max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
python/ts/flint/utils.py
mattomatic/flint
972
38501
<filename>python/ts/flint/utils.py # # Copyright 2017 TWO SIGMA OPEN SOURCE, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # _UNIT_TO_JUNIT = { "s": "SECONDS", "ms": "MILLISECONDS", "us": "MICROSECONDS", "ns": "NANOSECONDS" } def jsc(sc): """Returns the underlying Scala SparkContext :param sc: SparkContext :return: :class:`py4j.java_gateway.JavaObject` (org.apache.spark.SparkContext) """ return sc._jsc.sc() def jvm(sc): """Returns the Pyspark JVM handle :param sc: SparkContext :return: :class:`py4j.java_gateway.JavaView ` """ return sc._jvm def scala_object(jpkg, obj): return jpkg.__getattr__(obj + "$").__getattr__("MODULE$") def scala_package_object(jpkg): return scala_object(jpkg, "package") def pyutils(sc): """Returns a handle to ``com.twosigma.flint.rdd.PythonUtils`` :param sc: SparkContext :return: :class:`py4j.java_gateway.JavaPackage` (com.twosigma.flint.rdd.PythonUtils) """ return jvm(sc).com.twosigma.flint.rdd.PythonUtils def copy_jobj(sc, obj): """Returns a Java object ``obj`` with an additional reference count :param sc: Spark Context :param obj: :class:`py4j.java_gateway.JavaObject` :return: ``obj`` (:class:`py4j.java_gateway.JavaObject`) with an additional reference count """ return pyutils(sc).makeCopy(obj) def to_list(lst): """Make sure the object is wrapped in a list :return: a ``list`` object, either lst or lst in a list """ if isinstance(lst, str): lst = [lst] elif not isinstance(lst, list): try: lst = list(lst) except TypeError: lst = [lst] return lst def list_to_seq(sc, lst, preserve_none=False): """Shorthand for accessing PythonUtils Java Package If lst is a Python None, returns a None or empty Scala Seq (depending on preserve_none) If lst is a Python object, such as str, returns a Scala Seq containing the object If lst is a Python tuple/list, returns a Scala Seq containing the objects in the tuple/list :return: A copy of ``lst`` as a ``scala.collection.Seq`` """ if lst is None: if preserve_none: return None else: lst = [] return jvm(sc).org.apache.spark.api.python.PythonUtils.toSeq(to_list(lst)) def py_col_to_scala_col(sc, py_col): converters = { list: list_to_seq, tuple: list_to_seq } convert = converters.get(type(py_col)) if convert: return convert(sc, py_col) else: return py_col def junit(sc, unit): """Converts a Pandas unit to scala.concurrent.duration object :return: Scala equivalent of ``unit`` as ``scala.concurrent.duration object`` """ if unit not in _UNIT_TO_JUNIT: raise ValueError("unit must be in {}".format(_UNIT_TO_JUNIT.keys())) return scala_package_object(jvm(sc).scala.concurrent.duration).__getattr__(_UNIT_TO_JUNIT[unit])() def jschema(sc, schema): """Converts a Python schema (StructType) to a Scala schema ``org.apache.spark.sql.types.StructType`` :return: :class:``org.apache.spark.sql.types.StructType`` """ import json return jvm(sc).org.apache.spark.sql.types.StructType.fromString(json.dumps(schema.jsonValue))
sympy/diffgeom/tests/test_class_structure.py
shilpiprd/sympy
8,323
38550
<reponame>shilpiprd/sympy from sympy.diffgeom import Manifold, Patch, CoordSystem, Point from sympy import symbols, Function from sympy.testing.pytest import warns_deprecated_sympy m = Manifold('m', 2) p = Patch('p', m) a, b = symbols('a b') cs = CoordSystem('cs', p, [a, b]) x, y = symbols('x y') f = Function('f') s1, s2 = cs.coord_functions() v1, v2 = cs.base_vectors() f1, f2 = cs.base_oneforms() def test_point(): point = Point(cs, [x, y]) assert point != Point(cs, [2, y]) #TODO assert point.subs(x, 2) == Point(cs, [2, y]) #TODO assert point.free_symbols == set([x, y]) def test_subs(): assert s1.subs(s1, s2) == s2 assert v1.subs(v1, v2) == v2 assert f1.subs(f1, f2) == f2 assert (x*f(s1) + y).subs(s1, s2) == x*f(s2) + y assert (f(s1)*v1).subs(v1, v2) == f(s1)*v2 assert (y*f(s1)*f1).subs(f1, f2) == y*f(s1)*f2 def test_deprecated(): with warns_deprecated_sympy(): cs_wname = CoordSystem('cs', p, ['a', 'b']) assert cs_wname == cs_wname.func(*cs_wname.args)
datrie/run_test.py
nikicc/anaconda-recipes
130
38556
<reponame>nikicc/anaconda-recipes import string import datrie trie = datrie.Trie(string.ascii_lowercase) trie[u'foo'] = 5 assert u'foo' in trie
tests/vision/metrics/vqa_test.py
shunk031/allennlp-models
402
38559
<reponame>shunk031/allennlp-models<filename>tests/vision/metrics/vqa_test.py from typing import Any, Dict, List, Tuple, Union import pytest import torch from allennlp.common.testing import ( AllenNlpTestCase, multi_device, global_distributed_metric, run_distributed_test, ) from allennlp_models.vision import VqaMeasure class VqaMeasureTest(AllenNlpTestCase): @multi_device def test_vqa(self, device: str): vqa = VqaMeasure() logits = torch.tensor( [[0.35, 0.25, 0.1, 0.1, 0.2], [0.1, 0.6, 0.1, 0.2, 0.0]], device=device ) labels = torch.tensor([[0], [3]], device=device) label_weights = torch.tensor([[1 / 3], [2 / 3]], device=device) vqa(logits, labels, label_weights) vqa_score = vqa.get_metric()["score"] assert vqa_score == pytest.approx((1 / 3) / 2) @multi_device def test_vqa_accumulates_and_resets_correctly(self, device: str): vqa = VqaMeasure() logits = torch.tensor( [[0.35, 0.25, 0.1, 0.1, 0.2], [0.1, 0.6, 0.1, 0.2, 0.0]], device=device ) labels = torch.tensor([[0], [3]], device=device) labels2 = torch.tensor([[4], [4]], device=device) label_weights = torch.tensor([[1 / 3], [2 / 3]], device=device) vqa(logits, labels, label_weights) vqa(logits, labels, label_weights) vqa(logits, labels2, label_weights) vqa(logits, labels2, label_weights) vqa_score = vqa.get_metric(reset=True)["score"] assert vqa_score == pytest.approx((1 / 3 + 1 / 3 + 0 + 0) / 8) vqa(logits, labels, label_weights) vqa_score = vqa.get_metric(reset=True)["score"] assert vqa_score == pytest.approx((1 / 3) / 2) @multi_device def test_does_not_divide_by_zero_with_no_count(self, device: str): vqa = VqaMeasure() assert vqa.get_metric()["score"] == pytest.approx(0.0) def test_distributed_accuracy(self): logits = [ torch.tensor([[0.35, 0.25, 0.1, 0.1, 0.2]]), torch.tensor([[0.1, 0.6, 0.1, 0.2, 0.0]]), ] labels = [torch.tensor([[0]]), torch.tensor([[3]])] label_weights = [torch.tensor([[1 / 3]]), torch.tensor([[2 / 3]])] metric_kwargs = {"logits": logits, "labels": labels, "label_weights": label_weights} desired_accuracy = {"score": (1 / 3) / 2} run_distributed_test( [-1, -1], global_distributed_metric, VqaMeasure(), metric_kwargs, desired_accuracy, exact=False, ) def test_distributed_accuracy_unequal_batches(self): logits = [ torch.tensor([[0.35, 0.25, 0.1, 0.1, 0.2], [0.35, 0.25, 0.1, 0.1, 0.2]]), torch.tensor([[0.1, 0.6, 0.1, 0.2, 0.0]]), ] labels = [torch.tensor([[0], [0]]), torch.tensor([[3]])] label_weights = [torch.tensor([[1], [1]]), torch.tensor([[1 / 3]])] metric_kwargs = {"logits": logits, "labels": labels, "label_weights": label_weights} desired_accuracy = {"score": (1 + 1 + 0) / 3} run_distributed_test( [-1, -1], global_distributed_metric, VqaMeasure(), metric_kwargs, desired_accuracy, exact=False, ) def test_multiple_distributed_runs(self): logits = [ torch.tensor([[0.35, 0.25, 0.1, 0.1, 0.2]]), torch.tensor([[0.1, 0.6, 0.1, 0.2, 0.0]]), ] labels = [torch.tensor([[0]]), torch.tensor([[3]])] label_weights = [torch.tensor([[1 / 3]]), torch.tensor([[2 / 3]])] metric_kwargs = {"logits": logits, "labels": labels, "label_weights": label_weights} desired_accuracy = {"score": (1 / 3) / 2} run_distributed_test( [-1, -1], global_distributed_metric, VqaMeasure(), metric_kwargs, desired_accuracy, exact=True, number_of_runs=200, )
tests/epyccel/test_epyccel_transpose.py
dina-fouad/pyccel
206
38562
<reponame>dina-fouad/pyccel<filename>tests/epyccel/test_epyccel_transpose.py # pylint: disable=missing-function-docstring, missing-module-docstring/ from numpy.random import randint from pyccel.epyccel import epyccel def test_transpose_shape(language): def f1(x : 'int[:,:]'): from numpy import transpose y = transpose(x) n, m = y.shape return n, m, y[-1,0], y[0,-1] def f2(x : 'int[:,:,:]'): from numpy import transpose y = transpose(x) n, m, p = y.shape return n, m, p, y[0,-1,0], y[0,0,-1], y[-1,-1,0] x1 = randint(50, size=(2,5)) x2 = randint(50, size=(2,3,7)) f1_epyc = epyccel(f1, language=language) assert f1( x1 ) == f1_epyc( x1 ) f2_epyc = epyccel(f2, language=language) assert f2( x2 ) == f2_epyc( x2 ) def test_transpose_property(language): def f1(x : 'int[:,:]'): y = x.T n, m = y.shape return n, m, y[-1,0], y[0,-1] def f2(x : 'int[:,:,:]'): y = x.T n, m, p = y.shape return n, m, p, y[0,-1,0], y[0,0,-1], y[-1,-1,0] x1 = randint(50, size=(2,5)) x2 = randint(50, size=(2,3,7)) f1_epyc = epyccel(f1, language=language) assert f1( x1 ) == f1_epyc( x1 ) f2_epyc = epyccel(f2, language=language) assert f2( x2 ) == f2_epyc( x2 ) def test_transpose_in_expression(language): def f1(x : 'int[:,:]'): from numpy import transpose y = transpose(x)+3 n, m = y.shape return n, m, y[-1,0], y[0,-1] def f2(x : 'int[:,:,:]'): y = x.T*3 n, m, p = y.shape return n, m, p, y[0,-1,0], y[0,0,-1], y[-1,-1,0] x1 = randint(50, size=(2,5)) x2 = randint(50, size=(2,3,7)) f1_epyc = epyccel(f1, language=language) assert f1( x1 ) == f1_epyc( x1 ) f2_epyc = epyccel(f2, language=language) assert f2( x2 ) == f2_epyc( x2 ) def test_mixed_order(language): def f1(x : 'int[:,:]'): from numpy import transpose, ones n, m = x.shape y = ones((m,n), order='F') z = x+transpose(y) n, m = z.shape return n, m, z[-1,0], z[0,-1] def f2(x : 'int[:,:]'): from numpy import transpose, ones n, m = x.shape y = ones((m,n), order='F') z = x.transpose()+y n, m = z.shape return n, m, z[-1,0], z[0,-1] def f3(x : 'int[:,:,:]'): from numpy import transpose, ones n, m, p = x.shape y = ones((p,m,n)) z = transpose(x)+y n, m, p = z.shape return n, m, p, z[0,-1,0], z[0,0,-1], z[-1,-1,0] x1 = randint(50, size=(2,5)) x2 = randint(50, size=(2,3,7)) f1_epyc = epyccel(f1, language=language) assert f1( x1 ) == f1_epyc( x1 ) f2_epyc = epyccel(f2, language=language) assert f2( x1 ) == f2_epyc( x1 ) f3_epyc = epyccel(f3, language=language) assert f3( x2 ) == f3_epyc( x2 ) def test_transpose_pointer(language): def f1(x : 'int[:,:]'): from numpy import transpose y = transpose(x) x[0,-1] += 22 n, m = y.shape return n, m, y[-1,0], y[0,-1] def f2(x : 'int[:,:,:]'): y = x.T x[0,-1,0] += 11 n, m, p = y.shape return n, m, p, y[0,-1,0], y[0,0,-1], y[-1,-1,0] x1 = randint(50, size=(2,5)) x1_copy = x1.copy() x2 = randint(50, size=(2,3,7)) x2_copy = x2.copy() f1_epyc = epyccel(f1, language=language) assert f1( x1 ) == f1_epyc( x1_copy ) f2_epyc = epyccel(f2, language=language) assert f2( x2 ) == f2_epyc( x2_copy ) def test_transpose_of_expression(language): def f1(x : 'int[:,:]'): from numpy import transpose y = transpose(x*2)+3 n, m = y.shape return n, m, y[-1,0], y[0,-1] def f2(x : 'int[:,:,:]'): y = (x*2).T*3 n, m, p = y.shape return n, m, p, y[0,-1,0], y[0,0,-1], y[-1,-1,0] x1 = randint(50, size=(2,5)) x2 = randint(50, size=(2,3,7)) f1_epyc = epyccel(f1, language=language) assert f1( x1 ) == f1_epyc( x1 ) f2_epyc = epyccel(f2, language=language) assert f2( x2 ) == f2_epyc( x2 ) def test_force_transpose(language): def f1(x : 'int[:,:]'): from numpy import transpose, empty n,m = x.shape y = empty((m,n)) y[:,:] = transpose(x) n, m = y.shape return n, m, y[-1,0], y[0,-1] def f2(x : 'int[:,:,:]'): from numpy import empty n,m,p = x.shape y = empty((p,m,n)) y[:,:,:] = x.transpose() n, m, p = y.shape return n, m, p, y[0,-1,0], y[0,0,-1], y[-1,-1,0] x1 = randint(50, size=(2,5)) x2 = randint(50, size=(2,3,7)) f1_epyc = epyccel(f1, language=language) assert f1( x1 ) == f1_epyc( x1 ) f2_epyc = epyccel(f2, language=language) assert f2( x2 ) == f2_epyc( x2 )
