hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
7398e8292797a50bf6c42c368fc2eb59c7ca47ec
5,612
py
Python
feeds.py
yoursantu/indiannewsplus
252f0367b43ec2edea636157bcf2d8a92dda6f3f
[ "MIT" ]
null
null
null
feeds.py
yoursantu/indiannewsplus
252f0367b43ec2edea636157bcf2d8a92dda6f3f
[ "MIT" ]
null
null
null
feeds.py
yoursantu/indiannewsplus
252f0367b43ec2edea636157bcf2d8a92dda6f3f
[ "MIT" ]
null
null
null
"""RSS feeds for the `multilingual_news` app.""" from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.contrib.sites.shortcuts import get_current_site from django.contrib.syndication.views import Feed from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ from cms.utils import get_language_from_request from multilingual_tags.models import Tag, TaggedItem from people.models import Person from .models import NewsEntry def is_multilingual(): return 'django.middleware.locale.LocaleMiddleware' in \ settings.MIDDLEWARE_CLASSES def get_lang_name(lang): return _(dict(settings.LANGUAGES)[lang]) class NewsEntriesFeed(Feed): """A news feed, that shows all entries.""" title_template = 'multilingual_news/feed/entries_title.html' description_template = 'multilingual_news/feed/entries_description.html' def get_object(self, request, **kwargs): self.language_code = get_language_from_request(request) self.site = get_current_site(request) self.any_language = kwargs.get('any_language', None) def feed_url(self, item): if is_multilingual() or self.any_language: return reverse('news_rss_any', kwargs={'any_language': True}) return reverse('news_rss') def title(self, item): if self.any_language or not is_multilingual(): return _(u"{0} blog entries".format(self.site.name)) return _(u"{0} blog entries in {1}".format(self.site.name, get_lang_name(self.language_code))) def link(self, item): return reverse('news_list') def item_link(self, item): return item.get_absolute_url() def description(self, item): if self.any_language or not is_multilingual(): return _(u"{0} blog entries".format(self.site.name)) return _(u"{0} blog entries in {1}".format(self.site.name, get_lang_name(self.language_code))) def get_queryset(self, item): if not is_multilingual() or self.any_language: check_language = False else: check_language = True return NewsEntry.objects.recent(limit=10, check_language=check_language) def items(self, item): return self.get_queryset(item) def item_pubdate(self, item): return item.pub_date class AuthorFeed(NewsEntriesFeed): """A news feed, that shows only entries from a certain author.""" title_template = 'multilingual_news/feed/author_title.html' description_template = 'multilingual_news/feed/author_description.html' def get_object(self, request, **kwargs): super(AuthorFeed, self).get_object(request, **kwargs) # Needs no try. If the author does not exist, we automatically get a # 404 response. self.author = Person.objects.get(pk=kwargs.get('author')) def title(self, obj): title = super(AuthorFeed, self).title(obj) return _(u'{0} by {1}'.format(title, self.author)) def feed_url(self, obj): if is_multilingual() or self.any_language: return reverse('news_rss_any_author', kwargs={ 'author': self.author.id, 'any_language': True}) return reverse('news_rss_author', kwargs={'author': self.author.id}) def link(self, obj): # TODO Author specific archive return reverse('news_list') def description(self, obj): description = super(AuthorFeed, self).description(obj) return _(u'{0} by {1}'.format(description, self.author)) def get_queryset(self, obj): if not is_multilingual() or self.any_language: check_language = False else: check_language = True return NewsEntry.objects.recent(limit=10, check_language=check_language, kwargs={'author': self.author}) class TaggedFeed(NewsEntriesFeed): """A news feed, that shows only entries with a special tag.""" title_template = 'multilingual_news/feed/author_title.html' description_template = 'multilingual_news/feed/author_description.html' def get_object(self, request, **kwargs): super(TaggedFeed, self).get_object(request, **kwargs) # Needs no try. If the tag does not exist, we automatically get a # 404 response. self.tag = Tag.objects.get(slug=kwargs.get('tag')) def title(self, obj): title = super(TaggedFeed, self).title(obj) return _(u'{0} by {1}'.format(title, self.tag.name)) def feed_url(self, obj): if is_multilingual() or self.any_language: return reverse('news_rss_any_tagged', kwargs={ 'tag': self.tag.slug, 'any_language': True}) return reverse('news_rss_tagged', kwargs={'tag': self.tag.slug}) def link(self, obj): return reverse('news_archive_tagged', kwargs={'tag': self.tag.slug}) def description(self, obj): description = super(TaggedFeed, self).description(obj) return _(u'{0} by {1}'.format(description, self.tag.name)) def get_queryset(self, obj): content_type = ContentType.objects.get_for_model(NewsEntry) tagged_items = TaggedItem.objects.filter( content_type=content_type, tag=self.tag) entries = [] for tagged_item in tagged_items: if tagged_item.object and tagged_item.object.is_public(): entries.append(tagged_item.object) return entries[:10]
37.66443
76
0.661083
4,892
0.871703
0
0
0
0
0
0
1,118
0.199216
73991f48e7be2da65079b1e532a4f69842cc8cd4
15,814
py
Python
config/settings/base.py
kingsdigitallab/field-django
6ceba79866d6971a6891f0b81ca9ed2a2d5a32db
[ "MIT" ]
null
null
null
config/settings/base.py
kingsdigitallab/field-django
6ceba79866d6971a6891f0b81ca9ed2a2d5a32db
[ "MIT" ]
2
2020-08-12T23:53:01.000Z
2022-02-10T09:41:09.000Z
config/settings/base.py
kingsdigitallab/field-django
6ceba79866d6971a6891f0b81ca9ed2a2d5a32db
[ "MIT" ]
null
null
null
""" Base settings to build other settings files upon. """ import os from pathlib import Path import environ ROOT_DIR = Path(__file__).resolve(strict=True).parent.parent.parent # field/ APPS_DIR = ROOT_DIR / "field" env = environ.Env() READ_DOT_ENV_FILE = env.bool("DJANGO_READ_DOT_ENV_FILE", default=False) if READ_DOT_ENV_FILE: # OS environment variables take precedence over variables from .env env.read_env(str(ROOT_DIR / ".env")) # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = env.bool("DJANGO_DEBUG", False) # Local time zone. Choices are # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # though not all of them may be available with every OS. # In Windows, this must be set to your system time zone. TIME_ZONE = "UTC" # https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = "en-gb" # https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True # https://docs.djangoproject.com/en/dev/ref/settings/#locale-paths LOCALE_PATHS = [str(ROOT_DIR / "locale")] # DATABASES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#databases DATABASES = {"default": env.db("DATABASE_URL")} DATABASES["default"]["ATOMIC_REQUESTS"] = True # URLS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#root-urlconf ROOT_URLCONF = "config.urls" # https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = "config.wsgi.application" # APPS # ------------------------------------------------------------------------------ DJANGO_APPS = [ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "django.contrib.messages", "django.contrib.staticfiles", # "django.contrib.humanize", # Handy template tags "django.contrib.admin", "django.forms", # 'django_extensions', # legacy ] THIRD_PARTY_APPS = [ "crispy_forms", "allauth", "allauth.account", "allauth.socialaccount", "django_elasticsearch_dsl", # wagtail "wagtail.contrib.forms", "wagtail.contrib.redirects", "wagtail.contrib.settings", "wagtail.embeds", "wagtail.sites", "wagtail.users", "wagtail.snippets", "wagtail.documents", "wagtail.images", "wagtail.admin", "wagtail.core", 'wagtail.search', # legacy 'wagtail.contrib.modeladmin', # legacy "wagtail.contrib.sitemaps", # puput 'wagtail.contrib.routable_page', # legacy 'wagtail.contrib.table_block', # legacy "modelcluster", "django_social_share", # for puput "django_comments", # for puput "taggit", # for puput 'puput', # legacy 'colorful', # for puput 'wagtailmenus', # legacy 'captcha', # legacy, what for? # KDL 'kdl_wagtail_page', # legacy, still used? 'controlled_vocabulary', 'dublincore_resource', "kdl_wagtail.core", 'kdl_wagtail.people', 'django_kdl_timeline', ] LOCAL_APPS = [ # "field.users.apps.UsersConfig", # ? 'field_timeline', 'field_wagtail', ] # https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS # MIGRATIONS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#migration-modules MIGRATION_MODULES = {"sites": "field.contrib.sites.migrations"} # AUTHENTICATION # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#authentication-backends AUTHENTICATION_BACKENDS = [ "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", ] if 0: # https://docs.djangoproject.com/en/dev/ref/settings/#auth-user-model AUTH_USER_MODEL = "users.User" # https://docs.djangoproject.com/en/dev/ref/settings/#login-redirect-url LOGIN_REDIRECT_URL = "users:redirect" # https://docs.djangoproject.com/en/dev/ref/settings/#login-url LOGIN_URL = "account_login" LOGIN_URL = '/wagtail/login/' # PASSWORDS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#password-hashers PASSWORD_HASHERS = [ # https://docs.djangoproject.com/en/dev/topics/auth/passwords/#using-argon2-with-django "django.contrib.auth.hashers.Argon2PasswordHasher", "django.contrib.auth.hashers.PBKDF2PasswordHasher", "django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher", "django.contrib.auth.hashers.BCryptSHA256PasswordHasher", ] # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation" ".UserAttributeSimilarityValidator" }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator"}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"}, ] # MIDDLEWARE # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#middleware MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "whitenoise.middleware.WhiteNoiseMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.locale.LocaleMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.common.BrokenLinkEmailsMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "wagtail.contrib.redirects.middleware.RedirectMiddleware", ] # STATIC # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = str(ROOT_DIR / "staticfiles") # https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = "/static/" # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = [ str(ROOT_DIR / "assets"), str(APPS_DIR / "static"), str(ROOT_DIR / "node_modules"), ] # https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] # MEDIA # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = str(APPS_DIR / "media") # https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = "/media/" if not os.path.exists(MEDIA_ROOT): os.makedirs(MEDIA_ROOT) # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES = [ { # https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND "BACKEND": "django.template.backends.django.DjangoTemplates", # https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs "DIRS": [str(ROOT_DIR / "templates"), str(APPS_DIR / "templates")], "OPTIONS": { # https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types "loaders": [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], # https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages", "field.utils.context_processors.settings_context", 'field_wagtail.context_processor.project_settings', 'field_wagtail.context_processor.mailing_list_footer', ], }, } ] # https://docs.djangoproject.com/en/dev/ref/settings/#form-renderer FORM_RENDERER = "django.forms.renderers.TemplatesSetting" # http://django-crispy-forms.readthedocs.io/en/latest/install.html#template-packs CRISPY_TEMPLATE_PACK = "bootstrap4" # FIXTURES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#fixture-dirs FIXTURE_DIRS = (str(APPS_DIR / "fixtures"),) # SECURITY # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#session-cookie-httponly SESSION_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#csrf-cookie-httponly CSRF_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#secure-browser-xss-filter SECURE_BROWSER_XSS_FILTER = True # https://docs.djangoproject.com/en/dev/ref/settings/#x-frame-options X_FRAME_OPTIONS = "DENY" # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.smtp.EmailBackend" ) # https://docs.djangoproject.com/en/dev/ref/settings/#email-timeout EMAIL_TIMEOUT = 5 # ADMIN # ------------------------------------------------------------------------------ # Django Admin URL. ADMIN_URL = "admin/" # https://docs.djangoproject.com/en/dev/ref/settings/#admins # ADMINS = [("""King's Digital Lab""", "[email protected]")] ADMINS = [("Geoffroy", "[email protected]")] # https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS # LOGGING # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#logging # See https://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "verbose": { "format": "%(levelname)s %(asctime)s %(module)s " "%(process)d %(thread)d %(message)s" } }, "handlers": { "console": { "level": "DEBUG", "class": "logging.StreamHandler", "formatter": "verbose", } }, "root": {"level": "INFO", "handlers": ["console"]}, } # django-allauth # ------------------------------------------------------------------------------ ACCOUNT_ALLOW_REGISTRATION = env.bool("DJANGO_ACCOUNT_ALLOW_REGISTRATION", True) # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_AUTHENTICATION_METHOD = "username" # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_REQUIRED = True # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_EMAIL_VERIFICATION = "mandatory" # https://django-allauth.readthedocs.io/en/latest/configuration.html ACCOUNT_ADAPTER = "field.users.adapters.AccountAdapter" # https://django-allauth.readthedocs.io/en/latest/configuration.html SOCIALACCOUNT_ADAPTER = "field.users.adapters.SocialAccountAdapter" # django-compressor # ------------------------------------------------------------------------------ # https://django-compressor.readthedocs.io/en/latest/quickstart/#installation INSTALLED_APPS += ["compressor"] STATICFILES_FINDERS += ["compressor.finders.CompressorFinder"] COMPRESS_CSS_FILTERS = [ # CSS minimizer 'compressor.filters.cssmin.CSSMinFilter' ] COMPRESS_PRECOMPILERS = ( ('text/x-scss', 'django_libsass.SassCompiler'), ) # Elasticsearch # ------------------------------------------------------------------------------ # https://github.com/django-es/django-elasticsearch-dsl ELASTICSEARCH_DSL = {"default": {"hosts": "elasticsearch:9200"}} # Wagtail # ------------------------------------------------------------------------------ # https://docs.wagtail.io/en/v2.7.1/getting_started/integrating_into_django.html WAGTAIL_SITE_NAME = "FIELD" PROJECT_TITLE = 'FIELD' # PUPUT # ------------------------------------------------------------------------------ PUPUT_AS_PLUGIN = True # https://github.com/APSL/puput/issues/222 PUPUT_COMMENTS_PROVIDER = 'puput.comments.DjangoCommentsCommentsProvider' # Your stuff... # ------------------------------------------------------------------------------ USE_BULMA = True # 1: root, 2: site home page, 3: top level page # default is 3, we change to 2 because our default main menu # is just the home page, nothing else. WAGTAILMENUS_SECTION_ROOT_DEPTH = 2 # Note that KCL was (still is?) the research grant recipient. # Please make sure logo removal is agreed first with Wellcome & KCL. HIDE_KCL_LOGO = True # those settings vars will be available in template contexts SETTINGS_VARS_IN_CONTEXT = [ 'PROJECT_TITLE', 'GA_ID', 'USE_BULMA', 'MAILING_LIST_FORM_WEB_PATH', 'HIDE_KCL_LOGO', ] # slug of the page which is the parent of the specific communities FIELD_COMMUNITIES_ROOT_SLUG = 'groups' if 1: FABRIC_DEV_PACKAGES = [ { 'git': 'https://github.com/kingsdigitallab/django-kdl-wagtail.git', 'folder_git': 'django-kdl-wagtail', 'folder_package': 'kdl_wagtail', 'branch': 'develop', 'servers': ['lcl', 'dev', 'stg', 'liv'], } ] KDL_WAGTAIL_HIDDEN_PAGE_TYPES = [ ('kdl_wagtail_page.richpage'), ('kdl_wagtail_core.streampage'), ('kdl_wagtail_core.indexpage'), ('kdl_wagtail_people.peopleindexpage'), ('kdl_wagtail_people.personpage'), ] MAILING_LIST_FORM_WEB_PATH = '/mailing-list/' # ----------------------------------------------------------------------------- # Django Simple Captcha # ----------------------------------------------------------------------------- CAPTCHA_FONT_SIZE = 36 # Timeline settings TIMELINE_IMAGE_FOLDER = '/images/' TIMELINE_IMAGE_FORMAT = 'jpg' # dublin core settings # Set to True to disable the DublinCoreResource model and define your own DUBLINCORE_RESOURCE_ABSTRACT_ONLY = False # The path where resource file are uploaded, relative to your MEDIA path DUBLINCORE_RESOURCE_UPLOAD_PATH = 'uploads/dublin_core/' # ---------------------------------------------------------------------------- # Wagtail extra settings # ---------------------------------------------------------------------------- WAGTAILIMAGES_IMAGE_MODEL = "field_wagtail.FieldImage" # Google Analytics ID GA_ID = 'UA-67707155-9' # Field Mailchimp settings (May 2019) MAILCHIMP_LIST_ID = env('MAILCHIMP_LIST_ID', default='') MAILCHIMP_API_KEY = env('MAILCHIMP_API_KEY', default='')
36.437788
93
0.622992
0
0
0
0
0
0
0
0
11,977
0.757367
73997218b858bff90d72a13225aff826e20a867f
5,464
py
Python
tests/test_subtyping_processing.py
phac-nml/biohansel
1f4da7081ed248fc0c2c52e36e0a4cf4adbb1c8d
[ "Apache-2.0" ]
25
2018-09-24T16:14:06.000Z
2021-10-06T00:47:26.000Z
tests/test_subtyping_processing.py
phac-nml/biohansel
1f4da7081ed248fc0c2c52e36e0a4cf4adbb1c8d
[ "Apache-2.0" ]
53
2018-07-13T16:13:43.000Z
2021-03-04T19:58:41.000Z
tests/test_subtyping_processing.py
phac-nml/bio_hansel
1f4da7081ed248fc0c2c52e36e0a4cf4adbb1c8d
[ "Apache-2.0" ]
11
2018-09-24T16:14:11.000Z
2020-11-05T17:17:15.000Z
# -*- coding: utf-8 -*- import pandas as pd import pytest from bio_hansel.qc import QC from bio_hansel.subtype import Subtype from bio_hansel.subtype_stats import SubtypeCounts from bio_hansel.subtyper import absent_downstream_subtypes, sorted_subtype_ints, empty_results, \ get_missing_internal_subtypes from bio_hansel.utils import find_inconsistent_subtypes, expand_degenerate_bases def test_absent_downstream_subtypes(): assert absent_downstream_subtypes(subtype='1', subtypes=pd.Series(['1.1', '1.2', '1.3', '1']), scheme_subtypes=['1.1', '1.2', '1', '1.3']) is None assert absent_downstream_subtypes(subtype='1', subtypes=pd.Series(['1.1', '1.2', '1']), scheme_subtypes=['1.1', '1.2', '1', '1.3']) == ['1.3'] assert absent_downstream_subtypes(subtype='1', subtypes=pd.Series(['1']), scheme_subtypes=['1.1', '1.2', '1', '1.3']) == ['1.1', '1.2', '1.3'] def test_sorted_subtype_ints(): assert sorted_subtype_ints(pd.Series([], dtype=object)) == [] exp_subtype_ints = [ [1], [1, 1], [1, 1, 1], [1, 1, 1, 99] ] assert sorted_subtype_ints(pd.Series(['1', '1.1', '1.1.1', '1.1.1.99'])) == exp_subtype_ints series = pd.Series(['1', '1.1', '1.1.1', '1.1.1.99', '1.1', '1.1.1']) assert sorted_subtype_ints(series) == exp_subtype_ints def test_empty_results(): st = Subtype(sample='test', file_path='tests/data/Retro1000data/10-1358.fastq', scheme='enteritidis', scheme_version='1.0.5', subtype=None, non_present_subtypes=None, all_subtypes=None, qc_status=QC.FAIL, qc_message=QC.NO_TARGETS_FOUND) df_empty = empty_results(st) df_expected_empty = pd.DataFrame( { 0: dict( sample='test', file_path='tests/data/Retro1000data/10-1358.fastq', subtype=None, refposition=None, is_pos_kmer=None, scheme='enteritidis', scheme_version='1.0.5', qc_status=QC.FAIL, qc_message=QC.NO_TARGETS_FOUND)}).transpose() assert ((df_empty == df_expected_empty) | (df_empty.isnull() == df_expected_empty.isnull())).values.all(), \ f'Empty result DataFrame should equal df_expected_empty: {df_expected_empty}' def test_find_inconsistent_subtypes(): subtype_list = ['1', '1.1', '1.1.1', '1.1.1.1', ] consistent_subtypes = sorted_subtype_ints(pd.Series(subtype_list)) assert find_inconsistent_subtypes(consistent_subtypes) == [], \ 'Expecting all subtypes to be consistent with each other' subtype_list = ['1', '1.1', '1.1.1', '1.1.1.1', '1.1.1.2', '1.1.1.3', ] inconsistent_subtypes = sorted_subtype_ints(pd.Series(subtype_list)) exp_incon_subtypes = ['1.1.1.1', '1.1.1.2', '1.1.1.3', ] assert find_inconsistent_subtypes(inconsistent_subtypes) == exp_incon_subtypes, \ f'Expecting subtypes {exp_incon_subtypes} to be inconsistent with each other' subtypes_list = ['1', '1.1', '1.1.1', '1.1.1.1', '1.1.1.2', '1.1.1.3', '1.1.2', '2', ] inconsistent_subtypes = sorted_subtype_ints(pd.Series(subtypes_list)) assert set(find_inconsistent_subtypes(inconsistent_subtypes)) == set(subtypes_list), \ f'All subtypes should be inconsistent with each other in {subtypes_list}' def test_subtype_regex(): good_values = ['1.1.1.1', '10', '77.10.1.9', '17.1.1.1.1.12.4', ] for good_value in good_values: assert SubtypeCounts._check_subtype(None, None, good_value) == good_value bad_values = [ '1..', '1..1', '1.1..1.1', '1....', '100.', '', ' ', 'a1.1.1', '1.11.1a', 'a', 'not.a.valid.subtype', 'B.1.1.7' ] for bad_value in bad_values: with pytest.raises(ValueError): assert SubtypeCounts._check_subtype(None, None, bad_value) == '' def test_get_missing_internal_subtypes(): st_vals = ['1', '1', '1', '1'] pos_subtypes_set = { '1', '1.1', '1.1.1', '1.1.1.1' } exp_missing_internal_subtypes = set() assert get_missing_internal_subtypes(st_vals, pos_subtypes_set) == exp_missing_internal_subtypes st_vals = ['2', '22', '222', '2222', '22222'] pos_subtypes_set = {'2', '2.22.222.2222.22222'} exp_missing_internal_subtypes = { '2.22', '2.22.222', '2.22.222.2222' } assert get_missing_internal_subtypes(st_vals, pos_subtypes_set) == exp_missing_internal_subtypes def test_expand_degenerate_bases(): assert len(expand_degenerate_bases('NNNNN')) == 1024 with open('tests/data/expand_degenerate_bases_DARTHVADR.txt') as f: assert expand_degenerate_bases('DARTHVADR') == f.read().split('\n')
35.947368
112
0.548133
0
0
0
0
0
0
0
0
1,083
0.198206
7399721b18f0c510e440d6fd414b7fdd42d11e8d
8,869
py
Python
capreolus/benchmark/codesearchnet.py
seanmacavaney/capreolus
8695a471f9d8e911ad12778a82327e3973f92af0
[ "Apache-2.0" ]
null
null
null
capreolus/benchmark/codesearchnet.py
seanmacavaney/capreolus
8695a471f9d8e911ad12778a82327e3973f92af0
[ "Apache-2.0" ]
null
null
null
capreolus/benchmark/codesearchnet.py
seanmacavaney/capreolus
8695a471f9d8e911ad12778a82327e3973f92af0
[ "Apache-2.0" ]
null
null
null
import gzip import json import pickle from collections import defaultdict from pathlib import Path from zipfile import ZipFile from tqdm import tqdm from capreolus import ConfigOption, Dependency, constants from capreolus.utils.common import download_file, remove_newline from capreolus.utils.loginit import get_logger from capreolus.utils.trec import topic_to_trectxt from . import Benchmark logger = get_logger(__name__) PACKAGE_PATH = constants["PACKAGE_PATH"] @Benchmark.register class CodeSearchNetCorpus(Benchmark): """CodeSearchNet Corpus. [1] [1] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic Code Search. arXiv 2019. """ module_name = "codesearchnet_corpus" dependencies = [Dependency(key="collection", module="collection", name="codesearchnet")] url = "https://s3.amazonaws.com/code-search-net/CodeSearchNet/v2" query_type = "title" file_fn = PACKAGE_PATH / "data" / "csn_corpus" qrel_dir = file_fn / "qrels" topic_dir = file_fn / "topics" fold_dir = file_fn / "folds" qidmap_dir = file_fn / "qidmap" docidmap_dir = file_fn / "docidmap" config_spec = [ConfigOption("lang", "ruby", "CSN language dataset to use")] def build(self): lang = self.config["lang"] self.qid_map_file = self.qidmap_dir / f"{lang}.json" self.docid_map_file = self.docidmap_dir / f"{lang}.json" self.qrel_file = self.qrel_dir / f"{lang}.txt" self.topic_file = self.topic_dir / f"{lang}.txt" self.fold_file = self.fold_dir / f"{lang}.json" for file in [var for var in vars(self) if var.endswith("file")]: getattr(self, file).parent.mkdir(exist_ok=True, parents=True) self.download_if_missing() @property def qid_map(self): if not hasattr(self, "_qid_map"): if not self.qid_map_file.exists(): self.download_if_missing() self._qid_map = json.load(open(self.qid_map_file, "r")) return self._qid_map @property def docid_map(self): if not hasattr(self, "_docid_map"): if not self.docid_map_file.exists(): self.download_if_missing() self._docid_map = json.load(open(self.docid_map_file, "r")) return self._docid_map def download_if_missing(self): files = [self.qid_map_file, self.docid_map_file, self.qrel_file, self.topic_file, self.fold_file] if all([f.exists() for f in files]): return lang = self.config["lang"] tmp_dir = Path("/tmp") zip_fn = tmp_dir / f"{lang}.zip" if not zip_fn.exists(): download_file(f"{self.url}/{lang}.zip", zip_fn) with ZipFile(zip_fn, "r") as zipobj: zipobj.extractall(tmp_dir) # prepare docid-url mapping from dedup.pkl pkl_fn = tmp_dir / f"{lang}_dedupe_definitions_v2.pkl" doc_objs = pickle.load(open(pkl_fn, "rb")) self._docid_map = self._prep_docid_map(doc_objs) assert self._get_n_docid() == len(doc_objs) # prepare folds, qrels, topics, docstring2qid # TODO: shall we add negative samples? qrels, self._qid_map = defaultdict(dict), {} qids = {s: [] for s in ["train", "valid", "test"]} topic_file = open(self.topic_file, "w", encoding="utf-8") qrel_file = open(self.qrel_file, "w", encoding="utf-8") def gen_doc_from_gzdir(dir): """ generate parsed dict-format doc from all jsonl.gz files under given directory """ for fn in sorted(dir.glob("*.jsonl.gz")): f = gzip.open(fn, "rb") for doc in f: yield json.loads(doc) for set_name in qids: set_path = tmp_dir / lang / "final" / "jsonl" / set_name for doc in gen_doc_from_gzdir(set_path): code = remove_newline(" ".join(doc["code_tokens"])) docstring = remove_newline(" ".join(doc["docstring_tokens"])) n_words_in_docstring = len(docstring.split()) if n_words_in_docstring >= 1024: logger.warning( f"chunk query to first 1000 words otherwise TooManyClause would be triggered " f"at lucene at search stage, " ) docstring = " ".join(docstring.split()[:1020]) # for TooManyClause docid = self.get_docid(doc["url"], code) qid = self._qid_map.get(docstring, str(len(self._qid_map))) qrel_file.write(f"{qid} Q0 {docid} 1\n") if docstring not in self._qid_map: self._qid_map[docstring] = qid qids[set_name].append(qid) topic_file.write(topic_to_trectxt(qid, docstring)) topic_file.close() qrel_file.close() # write to qid_map.json, docid_map, fold.json json.dump(self._qid_map, open(self.qid_map_file, "w")) json.dump(self._docid_map, open(self.docid_map_file, "w")) json.dump( {"s1": {"train_qids": qids["train"], "predict": {"dev": qids["valid"], "test": qids["test"]}}}, open(self.fold_file, "w"), ) def _prep_docid_map(self, doc_objs): """ construct a nested dict to map each doc into a unique docid which follows the structure: {url: {" ".join(code_tokens): docid, ...}} For all the lanugage datasets the url uniquely maps to a code_tokens yet it's not the case for but js and php which requires a second-level mapping from raw_doc to docid :param doc_objs: a list of dict having keys ["nwo", "url", "sha", "identifier", "arguments" "function", "function_tokens", "docstring", "doctring_tokens",], :return: """ # TODO: any way to avoid the twice traversal of all url and make the return dict structure consistent lang = self.config["lang"] url2docid = defaultdict(dict) for i, doc in tqdm(enumerate(doc_objs), desc=f"Preparing the {lang} docid_map"): url, code_tokens = doc["url"], remove_newline(" ".join(doc["function_tokens"])) url2docid[url][code_tokens] = f"{lang}-FUNCTION-{i}" # remove the code_tokens for the unique url-docid mapping for url, docids in tqdm(url2docid.items(), desc=f"Compressing the {lang} docid_map"): url2docid[url] = list(docids.values()) if len(docids) == 1 else docids # {code_tokens: docid} -> [docid] return url2docid def _get_n_docid(self): """ calculate the number of document ids contained in the nested docid map """ lens = [len(docs) for url, docs in self._docid_map.items()] return sum(lens) def get_docid(self, url, code_tokens): """ retrieve the doc id according to the doc dict """ docids = self.docid_map[url] return docids[0] if len(docids) == 1 else docids[code_tokens] @Benchmark.register class CodeSearchNetChallenge(Benchmark): """CodeSearchNet Challenge. [1] This benchmark can only be used for training (and challenge submissions) because no qrels are provided. [1] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic Code Search. arXiv 2019. """ module_name = "codesearchnet_challenge" dependencies = [Dependency(key="collection", module="collection", name="codesearchnet")] config_spec = [ConfigOption("lang", "ruby", "CSN language dataset to use")] url = "https://raw.githubusercontent.com/github/CodeSearchNet/master/resources/queries.csv" query_type = "title" file_fn = PACKAGE_PATH / "data" / "csn_challenge" topic_file = file_fn / "topics.txt" qid_map_file = file_fn / "qidmap.json" def download_if_missing(self): """ download query.csv and prepare queryid - query mapping file """ if self.topic_file.exists() and self.qid_map_file.exists(): return tmp_dir = Path("/tmp") tmp_dir.mkdir(exist_ok=True, parents=True) self.file_fn.mkdir(exist_ok=True, parents=True) query_fn = tmp_dir / f"query.csv" if not query_fn.exists(): download_file(self.url, query_fn) # prepare qid - query qid_map = {} topic_file = open(self.topic_file, "w", encoding="utf-8") query_file = open(query_fn) for qid, line in enumerate(query_file): if qid != 0: # ignore the first line "query" topic_file.write(topic_to_trectxt(qid, line.strip())) qid_map[qid] = line topic_file.close() json.dump(qid_map, open(self.qid_map_file, "w"))
39.95045
183
0.628481
8,355
0.942045
2,942
0.331717
8,395
0.946555
0
0
2,960
0.333747
739b66623c870e2641dd70a59dd1c2539187536e
1,161
py
Python
tests/cli.py
chriswmackey/honeybee-radiance-folder
5576df94d781fd131c683c8b05aa04ac42df34b8
[ "MIT" ]
null
null
null
tests/cli.py
chriswmackey/honeybee-radiance-folder
5576df94d781fd131c683c8b05aa04ac42df34b8
[ "MIT" ]
113
2019-07-18T03:38:26.000Z
2022-03-26T03:26:06.000Z
tests/cli.py
chriswmackey/honeybee-radiance-folder
5576df94d781fd131c683c8b05aa04ac42df34b8
[ "MIT" ]
6
2019-07-18T00:05:26.000Z
2021-10-04T08:50:26.000Z
from click.testing import CliRunner from honeybee_radiance_folder.cli import filter_json_file import json import os def test_filter_file(): runner = CliRunner() input_file = './tests/assets/project_folder/grid_info.json' output_file = './tests/assets/temp/grid_filtered_0.json' result = runner.invoke( filter_json_file, [ input_file, 'group:daylight_grids', '--output-file', output_file ] ) assert result.exit_code == 0 # check the file is created with open(output_file) as inf: data = json.load(inf) assert len(data) == 1 os.unlink(output_file) def test_filter_file_remove(): runner = CliRunner() input_file = './tests/assets/project_folder/grid_info.json' output_file = './tests/assets/project_folder/grid_filtered_1.json' result = runner.invoke( filter_json_file, [ input_file, 'group:daylight_grids', '--output-file', output_file, '--remove' ] ) assert result.exit_code == 0 # check the file is created with open(output_file) as inf: data = json.load(inf) assert len(data) == 8 os.unlink(output_file)
29.769231
88
0.669251
0
0
0
0
0
0
0
0
324
0.27907
739ba1a424b3444916622cc94f3e8ea065012ebc
13,648
py
Python
perma_web/perma/forms.py
leppert/perma
adb0cec29679c3d161d72330e19114f89f8c42ac
[ "MIT", "Unlicense" ]
null
null
null
perma_web/perma/forms.py
leppert/perma
adb0cec29679c3d161d72330e19114f89f8c42ac
[ "MIT", "Unlicense" ]
null
null
null
perma_web/perma/forms.py
leppert/perma
adb0cec29679c3d161d72330e19114f89f8c42ac
[ "MIT", "Unlicense" ]
null
null
null
import logging from django import forms from django.forms import ModelForm from django.forms.widgets import flatatt from django.utils.html import mark_safe from perma.models import Registrar, Organization, LinkUser logger = logging.getLogger(__name__) class RegistrarForm(ModelForm): class Meta: model = Registrar fields = ['name', 'email', 'website'] class OrganizationWithRegistrarForm(ModelForm): registrar = forms.ModelChoiceField(queryset=Registrar.objects.all().order_by('name'), empty_label=None) class Meta: model = Organization fields = ['name', 'registrar'] class OrganizationForm(ModelForm): class Meta: model = Organization fields = ['name'] class CreateUserForm(forms.ModelForm): """ stripped down user reg form This is mostly a django.contrib.auth.forms.UserCreationForm """ class Meta: model = LinkUser fields = ["first_name", "last_name", "email"] error_messages = { 'duplicate_email': "A user with that email address already exists.", } email = forms.EmailField() def clean_email(self): # Since User.email is unique, this check is redundant, # but it sets a nicer error message than the ORM. email = self.cleaned_data["email"] try: LinkUser.objects.get(email=email) except LinkUser.DoesNotExist: return email raise forms.ValidationError(self.error_messages['duplicate_email']) class CreateUserFormWithRegistrar(CreateUserForm): """ add registrar to the create user form """ registrar = forms.ModelChoiceField(queryset=Registrar.objects.all().order_by('name'), empty_label=None) class Meta: model = LinkUser fields = ["first_name", "last_name", "email", "registrar"] def clean_registrar(self): registrar = self.cleaned_data["registrar"] return registrar class CreateUserFormWithCourt(CreateUserForm): """ add court to the create user form """ requested_account_note = forms.CharField(required=True) class Meta: model = LinkUser fields = ["first_name", "last_name", "email", "requested_account_note"] def __init__(self, *args, **kwargs): super(CreateUserFormWithCourt, self).__init__(*args, **kwargs) self.fields['requested_account_note'].label = "Your court" self.fields['first_name'].label = "Your first name" self.fields['last_name'].label = "Your last name" self.fields['email'].label = "Your email" class CreateUserFormWithUniversity(CreateUserForm): """ add court to the create user form """ requested_account_note = forms.CharField(required=True) class Meta: model = LinkUser fields = ["first_name", "last_name", "email", "requested_account_note"] def __init__(self, *args, **kwargs): super(CreateUserFormWithUniversity, self).__init__(*args, **kwargs) self.fields['requested_account_note'].label = "Your university" class CustomSelectSingleAsList(forms.SelectMultiple): # Thank you, http://stackoverflow.com/a/14971139 def render(self, name, value, attrs=None, choices=()): if value is None: value = [] final_attrs = self.build_attrs(attrs, name=name) output = [u'<select %s>' % flatatt(final_attrs)] # NOTE removed the multiple attribute options = self.render_options(choices, value) if options: output.append(options) output.append('</select>') return mark_safe(u'\n'.join(output)) class CreateUserFormWithOrganization(CreateUserForm): """ stripped down user reg form This is mostly a django.contrib.auth.forms.UserCreationForm """ def __init__(self, *args, **kwargs): registrar_id = False org_member_id = False if 'registrar_id' in kwargs: registrar_id = kwargs.pop('registrar_id') if 'org_member_id' in kwargs: org_member_id = kwargs.pop('org_member_id') super(CreateUserFormWithOrganization, self).__init__(*args, **kwargs) if registrar_id: self.fields['organizations'].queryset = Organization.objects.filter(registrar_id=registrar_id).order_by('name') elif org_member_id: user = LinkUser.objects.get(id=org_member_id) self.fields['organizations'].queryset = user.organizations.all() else: self.fields['organizations'].queryset = Organization.objects.all().order_by('name') class Meta: model = LinkUser fields = ["first_name", "last_name", "email", "organizations"] organizations = forms.ModelMultipleChoiceField(queryset=Organization.objects.all().order_by('name'),label="Organization", widget=CustomSelectSingleAsList) def clean_organization(self): organizations = self.cleaned_data["organizations"] return organizations class UserFormEdit(forms.ModelForm): """ stripped down user reg form This is mostly a django.contrib.auth.forms.UserCreationForm This is the edit form, so we strip it down even more """ error_messages = { } email = forms.EmailField() class Meta: model = LinkUser fields = ["first_name", "last_name", "email"] class RegistrarMemberFormEdit(UserFormEdit): """ stripped down user reg form This is mostly a django.contrib.auth.forms.UserCreationForm This is the edit form, so we strip it down even more """ registrar = forms.ModelChoiceField(queryset=Registrar.objects.all().order_by('name'), empty_label=None) class Meta: model = LinkUser fields = ["first_name", "last_name", "email", "registrar"] class OrganizationMemberWithOrganizationFormEdit(forms.ModelForm): """ stripped down user reg form This is mostly a django.contrib.auth.forms.UserCreationForm This is stripped down even further to match out editing needs """ def __init__(self, *args, **kwargs): registrar_id = False if 'registrar_id' in kwargs: registrar_id = kwargs.pop('registrar_id') super(OrganizationMemberWithOrganizationFormEdit, self).__init__(*args, **kwargs) if registrar_id: self.fields['organizations'].queryset = Organization.objects.filter(registrar_id=registrar_id).order_by('name') class Meta: model = LinkUser fields = ["organizations"] org = forms.ModelMultipleChoiceField(queryset=Organization.objects.all().order_by('name'),label="Organization", required=False,) class OrganizationMemberWithOrganizationOrgAsOrganizationMemberFormEdit(forms.ModelForm): """ TODO: this form has a gross name. rename it. """ def __init__(self, *args, **kwargs): user_id = False if 'organization_user_id' in kwargs: organization_user_id = kwargs.pop('organization_user_id') super(OrganizationMemberWithOrganizationOrgAsOrganizationMemberFormEdit, self).__init__(*args, **kwargs) if organization_user_id: editing_user = LinkUser.objects.get(pk=organization_user_id) self.fields['organizations'].queryset = editing_user.organizations.all().order_by('name') class Meta: model = LinkUser fields = ["organizations"] org = forms.ModelMultipleChoiceField(queryset=Organization.objects.all().order_by('name'),label="Organization", required=False,) class OrganizationMemberWithGroupFormEdit(UserFormEdit): """ stripped down user reg form This is mostly a django.contrib.auth.forms.UserCreationForm This is stripped down even further to match out editing needs """ def __init__(self, *args, **kwargs): registrar_id = False if 'registrar_id' in kwargs: registrar_id = kwargs.pop('registrar_id') super(OrganizationMemberWithGroupFormEdit, self).__init__(*args, **kwargs) if registrar_id: self.fields['organizations'].queryset = Organization.objects.filter(registrar_id=registrar_id).order_by('name') class Meta: model = LinkUser fields = ("first_name", "last_name", "email", "organizations",) org = forms.ModelChoiceField(queryset=Organization.objects.all().order_by('name'), empty_label=None, label="Organization", required=False,) class UserAddRegistrarForm(forms.ModelForm): """ stripped down user reg form This is mostly a django.contrib.auth.forms.UserCreationForm This is stripped down even further to match out editing needs """ class Meta: model = LinkUser fields = ("registrar",) registrar = forms.ModelChoiceField(queryset=Registrar.objects.all().order_by('name'), empty_label=None) class UserAddOrganizationForm(forms.ModelForm): """ add an org when a regular user is promoted to an org user """ def __init__(self, *args, **kwargs): registrar_id = False org_member_id = False target_user_id = False if 'registrar_id' in kwargs: registrar_id = kwargs.pop('registrar_id') if 'org_member_id' in kwargs: org_member_id = kwargs.pop('org_member_id') if 'target_user_id' in kwargs: target_user_id = kwargs.pop('target_user_id') super(UserAddOrganizationForm, self).__init__(*args, **kwargs) target_user = LinkUser.objects.get(pk=target_user_id) # Registrars can only edit their own organization members if registrar_id: # Get the orgs the logged in user admins. Exclude the ones # the target user is already in orgs = Organization.objects.filter(registrar_id=registrar_id).exclude(pk__in=target_user.organizations.all()) elif org_member_id: # Get the orgs the logged in user admins. Exclude the ones # the target user is already in org_member = LinkUser.objects.get(pk=org_member_id) orgs = org_member.organizations.all().exclude(pk__in=target_user.organizations.all()) else: # Must be registry member. orgs = Organization.objects.all().exclude(pk__in=target_user.organizations.all()) self.fields['organizations'] = forms.ModelMultipleChoiceField(queryset=orgs.order_by('name'), label="Organization", widget=CustomSelectSingleAsList) class Meta: model = LinkUser fields = ("organizations",) def save(self, commit=True): user = super(UserAddOrganizationForm, self).save(commit=False) if commit: user.save() return user class UserRegForm(forms.ModelForm): """ stripped down user reg form This is mostly a django.contrib.auth.forms.UserCreationForm """ error_messages = { 'duplicate_email': "A user with that email address already exists.", } email = forms.EmailField() #password = forms.CharField(label="Password", widget=forms.PasswordInput) class Meta: model = LinkUser fields = ("email", "first_name", "last_name") def clean_email(self): # Since User.email is unique, this check is redundant, # but it sets a nicer error message than the ORM. email = self.cleaned_data["email"] try: LinkUser.objects.get(email=email) except LinkUser.DoesNotExist: return email raise forms.ValidationError(self.error_messages['duplicate_email']) class UserFormSelfEdit(forms.ModelForm): """ stripped down user reg form This is mostly a django.contrib.auth.forms.UserCreationForm This is stripped down even further to match our editing needs """ class Meta: model = LinkUser fields = ("first_name", "last_name", "email") email = forms.EmailField() class SetPasswordForm(forms.Form): """ A form that lets a user change set his/her password without entering the old password """ error_messages = { 'password_mismatch': "The two password fields didn't match.", } new_password1 = forms.CharField(label="New password", widget=forms.PasswordInput) new_password2 = forms.CharField(label="New password confirmation", widget=forms.PasswordInput) def __init__(self, user, *args, **kwargs): self.user = user super(SetPasswordForm, self).__init__(*args, **kwargs) def clean_new_password2(self): password1 = self.cleaned_data.get('new_password1') password2 = self.cleaned_data.get('new_password2') if password1 and password2: if password1 != password2: logger.debug('mismatch') raise forms.ValidationError(self.error_messages['password_mismatch']) return password2 def save(self, commit=True): self.user.set_password(self.cleaned_data['new_password1']) if commit: self.user.save() return self.user class UploadFileForm(forms.Form): title = forms.CharField(required=True) url = forms.URLField(required=True) file = forms.FileField(required=True) class ContactForm(forms.Form): """ The form we use on the contact page. Just an email (optional) and a message """ email = forms.EmailField() message = forms.CharField(widget=forms.Textarea)
31.81352
158
0.656726
13,203
0.967394
0
0
0
0
0
0
4,011
0.293889
739baac2ff5ef50ecd5e6693fbb6afb0bb494d6a
5,403
py
Python
samples/sample-2.py
shoriwe/LVaED
68ca38eed2b4c2b1b7a6a8304c8effbcf2f977f7
[ "MIT" ]
null
null
null
samples/sample-2.py
shoriwe/LVaED
68ca38eed2b4c2b1b7a6a8304c8effbcf2f977f7
[ "MIT" ]
19
2021-02-08T22:14:16.000Z
2021-03-03T15:13:07.000Z
samples/sample-2.py
shoriwe/LVaED
68ca38eed2b4c2b1b7a6a8304c8effbcf2f977f7
[ "MIT" ]
3
2021-08-30T01:06:32.000Z
2022-02-21T03:22:28.000Z
