max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
Katna/config.py
viddik13/katna
125
36466
<gh_stars>100-1000 """ .. module:: Katna.config :platform: Platfrom Independent :synopsis: This module defines some helpful configuration variables """ import os # # Configuration parameters for Image class class Image: # default value by which image size to be reduces for processing down_sample_factor = 8 # Debug flag DEBUG = False # Crop_height_reduction_factor_in_each_iterationnot found crop height # will be reduced by this multiplier/factor and search for candidate crops # is resumed. # Decreasing the height and width for crops while checking it don't get small by 1/(min_image_to_crop_factor) of image height/width min_image_to_crop_factor = 4 crop_height_reduction_factor_in_each_iteration = 0.05 # # Configurations for Scoring crops for crop extractor class CropScorer: detail_weight = 0.2 # default weight value for detail parameter edge_radius = 0.4 # default edge radius edge_weight = -20 # default edge weight outside_importance = ( -0.5 ) # default value to set if the pixel is outside crop rectangle rule_of_thirds = True # boolean to set rule of third condition check saliency_bias = 0.2 # bias color value for saliency(+- error value) saliency_weight = 1.3 # default edge radius face_bias = 0.01 # bias color value for face(+- error value) face_weight = 3.4 # default weight value for face parameter rects_weight = 1 # default weight value for crop rectangles # # Configurations for Text detection class class TextDetector: # Min Confidence Threshold for Text detection model min_confidence = 0.9 # Threshold for merging text detection boxes merge_threshold = 1 # Name of Model files to be used for text detection frozen_weights = "frozen_east_text_detection.pb" # Location where model file will be downloaded cache_subdir = "models" # Layers Name for text detection layerNames = ["feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"] # Download Link for Text detection model model_download_link = "https://github.com/oyyd/frozen_east_text_detection.pb/raw/master/frozen_east_text_detection.pb" # # Configurations for Edge Feature class class EdgeFeature: # min edge threshold value min_val_threshold = 100 # Max edge threshold value max_val_threshold = 200 # aperture_size/size of Sobel kernel for canny edge detector ksize = 3 # # Configurations for Face detection Feature class class FaceFeature: # Model file name to be used for face detection model_file = "res10_300x300_ssd_iter_140000_fp16.caffemodel" # Model definition file name to be used for face detetion prototxt_file = "deploy.prototxt" # Location where model file will be downloaded cache_subdir = "models" # Min Confidence Threshold for face detection model confidence = 0.5 # Download Link for face detection model defintion file prototxt_download_link = "https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt" # Download Link for face detection model modelfile_download_link = "https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel" # # Configuration parameters for Video class class Video: # Debug flag DEBUG = False min_video_duration = 5.0 # consume % of memory during video keyframe extraction # 80% of available memory will be consumed memory_consumption_threshold = 0.80 # assumed numbers of frames within which 1 candidate frames which might be available # seconds to reach threshold if all frames are collected, but not all are candidate frames # currently we assume 1 in 5 frame for that assumed_no_of_frames_per_candidate_frame = 5 # if video duration greater than this number video will be treated as a large video video_split_threshold_in_minutes = 20 # https://trac.ffmpeg.org/wiki/Encode/H.264 # Keep this between 20 to 30 value video_compression_crf_parameter = 23 video_compression_codec = "libx264" # Currently "libx264 and is supported" compression_output_file_extension = "mp4" # Supported/valid video extensions supported by ffmpeg # You can generate updated list by using following shell script on MacOSX or Linux # $ ffmpeg -demuxers -hide_banner | tail -n +5 | cut -d' ' -f4 | xargs -I{} ffmpeg -hide_banner -h demuxer={} | grep 'Common extensions' | cut -d' ' -f7 | tr ',' $'\n' | tr -d '.' video_extensions = [ ".str", ".aa", ".aac", ".ac3", ".acm", ".adf", ".adp", ".dtk", ".ads", ".ss2", ".adx", ".aea", ".afc", ".aix", ".al", ".ape", ".apl", ".mac", ".aptx", ".aptxhd", ".aqt", ".ast", ".avi", ".avr", ".bfstm", ".bcstm", ".bit", ".bmv", ".brstm", ".cdg", ".cdxl", ".xl", ".c2", ".302", ".daud", ".str", ".dss", ".dts", ".dtshd", ".dv", ".dif", ".cdata", ".eac3", ".paf", ".fap", ".flm", ".flac", ".flv", ".fsb", ".g722", ".722", ".tco", ".rco", ".g723_1", ".g729", ".genh", ".gsm", ".h261", ".h26l", ".h264", ".264", ".avc", ".hevc", ".h265", ".265", ".idf", ".cgi", ".sf", ".ircam", ".ivr", ".flv", ".lvf", ".m4v", ".mkv", ".mk3d", ".mka", ".mks", ".mjpg", ".mjpeg", ".mpo", ".j2k", ".mlp", ".mov", ".mp4", ".m4a", ".3gp", ".3g2", ".mj2", ".mp2", ".mp3", ".m2a", ".mpa", ".mpc", ".mjpg", ".txt", ".mpl2", ".sub", ".msf", ".mtaf", ".ul", ".musx", ".mvi", ".mxg", ".v", ".nist", ".sph", ".nsp", ".nut", ".ogg", ".oma", ".omg", ".aa3", ".pjs", ".pvf", ".yuv", ".cif", ".qcif", ".rgb", ".rt", ".rsd", ".rsd", ".rso", ".sw", ".sb", ".smi", ".sami", ".sbc", ".msbc", ".sbg", ".scc", ".sdr2", ".sds", ".sdx", ".shn", ".vb", ".son", ".sln", ".mjpg", ".stl", ".sub", ".sub", ".sup", ".svag", ".tak", ".thd", ".tta", ".ans", ".art", ".asc", ".diz", ".ice", ".nfo", ".txt", ".vt", ".ty", ".ty+", ".uw", ".ub", ".v210", ".yuv10", ".vag", ".vc1", ".viv", ".idx", ".vpk", ".txt", ".vqf", ".vql", ".vqe", ".vtt", ".wsd", ".xmv", ".xvag", ".yop", ".y4m", ] # Configuration parameters for mediapipe class MediaPipe: class AutoFlip: # Rerun is required due to autoflip issue mentione here: # https://github.com/google/mediapipe/issues/497 RERUN_LIMIT = 2 # Models folder location MODELS_FOLDER_LOCATION = os.path.join(os.getcwd(), "mediapipe", "models") # pbtxt temp folder name TMP_PBTXT_FOLDER_NAME = "temp_pbtxt" TMP_PBTXT_FOLDER_PATH = os.path.join(os.getcwd(), TMP_PBTXT_FOLDER_NAME) # Default pbtxt and build cmd CONFIG_FILE_PBTXT = os.path.join( os.path.dirname(os.path.abspath(__file__)), "mediapipe_autoflip.pbtxt" ) BUILD_CMD = "run_autoflip" # user friendly conf keys ENFORCE_FEATURES_KEYNAME = "ENFORCE_FEATURES" STABALIZATION_THRESHOLD_KEYNAME = "STABALIZATION_THRESHOLD" BLUR_AREA_OPACITY_KEYNAME = "BLUR_AREA_OPACITY" # DEFAULT VALUES IN PBTXT DEFAULT_BLUR_AREA_OPACITY = 0.6 DEFAULT_MOTION_STABALIZATION_THRESHOLD = 0.5 DEFAULT_FEATURE_SIGNAL_VALUE = "false" # ENFORCE_FEATURES Keys _FACE_CORE_LANDMARKS = "FACE_CORE_LANDMARKS" _FACE_FULL = "FACE_FULL" _FACE_ALL_LANDMARKS = "FACE_ALL_LANDMARKS" _HUMAN = "HUMAN" _PET = "PET" _CAR = "CAR" _OBJECT = "OBJECT" # the variables names below should match the keyname for set_conf to work # smoothly # ENFORCE_FEATURES list ENFORCE_FEATURES = { _FACE_CORE_LANDMARKS: False, _FACE_ALL_LANDMARKS: False, _FACE_FULL: False, _HUMAN: False, _PET: False, _CAR: False, _OBJECT: False, } # % AREA from center where most of the content is # usually applied when content is focused near center STABALIZATION_THRESHOLD = DEFAULT_MOTION_STABALIZATION_THRESHOLD # opacity of blur area BLUR_AREA_OPACITY = DEFAULT_BLUR_AREA_OPACITY @classmethod def get_pbtxt_mapping(cls): return { cls.ENFORCE_FEATURES_KEYNAME: "signal_settings", cls.STABALIZATION_THRESHOLD_KEYNAME: "motion_stabilization_threshold_percent", cls.BLUR_AREA_OPACITY_KEYNAME: "overlay_opacity", } @classmethod def get_conf(cls): """Gets the current config :return: dictionary containing the current config :rtype: dict """ return { cls.ENFORCE_FEATURES_KEYNAME: cls.ENFORCE_FEATURES, cls.STABALIZATION_THRESHOLD_KEYNAME: cls.STABALIZATION_THRESHOLD, cls.BLUR_AREA_OPACITY_KEYNAME: cls.BLUR_AREA_OPACITY, } @classmethod def set_conf(cls, config): """Sets the config passed :param config: The configuration to set. :type config: dict """ for attr in config.keys(): current_conf = cls.get_conf() if attr in current_conf.keys(): if attr == cls.ENFORCE_FEATURES_KEYNAME: updated_attr_dict = {**current_conf[attr], **config[attr]} setattr(cls, attr, updated_attr_dict) else: setattr(cls, attr, config[attr]) else: raise Exception( " Invalid configuration. Use get_conf method to see existing configuration or refer documentation." ) class ImageSelector: # Setting for optimum Brightness values min_brightness_value = 10.0 max_brightness_value = 90.0 brightness_step = 2.0 # Setting for optimum Contrast/Entropy values min_entropy_value = 1.0 max_entropy_value = 10.0 entropy_step = 0.5 class FrameExtractor: # Setting local maxima criteria USE_LOCAL_MAXIMA = True # Lenght of sliding window taking difference len_window = 20 # Chunk size of Images to be processed at a time in memory max_frames_in_chunk = 500 # Type of smoothening window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. window_type = "hanning"
plaso/formatters/manager.py
pyllyukko/plaso
1,253
36474
# -*- coding: utf-8 -*- """Manages custom event formatter helpers.""" class FormattersManager(object): """Custom event formatter helpers manager.""" _custom_formatter_helpers = {} @classmethod def GetEventFormatterHelper(cls, identifier): """Retrieves a custom event formatter helper. Args: identifier (str): identifier. Returns: CustomEventFormatterHelper: custom event formatter or None if not available. """ identifier = identifier.lower() return cls._custom_formatter_helpers.get(identifier) @classmethod def RegisterEventFormatterHelper(cls, formatter_helper_class): """Registers a custom event formatter helper. The custom event formatter helpers are identified based on their lower case identifier. Args: formatter_helper_class (type): class of the custom event formatter helper. Raises: KeyError: if a custom formatter helper is already set for the corresponding identifier. """ identifier = formatter_helper_class.IDENTIFIER.lower() if identifier in cls._custom_formatter_helpers: raise KeyError(( 'Custom event formatter helper already set for identifier: ' '{0:s}.').format(formatter_helper_class.IDENTIFIER)) cls._custom_formatter_helpers[identifier] = formatter_helper_class() @classmethod def RegisterEventFormatterHelpers(cls, formatter_helper_classes): """Registers custom event formatter helpers. The formatter classes are identified based on their lower case data type. Args: formatter_helper_classes (list[type]): classes of the custom event formatter helpers. Raises: KeyError: if a custom formatter helper is already set for the corresponding data type. """ for formatter_helper_class in formatter_helper_classes: cls.RegisterEventFormatterHelper(formatter_helper_class)
custom_latex_cell_style/scenario2/ipython_nbconvert_config.py
isabella232/nbconvert-examples
120
36492
c = get_config() #Export all the notebooks in the current directory to the sphinx_howto format. c.NbConvertApp.notebooks = ['*.ipynb'] c.NbConvertApp.export_format = 'latex' c.NbConvertApp.postprocessor_class = 'PDF' c.Exporter.template_file = 'custom_article.tplx'
bin/terminology.py
cedzz/python-patterns
631
36513
#!/usr/bin/env python3 """Count the frequency of various phrases, given the path to the Python PEPs. In Python PEPs, the opposite of “subclass” is almost always “base class” — just remember that the builtin is named super(), not base()! Stats: 216 base class 0 child class 10 derived class 12 parent class 372 subclass 10 super class 44 superclass """ import argparse import os import re import sys TERMS = ( 'superclass', 'super class', 'subclass', 'base class', 'derived class', 'parent class', 'child class', ) def main(argv): parser = argparse.ArgumentParser(description='PEP terminology counts') parser.add_argument('pepsdir', help='path to PEPs repo') try: args = parser.parse_args(argv) except SystemExit: print('\nTo checkout the PEPs from version control, git clone:' '\nhttps://github.com/python/peps.git', file=sys.stderr) raise peps = [] for dirpath, dirnames, filenames in os.walk(args.pepsdir): for filename in filenames: if filename.endswith(('.rst', '.txt')): peps.append(os.path.join(dirpath, filename)) counts = {term: 0 for term in TERMS} for pep in peps: with open(pep) as f: content = f.read() text = ' '.join(re.findall('\w+', content.lower())) #text = ' '.join(content.lower().replace('.'), ' ').split()) for term in TERMS: n = text.count(' ' + term + ' ') m = text.count(' ' + term + 'es ') counts[term] += n + m for term in sorted(TERMS): print('{:5} {}'.format(counts[term], term)) if __name__ == '__main__': main(sys.argv[1:])
rotkehlchen/externalapis/bisq_market.py
rotkehlchenio/rotkehlchen
137
36515
import json import requests from rotkehlchen.assets.asset import Asset from rotkehlchen.constants.timing import DEFAULT_TIMEOUT_TUPLE from rotkehlchen.errors.misc import RemoteError from rotkehlchen.errors.serialization import DeserializationError from rotkehlchen.history.deserialization import deserialize_price from rotkehlchen.types import Price PRICE_API_URL = 'https://bisq.markets/api/ticker?market={symbol}_BTC' def get_bisq_market_price(asset: Asset) -> Price: """ Get price for pair at bisq marketplace. Price is returned against BTC. Can raise: - RemoteError: If the market doesn't exists or request fails - DeserializationError: If the data returned is not a valid price """ url = PRICE_API_URL.format(symbol=asset.symbol) try: response = requests.get(url, timeout=DEFAULT_TIMEOUT_TUPLE) except requests.exceptions.RequestException as e: raise RemoteError(f'bisq.markets request {url} failed due to {str(e)}') from e try: data = response.json() except json.decoder.JSONDecodeError as e: raise RemoteError( f'Failed to read json response from bisq.markets. {response.text}. {str(e)}', ) from e if 'error' in data: raise RemoteError(f'Request data from bisq.markets {url} is not valid {data["error"]}') try: price = data['last'] except KeyError as e: raise DeserializationError( f'Response from bisq.markets didnt contain expected key "last". {data}', ) from e return deserialize_price(price)
chapter4/chapter4_pydantic_types_01.py
GoodMonsters/Building-Data-Science-Applications-with-FastAPI
107
36520
<reponame>GoodMonsters/Building-Data-Science-Applications-with-FastAPI from pydantic import BaseModel, EmailStr, HttpUrl, ValidationError class User(BaseModel): email: EmailStr website: HttpUrl # Invalid email try: User(email="jdoe", website="https://www.example.com") except ValidationError as e: print(str(e)) # Invalid URL try: User(email="<EMAIL>", website="jdoe") except ValidationError as e: print(str(e)) # Valid user = User(email="<EMAIL>", website="https://www.example.com") # email='<EMAIL>' website=HttpUrl('https://www.example.com', scheme='https', host='www.example.com', tld='com', host_type='domain') print(user)
examples/shapes_from_glsl/cylinder_shape.py
szabolcsdombi/zengl
116
36549
import zengl from defaults import defaults from grid import grid_pipeline from window import Window window = Window(1280, 720) ctx = zengl.context() image = ctx.image(window.size, 'rgba8unorm', samples=4) depth = ctx.image(window.size, 'depth24plus', samples=4) image.clear_value = (0.2, 0.2, 0.2, 1.0) ctx.includes['defaults'] = defaults grid = grid_pipeline(ctx, [image, depth]) pipeline = ctx.pipeline( vertex_shader=''' #version 330 #include "defaults" vec3 vertices[24] = vec3[]( vec3(0.000000, 1.000000, -0.500000), vec3(0.000000, 1.000000, 0.500000), vec3(0.500000, 0.866025, -0.500000), vec3(0.500000, 0.866025, 0.500000), vec3(0.866025, 0.500000, -0.500000), vec3(0.866025, 0.500000, 0.500000), vec3(1.000000, -0.000000, -0.500000), vec3(1.000000, -0.000000, 0.500000), vec3(0.866025, -0.500000, -0.500000), vec3(0.866025, -0.500000, 0.500000), vec3(0.500000, -0.866025, -0.500000), vec3(0.500000, -0.866025, 0.500000), vec3(-0.000000, -1.000000, -0.500000), vec3(-0.000000, -1.000000, 0.500000), vec3(-0.500000, -0.866025, -0.500000), vec3(-0.500000, -0.866025, 0.500000), vec3(-0.866025, -0.500000, -0.500000), vec3(-0.866025, -0.500000, 0.500000), vec3(-1.000000, 0.000000, -0.500000), vec3(-1.000000, 0.000000, 0.500000), vec3(-0.866025, 0.500000, -0.500000), vec3(-0.866025, 0.500000, 0.500000), vec3(-0.500000, 0.866025, -0.500000), vec3(-0.500000, 0.866025, 0.500000) ); vec3 normals[14] = vec3[]( vec3(-0.0000, 1.0000, -0.0000), vec3(0.5000, 0.8660, -0.0000), vec3(0.8660, 0.5000, -0.0000), vec3(1.0000, -0.0000, -0.0000), vec3(0.8660, -0.5000, -0.0000), vec3(0.5000, -0.8660, -0.0000), vec3(-0.0000, -1.0000, -0.0000), vec3(-0.5000, -0.8660, -0.0000), vec3(-0.8660, -0.5000, -0.0000), vec3(-1.0000, -0.0000, -0.0000), vec3(-0.8660, 0.5000, -0.0000), vec3(-0.0000, -0.0000, 1.0000), vec3(-0.5000, 0.8660, -0.0000), vec3(-0.0000, -0.0000, -1.0000) ); vec2 texcoords[50] = vec2[]( vec2(1.000000, 0.500000), vec2(0.000000, 0.500000), vec2(0.750000, 0.490000), vec2(1.000000, 1.000000), vec2(0.250000, 0.490000), vec2(0.000000, 1.000000), vec2(0.916667, 0.500000), vec2(0.870000, 0.457846), vec2(0.916667, 1.000000), vec2(0.370000, 0.457846), vec2(0.833333, 0.500000), vec2(0.957846, 0.370000), vec2(0.833333, 1.000000), vec2(0.457846, 0.370000), vec2(0.750000, 0.500000), vec2(0.990000, 0.250000), vec2(0.750000, 1.000000), vec2(0.490000, 0.250000), vec2(0.666667, 0.500000), vec2(0.957846, 0.130000), vec2(0.666667, 1.000000), vec2(0.457846, 0.130000), vec2(0.583333, 0.500000), vec2(0.870000, 0.042154), vec2(0.583333, 1.000000), vec2(0.370000, 0.042154), vec2(0.500000, 0.500000), vec2(0.750000, 0.010000), vec2(0.500000, 1.000000), vec2(0.250000, 0.010000), vec2(0.416667, 0.500000), vec2(0.630000, 0.042154), vec2(0.416667, 1.000000), vec2(0.130000, 0.042154), vec2(0.333333, 0.500000), vec2(0.542154, 0.130000), vec2(0.333333, 1.000000), vec2(0.042154, 0.130000), vec2(0.250000, 0.500000), vec2(0.510000, 0.250000), vec2(0.250000, 1.000000), vec2(0.010000, 0.250000), vec2(0.166667, 0.500000), vec2(0.542154, 0.370000), vec2(0.042154, 0.370000), vec2(0.166667, 1.000000), vec2(0.083333, 0.500000), vec2(0.630000, 0.457846), vec2(0.130000, 0.457846), vec2(0.083333, 1.000000) ); int vertex_indices[132] = int[]( 1, 2, 0, 3, 4, 2, 5, 6, 4, 7, 8, 6, 9, 10, 8, 11, 12, 10, 13, 14, 12, 15, 16, 14, 17, 18, 16, 19, 20, 18, 21, 13, 5, 21, 22, 20, 23, 0, 22, 6, 14, 22, 1, 3, 2, 3, 5, 4, 5, 7, 6, 7, 9, 8, 9, 11, 10, 11, 13, 12, 13, 15, 14, 15, 17, 16, 17, 19, 18, 19, 21, 20, 5, 3, 1, 1, 23, 21, 21, 19, 17, 17, 15, 13, 13, 11, 9, 9, 7, 5, 5, 1, 21, 21, 17, 13, 13, 9, 5, 21, 23, 22, 23, 1, 0, 22, 0, 2, 2, 4, 6, 6, 8, 10, 10, 12, 14, 14, 16, 18, 18, 20, 22, 22, 2, 6, 6, 10, 14, 14, 18, 22 ); int normal_indices[132] = int[]( 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 11, 11, 11, 10, 12, 10, 12, 0, 12, 13, 13, 13, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 12, 12, 12, 0, 0, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13 ); int texcoord_indices[132] = int[]( 3, 6, 0, 8, 10, 6, 12, 14, 10, 16, 18, 14, 20, 22, 18, 24, 26, 22, 28, 30, 26, 32, 34, 30, 36, 38, 34, 40, 42, 38, 44, 29, 13, 45, 46, 42, 49, 1, 46, 15, 31, 47, 3, 8, 6, 8, 12, 10, 12, 16, 14, 16, 20, 18, 20, 24, 22, 24, 28, 26, 28, 32, 30, 32, 36, 34, 36, 40, 38, 40, 45, 42, 13, 9, 4, 4, 48, 44, 44, 41, 37, 37, 33, 29, 29, 25, 21, 21, 17, 13, 13, 4, 44, 44, 37, 29, 29, 21, 13, 45, 49, 46, 49, 5, 1, 47, 2, 7, 7, 11, 15, 15, 19, 23, 23, 27, 31, 31, 35, 39, 39, 43, 47, 47, 7, 15, 15, 23, 31, 31, 39, 47 ); out vec3 v_vertex; out vec3 v_normal; out vec2 v_texcoord; void main() { v_vertex = vertices[vertex_indices[gl_VertexID]]; v_normal = normals[normal_indices[gl_VertexID]]; v_texcoord = texcoords[texcoord_indices[gl_VertexID]]; gl_Position = mvp * vec4(v_vertex, 1.0); } ''', fragment_shader=''' #version 330 #include "defaults" in vec3 v_normal; layout (location = 0) out vec4 out_color; void main() { float lum = dot(normalize(light.xyz), normalize(v_normal)) * 0.7 + 0.3; out_color = vec4(lum, lum, lum, 1.0); } ''', framebuffer=[image, depth], topology='triangles', cull_face='back', vertex_count=132, ) while window.update(): image.clear() depth.clear() grid.render() pipeline.render() image.blit()
prohmr/models/heads/__init__.py
akashsengupta1997/ProHMR
120
36556
<filename>prohmr/models/heads/__init__.py<gh_stars>100-1000 from .smpl_flow import SMPLFlow from .skeleton_flow import SkeletonFlow from .fc_head import FCHead
examples/issues/issue345_docs2.py
tgolsson/appJar
666
36566
<reponame>tgolsson/appJar import sys sys.path.append("../../") from appJar import gui def press(btn): if btn == "FIRST": app.firstFrame("Pages") elif btn == "NEXT": app.nextFrame("Pages") elif btn == "PREV": app.prevFrame("Pages") elif btn == "LAST": app.lastFrame("Pages") def changed(): msg = "Changed from: " + str(app.getPreviousFrame("Pages")) + " to " + str(app.getCurrentFrame("Pages")) print(msg) # return app.okBox("Sure?", msg) with gui("FRAME STACK") as app: with app.frameStack("Pages", change=changed):#, start=1): with app.frame(bg='red'): for i in range(5): app.label("Text: " + str(i)) with app.frame(bg='green'): for i in range(5): app.entry("e" + str(i)) with app.frame(bg='pink'): for i in range(5): app.button(str(i), None) app.buttons(["FIRST", "PREV", "NEXT", "LAST"], press) changed()
binary_tree_postorder_traversal/solution.py
mahimadubey/leetcode-python
528
36582
<filename>binary_tree_postorder_traversal/solution.py """ Given a binary tree, return the postorder traversal of its nodes' values. For example: Given binary tree {1,#,2,3}, 1 \ 2 / 3 return [3,2,1]. """ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def postorderTraversal(self, root): """ :type root: TreeNode :rtype: List[int] """ path = [] if root is None: return path stack1 = [] stack2 = [] stack1.append(root) while stack1: root = stack1.pop() stack2.append(root.val) if root.left is not None: stack1.append(root.left) if root.right is not None: stack1.append(root.right) while stack2: path.append(stack2.pop()) return path
figures/perception/randomwalk.py
patricknaughton01/RoboticSystemsBook
116
36600
<reponame>patricknaughton01/RoboticSystemsBook<filename>figures/perception/randomwalk.py<gh_stars>100-1000 import matplotlib.pyplot as plt import numpy as np from kalman import * def kf_trace(F,g,P,H,j,Q,Xmean,Xvar,Z): if not isinstance(F,np.ndarray): F = np.array([[F]]) if not isinstance(g,np.ndarray): g = np.array([g]) if not isinstance(P,np.ndarray): P = np.array([[P]]) if H is not None: if not isinstance(H,np.ndarray): H = np.array([[H]]) if not isinstance(j,np.ndarray): j = np.array([j]) if not isinstance(Q,np.ndarray): Q = np.array([[Q]]) if not isinstance(Xmean,np.ndarray): Xmean = np.array([Xmean]) if not isinstance(Xvar,np.ndarray): Xvar = np.array([[Xvar]]) cur_mean,cur_cov = Xmean,Xvar res_mean = [cur_mean] res_cov = [cur_cov] for z in Z: if not isinstance(z,np.ndarray): z = np.array([z]) cur_mean,cur_cov = kalman_filter_predict(cur_mean,cur_cov,F,g,P) if H is not None: cur_mean,cur_cov = kalman_filter_update(cur_mean,cur_cov,F,g,P,H,j,Q,z) res_mean.append(cur_mean) res_cov.append(cur_cov) return res_mean,res_cov T = 100 N = 20 dt = 0.1 motion_noise_magnitude = 1.0 noise_magnitude = 0.3 fig1 = plt.figure(figsize=(10,4)) ax1 = fig1.add_subplot(1, 2, 1) ax1.set_xlabel("Time") ax1.set_ylabel("State") ax1.set_ylim(-3,3) ax1.set_xlim(0,10) x = np.array(range(T))*dt for i in xrange(N): eps = np.random.normal(size=T)*motion_noise_magnitude y = np.cumsum(eps*dt) ax1.plot(x,y) y,yvar = kf_trace(F=1,g=0,P=motion_noise_magnitude*dt**2,H=None,j=None,Q=noise_magnitude**2,Xmean=0,Xvar=0,Z=eps) y = np.array([yi[0] for yi in y]) yvar = np.array([yi[0,0] for yi in yvar]) kf_pred, = ax1.plot(x,y[:-1],label="KF prediction") ax1.plot(x,y[:-1]+2.0*np.sqrt(yvar)[:-1],label="KF prediction + 2*std",lw=0.5,color='k',linestyle='--') ax1.plot(x,y[:-1]-2.0*np.sqrt(yvar)[:-1],label="KF prediction + 2*std",lw=0.5,color='k',linestyle='--') ax1.legend(handles=[kf_pred]) ax2 = fig1.add_subplot(1, 2, 2) ax2.set_xlabel("Time") ax2.set_ylabel("State") ax2.set_ylim(-3,3) ax2.set_xlim(0,10) #eps_truth = np.random.normal(size=T) #y_truth = np.cumsum(eps*dt) y_truth = np.sin(np.array(range(T))*dt*0.5)*1.0 x = np.array(range(T))*dt z = y_truth + np.random.normal(size=T)*noise_magnitude y,yvar = kf_trace(F=1,g=0,P=motion_noise_magnitude*dt**2,H=1,j=0,Q=noise_magnitude**2,Xmean=0,Xvar=0,Z=z) y = np.array([yi[0] for yi in y]) yvar = np.array([yi[0,0] for yi in yvar]) Zmse = np.sqrt(np.sum((z-y_truth)**2)) KFmse = np.sqrt(np.sum((y[:-1]-y_truth)**2)) print "Z MSE",Zmse print "KF MSE",KFmse print "Reduction (%)",(Zmse-KFmse)/Zmse*100 ground_truth, = ax2.plot(x,y_truth,label="Ground truth",color='k') obs = ax2.scatter(x,z,label="Observations",color='gray',s=9) kf_estimate, = ax2.plot(x,y[:-1],label="KF estimate") ax2.plot(x,y[:-1]+2.0*np.sqrt(yvar)[:-1],label="KF estimate + 2*std",lw=0.5,color='k',linestyle='--') ax2.plot(x,y[:-1]-2.0*np.sqrt(yvar)[:-1],label="KF estimate + 2*std",lw=0.5,color='k',linestyle='--') ax2.legend(handles=[ground_truth,obs,kf_estimate]) plt.show()
CTFd/constants/themes.py
nox237/CTFd
3,592
36609
<filename>CTFd/constants/themes.py ADMIN_THEME = "admin" DEFAULT_THEME = "core"
tests/unit/model_selection/test_model_selection.py
ambader/hcrystalball
139
36652
import numpy as np import pytest from sklearn.dummy import DummyRegressor from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from hcrystalball.metrics import get_scorer from hcrystalball.model_selection import FinerTimeSplit from hcrystalball.model_selection import get_best_not_failing_model from hcrystalball.model_selection import select_model from hcrystalball.wrappers import ExponentialSmoothingWrapper from hcrystalball.wrappers import get_sklearn_wrapper @pytest.mark.parametrize( "train_data, grid_search, parallel_over_dict", [("two_regions", "", {"Region": "region_0"}), ("two_regions", "", None)], indirect=["train_data", "grid_search"], ) def test_select_model(train_data, grid_search, parallel_over_dict): _train_data = train_data if parallel_over_dict: col, value = list(parallel_over_dict.items())[0] _train_data = train_data[train_data[col] == value].drop(columns="Region") partition_columns = ["Region", "Product"] results = select_model( _train_data, target_col_name="Quantity", partition_columns=partition_columns, parallel_over_dict=parallel_over_dict, grid_search=grid_search, country_code_column="Holidays_code", ) if parallel_over_dict: partitions = ( train_data.loc[train_data[col] == value, partition_columns] .drop_duplicates() .to_dict(orient="records") ) else: partitions = train_data[partition_columns].drop_duplicates().to_dict(orient="records") assert len(results) == len(partitions) for result in results: assert result.best_model_name == "good_dummy" assert result.partition in partitions @pytest.mark.parametrize( "X_y_optional, negative_data, best_model_name, rank, expected_error", [ ("", False, "ExponentialSmoothingWrapper", 1, None), ("", True, "SklearnWrapper", 2, None), ("", True, "", 2, ValueError), ], indirect=["X_y_optional"], ) def test_get_best_not_failing_model(X_y_optional, negative_data, best_model_name, rank, expected_error): X, y = X_y_optional # data contains 0 y[y < 1] = 1 if negative_data: y[-1] = -1 models = [ ExponentialSmoothingWrapper(freq="D", seasonal="mul"), get_sklearn_wrapper(DummyRegressor, strategy="constant", constant=-1000), ] models = models if expected_error is None else models[:1] grid_search = GridSearchCV( estimator=Pipeline([("model", "passthrough")]), param_grid=[{"model": models}], scoring=get_scorer("neg_mean_absolute_error"), cv=FinerTimeSplit(n_splits=1, horizon=5), refit=False, error_score=np.nan, ) grid_search.fit(X, y) if expected_error: with pytest.raises(expected_error): get_best_not_failing_model(grid_search, X, y) else: best_param_rank = get_best_not_failing_model(grid_search, X, y) assert isinstance(best_param_rank, dict) assert best_param_rank["params"]["model"].__class__.__name__ == best_model_name assert best_param_rank["rank"] == rank
src/rust/iced-x86-py/src/iced_x86/CC_g.py
clayne/iced
1,018
36668
# SPDX-License-Identifier: MIT # Copyright (C) 2018-present iced project and contributors # ⚠️This file was generated by GENERATOR!🦹‍♂️ # pylint: disable=invalid-name # pylint: disable=line-too-long # pylint: disable=too-many-lines """ Mnemonic condition code selector (eg. ``JG`` / ``JNLE``) """ import typing if typing.TYPE_CHECKING: from ._iced_x86_py import CC_g else: CC_g = int G: CC_g = 0 # type: ignore """ ``JG``, ``CMOVG``, ``SETG`` """ NLE: CC_g = 1 # type: ignore """ ``JNLE``, ``CMOVNLE``, ``SETNLE`` """
LeetCode/python3/1025.py
ZintrulCre/LeetCode_Archiver
279
36682
class Solution: def divisorGame(self, N: int) -> bool: return True if N % 2 == 0 else False
gabbi/exception.py
scottwallacesh/gabbi
145
36683
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Gabbi specific exceptions.""" class GabbiDataLoadError(ValueError): """An exception to alert when data streams cannot be loaded.""" pass class GabbiFormatError(ValueError): """An exception to encapsulate poorly formed test data.""" pass class GabbiSyntaxWarning(SyntaxWarning): """A warning about syntax that is not desirable.""" pass
availability/__init__.py
Leader0721/ManyIP
629
36694
<gh_stars>100-1000 # -*- coding: UTF-8 -*- import config import gevent import availability.check from persistence import persister import time def crawl_worker(queue_verification, queue_persistence): """ 爬取下来的代理检测可用性的进程 :param queue_verification: 待验证代理队列 :param queue_persistence: 已验证待保存代理队列 :return: """ while True: spawns = list() for i in range(config.COROUTINE_NUM): proxy = queue_verification.get() spawns.append(gevent.spawn(availability.check.crawl_handle, 'http', proxy, queue_persistence)) spawns.append(gevent.spawn(availability.check.crawl_handle, 'https', proxy, queue_persistence)) gevent.joinall(spawns) def store_worker(): """ 已保存的代理每隔一段时间重新验证可用性的进程 """ while True: all_proxies = persister.list(count='all', columns='all') spawns = list() for proxy in all_proxies: if proxy['protocol'] == 'http': spawns.append(gevent.spawn(availability.check.store_handle, 'http', proxy, persister)) else: spawns.append(gevent.spawn(availability.check.store_handle, 'https', proxy, persister)) if len(spawns) == config.COROUTINE_NUM: gevent.joinall(spawns) spawns.clear() gevent.joinall(spawns) spawns.clear() time.sleep(config.PROXY_STORE_CHECK_SEC)
slack_sdk/scim/v1/user.py
priya1puresoftware/python-slack-sdk
2,486
36700
<filename>slack_sdk/scim/v1/user.py from typing import Optional, Any, List, Dict, Union from .default_arg import DefaultArg, NotGiven from .internal_utils import _to_dict_without_not_given, _is_iterable from .types import TypeAndValue class UserAddress: country: Union[Optional[str], DefaultArg] locality: Union[Optional[str], DefaultArg] postal_code: Union[Optional[str], DefaultArg] primary: Union[Optional[bool], DefaultArg] region: Union[Optional[str], DefaultArg] street_address: Union[Optional[str], DefaultArg] unknown_fields: Dict[str, Any] def __init__( self, *, country: Union[Optional[str], DefaultArg] = NotGiven, locality: Union[Optional[str], DefaultArg] = NotGiven, postal_code: Union[Optional[str], DefaultArg] = NotGiven, primary: Union[Optional[bool], DefaultArg] = NotGiven, region: Union[Optional[str], DefaultArg] = NotGiven, street_address: Union[Optional[str], DefaultArg] = NotGiven, **kwargs, ) -> None: self.country = country self.locality = locality self.postal_code = postal_code self.primary = primary self.region = region self.street_address = street_address self.unknown_fields = kwargs def to_dict(self) -> dict: return _to_dict_without_not_given(self) class UserEmail(TypeAndValue): pass class UserPhoneNumber(TypeAndValue): pass class UserRole(TypeAndValue): pass class UserGroup: display: Union[Optional[str], DefaultArg] value: Union[Optional[str], DefaultArg] unknown_fields: Dict[str, Any] def __init__( self, *, display: Union[Optional[str], DefaultArg] = NotGiven, value: Union[Optional[str], DefaultArg] = NotGiven, **kwargs, ) -> None: self.display = display self.value = value self.unknown_fields = kwargs def to_dict(self) -> dict: return _to_dict_without_not_given(self) class UserMeta: created: Union[Optional[str], DefaultArg] location: Union[Optional[str], DefaultArg] unknown_fields: Dict[str, Any] def __init__( self, created: Union[Optional[str], DefaultArg] = NotGiven, location: Union[Optional[str], DefaultArg] = NotGiven, **kwargs, ) -> None: self.created = created self.location = location self.unknown_fields = kwargs def to_dict(self) -> dict: return _to_dict_without_not_given(self) class UserName: family_name: Union[Optional[str], DefaultArg] given_name: Union[Optional[str], DefaultArg] unknown_fields: Dict[str, Any] def __init__( self, family_name: Union[Optional[str], DefaultArg] = NotGiven, given_name: Union[Optional[str], DefaultArg] = NotGiven, **kwargs, ) -> None: self.family_name = family_name self.given_name = given_name self.unknown_fields = kwargs def to_dict(self) -> dict: return _to_dict_without_not_given(self) class UserPhoto: type: Union[Optional[str], DefaultArg] value: Union[Optional[str], DefaultArg] unknown_fields: Dict[str, Any] def __init__( self, type: Union[Optional[str], DefaultArg] = NotGiven, value: Union[Optional[str], DefaultArg] = NotGiven, **kwargs, ) -> None: self.type = type self.value = value self.unknown_fields = kwargs def to_dict(self) -> dict: return _to_dict_without_not_given(self) class User: active: Union[Optional[bool], DefaultArg] addresses: Union[Optional[List[UserAddress]], DefaultArg] display_name: Union[Optional[str], DefaultArg] emails: Union[Optional[List[TypeAndValue]], DefaultArg] external_id: Union[Optional[str], DefaultArg] groups: Union[Optional[List[UserGroup]], DefaultArg] id: Union[Optional[str], DefaultArg] meta: Union[Optional[UserMeta], DefaultArg] name: Union[Optional[UserName], DefaultArg] nick_name: Union[Optional[str], DefaultArg] phone_numbers: Union[Optional[List[TypeAndValue]], DefaultArg] photos: Union[Optional[List[UserPhoto]], DefaultArg] profile_url: Union[Optional[str], DefaultArg] roles: Union[Optional[List[TypeAndValue]], DefaultArg] schemas: Union[Optional[List[str]], DefaultArg] timezone: Union[Optional[str], DefaultArg] title: Union[Optional[str], DefaultArg] user_name: Union[Optional[str], DefaultArg] unknown_fields: Dict[str, Any] def __init__( self, *, active: Union[Optional[bool], DefaultArg] = NotGiven, addresses: Union[ Optional[List[Union[UserAddress, Dict[str, Any]]]], DefaultArg ] = NotGiven, display_name: Union[Optional[str], DefaultArg] = NotGiven, emails: Union[ Optional[List[Union[TypeAndValue, Dict[str, Any]]]], DefaultArg ] = NotGiven, external_id: Union[Optional[str], DefaultArg] = NotGiven, groups: Union[ Optional[List[Union[UserGroup, Dict[str, Any]]]], DefaultArg ] = NotGiven, id: Union[Optional[str], DefaultArg] = NotGiven, meta: Union[Optional[Union[UserMeta, Dict[str, Any]]], DefaultArg] = NotGiven, name: Union[Optional[Union[UserName, Dict[str, Any]]], DefaultArg] = NotGiven, nick_name: Union[Optional[str], DefaultArg] = NotGiven, phone_numbers: Union[ Optional[List[Union[TypeAndValue, Dict[str, Any]]]], DefaultArg ] = NotGiven, photos: Union[ Optional[List[Union[UserPhoto, Dict[str, Any]]]], DefaultArg ] = NotGiven, profile_url: Union[Optional[str], DefaultArg] = NotGiven, roles: Union[ Optional[List[Union[TypeAndValue, Dict[str, Any]]]], DefaultArg ] = NotGiven, schemas: Union[Optional[List[str]], DefaultArg] = NotGiven, timezone: Union[Optional[str], DefaultArg] = NotGiven, title: Union[Optional[str], DefaultArg] = NotGiven, user_name: Union[Optional[str], DefaultArg] = NotGiven, **kwargs, ) -> None: self.active = active self.addresses = ( # type: ignore [a if isinstance(a, UserAddress) else UserAddress(**a) for a in addresses] if _is_iterable(addresses) else addresses ) self.display_name = display_name self.emails = ( # type: ignore [a if isinstance(a, TypeAndValue) else TypeAndValue(**a) for a in emails] if _is_iterable(emails) else emails ) self.external_id = external_id self.groups = ( # type: ignore [a if isinstance(a, UserGroup) else UserGroup(**a) for a in groups] if _is_iterable(groups) else groups ) self.id = id self.meta = ( # type: ignore UserMeta(**meta) if meta is not None and isinstance(meta, dict) else meta ) self.name = ( # type: ignore UserName(**name) if name is not None and isinstance(name, dict) else name ) self.nick_name = nick_name self.phone_numbers = ( # type: ignore [ a if isinstance(a, TypeAndValue) else TypeAndValue(**a) for a in phone_numbers ] if _is_iterable(phone_numbers) else phone_numbers ) self.photos = ( # type: ignore [a if isinstance(a, UserPhoto) else UserPhoto(**a) for a in photos] if _is_iterable(photos) else photos ) self.profile_url = profile_url self.roles = ( # type: ignore [a if isinstance(a, TypeAndValue) else TypeAndValue(**a) for a in roles] if _is_iterable(roles) else roles ) self.schemas = schemas self.timezone = timezone self.title = title self.user_name = user_name self.unknown_fields = kwargs def to_dict(self): return _to_dict_without_not_given(self) def __repr__(self): return f"<slack_sdk.scim.{self.__class__.__name__}: {self.to_dict()}>"
crowdsourcing/permissions/user.py
Kyeongan/crowdsource-platform
138
36743
<reponame>Kyeongan/crowdsource-platform from rest_framework import permissions from csp import settings from rest_framework.exceptions import PermissionDenied class IsWorker(permissions.BasePermission): def has_permission(self, request, view): return request.user.profile.is_worker class IsRequester(permissions.BasePermission): def has_object_permission(self, request, view, object): return request.user.profile.is_requester class CanCreateAccount(permissions.BasePermission): def has_permission(self, request, view): if view.action == 'create' and not (request.user.is_staff or settings.REGISTRATION_ALLOWED): raise PermissionDenied(detail='We are currently in closed beta. ' 'If you\'d like an account, email <EMAIL> ' 'with a short description of what you\'d like to use Daemo for.') return True
run_w2v.py
hugochan/K-Competitive-Autoencoder-for-Text-Analytics
133
36768