examples/example.py
jakevdp/Mmani
303
38586
<gh_stars>100-1000 import sys import numpy as np import scipy as sp import scipy.sparse as sparse from megaman.geometry import Geometry from sklearn import datasets from megaman.embedding import (Isomap, LocallyLinearEmbedding, LTSA, SpectralEmbedding) # Generate an example data set N = 10 X, color = datasets.samples_generator.make_s_curve(N, random_state=0) # Geometry is the main class that will Cache things like distance, affinity, and laplacian. # you instantiate the Geometry class with the parameters & methods for the three main components: # Adjacency: an NxN (sparse) pairwise matrix indicating neighborhood regions # Affinity an NxN (sparse) pairwise matrix insicated similarity between points # Laplacian an NxN (sparse) pairwsie matrix containing geometric manifold information radius = 5 adjacency_method = 'cyflann' adjacency_kwds = {'radius':radius} # ignore distances above this radius affinity_method = 'gaussian' affinity_kwds = {'radius':radius} # A = exp(-||x - y||/radius^2) laplacian_method = 'geometric' laplacian_kwds = {'scaling_epps':radius} # scaling ensures convergence to Laplace-Beltrami operator geom = Geometry(adjacency_method=adjacency_method, adjacency_kwds=adjacency_kwds, affinity_method=affinity_method, affinity_kwds=affinity_kwds, laplacian_method=laplacian_method, laplacian_kwds=laplacian_kwds) # You can/should also use the set_data_matrix, set_adjacency_matrix, set_affinity_matrix # to send your data set (in whichever form it takes) this way. geom.set_data_matrix(X) # You can get the distance, affinity etc with e.g: Geometry.get_distance_matrix() # you can update the keyword arguments passed inially using these functions adjacency_matrix = geom.compute_adjacency_matrix() # by defualt this is pass-by-reference. Use copy=True to get a copied version. # If you don't want to pre-compute a Geometry you can pass a dictionary or geometry # arguments to one of the embedding classes. geom = {'adjacency_method':adjacency_method, 'adjacency_kwds':adjacency_kwds, 'affinity_method':affinity_method, 'affinity_kwds':affinity_kwds, 'laplacian_method':laplacian_method, 'laplacian_kwds':laplacian_kwds} # an example follows for creating each embedding into 2 dimensions. n_components = 2 # LTSA ltsa =LTSA(n_components=n_components, eigen_solver='arpack', geom=geom) embed_ltsa = ltsa.fit_transform(X) # LLE lle = LocallyLinearEmbedding(n_components=n_components, eigen_solver='arpack', geom=geom) embed_lle = lle.fit_transform(X) # Isomap isomap = Isomap(n_components=n_components, eigen_solver='arpack', geom=geom) embed_isomap = isomap.fit_transform(X) # Spectral Embedding spectral = SpectralEmbedding(n_components=n_components, eigen_solver='arpack', geom=geom) embed_spectral = spectral.fit_transform(X)
chrome/test/pyautolib/generate_docs.py
nagineni/chromium-crosswalk
231
38593
#!/usr/bin/env python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import optparse import os import pydoc import shutil import sys def main(): parser = optparse.OptionParser() parser.add_option('-w', '--write', dest='dir', metavar='FILE', default=os.path.join(os.getcwd(), 'pyauto_docs'), help=('Directory path to write all of the documentation. ' 'Defaults to "pyauto_docs" in current directory.')) parser.add_option('-p', '--pyautolib', dest='pyautolib', metavar='FILE', default=os.getcwd(), help='Location of pyautolib directory') (options, args) = parser.parse_args() if not os.path.isdir(options.dir): os.makedirs(options.dir) # Add these paths so pydoc can find everything sys.path.append(os.path.join(options.pyautolib, '../../../third_party/')) sys.path.append(options.pyautolib) # Get a snapshot of the current directory where pydoc will export the files previous_contents = set(os.listdir(os.getcwd())) pydoc.writedocs(options.pyautolib) current_contents = set(os.listdir(os.getcwd())) if options.dir == os.getcwd(): print 'Export complete, files are located in %s' % options.dir return 1 new_files = current_contents.difference(previous_contents) for file_name in new_files: basename, extension = os.path.splitext(file_name) if extension == '.html': # Build the complete path full_path = os.path.join(os.getcwd(), file_name) existing_file_path = os.path.join(options.dir, file_name) if os.path.isfile(existing_file_path): os.remove(existing_file_path) shutil.move(full_path, options.dir) print 'Export complete, files are located in %s' % options.dir return 0 if __name__ == '__main__': sys.exit(main())
d2/detr/__init__.py
reubenwenisch/detr_custom
8,849
38617
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .config import add_detr_config from .detr import Detr from .dataset_mapper import DetrDatasetMapper
code_legacy/PostfixLogSummary.py
rhymeswithmogul/starttls-everywhere
339
38650
<filename>code_legacy/PostfixLogSummary.py #!/usr/bin/env python import argparse import collections import os import re import sys import time import Config TIME_FORMAT = "%b %d %H:%M:%S" # TODO: There's more to be learned from postfix logs! Here's one sample # observed during failures from the sender vagrant vm: # Jun 6 00:21:31 precise32 postfix/smtpd[3648]: connect from localhost[127.0.0.1] # Jun 6 00:21:34 precise32 postfix/smtpd[3648]: lost connection after STARTTLS from localhost[127.0.0.1] # Jun 6 00:21:34 precise32 postfix/smtpd[3648]: disconnect from localhost[127.0.0.1] # Jun 6 00:21:56 precise32 postfix/master[3001]: reload -- version 2.9.6, configuration /etc/postfix # Jun 6 00:22:01 precise32 postfix/pickup[3674]: AF3B6480475: uid=0 from=<root> # Jun 6 00:22:01 precise32 postfix/cleanup[3680]: AF3B6480475: message-id=<<EMAIL>> # Jun 6 00:22:01 precise32 postfix/qmgr[3673]: AF3B6480475: from=<<EMAIL>>, size=576, nrcpt=1 (queue active) # Jun 6 00:22:01 precise32 postfix/smtp[3682]: SSL_connect error to valid-example-recipient.com[192.168.33.7]:25: -1 # Jun 6 00:22:01 precise32 postfix/smtp[3682]: warning: TLS library problem: 3682:error:140740BF:SSL routines:SSL23_CLIENT_HELLO:no protocols available:s23_clnt.c:381: # Jun 6 00:22:01 precise32 postfix/smtp[3682]: AF3B6480475: to=<<EMAIL>>, relay=valid-example-recipient.com[192.168.33.7]:25, delay=0.06, delays=0.03/0.03/0/0, dsn=4.7.5, status=deferred (Cannot start TLS: handshake failure) # # Also: # Oct 10 19:12:13 sender postfix/smtp[1711]: 62D3F481249: to=<<EMAIL>>, relay=valid-example-recipient.com[192.168.33.7]:25, delay=0.07, delays=0.03/0.01/0.03/0, dsn=4.7.4, status=deferred (TLS is required, but was not offered by host valid-example-recipient.com[192.168.33.7]) def get_counts(input, config, earliest_timestamp): seen_trusted = False counts = collections.defaultdict(lambda: collections.defaultdict(int)) tls_deferred = collections.defaultdict(int) # Typical line looks like: # Jun 12 06:24:14 sender postfix/smtp[9045]: Untrusted TLS connection established to valid-example-recipient.com[192.168.33.7]:25: TLSv1.1 with cipher AECDH-AES256-SHA (256/256 bits) # indicate a problem that should be alerted on. # ([^[]*) <--- any group of characters that is not "[" # Log lines for when a message is deferred for a TLS-related reason. These deferred_re = re.compile("relay=([^[ ]*).* status=deferred.*TLS") # Log lines for when a TLS connection was successfully established. These can # indicate the difference between Untrusted, Trusted, and Verified certs. connected_re = re.compile("([A-Za-z]+) TLS connection established to ([^[]*)") mx_to_domain_mapping = config.get_mx_to_domain_policy_map() timestamp = 0 for line in sys.stdin: timestamp = time.strptime(line[0:15], TIME_FORMAT) if timestamp < earliest_timestamp: continue deferred = deferred_re.search(line) connected = connected_re.search(line) if connected: validation = connected.group(1) mx_hostname = connected.group(2).lower() if validation == "Trusted" or validation == "Verified": seen_trusted = True address_domains = config.get_address_domains(mx_hostname, mx_to_domain_mapping) if address_domains: domains_str = [ a.domain for a in address_domains ] d = ', '.join(domains_str) counts[d][validation] += 1 counts[d]["all"] += 1 elif deferred: mx_hostname = deferred.group(1).lower() tls_deferred[mx_hostname] += 1 return (counts, tls_deferred, seen_trusted, timestamp) def print_summary(counts): for mx_hostname, validations in counts.items(): for validation, validation_count in validations.items(): if validation == "all": continue print mx_hostname, validation, validation_count / validations["all"], "of", validations["all"] if __name__ == "__main__": arg_parser = argparse.ArgumentParser(description='Detect delivery problems' ' in Postfix log files that may be caused by security policies') arg_parser.add_argument('-c', action="store_true", dest="cron", default=False) arg_parser.add_argument("policy_file", nargs='?', default=os.path.join("examples", "starttls-everywhere.json"), help="STARTTLS Everywhere policy file") args = arg_parser.parse_args() config = Config.Config() config.load_from_json_file(args.policy_file) last_timestamp_processed = 0 timestamp_file = '/tmp/starttls-everywhere-last-timestamp-processed.txt' if os.path.isfile(timestamp_file): last_timestamp_processed = time.strptime(open(timestamp_file).read(), TIME_FORMAT) (counts, tls_deferred, seen_trusted, latest_timestamp) = get_counts(sys.stdin, config, last_timestamp_processed) with open(timestamp_file, "w") as f: f.write(time.strftime(TIME_FORMAT, latest_timestamp)) # If not running in cron, print an overall summary of log lines seen from known hosts. if not args.cron: print_summary(counts) if not seen_trusted: print 'No Trusted connections seen! Probably need to install a CAfile.' if len(tls_deferred) > 0: print "Some mail was deferred due to TLS problems:" for (k, v) in tls_deferred.iteritems(): print "%s: %s" % (k, v)
experiments/plot.py
henrytseng/srcnn
125
38662
from pathlib import Path import matplotlib.pyplot as plt import pandas as pd results_dir = Path('results') results_dir.mkdir(exist_ok=True) # Performance plot for scale in [3, 4]: for test_set in ['Set5', 'Set14']: time = [] psnr = [] model = [] for save_dir in sorted(Path('.').glob(f'*-sc{scale}')): if 'bicubic' not in save_dir.stem: model += [save_dir.stem.rsplit('-', 1)[0].upper()] metrics_file = save_dir / f'test/{test_set}/metrics.csv' metrics = pd.read_csv(str(metrics_file), index_col='name') time += [metrics.time.average] psnr += [metrics.psnr.average] plt.figure() plt.semilogx(time, psnr, '.') plt.grid(True, which='both') for x, y, s in zip(time, psnr, model): if 'NS' in s: s = s.split('-')[1] plt.text(x, y, s) plt.xlabel('Run time (sec)') plt.ylabel('PSNR (dB)') plt.title(f'Scale {scale} on {test_set}') plt.savefig(str(results_dir / f'performance-sc{scale}-{test_set}.png')) plt.close() # History plot for scale in [3, 4]: plt.figure() for save_dir in sorted(Path('.').glob(f'*-sc{scale}')): if 'bicubic' not in save_dir.stem: model = save_dir.stem.rsplit('-', 1)[0].upper() history_file = save_dir / f'train/history.csv' history = pd.read_csv(str(history_file)) plt.plot(history.epoch, history.val_psnr, label=model, alpha=0.8) plt.legend() plt.xlabel('Epochs') plt.ylabel('Average test PSNR (dB)') plt.savefig(str(results_dir / f'history-sc{scale}.png')) plt.xlim(0, 500) if scale == 3: plt.ylim(31.5, 34.5) if scale == 4: plt.ylim(29, 32) plt.savefig(str(results_dir / f'history-sc{scale}-zoom.png')) plt.close()
