hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
9699da91536be3b5f7938a488f2471ecc9d269c7
1,318
py
Python
app/web/obtain_url.py
gpp0725/EchoProxy
0273f47397b76fa0292db267d99eeb9dccc4e869
[ "Apache-2.0" ]
null
null
null
app/web/obtain_url.py
gpp0725/EchoProxy
0273f47397b76fa0292db267d99eeb9dccc4e869
[ "Apache-2.0" ]
null
null
null
app/web/obtain_url.py
gpp0725/EchoProxy
0273f47397b76fa0292db267d99eeb9dccc4e869
[ "Apache-2.0" ]
null
null
null
# !/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/3/4 0004 2:09 # @Author : Gpp # @File : obtain_url.py from app.web import api from flask_restful import Resource from flask import make_response, send_from_directory, jsonify from app.helper.encrypt import two_encrypting from app.crud.proxy_crud import ProtocolCrud from app.helper.get_one_encrypt import get_one_encrypt_data from app.helper.update_subscribe import add_proxy # @api.resource('/generate') # class Generate(Resource): # def get(self): # proxies = ProtocolCrud.get_all_share() # one_encrypt = get_one_encrypt_data(proxies) # result = add_proxy(two_encrypting(''.join(one_encrypt))) # return jsonify(result) @api.resource('/generate/<proxy_information>') class GetUrl(Resource): def get(self, proxy_information): # 获取代理元数据 proxies = ProtocolCrud.get_all_share() one_encrypt = get_one_encrypt_data(proxies) add_proxy(two_encrypting(''.join(one_encrypt))) # 获取代理实时信息 # 获取prometheus数据存入别名 # 生成订阅链接 response = make_response(send_from_directory('url_file', f'{proxy_information}.txt', as_attachment=True)) response.headers["Content-Disposition"] = f"attachment; filename={proxy_information}.txt" return response
33.794872
113
0.707132
594
0.431686
0
0
641
0.465843
0
0
637
0.462936
969a1ae2aa1e6f093f672d0dc08a8182fddc7227
920
py
Python
oshino/run.py
CodersOfTheNight/oshino
08e35d004aa16a378d87d5e548649a1bc1f5dc17
[ "MIT" ]
6
2016-11-06T17:47:57.000Z
2020-04-08T12:20:59.000Z
oshino/run.py
CodersOfTheNight/oshino
08e35d004aa16a378d87d5e548649a1bc1f5dc17
[ "MIT" ]
24
2016-11-15T06:20:50.000Z
2019-02-08T18:54:57.000Z
oshino/run.py
CodersOfTheNight/oshino
08e35d004aa16a378d87d5e548649a1bc1f5dc17
[ "MIT" ]
null
null
null
import logging from argparse import ArgumentParser from dotenv import load_dotenv, find_dotenv from .config import load from .core.heart import start_loop logger = logging.getLogger(__name__) try: load_dotenv(find_dotenv()) except Exception as ex: logger.error("Error while loading .env: '{}'. Ignoring.".format(ex)) def main(args): if args.debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) cfg = load(args.config) start_loop(cfg, args.noop) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--config", help="Config file", default="config.yaml") parser.add_argument("--noop", action="store_true", default=False, help="Events will be processed, but not sent to Riemann") parser.add_argument("--debug", action="store_true", default=False, help="Debug mode") main(parser.parse_args())
27.058824
127
0.71413
0
0
0
0
0
0
0
0
193
0.209783
969aa0f8463c5dac76a29b27b5b12bf01e79a4cf
4,113
py
Python
sendmail_win_cs.py
Fatman13/gta_swarm
1c4603f39cd7831f5907fd619594452b3320f75f
[ "MIT" ]
null
null
null
sendmail_win_cs.py
Fatman13/gta_swarm
1c4603f39cd7831f5907fd619594452b3320f75f
[ "MIT" ]
null
null
null
sendmail_win_cs.py
Fatman13/gta_swarm
1c4603f39cd7831f5907fd619594452b3320f75f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 import glob import click import os import json import datetime import re import csv from requests.exceptions import ConnectionError from exchangelib import DELEGATE, IMPERSONATION, Account, Credentials, ServiceAccount, \ EWSDateTime, EWSTimeZone, Configuration, NTLM, CalendarItem, Message, \ Mailbox, Attendee, Q, ExtendedProperty, FileAttachment, ItemAttachment, \ HTMLBody, Build, Version sendmail_secret = None with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'secrets.json')) as data_file: sendmail_secret = (json.load(data_file))['sendmail_win'] TO_REGISTER = 'Confirmed (to register)' def dump_csv(res, output_filename, from_date): keys = res[0].keys() final_output_filename = '_'.join(['Output_sendmail', output_filename, from_date.strftime('%y%m%d'), datetime.datetime.now().strftime('%H%M') ]) + '.csv' with open(final_output_filename, 'w', newline='', encoding='utf-8') as output_file: dict_writer = csv.DictWriter(output_file, keys) dict_writer.writeheader() dict_writer.writerows(res) @click.command() @click.option('--filename', default='output_hotel_ref_') @click.option('--email', default='[email protected]') def sendmail_win_cs(filename, email): target_filename = filename + '*.csv' newest = max(glob.iglob(target_filename), key=os.path.getctime) print('newest file: ' + newest) today_date = datetime.datetime.now().strftime('%y%m%d') try: newest_date = re.search( filename + '(\d+)', newest).group(1) except AttributeError: newest_date = '' print('newest date: ' + newest_date) if newest_date != today_date: print('Error: newest date != today date.. mannual intervention needed..') return print('Setting account..') # Username in WINDOMAIN\username format. Office365 wants usernames in PrimarySMTPAddress # ('[email protected]') format. UPN format is also supported. credentials = Credentials(username='APACNB\\809452', password=sendmail_secret['password']) print('Discovering..') # If the server doesn't support autodiscover, use a Configuration object to set the server # location: config = Configuration(server='emailuk.kuoni.com', credentials=credentials) try: account = Account(primary_smtp_address=email, config=config, autodiscover=False, access_type=DELEGATE) except ConnectionError as e: print('Fatal: Connection Error.. aborted..') return print('Logged in as: ' + str(email)) recipient_email = '[email protected]' recipient_email1 = '[email protected]' recipient_email2 = '[email protected]' recipient_email3 = '[email protected]' recipient_email4 = '[email protected]' recipient_email6 = '[email protected]' recipient_email5 = '[email protected]' body_text = 'FYI\n' + \ 'Best\n' + \ '-Yu' title_text = '[[[ Ctrip hotel reference ]]]' # Or, if you want a copy in e.g. the 'Sent' folder m = Message( account=account, folder=account.sent, sender=Mailbox(email_address=email), author=Mailbox(email_address=email), subject=title_text, body=body_text, # to_recipients=[Mailbox(email_address=recipient_email1), # Mailbox(email_address=recipient_email2), # Mailbox(email_address=recipient_email3) # ] # to_recipients=[Mailbox(email_address=recipient_email1), # Mailbox(email_address=recipient_email2), # Mailbox(email_address=recipient_email3), # Mailbox(email_address=recipient_email4), # Mailbox(email_address=recipient_email5) # ] to_recipients=[Mailbox(email_address=recipient_email1), Mailbox(email_address=recipient_email2), Mailbox(email_address=recipient_email3), Mailbox(email_address=recipient_email4) ] ) with open(newest, 'rb') as f: update_csv = FileAttachment(name=newest, content=f.read()) m.attach(update_csv) m.send_and_save() print('Message sent.. ') if __name__ == '__main__': sendmail_win_cs()
34.855932
102
0.706054
0
0
0
0
2,899
0.704838
0
0
1,448
0.352054
969ab9ef2de1a8573dbf6d90268f74dbc9e16fef
29,479
py
Python
utilities/access_concatenate_daily.py
pizzathief/PyFluxPro
c075c0040b4a9d6c9ab75ca1cef158f1307f8396
[ "BSD-3-Clause" ]
1
2021-01-17T20:53:39.000Z
2021-01-17T20:53:39.000Z
utilities/access_concatenate_daily.py
pizzathief/PyFluxPro
c075c0040b4a9d6c9ab75ca1cef158f1307f8396
[ "BSD-3-Clause" ]
null
null
null
utilities/access_concatenate_daily.py
pizzathief/PyFluxPro
c075c0040b4a9d6c9ab75ca1cef158f1307f8396
[ "BSD-3-Clause" ]
null
null
null
""" Purpose: Reads the hourly ACCESS files pulled from the BoM OPeNDAP site and concatenates them into a single file. This script file takes a control file name on the command line. The control file lists the sites to be processed and the variables to be processed. Normal usage is to process all files in a monthly sub-directory. Usage: python access_concat.py access_concat.txt Author: PRI Date: September 2015 """ # Python modules import configobj import datetime import glob import logging import netCDF4 import numpy import os import pytz import pdb from scipy.interpolate import interp1d import sys # since the scripts directory is there, try importing the modules sys.path.append('../scripts') # PFP import constants as c import meteorologicalfunctions as mf import qcio import qcutils # !!! classes !!! class ACCESSData(object): def __init__(self): self.globalattr = {} self.globalattr["file_list"] = [] self.variables = {} self.varattr = {} # !!! start of function definitions !!! def get_info_dict(cf,site): info = {} in_path = cf["Sites"][site]["in_filepath"] in_name = cf["Sites"][site]["in_filename"] info["in_filename"] = os.path.join(in_path,in_name) out_path = cf["Sites"][site]["out_filepath"] if not os.path.exists(out_path): os.makedirs(out_path) out_name = cf["Sites"][site]["out_filename"] info["out_filename"] = os.path.join(out_path,out_name) info["interpolate"] = True if not cf["Sites"][site].as_bool("interpolate"): info["interpolate"] = False info["site_name"] = cf["Sites"][site]["site_name"] info["site_timezone"] = cf["Sites"][site]["site_timezone"] info["site_tz"] = pytz.timezone(info["site_timezone"]) return info def get_datetime(ds_60minutes,f,info): valid_date = f.variables["valid_date"][:] nRecs = len(valid_date) valid_time = f.variables["valid_time"][:] dl = [datetime.datetime.strptime(str(int(valid_date[i])*10000+int(valid_time[i])),"%Y%m%d%H%M") for i in range(0,nRecs)] dt_utc_all = numpy.array(dl) time_step = numpy.array([(dt_utc_all[i]-dt_utc_all[i-1]).total_seconds() for i in range(1,len(dt_utc_all))]) time_step = numpy.append(time_step,3600) idx = numpy.where(time_step!=0)[0] dt_utc = dt_utc_all[idx] dt_utc = [x.replace(tzinfo=pytz.utc) for x in dt_utc] dt_loc = [x.astimezone(info["site_tz"]) for x in dt_utc] dt_loc = [x-x.dst() for x in dt_loc] dt_loc = [x.replace(tzinfo=None) for x in dt_loc] ds_60minutes.series["DateTime"] = {} ds_60minutes.series["DateTime"]["Data"] = dt_loc nRecs = len(ds_60minutes.series["DateTime"]["Data"]) ds_60minutes.globalattributes["nc_nrecs"] = nRecs return idx def set_globalattributes(ds_60minutes,info): ds_60minutes.globalattributes["time_step"] = 60 ds_60minutes.globalattributes["time_zone"] = info["site_timezone"] ds_60minutes.globalattributes["site_name"] = info["site_name"] ds_60minutes.globalattributes["xl_datemode"] = 0 ds_60minutes.globalattributes["nc_level"] = "L1" return def get_accessdata(cf,ds_60minutes,f,info): # latitude and longitude, chose central pixel of 3x3 grid ds_60minutes.globalattributes["latitude"] = f.variables["lat"][1] ds_60minutes.globalattributes["longitude"] = f.variables["lon"][1] # list of variables to process var_list = cf["Variables"].keys() # get a series of Python datetimes and put this into the data structure valid_date = f.variables["valid_date"][:] nRecs = len(valid_date) valid_time = f.variables["valid_time"][:] dl = [datetime.datetime.strptime(str(int(valid_date[i])*10000+int(valid_time[i])),"%Y%m%d%H%M") for i in range(0,nRecs)] dt_utc_all = numpy.array(dl) time_step = numpy.array([(dt_utc_all[i]-dt_utc_all[i-1]).total_seconds() for i in range(1,len(dt_utc_all))]) time_step = numpy.append(time_step,3600) idxne0 = numpy.where(time_step!=0)[0] idxeq0 = numpy.where(time_step==0)[0] idx_clipped = numpy.where((idxeq0>0)&(idxeq0<nRecs))[0] idxeq0 = idxeq0[idx_clipped] dt_utc = dt_utc_all[idxne0] dt_utc = [x.replace(tzinfo=pytz.utc) for x in dt_utc] dt_loc = [x.astimezone(info["site_tz"]) for x in dt_utc] dt_loc = [x-x.dst() for x in dt_loc] dt_loc = [x.replace(tzinfo=None) for x in dt_loc] flag = numpy.zeros(len(dt_loc),dtype=numpy.int32) ds_60minutes.series["DateTime"] = {} ds_60minutes.series["DateTime"]["Data"] = dt_loc ds_60minutes.series["DateTime"]["Flag"] = flag ds_60minutes.series["DateTime_UTC"] = {} ds_60minutes.series["DateTime_UTC"]["Data"] = dt_utc ds_60minutes.series["DateTime_UTC"]["Flag"] = flag nRecs = len(ds_60minutes.series["DateTime"]["Data"]) ds_60minutes.globalattributes["nc_nrecs"] = nRecs # we're done with valid_date and valid_time, drop them from the variable list for item in ["valid_date","valid_time","lat","lon"]: if item in var_list: var_list.remove(item) # create the QC flag with all zeros nRecs = ds_60minutes.globalattributes["nc_nrecs"] flag_60minutes = numpy.zeros(nRecs,dtype=numpy.int32) # get the UTC hour hr_utc = [x.hour for x in dt_utc] attr = qcutils.MakeAttributeDictionary(long_name='UTC hour') qcutils.CreateSeries(ds_60minutes,'Hr_UTC',hr_utc,Flag=flag_60minutes,Attr=attr) # now loop over the variables listed in the control file for label in var_list: # get the name of the variable in the ACCESS file access_name = qcutils.get_keyvaluefromcf(cf,["Variables",label],"access_name",default=label) # warn the user if the variable not found if access_name not in f.variables.keys(): msg = "Requested variable "+access_name msg = msg+" not found in ACCESS data" logging.error(msg) continue # get the variable attibutes attr = get_variableattributes(f,access_name) # loop over the 3x3 matrix of ACCESS grid data supplied for i in range(0,3): for j in range(0,3): label_ij = label+'_'+str(i)+str(j) if len(f.variables[access_name].shape)==3: series = f.variables[access_name][:,i,j] elif len(f.variables[access_name].shape)==4: series = f.variables[access_name][:,0,i,j] else: msg = "Unrecognised variable ("+label msg = msg+") dimension in ACCESS file" logging.error(msg) series = series[idxne0] qcutils.CreateSeries(ds_60minutes,label_ij,series, Flag=flag_60minutes,Attr=attr) return def get_variableattributes(f,access_name): attr = {} # following code for netCDF4.MFDataset() # for vattr in f.variables[access_name].ncattrs(): # attr[vattr] = getattr(f.variables[access_name],vattr) # following code for access_read_mfiles2() attr = f.varattr[access_name] attr["missing_value"] = c.missing_value return attr def changeunits_airtemperature(ds_60minutes): attr = qcutils.GetAttributeDictionary(ds_60minutes,"Ta_00") if attr["units"] == "K": for i in range(0,3): for j in range(0,3): label = "Ta_"+str(i)+str(j) Ta,f,a = qcutils.GetSeriesasMA(ds_60minutes,label) Ta = Ta - c.C2K attr["units"] = "C" qcutils.CreateSeries(ds_60minutes,label,Ta,Flag=f,Attr=attr) return def changeunits_soiltemperature(ds_60minutes): attr = qcutils.GetAttributeDictionary(ds_60minutes,"Ts_00") if attr["units"] == "K": for i in range(0,3): for j in range(0,3): label = "Ts_"+str(i)+str(j) Ts,f,a = qcutils.GetSeriesasMA(ds_60minutes,label) Ts = Ts - c.C2K attr["units"] = "C" qcutils.CreateSeries(ds_60minutes,label,Ts,Flag=f,Attr=attr) return def changeunits_pressure(ds_60minutes): attr = qcutils.GetAttributeDictionary(ds_60minutes,"ps_00") if attr["units"] == "Pa": for i in range(0,3): for j in range(0,3): label = "ps_"+str(i)+str(j) ps,f,a = qcutils.GetSeriesasMA(ds_60minutes,label) ps = ps/float(1000) attr["units"] = "kPa" qcutils.CreateSeries(ds_60minutes,label,ps,Flag=f,Attr=attr) return def get_windspeedanddirection(ds_60minutes): for i in range(0,3): for j in range(0,3): u_label = "u_"+str(i)+str(j) v_label = "v_"+str(i)+str(j) Ws_label = "Ws_"+str(i)+str(j) u,f,a = qcutils.GetSeriesasMA(ds_60minutes,u_label) v,f,a = qcutils.GetSeriesasMA(ds_60minutes,v_label) Ws = numpy.sqrt(u*u+v*v) attr = qcutils.MakeAttributeDictionary(long_name="Wind speed", units="m/s",height="10m") qcutils.CreateSeries(ds_60minutes,Ws_label,Ws,Flag=f,Attr=attr) # wind direction from components for i in range(0,3): for j in range(0,3): u_label = "u_"+str(i)+str(j) v_label = "v_"+str(i)+str(j) Wd_label = "Wd_"+str(i)+str(j) u,f,a = qcutils.GetSeriesasMA(ds_60minutes,u_label) v,f,a = qcutils.GetSeriesasMA(ds_60minutes,v_label) Wd = float(270) - numpy.ma.arctan2(v,u)*float(180)/numpy.pi index = numpy.ma.where(Wd>360)[0] if len(index)>0: Wd[index] = Wd[index] - float(360) attr = qcutils.MakeAttributeDictionary(long_name="Wind direction", units="degrees",height="10m") qcutils.CreateSeries(ds_60minutes,Wd_label,Wd,Flag=f,Attr=attr) return def get_relativehumidity(ds_60minutes): for i in range(0,3): for j in range(0,3): q_label = "q_"+str(i)+str(j) Ta_label = "Ta_"+str(i)+str(j) ps_label = "ps_"+str(i)+str(j) RH_label = "RH_"+str(i)+str(j) q,f,a = qcutils.GetSeriesasMA(ds_60minutes,q_label) Ta,f,a = qcutils.GetSeriesasMA(ds_60minutes,Ta_label) ps,f,a = qcutils.GetSeriesasMA(ds_60minutes,ps_label) RH = mf.RHfromspecifichumidity(q, Ta, ps) attr = qcutils.MakeAttributeDictionary(long_name='Relative humidity', units='%',standard_name='not defined') qcutils.CreateSeries(ds_60minutes,RH_label,RH,Flag=f,Attr=attr) return def get_absolutehumidity(ds_60minutes): for i in range(0,3): for j in range(0,3): Ta_label = "Ta_"+str(i)+str(j) RH_label = "RH_"+str(i)+str(j) Ah_label = "Ah_"+str(i)+str(j) Ta,f,a = qcutils.GetSeriesasMA(ds_60minutes,Ta_label) RH,f,a = qcutils.GetSeriesasMA(ds_60minutes,RH_label) Ah = mf.absolutehumidityfromRH(Ta, RH) attr = qcutils.MakeAttributeDictionary(long_name='Absolute humidity', units='g/m3',standard_name='not defined') qcutils.CreateSeries(ds_60minutes,Ah_label,Ah,Flag=f,Attr=attr) return def changeunits_soilmoisture(ds_60minutes): attr = qcutils.GetAttributeDictionary(ds_60minutes,"Sws_00") for i in range(0,3): for j in range(0,3): label = "Sws_"+str(i)+str(j) Sws,f,a = qcutils.GetSeriesasMA(ds_60minutes,label) Sws = Sws/float(100) attr["units"] = "frac" qcutils.CreateSeries(ds_60minutes,label,Sws,Flag=f,Attr=attr) return def get_radiation(ds_60minutes): for i in range(0,3): for j in range(0,3): label_Fn = "Fn_"+str(i)+str(j) label_Fsd = "Fsd_"+str(i)+str(j) label_Fld = "Fld_"+str(i)+str(j) label_Fsu = "Fsu_"+str(i)+str(j) label_Flu = "Flu_"+str(i)+str(j) label_Fn_sw = "Fn_sw_"+str(i)+str(j) label_Fn_lw = "Fn_lw_"+str(i)+str(j) Fsd,f,a = qcutils.GetSeriesasMA(ds_60minutes,label_Fsd) Fld,f,a = qcutils.GetSeriesasMA(ds_60minutes,label_Fld) Fn_sw,f,a = qcutils.GetSeriesasMA(ds_60minutes,label_Fn_sw) Fn_lw,f,a = qcutils.GetSeriesasMA(ds_60minutes,label_Fn_lw) Fsu = Fsd - Fn_sw Flu = Fld - Fn_lw Fn = (Fsd-Fsu)+(Fld-Flu) attr = qcutils.MakeAttributeDictionary(long_name='Up-welling long wave', standard_name='surface_upwelling_longwave_flux_in_air', units='W/m2') qcutils.CreateSeries(ds_60minutes,label_Flu,Flu,Flag=f,Attr=attr) attr = qcutils.MakeAttributeDictionary(long_name='Up-welling short wave', standard_name='surface_upwelling_shortwave_flux_in_air', units='W/m2') qcutils.CreateSeries(ds_60minutes,label_Fsu,Fsu,Flag=f,Attr=attr) attr = qcutils.MakeAttributeDictionary(long_name='Calculated net radiation', standard_name='surface_net_allwave_radiation', units='W/m2') qcutils.CreateSeries(ds_60minutes,label_Fn,Fn,Flag=f,Attr=attr) return def get_groundheatflux(ds_60minutes): for i in range(0,3): for j in range(0,3): label_Fg = "Fg_"+str(i)+str(j) label_Fn = "Fn_"+str(i)+str(j) label_Fh = "Fh_"+str(i)+str(j) label_Fe = "Fe_"+str(i)+str(j) Fn,f,a = qcutils.GetSeriesasMA(ds_60minutes,label_Fn) Fh,f,a = qcutils.GetSeriesasMA(ds_60minutes,label_Fh) Fe,f,a = qcutils.GetSeriesasMA(ds_60minutes,label_Fe) Fg = Fn - Fh - Fe attr = qcutils.MakeAttributeDictionary(long_name='Calculated ground heat flux', standard_name='downward_heat_flux_in_soil', units='W/m2') qcutils.CreateSeries(ds_60minutes,label_Fg,Fg,Flag=f,Attr=attr) return def get_availableenergy(ds_60miutes): for i in range(0,3): for j in range(0,3): label_Fg = "Fg_"+str(i)+str(j) label_Fn = "Fn_"+str(i)+str(j) label_Fa = "Fa_"+str(i)+str(j) Fn,f,a = qcutils.GetSeriesasMA(ds_60minutes,label_Fn) Fg,f,a = qcutils.GetSeriesasMA(ds_60minutes,label_Fg) Fa = Fn - Fg attr = qcutils.MakeAttributeDictionary(long_name='Calculated available energy', standard_name='not defined',units='W/m2') qcutils.CreateSeries(ds_60minutes,label_Fa,Fa,Flag=f,Attr=attr) return def perdelta(start,end,delta): curr = start while curr <= end: yield curr curr += delta def interpolate_to_30minutes(ds_60minutes): ds_30minutes = qcio.DataStructure() # copy the global attributes for this_attr in ds_60minutes.globalattributes.keys(): ds_30minutes.globalattributes[this_attr] = ds_60minutes.globalattributes[this_attr] # update the global attribute "time_step" ds_30minutes.globalattributes["time_step"] = 30 # generate the 30 minute datetime series dt_loc_60minutes = ds_60minutes.series["DateTime"]["Data"] dt_loc_30minutes = [x for x in perdelta(dt_loc_60minutes[0],dt_loc_60minutes[-1],datetime.timedelta(minutes=30))] nRecs_30minutes = len(dt_loc_30minutes) dt_utc_60minutes = ds_60minutes.series["DateTime_UTC"]["Data"] dt_utc_30minutes = [x for x in perdelta(dt_utc_60minutes[0],dt_utc_60minutes[-1],datetime.timedelta(minutes=30))] # update the global attribute "nc_nrecs" ds_30minutes.globalattributes['nc_nrecs'] = nRecs_30minutes ds_30minutes.series["DateTime"] = {} ds_30minutes.series["DateTime"]["Data"] = dt_loc_30minutes flag = numpy.zeros(len(dt_loc_30minutes),dtype=numpy.int32) ds_30minutes.series["DateTime"]["Flag"] = flag ds_30minutes.series["DateTime_UTC"] = {} ds_30minutes.series["DateTime_UTC"]["Data"] = dt_utc_30minutes flag = numpy.zeros(len(dt_utc_30minutes),dtype=numpy.int32) ds_30minutes.series["DateTime_UTC"]["Flag"] = flag # get the year, month etc from the datetime qcutils.get_xldatefromdatetime(ds_30minutes) qcutils.get_ymdhmsfromdatetime(ds_30minutes) # interpolate to 30 minutes nRecs_60 = len(ds_60minutes.series["DateTime"]["Data"]) nRecs_30 = len(ds_30minutes.series["DateTime"]["Data"]) x_60minutes = numpy.arange(0,nRecs_60,1) x_30minutes = numpy.arange(0,nRecs_60-0.5,0.5) varlist_60 = ds_60minutes.series.keys() # strip out the date and time variables already done for item in ["DateTime","DateTime_UTC","xlDateTime","Year","Month","Day","Hour","Minute","Second","Hdh","Hr_UTC"]: if item in varlist_60: varlist_60.remove(item) # now do the interpolation (its OK to interpolate accumulated precipitation) for label in varlist_60: series_60minutes,flag,attr = qcutils.GetSeries(ds_60minutes,label) ci_60minutes = numpy.zeros(len(series_60minutes)) idx = numpy.where(abs(series_60minutes-float(c.missing_value))<c.eps)[0] ci_60minutes[idx] = float(1) int_fn = interp1d(x_60minutes,series_60minutes) series_30minutes = int_fn(x_30minutes) int_fn = interp1d(x_60minutes,ci_60minutes) ci_30minutes = int_fn(x_30minutes) idx = numpy.where(abs(ci_30minutes-float(0))>c.eps)[0] series_30minutes[idx] = numpy.float64(c.missing_value) flag_30minutes = numpy.zeros(nRecs_30, dtype=numpy.int32) flag_30minutes[idx] = numpy.int32(1) qcutils.CreateSeries(ds_30minutes,label,series_30minutes,Flag=flag_30minutes,Attr=attr) # get the UTC hour hr_utc = [float(x.hour)+float(x.minute)/60 for x in dt_utc_30minutes] attr = qcutils.MakeAttributeDictionary(long_name='UTC hour') flag_30minutes = numpy.zeros(nRecs_30, dtype=numpy.int32) qcutils.CreateSeries(ds_30minutes,'Hr_UTC',hr_utc,Flag=flag_30minutes,Attr=attr) return ds_30minutes def get_instantaneous_precip30(ds_30minutes): hr_utc,f,a = qcutils.GetSeries(ds_30minutes,'Hr_UTC') for i in range(0,3): for j in range(0,3): label = "Precip_"+str(i)+str(j) # get the accumulated precipitation accum,flag,attr = qcutils.GetSeries(ds_30minutes,label) # get the 30 minute precipitation precip = numpy.ediff1d(accum,to_begin=0) # now we deal with the reset of accumulated precipitation at 00, 06, 12 and 18 UTC # indices of analysis times 00, 06, 12, and 18 idx1 = numpy.where(numpy.mod(hr_utc,6)==0)[0] # set 30 minute precipitation at these times to half of the analysis value precip[idx1] = accum[idx1]/float(2) # now get the indices of the 30 minute period immediately the analysis time # these values will have been interpolated between the last forecast value # and the analysis value, they need to be set to half of the analysis value idx2 = idx1-1 # remove negative indices idx2 = idx2[idx2>=0] # set these 30 minute times to half the analysis value precip[idx2] = accum[idx2+1]/float(2) # set precipitations less than 0.01 mm to 0 idx3 = numpy.ma.where(precip<0.01)[0] precip[idx3] = float(0) # set instantaneous precipitation to missing when accumlated precipitation was missing idx = numpy.where(flag!=0)[0] precip[idx] = float(c.missing_value) # set some variable attributes attr["long_name"] = "Precipitation total over time step" attr["units"] = "mm/30 minutes" qcutils.CreateSeries(ds_30minutes,label,precip,Flag=flag,Attr=attr) return def get_instantaneous_precip60(ds_60minutes): hr_utc,f,a = qcutils.GetSeries(ds_60minutes,'Hr_UTC') for i in range(0,3): for j in range(0,3): label = "Precip_"+str(i)+str(j) # get the accumulated precipitation accum,flag,attr = qcutils.GetSeries(ds_60minutes,label) # get the 30 minute precipitation precip = numpy.ediff1d(accum,to_begin=0) # now we deal with the reset of accumulated precipitation at 00, 06, 12 and 18 UTC # indices of analysis times 00, 06, 12, and 18 idx1 = numpy.where(numpy.mod(hr_utc,6)==0)[0] # set 30 minute precipitation at these times to the analysis value precip[idx1] = accum[idx1] # set accumulated precipitations less than 0.001 mm to 0 idx2 = numpy.ma.where(precip<0.01)[0] precip[idx2] = float(0) # set instantaneous precipitation to missing when accumlated precipitation was missing idx = numpy.where(flag!=0)[0] precip[idx] = float(c.missing_value) # set some variable attributes attr["long_name"] = "Precipitation total over time step" attr["units"] = "mm/60 minutes" qcutils.CreateSeries(ds_60minutes,label,precip,Flag=flag,Attr=attr) def access_read_mfiles2(file_list,var_list=[]): f = ACCESSData() # check that we have a list of files to process if len(file_list)==0: print "access_read_mfiles: empty file_list received, returning ..." return f # make sure latitude and longitude are read if "lat" not in var_list: var_list.append("lat") if "lon" not in var_list: var_list.append("lon") # make sure valid_date and valid_time are read if "valid_date" not in var_list: var_list.append("valid_date") if "valid_time" not in var_list: var_list.append("valid_time") for file_name in file_list: # open the netCDF file ncfile = netCDF4.Dataset(file_name) # check the number of records dims = ncfile.dimensions shape = (len(dims["time"]),len(dims["lat"]),len(dims["lon"])) # move to the next file if this file doesn't have 25 time records if shape[0]!=1: print "access_read_mfiles: length of time dimension in "+file_name+" is "+str(shape[0])+" (expected 1)" continue # move to the next file if this file doesn't have 3 latitude records if shape[1]!=3: print "access_read_mfiles: length of lat dimension in "+file_name+" is "+str(shape[1])+" (expected 3)" continue # move to the next file if this file doesn't have 3 longitude records if shape[2]!=3: print "access_read_mfiles: length of lon dimension in "+file_name+" is "+str(shape[2])+" (expected 3)" continue # seems OK to continue with this file ... # add the file name to the file_list in the global attributes f.globalattr["file_list"].append(file_name) # get the global attributes for gattr in ncfile.ncattrs(): if gattr not in f.globalattr: f.globalattr[gattr] = getattr(ncfile,gattr) # if no variable list was passed to this routine, use all variables if len(var_list)==0: var_list=ncfile.variables.keys() # load the data into the data structure for var in var_list: # get the name of the variable in the ACCESS file access_name = qcutils.get_keyvaluefromcf(cf,["Variables",var],"access_name",default=var) # check that the requested variable exists in the ACCESS file if access_name in ncfile.variables.keys(): # check to see if the variable is already in the data structure if access_name not in f.variables.keys(): f.variables[access_name] = ncfile.variables[access_name][:] else: f.variables[access_name] = numpy.concatenate((f.variables[access_name],ncfile.variables[access_name][:]),axis=0) # now copy the variable attribiutes # create the variable attribute dictionary if access_name not in f.varattr: f.varattr[access_name] = {} # loop over the variable attributes for this_attr in ncfile.variables[access_name].ncattrs(): # check to see if the attribute has already if this_attr not in f.varattr[access_name].keys(): # add the variable attribute if it's not there already f.varattr[access_name][this_attr] = getattr(ncfile.variables[access_name],this_attr) else: print "access_read_mfiles: ACCESS variable "+access_name+" not found in "+file_name if access_name not in f.variables.keys(): f.variables[access_name] = makedummyseries(shape) else: f.variables[access_name] = numpy.concatenate((f.variables[access_name],makedummyseries(shape)),axis=0) # close the netCDF file ncfile.close() # return with the data structure return f def makedummyseries(shape): return numpy.ma.masked_all(shape) # !!! end of function definitions !!! # !!! start of main program !!! # start the logger logging.basicConfig(filename='access_concat.log',level=logging.DEBUG) console = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s', '%H:%M:%S') console.setFormatter(formatter) console.setLevel(logging.INFO) logging.getLogger('').addHandler(console) # get the control file name from the command line #cf_name = sys.argv[1] cf_name = qcio.get_controlfilename(path='../controlfiles',title='Choose a control file') # get the control file contents logging.info('Reading the control file') cf = configobj.ConfigObj(cf_name) # get stuff from the control file logging.info('Getting control file contents') site_list = cf["Sites"].keys() var_list = cf["Variables"].keys() # loop over sites #site_list = ["AdelaideRiver"] for site in site_list: info = get_info_dict(cf,site) logging.info("Processing site "+info["site_name"]) # instance the data structures logging.info('Creating the data structures') ds_60minutes = qcio.DataStructure() # get a sorted list of files that match the mask in the control file file_list = sorted(glob.glob(info["in_filename"])) # read the netcdf files logging.info('Reading the netCDF files for '+info["site_name"]) f = access_read_mfiles2(file_list,var_list=var_list) # get the data from the netCDF files and write it to the 60 minute data structure logging.info('Getting the ACCESS data') get_accessdata(cf,ds_60minutes,f,info) # set some global attributes logging.info('Setting global attributes') set_globalattributes(ds_60minutes,info) # check for time gaps in the file logging.info("Checking for time gaps") if qcutils.CheckTimeStep(ds_60minutes): qcutils.FixTimeStep(ds_60minutes) # get the datetime in some different formats logging.info('Getting xlDateTime and YMDHMS') qcutils.get_xldatefromdatetime(ds_60minutes) qcutils.get_ymdhmsfromdatetime(ds_60minutes) #f.close() # get derived quantities and adjust units logging.info("Changing units and getting derived quantities") # air temperature from K to C changeunits_airtemperature(ds_60minutes) # soil temperature from K to C changeunits_soiltemperature(ds_60minutes) # pressure from Pa to kPa changeunits_pressure(ds_60minutes) # wind speed from components get_windspeedanddirection(ds_60minutes) # relative humidity from temperature, specific humidity and pressure get_relativehumidity(ds_60minutes) # absolute humidity from temperature and relative humidity get_absolutehumidity(ds_60minutes) # soil moisture from kg/m2 to m3/m3 changeunits_soilmoisture(ds_60minutes) # net radiation and upwelling short and long wave radiation get_radiation(ds_60minutes) # ground heat flux as residual get_groundheatflux(ds_60minutes) # Available energy get_availableenergy(ds_60minutes) if info["interpolate"]: # interploate from 60 minute time step to 30 minute time step logging.info("Interpolating data to 30 minute time step") ds_30minutes = interpolate_to_30minutes(ds_60minutes) # get instantaneous precipitation from accumulated precipitation get_instantaneous_precip30(ds_30minutes) # write to netCDF file logging.info("Writing 30 minute data to netCDF file") ncfile = qcio.nc_open_write(info["out_filename"]) qcio.nc_write_series(ncfile, ds_30minutes,ndims=1) else: # get instantaneous precipitation from accumulated precipitation get_instantaneous_precip60(ds_60minutes) # write to netCDF file logging.info("Writing 60 minute data to netCDF file") ncfile = qcio.nc_open_write(info["out_filename"]) qcio.nc_write_series(ncfile, ds_60minutes,ndims=1) logging.info('All done!')
47.546774
132
0.641915
174
0.005903
111
0.003765
0
0
0
0
8,246
0.279725
969bb241fcdc0d7ab1f0ae016a66c74578107f98
639
py
Python
AMAO/apps/Avaliacao/views/exibir.py
arruda/amao
83648aa2c408b1450d721b3072dc9db4b53edbb8
[ "MIT" ]
2
2017-04-26T14:08:02.000Z
2017-09-01T13:10:17.000Z
AMAO/apps/Avaliacao/views/exibir.py
arruda/amao
83648aa2c408b1450d721b3072dc9db4b53edbb8
[ "MIT" ]
null
null
null
AMAO/apps/Avaliacao/views/exibir.py
arruda/amao
83648aa2c408b1450d721b3072dc9db4b53edbb8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from django.http import HttpResponse from django.contrib.auth import login from django.shortcuts import redirect, get_object_or_404 from django.contrib.auth.decorators import login_required from Aluno.views.utils import aluno_exist from annoying.decorators import render_to from django.contrib.auth.models import User from Avaliacao.models import * from Aluno.models import * @render_to('avaliacao/exibir.html') @aluno_exist def exibir(request,template_id): aluno = request.user.aluno_set.get() avaliacao=Avaliacao.objects.get(pk=template_id) questoes=avaliacao.questoes.all() return locals()
27.782609
57
0.791862
0
0
0
0
233
0.364632
0
0
46
0.071987
969bbfec8ddf57f2a21ea2c8536548a16473aafe
2,771
py
Python
avem_theme/functions/sanitize.py
mverleg/django-boots-plain-theme
2355270293ddb3db4762470a43c72311bf11be07
[ "BSD-3-Clause" ]
null
null
null
avem_theme/functions/sanitize.py
mverleg/django-boots-plain-theme
2355270293ddb3db4762470a43c72311bf11be07
[ "BSD-3-Clause" ]
null
null
null
avem_theme/functions/sanitize.py
mverleg/django-boots-plain-theme
2355270293ddb3db4762470a43c72311bf11be07
[ "BSD-3-Clause" ]
null
null
null
try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse from django.conf import settings DEFAULT_NOSCR_ALLOWED_TAGS = 'strong:title b i em:title p:title h1:title h2:title h3:title h4:title h5:title ' + \ 'div:title span:title ol ul li:title a:href:title:rel img:src:alt:title dl td:title dd:title' + \ 'table:cellspacing:cellpadding thead tbody th tr td:title:colspan:rowspan br' def sanitize_html(text, add_nofollow = False, allowed_tags = getattr(settings, 'NOSCR_ALLOWED_TAGS', DEFAULT_NOSCR_ALLOWED_TAGS)): """ Cleans an html string: * remove any not-whitelisted tags - remove any potentially malicious tags or attributes - remove any invalid tags that may break layout * esca[e any <, > and & from remaining text (by bs4); this prevents > >> <<script>script> alert("Haha, I hacked your page."); </</script>script>\ * optionally add nofollow attributes to foreign anchors * removes comments :comment * optionally replace some tags with others: :arg text: Input html. :arg allowed_tags: Argument should be in form 'tag2:attr1:attr2 tag2:attr1 tag3', where tags are allowed HTML tags, and attrs are the allowed attributes for that tag. :return: Sanitized html. This is based on https://djangosnippets.org/snippets/1655/ """ try: from bs4 import BeautifulSoup, Comment, NavigableString except ImportError: raise ImportError('to use sanitize_html() and |noscr, you need to install beautifulsoup4') """ function to check if urls are absolute note that example.com/path/file.html is relative, officially and in Firefox """ is_relative = lambda url: not bool(urlparse(url).netloc) """ regex to remove javascript """ #todo: what exactly is the point of this? is there js in attribute values? #js_regex = compile(r'[\s]*(&#x.{1,7})?'.join(list('javascript'))) """ allowed tags structure """ allowed_tags = [tag.split(':') for tag in allowed_tags.split()] allowed_tags = {tag[0]: tag[1:] for tag in allowed_tags} """ create comment-free soup """ soup = BeautifulSoup(text) for comment in soup.findAll(text = lambda text: isinstance(text, Comment)): comment.extract() for tag in soup.find_all(recursive = True): if tag.name not in allowed_tags: """ hide forbidden tags (keeping content) """ tag.hidden = True else: """ whitelisted tags """ tag.attrs = {attr: val for attr, val in tag.attrs.items() if attr in allowed_tags[tag.name]} """ add nofollow to external links if requested """ if add_nofollow and tag.name == 'a' and 'href' in tag.attrs: if not is_relative(tag.attrs['href']): tag.attrs['rel'] = (tag.attrs['rel'] if 'rel' in tag.attrs else []) + ['nofollow'] """ return as unicode """ return soup.renderContents().decode('utf8')
37.958904
114
0.714904
0
0
0
0
0
0
0
0
1,646
0.594009
969bdd00695dbe7a914d09d8df086240e345cdbb
15,054
py
Python
plotDiff_log.py
kmoskovtsev/Electrons-on-Helium-Scripts
b7325c64a62def9b963b66bfb078ee82553c2ed4
[ "Unlicense" ]
null
null
null
plotDiff_log.py
kmoskovtsev/Electrons-on-Helium-Scripts
b7325c64a62def9b963b66bfb078ee82553c2ed4
[ "Unlicense" ]
null
null
null
plotDiff_log.py
kmoskovtsev/Electrons-on-Helium-Scripts
b7325c64a62def9b963b66bfb078ee82553c2ed4
[ "Unlicense" ]
null
null
null
from __future__ import division import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import matplotlib.ticker as mticker import gsd import gsd.fl import numpy as np import os import sys import datetime import time import pickle from shutil import copyfile import inspect import md_tools27 as md_tools from multiprocessing import Pool """ This script plots diffusion vs Gamma in log(D)-log(Gamma) or log(D)-gamma format. The data from a .dat file is used, must be precalculated by plotDiff_pG_parallel.py. Arguments: --cmfree, --cmfixed for the free-moving center of mass regime, and v_cm subtracted respectively. --sf <fubfolder>: subfolder to process (e.g. p32) --NP <number>: number of subprocesses to use for parallelization. Very efficient acceleration by a factor of <number>. """ #Use LaTex for text from matplotlib import rc rc('font',**{'family':'serif','serif':['Computer Modern Roman']}) rc('text', usetex=True) def read_log(path): coulomb_status = '' with open(path + '/log.txt', 'r') as f: for i, line in enumerate(f.readlines()): if i == 0: timestamp = line.rstrip() if line[:10] == '# Periodic': words = line.split(' ') p = int(words[9]) A = float(words[6]) if line[:4] == '# a ': words = line.split(' ') repeat_x = int(words[6]) repeat_y = int(words[9]) Np = 2*repeat_x*repeat_y if line[:7] == '# Gamma': words = line.split(' ') dt = float(words[9]) if line[:9] == '# Coulomb': words = line.split(' ') coulomb_status = words[-1] if line[:9] == '# N_therm': words = line.split(' ') snap_period = int(float(words[5])) # T_gamma = 31.8265130646 if line[:9] == '# T_gamma': words = line.split(' ') T_gamma = float(words[3]) return {'timestamp': timestamp,'A':A, 'p':p, 'Np': Np, 'coulomb_status':coulomb_status, 'snap_period':snap_period,\ 'dt':dt, 'T_gamma':T_gamma} def OLS(x, y): '''OLS: x must be a vertical two-dimensional array''' X = np.hstack((np.reshape(np.ones(x.shape[0]), (-1,1)), x))#.transpose() Xpr = X.transpose() beta = np.dot(np.dot(np.linalg.inv(np.dot(Xpr, X)), Xpr), y) #Estimate errors sigma_sq = np.dot(y - np.dot(X, beta), y - np.dot(X, beta))/(len(y) - 1.) sigma_beta_sq = sigma_sq*np.linalg.inv(np.dot(Xpr, X)) return beta, sigma_beta_sq # = [f_0, df/d(A^2)] def diffusion_from_transport_gsd(folder_path, f_name, center_fixed = True, useframes = -1): """ Diffusion constant D is calculated from 4Dt = <(r(t) - r(0))^2>, or 2D_x*t = <(x(t) - x(0))^2>. The average is calculated over all particles and over different time origins. Time origins go from 0 to n_frames/2, and t goes from 0 to n_frames/2. This way, the data are always within the trajectory. center_fixed = True: eliminate oveall motion of center of mass return D_x, D_y D_x, D_y diffusion for x- and y-coordinates; """ params = read_log(folder_path) if folder_path[-1] != '/': folder_path = folder_path + '/' with gsd.fl.GSDFile(folder_path + f_name, 'rb') as f: n_frames = f.nframes box = f.read_chunk(frame=0, name='configuration/box') half_frames = int(n_frames/2) - 1 #sligtly less than half to avoid out of bound i if useframes < 1 or useframes > half_frames: useframes = half_frames t_step = f.read_chunk(frame=0, name='configuration/step') n_p = f.read_chunk(frame=0, name='particles/N') x_sq_av = np.zeros(useframes) y_sq_av = np.zeros(useframes) for t_origin in range(n_frames - useframes - 1): pos_0 = f.read_chunk(frame=t_origin, name='particles/position') mean_pos_0 = np.mean(pos_0, axis = 0) pos = pos_0 pos_raw = pos_0 for j_frame in range(useframes): pos_m1 = pos pos_m1_raw = pos_raw pos_raw = f.read_chunk(frame=j_frame + t_origin, name='particles/position') - pos_0 pos = md_tools.correct_jumps(pos_raw, pos_m1, pos_m1_raw, box[0], box[1]) if center_fixed: pos -= np.mean(pos, axis = 0) - mean_pos_0 #correct for center of mass movement x_sq_av[j_frame] += np.mean(pos[:,0]**2) y_sq_av[j_frame] += np.mean(pos[:,1]**2) x_sq_av /= (n_frames - useframes - 1) y_sq_av /= (n_frames - useframes - 1) # OLS estimate for beta_x[0] + beta_x[1]*t = <|x_i(t) - x_i(0)|^2> a = np.ones((useframes, 2)) # matrix a = ones(half_frames) | (0; dt; 2dt; 3dt; ...) a[:,1] = params['snap_period']*params['dt']*np.cumsum(np.ones(useframes), axis = 0) - params['dt'] b_cutoff = int(useframes/10) #cutoff to get only linear part of x_sq_av, makes results a bit more clean beta_x = np.linalg.lstsq(a[b_cutoff:, :], x_sq_av[b_cutoff:], rcond=-1) beta_y = np.linalg.lstsq(a[b_cutoff:, :], y_sq_av[b_cutoff:], rcond=-1) fig, ax = plt.subplots(1,1, figsize=(7,5)) ax.scatter(a[:,1], x_sq_av, label='$\\langle x^2\\rangle$') ax.scatter(a[:,1], y_sq_av, label='$\\langle y^2\\rangle$') ax.legend(loc=7) ax.set_xlabel('$t$') ax.set_ylabel('$\\langle r_i^2 \\rangle$') if center_fixed: center_fixed_str = 'cm_fixed' else: center_fixed_str = 'cm_free' fig.savefig(folder_path + 'r2_diff_' + f_name +'_' + center_fixed_str + '.png') plt.close('all') D_x = beta_x[0][1]/2 D_y = beta_y[0][1]/2 print('D_x = {}'.format(D_x)) print('D_y = {}'.format(D_y)) return (D_x, D_y) def diffusion_helper(arg_dict): return diffusion_from_transport_gsd(arg_dict['sf'], arg_dict['fname'], center_fixed=arg_dict['center_fixed'], useframes = arg_dict['useframes']) def Teff_from_gsd(args): fpath = args['sf'] + '/' + args['fname'] with gsd.fl.GSDFile(fpath, 'rb') as f: n_frames = f.nframes N = f.read_chunk(frame=0, name='particles/N') v = np.zeros((n_frames, int(N), 2)) for t in range(n_frames): v_t = f.read_chunk(frame=t, name='particles/velocity') v[t, :, 0] = v_t[:,0] v[t, :, 1] = v_t[:,1] #v_cm = np.mean(v, axis=1) #mean_v_cmx = np.mean(v_cm[:,0]) #print("mean v_cm = {}".format(mean_v_cmx)) #sigma_v_cmx = np.sqrt(np.mean((v_cm[:,0] - mean_v_cmx)**2))/np.sqrt(n_frames) #print("error = {}".format(sigma_v_cmx)) #mean_v_cmy = np.mean(v_cm[:,1]) #print("mean v_cm_y = {}".format(mean_v_cmy)) #sigma_v_cmy = np.sqrt(np.mean((v_cm[:,1] - mean_v_cmy)**2))/np.sqrt(n_frames) #print("error_y = {}".format(sigma_v_cmy)) #v_rel = np.swapaxes(v, 0,1) - v_cm v_swap = np.swapaxes(v, 0,1) #T_eff = 0.5*np.mean(v_rel[:,:,0]**2 + v_rel[:,:,1]**2, axis = 0) T_eff = 0.5*np.mean(v_swap[:,:,0]**2 + v_swap[:,:,1]**2, axis = 0) print('T_eff = {}'.format(np.mean(T_eff))) return np.mean(T_eff) def print_help(): print('This script plots diffusion vs Gamma for data taken in diffusion measurements.') print('===========================================================') print('Usage: python plotDiff_pG.py diffusion_data/a32x32_* [--options]') print('This will process all folders that match mobility_data/a32x32_*') print('===========================================================') print('Options:') print('\t--cmfixed will subtract the displacement of the center of mass in diffusion calculation (default behavior)') print('\t--cmfree will NOT subtract the displacement of the center of mass in diffusion calculation (default behavior)') print('\t--showtext will print text info on the plots') print('\t--NP N - will use N parallel processes in the calculations') print('\t--sf [subfolder] - will only process the specified subfolder in all folders') print('\t--help or -h will print this help') ## ======================================================================= # Units unit_M = 9.10938356e-31 # kg, electron mass unit_D = 1e-6 # m, micron unit_E = 1.38064852e-23 # m^2*kg/s^2 unit_t = np.sqrt(unit_M*unit_D**2/unit_E) # = 2.568638150515e-10 s epsilon_0 = 8.854187817e-12 # F/m = C^2/(J*m), vacuum permittivity hbar = 1.0545726e-27/(unit_E*1e7)/unit_t m_e = 9.10938356e-31/unit_M unit_Q = np.sqrt(unit_E*1e7*unit_D*1e2) # Coulombs unit_Qe = unit_Q/4.8032068e-10 # e, unit charge in units of elementary charge e e_charge = 1/unit_Qe # electron charge in units of unit_Q curr_fname = inspect.getfile(inspect.currentframe()) curr_path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) ##======================================================================= # Make a list of folders we want to process cm_fixed = True #default that can be changed by --cmfree cm_fixed_str = 'cm_fixed' show_text = False Nproc = 1 selected_subfolders = [] folder_list = [] for i in range(len(sys.argv)): if os.path.isdir(sys.argv[i]): folder_list.append(sys.argv[i]) elif sys.argv[i] == '--sf': try: selected_subfolders.append(sys.argv[i+1]) except: raise RuntimeError('Could not recognize the value of --sf. argv={}'.format(argv)) elif sys.argv[i] == '--showtext': show_text = True elif sys.argv[i] == '--GC': gamma_c = float(sys.argv[i+1]) elif sys.argv[i] == '--help' or sys.argv[i] == '-h': print_help() exit() try: print('Gamma_c = {}'.format(gamma_c)) except: raise RuntimeError('Gamma_c not specified. Use --GC argument.') print('Selected subfolders: {}'.format(selected_subfolders)) # Make a list of subfolders p### in each folders subfolder_lists = [] for folder in folder_list: sf_list = [] for item in os.walk(folder): # subfolder name and contained files sf_list.append((item[0], item[2])) sf_list = sf_list[1:] subfolder_lists.append(sf_list) ##======================================================================= for ifold, folder in enumerate(folder_list): print('==========================================================') print(folder) print('==========================================================') # Keep only selected subfolders in the list is there is selection if len(selected_subfolders) > 0: sf_lists_to_go = [] for isf, sf in enumerate(subfolder_lists[ifold]): sf_words = sf[0].split('/') if sf_words[-1] in selected_subfolders: sf_lists_to_go.append(sf) else: sf_lists_to_go = subfolder_lists[ifold] for isf, sf in enumerate(sf_lists_to_go): sf_words = sf[0].split('/') print(sf_words[-1]) if sf_words[-1][0] != 'p': raise ValueError("Expected subfolder name to start with `p`, in {}".format(fname)) log_data = read_log(sf[0]) folder_name = folder.split('/')[-1] if sf[0][-1] == '/': sf[0] = sf[0][:-1] sf_name = sf[0].split('/')[-1] #Read Dx Dy vs Gamma from the .dat file #DxDy_data = {'Dx_arr':Dx_arr, 'Dy_arr':Dy_arr, 'Dx_arr_gauss': Dx_arr*cm2s_convert, 'Dy_arr_gauss':Dy_arr*cm2s_convert, \ # 'gamma_arr':gamma_arr, 'gamma_eff_arr':gamma_eff_arr} cm_fixed_str = 'cm_fixed' with open(sf[0] + '/DxDy_data_' + cm_fixed_str + '_' + sf_name + '_' + folder_name + '.dat', 'r') as ff: DxDy_data = pickle.load(ff) Dx_arr = DxDy_data['Dx_arr'] Dy_arr = DxDy_data['Dy_arr'] gamma_eff_arr = DxDy_data['gamma_eff_arr'] # Remove points where gamma > gamma_c clip_ind = np.where(gamma_eff_arr < gamma_c)[0] Dx_arr_clip = Dx_arr[clip_ind] Dy_arr_clip = Dy_arr[clip_ind] gamma_arr_clip = gamma_eff_arr[clip_ind] print('Dx_arr = {}'.format(Dx_arr_clip)) print('Dy_arr = {}'.format(Dy_arr_clip)) ## ====================================================================== ## Plot Dx,Dy vs effective G (calculated from data rather then read from the log) # in Gaussian units labelfont = 28 tickfont = labelfont - 4 legendfont = labelfont - 4 cm2s_convert = unit_D**2/unit_t*1e4 fig, ax1 = plt.subplots(1,1, figsize=(7,6)) scatter1 = ax1.scatter(gamma_arr_clip, np.log(Dx_arr_clip*cm2s_convert), label='$D_\\perp$', color = 'green', marker='o') ax1.set_xlabel('$\\Gamma$', fontsize=labelfont) ax1.set_ylabel('$\\log(D/D_0)$', fontsize=labelfont) scatter2 = ax1.scatter(gamma_arr_clip, np.log(Dy_arr_clip*cm2s_convert), label='$D_\\parallel$', color = 'red', marker='s') #ax1.set_xlim([np.min(gamma_eff_arr) - 2, np.max(gamma_eff_arr) + 2]) ax1.legend(loc=1, fontsize=legendfont) ax1.tick_params(labelsize= tickfont) ax1.locator_params(nbins=6, axis='y') formatter = mticker.ScalarFormatter(useMathText=True) formatter.set_powerlimits((-3,2)) ax1.yaxis.set_major_formatter(formatter) #Place text if show_text: text_list = ['$\\Gamma_c = {:.1f}$'.format(gamma_c)] y_lim = ax1.get_ylim() x_lim = ax1.get_xlim() h = y_lim[1] - y_lim[0] w = x_lim[1] - x_lim[0] text_x = x_lim[0] + 0.5*w text_y = y_lim[1] - 0.05*h if type(text_list) == list: n_str = len(text_list) for i_fig in range(n_str): ax1.text(text_x, text_y - 0.05*h*i_fig, text_list[i_fig]) elif type(text_list) == str: ax1.text(text_x, text_y, text_list) else: raise TypeError('text_list must be a list of strings or a string') #fig.patch.set_alpha(alpha=1) plt.tight_layout() fig.savefig(folder + '/' + 'DxDy_G_log_' + sf_name + '_' + folder_name + '_{:.2f}'.format(gamma_c) + '.pdf') #fig.savefig(sf[0] + '/' + 'DxDy_Geff_' + cm_fixed_str + '_' + sf_name + '_' + folder_name + '.png') #fig.savefig(sf[0] + '/' + 'DxDy_Geff_' + cm_fixed_str + '_' + sf_name + '_' + folder_name + '.eps') #fig.savefig(sf[0] + '/' + 'DxDy_Geff_' + cm_fixed_str + '_' + sf_name + '_' + folder_name + '.pdf') plt.close('all')
43.634783
167
0.561778
0
0
0
0
0
0
0
0
5,518
0.366547
969c409f7ce05c9902d3127ae8558f487796543d
1,609
py
Python
backuppy/cli/put.py
drmorr0/backuppy
ed6c60b049aaeb6107a073af2d81ccbe0a9abc59
[ "Apache-2.0" ]
4
2021-08-20T02:51:59.000Z
2022-01-06T18:18:53.000Z
backuppy/cli/put.py
drmorr0/backuppy
ed6c60b049aaeb6107a073af2d81ccbe0a9abc59
[ "Apache-2.0" ]
26
2019-06-06T02:23:29.000Z
2021-07-29T06:43:04.000Z
backuppy/cli/put.py
drmorr0/backuppy
ed6c60b049aaeb6107a073af2d81ccbe0a9abc59
[ "Apache-2.0" ]
null
null
null
import argparse import staticconf from backuppy.args import add_name_arg from backuppy.args import subparser from backuppy.manifest import lock_manifest from backuppy.manifest import Manifest from backuppy.stores import get_backup_store def main(args: argparse.Namespace) -> None: staticconf.YamlConfiguration(args.config, flatten=False) backup_set_config = staticconf.read('backups')[args.name] staticconf.DictConfiguration(backup_set_config, namespace=args.name) backup_store = get_backup_store(args.name) if args.manifest: manifest = Manifest(args.filename) private_key_filename = backup_store.config.read('private_key_filename', default='') lock_manifest( manifest, private_key_filename, backup_store._save, backup_store._load, backup_store.options, ) else: with backup_store.unlock(): backup_store.save_if_new(args.filename) HELP_TEXT = ''' WARNING: this command is considered "plumbing" and should be used for debugging or exceptional cases only. You can render your backup store inaccessible if it is used incorrectly. Use at your own risk! ''' @subparser('put', HELP_TEXT, main) def add_put_parser(subparser) -> None: # pragma: no cover add_name_arg(subparser) subparser.add_argument( dest='filename', help='File to store in the backup' ) subparser.add_argument( '--manifest', action='store_true', help='Save the file as manifest in the backup store (THIS CAN RENDER YOUR BACKUP UNUSABLE)', )
30.942308
100
0.705407
0
0
0
0
409
0.254195
0
0
416
0.258546
969caf4ae896145b97abded195e8a8ae66368a89
6,349
py
Python
OnePy/feeds/feedbase.py
sibuzu/OnePy
464fca1c68a10f90ad128da3bfb03f05d2fc24bc
[ "MIT" ]
null
null
null
OnePy/feeds/feedbase.py
sibuzu/OnePy
464fca1c68a10f90ad128da3bfb03f05d2fc24bc
[ "MIT" ]
null
null
null
OnePy/feeds/feedbase.py
sibuzu/OnePy
464fca1c68a10f90ad128da3bfb03f05d2fc24bc
[ "MIT" ]
null
null
null
from abc import abstractmethod, ABCMeta import csv from datetime import datetime import funcy as fy from OnePy.barbase import Current_bar, Bar from OnePy.event import events, MarketEvent class FeedMetabase(metaclass=ABCMeta): dtformat = "%Y-%m-%d %H:%M:%S" tmformat = "%H:%M:%S" timeindex = None def __init__(self, instrument, fromdate, todate): self.instrument = instrument self.fromdate = fromdate self.todate = todate self.cur_bar = Current_bar() # self.bar_dict = {self.instrument: []} self.bar = Bar(instrument) self.preload_bar_list = [] self.continue_backtest = True # 以下变量会被初始化 self._per_comm = None self._commtype = None self._mult = None self._per_margin = None self._executemode = None self._trailingstop_executemode = None self._iteral_buffer = None self._buffer_days = None self._iteral_data = None def set_per_comm(self, value): self._per_comm = value def set_commtype(self, value): self._commtype = value def set_mult(self, value): self._mult = value def set_per_margin(self, value): self._per_margin = value def set_executemode(self, value): self._executemode = value def set_trailingstop_executemode(self, value): self._trailingstop_executemode = value def set_iteral_buffer(self, value): self._iteral_buffer = value def set_buffer_days(self, value): self._buffer_days = value @property def per_comm(self): return self._per_comm @property def commtype(self): return self._commtype @property def mult(self): return self._mult @property def per_margin(self): return self._per_margin @property def executemode(self): return self._executemode @property def trailingstop_executemode(self): return self._trailingstop_executemode @property def iteral_buffer(self): return self._iteral_buffer @property def buffer_days(self): return self._buffer_days @abstractmethod def load_data(self): """读取数据""" raise NotImplementedError("load_data shold be overrided") @abstractmethod def get_new_bar(self): """获得新行情""" raise NotImplementedError("get_new_bar shold be overrided") @abstractmethod def preload(self): """为indicator缓存数据""" raise NotImplementedError("preload shold be overrided") def run_once(self): """先load一次,以便cur_bar能够缓存两条数据""" self._iteral_data = self.load_data() self.get_new_bar() self.preload() # preload for indicator def __update_bar(self): """更新行情""" self.bar.set_instrument(self.instrument) self.bar.add_new_bar(self.cur_bar.cur_data) def start(self): pass def prenext(self): self.get_new_bar() def next(self): self.__update_bar() events.put(MarketEvent(self)) class CSVFeedBase(FeedMetabase): """自动识别CSV数据中有open,high,low,close,volume数据,但要说明日期格式""" dtformat = "%Y-%m-%d %H:%M:%S" tmformat = "%H:%M:%S" timeindex = None def __init__(self, datapath, instrument, fromdate=None, todate=None): super(CSVFeedBase, self).__init__(instrument, fromdate, todate) self.datapath = datapath self.__set_date() def __set_date(self): """将日期转化为datetime对象""" if self.fromdate: self.fromdate = datetime.strptime(self.fromdate, "%Y-%m-%d") if self.todate: self.todate = datetime.strptime(self.todate, "%Y-%m-%d") def __set_dtformat(self, bar): """识别日期""" date = bar["date"] dt = "%Y-%m-%d %H:%M:%S" if self.timeindex: date = datetime.strptime(str(date), self.dtformat).strftime("%Y-%m-%d") return date + " " + bar[self.timeindex.lower()] else: return datetime.strptime(str(date), self.dtformat).strftime(dt) def get_new_bar(self): def __update(): new_bar = next(self._iteral_data) new_bar = fy.walk_keys(lambda x: x.lower(), new_bar) new_bar["date"] = self.__set_dtformat(new_bar) for i in new_bar: try: new_bar[i] = float(new_bar[i]) # 将数值转化为float except ValueError: pass return new_bar try: new_bar = __update() # 日期范围判断 dt = "%Y-%m-%d %H:%M:%S" if self.fromdate: while datetime.strptime(new_bar["date"], dt) < self.fromdate: new_bar = __update() if self.todate: while datetime.strptime(new_bar["date"], dt) > self.todate: raise StopIteration self.cur_bar.add_new_bar(new_bar) except StopIteration: self.continue_backtest = False # stop backtest def load_data(self): return csv.DictReader(open(self.datapath)) def preload(self): """ 只需运行一次,先将fromdate前的数据都load到preload_bar_list 若没有fromdate,则不用load """ self.set_iteral_buffer(self.load_data()) # for indicator def _update(): bar = next(self.iteral_buffer) bar = fy.walk_keys(lambda x: x.lower(), bar) bar["date"] = self.__set_dtformat(bar) for i in bar: try: bar[i] = float(bar[i]) # 将数值转化为float except ValueError: pass return bar try: bar = _update() # 日期范围判断 dt = "%Y-%m-%d %H:%M:%S" if self.fromdate: while datetime.strptime(bar["date"], dt) < self.fromdate: bar = _update() self.preload_bar_list.append(bar) else: self.preload_bar_list.pop(-1) # 经过验证bug检查的,最后删除掉一个重复 elif self.fromdate is None: pass else: raise SyntaxError("Catch a Bug!") except IndexError: pass except StopIteration: print("???") self.preload_bar_list.reverse()
26.902542
83
0.575839
6,431
0.970424
0
0
968
0.146069
0
0
1,001
0.151049
969ce91c3c9eb7731f2a4d716dfbab07efce7259
4,912
py
Python
conanfile.py
hsdk123/corrade
0d624d1f980f0376b2227356759f1d6e8761e6a3
[ "MIT", "Unlicense" ]
null
null
null
conanfile.py
hsdk123/corrade
0d624d1f980f0376b2227356759f1d6e8761e6a3
[ "MIT", "Unlicense" ]
null
null
null
conanfile.py
hsdk123/corrade
0d624d1f980f0376b2227356759f1d6e8761e6a3