<reponame>hugochan/K-Competitive-Autoencoder-for-Text-Analytics<gh_stars>100-1000 ''' Created on Jan, 2017 @author: hugo ''' from __future__ import absolute_import import argparse from os import path import timeit import numpy as np from autoencoder.baseline.word2vec import Word2Vec, save_w2v, load_w2v from autoencoder.baseline.doc_word2vec import doc_word2vec from autoencoder.utils.io_utils import load_json, dump_json, write_file from autoencoder.preprocessing.preprocessing import load_corpus # from autoencoder.datasets.reuters import CorpusIterReuters from autoencoder.datasets.the20news import CorpusIter20News # from autoencoder.datasets.movie_review_data import CorpusIterMRD # from autoencoder.datasets.wiki10plus import CorpusIterWiki10plus def train(args): vocab = load_json(args.vocab) # import pdb;pdb.set_trace() # load corpus corpus = CorpusIter20News(args.corpus[0], recursive=True, stem=True, with_docname=False) # corpus = CorpusIterMRD(args.corpus[0], load_json(args.docnames), stem=True, with_docname=False) # corpus = CorpusIterWiki10plus(args.corpus[0], load_json(args.docnames), stem=True, with_docname=False) # corpus = CorpusIterReuters(args.corpus, load_json(args.docnames), with_docname=False) # print len([1 for x in corpus]) corpus_iter = lambda: ([word for word in sentence if word in vocab] for sentence in corpus) w2v = Word2Vec(args.n_dim, window=args.window_size, \ negative=args.negative, epoches=args.n_epoch) start = timeit.default_timer() w2v.train(corpus_iter) print 'runtime: %ss' % (timeit.default_timer() - start) save_w2v(w2v.model, args.save_model) import pdb;pdb.set_trace() def test(args): corpus = load_corpus(args.corpus[0]) docs, vocab_dict = corpus['docs'], corpus['vocab'] doc_codes = doc_word2vec(docs, revdict(vocab_dict), args.load_model, args.output, avg=True) def main(): parser = argparse.ArgumentParser() parser.add_argument('--train', action='store_true', help='train flag') parser.add_argument('--corpus', nargs='*', required=True, type=str, help='path to the corpus dir (in training phase) or file (in test phase)') parser.add_argument('-doc', '--docnames', type=str, help='path to the docnames file (in training phase)') parser.add_argument('--vocab', required=True, type=str, help='path to the vocab file') parser.add_argument('-ne', '--n_epoch', required=True, type=int, help='num of epoches') parser.add_argument('-nd', '--n_dim', type=int, help='num of dimensions') parser.add_argument('-ws', '--window_size', required=True, type=int, help='window size') parser.add_argument('-neg', '--negative', required=True, type=int, help='num of negative samples') parser.add_argument('-sm', '--save_model', type=str, default='w2v.mod', help='path to the output model') parser.add_argument('-lm', '--load_model', type=str, help='path to the trained model') parser.add_argument('-o', '--output', type=str, help='path to the output doc codes file') args = parser.parse_args() if args.train: if not args.n_dim: raise Exception('n_dim arg needed in training phase') train(args) else: if not args.output: raise Exception('output arg needed in test phase') if not args.load_model: raise Exception('load_model arg needed in test phase') test(args) if __name__ == '__main__': main()
loaner/deployments/lib/password.py
gng-demo/travisfix
175
36775
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This library provides a random password generator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random from absl import flags from absl import logging _MIN = 8 _MAX = 100 FLAGS = flags.FLAGS flags.DEFINE_integer( 'password_length', _MAX, 'The length of the password to be generated for the Grab n Go Role Account.' '\nNOTE: The length must be between 8 and 100 and must be compliant with ' 'the G Suite Admin password settings.\nThe Security Settings can be found ' 'in the Google Admin console: admin.google.com' ) flags.register_validator( 'password_length', lambda length: length >= _MIN and length <= _MAX, 'Password length must be between {} and {} characters.'.format(_MIN, _MAX), ) def generate(length): """Generates a new password of a given length. Args: length: int, the length of the password to generate. Returns: A random password of type string with the given length. Raises: ValueError: if the length provided is invalid. """ if length < _MIN or length > _MAX: raise ValueError( 'password length must be between {!r} and {!r} characters length ' 'provided was: {!r}'.format(_MIN, _MAX, length)) logging.debug('Generating a password with length: %r.', length) chars = ( 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' '0123456789' '!$%^&*()-_=+@:;~#,.<>? ' ) password = '' rand = random.SystemRandom() while len(password) < length: password += rand.choice(chars) return password
openmdao/utils/tests/test_cs_safe.py
friedenhe/OpenMDAO
451
36793
<gh_stars>100-1000 import numpy as np import unittest from openmdao.utils import cs_safe from openmdao.utils.assert_utils import assert_near_equal class TestCSSafeFuctions(unittest.TestCase): def test_abs(self): test_data = np.array([1, -1, -2, 2, 5.675, -5.676], dtype='complex') assert_near_equal(cs_safe.abs(test_data), np.abs(test_data)) test_data += complex(0,1e-50) cs_derivs = cs_safe.abs(test_data).imag/1e-50 expected = [1, -1, -1, 1, 1, -1] assert_near_equal(cs_derivs, expected) def test_norm(self): test_data = np.array([[1, 2, 3, -4],[5, 6, 7, -8]], dtype='complex') assert_near_equal(cs_safe.norm(test_data,axis=None), np.linalg.norm(test_data,axis=None)) assert_near_equal(cs_safe.norm(test_data,axis=0), np.linalg.norm(test_data,axis=0)) assert_near_equal(cs_safe.norm(test_data,axis=1), np.linalg.norm(test_data,axis=1)) deriv_test_data = test_data.copy() deriv_test_data[0,0] += complex(0, 1e-50) cs_deriv = cs_safe.norm(deriv_test_data).imag/1e-50 expected = 1/np.linalg.norm(test_data) * test_data[0,0].real assert_near_equal(cs_deriv, expected) def test_arctan2(self): x = np.array([-1, +1, +1, -1], dtype='complex') y = np.array([-1, -1, +1, +1], dtype='complex') expected = np.array([-2.35619449, -0.78539816, 0.78539816, 2.35619449]) assert_near_equal(cs_safe.arctan2(y, x), expected, tolerance=1e-8) x += complex(0,1e-50) y += complex(0,1e-50) cs_derivs = cs_safe.arctan2(y, x).imag/1e-50 expected = [0., 1., 0., -1.] assert_near_equal(cs_derivs, expected) if __name__ == "__main__": unittest.main()
main.py
tuzhucheng/sent-sim
109
36797
""" Driver program for training and evaluation. """ import argparse import logging import numpy as np import random import torch import torch.optim as O from datasets import get_dataset, get_dataset_configurations from models import get_model from runners import Runner if __name__ == '__main__': parser = argparse.ArgumentParser(description='Sentence similarity models') parser.add_argument('--model', default='sif', choices=['sif', 'mpcnn', 'mpcnn-lite', 'bimpm'], help='Model to use') parser.add_argument('--dataset', default='sick', choices=['sick', 'wikiqa'], help='Dataset to use') parser.add_argument('--batch-size', type=int, default=64, help='Batch size') parser.add_argument('--epochs', type=int, default=15, help='Number of epochs') parser.add_argument('--lr', type=float, default=2e-4, help='Learning rate') parser.add_argument('--regularization', type=float, default=3e-4, help='Regularization') parser.add_argument('--seed', type=int, default=1234, help='Seed for reproducibility') parser.add_argument('--device', type=int, default=0, help='Device, -1 for CPU') parser.add_argument('--log-interval', type=int, default=50, help='Device, -1 for CPU') # Special options for SIF model parser.add_argument('--unsupervised', action='store_true', default=False, help='Set this flag to use unsupervised mode.') parser.add_argument('--alpha', type=float, default=1e-3, help='Smoothing term for smooth inverse frequency baseline model') parser.add_argument('--no-remove-special-direction', action='store_true', default=False, help='Set to not remove projection onto first principal component') parser.add_argument('--frequency-dataset', default='enwiki', choices=['train', 'enwiki']) args = parser.parse_args() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.device != -1: torch.cuda.manual_seed(args.seed) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) dataset_cls, train_loader, dev_loader, test_loader, embedding = get_dataset(args) model = get_model(args, dataset_cls, embedding) if args.model == 'sif': model.populate_word_frequency_estimation(train_loader) total_params = 0 for param in model.parameters(): size = [s for s in param.size()] total_params += np.prod(size) logger.info('Total number of parameters: %s', total_params) loss_fn, metrics, y_to_score, resolved_pred_to_score = get_dataset_configurations(args) optimizer = O.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.regularization) runner = Runner(model, loss_fn, metrics, optimizer, y_to_score, resolved_pred_to_score, args.device, None) runner.run(args.epochs, train_loader, dev_loader, test_loader, args.log_interval)
amazon_main_xgboost.py
twankim/ensemble_amazon
236
36814
""" Amazon Access Challenge Code for ensemble <NAME> script for Amazon . xgboost on input data based on <NAME>'s Script. """ from __future_ _ import division import numpy as np from sklearn import preprocessing from sklearn.metrics import roc_auc_score import XGBoostClassifier as xg from sklearn.cross_validation import StratifiedKFold SEED = 42 # always use a seed for randomized procedures def load_data(filename, use_labels=True): """ Load data from CSV files and return them as numpy arrays The use_labels parameter indicates whether one should read the first column (containing class labels). If false, return all 0s. """ # load column 1 to 8 (ignore last one) data = np.loadtxt(open( filename), delimiter=',', usecols=range(1, 9), skiprows=1) if use_labels: labels = np.loadtxt(open( filename), delimiter=',', usecols=[0], skiprows=1) else: labels = np.zeros(data.shape[0]) return labels, data def save_results(predictions, filename): """Given a vector of predictions, save results in CSV format.""" with open(filename, 'w') as f: f.write("id,ACTION\n") for i, pred in enumerate(predictions): f.write("%d,%f\n" % (i + 1, pred)) def bagged_set(X_t,y_c,model, seed, estimators, xt, update_seed=True): # create array object to hold predictions baggedpred=[ 0.0 for d in range(0, (xt.shape[0]))] #loop for as many times as we want bags for n in range (0, estimators): #shuff;e first, aids in increasing variance and forces different results #X_t,y_c=shuffle(Xs,ys, random_state=seed+n) if update_seed: # update seed if requested, to give a slightly different model model.set_params(random_state=seed + n) model.fit(X_t,y_c) # fit model0.0917411475506 preds=model.predict_proba(xt)[:,1] # predict probabilities # update bag's array for j in range (0, (xt.shape[0])): baggedpred[j]+=preds[j] # divide with number of bags to create an average estimate for j in range (0, len(baggedpred)): baggedpred[j]/=float(estimators) # return probabilities return np.array(baggedpred) # using numpy to print results def printfilcsve(X, filename): np.savetxt(filename,X) def main(): """ Fit models and make predictions. We'll use one-hot encoding to transform our categorical features into binary features. y and X will be numpy array objects. """ filename="main_xgboost" # nam prefix #model = linear_model.LogisticRegression(C=3) # the classifier we'll use model=xg.XGBoostClassifier(num_round=1000 ,nthread=25, eta=0.12, gamma=0.01,max_depth=12, min_child_weight=0.01, subsample=0.6, colsample_bytree=0.7,objective='binary:logistic',seed=1) # === load data in memory === # print "loading data" y, X = load_data('train.csv') y_test, X_test = load_data('test.csv', use_labels=False) # === one-hot encoding === # # we want to encode the category IDs encountered both in # the training and the test set, so we fit the encoder on both encoder = preprocessing.OneHotEncoder() encoder.fit(np.vstack((X, X_test))) X = encoder.transform(X) # Returns a sparse matrix (see numpy.sparse) X_test = encoder.transform(X_test) # if you want to create new features, you'll need to compute them # before the encoding, and append them to your dataset after #create arrays to hold cv an dtest predictions train_stacker=[ 0.0 for k in range (0,(X.shape[0])) ] # === training & metrics === # mean_auc = 0.0 bagging=20 # number of models trained with different seeds n = 5 # number of folds in strattified cv kfolder=StratifiedKFold(y, n_folds= n,shuffle=True, random_state=SEED) i=0 for train_index, test_index in kfolder: # for each train and test pair of indices in the kfolder object # creaning and validation sets X_train, X_cv = X[train_index], X[test_index] y_train, y_cv = np.array(y)[train_index], np.array(y)[test_index] #print (" train size: %d. test size: %d, cols: %d " % ((X_train.shape[0]) ,(X_cv.shape[0]) ,(X_train.shape[1]) )) # if you want to perform feature selection / hyperparameter # optimization, this is where you want to do it # train model and make predictions preds=bagged_set(X_train,y_train,model, SEED , bagging, X_cv, update_seed=True) # compute AUC metric for this CV fold roc_auc = roc_auc_score(y_cv, preds) print "AUC (fold %d/%d): %f" % (i + 1, n, roc_auc) mean_auc += roc_auc no=0 for real_index in test_index: train_stacker[real_index]=(preds[no]) no+=1 i+=1 mean_auc/=n print (" Average AUC: %f" % (mean_auc) ) print (" printing train datasets ") printfilcsve(np.array(train_stacker), filename + ".train.csv") # === Predictions === # # When making predictions, retrain the model on the whole training set preds=bagged_set(X, y,model, SEED, bagging, X_test, update_seed=True) #create submission file printfilcsve(np.array(preds), filename+ ".test.csv") #save_results(preds, filename+"_submission_" +str(mean_auc) + ".csv") if __name__ == '__main__': main()
notebooks/data_cleaning/track_meta.py
roannav/learntools
359
36845
track = dict( author_username='alexisbcook', course_name='Data Cleaning', course_url='https://www.kaggle.com/learn/data-cleaning', course_forum_url='https://www.kaggle.com/learn-forum/172650' ) lessons = [ {'topic': topic_name} for topic_name in ['Handling missing values', #1 'Scaling and normalization', #2 'Parsing dates', #3 'Character encodings', #4 'Inconsistent data entry'] #5 ] notebooks = [ dict( filename='tut1.ipynb', lesson_idx=0, type='tutorial', dataset_sources=['maxhorowitz/nflplaybyplay2009to2016'], ), dict( filename='ex1.ipynb', lesson_idx=0, type='exercise', dataset_sources=['aparnashastry/building-permit-applications-data'], scriptid=10824396 ), dict( filename='tut2.ipynb', lesson_idx=1, type='tutorial', ), dict( filename='ex2.ipynb', lesson_idx=1, type='exercise', dataset_sources=['kemical/kickstarter-projects'], scriptid=10824404 ), dict( filename='tut3.ipynb', lesson_idx=2, type='tutorial', dataset_sources=['nasa/landslide-events'] ), dict( filename='ex3.ipynb', lesson_idx=2, type='exercise', dataset_sources=['usgs/earthquake-database', 'smithsonian/volcanic-eruptions'], scriptid=10824403 ), dict( filename='tut4.ipynb', lesson_idx=3, type='tutorial', dataset_sources=['kemical/kickstarter-projects'] ), dict( filename='ex4.ipynb', lesson_idx=3, type='exercise', dataset_sources=['kwullum/fatal-police-shootings-in-the-us'], scriptid=10824401 ), dict( filename='tut5.ipynb', lesson_idx=4, type='tutorial', dataset_sources=['alexisbcook/pakistan-intellectual-capital'] ), dict( filename='ex5.ipynb', lesson_idx=4, type='exercise', dataset_sources=['alexisbcook/pakistan-intellectual-capital'], scriptid=10824407 ), ]
bookwyrm/migrations/0145_sitesettings_version.py
mouse-reeve/fedireads
270
36847
<reponame>mouse-reeve/fedireads # Generated by Django 3.2.12 on 2022-03-16 18:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("bookwyrm", "0144_alter_announcement_display_type"), ] operations = [ migrations.AddField( model_name="sitesettings", name="version", field=models.CharField(blank=True, max_length=10, null=True), ), ]
installation/templates/configuration/auth.py
piwaniuk/critic
216
36927
<gh_stars>100-1000 # -*- mode: python; encoding: utf-8 -*- # # Copyright 2013 <NAME>, Opera Software ASA # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # Accepted password hash schemes. They need to be supported by the passlib # Python package; see http://packages.python.org/passlib for details. PASSWORD_HASH_SCHEMES = %(installation.config.password_hash_schemes)r # Default password hash scheme. Must be included in PASSWORD_HASH_SCHEMES. DEFAULT_PASSWORD_HASH_SCHEME = %(installation.config.default_password_hash_scheme)r # (Approximate) minimum password hash time in seconds. Higher means safer # passwords (more difficult to decrypt using brute-force) but slower sign-in # operation. MINIMUM_PASSWORD_HASH_TIME = %(installation.config.minimum_password_hash_time)r # Calibrated minimum rounds per password hash scheme. MINIMUM_ROUNDS = %(installation.config.minimum_rounds)r # External authentication providers. PROVIDERS = { # GitHub OAuth-based authentication. "github": { "enabled": %(installation.config.provider_github.enabled)r, # Allow authenticated user to create a Critic user. "allow_user_registration": %(installation.config.provider_github.allow_user_registration)r, # Verify user email addresses provided by GitHub. "verify_email_addresses": %(installation.config.provider_github.verify_email_addresses)r, # Client ID and secret. These are generated by registering an # application at https://github.com/settings/applications/new. "client_id": %(installation.config.provider_github.client_id)r, "client_secret": %(installation.config.provider_github.client_secret)r, # Bypass /createuser on first sign in, creating a user automatically. "bypass_createuser": %(installation.config.provider_github.bypass_createuser)r, # Authentication callback URI. This same URI must be provided # to GitHub when registering the application. The path # component must be "/oauth/github". "redirect_uri": %(installation.config.provider_github.redirect_uri)r }, # Google OAuth-based authentication. "google": { "enabled": %(installation.config.provider_google.enabled)r, # Allow authenticated user to create a Critic user. "allow_user_registration": %(installation.config.provider_google.allow_user_registration)r, # Verify user email addresses provided by Google. "verify_email_addresses": %(installation.config.provider_google.verify_email_addresses)r, # Client ID and secret. These are generated by creating a project at # https://cloud.google.com/console/project, and then creating an OAuth2 # client id using the project administration UI. "client_id": %(installation.config.provider_google.client_id)r, "client_secret": %(installation.config.provider_google.client_secret)r, # Bypass /createuser on first sign in, creating a user automatically. "bypass_createuser": %(installation.config.provider_google.bypass_createuser)r, # Authentication callback URI. This same URI must be provided # to Google when creating the OAuth2 client id. The path # component must be "/oauth/google". "redirect_uri": %(installation.config.provider_google.redirect_uri)r }, } # Authentication databases. DATABASES = { # Using Critic's own user database for authentication. "internal": {}, # Using an LDAP database for authentication. "ldap": { # Input fields. # # Each element is a tuple containing: # [0]: True if the field should use <input type=password> # [1]: Internal field identifier # [2]: Field label # [3]: (Optional) Longer description / help text "fields": [ (False, "username", "Username:"), (True, "password", "Password:"), ], # LDAP server URL. "url": "%(installation.config.ldap_url)s", # Use TLS when connecting to LDAP server. "use_tls": True, # Credentials field. # # Identifier of the field whose value will be used as the credentials # (e.g. password) in the bind request used for authentication. "credentials": "password", # The following two values are all interpreted as Python format strings # that can reference field values, e.g. using "%%(username)s". The input # values will have been escaped for safe usage in LDAP expressions. # LDAP search base. "search_base": "%(installation.config.ldap_search_base)s", # LDAP search filter. "search_filter": "(uid=%%(username)s)", # The following settings control if and how Critic user records are # created after successful authentication of a user. # If true, Critic user records are created automatically if # authentication succeeds but a matching record is not found. "create_user": %(installation.config.ldap_create_user)r, # User name LDAP attribute. # # This is the LDAP attribute whose value is used as the Critic username, # both when looking for an existing user record and when creating a new # one (if one isn't found.) # # If the attribute is missing or empty it will be considered an # authentication error. "username_attribute": "%(installation.config.ldap_username_attribute)s", # Full name LDAP attribute. # # This is the LDAP attribute to use as the (initial) full name when # creating a new Critic user record. It is not used if an existing user # record is found. # # If the attribute is missing or empty, the user is created with the # username as full name. "fullname_attribute": "%(installation.config.ldap_fullname_attribute)s", # Email LDAP attribute. # # This is the LDAP attribute to use as the (initial) primary email # address when creating a new Critic user record. It is not used if an # existing user record is found. # # If the attribute is missing or empty, the user is created with no # primary email address. "email_attribute": "%(installation.config.ldap_email_attribute)s", # List of required LDAP groups. # # If the list is empty, no group membership is required. "require_groups": [ # { # # Distinguished name of the required group. # "dn": "cn=SomeGroup,ou=Groups,dc=example,dc=com", # # # Group attribute containing the list of members. # "members_attribute": "memberUid", # # # Value to search for in the list of members. # # # # The value is interpreted as a Python format string, and can # # reference field values. It can also reference the # # distinguished name of the user signing in as "%%(dn)s". # "member_value": "%%(username)s", # }, ], # Maximum age of cached successful authentication attempts, in seconds. # If set to zero, caching is disabled altogether. "cache_max_age": %(installation.config.ldap_cache_max_age)r, }, } DATABASE = %(installation.config.auth_database)r ENABLE_ACCESS_TOKENS = %(installation.config.enable_access_tokens)r
elliot/utils/read.py
gategill/elliot
175
36960
<reponame>gategill/elliot<filename>elliot/utils/read.py """ Module description: """ __version__ = '0.3.1' __author__ = '<NAME>, <NAME>' __email__ = '<EMAIL>, <EMAIL>' import pandas as pd import configparser import pickle import numpy as np import os from types import SimpleNamespace def read_csv(filename): """ Args: filename (str): csv file path Return: A pandas dataframe. """ df = pd.read_csv(filename, index_col=False) return df def read_np(filename): """ Args: filename (str): filename of numpy to load Return: The loaded numpy. """ return np.load(filename) def read_imagenet_classes_txt(filename): """ Args: filename (str): txt file path Return: A list with 1000 imagenet classes as strings. """ with open(filename) as f: idx2label = eval(f.read()) return idx2label def read_config(sections_fields): """ Args: sections_fields (list): list of fields to retrieve from configuration file Return: A list of configuration values. """ config = configparser.ConfigParser() config.read('./config/configs.ini') configs = [] for s, f in sections_fields: configs.append(config[s][f]) return configs def read_multi_config(): """ It reads a config file that contains the configuration parameters for the recommendation systems. Return: A list of configuration settings. """ config = configparser.ConfigParser() config.read('./config/multi.ini') configs = [] for section in config.sections(): single_config = SimpleNamespace() single_config.name = section for field, value in config.items(section): single_config.field = value configs.append(single_config) return configs def load_obj(name): """ Load the pkl object by name :param name: name of file :return: """ with open(name, 'rb') as f: return pickle.load(f) def find_checkpoint(dir, restore_epochs, epochs, rec, best=0): """ :param dir: directory of the model where we start from the reading. :param restore_epochs: epoch from which we start from. :param epochs: epochs from which we restore (0 means that we have best) :param rec: recommender model :param best: 0 No Best - 1 Search for the Best :return: """ if best: for r, d, f in os.walk(dir): for file in f: if 'best-weights-'.format(restore_epochs) in file: return dir + file.split('.')[0] return '' if rec == "apr" and restore_epochs < epochs: # We have to restore from an execution of bprmf dir_stored_models = os.walk('/'.join(dir.split('/')[:-2])) for dir_stored_model in dir_stored_models: if 'bprmf' in dir_stored_model[0]: dir = dir_stored_model[0] + '/' break for r, d, f in os.walk(dir): for file in f: if 'weights-{0}-'.format(restore_epochs) in file: return dir + file.split('.')[0] return ''
lib/python/batch_sim/gcloud_fakes.py
leozz37/makani
1,178
36976
# Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fake gcloud utils for testing without cloud access.""" from makani.lib.python.batch_sim import gcloud_util class FakeFilesystem(object): """A fake filesystem. A FakeFilesystem instance is simply a dictionary of file names to file contents, with Save() and Load() methods to make access look a bit more file-like. The class itself also contains LOCAL and CLOUD variables intended to store references to particular FakeFilesystem instances. These are initialized to None and intended to be defined as needed via mock.patch. For example: with mock.patch('makani.batch_sim.gcloud_fakes.FakeFilesystem.LOCAL', FakeFilesystem()) as local_fs: <Do something with local files> with mock.patch('makani.batch_sim.gcloud_fakes.FakeFilesystem.CLOUD', FakeFilesystem()) as remote_fs: <Do something with remote files> In particular, many of the fakes in this module use FakeFilesystem.LOCAL and FakeFilesystem.CLOUD to simulate actual storage patterns. """ LOCAL = None CLOUD = None def __init__(self): self.files = {} def Save(self, filename, descriptor): self.files[filename] = descriptor def Load(self, filename): return self.files[filename] class FakeCloudStorageApi(object): """A fake of gcloud_util.CloudStorageApi. This performs simple transfers between FakeFilesystem.LOCAL and FakeFilesystem.CLOUD. To simulate working with different local filesystems, FakeFilesystem.LOCAL may be patched before instantiating the FakeCloudStorageApi. """ def __init__(self, bucket=None): self._local_fs = FakeFilesystem.LOCAL self._cloud_fs = FakeFilesystem.CLOUD self._bucket = bucket def _RemoveBucketFromCloudName(self, cloud_name): cloud_name = cloud_name.strip() if cloud_name.startswith('gs://'): _, cloud_name = gcloud_util.ParseBucketAndPath(cloud_name, None) return cloud_name def DownloadFile(self, cloud_name, stream): cloud_name = self._RemoveBucketFromCloudName(cloud_name) stream.write(self._cloud_fs.Load(cloud_name)) def UploadFile(self, local_name, cloud_name): cloud_name = self._RemoveBucketFromCloudName(cloud_name) self._cloud_fs.Save(cloud_name, self._local_fs.Load(local_name)) def UploadStream(self, stream, cloud_name): cloud_name = self._RemoveBucketFromCloudName(cloud_name) self._cloud_fs.Save(cloud_name, stream.getvalue()) def DeletePrefix(self, prefix): for filename in self.List(prefix): if filename.startswith(prefix): self._cloud_fs.files.pop(filename) def DeleteFile(self, cloud_name): cloud_name = self._RemoveBucketFromCloudName(cloud_name) self._cloud_fs.files.pop(cloud_name) def List(self, prefix): prefix = self._RemoveBucketFromCloudName(prefix) return [name for name in self._cloud_fs.files if name.startswith(prefix)]
LeetCode/python3/136.py
ZintrulCre/LeetCode_Archiver
279
36982
class Solution: def singleNumber(self, nums): """ :type nums: List[int] :rtype: int """ k = 0 for n in nums: k ^= n return k
deps/libffi/generate-osx-source-and-headers.py
liuqsqq/node-ffi
3,373
36995
#!/usr/bin/env python import subprocess import re import os import errno import collections import sys class Platform(object): pass sdk_re = re.compile(r'.*-sdk ([a-zA-Z0-9.]*)') def sdkinfo(sdkname): ret = {} for line in subprocess.Popen(['xcodebuild', '-sdk', sdkname, '-version'], stdout=subprocess.PIPE).stdout: kv = line.strip().split(': ', 1) if len(kv) == 2: k,v = kv ret[k] = v return ret desktop_sdk_info = sdkinfo('macosx') def latest_sdks(): latest_desktop = None for line in subprocess.Popen(['xcodebuild', '-showsdks'], stdout=subprocess.PIPE).stdout: match = sdk_re.match(line) if match: if 'OS X' in line: latest_desktop = match.group(1) return latest_desktop desktop_sdk = latest_sdks() class desktop_platform_32(Platform): sdk='macosx' arch = 'i386' name = 'mac32' triple = 'i386-apple-darwin10' sdkroot = desktop_sdk_info['Path'] prefix = "#if defined(__i386__) && !defined(__x86_64__)\n\n" suffix = "\n\n#endif" class desktop_platform_64(Platform): sdk='macosx' arch = 'x86_64' name = 'mac' triple = 'x86_64-apple-darwin10' sdkroot = desktop_sdk_info['Path'] prefix = "#if !defined(__i386__) && defined(__x86_64__)\n\n" suffix = "\n\n#endif" def move_file(src_dir, dst_dir, filename, file_suffix=None, prefix='', suffix=''): if not os.path.exists(dst_dir): os.makedirs(dst_dir) out_filename = filename if file_suffix: split_name = os.path.splitext(filename) out_filename = "%s_%s%s" % (split_name[0], file_suffix, split_name[1]) with open(os.path.join(src_dir, filename)) as in_file: with open(os.path.join(dst_dir, out_filename), 'w') as out_file: if prefix: out_file.write(prefix) out_file.write(in_file.read()) if suffix: out_file.write(suffix) headers_seen = collections.defaultdict(set) def move_source_tree(src_dir, dest_dir, dest_include_dir, arch=None, prefix=None, suffix=None): for root, dirs, files in os.walk(src_dir, followlinks=True): relroot = os.path.relpath(root,src_dir) def move_dir(arch, prefix='', suffix='', files=[]): for file in files: file_suffix = None if file.endswith('.h'): if dest_include_dir: file_suffix = arch if arch: headers_seen[file].add(arch) move_file(root, dest_include_dir, file, arch, prefix=prefix, suffix=suffix) elif dest_dir: outroot = os.path.join(dest_dir, relroot) move_file(root, outroot, file, prefix=prefix, suffix=suffix) if relroot == '.': move_dir(arch=arch, files=files, prefix=prefix, suffix=suffix) elif relroot == 'x86': move_dir(arch='i386', prefix="#if defined(__i386__) && !defined(__x86_64__)\n\n", suffix="\n\n#endif", files=files) move_dir(arch='x86_64', prefix="#if !defined(__i386__) && defined(__x86_64__)\n\n", suffix="\n\n#endif", files=files) def build_target(platform): def xcrun_cmd(cmd): return subprocess.check_output(['xcrun', '-sdk', platform.sdkroot, '-find', cmd]).strip() build_dir = 'build_' + platform.name if not os.path.exists(build_dir): os.makedirs(build_dir) env = dict(CC=xcrun_cmd('clang'), LD=xcrun_cmd('ld'), CFLAGS='-arch %s -isysroot %s -mmacosx-version-min=10.6' % (platform.arch, platform.sdkroot)) working_dir=os.getcwd() try: os.chdir(build_dir) subprocess.check_call(['../configure', '-host', platform.triple], env=env) move_source_tree('.', None, '../osx/include', arch=platform.arch, prefix=platform.prefix, suffix=platform.suffix) move_source_tree('./include', None, '../osx/include', arch=platform.arch, prefix=platform.prefix, suffix=platform.suffix) finally: os.chdir(working_dir) for header_name, archs in headers_seen.iteritems(): basename, suffix = os.path.splitext(header_name) def main(): move_source_tree('src', 'osx/src', 'osx/include') move_source_tree('include', None, 'osx/include') build_target(desktop_platform_32) build_target(desktop_platform_64) for header_name, archs in headers_seen.iteritems(): basename, suffix = os.path.splitext(header_name) with open(os.path.join('osx/include', header_name), 'w') as header: for arch in archs: header.write('#include <%s_%s%s>\n' % (basename, arch, suffix)) if __name__ == '__main__': main()
src/pretix/base/templatetags/cache_large.py
Janfred/pretix
1,248
36999
<filename>src/pretix/base/templatetags/cache_large.py # # This file is part of pretix (Community Edition). # # Copyright (C) 2014-2020 <NAME> and contributors # Copyright (C) 2020-2021 rami.io GmbH and contributors # # This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General # Public License as published by the Free Software Foundation in version 3 of the License. # # ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are # applicable granting you additional permissions and placing additional restrictions on your usage of this software. # Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive # this file, see <https://pretix.eu/about/en/license>. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License along with this program. If not, see # <https://www.gnu.org/licenses/>. # from django.conf import settings from django.template import Library, Node, TemplateSyntaxError, Variable from django.templatetags.cache import CacheNode register = Library() class DummyNode(Node): def __init__(self, nodelist, *args): self.nodelist = nodelist def render(self, context): value = self.nodelist.render(context) return value @register.tag('cache_large') def do_cache(parser, token): nodelist = parser.parse(('endcache_large',)) parser.delete_first_token() tokens = token.split_contents() if len(tokens) < 3: raise TemplateSyntaxError("'%r' tag requires at least 2 arguments." % tokens[0]) if not settings.CACHE_LARGE_VALUES_ALLOWED: return DummyNode( nodelist, ) return CacheNode( nodelist, parser.compile_filter(tokens[1]), tokens[2], # fragment_name can't be a variable. [parser.compile_filter(t) for t in tokens[3:]], Variable(repr(settings.CACHE_LARGE_VALUES_ALIAS)), )
openbook_posts/migrations/0022_auto_20190311_1432.py
TamaraAbells/okuna-api
164
37003
<gh_stars>100-1000 # Generated by Django 2.2b1 on 2019-03-11 13:32 from django.db import migrations import imagekit.models.fields import openbook_posts.helpers class Migration(migrations.Migration): dependencies = [ ('openbook_posts', '0021_auto_20190309_1532'), ] operations = [ migrations.AlterField( model_name='postimage', name='image', field=imagekit.models.fields.ProcessedImageField(height_field='height', null=True, upload_to=openbook_posts.helpers.upload_to_post_image_directory, verbose_name='image', width_field='width'), ), ]
functions/include/serializer.py
xyclin/fluent
1,164
37005
# Copyright 2018 U.C. Berkeley RISE Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cloudpickle as cp import pyarrow as pa import codecs from io import BytesIO import numpy as np from .functions_pb2 import * from . import shared SER_FORMAT = 'raw_unicode_escape' class Serializer(): def __init__(self): raise NotImplementedError('Cannot instantiate abstract class.') def _serialize(self, msg): pass def _deserialize(self, msg): pass def dump(self, msg): pass def load(self, msg): pass class DefaultSerializer(Serializer): def __init__(self): pass def _serialize(msg): return msg def _deserialize(self, msg): return msg def dump(self, msg): return cp.dumps(msg) def load(self, msg): return cp.loads(msg) class StringSerializer(Serializer): def __init__(self): pass def _serialize(self, msg): return codecs.decode(msg, SER_FORMAT) def _deserialize(self, msg): return codecs.encode(msg, SER_FORMAT) def dump(self, msg): return self._serialize(cp.dumps(msg)) def load(self, msg): return cp.loads(self._deserialize(msg)) # TODO: how can we make serializers pluggable? class NumpySerializer(DefaultSerializer): def __init__(self): pass def dump(self, msg): return pa.serialize(msg).to_buffer().to_pybytes() def load(self, msg): return pa.deserialize(msg) numpy_ser = NumpySerializer() default_ser = DefaultSerializer() string_ser = StringSerializer() function_ser = default_ser def get_serializer(kind): global numpy_ser, default_ser, string_ser if kind == NUMPY: return numpy_ser elif kind == STRING: return string_ser elif kind == DEFAULT: return default_ser else: return default_ser def serialize_val(val, valobj=None, serialize=True): if not valobj: valobj = Value() if isinstance(val, shared.FluentFuture): valobj.body = default_ser.dump(shared.FluentReference(val.obj_id, True, LWW)) elif isinstance(val, np.ndarray): valobj.body = numpy_ser.dump(val) valobj.type = NUMPY else: valobj.body = default_ser.dump(val) if not serialize: return valobj return valobj.SerializeToString() def deserialize_val(val): v = Value() v.ParseFromString(val) if v.type == DEFAULT: return default_ser.load(v.body) elif v.type == STRING: return string_ser.load(v.body) elif v.type == NUMPY: return numpy_ser.load(v.body)
tests/integration/test_breakpoint_step.py
benjamintemitope/SublimeTextXdebug
344
37009