dni/mlp.py
DingKe/pytorch_workplace
184
38677
<gh_stars>100-1000 import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.autograd import Variable # Hyper Parameters input_size = 784 hidden_size = 256 dni_size = 1024 num_classes = 10 num_epochs = 50 batch_size = 500 learning_rate = 1e-3 use_cuda = torch.cuda.is_available() # MNIST Dataset train_dataset = dsets.MNIST(root='../data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = dsets.MNIST(root='../data', train=False, transform=transforms.ToTensor()) # Data Loader (Input Pipeline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) class DNI(nn.Module): def __init__(self, input_size, hidden_size): super(DNI, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.bn1 = nn.BatchNorm1d(hidden_size) self.act1 = nn.ReLU() self.fc2 = nn.Linear(hidden_size, input_size) def forward(self, x): out = self.fc1(x) out = self.bn1(out) out = self.act1(out) out = self.fc2(out) return out def reset_parameters(self): super(DNI, self).reset_parameters() for param in self.fc2.parameters(): param.data.zero_() dni = DNI(hidden_size, dni_size) class Net1(nn.Module): def __init__(self, input_size, hidden_size): super(Net1, self).__init__() self.mlp = nn.Sequential(nn.Linear(input_size, hidden_size), nn.BatchNorm1d(hidden_size), nn.ReLU()) def forward(self, x): return self.mlp.forward(x) net1 = Net1(input_size, hidden_size) class Net2(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(Net2, self).__init__() self.mlp = nn.Sequential() self.mlp.add_module('fc1', nn.Linear(input_size, hidden_size)) self.mlp.add_module('bn1', nn.BatchNorm1d(hidden_size)) self.mlp.add_module('act1', nn.ReLU()) self.mlp.add_module('fc', nn.Linear(hidden_size, num_classes)) def forward(self, x): return self.mlp.forward(x) net2 = Net2(hidden_size, hidden_size, num_classes) # Loss xent = nn.CrossEntropyLoss() mse = nn.MSELoss() # Optimizers opt_net1 = torch.optim.Adam(net1.parameters(), lr=learning_rate) opt_net2 = torch.optim.Adam(net2.parameters(), lr=learning_rate) opt_dni = torch.optim.Adam(dni.parameters(), lr=learning_rate) if use_cuda: net1.cuda() net2.cuda() dni.cuda() # Train the Model for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # Convert torch tensor to Variable if use_cuda: images = images.cuda() labels = labels.cuda() images = Variable(images.view(-1, 28 * 28)) labels = Variable(labels) # Forward + Backward + Optimize opt_net1.zero_grad() # zero the gradient buffer opt_net2.zero_grad() # zero the gradient buffer opt_dni.zero_grad() # zero the gradient buffer # Forward, Stage1 h = net1(images) h1 = Variable(h.data, requires_grad=True) h2 = Variable(h.data, requires_grad=False) # Forward, Stage2 outputs = net2(h1) # Backward loss = xent(outputs, labels) loss.backward() # Synthetic gradient and backward grad = dni(h2) h.backward(grad) # regress regress_loss = mse(grad, Variable(h1.grad.data)) regress_loss.backward() # optimize opt_net1.step() opt_net2.step() opt_dni.step() if (i + 1) % 100 == 0: print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' % (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, loss.data[0])) # Test the Model correct = 0 total = 0 for images, labels in test_loader: if use_cuda: images = images.cuda() labels = labels.cuda() images = Variable(images.view(-1, 28 * 28)) outputs = net2(net1(images)) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
train-xception.py
jGsch/kaggle-dfdc
124
38679
<filename>train-xception.py<gh_stars>100-1000 import os import csv import shutil import random from PIL import Image import numpy as np import torch from torch import nn, optim from torch.utils.data import Dataset, DataLoader import xception_conf as config from model_def import xception from augmentation_utils import train_transform, val_transform def save_checkpoint(path, state_dict, epoch=0, arch="", acc1=0): new_state_dict = {} for k, v in state_dict.items(): if k.startswith("module."): k = k[7:] if torch.is_tensor(v): v = v.cpu() new_state_dict[k] = v torch.save({ "epoch": epoch, "arch": arch, "acc1": acc1, "state_dict": new_state_dict, }, path) class DFDCDataset(Dataset): def __init__(self, data_csv, required_set, data_root="", ratio=(0.25, 0.05), stable=False, transform=None): video_info = [] data_list = [] with open(data_csv) as fin: reader = csv.DictReader(fin) for row in reader: if row["set_name"] == required_set: label = int(row["is_fake"]) n_frame = int(row["n_frame"]) select_frame = round(n_frame * ratio[label]) for sample_idx in range(select_frame): data_list.append((len(video_info), sample_idx)) video_info.append({ "name": row["name"], "label": label, "n_frame": n_frame, "select_frame": select_frame, }) self.stable = stable self.data_root = data_root self.video_info = video_info self.data_list = data_list self.transform = transform def __getitem__(self, index): video_idx, sample_idx = self.data_list[index] info = self.video_info[video_idx] if self.stable: frame_idx = info["n_frame"] * sample_idx // info["select_frame"] else: frame_idx = random.randint(0, info["n_frame"] - 1) image_path = os.path.join(self.data_root, info["name"], "%03d.png" % frame_idx) try: img = Image.open(image_path).convert("RGB") except OSError: img = np.random.randint(0, 255, (320, 320, 3), dtype=np.uint8) if self.transform is not None: # img = self.transform(img) result = self.transform(image=np.array(img)) img = result["image"] return img, info["label"] def __len__(self): return len(self.data_list) def main(): torch.backends.cudnn.benchmark = True train_dataset = DFDCDataset(config.data_list, "train", config.data_root, transform=train_transform) val_dataset = DFDCDataset(config.data_list, "val", config.data_root, transform=val_transform, stable=True) kwargs = dict(batch_size=config.batch_size, num_workers=config.num_workers, shuffle=True, pin_memory=True) train_loader = DataLoader(train_dataset, **kwargs) val_loader = DataLoader(val_dataset, **kwargs) # Model initialization model = xception(num_classes=2, pretrained=None) if hasattr(config, "resume") and os.path.isfile(config.resume): ckpt = torch.load(config.resume, map_location="cpu") start_epoch = ckpt.get("epoch", 0) best_acc = ckpt.get("acc1", 0.0) model.load_state_dict(ckpt["state_dict"]) else: start_epoch = 0 best_acc = 0.0 model = model.cuda() model = nn.DataParallel(model) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), 0.01, momentum=0.9, weight_decay=1e-4) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.2) os.makedirs(config.save_dir, exist_ok=True) for epoch in range(config.n_epoches): if epoch < start_epoch: scheduler.step() continue print("Epoch {}".format(epoch + 1)) model.train() loss_record = [] acc_record = [] for count, (inputs, labels) in enumerate(train_loader): inputs = inputs.cuda(non_blocking=True) labels = labels.cuda(non_blocking=True) outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() iter_loss = loss.item() loss_record.append(iter_loss) preds = torch.argmax(outputs.data, 1) iter_acc = torch.sum(preds == labels).item() / len(preds) acc_record.append(iter_acc) if count and count % 100 == 0: print("T-Iter %d: loss=%.4f, acc=%.4f" % (count, iter_loss, iter_acc)) epoch_loss = np.mean(loss_record) epoch_acc = np.mean(acc_record) print("Training: loss=%.4f, acc=%.4f" % (epoch_loss, epoch_acc)) model.eval() loss_record = [] acc_record = [] with torch.no_grad(): for count, (inputs, labels) in enumerate(val_loader): inputs = inputs.cuda(non_blocking=True) labels = labels.cuda(non_blocking=True) outputs = model(inputs) preds = torch.argmax(outputs, 1) loss = criterion(outputs, labels) iter_loss = loss.item() loss_record.append(iter_loss) preds = torch.argmax(outputs.data, 1) iter_acc = torch.sum(preds == labels).item() / len(preds) acc_record.append(iter_acc) if count and count % 100 == 0: print("V-Iter %d: loss=%.4f, acc=%.4f" % (count, iter_loss, iter_acc)) epoch_loss = np.mean(loss_record) epoch_acc = np.mean(acc_record) print("Validation: loss=%.4f, acc=%.4f" % (epoch_loss, epoch_acc)) scheduler.step() ckpt_path = os.path.join(config.save_dir, "ckpt-%d.pth" % epoch) save_checkpoint( ckpt_path, model.state_dict(), epoch=epoch + 1, acc1=epoch_acc) if epoch_acc > best_acc: print("Best accuracy!") shutil.copy(ckpt_path, os.path.join(config.save_dir, "best.pth")) best_acc = epoch_acc print() if __name__ == "__main__": main()
corehq/apps/hqadmin/management/commands/static_analysis.py
andyasne/commcare-hq
471
38684
import os import re import subprocess from collections import Counter from django.conf import settings from django.core.management.base import BaseCommand import datadog from dimagi.ext.couchdbkit import Document from corehq.feature_previews import all_previews from corehq.toggles import all_toggles class DatadogLogger: def __init__(self, stdout): self.stdout = stdout self.datadog = os.environ.get("TRAVIS_EVENT_TYPE") == 'cron' if self.datadog: api_key = os.environ.get("DATADOG_API_KEY") app_key = os.environ.get("DATADOG_APP_KEY") assert api_key and app_key, "DATADOG_API_KEY and DATADOG_APP_KEY must both be set" datadog.initialize(api_key=api_key, app_key=app_key) self.metrics = [] def log(self, metric, value, tags=None): self.stdout.write(f"{metric}: {value} {tags or ''}") if self.datadog: self.metrics.append({ 'metric': metric, 'points': value, 'type': "gauge", 'host': "travis-ci.org", 'tags': [ "environment:travis", f"travis_build:{os.environ.get('TRAVIS_BUILD_ID')}", f"travis_number:{os.environ.get('TRAVIS_BUILD_NUMBER')}", f"travis_job_number:{os.environ.get('TRAVIS_JOB_NUMBER')}", ] + (tags or []), }) def send_all(self): if self.datadog: datadog.api.Metric.send(self.metrics) self.metrics = [] class Command(BaseCommand): help = ("Display a variety of code-quality metrics. This is run on every travis " "build, but only submitted to datadog during the daily cron job.") def handle(self, **options): self.stdout.write("----------> Begin Static Analysis <----------") self.logger = DatadogLogger(self.stdout) self.show_couch_model_count() self.show_custom_modules() self.show_js_dependencies() self.show_toggles() self.show_complexity() self.logger.send_all() self.stdout.write("----------> End Static Analysis <----------") def show_couch_model_count(self): def all_subclasses(cls): return set(cls.__subclasses__()).union([ s for c in cls.