[ "MIT", "Unlicense" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from conans import ConanFile, CMake, tools from conans.errors import ConanException import os import shutil def sort_libs(correct_order, libs, lib_suffix='', reverse_result=False): # Add suffix for correct string matching correct_order[:] = [s.__add__(lib_suffix) for s in correct_order] result = [] for expectedLib in correct_order: for lib in libs: if expectedLib == lib: result.append(lib) if reverse_result: # Linking happens in reversed order result.reverse() return result class CorradeConan(ConanFile): name = "corrade" version = "2019.10" description = "Corrade is a multiplatform utility library written \ in C++11/C++14. It's used as a base for the Magnum \ graphics engine, among other things." # topics can get used for searches, GitHub topics, Bintray tags etc. Add here keywords about the library topics = ("conan", "corrad", "magnum", "filesystem", "console", "environment", "os") url = "https://github.com/mosra/corrade" homepage = "https://magnum.graphics/corrade" author = "helmesjo <[email protected]>" license = "MIT" # Indicates license type of the packaged library; please use SPDX Identifiers https://spdx.org/licenses/ exports = ["COPYING"] exports_sources = ["CMakeLists.txt", "src/*", "package/conan/*", "modules/*"] generators = "cmake" short_paths = True # Some folders go out of the 260 chars path length scope (windows) # Options may need to change depending on the packaged library. settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "build_deprecated": [True, False], "with_interconnect": [True, False], "with_pluginmanager": [True, False], "with_rc": [True, False], "with_testsuite": [True, False], "with_utility": [True, False], } default_options = { "shared": False, "fPIC": True, "build_deprecated": True, "with_interconnect": True, "with_pluginmanager": True, "with_rc": True, "with_testsuite": True, "with_utility": True, } _build_subfolder = "build_subfolder" def config_options(self): if self.settings.os == 'Windows': del self.options.fPIC def configure(self): if self.settings.compiler == 'Visual Studio' and int(self.settings.compiler.version.value) < 14: raise ConanException("{} requires Visual Studio version 14 or greater".format(self.name)) def source(self): # Wrap the original CMake file to call conan_basic_setup shutil.move("CMakeLists.txt", "CMakeListsOriginal.txt") shutil.move(os.path.join("package", "conan", "CMakeLists.txt"), "CMakeLists.txt") def _configure_cmake(self): cmake = CMake(self) def add_cmake_option(option, value): var_name = "{}".format(option).upper() value_str = "{}".format(value) var_value = "ON" if value_str == 'True' else "OFF" if value_str == 'False' else value_str cmake.definitions[var_name] = var_value for option, value in self.options.items(): add_cmake_option(option, value) # Corrade uses suffix on the resulting 'lib'-folder when running cmake.install() # Set it explicitly to empty, else Corrade might set it implicitly (eg. to "64") add_cmake_option("LIB_SUFFIX", "") add_cmake_option("BUILD_STATIC", not self.options.shared) if self.settings.compiler == 'Visual Studio': add_cmake_option("MSVC2015_COMPATIBILITY", int(self.settings.compiler.version.value) == 14) add_cmake_option("MSVC2017_COMPATIBILITY", int(self.settings.compiler.version.value) == 17) cmake.configure(build_folder=self._build_subfolder) return cmake def build(self): cmake = self._configure_cmake() cmake.build() def package(self): self.copy("COPYING", dst="licenses", src=".") cmake = self._configure_cmake() cmake.install() def package_info(self): # See dependency order here: https://doc.magnum.graphics/magnum/custom-buildsystems.html allLibs = [ #1 "CorradeUtility", "CorradeContainers", #2 "CorradeInterconnect", "CorradePluginManager", "CorradeTestSuite", ] # Sort all built libs according to above, and reverse result for correct link order suffix = '-d' if self.settings.build_type == "Debug" else '' builtLibs = tools.collect_libs(self) self.cpp_info.libs = sort_libs(correct_order=allLibs, libs=builtLibs, lib_suffix=suffix, reverse_result=True)
36.932331
125
0.631311
4,302
0.875814
0
0
0
0
0
0
1,964
0.399837
969d12ed4be6b78b744d2cdccc1f9a2142ee0a79
416
py
Python
tests/test_null.py
StephenNneji/python-fastjsonschema
e7441c2efa40f5ac099a7788b8dafe6942146cf0
[ "BSD-3-Clause" ]
null
null
null
tests/test_null.py
StephenNneji/python-fastjsonschema
e7441c2efa40f5ac099a7788b8dafe6942146cf0
[ "BSD-3-Clause" ]
null
null
null
tests/test_null.py
StephenNneji/python-fastjsonschema
e7441c2efa40f5ac099a7788b8dafe6942146cf0
[ "BSD-3-Clause" ]
null
null
null
import pytest from fastjsonschema import JsonSchemaException exc = JsonSchemaException('data must be null', value='{data}', name='data', definition='{definition}', rule='type') @pytest.mark.parametrize('value, expected', [ (0, exc), (None, None), (True, exc), ('abc', exc), ([], exc), ({}, exc), ]) def test_null(asserter, value, expected): asserter({'type': 'null'}, value, expected)
24.470588
115
0.632212
0
0
0
0
235
0.564904
0
0
87
0.209135
969d7989d597d987141a08864cd0542293d4eb73
644
py
Python
server/api/python/comprehension.py
DigitalCompanion/trustometer
acd7a2ab4927195ee5455d3274efff9f76e1395f
[ "MIT" ]
8
2018-10-27T14:47:09.000Z
2019-06-13T15:11:04.000Z
server/api/python/comprehension.py
DigitalCompanion/trustometer
acd7a2ab4927195ee5455d3274efff9f76e1395f
[ "MIT" ]
3
2020-08-18T12:17:05.000Z
2020-08-18T12:17:46.000Z
server/api/python/comprehension.py
futurityab/trustometer
acd7a2ab4927195ee5455d3274efff9f76e1395f
[ "MIT" ]
3
2019-06-13T15:06:09.000Z
2020-05-09T08:23:49.000Z
import boto3 import json def init(ACCESS_KEY, SECRET_KEY): return boto3.client(service_name='comprehend', region_name="us-west-2", aws_access_key_id=ACCESS_KEY, aws_secret_access_key=SECRET_KEY) def get_entities(client, title): return client.detect_entities(Text=title, LanguageCode='en').get('Entities') def get_key_phrases(client, title): return client.detect_key_phrases(Text=title, LanguageCode='en').get('KeyPhrases') def get_sentiment(client, title): sentiment = client.detect_sentiment(Text=title, LanguageCode='en') return [sentiment.get('Sentiment').title(), sentiment.get('SentimentScore')]
35.777778
140
0.751553
0
0
0
0
0
0
0
0
84
0.130435
969d8f8281712317dc2a93dac04a3282f946abb9
394
py
Python
checkrightrotate.py
parasshaha/Python-
6c0bdae04cf74aa2742585ebcedb2274075fa644
[ "Unlicense" ]
null
null
null
checkrightrotate.py
parasshaha/Python-
6c0bdae04cf74aa2742585ebcedb2274075fa644
[ "Unlicense" ]
null
null
null
checkrightrotate.py
parasshaha/Python-
6c0bdae04cf74aa2742585ebcedb2274075fa644
[ "Unlicense" ]
null
null
null
def checkrot(str1,str2): if len(str1)==len(str2): str3=str1+str1 ad=str3.__contains__(str2) if ad==True: print("it is right rotate") else: print("It is not right rotate ") else: print("It is invalid string.Out of range") def main(): str1=input(" Enter the first String : ") str2=input("Enter the second String: ") checkrot(str1,str2) if __name__ =='__main__': main()
19.7
45
0.664975
0
0
0
0
0
0
0
0
145
0.36802
969e155793ce7396e91744cc2b8d9f9238771262
6,781
py
Python
bot.py
Fido2603/WatchDog
4607b374fdd29d2c82ea9a2a4a8de10f2ed3a94f
[ "MIT" ]
null
null
null
bot.py
Fido2603/WatchDog
4607b374fdd29d2c82ea9a2a4a8de10f2ed3a94f
[ "MIT" ]
null
null
null
bot.py
Fido2603/WatchDog
4607b374fdd29d2c82ea9a2a4a8de10f2ed3a94f
[ "MIT" ]
3
2018-11-12T14:02:57.000Z
2020-04-13T21:48:02.000Z
import discord from discord.ext import commands from discord import Embed, Permissions from Util import logger import os import database # Import the config try: import config except ImportError: print("Couldn't import config.py! Exiting!") exit() # Import a monkey patch, if that exists try: import monkeyPatch except ImportError: print("DEBUG: No Monkey patch found!") bot = commands.Bot(command_prefix=os.getenv('prefix'), description='Well boys, we did it. Baddies are no more.', activity=discord.Game(name="with the banhammer")) startup_extensions = ["essentials", "moderation", "info", "listenerCog"] # Function to update the database on startup async def updateDatabase(): # Fetch bans from the banlistguild, and smack them into the db banguild = bot.get_guild(int(os.getenv('banlistguild'))) ban_list = await banguild.bans() for BanEntry in ban_list: if BanEntry.reason is not None: if "not global" in BanEntry.reason.lower(): continue if not database.isBanned(BanEntry.user.id): database.newBan(userid=BanEntry.user.id, discordtag=BanEntry.user.name + "#" + BanEntry.user.discriminator, avatarurl=BanEntry.user.avatar_url) # Make sure appeal guild is set up properly async def checkAppealGuild(): appealguild = bot.get_guild(int(os.getenv('appealguild'))) appealchannel = None for channel in appealguild.channels: if channel.name == "appeal-here": appealchannel = channel break if appealchannel is None: await logger.log("No appealchannel found! Trying to create one!", bot, "INFO") try: overwrites = { appealguild.default_role: discord.PermissionOverwrite(read_messages=True, send_messages=False), appealguild.me: discord.PermissionOverwrite(read_messages=True, send_messages=True, manage_messages=True, embed_links=True, add_reactions=True) } appealchannel = await appealguild.create_text_channel("appeal-here", overwrites=overwrites) except Exception as e: await logger.log("Could not create an appeal channel! Returning! - " + str(e), bot, "ERROR") return history = await appealchannel.history(limit=5).flatten() # check if no messages if len(history) == 0: # no messages # Sending the message await logger.log("Sending the appeal channel message", bot, "INFO") message = await appealchannel.send(content="Hello there! Welcome to the WatchDog Appeal Server!\n" + "\nTo begin your appeal process, please click this reaction!") # now we add a reaction to the message await message.add_reaction("✅") @bot.event async def on_connect(): logger.logDebug("----------[LOGIN SUCESSFULL]----------", "INFO") logger.logDebug(" Username: " + bot.user.name, "INFO") logger.logDebug(" UserID: " + str(bot.user.id), "INFO") logger.logDebug("--------------------------------------", "INFO") print("\n") logger.logDebug("Updating the database!", "INFO") await updateDatabase() logger.logDebug("Done updating the database!", "INFO") print("\n") # Ban appeal server setup await checkAppealGuild() # Bot done starting up await logger.log("Bot startup done!", bot, "INFO", "Bot startup done.\n") @bot.event async def on_ready(): # Bot startup is now done... logger.logDebug("WatchDog has (re)connected to Discord!") @bot.event async def on_command_error(ctx: commands.Context, error): if isinstance(error, commands.NoPrivateMessage): await ctx.send("This command cannot be used in private messages") elif isinstance(error, commands.BotMissingPermissions): await ctx.send( embed=Embed(color=discord.Color.red(), description="I need the permission `Ban Members` to sync the bans!")) elif isinstance(error, commands.MissingPermissions): await ctx.send( embed=Embed(color=discord.Color.red(), description="You are missing the permission `Ban Members`!")) elif isinstance(error, commands.CheckFailure): return elif isinstance(error, commands.CommandOnCooldown): return elif isinstance(error, commands.MissingRequiredArgument): return elif isinstance(error, commands.BadArgument): return elif isinstance(error, commands.CommandNotFound): return else: await ctx.send("Something went wrong while executing that command... Sorry!") await logger.log("%s" % error, bot, "ERROR") @bot.event async def on_guild_join(guild): await logger.log("Joined a new guild (`%s` - `%s`)" % (guild.name, guild.id), bot, "INFO") # Check the bot's ban permission if Permissions.ban_members in guild.get_member(bot.user.id).guild_permissions: # Get bans from db bans = database.getBans() # make new list for userid in bans, if member is in guild ban_members = [userid for userid in bans if guild.get_member(userid)] logger.logDebug(str(ban_members)) # Ban the found users for userid in ban_members: await guild.ban(bot.get_user(int(userid)), reason="WatchDog - Global Ban") logger.logDebug("Banned user in guild hahayes") @bot.event async def on_message(message: discord.Message): if message.author.bot: return ctx: commands.Context = await bot.get_context(message) if message.content.startswith(os.getenv('prefix')): if ctx.command is not None: if isinstance(message.channel, discord.DMChannel): await logger.log("`%s` (%s) used the `%s` command in their DM's" % ( ctx.author.name, ctx.author.id, ctx.invoked_with), bot, "INFO") else: await logger.log("`%s` (%s) used the `%s` command in the guild `%s` (%s), in the channel `%s` (%s)" % ( ctx.author.name, ctx.author.id, ctx.invoked_with, ctx.guild.name, ctx.guild.id, ctx.channel.name, ctx.channel.id), bot, "INFO") await bot.invoke(ctx) else: return if __name__ == '__main__': logger.setup_logger() # Load extensions for extension in startup_extensions: try: bot.load_extension(f"cogs.{extension}") except Exception as e: logger.logDebug(f"Failed to load extension {extension}. - {e}", "ERROR") bot.run(os.getenv('token'))
38.748571
120
0.627636
0
0
0
0
3,424
0.504791
5,574
0.82176
1,897
0.27967
969e2f3ff112021f4be66464e152ec69c802c02b
320
py
Python
connect/eaas/exceptions.py
bdjilka/connect-extension-runner
7930b34dae92addb3807984fd553debc2b78ac23
[ "Apache-2.0" ]
null
null
null
connect/eaas/exceptions.py
bdjilka/connect-extension-runner
7930b34dae92addb3807984fd553debc2b78ac23
[ "Apache-2.0" ]
null
null
null
connect/eaas/exceptions.py
bdjilka/connect-extension-runner
7930b34dae92addb3807984fd553debc2b78ac23
[ "Apache-2.0" ]
null
null
null
# # This file is part of the Ingram Micro CloudBlue Connect EaaS Extension Runner. # # Copyright (c) 2021 Ingram Micro. All Rights Reserved. # class EaaSError(Exception): pass class MaintenanceError(EaaSError): pass class CommunicationError(EaaSError): pass class StopBackoffError(EaaSError): pass
16
80
0.74375
167
0.521875
0
0
0
0
0
0
138
0.43125
969ea553ff4cdd6978d9da12725a1d04afc89e38
354
py
Python
tests/i18n/patterns/urls/wrong_namespace.py
Yoann-Vie/esgi-hearthstone
115d03426c7e8e80d89883b78ac72114c29bed12
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
tests/i18n/patterns/urls/wrong_namespace.py
Yoann-Vie/esgi-hearthstone
115d03426c7e8e80d89883b78ac72114c29bed12
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
tests/i18n/patterns/urls/wrong_namespace.py
Yoann-Vie/esgi-hearthstone
115d03426c7e8e80d89883b78ac72114c29bed12
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
from django.conf.urls import url from django.conf.urls.i18n import i18n_patterns from django.utils.translation import gettext_lazy as _ from django.views.generic import TemplateView view = TemplateView.as_view(template_name='dummy.html') app_name = 'account' urlpatterns = i18n_patterns( url(_(r'^register/$'), view, name='register'), )
29.5
56
0.757062
0
0
0
0
0
0
0
0
45
0.127119
969ea9cfc35b7e706cf517d502bb8ce349a6ac08
2,004
py
Python
gsheetsdb/url.py
JagritiG/gsheet-db-api-plus
620247bb7ce36b327fc91feab8b48fc70e8c158f
[ "MIT" ]
null
null
null
gsheetsdb/url.py
JagritiG/gsheet-db-api-plus
620247bb7ce36b327fc91feab8b48fc70e8c158f
[ "MIT" ]
null
null
null
gsheetsdb/url.py
JagritiG/gsheet-db-api-plus
620247bb7ce36b327fc91feab8b48fc70e8c158f
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import OrderedDict from moz_sql_parser import parse as parse_sql import pyparsing import re from six.moves.urllib import parse FROM_REGEX = re.compile(' from ("http.*?")', re.IGNORECASE) def get_url(url, headers=0, gid=0, sheet=None): parts = parse.urlparse(url) if parts.path.endswith('/edit'): path = parts.path[:-len('/edit')] else: path = parts.path path = '/'.join((path.rstrip('/'), 'gviz/tq')) qs = parse.parse_qs(parts.query) if 'headers' in qs: headers = int(qs['headers'][-1]) if 'gid' in qs: gid = qs['gid'][-1] if 'sheet' in qs: sheet = qs['sheet'][-1] if parts.fragment.startswith('gid='): gid = parts.fragment[len('gid='):] args = OrderedDict() if headers > 0: args['headers'] = headers if sheet is not None: args['sheet'] = sheet else: args['gid'] = gid params = parse.urlencode(args) return parse.urlunparse( (parts.scheme, parts.netloc, path, None, params, None)) def extract_url(sql): try: url = parse_sql(sql)['from'] except pyparsing.ParseException: # fallback to regex to extract from match = FROM_REGEX.search(sql) if match: return match.group(1).strip('"') return while isinstance(url, dict): url = url['value']['from'] return url # Function to extract url from any sql statement def url_from_sql(sql): """ Extract url from any sql statement. :param sql: :return: """ try: parsed_sql = re.split('[( , " )]', str(sql)) for i, val in enumerate(parsed_sql): if val.startswith('https:'): sql_url = parsed_sql[i] return sql_url except Exception as e: print("Error: {}".format(e))
21.782609
63
0.597804
0
0
0
0
0
0
0
0
338
0.168663
969f792ffed604b2cbdb6448c4f912247a60d7f2
5,676
py
Python
weechat/.weechat/python/autoload/weechat_bot2human.py
CoelacanthusHex/dotfiles
e9cc372ba1c5d90e29fdcb1a81c8eb06b6f83bc5
[ "Unlicense" ]
10
2021-01-22T08:40:51.000Z
2022-01-01T12:14:37.000Z
weechat/.weechat/python/autoload/weechat_bot2human.py
CoelacanthusHex/dotfiles
e9cc372ba1c5d90e29fdcb1a81c8eb06b6f83bc5
[ "Unlicense" ]
1
2020-04-18T16:47:51.000Z
2020-05-20T20:46:30.000Z
weechat/.weechat/python/autoload/weechat_bot2human.py
ayalhw/dotfiles
c43d0d8543e62a7196c3eddadf66df045bdbbdeb
[ "Unlicense" ]
1
2021-10-02T12:02:01.000Z
2021-10-02T12:02:01.000Z
# -*- coding:utf-8 -*- # Bot2Human # # Replaces messages from bots to humans # typically used in channels that are connected with other IMs using bots # # For example, if a bot send messages from XMPP is like `[nick] content`, # weechat would show `bot | [nick] content` which looks bad; this script # make weecaht display `nick | content` so that the messages looks like # normal IRC message # # Options # # plugins.var.python.bot2human.bot_nicks # space seperated nicknames to forwarding bots # example: teleboto toxsync tg2arch # # plugins.var.python.nick_content_re.X # X is a 0-2 number. This options specifies regex to match nickname # and content. Default regexes are r'\[(?P<nick>.+?)\] (?P<text>.*)', # r'\((?P<nick>.+?)\) (?P<text>.*)', and r'<(?P<nick>.+?)> (?P<text>.*)' # # plugins.var.python.nick_re_count # Number of rules defined # # Changelog: # 0.3.0: Add relayed nicks into nicklist, enabling completion # 0.2.2: Support ZNC timestamp # 0.2.1: Color filtering only applies on nicknames # More than 3 nick rules can be defined # 0.2.0: Filter mIRC color and other control seq from message # 0.1.1: Bug Fixes # 0.1: Initial Release # import weechat as w import re SCRIPT_NAME = "bot2human" SCRIPT_AUTHOR = "Justin Wong & Hexchain & quietlynn" SCRIPT_DESC = "Replace IRC message nicknames with regex match from chat text" SCRIPT_VERSION = "0.3.0" SCRIPT_LICENSE = "GPLv3" DEFAULTS = { 'nick_re_count': '4', 'nick_content_re.0': r'\[(?:\x03[0-9,]+)?(?P<nick>[^:]+?)\x0f?\] (?P<text>.*)', 'nick_content_re.1': r'(?:\x03[0-9,]+)?\[(?P<nick>[^:]+?)\]\x0f? (?P<text>.*)', 'nick_content_re.2': r'\((?P<nick>[^:]+?)\) (?P<text>.*)', 'nick_content_re.3': r'<(?:\x03[0-9,]+)?(?P<nick>[^:]+?)\x0f?> (?P<text>.*)', 'bot_nicks': "", 'znc_ts_re': r'\[\d\d:\d\d:\d\d\]\s+', } CONFIG = { 'nick_re_count': -1, 'nick_content_res': [], 'bot_nicks': [], 'znc_ts_re': None, } def parse_config(): for option, default in DEFAULTS.items(): # print(option, w.config_get_plugin(option)) if not w.config_is_set_plugin(option): w.config_set_plugin(option, default) CONFIG['nick_re_count'] = int(w.config_get_plugin('nick_re_count')) CONFIG['bot_nicks'] = w.config_get_plugin('bot_nicks').split(' ') for i in range(CONFIG['nick_re_count']): option = "nick_content_re.{}".format(i) CONFIG['nick_content_res'].append( re.compile(w.config_get_plugin(option)) ) CONFIG['znc_ts_re'] = re.compile(w.config_get_plugin('znc_ts_re')) def config_cb(data, option, value): parse_config() return w.WEECHAT_RC_OK def filter_color(msg): # filter \x01 - \x19 control seq # filter \x03{foreground}[,{background}] color string return re.sub(r'\x03[\d,]+|[\x00-\x1f]', '', msg) def msg_cb(data, modifier, modifier_data, string): # w.prnt("blue", "test_msg_cb " + string) parsed = w.info_get_hashtable("irc_message_parse", {'message': string}) # w.prnt("", "%s" % parsed) matched = False for bot in CONFIG['bot_nicks']: # w.prnt("", "%s, %s" % (parsed["nick"], bot)) if parsed['nick'] == bot: t = parsed.get( 'text', parsed["arguments"][len(parsed["channel"])+2:] ) # ZNC timestamp ts = "" mts = CONFIG['znc_ts_re'].match(t) if mts: ts = mts.group() t = t[mts.end():] for r in CONFIG['nick_content_res']: # parsed['text'] only exists in weechat version >= 1.3 m = r.match(t) if not m: continue nick, text = m.group('nick'), m.group('text') nick = filter_color(nick) nick = re.sub(r'\s', '_', nick) parsed['host'] = parsed['host'].replace(bot, nick) parsed['text'] = ts + text matched = True buffer = w.info_get("irc_buffer", "%s,%s" % (modifier_data, parsed['channel'])) add_nick(nick, buffer, "") break if matched: break else: return string return ":{host} {command} {channel} :{text}".format(**parsed) def add_nick(name, buffer, group): group = get_nick_group(buffer, 'bot2human') if not w.nicklist_search_nick(buffer, group, name): w.nicklist_add_nick(buffer, group, name, "weechat.color.nicklist_group", "~", "lightgreen", 1) return w.WEECHAT_RC_OK def get_nick_group(buffer, group_name): group = w.nicklist_search_group(buffer, "", group_name) if not group: group = w.nicklist_add_group(buffer, "", group_name, "weechat.color.nicklist_group", 1) return group def nicklist_nick_added_cb(data, signal, buffer): group = get_nick_group(buffer, 'bot2human') return w.WEECHAT_RC_OK if __name__ == '__main__': w.register(SCRIPT_NAME, SCRIPT_AUTHOR, SCRIPT_VERSION, SCRIPT_LICENSE, SCRIPT_DESC, "", "") parse_config() w.hook_modifier("irc_in_privmsg", "msg_cb", "") w.hook_config("plugins.var.python."+SCRIPT_NAME+".*", "config_cb", "") # Glowing Bear will choke if a nick is added into a newly created group. # As a workaround, we add the group as soon as possible BEFORE Glowing Bear loads groups, # and we must do that AFTER EVERY nicklist reload. nicklist_nick_added satisfies both. # TODO(quietlynn): Find better signals to hook instead. w.hook_signal("nicklist_nick_added", "nicklist_nick_added_cb", "") # vim: ts=4 sw=4 sts=4 expandtab
33.988024
102
0.604651
0
0
0
0
0
0
0
0
2,928
0.515856
96a3b55fdb3ad0865f22a54baf973a421e94d7be
10,713
py
Python
MS-thesis/excel-format/sir/Updated/New folder/test.py
iffishells/Pushto-TTS-FYP
7ed3a180ba4c1e609ae5aa5e76bfd093a3d3d140
[ "Apache-2.0" ]
2
2021-12-06T04:28:18.000Z
2021-12-20T03:33:00.000Z
MS-thesis/excel-format/sir/Updated/New folder/test.py
iffishells/Pushto-TTS-FYP
7ed3a180ba4c1e609ae5aa5e76bfd093a3d3d140
[ "Apache-2.0" ]
null
null
null
MS-thesis/excel-format/sir/Updated/New folder/test.py
iffishells/Pushto-TTS-FYP
7ed3a180ba4c1e609ae5aa5e76bfd093a3d3d140
[ "Apache-2.0" ]
1
2021-12-29T16:44:59.000Z
2021-12-29T16:44:59.000Z
import xlrd import pandas as pd from openpyxl import load_workbook from xlrd import open_workbook import nltk from nltk.tree import Tree from nltk.parse.generate import generate from nltk.tree import * import os from nltk.tokenize import word_tokenize from nltk.tokenize import sent_tokenize import xml.etree.ElementTree as etree import xlrd import time import sys from nltk import induce_pcfg from nltk.parse import pchart from nltk import PCFG from nltk.draw.util import CanvasFrame import nltk import re import pandas sys.setrecursionlimit(5000) ##start = time.time() ##PERIOD_OF_TIME = 15 # 5min ##while True : sen = input("Enter your sentence: ") sent = word_tokenize(sen) #sen = "مهربانی وکړه بیاي ووايه . يوسف غلے شو . دیړ وخت وشو نہ خکاری" ##for i in sent_tokenize(sen): ## print(i) ## ##gram =(""" ##S -> NP VP [1.0] ##NP -> ADJ [0.0041666667] | N [0.0041666667] | N N [0.3] | PN [0.0041666667] | ADJ N [0.0041666667] | AV N [0.0041666667] | N ADJ [0.1] | NU NU [0.5] | NU AP [0.0041666667] | ADJ AP [0.0041666667] | AV [0.0041666667] | ADJ AP [0.0041666667] | N PN [0.0041666667] | VP N [0.0041666667] | PN ADV [0.0041666667] | AV ADV [0.0041666667] | N VP [0.0041666667] | NU N [0.0041666667] | NU [0.0041666667] | V [0.0041666667] | AV AP [0.0041666667] | ADJ VP [0.0041666667] | N AP [0.0041666667] | ADJ AP [0.0041666667] | ADJ NP [0.0041666667] | N NP [0.0041666667] ##VP -> V AP [0.557] | ADJ V [0.05] | AP [0.00625] | NP [0.00625] | AV PN [0.056] | V ADV [0.00625] | V [0.00625] | AV AP [0.00625] | N ADV [0.00625] | N [0.00625] | NU N [0.1] | N V [0.0375] | ADJ AP [0.00625] | N AV [0.10] | V ADJ [0.00625] | ADJ NP [0.00625] | N AP [0.00625] | N NP [0.00625] | NP NP [0.00625] | AV VP [0.00625] | ADJ VP [0.00625] | N VP [0.00625] ##AP -> AV V [0.056] | V NP [0.166] | ADJ V [0.051] | NP VP [0.0142857143] | AV NP [0.0142857143] | PN NP [0.0142857143] | N V [0.037] | NU N [0.2] | AV N [0.2] | ADJ PN [0.066] | V VP [0.0142857143] | N ADV [0.0142857143] | PN AV [0.024] | ADJ VP [0.0142857143] | PN N [0.1] | AV ADV [0.0142857143] ##ADV -> ADV ADJ [0.4] | PN VP [0.025] | N AP [0.025] | AV AV [0.5] | V AP [0.025] | N V [0.025] ##""") #0.0769231 gram = (""" S -> NP NP RP VP RP NP PRP VP [0.0769230769] NP -> N [0.0294118] NP -> PRP N [0.0294118] VP -> V [0.05] NP -> N N [0.0294118] VP -> V [0.05] S -> NP RP POP NP NP PP ADJ VP [0.0769230769] NP -> PRP N [0.0294118] NP -> N [0.0294118] NP -> PRP N [0.0294118] PP -> NP POP [0.2] NP -> PRP N [0.0294118] VP -> V [0.05] S -> ADVP INT CO PP ADV INT RP ADJ PP NP ADV VP [0.0769230769] ADVP -> ADV NP [0.333333] NP -> N [0.0294118] PP -> NP POP [0.6] NP -> N [0.0294118] NP -> N [0.0294118] NP -> PRN [0.0294118] VP -> V [0.1] S -> NP PP NP NP VP [0.0769230769] NP -> N [0.0294118] PP -> PRP NP [0.2] NP -> PRP N [0.0294118] NP -> PRP N [0.0294118] NP -> PRP N N [0.0294118] VP -> V [0.05] S -> NP ADJP ADVP VP [0.0769230769] NP -> NP CO NP [0.0294118] NP -> PRP N [0.0294118] NP -> PRP N [0.0294118] ADJP -> ADJ ADJ NP [0.333333] NP -> N [0.0294118] ADVP -> ADV NP [0.333333] NP -> N [0.0294118] VP -> V [0.05] S -> PP VP CO NP VP [0.0769230769] NP -> N N [0.0294118] VP -> V [0.05] NP -> N [0.0294118] VP -> V [0.05] S -> NP NP NP VP VP [0.0769230769] NP -> PRN [0.0294118] NP -> PRP N N [0.0294118] NP -> PRP N [0.0294118] VP -> V [0.05] VP -> V [0.1] S -> NP NP VP [0.0769230769] NP -> PRN [0.0294118] NP -> N [0.0294118] VP -> V [0.05] S -> NP ADJP VP [0.0769230769] NP -> PRN [0.0294118] ADJP -> ADJ NP [0.333333] NP -> N N [0.0294118] VP -> V [0.05] S -> NP ADJP VP VP [0.0769230769] NP -> PRN [0.0294118] ADJP -> ADJ NP [0.333333] NP -> N [0.0294118] VP -> V [0.05] VP -> V [0.05] S -> NP ADJ VP VP [0.0769230769] NP -> PRN [0.0588235] VP -> V [0.1] S -> NP VP VP VP [0.0769230769] VP -> V [0.05] S -> NP ADVP VP [0.0769230769] NP -> PRN [0.0294118] ADVP -> PRP ADV RP [0.333333] VP -> V [0.05] """) ##gram =(""" ##S -> NP VP [1.0] ##NP -> ADJ [0] | N [0] | N N [0.4] | PN [0] | ADJ N [0] | AV N [0] | N ADJ [0.1] | NU NU [0.5] | NU AP [0] | ADJ AP [0] | AV [0] | ADJ AP [0] | N PN [0] | VP N [0] | PN ADV [0] | AV ADV [0] | N VP [0] | NU N [0] | NU [0] | V [0] | AV AP [0] | ADJ VP [0] | N AP [0] | ADJ AP [0] | ADJ NP [0] | N NP [0] ##VP -> V AP [0.557] | ADJ V [0.05] | AP [0.00625] | NP [0.00625] | AV PN [0.056] | V ADV [0.00625] | V [0.00625] | AV AP [0.00625] | N ADV [0.00625] | N [0.00625] | NU N [0.1] | N V [0.0375] | ADJ AP [0.00625] | N AV [0.10] | V ADJ [0.00625] | ADJ NP [0.00625] | N AP [0.00625] | N NP [0.00625] | NP NP [0.00625] | AV VP [0.00625] | ADJ VP [0.00625] | N VP [0.00625] ##AP -> AV V [0.056] | V NP [0.166] | ADJ V [0.051] | NP VP [0.0142857143] | AV NP [0.0142857143] | PN NP [0.0142857143] | N V [0.037] | NU N [0.2] | AV N [0.2] | ADJ PN [0.066] | V VP [0.0142857143] | N ADV [0.0142857143] | PN AV [0.024] | ADJ VP [0.0142857143] | PN N [0.1] | AV ADV [0.0142857143] ##ADV -> ADV ADJ [0.4] | PN VP [0.025] | N AP [0.025] | AV AV [0.5] | V AP [0.025] | N V [0.025] ##""") ## ##د هغه ناوړه ملګري وویل ## ##gram = (""" ##S -> NP VP [1.0] ##NP -> AV [0.5] | ADJ AP [0.5] ##VP -> AP [1.0] ##AP -> PN NP [0.5] | N V [0.5] ##AV -> "د" [1.0] ##PN -> "هغه" [1.0] ##ADJ -> "ناوړه" [1.0] ##V -> "وویل" [1.0] ##N -> "ملګري" [1.0] ##""") ##یوه وفاداره میرمن جوړه شوه ##gram = (""" ##S -> NP VP ##NP -> NU | N N ##VP -> NP NP ## ##""") #دویم تن وویل ##gram =(""" ##S -> NP VP ##NP -> V ##VP -> N V ##""") ##dic = pandas.read_csv("dictionary.csv") ##doc = pandas.read_csv("corpus2.csv", quotechar='"', delimiter=',') #book = open_workbook("Pastho dictionary2.xlsx") ##for sheet in book.sheets(): ## for rowidx in range(sheet.nrows): ## row = sheet.row(rowidx) ## for i in sent: ## for colidx,cell in enumerate(row): ## if cell.value == i:#row value ## #print ("Found Row Element") ## #print(rowidx, colidx) ## #print(cell.value) ## print(row) ## print('\n') ## ##book = load_workbook("Pastho dictionary2.xlsx") ##worksheet = book.sheetnames ##sheet = book["Sheet1"] ##c=1 ##for i in sheet: ## d = sheet.cell(row=c, column=2) ## ## if(d.value is None): ## print(" Try Again ") ## ## ## elif (d.value == " Noun  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "N ->" + "'" + cell.value + "'" + " " + "[0.0000851934]" + "\n" ## ## ## elif (d.value == "Noun  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "N ->" + "'" + cell.value + "'" + " " + "[0.0000851934]" + "\n" ## ## ## elif (d.value == " Verb  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "V ->" + "'" + cell.value + "'" + " " + "[0.0005530973]" + "\n" ## ## ## elif (d.value == "Verb  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "V ->" + "'" + cell.value + "'" + " " + "[0.0005530973]" + "\n" ## ## ## elif (d.value == " Adjective  "): ## ## cell = sheet.cell(row=c, column=1) ## gram = gram + "ADJ ->" + "'" + cell.value + "'" + " " + "[0.000280112]" + "\n" ## ## ## elif (d.value == "Adjective  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "ADJ ->" + "'" + cell.value + "'" + " " + "[0.000280112]" + "\n" ## ## ## elif (d.value == " Participles  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "PP ->" + "'" + cell.value + "'" + " " + "[0.0588235294]" + "\n" ## #print("hi") ## ## elif (d.value == " Adverb  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "AV ->" + "'" + cell.value + "'" + " " + "[0.0025380711]" + "\n" ## ## ## elif (d.value == "Adverb  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "AV ->" + "'" + cell.value + "'" + " " + "[0.0025380711]" + "\n" ## ## ## elif (d.value == " numerical  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "NU ->" + "'" + cell.value + "'" + " " + "[0.0222222222]" + "\n" ## ## ## elif (d.value == "numerical  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "NU ->" + "'" + cell.value + "'" + " " + "[0.0222222222]" + "\n" ## ## ## elif (d.value == " proNoun  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "PN ->" + "'" + cell.value + "'" + " " + "[0.0125]" + "\n" ## ## ## ## elif (d.value == " ProNoun  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "PN ->" + "'" + cell.value + "'" + " " + "[0.0125]" + "\n" ## ## ## ## elif (d.value == "ProNoun  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "PN ->" + "'" + cell.value + "'" + " " + "[0.0125]" + "\n" ## ## ## ## elif (d.value == " suffix  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "SA ->" + "'" + cell.value + "'" + " " + "[0.0476190476]" + "\n" ## ## ## ## elif (d.value == " Suffix  "): ## cell = sheet.cell(row=c, column=1) ## gram = gram + "SA ->" + "'" + cell.value + "'" + " " + "[0.0476190476]" + "\n" ## c=c+1 #print(gram) grammar1 = nltk.PCFG.fromstring(gram) sr_parser = nltk.ViterbiParser(grammar1) #max=0 for tree in sr_parser.parse(sent): print(tree) ## ## with open("prob.txt", "a", encoding='utf-8') as output: ## output.write(str(tree)) ## output.write("\n") ## ## if (tree.prob() > max): ## max=tree.prob() ## max_tree=tree ## ##print(max) ##print(max_tree) ##sr_parser = nltk.parse.chart.ChartParser(grammar1) #sr_parser = nltk.RecursiveDescentParser(grammar1) #sr_parser = nltk.ShiftReduceParser(grammar1) ##for tree in sr_parser.parse(sent): ## #values = tree ## ## with open("test.txt", "a", encoding='utf-8') as output: ## output.write(str(tree)) ## output.write("\n") ## ## print(tree) ## #break ##
31.508824
576
0.477364
0
0
0
0
0
0
0
0
9,812
0.903666
96a3d255da97bc30ed9f93ea22fbcadc0ebc221e
1,013
py
Python
RFEM/SpecialObjects/intersection.py
Dlubal-Software/RFEM_Python_Client
9e29c598dadf380d49677c463931f0be659ccc40
[ "MIT" ]
16
2021-10-13T21:00:11.000Z
2022-03-21T11:12:09.000Z
RFEM/SpecialObjects/intersection.py
Dlubal-Software/RFEM_Python_Client
9e29c598dadf380d49677c463931f0be659ccc40
[ "MIT" ]
49
2021-10-19T13:18:51.000Z
2022-03-30T08:20:17.000Z
RFEM/SpecialObjects/intersection.py
Dlubal-Software/RFEM_Python_Client
9e29c598dadf380d49677c463931f0be659ccc40
[ "MIT" ]
7
2021-10-13T06:06:24.000Z
2022-03-29T17:48:39.000Z
from RFEM.initModel import Model, clearAtributes class Instersection(): def __init__(self, no: int = 1, surface_1: int = 1, surface_2: int = 2, comment: str = '', params: dict = None, model = Model): # Client model | Intersection clientObject = model.clientModel.factory.create('ns0:intersection') # Clears object atributes | Sets all atributes to None clearAtributes(clientObject) # Intersection No. clientObject.no = no # Assigned surfaces clientObject.surface_a = surface_1 clientObject.surface_b = surface_2 # Comment clientObject.comment = comment # Adding optional parameters via dictionary if params: for key in params: clientObject[key] = params[key] # Add Intersection to client model model.clientModel.service.set_intersection(clientObject)
28.942857
75
0.582428
962
0.949654
0
0
0
0
0
0
226
0.2231
96a494380c4f8173563744e5544c96b9515e8e78
6,760
py
Python
tests/test_storage.py
HumanCellAtlas/data-store
6b27d0f7e0110c62b3079151708689ab5145f15b
[ "MIT" ]
46
2017-03-24T15:56:09.000Z
2021-03-15T19:49:07.000Z
tests/test_storage.py
HumanCellAtlas/DCC
6b27d0f7e0110c62b3079151708689ab5145f15b
[ "MIT" ]
1,799
2017-04-04T17:54:28.000Z
2020-11-19T12:30:13.000Z
tests/test_storage.py
HumanCellAtlas/DCC
6b27d0f7e0110c62b3079151708689ab5145f15b
[ "MIT" ]
13
2017-03-27T23:49:35.000Z
2021-01-18T07:39:49.000Z
#!/usr/bin/env python # coding: utf-8 import os import sys import string import unittest from uuid import uuid4 from unittest import mock from random import random, randint from datetime import datetime, timedelta pkg_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) # noqa sys.path.insert(0, pkg_root) # noqa import dss from dss import Replica from dss.util.version import datetime_to_version_format from dss.storage.identifiers import UUID_REGEX, TOMBSTONE_SUFFIX from dss.storage.bundles import enumerate_available_bundles, get_tombstoned_bundles from dss.logging import configure_test_logging from tests.infra import testmode, MockStorageHandler class MockCloudBlobstoreHandle: bundle_uuid: str = None tombstoned_bundles: list = None untombstoned_bundles: list = None tombstones: list = None listing: list = None @classmethod def list(cls, bucket, pfx): for fqid in cls.listing: yield fqid @classmethod def gen_bundle_listing(cls, number_of_versions: int, versioned_tombstone_probability: float=0.0, unversioned_tombstone_probability: float=0.0): cls.bundle_uuid = str(uuid4()) untombstoned_bundles = list() tombstoned_bundles = list() tombstones = list() for _ in range(number_of_versions): random_date = datetime.utcnow() - timedelta(days=randint(0, 364), hours=randint(0, 23), minutes=randint(0, 59)) bundle_fqid = f"{cls.bundle_uuid}.{datetime_to_version_format(random_date)}" bundle_key = f"bundles/{bundle_fqid}" if random() <= versioned_tombstone_probability: tombstones.append(f"{bundle_key}.{TOMBSTONE_SUFFIX}") tombstoned_bundles.append(bundle_key) else: untombstoned_bundles.append(bundle_key) cls.tombstoned_bundles = tombstoned_bundles cls.untombstoned_bundles = untombstoned_bundles cls.tombstones = tombstones listing = untombstoned_bundles + tombstoned_bundles + tombstones if random() <= unversioned_tombstone_probability: listing.append(f"bundles/{cls.bundle_uuid}.{TOMBSTONE_SUFFIX}") cls.listing = sorted(listing) def setUpModule(): configure_test_logging() @testmode.standalone class TestRegexIdentifiers(unittest.TestCase): def test_REGEX_MATCHING(self): chars = string.ascii_lowercase + string.digits for i, c in enumerate(chars): uuid = f'{c*8}-{c*4}-{c*4}-{c*4}-{c*12}' self.assertTrue(UUID_REGEX.match(uuid), uuid) for i in range(100): uuid = str(uuid4()) self.assertTrue(UUID_REGEX.match(uuid), uuid) @testmode.standalone class TestStorageBundles(unittest.TestCase): @classmethod def setUpClass(cls): dss.Config.set_config(dss.BucketConfig.TEST) @mock.patch("dss.Config.get_blobstore_handle") def test_uuid_enumeration(self, mock_list_v2): mock_list_v2.return_value = MockStorageHandler() resp = enumerate_available_bundles(replica='aws') for x in resp['bundles']: self.assertNotIn('.'.join([x['uuid'], x['version']]), MockStorageHandler.dead_bundles) self.assertNotIn('.'.join([x['uuid'], x['version']]), MockStorageHandler.dead_bundles_without_suffix) @mock.patch("dss.Config.get_blobstore_handle") def test_tombstone_pages(self, mock_list_v2): mock_list_v2.return_value = MockStorageHandler() for tests in MockStorageHandler.test_per_page: test_size = tests['size'] last_good_bundle = tests['last_good_bundle'] resp = enumerate_available_bundles(replica='aws', per_page=test_size) page_one = resp['bundles'] for x in resp['bundles']: self.assertNotIn('.'.join([x['uuid'], x['version']]), MockStorageHandler.dead_bundles) self.assertNotIn('.'.join([x['uuid'], x['version']]), MockStorageHandler.dead_bundles_without_suffix) self.assertDictEqual(last_good_bundle, resp['bundles'][-1]) search_after = resp['search_after'] resp = enumerate_available_bundles(replica='aws', per_page=test_size, search_after=search_after) for x in resp['bundles']: self.assertNotIn('.'.join([x['uuid'], x['version']]), MockStorageHandler.dead_bundles) self.assertNotIn('.'.join([x['uuid'], x['version']]), MockStorageHandler.dead_bundles_without_suffix) self.assertNotIn(x, page_one) # TODO add test to enumerate list and ensure all bundles that should be present are there. # TODO: Add test for dss.storage.bundles.get_bundle_manifest # TODO: Add test for dss.storage.bundles.save_bundle_manifest @mock.patch("dss.storage.bundles.Config.get_blobstore_handle", return_value=MockCloudBlobstoreHandle) def test_get_tombstoned_bundles(self, _): with self.subTest("Retrieve bundle fqid associated with versioned tombstone"): mock_handle = MockCloudBlobstoreHandle mock_handle.gen_bundle_listing(1, versioned_tombstone_probability=1.0) for e in get_tombstoned_bundles(Replica.aws, mock_handle.tombstones[-1]): self.assertEqual(mock_handle.tombstoned_bundles[0], e) with self.subTest("Retrieve bundle fqids associated with unversioned tombstone"): mock_handle.gen_bundle_listing(10, versioned_tombstone_probability=0.5, unversioned_tombstone_probability=1.0) unversioned_tombstone_key = f"bundles/{mock_handle.bundle_uuid}.{TOMBSTONE_SUFFIX}" listed_keys = {e for e in get_tombstoned_bundles(Replica.aws, unversioned_tombstone_key)} expected_keys = {e for e in mock_handle.untombstoned_bundles} unexpected_keys = {e for e in mock_handle.tombstoned_bundles} self.assertEqual(listed_keys, expected_keys) self.assertNotIn(unversioned_tombstone_key, listed_keys) self.assertEqual(0, len(unexpected_keys.intersection(listed_keys))) with self.subTest("Passing in non-tombstone key should raise"): mock_handle.gen_bundle_listing(1, versioned_tombstone_probability=1.0) with self.assertRaises(ValueError): for e in get_tombstoned_bundles(Replica.aws, "asdf"): pass if __name__ == '__main__': unittest.main()
45.066667
117
0.660059
5,934
0.877811
83
0.012278
5,778
0.854734
0
0
1,017
0.150444
96a6810cf017f549b181521c6cc7573fff263c40
11,035
py
Python
headless/ches_prod_test_titles_headless.py
sherrli/Testing-Automation
d5a59ed10613b782cd4a8dc29d084c78ee883300
[ "MIT" ]
1
2019-04-05T15:51:30.000Z
2019-04-05T15:51:30.000Z
headless/ches_prod_test_titles_headless.py
shli17/Testing-Automation
d5a59ed10613b782cd4a8dc29d084c78ee883300
[ "MIT" ]
null
null
null
headless/ches_prod_test_titles_headless.py
shli17/Testing-Automation
d5a59ed10613b782cd4a8dc29d084c78ee883300
[ "MIT" ]
null
null
null
#!/usr/local/bin/python # coding=utf-8 # Headless firefox title test for jenkins build. intro=""" ---------------------------------------------------------------- File : ches_prod_test_titles_headless.py Description : Headless firefox title test for ches prod sites. Author : Sherri Li ---------------------------------------------------------------- """ print(intro) from selenium import webdriver from xvfbwrapper import Xvfb import unittest import os import sys sys.path.append("..") import json import time import datetime import timeit import logging import write_log import check_status import create_log import spreadsheet # Generate log folder and file. # Default log level is INFO (everything). Go to create_log.py to change. folderName = create_log.createLog("ChesProdTitle") class ChesProdTitleTest(unittest.TestCase): # Name of the JSON file containing the sites to test json_file = "sites-prod.json" # can modify later today = str(datetime.datetime.now()) # Here are the class variables shared among all instances "self" of ChesProdTitleTest ERRORCOLOR = "\u001b[31m" #red WARNINGCOLOR = "\u001b[33m" #yellow SUCCESSCOLOR = "\u001b[32m" #green DEFAULTCOLOR = "\u001b[0m" #white browser = None browserType = 'firefox' sites = None timeStart = None ################################### # SETUP FUNCTIONS ################# ################################### def __init__(self, *args, **kwargs): super(ChesProdTitleTest, self).__init__(*args, **kwargs) if self.sites is None: self.setupSites() # Initialize a Spreadsheet object! self.spreadsheet = spreadsheet.Spreadsheet() self.spreadsheet.open_sheet(str(type(self).__name__)) self.next_row = self.spreadsheet.next_available_row() def __del__(self): if self.browser is not None: try: self.browser.quit() except: pass try: del self.spreadsheet except Exception as e: print(e) # NOTE: timer integrated into helper function to making gspread logging easier. # def setUp(self): # if self.timeStart is None: # self.timeStart = timeit.default_timer() # # def tearDown(self): # if self.timeStart is not None: # timeElapsed = timeit.default_timer() - self.timeStart # write_log.logSummary(self.browserType, timeElapsed) def setupSites(self): #use json credentials file with open(os.getcwd() + '/' + self.json_file) as data_file: data = json.load(data_file) self.sites = {} for siteData in data['sites']: site = {} site['url']= siteData['url'] site['title']= siteData['title'] self.sites[siteData['siteName']] = site ################################### # TEST FUNCTIONS ################## ################################### # def test_admissions(self): # self.run_test('admissions', self.next_row) # # def test_admstats(self): # self.run_test("admstats", self.next_row+1) # # def test_btconference(self): # self.run_test("btconference", self.next_row+2) # # def test_conrooms(self): # self.run_test("conrooms", self.next_row+3) # # def test_careercentersecure_student(self): # self.run_test("careercentersecure-student", self.next_row+4) # # def test_careercentersecure_staff(self): # self.run_test("careercentersecure-staff", self.next_row+5) # # def test_careercentersecure_public(self): # self.run_test("careercentersecure-public", self.next_row+6) # # def test_eop(self): # self.run_test("eop", self.next_row+7) # # def test_eop2(self): # self.run_test("eop2", self.next_row+8) # # def test_fixit(self): # self.run_test("fixit", self.next_row+9) # # def test_fixit_queue(self): # self.run_test("fixit-queue", self.next_row+10) # # def test_jdbs(self): # self.run_test("jdbs", self.next_row+11) # # def test_orientation(self): # self.run_test("orientation", self.next_row+12) # For loop def test_title(self): with Xvfb() as xvfb: try: driver = webdriver.Firefox() driver.implicitly_wait(30) self.browser = driver except: write_log.logSetupError("firefox") print("Unable to load firefox") self.next_row += 1 #continue assert(self.browser is not None) assert(self.sites is not None) browser = self.browser print('\n') # Grab each site from the dictionary. for siteName in self.sites: site = self.sites[siteName] # Populate spreadsheet with app name, class name, current date. self.spreadsheet.write_cell(self.next_row,1,siteName) self.spreadsheet.write_cell(self.next_row,2,type(self).__name__) self.spreadsheet.write_cell(self.next_row,3,self.today[:16]) # Call the function to get status code from file check_status.py. result = check_status.checkStatus(site['url'], [200, 301, 302]) if result==False: print("FAIL: "+site['url']+" returns invalid http response.") self.spreadsheet.write_cell(self.next_row,5,"fail\ninvalid http response") self.next_row += 1 continue # Skip to next test in loop else: # Begin timer self.timeStart = timeit.default_timer() browser.get(site['url']) write_log.logInfoMsg(siteName, "title test started") print("Testing " + siteName)# + " with " + browser.name.capitalize() + " Found site['title'] " + browser.title) browser.implicitly_wait(30) # You can also search for 'text' in browser.page_source rather than browser.title if site['title'] not in browser.title: self.spreadsheet.write_cell(self.next_row,5,site['title'] + " not found") write_log.logErrorMsg(siteName+'\n', "Desired title '" + site['title'] + "' not found") print(self.ERRORCOLOR+"ERROR:"+self.DEFAULTCOLOR+ "desired title '" + site['title'] + "' not found on " + siteName) browser.save_screenshot(folderName+'/error_'+siteName+'.png') else: #END TIME timeElapsed = timeit.default_timer() - self.timeStart write_log.logSummary(self.browserType, timeElapsed) # Populate spreadsheet with time and result. self.spreadsheet.write_cell(self.next_row,4,round(timeElapsed, 5)) self.spreadsheet.write_cell(self.next_row,5,"pass") write_log.logSuccess(siteName+'\n', "title") print(self.SUCCESSCOLOR+"passed:"+self.DEFAULTCOLOR+ "'" + site['title'] + "' found on " + siteName) self.next_row += 1 ################################### # HELPER FUNCTION ################# ################################### # def run_test(self,siteName,row): # with Xvfb() as xvfb: # try: # driver = webdriver.Firefox() # driver.implicitly_wait(30) # self.browser = driver # except: # write_log.logSetupError("firefox") # print("Unable to load firefox") # # assert(self.browser is not None) # assert(self.sites is not None) # browser = self.browser # print('\n') # # # Check that the site url exists. # try: # site = self.sites[siteName] # except: # write_log.logErrorMsg("your disk. Check to make sure the "+self.json_file+" is up to date.\n", "Test terminated prematurely. You are missing the "+siteName+" url") # print(self.ERRORCOLOR+"ERROR: "+self.DEFAULTCOLOR + siteName + " credentials not found on your disk.") # return # # site = self.sites[siteName] # # Populate spreadsheet with app name, class name, current date. # self.spreadsheet.write_cell(row,1,siteName) # self.spreadsheet.write_cell(row,2,type(self).__name__) # self.spreadsheet.write_cell(row,3,self.today[:16]) # # # Once the site is found, make sure HTTP status code is 200, 301, or 302. # # Call the function to get status code from file check_status.py. # result = check_status.checkStatus(site['url'], [200, 301, 302]) # if result==False: # self.spreadsheet.write_cell(row,5,"fail\ninvalid http response") # return # exit test # else: # #BEGIN TIME # self.timeStart = timeit.default_timer() # browser.get(site['url']) # write_log.logInfoMsg(siteName, "title test started") # print("Testing " + siteName)# + " with " + browser.name.capitalize() + " Found site['title'] " + browser.title) # browser.implicitly_wait(30) # # # You can also search for 'text' in browser.page_source rather than browser.title # if site['title'] not in browser.title: # self.spreadsheet.write_cell(row,5,site['title'] + " not found") # write_log.logErrorMsg(siteName+'\n', "Desired title '" + site['title'] + "' not found") # print(self.ERRORCOLOR+"ERROR:"+self.DEFAULTCOLOR+ "desired title '" + site['title'] + "' not found on " + siteName) # browser.save_screenshot(folderName+'/error_'+siteName+'.png') # else: # #END TIME # timeElapsed = timeit.default_timer() - self.timeStart # write_log.logSummary(self.browserType, timeElapsed) # # Populate spreadsheet with time and result. # self.spreadsheet.write_cell(row,4,round(timeElapsed, 5)) # self.spreadsheet.write_cell(row,5,"pass") # write_log.logSuccess(siteName+'\n', "title") # print(self.SUCCESSCOLOR+"passed:"+self.DEFAULTCOLOR+ "'" + site['title'] + "' found on " + siteName) # # Kick off the test! if __name__ == "__main__": #print("\n\u001b[33smAll test logs and screenshots will be saved to the following folder in your current directory:\n" + folderName + "\n\u001b[0m") unittest.main()
41.175373
181
0.553512
6,607
0.598731
0
0
0
0
0
0
6,523
0.591119
96a69bc47e9c073ff2335f4ac224effa211b40aa
4,579
py
Python
pyteiser/matchmaker.py
goodarzilab/pyteiser
3ac78604c768957022cc7751ccdd337960a816f2
[ "MIT" ]
6
2020-12-01T08:10:07.000Z
2022-01-17T02:09:13.000Z
pyteiser/matchmaker.py
goodarzilab/pyteiser
3ac78604c768957022cc7751ccdd337960a816f2
[ "MIT" ]
4
2021-05-19T06:24:30.000Z
2022-01-27T20:18:44.000Z
pyteiser/matchmaker.py
goodarzilab/pyteiser
3ac78604c768957022cc7751ccdd337960a816f2
[ "MIT" ]
5
2020-07-04T02:05:30.000Z
2021-06-26T10:24:16.000Z
import numba import time from . import glob_var from . import structures # for some reason, caching of this function fails the run on Columbia HPC and it doesn't really affect the speed # since it only needs to compile once but it's getting called so many times @numba.jit(cache=False, nopython=True, nogil=True) def match_motif_seq(n_motif, n_sequence, ind, is_degenerate = False): # this function only works with n_motif and n_sequence classes, # not with w_motif and w_sequence left_index = ind right_index = left_index + n_motif.linear_length - 1 for i in range(n_motif.length): if is_degenerate: is_correct_nt = n_sequence.nt_is_a_degenerate(left_index, n_motif.sequence[i]) else: is_correct_nt = n_sequence.nt_is_a(left_index, n_motif.sequence[i]) if n_motif.structure[i] == glob_var._stem: if not is_correct_nt or not n_sequence.is_paired(left_index, right_index): # either the sequence does not match or the left and right bases cannot form a Watson-Crick base pair return False left_index += 1 right_index -= 1 else: if not is_correct_nt: # the sequence does not match return False left_index += 1 return True # for some reason, caching of this function fails the run on Columbia HPC and it doesn't really affect the speed # since it only needs to compile once but it's getting called so many times @numba.jit(cache=False, nopython=True, nogil=True) def is_there_motif_instance(n_motif, n_sequence, is_degenerate = False): # this function only works with n_motif and n_sequence classes, # not with w_motif and w_sequence for i in range(n_sequence.length - n_motif.linear_length + 1): # sequence_string = sequence.print(return_string = True) # print(sequence_string[i : i + motif.linear_length]) if match_motif_seq(n_motif, n_sequence, i, is_degenerate): return True return False @numba.jit(cache=True, nopython=True, nogil=True) def find_all_motif_instances(n_motif, n_sequence, is_degenerate = False): # this function only works with n_motif and n_sequence classes, # not with w_motif and w_sequence motif_instances = [] for i in range(n_sequence.length - n_motif.linear_length + 1): # sequence_string = sequence.print(return_string = True) # print(sequence_string[i : i + motif.linear_length]) if match_motif_seq(n_motif, n_sequence, i, is_degenerate): motif_instances.append(i) return motif_instances # I have tried really hard to improve performance of this step with numba # the main problem is that I have a list of n_sequence objects and their size can vary # therefore, I can't pass them to function as a numpy array with any of the standard formats # I can mane a numpy array with an object dtyo (like dtype=structures.n_sequence) but Numba does not support it # for more detailed explanation, see https://stackoverflow.com/questions/14639496/how-to-create-a-numpy-array-of-arbitrary-length-strings # numba will deprecate standard python lists too # there is also numba typed list structure (from numba.typed import List) but it's an experimental feature so far so I don't want to rely on it # see here https://numba.pydata.org/numba-doc/dev/reference/pysupported.html # so there is no way to pass a bunch of variable-sized sequence objects to numba in the way that would make the iterations faster def calculate_profile_one_motif(motif, n_seqs_list, is_degenerate = False): start_time = time.time() current_profile = structures.w_profile(len(n_seqs_list)) for i, seq in enumerate(n_seqs_list): match = is_there_motif_instance(motif, seq, is_degenerate) if match: current_profile.values[i] = True end_time = time.time() time_spent = end_time - start_time return current_profile, time_spent def calculate_profiles_list_motifs(n_motifs_list, n_seqs_list, do_print=False, is_degenerate = False): profiles_list = [0] * len(n_motifs_list) for i, motif in enumerate(n_motifs_list): current_profile, time_spent = calculate_profile_one_motif(motif, n_seqs_list, is_degenerate) profiles_list[i] = current_profile.values if do_print: print("Motif number %d binds %d sequences. It took %.2f seconds" % (i, current_profile.sum(), time_spent)) return profiles_list
42.794393
143
0.70736
0
0
0
0
2,163
0.472374
0
0
1,963
0.428696
96a6c1aaacc3e456bbd64b90f5f744423a7befea
4,574
py
Python
clean.py
stephtdouglas/k2spin
9a73e35e99b925015a91e37b5fd785440adf78f9
[ "MIT" ]
null
null
null
clean.py
stephtdouglas/k2spin
9a73e35e99b925015a91e37b5fd785440adf78f9
[ "MIT" ]
null
null
null
clean.py
stephtdouglas/k2spin
9a73e35e99b925015a91e37b5fd785440adf78f9
[ "MIT" ]
null
null
null
"""Basic cleanup on lightcurves (trimming, sigma-clipping).""" import logging import numpy as np import matplotlib.pyplot as plt import k2spin.utils as utils from k2spin import detrend def trim(time, flux, unc_flux): """Remove infs, NaNs, and negative flux values. Inputs ------ time, flux, unc_flux: array_like Outputs ------- trimmed_time, trimmed_flux, trimmed_unc: arrays good: boolean mask, locations that were kept """ good = np.where((np.isfinite(flux)==True) & (flux>0) & (np.isfinite(unc_flux)==True) & (np.isfinite(time)==True) & (time>2061.5))[0] trimmed_time = time[good] trimmed_flux = flux[good] trimmed_unc = unc_flux[good] return trimmed_time, trimmed_flux, trimmed_unc, good def smooth_and_clip(time, flux, unc_flux, clip_at=3, to_plot=False): """Smooth the lightcurve, then clip based on residuals.""" if to_plot: plt.figure(figsize=(8,4)) ax = plt.subplot(111) ax.plot(time,flux,'k.',label="orig") # Simple sigma clipping first to get rid of really big outliers ct, cf, cu, to_keep = sigma_clip(time, flux, unc_flux, clip_at=clip_at) logging.debug("c len t %d f %d u %d tk %d", len(ct), len(cf), len(cu), len(to_keep)) if to_plot: ax.plot(ct, cf, '.',label="-1") # Smooth with supersmoother without much bass enhancement for i in range(3): det_out = detrend.simple_detrend(ct, cf, cu, phaser=0) detrended_flux, detrended_unc, bulk_trend = det_out # Take the difference, and find the standard deviation of the residuals # logging.debug("flux, bulk trend, diff") # logging.debug(cf[:5]) # logging.debug(bulk_trend[:5]) f_diff = cf - bulk_trend # logging.debug(f_diff[:5]) diff_std = np.zeros(len(f_diff)) diff_std[ct<=2102] = np.std(f_diff[ct<=2102]) diff_std[ct>2102] = np.std(f_diff[ct>2102]) # logging.debug("std %f %f",diff_std[0], diff_std[-1]) if to_plot: ax.plot(ct, bulk_trend) logging.debug("%d len tk %d diff %d", i, len(to_keep), len(f_diff)) # Clip outliers based on residuals this time to_keep = to_keep[abs(f_diff)<=(diff_std*clip_at)] ct = time[to_keep] cf = flux[to_keep] cu = unc_flux[to_keep] if to_plot: ax.plot(ct, cf, '.',label=str(i)) if to_plot: ax.legend() clip_time = time[to_keep] clip_flux = flux[to_keep] clip_unc_flux = unc_flux[to_keep] return clip_time, clip_flux, clip_unc_flux, to_keep def sigma_clip(time, flux, unc_flux, clip_at=6): """Perform sigma-clipping on the lightcurve. Inputs ------ time, flux, unc_flux: array_like clip_at: float (optional) how many sigma to clip at. Defaults to 6. Outputs ------- clipped_time, clipped_flux, clipped_unc: arrays to_keep: boolean mask of locations that were kept """ # Compute statistics on the lightcurve med, stdev = utils.stats(flux, unc_flux) # Sigma-clip the lightcurve outliers = abs(flux-med)>(stdev*clip_at) to_clip = np.where(outliers==True)[0] to_keep = np.where(outliers==False)[0] logging.debug("Sigma-clipping") logging.debug(to_clip) clipped_time = np.delete(time, to_clip) clipped_flux = np.delete(flux, to_clip) clipped_unc = np.delete(unc_flux, to_clip) # Return clipped lightcurve return clipped_time, clipped_flux, clipped_unc, to_keep def prep_lc(time, flux, unc_flux, clip_at=3): """Trim, sigma-clip, and calculate stats on a lc. Inputs ------ time, flux, unc_flux: array_like clip_at: float (optional) How many sigma to clip at. Defaults to 6. Set to None for no sigma clipping Outputs ------- clean_time, clean_flux, clean_unc: arrays """ # Trim the lightcurve, remove bad values t_time, t_flux, t_unc, t_kept = trim(time, flux, unc_flux) # Run sigma-clipping if desired, repeat 2X if clip_at is not None: c_time, c_flux, c_unc, c_kept = smooth_and_clip(t_time, t_flux, t_unc, clip_at=clip_at) else: c_time, c_flux, c_unc, c_kept = t_time, t_flux, t_unc, t_kept all_kept = t_kept[c_kept] # Calculate statistics on lightcurve c_med, c_stdev = utils.stats(c_flux, c_unc) # Return cleaned lightcurve and statistics return c_time, c_flux, c_unc, c_med, c_stdev, all_kept
29.895425
79
0.630302
0
0
0
0
0
0
0
0
1,784
0.390031
96a6e69d914f940d6ce83071f9858c2504a877e2
140
py
Python
nested ternary.py
ps2809/Python-Examples
0574f53787af28bf5bd011c139d340091454a4f9
[ "MIT" ]
1
2021-07-30T06:15:18.000Z
2021-07-30T06:15:18.000Z
nested ternary.py
ps2809/Python-Examples
0574f53787af28bf5bd011c139d340091454a4f9
[ "MIT" ]
null
null
null
nested ternary.py
ps2809/Python-Examples
0574f53787af28bf5bd011c139d340091454a4f9
[ "MIT" ]
null
null
null
a=int(input('enter a:')) b=int(input('enter b:')) c=int(input('enter c:')) min_value= a if a<b and a<c else b if b<c else c print(min_value)
28
48
0.657143
0
0
0
0
0
0
0
0
30
0.214286
96a81b3b0875d5b95d7dd34bd4be73ffcfb6fd0c
758
py
Python
pylinsql/timing.py
hunyadi/pylinsql
bba0017322edbda25a5a2c87f5b46407eea9a00a
[ "MIT" ]
null
null
null
pylinsql/timing.py
hunyadi/pylinsql
bba0017322edbda25a5a2c87f5b46407eea9a00a
[ "MIT" ]
null
null
null
pylinsql/timing.py
hunyadi/pylinsql
bba0017322edbda25a5a2c87f5b46407eea9a00a
[ "MIT" ]
null
null
null
import asyncio import functools import time def _log_func_timing(f, args, kw, sec: float): print("func: %r args: [%r, %r] took: %2.4f sec" % (f.__name__, args, kw, sec)) def timing(f): "Decorator to log" if asyncio.iscoroutinefunction(f): @functools.wraps(f) async def wrap(*args, **kw): ts = time.time() result = await f(*args, **kw) te = time.time() _log_func_timing(f, args, kw, te - ts) return result else: @functools.wraps(f) def wrap(*args, **kw): ts = time.time() result = f(*args, **kw) te = time.time() _log_func_timing(f, args, kw, te - ts) return result return wrap
22.294118
82
0.51847
0
0
0
0
454
0.598945
205
0.270449
59
0.077836
96a839ea7a6be1421d492c4092e290ebd78292b8
715
py
Python
examples/wsgi_usage/apache_modwsgi_server_example.py
digimatspa/python-jsonrpc
7f8a022c112f8957cee18c54fc48557690cfe417
[ "MIT" ]
97
2015-01-06T14:29:31.000Z
2022-02-17T07:27:11.000Z
examples/wsgi_usage/apache_modwsgi_server_example.py
HoverHell/python-jsonrpc
41bcd48dd7879ca780481605dc1ffb611ead9100
[ "MIT" ]
37
2015-01-03T11:00:48.000Z
2021-04-23T06:12:45.000Z
examples/wsgi_usage/apache_modwsgi_server_example.py
HoverHell/python-jsonrpc
41bcd48dd7879ca780481605dc1ffb611ead9100
[ "MIT" ]
63
2015-02-04T20:14:48.000Z
2022-02-17T07:27:13.000Z
#!/usr/bin/env python # coding: utf-8 # BEGIN --- required only for testing, remove in real world code --- BEGIN import os import sys THISDIR = os.path.dirname(os.path.abspath(__file__)) APPDIR = os.path.abspath(os.path.join(THISDIR, os.path.pardir, os.path.pardir)) sys.path.insert(0, APPDIR) # END --- required only for testing, remove in real world code --- END # # See http://tools.cherrypy.org/wiki/ModWSGI # import cherrypy from pyjsonrpc.cp import CherryPyJsonRpc, rpcmethod class Root(CherryPyJsonRpc): @rpcmethod def add(self, a, b): """Test method""" return a + b index = CherryPyJsonRpc.request_handler # WSGI-Application application = cherrypy.Application(Root())
21.029412
79
0.706294
161
0.225175
0
0
82
0.114685
0
0
261
0.365035
96a84245805dc4fa3773a993afd163825be5f67d
27,511
py
Python
dicomToProjection/convertDicoms.py
tarolangner/mri_biometry
8c52f48c2c9ff823a300c5298ea3992b53440816
[ "MIT" ]
null
null
null
dicomToProjection/convertDicoms.py