import os try: from xdebug.unittesting import XdebugDeferrableTestCase except: from SublimeTextXdebug.xdebug.unittesting import XdebugDeferrableTestCase class TestBreakpointStep(XdebugDeferrableTestCase): breakpoint_step_file = 'breakpoint_step.php' breakpoint_step_file_local_path = os.path.join(XdebugDeferrableTestCase.local_path, breakpoint_step_file) def test_step_into(self): self.set_breakpoint(self.breakpoint_step_file_local_path, 11) self.run_command('xdebug_session_start') yield self.window_has_debug_layout breakpoint_view = self.get_view_by_title('Xdebug Breakpoint') context_view = self.get_view_by_title('Xdebug Context') stack_view = self.get_view_by_title('Xdebug Stack') self.assertViewContains(breakpoint_view, '=> {file_local_path}\n\t|+| 11'.format(file_local_path=self.breakpoint_step_file_local_path)) self.assertViewIsEmpty(context_view) self.assertViewIsEmpty(stack_view) self.send_server_request(path=self.breakpoint_step_file) def context_and_stack_have_content(): return not self.view_is_empty(context_view) and not self.view_is_empty(stack_view) yield context_and_stack_have_content self.assertViewContains(context_view, '$greeting = <uninitialized>') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:11, {{main}}()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) context_view_contents = self.get_contents_of_view(context_view) stack_view_contents = self.get_contents_of_view(stack_view) def context_and_stack_have_different_content(): return self.get_contents_of_view(context_view) != context_view_contents and self.get_contents_of_view(stack_view) != stack_view_contents self.run_command('xdebug_execute', {'command': 'step_into'}) yield context_and_stack_have_different_content yield context_and_stack_have_content self.assertViewContains(context_view, '$greet = <uninitialized>') self.assertViewContains(context_view, '$name = (string) Stranger') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:4, greet()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) context_view_contents = self.get_contents_of_view(context_view) stack_view_contents = self.get_contents_of_view(stack_view) def context_and_stack_have_different_content(): return self.get_contents_of_view(context_view) != context_view_contents and self.get_contents_of_view(stack_view) != stack_view_contents self.run_command('xdebug_execute', {'command': 'step_into'}) yield context_and_stack_have_different_content yield context_and_stack_have_content self.assertViewContains(context_view, '$greet = (string) Hi') self.assertViewContains(context_view, '$name = (string) Stranger') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:5, greet()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) def test_step_out(self): self.set_breakpoint(self.breakpoint_step_file_local_path, 5) self.run_command('xdebug_session_start') yield self.window_has_debug_layout breakpoint_view = self.get_view_by_title('Xdebug Breakpoint') context_view = self.get_view_by_title('Xdebug Context') stack_view = self.get_view_by_title('Xdebug Stack') self.assertViewContains(breakpoint_view, '=> {file_local_path}\n\t|+| 5'.format(file_local_path=self.breakpoint_step_file_local_path)) self.assertViewIsEmpty(context_view) self.assertViewIsEmpty(stack_view) self.send_server_request(path=self.breakpoint_step_file) def context_and_stack_have_content(): return not self.view_is_empty(context_view) and not self.view_is_empty(stack_view) yield context_and_stack_have_content self.assertViewContains(context_view, '$greet = (string) Hi') self.assertViewContains(context_view, '$name = (string) Stranger') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:5, greet()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) context_view_contents = self.get_contents_of_view(context_view) stack_view_contents = self.get_contents_of_view(stack_view) def context_and_stack_have_different_content(): return self.get_contents_of_view(context_view) != context_view_contents and self.get_contents_of_view(stack_view) != stack_view_contents self.run_command('xdebug_execute', {'command': 'step_out'}) yield context_and_stack_have_different_content yield context_and_stack_have_content self.assertViewContains(context_view, '$greeting = (string) Hello Stranger!') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:12, {{main}}()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) def test_step_over(self): self.set_breakpoint(self.breakpoint_step_file_local_path, 11) self.run_command('xdebug_session_start') yield self.window_has_debug_layout breakpoint_view = self.get_view_by_title('Xdebug Breakpoint') context_view = self.get_view_by_title('Xdebug Context') stack_view = self.get_view_by_title('Xdebug Stack') self.assertViewContains(breakpoint_view, '=> {file_local_path}\n\t|+| 11'.format(file_local_path=self.breakpoint_step_file_local_path)) self.assertViewIsEmpty(context_view) self.assertViewIsEmpty(stack_view) self.send_server_request(path=self.breakpoint_step_file) def context_and_stack_have_content(): return not self.view_is_empty(context_view) and not self.view_is_empty(stack_view) yield context_and_stack_have_content self.assertViewContains(context_view, '$greeting = <uninitialized>') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:11, {{main}}()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file)) context_view_contents = self.get_contents_of_view(context_view) stack_view_contents = self.get_contents_of_view(stack_view) def context_and_stack_have_different_content(): return self.get_contents_of_view(context_view) != context_view_contents and self.get_contents_of_view(stack_view) != stack_view_contents self.run_command('xdebug_execute', {'command': 'step_over'}) yield context_and_stack_have_different_content yield context_and_stack_have_content self.assertViewContains(context_view, '$greeting = (string) Hello Stranger!') self.assertViewContains(stack_view, '[0] file://{remote_path}/{file}:12, {{main}}()'.format(remote_path=self.remote_path, file=self.breakpoint_step_file))
icevision/models/ultralytics/yolov5/fastai/learner.py
ai-fast-track/mantisshrimp
580
37011
<filename>icevision/models/ultralytics/yolov5/fastai/learner.py __all__ = ["learner"] from icevision.imports import * from icevision.engines.fastai import * from icevision.models.ultralytics.yolov5.fastai.callbacks import Yolov5Callback from yolov5.utils.loss import ComputeLoss def learner( dls: List[Union[DataLoader, fastai.DataLoader]], model: nn.Module, cbs=None, **learner_kwargs, ): """Fastai `Learner` adapted for Yolov5. # Arguments dls: `Sequence` of `DataLoaders` passed to the `Learner`. The first one will be used for training and the second for validation. model: The model to train. cbs: Optional `Sequence` of callbacks. **learner_kwargs: Keyword arguments that will be internally passed to `Learner`. # Returns A fastai `Learner`. """ cbs = [Yolov5Callback()] + L(cbs) compute_loss = ComputeLoss(model) def loss_fn(preds, targets) -> Tensor: return compute_loss(preds, targets)[0] learn = adapted_fastai_learner( dls=dls, model=model, cbs=cbs, loss_func=loss_fn, **learner_kwargs, ) # HACK: patch AvgLoss (in original, find_bs looks at learn.yb which has shape (N, 6) - with N being number_of_objects_in_image * batch_size. So impossible to retrieve BS) class Yolov5AvgLoss(fastai.AvgLoss): def accumulate(self, learn): bs = len(learn.xb[0]) self.total += learn.to_detach(learn.loss.mean()) * bs self.count += bs recorder = [cb for cb in learn.cbs if isinstance(cb, fastai.Recorder)][0] recorder.loss = Yolov5AvgLoss() return learn
v0.5/training/image_classification/train.py
PhilippvK/tiny
148
37012
<gh_stars>100-1000 ''' MLCommons group: TinyMLPerf (https://github.com/mlcommons/tiny) image classification on cifar10 train.py desc: loads data, trains and saves model, plots training metrics ''' import numpy as np import matplotlib.pyplot as plt import pickle import tensorflow as tf from keras.callbacks import LearningRateScheduler from keras.utils import to_categorical import keras_model import datetime EPOCHS = 500 BS = 32 # get date ant time to save model dt = datetime.datetime.today() year = dt.year month = dt.month day = dt.day hour = dt.hour minute = dt.minute """ The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. """ #learning rate schedule def lr_schedule(epoch): initial_learning_rate = 0.001 decay_per_epoch = 0.99 lrate = initial_learning_rate * (decay_per_epoch ** epoch) print('Learning rate = %f'%lrate) return lrate lr_scheduler = LearningRateScheduler(lr_schedule) #optimizer optimizer = tf.keras.optimizers.Adam() #define data generator datagen = tf.keras.preprocessing.image.ImageDataGenerator( rotation_range=15, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, #brightness_range=(0.9, 1.2), #contrast_range=(0.9, 1.2), validation_split=0.2 ) def unpickle(file): """load the cifar-10 data""" with open(file, 'rb') as fo: data = pickle.load(fo, encoding='bytes') return data def load_cifar_10_data(data_dir, negatives=False): """ Return train_data, train_filenames, train_labels, test_data, test_filenames, test_labels """ # get the meta_data_dict # num_cases_per_batch: 1000 # label_names: ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] # num_vis: :3072 meta_data_dict = unpickle(data_dir + "/batches.meta") cifar_label_names = meta_data_dict[b'label_names'] cifar_label_names = np.array(cifar_label_names) # training data cifar_train_data = None cifar_train_filenames = [] cifar_train_labels = [] for i in range(1, 6): cifar_train_data_dict = unpickle(data_dir + "/data_batch_{}".format(i)) if i == 1: cifar_train_data = cifar_train_data_dict[b'data'] else: cifar_train_data = np.vstack((cifar_train_data, cifar_train_data_dict[b'data'])) cifar_train_filenames += cifar_train_data_dict[b'filenames'] cifar_train_labels += cifar_train_data_dict[b'labels'] cifar_train_data = cifar_train_data.reshape((len(cifar_train_data), 3, 32, 32)) if negatives: cifar_train_data = cifar_train_data.transpose(0, 2, 3, 1).astype(np.float32) else: cifar_train_data = np.rollaxis(cifar_train_data, 1, 4) cifar_train_filenames = np.array(cifar_train_filenames) cifar_train_labels = np.array(cifar_train_labels) cifar_test_data_dict = unpickle(data_dir + "/test_batch") cifar_test_data = cifar_test_data_dict[b'data'] cifar_test_filenames = cifar_test_data_dict[b'filenames'] cifar_test_labels = cifar_test_data_dict[b'labels'] cifar_test_data = cifar_test_data.reshape((len(cifar_test_data), 3, 32, 32)) if negatives: cifar_test_data = cifar_test_data.transpose(0, 2, 3, 1).astype(np.float32) else: cifar_test_data = np.rollaxis(cifar_test_data, 1, 4) cifar_test_filenames = np.array(cifar_test_filenames) cifar_test_labels = np.array(cifar_test_labels) return cifar_train_data, cifar_train_filenames, to_categorical(cifar_train_labels), \ cifar_test_data, cifar_test_filenames, to_categorical(cifar_test_labels), cifar_label_names if __name__ == "__main__": """load cifar10 data and trains model""" cifar_10_dir = 'cifar-10-batches-py' train_data, train_filenames, train_labels, test_data, test_filenames, test_labels, label_names = \ load_cifar_10_data(cifar_10_dir) print("Train data: ", train_data.shape) print("Train filenames: ", train_filenames.shape) print("Train labels: ", train_labels.shape) print("Test data: ", test_data.shape) print("Test filenames: ", test_filenames.shape) print("Test labels: ", test_labels.shape) print("Label names: ", label_names.shape) # Don't forget that the label_names and filesnames are in binary and need conversion if used. # display some random training images in a 25x25 grid num_plot = 5 f, ax = plt.subplots(num_plot, num_plot) for m in range(num_plot): for n in range(num_plot): idx = np.random.randint(0, train_data.shape[0]) ax[m, n].imshow(train_data[idx]) ax[m, n].get_xaxis().set_visible(False) ax[m, n].get_yaxis().set_visible(False) f.subplots_adjust(hspace=0.1) f.subplots_adjust(wspace=0) plt.show() new_model = keras_model.resnet_v1_eembc() new_model.summary() # compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied) datagen.fit(train_data) new_model.compile( optimizer=optimizer, loss='categorical_crossentropy', metrics='accuracy', loss_weights=None, weighted_metrics=None, run_eagerly=None ) # fits the model on batches with real-time data augmentation: History = new_model.fit(datagen.flow(train_data, train_labels, batch_size=BS), steps_per_epoch=len(train_data) / BS, epochs=EPOCHS, callbacks=[lr_scheduler]) plt.plot(np.array(range(EPOCHS)), History.history['loss']) plt.plot(np.array(range(EPOCHS)), History.history['accuracy']) plt.savefig('train_loss_acc.png') model_name = "trainedResnet.h5" new_model.save("trained_models/" + model_name)
src/tests/web/web_auth_utils_test.py
tomgilbertson/script-server-v1
833
37014
from unittest import TestCase from parameterized import parameterized from tests.test_utils import mock_request_handler from web.web_auth_utils import remove_webpack_suffixes, is_allowed_during_login class WebpackSuffixesTest(TestCase): def test_remove_webpack_suffixes_when_css(self): normalized = remove_webpack_suffixes('js/chunk-login-vendors.59040343.css') self.assertEqual('js/chunk-login-vendors.css', normalized) def test_remove_webpack_suffixes_when_js(self): normalized = remove_webpack_suffixes('js/login.be16f278.js') self.assertEqual('js/login.js', normalized) def test_remove_webpack_suffixes_when_js_map(self): normalized = remove_webpack_suffixes('js/login.be16f278.js.map') self.assertEqual('js/login.js.map', normalized) def test_remove_webpack_suffixes_when_favicon(self): normalized = remove_webpack_suffixes('favicon.123.ico') self.assertEqual('favicon.123.ico', normalized) def test_remove_webpack_suffixes_when_no_suffixes(self): normalized = remove_webpack_suffixes('css/chunk-login-vendors.css') self.assertEqual('css/chunk-login-vendors.css', normalized) def test_remove_webpack_suffixes_when_no_extension(self): normalized = remove_webpack_suffixes('data/some_file') self.assertEqual('data/some_file', normalized) class LoginResourcesTest(TestCase): @parameterized.expand([ ('/favicon.ico'), ('login.html'), ('/js/login.be16f278.js'), ('/js/login.be16f278.js.map'), ('/js/chunk-login-vendors.18e22e7f.js'), ('/js/chunk-login-vendors.18e22e7f.js.map'), ('/img/titleBackground_login.a6c36d4c.jpg'), ('/css/login.8e74be0f.css'), ('/fonts/roboto-latin-400.60fa3c06.woff'), ('/fonts/roboto-latin-400.479970ff.woff2'), ('/fonts/roboto-latin-500.020c97dc.woff2'), ('/fonts/roboto-latin-500.87284894.woff') ]) def test_is_allowed_during_login_when_allowed(self, resource): request_handler = mock_request_handler(method='GET') allowed = is_allowed_during_login(resource, 'login.html', request_handler) self.assertTrue(allowed, 'Resource ' + resource + ' should be allowed, but was not') def test_is_allowed_during_login_when_prohibited(self): request_handler = mock_request_handler(method='GET') resource = 'admin.html' allowed = is_allowed_during_login(resource, 'login.html', request_handler) self.assertFalse(allowed, 'Resource ' + resource + ' should NOT be allowed, but WAS')
src/adafruit_blinka/microcontroller/amlogic/s905x3/pin.py
Jcc99/Adafruit_Blinka
294
37117
"""AmLogic s905x3 pin names""" # pylint: disable=wildcard-import,unused-wildcard-import from adafruit_blinka.microcontroller.amlogic.meson_g12_common.pin import *
system-test/testnet-automation-json-parser.py
Flawm/solana
7,843
37125
#!/usr/bin/env python3 import sys, json, argparse parser = argparse.ArgumentParser() parser.add_argument("--empty_error", action="store_true", help="If present, do not print error message") args = parser.parse_args() data=json.load(sys.stdin) if 'results' in data: for result in data['results']: if 'series' in result: print(result['series'][0]['columns'][1] + ': ' + str(result['series'][0]['values'][0][1])) elif not args.empty_error: print("An expected result from CURL request is missing") elif not args.empty_error: print("No results returned from CURL request")
Hackerrank/sherlockAndCost.py
nandani99/Hacktoberfest-1
255
37166
#!/bin/python3 import math import os import random import re import sys # Complete the cost function below. def cost(b): n=len(b) l, h = 0, 0 for i in range(1, n): l, h = (max(l, h + b[i - 1] - 1), max(l + b[i] - 1, h + abs(b[i] - b[i - 1]))) return max(l, h) if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') t = int(input()) for t_itr in range(t): n = int(input()) B = list(map(int, input().rstrip().split())) result = cost(B) fptr.write(str(result) + '\n') fptr.close()
test_python_toolbox/test_cheat_hashing.py
hboshnak/python_toolbox
119
37187
<reponame>hboshnak/python_toolbox # Copyright 2009-2017 <NAME>. # This program is distributed under the MIT license. '''Testing module for `python_toolbox.abc_tools.AbstractStaticMethod`.''' import copy from python_toolbox.cheat_hashing import cheat_hash def test_cheat_hash(): '''Test `cheat_hash` on various objects.''' things = [ 1, 7, 4.5, [1, 2, 3.4], (1, 2, 3.4), {1: 2, 3: 4.5}, {1, 2, 3.4}, [1, [1, 2], 3], [1, {frozenset((1, 2)): 'meow'}, 3], sum, None, (None, {None: None}) ] things_copy = copy.deepcopy(things) for thing, thing_copy in zip(things, things_copy): assert cheat_hash(thing) == cheat_hash(thing) == \ cheat_hash(thing_copy) == cheat_hash(thing_copy)
pysnmp/hlapi/v1arch/asyncore/ntforg.py
RKinsey/pysnmp
492
37204
<reponame>RKinsey/pysnmp # # This file is part of pysnmp software. # # Copyright (c) 2005-2019, <NAME> <<EMAIL>> # License: http://snmplabs.com/pysnmp/license.html # from pysnmp.hlapi.v1arch.auth import * from pysnmp.hlapi.v1arch.asyncore import * from pysnmp.hlapi.varbinds import * from pysnmp.smi.rfc1902 import * from pysnmp.proto.api import v2c from pysnmp.proto.proxy import rfc2576 from pysnmp import error __all__ = ['sendNotification'] VB_PROCESSOR = NotificationOriginatorVarBinds() def sendNotification(snmpDispatcher, authData, transportTarget, notifyType, *varBinds, **options): """Send SNMP notification. Based on passed parameters, prepares SNMP TRAP or INFORM notification (:RFC:`1905#section-4.2.6`) and schedules its transmission by I/O framework at a later point of time. Parameters ---------- snmpDispatcher: :py:class:`~pysnmp.hlapi.v1arch.asyncore.SnmpDispatcher` Class instance representing asyncore-based asynchronous event loop and associated state information. authData: :py:class:`~pysnmp.hlapi.CommunityData` or :py:class:`~pysnmp.hlapi.UsmUserData` Class instance representing SNMP credentials. transportTarget: :py:class:`~pysnmp.hlapi.asyncore.UdpTransportTarget` or :py:class:`~pysnmp.hlapi.asyncore.Udp6TransportTarget` Class instance representing transport type along with SNMP peer address. notifyType: str Indicates type of notification to be sent. Recognized literal values are *trap* or *inform*. \*varBinds: :class:`tuple` of OID-value pairs or :py:class:`~pysnmp.smi.rfc1902.ObjectType` or :py:class:`~pysnmp.smi.rfc1902.NotificationType` One or more objects representing MIB variables to place into SNMP notification. It could be tuples of OID-values or :py:class:`~pysnmp.smi.rfc1902.ObjectType` class instances of :py:class:`~pysnmp.smi.rfc1902.NotificationType` objects. Besides user variable-bindings, SNMP Notification PDU requires at least two variable-bindings to be present: 0. SNMPv2-MIB::sysUpTime.0 = <agent uptime> 1. SNMPv2-SMI::snmpTrapOID.0 = <notification ID> When sending SNMPv1 TRAP, more variable-bindings could be present: 2. SNMP-COMMUNITY-MIB::snmpTrapAddress.0 = <agent-IP> 3. SNMP-COMMUNITY-MIB::snmpTrapCommunity.0 = <snmp-community-name> 4. SNMP-COMMUNITY-MIB::snmpTrapEnterprise.0 = <enterprise-OID> If user does not supply some or any of the above variable-bindings or if they are at the wrong positions, the system will add/reorder the missing ones automatically. On top of that, some notification types imply including some additional variable-bindings providing additional details on the event being reported. Therefore it is generally easier to use :py:class:`~pysnmp.smi.rfc1902.NotificationType` object which will help adding relevant variable-bindings. Other Parameters ---------------- \*\*options : Request options: * `lookupMib` - load MIB and resolve response MIB variables at the cost of slightly reduced performance. Default is `False`. * `cbFun` (callable) - user-supplied callable that is invoked to pass SNMP response data or error to user at a later point of time. Default is `None`. * `cbCtx` (object) - user-supplied object passing additional parameters to/from `cbFun`. Default is `None`. Note ---- The `SnmpDispatcher` object may be expensive to create, therefore it is advised to maintain it for the lifecycle of the application/thread for as long as possible. Returns ------- sendRequestHandle: int Unique request identifier. Can be used for matching received responses with ongoing *INFORM* requests. Returns `None` for *TRAP* notifications. Raises ------ PySnmpError Or its derivative indicating that an error occurred while performing SNMP operation. Examples -------- >>> from pysnmp.hlapi.v1arch.asyncore import * >>> >>> snmpDispatcher = SnmpDispatcher() >>> >>> sendNotification( >>> snmpDispatcher, >>> CommunityData('public'), >>> UdpTransportTarget(('demo.snmplabs.com', 162)), >>> 'trap', >>> NotificationType(ObjectIdentity('SNMPv2-MIB', 'coldStart')), >>> lookupMib=True >>> ) >>> snmpDispatcher.transportDispatcher.runDispatcher() """ sysUpTime = v2c.apiTrapPDU.sysUpTime snmpTrapOID = v2c.apiTrapPDU.snmpTrapOID def _ensureVarBinds(varBinds): # Add sysUpTime if not present already if not varBinds or varBinds[0][0] != sysUpTime: varBinds.insert(0, (v2c.ObjectIdentifier(sysUpTime), v2c.TimeTicks(0))) # Search for and reposition sysUpTime if it's elsewhere for idx, varBind in enumerate(varBinds[1:]): if varBind[0] == sysUpTime: varBinds[0] = varBind del varBinds[idx + 1] break if len(varBinds) < 2: raise error.PySnmpError('SNMP notification PDU requires ' 'SNMPv2-MIB::snmpTrapOID.0 to be present') # Search for and reposition snmpTrapOID if it's elsewhere for idx, varBind in enumerate(varBinds[2:]): if varBind[0] == snmpTrapOID: del varBinds[idx + 2] if varBinds[1][0] == snmpTrapOID: varBinds[1] = varBind else: varBinds.insert(1, varBind) break # Fail on missing snmpTrapOID if varBinds[1][0] != snmpTrapOID: raise error.PySnmpError('SNMP notification PDU requires ' 'SNMPv2-MIB::snmpTrapOID.0 to be present') return varBinds def _cbFun(snmpDispatcher, stateHandle, errorIndication, rspPdu, _cbCtx): if not cbFun: return if errorIndication: cbFun(errorIndication, v2c.Integer(0), v2c.Integer(0), None, cbCtx=cbCtx, snmpDispatcher=snmpDispatcher, stateHandle=stateHandle) return errorStatus = v2c.apiTrapPDU.getErrorStatus(rspPdu) errorIndex = v2c.apiTrapPDU.getErrorIndex(rspPdu) varBinds = v2c.apiTrapPDU.getVarBinds(rspPdu) if lookupMib: varBinds = VB_PROCESSOR.unmakeVarBinds(snmpDispatcher.cache, varBinds) nextStateHandle = v2c.getNextRequestID() nextVarBinds = cbFun(errorIndication, errorStatus, errorIndex, varBinds, cbCtx=cbCtx, snmpDispatcher=snmpDispatcher, stateHandle=stateHandle, nextStateHandle=nextStateHandle) if not nextVarBinds: return v2c.apiTrapPDU.setRequestID(reqPdu, nextStateHandle) v2c.apiTrapPDU.setVarBinds(reqPdu, _ensureVarBinds(nextVarBinds)) return snmpDispatcher.sendPdu(authData, transportTarget, reqPdu, cbFun=_cbFun) lookupMib, cbFun, cbCtx = [options.get(x) for x in ('lookupMib', 'cbFun', 'cbCtx')] if lookupMib: varBinds = VB_PROCESSOR.makeVarBinds(snmpDispatcher.cache, varBinds) if notifyType == 'trap': reqPdu = v2c.TrapPDU() else: reqPdu = v2c.InformRequestPDU() v2c.apiTrapPDU.setDefaults(reqPdu) v2c.apiTrapPDU.setVarBinds(reqPdu, varBinds) varBinds = v2c.apiTrapPDU.getVarBinds(reqPdu) v2c.apiTrapPDU.setVarBinds(reqPdu, _ensureVarBinds(varBinds)) if authData.mpModel == 0: reqPdu = rfc2576.v2ToV1(reqPdu) return snmpDispatcher.sendPdu(authData, transportTarget, reqPdu, cbFun=_cbFun)
src/embedding/utilslib/baidu_spider_threads.py
mykiscool/DeepCamera
914
37246
#!/usr/bin/env python # -*- coding:utf-8 -*- import os import sys import re import urllib import json import socket import time import multiprocessing from multiprocessing.dummy import Pool from multiprocessing import Queue import requests timeout = 5 socket.setdefaulttimeout(timeout) class Image(object): """图片类,保存图片信息""" def __init__(self, url, save_path, referer): super(Image, self).__init__() self.url = url self.save_path = save_path self.referer = referer class Crawler: # 睡眠时长 __time_sleep = 0.1 __amount = 0 __start_amount = 0 __counter = 0 headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu ' 'Chromium/58.0.3029.110 Chrome/58.0.3029.110 Safari/537.36'} # 获取图片url内容等 # t 下载图片时间间隔 def __init__(self, t=0.1): self.dirpath = dirpath self.time_sleep = t self.pool = Pool(30) self.session = requests.Session() self.session.headers = Crawler.headers self.queue = Queue() self.delay = 1.5 # 网络请求太频繁会被封 self.__down_counter = 1 # 获取后缀名 @staticmethod def __get_suffix(name): m = re.search(r'\.[^\.]*$', name) if m.group(0) and len(m.group(0)) <= 5: return m.group(0) else: return '.jpeg' # 获取前缀 @staticmethod def __get_prefix(name): return name[:name.find('.')] # 保存图片 def __resolve_img_url(self, rsp_data, referer): imgs = [] for image_info in rsp_data['imgs']: fix = self.__get_suffix(image_info['objURL']) local_path = os.path.join(self.__work_path, str(self.__counter) + str(fix)) image = Image(image_info['objURL'], local_path, referer) imgs.append(image) print("图片+1,已有" + str(self.__down_counter) + "张") self.__down_counter += 1 self.__counter += 1 self.queue.put(imgs) return # 开始获取 def __resolve_json(self, word=''): search = urllib.quote(word) # pn 图片数 pn = self.__start_amount while pn < self.__amount: url = 'http://image.baidu.com/search/avatarjson?tn=resultjsonavatarnew&ie=utf-8&word=' + search + '&cg=girl&pn=' + str( pn) + '&rn=60&itg=0&z=0&fr=&width=&height=&lm=-1&ic=0&s=0&st=-1&gsm=1e0000001e' # 沿用session防ban try: time.sleep(self.delay) req = self.session.get(url=url, timeout=15) rsp = req.text except UnicodeDecodeError as e: print(e) print('-----UnicodeDecodeErrorurl:', url) except requests.exceptions.RequestException as e: print(e) print("-----Error:", url) except socket.timeout as e: print(e) print("-----socket timout:", url) else: # 解析json try: rsp_data = json.loads(rsp) self.__resolve_img_url(rsp_data, url) except ValueError: pass # 读取下一页 print("读取下一页json") pn += 60 print("解析json完成") return def __downImg(self, img): """下载单张图片,传入的是Image对象""" # try: # time.sleep(self.delay) # urllib.urlretrieve(img.url, img.save_path) # except requests.exceptions.HTTPError as e: # print(e) # except Exception as err: # time.sleep(1) # print(err) # print("产生未知错误,放弃保存") imgUrl = img.url # self.messageQueue.put("线程 %s 正在下载 %s " % # (threading.current_thread().name, imgUrl)) try: time.sleep(self.delay) headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu ' 'Chromium/58.0.3029.110 Chrome/58.0.3029.110 Safari/537.36'} headers['Referer'] = img.referer res = requests.get(imgUrl, headers=headers, timeout=15) with open(img.save_path, "wb") as f: f.write(res.content) except Exception as e: message = "抛出异常: %s%s" % (imgUrl, str(e)) print(message) def start(self, index, word, spider_page_num=1, start_page=1): """ 爬虫入口 :param word: 抓取的关键词 :param spider_page_num: 需要抓取数据页数 总抓取图片数量为 页数x60 :param start_page: 起始页数 :return: """ self.__work_path = os.path.join(self.dirpath, index) if not os.path.exists(self.__work_path): os.mkdir(self.__work_path) self.__counter = len(os.listdir(self.__work_path)) + 1 # 判断本地名字是否重复,获取目录下图片数 self.__start_amount = (start_page - 1) * 60 self.__amount = spider_page_num * 60 + self.__start_amount self.__resolve_json(word) while self.queue.qsize(): imgs = self.queue.get() self.pool.map_async(self.__downImg, imgs) self.pool.close() self.pool.join() print('完成保存') if __name__ == '__main__': dirpath = os.path.join(sys.path[0], 'results') if not os.path.exists(dirpath): os.mkdir(dirpath) with open('name.json') as f: json_data = json.load(f) # word = str(input("请输入图片关键字: \n")) sort_data = sorted([(int(k), v) for k, v in json_data.items()]) print('开始') for index, name in sort_data: folder = str(index) person = name.encode('utf-8') print('开始抓取 {}:{}'.format(folder, person)) if folder in os.listdir('./results'): print('已存在, continue') continue crawler = Crawler(0.05) crawler.dirpath = dirpath crawler.start(folder, person, 2, 1)
libvis/scripts/LMOptimizer SE3Optimization Test Jacobian derivation.py
zimengjiang/badslam
541
37266
from sympy import * # Implementation of QuaternionBase<Derived>::toRotationMatrix(void). # The quaternion q is given as a list [qw, qx, qy, qz]. def QuaternionToRotationMatrix(q): tx = 2 * q[1] ty = 2 * q[2] tz = 2 * q[3] twx = tx * q[0] twy = ty * q[0] twz = tz * q[0] txx = tx * q[1] txy = ty * q[1] txz = tz * q[1] tyy = ty * q[2] tyz = tz * q[2] tzz = tz * q[3] return Matrix([[1 - (tyy + tzz), txy - twz, txz + twy], [txy + twz, 1 - (txx + tzz), tyz - twx], [txz - twy, tyz + twx, 1 - (txx + tyy)]]) # Implementation of SO3Group<Scalar> expAndTheta(). # Only implementing the first case (of very small rotation) since we take the Jacobian at zero. def SO3exp(omega): theta = omega.norm() theta_sq = theta**2 half_theta = theta / 2 theta_po4 = theta_sq * theta_sq imag_factor = Rational(1, 2) - Rational(1, 48) * theta_sq + Rational(1, 3840) * theta_po4; real_factor = 1 - Rational(1, 2) * theta_sq + Rational(1, 384) * theta_po4; # return SO3Group<Scalar>(Eigen::Quaternion<Scalar>( # real_factor, imag_factor * omega.x(), imag_factor * omega.y(), # imag_factor * omega.z())); qw = real_factor qx = imag_factor * omega[0] qy = imag_factor * omega[1] qz = imag_factor * omega[2] return QuaternionToRotationMatrix([qw, qx, qy, qz]) # Implementation of SE3Group<Scalar> exp(). # Only implementing the first case (of small rotation) since we take the Jacobian at zero. def SE3exp(tangent): omega = Matrix(tangent[3:6]) V = SO3exp(omega) rotation = V translation = V * Matrix(tangent[0:3]) return rotation.row_join(translation) # Main init_printing(use_unicode=True) print('Variant 1') print('') # Define the tangent vector with symbolic elements T_0 to T_5. # (For a matrix, use: Matrix(3, 1, lambda i,j:var('S_%d%d' % (i,j))) ) T = Matrix(6, 1, lambda i,j:var('T_%d' % (i))) # Compute transformation matrix from tangent vector. T_matrix = SE3exp(T) # Define the vector current_T * src: S = Matrix(3, 1, lambda i,j:var('S_%d' % (i))) # Matrix-vector multiplication with homogeneous vector: result = T_matrix * S.col_join(Matrix([1])) # Compute Jacobian: # (Note: The transpose is needed for stacking the matrix columns (instead of rows) into a vector.) jac = result.transpose().reshape(result.rows * result.cols, 1).jacobian(T) # Take Jacobian at zero: jac_subs = jac.subs([(T[0], 0), (T[1], 0), (T[2], 0), (T[3], 0), (T[4], 0), (T[5], 0)]) # Simplify and output: jac_subs_simple = simplify(jac_subs) pprint(jac_subs_simple) print('') print('') print('Variant 2') print('') # Treat the function of which we want to determine the derivative as a list of nested functions. # This makes it easier to compute the derivative of each part, simplify it, and concatenate the results # using the chain rule. ### Define the function of which the Jacobian shall be taken ### # Matrix-vector multiplication with homogeneous vector: def MatrixVectorMultiplyHomogeneous(matrix, vector): return matrix * vector.col_join(Matrix([1])) # Define the vector current_T * src: S = Matrix(3, 1, lambda i,j:var('S_%d' % (i))) # The list of nested functions. They will be evaluated from right to left # (this is to match the way they would be written in math: f(g(x)).) functions = [lambda matrix : MatrixVectorMultiplyHomogeneous(matrix, S), SE3exp] ### Define the variables wrt. to take the Jacobian, and the position for evaluation ### # Chain rule: # d(f(g(x))) / dx = (df/dy)(g(x)) * dg/dx # Define the parameter with respect to take the Jacobian, y in the formula above: parameters = Matrix(6, 1, lambda i,j:var('T_%d' % (i))) # Set the position at which to take the Jacobian, g(x) in the formula above: parameter_values = zeros(6, 1) ### Automatic Jacobian calculation, no need to modify anything beyond this point ### # Jacobian from previous step, dg/dx in the formula above: previous_jacobian = 1 # TODO: Test whether this works with non-matrix functions. def ComputeValueAndJacobian(function, parameters, parameter_values): # Evaluate the function. values = function(parameter_values) # Compute the Jacobian. symbolic_values = function(parameters) symbolic_values_vector = symbolic_values.transpose().reshape(symbolic_values.rows * symbolic_values.cols, 1) parameters_vector = parameters.transpose().reshape(parameters.rows * parameters.cols, 1) jacobian = symbolic_values_vector.jacobian(parameters_vector) # Set in the evaluation point. for row in range(0, parameters.rows): for col in range(0, parameters.cols): jacobian = jacobian.subs(parameters[row, col], parameter_values[row, col]) # Simplify the jacobian. jacobian = simplify(jacobian) return (values, jacobian) # Print info about initial state. print('Taking the Jacobian of these functions (sorted from inner to outer):') for i in range(len(functions) - 1, -1, -1): print(str(functions[i])) print('with respect to:') pprint(parameters) print('at position:') pprint(parameter_values) print('') # Loop over all functions: for i in range(len(functions) - 1, -1, -1): # Compute value and Jacobian of this function. (values, jacobian) = ComputeValueAndJacobian(functions[i], parameters, parameter_values) # Update parameter_values parameter_values = values # Update parameters (create a new symbolic vector of the same size as parameter_values) parameters = Matrix(values.rows, values.cols, lambda i,j:var('T_%d%d' % (i,j))) # Concatenate this Jacobian with the previous one according to the chain rule: previous_jacobian = jacobian * previous_jacobian # Print intermediate result print('Intermediate step ' + str(len(functions) - i) + ', for ' + str(functions[i])) print('Position after function evaluation (function value):') pprint(parameter_values) print('Jacobian of this function wrt. its input only:') pprint(jacobian) print('Cumulative Jacobian wrt. the innermost parameter:') pprint(previous_jacobian) print('') # Print final result print('Final result:') pprint(previous_jacobian)
tests/tests_basic.py
mehrdad-shokri/fluxcapacitor
648
37323
import os import tests from tests import at_most, compile, savefile import subprocess node_present = True erlang_present = True if os.system("node -v >/dev/null 2>/dev/null") != 0: print " [!] ignoring nodejs tests" node_present = False if (os.system("erl -version >/dev/null 2>/dev/null") != 0 or os.system("which escript >/dev/null 2>/dev/null") != 0): print " [!] ignoring erlang tests" erlang_present = False sleep_sort_script='''\ #!/bin/bash echo "Unsorted: $*" function f() { sleep "$1" echo -n "$1 " } while [ -n "$1" ]; do f "$1" & shift done wait echo ''' class SingleProcess(tests.TestCase): @at_most(seconds=2) def test_bash_sleep(self): self.system("sleep 10") @at_most(seconds=2) def test_bash_bash_sleep(self): self.system("bash -c 'sleep 120;'") @at_most(seconds=2) def test_python2_sleep(self): self.system('python2 -c "import time; time.sleep(10)"') @at_most(seconds=2) def test_python2_select(self): self.system('python2 -c "import select; select.select([],[],[], 10)"') @at_most(seconds=2) def test_python2_poll(self): self.system('python2 -c "import select; select.poll().poll(10000)"') @at_most(seconds=2) def test_python2_epoll(self): self.system('python2 -c "import select; select.epoll().poll(10000)"') @at_most(seconds=2) def test_node_epoll(self): if node_present: self.system('node -e "setTimeout(function(){},10000);"') def test_bad_command(self): self.system('command_that_doesnt exist', returncode=127, ignore_stderr=True) def test_return_status(self): self.system('python2 -c "import sys; sys.exit(188)"', returncode=188) self.system('python2 -c "import sys; sys.exit(-1)"', returncode=255) @at_most(seconds=2) @compile(code=''' #include <unistd.h> int main() { sleep(10); return(0); }''') def test_c_sleep(self, compiled=None): self.system(compiled) @at_most(seconds=2) @compile(code=''' #include <time.h> int main() { struct timespec ts = {1, 0}; nanosleep(&ts, NULL); return(0); }''') def test_c_nanosleep(self, compiled=None): self.system(compiled) @at_most(seconds=5) @savefile(suffix="erl", text='''\ #!/usr/bin/env escript %%! -smp disable +A1 +K true -noinput -export([main/1]). main(_) -> timer:sleep(10*1000), halt(0). ''') def test_erlang_sleep(self, filename=None): if erlang_present: self.system("escript %s" % (filename,)) @at_most(seconds=5) @savefile(suffix="erl", text='''\ #!/usr/bin/env escript %%! -smp enable +A30 +K true -noinput -export([main/1]). main(_) -> timer:sleep(10*1000), halt(0). ''') def test_erlang_sleep_smp(self, filename=None): if erlang_present: self.system("escript %s" % (filename,)) @at_most(seconds=5) @savefile(suffix="erl", text='''\ #!/usr/bin/env escript %%! -smp enable +A30 +K false -noinput -export([main/1]). main(_) -> timer:sleep(10*1000), halt(0). ''') def test_erlang_sleep_smp_no_epoll(self, filename=None): if erlang_present: self.system("escript %s" % (filename,)) @at_most(seconds=5) @savefile(suffix="erl", text='''\ #!/usr/bin/env escript %%! -smp disable +A1 +K true -noinput -export([main/1]). main(_) -> self() ! msg, proc(10), receive _ -> ok end. proc(0) -> receive _ -> halt(0) end; proc(N) -> Pid = spawn(fun () -> proc(N-1) end), receive _ -> timer:sleep(1000), Pid ! msg end. ''') def test_erlang_process_staircase(self, filename=None): if erlang_present: self.system("escript %s" % (filename,)) @at_most(seconds=2) def test_perl_sleep(self): self.system("perl -e 'sleep 10'") @at_most(seconds=5) @savefile(suffix="sh", text=sleep_sort_script) def test_sleep_sort(self, filename=None): self.system("bash %s 1 12 1231 123213 13212 > /dev/null" % (filename,)) @at_most(seconds=5) @savefile(suffix="sh", text=sleep_sort_script) def test_sleep_sort(self, filename=None): self.system("bash %s 5 3 6 3 6 3 1 4 7 > /dev/null" % (filename,)) @at_most(seconds=10) def test_parallel_sleeps(self): for i in range(10): stdout = self.system(' -- '.join(['bash -c "date +%s"', 'bash -c "sleep 60; date +%s"', 'bash -c "sleep 120; date +%s"']), capture_stdout=True) a, b, c = [int(l) for l in stdout.split()] assert 55 < (b - a) < 65, str(b-a) assert 55 < (c - b) < 65, str(c-b) assert 110 < (c - a) < 130, str(c-a) @at_most(seconds=3) def test_file_descriptor_leak(self): out = subprocess.check_output("ls /proc/self/fd", shell=True) normal_fds = len(out.split('\n')) stdout = self.system(' -- '.join(['sleep 1', 'sleep 60', 'sleep 120', 'bash -c "sleep 180; ls /proc/self/fd"']), capture_stdout=True) after_fork_fds = len(stdout.split('\n')) assert normal_fds == after_fork_fds @at_most(seconds=4) def test_2546_wraparound(self): if os.uname()[4] == "x86_64": stdout = self.system("bash -c 'for i in `seq 1 55`; do sleep 315360000; done; date +%Y'", capture_stdout=True) assert int(stdout) > 2500 if __name__ == '__main__': import unittest unittest.main()
examples/perf/rnn/simple_rnn.py
yuhonghong66/minpy
1,271
37347
