource_1 = self._create_resource(metadata=fake_vpmems[0]) self.assertEqual(resource_0, resource_1) def test_not_equal_with_vpmem_metadata(self): resource_0 = self._create_resource(metadata=fake_vpmems[0]) resource_1 = self._create_resource(metadata=fake_vpmems[1]) self.assertNotEqual(resource_0, resource_1) def test_not_equal_with_and_without_metadata(self): # one resource has metadata, another one has not metadata resource_0 = self._create_resource(metadata=fake_vpmems[0]) resource_1 = self._create_resource() self.assertNotEqual(resource_0, resource_1) class _TestResourceListObject(object): @mock.patch('nova.db.api.instance_extra_get_by_instance_uuid') def test_get_by_instance_uuid(self, mock_get): mock_get.return_value = fake_instance_extras resources = resource.ResourceList.get_by_instance_uuid( self.context, 'fake_uuid') for i in range(len(resources)): self.assertEqual(resources[i].identifier, fake_resources[i].identifier) class TestResourceListObject(test_objects._LocalTest, _TestResourceListObject): pass class TestRemoteResourceListObject(test_objects._RemoteTest, _TestResourceListObject): pass
39.879032
79
0.651769
3,474
0.702528
0
0
422
0.085339
0
0
925
0.187058
966e2e4f01ba505a9a223a3984ad9d961a218e79
11,532
py
Python
mandala/storages/rel_impl/psql_utils.py
amakelov/mandala
a9ec051ef730ada4eed216c62a07b033126e78d5
[ "Apache-2.0" ]
9
2022-02-22T19:24:01.000Z
2022-03-23T04:46:41.000Z
mandala/storages/rel_impl/psql_utils.py
amakelov/mandala
a9ec051ef730ada4eed216c62a07b033126e78d5
[ "Apache-2.0" ]
null
null
null
mandala/storages/rel_impl/psql_utils.py
amakelov/mandala
a9ec051ef730ada4eed216c62a07b033126e78d5
[ "Apache-2.0" ]
null
null
null
from sqlalchemy.engine.base import Connection from sqlalchemy.sql.selectable import Select, CompoundSelect from sqlalchemy.engine.result import Result from sqlalchemy.dialects import postgresql from .utils import transaction from ...common_imports import * from ...util.common_ut import get_uid from ...core.config import PSQLConfig ################################################################################ ### helper functions ################################################################################ def get_db_root(psql_config:PSQLConfig): return PSQLInterface(autocommit=True, psql_config=psql_config) def get_connection_string(db_name:str, user:str, password:str, host:str, port:int) -> str: return f'postgresql+psycopg2://{user}:{password}@{host}:{port}/{db_name}' ################################################################################ ### interface to postgres ################################################################################ class PSQLInterface(object): # to connect to a postgres server def __init__(self, psql_config:PSQLConfig, autocommit:bool=False,): self.host = psql_config.host self.user = psql_config.user self.port = psql_config.port self.password = psql_config.password self.root_db_name = psql_config.root_db_name self.autocommit = autocommit self.connection_string = f'postgresql+psycopg2://{self.user}:{self.password}@{self.host}:{self.port}/{self.root_db_name}' self.engine = self.get_engine() self.block_subtransactions = False ############################################################################ ### utils ############################################################################ def get_raw_conn(self, autocommit:bool=False) -> Connection: conn = psycopg2.connect(host=self.host, user=self.user, password=self.password, database=self.root_db_name) conn.autocommit = autocommit return conn def get_engine(self) -> TAny: """ you might think that setting autocommit=True in conn.execution_options would be enough to tell sqlalchemy to use autocommit mode, however that's not the case; we must do it at the level of engine creation. See [this](https://www.oddbird.net/2014/06/14/sqlalchemy-postgres-autocommit/) for more details """ if self.autocommit: engine = sqlalchemy.create_engine(self.connection_string, isolation_level='AUTOCOMMIT', connect_args={'connect_timeout': 5}) else: engine = sqlalchemy.create_engine(self.connection_string, connect_args={'connect_timeout': 5}) return engine def read_rp(self, rp:Result) -> pd.DataFrame: df = pd.DataFrame(rp.fetchall(), columns=rp.keys()) return df @transaction() def read(self, query:str, index_col:str=None, conn:Connection=None) -> pd.DataFrame: rp = conn.execute(query) df = self.read_rp(rp=rp) if index_col is not None: df.set_index(index_col, inplace=True) return df ############################################################################ ### managing databases ############################################################################ @staticmethod def _is_unnamed_db(db_name:str) -> bool: return db_name.startswith('v5_') and len(db_name) == 35 @transaction() def create_db(self, db_name:str, conn:Connection=None): logging.debug('Creating database {}...'.format(db_name)) conn.execute('CREATE DATABASE {}'.format(db_name)) @transaction() def kill_active_connections(self, db_name:str, conn:Connection=None): query = f""" SELECT pg_terminate_backend(pg_stat_activity.pid) FROM pg_stat_activity WHERE pg_stat_activity.datname = '{db_name}' AND pid <> pg_backend_pid() """ conn.execute(query) @transaction(retry=False) #! not retriable because it is itself used in retry loop def drop_db(self, db_name:str, must_exist:bool=True, kill_connections:bool=False, conn:Connection=None): assert db_name not in ('postgres', 'template0', 'template1') logging.info('Dropping database {}...'.format(db_name)) if kill_connections: self.kill_active_connections(db_name=db_name, conn=conn) if must_exist: conn.execute('DROP DATABASE {}'.format(db_name)) else: conn.execute(f'DROP DATABASE IF EXISTS {db_name}') def get_all_dbs(self) -> TSet[str]: df = self.read(query='SELECT datname FROM pg_database') return set(df.datname.values) def exists_db(self, db_name:str) -> bool: return db_name in self.get_all_dbs() @transaction() def _drop_unnamed(self, conn:Connection=None): #! NEVER CALL THIS all_dbs = self.get_all_dbs() for db_name in all_dbs: if PSQLInterface._is_unnamed_db(db_name): self.drop_db(db_name, conn=conn) ################################################################################ ### fast operations ################################################################################ def fast_select(query:TUnion[str, Select]=None, qual_table:str=None, index_col:str=None, cols:TList[str]=None, conn:Connection=None) -> pd.DataFrame: """ Some notes: - loading an empty table with an index (index_col=something) will not display the index name(s), but they are in the (empty) index """ logging.debug('Fastread does not handle dtypes') # quote table name if query is None: assert qual_table is not None if '.' in qual_table: schema, table = qual_table.split('.') quoted_table = f'"{schema}"."{table}"' else: quoted_table = f'"{qual_table}"' if cols is not None: cols_string = ', '.join([f'"{col}"' for col in cols]) query = f'SELECT {cols_string} FROM {quoted_table}' else: query = f'SELECT * FROM {quoted_table}' head = 'HEADER' if isinstance(query, (Select, CompoundSelect)): #! the query object must be converted to a pure postgresql-compatible #! string for this to work, and in particular to render bound parameters # in-line using the literal_binds kwarg and the particular dialect query_string = query.compile(bind=conn.engine, compile_kwargs={'literal_binds': True}, dialect=postgresql.dialect()) elif isinstance(query, str): query_string = query else: raise NotImplementedError() copy_sql = f"""COPY ({query_string}) TO STDOUT WITH CSV {head}""" buffer = io.StringIO() # Note that we need to use a *raw* connection in this method, which can be # accessed as conn.connection with conn.connection.cursor() as curs: curs.copy_expert(copy_sql, buffer) buffer.seek(0) df:pd.DataFrame = pd.read_csv(buffer) if index_col is not None: df = df.set_index(index_col) return df def fast_insert(df:pd.DataFrame, qual_table:str, conn:Connection=None, columns:TList[str]=None, include_index:bool=True): """ In psycopg 2.9, they changed the .copy_from() method, so that table names are now quoted. This means that it won't work with a schema-qualified name. This method fixes this by using copy_expert(), as directed by the psycopg2 docs. """ if columns is None: columns = df.columns if '.' in qual_table: schema, table = qual_table.split('.') quoted_table = f'"{schema}"."{table}"' else: quoted_table = f'"{qual_table}"' start_time = time.time() # save dataframe to an in-memory buffer buffer = io.StringIO() if include_index: df = df.reset_index() df.to_csv(buffer, header=False, index=False, columns=columns, na_rep='') buffer.seek(0) columns_string = ', '.join('"{}"'.format(k) for k in columns) query = f"""COPY {quoted_table}({columns_string}) FROM STDIN WITH CSV""" # Note that we need to use a *raw* connection in this method, which can be # accessed as conn.connection with conn.connection.cursor() as curs: curs.copy_expert(sql=query, file=buffer) end_time = time.time() nrows = df.shape[0] total_time = end_time - start_time logging.debug(f'Inserted {nrows} rows, {nrows/total_time} rows/second') def fast_upsert(df:pd.DataFrame, qual_table:str, index_cols:TList[str], columns:TList[str]=None, include_index:bool=True, conn:Connection=None): """ code based on https://stackoverflow.com/questions/46934351/python-postgresql-copy-command-used-to-insert-or-update-not-just-insert """ if include_index: df = df.reset_index() #! importantly, columns are set after potentially resetting the index if columns is None: columns = list(df.columns) if '.' in qual_table: schema, table = qual_table.split('.') quoted_table = f'"{schema}"."{table}"' else: schema = '' table = qual_table quoted_table = f'"{qual_table}"' # create a temporary table with same columns as target table # temp_qual_table = f'{schema}.{table}__copy' temp_uid = get_uid()[:16] temp_qual_table = f'{schema}_{table}__copy_{temp_uid}' temp_index_name = f'{schema}_{table}__temp_index_{temp_uid}' create_temp_table_query = f""" create temporary table {temp_qual_table} as (select * from {quoted_table} limit 0); """ conn.execute(create_temp_table_query) # if provided, create indices on the table if index_cols is not None: create_temp_index_query = f""" CREATE INDEX {temp_index_name} ON {temp_qual_table}({','.join(index_cols)}); """ conn.execute(create_temp_index_query) # copy data into this table fast_insert(df=df, qual_table=temp_qual_table, conn=conn, columns=columns, include_index=include_index) # comma-separated lists of various things target_cols_string = f"{', '.join(columns)}" source_cols_string = f"{', '.join([f'{temp_qual_table}.{col}' for col in columns])}" index_cols_string = f"{', '.join([f'{col}' for col in index_cols])}" # update existing records index_conditions = ' AND '.join([f'{qual_table}.{col} = {temp_qual_table}.{col}' for col in index_cols]) update_query = f""" UPDATE {quoted_table} SET ({target_cols_string}) = ({source_cols_string}) FROM {temp_qual_table} WHERE {index_conditions} """ conn.execute(update_query) # insert new records insert_query = f""" INSERT INTO {quoted_table}({target_cols_string}) ( SELECT {source_cols_string} FROM {temp_qual_table} LEFT JOIN {quoted_table} USING({index_cols_string}) WHERE {table} IS NULL); """ conn.execute(insert_query)
40.893617
129
0.583593
4,415
0.382848
0
0
1,828
0.158515
0
0
4,710
0.408429
966fe34cabbdf144b4795af99c630f2fed4590e1
1,484
py
Python
tests/test_ami.py
seek-oss/aec
13a75c690542eec61727b9d92a2c11a3dbd1caba
[ "MIT" ]
6
2019-09-10T11:23:18.000Z
2021-03-25T04:37:28.000Z
tests/test_ami.py
seek-oss/aec
13a75c690542eec61727b9d92a2c11a3dbd1caba
[ "MIT" ]
162
2019-12-05T10:21:00.000Z
2022-03-27T06:00:45.000Z
tests/test_ami.py
seek-oss/aec
13a75c690542eec61727b9d92a2c11a3dbd1caba
[ "MIT" ]
6
2019-10-27T22:59:35.000Z
2021-02-10T22:36:59.000Z
import pytest from moto import mock_ec2 from moto.ec2.models import AMIS from aec.command.ami import delete, describe, share @pytest.fixture def mock_aws_config(): mock = mock_ec2() mock.start() return { "region": "ap-southeast-2", } def test_describe_images(mock_aws_config): # describe images defined by moto # see https://github.com/spulec/moto/blob/master/moto/ec2/resources/amis.json canonical_account_id = "099720109477" mock_aws_config["describe_images_owners"] = canonical_account_id images = describe(config=mock_aws_config) assert len(images) == 2 assert images[0]["Name"] == "ubuntu/images/hvm-ssd/ubuntu-trusty-14.04-amd64-server-20170727" assert images[1]["Name"] == "ubuntu/images/hvm-ssd/ubuntu-xenial-16.04-amd64-server-20170721" def test_describe_images_name_match(mock_aws_config): # describe images defined by moto # see https://github.com/spulec/moto/blob/master/moto/ec2/resources/amis.json canonical_account_id = "099720109477" mock_aws_config["describe_images_owners"] = canonical_account_id images = describe(config=mock_aws_config, name_match="*trusty*") assert len(images) == 1 assert images[0]["Name"] == "ubuntu/images/hvm-ssd/ubuntu-trusty-14.04-amd64-server-20170727" def test_delete_image(mock_aws_config): delete(mock_aws_config, AMIS[0]["ami_id"]) def test_share_image(mock_aws_config): share(mock_aws_config, AMIS[0]["ami_id"], "123456789012")
31.574468
97
0.735849
0
0
0
0
133
0.089623
0
0
573
0.386119
96702b58ef9f60b2130e8a0e754ad89b97258e50
691
py
Python
mainapp/views.py
H0oxy/sportcars
dcd76736bfe88630b3ccce7e4ee0ad9398494f08
[ "MIT" ]
null
null
null
mainapp/views.py
H0oxy/sportcars
dcd76736bfe88630b3ccce7e4ee0ad9398494f08
[ "MIT" ]
null
null
null
mainapp/views.py
H0oxy/sportcars
dcd76736bfe88630b3ccce7e4ee0ad9398494f08
[ "MIT" ]
null
null
null
from django.views.generic import ListView from rest_framework.permissions import AllowAny from rest_framework.viewsets import ModelViewSet from mainapp.models import Manufacturer, Car from mainapp.serializers import ManufacturerSerializer, CarSerializer class ManufacturerList(ListView): model = Manufacturer class CarList(ListView): model = Car class ManufacturerViewSet(ModelViewSet): # queryset = Manufacturer.objects.all() queryset = Manufacturer.objects.filter(is_active=True) serializer_class = ManufacturerSerializer class CarViewSet(ModelViewSet): permission_classes = [AllowAny] queryset = Car.objects.all() serializer_class = CarSerializer
25.592593
69
0.797395
424
0.613603
0
0
0
0
0
0
39
0.05644
96708ac825e30302b84cfd4e3368984095dd810a
3,168
py
Python
BrandDetails.py
p10rahulm/brandyz-reco
95d5e3f291cdb5b951e0c7d83ff30c59f8a3797f
[ "MIT" ]
null
null
null
BrandDetails.py
p10rahulm/brandyz-reco
95d5e3f291cdb5b951e0c7d83ff30c59f8a3797f
[ "MIT" ]
null
null
null
BrandDetails.py
p10rahulm/brandyz-reco
95d5e3f291cdb5b951e0c7d83ff30c59f8a3797f
[ "MIT" ]
null
null
null
# In this module we will get the brand count and the users per brand as a list. # Add more details as deemed necessary # I'm using mergesort here instead of quicksort as the size of data is much larger than for users import Mergesort import numpy as np def get_brand_purchase_deets(shoppers,brands): # Going to sort by brands brand_shoppers = zip(brands,shoppers) brand_shoppers = sorted(brand_shoppers) brand_sorted = [brands for brands, shoppers in brand_shoppers] shoppers_sorted = [shoppers for brands, shoppers in brand_shoppers] # Creating Brand Details brand_deets = {} brands_list = [] num_transactions_list = [] list_of_users = [] end_row = 0 total_transactions = len(brands) while end_row < total_transactions: num_transactions = 0 users_list = [] start_row = end_row start_brand = brand_sorted[start_row] while (end_row < total_transactions and brand_sorted[end_row] == start_brand): num_transactions += 1 users_list.append(shoppers_sorted[end_row]) end_row += 1 users_list = Mergesort.mergesorts(users_list) # Input into main lists brands_list.append(start_brand) num_transactions_list.append(num_transactions) list_of_users.append(users_list) # Add to data frame brand_deets["brand_code"] = np.array(brands_list,dtype=np.int32) brand_deets["num_transactions"] = np.array(num_transactions_list,dtype=np.int32) brand_deets["list_of_users"] = list_of_users brand_deets["meta"] = {"size":len(num_transactions_list), "num_columns": 3, "column_type_list": [("brand_code",'int32'), ("num_transactions",'int32'), ("list_of_users",'list')]} return brand_deets # Below was using list of tuples for storage, now going to convert to dictionary of np.arrays or lists. This could be more R or database style. def get_brand_purchase_deets_old(shoppers,brands): # below we are sorting by brand rather than by shoppers brand_shoppers = zip(brands,shoppers) brand_shoppers = sorted(brand_shoppers) brand_sorted = [brands for brands, shoppers in brand_shoppers] shoppers_sorted = [shoppers for brands, shoppers in brand_shoppers] # Creating Brand Details brand_deets = [] end_row = 0 total_transactions = len(brands) while end_row < total_transactions: num_transactions = 0 users_list = [] start_row = end_row start_brand = brand_sorted[start_row] while (end_row < total_transactions and brand_sorted[end_row] == start_brand): num_transactions += 1 users_list.append(shoppers_sorted[end_row]) end_row += 1 users_list = Mergesort.mergesorts(users_list) brand_deets.append((start_brand, num_transactions, users_list)) return brand_deets if __name__== "__main__": customers = [0,0,1,1,1,2,2,2,2] purchases = [0,3,5,1,2,4,1,3,5] print(get_brand_purchase_deets(customers, purchases))
40.615385
143
0.669192
0
0
0
0
0
0
0
0
690
0.217803
96709cd14fd89b69849ecd83f84c39ac23149ad2
4,623
py
Python
ATSAMD51P19A/libsrc/ATSAMD51P19A/MPU_.py
t-ikegami/WioTerminal-CircuitPython
efbdc2e13ad969fe009d88f7ec4b836ca61ae973
[ "MIT" ]
null
null
null
ATSAMD51P19A/libsrc/ATSAMD51P19A/MPU_.py
t-ikegami/WioTerminal-CircuitPython
efbdc2e13ad969fe009d88f7ec4b836ca61ae973
[ "MIT" ]
1
2022-01-19T00:16:02.000Z
2022-01-26T03:43:34.000Z
ATSAMD51P19A/libsrc/ATSAMD51P19A/MPU_.py
t-ikegami/WioTerminal-CircuitPython
efbdc2e13ad969fe009d88f7ec4b836ca61ae973
[ "MIT" ]
null
null
null
import uctypes as ct MPU_ = { 'TYPE' : ( 0x00, { 'reg' : 0x00 | ct.UINT32, 'SEPARATE' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 1 << ct.BF_LEN, 'DREGION' : 0x00 | ct.BFUINT32 | 8 << ct.BF_POS | 8 << ct.BF_LEN, 'IREGION' : 0x00 | ct.BFUINT32 | 16 << ct.BF_POS | 8 << ct.BF_LEN, }), 'CTRL' : ( 0x04, { 'reg' : 0x00 | ct.UINT32, 'ENABLE' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 1 << ct.BF_LEN, 'HFNMIENA' : 0x00 | ct.BFUINT32 | 1 << ct.BF_POS | 1 << ct.BF_LEN, 'PRIVDEFENA' : 0x00 | ct.BFUINT32 | 2 << ct.BF_POS | 1 << ct.BF_LEN, }), 'RNR' : ( 0x08, { 'reg' : 0x00 | ct.UINT32, 'REGION' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 8 << ct.BF_LEN, }), 'RBAR' : ( 0x0C, { 'reg' : 0x00 | ct.UINT32, 'REGION' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 4 << ct.BF_LEN, 'VALID' : 0x00 | ct.BFUINT32 | 4 << ct.BF_POS | 1 << ct.BF_LEN, 'ADDR' : 0x00 | ct.BFUINT32 | 5 << ct.BF_POS | 27 << ct.BF_LEN, }), 'RASR' : ( 0x10, { 'reg' : 0x00 | ct.UINT32, 'ENABLE' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 1 << ct.BF_LEN, 'SIZE' : 0x00 | ct.BFUINT32 | 1 << ct.BF_POS | 1 << ct.BF_LEN, 'SRD' : 0x00 | ct.BFUINT32 | 8 << ct.BF_POS | 8 << ct.BF_LEN, 'B' : 0x00 | ct.BFUINT32 | 16 << ct.BF_POS | 1 << ct.BF_LEN, 'C' : 0x00 | ct.BFUINT32 | 17 << ct.BF_POS | 1 << ct.BF_LEN, 'S' : 0x00 | ct.BFUINT32 | 18 << ct.BF_POS | 1 << ct.BF_LEN, 'TEX' : 0x00 | ct.BFUINT32 | 19 << ct.BF_POS | 3 << ct.BF_LEN, 'AP' : 0x00 | ct.BFUINT32 | 24 << ct.BF_POS | 3 << ct.BF_LEN, 'XN' : 0x00 | ct.BFUINT32 | 28 << ct.BF_POS | 1 << ct.BF_LEN, }), 'RBAR_A1' : ( 0x14, { 'reg' : 0x00 | ct.UINT32, 'REGION' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 4 << ct.BF_LEN, 'VALID' : 0x00 | ct.BFUINT32 | 4 << ct.BF_POS | 1 << ct.BF_LEN, 'ADDR' : 0x00 | ct.BFUINT32 | 5 << ct.BF_POS | 27 << ct.BF_LEN, }), 'RASR_A1' : ( 0x18, { 'reg' : 0x00 | ct.UINT32, 'ENABLE' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 1 << ct.BF_LEN, 'SIZE' : 0x00 | ct.BFUINT32 | 1 << ct.BF_POS | 1 << ct.BF_LEN, 'SRD' : 0x00 | ct.BFUINT32 | 8 << ct.BF_POS | 8 << ct.BF_LEN, 'B' : 0x00 | ct.BFUINT32 | 16 << ct.BF_POS | 1 << ct.BF_LEN, 'C' : 0x00 | ct.BFUINT32 | 17 << ct.BF_POS | 1 << ct.BF_LEN, 'S' : 0x00 | ct.BFUINT32 | 18 << ct.BF_POS | 1 << ct.BF_LEN, 'TEX' : 0x00 | ct.BFUINT32 | 19 << ct.BF_POS | 3 << ct.BF_LEN, 'AP' : 0x00 | ct.BFUINT32 | 24 << ct.BF_POS | 3 << ct.BF_LEN, 'XN' : 0x00 | ct.BFUINT32 | 28 << ct.BF_POS | 1 << ct.BF_LEN, }), 'RBAR_A2' : ( 0x1C, { 'reg' : 0x00 | ct.UINT32, 'REGION' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 4 << ct.BF_LEN, 'VALID' : 0x00 | ct.BFUINT32 | 4 << ct.BF_POS | 1 << ct.BF_LEN, 'ADDR' : 0x00 | ct.BFUINT32 | 5 << ct.BF_POS | 27 << ct.BF_LEN, }), 'RASR_A2' : ( 0x20, { 'reg' : 0x00 | ct.UINT32, 'ENABLE' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 1 << ct.BF_LEN, 'SIZE' : 0x00 | ct.BFUINT32 | 1 << ct.BF_POS | 1 << ct.BF_LEN, 'SRD' : 0x00 | ct.BFUINT32 | 8 << ct.BF_POS | 8 << ct.BF_LEN, 'B' : 0x00 | ct.BFUINT32 | 16 << ct.BF_POS | 1 << ct.BF_LEN, 'C' : 0x00 | ct.BFUINT32 | 17 << ct.BF_POS | 1 << ct.BF_LEN, 'S' : 0x00 | ct.BFUINT32 | 18 << ct.BF_POS | 1 << ct.BF_LEN, 'TEX' : 0x00 | ct.BFUINT32 | 19 << ct.BF_POS | 3 << ct.BF_LEN, 'AP' : 0x00 | ct.BFUINT32 | 24 << ct.BF_POS | 3 << ct.BF_LEN, 'XN' : 0x00 | ct.BFUINT32 | 28 << ct.BF_POS | 1 << ct.BF_LEN, }), 'RBAR_A3' : ( 0x24, { 'reg' : 0x00 | ct.UINT32, 'REGION' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 4 << ct.BF_LEN, 'VALID' : 0x00 | ct.BFUINT32 | 4 << ct.BF_POS | 1 << ct.BF_LEN, 'ADDR' : 0x00 | ct.BFUINT32 | 5 << ct.BF_POS | 27 << ct.BF_LEN, }), 'RASR_A3' : ( 0x28, { 'reg' : 0x00 | ct.UINT32, 'ENABLE' : 0x00 | ct.BFUINT32 | 0 << ct.BF_POS | 1 << ct.BF_LEN, 'SIZE' : 0x00 | ct.BFUINT32 | 1 << ct.BF_POS | 1 << ct.BF_LEN, 'SRD' : 0x00 | ct.BFUINT32 | 8 << ct.BF_POS | 8 << ct.BF_LEN, 'B' : 0x00 | ct.BFUINT32 | 16 << ct.BF_POS | 1 << ct.BF_LEN, 'C' : 0x00 | ct.BFUINT32 | 17 << ct.BF_POS | 1 << ct.BF_LEN, 'S' : 0x00 | ct.BFUINT32 | 18 << ct.BF_POS | 1 << ct.BF_LEN, 'TEX' : 0x00 | ct.BFUINT32 | 19 << ct.BF_POS | 3 << ct.BF_LEN, 'AP' : 0x00 | ct.BFUINT32 | 24 << ct.BF_POS | 3 << ct.BF_LEN, 'XN' : 0x00 | ct.BFUINT32 | 28 << ct.BF_POS | 1 << ct.BF_LEN, }), } MPU = ct.struct(0xe000ed90, MPU_)
48.663158
76
0.499459
0
0
0
0
0
0
0
0
452
0.097772
96724dd749d0959e504802c78aa325cae8171f97
8,550
py
Python
lib/core/postprocess.py
Chris1nexus/tmp
a76b477d491688add434f1ef84bcc0e2dbedbef3
[ "BSD-3-Clause" ]
null
null
null
lib/core/postprocess.py
Chris1nexus/tmp
a76b477d491688add434f1ef84bcc0e2dbedbef3
[ "BSD-3-Clause" ]
null
null
null
lib/core/postprocess.py
Chris1nexus/tmp
a76b477d491688add434f1ef84bcc0e2dbedbef3
[ "BSD-3-Clause" ]
null
null
null
import torch from lib.utils import is_parallel import numpy as np np.set_printoptions(threshold=np.inf) import cv2 from sklearn.cluster import DBSCAN def build_targets(cfg, predictions, targets, model, bdd=True): ''' predictions [16, 3, 32, 32, 85] [16, 3, 16, 16, 85] [16, 3, 8, 8, 85] torch.tensor(predictions[i].shape)[[3, 2, 3, 2]] [32,32,32,32] [16,16,16,16] [8,8,8,8] targets[3,x,7] t [index, class, x, y, w, h, head_index] ''' # Build targets for compute_loss(), input targets(image,class,x,y,w,h) if bdd: if is_parallel(model): det = model.module.det_out_bdd else: det = model.det_out_bdd else: if is_parallel(model): det = model.module.det_out_bosch else: det = model.det_out_bosch # print(type(model)) # det = model.model[model.detector_index] # print(type(det)) na, nt = det.na, targets.shape[0] # number of anchors, targets tcls, tbox, indices, anch = [], [], [], [] gain = torch.ones(7, device=targets.device) # normalized to gridspace gain ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=targets.device).float() * g # offsets for i in range(det.nl): anchors = det.anchors[i] #[3,2] gain[2:6] = torch.tensor(predictions[i].shape)[[3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain if nt: # Matches r = t[:, :, 4:6] / anchors[:, None] # wh ratio j = torch.max(r, 1. / r).max(2)[0] < cfg.TRAIN.ANCHOR_THRESHOLD # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1. < g) & (gxy > 1.)).T l, m = ((gxi % 1. < g) & (gxi > 1.)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append a = t[:, 6].long() # anchor indices indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors tcls.append(c) # class return tcls, tbox, indices, anch def morphological_process(image, kernel_size=5, func_type=cv2.MORPH_CLOSE): """ morphological process to fill the hole in the binary segmentation result :param image: :param kernel_size: :return: """ if len(image.shape) == 3: raise ValueError('Binary segmentation result image should be a single channel image') if image.dtype is not np.uint8: image = np.array(image, np.uint8) kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size)) # close operation fille hole closing = cv2.morphologyEx(image, func_type, kernel, iterations=1) return closing def connect_components_analysis(image): """ connect components analysis to remove the small components :param image: :return: """ if len(image.shape) == 3: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: gray_image = image # print(gray_image.dtype) return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S) def if_y(samples_x): for sample_x in samples_x: if len(sample_x): # if len(sample_x) != (sample_x[-1] - sample_x[0] + 1) or sample_x[-1] == sample_x[0]: if sample_x[-1] == sample_x[0]: return False return True def fitlane(mask, sel_labels, labels, stats): H, W = mask.shape for label_group in sel_labels: states = [stats[k] for k in label_group] x, y, w, h, _ = states[0] # if len(label_group) > 1: # print('in') # for m in range(len(label_group)-1): # labels[labels == label_group[m+1]] = label_group[0] t = label_group[0] # samples_y = np.linspace(y, H-1, 30) # else: samples_y = np.linspace(y, y+h-1, 30) samples_x = [np.where(labels[int(sample_y)]==t)[0] for sample_y in samples_y] if if_y(samples_x): samples_x = [int(np.mean(sample_x)) if len(sample_x) else -1 for sample_x in samples_x] samples_x = np.array(samples_x) samples_y = np.array(samples_y) samples_y = samples_y[samples_x != -1] samples_x = samples_x[samples_x != -1] func = np.polyfit(samples_y, samples_x, 2) x_limits = np.polyval(func, H-1) # if (y_max + h - 1) >= 720: if x_limits < 0 or x_limits > W: # if (y_max + h - 1) > 720: # draw_y = np.linspace(y, 720-1, 720-y) draw_y = np.linspace(y, y+h-1, h) else: # draw_y = np.linspace(y, y+h-1, y+h-y) draw_y = np.linspace(y, H-1, H-y) draw_x = np.polyval(func, draw_y) # draw_y = draw_y[draw_x < W] # draw_x = draw_x[draw_x < W] draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32) cv2.polylines(mask, [draw_points], False, 1, thickness=15) else: # if ( + w - 1) >= 1280: samples_x = np.linspace(x, W-1, 30) # else: # samples_x = np.linspace(x, x_max+w-1, 30) samples_y = [np.where(labels[:, int(sample_x)]==t)[0] for sample_x in samples_x] samples_y = [int(np.mean(sample_y)) if len(sample_y) else -1 for sample_y in samples_y] samples_x = np.array(samples_x) samples_y = np.array(samples_y) samples_x = samples_x[samples_y != -1] samples_y = samples_y[samples_y != -1] try: func = np.polyfit(samples_x, samples_y, 2) except: pass # y_limits = np.polyval(func, 0) # if y_limits > 720 or y_limits < 0: # if (x + w - 1) >= 1280: # draw_x = np.linspace(x, 1280-1, 1280-x) # else: y_limits = np.polyval(func, 0) if y_limits >= H or y_limits < 0: draw_x = np.linspace(x, x+w-1, w+x-x) else: y_limits = np.polyval(func, W-1) if y_limits >= H or y_limits < 0: draw_x = np.linspace(x, x+w-1, w+x-x) # if x+w-1 < 640: # draw_x = np.linspace(0, x+w-1, w+x-x) else: draw_x = np.linspace(x, W-1, W-x) draw_y = np.polyval(func, draw_x) draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32) cv2.polylines(mask, [draw_points], False, 1, thickness=15) return mask def connect_lane(image, shadow_height=0): if len(image.shape) == 3: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: gray_image = image if shadow_height: image[:shadow_height] = 0 mask = np.zeros((image.shape[0], image.shape[1]), np.uint8) num_labels, labels, stats, centers = cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S) # ratios = [] selected_label = [] for t in range(1, num_labels, 1): _, _, _, _, area = stats[t] if area > 400: selected_label.append(t) if len(selected_label) == 0: return mask else: split_labels = [[label,] for label in selected_label] mask_post = fitlane(mask, split_labels, labels, stats) return mask_post