tarolangner/mri_biometry
8c52f48c2c9ff823a300c5298ea3992b53440816
[ "MIT" ]
null
null
null
dicomToProjection/convertDicoms.py
tarolangner/mri_biometry
8c52f48c2c9ff823a300c5298ea3992b53440816
[ "MIT" ]
null
null
null
import os import sys import io import time import zipfile import pydicom import numpy as np import scipy.interpolate import numba_interpolate from skimage import filters import nrrd import cv2 c_out_pixel_spacing = np.array((2.23214293, 2.23214293, 3.)) c_resample_tolerance = 0.01 # Only interpolate voxels further off of the voxel grid than this c_interpolate_seams = True # If yes, cut overlaps between stations to at most c_max_overlap and interpolate along them, otherwise cut at center of overlap c_correct_intensity = True # If yes, apply intensity correction along overlap c_max_overlap = 8 # Used in interpolation, any station overlaps are cut to be most this many voxels in size c_trim_axial_slices = 4 # Trim this many axial slices from the output volume to remove folding artefacts c_use_gpu = True # If yes, use numba for gpu access, otherwise use scipy on cpu c_store_mip = True # If yes, extract 2d mean intensity projections as .npy c_store_ff_slice = False # If If yes, extract single fat fraction slice with liver coverage c_store_volumes = False # If yes, extract 3d volumes as .nrrd def main(argv): input_file = "paths_input.txt" output_path = "output/" #ignore_errors = True ignore_errors = False if not os.path.exists(os.path.dirname(output_path)): os.makedirs(os.path.dirname(output_path)) with open(input_file) as f: input_paths = f.read().splitlines() start_time = time.time() for i in range(len(input_paths)): dicom_path = input_paths[i] subject_id = os.path.basename(dicom_path).split("_")[0] output_file = output_path + "{}".format(subject_id) print("Processing subject {}: {}".format(i, subject_id)) if ignore_errors: try: convertDicom(dicom_path, output_file) except: print(" Something went wrong with patient {}".format(subject_id)) else: convertDicom(dicom_path, output_file) end_time = time.time() print("Elapsed time: {}".format(end_time - start_time)) ## # Extract mean intensity projection from input UK Biobank style DICOM zip def convertDicom(input_path_zip, output_path): if not os.path.exists(input_path_zip): print(" ERROR: Could not find input file {}".format(input_path_zip)) return # Get water and fat signal stations (voxels_w, voxels_f, positions, pixel_spacings) = getSignalStations(input_path_zip) origin = np.amin(np.array(positions), axis=0) # Resample stations onto output volume voxel grid (voxels_w, _, _, _) = resampleStations(voxels_w, positions, pixel_spacings) (voxels_f, W, W_end, W_size) = resampleStations(voxels_f, positions, pixel_spacings) # Cut station overlaps to at most c_max_overlap (_, _, _, _, voxels_w) = trimStationOverlaps(W, W_end, W_size, voxels_w) (overlaps, W, W_end, W_size, voxels_f) = trimStationOverlaps(W, W_end, W_size, voxels_f) # Combine stations to volumes volume_w = fuseVolume(W, W_end, W_size, voxels_w, overlaps) volume_f = fuseVolume(W, W_end, W_size, voxels_f, overlaps) # Create and store mean intensity projections storeOutput(volume_w, volume_f, output_path, origin) def storeOutput(volume_w, volume_f, output_path, origin): if c_store_mip: mip_w = formatMip(volume_w) mip_f = formatMip(volume_f) #mip_out = np.dstack((mip_w, mip_f, np.zeros(mip_w.shape))) #cv2.imwrite(output_path + ".png", mip_out) mip_out = np.dstack((mip_w, mip_f)) np.save(output_path + ".npy", mip_out.transpose(2, 0, 1)) if c_store_ff_slice or c_store_volumes: (volume_wf, volume_ff, volume_mask) = calculateFractions(volume_w, volume_f) if c_store_ff_slice: slice_ff = formatSliceFF(volume_ff, volume_mask) np.save(output_path + "_ff.npy", slice_ff) if c_store_volumes: storeNrrd(volume_w, output_path + "_W", origin) storeNrrd(volume_f, output_path + "_F", origin) storeNrrd(volume_wf, output_path + "_WF", origin) storeNrrd(volume_ff, output_path + "_FF", origin) storeNrrd(volume_mask, output_path + "_mask", origin) def calculateFractions(volume_w, volume_f): volume_sum = volume_w + volume_f volume_sum[volume_sum == 0] = 1 volume_wf = 1000 * volume_w / volume_sum volume_ff = 1000 * volume_f / volume_sum # Calculate body mask by getting otsu thresholds # for all coronal slices and applying their mean ts = np.zeros(volume_sum.shape[1]) for i in range(volume_sum.shape[1]): ts[i] = filters.threshold_otsu(volume_sum[:, i, :]) t = np.mean(ts) volume_mask = np.ones(volume_w.shape).astype("uint8") volume_mask[volume_sum < t] = 0 return (volume_wf, volume_ff, volume_mask) def storeNrrd(volume, output_path, origin): # See: http://teem.sourceforge.net/nrrd/format.html header = {'dimension': 3} header['type'] = "float" header['sizes'] = volume.shape # Spacing info compatible with 3D Slicer header['space dimension'] = 3 header['space directions'] = np.array(c_out_pixel_spacing * np.eye(3,3)) header['space origin'] = origin header['space units'] = "\"mm\" \"mm\" \"mm\"" header['encoding'] = 'gzip' # nrrd.write(output_path + ".nrrd", volume, header, compression_level=1) def formatSliceFF(volume, mask): bed_width = 22 volume = volume[:, :volume.shape[1]-bed_width, :] mask = mask[:, :mask.shape[1]-bed_width, :] # Determine mass of body mask mass = np.count_nonzero(mask) # centre of total mass mass_sag_half = np.count_nonzero(mask[:int(mask.shape[0] / 2), :, :]) # centre of mass of right half of body # Coronal slice at centre of mass com_cor = getSliceOfMass(mass / 2, mask, 1) slice_cor = formatFractionSlice(volume[:, com_cor, :]) # Sagittal slice at centre of mass of right body half com_sag = getSliceOfMass(mass_sag_half / 2, mask, 0) slice_sag = formatFractionSlice(volume[com_sag, :, :]) # Combine to single output slice_out = np.concatenate((slice_cor, slice_sag), 1) slice_out = slice_out[:176, :] slice_out = cv2.resize(slice_out, (376, 176)) slice_out = slice_out.reshape(1, 176, 376) return slice_out def getSliceOfMass(mass, mask, axis): com_i = 0 shifts = np.array(mask.shape) for i in range(mask.shape[axis]): shifts[axis] = i mass_i = np.count_nonzero(mask[:shifts[0], :shifts[1], :shifts[2]]) if mass_i >= mass: com_i = i break return com_i def formatFractionSlice(img): img = np.rot90(img, 1) img = np.clip(img / 500., 0, 1) * 255 # Encode percentages of 0-50% img = img.astype("uint8") return img # Generate mean intensity projection def formatMip(volume): bed_width = 22 volume = volume[:, :volume.shape[1]-bed_width, :] # Coronal projection slice_cor = np.sum(volume, axis = 1) slice_cor = np.rot90(slice_cor, 1) # Sagittal projection slice_sag = np.sum(volume, axis = 0) slice_sag = np.rot90(slice_sag, 1) # Normalize intensities slice_cor = (normalize(slice_cor) * 255).astype("uint8") slice_sag = (normalize(slice_sag) * 255).astype("uint8") # Combine to single output slice_out = np.concatenate((slice_cor, slice_sag), 1) slice_out = cv2.resize(slice_out, (256, 256)) return slice_out def normalize(img): img = img.astype("float") img = (img - np.amin(img)) / (np.amax(img) - np.amin(img)) return img def getSignalStations(input_path_zip): # Get stations from DICOM (stat_voxels, stat_names, stat_positions, stat_pixel_spacings, stat_timestamps) = stationsFromDicom(input_path_zip) # Find water and fat signal station data (voxels_w, positions_w, pixel_spacings, timestamps_w) = extractStationsForModality("_W", stat_names, stat_voxels, stat_positions, stat_pixel_spacings, stat_timestamps) (voxels_f, positions_f, _, timestamps_f) = extractStationsForModality("_F", stat_names, stat_voxels, stat_positions, stat_pixel_spacings, stat_timestamps) # Ensure that water and fat stations match in position and size and non-redundant (stations_consistent, voxels_w, voxels_f, positions, pixel_spacings) = ensureStationConsistency(voxels_w, voxels_f, positions_w, positions_f, timestamps_w, timestamps_f, pixel_spacings) if not stations_consistent: print(" ERROR: Stations are inconsistent!") return return (voxels_w, voxels_f, positions, pixel_spacings) def ensureStationConsistency(voxels_w, voxels_f, positions_w, positions_f, timestamps_w, timestamps_f, pixel_spacings): # Abort if water and fat stations are not in the same positions if not np.allclose(positions_w, positions_f): print("ABORT: Water and fat stations are not in the same position!") return (False, voxels_w, voxels_f, positions_w) (voxels_w, voxels_f, positions_w, positions_f, timestamps_w, timestamps_f, pixel_spacings) = removeDeprecatedStations(voxels_w, voxels_f, positions_w, positions_f, timestamps_w, timestamps_f, pixel_spacings) # Crop corresponding stations to same size where necessary for i in range(len(positions_w)): if not np.array_equal(voxels_w[i].shape, voxels_f[i].shape): print("WARNING: Corresponding stations {} have different dimensions: {} vs {} (Water vs Fat)".format(i, voxels_w[i].shape, voxels_f[i].shape)) print(" Cutting to largest common size") # Cut to common size min_size = np.amin(np.vstack((voxels_w[i].shape, voxels_f[i].shape)), axis=0) voxels_w[i] = np.ascontiguousarray(voxels_w[i][:min_size[0], :min_size[1], :min_size[2]]) voxels_f[i] = np.ascontiguousarray(voxels_f[i][:min_size[0], :min_size[1], :min_size[2]]) # Sort by position pos_z = np.array(positions_w)[:, 2] (pos_z, pos_indices) = zip(*sorted(zip(pos_z, np.arange(len(pos_z))), reverse=True)) voxels_w = [voxels_w[i] for i in pos_indices] positions_w = [positions_w[i] for i in pos_indices] timestamps_w = [timestamps_w[i] for i in pos_indices] voxels_f = [voxels_f[i] for i in pos_indices] positions_f = [positions_f[i] for i in pos_indices] timestamps_f = [timestamps_f[i] for i in pos_indices] pixel_spacings = [pixel_spacings[i] for i in pos_indices] return (True, voxels_w, voxels_f, positions_w, pixel_spacings) def removeDeprecatedStations(voxels_w, voxels_f, positions_w, positions_f, timestamps_w, timestamps_f, pixel_spacings): # In case of redundant stations, choose the newest if len(np.unique(positions_w, axis=0)) != len(positions_w): seg_select = [] for pos in np.unique(positions_w, axis=0): # Find stations at current position offsets = np.array(positions_w) - np.tile(pos, (len(positions_w), 1)) dist = np.sum(np.abs(offsets), axis=1) indices_p = np.where(dist == 0)[0] if len(indices_p) > 1: # Choose newest station timestamps_w_p = [str(x).replace(".", "") for f, x in enumerate(timestamps_w) if f in indices_p] # If you get scanned around midnight its your own fault recent_p = np.argmax(np.array(timestamps_w_p)) print("WARNING: Image stations ({}) are superimposed. Choosing most recently imaged one ({})".format(indices_p, indices_p[recent_p])) seg_select.append(indices_p[recent_p]) else: seg_select.append(indices_p[0]) voxels_w = [x for f,x in enumerate(voxels_w) if f in seg_select] positions_w = [x for f,x in enumerate(positions_w) if f in seg_select] timestamps_w = [x for f,x in enumerate(timestamps_w) if f in seg_select] voxels_f = [x for f,x in enumerate(voxels_f) if f in seg_select] positions_f = [x for f,x in enumerate(positions_f) if f in seg_select] timestamps_f = [x for f,x in enumerate(timestamps_f) if f in seg_select] pixel_spacings = [x for f,x in enumerate(pixel_spacings) if f in seg_select] return (voxels_w, voxels_f, positions_w, positions_f, timestamps_w, timestamps_f, pixel_spacings) def fuseVolume(W, W_end, W_size, voxels, overlaps): S = len(voxels) # Cast to datatype for i in range(S): voxels[i] = voxels[i].astype("float32") # Taper off station edges linearly for later addition if c_interpolate_seams: voxels = fadeStationEdges(overlaps, W_size, voxels) # Adjust mean intensity of overlapping slices if c_correct_intensity: voxels = correctOverlapIntensity(overlaps, W_size, voxels) # Combine stations into volume by addition volume = combineStationsToVolume(W, W_end, voxels) # Remove slices affected by folding if c_trim_axial_slices > 0: start = c_trim_axial_slices end = volume.shape[2] - c_trim_axial_slices volume = volume[:, :, start:end] return volume def combineStationsToVolume(W, W_end, voxels): S = len(voxels) volume_dim = np.amax(W_end, axis=0).astype("int") volume = np.zeros(volume_dim) for i in range(S): volume[W[i, 0]:W_end[i, 0], W[i, 1]:W_end[i, 1], W[i, 2]:W_end[i, 2]] += voxels[i][:, :, :] # volume = np.flip(volume, 2) volume = np.swapaxes(volume, 0, 1) return volume def extractStationsForModality(tag, stat_names, stat_voxels, stat_positions, stat_pixel_spacings, stat_timestamps): # Merge all stats with given tag indices_t = [f for f, x in enumerate(stat_names) if str(tag) in str(x)] voxels_t = [x for f, x in enumerate(stat_voxels) if f in indices_t] positions_t = [x for f, x in enumerate(stat_positions) if f in indices_t] pixel_spacings_t = [x for f, x in enumerate(stat_pixel_spacings) if f in indices_t] timestamps_t = [x for f, x in enumerate(stat_timestamps) if f in indices_t] return (voxels_t, positions_t, pixel_spacings_t, timestamps_t) def getSignalSliceNamesInZip(z): file_names = [f.filename for f in z.infolist()] # Search for manifest file (name may be misspelled) csv_name = [f for f in file_names if "manifest" in f][0] with z.open(csv_name) as f0: data = f0.read() # Decompress into memory entries = str(data).split("\\n") entries.pop(-1) # Remove trailing blank lines entries = [f for f in entries if f != ""] # Get indices of relevant columns header_elements = entries[0].split(",") column_filename = [f for f,x in enumerate(header_elements) if "filename" in x][0] # Search for tags such as "Dixon_noBH_F". The manifest header can not be relied on for e in entries: entry_parts = e.split(",") column_desc = [f for f,x in enumerate(entry_parts) if "Dixon_noBH_F" in x] if column_desc: column_desc = column_desc[0] break # Get slice descriptions and filenames descriptions = [f.split(",")[column_desc] for f in entries] filenames = [f.split(",")[column_filename] for f in entries] # Extract signal images only chosen_rows = [f for f,x in enumerate(descriptions) if "_W" in x or "_F" in x] chosen_filenames = [x for f,x in enumerate(filenames) if f in chosen_rows] return chosen_filenames ## # Return, for S stations: # R: station start coordinates, shape Sx3 # R_end: station end coordinates, shape Sx3 # dims: station extents, shape Sx3 # # Coordinates in R and R_end are in the voxel space of the first station def getReadCoordinates(voxels, positions, pixel_spacings): S = len(voxels) # Convert from list to arrays positions = np.array(positions) pixel_spacings = np.array(pixel_spacings) # Get dimensions of stations dims = np.zeros((S, 3)) for i in range(S): dims[i, :] = voxels[i].shape # Get station start coordinates R = positions origin = np.array(R[0]) for i in range(S): R[i, :] = (R[i, :] - origin) / c_out_pixel_spacing R[:, 0] -= np.amin(R[:, 0]) R[:, 1] -= np.amin(R[:, 1]) R[:, 2] *= -1 R[:, [0, 1]] = R[:, [1, 0]] # Get station end coordinates R_end = np.array(R) for i in range(S): R_end[i, :] += dims[i, :] * pixel_spacings[i, :] / c_out_pixel_spacing return (R, R_end, dims) ## # Linearly taper off voxel values along overlap of two stations, # so that their addition leads to a linear interpolation. def fadeStationEdges(overlaps, W_size, voxels): S = len(voxels) for i in range(S): # Only fade inwards facing edges for outer stations fadeToPrev = (i > 0) fadeToNext = (i < (S - 1)) # Fade ending edge (facing to next station) if fadeToNext: for j in range(overlaps[i]): factor = (j+1) / (float(overlaps[i]) + 1) # exclude 0 and 1 voxels[i][:, :, W_size[i, 2] - 1 - j] *= factor # Fade starting edge (facing to previous station) if fadeToPrev: for j in range(overlaps[i-1]): factor = (j+1) / (float(overlaps[i-1]) + 1) # exclude 0 and 1 voxels[i][:, :, j] *= factor return voxels ## # Take mean intensity of slices at the edge of the overlap between stations i and (i+1) # Adjust mean intensity of each slice along the overlap to linear gradient between these means def correctOverlapIntensity(overlaps, W_size, voxels): S = len(voxels) for i in range(S - 1): overlap = overlaps[i] # Get average intensity at outer ends of overlap edge_a = voxels[i+1][:, :, overlap] edge_b = voxels[i][:, :, W_size[i, 2] - 1 - overlap] mean_a = np.mean(edge_a) mean_b = np.mean(edge_b) for j in range(overlap): # Get desired mean intensity along gradient factor = (j+1) / (float(overlap) + 1) target_mean = mean_b + (mean_a - mean_b) * factor # Get current mean of slice when both stations are summed slice_b = voxels[i][:, :, W_size[i, 2] - overlap + j] slice_a = voxels[i+1][:, :, j] slice_mean = np.mean(slice_a) + np.mean(slice_b) # Get correction factor correct = target_mean / slice_mean # correct intensity to match linear gradient voxels[i][:, :, W_size[i, 2] - overlap + j] *= correct voxels[i+1][:, :, j] *= correct return voxels ## # Ensure that the stations i and (i + 1) overlap by at most c_max_overlap. # Trim any excess symmetrically # Update their extents in W and W_end def trimStationOverlaps(W, W_end, W_size, voxels): W = np.array(W) W_end = np.array(W_end) W_size = np.array(W_size) S = len(voxels) overlaps = np.zeros(S).astype("int") for i in range(S - 1): # Get overlap between current and next station overlap = W_end[i, 2] - W[i + 1, 2] # No overlap if overlap <= 0: print("WARNING: No overlap between stations {} and {}. Image might be faulty.".format(i, i+1)) # Small overlap which can for interpolation elif overlap <= c_max_overlap and c_interpolate_seams: print("WARNING: Overlap between stations {} and {} is only {}. Using this overlap for interpolation".format(i, i+1, overlap)) # Large overlap which must be cut else: if c_interpolate_seams: # Keep an overlap of at most c_max_overlap cut_a = (overlap - c_max_overlap) / 2. overlap = c_max_overlap else: # Cut at center of seam cut_a = overlap / 2. overlap = 0 cut_b = int(np.ceil(cut_a)) cut_a = int(np.floor(cut_a)) voxels[i] = voxels[i][:, :, 0:(W_size[i, 2] - cut_a)] voxels[i + 1] = voxels[i + 1][:, :, cut_b:] # W_end[i, 2] = W_end[i, 2] - cut_a W_size[i, 2] -= cut_a W[i + 1, 2] = W[i + 1, 2] + cut_b W_size[i + 1, 2] -= cut_b overlaps[i] = overlap return (overlaps, W, W_end, W_size, voxels) ## # Station voxels are positioned at R to R_end, not necessarily aligned with output voxel grid # Resample stations onto voxel grid of output volume def resampleStations(voxels, positions, pixel_spacings): # R: station positions off grid respective to output volume # W: station positions on grid after resampling (R, R_end, dims) = getReadCoordinates(voxels, positions, pixel_spacings) # Get coordinates of voxels to write to W = np.around(R).astype("int") W_end = np.around(R_end).astype("int") W_size = W_end - W result_data = [] # for i in range(len(voxels)): # Get largest offset off of voxel grid offsets = np.concatenate((R[i, :].flatten(), R_end[i, :].flatten())) offsets = np.abs(offsets - np.around(offsets)) max_offset = np.amax(offsets) # Get difference in voxel counts voxel_count_out = np.around(W_size[i, :]) voxel_count_dif = np.sum(voxel_count_out - dims[i, :]) # No resampling if station voxels are already aligned with output voxel grid doResample = (max_offset > c_resample_tolerance or voxel_count_dif != 0) result = None if doResample: if c_use_gpu: # Use numba implementation on gpu: scalings = (R_end[i, :] - R[i, :]) / dims[i, :] offsets = R[i, :] - W[i, :] result = numba_interpolate.interpolate3d(W_size[i, :], voxels[i], scalings, offsets) else: # Use scipy CPU implementation: # Define positions of station voxels (off of output volume grid) x_s = np.linspace(int(R[i, 0]), int(R_end[i, 0]), int(dims[i, 0])) y_s = np.linspace(int(R[i, 1]), int(R_end[i, 1]), int(dims[i, 1])) z_s = np.linspace(int(R[i, 2]), int(R_end[i, 2]), int(dims[i, 2])) # Define positions of output volume voxel grid y_v = np.linspace(W[i, 0], W_end[i, 0], W_size[i, 0]) x_v = np.linspace(W[i, 1], W_end[i, 1], W_size[i, 1]) z_v = np.linspace(W[i, 2], W_end[i, 2], W_size[i, 2]) xx_v, yy_v, zz_v = np.meshgrid(x_v, y_v, z_v) pts = np.zeros((xx_v.size, 3)) pts[:, 1] = xx_v.flatten() pts[:, 0] = yy_v.flatten() pts[:, 2] = zz_v.flatten() # Resample stations onto output voxel grid rgi = scipy.interpolate.RegularGridInterpolator((x_s, y_s, z_s), voxels[i], bounds_error=False, fill_value=None) result = rgi(pts) else: # No resampling necessary result = voxels[i] result_data.append(result.reshape(W_size[i, :])) return (result_data, W, W_end, W_size) def groupSlicesToStations(sl_pixels, sl_series, sl_names, sl_positions, sl_pixel_spacings, sl_times): # Group by series into stats unique_series = np.unique(sl_series) # stat_voxels = [] stat_series = [] stat_names = [] stat_positions = [] stat_voxel_spacings = [] stat_times = [] # Each series forms one station for s in unique_series: # Get slice indices for series s indices_s = [f for f, x in enumerate(sl_series) if x == s] # Get physical positions of slice sl_positions_s = [x for f, x in enumerate(sl_positions) if f in indices_s] position_max = np.amax(np.array(sl_positions_s).astype("float"), axis=0) stat_positions.append(position_max) # Combine slices to stations voxels_s = slicesToStationData(indices_s, sl_positions_s, sl_pixels) stat_voxels.append(voxels_s) # Get index of first slice sl_0 = indices_s[0] stat_series.append(sl_series[sl_0]) stat_names.append(sl_names[sl_0]) stat_times.append(sl_times[sl_0]) # Get 3d voxel spacing voxel_spacing_2d = sl_pixel_spacings[sl_0] # Get third dimension by dividing station extent by slice count z_min = np.amin(np.array(sl_positions_s)[:, 2].astype("float")) z_max = np.amax(np.array(sl_positions_s)[:, 2].astype("float")) z_spacing = (z_max - z_min) / (len(sl_positions_s) - 1) voxel_spacing = np.hstack((voxel_spacing_2d, z_spacing)) stat_voxel_spacings.append(voxel_spacing) return (stat_voxels, stat_names, stat_positions, stat_voxel_spacings, stat_times) def getDataFromDicom(ds): pixels = ds.pixel_array series = ds.get_item(["0020", "0011"]).value series = int(series) name = ds.get_item(["0008", "103e"]).value position = ds.get_item(["0020", "0032"]).value position = np.array(position.decode().split("\\")).astype("float32") pixel_spacing = ds.get_item(["0028", "0030"]).value pixel_spacing = np.array(pixel_spacing.decode().split("\\")).astype("float32") start_time = ds.get_item(["0008", "0031"]).value return (pixels, series, name, position, pixel_spacing, start_time) def slicesToStationData(slice_indices, slice_positions, slices): # Get size of output volume station slice_count = len(slice_indices) slice_shape = slices[slice_indices[0]].shape # Get slice positions slices_z = np.zeros(slice_count) for z in range(slice_count): slices_z[z] = slice_positions[z][2] # Sort slices by position (slices_z, slice_indices) = zip(*sorted(zip(slices_z, slice_indices), reverse=True)) # Write slices to volume station dim = np.array((slice_shape[0], slice_shape[1], slice_count)) station = np.zeros(dim) for z in range(dim[2]): slice_z_index = slice_indices[z] station[:, :, z] = slices[slice_z_index] return station def stationsFromDicom(input_path_zip): # Get slice info pixels = [] series = [] names = [] positions = [] pixel_spacings = [] times = [] # z = zipfile.ZipFile(input_path_zip) signal_slice_names = getSignalSliceNamesInZip(z) for i in range(len(signal_slice_names)): # Read signal slices in memory with z.open(signal_slice_names[i]) as f0: data = f0.read() # Decompress into memory ds = pydicom.read_file(io.BytesIO(data)) # Read from byte stream (pixels_i, series_i, name_i, position_i, spacing_i, time_i) = getDataFromDicom(ds) pixels.append(pixels_i) series.append(series_i) names.append(name_i) positions.append(position_i) pixel_spacings.append(spacing_i) times.append(time_i) z.close() (stat_voxels, stat_names, stat_positions, stat_voxel_spacings, stat_times) = groupSlicesToStations(pixels, series, names, positions, pixel_spacings, times) return (stat_voxels, stat_names, stat_positions, stat_voxel_spacings, stat_times) if __name__ == '__main__': main(sys.argv)
32.947305
211
0.637963
0
0
0
0
0
0
0
0
6,182
0.22471
96a94e5f66df21e992b1df975469b8edd292ca16
3,285
py
Python
ffttest.py
teslaworksumn/Reactor
ba6d2d80bd606047e81a5e1ccc0f1af26497feb7
[ "MIT" ]
null
null
null
ffttest.py
teslaworksumn/Reactor
ba6d2d80bd606047e81a5e1ccc0f1af26497feb7
[ "MIT" ]
null
null
null
ffttest.py
teslaworksumn/Reactor
ba6d2d80bd606047e81a5e1ccc0f1af26497feb7
[ "MIT" ]
null
null
null
# From http://julip.co/2012/05/arduino-python-soundlight-spectrum/ # Python 2.7 code to analyze sound and interface with Arduino import pyaudio # from http://people.csail.mit.edu/hubert/pyaudio/ import serial # from http://pyserial.sourceforge.net/ import numpy # from http://numpy.scipy.org/ import audioop import sys import math import struct ''' Sources http://www.swharden.com/blog/2010-03-05-realtime-fft-graph-of-audio-wav-file-or-microphone-input-with-python-scipy-and-wckgraph/ http://macdevcenter.com/pub/a/python/2001/01/31/numerically.html?page=2 ''' MAX = 0 NUM = 20 def list_devices(): # List all audio input devices p = pyaudio.PyAudio() i = 0 n = p.get_device_count() while i < n: dev = p.get_device_info_by_index(i) if dev['maxInputChannels'] > 0: print str(i)+'. '+dev['name'] i += 1 def fft(): chunk = 2**11 # Change if too fast/slow, never less than 2**11 scale = 25 # Change if too dim/bright exponent = 3 # Change if too little/too much difference between loud and quiet sounds samplerate = 44100 # CHANGE THIS TO CORRECT INPUT DEVICE # Enable stereo mixing in your sound card # to make you sound output an input # Use list_devices() to list all your input devices device = 1 # Mic #device = 4 # SF2 p = pyaudio.PyAudio() stream = p.open(format = pyaudio.paInt16, channels = 1, rate = 44100, input = True, frames_per_buffer = chunk, input_device_index = device) print "Starting, use Ctrl+C to stop" try: ser = serial.Serial( port='/dev/ttyS0', timeout=1 ) while True: data = stream.read(chunk) # Do FFT levels = calculate_levels(data, chunk, samplerate) # Make it look better and send to serial for level in levels: level = max(min(level / scale, 1.0), 0.0) level = level**exponent level = int(level * 255) #ser.write(chr(level)) #sys.stdout.write(str(level)+' ') #sys.stdout.write('\n') #s = ser.read(6) except KeyboardInterrupt: pass finally: print "\nStopping" stream.close() p.terminate() #ser.close() def calculate_levels(data, chunk, samplerate): # Use FFT to calculate volume for each frequency global MAX # Convert raw sound data to Numpy array fmt = "%dH"%(len(data)/2) data2 = struct.unpack(fmt, data) data2 = numpy.array(data2, dtype='h') # Apply FFT fourier = numpy.fft.fft(data2) ffty = numpy.abs(fourier[0:len(fourier)/2])/1000 ffty1=ffty[:len(ffty)/2] ffty2=ffty[len(ffty)/2::]+2 ffty2=ffty2[::-1] ffty=ffty1+ffty2 ffty=numpy.log(ffty)-2 fourier = list(ffty)[4:-4] fourier = fourier[:len(fourier)/2] size = len(fourier) # Add up for 6 lights levels = [sum(fourier[i:(i+size/NUM)]) for i in xrange(0, size, size/NUM)][:NUM] return levels if __name__ == '__main__': #list_devices() fft()
28.076923
128
0.578082
0
0
0
0
0
0
0
0
1,216
0.370167
96aa0527808e7632054573910aceede43a35b2b3
6,422
py
Python
monitoring/perf-monitor-test.py
abhisheksawarkar/gcp-ml-ops
462780e6caad370781e191f530f1fd4a4a57431c
[ "Apache-2.0" ]
30
2021-04-14T16:52:19.000Z
2022-03-17T20:39:42.000Z
monitoring/perf-monitor-test.py
shashank3959/gcp-ml-ops
afa7885e0230c580296724d6dcc5e619a115f24c
[ "Apache-2.0" ]
null
null
null
monitoring/perf-monitor-test.py
shashank3959/gcp-ml-ops
afa7885e0230c580296724d6dcc5e619a115f24c
[ "Apache-2.0" ]
4
2021-04-14T16:52:28.000Z
2022-01-13T19:05:26.000Z
# Copyright (c) 2021 NVIDIA Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import os import logging import argparse import sys import warnings import sys import time import json import cudf from sklearn import metrics import pandas as pd import tritonclient.http as httpclient import tritonclient.grpc as grpcclient from tritonclient.utils import * from google.cloud import pubsub_v1 from google.protobuf.json_format import MessageToJson from google.pubsub_v1.types import Encoding def publish_batch(project_id, topic_id, current_batch, pred_label): # Initialize a Publisher client. client = pubsub_v1.PublisherClient() topic_path = client.topic_path(project_id, topic_id) batch_size = len(pred_label) df = current_batch.to_pandas() for i in range(batch_size): row = df.iloc[i] frame = { "input0": row[CONTINUOUS_COLUMNS].values.tolist(), "input1": row[CATEGORICAL_COLUMNS].values.tolist(), "trueval": row['label'], "predval": response.as_numpy("OUTPUT0")[i].astype('float64') } payload = json.dumps(frame).encode('utf-8') # When you publish a message, the client returns a future. api_future = client.publish(topic_path, data=''.encode(), payload=payload) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-u', '--triton_grpc_url', type=str, required=False, default='localhost:8001', help='URL to Triton gRPC Endpoint') parser.add_argument('-m', '--model_name', type=str, required=False, default='dcn_ens', help='Name of the model ensemble to load') parser.add_argument('-d', '--test_data', type=str, required=False, default='/crit_int_pq/day_23.parquet', help='Path to a test .parquet file. Default') parser.add_argument('-b', '--batch_size', type=int, required=False, default=64, help='Batch size. Max is 64 at the moment, but this max size could be specified when create the model and the ensemble.') parser.add_argument('-n', '--n_batches', type=int, required=False, default=1, help='Number of batches of data to send') parser.add_argument('-v', '--verbose', type=bool, required=False, default=False, help='Verbosity, True or False') parser.add_argument("--project_id", type=str, required=True, default="dl-tme", help="Google Cloud project ID") parser.add_argument("--topic_id", type=str, required=True, default="pubsub", help="Pub/Sub topic ID") args = parser.parse_args() logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO, datefmt='%d-%m-%y %H:%M:%S') logging.info(f"Args: {args}") # warnings can be disabled if not sys.warnoptions: warnings.simplefilter("ignore") try: triton_client = grpcclient.InferenceServerClient(url=args.triton_grpc_url, verbose=args.verbose) logging.info("Triton client created.") triton_client.is_model_ready(args.model_name) logging.info(f"Model {args.model_name} is ready!") except Exception as e: logging.error(f"Channel creation failed: {str(e)}") sys.exit() # Load the dataset CATEGORICAL_COLUMNS = ['C' + str(x) for x in range(1,27)] CONTINUOUS_COLUMNS = ['I' + str(x) for x in range(1,14)] LABEL_COLUMNS = ['label'] col_names = CATEGORICAL_COLUMNS + CONTINUOUS_COLUMNS col_dtypes = [np.int32]*26 + [np.int64]*13 logging.info("Reading dataset..") all_batches = cudf.read_parquet(args.test_data, num_rows=args.batch_size*args.n_batches) results=[] with grpcclient.InferenceServerClient(url=args.triton_grpc_url) as client: for batch in range(args.n_batches): logging.info(f"Requesting inference for batch {batch}..") start_idx = batch*args.batch_size end_idx = (batch+1)*(args.batch_size) # Convert the batch to a triton inputs current_batch = all_batches[start_idx:end_idx] columns = [(col, current_batch[col]) for col in col_names] inputs = [] for i, (name, col) in enumerate(columns): d = col.values_host.astype(col_dtypes[i]) d = d.reshape(len(d), 1) inputs.append(grpcclient.InferInput(name, d.shape, np_to_triton_dtype(col_dtypes[i]))) inputs[i].set_data_from_numpy(d) outputs = [] outputs.append(grpcclient.InferRequestedOutput("OUTPUT0")) response = client.infer(args.model_name, inputs, request_id=str(1), outputs=outputs) results.extend(response.as_numpy("OUTPUT0")) publish_batch(args.project_id, args.topic_id, current_batch, response.as_numpy("OUTPUT0")) logging.info(f"ROC AUC Score: {metrics.roc_auc_score(all_batches[LABEL_COLUMNS].values.tolist(), results)}")
34.902174
145
0.575833
0
0
0
0
0
0
0
0
1,814
0.282467
96aa3bc5e94ffc210e626376f0da8dd2ffc01f94
3,996
py
Python
daemon/core/gui/dialogs/throughput.py
montag451/core
3be162b0b0f54b35520b980023abdfad4ff5e489
[ "BSD-2-Clause" ]
null
null
null
daemon/core/gui/dialogs/throughput.py
montag451/core
3be162b0b0f54b35520b980023abdfad4ff5e489
[ "BSD-2-Clause" ]
null
null
null
daemon/core/gui/dialogs/throughput.py
montag451/core
3be162b0b0f54b35520b980023abdfad4ff5e489
[ "BSD-2-Clause" ]
null
null
null
""" throughput dialog """ import tkinter as tk from tkinter import ttk from typing import TYPE_CHECKING from core.gui.dialogs.colorpicker import ColorPickerDialog from core.gui.dialogs.dialog import Dialog from core.gui.themes import FRAME_PAD, PADX, PADY if TYPE_CHECKING: from core.gui.app import Application class ThroughputDialog(Dialog): def __init__(self, master: "Application", app: "Application"): super().__init__(master, app, "Throughput Config", modal=False) self.app = app self.canvas = app.canvas self.show_throughput = tk.IntVar(value=1) self.exponential_weight = tk.IntVar(value=1) self.transmission = tk.IntVar(value=1) self.reception = tk.IntVar(value=1) self.threshold = tk.DoubleVar(value=self.canvas.throughput_threshold) self.width = tk.IntVar(value=self.canvas.throughput_width) self.color = self.canvas.throughput_color self.color_button = None self.top.columnconfigure(0, weight=1) self.draw() def draw(self): button = ttk.Checkbutton( self.top, variable=self.show_throughput, text="Show Throughput Level On Every Link", ) button.grid(sticky="ew") button = ttk.Checkbutton( self.top, variable=self.exponential_weight, text="Use Exponential Weighted Moving Average", ) button.grid(sticky="ew") button = ttk.Checkbutton( self.top, variable=self.transmission, text="Include Transmissions" ) button.grid(sticky="ew") button = ttk.Checkbutton( self.top, variable=self.reception, text="Include Receptions" ) button.grid(sticky="ew") label_frame = ttk.LabelFrame(self.top, text="Link Highlight", padding=FRAME_PAD) label_frame.columnconfigure(0, weight=1) label_frame.grid(sticky="ew") scale = ttk.Scale( label_frame, from_=0, to=1000, value=0, orient=tk.HORIZONTAL, variable=self.threshold, ) scale.grid(sticky="ew", pady=PADY) frame = ttk.Frame(label_frame) frame.grid(sticky="ew") frame.columnconfigure(1, weight=1) label = ttk.Label(frame, text="Threshold Kbps (0 disabled)") label.grid(row=0, column=0, sticky="ew", padx=PADX) entry = ttk.Entry(frame, textvariable=self.threshold) entry.grid(row=0, column=1, sticky="ew", pady=PADY) label = ttk.Label(frame, text="Width") label.grid(row=1, column=0, sticky="ew", padx=PADX) entry = ttk.Entry(frame, textvariable=self.width) entry.grid(row=1, column=1, sticky="ew", pady=PADY) label = ttk.Label(frame, text="Color") label.grid(row=2, column=0, sticky="ew", padx=PADX) self.color_button = tk.Button( frame, text=self.color, command=self.click_color, bg=self.color, highlightthickness=0, ) self.color_button.grid(row=2, column=1, sticky="ew") self.draw_spacer() frame = ttk.Frame(self.top) frame.grid(sticky="ew") for i in range(2): frame.columnconfigure(i, weight=1) button = ttk.Button(frame, text="Save", command=self.click_save) button.grid(row=0, column=0, sticky="ew", padx=PADX) button = ttk.Button(frame, text="Cancel", command=self.destroy) button.grid(row=0, column=1, sticky="ew") def click_color(self): color_picker = ColorPickerDialog(self, self.app, self.color) self.color = color_picker.askcolor() self.color_button.config(bg=self.color, text=self.color, bd=0) def click_save(self): self.canvas.throughput_threshold = self.threshold.get() self.canvas.throughput_width = self.width.get() self.canvas.throughput_color = self.color self.destroy()
36
88
0.62037
3,676
0.91992
0
0
0
0
0
0
328
0.082082
96aa991d741b497c4ac277aabd1b587505844ad6
5,488
py
Python
backend/api/tests/unit_tests/test_cards.py
hieutt99/aidudu
00dff59e8dff109904b340cd7ae763d6201773e8
[ "MIT" ]
3
2021-10-31T19:32:20.000Z
2022-01-02T15:31:11.000Z
backend/api/tests/unit_tests/test_cards.py
hieutt99/aidudu
00dff59e8dff109904b340cd7ae763d6201773e8
[ "MIT" ]
49
2021-10-31T16:08:35.000Z
2022-01-04T16:29:06.000Z
backend/api/tests/unit_tests/test_cards.py
hieutt99/aidudu
00dff59e8dff109904b340cd7ae763d6201773e8
[ "MIT" ]
2
2021-12-19T17:03:22.000Z
2022-01-03T08:27:01.000Z
from django.test.client import BOUNDARY from api.tests.unit_tests.utils import * class CardTest(APITestCase): # url = reverse('card-detail') def setUp(self): hook_init_APITestCase(self) self.test_workspace = Workspace.objects.create( name='test_workspace', # default value for other fields ) self.test_workspace.save() self.workspace_membership = WorkspaceMembership.objects.create( workspace=self.test_workspace, user=self.me, # default value for other fields ) self.workspace_membership.save() self.test_board = Board.objects.create( name='test_board', workspace=self.test_workspace, # default value for other fields ) self.test_board.save() self.board_membership = BoardMembership.objects.create( user=self.me, board=self.test_board, # default value for other fields ) self.test_list = List.objects.create( name='test_list', board=self.test_board # default value for other fields ) self.test_list.save() test_card_1= Card.objects.create( list=self.test_list, title='test_card 1', description='This is card number 1' # default value for other fields ) test_card_1.save() test_card_2= Card.objects.create( list=self.test_list, title='test_card 2', description='This is card number 2' # default value for other fields ) test_card_2.save() self.test_card = [test_card_1, test_card_2] self.card_membership = CardMembership.objects.create( user=self.me, card=self.test_card[0] ) self.test_label = Label.objects.create( board=self.test_board, name='test label' # default value for other fields ) self.test_label.save() def tearDown(self): if self.test_card is not None: for card in self.test_card: card.delete() if self.card_membership is not None: self.card_membership.delete() if self.test_label is not None: self.test_label.delete() if self.workspace_membership is not None: self.workspace_membership.delete() if self.test_list is not None: self.test_list.delete() if self.test_board is not None: self.test_board.delete() if self.test_workspace is not None: self.test_workspace.delete() if self.me is not None: self.me.delete() def test_success_get_card(self): resp = self.client.get(reverse('card-detail', args=[self.test_card[0].id])) self.assertEqual(200, resp.status_code) self.assertEqual(resp.data['title'], self.test_card[0].title) self.assertEqual(resp.data['description'], self.test_card[0].description) self.assertEqual(resp.data['list'], self.test_list.id) def test_success_create_card(self): data = { 'list': self.test_list.id, 'title': 'card 2', 'description': 'This is card number 2' } resp = self.client.post(reverse('card-list'), data) self.assertEqual(201, resp.status_code) def test_success_update_card(self): data = { 'list': self.test_list.id, 'title': 'modified title', 'description': 'modified desc' } resp = self.client.put(reverse('card-detail', args=[self.test_card[0].id]), data=data) self.assertEqual(200, resp.status_code) #check if card is updated resp = self.client.get(reverse('card-detail', args=[self.test_card[0].id])) self.assertEqual(200, resp.status_code) self.assertEqual(resp.data['title'], 'modified title') self.assertEqual(resp.data['description'], 'modified desc') def test_success_add_label_card(self): data = { 'id': self.test_label.id } resp = self.client.post(reverse('card-handle-labels-in-card', args=[self.test_card[0].id]), data=data) self.assertEqual(204, resp.status_code) def test_success_remove_label(self): data = { 'id': self.test_label.id } resp = self.client.post(reverse('card-handle-labels-in-card', args=[self.test_card[0].id]), data=data) self.assertEqual(204, resp.status_code) def test_success_add_member_card(self): data = { 'id': self.me.id } resp = self.client.post(reverse('card-handle-members-in-card', args=[self.test_card[1].id]), data=data) self.assertEqual(204, resp.status_code) def test_success_remove_member(self): data = { 'id': self.me.id } resp = self.client.post(reverse('card-handle-members-in-card', args=[self.test_card[1].id]), data=data) self.assertEqual(204, resp.status_code) def test_success_delete_card(self): resp = self.client.delete(reverse('card-detail', args=[self.test_card[0].id])) self.assertEqual(204, resp.status_code) # check if card is deleted resp = self.client.get(reverse('card-detail', args=[self.test_card[0].id])) self.assertEqual(404, resp.status_code)
35.179487
111
0.598397
5,405
0.984876
0
0
0
0
0
0
857
0.156159
96ab9f2c7f20292bca2815ee86e2e792b39a18da
1,412
py
Python
mouse.py
Ra-Na/android-mouse-cursor
b9f0a8394871cb17a2d6ec1a0cc2548b86990ce0
[ "MIT" ]
7
2019-12-05T13:34:37.000Z
2022-01-15T09:58:11.000Z
mouse.py
Ra-Na/android-mouse-cursor
b9f0a8394871cb17a2d6ec1a0cc2548b86990ce0
[ "MIT" ]
null
null
null
mouse.py
Ra-Na/android-mouse-cursor
b9f0a8394871cb17a2d6ec1a0cc2548b86990ce0
[ "MIT" ]
5
2019-07-27T02:28:04.000Z
2022-02-14T15:10:25.000Z
import socket def getch(): # define non-Windows version import sys, tty, termios fd = sys.stdin.fileno() old_settings = termios.tcgetattr(fd) try: tty.setraw(sys.stdin.fileno()) ch = sys.stdin.read(1) finally: termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) return ch # get your phones IP by visiting https://www.whatismyip.com/ # then specify your IPv6 here like so UDP_IP = "2a01:30:2a04:3c1:c83c:2315:9d2b:9a40" # IPv6 UDP_PORT = 9999 print "UDP target IP:", UDP_IP print "UDP target port:", UDP_PORT print "" print "W, A, S, D - Move mouse" print "Space - Click" print "Q - Quit" # IPv6 sock = socket.socket(socket.AF_INET6, # Internet socket.SOCK_DGRAM) # UDP # IPv4 # sock = socket.socket(socket.AF_INET, # Internet # socket.SOCK_DGRAM) # UDP while True: key = ord(getch()) if key == 119: # W # print 'up' sock.sendto('0', (UDP_IP, UDP_PORT)) elif key == 97: # A # print 'left' sock.sendto('2', (UDP_IP, UDP_PORT)) elif key == 115: # S # print 'down' sock.sendto('1', (UDP_IP, UDP_PORT)) elif key == 100: # D # print 'right' sock.sendto('3', (UDP_IP, UDP_PORT)) elif key == 113: # Q break elif key == 32: # Space # print 'click' sock.sendto('4', (UDP_IP, UDP_PORT))
25.214286
62
0.576487
0
0
0
0
0
0
0
0
499
0.353399
96adbd6c68f6247e87e6ccdd7457197d2e799780
4,278
py
Python
routes/process_tag.py
PowerSaucisse/QuarKEY-api-server
ba327d3a49e8ea35efbb989550cb8a1429098b15
[ "MIT" ]
5
2021-07-26T14:46:35.000Z
2021-07-26T22:50:56.000Z
routes/process_tag.py
PowerSaucisse/quarkey-api-server
ba327d3a49e8ea35efbb989550cb8a1429098b15
[ "MIT" ]
null
null
null
routes/process_tag.py
PowerSaucisse/quarkey-api-server
ba327d3a49e8ea35efbb989550cb8a1429098b15
[ "MIT" ]
null
null
null
from utils.security.auth import AccountAuthToken import falcon, uuid, datetime from routes.middleware import AuthorizeResource from utils.base import api_validate_form, api_message from utils.config import AppState class ProcessTag: def __init__(self) -> None: self._token_controller = AccountAuthToken('', '') @falcon.before(AuthorizeResource(roles=['standard'])) def on_post(self, req, resp): resp.status = falcon.HTTP_BAD_REQUEST payload = self._token_controller.decode(req.get_header('Authorization')) tag_id = uuid.uuid4().hex q1 = None with AppState.Database.CONN.cursor() as cur: cur.execute("SELECT t1.id, t1.name FROM tags AS t1 WHERE t1.f_owner = %s AND t1.name = %s", (payload["uid"], req.media["name"])) q1 = cur.fetchall() api_message("d", f'tag SQL request content {q1}') if len(q1) > 0: resp.media = {"title": "BAD_REQUEST", "description": "tag already exist"} return with AppState.Database.CONN.cursor() as cur: try: cur.execute( "INSERT INTO tags (id, f_owner, name, color) VALUES (%s, %s, %s, %s)", ( tag_id, payload["uid"], req.media["name"], req.media["color"] ) ) AppState.Database.CONN.commit() except Exception as e: AppState.Database.CONN.rollback() api_message("e", f'Failed transaction : {e}') raise falcon.HTTPBadRequest() resp.status = falcon.HTTP_CREATED resp.media = {"title": "CREATED", "description": "tag created successful", "content": {"tag_id": tag_id}} @falcon.before(AuthorizeResource(roles=["standard"])) def on_delete(self, req, resp): resp.status = falcon.HTTP_BAD_REQUEST payload = self._token_controller.decode(req.get_header('Authorization')) tag_id = req.get_param("tag_id") tag_name = req.get_param("tag_name") q1 = None with AppState.Database.CONN.cursor() as cur: if tag_name is not None and tag_name != 'global': cur.execute("SELECT id FROM tags WHERE f_owner = %s AND name = %s", (payload["uid"], tag_name)) else: cur.execute("SELECT id FROM tags WHERE f_owner = %s AND id = %s AND name != 'global'", (payload["uid"], tag_id)) q1 = cur.fetchone() api_message("d", f'tag id by request : {q1[0]}, type : {type(q1[0])}') if q1 is None or len(q1) < 1: return tag_id = uuid.UUID(q1[0]).hex with AppState.Database.CONN.cursor() as cur: try: cur.execute("DELETE FROM password_tag_linkers WHERE f_tag = %s", (tag_id,)) cur.execute("DELETE FROM tags AS t1 WHERE t1.id = %s", (tag_id,)) AppState.Database.CONN.commit() except Exception as e: AppState.Database.CONN.rollback() api_message("e", f'Failed transaction : {e}') raise falcon.HTTPBadRequest() resp.status = falcon.HTTP_OK @falcon.before(AuthorizeResource(roles=["standard"])) def on_get(self, req, resp): resp.status = falcon.HTTP_400 payload = self._token_controller.decode(req.get_header('Authorization')) q1 = None with AppState.Database.CONN.cursor() as cur: cur.execute("SELECT id, name, color FROM tags WHERE f_owner = %s AND name != 'global'", (payload["uid"],)) q1 = cur.fetchall() if len(q1) < 1: resp.status = falcon.HTTP_200 resp.media = {"title": "OK", "description": "Empty tag list"} return results: list = [] for x in q1: tag_itm: dict = {} tag_itm["id"] = uuid.UUID(x[0]).hex tag_itm["name"] = x[1] tag_itm["color"] = x[2] results.append(tag_itm) resp.status = falcon.HTTP_OK resp.media = {"title": "OK", "description": "tags getted successful", "content": results} return
39.981308
140
0.556568
4,060
0.949042
0
0
3,932
0.919121
0
0
974
0.227676
96aeee51e8b4208d515dafe2237e76a19c17dd76
895
py
Python
players/human.py
pikatyuu/deep-learning-othello
d9f149b01f079f5d021ba9655445cd43a847a628
[ "MIT" ]
null
null
null
players/human.py
pikatyuu/deep-learning-othello
d9f149b01f079f5d021ba9655445cd43a847a628
[ "MIT" ]
null
null
null
players/human.py
pikatyuu/deep-learning-othello
d9f149b01f079f5d021ba9655445cd43a847a628
[ "MIT" ]
null
null
null
class Human(): def __init__(self, name="Human"): self.name = name def action(self, game): safe_input = False while not safe_input: pos = input("choose a position: ") if pos == "draw": game.draw() elif pos == "exit": import sys sys.exit() elif pos == "movable": print(game.movable) elif len(pos) == 2: clone = game.clone() pos = tuple(map(int, tuple(pos))) if clone.can_play(pos): safe_input = True else: print("// Error: Can't put it down //") else: print("Error: Invaild input") return game.play(pos) def game_finished(self, game): pass def all_game_finished(self): pass
27.96875
59
0.444693
894
0.998883
0
0
0
0
0
0
103
0.115084
96af356d59393d735c1df16fcdd2f437e70407ca
2,338
py
Python
HackerEarth/Python/BasicProgramming/InputOutput/BasicsOfInputOutput/SeatingArrangement.py
cychitivav/programming_exercises
e8e7ddb4ec4eea52ee0d3826a144c7dc97195e78
[ "MIT" ]
null
null
null
HackerEarth/Python/BasicProgramming/InputOutput/BasicsOfInputOutput/SeatingArrangement.py
cychitivav/programming_exercises
e8e7ddb4ec4eea52ee0d3826a144c7dc97195e78
[ "MIT" ]
null
null
null
HackerEarth/Python/BasicProgramming/InputOutput/BasicsOfInputOutput/SeatingArrangement.py
cychitivav/programming_exercises
e8e7ddb4ec4eea52ee0d3826a144c7dc97195e78
[ "MIT" ]
null
null
null
#!/Usr/bin/env python """ Akash and Vishal are quite fond of travelling. They mostly travel by railways. They were travelling in a train one day and they got interested in the seating arrangement of their compartment. The compartment looked something like So they got interested to know the seat number facing them and the seat type facing them. The seats are denoted as follows : Window Seat : WS Middle Seat : MS Aisle Seat : AS You will be given a seat number, find out the seat number facing you and the seat type, i.e. WS, MS or AS. INPUT: First line of input will consist of a single integer T denoting number of test-cases. Each test-case consists of a single integer N denoting the seat-number. OUTPUT: For each test case, print the facing seat-number and the seat-type, separated by a single space in a new line. CONSTRAINTS: 1 ≤ T ≤ 10^5 1 ≤ N ≤ 10^8 """ __author__ = "Cristian Chitiva" __date__ = "March 17, 2019" __email__ = "[email protected]" T = int(input()) while T > 0: N = int(input()) position = N % 12 section = N//12 if position == 1: word = str((position + 11) + 12*section) print(word + ' WS') elif position == 2: word = str((position + 9) + 12*section) print(word + ' MS') elif position == 3: word = str((position + 7) + 12*section) print(word + ' AS') elif position == 4: word = str((position + 5) + 12*section) print(word + ' AS') elif position == 5: word = str((position + 3) + 12*section) print(word + ' MS') elif position == 6: word = str((position + 1) + 12*section) print(word + ' WS') elif position == 7: word = str((position - 1) + 12*section) print(word + ' WS') elif position == 8: word = str((position - 3) + 12*section) print(word + ' MS') elif position == 9: word = str((position - 5) + 12*section) print(word + ' AS') elif position == 10: word = str((position - 7) + 12*section) print(word + ' AS') elif position == 11: word = str((position - 9) + 12*section) print(word + ' MS') else: word = str((position - 11) + 12*section) print(word + ' WS') T -= 1
32.027397
230
0.582977
0
0
0
0
0
0
0
0
1,015
0.432651
96af8b4a48adf5297e31757c90f73a77f6edf704
101
py
Python
vault_password.py
RMuskovets/empireofcode
a2a9cfe2c43c7f28999b426601063dd0af352db5
[ "Apache-2.0" ]
1
2018-02-20T12:11:45.000Z
2018-02-20T12:11:45.000Z
vault_password.py
RMuskovets/empireofcode
a2a9cfe2c43c7f28999b426601063dd0af352db5
[ "Apache-2.0" ]
null
null
null
vault_password.py
RMuskovets/empireofcode
a2a9cfe2c43c7f28999b426601063dd0af352db5
[ "Apache-2.0" ]
null
null
null
def golf(p): return len(p)>9 and p!=p.lower() and p!=p.upper() and any('0'<=l and l<='9' for l in p)
50.5
100
0.584158
0
0
0
0
0
0
0
0
6
0.059406
96af9cf77f54780c67f68a366b9f2da0eae70db7
3,149
py
Python
analysis/marc_verification_sharp.py
maxschalz/studious_potato
a368aa88036c1f0ffcd494e994b0975be2575210
[ "BSD-3-Clause" ]
null
null
null
analysis/marc_verification_sharp.py
maxschalz/studious_potato
a368aa88036c1f0ffcd494e994b0975be2575210
[ "BSD-3-Clause" ]
null
null
null
analysis/marc_verification_sharp.py
maxschalz/studious_potato
a368aa88036c1f0ffcd494e994b0975be2575210
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import matplotlib matplotlib.use('pgf') import matplotlib.pyplot as plt import numpy as np from multi_isotope_calculator import Multi_isotope import plotsettings as ps plt.style.use('seaborn-darkgrid') plt.rcParams.update(ps.tex_fonts()) def main(): plot() #figure5() def figure1(): """Compare data to Sharp paper (tails U234 vs product U235)""" data = np.genfromtxt("../data/sharp_fig1.csv", delimiter=",") data = data[np.argsort(data[:,0])] composition = {'234': 5.5e-3, '235': (0.72, 3, 0.2)} calculator = Multi_isotope(composition, feed=1, process='diffusion', downblend=False) results = np.empty(shape=data.shape, dtype=float) for i, xp in enumerate(data[:,0]): calculator.set_product_enrichment(xp*100) calculator.calculate_staging() results[i,0] = calculator.xp[3] results[i,1] = calculator.xt[2] data *= 100 results *= 100 pulls = 100 * (data[:,1]-results[:,1]) / data[:,1] ylims = (1e299, 0) for values in (data, results): ylims = (min(ylims[0], min(values[:,1])), max(ylims[1], max(values[:,1]))) return data, results, pulls def figure5(): """Compare data to Sharp paper (tails qty vs product qty)""" sharp = np.genfromtxt("../data/sharp_fig5.csv", delimiter=",") sharp = sharp[np.argsort(sharp[:,0])] calc = Multi_isotope({'235': (0.711, 5, 0.2)}, max_swu=15000, process='diffusion', downblend=False) results = np.empty(shape=sharp.shape, dtype=float) for i, xp in enumerate(sharp[:,0]): calc.set_product_enrichment(xp*100) calc.calculate_staging() results[i,0] = calc.xp[3] * 100 results[i,1] = calc.t sharp[:,0] *= 100 pulls = 100 * (sharp[:,1]-results[:,1]) / sharp[:,1] return sharp, results, pulls def plot(): fig1 = figure1() fig5 = figure5() figsize = ps.set_size(subplots=(2,2)) fig, ax = plt.subplots(figsize=figsize, nrows=2, ncols=2) plt.rcParams.update({'lines.markersize': 4}) for i, (data, result, pulls) in enumerate((fig1, fig5)): ax[0,i].plot(result[:,0], result[:,1], color=ps.colors(0), label="MARC algorithm", zorder=2, linewidth=1) ax[0,i].scatter(data[::3,0], data[::3,1], marker="x", color=ps.colors(1), label="Sharp 2013", zorder=3) ax[1,i].scatter(data[:,0], pulls, s=1, zorder=2) ax[0,i].legend() ax[0,i].set_xlim(0, 100) ax[1,i].set_xlim(0, 100) ax[1,i].set_xlabel(r"$x_{235,P}$ [\%at]") ax[1,i].axhline(0, color="C3", zorder=1, linewidth=1) ax[0,1].ticklabel_format(axis="y", style="sci", scilimits=(-2,2)) ax[0,0].set_ylabel(r"$x_{234,T}$ [\%at]") ax[1,0].set_ylabel(r"relative difference [%]") ax[0,1].set_ylabel(r"$T$ [kg/yr]") ax[1,1].set_ylabel(r"relative difference [%]") plt.tight_layout() plt.savefig("../plots/checks_marc_sharp1.pdf") plt.close() return if __name__=='__main__': main()
30.278846
73
0.580502
0
0
0
0
0
0
0
0
480
0.152429
96b02e8ac66ecd2c65e6e010e248801adc096f97
497
py
Python
clase6/clases.py
Tank3-TK3/codigo-basico-Python
580e8d284fa8a4d70b2a264762c91bd64c89ab80
[ "MIT" ]
7
2021-04-19T01:32:49.000Z
2021-06-04T17:38:04.000Z
clase6/clases.py
Tank3-TK3/codigo-basico-Python
580e8d284fa8a4d70b2a264762c91bd64c89ab80
[ "MIT" ]
null
null
null
clase6/clases.py
Tank3-TK3/codigo-basico-Python
580e8d284fa8a4d70b2a264762c91bd64c89ab80
[ "MIT" ]
null
null
null
class Animals: def comer(self): print("Comiendo") def dormir(self): print("Durmiendo") class Perro: def __init__(self, nombre): self.nombre = nombre def comer(self): print("Comiendo") def dormir(self): print("Durmiendo") def ladrar(self): print("Ladrando") print("--------------------------------------------------") firulais = Perro("Firulais") firulais.comer() firulais.dormir() firulais.ladrar() print("--------------------------------------------------")
23.666667
60
0.525151
285
0.573441
0
0
0
0
0
0
166
0.334004
96b0583a014d7b5a8ac9ea17b0f8eea2bc40f0eb
3,103
py
Python
homeworks_advanced/homework2_attention_in_seq2seq/modules.py
BiscuitsLayer/ml-mipt
24917705189d2eb97a07132405b4f93654cb1aaf
[ "MIT" ]
1
2021-08-01T11:29:11.000Z
2021-08-01T11:29:11.000Z
homeworks_advanced/homework2_attention_in_seq2seq/modules.py
ivasio/ml-mipt
9c8896b4dfe46ee02bc5fdbca47acffbeca6828e
[ "MIT" ]
null
null
null
homeworks_advanced/homework2_attention_in_seq2seq/modules.py
ivasio/ml-mipt
9c8896b4dfe46ee02bc5fdbca47acffbeca6828e
[ "MIT" ]
null
null
null
import random import torch from torch import nn from torch.nn import functional as F class Encoder(nn.Module): def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout): super().__init__() self.input_dim = input_dim self.emb_dim = emb_dim self.hid_dim = hid_dim self.n_layers = n_layers self.embedding = nn.Embedding(input_dim, emb_dim) self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout=dropout) self.dropout = nn.Dropout(p=dropout) def forward(self, src): embedded = self.dropout(self.embedding(src)) output, (hidden, cell) = self.rnn(embedded) return output, hidden, cell class Attention(nn.Module): def __init__(self, enc_hid_dim, dec_hid_dim): super().__init__() self.enc_hid_dim = enc_hid_dim self.dec_hid_dim = dec_hid_dim self.attn = # <YOUR CODE HERE> def forward(self, hidden, encoder_outputs): # <YOUR CODE HERE> return class DecoderWithAttention(nn.Module): def __init__(self, output_dim, emb_dim, enc_hid_dim, dec_hid_dim, dropout, attention): super().__init__() self.emb_dim = emb_dim self.enc_hid_dim = enc_hid_dim self.dec_hid_dim = dec_hid_dim self.output_dim = output_dim self.attention = attention self.embedding = nn.Embedding(output_dim, emb_dim) self.rnn = # <YOUR CODE HERE> self.out = # <YOUR CODE HERE> self.dropout = nn.Dropout(dropout) def forward(self, input, hidden, encoder_outputs): # <YOUR CODE HERE> class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, device): super().__init__() self.encoder = encoder self.decoder = decoder self.device = device assert encoder.hid_dim == decoder.dec_hid_dim, \ "Hidden dimensions of encoder and decoder must be equal!" def forward(self, src, trg, teacher_forcing_ratio = 0.5): #src = [src sent len, batch size] #trg = [trg sent len, batch size] #teacher_forcing_ratio is probability to use teacher forcing #e.g. if teacher_forcing_ratio is 0.75 we use ground-truth inputs 75% of the time # Again, now batch is the first dimention instead of zero batch_size = trg.shape[1] max_len = trg.shape[0] trg_vocab_size = self.decoder.output_dim #tensor to store decoder outputs outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device) #last hidden state of the encoder is used as the initial hidden state of the decoder enc_states, hidden, cell = self.encoder(src) #first input to the decoder is the <sos> tokens input = trg[0,:] for t in range(1, max_len): output, hidden = self.decoder(input, hidden, enc_states) outputs[t] = output teacher_force = random.random() < teacher_forcing_ratio top1 = output.max(1)[1] input = (trg[t] if teacher_force else top1) return outputs
29.836538
92
0.638737
3,006
0.96874
0
0
0
0
0
0
574
0.184982
96b22687eb09935202fe84c81b4d3c7659c65ad8
1,753
py
Python
zipselected/__init__.py
raguay/ZipSelected
8663623498db6e87beded2aaecac65cd0979788d
[ "MIT" ]
6
2017-01-26T09:09:51.000Z
2021-12-14T11:38:54.000Z
zipselected/__init__.py
raguay/ZipSelected
8663623498db6e87beded2aaecac65cd0979788d
[ "MIT" ]
2
2017-03-17T11:24:26.000Z
2018-02-22T13:47:41.000Z
zipselected/__init__.py
raguay/ZipSelected
8663623498db6e87beded2aaecac65cd0979788d
[ "MIT" ]
2
2017-10-16T06:19:27.000Z
2020-05-15T13:42:26.000Z
from fman import DirectoryPaneCommand, show_alert import os import zipfile from fman.url import as_human_readable from fman.url import as_url def zipdir(rootZip, path, ziph): numf = 0 # ziph is zipfile handle for root, dirs, files in os.walk(path): for file in files: ziph.write(os.path.join(root, file),os.path.join(rootZip,os.path.basename(file))) numf += 1 for dir in dirs: numf += zipdir(os.path.join(rootZip,os.path.basename(dir)),os.path.join(root,dir),ziph) return numf class ZipSelected(DirectoryPaneCommand): def __call__(self): selected_files = self.pane.get_selected_files() output = "" if len(selected_files) >= 1 or (len(selected_files) == 0 and self.get_chosen_files()): if len(selected_files) == 0 and self.get_chosen_files(): selected_files.append(self.get_chosen_files()[0]) dirPath = os.path.dirname(as_human_readable(selected_files[0])) dirName = os.path.basename(dirPath) zipName = os.path.join(dirPath, dirName + ".zip") numf = 0 zipf = zipfile.ZipFile(zipName, 'w') for file in selected_files: file = as_human_readable(file) if os.path.isdir(file): numf += zipdir(os.path.join(dirName, os.path.basename(file)),file,zipf) else: zipf.write(file, os.path.join(dirName, os.path.basename(file))) numf += 1 output += str(numf) + " files were zipped!" zipf.close() else: output += "No files or directories selected" show_alert(output)