<filename>examples/perf/rnn/simple_rnn.py import sys sys.path.insert(0, "../../python/") import mxnet as mx import numpy as np from collections import namedtuple import time import math RNNState = namedtuple("RNNState", ["h"]) RNNParam = namedtuple("RNNParam", ["i2h_weight", "i2h_bias", "h2h_weight", "h2h_bias"]) RNNModel = namedtuple("RNNModel", ["rnn_exec", "symbol", "init_states", "last_states", "seq_data", "seq_labels", "seq_outputs", "param_blocks"]) def rnn(num_hidden, in_data, prev_state, param, seqidx, layeridx): i2h = mx.sym.FullyConnected(data=in_data, weight=param.i2h_weight, bias=param.i2h_bias, num_hidden=num_hidden, name="t%d_l%d_i2h" % (seqidx, layeridx)) if seqidx > 0: h2h = mx.sym.FullyConnected(data=prev_state, weight=param.h2h_weight, bias=param.h2h_bias, num_hidden=num_hidden, name="t%d_l%d_h2h" % (seqidx, layeridx)) hidden = i2h + h2h else: hidden = i2h hidden = mx.sym.Activation(data=hidden, act_type="tanh") return RNNState(h=hidden) def rnn_unroll(num_rnn_layer, seq_len, input_size, num_hidden, num_label): cls_weight = mx.sym.Variable("cls_weight") cls_bias = mx.sym.Variable("cls_bias") param_cells = [] for i in range(num_rnn_layer): param_cells.append(RNNParam(i2h_weight = mx.sym.Variable("l%d_i2h_weight" % i), i2h_bias = mx.sym.Variable("l%d_i2h_bias" % i), h2h_weight = mx.sym.Variable("l%d_h2h_weight" % i), h2h_bias = mx.sym.Variable("l%d_h2h_bias" % i))) loss_all = [] ori_data = mx.sym.Variable('data') label = mx.sym.Variable('softmax_label') data_timestamp = mx.sym.SliceChannel(data=ori_data, num_outputs=seq_len, squeeze_axis=1) hidden = None for seqidx in range(seq_len): in_data = data_timestamp[seqidx] next_state = rnn(num_hidden, in_data=in_data, prev_state=hidden, param=param_cells[i], seqidx=seqidx, layeridx=i) hidden = next_state.h fc = mx.sym.FullyConnected(data=hidden, weight=cls_weight, bias=cls_bias, num_hidden=num_label) reg = mx.sym.LinearRegressionOutput(data=fc, label=label) return reg
openfda/nsde/pipeline.py
FDA/openfda
388
37368
#!/usr/local/bin/python ''' Pipeline for converting CSV nsde data to JSON and importing into Elasticsearch. ''' import glob import os from os.path import join, dirname import luigi from openfda import common, config, parallel, index_util from openfda.common import newest_file_timestamp NSDE_DOWNLOAD = \ 'https://download.open.fda.gov/Comprehensive_NDC_SPL_Data_Elements_File.zip' NSDE_EXTRACT_DB = 'nsde/nsde.db' NSDE_RAW_DIR = config.data_dir('nsde/raw') class DownloadNSDE(luigi.Task): def output(self): return luigi.LocalTarget(join(NSDE_RAW_DIR, 'nsde.csv')) def run(self): output_dir = dirname(self.output().path) zip_filename = join(output_dir, 'nsde.zip') common.download(NSDE_DOWNLOAD, zip_filename) os.system('unzip -o %(zip_filename)s -d %(output_dir)s' % locals()) os.rename(glob.glob(join(output_dir, '*.csv'))[0], self.output().path) class NSDE2JSONMapper(parallel.Mapper): rename_map = { "Item Code": "package_ndc", "NDC11": "package_ndc11", "Marketing Category": "marketing_category", "Marketing Start Date": "marketing_start_date", "Marketing End Date": "marketing_end_date", "Billing Unit": "billing_unit", "Proprietary Name": "proprietary_name", "Dosage Form": "dosage_form", "Application Number or Citation": "application_number_or_citation", "Product Type": "product_type", "Inactivation Date": "inactivation_date", "Reactivation Date": "reactivation_date" } def map(self, key, value, output): def _cleaner(k, v): ''' Helper function to rename keys and purge any keys that are not in the map. ''' if k in self.rename_map and v is not None and v != '': if "Date" in k: return (self.rename_map[k], str(int(v))) if "Proprietary Name" in k: return (self.rename_map[k], str(v).title()) else: return (self.rename_map[k], v) new_value = common.transform_dict(value, _cleaner) output.add(key, new_value) class NSDE2JSON(luigi.Task): def requires(self): return DownloadNSDE() def output(self): return luigi.LocalTarget(config.data_dir(NSDE_EXTRACT_DB)) def run(self): parallel.mapreduce( parallel.Collection.from_glob( self.input().path, parallel.CSVDictLineInput()), mapper=NSDE2JSONMapper(), reducer=parallel.IdentityReducer(), output_prefix=self.output().path) class LoadJSON(index_util.LoadJSONBase): index_name = 'othernsde' type_name = 'othernsde' mapping_file = './schemas/othernsde_mapping.json' data_source = NSDE2JSON() use_checksum = False optimize_index = True last_update_date = lambda _: newest_file_timestamp(NSDE_RAW_DIR) if __name__ == '__main__': luigi.run()
examples/c/cdecl.py
rakati/ppci-mirror
161
37406
""" Implement alike logic as is done on www.cdecl.org Try for example: $ cdelc.py 'char **a;' """ import argparse import io from ppci.api import get_current_arch from ppci.lang.c import CLexer, CParser, COptions, CContext, CSemantics from ppci.lang.c.nodes import types, declarations from ppci.lang.c.preprocessor import prepare_for_parsing parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('source', type=str) args = parser.parse_args() # print('Source:', args.source) # Parse into ast: arch = get_current_arch() coptions = COptions() ccontext = CContext(coptions, arch.info) semantics = CSemantics(ccontext) cparser = CParser(coptions, semantics) clexer = CLexer(COptions()) f = io.StringIO(args.source) tokens = clexer.lex(f, '<snippet>') tokens = prepare_for_parsing(tokens, cparser.keywords) cparser.init_lexer(tokens) semantics.begin() decl = cparser.parse_declarations()[0] # Explain: def explain(x): if isinstance(x, declarations.VariableDeclaration): return '{} is {}'.format(x.name, explain(x.typ)) elif isinstance(x, types.PointerType): return 'a pointer to {}'.format(explain(x.element_type)) elif isinstance(x, types.ArrayType): return 'an array of {}'.format(explain(x.element_type)) elif isinstance(x, types.BasicType): return '{}'.format(x.type_id) else: print('???', x) print(explain(decl))
src/curt/curt/modules/vision/vision_processor_service.py
sanyaade-teachings/cep
108
37418
""" Copyright (C) Cortic Technology Corp. - All Rights Reserved Written by <NAME> <<EMAIL>>, 2021 """ # need to advertise different processor type, eg CPU, GPU, TPU import traceback import logging from curt.base_service import BaseService class VisionProcessorService(BaseService): def __init__(self): super().__init__("VisionProcessor") def execute_function(self, worker, data): config_worker = data[-1] try: if config_worker: return worker.config_worker(data[0]) else: if isinstance(data[0], list): return worker.run_inference(data[0]) elif isinstance(data[0], dict): data_list = [] for param in data[0]["ready_data"]: data_list.append(param) for guid in data[0].keys(): if guid != "ready_data": data_list.append(data[0][guid]) return worker.run_inference(data_list) except Exception as e: logging.error(traceback.format_exc())
training/train_nav.py
catalina17/EmbodiedQA
289
37429
import time import argparse from datetime import datetime import logging import numpy as np import os import torch import torch.nn.functional as F import torch.multiprocessing as mp from models import NavCnnModel, NavCnnRnnModel, NavCnnRnnMultModel, NavPlannerControllerModel from data import EqaDataLoader from metrics import NavMetric from models import MaskedNLLCriterion from models import get_state, ensure_shared_grads from data import load_vocab from torch.autograd import Variable from tqdm import tqdm import time torch.backends.cudnn.enabled = False ################################################################################################ #make models trained in pytorch 4 compatible with earlier pytorch versions import torch._utils try: torch._utils._rebuild_tensor_v2 except AttributeError: def _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks): tensor = torch._utils._rebuild_tensor(storage, storage_offset, size, stride) tensor.requires_grad = requires_grad tensor._backward_hooks = backward_hooks return tensor torch._utils._rebuild_tensor_v2 = _rebuild_tensor_v2 ################################################################################################ def eval(rank, args, shared_model): torch.cuda.set_device(args.gpus.index(args.gpus[rank % len(args.gpus)])) if args.model_type == 'cnn': model_kwargs = {} model = NavCnnModel(**model_kwargs) elif args.model_type == 'cnn+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnModel(**model_kwargs) elif args.model_type == 'lstm': model_kwargs = {} model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'lstm+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'lstm-mult+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnRnnMultModel(**model_kwargs) elif args.model_type == 'pacman': model_kwargs = {'question_vocab': load_vocab(args.vocab_json)} model = NavPlannerControllerModel(**model_kwargs) else: exit() eval_loader_kwargs = { 'questions_h5': getattr(args, args.eval_split + '_h5'), 'data_json': args.data_json, 'vocab': args.vocab_json, 'target_obj_conn_map_dir': args.target_obj_conn_map_dir, 'map_resolution': args.map_resolution, 'batch_size': 1, 'input_type': args.model_type, 'num_frames': 5, 'split': args.eval_split, 'max_threads_per_gpu': args.max_threads_per_gpu, 'gpu_id': args.gpus[rank % len(args.gpus)], 'to_cache': False, 'overfit': args.overfit, 'max_controller_actions': args.max_controller_actions, } eval_loader = EqaDataLoader(**eval_loader_kwargs) print('eval_loader has %d samples' % len(eval_loader.dataset)) logging.info("EVAL: eval_loader has {} samples".format(len(eval_loader.dataset))) args.output_log_path = os.path.join(args.log_dir, 'eval_' + str(rank) + '.json') t, epoch, best_eval_acc = 0, 0, 0.0 max_epochs = args.max_epochs if args.mode == 'eval': max_epochs = 1 while epoch < int(max_epochs): invalids = [] model.load_state_dict(shared_model.state_dict()) model.eval() # that's a lot of numbers metrics = NavMetric( info={'split': args.eval_split, 'thread': rank}, metric_names=[ 'd_0_10', 'd_0_30', 'd_0_50', 'd_T_10', 'd_T_30', 'd_T_50', 'd_D_10', 'd_D_30', 'd_D_50', 'd_min_10', 'd_min_30', 'd_min_50', 'r_T_10', 'r_T_30', 'r_T_50', 'r_e_10', 'r_e_30', 'r_e_50', 'stop_10', 'stop_30', 'stop_50', 'ep_len_10', 'ep_len_30', 'ep_len_50' ], log_json=args.output_log_path) if 'cnn' in args.model_type: done = False while done == False: for batch in tqdm(eval_loader): model.load_state_dict(shared_model.state_dict()) model.cuda() idx, questions, _, img_feats, actions_in, actions_out, action_length = batch metrics_slug = {} # evaluate at multiple initializations for i in [10, 30, 50]: t += 1 if action_length[0] + 1 - i - 5 < 0: invalids.append(idx[0]) continue ep_inds = [ x for x in range(action_length[0] + 1 - i - 5, action_length[0] + 1 - i) ] sub_img_feats = torch.index_select( img_feats, 1, torch.LongTensor(ep_inds)) init_pos = eval_loader.dataset.episode_pos_queue[ ep_inds[-1]] h3d = eval_loader.dataset.episode_house h3d.env.reset( x=init_pos[0], y=init_pos[2], yaw=init_pos[3]) init_dist_to_target = h3d.get_dist_to_target( h3d.env.cam.pos) if init_dist_to_target < 0: # unreachable invalids.append(idx[0]) continue sub_img_feats_var = Variable(sub_img_feats.cuda()) if '+q' in args.model_type: questions_var = Variable(questions.cuda()) # sample actions till max steps or <stop> # max no. of actions = 100 episode_length = 0 episode_done = True dists_to_target, pos_queue, actions = [ init_dist_to_target ], [init_pos], [] for step in range(args.max_episode_length): episode_length += 1 if '+q' in args.model_type: scores = model(sub_img_feats_var, questions_var) else: scores = model(sub_img_feats_var) prob = F.softmax(scores, dim=1) action = int(prob.max(1)[1].data.cpu().numpy()[0]) actions.append(action) img, _, episode_done = h3d.step(action) episode_done = episode_done or episode_length >= args.max_episode_length img = torch.from_numpy(img.transpose( 2, 0, 1)).float() / 255.0 img_feat_var = eval_loader.dataset.cnn( Variable(img.view(1, 3, 224, 224) .cuda())).view(1, 1, 3200) sub_img_feats_var = torch.cat( [sub_img_feats_var, img_feat_var], dim=1) sub_img_feats_var = sub_img_feats_var[:, -5:, :] dists_to_target.append( h3d.get_dist_to_target(h3d.env.cam.pos)) pos_queue.append([ h3d.env.cam.pos.x, h3d.env.cam.pos.y, h3d.env.cam.pos.z, h3d.env.cam.yaw ]) if episode_done == True: break # compute stats metrics_slug['d_0_' + str(i)] = dists_to_target[0] metrics_slug['d_T_' + str(i)] = dists_to_target[-1] metrics_slug['d_D_' + str( i)] = dists_to_target[0] - dists_to_target[-1] metrics_slug['d_min_' + str(i)] = np.array( dists_to_target).min() metrics_slug['ep_len_' + str(i)] = episode_length if action == 3: metrics_slug['stop_' + str(i)] = 1 else: metrics_slug['stop_' + str(i)] = 0 inside_room = [] for p in pos_queue: inside_room.append( h3d.is_inside_room( p, eval_loader.dataset.target_room)) if inside_room[-1] == True: metrics_slug['r_T_' + str(i)] = 1 else: metrics_slug['r_T_' + str(i)] = 0 if any([x == True for x in inside_room]) == True: metrics_slug['r_e_' + str(i)] = 1 else: metrics_slug['r_e_' + str(i)] = 0 # collate and update metrics metrics_list = [] for i in metrics.metric_names: if i not in metrics_slug: metrics_list.append(metrics.metrics[ metrics.metric_names.index(i)][0]) else: metrics_list.append(metrics_slug[i]) # update metrics metrics.update(metrics_list) print(metrics.get_stat_string(mode=0)) print('invalids', len(invalids)) logging.info("EVAL: metrics: {}".format(metrics.get_stat_string(mode=0))) logging.info("EVAL: invalids: {}".format(len(invalids))) # del h3d eval_loader.dataset._load_envs() if len(eval_loader.dataset.pruned_env_set) == 0: done = True elif 'lstm' in args.model_type: done = False while done == False: if args.overfit: metrics = NavMetric( info={'split': args.eval_split, 'thread': rank}, metric_names=[ 'd_0_10', 'd_0_30', 'd_0_50', 'd_T_10', 'd_T_30', 'd_T_50', 'd_D_10', 'd_D_30', 'd_D_50', 'd_min_10', 'd_min_30', 'd_min_50', 'r_T_10', 'r_T_30', 'r_T_50', 'r_e_10', 'r_e_30', 'r_e_50', 'stop_10', 'stop_30', 'stop_50', 'ep_len_10', 'ep_len_30', 'ep_len_50' ], log_json=args.output_log_path) for batch in tqdm(eval_loader): model.load_state_dict(shared_model.state_dict()) model.cuda() idx, questions, answer, _, actions_in, actions_out, action_lengths, _ = batch question_var = Variable(questions.cuda()) metrics_slug = {} # evaluate at multiple initializations for i in [10, 30, 50]: t += 1 if action_lengths[0] - 1 - i < 0: invalids.append([idx[0], i]) continue h3d = eval_loader.dataset.episode_house # forward through lstm till spawn if len(eval_loader.dataset.episode_pos_queue[:-i] ) > 0: images = eval_loader.dataset.get_frames( h3d, eval_loader.dataset.episode_pos_queue[:-i], preprocess=True) raw_img_feats = eval_loader.dataset.cnn( Variable(torch.FloatTensor(images).cuda())) actions_in_pruned = actions_in[:, : action_lengths[0] - i] actions_in_var = Variable(actions_in_pruned.cuda()) action_lengths_pruned = action_lengths.clone( ).fill_(action_lengths[0] - i) img_feats_var = raw_img_feats.view(1, -1, 3200) if '+q' in args.model_type: scores, hidden = model( img_feats_var, question_var, actions_in_var, action_lengths_pruned.cpu().numpy()) else: scores, hidden = model( img_feats_var, False, actions_in_var, action_lengths_pruned.cpu().numpy()) try: init_pos = eval_loader.dataset.episode_pos_queue[ -i] except: invalids.append([idx[0], i]) continue action_in = torch.LongTensor(1, 1).fill_( actions_in[0, action_lengths[0] - i]).cuda() else: init_pos = eval_loader.dataset.episode_pos_queue[ -i] hidden = model.nav_rnn.init_hidden(1) action_in = torch.LongTensor(1, 1).fill_(0).cuda() h3d.env.reset( x=init_pos[0], y=init_pos[2], yaw=init_pos[3]) init_dist_to_target = h3d.get_dist_to_target( h3d.env.cam.pos) if init_dist_to_target < 0: # unreachable invalids.append([idx[0], i]) continue img = h3d.env.render() img = torch.from_numpy(img.transpose( 2, 0, 1)).float() / 255.0 img_feat_var = eval_loader.dataset.cnn( Variable(img.view(1, 3, 224, 224).cuda())).view( 1, 1, 3200) episode_length = 0 episode_done = True dists_to_target, pos_queue, actions = [ init_dist_to_target ], [init_pos], [] actual_pos_queue = [(h3d.env.cam.pos.x, h3d.env.cam.pos.z, h3d.env.cam.yaw)] for step in range(args.max_episode_length): episode_length += 1 if '+q' in args.model_type: scores, hidden = model( img_feat_var, question_var, Variable(action_in), False, hidden=hidden, step=True) else: scores, hidden = model( img_feat_var, False, Variable(action_in), False, hidden=hidden, step=True) prob = F.softmax(scores, dim=1) action = int(prob.max(1)[1].data.cpu().numpy()[0]) actions.append(action) img, _, episode_done = h3d.step(action) episode_done = episode_done or episode_length >= args.max_episode_length img = torch.from_numpy(img.transpose( 2, 0, 1)).float() / 255.0 img_feat_var = eval_loader.dataset.cnn( Variable(img.view(1, 3, 224, 224) .cuda())).view(1, 1, 3200) action_in = torch.LongTensor( 1, 1).fill_(action + 1).cuda() dists_to_target.append( h3d.get_dist_to_target(h3d.env.cam.pos)) pos_queue.append([ h3d.env.cam.pos.x, h3d.env.cam.pos.y, h3d.env.cam.pos.z, h3d.env.cam.yaw ]) if episode_done == True: break actual_pos_queue.append([ h3d.env.cam.pos.x, h3d.env.cam.pos.z, h3d.env.cam.yaw]) # compute stats metrics_slug['d_0_' + str(i)] = dists_to_target[0] metrics_slug['d_T_' + str(i)] = dists_to_target[-1] metrics_slug['d_D_' + str( i)] = dists_to_target[0] - dists_to_target[-1] metrics_slug['d_min_' + str(i)] = np.array( dists_to_target).min() metrics_slug['ep_len_' + str(i)] = episode_length if action == 3: metrics_slug['stop_' + str(i)] = 1 else: metrics_slug['stop_' + str(i)] = 0 inside_room = [] for p in pos_queue: inside_room.append( h3d.is_inside_room( p, eval_loader.dataset.target_room)) if inside_room[-1] == True: metrics_slug['r_T_' + str(i)] = 1 else: metrics_slug['r_T_' + str(i)] = 0 if any([x == True for x in inside_room]) == True: metrics_slug['r_e_' + str(i)] = 1 else: metrics_slug['r_e_' + str(i)] = 0 # collate and update metrics metrics_list = [] for i in metrics.metric_names: if i not in metrics_slug: metrics_list.append(metrics.metrics[ metrics.metric_names.index(i)][0]) else: metrics_list.append(metrics_slug[i]) # update metrics metrics.update(metrics_list) print(metrics.get_stat_string(mode=0)) print('invalids', len(invalids)) logging.info("EVAL: init_steps: {} metrics: {}".format(i, metrics.get_stat_string(mode=0))) logging.info("EVAL: init_steps: {} invalids: {}".format(i, len(invalids))) # del h3d eval_loader.dataset._load_envs() print("eval_loader pruned_env_set len: {}".format(len(eval_loader.dataset.pruned_env_set))) logging.info("eval_loader pruned_env_set len: {}".format(len(eval_loader.dataset.pruned_env_set))) assert len(eval_loader.dataset.pruned_env_set) > 0 if len(eval_loader.dataset.pruned_env_set) == 0: done = True elif 'pacman' in args.model_type: done = False while done == False: if args.overfit: metrics = NavMetric( info={'split': args.eval_split, 'thread': rank}, metric_names=[ 'd_0_10', 'd_0_30', 'd_0_50', 'd_T_10', 'd_T_30', 'd_T_50', 'd_D_10', 'd_D_30', 'd_D_50', 'd_min_10', 'd_min_30', 'd_min_50', 'r_T_10', 'r_T_30', 'r_T_50', 'r_e_10', 'r_e_30', 'r_e_50', 'stop_10', 'stop_30', 'stop_50', 'ep_len_10', 'ep_len_30', 'ep_len_50' ], log_json=args.output_log_path) for batch in tqdm(eval_loader): model.load_state_dict(shared_model.state_dict()) model.cuda() idx, question, answer, actions, action_length = batch metrics_slug = {} h3d = eval_loader.dataset.episode_house # evaluate at multiple initializations for i in [10, 30, 50]: t += 1 if i > action_length[0]: invalids.append([idx[0], i]) continue question_var = Variable(question.cuda()) controller_step = False planner_hidden = model.planner_nav_rnn.init_hidden(1) # get hierarchical action history ( planner_actions_in, planner_img_feats, controller_step, controller_action_in, controller_img_feats, init_pos, controller_action_counter ) = eval_loader.dataset.get_hierarchical_features_till_spawn( actions[0, :action_length[0] + 1].numpy(), i, args.max_controller_actions ) planner_actions_in_var = Variable( planner_actions_in.cuda()) planner_img_feats_var = Variable( planner_img_feats.cuda()) # forward planner till spawn to update hidden state for step in range(planner_actions_in.size(0)): planner_scores, planner_hidden = model.planner_step( question_var, planner_img_feats_var[step] .unsqueeze(0).unsqueeze(0), planner_actions_in_var[step].view(1, 1), planner_hidden ) h3d.env.reset( x=init_pos[0], y=init_pos[2], yaw=init_pos[3]) init_dist_to_target = h3d.get_dist_to_target( h3d.env.cam.pos) if init_dist_to_target < 0: # unreachable invalids.append([idx[0], i]) continue dists_to_target, pos_queue, pred_actions = [ init_dist_to_target ], [init_pos], [] planner_actions, controller_actions = [], [] episode_length = 0 if args.max_controller_actions > 1: controller_action_counter = controller_action_counter % args.max_controller_actions controller_action_counter = max(controller_action_counter - 1, 0) else: controller_action_counter = 0 first_step = True first_step_is_controller = controller_step planner_step = True action = int(controller_action_in) for step in range(args.max_episode_length): if not first_step: img = torch.from_numpy(img.transpose( 2, 0, 1)).float() / 255.0 img_feat_var = eval_loader.dataset.cnn( Variable(img.view(1, 3, 224, 224).cuda())).view( 1, 1, 3200) else: img_feat_var = Variable(controller_img_feats.cuda()).view(1, 1, 3200) if not first_step or first_step_is_controller: # query controller to continue or not controller_action_in = Variable( torch.LongTensor(1, 1).fill_(action).cuda()) controller_scores = model.controller_step( img_feat_var, controller_action_in, planner_hidden[0]) prob = F.softmax(controller_scores, dim=1) controller_action = int( prob.max(1)[1].data.cpu().numpy()[0]) if controller_action == 1 and controller_action_counter < args.max_controller_actions - 1: controller_action_counter += 1 planner_step = False else: controller_action_counter = 0 planner_step = True controller_action = 0 controller_actions.append(controller_action) first_step = False if planner_step: if not first_step: action_in = torch.LongTensor( 1, 1).fill_(action + 1).cuda() planner_scores, planner_hidden = model.planner_step( question_var, img_feat_var, Variable(action_in), planner_hidden) prob = F.softmax(planner_scores, dim=1) action = int( prob.max(1)[1].data.cpu().numpy()[0]) planner_actions.append(action) episode_done = action == 3 or episode_length >= args.max_episode_length episode_length += 1 dists_to_target.append( h3d.get_dist_to_target(h3d.env.cam.pos)) pos_queue.append([ h3d.env.cam.pos.x, h3d.env.cam.pos.y, h3d.env.cam.pos.z, h3d.env.cam.yaw ]) if episode_done: break img, _, _ = h3d.step(action) first_step = False # compute stats metrics_slug['d_0_' + str(i)] = dists_to_target[0] metrics_slug['d_T_' + str(i)] = dists_to_target[-1] metrics_slug['d_D_' + str( i)] = dists_to_target[0] - dists_to_target[-1] metrics_slug['d_min_' + str(i)] = np.array( dists_to_target).min() metrics_slug['ep_len_' + str(i)] = episode_length if action == 3: metrics_slug['stop_' + str(i)] = 1 else: metrics_slug['stop_' + str(i)] = 0 inside_room = [] for p in pos_queue: inside_room.append( h3d.is_inside_room( p, eval_loader.dataset.target_room)) if inside_room[-1] == True: metrics_slug['r_T_' + str(i)] = 1 else: metrics_slug['r_T_' + str(i)] = 0 if any([x == True for x in inside_room]) == True: metrics_slug['r_e_' + str(i)] = 1 else: metrics_slug['r_e_' + str(i)] = 0 # collate and update metrics metrics_list = [] for i in metrics.metric_names: if i not in metrics_slug: metrics_list.append(metrics.metrics[ metrics.metric_names.index(i)][0]) else: metrics_list.append(metrics_slug[i]) # update metrics metrics.update(metrics_list) try: print(metrics.get_stat_string(mode=0)) logging.info("EVAL: metrics: {}".format(metrics.get_stat_string(mode=0))) except: pass print('epoch', epoch) print('invalids', len(invalids)) logging.info("EVAL: epoch {}".format(epoch)) logging.info("EVAL: invalids {}".format(invalids)) # del h3d eval_loader.dataset._load_envs() if len(eval_loader.dataset.pruned_env_set) == 0: done = True epoch += 1 # checkpoint if best val loss if metrics.metrics[8][0] > best_eval_acc: # d_D_50 best_eval_acc = metrics.metrics[8][0] if epoch % args.eval_every == 0 and args.log == True: metrics.dump_log() model_state = get_state(model) aad = dict(args.__dict__) ad = {} for i in aad: if i[0] != '_': ad[i] = aad[i] checkpoint = {'args': ad, 'state': model_state, 'epoch': epoch} checkpoint_path = '%s/epoch_%d_d_D_50_%.04f.pt' % ( args.checkpoint_dir, epoch, best_eval_acc) print('Saving checkpoint to %s' % checkpoint_path) logging.info("EVAL: Saving checkpoint to {}".format(checkpoint_path)) torch.save(checkpoint, checkpoint_path) print('[best_eval_d_D_50:%.04f]' % best_eval_acc) logging.info("EVAL: [best_eval_d_D_50:{:.04f}]".format(best_eval_acc)) eval_loader.dataset._load_envs(start_idx=0, in_order=True) def train(rank, args, shared_model): torch.cuda.set_device(args.gpus.index(args.gpus[rank % len(args.gpus)])) if args.model_type == 'cnn': model_kwargs = {} model = NavCnnModel(**model_kwargs) elif args.model_type == 'cnn+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnModel(**model_kwargs) elif args.model_type == 'lstm': model_kwargs = {} model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'lstm-mult+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnRnnMultModel(**model_kwargs) elif args.model_type == 'lstm+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'pacman': model_kwargs = {'question_vocab': load_vocab(args.vocab_json)} model = NavPlannerControllerModel(**model_kwargs) else: exit() lossFn = torch.nn.CrossEntropyLoss().cuda() optim = torch.optim.Adamax( filter(lambda p: p.requires_grad, shared_model.parameters()), lr=args.learning_rate) train_loader_kwargs = { 'questions_h5': args.train_h5, 'data_json': args.data_json, 'vocab': args.vocab_json, 'batch_size': args.batch_size, 'input_type': args.model_type, 'num_frames': 5, 'map_resolution': args.map_resolution, 'split': 'train', 'max_threads_per_gpu': args.max_threads_per_gpu, 'gpu_id': args.gpus[rank % len(args.gpus)], 'to_cache': args.cache, 'overfit': args.overfit, 'max_controller_actions': args.max_controller_actions, 'max_actions': args.max_actions } args.output_log_path = os.path.join(args.log_dir, 'train_' + str(rank) + '.json') if 'pacman' in args.model_type: metrics = NavMetric( info={'split': 'train', 'thread': rank}, metric_names=['planner_loss', 'controller_loss'], log_json=args.output_log_path) else: metrics = NavMetric( info={'split': 'train', 'thread': rank}, metric_names=['loss'], log_json=args.output_log_path) train_loader = EqaDataLoader(**train_loader_kwargs) print('train_loader has %d samples' % len(train_loader.dataset)) logging.info('TRAIN: train loader has {} samples'.format(len(train_loader.dataset))) t, epoch = 0, 0 while epoch < int(args.max_epochs): if 'cnn' in args.model_type: done = False all_envs_loaded = train_loader.dataset._check_if_all_envs_loaded() while done == False: for batch in train_loader: t += 1 model.load_state_dict(shared_model.state_dict()) model.train() model.cuda() idx, questions, _, img_feats, _, actions_out, _ = batch img_feats_var = Variable(img_feats.cuda()) if '+q' in args.model_type: questions_var = Variable(questions.cuda()) actions_out_var = Variable(actions_out.cuda()) if '+q' in args.model_type: scores = model(img_feats_var, questions_var) else: scores = model(img_feats_var) loss = lossFn(scores, actions_out_var) # zero grad optim.zero_grad() # update metrics metrics.update([loss.data[0]]) # backprop and update loss.backward() ensure_shared_grads(model.cpu(), shared_model) optim.step() if t % args.print_every == 0: print(metrics.get_stat_string()) logging.info("TRAIN: metrics: {}".format(metrics.get_stat_string())) if args.log == True: metrics.dump_log() print('[CHECK][Cache:%d][Total:%d]' % (len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) logging.info('TRAIN: [CHECK][Cache:{}][Total:{}]'.format( len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) if all_envs_loaded == False: train_loader.dataset._load_envs(in_order=True) if len(train_loader.dataset.pruned_env_set) == 0: done = True if args.cache == False: train_loader.dataset._load_envs( start_idx=0, in_order=True) else: done = True elif 'lstm' in args.model_type: lossFn = MaskedNLLCriterion().cuda() done = False all_envs_loaded = train_loader.dataset._check_if_all_envs_loaded() total_times = [] while done == False: start_time = time.time() for batch in train_loader: t += 1 model.load_state_dict(shared_model.state_dict()) model.train() model.cuda() idx, questions, _, img_feats, actions_in, actions_out, action_lengths, masks = batch img_feats_var = Variable(img_feats.cuda()) if '+q' in args.model_type: questions_var = Variable(questions.cuda()) actions_in_var = Variable(actions_in.cuda()) actions_out_var = Variable(actions_out.cuda()) action_lengths = action_lengths.cuda() masks_var = Variable(masks.cuda()) action_lengths, perm_idx = action_lengths.sort( 0, descending=True) img_feats_var = img_feats_var[perm_idx] if '+q' in args.model_type: questions_var = questions_var[perm_idx] actions_in_var = actions_in_var[perm_idx] actions_out_var = actions_out_var[perm_idx] masks_var = masks_var[perm_idx] if '+q' in args.model_type: scores, hidden = model(img_feats_var, questions_var, actions_in_var, action_lengths.cpu().numpy()) else: scores, hidden = model(img_feats_var, False, actions_in_var, action_lengths.cpu().numpy()) #block out masks if args.curriculum: curriculum_length = (epoch+1)*5 for i, action_length in enumerate(action_lengths): if action_length - curriculum_length > 0: masks_var[i, :action_length-curriculum_length] = 0 logprob = F.log_softmax(scores, dim=1) loss = lossFn( logprob, actions_out_var[:, :action_lengths.max()] .contiguous().view(-1, 1), masks_var[:, :action_lengths.max()].contiguous().view( -1, 1)) # zero grad optim.zero_grad() # update metrics metrics.update([loss.data[0]]) logging.info("TRAIN LSTM loss: {:.6f}".format(loss.data[0])) # backprop and update loss.backward() ensure_shared_grads(model.cpu(), shared_model) optim.step() if t % args.print_every == 0: print(metrics.get_stat_string()) logging.info("TRAIN: metrics: {}".format(metrics.get_stat_string())) if args.log == True: metrics.dump_log() print('[CHECK][Cache:%d][Total:%d]' % (len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) logging.info('TRAIN: [CHECK][Cache:{}][Total:{}]'.format( len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) if all_envs_loaded == False: train_loader.dataset._load_envs(in_order=True) if len(train_loader.dataset.pruned_env_set) == 0: done = True if args.cache == False: train_loader.dataset._load_envs( start_idx=0, in_order=True) else: done = True elif 'pacman' in args.model_type: planner_lossFn = MaskedNLLCriterion().cuda() controller_lossFn = MaskedNLLCriterion().cuda() done = False all_envs_loaded = train_loader.dataset._check_if_all_envs_loaded() while done == False: for batch in train_loader: t += 1 model.load_state_dict(shared_model.state_dict()) model.train() model.cuda() idx, questions, _, planner_img_feats, planner_actions_in, \ planner_actions_out, planner_action_lengths, planner_masks, \ controller_img_feats, controller_actions_in, planner_hidden_idx, \ controller_outs, controller_action_lengths, controller_masks = batch questions_var = Variable(questions.cuda()) planner_img_feats_var = Variable(planner_img_feats.cuda()) planner_actions_in_var = Variable( planner_actions_in.cuda()) planner_actions_out_var = Variable( planner_actions_out.cuda()) planner_action_lengths = planner_action_lengths.cuda() planner_masks_var = Variable(planner_masks.cuda()) controller_img_feats_var = Variable( controller_img_feats.cuda()) controller_actions_in_var = Variable( controller_actions_in.cuda()) planner_hidden_idx_var = Variable( planner_hidden_idx.cuda()) controller_outs_var = Variable(controller_outs.cuda()) controller_action_lengths = controller_action_lengths.cuda( ) controller_masks_var = Variable(controller_masks.cuda()) planner_action_lengths, perm_idx = planner_action_lengths.sort( 0, descending=True) questions_var = questions_var[perm_idx] planner_img_feats_var = planner_img_feats_var[perm_idx] planner_actions_in_var = planner_actions_in_var[perm_idx] planner_actions_out_var = planner_actions_out_var[perm_idx] planner_masks_var = planner_masks_var[perm_idx] controller_img_feats_var = controller_img_feats_var[ perm_idx] controller_actions_in_var = controller_actions_in_var[ perm_idx] controller_outs_var = controller_outs_var[perm_idx] planner_hidden_idx_var = planner_hidden_idx_var[perm_idx] controller_action_lengths = controller_action_lengths[ perm_idx] controller_masks_var = controller_masks_var[perm_idx] planner_scores, controller_scores, planner_hidden = model( questions_var, planner_img_feats_var, planner_actions_in_var, planner_action_lengths.cpu().numpy(), planner_hidden_idx_var, controller_img_feats_var, controller_actions_in_var, controller_action_lengths) planner_logprob = F.log_softmax(planner_scores, dim=1) controller_logprob = F.log_softmax( controller_scores, dim=1) planner_loss = planner_lossFn( planner_logprob, planner_actions_out_var[:, :planner_action_lengths.max( )].contiguous().view(-1, 1), planner_masks_var[:, :planner_action_lengths.max()] .contiguous().view(-1, 1)) controller_loss = controller_lossFn( controller_logprob, controller_outs_var[:, :controller_action_lengths.max( )].contiguous().view(-1, 1), controller_masks_var[:, :controller_action_lengths.max( )].contiguous().view(-1, 1)) # zero grad optim.zero_grad() # update metrics metrics.update( [planner_loss.data[0], controller_loss.data[0]]) logging.info("TRAINING PACMAN planner-loss: {:.6f} controller-loss: {:.6f}".format( planner_loss.data[0], controller_loss.data[0])) # backprop and update if args.max_controller_actions == 1: (planner_loss).backward() else: (planner_loss + controller_loss).backward() ensure_shared_grads(model.cpu(), shared_model) optim.step() if t % args.print_every == 0: print(metrics.get_stat_string()) logging.info("TRAIN: metrics: {}".format(metrics.get_stat_string())) if args.log == True: metrics.dump_log() print('[CHECK][Cache:%d][Total:%d]' % (len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) logging.info('TRAIN: [CHECK][Cache:{}][Total:{}]'.format( len(train_loader.dataset.img_data_cache), len(train_loader.dataset.env_list))) if all_envs_loaded == False: train_loader.dataset._load_envs(in_order=True) if len(train_loader.dataset.pruned_env_set) == 0: done = True if args.cache == False: train_loader.dataset._load_envs( start_idx=0, in_order=True) else: done = True epoch += 1 if epoch % args.save_every == 0: model_state = get_state(model) optimizer_state = optim.state_dict() aad = dict(args.__dict__) ad = {} for i in aad: if i[0] != '_': ad[i] = aad[i] checkpoint = {'args': ad, 'state': model_state, 'epoch': epoch, 'optimizer': optimizer_state} checkpoint_path = '%s/epoch_%d_thread_%d.pt' % ( args.checkpoint_dir, epoch, rank) print('Saving checkpoint to %s' % checkpoint_path) logging.info("TRAIN: Saving checkpoint to {}".format(checkpoint_path)) torch.save(checkpoint, checkpoint_path) if __name__ == '__main__': parser = argparse.ArgumentParser() # data params parser.add_argument('-train_h5', default='data/train.h5') parser.add_argument('-val_h5', default='data/val.h5') parser.add_argument('-test_h5', default='data/test.h5') parser.add_argument('-data_json', default='data/data.json') parser.add_argument('-vocab_json', default='data/vocab.json') parser.add_argument( '-target_obj_conn_map_dir', default='data/target-obj-conn-maps/500') parser.add_argument('-map_resolution', default=500, type=int) parser.add_argument( '-mode', default='train+eval', type=str, choices=['train', 'eval', 'train+eval']) parser.add_argument('-eval_split', default='val', type=str) # model details parser.add_argument( '-model_type', default='cnn', choices=['cnn', 'cnn+q', 'lstm', 'lstm+q', 'lstm-mult+q', 'pacman']) parser.add_argument('-max_episode_length', default=100, type=int) parser.add_argument('-curriculum', default=0, type=int) # optim params parser.add_argument('-batch_size', default=20, type=int) parser.add_argument('-learning_rate', default=1e-3, type=float) parser.add_argument('-max_epochs', default=1000, type=int) parser.add_argument('-overfit', default=False, action='store_true') # bookkeeping parser.add_argument('-print_every', default=5, type=int) parser.add_argument('-eval_every', default=1, type=int) parser.add_argument('-save_every', default=1000, type=int) #optional if you would like to save specific epochs as opposed to relying on the eval thread parser.add_argument('-identifier', default='cnn') parser.add_argument('-num_processes', default=1, type=int) parser.add_argument('-max_threads_per_gpu', default=10, type=int) # checkpointing parser.add_argument('-checkpoint_path', default=False) parser.add_argument('-checkpoint_dir', default='checkpoints/nav/') parser.add_argument('-log_dir', default='logs/nav/') parser.add_argument('-log', default=False, action='store_true') parser.add_argument('-cache', default=False, action='store_true') parser.add_argument('-max_controller_actions', type=int, default=5) parser.add_argument('-max_actions', type=int) args = parser.parse_args() args.time_id = time.strftime("%m_%d_%H:%M") #MAX_CONTROLLER_ACTIONS = args.max_controller_actions if not os.path.isdir(args.log_dir): os.makedirs(args.log_dir) if args.curriculum: assert 'lstm' in args.model_type #TODO: Finish implementing curriculum for other model types logging.basicConfig(filename=os.path.join(args.log_dir, "run_{}.log".format( str(datetime.now()).replace(' ', '_'))), level=logging.INFO, format='%(asctime)-15s %(message)s') try: args.gpus = os.environ['CUDA_VISIBLE_DEVICES'].split(',') args.gpus = [int(x) for x in args.gpus] except KeyError: print("CPU not supported") logging.info("CPU not supported") exit() if args.checkpoint_path != False: print('Loading checkpoint from %s' % args.checkpoint_path) logging.info("Loading checkpoint from {}".format(args.checkpoint_path)) args_to_keep = ['model_type'] checkpoint = torch.load(args.checkpoint_path, map_location={ 'cuda:0': 'cpu' }) for i in args.__dict__: if i not in args_to_keep: checkpoint['args'][i] = args.__dict__[i] args = type('new_dict', (object, ), checkpoint['args']) args.checkpoint_dir = os.path.join(args.checkpoint_dir, args.time_id + '_' + args.identifier) args.log_dir = os.path.join(args.log_dir, args.time_id + '_' + args.identifier) # if set to overfit; set eval_split to train if args.overfit == True: args.eval_split = 'train' print(args.__dict__) logging.info(args.__dict__) if not os.path.exists(args.checkpoint_dir): os.makedirs(args.checkpoint_dir) os.makedirs(args.log_dir) if args.model_type == 'cnn': model_kwargs = {} shared_model = NavCnnModel(**model_kwargs) elif args.model_type == 'cnn+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } shared_model = NavCnnModel(**model_kwargs) elif args.model_type == 'lstm': model_kwargs = {} shared_model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'lstm+q': model_kwargs = { 'question_input': True, 'question_vocab': load_vocab(args.vocab_json) } shared_model = NavCnnRnnModel(**model_kwargs) elif args.model_type == 'pacman': model_kwargs = {'question_vocab': load_vocab(args.vocab_json)} shared_model = NavPlannerControllerModel(**model_kwargs) else: exit() shared_model.share_memory() if args.checkpoint_path != False: print('Loading params from checkpoint: %s' % args.checkpoint_path) logging.info("Loading params from checkpoint: {}".format(args.checkpoint_path)) shared_model.load_state_dict(checkpoint['state']) if args.mode == 'eval': eval(0, args, shared_model) elif args.mode == 'train': if args.num_processes > 1: processes = [] for rank in range(0, args.num_processes): # for rank in range(0, args.num_processes): p = mp.Process(target=train, args=(rank, args, shared_model)) p.start() processes.append(p) for p in processes: p.join() else: train(0, args, shared_model) else: processes = [] # Start the eval thread p = mp.Process(target=eval, args=(0, args, shared_model)) p.start() processes.append(p) # Start the training thread(s) for rank in range(1, args.num_processes + 1): # for rank in range(0, args.num_processes): p = mp.Process(target=train, args=(rank, args, shared_model)) p.start() processes.append(p) for p in processes: p.join()