import io import os import re import zipfile import flask import markdown import blueprints.example import blueprints.home import blueprints.presentation import blueprints.transformations class Zipper(object): def __init__(self): self._content = None self._content_handler = io.BytesIO() def append(self, filename: str, content: bytes): zip_file = zipfile.ZipFile(self._content_handler, "a", zipfile.ZIP_DEFLATED, False) zip_file.writestr(filename, content) for file in zip_file.filelist: file.create_system = 0 zip_file.close() self._content_handler.seek(0) self._content = self._content_handler.read() def append_directory(self, path: str): for directory_path, directories, files in os.walk(path): for file in files: file_path = os.path.join(directory_path, file) with open(file_path, "rb") as file_object: self.append(file_path, file_object.read()) self._content_handler.seek(0) self._content = self._content_handler.read() def content(self) -> bytes: return self._content def pygmentize(raw_markdown: str) -> str: languages = re.findall(re.compile("(?<=^```)\\w+$", re.M), raw_markdown) last_index = 0 for language in languages: list_markdown = raw_markdown.split("\n") code_block_start_index = list_markdown.index(f"```{language}", last_index) code_block_end_index = list_markdown.index("```", code_block_start_index) for index in range(code_block_start_index + 1, code_block_end_index): list_markdown[index] = f"\t{list_markdown[index]}" list_markdown[code_block_start_index] = "\t" + list_markdown[code_block_start_index].replace("```", ":::") list_markdown[code_block_end_index] = "\n" raw_markdown = "\n".join(list_markdown) last_index = code_block_end_index return raw_markdown def render_article(article_path: str) -> str: with open(article_path) as file: content = file.read() html = markdown.markdown(pygmentize(content), extensions=["codehilite"]) return html def zip_library(library_directory: str) -> Zipper: z = Zipper() z.append_directory(library_directory) return z def load_articles(app: flask.Flask): app.config["articles"] = { "list": render_article("markdown/articles/list.md"), "stack": render_article("markdown/articles/stack.md"), "queue": render_article("markdown/articles/queue.md") } def load_libraries(app: flask.Flask): app.config["libraries"] = { "all": zip_library("DataTypes").content(), "c": zip_library("DataTypes/C").content(), "java": zip_library("DataTypes/Java").content(), "python": zip_library("DataTypes/Python").content() } def load_examples(app: flask.Flask): app.config["examples"] = {} app.config["examples"]["c"] = { "simple_list": render_article("markdown/examples/c/simple_list.md"), "double_list": render_article("markdown/examples/c/double_list.md"), "circular_simple_list": render_article("markdown/examples/c/circular_simple_list.md"), "circular_double_list": render_article("markdown/examples/c/circular_double_list.md"), "array_stack": render_article("markdown/examples/c/array_stack.md"), "list_stack": render_article("markdown/examples/c/list_stack.md"), "array_queue": render_article("markdown/examples/c/array_queue.md"), "list_queue": render_article("markdown/examples/c/list_queue.md"), "priority_queue": render_article("markdown/examples/c/priority_queue.md") } app.config["examples"]["java"] = { "simple_list": render_article("markdown/examples/java/simple_list.md"), "double_list": render_article("markdown/examples/java/double_list.md"), "circular_simple_list": render_article("markdown/examples/java/circular_simple_list.md"), "circular_double_list": render_article("markdown/examples/java/circular_double_list.md"), "array_stack": render_article("markdown/examples/java/array_stack.md"), "list_stack": render_article("markdown/examples/java/list_stack.md"), "array_queue": render_article("markdown/examples/java/array_queue.md"), "list_queue": render_article("markdown/examples/java/list_queue.md"), "priority_queue": render_article("markdown/examples/java/priority_queue.md") } app.config["examples"]["python"] = { "simple_list": render_article("markdown/examples/python/simple_list.md"), "double_list": render_article("markdown/examples/python/double_list.md"), "circular_simple_list": render_article("markdown/examples/python/circular_simple_list.md"), "circular_double_list": render_article("markdown/examples/python/circular_double_list.md"), "array_stack": render_article("markdown/examples/python/array_stack.md"), "list_stack": render_article("markdown/examples/python/list_stack.md"), "array_queue": render_article("markdown/examples/python/array_queue.md"), "list_queue": render_article("markdown/examples/python/list_queue.md"), "priority_queue": render_article("markdown/examples/python/priority_queue.md") } def setup() -> flask.Flask: app = flask.Flask(__name__, template_folder="templates") app.register_blueprint(blueprints.home.home_blueprint) app.register_blueprint(blueprints.presentation.presentation_blueprint) app.register_blueprint(blueprints.example.example_blueprint) app.register_blueprint(blueprints.transformations.transformations_blueprint) load_articles(app) load_libraries(app) load_examples(app) return app def main(): app = setup() app.run("127.0.0.1", 5000, debug=False) if __name__ == '__main__': main()
37.006849
108
0.760689
837
0.154914
0
0
0
0
0
0
1,911
0.353692
739bd82ee95264fe3d722473cc7aa6319a24720f
4,420
py
Python
yexinyang/scripts/main.py
TheSignPainter/MLproject-docknet
5d5647356f116d34ef57267524851e44595e5e93
[ "MIT" ]
null
null
null
yexinyang/scripts/main.py
TheSignPainter/MLproject-docknet
5d5647356f116d34ef57267524851e44595e5e93
[ "MIT" ]
null
null
null
yexinyang/scripts/main.py
TheSignPainter/MLproject-docknet
5d5647356f116d34ef57267524851e44595e5e93
[ "MIT" ]
4
2019-05-29T12:31:51.000Z
2019-05-30T12:00:12.000Z
import os, time import numpy as np import logging import fire import torch import torch.optim as optim import torch.nn as nn from torch.utils.data import DataLoader from model import * from dataset import * def train(dataloader, model, optimizer, criterion, device): epoch_loss = 0.0 total_num = 0 for data, target in dataloader: data, target = data.to(device), target.to(device).squeeze() total_num += len(data) optimizer.zero_grad() # out = model(data) out = model(data, target) loss = criterion(out, target) epoch_loss += loss.item() loss.backward() optimizer.step() return epoch_loss / total_num def evaluate(dataloader, model, device): c = 0 total_num = 0 with torch.no_grad(): for data, target in dataloader: data, target = data.to(device), target.to(device).squeeze() total_num += len(data) out = model(data) predicted = torch.max(out, 1)[1] c += (predicted == target).sum().item() return c * 100.0 / total_num def main(**kwargs): data_dir = kwargs.get('data_dir', '../../dataset_docknet/data') model_dir = kwargs.get('model_dir', 'models') log_file = kwargs.get('log_file', 'LOG') epoch = kwargs.get('epoch', 10) batch_size = kwargs.get('batch_size', 32) lr = kwargs.get('lr', 1e-2) if not os.path.exists(model_dir): os.makedirs(model_dir) formatter = logging.Formatter( "[ %(levelname)s: %(asctime)s ] - %(message)s" ) logging.basicConfig(level=logging.DEBUG, format="[ %(levelname)s: %(asctime)s ] - %(message)s") logger = logging.getLogger("Pytorch") fh = logging.FileHandler(log_file) fh.setFormatter(formatter) logger.addHandler(fh) logger.info(kwargs) train_dataset = DockDataset(featdir=os.path.join(data_dir, 'train'), is_train=True) cv_dataset = DockDataset(featdir=os.path.join(data_dir, 'valid'), is_train=False, shuffle=False) train_loader = DataLoader( train_dataset, batch_size=batch_size, num_workers=4, shuffle=True, drop_last=True, ) cv_loader = DataLoader( cv_dataset, batch_size=batch_size, num_workers=4, shuffle=False, drop_last=True, ) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # model = resnet18(pretrained=True, progress=True).to(device) model = resnet18_lsoftmax(pretrained=True, progress=True, device=device).to(device) criterion = nn.CrossEntropyLoss().to(device) optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9) logger.info(model) best_acc = 0.0 for e in range(epoch): model.train() train_loss = train(train_loader, model, optimizer, criterion, device) model.eval() cv_acc = evaluate(cv_loader, model, device) message = { f"[*] Epoch: [{e+1:3d}/{epoch:3d}] - " f"Training Loss: {train_loss:.5f}, " f"CV Acc: {cv_acc:.2f}%" } logger.info(message) torch.save(model.state_dict(), os.path.join(model_dir, f"checkpoint_{e+1}.pth")) if cv_acc >= best_acc: torch.save(model.state_dict(), os.path.join(model_dir, f"model_best.pth")) best_acc = cv_acc def score(**kwargs): data_dir = kwargs.get('data_dir', '../../dataset_docknet/data') model_dir = kwargs.get('model_dir', 'models') batch_size = kwargs.get('batch_size', 32) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") eval_dataset = DockDataset(featdir=os.path.join(data_dir, 'test'), is_train=False, shuffle=False) eval_loader = DataLoader( eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False, ) # model = resnet18() model = resnet18_lsoftmax(device=device) model.load_state_dict(torch.load(os.path.join(model_dir, "model_best.pth"))) model.to(device) model.eval() eval_acc = evaluate(eval_loader, model, device) print(f"Test Accuracy is: {eval_acc:.2f}%") if __name__ == '__main__': fire.Fire({ 'train': main, 'test': score, })
30.694444
102
0.601357
0
0
0
0
0
0
0
0
627
0.141855
739c941ac4971ed7f222b2a59535b53c9bba54d7
1,018
py
Python
myconnectome/utils/download_file.py
poldrack/myconnectome
201f414b3165894d6fe0be0677c8a58f6d161948
[ "MIT" ]
28
2015-04-02T16:43:14.000Z
2020-06-17T20:04:26.000Z
myconnectome/utils/download_file.py
poldrack/myconnectome
201f414b3165894d6fe0be0677c8a58f6d161948
[ "MIT" ]
11
2015-05-19T02:57:22.000Z
2017-03-17T17:36:16.000Z
myconnectome/utils/download_file.py
poldrack/myconnectome
201f414b3165894d6fe0be0677c8a58f6d161948
[ "MIT" ]
10
2015-05-21T17:01:26.000Z
2020-11-11T04:28:08.000Z
# -*- coding: utf-8 -*- """ download file using requests Created on Fri Jul 3 09:13:04 2015 @author: poldrack """ import requests import os from requests.packages.urllib3.util import Retry from requests.adapters import HTTPAdapter from requests import Session, exceptions # from http://stackoverflow.com/questions/16694907/how-to-download-large-file-in-python-with-requests-py def DownloadFile(url,local_filename): if not os.path.exists(os.path.dirname(local_filename)): os.makedirs(os.path.dirname(local_filename)) s=requests.Session() s.mount('http://',HTTPAdapter(max_retries=Retry(total=10,status_forcelist=[500]))) connect_timeout = 10.0 r = s.get(url=url,timeout=(connect_timeout, 10.0)) #except requests.exceptions.ConnectTimeout: # print "Too slow Mojo!" with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) return
30.848485
104
0.698428
0
0
0
0
0
0
0
0
336
0.330059
739ceade8d1851b8f8c7cabe7fe9035c80fe7143
9,388
py
Python
django-openstack/django_openstack/syspanel/views/instances.py
tylesmit/openstack-dashboard
8199011a98aa8bc5672e977db014f61eccc4668c
[ "Apache-2.0" ]
2
2015-05-18T13:50:23.000Z
2015-05-18T14:47:08.000Z
django-openstack/django_openstack/syspanel/views/instances.py
tylesmit/openstack-dashboard
8199011a98aa8bc5672e977db014f61eccc4668c
[ "Apache-2.0" ]
null
null
null
django-openstack/django_openstack/syspanel/views/instances.py
tylesmit/openstack-dashboard
8199011a98aa8bc5672e977db014f61eccc4668c
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2011 Fourth Paradigm Development, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django import template from django import http from django.conf import settings from django.contrib.auth.decorators import login_required from django.shortcuts import render_to_response from django.utils.translation import ugettext as _ import datetime import logging from django.contrib import messages from django_openstack import api from django_openstack import forms from django_openstack.dash.views import instances as dash_instances from openstackx.api import exceptions as api_exceptions TerminateInstance = dash_instances.TerminateInstance RebootInstance = dash_instances.RebootInstance LOG = logging.getLogger('django_openstack.syspanel.views.instances') def _next_month(date_start): y = date_start.year + (date_start.month + 1)/13 m = ((date_start.month + 1)%13) if m == 0: m = 1 return datetime.date(y, m, 1) def _current_month(): today = datetime.date.today() return datetime.date(today.year, today.month,1) def _get_start_and_end_date(request): try: date_start = datetime.date(int(request.GET['date_year']), int(request.GET['date_month']), 1) except: today = datetime.date.today() date_start = datetime.date(today.year, today.month,1) date_end = _next_month(date_start) datetime_start = datetime.datetime.combine(date_start, datetime.time()) datetime_end = datetime.datetime.combine(date_end, datetime.time()) if date_end > datetime.date.today(): datetime_end = datetime.datetime.utcnow() return (date_start, date_end, datetime_start, datetime_end) @login_required def usage(request): (date_start, date_end, datetime_start, datetime_end) = _get_start_and_end_date(request) service_list = [] usage_list = [] max_vcpus = max_gigabytes = 0 total_ram = 0 if date_start > _current_month(): messages.error(request, 'No data for the selected period') date_end = date_start datetime_end = datetime_start else: try: service_list = api.service_list(request) except api_exceptions.ApiException, e: LOG.error('ApiException fetching service list in instance usage', exc_info=True) messages.error(request, 'Unable to get service info: %s' % e.message) for service in service_list: if service.type == 'nova-compute': max_vcpus += service.stats['max_vcpus'] max_gigabytes += service.stats['max_gigabytes'] total_ram += settings.COMPUTE_HOST_RAM_GB try: usage_list = api.usage_list(request, datetime_start, datetime_end) except api_exceptions.ApiException, e: LOG.error('ApiException fetching usage list in instance usage' ' on date range "%s to %s"' % (datetime_start, datetime_end), exc_info=True) messages.error(request, 'Unable to get usage info: %s' % e.message) dateform = forms.DateForm() dateform['date'].field.initial = date_start global_summary = {'max_vcpus': max_vcpus, 'max_gigabytes': max_gigabytes, 'total_active_disk_size': 0, 'total_active_vcpus': 0, 'total_active_ram_size': 0} for usage in usage_list: # FIXME: api needs a simpler dict interface (with iteration) - anthony # NOTE(mgius): Changed this on the api end. Not too much neater, but # at least its not going into private member data of an external # class anymore #usage = usage._info for k in usage._attrs: v = usage.__getattr__(k) if type(v) in [float, int]: if not k in global_summary: global_summary[k] = 0 global_summary[k] += v max_disk_tb = used_disk_tb = available_disk_tb = 0 max_disk_tb = global_summary['max_gigabytes'] / float(1000) used_disk_tb = global_summary['total_active_disk_size'] / float(1000) available_disk_tb = (global_summary['max_gigabytes'] / float(1000) - \ global_summary['total_active_disk_size'] / float(1000)) used_ram = global_summary['total_active_ram_size'] / float(1024) avail_ram = total_ram - used_ram ram_unit = "GB" if total_ram > 999: ram_unit = "TB" total_ram /= float(1024) used_ram /= float(1024) avail_ram /= float(1024) return render_to_response( 'syspanel_usage.html',{ 'dateform': dateform, 'usage_list': usage_list, 'global_summary': global_summary, 'available_cores': global_summary['max_vcpus'] - global_summary['total_active_vcpus'], 'available_disk': global_summary['max_gigabytes'] - global_summary['total_active_disk_size'], 'max_disk_tb': max_disk_tb, 'used_disk_tb': used_disk_tb, 'available_disk_tb': available_disk_tb, 'total_ram': total_ram, 'used_ram': used_ram, 'avail_ram': avail_ram, 'ram_unit': ram_unit, 'external_links': settings.EXTERNAL_MONITORING, }, context_instance = template.RequestContext(request)) @login_required def tenant_usage(request, tenant_id): (date_start, date_end, datetime_start, datetime_end) = _get_start_and_end_date(request) if date_start > _current_month(): messages.error(request, 'No data for the selected period') date_end = date_start datetime_end = datetime_start dateform = forms.DateForm() dateform['date'].field.initial = date_start usage = {} try: usage = api.usage_get(request, tenant_id, datetime_start, datetime_end) except api_exceptions.ApiException, e: LOG.error('ApiException getting usage info for tenant "%s"' ' on date range "%s to %s"' % (tenant_id, datetime_start, datetime_end)) messages.error(request, 'Unable to get usage info: %s' % e.message) running_instances = [] terminated_instances = [] if hasattr(usage, 'instances'): now = datetime.datetime.now() for i in usage.instances: # this is just a way to phrase uptime in a way that is compatible # with the 'timesince' filter. Use of local time intentional i['uptime_at'] = now - datetime.timedelta(seconds=i['uptime']) if i['ended_at']: terminated_instances.append(i) else: running_instances.append(i) return render_to_response('syspanel_tenant_usage.html', { 'dateform': dateform, 'usage': usage, 'instances': running_instances + terminated_instances, 'tenant_id': tenant_id, }, context_instance = template.RequestContext(request)) @login_required def index(request): for f in (TerminateInstance, RebootInstance): _, handled = f.maybe_handle(request) if handled: return handled instances = [] try: instances = api.server_list(request) except Exception as e: LOG.error('Unspecified error in instance index', exc_info=True) messages.error(request, 'Unable to get instance list: %s' % e.message) # We don't have any way of showing errors for these, so don't bother # trying to reuse the forms from above terminate_form = TerminateInstance() reboot_form = RebootInstance() return render_to_response('syspanel_instances.html', { 'instances': instances, 'terminate_form': terminate_form, 'reboot_form': reboot_form, }, context_instance=template.RequestContext(request)) @login_required def refresh(request): for f in (TerminateInstance, RebootInstance): _, handled = f.maybe_handle(request) if handled: return handled instances = [] try: instances = api.server_list(request) except Exception as e: messages.error(request, 'Unable to get instance list: %s' % e.message) # We don't have any way of showing errors for these, so don't bother # trying to reuse the forms from above terminate_form = TerminateInstance() reboot_form = RebootInstance() return render_to_response('_syspanel_instance_list.html', { 'instances': instances, 'terminate_form': terminate_form, 'reboot_form': reboot_form, }, context_instance=template.RequestContext(request))
36.96063
101
0.659139
0
0
0
0
6,973
0.742757
0
0
2,684
0.285897
739e11e44ead5664c57ce1862ebd696671d1bb6a
612
py
Python
image_png.py
tomasdisk/tommGL-py
63876cc7211610908f388c2fd9b2b5f4dbd4411c
[ "MIT" ]
1
2018-06-19T21:19:20.000Z
2018-06-19T21:19:20.000Z
image_png.py
tomasdisk/tommGL-py
63876cc7211610908f388c2fd9b2b5f4dbd4411c
[ "MIT" ]
null
null
null
image_png.py
tomasdisk/tommGL-py
63876cc7211610908f388c2fd9b2b5f4dbd4411c
[ "MIT" ]
null
null
null
from datetime import datetime as dt from bitmap import Bitmap, PilBitmap h = 500 w = 500 image = Bitmap(w, h, alpha=True) pil_image = PilBitmap(w, h, alpha=True) color_red = 0 for i in range(h): for j in range(w): image.set_rgba_pixel(j, i, color_red, 0, 0, 150) pil_image.set_rgba_pixel(j, i, color_red, 0, 0, 150) color_red += 1 path = "images/im1_" + dt.now().strftime("%Y-%m-%d_%H:%M:%S") + ".png" print("Image saved: " + path) image.save_as_png(path) path = "images/im2_" + dt.now().strftime("%Y-%m-%d_%H:%M:%S") + ".png" print("Image saved: " + path) pil_image.save_as_png(path)
27.818182
70
0.643791
0
0
0
0
0
0
0
0
106
0.173203
739e6d0875de7997feffc9f90decf0de25b225f9
9,157
py
Python
src/memberdef.py
alljoyn/devtools-codegen
388cac15e584dce3040d5090e8f627e5360e5c0f
[ "0BSD" ]
null
null
null
src/memberdef.py
alljoyn/devtools-codegen
388cac15e584dce3040d5090e8f627e5360e5c0f
[ "0BSD" ]
null
null
null
src/memberdef.py
alljoyn/devtools-codegen
388cac15e584dce3040d5090e8f627e5360e5c0f
[ "0BSD" ]
null
null
null
# Copyright AllSeen Alliance. All rights reserved. # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import validate import common class MemberDef: """Common base class for field and argument definitions.""" def __init__(self, name = None, arg_type = None): """Initialize an instance of the MemberDef class.""" self.name = name self.arg_type = arg_type # This is initialized in Interface.parse() self.interface = None return def get_flattened_signature(self): """Flatten the signature by replacing all [NamedTypes] with their expanded signature.""" basesig = self.get_base_signature() if basesig[0] != '[': return self.arg_type prefix = 'a'*(len(self.arg_type)-len(basesig)) basetype = self.get_named_type().get_flattened_signature() return prefix+basetype def get_flattened_base_signature(self): """Return the flattened base signature.""" return get_base_signature(self.get_flattened_signature()) def get_base_signature(self): """Return the base signature i.e. 'i', 'ai', and 'aai' all return 'i'.""" return get_base_signature(self.arg_type) def get_named_type(self): """Returns the named type definition this argument refers to, or None.""" if self.interface is None: return None basesig = self.get_base_signature() if basesig[0] == '[': return self.interface.get_named_type(basesig[1:-1]) return None def references_named_type(self): """Returns true if arg_type contains a [NamedType] reference.""" basesig = self.get_base_signature() return basesig[0] == '[' def is_basic_type(self): """Return True if this argument is a basic type.""" return (not self.references_named_type()) and is_basic_type(self.arg_type) def is_array(self): """Return True if this argument is an array. A dictionary is considered an array.""" return is_array(self.get_flattened_signature()) def is_structure(self): """Return True if the base argument type is a structure.""" return is_structure(self.get_flattened_signature()) def is_dictionary(self): """Return True if the base argument type is a dictionary.""" return is_dictionary(self.get_flattened_signature()) def is_dictionary_array(self): """Return True if the base argument type is an array of dictionaries.""" return is_dictionary_array(self.get_flattened_signature()) def get_indirection_level(self): """Get the number of dimensions in the array or 0 if not an array.""" return get_indirection_level(self.get_flattened_signature()) def get_max_array_dimension(self): """Gets the number of array dimensions in this signature.""" return get_max_array_dimension(self.get_flattened_signature()) def get_max_structure_depth(self): """Return the maximum depth of structures in this type. Examples: "bud" returns 0 "(bud)" returns 1 "(bud)(did)" returns 1 "(bud(did))" returns 2 "(q(bud)(did))" returns 2 "(i((bud(did))i))" returns 4 """ return get_max_structure_depth(self.get_flattened_signature()) def get_max_dictionary_depth(self): """Return the maximum depth of dictionaries in this type. Examples: "bud" returns 0 "a{bud}" returns 1 "a{bud}a{did}" returns 1 "a{buda{did}}" returns 2 "a{qa{bud}a{did})" returns 2 "a{ia{a{buda{did}}i}}" returns 4 """ return get_max_dictionary_depth(self.get_flattened_signature()) def __str__(self): return "{0} : {1}".format(self.name, self.arg_type) def __eq__(self, other): """Compares this member definition to another and returns true if equal.""" return self.name == other.name and self.arg_type == other.arg_type def __ne__(self, other): """Implements the '!=' operator.""" if self == other: return False return True def get_indirection_level(signature): """Get the number of dimensions in the array or 0 if not an array.""" return len(signature) - len(signature.lstrip('a')) def get_base_signature(signature, index = 0): """Return the base signature i.e. 'i', 'ai', and 'aai' all return 'i'.""" return signature[index:len(signature)].lstrip('a') def is_array(signature): """Return True if this argument is an array. A dictionary is considered an array.""" return signature[0] == "a" def is_structure(signature): """Return True if the base argument type is a structure.""" sig = get_base_signature(signature) return sig[0] == '(' def is_dictionary(signature): """Return True if the base argument type is a dictionary.""" sig = get_base_signature(signature) return signature[0] == 'a' and sig[0] == '{' def is_dictionary_array(signature): """Return True if the base argument type is an array of dictionaries.""" return is_dictionary(signature) and get_indirection_level(signature) > 1 def __find_end_of_type(signature, index = 0): """Returns the index of the start of the next type starting at 'index'. If there are no more types then return the end of the type signature. For example: ("ab", 0) returns 1 ("ab", 1) returns 2 ("aab", 0) returns 1 ("aab", 1) returns 1 ("aab", 2) returns 3 ("abb", 1) returns 2 ("abb", 2) returns 3 ("bqd", 0) returns 1 ("bqd", 1) returns 2 ("bqd", 2) returns 3 ("(bqd)", 0) returns 4 ("(bqd)", 1) returns 2 ("(bqd)", 2) returns 3 ("(bqd)", 3) returns 4 ("(bqd)", 4) returns 5 ("(bqd(bad))", 0) returns 9 ("(bqd(bad))", 1) returns 2 ("(bqd(bad))", 2) returns 3 ("(bqd(bad))", 3) returns 4 ("(bqd(bad))", 4) returns 8 ("(bqd(bad))", 5) returns 6""" assert(index < len(signature)) c = signature[index] if c == '(': end_index = __find_container_end(signature, index, ')') elif c == '{': end_index = __find_container_end(signature, index, '}') elif c == 'a': base = get_base_signature(signature, index) end_index = __find_end_of_type(base) end_index += index + get_indirection_level(signature, index) else: end_index = index + 1 return end_index def is_basic_type(signature): """Returns True if the signature is a basic type 'a', '(', '{', and 'v' are not considered basic types because they usually cannot be handled the same as other types.""" basic_types = ('b','d', 'g', 'i','n','o','q','s','t','u','x','y') return signature in basic_types def get_max_array_dimension(signature): """Gets the number of array dimensions in this signature.""" return_value = 0 while signature.find((return_value + 1) * 'a') != -1: return_value += 1 return return_value def get_max_structure_depth(signature): return get_max_container_depth(signature, '(', ')') def get_max_dictionary_depth(signature): return get_max_container_depth(signature, '{', '}') def get_max_container_depth(signature, start, stop): return_value = 0 count = 0 for c in signature: if c == start: count += 1 elif c == stop: count -= 1 if count > return_value: return_value += 1 return return_value def split_signature(sig): """splits a container signature into individual fields.""" components = [] index = 1 while index < len(sig)-1: part = sig[index:] startindex = get_indirection_level(part) endindex = __find_end_of_type(part, startindex) components.append(part[:endindex]) index = index + endindex return components def make_clean_name(signature): clean_name = signature.replace("(", "_") clean_name = clean_name.replace(")", "") clean_name = clean_name.replace("{", "_") clean_name = clean_name.replace("}", "") clean_name = clean_name.replace("[", "_") clean_name = clean_name.replace("]", "") return clean_name def __find_container_end(signature, index, end): start = signature[index] count = 0 while index < len(signature): c = signature[index] if c == start: count += 1 elif c == end: count -= 1 if count == 0: index += 1 break index += 1 return index
33.177536
96
0.644207
3,937
0.429944
0
0
0
0
0
0
3,875
0.423174
739eb239f78d72920cbdfea243f1d357367bd4a8
2,187
py
Python
ddcz/migrations/0010_creativepage_creativepageconcept_creativepagesection.py
Nathaka/graveyard
dcc5ba2fa1679318e65c0078f734cbfeeb287c32
[ "MIT" ]
6
2018-06-10T09:47:50.000Z
2022-02-13T12:22:07.000Z
ddcz/migrations/0010_creativepage_creativepageconcept_creativepagesection.py
Nathaka/graveyard
dcc5ba2fa1679318e65c0078f734cbfeeb287c32
[ "MIT" ]
268
2018-05-30T21:54:50.000Z
2022-01-08T21:00:03.000Z
ddcz/migrations/0010_creativepage_creativepageconcept_creativepagesection.py
jimmeak/graveyard
4c0f9d5e8b6c965171d9dc228c765b662f5b7ab4
[ "MIT" ]
4
2018-09-14T03:50:08.000Z
2021-04-19T19:36:23.000Z
# Generated by Django 2.0.2 on 2018-06-13 22:10 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ("ddcz", "0009_auto_20180610_2246"), ] operations = [ migrations.CreateModel( name="CreativePage", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=30)), ("slug", models.SlugField(max_length=30)), ("model_class", models.CharField(max_length=50)), ], ), migrations.CreateModel( name="CreativePageConcept", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("text", models.TextField()), ( "page", models.OneToOneField( on_delete=django.db.models.deletion.CASCADE, to="ddcz.CreativePage", ), ), ], ), migrations.CreateModel( name="CreativePageSection", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=30)), ("slug", models.SlugField(max_length=30)), ], ), ]
30.375
68
0.40695
2,028
0.927298
0
0
0
0
0
0
226
0.103338
739f4a4af64c366326ef39984c42e5d44fc7cab0
8,145
py
Python
libml/preprocess.py
isabella232/l2p
4379849b009edd9d5fde71d625cbb9aa1166aa17
[ "Apache-2.0" ]
45
2021-12-20T19:14:30.000Z
2022-03-31T14:08:44.000Z
libml/preprocess.py
google-research/l2p
98b10eaf07d3dd899a324fe4149bf6f01e26c589
[ "Apache-2.0" ]
3
2021-12-29T03:53:22.000Z
2022-03-18T01:08:25.000Z
libml/preprocess.py
isabella232/l2p
4379849b009edd9d5fde71d625cbb9aa1166aa17
[ "Apache-2.0" ]
5
2021-12-22T01:37:18.000Z
2022-02-14T23:17:38.000Z
# coding=utf-8 # Copyright 2020 The Learning-to-Prompt Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific Learning-to-Prompt governing permissions and # limitations under the License. # ============================================================================== """Input preprocesses.""" from typing import Any, Callable, Dict, Optional import ml_collections from augment import augment_utils import tensorflow as tf IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) CIFAR10_MEAN = (0.4914, 0.4822, 0.4465) CIFAR10_STD = (0.2471, 0.2435, 0.2616) CIFAR100_MEAN = (0.5071, 0.4867, 0.4408) CIFAR100_STD = (0.2675, 0.2565, 0.2761) # Constants for configuring config.<name> RANDOM_ERASING = "randerasing" AUGMENT = "augment" MIX = "mix" COLORJITTER = "colorjitter" create_mix_augment = augment_utils.create_mix_augment def resize_small(image: tf.Tensor, size: int, *, antialias: bool = False) -> tf.Tensor: """Resizes the smaller side to `size` keeping aspect ratio. Args: image: Single image as a float32 tensor. size: an integer, that represents a new size of the smaller side of an input image. antialias: Whether to use an anti-aliasing filter when downsampling an image. Returns: A function, that resizes an image and preserves its aspect ratio. """ h, w = tf.shape(image)[0], tf.shape(image)[1] # Figure out the necessary h/w. ratio = (tf.cast(size, tf.float32) / tf.cast(tf.minimum(h, w), tf.float32)) h = tf.cast(tf.round(tf.cast(h, tf.float32) * ratio), tf.int32) w = tf.cast(tf.round(tf.cast(w, tf.float32) * ratio), tf.int32) image = tf.image.resize(image, [h, w], antialias=antialias) return image def central_crop(image: tf.Tensor, size: int) -> tf.Tensor: """Makes central crop of a given size.""" h, w = size, size top = (tf.shape(image)[0] - h) // 2 left = (tf.shape(image)[1] - w) // 2 image = tf.image.crop_to_bounding_box(image, top, left, h, w) return image def decode_and_random_resized_crop(image: tf.Tensor, rng, resize_size: int) -> tf.Tensor: """Decodes the images and extracts a random crop.""" shape = tf.io.extract_jpeg_shape(image) begin, size, _ = tf.image.stateless_sample_distorted_bounding_box( shape, tf.zeros([0, 0, 4], tf.float32), seed=rng, area_range=(0.05, 1.0), min_object_covered=0, # Don't enforce a minimum area. use_image_if_no_bounding_boxes=True) top, left, _ = tf.unstack(begin) h, w, _ = tf.unstack(size) image = tf.image.decode_and_crop_jpeg(image, [top, left, h, w], channels=3) image = tf.cast(image, tf.float32) / 255.0 image = tf.image.resize(image, (resize_size, resize_size)) return image def train_preprocess(features: Dict[str, tf.Tensor], crop_size: int = 224) -> Dict[str, tf.Tensor]: """Processes a single example for training.""" image = features["image"] # This PRNGKey is unique to this example. We can use it with the stateless # random ops in TF. rng = features.pop("rng") rng, rng_crop, rng_flip = tf.unstack( tf.random.experimental.stateless_split(rng, 3)) image = decode_and_random_resized_crop(image, rng_crop, resize_size=crop_size) image = tf.image.stateless_random_flip_left_right(image, rng_flip) return {"image": image, "label": features["label"]} def train_cifar_preprocess(features: Dict[str, tf.Tensor]): """Augmentation function for cifar dataset.""" image = tf.io.decode_jpeg(features["image"]) image = tf.image.resize_with_crop_or_pad(image, 32 + 4, 32 + 4) rng = features.pop("rng") rng, rng_crop, rng_flip = tf.unstack( tf.random.experimental.stateless_split(rng, 3)) # Randomly crop a [HEIGHT, WIDTH] section of the image. image = tf.image.stateless_random_crop(image, [32, 32, 3], rng_crop) # Randomly flip the image horizontally image = tf.image.stateless_random_flip_left_right(image, rng_flip) image = tf.cast(image, tf.float32) / 255.0 return {"image": image, "label": features["label"]} def _check_valid_mean_std(mean, std): expected_shape = (1, 1, 3) message = "%s shape invalid." assert all([a == b for a, b in zip(expected_shape, mean.shape) ]), message % "mean" assert all([a == b for a, b in zip(expected_shape, std.shape) ]), message % "std" def get_augment_preprocess( augment_params: ml_collections.ConfigDict, *, colorjitter_params: Optional[ml_collections.ConfigDict] = None, randerasing_params: Optional[ml_collections.ConfigDict] = None, mean: Optional[tf.Tensor] = None, std: Optional[tf.Tensor] = None, basic_process: Callable[[Dict[str, tf.Tensor]], Dict[str, tf.Tensor]] = train_preprocess, ) -> Callable[[Dict[str, tf.Tensor]], Dict[str, tf.Tensor]]: """Creates a custom augmented image preprocess.""" augmentor = None # If augment_params.type is noop/default, we skip. if augment_params and augment_params.get( "type") and augment_params.type not in ("default", "noop"): augmentor = augment_utils.create_augmenter(**augment_params.to_dict()) jitter = None if colorjitter_params and colorjitter_params.type not in ("default", "noop"): jitter = augment_utils.create_augmenter(**colorjitter_params.to_dict()) def train_custom_augment_preprocess(features): rng = features.pop("rng") rng, rng_aa, rng_re, rng_jt = tf.unstack( tf.random.experimental.stateless_split(rng, 4)) features["rng"] = rng outputs = basic_process(features) image = outputs["image"] # image after basic_process has been normalized to [0,1] image = tf.saturate_cast(image * 255.0, tf.uint8) if augmentor is not None: image = augmentor(rng_aa, image)["image"] if jitter is not None: image = jitter(rng_jt, image)["image"] image = tf.cast(image, tf.float32) / 255.0 if mean is not None: _check_valid_mean_std(mean, std) image = (image - mean) / std if randerasing_params: assert mean is not None, "Random erasing requires normalized images" # Perform random erasing after mean/std normalization image = augment_utils.create_random_erasing( **randerasing_params.to_dict())(rng_re, image) outputs["image"] = image return outputs return train_custom_augment_preprocess def eval_preprocess(features: Dict[str, tf.Tensor], mean: Optional[tf.Tensor] = None, std: Optional[tf.Tensor] = None, input_size: int = 256, crop_size: int = 224) -> Dict[str, tf.Tensor]: """Process a single example for evaluation.""" image = features["image"] assert image.dtype == tf.uint8 image = tf.cast(image, tf.float32) / 255.0 # image = resize_small(image, size=int(256 / 224 * input_size)) # image = central_crop(image, size=input_size) image = resize_small(image, size=input_size) # e.g. 256, 448 image = central_crop(image, size=crop_size) # e.g. 224, 384 if mean is not None: _check_valid_mean_std(mean, std) image = (image - mean) / std return {"image": image, "label": features["label"]} def cifar_eval_preprocess( features: Dict[str, tf.Tensor], mean: Optional[tf.Tensor] = None, std: Optional[tf.Tensor] = None) -> Dict[str, tf.Tensor]: """Processes a single example for evaluation for cifar.""" image = features["image"] assert image.dtype == tf.uint8 image = tf.cast(image, tf.float32) / 255.0 if mean is not None: _check_valid_mean_std(mean, std) image = (image - mean) / std return {"image": image, "label": features["label"]}
38.060748
80
0.672437
0
0
0
0
0
0
0
0
2,329
0.285942
73a022545603af3f26c0bf2eec8dadb8c4ffd178
2,693
py
Python
glue/viewers/matplotlib/qt/toolbar.py
tiagopereira/glue
85bf7ce2d252d7bc405e8160b56fc83d46b9cbe4
[ "BSD-3-Clause" ]
1
2019-12-17T07:58:35.000Z
2019-12-17T07:58:35.000Z
glue/viewers/matplotlib/qt/toolbar.py
scalet98/glue
ff949ad52e205c20561f48c05f870b2abb39e0b0
[ "BSD-3-Clause" ]
null
null
null
glue/viewers/matplotlib/qt/toolbar.py
scalet98/glue
ff949ad52e205c20561f48c05f870b2abb39e0b0
[ "BSD-3-Clause" ]
1
2019-08-04T14:10:12.000Z
2019-08-04T14:10:12.000Z
from __future__ import absolute_import, division, print_function from matplotlib.backends.backend_qt5 import NavigationToolbar2QT from glue.config import viewer_tool from glue.viewers.common.tool import CheckableTool, Tool __all__ = ['MatplotlibTool', 'MatplotlibCheckableTool', 'HomeTool', 'SaveTool', 'PanTool', 'ZoomTool'] def _ensure_mpl_nav(viewer): # Set up virtual Matplotlib navigation toolbar (don't show it) if not hasattr(viewer, '_mpl_nav'): viewer._mpl_nav = NavigationToolbar2QT(viewer.central_widget.canvas, viewer) viewer._mpl_nav.hide() def _cleanup_mpl_nav(viewer): if getattr(viewer, '_mpl_nav', None) is not None: viewer._mpl_nav.setParent(None) viewer._mpl_nav.parent = None class MatplotlibTool(Tool): def __init__(self, viewer=None): super(MatplotlibTool, self).__init__(viewer=viewer) _ensure_mpl_nav(viewer) def close(self): _cleanup_mpl_nav(self.viewer) super(MatplotlibTool, self).close() class MatplotlibCheckableTool(CheckableTool): def __init__(self, viewer=None): super(MatplotlibCheckableTool, self).__init__(viewer=viewer) _ensure_mpl_nav(viewer) def close(self): _cleanup_mpl_nav(self.viewer) super(MatplotlibCheckableTool, self).close() @viewer_tool class HomeTool(MatplotlibTool): tool_id = 'mpl:home' icon = 'glue_home' action_text = 'Home' tool_tip = 'Reset original zoom' shortcut = 'H' def activate(self): if hasattr(self.viewer, 'state') and hasattr(self.viewer.state, 'reset_limits'): self.viewer.state.reset_limits() else: self.viewer._mpl_nav.home() @viewer_tool class SaveTool(MatplotlibTool): tool_id = 'mpl:save' icon = 'glue_filesave' action_text = 'Save plot to file' tool_tip = 'Save the figure' def activate(self): self.viewer._mpl_nav.save_figure() @viewer_tool class PanTool(MatplotlibCheckableTool): tool_id = 'mpl:pan' icon = 'glue_move' action_text = 'Pan' tool_tip = 'Pan axes with left mouse, zoom with right' shortcut = 'M' def activate(self): self.viewer._mpl_nav.pan() def deactivate(self): if hasattr(self.viewer, '_mpl_nav'): self.viewer._mpl_nav.pan() @viewer_tool class ZoomTool(MatplotlibCheckableTool): tool_id = 'mpl:zoom' icon = 'glue_zoom_to_rect' action_text = 'Zoom' tool_tip = 'Zoom to rectangle' shortcut = 'Z' def activate(self): self.viewer._mpl_nav.zoom() def deactivate(self): if hasattr(self.viewer, '_mpl_nav'): self.viewer._mpl_nav.zoom()
24.935185
88
0.678797
1,864
0.692165
0
0
1,358
0.50427
0
0
443
0.164501
73a0ab5a7274a4ae6d6cb3e1e3d9e17024ee3ea6
1,003
py
Python
2_4_overfitting_underfitting/utils_overfitting.py
layerwise/training
21ad2a5684a3712192fb13f8214bc3bb4c975f3e
[ "MIT" ]
null
null
null
2_4_overfitting_underfitting/utils_overfitting.py
layerwise/training
21ad2a5684a3712192fb13f8214bc3bb4c975f3e
[ "MIT" ]
null
null
null
2_4_overfitting_underfitting/utils_overfitting.py
layerwise/training
21ad2a5684a3712192fb13f8214bc3bb4c975f3e
[ "MIT" ]
1
2021-07-20T11:38:47.000Z
2021-07-20T11:38:47.000Z
import matplotlib.pyplot as plt import numpy as np from ipywidgets import interactive, interactive_output, fixed, HBox, VBox import ipywidgets as widgets def true_function_old(x): x_copy = -1 * x f = 2 * x_copy * np.sin(0.8*x_copy) + 0.5 * x_copy**2 - 5 return f def sigmoid(x, L=10, k=2, x_0=20): return L / (1 + np.exp(-k * (x - x_0))) def true_function(x): const = 17 lin = -0.25 * x quad = 0.2*(x-20)**2 sig = sigmoid(x, L=-20, k=0.6, x_0=30) # quad_sig = - sigmoid(xx, L=1, k=0.6, x_0=30) * (0.1 * (x-40)**2) sig2 = sigmoid(x, L=-50, k=0.8, x_0=37) f = const + lin + quad + sig + sig2 return f def generate_data(n_samples=20, random_state=None): rng = np.random.RandomState(random_state) # Beobachtungen x_sample = 40 * rng.rand(n_samples) # Kennzeichnungen/Labels f_sample = true_function(x_sample) noise = 7 * rng.randn(n_samples) y_sample = f_sample + noise return x_sample[:, np.newaxis], y_sample
24.463415
73
0.62014
0
0
0
0
0
0
0
0
105
0.104686
73a4124d5d48a030e18fb459f88816554d8ff126
1,036
py
Python
analyze.py
sveitser/mandarin
474617971e5eb9120d5ea5454cc2c49bb40b4977
[ "MIT" ]
null
null
null
analyze.py
sveitser/mandarin
474617971e5eb9120d5ea5454cc2c49bb40b4977
[ "MIT" ]
null
null
null
analyze.py
sveitser/mandarin
474617971e5eb9120d5ea5454cc2c49bb40b4977
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys import jieba import numpy as np jieba.setLogLevel(60) # quiet fname = sys.argv[1] with open(fname) as f: text = f.read() tokenizer = jieba.Tokenizer() tokens = list(tokenizer.cut(text)) occurences = np.array([tokenizer.FREQ[w] for w in tokens if w in tokenizer.FREQ]) difficulties = 1 / (occurences + 1) max_occurence = np.max(list(tokenizer.FREQ.values())) min_score = 1 / (max_occurence + 1) max_score = 1 perc = 75 mean = np.mean(difficulties) median = np.percentile(difficulties, perc) def norm(x): return (x - min_score) / (max_score - min_score) normalized_mean = norm(mean) normalized_median = norm(median) print( f"{os.path.basename(fname)}: " f"mean: {normalized_mean:.6f}, {perc}th percentile: {normalized_median:.6f} " f"in [0: trivial, 1: hardest]" ) import matplotlib.pyplot as plt clipped = difficulties[(difficulties <= 0.01) & (difficulties >= 0.0001)] plt.hist(clipped, bins=20, density=True) ax = plt.gca() ax.set_title(fname) plt.show()
20.313725
81
0.697876
0
0
0
0
0
0
0
0
165
0.159266
73a548fe78fa2339c064396148e3d2072e173b7a
2,836
py
Python
brown_clustering/data.py
helpmefindaname/BrownClustering
1b9d3e424a58813dec13ef619ca18e3671d75819
[ "MIT" ]
7
2021-11-30T13:35:46.000Z
2022-03-31T14:01:04.000Z
brown_clustering/data.py
helpmefindaname/BrownClustering
1b9d3e424a58813dec13ef619ca18e3671d75819
[ "MIT" ]
null
null
null
brown_clustering/data.py
helpmefindaname/BrownClustering
1b9d3e424a58813dec13ef619ca18e3671d75819
[ "MIT" ]
null
null
null
from itertools import tee from typing import Dict, Iterator, List, Sequence, Tuple from brown_clustering.defaultvaluedict import DefaultValueDict Corpus = Sequence[Sequence[str]] class BigramCorpus: def __init__( self, corpus: Corpus, alpha: float = 1, start_symbol: str = '<s>', end_symbol: str = '</s>', min_count: int = 0 ): self.vocabulary: Dict[str, int] = DefaultValueDict(0) self.gather_vocab(corpus, min_count) word_count = len(self.vocabulary) + 2 self.alpha = alpha self.n = alpha * word_count * word_count self.unigrams: Dict[str, float] = DefaultValueDict(alpha * word_count) self.bigrams: Dict[Tuple[str, str], float] = DefaultValueDict(alpha) self.gather_statistics(corpus, start_symbol, end_symbol) def gather_vocab(self, corpus: Corpus, min_count: int): for sentence in corpus: for word in sentence: self.vocabulary[word] += 1 self.vocabulary = dict(filter( lambda x: x[1] >= min_count, self.vocabulary.items() )) def gather_statistics( self, corpus: Corpus, start_symbol: str = '<s>', end_symbol: str = '</s>', ): for sentence in corpus: act_sentence = [start_symbol] + [ w for w in sentence if w in self.vocabulary ] + [end_symbol] for word in act_sentence: self.unigrams[word] += 1 grams = two_grams(act_sentence) for w1, w2 in grams: self.n += 1 self.bigrams[(w1, w2)] += 1 def bigram_propa( self, cluster1: Sequence[str], cluster2: Sequence[str] ) -> float: return sum( self.bigrams[(w1, w2)] for w1 in cluster1 for w2 in cluster2 ) / self.n def unigram_propa(self, cluster: Sequence[str]) -> float: return sum( self.unigrams[w] for w in cluster ) / self.n def ranks(self) -> List[Tuple[str, int]]: return sorted(self.vocabulary.items(), key=lambda x: (-x[1], x[0])) def print_stats(self): extended_vocab = len(self.vocabulary) + 2 alpha_bonus = self.alpha * extended_vocab * extended_vocab print(f"Vocab count: {len(self.vocabulary)}") print(f"Token count: {sum(self.vocabulary.values())}") print(f"unique 2gram count: {len(self.bigrams)}") print(f"2gram count: {self.n - alpha_bonus}") print(f"Laplace smoothing: {self.alpha}") def two_grams(sequence: Sequence) -> Iterator[Tuple]: iterables = tee(sequence, 2) next(iterables[1], None) return zip(*iterables)
30.494624
78
0.565233
2,507
0.883992
0
0
0
0
0
0
221
0.077927
73a58a2a727d6573f018385b2dad3ec0e4b46b5e
3,299
py
Python
xs/layers/ops.py
eLeVeNnN/xshinnosuke
69da91e0ea5042437edfc31c0e6ff9ef394c6cc9
[ "MIT" ]
290
2020-07-06T02:13:12.000Z
2021-01-04T14:23:39.000Z
xs/layers/ops.py
E1eveNn/xshinnosuke
69da91e0ea5042437edfc31c0e6ff9ef394c6cc9
[ "MIT" ]
1
2020-12-03T11:11:48.000Z
2020-12-03T11:11:48.000Z
xs/layers/ops.py
E1eveNn/xshinnosuke
69da91e0ea5042437edfc31c0e6ff9ef394c6cc9
[ "MIT" ]
49
2020-07-16T00:27:47.000Z
2020-11-26T03:03:14.000Z