39.840909
100
0.58243
1,185
0.675984
0
0
0
0
0
0
91
0.051911
96b3255531b199084f95bb09b62e2c476d0885f5
626
py
Python
functions/aurora_check_status.py
aws-samples/aws-stepfunctions-aurora-clone
ca60dbb1e98bb337662ac6140a2749fa03363d48
[ "MIT-0" ]
7
2022-02-22T16:23:00.000Z
2022-03-18T18:44:06.000Z
functions/aurora_check_status.py
aws-samples/aws-stepfunctions-aurora-clone
ca60dbb1e98bb337662ac6140a2749fa03363d48
[ "MIT-0" ]
null
null
null
functions/aurora_check_status.py
aws-samples/aws-stepfunctions-aurora-clone
ca60dbb1e98bb337662ac6140a2749fa03363d48
[ "MIT-0" ]
null
null
null
import boto3 client = boto3.client('rds') def lambda_handler(event, context): target_db_cluster_identifier=event['TargetDBClusterIdentifier'] payload = event.copy() try: response = client.describe_db_clusters(DBClusterIdentifier=target_db_cluster_identifier) payload['status'] = response['DBClusters'][0]['Status'] return payload except client.exceptions.DBClusterNotFoundFault as e: print(e) payload['status'] = 'not-found' payload['message'] = 'There is no cluster to remove...' return payload
25.04
96
0.629393
0
0
0
0
0
0
0
0
122
0.194888
96b4507fab2d696dd5272cc8fb8efb5a6fdf9e81
6,545
py
Python
smellCatalog/InputProcessor.py
neilernst/smells
c093ee72a12f62693d8635359b7ca4958ecba0e0
[ "MIT" ]
null
null
null
smellCatalog/InputProcessor.py
neilernst/smells
c093ee72a12f62693d8635359b7ca4958ecba0e0
[ "MIT" ]
null
null
null
smellCatalog/InputProcessor.py
neilernst/smells
c093ee72a12f62693d8635359b7ca4958ecba0e0
[ "MIT" ]
1
2019-07-15T14:16:37.000Z
2019-07-15T14:16:37.000Z
import re from Smell import Smell from SmellCategory import SmellCategory from Reference import Reference SMELL = "\[smell\]" SMELL_ID = "\[smell-id\]" SMELL_NAME = "\[smell-name\]" SMELL_END = "\[smell-end\]" SMELL_DES = "\[smell-description\]" SMELL_AKA = "\[smell-aka\]" SMELL_CATEGORY = "\[smell-category\]" SMELL_SUBCATEGORY = "\[smell-subcategory\]" SMELL_REF = "\[smell-ref\]" SCAT = "\[define-smell-category\]" SCAT_ID = "\[smell-category-id\]" SCAT_NAME = "\[smell-category-name\]" SCAT_PARENT = "\[smell-category-parent\]" SCAT_END = "\[define-smell-category-end\]" REF = "\[reference\]" REF_ID = "\[ref-id\]" REF_TEXT = "\[ref-text\]" REF_IMAGE = "\[ref-image\]" REF_URL = "\[ref-url\]" REF_END = "\[ref-end\]" class InputProcessor(object): def __init__(self, path): self.input_file_path = path self.smell_list = [] def process(self): cur_smell_obj = None with open(self.input_file_path, "r", errors='ignore') as reader: for line in reader: line = line.strip() if (line == ""): continue smell_pattern = re.compile(SMELL) id_pattern = re.compile(SMELL_ID) name_pattern = re.compile(SMELL_NAME) des_pattern = re.compile(SMELL_DES) aka_pattern = re.compile(SMELL_AKA) end_pattern = re.compile(SMELL_END) cat_pattern = re.compile(SMELL_CATEGORY) sub_pattern = re.compile(SMELL_SUBCATEGORY) ref_pattern = re.compile(SMELL_REF) if(re.search(smell_pattern, line) != None): cur_smell_obj = Smell() elif (re.search(end_pattern, line)): self.smell_list.append(cur_smell_obj) elif (re.search(id_pattern, line) != None): cur_smell_obj.id = re.split(SMELL_ID, line)[1].strip() elif (re.search(name_pattern, line) != None): cur_smell_obj.name = re.split(SMELL_NAME, line)[1].strip() elif (re.search(des_pattern, line) != None): cur_smell_obj.description = re.split(SMELL_DES, line)[1].strip() elif (re.search(aka_pattern, line) != None): cur_smell_obj.aka.append(re.split(SMELL_AKA, line)[1].strip()) elif (re.search(cat_pattern, line) != None): cur_smell_obj.category = re.split(SMELL_CATEGORY, line)[1].strip() elif (re.search(sub_pattern, line) != None): cur_smell_obj.sub_category = re.split(SMELL_SUBCATEGORY, line)[1].strip() elif (re.search(ref_pattern, line) != None): cur_smell_obj.reference = re.split(SMELL_REF, line)[1].strip() return self.smell_list def find_parent(self, parent_id, category_list): for cat in category_list: if (cat.id == parent_id): return cat return None def link_categories(self, category_list): for cat in category_list: cat.parent_obj = self.find_parent(cat.parent, category_list) def get_category_list(self, SMELL_CATEGORY_FILE_PATH): category_list = [] cur_category_obj = None with open(SMELL_CATEGORY_FILE_PATH, "r", errors='ignore') as reader: for line in reader: line = line.strip() if (line == ""): continue scat_pattern = re.compile(SCAT) scat_id_pattern = re.compile(SCAT_ID) scat_name_pattern = re.compile(SCAT_NAME) scat_parent_pattern = re.compile(SCAT_PARENT) scat_end_pattern = re.compile(SCAT_END) if(re.search(scat_pattern, line) != None): cur_category_obj = SmellCategory() elif (re.search(scat_end_pattern, line)): category_list.append(cur_category_obj) elif (re.search(scat_id_pattern, line) != None): cur_category_obj.id = re.split(SCAT_ID, line)[1].strip() elif (re.search(scat_name_pattern, line) != None): cur_category_obj.name = re.split(SCAT_NAME, line)[1].strip() elif (re.search(scat_parent_pattern, line) != None): cur_category_obj.parent = re.split(SCAT_PARENT, line)[1].strip() self.link_categories(category_list) return category_list def get_ref_list(self, REF_FILE_PATH): cur_ref_obj = None ref_list = [] with open(REF_FILE_PATH, "r", errors='ignore') as reader: for line in reader: line = line.strip() if (line == ""): continue ref_pattern = re.compile(REF) ref_id_pattern = re.compile(REF_ID) ref_text_pattern = re.compile(REF_TEXT) ref_image_pattern = re.compile(REF_IMAGE) ref_url_pattern = re.compile(REF_URL) ref_end_pattern = re.compile(REF_END) if(re.search(ref_pattern, line) != None): cur_ref_obj = Reference() elif (re.search(ref_end_pattern, line) != None): ref_list.append(cur_ref_obj) elif (re.search(ref_id_pattern, line) != None): cur_ref_obj.id = re.split(REF_ID, line)[1].strip() elif (re.search(ref_text_pattern, line) != None): cur_ref_obj.text = re.split(REF_TEXT, line)[1].strip() elif (re.search(ref_url_pattern, line) != None): cur_ref_obj.url = re.split(REF_URL, line)[1].strip() elif (re.search(ref_image_pattern, line) != None): cur_ref_obj.image = re.split(REF_IMAGE, line)[1].strip() return ref_list def populate_aka_obj(self, smell_list): for smell in smell_list: for aka in smell.aka: if (aka != ''): # NErnst prevents empty AKA matches smell_obj = self.find_smell_obj(aka, smell_list) if smell_obj == None: print("Related smell not found: " + aka) else: smell.aka_obj_list.append(smell_obj) def find_smell_obj(self, aka, smell_list): for smell in smell_list: if (smell.id == aka): return smell return None
42.5
93
0.559664
5,816
0.888617
0
0
0
0
0
0
470
0.071811
96b5076f3752a0f19a06b6d629287742be1b298b
414
py
Python
YorForger/modules/redis/afk_redis.py
Voidxtoxic/kita
b2a3007349727280e149dcca017413d7dc2e7648
[ "MIT" ]
null
null
null
YorForger/modules/redis/afk_redis.py
Voidxtoxic/kita
b2a3007349727280e149dcca017413d7dc2e7648
[ "MIT" ]
null
null
null
YorForger/modules/redis/afk_redis.py
Voidxtoxic/kita
b2a3007349727280e149dcca017413d7dc2e7648
[ "MIT" ]
null
null
null
from YorForger import REDIS # AFK def is_user_afk(userid): rget = REDIS.get(f"is_afk_{userid}") return bool(rget) def start_afk(userid, reason): REDIS.set(f"is_afk_{userid}", reason) def afk_reason(userid): return strb(REDIS.get(f"is_afk_{userid}")) def end_afk(userid): REDIS.delete(f"is_afk_{userid}") return True # Helpers def strb(redis_string): return str(redis_string)
15.333333
46
0.695652
0
0
0
0
0
0
0
0
86
0.207729
96b51c0b082319955c9c8c901bb9467463e9b730
859
py
Python
mini_event.py
shubhamjain/earphone-event
0513a06904ea98c3962015d6edaf5f63943a03b7
[ "MIT" ]
6
2018-08-16T21:38:40.000Z
2020-11-19T05:53:09.000Z
mini_event.py
shubhamjain/earphone-event
0513a06904ea98c3962015d6edaf5f63943a03b7
[ "MIT" ]
1
2020-10-21T17:55:07.000Z
2020-10-21T17:55:07.000Z
mini_event.py
shubhamjain/earphone-event
0513a06904ea98c3962015d6edaf5f63943a03b7
[ "MIT" ]
1
2021-09-08T15:05:52.000Z
2021-09-08T15:05:52.000Z
import threading class mini_event: BUTTON_DOWN = 1 BUTTON_UP = 2 BUTTON_HOLD = 3 subscribers = { BUTTON_DOWN: [], BUTTON_UP : [], BUTTON_HOLD: [] } trigger_hold_stop = False # This value should be turned to True if the hold event callback needs to be stopped. def add_subscriber( self, callback, event ): self.subscribers[event].append( callback ) def fire_event( self, event ): if( event == self.BUTTON_UP ): self.trigger_hold_stop = True if( event == self.BUTTON_DOWN ): self.trigger_hold_stop = False for callback in self.subscribers[event]: if( event == self.BUTTON_HOLD ): thread = threading.Thread(target=callback, args=[self.BUTTON_HOLD, self]) thread.start() else: callback(event)
28.633333
115
0.604191
839
0.976717
0
0
0
0
0
0
85
0.098952
96b58e236e198367799150eb2cf1c9825aebfff3
13,225
py
Python
tin/utils.py
balazsdukai/tin2stardb
efb160ba744f757c4a6d4674c7abec8bf0694415
[ "MIT" ]
null
null
null
tin/utils.py
balazsdukai/tin2stardb
efb160ba744f757c4a6d4674c7abec8bf0694415
[ "MIT" ]
null
null
null
tin/utils.py
balazsdukai/tin2stardb
efb160ba744f757c4a6d4674c7abec8bf0694415
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Various utility functions for handling geometry etc.""" import math from statistics import mean from typing import Tuple, Union, Iterable, Generator, Mapping import logging MODULE_MATPLOTLIB_AVAILABLE = True try: import matplotlib.pyplot as plt import matplotlib.lines as lines except ImportError as e: MODULE_MATPLOTLIB_AVAILABLE = False log = logging.getLogger(__name__) def __ccw__(vertices, star, link): """Sort the link in CounterClockWise order around the star""" x, y, z = 0, 1, 2 localized = [(vertices[v][x] - vertices[star][x], vertices[v][y] - vertices[star][y]) for v in link] rev_lookup = {localized[i]: a for i, a in enumerate(link)} return rev_lookup, sorted(localized, key=lambda p: math.atan2(p[1], p[0])) def sort_ccw(vertices, stars) -> Generator: """Sort vertices in counter-clockwise order.""" for star, link in stars.items(): rev_lookup, ccw = __ccw__(vertices, star, link) yield star, [rev_lookup[co] for co in ccw] def link_is_ccw(vertices, stars) -> Generator: """Check if the link of the star is ordered CounterClockWise.""" for star, link in stars.items(): rev_lookup, ccw = __ccw__(vertices, star, link) yield star, all(rev_lookup[co]==link[i] for i,co in enumerate(ccw)) def link_is_consistent(stars) -> Generator: """Checks if the links are consistent, thus vertex A is also present in the link of vertex B, if vertex B is in the link of vertex A.""" for star, link in stars.items(): yield star, all(star in stars[_star] for _star in link) def triangle_is_consistent(stars, triangles) -> Generator: """Check that each adjacent triangle's vertices are consistent in it's star with the current one.""" def __stars_are_consistent(tri, stars): for i, star in enumerate(tri): link = stars[star] try: # star is vertex 1 (v1) of the triangle (tri) idx_v2 = link.index(tri[i-2]) idx_v3 = link.index(tri[i-1]) _idx_v3 = idx_v2+1 if idx_v2+1 < len(link) else 0 if _idx_v3 !=idx_v3: pass yield _idx_v3 == idx_v3 except ValueError: yield False for tri in triangles: yield tri, all(__stars_are_consistent(tri, stars)) def distance(a,b) -> float: """Distance between point a and point b""" x,y = 0,1 return math.sqrt((a[x] - b[x])**2 + (a[y] - b[y])**2) def orientation(a: Tuple[float, float], b: Tuple[float, float], c: Tuple[float, float]): """ Determine if point (p) is LEFT, RIGHT, COLLINEAR with line segment (ab). :param a: Point 1 :param b: Point 2 :param c: Point which orientation to is determined with respect to (a,b) :return: 1 if (a,b,p) is CCW, 0 if p is collinear, -1 if (a,b,p) is CW >>> orientation((0.0, 0.0), (1.0, 0.0), (2.0, 0.0)) 0 >>> orientation((0.0, 0.0), (1.0, 0.0), (0.5, 0.0)) 0 >>> orientation((0.0, 0.0), (1.0, 0.0), (0.5, 1.0)) 1 >>> orientation((0.0, 0.0), (1.0, 0.0), (0.5, -1.0)) -1 """ x,y = 0,1 re = ((a[x] - c[x]) * (b[y] - c[y])) - ((a[y] - c[y]) * (b[x] - c[x])) if re > 0: return 1 elif re == 0: return 0 else: return -1 def is_between(a,c,b) -> bool: """Return True if point c is on the segment ab Ref.: https://stackoverflow.com/a/328193 """ return math.isclose(distance(a,c) + distance(c,b), distance(a,b)) def in_bbox(tri: Tuple, bbox: Tuple) -> bool: """Evaluates if a triangle is in the provided bounding box. A triangle is in the BBOX if it's centorid is either completely within the BBOX, or overlaps with the South (lower) or West (left) boundaries of the BBOX. :param tri: A triangle defined as a tuple of three cooridnates of (x,y,z) :param bbox: Bounding Box as (minx, miny, maxx, maxy) """ if not bbox or not tri: return False x,y,z = 0,1,2 minx, miny, maxx, maxy = bbox # mean x,y,z coordinate of the triangle centroid = (mean(v[x] for v in tri), mean(v[y] for v in tri)) within = ((minx < centroid[x] < maxx) and (miny < centroid[y] < maxy)) on_south_bdry = is_between((minx, miny), centroid, (maxx, miny)) on_west_bdry = is_between((minx, miny), centroid, (minx, maxy)) return any((within, on_south_bdry, on_west_bdry)) def bbox(polygon) -> Tuple[float, float, float, float]: """Compute the Bounding Box of a polygon. :param polygon: List of coordinate pairs (x,y) """ x,y = 0,1 vtx = polygon[0] minx, miny, maxx, maxy = vtx[x], vtx[y], vtx[x], vtx[y] for vtx in polygon[1:]: if vtx[x] < minx: minx = vtx[x] elif vtx[y] < miny: miny = vtx[y] elif vtx[x] > maxx: maxx = vtx[x] elif vtx[y] > maxy: maxy = vtx[y] return minx, miny, maxx, maxy def get_polygon(feature): """Get the polygon boundaries from a GeoJSON feature.""" if not feature['geometry']['type'] == 'Polygon': log.warning(f"Feature ID {feature['properties']['id']} is not a Polygon") else: return feature['geometry']['coordinates'][0] def find_side(polygon: Iterable[Tuple[float, ...]], neighbor: Iterable[Tuple[float, ...]], abs_tol: float = 0.0) ->\ Union[Tuple[None, None], Tuple[str, Tuple[Tuple[float, float], Tuple[float, float]]]]: """Determines on which side does the neighbor polygon is located. .. warning:: Assumes touching BBOXes of equal dimensions. :param polygon: The base polygon. A list of coordinate tuples. :param neighbor: The neighbor polygon. :param abs_tol: Absolute coordinate tolerance. Passed on to `:math.isclose` :returns: One of ['E', 'N', 'W', 'S'], the touching line segment """ minx, miny, maxx, maxy = 0,1,2,3 bbox_base = bbox(polygon) bbox_nbr = bbox(neighbor) if math.isclose(bbox_nbr[minx], bbox_base[maxx], abs_tol=abs_tol) \ and math.isclose(bbox_nbr[miny], bbox_base[miny], abs_tol=abs_tol): return 'E', ((bbox_base[maxx], bbox_base[miny]), (bbox_base[maxx], bbox_base[maxy])) elif math.isclose(bbox_nbr[minx], bbox_base[minx], abs_tol=abs_tol) \ and math.isclose(bbox_nbr[miny], bbox_base[maxy], abs_tol=abs_tol): return 'N', ((bbox_base[maxx], bbox_base[maxy]), (bbox_base[minx], bbox_base[maxy])) elif math.isclose(bbox_nbr[maxx], bbox_base[minx], abs_tol=abs_tol) \ and math.isclose(bbox_nbr[maxy], bbox_base[maxy], abs_tol=abs_tol): return 'W', ((bbox_base[minx], bbox_base[maxy]), (bbox_base[minx], bbox_base[miny]), ) elif math.isclose(bbox_nbr[maxx], bbox_base[maxx], abs_tol=abs_tol) \ and math.isclose(bbox_nbr[maxy], bbox_base[miny], abs_tol=abs_tol): return 'S', ((bbox_base[minx], bbox_base[miny]), (bbox_base[maxx], bbox_base[miny]), ) else: return None,None def plot_star(vid, stars, vertices): """Plots the location of a vertex and its incident vertices in its link. :Example: plot_star(1, stars, vertices) :param vid: Vertex ID :param stars: List with the Link of the vertex :param vertices: List with vertex coordinates (used as lookup) :return: Plots a plot on screen """ if not MODULE_MATPLOTLIB_AVAILABLE: raise ModuleNotFoundError("matplotlib is not installed, cannot plot") plt.clf() pts = [vertices[vid]] + [vertices[v] for v in stars[vid]] r = list(zip(*pts)) plt.scatter(*r[0:2]) labels = [vid] + stars[vid] # zip joins x and y coordinates in pairs for i, e in enumerate(labels): if e == vid: plt.annotate(e, # this is the text (pts[i][0], pts[i][1]), # this is the point to label textcoords="offset points", # how to position the text xytext=(0, 10), # distance from text to points (x,y) ha='center', # horizontal alignment can be left, right or center color='red') else: plt.annotate(e, # this is the text (pts[i][0], pts[i][1]), textcoords="offset points", xytext=(0, 10), ha='center') plt.show() def mean_coordinate(points: Iterable[Tuple]) -> Tuple[float, float]: """Compute the mean x- and y-coordinate from a list of points. :param points: An iterable of coordinate tuples where the first two elements of the tuple are the x- and y-coordinate respectively. :returns: A tuple of (mean x, mean y) coordinates """ mean_x = mean(pt[0] for pt in points) mean_y = mean(pt[1] for pt in points) return mean_x, mean_y # Computing Morton-code. Reference: https://github.com/trevorprater/pymorton --- def __part1by1_64(n): """64-bit mask""" n &= 0x00000000ffffffff # binary: 11111111111111111111111111111111, len: 32 n = (n | (n << 16)) & 0x0000FFFF0000FFFF # binary: 1111111111111111000000001111111111111111, len: 40 n = (n | (n << 8)) & 0x00FF00FF00FF00FF # binary: 11111111000000001111111100000000111111110000000011111111, len: 56 n = (n | (n << 4)) & 0x0F0F0F0F0F0F0F0F # binary: 111100001111000011110000111100001111000011110000111100001111, len: 60 n = (n | (n << 2)) & 0x3333333333333333 # binary: 11001100110011001100110011001100110011001100110011001100110011, len: 62 n = (n | (n << 1)) & 0x5555555555555555 # binary: 101010101010101010101010101010101010101010101010101010101010101, len: 63 return n def __unpart1by1_64(n): n &= 0x5555555555555555 # binary: 101010101010101010101010101010101010101010101010101010101010101, len: 63 n = (n ^ (n >> 1)) & 0x3333333333333333 # binary: 11001100110011001100110011001100110011001100110011001100110011, len: 62 n = (n ^ (n >> 2)) & 0x0f0f0f0f0f0f0f0f # binary: 111100001111000011110000111100001111000011110000111100001111, len: 60 n = (n ^ (n >> 4)) & 0x00ff00ff00ff00ff # binary: 11111111000000001111111100000000111111110000000011111111, len: 56 n = (n ^ (n >> 8)) & 0x0000ffff0000ffff # binary: 1111111111111111000000001111111111111111, len: 40 n = (n ^ (n >> 16)) & 0x00000000ffffffff # binary: 11111111111111111111111111111111, len: 32 return n def interleave(*args): """Interleave two integers""" if len(args) != 2: raise ValueError('Usage: interleave2(x, y)') for arg in args: if not isinstance(arg, int): print('Usage: interleave2(x, y)') raise ValueError("Supplied arguments contain a non-integer!") return __part1by1_64(args[0]) | (__part1by1_64(args[1]) << 1) def deinterleave(n): if not isinstance(n, int): print('Usage: deinterleave2(n)') raise ValueError("Supplied arguments contain a non-integer!") return __unpart1by1_64(n), __unpart1by1_64(n >> 1) def morton_code(x: float, y: float): """Takes an (x,y) coordinate tuple and computes their Morton-key. Casts float to integers by multiplying them with 100 (millimeter precision). """ return interleave(int(x * 100), int(y * 100)) def rev_morton_code(morton_key: int) -> Tuple[float, float]: """Get the coordinates from a Morton-key""" x,y = deinterleave(morton_key) return float(x)/100.0, float(y)/100.0 # Compute tile range ----------------------------------------------------------- def tilesize(tin_paths) -> Tuple[float, float]: """Compute the tile size from Morton-codes for the input TINs. .. note:: Assumes regular grid. :returns: The x- and y-dimensions of a tile """ centroids = [] for i, morton_code in enumerate(tin_paths): if i == 2: break else: centroids.append(rev_morton_code(morton_code)) return abs(centroids[0][0] - centroids[1][0]), abs(centroids[0][1] - centroids[1][1]) def __in_bbox__(point, range): """Check if a point is within a BBOX.""" def compute_8neighbors(tin_paths: Mapping, tilesize: Tuple) -> Generator: """Computes the 8 neighbors for the tiles, using a predefined search range.""" for mc, filepath in tin_paths.items(): center = rev_morton_code(mc) neighbours = set() # Search range minx = center[0] - tilesize[0] miny = center[1] - tilesize[1] maxx = center[0] + tilesize[0] maxy = center[1] + tilesize[1] for mc_nbr, filepath_nbr in tin_paths.items(): if mc_nbr != mc: center_nbr = rev_morton_code(mc_nbr) within = ((minx < center_nbr[0] < maxx) and (miny < center_nbr[1] < maxy)) if within: neighbours.update([filepath_nbr.with_suffix('.pickle'),]) yield mc, (filepath, neighbours)
38.444767
127
0.607108
0
0
2,419
0.182911
0
0
0
0
5,046
0.38155
96b5abda600a3ff8286fd10ad76e69e6c1844b69
7,748
py
Python
tfworker/cli.py
objectrocket/terraform-worker
5a3c81a465d31bf7c9186fa59be2bfa8f4578449
[ "Apache-2.0" ]
6
2020-02-10T21:53:18.000Z
2021-07-21T18:10:02.000Z
tfworker/cli.py
RSS-Engineering/terraform-worker
98b04eacd828448985bc9ded3a46497f06d7c6ae
[ "Apache-2.0" ]
4
2020-09-20T13:04:26.000Z
2021-03-23T21:20:57.000Z
tfworker/cli.py
RSS-Engineering/terraform-worker
98b04eacd828448985bc9ded3a46497f06d7c6ae
[ "Apache-2.0" ]
3
2020-06-12T18:38:33.000Z
2020-09-15T21:01:53.000Z
#!/usr/bin/env python # Copyright 2020 Richard Maynard ([email protected]) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import struct import sys import click from tfworker import constants as const from tfworker.commands import CleanCommand, RootCommand, TerraformCommand from tfworker.commands.root import get_platform from tfworker.commands.version import VersionCommand def validate_deployment(ctx, deployment, name): """Validate the deployment is no more than 16 characters.""" if len(name) > 16: click.secho("deployment must be less than 16 characters", fg="red") raise SystemExit(2) return name def validate_gcp_creds_path(ctx, path, value): if value: if not os.path.isabs(value): value = os.path.abspath(value) if os.path.isfile(value): return value click.secho(f"Could not resolve GCP credentials path: {value}", fg="red") raise SystemExit(3) def validate_host(): """Ensure that the script is being run on a supported platform.""" supported_opsys = ["darwin", "linux"] supported_machine = ["amd64"] opsys, machine = get_platform() if opsys not in supported_opsys: click.secho( f"this application is currently not known to support {opsys}", fg="red", ) raise SystemExit(2) if machine not in supported_machine: click.secho( f"this application is currently not known to support running on {machine} machines", fg="red", ) if struct.calcsize("P") * 8 != 64: click.secho( "this application can only be run on 64 bit hosts, in 64 bit mode", fg="red" ) raise SystemExit(2) return True @click.group() @click.option( "--aws-access-key-id", envvar="AWS_ACCESS_KEY_ID", help="AWS Access key", ) @click.option( "--aws-secret-access-key", envvar="AWS_SECRET_ACCESS_KEY", help="AWS access key secret", ) @click.option( "--aws-session-token", envvar="AWS_SESSION_TOKEN", help="AWS access key token", ) @click.option( "--aws-role-arn", envvar="AWS_ROLE_ARN", help="If provided, credentials will be used to assume this role (complete ARN)", ) @click.option( "--aws-external-id", envvar="AWS_EXTERNAL_ID", help="If provided, will be used to assume the role specified by --aws-role-arn", ) @click.option( "--aws-region", envvar="AWS_DEFAULT_REGION", default=const.DEFAULT_AWS_REGION, help="AWS Region to build in", ) @click.option( "--aws-profile", envvar="AWS_PROFILE", help="The AWS/Boto3 profile to use", ) @click.option( "--gcp-region", envvar="GCP_REGION", default=const.DEFAULT_GCP_REGION, help="Region to build in", ) @click.option( "--gcp-creds-path", envvar="GCP_CREDS_PATH", help=( "Relative path to the credentials JSON file for the service account to be used." ), callback=validate_gcp_creds_path, ) @click.option( "--gcp-project", envvar="GCP_PROJECT", help="GCP project name to which work will be applied", ) @click.option( "--config-file", default=const.DEFAULT_CONFIG, envvar="WORKER_CONFIG_FILE", required=True, ) @click.option( "--repository-path", default=const.DEFAULT_REPOSITORY_PATH, envvar="WORKER_REPOSITORY_PATH", required=True, help="The path to the terraform module repository", ) @click.option( "--backend", type=click.Choice(["s3", "gcs"]), help="State/locking provider. One of: s3, gcs", ) @click.option( "--backend-bucket", help="Bucket (must exist) where all terraform states are stored", ) @click.option( "--backend-prefix", default=const.DEFAULT_BACKEND_PREFIX, help=f"Prefix to use in backend storage bucket for all terraform states (DEFAULT: {const.DEFAULT_BACKEND_PREFIX})", ) @click.option( "--backend-region", default=const.DEFAULT_AWS_REGION, help="Region where terraform rootc/lock bucket exists", ) @click.option( "--create-backend-bucket/--no-create-backend-bucket", default=True, help="Create the backend bucket if it does not exist", ) @click.option( "--config-var", multiple=True, default=[], help='key=value to be supplied as jinja variables in config_file under "var" dictionary, can be specified multiple times', ) @click.pass_context def cli(context, **kwargs): """CLI for the worker utility.""" validate_host() config_file = kwargs["config_file"] try: context.obj = RootCommand(args=kwargs) except FileNotFoundError: click.secho(f"configuration file {config_file} not found", fg="red", err=True) raise SystemExit(1) @cli.command() @click.option("--limit", help="limit operations to a single definition", multiple=True) @click.argument("deployment", callback=validate_deployment) @click.pass_obj def clean(rootc, *args, **kwargs): # noqa: E501 """ clean up terraform state """ # clean just items if limit supplied, or everything if no limit CleanCommand(rootc, *args, **kwargs).exec() @cli.command() def version(): """ display program version """ VersionCommand().exec() sys.exit(0) @cli.command() @click.option( "--clean/--no-clean", default=True, help="clean up the temporary directory created by the worker after execution", ) @click.option( "--apply/--no-apply", "tf_apply", default=False, help="apply the terraform configuration", ) @click.option( "--force/--no-force", "force", default=False, help="force apply/destroy without plan change", ) @click.option( "--destroy/--no-destroy", default=False, help="destroy a deployment instead of create it", ) @click.option( "--show-output/--no-show-output", default=True, help="show output from terraform commands", ) @click.option( "--terraform-bin", help="The complate location of the terraform binary", ) @click.option( "--b64-encode-hook-values/--no--b64-encode-hook-values", "b64_encode", default=False, help=( "Terraform variables and outputs can be complex data structures, setting this" " open will base64 encode the values for use in hook scripts" ), ) @click.option( "--terraform-modules-dir", default="", help=( "Absolute path to the directory where terraform modules will be stored." "If this is not set it will be relative to the repository path at ./terraform-modules" ), ) @click.option("--limit", help="limit operations to a single definition", multiple=True) @click.argument("deployment", callback=validate_deployment) @click.pass_obj def terraform(rootc, *args, **kwargs): """ execute terraform orchestration """ tfc = TerraformCommand(rootc, *args, **kwargs) click.secho(f"building deployment {kwargs.get('deployment')}", fg="green") click.secho(f"using temporary Directory: {tfc.temp_dir}", fg="yellow") # common setup required for all definitions click.secho("downloading plugins", fg="green") tfc.plugins.download() click.secho("preparing modules", fg="green") tfc.prep_modules() tfc.exec() sys.exit(0) if __name__ == "__main__": cli()
28.277372
126
0.672303
0
0
0
0
5,434
0.701342
0
0
3,963
0.511487
96b74e78276fe832497e5e00ed9a762980bd1fbc
3,777
py
Python
shs/input/dialogs/ac_init.py
ansobolev/shs
7a5f61bd66fe1e8ae047a4d3400b055175a53f4e
[ "MIT" ]
1
2016-06-22T13:30:25.000Z
2016-06-22T13:30:25.000Z
shs/input/dialogs/ac_init.py
ansobolev/shs
7a5f61bd66fe1e8ae047a4d3400b055175a53f4e
[ "MIT" ]
1
2017-12-01T04:49:45.000Z
2017-12-01T04:49:45.000Z
shs/input/dialogs/ac_init.py
ansobolev/shs
7a5f61bd66fe1e8ae047a4d3400b055175a53f4e
[ "MIT" ]
null
null
null
import wx from wx.lib.agw.floatspin import FloatSpin from shs.input.fdf_options import ChoiceLine, MeasuredLine, NumberLine, ThreeNumberLine try: from geom import Geom except ImportError: from shs.geom import Geom class Bravais(ChoiceLine): label = 'Composition' choices = ['BCC', 'FCC', 'SC'] optional = False class LatticeConstant(MeasuredLine): label = 'Lattice constant' value = 1. digits = 2 increment = 0.01 units = ['Bohr', 'Ang'] optional = False class DistortionLevel(NumberLine): label = 'Distortion level (in %)' value = 0. digits = 0 increment = 1. range_val = (0., 100.) optional = False class SuperCell(ThreeNumberLine): label = 'Supercell' optional = False class ACInitDialog(wx.Dialog): def __init__(self, *args, **kwds): self.types = kwds.pop('types') wx.Dialog.__init__(self, *args, **kwds) self.bravais = Bravais(self) self.type_label = [] self.typefs = [] if len(self.types) == 0: self.add_type_btn = wx.Button(self, -1, "Add type") self.add_type_btn.Bind(wx.EVT_BUTTON, self.add_type) else: for t in self.types: self.type_label.append(wx.StaticText(self, -1, t)) self.typefs.append(FloatSpin(self, -1, min_val=0, value=1., digits=0)) self.sc = SuperCell(self) self.alat = LatticeConstant(self) self.dist = DistortionLevel(self) self.__set_properties() self.__do_layout() def __set_properties(self): self.SetTitle("Initialize geometry") def __do_layout(self): comp_label = wx.StaticBox(self, -1, 'Composition') comp_sizer = wx.StaticBoxSizer(comp_label, wx.HORIZONTAL) self.comp_inside = wx.GridSizer(2, len(self.types), 2, 2) for l in self.type_label: self.comp_inside.Add(l, 0, wx.ALIGN_CENTER, 0) for fs in self.typefs: self.comp_inside.Add(fs, 0, wx.ALIGN_CENTER, 0) comp_sizer.Add(self.comp_inside, 1, wx.ALL | wx.EXPAND, 5) if len(self.types) == 0: comp_sizer.Add(self.add_type_btn, 0, wx.ALL | wx.EXPAND, 5) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(self.bravais.sizer, 0, wx.EXPAND, 0) sizer.Add(comp_sizer, 0, wx.ALL | wx.EXPAND, 5) sizer.Add(self.alat.sizer, 0, wx.EXPAND, 0) sizer.Add(self.sc.sizer, 0, wx.EXPAND, 0) sizer.Add(self.dist.sizer, 0, wx.EXPAND, 0) sizer.Add(self.CreateSeparatedButtonSizer(wx.OK|wx.CANCEL), 0, wx.ALL|wx.EXPAND, 5) self.SetSizer(sizer) self.Fit() self.Layout() def add_type(self, evt): self.comp_inside.Clear() self.comp_inside.SetCols(self.comp_inside.GetCols()+1) self.type_label.append(wx.TextCtrl(self, -1)) self.typefs.append(FloatSpin(self, -1, min_val=0, value=1., digits=0)) for l in self.type_label: self.comp_inside.Add(l, 0, wx.ALIGN_CENTER, 0) for fs in self.typefs: self.comp_inside.Add(fs, 0, wx.ALIGN_CENTER, 0) self.Fit() self.Layout() def init_geom(self): bravais = self.bravais.GetValue() alat, unit = self.alat.GetValue() sc = self.sc.GetValue() dist = self.dist.GetValue() if len(self.types) == 0: comp = dict(zip([il.GetValue() for il in self.type_label], [ifs.GetValue() for ifs in self.typefs])) else: comp = dict(zip(self.types, [ifs.GetValue() for ifs in self.typefs])) g = Geom() g.initialize(bravais, comp, sc, alat, unit, dist_level=dist) g.geom2opts() return g.opts["AtomicCoordinatesAndAtomicSpecies"]
32.282051
112
0.605507
3,538
0.936722
0
0
0
0
0
0
178
0.047127
96b8879f01bcc6f2a6fb4f8f1c990b4167027165
5,377
py
Python
mgs/v1.0/data_server.py
vt-rocksat-2017/dashboard
e99a71edc74dd8b7f3eec023c381524561a7b6e4
[ "MIT" ]
1
2017-08-09T19:57:38.000Z
2017-08-09T19:57:38.000Z
mgs/v1.0/data_server.py
vt-rocksat-2017/dashboard
e99a71edc74dd8b7f3eec023c381524561a7b6e4
[ "MIT" ]
null
null
null
mgs/v1.0/data_server.py
vt-rocksat-2017/dashboard
e99a71edc74dd8b7f3eec023c381524561a7b6e4
[ "MIT" ]
null
null
null
#!/usr/bin/env python ######################################### # Title: Rocksat Data Server Class # # Project: Rocksat # # Version: 1.0 # # Date: August, 2017 # # Author: Zach Leffke, KJ4QLP # # Comment: Initial Version # ######################################### import socket import threading import sys import os import errno import time import binascii import numpy import datetime as dt from logger import * class Data_Server(threading.Thread): def __init__ (self, options): threading.Thread.__init__(self,name = 'DataServer') self._stop = threading.Event() self.ip = options.ip self.port = options.port self.id = options.id self.ts = options.ts self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #TCP Socket self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.connected = False self.log_fh = setup_logger(self.id, 'main', self.ts) self.logger = logging.getLogger('main') self.last_frame_ts = dt.datetime.utcnow() #Time Stamp of last received frame self.frame_count = 0 self.adsb_count = 0 self.ais_count = 0 self.hw_count = 0 def run(self): print "Data Server Running..." try: self.sock.connect((self.ip, self.port)) self.connected = True print self.utc_ts() + "Connected to Modem..." except Exception as e: self.Handle_Connection_Exception(e) while (not self._stop.isSet()): if self.connected == True: data = self.sock.recv(4096) if len(data) == 256: self.Decode_Frame(data, dt.datetime.utcnow()) else: self.connected = False elif self.connected == False: print self.utc_ts() + "Disconnected from modem..." time.sleep(1) try: self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #TCP Socket self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.sock.connect((self.ip, self.port)) self.connected = True print self.utc_ts() + "Connected to Modem..." except Exception as e: self.Handle_Connection_Exception(e) sys.exit() def Decode_Frame(self, rx_frame, ts): self.frame_count += 1 self.last_frame_ts = ts #print str(self.frame_count) + ',' + binascii.hexlify(rx_frame) self.logger.info(str(self.frame_count) + ',' + binascii.hexlify(rx_frame)) self.Decode_Header(rx_frame) def Decode_Header(self, rx_frame): callsign = str(rx_frame[0:6]) #Callsign dn_pkt_id = numpy.uint16(struct.unpack('>H',rx_frame[6:8]))[0] #downlink frame id up_pkt_id = numpy.uint16(struct.unpack('>H',rx_frame[8:10]))[0] #uplink frame id msg_type = numpy.uint8(struct.unpack('>B',rx_frame[10]))[0] #message type, 0=ADSB, 1=AIS, 2=HW msg_type_str = "" if msg_type == 0: msg_type_str = 'ADSB' elif msg_type == 1: msg_type_str = ' AIS' elif msg_type == 2: msg_type_str = ' HW' print self.last_frame_ts, self.frame_count, callsign, dn_pkt_id, up_pkt_id, msg_type_str def Handle_Connection_Exception(self, e): #print e, type(e) errorcode = e[0] if errorcode==errno.ECONNREFUSED: pass #print errorcode, "Connection refused" elif errorcode==errno.EISCONN: print errorcode, "Transport endpoint is already connected" self.sock.close() else: print e self.sock.close() self.connected = False def get_frame_counts(self): self.valid_count = len(self.valid.time_tx) self.fault_count = len(self.fault.time_tx) self.recon_count = len(self.recon.time_tx) self.total_count = self.valid_count + self.fault_count + self.recon_count #print self.utc_ts(), self.total_count, self.valid_count, self.fault_count, self.recon_count return self.total_count, self.valid_count, self.fault_count, self.recon_count def set_start_time(self, start): print self.utc_ts() + "Mission Clock Started" ts = start.strftime('%Y%m%d_%H%M%S') self.log_file = "./log/rocksat_"+ self.id + "_" + ts + ".log" log_f = open(self.log_file, 'a') msg = "Rocksat Receiver ID: " + self.id + "\n" msg += "Log Initialization Time Stamp: " + str(start) + " UTC\n\n" log_f.write(msg) log_f.close() self.log_flag = True print self.utc_ts() + "Logging Started: " + self.log_file self.valid_start = True self.start_time = start for i in range(len(self.valid.time_rx)): self.valid.rx_offset[i] = (self.valid.time_rx[i]-self.start_time).total_seconds() def stop(self): self._stop.set() def stopped(self): return self._stop.isSet() def utc_ts(self): return str(dt.datetime.utcnow()) + " UTC | "
38.407143
109
0.565929
4,864
0.904594
0
0
0
0
0
0
1,055
0.196206
96b888fef4eb174221ced8eecdc0b4280bce51d8
3,932
py
Python
handledata.py
bioPunkKitchen/climate.local
ccd29da3d84542d5f9c73a5d75bc3ceefeef1f08
[ "MIT" ]
1
2019-05-28T18:33:49.000Z
2019-05-28T18:33:49.000Z
handledata.py
bioPunkKitchen/climate.local
ccd29da3d84542d5f9c73a5d75bc3ceefeef1f08
[ "MIT" ]
1
2019-12-30T14:52:02.000Z
2020-01-04T11:41:08.000Z
handledata.py
bioPunkKitchen/climate.local
ccd29da3d84542d5f9c73a5d75bc3ceefeef1f08
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import datetime import time import os import matplotlib.pyplot as plt import matplotlib.dates as md import numpy as np class handle_data: data_file = "./data/data.log" data_list = [] def __init__(self): pass def insert_data(self, timestamp, temp, state_onoff, state_light, state_cooling, state_heating): """ Insert data to log file and add timestamp. """ if state_onoff == 'on': state_onoff = 1 else: state_onoff = 0 if state_light == 'on': state_light = 1 else: state_light = 0 if state_cooling == 'on': state_cooling = 1 else: state_cooling = 0 if state_heating == 'on': state_heating = 1 else: state_heating = 0 data_string = str(timestamp) + ";" + str(temp) + ";" + str(state_onoff) + ";" + str(state_light) + ";" + str(state_cooling) + ";" + str(state_heating) + "\n" self.data_list.append(data_string) #print(datetime.datetime.now().strftime('%Y-%m-%d_%a_%H:%M:%S.%f'), "\tInserted data: data_list.append len=", len(self.data_list)) return def append_data_to_file(self): """ Append data to log file. """ try: with open(self.data_file, "a") as outfile: for entry in self.data_list: outfile.write(str(entry)) except IOError: print(datetime.datetime.now().strftime('%Y-%m-%d_%a_%H:%M:%S.%f'), "\tIOError opening data.log for appending data") self.data_list.clear() return def clean_file(self): """ Clean log file in order to reset measurement. """ try: with open(self.data_file, "w") as outfile: outfile.write("Timestamp; Temp; State_onoff; State_light; State_cooling; State_heating\n") except IOError: print(datetime.datetime.now().strftime('%Y-%m-%d_%a_%H:%M:%S.%f'), "\tIOError opening data.log for writing") return def update_graph(self, path): """ Generate or update graph from data file. """ lines = sum(1 for _ in open(self.data_file)) if lines > 1: data=np.genfromtxt(self.data_file, delimiter=';', skip_header=1, names=['Time', 'Temp', 'Onoff', 'Light', 'Cooling', 'Heating'], dtype=([('Time', '<U30'), ('Temp', '<f8'), ('Onoff', '<f8'), ('Light', '<f8'), ('Cooling', '<f8'), ('Heating', '<f8')])) fig, ax1 = plt.subplots() if data['Temp'].shape: if data['Temp'].shape[0] > 120: ax1.plot(data['Temp'][((data['Temp'].shape[0])-120):(data['Temp'].shape[0])], color = 'r', label = 'Temp.') else: ax1.plot(data['Temp'], color = 'r', label = 'Temp.') else: ax1.plot(data['Temp'], color = 'r', label = 'Temp.') ax1.set_xlim([0,120]) ax1.set_xticks([0,30,60,90,120]) ax1.set_ylabel('Temp (°C)', color='r') ax1.tick_params('y', colors='r') yt=range(-1,41,1) ax1.set_yticks(yt, minor=True) ax1.set_xlabel('last two hours (scale:min.)') """ ax2 = ax1.twinx() ax2.plot(data['Light'], color = 'g', label = 'Light', marker = 'o') ax2.plot(data['Onoff'], color = 'y', label = 'Onoff', marker = '*') ax2.plot(data['Heating'], color = 'r', label = 'Heating') ax2.plot(data['Cooling'], color = 'b', label = 'Cooling') ax2.set_ylabel('Light (on=1/off=0)', color='b') ax2.tick_params('y', colors='b') ax2.set_yticks([0,1], minor=False) """ fig.tight_layout() #plt.legend(['Temp. inside'], loc='upper left') plt.savefig(path, bbox_inches='tight') plt.close(fig) print(datetime.datetime.now().strftime('%Y-%m-%d_%a_%H:%M:%S.%f'), "\tGraph generated/updated.") else: #os.remove(path) #os.mknod(path) #os.chmod(path, 0o644) try: with open(path, "w") as outfile: outfile.write("") except IOError: print(datetime.datetime.now().strftime('%Y-%m-%d_%a_%H:%M:%S.%f'), "\tIOError: Could not generate empty graph file.") print(datetime.datetime.now().strftime('%Y-%m-%d_%a_%H:%M:%S.%f'), "\tNo data, graph is empty.") return # Test: if __name__ == '__main__': hd = handle_data() #hd.clean_file() hd.update_graph('./static/data_log.png')
30.015267
252
0.625127
3,671
0.933384
0
0
0
0
0
0
1,634
0.415459
96b9956367c551043c19348764e4606177dd4559
555
py
Python
day01/python/beckel/solution.py
clssn/aoc-2019
a978e5235855be937e60a1e7f88d1ef9b541be15
[ "MIT" ]
22
2019-11-27T08:28:46.000Z
2021-04-27T05:37:08.000Z
day01/python/wiedmann/solution.py
sancho1241/aoc-2019
e0f63824c8250e0f84a42805e1a7ff7d9232002c
[ "MIT" ]
77
2019-11-16T17:22:42.000Z
2021-05-10T20:36:36.000Z
day01/python/wiedmann/solution.py
sancho1241/aoc-2019
e0f63824c8250e0f84a42805e1a7ff7d9232002c
[ "MIT" ]
43
2019-11-27T06:36:51.000Z
2021-11-03T20:56:48.000Z
import math def fuel_needed(mass): return math.floor(int(mass)/3 - 2) def fuel_needed_recursive(mass): fuel_needed_i = fuel_needed(mass) if (fuel_needed_i <= 0): return 0 return fuel_needed_i + fuel_needed_recursive(fuel_needed_i) total_fuel = 0 total_fuel_recursive = 0 with open("input.txt", "r") as fp: for line in fp: total_fuel += fuel_needed(line) total_fuel_recursive += fuel_needed_recursive(line) print("Total fuel: " + str(total_fuel)) print("Total fuel recursive: " + str(total_fuel_recursive))
25.227273
63
0.704505
0
0
0
0
0
0
0
0
52
0.093694
96b9a2d50c1e158d5bd73be619a6523cec7b4cfa
45,634
py
Python
arraytool_rc.py
zinka/arraytool_gui
c1ba763e170f7efde99414a29946410c4994e924
[ "BSD-3-Clause" ]
11
2017-04-20T20:08:04.000Z
2022-03-29T22:30:24.000Z
arraytool_rc.py
zinka/arraytool_gui
c1ba763e170f7efde99414a29946410c4994e924
[ "BSD-3-Clause" ]
null
null
null
arraytool_rc.py
zinka/arraytool_gui
c1ba763e170f7efde99414a29946410c4994e924
[ "BSD-3-Clause" ]
7
2018-01-28T12:59:45.000Z
2022-03-19T12:34:25.000Z
# -*- coding: utf-8 -*- # Resource object code # # Created by: The Resource Compiler for PyQt4 (Qt v4.8.7) # # WARNING! All changes made in this file will be lost! from PySide import QtCore qt_resource_data = "\ \x00\x00\x03\x97\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x16\x00\x00\x00\x16\x08\x06\x00\x00\x00\xc4\xb4\x6c\x3b\ \x00\x00\x00\x04\x73\x42\x49\x54\x08\x08\x08\x08\x7c\x08\x64\x88\ \x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0d\xd7\x00\x00\x0d\xd7\ \x01\x42\x28\x9b\x78\x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\ \x74\x77\x61\x72\x65\x00\x77\x77\x77\x2e\x69\x6e\x6b\x73\x63\x61\ \x70\x65\x2e\x6f\x72\x67\x9b\xee\x3c\x1a\x00\x00\x03\x14\x49\x44\ \x41\x54\x38\x8d\x9d\x95\x4f\x68\x1c\x55\x1c\xc7\x3f\x6f\x66\x76\ \x36\x59\xdb\x22\x68\x0e\x36\x20\x45\x89\x50\x04\x0f\x1e\xa4\xb5\ \x88\x7f\xd0\x3d\x88\x47\x11\x64\x4c\x73\xf2\x56\xcf\x1e\xbd\x8a\ \x78\xea\x45\xeb\x41\x44\xcc\xa9\x67\xc1\x28\x88\x42\x6a\x6d\x83\ \xff\xb0\x17\xcd\xa1\x96\x6c\x43\x9a\xad\x49\x37\xdd\x9d\x9d\x79\ \xf3\x7b\xbf\x9f\x87\xdd\x6e\x77\xd3\xa8\x49\xbf\xf0\x98\xf9\x31\ \xcc\xe7\x7d\xdf\xf7\xfd\xe6\x8d\xcb\xb2\x8c\xff\x52\x15\xca\xc2\ \x39\x17\x9b\x99\x73\xce\x01\x70\xe7\x26\xad\xa5\x7f\xf4\xf3\xf2\ \xf9\x34\x4d\xdb\xbb\xdf\x4b\x00\xbc\xf7\xf1\xec\xec\xec\xe1\xbd\ \xc0\xeb\x1b\xad\xfa\x67\x9f\x7e\x8e\x73\x6e\x62\x00\x2c\x2e\x7e\ \x71\x7c\xe9\x9b\xa5\x15\xe0\x29\x60\xe7\x1e\xf0\xdc\xdc\xdc\xef\ \xce\xb9\xc7\x01\xdb\x0d\x36\x33\xd6\xd6\xd6\x28\xcb\x72\x54\x87\ \x10\x50\x55\x4e\x9f\x5e\xa0\xd3\xe9\x3c\xba\xf2\xd3\xca\x85\xb2\ \xef\x9f\x49\xd3\xb4\x3f\x01\x16\x91\xe3\xf3\xf3\xf3\x84\x10\x30\ \x33\x54\x15\x00\x55\xe5\x83\x0f\xdf\x27\x8a\x22\x2e\x5d\xbe\x34\ \x31\xe1\xc9\x13\x27\x00\x38\x73\xe6\x1d\x77\xee\x93\x8f\x9f\x5c\ \xbe\xb0\x7c\x16\xe3\xed\xdd\x60\x13\x11\xd7\x6a\xb5\x10\x11\x54\ \x15\x55\xc5\xcc\x70\xce\x91\xa6\x29\xcd\x57\x9a\x98\xd9\xc8\x35\ \x40\xbb\xdd\x46\x44\x78\xf6\xe4\x29\x77\xf1\xc7\x1f\xde\x50\xd9\ \x05\x0e\x21\x98\xaa\x3a\x11\x19\x2d\xf3\xce\x00\x48\x92\x84\xa5\ \xaf\xbf\x22\x84\x30\x72\xfc\xe2\x0b\x2f\xe1\xbd\x1f\x14\x0e\x54\ \x35\x82\x68\x32\x63\x91\xca\x44\x2a\x42\x08\xf8\xea\x2e\x58\x44\ \xc0\xc5\xe0\x62\x9a\xcd\x57\x27\xdc\x8e\x5f\x93\xa4\x8e\x59\xa4\ \xeb\xb5\x97\xa7\xbe\x3b\x76\xcd\x67\xab\xab\xea\xb2\x2c\xa3\xd1\ \x68\xc8\xc2\xc2\x42\x7c\xf1\x4a\x8b\xf3\xbf\x08\x51\x74\x77\x66\ \x33\x23\x72\x63\xf5\xae\xfd\x1d\xf2\x87\xab\x73\xc1\x39\xd7\xbe\ \x7c\xee\xcd\xa3\xa3\x8c\x43\x08\x6c\xde\x56\x9e\x7b\xfa\x18\xaf\ \x9d\x7a\x62\xf4\x02\xc0\xb0\xbb\xf6\xd4\xf8\xa3\xdc\x4b\xfc\xde\ \x47\xdf\xce\x64\xd9\x5b\x36\xca\x58\x44\xc8\x4b\x63\x66\xba\xce\ \x66\xa7\xe0\xfa\x56\xff\x5f\x50\x7b\x6b\xaa\x16\xf3\xf0\xe1\x1a\ \x51\x1c\x75\x61\xb2\x2b\xe8\x55\xf0\xd8\x03\x75\x30\x48\xc6\xe2\ \xd8\x8f\xd4\xa0\xf4\x81\xc8\x45\x9d\x11\xb8\xaa\x06\x9b\x97\x57\ \x8e\x23\x8d\x3a\x66\x90\xc4\xfb\x07\xf7\x0a\x61\x3a\x8d\xf1\x5e\ \x70\x11\xdb\x23\xf0\x20\x8a\x40\xee\xe1\x50\xa3\x06\x40\xb2\x0f\ \x6e\x50\x23\x2f\x03\x12\x94\xe9\xb4\x46\xd1\xf7\x00\x37\xc7\x1d\ \x13\x42\xa0\xa8\x00\x1c\x5e\xf4\x1e\x80\x1a\xc3\xaf\x72\x50\x7b\ \x51\xd4\x26\x3b\xa4\xd3\x2b\x31\xb5\x1b\xe3\x8e\x55\x44\xe8\x7b\ \xc3\x07\xa3\x5b\x04\x7a\xa5\xe0\x45\xf7\x04\xec\x19\x47\x19\xb3\ \x79\x2b\x47\x54\xd7\x27\x1c\x57\x22\xf8\x60\x6c\x77\x2b\x5a\x5b\ \x7d\x82\xfe\x3f\x6c\x5c\x3b\xb5\x88\xad\x4e\x51\x59\xd0\xcd\x11\ \x18\xd0\xbc\x0c\xd4\x6b\x31\xb7\xfa\x82\x1c\x10\x0a\x50\x56\xc6\ \x76\xb7\xf4\x38\xf7\xf7\x38\x98\x6e\xa1\x3c\xf2\xd0\x11\x1e\x6c\ \x24\x1c\x9a\x3a\x58\xab\x01\x44\xce\xd1\xeb\x95\x62\x6a\x5b\x00\ \xc9\xe2\xe2\x62\xd2\x6c\x36\xed\xcf\x8d\x92\x9b\x9d\x82\xef\x7f\ \xbe\x7a\x60\x28\x40\x30\xa5\xdb\xcb\x53\xe9\x6d\x5f\x23\x1e\x38\ \xae\xe7\x79\xfe\xe5\xaf\xab\xed\xd7\xab\x46\x3d\xb9\xdd\x2b\xee\ \x03\xeb\xcc\xcc\xa4\xdc\xd9\x58\xbe\x72\xfe\xdd\xab\xbf\x0d\x4f\ \x81\x1a\x70\x14\x98\x61\x2c\x9a\xfb\x90\x32\xf8\x3d\xfd\x95\x65\ \x59\x91\x00\x02\x5c\x07\x6e\x30\x79\xa6\x1c\x54\x36\x84\x57\x00\ \xff\x00\xf1\x00\xf2\xbe\xa6\x77\x61\xc0\x00\x00\x00\x00\x49\x45\ \x4e\x44\xae\x42\x60\x82\ \x00\x00\x04\x3c\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x16\x00\x00\x00\x16\x08\x06\x00\x00\x00\xc4\xb4\x6c\x3b\ \x00\x00\x00\x04\x73\x42\x49\x54\x08\x08\x08\x08\x7c\x08\x64\x88\ \x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0d\xd7\x00\x00\x0d\xd7\ \x01\x42\x28\x9b\x78\x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\ \x74\x77\x61\x72\x65\x00\x77\x77\x77\x2e\x69\x6e\x6b\x73\x63\x61\ \x70\x65\x2e\x6f\x72\x67\x9b\xee\x3c\x1a\x00\x00\x03\xb9\x49\x44\ \x41\x54\x38\x8d\x8d\x95\xcf\x6b\x1d\x55\x14\xc7\x3f\xf7\xde\x99\ \x3b\xf3\x7e\x98\xa6\x79\x4d\x8a\x3e\x42\x63\x4c\x84\xb6\x21\xa5\ \x92\x55\x0b\xba\x68\x8c\xb8\x0b\xb4\x22\x2d\x6a\x31\x58\xc1\x8d\ \x74\xd9\x14\x04\x37\x21\x42\x71\x53\xf5\x1f\xa8\x88\x88\x5d\xb9\ \x10\x5c\x25\x8b\x4a\xba\x68\x5a\x5c\x34\xd0\x52\x5e\xc1\x1a\xac\ \xf0\x12\x5f\x26\xef\xe7\x9d\x1f\xd7\xc5\xfb\xe1\x7b\xc9\x0b\x7a\ \xe0\x30\xc3\xcc\xe1\x33\xdf\x7b\xe6\xfc\x10\xd6\x5a\xfe\x87\x09\ \x40\x02\x4e\xeb\x0a\x60\x81\x08\x88\x5b\xf7\x3d\xe6\x00\xbc\xf7\ \xc1\xa5\x25\x63\xcc\xf5\x83\xa8\x4a\x29\xd2\xe9\x34\x03\x03\x87\ \xf0\x3d\x0f\x80\x30\x0a\x71\x5d\x7d\x73\x79\xe9\x8b\x6b\x40\x7d\ \x2f\xdc\x01\x30\xc6\x5c\x7f\xe7\xfc\xbb\x14\x0a\x05\xaa\xd5\x2a\ \xb5\x5a\x8d\x5a\xad\x86\x31\x06\x63\x0c\x52\x4a\xa6\xa7\xa6\xb9\ \x72\xe5\x23\xa4\x6c\x0a\xae\xd7\x6b\x7c\xf5\xcd\xd7\x9f\x02\x4b\ \x80\x69\x29\xef\x05\x03\x78\x9e\x87\xd6\x9a\x30\x0c\x89\xa2\x88\ \x38\x8e\x49\x92\x04\x00\xad\x35\x43\x43\x43\x28\xa5\x50\x4a\x01\ \x90\x4e\x67\x18\x19\x1e\x06\x48\x03\xdb\x7d\x53\x01\xe0\xfb\x3e\ \x5a\x6b\xa2\x28\x22\x49\x12\xda\xb9\x37\xc6\xe0\x79\x1e\x99\x4c\ \x06\x21\x24\x42\x34\x15\x0b\x01\x5a\x7b\x3d\x8c\xbe\x60\xad\x35\ \xbe\xef\xf7\x40\x85\x10\x48\x29\xd1\x5a\xe3\xb5\x72\xdb\x6d\xad\ \xb4\x88\x7e\x60\xd9\x1d\xe4\x38\x0e\x9e\xe7\xe1\xfb\x3e\xbe\xef\ \xe3\x79\x5e\xc7\xb5\xd6\x88\xbe\x08\xf8\x21\x9b\x7d\xe3\x7b\x21\ \x6e\xf5\x55\x2c\xa5\xec\xb8\x52\x0a\xc7\x71\x98\x98\x98\x20\x8e\ \x63\x8a\xc5\x22\xae\xeb\xf6\x85\xfe\x3c\x3d\x7d\xf1\xf0\xd4\xd4\ \xf5\xe0\xd1\x23\xf5\x9d\x10\x1f\xb7\x1e\x47\x1d\xc5\xed\x63\x77\ \xfb\xe6\xe6\x26\xbe\xef\x33\x39\x39\xd9\xf9\x69\x6d\xb3\x49\x82\ \x73\xeb\x5b\xb2\xf9\xfc\xe2\x6b\x57\xaf\x7a\x4a\xa9\x48\x2a\x55\ \x96\x8e\x53\x16\x50\xec\x49\xfc\x5e\xb0\xb5\x96\x42\xa1\xc0\xa9\ \x53\xa7\x30\xc6\x74\xe2\xc2\x20\xe0\xce\xfc\x3c\xe3\xc3\xc3\x8c\ \x9f\x3d\xeb\xdb\x52\x89\xd7\x6f\xdc\xf0\xdb\xef\x7f\x59\x58\xf0\ \x7b\xc0\x7b\x55\x67\x32\x19\x66\x66\x66\xb8\x7b\xf7\x2e\xc7\x8f\ \x1f\x07\xa0\xf2\xf4\x29\xab\x73\x73\x8c\xce\xcc\x30\x3c\x3a\xca\ \xee\xca\x0a\x58\x8b\x50\x0a\x9b\x24\x0c\xcc\xce\x22\xa4\x64\x9f\ \x62\x21\x44\xe7\x03\x27\x4e\x9c\xe0\xd9\xb3\x67\x94\x4a\x25\x52\ \xa9\x14\x00\xbf\x5e\xb8\xc0\x91\x91\x11\x06\x7d\x9f\xdd\xd5\x55\ \x6c\x14\x91\x54\x2a\x24\x95\x0a\x32\x95\x22\x75\xf2\x24\x08\xc1\ \x81\x8a\xf3\xf9\x3c\xd5\x6a\x95\x87\x0f\x1f\x92\xcd\x66\x71\x9c\ \x66\xe8\xe9\x9b\x37\xb9\x33\x3f\x8f\x63\x0c\x2f\x00\xf5\x8d\x0d\ \x6c\xab\x91\x00\x1a\x4f\x9e\x60\xe3\x78\x7f\x71\xb7\xc1\x5b\x5b\ \x5b\xec\xec\xec\x90\x4e\xa7\xd1\x5a\x03\x90\x24\x09\x47\xce\x9c\ \xe1\xcd\xb5\x35\x56\xce\x9d\xe3\x70\x36\xc3\xd1\xd3\xa7\x91\x03\ \x03\xcd\x8e\x51\x8a\xb8\x5a\x05\xfa\x74\x4d\x1b\x1c\x86\x61\xa7\ \xc4\xa4\x94\x14\x0a\x05\xa4\x94\x8c\x8d\x8d\x91\x7b\x65\x9c\xd9\ \x7b\xf7\xf8\xe9\xec\x19\xea\x9b\x9b\xf5\x51\xc7\xf1\x7f\x5b\x5b\ \x33\xf6\xdf\xbe\xf8\x5b\x1e\x04\xee\xae\x67\xc7\x71\x28\x95\x4a\ \xec\x04\x3b\x54\x2a\x65\xe2\x38\x46\x0d\x1e\xa2\xb1\x78\x8d\x72\ \xad\xb6\xf2\x78\x63\xa3\x66\x21\xb9\x64\xad\xdb\xf2\x17\xf7\x81\ \xdb\x70\xa5\x14\x5a\x6b\x8a\xc5\x22\xeb\xf7\xd7\xd1\x9e\x26\xff\ \x52\x9e\x5c\x2e\x47\x14\x45\x18\x63\xa8\x9a\x06\xe7\xb7\xb7\x3f\ \xa9\x95\xcb\x5f\x0a\x78\xdc\xcd\xe8\x3b\x40\xb4\xd6\x04\x41\xc0\ \xfa\xfa\x3d\x5e\x1e\x1f\xe3\xf2\xe5\xf7\x39\x76\x6c\xac\x39\xfd\ \xa2\x90\x30\x0a\x89\xe3\x98\x60\x77\x17\xa0\x71\x31\x8a\x3e\x07\ \x3e\xeb\x0b\xb6\xd6\xa2\x94\xc2\x5a\xcb\x83\x07\xf7\x39\x34\x38\ \xc0\x87\x0b\x97\xc9\xe5\x72\xb8\xae\x4b\x1c\x87\xd4\xea\x11\x02\ \xb0\x16\x92\x24\x26\x08\x02\x80\x06\x07\x6d\x90\x38\x8e\x91\x52\ \xf2\xfc\xaf\xe7\x08\x2c\x6f\xbd\x3d\x47\x2a\xe5\xe3\xba\x6e\x73\ \xd8\x87\x61\xcf\x08\xb3\x34\x5b\xfa\x3f\xc1\xc1\x4e\xc0\x1f\x7f\ \xfe\xce\xc4\xab\xcd\xe3\x22\x2c\x8d\x46\x9d\x86\x69\x34\x81\x1d\ \xaa\xe8\x30\x92\xc4\x52\xa9\x94\xa1\xb9\x3d\xfa\x83\x47\x8e\x8e\ \x2c\xdf\xfe\xf1\xf6\x62\x77\xe7\x89\x83\x66\x64\x57\xea\xb4\xd6\ \xcb\xec\x59\x49\x6d\xfb\x07\xe7\xa5\x7a\x91\x9a\x1b\x94\x49\x00\ \x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x02\xb4\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x16\x00\x00\x00\x16\x08\x06\x00\x00\x00\xc4\xb4\x6c\x3b\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xfc\x00\xe9\x00\x4f\x34\xd7\ \xb1\x0d\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0d\xd7\x00\x00\ \x0d\xd7\x01\x42\x28\x9b\x78\x00\x00\x00\x07\x74\x49\x4d\x45\x07\ \xd5\x02\x12\x0e\x25\x30\xca\x43\x26\x09\x00\x00\x02\x41\x49\x44\ \x41\x54\x38\xcb\xad\x95\xcd\x6b\x13\x61\x10\x87\x9f\x99\xdd\x54\ \x9a\xe2\x07\x4d\x9b\x35\x08\x9e\x3c\x88\x78\x12\xc4\x56\xf0\x1f\ \xf0\xd2\x83\x27\x6f\xe2\xd5\xb3\x08\x62\x2f\xa2\xe2\xc7\x3f\xe1\ \xc1\x8b\x78\x90\xdc\x45\x11\x04\x35\xa5\x17\x0b\x7a\xb2\xb9\xd4\ \x90\x18\x28\x22\x31\xa6\xd9\x64\xc7\xc3\x7e\x66\x53\xed\x6a\x7d\ \x21\x64\x77\xd8\xf7\x79\x67\x7e\xbf\x99\x5d\x61\x9f\x6b\xd4\x59\ \x11\xa0\x04\xf8\xae\x57\xb7\x38\x2e\xf1\xc5\xfd\x87\x77\x6f\x03\ \xab\x7f\x03\x55\x09\xa8\x1c\x19\x50\x5b\xec\xe1\xa8\xb1\x33\xd4\ \xc7\x17\x2f\x34\xaf\xb9\x5e\xbd\xef\x66\x9e\x5b\xbd\x71\xfd\x66\ \x61\xa8\x99\x0f\xfe\x47\x82\xfe\x4b\x7c\xab\x60\x94\xd9\xfe\xfa\ \xe9\x8a\xe1\xbc\x1a\x75\x56\x9e\xba\xf9\x0d\xcd\x66\x13\xc7\x71\ \x30\x33\x44\x04\x91\xb0\xa8\xec\x35\x18\x25\x69\x51\xd6\x17\x38\ \xa5\x59\x6c\xe6\x12\xe2\xcc\x73\x68\xe1\x35\x16\x3c\xbb\x2c\xf6\ \x6d\x5d\xf3\xe0\x18\x10\x43\xcc\x0c\xcc\x30\x33\x2c\x30\xcc\x00\ \xc6\xa8\xf4\x10\xd9\xc1\x64\x01\x74\x1e\x50\xe0\x00\x30\x2e\x03\ \x87\xf7\x04\x23\x40\x1c\x53\x41\x15\x44\x1c\x02\x39\x48\xc0\x22\ \x32\xda\x04\xff\x0d\x04\x1d\x86\x83\x06\x62\x3f\x36\x80\xed\xdf\ \x82\x55\x35\xfc\x17\x41\x44\xd3\xc3\x44\x51\x71\x08\x38\xca\x80\ \x65\x86\x76\x02\x86\x6b\xb8\xfe\x73\x36\x3f\x6f\x21\x04\x4f\x80\ \x96\xbb\x1b\x58\x55\x53\x8d\x11\x90\xac\xc6\x02\x2a\x08\x33\x98\ \x1c\xc3\xa7\xc2\x98\x53\xcc\xce\x95\x68\x6c\x7c\xe7\xcc\xc9\xd6\ \x07\xe0\xe7\x54\xc6\x6b\xeb\x8d\x49\xb3\x32\xd9\x27\x3f\xe2\x2a\ \x1c\x4c\xe7\x30\xe7\x38\x32\x73\x9a\x5e\xbf\x84\xeb\xd5\xfb\xae\ \x57\xb7\x29\xf0\xb9\xb3\x4b\xd4\x6a\xb5\x9c\xa6\xa4\x72\xa8\x44\ \xf7\x51\x75\xa2\x61\x55\x93\x63\xc1\xae\x52\xb4\xdb\xed\x70\x93\ \x69\x28\x43\x52\x3e\x49\x15\x91\xa7\x44\x0f\x4c\x2d\xf7\x4f\x5d\ \x61\x62\x49\x76\xf9\x5e\x4e\x0e\x10\x41\x29\x00\x4e\x36\x01\x1a\ \x99\x15\x6a\x0a\xa2\xd1\x7d\x1c\x8f\x92\x0d\xe3\xb9\x71\xcf\x07\ \xde\xbd\x7f\x3b\x95\x91\x48\x28\x45\x0c\xcd\x6a\x2c\xb1\x09\x7b\ \x81\x97\x97\xce\x53\xad\x56\xd3\x1e\xd6\xc8\x44\x34\x32\x4e\x10\ \x14\xd5\x6c\x97\x68\x31\x8d\xbb\xdd\xee\x44\xbb\x31\xf1\x9e\x90\ \xe4\x80\x6c\x65\x85\x34\x4e\x4f\xd1\x8c\x79\x11\x90\x78\xc4\x49\ \xf4\x2f\x0c\x4e\xb2\xd1\xd4\xb8\x88\x17\x5b\x99\x4e\xa3\x49\xa6\ \x8f\x0b\x66\x9c\xb8\x1e\x8f\x36\x93\xc6\x85\x55\x50\x2c\x63\xcf\ \xf3\xf8\x1f\x2b\x01\x07\x41\x70\xe7\xc1\xa3\x7b\xb7\xf6\x03\xfb\ \xb2\xd5\xba\x3a\xf5\xcd\xcb\xab\xf0\x8f\xec\xe4\x63\xfa\x0b\x23\ \xfb\x93\xa3\x4d\x98\xb6\xe0\x00\x00\x00\x00\x49\x45\x4e\x44\xae\ \x42\x60\x82\ \x00\x00\x04\x7e\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x16\x00\x00\x00\x16\x08\x06\x00\x00\x00\xc4\xb4\x6c\x3b\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0d\xd7\x00\x00\ \x0d\xd7\x01\x42\x28\x9b\x78\x00\x00\x00\x07\x74\x49\x4d\x45\x07\ \xd5\x0b\x0a\x0d\x34\x15\x48\x65\x72\x06\x00\x00\x04\x0b\x49\x44\ \x41\x54\x38\xcb\xad\x95\x5d\x6c\x14\x55\x14\xc7\x7f\x33\xfb\x39\ \x9d\x6d\xbb\xd3\x65\x97\xdd\xd6\x65\x59\x3e\x96\x22\x05\xda\x92\ \x56\x8b\x1f\x58\x13\x1f\x30\x42\x34\x46\x7c\xd0\x17\xd3\xf8\x00\ \x35\x48\x55\x52\x03\xfa\x20\x46\x02\x18\x8b\x69\x6c\x1f\x44\x1f\ \x34\x8a\x92\xc8\x8b\x0f\x68\x0c\x31\x36\xc6\x88\x34\x41\x54\xac\ \x25\xb4\xb5\x36\xc5\xd6\xdd\xb6\xd3\x76\xbf\x67\x67\x77\x7c\x68\ \x77\x6c\xa9\x50\x4c\xfc\x27\x37\xe7\xe6\x9e\x73\xfe\xf7\x7f\xcf\ \x3d\x33\x57\x60\x01\x9e\x7b\xa3\xfd\xfd\x3f\x12\x95\x8f\xc6\xa6\ \xb4\x8a\x85\xeb\x92\xcd\x48\xfa\x5c\xf1\xbe\x95\xf2\x6f\x6d\x9d\ \xaf\x7e\xf6\x1d\xb7\x01\xa1\x38\xe9\xfa\xa0\xad\xf6\xec\x8f\xe1\ \x8b\xab\x23\x1b\xb3\xa1\x95\x3e\x31\x9e\x13\x9d\x55\x65\x4e\xf1\ \xcf\xb8\xc6\x54\x3a\xcb\xf4\xd5\xf3\x43\xa9\x64\xc6\x11\x56\xfa\ \xdb\xbb\x5f\x3b\xfd\xf1\x72\xc4\x96\x22\xe9\xf9\xfe\xc0\xd9\x55\ \x5b\x1e\x70\x0f\x0f\xf4\xdb\x07\x87\x87\x6d\x23\xbf\x0f\x8a\x23\ \x13\x93\xd8\x4a\x2b\x50\x9c\x76\x9c\xde\x75\xca\x74\xba\x50\x76\ \x3d\xe6\xdc\xb9\xeb\x11\xcf\xa5\x8b\xdf\xfc\x3a\x70\x2b\x62\x11\ \xe0\x87\x6b\xce\xe3\x77\xac\xb0\x0e\x27\x06\xbe\xba\xda\xe8\xbd\ \xf0\x74\x4f\xc7\x3e\xf1\xbe\x50\xef\xce\xdc\xcc\xf5\xd9\xd1\xc1\ \x2b\x46\x74\x36\x4e\x3c\x99\x40\xf1\x05\x90\x7d\x41\xc7\x2f\xb1\ \xad\x9f\xbe\xf4\xfa\x2e\x79\x59\x62\x35\x25\xad\xb3\xe4\x13\x33\ \xf7\xaf\x1f\x7d\xe8\xe8\x8b\xef\x7d\x02\x70\xec\xe0\x47\x5f\x36\ \x04\x47\x8f\x24\x54\x55\x48\xce\x4e\xa1\x65\x52\x00\xf8\x82\xeb\ \x45\xaf\xac\x8d\x4c\x68\xe1\xee\x65\x6b\xfc\xd4\xa1\x17\x3e\x0f\ \x3b\x72\x3f\xcf\xaa\x85\xc3\x0b\x9d\x0e\x49\xe0\xdb\xa9\x10\xab\ \x37\xd5\x2f\x4a\x72\xa7\xfb\x98\xf8\x6b\x9c\xca\xc2\xf4\x8d\x7c\ \xed\x9d\x6f\x77\x9d\x00\xb0\x02\x04\xcb\xe2\x5f\xa4\x26\xed\xdd\ \xc7\x8e\xbe\xb9\x64\xe7\x07\xdb\xba\x96\xac\x65\x3c\x77\x31\x3a\ \xd4\xc3\x87\x27\x17\xe9\xe0\xe5\x43\x07\x8f\x03\x27\xcc\x52\xa4\ \xc6\xed\xd7\x14\xb7\x97\x54\x6a\xee\xb8\xc9\x64\xd2\x1c\x26\x59\ \xfa\x9f\xb9\xc5\x66\x5f\x14\x37\x32\x3a\x42\x32\x99\xc4\xeb\xf5\ \xb2\xff\x40\x6b\xad\xa9\x18\x58\xeb\xf7\x07\x00\x48\x24\x13\xb8\ \x64\xd7\xbf\x2a\x2d\xc2\x28\x14\x00\x78\xec\xc8\x69\x74\x4d\xe3\ \xcc\xe1\x3d\x00\x28\x8a\x42\x2c\x16\x8b\x00\x97\xc5\xf9\xd8\xdd\ \x75\x5b\xeb\x49\xa7\xd3\x08\x08\xa6\xd2\xea\x86\x1d\x54\x37\xec\ \xa0\x5c\xf1\x02\x90\xcd\x66\xe6\x6c\x3a\xce\xba\xda\xbb\x59\x53\ \xd3\x00\x40\x89\x54\x02\xc0\x3d\x4d\xf7\x02\x6c\x36\x4b\x01\x3c\ \x5c\x59\x59\xb5\x48\xd5\xbb\xcf\x37\x33\xf0\xd3\xf7\x00\x8c\x8d\ \x0e\x81\x61\x90\xd7\x73\x64\xd2\x49\xe2\x33\x2a\x00\x43\x57\x7a\ \x79\x67\xdf\x76\x33\x27\x18\x0c\x01\xbc\x02\x20\xee\x3f\xd0\x5a\ \x2b\x49\x25\xd8\xed\x76\x3c\x1e\x8f\x19\x14\xf0\x86\xe8\x68\xd9\ \x46\x7f\x6f\x0f\x15\xde\x4a\x0a\x86\x31\x5f\x07\x83\x32\xb7\x87\ \x81\xcb\x17\xe8\x68\xd9\x46\xa8\x32\x02\x80\x2c\xcb\xf3\xe5\xf0\ \xb0\xff\x40\x6b\xad\x08\x44\x56\xfa\xfc\x00\xa8\xaa\x8a\x2c\xcb\ \xc8\xb2\x8c\x28\x8a\x84\xab\x36\xd0\xb9\xb7\xc9\x24\x17\x05\x01\ \x57\x79\x05\x03\x97\x2f\xd0\xb9\xb7\x89\x70\xd5\x06\x33\x5e\x55\ \xe7\x4e\x51\x5e\x56\x0e\x10\x11\x81\xcd\x77\x6e\xdc\x44\x2e\x97\ \x33\xac\x56\x0b\x33\x33\x33\xa8\xaa\x8a\x24\x49\xc8\xb2\x4c\x4d\ \xa4\x9e\x53\x6d\xcd\xf4\xf7\xf6\xe0\x5e\x11\x60\xb8\xef\x12\xa7\ \xda\x9a\xa9\x89\xd4\x9b\x84\xaa\xaa\x92\xcf\xeb\x24\x12\x09\x63\ \xed\x9a\xb5\x00\x4d\x62\x36\x9b\xdd\xe2\xf7\xfb\x71\xb9\x5c\x82\ \xae\xe7\x29\xcc\xdf\x78\x31\x41\x55\x55\x2a\x4a\x03\x74\x3c\xdb\ \x40\x7f\x6f\x0f\x6f\x3d\x53\x4f\x45\x69\xc0\xf4\x01\xe4\xf3\x3a\ \x08\xa0\x28\x8a\x10\x0c\xae\x22\x93\xc9\x96\x5a\x1d\x0e\xc7\xee\ \x48\x24\x62\xb6\xcb\xcd\xa0\x28\x8d\x7c\x7d\xb2\x71\xd9\xdf\x65\ \x75\x75\x35\x4e\xa7\xa3\xc5\x0a\x10\x8b\xc5\x98\x9c\x9c\xbc\x79\ \xdf\x16\x2f\xee\x36\x7c\x5e\xef\x5c\x6b\x16\x3f\x10\x34\x4d\xc3\ \xe3\xf1\x70\xee\xdc\x39\x1c\x0e\x07\xb2\xab\x84\x52\x57\x19\xa2\ \x28\x22\x49\x12\x82\x20\x20\x49\x12\x2e\x97\x0b\x55\x55\xf1\xf9\ \x7c\x44\xa3\xd1\x25\xb6\x48\x2c\x2e\xdc\x4d\xd7\x75\x2c\x16\x0b\ \x86\x61\x20\x0a\x16\xb2\xd9\x2c\x9a\xa6\x61\x18\x06\x36\x9b\xed\ \x96\xca\x6f\x84\xa9\x58\x10\x04\xd2\xe9\x34\x75\x75\xb5\xe8\x7a\ \x1e\x8b\xc5\x82\xae\xeb\x66\xa0\xdd\x6e\xe7\xbf\xc0\x0a\x10\x8d\ \x46\x0d\xbf\xdf\x3f\xff\x4c\x79\x96\x4d\x72\xbb\xdd\x00\x84\xc3\ \xe1\x25\x76\x6c\x6c\xcc\x00\x04\xe1\x89\x27\x1f\xdf\x13\x08\xf8\ \xcf\xf0\x3f\x62\x6c\x6c\x7c\xfb\xdf\xe7\x60\x9f\x53\x70\x22\xd1\ \x6a\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x04\xd5\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x16\x00\x00\x00\x16\x08\x06\x00\x00\x00\xc4\xb4\x6c\x3b\ \x00\x00\x00\x04\x73\x42\x49\x54\x08\x08\x08\x08\x7c\x08\x64\x88\ \x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\x72\x65\ \x00\x77\x77\x77\x2e\x69\x6e\x6b\x73\x63\x61\x70\x65\x2e\x6f\x72\ \x67\x9b\xee\x3c\x1a\x00\x00\x04\x67\x49\x44\x41\x54\x38\x8d\xa5\ \x93\x7d\x68\xd5\x55\x1c\xc6\x3f\xe7\xf7\x7a\xef\xfd\xdd\xdd\x3b\ \xb7\xb6\xb9\x79\xa7\x6d\xbe\xcd\x19\xe9\x72\x58\x62\x43\x7b\x93\ \x62\x25\x46\x82\x34\xc8\x7f\xf2\x6a\x50\xa9\x11\x44\x21\xcd\x5c\ \x85\x95\x98\x53\x4a\x21\x15\x35\x19\x51\x52\x19\x68\x8a\x60\x66\ \x8a\xba\x4d\xa7\xd3\xcd\x97\x4d\x45\xd7\x72\x2f\x6d\x73\x6f\xf7\ \xde\xdd\x97\xdf\xef\xf4\x47\x57\xc9\x5a\xa0\xf8\x85\x87\x73\xe0\ \x70\x3e\xe7\xe1\xe1\x39\x62\xdd\xcb\x8a\x1f\x58\xa4\x08\xb1\x5c\ \x0a\x91\x2a\xa4\xb3\x61\x69\x95\xbd\x82\xfb\x1c\x45\x08\xde\xcd\ \x19\x53\xf8\xf1\xac\xb9\xc1\xc0\x93\xa5\xaf\x78\x3d\xbe\x11\xcb\ \x2a\xcb\xd4\x05\xf7\x0d\x56\x55\x3d\x58\x58\x3c\xdb\x0c\x5f\x3b\ \x48\xbc\xf7\x0a\x53\x1f\x9d\x63\x29\x82\x75\x95\x65\xaa\x7e\x5f\ \x60\xc7\x8e\xc7\x9c\x44\x02\x45\x35\x18\x6c\x3b\x8b\x65\x79\xc8\ \x1a\x35\xd6\x0f\x2c\xd9\xba\x52\xbc\xb0\xe3\x23\xf3\xd8\x57\x4b\ \xc4\x3d\x3f\xa2\x00\xdb\xcf\xd5\x1c\x88\xf8\xf2\x67\x63\x65\x4d\ \xa6\xbf\xa5\x86\x82\xa2\x12\x8f\x99\xc6\x1a\xc3\x95\xf2\xad\x94\ \x4c\x13\x39\xe4\xdd\xbb\x63\xc9\x8a\xee\xf6\x6b\x95\x47\xf6\x7f\ \x33\xa4\x8d\x98\x80\x99\xf6\x20\x2d\x9d\x47\x48\x1b\x9b\xee\x9a\ \xb7\x70\xb9\x3b\x3b\x77\x5c\x54\x24\x78\xf8\x5e\xc1\x42\x4a\x09\ \x40\x65\x99\x3a\x5f\xd3\xb5\xaf\xd3\x27\x7a\xdd\xbe\x0c\x8b\x19\ \x4f\x3d\x87\xcb\xf0\x72\xe6\xad\x3d\xf4\xfc\xd4\x6c\x0b\x5b\x6c\ \x2a\xb5\xed\x37\xef\xda\xf1\xad\x8d\x7f\xa2\x53\xe7\xce\x8b\xf5\ \x3d\x10\x30\x65\xd1\x8c\xc9\x44\x7e\x3f\x45\xcd\xb3\xdb\xe0\x70\ \x27\x85\x23\x03\xaa\xad\xc8\xd7\x36\x97\x8b\x85\x9b\xcb\xef\x2e\ \x6f\x05\x60\x6b\xb9\x98\x29\xa1\xae\x70\xea\xb8\x8c\x49\x53\x0b\ \x44\x6f\x6d\x13\x0d\xf3\xce\x92\xd6\xad\x13\xb0\x52\xb9\xf8\xe7\ \x0d\x52\x17\x17\x68\x39\xb9\xb9\x1b\x55\x4d\x5c\xdf\x5c\x2e\xe6\ \xdf\x55\x14\xdb\x56\x89\xbd\x52\xe8\x73\x52\xd3\xfc\x61\x4f\x63\ \xcc\xe3\xec\x08\x69\x05\x19\xa3\x18\x8a\xc7\xb8\xda\xd7\xc5\x98\ \x4f\xc6\x93\xf5\x4c\x00\x77\x4a\x31\x7d\x3d\xed\xd4\xfe\xb6\x3f\ \xdc\xd7\xd3\xd1\x18\x8f\x3b\x65\xc1\x0a\x79\xf9\x7f\xc1\x00\x5b\ \x56\x89\x00\x0e\x93\x46\x7e\xa6\x7c\x37\x21\x6d\x64\x6a\x77\x34\ \x44\xb7\x16\x25\x6f\xbd\xc4\x33\x5a\xc5\x34\x3d\xe8\x86\x85\xcb\ \xfb\x08\x9a\xa7\x88\x3f\xae\x5d\x90\xc7\x0f\xee\x09\xc7\xa2\x83\ \xab\x1d\x47\x7e\x1a\xac\x90\x89\x61\xc1\xb7\x66\xaf\xaa\xbe\x6f\ \xab\xf2\x83\x94\x59\xf9\x22\xe7\x9d\xeb\x42\x71\x49\x34\xcd\xc4\ \x34\x3d\x18\xa6\x07\x4d\x33\xd1\x35\x2f\xba\x35\x8d\xb8\xcc\xe7\ \x74\xf5\x2f\x91\x2b\x0d\x47\x7a\x63\xb1\xe8\x2a\x60\x7b\xb0\x42\ \x46\x87\x05\x03\x6c\x59\x29\xa2\xa5\x65\xaf\x1b\xa1\xae\x9d\x48\ \x27\x84\xa6\x19\x98\xa6\x85\x61\x5a\xe8\x7a\x1a\xc8\x28\x6e\xb7\ \x07\x55\x4f\x05\xb3\x88\xfe\x01\x8b\xfa\xea\x7d\xe1\xab\x17\x6a\ \xe3\x52\x3a\x6b\x1d\x87\x35\xca\x7f\xa8\x80\xa2\xd2\x1a\x1e\xec\ \x46\x35\x32\x01\x90\x52\x22\xf9\xdb\x80\xa2\x0c\xa1\x99\x01\x22\ \xa1\x28\xd2\x8e\x21\xa2\x27\xf1\xbb\xea\x79\xfc\xe9\x52\xcf\xf3\ \x65\xcb\xfc\x52\x28\x2b\x6e\xb7\xe2\xdf\x23\x1d\x76\x77\xb5\xb5\ \x38\x86\x6b\x3c\x20\x49\xc4\x13\x48\xdb\x01\x4c\xec\x84\x8d\xae\ \x86\xd0\x3d\x13\xe9\xed\xe9\xc7\x91\x06\x20\x51\x54\x2f\x97\x1b\ \xab\xa3\x9a\x42\x55\xb0\x42\x0e\x0d\x0b\x76\x1c\xbe\x6f\x3e\x7f\ \x26\xac\xbb\x27\x20\x84\x0b\x29\x1d\x62\xb1\x04\x52\x4a\x6c\x27\ \x85\x48\xa8\x17\x97\x5b\xc1\xe5\x2b\xa4\xb3\xad\x0f\x5b\x2f\xe1\ \x62\xfd\xf1\x44\xd3\xb9\xea\x96\x78\xdc\x79\x63\x58\xc7\x42\x08\ \x65\xf1\x87\xd4\x47\x42\xe1\x4b\x1d\xad\x4d\xd2\xf0\x4e\x41\x51\ \x21\x11\xb7\x89\x86\x7b\xd1\x5d\xe9\x0c\x45\x24\xe1\xde\x2b\x78\ \xfc\xf9\xb8\xfc\x25\xd4\x1e\xda\x19\x3f\xf1\xeb\x8f\x97\x7a\x7a\ \xed\x92\x60\x85\x8c\xdc\x01\x16\x42\x28\x42\x08\x1f\x90\x05\x64\ \x1f\x3e\xc9\xda\xb3\xb5\xd5\x51\xd3\x2a\x46\xd5\x33\x31\x3c\x99\ \x84\x07\x87\x88\x85\xaf\x92\x92\x31\x9d\xee\x6e\x95\x81\x7e\xc9\ \xf1\xc3\x7b\xa2\xa7\xeb\x1a\x4f\xac\xdc\x98\x58\xf0\xf6\xe7\x28\ \x42\x08\x9f\x10\x42\x28\x49\xa8\x00\xac\xa4\x52\x00\x5f\xd5\xcf\ \xdc\x68\xef\xe8\x69\xb8\x50\x77\x20\x61\xa5\xcf\xc5\x71\xe2\xb8\ \x7d\x63\xe9\xbb\x09\xaa\x91\x87\x61\x8d\x63\xff\xae\xf5\xb1\x93\ \xa7\x9a\xf6\x2d\x5d\x1d\x2f\x6f\xed\xc0\x4c\xde\xb5\x00\xeb\x76\ \xdd\x84\x10\xde\xe4\x81\x37\xa9\x94\x40\x16\x59\xef\xbd\xca\x17\ \x8f\xcd\x7a\x22\x23\x3b\x37\x53\x18\xae\x6c\xfa\xda\x1b\x69\xbd\ \xde\x6c\x5f\x3c\xdf\x12\xde\x77\xd4\xd9\xb0\xfb\x10\xc7\x80\x41\ \x60\x20\xb9\x0e\x02\x5d\x77\xf4\x58\x08\xe1\x02\xfc\x80\x27\x29\ \x77\x71\x21\xa3\x83\x2f\x89\x6d\x33\xe7\xcc\x4b\x89\x45\xda\x38\ \x53\x5d\x1b\xeb\xec\x72\x8e\xae\xaf\x92\x1b\xda\xba\xb8\x09\x44\ \x92\x0a\x03\x37\x81\x01\x29\xa5\x3d\xec\x07\x49\x46\x64\x00\x2e\ \xc0\x58\xf4\x22\x53\xa6\x3f\xc4\x0f\x71\x9b\x53\x0d\xcd\x7c\xb9\ \x69\x17\x35\x40\x1c\x88\x01\x43\x40\x14\x48\xc8\x7f\xc0\xfe\x02\ \xac\xc3\xe6\x28\xcc\x5c\x0b\x9f\x00\x00\x00\x00\x49\x45\x4e\x44\ \xae\x42\x60\x82\ \x00\x00\x04\x49\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x16\x00\x00\x00\x16\x08\x06\x00\x00\x00\xc4\xb4\x6c\x3b\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0d\xd7\x00\x00\ \x0d\xd7\x01\x42\x28\x9b\x78\x00\x00\x00\x07\x74\x49\x4d\x45\x07\ \xd5\x0b\x0a\x0d\x39\x23\x32\x71\x99\xd2\x00\x00\x03\xd6\x49\x44\ \x41\x54\x38\xcb\xad\x94\x5f\x4c\x5b\x55\x1c\xc7\x3f\xf7\x52\xfa\ \x87\x0b\x94\xdb\xae\xa5\x2d\x56\x56\x60\x1d\x73\x6c\x43\x96\x4e\ \x99\x7f\x26\x26\x3e\xcc\xb8\x45\x63\x9c\x0f\x1a\x63\xc2\xd3\xc6\ \x02\xd4\x6d\x62\x36\x7d\x70\xea\x1c\xd3\x30\x25\x42\x8c\xe8\x83\ \x46\xa7\x4b\xdc\x8b\x2f\x1a\xb3\x07\x89\x31\xe2\x48\x26\xea\x44\ \xb6\x41\xc5\xa6\x13\xa4\x8c\x0b\xf4\x7f\x0b\xbd\x3e\xb4\x54\xea\ \xdc\xc0\x84\x6f\x72\x73\xce\x3d\xe7\xfb\xfb\x9e\xef\xf9\xde\x73\ \xae\xc0\x32\x1c\x7c\xad\xe3\x83\x3f\xc2\x8e\x47\x83\x33\x49\xd3\ \xf2\x71\x43\xa1\x1a\xb1\x16\x87\x86\xcb\xa5\xdf\xbc\xdd\x2f\x7d\ \xfe\x1d\xab\x80\xb0\xd4\xe9\xf9\xd0\x5b\x7f\xee\x47\xd7\x85\xf5\ \xee\x4d\x89\xca\x72\xab\x18\x4a\x89\xfa\x8a\x52\xbd\xf8\x67\x28\ \xc9\x4c\x2c\xc1\xec\xe5\xf3\xbe\x68\x24\xae\x73\xc9\x23\x1d\xbd\ \x2f\x9f\xf9\x64\x25\xe1\x82\x25\xd1\xf3\x23\xf6\x73\xb7\x6f\x7d\ \xa0\x6c\x7c\x74\x44\x3b\x36\x3e\x5e\xe8\xff\x7d\x4c\xf4\x4f\x5f\ \xa7\xb0\xc4\x84\xac\xd7\xa2\xb7\xd4\xc8\xb3\xb1\x74\xe9\xb5\xa0\ \x7e\xf7\x9e\x47\xcc\x17\x2f\x7c\xf3\xeb\xe8\xad\x84\x45\x80\x1f\ \xae\xea\x3b\x6f\x5b\xa7\x19\x0f\x8f\x7e\x7d\x79\x87\x65\xe0\xe9\ \xfe\xae\x03\xe2\x7d\x95\x83\xbb\x53\x73\xd7\xe6\x03\x63\x97\xd4\ \xa9\xf9\x10\xa1\x48\x18\xd9\x6a\x47\xb2\x3a\x75\xbf\x04\xb7\x7d\ \x76\xf8\x95\x3d\xd2\x8a\xc2\x4a\xd4\x50\x53\xb0\x18\x9e\xbb\x7f\ \x43\xe0\xa1\x13\x87\xde\xff\x14\xe0\xe4\x91\x8f\xbf\xf2\x38\x03\ \xc7\xc3\x8a\x22\x44\xe6\x67\x48\xc6\xa3\x00\x58\x9d\x1b\x44\x8b\ \x94\xf4\x4f\x27\x5d\xbd\x2b\x66\xfc\xd4\xd1\xe7\xbe\x70\xe9\x52\ \x3f\xcf\x2b\xe9\x63\xcb\x27\x75\x06\x81\x6f\x67\x2a\x59\xbf\xb9\ \x21\xaf\xa8\x2c\x36\xcc\xf4\x5f\x93\x38\xd2\xb3\xff\xd6\xeb\xe8\ \x7e\xab\xe7\x14\x80\x06\xc0\x59\x1a\xfa\x32\x7a\x5d\xdb\x7b\xf2\ \xc4\x1b\x37\xac\xfc\xa0\xb7\xe7\x86\xb1\xb8\xf9\x2e\x02\xbe\x7e\ \x3e\x3a\x9d\xe7\x83\x17\x8e\x1e\xe9\x04\x4e\xe5\xa2\x88\x4e\x6a\ \xaf\xca\x65\x16\xa2\xd1\xcc\x76\x23\x91\x48\xee\xc9\x89\xc5\xfe\ \xe9\x17\x14\x6a\xf3\x78\xfe\x80\x9f\x48\x24\x82\xc5\x62\xa1\xb5\ \xbd\xa5\x3e\xe7\x18\xa8\xb6\xd9\xec\x00\x84\x23\x61\x8a\xa5\xe2\ \xff\x74\xba\x04\x35\x9d\x06\xe0\xb1\xe3\x67\x58\x48\x26\x39\x7b\ \x6c\x1f\x00\xb2\x2c\x13\x0c\x06\xdd\xc0\x90\x98\xe5\xee\xbd\x73\ \x5b\x03\xb1\x58\x0c\x01\x21\xe7\xb4\xd6\xb3\x8b\x5a\xcf\x2e\x8c\ \xb2\x05\x80\x44\x22\x9e\x69\x63\x21\x6a\xea\xef\xa6\xaa\xce\x03\ \x40\x91\xa1\x08\x80\x7b\x1a\xef\x05\xd8\x92\x8b\x02\x78\xd8\xe1\ \xa8\xc8\x73\xf5\x5e\x5b\x13\xa3\x3f\x7d\x0f\xc0\x44\xc0\x07\xaa\ \xca\xe2\x42\x8a\x78\x2c\x42\x68\x4e\x01\xc0\x77\x69\x90\x77\x0e\ \xec\xcc\xd5\x38\x9d\x95\x00\x2f\x02\x88\xad\xed\x2d\xf5\x06\x43\ \x11\x5a\xad\x16\xb3\xd9\x9c\x23\xd9\x2d\x95\x74\x35\x6f\x67\x64\ \xb0\x1f\x93\xc5\x41\x5a\x55\xb3\x39\xa8\x94\x96\x99\x19\x1d\x1a\ \xa0\xab\x79\x3b\x95\x0e\x37\x00\x92\x24\x65\xe3\x30\xd3\xda\xde\ \x52\x2f\x02\xee\x72\xab\x0d\x00\x45\x51\x90\x24\x09\x49\x92\x10\ \x45\x11\x57\xc5\x46\xba\xf7\x37\xe6\xc4\x45\x41\xa0\xd8\x68\x62\ \x74\x68\x80\xee\xfd\x8d\xb8\x2a\x36\xe6\xf8\x8a\x92\xd9\x85\xb1\ \xd4\x08\xe0\x16\x81\x2d\x77\x6c\xda\x4c\x2a\x95\x52\x35\x9a\x02\ \xe6\xe6\xe6\x50\x14\x05\x83\xc1\x80\x24\x49\xd4\xb9\x1b\xe8\xf3\ \x36\x31\x32\xd8\x4f\xd9\x3a\x3b\xe3\xc3\x17\xe9\xf3\x36\x51\xe7\ \x6e\xc8\x09\x2a\x8a\xc2\xe2\xe2\x02\xe1\x70\x58\xad\xae\xaa\x06\ \x68\xd4\x24\x12\x89\xad\x36\x9b\x8d\xd7\x3b\x5f\x15\x6e\x75\x93\ \x3c\x25\x49\x06\x07\x61\x47\xc9\x15\xfa\xde\xbd\x72\xd3\x0b\xf7\ \xec\x33\xcd\xc4\xe3\x89\x12\x8d\x4e\xa7\xdb\xeb\x76\x67\x72\x6a\ \x6f\x3b\x8c\xa0\xaa\xa8\x08\x80\x0a\x82\x00\xaa\xba\xd4\x64\x4b\ \x85\x2c\x07\xaa\xaa\xaa\xf0\xf9\x7c\x08\x42\xe6\x12\x9f\x7e\xfb\ \x4d\x6a\x6b\x6b\xd1\xeb\x75\xcd\x1a\x80\x60\x30\x98\x3d\x36\x06\ \xfc\x7e\xff\x6a\x7e\xb7\xd4\xd4\xd4\x00\x60\x32\xc9\xd9\xc3\x95\ \x59\x79\x49\x4b\x5c\x4e\x36\xc9\x26\x56\x0b\x59\x96\x33\x1f\xcb\ \x58\x86\xd1\x58\x8a\xd1\x68\xcc\x9b\xd7\x2c\x7f\x29\xd4\x16\xe2\ \xf1\x78\x58\x0b\xe4\x09\xb7\x79\x0f\xfe\xaf\xe2\xd6\xf6\x96\x9b\ \xd6\x68\x00\xa6\xa6\xa6\xd4\x43\xde\xe7\x85\xb5\x70\x3a\x31\x31\ \xa1\x02\x82\xf0\xc4\x93\x8f\xef\xb3\xdb\x6d\x67\x59\x43\x4c\x4c\ \x4c\xee\xfc\x1b\x0f\xd8\x70\x1b\x27\x6e\xb0\x4a\x00\x00\x00\x00\ \x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x05\xd0\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x16\x00\x00\x00\x16\x08\x06\x00\x00\x00\xc4\xb4\x6c\x3b\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0d\xd7\x00\x00\ \x0d\xd7\x01\x42\x28\x9b\x78\x00\x00\x00\x07\x74\x49\x4d\x45\x07\ \xd6\x01\x05\x0d\x1e\x16\x2a\x40\x95\xcd\x00\x00\x05\x5d\x49\x44\ \x41\x54\x38\xcb\x8d\x95\x5d\x6c\x54\xc7\x15\xc7\x7f\x33\xf7\xde\ \xfd\x5e\x7b\xd7\x4b\xfc\xb1\xc4\x26\x36\x35\xb8\x24\xc1\xc1\x5e\ \x27\x0d\x21\x98\xd0\xa4\x69\x95\x14\x35\x44\x4d\xa5\xc4\x4d\x8b\ \x88\xa5\x7e\xa8\xe9\x53\xfa\x56\x59\x4d\x9e\xe8\x53\x55\xa9\x6a\ \x25\x2b\xb4\x2e\x8b\xd2\x56\x6d\x20\xa1\x2f\xc5\x0a\x15\x6d\x6a\ \x0a\xac\x1d\x30\x06\x4c\x83\x03\x98\x85\xf5\xae\xd7\xbb\x5e\xef\ \xf7\xbd\xbb\xf7\xf6\x21\xbb\xc6\x4e\xab\xaa\xe7\x69\x74\x66\xce\ \xef\xfc\x75\xce\x9c\x19\xc1\xff\x61\x3b\x5f\xfe\x69\x5c\x77\x07\ \x9b\xd7\xb8\xe2\x91\xd1\xa1\xd6\xff\x15\xa3\x7e\xd6\x11\x1a\x0e\ \xf7\x03\x44\x46\x87\x26\xeb\x3e\xdd\x1d\x6c\x7e\xe9\xd1\x66\xf2\ \xc5\x12\x7a\x41\x67\x7c\xae\xd4\xf2\x99\xf3\x47\x81\x57\xd6\xc6\ \xc8\x75\xd0\xd7\x8e\x7c\x13\x3d\x7f\x6e\x53\xb3\xeb\x5c\x68\x38\ \x7c\x60\x7d\x4a\x93\x1b\xd1\x24\x46\x45\x5f\x05\x86\x86\xc3\x03\ \xc2\x28\xfc\xe5\x41\xbf\xd9\x0d\x9c\xac\x8b\x02\x10\xab\xd0\x83\ \x63\x03\x4d\x32\xfb\xe1\x1b\xaf\x0e\xda\xe6\xa3\x71\x7e\x79\x6a\ \x61\x15\xf9\xc5\x1d\xed\x6c\x09\x28\x9c\x3a\x7b\x8d\x87\xba\x36\ \xf0\xa7\x8b\xd9\x7b\x7b\x9d\x82\x4d\xf7\x05\x88\xa6\x8a\x9c\xbc\ \x9e\x5f\x89\x8c\x0e\x35\xae\x07\x1f\x38\x9c\xf9\xfa\xae\x76\x6f\ \x57\xd0\x2f\x02\x3e\x0f\xc2\x32\x51\xa5\xc5\xcd\xd8\x0a\xa9\xe5\ \x3c\x91\x99\x5b\x08\x21\xd0\x54\x85\xe6\x26\x2f\xb9\x95\x14\xfe\ \xc0\x06\x12\xc9\x2c\x5d\x6d\x4d\xb4\x78\xed\x1c\x9d\x4a\x1a\xa9\ \x42\xe5\xf1\xc8\xe8\xd0\xe4\xbd\x52\xa8\xb6\xef\xff\xf9\xf4\xd5\ \xf4\x06\x9f\x13\xb0\x58\xce\x96\x49\xa4\x4b\x4c\xcd\xdc\x66\x7a\ \xf6\x0e\x0e\x4d\xc3\xa1\x69\x68\x52\x21\x93\x29\x62\x09\x17\xe9\ \x74\x91\x56\x7f\x03\x7a\xc5\xe2\xed\x33\x0b\x66\x1d\xba\x4e\xf1\ \xa7\x35\xfe\x6d\x28\xe0\x30\xcf\x8d\x1c\xd8\x25\x92\xe9\x3c\x4b\ \xe9\x1c\x97\x66\xef\xd0\x11\xf4\xd3\xd5\x71\x1f\x00\xa5\xb2\x41\ \x22\x99\xe5\xc6\xed\x24\x52\x08\x3a\x83\x01\x4e\x4c\xce\x5b\x8b\ \xba\x3a\x12\x19\x1d\x7a\xeb\xbf\x36\x4f\x29\x2e\x05\x37\xb5\x78\ \xb0\x4c\x0b\x55\x91\x78\xdd\x0e\x76\x0f\x74\xe3\x73\x49\xeb\x83\ \x0f\xa7\xaa\xff\x8c\xcc\x90\x4e\x2d\xe3\xb0\x69\x3c\xd6\xdb\x89\ \x43\xd3\x48\x65\x0a\x0c\x6e\x76\x0b\xaa\x95\x57\xd6\xb2\x44\x68\ \x38\xfc\x77\x60\x17\x40\x4f\x47\x13\x2f\x0f\x76\xa2\x58\x26\xd9\ \x5c\x89\x72\xb9\x42\x26\x93\x34\xc7\x4e\x47\xcf\x54\x35\xf7\xf3\ \x91\xd1\xa1\xe5\xbd\xfb\x7e\xf8\xd2\xd7\xbe\xfa\x74\xd8\xeb\xf1\ \x6b\x8a\x22\x29\x14\x74\xda\x9a\xbd\xbc\x75\xec\xea\x5a\xee\x9b\ \x4a\xb0\x7f\xff\xe1\xd7\xbf\xb4\x91\x67\x7a\x5b\x78\x6a\x7b\x10\ \x01\xc4\xe2\x19\x0a\x85\x32\x5b\x3a\x03\xfc\xfc\xf7\x13\xc5\xb2\ \xcd\x1f\x8a\x8c\x0e\x2d\x03\xdc\xb8\x76\xf6\xb2\xea\xb8\xbf\xf5\ \xd1\xfe\xed\x03\xdb\xb6\x6e\xc4\xed\xb4\x63\xd7\x34\xb6\xb7\xb8\ \xd8\x11\x74\xb2\x23\x68\x63\x32\x5a\x1c\x94\x00\x1d\xc1\x20\x86\ \xa1\x12\x4f\x16\xb8\x3e\x97\x60\x71\x31\xcb\xc2\xc2\x0a\x96\x69\ \x92\x57\x1a\x1d\x75\x68\xdd\xb2\x99\xa5\x23\x85\x42\x8e\xc6\x06\ \x27\xa5\x82\xc1\xb5\x7f\xc5\x59\x59\xd1\xa9\x56\x54\x7c\x8d\x81\ \x7b\x35\x9e\xba\x30\x6b\xc5\x62\x8b\x2c\xa5\xf2\xa4\xd2\x79\xaa\ \x15\x13\xbb\x4d\x45\x48\x81\xcd\x2c\x19\xa1\xe1\xb0\x6f\x2d\xd8\ \xe5\xf5\x3f\xbe\x6d\xeb\x03\xe8\xe5\x0a\xb1\xd8\x32\x1e\xb7\x9d\ \x06\x8f\xc4\x32\xf3\x56\x3c\x7e\xd7\x04\x50\x82\x7d\x2f\xf4\x5c\ \x8a\xeb\x0f\x5f\xbc\x5b\x24\x72\x73\x99\x3d\x3d\x2d\x58\x55\x0b\ \x4d\x51\xf0\x35\x78\x70\x92\x53\x67\x13\x95\x50\xb0\xff\xc5\x13\ \x77\xa7\xde\x2d\xed\xdc\xff\xe3\xcd\x4f\x86\x7a\xfe\xf8\x58\xff\ \x83\xda\x9d\x68\x9a\x62\xde\xc0\xeb\x71\x70\xf8\xbd\xf1\xfc\xdf\ \xe2\x76\xdb\xc5\x05\x5d\x00\x6f\xae\xbb\x6e\xcf\xbd\xf0\xfa\x3e\ \xfb\xe6\x9d\xc7\xbf\xbc\xad\x4d\x48\x21\x90\x42\xf0\x48\x6f\x3b\ \xff\x98\x9a\xe1\xe4\xc4\xac\xe5\x75\xd9\x45\x5f\x77\x90\xfd\xcf\ \x3f\x89\x94\x82\xf3\xe7\x6e\x22\x85\x20\xbe\xb4\xc0\xd8\x99\xe8\ \xcc\xd9\xb1\xef\x3c\xfc\x1f\x23\x5d\x7b\x2b\x3e\xd8\x11\x74\xee\ \xf9\x4a\x5f\xa7\x2c\xe4\x74\xa4\x10\x08\x21\xb8\xbf\xdd\x4f\x6b\ \x4b\x23\x52\x0a\xf2\xb9\x32\xd5\x8a\x09\x40\xf4\x76\x1a\x4d\x53\ \x38\x7f\x79\x86\xf7\x3e\xae\x64\x2d\xab\xba\x77\xf2\xed\x6f\x4f\ \x02\xd6\x2a\xb8\xff\xb5\x23\xa7\x7c\x2e\x75\xd7\x77\xf7\x3e\xa0\ \x08\xc3\x26\x2d\xd3\x5a\x05\x4b\x29\x6a\x6b\x50\x15\xc9\xa6\xce\ \x00\x20\x88\xde\x4a\x21\x85\xa0\x8a\xce\xf4\x27\x51\x7e\x37\x9d\ \x31\xcc\x4a\xf9\x89\xa9\x5f\x1f\x8c\xa8\x00\xfd\x07\x7f\x13\x12\ \x96\xb9\xfb\x5b\x4f\x74\x08\xb7\xe6\x91\x86\x59\xc1\xe3\xb3\x23\ \x85\xa4\x54\x30\x3e\xed\x72\x0d\x2e\x85\x20\xbd\x54\xa4\xb5\xad\ \x01\xd3\x2a\xe3\x75\x35\x62\x59\x76\x9a\x1b\x1c\xc8\x6a\x42\x35\ \xf4\x92\x02\x08\x05\x10\xb1\x8f\x8e\x2f\xb4\xf5\x3e\xf7\x85\xb9\ \x78\x6e\xf3\x9e\xcf\xb7\x8b\x7c\x29\xcb\xc8\xfb\x57\x38\x3f\x3d\ \x9d\x5a\x5c\xc9\x39\xfa\xba\x83\xc2\xa6\xa8\xa8\x52\x62\xb3\x49\ \xa6\xe6\xa2\xd6\xc8\xd1\x09\x7d\xfc\x72\x34\xe7\xd2\xb0\xd9\x9c\ \x0e\x31\x39\x3d\x53\xfd\x38\x59\xfc\x45\xd5\x28\x5d\x4d\x5c\x19\ \xbf\xab\xd4\xea\xac\xc4\x2e\x9c\x38\xd6\xb8\xe5\xa9\xed\x91\xf9\ \xec\xd6\x6b\xf1\x02\x4b\xe9\xd4\x47\x13\x63\x3f\xf8\x5e\xae\xf1\ \x21\xfe\x7a\x4b\xef\x7d\x71\xa0\x0b\x2c\x81\x40\x72\xec\xc2\x1d\ \x31\x3b\x33\xf1\xb3\x2b\xc7\x47\x0e\xc5\xbd\xbd\xbe\x4b\xf3\x8b\ \xdd\x97\xe6\x93\xe1\xe9\x3f\xbc\x71\x28\x71\x65\xfc\x06\x50\xad\ \x37\x50\x01\xdc\x40\x5b\xcf\xbe\x91\x1f\x3d\xf2\xea\xaf\xce\x03\ \x83\xc0\x33\xc0\xb3\xa1\xe1\xb0\x35\x77\x3d\x61\x45\x4e\x7f\x62\ \xcd\x5d\x4f\x58\xa1\xe1\xb0\x05\x3c\x0b\x3c\x0d\xec\x06\xfa\x80\ \xcf\x01\xad\x40\x03\x60\xab\x7f\x4d\x16\x50\x51\x34\x67\x69\xf6\ \xfd\x9f\xbc\x03\x9c\x00\x1c\x80\xbd\x96\x14\x00\xff\x46\xcf\xba\ \x01\xac\x29\xd3\x81\x3c\x50\x00\x4a\x40\x05\x30\xd5\x1a\x14\xa0\ \x52\x35\x8a\x45\xa0\x2a\x55\xbb\x6e\x73\x37\x39\x4b\x99\x98\x04\ \x64\x79\x65\xf1\xdd\x6f\x1c\x3a\xb9\xbf\x4e\x34\x0a\x99\x77\x80\ \x78\x5d\x50\x0d\x58\xae\x25\x31\x00\xf3\xdf\xf0\x11\x56\x82\x70\ \x21\x0b\x3b\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x04\x7f\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x16\x00\x00\x00\x16\x08\x06\x00\x00\x00\xc4\xb4\x6c\x3b\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x11\x00\x00\ \x0b\x11\x01\x7f\x64\x5f\x91\x00\x00\x00\x07\x74\x49\x4d\x45\x07\ \xd5\x09\x1a\x0b\x18\x25\x79\xd9\x51\x49\x00\x00\x04\x0c\x49\x44\ \x41\x54\x38\xcb\xa5\x95\x7f\x4c\x94\x75\x1c\xc7\x5f\xcf\x71\x02\ \x29\xe0\xa1\x96\x72\x84\x88\xcd\x69\x56\xc2\x09\xa3\x0d\xee\x16\ \x85\xb8\x16\x0a\xce\x65\x69\xb2\xa6\x16\xcb\x6a\xfd\xe1\x58\x0b\ \x19\xee\xdb\x93\xc4\x51\xff\xd0\x06\xe4\xc8\xd6\x9a\x63\x2d\xcc\ \x2d\x73\xda\x26\xb1\x69\x2d\xd8\x94\x1f\x67\x3b\xa9\x43\x25\x76\ \xbb\x38\x90\x1e\x91\x2e\x40\xb8\x3b\x9e\xa7\x3f\xe4\xb9\x1d\xe7\ \x41\x6d\x7d\xb7\x67\x7b\x3e\xcf\xbe\xcf\x6b\xef\xef\xe7\xf3\x7e\ \x3f\x8f\x44\xc4\x12\x42\x08\xe0\xfd\xb9\xf2\x3d\xa0\x57\x96\xe5\ \x76\xfe\xef\x12\x42\x68\xa3\xb7\x47\xb4\x99\x99\x69\xcd\xe5\xfa\ \x4d\x13\x42\x68\x15\x15\x15\xc5\x80\xf4\x2f\xaf\x4a\x80\x41\x2f\ \x0c\x51\x36\x98\x9b\x3e\x3d\x81\xa6\xaa\xa4\x9a\xcd\xec\xdb\xb7\ \x97\x84\x84\x84\xf3\x80\xb6\x10\x3c\xa7\xbc\x25\xe5\x83\x13\xe7\ \xd4\x9c\xf2\x96\x53\x91\x60\x49\x08\x91\x05\x20\xcb\xf2\x30\x60\ \xb6\xd7\x7d\xc4\xcc\xf4\x3d\x32\x32\x32\x22\x55\x45\x42\xb3\x00\ \xef\xb1\xc3\x3b\x31\x2f\x67\x4d\x4e\x79\x4b\xbb\x0e\x96\xaa\xab\ \xab\x65\xc0\x21\x84\x38\xae\xc3\xad\x56\x2b\x92\xf4\xc0\x81\xd4\ \x28\x82\x1d\x5d\x9f\xed\xa7\xa7\xa7\x87\x83\xf9\xcb\x0a\x2d\xe9\ \xf1\x85\x00\x46\x60\x49\x4c\x4c\xcc\xb1\x37\x0f\x97\x63\x88\x89\ \x7d\x17\xa8\xde\xb2\x65\x0b\x9b\x36\x6d\x44\xd3\x54\x24\x49\xc2\ \x3f\x33\x79\x45\x08\x91\x25\xcb\xf2\xb5\x28\x6a\x19\x18\x18\xc0\ \xe3\xf1\xf0\xe1\xf7\x93\x00\xe6\xd0\xd1\x9a\x9b\x9b\x9d\xa5\x25\ \x3b\x9f\x5c\xba\xf4\x21\x02\x7e\x3f\x9a\xa6\xa1\x69\x5a\x08\x90\ \x64\x4a\xa6\xb6\xd6\x0e\x60\x9e\x6b\x95\x0e\x75\x74\x36\xbd\x44\ \xde\xdb\xa7\xf5\xad\x96\xee\x93\x65\xd7\x42\x60\x21\x44\x4a\x7c\ \x7c\xfc\xaf\xcf\x6f\x2f\x34\x3d\xfe\xc4\x53\x48\x92\x14\x9a\x95\ \x6f\xfc\xee\x7d\xf8\x72\x13\xb5\xf6\x3a\x00\xf3\x05\xef\x86\xd5\ \x80\xe3\x6a\xf3\x2b\xc1\xdc\x37\xbe\x32\x02\x45\xdd\x27\xcb\xda\ \xa3\x0e\x43\x08\x91\x95\x9e\x9e\xfe\xb9\xdb\xed\xce\xd6\x9f\xe5\ \xe6\xe6\x06\xb6\x6d\x2b\x5c\xf2\xf7\x5f\xe3\x68\x9a\xc6\xb2\xc4\ \x24\x5a\x5b\x5b\x69\xea\x8c\xe5\xe7\x86\x17\xb1\xbe\x73\x66\x9e\ \xca\x70\xae\xb4\x88\x9f\x53\x00\x1b\xd0\x5a\x55\x75\x94\xb1\x3b\ \x0a\xd7\x6f\xfe\xc1\xc7\x67\xdd\x7c\x7b\xbc\x98\x82\x23\x67\x17\ \x84\x02\x9a\xf4\x1f\x02\x93\x05\x38\xd6\x5a\x8a\x39\x71\xe1\x06\ \xdf\x54\xe5\x53\xf5\x45\x37\x25\x9b\x03\xb8\x5c\xfd\x96\xb0\x81\ \xea\xfd\x8b\xee\xcb\x70\xd3\x2b\x43\x1e\xaf\x5e\xaf\x4a\x4d\xe3\ \x72\xfd\x2e\x0e\xd4\xb5\xb1\xcb\x12\xcf\xcb\x25\x45\xd4\xd4\xd4\ \xe8\x03\x1d\x05\x66\x17\x35\x7c\x38\x74\xcf\xf6\x8d\x64\x6e\x5e\ \x8f\xa2\x8c\xf1\x49\xcb\x15\x56\xa5\xa6\x51\xb1\x23\x05\xb3\xc9\ \xc8\xfa\x8c\x75\xa4\x3e\x9a\x86\x2c\xcb\x00\x96\x48\x2b\x1a\x16\ \x83\xbe\x5a\x6a\x45\x9d\x50\x48\x34\x99\x28\xb4\x24\xa1\x0c\x79\ \x70\xf5\xfe\x84\xcd\x66\x23\x3e\x2e\x96\x3b\x7f\xde\xe6\xfe\x37\ \x0b\x87\x9e\xdc\xa8\x60\x1d\xfa\xfa\xee\x4c\x0e\xed\x7e\x86\xb6\ \x8b\x3f\xf0\x63\x4f\x3f\x18\x8c\xcc\x06\x83\x21\xaf\xca\xb2\xcc\ \xca\x87\x57\x23\x49\xd2\x82\x70\x43\x24\xf4\xe8\x6b\x56\xf6\x17\ \xe7\x71\xfa\xbb\x76\xba\xfa\x06\xc9\xb3\xd9\x70\xb9\x6e\x11\xf0\ \x4f\x03\xe0\xf3\xf9\x14\xbf\xdf\x9f\x2d\xcb\x32\x2b\x56\x3d\x02\ \x10\x82\xc7\xc5\xc5\x85\xe0\x06\x3d\x45\xca\x90\xc7\x2b\xbf\xf5\ \x2c\x7b\xb6\x67\x73\xea\xcc\x45\x06\x3d\x5e\x8a\x8a\x4b\x70\xb9\ \x6e\xe1\x75\xdf\xa4\xa3\x5f\xc5\x18\x1c\xdd\x50\x5f\x5f\x7f\xd7\ \x6e\xb7\xdf\x18\x19\x19\xb1\xea\xca\x67\xfc\x7e\x0e\x1e\x3c\x40\ \x65\x65\x25\x80\x23\x04\x56\x86\x3c\x8e\x23\x65\x4f\x53\x5a\x90\ \x49\xeb\xb9\xcb\x0c\x7a\xbc\xd8\x9e\x2b\x9c\x07\x0d\x8c\xf6\x5a\ \xa6\x14\x77\x12\xb0\x02\x58\xe9\x74\x3a\x03\x4e\xa7\xb3\x58\x96\ \x65\xcc\xa9\x69\x34\x36\x36\xe2\xf3\xf9\x42\x9d\x30\xea\x77\xe9\ \xeb\xd2\x98\x55\x35\x46\x87\x06\x1f\x80\x4e\xfc\xde\x56\xa0\xb8\ \x2e\x05\xe6\x84\x24\x03\x86\xce\xce\xce\x20\x30\x3c\x31\x31\xb1\ \xb7\xa1\xa1\xe1\xeb\xb1\xb1\x31\x54\x55\xbd\x1a\x08\x04\xec\xa1\ \xe4\xad\x7b\xc1\xae\xed\xc8\x37\x63\xc9\xb6\xf0\x58\x8a\x89\x5f\ \xfa\x6e\x71\xb5\xab\x8b\x8e\x7e\x95\x29\xf7\xa5\xfc\xd1\xbe\x36\ \x25\x62\x26\x6a\x98\x55\x67\x81\x19\x60\x12\x98\x06\x82\xc0\xac\ \x11\x60\xc5\x9a\x94\xad\xe7\x3b\xbc\xbd\x7a\x83\xee\x4d\x4d\xd0\ \xd1\xaf\x12\x67\x98\x2c\x50\x93\x53\xc7\x01\x25\xcc\xf7\x3a\x50\ \xff\xa3\xa8\x73\xf0\xa0\x0e\x9d\x17\xe9\xad\x87\xbe\xb4\x8c\x8d\ \x0c\xf7\xea\x75\x42\x62\xec\xda\xeb\xad\x15\x23\xe1\x31\x0d\x83\ \x4a\x51\x62\xac\xce\x5d\x1a\xa0\xfd\x03\x8c\xf6\xde\xf1\x62\xa0\ \xea\x2a\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x05\x4f\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x16\x00\x00\x00\x16\x08\x06\x00\x00\x00\xc4\xb4\x6c\x3b\ \x00\x00\x00\x04\x73\x42\x49\x54\x08\x08\x08\x08\x7c\x08\x64\x88\ \x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\x72\x65\ \x00\x77\x77\x77\x2e\x69\x6e\x6b\x73\x63\x61\x70\x65\x2e\x6f\x72\ \x67\x9b\xee\x3c\x1a\x00\x00\x04\xe1\x49\x44\x41\x54\x38\x8d\x8d\ \x94\x6b\x6c\x54\x45\x18\x86\x9f\x99\x33\xe7\xb6\x6d\x81\x82\x6d\ \x97\x3b\xbb\x6c\x2d\x97\x2d\x77\xe4\x2a\x01\x09\x24\xb2\x20\x26\ \x1a\x12\x12\x43\x54\x22\x28\x28\x26\x46\xa4\x5e\x12\x7f\x18\x65\ \x49\x48\xd0\x88\xc8\x1f\xf8\x01\x51\x13\x13\x23\x21\x6c\x00\xc1\ \x72\x11\xa4\x10\x25\x94\x96\x52\xe8\x65\x5b\x0a\x94\x36\x45\x28\ \xb4\xdd\xb6\xdb\x73\x8e\x3f\x76\xdb\xa0\x80\x38\xc9\x9b\xf9\x33\ \xf3\xcc\x97\x79\xbf\xf7\x13\x9e\xe7\xf1\xa4\x15\x88\x44\x0d\x20\ \x0c\xdc\x03\x6a\xe2\xb1\xa2\x27\x5e\x12\x8f\x03\x07\x22\xd1\x19\ \xc0\x3a\x60\x36\x30\x12\xe8\x04\x64\x5a\x97\x81\x13\xc0\xd6\x78\ \xac\xe8\xe6\xff\x02\xa7\xab\xdb\x0c\xac\x0d\x87\xfc\x19\x73\x26\ \x8e\x24\x1c\xf2\x53\x98\xef\x07\xa0\xbc\xba\x89\xb2\xea\x46\x4e\ \x5f\xa8\x4b\x96\x57\x37\x25\x80\xb7\xe2\xb1\xa2\xef\xff\x13\x1c\ \x88\x44\xc7\x02\x31\xdb\x54\xb9\x9b\x5e\x5b\x90\xb1\x78\x56\x3e\ \xc5\xe7\x6a\x28\xaf\x6d\xa2\xa2\xb6\x19\x29\x24\x85\x21\x3f\xe1\ \x50\x1e\xf3\xa7\x06\x38\xf4\xfb\x55\xa2\xbb\x8f\xb5\x25\xba\x92\ \x27\x80\x15\xf1\x58\x51\xc7\x43\xe0\x40\x24\x6a\x02\x95\xe3\x82\ \x79\x23\xbf\xf9\xf0\x45\x71\xae\xbc\x81\xad\x7b\x7f\xa3\x3b\xe9\ \xa0\x94\x86\xa6\x49\xa4\x94\x08\x21\x10\x02\x32\x6d\x83\x77\x57\ \xce\x66\x7c\x30\x87\x77\xa2\xfb\xbb\xca\xaa\x1b\xf7\xc6\x63\x45\ \x6f\x3c\x0a\xbc\xcd\xb6\xf4\x35\x07\xb7\xbf\xee\xdb\xba\xe7\x24\ \x27\xce\xd7\x31\x7d\xfc\x70\x5e\x5a\x38\x9e\x09\x21\x3f\x39\xd9\ \x19\x24\x7b\x1c\x1a\x6f\xb7\x71\xe8\x4c\x15\xfb\x4f\x56\xe2\xb8\ \x1e\x0b\xa6\x06\x58\xb5\x64\x12\xcf\xaf\xdf\xd5\x9e\xe8\x4a\x2e\ \x8b\xc7\x8a\x8e\xf5\x81\xd3\x46\x15\x7f\xb6\x6e\xb1\x4f\xd7\x35\ \x3e\xdf\x75\x1c\xd3\xd0\xd9\xb8\xea\x59\x56\x2c\x2a\x7c\xa4\xb9\ \x3f\xfe\x7a\x89\x3d\xb1\x52\x1c\xd7\xe5\xbd\x95\x33\x69\xb9\xdb\ \xce\xc7\x5f\x1f\x6c\xf6\x3c\x46\xc7\x63\x45\x6d\x32\x7d\xee\xed\ \x49\x05\x83\x7d\xcf\x3d\x13\x62\xdb\x77\xa7\x31\x4d\x1d\xd3\xd4\ \xf1\x80\xc3\x25\xd5\x7c\xb2\xb3\x98\xb5\x5b\x0e\xf0\xc3\x91\x4b\ \x7d\xe0\x85\xd3\x02\xd8\xb6\x89\x6d\x19\xec\x3e\x70\x81\xc5\x33\ \xf3\x99\x3c\x66\x68\x06\x10\x21\xdd\x3a\x00\xb3\xe7\x4e\x0e\x70\ \xa4\xa4\x8a\x1e\xc7\xc3\xd0\x15\xa6\xa1\xb3\xf7\x50\x19\x3b\x7f\ \xfe\x93\xab\xd7\xef\xd0\x96\x70\x38\x5d\x76\xbd\x0f\xac\x34\x89\ \xcf\x36\xb0\x2d\x03\xc7\x13\x9c\xab\xb8\xc9\xbc\x69\xa3\x7d\xc0\ \x4c\x00\x19\x88\x44\x2d\x60\xc4\x84\xfc\xc1\x54\xc4\x9b\xd1\x75\ \x0d\x43\x57\x18\x86\x42\x57\x1a\xa6\xa1\x63\x99\x06\x3e\xdb\x60\ \xf5\xd2\x49\x7d\xe0\x8b\xb5\x2d\xd8\x96\x89\x65\x19\x58\xa6\x41\ \x5d\xe3\x5d\x0a\x43\x7e\x21\xa5\x98\xd7\x5b\xf1\x44\x20\x51\x98\ \xef\xa7\xb2\xae\x05\xa5\x34\x74\x5d\xf5\xc9\x30\x52\xdf\xb2\x76\ \xf9\x64\x26\x3f\x9d\x07\xc0\xb5\xa6\x7b\xc4\x4a\xea\xb0\x2d\x03\ \xdb\x34\x30\x4d\x9d\xfa\xa6\xfb\x8c\x1d\x95\x83\xe7\x79\x63\x01\ \x14\xd0\x06\x48\x21\x04\x52\x93\x28\x4d\x43\x69\x12\x3d\xfd\x80\ \xa1\x2b\x5e\x98\x1b\x62\xda\x98\x54\x40\xea\x9b\xee\xb3\xf7\xe8\ \x55\x74\x43\x47\x48\x89\x94\x02\x04\xe8\x4a\xa5\x5a\x11\xd1\xd9\ \x5b\xf1\x65\x40\x55\xd4\x36\x13\x0e\xe6\x21\xa5\x44\xd3\x52\x52\ \x9a\x86\x52\x1a\x13\x43\xb9\x7d\x5f\x50\x5c\x7a\x13\x5d\xd7\xb1\ \x2d\x03\xcb\xd4\x31\x0c\x1d\x5d\x29\x46\x0f\xcb\xe6\xea\xb5\x16\ \x84\x14\x17\x00\x54\x3c\x56\xe4\x06\x22\xd1\xca\x8a\x9a\x5b\x13\ \xc7\x05\x73\x29\xb9\x74\x03\x29\x53\x61\xd0\xa4\x40\xd3\x24\x3b\ \xf6\x5d\xc4\x67\x1b\x58\x96\x91\x82\xda\x06\x3d\x8e\x8b\x00\x1c\ \xc7\x25\xa9\x24\xc1\x21\xfd\xa9\xa8\x6e\x74\x1d\xc7\x3d\xf9\x60\ \x57\x9c\x38\x55\x5a\xef\xcc\x9f\x1a\xc0\x32\x54\x2a\x39\x90\x4e\ \x99\xe0\x95\x45\x63\x58\x13\x09\xf3\xea\xa2\x02\xb2\xb3\x2c\x7c\ \xb6\x89\xae\x34\xa4\x26\x11\x52\x60\x1b\x8a\xc2\x60\x0e\xc5\x67\ \xab\x3a\x81\x92\x07\xc1\x5b\x4a\x4a\xeb\x13\x67\xcb\x1b\x58\xbd\ \x7c\x0a\x00\x1e\xe0\xe1\xe1\x79\x1e\xb9\xd9\x3e\xfc\x03\x7d\xe4\ \x0e\xb0\xc1\x73\x49\x74\x76\xd3\xd3\xe3\xe0\xba\x2e\x9e\xeb\xb1\ \x74\x56\x90\x53\x17\xea\xbd\xf3\x95\x37\x2a\x80\xc3\x7d\xe0\xf4\ \xe8\x5b\xff\xe9\xb7\xbf\x74\xcc\x0c\x0f\x63\x4a\xc1\x60\x5c\xd7\ \xc5\x75\x3c\x5c\xd7\x4d\xbd\x92\x5e\x5d\xdd\x3d\x24\x12\x5d\x74\ \x76\x25\xe9\x4e\xf6\x50\x30\xac\x3f\x01\x7f\x16\x1f\x7d\x15\xeb\ \x70\x1c\x77\x45\xef\xac\xfe\xc7\x74\x0b\x2e\x8d\x1e\x99\x51\x38\ \x72\xde\xb6\xf7\x97\x19\xe7\xaf\xdc\xe2\xa7\xe3\x95\x08\x4d\xc3\ \x32\x7b\x8d\x52\x28\xa5\x21\x85\x40\x69\x82\xc5\x53\x87\x13\xf0\ \xf7\x63\xfd\xe6\x7d\x1d\x7f\x5c\x6a\xd8\x58\x7b\x60\xd3\x8e\x5e\ \xd6\xbf\xc7\x66\xa6\x10\x62\x7b\x56\x86\xf9\xf2\x17\x1b\x96\x64\ \x4c\x1f\x37\x94\xf3\x57\x6e\x71\xad\xf9\x3e\x37\x5a\xda\xd1\x75\ \x8d\x51\xfe\x01\x8c\xc8\xcb\xa2\x30\x30\x88\x33\x65\x0d\xde\xa6\ \x2f\x0f\x74\xb4\x77\x74\x7f\xf0\x20\xf4\x21\x30\x29\xc3\x32\xfd\ \xb3\xde\x8c\xd8\xd9\x23\x76\xcc\x99\x12\xf4\xcd\x9f\x16\x32\xc3\ \xa3\xf3\x44\xfe\x88\x41\x00\x54\x37\xfc\x45\x79\xcd\x2d\xf7\xe8\ \x99\x2b\xc9\xb3\xa5\x35\xb5\xb7\xab\x8e\x6d\x68\xad\x3e\x76\x19\ \x68\xf5\x3c\xaf\xed\x91\x60\x21\x44\x36\x30\x10\x18\xa4\x67\xe4\ \x0c\xe9\x17\x98\xbb\xd0\xc8\xcc\x09\x9b\x59\x4f\x15\xa0\x32\x72\ \x04\x8e\xeb\x74\xb6\x36\x27\x5a\x1b\xab\xba\x5b\x1b\x2f\xb7\xd6\ \x1c\x3f\x0d\xde\x6d\xe0\x0e\x70\x1b\xb8\xe9\x79\x5e\xe2\x71\x15\ \x2b\xc0\x06\x7c\x40\x56\x5a\xfd\x80\xcc\xb4\xd9\x09\x52\x69\xbd\ \x9f\xde\xdb\xd3\xea\xf4\x1e\x80\xfd\x0d\xc2\x22\xe7\x20\xf7\x3e\ \x8c\x40\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ " qt_resource_name = "\ \x00\x05\ \x00\x6f\xa6\x53\ \x00\x69\ \x00\x63\x00\x6f\x00\x6e\x00\x73\ \x00\x05\ \x00\x35\x9b\x52\ \x00\x32\ \x00\x32\x00\x78\x00\x32\x00\x32\ \x00\x04\ \x00\x06\x87\x73\ \x00\x61\ \x00\x70\x00\x70\x00\x73\ \x00\x0a\ \x0b\xeb\xbe\x83\ \x00\x63\ \x00\x61\x00\x74\x00\x65\x00\x67\x00\x6f\x00\x72\x00\x69\x00\x65\x00\x73\ \x00\x07\ \x07\xab\x06\x93\ \x00\x61\ \x00\x63\x00\x74\x00\x69\x00\x6f\x00\x6e\x00\x73\ \x00\x11\ \x01\xa6\xc4\x87\ \x00\x64\ \x00\x6f\x00\x63\x00\x75\x00\x6d\x00\x65\x00\x6e\x00\x74\x00\x2d\x00\x6f\x00\x70\x00\x65\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ \ \x00\x12\ \x00\x03\x49\x87\ \x00\x73\ \x00\x79\x00\x73\x00\x74\x00\x65\x00\x6d\x00\x2d\x00\x6c\x00\x6f\x00\x67\x00\x2d\x00\x6f\x00\x75\x00\x74\x00\x2e\x00\x70\x00\x6e\ \x00\x67\ \x00\x10\ \x0c\xbc\x2e\x67\ \x00\x64\ \x00\x6f\x00\x63\x00\x75\x00\x6d\x00\x65\x00\x6e\x00\x74\x00\x2d\x00\x6e\x00\x65\x00\x77\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x11\ \x0f\xe3\xd5\x67\ \x00\x64\ \x00\x6f\x00\x63\x00\x75\x00\x6d\x00\x65\x00\x6e\x00\x74\x00\x2d\x00\x73\x00\x61\x00\x76\x00\x65\x00\x2e\x00\x70\x00\x6e\x00\x67\ \ \x00\x0e\ \x0d\x8b\x39\xe7\ \x00\x65\ \x00\x64\x00\x69\x00\x74\x00\x2d\x00\x63\x00\x6c\x00\x65\x00\x61\x00\x72\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x14\ \x0b\xa9\xab\x27\ \x00\x64\ \x00\x6f\x00\x63\x00\x75\x00\x6d\x00\x65\x00\x6e\x00\x74\x00\x2d\x00\x73\x00\x61\x00\x76\x00\x65\x00\x2d\x00\x61\x00\x73\x00\x2e\ \x00\x70\x00\x6e\x00\x67\ \x00\x17\ \x0d\x58\x3e\xe7\ \x00\x61\ \x00\x70\x00\x70\x00\x6c\x00\x69\x00\x63\x00\x61\x00\x74\x00\x69\x00\x6f\x00\x6e\x00\x73\x00\x2d\x00\x73\x00\x79\x00\x73\x00\x74\ \x00\x65\x00\x6d\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x16\ \x01\x70\xe1\x87\ \x00\x70\ \x00\x72\x00\x65\x00\x66\x00\x65\x00\x72\x00\x65\x00\x6e\x00\x63\x00\x65\x00\x73\x00\x2d\x00\x73\x00\x79\x00\x73\x00\x74\x00\x65\ \x00\x6d\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x10\ \x0f\xad\xca\x47\ \x00\x68\ \x00\x65\x00\x6c\x00\x70\x00\x2d\x00\x62\x00\x72\x00\x6f\x00\x77\x00\x73\x00\x65\x00\x72\x00\x2e\x00\x70\x00\x6e\x00\x67\ " qt_resource_struct = "\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\ \x00\x00\x00\x10\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\ \x00\x00\x00\x20\x00\x02\x00\x00\x00\x01\x00\x00\x00\x0f\ \x00\x00\x00\x48\x00\x02\x00\x00\x00\x06\x00\x00\x00\x09\ \x00\x00\x00\x2e\x00\x02\x00\x00\x00\x02\x00\x00\x00\x07\ \x00\x00\x01\x80\x00\x00\x00\x00\x00\x01\x00\x00\x1e\x0f\ \x00\x00\x01\x4c\x00\x00\x00\x00\x00\x01\x00\x00\x18\x3b\ \x00\x00\x00\x84\x00\x00\x00\x00\x00\x01\x00\x00\x03\x9b\ \x00\x00\x00\x5c\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x01\x1e\x00\x00\x00\x00\x00\x01\x00\x00\x13\xee\ \x00\x00\x00\xae\x00\x00\x00\x00\x00\x01\x00\x00\x07\xdb\ \x00\x00\x00\xfc\x00\x00\x00\x00\x00\x01\x00\x00\x0f\x15\ \x00\x00\x00\xd4\x00\x00\x00\x00\x00\x01\x00\x00\x0a\x93\ \x00\x00\x01\xb2\x00\x00\x00\x00\x00\x01\x00\x00\x22\x92\ " def qInitResources(): QtCore.qRegisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
59.887139
129
0.725884
0
0
0
0
0
0
0
0
45,276
0.992155
96bb265549d6f2b01a8d5a363f1cef448dfbda43
581
py
Python
xinyu/python/node/graphicNode/turtle/base_graphics.py
xzhuah/codingDimension
9b90b93a3a3b8afee28e3a2a571050ca3f86f066
[ "Apache-2.0" ]
1
2020-11-06T20:39:11.000Z
2020-11-06T20:39:11.000Z
xinyu/python/node/graphicNode/turtle/base_graphics.py
xzhuah/codingDimension
9b90b93a3a3b8afee28e3a2a571050ca3f86f066
[ "Apache-2.0" ]
1
2021-08-28T02:29:51.000Z
2021-08-28T02:29:51.000Z
xinyu/python/node/graphicNode/turtle/base_graphics.py
xzhuah/codingDimension
9b90b93a3a3b8afee28e3a2a571050ca3f86f066
[ "Apache-2.0" ]
null
null
null
# Created by Xinyu Zhu on 2021/6/6, 21:08 from turtle import Turtle import turtle def draw_rectangle(turtle: Turtle, llx, lly, width, height): turtle.up() turtle.goto(llx, lly) turtle.begin_fill() turtle.down() turtle.goto(llx + width, lly) turtle.goto(llx + width, lly + height) turtle.goto(llx, lly + height) turtle.end_fill() if __name__ == '__main__': tur = Turtle() wn = turtle.Screen() wn.title("Turtle Demo") wn.setworldcoordinates(0, 0, 500, 500) tur.speed(0) draw_rectangle(tur, 0, 0, 500, 500) a = input()
22.346154
60
0.636833
0
0
0
0
0
0
0
0
64
0.110155
96bc131385537becfa54518e6876cbcdcb1526f8
2,439
py
Python
deform_conv/cnn.py
lone17/deform-conv
3502cedbeae61c961d7e988382c55b9d45fd1873
[ "MIT" ]
null
null
null
deform_conv/cnn.py
lone17/deform-conv
3502cedbeae61c961d7e988382c55b9d45fd1873
[ "MIT" ]
null
null
null
deform_conv/cnn.py
lone17/deform-conv
3502cedbeae61c961d7e988382c55b9d45fd1873
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division from keras.layers import * from deform_conv.layers import ConvOffset2D def get_cnn(): inputs = l = Input((None, None, 1), name='input') # conv11 l = Conv2D(32, (3, 3), padding='same', name='conv11')(l) l = Activation('relu', name='conv11_relu')(l) l = BatchNormalization(name='conv11_bn')(l) # conv12 l = Conv2D(64, (3, 3), padding='same', strides=(2, 2), name='conv12')(l) l = Activation('relu', name='conv12_relu')(l) l = BatchNormalization(name='conv12_bn')(l) # conv21 l = Conv2D(128, (3, 3), padding='same', name='conv21')(l) l = Activation('relu', name='conv21_relu')(l) l = BatchNormalization(name='conv21_bn')(l) # conv22 l = Conv2D(128, (3, 3), padding='same', strides=(2, 2), name='conv22')(l) l = Activation('relu', name='conv22_relu')(l) l = BatchNormalization(name='conv22_bn')(l) # out l = GlobalAvgPool2D(name='avg_pool')(l) l = Dense(10, name='fc1')(l) outputs = l = Activation('softmax', name='out')(l) return inputs, outputs def get_deform_cnn(trainable, channel_wise=True): inputs = l = Input((None, None, 1), name='input') # conv11 l = Conv2D(32, (3, 3), activation='relu', padding='same', name='conv11', trainable=trainable)(l) l = BatchNormalization(name='conv11_bn')(l) # conv12 l_offset = ConvOffset2D(32, channel_wise=channel_wise, name='conv12_offset')(l) l = Conv2D(64, (3, 3), activation='relu', padding='same', name='conv12', trainable=trainable)(l_offset) l = MaxPooling2D((2, 2))(l) l = BatchNormalization(name='conv12_bn')(l) # conv21 l_offset = ConvOffset2D(64, channel_wise=channel_wise, name='conv21_offset')(l) l = Conv2D(128, (3, 3), activation='relu', padding='same', name='conv21', trainable=trainable)(l_offset) l = BatchNormalization(name='conv21_bn')(l) # conv22 l_offset = ConvOffset2D(128, channel_wise=channel_wise, name='conv22_offset')(l) l = Conv2D(128, (3, 3), activation='relu', padding='same', name='conv22', trainable=trainable)(l_offset) l = MaxPooling2D((2, 2))(l) l = BatchNormalization(name='conv22_bn')(l) # out l = GlobalAvgPool2D(name='avg_pool')(l) outputs = Dense(10, activation='softmax', name='fc1', trainable=trainable)(l) return inputs, outputs
32.959459
84
0.622796
0
0
0
0
0
0
0
0
486
0.199262
96bc9e10f5eba6df7448344bf718f39170c04f04
1,861
py
Python
perf/unit/ledger_rest.py
jancajthaml-openbank/e2e
a2ef84b6564022e95de76438fc795e2ef927aa2b
[ "Apache-2.0" ]
null
null
null
perf/unit/ledger_rest.py
jancajthaml-openbank/e2e
a2ef84b6564022e95de76438fc795e2ef927aa2b
[ "Apache-2.0" ]
30
2018-03-18T05:58:32.000Z
2022-01-19T23:21:31.000Z
perf/unit/ledger_rest.py
jancajthaml-openbank/e2e
a2ef84b6564022e95de76438fc795e2ef927aa2b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from unit.common import Unit from helpers.eventually import eventually from helpers.shell import execute import string import time import os class LedgerRest(Unit): def __init__(self): (code, result) = execute([ "systemctl", "start", 'ledger-rest' ], silent=True) assert code == 0, str(result) def __repr__(self): return 'LedgerRest()' def teardown(self): @eventually(5) def eventual_teardown(): (code, result) = execute([ 'systemctl', 'stop', 'ledger-rest' ], silent=True) assert code == 0, str(result) eventual_teardown() def restart(self) -> bool: @eventually(2) def eventual_restart(): (code, result) = execute([ "systemctl", "restart", 'ledger-rest' ], silent=True) assert code == 0, str(result) eventual_restart() return self.is_healthy def reconfigure(self, params) -> None: d = dict() if os.path.exists('/etc/ledger/conf.d/init.conf'): with open('/etc/ledger/conf.d/init.conf', 'r') as f: for line in f: (key, val) = line.rstrip().split('=') d[key] = val for k, v in params.items(): key = 'LEDGER_{0}'.format(k) if key in d: d[key] = v os.makedirs('/etc/ledger/conf.d', exist_ok=True) with open('/etc/ledger/conf.d/init.conf', 'w') as f: f.write('\n'.join("{!s}={!s}".format(key,val) for (key,val) in d.items())) self.is_healthy @property def is_healthy(self) -> bool: try: @eventually(10) def eventual_check(): (code, result) = execute([ "systemctl", "show", "-p", "SubState", "ledger-rest" ], silent=True) assert "SubState=running" == str(result).strip(), str(result) eventual_check() except: return False return True
23.858974
80
0.587319
1,669
0.89683
0
0
718
0.385814
0
0
361
0.193982
96bcc512ded27d54238d89fca3c8655f2d09789e
1,431
py
Python
pythonneat/neat/Population.py
SananR/PythonNEAT
951615b89d8211a22e147bc03446bf597576a6fc
[ "MIT" ]
2
2020-06-08T19:39:45.000Z
2022-01-20T18:21:38.000Z
pythonneat/neat/Population.py
SananR/PythonNEAT
951615b89d8211a22e147bc03446bf597576a6fc
[ "MIT" ]
null
null
null
pythonneat/neat/Population.py
SananR/PythonNEAT
951615b89d8211a22e147bc03446bf597576a6fc
[ "MIT" ]
null
null
null
from pythonneat.neat.Species import Species import pythonneat.neat.Speciation as Speciation import pythonneat.neat.utils.Parameters as Parameters current_genomes = [] def add_genome(genome): """Adds genome to the species list based on its compatability distance to already existing species Inputs: genome: The genome to add. type: Genome """ for specie in current_genomes: first = specie.get_champion() if Speciation.compatibility_distance(genome, first) < Parameters.COMPATABILITY_THRESHOLD: specie.add_genome(genome) return s = Species() s.add_genome(genome) current_genomes.append(s) return def remove_genome(genome): for specie in current_genomes: if genome in specie.genomes: specie.remove_genome(genome) def cleanup_species(): for specie in current_genomes: if specie.get_average_fitness() - specie.prev_fitness >= Parameters.SPECIES_STAGNATE_MIN_IMPROVEMENT: specie.consec_stagnate = 0 specie.prev_fitness = specie.get_average_fitness() else: # Stagnate specie.consec_stagnate += 1 if specie.consec_stagnate >= Parameters.SPECIES_STAGNATE_GEN_COUNT: specie.reproduce = False def population_size(): pop = 0 for specie in current_genomes: for _ in specie.genomes: pop += 1 return pop
28.62
109
0.678546
0
0
0
0
0
0
0
0
177
0.12369
96be495bd3261e63c1a53206e1ecae309a118594
387
py
Python
container_service_extension/pksclient/api/__init__.py
tschoergez/container-service-extension
e1fbaf7e9c242a416d3f580880c1051286847cfd
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
container_service_extension/pksclient/api/__init__.py
tschoergez/container-service-extension
e1fbaf7e9c242a416d3f580880c1051286847cfd
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
container_service_extension/pksclient/api/__init__.py
tschoergez/container-service-extension
e1fbaf7e9c242a416d3f580880c1051286847cfd
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import # flake8: noqa # import apis into api package from container_service_extension.pksclient.api.cluster_api import ClusterApi from container_service_extension.pksclient.api.plans_api import PlansApi from container_service_extension.pksclient.api.profile_api import ProfileApi from container_service_extension.pksclient.api.users_api import UsersApi
38.7
76
0.881137
0
0
0
0
0
0
0
0
44
0.113695
96beda9b3aae1f2d6cee27edea34723ea5136c59
1,733
py
Python
examples/applications/clustering/agglomerative.py
SahanJayasinghe/sentence-transformers
0ec07c6b2a996a5998129d2168ccafface49877a
[ "Apache-2.0" ]
2
2021-08-24T13:28:33.000Z
2021-08-24T13:28:42.000Z
examples/applications/clustering/agglomerative.py
SahanJayasinghe/sentence-transformers
0ec07c6b2a996a5998129d2168ccafface49877a
[ "Apache-2.0" ]
null
null
null
examples/applications/clustering/agglomerative.py
SahanJayasinghe/sentence-transformers
0ec07c6b2a996a5998129d2168ccafface49877a
[ "Apache-2.0" ]
null
null
null
""" This is a simple application for sentence embeddings: clustering Sentences are mapped to sentence embeddings and then agglomerative clustering with a threshold is applied. """ from sentence_transformers import SentenceTransformer from sklearn.cluster import AgglomerativeClustering import numpy as np embedder = SentenceTransformer('paraphrase-MiniLM-L6-v2') # Corpus with example sentences corpus = ['A man is eating food.', 'A man is eating a piece of bread.', 'A man is eating pasta.', 'The girl is carrying a baby.', 'The baby is carried by the woman', 'A man is riding a horse.', 'A man is riding a white horse on an enclosed ground.', 'A monkey is playing drums.', 'Someone in a gorilla costume is playing a set of drums.', 'A cheetah is running behind its prey.', 'A cheetah chases prey on across a field.' ] corpus_embeddings = embedder.encode(corpus) # Normalize the embeddings to unit length corpus_embeddings = corpus_embeddings / np.linalg.norm(corpus_embeddings, axis=1, keepdims=True) # Perform kmean clustering clustering_model = AgglomerativeClustering(n_clusters=None, distance_threshold=1.5) #, affinity='cosine', linkage='average', distance_threshold=0.4) clustering_model.fit(corpus_embeddings) cluster_assignment = clustering_model.labels_ clustered_sentences = {} for sentence_id, cluster_id in enumerate(cluster_assignment): if cluster_id not in clustered_sentences: clustered_sentences[cluster_id] = [] clustered_sentences[cluster_id].append(corpus[sentence_id]) for i, cluster in clustered_sentences.items(): print("Cluster ", i+1) print(cluster) print("")
37.673913
148
0.725332
0
0
0
0
0
0
0
0
771
0.444893
96bee57e7d78263abb2c0dde497d36d9e3def948
1,364
py
Python
generated-libraries/python/netapp/vserver/vserver_aggr_info.py
radekg/netapp-ontap-lib-get
6445ebb071ec147ea82a486fbe9f094c56c5c40d
[ "MIT" ]
2
2017-03-28T15:31:26.000Z
2018-08-16T22:15:18.000Z
generated-libraries/python/netapp/vserver/vserver_aggr_info.py
radekg/netapp-ontap-lib-get
6445ebb071ec147ea82a486fbe9f094c56c5c40d
[ "MIT" ]
null
null
null
generated-libraries/python/netapp/vserver/vserver_aggr_info.py
radekg/netapp-ontap-lib-get
6445ebb071ec147ea82a486fbe9f094c56c5c40d
[ "MIT" ]
null
null
null
from netapp.netapp_object import NetAppObject class VserverAggrInfo(NetAppObject): """ Assigned aggregate name and available size. """ _aggr_availsize = None @property def aggr_availsize(self): """ Assigned aggregate available size. Attributes: non-creatable, non-modifiable """ return self._aggr_availsize @aggr_availsize.setter def aggr_availsize(self, val): if val != None: self.validate('aggr_availsize', val) self._aggr_availsize = val _aggr_name = None @property def aggr_name(self): """ Assigned aggregate name. Attributes: non-creatable, modifiable """ return self._aggr_name @aggr_name.setter def aggr_name(self, val): if val != None: self.validate('aggr_name', val) self._aggr_name = val @staticmethod def get_api_name(): return "vserver-aggr-info" @staticmethod def get_desired_attrs(): return [ 'aggr-availsize', 'aggr-name', ] def describe_properties(self): return { 'aggr_availsize': { 'class': int, 'is_list': False, 'required': 'optional' }, 'aggr_name': { 'class': basestring, 'is_list': False, 'required': 'optional' }, }
26.230769
91
0.577713
1,316
0.964809
0
0
868
0.636364
0
0
433
0.317449
96bfcdd0287b23d40e6c42cd64034c753cbc7300
133
py
Python
sample4.py
vswamy/python
51835bf7cfec894059a41f2929509026fe611119
[ "Apache-2.0" ]
null
null
null
sample4.py
vswamy/python
51835bf7cfec894059a41f2929509026fe611119
[ "Apache-2.0" ]
null
null
null
sample4.py
vswamy/python
51835bf7cfec894059a41f2929509026fe611119
[ "Apache-2.0" ]
null
null
null
#Learning Python import os list = [1,2,3] ##using list as a queue print(list) list.pop(0) print(list) list.append(5) print(list)
9.5
23
0.691729
0
0
0
0
0
0
0
0
39
0.293233
7367174cab478d0699640581faa954e034871a9e
3,199
py
Python
python/hongong/ch05/05_2.py
gangserver/py_test
869bdfa5c94c3b6a15b87e0c3de6b2cdaca821f4
[ "Apache-2.0" ]
null
null
null
python/hongong/ch05/05_2.py
gangserver/py_test
869bdfa5c94c3b6a15b87e0c3de6b2cdaca821f4
[ "Apache-2.0" ]
null
null
null
python/hongong/ch05/05_2.py
gangserver/py_test
869bdfa5c94c3b6a15b87e0c3de6b2cdaca821f4
[ "Apache-2.0" ]
null
null
null
import pandas as pd wine = pd.read_csv('https://bit.ly/wine-date') # wine = pd.read_csv('../data/wine.csv') print(wine.head()) data = wine[['alcohol', 'sugar', 'pH']].to_numpy() target = wine['class'].to_numpy() from sklearn.model_selection import train_test_split train_input, test_input, train_target, test_target = train_test_split(data, target, test_size=0.2, random_state=42) print(train_input.shape, test_input.shape) sub_input, val_input, sub_target, val_target = train_test_split(train_input, train_target, test_size=0.2, random_state=42) print(sub_input.shape, val_input.shape) from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(random_state=42) dt.fit(sub_input, sub_target) print(dt.score(sub_input, sub_target)) print(dt.score(val_input, val_target)) from sklearn.model_selection import cross_validate scores = cross_validate(dt, train_input, train_target) print(scores) import numpy as np print(np.mean(scores['test_score'])) from sklearn.model_selection import StratifiedKFold scores = cross_validate(dt, train_input, train_target, cv=StratifiedKFold()) print(np.mean(scores['test_score'])) splitter = StratifiedKFold(n_splits=10, shuffle=True, random_state=42) scores = cross_validate(dt, train_input, train_target, cv=splitter) print(np.mean(scores['test_score'])) from sklearn.model_selection import GridSearchCV params = {'min_impurity_decrease': [0.0001, 0.0002, 0.0003, 0.0004, 0.0005]} gs = GridSearchCV(DecisionTreeClassifier(random_state=42), params, n_jobs=1) gs.fit(train_input, train_target) dt = gs.best_estimator_ print(dt.score(train_input, train_target)) print(gs.best_params_) print(gs.cv_results_['mean_test_score']) best_index = np.argmax(gs.cv_results_['mean_test_score']) print(gs.cv_results_['params'][best_index]) params = {'min_impurity_decrease': np.arange(0.0001, 0.001, 0.0001), 'max_depth': range(5, 20, 1), 'min_samples_split': range(2, 100, 10) } gs = GridSearchCV(DecisionTreeClassifier(random_state=42), params, n_jobs=-1) gs.fit(train_input, train_target) print(gs.best_params_) print(np.max(gs.cv_results_['mean_test_score'])) from scipy.stats import uniform, randint rgen = randint(0, 10) print(rgen.rvs(10)) print(np.unique(rgen.rvs(1000), return_counts=True)) ugen = uniform(0, 1) print(ugen.rvs(10)) params = {'min_impurity_decrease': uniform(0.0001, 0.001), 'max_depth': randint(20, 50), 'min_samples_split': randint(2, 25), 'min_samples_leaf': randint(1, 25) } from sklearn.model_selection import RandomizedSearchCV gs = RandomizedSearchCV(DecisionTreeClassifier(random_state=42), params, n_iter=100, n_jobs=-1, random_state=42) gs.fit(train_input, train_target) print(gs.best_params_) print(np.max(gs.cv_results_['mean_test_score'])) dt = gs.best_estimator_ print(dt.score(test_input, test_target)) # Exam gs = RandomizedSearchCV(DecisionTreeClassifier(splitter='random', random_state=42), params, n_iter=100, n_jobs=-1, random_state=42) gs.fit(train_input, train_target) print(gs.best_params_) print(np.max(gs.cv_results_['mean_test_score'])) dt = gs.best_estimator_ print(dt.score(test_input, test_target))
28.81982
131
0.758987
0
0
0
0
0
0
0
0
383
0.119725
73675fa4c6cc91d3e8f132bfb335856070974495
1,016
py
Python
junk/dot_classifier_tf/potential.py
jpzwolak/quantum-ml
aebe3496516be3bc0fc4392aaf7805ab5faf98dc
[ "MIT" ]
4
2018-06-27T17:20:19.000Z
2021-05-30T06:21:01.000Z
junk/dot_classifier_tf/potential.py
jpzwolak/quantum-ml
aebe3496516be3bc0fc4392aaf7805ab5faf98dc
[ "MIT" ]
null
null
null
junk/dot_classifier_tf/potential.py
jpzwolak/quantum-ml
aebe3496516be3bc0fc4392aaf7805ab5faf98dc
[ "MIT" ]
4
2018-11-30T20:34:17.000Z
2022-02-16T23:06:37.000Z
# Module to build a potential landscape import numpy as np def gauss(x,mean=0.0,stddev=0.02,peak=1.0): ''' Input: x : x-coordintes Output: f(x) where f is a Gaussian with the given mean, stddev and peak value ''' stddev = 5*(x[1] - x[0]) return peak*np.exp(-(x-mean)**2/(2*stddev**2)) def init_ndot(x,n_dot): ''' Input: x : 1d grid for the dots ndot : number of dots Output: y : cordinates of the potential grid with ndots The potential barriers are modelled as gaussians ''' # n dots imply n+1 barriers bar_centers = x[0] + (x[-1] - x[0])*np.random.rand(n_dot+1) bar_heights = np.random.rand(n_dot+1) #bar_heights = 0.5*np.ones(n_dot+1) N = len(x) y = np.zeros(N) # no need to optimize here really since the dot number is generally small, the calculation of the gauss function is already done in a vectorised manner for j in range(n_dot+1): y += gauss(x-bar_centers[j],peak=bar_heights[j]) return y
27.459459
155
0.629921
0
0
0
0
0
0
0
0
577
0.567913
73680345e2e353c1eaf1fb045f543678e6921793
878
py
Python
src/data/879.py
NULLCT/LOMC
79a16474a8f21310e0fb47e536d527dd5dc6d655
[ "MIT" ]
null
null
null
src/data/879.py
NULLCT/LOMC
79a16474a8f21310e0fb47e536d527dd5dc6d655
[ "MIT" ]
null
null
null
src/data/879.py
NULLCT/LOMC
79a16474a8f21310e0fb47e536d527dd5dc6d655
[ "MIT" ]
null
null
null
from sys import stdin input = stdin.readline from collections import deque N, Q = map(int, input().split()) tree = [[] for _ in range(N + 1)] level = [0] * (N + 1) for _ in range(N - 1): a, b = map(int, input().split()) tree[a].append(b) tree[b].append(a) visited = [False] * (N + 1) def bfs(st): global level q = deque() q.append([st, 0]) visited[st] = True while q: for _ in range(len(q)): now, lvl = q.popleft() for next in tree[now]: if not visited[next]: q.append([next, lvl + 1]) level[next] = lvl + 1 visited[next] = True bfs(1) def solve(a, b): if abs(level[a] - level[b]) % 2 == 1: return 'Road' else: return 'Town' for _ in range(Q): x, y = map(int, input().split()) print(solve(x, y))
19.954545
45
0.490888
0
0
0
0
0
0
0
0
12
0.013667
736815ffba5524694e4bf07787408fa70f5b7ab8
1,614
py
Python
objectfactory/nested.py
devinaconley/py-object-factory
6c97821feea8c47f7ad909cedbe57938c92761aa
[ "MIT" ]
4
2019-05-28T15:20:35.000Z
2022-03-18T20:53:57.000Z
objectfactory/nested.py
devinaconley/py-object-factory
6c97821feea8c47f7ad909cedbe57938c92761aa
[ "MIT" ]
3
2019-03-17T00:27:28.000Z
2019-12-04T16:07:11.000Z
objectfactory/nested.py
devinaconley/py-object-factory
6c97821feea8c47f7ad909cedbe57938c92761aa
[ "MIT" ]
null
null
null
""" nested field implements marshmallow field for objectfactory nested objects """ # lib import marshmallow # src from .serializable import Serializable from .factory import create class NestedFactoryField( marshmallow.fields.Field ): def __init__( self, field_type=None, **kwargs ): super().__init__( **kwargs ) self._field_type = field_type def _serialize( self, value, attr, obj, **kwargs ): """ dump serializable object within the interface of marshmallow field :param value: :param attr: :param obj: :param kwargs: :return: """ if not isinstance( value, Serializable ): return {} return value.serialize( **obj._serialize_kwargs ) def _deserialize( self, value, attr, data, **kwargs ): """ create serializable object with factory through interface of marshmallow field :param value: :param attr: :param data: :param kwargs: :return: """ if value is None: return if '_type' in value: obj = create( value ) if self._field_type and not isinstance( obj, self._field_type ): raise ValueError( '{} is not an instance of type: {}'.format( type( obj ).__name__, self._field_type.__name__ ) ) elif self._field_type: obj = self._field_type() obj.deserialize( value ) else: raise ValueError( 'Cannot infer type information' ) return obj
26.032258
86
0.57311
1,427
0.884139
0
0
0
0
0
0
567
0.351301
7368bcef3513f858130a78b597825be9b12f3327
1,709
py
Python
spacy/cli/__init__.py
g4brielvs/spaCy
cca8651fc8133172ebaa9d9fc438ed1fbf34fb33
[ "BSD-3-Clause", "MIT" ]
2
2017-06-23T20:54:31.000Z
2022-01-06T08:11:49.000Z
spacy/cli/__init__.py
g4brielvs/spaCy
cca8651fc8133172ebaa9d9fc438ed1fbf34fb33
[ "BSD-3-Clause", "MIT" ]
1
2021-03-01T19:01:37.000Z
2021-03-01T19:01:37.000Z
spacy/cli/__init__.py
g4brielvs/spaCy
cca8651fc8133172ebaa9d9fc438ed1fbf34fb33
[ "BSD-3-Clause", "MIT" ]
1
2021-06-21T07:17:48.000Z
2021-06-21T07:17:48.000Z
from wasabi import msg from ._util import app, setup_cli # noqa: F401 # These are the actual functions, NOT the wrapped CLI commands. The CLI commands # are registered automatically and won't have to be imported here. from .download import download # noqa: F401 from .info import info # noqa: F401 from .package import package # noqa: F401 from .profile import profile # noqa: F401 from .train import train_cli # noqa: F401 from .pretrain import pretrain # noqa: F401 from .debug_data import debug_data # noqa: F401 from .debug_config import debug_config # noqa: F401 from .debug_model import debug_model # noqa: F401 from .evaluate import evaluate # noqa: F401 from .convert import convert # noqa: F401 from .init_pipeline import init_pipeline_cli # noqa: F401 from .init_config import init_config, fill_config # noqa: F401 from .validate import validate # noqa: F401 from .project.clone import project_clone # noqa: F401 from .project.assets import project_assets # noqa: F401 from .project.run import project_run # noqa: F401 from .project.dvc import project_update_dvc # noqa: F401 from .project.push import project_push # noqa: F401 from .project.pull import project_pull # noqa: F401 from .project.document import project_document # noqa: F401 @app.command("link", no_args_is_help=True, deprecated=True, hidden=True) def link(*args, **kwargs): """As of spaCy v3.0, symlinks like "en" are deprecated. You can load trained pipeline packages using their full names or from a directory path.""" msg.warn( "As of spaCy v3.0, model symlinks are deprecated. You can load trained " "pipeline packages using their full names or from a directory path." )
44.973684
80
0.752487
0
0
0
0
432
0.252779
0
0
706
0.413107
73697b6fc24a0e06b73e768d5f059255782d3e66
490
py
Python
code/example code/introducing-python-master/1st_edition/art/panda1.py
ChouHsuan-Cheng/Learning_Python_Base
857873466463e6b20f24b1e8946c837c318f2536
[ "CNRI-Python" ]
null
null
null
code/example code/introducing-python-master/1st_edition/art/panda1.py
ChouHsuan-Cheng/Learning_Python_Base
857873466463e6b20f24b1e8946c837c318f2536
[ "CNRI-Python" ]
null
null
null
code/example code/introducing-python-master/1st_edition/art/panda1.py
ChouHsuan-Cheng/Learning_Python_Base
857873466463e6b20f24b1e8946c837c318f2536
[ "CNRI-Python" ]
null
null
null
from direct.showbase.ShowBase import ShowBase class MyApp(ShowBase): def __init__(self): ShowBase.__init__(self) # Load the environment model. self.environ = self.loader.loadModel("models/environment") # Reparent the model to render. self.environ.reparentTo(self.render) # Apply scale and position transforms on the model. self.environ.setScale(0.25, 0.25, 0.25) self.environ.setPos(-8, 42, 0) app = MyApp() app.run()
27.222222
66
0.657143
417
0.85102
0
0
0
0
0
0
131
0.267347
736a64ec89b619ffc454f1a8592cdcb1f2263f5a
16,104
py
Python
btclib/ssa.py
giubby84/btclib
0dd7e4e8ca43451a03b577fd7ec95715a1a21711
[ "MIT" ]
null
null
null
btclib/ssa.py
giubby84/btclib
0dd7e4e8ca43451a03b577fd7ec95715a1a21711
[ "MIT" ]
null
null
null
btclib/ssa.py
giubby84/btclib
0dd7e4e8ca43451a03b577fd7ec95715a1a21711
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (C) 2017-2020 The btclib developers # # This file is part of btclib. It is subject to the license terms in the # LICENSE file found in the top-level directory of this distribution. # # No part of btclib including this file, may be copied, modified, propagated, # or distributed except according to the terms contained in the LICENSE file. """Elliptic Curve Schnorr Signature Algorithm (ECSSA). This implementation is according to BIP340-Schnorr: https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki Differently from ECDSA, the BIP340-Schnorr scheme supports messages of size hsize only. It also uses as public key the x-coordinate (field element) of the curve point associated to the private key 0 < q < n. Therefore, for sepcp256k1 the public key size is 32 bytes. Arguably, the knowledge of q as the discrete logarithm of Q also implies the knowledge of n-q as discrete logarithm of -Q. As such, {q, n-q} can be considered a single private key and {Q, -Q} the associated public key characterized by the shared x_Q. Also, BIP340 advocates its own SHA256 modification as hash function: TaggedHash(tag, x) = SHA256(SHA256(tag)||SHA256(tag)||x) The rationale is to make BIP340 signatures invalid for anything else but Bitcoin and vice versa. TaggedHash is used for both the challenge (with tag 'BIPSchnorr') and the deterministic nonce (with tag 'BIPSchnorrDerive'). To allow for secure batch verification of multiple signatures, BIP340-Schnorr uses a challenge that prevents public key recovery from signature: c = TaggedHash('BIPSchnorr', x_k||x_Q||msg). A custom deterministic algorithm for the ephemeral key (nonce) is used for signing, instead of the RFC6979 standard: k = TaggedHash('BIPSchnorrDerive', q||msg) Finally, BIP340-Schnorr adopts a robust [r][s] custom serialization format, instead of the loosely specified ASN.1 DER standard. The signature size is p-size*n-size, where p-size is the field element (curve point coordinate) byte size and n-size is the scalar (curve point multiplication coefficient) byte size. For sepcp256k1 the resulting signature size is 64 bytes. """ import secrets from hashlib import sha256 from typing import List, Optional, Sequence, Tuple, Union from .alias import ( HashF, Integer, JacPoint, Octets, Point, SSASig, SSASigTuple, String, ) from .bip32 import BIP32Key from .curve import Curve, secp256k1 from .curvegroup import _double_mult, _mult, _multi_mult from .hashes import reduce_to_hlen from .numbertheory import mod_inv from .to_prvkey import PrvKey, int_from_prvkey from .to_pubkey import point_from_pubkey from .utils import bytes_from_octets, hex_string, int_from_bits # TODO relax the p_ThreeModFour requirement # hex-string or bytes representation of an int # 33 or 65 bytes or hex-string # BIP32Key as dict or String # tuple Point BIP340PubKey = Union[Integer, Octets, BIP32Key, Point] def point_from_bip340pubkey(x_Q: BIP340PubKey, ec: Curve = secp256k1) -> Point: """Return a verified-as-valid BIP340 public key as Point tuple. It supports: - BIP32 extended keys (bytes, string, or BIP32KeyData) - SEC Octets (bytes or hex-string, with 02, 03, or 04 prefix) - BIP340 Octets (bytes or hex-string, p-size Point x-coordinate) - native tuple """ # BIP 340 key as integer if isinstance(x_Q, int): y_Q = ec.y_quadratic_residue(x_Q, True) return x_Q, y_Q else: # (tuple) Point, (dict or str) BIP32Key, or 33/65 bytes try: x_Q = point_from_pubkey(x_Q, ec)[0] y_Q = ec.y_quadratic_residue(x_Q, True) return x_Q, y_Q except Exception: pass # BIP 340 key as bytes or hex-string if isinstance(x_Q, (str, bytes)): Q = bytes_from_octets(x_Q, ec.psize) x_Q = int.from_bytes(Q, "big") y_Q = ec.y_quadratic_residue(x_Q, True) return x_Q, y_Q raise ValueError("not a BIP340 public key") def _validate_sig(r: int, s: int, ec: Curve) -> None: # BIP340 is defined for curves whose field prime p = 3 % 4 ec.require_p_ThreeModFour() # Fail if r is not a field element, i.e. not a valid x-coordinate ec.y(r) # Fail if s is not [0, n-1]. if not 0 <= s < ec.n: err_msg = "scalar s not in 0..n-1: " err_msg += f"'{hex_string(s)}'" if s > 0xFFFFFFFF else f"{s}" raise ValueError(err_msg) def deserialize(sig: SSASig, ec: Curve = secp256k1) -> SSASigTuple: """Return the verified components of the provided BIP340 signature. The BIP340 signature can be represented as (r, s) tuple or as binary [r][s] compact representation. """ if isinstance(sig, tuple): r, s = sig else: if isinstance(sig, str): # hex-string of the serialized signature sig2 = bytes.fromhex(sig) else: sig2 = bytes_from_octets(sig, ec.psize + ec.nsize) r = int.from_bytes(sig2[: ec.psize], byteorder="big") s = int.from_bytes(sig2[ec.nsize :], byteorder="big") _validate_sig(r, s, ec) return r, s def serialize(x_K: int, s: int, ec: Curve = secp256k1) -> bytes: "Return the BIP340 signature as [r][s] compact representation." _validate_sig(x_K, s, ec) return x_K.to_bytes(ec.psize, "big") + s.to_bytes(ec.nsize, "big") def gen_keys(prvkey: PrvKey = None, ec: Curve = secp256k1) -> Tuple[int, int]: "Return a BIP340 private/public (int, int) key-pair." # BIP340 is defined for curves whose field prime p = 3 % 4 ec.require_p_ThreeModFour() if prvkey is None: q = 1 + secrets.randbelow(ec.n - 1) else: q = int_from_prvkey(prvkey, ec) QJ = _mult(q, ec.GJ, ec) x_Q = ec._x_aff_from_jac(QJ) if not ec.has_square_y(QJ): q = ec.n - q return q, x_Q # TODO move to hashes # This implementation can be sped up by storing the midstate after hashing # tag_hash instead of rehashing it all the time. def _tagged_hash(tag: str, m: bytes, hf: HashF) -> bytes: t = tag.encode() h1 = hf() h1.update(t) tag_hash = h1.digest() h2 = hf() h2.update(tag_hash + tag_hash + m) return h2.digest() def __det_nonce(m: bytes, q: int, ec: Curve, hf: HashF) -> Tuple[int, int]: # assume the random oracle model for the hash function, # i.e. hash values can be considered uniformly random # Note that in general, taking a uniformly random integer # modulo the curve order n would produce a biased result. # However, if the order n is sufficiently close to 2^hlen, # then the bias is not observable: # e.g. for secp256k1 and sha256 1-n/2^256 it is about 1.27*2^-128 # the unbiased implementation is provided here, # which works also for very-low-cardinality test curves t = q.to_bytes(ec.nsize, "big") + m while True: t = _tagged_hash("BIPSchnorrDerive", t, hf) # The following lines would introduce a bias # k = int.from_bytes(t, 'big') % ec.n # k = int_from_bits(t, ec.nlen) % ec.n k = int_from_bits(t, ec.nlen) # candidate k if 0 < k < ec.n: # acceptable value for k return gen_keys(k, ec) # successful candidate def _det_nonce( m: Octets, prvkey: PrvKey, ec: Curve = secp256k1, hf: HashF = sha256 ) -> Tuple[int, int]: """Return a BIP340 deterministic ephemeral key (nonce).""" # The message m: a hlen array hlen = hf().digest_size m = bytes_from_octets(m, hlen) q, _ = gen_keys(prvkey, ec) return __det_nonce(m, q, ec, hf) def det_nonce( msg: String, prvkey: PrvKey, ec: Curve = secp256k1, hf: HashF = sha256 ) -> Tuple[int, int]: """Return a BIP340 deterministic ephemeral key (nonce).""" m = reduce_to_hlen(msg, hf) return _det_nonce(m, prvkey, ec, hf) def __challenge(m: bytes, x_Q: int, r: int, ec: Curve, hf: HashF) -> int: # note that only x_Q is needed # if Q is Jacobian y_Q calculation can be avoided t = r.to_bytes(ec.psize, "big") t += x_Q.to_bytes(ec.psize, "big") # m size must have been already checked to be equal to hsize t += m t = _tagged_hash("BIPSchnorr", t, hf) # if c == 0 then private key is removed from the equations, # so the signature is valid for any private/public key pair # if c == 0: # raise RuntimeError("invalid zero challenge") return int_from_bits(t, ec.nlen) % ec.n def _challenge( m: Octets, xQ: BIP340PubKey, r: int, ec: Curve = secp256k1, hf: HashF = sha256 ) -> int: # The message m: a hlen array hlen = hf().digest_size m = bytes_from_octets(m, hlen) x_Q, _ = point_from_bip340pubkey(xQ, ec) return __challenge(m, x_Q, r, ec, hf) def challenge( msg: String, xQ: BIP340PubKey, r: int, ec: Curve = secp256k1, hf: HashF = sha256 ) -> int: m = reduce_to_hlen(msg, hf) return _challenge(m, xQ, r, ec, hf) def __sign(c: int, q: int, k: int, x_K: int, ec: Curve) -> SSASigTuple: # s=0 is ok: in verification there is no inverse of s s = (k + c * q) % ec.n return x_K, s def _sign( m: Octets, prvkey: PrvKey, k: Optional[PrvKey] = None, ec: Curve = secp256k1, hf: HashF = sha256, ) -> SSASigTuple: """Sign message according to BIP340 signature algorithm.""" # BIP340 is defined for curves whose field prime p = 3 % 4 ec.require_p_ThreeModFour() # The message m: a hlen array hlen = hf().digest_size m = bytes_from_octets(m, hlen) q, x_Q = gen_keys(prvkey, ec) # The nonce k: an integer in the range 1..n-1. k, x_K = __det_nonce(m, q, ec, hf) if k is None else gen_keys(k, ec) # Let c = int(hf(bytes(x_K) || bytes(x_Q) || m)) mod n. c = __challenge(m, x_Q, x_K, ec, hf) return __sign(c, q, k, x_K, ec) def sign( msg: String, prvkey: PrvKey, k: Optional[PrvKey] = None, ec: Curve = secp256k1, hf: HashF = sha256, ) -> SSASigTuple: """Sign message according to BIP340 signature algorithm. The message msg is first processed by hf, yielding the value m = hf(msg), a sequence of bits of length *hlen*. Normally, hf is chosen such that its output length *hlen* is roughly equal to *nlen*, the bit-length of the group order *n*, since the overall security of the signature scheme will depend on the smallest of *hlen* and *nlen*; however, ECSSA supports all combinations of *hlen* and *nlen*. """ m = reduce_to_hlen(msg, hf) return _sign(m, prvkey, k, ec, hf) def __assert_as_valid(c: int, QJ: JacPoint, r: int, s: int, ec: Curve) -> None: # Private function for test/dev purposes # It raises Errors, while verify should always return True or False # BIP340 is defined for curves whose field prime p = 3 % 4 ec.require_p_ThreeModFour() # Let K = sG - eQ. # in Jacobian coordinates KJ = _double_mult(ec.n - c, QJ, s, ec.GJ, ec) # Fail if infinite(KJ). # Fail if jacobi(y_K) ≠ 1. if not ec.has_square_y(KJ): raise RuntimeError("y_K is not a quadratic residue") # Fail if x_K ≠ r assert KJ[0] == KJ[2] * KJ[2] * r % ec.p, "signature verification failed" def _assert_as_valid( m: Octets, Q: BIP340PubKey, sig: SSASig, ec: Curve = secp256k1, hf: HashF = sha256 ) -> None: # Private function for test/dev purposes # It raises Errors, while verify should always return True or False r, s = deserialize(sig, ec) x_Q, y_Q = point_from_bip340pubkey(Q, ec) # Let c = int(hf(bytes(r) || bytes(Q) || m)) mod n. c = _challenge(m, x_Q, r, ec, hf) __assert_as_valid(c, (x_Q, y_Q, 1), r, s, ec) def assert_as_valid( msg: String, Q: BIP340PubKey, sig: SSASig, ec: Curve = secp256k1, hf: HashF = sha256 ) -> None: m = reduce_to_hlen(msg, hf) _assert_as_valid(m, Q, sig, ec, hf) def _verify( m: Octets, Q: BIP340PubKey, sig: SSASig, ec: Curve = secp256k1, hf: HashF = sha256 ) -> bool: """Verify the BIP340 signature of the provided message.""" # try/except wrapper for the Errors raised by _assert_as_valid try: _assert_as_valid(m, Q, sig, ec, hf) except Exception: return False else: return True def verify( msg: String, Q: BIP340PubKey, sig: SSASig, ec: Curve = secp256k1, hf: HashF = sha256 ) -> bool: """ECDSA signature verification (SEC 1 v.2 section 4.1.4).""" m = reduce_to_hlen(msg, hf) return _verify(m, Q, sig, ec, hf) def __recover_pubkey(c: int, r: int, s: int, ec: Curve) -> int: # Private function provided for testing purposes only. if c == 0: raise ValueError("invalid zero challenge") KJ = r, ec.y_quadratic_residue(r, True), 1 e1 = mod_inv(c, ec.n) QJ = _double_mult(ec.n - e1, KJ, e1 * s, ec.GJ, ec) assert QJ[2] != 0, "how did you do that?!?" return ec._x_aff_from_jac(QJ) # FIXME add crack_prvkey def _crack_prvkey( m1: Octets, sig1: SSASig, m2: Octets, sig2: SSASig, Q: BIP340PubKey, ec: Curve = secp256k1, hf: HashF = sha256, ) -> Tuple[int, int]: m1 = bytes_from_octets(m1, hf().digest_size) m2 = bytes_from_octets(m2, hf().digest_size) r1, s1 = deserialize(sig1, ec) r2, s2 = deserialize(sig2, ec) if r1 != r2: raise ValueError("not the same r in signatures") if s1 == s2: raise ValueError("identical signatures") x_Q = point_from_bip340pubkey(Q, ec)[0] c1 = _challenge(m1, x_Q, r1, ec, hf) c2 = _challenge(m2, x_Q, r2, ec, hf) q = (s1 - s2) * mod_inv(c2 - c1, ec.n) % ec.n k = (s1 + c1 * q) % ec.n return q, k def _batch_verify( ms: Sequence[Octets], Qs: Sequence[BIP340PubKey], sigs: Sequence[SSASig], ec: Curve, hf: HashF, ) -> None: batch_size = len(Qs) if len(ms) != batch_size: errMsg = f"mismatch between number of pubkeys ({batch_size}) " errMsg += f"and number of messages ({len(ms)})" raise ValueError(errMsg) if len(sigs) != batch_size: errMsg = f"mismatch between number of pubkeys ({batch_size}) " errMsg += f"and number of signatures ({len(sigs)})" raise ValueError(errMsg) if batch_size < 2: return _assert_as_valid(ms[0], Qs[0], sigs[0], ec, hf) # BIP340 is defined for curves whose field prime p = 3 % 4 ec.require_p_ThreeModFour() t = 0 scalars: List[int] = list() points: List[JacPoint] = list() for i, (m, Q, sig) in enumerate(zip(ms, Qs, sigs)): m = bytes_from_octets(m, hf().digest_size) r, s = deserialize(sig, ec) KJ = r, ec.y_quadratic_residue(r, True), 1 x_Q, y_Q = point_from_bip340pubkey(Q, ec) QJ = x_Q, y_Q, 1 c = _challenge(m, x_Q, r, ec, hf) # a in [1, n-1] # deterministically generated using a CSPRNG seeded by a # cryptographic hash (e.g., SHA256) of all inputs of the # algorithm, or randomly generated independently for each # run of the batch verification algorithm a = 1 if i == 0 else 1 + secrets.randbelow(ec.n - 1) scalars.append(a) points.append(KJ) scalars.append(a * c % ec.n) points.append(QJ) t += a * s TJ = _mult(t, ec.GJ, ec) RHSJ = _multi_mult(scalars, points, ec) # return T == RHS, checked in Jacobian coordinates RHSZ2 = RHSJ[2] * RHSJ[2] TZ2 = TJ[2] * TJ[2] precondition = TJ[0] * RHSZ2 % ec.p == RHSJ[0] * TZ2 % ec.p if not precondition: raise ValueError("signature verification precondition failed") valid_sig = TJ[1] * RHSZ2 * RHSJ[2] % ec.p == RHSJ[1] * TZ2 * TJ[2] % ec.p assert valid_sig, "signature verification failed" def batch_verify( m: Sequence[Octets], Q: Sequence[BIP340PubKey], sig: Sequence[SSASig], ec: Curve = secp256k1, hf: HashF = sha256, ) -> bool: """Batch verification of BIP340 signatures.""" # try/except wrapper for the Errors raised by _batch_verify try: _batch_verify(m, Q, sig, ec, hf) except Exception: return False else: return True