Chapter05/examine_tar_file_content.py
add54/ADMIN_SYS_PYTHON
116
37442
<filename>Chapter05/examine_tar_file_content.py import tarfile tar_file = tarfile.open("work.tar.gz", "r:gz") print(tar_file.getnames())
src/hg/makeDb/scripts/cd8Escape/process_epitopes.py
andypohl/kent
171
37447
import os import re import gzip import argparse import pandas as pd import numpy as np from collections import defaultdict def get_args(): """ Parse command line arguments """ parser = argparse.ArgumentParser(description="Method to create track for escape mutations") parser.add_argument("-xlsx", help="file containing all the data") parser.add_argument("-pid", help="pep to number", default="prot_names_pids_8.txt") parser.add_argument("-gb_tools", help="path to gb_tools", default="./") args = parser.parse_args() return args def read_pid(args): inputfilehandler = open(args.pid, 'r') pid = {} aaid = {} nucid = {} for line in inputfilehandler: line = line.strip() fields = line.split() peptide = fields[0] pid[peptide] = fields[1] nucid[peptide] = fields[2] aaid[peptide] = fields[3] inputfilehandler.close() return (pid, aaid, nucid) def get_start_pos(peptide, pid, aaid, nucid): first_eight = ''.join(list(peptide)[0:8]) if first_eight in pid: return nucid[first_eight] return -1 def main(args): (pid, aaid, nucid) = read_pid(args) cd8_epitopes = pd.read_excel(args.xlsx, skiprows=0, header=0, index_col=None) print (cd8_epitopes.columns) outfiletag = 'escape_mutations' beddetailfilename = outfiletag+'.beddetail' bedfilename = outfiletag+'.bed' bbfilename = outfiletag+'.bb' #print (cd8_epitopes['Probable Infection Location']) #print (cd8_epitopes['Gene']) #print (cd8_epitopes['Position of Mutation']) #print (cd8_epitopes['AA Change']) #print (cd8_epitopes['Codon Change']) #print (cd8_epitopes['Wildtype Sequence']) #print (cd8_epitopes['Mutant Sequence 1']) #print (cd8_epitopes['Mutant Sequence 2']) wt_mt = defaultdict(list) mutations = [] beddetailfilehandler = open(beddetailfilename, 'w') for i in range(0, len(cd8_epitopes['Position of Mutation'])): chrom = "NC_045512v2" reserved = 0 score = 1000 strand = '+' pom = cd8_epitopes['Position of Mutation'][i] gene = cd8_epitopes['Gene'][i] pil = cd8_epitopes['Probable Infection Location'][i] aa_change = cd8_epitopes['AA Change'][i] c_change = cd8_epitopes['Codon Change'][i] if gene+'_'+c_change+'_'+aa_change not in mutations: mutations.append(gene+'_'+c_change+'_'+aa_change) if ';' not in cd8_epitopes['Wildtype Sequence'][i]: chromStart = get_start_pos(cd8_epitopes['Wildtype Sequence'][i], pid, aaid, nucid) if chromStart != -1: chromEnd = str(len(list(cd8_epitopes['Wildtype Sequence'][i]))*3+int(chromStart)) thickStart = str(chromStart) thickEnd = str(chromEnd) wt_pep = cd8_epitopes['Wildtype Sequence'][i] mt_pep = cd8_epitopes['Mutant Sequence 1'][i] if wt_pep not in wt_mt: wt_mt[wt_pep].append(mt_pep) else: if mt_pep in wt_mt[wt_pep]: continue beddetailfilehandler.write(chrom+'\t'+ str(chromStart)+'\t'+ str(chromEnd)+'\t'+ wt_pep+'\t'+ str(score)+'\t'+ strand+'\t'+ thickStart+'\t'+ thickEnd+'\t'+ str(pom)+'\t'+ str(gene)+'\t'+ str(pil)+'\t'+ aa_change+'\t'+ c_change+'\t'+ mt_pep+"\n") else: wt_pep = cd8_epitopes['Wildtype Sequence'][i] wt1_pep = wt_pep.split(';')[0] wt2_pep = wt_pep.split(';')[1] mt1_pep = cd8_epitopes['Mutant Sequence 1'][i] mt2_pep = cd8_epitopes['Mutant Sequence 2'][i] chromStart = get_start_pos(wt1_pep, pid, aaid, nucid) if chromStart != -1: chromEnd = str(len(list(wt1_pep))*3+int(chromStart)) thickStart = chromStart thickEnd = chromEnd if wt1_pep not in wt_mt: wt_mt[wt_pep].append(mt_pep) else: if mt1_pep in wt_mt[wt1_pep]: continue beddetailfilehandler.write(chrom+'\t'+ str(chromStart)+'\t'+ str(chromEnd)+'\t'+ wt1_pep+'\t'+ str(score)+'\t'+ strand+'\t'+ thickStart+'\t'+ thickEnd+'\t'+ str(pom)+'\t'+ str(gene)+'\t'+ str(pil)+'\t'+ aa_change+'\t'+ c_change+'\t'+ mt1_pep+"\n") chromStart = get_start_pos(wt2_pep, pid, aaid, nucid) if chromStart != -1: chromEnd = str(len(list(wt2_pep))*3+int(chromStart)) thickStart = chromStart thickEnd = chromEnd if wt2_pep not in wt_mt: wt_mt[wt_pep].append(mt_pep) else: if mt2_pep in wt_mt[wt2_pep]: continue beddetailfilehandler.write(chrom+'\t'+ str(chromStart)+'\t'+ str(chromEnd)+'\t'+ wt2_pep+'\t'+ str(score)+'\t'+ strand+'\t'+ thickStart+'\t'+ thickEnd+'\t'+ str(pom)+'\t'+ str(gene)+'\t'+ str(pil)+'\t'+ aa_change+'\t'+ c_change+'\t'+ mt2_pep+"\n") beddetailfilehandler.close() print (len(mutations)) # use gbtools to convert from beddetail to bed and bigbed os.system(f"bedSort {beddetailfilename} {bedfilename}") os.system(f"bedToBigBed {bedfilename} wuhCor1.sizes {bbfilename} -tab -type=bed9+ -as=escape_mutants.as") if __name__ == "__main__": main(get_args())
rest_framework_social_oauth2/settings.py
hrahmadi71/django-rest-framework-social-oauth2
613
37452
from django.conf import settings DRFSO2_PROPRIETARY_BACKEND_NAME = getattr(settings, 'DRFSO2_PROPRIETARY_BACKEND_NAME', "Django") DRFSO2_URL_NAMESPACE = getattr(settings, 'DRFSO2_URL_NAMESPACE', "")
src/mcedit2/widgets/propertylist.py
elcarrion06/mcedit2
673
37509
""" propertylist """ from __future__ import absolute_import, division, print_function from collections import namedtuple import logging from PySide.QtCore import Qt from mceditlib import nbt from PySide import QtGui, QtCore from mcedit2.util.load_ui import registerCustomWidget log = logging.getLogger(__name__) class PropertyListItemDelegate(QtGui.QStyledItemDelegate): def __init__(self, *args, **kwargs): super(PropertyListItemDelegate, self).__init__(*args, **kwargs) def createEditor(self, parent, option, index): model = index.model() tagName, displayName, valueType, min, max = model.properties[index.row()] if valueType is int: valueWidget = QtGui.QSpinBox() valueWidget.setMinimum(min) valueWidget.setMaximum(max) elif valueType is float: valueWidget = QtGui.QDoubleSpinBox() valueWidget.setMinimum(min) valueWidget.setMaximum(max) elif valueType is bool: valueWidget = QtGui.QCheckBox() elif isinstance(valueType, list): # Choice list valueWidget = QtGui.QComboBox() for value, name in valueType: valueWidget.addItem(name, value) elif valueType is unicode: valueWidget = QtGui.QPlainTextEdit() else: raise TypeError("Can't create attribute widgets for %s yet" % valueType) valueWidget.setParent(parent) return valueWidget def setEditorData(self, editor, index): model = index.model() rootTag = model.rootTag tagName, displayName, valueType, min, max = model.properties[index.row()] if valueType is int: editor.setValue(rootTag[tagName].value) elif valueType is float: editor.setValue(rootTag[tagName].value) elif valueType is bool: editor.setChecked(rootTag[tagName].value) elif isinstance(valueType, list): # Choice list currentValue = rootTag[tagName].value try: currentIndex = [v for v, n in valueType].index(currentValue) editor.setCurrentIndex(currentIndex) except ValueError: editor.addItem("Unknown value %s" % currentValue, currentValue) elif valueType is unicode: editor.setPlainText(rootTag[tagName].value) else: raise TypeError("Unknown valueType in setEditorData (check this in addNBTProperty, dummy)") def setModelData(self, editor, model, index): tagName, displayName, valueType, min, max = model.properties[index.row()] rootTag = model.rootTag if valueType is int: value = int(editor.value()) elif valueType is float: value = float(editor.value()) elif valueType is bool: value = editor.isChecked() elif isinstance(valueType, list): # Choice list value = valueType[editor.currentIndex()][0] elif valueType is unicode: value = editor.plainText() else: raise TypeError("Unknown valueType in setModelData (check this in addNBTProperty, dummy)") model.setData(index, value) class PropertyListEntry(namedtuple('PropertyListEntry', 'tagName displayName valueType min max')): pass class PropertyListModel(QtCore.QAbstractItemModel): propertyChanged = QtCore.Signal(unicode, object) def __init__(self, rootTag): super(PropertyListModel, self).__init__() self.rootTag = rootTag self.properties = [] def addNBTProperty(self, tagName, valueType=None, min=None, max=None, displayName=None): if displayName is None: displayName = tagName if valueType is None: valueType = int if tagName not in self.rootTag: return tag = self.rootTag[tagName] if tag.tagID == nbt.ID_BYTE: tagMin = -(1 << 7) tagMax = (1 << 7) - 1 elif tag.tagID == nbt.ID_SHORT: tagMin = -(1 << 15) tagMax = (1 << 15) - 1 elif tag.tagID == nbt.ID_INT: tagMin = -(1 << 31) tagMax = (1 << 31) - 1 else: # tag.tagID == nbt.ID_LONG, ID_FLOAT, ID_DOUBLE # tagMin = -(1 << 63) # xxxx 64-bit spinbox # tagMax = (1 << 63) - 1 tagMin = -(1 << 31) tagMax = (1 << 31) - 1 if min is None: min = tagMin if max is None: max = tagMax self.properties.append(PropertyListEntry(tagName, displayName, valueType, min, max)) def columnCount(self, index): return 2 def data(self, index, role=Qt.DisplayRole): if not index.isValid(): return None entry = self.properties[index.row()] if role in (Qt.DisplayRole, Qt.EditRole): if index.column() == 0: return entry.displayName else: value = self.rootTag[entry.tagName].value if isinstance(entry.valueType, (list, tuple)): try: return entry.valueType[value][1] except IndexError: return "Unknown value %s" % value else: return value # if role == Qt.CheckStateRole: # if entry.valueType is not bool: # return -1 # value = self.rootTag[entry.tagName].value # return bool(value) def flags(self, index): if not index.isValid(): return 0 flags = Qt.ItemIsEnabled | Qt.ItemIsSelectable if index.column() == 1: flags |= Qt.ItemIsEditable entry = self.properties[index.row()] #if entry.valueType is bool: # flags |= Qt.ItemIsUserCheckable return flags def headerData(self, section, orientation, role=Qt.DisplayRole): if orientation == Qt.Horizontal and role == Qt.DisplayRole: return ("Name", "Value")[section] return None def index(self, row, column, parent=QtCore.QModelIndex()): if parent.isValid(): return QtCore.QModelIndex() return self.createIndex(row, column, None) def parent(self, index): return QtCore.QModelIndex() def rowCount(self, parent=QtCore.QModelIndex()): if parent.isValid(): return 0 return len(self.properties) def setData(self, index, value, role=Qt.EditRole): row = index.row() entry = self.properties[row] if self.rootTag[entry.tagName].value != value: self.rootTag[entry.tagName].value = value self.propertyChanged.emit(entry.tagName, value) self.dataChanged.emit(index, index) @registerCustomWidget class PropertyListWidget(QtGui.QTreeView): def __init__(self, *args, **kwargs): super(PropertyListWidget, self).__init__(*args, **kwargs) delegate = PropertyListItemDelegate() self.setItemDelegate(delegate) self.setEditTriggers(self.CurrentChanged | self.editTriggers())
tests/torch_api/test_multi_models.py
mmathys/bagua
635
37522
<reponame>mmathys/bagua<gh_stars>100-1000 import torch import torch.nn as nn import torch.nn.functional as F from tests.internal.common_utils import find_free_port import unittest import multiprocessing import os from bagua.torch_api.utils import flatten import bagua.torch_api as bagua from tests import skip_if_cuda_not_available N_EPOCHS = 10 class Net1(nn.Module): def __init__(self): super(Net1, self).__init__() self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 50, bias=True) self.fc3 = nn.Linear(50, 4, bias=False) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return F.softmax(x, dim=1) class Net2(nn.Module): def __init__(self): super(Net2, self).__init__() self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 30, bias=True) self.fc3 = nn.Linear(30, 20, bias=True) self.fc4 = nn.Linear(20, 4, bias=False) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.relu(self.fc3(x)) x = self.fc4(x) return F.softmax(x, dim=1) def _init_bagua_env(rank, env): # set deterministic torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.manual_seed(rank) # initialize subprocess env os.environ["WORLD_SIZE"] = env["WORLD_SIZE"] os.environ["LOCAL_WORLD_SIZE"] = env["LOCAL_WORLD_SIZE"] os.environ["MASTER_ADDR"] = env["MASTER_ADDR"] os.environ["MASTER_PORT"] = env["MASTER_PORT"] os.environ["BAGUA_SERVICE_PORT"] = env["BAGUA_SERVICE_PORT"] os.environ["RANK"] = str(rank) os.environ["LOCAL_RANK"] = str(rank) # init bagua distributed process group torch.cuda.set_device(rank) bagua.init_process_group() def _init_torch_env(rank, nprocs, backend): # set deterministic torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.manual_seed(rank) # init torch distributed process group torch.cuda.set_device(rank) torch.distributed.init_process_group( world_size=nprocs, rank=rank, backend=backend, init_method="file:///tmp/.bagua.test.filestore", ) def run_model( rank, results, env, ): _init_bagua_env(rank, env) # construct model and optimizer, etc. model_1 = Net1().cuda() optimizer_1 = torch.optim.SGD(model_1.parameters(), lr=0.01) loss_fn_1 = nn.MSELoss() model_2 = Net2().cuda() optimizer_2 = torch.optim.SGD(model_2.parameters(), lr=0.01) loss_fn_2 = nn.MSELoss() # wrap model from bagua.torch_api.algorithms import gradient_allreduce algorithm = gradient_allreduce.GradientAllReduceAlgorithm() model_1 = model_1.with_bagua([optimizer_1], algorithm) model_2 = model_2.with_bagua([optimizer_2], algorithm) ret = results[rank] ret.init_weight_1.copy_(flatten([param.data for param in model_1.parameters()])) ret.init_weight_2.copy_(flatten([param.data for param in model_2.parameters()])) for epoch in range(N_EPOCHS): data_1 = torch.randn(8, 2).cuda() target_1 = torch.randn(8, 4).cuda() optimizer_1.zero_grad() output_1 = model_1(data_1) loss_1 = loss_fn_1(output_1, target_1) loss_1.backward() optimizer_1.step() data_2 = torch.randn(8, 2).cuda() target_2 = torch.randn(8, 4).cuda() optimizer_2.zero_grad() output_2 = model_2(data_2) loss_2 = loss_fn_2(output_2, target_2) loss_2.backward() optimizer_2.step() ret.end_weight_1.copy_(flatten([param.data for param in model_1.parameters()])) ret.end_weight_2.copy_(flatten([param.data for param in model_2.parameters()])) def run_torch_model( rank, nprocs, results, backend, env, ): _init_torch_env(rank, nprocs, backend) # construct model and optimizer, etc. model_1 = Net1().cuda() optimizer_1 = torch.optim.SGD(model_1.parameters(), lr=0.01) loss_fn_1 = nn.MSELoss() model_2 = Net2().cuda() optimizer_2 = torch.optim.SGD(model_2.parameters(), lr=0.01) loss_fn_2 = nn.MSELoss() # wrap model model_1 = torch.nn.parallel.DistributedDataParallel(model_1, device_ids=[rank]) model_2 = torch.nn.parallel.DistributedDataParallel(model_2, device_ids=[rank]) ret = results[rank] ret.init_weight_1.copy_(flatten([param.data for param in model_1.parameters()])) ret.init_weight_2.copy_(flatten([param.data for param in model_2.parameters()])) for epoch in range(N_EPOCHS): data_1 = torch.randn(8, 2).cuda() target_1 = torch.randn(8, 4).cuda() optimizer_1.zero_grad() output_1 = model_1(data_1) loss_1 = loss_fn_1(output_1, target_1) loss_1.backward() optimizer_1.step() data_2 = torch.randn(8, 2).cuda() target_2 = torch.randn(8, 4).cuda() optimizer_2.zero_grad() output_2 = model_2(data_2) loss_2 = loss_fn_2(output_2, target_2) loss_2.backward() optimizer_2.step() ret.end_weight_1.copy_(flatten([param.data for param in model_1.parameters()])) ret.end_weight_2.copy_(flatten([param.data for param in model_2.parameters()])) class Result(object): def __init__(self): model_1 = Net1() model_2 = Net2() self.init_weight_1 = flatten( [torch.zeros_like(param.data) for param in model_1.parameters()] ) self.end_weight_1 = flatten( [torch.zeros_like(param.data) for param in model_1.parameters()] ) self.init_weight_2 = flatten( [torch.zeros_like(param.data) for param in model_2.parameters()] ) self.end_weight_2 = flatten( [torch.zeros_like(param.data) for param in model_2.parameters()] ) class TestMultiModels(unittest.TestCase): @skip_if_cuda_not_available() def test_multi_models(self): nprocs = torch.cuda.device_count() env = {} mp = multiprocessing.get_context("spawn") torch_results = [Result() for _ in range(nprocs)] processes = [] backend = "gloo" for i in range(nprocs): p = mp.Process( target=run_torch_model, args=( i, nprocs, torch_results, backend, env, ), ) p.start() processes.append(p) for p in processes: p.join(timeout=60) self.assertTrue(p.exitcode == 0) env = { "WORLD_SIZE": str(nprocs), "LOCAL_WORLD_SIZE": str(nprocs), "MASTER_ADDR": "127.0.0.1", "MASTER_PORT": str(find_free_port(8000, 8100)), "BAGUA_SERVICE_PORT": str(find_free_port(9000, 9100)), } bagua_results = [Result() for _ in range(nprocs)] processes = [] for i in range(nprocs): p = mp.Process( target=run_model, args=( i, bagua_results, env, ), ) p.start() processes.append(p) for p in processes: p.join(timeout=60) self.assertTrue(p.exitcode == 0) for rank in range(nprocs): self.assertTrue( torch.all( torch.isclose( bagua_results[rank].init_weight_1, torch_results[rank].init_weight_1, ) ).item() ) self.assertTrue( torch.all( torch.isclose( bagua_results[rank].end_weight_1, torch_results[rank].end_weight_1, ) ).item() ) self.assertTrue( torch.all( torch.isclose( bagua_results[rank].init_weight_2, torch_results[rank].init_weight_2, ) ).item() ) self.assertTrue( torch.all( torch.isclose( bagua_results[rank].end_weight_2, torch_results[rank].end_weight_2, ) ).item() ) if __name__ == "__main__": unittest.main()
peregrinearb/utils/single_exchange.py
kecheon/peregrine
954
37526
import asyncio import math import networkx as nx import ccxt.async_support as ccxt import datetime import logging from .logging_utils import FormatForLogAdapter __all__ = [ 'FeesNotAvailable', 'create_exchange_graph', 'load_exchange_graph', ] adapter = FormatForLogAdapter(logging.getLogger('peregrinearb.utils.single_exchange')) class FeesNotAvailable(Exception): pass def create_exchange_graph(exchange: ccxt.Exchange): """ Returns a simple graph representing exchange. Each edge represents a market. exchange.load_markets() must have been called. Will throw a ccxt error if it has not. """ graph = nx.Graph() for market_name in exchange.symbols: try: base_currency, quote_currency = market_name.split('/') # if ccxt returns a market in incorrect format (e.g FX_BTC_JPY on BitFlyer) except ValueError: continue graph.add_edge(base_currency, quote_currency, market_name=market_name) return graph async def load_exchange_graph(exchange, name=True, fees=True, suppress=None, depth=False, tickers=None) -> nx.DiGraph: """ Returns a networkx DiGraph populated with the current ask and bid prices for each market in graph (represented by edges). If depth, also adds an attribute 'depth' to each edge which represents the current volume of orders available at the price represented by the 'weight' attribute of each edge. """ if suppress is None: suppress = ['markets'] if name: exchange = getattr(ccxt, exchange)() if tickers is None: adapter.info('Fetching tickers') tickers = await exchange.fetch_tickers() adapter.info('Fetched tickers') market_count = len(tickers) adapter.info('Loading exchange graph', marketCount=market_count) adapter.debug('Initializing empty graph with exchange_name and timestamp attributes') graph = nx.DiGraph() # todo: get exchange's server time? graph.graph['exchange_name'] = exchange.id graph.graph['datetime'] = datetime.datetime.now(tz=datetime.timezone.utc) adapter.debug('Initialized empty graph with exchange_name and timestamp attributes') async def add_edges(): tasks = [_add_weighted_edge_to_graph(exchange, market_name, graph, log=True, fees=fees, suppress=suppress, ticker=ticker, depth=depth, ) for market_name, ticker in tickers.items()] await asyncio.wait(tasks) if fees: for i in range(20): try: adapter.info('Loading fees', iteration=i) # must load markets to get fees await exchange.load_markets() except (ccxt.DDoSProtection, ccxt.RequestTimeout) as e: if i == 19: adapter.warning('Rate limited on final iteration, raising error', iteration=i) raise e adapter.warning('Rate limited when loading markets', iteration=i) await asyncio.sleep(0.1) except ccxt.ExchangeNotAvailable as e: if i == 19: adapter.warning('Cannot load markets due to ExchangeNotAvailable error, ' 'graph will not be loaded.', iteration=i) raise e adapter.warning('Received ExchangeNotAvailable error when loading markets', iteration=i) else: break adapter.info('Loaded fees', iteration=i, marketCount=market_count) currency_count = len(exchange.currencies) adapter.info('Adding data to graph', marketCount=market_count, currencyCount=currency_count) await add_edges() adapter.info('Added data to graph', marketCount=market_count, currencyCount=currency_count) else: adapter.info('Adding data to graph', marketCount=market_count) await add_edges() adapter.info('Added data to graph', marketCount=market_count) adapter.debug('Closing connection') await exchange.close() adapter.debug('Closed connection') adapter.info('Loaded exchange graph') return graph async def _add_weighted_edge_to_graph(exchange: ccxt.Exchange, market_name: str, graph: nx.DiGraph, log=True, fees=False, suppress=None, ticker=None, depth=False, ): """ todo: add global variable to bid_volume/ ask_volume to see if all tickers (for a given exchange) have value == None Returns a Networkx DiGraph populated with the current ask and bid prices for each market in graph (represented by edges). :param exchange: A ccxt Exchange object :param market_name: A string representing a cryptocurrency market formatted like so: '{base_currency}/{quote_currency}' :param graph: A Networkx DiGraph upon :param log: If the edge weights given to the graph should be the negative logarithm of the ask and bid prices. This is necessary to calculate arbitrage opportunities. :param fees: If fees should be taken into account for prices. :param suppress: A list or set which tells which types of warnings to not throw. Accepted elements are 'markets'. :param ticker: A dictionary representing a market as returned by ccxt's Exchange's fetch_ticker method :param depth: If True, also adds an attribute 'depth' to each edge which represents the current volume of orders available at the price represented by the 'weight' attribute of each edge. """ adapter.debug('Adding edge to graph', market=market_name) if ticker is None: try: adapter.info('Fetching ticker', market=market_name) ticker = await exchange.fetch_ticker(market_name) adapter.info('Fetched ticker', market=market_name) # any error is solely because of fetch_ticker except: if 'markets' not in suppress: adapter.warning('Market is unavailable at this time. It will not be included in the graph.', market=market_name) return if fees: if 'taker' in exchange.markets[market_name]: # we always take the taker side because arbitrage depends on filling orders # sell_fee_dict = exchange.calculate_fee(market_name, 'limit', 'sell', 0, 0, 'taker') # buy_fee_dict = exchange.calculate_fee(market_name, 'limit', 'buy', 0, 0, 'taker') fee = exchange.markets[market_name]['taker'] else: if 'fees' not in suppress: adapter.warning("The fees for {} have not yet been implemented into ccxt's uniform API." .format(exchange)) raise FeesNotAvailable('Fees are not available for {} on {}'.format(market_name, exchange.id)) else: fee = 0.002 else: fee = 0 fee_scalar = 1 - fee try: bid_rate = ticker['bid'] ask_rate = ticker['ask'] if depth: bid_volume = ticker['bidVolume'] ask_volume = ticker['askVolume'] if bid_volume is None: adapter.warning('Market is unavailable because its bid volume was given as None. ' 'It will not be included in the graph.', market=market_name) return if ask_volume is None: adapter.warning('Market is unavailable because its ask volume was given as None. ' 'It will not be included in the graph.', market=market_name) return # ask and bid == None if this market is non existent. except TypeError: adapter.warning('Market is unavailable at this time. It will not be included in the graph.', market=market_name) return # Exchanges give asks and bids as either 0 or None when they do not exist. # todo: should we account for exchanges upon which an ask exists but a bid does not (and vice versa)? Would this # cause bugs? if ask_rate == 0 or bid_rate == 0 or ask_rate is None or bid_rate is None: adapter.warning('Market is unavailable at this time. It will not be included in the graph.', market=market_name) return try: base_currency, quote_currency = market_name.split('/') # if ccxt returns a market in incorrect format (e.g FX_BTC_JPY on BitFlyer) except ValueError: if 'markets' not in suppress: adapter.warning('Market is unavailable at this time due to incorrect formatting. ' 'It will not be included in the graph.', market=market_name) return if log: if depth: graph.add_edge(base_currency, quote_currency, weight=-math.log(fee_scalar * bid_rate), depth=-math.log(bid_volume), market_name=market_name, trade_type='SELL', fee=fee, volume=bid_volume, no_fee_rate=bid_rate) graph.add_edge(quote_currency, base_currency, weight=-math.log(fee_scalar * 1 / ask_rate), depth=-math.log(ask_volume * ask_rate), market_name=market_name, trade_type='BUY', fee=fee, volume=ask_volume, no_fee_rate=ask_rate) else: graph.add_edge(base_currency, quote_currency, weight=-math.log(fee_scalar * bid_rate), market_name=market_name, trade_type='SELL', fee=fee, no_fee_rate=bid_rate) graph.add_edge(quote_currency, base_currency, weight=-math.log(fee_scalar * 1 / ask_rate), market_name=market_name, trade_type='BUY', fee=fee, no_fee_rate=ask_rate) else: if depth: graph.add_edge(base_currency, quote_currency, weight=fee_scalar * bid_rate, depth=bid_volume, market_name=market_name, trade_type='SELL', fee=fee, volume=bid_volume, no_fee_rate=bid_rate) graph.add_edge(quote_currency, base_currency, weight=fee_scalar * 1 / ask_rate, depth=ask_volume, market_name=market_name, trade_type='BUY', fee=fee, volume=ask_volume, no_fee_rate=ask_rate) else: graph.add_edge(base_currency, quote_currency, weight=fee_scalar * bid_rate, market_name=market_name, trade_type='SELL', fee=fee, no_fee_rate=bid_rate) graph.add_edge(quote_currency, base_currency, weight=fee_scalar * 1 / ask_rate, market_name=market_name, trade_type='BUY', fee=fee, no_fee_rate=ask_rate) adapter.debug('Added edge to graph', market=market_name)
src/python/web/handler/status.py
AlekLT/seedsync
255
37537
# Copyright 2017, <NAME>, All rights reserved. from bottle import HTTPResponse from common import Status, overrides from ..web_app import IHandler, WebApp from ..serialize import SerializeStatusJson class StatusHandler(IHandler): def __init__(self, status: Status): self.__status = status @overrides(IHandler) def add_routes(self, web_app: WebApp): web_app.add_handler("/server/status", self.__handle_get_status) def __handle_get_status(self): out_json = SerializeStatusJson.status(self.__status) return HTTPResponse(body=out_json)
datasets/ett/ett.py
leondz/datasets
3,395
37539
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Electricity Transformer Temperature (ETT) dataset.""" from dataclasses import dataclass import pandas as pd import datasets _CITATION = """\ @inproceedings{haoyietal-informer-2021, author = {<NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME>}, title = {Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting}, booktitle = {The Thirty-Fifth {AAAI} Conference on Artificial Intelligence, {AAAI} 2021, Virtual Conference}, volume = {35}, number = {12}, pages = {11106--11115}, publisher = {{AAAI} Press}, year = {2021}, } """ _DESCRIPTION = """\ The data of Electricity Transformers from two separated counties in China collected for two years at hourly and 15-min frequencies. Each data point consists of the target value "oil temperature" and 6 power load features. The train/val/test is 12/4/4 months. """ _HOMEPAGE = "https://github.com/zhouhaoyi/ETDataset" _LICENSE = "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/" # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { "h1": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv", "h2": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh2.csv", "m1": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm1.csv", "m2": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm2.csv", } @dataclass class ETTBuilderConfig(datasets.BuilderConfig): """ETT builder config.""" prediction_length: int = 24 multivariate: bool = False class ETT(datasets.GeneratorBasedBuilder): """Electricity Transformer Temperature (ETT) dataset""" VERSION = datasets.Version("1.0.0") # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('ett', 'h1') # data = datasets.load_dataset('ett', 'm2') BUILDER_CONFIGS = [ ETTBuilderConfig( name="h1", version=VERSION, description="Time series from first county at hourly frequency.", ), ETTBuilderConfig( name="h2", version=VERSION, description="Time series from second county at hourly frequency.", ), ETTBuilderConfig( name="m1", version=VERSION, description="Time series from first county at 15-min frequency.", ), ETTBuilderConfig( name="m2", version=VERSION, description="Time series from second county at 15-min frequency.", ), ] DEFAULT_CONFIG_NAME = "h1" # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): if self.config.multivariate: features = datasets.Features( { "start": datasets.Value("timestamp[s]"), "target": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), "feat_static_cat": datasets.Sequence(datasets.Value("uint64")), "item_id": datasets.Value("string"), } ) else: features = datasets.Features( { "start": datasets.Value("timestamp[s]"), "target": datasets.Sequence(datasets.Value("float32")), "feat_static_cat": datasets.Sequence(datasets.Value("uint64")), "feat_dynamic_real": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), "item_id": datasets.Value("string"), } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS[self.config.name] filepath = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": filepath, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": filepath, "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": filepath, "split": "dev", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): data = pd.read_csv(filepath, parse_dates=True, index_col=0) start_date = data.index.min() if self.config.name in ["m1", "m2"]: factor = 4 # 15-min frequency else: factor = 1 # hourly frequency train_end_date_index = 12 * 30 * 24 * factor # 1 year if split == "dev": end_date_index = 12 * 30 * 24 + 4 * 30 * 24 * factor # 1 year + 4 months else: end_date_index = 12 * 30 * 24 + 8 * 30 * 24 * factor # 1 year + 8 months if self.config.multivariate: if split in ["test", "dev"]: # rolling windows of prediction_length for dev and test for i, index in enumerate( range( train_end_date_index, end_date_index, self.config.prediction_length, ) ): yield i, { "start": start_date, "target": data[: index + self.config.prediction_length].values.astype("float32").T, "feat_static_cat": [0], "item_id": "0", } else: yield 0, { "start": start_date, "target": data[:train_end_date_index].values.astype("float32").T, "feat_static_cat": [0], "item_id": "0", } else: if split in ["test", "dev"]: # rolling windows of prediction_length for dev and test for i, index in enumerate( range( train_end_date_index, end_date_index, self.config.prediction_length, ) ): target = data["OT"][: index + self.config.prediction_length].values.astype("float32") feat_dynamic_real = data[["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL"]][ : index + self.config.prediction_length ].values.T.astype("float32") yield i, { "start": start_date, "target": target, "feat_dynamic_real": feat_dynamic_real, "feat_static_cat": [0], "item_id": "OT", } else: target = data["OT"][:train_end_date_index].values.astype("float32") feat_dynamic_real = data[["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL"]][ :train_end_date_index ].values.T.astype("float32") yield 0, { "start": start_date, "target": target, "feat_dynamic_real": feat_dynamic_real, "feat_static_cat": [0], "item_id": "OT", }
code/vendor/node_js2c.py
thorium-cfx/fivem
5,411
37562