36.228814
119
0.535906
0
0
0
0
0
0
0
0
2,065
0.24152
96736097d0c8c249aee5be77f87a2ac3b77a5f45
44
py
Python
name.py
dachuanz/crash-course
f7068e3ea502c1859e01f81772eafb179e5d2536
[ "MIT" ]
null
null
null
name.py
dachuanz/crash-course
f7068e3ea502c1859e01f81772eafb179e5d2536
[ "MIT" ]
null
null
null
name.py
dachuanz/crash-course
f7068e3ea502c1859e01f81772eafb179e5d2536
[ "MIT" ]
null
null
null
name = "ada lovelace" print(name.title())
14.666667
22
0.659091
0
0
0
0
0
0
0
0
14
0.318182
96740cc6a710cea9535394b9dcdca4bd9278e075
11,578
py
Python
buildbot/runCI.py
DenisBakhvalov/perf-ninja
d9d0a7ff3984e7cc3823bca3a3f106e7fbc00da0
[ "CC-BY-3.0" ]
1
2021-08-06T08:54:55.000Z
2021-08-06T08:54:55.000Z
buildbot/runCI.py
DenisBakhvalov/perf-ninja
d9d0a7ff3984e7cc3823bca3a3f106e7fbc00da0
[ "CC-BY-3.0" ]
null
null
null
buildbot/runCI.py
DenisBakhvalov/perf-ninja
d9d0a7ff3984e7cc3823bca3a3f106e7fbc00da0
[ "CC-BY-3.0" ]
null
null
null
import sys import subprocess import os import shutil import argparse import json import re from enum import Enum from dataclasses import dataclass import gbench from gbench import util, report from gbench.util import * class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class ScoreResult(Enum): SKIPPED = READY = 0 BUILD_FAILED = 1 BENCH_FAILED = 2 PASSED = 3 @dataclass class LabParams: threshold: float = 10.0 result: ScoreResult = ScoreResult.SKIPPED @dataclass class LabPath: category: str name: str parser = argparse.ArgumentParser(description='test results') parser.add_argument("-workdir", type=str, help="working directory", default="") parser.add_argument("-v", help="verbose", action="store_true", default=False) args = parser.parse_args() workdir = args.workdir verbose = args.v Labs = dict() Labs["memory_bound"] = dict() Labs["core_bound"] = dict() Labs["bad_speculation"] = dict() Labs["frontend_bound"] = dict() Labs["data_driven"] = dict() Labs["misc"] = dict() Labs["memory_bound"]["data_packing"] = LabParams(threshold=15.0) Labs["memory_bound"]["loop_interchange_1"] = LabParams(threshold=85.0) Labs["memory_bound"]["loop_interchange_2"] = LabParams(threshold=75.0) Labs["misc"]["warmup"] = LabParams(threshold=50.0) Labs["core_bound"]["function_inlining_1"] = LabParams(threshold=35.0) Labs["core_bound"]["compiler_intrinsics_1"] = LabParams(threshold=60.0) Labs["core_bound"]["vectorization_1"] = LabParams(threshold=90.0) def getLabCurrentStatus(labPath): return Labs[labPath.category][labPath.name].result def setLabCurrentStatus(labPath, status): Labs[labPath.category][labPath.name].result = status return True def getLabThreshold(labPath): return Labs[labPath.category][labPath.name].threshold def getLabNameStr(labPath): return labPath.category + ":" + labPath.name def buildAndValidate(labBuildDir): try: subprocess.check_call("cmake -E make_directory " + labBuildDir, shell=True) print("Prepare build directory - OK") except: print(bcolors.FAIL + "Prepare build directory - Failed" + bcolors.ENDC) return False os.chdir(labBuildDir) try: subprocess.check_call("cmake -DCMAKE_BUILD_TYPE=Release -DCI=ON " + os.path.join(labBuildDir, ".."), shell=True) print("CMake - OK") except: print(bcolors.FAIL + "CMake - Failed" + bcolors.ENDC) return False try: subprocess.check_call("cmake --build . --config Release --target clean", shell=True) subprocess.check_call("cmake --build . --config Release --parallel 8", shell=True) print("Build - OK") except: print(bcolors.FAIL + "Build - Failed" + bcolors.ENDC) return False try: subprocess.check_call("cmake --build . --config Release --target validateLab", shell=True) print("Validation - OK") except: print(bcolors.FAIL + "Validation - Failed" + bcolors.ENDC) return False return True def buildLab(labDir, solutionOrBaseline): os.chdir(labDir) buildDir = os.path.join(labDir, "build_" + solutionOrBaseline) print("Build and Validate the " + solutionOrBaseline) if not buildAndValidate(buildDir): return False return True def noChangesToTheBaseline(labDir): solutionDir = os.path.join(labDir, "build_solution") baselineDir = os.path.join(labDir, "build_baseline") solutionExe = os.path.join(solutionDir, "lab" if sys.platform != 'win32' else os.path.join("Release", "lab.exe")) baselineExe = os.path.join(baselineDir, "lab" if sys.platform != 'win32' else os.path.join("Release", "lab.exe")) exit_code = subprocess.call(("cmp " if sys.platform != 'win32' else "fc /b >NUL ") + solutionExe + " " + baselineExe, shell=True) return exit_code == 0 def checkoutBaseline(workdir): os.chdir(workdir) try: # Branch 'main' is always the baseline subprocess.check_call("git checkout main", shell=True) print("Checkout baseline - OK") except: print(bcolors.FAIL + "Checkout baseline - Failed" + bcolors.ENDC) return False return True def getSpeedUp(diff_report): old = diff_report[0]['measurements'][0]['real_time'] new = diff_report[0]['measurements'][0]['real_time_other'] diff = old - new speedup = (diff / old ) * 100 return speedup def benchmarkSolutionOrBaseline(labBuildDir, solutionOrBaseline): #os.chdir(labBuildDir) try: subprocess.check_call("cmake --build " + labBuildDir + " --config Release --target benchmarkLab", shell=True) print("Benchmarking " + solutionOrBaseline + " - OK") except: print(bcolors.FAIL + "Benchmarking " + solutionOrBaseline + " - Failed" + bcolors.ENDC) return False return True def benchmarkLab(labPath): print("Benchmark solution against the baseline") labDir = os.path.join(workdir, labPath.category, labPath.name) solutionDir = os.path.join(labDir, "build_solution") baselineDir = os.path.join(labDir, "build_baseline") benchmarkSolutionOrBaseline(solutionDir, "solution") benchmarkSolutionOrBaseline(baselineDir, "baseline") outJsonSolution = gbench.util.load_benchmark_results(os.path.join(solutionDir, "result.json")) outJsonBaseline = gbench.util.load_benchmark_results(os.path.join(baselineDir, "result.json")) # Parse two report files and compare them diff_report = gbench.report.get_difference_report( outJsonBaseline, outJsonSolution, True) output_lines = gbench.report.print_difference_report( diff_report, False, True, 0.05, True) for ln in output_lines: print(ln) speedup = getSpeedUp(diff_report) if abs(speedup) < 2.0: print (bcolors.FAIL + "New version has performance similar to the baseline (<2% difference). Submission for the lab " + getLabNameStr(labPath) + " failed." + bcolors.ENDC) return False if speedup < 0: print (bcolors.FAIL + "New version is slower. Submission for the lab " + getLabNameStr(labPath) + " failed." + bcolors.ENDC) return False if (speedup < getLabThreshold(labPath)): print (bcolors.FAIL + "Submission for the lab " + getLabNameStr(labPath) + " failed. New version is not fast enough." + bcolors.ENDC) print ("Measured speedup:", "{:.2f}".format(speedup), "%") print ("Pass threshold:", "{:.2f}".format(getLabThreshold(labPath)), "%") return False print ("Measured speedup:", "{:.2f}".format(speedup), "%") print (bcolors.OKGREEN + "Submission succeded" + bcolors.ENDC) return True def runActionForAllLabs(workdir, func): for labCategory in os.listdir(workdir): if labCategory in Labs: categoryDir = os.path.join(workdir, labCategory) for labName in os.listdir(categoryDir): if labName in Labs[labCategory]: labPath = LabPath(labCategory, labName) if (getLabCurrentStatus(labPath) == ScoreResult.READY): func(labPath) def buildSolutionAction(labPath): labWorkDir = os.path.join(workdir, labPath.category, labPath.name) if not buildLab(labWorkDir, "solution"): setLabCurrentStatus(labPath, ScoreResult.BUILD_FAILED) def buildBaselineAction(labPath): labWorkDir = os.path.join(workdir, labPath.category, labPath.name) if not buildLab(labWorkDir, "baseline"): setLabCurrentStatus(labPath, ScoreResult.BUILD_FAILED) def benchmarkAction(labPath): labWorkDir = os.path.join(workdir, labPath.category, labPath.name) if noChangesToTheBaseline(labWorkDir): setLabCurrentStatus(labPath, ScoreResult.SKIPPED) elif not benchmarkLab(labPath): setLabCurrentStatus(labPath, ScoreResult.BENCH_FAILED) else: setLabCurrentStatus(labPath, ScoreResult.PASSED) def checkAllLabs(workdir): runActionForAllLabs(workdir, buildSolutionAction) if not checkoutBaseline(workdir): return False runActionForAllLabs(workdir, buildBaselineAction) runActionForAllLabs(workdir, benchmarkAction) return True def changedMultipleLabs(lines): percent1, path1 = lines[1].split(b'%') GitShowLabPath1 = DirLabPathRegex.search(str(path1)) if (GitShowLabPath1): for i in range(2, len(lines)): if len(lines[i]) == 0: continue percent_i, path_i = lines[i].split(b'%') GitShowLabPath_i = DirLabPathRegex.search(str(path_i)) if (GitShowLabPath_i): if GitShowLabPath1.group(1) != GitShowLabPath_i.group(1) or GitShowLabPath1.group(2) != GitShowLabPath_i.group(2): return True return False if not workdir: print ("Error: working directory is not provided.") sys.exit(1) os.chdir(workdir) checkAll = False benchLabPath = 0 DirLabPathRegex = re.compile(r'labs/(.*)/(.*)/') try: outputGitLog = subprocess.check_output("git log -1 --oneline" , shell=True) # If the commit message has '[CheckAll]' substring, benchmark everything if b'[CheckAll]' in outputGitLog: checkAll = True print("Will benchmark all the labs") # Otherwise, analyze the changes made in the last commit and identify which lab to benchmark else: outputGitShow = subprocess.check_output("git show -1 --dirstat --oneline" , shell=True) lines = outputGitShow.split(b'\n') # Expect at least 2 lines in the output if (len(lines) < 2 or len(lines[1]) == 0): print("Can't figure out which lab was changed in the last commit. Will benchmark all the labs.") checkAll = True elif changedMultipleLabs(lines): print("Multiple labs changed. Will benchmark all the labs.") checkAll = True else: # Skip the first line that has the commit hash and message percent, path = lines[1].split(b'%') GitShowLabPath = DirLabPathRegex.search(str(path)) if (GitShowLabPath): benchLabPath = LabPath(GitShowLabPath.group(1), GitShowLabPath.group(2)) print("Will benchmark the lab: " + getLabNameStr(benchLabPath)) else: print("Can't figure out which lab was changed in the last commit. Will benchmark all the labs.") checkAll = True except: print("Error: can't fetch the last commit from git history") sys.exit(1) result = False if checkAll: if not checkAllLabs(workdir): sys.exit(1) print(bcolors.HEADER + "\nLab Assignments Summary:" + bcolors.ENDC) allSkipped = True for category in Labs: print(bcolors.HEADER + " " + category + ":" + bcolors.ENDC) for lab in Labs[category]: if ScoreResult.SKIPPED == Labs[category][lab].result: print(bcolors.OKCYAN + " " + lab + ": Skipped" + bcolors.ENDC) else: allSkipped = False if ScoreResult.PASSED == Labs[category][lab].result: print(bcolors.OKGREEN + " " + lab + ": Passed" + bcolors.ENDC) # Return true if at least one lab succeeded result = True if ScoreResult.BENCH_FAILED == Labs[category][lab].result: print(bcolors.FAIL + " " + lab + ": Failed: not fast enough" + bcolors.ENDC) if ScoreResult.BUILD_FAILED == Labs[category][lab].result: print(bcolors.FAIL + " " + lab + ": Failed: build error" + bcolors.ENDC) if allSkipped: result = True else: labdir = os.path.join(workdir, benchLabPath.category, benchLabPath.name) if not buildLab(labdir, "solution"): sys.exit(1) if not checkoutBaseline(workdir): sys.exit(1) if not buildLab(labdir, "baseline"): sys.exit(1) if noChangesToTheBaseline(labdir): print(bcolors.OKCYAN + "The solution and the baseline are identical. Skipped." + bcolors.ENDC) result = True else: result = benchmarkLab(benchLabPath) if not result: sys.exit(1) else: sys.exit(0)
34.458333
175
0.70228
467
0.040335
0
0
158
0.013647
0
0
2,786
0.240629
967557de1befe9d5c89674990959f86af65d7c4c
1,156
py
Python
main.py
TheSkidSlayer/VissageMassBanner
38f0a83ad9d625930cef5004787f8c4966312fd0
[ "BSL-1.0" ]
1
2021-12-31T23:15:47.000Z
2021-12-31T23:15:47.000Z
main.py
TheSkidSlayer/VissageMassBanner
38f0a83ad9d625930cef5004787f8c4966312fd0
[ "BSL-1.0" ]
null
null
null
main.py
TheSkidSlayer/VissageMassBanner
38f0a83ad9d625930cef5004787f8c4966312fd0
[ "BSL-1.0" ]
null
null
null
try: from concurrent.futures import ThreadPoolExecutor import random, time, os, httpx from colorama import Fore, Style except ImportError: print("Error [!] -> Modules Are not installed") token, guild = input("Token -> "), input("\nGuild ID -> ") threads = [] apiv = [6, 7, 8, 9] codes = [200, 201, 204] def worker(user: str): try: response = httpx.put( "https://discord.com/api/v{}/guilds/{}/bans/{}".format( random.choice(apiv), guild, user ), headers={"Authorization": f"Bot {token}"}, ) if response.status_code in codes: print( f"{Fore.CYAN}{Style.BRIGHT} Succesfully Punished User --> {Fore.RESET}" + user ) else: return worker(user) except (Exception): return worker(user) def theadpool(): with ThreadPoolExecutor() as executor: time.sleep(0.015) with open("members.txt") as f: Ids = f.readlines() for user in Ids: threads.append(executor.submit(worker, user)) if __name__ == "__main__": theadpool()
24.083333
87
0.553633
0
0
0
0
0
0
0
0
237
0.205017
9676900dd098082bdefdd8316547347e26bd4ef9
376
py
Python
panos/example_with_output_template/loader.py
nembery/Skillets
4c0a259d4fb49550605c5eb5316d83f109612271
[ "Apache-2.0" ]
1
2019-04-17T19:30:46.000Z
2019-04-17T19:30:46.000Z
panos/example_with_output_template/loader.py
nembery/Skillets
4c0a259d4fb49550605c5eb5316d83f109612271
[ "Apache-2.0" ]
null
null
null
panos/example_with_output_template/loader.py
nembery/Skillets
4c0a259d4fb49550605c5eb5316d83f109612271
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 from skilletlib import SkilletLoader sl = SkilletLoader('.') skillet = sl.get_skillet_with_name('panos_cli_example') context = dict() context['cli_command'] = 'show system info' context['username'] = 'admin' context['password'] = 'NOPE' context['ip_address'] = 'NOPE' output = skillet.execute(context) print(output.get('output_template', 'n/a'))
19.789474
55
0.723404
0
0
0
0
0
0
0
0
148
0.393617
967705c9e8a9fd17fb6a029cb268db7aef64d726
198
py
Python
treasurehunt/views.py
code-haven/Django-treasurehunt-demo
c22aa88486d57fa97363d9d57dbbb7bc68a8ddd4
[ "MIT" ]
1
2017-04-30T05:46:40.000Z
2017-04-30T05:46:40.000Z
treasurehunt/views.py
code-haven/Django-treasurehunt-demo
c22aa88486d57fa97363d9d57dbbb7bc68a8ddd4
[ "MIT" ]
null
null
null
treasurehunt/views.py
code-haven/Django-treasurehunt-demo
c22aa88486d57fa97363d9d57dbbb7bc68a8ddd4
[ "MIT" ]
null
null
null
from django.views.generic import View from django.http import HttpResponse from django.shortcuts import render def index(request): return render(request, 'treasurehunt/treasurehunt_index.html')
33
66
0.823232
0
0
0
0
0
0
0
0
38
0.191919
9677e8577eb71d6a56fc8178b8340df0cf85efc4
2,184
py
Python
setup.py
pletnes/cloud-pysec
4f91e3875ee36cb3e9b361e8b598070ce9523128
[ "Apache-2.0" ]
null
null
null
setup.py
pletnes/cloud-pysec
4f91e3875ee36cb3e9b361e8b598070ce9523128
[ "Apache-2.0" ]
null
null
null
setup.py
pletnes/cloud-pysec
4f91e3875ee36cb3e9b361e8b598070ce9523128
[ "Apache-2.0" ]
null
null
null
""" xssec setup """ import codecs from os import path from setuptools import setup, find_packages from sap.conf.config import USE_SAP_PY_JWT CURRENT_DIR = path.abspath(path.dirname(__file__)) README_LOCATION = path.join(CURRENT_DIR, 'README.md') VERSION = '' with open(path.join(CURRENT_DIR, 'version.txt'), 'r') as version_file: VERSION = version_file.read() with codecs.open(README_LOCATION, 'r', 'utf-8') as readme_file: LONG_DESCRIPTION = readme_file.read() sap_py_jwt_dep = '' if USE_SAP_PY_JWT: sap_py_jwt_dep = 'sap_py_jwt>=1.1.1' else: sap_py_jwt_dep = 'cryptography' setup( name='sap_xssec', url='https://github.com/SAP/cloud-pysec', version=VERSION.strip(), author='SAP SE', description=('SAP Python Security Library'), packages=find_packages(include=['sap*']), data_files=[('.', ['version.txt', 'CHANGELOG.md'])], test_suite='tests', install_requires=[ 'deprecation>=2.1.0', 'requests>=2.21.0', 'six>=1.11.0', 'pyjwt>=1.7.0', '{}'.format(sap_py_jwt_dep) ], long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", classifiers=[ # http://pypi.python.org/pypi?%3Aaction=list_classifiers "Development Status :: 5 - Production/Stable", "Topic :: Security", "License :: OSI Approved :: Apache Software License", "Natural Language :: English", "Operating System :: MacOS :: MacOS X", "Operating System :: POSIX", "Operating System :: POSIX :: BSD", "Operating System :: POSIX :: Linux", "Operating System :: Microsoft :: Windows", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", ], )
34.125
70
0.628663
0
0
0
0
0
0
0
0
1,102
0.504579
96785881acee4c6b6e5fbf6dfa6bcd4a371b2db4
1,957
py
Python
mutators/implementations/mutation_change_proto.py
freingruber/JavaScript-Raider
d1c1fff2fcfc60f210b93dbe063216fa1a83c1d0
[ "Apache-2.0" ]
91
2022-01-24T07:32:34.000Z
2022-03-31T23:37:15.000Z
mutators/implementations/mutation_change_proto.py
zeusguy/JavaScript-Raider
d1c1fff2fcfc60f210b93dbe063216fa1a83c1d0
[ "Apache-2.0" ]
null
null
null
mutators/implementations/mutation_change_proto.py
zeusguy/JavaScript-Raider
d1c1fff2fcfc60f210b93dbe063216fa1a83c1d0
[ "Apache-2.0" ]
11
2022-01-24T14:21:12.000Z
2022-03-31T23:37:23.000Z
# Copyright 2022 @ReneFreingruber # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import utils import tagging_engine.tagging as tagging from tagging_engine.tagging import Tag import mutators.testcase_mutators_helpers as testcase_mutators_helpers def mutation_change_proto(content, state): # utils.dbg_msg("Mutation operation: Change proto") tagging.add_tag(Tag.MUTATION_CHANGE_PROTO1) # TODO # Currently I don't return in "lhs" or "rhs" the __proto__ of a function # So code like this: # Math.abs.__proto__ = Math.sign.__proto__ # Can currently not be created. Is this required? # => has such code an effect? random_line_number = testcase_mutators_helpers.get_random_line_number_to_insert_code(state) (start_line_with, end_line_with) = testcase_mutators_helpers.get_start_and_end_line_symbols(state, random_line_number, content) (lhs, code_possibilities) = testcase_mutators_helpers.get_proto_change_lhs(state, random_line_number) rhs = testcase_mutators_helpers.get_proto_change_rhs(state, random_line_number, code_possibilities) new_code_line = "%s%s.__proto__ = %s%s" % (start_line_with, lhs, rhs, end_line_with) # Now just insert the new line to the testcase & state lines = content.split("\n") lines.insert(random_line_number, new_code_line) new_content = "\n".join(lines) state.state_insert_line(random_line_number, new_content, new_code_line) return new_content, state
40.770833
131
0.772611
0
0
0
0
0
0
0
0
918
0.469085
9678930e9778ab9e49deebe9a98a3436e67de53f
1,809
py
Python
homeassistant/components/smarthab/light.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
22,481
2020-03-02T13:09:59.000Z
2022-03-31T23:34:28.000Z
homeassistant/components/smarthab/light.py
jagadeeshvenkatesh/core
1bd982668449815fee2105478569f8e4b5670add
[ "Apache-2.0" ]
31,101
2020-03-02T13:00:16.000Z
2022-03-31T23:57:36.000Z
homeassistant/components/smarthab/light.py
jagadeeshvenkatesh/core
1bd982668449815fee2105478569f8e4b5670add
[ "Apache-2.0" ]
11,411
2020-03-02T14:19:20.000Z
2022-03-31T22:46:07.000Z
"""Support for SmartHab device integration.""" from datetime import timedelta import logging import pysmarthab from requests.exceptions import Timeout from homeassistant.components.light import LightEntity from . import DATA_HUB, DOMAIN _LOGGER = logging.getLogger(__name__) SCAN_INTERVAL = timedelta(seconds=60) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up SmartHab lights from a config entry.""" hub = hass.data[DOMAIN][config_entry.entry_id][DATA_HUB] entities = ( SmartHabLight(light) for light in await hub.async_get_device_list() if isinstance(light, pysmarthab.Light) ) async_add_entities(entities, True) class SmartHabLight(LightEntity): """Representation of a SmartHab Light.""" def __init__(self, light): """Initialize a SmartHabLight.""" self._light = light @property def unique_id(self) -> str: """Return a unique ID.""" return self._light.device_id @property def name(self) -> str: """Return the display name of this light.""" return self._light.label @property def is_on(self) -> bool: """Return true if light is on.""" return self._light.state async def async_turn_on(self, **kwargs): """Instruct the light to turn on.""" await self._light.async_turn_on() async def async_turn_off(self, **kwargs): """Instruct the light to turn off.""" await self._light.async_turn_off() async def async_update(self): """Fetch new state data for this light.""" try: await self._light.async_update() except Timeout: _LOGGER.error( "Reached timeout while updating light %s from API", self.entity_id )
26.602941
82
0.6534
1,107
0.61194
0
0
347
0.191819
921
0.509121
436
0.241017
9679546d86fe3d9ab266b6fcd96932146df7b271
406
py
Python
hello.py
AaronTrip/cgi-lab
cc932dfe21c27f3ca054233fe5bc73783facee6b
[ "Apache-2.0" ]
null
null
null
hello.py
AaronTrip/cgi-lab
cc932dfe21c27f3ca054233fe5bc73783facee6b
[ "Apache-2.0" ]
null
null
null
hello.py
AaronTrip/cgi-lab
cc932dfe21c27f3ca054233fe5bc73783facee6b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import os, json print("Content-type: text/html\r\n\r\n") print() print("<Title>Test CGI</title>") print("<p>Hello World cmput404 class!<p/>") print(os.environ) json_object = json.dumps(dict(os.environ), indent = 4) print(json_object) '''for param in os.environ.keys(): if(param == "HTTP_USER_AGENT"): print("<b>%20s<b/>: %s<br>" % (param, os.environ[param])) '''
18.454545
65
0.640394
0
0
0
0
0
0
0
0
256
0.630542
96797b706de9c91fb5c25b82dfacdb6b113734eb
14,277
py
Python
VCD/utils/utils.py
Xingyu-Lin/VCD
46ca993f79b23e5c73f5a7eb72b39dfacf3b282c
[ "MIT" ]
25
2022-01-28T02:13:42.000Z
2022-03-19T15:33:38.000Z
VCD/utils/utils.py
Xingyu-Lin/VCD
46ca993f79b23e5c73f5a7eb72b39dfacf3b282c
[ "MIT" ]
2
2022-01-28T05:58:32.000Z
2022-01-30T11:37:50.000Z
VCD/utils/utils.py
Xingyu-Lin/VCD
46ca993f79b23e5c73f5a7eb72b39dfacf3b282c
[ "MIT" ]
4
2022-01-31T08:22:49.000Z
2022-02-17T16:28:32.000Z