from .base import * class Input(Layer): def __init__(self, input_shape: Union[List, Tuple], **kwargs): super(Input, self).__init__(input_shape=input_shape, **kwargs) self._shape = input_shape def call(self, x: F.Tensor, *args, **kwargs) -> F.Tensor: self._data = x return self._data class Reshape(Layer): def __init__(self, shape: Tuple, **kwargs): super().__init__(shape=shape, **kwargs) def call(self, x: F.Tensor, *args, **kwargs) -> F.Tensor: self._data = F.view(x, (-1, ) + self._shape, self._data) return self._data def compute_output_shape(self, input_shape: Union[List, Tuple] = None) -> Union[List, Tuple]: return self._shape class ZeroPadding2D(Layer): def __init__(self, padding, **kwargs): self.padding = padding super(ZeroPadding2D, self).__init__(**kwargs) def call(self, x: F.Tensor, *args, **kwargs) -> F.Tensor: self._data = F.pad2d(x, self.padding, self._data) return self._data def compute_output_shape(self, input_shape: Union[List, Tuple] = None) -> Union[List, Tuple]: self._shape = (input_shape[0], input_shape[1] + 2 * self.padding[0], input_shape[2] + 2 * self.padding[1]) return self._shape class Add(Layer): def __call__(self, inbounds: List[Layer], *args, **kwargs): for inbound in inbounds: self._in_bounds.append(inbound) inbound.add_out_bounds(self) self._shape = inbound.shape return self def init_layer_out_tensor(self, x : F.Tensor = None): x = self._in_bounds[0].data if x is None else x if self._data is None or x.shape[0] > self._data.shape_capacity[0]: self._data = Zeros()((x.shape[0],) + self.shape, requires_grad=self.trainable) self._data.to('static') for in_bound in self._in_bounds: self._data.add_in_bounds(in_bound.data) elif x.shape[0] < self._data.shape_capacity[0]: if GLOBAL.TRAINING: self._data.slices(slice(None, x.shape[0], None)) else: self._data = Zeros()((x.shape[0],) + self.shape, requires_grad=self.trainable) self._data.to('static') for in_bound in self._in_bounds: self._data.add_in_bounds(in_bound.data) else: self._data.slices(slice(None, None, None)) def forward(self, x: F.Tensor = None, *args, **kwargs) -> F.Tensor: self._data.zero_() for in_bound in self._in_bounds: GLOBAL.np.add(self._data.eval, in_bound.data.eval, out=self._data.eval) if GLOBAL.TRAINING and in_bound.data.requires_grad: initialize_ops_grad(in_bound.data) self._data.requires_grad = self._data.requires_grad or in_bound.data.requires_grad return self._data def compute_output_shape(self, input_shape: Union[List, Tuple] = None) -> Union[List, Tuple]: return self._shape def backward(self, gradients: F.Tensor = None): for in_bound in self._in_bounds: if in_bound.data.requires_grad: GLOBAL.np.add(in_bound.data.grad.eval, self._data.grad.eval, out=in_bound.data.grad.eval) self._data.zero_grad()
39.746988
114
0.620794
3,267
0.9903
0
0
0
0
0
0
16
0.00485
73a60122798b5b44ac1b77285ac69b9d5cb78587
2,888
py
Python
fcore/util.py
superwhyun/farmos
9292f3ba24b7d07002af0549ae510ce4edf09ce5
[ "BSD-3-Clause" ]
null
null
null
fcore/util.py
superwhyun/farmos
9292f3ba24b7d07002af0549ae510ce4edf09ce5
[ "BSD-3-Clause" ]
null
null
null
fcore/util.py
superwhyun/farmos
9292f3ba24b7d07002af0549ae510ce4edf09ce5
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2018 JiNong, Inc. # All right reserved. # """ Utility Functions를 정의함. """ import time import math import logging import logging.handlers def getdefaultlogger(): _logger = logging.getLogger('mate') _logger.setLevel(logging.DEBUG) streamHandler = logging.StreamHandler() formatter = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s > %(message)s') streamHandler.setFormatter(formatter) _logger.addHandler(streamHandler) return _logger class SunTime: def __init__(self, longitude, latitude): self._longitude = longitude * -1 self._latitude = latitude self._today = time.localtime(time.time()) def settoday(self): self._today = time.localtime(time.time()) def getgamma(self): return (2.0 * math.pi / 365.0) * self._today.tm_yday def getgamma2(self, hour): return (2.0 * math.pi / 365.0) * self._today.tm_yday + (hour/24.0) def getequationtime(self, gamma): return 229.18 * (0.000075 + 0.001868 * math.cos(gamma) - 0.032077 * math.sin(gamma) - 0.014615 * math.cos(2 * gamma) - 0.040849 * math.sin(2 * gamma)) def getsolardeclination(self, gamma): return 0.006918 - 0.399912 * math.cos(gamma) + 0.070257 * math.sin(gamma) - 0.006758 * math.cos(2 * gamma) + 0.000907 * math.sin(2 * gamma) def degtorad(self, deg): return math.pi * deg / 180.0 def radtodeg(self, rad): return 180 * rad / math.pi def gethourangle(self, latitude, declination, tm): latrad = self.degtorad(latitude) hourangle = math.acos(math.cos(self.degtorad (90.833)) / (math.cos(latrad) * math.cos(declination)) - math.tan(latrad) * math.tan(declination)) if tm == 1: return hourangle elif tm == 0: return -1 * hourangle return 0 def gettime(self, gamma, isrise): eqtime = self.getequationtime(gamma) declination = self.getsolardeclination(gamma) hourangle = self.gethourangle(self._latitude, declination, 1 if isrise == True else 0) delta = self._longitude - self.radtodeg(hourangle) return 720.0 + 4.0 * delta - eqtime def getsunrise(self): tm = self.gettime(self.getgamma (), True) #return self.gettime(self.getgamma2(int(tm / 60.0)), True) + 540 m = self.gettime(self.getgamma2(int(tm / 60.0)), True) + 540 return int(m * 60) def getsunset(self): tm = self.gettime(self.getgamma (), False) #return self.gettime(self.getgamma2(int(tm / 60.0)), False) + 540 m = self.gettime(self.getgamma2(int(tm / 60.0)), False) + 540 return int(m * 60) if __name__ == '__main__': st = SunTime(128.856632, 37.798953) print("rise", st.getsunrise(), "set", st.getsunset())
33.976471
158
0.621191
2,206
0.76174
0
0
0
0
0
0
366
0.126381
73a657e874819eb1f55d87b508eba3c94d916b59
144
py
Python
src/lib/__init__.py
gfjiangly/RCNet
ef6860f23943eb8e21fdec565019f2f8eda17673
[ "MIT" ]
null
null
null
src/lib/__init__.py
gfjiangly/RCNet
ef6860f23943eb8e21fdec565019f2f8eda17673
[ "MIT" ]
null
null
null
src/lib/__init__.py
gfjiangly/RCNet
ef6860f23943eb8e21fdec565019f2f8eda17673
[ "MIT" ]
null
null
null
# -*- encoding:utf-8 -*- # @Time : 2019/10/23 15:45 # @Author : gfjiang # @Site : # @File : __init__.py # @Software: PyCharm
18
30
0.513889
0
0
0
0
0
0
0
0
136
0.944444
73a7196bbf0eb253a97a49fbb8e7cb7ec93df591
611
py
Python
tests/manual/i3wmcommands.py
diegoperezm/screencast-script
ac477c6f44a151cafa88ebfd981d2bbe34f792bd
[ "MIT" ]
null
null
null
tests/manual/i3wmcommands.py
diegoperezm/screencast-script
ac477c6f44a151cafa88ebfd981d2bbe34f792bd
[ "MIT" ]
null
null
null
tests/manual/i3wmcommands.py
diegoperezm/screencast-script
ac477c6f44a151cafa88ebfd981d2bbe34f792bd
[ "MIT" ]
null
null
null
import sys # for development sys.path.append('../../src') from screencastscript import ScreencastScript # noqa: E402 screencast = ScreencastScript() screencast.sleep(1) screencast.i3wm_focus_left() screencast.sleep(1) screencast.i3wm_zoom_in() screencast.sleep(1) screencast.i3wm_zoom_out() screencast.sleep(1) screencast.i3wm_focus_right() screencast.sleep(1) screencast.i3wm_focus_up() screencast.sleep(1) screencast.i3wm_focus_down() screencast.sleep(1) screencast.i3wm_toggle_fullscreen() screencast.sleep(1) screencast.i3wm_ws_2() screencast.sleep(1) screencast.i3wm_ws_1() screencast.sleep(1)
16.972222
59
0.800327
0
0
0
0
0
0
0
0
40
0.065466
73a7a553c3b396a8049a5ddf4e1a0e97e5a14ea4
1,003
py
Python
hippocampus/scripts/s04_hipp_cortex_fc_mean.py
CNG-LAB/cng-open
b775a8fd554a39ad3b4033e545bd4bf68f7ed46b
[ "MIT" ]
null
null
null
hippocampus/scripts/s04_hipp_cortex_fc_mean.py
CNG-LAB/cng-open
b775a8fd554a39ad3b4033e545bd4bf68f7ed46b
[ "MIT" ]
null
null
null
hippocampus/scripts/s04_hipp_cortex_fc_mean.py
CNG-LAB/cng-open
b775a8fd554a39ad3b4033e545bd4bf68f7ed46b
[ "MIT" ]
null
null
null
""" computes the mean hippocampal-cortical functional connectivity (fc) matrix, for the left hemisphere subfields """ import os import h5py import numpy as np # data dirs ddir = '../data/' conndir = '../data/tout_hippoc/' odir = '../data/tout_group/' # get HCP - S900 subject list subjlist = '../data/subjectListS900_QC_gr.txt' f = open(subjlist); mylist = f.read().split("\n"); f.close() subjlist = joinedlist = mylist[:-1] print('We have now %i subjects... ' % (len(subjlist))) # 709 fc_left = np.zeros((4096, 360)) j = 0 for subjID in subjlist: fname = os.path.join(conndir, 'HCP_' + subjID + '_left.h5') f = h5py.File(fname, 'r') f = np.array(f['HCP_' + subjID]) fc_left = fc_left + f j += 1 fc_left = fc_left / j h = h5py.File('../data/tout_group/Hmean709_FC_left.h5', 'w') h.create_dataset('data', data = fc_left) h.close() print(fc_left.min(), fc_left.max(), fc_left.shape, j) # -0.005300521852874321, 0.39153784016161197, (4096, 360), 709
25.075
75
0.645065
0
0
0
0
0
0
0
0
427
0.425723
73a85bf483c1c47a0091ad63bb16957bd6c8d4f4
3,907
py
Python
setup.py
sgp79/reptools
3290b8daab58a0c5f2965fb221f7b480c380966b
[ "MIT" ]
null
null
null
setup.py
sgp79/reptools
3290b8daab58a0c5f2965fb221f7b480c380966b
[ "MIT" ]
1
2021-12-10T13:09:54.000Z
2021-12-10T13:09:54.000Z
setup.py
sgp79/reptools
3290b8daab58a0c5f2965fb221f7b480c380966b
[ "MIT" ]
null
null
null
"""A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ #To install: # py -3 setup.py sdist # pip3 install . # Always prefer setuptools over distutils from setuptools import setup, find_packages from os import path from io import open #from reptools import __version__ here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() #Get the version def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search( r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M, ) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") # Arguments marked as "Required" below must be included for upload to PyPI. # Fields marked as "Optional" may be commented out. setup( name='reptools', version=open("reptools/version.py").readlines()[-1].split()[-1].strip("\"'"), # https://packagiATR01400 ng.python.org/specifications/core-metadata/#summary description='Tools for processing Rep-seq data', # https://packaging.python.org/specifications/core-metadata/#description-optional long_description=long_description, # https://packaging.python.org/specifications/core-metadata/#description-content-type-optional long_description_content_type='text/markdown', # https://packaging.python.org/specifications/core-metadata/#home-page-optional #url='', # Optional author='Stephen Preston', author_email='[email protected]', # For a list of valid classifiers, see https://pypi.org/classifiers/ classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', 'Intended Audience :: Immunologists', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', ], # Note that this is a string of words separated by whitespace, not a list. #keywords='sample setuptools development', # Optional # packages=find_packages(exclude=['contrib', 'docs', 'tests']), # Required # For an analysis of "install_requires" vs pip's requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=['numpy','numba'], python_requires='>=3.7', #extras_require={ # Optional # 'dev': ['check-manifest'], # 'test': ['coverage'], #}, #package_data={ # Optional # 'sample': ['package_data.dat'], #}, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' #data_files=[('my_data', ['data/data_file'])], # Optional # The following provides a command called `reptools` which # executes the function `main` from the reptools.cli package when invoked: entry_points={ 'console_scripts': [ 'reptools=reptools.cli:main', ], }, # List additional URLs that are relevant to your project as a dict. # https://packaging.python.org/specifications/core-metadata/#project-url-multiple-use #project_urls={ # Optional # 'Bug Reports': 'https://github.com/pypa/sampleproject/issues', # 'Funding': 'https://donate.pypi.org', # 'Say Thanks!': 'http://saythanks.io/to/example', # 'Source': 'https://github.com/pypa/sampleproject/', #}, )
32.831933
98
0.653187
0
0
0
0
0
0
0
0
2,728
0.698234
73a9012563f8e544e446267b12c23f24456df159
1,563
py
Python
peeldb/migrations/0033_auto_20171018_1423.py
ashwin31/opensource-job-portal
2885ea52f8660e893fe0531c986e3bee33d986a2
[ "MIT" ]
1
2021-09-27T05:01:39.000Z
2021-09-27T05:01:39.000Z
peeldb/migrations/0033_auto_20171018_1423.py
kiran1415/opensource-job-portal
2885ea52f8660e893fe0531c986e3bee33d986a2
[ "MIT" ]
null
null
null
peeldb/migrations/0033_auto_20171018_1423.py
kiran1415/opensource-job-portal
2885ea52f8660e893fe0531c986e3bee33d986a2
[ "MIT" ]
1
2022-01-05T09:02:32.000Z
2022-01-05T09:02:32.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-10-18 14:23 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('peeldb', '0032_skill_skill_type'), ] operations = [ migrations.AlterField( model_name='jobpost', name='job_type', field=models.CharField(choices=[('full-time', 'Full Time'), ('internship', 'Internship'), ('walk-in', 'Walk-in'), ('government', 'Government'), ('Fresher', 'Fresher')], max_length=50), ), migrations.AlterField( model_name='searchresult', name='job_type', field=models.CharField(blank=True, choices=[('full-time', 'Full Time'), ('internship', 'Internship'), ('walk-in', 'Walk-in'), ('government', 'Government'), ('Fresher', 'Fresher')], max_length=20, null=True), ), migrations.AlterField( model_name='skill', name='skill_type', field=models.CharField(choices=[('it', 'IT'), ('non-it', 'Non-IT'), ('other', 'Other')], default='it', max_length=20), ), ]
40.076923
130
0.435061
1,405
0.898912
0
0
0
0
0
0
418
0.267434
73a9cda8e0d2bd2c5fe35622d180c1e9b443a525
1,905
py
Python
application/modules/post/windows-priv-check/wpc/report/issues.py
cys3c/viper-shell
e05a07362b7d1e6d73c302a24d2506846e43502c
[ "PSF-2.0", "BSD-2-Clause" ]
2
2018-06-30T03:21:30.000Z
2020-03-22T02:31:02.000Z
application/modules/post/windows-priv-check/wpc/report/issues.py
cys3c/viper-shell
e05a07362b7d1e6d73c302a24d2506846e43502c
[ "PSF-2.0", "BSD-2-Clause" ]
null
null
null
application/modules/post/windows-priv-check/wpc/report/issues.py
cys3c/viper-shell
e05a07362b7d1e6d73c302a24d2506846e43502c
[ "PSF-2.0", "BSD-2-Clause" ]
3
2017-11-15T11:08:20.000Z
2020-03-22T02:31:03.000Z
from wpc.report.issue import issue import xml.etree.cElementTree as etree from lxml import etree as letree from operator import itemgetter, attrgetter, methodcaller # TODO should this class contain info about the scan? or define a new class called report? # Version of script # Date, time of audit # Who the audit ran as (username, groups, privs) # ... class issues: def __init__(self): self.issues = [] def get_by_id(self, identifier): # search for issue for i in self.issues: if i.get_id() == identifier: return i # create new issue i = issue(identifier) self.add_issue(i) return i def add_issue(self, i): self.issues.append(i) def add_supporting_data(self, identifier, k, v): self.get_by_id(identifier).add_supporting_data(k, v) def get_all(self): s = sorted(self.issues, key=methodcaller('get_confidence'), reverse=True) return sorted(s, key=methodcaller('get_severity'), reverse=True) def as_xml_string(self): return etree.tostring(self.as_xml()) def as_xml(self): r = etree.Element('issues') for i in self.get_all(): r.append(i.as_xml()) return r def as_text(self): xslt_fh = open('xsl/text.xsl', 'r') # TODO need to be able to run from other dirs too! xslt_str = xslt_fh.read() xslt_fh.close() xslt_root = letree.XML(xslt_str) transform = letree.XSLT(xslt_root) return str(transform(letree.XML(self.as_xml_string()))) def as_html(self): xslt_fh = open('xsl/html.xsl', 'r') # TODO need to be able to run from other dirs too! xslt_str = xslt_fh.read() xslt_fh.close() xslt_root = letree.XML(xslt_str) transform = letree.XSLT(xslt_root) return str(transform(letree.XML(self.as_xml_string())))
31.229508
95
0.632546
1,548
0.812598
0
0
0
0
0
0
392
0.205774
73aa3640a120523b4d2b177f875511cc1784ef46
1,456
py
Python
util/doxify.py
lanfangping/ravel
7be759f219828b09696faf0b3eb52e83243998f9
[ "Apache-2.0" ]
9
2016-03-14T19:19:21.000Z
2020-03-24T07:04:39.000Z
util/doxify.py
lanfangping/ravel
7be759f219828b09696faf0b3eb52e83243998f9
[ "Apache-2.0" ]
null
null
null
util/doxify.py
lanfangping/ravel
7be759f219828b09696faf0b3eb52e83243998f9
[ "Apache-2.0" ]
10
2016-05-10T14:47:56.000Z
2021-11-08T05:47:47.000Z
#!/usr/bin/python """ From Mininet 2.2.1: convert simple documentation to epydoc/pydoctor-compatible markup """ from sys import stdin, stdout, argv import os from tempfile import mkstemp from subprocess import call import re spaces = re.compile(r'\s+') singleLineExp = re.compile(r'\s+"([^"]+)"') commentStartExp = re.compile(r'\s+"""') commentEndExp = re.compile(r'"""$') returnExp = re.compile(r'\s+(returns:.*)') lastindent = '' comment = False def fixParam(line): "Change foo: bar to @foo bar" result = re.sub(r'(\w+):', r'@param \1', line) result = re.sub(r' @', r'@', result) return result def fixReturns(line): "Change returns: foo to @return foo" return re.sub('returns:', r'@returns', line) def fixLine(line): global comment match = spaces.match(line) if not match: return line else: indent = match.group(0) if singleLineExp.match(line): return re.sub('"', '"""', line) if commentStartExp.match(line): comment = True if comment: line = fixReturns(line) line = fixParam(line) if commentEndExp.search(line): comment = False return line def fixLines(lines, fid): for line in lines: os.write(fid, fixLine(line)) if __name__ == '__main__': infile = open(argv[1]) outfid, outname = mkstemp() fixLines(infile.readlines(), outfid) infile.close() os.close(outfid) call([ 'doxypy', outname ])
23.483871
85
0.625687
0
0
0
0
0
0
0
0
311
0.213599
73aa48515ec8f415bcd5c491e96baf51080aa39d
3,924
py
Python
mysite/stock/views.py
flohh-py/django-tutorial
feecb2b25d88abe0cdccdae4cef87658fa5d8ea7
[ "MIT" ]
null
null
null
mysite/stock/views.py
flohh-py/django-tutorial
feecb2b25d88abe0cdccdae4cef87658fa5d8ea7
[ "MIT" ]
null
null
null
mysite/stock/views.py
flohh-py/django-tutorial
feecb2b25d88abe0cdccdae4cef87658fa5d8ea7
[ "MIT" ]
null
null
null
from django.views.generic import ListView, DetailView from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.urls import reverse_lazy, reverse from django.shortcuts import redirect from .models import StockEntry, StockEntryLine from .forms import StockEntryForm, StockEntryLineForm, StockEntryLineIF from main.views import BaseView class StockEntryList(BaseView, ListView): model = StockEntry template_name = 'stock/list.html' paginate_by = 8 permission_required = 'stockentry.view_stockentry' class StockEntryDetail(BaseView, DetailView): model = StockEntry form_class = StockEntryForm template_name = 'stock/detail.html' fields = "__all__" pk_url_kwarg = 'pk' permission_required = 'stockentry.view_stockentry' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) lines = StockEntryLine.objects.all().filter(parent=self.kwargs['pk']) new_line = StockEntryLineForm(initial={'parent':self.object}) context['new_line'] = new_line context['lines'] = lines return context class StockEntryCreate(BaseView, CreateView): model = StockEntry form_class = StockEntryForm template_name = 'stock/create.html' permission_required = 'stockentry.add_stockentry' def get_success_url(self): return reverse('stock:detail', kwargs={'pk':self.object.id}) class StockEntryUpdate(BaseView, UpdateView): model = StockEntry form_class = StockEntryForm formset_class = StockEntryLineIF template_name = 'stock/detail.html' pk_url_kwarg = 'pk' success_url = reverse_lazy('stock:detail') permission_required = 'stockentry.change_stockentry' # def get_context_data(self, **kwargs): # context = super().get_context_data(**kwargs) # lines = StockEntryLine.objects.all().filter(parent=self.kwargs['pk']) # new_line = StockEntryLineForm(initial={'parent':self.object}) # context['new_line'] = new_line # context['lines'] = lines # return context # def get_success_url(self): # pk = self.kwargs['pk'] # return reverse('stock:detail', kwargs={'pk':pk}) def post(self, request, *args, **kwargs): obj = self.get_object() if kwargs.get('process') == 'submit': obj.submit_stock_entry(obj.id) if kwargs.get('process') == 'cancel': obj.cancel_stock_entry(obj.id) return redirect('stock:detail', pk=obj.id) class StockEntryLineCreate(BaseView, CreateView): model = StockEntryLine form_class = StockEntryLineForm template_name = 'stock/add_line.html' pk_url_kwarg = 'pk' permission_required = 'stockentryline.add_stockentryline' # def get_context_data(self, **kwargs): # context = super().get_context_data(**kwargs) # context['parent'] = self.kwargs['pk'] # return context def get_success_url(self): # pk = self.kwargs['pk'] # parent = StockEntry.objects.get(pk=self.kwargs['pk']) parent_id = self.request.POST['parent'] return reverse('stock:detail', kwargs={'pk':parent_id}) class StockEntryLineEdit(BaseView, UpdateView): model = StockEntryLine form_class = StockEntryLineForm template_name = 'stock/edit_line.html' pk_url_kwarg = 'pk' permission_required = 'stockentryline.change_stockentryline' def get_success_url(self): line = StockEntryLine.objects.get(pk=self.kwargs['pk']) return reverse('stock:detail', kwargs={'pk':line.parent.id}) class StockEntryLineDelete(BaseView, DeleteView): model = StockEntryLine template_name = 'stock/delete_line.html' pk_url_kwarg = 'pk' permission_required = 'stockentryline.delete_stockentryline' def get_success_url(self): return reverse('stock:detail', kwargs={'pk':self.object.parent.id})
34.421053
79
0.690367
3,534
0.900612
0
0
0
0
0
0
1,227
0.312691
73aaccfbd257c25514479c0a480ba43ed3380e07
2,589
py
Python
src/sentry/web/frontend/generic.py
erhuabushuo/sentry
8b3bad10155aaacfdff80910e5972e64304e880c
[ "BSD-3-Clause" ]
null
null
null
src/sentry/web/frontend/generic.py
erhuabushuo/sentry
8b3bad10155aaacfdff80910e5972e64304e880c
[ "BSD-3-Clause" ]
null
null
null
src/sentry/web/frontend/generic.py
erhuabushuo/sentry
8b3bad10155aaacfdff80910e5972e64304e880c
[ "BSD-3-Clause" ]
null
null
null
""" sentry.web.frontend.generic ~~~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.utils.translation import ugettext as _ from sentry.models import Team from sentry.permissions import can_create_teams from sentry.plugins import plugins from sentry.plugins.base import Response from sentry.web.decorators import login_required from sentry.web.helpers import render_to_response @login_required def dashboard(request, template='dashboard.html'): team_list = Team.objects.get_for_user(request.user, with_projects=True) if not team_list: if can_create_teams(request.user): return HttpResponseRedirect(reverse('sentry-new-team')) return render_to_response('sentry/generic_error.html', { 'title': _('No Membership'), 'message': _('You are not a member of any teams in Sentry and you do not have access to create a new team.'), }, request) return render_to_response('sentry/select_team.html', { 'team_list': team_list.values(), 'can_create_teams': can_create_teams(request.user), }, request) def static_media(request, **kwargs): """ Serve static files below a given point in the directory structure. """ from django.contrib.staticfiles.views import serve module = kwargs.get('module') path = kwargs.get('path', '') if module: path = '%s/%s' % (module, path) return serve(request, path, insecure=True) def missing_perm(request, perm, **kwargs): """ Returns a generic response if you're missing permission to perform an action. Plugins may overwrite this with the ``missing_perm_response`` hook. """ response = plugins.first('missing_perm_response', request, perm, **kwargs) if response: if isinstance(response, HttpResponseRedirect): return response if not isinstance(response, Response): raise NotImplementedError('Use self.render() when returning responses.') return response.respond(request, { 'perm': perm, }) if perm.label: return render_to_response('sentry/generic_error.html', { 'title': _('Missing Permission'), 'message': _('You do not have the required permissions to %s.') % (perm.label,) }, request) return HttpResponseRedirect(reverse('sentry'))
31.573171
121
0.683275
0
0
0
0
701
0.270761
0
0
893
0.344921
73aaee020a07b3d8d2a092fd658dc4eb59eaed84
878
py
Python
setup.py
harsh020/synthetic_metric
acecba0150a37c58613a477918ad407373c4cd5c
[ "MIT" ]
1
2021-11-08T09:19:02.000Z
2021-11-08T09:19:02.000Z
setup.py
harsh020/synthetic_metric
acecba0150a37c58613a477918ad407373c4cd5c
[ "MIT" ]
2
2021-10-14T11:30:21.000Z
2021-10-14T11:55:50.000Z
setup.py
harsh020/synthetic_metric
acecba0150a37c58613a477918ad407373c4cd5c
[ "MIT" ]
null
null
null
import setuptools setuptools.setup( name="synmetric", version="0.2.dev1", license='MIT', author="Harsh Soni", author_email="[email protected]", description="Metric to evaluate data quality for synthetic data.", url="https://github.com/harsh020/synthetic_metric", download_url = 'https://github.com/harsh020/synthetic_metric/archive/v_02dev1.tar.gz', project_urls={ "Bug Tracker": "https://github.com/harsh020/synthetic_metric/issues", }, classifiers=[ "Development Status :: 3 - Alpha", "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], packages=setuptools.find_packages(), python_requires=">=3.6", install_requires = [ 'numpy', 'pandas', 'scikit-learn', 'scipy' ] )
28.322581
90
0.624146
0
0
0
0
0
0
0
0
482
0.548975
73ac2455924ff0001809acc001de20f6e6bc1656
813
py
Python
neurokit2/microstates/__init__.py
danibene/NeuroKit
df0ab6696e7418cf8b8dcd3ed82dbf879fa61b3a
[ "MIT" ]
1
2020-12-31T17:48:11.000Z
2020-12-31T17:48:11.000Z
neurokit2/microstates/__init__.py
danibene/NeuroKit
df0ab6696e7418cf8b8dcd3ed82dbf879fa61b3a
[ "MIT" ]
null
null
null
neurokit2/microstates/__init__.py
danibene/NeuroKit
df0ab6696e7418cf8b8dcd3ed82dbf879fa61b3a
[ "MIT" ]
2
2021-12-25T15:39:49.000Z
2021-12-25T15:44:16.000Z
"""Submodule for NeuroKit.""" from .microstates_clean import microstates_clean from .microstates_peaks import microstates_peaks from .microstates_static import microstates_static from .microstates_dynamic import microstates_dynamic from .microstates_complexity import microstates_complexity from .microstates_segment import microstates_segment from .microstates_classify import microstates_classify from .microstates_plot import microstates_plot from .microstates_findnumber import microstates_findnumber __all__ = ["microstates_clean", "microstates_peaks", "microstates_static", "microstates_dynamic", "microstates_complexity", "microstates_segment", "microstates_classify", "microstates_plot", "microstates_findnumber"]
35.347826
58
0.771218
0
0
0
0
0
0
0
0
217
0.266913
73ac5bc20db43b168b228169be2bbfd420f16a64
2,184
py
Python
notario/tests/validators/test_hybrid.py
alfredodeza/notario
036bdc8435778c6f20f059d3789c8eb8242cff92
[ "MIT" ]
4
2015-08-20T20:14:55.000Z
2018-06-01T14:39:29.000Z
notario/tests/validators/test_hybrid.py
alfredodeza/notario
036bdc8435778c6f20f059d3789c8eb8242cff92
[ "MIT" ]
9
2016-02-04T21:46:12.000Z
2018-11-14T04:43:10.000Z
notario/tests/validators/test_hybrid.py
alfredodeza/notario
036bdc8435778c6f20f059d3789c8eb8242cff92
[ "MIT" ]
4
2015-04-29T20:40:12.000Z
2018-11-14T04:08:20.000Z
from pytest import raises from notario.validators import Hybrid from notario.exceptions import Invalid from notario.decorators import optional from notario import validate def validator(x): assert x, 'fail' class TestHybrid(object): def test_use_validator_passes(self): schema = () hybrid = Hybrid(validator, schema) assert hybrid(1) is None def test_use_validator_fails(self): schema = () hybrid = Hybrid(validator, schema) with raises(Invalid) as exc: hybrid(0) error = exc.value.args[0] assert '0 did not pass validation against callable' in error def test_use_schema_passes(self): schema = ('a', 1) hybrid = Hybrid(validator, schema) hybrid({0: ('a', 1)}) def test_use_schema_fails(self): schema = ('a', 2) hybrid = Hybrid(validator, schema) with raises(Invalid) as exc: hybrid({0: ('a', 1)}) error = exc.value.args[0] assert 'a -> 1 did not match 2' in error class TestFunctional(object): def test_passes_single_value(self): sschema = (1, 2) schema = ('a', Hybrid(validator, sschema)) data = {'a': 2} assert validate(data, schema) is None def test_passes_object(self): sschema = (1, 2) schema = ('a', Hybrid(validator, sschema)) data = {'a': {1: 2}} assert validate(data, schema) is None def test_fail_object(self): sschema = (1, 1) schema = ('a', Hybrid(validator, sschema)) data = {'a': {1: 2}} with raises(Invalid) as exc: validate(data, schema) error = exc.value.args[0] assert '1 -> 2 did not match 1' in error assert error.startswith('-> a -> 1') def test_extra_unexpected_items(self): optional_schema = (optional(1), 1) schema = ('a', Hybrid(validator, optional_schema)) data = {'a': {'foo': 'bar'}} with raises(Invalid) as exc: validate(data, schema) error = exc.value.args[0] assert '-> a did not match {}' in error assert exc.value.reason == 'unexpected extra items'
29.513514
68
0.588828
1,965
0.899725
0
0
0
0
0
0
202
0.092491
73ac608fd669eeeca5d58b623c5bbec41cd2e0ea
346
py
Python
players/urls.py
OnerInce/nfl-rest_api
8d66d68ae7f04476a1b9f509e69a9d0dc83bfcca
[ "Apache-2.0" ]
2
2021-06-14T18:14:10.000Z
2022-01-29T18:45:28.000Z
players/urls.py
OnerInce/nfl-rest_api
8d66d68ae7f04476a1b9f509e69a9d0dc83bfcca
[ "Apache-2.0" ]
null
null
null
players/urls.py
OnerInce/nfl-rest_api
8d66d68ae7f04476a1b9f509e69a9d0dc83bfcca
[ "Apache-2.0" ]
1
2022-02-09T14:14:20.000Z
2022-02-09T14:14:20.000Z
from django.urls import path, include from . import views from rest_framework import routers router = routers.SimpleRouter() router.register(r'players', views.PlayerView, basename='players') router.register(r'teams', views.TeamView, basename='teams') urlpatterns = [ path('', views.APIWelcomeView), path('', include((router.urls))), ]
28.833333
66
0.736994
0
0
0
0
0
0
0
0
38
0.109827
73ad356948f61ca0a0905878d21b428c799f6aa2
380
py
Python
watch/migrations/0014_auto_20201101_2304.py
msyoki/Neighborhood
d7eb55ba7772388850d8bcf04a867aba3fa81665
[ "Unlicense" ]
null
null
null
watch/migrations/0014_auto_20201101_2304.py
msyoki/Neighborhood
d7eb55ba7772388850d8bcf04a867aba3fa81665
[ "Unlicense" ]
null
null
null
watch/migrations/0014_auto_20201101_2304.py
msyoki/Neighborhood
d7eb55ba7772388850d8bcf04a867aba3fa81665
[ "Unlicense" ]
1
2021-02-08T10:27:06.000Z
2021-02-08T10:27:06.000Z
# Generated by Django 2.0.2 on 2020-11-01 20:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('watch', '0013_alert'), ] operations = [ migrations.AlterField( model_name='alert', name='news', field=models.CharField(max_length=300, null=True), ), ]
20
62
0.584211
287
0.755263
0
0
0
0
0
0
79
0.207895
73aed6f56861e4609809462a9a1cf35c41cc4da9
612
py
Python
torchx/examples/apps/lightning_classy_vision/test/component_test.py
LaudateCorpus1/torchx
9ee0fdbf63882ba836c00d7522f6850c0c6dc418
[ "BSD-3-Clause" ]
101
2021-06-12T20:00:09.000Z
2022-03-31T11:14:35.000Z
torchx/examples/apps/lightning_classy_vision/test/component_test.py
LaudateCorpus1/torchx
9ee0fdbf63882ba836c00d7522f6850c0c6dc418
[ "BSD-3-Clause" ]
340
2021-06-14T18:16:12.000Z
2022-03-31T21:10:28.000Z
torchx/examples/apps/lightning_classy_vision/test/component_test.py
LaudateCorpus1/torchx
9ee0fdbf63882ba836c00d7522f6850c0c6dc418
[ "BSD-3-Clause" ]
19
2021-06-13T06:17:21.000Z
2022-03-28T19:28:00.000Z
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torchx.examples.apps.lightning_classy_vision.component as lightning_classy_vision from torchx.components.component_test_base import ComponentTestCase class DistributedComponentTest(ComponentTestCase): def test_trainer(self) -> None: self.validate(lightning_classy_vision, "trainer") def test_interpret(self) -> None: self.validate(lightning_classy_vision, "interpret")
36
88
0.785948
243
0.397059
0
0
0
0
0
0
223
0.364379
73aff3784e37e6b27b43b9c61f5212221ec2b0ef
1,270
py
Python
app.py
cykreet/getV
429833b94fe9c40c594290c9d4b163e8559a4033
[ "MIT" ]
null
null
null
app.py
cykreet/getV
429833b94fe9c40c594290c9d4b163e8559a4033
[ "MIT" ]
null
null
null
app.py
cykreet/getV
429833b94fe9c40c594290c9d4b163e8559a4033
[ "MIT" ]
null
null
null
import requests from sanic import Sanic from sanic.response import json from sanic_limiter import Limiter, get_remote_address from bs4 import BeautifulSoup async def ratelimit_handler(request, exception): return json({"error": f"Ratelimit exceeded {exception}."}, status=429) app = Sanic() app.error_handler.add(Exception, ratelimit_handler) limiter = Limiter(app, global_limits=["1 per 3 seconds", "50 per hour"], key_func=get_remote_address) @app.route("/") async def main(request): if not (bot := request.args.get("bot")): return json({"error": "Bot query is required. Example: ?bot=atlas"}) soup = BeautifulSoup((response := requests.get(f"https://top.gg/bot/{bot}")).content, "html.parser") if (status := response.status_code) not in [200, 204]: return json({"status": status, "error": f"Failed to get info on \"{bot}\"."}) try: votes = int(soup.find(id="points").string.strip()) except: return json({"status": status, "error": "Was unable to parse bot votes."}) return json({"status": status, "name": soup.find("span", {"class": "bot-name"}).string.strip() if soup.find("span", {"class": "bot-name"}) else bot, "votes": votes}) if __name__ == "__main__": app.run(host="0.0.0.0", port=9500)
36.285714
169
0.670866
0
0
0
0
749
0.589764
856
0.674016
361
0.284252
73b067acf9b9f460405ab89ad75c34fdcfb06605
8,373
py
Python
third_party/xiuminglib/xiuminglib/vis/video.py
leehsiu/nerfactor
87f7d3ffa56bdbca925958a4b89e249d35006c80
[ "Apache-2.0" ]
183
2021-06-04T01:22:57.000Z
2022-03-31T06:18:20.000Z
third_party/xiuminglib/xiuminglib/vis/video.py
leehsiu/nerfactor
87f7d3ffa56bdbca925958a4b89e249d35006c80
[ "Apache-2.0" ]
40
2019-05-05T17:04:10.000Z
2021-09-06T18:11:19.000Z
third_party/xiuminglib/xiuminglib/vis/video.py
leehsiu/nerfactor
87f7d3ffa56bdbca925958a4b89e249d35006c80
[ "Apache-2.0" ]
26
2021-06-04T18:28:11.000Z
2022-03-22T13:44:19.000Z
from os.path import join, dirname import numpy as np from .text import put_text from .. import const from ..os import makedirs from ..imprt import preset_import from ..log import get_logger logger = get_logger() def make_video( imgs, fps=24, outpath=None, method='matplotlib', dpi=96, bitrate=-1): """Writes a list of images into a grayscale or color video. Args: imgs (list(numpy.ndarray)): Each image should be of type ``uint8`` or ``uint16`` and of shape H-by-W (grayscale) or H-by-W-by-3 (RGB). fps (int, optional): Frame rate. outpath (str, optional): Where to write the video to (a .mp4 file). ``None`` means ``os.path.join(const.Dir.tmp, 'make_video.mp4')``. method (str, optional): Method to use: ``'matplotlib'``, ``'opencv'``, ``'video_api'``. dpi (int, optional): Dots per inch when using ``matplotlib``. bitrate (int, optional): Bit rate in kilobits per second when using ``matplotlib``; reasonable values include 7200. Writes - A video of the images. """ if outpath is None: outpath = join(const.Dir.tmp, 'make_video.mp4') makedirs(dirname(outpath)) assert imgs, "Frame list is empty" for frame in imgs: assert np.issubdtype(frame.dtype, np.unsignedinteger), \ "Image type must be unsigned integer" h, w = imgs[0].shape[:2] for frame in imgs[1:]: assert frame.shape[:2] == (h, w), \ "All frames must have the same shape" if method == 'matplotlib': import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib import animation w_in, h_in = w / dpi, h / dpi fig = plt.figure(figsize=(w_in, h_in)) Writer = animation.writers['ffmpeg'] # may require you to specify path writer = Writer(fps=fps, bitrate=bitrate) def img_plt(arr): img_plt_ = plt.imshow(arr) ax = plt.gca() ax.set_position([0, 0, 1, 1]) ax.set_axis_off() return img_plt_ anim = animation.ArtistAnimation(fig, [(img_plt(x),) for x in imgs]) anim.save(outpath, writer=writer) # If obscure error like "ValueError: Invalid file object: <_io.Buff..." # occurs, consider upgrading matplotlib so that it prints out the real, # underlying ffmpeg error plt.close('all') elif method == 'opencv': cv2 = preset_import('cv2', assert_success=True) # TODO: debug codecs (see http://www.fourcc.org/codecs.php) if outpath.endswith('.mp4'): # fourcc = cv2.VideoWriter_fourcc(*'MJPG') # fourcc = cv2.VideoWriter_fourcc(*'X264') fourcc = cv2.VideoWriter_fourcc(*'H264') # fourcc = 0x00000021 elif outpath.endswith('.avi'): fourcc = cv2.VideoWriter_fourcc(*'XVID') else: raise NotImplementedError("Video type of\n\t%s" % outpath) vw = cv2.VideoWriter(outpath, fourcc, fps, (w, h)) for frame in imgs: if frame.ndim == 3: frame = frame[:, :, ::-1] # cv2 uses BGR vw.write(frame) vw.release() elif method == 'video_api': video_api = preset_import('video_api', assert_success=True) assert outpath.endswith('.webm'), "`video_api` requires .webm" with video_api.write(outpath, fps=fps) as h: for frame in imgs: if frame.ndim == 3 and frame.shape[2] == 4: frame = frame[:, :, :3] #frame = frame.astype(np.ubyte) h.add_frame(frame) else: raise ValueError(method) logger.debug("Images written as a video to:\n%s", outpath) def make_comparison_video( imgs1, imgs2, bar_width=4, bar_color=(1, 0, 0), sweep_vertically=False, sweeps=1, label1='', label2='', font_size=None, font_ttf=None, label1_top_left_xy=None, label2_top_left_xy=None, **make_video_kwargs): """Writes two lists of images into a comparison video that toggles between two videos with a sweeping bar. Args: imgs? (list(numpy.ndarray)): Each image should be of type ``uint8`` or ``uint16`` and of shape H-by-W (grayscale) or H-by-W-by-3 (RGB). bar_width (int, optional): Width of the sweeping bar. bar_color (tuple(float), optional): Bar and label RGB, normalized to :math:`[0,1]`. Defaults to red. sweep_vertically (bool, optional): Whether to sweep vertically or horizontally. sweeps (int, optional): Number of sweeps. label? (str, optional): Label for each video. font_size (int, optional): Font size. font_ttf (str, optional): Path to the .ttf font file. Defaults to Arial. label?_top_left_xy (tuple(int), optional): The XY coordinate of the label's top left corner. make_video_kwargs (dict, optional): Keyword arguments for :func:`make_video`. Writes - A comparison video. """ # Bar is perpendicular to sweep-along sweep_along = 0 if sweep_vertically else 1 bar_along = 1 if sweep_vertically else 0 # Number of frames n_frames = len(imgs1) assert n_frames == len(imgs2), \ "Videos to be compared have different numbers of frames" img_shape = imgs1[0].shape # Bar color according to image dtype img_dtype = imgs1[0].dtype bar_color = np.array(bar_color, dtype=img_dtype) if np.issubdtype(img_dtype, np.integer): bar_color *= np.iinfo(img_dtype).max # Map from frame index to bar location, considering possibly multiple trips bar_locs = [] for i in range(sweeps): ind = np.arange(0, img_shape[sweep_along]) if i % 2 == 1: # reverse every other trip ind = ind[::-1] bar_locs.append(ind) bar_locs = np.hstack(bar_locs) # all possible locations ind = np.linspace(0, len(bar_locs) - 1, num=n_frames, endpoint=True) bar_locs = [bar_locs[int(x)] for x in ind] # uniformly sampled # Label locations if label1_top_left_xy is None: # Label 1 at top left corner label1_top_left_xy = (int(0.1 * img_shape[1]), int(0.05 * img_shape[0])) if label2_top_left_xy is None: if sweep_vertically: # Label 2 at bottom left corner label2_top_left_xy = ( int(0.1 * img_shape[1]), int(0.75 * img_shape[0])) else: # Label 2 at top right corner label2_top_left_xy = ( int(0.7 * img_shape[1]), int(0.05 * img_shape[0])) frames = [] for i, (img1, img2) in enumerate(zip(imgs1, imgs2)): assert img1.shape == img_shape, f"`imgs1[{i}]` has a differnet shape" assert img2.shape == img_shape, f"`imgs2[{i}]` has a differnet shape" assert img1.dtype == img_dtype, f"`imgs1[{i}]` has a differnet dtype" assert img2.dtype == img_dtype, f"`imgs2[{i}]` has a differnet dtype" # Label the two images img1 = put_text( img1, label1, label_top_left_xy=label1_top_left_xy, font_size=font_size, font_color=bar_color, font_ttf=font_ttf) img2 = put_text( img2, label2, label_top_left_xy=label2_top_left_xy, font_size=font_size, font_color=bar_color, font_ttf=font_ttf) # Bar start and end bar_loc = bar_locs[i] bar_width_half = bar_width // 2 bar_start = max(0, bar_loc - bar_width_half) bar_end = min(bar_loc + bar_width_half, img_shape[sweep_along]) # Up to bar start, we show Image 1; bar end onwards, Image 2 img1 = np.take(img1, range(bar_start), axis=sweep_along) img2 = np.take( img2, range(bar_end, img_shape[sweep_along]), axis=sweep_along) # Between the two images, we show the bar actual_bar_width = img_shape[ sweep_along] - img1.shape[sweep_along] - img2.shape[sweep_along] reps = [1, 1, 1] reps[sweep_along] = actual_bar_width reps[bar_along] = img_shape[bar_along] bar_img = np.tile(bar_color, reps) frame = np.concatenate((img1, bar_img, img2), axis=sweep_along) frames.append(frame) make_video(frames, **make_video_kwargs)
37.886878
80
0.609817
0
0
0
0
0
0
0
0
3,253
0.388511
73b135f20a4d854cdb5b09c10b76e9756be5c474
161
py
Python
shipfunk_python/__init__.py
vilkasgroup/shipfunk_python
cd8a5414bda7e9670511c52d0b4df2efd11ee5d9
[ "MIT" ]
null
null
null
shipfunk_python/__init__.py
vilkasgroup/shipfunk_python
cd8a5414bda7e9670511c52d0b4df2efd11ee5d9
[ "MIT" ]
2
2018-01-16T07:32:18.000Z
2018-01-17T07:29:41.000Z
shipfunk_python/__init__.py
vilkasgroup/shipfunk_python
cd8a5414bda7e9670511c52d0b4df2efd11ee5d9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Top-level package for Shipfunk.""" __author__ = """Jaana Sarajärvi""" __email__ = '[email protected]' __version__ = '0.1.1'
20.125
39
0.652174
0
0
0
0
0
0
0
0
116
0.716049
73b14a8ac2d94f0475d3f40d5181eb41aedadcce
638
py
Python
vpc/nos/driver/ovs/ne.py
zhufawuwo/baton
64c88750bc96b92e268b4903f34a1d5021c686f4
[ "Apache-2.0" ]
null
null
null
vpc/nos/driver/ovs/ne.py
zhufawuwo/baton
64c88750bc96b92e268b4903f34a1d5021c686f4
[ "Apache-2.0" ]
null
null
null
vpc/nos/driver/ovs/ne.py
zhufawuwo/baton
64c88750bc96b92e268b4903f34a1d5021c686f4
[ "Apache-2.0" ]
null
null
null
#! python3 # coding: utf-8 from vpc.nos import NetworkElement,NetworkElementEvent,event_t,EventChain class OVSEvent(NetworkElementEvent): def __init__(self,ne_id,type): super().__init__(ne_id,type) class OVS(NetworkElement): def __init__(self,channel,datapath): super().__init__() self.chn = channel self.ofp = self.chn.ofp self._datapath = datapath self.ne_online() @property def datapath(self): return self._datapath def ne_online(self): e = OVSEvent(self.id,event_t.NE_ONLINE) EventChain().feed(e) if __name__ == "__main__": pass
20.580645
73
0.653605
492
0.77116
0
0
63
0.098746
0
0
35
0.054859
73b18a00ca497be31f461b8bdce57d8afe3a826f
1,307
py
Python
cumulusci/core/config/BaseConfig.py
leboff/CumulusCI
81edbb1d64f2cc215a951c570052a1e423821cc1
[ "BSD-3-Clause" ]
163
2018-09-13T18:49:34.000Z
2022-03-25T08:37:15.000Z
cumulusci/core/config/BaseConfig.py
leboff/CumulusCI
81edbb1d64f2cc215a951c570052a1e423821cc1
[ "BSD-3-Clause" ]
1,280
2018-09-11T20:09:37.000Z
2022-03-31T18:40:21.000Z
cumulusci/core/config/BaseConfig.py
leboff/CumulusCI
81edbb1d64f2cc215a951c570052a1e423821cc1
[ "BSD-3-Clause" ]
93
2018-09-13T07:29:22.000Z
2022-03-26T23:15:48.000Z
import logging class BaseConfig(object): """BaseConfig provides a common interface for nested access for all Config objects in CCI.""" defaults = {} def __init__(self, config=None, keychain=None): if config is None: self.config = {} else: self.config = config self._init_logger() self._load_config() def _init_logger(self): """Initializes self.logger""" self.logger = logging.getLogger(__name__) def _load_config(self): """Subclasses may override this method to initialize :py:attr:`~config`""" pass def __getattr__(self, name): tree = name.split("__") if name.startswith("_"): raise AttributeError(f"Attribute {name} not found") value = None value_found = False config = self.config if len(tree) > 1: # Walk through the config dictionary using __ as a delimiter for key in tree[:-1]: config = config.get(key) if config is None: break if config and tree[-1] in config: value = config[tree[-1]] value_found = True if value_found: return value else: return self.defaults.get(name)
28.413043
97
0.560826
1,289
0.986228
0
0
0
0
0
0
292
0.223412
73b21fcf6f7c734702d8957b8a9a200636e97246
8,995
py
Python
scikit_algo/All.py
sankar-mukherjee/CoFee
d05b461a6cdd581be0f8084a804f02be3332ccdd
[ "Apache-2.0" ]
null
null
null
scikit_algo/All.py
sankar-mukherjee/CoFee
d05b461a6cdd581be0f8084a804f02be3332ccdd
[ "Apache-2.0" ]
null
null
null
scikit_algo/All.py
sankar-mukherjee/CoFee
d05b461a6cdd581be0f8084a804f02be3332ccdd
[ "Apache-2.0" ]
null
null
null