__subclasses__() for s in all_subclasses(c) ]) model_count = len(all_subclasses(Document)) self.logger.log("commcare.static_analysis.couch_model_count", model_count) def show_custom_modules(self): custom_module_count = len(set(settings.DOMAIN_MODULE_MAP.values())) custom_domain_count = len(settings.DOMAIN_MODULE_MAP) self.logger.log("commcare.static_analysis.custom_module_count", custom_module_count) self.logger.log("commcare.static_analysis.custom_domain_count", custom_domain_count) def show_js_dependencies(self): proc = subprocess.Popen(["./scripts/codechecks/hqDefine.sh", "static-analysis"], stdout=subprocess.PIPE) output = proc.communicate()[0].strip().decode("utf-8") (step1, step2, step3) = output.split(" ") self.logger.log("commcare.static_analysis.hqdefine_file_count", int(step1), tags=[ 'status:unmigrated', ]) self.logger.log("commcare.static_analysis.hqdefine_file_count", int(step2), tags=[ 'status:hqdefine_only', ]) self.logger.log("commcare.static_analysis.requirejs_file_count", int(step3), tags=[ 'status:migrated', ]) def show_toggles(self): counts = Counter(t.tag.name for t in all_toggles() + all_previews()) for tag, count in counts.items(): self.logger.log("commcare.static_analysis.toggle_count", count, [f"toggle_tag:{tag}"]) def show_complexity(self): # We can use `--json` for more granularity, but it doesn't provide a summary output = subprocess.run([ "radon", "cc", ".", "--min=C", "--total-average", "--exclude=node_modules/*,staticfiles/*", ], stdout=subprocess.PIPE).stdout.decode('utf-8').strip() raw_blocks, raw_complexity = output.split('\n')[-2:] blocks_pattern = r'^(\d+) blocks \(classes, functions, methods\) analyzed.$' blocks = int(re.match(blocks_pattern, raw_blocks).group(1)) self.logger.log("commcare.static_analysis.code_blocks", blocks) complexity_pattern = r'^Average complexity: A \(([\d.]+)\)$' complexity = round(float(re.match(complexity_pattern, raw_complexity).group(1)), 3) self.logger.log("commcare.static_analysis.avg_complexity", complexity) for grade in ["C", "D", "E", "F"]: count = len(re.findall(f" - {grade}\n", output)) self.logger.log( "commcare.static_analysis.complex_block_count", count, tags=[f"complexity_grade:{grade}"], )
scripts/artifacts/installedappsGass.py
Krypterry/ALEAPP
187
38720
import sqlite3 from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, tsv, open_sqlite_db_readonly def get_installedappsGass(files_found, report_folder, seeker, wrap_text): for file_found in files_found: file_found = str(file_found) if file_found.endswith('.db'): db = open_sqlite_db_readonly(file_found) cursor = db.cursor() cursor.execute(''' SELECT distinct(package_name) FROM app_info ''') if 'user' in file_found: usernum = file_found.split("/") usernum = '_'+str(usernum[-4]) else: usernum = '' all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: report = ArtifactHtmlReport('Installed Apps') report.start_artifact_report(report_folder, f'Installed Apps (GMS){usernum}') report.add_script() data_headers = ('Bundle ID',) # Don't remove the comma, that is required to make this a tuple as there is only 1 element data_list = [] for row in all_rows: data_list.append((row[0],)) report.write_artifact_data_table(data_headers, data_list, file_found) report.end_artifact_report() tsvname = f'installed apps - GMS{usernum}' tsv(report_folder, data_headers, data_list, tsvname) else: logfunc('No Installed Apps data available{usernum}') db.close()
RecoVertex/BeamSpotProducer/scripts/copyFromCastor.py
ckamtsikis/cmssw
852
38797
#!/usr/bin/env python import sys,os,commands from CommonMethods import * def main(): if len(sys.argv) < 3: error = "Usage: cpFromCastor fromDir toDir (optional filter)" exit(error) user = os.getenv("USER") castorDir = "/castor/cern.ch/cms/store/caf/user/" + user + "/" + sys.argv[1] + "/" filter = "" if len(sys.argv) > 3: filter = sys.argv[3] fileList = ls(castorDir,filter) destDir = sys.argv[2] copiedFiles = cp(castorDir,destDir,fileList) if len(copiedFiles) != len(fileList): error = "ERROR: I couldn't copy all files from castor" exit(error) if __name__ == "__main__": main()
mmfashion/apis/test_fashion_recommender.py
RyanJiang0416/mmfashion
952
38803
<reponame>RyanJiang0416/mmfashion<gh_stars>100-1000 from __future__ import division import torch from mmcv.parallel import MMDataParallel from ..datasets import build_dataloader from .env import get_root_logger def test_fashion_recommender(model, dataset, cfg, distributed=False, validate=False, logger=None): if logger is None: logger = get_root_logger(cfg.log_level) # start testing predictor if distributed: # to do _dist_test(model, dataset, cfg, validate=validate) else: _non_dist_test(model, dataset, cfg, validate=validate) def _process_embeds(dataset, model, cfg): data_loader = build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, len(cfg.gpus.test), dist=False, shuffle=False) print('dataloader built') embeds = [] with torch.no_grad(): for data in data_loader: embed = model(data['img'], return_loss=False) embeds.append(embed.data.cpu()) embeds = torch.cat(embeds) return embeds def _non_dist_test(model, dataset, cfg, validate=False): model = MMDataParallel(model, device_ids=cfg.gpus.test).cuda() model.eval() embeds = _process_embeds(dataset, model, cfg) metric = model.module.triplet_net.metric_branch # compatibility auc auc = dataset.test_compatibility(embeds, metric) # fill-in-blank accuracy acc = dataset.test_fitb(embeds, metric) print('Compat AUC: {:.2f} FITB: {:.1f}\n'.format( round(auc, 2), round(acc * 100, 1))) def _dist_test(model, dataset, cfg, validate=False): raise NotImplementedError
context_cache/context_cache.py
tervay/the-blue-alliance
266
38850
from google.appengine.ext import ndb CACHE_DATA = {} def get(cache_key): full_cache_key = '{}:{}'.format(cache_key, ndb.get_context().__hash__()) return CACHE_DATA.get(full_cache_key, None) def set(cache_key, value): full_cache_key = '{}:{}'.format(cache_key, ndb.get_context().__hash__()) CACHE_DATA[full_cache_key] = value
src/beanmachine/applications/hme/interface.py
horizon-blue/beanmachine-1
177
38854
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Tuple import pandas as pd from .configs import InferConfig, ModelConfig from .null_mixture_model import NullMixtureMixedEffectModel class HME: """The Hierarchical Mixed Effect model interface. :param data: observed train data :param model_config: HME model configuration parameters """ def __init__(self, data: pd.DataFrame, model_config: ModelConfig) -> None: self.model = NullMixtureMixedEffectModel(data, model_config) self.posterior_samples = None self.posterior_diagnostics = None def infer(self, infer_config: InferConfig) -> Tuple[pd.DataFrame]: """Performs MCMC posterior inference on HME model parameters and returns MCMC samples for those parameters registered in the query. :param infer_config: configuration settings of posterior inference :return: posterior samples and their diagnostic summary statistics """ self.posterior_samples, self.posterior_diagnostics = self.model.infer( infer_config ) return self.posterior_samples, self.posterior_diagnostics def predict(self, new_data: pd.DataFrame) -> pd.DataFrame: """Computes predictive distributions on the new test data according to MCMC posterior samples. :param new_data: test data for prediction :return: predictive distributions on the new test data """ return self.model.predict(new_data, self.posterior_samples)
tests/utils/test_string_utils.py
PeterSulcs/mlflow
10,351
38858
<filename>tests/utils/test_string_utils.py import pytest from mlflow.utils.string_utils import strip_prefix, strip_suffix, is_string_type @pytest.mark.parametrize( "original,prefix,expected", [("smoketest", "smoke", "test"), ("", "test", ""), ("", "", ""), ("test", "", "test")], ) def test_strip_prefix(original, prefix, expected): assert strip_prefix(original, prefix) == expected @pytest.mark.parametrize( "original,suffix,expected", [("smoketest", "test", "smoke"), ("", "test", ""), ("", "", ""), ("test", "", "test")], ) def test_strip_suffix(original, suffix, expected): assert strip_suffix(original, suffix) == expected def test_is_string_type(): assert is_string_type("validstring") assert is_string_type("") assert is_string_type((b"dog").decode("utf-8")) assert not is_string_type(None) assert not is_string_type(["teststring"]) assert not is_string_type([]) assert not is_string_type({}) assert not is_string_type({"test": "string"}) assert not is_string_type(12) assert not is_string_type(12.7)
tests/data/samplecfg.py
glebshevchukk/gradslam
1,048
38867
import os import sys from gradslam.config import CfgNode as CN cfg = CN() cfg.TRAIN = CN() cfg.TRAIN.HYPERPARAM_1 = 0.9
tests/chainer_tests/functions_tests/math_tests/test_linear_interpolate.py
zaltoprofen/chainer
3,705
38902
<reponame>zaltoprofen/chainer import numpy from chainer import functions from chainer import testing from chainer import utils @testing.parameterize(*testing.product({ 'shape': [(3, 4), ()], 'dtype': [numpy.float16, numpy.float32, numpy.float64], })) @testing.fix_random() @testing.inject_backend_tests( None, # CPU tests [ {}, ] # GPU tests + testing.product({ 'use_cuda': [True], 'cuda_device': [0, 1], }) # ChainerX tests + testing.product({ 'use_chainerx': [True], 'chainerx_device': ['native:0', 'cuda:0', 'cuda:1'], }) ) class TestLinearInterpolate(testing.FunctionTestCase): def setUp(self): if self.dtype == numpy.float16: self.check_forward_options.update({ 'atol': 1e-3, 'rtol': 1e-3}) self.check_backward_options.update({ 'atol': 5e-4, 'rtol': 5e-3}) self.check_double_backward_options.update({ 'atol': 5e-3, 'rtol': 5e-2}) def generate_inputs(self): p = numpy.random.uniform(0, 1, self.shape).astype(self.dtype) x = numpy.random.uniform(-1, 1, self.shape).astype(self.dtype) y = numpy.random.uniform(-1, 1, self.shape).astype(self.dtype) return p, x, y def forward(self, inputs, device): p, x, y = inputs ret = functions.linear_interpolate(p, x, y) ret = functions.cast(ret, numpy.float64) return ret, def forward_expected(self, inputs): p, x, y = inputs expected = p * x + (1 - p) * y expected = utils.force_array(expected, dtype=numpy.float64) return expected, testing.run_module(__name__, __file__)
regtests/list/slice.py
ahakingdom/Rusthon
622
38934
<reponame>ahakingdom/Rusthon from runtime import * """list slice""" class XXX: def __init__(self): self.v = range(10) def method(self, a): return a def main(): a = range(10)[:-5] assert( len(a)==5 ) assert( a[4]==4 ) print '--------' b = range(10)[::2] print b assert( len(b)==5 ) assert( b[0]==0 ) assert( b[1]==2 ) assert( b[2]==4 ) assert( b[3]==6 ) assert( b[4]==8 ) #if BACKEND=='DART': # print(b[...]) #else: # print(b) c = range(20) d = c[ len(b) : ] #if BACKEND=='DART': # print(d[...]) #else: # print(d) assert( len(d)==15 ) x = XXX() e = x.v[ len(b) : ] assert( len(e)==5 ) f = x.method( x.v[len(b):] ) assert( len(f)==5 ) main()
selenium/load-html-from-string-instead-of-url/main.py
whitmans-max/python-examples
140
38948
#!/usr/bin/env python3 # date: 2019.11.24 import selenium.webdriver driver = selenium.webdriver.Firefox() html_content = """ <div class=div1> <ul> <li> <a href='path/to/div1stuff/1'>Generic string 1</a> <a href='path/to/div1stuff/2'>Generic string 2</a> <a href='path/to/div1stuff/3'>Generic string 3</a> </li> </ul> </div> <div class=div2> <ul> <li> <a href='path/to/div2stuff/1'>Generic string 1</a> <a href='path/to/div2stuff/2'>Generic string 2</a> <a href='path/to/div2stuff/3'>Generic string 3</a> </li> </ul> </div> """ driver.get("data:text/html;charset=utf-8," + html_content) elements = driver.find_elements_by_css_selector("div.div2 a") for x in elements: print(x.get_attribute('href')) item = driver.find_element_by_xpath("//div[@class='div2']//a[contains(text(),'Generic string 2')]") print(item.get_attribute('href')) item.click()