<filename>code/vendor/node_js2c.py import os import subprocess import sys inputs = [ 'lib/assert/strict.js', 'lib/assert.js', 'lib/async_hooks.js', 'lib/buffer.js', 'lib/child_process.js', 'lib/cluster.js', 'lib/console.js', 'lib/constants.js', 'lib/crypto.js', 'lib/dgram.js', 'lib/diagnostics_channel.js', 'lib/dns/promises.js', 'lib/dns.js', 'lib/domain.js', 'lib/events.js', 'lib/fs/promises.js', 'lib/fs.js', 'lib/http.js', 'lib/http2.js', 'lib/https.js', 'lib/inspector.js', 'lib/internal/abort_controller.js', 'lib/internal/assert/assertion_error.js', 'lib/internal/assert/calltracker.js', 'lib/internal/assert.js', 'lib/internal/async_hooks.js', 'lib/internal/blob.js', 'lib/internal/blocklist.js', 'lib/internal/bootstrap/environment.js', 'lib/internal/bootstrap/loaders.js', 'lib/internal/bootstrap/node.js', 'lib/internal/bootstrap/pre_execution.js', 'lib/internal/bootstrap/switches/does_not_own_process_state.js', 'lib/internal/bootstrap/switches/does_own_process_state.js', 'lib/internal/bootstrap/switches/is_main_thread.js', 'lib/internal/bootstrap/switches/is_not_main_thread.js', 'lib/internal/buffer.js', 'lib/internal/child_process/serialization.js', 'lib/internal/child_process.js', 'lib/internal/cli_table.js', 'lib/internal/cluster/child.js', 'lib/internal/cluster/primary.js', 'lib/internal/cluster/round_robin_handle.js', 'lib/internal/cluster/shared_handle.js', 'lib/internal/cluster/utils.js', 'lib/internal/cluster/worker.js', 'lib/internal/console/constructor.js', 'lib/internal/console/global.js', 'lib/internal/constants.js', 'lib/internal/crypto/aes.js', 'lib/internal/crypto/certificate.js', 'lib/internal/crypto/cipher.js', 'lib/internal/crypto/diffiehellman.js', 'lib/internal/crypto/dsa.js', 'lib/internal/crypto/ec.js', 'lib/internal/crypto/hash.js', 'lib/internal/crypto/hashnames.js', 'lib/internal/crypto/hkdf.js', 'lib/internal/crypto/keygen.js', 'lib/internal/crypto/keys.js', 'lib/internal/crypto/mac.js', 'lib/internal/crypto/pbkdf2.js', 'lib/internal/crypto/random.js', 'lib/internal/crypto/rsa.js', 'lib/internal/crypto/scrypt.js', 'lib/internal/crypto/sig.js', 'lib/internal/crypto/util.js', 'lib/internal/crypto/webcrypto.js', 'lib/internal/crypto/x509.js', 'lib/internal/debugger/inspect.js', 'lib/internal/debugger/inspect_client.js', 'lib/internal/debugger/inspect_repl.js', 'lib/internal/dgram.js', 'lib/internal/dns/promises.js', 'lib/internal/dns/utils.js', 'lib/internal/dtrace.js', 'lib/internal/encoding.js', 'lib/internal/errors.js', 'lib/internal/error_serdes.js', 'lib/internal/event_target.js', 'lib/internal/fixed_queue.js', 'lib/internal/freelist.js', 'lib/internal/freeze_intrinsics.js', 'lib/internal/fs/cp/cp-sync.js', 'lib/internal/fs/cp/cp.js', 'lib/internal/fs/dir.js', 'lib/internal/fs/promises.js', 'lib/internal/fs/read_file_context.js', 'lib/internal/fs/rimraf.js', 'lib/internal/fs/streams.js', 'lib/internal/fs/sync_write_stream.js', 'lib/internal/fs/utils.js', 'lib/internal/fs/watchers.js', 'lib/internal/heap_utils.js', 'lib/internal/histogram.js', 'lib/internal/http.js', 'lib/internal/http2/compat.js', 'lib/internal/http2/core.js', 'lib/internal/http2/util.js', 'lib/internal/idna.js', 'lib/internal/inspector_async_hook.js', 'lib/internal/js_stream_socket.js', 'lib/internal/legacy/processbinding.js', 'lib/internal/linkedlist.js', 'lib/internal/main/check_syntax.js', 'lib/internal/main/eval_stdin.js', 'lib/internal/main/eval_string.js', 'lib/internal/main/inspect.js', 'lib/internal/main/print_help.js', 'lib/internal/main/prof_process.js', 'lib/internal/main/repl.js', 'lib/internal/main/run_main_module.js', 'lib/internal/main/worker_thread.js', 'lib/internal/modules/cjs/helpers.js', 'lib/internal/modules/cjs/loader.js', 'lib/internal/modules/esm/create_dynamic_module.js', 'lib/internal/modules/esm/get_format.js', 'lib/internal/modules/esm/get_source.js', 'lib/internal/modules/esm/loader.js', 'lib/internal/modules/esm/module_job.js', 'lib/internal/modules/esm/module_map.js', 'lib/internal/modules/esm/resolve.js', 'lib/internal/modules/esm/transform_source.js', 'lib/internal/modules/esm/translators.js', 'lib/internal/modules/package_json_reader.js', 'lib/internal/modules/run_main.js', 'lib/internal/net.js', 'lib/internal/options.js', 'lib/internal/perf/event_loop_delay.js', 'lib/internal/perf/event_loop_utilization.js', 'lib/internal/perf/nodetiming.js', 'lib/internal/perf/observe.js', 'lib/internal/perf/performance.js', 'lib/internal/perf/performance_entry.js', 'lib/internal/perf/timerify.js', 'lib/internal/perf/usertiming.js', 'lib/internal/perf/utils.js', 'lib/internal/per_context/domexception.js', 'lib/internal/per_context/messageport.js', 'lib/internal/per_context/primordials.js', 'lib/internal/policy/manifest.js', 'lib/internal/policy/sri.js', 'lib/internal/priority_queue.js', 'lib/internal/process/esm_loader.js', 'lib/internal/process/execution.js', 'lib/internal/process/per_thread.js', 'lib/internal/process/policy.js', 'lib/internal/process/promises.js', 'lib/internal/process/report.js', 'lib/internal/process/signal.js', 'lib/internal/process/task_queues.js', 'lib/internal/process/warning.js', 'lib/internal/process/worker_thread_only.js', 'lib/internal/querystring.js', 'lib/internal/readline/callbacks.js', 'lib/internal/readline/emitKeypressEvents.js', 'lib/internal/readline/utils.js', 'lib/internal/repl/await.js', 'lib/internal/repl/history.js', 'lib/internal/repl/utils.js', 'lib/internal/repl.js', 'lib/internal/socketaddress.js', 'lib/internal/socket_list.js', 'lib/internal/source_map/prepare_stack_trace.js', 'lib/internal/source_map/source_map.js', 'lib/internal/source_map/source_map_cache.js', 'lib/internal/streams/add-abort-signal.js', 'lib/internal/streams/buffer_list.js', 'lib/internal/streams/compose.js', 'lib/internal/streams/destroy.js', 'lib/internal/streams/duplex.js', 'lib/internal/streams/duplexify.js', 'lib/internal/streams/end-of-stream.js', 'lib/internal/streams/from.js', 'lib/internal/streams/lazy_transform.js', 'lib/internal/streams/legacy.js', 'lib/internal/streams/passthrough.js', 'lib/internal/streams/pipeline.js', 'lib/internal/streams/readable.js', 'lib/internal/streams/state.js', 'lib/internal/streams/transform.js', 'lib/internal/streams/utils.js', 'lib/internal/streams/writable.js', 'lib/internal/stream_base_commons.js', 'lib/internal/test/binding.js', 'lib/internal/test/transfer.js', 'lib/internal/timers.js', 'lib/internal/tls/parse-cert-string.js', 'lib/internal/tls/secure-context.js', 'lib/internal/tls/secure-pair.js', 'lib/internal/trace_events_async_hooks.js', 'lib/internal/tty.js', 'lib/internal/url.js', 'lib/internal/util/comparisons.js', 'lib/internal/util/debuglog.js', 'lib/internal/util/inspect.js', 'lib/internal/util/inspector.js', 'lib/internal/util/iterable_weak_map.js', 'lib/internal/util/types.js', 'lib/internal/util.js', 'lib/internal/v8_prof_polyfill.js', 'lib/internal/v8_prof_processor.js', 'lib/internal/validators.js', 'lib/internal/vm/module.js', 'lib/internal/watchdog.js', 'lib/internal/webstreams/encoding.js', 'lib/internal/webstreams/queuingstrategies.js', 'lib/internal/webstreams/readablestream.js', 'lib/internal/webstreams/transfer.js', 'lib/internal/webstreams/transformstream.js', 'lib/internal/webstreams/util.js', 'lib/internal/webstreams/writablestream.js', 'lib/internal/worker/io.js', 'lib/internal/worker/js_transferable.js', 'lib/internal/worker.js', 'lib/module.js', 'lib/net.js', 'lib/os.js', 'lib/path/posix.js', 'lib/path/win32.js', 'lib/path.js', 'lib/perf_hooks.js', 'lib/process.js', 'lib/punycode.js', 'lib/querystring.js', 'lib/readline.js', 'lib/repl.js', 'lib/stream/consumers.js', 'lib/stream/promises.js', 'lib/stream/web.js', 'lib/stream.js', 'lib/string_decoder.js', 'lib/sys.js', 'lib/timers/promises.js', 'lib/timers.js', 'lib/tls.js', 'lib/trace_events.js', 'lib/tty.js', 'lib/url.js', 'lib/util/types.js', 'lib/util.js', 'lib/v8.js', 'lib/vm.js', 'lib/wasi.js', 'lib/worker_threads.js', 'lib/zlib.js', 'lib/_http_agent.js', 'lib/_http_client.js', 'lib/_http_common.js', 'lib/_http_incoming.js', 'lib/_http_outgoing.js', 'lib/_http_server.js', 'lib/_stream_duplex.js', 'lib/_stream_passthrough.js', 'lib/_stream_readable.js', 'lib/_stream_transform.js', 'lib/_stream_wrap.js', 'lib/_stream_writable.js', 'lib/_tls_common.js', 'lib/_tls_wrap.js', 'deps/v8/tools/splaytree.mjs', 'deps/v8/tools/codemap.mjs', 'deps/v8/tools/consarray.mjs', 'deps/v8/tools/csvparser.mjs', 'deps/v8/tools/profile.mjs', 'deps/v8/tools/profile_view.mjs', 'deps/v8/tools/logreader.mjs', 'deps/v8/tools/arguments.mjs', 'deps/v8/tools/tickprocessor.mjs', 'deps/v8/tools/sourcemap.mjs', 'deps/v8/tools/tickprocessor-driver.mjs', 'deps/acorn/acorn/dist/acorn.js', 'deps/acorn/acorn-walk/dist/walk.js', 'deps/cjs-module-lexer/lexer.js', 'deps/cjs-module-lexer/dist/lexer.js', 'lib/_third_party_main.js', 'config.gypi', ] deps = [ 'deps/v8/tools/splaytree.mjs', 'deps/v8/tools/codemap.mjs', 'deps/v8/tools/consarray.mjs', 'deps/v8/tools/csvparser.mjs', 'deps/v8/tools/profile.mjs', 'deps/v8/tools/profile_view.mjs', 'deps/v8/tools/logreader.mjs', 'deps/v8/tools/arguments.mjs', 'deps/v8/tools/tickprocessor.mjs', 'deps/v8/tools/sourcemap.mjs', 'deps/v8/tools/tickprocessor-driver.mjs', 'deps/acorn/acorn/dist/acorn.js', 'deps/acorn/acorn-walk/dist/walk.js', 'deps/cjs-module-lexer/lexer.js', 'deps/cjs-module-lexer/dist/lexer.js', ] noderoot = sys.argv[1] mtimes = [] for inFile in deps: mtimes = mtimes + [ os.path.getmtime(os.path.join(noderoot, inFile)) ] mtimes = mtimes + [ os.path.getmtime(sys.argv[0]) ] mtimes.sort() mtimes.reverse() minputs = [] for inFile in deps: minputs = minputs + [ inFile.replace('/', os.path.sep) ] outFile = os.path.join(noderoot, 'src/node_javascript.cc') if not os.path.exists(outFile) or os.path.getmtime(outFile) < mtimes[0]: subprocess.check_call([sys.executable, 'tools/js2c.py', '--directory', 'lib', '--target', 'src/node_javascript.cc', 'config.gypi'] + deps, cwd = noderoot)
ipython/attachments/Weave/iterators_example.py
cassiasamp/scipy-cookbook
408
37569
#!/usr/bin/env python import sys import numpy as npy import pylab as P from scipy.weave import inline, converters, blitz from scipy.testing import measure # Blitz conversion is terrific, but sometimes you don't have fixed array sizes # in your problem. Fortunately numpy iterators still make writing inline # weave code very, very simple. def multi_iter_example(): # This is a very simple example of multi dimensional iterators, and # their power to "broadcast" arrays of compatible shapes. It shows that # the very same code that is entirely ignorant of dimensionality can # achieve completely different computations based on the rules of # broadcasting. # it is important to know that the weave array conversion of "a" # gives you access in C++ to: # py_a -- PyObject * # a_array -- PyArrayObject * # a -- py_array->data a = npy.ones((4,4), npy.float64) # for the sake of driving home the "dynamic code" approach... dtype2ctype = { npy.dtype(npy.float64): 'double', npy.dtype(npy.float32): 'float', npy.dtype(npy.int32): 'int', npy.dtype(npy.int16): 'short', } dt = dtype2ctype.get(a.dtype) # this code does a = a*b inplace, broadcasting b to fit the shape of a code = \ """ %s *p1, *p2; PyObject *itr; itr = PyArray_MultiIterNew(2, a_array, b_array); while(PyArray_MultiIter_NOTDONE(itr)) { p1 = (%s *) PyArray_MultiIter_DATA(itr, 0); p2 = (%s *) PyArray_MultiIter_DATA(itr, 1); *p1 = (*p1) * (*p2); PyArray_MultiIter_NEXT(itr); } """ % (dt, dt, dt) b = npy.arange(4, dtype=a.dtype) print '\n A B ' print a, b # this reshaping is redundant, it would be the default broadcast b.shape = (1,4) inline(code, ['a', 'b']) print "\ninline version of a*b[None,:]," print a a = npy.ones((4,4), npy.float64) b = npy.arange(4, dtype=a.dtype) b.shape = (4,1) inline(code, ['a', 'b']) print "\ninline version of a*b[:,None]," print a def data_casting_test(): # In my MR application, raw data is stored as a file with one or more # (block-hdr, block-data) pairs. Block data is one or more # rows of Npt complex samples in big-endian integer pairs (real, imag). # # At the block level, I encounter three different raw data layouts-- # 1) one plane, or slice: Y rows by 2*Npt samples # 2) one volume: Z slices * Y rows by 2*Npt samples # 3) one row sliced across the z-axis: Z slices by 2*Npt samples # # The task is to tease out one volume at a time from any given layout, # and cast the integer precision data into a complex64 array. # Given that contiguity is not guaranteed, and the number of dimensions # can vary, Numpy iterators are useful to provide a single code that can # carry out the conversion. # # Other solutions include: # 1) working entirely with the string data from file.read() with string # manipulations (simulated below). # 2) letting numpy handle automatic byteorder/dtype conversion nsl, nline, npt = (20,64,64) hdr_dt = npy.dtype('>V28') # example 1: a block is one slice of complex samples in short integer pairs blk_dt1 = npy.dtype(('>i2', nline*npt*2)) dat_dt = npy.dtype({'names': ['hdr', 'data'], 'formats': [hdr_dt, blk_dt1]}) # create an empty volume-- nsl contiguous blocks vol = npy.empty((nsl,), dat_dt) t = time_casting(vol[:]['data']) P.plot(100*t/t.max(), 'b--', label='vol=20 contiguous blocks') P.plot(100*t/t.max(), 'bo') # example 2: a block is one entire volume blk_dt2 = npy.dtype(('>i2', nsl*nline*npt*2)) dat_dt = npy.dtype({'names': ['hdr', 'data'], 'formats': [hdr_dt, blk_dt2]}) # create an empty volume-- 1 block vol = npy.empty((1,), dat_dt) t = time_casting(vol[0]['data']) P.plot(100*t/t.max(), 'g--', label='vol=1 contiguous block') P.plot(100*t/t.max(), 'go') # example 3: a block slices across the z dimension, long integer precision # ALSO--a given volume is sliced discontiguously blk_dt3 = npy.dtype(('>i4', nsl*npt*2)) dat_dt = npy.dtype({'names': ['hdr', 'data'], 'formats': [hdr_dt, blk_dt3]}) # a real data set has volumes interleaved, so create two volumes here vols = npy.empty((2*nline,), dat_dt) # and work on casting the first volume t = time_casting(vols[0::2]['data']) P.plot(100*t/t.max(), 'r--', label='vol=64 discontiguous blocks') P.plot(100*t/t.max(), 'ro') P.xticks([0,1,2], ('strings', 'numpy auto', 'inline')) P.gca().set_xlim((-0.25, 2.25)) P.gca().set_ylim((0, 110)) P.gca().set_ylabel(r"% of slowest time") P.legend(loc=8) P.title('Casting raw file data to an MR volume') P.show() def time_casting(int_data): nblk = 1 if len(int_data.shape) < 2 else int_data.shape[0] bias = (npy.random.rand(nblk) + \ 1j*npy.random.rand(nblk)).astype(npy.complex64) dstr = int_data.tostring() dt = npy.int16 if int_data.dtype.itemsize == 2 else npy.int32 fshape = list(int_data.shape) fshape[-1] = fshape[-1]/2 float_data = npy.empty(fshape, npy.complex64) # method 1: string conversion float_data.shape = (npy.product(fshape),) tstr = measure("float_data[:] = complex_fromstring(dstr, dt)", times=25) float_data.shape = fshape print "to-/from- string: ", tstr, "shape=",float_data.shape # method 2: numpy dtype magic sl = [None, slice(None)] if len(fshape)<2 else [slice(None)]*len(fshape) # need to loop since int_data need not be contiguous tnpy = measure(""" for fline, iline, b in zip(float_data[sl], int_data[sl], bias): cast_to_complex_npy(fline, iline, bias=b)""", times=25) print"numpy automagic: ", tnpy # method 3: plain inline brute force! twv = measure("cast_to_complex(float_data, int_data, bias=bias)", times=25) print"inline casting: ", twv return npy.array([tstr, tnpy, twv], npy.float64) def complex_fromstring(data, numtype): if sys.byteorder == "little": return npy.fromstring( npy.fromstring(data,numtype).byteswap().astype(npy.float32).tostring(), npy.complex64) else: return npy.fromstring( npy.fromstring(data,numtype).astype(npy.float32).tostring(), npy.complex64) def cast_to_complex(cplx_float, cplx_integer, bias=None): if cplx_integer.dtype.itemsize == 4: replacements = tuple(["l", "long", "SWAPLONG", "l"]*2) else: replacements = tuple(["s", "short", "SWAPSHORT", "s"]*2) if sys.byteorder == "big": replacements[-2] = replacements[-6] = "NOP" cast_code = """ #define SWAPSHORT(x) ((short) ((x >> 8) | (x << 8)) ) #define SWAPLONG(x) ((long) ((x >> 24) | (x << 24) | ((x & 0x00ff0000) >> 8) | ((x & 0x0000ff00) << 8)) ) #define NOP(x) x unsigned short *s; unsigned long *l; float repart, impart; PyObject *itr; itr = PyArray_IterNew(py_cplx_integer); while(PyArray_ITER_NOTDONE(itr)) { // get real part %s = (unsigned %s *) PyArray_ITER_DATA(itr); repart = %s(*%s); PyArray_ITER_NEXT(itr); // get imag part %s = (unsigned %s *) PyArray_ITER_DATA(itr); impart = %s(*%s); PyArray_ITER_NEXT(itr); *(cplx_float++) = std::complex<float>(repart, impart); } """ % replacements inline(cast_code, ['cplx_float', 'cplx_integer']) if bias is not None: if len(cplx_float.shape) > 1: bsl = [slice(None)]*(len(cplx_float.shape)-1) + [None] else: bsl = slice(None) npy.subtract(cplx_float, bias[bsl], cplx_float) def cast_to_complex_npy(cplx_float, cplx_integer, bias=None): cplx_float.real[:] = cplx_integer[0::2] cplx_float.imag[:] = cplx_integer[1::2] if bias is not None: npy.subtract(cplx_float, bias, cplx_float) if __name__=="__main__": data_casting_test() multi_iter_example()
src/scenic/simulators/gta/img_modf.py
cahartsell/Scenic
141
37596
<gh_stars>100-1000 ''' This file has basic image modification functions ''' from PIL import Image import cv2 from scipy.spatial import Voronoi from itertools import product import numpy as np def convert_black_white(img_data=None, img_file=None, threshold=100): assert img_data is not None or img_file is not None if img_data is None: img_data = Image.open(img_file) img_copy = img_data.copy() pixels = img_copy.load() for j,k in product(range(img_copy.size[0]), range(img_copy.size[1])): if (np.array(pixels[j, k][0:3]) > threshold).any(): pixels[j, k] = (255, 255, 255, 255) else: pixels[j,k] = (0, 0, 0, 255) return img_copy def get_edges(img_data=None, img_file=None, threshold=100, kernelsize=1): assert img_data is not None or img_file is not None if img_data is None: img_data = Image.open(img_file) img_copy = img_data.copy() # Get the black and white image img_bw = convert_black_white(img_data=img_copy, img_file=img_file, threshold=threshold) cv_bw = cv2.cvtColor(np.array(img_bw), cv2.COLOR_RGB2BGR) # Detect edges using Laplacian laplacian = cv2.Laplacian(cv_bw, cv2.CV_8U, ksize=kernelsize) # Convert back to Pillow image pil_lap = Image.fromarray(laplacian) # For computing Voronoi images, we need to squeeze the RGB data to 0s and 1s pil_squeezed = pil_lap.convert('L') pil_squeezed_01 = pil_squeezed.point(lambda x: 0 if x < 128 else 255, '1') return pil_squeezed_01 def voronoi_edge(img_data=None, img_file=None, threshold=100, kernelsize=1): assert img_data is not None or img_file is not None if img_data is None: img_data = Image.open(img_file) img_copy = img_data.copy() # Get 0s and 1s of the edges pil_squeezed_01 = get_edges(img_data=img_copy, img_file=img_file, threshold=threshold, kernelsize=kernelsize) # Collecting point for Voronoi edge computation nz_elements = np.nonzero(np.asarray(pil_squeezed_01)) points = np.fliplr(np.array(nz_elements).T) vor = Voronoi(points) vor_x = vor.vertices.T[0] vor_y = -vor.vertices.T[1] + img_data.size[1] # Convert the black and white image to 0s and 1s img_bw = convert_black_white(img_data=img_copy, img_file=img_file, threshold=threshold) img_bw_squeezed = img_bw.convert('L') img_bw_01 = img_bw_squeezed.point(lambda x:0 if x< 128 else 255, '1') pixels = img_bw_01.load() center_x = [] center_y = [] for x, y in zip(vor_x, vor_y): if 0 < x and x < img_data.size[0] and 0 < y and y < img_data.size[1] \ and pixels[int(x), img_data.size[1]-1 -int(y)] == 0: center_x.append(int(x)) center_y.append(int(y)) return {'edge_image':pil_squeezed_01, 'vor_center_x': center_x, 'vor_center_y': center_y} def plot_voronoi_plot(img_data=None, img_file=None, threshold=100, kernelsize=3, plot_name=None): import matplotlib.pyplot as plt assert img_data is not None or img_file is not None vor_results = voronoi_edge(img_data=img_data, img_file=img_file, threshold=threshold, kernelsize=kernelsize) xlim = vor_results['edge_image'].size[0] ylim = vor_results['edge_image'].size[1] x_data = vor_results['vor_center_x'] y_data = vor_results['vor_center_y'] plt.figure() plt.scatter(x_data, y_data, s=0.5) plt.xlim(0, xlim) plt.ylim(0, ylim) if plot_name is None: plt.savefig('voronoi_fig.png') else: plt.savefig(plot_name+'.png')
distributed.py
SagaFav/etlpy
448
37607
import sys; from queue import Queue from multiprocessing.managers import BaseManager import etl; import json import extends; import time; authkey= "etlpy".encode('utf-8') timeout=1; rpc_port=8888 class ETLJob: def __init__(self,project,jobname,config,id): self.project= project; self.jobname=jobname; self.config=config; self.id= id; class JobResult: def __init__(self,name,count,id): self.name=name; self.count=count; self.id=id; class Master: def __init__(self,project,jobname): # 派发出去的作业队列 self.dispatched_job_queue = Queue() # 完成的作业队列 self.finished_job_queue = Queue() self.project= project; self.jobname=jobname; self.maxprocess= 10; def get_dispatched_job_queue(self): return self.dispatched_job_queue def get_finished_job_queue(self): return self.finished_job_queue def start(self,skip=0): # 把派发作业队列和完成作业队列注册到网络上 BaseManager.register('get_dispatched_job_queue', callable=self.get_dispatched_job_queue) BaseManager.register('get_finished_job_queue', callable=self.get_finished_job_queue) # 监听端口和启动服务 manager = BaseManager(address=('0.0.0.0', rpc_port), authkey=authkey) manager.start() # 使用上面注册的方法获取队列 dispatched_jobs = manager.get_dispatched_job_queue() finished_jobs = manager.get_finished_job_queue() job_id = 0 module= self.project.modules[self.jobname]; proj=json.loads(json.dumps(etl.convert_dict(self.project,self.project.__defaultdict__), ensure_ascii=False)) while True: for task in etl.parallel_map(module): job_id = job_id + 1 if job_id<skip: continue job = ETLJob(proj, self.jobname, task, job_id); print('Dispatch job: %s' % job.id) dispatched_jobs.put(job) while not dispatched_jobs.empty(): job = finished_jobs.get(60) print('Finished Job: %s, Count: %s' % (job.id, job.count)) key=input('press any key to repeat,c to cancel') if key=='c': manager.shutdown() break #manager.shutdown() class Slave: def __init__(self): # 派发出去的作业队列 self.dispatched_job_queue = Queue() # 完成的作业队列 self.finished_job_queue = Queue() def start(self,execute= True,serverip='127.0.0.1',port=8888): # 把派发作业队列和完成作业队列注册到网络上 BaseManager.register('get_dispatched_job_queue') BaseManager.register('get_finished_job_queue') server = serverip; print('Connect to server %s...' % server) manager = BaseManager(address=(server, port), authkey=authkey) manager.connect() # 使用上面注册的方法获取队列 dispatched_jobs = manager.get_dispatched_job_queue() finished_jobs = manager.get_finished_job_queue() # 运行作业并返回结果,这里只是模拟作业运行,所以返回的是接收到的作业 while True: if dispatched_jobs.empty(): time.sleep(1) print('queue is empty,wait 1 sec...') continue; job = dispatched_jobs.get(timeout=timeout) print('Run job: %s ' % job.id) project=job.project; project= etl.LoadProject_dict(project); module= project.modules[job.jobname]; count=0 try: generator= etl.parallel_reduce(module,[ job.config],execute) for r in generator: count+=1; except Exception as e: print(e) print('finish job,id %s, count %s'%(job.id,count)) resultjob= JobResult(job.jobname,count,job.id) finished_jobs.put(resultjob) if __name__ == '__main__': ip='127.0.0.1' port=8888; argv=sys.argv; if len(argv)>1: ip=argv[1]; if len(argv)>2: port=int(argv[2]); slave= Slave(); slave.start(True,ip,port);
tests/r/test_labour.py
hajime9652/observations
199
37675
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.labour import labour def test_labour(): """Test module labour.py by downloading labour.csv and testing shape of extracted data has 569 rows and 4 columns """ test_path = tempfile.mkdtemp() x_train, metadata = labour(test_path) try: assert x_train.shape == (569, 4) except: shutil.rmtree(test_path) raise()
tests/test_layers/test_2p5d/checks_2p5d/common.py
RichardoLuo/ColossalAI
1,630
37745
<gh_stars>1000+ import torch TESSERACT_DIM = 2 TESSERACT_DEP = 2 BATCH_SIZE = 8 SEQ_LENGTH = 8 HIDDEN_SIZE = 8 NUM_CLASSES = 8 VOCAB_SIZE = 16 IMG_SIZE = 16 def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-5, atol=1e-2)
graphgallery/gallery/linkpred/pyg/__init__.py
EdisonLeeeee/GraphGallery
300
37761
<gh_stars>100-1000 from .gae import GAE from .vgae import VGAE
self_paced_ensemble/canonical_resampling/__init__.py
thulio/self-paced-ensemble
203
37766
""" -------------------------------------------------------------------------- The `self_paced_ensemble.canonical_resampling` module implement a resampling-based classifier for imbalanced classification. 15 resampling algorithms are included: 'RUS', 'CNN', 'ENN', 'NCR', 'Tomek', 'ALLKNN', 'OSS', 'NM', 'CC', 'SMOTE', 'ADASYN', 'BorderSMOTE', 'SMOTEENN', 'SMOTETomek', 'ORG'. Note: the implementation of these resampling algorithms is based on imblearn python package. See https://github.com/scikit-learn-contrib/imbalanced-learn. -------------------------------------------------------------------------- """ from .canonical_resampling import ResampleClassifier __all__ = [ "ResampleClassifier", ]
emlearn/distance.py
Brax94/emlearn
161
37772
import os.path import os import numpy from . import common, cgen """ References https://github.com/scikit-learn/scikit-learn/blob/15a949460dbf19e5e196b8ef48f9712b72a3b3c3/sklearn/covariance/_empirical_covariance.py#L297 https://github.com/scikit-learn/scikit-learn/blob/15a949460dbf19e5e196b8ef48f9712b72a3b3c3/sklearn/covariance/_elliptic_envelope.py#L149 """ from sklearn.mixture._gaussian_mixture import _compute_log_det_cholesky from sklearn.utils.extmath import row_norms np = numpy def squared_mahalanobis_distance(x1, x2, precision): """ @precision is the inverted covariance matrix computes (x1 - x2).T * VI * (x1 - x2) where VI is the precision matrix, the inverse of the covariance matrix Loosely based on the scikit-learn implementation, https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/neighbors/_dist_metrics.pyx """ distance = 0.0 size = x1.shape[0] temp = numpy.zeros(shape=size) assert x1.shape == x2.shape assert precision.shape[0] == precision.shape[1] assert size == precision.shape[0] for i in range(size): accumulate = 0 for j in range(size): accumulate += precision[i, j] * (x1[j] - x2[j]) distance += accumulate * (x1[i] - x2[i]) return distance def generate_code(means, precision, offset, name='my_elliptic', modifiers='static const'): n_features = means.shape[0] decision_boundary = offset # FIXME, check classifier_name = f'{name}_classifier' means_name = f'{name}_means' precisions_name = f'{name}_precisions' predict_function_name = f'{name}_predict' includes = ''' // This code is generated by emlearn #include <eml_distance.h> ''' pre = '\n\n'.join([ includes, cgen.array_declare(means_name, n_features, modifiers=modifiers, values=means), cgen.array_declare(precisions_name, n_features*n_features, modifiers=modifiers, values=precision.flatten(order='C'), ), ]) main = f''' #include <stdio.h> // Data definitions {modifiers} EmlEllipticEnvelope {classifier_name} = {{ {n_features}, {decision_boundary}, {means_name}, {precisions_name} }}; // Prediction function float {predict_function_name}(const float *features, int n_features) {{ float dist = 0.0; const int class = eml_elliptic_envelope_predict(&{classifier_name}, features, n_features, &dist); return dist; }} ''' code = pre + main return code class Wrapper: def __init__(self, estimator, classifier='inline', dtype='float'): self.dtype = dtype precision = estimator.get_precision() self._means = estimator.location_.copy() self._precision = precision self._offset = estimator.offset_ if classifier == 'inline': name = 'my_inline_elliptic' func = '{}_predict(values, length)'.format(name) code = self.save(name=name) self.classifier_ = common.CompiledClassifier(code, name=name, call=func, out_dtype='float') else: raise ValueError("Unsupported classifier method '{}'".format(classifier)) def mahalanobis(self, X): def dist(x): return squared_mahalanobis_distance(x, self._means, precision=self._precision) p = numpy.array([ dist(x) for x in X ]) predictions = self.classifier_.predict(X) return predictions def predict(self, X): def predict_one(d): dist = -d dd = dist - self._offset is_inlier = 1 if dd > 0 else -1 return is_inlier distances = self.mahalanobis(X) return numpy.array([predict_one(d) for d in distances]) def save(self, name=None, file=None): if name is None: if file is None: raise ValueError('Either name or file must be provided') else: name = os.path.splitext(os.path.basename(file))[0] code = generate_code(self._means, self._precision, self._offset, name=name) if file: with open(file, 'w') as f: f.write(code) return code
Packs/ShiftLeft/Integrations/shiftleft/shiftleft_test.py
diCagri/content
799
37775
<filename>Packs/ShiftLeft/Integrations/shiftleft/shiftleft_test.py """Base Integration for ShiftLeft CORE - Cortex XSOAR Extension """ import json import io from shiftleft import list_app_findings_command, ShiftLeftClient def util_load_json(path): with io.open(path, mode="r", encoding="utf-8") as f: return json.loads(f.read()) def test_list_app_findings_command(requests_mock): """Tests list_app_findings_command function. Checks the output of the command function with the expected output. """ mock_response = util_load_json("test_data/test_list_findings.json") requests_mock.get( "https://www.shiftleft.io/orgs/2c089ac1-3378-44d5-94da-9507e84351c3/apps/shiftleft-java-example/findings", json=mock_response, ) client = ShiftLeftClient( base_url="https://www.shiftleft.io", # disable-secrets-detection verify=False, ) args = { "app_name": "shiftleft-java-example", "severity": "critical", "type": ["vuln"], "version": None, } response = list_app_findings_command( client, "2c089ac1-3378-44d5-94da-9507e84351c3", args ) assert response.outputs
src/richie/apps/courses/migrations/0017_auto_20200827_1011.py
leduong/richie
174
37807
<reponame>leduong/richie # Generated by Django 2.2.15 on 2020-08-27 08:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("courses", "0016_auto_20200417_1237"), ] operations = [ migrations.AlterField( model_name="courserun", name="resource_link", field=models.CharField( blank=True, max_length=200, null=True, verbose_name="Resource link" ), ), ]
proxyclient/experiments/timer_test.py
EricRabil/m1n1
1,604
37808
<filename>proxyclient/experiments/timer_test.py #!/usr/bin/env python3 # SPDX-License-Identifier: MIT import sys, pathlib sys.path.append(str(pathlib.Path(__file__).resolve().parents[1])) from m1n1.setup import * HV_VTMR_CTL = (3, 5, 15, 1, 3) HV_VTMR_CTL_VMASK = (1 << 0) HV_VTMR_CTL_PMASK = (1 << 1) HV_VTMR_LIST = (3, 5, 15, 1, 2) TGE = (1<<27) u.msr(CNTHCTL_EL2, 3 << 10) # EL1PTEN | EL1PCTEN def run_test(ctl, tval): u.inst(0xd5033fdf) # isb u.msr(ctl, 0) u.msr(tval, int(freq * 0.8)) u.msr(ctl, 1) for i in range(6): p.nop() time.sleep(0.2) #u.inst(0xd5033fdf, call=p.el1_call) print(" . (ISR_EL1=%d) CTL=%x VTMR_LIST=%x" % (u.mrs(ISR_EL1), u.mrs(ctl), u.mrs(HV_VTMR_LIST))) u.msr(ctl, 0) def test_hv_timers(): u.msr(DAIF, 0x3c0) print("Testing HV timers...") print(" TGE = 1") u.msr(HCR_EL2, u.mrs(HCR_EL2) | TGE | (1 << 3) | (1 << 4)) print(" P:") run_test(CNTP_CTL_EL0, CNTP_TVAL_EL0) print(" V:") run_test(CNTV_CTL_EL0, CNTV_TVAL_EL0) def test_guest_timers(): u.msr(DAIF, 0) print("Testing guest timers...") print(" TGE = 1, vGIC mode=0, timers unmasked") u.msr(HCR_EL2, (u.mrs(HCR_EL2) | TGE) | (1 << 3) | (1 << 4)) u.msr(HACR_EL2, 0) u.msr(HV_VTMR_CTL, 3) print(" P:") #run_test(CNTP_CTL_EL02, CNTP_TVAL_EL02) print(" V:") #run_test(CNTV_CTL_EL02, CNTV_TVAL_EL02) print(" TGE = 1, vGIC mode=0, timers masked") u.msr(HV_VTMR_CTL, 0) print(" P:") run_test(CNTP_CTL_EL02, CNTP_TVAL_EL02) print(" V:") run_test(CNTV_CTL_EL02, CNTV_TVAL_EL02) print(" TGE = 0, vGIC mode=0, timers unmasked") u.msr(HCR_EL2, (u.mrs(HCR_EL2) & ~TGE) | (1 << 3) | (1 << 4)) u.msr(HACR_EL2, 0) u.msr(HV_VTMR_CTL, 3) print(" P:") run_test(CNTP_CTL_EL02, CNTP_TVAL_EL02) print(" V:") run_test(CNTV_CTL_EL02, CNTV_TVAL_EL02) print(" TGE = 0, vGIC mode=0, timers masked") u.msr(HV_VTMR_CTL, 0) print(" P:") run_test(CNTP_CTL_EL02, CNTP_TVAL_EL02) print(" V:") run_test(CNTV_CTL_EL02, CNTV_TVAL_EL02) print(" TGE = 0, vGIC mode=1, timers unmasked") u.msr(HCR_EL2, (u.mrs(HCR_EL2) & ~TGE) | (1 << 3) | (1 << 4)) u.msr(HACR_EL2, 1<<20) u.msr(HV_VTMR_CTL, 3) print(" P:") run_test(CNTP_CTL_EL02, CNTP_TVAL_EL02) print(" V:") run_test(CNTV_CTL_EL02, CNTV_TVAL_EL02) print(" TGE = 0, vGIC mode=1, timers masked") u.msr(HV_VTMR_CTL, 0) print(" P:") run_test(CNTP_CTL_EL02, CNTP_TVAL_EL02) print(" V:") run_test(CNTV_CTL_EL02, CNTV_TVAL_EL02) return freq = u.mrs(CNTFRQ_EL0) print("Timer freq: %d" % freq) test_hv_timers() test_guest_timers()
tf_coder/value_search/search_space_from_weight.py
hstrohm/PyTorch-Coder-cheat
245
37883
<reponame>hstrohm/PyTorch-Coder-cheat<gh_stars>100-1000 # Copyright 2021 The TF-Coder Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Computes the size of value search's search space.""" import collections import functools import operator import os import sys from absl import app from absl import flags from tf_coder import tf_coder_utils from tf_coder import tf_functions from tf_coder.benchmarks import all_benchmarks from tf_coder.natural_language import description_handler_factory from tf_coder.value_search import value as value_module from tf_coder.value_search import value_search from tf_coder.value_search import value_search_settings as settings_module FLAGS = flags.FLAGS flags.DEFINE_string('benchmark_name', 'google_02', 'The name of a benchmark to analyze.') flags.DEFINE_multi_string('settings', [], 'Settings to override the defaults.') # Inspired by https://stackoverflow.com/a/45669280/9589593. class SuppressPrint(object): """A context manager for suppressing print() calls temporarily.""" def __enter__(self): self._old_stdout = sys.stdout sys.stdout = open(os.devnull, 'w') def __exit__(self, exc_type, exc_val, exc_tb): del exc_type, exc_val, exc_tb sys.stdout.close() sys.stdout = self._old_stdout def compute_search_space_size(benchmark, settings, description_handler): """Computes and prints the size of the search space. This counts the total number of expressions with weight at most max_weight. The weights come from the benchmark (for constants and inputs) and the description handler (for determining the op weights). Distinct expressions will be counted separately even if they evaluate to the same value, unlike in TF-Coder's value_search algorithm which does value-based pruning. Args: benchmark: The Benchmark object defining the problem to analyze. settings: A Settings object containing settings for value search. description_handler: The DescriptionHandler used, which can modify weights of operations. Returns: Nothing. All output is printed to stdout. """ max_weight = settings.max_weight print('Computing search space.\n' 'Benchmark name: {}\n' 'Description handler: {}\n' 'Max weight: {}'.format( benchmark.name, description_handler, max_weight)) # TODO(kshi): Update to load the tensor features model/config. operations = value_search.get_reweighted_operations(benchmark, settings, description_handler, tensor_model=None, tensor_config=None) # These loops are not the most efficient, but it doesn't really matter. print('\nFound {} operations.'.format(len(operations))) print() for weight in range(1, max(op.weight for op in operations) + 1): print('# operations with weight {}: {}'.format( weight, sum(1 for op in operations if op.weight == weight))) print() for arity in range(1, max(op.num_args for op in operations) + 1): print('# operations with arity {}: {}'.format( arity, sum(1 for op in operations if op.num_args == arity))) output_value = value_module.OutputValue(benchmark.examples[0].output) values_by_weight = [collections.OrderedDict() for _ in range(max_weight + 1)] constant_operation = None for operation in operations: if operation.name == tf_functions.CONSTANT_OPERATION_NAME: constant_operation = operation break with SuppressPrint(): value_search._add_constants_and_inputs_and_print( # pylint: disable=protected-access values_by_weight, benchmark, output_value, constant_operation, settings) num_expressions_with_weight = [len(values_with_weight) for values_with_weight in values_by_weight] print() max_weight_with_initial_value = max(w for w in range(max_weight + 1) if num_expressions_with_weight[w]) for weight in range(1, max_weight_with_initial_value + 1): print('# initial values with weight {}: {}'.format( weight, num_expressions_with_weight[weight])) for total_weight in range(2, max_weight + 1): for operation in operations: # All operations should have strictly positive weight and num_args. op_weight = operation.weight op_arity = operation.num_args if total_weight - op_weight < op_arity: continue # Partition `total_weight - op_weight` into `op_arity` positive pieces. # Equivalently, partition `total_weight - op_weight - op_arity` into # `op_arity` nonnegative pieces. for partition in tf_coder_utils.generate_partitions( total_weight - op_weight - op_arity, op_arity): arg_weights = [part + 1 for part in partition] num_expressions_with_weight[total_weight] += functools.reduce( operator.mul, (num_expressions_with_weight[w] for w in arg_weights)) print() for weight in range(1, max_weight + 1): print('# expressions with weight exactly {}: {}'.format( weight, num_expressions_with_weight[weight])) print() for weight in range(1, max_weight + 1): print('# expressions with weight up to {}: {}'.format( weight, sum(num_expressions_with_weight[:weight + 1]))) def main(unused_argv): settings = settings_module.from_list(FLAGS.settings) description_handler = description_handler_factory.create_handler( settings.description_handler_name) benchmark = all_benchmarks.find_benchmark_with_name(FLAGS.benchmark_name) if not benchmark: raise ValueError('Unknown benchmark: {}'.format(FLAGS.benchmark_name)) compute_search_space_size(benchmark=benchmark, settings=settings, description_handler=description_handler) if __name__ == '__main__': app.run(main)
tests.py
mkolar/maya-capture
118
37930
<filename>tests.py """Tests for capture. Within Maya, setup a scene of moderate range (e.g. 10 frames) and run the following. Example: >>> nose.run(argv=[sys.argv[0], "tests", "-v"]) """ import capture from maya import cmds def test_capture(): """Plain capture works""" capture.capture() def test_camera_options(): """(Optional) camera options works""" capture.capture(camera_options={"displayGateMask": False}) def test_display_options(): """(Optional) display options works""" capture.capture(display_options={"displayGradient": False}) def test_viewport_options(): """(Optional) viewport options works""" capture.capture(viewport_options={"wireframeOnShaded": True}) def test_viewport2_options(): """(Optional) viewport2 options works""" capture.capture(viewport2_options={"ssaoEnable": True}) def test_parse_active_view(): """Parse active view works""" # Set focus to modelPanel1 (assume it exists) # Otherwise the panel with focus (temporary panel from capture) # got deleted and there's no "active panel" import maya.cmds as cmds cmds.setFocus("modelPanel1") options = capture.parse_active_view() capture.capture(**options) def test_parse_view(): """Parse view works""" options = capture.parse_view("modelPanel1") capture.capture(**options) def test_apply_view(): """Apply view works""" capture.apply_view("modelPanel1", camera_options={"overscan": 2}) def test_apply_parsed_view(): """Apply parsed view works""" options = capture.parse_view("modelPanel1") capture.apply_view("modelPanel1", **options) def test_apply_parsed_view_exact(): """Apply parsed view sanity check works""" import maya.cmds as cmds panel = "modelPanel1" cmds.modelEditor(panel, edit=True, displayAppearance="wireframe") parsed = capture.parse_view(panel) display = parsed["viewport_options"]["displayAppearance"] assert display == "wireframe" # important to test both, just in case wireframe was already # set when making the first query, and to make sure this # actually does something. cmds.modelEditor(panel, edit=True, displayAppearance="smoothShaded") parsed = capture.parse_view(panel) display = parsed["viewport_options"]["displayAppearance"] assert display == "smoothShaded" capture.apply_view(panel, viewport_options={"displayAppearance": "wireframe"}) assert cmds.modelEditor(panel, query=True, displayAppearance=True) == "wireframe" def test_apply_parsed_view_all(): """Apply parsed view all options works""" # A set of options all trying to be different from the default # settings (in `capture.py`) so we can test "changing states" camera_options = {} display_options = {} viewport_options = {} viewport2_options = {} for key, value in capture.CameraOptions.items(): if isinstance(value, bool): value = not value elif isinstance(value, (int, float)): value = value + 1 else: raise Exception("Unexpected value in CameraOptions: %s=%s" % (key, value)) for key, value in capture.DisplayOptions.items(): if isinstance(value, bool): value = not value elif isinstance(value, tuple): value = (1, 0, 1) else: raise Exception("Unexpected value in DisplayOptions: %s=%s" % (key, value)) for key, value in capture.ViewportOptions.items(): if isinstance(value, bool): value = not value elif isinstance(value, (int, float)): value = value + 1 elif isinstance(value, tuple): value = (1, 0, 1) elif isinstance(value, basestring): pass # Don't bother, for now else: raise Exception("Unexpected value in ViewportOptions: %s=%s" % (key, value)) for key, value in capture.Viewport2Options.items(): if isinstance(value, bool): value = not value elif isinstance(value, (int, float)): value = value + 1 elif isinstance(value, tuple): value = (1, 0, 1) elif isinstance(value, basestring): pass # Don't bother, for now else: raise Exception("Unexpected value in Viewport2Options: %s=%s" % (key, value)) defaults = { "camera_options": capture.CameraOptions.copy(), "display_options": capture.DisplayOptions.copy(), "viewport_options": capture.ViewportOptions.copy(), "viewport2_options": capture.Viewport2Options.copy(), } others = { "camera_options": camera_options, "display_options": display_options, "viewport_options": viewport_options, "viewport2_options": viewport2_options, } panel = "modelPanel1" def compare(this, other): """Compare options for only settings available in `this` Some color values will be returned with possible floating point precision errors as such result in a slightly different number. We'd need to compare whilst keeping such imprecisions in mind. """ precision = 1e-4 for opt in this: this_option = this[opt] other_option = other[opt] for key, value in this_option.iteritems(): other_value = other_option[key] if isinstance(value, float) or isinstance(other_value, float): if abs(value - other_value) > precision: return False elif isinstance(value, (tuple, list)): # Assuming for now that any tuple or list contains floats if not all((abs(a-b) < precision) for a, b in zip(value, other_value)): return False else: if value != other_value: return False return True # Apply defaults and check capture.apply_view(panel, **defaults) parsed_defaults = capture.parse_view(panel) assert compare(defaults, parsed_defaults) # Apply others and check capture.apply_view(panel, **others) parsed_others = capture.parse_view(panel) assert compare(others, parsed_others) def test_preset(): """Creating and applying presets works""" preset = { "width": 320, "height": 240, "camera_options": { "displayGateMask": False }, "viewport_options": { "wireframeOnShaded": True }, "display_options": { "displayGateMask": False } } capture.capture(**preset) def test_parse_active_scene(): """parse_active_scene() works""" parsed = capture.parse_active_scene() reference = { "start_frame": cmds.playbackOptions(minTime=True, query=True), "end_frame": cmds.playbackOptions(maxTime=True, query=True), "width": cmds.getAttr("defaultResolution.width"), "height": cmds.getAttr("defaultResolution.height"), "compression": cmds.optionVar(query="playblastCompression"), "filename": (cmds.optionVar(query="playblastFile") if cmds.optionVar(query="playblastSaveToFile") else None), "format": cmds.optionVar(query="playblastFormat"), "off_screen": (True if cmds.optionVar(query="playblastOffscreen") else False), "show_ornaments": (True if cmds.optionVar(query="playblastShowOrnaments") else False), "quality": cmds.optionVar(query="playblastQuality") } for key, value in reference.items(): assert parsed[key] == value