30.442344
88
0.648162
0
0
0
0
0
0
0
0
7,060
0.438292
736b9802fb2c5a179b409bf71bdd9ff72225db52
998
py
Python
13. REST API using OpenAPI, Flask & Connexions/source_code/test-api/src/test_api/core/pets.py
Edmartt/articles
93d62086ff141f5646193afb868973e94f33f1e6
[ "MIT" ]
31
2020-03-01T20:27:03.000Z
2022-02-15T14:53:09.000Z
13. REST API using OpenAPI, Flask & Connexions/source_code/test-api/src/test_api/core/pets.py
hmajid2301/articles
27f38cc6c2dd470d879b30d54d1e804a7d76caab
[ "MIT" ]
24
2020-04-04T12:18:25.000Z
2022-03-29T08:41:57.000Z
13. REST API using OpenAPI, Flask & Connexions/source_code/test-api/src/test_api/core/pets.py
Edmartt/articles
93d62086ff141f5646193afb868973e94f33f1e6
[ "MIT" ]
52
2020-02-29T04:01:10.000Z
2022-03-11T07:54:16.000Z
import json def get_all_pets(): pets = read_from_file() pets_in_store = [] for k, v in pets.items(): current_pet = {"id": k, **v} pets_in_store.append(current_pet) return pets def remove_pet(id): pets = read_from_file() del pets[id] write_to_file(pets) def update_pet(id, pet): pets = read_from_file() ids = pets.keys() pets[id] = {"name": pet.name, "breed": pet.breed, "price": pet.price} write_to_file(pets) def add_pet(pet): pets = read_from_file() ids = pets.keys() new_id = int(ids[-1]) + 1 pets[new_id] = {"name": pet.name, "breed": pet.breed, "price": pet.price} write_to_file(pets) def get_pet(id): pets = read_from_file() pet = pets[id] pet["id"] = id return pet def write_to_file(content): with open("./pets.json", "w") as pets: pets.write(json.dumps(content)) def read_from_file(): with open("./pets.json", "r") as pets: return json.loads(pets.read())
19.96
77
0.603206
0
0
0
0
0
0
0
0
80
0.08016
736d59ff49e38e22e2651e066d945a62407f38ec
73
py
Python
CodeWars/8 Kyu/Price of Mangoes.py
anubhab-code/Competitive-Programming
de28cb7d44044b9e7d8bdb475da61e37c018ac35
[ "MIT" ]
null
null
null
CodeWars/8 Kyu/Price of Mangoes.py
anubhab-code/Competitive-Programming
de28cb7d44044b9e7d8bdb475da61e37c018ac35
[ "MIT" ]
null
null
null
CodeWars/8 Kyu/Price of Mangoes.py
anubhab-code/Competitive-Programming
de28cb7d44044b9e7d8bdb475da61e37c018ac35
[ "MIT" ]
null
null
null
def mango(quantity, price): return (quantity - quantity // 3) * price
36.5
45
0.671233
0
0
0
0
0
0
0
0
0
0
736eb235587fea9084624307afb075d1bfa93603
5,582
py
Python
car-number-plate.project/car number plate.py
SumanthKumarS/mrucode-car-numberplate-detection-
46f759a5dec01ee551080db68ca250b064a25a01
[ "Apache-2.0" ]
null
null
null
car-number-plate.project/car number plate.py
SumanthKumarS/mrucode-car-numberplate-detection-
46f759a5dec01ee551080db68ca250b064a25a01
[ "Apache-2.0" ]
null
null
null
car-number-plate.project/car number plate.py
SumanthKumarS/mrucode-car-numberplate-detection-
46f759a5dec01ee551080db68ca250b064a25a01
[ "Apache-2.0" ]
null
null
null
import matplotlib.pyplot as plt import cv2 import imutils import pytesseract as pt from tkinter import * from tkinter import messagebox # ploting the images def plot_img(img1, img2, title1="", title2=""): fig = plt.figure(figsize=[5, 5]) # axis 1 ax1 = fig.add_subplot(121) ax1.imshow(img1, cmap="gray") ax1.set(xticks=[], yticks=[], title=title1) # axis 2 ax2 = fig.add_subplot(122) ax2.imshow(img2, cmap="gray") ax2.set(xticks=[], yticks=[], title=title2) # read the image using numpy print("\n1.car-1\n2.car-2\n3.car-3") a = int(input("Enter the choice of car : ")) if a == 1: path = "./image/a.jpg" elif a == 2: path = "./image/b.jpg" else: path = "./image/c.jpg" image = cv2.imread(path) # resizing the image image = imutils.resize(image, width=500) cv2.imshow("original image", image) # delaying the next image till this image gets closed cv2.waitKey(8000) #delaying till 5 sec cv2.destroyAllWindows() plot_img(image, image, title1="original1", title2="original1") # image color to gray gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) plot_img(image, gray, title1="original1", title2="gray") cv2.imshow('gray image', gray) cv2.waitKey(8000) cv2.destroyAllWindows() # Noise removal with iterative bilateral filters(which removes the noise while filtering the edges) blur = cv2.bilateralFilter(gray, 11, 90, 90) plot_img(gray, blur, title1="gray", title2="Blur") cv2.imshow("blurred image:", blur) cv2.waitKey(8000) cv2.destroyAllWindows() # blurring the edges of grayscale image edges = cv2.Canny(blur, 30, 200) plot_img(blur, edges, title1="Blur", title2="Edges") cv2.imshow("canny image:", edges) cv2.waitKey(8000) cv2.destroyAllWindows() # Finding the contours based edges cnts, new = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # coping the image as secondary image_copy = image.copy() # Drawing all the contours edges of the original image _ = cv2.drawContours(image_copy, cnts, -1, (255, 0, 255), 2) plot_img(edges, image_copy, title1="Edges", title2="Contours") cv2.imshow("contours image:", image_copy) cv2.waitKey(8000) cv2.destroyAllWindows() print("number of iteration of draw counter has passed: ", len(cnts)) # sort the contours keeping the minimum area as 30 cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:30] image_reduce_cnts = image.copy() _ = cv2.drawContours(image_reduce_cnts, cnts, -1, (255, 0, 255), 2) plot_img(image_copy, image_reduce_cnts , title1="Contours", title2="Reduced") cv2.imshow("reduced image:" , image_reduce_cnts) cv2.waitKey(8000) cv2.destroyAllWindows() print("number of iteration passed by reducing the edges : ", len(cnts)) plate = None for c in cnts: perimeter = cv2.arcLength(c, True) edges_count = cv2.approxPolyDP(c, 0.02 * perimeter , True) if len(edges_count) == 4 : x, y, w, h = cv2.boundingRect(c) plate = image[y:y + h, x:x + w] break cv2.imwrite("plate.png", plate) plot_img(plate, plate, title1="plate", title2="plate") cv2.imshow("Number Plate Image : ", plate) cv2.waitKey(8000) cv2.destroyAllWindows() pt.pytesseract.tesseract_cmd = r'C:\Users\admin\AppData\Local\Tesseract.exe' no_plate = pt.image_to_string(plate, lang='eng') print("the number plate of car is: ", no_plate) def convert(): c_entry = input_entry.get() if c_entry == 'HR26DK8337': string_display = "Name : harish\nAddress : ministori visual tech in bangalore in vijayanagar\nPhone no : 9582645123" label2 = Label(root) label2["text"] = string_display label2.grid(row=1 , column=1) cv2.imshow("original image", image) messagebox.showinfo("Car number plate Detector", "Successfully Number plate has been analysed : "+no_plate) if c_entry == 'KLOLCC 5995': string_display = "Name : chandran\nAddress : manthon niyali megalaya-552326\nPhone no : 9529876123" label2 = Label(root) label2["text"] = string_display label2.grid(row=1 , column=1) cv2.imshow("original image", image) messagebox.showinfo("Car number plate Detector", "Successfully Number plate has been analysed : "+no_plate) if c_entry == 'DZI7 YXR': string_display = "Name : vijaya\nAddress : kadoor village nprayya nagar haydrabad\nPhone no : 92954611233" label2 = Label(root) label2["text"] = string_display label2.grid(row=1 , column=1) cv2.imshow("original image", image) messagebox.showinfo("Car number plate Detector", "Successfully Number plate has been analysed : "+no_plate) # creating Tk window root = Tk() # setting geometry of tk window root.geometry('500x350+100+200') #title of project root.title('Car Number Plate Detector - (owner file address)') # Back ground colour root.config(bg="dark orange") # Lay out widgets root.grid_columnconfigure(1, weight=1) root.grid_rowconfigure(1, weight=1) inputNumber = StringVar() var = StringVar() input_label = Label(root, text="car plate number", font=("times new roman", 20, "bold"), bg="white", fg="green", background="#09A3BA", foreground="#FFF").place(x=150,y=40) input_entry = Entry(root, textvariable=inputNumber, font=("times new roman", 15), bg="lightgray") input_entry.grid(row=1, columnspan=2) result_button = Button(root, text="Details", command=convert, font=("times new roman", 20, "bold"), bg="cyan") result_button.grid(row=3, column=1) root.mainloop()
34.45679
172
0.682551
0
0
0
0
0
0
0
0
1,966
0.352204
736ef7d551671fb41b699b2055b5a873b3f9d021
13,229
py
Python
IBMWatson_Examples/WatsonNLU.py
sptennak/TextAnalytics
dde30337dc4d769ce7fb31b6f3021721bcd0b056
[ "Apache-2.0" ]
4
2018-07-11T06:58:53.000Z
2020-09-06T13:17:54.000Z
IBMWatson_Examples/WatsonNLU.py
sptennak/TextAnalytics
dde30337dc4d769ce7fb31b6f3021721bcd0b056
[ "Apache-2.0" ]
null
null
null
IBMWatson_Examples/WatsonNLU.py
sptennak/TextAnalytics
dde30337dc4d769ce7fb31b6f3021721bcd0b056
[ "Apache-2.0" ]
1
2020-09-06T13:18:00.000Z
2020-09-06T13:18:00.000Z
# -*- coding: utf-8 -*- """ Created on Fri May 18 22:15:35 2018 @author: Sumudu Tennakoon References: [1] https://www.ibm.com/watson/developercloud/natural-language-understanding/api/v1/ """ from watson_developer_cloud import NaturalLanguageUnderstandingV1, WatsonException, WatsonApiException from watson_developer_cloud.natural_language_understanding_v1 import Features, EntitiesOptions, KeywordsOptions, RelationsOptions import pandas as pd import numpy as np from timeit import default_timer as timer import multiprocessing import sys ############################################################################### def IAM_Auth(APIKey, Version='2018-03-16'): ServiceAuthentication = NaturalLanguageUnderstandingV1( version= Version, iam_api_key= APIKey ) ServiceAuthentication.set_url('https://gateway-fra.watsonplatform.net/natural-language-understanding/api') #To prevent IBM from accessing user input and Watson responses... https://www.ibm.com/watson/developercloud/conversation/api/v1/python.html?python#data-collection ServiceAuthentication.set_default_headers({'x-watson-learning-opt-out': "true"}) return ServiceAuthentication def Basic_Auth(UserName, Password, Version='2018-03-16'): ServiceAuthentication = NaturalLanguageUnderstandingV1( version= Version, username= UserName, password= Password ) ServiceAuthentication.set_url('https://gateway-fra.watsonplatform.net/natural-language-understanding/api') #To prevent IBM from accessing user input and Watson responses... https://www.ibm.com/watson/developercloud/conversation/api/v1/python.html?python#data-collection ServiceAuthentication.set_default_headers({'x-watson-learning-opt-out': "true"}) return ServiceAuthentication ############################################################################### def TextNLU(ServiceAuthentication, TextID, Text, ModelID=None, Emotion=False, Sentiment=False, Mentions =False, EntityLimit=50, TextLimit=50000, ReturnText=True): Notes = '' try: Response = ServiceAuthentication.analyze( text=Text, features=Features( relations=RelationsOptions( model = ModelID, ), entities=EntitiesOptions( emotion=Emotion, sentiment=Sentiment, mentions=Mentions, model = ModelID, limit=EntityLimit ), ), limit_text_characters = TextLimit, #https://console.bluemix.net/docs/services/natural-language-understanding/usage-limits.html#usage-limits return_analyzed_text=ReturnText ) Notes='RECIEVED' except: EXP = sys.exc_info() Notes = str(EXP[0])+'['+''.join(EXP[1].args)+']' Notes = 'NLU:'+Notes # Process Response Header WatsonResponseHeader = pd.DataFrame({'TextID':[TextID]}) try: WatsonResponseHeader['language'] = Response['language'] WatsonResponseHeader['text_characters'] = Response['usage']['text_characters'] #Number of characters processed WatsonResponseHeader['text_units'] = Response['usage']['text_units'] #Number of characters processed WatsonResponseHeader['features'] = Response['usage']['features'] #Number of features used, such as entities, sentiment, etc. WatsonResponseHeader['entities'] = len(Response['entities']) WatsonResponseHeader['analyzed_text'] = Response['analyzed_text'] except: EXP = sys.exc_info() Notes= Notes+ '\tHEADER:' + str(EXP[0])+'['+''.join(EXP[1].args)+']' # Process Response Details try: if len(Response['entities']) != 0: WatsonResponseDetail = pd.DataFrame(Response['entities']) WatsonResponseDetail.insert(0, 'TextID', TextID) if 'sentiment' in WatsonResponseDetail.columns: Split= WatsonResponseDetail.sentiment.apply(pd.Series) WatsonResponseDetail['sentiment_'+Split.columns]= Split WatsonResponseDetail.drop('sentiment', axis=1, inplace=True) else: raise Exception('NO ENTITIES FOUND') except: EXP = sys.exc_info() Notes= Notes+ '\tDETAIL:' + str(EXP[0])+'['+''.join(EXP[1].args)+']' WatsonResponseDetail = pd.DataFrame() WatsonResponseHeader['Notes'] = Notes return WatsonResponseHeader, WatsonResponseDetail ############################################################################### # GUI ############################################################################### import tkinter as tk #(https://wiki.python.org/moin/TkInter) from tkinter import filedialog from tkinter import scrolledtext import configparser #(https://docs.python.org/3.4/library/configparser.html) import traceback class ApplicationWindow(tk.Frame): def __init__(self, master=None): super().__init__(master) self.pack() self.UserName = tk.StringVar() self.Password = tk.StringVar() self.APIKey = tk.StringVar() self.Version = tk.StringVar() self.ModelID = tk.StringVar() self.ConfigFile = tk.StringVar() self.InputTextFile = tk.StringVar() self.Input = tk.StringVar() self.CreateWidgets() def CreateWidgets(self): #Menu MenuBar = tk.Menu(self.master) self.master.config(menu=MenuBar) FileMenu = tk.Menu(MenuBar) MenuBar.add_cascade(label='File', menu=FileMenu) FileMenu.add_command(label='Load Config', command=None) FileMenu.add_command(label='Save Config', command=self.SaveConfig) FileMenu.add_command(label='Save Config As', command=self.SaveConfigAs) FileMenu.add_command(label='Close', command=root.destroy) HelpMenu = tk.Menu(MenuBar) MenuBar.add_cascade(label='Help', menu=HelpMenu) HelpMenu.add_command(label='About', command=None) #Field self.Btn_InputTextFile = tk.Button(self, text='Input Text File', fg='blue', command=self.OpenInputTextFile) self.Ent_InputTextFile = tk.Entry(self, textvariable=self.InputTextFile) self.Btn_ConfigFile = tk.Button(self, text='Config File', fg='blue', command=self.OpenConfigFile) self.Ent_ConfigFile = tk.Entry(self, textvariable=self.ConfigFile) self.Lbl_UserName = tk.Label(self, text='User Name') self.Ent_UserName = tk.Entry(self, textvariable=self.UserName) self.Lbl_Password = tk.Label(self, text='Password') self.Ent_Password = tk.Entry(self, textvariable=self.Password) self.Lbl_APIKey = tk.Label(self, text='APIKey') self.Ent_APIKey = tk.Entry(self, textvariable=self.APIKey) self.Lbl_Version = tk.Label(self, text='Version') self.Ent_Version = tk.Entry(self, textvariable=self.Version) self.Lbl_ModelID = tk.Label(self, text='Model ID') self.Ent_ModelID = tk.Entry(self, textvariable=self.ModelID) # Input Text self.Txt_Input= scrolledtext.ScrolledText(self, height=15) # Output Textbox self.Txt_Output= scrolledtext.ScrolledText(self, height=15) # Buttons self.Btn_Start = tk.Button(self, text='START', fg='green', command=self.Start) self.Btn_Close = tk.Button(self, text='CLOSE WINDOW', fg='red', command=root.destroy) ####################################################################### # Pack Wigdgets self.Btn_InputTextFile.grid(row=0,column=0, padx=10) self.Ent_InputTextFile.grid(row=0,column=1, padx=10) self.Btn_ConfigFile.grid(row=1,column=0, padx=10) self.Ent_ConfigFile.grid(row=1,column=1, padx=10) self.Lbl_Version.grid(row=2,column=0, padx=10) self.Ent_Version.grid(row=2,column=1, padx=10) self.Lbl_UserName.grid(row=3,column=0, padx=10) self.Ent_UserName.grid(row=3,column=1, padx=10) self.Lbl_Password.grid(row=4,column=0, padx=10) self.Ent_Password.grid(row=4,column=1, padx=10) self.Lbl_APIKey.grid(row=5,column=0, padx=10) self.Ent_APIKey.grid(row=5,column=1, padx=10) self.Lbl_ModelID.grid(row=6,column=0) self.Ent_ModelID.grid(row=6,column=1, padx=10) self.Btn_Start.grid(row=7,column=0, columnspan=2) self.Btn_Close.grid(row=8,column=0, columnspan=2, pady=10) self.Txt_Input.grid(row=0,column=2, rowspan=6, columnspan=2, padx=10, pady=10) self.Txt_Input.insert(tk.END, 'Hello World') self.Txt_Output.grid(row=6,column=2, rowspan=3, columnspan=2, padx=10, pady=10) self.Txt_Output.insert(tk.END, '>') ####################################################################### def Start(self): try: Version = self.Version.set('2018-03-16') TextID = 'GUI' Text = self.Txt_Input.get(1.0,tk.END) Version = self.Version.get() ModelID = self.ModelID.get() Emotion = True Sentiment = True UserName = self.UserName.get() Password = self.Password.get() APIKey = self.APIKey.get() ServiceAuthentication = Basic_Auth(UserName, Password, Version) WatsonResponseHeader, WatsonResponseDetail = TextNLU(ServiceAuthentication, TextID, Text, ModelID=None)#, Emotion=False, Sentiment=False, Mentions =False, =50, TextLimit=50000, ReturnText=True) print('Application Started') Text = '> Version:{}\n UserName:{} \n Password:{}\n APIKey:{}\n ModelID:{}\n\n'.format(self.Version.get(), self.UserName.get(), self.Password.get(), self.APIKey.get(), self.ModelID.get()) Text = Text + ' Text: {}\n\n'.format(Text) self.Txt_Output.insert(tk.END, Text) except: print(traceback.print_exc()) def OpenInputTextFile(self): try: FileName = filedialog.askopenfilename(title = 'Select Input Text File',filetypes = (('Text Files','*.txt'), ('All files','*.*'))) if FileName!='': self.Txt_Input.delete(1.0, tk.END) self.InputTextFile.set(FileName) with open(FileName, 'r') as inputfile: Text = inputfile.read() self.Txt_Input.insert(tk.END , Text) self.Input.set(Text) else: pass print(FileName) except: print(traceback.print_exc()) def OpenConfigFile(self): try: config = configparser.ConfigParser() FileName = filedialog.askopenfilename(title = 'Select Config File',filetypes = (('Config Files','*.cfg'),('Text Files','*.txt'), ('All files','*.*'))) if FileName!='': self.ConfigFile.set(FileName) config.read(FileName) self.Version.set(config['DEFAULT']['version']) self.UserName.set(config['DEFAULT']['username']) self.Password.set(config['DEFAULT']['password']) self.APIKey.set(config['DEFAULT']['apikey']) self.ModelID.set(config['DEFAULT']['modelid']) self.Txt_Output.insert(tk.END, 'Config File Loded: {}\n>'.format(FileName)) else: pass except: print(traceback.print_exc()) def SaveConfig(self): FileName = self.ConfigFile.get() try: if FileName != '': config = configparser.ConfigParser() config['DEFAULT'] = {'Version': self.Version.get(), 'UserName': self.UserName.get(), 'Password': self.Password.get(), 'APIKey': self.APIKey.get(), 'ModelID': self.ModelID.get()} with open(FileName, 'w') as configfile: config.write(configfile) self.Txt_Output.insert(tk.END, 'Config File Saved: {}\n>'.format(FileName)) except: print(traceback.print_exc()) def SaveConfigAs(self): try: File = filedialog.asksaveasfile(mode='w',defaultextension=".cfg") FileName=File.name if File is None: pass else: config = configparser.ConfigParser() config['DEFAULT'] = {'Version': self.Version.get(), 'UserName': self.UserName.get(), 'Password': self.Password.get(), 'APIKey': self.APIKey.get(), 'ModelID': self.ModelID.get()} config.write(File) File.close() self.Txt_Output.insert(tk.END, 'Config File Saved As: {}\n>'.format(FileName)) except: print(traceback.print_exc()) root = tk.Tk() AppWindow = ApplicationWindow(master=root) AppWindow.master.title('IBM Watson Natural Language Processing') #AppWindow.master.maxsize(1024, 768) AppWindow.mainloop()
45.150171
205
0.595434
8,142
0.615466
0
0
0
0
0
0
2,918
0.220576
7370be693eff3bd55bdb03b72b2306e42f8caced
6,813
py
Python
invenio_drafts_resources/resources/records/resource.py
fenekku/invenio-drafts-resources
fadae86fb9b36073cef13713fbc174ef771e49ec
[ "MIT" ]
null
null
null
invenio_drafts_resources/resources/records/resource.py
fenekku/invenio-drafts-resources
fadae86fb9b36073cef13713fbc174ef771e49ec
[ "MIT" ]
null
null
null
invenio_drafts_resources/resources/records/resource.py
fenekku/invenio-drafts-resources
fadae86fb9b36073cef13713fbc174ef771e49ec
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # Copyright (C) 2020 Northwestern University. # # Invenio-Drafts-Resources is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see LICENSE file for more # details. """Invenio Drafts Resources module to create REST APIs.""" import marshmallow as ma from flask import g from flask_resources import JSONSerializer, ResponseHandler, \ resource_requestctx, response_handler, route, with_content_negotiation from invenio_records_resources.resources import \ RecordResource as RecordResourceBase from invenio_records_resources.resources.records.resource import \ request_data, request_headers, request_read_args, request_search_args, \ request_view_args from invenio_records_resources.resources.records.utils import es_preference from .errors import RedirectException class RecordResource(RecordResourceBase): """Draft-aware RecordResource.""" def create_blueprint(self, **options): """Create the blueprint.""" # We avoid passing url_prefix to the blueprint because we need to # install URLs under both /records and /user/records. Instead we # add the prefix manually to each route (which is anyway what Flask # does in the end) options["url_prefix"] = "" return super().create_blueprint(**options) def create_url_rules(self): """Create the URL rules for the record resource.""" routes = self.config.routes def p(route): """Prefix a route with the URL prefix.""" return f"{self.config.url_prefix}{route}" def s(route): """Suffix a route with the URL prefix.""" return f"{route}{self.config.url_prefix}" rules = [ route("GET", p(routes["list"]), self.search), route("POST", p(routes["list"]), self.create), route("GET", p(routes["item"]), self.read), route("PUT", p(routes["item"]), self.update), route("DELETE", p(routes["item"]), self.delete), route("GET", p(routes["item-versions"]), self.search_versions), route("POST", p(routes["item-versions"]), self.new_version), route("GET", p(routes["item-latest"]), self.read_latest), route("GET", p(routes["item-draft"]), self.read_draft), route("POST", p(routes["item-draft"]), self.edit), route("PUT", p(routes["item-draft"]), self.update_draft), route("DELETE", p(routes["item-draft"]), self.delete_draft), route("POST", p(routes["item-publish"]), self.publish), route("GET", s(routes["user-prefix"]), self.search_user_records), ] if self.service.draft_files: rules.append(route( "POST", p(routes["item-files-import"]), self.import_files, apply_decorators=False )) return rules @request_search_args @request_view_args @response_handler(many=True) def search_user_records(self): """Perform a search over the record's versions. GET /user/records """ hits = self.service.search_drafts( identity=g.identity, params=resource_requestctx.args, es_preference=es_preference(), ) return hits.to_dict(), 200 @request_search_args @request_view_args @response_handler(many=True) def search_versions(self): """Perform a search over the record's versions. GET /records/:pid_value/versions """ hits = self.service.search_versions( resource_requestctx.view_args["pid_value"], identity=g.identity, params=resource_requestctx.args, es_preference=es_preference() ) return hits.to_dict(), 200 @request_view_args @response_handler() def new_version(self): """Create a new version. POST /records/:pid_value/versions """ item = self.service.new_version( resource_requestctx.view_args["pid_value"], g.identity, ) return item.to_dict(), 201 @request_view_args @response_handler() def edit(self): """Edit a record. POST /records/:pid_value/draft """ item = self.service.edit( resource_requestctx.view_args["pid_value"], g.identity, ) return item.to_dict(), 201 @request_view_args @response_handler() def publish(self): """Publish the draft.""" item = self.service.publish( resource_requestctx.view_args["pid_value"], g.identity, ) return item.to_dict(), 202 @request_view_args @with_content_negotiation( response_handlers={ 'application/json': ResponseHandler(JSONSerializer()) }, default_accept_mimetype='application/json', ) @response_handler(many=True) def import_files(self): """Import files from previous record version.""" files = self.service.import_files( resource_requestctx.view_args["pid_value"], g.identity, ) return files.to_dict(), 201 @request_view_args def read_latest(self): """Redirect to latest record. GET /records/:pid_value/versions/latest """ item = self.service.read_latest( resource_requestctx.view_args["pid_value"], g.identity, ) raise RedirectException(item["links"]["self"]) @request_read_args @request_view_args @response_handler() def read_draft(self): """Edit a draft. GET /records/:pid_value/draft """ item = self.service.read_draft( resource_requestctx.view_args["pid_value"], g.identity, ) return item.to_dict(), 200 @request_headers @request_view_args @request_data @response_handler() def update_draft(self): """Update a draft. PUT /records/:pid_value/draft """ item = self.service.update_draft( resource_requestctx.view_args["pid_value"], g.identity, resource_requestctx.data or {}, revision_id=resource_requestctx.headers.get("if_match"), ) return item.to_dict(), 200 @request_headers @request_view_args def delete_draft(self): """Delete a draft. DELETE /records/:pid_value/draft """ self.service.delete_draft( resource_requestctx.view_args["pid_value"], g.identity, revision_id=resource_requestctx.headers.get("if_match"), ) return "", 204
31.541667
77
0.60957
5,932
0.870688
0
0
3,773
0.553794
0
0
1,929
0.283135
73719b129e4d31a646493cafb373317395215b7e
56,465
py
Python
pyscreener/preprocessing/gypsum_dl/Steps/SMILES/dimorphite_dl/dimorphite_dl.py
futianfan/pyscreener
15cce4ca8002ba083254aefa716d0e9c3ef00dba
[ "MIT" ]
28
2020-12-11T22:10:16.000Z
2022-02-25T05:00:51.000Z
molpal/objectives/pyscreener/preprocessing/gypsum_dl/Steps/SMILES/dimorphite_dl/dimorphite_dl.py
ashuein/molpal
1e17a0c406516ceaeaf273a6983d06206bcfe76f
[ "MIT" ]
3
2021-09-17T14:14:53.000Z
2021-09-23T11:04:10.000Z
molpal/objectives/pyscreener/preprocessing/gypsum_dl/Steps/SMILES/dimorphite_dl/dimorphite_dl.py
ashuein/molpal
1e17a0c406516ceaeaf273a6983d06206bcfe76f
[ "MIT" ]
9
2021-03-03T12:10:10.000Z
2022-02-15T06:53:11.000Z
# Copyright 2020 Jacob D. Durrant # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script identifies and enumerates the possible protonation sites of SMILES strings. """ from __future__ import print_function import copy import os import argparse import sys try: # Python2 from StringIO import StringIO except ImportError: # Python3 from io import StringIO def print_header(): """Prints out header information.""" # Always let the user know a help file is available. print("\nFor help, use: python dimorphite_dl.py --help") # And always report citation information. print("\nIf you use Dimorphite-DL in your research, please cite:") print("Ropp PJ, Kaminsky JC, Yablonski S, Durrant JD (2019) Dimorphite-DL: An") print( "open-source program for enumerating the ionization states of drug-like small" ) print("molecules. J Cheminform 11:14. doi:10.1186/s13321-019-0336-9.\n") try: import rdkit from rdkit import Chem from rdkit.Chem import AllChem # Disable the unnecessary RDKit warnings from rdkit import RDLogger RDLogger.DisableLog("rdApp.*") except: msg = "Dimorphite-DL requires RDKit. See https://www.rdkit.org/" print(msg) raise Exception(msg) def main(params=None): """The main definition run when you call the script from the commandline. :param params: The parameters to use. Entirely optional. If absent, defaults to None, in which case argments will be taken from those given at the command line. :param params: dict, optional :return: Returns a list of the SMILES strings return_as_list parameter is True. Otherwise, returns None. """ parser = ArgParseFuncs.get_args() args = vars(parser.parse_args()) if not args["silent"]: print_header() # Add in any parameters in params. if params is not None: for k, v in params.items(): args[k] = v # If being run from the command line, print out all parameters. if __name__ == "__main__": if not args["silent"]: print("\nPARAMETERS:\n") for k in sorted(args.keys()): print(k.rjust(13) + ": " + str(args[k])) print("") if args["test"]: # Run tests. TestFuncs.test() else: # Run protonation if "output_file" in args and args["output_file"] is not None: # An output file was specified, so write to that. with open(args["output_file"], "w") as file: for protonated_smi in Protonate(args): file.write(protonated_smi + "\n") elif "return_as_list" in args and args["return_as_list"] == True: return list(Protonate(args)) else: # No output file specified. Just print it to the screen. for protonated_smi in Protonate(args): print(protonated_smi) class MyParser(argparse.ArgumentParser): """Overwrite default parse so it displays help file on error. See https://stackoverflow.com/questions/4042452/display-help-message-with-python-argparse-when-script-is-called-without-any-argu""" def error(self, message): """Overwrites the default error message. :param message: The default error message. """ self.print_help() msg = "ERROR: %s\n\n" % message print(msg) raise Exception(msg) def print_help(self, file=None): """Overwrite the default print_help function :param file: Output file, defaults to None """ print("") if file is None: file = sys.stdout self._print_message(self.format_help(), file) print( """ examples: python dimorphite_dl.py --smiles_file sample_molecules.smi python dimorphite_dl.py --smiles "CCC(=O)O" --min_ph -3.0 --max_ph -2.0 python dimorphite_dl.py --smiles "CCCN" --min_ph -3.0 --max_ph -2.0 --output_file output.smi python dimorphite_dl.py --smiles_file sample_molecules.smi --pka_precision 2.0 --label_states python dimorphite_dl.py --test""" ) print("") class ArgParseFuncs: """A namespace for storing functions that are useful for processing command-line arguments. To keep things organized.""" @staticmethod def get_args(): """Gets the arguments from the command line. :return: A parser object. """ parser = MyParser( description="Dimorphite 1.2.4: Creates models of " + "appropriately protonated small moleucles. " + "Apache 2.0 License. Copyright 2020 Jacob D. " + "Durrant." ) parser.add_argument( "--min_ph", metavar="MIN", type=float, default=6.4, help="minimum pH to consider (default: 6.4)", ) parser.add_argument( "--max_ph", metavar="MAX", type=float, default=8.4, help="maximum pH to consider (default: 8.4)", ) parser.add_argument( "--pka_precision", metavar="PRE", type=float, default=1.0, help="pKa precision factor (number of standard devations, default: 1.0)", ) parser.add_argument( "--smiles", metavar="SMI", type=str, help="SMILES string to protonate" ) parser.add_argument( "--smiles_file", metavar="FILE", type=str, help="file that contains SMILES strings to protonate", ) parser.add_argument( "--output_file", metavar="FILE", type=str, help="output file to write protonated SMILES (optional)", ) parser.add_argument( "--max_variants", metavar="MXV", type=int, default=128, help="limit number of variants per input compound (default: 128)", ) parser.add_argument( "--label_states", action="store_true", help="label protonated SMILES with target state " + '(i.e., "DEPROTONATED", "PROTONATED", or "BOTH").', ) parser.add_argument( "--silent", action="store_true", help="do not print any messages to the screen", ) parser.add_argument( "--test", action="store_true", help="run unit tests (for debugging)" ) return parser @staticmethod def clean_args(args): """Cleans and normalizes input parameters :param args: A dictionary containing the arguments. :type args: dict :raises Exception: No SMILES in params. """ defaults = { "min_ph": 6.4, "max_ph": 8.4, "pka_precision": 1.0, "label_states": False, "test": False, "max_variants": 128, } for key in defaults: if key not in args: args[key] = defaults[key] keys = list(args.keys()) for key in keys: if args[key] is None: del args[key] if not "smiles" in args and not "smiles_file" in args: msg = "Error: No SMILES in params. Use the -h parameter for help." print(msg) raise Exception(msg) # If the user provides a smiles string, turn it into a file-like StringIO # object. if "smiles" in args: if isinstance(args["smiles"], str): args["smiles_file"] = StringIO(args["smiles"]) args["smiles_and_data"] = LoadSMIFile(args["smiles_file"], args) return args class UtilFuncs: """A namespace to store functions for manipulating mol objects. To keep things organized.""" @staticmethod def neutralize_mol(mol): """All molecules should be neuralized to the extent possible. The user should not be allowed to specify the valence of the atoms in most cases. :param rdkit.Chem.rdchem.Mol mol: The rdkit Mol objet to be neutralized. :return: The neutralized Mol object. """ # Get the reaction data rxn_data = [ [ "[Ov1-1:1]", "[Ov2+0:1]-[H]", ], # To handle O- bonded to only one atom (add hydrogen). [ "[#7v4+1:1]-[H]", "[#7v3+0:1]", ], # To handle N+ bonded to a hydrogen (remove hydrogen). [ "[Ov2-:1]", "[Ov2+0:1]", ], # To handle O- bonded to two atoms. Should not be Negative. [ "[#7v3+1:1]", "[#7v3+0:1]", ], # To handle N+ bonded to three atoms. Should not be positive. [ "[#7v2-1:1]", "[#7+0:1]-[H]", ], # To handle N- Bonded to two atoms. Add hydrogen. # ['[N:1]=[N+0:2]=[N:3]-[H]', '[N:1]=[N+1:2]=[N+0:3]-[H]'], # To handle bad azide. Must be # protonated. (Now handled # elsewhere, before SMILES # converted to Mol object.) [ "[H]-[N:1]-[N:2]#[N:3]", "[N:1]=[N+1:2]=[N:3]-[H]", ] # To handle bad azide. R-N-N#N should # be R-N=[N+]=N ] # Add substructures and reactions (initially none) for i, rxn_datum in enumerate(rxn_data): rxn_data[i].append(Chem.MolFromSmarts(rxn_datum[0])) rxn_data[i].append(None) # Add hydrogens (respects valence, so incomplete). mol.UpdatePropertyCache(strict=False) mol = Chem.AddHs(mol) while True: # Keep going until all these issues have been resolved. current_rxn = None # The reaction to perform. current_rxn_str = None for i, rxn_datum in enumerate(rxn_data): ( reactant_smarts, product_smarts, substruct_match_mol, rxn_placeholder, ) = rxn_datum if mol.HasSubstructMatch(substruct_match_mol): if rxn_placeholder is None: current_rxn_str = reactant_smarts + ">>" + product_smarts current_rxn = AllChem.ReactionFromSmarts(current_rxn_str) rxn_data[i][3] = current_rxn # Update the placeholder. else: current_rxn = rxn_data[i][3] break # Perform the reaction if necessary if current_rxn is None: # No reaction left, so break out of while loop. break else: mol = current_rxn.RunReactants((mol,))[0][0] mol.UpdatePropertyCache(strict=False) # Update valences # The mols have been altered from the reactions described above, we # need to resanitize them. Make sure aromatic rings are shown as such # This catches all RDKit Errors. without the catchError and # sanitizeOps the Chem.SanitizeMol can crash the program. sanitize_string = Chem.SanitizeMol( mol, sanitizeOps=rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_ALL, catchErrors=True, ) return mol if sanitize_string.name == "SANITIZE_NONE" else None @staticmethod def convert_smiles_str_to_mol(smiles_str): """Given a SMILES string, check that it is actually a string and not a None. Then try to convert it to an RDKit Mol Object. :param string smiles_str: The SMILES string. :return: A rdkit.Chem.rdchem.Mol object, or None if it is the wrong type or if it fails to convert to a Mol Obj """ # Check that there are no type errors, ie Nones or non-string A # non-string type will cause RDKit to hard crash if smiles_str is None or type(smiles_str) is not str: return None # Try to fix azides here. They are just tricky to deal with. smiles_str = smiles_str.replace("N=N=N", "N=[N+]=N") smiles_str = smiles_str.replace("NN#N", "N=[N+]=N") # Now convert to a mol object. Note the trick that is necessary to # capture RDKit error/warning messages. See # https://stackoverflow.com/questions/24277488/in-python-how-to-capture-the-stdout-from-a-c-shared-library-to-a-variable stderr_fileno = sys.stderr.fileno() stderr_save = os.dup(stderr_fileno) stderr_pipe = os.pipe() os.dup2(stderr_pipe[1], stderr_fileno) os.close(stderr_pipe[1]) mol = Chem.MolFromSmiles(smiles_str) os.close(stderr_fileno) os.close(stderr_pipe[0]) os.dup2(stderr_save, stderr_fileno) os.close(stderr_save) # Check that there are None type errors Chem.MolFromSmiles has # sanitize on which means if there is even a small error in the SMILES # (kekulize, nitrogen charge...) then mol=None. ie. # Chem.MolFromSmiles("C[N]=[N]=[N]") = None this is an example of an # nitrogen charge error. It is cased in a try statement to be overly # cautious. return None if mol is None else mol @staticmethod def eprint(*args, **kwargs): """Error messages should be printed to STDERR. See https://stackoverflow.com/questions/5574702/how-to-print-to-stderr-in-python""" print(*args, file=sys.stderr, **kwargs) class LoadSMIFile(object): """A generator class for loading in the SMILES strings from a file, one at a time.""" def __init__(self, filename, args): """Initializes this class. :param filename: The filename or file object (i.e., StringIO). :type filename: str or StringIO """ self.args = args if type(filename) is str: # It's a filename self.f = open(filename, "r") else: # It's a file object (i.e., StringIO) self.f = filename def __iter__(self): """Returns this generator object. :return: This generator object. :rtype: LoadSMIFile """ return self def __next__(self): """Ensure Python3 compatibility. :return: A dict, where the "smiles" key contains the canonical SMILES string and the "data" key contains the remaining information (e.g., the molecule name). :rtype: dict """ return self.next() def next(self): """Get the data associated with the next line. :raises StopIteration: If there are no more lines left iin the file. :return: A dict, where the "smiles" key contains the canonical SMILES string and the "data" key contains the remaining information (e.g., the molecule name). :rtype: dict """ line = self.f.readline() if line == "": # EOF self.f.close() raise StopIteration() return # Divide line into smi and data splits = line.split() if len(splits) != 0: # Generate mol object smiles_str = splits[0] # Convert from SMILES string to RDKIT Mol. This series of tests is # to make sure the SMILES string is properly formed and to get it # into a canonical form. Filter if failed. mol = UtilFuncs.convert_smiles_str_to_mol(smiles_str) if mol is None: if "silent" in self.args and not self.args["silent"]: UtilFuncs.eprint( "WARNING: Skipping poorly formed SMILES string: " + line ) return self.next() # Handle nuetralizing the molecules. Filter if failed. mol = UtilFuncs.neutralize_mol(mol) if mol is None: if "silent" in self.args and not self.args["silent"]: UtilFuncs.eprint( "WARNING: Skipping poorly formed SMILES string: " + line ) return self.next() # Remove the hydrogens. try: mol = Chem.RemoveHs(mol) except: if "silent" in self.args and not self.args["silent"]: UtilFuncs.eprint( "WARNING: Skipping poorly formed SMILES string: " + line ) return self.next() if mol is None: if "silent" in self.args and not self.args["silent"]: UtilFuncs.eprint( "WARNING: Skipping poorly formed SMILES string: " + line ) return self.next() # Regenerate the smiles string (to standardize). new_mol_string = Chem.MolToSmiles(mol, isomericSmiles=True) return {"smiles": new_mol_string, "data": splits[1:]} else: # Blank line? Go to next one. return self.next() class Protonate(object): """A generator class for protonating SMILES strings, one at a time.""" def __init__(self, args): """Initialize the generator. :param args: A dictionary containing the arguments. :type args: dict """ # Make the args an object variable variable. self.args = args # A list to store the protonated SMILES strings associated with a # single input model. self.cur_prot_SMI = [] # Clean and normalize the args self.args = ArgParseFuncs.clean_args(args) # Make sure functions in ProtSubstructFuncs have access to the args. ProtSubstructFuncs.args = args # Load the substructures that can be protonated. self.subs = ProtSubstructFuncs.load_protonation_substructs_calc_state_for_ph( self.args["min_ph"], self.args["max_ph"], self.args["pka_precision"] ) def __iter__(self): """Returns this generator object. :return: This generator object. :rtype: Protonate """ return self def __next__(self): """Ensure Python3 compatibility. :return: A dict, where the "smiles" key contains the canonical SMILES string and the "data" key contains the remaining information (e.g., the molecule name). :rtype: dict """ return self.next() def next(self): """Return the next protonated SMILES string. :raises StopIteration: If there are no more lines left iin the file. :return: A dict, where the "smiles" key contains the canonical SMILES string and the "data" key contains the remaining information (e.g., the molecule name). :rtype: dict """ # If there are any SMILES strings in self.cur_prot_SMI, just return # the first one and update the list to include only the remaining. if len(self.cur_prot_SMI) > 0: first, self.cur_prot_SMI = self.cur_prot_SMI[0], self.cur_prot_SMI[1:] return first # self.cur_prot_SMI is empty, so try to add more to it. # Get the next SMILES string from the input file. try: smile_and_datum = self.args["smiles_and_data"].next() except StopIteration: # There are no more input smiles strings... raise StopIteration() # Keep track of the original smiles string for reporting, starting the # protonation process, etc. orig_smi = smile_and_datum["smiles"] # Dimorphite-DL may protonate some sites in ways that produce invalid # SMILES. We need to keep track of all smiles so we can "rewind" to # the last valid one, should things go south. properly_formed_smi_found = [orig_smi] # Everything on SMILES line but the SMILES string itself (e.g., the # molecule name). data = smile_and_datum["data"] # Collect the data associated with this smiles (e.g., the molecule # name). tag = " ".join(data) # sites is a list of (atom index, "PROTONATED|DEPROTONATED|BOTH", # reaction name, mol). Note that the second entry indicates what state # the site SHOULD be in (not the one it IS in per the SMILES string). # It's calculated based on the probablistic distributions obtained # during training. ( sites, mol_used_to_idx_sites, ) = ProtSubstructFuncs.get_prot_sites_and_target_states(orig_smi, self.subs) new_mols = [mol_used_to_idx_sites] if len(sites) > 0: for site in sites: # Make a new smiles with the correct protonation state. Note that # new_smis is a growing list. This is how multiple protonation # sites are handled. new_mols = ProtSubstructFuncs.protonate_site(new_mols, site) if len(new_mols) > self.args["max_variants"]: new_mols = new_mols[: self.args["max_variants"]] if "silent" in self.args and not self.args["silent"]: UtilFuncs.eprint( "WARNING: Limited number of variants to " + str(self.args["max_variants"]) + ": " + orig_smi ) # Go through each of these new molecules and add them to the # properly_formed_smi_found, in case you generate a poorly # formed SMILES in the future and have to "rewind." properly_formed_smi_found += [Chem.MolToSmiles(m) for m in new_mols] else: # Deprotonate the mols (because protonate_site never called to do # it). mol_used_to_idx_sites = Chem.RemoveHs(mol_used_to_idx_sites) new_mols = [mol_used_to_idx_sites] # Go through each of these new molecules and add them to the # properly_formed_smi_found, in case you generate a poorly formed # SMILES in the future and have to "rewind." properly_formed_smi_found.append(Chem.MolToSmiles(mol_used_to_idx_sites)) # In some cases, the script might generate redundant molecules. # Phosphonates, when the pH is between the two pKa values and the # stdev value is big enough, for example, will generate two identical # BOTH states. Let's remove this redundancy. new_smis = list( set( [ Chem.MolToSmiles(m, isomericSmiles=True, canonical=True) for m in new_mols ] ) ) # Sometimes Dimorphite-DL generates molecules that aren't actually # possible. Simply convert these to mol objects to eliminate the bad # ones (that are None). new_smis = [ s for s in new_smis if UtilFuncs.convert_smiles_str_to_mol(s) is not None ] # If there are no smi left, return the input one at the very least. # All generated forms have apparently been judged # inappropriate/malformed. if len(new_smis) == 0: properly_formed_smi_found.reverse() for smi in properly_formed_smi_found: if UtilFuncs.convert_smiles_str_to_mol(smi) is not None: new_smis = [smi] break # If the user wants to see the target states, add those to the ends of # each line. if self.args["label_states"]: states = "\t".join([x[1] for x in sites]) new_lines = [x + "\t" + tag + "\t" + states for x in new_smis] else: new_lines = [x + "\t" + tag for x in new_smis] self.cur_prot_SMI = new_lines return self.next() class ProtSubstructFuncs: """A namespace to store functions for loading the substructures that can be protonated. To keep things organized.""" args = {} @staticmethod def load_substructre_smarts_file(): """Loads the substructure smarts file. Similar to just using readlines, except it filters out comments (lines that start with "#"). :return: A list of the lines in the site_substructures.smarts file, except blank lines and lines that start with "#" """ pwd = os.path.dirname(os.path.realpath(__file__)) site_structures_file = "{}/{}".format(pwd, "site_substructures.smarts") lines = [ l for l in open(site_structures_file, "r") if l.strip() != "" and not l.startswith("#") ] return lines @staticmethod def load_protonation_substructs_calc_state_for_ph( min_ph=6.4, max_ph=8.4, pka_std_range=1 ): """A pre-calculated list of R-groups with protonation sites, with their likely pKa bins. :param float min_ph: The lower bound on the pH range, defaults to 6.4. :param float max_ph: The upper bound on the pH range, defaults to 8.4. :param pka_std_range: Basically the precision (stdev from predicted pKa to consider), defaults to 1. :return: A dict of the protonation substructions for the specified pH range. """ subs = [] for line in ProtSubstructFuncs.load_substructre_smarts_file(): line = line.strip() sub = {} if line is not "": splits = line.split() sub["name"] = splits[0] sub["smart"] = splits[1] sub["mol"] = Chem.MolFromSmarts(sub["smart"]) pka_ranges = [splits[i : i + 3] for i in range(2, len(splits) - 1, 3)] prot = [] for pka_range in pka_ranges: site = pka_range[0] std = float(pka_range[2]) * pka_std_range mean = float(pka_range[1]) protonation_state = ProtSubstructFuncs.define_protonation_state( mean, std, min_ph, max_ph ) prot.append([site, protonation_state]) sub["prot_states_for_pH"] = prot subs.append(sub) return subs @staticmethod def define_protonation_state(mean, std, min_ph, max_ph): """Updates the substructure definitions to include the protonation state based on the user-given pH range. The size of the pKa range is also based on the number of standard deviations to be considered by the user param. :param float mean: The mean pKa. :param float std: The precision (stdev). :param float min_ph: The min pH of the range. :param float max_ph: The max pH of the range. :return: A string describing the protonation state. """ min_pka = mean - std max_pka = mean + std # This needs to be reassigned, and 'ERROR' should never make it past # the next set of checks. if min_pka <= max_ph and min_ph <= max_pka: protonation_state = "BOTH" elif mean > max_ph: protonation_state = "PROTONATED" else: protonation_state = "DEPROTONATED" return protonation_state @staticmethod def get_prot_sites_and_target_states(smi, subs): """For a single molecule, find all possible matches in the protonation R-group list, subs. Items that are higher on the list will be matched first, to the exclusion of later items. :param string smi: A SMILES string. :param list subs: Substructure information. :return: A list of protonation sites (atom index), pKa bin. ('PROTONATED', 'BOTH', or 'DEPROTONATED'), and reaction name. Also, the mol object that was used to generate the atom index. """ # Convert the Smiles string (smi) to an RDKit Mol Obj mol_used_to_idx_sites = UtilFuncs.convert_smiles_str_to_mol(smi) # Check Conversion worked if mol_used_to_idx_sites is None: UtilFuncs.eprint("ERROR: ", smi) return [] # Try to Add hydrogens. if failed return [] try: mol_used_to_idx_sites = Chem.AddHs(mol_used_to_idx_sites) except: UtilFuncs.eprint("ERROR: ", smi) return [] # Check adding Hs worked if mol_used_to_idx_sites is None: UtilFuncs.eprint("ERROR: ", smi) return [] ProtectUnprotectFuncs.unprotect_molecule(mol_used_to_idx_sites) protonation_sites = [] for item in subs: smart = item["mol"] if mol_used_to_idx_sites.HasSubstructMatch(smart): matches = ProtectUnprotectFuncs.get_unprotected_matches( mol_used_to_idx_sites, smart ) prot = item["prot_states_for_pH"] for match in matches: # We want to move the site from being relative to the # substructure, to the index on the main molecule. for site in prot: proton = int(site[0]) category = site[1] new_site = (match[proton], category, item["name"]) if not new_site in protonation_sites: # Because sites must be unique. protonation_sites.append(new_site) ProtectUnprotectFuncs.protect_molecule(mol_used_to_idx_sites, match) return protonation_sites, mol_used_to_idx_sites @staticmethod def protonate_site(mols, site): """Given a list of molecule objects, we protonate the site. :param list mols: The list of molecule objects. :param tuple site: Information about the protonation site. (idx, target_prot_state, prot_site_name) :return: A list of the appropriately protonated molecule objects. """ # Decouple the atom index and its target protonation state from the # site tuple idx, target_prot_state, prot_site_name = site state_to_charge = {"DEPROTONATED": [-1], "PROTONATED": [0], "BOTH": [-1, 0]} charges = state_to_charge[target_prot_state] # Now make the actual smiles match the target protonation state. output_mols = ProtSubstructFuncs.set_protonation_charge( mols, idx, charges, prot_site_name ) return output_mols @staticmethod def set_protonation_charge(mols, idx, charges, prot_site_name): """Sets the atomic charge on a particular site for a set of SMILES. :param list mols: A list of the input molecule objects. :param int idx: The index of the atom to consider. :param list charges: A list of the charges (ints) to assign at this site. :param string prot_site_name: The name of the protonation site. :return: A list of the processed (protonated/deprotonated) molecule objects. """ # Sets up the output list and the Nitrogen charge output = [] for charge in charges: # The charge for Nitrogens is 1 higher than others (i.e., # protonated state is positively charged). nitrogen_charge = charge + 1 # But there are a few nitrogen moieties where the acidic group is # the neutral one. Amides are a good example. I gave some thought # re. how to best flag these. I decided that those # nitrogen-containing moieties where the acidic group is neutral # (rather than positively charged) will have "*" in the name. if "*" in prot_site_name: nitrogen_charge = nitrogen_charge - 1 # Undo what was done previously. for mol in mols: # Make a copy of the molecule. mol_copy = copy.deepcopy(mol) # Remove hydrogen atoms. try: mol_copy = Chem.RemoveHs(mol_copy) except: if "silent" in ProtSubstructFuncs.args and not ProtSubstructFuncs.args["silent"]: UtilFuncs.eprint( "WARNING: Skipping poorly formed SMILES string: " + Chem.MolToSmiles(mol_copy) ) continue atom = mol_copy.GetAtomWithIdx(idx) explicit_bond_order_total = sum( [b.GetBondTypeAsDouble() for b in atom.GetBonds()] ) # Assign the protonation charge, with special care for # nitrogens element = atom.GetAtomicNum() if element == 7: atom.SetFormalCharge(nitrogen_charge) # Need to figure out how many hydrogens to add. if nitrogen_charge == 1 and explicit_bond_order_total == 1: atom.SetNumExplicitHs(3) elif nitrogen_charge == 1 and explicit_bond_order_total == 2: atom.SetNumExplicitHs(2) elif nitrogen_charge == 1 and explicit_bond_order_total == 3: atom.SetNumExplicitHs(1) elif nitrogen_charge == 0 and explicit_bond_order_total == 1: atom.SetNumExplicitHs(2) elif nitrogen_charge == 0 and explicit_bond_order_total == 2: atom.SetNumExplicitHs(1) elif nitrogen_charge == -1 and explicit_bond_order_total == 2: atom.SetNumExplicitHs(0) elif nitrogen_charge == -1 and explicit_bond_order_total == 1: atom.SetNumExplicitHs(1) #### JDD else: atom.SetFormalCharge(charge) if element == 8 or element == 16: # O and S if charge == 0 and explicit_bond_order_total == 1: atom.SetNumExplicitHs(1) elif charge == -1 and explicit_bond_order_total == 1: atom.SetNumExplicitHs(0) # Deprotonating protonated aromatic nitrogen gives [nH-]. Change this # to [n-]. if "[nH-]" in Chem.MolToSmiles(mol_copy): atom.SetNumExplicitHs(0) mol_copy.UpdatePropertyCache(strict=False) # prod.UpdatePropertyCache(strict=False) output.append(mol_copy) return output class ProtectUnprotectFuncs: """A namespace for storing functions that are useful for protecting and unprotecting molecules. To keep things organized. We need to identify and mark groups that have been matched with a substructure.""" @staticmethod def unprotect_molecule(mol): """Sets the protected property on all atoms to 0. This also creates the property for new molecules. :param rdkit.Chem.rdchem.Mol mol: The rdkit Mol object. :type mol: The rdkit Mol object with atoms unprotected. """ for atom in mol.GetAtoms(): atom.SetProp("_protected", "0") @staticmethod def protect_molecule(mol, match): """Given a 'match', a list of molecules idx's, we set the protected status of each atom to 1. This will prevent any matches using that atom in the future. :param rdkit.Chem.rdchem.Mol mol: The rdkit Mol object to protect. :param list match: A list of molecule idx's. """ for idx in match: atom = mol.GetAtomWithIdx(idx) atom.SetProp("_protected", "1") @staticmethod def get_unprotected_matches(mol, substruct): """Finds substructure matches with atoms that have not been protected. Returns list of matches, each match a list of atom idxs. :param rdkit.Chem.rdchem.Mol mol: The Mol object to consider. :param string substruct: The SMARTS string of the substructure ot match. :return: A list of the matches. Each match is itself a list of atom idxs. """ matches = mol.GetSubstructMatches(substruct) unprotected_matches = [] for match in matches: if ProtectUnprotectFuncs.is_match_unprotected(mol, match): unprotected_matches.append(match) return unprotected_matches @staticmethod def is_match_unprotected(mol, match): """Checks a molecule to see if the substructure match contains any protected atoms. :param rdkit.Chem.rdchem.Mol mol: The Mol object to check. :param list match: The match to check. :return: A boolean, whether the match is present or not. """ for idx in match: atom = mol.GetAtomWithIdx(idx) protected = atom.GetProp("_protected") if protected == "1": return False return True class TestFuncs: """A namespace for storing functions that perform tests on the code. To keep things organized.""" @staticmethod def test(): """Tests all the 38 groups.""" # fmt: off smis = [ # input smiles, protonated, deprotonated, category ["C#CCO", "C#CCO", "C#CC[O-]", "Alcohol"], ["C(=O)N", "NC=O", "[NH-]C=O", "Amide"], ["CC(=O)NOC(C)=O", "CC(=O)NOC(C)=O", "CC(=O)[N-]OC(C)=O", "Amide_electronegative"], ["COC(=N)N", "COC(N)=[NH2+]", "COC(=N)N", "AmidineGuanidine2"], ["Brc1ccc(C2NCCS2)cc1", "Brc1ccc(C2[NH2+]CCS2)cc1", "Brc1ccc(C2NCCS2)cc1", "Amines_primary_secondary_tertiary"], ["CC(=O)[n+]1ccc(N)cc1", "CC(=O)[n+]1ccc([NH3+])cc1", "CC(=O)[n+]1ccc(N)cc1", "Anilines_primary"], ["CCNc1ccccc1", "CC[NH2+]c1ccccc1", "CCNc1ccccc1", "Anilines_secondary"], ["Cc1ccccc1N(C)C", "Cc1ccccc1[NH+](C)C", "Cc1ccccc1N(C)C", "Anilines_tertiary"], ["BrC1=CC2=C(C=C1)NC=C2", "Brc1ccc2[nH]ccc2c1", "Brc1ccc2[n-]ccc2c1", "Indole_pyrrole"], ["O=c1cc[nH]cc1", "O=c1cc[nH]cc1", "O=c1cc[n-]cc1", "Aromatic_nitrogen_protonated"], ["C-N=[N+]=[N@H]", "CN=[N+]=N", "CN=[N+]=[N-]", "Azide"], ["BrC(C(O)=O)CBr", "O=C(O)C(Br)CBr", "O=C([O-])C(Br)CBr", "Carboxyl"], ["NC(NN=O)=N", "NC(=[NH2+])NN=O", "N=C(N)NN=O", "AmidineGuanidine1"], ["C(F)(F)(F)C(=O)NC(=O)C", "CC(=O)NC(=O)C(F)(F)F", "CC(=O)[N-]C(=O)C(F)(F)F", "Imide"], ["O=C(C)NC(C)=O", "CC(=O)NC(C)=O", "CC(=O)[N-]C(C)=O", "Imide2"], ["CC(C)(C)C(N(C)O)=O", "CN(O)C(=O)C(C)(C)C", "CN([O-])C(=O)C(C)(C)C", "N-hydroxyamide"], ["C[N+](O)=O", "C[N+](=O)O", "C[N+](=O)[O-]", "Nitro"], ["O=C1C=C(O)CC1", "O=C1C=C(O)CC1", "O=C1C=C([O-])CC1", "O=C-C=C-OH"], ["C1CC1OO", "OOC1CC1", "[O-]OC1CC1", "Peroxide2"], ["C(=O)OO", "O=COO", "O=CO[O-]", "Peroxide1"], ["Brc1cc(O)cc(Br)c1", "Oc1cc(Br)cc(Br)c1", "[O-]c1cc(Br)cc(Br)c1", "Phenol"], ["CC(=O)c1ccc(S)cc1", "CC(=O)c1ccc(S)cc1", "CC(=O)c1ccc([S-])cc1", "Phenyl_Thiol"], ["C=CCOc1ccc(C(=O)O)cc1", "C=CCOc1ccc(C(=O)O)cc1", "C=CCOc1ccc(C(=O)[O-])cc1", "Phenyl_carboxyl"], ["COP(=O)(O)OC", "COP(=O)(O)OC", "COP(=O)([O-])OC", "Phosphate_diester"], ["CP(C)(=O)O", "CP(C)(=O)O", "CP(C)(=O)[O-]", "Phosphinic_acid"], ["CC(C)OP(C)(=O)O", "CC(C)OP(C)(=O)O", "CC(C)OP(C)(=O)[O-]", "Phosphonate_ester"], ["CC1(C)OC(=O)NC1=O", "CC1(C)OC(=O)NC1=O", "CC1(C)OC(=O)[N-]C1=O", "Ringed_imide1"], ["O=C(N1)C=CC1=O", "O=C1C=CC(=O)N1", "O=C1C=CC(=O)[N-]1", "Ringed_imide2"], ["O=S(OC)(O)=O", "COS(=O)(=O)O", "COS(=O)(=O)[O-]", "Sulfate"], ["COc1ccc(S(=O)O)cc1", "COc1ccc(S(=O)O)cc1", "COc1ccc(S(=O)[O-])cc1", "Sulfinic_acid"], ["CS(N)(=O)=O", "CS(N)(=O)=O", "CS([NH-])(=O)=O", "Sulfonamide"], ["CC(=O)CSCCS(O)(=O)=O", "CC(=O)CSCCS(=O)(=O)O", "CC(=O)CSCCS(=O)(=O)[O-]", "Sulfonate"], ["CC(=O)S", "CC(=O)S", "CC(=O)[S-]", "Thioic_acid"], ["C(C)(C)(C)(S)", "CC(C)(C)S", "CC(C)(C)[S-]", "Thiol"], ["Brc1cc[nH+]cc1", "Brc1cc[nH+]cc1", "Brc1ccncc1", "Aromatic_nitrogen_unprotonated"], ["C=C(O)c1c(C)cc(C)cc1C", "C=C(O)c1c(C)cc(C)cc1C", "C=C([O-])c1c(C)cc(C)cc1C", "Vinyl_alcohol"], ["CC(=O)ON", "CC(=O)O[NH3+]", "CC(=O)ON", "Primary_hydroxyl_amine"], # Note testing Internal_phosphate_polyphos_chain and # Initial_phosphate_like_in_ATP_ADP here because no way to # generate monoprotic compounds to test them. See Other tests # people... ] smis_phos = [ # [input smiles, protonated, deprotonated1, deprotonated2, category] ["O=P(O)(O)OCCCC", "CCCCOP(=O)(O)O", "CCCCOP(=O)([O-])O", "CCCCOP(=O)([O-])[O-]", "Phosphate"], ["CC(P(O)(O)=O)C", "CC(C)P(=O)(O)O", "CC(C)P(=O)([O-])O", "CC(C)P(=O)([O-])[O-]", "Phosphonate"], ] # fmt: on cats_with_two_prot_sites = [inf[4] for inf in smis_phos] # Load the average pKa values. average_pkas = { l.split()[0].replace("*", ""): float(l.split()[3]) for l in ProtSubstructFuncs.load_substructre_smarts_file() if l.split()[0] not in cats_with_two_prot_sites } average_pkas_phos = { l.split()[0].replace("*", ""): [float(l.split()[3]), float(l.split()[6])] for l in ProtSubstructFuncs.load_substructre_smarts_file() if l.split()[0] in cats_with_two_prot_sites } print("Running Tests") print("=============") print("") print("Very Acidic (pH -10000000)") print("--------------------------") print("") args = { "min_ph": -10000000, "max_ph": -10000000, "pka_precision": 0.5, "smiles": "", "label_states": True, "silent": True } for smi, protonated, deprotonated, category in smis: args["smiles"] = smi TestFuncs.test_check(args, [protonated], ["PROTONATED"]) # Test phosphates separately for smi, protonated, mix, deprotonated, category in smis_phos: args["smiles"] = smi TestFuncs.test_check(args, [protonated], ["PROTONATED"]) args["min_ph"] = 10000000 args["max_ph"] = 10000000 print("") print("Very Basic (pH 10000000)") print("------------------------") print("") for smi, protonated, deprotonated, category in smis: args["smiles"] = smi TestFuncs.test_check(args, [deprotonated], ["DEPROTONATED"]) for smi, protonated, mix, deprotonated, category in smis_phos: args["smiles"] = smi TestFuncs.test_check(args, [deprotonated], ["DEPROTONATED"]) print("") print("pH is Category pKa") print("------------------") print("") for smi, protonated, deprotonated, category in smis: avg_pka = average_pkas[category] args["smiles"] = smi args["min_ph"] = avg_pka args["max_ph"] = avg_pka TestFuncs.test_check(args, [protonated, deprotonated], ["BOTH"]) for smi, protonated, mix, deprotonated, category in smis_phos: args["smiles"] = smi avg_pka = average_pkas_phos[category][0] args["min_ph"] = avg_pka args["max_ph"] = avg_pka TestFuncs.test_check(args, [mix, protonated], ["BOTH"]) avg_pka = average_pkas_phos[category][1] args["min_ph"] = avg_pka args["max_ph"] = avg_pka TestFuncs.test_check( args, [mix, deprotonated], ["DEPROTONATED", "DEPROTONATED"] ) avg_pka = 0.5 * ( average_pkas_phos[category][0] + average_pkas_phos[category][1] ) args["min_ph"] = avg_pka args["max_ph"] = avg_pka args["pka_precision"] = 5 # Should give all three TestFuncs.test_check( args, [mix, deprotonated, protonated], ["BOTH", "BOTH"] ) print("") print("Other Tests") print("-----------") print("") # Make sure no carbanion (old bug). smi = "Cc1nc2cc(-c3[nH]c4cc5ccccc5c5c4c3CCN(C(=O)O)[C@@H]5O)cc3c(=O)[nH][nH]c(n1)c23" output = list(Protonate({"smiles": smi, "test": False, "silent": True})) if "[C-]" in "".join(output).upper(): msg = "Processing " + smi + " produced a molecule with a carbanion!" raise Exception(msg) else: print("(CORRECT) No carbanion: " + smi) # Make sure max number of variants is limited (old bug). smi = "CCCC[C@@H](C(=O)N)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)[C@H](Cc1c[nH]c2c1cccc2)NC(=O)[C@@H](NC(=O)[C@@H](Cc1ccc(cc1)O)N)CCC(=O)N)C)C)Cc1nc[nH]c1)Cc1ccccc1" output = list(Protonate({"smiles": smi, "test": False, "silent": True})) if len(output) != 128: msg = "Processing " + smi + " produced more than 128 variants!" raise Exception(msg) else: print("(CORRECT) Produced 128 variants: " + smi) # Make sure ATP and NAD work at different pHs (because can't test # Internal_phosphate_polyphos_chain and # Initial_phosphate_like_in_ATP_ADP with monoprotic examples. specific_examples = [ [ "O=P(O)(OP(O)(OP(O)(OCC1OC(C(C1O)O)N2C=NC3=C2N=CN=C3N)=O)=O)O", # input, ATP ( 0.5, "[NH3+]c1[nH+]c[nH+]c2c1[nH+]cn2C1OC(COP(=O)(O)OP(=O)(O)OP(=O)(O)O)C(O)C1O", ), ( 1.0, "[NH3+]c1[nH+]c[nH+]c2c1[nH+]cn2C1OC(COP(=O)(O)OP(=O)([O-])OP(=O)(O)O)C(O)C1O", ), ( 2.6, "[NH3+]c1[nH+]c[nH+]c2c1[nH+]cn2C1OC(COP(=O)([O-])OP(=O)([O-])OP(=O)([O-])O)C(O)C1O", ), ( 7.0, "Nc1ncnc2c1ncn2C1OC(COP(=O)([O-])OP(=O)([O-])OP(=O)([O-])[O-])C(O)C1O", ), ], [ "O=P(O)(OP(O)(OCC1C(O)C(O)C(N2C=NC3=C(N)N=CN=C32)O1)=O)OCC(O4)C(O)C(O)C4[N+]5=CC=CC(C(N)=O)=C5", # input, NAD ( 0.5, "NC(=O)c1ccc[n+](C2OC(COP(=O)(O)OP(=O)(O)OCC3OC(n4cnc5c([NH3+])ncnc54)C(O)C3O)C(O)C2O)c1", ), ( 2.5, "NC(=O)c1ccc[n+](C2OC(COP(=O)([O-])OP(=O)([O-])OCC3OC(n4cnc5c([NH3+])ncnc54)C(O)C3O)C(O)C2O)c1", ), ( 7.4, "NC(=O)c1ccc[n+](C2OC(COP(=O)([O-])OP(=O)([O-])OCC3OC(n4cnc5c(N)ncnc54)C(O)C3O)C(O)C2O)c1", ), ], ] for example in specific_examples: smi = example[0] for ph, expected_output in example[1:]: output = list( Protonate( { "smiles": smi, "test": False, "min_ph": ph, "max_ph": ph, "pka_precision": 0, "silent": True } ) ) if output[0].strip() == expected_output: print( "(CORRECT) " + smi + " at pH " + str(ph) + " is " + output[0].strip() ) else: msg = ( smi + " at pH " + str(ph) + " should be " + expected_output + ", but it is " + output[0].strip() ) raise Exception(msg) @staticmethod def test_check(args, expected_output, labels): """Tests most ionizable groups. The ones that can only loose or gain a single proton. :param args: The arguments to pass to protonate() :param expected_output: A list of the expected SMILES-strings output. :param labels: The labels. A list containing combo of BOTH, PROTONATED, DEPROTONATED. :raises Exception: Wrong number of states produced. :raises Exception: Unexpected output SMILES. :raises Exception: Wrong labels. """ output = list(Protonate(args)) output = [o.split() for o in output] num_states = len(expected_output) if len(output) != num_states: msg = ( args["smiles"] + " should have " + str(num_states) + " states at at pH " + str(args["min_ph"]) + ": " + str(output) ) UtilFuncs.eprint(msg) raise Exception(msg) if len(set([l[0] for l in output]) - set(expected_output)) != 0: msg = ( args["smiles"] + " is not " + " AND ".join(expected_output) + " at pH " + str(args["min_ph"]) + " - " + str(args["max_ph"]) + "; it is " + " AND ".join([l[0] for l in output]) ) UtilFuncs.eprint(msg) raise Exception(msg) if len(set([l[1] for l in output]) - set(labels)) != 0: msg = ( args["smiles"] + " not labeled as " + " AND ".join(labels) + "; it is " + " AND ".join([l[1] for l in output]) ) UtilFuncs.eprint(msg) raise Exception(msg) ph_range = sorted(list(set([args["min_ph"], args["max_ph"]]))) ph_range_str = "(" + " - ".join("{0:.2f}".format(n) for n in ph_range) + ")" print( "(CORRECT) " + ph_range_str.ljust(10) + " " + args["smiles"] + " => " + " AND ".join([l[0] for l in output]) ) def run(**kwargs): """A helpful, importable function for those who want to call Dimorphite-DL from another Python script rather than the command line. Note that this function accepts keyword arguments that match the command-line parameters exactly. If you want to pass and return a list of RDKit Mol objects, import run_with_mol_list() instead. :param **kwargs: For a complete description, run dimorphite_dl.py from the command line with the -h option. :type kwargs: dict """ # Run the main function with the specified arguments. main(kwargs) def run_with_mol_list(mol_lst, **kwargs): """A helpful, importable function for those who want to call Dimorphite-DL from another Python script rather than the command line. Note that this function is for passing Dimorphite-DL a list of RDKit Mol objects, together with command-line parameters. If you want to use only the same parameters that you would use from the command line, import run() instead. :param mol_lst: A list of rdkit.Chem.rdchem.Mol objects. :type mol_lst: list :raises Exception: If the **kwargs includes "smiles", "smiles_file", "output_file", or "test" parameters. :return: A list of properly protonated rdkit.Chem.rdchem.Mol objects. :rtype: list """ # Do a quick check to make sure the user input makes sense. for bad_arg in ["smiles", "smiles_file", "output_file", "test"]: if bad_arg in kwargs: msg = ( "You're using Dimorphite-DL's run_with_mol_list(mol_lst, " + '**kwargs) function, but you also passed the "' + bad_arg + '" argument. Did you mean to use the ' + "run(**kwargs) function instead?" ) UtilFuncs.eprint(msg) raise Exception(msg) # Set the return_as_list flag so main() will return the protonated smiles # as a list. kwargs["return_as_list"] = True # Having reviewed the code, it will be very difficult to rewrite it so # that a list of Mol objects can be used directly. Intead, convert this # list of mols to smiles and pass that. Not efficient, but it will work. protonated_smiles_and_props = [] for m in mol_lst: props = m.GetPropsAsDict() kwargs["smiles"] = Chem.MolToSmiles(m, isomericSmiles=True) protonated_smiles_and_props.extend( [(s.split("\t")[0], props) for s in main(kwargs)] ) # Now convert the list of protonated smiles strings back to RDKit Mol # objects. Also, add back in the properties from the original mol objects. mols = [] for s, props in protonated_smiles_and_props: m = Chem.MolFromSmiles(s) if m: for prop, val in props.items(): if type(val) is int: m.SetIntProp(prop, val) elif type(val) is float: m.SetDoubleProp(prop, val) elif type(val) is bool: m.SetBoolProp(prop, val) else: m.SetProp(prop, str(val)) mols.append(m) else: UtilFuncs.eprint( "WARNING: Could not process molecule with SMILES string " + s + " and properties " + str(props) ) return mols if __name__ == "__main__": main()
38.860977
209
0.535819
49,526
0.87711
0
0
36,872
0.653006
0
0
26,647
0.471921
73722b13a366409a78c447bdbc55cbb010f2c490
568
py
Python
src/visuanalytics/tests/analytics/transform/transform_test_helper.py
mxsph/Data-Analytics
c82ff54b78f50b6660d7640bfee96ea68bef598f
[ "MIT" ]
3
2020-08-24T19:02:09.000Z
2021-05-27T20:22:41.000Z
src/visuanalytics/tests/analytics/transform/transform_test_helper.py
mxsph/Data-Analytics
c82ff54b78f50b6660d7640bfee96ea68bef598f
[ "MIT" ]
342
2020-08-13T10:24:23.000Z
2021-08-12T14:01:52.000Z
src/visuanalytics/tests/analytics/transform/transform_test_helper.py
visuanalytics/visuanalytics
f9cce7bc9e3227568939648ddd1dd6df02eac752
[ "MIT" ]
8
2020-09-01T07:11:18.000Z
2021-04-09T09:02:11.000Z
from visuanalytics.analytics.control.procedures.step_data import StepData from visuanalytics.analytics.transform.transform import transform def prepare_test(values: list, data, expected_data: dict, config=None): if config is None: config = {} step_data = StepData(config, "0", 0) step_data.insert_data("_req", data, {}) transform({"transform": values}, step_data) # removed Temporary set data step_data.data.pop("_conf") step_data.data.pop("_pipe_id") step_data.data.pop("_job_id") return step_data.data, expected_data
29.894737
73
0.721831
0
0
0
0
0
0
0
0
74
0.130282
737252b8db4b5f48d4c98ee3b57ca3749e94a02f
693
py
Python
configs/diseased/resnet50_cancer_adddata.py
jiangwenj02/mmclassification
4c3657c16f370ace9013b160aa054c87fd27a055
[ "Apache-2.0" ]
null
null
null
configs/diseased/resnet50_cancer_adddata.py
jiangwenj02/mmclassification
4c3657c16f370ace9013b160aa054c87fd27a055
[ "Apache-2.0" ]
null
null
null
configs/diseased/resnet50_cancer_adddata.py
jiangwenj02/mmclassification
4c3657c16f370ace9013b160aa054c87fd27a055
[ "Apache-2.0" ]
null
null
null
_base_ = [ '../_base_/models/resnet50.py', '../_base_/datasets/cancer_bs32_pil_resize.py', '../_base_/schedules/imagenet_bs256_coslr.py', '../_base_/default_runtime.py' ] model = dict( head=dict( num_classes=2, topk=(1,)) ) data = dict( train=dict( data_prefix='/data3/zzhang/tmp/classification/train'), val=dict( data_prefix='/data3/zzhang/tmp/classification/test'), test=dict( data_prefix='/data3/zzhang/tmp/classification/test')) optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) load_from = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth'
34.65
121
0.689755
0
0
0
0
0
0
0
0
382
0.551227
7373df1f357495c213b36ad2e30241e90eab5f96
4,907
py
Python
polyaxon/scheduler/dockerizer_scheduler.py
vfdev-5/polyaxon
3e1511a993dc1a03e0a0827de0357f4adcc0015f
[ "MIT" ]
null
null
null
polyaxon/scheduler/dockerizer_scheduler.py
vfdev-5/polyaxon
3e1511a993dc1a03e0a0827de0357f4adcc0015f
[ "MIT" ]
null
null
null
polyaxon/scheduler/dockerizer_scheduler.py
vfdev-5/polyaxon
3e1511a993dc1a03e0a0827de0357f4adcc0015f
[ "MIT" ]
null
null
null
import logging import traceback from kubernetes.client.rest import ApiException from django.conf import settings import auditor from constants.jobs import JobLifeCycle from db.models.build_jobs import BuildJob from docker_images.image_info import get_tagged_image from event_manager.events.build_job import BUILD_JOB_STARTED, BUILD_JOB_STARTED_TRIGGERED from libs.paths.exceptions import VolumeNotFoundError from scheduler.spawners.dockerizer_spawner import DockerizerSpawner from scheduler.spawners.utils import get_job_definition _logger = logging.getLogger('polyaxon.scheduler.dockerizer') def check_image(build_job): from docker import APIClient docker = APIClient(version='auto') return docker.images(get_tagged_image(build_job)) def create_build_job(user, project, config, code_reference): """Get or Create a build job based on the params. If a build job already exists, then we check if the build has already an image created. If the image does not exists, and the job is already done we force create a new job. Returns: tuple: (build_job, image_exists[bool], build_status[bool]) """ build_job, rebuild = BuildJob.create( user=user, project=project, config=config, code_reference=code_reference) if build_job.succeeded and not rebuild: # Check if image was built in less than an 6 hours return build_job, True, False if check_image(build_job=build_job): # Check if image exists already return build_job, True, False if build_job.is_done: build_job, _ = BuildJob.create( user=user, project=project, config=config, code_reference=code_reference, nocache=True) if not build_job.is_running: # We need to build the image first auditor.record(event_type=BUILD_JOB_STARTED_TRIGGERED, instance=build_job, actor_id=user.id, actor_name=user.username) build_status = start_dockerizer(build_job=build_job) else: build_status = True return build_job, False, build_status def start_dockerizer(build_job): # Update job status to show that its started build_job.set_status(JobLifeCycle.SCHEDULED) spawner = DockerizerSpawner( project_name=build_job.project.unique_name, project_uuid=build_job.project.uuid.hex, job_name=build_job.unique_name, job_uuid=build_job.uuid.hex, k8s_config=settings.K8S_CONFIG, namespace=settings.K8S_NAMESPACE, in_cluster=True) error = {} try: results = spawner.start_dockerizer(resources=build_job.resources, node_selector=build_job.node_selector, affinity=build_job.affinity, tolerations=build_job.tolerations) auditor.record(event_type=BUILD_JOB_STARTED, instance=build_job) build_job.definition = get_job_definition(results) build_job.save(update_fields=['definition']) return True except ApiException: _logger.error('Could not start build job, please check your polyaxon spec', exc_info=True) error = { 'raised': True, 'traceback': traceback.format_exc(), 'message': 'Could not start build job, encountered a Kubernetes ApiException.' } except VolumeNotFoundError as e: _logger.error('Could not start build job, please check your volume definitions.', exc_info=True) error = { 'raised': True, 'traceback': traceback.format_exc(), 'message': 'Could not start build job, encountered a volume definition problem. %s' % e } except Exception as e: _logger.error('Could not start build job, please check your polyaxon spec.', exc_info=True) error = { 'raised': True, 'traceback': traceback.format_exc(), 'message': 'Could not start build job encountered an {} exception.'.format( e.__class__.__name__ ) } finally: if error.get('raised'): build_job.set_status( JobLifeCycle.FAILED, message=error.get('message'), traceback=error.get('traceback')) def stop_dockerizer(project_name, project_uuid, build_job_name, build_job_uuid): spawner = DockerizerSpawner( project_name=project_name, project_uuid=project_uuid, job_name=build_job_name, job_uuid=build_job_uuid, k8s_config=settings.K8S_CONFIG, namespace=settings.K8S_NAMESPACE, in_cluster=True) return spawner.stop_dockerizer()
34.801418
99
0.648665
0
0
0
0
0
0
0
0
1,022
0.208274
737528bac9620b8ee07a8513acd084d73b0adc0c
9,587
py
Python
test/test_pyini.py
limodou/uliweb3
560fe818047c8ee8b4b775e714d9c637f0d23651
[ "BSD-2-Clause" ]
16
2018-09-12T02:50:28.000Z
2021-08-20T08:38:31.000Z
test/test_pyini.py
limodou/uliweb3
560fe818047c8ee8b4b775e714d9c637f0d23651
[ "BSD-2-Clause" ]
21
2018-11-29T06:41:08.000Z
2022-01-18T13:27:38.000Z
test/test_pyini.py
limodou/uliweb3
560fe818047c8ee8b4b775e714d9c637f0d23651
[ "BSD-2-Clause" ]
1
2018-10-08T10:02:56.000Z
2018-10-08T10:02:56.000Z
#coding=utf8 from uliweb.utils.pyini import * def test_sorteddict(): """ >>> d = SortedDict() >>> d <SortedDict {}> >>> d.name = 'limodou' >>> d['class'] = 'py' >>> d <SortedDict {'class':'py', 'name':'limodou'}> >>> d.keys() ['name', 'class'] >>> d.values() ['limodou', 'py'] >>> d['class'] 'py' >>> d.name 'limodou' >>> d.get('name', 'default') 'limodou' >>> d.get('other', 'default') 'default' >>> 'name' in d True >>> 'other' in d False >>> print (d.other) None >>> try: ... d['other'] ... except Exception as e: ... print (e) 'other' >>> del d['class'] >>> del d['name'] >>> d <SortedDict {}> >>> d['name'] = 'limodou' >>> d.pop('other', 'default') 'default' >>> d.pop('name') 'limodou' >>> d <SortedDict {}> >>> d.update({'class':'py', 'attribute':'border'}) >>> d <SortedDict {'attribute':'border', 'class':'py'}> """ def test_section(): """ >>> s = Section('default', "#comment") >>> print (s) #comment [default] <BLANKLINE> >>> s.name = 'limodou' >>> s.add_comment('name', '#name') >>> s.add_comment(comments='#change') >>> print (s) #change [default] #name name = 'limodou' <BLANKLINE> >>> del s.name >>> print (s) #change [default] <BLANKLINE> """ def test_ini1(): """ >>> x = Ini() >>> s = x.add('default') >>> print (x) #coding=utf-8 [default] <BLANKLINE> >>> s['abc'] = 'name' >>> print (x) #coding=utf-8 [default] abc = 'name' <BLANKLINE> """ def test_ini2(): """ >>> x = Ini() >>> x['default'] = Section('default', "#comment") >>> x.default.name = 'limodou' >>> x.default['class'] = 'py' >>> x.default.list = ['abc'] >>> print (x) #coding=utf-8 #comment [default] name = 'limodou' class = 'py' list = ['abc'] <BLANKLINE> >>> x.default.list = ['cde'] #for mutable object will merge the data, including dict type >>> print (x.default.list) ['abc', 'cde'] >>> x.default.d = {'a':'a'} >>> x.default.d = {'b':'b'} >>> print (x.default.d) {'a': 'a', 'b': 'b'} """ def test_gettext(): """ >>> from uliweb.i18n import gettext_lazy as _ >>> x = Ini(env={'_':_}) >>> x['default'] = Section('default') >>> x.default.option = _('Hello') >>> x.keys() ['_', 'gettext_lazy', 'set', 'default'] """ def test_replace(): """ >>> x = Ini() >>> x['default'] = Section('default') >>> x.default.option = ['a'] >>> x.default.option ['a'] >>> x.default.option = ['b'] >>> x.default.option ['a', 'b'] >>> x.default.add('option', ['c'], replace=True) >>> x.default.option ['c'] >>> print (x.default) [default] option <= ['c'] <BLANKLINE> """ def test_set_var(): """ >>> x = Ini() >>> x.set_var('default/key', 'name') True >>> print (x) #coding=utf-8 [default] key = 'name' <BLANKLINE> >>> x.set_var('default/key/name', 'hello') True >>> print (x) #coding=utf-8 [default] key = 'name' key/name = 'hello' <BLANKLINE> >>> x.get_var('default/key') 'name' >>> x.get_var('default/no') >>> x.get_var('defaut/no', 'no') 'no' >>> x.del_var('default/key') True >>> print (x) #coding=utf-8 [default] key/name = 'hello' <BLANKLINE> >>> x.get_var('default/key/name') 'hello' >>> x.get_var('default') <Section {'key/name':'hello'}> """ def test_update(): """ >>> x = Ini() >>> x.set_var('default/key', 'name') True >>> d = {'default/key':'limodou', 'default/b':123} >>> x.update(d) >>> print (x) #coding=utf-8 [default] key = 'limodou' b = 123 <BLANKLINE> """ def test_uni_print(): """ >>> a = () >>> uni_prt(a, 'utf-8') '()' >>> a = (1,2) >>> uni_prt(a) '(1, 2)' """ def test_triple_string(): """ >>> from io import StringIO >>> buf = StringIO(\"\"\" ... #coding=utf8 ... [DEFAULT] ... a = '''hello ... 中文 ... ''' ... \"\"\") >>> x = Ini() >>> x.read(buf) >>> print (repr(x.DEFAULT.a)) 'hello\\n\\u4e2d\\u6587\\n' """ def test_save(): """ >>> from uliweb.i18n import gettext_lazy as _, i18n_ini_convertor >>> from io import StringIO >>> x = Ini(env={'_':_}, convertors=i18n_ini_convertor) >>> buf = StringIO(\"\"\" ... [default] ... option = _('English') ... str = 'str' ... str1 = "str" ... float = 1.2 ... int = 1 ... list = [1, 'str', 0.12] ... dict = {'a':'b', 1:2} ... s = 'English' ... [other] ... option = 'default' ... options1 = '{{option}} xxx' ... options2 = '{{default.int}}' ... options3 = option ... options4 = '-- {{default.option}} --' ... options5 = '-- {{default.s}} --' ... options6 = 'English {{default.s}} --' ... options7 = default.str + default.str1 ... \"\"\") >>> x.read(buf) >>> print (x) #coding=UTF-8 <BLANKLINE> [default] option = _('English') str = 'str' str1 = 'str' float = 1.2 int = 1 list = [1, 'str', 0.12] dict = {'a': 'b', 1: 2} s = 'English' [other] option = 'default' options1 = 'default xxx' options2 = '1' options3 = 'default' options4 = '-- English --' options5 = '-- English --' options6 = 'English English --' options7 = 'strstr' <BLANKLINE> """ def test_merge_data(): """ >>> from uliweb.utils.pyini import merge_data >>> a = [[1,2,3], [2,3,4], [4,5]] >>> b = [{'a':[1,2], 'b':{'a':[1,2]}}, {'a':[2,3], 'b':{'a':['b'], 'b':2}}] >>> c = [set([1,2,3]), set([2,4])] >>> print (merge_data(a)) [1, 2, 3, 4, 5] >>> print (merge_data(b)) {'a': [1, 2, 3], 'b': {'a': [1, 2, 'b'], 'b': 2}} >>> print (merge_data(c)) {1, 2, 3, 4} >>> print (merge_data([2])) 2 """ def test_lazy(): """ >>> from uliweb.i18n import gettext_lazy as _, i18n_ini_convertor >>> from io import StringIO >>> x = Ini(env={'_':_}, convertors=i18n_ini_convertor, lazy=True) >>> buf = StringIO(\"\"\" ... [default] ... option = _('English') ... str = 'str' ... str1 = "str" ... float = 1.2 ... int = 1 ... list = [1, 'str', 0.12] ... dict = {'a':'b', 1:2} ... s = 'English' ... [other] ... option = 'default' ... options1 = '{{option}} xxx' ... options2 = '{{default.int}}' ... options3 = option ... options4 = '-- {{default.option}} --' ... options5 = '-- {{default.s}} --' ... options6 = 'English {{default.s}} --' ... options7 = default.str + default.str1 ... \"\"\") >>> x.read(buf) >>> x.freeze() >>> print (x) #coding=UTF-8 <BLANKLINE> [default] option = _('English') str = 'str' str1 = 'str' float = 1.2 int = 1 list = [1, 'str', 0.12] dict = {'a': 'b', 1: 2} s = 'English' [other] option = 'default' options1 = 'default xxx' options2 = '1' options3 = 'default' options4 = '-- English --' options5 = '-- English --' options6 = 'English English --' options7 = 'strstr' <BLANKLINE> """ def test_multiple_read(): """ >>> from uliweb.i18n import gettext_lazy as _, i18n_ini_convertor >>> from io import StringIO >>> x = Ini(env={'_':_}, convertors=i18n_ini_convertor, lazy=True) >>> buf = StringIO(\"\"\" ... [default] ... option = 'abc' ... [other] ... option = default.option ... option1 = '{{option}} xxx' ... option2 = '{{default.option}}' ... option3 = '{{other.option}}' ... \"\"\") >>> x.read(buf) >>> buf1 = StringIO(\"\"\" ... [default] ... option = 'hello' ... \"\"\") >>> x.read(buf1) >>> x.freeze() >>> print (x) #coding=UTF-8 <BLANKLINE> [default] option = 'hello' [other] option = 'hello' option1 = 'hello xxx' option2 = 'hello' option3 = 'hello' <BLANKLINE> """ def test_chinese(): """ >>> from uliweb.i18n import gettext_lazy as _, i18n_ini_convertor >>> from io import StringIO >>> x = Ini(env={'_':_}, convertors=i18n_ini_convertor) >>> buf = StringIO(\"\"\"#coding=utf-8 ... [default] ... option = '中文' ... option2 = _('中文') ... option3 = '{{option}}' ... [other] ... x = '中文 {{default.option}}' ... x1 = '中文 {{default.option}}' ... x2 = 'xbd {{default.option}}' ... \"\"\") >>> x.read(buf) >>> print (x) #coding=utf-8 [default] option = '中文' option2 = _('中文') option3 = '中文' [other] x = '中文 中文' x1 = '中文 中文' x2 = 'xbd 中文' <BLANKLINE> >>> print (repr(x.other.x1)) '中文 中文' >>> x.keys() ['_', 'gettext_lazy', 'set', 'default', 'other'] """ def test_set(): """ >>> from io import StringIO >>> x = Ini() >>> buf = StringIO(\"\"\"#coding=utf-8 ... [default] ... set1 = {1,2,3} ... set2 = set([1,2,3]) ... \"\"\") >>> x.read(buf) >>> print (x) #coding=utf-8 [default] set1 = {1, 2, 3} set2 = {1, 2, 3} <BLANKLINE> >>> buf2 = StringIO(\"\"\"#coding=utf-8 ... [default] ... set1 = {5,3} ... \"\"\") >>> x.read(buf2) >>> print (x.default.set1) {1, 2, 3, 5} """
22.295349
93
0.456973
0
0
0
0
0
0
0
0
9,178
0.951384
7375e7557e967afa603dac5a97005866394c65de
797
py
Python
src/game.py
cwainwright/think-inside-the-box
dd537e72229a42f8f5f7074151799d3b07dfdfbd
[ "MIT" ]
null
null
null
src/game.py
cwainwright/think-inside-the-box
dd537e72229a42f8f5f7074151799d3b07dfdfbd
[ "MIT" ]
null
null
null
src/game.py
cwainwright/think-inside-the-box
dd537e72229a42f8f5f7074151799d3b07dfdfbd
[ "MIT" ]
null
null
null
import threading from queue import Queue from blessed import Terminal FPS = 60 class Game: """The top level class for the game""" def __init__(self, manager_cls: type): self.manager_cls = manager_cls def run(self) -> None: """The run method for the game, handling the TUI""" term = Terminal() input_queue = Queue() manager = self.manager_cls(input_queue, term) manager_thread = threading.Thread(target=manager) manager_thread.start() with term.fullscreen(), term.raw(), term.hidden_cursor(), term.location(): while manager_thread.is_alive(): inp = term.inkey(1 / FPS) if inp != '': input_queue.put(inp) print(term.normal + term.clear)
24.90625
82
0.595985
713
0.894605
0
0
0
0
0
0
91
0.114178
73760d51c39df213af720ac9a7cf8ca846fad61d
1,366
py
Python
alice_scripts/skill.py
borzunov/alice_scripts
db4cd08226ae5429ec8083ffedc0edef8b44adeb
[ "MIT" ]
27
2018-07-30T19:35:17.000Z
2021-09-12T18:18:22.000Z
alice_scripts/skill.py
borzunov/alice_scripts
db4cd08226ae5429ec8083ffedc0edef8b44adeb
[ "MIT" ]
2
2018-11-01T09:49:48.000Z
2020-12-17T13:39:23.000Z
alice_scripts/skill.py
borzunov/alice_scripts
db4cd08226ae5429ec8083ffedc0edef8b44adeb
[ "MIT" ]
7
2018-10-24T18:39:30.000Z
2021-11-25T13:55:41.000Z
import logging import threading import flask from .requests import Request __all__ = ['Skill'] class Skill(flask.Flask): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._sessions = {} self._session_lock = threading.RLock() def script(self, generator): @self.route("/", methods=['POST']) def handle_post(): flask.g.request = Request(flask.request.get_json()) logging.debug('Request: %r', flask.g.request) content = self._switch_state(generator) response = { 'version': flask.g.request['version'], 'session': flask.g.request['session'], 'response': content, } logging.debug('Response: %r', response) return flask.jsonify(response) return generator def _switch_state(self, generator): session_id = flask.g.request['session']['session_id'] with self._session_lock: if session_id not in self._sessions: state = self._sessions[session_id] = generator() else: state = self._sessions[session_id] content = next(state) if content['end_session']: with self._session_lock: del self._sessions[session_id] return content
26.784314
64
0.572474
1,264
0.925329
0
0
518
0.379209
0
0
123
0.090044
737c8fcb95ea540c79cfba48d2fa31a9bd9f57a9
1,227
py
Python
src/main/fileextractors/fileextractor.py
michael-stanin/Subtitles-Distributor
e4638d952235f96276729239596dc31d9ccc2ee1
[ "MIT" ]
1
2017-06-03T19:42:05.000Z
2017-06-03T19:42:05.000Z
src/main/fileextractors/fileextractor.py
michael-stanin/Subtitles-Distributor
e4638d952235f96276729239596dc31d9ccc2ee1
[ "MIT" ]
null
null
null
src/main/fileextractors/fileextractor.py
michael-stanin/Subtitles-Distributor
e4638d952235f96276729239596dc31d9ccc2ee1
[ "MIT" ]
null
null
null
import logging from main.fileextractors.compressedfile import get_compressed_file from main.utilities.fileutils import dir_path from main.utilities.subtitlesadjuster import ArchiveAdjuster class FileExtractor: def __init__(self, subname, movfile): self.sn, self.mn = subname, movfile self.subzip = get_compressed_file(self.sn) self.log = logging.getLogger(__name__) def run(self): if self.subzip: return self._extractfile() and self._adjust_subs() return False def _adjust_subs(self): return ArchiveAdjuster(self.subzip, self.sn, self.mn).adjust() def _extractfile(self): self.log.info("Start extracting %s to: %s", self.sn, dir_path(self.mn)) extracted = self._extract_subtitles_to_movie_dir() self.log.info("End extracting %s to: %s - with result %s", self.sn, dir_path(self.mn), repr(extracted)) return extracted def _extract_subtitles_to_movie_dir(self): extracted = False try: self.subzip.accessor.extractall(dir_path(self.mn)) extracted = True except Exception as e: self.log.exception("Failed to extract: %s", e) return extracted
35.057143
111
0.673187
1,035
0.843521
0
0
0
0
0
0
94
0.07661
7380bfdbf0d2f900bab496e56a02fad07f1e4ac8
476
py
Python
cjson/body.py
tslight/cjson
1ab08400347e5ff33d3efd9e9879a54a9066a80c
[ "0BSD" ]
null
null
null
cjson/body.py
tslight/cjson
1ab08400347e5ff33d3efd9e9879a54a9066a80c
[ "0BSD" ]
null
null
null
cjson/body.py
tslight/cjson
1ab08400347e5ff33d3efd9e9879a54a9066a80c
[ "0BSD" ]
null
null
null
import curses from get_json import get_json def body(screen): div = curses.newwin(curses.LINES - 2, curses.COLS, 1, 0) div.box() # draw border around container window # use a sub-window so we don't clobber the the container window's border. txt = div.subwin(curses.LINES - 5, curses.COLS - 4, 2, 2) # update internal window data structures screen.noutrefresh() div.noutrefresh() # redraw the screen curses.doupdate() return div, txt
29.75
77
0.684874
0
0
0
0
0
0
0
0
169
0.355042
7382da4a97a03a9bab8ad1771db18f2352be8d95
5,518
py
Python
SDis_Self-Training/plotting/createScatterPlot.py
mgeorgati/DasymetricMapping
d87b97a076cca3e03286c6b27b118904e03315c0
[ "BSD-3-Clause" ]
null
null
null
SDis_Self-Training/plotting/createScatterPlot.py
mgeorgati/DasymetricMapping
d87b97a076cca3e03286c6b27b118904e03315c0
[ "BSD-3-Clause" ]
null
null
null
SDis_Self-Training/plotting/createScatterPlot.py
mgeorgati/DasymetricMapping
d87b97a076cca3e03286c6b27b118904e03315c0
[ "BSD-3-Clause" ]
null
null
null
import sys, os, seaborn as sns, rasterio, pandas as pd import numpy as np import matplotlib.pyplot as plt sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from config.definitions import ROOT_DIR, ancillary_path, city,year attr_value ="totalpop" gtP = ROOT_DIR + "/Evaluation/{0}_groundTruth/{2}_{0}_{1}.tif".format(city,attr_value,year) srcGT= rasterio.open(gtP) popGT = srcGT.read(1) print(popGT.min(),popGT.max(), popGT.mean()) #prP = ROOT_DIR + "/Evaluation/{0}/apcatbr/div_{0}_dissever01WIESMN_500_2018_ams_DasyA_apcatbr_p[1]_12AIL12_12IL_it10_ag_{1}.tif".format(city,attr_value) def scatterplot(prP): cp = "C:/Users/NM12LQ/OneDrive - Aalborg Universitet/PopNetV2_backup/data_prep/ams_ProjectData/temp_tif/ams_CLC_2012_2018Reclas3.tif" srcC= rasterio.open(cp) corine = srcC.read(1) name = prP.split(".tif")[0].split("/")[-1] print(name) gtP = ROOT_DIR + "/Evaluation/{0}_groundTruth/{2}_{0}_{1}.tif".format(city,attr_value,year) srcGT= rasterio.open(gtP) popGT = srcGT.read(1) print(popGT.min(),popGT.max(), popGT.mean()) srcPR= rasterio.open(prP) popPR = srcPR.read(1) popPR[(np.where(popPR <= -9999))] = 0 print(popPR.min(),popPR.max(), popPR.mean()) cr=corine.flatten() x=popGT.flatten() y=popPR.flatten() df = pd.DataFrame(data={"gt": x, "predictions":y, "cr":cr}) plt.figure(figsize=(20,20)) g= sns.lmplot(data=df, x="gt", y="predictions", hue="cr", palette=["#0d2dc1","#ff9c1c","#71b951","#24f33d","#90308f", "#a8a8a8"],ci = None, order=2, scatter_kws={"s":0.5, "alpha": 0.5}, line_kws={"lw":2, "alpha": 0.5}, legend=False) plt.legend(title= "Land Cover", labels= ['Water','Urban Fabric', 'Agriculture', 'Green Spaces','Industry','Transportation' ], loc='lower right', fontsize=5) plt.title('{0}'.format( name), fontsize=11) # Set x-axis label plt.xlabel('Ground Truth (persons)', fontsize=11) # Set y-axis label plt.ylabel('Predictions (persons)', fontsize=11) #total pop #plt.xscale('log') #plt.yscale('log') #mobile Adults #plt.xlim((0,200)) #plt.ylim((-100,500))pl plt.axis('square') plt.xlim((0,400)) plt.ylim((0,350)) plt.tight_layout() #plt.show() plt.savefig(ROOT_DIR + "/Evaluation/{0}/ScatterPlots/SP4_{2}.png".format(city,attr_value, name),format='png',dpi=300) evalFiles = [#gtP, #ROOT_DIR + "/Evaluation/{0}/aprf/dissever00/{0}_dissever00WIESMN_2018_ams_Dasy_aprf_p[1]_12AIL12_1IL_it10_{1}.tif".format(city,attr_value), #ROOT_DIR + "/Evaluation/{0}/aprf/dissever01/{0}_dissever01WIESMN_100_2018_ams_DasyA_aprf_p[1]_12AIL12_13IL_it10_{1}.tif".format(city,attr_value), #ROOT_DIR + "/Evaluation/{0}/apcatbr/{0}_dissever01WIESMN_100_2018_ams_DasyA_apcatbr_p[1]_12AIL12_12IL_it10_ag_{1}.tif".format(city,attr_value), #ROOT_DIR + "/Evaluation/{0}/apcatbr/{0}_dissever01WIESMN_250_2018_ams_DasyA_apcatbr_p[1]_12AIL12_12IL_it10_ag_{1}.tif".format(city,attr_value), ROOT_DIR + "/Evaluation/{0}/apcatbr/{0}_dissever01WIESMN_500_2018_ams_DasyA_apcatbr_p[1]_12AIL12_12IL_it10_ag_{1}.tif".format(city,attr_value), ] evalFilesMAEbp = [ROOT_DIR + "/Evaluation/{0}/Pycno/mae_{0}_{2}_{0}_{1}_pycno.tif".format(city,attr_value,year), ROOT_DIR + "/Evaluation/{0}/Dasy/mae_{0}_{2}_{0}_{1}_dasyWIESMN.tif".format(city,attr_value,year), ROOT_DIR + "/Evaluation/{0}/aprf/dissever00/mae_{0}_dissever00WIESMN_2018_ams_Dasy_aprf_p[1]_12AIL12_1IL_it10_{1}.tif".format(city,attr_value), ROOT_DIR + "/Evaluation/{0}/aprf/dissever01/mae_{0}_dissever01WIESMN_100_2018_ams_DasyA_aprf_p[1]_12AIL12_13IL_it10_{1}.tif".format(city,attr_value), ROOT_DIR + "/Evaluation/{0}/apcatbr/mae_{0}_dissever01WIESMN_100_2018_ams_DasyA_apcatbr_p[1]_12AIL12_12IL_it10_ag_{1}.tif".format(city,attr_value), ROOT_DIR + "/Evaluation/{0}/apcatbr/mae_{0}_dissever01WIESMN_250_2018_ams_DasyA_apcatbr_p[1]_12AIL12_12IL_it10_ag_{1}.tif".format(city,attr_value), ROOT_DIR + "/Evaluation/{0}/apcatbr/mae_{0}_dissever01WIESMN_500_2018_ams_DasyA_apcatbr_p[1]_12AIL12_12IL_it10_ag_{1}.tif".format(city,attr_value), ROOT_DIR + "/Evaluation/{0}/apcatbr/mae_{0}_dissever01WIESMN_250_2018_ams_DasyA_apcatbr_p[1]_3AIL5_12IL_it10_ag_{1}.tif".format(city,attr_value)] evalFilesPEbp = [ROOT_DIR + "/Evaluation/{0}/Pycno/div_{0}_{2}_{0}_{1}_pycno.tif".format(city,attr_value,year), ROOT_DIR + "/Evaluation/{0}/Dasy/div_{0}_{2}_{0}_{1}_dasyWIESMN.tif".format(city,attr_value,year), ROOT_DIR + "/Evaluation/{0}/aprf/dissever00/div_{0}_dissever00WIESMN_2018_ams_Dasy_aprf_p[1]_12AIL12_1IL_it10_{1}.tif".format(city,attr_value), ROOT_DIR + "/Evaluation/{0}/aprf/dissever01/div_{0}_dissever01WIESMN_100_2018_ams_DasyA_aprf_p[1]_12AIL12_13IL_it10_{1}.tif".format(city,attr_value), ROOT_DIR + "/Evaluation/{0}/apcatbr/div_{0}_dissever01WIESMN_100_2018_ams_DasyA_apcatbr_p[1]_12AIL12_12IL_it10_ag_{1}.tif".format(city,attr_value), ROOT_DIR + "/Evaluation/{0}/apcatbr/div_{0}_dissever01WIESMN_250_2018_ams_DasyA_apcatbr_p[1]_12AIL12_12IL_it10_ag_{1}.tif".format(city,attr_value), ROOT_DIR + "/Evaluation/{0}/apcatbr/div_{0}_dissever01WIESMN_500_2018_ams_DasyA_apcatbr_p[1]_12AIL12_12IL_it10_ag_{1}.tif".format(city,attr_value)] for i in evalFiles: scatterplot(i)
66.481928
237
0.702791
0
0
0
0
0
0
0
0
2,983
0.540594
7382ea8531ce700712937018018e99ffb94c7c1d
562
py
Python
codepack/service/delivery_service/delivery_service.py
ihnokim/codepack
9d043b2db977de503faf7f5f1370c1424c6cb19f
[ "MIT" ]
2
2021-04-18T17:51:49.000Z
2021-06-22T10:21:30.000Z
codepack/service/delivery_service/delivery_service.py
ihnokim/codepack
9d043b2db977de503faf7f5f1370c1424c6cb19f
[ "MIT" ]
24
2021-12-23T18:02:01.000Z
2022-03-27T03:03:38.000Z
codepack/service/delivery_service/delivery_service.py
ihnokim/codepack
9d043b2db977de503faf7f5f1370c1424c6cb19f
[ "MIT" ]
1
2021-09-13T12:56:40.000Z
2021-09-13T12:56:40.000Z
import abc from codepack.service.service import Service class DeliveryService(Service, metaclass=abc.ABCMeta): def __init__(self): super().__init__() @abc.abstractmethod def send(self, id, serial_number, item=None, timestamp=None): """send item""" @abc.abstractmethod def receive(self, serial_number): """receive item""" @abc.abstractmethod def cancel(self, serial_number): """cancel delivery""" @abc.abstractmethod def check(self, serial_number): """check arrival of delivery"""
23.416667
65
0.658363
503
0.895018
0
0
374
0.66548
0
0
85
0.151246
7386b0f7b4c54bd5b874bd75d2eaef2e32ff4344
23,056
py
Python
nengo/tests/test_learning_rules.py
pedrombmachado/nengo
abc85e1a75ce2f980e19eef195d98081f95efd28
[ "BSD-2-Clause" ]
null
null
null
nengo/tests/test_learning_rules.py
pedrombmachado/nengo
abc85e1a75ce2f980e19eef195d98081f95efd28
[ "BSD-2-Clause" ]
null
null
null
nengo/tests/test_learning_rules.py
pedrombmachado/nengo
abc85e1a75ce2f980e19eef195d98081f95efd28
[ "BSD-2-Clause" ]
null
null
null
import numpy as np import pytest import nengo from nengo.builder import Builder from nengo.builder.operator import Reset, Copy from nengo.builder.signal import Signal from nengo.dists import UniformHypersphere from nengo.exceptions import ValidationError from nengo.learning_rules import LearningRuleTypeParam, PES, BCM, Oja, Voja from nengo.processes import WhiteSignal from nengo.synapses import Alpha, Lowpass def best_weights(weight_data): return np.argmax(np.sum(np.var(weight_data, axis=0), axis=0)) def _test_pes( Simulator, nl, plt, seed, allclose, pre_neurons=False, post_neurons=False, weight_solver=False, vin=np.array([0.5, -0.5]), vout=None, n=200, function=None, transform=np.array(1.0), rate=1e-3, ): vout = np.array(vin) if vout is None else vout with nengo.Network(seed=seed) as model: model.config[nengo.Ensemble].neuron_type = nl() stim = nengo.Node(output=vin) target = nengo.Node(output=vout) pre = nengo.Ensemble(n, dimensions=stim.size_out) post = nengo.Ensemble(n, dimensions=stim.size_out) error = nengo.Ensemble(n, dimensions=target.size_out) nengo.Connection(stim, pre) postslice = post[: target.size_out] if target.size_out < stim.size_out else post pre = pre.neurons if pre_neurons else pre post = post.neurons if post_neurons else postslice conn = nengo.Connection( pre, post, function=function, transform=transform, learning_rule_type=PES(rate), ) if weight_solver: conn.solver = nengo.solvers.LstsqL2(weights=True) nengo.Connection(target, error, transform=-1) nengo.Connection(postslice, error) nengo.Connection(error, conn.learning_rule) post_p = nengo.Probe(postslice, synapse=0.03) error_p = nengo.Probe(error, synapse=0.03) weights_p = nengo.Probe(conn, "weights", sample_every=0.01) with Simulator(model) as sim: sim.run(0.5) t = sim.trange() weights = sim.data[weights_p] plt.subplot(211) plt.plot(t, sim.data[post_p]) plt.ylabel("Post decoded value") plt.subplot(212) plt.plot(t, sim.data[error_p]) plt.ylabel("Error decoded value") plt.xlabel("Time (s)") tend = t > 0.4 assert allclose(sim.data[post_p][tend], vout, atol=0.05) assert allclose(sim.data[error_p][tend], 0, atol=0.05) assert not allclose(weights[0], weights[-1], atol=1e-5, record_rmse=False) def test_pes_ens_ens(Simulator, nl_nodirect, plt, seed, allclose): function = lambda x: [x[1], x[0]] _test_pes(Simulator, nl_nodirect, plt, seed, allclose, function=function) def test_pes_weight_solver(Simulator, plt, seed, allclose): function = lambda x: [x[1], x[0]] _test_pes( Simulator, nengo.LIF, plt, seed, allclose, function=function, weight_solver=True ) def test_pes_ens_slice(Simulator, plt, seed, allclose): vin = [0.5, -0.5] vout = [vin[0] ** 2 + vin[1] ** 2] function = lambda x: [x[0] - x[1]] _test_pes( Simulator, nengo.LIF, plt, seed, allclose, vin=vin, vout=vout, function=function ) def test_pes_neuron_neuron(Simulator, plt, seed, rng, allclose): n = 200 initial_weights = rng.uniform(high=4e-4, size=(n, n)) _test_pes( Simulator, nengo.LIF, plt, seed, allclose, pre_neurons=True, post_neurons=True, n=n, transform=initial_weights, rate=7e-4, ) def test_pes_neuron_ens(Simulator, plt, seed, rng, allclose): n = 200 initial_weights = rng.uniform(high=1e-4, size=(2, n)) _test_pes( Simulator, nengo.LIF, plt, seed, allclose, pre_neurons=True, post_neurons=False, n=n, transform=initial_weights, ) def test_pes_transform(Simulator, seed, allclose): """Test behaviour of PES when function and transform both defined.""" n = 200 # error must be with respect to transformed vector (conn.size_out) T = np.asarray([[0.5], [-0.5]]) # transform to output m = nengo.Network(seed=seed) with m: u = nengo.Node(output=[1]) a = nengo.Ensemble(n, dimensions=1) b = nengo.Node(size_in=2) e = nengo.Node(size_in=1) nengo.Connection(u, a) learned_conn = nengo.Connection( a, b, function=lambda x: [0], transform=T, learning_rule_type=nengo.PES(learning_rate=1e-3), ) assert T.shape[0] == learned_conn.size_out assert T.shape[1] == learned_conn.size_mid nengo.Connection(b[0], e, synapse=None) nengo.Connection(nengo.Node(output=-1), e) nengo.Connection(e, learned_conn.learning_rule, transform=T, synapse=None) p_b = nengo.Probe(b, synapse=0.05) with Simulator(m) as sim: sim.run(1.0) tend = sim.trange() > 0.7 assert allclose(sim.data[p_b][tend], [1, -1], atol=1e-2) def test_pes_multidim_error(Simulator, seed): """Test that PES works on error connections mapping from N to 1 dims. Note that the transform is applied before the learning rule, so the error signal should be 1-dimensional. """ with nengo.Network(seed=seed) as net: err = nengo.Node(output=[0]) ens1 = nengo.Ensemble(20, 3) ens2 = nengo.Ensemble(10, 1) # Case 1: ens -> ens, weights=False conn = nengo.Connection( ens1, ens2, transform=np.ones((1, 3)), solver=nengo.solvers.LstsqL2(weights=False), learning_rule_type={"pes": nengo.PES()}, ) nengo.Connection(err, conn.learning_rule["pes"]) # Case 2: ens -> ens, weights=True conn = nengo.Connection( ens1, ens2, transform=np.ones((1, 3)), solver=nengo.solvers.LstsqL2(weights=True), learning_rule_type={"pes": nengo.PES()}, ) nengo.Connection(err, conn.learning_rule["pes"]) # Case 3: neurons -> ens conn = nengo.Connection( ens1.neurons, ens2, transform=np.ones((1, ens1.n_neurons)), learning_rule_type={"pes": nengo.PES()}, ) nengo.Connection(err, conn.learning_rule["pes"]) with Simulator(net) as sim: sim.run(0.01) @pytest.mark.parametrize("pre_synapse", [0, Lowpass(tau=0.05), Alpha(tau=0.005)]) def test_pes_synapse(Simulator, seed, pre_synapse, allclose): rule = PES(pre_synapse=pre_synapse) with nengo.Network(seed=seed) as model: stim = nengo.Node(output=WhiteSignal(0.5, high=10)) x = nengo.Ensemble(100, 1) nengo.Connection(stim, x, synapse=None) conn = nengo.Connection(x, x, learning_rule_type=rule) p_neurons = nengo.Probe(x.neurons, synapse=pre_synapse) p_pes = nengo.Probe(conn.learning_rule, "activities") with Simulator(model) as sim: sim.run(0.5) assert allclose(sim.data[p_neurons][1:, :], sim.data[p_pes][:-1, :]) @pytest.mark.parametrize("weights", [False, True]) def test_pes_recurrent_slice(Simulator, seed, weights, allclose): """Test that PES works on recurrent connections from N to 1 dims.""" with nengo.Network(seed=seed) as net: err = nengo.Node(output=[-1]) stim = nengo.Node(output=[0, 0]) post = nengo.Ensemble(50, 2, radius=2) nengo.Connection(stim, post) conn = nengo.Connection( post, post[1], function=lambda x: 0.0, solver=nengo.solvers.LstsqL2(weights=weights), learning_rule_type=nengo.PES(learning_rate=5e-4), ) nengo.Connection(err, conn.learning_rule) p = nengo.Probe(post, synapse=0.025) with Simulator(net) as sim: sim.run(0.2) # Learning rule should drive second dimension high, but not first assert allclose(sim.data[p][-10:, 0], 0, atol=0.2) assert np.all(sim.data[p][-10:, 1] > 0.8) def test_pes_cycle(Simulator): """Test that PES works when connection output feeds back into error.""" with nengo.Network() as net: a = nengo.Ensemble(10, 1) b = nengo.Node(size_in=1) c = nengo.Connection(a, b, synapse=None, learning_rule_type=nengo.PES()) nengo.Connection(b, c.learning_rule, synapse=None) with Simulator(net): # just checking that this builds without error pass @pytest.mark.parametrize( "rule_type, solver", [ (BCM(learning_rate=1e-8), False), (Oja(learning_rate=1e-5), False), ([Oja(learning_rate=1e-5), BCM(learning_rate=1e-8)], False), ([Oja(learning_rate=1e-5), BCM(learning_rate=1e-8)], True), ], ) def test_unsupervised(Simulator, rule_type, solver, seed, rng, plt, allclose): n = 200 m = nengo.Network(seed=seed) with m: u = nengo.Node(WhiteSignal(0.5, high=10), size_out=2) a = nengo.Ensemble(n, dimensions=2) b = nengo.Ensemble(n + 1, dimensions=2) nengo.Connection(u, a) if solver: conn = nengo.Connection(a, b, solver=nengo.solvers.LstsqL2(weights=True)) else: initial_weights = rng.uniform(high=1e-3, size=(b.n_neurons, a.n_neurons)) conn = nengo.Connection(a.neurons, b.neurons, transform=initial_weights) conn.learning_rule_type = rule_type inp_p = nengo.Probe(u) weights_p = nengo.Probe(conn, "weights", sample_every=0.01) ap = nengo.Probe(a, synapse=0.03) up = nengo.Probe(b, synapse=0.03) with Simulator(m, seed=seed + 1) as sim: sim.run(0.5) t = sim.trange() plt.subplot(2, 1, 1) plt.plot(t, sim.data[inp_p], label="Input") plt.plot(t, sim.data[ap], label="Pre") plt.plot(t, sim.data[up], label="Post") plt.legend(loc="best", fontsize="x-small") plt.subplot(2, 1, 2) best_ix = best_weights(sim.data[weights_p]) plt.plot(sim.trange(sample_every=0.01), sim.data[weights_p][..., best_ix]) plt.xlabel("Time (s)") plt.ylabel("Weights") assert not allclose( sim.data[weights_p][0], sim.data[weights_p][-1], record_rmse=False ) def learning_net(learning_rule=nengo.PES, net=None, rng=np.random): net = nengo.Network() if net is None else net with net: if learning_rule is nengo.PES: learning_rule_type = learning_rule(learning_rate=1e-5) else: learning_rule_type = learning_rule() u = nengo.Node(output=1.0) pre = nengo.Ensemble(10, dimensions=1) post = nengo.Ensemble(10, dimensions=1) initial_weights = rng.uniform(high=1e-3, size=(pre.n_neurons, post.n_neurons)) conn = nengo.Connection( pre.neurons, post.neurons, transform=initial_weights, learning_rule_type=learning_rule_type, ) if learning_rule is nengo.PES: err = nengo.Ensemble(10, dimensions=1) nengo.Connection(u, err) nengo.Connection(err, conn.learning_rule) net.activity_p = nengo.Probe(pre.neurons, synapse=0.01) net.weights_p = nengo.Probe(conn, "weights", synapse=None, sample_every=0.01) return net @pytest.mark.parametrize("learning_rule", [nengo.PES, nengo.BCM, nengo.Oja]) def test_dt_dependence(Simulator, plt, learning_rule, seed, rng, allclose): """Learning rules should work the same regardless of dt.""" m = learning_net(learning_rule, nengo.Network(seed=seed), rng) trans_data = [] # Using dts greater near tau_ref (0.002 by default) causes learning to # differ due to lowered presynaptic firing rate dts = (0.0001, 0.001) colors = ("b", "g", "r") ax1 = plt.subplot(2, 1, 1) ax2 = plt.subplot(2, 1, 2) for c, dt in zip(colors, dts): with Simulator(m, dt=dt) as sim: sim.run(0.1) trans_data.append(sim.data[m.weights_p]) best_ix = best_weights(sim.data[m.weights_p]) ax1.plot( sim.trange(sample_every=0.01), sim.data[m.weights_p][..., best_ix], c=c ) ax2.plot(sim.trange(), sim.data[m.activity_p], c=c) ax1.set_xlim(right=sim.trange()[-1]) ax1.set_ylabel("Connection weight") ax2.set_xlim(right=sim.trange()[-1]) ax2.set_ylabel("Presynaptic activity") assert allclose(trans_data[0], trans_data[1], atol=3e-3) assert not allclose( sim.data[m.weights_p][0], sim.data[m.weights_p][-1], record_rmse=False ) @pytest.mark.parametrize("learning_rule", [nengo.PES, nengo.BCM, nengo.Oja]) def test_reset(Simulator, learning_rule, plt, seed, rng, allclose): """Make sure resetting learning rules resets all state.""" m = learning_net(learning_rule, nengo.Network(seed=seed), rng) with Simulator(m) as sim: sim.run(0.1) sim.run(0.2) first_t = sim.trange() first_t_trans = sim.trange(sample_every=0.01) first_activity_p = np.array(sim.data[m.activity_p], copy=True) first_weights_p = np.array(sim.data[m.weights_p], copy=True) sim.reset() sim.run(0.3) plt.subplot(2, 1, 1) plt.ylabel("Neural activity") plt.plot(first_t, first_activity_p, c="b") plt.plot(sim.trange(), sim.data[m.activity_p], c="g") plt.subplot(2, 1, 2) plt.ylabel("Connection weight") best_ix = best_weights(first_weights_p) plt.plot(first_t_trans, first_weights_p[..., best_ix], c="b") plt.plot(sim.trange(sample_every=0.01), sim.data[m.weights_p][..., best_ix], c="g") assert allclose(sim.trange(), first_t) assert allclose(sim.trange(sample_every=0.01), first_t_trans) assert allclose(sim.data[m.activity_p], first_activity_p) assert allclose(sim.data[m.weights_p], first_weights_p) def test_learningruletypeparam(): """LearningRuleTypeParam must be one or many learning rules.""" class Test: lrp = LearningRuleTypeParam("lrp", default=None) inst = Test() assert inst.lrp is None inst.lrp = Oja() assert isinstance(inst.lrp, Oja) inst.lrp = [Oja(), Oja()] for lr in inst.lrp: assert isinstance(lr, Oja) # Non-LR no good with pytest.raises(ValueError): inst.lrp = "a" # All elements in list must be LR with pytest.raises(ValueError): inst.lrp = [Oja(), "a", Oja()] def test_learningrule_attr(seed): """Test learning_rule attribute on Connection""" def check_rule(rule, conn, rule_type): assert rule.connection is conn and rule.learning_rule_type is rule_type with nengo.Network(seed=seed): a, b, e = [nengo.Ensemble(10, 2) for i in range(3)] T = np.ones((10, 10)) r1 = PES() c1 = nengo.Connection(a.neurons, b.neurons, learning_rule_type=r1) check_rule(c1.learning_rule, c1, r1) r2 = [PES(), BCM()] c2 = nengo.Connection(a.neurons, b.neurons, learning_rule_type=r2, transform=T) assert isinstance(c2.learning_rule, list) for rule, rule_type in zip(c2.learning_rule, r2): check_rule(rule, c2, rule_type) r3 = dict(oja=Oja(), bcm=BCM()) c3 = nengo.Connection(a.neurons, b.neurons, learning_rule_type=r3, transform=T) assert isinstance(c3.learning_rule, dict) assert set(c3.learning_rule) == set(r3) # assert same keys for key in r3: check_rule(c3.learning_rule[key], c3, r3[key]) def test_voja_encoders(Simulator, nl_nodirect, rng, seed, allclose): """Tests that voja changes active encoders to the input.""" n = 200 learned_vector = np.asarray([0.3, -0.4, 0.6]) learned_vector /= np.linalg.norm(learned_vector) n_change = n // 2 # modify first half of the encoders # Set the first half to always fire with random encoders, and the # remainder to never fire due to their encoder's dot product with the input intercepts = np.asarray([-1] * n_change + [0.99] * (n - n_change)) rand_encoders = UniformHypersphere(surface=True).sample( n_change, len(learned_vector), rng=rng ) encoders = np.append(rand_encoders, [-learned_vector] * (n - n_change), axis=0) m = nengo.Network(seed=seed) with m: m.config[nengo.Ensemble].neuron_type = nl_nodirect() u = nengo.Node(output=learned_vector) x = nengo.Ensemble( n, dimensions=len(learned_vector), intercepts=intercepts, encoders=encoders, max_rates=nengo.dists.Uniform(300.0, 400.0), radius=2.0, ) # to test encoder scaling conn = nengo.Connection( u, x, synapse=None, learning_rule_type=Voja(learning_rate=1e-1) ) p_enc = nengo.Probe(conn.learning_rule, "scaled_encoders") p_enc_ens = nengo.Probe(x, "scaled_encoders") with Simulator(m) as sim: sim.run(1.0) t = sim.trange() tend = t > 0.5 # Voja's rule relies on knowing exactly how the encoders were scaled # during the build process, because it modifies the scaled_encoders signal # proportional to this factor. Therefore, we should check that its # assumption actually holds. encoder_scale = (sim.data[x].gain / x.radius)[:, np.newaxis] assert allclose(sim.data[x].encoders, sim.data[x].scaled_encoders / encoder_scale) # Check that the last half kept the same encoders throughout the simulation assert allclose(sim.data[p_enc][0, n_change:], sim.data[p_enc][:, n_change:]) # and that they are also equal to their originally assigned value assert allclose( sim.data[p_enc][0, n_change:] / encoder_scale[n_change:], -learned_vector ) # Check that the first half converged to the input assert allclose( sim.data[p_enc][tend, :n_change] / encoder_scale[:n_change], learned_vector, atol=0.01, ) # Check that encoders probed from ensemble equal encoders probed from Voja assert allclose(sim.data[p_enc], sim.data[p_enc_ens]) def test_voja_modulate(Simulator, nl_nodirect, seed, allclose): """Tests that voja's rule can be modulated on/off.""" n = 200 learned_vector = np.asarray([0.5]) def control_signal(t): """Modulates the learning on/off.""" return 0 if t < 0.5 else -1 m = nengo.Network(seed=seed) with m: m.config[nengo.Ensemble].neuron_type = nl_nodirect() control = nengo.Node(output=control_signal) u = nengo.Node(output=learned_vector) x = nengo.Ensemble(n, dimensions=len(learned_vector)) conn = nengo.Connection( u, x, synapse=None, learning_rule_type=Voja(post_synapse=None) ) nengo.Connection(control, conn.learning_rule, synapse=None) p_enc = nengo.Probe(conn.learning_rule, "scaled_encoders") with Simulator(m) as sim: sim.run(1.0) tend = sim.trange() > 0.5 # Check that encoders stop changing after 0.5s assert allclose(sim.data[p_enc][tend], sim.data[p_enc][-1]) # Check that encoders changed during first 0.5s i = np.where(tend)[0][0] # first time point after changeover assert not allclose(sim.data[p_enc][0], sim.data[p_enc][i], record_rmse=False) def test_frozen(): """Test attributes inherited from FrozenObject""" a = PES(learning_rate=2e-3, pre_synapse=4e-3) b = PES(learning_rate=2e-3, pre_synapse=4e-3) c = PES(learning_rate=2e-3, pre_synapse=5e-3) assert hash(a) == hash(a) assert hash(b) == hash(b) assert hash(c) == hash(c) assert a == b assert hash(a) == hash(b) assert a != c assert hash(a) != hash(c) # not guaranteed, but highly likely assert b != c assert hash(b) != hash(c) # not guaranteed, but highly likely with pytest.raises((ValueError, RuntimeError)): a.learning_rate = 1e-1 def test_pes_direct_errors(): """Test that applying a learning rule to a direct ensemble errors.""" with nengo.Network(): pre = nengo.Ensemble(10, 1, neuron_type=nengo.Direct()) post = nengo.Ensemble(10, 1) conn = nengo.Connection(pre, post) with pytest.raises(ValidationError): conn.learning_rule_type = nengo.PES() def test_custom_type(Simulator, allclose): """Test with custom learning rule type. A custom learning type may have ``size_in`` not equal to 0, 1, or None. """ class TestRule(nengo.learning_rules.LearningRuleType): modifies = "decoders" def __init__(self): super().__init__(1.0, size_in=3) @Builder.register(TestRule) def build_test_rule(model, test_rule, rule): error = Signal(np.zeros(rule.connection.size_in)) model.add_op(Reset(error)) model.sig[rule]["in"] = error[: rule.size_in] model.add_op(Copy(error, model.sig[rule]["delta"])) with nengo.Network() as net: a = nengo.Ensemble(10, 1) b = nengo.Ensemble(10, 1) conn = nengo.Connection( a.neurons, b, transform=np.zeros((1, 10)), learning_rule_type=TestRule() ) err = nengo.Node([1, 2, 3]) nengo.Connection(err, conn.learning_rule, synapse=None) p = nengo.Probe(conn, "weights") with Simulator(net) as sim: sim.run(sim.dt * 5) assert allclose(sim.data[p][:, 0, :3], np.outer(np.arange(1, 6), np.arange(1, 4))) assert allclose(sim.data[p][:, :, 3:], 0) @pytest.mark.parametrize("LearningRule", (nengo.PES, nengo.BCM, nengo.Voja, nengo.Oja)) def test_tau_deprecation(LearningRule): params = [ ("pre_tau", "pre_synapse"), ("post_tau", "post_synapse"), ("theta_tau", "theta_synapse"), ] kwargs = {} for i, (p0, p1) in enumerate(params): if hasattr(LearningRule, p0): kwargs[p0] = i with pytest.warns(DeprecationWarning): l_rule = LearningRule(learning_rate=0, **kwargs) for i, (p0, p1) in enumerate(params): if hasattr(LearningRule, p0): assert getattr(l_rule, p0) == i assert getattr(l_rule, p1) == Lowpass(i) def test_slicing(Simulator, seed, allclose): with nengo.Network(seed=seed) as model: a = nengo.Ensemble(50, 1) b = nengo.Ensemble(30, 2) conn = nengo.Connection( a, b, learning_rule_type=PES(), function=lambda x: (0, 0) ) nengo.Connection(nengo.Node(1.0), a) err1 = nengo.Node(lambda t, x: x - 0.75, size_in=1) nengo.Connection(b[0], err1) nengo.Connection(err1, conn.learning_rule[0]) err2 = nengo.Node(lambda t, x: x + 0.5, size_in=1) nengo.Connection(b[1], err2) nengo.Connection(err2, conn.learning_rule[1]) p = nengo.Probe(b, synapse=0.03) with Simulator(model) as sim: sim.run(1.0) t = sim.trange() > 0.8 assert allclose(sim.data[p][t, 0], 0.75, atol=0.15) assert allclose(sim.data[p][t, 1], -0.5, atol=0.15)