import os.path as osp import numpy as np import cv2 import torch from torchvision.utils import make_grid from VCD.utils.camera_utils import project_to_image import pyflex import re import h5py import os from softgym.utils.visualization import save_numpy_as_gif from chester import logger import random class VArgs(object): def __init__(self, vv): for key, val in vv.items(): setattr(self, key, val) def vv_to_args(vv): args = VArgs(vv) return args # Function to extract all the numbers from the given string def extract_numbers(str): array = re.findall(r'[0-9]+', str) if len(array) == 0: return [0] return array ################## Pointcloud Processing ################# import pcl # def get_partial_particle(full_particle, observable_idx): # return np.array(full_particle[observable_idx], dtype=np.float32) def voxelize_pointcloud(pointcloud, voxel_size): cloud = pcl.PointCloud(pointcloud) sor = cloud.make_voxel_grid_filter() sor.set_leaf_size(voxel_size, voxel_size, voxel_size) pointcloud = sor.filter() pointcloud = np.asarray(pointcloud).astype(np.float32) return pointcloud from softgym.utils.misc import vectorized_range, vectorized_meshgrid def pc_reward_model(pos, cloth_particle_radius=0.00625, downsample_scale=3): cloth_particle_radius *= downsample_scale pos = np.reshape(pos, [-1, 3]) min_x = np.min(pos[:, 0]) min_y = np.min(pos[:, 2]) max_x = np.max(pos[:, 0]) max_y = np.max(pos[:, 2]) init = np.array([min_x, min_y]) span = np.array([max_x - min_x, max_y - min_y]) / 100. pos2d = pos[:, [0, 2]] offset = pos2d - init slotted_x_low = np.maximum(np.round((offset[:, 0] - cloth_particle_radius) / span[0]).astype(int), 0) slotted_x_high = np.minimum(np.round((offset[:, 0] + cloth_particle_radius) / span[0]).astype(int), 100) slotted_y_low = np.maximum(np.round((offset[:, 1] - cloth_particle_radius) / span[1]).astype(int), 0) slotted_y_high = np.minimum(np.round((offset[:, 1] + cloth_particle_radius) / span[1]).astype(int), 100) grid = np.zeros(10000) # Discretization listx = vectorized_range(slotted_x_low, slotted_x_high) listy = vectorized_range(slotted_y_low, slotted_y_high) listxx, listyy = vectorized_meshgrid(listx, listy) idx = listxx * 100 + listyy idx = np.clip(idx.flatten(), 0, 9999) grid[idx] = 1 res = np.sum(grid) * span[0] * span[1] return res ################## IO ################################# def downsample(cloth_xdim, cloth_ydim, scale): cloth_xdim, cloth_ydim = int(cloth_xdim), int(cloth_ydim) new_idx = np.arange(cloth_xdim * cloth_ydim).reshape((cloth_ydim, cloth_xdim)) new_idx = new_idx[::scale, ::scale] cloth_ydim, cloth_xdim = new_idx.shape new_idx = new_idx.flatten() return new_idx, cloth_xdim, cloth_ydim def load_h5_data(data_names, path): hf = h5py.File(path, 'r') data = {} for name in data_names: d = np.array(hf.get(name)) data[name] = d hf.close() return data def store_h5_data(data_names, data, path): hf = h5py.File(path, 'w') for name in data_names: hf.create_dataset(name, data=data[name]) hf.close() def load_data(data_dir, idx_rollout, idx_timestep, data_names): data_path = os.path.join(data_dir, str(idx_rollout), str(idx_timestep) + '.h5') return load_h5_data(data_names, data_path) def load_data_list(data_dir, idx_rollout, idx_timestep, data_names): data_path = os.path.join(data_dir, str(idx_rollout), str(idx_timestep) + '.h5') d = load_h5_data(data_names, data_path) return [d[name] for name in data_names] def store_data(): raise NotImplementedError def transform_info(all_infos): """ Input: All info is a nested list with the index of [episode][time]{info_key:info_value} Output: transformed_infos is a dictionary with the index of [info_key][episode][time] """ if len(all_infos) == 0: return [] transformed_info = {} num_episode = len(all_infos) T = len(all_infos[0]) for info_name in all_infos[0][0].keys(): infos = np.zeros([num_episode, T], dtype=np.float32) for i in range(num_episode): infos[i, :] = np.array([info[info_name] for info in all_infos[i]]) transformed_info[info_name] = infos return transformed_info def draw_grid(list_of_imgs, nrow, padding=10, pad_value=200): img_list = torch.from_numpy(np.array(list_of_imgs).transpose(0, 3, 1, 2)) img = make_grid(img_list, nrow=nrow, padding=padding, pad_value=pad_value) # print(img.shape) img = img.numpy().transpose(1, 2, 0) return img def inrange(x, low, high): if x >= low and x < high: return True else: return False ################## Visualization ###################### def draw_edge(frame, predicted_edges, matrix_world_to_camera, pointcloud, camera_height, camera_width): u, v = project_to_image(matrix_world_to_camera, pointcloud, camera_height, camera_width) for edge_idx in range(predicted_edges.shape[1]): s = predicted_edges[0][edge_idx] r = predicted_edges[1][edge_idx] start = (u[s], v[s]) end = (u[r], v[r]) color = (255, 0, 0) thickness = 1 image = cv2.line(frame, start, end, color, thickness) return image def cem_make_gif(all_frames, save_dir, save_name): # Convert to T x index x C x H x W for pytorch all_frames = np.array(all_frames).transpose([1, 0, 4, 2, 3]) grid_imgs = [make_grid(torch.from_numpy(frame), nrow=5).permute(1, 2, 0).data.cpu().numpy() for frame in all_frames] save_numpy_as_gif(np.array(grid_imgs), osp.join(save_dir, save_name)) def draw_policy_action(obs_before, obs_after, start_loc_1, end_loc_1, matrix_world_to_camera, start_loc_2=None, end_loc_2=None): height, width, _ = obs_before.shape if start_loc_2 is not None: l = [(start_loc_1, end_loc_1), (start_loc_2, end_loc_2)] else: l = [(start_loc_1, end_loc_1)] for (start_loc, end_loc) in l: # print(start_loc, end_loc) suv = project_to_image(matrix_world_to_camera, start_loc.reshape((1, 3)), height, width) su, sv = suv[0][0], suv[1][0] euv = project_to_image(matrix_world_to_camera, end_loc.reshape((1, 3)), height, width) eu, ev = euv[0][0], euv[1][0] if inrange(su, 0, width) and inrange(sv, 0, height) and inrange(eu, 0, width) and inrange(ev, 0, height): cv2.arrowedLine(obs_before, (su, sv), (eu, ev), (255, 0, 0), 3) obs_before[sv - 5:sv + 5, su - 5:su + 5, :] = (0, 0, 0) res = np.concatenate((obs_before, obs_after), axis=1) return res def draw_planned_actions(save_idx, obses, start_poses, end_poses, matrix_world_to_camera, log_dir): height = width = obses[0].shape[0] start_uv = [] end_uv = [] for sp in start_poses: suv = project_to_image(matrix_world_to_camera, sp.reshape((1, 3)), height, width) start_uv.append((suv[0][0], suv[1][0])) for ep in end_poses: euv = project_to_image(matrix_world_to_camera, ep.reshape((1, 3)), height, width) end_uv.append((euv[0][0], euv[1][0])) res = [] for idx in range(len(obses) - 1): obs = obses[idx] su, sv = start_uv[idx] eu, ev = end_uv[idx] if inrange(su, 0, width) and inrange(sv, 0, height) and inrange(eu, 0, width) and inrange(ev, 0, height): cv2.arrowedLine(obs, (su, sv), (eu, ev), (255, 0, 0), 3) obs[sv - 5:sv + 5, su - 5:su + 5, :] = (0, 0, 0) res.append(obs) res.append(obses[-1]) res = np.concatenate(res, axis=1) cv2.imwrite(osp.join(log_dir, '{}_planned.png'.format(save_idx)), res[:, :, ::-1]) def draw_cem_elites(obs_, start_poses, end_poses, mean_start_pos, mean_end_pos, matrix_world_to_camera, log_dir, save_idx=None): obs = obs_.copy() start_uv = [] end_uv = [] height = width = obs.shape[0] for sp in start_poses: suv = project_to_image(matrix_world_to_camera, sp.reshape((1, 3)), height, width) start_uv.append((suv[0][0], suv[1][0])) for ep in end_poses: euv = project_to_image(matrix_world_to_camera, ep.reshape((1, 3)), height, width) end_uv.append((euv[0][0], euv[1][0])) for idx in range(len(start_poses)): su, sv = start_uv[idx] eu, ev = end_uv[idx] # poses at the front have higher reward if inrange(su, 0, 255) and inrange(sv, 0, 255) and inrange(eu, 0, 255) and inrange(ev, 0, 255): cv2.arrowedLine(obs, (su, sv), (eu, ev), (255 * (1 - idx / len(start_poses)), 0, 0), 2) obs[sv - 2:sv + 2, su - 2:su + 2, :] = (0, 0, 0) mean_s_uv = project_to_image(matrix_world_to_camera, mean_start_pos.reshape((1, 3)), height, width) mean_e_uv = project_to_image(matrix_world_to_camera, mean_end_pos.reshape((1, 3)), height, width) mean_su, mean_sv = mean_s_uv[0][0], mean_s_uv[1][0] mean_eu, mean_ev = mean_e_uv[0][0], mean_e_uv[1][0] if inrange(mean_su, 0, 255) and inrange(mean_sv, 0, 255) and \ inrange(mean_eu, 0, 255) and inrange(mean_ev, 0, 255): cv2.arrowedLine(obs, (mean_su, mean_sv), (mean_eu, mean_ev), (0, 0, 255), 3) obs[mean_su - 5:mean_sv + 5, mean_eu - 5:mean_ev + 5, :] = (0, 0, 0) if save_idx is not None: cv2.imwrite(osp.join(log_dir, '{}_elite.png'.format(save_idx)), obs) return obs def set_shape_pos(pos): shape_states = np.array(pyflex.get_shape_states()).reshape(-1, 14) shape_states[:, 3:6] = pos.reshape(-1, 3) shape_states[:, :3] = pos.reshape(-1, 3) pyflex.set_shape_states(shape_states) def visualize(env, particle_positions, shape_positions, config_id, sample_idx=None, picked_particles=None, show=False): """ Render point cloud trajectory without running the simulation dynamics""" env.reset(config_id=config_id) frames = [] for i in range(len(particle_positions)): particle_pos = particle_positions[i] shape_pos = shape_positions[i] p = pyflex.get_positions().reshape(-1, 4) p[:, :3] = [0., -0.1, 0.] # All particles moved underground if sample_idx is None: p[:len(particle_pos), :3] = particle_pos else: p[:, :3] = [0, -0.1, 0] p[sample_idx, :3] = particle_pos pyflex.set_positions(p) set_shape_pos(shape_pos) rgb = env.get_image(env.camera_width, env.camera_height) frames.append(rgb) if show: if i == 0: continue picked_point = picked_particles[i] phases = np.zeros(pyflex.get_n_particles()) for id in picked_point: if id != -1: phases[sample_idx[int(id)]] = 1 pyflex.set_phases(phases) img = env.get_image() cv2.imshow('picked particle images', img[:, :, ::-1]) cv2.waitKey() return frames def add_occluded_particles(observable_positions, observable_vel_history, particle_radius=0.00625, neighbor_distance=0.0216): occluded_idx = np.where(observable_positions[:, 1] > neighbor_distance / 2 + particle_radius) occluded_positions = [] for o_idx in occluded_idx[0]: pos = observable_positions[o_idx] occlude_num = np.floor(pos[1] / neighbor_distance).astype('int') for i in range(occlude_num): occluded_positions.append([pos[0], particle_radius + i * neighbor_distance, pos[2]]) print("add occluded particles num: ", len(occluded_positions)) occluded_positions = np.asarray(occluded_positions, dtype=np.float32).reshape((-1, 3)) occluded_velocity_his = np.zeros((len(occluded_positions), observable_vel_history.shape[1]), dtype=np.float32) all_positions = np.concatenate([observable_positions, occluded_positions], axis=0) all_vel_his = np.concatenate([observable_vel_history, occluded_velocity_his], axis=0) return all_positions, all_vel_his def sort_pointcloud_for_fold(pointcloud, dim): pointcloud = list(pointcloud) sorted_pointcloud = sorted(pointcloud, key=lambda k: (k[0], k[2])) for idx in range(len(sorted_pointcloud) - 1): assert sorted_pointcloud[idx][0] < sorted_pointcloud[idx + 1][0] or ( sorted_pointcloud[idx][0] == sorted_pointcloud[idx + 1][0] and sorted_pointcloud[idx][2] < sorted_pointcloud[idx + 1][2] ) real_sorted = [] for i in range(dim): points_row = sorted_pointcloud[i * dim: (i + 1) * dim] points_row = sorted(points_row, key=lambda k: k[2]) real_sorted += points_row sorted_pointcloud = real_sorted return np.asarray(sorted_pointcloud) def get_fold_idx(dim=4): group_a = [] for i in range(dim - 1): for j in range(dim - i - 1): group_a.append(i * dim + j) group_b = [] for j in range(dim - 1, 0, -1): for i in range(dim - 1, dim - 1 - j, -1): group_b.append(i * dim + j) return group_a, group_b ############################ Other ######################## def updateDictByAdd(dict1, dict2): ''' update dict1 by dict2 ''' for k1, v1 in dict2.items(): for k2, v2 in v1.items(): dict1[k1][k2] += v2.cpu().item() return dict1 def configure_logger(log_dir, exp_name): # Configure logger logger.configure(dir=log_dir, exp_name=exp_name) logdir = logger.get_dir() assert logdir is not None os.makedirs(logdir, exist_ok=True) def configure_seed(seed): # Configure seed torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) ############### for planning ############################### def set_picker_pos(pos): shape_states = pyflex.get_shape_states().reshape((-1, 14)) shape_states[1, :3] = -1 shape_states[1, 3:6] = -1 shape_states[0, :3] = pos shape_states[0, 3:6] = pos pyflex.set_shape_states(shape_states) pyflex.step() def set_resource(): import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
35.426799
128
0.6397
120
0.008405
0
0
0
0
0
0
1,107
0.077537
967f854c2cc3d7839a4210800ff6ac34aa126d0b
3,493
py
Python
tests/test_classes.py
fossabot/RPGenie
eb3ee17ede0dbbec787766d607b2f5b89d65533d
[ "MIT" ]
32
2017-09-03T21:14:17.000Z
2022-01-12T04:26:28.000Z
tests/test_classes.py
fossabot/RPGenie
eb3ee17ede0dbbec787766d607b2f5b89d65533d
[ "MIT" ]
9
2017-09-12T13:16:43.000Z
2022-01-19T18:53:48.000Z
tests/test_classes.py
fossabot/RPGenie
eb3ee17ede0dbbec787766d607b2f5b89d65533d
[ "MIT" ]
19
2017-10-12T03:14:54.000Z
2021-06-12T18:30:33.000Z
#! python3 """ Pytest-compatible tests for src/classes.py """ import sys from pathlib import Path from copy import deepcopy from unittest import mock # A workaround for tests not automatically setting # root/src/ as the current working directory path_to_src = Path(__file__).parent.parent / "src" sys.path.insert(0, str(path_to_src)) from classes import Item, Inventory, Player, Character from settings import * def initialiser(testcase): """ Initialises all test cases with data """ def inner(*args, **kwargs): items = [Item(i) for i in range(kwargs.get("itemcount", 3))] inv = Inventory(items=deepcopy(items), **kwargs) return testcase(items, inv, *args, **kwargs) return inner @initialiser def test_testData(items, inv, *args, **kwargs): """ Assert the test data itself is valid """ assert items == inv.items @initialiser def test_inv_append(items, inv, *args, **kwargs): """ Test for inventory append functionality """ itemcount = len(items) for i in range(inv.max_capacity - itemcount): assert inv.append(Item(2)) == f"{Item(2).name} added to inventory" assert inv.append(Item(1)) == "No room in inventory" assert len(inv) == inv.max_capacity #Separate tests for stackable items assert inv.append(Item(0)) == f"2 {Item(0).name} in container" assert inv.items[inv.items.index(Item(0))]._count == 2 @initialiser def test_inv_remove(items, inv, *args, **kwargs): """ Test for inventory item removal """ inv.items[inv.items.index(Item(0))]._count += 2 # Non-stackable items assert inv.remove(Item(1)) == f"{Item(1).name} was successfully removed" assert inv.items.count(Item(1)) == 0 # Stackable items assert inv.remove(Item(0)) == f"1/{inv.items[inv.items.index(Item(0))]._count+1} {Item(0).name} removed" assert inv.items.count(Item(0)) == 1 assert inv.remove(Item(0), count=3) == "You don't have that many" assert inv.remove(Item(0), count=2) == f"{Item(0).name} was successfully removed" assert inv.items.count(Item(0)) == 0 @initialiser def test_inv_equip_unequip(items, inv, *args, **kwargs): """ Test for inventory item equip/unequip functionality """ # Equipping items assert inv.equip(Item(1)) == f"You equip {Item(1).name}" assert inv.equip(Item(2)) == "You can't equip that" # Unequipping items assert inv.unequip('weapon') == f"You unequip {Item(1).name}" assert inv.unequip('off-hand') == "That slot is empty" assert inv.gear['head'] is None assert inv.gear['weapon'] is None @initialiser def test_inv_combine(items, inv, *args, **kwargs): """ Test for item combining functionality """ assert inv.better_combine_item(inv.items[1], 0, inv.items[2]) == "Combination successful" assert len(inv) == 2 assert inv.better_combine_item(inv.items[0], 0, inv.items[1]) == "Could not combine those items" assert len(inv) == 2 def test_char_levelmixin(): """ Test for level-up functionality """ char = Character('John Doe', max_level = 5) assert 1 == char.level assert 85 == char.next_level assert char.give_exp(85) == f"Congratulations! You've levelled up; your new level is {char.level}\nEXP required for next level: {int(char.next_level-char.experience)}\nCurrent EXP: {char.experience}" for _ in range(char.max_level - char.level): char.give_exp(char.next_level) assert char.level == char.max_level assert char.give_exp(char.next_level) == f""
36.768421
203
0.678214
0
0
0
0
2,197
0.628972
0
0
1,239
0.354709
967fc22994b7e8387bc0009833f00fda8cc5c3ce
18,675
py
Python
biosteam/units/_shortcut_column.py
tylerhuntington222/biosteam
234959180a3210d95e39a012454f455723c92686
[ "MIT" ]
null
null
null
biosteam/units/_shortcut_column.py
tylerhuntington222/biosteam
234959180a3210d95e39a012454f455723c92686
[ "MIT" ]
null
null
null
biosteam/units/_shortcut_column.py
tylerhuntington222/biosteam
234959180a3210d95e39a012454f455723c92686
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules # Copyright (C) 2020, Yoel Cortes-Pena <[email protected]> # # This module is under the UIUC open-source license. See # github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt # for license details. """ """ from ._binary_distillation import BinaryDistillation import flexsolve as flx from thermosteam.exceptions import InfeasibleRegion from thermosteam.equilibrium import DewPoint, BubblePoint import numpy as np __all__ = ('ShortcutColumn',) # %% Functions @flx.njitable(cache=True) def geometric_mean(a, b): return (a * b) ** 0.5 @flx.njitable(cache=True) def compute_mean_volatilities_relative_to_heavy_key(K_distillate, K_bottoms, HK_index): alpha_distillate = K_distillate / K_distillate[HK_index] alpha_bottoms = K_bottoms / K_bottoms[HK_index] alpha_mean = geometric_mean(alpha_distillate, alpha_bottoms) return alpha_mean @flx.njitable(cache=True) def compute_partition_coefficients(y, x): x[x <= 1e-16] = 1e-16 return y / x @flx.njitable(cache=True) def compute_distillate_recoveries_Hengsteback_and_Gaddes(d_Lr, b_Hr, alpha_mean, LHK_index): LK_index = LHK_index[0] alpha_LK = alpha_mean[LK_index] A_dummy = (1. - b_Hr) / b_Hr A = np.log10(A_dummy) B = np.log10(d_Lr / (1. - d_Lr) / A_dummy) / np.log10(alpha_LK) dummy = 10.**A * alpha_mean**B distillate_recoveries = dummy / (1. + dummy) distillate_recoveries[LHK_index] = [d_Lr, 1. - b_Hr] distillate_recoveries[distillate_recoveries < 1e-12] = 0. return distillate_recoveries @flx.njitable(cache=True) def compute_minimum_theoretical_stages_Fenske(LHK_distillate, LHK_bottoms, alpha_LK): LK, HK = LHK_distillate LHK_ratio_distillate = LK / HK LK, HK = LHK_bottoms HLK_ratio_bottoms = HK / LK N = np.log10(LHK_ratio_distillate * HLK_ratio_bottoms) / np.log10(alpha_LK) return N @flx.njitable(cache=True) def objective_function_Underwood_constant(theta, q, z_f, alpha_mean): return (alpha_mean * z_f / (alpha_mean - theta)).sum() - 1.0 + q @flx.njitable(cache=True) def compute_minimum_reflux_ratio_Underwood(alpha_mean, z_d, theta): Rm = (alpha_mean * z_d / (alpha_mean - theta)).sum() - 1.0 return Rm @flx.njitable(cache=True) def compute_theoretical_stages_Gilliland(Nm, Rm, R): X = (R - Rm) / (R + 1.) Y = 1. - np.exp((1. + 54.4*X) / (11. + 117.2*X) * (X - 1.) / X**0.5) N = (Y + Nm) / (1. - Y) return np.ceil(N) @flx.njitable(cache=True) def compute_feed_stage_Kirkbride(N, B, D, feed_HK_over_LK, z_LK_bottoms, z_HK_distillate): m_over_p = (B/D * feed_HK_over_LK * (z_LK_bottoms / z_HK_distillate)**2.) ** 0.206 return np.floor(N / (m_over_p + 1.)) # %% class ShortcutColumn(BinaryDistillation, new_graphics=False): r""" Create a multicomponent distillation column that relies on the Fenske-Underwood-Gilliland method to solve for the theoretical design of the distillation column and the separation of non-keys [1]_.The Murphree efficiency (i.e. column efficiency) is based on the modified O'Connell correlation [2]_. The diameter is based on tray separation and flooding velocity [1]_ [3]_. Purchase costs are based on correlations compiled by Warren et. al. [4]_. Parameters ---------- ins : streams Inlet fluids to be mixed into the feed stage. outs : stream sequence * [0] Distillate * [1] Bottoms product LHK : tuple[str] Light and heavy keys. y_top : float Molar fraction of light key to the light and heavy keys in the distillate. x_bot : float Molar fraction of light key to the light and heavy keys in the bottoms product. Lr : float Recovery of the light key in the distillate. Hr : float Recovery of the heavy key in the bottoms product. k : float Ratio of reflux to minimum reflux. Rmin : float, optional User enforced minimum reflux ratio. If the actual minimum reflux ratio is less than `Rmin`, this enforced value is ignored. Defaults to 0.6. specification="Composition" : "Composition" or "Recovery" If composition is used, `y_top` and `x_bot` must be specified. If recovery is used, `Lr` and `Hr` must be specified. P=101325 : float Operating pressure [Pa]. vessel_material : str, optional Vessel construction material. Defaults to 'Carbon steel'. tray_material : str, optional Tray construction material. Defaults to 'Carbon steel'. tray_type='Sieve' : 'Sieve', 'Valve', or 'Bubble cap' Tray type. tray_spacing=450 : float Typically between 152 to 915 mm. stage_efficiency=None : User enforced stage efficiency. If None, stage efficiency is calculated by the O'Connell correlation [2]_. velocity_fraction=0.8 : float Fraction of actual velocity to maximum velocity allowable before flooding. foaming_factor=1.0 : float Must be between 0 to 1. open_tray_area_fraction=0.1 : float Fraction of open area to active area of a tray. downcomer_area_fraction=None : float Enforced fraction of downcomer area to net (total) area of a tray. If None, estimate ratio based on Oliver's estimation [1]_. is_divided=False : bool True if the stripper and rectifier are two separate columns. References ---------- .. [1] J.D. Seader, E.J. Henley, D.K. Roper. (2011) Separation Process Principles 3rd Edition. John Wiley & Sons, Inc. .. [2] M. Duss, R. Taylor. (2018) Predict Distillation Tray Efficiency. AICHE .. [3] Green, D. W. Distillation. In Perry’s Chemical Engineers’ Handbook, 9 ed.; McGraw-Hill Education, 2018. .. [4] Seider, W. D., Lewin, D. R., Seader, J. D., Widagdo, S., Gani, R., & Ng, M. K. (2017). Product and Process Design Principles. Wiley. Cost Accounting and Capital Cost Estimation (Chapter 16) Examples -------- >>> from biosteam.units import ShortcutColumn >>> from biosteam import Stream, settings >>> settings.set_thermo(['Water', 'Methanol', 'Glycerol']) >>> feed = Stream('feed', flow=(80, 100, 25)) >>> bp = feed.bubble_point_at_P() >>> feed.T = bp.T # Feed at bubble point T >>> D1 = ShortcutColumn('D1', ins=feed, ... outs=('distillate', 'bottoms_product'), ... LHK=('Methanol', 'Water'), ... y_top=0.99, x_bot=0.01, k=2, ... is_divided=True) >>> D1.simulate() >>> # See all results >>> D1.show(T='degC', P='atm', composition=True) ShortcutColumn: D1 ins... [0] feed phase: 'l', T: 76.129 degC, P: 1 atm composition: Water 0.39 Methanol 0.488 Glycerol 0.122 -------- 205 kmol/hr outs... [0] distillate phase: 'g', T: 64.91 degC, P: 1 atm composition: Water 0.01 Methanol 0.99 -------- 100 kmol/hr [1] bottoms_product phase: 'l', T: 100.06 degC, P: 1 atm composition: Water 0.754 Methanol 0.00761 Glycerol 0.239 -------- 105 kmol/hr >>> D1.results() Distillation Units D1 Cooling water Duty kJ/hr -7.9e+06 Flow kmol/hr 5.4e+03 Cost USD/hr 2.64 Low pressure steam Duty kJ/hr 1.43e+07 Flow kmol/hr 368 Cost USD/hr 87.5 Design Theoretical feed stage 8 Theoretical stages 16 Minimum reflux Ratio 1.06 Reflux Ratio 2.12 Rectifier stages 13 Stripper stages 26 Rectifier height ft 31.7 Stripper height ft 50.9 Rectifier diameter ft 4.53 Stripper diameter ft 3.67 Rectifier wall thickness in 0.312 Stripper wall thickness in 0.312 Rectifier weight lb 6.46e+03 Stripper weight lb 7.98e+03 Purchase cost Rectifier trays USD 1.52e+04 Stripper trays USD 2.02e+04 Rectifier tower USD 8.44e+04 Stripper tower USD 1.01e+05 Condenser USD 4.17e+04 Boiler USD 2.99e+04 Total purchase cost USD 2.92e+05 Utility cost USD/hr 90.1 """ line = 'Distillation' _ins_size_is_fixed = False _N_ins = 1 _N_outs = 2 def _run(self): # Initial mass balance self._run_binary_distillation_mass_balance() # Initialize objects to calculate bubble and dew points vle_chemicals = self.feed.vle_chemicals reset_cache = self._vle_chemicals != vle_chemicals if reset_cache: self._dew_point = DewPoint(vle_chemicals, self.thermo) self._bubble_point = BubblePoint(vle_chemicals, self.thermo) self._IDs_vle = self._dew_point.IDs self._vle_chemicals = vle_chemicals # Setup light and heavy keys LHK = [i.ID for i in self.chemicals[self.LHK]] IDs = self._IDs_vle self._LHK_vle_index = np.array([IDs.index(i) for i in LHK], dtype=int) # Add temporary specification composition_spec = self.product_specification_format == 'Composition' if composition_spec: feed = self.feed distillate, bottoms = self.outs LK_index, HK_index = LHK_index = self._LHK_index LK_feed, HK_feed = feed.mol[LHK_index] self._Lr = distillate.mol[LK_index] / LK_feed self._Hr = bottoms.mol[HK_index] / HK_feed # Set starting point for solving column if reset_cache: self._add_trace_heavy_and_light_non_keys_in_products() distillate_recoveries = self._estimate_distillate_recoveries() self._distillate_recoveries = distillate_recoveries self._update_distillate_recoveries(distillate_recoveries) else: distillate_recoveries = self._distillate_recoveries lb = 1e-6; ub = 1 - 1e-6 distillate_recoveries[distillate_recoveries < lb] = lb distillate_recoveries[distillate_recoveries > ub] = ub self._update_distillate_recoveries(distillate_recoveries) # Solve for new recoveries self._solve_distillate_recoveries() self._update_distillate_and_bottoms_temperature() # Remove temporary data if composition_spec: self._Lr = self._Hr = None def reset_cache(self): self._vle_chemicals = None def plot_stages(self): raise TypeError('cannot plot stages for shortcut column') def _design(self): self._run_FenskeUnderwoodGilliland() self._run_condenser_and_boiler() self._complete_distillation_column_design() def _run_FenskeUnderwoodGilliland(self): LHK_index = self._LHK_index alpha_mean = self._estimate_mean_volatilities_relative_to_heavy_key() LK_index = self._LHK_vle_index[0] alpha_LK = alpha_mean[LK_index] feed, = self.ins distillate, bottoms = self.outs Nm = compute_minimum_theoretical_stages_Fenske(distillate.mol[LHK_index], bottoms.mol[LHK_index], alpha_LK) theta = self._solve_Underwood_constant(alpha_mean, alpha_LK) IDs = self._IDs_vle z_d = distillate.get_normalized_mol(IDs) Rm = compute_minimum_reflux_ratio_Underwood(alpha_mean, z_d, theta) if Rm < self.Rmin: Rm = self.Rmin R = self.k * Rm N = compute_theoretical_stages_Gilliland(Nm, Rm, R) feed_HK, feed_LK = feed.mol[LHK_index] feed_HK_over_LK = feed_HK / feed_LK Bs = bottoms.imol[IDs] Ds = distillate.imol[IDs] B = Bs.sum() D = Ds.sum() LK_index, HK_index = LHK_index z_LK_bottoms = bottoms.mol[LK_index] / B z_HK_distillate = distillate.mol[HK_index] / D feed_stage = compute_feed_stage_Kirkbride(N, B, D, feed_HK_over_LK, z_LK_bottoms, z_HK_distillate) design = self.design_results design['Theoretical feed stage'] = N - feed_stage design['Theoretical stages'] = N design['Minimum reflux'] = Rm design['Reflux'] = R def _get_relative_volatilities_LHK(self): distillate, bottoms = self.outs LHK = self.LHK condensate = self.condensate K_light, K_heavy = distillate.get_molar_composition(LHK) / condensate.get_molar_composition(LHK) alpha_LHK_distillate = K_light/K_heavy boilup = self.boilup K_light, K_heavy = boilup.get_molar_composition(LHK) / bottoms.get_molar_composition(LHK) alpha_LHK_distillate = K_light/K_heavy alpha_LHK_bottoms = K_light/K_heavy return alpha_LHK_distillate, alpha_LHK_bottoms def _get_feed_quality(self): feed = self.feed feed = feed.copy() H_feed = feed.H try: dp = feed.dew_point_at_P() except: pass else: feed.T = dp.T feed.phase = 'g' H_vap = feed.H try: bp = feed.bubble_point_at_P() except: pass else: feed.T = bp.T feed.phase = 'l' H_liq = feed.H q = (H_vap - H_feed) / (H_vap - H_liq) return q def _solve_Underwood_constant(self, alpha_mean, alpha_LK): q = self._get_feed_quality() z_f = self.ins[0].get_normalized_mol(self._IDs_vle) args = (q, z_f, alpha_mean) ub = np.inf lb = -np.inf bracket = flx.find_bracket(objective_function_Underwood_constant, 1.0, alpha_LK, lb, ub, args) theta = flx.IQ_interpolation(objective_function_Underwood_constant, *bracket, args=args, checkiter=False, checkbounds=False) return theta def _add_trace_heavy_and_light_non_keys_in_products(self): distillate, bottoms = self.outs LNK_index = self._LNK_index HNK_index = self._HNK_index feed_mol = self.feed.mol LNK_mol = feed_mol[LNK_index] HNK_mol = feed_mol[HNK_index] bottoms.mol[LNK_index] = LNK_trace = 0.0001 * LNK_mol distillate.mol[LNK_index] = LNK_mol - LNK_trace distillate.mol[HNK_index] = HNK_trace = 0.0001 * HNK_mol bottoms.mol[HNK_index] = HNK_mol - HNK_trace def _estimate_mean_volatilities_relative_to_heavy_key(self): # Mean volatilities taken at distillate and bottoms product distillate, bottoms = self.outs dew_point = self._dew_point bubble_point = self._bubble_point IDs = self._IDs_vle z_distillate = distillate.get_normalized_mol(IDs) z_bottoms = bottoms.get_normalized_mol(IDs) dp = dew_point(z_distillate, P=self.P) bp = bubble_point(z_bottoms, P=self.P) K_distillate = compute_partition_coefficients(dp.z, dp.x) K_bottoms = compute_partition_coefficients(bp.y, bp.z) HK_index = self._LHK_vle_index[1] alpha_mean = compute_mean_volatilities_relative_to_heavy_key(K_distillate, K_bottoms, HK_index) return alpha_mean def _estimate_distillate_recoveries(self): # Use Hengsteback and Geddes equations alpha_mean = self._estimate_mean_volatilities_relative_to_heavy_key() return compute_distillate_recoveries_Hengsteback_and_Gaddes(self.Lr, self.Hr, alpha_mean, self._LHK_vle_index) def _update_distillate_recoveries(self, distillate_recoveries): feed = self.feed distillate, bottoms = self.outs IDs = self._IDs_vle feed_mol = feed.imol[IDs] distillate.imol[IDs] = distillate_mol = distillate_recoveries * feed_mol bottoms.imol[IDs] = feed_mol - distillate_mol def _solve_distillate_recoveries(self): distillate_recoveries = self._distillate_recoveries flx.aitken(self._recompute_distillate_recoveries, distillate_recoveries, 1e-8, checkiter=False) def _recompute_distillate_recoveries(self, distillate_recoveries): if np.logical_or(distillate_recoveries > 1., distillate_recoveries < 0.).any(): raise InfeasibleRegion('distillate composition') self._update_distillate_recoveries(distillate_recoveries) distillate_recoveries = self._estimate_distillate_recoveries() if hasattr(self, '_distillate_recoveries_hook'): self._distillate_recoveries_hook(self._IDs_vle, distillate_recoveries) self._distillate_recoveries = distillate_recoveries return distillate_recoveries
42.636986
148
0.584257
15,635
0.837036
0
0
2,421
0.129611
0
0
7,417
0.397077
9681b53ab62bfb5ddd55b122e2a997c7da50a56f
11,477
py
Python
vital/bindings/python/vital/types/camera_intrinsics.py
dstoup/kwiver
a3a36317b446baf0feb6274235ab1ac6b4329ead
[ "BSD-3-Clause" ]
null
null
null
vital/bindings/python/vital/types/camera_intrinsics.py
dstoup/kwiver
a3a36317b446baf0feb6274235ab1ac6b4329ead
[ "BSD-3-Clause" ]