""" Created on Tue Feb 24 16:08:39 2015 @author: mukherjee """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import preprocessing, metrics from sklearn.learning_curve import learning_curve # read Form data DATA_FORM_FILE = 'all-merged-cat.csv' #rawdata = pd.read_csv(DATA_FORM_FILE, usecols=np.r_[3,5:12,13:28,81:87,108]) rawdata = pd.read_csv(DATA_FORM_FILE) #select features posfeat = pd.DataFrame.as_matrix(rawdata)[:,np.r_[3:12]].astype(float) posfeat_name = rawdata.columns.values[3:12] lextypefeat = pd.DataFrame.as_matrix(rawdata)[:,np.r_[12:14]] lextypefeat_name = rawdata.columns.values[12:14] lexfeat = pd.DataFrame.as_matrix(rawdata)[:,np.r_[14:29]].astype(float) lexfeat_name = rawdata.columns.values[14:29] phonfeat = pd.DataFrame.as_matrix(rawdata)[:,np.r_[29:47]] accoufeat = pd.DataFrame.as_matrix(rawdata)[:,np.r_[47:81]].astype(float) accoufeat_name = rawdata.columns.values[47:81] phonfeat = pd.DataFrame.as_matrix(rawdata)[:,np.r_[29]].astype(float) lextypefeat = pd.DataFrame.as_matrix(rawdata)[:,np.r_[13]] lextypefeat_name = rawdata.columns.values[13:14].astype(object) # feature name feat_name = np.concatenate((posfeat_name,accoufeat_name,lexfeat_name),axis=0) # Transforming categorical feature le = preprocessing.LabelBinarizer() le.fit(lextypefeat) list(le.classes_) lextypefeat = le.transform(lextypefeat) #---------------------------------------------------------------------------------------------------- # select feature combination featN = np.column_stack((posfeat,accoufeat)) #featB = np.column_stack((lexfeat,lextypefeat)) featB = lexfeat ###------------------------------------------- PCA #from sklearn.decomposition import PCA #pca = PCA(n_components=4) #####------------------------------------------- Randomized PCA ##from sklearn.decomposition import RandomizedPCA ##pca = RandomizedPCA(n_components=30, whiten=True) ### #scale = pca.fit(feat1) #feat1 = scale.fit_transform(feat1) feat = np.column_stack((featN,featB)) feat[np.isnan(feat)] = 0 feat[np.isinf(feat)] = 0 # select test labels #Ytest = pd.DataFrame.as_matrix(rawdata)[:,20:26].astype(float) label = pd.DataFrame.as_matrix(rawdata)[:,108] #remove bad features as there is no label scale = np.where(label == 'None') label = np.delete(label,scale) feat = np.delete(feat,scale,0) #---------------------------------------------------------------------------------------------------- # Transforming categorical feature le = preprocessing.LabelEncoder() le.fit(label) list(le.classes_) label = le.transform(label) # create traning and test data by partioning nSamples = len(feat) XtrainPos = feat[:.7 * nSamples,:] YtrainPos = label[:.7 * nSamples] XtestPos = feat[.7 * nSamples:,:] YtestPos = label[.7 * nSamples:] XtrainAll = feat #---------------------------------------------------------------------------------------------------- #normalization of features scale = preprocessing.StandardScaler().fit(XtrainPos) XtrainPos = scale.transform(XtrainPos) XtestPos = scale.transform(XtestPos) # for whole data set scaleAll = preprocessing.StandardScaler().fit(XtrainAll) XtrainAll = scaleAll.transform(XtrainAll) #scale = preprocessing.MinMaxScaler() #XtrainPos = scale.fit_transform(XtrainPos) #XtestPos = scale.transform(XtestPos) #scaleAll = preprocessing.MinMaxScaler() #XtrainAll = scaleAll.fit_transform(XtrainAll) #scale = preprocessing.Normalizer().fit(XtrainPos) #XtrainPos = scale.transform(XtrainPos) #XtestPos = scale.transform(XtestPos) #scaleAll = preprocessing.Normalizer().fit(XtrainAll) #XtrainAll = scaleAll.transform(XtrainAll) ###------------------------------------------- RandomizedLogisticRegression #from sklearn.linear_model import RandomizedLogisticRegression #scale = RandomizedLogisticRegression() #XtrainPos = scale.fit_transform(XtrainPos,YtrainPos) #XtestPos = scale.transform(XtestPos) #XtrainAll = scale.fit_transform(XtrainAll,label) ###------------------------------------------- PCA #from sklearn.decomposition import PCA #pca = PCA(n_components=30) ####------------------------------------------- Randomized PCA #from sklearn.decomposition import RandomizedPCA #pca = RandomizedPCA(n_components=30, whiten=True) ## ## #scale = pca.fit(XtrainPos) #XtrainPos = scale.fit_transform(XtrainPos) #XtestPos = scale.fit_transform(XtestPos) #scaleAll = pca.fit(XtrainAll) #XtrainAll = scaleAll.transform(XtrainAll) ###------------------------------------------- LDA #from sklearn.lda import LDA #lda = LDA(n_components=4) #scale = lda.fit(XtrainPos,YtrainPos) #XtrainPos = scale.transform(XtrainPos) #XtestPos = scale.transform(XtestPos) #scaleAll = lda.fit(XtrainAll,label) #XtrainAll = scaleAll.transform(XtrainAll) #--------------------------------------------classification------------------------------------------- ##GradientBoost #from sklearn.ensemble import GradientBoostingClassifier #clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, # max_depth=1, random_state=0) ## SVM #from sklearn import svm #clf = svm.SVC() #from sklearn.multiclass import OneVsOneClassifier #from sklearn.multiclass import OutputCodeClassifier #clf = OutputCodeClassifier(svm.SVC()) ## RandomForest from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(min_samples_leaf=10) ## SGD #from sklearn.linear_model import SGDClassifier #clf = SGDClassifier(loss="log", penalty="l2") # CART #from sklearn import tree #clf = tree.DecisionTreeClassifier() # ### AdaBoostClassifier #from sklearn.ensemble import AdaBoostClassifier #clf = AdaBoostClassifier(n_estimators=100) # Gaussian Naive Bayes #from sklearn.naive_bayes import GaussianNB #clf = GaussianNB() # KNN #from sklearn import neighbors ##clf = neighbors.KNeighborsClassifier(n_neighbors=10,weights='distance') #clf = neighbors.KNeighborsClassifier(n_neighbors=10) ##-------------------------------------------------Traning------------------ clf = clf.fit(XtrainPos, YtrainPos) print(metrics.classification_report(YtestPos, clf.predict(XtestPos))) ##--------------------------Crossvalidation 5 times using different split------------------------------ #from sklearn import cross_validation #scores = cross_validation.cross_val_score(clf, XtrainAll, label, cv=3, scoring='f1') #print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) ####---------------------------------Check for overfeat------------------------------------- train_sample_size, train_scores, test_scores = learning_curve(clf, XtrainAll, label, train_sizes=np.arange(0.1,1,0.1), cv=10) #----------------------------------------Visualization--------------------------------------------- plt.xlabel("# Training sample") plt.ylabel("Accuracy") plt.grid(); mean_train_scores = np.mean(train_scores, axis=1) mean_test_scores = np.mean(test_scores, axis=1) std_train_scores = np.std(train_scores, axis=1) std_test_scores = np.std(test_scores, axis=1) gap = np.abs(mean_test_scores - mean_train_scores) g = plt.figure(1) plt.title("Learning curves for %r\n" "Best test score: %0.2f - Gap: %0.2f" % (clf, mean_test_scores.max(), gap[-1])) plt.plot(train_sample_size, mean_train_scores, label="Training", color="b") plt.fill_between(train_sample_size, mean_train_scores - std_train_scores, mean_train_scores + std_train_scores, alpha=0.1, color="b") plt.plot(train_sample_size, mean_test_scores, label="Cross-validation", color="g") plt.fill_between(train_sample_size, mean_test_scores - std_test_scores, mean_test_scores + std_test_scores, alpha=0.1, color="g") plt.legend(loc="lower right") g.show() ## confusion matrix #from sklearn.metrics import confusion_matrix #cm = confusion_matrix(YtestPos,clf.predict(XtestPos)) ## Show confusion matrix in a separate window #plt.matshow(cm) #plt.title('Confusion matrix') #plt.colorbar() #plt.ylabel('True label') #plt.xlabel('Predicted label') #plt.show() ############################################################################### # Plot feature importance feature_importance = clf.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 f = plt.figure(2,figsize=(18, 18)) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, feat_name[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.savefig('feature_importance') f.show()
36.864754
104
0.642023
0
0
0
0
0
0
0
0
5,115
0.568649
73b2b67943acda046ca7c7f56efd2e03603a7e68
4,140
py
Python
tests/test_client.py
KazkiMatz/py-googletrans
c1d6d5d27c7386c2a1aa6c78dfe376dbb910f7a5
[ "MIT" ]
null
null
null
tests/test_client.py
KazkiMatz/py-googletrans
c1d6d5d27c7386c2a1aa6c78dfe376dbb910f7a5
[ "MIT" ]
1
2020-11-28T18:53:18.000Z
2020-11-28T18:53:18.000Z
tests/test_client.py
TashinAhmed/googletrans
9c0014cdcdc22e1f146624279f8dd69c3c62e385
[ "MIT" ]
null
null
null
from httpcore import TimeoutException from httpcore._exceptions import ConnectError from httpx import Timeout, Client, ConnectTimeout from unittest.mock import patch from pytest import raises from googletrans import Translator def test_bind_multiple_service_urls(): service_urls = [ 'translate.google.com', 'translate.google.co.kr', ] translator = Translator(service_urls=service_urls) assert translator.service_urls == service_urls assert translator.translate('test', dest='ko') assert translator.detect('Hello') def test_api_service_urls(): service_urls = ['translate.googleapis.com'] translator = Translator(service_urls=service_urls) assert translator.service_urls == service_urls assert translator.translate('test', dest='ko') assert translator.detect('Hello') def test_source_language(translator): result = translator.translate('안녕하세요.') assert result.src == 'ko' def test_pronunciation(translator): result = translator.translate('안녕하세요.', dest='ja') assert result.pronunciation == 'Kon\'nichiwa.' def test_pronunciation_issue_175(translator): result = translator.translate('Hello', src='en', dest='ru') assert result.pronunciation is not None def test_latin_to_english(translator): result = translator.translate('veritas lux mea', src='la', dest='en') assert result.text == 'The truth is my light' def test_unicode(translator): result = translator.translate(u'안녕하세요.', src='ko', dest='ja') assert result.text == u'こんにちは。' def test_emoji(translator): result = translator.translate('😀') assert result.text == u'😀' def test_language_name(translator): result = translator.translate(u'Hello', src='ENGLISH', dest='iRiSh') assert result.text == u'Dia dhuit' def test_language_name_with_space(translator): result = translator.translate( u'Hello', src='en', dest='chinese (simplified)') assert result.dest == 'zh-cn' def test_language_rfc1766(translator): result = translator.translate(u'luna', src='it_ch@euro', dest='en') assert result.text == u'moon' def test_special_chars(translator): text = u"©×《》" result = translator.translate(text, src='en', dest='en') assert result.text == text def test_translate_list(translator): args = (['test', 'exam'], 'ko', 'en') translations = translator.translate(*args) assert translations[0].text == u'테스트' assert translations[1].text == u'시험' def test_detect_language(translator): ko = translator.detect(u'한국어') en = translator.detect('English') rubg = translator.detect('тест') assert ko.lang == 'ko' assert en.lang == 'en' assert rubg.lang == ['ru', 'bg'] def test_detect_list(translator): items = [u'한국어', ' English', 'тест'] result = translator.detect(items) assert result[0].lang == 'ko' assert result[1].lang == 'en' assert result[2].lang == ['ru', 'bg'] def test_src_in_special_cases(translator): args = ('Tere', 'en', 'ee') result = translator.translate(*args) assert result.text in ('Hello', 'Hi,') def test_src_not_in_supported_languages(translator): args = ('Hello', 'en', 'zzz') with raises(ValueError): translator.translate(*args) def test_dest_in_special_cases(translator): args = ('hello', 'ee', 'en') result = translator.translate(*args) assert result.text == 'Tere' def test_dest_not_in_supported_languages(translator): args = ('Hello', 'zzz', 'en') with raises(ValueError): translator.translate(*args) def test_timeout(): # httpx will raise ConnectError in some conditions with raises((TimeoutException, ConnectError, ConnectTimeout)): translator = Translator(timeout=Timeout(0.0001)) translator.translate('안녕하세요.') class MockResponse: def __init__(self, status_code): self.status_code = status_code self.text = 'tkk:\'translation\'' @patch.object(Client, 'get', return_value=MockResponse('403')) def test_403_error(session_mock): translator = Translator() assert translator.translate('test', dest='ko')
25.714286
73
0.68913
137
0.032357
0
0
177
0.041804
0
0
741
0.175012
73b2dbd6e7f9c859fe75e459a5b5509630530b13
3,324
py
Python
Network/class_func.py
Mobad225/S-DCNet
a5fff5da2e04441f1f9133944ad09bdf087896e6
[ "MIT" ]
153
2019-07-31T07:27:11.000Z
2022-01-05T08:52:56.000Z
Network/class_func.py
Mobad225/S-DCNet
a5fff5da2e04441f1f9133944ad09bdf087896e6
[ "MIT" ]
17
2019-09-11T07:45:29.000Z
2021-04-20T05:10:47.000Z
Network/class_func.py
Mobad225/S-DCNet
a5fff5da2e04441f1f9133944ad09bdf087896e6
[ "MIT" ]
30
2019-08-20T05:35:20.000Z
2021-11-07T07:49:19.000Z
# -*- coding: utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F import numpy as np # Func1: change density map into count map # density map: batch size * 1 * w * h def get_local_count(density_map,psize,pstride): IF_gpu = torch.cuda.is_available() # if gpu, return gpu IF_ret_gpu = (density_map.device.type == 'cuda') psize,pstride = int(psize),int(pstride) density_map = density_map.cpu().type(torch.float32) conv_kernel = torch.ones(1,1,psize,psize,dtype = torch.float32) if IF_gpu: density_map,conv_kernel = density_map.cuda(),conv_kernel.cuda() count_map = F.conv2d(density_map,conv_kernel,stride=pstride) if not IF_ret_gpu: count_map = count_map.cpu() return count_map # Func2: convert count to class (0->c-1) def Count2Class(count_map,label_indice): if isinstance(label_indice,np.ndarray): label_indice = torch.from_numpy(label_indice) IF_gpu = torch.cuda.is_available() IF_ret_gpu = (count_map.device.type == 'cuda') label_indice = label_indice.cpu().type(torch.float32) cls_num = len(label_indice)+1 cls_map = torch.zeros(count_map.size()).type(torch.LongTensor) if IF_gpu: count_map,label_indice,cls_map = count_map.cuda(),label_indice.cuda(),cls_map.cuda() for i in range(cls_num-1): if IF_gpu: cls_map = cls_map + (count_map >= label_indice[i]).cpu().type(torch.LongTensor).cuda() else: cls_map = cls_map + (count_map >= label_indice[i]).cpu().type(torch.LongTensor) if not IF_ret_gpu: cls_map = cls_map.cpu() return cls_map # Func3: convert class (0->c-1) to count number def Class2Count(pre_cls,label_indice): ''' # --Input: # 1.pre_cls is class label range in [0,1,2,...,C-1] # 2.label_indice not include 0 but the other points # --Output: # 1.count value, the same size as pre_cls ''' if isinstance(label_indice,np.ndarray): label_indice = torch.from_numpy(label_indice) label_indice = label_indice.squeeze() IF_gpu = torch.cuda.is_available() IF_ret_gpu = (pre_cls.device.type == 'cuda') # tranform interval to count value map label2count = [0.0] for (i,item) in enumerate(label_indice): if i<label_indice.size()[0]-1: tmp_count = (label_indice[i]+label_indice[i+1])/2 else: tmp_count = label_indice[i] label2count.append(tmp_count) label2count = torch.tensor(label2count) label2count = label2count.type(torch.FloatTensor) #outputs = outputs.max(dim=1)[1].cpu().data ORI_SIZE = pre_cls.size() pre_cls = pre_cls.reshape(-1).cpu() pre_counts = torch.index_select(label2count,0,pre_cls.cpu().type(torch.LongTensor)) pre_counts = pre_counts.reshape(ORI_SIZE) if IF_ret_gpu: pre_counts = pre_counts.cuda() return pre_counts if __name__ == '__main__': pre_cls = torch.Tensor([[0,1,2],[3,4,4]]) label_indice =torch.Tensor([0.5,1,1.5,2]) pre_counts = Class2Count(pre_cls,label_indice) print(pre_cls) print(label_indice) print(pre_counts) pre_cls = Count2Class(pre_counts,label_indice) print(pre_cls)
34.625
99
0.647112
0
0
0
0
0
0
0
0
532
0.160048
73b325d3f7c7dfbcd48251ddfe6b8d3299767cb6
540
py
Python
src/python/pants/backend/codegen/avro/avro_subsystem.py
danxmoran/pants
7fafd7d789747c9e6a266847a0ccce92c3fa0754
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/codegen/avro/avro_subsystem.py
danxmoran/pants
7fafd7d789747c9e6a266847a0ccce92c3fa0754
[ "Apache-2.0" ]
22
2022-01-27T09:59:50.000Z
2022-03-30T07:06:49.000Z
src/python/pants/backend/codegen/avro/avro_subsystem.py
danxmoran/pants
7fafd7d789747c9e6a266847a0ccce92c3fa0754
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from pants.option.option_types import BoolOption from pants.option.subsystem import Subsystem class AvroSubsystem(Subsystem): options_scope = "avro" help = "General Avro codegen settings." tailor = BoolOption( "--tailor", default=True, help="If true, add `avro_sources` targets with the `tailor` goal.", advanced=True, )
27
75
0.709259
275
0.509259
0
0
0
0
0
0
238
0.440741
73b51f1631247fbf3daf41c2e06e80f0d22df79c
11,864
py
Python
shade/tests/unit/test_shade.py
mail2nsrajesh/shade
65ce1a22896e52ff59a23a393e3bc4227f55f006
[ "Apache-2.0" ]
null
null
null
shade/tests/unit/test_shade.py
mail2nsrajesh/shade
65ce1a22896e52ff59a23a393e3bc4227f55f006
[ "Apache-2.0" ]
null
null
null
shade/tests/unit/test_shade.py
mail2nsrajesh/shade
65ce1a22896e52ff59a23a393e3bc4227f55f006
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import uuid import testtools import shade from shade import _utils from shade import exc from shade.tests import fakes from shade.tests.unit import base RANGE_DATA = [ dict(id=1, key1=1, key2=5), dict(id=2, key1=1, key2=20), dict(id=3, key1=2, key2=10), dict(id=4, key1=2, key2=30), dict(id=5, key1=3, key2=40), dict(id=6, key1=3, key2=40), ] class TestShade(base.RequestsMockTestCase): def setUp(self): # This set of tests are not testing neutron, they're testing # rebuilding servers, but we do several network calls in service # of a NORMAL rebuild to find the default_network. Putting # in all of the neutron mocks for that will make the tests harder # to read. SO - we're going mock neutron into the off position # and then turn it back on in the few tests that specifically do. # Maybe we should reorg these into two classes - one with neutron # mocked out - and one with it not mocked out super(TestShade, self).setUp() self.has_neutron = False def fake_has_service(*args, **kwargs): return self.has_neutron self.cloud.has_service = fake_has_service def test_openstack_cloud(self): self.assertIsInstance(self.cloud, shade.OpenStackCloud) @mock.patch.object(shade.OpenStackCloud, 'search_images') def test_get_images(self, mock_search): image1 = dict(id='123', name='mickey') mock_search.return_value = [image1] r = self.cloud.get_image('mickey') self.assertIsNotNone(r) self.assertDictEqual(image1, r) @mock.patch.object(shade.OpenStackCloud, 'search_images') def test_get_image_not_found(self, mock_search): mock_search.return_value = [] r = self.cloud.get_image('doesNotExist') self.assertIsNone(r) def test_get_server(self): server1 = fakes.make_fake_server('123', 'mickey') server2 = fakes.make_fake_server('345', 'mouse') self.register_uris([ dict(method='GET', uri=self.get_mock_url( 'compute', 'public', append=['servers', 'detail']), json={'servers': [server1, server2]}), ]) r = self.cloud.get_server('mickey') self.assertIsNotNone(r) self.assertEqual(server1['name'], r['name']) self.assert_calls() def test_get_server_not_found(self): self.register_uris([ dict(method='GET', uri=self.get_mock_url( 'compute', 'public', append=['servers', 'detail']), json={'servers': []}), ]) r = self.cloud.get_server('doesNotExist') self.assertIsNone(r) self.assert_calls() def test_list_servers_exception(self): self.register_uris([ dict(method='GET', uri=self.get_mock_url( 'compute', 'public', append=['servers', 'detail']), status_code=400) ]) self.assertRaises(exc.OpenStackCloudException, self.cloud.list_servers) self.assert_calls() def test__neutron_exceptions_resource_not_found(self): self.register_uris([ dict(method='GET', uri=self.get_mock_url( 'network', 'public', append=['v2.0', 'networks.json']), status_code=404) ]) self.assertRaises(exc.OpenStackCloudResourceNotFound, self.cloud.list_networks) self.assert_calls() def test__neutron_exceptions_url_not_found(self): self.register_uris([ dict(method='GET', uri=self.get_mock_url( 'network', 'public', append=['v2.0', 'networks.json']), status_code=404) ]) self.assertRaises(exc.OpenStackCloudURINotFound, self.cloud.list_networks) self.assert_calls() def test_list_servers(self): server_id = str(uuid.uuid4()) server_name = self.getUniqueString('name') fake_server = fakes.make_fake_server(server_id, server_name) self.register_uris([ dict(method='GET', uri=self.get_mock_url( 'compute', 'public', append=['servers', 'detail']), json={'servers': [fake_server]}), ]) r = self.cloud.list_servers() self.assertEqual(1, len(r)) self.assertEqual(server_name, r[0]['name']) self.assert_calls() def test_list_servers_all_projects(self): '''This test verifies that when list_servers is called with `all_projects=True` that it passes `all_tenants=True` to nova.''' self.register_uris([ dict(method='GET', uri=self.get_mock_url( 'compute', 'public', append=['servers', 'detail'], qs_elements=['all_tenants=True']), complete_qs=True, json={'servers': []}), ]) self.cloud.list_servers(all_projects=True) self.assert_calls() def test_iterate_timeout_bad_wait(self): with testtools.ExpectedException( exc.OpenStackCloudException, "Wait value must be an int or float value."): for count in _utils._iterate_timeout( 1, "test_iterate_timeout_bad_wait", wait="timeishard"): pass @mock.patch('time.sleep') def test_iterate_timeout_str_wait(self, mock_sleep): iter = _utils._iterate_timeout( 10, "test_iterate_timeout_str_wait", wait="1.6") next(iter) next(iter) mock_sleep.assert_called_with(1.6) @mock.patch('time.sleep') def test_iterate_timeout_int_wait(self, mock_sleep): iter = _utils._iterate_timeout( 10, "test_iterate_timeout_int_wait", wait=1) next(iter) next(iter) mock_sleep.assert_called_with(1.0) @mock.patch('time.sleep') def test_iterate_timeout_timeout(self, mock_sleep): message = "timeout test" with testtools.ExpectedException( exc.OpenStackCloudTimeout, message): for count in _utils._iterate_timeout(0.1, message, wait=1): pass mock_sleep.assert_called_with(1.0) def test__nova_extensions(self): body = [ { "updated": "2014-12-03T00:00:00Z", "name": "Multinic", "links": [], "namespace": "http://openstack.org/compute/ext/fake_xml", "alias": "NMN", "description": "Multiple network support." }, { "updated": "2014-12-03T00:00:00Z", "name": "DiskConfig", "links": [], "namespace": "http://openstack.org/compute/ext/fake_xml", "alias": "OS-DCF", "description": "Disk Management Extension." }, ] self.register_uris([ dict(method='GET', uri='{endpoint}/extensions'.format( endpoint=fakes.COMPUTE_ENDPOINT), json=dict(extensions=body)) ]) extensions = self.cloud._nova_extensions() self.assertEqual(set(['NMN', 'OS-DCF']), extensions) self.assert_calls() def test__nova_extensions_fails(self): self.register_uris([ dict(method='GET', uri='{endpoint}/extensions'.format( endpoint=fakes.COMPUTE_ENDPOINT), status_code=404), ]) with testtools.ExpectedException( exc.OpenStackCloudURINotFound, "Error fetching extension list for nova" ): self.cloud._nova_extensions() self.assert_calls() def test__has_nova_extension(self): body = [ { "updated": "2014-12-03T00:00:00Z", "name": "Multinic", "links": [], "namespace": "http://openstack.org/compute/ext/fake_xml", "alias": "NMN", "description": "Multiple network support." }, { "updated": "2014-12-03T00:00:00Z", "name": "DiskConfig", "links": [], "namespace": "http://openstack.org/compute/ext/fake_xml", "alias": "OS-DCF", "description": "Disk Management Extension." }, ] self.register_uris([ dict(method='GET', uri='{endpoint}/extensions'.format( endpoint=fakes.COMPUTE_ENDPOINT), json=dict(extensions=body)) ]) self.assertTrue(self.cloud._has_nova_extension('NMN')) self.assert_calls() def test__has_nova_extension_missing(self): body = [ { "updated": "2014-12-03T00:00:00Z", "name": "Multinic", "links": [], "namespace": "http://openstack.org/compute/ext/fake_xml", "alias": "NMN", "description": "Multiple network support." }, { "updated": "2014-12-03T00:00:00Z", "name": "DiskConfig", "links": [], "namespace": "http://openstack.org/compute/ext/fake_xml", "alias": "OS-DCF", "description": "Disk Management Extension." }, ] self.register_uris([ dict(method='GET', uri='{endpoint}/extensions'.format( endpoint=fakes.COMPUTE_ENDPOINT), json=dict(extensions=body)) ]) self.assertFalse(self.cloud._has_nova_extension('invalid')) self.assert_calls() def test_range_search(self): filters = {"key1": "min", "key2": "20"} retval = self.cloud.range_search(RANGE_DATA, filters) self.assertIsInstance(retval, list) self.assertEqual(1, len(retval)) self.assertEqual([RANGE_DATA[1]], retval) def test_range_search_2(self): filters = {"key1": "<=2", "key2": ">10"} retval = self.cloud.range_search(RANGE_DATA, filters) self.assertIsInstance(retval, list) self.assertEqual(2, len(retval)) self.assertEqual([RANGE_DATA[1], RANGE_DATA[3]], retval) def test_range_search_3(self): filters = {"key1": "2", "key2": "min"} retval = self.cloud.range_search(RANGE_DATA, filters) self.assertIsInstance(retval, list) self.assertEqual(0, len(retval)) def test_range_search_4(self): filters = {"key1": "max", "key2": "min"} retval = self.cloud.range_search(RANGE_DATA, filters) self.assertIsInstance(retval, list) self.assertEqual(0, len(retval)) def test_range_search_5(self): filters = {"key1": "min", "key2": "min"} retval = self.cloud.range_search(RANGE_DATA, filters) self.assertIsInstance(retval, list) self.assertEqual(1, len(retval)) self.assertEqual([RANGE_DATA[0]], retval)
34.99705
76
0.567515
10,932
0.921443
0
0
1,418
0.119521
0
0
3,089
0.260367
73b53eb4cdb22bcc92d1f7a0efda19417f586729
3,780
py
Python
plots_tournament.py
rradules/opponent_modelling_monfg
eb28546a6024613a76c942a2e53a48e6a8d83233
[ "MIT" ]
1
2021-03-04T04:40:50.000Z
2021-03-04T04:40:50.000Z
plots_tournament.py
rradules/opponent_modelling_monfg
eb28546a6024613a76c942a2e53a48e6a8d83233
[ "MIT" ]
null
null
null
plots_tournament.py
rradules/opponent_modelling_monfg
eb28546a6024613a76c942a2e53a48e6a8d83233
[ "MIT" ]
null
null
null
import matplotlib import pandas as pd matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 import matplotlib.pyplot as plt import seaborn as sns from utils.utils import mkdir_p sns.set() sns.despine() sns.set_context("paper", rc={"font.size": 18, "axes.labelsize": 18, "xtick.labelsize": 15, "ytick.labelsize": 15, "legend.fontsize": 16}) sns.set_style('white', {'axes.edgecolor': "0.5", "pdf.fonttype": 42}) plt.gcf().subplots_adjust(bottom=0.15, left=0.14) def plot_results(game, mooc, path_data, experiment): path_plots = f'plots/tour_{experiment}_{game}_l{l1}_{l2}' mkdir_p(path_plots) df1 = pd.read_csv(f'{path_data}/agent1_payoff_{info}.csv') ax = sns.lineplot(x='Episode', y='Payoff', linewidth=2.0, data=df1, ci='sd', label=f'Agent 1') df2 = pd.read_csv(f'{path_data}/agent2_payoff_{info}.csv') ax = sns.lineplot(x='Episode', y='Payoff', linewidth=2.0, data=df2, ci='sd', label=f'Agent2') ax.set(ylabel='Scalarised payoff per step') ax.set(xlabel='Iterations') # ax.set_ylim(0, 14) ax.set_xlim(0, episodes) plot_name = f"{path_plots}/payoffs" # plt.title("Agent 1") plt.savefig(plot_name + ".pdf") plt.clf() if game in ['iagRNE', 'iagR', 'iagM']: x_axis_labels = ["L", "M"] y_axis_labels = ["L", "M"] else: x_axis_labels = ["L", "M", "R"] y_axis_labels = ["L", "M", "R"] df = pd.read_csv(f'{path_data}/states_{info}_{l1}_{l2}.csv', header=None) ax = sns.heatmap(df, annot=True, cmap="YlGnBu", vmin=0, vmax=1, xticklabels=x_axis_labels, yticklabels=y_axis_labels) plot_name = f"{path_plots}/states" plt.savefig(plot_name + ".pdf") plt.clf() # action probs df1 = pd.read_csv(f'{path_data}/agent1_probs_{info}.csv') ax = sns.lineplot(x='Episode', y='Action 1', linewidth=2.0, data=df1, ci='sd', label='L') ax = sns.lineplot(x='Episode', y='Action 2', linewidth=2.0, data=df1, ci='sd', label='M') if game not in ['iagRNE', 'iagR', 'iagM']: ax = sns.lineplot(x='Episode', y='Action 3', linewidth=2.0, data=df1, ci='sd', label='R') ax.set(ylabel='Action probability') ax.set(xlabel='Iterations') ax.set_ylim(0, 1) ax.set_xlim(0, episodes) plot_name = f"{path_plots}/probs_ag1" plt.title(f"Action probabilities - Agent 1") plt.savefig(plot_name + ".pdf") plt.clf() df1 = pd.read_csv(f'{path_data}/agent2_probs_{info}.csv') ax = sns.lineplot(x='Episode', y='Action 1', linewidth=2.0, data=df1, ci='sd', label='L') ax = sns.lineplot(x='Episode', y='Action 2', linewidth=2.0, data=df1, ci='sd', label='M') if game not in ['iagRNE', 'iagR', 'iagM']: ax = sns.lineplot(x='Episode', y='Action 3', linewidth=2.0, data=df1, ci='sd', label='R') ax.set(ylabel='Action probability') ax.set(xlabel='Iterations') ax.set_ylim(0, 1) ax.set_xlim(0, episodes) plot_name = f"{path_plots}/probs_ag2" plt.title(f"Action probabilities - Agent 2") plt.savefig(plot_name + ".pdf") plt.clf() if __name__ == "__main__": experiment = ['Q', 'Q'] info = '0M' l1 = 1 l2 = 1 episodes = 5000 moocs = ['SER'] games = ['iag', 'iagR', 'iagM', 'iagRNE', 'iagNE'] # ['iagRNE'] # ['iag']['iagM']'iagNE', for l1 in range(1, 2): for l2 in range(1, 2): for mooc in moocs: for game in games: path_data = f'results/tour_{experiment}_{game}_l{l1}_{l2}' plot_results(game, mooc, path_data, experiment)
34.678899
113
0.579101
0
0
0
0
0
0
0
0
1,195
0.316138
73b6522af809e94b26c9f10e4657b8e31125731b
3,979
py
Python
test/test_wrapper.py
bertsky/ocrd_keraslm
da105a8a8b68844389cd3e08307c05c9c6123350
[ "Apache-2.0" ]
null
null
null
test/test_wrapper.py
bertsky/ocrd_keraslm
da105a8a8b68844389cd3e08307c05c9c6123350
[ "Apache-2.0" ]
null
null
null
test/test_wrapper.py
bertsky/ocrd_keraslm
da105a8a8b68844389cd3e08307c05c9c6123350
[ "Apache-2.0" ]
null
null
null
import os, sys import shutil from unittest import TestCase, main from ocrd.resolver import Resolver from ocrd_models.ocrd_page import to_xml from ocrd_modelfactory import page_from_file from ocrd_utils import MIMETYPE_PAGE from ocrd_tesserocr.recognize import TesserocrRecognize from ocrd_keraslm.wrapper import KerasRate WORKSPACE_DIR = '/tmp/pyocrd-test-ocrd_keraslm' PWD = os.path.dirname(os.path.realpath(__file__)) class TestKerasRate(TestCase): def setUp(self): if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR) #os.makedirs(WORKSPACE_DIR) shutil.copytree('test/assets/', WORKSPACE_DIR) def runTest(self): resolver = Resolver() # workspace = resolver.workspace_from_url('test/assets/kant_aufklaerung_1784/data/mets.xml', # dst_dir=WORKSPACE_DIR, download=True) # self.assertIsNotNone(workspace) # workaround for OCR-D/core#319: workspace = resolver.workspace_from_url(WORKSPACE_DIR + '/kant_aufklaerung_1784/data/mets.xml') self.assertIsNotNone(workspace) for file_ in workspace.mets.find_files(fileGrp='OCR-D-GT-PAGE'): workspace.download_file(file_) # # rate text alternative 1 on the word level: # KerasRate( workspace, input_file_grp='OCR-D-GT-PAGE', # has wrong tokenisation but that's ok now output_file_grp='OCR-D-LM-WORD', parameter={'textequiv_level': 'word', 'alternative_decoding': False, 'model_file': PWD + '/../model_dta_test.h5'} ).process() workspace.save_mets() for file in workspace.mets.find_files(fileGrp='OCR-D-LM-WORD'): pcgts = page_from_file(workspace.download_file(file)) metadata = pcgts.get_Metadata() self.assertIsNotNone(metadata) metadataitems = metadata.get_MetadataItem() self.assertIsNotNone(metadataitems) rated = any([i for i in metadataitems if i.get_value() == 'ocrd-keraslm-rate']) self.assertTrue(rated) # # rate and viterbi-decode all text alternatives on the glyph level: # TesserocrRecognize( # we need this to get alternatives to decode workspace, input_file_grp='OCR-D-GT-PAGE', # has wrong tokenisation but that's ok now output_file_grp='OCR-D-OCR-TESS-GLYPH', parameter={'textequiv_level': 'glyph', 'overwrite_words': True, 'model': 'deu-frak'} # old model for alternatives ).process() workspace.save_mets() KerasRate( workspace, input_file_grp='OCR-D-OCR-TESS-GLYPH', output_file_grp='OCR-D-LM-GLYPH', parameter={'textequiv_level': 'glyph', 'alternative_decoding': True, 'beam_width': 10, # not too slow 'model_file': PWD + '/../model_dta_test.h5'} ).process() workspace.save_mets() for file in workspace.mets.find_files(fileGrp='OCR-D-LM-GLYPH'): pcgts = page_from_file(workspace.download_file(file)) metadata = pcgts.get_Metadata() self.assertIsNotNone(metadata) metadataitems = metadata.get_MetadataItem() self.assertIsNotNone(metadataitems) rated = any([i for i in metadataitems if i.get_value() == 'ocrd-keraslm-rate']) self.assertTrue(rated) page = pcgts.get_Page() for region in page.get_TextRegion(): for line in region.get_TextLine(): for word in line.get_Word(): for glyph in word.get_Glyph(): self.assertEqual(len(glyph.get_TextEquiv()), 1) # only 1-best results if __name__ == '__main__': main()
43.25
103
0.605931
3,516
0.883639
0
0
0
0
0
0
1,084
0.27243
73b6bd8f4831b3ecbdd4ef2d6b98086651e18b51
16,415
py
Python
meltingpot/python/configs/substrates/territory_rooms.py
Rohan138/meltingpot
d4e3839225b78babcedbbbf95cf747ff9e0a87b5
[ "Apache-2.0" ]
null
null
null
meltingpot/python/configs/substrates/territory_rooms.py
Rohan138/meltingpot
d4e3839225b78babcedbbbf95cf747ff9e0a87b5
[ "Apache-2.0" ]
null
null
null
meltingpot/python/configs/substrates/territory_rooms.py
Rohan138/meltingpot
d4e3839225b78babcedbbbf95cf747ff9e0a87b5
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Territory: Rooms. Example video: https://youtu.be/u0YOiShqzA4 See _Territory: Open_ for the general description of the mechanics at play in this substrate. In this substrate, _Territory: Rooms_, individuals start in segregated rooms that strongly suggest a partition individuals could adhere to. They can break down the walls of these regions and invade each other's "natural territory", but the destroyed resources are lost forever. A peaceful partition is possible at the start of the episode, and the policy to achieve it is easy to implement. But if any agent gets too greedy and invades, it buys itself a chance of large rewards, but also chances inflicting significant chaos and deadweight loss on everyone if its actions spark wider conflict. The reason it can spiral out of control is that once an agent's neighbor has left their natural territory then it becomes rational to invade the space, leaving one's own territory undefended, creating more opportunity for mischief by others. """ from typing import Any, Dict from ml_collections import config_dict from meltingpot.python.utils.substrates import colors from meltingpot.python.utils.substrates import game_object_utils from meltingpot.python.utils.substrates import shapes from meltingpot.python.utils.substrates import specs _COMPASS = ["N", "E", "S", "W"] # This number just needs to be greater than the number of players. MAX_ALLOWED_NUM_PLAYERS = 10 DEFAULT_ASCII_MAP = """ WRRRRRWWRRRRRWWRRRRRW R RR RR R R RR RR R R P RR P RR P R R RR RR R R RR RR R WRRRRRWWRRRRRWWRRRRRW WRRRRRWWRRRRRWWRRRRRW R RR RR R R RR RR R R P RR P RR P R R RR RR R R RR RR R WRRRRRWWRRRRRWWRRRRRW WRRRRRWWRRRRRWWRRRRRW R RR RR R R RR RR R R P RR P RR P R R RR RR R R RR RR R WRRRRRWWRRRRRWWRRRRRW """ # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "P": "spawn_point", "W": "wall", "R": {"type": "all", "list": ["resource", "reward_indicator"]}, } WALL = { "name": "wall", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall", "stateConfigs": [{ "state": "wall", "layer": "upperPhysical", "sprite": "Wall", }], } }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Wall",], "spriteShapes": [shapes.WALL], "palettes": [{"*": (95, 95, 95, 255), "&": (100, 100, 100, 255), "@": (109, 109, 109, 255), "#": (152, 152, 152, 255)}], "noRotates": [True] } }, { "component": "Transform", "kwargs": { "position": (0, 0), "orientation": "N" } }, { "component": "AllBeamBlocker", "kwargs": {} }, ] } SPAWN_POINT = { "name": "spawn_point", "components": [ { "component": "StateManager", "kwargs": { "initialState": "playerSpawnPoint", "stateConfigs": [{ "state": "playerSpawnPoint", "layer": "logic", "groups": ["spawnPoints"], }], } }, { "component": "Appearance", "kwargs": { "renderMode": "invisible", "spriteNames": [], "spriteRGBColors": [] } }, { "component": "Transform", "kwargs": { "position": (0, 0), "orientation": "N" } }, ] } RESOURCE = { "name": "resource", "components": [ { "component": "StateManager", "kwargs": { "initialState": "unclaimed", "stateConfigs": [ {"state": "unclaimed", "layer": "upperPhysical", "sprite": "UnclaimedResourceSprite", "groups": ["unclaimedResources"]}, {"state": "destroyed"}, ], } }, { "component": "Appearance", "kwargs": { "spriteNames": ["UnclaimedResourceSprite"], # This color is grey. "spriteRGBColors": [(64, 64, 64, 255)] } }, { "component": "Transform", "kwargs": { "position": (0, 0), "orientation": "N" } }, { "component": "Resource", "kwargs": { "initialHealth": 2, "destroyedState": "destroyed", "reward": 1.0, "rewardRate": 0.01, "rewardDelay": 100 } }, ] } REWARD_INDICATOR = { "name": "reward_indicator", "components": [ { "component": "StateManager", "kwargs": { "initialState": "inactive", "stateConfigs": [ {"state": "active", "layer": "overlay", "sprite": "ActivelyRewardingResource"}, {"state": "inactive"}, ], } }, { "component": "Appearance", "kwargs": { "spriteNames": ["ActivelyRewardingResource",], "renderMode": "ascii_shape", "spriteShapes": [shapes.PLUS_IN_BOX], "palettes": [{"*": (86, 86, 86, 65), "#": (202, 202, 202, 105), "@": (128, 128, 128, 135), "x": (0, 0, 0, 0)}], "noRotates": [True] } }, { "component": "Transform", "kwargs": { "position": (0, 0), "orientation": "N" } }, { "component": "RewardIndicator", "kwargs": { } }, ] } # PLAYER_COLOR_PALETTES is a list with each entry specifying the color to use # for the player at the corresponding index. PLAYER_COLOR_PALETTES = [] for i in range(MAX_ALLOWED_NUM_PLAYERS): PLAYER_COLOR_PALETTES.append(shapes.get_palette(colors.palette[i])) # Set up player-specific settings for resources. for j, color in enumerate(colors.palette[:MAX_ALLOWED_NUM_PLAYERS]): sprite_name = "Color" + str(j + 1) + "ResourceSprite" game_object_utils.get_first_named_component( RESOURCE, "StateManager")["kwargs"]["stateConfigs"].append({ "state": "claimed_by_" + str(j + 1), "layer": "upperPhysical", "sprite": sprite_name, "groups": ["claimedResources"] }) game_object_utils.get_first_named_component( RESOURCE, "Appearance")["kwargs"]["spriteNames"].append(sprite_name) game_object_utils.get_first_named_component( RESOURCE, "Appearance")["kwargs"]["spriteRGBColors"].append(color) # PREFABS is a dictionary mapping names to template game objects that can # be cloned and placed in multiple locations accoring to an ascii map. PREFABS = { "wall": WALL, "spawn_point": SPAWN_POINT, "resource": RESOURCE, "reward_indicator": REWARD_INDICATOR, } # Primitive action components. # pylint: disable=bad-whitespace # pyformat: disable NOOP = {"move": 0, "turn": 0, "fireZap": 0, "fireClaim": 0} FORWARD = {"move": 1, "turn": 0, "fireZap": 0, "fireClaim": 0} STEP_RIGHT = {"move": 2, "turn": 0, "fireZap": 0, "fireClaim": 0} BACKWARD = {"move": 3, "turn": 0, "fireZap": 0, "fireClaim": 0} STEP_LEFT = {"move": 4, "turn": 0, "fireZap": 0, "fireClaim": 0} TURN_LEFT = {"move": 0, "turn": -1, "fireZap": 0, "fireClaim": 0} TURN_RIGHT = {"move": 0, "turn": 1, "fireZap": 0, "fireClaim": 0} FIRE_ZAP = {"move": 0, "turn": 0, "fireZap": 1, "fireClaim": 0} FIRE_CLAIM = {"move": 0, "turn": 0, "fireZap": 0, "fireClaim": 1} # pyformat: enable # pylint: enable=bad-whitespace ACTION_SET = ( NOOP, FORWARD, BACKWARD, STEP_LEFT, STEP_RIGHT, TURN_LEFT, TURN_RIGHT, FIRE_ZAP, FIRE_CLAIM ) # The Scene object is a non-physical object, its components implement global # logic. def create_scene(): """Creates the global scene.""" scene = { "name": "scene", "components": [ { "component": "StateManager", "kwargs": { "initialState": "scene", "stateConfigs": [{ "state": "scene", }], } }, { "component": "Transform", "kwargs": { "position": (0, 0), "orientation": "N" }, }, { "component": "StochasticIntervalEpisodeEnding", "kwargs": { "minimumFramesPerEpisode": 1000, "intervalLength": 100, # Set equal to unroll length. "probabilityTerminationPerInterval": 0.2 } } ] } return scene def create_avatar_object(player_idx: int) -> Dict[str, Any]: """Create an avatar object that always sees itself as blue.""" # Lua is 1-indexed. lua_index = player_idx + 1 color_palette = PLAYER_COLOR_PALETTES[player_idx] live_state_name = "player{}".format(lua_index) avatar_sprite_name = "avatarSprite{}".format(lua_index) avatar_object = { "name": "avatar", "components": [ { "component": "StateManager", "kwargs": { "initialState": live_state_name, "stateConfigs": [ # Initial player state. {"state": live_state_name, "layer": "upperPhysical", "sprite": avatar_sprite_name, "contact": "avatar", "groups": ["players"]}, # Player wait state used when they have been zapped out. {"state": "playerWait", "groups": ["playerWaits"]}, ] } }, { "component": "Transform", "kwargs": { "position": (0, 0), "orientation": "N" } }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [avatar_sprite_name], "spriteShapes": [shapes.CUTE_AVATAR], "palettes": [color_palette], "noRotates": [True] } }, { "component": "Avatar", "kwargs": { "index": lua_index, "aliveState": live_state_name, "waitState": "playerWait", "spawnGroup": "spawnPoints", "actionOrder": ["move", "turn", "fireZap", "fireClaim"], "actionSpec": { "move": {"default": 0, "min": 0, "max": len(_COMPASS)}, "turn": {"default": 0, "min": -1, "max": 1}, "fireZap": {"default": 0, "min": 0, "max": 1}, "fireClaim": {"default": 0, "min": 0, "max": 1}, }, "view": { "left": 5, "right": 5, "forward": 9, "backward": 1, "centered": False }, } }, { "component": "AvatarDirectionIndicator", # We do not normally use direction indicators for the MAGI suite, # but we do use them for territory because they function to claim # any resources they contact. "kwargs": {"color": (202, 202, 202, 50)} }, { "component": "Zapper", "kwargs": { "cooldownTime": 2, "beamLength": 3, "beamRadius": 1, "framesTillRespawn": 1e6, # Effectively never respawn. "penaltyForBeingZapped": 0, "rewardForZapping": 0, } }, { "component": "ReadyToShootObservation", }, { "component": "ResourceClaimer", "kwargs": { "color": color_palette["*"], "playerIndex": lua_index, "beamLength": 2, "beamRadius": 0, "beamWait": 0, } }, { "component": "LocationObserver", "kwargs": { "objectIsAvatar": True, "alsoReportOrientation": True } }, { "component": "Taste", "kwargs": { "role": "none", "rewardAmount": 1.0, } }, ] } return avatar_object def create_avatar_objects(num_players): """Returns list of avatar objects of length 'num_players'.""" avatar_objects = [] for player_idx in range(0, num_players): game_object = create_avatar_object(player_idx) avatar_objects.append(game_object) return avatar_objects def create_lab2d_settings(num_players: int) -> Dict[str, Any]: """Returns the lab2d settings.""" lab2d_settings = { "levelName": "territory", "levelDirectory": "meltingpot/lua/levels", "numPlayers": num_players, # Define upper bound of episode length since episodes end stochastically. "maxEpisodeLengthFrames": 2000, "spriteSize": 8, "topology": "TORUS", # Choose from ["BOUNDED", "TORUS"], "simulation": { "map": DEFAULT_ASCII_MAP, "gameObjects": create_avatar_objects(num_players), "scene": create_scene(), "prefabs": PREFABS, "charPrefabMap": CHAR_PREFAB_MAP, }, } return lab2d_settings def get_config(factory=create_lab2d_settings): """Default configuration for training on the territory level.""" config = config_dict.ConfigDict() # Basic configuration. config.num_players = 9 # Lua script configuration. config.lab2d_settings = factory(config.num_players) # Action set configuration. config.action_set = ACTION_SET # Observation format configuration. config.individual_observation_names = [ "RGB", "READY_TO_SHOOT", "POSITION", "ORIENTATION", ] config.global_observation_names = [ "WORLD.RGB", ] # The specs of the environment (from a single-agent perspective). config.action_spec = specs.action(len(ACTION_SET)) config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], "POSITION": specs.OBSERVATION["POSITION"], "ORIENTATION": specs.OBSERVATION["ORIENTATION"], "WORLD.RGB": specs.rgb(168, 168), }) return config
31.266667
80
0.50003
0
0
0
0
0
0
0
0
7,556
0.460311
73b6d9825bd3d60f6c8e389a888e756f7df56287
5,269
py
Python
aptitudetech_private/tasks.py
CloudGround/aptitudetech_private
d4d150226bd33ea0c76086264286ae7cae52457f
[ "MIT" ]
null
null
null
aptitudetech_private/tasks.py
CloudGround/aptitudetech_private
d4d150226bd33ea0c76086264286ae7cae52457f
[ "MIT" ]
null
null
null
aptitudetech_private/tasks.py
CloudGround/aptitudetech_private
d4d150226bd33ea0c76086264286ae7cae52457f
[ "MIT" ]
1
2019-05-17T00:04:05.000Z
2019-05-17T00:04:05.000Z