pluribus/poker/evaluation/__init__.py
keithlee96/pluribus-poker-AI
113
37983
from .eval_card import EvaluationCard from .evaluator import Evaluator from .lookup import LookupTable
vnpy/gateway/sec/__init__.py
funrunskypalace/vnpy
19,529
38018
<filename>vnpy/gateway/sec/__init__.py from .sec_gateway import SecGateway
test/unit/metrics/utils.py
alliesaizan/fairlearn
1,142
38023
<filename>test/unit/metrics/utils.py # Copyright (c) Microsoft Corporation and Fairlearn contributors. # Licensed under the MIT License. import fairlearn.metrics as metrics def _get_raw_MetricFrame(): # Gets an uninitialised MetricFrame for testing purposes return metrics.MetricFrame.__new__(metrics.MetricFrame)
tests/client/test_get_balance.py
kanzure/eth-testrpc
164
38027
def test_deploying_contract(client, hex_accounts): pre_balance = client.get_balance(hex_accounts[1]) client.send_transaction( _from=hex_accounts[0], to=hex_accounts[1], value=1234, ) post_balance = client.get_balance(hex_accounts[1]) assert post_balance - pre_balance == 1234
math/tests/testcases.py
fuz-woo/gpython
520
38067
# Copyright 2018 The go-python Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. # Testcases for functions in math. # # Each line takes the form: # # <testid> <function> <input_value> -> <output_value> <flags> # # where: # # <testid> is a short name identifying the test, # # <function> is the function to be tested (exp, cos, asinh, ...), # # <input_value> is a string representing a floating-point value # # <output_value> is the expected (ideal) output value, again # represented as a string. # # <flags> is a list of the floating-point flags required by C99 # # The possible flags are: # # divide-by-zero : raised when a finite input gives a # mathematically infinite result. # # overflow : raised when a finite input gives a finite result that # is too large to fit in the usual range of an IEEE 754 double. # # invalid : raised for invalid inputs (e.g., sqrt(-1)) # # ignore-sign : indicates that the sign of the result is # unspecified; e.g., if the result is given as inf, # then both -inf and inf should be accepted as correct. # # Flags may appear in any order. # # Lines beginning with '--' (like this one) start a comment, and are # ignored. Blank lines, or lines containing only whitespace, are also # ignored. # Many of the values below were computed with the help of # version 2.4 of the MPFR library for multiple-precision # floating-point computations with correct rounding. All output # values in this file are (modulo yet-to-be-discovered bugs) # correctly rounded, provided that each input and output decimal # floating-point value below is interpreted as a representation of # the corresponding nearest IEEE 754 double-precision value. See the # MPFR homepage at http://www.mpfr.org for more information about the # MPFR project. import math from libtest import * from libulp import * doc="testcases" inf = float("inf") nan = float("nan") def tolerance(a, b, e): """Return if a-b is within tolerance e""" d = a - b if d < 0: d = -d if a != 0: e = e * a if e < 0: e = -e return d <= e def acc_check(what, want, got, rel_err=2e-15, abs_err = 5e-323): """Determine whether non-NaN floats a and b are equal to within a (small) rounding error. The default values for rel_err and abs_err are chosen to be suitable for platforms where a float is represented by an IEEE 754 double. They allow an error of between 9 and 19 ulps.""" # need to special case infinities, since inf - inf gives nan if math.isinf(want) and got == want: return error = got - want permitted_error = rel_err * abs(want) if abs_err > permitted_error: permitted_error = abs_err if abs(error) < permitted_error: return raise AssertionError("%s: want %g, got %g: error = %g; permitted error = %g" % (what, want, got, error, permitted_error)) def t(name, fn, x, want, exc=None): global doc doc = name if exc is None: got = fn(x) if math.isnan(want) and math.isnan(got): return if want == inf and got == inf: return if want == -inf and got == -inf: return if fn == math.lgamma: # we use a weaker accuracy test for lgamma; # lgamma only achieves an absolute error of # a few multiples of the machine accuracy, in # general. acc_check(doc, want, got, rel_err = 5e-15, abs_err = 5e-15) elif fn == math.erfc: # erfc has less-than-ideal accuracy for large # arguments (x ~ 25 or so), mainly due to the # error involved in computing exp(-x*x). # # XXX Would be better to weaken this test only # for large x, instead of for all x. ulps_check(doc, want, got, 2000) else: ulps_check(doc, want, got, 20) else: try: got = fn(x) except exc as e: pass else: assert False, "%s not raised" % exc # # erf: error function -- # t("erf0000", math.erf, 0.0, 0.0) t("erf0001", math.erf, -0.0, -0.0) t("erf0002", math.erf, inf, 1.0) t("erf0003", math.erf, -inf, -1.0) t("erf0004", math.erf, nan, nan) # tiny values t("erf0010", math.erf, 1e-308, 1.1283791670955125e-308) t("erf0011", math.erf, 5e-324, 4.9406564584124654e-324) t("erf0012", math.erf, 1e-10, 1.1283791670955126e-10) # small integers t("erf0020", math.erf, 1, 0.84270079294971489) t("erf0021", math.erf, 2, 0.99532226501895271) t("erf0022", math.erf, 3, 0.99997790950300136) t("erf0023", math.erf, 4, 0.99999998458274209) t("erf0024", math.erf, 5, 0.99999999999846256) t("erf0025", math.erf, 6, 1.0) t("erf0030", math.erf, -1, -0.84270079294971489) t("erf0031", math.erf, -2, -0.99532226501895271) t("erf0032", math.erf, -3, -0.99997790950300136) t("erf0033", math.erf, -4, -0.99999998458274209) t("erf0034", math.erf, -5, -0.99999999999846256) t("erf0035", math.erf, -6, -1.0) # huge values should all go to +/-1, depending on sign t("erf0040", math.erf, -40, -1.0) t("erf0041", math.erf, 1e16, 1.0) t("erf0042", math.erf, -1e150, -1.0) t("erf0043", math.erf, 1.7e308, 1.0) # Issue 8986: inputs x with exp(-x*x) near the underflow threshold # incorrectly signalled overflow on some platforms. t("erf0100", math.erf, 26.2, 1.0) t("erf0101", math.erf, 26.4, 1.0) t("erf0102", math.erf, 26.6, 1.0) t("erf0103", math.erf, 26.8, 1.0) t("erf0104", math.erf, 27.0, 1.0) t("erf0105", math.erf, 27.2, 1.0) t("erf0106", math.erf, 27.4, 1.0) t("erf0107", math.erf, 27.6, 1.0) t("erf0110", math.erf, -26.2, -1.0) t("erf0111", math.erf, -26.4, -1.0) t("erf0112", math.erf, -26.6, -1.0) t("erf0113", math.erf, -26.8, -1.0) t("erf0114", math.erf, -27.0, -1.0) t("erf0115", math.erf, -27.2, -1.0) t("erf0116", math.erf, -27.4, -1.0) t("erf0117", math.erf, -27.6, -1.0) # # erfc: complementary error function -- # t("erfc0000", math.erfc, 0.0, 1.0) t("erfc0001", math.erfc, -0.0, 1.0) t("erfc0002", math.erfc, inf, 0.0) t("erfc0003", math.erfc, -inf, 2.0) t("erfc0004", math.erfc, nan, nan) # tiny values t("erfc0010", math.erfc, 1e-308, 1.0) t("erfc0011", math.erfc, 5e-324, 1.0) t("erfc0012", math.erfc, 1e-10, 0.99999999988716204) # small integers t("erfc0020", math.erfc, 1, 0.15729920705028513) t("erfc0021", math.erfc, 2, 0.0046777349810472662) t("erfc0022", math.erfc, 3, 2.2090496998585441e-05) t("erfc0023", math.erfc, 4, 1.541725790028002e-08) t("erfc0024", math.erfc, 5, 1.5374597944280349e-12) t("erfc0025", math.erfc, 6, 2.1519736712498913e-17) t("erfc0030", math.erfc, -1, 1.8427007929497148) t("erfc0031", math.erfc, -2, 1.9953222650189528) t("erfc0032", math.erfc, -3, 1.9999779095030015) t("erfc0033", math.erfc, -4, 1.9999999845827421) t("erfc0034", math.erfc, -5, 1.9999999999984626) t("erfc0035", math.erfc, -6, 2.0) # as x -> infinity, erfc(x) behaves like exp(-x*x)/x/sqrt(pi) t("erfc0040", math.erfc, 20, 5.3958656116079012e-176) t("erfc0041", math.erfc, 25, 8.3001725711965228e-274) # FIXME(underflows to 0) t("erfc0042", math.erfc, 27, 5.2370464393526292e-319) t("erfc0043", math.erfc, 28, 0.0) # huge values t("erfc0050", math.erfc, -40, 2.0) t("erfc0051", math.erfc, 1e16, 0.0) t("erfc0052", math.erfc, -1e150, 2.0) t("erfc0053", math.erfc, 1.7e308, 0.0) # Issue 8986: inputs x with exp(-x*x) near the underflow threshold # incorrectly signalled overflow on some platforms. t("erfc0100", math.erfc, 26.2, 1.6432507924389461e-300) t("erfc0101", math.erfc, 26.4, 4.4017768588035426e-305) t("erfc0102", math.erfc, 26.6, 1.0885125885442269e-309) # FIXME(underflows to 0) t("erfc0103", math.erfc, 26.8, 2.4849621571966629e-314) # FIXME(underflows to 0) t("erfc0104", math.erfc, 27.0, 5.2370464393526292e-319) # FIXME(underflows to 0) t("erfc0105", math.erfc, 27.2, 9.8813129168249309e-324) t("erfc0106", math.erfc, 27.4, 0.0) t("erfc0107", math.erfc, 27.6, 0.0) t("erfc0110", math.erfc, -26.2, 2.0) t("erfc0111", math.erfc, -26.4, 2.0) t("erfc0112", math.erfc, -26.6, 2.0) t("erfc0113", math.erfc, -26.8, 2.0) t("erfc0114", math.erfc, -27.0, 2.0) t("erfc0115", math.erfc, -27.2, 2.0) t("erfc0116", math.erfc, -27.4, 2.0) t("erfc0117", math.erfc, -27.6, 2.0) # # lgamma: log of absolute value of the gamma function -- # # special values t("lgam0000", math.lgamma, 0.0, inf, ValueError) t("lgam0001", math.lgamma, -0.0, inf, ValueError) t("lgam0002", math.lgamma, inf, inf) # FIXME(ValueError) t("lgam0003", math.lgamma, -inf, inf) t("lgam0004", math.lgamma, nan, nan) # negative integers t("lgam0010", math.lgamma, -1, inf, ValueError) t("lgam0011", math.lgamma, -2, inf, ValueError) t("lgam0012", math.lgamma, -1e16, inf, ValueError) t("lgam0013", math.lgamma, -1e300, inf, ValueError) t("lgam0014", math.lgamma, -1.79e308, inf, ValueError) # small positive integers give factorials t("lgam0020", math.lgamma, 1, 0.0) t("lgam0021", math.lgamma, 2, 0.0) t("lgam0022", math.lgamma, 3, 0.69314718055994529) t("lgam0023", math.lgamma, 4, 1.791759469228055) t("lgam0024", math.lgamma, 5, 3.1780538303479458) t("lgam0025", math.lgamma, 6, 4.7874917427820458) # half integers t("lgam0030", math.lgamma, 0.5, 0.57236494292470008) t("lgam0031", math.lgamma, 1.5, -0.12078223763524522) t("lgam0032", math.lgamma, 2.5, 0.28468287047291918) t("lgam0033", math.lgamma, 3.5, 1.2009736023470743) t("lgam0034", math.lgamma, -0.5, 1.2655121234846454) t("lgam0035", math.lgamma, -1.5, 0.86004701537648098) t("lgam0036", math.lgamma, -2.5, -0.056243716497674054) t("lgam0037", math.lgamma, -3.5, -1.309006684993042) # values near 0 t("lgam0040", math.lgamma, 0.1, 2.252712651734206) t("lgam0041", math.lgamma, 0.01, 4.5994798780420219) t("lgam0042", math.lgamma, 1e-8, 18.420680738180209) t("lgam0043", math.lgamma, 1e-16, 36.841361487904734) t("lgam0044", math.lgamma, 1e-30, 69.077552789821368) t("lgam0045", math.lgamma, 1e-160, 368.41361487904732) # FIXME(inaccurate) t("lgam0046", math.lgamma, 1e-308, 709.19620864216608) # FIXME(inaccurate) t("lgam0047", math.lgamma, 5.6e-309, 709.77602713741896) # FIXME(inaccurate) t("lgam0048", math.lgamma, 5.5e-309, 709.79404564292167) # FIXME(inaccurate) t("lgam0049", math.lgamma, 1e-309, 711.49879373516012) # FIXME(inaccurate) t("lgam0050", math.lgamma, 1e-323, 743.74692474082133) # FIXME(inaccurate) t("lgam0051", math.lgamma, 5e-324, 744.44007192138122) t("lgam0060", math.lgamma, -0.1, 2.3689613327287886) t("lgam0061", math.lgamma, -0.01, 4.6110249927528013) t("lgam0062", math.lgamma, -1e-8, 18.420680749724522) t("lgam0063", math.lgamma, -1e-16, 36.841361487904734) t("lgam0064", math.lgamma, -1e-30, 69.077552789821368) t("lgam0065", math.lgamma, -1e-160, 368.41361487904732) # FIXME(inaccurate) t("lgam0066", math.lgamma, -1e-308, 709.19620864216608) # FIXME(inaccurate) t("lgam0067", math.lgamma, -5.6e-309, 709.77602713741896) # FIXME(inaccurate) t("lgam0068", math.lgamma, -5.5e-309, 709.79404564292167) # FIXME(inaccurate) t("lgam0069", math.lgamma, -1e-309, 711.49879373516012) # FIXME(inaccurate) t("lgam0070", math.lgamma, -1e-323, 743.74692474082133) # FIXME(inaccurate) t("lgam0071", math.lgamma, -5e-324, 744.44007192138122) # values near negative integers t("lgam0080", math.lgamma, -0.99999999999999989, 36.736800569677101) t("lgam0081", math.lgamma, -1.0000000000000002, 36.043653389117154) t("lgam0082", math.lgamma, -1.9999999999999998, 35.350506208557213) t("lgam0083", math.lgamma, -2.0000000000000004, 34.657359027997266) t("lgam0084", math.lgamma, -100.00000000000001, -331.85460524980607) t("lgam0085", math.lgamma, -99.999999999999986, -331.85460524980596) # large inputs t("lgam0100", math.lgamma, 170, 701.43726380873704) t("lgam0101", math.lgamma, 171, 706.57306224578736) t("lgam0102", math.lgamma, 171.624, 709.78077443669895) t("lgam0103", math.lgamma, 171.625, 709.78591682948365) t("lgam0104", math.lgamma, 172, 711.71472580228999) t("lgam0105", math.lgamma, 2000, 13198.923448054265) t("lgam0106", math.lgamma, 2.55998332785163e305, 1.7976931348623099e+308) t("lgam0107", math.lgamma, 2.55998332785164e305, inf, OverflowError) t("lgam0108", math.lgamma, 1.7e308, inf, OverflowError) # inputs for which gamma(x) is tiny t("lgam0120", math.lgamma, -100.5, -364.90096830942736) t("lgam0121", math.lgamma, -160.5, -656.88005261126432) t("lgam0122", math.lgamma, -170.5, -707.99843314507882) t("lgam0123", math.lgamma, -171.5, -713.14301641168481) t("lgam0124", math.lgamma, -176.5, -738.95247590846486) t("lgam0125", math.lgamma, -177.5, -744.13144651738037) t("lgam0126", math.lgamma, -178.5, -749.3160351186001) t("lgam0130", math.lgamma, -1000.5, -5914.4377011168517) t("lgam0131", math.lgamma, -30000.5, -279278.6629959144) # FIXME t("lgam0132", math.lgamma, -4503599627370495.5, -1.5782258434492883e+17) # results close to 0: positive argument ... t("lgam0150", math.lgamma, 0.99999999999999989, 6.4083812134800075e-17) t("lgam0151", math.lgamma, 1.0000000000000002, -1.2816762426960008e-16) t("lgam0152", math.lgamma, 1.9999999999999998, -9.3876980655431170e-17) t("lgam0153", math.lgamma, 2.0000000000000004, 1.8775396131086244e-16) # ... and negative argument # these are very inaccurate in python3 t("lgam0160", math.lgamma, -2.7476826467, -5.2477408147689136e-11) t("lgam0161", math.lgamma, -2.457024738, 3.3464637541912932e-10) # # gamma: Gamma function -- # # special values t("gam0000", math.gamma, 0.0, inf, ValueError) t("gam0001", math.gamma, -0.0, -inf, ValueError) t("gam0002", math.gamma, inf, inf) t("gam0003", math.gamma, -inf, nan, ValueError) t("gam0004", math.gamma, nan, nan) # negative integers inputs are invalid t("gam0010", math.gamma, -1, nan, ValueError) t("gam0011", math.gamma, -2, nan, ValueError) t("gam0012", math.gamma, -1e16, nan, ValueError) t("gam0013", math.gamma, -1e300, nan, ValueError) # small positive integers give factorials t("gam0020", math.gamma, 1, 1) t("gam0021", math.gamma, 2, 1) t("gam0022", math.gamma, 3, 2) t("gam0023", math.gamma, 4, 6) t("gam0024", math.gamma, 5, 24) t("gam0025", math.gamma, 6, 120) # half integers t("gam0030", math.gamma, 0.5, 1.7724538509055161) t("gam0031", math.gamma, 1.5, 0.88622692545275805) t("gam0032", math.gamma, 2.5, 1.3293403881791370) t("gam0033", math.gamma, 3.5, 3.3233509704478426) t("gam0034", math.gamma, -0.5, -3.5449077018110322) t("gam0035", math.gamma, -1.5, 2.3632718012073548) t("gam0036", math.gamma, -2.5, -0.94530872048294190) t("gam0037", math.gamma, -3.5, 0.27008820585226911) # values near 0 t("gam0040", math.gamma, 0.1, 9.5135076986687306) t("gam0041", math.gamma, 0.01, 99.432585119150602) t("gam0042", math.gamma, 1e-8, 99999999.422784343) t("gam0043", math.gamma, 1e-16, 10000000000000000) t("gam0044", math.gamma, 1e-30, 9.9999999999999988e+29) t("gam0045", math.gamma, 1e-160, 1.0000000000000000e+160) t("gam0046", math.gamma, 1e-308, 1.0000000000000000e+308) t("gam0047", math.gamma, 5.6e-309, 1.7857142857142848e+308) t("gam0048", math.gamma, 5.5e-309, inf, OverflowError) t("gam0049", math.gamma, 1e-309, inf, OverflowError) t("gam0050", math.gamma, 1e-323, inf, OverflowError) t("gam0051", math.gamma, 5e-324, inf, OverflowError) t("gam0060", math.gamma, -0.1, -10.686287021193193) t("gam0061", math.gamma, -0.01, -100.58719796441078) t("gam0062", math.gamma, -1e-8, -100000000.57721567) t("gam0063", math.gamma, -1e-16, -10000000000000000) t("gam0064", math.gamma, -1e-30, -9.9999999999999988e+29) t("gam0065", math.gamma, -1e-160, -1.0000000000000000e+160) t("gam0066", math.gamma, -1e-308, -1.0000000000000000e+308) t("gam0067", math.gamma, -5.6e-309, -1.7857142857142848e+308) t("gam0068", math.gamma, -5.5e-309, -inf, OverflowError) t("gam0069", math.gamma, -1e-309, -inf, OverflowError) t("gam0070", math.gamma, -1e-323, -inf, OverflowError) t("gam0071", math.gamma, -5e-324, -inf, OverflowError) # values near negative integers t("gam0080", math.gamma, -0.99999999999999989, -9007199254740992.0) t("gam0081", math.gamma, -1.0000000000000002, 4503599627370495.5) t("gam0082", math.gamma, -1.9999999999999998, 2251799813685248.5) t("gam0083", math.gamma, -2.0000000000000004, -1125899906842623.5) t("gam0084", math.gamma, -100.00000000000001, -7.5400833348831090e-145) t("gam0085", math.gamma, -99.999999999999986, 7.5400833348840962e-145) # large inputs t("gam0100", math.gamma, 170, 4.2690680090047051e+304) t("gam0101", math.gamma, 171, 7.2574156153079990e+306) # FIXME(overflows) t("gam0102", math.gamma, 171.624, 1.7942117599248104e+308) t("gam0103", math.gamma, 171.625, inf, OverflowError) t("gam0104", math.gamma, 172, inf, OverflowError) t("gam0105", math.gamma, 2000, inf, OverflowError) t("gam0106", math.gamma, 1.7e308, inf, OverflowError) # inputs for which gamma(x) is tiny t("gam0120", math.gamma, -100.5, -3.3536908198076787e-159) t("gam0121", math.gamma, -160.5, -5.2555464470078293e-286) t("gam0122", math.gamma, -170.5, -3.3127395215386074e-308) # Reported as https://github.com/golang/go/issues/11441 # FIXME(overflows) t("gam0123", math.gamma, -171.5, 1.9316265431711902e-310) # FIXME(overflows) t("gam0124", math.gamma, -176.5, -1.1956388629358166e-321) # FIXME(overflows) t("gam0125", math.gamma, -177.5, 4.9406564584124654e-324) # FIXME(overflows) t("gam0126", math.gamma, -178.5, -0.0) # FIXME(overflows) t("gam0127", math.gamma, -179.5, 0.0) # FIXME(overflows) t("gam0128", math.gamma, -201.0001, 0.0) # FIXME(overflows) t("gam0129", math.gamma, -202.9999, -0.0) # FIXME(overflows) t("gam0130", math.gamma, -1000.5, -0.0) # FIXME(overflows) t("gam0131", math.gamma, -1000000000.3, -0.0) # FIXME(overflows) t("gam0132", math.gamma, -4503599627370495.5, 0.0) # inputs that cause problems for the standard reflection formula, # thanks to loss of accuracy in 1-x t("gam0140", math.gamma, -63.349078729022985, 4.1777971677761880e-88) t("gam0141", math.gamma, -127.45117632943295, 1.1831110896236810e-214) # # log1p: log(1 + x), without precision loss for small x -- # # special values t("log1p0000", math.log1p, 0.0, 0.0) t("log1p0001", math.log1p, -0.0, -0.0) t("log1p0002", math.log1p, inf, inf) t("log1p0003", math.log1p, -inf, nan, ValueError) t("log1p0004", math.log1p, nan, nan) # singularity at -1.0 t("log1p0010", math.log1p, -1.0, -inf, ValueError) t("log1p0011", math.log1p, -0.9999999999999999, -36.736800569677101) # finite values < 1.0 are invalid t("log1p0020", math.log1p, -1.0000000000000002, nan, ValueError) t("log1p0021", math.log1p, -1.1, nan, ValueError) t("log1p0022", math.log1p, -2.0, nan, ValueError) t("log1p0023", math.log1p, -1e300, nan, ValueError) # tiny x: log1p(x) ~ x t("log1p0110", math.log1p, 5e-324, 5e-324) t("log1p0111", math.log1p, 1e-320, 1e-320) t("log1p0112", math.log1p, 1e-300, 1e-300) t("log1p0113", math.log1p, 1e-150, 1e-150) t("log1p0114", math.log1p, 1e-20, 1e-20) t("log1p0120", math.log1p, -5e-324, -5e-324) t("log1p0121", math.log1p, -1e-320, -1e-320) t("log1p0122", math.log1p, -1e-300, -1e-300) t("log1p0123", math.log1p, -1e-150, -1e-150) t("log1p0124", math.log1p, -1e-20, -1e-20) # some (mostly) random small and moderate-sized values t("log1p0200", math.log1p, -0.89156889782277482, -2.2216403106762863) t("log1p0201", math.log1p, -0.23858496047770464, -0.27257668276980057) t("log1p0202", math.log1p, -0.011641726191307515, -0.011710021654495657) t("log1p0203", math.log1p, -0.0090126398571693817, -0.0090534993825007650) t("log1p0204", math.log1p, -0.00023442805985712781, -0.00023445554240995693) t("log1p0205", math.log1p, -1.5672870980936349e-5, -1.5672993801662046e-5) t("log1p0206", math.log1p, -7.9650013274825295e-6, -7.9650330482740401e-6) t("log1p0207", math.log1p, -2.5202948343227410e-7, -2.5202951519170971e-7) t("log1p0208", math.log1p, -8.2446372820745855e-11, -8.2446372824144559e-11) t("log1p0209", math.log1p, -8.1663670046490789e-12, -8.1663670046824230e-12) t("log1p0210", math.log1p, 7.0351735084656292e-18, 7.0351735084656292e-18) t("log1p0211", math.log1p, 5.2732161907375226e-12, 5.2732161907236188e-12) t("log1p0212", math.log1p, 1.0000000000000000e-10, 9.9999999995000007e-11) t("log1p0213", math.log1p, 2.1401273266000197e-9, 2.1401273243099470e-9) t("log1p0214", math.log1p, 1.2668914653979560e-8, 1.2668914573728861e-8) t("log1p0215", math.log1p, 1.6250007816299069e-6, 1.6249994613175672e-6) t("log1p0216", math.log1p, 8.3740495645839399e-6, 8.3740145024266269e-6) t("log1p0217", math.log1p, 3.0000000000000001e-5, 2.9999550008999799e-5) t("log1p0218", math.log1p, 0.0070000000000000001, 0.0069756137364252423) t("log1p0219", math.log1p, 0.013026235315053002, 0.012942123564008787) t("log1p0220", math.log1p, 0.013497160797236184, 0.013406885521915038) t("log1p0221", math.log1p, 0.027625599078135284, 0.027250897463483054) t("log1p0222", math.log1p, 0.14179687245544870, 0.13260322540908789) # large values t("log1p0300", math.log1p, 1.7976931348623157e+308, 709.78271289338397) t("log1p0301", math.log1p, 1.0000000000000001e+300, 690.77552789821368) t("log1p0302", math.log1p, 1.0000000000000001e+70, 161.18095650958321) t("log1p0303", math.log1p, 10000000000.000000, 23.025850930040455) # other values transferred from testLog1p in test_math t("log1p0400", math.log1p, -0.63212055882855767, -1.0000000000000000) t("log1p0401", math.log1p, 1.7182818284590451, 1.0000000000000000) t("log1p0402", math.log1p, 1.0000000000000000, 0.69314718055994529) t("log1p0403", math.log1p, 1.2379400392853803e+27, 62.383246250395075) # # expm1: exp(x) - 1, without precision loss for small x -- # # special values t("expm10000", math.expm1, 0.0, 0.0) t("expm10001", math.expm1, -0.0, -0.0) t("expm10002", math.expm1, inf, inf) t("expm10003", math.expm1, -inf, -1.0) t("expm10004", math.expm1, nan, nan) # expm1(x) ~ x for tiny x t("expm10010", math.expm1, 5e-324, 5e-324) t("expm10011", math.expm1, 1e-320, 1e-320) t("expm10012", math.expm1, 1e-300, 1e-300) t("expm10013", math.expm1, 1e-150, 1e-150) t("expm10014", math.expm1, 1e-20, 1e-20) t("expm10020", math.expm1, -5e-324, -5e-324) t("expm10021", math.expm1, -1e-320, -1e-320) t("expm10022", math.expm1, -1e-300, -1e-300) t("expm10023", math.expm1, -1e-150, -1e-150) t("expm10024", math.expm1, -1e-20, -1e-20) # moderate sized values, where direct evaluation runs into trouble t("expm10100", math.expm1, 1e-10, 1.0000000000500000e-10) t("expm10101", math.expm1, -9.9999999999999995e-08, -9.9999995000000163e-8) t("expm10102", math.expm1, 3.0000000000000001e-05, 3.0000450004500034e-5) t("expm10103", math.expm1, -0.0070000000000000001, -0.0069755570667648951) t("expm10104", math.expm1, -0.071499208740094633, -0.069002985744820250) t("expm10105", math.expm1, -0.063296004180116799, -0.061334416373633009) t("expm10106", math.expm1, 0.02390954035597756, 0.024197665143819942) t("expm10107", math.expm1, 0.085637352649044901, 0.089411184580357767) t("expm10108", math.expm1, 0.5966174947411006, 0.81596588596501485) t("expm10109", math.expm1, 0.30247206212075139, 0.35319987035848677) t("expm10110", math.expm1, 0.74574727375889516, 1.1080161116737459) t("expm10111", math.expm1, 0.97767512926555711, 1.6582689207372185) t("expm10112", math.expm1, 0.8450154566787712, 1.3280137976535897) t("expm10113", math.expm1, -0.13979260323125264, -0.13046144381396060) t("expm10114", math.expm1, -0.52899322039643271, -0.41080213643695923) t("expm10115", math.expm1, -0.74083261478900631, -0.52328317124797097) t("expm10116", math.expm1, -0.93847766984546055, -0.60877704724085946) t("expm10117", math.expm1, 10.0, 22025.465794806718) t("expm10118", math.expm1, 27.0, 532048240600.79865) t("expm10119", math.expm1, 123, 2.6195173187490626e+53) t("expm10120", math.expm1, -12.0, -0.99999385578764666) t("expm10121", math.expm1, -35.100000000000001, -0.99999999999999944) # extreme negative values t("expm10201", math.expm1, -37.0, -0.99999999999999989) t("expm10200", math.expm1, -38.0, -1.0) # FIXME(overflows) t("expm10210", math.expm1, -710.0, -1.0) # the formula expm1(x) = 2 * sinh(x/2) * exp(x/2) doesn't work so # well when exp(x/2) is subnormal or underflows to zero; check we're # not using it! # Reported as https://github.com/golang/go/issues/11442 # FIXME(overflows) t("expm10211", math.expm1, -1420.0, -1.0) # FIXME(overflows) t("expm10212", math.expm1, -1450.0, -1.0) # FIXME(overflows) t("expm10213", math.expm1, -1500.0, -1.0) # FIXME(overflows) t("expm10214", math.expm1, -1e50, -1.0) # FIXME(overflows) t("expm10215", math.expm1, -1.79e308, -1.0) # extreme positive values # FIXME(fails on 32 bit) t("expm10300", math.expm1, 300, 1.9424263952412558e+130) # FIXME(fails on 32 bit) t("expm10301", math.expm1, 700, 1.0142320547350045e+304) # the next test (expm10302) is disabled because it causes failure on # OS X 10.4/Intel: apparently all values over 709.78 produce an # overflow on that platform. See issue #7575. # expm10302 expm1 709.78271289328393 -> 1.7976931346824240e+308 t("expm10303", math.expm1, 709.78271289348402, inf, OverflowError) t("expm10304", math.expm1, 1000, inf, OverflowError) t("expm10305", math.expm1, 1e50, inf, OverflowError) t("expm10306", math.expm1, 1.79e308, inf, OverflowError) # weaker version of expm10302 # FIXME(fails on 32 bit) t("expm10307", math.expm1, 709.5, 1.3549863193146328e+308) # # log2: log to base 2 -- # # special values t("log20000", math.log2, 0.0, -inf, ValueError) t("log20001", math.log2, -0.0, -inf, ValueError) t("log20002", math.log2, inf, inf) t("log20003", math.log2, -inf, nan, ValueError) t("log20004", math.log2, nan, nan) # exact value at 1.0 t("log20010", math.log2, 1.0, 0.0) # negatives t("log20020", math.log2, -5e-324, nan, ValueError) t("log20021", math.log2, -1.0, nan, ValueError) t("log20022", math.log2, -1.7e-308, nan, ValueError) # exact values at powers of 2 t("log20100", math.log2, 2.0, 1.0) t("log20101", math.log2, 4.0, 2.0) t("log20102", math.log2, 8.0, 3.0) t("log20103", math.log2, 16.0, 4.0) t("log20104", math.log2, 32.0, 5.0) t("log20105", math.log2, 64.0, 6.0) t("log20106", math.log2, 128.0, 7.0) t("log20107", math.log2, 256.0, 8.0) t("log20108", math.log2, 512.0, 9.0) t("log20109", math.log2, 1024.0, 10.0) t("log20110", math.log2, 2048.0, 11.0) t("log20200", math.log2, 0.5, -1.0) t("log20201", math.log2, 0.25, -2.0) t("log20202", math.log2, 0.125, -3.0) t("log20203", math.log2, 0.0625, -4.0) # values close to 1.0 # FIXME(inaccurate) t("log20300", math.log2, 1.0000000000000002, 3.2034265038149171e-16) # FIXME(inaccurate) t("log20301", math.log2, 1.0000000001, 1.4426951601859516e-10) # FIXME(inaccurate) t("log20302", math.log2, 1.00001, 1.4426878274712997e-5) t("log20310", math.log2, 0.9999999999999999, -1.6017132519074588e-16) t("log20311", math.log2, 0.9999999999, -1.4426951603302210e-10) t("log20312", math.log2, 0.99999, -1.4427022544056922e-5) # tiny values t("log20400", math.log2, 5e-324, -1074.0) t("log20401", math.log2, 1e-323, -1073.0) t("log20402", math.log2, 1.5e-323, -1072.4150374992789) t("log20403", math.log2, 2e-323, -1072.0) t("log20410", math.log2, 1e-308, -1023.1538532253076) t("log20411", math.log2, 2.2250738585072014e-308, -1022.0) t("log20412", math.log2, 4.4501477170144028e-308, -1021.0) t("log20413", math.log2, 1e-307, -1019.8319251304202) # huge values t("log20500", math.log2, 1.7976931348623157e+308, 1024.0) t("log20501", math.log2, 1.7e+308, 1023.9193879716706) t("log20502", math.log2, 8.9884656743115795e+307, 1023.0) # selection of random values t("log20600", math.log2, -7.2174324841039838e+289, nan, ValueError) t("log20601", math.log2, -2.861319734089617e+265, nan, ValueError) t("log20602", math.log2, -4.3507646894008962e+257, nan, ValueError) t("log20603", math.log2, -6.6717265307520224e+234, nan, ValueError) t("log20604", math.log2, -3.9118023786619294e+229, nan, ValueError) t("log20605", math.log2, -1.5478221302505161e+206, nan, ValueError) t("log20606", math.log2, -1.4380485131364602e+200, nan, ValueError) t("log20607", math.log2, -3.7235198730382645e+185, nan, ValueError) t("log20608", math.log2, -1.0472242235095724e+184, nan, ValueError) t("log20609", math.log2, -5.0141781956163884e+160, nan, ValueError) t("log20610", math.log2, -2.1157958031160324e+124, nan, ValueError) t("log20611", math.log2, -7.9677558612567718e+90, nan, ValueError) t("log20612", math.log2, -5.5553906194063732e+45, nan, ValueError) t("log20613", math.log2, -16573900952607.953, nan, ValueError) t("log20614", math.log2, -37198371019.888618, nan, ValueError) t("log20615", math.log2, -6.0727115121422674e-32, nan, ValueError) t("log20616", math.log2, -2.5406841656526057e-38, nan, ValueError) t("log20617", math.log2, -4.9056766703267657e-43, nan, ValueError) t("log20618", math.log2, -2.1646786075228305e-71, nan, ValueError) t("log20619", math.log2, -2.470826790488573e-78, nan, ValueError) t("log20620", math.log2, -3.8661709303489064e-165, nan, ValueError) t("log20621", math.log2, -1.0516496976649986e-182, nan, ValueError) t("log20622", math.log2, -1.5935458614317996e-255, nan, ValueError) t("log20623", math.log2, -2.8750977267336654e-293, nan, ValueError) t("log20624", math.log2, -7.6079466794732585e-296, nan, ValueError) t("log20625", math.log2, 3.2073253539988545e-307, -1018.1505544209213) t("log20626", math.log2, 1.674937885472249e-244, -809.80634755783126) t("log20627", math.log2, 1.0911259044931283e-214, -710.76679472274213) t("log20628", math.log2, 2.0275372624809709e-154, -510.55719818383272) t("log20629", math.log2, 7.3926087369631841e-115, -379.13564735312292) t("log20630", math.log2, 1.3480198206342423e-86, -285.25497445094436) t("log20631", math.log2, 8.9927384655719947e-83, -272.55127136401637) t("log20632", math.log2, 3.1452398713597487e-60, -197.66251564496875) t("log20633", math.log2, 7.0706573215457351e-55, -179.88420087782217) t("log20634", math.log2, 3.1258285390731669e-49, -161.13023800505653) t("log20635", math.log2, 8.2253046627829942e-41, -133.15898277355879) t("log20636", math.log2, 7.8691367397519897e+49, 165.75068202732419) t("log20637", math.log2, 2.9920561983925013e+64, 214.18453534573757) t("log20638", math.log2, 4.7827254553946841e+77, 258.04629628445673) t("log20639", math.log2, 3.1903566496481868e+105, 350.47616767491166) t("log20640", math.log2, 5.6195082449502419e+113, 377.86831861008250) t("log20641", math.log2, 9.9625658250651047e+125, 418.55752921228753) t("log20642", math.log2, 2.7358945220961532e+145, 483.13158636923413) t("log20643", math.log2, 2.785842387926931e+174, 579.49360214860280) t("log20644", math.log2, 2.4169172507252751e+193, 642.40529039289652) t("log20645", math.log2, 3.1689091206395632e+205, 682.65924573798395) t("log20646", math.log2, 2.535995592365391e+208, 692.30359597460460) t("log20647", math.log2, 6.2011236566089916e+233, 776.64177576730913) t("log20648", math.log2, 2.1843274820677632e+253, 841.57499717289647) t("log20649", math.log2, 8.7493931063474791e+297, 989.74182713073981) doc="finished"
dlib/tools/python/test/test_vector.py
asm-jaime/facerec
11,719
38077
<reponame>asm-jaime/facerec from dlib import vector, vectors, vectorss, dot try: import cPickle as pickle # Use cPickle on Python 2.7 except ImportError: import pickle from pytest import raises def test_vector_empty_init(): v = vector() assert len(v) == 0 assert v.shape == (0, 1) assert str(v) == "" assert repr(v) == "dlib.vector([])" def test_vector_init_with_number(): v = vector(3) assert len(v) == 3 assert v.shape == (3, 1) assert str(v) == "0\n0\n0" assert repr(v) == "dlib.vector([0, 0, 0])" def test_vector_set_size(): v = vector(3) v.set_size(0) assert len(v) == 0 assert v.shape == (0, 1) v.resize(10) assert len(v) == 10 assert v.shape == (10, 1) for i in range(10): assert v[i] == 0 def test_vector_init_with_list(): v = vector([1, 2, 3]) assert len(v) == 3 assert v.shape == (3, 1) assert str(v) == "1\n2\n3" assert repr(v) == "dlib.vector([1, 2, 3])" def test_vector_getitem(): v = vector([1, 2, 3]) assert v[0] == 1 assert v[-1] == 3 assert v[1] == v[-2] def test_vector_slice(): v = vector([1, 2, 3, 4, 5]) v_slice = v[1:4] assert len(v_slice) == 3 for idx, val in enumerate([2, 3, 4]): assert v_slice[idx] == val v_slice = v[-3:-1] assert len(v_slice) == 2 for idx, val in enumerate([3, 4]): assert v_slice[idx] == val v_slice = v[1:-2] assert len(v_slice) == 2 for idx, val in enumerate([2, 3]): assert v_slice[idx] == val def test_vector_invalid_getitem(): v = vector([1, 2, 3]) with raises(IndexError): v[-4] with raises(IndexError): v[3] def test_vector_init_with_negative_number(): with raises(Exception): vector(-3) def test_dot(): v1 = vector([1, 0]) v2 = vector([0, 1]) v3 = vector([-1, 0]) assert dot(v1, v1) == 1 assert dot(v1, v2) == 0 assert dot(v1, v3) == -1 def test_vector_serialization(): v = vector([1, 2, 3]) ser = pickle.dumps(v, 2) deser = pickle.loads(ser) assert str(v) == str(deser) def generate_test_vectors(): vs = vectors() vs.append(vector([0, 1, 2])) vs.append(vector([3, 4, 5])) vs.append(vector([6, 7, 8])) assert len(vs) == 3 return vs def generate_test_vectorss(): vss = vectorss() vss.append(generate_test_vectors()) vss.append(generate_test_vectors()) vss.append(generate_test_vectors()) assert len(vss) == 3 return vss def test_vectors_serialization(): vs = generate_test_vectors() ser = pickle.dumps(vs, 2) deser = pickle.loads(ser) assert vs == deser def test_vectors_clear(): vs = generate_test_vectors() vs.clear() assert len(vs) == 0 def test_vectors_resize(): vs = vectors() vs.resize(100) assert len(vs) == 100 for i in range(100): assert len(vs[i]) == 0 def test_vectors_extend(): vs = vectors() vs.extend([vector([1, 2, 3]), vector([4, 5, 6])]) assert len(vs) == 2 def test_vectorss_serialization(): vss = generate_test_vectorss() ser = pickle.dumps(vss, 2) deser = pickle.loads(ser) assert vss == deser def test_vectorss_clear(): vss = generate_test_vectorss() vss.clear() assert len(vss) == 0 def test_vectorss_resize(): vss = vectorss() vss.resize(100) assert len(vss) == 100 for i in range(100): assert len(vss[i]) == 0 def test_vectorss_extend(): vss = vectorss() vss.extend([generate_test_vectors(), generate_test_vectors()]) assert len(vss) == 2
DPGAnalysis/SiStripTools/python/poolSource_cff.py
ckamtsikis/cmssw
852
38086
<reponame>ckamtsikis/cmssw import FWCore.ParameterSet.Config as cms source = cms.Source("PoolSource", fileNames = cms.untracked.vstring(), # skipBadFiles = cms.untracked.bool(True), inputCommands = cms.untracked.vstring("keep *", "drop *_MEtoEDMConverter_*_*") )
server02.py
timgates42/csdesign
116
38091
<gh_stars>100-1000 ############################################################################### # # Copyright (c) 2012 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ############################################################################### """ TCP Concurrent Server, I/O Multiplexing (select). Single server process to handle any number of clients. """ __author__ = '<NAME> <<EMAIL>>' import os import sys import errno import select import socket import optparse BACKLOG = 5 def serve_forever(host, port): # create, bind. listen lstsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # re-use the port lstsock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # put listening socket into non-blocking mode lstsock.setblocking(0) lstsock.bind((host, port)) lstsock.listen(BACKLOG) print 'Listening on port %d ...' % port # read, write, exception lists with sockets to poll rlist, wlist, elist = [lstsock], [], [] while True: # block in select readables, writables, exceptions = select.select(rlist, wlist, elist) for sock in readables: if sock is lstsock: # new client connection, we can accept now try: conn, client_address = lstsock.accept() except IOError as e: code, msg = e.args if code == errno.EINTR: continue else: raise # add the new connection to the 'read' list to poll # in the next loop cycle rlist.append(conn) else: # read a line that tells us how many bytes to write bytes = sock.recv(1024) if not bytes: # connection closed by client sock.close() rlist.remove(sock) else: print ('Got request to send %s bytes. ' 'Sending them all...' % bytes) # send them all # XXX: this is cheating, we should use 'select' and wlist # to determine whether socket is ready to be written to data = os.urandom(int(bytes)) sock.sendall(data) def main(): parser = optparse.OptionParser() parser.add_option( '-i', '--host', dest='host', default='0.0.0.0', help='Hostname or IP address. Default is 0.0.0.0' ) parser.add_option( '-p', '--port', dest='port', type='int', default=2000, help='Port. Default is 2000') options, args = parser.parse_args() serve_forever(options.host, options.port) if __name__ == '__main__': main()