null
null
null
vital/bindings/python/vital/types/camera_intrinsics.py
dstoup/kwiver
a3a36317b446baf0feb6274235ab1ac6b4329ead
[ "BSD-3-Clause" ]
null
null
null
""" ckwg +31 Copyright 2016 by Kitware, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither name of Kitware, Inc. nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ============================================================================== Interface to VITAL camera_intrinsics objects """ import collections import ctypes import numpy from vital.types.eigen import EigenArray from vital.util import VitalErrorHandle, VitalObject class CameraIntrinsics (VitalObject): def __init__(self, focal_length=1., principle_point=(0, 0), aspect_ratio=1., skew=0., dist_coeffs=(), from_cptr=None): """ :param focal_length: Focal length (default=1.0) :type focal_length: float :param principle_point: Principle point (default: [0,0]). Values are copied into this structure. :type principle_point: collections.Sequence[float] :param aspect_ratio: Aspect ratio (default: 1.0) :type aspect_ratio: float :param skew: Skew (default: 0.0) :type skew: float :param dist_coeffs: Existing distortion coefficients (Default: empty). Values are copied into this structure. :type dist_coeffs: collections.Sequence[float] """ super(CameraIntrinsics, self).__init__(from_cptr, focal_length, principle_point, aspect_ratio, skew, dist_coeffs) def _new(self, focal_length, principle_point, aspect_ratio, skew, dist_coeffs): """ Construct a new vital::camera_intrinsics instance :type focal_length: float :type principle_point: collections.Sequence[float] :type aspect_ratio: float :type skew: float :type dist_coeffs: collections.Sequence[float] """ ci_new = self.VITAL_LIB['vital_camera_intrinsics_new'] ci_new.argtypes = [ ctypes.c_double, EigenArray.c_ptr_type(2, 1, ctypes.c_double), ctypes.c_double, ctypes.c_double, EigenArray.c_ptr_type('X', 1, ctypes.c_double), VitalErrorHandle.C_TYPE_PTR, ] ci_new.restype = self.C_TYPE_PTR # Make "vectors" pp = EigenArray.from_iterable(principle_point, target_shape=(2, 1)) dc = EigenArray(len(dist_coeffs), dynamic_rows=True) if len(dist_coeffs): dc.T[:] = dist_coeffs with VitalErrorHandle() as eh: return ci_new(focal_length, pp, aspect_ratio, skew, dc, eh) def _destroy(self): ci_dtor = self.VITAL_LIB['vital_camera_intrinsics_destroy'] ci_dtor.argtypes = [self.C_TYPE_PTR, VitalErrorHandle.C_TYPE_PTR] with VitalErrorHandle() as eh: ci_dtor(self, eh) @property def focal_length(self): f = self.VITAL_LIB['vital_camera_intrinsics_get_focal_length'] f.argtypes = [self.C_TYPE_PTR, VitalErrorHandle.C_TYPE_PTR] f.restype = ctypes.c_double with VitalErrorHandle() as eh: return f(self, eh) @property def principle_point(self): f = self.VITAL_LIB['vital_camera_intrinsics_get_principle_point'] f.argtypes = [self.C_TYPE_PTR, VitalErrorHandle.C_TYPE_PTR] f.restype = EigenArray.c_ptr_type(2, 1, ctypes.c_double) with VitalErrorHandle() as eh: m_ptr = f(self, eh) return EigenArray(2, from_cptr=m_ptr, owns_data=True) @property def aspect_ratio(self): f = self.VITAL_LIB['vital_camera_intrinsics_get_aspect_ratio'] f.argtypes = [self.C_TYPE_PTR, VitalErrorHandle.C_TYPE_PTR] f.restype = ctypes.c_double with VitalErrorHandle() as eh: return f(self, eh) @property def skew(self): f = self.VITAL_LIB['vital_camera_intrinsics_get_skew'] f.argtypes = [self.C_TYPE_PTR, VitalErrorHandle.C_TYPE_PTR] f.restype = ctypes.c_double with VitalErrorHandle() as eh: return f(self, eh) @property def dist_coeffs(self): """ Get the distortion coefficients array """ f = self.VITAL_LIB['vital_camera_intrinsics_get_dist_coeffs'] f.argtypes = [self.C_TYPE_PTR, VitalErrorHandle.C_TYPE_PTR] f.restype = EigenArray.c_ptr_type('X', 1, ctypes.c_double) with VitalErrorHandle() as eh: m_ptr = f(self, eh) return EigenArray(dynamic_rows=1, from_cptr=m_ptr, owns_data=True) def __eq__(self, other): if isinstance(other, CameraIntrinsics): return ( self.focal_length == other.focal_length and numpy.allclose(self.principle_point, other.principle_point) and self.aspect_ratio == other.aspect_ratio and self.skew == other.skew and numpy.allclose(self.dist_coeffs, other.dist_coeffs) ) return False def __ne__(self, other): return not (self == other) def as_matrix(self): """ Access the intrinsics as an upper triangular matrix **Note:** *This matrix includes the focal length, principal point, aspect ratio, and skew, but does not model distortion.* :return: 3x3 upper triangular matrix """ f = self.VITAL_LIB['vital_camera_intrinsics_as_matrix'] f.argtypes = [self.C_TYPE_PTR, VitalErrorHandle.C_TYPE_PTR] f.restype = EigenArray.c_ptr_type(3, 3, ctypes.c_double) with VitalErrorHandle() as eh: m_ptr = f(self, eh) return EigenArray(3, 3, from_cptr=m_ptr, owns_data=True) def map_2d(self, norm_pt): """ Map normalized image coordinates into actual image coordinates This function applies both distortion and application of the calibration matrix to map into actual image coordinates. :param norm_pt: Normalized image coordinate to map to an image coordinate (2-element sequence). :type norm_pt: collections.Sequence[float] :return: Mapped 2D image coordinate :rtype: EigenArray[float] """ assert len(norm_pt) == 2, "Input sequence was not of length 2" f = self.VITAL_LIB['vital_camera_intrinsics_map_2d'] f.argtypes = [self.C_TYPE_PTR, EigenArray.c_ptr_type(2, 1, ctypes.c_double), VitalErrorHandle.C_TYPE_PTR] f.restype = EigenArray.c_ptr_type(2, 1, ctypes.c_double) p = EigenArray(2) p.T[:] = norm_pt with VitalErrorHandle() as eh: m_ptr = f(self, p, eh) return EigenArray(2, 1, from_cptr=m_ptr, owns_data=True) def map_3d(self, norm_hpt): """ Map a 3D point in camera coordinates into actual image coordinates :param norm_hpt: Normalized coordinate to map to an image coordinate (3-element sequence) :type norm_hpt: collections.Sequence[float] :return: Mapped 2D image coordinate :rtype: EigenArray[float] """ assert len(norm_hpt) == 3, "Input sequence was not of length 3" f = self.VITAL_LIB['vital_camera_intrinsics_map_3d'] f.argtypes = [self.C_TYPE_PTR, EigenArray.c_ptr_type(3, 1, ctypes.c_double), VitalErrorHandle.C_TYPE_PTR] f.restype = EigenArray.c_ptr_type(2, 1, ctypes.c_double) p = EigenArray(3) p.T[:] = norm_hpt with VitalErrorHandle() as eh: m_ptr = f(self, p, eh) return EigenArray(2, 1, from_cptr=m_ptr, owns_data=True) def unmap_2d(self, pt): """ Unmap actual image coordinates back into normalized image coordinates This function applies both application of the inverse calibration matrix and undistortion of the normalized coordinates :param pt: Actual image 2D point to un-map. :return: Un-mapped normalized image coordinate. """ assert len(pt) == 2, "Input sequence was not of length 2" f = self.VITAL_LIB['vital_camera_intrinsics_unmap_2d'] f.argtypes = [self.C_TYPE_PTR, EigenArray.c_ptr_type(2, 1, ctypes.c_double), VitalErrorHandle.C_TYPE_PTR] f.restype = EigenArray.c_ptr_type(2, 1, ctypes.c_double) p = EigenArray(2) p.T[:] = pt with VitalErrorHandle() as eh: m_ptr = f(self, p, eh) return EigenArray(2, 1, from_cptr=m_ptr, owns_data=True) def distort_2d(self, norm_pt): """ Map normalized image coordinates into distorted coordinates :param norm_pt: Normalized 2D image coordinate. :return: Distorted 2D coordinate. """ assert len(norm_pt) == 2, "Input sequence was not of length 2" f = self.VITAL_LIB['vital_camera_intrinsics_distort_2d'] f.argtypes = [self.C_TYPE_PTR, EigenArray.c_ptr_type(2, 1, ctypes.c_double), VitalErrorHandle.C_TYPE_PTR] f.restype = EigenArray.c_ptr_type(2, 1, ctypes.c_double) p = EigenArray(2) p.T[:] = norm_pt with VitalErrorHandle() as eh: m_ptr = f(self, p, eh) return EigenArray(2, 1, from_cptr=m_ptr, owns_data=True) def undistort_2d(self, dist_pt): """ Unmap distorted normalized coordinates into normalized coordinates :param dist_pt: Distorted 2D coordinate to un-distort. :return: Normalized 2D image coordinate. """ assert len(dist_pt) == 2, "Input sequence was not of length 2" f = self.VITAL_LIB['vital_camera_intrinsics_undistort_2d'] f.argtypes = [self.C_TYPE_PTR, EigenArray.c_ptr_type(2, 1, ctypes.c_double), VitalErrorHandle.C_TYPE_PTR] f.restype = EigenArray.c_ptr_type(2, 1, ctypes.c_double) p = EigenArray(2) p.T[:] = dist_pt with VitalErrorHandle() as eh: m_ptr = f(self, p, eh) return EigenArray(2, 1, from_cptr=m_ptr, owns_data=True)
38.773649
80
0.640673
9,709
0.845953
0
0
1,659
0.14455
0
0
5,046
0.439662
9681c77a186723aca18c1c0fe154bf16a7a4024b
2,333
py
Python
utils/lanzouyun.py
Firesuiry/jdmm-client
33defde409222ae49c6301cec3389ca72d19953c
[ "BSD-3-Clause" ]
null
null
null
utils/lanzouyun.py
Firesuiry/jdmm-client
33defde409222ae49c6301cec3389ca72d19953c
[ "BSD-3-Clause" ]
null
null
null
utils/lanzouyun.py
Firesuiry/jdmm-client
33defde409222ae49c6301cec3389ca72d19953c
[ "BSD-3-Clause" ]
null
null
null
from lanzou.api import LanZouCloud import urllib.parse final_files = [] final_share_infos = [] def lzy_login(cookies): lzy = LanZouCloud() cookie_dic = cookie_to_dic(cookies) print(cookie_dic) cookies = { 'ylogin': cookie_dic['ylogin'], 'phpdisk_info': urllib.parse.quote(cookie_dic['phpdisk_info']) } print(cookies) code = lzy.login_by_cookie(cookies) print('登录结果', code) if code != 0: return None return lzy def cookie_to_dic(mycookie): dic = {} for i in mycookie.split('; '): dic[i.split('=', 1)[0]] = i.split('=', 1)[1] return dic def lzy_get_files(lzy, dir=-1, deepth=9999, path='/', include_dir=False, dir_name_filter=''): print(f'lzy_get_files {locals()}') datas = [] if dir_name_filter and dir_name_filter not in path.split('/'): print(f'跳过当前目录 {path}') else: files = lzy.get_file_list(dir) for file in files: data = get_share_info(lzy, file, path) datas.append(data) if deepth > 1: dirs = lzy.get_dir_list(dir) for dir in dirs: new_datas = lzy_get_files(lzy, dir.id, deepth - 1, path + dir.name + '/', include_dir=include_dir, dir_name_filter=dir_name_filter) datas += new_datas if include_dir: datas.append(get_share_info(lzy, dir, path, isdir=True)) return datas def get_share_info(lzy, file, path, isdir=False): print(file) share_info = lzy.get_share_info(file.id) print(share_info) size = file.size if not isdir else '0 B' size_num = float(size.split()[0]) size_unit = size.split()[1] if size_unit == 'K': size_num *= 2 ** 10 if size_unit == 'M': size_num *= 2 ** 20 share_info_dic = { 'name': file.name, 'size': size_num, 'type': file.type if not isdir else '文件夹', 'isdir': isdir, 'download_url': share_info.url, 'tiquma': share_info.pwd, 'des': path + file.name, 'parent': path, } return share_info_dic def test(): lzy = lzy_login(cookies.replace('\n','')) # datas = lzy_get_files(lzy, include_dir=True) # for data in datas: # print(data) cookies = ''' ''' if __name__ == '__main__': test()
25.637363
110
0.582512
0
0
0
0
0
0
0
0
322
0.136499
9681dcb1c6a4a00147da8d82baecc6e355120cf5
1,948
py
Python
util/ndcg.py
voschezang/Data-Mining
0762df1d9a63f81d6f44d8a35cc61802baad4c37
[ "MIT" ]
null
null
null
util/ndcg.py
voschezang/Data-Mining
0762df1d9a63f81d6f44d8a35cc61802baad4c37
[ "MIT" ]
null
null
null
util/ndcg.py
voschezang/Data-Mining
0762df1d9a63f81d6f44d8a35cc61802baad4c37
[ "MIT" ]
null
null
null
import numpy as np import util.data def ndcg(X_test, y_test, y_pred, ): Xy_pred = X_test.copy([['srch_id', 'prop_id', 'score']]) Xy_pred['score_pred'] = y_pred Xy_pred['score'] = y_test Xy_pred.sort_values(['srch_id', 'score_pred'], ascending=[True, False]) dcg_test = DCG_dict(Xy_pred) ndcg = np.mean(np.array(list(dcg_test.values()))) return ndcg def sort_pred_test(x_test, y_test, y_pred): # calculate dcg of test set per srch_id Xy_pred = util.data.Xy_pred(x_test, y_pred) # put true y values on indexes, do not sort ! Xy_true = util.data.Xy_pred(x_test, y_test) return Xy_pred, Xy_true def dcg_at_k(r, k, method=0): r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0. def ndcg_at_k(r, k, method=0): dcg_max = dcg_at_k(sorted(r, reverse=True), k, method) if not dcg_max: return 0. return dcg_at_k(r, k, method) / dcg_max def DCG_dict(data): DCG = {} # for id in data['srch_id']: # rows = rows_srch_id(data, id) # r = relevance_scores(rows) r = [] prev_srch_id = -1 position = 0 for i in data.index.tolist(): if prev_srch_id == -1: row = data.loc[i] cur_srch_id = row.srch_id prev_srch_id = 0 row = data.loc[i] next_id = row.srch_id score = row.score # compute position if cur_srch_id != next_id: DCG[cur_srch_id] = ndcg_at_k(r, k=len(r)) cur_srch_id = next_id r = [] r.append(score) position += 1 else: r.append(score) position += 1 DCG[cur_srch_id] = ndcg_at_k(r, k=len(r)) return DCG
27.828571
75
0.569302
0
0
0
0
0
0
0
0
282
0.144764
9681fb5a4ab9afe1cfd4688c372d7a335ae0a5d6
4,364
py
Python
pycorrector/bert/bert_detector.py
zouning68/pycorrector
4daaf13e566f2cecc724fb5a77db5d89f1f25203
[ "Apache-2.0" ]
45
2020-01-18T03:46:07.000Z
2022-03-26T13:06:36.000Z
pycorrector/bert/bert_detector.py
zouning68/pycorrector
4daaf13e566f2cecc724fb5a77db5d89f1f25203
[ "Apache-2.0" ]
1
2020-08-16T12:42:05.000Z
2020-08-16T12:42:05.000Z
pycorrector/bert/bert_detector.py
zouning68/pycorrector
4daaf13e566f2cecc724fb5a77db5d89f1f25203
[ "Apache-2.0" ]
9
2020-01-04T09:09:01.000Z
2022-01-17T08:56:23.000Z
# -*- coding: utf-8 -*- """ @author:XuMing([email protected]) @description: use bert detect chinese char error """ import sys import time import numpy as np import torch from pytorch_transformers import BertForMaskedLM from pytorch_transformers import BertTokenizer sys.path.append('../..') from pycorrector.detector import ErrorType from pycorrector.utils.logger import logger from pycorrector.bert import config class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, segment_ids=None, mask_ids=None, masked_lm_labels=None, input_tokens=None, id=None, token=None): self.input_ids = input_ids self.segment_ids = segment_ids self.mask_ids = mask_ids self.masked_lm_labels = masked_lm_labels self.input_tokens = input_tokens self.id = id self.token = token class BertDetector(object): def __init__(self, bert_model_dir=config.bert_model_dir, bert_model_vocab=config.bert_model_vocab, threshold=0.1): self.name = 'bert_detector' self.bert_model_dir = bert_model_dir self.bert_model_vocab = bert_model_vocab self.initialized_bert_detector = False self.threshold = threshold def check_bert_detector_initialized(self): if not self.initialized_bert_detector: self.initialize_bert_detector() def initialize_bert_detector(self): t1 = time.time() self.bert_tokenizer = BertTokenizer(vocab_file=self.bert_model_vocab) self.MASK_TOKEN = "[MASK]" self.MASK_ID = self.bert_tokenizer.convert_tokens_to_ids([self.MASK_TOKEN])[0] # Prepare model self.model = BertForMaskedLM.from_pretrained(self.bert_model_dir) logger.debug("Loaded model ok, path: %s, spend: %.3f s." % (self.bert_model_dir, time.time() - t1)) self.initialized_bert_detector = True def _convert_sentence_to_detect_features(self, sentence): """Loads a sentence into a list of `InputBatch`s.""" self.check_bert_detector_initialized() features = [] tokens = self.bert_tokenizer.tokenize(sentence) token_ids = self.bert_tokenizer.convert_tokens_to_ids(tokens) for idx, token_id in enumerate(token_ids): masked_lm_labels = [-1] * len(token_ids) masked_lm_labels[idx] = token_id features.append( InputFeatures(input_ids=token_ids, masked_lm_labels=masked_lm_labels, input_tokens=tokens, id=idx, token=tokens[idx])) return features def predict_token_prob(self, sentence): self.check_bert_detector_initialized() result = [] eval_features = self._convert_sentence_to_detect_features(sentence) for f in eval_features: input_ids = torch.tensor([f.input_ids]) masked_lm_labels = torch.tensor([f.masked_lm_labels]) outputs = self.model(input_ids, masked_lm_labels=masked_lm_labels) masked_lm_loss, predictions = outputs[:2] prob = np.exp(-masked_lm_loss.item()) result.append([prob, f]) return result def detect(self, sentence): """ 句子改错 :param sentence: 句子文本 :param threshold: 阈值 :return: list[list], [error_word, begin_pos, end_pos, error_type] """ maybe_errors = [] for prob, f in self.predict_token_prob(sentence): logger.debug('prob:%s, token:%s, idx:%s' % (prob, f.token, f.id)) if prob < self.threshold: maybe_errors.append([f.token, f.id, f.id + 1, ErrorType.char]) return maybe_errors if __name__ == "__main__": d = BertDetector() error_sentences = ['少先队员因该为老人让座', '少先队员因该为老人让坐', '少 先 队 员 因 该 为老人让座', '少 先 队 员 因 该 为老人让坐', '机七学习是人工智能领遇最能体现智能的一个分支', '机七学习是人工智能领遇最能体现智能的一个分知'] t1 = time.time() for sent in error_sentences: err = d.detect(sent) print("original sentence:{} => detect sentence:{}".format(sent, err))
35.770492
107
0.613886
3,487
0.764358
0
0
0
0
0
0
843
0.184787
968244c4e4821aa3176a5163d517e2a86b8ed427
98
py
Python
example_app/core/models/input.py
dazza-codes/serverless-fast-api
c4cdce62326a22778157a8555b7cdaafc2519b8d
[ "MIT" ]
2
2021-01-22T12:27:59.000Z
2021-09-09T14:54:11.000Z
example_app/core/models/input.py
dazza-codes/serverless-fast-api
c4cdce62326a22778157a8555b7cdaafc2519b8d
[ "MIT" ]
4
2020-05-03T01:54:53.000Z
2021-01-21T18:20:27.000Z
example_app/core/models/input.py
dazza-codes/serverless-fast-api
c4cdce62326a22778157a8555b7cdaafc2519b8d
[ "MIT" ]
1
2021-09-09T14:49:54.000Z
2021-09-09T14:49:54.000Z
from pydantic import BaseModel class InputExample(BaseModel): a: int = ... b: int = ...
14
30
0.622449
64
0.653061
0
0
0
0
0
0
0
0
9683761b0e8ad668daa9ae8b7d5e998f46a35736
9,609
py
Python
2020/8/input.py
sishtiaq/aoc
1c200ebed048bbd8ad6a684aaef8921d826f3d1b
[ "Apache-2.0" ]
null
null
null
2020/8/input.py
sishtiaq/aoc
1c200ebed048bbd8ad6a684aaef8921d826f3d1b
[ "Apache-2.0" ]
null
null
null
2020/8/input.py
sishtiaq/aoc
1c200ebed048bbd8ad6a684aaef8921d826f3d1b
[ "Apache-2.0" ]
null
null
null
test = [ 'nop +0', 'acc +1', 'jmp +4', 'acc +3', 'jmp -3', 'acc -99', 'acc +1', 'jmp -4', 'acc +6', ] actual = [ 'acc +17', 'acc +37', 'acc -13', 'jmp +173', 'nop +100', 'acc -7', 'jmp +447', 'nop +283', 'acc +41', 'acc +32', 'jmp +1', 'jmp +585', 'jmp +1', 'acc -5', 'nop +71', 'acc +49', 'acc -18', 'jmp +527', 'jmp +130', 'jmp +253', 'acc +11', 'acc -11', 'jmp +390', 'jmp +597', 'jmp +1', 'acc +6', 'acc +0', 'jmp +588', 'acc -17', 'jmp +277', 'acc +2', 'nop +163', 'jmp +558', 'acc +38', 'jmp +369', 'acc +13', 'jmp +536', 'acc +38', 'acc +39', 'acc +6', 'jmp +84', 'acc +11', 'nop +517', 'acc +48', 'acc +47', 'jmp +1', 'acc +42', 'acc +0', 'acc +2', 'acc +24', 'jmp +335', 'acc +44', 'acc +47', 'jmp +446', 'nop +42', 'nop +74', 'acc +45', 'jmp +548', 'jmp +66', 'acc +1', 'jmp +212', 'acc +18', 'jmp +1', 'acc +4', 'acc -16', 'jmp +366', 'acc +0', 'jmp +398', 'acc +45', 'jmp +93', 'acc +40', 'acc +38', 'acc +21', 'nop +184', 'jmp -46', 'nop -9', 'jmp +53', 'acc +46', 'acc +36', 'jmp +368', 'acc +16', 'acc +8', 'acc -9', 'acc -4', 'jmp +328', 'acc -15', 'acc -5', 'acc +21', 'jmp +435', 'acc -5', 'acc +36', 'jmp +362', 'acc +26', 'jmp +447', 'jmp +1', 'jmp +412', 'acc +11', 'acc +41', 'nop -32', 'acc +17', 'jmp -63', 'jmp +1', 'nop +393', 'jmp +62', 'acc +18', 'acc +30', 'nop +417', 'jmp +74', 'acc +29', 'acc +23', 'jmp +455', 'jmp +396', 'jmp +395', 'acc +33', 'nop +137', 'nop +42', 'jmp +57', 'jmp +396', 'acc +7', 'acc +0', 'jmp +354', 'acc +15', 'acc +50', 'jmp -12', 'jmp +84', 'nop +175', 'acc +5', 'acc -2', 'jmp -82', 'acc +1', 'acc +26', 'jmp +288', 'nop -113', 'nop +366', 'acc +45', 'jmp +388', 'acc +21', 'acc +38', 'jmp +427', 'acc +33', 'jmp -94', 'nop -118', 'nop +411', 'jmp +472', 'nop +231', 'nop +470', 'acc +48', 'jmp -124', 'jmp +1', 'acc +5', 'acc +37', 'acc +42', 'jmp +301', 'acc -11', 'acc -17', 'acc +14', 'jmp +357', 'acc +6', 'acc +20', 'acc +13', 'jmp +361', 'jmp -65', 'acc +29', 'jmp +26', 'jmp +329', 'acc +32', 'acc +32', 'acc +17', 'jmp -102', 'acc -6', 'acc +33', 'acc +9', 'jmp +189', 'acc +3', 'jmp -128', 'jmp -142', 'acc +24', 'acc -5', 'jmp +403', 'acc +28', 'jmp +310', 'acc +34', 'acc +4', 'acc +33', 'acc +18', 'jmp +227', 'acc -8', 'acc -15', 'jmp +112', 'jmp +54', 'acc +21', 'acc +23', 'acc +20', 'jmp +320', 'acc +13', 'jmp -77', 'acc +15', 'nop +310', 'nop +335', 'jmp +232', 'acc -3', 'nop +50', 'acc +41', 'jmp +112', 'nop -10', 'acc +29', 'acc +27', 'jmp +52', 'acc +40', 'nop -132', 'acc -16', 'acc +27', 'jmp +309', 'acc -8', 'nop +147', 'acc +20', 'acc +46', 'jmp +202', 'acc +27', 'jmp -43', 'jmp +1', 'acc +33', 'acc -13', 'jmp +300', 'acc +1', 'jmp -202', 'acc -17', 'acc +0', 'acc +34', 'jmp -5', 'nop +335', 'acc -16', 'acc -17', 'jmp -120', 'acc -19', 'acc -13', 'acc +4', 'jmp +368', 'jmp +21', 'acc +39', 'acc +39', 'acc -18', 'jmp -157', 'nop +280', 'acc +33', 'nop -37', 'jmp +32', 'acc -16', 'acc +18', 'acc +46', 'jmp -121', 'acc -19', 'jmp +195', 'acc +28', 'jmp +124', 'jmp +331', 'jmp -228', 'jmp -146', 'jmp +85', 'jmp +60', 'acc +20', 'acc -9', 'jmp +303', 'jmp -122', 'jmp +111', 'acc +32', 'acc +0', 'acc +39', 'acc +29', 'jmp -31', 'nop +320', 'jmp -63', 'jmp +223', 'nop -149', 'acc -12', 'acc -11', 'acc +32', 'jmp +309', 'jmp -13', 'acc -19', 'jmp -123', 'acc +21', 'acc +18', 'acc +49', 'jmp +175', 'acc -14', 'nop -129', 'acc -2', 'acc +31', 'jmp +79', 'acc +23', 'acc +50', 'acc +39', 'acc +7', 'jmp -235', 'jmp -166', 'acc +9', 'jmp +293', 'acc -11', 'jmp +76', 'acc +44', 'acc +3', 'acc +37', 'jmp +123', 'nop -104', 'jmp -157', 'acc +14', 'acc +10', 'acc +28', 'jmp +25', 'acc +37', 'jmp +188', 'jmp -49', 'acc -11', 'jmp -90', 'acc -8', 'jmp +197', 'acc +5', 'jmp +115', 'acc +44', 'jmp -228', 'nop -2', 'acc +46', 'jmp +130', 'nop +183', 'nop +106', 'acc +27', 'acc +37', 'jmp -309', 'acc +28', 'acc -4', 'acc -12', 'acc +38', 'jmp +93', 'acc +8', 'acc +23', 'acc -9', 'acc +6', 'jmp -42', 'acc +10', 'acc +35', 'acc +4', 'jmp -231', 'acc +19', 'acc +7', 'acc +23', 'acc +11', 'jmp -90', 'acc +0', 'nop +158', 'nop -150', 'acc +33', 'jmp +107', 'acc +48', 'acc -2', 'jmp -104', 'acc +6', 'nop -57', 'nop +172', 'acc -11', 'jmp -7', 'acc +6', 'acc +50', 'acc -9', 'acc +12', 'jmp -171', 'acc +3', 'jmp +26', 'acc +42', 'acc +31', 'acc +20', 'acc +32', 'jmp -48', 'acc +13', 'jmp -6', 'jmp +178', 'acc +47', 'jmp -153', 'acc +28', 'nop +74', 'jmp -162', 'acc -15', 'nop -104', 'acc -9', 'jmp -227', 'acc +49', 'acc -19', 'acc +41', 'jmp -318', 'acc +9', 'acc +12', 'acc +7', 'jmp +34', 'jmp +137', 'nop -143', 'acc -8', 'acc +5', 'acc +31', 'jmp -20', 'jmp -237', 'acc +39', 'acc +0', 'jmp -298', 'acc +45', 'acc -19', 'acc +11', 'jmp -151', 'acc +40', 'acc +27', 'nop +150', 'nop -391', 'jmp -341', 'acc +1', 'acc +11', 'acc +18', 'nop -234', 'jmp +77', 'nop +104', 'jmp -65', 'acc +32', 'jmp -27', 'nop -317', 'nop +159', 'acc +14', 'acc -10', 'jmp -348', 'acc +29', 'jmp +32', 'acc +48', 'acc -19', 'jmp +17', 'jmp -201', 'jmp -224', 'nop +26', 'acc -7', 'acc +23', 'acc +46', 'jmp -6', 'acc +22', 'acc +39', 'acc +9', 'acc +23', 'jmp -30', 'jmp -243', 'acc +47', 'acc -15', 'jmp -298', 'jmp -393', 'jmp +1', 'acc +3', 'nop -24', 'acc +7', 'jmp -59', 'acc -6', 'acc +26', 'jmp -102', 'acc +34', 'acc +24', 'jmp -207', 'acc +36', 'acc +40', 'acc +41', 'jmp +1', 'jmp -306', 'jmp +57', 'jmp +1', 'nop +99', 'acc +28', 'jmp -391', 'acc +50', 'jmp -359', 'acc -5', 'jmp +9', 'jmp -355', 'acc +5', 'acc +2', 'jmp -77', 'acc +40', 'acc +28', 'acc +22', 'jmp -262', 'nop -287', 'acc +34', 'acc -4', 'nop +112', 'jmp -195', 'acc +29', 'nop -94', 'nop -418', 'jmp +24', 'jmp -190', 'acc +2', 'jmp -311', 'jmp -178', 'jmp -276', 'acc -12', 'acc -18', 'jmp +62', 'jmp -174', 'nop +31', 'acc +33', 'nop -158', 'jmp -417', 'acc +3', 'acc +21', 'acc +47', 'jmp +87', 'acc +45', 'jmp -77', 'acc +6', 'acc -10', 'jmp +1', 'jmp -240', 'acc +7', 'acc +47', 'jmp -379', 'acc -14', 'acc +50', 'nop -75', 'acc +30', 'jmp +70', 'jmp -392', 'jmp -430', 'acc +22', 'acc -2', 'jmp -492', 'jmp +1', 'acc -6', 'acc +38', 'jmp -36', 'nop -336', 'jmp -32', 'jmp +61', 'acc +20', 'acc -9', 'acc +2', 'jmp -175', 'acc +21', 'acc -2', 'jmp -6', 'jmp -527', 'acc +11', 'acc +16', 'jmp -262', 'jmp +1', 'nop -327', 'acc +29', 'jmp -114', 'acc +11', 'acc +17', 'acc +26', 'nop -104', 'jmp -428', 'nop -178', 'nop -242', 'acc +29', 'acc +5', 'jmp -245', 'jmp -417', 'jmp -278', 'acc +35', 'acc +21', 'jmp +1', 'nop -263', 'jmp +8', 'acc +42', 'jmp -95', 'nop -312', 'acc -11', 'acc +34', 'acc +0', 'jmp +19', 'acc +8', 'acc -13', 'acc +32', 'acc +21', 'jmp -208', 'acc +15', 'acc +39', 'nop -194', 'jmp -280', 'jmp +24', 'nop -516', 'acc +21', 'acc +48', 'jmp -367', 'jmp -121', 'acc +49', 'acc -16', 'jmp -136', 'acc +0', 'jmp -148', 'jmp -85', 'jmp -103', 'nop -446', 'jmp -242', 'acc -12', 'acc +13', 'acc +31', 'acc -1', 'jmp -435', 'nop -420', 'acc +22', 'acc -5', 'jmp -567', 'nop -354', 'acc +11', 'acc +33', 'acc +45', 'jmp -76', 'acc -2', 'acc +0', 'acc +25', 'acc +46', 'jmp -555', 'acc +0', 'acc +11', 'nop -2', 'jmp -394', 'jmp -395', 'acc +8', 'acc +14', 'acc +47', 'acc +22', 'jmp +1',]
15.037559
15
0.338329
0
0
0
0
0
0
0
0
5,777
0.601207
96856b2747e7c36d91fb23b1dc5b4f022aab0d68
17,925
py
Python
islecler.py
mrtyasar/PythonLearn
b8fa5d97b9c811365db8457f42f1e1d04e4dc8a4
[ "Apache-2.0" ]
null
null
null
islecler.py
mrtyasar/PythonLearn
b8fa5d97b9c811365db8457f42f1e1d04e4dc8a4
[ "Apache-2.0" ]
null
null
null
islecler.py
mrtyasar/PythonLearn
b8fa5d97b9c811365db8457f42f1e1d04e4dc8a4
[ "Apache-2.0" ]
null
null
null