#-*- coding: utf-8 -*- import frappe import boto3 import boto3.session import rows import json import zipfile import tempfile import sqlite3 from io import BytesIO from frappe import _ from frappe.utils import cint, flt, today, getdate, get_first_day, add_to_date try: from frappe.utils import file_manager with_file_manager = True except ImportError: with_file_manager = False from frappe.core.doctype.file.file import create_new_folder SQLVIEW = """ select lineitemusageaccountid as account, lineitemproductcode as item_group, productproductfamily as item_code, productinstancetype as item_type, pricingterm as item_term, pricingunit as item_unit, strftime('%Y-%m-%d', min(billbillingperiodstartdate)) as start_date, strftime('%Y-%m-%d', max(billbillingperiodenddate)) as end_date, sum(lineitemusageamount) as consumed_units, sum(ifnull(lineitemunblendedcost, 0.0)) / sum(ifnull(lineitemusageamount, 1.0)) as cost_per_unit from billing_aptech where lineitemlineitemtype != "Tax" group by lineitemusageaccountid, lineitemproductcode, productproductfamily, productinstancetype, pricingterm, pricingunit order by lineitemusageaccountid, lineitemproductcode, productproductfamily, productinstancetype, pricingterm, pricingunit """ import_fields = u""" lineItem/UsageAccountId lineItem/LineItemType lineItem/ProductCode product/productFamily product/instanceType pricing/term pricing/unit bill/BillingPeriodStartDate bill/BillingPeriodEndDate lineItem/UsageAmount lineItem/UnblendedCost lineItem/UnblendedRate """.strip().splitlines() def download_aws(): settings = frappe.get_doc('Monthly Recurring Setup', 'Monthly Recurring Setup') _today = getdate(add_to_date(today(), months=-1)) if _today.day != cint(settings.processing_day): return session = boto3.session.Session(region_name=settings.region_name) s3client = session.client('s3', config=boto3.session.Config(signature_version='s3v4')) first_day = get_first_day(_today, 0, 0) next_month = get_first_day(_today, 0, 1) manifest = None with tempfile.NamedTemporaryFile() as temp: s3client.download_file( settings.s3_bucket, '{}/{}/{}-{}/{}-Manifest.json'.format( settings.report_name, settings.csv_file_prefix, str(first_day).replace('-', ''), str(next_month).replace('-', ''), settings.csv_file_prefix), temp.name) with open(temp.name, 'rb') as f: manifest = json.load(f) if not manifest: return data = None with tempfile.NamedTemporaryFile() as temp: s3client.download_file( settings.s3_bucket, manifest['reportKeys'][0], temp.name) with zipfile.ZipFile(temp.name) as zf: for fl in zf.filelist: data = rows.import_from_csv(BytesIO(zf.read(fl.filename)), dialect='excel', import_fields=import_fields) if not data: return tabulated = False with tempfile.NamedTemporaryFile() as temp: conn = rows.export_to_sqlite(data, temp.name, 'billing_aptech') tabulated = rows.import_from_sqlite(conn, query=SQLVIEW) if not tabulated: return if not frappe.db.exists('File', 'Home/' + settings.csv_storage_folder): create_new_folder(settings.csv_storage_folder, 'Home') if not frappe.db.exists('File', 'Home/' + settings.csv_storage_folder + '/' + str(_today.year)): create_new_folder(str(_today.year), 'Home/' + settings.csv_storage_folder) content = BytesIO() rows.export_to_csv(tabulated, content) content.seek(0) fname = ' '.join([_today.strftime('%m'), _today.strftime('%B')]) + '.csv' folder = '/'.join(['Home', settings.csv_storage_folder, _today.strftime('%Y')]) full_fname = folder + '/' + fname if full_fname: frappe.delete_doc('File', full_fname) if with_file_manager: file_manager.save_file(fname, content.read(), None, None, folder, is_private=1) else: frappe.new_doc('File').update({ 'file_name': fname, 'content': content.read(), 'folder': folder, 'is_private': 1 }).save() instructions = frappe.get_all('Service Instruction', fields=['*'], filters={'type': 'Amazon Web Services', 'group': 'AWS - Account Info'}) keys = {} for instruction in instructions: if not instruction.instruction: continue instruction_data = json.loads(instruction.instruction, object_pairs_hook=frappe._dict) keys[int(instruction_data.aws_account_id)] = [instruction.parent, frappe.db.get_value('Service', instruction.parent, 'service_plan')] for row in tabulated: if row.account in keys: mful_data = { 'service': keys[row.account][0], 'customer': frappe.db.get_value('Service', keys[row.account][0], 'customer'), 'metered_feature': 'MF-000011', 'start_date': row.start_date, 'end_date': add_to_date(row.end_date, days=-1), 'item_group': row.item_group, 'item_code': row.item_code, 'item_type': row.item_type, 'unit': row.item_unit } usage_data = { 'consumed_units': row.consumed_units, 'cost_per_unit': (row.cost_per_unit or 0.0) * flt(settings.exchange_rate) } mful = frappe.db.exists('Metered Feature Units Log', mful_data) if mful: frappe.get_doc('Metered Feature Units Log', mful).update(usage_data).save() else: frappe.new_doc('Metered Feature Units Log').update(mful_data).update(usage_data).insert()
31.933333
139
0.72974
0
0
0
0
0
0
0
0
1,737
0.329664
73b7ddfb55e7a791df45923bdbfc93d74e627ca1
1,983
py
Python
udfs/tests/test_run_udfs.py
tslr/bigquery-utils
67143b87a24bbbde684aa5ff061f80ffc27c71ed
[ "Apache-2.0" ]
null
null
null
udfs/tests/test_run_udfs.py
tslr/bigquery-utils
67143b87a24bbbde684aa5ff061f80ffc27c71ed
[ "Apache-2.0" ]
null
null
null
udfs/tests/test_run_udfs.py
tslr/bigquery-utils
67143b87a24bbbde684aa5ff061f80ffc27c71ed
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from parameterized import parameterized from google.cloud import bigquery from google.api_core.exceptions import GoogleAPICallError from utils import Utils class TestRunUDFs(unittest.TestCase): @parameterized.expand(Utils.get_all_udf_paths()) def test_run_udf_and_verify_expected_result(self, udf_path): client = bigquery.Client() bq_test_dataset = Utils.get_target_bq_dataset(udf_path) udf_name = Utils.extract_udf_name(udf_path) test_cases = Utils.load_test_cases(udf_path) if test_cases.get(udf_name): for case in test_cases[udf_name]: try: actual_result_rows = client.query( f'SELECT `{bq_test_dataset}.{udf_name}`(' f' {case["input"]} )' ).result() expected_result_rows = client.query( f'SELECT {case["expected_output"]}' ).result() for actual, expected in zip( actual_result_rows, expected_result_rows): self.assertEqual(expected, actual) except GoogleAPICallError as e: self.fail(e.message) else: self.skipTest(f'Test inputs and outputs are not provided for : {udf_path}') if __name__ == '__main__': unittest.main()
36.054545
87
0.642965
1,182
0.596067
0
0
1,139
0.574382
0
0
728
0.367121
73b8798661011cebe8aed8c67f5ab3688edd6b74
1,195
py
Python
pandas/tests/generic/test_panel.py
EternalLearner42/pandas
a2b414ccaab83e085d46e8217d5302a5d0f874f4
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/generic/test_panel.py
EternalLearner42/pandas
a2b414ccaab83e085d46e8217d5302a5d0f874f4
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/generic/test_panel.py
EternalLearner42/pandas
a2b414ccaab83e085d46e8217d5302a5d0f874f4
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from warnings import catch_warnings, simplefilter from pandas import Panel from pandas.util.testing import assert_panel_equal from .test_generic import Generic class TestPanel(Generic): _typ = Panel _comparator = lambda self, x, y: assert_panel_equal(x, y, by_blocks=True) # run all the tests, but wrap each in a warning catcher for t in ['test_rename', 'test_get_numeric_data', 'test_get_default', 'test_nonzero', 'test_downcast', 'test_constructor_compound_dtypes', 'test_head_tail', 'test_size_compat', 'test_split_compat', 'test_unexpected_keyword', 'test_stat_unexpected_keyword', 'test_api_compat', 'test_stat_non_defaults_args', 'test_truncate_out_of_bounds', 'test_metadata_propagation', 'test_copy_and_deepcopy', 'test_pct_change', 'test_sample']: def f(): def tester(self): f = getattr(super(TestPanel, self), t) with catch_warnings(record=True): simplefilter("ignore", FutureWarning) f() return tester setattr(TestPanel, t, f())
30.641026
77
0.659414
120
0.100418
0
0
0
0
0
0
500
0.41841
73b8db5714154072049f41562b46bb8f89e7deee
1,233
py
Python
shortest-paths.py
SAUSy-Lab/map-speed-test
0c9e78056017a247976ff63782c6366c5a724bf4
[ "MIT" ]
2
2017-03-31T02:16:57.000Z
2019-07-13T14:31:04.000Z
shortest-paths.py
SAUSy-Lab/map-speed-test
0c9e78056017a247976ff63782c6366c5a724bf4
[ "MIT" ]
10
2017-01-07T04:26:41.000Z
2017-03-07T21:00:27.000Z
shortest-paths.py
SAUSy-Lab/map-speed-test
0c9e78056017a247976ff63782c6366c5a724bf4
[ "MIT" ]
null
null
null
# calculate shortest paths between OD pairs # in the map_speed_od postgis table # update the shortest path geometry into the table import requests, json, psycopg2 # get OD pairs from DB conn_string = ( "host='localhost' dbname='' user='' password=''" ) connection = psycopg2.connect(conn_string) connection.autocommit = True c = connection.cursor() c.execute(""" SELECT id, ST_X(ST_StartPoint(vector)) AS lon1, ST_Y(ST_StartPoint(vector)) AS lat1, ST_X(ST_EndPoint(vector)) AS lon2, ST_Y(ST_EndPoint(vector)) AS lat2 FROM map_speed_od """) # iterate over DB pairs for (rid,lon1,lat1,lon2,lat2) in c.fetchall(): # request route for these points options = { 'geometries':'geojson', 'overview':'full', 'steps':'false', 'annotations':'false' } response = requests.get( ('http://206.167.182.17:5000/route/v1/transit/'+str(lon1)+','+str(lat1)+';'+str(lon2)+','+str(lat2)), params=options, timeout=5 ) # parse the result j = json.loads(response.text) print json.dumps(j['routes'][0]['geometry']) # insert the route result c.execute(""" UPDATE map_speed_od SET shortest_path = ST_SetSRID(ST_GeomFromGeoJSON(%s),4326) WHERE id = %s; """, (json.dumps(j['routes'][0]['geometry']),rid,) )
25.163265
103
0.687753
0
0
0
0
0
0
0
0
764
0.619627
73b9218ed262aae642dc0406539a72aa91d888bc
320
py
Python
my_tools/tools_for_os/for_file.py
Alex2Yang97/waiting_time_project
649dbaa4bd45b9b9974a5b71a8ee17fada07bcc9
[ "MIT" ]
null
null
null
my_tools/tools_for_os/for_file.py
Alex2Yang97/waiting_time_project
649dbaa4bd45b9b9974a5b71a8ee17fada07bcc9
[ "MIT" ]
12
2020-11-13T17:16:58.000Z
2021-04-23T01:25:17.000Z
my_tools/tools_for_os/for_file.py
Alex2Yang97/waiting_time_project
649dbaa4bd45b9b9974a5b71a8ee17fada07bcc9
[ "MIT" ]
null
null
null
#-*- coding:utf-8 -*- # @Time : 2020-02-15 15:49 # @Author : Zhirui(Alex) Yang # @Function : import os def create_folder(folder_name): if not os.path.exists(folder_name): os.makedirs(folder_name) print(folder_name, 'has created!') else: print(folder_name, 'already existed!')
17.777778
46
0.61875
0
0
0
0
0
0
0
0
127
0.396875
73be179d5a3f60a254ebcb05e6ce4cdd7d7c207f
7,842
py
Python
tcp_tls_tunnel/hyper_http2_adapter.py
DSAdv/tcp-tls-tunnel-py
e9b5271e4cfae1df09b9fab77db4906b7cee8337
[ "MIT" ]
1
2021-08-30T21:03:41.000Z
2021-08-30T21:03:41.000Z
tcp_tls_tunnel/hyper_http2_adapter.py
DSAdv/tcp-tls-tunnel-py
e9b5271e4cfae1df09b9fab77db4906b7cee8337
[ "MIT" ]
1
2022-03-31T12:02:29.000Z
2022-03-31T12:02:29.000Z
tcp_tls_tunnel/hyper_http2_adapter.py
DSAdv/tcp-tls-tunnel-py
e9b5271e4cfae1df09b9fab77db4906b7cee8337
[ "MIT" ]
1
2021-08-28T14:35:18.000Z
2021-08-28T14:35:18.000Z
import ssl import socket from typing import Tuple from hyper.common.util import to_native_string from urllib.parse import urlparse from hyper import HTTP11Connection, HTTPConnection from hyper.common.bufsocket import BufferedSocket from hyper.common.exceptions import TLSUpgrade from hyper.contrib import HTTP20Adapter from hyper.tls import init_context from tcp_tls_tunnel.utils import generate_basic_header, generate_proxy_url from tcp_tls_tunnel.dto import ProxyOptions, AdapterOptions, TunnelOptions from tcp_tls_tunnel.exceptions import ProxyError def _create_tunnel(tunnel_opts: TunnelOptions, dest_host: str, dest_port: int, server_name: str = None, proxy: ProxyOptions = None, timeout: int = None) -> Tuple[socket.socket, str]: """ Sends CONNECT method to a proxy and returns a socket with established connection to the target. :returns: socket, proto """ headers = { "Authorization": generate_basic_header(tunnel_opts.auth_login, tunnel_opts.auth_password), "Client": tunnel_opts.client.value, "Connection": 'keep-alive', "Server-Name": server_name or dest_host, "Host": tunnel_opts.host, "Secure": str(int(tunnel_opts.secure)), "HTTP2": str(int(tunnel_opts.http2)), } if proxy: headers["Proxy"] = generate_proxy_url(proxy=proxy) conn = HTTP11Connection(tunnel_opts.host, tunnel_opts.port, timeout=timeout) conn.request('CONNECT', '%s:%d' % (dest_host, dest_port), headers=headers) resp = conn.get_response() try: proto = resp.headers.get("Alpn-Protocol")[0].decode('utf-8') except TypeError: proto = 'http/1.1' if resp.status != 200: raise ProxyError( "Tunnel connection failed: %d %s" % (resp.status, to_native_string(resp.reason)), response=resp ) return getattr(conn, "_sock"), proto class TunnelHTTP20Adapter(HTTP20Adapter): def __init__(self, adapter_opts: AdapterOptions, proxy_opts: ProxyOptions = None, window_manager=None, *args, **kwargs): super(TunnelHTTP20Adapter, self).__init__(window_manager=window_manager, *args, **kwargs) self.adapter_opts = adapter_opts self.proxy_opts = proxy_opts def get_connection(self, host, port, scheme, cert=None, verify=True, proxy=None, timeout=None): """ Gets an appropriate HTTP/2 connection object based on host/port/scheme/cert tuples. """ secure = (scheme == 'https') if port is None: # pragma: no cover port = 80 if not secure else 443 ssl_context = None if not verify: verify = False ssl_context = init_context(cert=cert) ssl_context.check_hostname = False ssl_context.verify_mode = ssl.CERT_NONE elif verify is True and cert is not None: ssl_context = init_context(cert=cert) elif verify is not True: ssl_context = init_context(cert_path=verify, cert=cert) if proxy: proxy_headers = self.proxy_headers(proxy) proxy_netloc = urlparse(proxy).netloc else: proxy_headers = None proxy_netloc = None # We put proxy headers in the connection_key, because # ``proxy_headers`` method might be overridden, so we can't # rely on proxy headers being the same for the same proxies. proxy_headers_key = (frozenset(proxy_headers.items()) if proxy_headers else None) connection_key = (host, port, scheme, cert, verify, proxy_netloc, proxy_headers_key) try: conn = self.connections[connection_key] except KeyError: conn = TunnelHTTPConnection( self.adapter_opts, self.proxy_opts, host=host, port=port, secure=secure, ssl_context=ssl_context, proxy_host=proxy_netloc, proxy_headers=proxy_headers, enable_push=True, timeout=timeout, ) self.connections[connection_key] = conn return conn class TunnelHTTPConnection(HTTPConnection): def __init__(self, adapter_opts: AdapterOptions, proxy_opts: ProxyOptions = None, host=None, port=None, secure=None, enable_push=False, ssl_context=None, proxy_host=None, proxy_port=None, proxy_headers=None, timeout=None, **kwargs): super().__init__(host=host, port=port, secure=secure, enable_push=enable_push, ssl_context=ssl_context, proxy_host=proxy_host, proxy_port=proxy_port, proxy_headers=proxy_headers, timeout=timeout, **kwargs) self._conn = TunnelHTTP11Connection( tunnel_opts=TunnelOptions( host=adapter_opts.host, port=adapter_opts.port, auth_login=adapter_opts.auth_login, auth_password=adapter_opts.auth_password, client=adapter_opts.client, secure=secure, http2=True ), proxy_opts=proxy_opts, host=self._host, port=self._port, **self._h1_kwargs ) def __exit__(self, type, value, tb): # pragma: no cover self._conn.close() return False class TunnelHTTP11Connection(HTTP11Connection): def __init__(self, tunnel_opts: TunnelOptions, proxy_opts: ProxyOptions = None, host=None, port=None, secure=None, ssl_context=None, proxy_host=None, proxy_port=None, proxy_headers=None, timeout=None, **kwargs): super(TunnelHTTP11Connection, self).__init__(host=host, port=port, secure=secure, ssl_context=ssl_context, proxy_host=proxy_host, proxy_port=proxy_port, proxy_headers=proxy_headers, timeout=timeout, **kwargs) self.tunnel_opts = tunnel_opts self.proxy_opts = proxy_opts self.timeout = timeout def connect(self): """ Connect to the server specified when the object was created. This is a no-op if we're already connected. :returns: Nothing. """ if self._sock is None: # Tunnel socket creation with tunnel's TLS proto sock, proto = _create_tunnel( tunnel_opts=self.tunnel_opts, proxy=self.proxy_opts, dest_host=self.host, dest_port=self.port, server_name=None, # TODO: server_name timeout=self.timeout ) sock = BufferedSocket(sock, self.network_buffer_size) sock.settimeout(self.timeout) # Set read timeout if self.secure is not True: proto = 'http/1.1' if proto not in ('http/1.1', None): raise TLSUpgrade(proto, sock) self._sock = sock return
35.165919
98
0.561464
5,821
0.742285
0
0
0
0
0
0
917
0.116934
73bfa3453754f3fe35dd27f3bb51112f146dfd38
1,387
py
Python
get_variances.py
OmnesRes/GRIMMER
173c99ebdb6a9edb1242d24a791d0c5d778ff643
[ "MIT" ]
4
2017-02-20T12:03:29.000Z
2018-10-27T14:06:07.000Z
get_variances.py
OmnesRes/GRIMMER
173c99ebdb6a9edb1242d24a791d0c5d778ff643
[ "MIT" ]
1
2019-10-08T17:39:30.000Z
2019-10-11T20:56:50.000Z
get_variances.py
OmnesRes/GRIMMER
173c99ebdb6a9edb1242d24a791d0c5d778ff643
[ "MIT" ]
null
null
null
from itertools import * import time import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) #my own variance function runs much faster than numpy or the Python 3 ported statistics module def variance(data,u): return sum([(i-u)**2 for i in data])/len(data) ##rounding the means and variances helps to collapse them precision_ave=16 precision_var=12 def run(n,r): all_deviations={} start=time.clock() for i in combinations_with_replacement(range(n), r): if n-1 in i: u=round(sum(i)/float(len(i)),precision_ave) var=round(variance(i,u),precision_var) if var not in all_deviations: all_deviations[var]={u:''} else: all_deviations[var][u]='' end=time.clock() duration=end-start data=sorted(all_deviations.keys()) f=open(os.path.join(BASE_DIR,'raw_variances',str(r)+'.txt'),'w') #write a header line that includes time to complete f.write(str(n)+' '+str(duration)) f.write('\n') for i in data: f.write(str(i)) f.write('\t') f.write(str(sorted(all_deviations[i].keys()))) f.write('\n') f.close() ##perform runs #n can probably just be set to 7 or even lower #code will take a while, you should run copies of this script in parallel for r in range(5,100): n=30-r if n<=7: n=7 run(n,r)
26.169811
94
0.626532
0
0
0
0
0
0
0
0
378
0.272531
73c1b51a0130489b93a3586b1b8afac1d574b406
621
py
Python
utils/pagenation.py
Andrewpqc/URL-shortener
74943b9f1f787e243a32e27eec425eb51f84e65e
[ "MIT" ]
9
2018-07-01T11:19:05.000Z
2021-12-30T03:00:03.000Z
utils/pagenation.py
Andrewpqc/URL-shortener
74943b9f1f787e243a32e27eec425eb51f84e65e
[ "MIT" ]
1
2020-12-09T23:46:04.000Z
2020-12-09T23:46:04.000Z
utils/pagenation.py
Andrewpqc/URL-shortener
74943b9f1f787e243a32e27eec425eb51f84e65e
[ "MIT" ]
1
2018-06-06T15:10:57.000Z
2018-06-06T15:10:57.000Z
# coding: utf-8 """ paginate.py ``````````` : 分页api """ from flask import url_for def pagination(lit, page, perpage,endpoint): """ 返回当前分页的列表对象, next、last链接 {current: next_lit} """ _yu = len(lit) % perpage _chu = len(lit) // perpage if _yu == 0: last = _chu else: last = _chu + 1 current = lit[perpage*(page-1): perpage*page] next_page = "" if page < last: next_page = url_for(endpoint, page=page+1) elif page == last: next_page = "" last_page = url_for(endpoint, page=last) return [current, (next_page, last_page)]
20.7
50
0.558776
0
0
0
0
0
0
0
0
170
0.260337
73c3330e453fbfebace232606fc0f58589eb269b
5,272
py
Python
app/default/rest_train.py
dbhack-aquila/aquila
5fd31665fcfdb2a1ba341f5c98d44668e467add8
[ "MIT" ]
1
2017-12-16T14:51:54.000Z
2017-12-16T14:51:54.000Z
app/default/rest_train.py
dbhack-aquila/aquila
5fd31665fcfdb2a1ba341f5c98d44668e467add8
[ "MIT" ]
null
null
null
app/default/rest_train.py
dbhack-aquila/aquila
5fd31665fcfdb2a1ba341f5c98d44668e467add8
[ "MIT" ]
null
null
null
import pandas as pd from . import default import wikipedia import json from flask import jsonify import re import os import multiprocessing import requests import urllib import hashlib df = 0 wikipedia.set_lang("de") def init(): path = os.path.dirname(os.path.abspath(__file__)) + "/surveyor_hackathon_data_20171212.csv" global df df = pd.read_csv(path, sep=';', decimal='.', skiprows=0, nrows=100000) # Read one row df = df.sort_values('created') df = df.filter(items=['sid', 'gps_breite', 'gps_laenge']) df.rename(columns={'gps_laenge': 'trainLongitude', 'gps_breite': 'trainLatitude'}, inplace=True) # TODO sort by time def get_first_image_thumbnail(wikipedia_page): htmlcode = wikipedia_page.html() try: imgcode = re.search('<img.*src=".*".*/>', htmlcode).group(0) imagecode_array = imgcode.split() for imagecode_part in imagecode_array: if "src=" in imagecode_part: imagecode_array = imagecode_part.split('"') break for imagecode_part in imagecode_array: if "//" in imagecode_part: return "https:" + imagecode_part except: return '' def get_first_image(thumbnail_url): try: if thumbnail_url == "": return "" return thumbnail_url.split("thumb/")[0] + thumbnail_url.split("thumb/")[1].rsplit("/", 1)[0] except: return '' def get_wikidata_id(article): """Find the Wikidata ID for a given Wikipedia article.""" dapp = urllib.parse.urlencode({"action": "query", "prop": "pageprops", "ppprop":"wikibase_item", "redirects": 1, "format": "json", "titles": article}) query_string = "https://de.wikipedia.org/w/api.php?%s" % dapp ret = requests.get(query_string).json() id = next(iter(ret["query"]["pages"])) # TODO: Catch the case where article has no Wikidata ID # This can happen for new or seldomly edited articles return ret["query"]["pages"][id]["pageprops"]["wikibase_item"] def get_wikidata_image(wikidata_id): """Return the image for the Wikidata item with *wikidata_id*. """ query_string = ("https://www.wikidata.org/wiki/Special:EntityData/%s.json" % wikidata_id) item = json.loads(requests.get(query_string).text) wdata = item["entities"][wikidata_id]["claims"] try: image = wdata["P18"][0]["mainsnak"]["datavalue"]["value"].replace(" ", "_") except KeyError: print("No image on Wikidata.") else: md = hashlib.md5(image.encode('utf-8')).hexdigest() image_url = ("https://upload.wikimedia.org/wikipedia/commons/thumb/%s/%s/%s/64px-%s" % (md[0], md[:2], image, image)) return image_url def get_wikidata_desc(wikidata_id): """Return the image for the Wikidata item with *wikidata_id*. """ dapp = urllib.parse.urlencode({'action':'wbgetentities','ids':get_wikidata_id(wikidata_id),'languages':'de'}) query_string = "https://www.wikidata.org/w/api.php?" + dapp res = requests.get(query_string).text print(query_string) item = json.loads(res) wdata = item["entities"][wikidata_id]["descriptions"]["de"]["value"] return wdata def get_first_image_2(page): wid = get_wikidata_id(page) return get_wikidata_image(wid) def get_poi(poi): poi, rest = poi.split(";lat") lat, lon = rest.split(";lon") npoi = {} urls = [] npoi['name'] = poi wid = get_wikidata_id(poi) info = wikipedia.page(poi) npoi['description'] = info.summary # get_wikidata_desc(poi) npoi['latitude'] = float(lat) npoi['longitude'] = float(lon) thumbnail_url = get_first_image_thumbnail(info) npoi['thumbnailUrl'] = thumbnail_url npoi['imageUrl'] = get_first_image(thumbnail_url) # get_wikidata_image(wid) urls.append(info.url) npoi['linkUrls'] = urls return npoi @default.route('/gps/<int:trainid>/<int:time>') def browse(trainid, time): global df df_temp = df[df['sid'] == trainid] gjson = df_temp.iloc[time].to_dict() result = requests.get("http://api.wikunia.de/sights/api.php?lat=" + str(df_temp.iloc[time]['trainLatitude']) + "&lon=" + str(df_temp.iloc[time]['trainLongitude']) + "&rad=0.05&limit=10") print(str(df_temp.iloc[time]['trainLatitude']), str(df_temp.iloc[time]['trainLongitude'])) rJson = json.loads(result.text) pois=[] print(rJson) for _, poi in rJson.items(): if isinstance(poi, dict): print(poi['sight']) pois.append(poi['sight']+";lat"+poi['lat']+";lon"+poi['lon']) print(len(pois)) #pois = wikipedia.geosearch(df_temp.iloc[time]['trainLatitude'], df_temp.iloc[time]['trainLongitude']) poi_list = [] pool = multiprocessing.Pool(processes=multiprocessing.cpu_count()) poi_list = pool.map(get_poi, pois) pool.close() #for i in pois: # poi_list.append(get_poi(i)) gjson['pois'] = poi_list return jsonify(dict(gjson)) if __name__ == "__main__": wid = get_wikidata_id("Limburger Dom") image_url = get_wikidata_image(wid) print(image_url)
33.579618
190
0.624241
0
0
0
0
1,089
0.206563
0
0
1,569
0.29761
73c42c7f51f7b24a02fde60345ef5bd395fee637
246
py
Python
tools/python_api_Easytest/out.py
xutongxin1/UnitAi-project
226ccc7d73096fd3582a55bf76593756d8033892
[ "MIT" ]
5
2019-03-23T09:21:14.000Z
2019-10-18T11:31:10.000Z
tools/python_api_Easytest/out.py
xutongxin1/UnitAi-project
226ccc7d73096fd3582a55bf76593756d8033892
[ "MIT" ]
null
null
null
tools/python_api_Easytest/out.py
xutongxin1/UnitAi-project
226ccc7d73096fd3582a55bf76593756d8033892
[ "MIT" ]
2
2020-01-12T06:03:44.000Z
2020-01-17T00:23:20.000Z
import json,requests def test(): url='http://localhost:5000/login' headers = {'Content-Type':'application/json'} data={ "user": "xutongxin" } req = requests.post(url, json.dumps(data), headers) result = json.loads(req.text) print(test)
22.363636
52
0.686992
0
0
0
0
0
0
0
0
78
0.317073
73c50231a058cf0ef478478e7a36afc7a3fd3081
3,481
py
Python
src/cam_loop.py
stay-whimsical/screamchess
4950d480f8f33db2bc3f2d94eea5dc6706ae8087
[ "MIT" ]
2
2019-06-19T20:25:12.000Z
2021-06-04T04:43:36.000Z
src/cam_loop.py
pablo-meier/screamchess
4950d480f8f33db2bc3f2d94eea5dc6706ae8087
[ "MIT" ]
8
2017-08-19T07:09:55.000Z
2017-08-20T21:11:11.000Z
src/cam_loop.py
pablo-meier/screamchess
4950d480f8f33db2bc3f2d94eea5dc6706ae8087
[ "MIT" ]
1
2020-04-17T00:19:43.000Z
2020-04-17T00:19:43.000Z
from camera import board_image_processor as bip from chess.models import * import cv2 import numpy as np from media.sound import * def show_webcam(mirror=False): cam = cv2.VideoCapture(0) while True: ret_val, img = cam.read() #chess_state = process_image(img) cv2.imshow('webcam', img) if cv2.waitKey(1) == 27: break def one_frame(id=0): cam = cv2.VideoCapture(id) ret_val, img = cam.read() #print("width: " + str(cam.get(3))) #print("height: " + str(cam.get(4))) # cv2.imwrite("testimage3.png", img) return img def show_all_hsv_color_ranges(steps, board_processor): step_size = 180/steps hsv = one_frame() for i in range(steps): lower = np.array([i*step_size, 50, 50]) upper = np.array([(i+1)*step_size, 255, 255]) conv = board_processor._get_convolved_image(hsv, (lower, upper)) board_processor._show_image(conv) def test_color_ranges(): board_processor = bip.BoardProcessor() red = (np.array([0, 50, 50]), np.array([18, 255, 255])) green = (np.array([19, 50, 50]), np.array([36, 255, 255])) blue = (np.array([90, 50, 50]), np.array([108, 255, 255])) color_map = {'W': green, 'B': blue} board_processor.set_color_map(color_map) return board_processor def blend_images(num): alpha = 0.5 beta = 1.0 - alpha gamma = 0.0 img = one_frame() for i in range(num): img2 = one_frame() img = cv2.addWeighted(img, alpha, img2, beta, gamma) return img def main_get_color_ranges(): board_processor = bip.BoardProcessor(debug_image_mode=False) show_all_hsv_color_ranges(10, board_processor) def main(): print 'Now initializing board processor' board_processor = bip.BoardProcessor(debug_image_mode=False) #board_processor = test_color_ranges() #board_processor = bip.BoardProcessor() state = board_processor.get_cur_state() board = Board() while True: #img = one_frame() print 'reading 5 frames' try: img = blend_images(5) tmp_im_path = '/tmp/img.jpg' cv2.imwrite(tmp_im_path, img) board_processor._cache_pil_im(tmp_im_path) board_processor._show_image(img, show_this_image=False) print 'updating state' board_processor.update_state(img) ret_state = board_processor.get_cur_state() if ret_state != state: pieces = [] for i in range(0,8): for j in range(0,8): if board.state[i][j].piece: pieces.append(board.state[i][j].piece) piece_index = random.randint(0, len(pieces) - 1) if pieces: play_sound(pieces[piece_index], random_action()) print '\033[34;1m Got state change, new state = \033[0m' for row in ret_state: m = [] for x in row: if x is None: m.append('-') else: m.append('P') print m state = ret_state else: print 'No new state', except Exception as e: print '\033[31;1m GOT EXCEPTION', e, '\033[0m' # show_webcam() if __name__ == '__main__': main() #main_get_color_ranges()
33.152381
72
0.564493
0
0
0
0
0
0
0
0
485
0.139328
73c507797796f3d05c197c7fb4b73550955df8ce
2,854
py
Python
__train/preprocessing.py
aiddun/jazzCNN
f2d60d1b0697e71327e1d6d2bb9af6407e1253d1
[ "MIT" ]
1
2018-03-02T09:59:36.000Z
2018-03-02T09:59:36.000Z
_evaluate/preprocessing.py
AidDun/jazzCNN
f2d60d1b0697e71327e1d6d2bb9af6407e1253d1
[ "MIT" ]
3
2020-11-13T17:17:54.000Z
2022-02-09T23:27:21.000Z
_evaluate/preprocessing.py
AidDun/jazzCNN
f2d60d1b0697e71327e1d6d2bb9af6407e1253d1
[ "MIT" ]
null
null
null
import numpy as np from numpy import random import glob import scipy.io.wavfile np.random.seed(4) def preprocess(periods, testCategoryNum): periodList = periods catNum = len(periodList) def createpathlist(): print("Loading file paths.") x = [] y = [] for recDirIndex in range(len(periodList)): rnge = periodList[recDirIndex] bottomrange = rnge[0] toprange = rnge[1] for i in range(bottomrange, toprange): recYearDirIndex = glob.glob("..//FINAL//" + str(i) + "//*.wav") for n in range(len(recYearDirIndex)): path = recYearDirIndex[n] x.append(path) y.append(recDirIndex) #Created 2 original arrays for readability print("Done.") return np.array(x), np.array(y) def truncateData(): x, y = createpathlist() #Least prevalent category originalLengths = [] for n in range(catNum): originalLengths.append(np.count_nonzero(y == n)) minimumNum = min(originalLengths) for n in range(catNum): while( y.tolist().count(n) > minimumNum ): #First occuring instance for q in range(y.size): if y[q] == n: y = np.delete(y, q) x = np.delete(x, q) break return x, y def psudoRandomOrder(): x, y = truncateData() print("") print("Psudo-randomising Data") randOrder = np.random.permutation(x.shape[0]) x, y = x[randOrder], y[randOrder] print("Shuffled.") return x, y def BatchSeparator(): x, y = psudoRandomOrder() print("") print("Separating data into testing and training set.") x_test = [] y_test = [] for n in range(catNum): while( y_test.count(n) < testCategoryNum ): #first occuring instance for q in range(y.size): if y[q] == n: x_test.append(x[q]) x = np.delete(x, q) y_test.append(y[q]) y = np.delete(y, q) break x_test = np.array(y_test) y_test = np.array(y_test) x_train = np.array(x) y_train = np.array(y) return x_train, y_train, x_test, y_test x_train, y_train, x_test, y_test = BatchSeparator() print("Created training set of " + str(y_train.size) + " recordings and a testing set of " + str(y_test.size) + " recordings.") print("Preproccessing complete.") return x_train, y_train, x_test, y_test
25.711712
131
0.501402
0
0
0
0
0
0
0
0
353
0.123686
73c590592e5f6c7d80e9e638ac61992cbf513263
49
py
Python
test/fixtures/python/analysis/main1.py
matsubara0507/semantic
67899f701abc0f1f0cb4374d8d3c249afc33a272
[ "MIT" ]
8,844
2019-05-31T15:47:12.000Z
2022-03-31T18:33:51.000Z
test/fixtures/python/analysis/main1.py
matsubara0507/semantic
67899f701abc0f1f0cb4374d8d3c249afc33a272
[ "MIT" ]
401
2019-05-31T18:30:26.000Z
2022-03-31T16:32:29.000Z
test/fixtures/python/analysis/main1.py
matsubara0507/semantic
67899f701abc0f1f0cb4374d8d3c249afc33a272
[ "MIT" ]
504
2019-05-31T17:55:03.000Z
2022-03-30T04:15:04.000Z
import a as b import b.c as e b.foo(1) e.baz(1)
8.166667
15
0.632653
0
0
0
0
0
0
0
0
0
0
73c5ed5d0d7202bd31940ec8f1e4251cfbaeba8a
10,054
py
Python
app/views.py
allthingsclowd/K5_User_Onboarding_Example
313b0033ceb015cca86574762915e02000d4bbbb
[ "MIT" ]
null
null
null
app/views.py
allthingsclowd/K5_User_Onboarding_Example
313b0033ceb015cca86574762915e02000d4bbbb
[ "MIT" ]
null
null
null
app/views.py
allthingsclowd/K5_User_Onboarding_Example
313b0033ceb015cca86574762915e02000d4bbbb
[ "MIT" ]
null
null
null
#!/usr/bin/python """Summary - Flask Views Used to Control/Wrap a web UI around the Add User Python Script Author: Graham Land Date: 08/12/16 Twitter: @allthingsclowd Github: https://github.com/allthingscloud Blog: https://allthingscloud.eu """ from flask import flash, render_template, session, request, redirect, url_for, json, make_response from app import app import os,binascii import AddUserToProjectv3 as K5User import k5APIwrappersV19 as K5API from functools import wraps app.secret_key = os.urandom(24) JSESSION_ID = binascii.b2a_hex(os.urandom(16)) def login_required(f): """Summary - Decorator used to ensure that routes channeled through this function are authenticated already Otherwise they're returned to the login screen """ @wraps(f) def decorated_function(*args, **kwargs): if session['regionaltoken'] is None: return redirect(url_for('index', next=request.url)) return f(*args, **kwargs) return decorated_function @app.route('/', methods=['GET', 'POST']) @app.route('/login', methods=['GET', 'POST']) def index(): """Summary - Default login screen used to capture user login details and authenticate user session """ session['regionaltoken'] = None if request.headers.get('x-forwarded-proto') != 'https': secure_url=request.url.replace("http://","https://") return redirect(secure_url) if request.method == 'POST': adminUser = request.form.get('k5username', None) adminPassword = request.form.get('k5password', None) contract = request.form.get('k5contract', None) region = request.form.get('k5region', None) #print adminUser, adminPassword, contract, region try: regional_token = K5API.get_unscoped_token( adminUser, adminPassword, contract, region) #print regional_token #print regional_token.json() defaultid = regional_token.json()['token']['project'].get('id') global_token = K5API.get_globally_scoped_token( adminUser, adminPassword, contract, defaultid, region) if not isinstance(regional_token, str): #print "Got this far!!" for role in regional_token.json()['token']['roles']: if role['name'] == 'cpf_admin': session['adminUser'] = adminUser session['adminPassword'] = adminPassword session['regionaltoken'] = regional_token.headers[ 'X-Subject-Token'] session['globaltoken'] = global_token.headers[ 'X-Subject-Token'] session['contract'] = contract session['contractid'] = regional_token.json()['token']['project'][ 'domain'].get('id') session['defaultprjid'] = regional_token.json()['token'][ 'project'].get('id') session['region'] = region #print "Downloads" #print session['bubbles'].json() return redirect(url_for('adduser')) else: return render_template('hello-flask-login.html', title='K5 User Onboarding Portal (Demo)') except: return render_template('hello-flask-login.html', title='K5 User Onboarding Portal (Demo)') else: resp = make_response(render_template('hello-flask-login.html', title='K5 User Onboarding Portal (Demo)')) resp.set_cookie('JSESSIONID',JSESSION_ID) return resp @app.route('/adduser', methods=['GET', 'POST']) @login_required def adduser(): """Summary - Call the add user function """ if request.method == 'POST': if request.form.get('AddUser', None) == "Add User": adminUser = session['adminUser'] adminPassword = session['adminPassword'] contract = session['contract'] contractid = session['contractid'] region = session['region'] defaultprjid = session['defaultprjid'] try: regional_token = K5API.get_unscoped_token( adminUser, adminPassword, contract, region) global_token = K5API.get_globally_scoped_token( adminUser, adminPassword, contract, defaultprjid, region) id_token = K5API.get_unscoped_idtoken( adminUser, adminPassword, contract) except: return render_template('hello-flask-login.html', title='K5 User Onboarding Portal (Demo)') newregionaltoken = regional_token.headers['X-Subject-Token'] newglobaltoken = global_token.headers['X-Subject-Token'] email = request.form.get('k5useremail', None) userProject = request.form.get('k5project', None) userProjectA = unicode(userProject) + unicode('a') userProjectB = unicode(userProject) + unicode('b') try: resultprojecta = K5User.adduser_to_K5(id_token, newglobaltoken, newregionaltoken, contractid, contract, region, email, userProjectA) resultprojectb = K5User.adduser_to_K5(id_token, newglobaltoken, newregionaltoken, contractid, contract, region, email, userProjectB) #print result except: return render_template('hello-flask-login.html', title='K5 User Onboarding Portal (Demo)') if resultprojecta is not None: #print result session['newuserlogin'] = resultprojecta[2] session['newuserpassword'] = resultprojecta[4] session['newuserstatusa'] = resultprojecta[5] session['newuserprojecta'] = userProjectA session['newuserstatusb'] = resultprojectb[5] session['newuserprojectb'] = userProjectB session['newusercontract'] = contract session['newuserregion'] = region return redirect(url_for('userstatus')) else: if request.form.get('Logout', None) == "Logout": return redirect(url_for('logout')) if request.method == 'GET': region = session['region'] defaultprjid = session['defaultprjid'] regionaltoken = session['regionaltoken'] # report_bubbles = json.dumps(download_item_in_storage_container( # regionaltoken, # defaultprjid, # "Bubbles", # "Bubbles.json", region).json()) report_bubbles = [{ "name": "Test"}] #print "\n\n\nLoading JSON Details..................\n\n\n" #print "The actual JSON File.................." #print report_bubbles return render_template('hello-flask-adduser.html', title='K5 Add User', bubbles=report_bubbles) @app.route('/userstatus', methods=['GET', 'POST']) @login_required def userstatus(): """Summary - Display the results of the user add request """ if request.method == 'POST': if request.form.get('AddUser', None) == "Add Another User": return redirect(url_for('adduser')) else: if request.form.get('Logout', None) == "Logout": return redirect(url_for('logout')) if request.method == 'GET': username = session['newuserlogin'] userpassword = session['newuserpassword'] userstatusa = session['newuserstatusa'] userprojecta = session['newuserprojecta'] userstatusb = session['newuserstatusb'] userprojectb = session['newuserprojectb'] usercontract = session['newusercontract'] usercontractid = session['contractid'] userregion = session['newuserregion'] return render_template('hello-flask-result.html', title='K5 New User Details', userstatus=( 'Username : ' + username + ' | Password : ' + userpassword + ' | Project 1 : ' + userprojecta + ' | Status : ' + userstatusa + ' | Project 2 : ' + userprojectb + ' | Status : ' + userstatusb + ' | Contract : ' + usercontract + ' | Contract ID : ' + usercontractid + ' | Region : ' + userregion)) @app.route('/logout') @login_required def logout(): """Summary - Dump the user session cookies on logout """ # remove session vars session.pop('regionaltoken', None) session.pop('globaltoken', None) session.pop('adminUser', None) session.pop('adminPassword', None) return redirect(url_for('index'))
41.717842
98
0.514919
0
0
0
0
9,207
0.915755
0
0
2,940
0.292421
73c828b9d6fbfbe855a2020cf66b582e67bedfef
867
py
Python
src/users/models.py
gabrielstork/django-to-do-list
756f636fc531f131bbf0649c14272178ce13d957
[ "MIT" ]
6
2021-11-15T18:56:44.000Z
2022-02-15T10:02:24.000Z
src/users/models.py
gabrielstork/django-to-do-list
756f636fc531f131bbf0649c14272178ce13d957
[ "MIT" ]
1
2022-02-14T20:28:39.000Z
2022-02-14T20:28:39.000Z
src/users/models.py
gabrielstork/django-to-do-list
756f636fc531f131bbf0649c14272178ce13d957
[ "MIT" ]
null
null
null
from django.contrib.auth.models import AbstractUser from django.core.validators import MinLengthValidator from django.utils.translation import gettext_lazy as _ from django.db import models from . import validators class User(AbstractUser): min_length_validator = MinLengthValidator( limit_value=3, message=_('At least 3 characters are required.') ) characters_validator = validators.CharactersValidator() username = models.CharField( _('username'), max_length=15, primary_key=True, help_text=_('Required. 3-15 characters. Letters and numbers only.'), validators=[characters_validator, min_length_validator], error_messages={ 'unique': _('A user with that username already exists.'), }, ) first_name = None last_name = None REQUIRED_FIELDS = []
27.967742
76
0.690888
649
0.748558
0
0
0
0
0
0
152
0.175317
73c9920f5c36cc9f240880ba80cb675e0c7cb5ca
5,135
py
Python
readux/books/abbyyocr.py
jpkarlsberg/readux
50a895dcf7d64b753a07808e9be218cab3682850
[ "Apache-2.0" ]
null
null
null
readux/books/abbyyocr.py
jpkarlsberg/readux
50a895dcf7d64b753a07808e9be218cab3682850
[ "Apache-2.0" ]
null
null
null
readux/books/abbyyocr.py
jpkarlsberg/readux
50a895dcf7d64b753a07808e9be218cab3682850
[ "Apache-2.0" ]
null
null
null
''' :class:`eulxml.xmlmap.XmlObject` classes for working with ABBYY FineReadux OCR XML. Currently supports **FineReader6-schema-v1** and **FineReader8-schema-v2**. ---- ''' from eulxml import xmlmap class Base(xmlmap.XmlObject): '''Base :class:`eulxml.xmlmap.XmlObject` for ABBYY OCR XML with common namespace declarations. ''' ROOT_NAMESPACES = { 'fr6v1': 'http://www.abbyy.com/FineReader_xml/FineReader6-schema-v1.xml', 'fr8v2': 'http://www.abbyy.com/FineReader_xml/FineReader8-schema-v2.xml' } 'namespaces for supported versions of FineReader xml' id = xmlmap.StringField('@xml:id') def frns(xpath): '''Utility function to convert a simple xpath to match any of the configured versions of ABBYY FineReader XML namespaces. Example conversions: * ``page`` becomes ``f1:page|f2:page`` * ``text/par`` becomes ``f1:page/f1:text|f2:page/f2:text`` Uses all declared namespace prefixes from :attr:`Base.ROOT_NAMESPACES` ''' namespaces = Base.ROOT_NAMESPACES.keys() return '|'.join('/'.join('%s:%s' % (ns, el) for el in xpath.split('/')) for ns in namespaces) class Formatting(Base): '''A group of characters in a single :class:`Line` with uniform formatting.''' ROOT_NAME = 'formatting' language = xmlmap.StringField('@lang') 'language of this formatted section' text = xmlmap.StringField('text()') 'text value' # char params ? # boolean attributes for: ff, fs, bold, italic, subscript, superscript, # smallcaps, underline, strikeout, color, scaling, spacing class Line(Base): '''A single line of text in a :class:`Paragraph`.''' ROOT_NAME = 'line' baseline = xmlmap.IntegerField('@baseline') 'integer baseline' left = xmlmap.IntegerField('@l') 'integer left' top = xmlmap.IntegerField('@t') 'integer top' right = xmlmap.IntegerField('@r') 'integer right' bottom = xmlmap.IntegerField('@b') 'integer bottom' formatted_text = xmlmap.NodeListField(frns('formatting'), Formatting) 'list of :class:`Formatting` elements' class Paragraph(Base): '''A single paragraph of text somewhere in a :class:`Document`.''' ROOT_NAME = 'par' align = xmlmap.StringField('@align') # default is Left; Center, Right, Justified 'text alignment (Left, Center, Right, Justified)' left_indent = xmlmap.IntegerField('@leftIndent') 'integer left indent' right_indent = xmlmap.IntegerField('@rightIndent') 'integer right indent' start_indent = xmlmap.IntegerField('@startIndent') 'integer start indent' line_spacing = xmlmap.IntegerField('@lineSpacing') 'integer line spacing' # dropChars stuff ? lines = xmlmap.NodeListField(frns('line'), Line) 'list of :class:`Line` elements' class Block(Base): ROOT_NAME = 'page' '''A single block of content on a :class:`Page`.''' type = xmlmap.StringField('@blockType') # Text, Table, Picture, Barcode 'type of block (Text, Table, Picture, Barcode)' left = xmlmap.IntegerField('@l') 'integer left' top = xmlmap.IntegerField('@t') 'integer top' right = xmlmap.IntegerField('@r') 'integer right' bottom = xmlmap.IntegerField('@b') 'integer bottom' # must have one & only one region; # region/rect dimensions appears to be redundant... paragraphs = xmlmap.NodeListField(frns('text/par'), Paragraph) 'list of :class:`Paragraph` elements' class Page(Base): '''A single page of a :class:`Document`.''' ROOT_NAME = 'page' width = xmlmap.IntegerField('@width') 'integer width' height = xmlmap.IntegerField('@height') 'integer height' resolution = xmlmap.IntegerField('@resolution') 'integer resolution' blocks = xmlmap.NodeListField(frns('block'), Block) 'list of :class:`Block` elements in this page' text_blocks = xmlmap.NodeListField(frns('block[@blockType="Text"]'), Block) 'text :class:`Block` elements (where type is "Text")' picture_blocks = xmlmap.NodeListField(frns('block[@blockType="Picture"]'), Block) 'picture :class:`Block` elements (where type is "Picture")' # block position info possibly redundant? map paragraphs directly paragraphs = xmlmap.NodeListField(frns('block/text/par'), Paragraph) 'list of :class:`Paragraph` elements in any of the blocks on this page' class Document(Base): ''':class:`~eulxml.xmlmap.XmlObject` class for an ABBYY OCR XML Document. .. Note:: Currently there is no support for tabular formatting elements. ''' ROOT_NAME ='document' pages = xmlmap.NodeListField(frns('page'), Page) 'pages as :class:`Page`' page_count = xmlmap.IntegerField('@pagesCount') 'integer page_count (document ``@pagesCount``)' language = xmlmap.StringField('@mainLanguage') 'main language of the document' languages = xmlmap.StringField('@languages') 'all languages included in the document'
36.161972
84
0.651996
4,388
0.854528
0
0
0
0
0
0
2,947
0.573905
73c9e7bedf96216a6d9365965c340b5bab6a369e
742
py
Python
Aulas/aula14.py
adonaifariasdev/cursoemvideo-python3
1fd35e45b24c52013fa3bc98e723971db8e6b7d1
[ "MIT" ]
null
null
null
Aulas/aula14.py
adonaifariasdev/cursoemvideo-python3
1fd35e45b24c52013fa3bc98e723971db8e6b7d1
[ "MIT" ]
null
null
null
Aulas/aula14.py
adonaifariasdev/cursoemvideo-python3
1fd35e45b24c52013fa3bc98e723971db8e6b7d1
[ "MIT" ]
null
null
null
'''for c in range(1, 10): print(c) print('FIM')''' '''c = 1 while c < 10: print(c) c += 1 print('FIM')''' '''n = 1 while n != 0: #flag ou condição de parada n = int(input('Digite um valor: ')) print('FIM')''' '''r = 'S' while r == 'S': n = int(input('Digite um valor: ')) r = str(input('Quer continuar? [S/N]')).upper() print('FIM')''' n = 1 totPar = totaImpar = 0 while n != 0: n = int(input('Digite um valor: ')) if n != 0: # nao vai contabilizar o 0 no final da contagem if n % 2 ==0: totPar += 1 else: totaImpar += 1 print('Você digitou {} numeros pares e {} numeros impares.'.format(totPar, totaImpar)) # OBS.: nesse caso não vai considerar o 0 como numero!!!!