33.126437
88
0.627906
226
0.009802
0
0
6,866
0.297797
0
0
2,910
0.126214
7387856755f04e2fce184f38847164fa54bfabcd
922
py
Python
joplin_web/api.py
foxmask/joplin-web
eb261e515b9ecf9c878a1d6492aba06ddf6d97c6
[ "BSD-3-Clause" ]
382
2018-08-20T07:51:11.000Z
2022-03-11T14:52:53.000Z
joplin_web/api.py
marph91/joplin-web
eb261e515b9ecf9c878a1d6492aba06ddf6d97c6
[ "BSD-3-Clause" ]
71
2018-10-01T07:01:20.000Z
2022-02-22T07:17:47.000Z
joplin_web/api.py
marph91/joplin-web
eb261e515b9ecf9c878a1d6492aba06ddf6d97c6
[ "BSD-3-Clause" ]
67
2018-10-01T07:09:50.000Z
2022-03-19T09:30:09.000Z
# coding: utf-8 """ joplin-web """ from django.conf import settings from django.http.response import JsonResponse from django.urls import reverse from joplin_api import JoplinApiSync from joplin_web.utils import nb_notes_by_tag, nb_notes_by_folder import logging from rich import console console = console.Console() logger = logging.getLogger("joplin_web.app") joplin = JoplinApiSync(token=settings.JOPLIN_WEBCLIPPER_TOKEN) def get_folders(request): """ all the folders :param request :return: json """ res = joplin.get_folders() json_data = sorted(res.json(), key=lambda k: k['title']) data = nb_notes_by_folder(json_data) logger.debug(data) return JsonResponse(data, safe=False) def get_tags(request): res = joplin.get_tags() json_data = sorted(res.json(), key=lambda k: k['title']) data = nb_notes_by_tag(json_data) return JsonResponse(data, safe=False)
24.918919
64
0.729935
0
0
0
0
0
0
0
0
134
0.145336
738921989a2bdec68647069a9b524b0c70e83266
1,449
py
Python
blousebrothers/confs/management/commands/update_stats.py
sladinji/blousebrothers
461de3ba011c0aaed3f0014136c4497b6890d086
[ "MIT" ]
1
2022-01-27T11:58:10.000Z
2022-01-27T11:58:10.000Z
blousebrothers/confs/management/commands/update_stats.py
sladinji/blousebrothers
461de3ba011c0aaed3f0014136c4497b6890d086
[ "MIT" ]
5
2021-03-19T00:01:54.000Z
2022-03-11T23:46:21.000Z
blousebrothers/confs/management/commands/update_stats.py
sladinji/blousebrothers
461de3ba011c0aaed3f0014136c4497b6890d086
[ "MIT" ]
null
null
null
import numpy as np from django.core.management.base import BaseCommand from oscar.core.loading import get_classes StatsSpe, StatsItem, Test, Speciality, Item, Conference = get_classes( 'confs.models', ( "StatsSpe", "StatsItem", "Test", "Speciality", "Item", "Conference" ) ) class Command(BaseCommand): help = 'Evaluate new stats for all specialies and items' def handle(self, *args, **options): for spe in Speciality.objects.all(): stats = StatsSpe.objects.get_or_create(speciality=spe)[0] l = [ test.score for test in Test.objects.filter(conf__specialities__in=[spe], finished=True).all() ] l = l if l != [] else [0] stats.average = np.mean(l) stats.median = np.median(l) stats.std_dev = np.std(l) stats.save() for item in Item.objects.all(): stats = StatsItem.objects.get_or_create(item=item)[0] l = [ test.score for test in Test.objects.filter(conf__items__in=[item], finished=True).all() ] l = l if l != [] else [0] stats.average = np.mean(l) stats.median = np.median(l) stats.std_dev = np.std(l) stats.save() for conf in Conference.objects.filter(tests__isnull=False, for_sale=True).distinct(): conf.update_stats()
32.2
93
0.569358
1,148
0.792271
0
0
0
0
0
0
120
0.082816
738989c5716d2f2f6127adc48d74596868c20221
6,403
py
Python
ssd_project/functions/multiboxloss.py
ilijagjorgjiev/SSD_FascadeParsing
a31346a3828f3bda9687a9013a40389dab446cef
[ "MIT" ]
1
2020-09-27T03:57:18.000Z
2020-09-27T03:57:18.000Z
ssd_project/functions/multiboxloss.py
ilijagjorgjiev/SSD_FascadeParsing
a31346a3828f3bda9687a9013a40389dab446cef
[ "MIT" ]
null
null
null
ssd_project/functions/multiboxloss.py
ilijagjorgjiev/SSD_FascadeParsing
a31346a3828f3bda9687a9013a40389dab446cef
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from math import sqrt as sqrt import collections import numpy as np import itertools from ssd_project.utils.utils import * from ssd_project.utils.global_variables import * device = DEVICE class MultiBoxLoss(nn.Module): """ For our SSD we use a unique loss function called MultiBoxLoss. The loss is branch into: 1. Localization loss coming from the predicted bounding boxes for objects with respect to ground truth object 2. Confidence loss coming from the predicted class score for the object with respect to ground truth object class """ def __init__(self, priors_cxcy, threshold=0.5, neg_pos_ratio=3, alpha=1.): super(MultiBoxLoss, self).__init__() self.priors_cxcy = priors_cxcy self.priors_xy = decode_center_size(self.priors_cxcy) self.threshold = threshold self.neg_pos_ratio = neg_pos_ratio self.alpha = alpha #L1 loss is used for the predicted localizations w.r.t ground truth. self.smooth_l1 = nn.L1Loss() #CrossEntropyLoss is used for the predicted confidence scores w.r.t ground truth. self.cross_entropy = nn.CrossEntropyLoss(reduce=False) def forward(self, predicted_locs, predicted_scores, boxes, labels): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") """ Each time the model predicts new localization and confidence scores, they are compared to the ground truth objects and classes. Args: :predicted_locs: predicted localizatios from the model w.r.t to prior-boxes. Shape: (batch_size, 8732, 4) :predicted_scores: confidence scores for each class for each localization box. Shape: (batch_size, 8732, n_classes) :boxes: ground truth objects per image: Shape(batch_size) :param labels: ground truth classes per image: Shape(batch_size) Return: Loss - a scalar """ batch_size = predicted_locs.size(0) num_priors = self.priors_cxcy.size(0) num_classes = predicted_scores.size(2) assert num_priors == predicted_locs.size(1) == predicted_scores.size(1) true_locs, true_classes = self.match_priors_objs(boxes, labels, num_priors, num_classes, batch_size) # Identify priors that are positive (object/non-background) non_bck_priors = true_classes != 0 # (N, 8732) # LOCALIZATION LOSS # Localization loss is computed only over positive (non-background) priors loc_loss = self.smooth_l1(predicted_locs[non_bck_priors], true_locs[non_bck_priors]) # (), scalar # CONFIDENCE LOSS # Confidence loss is computed over positive priors and the most difficult (hardest) negative priors in each image # Number of positive and hard-negative priors per image num_positives = non_bck_priors.sum(dim=1) # (N) num_hard_negatives = self.neg_pos_ratio * num_positives # (N) # First, find the loss for all priors confidence_loss = self.cross_entropy(predicted_scores.view(-1, num_classes), true_classes.view(-1)) # (N * 8732) confidence_loss = confidence_loss.view(batch_size, num_priors) # (N, 8732) # We already know which priors are positive confidence_loss_non_bck = confidence_loss[non_bck_priors] # Next, find which priors are hard-negative # To do this, sort ONLY negative priors in each image in order of decreasing loss and take top n_hard_negatives confidence_loss_negative = confidence_loss.clone() # (N, 8732) confidence_loss_negative[non_bck_priors] = 0. # (N, 8732), positive priors are ignored (never in top n_hard_negatives) confidence_loss_negative, _ = confidence_loss_negative.sort(dim=1, descending=True) # (N, 8732), sorted by decreasing hardness hardness_ranks = torch.LongTensor(range(num_priors)).unsqueeze(0).expand_as(confidence_loss_negative).to(device) # (N, 8732) hard_negatives = hardness_ranks < num_hard_negatives.unsqueeze(1) # (N, 8732) confidence_loss_hard_neg = confidence_loss_negative[hard_negatives] # (sum(n_hard_negatives)) # As in the paper, averaged over positive priors only, although computed over both positive and hard-negative priors conf_loss = (confidence_loss_hard_neg.sum() + confidence_loss_non_bck.sum()) / num_positives.sum().float() # TOTAL LOSS return conf_loss + self.alpha * loc_loss def match_priors_objs(self, boxes, labels, num_priors, num_classes, batch_size): """ Helper function: Basically we set a class("background", "window", "door", "building") for each prior. This is done by checking what is the overlap between each prior and the ground truth objects. If the overlap does not satisfy the threshold(0.5) for overlaping then we consider it background. """ true_locs = torch.zeros((batch_size, num_priors, 4), dtype=torch.float).to(device) # (batch_size, 8732, 4) true_classes = torch.zeros((batch_size, num_priors), dtype=torch.long).to(device) # (batch_size, 8732) for i, bboxes_img in enumerate(boxes): #For each img and its objects, compute jaccard overlap between ground truth objects and priors num_objects = bboxes_img.size(0) obj_prior_overlap = jaccard_overlap(bboxes_img, self.priors_xy) #(num_objects, 8732) #Get best object per prior overlap_prior, obj_prior = obj_prior_overlap.max(dim = 0) #(8732) #Get best prior per object overlap_obj, prior_obj = obj_prior_overlap.max(dim = 1) #(num_objects) #Fix that every object has been set to its respective best prior obj_prior[prior_obj] = torch.LongTensor(range(num_objects)).to(device) overlap_prior[prior_obj] = 1 #Give a label to the prior label_prior = labels[i][obj_prior] label_prior[overlap_prior < self.threshold] = 0 label_prior = label_prior.squeeze() true_classes[i] = label_prior #Encode it in boxes w.r.t to prior boxes format true_locs[i] = encode_xy_to_gcxgcy(bboxes_img[obj_prior], self.priors_cxcy) return true_locs, true_classes
45.091549
135
0.687178
6,146
0.959863
0
0
0
0
0
0
2,774
0.433234
73899046274e7f34b8512a7c9032b640315aef48
1,574
py
Python
glitter2/tests/app.py
matham/glitter2
ebede5a18edb1b2e34f1824e4262d01a148cf2f3
[ "MIT" ]
null
null
null
glitter2/tests/app.py
matham/glitter2
ebede5a18edb1b2e34f1824e4262d01a148cf2f3
[ "MIT" ]
null
null
null
glitter2/tests/app.py
matham/glitter2
ebede5a18edb1b2e34f1824e4262d01a148cf2f3
[ "MIT" ]
null
null
null
import trio from kivy.config import Config Config.set('graphics', 'width', '1600') Config.set('graphics', 'height', '900') Config.set('modules', 'touchring', '') for items in Config.items('input'): Config.remove_option('input', items[0]) from glitter2.main import Glitter2App from kivy.tests.async_common import UnitKivyApp __all__ = ('Glitter2TestApp', 'touch_widget') async def touch_widget(app, widget, pos=None, duration=.2): async for _ in app.do_touch_down_up( widget=widget, pos=pos, duration=duration): pass await app.wait_clock_frames(2) class Glitter2TestApp(Glitter2App, UnitKivyApp): def __init__(self, data_path, **kwargs): self._data_path = data_path super().__init__(**kwargs) async def async_sleep(self, dt): await trio.sleep(dt) def check_close(self): return True def handle_exception(self, msg, exc_info=None, level='error', *largs): super().handle_exception(msg, exc_info, level, *largs) if isinstance(exc_info, str): self.get_logger().error(msg) self.get_logger().error(exc_info) elif exc_info is not None: tp, value, tb = exc_info try: if value is None: value = tp() if value.__traceback__ is not tb: raise value.with_traceback(tb) raise value finally: value = None tb = None elif level in ('error', 'exception'): raise Exception(msg)
28.107143
74
0.606734
985
0.625794
0
0
0
0
265
0.168361
138
0.087675
738a30149882a96a75590cfa02fa03b482ae6233
589
py
Python
Gateway/WSService/Controller.py
reability/BruteScanner
bc352ec93c672f4743cf34d37e3e580bf07a7a73
[ "MIT" ]
null
null
null
Gateway/WSService/Controller.py
reability/BruteScanner
bc352ec93c672f4743cf34d37e3e580bf07a7a73
[ "MIT" ]
null
null
null
Gateway/WSService/Controller.py
reability/BruteScanner
bc352ec93c672f4743cf34d37e3e580bf07a7a73
[ "MIT" ]
null
null
null
from aiohttp import web from aiohttp import WSMsgType from Settings import log class WebSocket(web.View): async def get(self): ws = web.WebSocketResponse() await ws.prepare(self.request) self.request.app['websockets'].append(ws) async for msg in ws: if msg.type == WSMsgType.text: if msg.data == 'close': await ws.close() elif msg == WSMsgType.error: log.debug('ws connection closed with exception %s' % ws.exception()) self.request.app['websockets'].remove(ws)
25.608696
84
0.59253
506
0.859083
0
0
0
0
475
0.806452
71
0.120543
738a85e82da68aa322a25cf87d2adf64e784db74
2,056
py
Python
data/kbqa/parse_kbqa.py
UKPLab/TWEAC-qa-agent-selection
ed4f0cafa87aefd4820cca0d7f4881d2de99a9f0
[ "MIT" ]
9
2021-04-16T12:45:45.000Z
2022-01-29T10:52:52.000Z
data/kbqa/parse_kbqa.py
UKPLab/TWEAC-qa-agent-selection
ed4f0cafa87aefd4820cca0d7f4881d2de99a9f0
[ "MIT" ]
1
2021-11-25T04:16:25.000Z
2021-11-25T09:54:29.000Z
data/kbqa/parse_kbqa.py
UKPLab/TWEAC-qa-agent-selection
ed4f0cafa87aefd4820cca0d7f4881d2de99a9f0
[ "MIT" ]
3
2021-04-16T12:43:41.000Z
2021-11-25T04:21:43.000Z
import json import os def qald(in_folder, out_folder): train = json.load(open(os.path.join(in_folder, "qald-7-train-en-wikidata.json"))) test = json.load(open(os.path.join(in_folder, "qald-7-test-en-wikidata-withoutanswers.json"))) train_q = [] test_q = [] for qs in train["questions"]: for q in qs["question"]: train_q.append(q["string"]) split_idx = int(len(train_q)*0.75) dev_q = train_q[split_idx:] train_q = train_q[:split_idx] for qs in test["questions"]: for q in qs["question"]: test_q.append(q["string"]) for qs, split in zip([train_q, dev_q, test_q], ["train", "dev", "test"]): os.makedirs(os.path.join(out_folder, split), exist_ok=True) with open(os.path.join(out_folder, split, "qald-7.txt"), "w", encoding="utf-8") as f: for q in qs: f.write(q+"\n") def websqp(in_folder, out_folder): train = json.load(open(os.path.join(in_folder, "WebQSP.train.json"), encoding="utf-8")) test = json.load(open(os.path.join(in_folder, "WebQSP.test.json"), encoding="utf-8")) train_q = [] test_q = [] for q in train["Questions"]: train_q.append(q["RawQuestion"]) split_idx = int(len(train_q)*0.75) dev_q = train_q[split_idx:] train_q = train_q[:split_idx] for q in test["Questions"]: test_q.append(q["RawQuestion"]) for qs, split in zip([train_q, dev_q, test_q], ["train", "dev", "test"]): os.makedirs(os.path.join(out_folder, split), exist_ok=True) with open(os.path.join(out_folder, split, "webqsp.txt"), "w", encoding="utf-8") as f: for q in qs: f.write(q+"\n") if __name__ == "__main__": qald(r"C:\Users\Gregor\Documents\Programming\square-skill-selector\data\kbqa\qald", r"C:\Users\Gregor\Documents\Programming\square-skill-selector\data\kbqa") websqp(r"C:\Users\Gregor\Documents\Programming\square-skill-selector\data\kbqa\WebQSP\data", r"C:\Users\Gregor\Documents\Programming\square-skill-selector\data\kbqa")
38.792453
170
0.634728
0
0
0
0
0
0
0
0
636
0.309339
738b1d73ae1addd61c4193601b402b8a17cc0fd6
1,112
py
Python
flink_rest_client/common.py
frego-dev/flink-rest-client
e63e3bc4e6ec73a1a86adb3bfbc011087a5248bd
[ "MIT" ]
null
null
null
flink_rest_client/common.py
frego-dev/flink-rest-client
e63e3bc4e6ec73a1a86adb3bfbc011087a5248bd
[ "MIT" ]
null
null
null
flink_rest_client/common.py
frego-dev/flink-rest-client
e63e3bc4e6ec73a1a86adb3bfbc011087a5248bd
[ "MIT" ]
null
null
null
import requests class RestException(Exception): """ Exception to catch REST API related exceptions. """ def __init__(self, *args: object) -> None: super().__init__(*args) def _execute_rest_request( url, http_method=None, accepted_status_code=None, files=None, params=None, data=None, json=None, ): if http_method is None: http_method = "GET" if params is None: params = {} if data is None: data = {} # If accepted_status_code is None then default value is set. if accepted_status_code is None: accepted_status_code = 200 response = requests.request( method=http_method, url=url, files=files, params=params, data=data, json=json ) if response.status_code == accepted_status_code: return response.json() else: if "errors" in response.json().keys(): error_str = "\n".join(response.json()["errors"]) else: error_str = "" raise RestException( f"REST response error ({response.status_code}): {error_str}" )
24.173913
85
0.610612
179
0.160971
0
0
0
0
0
0
210
0.188849
738bc5924597cda0fc1b0821b35e4dee0b3c08ce
9,696
py
Python
functions.py
emiliozamorano15/arvato-udacity-capstone
ce550eebefbf13cebacfe111134b0391a73789a4
[ "MIT" ]
null
null
null
functions.py
emiliozamorano15/arvato-udacity-capstone
ce550eebefbf13cebacfe111134b0391a73789a4
[ "MIT" ]
null
null
null
functions.py
emiliozamorano15/arvato-udacity-capstone
ce550eebefbf13cebacfe111134b0391a73789a4
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np def missing_dict(df): ''' Function to build a dictionary of indicators of missing information per feature INPUT: df: pandas dataframe with features, description, and values that mean "unknown" OUPUT: missing_dict: dictionary of values for "unkwon" per feature ''' unknown_values = [] for val in df.Value: ## evaluate whether missing 'value' is an integer (one digit) if isinstance(val, int): unknown_values.append([val]) ## evaluate whether attribute has more than one value (a string object in the dataframe) elif isinstance(val, str): split_list = val.split(',') int_list = [int(x) for x in split_list] unknown_values.append(int_list) unknown_dict = {} for attr, value_list in zip(df.Attribute, unknown_values): unknown_dict[attr] = value_list unknown_dict['ALTERSKATEGORIE_FEIN'] = [0] unknown_dict['GEBURTSJAHR'] = [0] return unknown_dict def find_cat_cols(df): ''' Function to find the names of categorical columns INPUT df: pandas dataframe OUTPUT cat_cols: list of names of columns with categorical values ''' cat_cols = list(df.select_dtypes(['object']).columns) return cat_cols def find_binary_cols(df): ''' Function to find the names numerical columns with binary (1/0) values INPUT df: pandas dataframe OUTPUT bin_cols: list of names of columns with binary values ''' bin_cols = [] for col in df.select_dtypes(['float64', 'int64']).columns: n_unique = df[col].dropna().nunique() if n_unique == 2: bin_cols.append(col) return bin_cols def clean_data(df, drop_rows = [], drop_cols = []): ''' Function to clean Arvato's datasets. It mainly changes data format for certain columns, and drops columns (rows) which exceed a given threshold of missing values. INPUT df: pandas dataframe (from Arvato's ) drop_rows: list of row indices to drop drop_cols: list of col names to drop OUTPUT clean_df: pandas dataframee with cleaned data ''' if len(drop_cols) > 0: clean_df = df.drop(drop_cols, axis = 1) if len(drop_rows) > 0: clean_df = clean_df.loc[~clean_df.index.isin(drop_rows)] ## Cast CAMEO_DEUG_2015 to int clean_df['CAMEO_DEUG_2015'] = clean_df['CAMEO_DEUG_2015'].replace('X',np.nan) clean_df['CAMEO_DEUG_2015'] = clean_df['CAMEO_DEUG_2015'].astype('float') ## Transform EINGEFUEGT_AM to date format (only year part) clean_df['EINGEFUEGT_AM'] = pd.to_datetime(clean_df['EINGEFUEGT_AM'], format = '%Y-%m-%d').dt.year ### Label-encode OST_WEST_KZ clean_df['OST_WEST_KZ'] = clean_df['OST_WEST_KZ'].replace('W',1).replace('O', 0) clean_df['OST_WEST_KZ'] = pd.to_numeric(clean_df['OST_WEST_KZ'], errors = 'coerce') return clean_df def scree_plot(pca): """ Function to make a scree plot out of a PCA object INPUT pca: PCA fitted object OUTPUT scree plot """ import matplotlib.pyplot as plt nc = len(pca.explained_variance_ratio_) ind = np.arange(nc) vals = pca.explained_variance_ratio_ cumvals = np.cumsum(vals) fig = plt.figure(figsize=(12,6)) ax = plt.subplot() ax.bar(ind, vals) ax.plot(ind, cumvals) plt.xlabel('No. of Components') plt.ylabel('Cum. explained variance') plt.title('Scree plot PCA') def get_cluster_centers(cluster_pipeline, num_cols, col_names): """ Function inverse transform pca components. INPUT: cluster: object of cluster_pipeline num_cols: list of numerical attributes which were rescaled col_names: names of all columns after Column Transformer operation OUTPUT: df (DataFrame): DataFrame of cluster_centers with their attributes values """ pca_components = cluster_pipeline.named_steps['reduction'] kmeans = cluster_pipeline.named_steps['clustering'] transformer = cluster_pipeline.named_steps['transform'] centers = pca_components.inverse_transform(kmeans.cluster_centers_) df = pd.DataFrame(centers, columns = col_names) num_scale = transformer.named_transformers_['num'].named_steps['num_scale'] df[num_cols] = num_scale.inverse_transform(df[num_cols]) return df def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None, n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5), verbose=0): """ Generate 3 plots: the test and training learning curve, the training samples vs fit times curve, the fit times vs score curve. Source: [https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html] Parameters ---------- estimator : estimator instance An estimator instance implementing `fit` and `predict` methods which will be cloned for each validation. title : str Title for the chart. X : array-like of shape (n_samples, n_features) Training vector, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. y : array-like of shape (n_samples) or (n_samples, n_features) Target relative to ``X`` for classification or regression; None for unsupervised learning. axes : array-like of shape (3,), default=None Axes to use for plotting the curves. ylim : tuple of shape (2,), default=None Defines minimum and maximum y-values plotted, e.g. (ymin, ymax). cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validators that can be used here. n_jobs : int or None, default=None Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. train_sizes : array-like of shape (n_ticks,) Relative or absolute numbers of training examples that will be used to generate the learning curve. If the ``dtype`` is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) """ import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import learning_curve if axes is None: _, axes = plt.subplots(1, 3, figsize=(20, 5)) axes[0].set_title(title) if ylim is not None: axes[0].set_ylim(*ylim) axes[0].set_xlabel("Training examples") axes[0].set_ylabel("Score") train_sizes, train_scores, test_scores, fit_times, _ = \ learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, return_times=True, verbose=verbose) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) fit_times_mean = np.mean(fit_times, axis=1) fit_times_std = np.std(fit_times, axis=1) # Plot learning curve axes[0].grid() axes[0].fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") axes[0].fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") axes[0].plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") axes[0].plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") axes[0].legend(loc="best") # Plot n_samples vs fit_times axes[1].grid() axes[1].plot(train_sizes, fit_times_mean, 'o-') axes[1].fill_between(train_sizes, fit_times_mean - fit_times_std, fit_times_mean + fit_times_std, alpha=0.1) axes[1].set_xlabel("Training examples") axes[1].set_ylabel("fit_times") axes[1].set_title("Scalability of the model") # Plot fit_time vs score axes[2].grid() axes[2].plot(fit_times_mean, test_scores_mean, 'o-') axes[2].fill_between(fit_times_mean, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1) axes[2].set_xlabel("fit_times") axes[2].set_ylabel("Score") axes[2].set_title("Performance of the model") return plt if __name__ == '__main__': pass
34.261484
102
0.653465
0
0
0
0
0
0
0
0
5,116
0.52764
738c97be8d45d5cf7a790774eb0b1a71db20018a
1,133
py
Python
PYTHON_POO/AFmain.py
davihonorato/Curso-python
47e6b4b2f5b37ef520b8b31d37dba0b5d259a0b0
[ "MIT" ]
null
null
null
PYTHON_POO/AFmain.py
davihonorato/Curso-python
47e6b4b2f5b37ef520b8b31d37dba0b5d259a0b0
[ "MIT" ]
null
null
null
PYTHON_POO/AFmain.py
davihonorato/Curso-python
47e6b4b2f5b37ef520b8b31d37dba0b5d259a0b0
[ "MIT" ]
null
null
null
# Criar uma base de dados. O usuário pode adicionar, excluir e listar clientes (que possuem id e nome). # *utilizar encapsulamento. class Clientes: def __init__(self): self.__lista = {} # Recomenda-se estritamente não modificar essa variável def adicionar_cliente(self, id, nome): if 'clientes' not in self.__lista: self.__lista['clientes'] = {id: nome} else: self.__lista['clientes'].update({id: nome}) def listar_clientes(self): if 'clientes' not in self.__lista: print('A lista está vazia.') else: for id, nome in self.__lista['clientes'].items(): print(id, nome) def deletar_cliente(self, id): del self.__lista['clientes'][id] user = Clientes() user.adicionar_cliente(189, 'Davi') user.adicionar_cliente(123, 'yan') user.adicionar_cliente(198, 'lorena') user.__lista = 'Outra coisa' # Variável criada pelo programa. Caso queira acessar # a variável da classe, terá que instanciar da seguinte forma: user._Pessoas__lista user.listar_clientes() user.deletar_cliente(123) user.listar_clientes()
32.371429
103
0.66902
633
0.555263
0
0
0
0
0
0
440
0.385965
738d10783ee6f1c6ba70fb6d0517987a990ac096
2,321
py
Python
env/lib/python3.4/site-packages/jsonrpc/tests/test_utils.py
Organizational-Proof-Of-Work/clearinghoused_build
7bab4ccb516015913bad41cfdc9eb15d3fbfcaf4
[ "MIT" ]
null
null
null
env/lib/python3.4/site-packages/jsonrpc/tests/test_utils.py
Organizational-Proof-Of-Work/clearinghoused_build
7bab4ccb516015913bad41cfdc9eb15d3fbfcaf4
[ "MIT" ]
null
null
null
env/lib/python3.4/site-packages/jsonrpc/tests/test_utils.py
Organizational-Proof-Of-Work/clearinghoused_build
7bab4ccb516015913bad41cfdc9eb15d3fbfcaf4
[ "MIT" ]
null
null
null
""" Test utility functionality.""" import datetime import decimal import json import sys if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest from mock import patch from ..utils import JSONSerializable, DatetimeDecimalEncoder class TestJSONSerializable(unittest.TestCase): """ Test JSONSerializable functionality.""" def setUp(self): class A(JSONSerializable): @property def json(self): pass self._class = A def test_abstract_class(self): with self.assertRaises(TypeError): JSONSerializable() self._class() def test_definse_serialize_deserialize(self): """ Test classmethods of inherited class.""" self.assertEqual(self._class.serialize({}), "{}") self.assertEqual(self._class.deserialize("{}"), {}) def test_from_json(self): self.assertTrue(isinstance(self._class.from_json('{}'), self._class)) def test_from_json_incorrect(self): with self.assertRaises(ValueError): self._class.from_json('[]') class TestDatetimeDecimalEncoder(unittest.TestCase): """ Test DatetimeDecimalEncoder functionality.""" def test_date_encoder(self): obj = datetime.date.today() with self.assertRaises(TypeError): json.dumps(obj) self.assertEqual( json.dumps(obj, cls=DatetimeDecimalEncoder), '"{0}"'.format(obj.isoformat()), ) def test_datetime_encoder(self): obj = datetime.datetime.now() with self.assertRaises(TypeError): json.dumps(obj) self.assertEqual( json.dumps(obj, cls=DatetimeDecimalEncoder), '"{0}"'.format(obj.isoformat()), ) def test_decimal_encoder(self): obj = decimal.Decimal('0.1') with self.assertRaises(TypeError): json.dumps(obj) result = json.dumps(obj, cls=DatetimeDecimalEncoder) self.assertTrue(isinstance(result, str)) self.assertEqual(float(result), float(0.1)) def test_default(self): encoder = DatetimeDecimalEncoder() with patch.object(json.JSONEncoder, 'default') as json_default: encoder.default("") self.assertEqual(json_default.call_count, 1)
26.078652
77
0.635502
2,051
0.883671
0
0
58
0.024989
0
0
216
0.093063
738d3ae3312a3ea39b2dd401e3c5ee88d3d77ab6
18,859
py
Python
264_nth_ugly_number.py
gengwg/leetcode
0af5256ec98149ef5863f3bba78ed1e749650f6e
[ "Apache-2.0" ]
2
2018-04-24T19:17:40.000Z
2018-04-24T19:33:52.000Z
264_nth_ugly_number.py
gengwg/leetcode
0af5256ec98149ef5863f3bba78ed1e749650f6e
[ "Apache-2.0" ]
null
null
null
264_nth_ugly_number.py
gengwg/leetcode
0af5256ec98149ef5863f3bba78ed1e749650f6e
[ "Apache-2.0" ]
3
2020-06-17T05:48:52.000Z
2021-01-02T06:08:25.000Z
# 264. Ugly Number II # # Write a program to check whether a given number is an ugly number. # # Ugly numbers are positive numbers whose prime factors only include # 2, 3, 5. For example, 6, 8 are ugly while 14 is not ugly since it # includes another prime factor 7. # # Note that 1 is typically treated as an ugly number. class Solution(object): # brute force def isUgly(self, num): """ :type num: int :rtype: bool """ if num == 0: return False while num % 2 == 0: num /= 2 while num % 3 == 0: num /= 3 while num % 5 == 0: num /= 5 return num == 1 def nthUglyNumber(self, n): """ :type n: int :rtype: int """ if n <= 0: return 0 number = 0 uglyFound = 0 while uglyFound < n: number += 1 if self.isUgly(number): uglyFound += 1 return number # https://www.hrwhisper.me/leetcode-ugly-number-i-ii/ # 第一个ugly number 是1 我们讨论n大于1的情况 # 因为它只能被2,3,5整除,所以我们从1开始扩展,每次要么乘2,要么乘3,要么乘5. # 对于1来说,我们分别乘以2,3,5得到[2,3,5],显然2是最小的。 # 于是第2个ugly number是2。 # 接着第3个呢?显然是 3 . 从 1 * 3 得到 # 第4个就不一样了,它是从2*2得到。 # 这有什么规律呢?规律就是,每个因子分别乘以当前得到的ugly number(初始为1), # 当某因子x算出来的不大于其他两个因子,说明新的ugly number是当前因子算出来的, # 下一轮,该因子应该乘以之前ugly number的下一个。 # 换句话说,每个因子分别乘以对应的ugly number[i]后, # 如果得到了新的ugly number 就说明下一次应该乘以下一个(ugly number[i+1])。这样能保证乘出来的小而且不会漏掉。 def nthUglyNumber(self, n): ugly = [1] * n # ugly[0] = 1; first ugly is 1. i2 = i3 = i5 = 0 # index for candiate multiply by 2,3,5 separately for i in range(1, n): # find min among all candidates ugly[i] = min(ugly[i2] * 2, ugly[i3] * 3, ugly[i5] * 5) # if processed by any factor, increment it. # note do not use elif: need increment all min. if ugly[i] == ugly[i2] * 2: i2 += 1 if ugly[i] == ugly[i3] * 3: i3 += 1 if ugly[i] == ugly[i5] * 5: i5 += 1 return ugly[n-1] # https://www.youtube.com/watch?v=ZG86C_U-vRg def nthUglyNumber(self, n): ugly = [1] # first ugly number is 1 i2 = 0 i3 = 0 i5 = 0 # calculate rest n-1 ugly numbers for _ in range(1, n): next2 = ugly[i2] * 2 next3 = ugly[i3] * 3 next5 = ugly[i5] * 5 next = min(next2, next3, next5) ugly.append(next) if next == next2: i2 += 1 if next == next3: i3 += 1 if next == next5: i5 += 1 return ugly[-1] # 打表法 # precompute all ugly numbers class Solution(object): ugly = [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675, 720, 729, 750, 768, 800, 810, 864, 900, 960, 972, 1000, 1024, 1080, 1125, 1152, 1200, 1215, 1250, 1280, 1296, 1350, 1440, 1458, 1500, 1536, 1600, 1620, 1728, 1800, 1875, 1920, 1944, 2000, 2025, 2048, 2160, 2187, 2250, 2304, 2400, 2430, 2500, 2560, 2592, 2700, 2880, 2916, 3000, 3072, 3125, 3200, 3240, 3375, 3456, 3600, 3645, 3750, 3840, 3888, 4000, 4050, 4096, 4320, 4374, 4500, 4608, 4800, 4860, 5000, 5120, 5184, 5400, 5625, 5760, 5832, 6000, 6075, 6144, 6250, 6400, 6480, 6561, 6750, 6912, 7200, 7290, 7500, 7680, 7776, 8000, 8100, 8192, 8640, 8748, 9000, 9216, 9375, 9600, 9720, 10000, 10125, 10240, 10368, 10800, 10935, 11250, 11520, 11664, 12000, 12150, 12288, 12500, 12800, 12960, 13122, 13500, 13824, 14400, 14580, 15000, 15360, 15552, 15625, 16000, 16200, 16384, 16875, 17280, 17496, 18000, 18225, 18432, 18750, 19200, 19440, 19683, 20000, 20250, 20480, 20736, 21600, 21870, 22500, 23040, 23328, 24000, 24300, 24576, 25000, 25600, 25920, 26244, 27000, 27648, 28125, 28800, 29160, 30000, 30375, 30720, 31104, 31250, 32000, 32400, 32768, 32805, 33750, 34560, 34992, 36000, 36450, 36864, 37500, 38400, 38880, 39366, 40000, 40500, 40960, 41472, 43200, 43740, 45000, 46080, 46656, 46875, 48000, 48600, 49152, 50000, 50625, 51200, 51840, 52488, 54000, 54675, 55296, 56250, 57600, 58320, 59049, 60000, 60750, 61440, 62208, 62500, 64000, 64800, 65536, 65610, 67500, 69120, 69984, 72000, 72900, 73728, 75000, 76800, 77760, 78125, 78732, 80000, 81000, 81920, 82944, 84375, 86400, 87480, 90000, 91125, 92160, 93312, 93750, 96000, 97200, 98304, 98415, 100000, 101250, 102400, 103680, 104976, 108000, 109350, 110592, 112500, 115200, 116640, 118098, 120000, 121500, 122880, 124416, 125000, 128000, 129600, 131072, 131220, 135000, 138240, 139968, 140625, 144000, 145800, 147456, 150000, 151875, 153600, 155520, 156250, 157464, 160000, 162000, 163840, 164025, 165888, 168750, 172800, 174960, 177147, 180000, 182250, 184320, 186624, 187500, 192000, 194400, 196608, 196830, 200000, 202500, 204800, 207360, 209952, 216000, 218700, 221184, 225000, 230400, 233280, 234375, 236196, 240000, 243000, 245760, 248832, 250000, 253125, 256000, 259200, 262144, 262440, 270000, 273375, 276480, 279936, 281250, 288000, 291600, 294912, 295245, 300000, 303750, 307200, 311040, 312500, 314928, 320000, 324000, 327680, 328050, 331776, 337500, 345600, 349920, 354294, 360000, 364500, 368640, 373248, 375000, 384000, 388800, 390625, 393216, 393660, 400000, 405000, 409600, 414720, 419904, 421875, 432000, 437400, 442368, 450000, 455625, 460800, 466560, 468750, 472392, 480000, 486000, 491520, 492075, 497664, 500000, 506250, 512000, 518400, 524288, 524880, 531441, 540000, 546750, 552960, 559872, 562500, 576000, 583200, 589824, 590490, 600000, 607500, 614400, 622080, 625000, 629856, 640000, 648000, 655360, 656100, 663552, 675000, 691200, 699840, 703125, 708588, 720000, 729000, 737280, 746496, 750000, 759375, 768000, 777600, 781250, 786432, 787320, 800000, 810000, 819200, 820125, 829440, 839808, 843750, 864000, 874800, 884736, 885735, 900000, 911250, 921600, 933120, 937500, 944784, 960000, 972000, 983040, 984150, 995328, 1000000, 1012500, 1024000, 1036800, 1048576, 1049760, 1062882, 1080000, 1093500, 1105920, 1119744, 1125000, 1152000, 1166400, 1171875, 1179648, 1180980, 1200000, 1215000, 1228800, 1244160, 1250000, 1259712, 1265625, 1280000, 1296000, 1310720, 1312200, 1327104, 1350000, 1366875, 1382400, 1399680, 1406250, 1417176, 1440000, 1458000, 1474560, 1476225, 1492992, 1500000, 1518750, 1536000, 1555200, 1562500, 1572864, 1574640, 1594323, 1600000, 1620000, 1638400, 1640250, 1658880, 1679616, 1687500, 1728000, 1749600, 1769472, 1771470, 1800000, 1822500, 1843200, 1866240, 1875000, 1889568, 1920000, 1944000, 1953125, 1966080, 1968300, 1990656, 2000000, 2025000, 2048000, 2073600, 2097152, 2099520, 2109375, 2125764, 2160000, 2187000, 2211840, 2239488, 2250000, 2278125, 2304000, 2332800, 2343750, 2359296, 2361960, 2400000, 2430000, 2457600, 2460375, 2488320, 2500000, 2519424, 2531250, 2560000, 2592000, 2621440, 2624400, 2654208, 2657205, 2700000, 2733750, 2764800, 2799360, 2812500, 2834352, 2880000, 2916000, 2949120, 2952450, 2985984, 3000000, 3037500, 3072000, 3110400, 3125000, 3145728, 3149280, 3188646, 3200000, 3240000, 3276800, 3280500, 3317760, 3359232, 3375000, 3456000, 3499200, 3515625, 3538944, 3542940, 3600000, 3645000, 3686400, 3732480, 3750000, 3779136, 3796875, 3840000, 3888000, 3906250, 3932160, 3936600, 3981312, 4000000, 4050000, 4096000, 4100625, 4147200, 4194304, 4199040, 4218750, 4251528, 4320000, 4374000, 4423680, 4428675, 4478976, 4500000, 4556250, 4608000, 4665600, 4687500, 4718592, 4723920, 4782969, 4800000, 4860000, 4915200, 4920750, 4976640, 5000000, 5038848, 5062500, 5120000, 5184000, 5242880, 5248800, 5308416, 5314410, 5400000, 5467500, 5529600, 5598720, 5625000, 5668704, 5760000, 5832000, 5859375, 5898240, 5904900, 5971968, 6000000, 6075000, 6144000, 6220800, 6250000, 6291456, 6298560, 6328125, 6377292, 6400000, 6480000, 6553600, 6561000, 6635520, 6718464, 6750000, 6834375, 6912000, 6998400, 7031250, 7077888, 7085880, 7200000, 7290000, 7372800, 7381125, 7464960, 7500000, 7558272, 7593750, 7680000, 7776000, 7812500, 7864320, 7873200, 7962624, 7971615, 8000000, 8100000, 8192000, 8201250, 8294400, 8388608, 8398080, 8437500, 8503056, 8640000, 8748000, 8847360, 8857350, 8957952, 9000000, 9112500, 9216000, 9331200, 9375000, 9437184, 9447840, 9565938, 9600000, 9720000, 9765625, 9830400, 9841500, 9953280, 10000000, 10077696, 10125000, 10240000, 10368000, 10485760, 10497600, 10546875, 10616832, 10628820, 10800000, 10935000, 11059200, 11197440, 11250000, 11337408, 11390625, 11520000, 11664000, 11718750, 11796480, 11809800, 11943936, 12000000, 12150000, 12288000, 12301875, 12441600, 12500000, 12582912, 12597120, 12656250, 12754584, 12800000, 12960000, 13107200, 13122000, 13271040, 13286025, 13436928, 13500000, 13668750, 13824000, 13996800, 14062500, 14155776, 14171760, 14348907, 14400000, 14580000, 14745600, 14762250, 14929920, 15000000, 15116544, 15187500, 15360000, 15552000, 15625000, 15728640, 15746400, 15925248, 15943230, 16000000, 16200000, 16384000, 16402500, 16588800, 16777216, 16796160, 16875000, 17006112, 17280000, 17496000, 17578125, 17694720, 17714700, 17915904, 18000000, 18225000, 18432000, 18662400, 18750000, 18874368, 18895680, 18984375, 19131876, 19200000, 19440000, 19531250, 19660800, 19683000, 19906560, 20000000, 20155392, 20250000, 20480000, 20503125, 20736000, 20971520, 20995200, 21093750, 21233664, 21257640, 21600000, 21870000, 22118400, 22143375, 22394880, 22500000, 22674816, 22781250, 23040000, 23328000, 23437500, 23592960, 23619600, 23887872, 23914845, 24000000, 24300000, 24576000, 24603750, 24883200, 25000000, 25165824, 25194240, 25312500, 25509168, 25600000, 25920000, 26214400, 26244000, 26542080, 26572050, 26873856, 27000000, 27337500, 27648000, 27993600, 28125000, 28311552, 28343520, 28697814, 28800000, 29160000, 29296875, 29491200, 29524500, 29859840, 30000000, 30233088, 30375000, 30720000, 31104000, 31250000, 31457280, 31492800, 31640625, 31850496, 31886460, 32000000, 32400000, 32768000, 32805000, 33177600, 33554432, 33592320, 33750000, 34012224, 34171875, 34560000, 34992000, 35156250, 35389440, 35429400, 35831808, 36000000, 36450000, 36864000, 36905625, 37324800, 37500000, 37748736, 37791360, 37968750, 38263752, 38400000, 38880000, 39062500, 39321600, 39366000, 39813120, 39858075, 40000000, 40310784, 40500000, 40960000, 41006250, 41472000, 41943040, 41990400, 42187500, 42467328, 42515280, 43046721, 43200000, 43740000, 44236800, 44286750, 44789760, 45000000, 45349632, 45562500, 46080000, 46656000, 46875000, 47185920, 47239200, 47775744, 47829690, 48000000, 48600000, 48828125, 49152000, 49207500, 49766400, 50000000, 50331648, 50388480, 50625000, 51018336, 51200000, 51840000, 52428800, 52488000, 52734375, 53084160, 53144100, 53747712, 54000000, 54675000, 55296000, 55987200, 56250000, 56623104, 56687040, 56953125, 57395628, 57600000, 58320000, 58593750, 58982400, 59049000, 59719680, 60000000, 60466176, 60750000, 61440000, 61509375, 62208000, 62500000, 62914560, 62985600, 63281250, 63700992, 63772920, 64000000, 64800000, 65536000, 65610000, 66355200, 66430125, 67108864, 67184640, 67500000, 68024448, 68343750, 69120000, 69984000, 70312500, 70778880, 70858800, 71663616, 71744535, 72000000, 72900000, 73728000, 73811250, 74649600, 75000000, 75497472, 75582720, 75937500, 76527504, 76800000, 77760000, 78125000, 78643200, 78732000, 79626240, 79716150, 80000000, 80621568, 81000000, 81920000, 82012500, 82944000, 83886080, 83980800, 84375000, 84934656, 85030560, 86093442, 86400000, 87480000, 87890625, 88473600, 88573500, 89579520, 90000000, 90699264, 91125000, 92160000, 93312000, 93750000, 94371840, 94478400, 94921875, 95551488, 95659380, 96000000, 97200000, 97656250, 98304000, 98415000, 99532800, 100000000, 100663296, 100776960, 101250000, 102036672, 102400000, 102515625, 103680000, 104857600, 104976000, 105468750, 106168320, 106288200, 107495424, 108000000, 109350000, 110592000, 110716875, 111974400, 112500000, 113246208, 113374080, 113906250, 114791256, 115200000, 116640000, 117187500, 117964800, 118098000, 119439360, 119574225, 120000000, 120932352, 121500000, 122880000, 123018750, 124416000, 125000000, 125829120, 125971200, 126562500, 127401984, 127545840, 128000000, 129140163, 129600000, 131072000, 131220000, 132710400, 132860250, 134217728, 134369280, 135000000, 136048896, 136687500, 138240000, 139968000, 140625000, 141557760, 141717600, 143327232, 143489070, 144000000, 145800000, 146484375, 147456000, 147622500, 149299200, 150000000, 150994944, 151165440, 151875000, 153055008, 153600000, 155520000, 156250000, 157286400, 157464000, 158203125, 159252480, 159432300, 160000000, 161243136, 162000000, 163840000, 164025000, 165888000, 167772160, 167961600, 168750000, 169869312, 170061120, 170859375, 172186884, 172800000, 174960000, 175781250, 176947200, 177147000, 179159040, 180000000, 181398528, 182250000, 184320000, 184528125, 186624000, 187500000, 188743680, 188956800, 189843750, 191102976, 191318760, 192000000, 194400000, 195312500, 196608000, 196830000, 199065600, 199290375, 200000000, 201326592, 201553920, 202500000, 204073344, 204800000, 205031250, 207360000, 209715200, 209952000, 210937500, 212336640, 212576400, 214990848, 215233605, 216000000, 218700000, 221184000, 221433750, 223948800, 225000000, 226492416, 226748160, 227812500, 229582512, 230400000, 233280000, 234375000, 235929600, 236196000, 238878720, 239148450, 240000000, 241864704, 243000000, 244140625, 245760000, 246037500, 248832000, 250000000, 251658240, 251942400, 253125000, 254803968, 255091680, 256000000, 258280326, 259200000, 262144000, 262440000, 263671875, 265420800, 265720500, 268435456, 268738560, 270000000, 272097792, 273375000, 276480000, 279936000, 281250000, 283115520, 283435200, 284765625, 286654464, 286978140, 288000000, 291600000, 292968750, 294912000, 295245000, 298598400, 300000000, 301989888, 302330880, 303750000, 306110016, 307200000, 307546875, 311040000, 312500000, 314572800, 314928000, 316406250, 318504960, 318864600, 320000000, 322486272, 324000000, 327680000, 328050000, 331776000, 332150625, 335544320, 335923200, 337500000, 339738624, 340122240, 341718750, 344373768, 345600000, 349920000, 351562500, 353894400, 354294000, 358318080, 358722675, 360000000, 362797056, 364500000, 368640000, 369056250, 373248000, 375000000, 377487360, 377913600, 379687500, 382205952, 382637520, 384000000, 387420489, 388800000, 390625000, 393216000, 393660000, 398131200, 398580750, 400000000, 402653184, 403107840, 405000000, 408146688, 409600000, 410062500, 414720000, 419430400, 419904000, 421875000, 424673280, 425152800, 429981696, 430467210, 432000000, 437400000, 439453125, 442368000, 442867500, 447897600, 450000000, 452984832, 453496320, 455625000, 459165024, 460800000, 466560000, 468750000, 471859200, 472392000, 474609375, 477757440, 478296900, 480000000, 483729408, 486000000, 488281250, 491520000, 492075000, 497664000, 500000000, 503316480, 503884800, 506250000, 509607936, 510183360, 512000000, 512578125, 516560652, 518400000, 524288000, 524880000, 527343750, 530841600, 531441000, 536870912, 537477120, 540000000, 544195584, 546750000, 552960000, 553584375, 559872000, 562500000, 566231040, 566870400, 569531250, 573308928, 573956280, 576000000, 583200000, 585937500, 589824000, 590490000, 597196800, 597871125, 600000000, 603979776, 604661760, 607500000, 612220032, 614400000, 615093750, 622080000, 625000000, 629145600, 629856000, 632812500, 637009920, 637729200, 640000000, 644972544, 645700815, 648000000, 655360000, 656100000, 663552000, 664301250, 671088640, 671846400, 675000000, 679477248, 680244480, 683437500, 688747536, 691200000, 699840000, 703125000, 707788800, 708588000, 716636160, 717445350, 720000000, 725594112, 729000000, 732421875, 737280000, 738112500, 746496000, 750000000, 754974720, 755827200, 759375000, 764411904, 765275040, 768000000, 774840978, 777600000, 781250000, 786432000, 787320000, 791015625, 796262400, 797161500, 800000000, 805306368, 806215680, 810000000, 816293376, 819200000, 820125000, 829440000, 838860800, 839808000, 843750000, 849346560, 850305600, 854296875, 859963392, 860934420, 864000000, 874800000, 878906250, 884736000, 885735000, 895795200, 900000000, 905969664, 906992640, 911250000, 918330048, 921600000, 922640625, 933120000, 937500000, 943718400, 944784000, 949218750, 955514880, 956593800, 960000000, 967458816, 972000000, 976562500, 983040000, 984150000, 995328000, 996451875, 1000000000, 1006632960, 1007769600, 1012500000, 1019215872, 1020366720, 1024000000, 1025156250, 1033121304, 1036800000, 1048576000, 1049760000, 1054687500, 1061683200, 1062882000, 1073741824, 1074954240, 1076168025, 1080000000, 1088391168, 1093500000, 1105920000, 1107168750, 1119744000, 1125000000, 1132462080, 1133740800, 1139062500, 1146617856, 1147912560, 1152000000, 1162261467, 1166400000, 1171875000, 1179648000, 1180980000, 1194393600, 1195742250, 1200000000, 1207959552, 1209323520, 1215000000, 1220703125, 1224440064, 1228800000, 1230187500, 1244160000, 1250000000, 1258291200, 1259712000, 1265625000, 1274019840, 1275458400, 1280000000, 1289945088, 1291401630, 1296000000, 1310720000, 1312200000, 1318359375, 1327104000, 1328602500, 1342177280, 1343692800, 1350000000, 1358954496, 1360488960, 1366875000, 1377495072, 1382400000, 1399680000, 1406250000, 1415577600, 1417176000, 1423828125, 1433272320, 1434890700, 1440000000, 1451188224, 1458000000, 1464843750, 1474560000, 1476225000, 1492992000, 1500000000, 1509949440, 1511654400, 1518750000, 1528823808, 1530550080, 1536000000, 1537734375, 1549681956, 1555200000, 1562500000, 1572864000, 1574640000, 1582031250, 1592524800, 1594323000, 1600000000, 1610612736, 1612431360, 1620000000, 1632586752, 1638400000, 1640250000, 1658880000, 1660753125, 1677721600, 1679616000, 1687500000, 1698693120, 1700611200, 1708593750, 1719926784, 1721868840, 1728000000, 1749600000, 1757812500, 1769472000, 1771470000, 1791590400, 1793613375, 1800000000, 1811939328, 1813985280, 1822500000, 1836660096, 1843200000, 1845281250, 1866240000, 1875000000, 1887436800, 1889568000, 1898437500, 1911029760, 1913187600, 1920000000, 1934917632, 1937102445, 1944000000, 1953125000, 1966080000, 1968300000, 1990656000, 1992903750, 2000000000, 2013265920, 2015539200, 2025000000, 2038431744, 2040733440, 2048000000, 2050312500, 2066242608, 2073600000, 2097152000, 2099520000, 2109375000, 2123366400] def nthUglyNumber(self, n): """ :type n: int :rtype: int """ return self.ugly[n-1] if __name__ == "__main__": #print (Solution().nthUglyNumber(10)) #print (Solution().nthUglyNumber(1500)) print (Solution().nthUglyNumber(1690))
162.577586
15,773
0.74198
18,823
0.972815
0
0
0
0
0
0
1,871
0.096698
7391ce7ef2ad24d97f65315f42ffbecced2389a8
3,563
py
Python
neutron/db/migration/alembic_migrations/versions/14be42f3d0a5_default_sec_group_table.py
osic-neutron/neutron-ipcapacity
678cbadb0be57203e0cc4c493082d2d54afc7c17
[ "Apache-2.0" ]
1
2019-01-13T04:42:21.000Z
2019-01-13T04:42:21.000Z
neutron/db/migration/alembic_migrations/versions/14be42f3d0a5_default_sec_group_table.py
osic-neutron/neutron-ipcapacity
678cbadb0be57203e0cc4c493082d2d54afc7c17
[ "Apache-2.0" ]
null
null
null
neutron/db/migration/alembic_migrations/versions/14be42f3d0a5_default_sec_group_table.py
osic-neutron/neutron-ipcapacity
678cbadb0be57203e0cc4c493082d2d54afc7c17
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """ Add default security group table Revision ID: 14be42f3d0a5 Revises: 41662e32bce2 Create Date: 2014-12-12 14:54:11.123635 """ # revision identifiers, used by Alembic. revision = '14be42f3d0a5' down_revision = '26b54cf9024d' from alembic import op import six import sqlalchemy as sa from neutron._i18n import _ from neutron.common import exceptions # Models can change in time, but migration should rely only on exact # model state at the current moment, so a separate model is created # here. security_group = sa.Table('securitygroups', sa.MetaData(), sa.Column('id', sa.String(length=36), nullable=False), sa.Column('name', sa.String(255)), sa.Column('tenant_id', sa.String(255))) class DuplicateSecurityGroupsNamedDefault(exceptions.Conflict): message = _("Some tenants have more than one security group named " "'default': %(duplicates)s. All duplicate 'default' security " "groups must be resolved before upgrading the database.") def upgrade(): table = op.create_table( 'default_security_group', sa.Column('tenant_id', sa.String(length=255), nullable=False), sa.Column('security_group_id', sa.String(length=36), nullable=False), sa.PrimaryKeyConstraint('tenant_id'), sa.ForeignKeyConstraint(['security_group_id'], ['securitygroups.id'], ondelete="CASCADE")) sel = (sa.select([security_group.c.tenant_id, security_group.c.id]) .where(security_group.c.name == 'default')) ins = table.insert(inline=True).from_select(['tenant_id', 'security_group_id'], sel) op.execute(ins) def check_sanity(connection): res = get_duplicate_default_security_groups(connection) if res: raise DuplicateSecurityGroupsNamedDefault( duplicates='; '.join('tenant %s: %s' % (tenant_id, ', '.join(groups)) for tenant_id, groups in six.iteritems(res))) def get_duplicate_default_security_groups(connection): insp = sa.engine.reflection.Inspector.from_engine(connection) if 'securitygroups' not in insp.get_table_names(): return {} session = sa.orm.Session(bind=connection.connect()) subq = (session.query(security_group.c.tenant_id) .filter(security_group.c.name == 'default') .group_by(security_group.c.tenant_id) .having(sa.func.count() > 1) .subquery()) sg = (session.query(security_group) .join(subq, security_group.c.tenant_id == subq.c.tenant_id) .filter(security_group.c.name == 'default') .all()) res = {} for s in sg: res.setdefault(s.tenant_id, []).append(s.id) return res
37.114583
78
0.634858
288
0.080831
0
0
0
0
0
0
1,358
0.381139
739221f14ebd9dfa18ce38c36afe1cd0d2d397f6
2,126
py
Python
coredis/response/callbacks/script.py
alisaifee/aredis
c5764a5a2a29c4ed25278548aa54eece94974440
[ "MIT" ]
null
null
null
coredis/response/callbacks/script.py
alisaifee/aredis
c5764a5a2a29c4ed25278548aa54eece94974440
[ "MIT" ]
null
null
null
coredis/response/callbacks/script.py
alisaifee/aredis
c5764a5a2a29c4ed25278548aa54eece94974440
[ "MIT" ]
null
null
null
from __future__ import annotations from coredis.response.callbacks import ResponseCallback from coredis.response.types import LibraryDefinition from coredis.response.utils import flat_pairs_to_dict from coredis.typing import Any, AnyStr, Mapping, Union from coredis.utils import EncodingInsensitiveDict class FunctionListCallback(ResponseCallback): def transform( self, response: Any, **options: Any ) -> Mapping[str, LibraryDefinition]: libraries = [ EncodingInsensitiveDict(flat_pairs_to_dict(library)) for library in response ] transformed = EncodingInsensitiveDict() for library in libraries: lib_name = library["library_name"] functions = EncodingInsensitiveDict({}) for function in library.get("functions", []): function_definition = EncodingInsensitiveDict( flat_pairs_to_dict(function) ) functions[function_definition["name"]] = function_definition functions[function_definition["name"]]["flags"] = set( function_definition["flags"] ) library["functions"] = functions transformed[lib_name] = EncodingInsensitiveDict( # type: ignore LibraryDefinition( name=library["name"], engine=library["engine"], description=library["description"], functions=library["functions"], library_code=library["library_code"], ) ) return transformed class FunctionStatsCallback(ResponseCallback): def transform( self, response: Any, **options: Any ) -> Mapping[AnyStr, Union[AnyStr, Mapping]]: transformed = flat_pairs_to_dict(response) key = b"engines" if b"engines" in transformed else "engines" engines = flat_pairs_to_dict(transformed.pop(key)) for engine, stats in engines.items(): transformed.setdefault(key, {})[engine] = flat_pairs_to_dict(stats) return transformed
40.884615
88
0.629351
1,816
0.854186
0
0
0
0
0
0
157
0.073848
7393a024a0f2a49dd9e4ca3dcf823461e29e512f
885
py
Python
controllers/editor.py
matumaros/BomberApe
d71616192fd54d9a595261c258e4c7367d2eac5d
[ "Apache-2.0" ]
null
null
null
controllers/editor.py
matumaros/BomberApe
d71616192fd54d9a595261c258e4c7367d2eac5d
[ "Apache-2.0" ]
null
null
null
controllers/editor.py
matumaros/BomberApe
d71616192fd54d9a595261c258e4c7367d2eac5d
[ "Apache-2.0" ]
null
null
null
from models.tilemap import TileMap class EditorController: def __init__(self, view): self.view = view self.tilemap = TileMap() def place_tile(self, coord, ttype): self.tilemap.add_tile(coord, ttype) self.view.board.update_tiles({coord: ttype}) def place_spawn(self, coord): self.tilemap.add_spawn(coord) self.view.board.update_spawns({coord: 'None'}) def get_tiles(self): layers = self.tilemap.layers tiles = layers['ground'].copy() tiles.update(layers['util']) tiles.update(layers['powerup']) tiles.update(layers['wall']) return tiles def save(self): self.tilemap.save() def load(self, map_path): self.tilemap.load(map_path) self.view.board.update_tiles(self.get_tiles()) self.view.board.update_spawns(self.tilemap.spawns)
26.029412
58
0.632768
845
0.954802
0
0
0
0
0
0
35
0.039548
739647d67e5d34152efe879eebab2aba747ceb26
815
py
Python
src/Pages/LoginPage.py
Artem0791/Hackathon18_09
15f7e6c14264a574dc3efc42c5edd03e39b8dab8
[ "MIT" ]
1
2021-09-17T18:26:33.000Z
2021-09-17T18:26:33.000Z
src/Pages/LoginPage.py
Artem0791/Hackathon18_09
15f7e6c14264a574dc3efc42c5edd03e39b8dab8
[ "MIT" ]
null
null
null
src/Pages/LoginPage.py
Artem0791/Hackathon18_09
15f7e6c14264a574dc3efc42c5edd03e39b8dab8
[ "MIT" ]
3
2021-09-18T10:06:32.000Z
2021-09-18T20:50:29.000Z
from .BasePage import BasePage from src.Locators import LoginPage from src.Services.Faker.FakeDataGenerator import DataGenerator class Login(BasePage): def create_account(self): data = DataGenerator() self.select(LoginPage.CreateCustomer.title, 'Mr.') self.input(LoginPage.CreateCustomer.first_name, data.get_name()) self.input(LoginPage.CreateCustomer.last_name, data.get_name()) self.input(LoginPage.CreateCustomer.email, data.get_email()) self.input(LoginPage.CreateCustomer.password, 'evetah799') self.input(LoginPage.CreateCustomer.confirm_password, 'evetah799') self.click(LoginPage.CreateCustomer.consent_checkbox) self.click(LoginPage.CreateCustomer.terms_checkbox) self.click(LoginPage.CreateCustomer.register_button)
40.75
74
0.75092
681
0.835583
0
0
0
0
0
0
27
0.033129
7398394632b763b7e8c94ec433a660e60ba8425e
2,777
py
Python
setup.py
willamm/dragonchain
c3a619e452b6256920ed15ccf5e5263a33dc33e1
[ "Apache-2.0" ]
3
2017-10-24T23:12:58.000Z
2017-10-24T23:15:28.000Z
setup.py
willamm/dragonchain
c3a619e452b6256920ed15ccf5e5263a33dc33e1
[ "Apache-2.0" ]
null
null
null
setup.py
willamm/dragonchain
c3a619e452b6256920ed15ccf5e5263a33dc33e1
[ "Apache-2.0" ]
1
2018-01-23T00:32:05.000Z
2018-01-23T00:32:05.000Z
""" Copyright 2016 Disney Connected and Advanced Technologies Licensed under the Apache License, Version 2.0 (the "Apache License") with the following modification; you may not use this file except in compliance with the Apache License and the following modification to it: Section 6. Trademarks. is deleted and replaced with: 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor and its affiliates, except as required to comply with Section 4(c) of the License and to reproduce the content of the NOTICE file. You may obtain a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the Apache License with the above modification is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the Apache License for the specific language governing permissions and limitations under the Apache License. """ __author__ = "Joe Roets, Brandon Kite, Dylan Yelton, Michael Bachtel" __copyright__ = "Copyright 2016, Disney Connected and Advanced Technologies" __license__ = "Apache" __version__ = "2.0" __maintainer__ = "Joe Roets" __email__ = "[email protected]" from distutils.errors import DistutilsError from distutils.spawn import find_executable from setuptools import setup, Command from glob import glob import os.path # If we have a thrift compiler installed, let's use it to re-generate # the .py files. If not, we'll use the pre-generated ones. class gen_thrift(Command): user_options=[] def initialize_options(self): self.root = None self.thrift = None def finalize_options(self): self.root = os.path.abspath(os.path.dirname(__file__)) self.thrift = find_executable('thrift1') if self.thrift is None: self.thrift = find_executable('thrift') def run(self): if self.thrift is None: raise DistutilsError( 'Apache Thrift binary not found. Please install Apache Thrift or use pre-generated Thrift classes.') self.mkpath(os.path.join(self.root, 'blockchain', 'gen')) for f in glob(os.path.join(self.root, 'thrift', '*.thrift')): self.spawn([self.thrift, '-out', os.path.join(self.root, 'blockchain', 'gen'), '-r', '--gen', 'py', os.path.join(self.root, 'thrift', f)]) setup(name = 'Blockchain', version = '0.0.2', description = 'blockchain stuff', author = 'Folks', packages = ['blockchain'], cmdclass = { 'gen_thrift': gen_thrift } )
38.041096
117
0.687432
902
0.324811
0
0
0
0
0
0
1,637
0.589485