#----------------------------------# ######### ARİTMETİK İŞLEÇLER ####### #----------------------------------# # + toplama # - çıkarma # * çarpma # / bölme # ** kuvvet # % modülüs/kalan bulma # // taban bölme/ tam bölme #aritmetik işleçler sayısal işlemler yapmamızı sağlar print(45+57)#102 #yalnız + ve * işaretleri karakter dizileri içinde kullanılabilir #karakter dizilerini birleştirmek için + işareti print("Selam "+"Bugün "+"Hava çok güzel.")#Selam Bugün Hava çok güzel. # * işareti karakter dizileri tekrarlamak için kullanılabilir print("w"*3+".tnbc1"+".com")#www.tnbc1.com # % işleci sayının bölümünden kalanı bulur print(30 % 4)#2 #sayının kalanını bularak tek mi çift mi olduğunu bulabiliriz sayi = int(input("Bir sayı giriniz: ")) if sayi % 2 == 0: print("Girdiğiniz sayı bir çift sayıdır.") else: print("Girdiğiniz sayı bir tek sayıdır.") #eğer bir sayının 2 ye bölümünden kalan 0 ise o sayı çift bir sayıdır #veya bu % işleci ile sayının başka bir sayı ile tam bölünüp bölünmediğini # bulabiliriz print(36 % 9)#0 #yani 36 9 a tam bölünüyor #program yazalım: bolunen = int(input("Herhangi bir sayı giriniz: ")) bolen = int(input("Herhangi bir sayı daha giriniz: ")) sablon = "{} sayısı {} sayısına tam".format(bolunen,bolen) if bolunen % bolen == 0: print(sablon,"bölünüyor!") else: print(sablon,"bölünmüyor!") #çıktı: #Herhangi bir sayı giriniz: 2876 #Herhangi bir sayı daha giriniz: 123 #2876 sayısı 123 sayısına tam bölünmüyor! # bir sayının son basamağını elde etmek içinde kullanabiliriz #bu yüzden bir sayının 10 bölümünde kalanını buluruz print(65 % 10)#5 print(543 % 10)#3 #----------------# #--//-tam bölme--# #----------------# a = 6 / 3 print(type(a))#float # 2.0 #pythonda sayıların bölmelerin sonucu kesirli olur yani float tipinde b = 6 // 3 print(b)#3 print(type(b))#int #tam bölebildik print(int(a))#2 # bu şekilde de float tipini inte çevirebildik #----------------# # ROUND # #----------------# #round() bir gömülü fonksiyondur #bu fonksiyonun bir sayının değerini yuvarlamamızı sağlar print(round(2.70))#3 print(round(2.30))#2 print(round(5.68,1))#5.7 print(round(5.68,2))#5.68 print(round(7.9,2))#7.9 #-----------------# # ** # #-----------------# #bir sayının karesini bulmak #bunun için 2 rakamına ihityacımız vardır print(124**2)#15376 #bir sayının karakökünü bulmak #karakökünü bulmak için 0.5 e ihtiyacımız vardır print(625 ** 0.5)#25.0 #eğer ondalıklı sayı yani float tipli sayı istemiyorsak #ifadeyi işlemi int tipine çevirmemiz gerekir print(int(625 ** 0.5))#25 #bir sayının küpünü bulmak #küpünü bulmak için 3 rakamına ihtiyacımız vardır print(124 ** 3)#1906624 #bu işlemleri pow() fonksiyonları ile de yapabiliriz print(pow(24,3))#13824 print(pow(96,2))#9216 #-------------------------------------# # KARŞILAŞTIRMA İŞLEÇLERİ # #-------------------------------------# #işlenenler arasında bir karşılaştırma ilişkisi kuran işleçlerdir # == eşittir # != eşit değildir # > büyüktür # < küçüktür # >= büyük eşittir # <= küçük eşittir parola = "xyz05" soru = input("parolanız: ") if soru == parola: print("doğru parola!") elif soru != parola: print("yanlış parola!") #başka bir örnek: sayi = input("sayı: ") if int(sayi) <= 100: print("sayı 100 veya 100'den küçük") elif int(sayi) >= 100: print("sayı 100 veya 100'den büyük") #-------------------------# # BOOL İŞLEÇLERİ # #-------------------------# #bool da sadece iki değer vardır true ve false #bilgisayar biliminde olduğu gibi 0 false dir 1 true dur a = 1 print(a == 1)#a değeri 1 e eşit midir? #True print(a == 2)#False # o değeri ve boş veri tipleri False'Dir # bunun haricinde kalan her şey True #bu durumu bool() adlı fonksiyondan yararlanarak öğrenebiliriz print(bool(4))#True print(bool("armut"))#True print(bool(" "))#True print(bool(2288281))#True print(bool("0"))#True print(bool(0))#False print(bool(""))#False #bool değerleri yazılım dünyasında önemli bir yeri vardır #daha önce kullandığım koşul bloglarında koşulun gerçekleşmesi #veya gerçekleşmemesi bool a bağlıdır yan, true ve false isim = input("isminiz: ") if isim == "Ferhat": print("Ne güzel bir isminiz vardır") else: print(isim,"ismini pek sevmem!") #isminiz: caner #caner ismini pek sevmem! # eğer diyoruz isim ferhat ifadesi true ise şunu göster diyoruz # eğer true değeri dışında herhangi bir şey yani false ise şunu göster diyoruz isim = input("isminiz: ") print(isim == "Ferhat")#True # b = "" print(bool(b))#False #içi boş veri tiplerin her zaman false olacağını bilerek şöyle #program yazabiliriz: kullanici = input("Kullanıcı adınız: ") if bool(kullanici) == True: print("Teşekkürler") else: print("Kullanıcı adı alanı boş bırakılamaz!") # eğer kullancı bir şeyler yazarsa bool(kullanici) komutu true verecek # ekrana teşekkürler yazısı yazılacak # eğer kullanıcı bir şey yazmadan entera tıklar ise false olacak ve else çalışacaktır #bu işlemi genellikle şu şekilde yazarız: kullaniciOne = input("Kullanıcı adınızı yazınız: ") if kullaniciOne: print("Teşekkürler") else: print("kullanıcı adı boş bırakılamaz") #---------------------------------# # BOOL İŞLEÇLERİ # #---------------------------------# #AND #OR #NOT #and #gmail giriş sistemi yazalım #gmail giriş sisteminde kullanıcı adı ve parola yani her ikisi de doğru olmalıdır kullaniciAdi = input("Kullanıcı adınız: ") parola = input("Parolanınız: ") if kullaniciAdi == "AliVeli": if parola == "123456": print("Sisteme hoşgeldiniz") else : print("Yanlış kullanıcı adı veya parola!") else: print("Yanlış kullanıcı adı veya parola") #bu işlemi daha kolay yazabiliriz kullanici = input("Kullanıcı adınızı yazınız: ") sifre = input("şifrenizi yazınız: ") if kullanici == "aliveli" and sifre == "12345": print("programa hoşgeldiniz") else: print("Yanlış kullanıcı adı veya parola") #and işlecini kullanarak iki durumu bağladık #and işlecinin mantığı her iki durumun gerçekleşmesidir #bütün koşullar gerçekleşiyorsa true döner #onun haricinde tüm sonuçlar false dir a = 23 b = 10 print(a == 23)#True print(b == 10)#True print(a == 23 and b == 10)#True print(a == 23 and b == 15)#False # OR #or veya demektir #her iki koşuldan biri true olursa yine de çalışır c = 10 d = 100 print(c == 10)#True print(d == 100)#True print(c == 1 or d == 100)#True # c koşulu yanlış olsa da d koşulu doğru olduğu için çıktı True oldu # sınavdan alınan notların harf karşılığını gösteren program x = int(input("Notunuz: ")) if x > 100 or x < 0: print("Böyle bir not yok") elif x >= 90 and x <= 100: print("A aldınız") elif x >= 80 and x <= 89: print("B aldınız.") elif x >= 70 and x <= 79: print("C aldınız") elif x >=60 and x <= 69: print("D aldınız.") elif x >= 0 and x <= 59: print("F aldınız.") #şu şekilde daha kısa biçimde yazabiliriz z = int(input("notunuz: ")) if x > 100 or x < 0: print("Böyle bir not yoktur.") elif z >= 90 <= 100: print("A aldınız") elif z >=80 <= 89: print("B aldınız") elif z >= 70 <= 79: print("C aldınız") elif z >= 60 <=69: print("D aldınız") elif z >=0 <=59: print("F aldınız") # and i kaldırdığımızda aynı sonucu alabiliyoruz ## not ## # not bir bool işlecidir. türkçe karşılığı değil demektir # özellikle kullanıcı tarafından değer girilip girilmediğini #denetlmek için kullanılır #eğer kullanıcı değer girilise not değeri çalışacak #eğer kullanıcı boş bırakılsa true değeri çalışacak parola = input("Şifrenizi giriniz Lütfen: ") if not parola: print("Şifre boş bırakılamaz") #şifrenizi giriniz yazısı geldiğinizde cevap vermeyip entera tıkladım #değer true olunca print fonksiyonu çalıştı print(bool(parola))#false #makineye şunu soruyoruz aslında: #parola boş bırakılmamış değil mi? #makinede bize: hayır boş bırakılmış diyor print(bool(not parola))#True #makineye parola boş bırakılmış değil mi? sorusunu soruyoruz #makine de bize true evet boş bırakılmış diyor #yani ikisinin arasındaki fark bırakılmamış/bırakılmış değil? midir #yani not isleçi makineye "boş bırakılmış değil mi?" sorusunu soruyor #eğer boş bırakıldıysa cevap True oluyor evet bırakılmış demek oluyor #----------------------------------# # Değer Atama İşleçleri # #----------------------------------# # değer atama işlemi "=" işleciyle yapılır a = 25 #a değişkenin içine 25 değerini atadık ## += işleci #değişkenin değerine değer eklemek için kullanılır a += 10 # a değişkenin değerine 10 değeri daha ekledik print(a) # 35 ## -= #değişkenin değerinin düşürmek yani çıkarmak için kullanılır a -= 5 #a değişkeninden 5 değer çıkardık print(a)#30 ## /= # değişkenin değeriyle bölme işlemi yapmak için kullanılır a /= 2 #a değişkenin değerini 2 sayısıyla böldük print(a)#15.0 ## *= #değişkenin değerini çarpmak için kullanılır a *= 4 # a değişkenin değerini 4 ile çarptık print(a)#60.0 ## %= #değişkenin değerinin bölme işleminde kalanını bulmak için kullanılır a %= 7 #a değişkenin değerinin 7 ile bölünmesinden kalanını bulduk print(a)#4.0 ## **= #değişkenin değerinin kuvvetini, küpünü ve karakökünü bulmak için kullanılır a **= 2#a değişkenin kuvvetini bulduk print(a)#16.0 ## //= #değişkenin değerinin tam bölünmesini bulmak için kullanılır a //= 2 print(a)#8 #bu işleçler normalde şu işlemi yapar örneğin #a = a + 5 #print(a)#5 #fakat bu işlem hızlı bir seçenek değildir ama mantıksal olarak bu şekilde işlem yapar #işleçlerin sağ ve solda olma farkı # += veya =+ -= veya =- a =- 5 print(a) # -5 # a değerine -5 değerini verdik ## := (walrus operatörü) #örnek: giris = len(input("Adın ne?")) if giris < 4: print("Adın kısaymış") elif giris < 6: print("Adın biraz uzunmuş") else: print("Uzun bir adın varmış.") #bu kodu := işlecini kullanarakta yazabiliriz if (giris := len(input("Adınız nedir?"))) < 4: print("Adın kısaymış") elif giris < 6: print("Adın biraz uzunmuş") else: print("Çok uzun bir adın varmış.") # := tek avantajı işlemimizi tek satıra sığdırması # çok kullanılmaz #zaten yeni bir işleç olduğundan sadece python 3.8.1 de çalışır #--------------------------------# # AİTLİK İŞLEÇLERİ # #--------------------------------# #bir karakter dizisinin değişkenin içinde bulunup bulunmadığını #kontrol edebilmemizi sağlar #bu işlemi in adlı işleç sayesinde yaparız a = "asdfg" print("a" in a)#True #makineye "a" değeri a değişkenin içinde var mı? sorruyoruz print("A" in a)#False print("j" in a)#False # "j" değeri a değişkenin içinde var mı? cevap: Hayır yok False #--------------------------------# # KİMLİK İŞLEÇLERİ # #--------------------------------# #pythonda her şeyin yani her nesnenin arka planda bir kimlik numarası vardır #bunu öğrenmek için id() adlı fonskiyondan yararlanırız a = 50 print(id(a))#140705130925248 # a nın kimlik numarasını yazdır dedik name = "Hello my name is Murat" print(id(name))#2704421625648 #pythonda her nesenin eşsiz tek ve benzersiz bir kimlikleri vardır #python belli bir değere kadar önbellekte aynı kimlik numarasıyla tutar nameOr = 100 print(id(nameOr))#140705130926848 nameOrOne = 100 print(id(nameOrOne))#140705130926848 #belli bir değeri artan değerleri önbellekte farklı kimlik no larıyla tutar y = 1000 print(id(y))#2467428862544 u = 1000 print(id(u))#1586531830352 #aynı değere sahip olarak gözükselerde python farklı kimlikle tanıtıyor #bunun nedeni python sadece ufak nesneleri önbellekte tutar #diğer büyük nesneleri ise yeni bir depolama işlemi yapar #ufak ve büyük değerleri öğrenmek için: for k in range(-1000,1000): for v in range(-1000,1000): if k is v: print(k) #çıkan sonuca göre -5 ila 256 arasındaki değerleri önbellekte tutabiliyor ## is number = 1000 numberOne = 1000 print(id(number))#2209573079632 print(id(numberOne))#2756858382928 print(number is 1000)#False print(numberOne is 1000)#False #is kimlikliklerine göre eşit midir aynı mıdır sorusunu sorar #is ve == işleci çok kere karıştılır ikisinin arasındaki fark: #is nesnelerin kimliklerine bakarak aynı mı olduklarını inceler # == ise nesnelerin değerlerine bakarak aynı mı olduklarını inceler print(number is 1000)#false #ayrı kimlikleri olduklarından cevap false print(number == 1000)#True #a 1000 değerine sahip oldukları için cevap true #is in arka planda yaptığı şey kabaca bu: print(id(number)==id(1000))#false ornek = "Python" print(ornek is "Python") #True ornekOne = "Python güçlü ve kolay bir proglama dilidir" print(ornekOne is "Python güçlü ve kolay bir proglama dilidir")#False print(ornekOne == "Python güçlü ve kolay bir proglama dilidir")#True #sayısal değerlerde olduğu gibi karakter dizilerinde de küçük olanlar önbellekte #büyük olan karakter dizileri içinde yeni bir kimlik ve depolama tanınmaktadır ## UYGULAMA ÖRNEKLERİ ## #------------------------------------# # BASİT BİR HESAP MAKİNESİ # #------------------------------------# #programımız bir hesap makinesi olacak #kullanıya bir sayı girecek ve bu sayı ile topla mı çıkarma mı yapacak karar verecek #buna göre ise işlemler yapacak #kullanıcıya bazı seçenekler sunalım: giris = """ (1) topla (2) çıkar (3) çarp (4) böl (5) karesini hesapla (6) karakökünü hesapla """ print(giris) soru = input("Yapmak istediğiniz işlemin numarasını giriniz: ")#kullanıcan hangi işlemi yapacağını soracağız if soru == "1": sayi1 = int(input("Toplama işlemi için ilk sayıyı giriniz: ")) sayi2 = int(input("Toplama işlemi için ikinci sayıyı giriniz: ")) print(sayi1,"+",sayi2,"=",sayi1+sayi2) elif soru == "2": sayi3 = int(input("Çıkarma işlemi için ilk sayıyı giriniz: ")) sayi4 = int(input("Çıkarma işlemi için ikinci sayıyı giriniz: ")) print(sayi3,"-",sayi4,"=",sayi3-sayi4) elif soru == "3": sayi5 = int(input("Çarpma işlemi için ilk sayıyı giriniz: ")) sayi6 = int(input("Çarpma işlemi için ikinci sayıyı giriniz:")) print(sayi5,"*",sayi6,"=",sayi5*sayi6) elif soru == "4": sayi7 = int(input("Bölme işlemi için ilk sayıyı giriniz: ")) sayi8 = int(input("Bölme işlemi için ikinci sayıyı giriniz: ")) print(sayi7,"/",sayi8,"=",sayi7/sayi8) elif soru == "5": sayi9 = int(input("Karesini hesaplamak istediğiniz bir sayıyı giriniz: ")) print(sayi9,"sayının karesi =",sayi9 ** 2) elif soru == "6": sayi10 = int(input("Karekökünü hesaplamak için istediğiniz sayıyı giriniz: ")) print(sayi10,"sayısının karakökü =",sayi10 ** 0.5) else: print("Yanlış giriş.") print("Aşağıdaki seçeneklerden birini giriniz: ",giris) """ Temel olarak program şu şekilde: eğer böyle bir durum varsa: şöyle bir işlem yap yok eğer şöyle bir durum varsa: böyle bir işlem yap eğer bambaşka bir durum varsa: şöyle bir şey yap """ #-----------------------------------# # SÜRÜME GÖRE İŞLEM YAPAN PROGRAM #-----------------------------------# #Pythonda 3.x serisinde yazılan kodlar 2.x serinde çalışmaz #yazdığımız kodların hangi python sürümünde çalıştırılmasını isteyebilirz #veya 3.x de yazdığımız kodların 2.x çalıştırılması haline kullanıya hata mesajı verdilebiliriz #sys modulünü çağıralım içe aktaralım import sys #modül içindeki istediğimiz değişkene erişelim print(sys.version_info) #sys.version_info(major=3, minor=7, micro=4, releaselevel='final', serial=0) #birde version değişkenin vereceği çıktıya bakalım print(sys.version)#3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)] #fakat işimize version_info değişkeni yarıyor #version_info nun verdiği çıktı gözüken bazı şeyler: #major, python serisinin ana sürüm numarası #minor, alt sürüm numarası #micro, en alt sürüm numarasını verir #bu değerlere ulaşmak için: print(sys.version_info.major)#3 print(sys.version_info.minor)#7 print(sys.version_info.micro)#4 #Programımızı hangi sürüm ile çalıştırılması gerektiğini kontrol eden bir program yazalım #bu program için major ve minor u kullanacağız ihtiyaç dahilinde micro da kullanabiliriz import sys _2x_metni = """ Python'ın 2.x sürümlerinden birini kullanıyorsunuz Programı çalıştırabilmek için sisteminizde Python'ın 3.x sürümlerinden biri kurulu olmalı.""" _3x_metni = "Programa Hoşgeldiniz!" if sys.version_info.major < 3: print(_2x_metni) else: print(_3x_metni) #burada ilk başta modül içindeki araçları kullanmak için import ediyoruz #daha sonra 2.x serisini kullanan biri için hata mesajı oluşturuyoruz #değişkenlerin adları sayıyla başlayamayacağı için alt çizgi ile başladık #sonra python3 kullanıcıları için merhaba metni yarattık #eğer dedik major numarası yani ana sürümü 3 ten küçükse şunu yazdır #bunun dışındaki bütün durumları için ise _3x_metnini bastır dedik # 2.x sürümlerinde türkçe karakterleri makine algılayamıyordu #bunu çözmek için ise : # -*- coding: utf-8 -*- #bu kodu yapıştırıyorduk 3.x te bu sorun kalkmıştı #fakat bu sadece programın çökmesini engeller türkçe karakterler bozuk gözükür #örneğin _2x_metin 2.x sürümlerinde çalışınca şöyle gözükür: """ Python'ın 2.x sürümlerinden birini kullanıyorsunuz. Programı çalıştırabilmek için sisteminizde Python'ın 3.x sürümlerinden biri kurulu olmalı.""" #bunu engellemek için karakter dizimizin önüne u eklemek # u ise unicode kavramından gelmektedir _2x_metni = u""" Python'ın 2.x sürümlerinden birini kullanıyorsunuz. Programı çalıştırabilmek için sisteminizde Python'ın 3.x sürümlerinden biri kurulu olmalı.""" #3 ten küçük sürümlere hata mesajı yazdırabildik #şimdi ise 3.4 gibi küçük sürümlere hata mesajı yazdırabiliriz hataMesaj3 = u""" Şuan Python'un eski sürümünü kullanıyorsunuz. Lütfen güncelleyiniz! """ if sys.version_info.major == 3 and sys.version_info.minor == 8: print("bla bla") else: print(hataMesaj3) #böylece 3.8 altı kullanan kullancılara bir heta mesajı gösterdik #bu işlemi için version değişkenini de kullanabiliriz if "3.7" in sys.version: print("Güncel versiyondasınız") else: print(hataMesaj3)
27.283105
108
0.699749
0
0
0
0
0
0
0
0
14,714
0.767033
9685eb2eb0a92cde4c6bccfdc2397e3ea1a606c7
1,056
py
Python
twindb_backup/modifiers/gzip.py
akuzminsky/twindb-mysql-backup
35755f18efb372dd05f856ca4732fba796de2549
[ "Apache-2.0" ]
1
2019-03-22T00:04:40.000Z
2019-03-22T00:04:40.000Z
twindb_backup/modifiers/gzip.py
akuzminsky/twindb-mysql-backup
35755f18efb372dd05f856ca4732fba796de2549
[ "Apache-2.0" ]
null
null
null
twindb_backup/modifiers/gzip.py
akuzminsky/twindb-mysql-backup
35755f18efb372dd05f856ca4732fba796de2549
[ "Apache-2.0" ]
1
2019-03-21T16:03:11.000Z
2019-03-21T16:03:11.000Z
# -*- coding: utf-8 -*- """ Module defines modifier that compresses a stream with gzip """ from contextlib import contextmanager from subprocess import Popen, PIPE from twindb_backup.modifiers.base import Modifier class Gzip(Modifier): """ Modifier that compresses the input_stream with gzip. """ @contextmanager def get_stream(self): """ Compress the input stream and return it as the output stream :return: output stream handle :raise: OSError if failed to call the gzip command """ with self.input as input_stream: proc = Popen(['gzip', '-c', '-'], stdin=input_stream, stdout=PIPE) yield proc.stdout proc.communicate() def revert_stream(self): """ Decompress the input stream and return it as the output stream :return: output stream handle :raise: OSError if failed to call the gpg command """ return self._revert_stream(['gunzip', '-c'])
27.076923
70
0.604167
838
0.793561
443
0.419508
463
0.438447
0
0
547
0.517992
968781224af215504c720d13564d694353e11612
8,795
py
Python
heat/objects/resource.py
larsks/heat
11064586e90166a037f8868835e6ce36f7306276
[ "Apache-2.0" ]
null
null
null
heat/objects/resource.py
larsks/heat
11064586e90166a037f8868835e6ce36f7306276
[ "Apache-2.0" ]
null
null
null
heat/objects/resource.py
larsks/heat
11064586e90166a037f8868835e6ce36f7306276
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Intel Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Resource object.""" from oslo_config import cfg from oslo_serialization import jsonutils from oslo_versionedobjects import base from oslo_versionedobjects import fields import retrying import six from heat.common import crypt from heat.common import exception from heat.common.i18n import _ from heat.db import api as db_api from heat.objects import base as heat_base from heat.objects import fields as heat_fields from heat.objects import resource_data cfg.CONF.import_opt('encrypt_parameters_and_properties', 'heat.common.config') def retry_on_conflict(func): def is_conflict(ex): return isinstance(ex, exception.ConcurrentTransaction) wrapper = retrying.retry(stop_max_attempt_number=11, wait_random_min=0.0, wait_random_max=2.0, retry_on_exception=is_conflict) return wrapper(func) class Resource( heat_base.HeatObject, base.VersionedObjectDictCompat, base.ComparableVersionedObject, ): fields = { 'id': fields.IntegerField(), 'uuid': fields.StringField(), 'stack_id': fields.StringField(), 'created_at': fields.DateTimeField(read_only=True), 'updated_at': fields.DateTimeField(nullable=True), 'physical_resource_id': fields.StringField(nullable=True), 'name': fields.StringField(nullable=True), 'status': fields.StringField(nullable=True), 'status_reason': fields.StringField(nullable=True), 'action': fields.StringField(nullable=True), 'rsrc_metadata': heat_fields.JsonField(nullable=True), 'properties_data': heat_fields.JsonField(nullable=True), 'properties_data_encrypted': fields.BooleanField(default=False), 'data': fields.ListOfObjectsField( resource_data.ResourceData, nullable=True ), 'engine_id': fields.StringField(nullable=True), 'atomic_key': fields.IntegerField(nullable=True), 'current_template_id': fields.IntegerField(), 'needed_by': heat_fields.ListField(nullable=True, default=None), 'requires': heat_fields.ListField(nullable=True, default=None), 'replaces': fields.IntegerField(nullable=True), 'replaced_by': fields.IntegerField(nullable=True), 'root_stack_id': fields.StringField(nullable=True), } @staticmethod def _from_db_object(resource, context, db_resource): if db_resource is None: return None for field in resource.fields: if field == 'data': resource['data'] = [resource_data.ResourceData._from_db_object( resource_data.ResourceData(context), resd ) for resd in db_resource.data] else: resource[field] = db_resource[field] if resource.properties_data_encrypted and resource.properties_data: properties_data = {} for prop_name, prop_value in resource.properties_data.items(): method, value = prop_value decrypted_value = crypt.decrypt(method, value) prop_string = jsonutils.loads(decrypted_value) properties_data[prop_name] = prop_string resource.properties_data = properties_data resource._context = context resource.obj_reset_changes() return resource @classmethod def get_obj(cls, context, resource_id, refresh=False): resource_db = db_api.resource_get(context, resource_id, refresh=refresh) return cls._from_db_object(cls(context), context, resource_db) @classmethod def get_all(cls, context): resources_db = db_api.resource_get_all(context) resources = [ ( resource_name, cls._from_db_object(cls(context), context, resource_db) ) for resource_name, resource_db in six.iteritems(resources_db) ] return dict(resources) @classmethod def create(cls, context, values): return cls._from_db_object(cls(context), context, db_api.resource_create(context, values)) @classmethod def delete(cls, context, resource_id): db_api.resource_delete(context, resource_id) @classmethod def exchange_stacks(cls, context, resource_id1, resource_id2): return db_api.resource_exchange_stacks( context, resource_id1, resource_id2) @classmethod def get_all_by_stack(cls, context, stack_id, filters=None): resources_db = db_api.resource_get_all_by_stack(context, stack_id, filters) return cls._resources_to_dict(context, resources_db) @classmethod def _resources_to_dict(cls, context, resources_db): resources = [ ( resource_name, cls._from_db_object(cls(context), context, resource_db) ) for resource_name, resource_db in six.iteritems(resources_db) ] return dict(resources) @classmethod def get_all_active_by_stack(cls, context, stack_id): resources_db = db_api.resource_get_all_active_by_stack(context, stack_id) resources = [ ( resource_id, cls._from_db_object(cls(context), context, resource_db) ) for resource_id, resource_db in six.iteritems(resources_db) ] return dict(resources) @classmethod def get_all_by_root_stack(cls, context, stack_id, filters): resources_db = db_api.resource_get_all_by_root_stack( context, stack_id, filters) return cls._resources_to_dict(context, resources_db) @classmethod def purge_deleted(cls, context, stack_id): return db_api.resource_purge_deleted(context, stack_id) @classmethod def get_by_name_and_stack(cls, context, resource_name, stack_id): resource_db = db_api.resource_get_by_name_and_stack( context, resource_name, stack_id) return cls._from_db_object(cls(context), context, resource_db) @classmethod def get_by_physical_resource_id(cls, context, physical_resource_id): resource_db = db_api.resource_get_by_physical_resource_id( context, physical_resource_id) return cls._from_db_object(cls(context), context, resource_db) @classmethod def update_by_id(cls, context, resource_id, values): db_api.resource_update_and_save(context, resource_id, values) def update_and_save(self, values): db_api.resource_update_and_save(self._context, self.id, values) def select_and_update(self, values, expected_engine_id=None, atomic_key=0): return db_api.resource_update(self._context, self.id, values, atomic_key=atomic_key, expected_engine_id=expected_engine_id) def refresh(self): resource_db = db_api.resource_get(self._context, self.id, refresh=True) return self.__class__._from_db_object( self, self._context, resource_db) @staticmethod def encrypt_properties_data(data): if cfg.CONF.encrypt_parameters_and_properties and data: result = {} for prop_name, prop_value in data.items(): prop_string = jsonutils.dumps(prop_value) encrypted_value = crypt.encrypt(prop_string) result[prop_name] = encrypted_value return (True, result) return (False, data) def update_metadata(self, metadata): if self.rsrc_metadata != metadata: rows_updated = self.select_and_update( {'rsrc_metadata': metadata}, self.engine_id, self.atomic_key) if not rows_updated: action = _('metadata setting for resource %s') % self.name raise exception.ConcurrentTransaction(action=action)
37.909483
79
0.648778
7,347
0.835361
0
0
4,752
0.540307
0
0
967
0.109949
96897393cb06471fec8c0393bde8aeb577d2894c
228
py
Python
pyrez/exceptions/IdOrAuthEmpty.py
CLeendert/Pyrez
598d72d8b6bb9484f0c42c6146a262817332c666
[ "MIT" ]
25
2018-07-26T02:32:14.000Z
2021-09-20T03:26:17.000Z
pyrez/exceptions/IdOrAuthEmpty.py
CLeendert/Pyrez
598d72d8b6bb9484f0c42c6146a262817332c666
[ "MIT" ]
93
2018-08-26T11:44:25.000Z
2022-03-28T08:22:18.000Z
pyrez/exceptions/IdOrAuthEmpty.py
CLeendert/Pyrez
598d72d8b6bb9484f0c42c6146a262817332c666
[ "MIT" ]
13
2018-09-05T09:38:07.000Z
2021-08-16T04:39:41.000Z
from .PyrezException import PyrezException class IdOrAuthEmpty(PyrezException): """Raises an error that the current Credentials is invalid or missing""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
38
73
0.763158
184
0.807018
0
0
0
0
0
0
72
0.315789
968998458ff06ecf90db3e1b78179a0db936b801
907
py
Python
leetcode/practise/59.py
Weis-98/learning_journey
2ef40880d4551d5d44fa71eff98eca98361022d0
[ "MIT" ]
null
null
null
leetcode/practise/59.py
Weis-98/learning_journey
2ef40880d4551d5d44fa71eff98eca98361022d0
[ "MIT" ]
null
null
null
leetcode/practise/59.py
Weis-98/learning_journey
2ef40880d4551d5d44fa71eff98eca98361022d0
[ "MIT" ]
null
null
null
class Solution: def generateMatrix(self, n): matrix = [] num = 1 for i in range(n): matrix.append([0 for i in range(n)]) top = 0 bottom = n - 1 left = 0 right = n - 1 while top <= bottom and left <= right: for i in range(left, right + 1): matrix[top][i] = num num += 1 for j in range(top + 1, bottom + 1): matrix[j][right] = num num += 1 if top < bottom and left < right: for i in range(right - 1, left - 1, -1): matrix[bottom][i] = num num += 1 for j in range(bottom - 1, top, -1): matrix[j][left] = num num += 1 top, bottom, left, right = top + 1, bottom - 1, left + 1, right - 1 return matrix
34.884615
79
0.406836
907
1
0
0
0
0
0
0
0
0
968a0ed358f9602c37b149e837fd6e25f4d5114f
4,492
py
Python
capnpy/segment/builder.py
GambitResearch/capnpy
3b8d9ed0623e160f69dee07ec2fc6303683c2a3c
[ "MIT" ]
45
2016-10-28T10:16:07.000Z
2022-03-06T20:16:57.000Z
capnpy/segment/builder.py
GambitResearch/capnpy
3b8d9ed0623e160f69dee07ec2fc6303683c2a3c
[ "MIT" ]
42
2016-12-20T18:10:53.000Z
2021-09-08T12:29:04.000Z
capnpy/segment/builder.py
GambitResearch/capnpy
3b8d9ed0623e160f69dee07ec2fc6303683c2a3c
[ "MIT" ]
21
2017-02-28T06:39:15.000Z
2021-09-07T05:30:46.000Z