22.484848
86
0.540431
0
0
0
0
0
0
0
0
536
0.718499
73cb0638be23bf0c8d4dd43c1030dd71337f3c61
2,330
py
Python
tests/test_markdown_in_code_cells.py
st--/jupytext
f8e8352859cc22e17b11154d0770fd946c4a430a
[ "MIT" ]
5,378
2018-09-01T22:03:43.000Z
2022-03-31T06:51:42.000Z
tests/test_markdown_in_code_cells.py
st--/jupytext
f8e8352859cc22e17b11154d0770fd946c4a430a
[ "MIT" ]
812
2018-08-31T08:26:13.000Z
2022-03-30T18:12:11.000Z
tests/test_markdown_in_code_cells.py
st--/jupytext
f8e8352859cc22e17b11154d0770fd946c4a430a
[ "MIT" ]
380
2018-09-02T01:40:07.000Z
2022-03-25T13:57:23.000Z
"""Issue #712""" from nbformat.v4.nbbase import new_code_cell, new_notebook from jupytext import reads, writes from jupytext.cell_to_text import three_backticks_or_more from jupytext.compare import compare, compare_notebooks from .utils import requires_myst def test_three_backticks_or_more(): assert three_backticks_or_more([""]) == "```" assert three_backticks_or_more(["``"]) == "```" assert three_backticks_or_more(["```python"]) == "````" assert three_backticks_or_more(["```"]) == "````" assert three_backticks_or_more(["`````python"]) == "``````" assert three_backticks_or_more(["`````"]) == "``````" def test_triple_backticks_in_code_cell( no_jupytext_version_number, nb=new_notebook( metadata={"main_language": "python"}, cells=[ new_code_cell( '''a = """ ``` foo ``` """''' ) ], ), text='''--- jupyter: jupytext: main_language: python --- ````python a = """ ``` foo ``` """ ```` ''', ): actual_text = writes(nb, fmt="md") compare(actual_text, text) actual_nb = reads(text, fmt="md") compare_notebooks(actual_nb, nb) @requires_myst def test_triple_backticks_in_code_cell_myst( no_jupytext_version_number, nb=new_notebook( metadata={"main_language": "python"}, cells=[ new_code_cell( '''a = """ ``` foo ``` """''' ) ], ), text='''--- jupytext: main_language: python --- ````{code-cell} a = """ ``` foo ``` """ ```` ''', ): actual_text = writes(nb, fmt="md:myst") compare(actual_text, text) actual_nb = reads(text, fmt="md:myst") compare_notebooks(actual_nb, nb) def test_alternate_tree_four_five_backticks( no_jupytext_version_number, nb=new_notebook( metadata={"main_language": "python"}, cells=[ new_code_cell('a = """\n```\n"""'), new_code_cell("b = 2"), new_code_cell('c = """\n````\n"""'), ], ), text='''--- jupyter: jupytext: main_language: python --- ````python a = """ ``` """ ```` ```python b = 2 ``` `````python c = """ ```` """ ````` ''', ): actual_text = writes(nb, fmt="md") compare(actual_text, text) actual_nb = reads(text, fmt="md") compare_notebooks(actual_nb, nb)
17.923077
63
0.564807
0
0
0
0
543
0.233047
0
0
650
0.27897
73cd6b9d543cd1b702c785eacf0e7b85b40a9737
629
py
Python
amy/workshops/migrations/0152_event_open_ttt_applications.py
code-review-doctor/amy
268c1a199510457891459f3ddd73fcce7fe2b974
[ "MIT" ]
53
2015-01-10T17:39:19.000Z
2019-06-12T17:36:34.000Z
amy/workshops/migrations/0152_event_open_ttt_applications.py
code-review-doctor/amy
268c1a199510457891459f3ddd73fcce7fe2b974
[ "MIT" ]
1,176
2015-01-02T06:32:47.000Z
2019-06-18T11:57:47.000Z
amy/workshops/migrations/0152_event_open_ttt_applications.py
code-review-doctor/amy
268c1a199510457891459f3ddd73fcce7fe2b974
[ "MIT" ]
44
2015-01-03T15:08:56.000Z
2019-06-09T05:33:08.000Z
# Generated by Django 2.1 on 2018-09-02 14:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('workshops', '0151_auto_20180902_0409'), ] operations = [ migrations.AddField( model_name='event', name='open_TTT_applications', field=models.BooleanField(blank=True, default=False, help_text="If this event is TTT, you can mark it as 'open applications' which means that people not associated with this event's member sites can also take part in this event.", verbose_name='TTT Open applications'), ), ]
33.105263
281
0.677266
538
0.855326
0
0
0
0
0
0
300
0.476948
73ced5d59e03f3d885db00b3181a8bf0e4e60e2a
5,220
py
Python
example/cifar10/fast_at.py
KuanKuanQAQ/ares
40dbefc18f6438e1812021fe6d6c3195f22ca295
[ "MIT" ]
206
2020-12-31T09:43:11.000Z
2022-03-30T07:02:41.000Z
example/cifar10/fast_at.py
afoolboy/ares
89610d41fdde194e4ad916d29961aaed73383692
[ "MIT" ]
7
2021-01-26T06:45:44.000Z
2022-02-26T05:25:48.000Z
example/cifar10/fast_at.py
afoolboy/ares
89610d41fdde194e4ad916d29961aaed73383692
[ "MIT" ]
61
2020-12-29T14:02:41.000Z
2022-03-26T14:21:10.000Z
''' This file provides a wrapper class for Fast_AT (https://github.com/locuslab/fast_adversarial) model for CIFAR-10 dataset. ''' import sys import os import torch import torch.nn as nn import torch.nn.functional as F import tensorflow as tf from ares.model.pytorch_wrapper import pytorch_classifier_with_logits from ares.utils import get_res_path MODEL_PATH = get_res_path('./cifar10/cifar_model_weights_30_epochs.pth') def load(_): model = Fast_AT() model.load() return model @pytorch_classifier_with_logits(n_class=10, x_min=0.0, x_max=1.0, x_shape=(32, 32, 3), x_dtype=tf.float32, y_dtype=tf.int32) class Fast_AT(torch.nn.Module): def __init__(self): torch.nn.Module.__init__(self) self.model = PreActResNet18().cuda() self._mean_torch = torch.tensor((0.4914, 0.4822, 0.4465)).view(3,1,1).cuda() self._std_torch = torch.tensor((0.2471, 0.2435, 0.2616)).view(3,1,1).cuda() def forward(self, x): x = x.transpose(1, 2).transpose(1, 3).contiguous() input_var = (x.cuda() - self._mean_torch) / self._std_torch labels = self.model(input_var) return labels.cpu() def load(self): checkpoint = torch.load(MODEL_PATH) self.model.load_state_dict(checkpoint) self.model.float() self.model.eval() class PreActBlock(nn.Module): '''Pre-activation version of the BasicBlock.''' expansion = 1 def __init__(self, in_planes, planes, stride=1): super(PreActBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False) ) def forward(self, x): out = F.relu(self.bn1(x)) shortcut = self.shortcut(x) if hasattr(self, 'shortcut') else x out = self.conv1(out) out = self.conv2(F.relu(self.bn2(out))) out += shortcut return out class PreActBottleneck(nn.Module): '''Pre-activation version of the original Bottleneck module.''' expansion = 4 def __init__(self, in_planes, planes, stride=1): super(PreActBottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False) ) def forward(self, x): out = F.relu(self.bn1(x)) shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x out = self.conv1(out) out = self.conv2(F.relu(self.bn2(out))) out = self.conv3(F.relu(self.bn3(out))) out += shortcut return out class PreActResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(PreActResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.bn = nn.BatchNorm2d(512 * block.expansion) self.linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.relu(self.bn(out)) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def PreActResNet18(): return PreActResNet(PreActBlock, [2,2,2,2]) if __name__ == '__main__': if not os.path.exists(MODEL_PATH): if not os.path.exists(os.path.dirname(MODEL_PATH)): os.makedirs(os.path.dirname(MODEL_PATH), exist_ok=True) url = 'https://drive.google.com/file/d/1XM-v4hqi9u8EDrQ2xdCo37XXcM9q-R07/view' print('Please download "{}" to "{}".'.format(url, MODEL_PATH))
37.021277
129
0.638314
4,129
0.790996
0
0
851
0.163027
0
0
417
0.079885
73cf094cf77e18c95fada7abbb805a0feed41fec
526
py
Python
auto_pilot/common/registrable.py
farrellsc/zAutoPilot
652d93690237dcb21c3cbdbdad95f917b7fec6e3
[ "MIT" ]
1
2018-03-05T08:27:58.000Z
2018-03-05T08:27:58.000Z
auto_pilot/common/registrable.py
farrellsc/zAutoPilot
652d93690237dcb21c3cbdbdad95f917b7fec6e3
[ "MIT" ]
null
null
null
auto_pilot/common/registrable.py
farrellsc/zAutoPilot
652d93690237dcb21c3cbdbdad95f917b7fec6e3
[ "MIT" ]
null
null
null
from typing import Callable, TypeVar, List T = TypeVar('T') class Registrable(object): reg_list = dict() @classmethod def register(cls, class_name: str) -> Callable: def register_inner(class_type: T) -> None: cls.reg_list[class_name] = class_type return register_inner @classmethod def list_available(cls) -> List[str]: return list(cls.reg_list.keys()) @classmethod def by_name(cls, class_name: str) -> T: return cls.reg_list.get(class_name, None)
23.909091
51
0.65019
462
0.878327
0
0
396
0.752852
0
0
3
0.005703
73cf528b5a42e68ea53f81fc68bbf5a7a0f2cf10
688
py
Python
noheavenbot/cogs/commands/testing.py
Molanito13/noheaven-bot
ad126d4601321ecabff9d1d214ce7d3f4e258c3e
[ "MIT" ]
3
2018-10-13T14:05:24.000Z
2018-12-25T21:40:21.000Z
noheavenbot/cogs/commands/testing.py
Molanito13/noheaven-bot
ad126d4601321ecabff9d1d214ce7d3f4e258c3e
[ "MIT" ]
2
2018-10-08T14:33:39.000Z
2020-03-02T18:00:47.000Z
noheavenbot/cogs/commands/testing.py
Molanito13/noheaven-bot
ad126d4601321ecabff9d1d214ce7d3f4e258c3e
[ "MIT" ]
5
2018-10-08T14:18:58.000Z
2020-11-01T17:55:51.000Z
from discord.ext.commands import command, Cog from noheavenbot.utils.constants import TEXTCHANNELS from discord import Member from noheavenbot.utils.database_tables.table_users import Users from noheavenbot.utils.validator import has_role as check_role class Test(Cog): def __init__(self, bot): self.bot = bot @command() async def test(self, ctx): if check_role(ctx.message.author.roles, 445947005169303552, True): admin = True return await ctx.send('all ok') else: return await ctx.send('Solo los administradores pueden añadir bots con permisos de administración.') def setup(bot): bot.add_cog(Test(bot))
28.666667
112
0.709302
389
0.563768
0
0
314
0.455072
299
0.433333
87
0.126087
73cfd3a5b8cd1e7653bb83ccce83e87f0876fda2
6,174
py
Python
mayan/apps/linking/tests/test_smart_link_condition_views.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
343
2015-01-05T14:19:35.000Z
2018-12-10T19:07:48.000Z
mayan/apps/linking/tests/test_smart_link_condition_views.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
191
2015-01-03T00:48:19.000Z
2018-11-30T09:10:25.000Z
mayan/apps/linking/tests/test_smart_link_condition_views.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
257
2019-05-14T10:26:37.000Z
2022-03-30T03:37:36.000Z
from mayan.apps.testing.tests.base import GenericViewTestCase from ..events import event_smart_link_edited from ..permissions import permission_smart_link_edit from .mixins import ( SmartLinkConditionViewTestMixin, SmartLinkTestMixin, SmartLinkViewTestMixin ) class SmartLinkConditionViewTestCase( SmartLinkConditionViewTestMixin, SmartLinkTestMixin, SmartLinkViewTestMixin, GenericViewTestCase ): def setUp(self): super().setUp() self._create_test_smart_link() def test_smart_link_condition_create_view_no_permission(self): condition_count = self.test_smart_link.conditions.count() self._clear_events() response = self._request_test_smart_link_condition_create_view() self.assertEqual(response.status_code, 404) self.assertEqual( self.test_smart_link.conditions.count(), condition_count ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_smart_link_condition_create_view_with_access(self): self.grant_access( obj=self.test_smart_link, permission=permission_smart_link_edit ) condition_count = self.test_smart_link.conditions.count() self._clear_events() response = self._request_test_smart_link_condition_create_view() self.assertEqual(response.status_code, 302) self.assertEqual( self.test_smart_link.conditions.count(), condition_count + 1 ) events = self._get_test_events() self.assertEqual(events.count(), 1) self.assertEqual( events[0].action_object, self.test_smart_link_condition ) self.assertEqual(events[0].actor, self._test_case_user) self.assertEqual(events[0].target, self.test_smart_link) self.assertEqual(events[0].verb, event_smart_link_edited.id) def test_smart_link_condition_delete_view_no_permission(self): self._create_test_smart_link_condition() condition_count = self.test_smart_link.conditions.count() self._clear_events() response = self._request_test_smart_link_condition_delete_view() self.assertEqual(response.status_code, 404) self.assertEqual( self.test_smart_link.conditions.count(), condition_count ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_smart_link_condition_delete_view_with_access(self): self._create_test_smart_link_condition() self.grant_access( obj=self.test_smart_link, permission=permission_smart_link_edit ) condition_count = self.test_smart_link.conditions.count() self._clear_events() response = self._request_test_smart_link_condition_delete_view() self.assertEqual(response.status_code, 302) self.assertEqual( self.test_smart_link.conditions.count(), condition_count - 1 ) events = self._get_test_events() self.assertEqual(events.count(), 1) self.assertEqual(events[0].action_object, None) self.assertEqual(events[0].actor, self._test_case_user) self.assertEqual(events[0].target, self.test_smart_link) self.assertEqual(events[0].verb, event_smart_link_edited.id) def test_smart_link_condition_edit_view_no_permission(self): self._create_test_smart_link_condition() instance_values = self._model_instance_to_dictionary( instance=self.test_smart_link_condition ) self._clear_events() response = self._request_test_smart_link_condition_edit_view() self.assertEqual(response.status_code, 404) self.test_smart_link_condition.refresh_from_db() self.assertEqual( self._model_instance_to_dictionary( instance=self.test_smart_link_condition ), instance_values ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_smart_link_condition_edit_view_with_access(self): self._create_test_smart_link_condition() self.grant_access( obj=self.test_smart_link, permission=permission_smart_link_edit ) instance_values = self._model_instance_to_dictionary( instance=self.test_smart_link_condition ) self._clear_events() response = self._request_test_smart_link_condition_edit_view() self.assertEqual(response.status_code, 302) self.test_smart_link_condition.refresh_from_db() self.assertNotEqual( self._model_instance_to_dictionary( instance=self.test_smart_link_condition ), instance_values ) events = self._get_test_events() self.assertEqual(events.count(), 1) self.assertEqual( events[0].action_object, self.test_smart_link_condition ) self.assertEqual(events[0].actor, self._test_case_user) self.assertEqual(events[0].target, self.test_smart_link) self.assertEqual(events[0].verb, event_smart_link_edited.id) def test_smart_link_condition_list_view_no_permission(self): self._create_test_smart_link_condition() self._clear_events() response = self._request_test_smart_link_condition_list_view() self.assertNotContains( response=response, status_code=404, text=self.test_smart_link_condition.smart_link.label ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_smart_link_condition_list_view_with_access(self): self._create_test_smart_link_condition() self.grant_access( obj=self.test_smart_link, permission=permission_smart_link_edit ) self._clear_events() response = self._request_test_smart_link_condition_list_view() self.assertContains( response=response, status_code=200, text=self.test_smart_link_condition.smart_link.label ) events = self._get_test_events() self.assertEqual(events.count(), 0)
33.737705
75
0.698737
5,901
0.955782
0
0
0
0
0
0
0
0
73d0507c967519673d3c90287e9f91022857b10e
19,105
py
Python
P1.py
chinmaydas96/CarND-LaneLines-P1
be8e03257962314d6adea68634d053d5f0550510
[ "MIT" ]
null
null
null
P1.py
chinmaydas96/CarND-LaneLines-P1
be8e03257962314d6adea68634d053d5f0550510
[ "MIT" ]
null
null
null
P1.py
chinmaydas96/CarND-LaneLines-P1
be8e03257962314d6adea68634d053d5f0550510
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # # Self-Driving Car Engineer Nanodegree # # # ## Project: **Finding Lane Lines on the Road** # *** # In this project, you will use the tools you learned about in the lesson to identify lane lines on the road. You can develop your pipeline on a series of individual images, and later apply the result to a video stream (really just a series of images). Check out the video clip "raw-lines-example.mp4" (also contained in this repository) to see what the output should look like after using the helper functions below. # # Once you have a result that looks roughly like "raw-lines-example.mp4", you'll need to get creative and try to average and/or extrapolate the line segments you've detected to map out the full extent of the lane lines. You can see an example of the result you're going for in the video "P1_example.mp4". Ultimately, you would like to draw just one line for the left side of the lane, and one for the right. # # In addition to implementing code, there is a brief writeup to complete. The writeup should be completed in a separate file, which can be either a markdown file or a pdf document. There is a [write up template](https://github.com/udacity/CarND-LaneLines-P1/blob/master/writeup_template.md) that can be used to guide the writing process. Completing both the code in the Ipython notebook and the writeup template will cover all of the [rubric points](https://review.udacity.com/#!/rubrics/322/view) for this project. # # --- # Let's have a look at our first image called 'test_images/solidWhiteRight.jpg'. Run the 2 cells below (hit Shift-Enter or the "play" button above) to display the image. # # **Note: If, at any point, you encounter frozen display windows or other confounding issues, you can always start again with a clean slate by going to the "Kernel" menu above and selecting "Restart & Clear Output".** # # --- # **The tools you have are color selection, region of interest selection, grayscaling, Gaussian smoothing, Canny Edge Detection and Hough Tranform line detection. You are also free to explore and try other techniques that were not presented in the lesson. Your goal is piece together a pipeline to detect the line segments in the image, then average/extrapolate them and draw them onto the image for display (as below). Once you have a working pipeline, try it out on the video stream below.** # # --- # # <figure> # <img src="examples/line-segments-example.jpg" width="380" alt="Combined Image" /> # <figcaption> # <p></p> # <p style="text-align: center;"> Your output should look something like this (above) after detecting line segments using the helper functions below </p> # </figcaption> # </figure> # <p></p> # <figure> # <img src="examples/laneLines_thirdPass.jpg" width="380" alt="Combined Image" /> # <figcaption> # <p></p> # <p style="text-align: center;"> Your goal is to connect/average/extrapolate line segments to get output like this</p> # </figcaption> # </figure> # **Run the cell below to import some packages. If you get an `import error` for a package you've already installed, try changing your kernel (select the Kernel menu above --> Change Kernel). Still have problems? Try relaunching Jupyter Notebook from the terminal prompt. Also, consult the forums for more troubleshooting tips.** # ## Import Packages # In[1]: #importing some useful packages import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 # ## Read in an Image # In[2]: #reading in an image image = mpimg.imread('test_images/solidWhiteRight.jpg') #printing out some stats and plotting print('This image is:', type(image), 'with dimensions:', image.shape) plt.imshow(image) # if you wanted to show a single color channel image called 'gray', for example, call as plt.imshow(gray, cmap='gray') # ## Ideas for Lane Detection Pipeline # **Some OpenCV functions (beyond those introduced in the lesson) that might be useful for this project are:** # # `cv2.inRange()` for color selection # `cv2.fillPoly()` for regions selection # `cv2.line()` to draw lines on an image given endpoints # `cv2.addWeighted()` to coadd / overlay two images # `cv2.cvtColor()` to grayscale or change color # `cv2.imwrite()` to output images to file # `cv2.bitwise_and()` to apply a mask to an image # # **Check out the OpenCV documentation to learn about these and discover even more awesome functionality!** # ## Helper Functions # Below are some helper functions to help get you started. They should look familiar from the lesson! # In[3]: import math def grayscale(img): """Applies the Grayscale transform This will return an image with only one color channel but NOTE: to see the returned image as grayscale (assuming your grayscaled image is called 'gray') you should call plt.imshow(gray, cmap='gray')""" return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Or use BGR2GRAY if you read an image with cv2.imread() # return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) def canny(img, low_threshold, high_threshold): """Applies the Canny transform""" return cv2.Canny(img, low_threshold, high_threshold) def gaussian_blur(img, kernel_size): """Applies a Gaussian Noise kernel""" return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0) def region_of_interest(img, vertices): """ Applies an image mask. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. `vertices` should be a numpy array of integer points. """ #defining a blank mask to start with mask = np.zeros_like(img) #defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 #filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) #returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def draw_lines_new(img, lines, color=[255, 0, 0], thickness=6): """ NOTE: this is the function you might want to use as a starting point once you want to average/extrapolate the line segments you detect to map out the full extent of the lane (going from the result shown in raw-lines-example.mp4 to that shown in P1_example.mp4). Think about things like separating line segments by their slope ((y2-y1)/(x2-x1)) to decide which segments are part of the left line vs. the right line. Then, you can average the position of each of the lines and extrapolate to the top and bottom of the lane. This function draws `lines` with `color` and `thickness`. Lines are drawn on the image inplace (mutates the image). If you want to make the lines semi-transparent, think about combining this function with the weighted_img() function below """ ## create an empty array with all the line slope all_slopes = np.zeros((len(lines))) ## create an empty array for left lines left_line_slope = [] ## create an empty array for right lines right_line_slope = [] # keep each line slope in the array for index,line in enumerate(lines): for x1,y1,x2,y2 in line: all_slopes[index] = (y2-y1)/(x2-x1) # get all left line slope if it is positive left_line_slope = all_slopes[all_slopes > 0] # get all left line slope if it is negetive right_line_slope = all_slopes[all_slopes < 0] ## mean value of left slope and right slope m_l = left_line_slope.mean() m_r = right_line_slope.mean() # Create empty list for all the left points and right points final_x4_l = [] final_x3_l = [] final_x4_r = [] final_x3_r = [] ## get fixed y-cordinate in both top and bottom point y4 = 320 y3 = img.shape[0] ## Go for each line to calculate left top x-cordinate, right top x-cordinate, ## left buttom x-cordinate, right bottom top x-cordinate for index,line in enumerate(lines): for x1,y1,x2,y2 in line: m = (y2-y1)/(x2-x1) if m > 0 : final_x4_l.append(int(((x1 + (y4 - y1) / m_l) + (x2 + (y4 - y2) / m_l))/ 2)) final_x3_l.append(int(((x1 + (y3 - y1) / m_l) + (x2 + (y3 - y2) / m_l))/ 2)) else: final_x4_r.append(int(((x1 + (y4 - y1) / m_r) + (x2 + (y4 - y2) / m_r))/ 2)) final_x3_r.append(int(((x1 + (y3 - y1) / m_r) + (x2 + (y3 - y2) / m_r))/ 2)) try : ## taking average of each points x4_l = int(sum(final_x4_l)/ len(final_x4_l)) x4_r = int(sum(final_x4_r)/ len(final_x4_r)) x3_l = int(sum(final_x3_l)/ len(final_x3_l)) x3_r = int(sum(final_x3_r)/ len(final_x3_r)) ## Draw the left line and right line cv2.line(img, (x4_l, y4), (x3_l, y3), color, thickness) cv2.line(img, (x4_r, y4), (x3_r, y3), color, thickness) except: pass def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap): """ `img` should be the output of a Canny transform. Returns an image with hough lines drawn. """ lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) draw_lines_new(line_img, lines) return line_img # Python 3 has support for cool math symbols. def weighted_img(img, initial_img, α=0.8, β=1., γ=0.): """ `img` is the output of the hough_lines(), An image with lines drawn on it. Should be a blank image (all black) with lines drawn on it. `initial_img` should be the image before any processing. The result image is computed as follows: initial_img * α + img * β + γ NOTE: initial_img and img must be the same shape! """ return cv2.addWeighted(initial_img, α, img, β, γ) # ## Test Images # # Build your pipeline to work on the images in the directory "test_images" # **You should make sure your pipeline works well on these images before you try the videos.** # In[4]: import os os.listdir("test_images/") # ## Build a Lane Finding Pipeline # # # Build the pipeline and run your solution on all test_images. Make copies into the `test_images_output` directory, and you can use the images in your writeup report. # # Try tuning the various parameters, especially the low and high Canny thresholds as well as the Hough lines parameters. # In[18]: # TODO: Build your pipeline that will draw lane lines on the test_images # then save them to the test_images_output directory. def preprocess_image(image_path): image = mpimg.imread(image_path) gray_image = grayscale(image) blured_image = gaussian_blur(gray_image, 5) canny_image = canny(gray_image, low_threshold=100, high_threshold=170) vertices = np.array([[(80,image.shape[0]),(450, 320), (490, 320), (image.shape[1],image.shape[0])]], dtype=np.int32) roi_image = region_of_interest(canny_image, vertices) hough_img = hough_lines(roi_image, rho=2, theta=np.pi/180, threshold=50, min_line_len=100, max_line_gap=160) final_img= weighted_img(hough_img, image, α=0.8, β=1., γ=0.) return final_img def process_test_images(source_folder,destination_folder): ## create destination folder if not present if not os.path.exists(destination_folder): os.makedirs(destination_folder) ## Get all input files from the source folder list_test_files = os.listdir(source_folder) ## process all the input files for file in list_test_files: output = preprocess_image(source_folder+ '/' + file) cv2.imwrite(destination_folder+'/'+ file, cv2.cvtColor(output, cv2.COLOR_RGB2BGR)) process_test_images('test_images','test_images_output') # In[19]: # In[20]: os.listdir('test_images') # In[21]: # Checking in an image plt.figure(figsize=(15,8)) plt.subplot(121) image = mpimg.imread('test_images/solidYellowCurve.jpg') plt.imshow(image) plt.title('Original image') plt.subplot(122) image = mpimg.imread('test_images_output/whiteCarLaneSwitch.jpg') plt.imshow(image) plt.title('Output image') plt.show() # ## Test on Videos # # You know what's cooler than drawing lanes over images? Drawing lanes over video! # # We can test our solution on two provided videos: # # `solidWhiteRight.mp4` # # `solidYellowLeft.mp4` # # **Note: if you get an import error when you run the next cell, try changing your kernel (select the Kernel menu above --> Change Kernel). Still have problems? Try relaunching Jupyter Notebook from the terminal prompt. Also, consult the forums for more troubleshooting tips.** # # **If you get an error that looks like this:** # ``` # NeedDownloadError: Need ffmpeg exe. # You can download it by calling: # imageio.plugins.ffmpeg.download() # ``` # **Follow the instructions in the error message and check out [this forum post](https://discussions.udacity.com/t/project-error-of-test-on-videos/274082) for more troubleshooting tips across operating systems.** # In[9]: # Import everything needed to edit/save/watch video clips from moviepy.editor import VideoFileClip # In[10]: def process_image(image): # NOTE: The output you return should be a color image (3 channel) for processing video below # TODO: put your pipeline here, # you should return the final output (image where lines are drawn on lanes) gray_image = grayscale(image) blured_image = gaussian_blur(gray_image, 5) canny_image = canny(gray_image, low_threshold=100, high_threshold=170) vertices = np.array([[(80,image.shape[0]),(450, 320), (490, 320), (image.shape[1],image.shape[0])]], dtype=np.int32) roi_image = region_of_interest(canny_image, vertices) hough_img = hough_lines(roi_image, rho=2, theta=np.pi/180, threshold=50, min_line_len=100, max_line_gap=160) result= weighted_img(hough_img, image, α=0.8, β=1., γ=0.) return result # Let's try the one with the solid white lane on the right first ... # In[11]: white_output = 'test_videos_output/solidWhiteRight.mp4' ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip1 = VideoFileClip("test_videos/solidWhiteRight.mp4").subclip(0,5) clip1 = VideoFileClip("test_videos/solidWhiteRight.mp4") white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!! white_clip.write_videofile(white_output, audio=False) # ## Improve the draw_lines() function # # **At this point, if you were successful with making the pipeline and tuning parameters, you probably have the Hough line segments drawn onto the road, but what about identifying the full extent of the lane and marking it clearly as in the example video (P1_example.mp4)? Think about defining a line to run the full length of the visible lane based on the line segments you identified with the Hough Transform. As mentioned previously, try to average and/or extrapolate the line segments you've detected to map out the full extent of the lane lines. You can see an example of the result you're going for in the video "P1_example.mp4".** # # **Go back and modify your draw_lines function accordingly and try re-running your pipeline. The new output should draw a single, solid line over the left lane line and a single, solid line over the right lane line. The lines should start from the bottom of the image and extend out to the top of the region of interest.** # Now for the one with the solid yellow lane on the left. This one's more tricky! # In[13]: yellow_output = 'test_videos_output/solidYellowLeft.mp4' ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip2 = VideoFileClip('test_videos/solidYellowLeft.mp4').subclip(0,5) clip2 = VideoFileClip('test_videos/solidYellowLeft.mp4') yellow_clip = clip2.fl_image(process_image) yellow_clip.write_videofile(yellow_output, audio=False) def process_image(image): # NOTE: The output you return should be a color image (3 channel) for processing video below # TODO: put your pipeline here, # you should return the final output (image where lines are drawn on lanes) cv2.imwrite('image_test.jpg',image) gray_image = grayscale(image) blured_image = gaussian_blur(gray_image, 5) canny_image = canny(gray_image, low_threshold=100, high_threshold=170) cv2.imwrite('image_test_canny.jpg',canny_image) x_size = image.shape[1] y_size = image.shape[0] left_bottom = (80, y_size) left_top = (x_size / 2 - 50, y_size / 2 + 50) right_bottom = (x_size - 80, y_size) right_top = (x_size / 2 + 50, y_size / 2 + 50) #vertices = np.array([[left_bottom, left_top, right_top, right_bottom]], dtype=np.int32) #vertices = np.array([[(280,image.shape[0]),(450, 320), (490, 320), (image.shape[1],image.shape[0])]], dtype=np.int32) vertices = np.array([[(300,680),(620, 460), (720, 460), (1085,673)]], dtype=np.int32) roi_image = region_of_interest(canny_image, vertices) try: hough_img = hough_lines(roi_image, rho=2, theta=np.pi/180, threshold=50, min_line_len=100, max_line_gap=160) result= weighted_img(hough_img, image, α=0.8, β=1., γ=0.) return result except: return image # In[16]: challenge_output = 'test_videos_output/challenge.mp4' ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip3 = VideoFileClip('test_videos/challenge.mp4').subclip(0,5) clip3 = VideoFileClip('test_videos/challenge.mp4') challenge_clip = clip3.fl_image(process_image) challenge_clip.write_videofile(challenge_output, audio=False)
40.997854
638
0.702277
0
0
0
0
0
0
0
0
12,609
0.659363
73d14617d94420a3d56d21a483a4a8f9476f65c1
170
py
Python
notebooks/container/__init__.py
DanieleBaranzini/sktime-tutorial-pydata-amsterdam-2020
eb9d76a8dc7fff29e4123b940200d58eed87147c
[ "BSD-3-Clause" ]
114
2020-06-16T09:29:30.000Z
2022-03-12T09:06:52.000Z
notebooks/container/__init__.py
DanieleBaranzini/sktime-tutorial-pydata-amsterdam-2020
eb9d76a8dc7fff29e4123b940200d58eed87147c
[ "BSD-3-Clause" ]
5
2020-11-06T13:02:26.000Z
2021-06-10T18:34:37.000Z
notebooks/container/__init__.py
DanieleBaranzini/sktime-tutorial-pydata-amsterdam-2020
eb9d76a8dc7fff29e4123b940200d58eed87147c
[ "BSD-3-Clause" ]
62
2020-06-16T09:25:05.000Z
2022-03-01T21:02:10.000Z
from container.base import TimeBase from container.array import TimeArray, TimeDtype from container.timeseries import TimeSeries from container.timeframe import TimeFrame
42.5
48
0.876471
0
0
0
0
0
0
0
0
0
0
73d30c85b213e414209b78284449266b653e1713
558
py
Python
spiketools/utils/base.py
claire98han/SpikeTools
f1cdffd50e2cbdb75961a716425c4665aa930f54
[ "Apache-2.0" ]
1
2022-03-09T19:40:37.000Z
2022-03-09T19:40:37.000Z
spiketools/utils/base.py
claire98han/SpikeTools
f1cdffd50e2cbdb75961a716425c4665aa930f54
[ "Apache-2.0" ]
35
2021-09-28T15:13:31.000Z
2021-11-26T04:38:08.000Z
spiketools/utils/base.py
claire98han/SpikeTools
f1cdffd50e2cbdb75961a716425c4665aa930f54
[ "Apache-2.0" ]
4
2021-09-28T14:56:24.000Z
2022-03-09T21:00:31.000Z
"""Base utility functions, that manipulate basic data structures, etc.""" ################################################################################################### ################################################################################################### def flatten(lst): """Flatten a list of lists into a single list. Parameters ---------- lst : list of list A list of embedded lists. Returns ------- lst A flattened list. """ return [item for sublist in lst for item in sublist]
26.571429
99
0.378136
0
0
0
0
0
0
0
0
472
0.845878
73d374874a532014fc2ba903875cc4289b921e60
11,593
py
Python
zentral/contrib/osquery/forms.py
mikemcdonald/zentral
4aa03937abfbcea6480aa04bd99f4da7b8dfc923
[ "Apache-2.0" ]
null
null
null
zentral/contrib/osquery/forms.py
mikemcdonald/zentral
4aa03937abfbcea6480aa04bd99f4da7b8dfc923
[ "Apache-2.0" ]
null
null
null
zentral/contrib/osquery/forms.py
mikemcdonald/zentral
4aa03937abfbcea6480aa04bd99f4da7b8dfc923
[ "Apache-2.0" ]
1
2020-09-09T19:26:04.000Z
2020-09-09T19:26:04.000Z
from django import forms from zentral.core.probes.forms import BaseCreateProbeForm from zentral.utils.forms import validate_sha256 from .probes import (OsqueryProbe, OsqueryComplianceProbe, OsqueryDistributedQueryProbe, OsqueryFileCarveProbe, OsqueryFIMProbe) # OsqueryProbe class DiscoveryForm(forms.Form): query = forms.CharField(widget=forms.Textarea(attrs={'rows': 5})) def get_item_d(self): return self.cleaned_data["query"] @staticmethod def get_initial(discovery): return {"query": discovery} class QueryForm(forms.Form): query = forms.CharField(widget=forms.Textarea(attrs={'rows': 5})) description = forms.CharField(required=False, help_text="Description of what this query does. Can be left empty", widget=forms.Textarea(attrs={'rows': 3})) value = forms.CharField(required=False, help_text="Why is this query relevant. Can be left empty", widget=forms.Textarea(attrs={'rows': 3})) removed = forms.BooleanField(label='Include {"action": "removed"} results?', help_text='If False, only {"action": "added"} results will be in the logs', initial=True, required=False) snapshot = forms.BooleanField(label='Run this query in "snapshot" mode?', help_text=('If True, osquery will not store differentials ' 'and will not emulate an event stream'), initial=False, required=False) interval = forms.IntegerField(min_value=10, # 10 seconds max_value=2678400, # 31 days initial=3600) shard = forms.IntegerField(min_value=1, max_value=100, required=False, help_text="Restrict this query to a percentage (1-100) of target hosts") def clean_removed(self): remove = self.cleaned_data.get("removed") if not remove: remove = False return remove def clean_snapshot(self): snapshot = self.cleaned_data.get("snapshot") if not snapshot: snapshot = False return snapshot def clean_description(self): description = self.cleaned_data.get("description") if not description: return None else: return description def clean_value(self): value = self.cleaned_data.get("value") if not value: return None else: return value def clean(self): cleaned_data = super().clean() removed = cleaned_data["removed"] snapshot = cleaned_data["snapshot"] if removed and snapshot: raise forms.ValidationError('{"action": "removed"} results are not available in "snapshot" mode') return cleaned_data def get_item_d(self): return {f: v for f, v in self.cleaned_data.items() if v is not None} @staticmethod def get_initial(query): initial = {} for attr in ("query", "description", "value", "interval", "removed", "shard"): value = getattr(query, attr, None) if value is not None: initial[attr] = value return initial class CreateProbeForm(BaseCreateProbeForm, QueryForm): model = OsqueryProbe field_order = ("name", "query", "description", "value", "removed", "snapshot", "interval", "shard") def get_body(self): return {"queries": [self.get_item_d()]} # OsqueryComplianceProbe class PreferenceFileForm(forms.Form): rel_path = forms.CharField(label="Relative path") type = forms.ChoiceField(label='Location', choices=(('USERS', '/Users/%/Library/Preferences/'), ('GLOBAL', '/Library/Preferences/'))) description = forms.CharField(required=False, widget=forms.Textarea(attrs={'rows': 3})) interval = forms.IntegerField(min_value=10, # 10 seconds max_value=2678400, # 31 days initial=3600) def clean_description(self): description = self.cleaned_data.get("description") if not description: return None else: return description def get_item_d(self): return {f: v for f, v in self.cleaned_data.items() if v is not None} @staticmethod def get_initial(query): initial = {} for attr in ("rel_path", "type", "description", "interval"): value = getattr(query, attr, None) if value is not None: initial[attr] = value return initial class KeyForm(forms.Form): key = forms.CharField() test = forms.ChoiceField(choices=(('EQ', ' = '), ('INT_LTE', 'integer ≤'), ('INT_GTE', 'integer ≥'), ('INT_GTE_LTE', '≤ integer ≤')), initial='STR', widget=forms.Select(attrs={'class': 'key-test-sel'})) arg_l = forms.CharField(required=False) arg_r = forms.CharField(required=True) def clean(self): cd = self.cleaned_data test = cd.get('test') arg_l = cd.get('arg_l') arg_r = cd.get('arg_r') if test and test != 'EQ': if arg_r: try: cd['arg_r'] = int(arg_r) except ValueError: self.add_error('arg_r', 'not an integer') if test == 'INT_GTE_LTE': if arg_l is None: self.add_error('arg_l', 'missing value') else: try: cd['arg_l'] = int(arg_l) except ValueError: self.add_error('arg_l', 'not an integer') return cd class BaseKeyFormSet(forms.BaseFormSet): def clean(self): """Checks that no two keys are the same""" if any(self.errors): # Don't bother validating the formset unless each form is valid on its own return keys = [] for form in self.forms: key = form.cleaned_data['key'] if key in keys: raise forms.ValidationError("Articles in a set must have distinct titles.") keys.append(key) def get_keys(self): keys = [] for kcd in self.cleaned_data: if not kcd.get("DELETE"): k = {'key': kcd['key']} test = kcd['test'] arg_r = kcd['arg_r'] if test == 'EQ': k['value'] = arg_r elif test == 'INT_LTE': k['max_value'] = arg_r elif test == 'INT_GTE': k['min_value'] = arg_r else: k['min_value'] = kcd['arg_l'] k['max_value'] = arg_r keys.append(k) return sorted(keys, key=lambda k: k['key']) @staticmethod def get_initial(preference_file): initial = [] for k in preference_file.keys: key = {'key': k.key} if k.value is not None: key['arg_r'] = k.value key['test'] = 'EQ' else: min_value = k.min_value max_value = k.max_value if min_value is not None and max_value is not None: key['test'] = 'INT_GTE_LTE' key['arg_l'] = min_value key['arg_r'] = max_value elif min_value is not None: key['test'] = 'INT_GTE' key['arg_r'] = min_value elif max_value is not None: key['test'] = 'INT_LTE' key['arg_r'] = max_value initial.append(key) return sorted(initial, key=lambda d: d['key']) KeyFormSet = forms.formset_factory(KeyForm, formset=BaseKeyFormSet, min_num=1, max_num=10, extra=0, can_delete=True) class FileChecksumForm(forms.Form): path = forms.CharField() sha256 = forms.CharField(validators=[validate_sha256], help_text="The result of shasum -a 256 /path/to/file") description = forms.CharField(required=False, widget=forms.Textarea(attrs={'rows': 3})) interval = forms.IntegerField(min_value=10, # 10 seconds max_value=2678400, # 31 days initial=3600) def clean_description(self): description = self.cleaned_data.get("description") if not description: return None else: return description def get_item_d(self): return {f: v for f, v in self.cleaned_data.items() if v is not None} @staticmethod def get_initial(file_checksum): initial = {} for field in ("path", "sha256", "description", "interval"): val = getattr(file_checksum, field, None) if val: initial[field] = val return initial class CreateComplianceProbeForm(BaseCreateProbeForm): model = OsqueryComplianceProbe def get_body(self): return {} # OsqueryDistributedQueryProbe class DistributedQueryForm(forms.Form): query = forms.CharField(widget=forms.Textarea(attrs={'class': 'form-control', 'rows': 5})) def get_body(self): return {'distributed_query': self.cleaned_data['query']} class CreateDistributedQueryProbeForm(BaseCreateProbeForm, DistributedQueryForm): model = OsqueryDistributedQueryProbe field_order = ("name", "query") # OsqueryFileCarveProbe class FileCarveForm(forms.Form): path = forms.CharField(help_text="Example: /Users/%/Downloads/%.jpg or /etc/hosts") def get_body(self): return {'path': self.cleaned_data['path']} class CreateFileCarveProbeForm(BaseCreateProbeForm, FileCarveForm): model = OsqueryFileCarveProbe field_order = ("name", "path") # FIM probes class FilePathForm(forms.Form): file_path = forms.CharField(help_text="Example: /Users/%/Library or /Users/%/Library/ or /Users/%/Library/%%") file_access = forms.BooleanField(label="Observe file access events ?", initial=False, required=False, help_text="File accesses on Linux using inotify may induce " "unexpected and unwanted performance reduction.") def clean_file_access(self): file_access = self.cleaned_data.get("file_access") if not file_access: file_access = False return file_access def get_item_d(self): return self.cleaned_data @staticmethod def get_initial(file_path): return {"file_path": file_path.file_path, "file_access": file_path.file_access} class CreateFIMProbeForm(BaseCreateProbeForm, FilePathForm): model = OsqueryFIMProbe field_order = ("name", "file_path", "file_access") def get_body(self): return {'file_paths': [self.get_item_d()]}