gluoncv/data/video_custom/__init__.py
Kh4L/gluon-cv
5,447
38951
# pylint: disable=wildcard-import """ Customized data loader for video classification related tasks. """ from __future__ import absolute_import from .classification import *
src/cowrie/output/csirtg.py
uwacyber/cowrie
2,316
38997
from __future__ import annotations import os from datetime import datetime from twisted.python import log import cowrie.core.output from cowrie.core.config import CowrieConfig token = CowrieConfig.get("output_csirtg", "token", fallback="<PASSWORD>") if token == "<PASSWORD>": log.msg("output_csirtg: token not found in configuration file") exit(1) os.environ["CSIRTG_TOKEN"] = token import csirtgsdk # noqa: E402 class Output(cowrie.core.output.Output): """ CSIRTG output """ def start(self): """ Start the output module. Note that csirtsdk is imported here because it reads CSIRTG_TOKEN on import Cowrie sets this environment variable. """ self.user = CowrieConfig.get("output_csirtg", "username") self.feed = CowrieConfig.get("output_csirtg", "feed") self.debug = CowrieConfig.getboolean("output_csirtg", "debug", fallback=False) self.description = CowrieConfig.get("output_csirtg", "description") self.context = {} # self.client = csirtgsdk.client.Client() def stop(self): pass def write(self, e): """ Only pass on connection events """ if e["eventid"] == "cowrie.session.connect": self.submitIp(e) def submitIp(self, e): peerIP = e["src_ip"] ts = e["timestamp"] system = e.get("system", None) if system not in [ "cowrie.ssh.factory.CowrieSSHFactory", "cowrie.telnet.transport.HoneyPotTelnetFactory", ]: return today = str(datetime.now().date()) if not self.context.get(today): self.context = {} self.context[today] = set() key = ",".join([peerIP, system]) if key in self.context[today]: return self.context[today].add(key) tags = "scanner,ssh" port = 22 if e["system"] == "cowrie.telnet.transport.HoneyPotTelnetFactory": tags = "scanner,telnet" port = 23 i = { "user": self.user, "feed": self.feed, "indicator": peerIP, "portlist": port, "protocol": "tcp", "tags": tags, "firsttime": ts, "lasttime": ts, "description": self.description, } if self.debug is True: log.msg(f"output_csirtg: Submitting {i!r} to CSIRTG") ind = csirtgsdk.indicator.Indicator(i).submit() if self.debug is True: log.msg(f"output_csirtg: Submitted {ind!r} to CSIRTG") log.msg("output_csirtg: submitted to csirtg at {} ".format(ind["location"]))
main/api/fields.py
lipis/gae-init-magic
465
39012
<gh_stars>100-1000 # coding: utf-8 import urllib from flask_restful import fields from flask_restful.fields import * class BlobKey(fields.Raw): def format(self, value): return urllib.quote(str(value)) class Blob(fields.Raw): def format(self, value): return repr(value) class DateTime(fields.DateTime): def format(self, value): return value.isoformat() class GeoPt(fields.Raw): def format(self, value): return '%s,%s' % (value.lat, value.lon) class Id(fields.Raw): def output(self, key, obj): try: value = getattr(obj, 'key', None).id() return super(Id, self).output(key, {'id': value}) except AttributeError: return None class Integer(fields.Integer): def format(self, value): if value > 9007199254740992 or value < -9007199254740992: return str(value) return value class Key(fields.Raw): def format(self, value): return value.urlsafe()
xero/filesmanager.py
Ian2020/pyxero
246
39015
<filename>xero/filesmanager.py from __future__ import unicode_literals import os import requests from six.moves.urllib.parse import parse_qs from .constants import XERO_FILES_URL from .exceptions import ( XeroBadRequest, XeroExceptionUnknown, XeroForbidden, XeroInternalError, XeroNotAvailable, XeroNotFound, XeroNotImplemented, XeroRateLimitExceeded, XeroUnauthorized, XeroUnsupportedMediaType, ) class FilesManager(object): DECORATED_METHODS = ( "get", "all", "create", "save", "delete", "get_files", "upload_file", "get_association", "get_associations", "make_association", "delete_association", "get_content", ) def __init__(self, name, credentials): self.credentials = credentials self.name = name self.base_url = credentials.base_url + XERO_FILES_URL for method_name in self.DECORATED_METHODS: method = getattr(self, "_%s" % method_name) setattr(self, method_name, self._get_data(method)) def _get_results(self, data): response = data["Response"] if self.name in response: result = response[self.name] elif "Attachments" in response: result = response["Attachments"] else: return None if isinstance(result, tuple) or isinstance(result, list): return result if isinstance(result, dict) and self.singular in result: return result[self.singular] def _get_data(self, func): """ This is the decorator for our DECORATED_METHODS. Each of the decorated methods must return: uri, params, method, body, headers, singleobject """ def wrapper(*args, **kwargs): uri, params, method, body, headers, singleobject, files = func( *args, **kwargs ) response = getattr(requests, method)( uri, data=body, headers=headers, auth=self.credentials.oauth, params=params, files=files, ) if response.status_code == 200 or response.status_code == 201: if response.headers["content-type"].startswith("application/json"): return response.json() else: # return a byte string without doing any Unicode conversions return response.content # Delete will return a response code of 204 - No Content elif response.status_code == 204: return "Deleted" elif response.status_code == 400: raise XeroBadRequest(response) elif response.status_code == 401: raise XeroUnauthorized(response) elif response.status_code == 403: raise XeroForbidden(response) elif response.status_code == 404: raise XeroNotFound(response) elif response.status_code == 415: raise XeroUnsupportedMediaType(response) elif response.status_code == 500: raise XeroInternalError(response) elif response.status_code == 501: raise XeroNotImplemented(response) elif response.status_code == 503: # Two 503 responses are possible. Rate limit errors # return encoded content; offline errors don't. # If you parse the response text and there's nothing # encoded, it must be a not-available error. payload = parse_qs(response.text) if payload: raise XeroRateLimitExceeded(response, payload) else: raise XeroNotAvailable(response) else: raise XeroExceptionUnknown(response) return wrapper def _get(self, id, headers=None): uri = "/".join([self.base_url, self.name, id]) return uri, {}, "get", None, headers, True, None def _get_files(self, folderId): """Retrieve the list of files contained in a folder""" uri = "/".join([self.base_url, self.name, folderId, "Files"]) return uri, {}, "get", None, None, False, None def _get_associations(self, id): uri = "/".join([self.base_url, self.name, id, "Associations"]) + "/" return uri, {}, "get", None, None, False, None def _get_association(self, fileId, objectId): uri = "/".join([self.base_url, self.name, fileId, "Associations", objectId]) return uri, {}, "get", None, None, False, None def _delete_association(self, fileId, objectId): uri = "/".join([self.base_url, self.name, fileId, "Associations", objectId]) return uri, {}, "delete", None, None, False, None def create_or_save(self, data, method="post", headers=None, summarize_errors=True): if "Id" not in data: uri = "/".join([self.base_url, self.name]) else: uri = "/".join([self.base_url, self.name, data["Id"]]) body = data if summarize_errors: params = {} else: params = {"summarizeErrors": "false"} return uri, params, method, body, headers, False, None def _create(self, data): return self.create_or_save(data, method="post") def _save(self, data, summarize_errors=True): return self.create_or_save( data, method="put", summarize_errors=summarize_errors ) def _delete(self, id): uri = "/".join([self.base_url, self.name, id]) return uri, {}, "delete", None, None, False, None def _upload_file(self, path, folderId=None): if folderId is not None: uri = "/".join([self.base_url, self.name, folderId]) else: uri = "/".join([self.base_url, self.name]) filename = self.filename(path) files = dict() files[filename] = open(path, mode="rb") return uri, {}, "post", None, None, False, files def _get_content(self, fileId): uri = "/".join([self.base_url, self.name, fileId, "Content"]) return uri, {}, "get", None, None, False, None def _make_association(self, id, data): uri = "/".join([self.base_url, self.name, id, "Associations"]) body = data return uri, {}, "post", body, None, False, None def _all(self): uri = "/".join([self.base_url, self.name]) return uri, {}, "get", None, None, False, None def filename(self, path): head, tail = os.path.split(path) return tail or os.path.basename(head)
hermione/module_templates/__IMPLEMENTED_BASE__/src/ml/preprocessing/preprocessing.py
RodrigoATorres/hermione
183
39030
<filename>hermione/module_templates/__IMPLEMENTED_BASE__/src/ml/preprocessing/preprocessing.py import pandas as pd from ml.preprocessing.normalization import Normalizer from category_encoders import * import logging logging.getLogger().setLevel(logging.INFO) class Preprocessing: """ Class to perform data preprocessing before training """ def clean_data(self, df: pd.DataFrame): """ Perform data cleansing. Parameters ---------- df : pd.Dataframe Dataframe to be processed Returns ------- pd.Dataframe Cleaned Data Frame """ logging.info("Cleaning data") df_copy = df.copy() df_copy['Pclass'] = df_copy.Pclass.astype('object') df_copy = df_copy.dropna() return df_copy def categ_encoding(self, df: pd.DataFrame): """ Perform encoding of the categorical variables Parameters ---------- df : pd.Dataframe Dataframe to be processed Returns ------- pd.Dataframe Cleaned Data Frame """ logging.info("Category encoding") df_copy = df.copy() df_copy = pd.get_dummies(df_copy) return df_copy
DevTools/lineCount.py
spiiin/CadEditor
164
39032