import struct from six import binary_type from capnpy import ptr from capnpy.packing import mychr from capnpy.printer import print_buffer class SegmentBuilder(object): def __init__(self, length=None): self.buf = bytearray() def get_length(self): return len(self.buf) def as_string(self): return binary_type(self.buf) def _print(self): print_buffer(self.as_string()) def write_generic(self, ifmt, i, value): struct.pack_into(mychr(ifmt), self.buf, i, value) def write_int8(self, i, value): struct.pack_into('b', self.buf, i, value) def write_uint8(self, i, value): struct.pack_into('B', self.buf, i, value) def write_int16(self, i, value): struct.pack_into('h', self.buf, i, value) def write_uint16(self, i, value): struct.pack_into('H', self.buf, i, value) def write_int32(self, i, value): struct.pack_into('i', self.buf, i, value) def write_uint32(self, i, value): struct.pack_into('I', self.buf, i, value) def write_int64(self, i, value): struct.pack_into('q', self.buf, i, value) def write_uint64(self, i, value): struct.pack_into('Q', self.buf, i, value) def write_float32(self, i, value): struct.pack_into('f', self.buf, i, value) def write_float64(self, i, value): struct.pack_into('d', self.buf, i, value) def write_bool(self, byteoffset, bitoffset, value): current = struct.unpack_from('B', self.buf, byteoffset)[0] current |= (value << bitoffset) struct.pack_into('B', self.buf, byteoffset, current) def write_slice(self, i, src, start, n): self.buf[i:i+n] = src.buf[start:start+n] def allocate(self, length): # XXX: check whether there is a better method to zero-extend the array in PyPy result = len(self.buf) self.buf += b'\x00'*length return result def alloc_struct(self, pos, data_size, ptrs_size): """ Allocate a new struct of the given size, and write the resulting pointer at position i. Return the newly allocated position. """ length = (data_size+ptrs_size) * 8 result = self.allocate(length) offet = result - (pos+8) p = ptr.new_struct(offet//8, data_size, ptrs_size) self.write_int64(pos, p) return result def alloc_list(self, pos, size_tag, item_count, body_length): """ Allocate a new list of the given size, and write the resulting pointer at position i. Return the newly allocated position. """ body_length = ptr.round_up_to_word(body_length) result = self.allocate(body_length) offet = result - (pos+8) p = ptr.new_list(offet//8, size_tag, item_count) self.write_int64(pos, p) return result def alloc_text(self, pos, s, trailing_zero=1): if s is None: self.write_int64(pos, 0) return -1 n = len(s) nn = n + trailing_zero result = self.alloc_list(pos, ptr.LIST_SIZE_8, nn, nn) self.buf[result:result+n] = s # there is no need to write the trailing 0 as the byte is already # guaranteed to be 0 return result def alloc_data(self, pos, s): return self.alloc_text(pos, s, trailing_zero=0) def copy_from_struct(self, dst_pos, structcls, value): if value is None: self.write_int64(dst_pos, 0) return if not isinstance(value, structcls): raise TypeError("Expected %s instance, got %s" % (structcls.__class__.__name__, value)) self.copy_from_pointer(dst_pos, value._seg, value._as_pointer(0), 0) def copy_from_pointer(self, dst_pos, src, p, src_pos): return copy_pointer(src, p, src_pos, self, dst_pos) def copy_inline_struct(self, dst_pos, src, p, src_pos): """ Similar to copy_from_pointer but: 1. it assumes that p is a pointer to a struct 2. it does NOT allocate a new struct in dst_pos: instead, it writes the struct directly into dst_pos """ return _copy_struct_inline(src, p, src_pos, self, dst_pos) def copy_from_list(self, pos, item_type, lst): return copy_from_list(self, pos, item_type, lst) from capnpy.segment._copy_pointer import copy_pointer, _copy_struct_inline from capnpy.segment._copy_list import copy_from_list
33.274074
86
0.629564
4,222
0.939893
0
0
0
0
0
0
784
0.174533
968a32ab6cc052ecd19269370677c3356ed68536
1,028
py
Python
test_project/test_app/migrations/0002_auto_20180514_0720.py
iCHEF/queryfilter
0ae4faf525e162d2720d328b96fa179d68277f1e
[ "Apache-2.0" ]
4
2018-05-11T18:07:32.000Z
2019-07-30T13:38:49.000Z
test_project/test_app/migrations/0002_auto_20180514_0720.py
iCHEF/queryfilter
0ae4faf525e162d2720d328b96fa179d68277f1e
[ "Apache-2.0" ]
6
2018-02-26T04:46:36.000Z
2019-04-10T06:17:12.000Z
test_project/test_app/migrations/0002_auto_20180514_0720.py
iCHEF/queryfilter
0ae4faf525e162d2720d328b96fa179d68277f1e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-05-14 07:20 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('test_app', '0001_initial'), ] operations = [ migrations.AddField( model_name='data', name='address', field=models.TextField(default=''), ), migrations.AlterField( model_name='data', name='age', field=models.IntegerField(default=22), ), migrations.AlterField( model_name='data', name='name', field=models.TextField(default=''), ), migrations.AlterField( model_name='data', name='price', field=models.IntegerField(default=10), ), migrations.AlterField( model_name='data', name='type', field=models.IntegerField(default=0), ), ]
25.073171
50
0.535992
869
0.845331
0
0
0
0
0
0
163
0.15856
968a7365ef23f40cb8759f1ce7dce18d8b7a6114
6,371
py
Python
file.py
AllenGao6/P2P-File-Sharing
059f9ec75d10b7802d1a363f718ade640ac18223
[ "MIT" ]
null
null
null
file.py
AllenGao6/P2P-File-Sharing
059f9ec75d10b7802d1a363f718ade640ac18223
[ "MIT" ]
null
null
null
file.py
AllenGao6/P2P-File-Sharing
059f9ec75d10b7802d1a363f718ade640ac18223
[ "MIT" ]
null
null
null
''' objective of file.py: define the object class for file, information to include: name size of file chunk list (should automaticlly be splitted into chunks, each chunk should have indicator) ''' import base64 import sys import hashlib JPG, PNG, PDF, MP3, MP4, UNKNOWN = 1, 2, 3, 4, 5, 0 class File: file_name = "" file_type = "" file_size = 0 chunk_list_size = 0 # will be decided later how to handle indicator and hashing for each chunk, most likely will define a chunk hash function chunk_list = [] hashed_chunk_list = [] SINGLE_CHUNK_SIZE = 131072 def __init__(self, file_name, file_size=None, full_info=False): self.file_name = file_name self.file_type = self.get_fileType() if not file_size: self.chunk_list = [] self.hashed_chunk_list = [] self.chunkize() else: self.file_size = file_size if full_info: self.chunk_list = [True] * (self.file_size // self.SINGLE_CHUNK_SIZE + 1) self.chunk_list_size = len(self.chunk_list) self.hashed_chunk_list = [True] * (self.file_size // self.SINGLE_CHUNK_SIZE + 1) else: self.chunk_list = [None] * (self.file_size // self.SINGLE_CHUNK_SIZE + 1) self.chunk_list_size = len(self.chunk_list) self.hashed_chunk_list = [None] * (self.file_size // self.SINGLE_CHUNK_SIZE + 1) # create the file in local folder def create_file(self): true_file_name = self.file_name.split('/')[-1] converted_string = b"".join(self.chunk_list) if len(converted_string) != self.file_size: print("Error when constructing file, file size does not match") f = open('FILE_RECIEVE/'+true_file_name, 'wb') f.write(base64.b64decode((converted_string))) f.close() print("File Created locally!!!!!!!!") # pre-define chunk indicator given the size of the file def chunkize(self): # the encoded binary format of file if self.file_type == JPG or self.file_type == PNG or self.file_type == PDF or self.file_type == MP4: # base64 encode all these file from local file path with open(self.file_name, "rb") as image2string: converted_string = base64.b64encode(image2string.read()) print(len(converted_string)) # set the total file size in byte self.file_size = len(converted_string) for i in range(0, (self.file_size // self.SINGLE_CHUNK_SIZE)+1): if i == len(converted_string) // self.SINGLE_CHUNK_SIZE: chunk_block = converted_string[i*self.SINGLE_CHUNK_SIZE: self.file_size] else: chunk_block = converted_string[i*self.SINGLE_CHUNK_SIZE: (i+1)*self.SINGLE_CHUNK_SIZE] # append original block and hashed block into local storage # hashed block is used to verification for data integrity self.chunk_list.append(chunk_block) self.hashed_chunk_list.append(self.hash_chunk(chunk_block)) # set the total chunk list size self.chunk_list_size = len(self.chunk_list) elif self.file_type == MP3: print("not supported yet") elif self.file_type == MP4: print("not supported yet") else: print("INVALID FILE TYPE") def get_fileType(self): extention = self.file_name.split('.')[-1] if extention == "jpg": return JPG elif extention == "png": return PNG elif extention == 'pdf': return PDF elif extention == 'mp3': return MP3 elif extention == 'mp4': return MP4 else: return UNKNOWN # get the name of this file def getName(self): return self.file_name # get the size of this file def get_file_size(self): return self.file_size # get the file type def get_file_type(self): return self.file_type # define a hash algorithm for the chunk def hash_chunk(self, data): # implement sha1 for verification obj_sha3_256 = hashlib.sha3_256(data) # print in hexadecimal # print("\nSHA3-256 Hash: ", obj_sha3_256.hexdigest()) return obj_sha3_256.hexdigest() # add a piece to chunk_list def add_chunk(self, chunk, index): self.chunk_list[index] = chunk # add a piece to hash chunk_list def add_hash_chunk(self, hash_chunk, index): self.hashed_chunk_list[index] = hash_chunk # get the size of chunk_list def get_chunk_list_size(self): return self.chunk_list_size # check the chunk of a file def check_file_chunk(self, index): if index >= self.chunk_list_size: return False # print("actual chunk_size:", len(self.chunk_list)) # print("chunk_size:", self.chunk_list_size) return self.chunk_list[index] != None # get a particular chunk in chunk_list def get_index_chunk(self, index): if self.check_file_chunk(index): return self.chunk_list[index] return None # get a particular chunk hash in chunk_list def get_index_chunk_hash(self, index): if self.check_file_chunk(index): return self.hashed_chunk_list[index] return None # register a chunk in file given index def register_chunk(self, index): try: self.chunk_list[index] = True return True except: return False # get chunk ownership info def get_chunk_info(self, find_miss=False): # this part of the code is not optimized, but this should do the trick index_list = [] for i in range(len(self.chunk_list)): if find_miss: if self.chunk_list[i] == None: index_list.append(i) else: if self.chunk_list[i] != None: index_list.append(i) return index_list # get the number of available chunk in file def get_aval_chunk_size(self): result = self.get_chunk_info(find_miss=False) return len(result)
33.888298
125
0.605086
6,043
0.948517
0
0
0
0
0
0
1,594
0.250196
968afeca8b633bb5b9753043627e7d2f6a06eb50
360
py
Python
pdx-extract/tests/test_utils.py
michaelheyman/PSU-Code-Review
5a55d981425aaad69dc9ee06baaaef22bc426893
[ "MIT" ]
null
null
null
pdx-extract/tests/test_utils.py
michaelheyman/PSU-Code-Review
5a55d981425aaad69dc9ee06baaaef22bc426893
[ "MIT" ]
null
null
null
pdx-extract/tests/test_utils.py
michaelheyman/PSU-Code-Review
5a55d981425aaad69dc9ee06baaaef22bc426893
[ "MIT" ]
null
null
null
import unittest.mock as mock from app import utils @mock.patch("app.utils.get_current_timestamp") def test_generate_filename_generates_formatted_timestamp(mock_timestamp): mock_timestamp.return_value = 1_555_555_555.555_555 filename = utils.generate_filename() assert mock_timestamp.called is True assert filename == "20190417194555.json"
25.714286
73
0.802778
0
0
0
0
305
0.847222
0
0
54
0.15
968b59a333622be17af9c9620da7baac069e951b
1,328
py
Python
.my_scripts/network/analyze_speedtest.py
infokiller/config-public
73fd61a0ad4d2f1ac7e7a73b13de8c4f1b80e5c4
[ "MIT" ]
17
2020-06-01T14:18:49.000Z
2022-03-23T04:32:52.000Z
.my_scripts/network/analyze_speedtest.py
Laworigin/config-public
527c42e0c5c274dd23c537674d789499b03ef912
[ "MIT" ]
1
2021-11-28T10:43:08.000Z
2021-11-28T10:43:08.000Z
.my_scripts/network/analyze_speedtest.py
Laworigin/config-public
527c42e0c5c274dd23c537674d789499b03ef912
[ "MIT" ]
3
2020-07-02T12:37:27.000Z
2021-12-15T17:03:54.000Z
#!/usr/bin/env python3 import argparse import datetime import os import matplotlib.pyplot as plt import pandas as pd def main(): parser = argparse.ArgumentParser(description='Analyze speedtest csv file') parser.add_argument('speedtest_file', help='Path to speedtest csv file') parser.add_argument('--min-datetime', help='Minimum datetime of data to include') parser.add_argument('--last-days', type=int, default=30, help='Number of days to include') args = parser.parse_args() min_datetime_str = datetime.datetime(1970, 1, 1) if args.min_datetime: min_datetime_str = '0' elif args.last_days: min_datetime_str = ( datetime.datetime.now() - datetime.timedelta(days=args.last_days)).strftime('%Y-%m-%d') # pylint: disable=invalid-name df = pd.read_csv(args.speedtest_file) df['Timestamp'] = pd.to_datetime(df['Timestamp']) df = df[df['Timestamp'] >= min_datetime_str] df = df.set_index('Timestamp') df['Download'] = df['Download'] / (1000**2) df['Upload'] = df['Upload'] / (1000**2) _, ax = plt.subplots() df[['Download', 'Upload']].ewm(alpha=0.1).mean().plot(ax=ax) plt.show() if __name__ == '__main__': main()
30.883721
78
0.610693
0
0
0
0
0
0
0
0
338
0.254518
968b5a9ecbc7c7427f6fc38ea644b75122f74f7f
5,403
py
Python
tensorflow_datasets/text/wikipedia_toxicity_subtypes.py
stwind/datasets
118d3d2472a3bf2703d1374e25c2223dc7942c13
[ "Apache-2.0" ]
1
2020-10-11T19:15:49.000Z
2020-10-11T19:15:49.000Z
tensorflow_datasets/text/wikipedia_toxicity_subtypes.py
cbaront/datasets
b097e0985eaaadc6b0c1f4dfa3b3cf88d116c607
[ "Apache-2.0" ]
1
2021-02-23T20:16:05.000Z
2021-02-23T20:16:05.000Z
tensorflow_datasets/text/wikipedia_toxicity_subtypes.py
cbaront/datasets
b097e0985eaaadc6b0c1f4dfa3b3cf88d116c607
[ "Apache-2.0" ]
1
2022-03-14T16:17:53.000Z
2022-03-14T16:17:53.000Z
# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """WikipediaToxicitySubtypes from Jigsaw Toxic Comment Classification Challenge.""" import csv import os import tensorflow.compat.v2 as tf import tensorflow_datasets.public_api as tfds _CITATION = """ @inproceedings{10.1145/3038912.3052591, author = {Wulczyn, Ellery and Thain, Nithum and Dixon, Lucas}, title = {Ex Machina: Personal Attacks Seen at Scale}, year = {2017}, isbn = {9781450349130}, publisher = {International World Wide Web Conferences Steering Committee}, address = {Republic and Canton of Geneva, CHE}, url = {https://doi.org/10.1145/3038912.3052591}, doi = {10.1145/3038912.3052591}, booktitle = {Proceedings of the 26th International Conference on World Wide Web}, pages = {1391-1399}, numpages = {9}, keywords = {online discussions, wikipedia, online harassment}, location = {Perth, Australia}, series = {WWW '17} } """ _DESCRIPTION = """ This version of the Wikipedia Toxicity Subtypes dataset provides access to the primary toxicity label, as well the five toxicity subtype labels annotated by crowd workers. The toxicity and toxicity subtype labels are binary values (0 or 1) indicating whether the majority of annotators assigned that attributes to the comment text. The comments in this dataset come from an archive of Wikipedia talk pages comments. These have been annotated by Jigsaw for toxicity, as well as a variety of toxicity subtypes, including severe toxicity, obscenity, threatening language, insulting language, and identity attacks. This dataset is a replica of the data released for the Jigsaw Toxic Comment Classification Challenge on Kaggle, with the training set unchanged, and the test dataset merged with the test_labels released after the end of the competition. Test data not used for scoring has been dropped. This dataset is released under CC0, as is the underlying comment text. See the Kaggle documentation or https://figshare.com/articles/Wikipedia_Talk_Labels_Toxicity/4563973 for more details. """ _DOWNLOAD_URL = 'https://storage.googleapis.com/jigsaw-unintended-bias-in-toxicity-classification/wikipedia_toxicity_subtypes.zip' class WikipediaToxicitySubtypes(tfds.core.GeneratorBasedBuilder): """Classification of 220K Wikipedia talk page comments for types of toxicity. This version of the Wikipedia Toxicity Subtypes dataset provides access to the primary toxicity label, as well the five toxicity subtype labels annotated by crowd workers. The toxicity and toxicity subtype labels are binary values (0 or 1) indicating whether the majority of annotators assigned that attributes to the comment text. See the Kaggle documentation or https://figshare.com/articles/Wikipedia_Talk_Labels_Toxicity/4563973 for more details. """ VERSION = tfds.core.Version('0.2.0') RELEASE_NOTES = { '0.2.0': 'Updated features for consistency with CivilComments dataset.', } def _info(self): return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ 'text': tfds.features.Text(), 'toxicity': tf.float32, 'severe_toxicity': tf.float32, 'obscene': tf.float32, 'threat': tf.float32, 'insult': tf.float32, 'identity_attack': tf.float32, }), supervised_keys=('text', 'toxicity'), homepage='https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data', citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_path = dl_manager.download_and_extract(_DOWNLOAD_URL) return [ tfds.core.SplitGenerator( name=tfds.Split.TRAIN, gen_kwargs={ 'filename': os.path.join(dl_path, 'wikidata_train.csv') }, ), tfds.core.SplitGenerator( name=tfds.Split.TEST, gen_kwargs={'filename': os.path.join(dl_path, 'wikidata_test.csv')}, ), ] def _generate_examples(self, filename): """Yields examples. Each example contains a text input and then six annotation labels. Args: filename: the path of the file to be read for this split. Yields: A dictionary of features, all floating point except the input text. """ with tf.io.gfile.GFile(filename) as f: reader = csv.DictReader(f) for row in reader: example = {} example['text'] = row['comment_text'] example['toxicity'] = float(row['toxic']) example['severe_toxicity'] = float(row['severe_toxic']) example['identity_attack'] = float(row['identity_hate']) for label in ['obscene', 'threat', 'insult']: example[label] = float(row[label]) yield row['id'], example
38.049296
130
0.713122
2,672
0.49454
784
0.145105
0
0
0
0
3,835
0.709791
968b8d46ee387fdd215e0605696e260154647af3
480
py
Python
estimate-retrofit-impact-on-heat-pump-viability/plot_uvalue_distribution.py
rdmolony/projects
8cbbe215710cb9f1b1bf80f8c6a39153181d61a0
[ "MIT" ]
3
2021-09-02T16:38:27.000Z
2022-01-19T13:11:09.000Z
estimate-retrofit-impact-on-heat-pump-viability/plot_uvalue_distribution.py
rdmolony/projects
8cbbe215710cb9f1b1bf80f8c6a39153181d61a0
[ "MIT" ]
5
2021-10-17T16:25:47.000Z
2021-11-14T17:51:24.000Z
estimate-retrofit-impact-on-heat-pump-viability/plot_uvalue_distribution.py
rdmolony/projects
8cbbe215710cb9f1b1bf80f8c6a39153181d61a0
[ "MIT" ]
3
2021-10-04T08:34:26.000Z
2022-02-06T15:56:03.000Z
import pandas as pd import seaborn as sns sns.set() # + tags=["parameters"] upstream = ["download_buildings"] product = None # - buildings = pd.read_csv(upstream["download_buildings"]) buildings["wall_uvalue"].plot.hist(bins=30) buildings["roof_uvalue"].plot.hist(bins=30) buildings["window_uvalue"].plot.hist(bins=30) buildings["wall_uvalue"].to_csv(product["wall"]) buildings["roof_uvalue"].to_csv(product["roof"]) buildings["window_uvalue"].to_csv(product["window"])
19.2
55
0.739583
0
0
0
0
0
0
0
0
168
0.35
968d0a57d12d55c489796f697b6f5c53a64a6d4e
925
py
Python
src/core/base/Logging.py
albertmonfa/Banhmi
30052155316d3ba65e9bc7261f13f7e081c14ab2
[ "Apache-2.0" ]
null
null
null
src/core/base/Logging.py
albertmonfa/Banhmi
30052155316d3ba65e9bc7261f13f7e081c14ab2
[ "Apache-2.0" ]
1
2021-06-01T22:54:10.000Z
2021-06-01T22:54:10.000Z
src/core/base/Logging.py
albertmonfa/Banhmi
30052155316d3ba65e9bc7261f13f7e081c14ab2
[ "Apache-2.0" ]
1
2018-11-08T10:18:19.000Z
2018-11-08T10:18:19.000Z
#!/usr/bin/python ''' Copyright 2018 Albert Monfa Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import logging class Logging(): __severity = { 0 : logging.DEBUG, 1 : logging.INFO, 2 : logging.WARNING, 3 : logging.ERROR, 4 : logging.CRITICAL } def severity(log_level): if log_level not in range(0,4): return logging.ERROR return Logging.__severity[log_level]
27.205882
72
0.701622
328
0.354595
0
0
0
0
0
0
577
0.623784
968d107ac6d19ef65f3e2a523c368a10dd9ff203
8,243
py
Python
IzVerifier/test/test_izverifier.py
ahmedlawi92/IzVerifier
b367935f66810b4c4897cc860c5a3e2070f1890f
[ "MIT" ]
null
null
null
IzVerifier/test/test_izverifier.py
ahmedlawi92/IzVerifier
b367935f66810b4c4897cc860c5a3e2070f1890f
[ "MIT" ]
null
null
null
IzVerifier/test/test_izverifier.py
ahmedlawi92/IzVerifier
b367935f66810b4c4897cc860c5a3e2070f1890f
[ "MIT" ]
null
null
null
from IzVerifier.izspecs.containers.izclasses import IzClasses __author__ = 'fcanas' import unittest from IzVerifier.izspecs.containers.izconditions import IzConditions from IzVerifier.izspecs.containers.izstrings import IzStrings from IzVerifier.izspecs.containers.izvariables import IzVariables from IzVerifier.izverifier import IzVerifier from IzVerifier.izspecs.containers.constants import * path1 = 'data/sample_installer_iz5/izpack/' path2 = 'data/sample_installer_iz5/resources/' source_path2 = 'data/sample_code_base/src/' pom = 'data/sample_installer_iz5/pom.xml' class TestVerifier(unittest.TestCase): """ Basic testing of verifier class. """ def setUp(self): args = { 'specs_path': path1, 'sources': [source_path2], 'resources_path': path2, 'pom': pom, 'specs': ['conditions', 'strings', 'variables'] } self.izv = IzVerifier(args) self.izv.reporter.set_terminal_width() # Sets width to width of terminal def test_IzPaths(self): """ Testing install.xml path parsing. """ specs = [('variables', 'variables.xml'), ('conditions', 'conditions.xml'), ('dynamicvariables', 'dynamic_variables.xml'), ('resources', 'resources.xml'), ('panels', 'panels.xml'), ('packs', 'packs.xml')] self.assertTrue(self.izv != None) for spec in specs: path = self.izv.paths.get_path(spec[0]) self.assertTrue(spec[1] in path, msg=path + "!=" + spec[1]) def test_IzConditions(self): """ Testing the strings container. """ conditions = self.izv.paths.get_path('conditions') self.assertEquals(conditions, 'data/sample_installer_iz5/izpack/conditions.xml') izc = IzConditions(conditions) self.assertTrue(izc != None) # Test for number of keys in conditions.xml plus white list num = len(izc.get_keys()) - len(izc.properties[WHITE_LIST]) print num self.assertEquals(num, 15, str(num) + "!=15") def test_langpack_paths(self): """ Test that we parsed the langpack paths from resources.xml """ langpacks = [('default', 'data/sample_installer_iz5/resources/langpacks/CustomLangPack.xml'), ('eng', 'data/sample_installer_iz5/resources/langpacks/CustomLangPack.xml')] for tpack, fpack in zip(langpacks, self.izv.paths.get_langpacks().keys()): self.assertEquals(tpack[1], self.izv.paths.get_langpack_path(tpack[0])) def test_IzStrings(self): """ Testing the strings container. """ langpack = self.izv.paths.get_langpack_path() izs = IzStrings(langpack) self.assertTrue(izs != None) # Test for number of strings num = len(izs.get_keys()) self.assertEquals(num, 5, str(num) + '!=4') def test_IzVariables(self): """ Testing the variables container. """ variables = self.izv.paths.get_path('variables') self.assertEquals(variables, 'data/sample_installer_iz5/izpack/variables.xml') izv = IzVariables(variables) self.assertTrue(izv != None) num = len(izv.get_keys()) - len(izv.properties[WHITE_LIST]) self.assertEquals(num, 3, str(num) + '!=3') def test_verifyStrings(self): """ Verify strings in sample installer """ hits = self.izv.verify('strings', verbosity=2, filter_classes=True) undefined_strings = {'some.string.4', 'my.error.message.id.test', 'password.empty', 'password.not.equal', 'some.user', 'some.user.panel.info', 'some.user.password', 'some.user.password.confirm', 'some.string.5', 'some.string.6', 'hello.world', 'my.izpack5.key.1', 'my.izpack5.key.2', 'my.izpack5.key.3'} found_strings, location = zip(*hits) strings_not_found = undefined_strings - set(found_strings) additional_found_strings = set(found_strings) - undefined_strings self.assertTrue(len(strings_not_found) == 0, "Strings not found: " + str(strings_not_found)) self.assertTrue(len(additional_found_strings) == 0, "Should not have been found: " + str(additional_found_strings)) def test_verifyConditions(self): """ Verify conditions in sample installer. """ hits = self.izv.verify('conditions', verbosity=2) undefined_conditions = {'myinstallerclass.condition', 'some.condition.2', 'some.condition.1'} found_conditions, location = zip(*hits) for id in undefined_conditions: self.assertTrue(id in found_conditions) def test_verifyVariables(self): """ Verify conditions in sample installer. """ hits = self.izv.verify('variables', verbosity=1) num = len(hits) self.assertTrue(num == 5) def test_verifyAll(self): """ Verify all specs on sample installer. """ hits = self.izv.verify_all(verbosity=1) num = len(hits) assert (num != 0) def test_findReference(self): """ Find some references to items in source code and specs. """ hits = self.izv.find_references('some.user.password', verbosity=2) self.assertEquals(len(hits), 2) hits = self.izv.find_references('password.empty', verbosity=2) self.assertEquals(len(hits), 1) # Ref in code hits = self.izv.find_references('some.string.3', verbosity=2) self.assertEquals(len(hits), 1) # var substitution not yet implemented for find references, so this # test will miss the ref in Foo.java hits = self.izv.find_references('some.condition.1', verbosity=2) self.assertEquals(len(hits), 1) def test_verifyClasses(self): """ Testing the izclasses container. """ classes = IzClasses(source_path2) classes.print_keys() self.assertEquals(len(classes.get_keys()), 5) hits = self.izv.verify('classes', verbosity=2) self.assertEquals(len(hits), 5) referenced = self.izv.get_referenced('classes') self.assertTrue(referenced.has_key('com.sample.installer.Foo')) self.assertTrue(referenced.has_key('com.sample.installer.SuperValidator')) self.assertTrue(referenced.has_key('com.sample.installer.SuperDuperValidator')) self.assertTrue(referenced.has_key('com.sample.installer.BarListener')) def test_findReferencedClasses(self): """ Testing the IzVerifiers ability to find the classes used in an installer """ found_referenced_classes = self.izv.referenced_classes actual_referenced_classes = { 'data/sample_code_base/src/com/sample/installer/Foo.java', 'data/sample_code_base/src/com/sample/installer/Apples.java', 'data/sample_code_base/src/com/sample/installer/Pineapples.java', 'data/sample_code_base/src/com/sample/installer/Bar.java' } found_referenced_classes = set(found_referenced_classes) extra_classes_found = found_referenced_classes - actual_referenced_classes classes_not_found = actual_referenced_classes - found_referenced_classes self.assertTrue(len(extra_classes_found) == 0) self.assertTrue(len(classes_not_found) == 0) for reffed_class in extra_classes_found: print "this class shouldn't have been found %s" % reffed_class for reffed_class in classes_not_found: print "this class should have been found %s" % reffed_class if __name__ == '__main__': unittest.main()
35.076596
123
0.605241
7,610
0.923208
0
0
0
0
0
0
2,685
0.325731
968e31be6937f07c12c6da1be7d293d1db2611e3
5,690
py
Python
src/envoxy/postgresql/client.py
muzzley/envoxy
b70f2d19ee27f7b4b12e68d441b1317966d87041
[ "MIT" ]
2
2018-10-29T09:39:43.000Z
2019-06-18T11:29:00.000Z
src/envoxy/postgresql/client.py
muzzley/envoxy
b70f2d19ee27f7b4b12e68d441b1317966d87041
[ "MIT" ]
null
null
null
src/envoxy/postgresql/client.py
muzzley/envoxy
b70f2d19ee27f7b4b12e68d441b1317966d87041
[ "MIT" ]
null
null
null