35.344512
114
0.547399
10,950
0.943884
0
0
1,977
0.170416
0
0
2,134
0.18395
73d5dcabb54b57daa8b78e26015c8bd966917221
197
py
Python
src/dataclay/communication/grpc/messages/logicmodule/__init__.py
kpavel/pyclay
275bc8af5c57301231a20cca1cc88556a9c84c79
[ "BSD-3-Clause" ]
1
2020-04-16T17:09:15.000Z
2020-04-16T17:09:15.000Z
src/dataclay/communication/grpc/messages/logicmodule/__init__.py
kpavel/pyclay
275bc8af5c57301231a20cca1cc88556a9c84c79
[ "BSD-3-Clause" ]
35
2019-11-06T17:06:16.000Z
2021-04-12T16:27:20.000Z
src/dataclay/communication/grpc/messages/logicmodule/__init__.py
kpavel/pyclay
275bc8af5c57301231a20cca1cc88556a9c84c79
[ "BSD-3-Clause" ]
1
2020-05-06T11:28:16.000Z
2020-05-06T11:28:16.000Z
""" Class description goes here. """ """Package containing gRPC classes.""" __author__ = 'Enrico La Sala <[email protected]>' __copyright__ = '2017 Barcelona Supercomputing Center (BSC-CNS)'
24.625
64
0.725888
0
0
0
0
0
0
0
0
161
0.817259
73db434f1dcc511c2a6170ca3b1d4a1d255f07e3
87
py
Python
src/cms/models/offers/__init__.py
mckinly/cms-django
c9995a3bfab6ee2d02f2406a7f83cf91b7ccfcca
[ "Apache-2.0" ]
14
2020-12-03T07:56:30.000Z
2021-10-30T13:09:50.000Z
src/cms/models/offers/__init__.py
Integreat/integreat-cms
b3f80964a6182d714f26ac229342b47e1c7c4f29
[ "Apache-2.0" ]
367
2020-11-20T00:34:20.000Z
2021-12-14T15:20:42.000Z
src/cms/models/offers/__init__.py
mckinly/cms-django
c9995a3bfab6ee2d02f2406a7f83cf91b7ccfcca
[ "Apache-2.0" ]
3
2021-02-09T18:46:52.000Z
2021-12-07T10:41:39.000Z
""" This package contains :class:`~cms.models.offers.offer_template.OfferTemplate` """
21.75
78
0.758621
0
0
0
0
0
0
0
0
86
0.988506
73dc1ffc39f60e86bf599c00df7b537997fbf251
5,150
py
Python
service/audio_trigger_test.py
nicolas-f/noisesensor
fc007fe5e03b0deca0863d987cb6776be1cd2bef
[ "BSD-3-Clause" ]
2
2020-03-29T21:58:45.000Z
2021-09-21T12:43:15.000Z
service/audio_trigger_test.py
nicolas-f/noisesensor
fc007fe5e03b0deca0863d987cb6776be1cd2bef
[ "BSD-3-Clause" ]
null
null
null
service/audio_trigger_test.py
nicolas-f/noisesensor
fc007fe5e03b0deca0863d987cb6776be1cd2bef
[ "BSD-3-Clause" ]
1
2019-02-19T14:53:01.000Z
2019-02-19T14:53:01.000Z
import numpy from scipy.spatial import distance import matplotlib.pyplot as plt import math import matplotlib.ticker as mtick freqs = [20, 25, 31.5, 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300, 8000, 10000, 12500] def cosine_distance(a, b, weight = None): assert len(a) == len(b) if weight is None: weight = [1.0] * len(a) ab_sum, a_sum, b_sum = 0, 0, 0 for ai, bi, wi in zip(a, b, weight): ab_sum += ai * bi a_sum += ai * ai b_sum += bi * bi return 1 - ab_sum / math.sqrt(a_sum * b_sum) # from scipy def _validate_weights(w, dtype=numpy.double): w = _validate_vector(w, dtype=dtype) if numpy.any(w < 0): raise ValueError("Input weights should be all non-negative") return w # from scipy def _validate_vector(u, dtype=None): # XXX Is order='c' really necessary? u = numpy.asarray(u, dtype=dtype, order='c').squeeze() # Ensure values such as u=1 and u=[1] still return 1-D arrays. u = numpy.atleast_1d(u) if u.ndim > 1: raise ValueError("Input vector should be 1-D.") return u # from scipy def dist_cosine(u, v, w=None): u = _validate_vector(u) v = _validate_vector(v) if w is not None: w = _validate_weights(w) uv = numpy.average(u * v, weights=w) uu = numpy.average(numpy.square(u), weights=w) vv = numpy.average(numpy.square(v), weights=w) dist = 1.0 - uv / numpy.sqrt(uu * vv) return dist def autocolor(bar): for col in bar: if col.get_height() > 0.995: col.set_color('r') trigger = [40.49, 39.14, 34.47, 30.5, 39.54, 31.98, 38.37, 43.84, 36.09, 43.72, 40.55, 39.25, 39.15, 38.36, 38.3, 36.58, 39.9, 47.76, 51.64, 37.2, 44.89, 46.6, 51.08, 37.77, 28, 29.59, 30.25, 23.16, 25.74] weight = [0.04,0.04,0.04,0.04,0.04,0.04,0.04,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.14, 0.24, 0.41, 0.60, 0.80, 0.94, 1.0, 0.94, 0.80, 0.60, 0.41] ref_spectrum = numpy.genfromtxt('test/test2_far.csv', delimiter=',', skip_header=1, usecols=range(5, 34)) test1_spectrum = numpy.genfromtxt('test/test1_near.csv', delimiter=',', skip_header=1, usecols=range(5, 34)) test2_spectrum = numpy.genfromtxt('test/test2_far_far.csv', delimiter=',', skip_header=1, usecols=range(5, 34)) test3_spectrum = numpy.genfromtxt('test/test_background.csv', delimiter=',', skip_header=1, usecols=range(5, 34)) dist0 = numpy.ones(len(ref_spectrum)) - [distance.cosine(trigger, ref_spectrum[idfreq], w=weight) for idfreq in range(len(ref_spectrum))] dist1 = numpy.ones(len(ref_spectrum)) - [distance.cosine(trigger, test1_spectrum[idfreq], w=weight) for idfreq in range(len(ref_spectrum))] dist2 = numpy.ones(len(ref_spectrum)) - [distance.cosine(trigger, test2_spectrum[idfreq], w=weight) for idfreq in range(len(ref_spectrum))] dist3 = numpy.ones(len(ref_spectrum)) - [distance.cosine(trigger, test3_spectrum[idfreq], w=weight) for idfreq in range(len(ref_spectrum))] dist0_bis = numpy.ones(len(ref_spectrum)) - [dist_cosine(trigger, ref_spectrum[idfreq], w=weight) for idfreq in range(len(ref_spectrum))] #print(numpy.around(dist0_bis - dist0, 3)) ref_spectrum = numpy.rot90(ref_spectrum) test1_spectrum = numpy.rot90(test1_spectrum) test2_spectrum = numpy.rot90(test2_spectrum) test3_spectrum = numpy.rot90(test3_spectrum) fig, axes = plt.subplots(nrows=4, ncols=3, constrained_layout=True) gs = axes[0, 0].get_gridspec() axes[0, 1].imshow(ref_spectrum) autocolor(axes[0, 2].bar(numpy.arange(len(dist0)), dist0)) axes[1, 1].imshow(test1_spectrum) autocolor(axes[1, 2].bar(numpy.arange(len(dist1)), dist1)) axes[2, 1].imshow(test2_spectrum) autocolor(axes[2, 2].bar(numpy.arange(len(dist2)), dist2)) axes[3, 1].imshow(test3_spectrum) axes[3, 2].bar(numpy.arange(len(dist2)), dist3) for ax in axes[0:, 0]: ax.remove() axbig = fig.add_subplot(gs[0:, 0]) axbig.set_title("Spectrum trigger") axbig.imshow(numpy.rot90([trigger])) for i in range(len(axes)): axes[i, 2].set_ylim([0.95, 1.0]) axes[i, 1].set_yticks(range(len(freqs))[::5]) axes[i, 1].set_yticklabels([str(ylab) + " Hz" for ylab in freqs[::5]][::-1]) axes[i, 1].set_xticks(range(len(ref_spectrum[0]))[::20]) axes[i, 1].set_xticklabels([str(xlabel)+" s" % xlabel for xlabel in numpy.arange(0, 10, 0.125)][::20]) axes[i, 2].set_xticks(range(len(ref_spectrum[0]))[::20]) axes[i, 2].set_xticklabels([str(xlabel)+" s" % xlabel for xlabel in numpy.arange(0, 10, 0.125)][::20]) axes[i, 2].set_ylabel("Cosine similarity (%)") axes[i, 2].yaxis.set_major_formatter(mtick.PercentFormatter(1.0)) axes[i, 1].set_title("Spectrogram "+str(i)+" (dB)") axbig.set_yticks(range(len(freqs))) axbig.set_yticklabels([str(ylab) + " Hz" for ylab in freqs][::-1]) axbig.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off plt.show()
37.591241
162
0.665825
0
0
0
0
0
0
0
0
624
0.121165
73ddae6e14c41c647c3dc794212f25f68df13789
1,094
py
Python
Python/6-hc_sr04-sensor.py
matr1xprogrammer/raspberry_pi-iot
7ff8247fde839a23dd75720c58f3b04d86485ec4
[ "MIT" ]
2
2017-02-18T12:05:25.000Z
2017-02-18T12:15:53.000Z
Python/6-hc_sr04-sensor.py
matr1xprogrammer/raspberry_pi-iot
7ff8247fde839a23dd75720c58f3b04d86485ec4
[ "MIT" ]
null
null
null
Python/6-hc_sr04-sensor.py
matr1xprogrammer/raspberry_pi-iot
7ff8247fde839a23dd75720c58f3b04d86485ec4
[ "MIT" ]
null
null
null
#!/usr/bin/python # # HC-SR04 Ultrasonic ranging sensor # import RPi.GPIO as GPIO import sys, time try: GPIO.setmode(GPIO.BCM) TRIG = 23 ECHO = 24 print "Distance measurement in progress..." GPIO.setup(TRIG, GPIO.OUT) GPIO.setup(ECHO, GPIO.IN) GPIO.output(TRIG, False) while True: print "Waiting for sensor to settle" time.sleep(2) GPIO.output(TRIG, True) time.sleep(0.00001) GPIO.output(TRIG, False) while GPIO.input(ECHO) == 0: pulse_start = time.time() while GPIO.input(ECHO) == 1: pulse_end = time.time() pulse_duration = pulse_end - pulse_start distance = pulse_duration * 17150 distance = round(distance, 2) print "Distance: ", distance, "cm" except KeyboardInterrupt: GPIO.cleanup() print("<Ctrl+C> pressed... exiting.") except: GPIO.cleanup() print("Error: {0} {1}".format(sys.exc_info()[0], sys.exc_info()[1]))
22.791667
74
0.543876
0
0
0
0
0
0
0
0
183
0.167276
73de45d1436eebf32a4bbacaf18feaafc9502e50
10,651
py
Python
venv/lib/python3.6/site-packages/ansible_collections/arista/eos/plugins/module_utils/network/eos/config/ospfv3/ospfv3.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/arista/eos/plugins/module_utils/network/eos/config/ospfv3/ospfv3.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/arista/eos/plugins/module_utils/network/eos/config/ospfv3/ospfv3.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
# # -*- coding: utf-8 -*- # Copyright 2020 Red Hat # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # from __future__ import absolute_import, division, print_function __metaclass__ = type """ The eos_ospfv3 config file. It is in this file where the current configuration (as dict) is compared to the provided configuration (as dict) and the command set necessary to bring the current configuration to its desired end-state is created. """ import re from ansible.module_utils.six import iteritems from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.utils import ( dict_merge, ) from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.resource_module import ( ResourceModule, ) from ansible_collections.arista.eos.plugins.module_utils.network.eos.facts.facts import ( Facts, ) from ansible_collections.arista.eos.plugins.module_utils.network.eos.rm_templates.ospfv3 import ( Ospfv3Template, ) from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.utils import ( get_from_dict, ) class Ospfv3(ResourceModule): """ The eos_ospfv3 config class """ def __init__(self, module): super(Ospfv3, self).__init__( empty_fact_val={}, facts_module=Facts(module), module=module, resource="ospfv3", tmplt=Ospfv3Template(module=module), ) self.parsers = [ "vrf", "address_family", "adjacency", "auto_cost", "area.default_cost", "area.authentication", "area.encryption", "area.nssa", "area.ranges", "area.stub", "bfd", "default_information", "default_metric", "distance", "fips_restrictions", "graceful_restart", "graceful_restart_period", "graceful_restart_helper", "log_adjacency_changes", "max_metric", "maximum_paths", "passive_interface", "redistribute", "router_id", "shutdown", "timers.lsa", "timers.out_delay", "timers.pacing", "timers.throttle.lsa", "timers.throttle.spf", ] def execute_module(self): """Execute the module :rtype: A dictionary :returns: The result from module execution """ if self.state not in ["parsed", "gathered"]: self.generate_commands() self.run_commands() return self.result def generate_commands(self): """Generate configuration commands to send based on want, have and desired state. """ wantd = {} haved = {} for entry in self.want.get("processes", []): wantd.update({entry["vrf"]: entry}) for entry in self.have.get("processes", []): haved.update({entry["vrf"]: entry}) # turn all lists of dicts into dicts prior to merge for entry in wantd, haved: self._ospf_list_to_dict(entry) # if state is merged, merge want onto have and then compare if self.state == "merged": wantd = dict_merge(haved, wantd) # if state is deleted, empty out wantd and set haved to wantd if self.state == "deleted": h_del = {} for k, v in iteritems(haved): if k in wantd or not wantd: h_del.update({k: v}) wantd = {} haved = h_del # remove superfluous config for overridden and deleted if self.state in ["overridden", "deleted"]: for k, have in iteritems(haved): if k not in wantd and have.get("vrf") == k: self.commands.append(self._tmplt.render(have, "vrf", True)) for k, want in iteritems(wantd): self._compare(want=want, have=haved.pop(k, {})) def _compare(self, want, have): """Leverages the base class `compare()` method and populates the list of commands to be run by comparing the `want` and `have` data with the `parsers` defined for the Ospfv3 network resource. """ begin = len(self.commands) self._af_compare(want=want, have=have) self._global_compare(want=want, have=have) if len(self.commands) != begin or (not have and want): self.commands.insert( begin, self._tmplt.render(want or have, "vrf", False) ) self.commands.append("exit") def _global_compare(self, want, have): for name, entry in iteritems(want): if name in ["vrf", "address_family"]: continue if not isinstance(entry, dict) and name != "areas": self.compare( parsers=self.parsers, want={name: entry}, have={name: have.pop(name, None)}, ) else: if name == "areas" and entry: self._areas_compare( want={name: entry}, have={name: have.get(name, {})} ) else: # passing dict without vrf, inorder to avoid no router ospfv3 command h = {} for i in have: if i != "vrf": h.update({i: have[i]}) self.compare( parsers=self.parsers, want={name: entry}, have={name: h.pop(name, {})}, ) # remove remaining items in have for replaced for name, entry in iteritems(have): if name in ["vrf", "address_family"]: continue if not isinstance(entry, dict): self.compare( parsers=self.parsers, want={name: want.pop(name, None)}, have={name: entry}, ) else: # passing dict without vrf, inorder to avoid no router ospfv3 command # w = {i: want[i] for i in want if i != "vrf"} self.compare( parsers=self.parsers, want={name: want.pop(name, {})}, have={name: entry}, ) def _af_compare(self, want, have): wafs = want.get("address_family", {}) hafs = have.get("address_family", {}) for name, entry in iteritems(wafs): begin = len(self.commands) self._compare_lists(want=entry, have=hafs.get(name, {})) self._areas_compare(want=entry, have=hafs.get(name, {})) self.compare( parsers=self.parsers, want=entry, have=hafs.pop(name, {}) ) if ( len(self.commands) != begin and "afi" in entry and entry["afi"] != "router" ): self._rotate_commands(begin=begin) self.commands.insert( begin, self._tmplt.render(entry, "address_family", False) ) self.commands.append("exit") for name, entry in iteritems(hafs): self.addcmd(entry, "address_family", True) def _rotate_commands(self, begin=0): # move negate commands to beginning for cmd in self.commands[begin::]: negate = re.match(r"^no .*", cmd) if negate: self.commands.insert( begin, self.commands.pop(self.commands.index(cmd)) ) begin += 1 def _areas_compare(self, want, have): wareas = want.get("areas", {}) hareas = have.get("areas", {}) for name, entry in iteritems(wareas): self._area_compare(want=entry, have=hareas.pop(name, {})) for name, entry in iteritems(hareas): self._area_compare(want={}, have=entry) def _area_compare(self, want, have): parsers = [ "area.default_cost", "area.encryption", "area.authentication", "area.nssa", "area.stub", ] self.compare(parsers=parsers, want=want, have=have) self._area_compare_lists(want=want, have=have) def _area_compare_lists(self, want, have): for attrib in ["ranges"]: wdict = want.get(attrib, {}) hdict = have.get(attrib, {}) for key, entry in iteritems(wdict): if entry != hdict.pop(key, {}): entry["area_id"] = want["area_id"] self.addcmd(entry, "area.{0}".format(attrib), False) # remove remaining items in have for replaced for entry in hdict.values(): entry["area_id"] = have["area_id"] self.addcmd(entry, "area.{0}".format(attrib), True) def _compare_lists(self, want, have): for attrib in ["redistribute"]: wdict = get_from_dict(want, attrib) or {} hdict = get_from_dict(have, attrib) or {} for key, entry in iteritems(wdict): if entry != hdict.pop(key, {}): self.addcmd(entry, attrib, False) # remove remaining items in have for replaced for entry in hdict.values(): self.addcmd(entry, attrib, True) def _ospf_list_to_dict(self, entry): for name, proc in iteritems(entry): for area in proc.get("areas", []): if "ranges" in area: range_dict = {} for entry in area.get("ranges", []): range_dict.update({entry["address"]: entry}) area["ranges"] = range_dict areas_dict = {} for entry in proc.get("areas", []): areas_dict.update({entry["area_id"]: entry}) proc["areas"] = areas_dict redis_dict = {} for entry in proc.get("redistribute", []): redis_dict.update({entry["routes"]: entry}) proc["redistribute"] = redis_dict if "address_family" in proc: addr_dict = {} for entry in proc.get("address_family", []): addr_dict.update({entry["afi"]: entry}) proc["address_family"] = addr_dict self._ospf_list_to_dict(proc["address_family"])
36.351536
103
0.529903
9,526
0.894376
0
0
0
0
0
0
2,537
0.238194
73de5fb73d8473474f580b5f20b98adc8660e07b
1,141
py
Python
platypush/plugins/logger/__init__.py
BlackLight/runbullet
8d26c8634d2677b4402f0a21b9ab8244b44640db
[ "MIT" ]
3
2017-11-03T17:03:36.000Z
2017-11-10T06:38:15.000Z
platypush/plugins/logger/__init__.py
BlackLight/runbullet
8d26c8634d2677b4402f0a21b9ab8244b44640db
[ "MIT" ]
14
2017-11-04T11:46:37.000Z
2017-12-11T19:15:27.000Z
platypush/plugins/logger/__init__.py
BlackLight/runbullet
8d26c8634d2677b4402f0a21b9ab8244b44640db
[ "MIT" ]
null
null
null
from platypush.plugins import Plugin, action class LoggerPlugin(Plugin): """ Plugin to log traces on the standard Platypush logger """ @action def trace(self, msg, *args, **kwargs): """ logger.trace wrapper """ self.logger.trace(msg, *args, **kwargs) @action def debug(self, msg, *args, **kwargs): """ logger.debug wrapper """ self.logger.debug(msg, *args, **kwargs) @action def info(self, msg, *args, **kwargs): """ logger.info wrapper """ self.logger.info(msg, *args, **kwargs) @action def warning(self, msg, *args, **kwargs): """ logger.warning wrapper """ self.logger.warning(msg, *args, **kwargs) @action def error(self, msg, *args, **kwargs): """ logger.error wrapper """ self.logger.error(msg, *args, **kwargs) @action def exception(self, exception, *args, **kwargs): """ logger.exception wrapper """ self.logger.exception(exception, *args, **kwargs) # vim:sw=4:ts=4:et:
21.12963
57
0.531113
1,070
0.937774
0
0
933
0.817704
0
0
357
0.312883
73de6cd753fb9320e7590a96928403d694712cd8
1,632
py
Python
hc/front/tests/test_add_pdc.py
IfBkg/healthchecks
dcd8a74c6b0bcdb0065e7c27d5b6639823400562
[ "BSD-3-Clause" ]
1
2020-07-13T15:33:31.000Z
2020-07-13T15:33:31.000Z
hc/front/tests/test_add_pdc.py
IfBkg/healthchecks
dcd8a74c6b0bcdb0065e7c27d5b6639823400562
[ "BSD-3-Clause" ]
53
2020-11-27T14:55:01.000Z
2021-04-22T10:01:13.000Z
hc/front/tests/test_add_pdc.py
IfBkg/healthchecks
dcd8a74c6b0bcdb0065e7c27d5b6639823400562
[ "BSD-3-Clause" ]
null
null
null
from django.test.utils import override_settings from hc.api.models import Channel from hc.test import BaseTestCase @override_settings(PD_VENDOR_KEY="foo") class AddPdConnectTestCase(BaseTestCase): def setUp(self): super().setUp() self.url = "/projects/%s/add_pdc/" % self.project.code def test_it_works(self): session = self.client.session session["pd"] = "1234567890AB" # 12 characters session.save() self.client.login(username="[email protected]", password="password") url = self.url + "1234567890AB/?service_key=123" r = self.client.get(url, follow=True) self.assertRedirects(r, self.channels_url) c = Channel.objects.get() self.assertEqual(c.kind, "pd") self.assertEqual(c.pd_service_key, "123") self.assertEqual(c.project, self.project) @override_settings(PD_VENDOR_KEY=None) def test_it_requires_vendor_key(self): self.client.login(username="[email protected]", password="password") r = self.client.get(self.url) self.assertEqual(r.status_code, 404) @override_settings(PD_ENABLED=False) def test_it_requires_pd_enabled(self): self.client.login(username="[email protected]", password="password") r = self.client.get(self.url) self.assertEqual(r.status_code, 404) def test_it_requires_rw_access(self): self.bobs_membership.rw = False self.bobs_membership.save() self.client.login(username="[email protected]", password="password") r = self.client.get(self.url) self.assertEqual(r.status_code, 403)
34
76
0.677083
1,474
0.903186
0
0
1,514
0.927696
0
0
215
0.13174
73dee1fd408bd1037f09660c2312f58f954869d8
994
py
Python
atcoder/corp/codethxfes2014b_e.py
knuu/competitive-programming
16bc68fdaedd6f96ae24310d697585ca8836ab6e
[ "MIT" ]
1
2018-11-12T15:18:55.000Z
2018-11-12T15:18:55.000Z
atcoder/corp/codethxfes2014b_e.py
knuu/competitive-programming
16bc68fdaedd6f96ae24310d697585ca8836ab6e
[ "MIT" ]
null
null
null
atcoder/corp/codethxfes2014b_e.py
knuu/competitive-programming
16bc68fdaedd6f96ae24310d697585ca8836ab6e
[ "MIT" ]
null
null
null
import sys sys.setrecursionlimit(3000) def check(rs, cs): table[rs][cs] = 2 if (rs, cs) == (rg, cg): return True if rs > 0 and table[rs - 1][cs] == 1 and check(rs - 1, cs): return True if cs > 0 and table[rs][cs - 1] == 1 and check(rs, cs - 1): return True if rs < r - 1 and table[rs + 1][cs] == 1 and check(rs + 1, cs): return True if cs < c - 1 and table[rs][cs + 1] == 1 and check(rs, cs + 1): return True return False r, c = map(int, input().split()) table = [[0] * c for _ in range(r)] rs, cs = map(lambda x:int(x) - 1, input().split()) rg, cg = map(lambda x:int(x) - 1, input().split()) n = int(input()) draw = [list(map(int, input().split())) for _ in range(n)] for ri, ci, hi, wi in draw: ri -= 1 ci -= 1 for i in range(ri, ri+hi): for j in range(ci, ci+wi): table[i][j] = 1 if table[rs][cs] != 1 or table[rg][cg] != 1: print('NO') else: print('YES' if check(rs, cs) else 'NO')
28.4
67
0.524145
0
0
0
0
0
0
0
0
13
0.013078
73df0b517cdf0b8ebc3a55ea196f1562c83f9f1c
4,329
py
Python
tests/test_bullet_train.py
masschallenge/bullet-train-python-client
bcec653c0b4ed65779ab4e1a2f809810c684be00
[ "BSD-3-Clause" ]
null
null
null
tests/test_bullet_train.py
masschallenge/bullet-train-python-client
bcec653c0b4ed65779ab4e1a2f809810c684be00
[ "BSD-3-Clause" ]
null
null
null
tests/test_bullet_train.py
masschallenge/bullet-train-python-client
bcec653c0b4ed65779ab4e1a2f809810c684be00
[ "BSD-3-Clause" ]
null
null
null
import json import logging from unittest import mock, TestCase from bullet_train import BulletTrain import os logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) TEST_API_URL = 'https://test.bullet-train.io/api' TEST_IDENTIFIER = 'test-identity' TEST_FEATURE = 'test-feature' class MockResponse: def __init__(self, data, status_code): self.json_data = json.loads(data) self.status_code = status_code def json(self): return self.json_data def mock_response(filename, *args, status=200, **kwargs): print('Hit URL %s with params' % args[0], kwargs.get('params')) dir_path = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(dir_path, filename), 'rt') as f: return MockResponse(f.read(), status) def mocked_get_specific_feature_flag_enabled(*args, **kwargs): return mock_response('data/get-flag-for-specific-feature-enabled.json', *args, **kwargs) def mocked_get_specific_feature_flag_disabled(*args, **kwargs): return mock_response('data/get-flag-for-specific-feature-disabled.json', *args, **kwargs) def mocked_get_specific_feature_flag_not_found(*args, **kwargs): return mock_response('data/not-found.json', *args, status=404, **kwargs) def mocked_get_value(*args, **kwargs): return mock_response('data/get-value-for-specific-feature.json', *args, **kwargs) def mocked_get_identity_flags_with_trait(*args, **kwargs): return mock_response('data/get-identity-flags-with-trait.json', *args, **kwargs) def mocked_get_identity_flags_without_trait(*args, **kwargs): return mock_response('data/get-identity-flags-without-trait.json', *args, **kwargs) class BulletTrainTestCase(TestCase): test_environment_key = 'test-env-key' def setUp(self) -> None: self.bt = BulletTrain(environment_id=self.test_environment_key, api=TEST_API_URL) @mock.patch('bullet_train.bullet_train.requests.get', side_effect=mocked_get_specific_feature_flag_enabled) def test_has_feature_returns_true_if_feature_returned(self, mock_get): # When result = self.bt.has_feature(TEST_FEATURE) # Then assert result @mock.patch('bullet_train.bullet_train.requests.get', side_effect=mocked_get_specific_feature_flag_not_found) def test_has_feature_returns_false_if_feature_not_returned(self, mock_get): # When result = self.bt.has_feature(TEST_FEATURE) # Then assert not result @mock.patch('bullet_train.bullet_train.requests.get', side_effect=mocked_get_specific_feature_flag_enabled) def test_feature_enabled_returns_true_if_feature_enabled(self, mock_get): # When result = self.bt.feature_enabled(TEST_FEATURE) # Then assert result @mock.patch('bullet_train.bullet_train.requests.get', side_effect=mocked_get_specific_feature_flag_disabled) def test_feature_enabled_returns_true_if_feature_disabled(self, mock_get): # When result = self.bt.feature_enabled(TEST_FEATURE) # Then assert not result @mock.patch('bullet_train.bullet_train.requests.get', side_effect=mocked_get_value) def test_get_value_returns_value_for_environment_if_feature_exists(self, mock_get): # When result = self.bt.get_value(TEST_FEATURE) # Then assert result == 'Test value' @mock.patch('bullet_train.bullet_train.requests.get', side_effect=mocked_get_specific_feature_flag_not_found) def test_get_value_returns_None_for_environment_if_feature_does_not_exist(self, mock_get): # When result = self.bt.get_value(TEST_FEATURE) # Then assert result is None @mock.patch('bullet_train.bullet_train.requests.get', side_effect=mocked_get_identity_flags_with_trait) def test_get_trait_returns_trait_value_if_trait_key_exists(self, mock_get): # When result = self.bt.get_trait('trait_key', TEST_IDENTIFIER) # Then assert result == 'trait_value' @mock.patch('bullet_train.bullet_train.requests.get', side_effect=mocked_get_identity_flags_without_trait) def test_get_trait_returns_None_if_trait_key_does_not_exist(self, mock_get): # When result = self.bt.get_trait('trait_key', TEST_IDENTIFIER) # Then assert result is None
34.632
113
0.736891
2,849
0.65812
0
0
2,409
0.55648
0
0
823
0.190113
73df243fb4b55e390ea6a1111a32c8c6671d261d
3,105
py
Python
plim/console.py
spollard/Plim
7689de85364691063ed5c43a891c433f9ebef5b9
[ "MIT" ]
85
2015-01-08T20:15:54.000Z
2022-03-12T21:51:27.000Z
plim/console.py
spollard/Plim
7689de85364691063ed5c43a891c433f9ebef5b9
[ "MIT" ]
18
2015-02-27T14:59:08.000Z
2021-09-24T10:27:19.000Z
plim/console.py
spollard/Plim
7689de85364691063ed5c43a891c433f9ebef5b9
[ "MIT" ]
14
2015-02-26T07:20:42.000Z
2022-02-01T17:52:16.000Z
""" This module contains entry points for command-line utilities provided by Plim package. """ import sys import os import argparse import codecs from pkg_resources import get_distribution from pkg_resources import EntryPoint from mako.template import Template from mako.lookup import TemplateLookup from .util import PY3K def plimc(args=None, stdout=None): """This is the `plimc` command line utility :param args: list of command-line arguments. If None, then ``sys.argv[1:]`` will be used. :type args: list or None :param stdout: file-like object representing stdout. If None, then ``sys.stdout`` will be used. Custom stdout is used for testing purposes. :type stdout: None or a file-like object """ # Parse arguments # ------------------------------------ cli_parser = argparse.ArgumentParser(description='Compile plim source files into mako files.') cli_parser.add_argument('source', help="path to source plim template") cli_parser.add_argument('-o', '--output', help="write result to FILE.") cli_parser.add_argument('-e', '--encoding', default='utf-8', help="content encoding") cli_parser.add_argument('-p', '--preprocessor', default='plim:preprocessor', help="Preprocessor instance that will be used for parsing the template") cli_parser.add_argument('-H', '--html', action='store_true', help="Render HTML output instead of Mako template") cli_parser.add_argument('-V', '--version', action='version', version='Plim {}'.format(get_distribution("Plim").version)) if args is None: args = sys.argv[1:] args = cli_parser.parse_args(args) # Get custom preprocessor, if specified # ------------------------------------- preprocessor_path = args.preprocessor # Add an empty string path, so modules located at the current working dir # are reachable and considered in the first place (see issue #32). sys.path.insert(0, '') preprocessor = EntryPoint.parse('x={}'.format(preprocessor_path)).load(False) # Render to html, if requested # ---------------------------- if args.html: root_dir = os.path.dirname(os.path.abspath(args.source)) template_file = os.path.basename(args.source) lookup = TemplateLookup(directories=[root_dir], input_encoding=args.encoding, output_encoding=args.encoding, preprocessor=preprocessor) content = lookup.get_template(template_file).render_unicode() else: with codecs.open(args.source, 'rb', args.encoding) as fd: content = preprocessor(fd.read()) # Output # ------------------------------------ if args.output is None: if stdout is None: stdout = PY3K and sys.stdout.buffer or sys.stdout fd = stdout content = codecs.encode(content, 'utf-8') else: fd = codecs.open(args.output, 'wb', args.encoding) try: fd.write(content) finally: fd.close()
40.324675
116
0.622544
0
0
0
0
0
0
0
0
1,251
0.402899
73e0868276739ce21107e9b9452274d8030151db
2,568
py
Python
devel_notes/test_class_speed.py
mekhub/alphafold
8d89abf73ea07841b550b968aceae794acb244df
[ "MIT" ]
3
2019-05-15T16:46:20.000Z
2019-07-19T13:27:45.000Z
devel_notes/test_class_speed.py
mekhub/alphafold
8d89abf73ea07841b550b968aceae794acb244df
[ "MIT" ]
null
null
null
devel_notes/test_class_speed.py
mekhub/alphafold
8d89abf73ea07841b550b968aceae794acb244df
[ "MIT" ]
4
2020-02-08T02:43:01.000Z
2021-08-22T09:23:17.000Z
#!/usr/bin/python import time import sys import os from copy import deepcopy sys.path.append(os.path.join(os.getcwd(), '..')) from alphafold.partition import DynamicProgrammingData as DP def getval( DP, idx ): return DP.X[ idx ][ idx ] x = [[]]*500 for i in range( 500 ): x[i] = [0.0]*500 dx = deepcopy( x ) xcontrib = [[]]*500 for i in range( 500 ): xcontrib[i] = [[]]*500 xDP = DP( 500 ) # 500x500 object with other stuff in it. N = 500000 print 'Try for ', N, 'cycles each:' # Time getting print 'GETTING' t0 = time.time() for i in range( N ): y = x[56][56] t1 = time.time() print t1 - t0, 'y = x[56][56]' t0 = time.time() for i in range( N ): y = xDP.X[56][56] t1 = time.time() print t1 - t0,'y = xDP.X[56][56]' t0 = time.time() for i in range( N ): y = getval(xDP,56) t1 = time.time() print t1 - t0, 'y = getval(xDP,56)' t0 = time.time() for i in range( N ): y = xDP[56][56] t1 = time.time() print t1 - t0, 'y = xDP[56][56]' # Time setting print 'SETTING' t0 = time.time() for i in range( N ): x[56][56] = 20 t1 = time.time() print t1 - t0, 'x[56][56] = 20' t0 = time.time() for i in range( N ): xDP.X[56][56] = 20 t1 = time.time() print t1 - t0,'xDP.X[56][56] = 20' t0 = time.time() for i in range( N ): val = 20 xDP.X[56][56] = val t1 = time.time() print t1 - t0,'val = 20; xDP.X[56][56] = val' t0 = time.time() for i in range( N ): xDP[56][56] = 20 t1 = time.time() print t1 - t0,'xDP[56][56] = 20' # Time setting, including derivs print 'SETTING INCLUDE DERIVS' t0 = time.time() for i in range( N ): x[56][56] = 20 dx[56][56] = 0 t1 = time.time() print t1 - t0, 'x[56][56] = 20, dx[56][56] = 20' t0 = time.time() for i in range( N ): x[56][56] = (20,0) t1 = time.time() print t1 - t0, 'x[56][56] = (20,0)' t0 = time.time() for i in range( N ): xDP.X[56][56] = 20 xDP.dX[56][56] = 0 t1 = time.time() print t1 - t0,'xDP.X[56][56] = 20, xDP.dX[56][56]' t0 = time.time() for i in range( N ): xDP.add(56,56,20) t1 = time.time() print t1 - t0,'xDP += 20' # Time setting, including derivs and contribs print 'SETTING INCLUDE DERIVS AND CONTRIBS' t0 = time.time() for i in range( N ): x[56][56] = 20 dx[56][56] = 0 xcontrib[56][56].append( [x,56,56,20] ) t1 = time.time() print t1 - t0, 'x[56][56] = 20' t0 = time.time() for i in range( N ): xDP.X[56][56] = 20 xDP.dX[56][56] = 0 xDP.X_contrib[56][56].append( [x,56,56,20] ) t1 = time.time() print t1 - t0,'xDP.X[56][56] = 20' t0 = time.time() for i in range( N ): xDP.add(56,56,20) t1 = time.time() print t1 - t0,'xDP += 20'
20.709677
60
0.575545
0
0
0
0
0
0
0
0
573
0.223131
73e13d84ff4673d8d1b1b964136674b1bd1ae5ef
688
py
Python
testRead.py
BichonCby/BaseBSPython
411f7f5be5636aa7dc9975fb0ab61daa37e6d40a
[ "MIT" ]
null
null
null
testRead.py
BichonCby/BaseBSPython
411f7f5be5636aa7dc9975fb0ab61daa37e6d40a
[ "MIT" ]
null
null
null
testRead.py
BichonCby/BaseBSPython
411f7f5be5636aa7dc9975fb0ab61daa37e6d40a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*-coding:Latin-1 -* import time from Definitions import * #from ev3dev2.motor import OUTPUT_B,LargeMotor from ev3dev2.sensor import * from AddSensors import AngleSensor from ev3dev2.sensor.lego import TouchSensor import Trace trace = Trace.Trace() i=0 toucher = TouchSensor(INPUT_3) EncoderSensRight = AngleSensor(INPUT_1) EncoderSensLeft = AngleSensor(INPUT_2) trace.Log('toto\n') while i<50: top = time.time() i=i+1 #toucher.value() fic=open('/sys/class/lego-sensor/sensor0/value0','r') val = fic.read() fic.close() duration = (time.time()-top) trace.Log(val + ': %.2f\n' %(duration*1000)) time.sleep(0.1) trace.Close()
22.193548
57
0.699128
0
0
0
0
0
0
0
0
166
0.241279
73e2d9cdb5fe490b5f63b902095fb196603f96d6
1,912
py
Python
circular-queue/circular-queue.py
tywmick/data-structures
996451b470a118f3f27faab6e109f50716e399a5
[ "Unlicense" ]
null
null
null
circular-queue/circular-queue.py
tywmick/data-structures
996451b470a118f3f27faab6e109f50716e399a5
[ "Unlicense" ]
null
null
null
circular-queue/circular-queue.py
tywmick/data-structures
996451b470a118f3f27faab6e109f50716e399a5
[ "Unlicense" ]
null
null
null
class CircularQueue: """ A circlular queue: a first-in-first-out data structure with a fixed buffer size. """ def __init__(self, size): if type(size) is not int: raise TypeError("Queue size must be a postive integer.") if size <= 0: raise ValueError("Queue size must be a postive integer.") self.queue = [] self.read_pos = 0 self.write_pos = 0 self.size = size self.queue = [None for i in range(size)] def enqueue(self, element): """ Adds an element to the buffer if the buffer is not already full. :param element: The element you wish to add. :returns: The element itself if it was added, or `None` if the buffer was full. """ if self.queue[self.write_pos] is None: self.queue[self.write_pos] = element self.write_pos = (self.write_pos + 1) % self.size return element else: # Buffer is full return None def dequeue(self): """ Removes an element from the buffer if the buffer is not already empty. :returns: The element removed (or `None` if the buffer was empty). """ if self.queue[self.read_pos] is None: # Buffer is empty return None else: item = self.queue[self.read_pos] self.queue[self.read_pos] = None self.read_pos = (self.read_pos + 1) % self.size return item def clear(self): """Clears the contents of the queue.""" self.queue = [None for i in range(self.size)] self.read_pos = self.write_pos = 0 def print(self): """ Prints the queue to the console as a list, starting with the element that will be read next. """ return self.queue[self.read_pos :] + self.queue[: self.read_pos]
31.344262
87
0.569038
1,911
0.999477
0
0
0
0
0
0
770
0.40272
73e339eb2591f2a4b2f2b9553c0b32fcb1202cbf
2,697
py
Python
infer.py
vic9527/ViClassifier
fd6c4730e880f35a9429277a6025219315e067cc
[ "MIT" ]
1
2021-11-03T05:05:34.000Z
2021-11-03T05:05:34.000Z
infer.py
vic9527/viclassifier
fd6c4730e880f35a9429277a6025219315e067cc
[ "MIT" ]
null
null
null
infer.py
vic9527/viclassifier
fd6c4730e880f35a9429277a6025219315e067cc
[ "MIT" ]
null
null
null
def load_model(model_path, device_type='cuda'): import torch from viclassifier.utils import dev_opt device = dev_opt.usingDevice(device_type) model = torch.load(model_path, map_location=device) model.to(device) # 测试时不启用 BatchNormalization 和 Dropout model.eval() return model def predict(model, image_path, idx_to_class=None, is_show=False, device_type='cuda'): import torch from PIL import Image, ImageDraw, ImageFont from viclassifier.utils import dev_opt from viclassifier.utils import trans_gen device = dev_opt.usingDevice(device_type) model.eval().to(device) transform = trans_gen.genTrans('test') image = Image.open(image_path).convert('RGB') image_tensor = transform(image) # pytorch中的view 功能类似于numpy中的resize() 函数 把原先tensor中的数据按照行优先的顺序排成你要的形状 # 注意原来的tensor与新的tensor是共享内存的,也就是说对其中的一个tensor进行更改的话,另外一个tensor也会自动进行相应的修改。 # 应该使用clone()函数克隆和再进行view(),而且使⽤clone还有⼀个好处是会被记录在计算图中,即梯度回传到副本时也会传到源Tensor。 image_tensor_view = image_tensor.view(1, 3, 224, 224).to(device) with torch.no_grad(): out = model(image_tensor_view) ps = torch.exp(out) topk, topclass = ps.topk(1, dim=1) # print("Prediction : ", idx_to_class[topclass.cpu().numpy()[0][0]], # ", Score: ", topk.cpu().numpy()[0][0]) if is_show: text = str(topclass.cpu().numpy()[0][0]) + " " + str(topk.cpu().numpy()[0][0]) if idx_to_class is not None: text = idx_to_class[topclass.cpu().numpy()[0][0]] + " " + str(topk.cpu().numpy()[0][0]) draw = ImageDraw.Draw(image) font = ImageFont.truetype('arial.ttf', 36) draw.text((0, 0), text, (255, 0, 0), font=font) image.show() label = topclass.cpu().numpy()[0][0] if idx_to_class is not None: label = idx_to_class[label] return label, topk.cpu().numpy()[0][0] if __name__ == "__main__": import os, sys viclassifier_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) print(viclassifier_dir) sys.path.append(viclassifier_dir) model = load_model('D:\\myai\\projects\\tmp\\git\\viclassifier\\tmps\\model.pth') print(model) image_path = r'C:\xxx\xxx.jpg' # ### python字典键值对互换### # d1 = {'a': 1, 'b': 2, 'c': 3} # # 用遍历互换键值对 # d2 = {} # for key, value in d1.items(): # d2[value] = key # # # 用列表生成器 # d2 = {k: v for v, k in d1.items()} # # # 用zip运算符 # d2 = dict(zip(d1.value(), d1.key())) class_to_idx = {'bad': 0, 'good': 1} idx_to_class = {k: v for v, k in class_to_idx.items()} predict(model, image_path, idx_to_class, is_show=False, device_type='cuda')
32.107143
105
0.632925
0
0
0
0
0
0
0
0
1,060
0.350877
73e41b86e4797d0bdf28efbbcf4b63a5d38dc998
1,675
py
Python
compiler/router/tests/10_supply_grid_test.py
bsg-external/OpenRAM
3c5e13f95c925a204cabf052525c3de07638168f
[ "BSD-3-Clause" ]
43
2016-11-06T20:53:46.000Z
2021-09-03T18:57:39.000Z
compiler/router/tests/10_supply_grid_test.py
bsg-external/OpenRAM
3c5e13f95c925a204cabf052525c3de07638168f
[ "BSD-3-Clause" ]
27
2016-11-15T19:28:25.000Z
2018-02-20T19:23:52.000Z
compiler/router/tests/10_supply_grid_test.py
bsg-external/OpenRAM
3c5e13f95c925a204cabf052525c3de07638168f
[ "BSD-3-Clause" ]
30
2016-11-09T16:02:45.000Z
2018-02-23T17:07:59.000Z
# See LICENSE for licensing information. # # Copyright (c) 2016-2019 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. # #!/usr/bin/env python3 "Run a regresion test the library cells for DRC" import unittest from testutils import header,openram_test import sys,os sys.path.append(os.path.join(sys.path[0],"..")) import globals import debug OPTS = globals.OPTS class no_blockages_test(openram_test): """ Simplest two pin route test with no blockages. """ def runTest(self): globals.init_openram("config_{0}".format(OPTS.tech_name)) from supply_router import supply_router as router if False: from control_logic import control_logic cell = control_logic(16) layer_stack =("metal3","via3","metal4") rtr=router(layer_stack, cell) self.assertTrue(rtr.route()) else: from sram import sram from sram_config import sram_config c = sram_config(word_size=4, num_words=32, num_banks=1) c.words_per_row=1 sram = sram(c, "sram1") cell = sram.s self.local_check(cell,True) # fails if there are any DRC errors on any cells globals.end_openram() # instantiate a copy of the class to actually run the test if __name__ == "__main__": (OPTS, args) = globals.parse_args() del sys.argv[1:] header(__file__, OPTS.tech_name) unittest.main()
29.385965
79
0.63403
954
0.569552
0
0
0
0
0
0
558
0.333134
73e5db5282163558729f472aa4322e2b0c37c1ec
3,021
py
Python
sources/decoding/analyse_model.py
int-brain-lab/paper-ephys-atlas
47a7d52d6d59b5b618826d6f4cb72329dee77e0e
[ "MIT" ]
null
null
null
sources/decoding/analyse_model.py
int-brain-lab/paper-ephys-atlas
47a7d52d6d59b5b618826d6f4cb72329dee77e0e
[ "MIT" ]
null
null
null
sources/decoding/analyse_model.py
int-brain-lab/paper-ephys-atlas