#!/usr/bin/env python2 #Script for calculate LoC of all source files of project import os,string import sys extension_list = ['h','hpp','cpp','c','pas','dpr','asm','py','q3asm','def','sh','bat','cs','java','cl','lisp','ui',"nut"] comment_sims = {'asm' : ';', 'py' : '#', 'cl':';','lisp':';'} source_files = { } exclude_names = ["libs", "release", ".git"] if len(sys.argv)!=2: print "You must call script as 'lineCount.py <path_to_folder>'" raw_input() exit(-1) path = sys.argv[1] files_count = 0 def calc_files_count (arg,dirname, names): global files_count files_count+=len(names) def calc_strings_count(arg, dirname, names): #print "%32s"%dirname if any(dirname.lower().find(exclude_name) != -1 for exclude_name in exclude_names): return for name in names: full_name = os.path.join(dirname,name) file_name,file_ext = os.path.splitext(full_name) file_ext = file_ext[1:].lower() if comment_sims.has_key(file_ext): comment_sim = comment_sims[file_ext] else: comment_sim = "//" if file_ext in extension_list: #.designer.cs files don't count if file_name.lower().find(".designer") != -1: continue f = file(full_name) file_text = f.readlines() empty_lines_count = 0 comment_lines = 0 for line in file_text : line_without_spaces = line.lstrip(string.whitespace) if line_without_spaces=="": empty_lines_count += 1 elif line_without_spaces.startswith(comment_sim): comment_lines +=1 source_files[full_name]= {"full" : len(file_text) ,"empty" :empty_lines_count, "comment":comment_lines} f.close() def calc(path_root): os.path.walk(path_root,calc_files_count,0) print "Found : %4i files"%files_count print "" #calculate line count os.path.walk(path_root,calc_strings_count,0) #convert to list and sort lst = source_files.items() lst.sort(key = lambda (key, val): val["full"]) strings_count=0 empty_lines_count=0 comment_lines_count=0 for name,val in lst: l_f,l_e,l_c = val["full"],val["empty"],val["comment"] dummy,short_name = os.path.split(name) print "%-36s : %5i (%i/%i/%i)"%(short_name,l_f, l_f-l_c-l_e,l_c,l_e ) strings_count+=l_f empty_lines_count+=l_e comment_lines_count+=l_c print "\nformat -\nfilename : full_lines_count (code_lines_count/comments_count/empty_lines_count)" print 24*"-" print "Found : %4i files"%files_count print "Summary : %4i lines"%strings_count print "Code : %4i lines"%(strings_count - comment_lines_count - empty_lines_count) print "Comments: %4i lines"%comment_lines_count print "Empty : %4i lines"%empty_lines_count print 24*"-" print "%s %s %s"%( "="*24, "================", "="*24) print "%-24s %s %24s"%( "="*3, "Spiiin LineCounter", "="*3) print "%s %s %s"%( "="*24, "================", "="*24) calc(path) raw_input()
doc2json/jats2json/pmc_utils/back_tag_utils.py
josephcc/s2orc-doc2json
132
39081
<reponame>josephcc/s2orc-doc2json from typing import Dict, List def _wrap_text(tag): return tag.text if tag else '' def parse_authors(authors_tag) -> List: """The PMC XML has a slightly different format than authors listed in front tag.""" if not authors_tag: return [] authors = [] for name_tag in authors_tag.find_all('name', recursive=False): surname = name_tag.find('surname') given_names = name_tag.find('given-names') given_names = given_names.text.split(' ') if given_names else None suffix = name_tag.find('suffix') authors.append({ 'first': given_names[0] if given_names else '', 'middle': given_names[1:] if given_names else [], 'last': surname.text if surname else '', 'suffix': suffix.text if suffix else '' }) return authors def parse_bib_entries(back_tag) -> Dict: bib_entries = {} # TODO: PMC2778891 does not have 'ref-list' in its back_tag. do we even need this, or can directly .find_all('ref')? ref_list_tag = back_tag.find('ref-list') if ref_list_tag: for ref_tag in ref_list_tag.find_all('ref'): # The ref ID and label are semantically swapped between CORD-19 and PMC, lol ref_label = ref_tag['id'] ref_id = ref_tag.find('label') authors_tag = ref_tag.find('person-group', {'person-group-type': 'author'}) year = ref_tag.find('year') fpage = ref_tag.find('fpage') lpage = ref_tag.find('lpage') pages = f'{fpage.text}-{lpage.text}' if fpage and lpage else None dois = [tag.text for tag in ref_tag.find_all('pub-id', {'pub-id-type': 'doi'})] bib_entries[ref_label] = { 'ref_id': _wrap_text(ref_id), 'title': _wrap_text(ref_tag.find('article-title')), 'authors': parse_authors(authors_tag), 'year': int(year.text) if year and year.text.isdigit() else None, 'venue': _wrap_text(ref_tag.find('source')), 'volume': _wrap_text(ref_tag.find('volume')), 'issn': _wrap_text(ref_tag.find('issue')), 'pages': pages, 'other_ids': { 'DOI': dois, } } return bib_entries
matrixprofile/io/protobuf/protobuf_utils.py
MORE-EU/matrixprofile
262
39103
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals range = getattr(__builtins__, 'xrange', range) # end of py2 compatability boilerplate import numpy as np from matrixprofile import core from matrixprofile.io.protobuf.proto_messages_pb2 import ( Location, Motif, MPFOutput ) def get_matrix_attributes(matrix): """ Utility function to extract the rows, cols and flattened array from a numpy array so it can be stored in the MPFOutput protobuf message. Parameters ---------- matrix : np.ndarray The numpy array to extract the attributes from. Returns ------- tuple : A tuple containing the rows, cols and flattened array. """ if not core.is_array_like(matrix) or len(matrix) < 1: return None, None, None rows = matrix.shape[0] cols = 0 if len(matrix.shape) > 1: cols = matrix.shape[1] return rows, cols, matrix.flatten() def get_windows(profile): """ Utility function to format the windows from a profile structure ensuring that the windows are in an array. Parameters ---------- profile : dict The MatrixProfile or PMP profile. Returns ------- list : The window(s) in a list. """ windows = [] if core.is_mp_obj(profile): windows.append(profile.get('w')) elif core.is_pmp_obj(profile): windows = profile.get('windows') return windows def get_proto_motif(motif): """ Utility function to convert a motif from a MatrixProfile or PMP structure ensuring that it is compatible with the MPFOutput message. Note ---- A single dimensional motif location will only have a row index and a column index of 0. Parameters ---------- motif : dict The motif to convert. Returns ------- Motif : The motif object for MPFOutput message. """ out_motif = Motif() for indices in motif['motifs']: tmp = Location() tmp.row = 0 tmp.col = 0 # handle single integer location if core.is_array_like(indices): tmp.row = indices[0] tmp.col = indices[1] else: tmp.row = indices out_motif.motifs.append(tmp) for neighbor in motif['neighbors']: tmp = Location() tmp.row = 0 tmp.col = 0 # handle single integer location if core.is_array_like(neighbor): tmp.row = neighbor[0] tmp.col = neighbor[1] else: tmp.row = neighbor out_motif.neighbors.append(tmp) return out_motif def get_proto_discord(discord): """ Utility function to convert a discord into the MPFOutput message format. Note ---- A single dimensional discord location will only have a row index and a column index of 0. Parameters ---------- discord : int or tuple The discord with row, col index or single index. Returns ------- Location : The Location message used in the MPFOutput protobuf message. """ out_discord = Location() out_discord.row = 0 out_discord.col = 0 if core.is_array_like(discord): out_discord.row = discord[0] out_discord.col = discord[1] else: out_discord.row = discord return out_discord def profile_to_proto(profile): """ Utility function that takes a MatrixProfile or PMP profile data structure and converts it to the MPFOutput protobuf message object. Parameters ---------- profile : dict The profile to convert. Returns ------- MPFOutput : The MPFOutput protobuf message object. """ output = MPFOutput() # add higher level attributes that work for PMP and MP output.klass = profile.get('class') output.algorithm = profile.get('algorithm') output.metric = profile.get('metric') output.sample_pct = profile.get('sample_pct') # add time series data ts = profile.get('data').get('ts') query = profile.get('data').get('query') rows, cols, data = get_matrix_attributes(ts) output.ts.rows = rows output.ts.cols = cols output.ts.data.extend(data) # add query data query = profile.get('data').get('query') rows, cols, data = get_matrix_attributes(query) if rows and cols and core.is_array_like(data): output.query.rows = rows output.query.cols = cols output.query.data.extend(data) # add window(s) output.windows.extend(get_windows(profile)) # add motifs motifs = profile.get('motifs') if not isinstance(motifs, type(None)): for motif in motifs: output.motifs.append(get_proto_motif(motif)) # add discords discords = profile.get('discords') if not isinstance(discords, type(None)): for discord in discords: output.discords.append(get_proto_discord(discord)) # add cmp cmp = profile.get('cmp') if not isinstance(cmp, type(None)): rows, cols, data = get_matrix_attributes(cmp) output.cmp.rows = rows output.cmp.cols = cols output.cmp.data.extend(data) # add av av = profile.get('av') if not isinstance(av, type(None)): rows, cols, data = get_matrix_attributes(av) output.av.rows = rows output.av.cols = cols output.av.data.extend(data) # add av_type av_type = profile.get('av_type') if not isinstance(av_type, type(None)) and len(av_type) > 0: output.av_type = av_type # add the matrix profile specific attributes if core.is_mp_obj(profile): output.mp.ez = profile.get('ez') output.mp.join = profile.get('join') # add mp rows, cols, data = get_matrix_attributes(profile.get('mp')) output.mp.mp.rows = rows output.mp.mp.cols = cols output.mp.mp.data.extend(data) # add pi rows, cols, data = get_matrix_attributes(profile.get('pi')) output.mp.pi.rows = rows output.mp.pi.cols = cols output.mp.pi.data.extend(data) # add lmp rows, cols, data = get_matrix_attributes(profile.get('lmp')) if rows and cols and core.is_array_like(data): output.mp.lmp.rows = rows output.mp.lmp.cols = cols output.mp.lmp.data.extend(data) # add lpi rows, cols, data = get_matrix_attributes(profile.get('lpi')) if rows and cols and core.is_array_like(data): output.mp.lpi.rows = rows output.mp.lpi.cols = cols output.mp.lpi.data.extend(data) # add rmp rows, cols, data = get_matrix_attributes(profile.get('rmp')) if rows and cols and core.is_array_like(data): output.mp.rmp.rows = rows output.mp.rmp.cols = cols output.mp.rmp.data.extend(data) # add rpi rows, cols, data = get_matrix_attributes(profile.get('rpi')) if rows and cols and core.is_array_like(data): output.mp.rpi.rows = rows output.mp.rpi.cols = cols output.mp.rpi.data.extend(data) # add the pan matrix profile specific attributes elif core.is_pmp_obj(profile): # add pmp rows, cols, data = get_matrix_attributes(profile.get('pmp')) output.pmp.pmp.rows = rows output.pmp.pmp.cols = cols output.pmp.pmp.data.extend(data) # add pmpi rows, cols, data = get_matrix_attributes(profile.get('pmpi')) output.pmp.pmpi.rows = rows output.pmp.pmpi.cols = cols output.pmp.pmpi.data.extend(data) else: raise ValueError('Expecting Pan-MatrixProfile or MatrixProfile!') return output def to_mpf(profile): """ Converts a given profile object into MPF binary file format. Parameters ---------- profile : dict_like A MatrixProfile or Pan-MatrixProfile data structure. Returns ------- str : The profile as a binary formatted string. """ obj = profile_to_proto(profile) return obj.SerializeToString() def from_proto_to_array(value): """ Utility function to convert a protobuf array back into the correct dimensions. Parameters ---------- value : array_like The array to transform. Returns ------- np.ndarray : The transformed array. """ if isinstance(value, type(None)) or len(value.data) < 1: return None shape = (value.rows, value.cols) out = np.array(value.data) if shape[1] > 0: out = out.reshape(shape) return out def discords_from_proto(discords, is_one_dimensional=False): """ Utility function to transform discord locations back to single dimension or multi-dimension location. Parameter --------- discords : array_like The protobuf formatted array. is_one_dimensional : boolean A flag to indicate if the original locations should be 1D. Returns ------- np.ndarray : The transformed discord locations. """ out = [] for discord in discords: if is_one_dimensional: out.append(discord.row) else: out.append((discord.row, discord.col)) return np.array(out, dtype=int) def motifs_from_proto(motifs, is_one_dimensional=False): """ Utility function to transform motif locations back to single dimension or multi-dimension location. Parameter --------- motifs : array_like The protobuf formatted array. is_one_dimensional : boolean A flag to indicate if the original locations should be 1D. Returns ------- list : The transformed motif locations. """ out = [] for motif in motifs: tmp = {'motifs': [], 'neighbors': []} for location in motif.motifs: if is_one_dimensional: tmp['motifs'].append(location.row) else: tmp['motifs'].append((location.row, location.col)) for neighbor in motif.neighbors: if is_one_dimensional: tmp['neighbors'].append(neighbor.row) else: tmp['neighbors'].append((neighbor.row, neighbor.col)) out.append(tmp) return out def from_mpf(profile): """ Converts binary formatted MPFOutput message into a profile data structure. Parameters ---------- profile : str The profile as a binary formatted MPFOutput message. Returns ------- profile : dict_like A MatrixProfile or Pan-MatrixProfile data structure. """ obj = MPFOutput() obj.ParseFromString(profile) out = {} is_one_dimensional = False # load in all higher level attributes out['class'] = obj.klass out['algorithm'] = obj.algorithm out['metric'] = obj.metric out['sample_pct'] = obj.sample_pct out['data'] = { 'ts': from_proto_to_array(obj.ts), 'query': from_proto_to_array(obj.query) } if obj.klass == 'MatrixProfile': out['mp'] = from_proto_to_array(obj.mp.mp) out['pi'] = from_proto_to_array(obj.mp.pi) out['lmp'] = from_proto_to_array(obj.mp.lmp) out['lpi'] = from_proto_to_array(obj.mp.lpi) out['rmp'] = from_proto_to_array(obj.mp.rmp) out['rpi'] = from_proto_to_array(obj.mp.rpi) out['ez'] = obj.mp.ez out['join'] = obj.mp.join out['w'] = obj.windows[0] is_one_dimensional = len(out['mp'].shape) == 1 elif obj.klass == 'PMP': out['pmp'] = from_proto_to_array(obj.pmp.pmp) out['pmpi'] = from_proto_to_array(obj.pmp.pmpi) out['windows'] = np.array(obj.windows) if not isinstance(obj.discords, type(None)) and len(obj.discords) > 0: out['discords'] = discords_from_proto( obj.discords, is_one_dimensional=is_one_dimensional) if not isinstance(obj.motifs, type(None)) and len(obj.motifs) > 0: out['motifs'] = motifs_from_proto( obj.motifs, is_one_dimensional=is_one_dimensional) if not isinstance(obj.cmp, type(None)) and len(obj.cmp.data) > 0: out['cmp'] = from_proto_to_array(obj.cmp) if not isinstance(obj.av, type(None)) and len(obj.av.data) > 0: out['av'] = from_proto_to_array(obj.av) if not isinstance(obj.av_type, type(None)) and len(obj.av_type) > 0: out['av_type'] = obj.av_type return out
moe/optimal_learning/python/interfaces/domain_interface.py
misokg/Cornell-MOE
218
39133
# -*- coding: utf-8 -*- """Interface for a domain: in/out test, random point generation, and update limiting (for constrained optimization).""" from builtins import object from abc import ABCMeta, abstractmethod, abstractproperty from future.utils import with_metaclass class DomainInterface(with_metaclass(ABCMeta, object)): """Interface for a domain: in/out test, random point generation, and update limiting (for constrained optimization).""" @abstractproperty def dim(self): """Return the number of spatial dimensions.""" pass @abstractmethod def check_point_inside(self, point): r"""Check if a point is inside the domain/on its boundary or outside. :param point: point to check :type point: array of float64 with shape (dim) :return: true if point is inside the domain :rtype: bool """ pass @abstractmethod def get_bounding_box(self): """Return a list of ClosedIntervals representing a bounding box for this domain.""" pass @abstractmethod def get_constraint_list(self): """Return a list of lambda functions expressing the domain bounds as linear constraints. Used by COBYLA. :return: a list of lambda functions corresponding to constraints :rtype: array of lambda functions with shape (dim * 2) """ pass @abstractmethod def generate_random_point_in_domain(self, random_source=None): """Generate ``point`` uniformly at random such that ``self.check_point_inside(point)`` is True. .. Note:: if you need multiple points, use generate_uniform_random_points_in_domain instead; depending on implementation, it may ield better distributions over many points. For example, tensor product type domains use latin hypercube sampling instead of repeated random draws which guarantees that no non-uniform clusters may arise (in subspaces) versus this method which treats all draws independently. :return: point in domain :rtype: array of float64 with shape (dim) """ pass @abstractmethod def generate_uniform_random_points_in_domain(self, num_points, random_source): r"""Generate AT MOST ``num_points`` uniformly distributed points from the domain. .. NOTE:: The number of points returned may be LESS THAN ``num_points``! Implementations may use rejection sampling. In such cases, generating the requested number of points may be unreasonably slow, so implementers are allowed to generate fewer than ``num_points`` results. :param num_points: max number of points to generate :type num_points: int >= 0 :param random_source: :type random_source: callable yielding uniform random numbers in [0,1] :return: uniform random sampling of points from the domain; may be fewer than ``num_points``! :rtype: array of float64 with shape (num_points_generated, dim) """ pass @abstractmethod def compute_update_restricted_to_domain(self, max_relative_change, current_point, update_vector): r"""Compute a new update so that CheckPointInside(``current_point`` + ``new_update``) is true. Changes new_update_vector so that: ``point_new = point + new_update_vector`` has coordinates such that ``CheckPointInside(point_new)`` returns true. ``new_update_vector`` is a function of ``update_vector``. ``new_update_vector`` is just a copy of ``update_vector`` if ``current_point`` is already inside the domain. .. NOTE:: We modify update_vector (instead of returning point_new) so that further update limiting/testing may be performed. :param max_relative_change: max change allowed per update (as a relative fraction of current distance to boundary) :type max_relative_change: float64 in (0, 1] :param current_point: starting point :type current_point: array of float64 with shape (dim) :param update_vector: proposed update :type update_vector: array of float64 with shape (dim) :return: new update so that the final point remains inside the domain :rtype: array of float64 with shape (dim) """ pass
RecoPPS/Local/python/ctppsDiamondLocalReconstruction_cff.py
ckamtsikis/cmssw
852
39143
<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms # reco hit production from RecoPPS.Local.ctppsDiamondRecHits_cfi import ctppsDiamondRecHits # local track fitting from RecoPPS.Local.ctppsDiamondLocalTracks_cfi import ctppsDiamondLocalTracks ctppsDiamondLocalReconstructionTask = cms.Task( ctppsDiamondRecHits, ctppsDiamondLocalTracks ) ctppsDiamondLocalReconstruction = cms.Sequence(ctppsDiamondLocalReconstructionTask)
text/opencv_dnn_detect.py
kingemma/invoice
1,017
39174
<filename>text/opencv_dnn_detect.py from config import yoloCfg,yoloWeights,opencvFlag from config import AngleModelPb,AngleModelPbtxt from config import IMGSIZE from PIL import Image import numpy as np import cv2 if opencvFlag=='keras': ##转换为tf模型,以便GPU调用 import tensorflow as tf from tensorflow.python.platform import gfile config = tf.ConfigProto(allow_soft_placement=True) sess = tf.Session(config=config) with gfile.FastGFile(AngleModelPb, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) sess.graph.as_default() tf.import_graph_def(graph_def, name='') inputImg = sess.graph.get_tensor_by_name('input_1:0') predictions = sess.graph.get_tensor_by_name('predictions/Softmax:0') keep_prob = tf.placeholder(tf.float32) else: angleNet = cv2.dnn.readNetFromTensorflow(AngleModelPb,AngleModelPbtxt)##dnn 文字方向检测 textNet = cv2.dnn.readNetFromDarknet(yoloCfg,yoloWeights)##文字定位 def text_detect(img): thresh=0 h,w = img.shape[:2] inputBlob = cv2.dnn.blobFromImage(img, scalefactor=0.00390625, size=IMGSIZE,swapRB=True ,crop=False); textNet.setInput(inputBlob) pred = textNet.forward() cx = pred[:,0]*w cy = pred[:,1]*h xmin = cx - pred[:,2]*w/2 xmax = cx + pred[:,2]*w/2 ymin = cy - pred[:,3]*h/2 ymax = cy + pred[:,3]*h/2 scores = pred[:,4] indx = np.where(scores>thresh)[0] scores = scores[indx] boxes = np.array(list(zip(xmin[indx],ymin[indx],xmax[indx],ymax[indx]))) return boxes,scores def angle_detect_dnn(img,adjust=True): """ 文字方向检测 """ h,w = img.shape[:2] ROTATE = [0,90,180,270] if adjust: thesh = 0.05 xmin,ymin,xmax,ymax = int(thesh*w),int(thesh*h),w-int(thesh*w),h-int(thesh*h) img = img[ymin:ymax,xmin:xmax]##剪切图片边缘 inputBlob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(224, 224), swapRB=True , mean=[103.939,116.779,123.68],crop=False); angleNet.setInput(inputBlob) pred = angleNet.forward() index = np.argmax(pred,axis=1)[0] return ROTATE[index] def angle_detect_tf(img,adjust=True): """ 文字方向检测 """ h,w = img.shape[:2] ROTATE = [0,90,180,270] if adjust: thesh = 0.05 xmin,ymin,xmax,ymax = int(thesh*w),int(thesh*h),w-int(thesh*w),h-int(thesh*h) img = img[ymin:ymax,xmin:xmax]##剪切图片边缘 img = cv2.resize(img,(224,224)) img = img[..., ::-1].astype(np.float32) img[..., 0] -= 103.939 img[..., 1] -= 116.779 img[..., 2] -= 123.68 img = np.array([img]) out = sess.run(predictions, feed_dict={inputImg: img, keep_prob: 0 }) index = np.argmax(out,axis=1)[0] return ROTATE[index] def angle_detect(img,adjust=True): """ 文字方向检测 """ if opencvFlag=='keras': return angle_detect_tf(img,adjust=adjust) else: return angle_detect_dnn(img,adjust=adjust)
016 3Sum Closest.py
ChiFire/legend_LeetCode
872
39211
<filename>016 3Sum Closest.py<gh_stars>100-1000 """ Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution. For example, given array S = {-1 2 1 -4}, and target = 1. The sum that is closest to the target is 2. (-1 + 2 + 1 = 2). """ __author__ = 'Danyang' class Solution: def threeSumClosest(self, num, target): """ Three pointers scanning algorithm Similar to 014 3Sum :param num: array :param target: target :return: sum of the three digits """ min_distance = 1<<32 num.sort() min_summation = 0 for i, val in enumerate(num): j = i+1 k = len(num)-1 while j<k: lst = [val, num[j], num[k]] if min_distance>abs(target-sum(lst)): min_summation = sum(lst) if sum(lst)==target: return min_summation min_distance = abs(target-min_summation) elif sum(lst)>target: k -= 1 else: j += 1 return min_summation if __name__=="__main__": print Solution().threeSumClosest([1, 1, 1, 1], 0)
tests/spec/cms/blogs/test_blogs.py
fakepop/hubspot-api-python
117
39227
<reponame>fakepop/hubspot-api-python from hubspot import HubSpot from hubspot.discovery.cms.blogs.discovery import Discovery def test_is_discoverable(): apis = HubSpot().cms assert isinstance(apis.blogs, Discovery)
notebooks/pixel_cnn/pixelcnn_helpers.py
bjlkeng/sandbox
158
39256