from psycopg2.pool import ThreadedConnectionPool import psycopg2.extras import psycopg2.sql as sql from contextlib import contextmanager from threading import Semaphore from ..db.exceptions import DatabaseException from ..utils.logs import Log from ..constants import MIN_CONN, MAX_CONN, TIMEOUT_CONN, DEFAULT_OFFSET_LIMIT, DEFAULT_CHUNK_SIZE from ..asserts import assertz class SemaphoreThreadedConnectionPool(ThreadedConnectionPool): def __init__(self, minconn, maxconn, *args, **kwargs): self._semaphore = Semaphore(maxconn) super().__init__(minconn, maxconn, *args, **kwargs) def getconn(self, *args, **kwargs): self._semaphore.acquire() return super().getconn(*args, **kwargs) def putconn(self, *args, **kwargs): super().putconn(*args, **kwargs) self._semaphore.release() class Client: _instances = {} __conn = None def __init__(self, server_conf): for _server_key in server_conf.keys(): _conf = server_conf[_server_key] self._instances[_server_key] = { 'server': _server_key, 'conf': _conf } self.connect(self._instances[_server_key]) def connect(self, instance): conf = instance['conf'] _max_conn = int(conf.get('max_conn', MAX_CONN)) _timeout = int(conf.get('timeout', TIMEOUT_CONN)) try: _conn_pool = SemaphoreThreadedConnectionPool(MIN_CONN, _max_conn, host=conf['host'], port=conf['port'], dbname=conf['db'], user=conf['user'], password=conf['passwd'], connect_timeout=_timeout) instance['conn_pool'] = _conn_pool Log.trace('>>> Successfully connected to POSTGRES: {}, {}:{}'.format(instance['server'], conf['host'], conf['port'])) except psycopg2.OperationalError as e: Log.error('>>PGSQL ERROR {} {}'.format(conf.get('server'), e)) def query(self, server_key=None, sql=None, params=None): """ Executes any given sql query :param sql_query: :return: """ conn = None try: if not sql: raise DatabaseException("Sql cannot be empty") conn = self.__conn if self.__conn is not None else self._get_conn( server_key) cursor = conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) schema = self._get_conf(server_key, 'schema') if schema: cursor.execute(f"SET search_path TO {schema}") data = [] chunk_size = params.get('chunk_size') or DEFAULT_CHUNK_SIZE offset_limit = params.get('offset_limit') or DEFAULT_OFFSET_LIMIT params.update({ 'chunk_size': chunk_size, 'offset_limit': offset_limit }) try: while True: cursor.execute(sql, params) rowcount = cursor.rowcount rows = cursor.fetchall() data.extend(list(map(dict, rows))) offset_limit += chunk_size params.update({'offset_limit': offset_limit}) if rowcount != chunk_size or 'limit' not in sql.lower(): break if self.__conn is None: # query is not using transaction self.release_conn(server_key, conn) return data except KeyError as e: Log.error(e) if conn is not None: self.release_conn(server_key, conn) except psycopg2.DatabaseError as e: Log.error(e) if conn is not None: self.release_conn(server_key, conn) return None def insert(self, db_table: str, data: dict): if not self.__conn: raise DatabaseException( "Insert must be inside a transaction block") columns = data.keys() query = sql.SQL("""insert into {} ({}) values ({})""").format( sql.Identifier(db_table), sql.SQL(', ').join(map(sql.Identifier, columns)), sql.SQL(', ').join(sql.Placeholder() * len(columns))) conn = self.__conn cursor = conn.cursor() cursor.execute(query, list(data.values())) def _get_conn(self, server_key): """ :param server_key: database identifier :return: raw psycopg2 connector instance """ _instance = self._instances[server_key] assertz('conn_pool' in _instance, f"getconn failed on {server_key} db", _error_code=0, _status_code=412) return _instance.get('conn_pool').getconn() def _get_conf(self, server_key, key): return self._instances[server_key]['conf'].get(key, None) def release_conn(self, server_key, conn): _instance = self._instances[server_key] _instance['conn_pool'].putconn(conn) @contextmanager def transaction(self, server_key): self.__conn = self._get_conn(server_key) self.__conn.autocommit = False try: yield self except (psycopg2.DatabaseError, DatabaseException) as e: Log.error("rollback transaction, {}".format(e)) self.__conn.rollback() finally: self.__conn.commit() self.release_conn(server_key, self.__conn) self.__conn = None
31.787709
119
0.564323
5,310
0.933216
458
0.080492
478
0.084007
0
0
739
0.129877
968eb0ff0a358625bf80189ad1c3b24c8d3d2439
4,380
py
Python
treadmill/cli/admin/blackout.py
gaocegege/treadmill
04325d319c0ee912c066f07b88b674e84485f154
[ "Apache-2.0" ]
2
2017-03-20T07:13:33.000Z
2017-05-03T03:39:53.000Z
treadmill/cli/admin/blackout.py
gaocegege/treadmill
04325d319c0ee912c066f07b88b674e84485f154
[ "Apache-2.0" ]
12
2017-07-10T07:04:06.000Z
2017-07-26T09:32:54.000Z
treadmill/cli/admin/blackout.py
gaocegege/treadmill
04325d319c0ee912c066f07b88b674e84485f154
[ "Apache-2.0" ]
2
2017-05-04T11:25:32.000Z
2017-07-11T09:10:01.000Z
"""Kills all connections from a given treadmill server.""" import logging import re import click import kazoo from treadmill import presence from treadmill import utils from treadmill import zkutils from treadmill import context from treadmill import cli from treadmill import zknamespace as z _LOGGER = logging.getLogger(__name__) _ON_EXCEPTIONS = cli.handle_exceptions([ (kazoo.exceptions.NoAuthError, 'Error: not authorized.'), (context.ContextError, None), ]) def _gen_formatter(mapping, formatter): """Generate real formatter to have item index in position.""" pattern = re.compile(r'(%(\w))') match = pattern.findall(formatter) # (symbol, key) should be ('%t', 't') for (symbol, key) in match: index = mapping[key] formatter = formatter.replace(symbol, '{%d}' % index, 1) return formatter def _list_server_blackouts(zkclient, fmt): """List server blackouts.""" # List currently blacked out nodes. blacked_out = [] try: blacked_out_nodes = zkclient.get_children(z.BLACKEDOUT_SERVERS) for server in blacked_out_nodes: node_path = z.path.blackedout_server(server) data, metadata = zkutils.get(zkclient, node_path, need_metadata=True) blacked_out.append((metadata.created, server, data)) except kazoo.client.NoNodeError: pass # [%t] %h %r will be printed as below # [Thu, 05 May 2016 02:59:58 +0000] <hostname> - mapping = {'t': 0, 'h': 1, 'r': 2} formatter = _gen_formatter(mapping, fmt) for when, server, reason in reversed(sorted(blacked_out)): reason = '-' if reason is None else reason print(formatter.format(utils.strftime_utc(when), server, reason)) def _clear_server_blackout(zkclient, server): """Clear server blackout.""" path = z.path.blackedout_server(server) zkutils.ensure_deleted(zkclient, path) def _blackout_server(zkclient, server, reason): """Blackout server.""" if not reason: raise click.UsageError('--reason is required.') path = z.path.blackedout_server(server) zkutils.ensure_exists( zkclient, path, acl=[zkutils.make_host_acl(server, 'rwcda')], data=str(reason) ) presence.kill_node(zkclient, server) def _blackout_app(zkclient, app, clear): """Blackout app.""" # list current blacklist blacklisted_node = z.path.blackedout_app(app) if clear: zkutils.ensure_deleted(zkclient, blacklisted_node) else: zkutils.ensure_exists(zkclient, blacklisted_node) def _list_blackedout_apps(zkclient): """List blackedout apps.""" try: for blacklisted in zkclient.get_children(z.BLACKEDOUT_APPS): print(blacklisted) except kazoo.client.NoNodeError: pass def init(): """Top level command handler.""" @click.group() @click.option('--cell', required=True, envvar='TREADMILL_CELL', callback=cli.handle_context_opt, expose_value=False) def blackout(): """Manage server and app blackouts.""" pass @blackout.command(name='server') @click.option('--server', help='Server name to blackout.') @click.option('--reason', help='Blackout reason.') @click.option('--fmt', help='Format of the blackout output.', default='[%t] %h %r') @click.option('--clear', is_flag=True, default=False, help='Clear blackout.') @_ON_EXCEPTIONS def server_cmd(server, reason, fmt, clear): """Manage server blackout.""" if server is not None: if clear: _clear_server_blackout(context.GLOBAL.zk.conn, server) else: _blackout_server(context.GLOBAL.zk.conn, server, reason) else: _list_server_blackouts(context.GLOBAL.zk.conn, fmt) @blackout.command(name='app') @click.option('--app', help='App name to blackout.') @click.option('--clear', is_flag=True, default=False, help='Clear blackout.') def app_cmd(app, clear): """Manage app blackouts.""" if app: _blackout_app(context.GLOBAL.zk.conn, app, clear) _list_blackedout_apps(context.GLOBAL.zk.conn) del server_cmd del app_cmd return blackout
29.594595
73
0.638128
0
0
0
0
1,408
0.321461
0
0
866
0.197717
9690871dfe5b99b44cb726d4b08a75cadca848bb
3,200
py
Python
tests/view_tests/urls.py
peteralexandercharles/django
61c7350f41f2534daf3888709f3c987b7d779a29
[ "BSD-3-Clause", "0BSD" ]
null
null
null
tests/view_tests/urls.py
peteralexandercharles/django
61c7350f41f2534daf3888709f3c987b7d779a29
[ "BSD-3-Clause", "0BSD" ]
null
null
null
tests/view_tests/urls.py
peteralexandercharles/django
61c7350f41f2534daf3888709f3c987b7d779a29
[ "BSD-3-Clause", "0BSD" ]
null
null
null
import os from functools import partial from django.conf.urls.i18n import i18n_patterns from django.urls import include, path, re_path from django.utils.translation import gettext_lazy as _ from django.views import defaults, i18n, static from . import views base_dir = os.path.dirname(os.path.abspath(__file__)) media_dir = os.path.join(base_dir, "media") locale_dir = os.path.join(base_dir, "locale") urlpatterns = [ path("", views.index_page), # Default views path("nonexistent_url/", partial(defaults.page_not_found, exception=None)), path("server_error/", defaults.server_error), # a view that raises an exception for the debug view path("raises/", views.raises), path("raises400/", views.raises400), path("raises400_bad_request/", views.raises400_bad_request), path("raises403/", views.raises403), path("raises404/", views.raises404), path("raises500/", views.raises500), path("custom_reporter_class_view/", views.custom_reporter_class_view), path("technical404/", views.technical404, name="my404"), path("classbased404/", views.Http404View.as_view()), # i18n views path("i18n/", include("django.conf.urls.i18n")), path("jsi18n/", i18n.JavaScriptCatalog.as_view(packages=["view_tests"])), path("jsi18n/app1/", i18n.JavaScriptCatalog.as_view(packages=["view_tests.app1"])), path("jsi18n/app2/", i18n.JavaScriptCatalog.as_view(packages=["view_tests.app2"])), path("jsi18n/app5/", i18n.JavaScriptCatalog.as_view(packages=["view_tests.app5"])), path( "jsi18n_english_translation/", i18n.JavaScriptCatalog.as_view(packages=["view_tests.app0"]), ), path( "jsi18n_multi_packages1/", i18n.JavaScriptCatalog.as_view(packages=["view_tests.app1", "view_tests.app2"]), ), path( "jsi18n_multi_packages2/", i18n.JavaScriptCatalog.as_view(packages=["view_tests.app3", "view_tests.app4"]), ), path( "jsi18n_admin/", i18n.JavaScriptCatalog.as_view(packages=["django.contrib.admin", "view_tests"]), ), path("jsi18n_template/", views.jsi18n), path("jsi18n_multi_catalogs/", views.jsi18n_multi_catalogs), path("jsoni18n/", i18n.JSONCatalog.as_view(packages=["view_tests"])), # Static views re_path( r"^site_media/(?P<path>.*)$", static.serve, {"document_root": media_dir, "show_indexes": True}, ), ] urlpatterns += i18n_patterns( re_path(_(r"^translated/$"), views.index_page, name="i18n_prefixed"), ) urlpatterns += [ path("template_exception/", views.template_exception, name="template_exception"), path( "raises_template_does_not_exist/<path:path>", views.raises_template_does_not_exist, name="raises_template_does_not_exist", ), path("render_no_template/", views.render_no_template, name="render_no_template"), re_path( r"^test-setlang/(?P<parameter>[^/]+)/$", views.with_parameter, name="with_parameter", ), # Patterns to test the technical 404. re_path(r"^regex-post/(?P<pk>[0-9]+)/$", views.index_page, name="regex-post"), path("path-post/<int:pk>/", views.index_page, name="path-post"), ]
38.095238
88
0.684688
0
0
0
0
0
0
0
0
1,126
0.351875
969196b838a5ad3282e2d2bf20e3669c40ce0f82
20,323
py
Python
sympy/solvers/ode/systems.py
nsfinkelstein/sympy
cf87897234ad0d7eaac705ba47267caec2a6bcb1
[ "BSD-3-Clause" ]
2
2019-05-18T22:36:49.000Z
2019-05-24T05:56:16.000Z
sympy/solvers/ode/systems.py
mmelotti/sympy
bea29026d27cc50c2e6a5501b6a70a9629ed3e18
[ "BSD-3-Clause" ]
1
2020-04-22T12:45:26.000Z
2020-04-22T12:45:26.000Z
sympy/solvers/ode/systems.py
mmelotti/sympy
bea29026d27cc50c2e6a5501b6a70a9629ed3e18
[ "BSD-3-Clause" ]
3
2021-02-16T16:40:49.000Z
2022-03-07T18:28:41.000Z
from sympy import (Derivative, Symbol) from sympy.core.numbers import I from sympy.core.relational import Eq from sympy.core.symbol import Dummy from sympy.functions import exp, im, cos, sin, re from sympy.functions.combinatorial.factorials import factorial from sympy.matrices import zeros, Matrix from sympy.simplify import simplify, collect from sympy.solvers.deutils import ode_order from sympy.solvers.solveset import NonlinearError from sympy.utilities import numbered_symbols, default_sort_key from sympy.utilities.iterables import ordered, uniq def _get_func_order(eqs, funcs): return {func: max(ode_order(eq, func) for eq in eqs) for func in funcs} class ODEOrderError(ValueError): """Raised by linear_ode_to_matrix if the system has the wrong order""" pass class ODENonlinearError(NonlinearError): """Raised by linear_ode_to_matrix if the system is nonlinear""" pass def linear_ode_to_matrix(eqs, funcs, t, order): r""" Convert a linear system of ODEs to matrix form Explanation =========== Express a system of linear ordinary differential equations as a single matrix differential equation [1]. For example the system $x' = x + y + 1$ and $y' = x - y$ can be represented as .. math:: A_1 X' + A_0 X = b where $A_1$ and $A_0$ are $2 \times 2$ matrices and $b$, $X$ and $X'$ are $2 \times 1$ matrices with $X = [x, y]^T$. Higher-order systems are represented with additional matrices e.g. a second-order system would look like .. math:: A_2 X'' + A_1 X' + A_0 X = b Examples ======== >>> from sympy import (Function, Symbol, Matrix, Eq) >>> from sympy.solvers.ode.systems import linear_ode_to_matrix >>> t = Symbol('t') >>> x = Function('x') >>> y = Function('y') We can create a system of linear ODEs like >>> eqs = [ ... Eq(x(t).diff(t), x(t) + y(t) + 1), ... Eq(y(t).diff(t), x(t) - y(t)), ... ] >>> funcs = [x(t), y(t)] >>> order = 1 # 1st order system Now ``linear_ode_to_matrix`` can represent this as a matrix differential equation. >>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, order) >>> A1 Matrix([ [1, 0], [0, 1]]) >>> A0 Matrix([ [-1, -1], [-1, 1]]) >>> b Matrix([ [1], [0]]) The original equations can be recovered from these matrices: >>> eqs_mat = Matrix([eq.lhs - eq.rhs for eq in eqs]) >>> X = Matrix(funcs) >>> A1 * X.diff(t) + A0 * X - b == eqs_mat True If the system of equations has a maximum order greater than the order of the system specified, a ODEOrderError exception is raised. >>> eqs = [Eq(x(t).diff(t, 2), x(t).diff(t) + x(t)), Eq(y(t).diff(t), y(t) + x(t))] >>> linear_ode_to_matrix(eqs, funcs, t, 1) Traceback (most recent call last): ... ODEOrderError: Cannot represent system in 1-order form If the system of equations is nonlinear, then ODENonlinearError is raised. >>> eqs = [Eq(x(t).diff(t), x(t) + y(t)), Eq(y(t).diff(t), y(t)**2 + x(t))] >>> linear_ode_to_matrix(eqs, funcs, t, 1) Traceback (most recent call last): ... ODENonlinearError: The system of ODEs is nonlinear. Parameters ========== eqs : list of sympy expressions or equalities The equations as expressions (assumed equal to zero). funcs : list of applied functions The dependent variables of the system of ODEs. t : symbol The independent variable. order : int The order of the system of ODEs. Returns ======= The tuple ``(As, b)`` where ``As`` is a tuple of matrices and ``b`` is the the matrix representing the rhs of the matrix equation. Raises ====== ODEOrderError When the system of ODEs have an order greater than what was specified ODENonlinearError When the system of ODEs is nonlinear See Also ======== linear_eq_to_matrix: for systems of linear algebraic equations. References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_differential_equation """ from sympy.solvers.solveset import linear_eq_to_matrix if any(ode_order(eq, func) > order for eq in eqs for func in funcs): msg = "Cannot represent system in {}-order form" raise ODEOrderError(msg.format(order)) As = [] for o in range(order, -1, -1): # Work from the highest derivative down funcs_deriv = [func.diff(t, o) for func in funcs] # linear_eq_to_matrix expects a proper symbol so substitute e.g. # Derivative(x(t), t) for a Dummy. rep = {func_deriv: Dummy() for func_deriv in funcs_deriv} eqs = [eq.subs(rep) for eq in eqs] syms = [rep[func_deriv] for func_deriv in funcs_deriv] # Ai is the matrix for X(t).diff(t, o) # eqs is minus the remainder of the equations. try: Ai, b = linear_eq_to_matrix(eqs, syms) except NonlinearError: raise ODENonlinearError("The system of ODEs is nonlinear.") As.append(Ai) if o: eqs = [-eq for eq in b] else: rhs = b return As, rhs def matrix_exp(A, t): r""" Matrix exponential $\exp(A*t)$ for the matrix ``A`` and scalar ``t``. Explanation =========== This functions returns the $\exp(A*t)$ by doing a simple matrix multiplication: .. math:: \exp(A*t) = P * expJ * P^{-1} where $expJ$ is $\exp(J*t)$. $J$ is the Jordan normal form of $A$ and $P$ is matrix such that: .. math:: A = P * J * P^{-1} The matrix exponential $\exp(A*t)$ appears in the solution of linear differential equations. For example if $x$ is a vector and $A$ is a matrix then the initial value problem .. math:: \frac{dx(t)}{dt} = A \times x(t), x(0) = x0 has the unique solution .. math:: x(t) = \exp(A t) x0 Examples ======== >>> from sympy import Symbol, Matrix, pprint >>> from sympy.solvers.ode.systems import matrix_exp >>> t = Symbol('t') We will consider a 2x2 matrix for comupting the exponential >>> A = Matrix([[2, -5], [2, -4]]) >>> pprint(A) [2 -5] [ ] [2 -4] Now, exp(A*t) is given as follows: >>> pprint(matrix_exp(A, t)) [ -t -t -t ] [3*e *sin(t) + e *cos(t) -5*e *sin(t) ] [ ] [ -t -t -t ] [ 2*e *sin(t) - 3*e *sin(t) + e *cos(t)] Parameters ========== A : Matrix The matrix $A$ in the expression $\exp(A*t)$ t : Symbol The independent variable See Also ======== matrix_exp_jordan_form: For exponential of Jordan normal form References ========== .. [1] https://en.wikipedia.org/wiki/Jordan_normal_form .. [2] https://en.wikipedia.org/wiki/Matrix_exponential """ P, expJ = matrix_exp_jordan_form(A, t) return P * expJ * P.inv() def matrix_exp_jordan_form(A, t): r""" Matrix exponential $\exp(A*t)$ for the matrix *A* and scalar *t*. Explanation =========== Returns the Jordan form of the $\exp(A*t)$ along with the matrix $P$ such that: .. math:: \exp(A*t) = P * expJ * P^{-1} Examples ======== >>> from sympy import Matrix, Symbol >>> from sympy.solvers.ode.systems import matrix_exp, matrix_exp_jordan_form >>> t = Symbol('t') We will consider a 2x2 defective matrix. This shows that our method works even for defective matrices. >>> A = Matrix([[1, 1], [0, 1]]) It can be observed that this function gives us the Jordan normal form and the required invertible matrix P. >>> P, expJ = matrix_exp_jordan_form(A, t) Here, it is shown that P and expJ returned by this function is correct as they satisfy the formula: P * expJ * P_inverse = exp(A*t). >>> P * expJ * P.inv() == matrix_exp(A, t) True Parameters ========== A : Matrix The matrix $A$ in the expression $\exp(A*t)$ t : Symbol The independent variable References ========== .. [1] https://en.wikipedia.org/wiki/Defective_matrix .. [2] https://en.wikipedia.org/wiki/Jordan_matrix .. [3] https://en.wikipedia.org/wiki/Jordan_normal_form """ N, M = A.shape if N != M: raise ValueError('Needed square matrix but got shape (%s, %s)' % (N, M)) elif A.has(t): raise ValueError('Matrix A should not depend on t') def jordan_chains(A): '''Chains from Jordan normal form analogous to M.eigenvects(). Returns a dict with eignevalues as keys like: {e1: [[v111,v112,...], [v121, v122,...]], e2:...} where vijk is the kth vector in the jth chain for eigenvalue i. ''' P, blocks = A.jordan_cells() basis = [P[:,i] for i in range(P.shape[1])] n = 0 chains = {} for b in blocks: eigval = b[0, 0] size = b.shape[0] if eigval not in chains: chains[eigval] = [] chains[eigval].append(basis[n:n+size]) n += size return chains eigenchains = jordan_chains(A) # Needed for consistency across Python versions: eigenchains_iter = sorted(eigenchains.items(), key=default_sort_key) isreal = not A.has(I) blocks = [] vectors = [] seen_conjugate = set() for e, chains in eigenchains_iter: for chain in chains: n = len(chain) if isreal and e != e.conjugate() and e.conjugate() in eigenchains: if e in seen_conjugate: continue seen_conjugate.add(e.conjugate()) exprt = exp(re(e) * t) imrt = im(e) * t imblock = Matrix([[cos(imrt), sin(imrt)], [-sin(imrt), cos(imrt)]]) expJblock2 = Matrix(n, n, lambda i,j: imblock * t**(j-i) / factorial(j-i) if j >= i else zeros(2, 2)) expJblock = Matrix(2*n, 2*n, lambda i,j: expJblock2[i//2,j//2][i%2,j%2]) blocks.append(exprt * expJblock) for i in range(n): vectors.append(re(chain[i])) vectors.append(im(chain[i])) else: vectors.extend(chain) fun = lambda i,j: t**(j-i)/factorial(j-i) if j >= i else 0 expJblock = Matrix(n, n, fun) blocks.append(exp(e * t) * expJblock) expJ = Matrix.diag(*blocks) P = Matrix(N, N, lambda i,j: vectors[j][i]) return P, expJ def _neq_linear_first_order_const_coeff_homogeneous(match_): r""" System of n first-order constant-coefficient linear homogeneous differential equations .. math:: y'_k = a_{k1} y_1 + a_{k2} y_2 +...+ a_{kn} y_n; k = 1,2,...,n or that can be written as `\vec{y'} = A . \vec{y}` where `\vec{y}` is matrix of `y_k` for `k = 1,2,...n` and `A` is a `n \times n` matrix. Since these equations are equivalent to a first order homogeneous linear differential equation. So the general solution will contain `n` linearly independent parts and solution will consist some type of exponential functions. Assuming `y = \vec{v} e^{rt}` is a solution of the system where `\vec{v}` is a vector of coefficients of `y_1,...,y_n`. Substituting `y` and `y' = r v e^{r t}` into the equation `\vec{y'} = A . \vec{y}`, we get .. math:: r \vec{v} e^{rt} = A \vec{v} e^{rt} .. math:: r \vec{v} = A \vec{v} where `r` comes out to be eigenvalue of `A` and vector `\vec{v}` is the eigenvector of `A` corresponding to `r`. There are three possibilities of eigenvalues of `A` - `n` distinct real eigenvalues - complex conjugate eigenvalues - eigenvalues with multiplicity `k` 1. When all eigenvalues `r_1,..,r_n` are distinct with `n` different eigenvectors `v_1,...v_n` then the solution is given by .. math:: \vec{y} = C_1 e^{r_1 t} \vec{v_1} + C_2 e^{r_2 t} \vec{v_2} +...+ C_n e^{r_n t} \vec{v_n} where `C_1,C_2,...,C_n` are arbitrary constants. 2. When some eigenvalues are complex then in order to make the solution real, we take a linear combination: if `r = a + bi` has an eigenvector `\vec{v} = \vec{w_1} + i \vec{w_2}` then to obtain real-valued solutions to the system, replace the complex-valued solutions `e^{rx} \vec{v}` with real-valued solution `e^{ax} (\vec{w_1} \cos(bx) - \vec{w_2} \sin(bx))` and for `r = a - bi` replace the solution `e^{-r x} \vec{v}` with `e^{ax} (\vec{w_1} \sin(bx) + \vec{w_2} \cos(bx))` 3. If some eigenvalues are repeated. Then we get fewer than `n` linearly independent eigenvectors, we miss some of the solutions and need to construct the missing ones. We do this via generalized eigenvectors, vectors which are not eigenvectors but are close enough that we can use to write down the remaining solutions. For a eigenvalue `r` with eigenvector `\vec{w}` we obtain `\vec{w_2},...,\vec{w_k}` using .. math:: (A - r I) . \vec{w_2} = \vec{w} .. math:: (A - r I) . \vec{w_3} = \vec{w_2} .. math:: \vdots .. math:: (A - r I) . \vec{w_k} = \vec{w_{k-1}} Then the solutions to the system for the eigenspace are `e^{rt} [\vec{w}], e^{rt} [t \vec{w} + \vec{w_2}], e^{rt} [\frac{t^2}{2} \vec{w} + t \vec{w_2} + \vec{w_3}], ...,e^{rt} [\frac{t^{k-1}}{(k-1)!} \vec{w} + \frac{t^{k-2}}{(k-2)!} \vec{w_2} +...+ t \vec{w_{k-1}} + \vec{w_k}]` So, If `\vec{y_1},...,\vec{y_n}` are `n` solution of obtained from three categories of `A`, then general solution to the system `\vec{y'} = A . \vec{y}` .. math:: \vec{y} = C_1 \vec{y_1} + C_2 \vec{y_2} + \cdots + C_n \vec{y_n} """ eq = match_['eq'] func = match_['func'] fc = match_['func_coeff'] n = len(eq) t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] constants = numbered_symbols(prefix='C', cls=Symbol, start=1) # This needs to be modified in future so that fc is only of type Matrix M = -fc if type(fc) is Matrix else Matrix(n, n, lambda i,j:-fc[i,func[j],0]) P, J = matrix_exp_jordan_form(M, t) P = simplify(P) Cvect = Matrix(list(next(constants) for _ in range(n))) sol_vector = P * (J * Cvect) sol_vector = [collect(s, ordered(J.atoms(exp)), exact=True) for s in sol_vector] sol_dict = [Eq(func[i], sol_vector[i]) for i in range(n)] return sol_dict def _matrix_is_constant(M, t): """Checks if the matrix M is independent of t or not.""" return all(coef.as_independent(t, as_Add=True)[1] == 0 for coef in M) def _canonical_equations(eqs, funcs, t): """Helper function that solves for first order derivatives in a system""" from sympy.solvers.solvers import solve # For now the system of ODEs dealt by this function can have a # maximum order of 1. if any(ode_order(eq, func) > 1 for eq in eqs for func in funcs): msg = "Cannot represent system in {}-order canonical form" raise ODEOrderError(msg.format(1)) canon_eqs = solve(eqs, *[func.diff(t) for func in funcs], dict=True) if len(canon_eqs) != 1: raise ODENonlinearError("System of ODEs is nonlinear") canon_eqs = canon_eqs[0] canon_eqs = [Eq(func.diff(t), canon_eqs[func.diff(t)]) for func in funcs] return canon_eqs def neq_nth_linear_constant_coeff_match(eqs, funcs, t): r""" Returns a dictionary with details of the eqs if every equation is constant coefficient and linear else returns None Explanation =========== This function takes the eqs, converts it into a form Ax = b where x is a vector of terms containing dependent variables and their derivatives till their maximum order. If it is possible to convert eqs into Ax = b, then all the equations in eqs are linear otherwise they are non-linear. To check if the equations are constant coefficient, we need to check if all the terms in A obtained above are constant or not. To check if the equations are homogeneous or not, we need to check if b is a zero matrix or not. Parameters ========== eqs: List List of ODEs funcs: List List of dependent variables t: Symbol Independent variable of the equations in eqs Returns ======= match = { 'no_of_equation': len(eqs), 'eq': eqs, 'func': funcs, 'order': order, 'is_linear': is_linear, 'is_constant': is_constant, 'is_homogeneous': is_homogeneous, } Dict or None Dict with values for keys: 1. no_of_equation: Number of equations 2. eq: The set of equations 3. func: List of dependent variables 4. order: A dictionary that gives the order of the dependent variable in eqs 5. is_linear: Boolean value indicating if the set of equations are linear or not. 6. is_constant: Boolean value indicating if the set of equations have constant coefficients or not. 7. is_homogeneous: Boolean value indicating if the set of equations are homogeneous or not. This Dict is the answer returned if the eqs are linear and constant coefficient. Otherwise, None is returned. """ # Error for i == 0 can be added but isn't for now # Removing the duplicates from the list of funcs # meanwhile maintaining the order. This is done # since the line in classify_sysode: list(set(funcs) # cause some test cases to fail when gives different # results in different versions of Python. funcs = list(uniq(funcs)) # Check for len(funcs) == len(eqs) if len(funcs) != len(eqs): raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs) # ValueError when functions have more than one arguments for func in funcs: if len(func.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) # Getting the func_dict and order using the helper # function order = _get_func_order(eqs, funcs) if not all(order[func] == 1 for func in funcs): return None else: # TO be changed when this function is updated. # This will in future be updated as the maximum # order in the system found. system_order = 1 # Not adding the check if the len(func.args) for # every func in funcs is 1 # Linearity check try: canon_eqs = _canonical_equations(eqs, funcs, t) As, b = linear_ode_to_matrix(canon_eqs, funcs, t, system_order) # When the system of ODEs is non-linear, an ODENonlinearError is raised. # When system has an order greater than what is specified in system_order, # ODEOrderError is raised. # This function catches these errors and None is returned except (ODEOrderError, ODENonlinearError): return None A = As[1] is_linear = True # Constant coefficient check is_constant = _matrix_is_constant(A, t) # Homogeneous check is_homogeneous = True if b.is_zero_matrix else False match = { 'no_of_equation': len(eqs), 'eq': eqs, 'func': funcs, 'order': order, 'is_linear': is_linear, 'is_constant': is_constant, 'is_homogeneous': is_homogeneous, } # The match['is_linear'] check will be added in the future when this # function becomes ready to deal with non-linear systems of ODEs if match['is_constant']: # Converting the equation into canonical form if the # equation is first order. There will be a separate # function for this in the future. if all([order[func] == 1 for func in funcs]) and match['is_homogeneous']: match['func_coeff'] = A match['type_of_equation'] = "type1" return match return None