run/gen-explicit-fee-schedules.py
three-Vs/hedera-services
164
38098
### # A script to convert the Services-consumable feeSchedules.json # into the "typed" format used by the public pricing calculator. ### import json providers = ['nodedata', 'networkdata', 'servicedata'] typed_schedules = {} with open('hedera-node/src/main/resources/feeSchedules.json', 'r') as fin: cur_and_next_schedules = json.load(fin) schedules = cur_and_next_schedules[0]['currentFeeSchedule'] for tfs in schedules: if 'expiryTime' in tfs: break tfs = tfs['transactionFeeSchedule'] function = tfs['hederaFunctionality'] prices_list = tfs['fees'] prices_by_type = {} for typed_prices in prices_list: this_type = typed_prices.get('subType', 'DEFAULT') this_type_prices = {} for provider in providers: this_type_prices[provider] = typed_prices[provider] prices_by_type[this_type] = this_type_prices typed_schedules[function] = prices_by_type with open('typedFeeSchedules.json', 'w') as fout: json.dump(typed_schedules, fout, indent=2)
cblue/data/__init__.py
dfhby0/CBLUE
293
38102
<gh_stars>100-1000 from .data_process import EEDataProcessor, REDataProcessor, ERDataProcessor, CTCDataProcessor, \ CDNDataProcessor, STSDataProcessor, QQRDataProcessor, QICDataProcessor, QTRDataProcessor from .dataset import EEDataset, REDataset, ERDataset, CTCDataset, CDNDataset, STSDataset, \ QQRDataset, QICDataset, QTRDataset __all__ = ['EEDataProcessor', 'EEDataset', 'REDataProcessor', 'REDataset', 'ERDataProcessor', 'ERDataset', 'CDNDataProcessor', 'CDNDataset', 'CTCDataProcessor', 'CTCDataset', 'STSDataProcessor', 'STSDataset', 'QQRDataProcessor', 'QQRDataset', 'QICDataProcessor', 'QICDataset', 'QTRDataProcessor', 'QTRDataset']
io_scene_vrm/editor/extension.py
989onan/VRM_Addon_for_Blender
344
38132
<reponame>989onan/VRM_Addon_for_Blender import bpy from .vrm0.property_group import Vrm0PropertyGroup class VrmAddonArmatureExtensionPropertyGroup(bpy.types.PropertyGroup): # type: ignore[misc] addon_version: bpy.props.IntVectorProperty( # type: ignore[valid-type] size=3 # noqa: F722 ) vrm0: bpy.props.PointerProperty( # type: ignore[valid-type] name="VRM 0.x", type=Vrm0PropertyGroup # noqa: F722 ) armature_data_name: bpy.props.StringProperty() # type: ignore[valid-type]
tests/test_service_catalog/test_views/test_admin/test_settings/test_catalog/test_services/test_create.py
LaudateCorpus1/squest
112
38149
<gh_stars>100-1000 from copy import copy from io import BytesIO from PIL import Image from django.core.files.uploadedfile import InMemoryUploadedFile from django.urls import reverse from service_catalog.models import Service from tests.test_service_catalog.base import BaseTest class ServiceCreateTestCase(BaseTest): def setUp(self): super(ServiceCreateTestCase, self).setUp() self.url = reverse('service_catalog:create_service') def test_create_service(self): data = { "name": "new_service", "description": "a new service", "job_template": self.job_template_test.id, "billing": "defined", "billing_group_id": "", "billing_group_is_shown": "on" } response = self.client.get(self.url) self.assertEqual(200, response.status_code) number_service_before = copy(Service.objects.all().count()) response = self.client.post(self.url, data=data) self.assertEqual(302, response.status_code) self.assertEqual(number_service_before + 1, Service.objects.all().count()) def test_create_service_with_image(self): im = Image.new(mode='RGB', size=(200, 200)) # create a new image using PIL im_io = BytesIO() # a BytesIO object for saving image im.save(im_io, 'JPEG') # save the image to im_io im_io.seek(0) # seek to the beginning image = InMemoryUploadedFile( im_io, None, 'random-name.jpg', 'image/jpeg', len(im_io.getvalue()), None ) data = { "name": "new_service_with_image", "description": "a new service", "job_template": self.job_template_test.id, "billing": "defined", "billing_group_id": "", "billing_group_is_shown": "on", "image": image } number_service_before = Service.objects.all().count() response = self.client.post(self.url, data=data, format="multipart") self.assertEqual(302, response.status_code) self.assertEqual(number_service_before + 1, Service.objects.all().count()) new_service_with_image = Service.objects.get(name="new_service_with_image") try: self.assertIsNotNone(new_service_with_image.image.file) except ValueError: self.fail("Image not set") # cleanup image after the test new_service_with_image.image.delete()
tests/test_spiral_spanning_tree_coverage_path_planner.py
duken72/PythonRobotics
15,431
38157
import conftest # Add root path to sys.path import os import matplotlib.pyplot as plt from PathPlanning.SpiralSpanningTreeCPP \ import spiral_spanning_tree_coverage_path_planner spiral_spanning_tree_coverage_path_planner.do_animation = True def spiral_stc_cpp(img, start): num_free = 0 for i in range(img.shape[0]): for j in range(img.shape[1]): num_free += img[i][j] STC_planner = spiral_spanning_tree_coverage_path_planner.\ SpiralSpanningTreeCoveragePlanner(img) edge, route, path = STC_planner.plan(start) covered_nodes = set() for p, q in edge: covered_nodes.add(p) covered_nodes.add(q) # assert complete coverage assert len(covered_nodes) == num_free / 4 def test_spiral_stc_cpp_1(): img_dir = os.path.dirname( os.path.abspath(__file__)) + \ "/../PathPlanning/SpiralSpanningTreeCPP" img = plt.imread(os.path.join(img_dir, 'map', 'test.png')) start = (0, 0) spiral_stc_cpp(img, start) def test_spiral_stc_cpp_2(): img_dir = os.path.dirname( os.path.abspath(__file__)) + \ "/../PathPlanning/SpiralSpanningTreeCPP" img = plt.imread(os.path.join(img_dir, 'map', 'test_2.png')) start = (10, 0) spiral_stc_cpp(img, start) def test_spiral_stc_cpp_3(): img_dir = os.path.dirname( os.path.abspath(__file__)) + \ "/../PathPlanning/SpiralSpanningTreeCPP" img = plt.imread(os.path.join(img_dir, 'map', 'test_3.png')) start = (0, 0) spiral_stc_cpp(img, start) if __name__ == '__main__': conftest.run_this_test(__file__)
consumerui/grapher.py
AlexRogalskiy/kubeplus
396
38186
<filename>consumerui/grapher.py import sys import json import subprocess import sys import os from graphviz import Digraph from graphviz import Graph class ConnectionsGraph(object): def draw(self, connections_json, output_folder, relsToHide): #print(connections_json) cmd = "ls -ltr /root/" out = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()[0] #print(out) fp = open(output_folder + "/" + connections_json, "r") json_data = fp.read() json_output = json.loads(json_data) #print(json_output) nodemap = {} for n in json_output: level = n['Level'] if level in nodemap.keys(): nodelist = nodemap[level] else: nodelist = [] nodelist.append(n) nodemap[level] = nodelist #print(nodemap) opformat = 'png' dot = Graph(comment='Connections Graph', format=opformat) # dot.node('A', 'King Shivaji') # dot.node('B', 'Sir Bedevere the Wise') # dot.node('L', 'Sir Lancelot the Brave') relsToHideList1 = relsToHide.split(",") relsToHideList = [] for rel in relsToHideList1: relsToHideList.append(rel.strip()) #print(relsToHideList) # Create Nodes for level, nodelist in nodemap.items(): for n in nodelist: fqnodename = n['Kind'] + " " + n['Name'] fqpeername = n['PeerKind'] + " " + n['PeerName'] #print(fqnodename + " " + fqpeername) if n['Kind'] == 'Pod': dot.node(fqnodename, fqnodename, shape='box', style='filled', color='lightcyan1') else: dot.node(fqnodename, fqnodename, shape='box', style='filled', color='snow2') if level > 0: color = 'gray0' relationshipType = n['RelationType'] relationshipDetails = n['RelationDetails'] relationInfo = relationshipType if relationshipDetails != '' and relationshipType not in relsToHideList: relationInfo = relationInfo + " (" + relationshipDetails + ")" if relationshipType == 'specproperty': color = 'crimson' if relationshipType == 'label': color = 'darkgreen' if relationshipType == 'envvariable': color = 'gold4' if relationshipType == 'annotation': color = 'indigo' if relationshipType == 'owner reference': color = 'blue' dot.edge(fqpeername, fqnodename, color=color, label=relationInfo) # Create edges #dot.edges(['AB', 'AL']) #dot.edge('B', 'L', constraint='false') #print(dot.source) filename = connections_json + ".gv" rendered_file_path = dot.render('/root/' + filename, view=False) #print("FILENAME:" + filename) #print("Rendered file path:" + rendered_file_path) #print("Output available in " + filename + "." + opformat) #fp1 = open(output_folder + "/abc.txt", "w") #fp1.write(connections_json) #fp1.close() if __name__ == '__main__': graph = ConnectionsGraph() #print("Inside connections.py") connections_json = sys.argv[1] output_folder = sys.argv[2] if len(sys.argv) == 4: relsToHide = sys.argv[3] else: relsToHide = "" #print("Connections_json:"+ connections_json) #print("Output folder:" + output_folder) #print(relsToHide) graph.draw(connections_json, output_folder, relsToHide)
kik_unofficial/datatypes/xmpp/history.py
TriSerpent/kik-bot-api-unofficial
120
38213
from bs4 import BeautifulSoup import time from kik_unofficial.datatypes.xmpp.base_elements import XMPPElement, XMPPResponse class Struct: def __init__(self, **entries): self.__dict__.update(entries) class OutgoingAcknowledgement(XMPPElement): """ Represents an outgoing acknowledgement for a message ID """ def __init__(self, sender_jid, is_receipt, ack_id, group_jid): super().__init__() self.sender_jid = sender_jid self.group_jid = group_jid self.is_receipt = is_receipt self.ack_id = ack_id def serialize(self): timestamp = str(int(round(time.time() * 1000))) user_ack_data = ( '<sender jid="{}">' '<ack-id receipt="{}">{}</ack-id>' '</sender>' ).format(self.sender_jid, str(self.is_receipt).lower(), self.ack_id) group_ack_data = ( '<sender jid="{}" g="{}">' '<ack-id receipt="{}">{}</ack-id>' '</sender>' ).format(self.sender_jid, self.group_jid, str(self.is_receipt).lower(), self.ack_id) data = ('<iq type="set" id="{}" cts="{}">' '<query xmlns="kik:iq:QoS">' '<msg-acks>' '{}' '</msg-acks>' '<history attach="false" />' '</query>' '</iq>' ).format(self.message_id, timestamp, user_ack_data if self.group_jid != None else group_ack_data) return data.encode() class OutgoingHistoryRequest(XMPPElement): """ Represents an outgoing request for the account's messaging history """ def __init__(self): super().__init__() def serialize(self): timestamp = str(int(round(time.time() * 1000))) data = ('<iq type="set" id="{}" cts="{}">' '<query xmlns="kik:iq:QoS">' '<msg-acks />' '<history attach="true" />' '</query>' '</iq>' ).format(self.message_id, timestamp,) return data.encode() class HistoryResponse(XMPPResponse): """ Represents a Kik messaging history response. """ def __init__(self, data: BeautifulSoup): super().__init__(data) self.id = data["id"] if data.query.history: self.more = data.query.history.has_attr("more") self.from_jid = data["from"] self.messages = [] for message in data.query.history: if message["type"] == "receipt": args = { 'type':'receipt', 'from_jid': message["from"], 'receipt_type':message.receipt["type"], 'id':message.receipt.msgid["id"] } self.messages.append(Struct(**args)) elif message["type"] == "chat": args = { 'type':'chat', 'id':message["id"], 'from_jid':message["from"], 'body': message.body.text if message.body else None, 'preview': message.preview.text if message.preview else None, 'timestamp': message.kik["timestamp"] } self.messages.append(Struct(**args)) elif message["type"] == "groupchat": args = { 'type': 'groupchat', 'id': message["id"], 'from_jid': message["from"], 'body': message.body.text if message.body else None, 'preview': message.preview.text if message.preview else None, 'timestamp': message.kik["timestamp"], 'group_jid': message.g["jid"] } self.messages.append(Struct(**args))
mmrotate/models/detectors/oriented_rcnn.py
liuyanyi/mmrotate
449
38227
<gh_stars>100-1000 # Copyright (c) OpenMMLab. All rights reserved. import torch from ..builder import ROTATED_DETECTORS from .two_stage import RotatedTwoStageDetector @ROTATED_DETECTORS.register_module() class OrientedRCNN(RotatedTwoStageDetector): """Implementation of `Oriented R-CNN for Object Detection.`__ __ https://openaccess.thecvf.com/content/ICCV2021/papers/Xie_Oriented_R-CNN_for_Object_Detection_ICCV_2021_paper.pdf # noqa: E501, E261. """ def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(OrientedRCNN, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg) def forward_dummy(self, img): """Used for computing network flops. See `mmrotate/tools/analysis_tools/get_flops.py` """ outs = () # backbone x = self.extract_feat(img) # rpn if self.with_rpn: rpn_outs = self.rpn_head(x) outs = outs + (rpn_outs, ) proposals = torch.randn(1000, 6).to(img.device) # roi_head roi_outs = self.roi_head.forward_dummy(x, proposals) outs = outs + (roi_outs, ) return outs
e2e_tests/tests/fixtures/pytorch_lightning_amp/model_def.py
gh-determined-ai/determined
1,729
38312
""" This example shows how to interact with the Determined PyTorch Lightning Adapter interface to build a basic MNIST network. LightningAdapter utilizes the provided LightningModule with Determined's PyTorch control loop. """ from determined.pytorch import PyTorchTrialContext, DataLoader from determined.pytorch.lightning import LightningAdapter import data import mnist class MNISTTrial(LightningAdapter): def __init__(self, context: PyTorchTrialContext, *args, **kwargs) -> None: lm = mnist.LitMNIST( hidden_size=context.get_hparam('hidden_size'), learning_rate=context.get_hparam('learning_rate'), ) data_dir = f"/tmp/data-rank{context.distributed.get_rank()}" self.dm = data.MNISTDataModule( data_url=context.get_data_config()["url"], data_dir=data_dir, batch_size=context.get_per_slot_batch_size(), ) super().__init__(context, lightning_module=lm, *args, **kwargs) self.dm.prepare_data() def build_training_data_loader(self) -> DataLoader: self.dm.setup() dl = self.dm.train_dataloader() return DataLoader(dl.dataset, batch_size=dl.batch_size, num_workers=dl.num_workers) def build_validation_data_loader(self) -> DataLoader: self.dm.setup() dl = self.dm.val_dataloader() return DataLoader(dl.dataset, batch_size=dl.batch_size, num_workers=dl.num_workers)
AFLW/fddb_symbol_gen.py
kli-nlpr/FaceDetection-ConvNet-3D
159
38329
<filename>AFLW/fddb_symbol_gen.py import mxnet as mx def get_vgg16_gen(): relu_feature = mx.symbol.Variable(name="relu_feature") box_predict = mx.symbol.Variable(name="box_predict") ground_truth = mx.symbol.Variable(name="ground_truth") bbox_label = mx.symbol.Variable(name="bbox_label") ell_label = mx.symbol.GenEllLabel(*[box_predict, bbox_label, ground_truth], spatial_scale=0.5, name="ell_label") # roi warping roi_warping = mx.symbol.ROIWarping(*[relu_feature, box_predict, ground_truth], warped_shape=(28, 28), spatial_scale=0.5, name="roi_warping") roi_warping_pool = mx.symbol.Pooling( data=roi_warping, pool_type="max", kernel=(4, 4), stride=(4, 4), name="roi_warping_pool" ) roi_warping_flatten = mx.symbol.Flatten(data=roi_warping_pool) loss_all = mx.symbol.Group([roi_warping_flatten, ell_label]) return loss_all
runtime/module_resolution.py
cheery/lever
136
38332
<reponame>cheery/lever<filename>runtime/module_resolution.py from space import * import base import bon import evaluator import core import os import pathobj import stdlib import sys class ModuleScope(Object): def __init__(self, local, parent=None, frozen=False): self.cache = {} # maps absolute path -> module cache entry self.local = local self.parent = parent self.frozen = frozen # if frozen, the scope relies on cache. self.compile_file = null self.base_module = None def setcache(self, m_path, module, mtime): m = ModuleCache(m_path, module, mtime) self.cache[pathobj.stringify(m_path)] = m return m def getcache(self, m_path): s = pathobj.stringify(m_path) try: return self.cache[s] except KeyError as k: return None def getattr(self, name): if name == u"parent": return self.parent if self.parent is not None else null if name == u"local": return self.local if name == u"frozen": return boolean(self.frozen) if name == u"base_module": if self.base_module is None: return null return self.base_module if name == u"compile_file": return self.compile_file return Object.getattr(self, name) def setattr(self, name, value): if name == u"base_module": if len(self.cache) > 0: raise unwind(LTypeError(u"Cannot change base_module in active module scope")) self.base_module = cast_n(value, Module, u"ModuleScope.base_module") return null return Object.setattr(self, name, value) def listattr(self): listing = Object.listattr(self) listing.extend([ String(u"parent"), String(u"local"), String(u"frozen"), String(u"base_module"), String(u"compile_file"), ]) return listing def getitem(self, item): if isinstance(item, String): if item.string in self.cache: return self.cache[item.string] raise OldError(u"%s not in module scope" % item.repr()) def iter(self): return ScopeIterator(self.cache.iterkeys()) # @ModuleScope.instantiator2(signature(pathobj.Path, ModuleScope, Object, optional=2)) def _(local, parent, options): scope = ModuleScope(local, parent) if options: key = String(u"compile_file") if options.contains(key): scope.compile_file = options.getitem(key) return scope class ScopeIterator(Object): _immutable_fields_ = ['iterator'] def __init__(self, iterator): self.iterator = iterator def iter(self): return self @ScopeIterator.builtin_method @signature(ScopeIterator) def next(self): return String(self.iterator.next()) class ModuleCache(Object): def __init__(self, path, module, mtime): self.path = path self.module = module self.mtime = mtime def getattr(self, name): if name == u"path": return self.path if name == u"module": return self.module if name == u"mtime": return Float(self.mtime) return Object.getattr(self, name) def listattr(self): listing = Object.listattr(self) listing.extend([ String(u"path"), String(u"module"), String(u"mtime"), ]) return listing @ModuleCache.builtin_method @signature(ModuleCache) def get_moduleinfo(self): return moduleinfo(self.path) root_module = ModuleScope(pathobj.parse(u"builtin:/"), frozen=True) root_module.base_module = base.module for py_module in stdlib.import_all_modules(): assert isinstance(py_module.module, Module), "dependency cycle somewhere" p = pathobj.concat(root_module.local, pathobj.parse(py_module.module.name)) py_module.module.setattr_force(u"doc", pathobj.parse(u"doc:/" + py_module.module.name)) root_module.setcache(p, py_module.module, 0.0) import naming naming.breath_first_search(py_module.module, 1.0) base.module.setattr_force(u"doc", pathobj.parse(u"doc:/base")) root_module.setcache(pathobj.parse(u"builtin:/" + base.module.name), base.module, 0.0) # the importer poststage for base module will take place in # entry generation at runtime/main.py because there are so many # items added into the base module all around the system. import main def start(main_script): assert isinstance(main_script, String) lib_scope = ModuleScope( pathobj.concat(core.get_ec().lever_path, pathobj.parse(u"lib")), root_module) lib_scope.compile_file = LazyLoader(lib_scope) main_path = pathobj.os_parse(resuffix(main_script.string, u".lc", u"")) mi = moduleinfo(pathobj.abspath(main_path)) scope = ModuleScope(mi.directory, lib_scope) this = Module(mi.name.string, {}, extends=base.module) # base.module if not (mi.lc_present or mi.cb_present): raise OldError(u"main module not present") scope.setcache(main_path, this, max(mi.lc_mtime, mi.cb_mtime)) mi.default_config(this, scope) mi.loadit(this, scope) return this class LazyLoader(Object): def __init__(self, lib_scope): self.lib_scope = lib_scope def call(self, argv): lib_scope = self.lib_scope mi = moduleinfo(pathobj.concat(lib_scope.local, pathobj.parse(u"compiler"))) this = Module(mi.name.string, {}, extends=base.module) # base.module mi.default_config(this, lib_scope) mi.loadit(this, lib_scope) lib_scope.compile_file = this.getattr(u"compile_file") return lib_scope.compile_file.call(argv) # plans: # allow modules derive or create new scopes and isolate themselves. # module path def moduleinfo(module_path): module_path = pathobj.abspath(module_path) module_name = module_path.getattr(u"basename") assert isinstance(module_name, String) s = pathobj.os_stringify(module_path).encode('utf-8') is_dir = False if os.path.isdir(s): w = os.path.join(s, "init") if os.path.exists(w + ".lc.cb") or os.path.exists(w + ".lc"): is_dir = True s = w else: module_path = pathobj.directory(module_path) cb_path = s + ".lc.cb" cb_present = os.path.exists(cb_path) cb_mtime = 0.0 lc_path = s + ".lc" lc_present = os.path.exists(lc_path) lc_mtime = 0.0 if cb_present: cb_mtime = os.path.getmtime(cb_path) if lc_present: lc_mtime = os.path.getmtime(lc_path) # This ignores outdated bytecode objects. if cb_present and lc_present: cb_present = not cb_mtime < lc_mtime return ModuleInfo( module_name, module_path, pathobj.os_parse(cb_path.decode('utf-8')), cb_present, cb_mtime, pathobj.os_parse(lc_path.decode('utf-8')), lc_present, lc_mtime, ) class ModuleInfo(Object): def __init__(self, name, directory, cb_path, cb_present, cb_mtime, lc_path, lc_present, lc_mtime): self.name = name self.directory = directory self.cb_path = cb_path self.cb_present = cb_present self.cb_mtime = cb_mtime self.lc_path = lc_path self.lc_present = lc_present self.lc_mtime = lc_mtime def default_config(self, module, scope): module.setattr(u"dir", self.directory) module.setattr(u"name", self.name) module.setattr(u"import", Import(self.directory, scope)) return module def loadit(self, module, scope): if not self.cb_present: while scope.compile_file is null and scope.parent is not None: scope = scope.parent if scope.compile_file is null: raise OldError(u"Lever bytecode compiler stale or missing: " + self.lc_path.repr()) scope.compile_file.call([self.cb_path, self.lc_path]) self.cb_mtime = os.path.getmtime(pathobj.os_stringify(self.cb_path).encode('utf-8')) self.cb_present = True program = evaluator.loader.from_object(bon.open_file(self.cb_path), self.cb_path) res = program.call([module]) return res def getattr(self, name): if name == u"present": return boolean(self.cb_present or self.lc_present) if name == u"mtime": return Float(max(self.lc_mtime, self.cb_mtime)) return Object.getattr(self, name) class Import(Object): def __init__(self, local, scope): self.local = local self.scope = scope def call(self, argv): if len(argv) != 1: raise OldError(u"wrong number of arguments to import") name = argv[0] if isinstance(name, pathobj.Path): raise OldError(u"no direct loading yet") elif not isinstance(name, String): raise OldError(u"expected string") # import resolution: # local/script.lc path = pathobj.concat(self.local, pathobj.to_path(name)) cache = self.scope.getcache(path) if cache: return cache.module if not self.scope.frozen: mi = moduleinfo(path) if mi.lc_present or mi.cb_present: base_module = get_base_module(self.scope) this = Module(name.string, {}, extends=base_module) # base.module self.scope.setcache(path, this, max(mi.lc_mtime, mi.cb_mtime)) mi.default_config(this, self.scope) mi.loadit(this, self.scope) return this # scope/ scope = self.scope while scope is not None: path = pathobj.concat(scope.local, pathobj.to_path(name)) cache = scope.getcache(path) if cache: return cache.module if not scope.frozen: mi = moduleinfo(path) if mi.lc_present or mi.cb_present: base_module = get_base_module(scope) this = Module(name.string, {}, extends=base_module) # base.module scope.setcache(path, this, max(mi.lc_mtime, mi.cb_mtime)) mi.default_config(this, scope) mi.loadit(this, scope) return this scope = scope.parent raise OldError(u"module '%s' not present" % name.string) def getattr(self, name): if name == u'scope': return self.scope if name == u"local": return self.local return Object.getattr(self, name) def get_base_module(scope): while scope.parent and scope.base_module is None: scope = scope.parent return scope.base_module @Import.instantiator2(signature(pathobj.Path, ModuleScope)) def _(local, scope): return Import(local, scope) @ModuleScope.builtin_method @signature(ModuleScope, String) def reimport(scope, obj): if obj.string not in scope.cache: raise OldError(u"Cannot reimport, module not present") mc = scope.cache[obj.string] mi = moduleinfo(mc.path) mi.default_config(mc.module, scope) mi.loadit(mc.module, scope) mc.mtime = max(mi.lc_mtime, mi.cb_mtime) return mc.module def resuffix(string, suffix, new_suffix=u""): if string.endswith(suffix): i = max(0, len(string) - len(suffix)) return string[0:i] + new_suffix return string + new_suffix base.module.setattr_force(u"ModuleScope", ModuleScope.interface) base.module.setattr_force(u"Import", Import.interface)
up/utils/model/optim/__init__.py
ModelTC/EOD
196
38350
<filename>up/utils/model/optim/__init__.py from .lars import LARS # noqa from .lamb import LAMB # noqa
anchore_manager/version.py
Nordix/anchore-engine
110
38392
<filename>anchore_manager/version.py version = "0.9.4"
faced/const.py
hseguro/faced
575
38440
<filename>faced/const.py import os MODELS_PATH = os.path.join(os.path.dirname(__file__), "models") YOLO_SIZE = 288 YOLO_TARGET = 9 CORRECTOR_SIZE = 50
test/test_insert_documents.py
ShaneKilkelly/bedquilt
288
38459
<reponame>ShaneKilkelly/bedquilt import testutils import json import string import psycopg2 class TestInsertDocument(testutils.BedquiltTestCase): def test_insert_into_non_existant_collection(self): doc = { "_id": "<EMAIL>", "name": "<NAME>", "age": 20 } self.cur.execute(""" select bq_insert('people', '{}'); """.format(json.dumps(doc))) result = self.cur.fetchone() self.assertEqual( result, ('<EMAIL>',) ) self.cur.execute("select bq_list_collections();") collections = self.cur.fetchall() self.assertIsNotNone(collections) self.assertEqual(collections, [("people",)]) def test_with_non_string_id(self): docs = [ { "_id": 42, "name": "Penguin", "age": "<EMAIL>" }, { "_id": ['derp'], "name": "Penguin", "age": "<EMAIL>" }, { "_id": {"name": "Penguin"}, "age": "<EMAIL>" }, { "_id": False, "name": "Penguin", "age": "<EMAIL>" }, { "_id": None, "name": "Penguin", "age": "<EMAIL>" } ] for doc in docs: with self.assertRaises(psycopg2.InternalError): self.cur.execute(""" select bq_insert('people', '{}'); """.format(json.dumps(doc))) self.conn.rollback() def test_insert_without_id(self): doc = { "name": "<NAME>", "age": 20 } self.cur.execute(""" select bq_insert('people', '{}'); """.format(json.dumps(doc))) result = self.cur.fetchone() self.assertIsNotNone(result) self.assertEqual(type(result), tuple) self.assertEqual(len(result), 1) _id = result[0] self.assertIn(type(_id), {str, unicode}) self.assertEqual(len(_id), 24) for character in _id: self.assertIn(character, string.hexdigits) def test_with_single_quotes_in_field(self): doc = { "description": "Something I've eaten" } self.cur.execute(""" select bq_insert('things', %s); """, (json.dumps(doc),)) result = self.cur.fetchone() self.assertIsNotNone(result) def test_insert_with_repeat_id(self): doc = { "_id": "user_one", "name": "<NAME>", "age": 20 } self.cur.execute(""" select bq_insert('people', '{}'); """.format(json.dumps(doc))) result = self.cur.fetchone() self.assertIsNotNone(result) self.assertEqual(type(result), tuple) self.assertEqual(len(result), 1) _id = result[0] self.assertEqual(_id, "user_one") self.conn.commit() with self.assertRaises(psycopg2.IntegrityError): self.cur.execute(""" select bq_insert('people', '{}'); """.format(json.dumps(doc))) self.conn.rollback() self.cur.execute("select count(*) from people;") result = self.cur.fetchone() self.assertEqual(result, (1,))
src/Query/apifuzz.py
codexgigassys/codex-backend
161
38481
# Copyright (C) 2016 <NAME>. # This file is part of CodexGigas - https://github.com/codexgigassys/ # See the file 'LICENSE' for copying permission. import pathmagic from pymongo import MongoClient import ssdeep from env import envget def searchFuzzy(fuzz, limit, thresh): client = MongoClient(envget('metadata.host'), envget('metadata.port')) db = client[envget('db_metadata_name')] coll_meta = db["db_metadata_collection"] f1 = coll_meta.find({}, {"file_id": 1, "fuzzy_hash": 1}).limit(limit) l = [] for f in f1: l.append(f) ret = {} for a in l: res = -1 try: res = ssdeep.compare(a["fuzzy_hash"], fuzz) except InternalError: print(str(res) + "------" + str(a["fuzzy_hash"]) + "-----" + str(a["file_id"])) continue if(res >= thresh): ret[a["file_id"]] = res return ret def searchFull(search, limit): # print("1") client = MongoClient(envget('metadata.host'), envget('metadata.port')) # print("2") db = client[envget('db_metadata_name')] # print("3") coll_meta = db["db_metadata_collection"] # print("4") f1 = coll_meta.find(search).limit(limit) # print("5") l = [] for f in f1: l.append(f) # print("6") ret = [] for a in l: ret.append(str(a["file_id"])) # print("7") return ret
yasql/apps/sqlorders/urls.py
Fanduzi/YaSQL
443
38483
<reponame>Fanduzi/YaSQL # -*- coding:utf-8 -*- # edit by fuzongfei from django.urls import path from sqlorders import views urlpatterns = [ # SQL工单 path('envs', views.GetDBEnvironment.as_view(), name='v1.sqlorders.db-environment'), path('schemas', views.GetDbSchemas.as_view(), name='v1.sqlorders.db-schemas'), path('incep/syntaxcheck', views.IncepSyntaxCheckView.as_view(), name='v1.sqlorders.incep.syntaxcheck'), path('commit', views.SqlOrdersCommit.as_view(), name='v1.sqlorders.commit'), path('list', views.SqlOrdersList.as_view(), name='v1.sqlorders.list'), path('detail/<str:order_id>', views.SqlOrdersDetail.as_view(), name='v1.sqlorders.detail'), path('op/approve/<int:pk>', views.OpSqlOrderView.as_view({"put": "approve"}), name='v1.sqlorders.approve'), path('op/feedback/<int:pk>', views.OpSqlOrderView.as_view({"put": "feedback"}), name='v1.sqlorders.feedback'), path('op/close/<int:pk>', views.OpSqlOrderView.as_view({"put": "close"}), name='v1.sqlorders.close'), path('op/review/<int:pk>', views.OpSqlOrderView.as_view({"put": "review"}), name='v1.sqlorders.review'), # 生成工单任务 path('tasks/generate', views.GenerateTasksView.as_view(), name='v1.sqlorders.generate-tasks'), path('tasks/get/<str:order_id>', views.GetTaskIdView.as_view(), name='v1.sqlorders.get-task-id'), path('tasks/list/<str:task_id>', views.GetTasksListView.as_view(), name='v1.sqlorders.get-tasks-list'), path('tasks/preview/<str:task_id>', views.GetTasksPreviewView.as_view(), name='v1.sqlorders.get-tasks-preview'), # 执行任务 path('tasks/execute/single', views.ExecuteSingleTaskView.as_view(), name='v1.sqlorders.execute-single-task'), path('tasks/execute/multi', views.ExecuteMultiTasksView.as_view(), name='v1.sqlorders.execute-multi-tasks'), path('tasks/throttle', views.ThrottleTaskView.as_view(), name='v1.sqlorders.throttle-task'), path('tasks/result/<int:id>', views.GetTasksResultView.as_view(), name='v1.sqlorders.get-tasks-result'), # Hook path('hook', views.HookSqlOrdersView.as_view(), name='v1.sqlorders.hook-sqlorders'), # download export files path('export/download/<str:base64_filename>', views.DownloadExportFilesView.as_view(), name='v1.sqlorders.download-export-files'), # 上线版本 path('versions/get', views.ReleaseVersionsGet.as_view(), name='v1.sqlorders.versions.get'), path('versions/list', views.ReleaseVersionsList.as_view(), name='v1.sqlorders.versions.list'), path('versions/create', views.ReleaseVersionsCreate.as_view(), name='v1.sqlorders.versions.create'), path('versions/update/<int:key>', views.ReleaseVersionsUpdate.as_view(), name='v1.sqlorders.versions.update'), path('versions/delete/<int:id>', views.ReleaseVersionsDelete.as_view(), name='v1.sqlorders.versions.delete'), path('versions/view/<str:version>', views.ReleaseVersionsView.as_view(), name='v1.sqlorders.versions.view'), ]
09WebFramework/day04/basic04.py
HaoZhang95/PythonAndMachineLearning
937
38485
<reponame>HaoZhang95/PythonAndMachineLearning """ ORM是django的核心思想, object-related-mapping对象-关系-映射 ORM核心就是操作数据库的时候不再直接操作sql语句,而是操作对象 定义一个类,类中有uid,username等类属型,sql语句insert修改的时候直接插入这个User对象 """ # ORM映射实现原理,通过type修改类对象信息 # 定义这个元类metaclass class ModelMetaclass(type): def __new__(cls, name, bases, attrs): # name --> User # bases --> object # attrs --> { # "uid" :('uid', "int unsigned"), # "name": ('username', "varchar(30)"), # "email": ('email', "varchar(30)"), # "password": ('password', "varchar(30)"), # "__init__": xxx, # "save": xxx2, # } mappings = dict() # 判断是否需要保存 for k, v in attrs.items(): # 判断是否是元组类型 if isinstance(v, tuple): print('Found mapping: %s ==> %s' % (k, v)) mappings[k] = v # 删除这些已经在字典中存储的属性 for k in mappings.keys(): attrs.pop(k) # 等于del attrs[k] # 将之前的uid/name/email/password以及对应的对象引用、类名字 # attrs = { # "__init__": xxxx, # "save": xxxx2, # "__mappings__": { # "uid": ('uid', "int unsigned"), # "name": ('username', "varchar(30)"), # ""email: ('email', "varchar(30)"), # "password": ('password', "varchar(30)") # }, # "__table__": "User" # } attrs['__mappings__'] = mappings # 保存属性和列的映射关系 attrs['__table__'] = name # 假设表名和类名一致 return type.__new__(cls, name, bases, attrs) class User(metaclass=ModelMetaclass): uid = ('uid', "int unsigned") name = ('username', "varchar(30)") email = ('email', "varchar(30)") password = ('password', "<PASSWORD>)") # 当指定元类之后,以上的类属性将不在类中,而是在__mappings__属性指定的字典中存储 # 以上User类中有 # __mappings__ = { # "uid": ('uid', "int unsigned") # "name": ('username', "varchar(30)") # "email": ('email', "varchar(30)") # "password": ('password', "varchar(30)") # } # __table__ = "User" # 参数名是kwargs,不是**kwargs,**只是告诉解释器将传来的参数变为字典 # for循环遍历__new__返回的attrs字典,实现实例对象的属性和方法赋值 def __init__(self, **kwargs): for name, value in kwargs.items(): setattr(self, name, value) def save(self): fields = [] # ["uid", "username"...] args = [] #[12345, "laowang"...] # 创建的实例对象中没有__mapping__,去类对象中找 # k --> uid, v --> 12345 for k, v in self.__mappings__.items(): fields.append(v[0]) args.append(getattr(self, k, None)) args_temp = list() for temp in args: if isinstance(temp, int): # 判断如果是数字类型 args_temp.append(str(temp)) elif isinstance(temp, str): # 判断如果是字符串类型 args_temp.append("""'%s'""" % temp) # sql = 'insert into %s (%s) values (%s);' \ # % (self.__table__, ','.join(fields), ','.join([str(i) for i in args])) # 使用",".join为每一个字段后都插入逗号分隔 sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(args_temp)) print('SQL: %s' % sql) # 抽取为基类,再创建User2这个类,就直接让其继承Model类 class Model(object, metaclass=ModelMetaclass): def __init__(self, **kwargs): for name, value in kwargs.items(): setattr(self, name, value) def save(self): fields = [] args = [] for k, v in self.__mappings__.items(): fields.append(v[0]) args.append(getattr(self, k, None)) args_temp = list() for temp in args: # 判断入如果是数字类型 if isinstance(temp, int): args_temp.append(str(temp)) elif isinstance(temp, str): args_temp.append("""'%s'""" % temp) sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(args_temp)) print('SQL: %s' % sql) class User2(Model): uid = ('uid', "int unsigned") name = ('username', "varchar(30)") email = ('email', "varchar(30)") password = ('password', "<PASSWORD>)") def test01(): u = User(uid=12345, name='Michael', email='<EMAIL>', password='<PASSWORD>') # print(u.__dict__) u.save() def test02(): list = ['12356', "laowang", "email"] print(",".join(list)) def main(): # test01() test02() if __name__ == '__main__': main()
Text/TextQualityWatchdog/Watchdog/__init__.py
iii-PaulCridland/azure-search-power-skills
128
38492
# Standard libraries import os import json import logging from typing import Text # Azure functions import azure.functions as func # Inference runtime import onnxruntime as ort from tokenizers import BertWordPieceTokenizer # Helper scripts from .PreprocessData import normalize_text, truncate_text from .Predict import get_ids_and_masks, predict # Initialize ONNX runtime and language model tokenizer vocab_file_path = os.path.join(os.path.dirname(__file__), "Model/bert-base-uncased-vocab.txt") onnx_file_path = os.path.join(os.path.dirname(__file__), "Model/watchdog_model.onnx") tokenizer = BertWordPieceTokenizer(vocab_file_path) tokenizer.enable_padding(pad_id=0, pad_token="[PAD]", length=128) tokenizer.enable_truncation(max_length=128) ort_session = ort.InferenceSession(onnx_file_path) def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Invoked TextQualityWatchdog Skill.') try: body = json.dumps(req.get_json()) if body: logging.info(body) values = json.loads(body)['values'] results = {} results["values"] = [] for value in values: text = value['data']['text'] # Apply puntuation and whitespace normalization, and convert to lowercase text = normalize_text(text) # Truncate the text to a maximum of 128 (default) whitespace separated tokens text = truncate_text(text) # Compute the input tokens and attention masks for the text sequence input_ids, attention_masks = get_ids_and_masks(tokenizer, text) # Call the ONNX model to perform inference on the input flat_prediction = predict(ort_session, input_ids, attention_masks) payload = ( { "recordId": value['recordId'], "data": { "text_quality_warning": int(flat_prediction[0]) } } ) results["values"].append(payload) result = json.dumps(results, ensure_ascii=False) return func.HttpResponse(result, mimetype="application/json") else: return func.HttpResponse( "Invalid body", status_code=400 ) except ValueError: return func.HttpResponse( "Invalid body", status_code=400 )