47a7d52d6d59b5b618826d6f4cb72329dee77e0e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sat May 21 17:05:48 2022 @author: Guido Meijer """ import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, balanced_accuracy_score, confusion_matrix from ibllib.atlas import BrainRegions from joblib import load from model_functions import load_channel_data, load_trained_model import matplotlib.pyplot as plt import seaborn as sns br = BrainRegions() # Settings FEATURES = ['psd_delta', 'psd_theta', 'psd_alpha', 'psd_beta', 'psd_gamma', 'rms_ap', 'rms_lf', 'spike_rate', 'axial_um', 'x', 'y', 'depth'] # Load in data chan_volt = load_channel_data() # chan_volt = pd.read_parquet("/home/sebastian/Downloads/FlatIron/tables/channels_voltage_features.pqt") chan_volt = chan_volt.loc[~chan_volt['rms_ap'].isnull()] # remove NaNs # 31d8dfb1-71fd-4c53-9229-7cd48bee07e4 64d04585-67e7-4320-baad-8d4589fd18f7 if True: test = chan_volt.loc[['31d8dfb1-71fd-4c53-9229-7cd48bee07e4', '64d04585-67e7-4320-baad-8d4589fd18f7'], : ] else: test = chan_volt feature_arr = test[FEATURES].to_numpy() regions = test['cosmos_acronyms'].values # Load model clf = load_trained_model('channels', 'cosmos') # Decode brain regions print('Decoding brain regions..') predictions = clf.predict(feature_arr) probs = clf.predict_proba(feature_arr) # histogram of response probabilities certainties = probs.max(1) plt.hist(certainties) plt.close() # plot of calibration, how certain are correct versus incorrect predicitions plt.hist(certainties[regions == predictions], label='Correct predictions') plt.hist(certainties[regions != predictions], label='Wrong predictions') plt.title("Model calibration", size=24) plt.legend(frameon=False, fontsize=16) plt.ylabel("Occurences", size=21) plt.xlabel("Prob for predicted region", size=21) plt.xticks(fontsize=14) plt.yticks(fontsize=14) sns.despine() plt.tight_layout() plt.savefig("/home/sebastian/Pictures/calibration") plt.close() # compute accuracy and balanced for our highly imbalanced dataset acc = accuracy_score(regions, predictions) bacc = balanced_accuracy_score(regions, predictions) print(f'Accuracy: {acc*100:.1f}%') print(f'Balanced accuracy: {bacc*100:.1f}%') # compute confusion matrix names = np.unique(np.append(regions, predictions)) cm = confusion_matrix(regions, predictions, labels=names) cm = cm / cm.sum(1)[:, None] cm_copy = cm.copy() # list top n classifications n = 10 np.max(cm[~np.isnan(cm)]) cm[np.isnan(cm)] = 0 for i in range(n): ind = np.unravel_index(np.argmax(cm, axis=None), cm.shape) if ind[0] != ind[1]: print("Top {} classification, mistake: {} gets classified as {}".format(i+1, names[ind[0]], names[ind[1]])) else: print("Top {} classification, success: {} gets classified as {}".format(i+1, names[ind[0]], names[ind[1]])) cm[ind] = 0 # plot confusion matrix plt.imshow(cm_copy) plt.yticks(range(len(names)), names) plt.xticks(range(len(names)), names, rotation='65') plt.show()
32.138298
115
0.737504
0
0
0
0
0
0
0
0
1,164
0.385303
73e778dc0ac39e74782e31bce2904aee2683d400
3,923
py
Python
Lab04_82773/ex4_4/ex4_4.py
viniciusbenite/cdb
ccc39e9320b03e26d5479a24f76a209ed2283000
[ "MIT" ]
null
null
null
Lab04_82773/ex4_4/ex4_4.py
viniciusbenite/cdb
ccc39e9320b03e26d5479a24f76a209ed2283000
[ "MIT" ]
null
null
null
Lab04_82773/ex4_4/ex4_4.py
viniciusbenite/cdb
ccc39e9320b03e26d5479a24f76a209ed2283000
[ "MIT" ]
null
null
null
# Vinicius Ribeiro # Nmec 82773 # Make sure to run pip3 install -r requirements.txt and load the .dump at Neo4j # https://neo4j.com/docs/operations-manual/current/tools/dump-load/ # Dataset: https://neo4j.com/graphgist/beer-amp-breweries-graphgist#_create_nodes_and_relationships import sys from neo4j import GraphDatabase # Connect to local DB def init_db(uri, user, password): try: _driver = GraphDatabase.driver(uri, auth=(user, password)) print("Connection successful") except: print("Something went wrong...") sys.exit() with _driver.session() as session: result = session.run("match (c) return c") result = list(result) print("rows: {}".format(len(result))) exec_queries(session) def exec_queries(session): # Map of queries to be executed: queries = {"querie1": "MATCH (b:Beer)-[r:BEER_CATEGORY]->(c:Category{category:'British Ale'})" "RETURN b AS BEER, c AS TYPE", "querie2": "MATCH (b:Beer)-[r:BEER_STYLE]->(s:Style)" "WHERE s.style CONTAINS 'Ale'" "RETURN b.name AS BEER, s AS STYLE", "querie3": "MATCH (category:Category{category: 'British Ale'})<-[:BEER_CATEGORY]-(beer:Beer)-[" ":BREWED_AT]->(brewery: Brewery)-[:LOC_CITY]->(city:City)-[:LOC_STATE]->(state:State)-[" ":LOC_COUNTRY]->(country:Country {country: 'United Kingdom'}) " "RETURN Distinct(beer.name) as beer, brewery.name as brewery, city.city as city " "ORDER BY city, beer", "querie4": "MATCH (b:Beer)-[r:BEER_CATEGORY]->(c:Category {category: 'Irish Ale'})" "RETURN b.name AS BEER_NAME, b.abv AS ALC ,c.category AS CATEGORY " "ORDER BY b.abv DESC " "LIMIT 10", "querie5": "MATCH (b:Beer)" "WHERE b.name CONTAINS 'Stout'" "RETURN b.name AS BEER " "ORDER BY b.name", "querie6": "MATCH (b:Beer)-[:BEER_STYLE]->(s:Style)" "WHERE b.name CONTAINS 'IPA' AND s.style CONTAINS 'Ale'" "RETURN b.name AS BEER, s.style AS STYLE", "querie7": "MATCH (b:Beer)-[:BREWED_AT]->(brewery: Brewery)-[:LOC_CITY]->(city:City)-[:LOC_STATE]->(" "state:State)-[:LOC_COUNTRY]->(country:Country) " "WHERE country.country <> 'Belgium' AND b.abv > 9.0 " "RETURN DISTINCT b.name AS BEER, country.country AS COUNTRY, b.abv AS ALCH " "ORDER BY b.abv", "querie8": "MATCH (b:Beer)-[:BEER_STYLE]->(s:Style)" "WITH s, COUNT(b) AS total " "RETURN s.style AS STYLE , total AS NUM_OF_DIF_BEERS " "ORDER BY total DESC " "LIMIT 10", "querie9": "MATCH path=shortestPath((b1:Beer)-[*]-(b2:Beer)) " "WHERE b1.name='Bare Knuckle Stout' AND b2.name='Hop Ottin IPA' " "RETURN length(path) AS PATH_LEN, path AS PATH ", "querie10": "MATCH path=shortestPath((b1:Beer)-[*]-(b2:Beer)) " "WHERE b1.name <> b2.name " "RETURN LENGTH(path) AS LENGTH, b1.name AS BEER1, b2.name AS BEER2, path AS PATH " "ORDER BY LENGTH DESC " "LIMIT 1"} for key in queries: results = session.run(queries[key]) for result in results: print(result) close(session) print("FINISH!") def close(_driver): _driver.close() init_db("bolt://localhost:7687", "neo4j", "12345")
42.182796
116
0.515932
0
0
0
0
0
0
0
0
2,282
0.581698
73e823c830b6abe9c91c69930849b15b603a17bb
184
py
Python
readthedocs/code-tabs/python/tests/test_directory_listing_recursive.py
xenon-middleware/xenon-tutorial
92e4e4037ab2bc67c8473ac4366ff41326a7a41c
[ "Apache-2.0" ]
2
2016-06-23T09:03:34.000Z
2018-03-31T12:45:39.000Z
readthedocs/code-tabs/python/tests/test_directory_listing_recursive.py
NLeSC/Xenon-examples
92e4e4037ab2bc67c8473ac4366ff41326a7a41c
[ "Apache-2.0" ]
54
2015-11-26T16:36:48.000Z
2017-08-01T12:12:51.000Z
readthedocs/code-tabs/python/tests/test_directory_listing_recursive.py
xenon-middleware/xenon-examples
92e4e4037ab2bc67c8473ac4366ff41326a7a41c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import pytest from pyxenon_snippets import directory_listing_recursive def test_directory_listing_recursive(): directory_listing_recursive.run_example()
16.727273
56
0.831522
0
0
0
0
0
0
0
0
21
0.11413
73e8d0b6bdf6ce5014c04793aa8b3ccc731b67fb
764
py
Python
submissions/past201912-open/i.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
1
2021-05-10T01:16:28.000Z
2021-05-10T01:16:28.000Z
submissions/past201912-open/i.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
3
2021-05-11T06:14:15.000Z
2021-06-19T08:18:36.000Z
submissions/past201912-open/i.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
null
null
null
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) from itertools import product n, m = map(int, readline().split()) inf = float('inf') dp = [inf] * (2 ** n) dp[0] = 0 for _ in range(m): s, c = readline().rstrip().decode().split() c = int(c) bit = [0] * n for i, ss in enumerate(s): if ss == 'Y': bit[i] = 1 for i, v in enumerate(product([0, 1], repeat=n)): if dp[i] != inf: num = 0 for index, (x, y) in enumerate(zip(v[::-1], bit)): if x == 1 or y == 1: num += 2 ** index dp[num] = min(dp[num], dp[i] + c) print(-1 if dp[-1] == inf else dp[-1])
27.285714
62
0.510471
0
0
0
0
0
0
0
0
8
0.010471
73e8d525fff7a96e23c10924c3bedcf78a0ab5d6
55,250
py
Python
google/cloud/dlp_v2/services/dlp_service/transports/grpc_asyncio.py
LaudateCorpus1/python-dlp
e0a51c9254677016f547647848dcbee85ee1bf29
[ "Apache-2.0" ]
32
2020-07-11T02:50:13.000Z
2022-02-10T19:45:59.000Z
google/cloud/dlp_v2/services/dlp_service/transports/grpc_asyncio.py
LaudateCorpus1/python-dlp
e0a51c9254677016f547647848dcbee85ee1bf29
[ "Apache-2.0" ]
112
2020-02-11T13:24:14.000Z
2022-03-31T20:59:08.000Z
google/cloud/dlp_v2/services/dlp_service/transports/grpc_asyncio.py
LaudateCorpus1/python-dlp
e0a51c9254677016f547647848dcbee85ee1bf29
[ "Apache-2.0" ]
22
2020-02-03T18:23:38.000Z
2022-01-29T08:09:29.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import gapic_v1 from google.api_core import grpc_helpers_async from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from grpc.experimental import aio # type: ignore from google.cloud.dlp_v2.types import dlp from google.protobuf import empty_pb2 # type: ignore from .base import DlpServiceTransport, DEFAULT_CLIENT_INFO from .grpc import DlpServiceGrpcTransport class DlpServiceGrpcAsyncIOTransport(DlpServiceTransport): """gRPC AsyncIO backend transport for DlpService. The Cloud Data Loss Prevention (DLP) API is a service that allows clients to detect the presence of Personally Identifiable Information (PII) and other privacy-sensitive data in user- supplied, unstructured data streams, like text blocks or images. The service also includes methods for sensitive data redaction and scheduling of data scans on Google Cloud Platform based data sets. To learn more about concepts and find how-to guides see https://cloud.google.com/dlp/docs/. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _grpc_channel: aio.Channel _stubs: Dict[str, Callable] = {} @classmethod def create_channel( cls, host: str = "dlp.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> aio.Channel: """Create and return a gRPC AsyncIO channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: aio.Channel: A gRPC AsyncIO channel object. """ return grpc_helpers_async.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) def __init__( self, *, host: str = "dlp.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. channel (Optional[aio.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @property def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel @property def inspect_content( self, ) -> Callable[[dlp.InspectContentRequest], Awaitable[dlp.InspectContentResponse]]: r"""Return a callable for the inspect content method over gRPC. Finds potentially sensitive info in content. This method has limits on input size, processing time, and output size. When no InfoTypes or CustomInfoTypes are specified in this request, the system will automatically choose what detectors to run. By default this may be all types, but may change over time as detectors are updated. For how to guides, see https://cloud.google.com/dlp/docs/inspecting-images and https://cloud.google.com/dlp/docs/inspecting-text, Returns: Callable[[~.InspectContentRequest], Awaitable[~.InspectContentResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "inspect_content" not in self._stubs: self._stubs["inspect_content"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/InspectContent", request_serializer=dlp.InspectContentRequest.serialize, response_deserializer=dlp.InspectContentResponse.deserialize, ) return self._stubs["inspect_content"] @property def redact_image( self, ) -> Callable[[dlp.RedactImageRequest], Awaitable[dlp.RedactImageResponse]]: r"""Return a callable for the redact image method over gRPC. Redacts potentially sensitive info from an image. This method has limits on input size, processing time, and output size. See https://cloud.google.com/dlp/docs/redacting-sensitive- data-images to learn more. When no InfoTypes or CustomInfoTypes are specified in this request, the system will automatically choose what detectors to run. By default this may be all types, but may change over time as detectors are updated. Returns: Callable[[~.RedactImageRequest], Awaitable[~.RedactImageResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "redact_image" not in self._stubs: self._stubs["redact_image"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/RedactImage", request_serializer=dlp.RedactImageRequest.serialize, response_deserializer=dlp.RedactImageResponse.deserialize, ) return self._stubs["redact_image"] @property def deidentify_content( self, ) -> Callable[ [dlp.DeidentifyContentRequest], Awaitable[dlp.DeidentifyContentResponse] ]: r"""Return a callable for the deidentify content method over gRPC. De-identifies potentially sensitive info from a ContentItem. This method has limits on input size and output size. See https://cloud.google.com/dlp/docs/deidentify-sensitive- data to learn more. When no InfoTypes or CustomInfoTypes are specified in this request, the system will automatically choose what detectors to run. By default this may be all types, but may change over time as detectors are updated. Returns: Callable[[~.DeidentifyContentRequest], Awaitable[~.DeidentifyContentResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "deidentify_content" not in self._stubs: self._stubs["deidentify_content"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/DeidentifyContent", request_serializer=dlp.DeidentifyContentRequest.serialize, response_deserializer=dlp.DeidentifyContentResponse.deserialize, ) return self._stubs["deidentify_content"] @property def reidentify_content( self, ) -> Callable[ [dlp.ReidentifyContentRequest], Awaitable[dlp.ReidentifyContentResponse] ]: r"""Return a callable for the reidentify content method over gRPC. Re-identifies content that has been de-identified. See https://cloud.google.com/dlp/docs/pseudonymization#re-identification_in_free_text_code_example to learn more. Returns: Callable[[~.ReidentifyContentRequest], Awaitable[~.ReidentifyContentResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "reidentify_content" not in self._stubs: self._stubs["reidentify_content"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/ReidentifyContent", request_serializer=dlp.ReidentifyContentRequest.serialize, response_deserializer=dlp.ReidentifyContentResponse.deserialize, ) return self._stubs["reidentify_content"] @property def list_info_types( self, ) -> Callable[[dlp.ListInfoTypesRequest], Awaitable[dlp.ListInfoTypesResponse]]: r"""Return a callable for the list info types method over gRPC. Returns a list of the sensitive information types that the DLP API supports. See https://cloud.google.com/dlp/docs/infotypes-reference to learn more. Returns: Callable[[~.ListInfoTypesRequest], Awaitable[~.ListInfoTypesResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_info_types" not in self._stubs: self._stubs["list_info_types"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/ListInfoTypes", request_serializer=dlp.ListInfoTypesRequest.serialize, response_deserializer=dlp.ListInfoTypesResponse.deserialize, ) return self._stubs["list_info_types"] @property def create_inspect_template( self, ) -> Callable[[dlp.CreateInspectTemplateRequest], Awaitable[dlp.InspectTemplate]]: r"""Return a callable for the create inspect template method over gRPC. Creates an InspectTemplate for re-using frequently used configuration for inspecting content, images, and storage. See https://cloud.google.com/dlp/docs/creating- templates to learn more. Returns: Callable[[~.CreateInspectTemplateRequest], Awaitable[~.InspectTemplate]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_inspect_template" not in self._stubs: self._stubs["create_inspect_template"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/CreateInspectTemplate", request_serializer=dlp.CreateInspectTemplateRequest.serialize, response_deserializer=dlp.InspectTemplate.deserialize, ) return self._stubs["create_inspect_template"] @property def update_inspect_template( self, ) -> Callable[[dlp.UpdateInspectTemplateRequest], Awaitable[dlp.InspectTemplate]]: r"""Return a callable for the update inspect template method over gRPC. Updates the InspectTemplate. See https://cloud.google.com/dlp/docs/creating-templates to learn more. Returns: Callable[[~.UpdateInspectTemplateRequest], Awaitable[~.InspectTemplate]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_inspect_template" not in self._stubs: self._stubs["update_inspect_template"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/UpdateInspectTemplate", request_serializer=dlp.UpdateInspectTemplateRequest.serialize, response_deserializer=dlp.InspectTemplate.deserialize, ) return self._stubs["update_inspect_template"] @property def get_inspect_template( self, ) -> Callable[[dlp.GetInspectTemplateRequest], Awaitable[dlp.InspectTemplate]]: r"""Return a callable for the get inspect template method over gRPC. Gets an InspectTemplate. See https://cloud.google.com/dlp/docs/creating-templates to learn more. Returns: Callable[[~.GetInspectTemplateRequest], Awaitable[~.InspectTemplate]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_inspect_template" not in self._stubs: self._stubs["get_inspect_template"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/GetInspectTemplate", request_serializer=dlp.GetInspectTemplateRequest.serialize, response_deserializer=dlp.InspectTemplate.deserialize, ) return self._stubs["get_inspect_template"] @property def list_inspect_templates( self, ) -> Callable[ [dlp.ListInspectTemplatesRequest], Awaitable[dlp.ListInspectTemplatesResponse] ]: r"""Return a callable for the list inspect templates method over gRPC. Lists InspectTemplates. See https://cloud.google.com/dlp/docs/creating-templates to learn more. Returns: Callable[[~.ListInspectTemplatesRequest], Awaitable[~.ListInspectTemplatesResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_inspect_templates" not in self._stubs: self._stubs["list_inspect_templates"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/ListInspectTemplates", request_serializer=dlp.ListInspectTemplatesRequest.serialize, response_deserializer=dlp.ListInspectTemplatesResponse.deserialize, ) return self._stubs["list_inspect_templates"] @property def delete_inspect_template( self, ) -> Callable[[dlp.DeleteInspectTemplateRequest], Awaitable[empty_pb2.Empty]]: r"""Return a callable for the delete inspect template method over gRPC. Deletes an InspectTemplate. See https://cloud.google.com/dlp/docs/creating-templates to learn more. Returns: Callable[[~.DeleteInspectTemplateRequest], Awaitable[~.Empty]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_inspect_template" not in self._stubs: self._stubs["delete_inspect_template"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/DeleteInspectTemplate", request_serializer=dlp.DeleteInspectTemplateRequest.serialize, response_deserializer=empty_pb2.Empty.FromString, ) return self._stubs["delete_inspect_template"] @property def create_deidentify_template( self, ) -> Callable[ [dlp.CreateDeidentifyTemplateRequest], Awaitable[dlp.DeidentifyTemplate] ]: r"""Return a callable for the create deidentify template method over gRPC. Creates a DeidentifyTemplate for re-using frequently used configuration for de-identifying content, images, and storage. See https://cloud.google.com/dlp/docs/creating-templates- deid to learn more. Returns: Callable[[~.CreateDeidentifyTemplateRequest], Awaitable[~.DeidentifyTemplate]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_deidentify_template" not in self._stubs: self._stubs["create_deidentify_template"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/CreateDeidentifyTemplate", request_serializer=dlp.CreateDeidentifyTemplateRequest.serialize, response_deserializer=dlp.DeidentifyTemplate.deserialize, ) return self._stubs["create_deidentify_template"] @property def update_deidentify_template( self, ) -> Callable[ [dlp.UpdateDeidentifyTemplateRequest], Awaitable[dlp.DeidentifyTemplate] ]: r"""Return a callable for the update deidentify template method over gRPC. Updates the DeidentifyTemplate. See https://cloud.google.com/dlp/docs/creating- templates-deid to learn more. Returns: Callable[[~.UpdateDeidentifyTemplateRequest], Awaitable[~.DeidentifyTemplate]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_deidentify_template" not in self._stubs: self._stubs["update_deidentify_template"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/UpdateDeidentifyTemplate", request_serializer=dlp.UpdateDeidentifyTemplateRequest.serialize, response_deserializer=dlp.DeidentifyTemplate.deserialize, ) return self._stubs["update_deidentify_template"] @property def get_deidentify_template( self, ) -> Callable[ [dlp.GetDeidentifyTemplateRequest], Awaitable[dlp.DeidentifyTemplate] ]: r"""Return a callable for the get deidentify template method over gRPC. Gets a DeidentifyTemplate. See https://cloud.google.com/dlp/docs/creating- templates-deid to learn more. Returns: Callable[[~.GetDeidentifyTemplateRequest], Awaitable[~.DeidentifyTemplate]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_deidentify_template" not in self._stubs: self._stubs["get_deidentify_template"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/GetDeidentifyTemplate", request_serializer=dlp.GetDeidentifyTemplateRequest.serialize, response_deserializer=dlp.DeidentifyTemplate.deserialize, ) return self._stubs["get_deidentify_template"] @property def list_deidentify_templates( self, ) -> Callable[ [dlp.ListDeidentifyTemplatesRequest], Awaitable[dlp.ListDeidentifyTemplatesResponse], ]: r"""Return a callable for the list deidentify templates method over gRPC. Lists DeidentifyTemplates. See https://cloud.google.com/dlp/docs/creating- templates-deid to learn more. Returns: Callable[[~.ListDeidentifyTemplatesRequest], Awaitable[~.ListDeidentifyTemplatesResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_deidentify_templates" not in self._stubs: self._stubs["list_deidentify_templates"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/ListDeidentifyTemplates", request_serializer=dlp.ListDeidentifyTemplatesRequest.serialize, response_deserializer=dlp.ListDeidentifyTemplatesResponse.deserialize, ) return self._stubs["list_deidentify_templates"] @property def delete_deidentify_template( self, ) -> Callable[[dlp.DeleteDeidentifyTemplateRequest], Awaitable[empty_pb2.Empty]]: r"""Return a callable for the delete deidentify template method over gRPC. Deletes a DeidentifyTemplate. See https://cloud.google.com/dlp/docs/creating- templates-deid to learn more. Returns: Callable[[~.DeleteDeidentifyTemplateRequest], Awaitable[~.Empty]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_deidentify_template" not in self._stubs: self._stubs["delete_deidentify_template"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/DeleteDeidentifyTemplate", request_serializer=dlp.DeleteDeidentifyTemplateRequest.serialize, response_deserializer=empty_pb2.Empty.FromString, ) return self._stubs["delete_deidentify_template"] @property def create_job_trigger( self, ) -> Callable[[dlp.CreateJobTriggerRequest], Awaitable[dlp.JobTrigger]]: r"""Return a callable for the create job trigger method over gRPC. Creates a job trigger to run DLP actions such as scanning storage for sensitive information on a set schedule. See https://cloud.google.com/dlp/docs/creating-job-triggers to learn more. Returns: Callable[[~.CreateJobTriggerRequest], Awaitable[~.JobTrigger]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_job_trigger" not in self._stubs: self._stubs["create_job_trigger"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/CreateJobTrigger", request_serializer=dlp.CreateJobTriggerRequest.serialize, response_deserializer=dlp.JobTrigger.deserialize, ) return self._stubs["create_job_trigger"] @property def update_job_trigger( self, ) -> Callable[[dlp.UpdateJobTriggerRequest], Awaitable[dlp.JobTrigger]]: r"""Return a callable for the update job trigger method over gRPC. Updates a job trigger. See https://cloud.google.com/dlp/docs/creating-job- triggers to learn more. Returns: Callable[[~.UpdateJobTriggerRequest], Awaitable[~.JobTrigger]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_job_trigger" not in self._stubs: self._stubs["update_job_trigger"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/UpdateJobTrigger", request_serializer=dlp.UpdateJobTriggerRequest.serialize, response_deserializer=dlp.JobTrigger.deserialize, ) return self._stubs["update_job_trigger"] @property def hybrid_inspect_job_trigger( self, ) -> Callable[ [dlp.HybridInspectJobTriggerRequest], Awaitable[dlp.HybridInspectResponse] ]: r"""Return a callable for the hybrid inspect job trigger method over gRPC. Inspect hybrid content and store findings to a trigger. The inspection will be processed asynchronously. To review the findings monitor the jobs within the trigger. Returns: Callable[[~.HybridInspectJobTriggerRequest], Awaitable[~.HybridInspectResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "hybrid_inspect_job_trigger" not in self._stubs: self._stubs["hybrid_inspect_job_trigger"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/HybridInspectJobTrigger", request_serializer=dlp.HybridInspectJobTriggerRequest.serialize, response_deserializer=dlp.HybridInspectResponse.deserialize, ) return self._stubs["hybrid_inspect_job_trigger"] @property def get_job_trigger( self, ) -> Callable[[dlp.GetJobTriggerRequest], Awaitable[dlp.JobTrigger]]: r"""Return a callable for the get job trigger method over gRPC. Gets a job trigger. See https://cloud.google.com/dlp/docs/creating-job- triggers to learn more. Returns: Callable[[~.GetJobTriggerRequest], Awaitable[~.JobTrigger]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_job_trigger" not in self._stubs: self._stubs["get_job_trigger"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/GetJobTrigger", request_serializer=dlp.GetJobTriggerRequest.serialize, response_deserializer=dlp.JobTrigger.deserialize, ) return self._stubs["get_job_trigger"] @property def list_job_triggers( self, ) -> Callable[[dlp.ListJobTriggersRequest], Awaitable[dlp.ListJobTriggersResponse]]: r"""Return a callable for the list job triggers method over gRPC. Lists job triggers. See https://cloud.google.com/dlp/docs/creating-job- triggers to learn more. Returns: Callable[[~.ListJobTriggersRequest], Awaitable[~.ListJobTriggersResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_job_triggers" not in self._stubs: self._stubs["list_job_triggers"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/ListJobTriggers", request_serializer=dlp.ListJobTriggersRequest.serialize, response_deserializer=dlp.ListJobTriggersResponse.deserialize, ) return self._stubs["list_job_triggers"] @property def delete_job_trigger( self, ) -> Callable[[dlp.DeleteJobTriggerRequest], Awaitable[empty_pb2.Empty]]: r"""Return a callable for the delete job trigger method over gRPC. Deletes a job trigger. See https://cloud.google.com/dlp/docs/creating-job- triggers to learn more. Returns: Callable[[~.DeleteJobTriggerRequest], Awaitable[~.Empty]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_job_trigger" not in self._stubs: self._stubs["delete_job_trigger"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/DeleteJobTrigger", request_serializer=dlp.DeleteJobTriggerRequest.serialize, response_deserializer=empty_pb2.Empty.FromString, ) return self._stubs["delete_job_trigger"] @property def activate_job_trigger( self, ) -> Callable[[dlp.ActivateJobTriggerRequest], Awaitable[dlp.DlpJob]]: r"""Return a callable for the activate job trigger method over gRPC. Activate a job trigger. Causes the immediate execute of a trigger instead of waiting on the trigger event to occur. Returns: Callable[[~.ActivateJobTriggerRequest], Awaitable[~.DlpJob]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "activate_job_trigger" not in self._stubs: self._stubs["activate_job_trigger"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/ActivateJobTrigger", request_serializer=dlp.ActivateJobTriggerRequest.serialize, response_deserializer=dlp.DlpJob.deserialize, ) return self._stubs["activate_job_trigger"] @property def create_dlp_job( self, ) -> Callable[[dlp.CreateDlpJobRequest], Awaitable[dlp.DlpJob]]: r"""Return a callable for the create dlp job method over gRPC. Creates a new job to inspect storage or calculate risk metrics. See https://cloud.google.com/dlp/docs/inspecting-storage and https://cloud.google.com/dlp/docs/compute-risk-analysis to learn more. When no InfoTypes or CustomInfoTypes are specified in inspect jobs, the system will automatically choose what detectors to run. By default this may be all types, but may change over time as detectors are updated. Returns: Callable[[~.CreateDlpJobRequest], Awaitable[~.DlpJob]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_dlp_job" not in self._stubs: self._stubs["create_dlp_job"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/CreateDlpJob", request_serializer=dlp.CreateDlpJobRequest.serialize, response_deserializer=dlp.DlpJob.deserialize, ) return self._stubs["create_dlp_job"] @property def list_dlp_jobs( self, ) -> Callable[[dlp.ListDlpJobsRequest], Awaitable[dlp.ListDlpJobsResponse]]: r"""Return a callable for the list dlp jobs method over gRPC. Lists DlpJobs that match the specified filter in the request. See https://cloud.google.com/dlp/docs/inspecting-storage and https://cloud.google.com/dlp/docs/compute-risk-analysis to learn more. Returns: Callable[[~.ListDlpJobsRequest], Awaitable[~.ListDlpJobsResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_dlp_jobs" not in self._stubs: self._stubs["list_dlp_jobs"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/ListDlpJobs", request_serializer=dlp.ListDlpJobsRequest.serialize, response_deserializer=dlp.ListDlpJobsResponse.deserialize, ) return self._stubs["list_dlp_jobs"] @property def get_dlp_job(self) -> Callable[[dlp.GetDlpJobRequest], Awaitable[dlp.DlpJob]]: r"""Return a callable for the get dlp job method over gRPC. Gets the latest state of a long-running DlpJob. See https://cloud.google.com/dlp/docs/inspecting-storage and https://cloud.google.com/dlp/docs/compute-risk- analysis to learn more. Returns: Callable[[~.GetDlpJobRequest], Awaitable[~.DlpJob]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_dlp_job" not in self._stubs: self._stubs["get_dlp_job"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/GetDlpJob", request_serializer=dlp.GetDlpJobRequest.serialize, response_deserializer=dlp.DlpJob.deserialize, ) return self._stubs["get_dlp_job"] @property def delete_dlp_job( self, ) -> Callable[[dlp.DeleteDlpJobRequest], Awaitable[empty_pb2.Empty]]: r"""Return a callable for the delete dlp job method over gRPC. Deletes a long-running DlpJob. This method indicates that the client is no longer interested in the DlpJob result. The job will be cancelled if possible. See https://cloud.google.com/dlp/docs/inspecting-storage and https://cloud.google.com/dlp/docs/compute-risk- analysis to learn more. Returns: Callable[[~.DeleteDlpJobRequest], Awaitable[~.Empty]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_dlp_job" not in self._stubs: self._stubs["delete_dlp_job"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/DeleteDlpJob", request_serializer=dlp.DeleteDlpJobRequest.serialize, response_deserializer=empty_pb2.Empty.FromString, ) return self._stubs["delete_dlp_job"] @property def cancel_dlp_job( self, ) -> Callable[[dlp.CancelDlpJobRequest], Awaitable[empty_pb2.Empty]]: r"""Return a callable for the cancel dlp job method over gRPC. Starts asynchronous cancellation on a long-running DlpJob. The server makes a best effort to cancel the DlpJob, but success is not guaranteed. See https://cloud.google.com/dlp/docs/inspecting-storage and https://cloud.google.com/dlp/docs/compute-risk- analysis to learn more. Returns: Callable[[~.CancelDlpJobRequest], Awaitable[~.Empty]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "cancel_dlp_job" not in self._stubs: self._stubs["cancel_dlp_job"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/CancelDlpJob", request_serializer=dlp.CancelDlpJobRequest.serialize, response_deserializer=empty_pb2.Empty.FromString, ) return self._stubs["cancel_dlp_job"] @property def create_stored_info_type( self, ) -> Callable[[dlp.CreateStoredInfoTypeRequest], Awaitable[dlp.StoredInfoType]]: r"""Return a callable for the create stored info type method over gRPC. Creates a pre-built stored infoType to be used for inspection. See https://cloud.google.com/dlp/docs/creating-stored- infotypes to learn more. Returns: Callable[[~.CreateStoredInfoTypeRequest], Awaitable[~.StoredInfoType]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_stored_info_type" not in self._stubs: self._stubs["create_stored_info_type"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/CreateStoredInfoType", request_serializer=dlp.CreateStoredInfoTypeRequest.serialize, response_deserializer=dlp.StoredInfoType.deserialize, ) return self._stubs["create_stored_info_type"] @property def update_stored_info_type( self, ) -> Callable[[dlp.UpdateStoredInfoTypeRequest], Awaitable[dlp.StoredInfoType]]: r"""Return a callable for the update stored info type method over gRPC. Updates the stored infoType by creating a new version. The existing version will continue to be used until the new version is ready. See https://cloud.google.com/dlp/docs/creating-stored- infotypes to learn more. Returns: Callable[[~.UpdateStoredInfoTypeRequest], Awaitable[~.StoredInfoType]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_stored_info_type" not in self._stubs: self._stubs["update_stored_info_type"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/UpdateStoredInfoType", request_serializer=dlp.UpdateStoredInfoTypeRequest.serialize, response_deserializer=dlp.StoredInfoType.deserialize, ) return self._stubs["update_stored_info_type"] @property def get_stored_info_type( self, ) -> Callable[[dlp.GetStoredInfoTypeRequest], Awaitable[dlp.StoredInfoType]]: r"""Return a callable for the get stored info type method over gRPC. Gets a stored infoType. See https://cloud.google.com/dlp/docs/creating-stored- infotypes to learn more. Returns: Callable[[~.GetStoredInfoTypeRequest], Awaitable[~.StoredInfoType]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_stored_info_type" not in self._stubs: self._stubs["get_stored_info_type"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/GetStoredInfoType", request_serializer=dlp.GetStoredInfoTypeRequest.serialize, response_deserializer=dlp.StoredInfoType.deserialize, ) return self._stubs["get_stored_info_type"] @property def list_stored_info_types( self, ) -> Callable[ [dlp.ListStoredInfoTypesRequest], Awaitable[dlp.ListStoredInfoTypesResponse] ]: r"""Return a callable for the list stored info types method over gRPC. Lists stored infoTypes. See https://cloud.google.com/dlp/docs/creating-stored- infotypes to learn more. Returns: Callable[[~.ListStoredInfoTypesRequest], Awaitable[~.ListStoredInfoTypesResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_stored_info_types" not in self._stubs: self._stubs["list_stored_info_types"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/ListStoredInfoTypes", request_serializer=dlp.ListStoredInfoTypesRequest.serialize, response_deserializer=dlp.ListStoredInfoTypesResponse.deserialize, ) return self._stubs["list_stored_info_types"] @property def delete_stored_info_type( self, ) -> Callable[[dlp.DeleteStoredInfoTypeRequest], Awaitable[empty_pb2.Empty]]: r"""Return a callable for the delete stored info type method over gRPC. Deletes a stored infoType. See https://cloud.google.com/dlp/docs/creating-stored- infotypes to learn more. Returns: Callable[[~.DeleteStoredInfoTypeRequest], Awaitable[~.Empty]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_stored_info_type" not in self._stubs: self._stubs["delete_stored_info_type"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/DeleteStoredInfoType", request_serializer=dlp.DeleteStoredInfoTypeRequest.serialize, response_deserializer=empty_pb2.Empty.FromString, ) return self._stubs["delete_stored_info_type"] @property def hybrid_inspect_dlp_job( self, ) -> Callable[ [dlp.HybridInspectDlpJobRequest], Awaitable[dlp.HybridInspectResponse] ]: r"""Return a callable for the hybrid inspect dlp job method over gRPC. Inspect hybrid content and store findings to a job. To review the findings, inspect the job. Inspection will occur asynchronously. Returns: Callable[[~.HybridInspectDlpJobRequest], Awaitable[~.HybridInspectResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "hybrid_inspect_dlp_job" not in self._stubs: self._stubs["hybrid_inspect_dlp_job"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/HybridInspectDlpJob", request_serializer=dlp.HybridInspectDlpJobRequest.serialize, response_deserializer=dlp.HybridInspectResponse.deserialize, ) return self._stubs["hybrid_inspect_dlp_job"] @property def finish_dlp_job( self, ) -> Callable[[dlp.FinishDlpJobRequest], Awaitable[empty_pb2.Empty]]: r"""Return a callable for the finish dlp job method over gRPC. Finish a running hybrid DlpJob. Triggers the finalization steps and running of any enabled actions that have not yet run. Returns: Callable[[~.FinishDlpJobRequest], Awaitable[~.Empty]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "finish_dlp_job" not in self._stubs: self._stubs["finish_dlp_job"] = self.grpc_channel.unary_unary( "/google.privacy.dlp.v2.DlpService/FinishDlpJob", request_serializer=dlp.FinishDlpJobRequest.serialize, response_deserializer=empty_pb2.Empty.FromString, ) return self._stubs["finish_dlp_job"] def close(self): return self.grpc_channel.close() __all__ = ("DlpServiceGrpcAsyncIOTransport",)
43.814433
102
0.639982
54,002
0.977412
0
0
46,324
0.838443
0
0
34,164
0.618353
73e9a8245d7f2b954b01c47bce5f6ddf87248068
781
py
Python
tym.py
tsyogesh40/Finger_recognition-Python-
4c1597cd246be1248bbfbb6cfc1ce1cbf5c4ecac
[ "MIT" ]
null
null
null
tym.py
tsyogesh40/Finger_recognition-Python-
4c1597cd246be1248bbfbb6cfc1ce1cbf5c4ecac
[ "MIT" ]
null
null
null
tym.py
tsyogesh40/Finger_recognition-Python-
4c1597cd246be1248bbfbb6cfc1ce1cbf5c4ecac
[ "MIT" ]
null
null
null
import datetime t=datetime.datetime.now() #date format weekday=t.strftime("%a") # %A for abbr day=t.strftime("%d") month=t.strftime("%b") #%B for abbr month_num=t.strftime("%m") year=t.strftime("%Y") date=t.strftime("%Y-%m-%d") print(date) #time format hour_12=t.strftime("%I") hour_24=t.strftime("%H") minutes=t.strftime("%H") seconds=t.strftime("%S") am_pm=t.strftime("%p") time_12=t.strftime("%I:%M:%S %p") #12hrs time AM/PM time_24=t.strftime("%H:%M:%S") #24 Hrs time print(time_12) print(time_24) def sem_calc(month): if(month>=1 & month<6): return "odd" else: return "even" def date(): t=datetime.datetime.now() time_12=t.strftime("%I:%M:%S %p") #12hrs time AM/PM return time_12 print(sem_calc(int(month_num))) print(date())
17.75
55
0.641485
0
0
0
0
0
0
0
0
192
0.245839
73eb8bdab00daf7ae249b9e5cfe3937c7c3470b5
92
py
Python
parameters_8001.py
sanket0211/courier-portal
6b35aa006813f710db9c3e61da4a718aff20881d
[ "BSD-3-Clause" ]
null
null
null
parameters_8001.py
sanket0211/courier-portal
6b35aa006813f710db9c3e61da4a718aff20881d
[ "BSD-3-Clause" ]
null
null
null
parameters_8001.py
sanket0211/courier-portal
6b35aa006813f710db9c3e61da4a718aff20881d
[ "BSD-3-Clause" ]
null
null
null
password="pbkdf2(1000,20,sha512)$8a062c206755a51e$df13c5122a621a9de3a64d39f26460f175076ca0"
46
91
0.891304
0
0
0
0
0
0
0
0
82
0.891304
73ec5cfa22b958735251f6bd136ed85eba9a7172
562
py
Python
TheKinozal/custom_storages/async_s3_video.py
R-Mielamud/TheKinozal
62cb79faae58b23f0ef0175593ed9b5746229b5b
[ "MIT" ]
1
2020-10-16T19:15:32.000Z
2020-10-16T19:15:32.000Z
TheKinozal/custom_storages/async_s3_video.py
R-Mielamud/TheKinozal
62cb79faae58b23f0ef0175593ed9b5746229b5b
[ "MIT" ]
null
null
null
TheKinozal/custom_storages/async_s3_video.py
R-Mielamud/TheKinozal
62cb79faae58b23f0ef0175593ed9b5746229b5b
[ "MIT" ]
null
null
null
import os from TheKinozal import settings from storages.backends.s3boto3 import S3Boto3Storage from helpers.random_string import generate_random_string from helpers.chunked_upload import ChunkedS3VideoUploader class AsyncS3VideoStorage(S3Boto3Storage): def _save(self, name, content): filename, ext = os.path.splitext(name) name = filename + "_" + generate_random_string() + ext uploader = ChunkedS3VideoUploader(content, settings.AWS_VIDEOS_KEY, name) uploader.upload() return settings.AWS_VIDEOS_KEY + "/" + name
35.125
81
0.756228
350
0.622776
0
0
0
0
0
0
6
0.010676
73ed247eb28b6b5d48aa9d6331bcb389807b9a5d
1,098
py
Python
bh_tsne/prep_result.py
mr4jay/numerai
a07b2dcafe9f078df8578d150d585f239fe73c51
[ "MIT" ]
306
2016-09-18T07:32:33.000Z
2022-03-22T16:30:26.000Z
bh_tsne/prep_result.py
mikekosk/numerai
2a09c648c66143ee101cd80de4827108aaf218fc
[ "MIT" ]
2
2017-01-04T02:17:20.000Z
2017-09-18T11:43:59.000Z
bh_tsne/prep_result.py
mikekosk/numerai
2a09c648c66143ee101cd80de4827108aaf218fc
[ "MIT" ]
94
2016-09-17T03:48:55.000Z
2022-01-05T11:54:25.000Z
import struct import numpy as np import pandas as pd df_train = pd.read_csv('../data/train_data.csv') df_valid = pd.read_csv('../data/valid_data.csv') df_test = pd.read_csv('../data/test_data.csv') with open('result.dat', 'rb') as f: N, = struct.unpack('i', f.read(4)) no_dims, = struct.unpack('i', f.read(4)) print(N, no_dims) mappedX = struct.unpack('{}d'.format(N * no_dims), f.read(8 * N * no_dims)) mappedX = np.array(mappedX).reshape((N, no_dims)) print(mappedX) tsne_train = mappedX[:len(df_train)] tsne_valid = mappedX[len(df_train):len(df_train)+len(df_valid)] tsne_test = mappedX[len(df_train)+len(df_valid):] assert(len(tsne_train) == len(df_train)) assert(len(tsne_valid) == len(df_valid)) assert(len(tsne_test) == len(df_test)) save_path = '../data/tsne_{}d_30p.npz'.format(no_dims) np.savez(save_path, train=tsne_train, valid=tsne_valid, test=tsne_test) print('Saved: {}'.format(save_path)) # landmarks, = struct.unpack('{}i'.format(N), f.read(4 * N)) # costs, = struct.unpack('{}d'.format(N), f.read(8 * N))
34.3125
79
0.653916
0
0
0
0
0
0
0
0
251
0.228597
73eec10a12c7ce55e197ae8c7928050831069eb9
623
py
Python
moca/urls.py
satvikdhandhania/vit-11
e599f2b82a9194658c67bbd5c7e45f3b50d016da
[ "BSD-3-Clause" ]
1
2016-09-20T20:36:53.000Z
2016-09-20T20:36:53.000Z
moca/urls.py
satvikdhandhania/vit-11
e599f2b82a9194658c67bbd5c7e45f3b50d016da
[ "BSD-3-Clause" ]
null
null
null
moca/urls.py
satvikdhandhania/vit-11
e599f2b82a9194658c67bbd5c7e45f3b50d016da
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls.defaults import patterns, url, include # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = patterns( '', (r'^log/', include('requestlog.urls')), (r'^admin/', include(admin.site.urls)), # Pass anything that doesn't match on to the mrs app url(r'^', include('moca.mrs.urls')), ) from django.conf import settings if settings.DEBUG: urlpatterns += patterns( '', (r'^static/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT}), )
23.074074
60
0.632424
0
0
0
0
0
0
0
0
227
0.364366