32.310016
104
0.59814
233
0.011465
0
0
0
0
0
0
14,047
0.691187
96929dbf83193019e408fa5ab401d32d84324a98
104
py
Python
python/torch_mlir/eager_mode/__init__.py
burntfalafel/torch-mlir-internal
d3ef58450fc94e9337dc0434fa3af6dd7b54b37f
[ "Apache-2.0" ]
2
2022-02-16T21:56:00.000Z
2022-02-20T17:34:47.000Z
python/torch_mlir/eager_mode/__init__.py
burntfalafel/torch-mlir-internal
d3ef58450fc94e9337dc0434fa3af6dd7b54b37f
[ "Apache-2.0" ]
null
null
null
python/torch_mlir/eager_mode/__init__.py
burntfalafel/torch-mlir-internal
d3ef58450fc94e9337dc0434fa3af6dd7b54b37f
[ "Apache-2.0" ]
null
null
null
import os EAGER_MODE_DEBUG = os.environ.get("EAGER_MODE_DEBUG", 'False').lower() in ('true', '1', 't')
26
92
0.673077
0
0
0
0
0
0
0
0
37
0.355769
96930cd599eda3b260c1fca7b9aaa84eeb3c1530
985
py
Python
docs/rips/tests/test_surfaces.py
OPM/ResInsight-UserDocumentation
2af2c3a5ef297c0061d842944360a83bf8e49c36
[ "MIT" ]
1
2020-04-25T21:24:45.000Z
2020-04-25T21:24:45.000Z
docs/rips/tests/test_surfaces.py
OPM/ResInsight-UserDocumentation
2af2c3a5ef297c0061d842944360a83bf8e49c36
[ "MIT" ]
7
2020-02-11T07:42:10.000Z
2020-09-28T17:18:01.000Z
docs/rips/tests/test_surfaces.py
OPM/ResInsight-UserDocumentation
2af2c3a5ef297c0061d842944360a83bf8e49c36
[ "MIT" ]
2
2020-04-02T09:33:45.000Z
2020-04-09T19:44:53.000Z
import sys import os import tempfile from pathlib import Path import pytest sys.path.insert(1, os.path.join(sys.path[0], "../../")) import rips import dataroot @pytest.mark.skipif( sys.platform.startswith("linux"), reason="Brugge is currently exceptionally slow on Linux", ) def test_create_and_export_surface(rips_instance, initialize_test): case_path = dataroot.PATH + "/Case_with_10_timesteps/Real0/BRUGGE_0000.EGRID" case = rips_instance.project.load_case(path=case_path) assert len(case.grids()) == 1 surface_collection = rips_instance.project.descendants(rips.SurfaceCollection)[0] surface = surface_collection.new_surface(case, 5) assert surface with tempfile.TemporaryDirectory(prefix="rips") as tmpdirname: path = Path(tmpdirname, "mysurface.ts") print("Temporary folder: ", path.as_posix()) fname = surface.export_to_file(path.as_posix()) assert len(fname.values) == 1 assert path.exists()
28.142857
85
0.722843
0
0
0
0
820
0.832487
0
0
153
0.15533
96935625868f5df6499326134d54ac7ad8bc8a3f
1,172
py
Python
samcli/cli/main.py
langn/aws-sam-cli
160d87ff3c07f092315e1ac71ddc00257fde011b
[ "Apache-2.0" ]
null
null
null
samcli/cli/main.py
langn/aws-sam-cli
160d87ff3c07f092315e1ac71ddc00257fde011b
[ "Apache-2.0" ]
1
2018-05-23T19:51:18.000Z
2018-05-23T19:51:18.000Z
samcli/cli/main.py
langn/aws-sam-cli
160d87ff3c07f092315e1ac71ddc00257fde011b
[ "Apache-2.0" ]
null
null
null
""" Entry point for the CLI """ import logging import click from samcli import __version__ from .options import debug_option from .context import Context from .command import BaseCommand logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') pass_context = click.make_pass_decorator(Context) def common_options(f): """ Common CLI options used by all commands. Ex: --debug :param f: Callback function passed by Click :return: Callback function """ f = debug_option(f) return f @click.command(cls=BaseCommand) @common_options @click.version_option(version=__version__, prog_name="SAM CLI") @pass_context def cli(ctx): """ AWS Serverless Application Model (SAM) CLI The AWS Serverless Application Model extends AWS CloudFormation to provide a simplified way of defining the Amazon API Gateway APIs, AWS Lambda functions, and Amazon DynamoDB tables needed by your serverless application. You can find more in-depth guide about the SAM specification here: https://github.com/awslabs/serverless-application-model. """ pass
26.636364
116
0.740614
0
0
0
0
573
0.488908
0
0
651
0.555461
9693a5d83793a6353d6917bc38d706bca8e15158
1,816
py
Python
ast_to_json.py
visr/Py2Jl.jl
b2dee947299d064da2e443d0b1ad2ca90bbd1753
[ "MIT" ]
53
2018-08-20T12:47:47.000Z
2022-03-17T02:21:07.000Z
ast_to_json.py
visr/Py2Jl.jl
b2dee947299d064da2e443d0b1ad2ca90bbd1753
[ "MIT" ]
14
2019-01-24T15:27:15.000Z
2021-06-13T13:24:18.000Z
ast_to_json.py
visr/Py2Jl.jl
b2dee947299d064da2e443d0b1ad2ca90bbd1753
[ "MIT" ]
9
2019-02-12T01:07:11.000Z
2021-11-11T19:33:36.000Z
import ast import typing as t import numbers import json from wisepy.talking import Talking from Redy.Tools.PathLib import Path talking = Talking() def to_dict(node: t.Union[ast.AST, str, numbers.Number, list]): if isinstance(node, complex): return {"class": "complex", "real": node.real, "imag": node.imag} elif isinstance(node, str): return node elif isinstance(node, numbers.Number): return node elif isinstance(node, list): return [to_dict(each) for each in node] elif isinstance(node, ast.AST): data = { "class": node.__class__.__name__, **{ field: to_dict(value) for field, value in ast.iter_fields(node) } } if hasattr(node, 'lineno'): data['lineno'] = node.lineno if hasattr(node, 'col_offset'): data['colno'] = node.col_offset return data return node @talking.alias('file') def from_file(input: 'filename', to: 'filename'): """ from python source to json file """ path = Path(input) with path.open('r') as fr, Path(to).open('w') as fw: try: data = to_dict(ast.parse(fr.read())) data['name'] = path.relative()[:-3] # remove `.py` json.dump([str(path), data], fw, indent=2) except SyntaxError as e: print(e) pass @talking.alias('text') def from_code(input: 'text', to: 'filename'): """ from python source code to json file """ with Path(to).open('w') as fw: try: data = to_dict(ast.parse(input)) data['name'] = 'Default' json.dump(['<stdin>', data], fw, indent=2) except SyntaxError: pass if __name__ == '__main__': talking.on()
25.942857
73
0.55837
0
0
0
0
811
0.446586
0
0
280
0.154185
96940da789aefea52af00e66e63f6bfcc1df6521
18,232
py
Python
src/python/pants/backend/docker/util_rules/docker_build_context_test.py
pantsbuild/pants
22c566e78b4dd982958429813c82e9f558957817
[ "Apache-2.0" ]
1,806
2015-01-05T07:31:00.000Z
2022-03-31T11:35:41.000Z
src/python/pants/backend/docker/util_rules/docker_build_context_test.py
pantsbuild/pants
22c566e78b4dd982958429813c82e9f558957817
[ "Apache-2.0" ]
9,565
2015-01-02T19:01:59.000Z
2022-03-31T23:25:16.000Z
src/python/pants/backend/docker/util_rules/docker_build_context_test.py
pantsbuild/pants
22c566e78b4dd982958429813c82e9f558957817
[ "Apache-2.0" ]
443
2015-01-06T20:17:57.000Z
2022-03-31T05:28:17.000Z
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from textwrap import dedent from typing import Any, ContextManager import pytest from pants.backend.docker.goals import package_image from pants.backend.docker.subsystems import dockerfile_parser from pants.backend.docker.subsystems.dockerfile_parser import DockerfileInfo from pants.backend.docker.target_types import DockerImageTarget from pants.backend.docker.util_rules import ( dependencies, docker_binary, docker_build_args, docker_build_context, docker_build_env, dockerfile, ) from pants.backend.docker.util_rules.docker_build_args import DockerBuildArgs from pants.backend.docker.util_rules.docker_build_context import ( DockerBuildContext, DockerBuildContextRequest, ) from pants.backend.docker.util_rules.docker_build_env import DockerBuildEnvironment from pants.backend.docker.value_interpolation import ( DockerBuildArgsInterpolationValue, DockerInterpolationContext, DockerInterpolationValue, ) from pants.backend.python import target_types_rules from pants.backend.python.goals import package_pex_binary from pants.backend.python.goals.package_pex_binary import PexBinaryFieldSet from pants.backend.python.target_types import PexBinary from pants.backend.python.util_rules import pex_from_targets from pants.backend.shell.target_types import ShellSourcesGeneratorTarget, ShellSourceTarget from pants.backend.shell.target_types import rules as shell_target_types_rules from pants.core.goals.package import BuiltPackage from pants.core.target_types import FilesGeneratorTarget from pants.core.target_types import rules as core_target_types_rules from pants.engine.addresses import Address from pants.engine.fs import EMPTY_DIGEST, EMPTY_SNAPSHOT, Snapshot from pants.engine.internals.scheduler import ExecutionError from pants.testutil.pytest_util import no_exception from pants.testutil.rule_runner import QueryRule, RuleRunner def create_rule_runner() -> RuleRunner: rule_runner = RuleRunner( rules=[ *core_target_types_rules(), *dependencies.rules(), *docker_binary.rules(), *docker_build_args.rules(), *docker_build_context.rules(), *docker_build_env.rules(), *dockerfile.rules(), *dockerfile_parser.rules(), *package_image.rules(), *package_pex_binary.rules(), *pex_from_targets.rules(), *shell_target_types_rules(), *target_types_rules.rules(), QueryRule(BuiltPackage, [PexBinaryFieldSet]), QueryRule(DockerBuildContext, (DockerBuildContextRequest,)), ], target_types=[ DockerImageTarget, FilesGeneratorTarget, PexBinary, ShellSourcesGeneratorTarget, ShellSourceTarget, ], ) return rule_runner @pytest.fixture def rule_runner() -> RuleRunner: return create_rule_runner() def assert_build_context( rule_runner: RuleRunner, address: Address, *, build_upstream_images: bool = False, expected_files: list[str], expected_interpolation_context: dict[str, dict[str, str] | DockerInterpolationValue] | None = None, pants_args: list[str] | None = None, runner_options: dict[str, Any] | None = None, ) -> DockerBuildContext: if runner_options is None: runner_options = {} runner_options.setdefault("env_inherit", set()).update({"PATH", "PYENV_ROOT", "HOME"}) rule_runner.set_options(pants_args or [], **runner_options) context = rule_runner.request( DockerBuildContext, [ DockerBuildContextRequest( address=address, build_upstream_images=build_upstream_images, ) ], ) snapshot = rule_runner.request(Snapshot, [context.digest]) assert sorted(expected_files) == sorted(snapshot.files) if expected_interpolation_context is not None: if "build_args" in expected_interpolation_context: expected_interpolation_context["build_args"] = DockerBuildArgsInterpolationValue( expected_interpolation_context["build_args"] ) assert context.interpolation_context == DockerInterpolationContext.from_dict( expected_interpolation_context ) return context def test_file_dependencies(rule_runner: RuleRunner) -> None: rule_runner.write_files( { # img_A -> files_A # img_A -> img_B "src/a/BUILD": dedent( """\ docker_image(name="img_A", dependencies=[":files_A", "src/b:img_B"]) files(name="files_A", sources=["files/**"]) """ ), "src/a/Dockerfile": "FROM base", "src/a/files/a01": "", "src/a/files/a02": "", # img_B -> files_B "src/b/BUILD": dedent( """\ docker_image(name="img_B", dependencies=[":files_B"]) files(name="files_B", sources=["files/**"]) """ ), "src/b/Dockerfile": "FROM base", "src/b/files/b01": "", "src/b/files/b02": "", # Mixed "src/c/BUILD": dedent( """\ docker_image(name="img_C", dependencies=["src/a:files_A", "src/b:files_B"]) """ ), "src/c/Dockerfile": "FROM base", } ) # We want files_B in build context for img_B assert_build_context( rule_runner, Address("src/b", target_name="img_B"), expected_files=["src/b/Dockerfile", "src/b/files/b01", "src/b/files/b02"], ) # We want files_A in build context for img_A, but not files_B assert_build_context( rule_runner, Address("src/a", target_name="img_A"), expected_files=["src/a/Dockerfile", "src/a/files/a01", "src/a/files/a02"], ) # Mixed. assert_build_context( rule_runner, Address("src/c", target_name="img_C"), expected_files=[ "src/c/Dockerfile", "src/a/files/a01", "src/a/files/a02", "src/b/files/b01", "src/b/files/b02", ], ) def test_from_image_build_arg_dependency(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "src/upstream/BUILD": dedent( """\ docker_image( name="image", repository="upstream/{name}", instructions=["FROM alpine"], ) """ ), "src/downstream/BUILD": "docker_image(name='image')", "src/downstream/Dockerfile": dedent( """\ ARG BASE_IMAGE=src/upstream:image FROM $BASE_IMAGE """ ), } ) assert_build_context( rule_runner, Address("src/downstream", target_name="image"), expected_files=["src/downstream/Dockerfile"], build_upstream_images=True, expected_interpolation_context={ "baseimage": {"tag": "latest"}, "stage0": {"tag": "latest"}, "build_args": { "BASE_IMAGE": "upstream/image:latest", }, }, ) def test_files_out_of_tree(rule_runner: RuleRunner) -> None: # src/a:img_A -> res/static:files rule_runner.write_files( { "src/a/BUILD": dedent( """\ docker_image(name="img_A", dependencies=["res/static:files"]) """ ), "res/static/BUILD": dedent( """\ files(name="files", sources=["!BUILD", "**/*"]) """ ), "src/a/Dockerfile": "FROM base", "res/static/s01": "", "res/static/s02": "", "res/static/sub/s03": "", } ) assert_build_context( rule_runner, Address("src/a", target_name="img_A"), expected_files=[ "src/a/Dockerfile", "res/static/s01", "res/static/s02", "res/static/sub/s03", ], ) def test_packaged_pex_path(rule_runner: RuleRunner) -> None: # This test is here to ensure that we catch if there is any change in the generated path where # built pex binaries go, as we rely on that for dependency inference in the Dockerfile. rule_runner.write_files( { "src/docker/BUILD": """docker_image(dependencies=["src/python/proj/cli:bin"])""", "src/docker/Dockerfile": """FROM python""", "src/python/proj/cli/BUILD": """pex_binary(name="bin", entry_point="main.py")""", "src/python/proj/cli/main.py": """print("cli main")""", } ) assert_build_context( rule_runner, Address("src/docker", target_name="docker"), expected_files=["src/docker/Dockerfile", "src.python.proj.cli/bin.pex"], ) def test_interpolation_context_from_dockerfile(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "src/docker/BUILD": "docker_image()", "src/docker/Dockerfile": dedent( """\ FROM python:3.8 FROM alpine as interim FROM interim FROM scratch:1-1 as output """ ), } ) assert_build_context( rule_runner, Address("src/docker"), expected_files=["src/docker/Dockerfile"], expected_interpolation_context={ "baseimage": {"tag": "3.8"}, "stage0": {"tag": "3.8"}, "interim": {"tag": "latest"}, "stage2": {"tag": "latest"}, "output": {"tag": "1-1"}, "build_args": {}, }, ) def test_synthetic_dockerfile(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "src/docker/BUILD": dedent( """\ docker_image( instructions=[ "FROM python:3.8", "FROM alpine as interim", "FROM interim", "FROM scratch:1-1 as output", ] ) """ ), } ) assert_build_context( rule_runner, Address("src/docker"), expected_files=["src/docker/Dockerfile.docker"], expected_interpolation_context={ "baseimage": {"tag": "3.8"}, "stage0": {"tag": "3.8"}, "interim": {"tag": "latest"}, "stage2": {"tag": "latest"}, "output": {"tag": "1-1"}, "build_args": {}, }, ) def test_shell_source_dependencies(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "src/docker/BUILD": dedent( """\ docker_image(dependencies=[":entrypoint", ":shell"]) shell_source(name="entrypoint", source="entrypoint.sh") shell_sources(name="shell", sources=["scripts/**/*.sh"]) """ ), "src/docker/Dockerfile": "FROM base", "src/docker/entrypoint.sh": "", "src/docker/scripts/s01.sh": "", "src/docker/scripts/s02.sh": "", "src/docker/scripts/random.file": "", } ) assert_build_context( rule_runner, Address("src/docker"), expected_files=[ "src/docker/Dockerfile", "src/docker/entrypoint.sh", "src/docker/scripts/s01.sh", "src/docker/scripts/s02.sh", ], ) def test_build_arg_defaults_from_dockerfile(rule_runner: RuleRunner) -> None: # Test that only explicitly defined build args in the BUILD file or pants configuraiton use the # environment for its values. rule_runner.write_files( { "src/docker/BUILD": dedent( """\ docker_image( extra_build_args=[ "base_version", ] ) """ ), "src/docker/Dockerfile": dedent( """\ ARG base_name=python ARG base_version=3.8 FROM ${base_name}:${base_version} ARG NO_DEF ENV opt=${NO_DEF} """ ), } ) assert_build_context( rule_runner, Address("src/docker"), runner_options={ "env": { "base_name": "no-effect", "base_version": "3.9", }, }, expected_files=["src/docker/Dockerfile"], expected_interpolation_context={ "baseimage": {"tag": "${base_version}"}, "stage0": {"tag": "${base_version}"}, "build_args": { # `base_name` is not listed here, as it was not an explicitly defined build arg. "base_version": "3.9", }, }, ) @pytest.mark.parametrize( "dockerfile_arg_value, extra_build_arg_value, expect", [ pytest.param(None, None, no_exception(), id="No args defined"), pytest.param( None, "", pytest.raises(ExecutionError, match=r"variable 'MY_ARG' is undefined"), id="No default value for build arg", ), pytest.param(None, "some default value", no_exception(), id="Default value for build arg"), pytest.param("", None, no_exception(), id="No build arg defined, and ARG without default"), pytest.param( "", "", pytest.raises(ExecutionError, match=r"variable 'MY_ARG' is undefined"), id="No default value from ARG", ), pytest.param( "", "some default value", no_exception(), id="Default value for build arg, ARG present" ), pytest.param( "some default value", None, no_exception(), id="No build arg defined, only ARG" ), pytest.param("some default value", "", no_exception(), id="Default value from ARG"), pytest.param( "some default value", "some other default", no_exception(), id="Default value for build arg, ARG default", ), ], ) def test_undefined_env_var_behavior( rule_runner: RuleRunner, dockerfile_arg_value: str | None, extra_build_arg_value: str | None, expect: ContextManager, ) -> None: dockerfile_arg = "" if dockerfile_arg_value is not None: dockerfile_arg = "ARG MY_ARG" if dockerfile_arg_value: dockerfile_arg += f"={dockerfile_arg_value}" extra_build_args = "" if extra_build_arg_value is not None: extra_build_args = 'extra_build_args=["MY_ARG' if extra_build_arg_value: extra_build_args += f"={extra_build_arg_value}" extra_build_args += '"],' rule_runner.write_files( { "src/docker/BUILD": dedent( f"""\ docker_image( {extra_build_args} ) """ ), "src/docker/Dockerfile": dedent( f"""\ FROM python:3.8 {dockerfile_arg} """ ), } ) with expect: assert_build_context( rule_runner, Address("src/docker"), expected_files=["src/docker/Dockerfile"], ) @pytest.fixture(scope="session") def build_context() -> DockerBuildContext: rule_runner = create_rule_runner() rule_runner.write_files( { "src/docker/BUILD": dedent( """\ docker_image( extra_build_args=["DEF_ARG"], instructions=[ "FROM python:3.8", "ARG MY_ARG", "ARG DEF_ARG=some-value", ], ) """ ), } ) return assert_build_context( rule_runner, Address("src/docker"), expected_files=["src/docker/Dockerfile.docker"], ) @pytest.mark.parametrize( "fmt_string, result, expectation", [ pytest.param( "{build_args.MY_ARG}", None, pytest.raises( ValueError, match=(r"The build arg 'MY_ARG' is undefined\. Defined build args are: DEF_ARG\."), ), id="ARG_NAME", ), pytest.param( "{build_args.DEF_ARG}", "some-value", no_exception(), id="DEF_ARG", ), ], ) def test_build_arg_behavior( build_context: DockerBuildContext, fmt_string: str, result: str | None, expectation: ContextManager, ) -> None: with expectation: assert fmt_string.format(**build_context.interpolation_context) == result def test_create_docker_build_context() -> None: context = DockerBuildContext.create( build_args=DockerBuildArgs.from_strings("ARGNAME=value1"), snapshot=EMPTY_SNAPSHOT, build_env=DockerBuildEnvironment.create({"ENVNAME": "value2"}), dockerfile_info=DockerfileInfo( address=Address("test"), digest=EMPTY_DIGEST, source="test/Dockerfile", putative_target_addresses=(), version_tags=("base latest", "stage1 1.2", "dev 2.0", "prod 2.0"), build_args=DockerBuildArgs.from_strings(), from_image_build_arg_names=(), copy_sources=(), ), ) assert list(context.build_args) == ["ARGNAME=value1"] assert dict(context.build_env.environment) == {"ENVNAME": "value2"} assert context.dockerfile == "test/Dockerfile" assert context.stages == ("base", "dev", "prod")
32.042179
99
0.557975
0
0
0
0
4,042
0.221698
0
0
6,507
0.3569
969769f903879e83d04d75567c8891aa3f6d52df
726
py
Python
build_you/models/company.py
bostud/build_you
258a336a82a1da9efc102770f5d8bf83abc13379
[ "MIT" ]
null
null
null
build_you/models/company.py
bostud/build_you
258a336a82a1da9efc102770f5d8bf83abc13379
[ "MIT" ]
null
null
null
build_you/models/company.py
bostud/build_you
258a336a82a1da9efc102770f5d8bf83abc13379
[ "MIT" ]
null
null
null
import enum from sqlalchemy import Column, ForeignKey, String, JSON, Integer, Enum from sqlalchemy.orm import relationship from build_you.models.base import BaseModel from build_you.database import Base class Company(BaseModel, Base): __tablename__ = 'company' class Status(enum.Enum): ACTIVE = 1 INACTIVE = 2 DELETED = 3 name = Column(String(length=255), unique=True, index=True) owner_id = Column(Integer, ForeignKey('user.id')) settings = Column(JSON, default={}, nullable=True) status = Column(Enum(Status), default=Status.ACTIVE) owner = relationship('User', back_populates='companies') company_objects = relationship('BuildObject', back_populates='company')
30.25
75
0.717631
519
0.714876
0
0
0
0
0
0
57
0.078512
9697bf800b99049dd85751a04350650f26e3d26b
293
py
Python
deeplab_resnet/__init__.py
tramper2/SIGGRAPH18SSS
9bf22fa242044edfcf11cc4a58b93c63fcc71ff0
[ "MIT" ]
390
2018-07-30T08:41:49.000Z
2022-03-29T15:44:13.000Z
deeplab_resnet/__init__.py
tramper2/SIGGRAPH18SSS
9bf22fa242044edfcf11cc4a58b93c63fcc71ff0
[ "MIT" ]
20
2018-08-15T14:51:29.000Z
2020-04-21T09:49:49.000Z
deeplab_resnet/__init__.py
tramper2/SIGGRAPH18SSS
9bf22fa242044edfcf11cc4a58b93c63fcc71ff0
[ "MIT" ]
109
2018-08-04T05:58:23.000Z
2021-10-17T12:02:29.000Z
from .model import DeepLabResNetModel from .hc_deeplab import HyperColumn_Deeplabv2 from .image_reader import ImageReader, read_data_list, get_indicator_mat, get_batch_1chunk, read_an_image_from_disk, tf_wrap_get_patch, get_batch from .utils import decode_labels, inv_preprocess, prepare_label
73.25
145
0.880546
0
0
0
0
0
0
0
0
0
0
9697d247dc37a959099c3ca64ced69e9f31cf6d0
670
py
Python
ESPNet/commons/general_details.py
sanket1414/Priority-Based-Alert-System
89d61d43eab8d7251fe99796e657bc95da1cc48c
[ "MIT" ]
1
2019-10-24T03:19:14.000Z
2019-10-24T03:19:14.000Z
ESPNet/commons/general_details.py
sanket1414/Priority-Based-Alert-System
89d61d43eab8d7251fe99796e657bc95da1cc48c
[ "MIT" ]
null
null
null
ESPNet/commons/general_details.py
sanket1414/Priority-Based-Alert-System
89d61d43eab8d7251fe99796e657bc95da1cc48c
[ "MIT" ]
null
null
null
# classification related details classification_datasets = ['imagenet', 'coco'] classification_schedulers = ['fixed', 'clr', 'hybrid', 'linear', 'poly'] classification_models = ['espnetv2', 'dicenet', 'shufflenetv2'] classification_exp_choices = ['main', 'ablation'] # segmentation related details segmentation_schedulers = ['poly', 'fixed', 'clr', 'linear', 'hybrid'] segmentation_datasets = ['pascal', 'city'] segmentation_models = ['espnetv2', 'dicenet'] segmentation_loss_fns = ['ce', 'bce'] # detection related details detection_datasets = ['coco', 'pascal'] detection_models = ['espnetv2', 'dicenet'] detection_schedulers = ['poly', 'hybrid', 'clr', 'cosine']
35.263158
72
0.720896
0
0
0
0
0
0
0
0
324
0.483582
9699ab49dc0c20db4bb4ee78fa2411605bb8f673
1,758
py
Python
resources/dot_PyCharm/system/python_stubs/-762174762/win32profile.py
basepipe/developer_onboarding
05b6a776f8974c89517868131b201f11c6c2a5ad
[ "MIT" ]
1
2020-04-20T02:27:20.000Z
2020-04-20T02:27:20.000Z
resources/dot_PyCharm/system/python_stubs/cache/9edeeb97ae7c1ec358f9620843984323739bcf3221eaa5ee1fd68961c7a6b26a/win32profile.py
basepipe/developer_onboarding
05b6a776f8974c89517868131b201f11c6c2a5ad
[ "MIT" ]
null
null
null
resources/dot_PyCharm/system/python_stubs/cache/9edeeb97ae7c1ec358f9620843984323739bcf3221eaa5ee1fd68961c7a6b26a/win32profile.py
basepipe/developer_onboarding
05b6a776f8974c89517868131b201f11c6c2a5ad
[ "MIT" ]
null
null
null
# encoding: utf-8 # module win32profile # from C:\Python27\lib\site-packages\win32\win32profile.pyd # by generator 1.147 # no doc # no imports # Variables with simple values PI_APPLYPOLICY = 2 PI_NOUI = 1 PT_MANDATORY = 4 PT_ROAMING = 2 PT_TEMPORARY = 1 # functions def CreateEnvironmentBlock(*args, **kwargs): # real signature unknown """ Retrieves environment variables for a user """ pass def DeleteProfile(*args, **kwargs): # real signature unknown """ Remove a user's profile """ pass def ExpandEnvironmentStringsForUser(*args, **kwargs): # real signature unknown """ Replaces environment variables in a string with per-user values """ pass def GetAllUsersProfileDirectory(*args, **kwargs): # real signature unknown """ Retrieve All Users profile directory """ pass def GetDefaultUserProfileDirectory(*args, **kwargs): # real signature unknown """ Retrieve profile path for Default user """ pass def GetEnvironmentStrings(*args, **kwargs): # real signature unknown """ Retrieves environment variables for current process """ pass def GetProfilesDirectory(*args, **kwargs): # real signature unknown """ Retrieves directory where user profiles are stored """ pass def GetProfileType(*args, **kwargs): # real signature unknown """ Returns type of current user's profile """ pass def GetUserProfileDirectory(*args, **kwargs): # real signature unknown """ Returns profile directory for a logon token """ pass def LoadUserProfile(*args, **kwargs): # real signature unknown """ Load user settings for a login token """ pass def UnloadUserProfile(*args, **kwargs): # real signature unknown """ Unload profile loaded by LoadUserProfile """ pass # no classes
27.46875
78
0.711035
0
0
0
0
0
0
0
0
1,002
0.569966