<gh_stars>100-1000 import math import numpy as np from keras import backend as K from keras.layers import Conv2D, Concatenate, Activation, Add from keras.engine import InputSpec def logsoftmax(x): ''' Numerically stable log(softmax(x)) ''' m = K.max(x, axis=-1, keepdims=True) return x - m - K.log(K.sum(K.exp(x - m), axis=-1, keepdims=True)) def pixelcnn_loss(target, output, img_rows, img_cols, img_chns, n_components): ''' Keras PixelCNN loss function. Use a lambda to fill in the last few parameters Args: img_rows, img_cols, img_chns: image dimensions n_components: number of mixture components Returns: log-loss ''' assert img_chns == 3 # Extract out each of the mixture parameters (multiple of 3 b/c of image channels) output_m = output[:, :, :, :3*n_components] output_invs = output[:, :, :, 3*n_components:6*n_components] output_logit_weights = output[:, :, :, 6*(n_components):] # Repeat the target to match the number of mixture component shapes x = K.reshape(target, (-1, img_rows, img_cols, img_chns)) slices = [] for c in range(img_chns): slices += [x[:, :, :, c:c+1]] * n_components x = K.concatenate(slices, axis=-1) x_decoded_m = output_m x_decoded_invs = output_invs x_logit_weights = output_logit_weights # Pixels rescaled to be in [-1, 1] interval offset = 1. / 127.5 / 2. centered_mean = x - x_decoded_m cdfminus_arg = (centered_mean - offset) * K.exp(x_decoded_invs) cdfplus_arg = (centered_mean + offset) * K.exp(x_decoded_invs) cdfminus_safe = K.sigmoid(cdfminus_arg) cdfplus_safe = K.sigmoid(cdfplus_arg) # Generate the PDF (logistic) in case the `m` is way off (cdf is too small) # pdf = e^(-(x-m)/s) / {s(1 + e^{-(x-m)/s})^2} # logpdf = -(x-m)/s - log s - 2 * log(1 + e^(-(x-m)/s)) # = -mid_in - invs - 2 * softplus(-mid_in) mid_in = centered_mean * K.exp(x_decoded_invs) log_pdf_mid = -mid_in - x_decoded_invs - 2. * K.tf.nn.softplus(-mid_in) # Use trick from PixelCNN++ implementation to protect against edge/overflow cases # In extreme cases (cdfplus_safe - cdf_minus_safe < 1e-5), use the # log_pdf_mid and assume that density is 1 pixel width wide (1/127.5) as # the density: log(pdf * 1/127.5) = log(pdf) - log(127.5) # Add on line of best fit (see notebooks/blog post) to the difference between # edge case and the standard case edge_case = log_pdf_mid - np.log(127.5) + 2.04 * x_decoded_invs - 0.107 # ln (sigmoid(x)) = x - ln(e^x + 1) = x - softplus(x) # ln (1 - sigmoid(x)) = ln(1 / (1 + e^x)) = -softplus(x) log_cdfplus = cdfplus_arg - K.tf.nn.softplus(cdfplus_arg) log_1minus_cdf = -K.tf.nn.softplus(cdfminus_arg) log_ll = K.tf.where(x <= -0.999, log_cdfplus, K.tf.where(x >= 0.999, log_1minus_cdf, K.tf.where(cdfplus_safe - cdfminus_safe > 1e-5, K.log(K.maximum(cdfplus_safe - cdfminus_safe, 1e-12)), edge_case))) # x_weights * [sigma(x+0.5...) - sigma(x-0.5 ...) ] # = log x_weights + log (...) # Compute log(softmax(.)) directly here, instead of doing 2-step to avoid overflow pre_result = logsoftmax(x_logit_weights) + log_ll result = [] for chn in range(img_chns): chn_result = pre_result[:, :, :, chn*n_components:(chn+1)*n_components] v = K.logsumexp(chn_result, axis=-1) result.append(v) result = K.batch_flatten(K.stack(result, axis=-1)) return -K.sum(result, axis=-1) def sigmoid(x): # Protect overflow if x < -20: return 0.0 elif x > 20: return 1.0 return 1 / (1 + math.exp(-x)) def logistic_cdf(x, loc, scale): return sigmoid((x - loc) / scale) def compute_pvals(m, invs): pvals = [] for i in range(256): if i == 0: pval = logistic_cdf((0.5 - 127.5) / 127.5, loc=m, scale=1. / np.exp(invs)) elif i == 255: pval = 1. - logistic_cdf((254.5 - 127.5) / 127.5, loc=m, scale=1. / np.exp(invs)) else: pval = (logistic_cdf((i + 0.5 - 127.5) / 127.5, loc=m, scale=1. / np.exp(invs)) - logistic_cdf((i - 0.5 - 127.5) / 127.5, loc=m, scale=1. / np.exp(invs))) pvals.append(pval) return pvals def compute_mixture(ms, invs, weights, n_comps): components = [] for i in range(n_comps): pvals = compute_pvals(ms[i], invs[i]) arr = np.array(pvals) components.append(weights[i] * arr) return np.sum(components, axis=0) class PixelConv2D(Conv2D): def __init__(self, ptype, *args, **kwargs): # ptype corresponds to pixel type and mask type, e.g. ra, ga, ba, rb, gb, bb assert ptype[0] in ['r', 'g', 'b'], ptype assert ptype[1] in ['a', 'b'], ptype self.ptype = ptype super(PixelConv2D, self).__init__(*args, **kwargs) def build_mask(self, kernel_shape): # kernel_shape = kern_dim x kern_dim x total_filters # = kern_dim x kern_dim x r_g_b_filters x filters_per_channel assert kernel_shape[0] == kernel_shape[1], \ "{} must be equal in first two dims".format(kernel_shape) assert kernel_shape[0] % 2 == 1, \ "{} must be odd size in first two dims".format(kernel_shape) assert kernel_shape[2] % 3 == 0, \ "{} must be divisible by 3".format(kernel_shape) data = np.ones(kernel_shape) data.shape mid = data.shape[0] // 2 if self.ptype[0] == 'r': filt_prev = 0 filt_thres = int(data.shape[2] / 3) elif self.ptype[0] == 'g': filt_prev = int(data.shape[2] / 3) filt_thres = int(2 * data.shape[2] / 3) else: assert self.ptype[0] == 'b', self.ptype filt_prev = int(2 * data.shape[2] / 3) filt_thres = data.shape[2] for k1 in range(data.shape[0]): for k2 in range(data.shape[1]): for chan in range(data.shape[2]): if (self.ptype[1] == 'a' and filt_prev <= chan < filt_thres and k1 == mid and k2 == mid): # Handle the only difference between 'a' and 'b' ptypes data[k1, k2, chan, :] = 0 elif k1 > mid or (k1 >= mid and k2 > mid) or chan >= filt_thres: # Turn off anything: # a) Below currrent pixel # b) Past the current pixel (scanning left from right, up to down) # c) In a later filter data[k1, k2, chan, :] = 0 return K.constant(np.ravel(data), dtype='float32', shape=kernel_shape) def build(self, input_shape): if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis] kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel_mask = self.build_mask(kernel_shape) self.kernel = self.add_weight(shape=kernel_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias = self.add_weight(shape=(self.filters,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None # Set input spec. self.input_spec = InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self.built = True def call(self, inputs): masked_kernel = self.kernel * self.kernel_mask outputs = K.conv2d( inputs, masked_kernel, strides=self.strides, padding=self.padding, data_format=self.data_format, dilation_rate=self.dilation_rate) if self.use_bias: outputs = K.bias_add( outputs, self.bias, data_format=self.data_format) if self.activation is not None: return self.activation(outputs) return outputs def conv_block(input_tensor, filters, kernel_size, name, is_first=False): outs = [] for t in ['rb', 'gb', 'bb']: if is_first: t = t[0] + 'a' x = PixelConv2D(t, filters, kernel_size, name='res' + name + t, padding='same')(input_tensor) x = Activation('relu')(x) outs.append(x) return Concatenate()(outs) def resnet_block(input_tensor, filters, stage, block, kernel=3): name_base = str(stage) + block + '_branch' filters1, filters2, filters3 = filters x = input_tensor x = conv_block(x, filters1, (1, 1), name=name_base + '_a-1x1') x = conv_block(x, filters2, (kernel, kernel), name=name_base + '_b-{}x{}'.format(kernel, kernel)) x = conv_block(x, filters3, (1, 1), name=name_base + '_c-1x1') x = Add()([x, input_tensor]) return x def final_block(input_tensor, filters, in_filters, name, kernel_size=(1, 1)): outs = [] for t in ['rb', 'gb', 'bb']: x = PixelConv2D(t, filters, kernel_size, name='final' + name + '_' + t, padding='same')(input_tensor) x = Activation('relu')(x) outs.append(x) return Concatenate()(outs)
terrascript/data/logicmonitor.py
hugovk/python-terrascript
507
39260
# terrascript/data/logicmonitor.py import terrascript class logicmonitor_collectors(terrascript.Data): pass class logicmonitor_dashboard(terrascript.Data): pass class logicmonitor_dashboard_group(terrascript.Data): pass class logicmonitor_device_group(terrascript.Data): pass __all__ = [ "logicmonitor_collectors", "logicmonitor_dashboard", "logicmonitor_dashboard_group", "logicmonitor_device_group", ]
api/v2/serializers/fields/identity.py
simpsonw/atmosphere
197
39292
<reponame>simpsonw/atmosphere from rest_framework import exceptions, serializers from api.v2.serializers.summaries import IdentitySummarySerializer from core.models import Identity class IdentityRelatedField(serializers.RelatedField): def get_queryset(self): return Identity.objects.all() def to_representation(self, identity): serializer = IdentitySummarySerializer(identity, context=self.context) return serializer.data def to_internal_value(self, data): queryset = self.get_queryset() if isinstance(data, dict): identity = data.get("id", None) else: identity = data try: return queryset.get(id=identity) except: raise exceptions.ValidationError( "Identity with id '%s' does not exist." % identity )
opps/core/tags/views.py
jeanmask/opps
159
39311
<reponame>jeanmask/opps # -*- encoding: utf-8 -*- from django.utils import timezone from django.contrib.sites.models import get_current_site from django.conf import settings from haystack.query import SearchQuerySet from opps.views.generic.list import ListView from opps.containers.models import Container from opps.channels.models import Channel from .models import Tag USE_HAYSTACK = getattr(settings, 'OPPS_TAGS_USE_HAYSTACK', False) class TagList(ListView): model = Container def get_template_list(self, domain_folder="containers"): templates = [] list_name = 'list_tags' if self.request.GET.get('page') and\ self.__class__.__name__ not in settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}_paginated.html'.format(domain_folder, list_name)) templates.append('{0}/{1}.html'.format(domain_folder, list_name)) return templates def get_context_data(self, **kwargs): context = super(TagList, self).get_context_data(**kwargs) context['tag'] = self.kwargs['tag'] site = get_current_site(self.request) context['channel'] = Channel.objects.get_homepage(site) return context def get_queryset(self): self.site = get_current_site(self.request) # without the long_slug, the queryset will cause an error self.long_slug = 'tags' self.tag = self.kwargs['tag'] if USE_HAYSTACK: return self.get_queryset_from_haystack() return self.get_queryset_from_db() def get_queryset_from_haystack(self): models = Container.get_children_models() sqs = SearchQuerySet().models(*models).filter( tags=self.tag).order_by('-date_available') sqs.model = Container return sqs def get_queryset_from_db(self): tags = Tag.objects.filter(slug=self.tag).values_list('name') or [] tags_names = [] if tags: tags_names = [i[0] for i in tags] ids = [] for tag in tags_names: result = self.containers = self.model.objects.filter( site_domain=self.site, tags__contains=tag, date_available__lte=timezone.now(), published=True ) if result.exists(): ids.extend([i.id for i in result]) # remove the repeated ids = list(set(ids)) # grab the containers self.containers = self.model.objects.filter(id__in=ids) return self.containers
aiida/cmdline/groups/__init__.py
aiidateam/aiida_core
153
39332
<filename>aiida/cmdline/groups/__init__.py # -*- coding: utf-8 -*- """Module with custom implementations of :class:`click.Group`.""" # AUTO-GENERATED # yapf: disable # pylint: disable=wildcard-import from .dynamic import * from .verdi import * __all__ = ( 'DynamicEntryPointCommandGroup', 'VerdiCommandGroup', ) # yapf: enable
src/storage-preview/azext_storage_preview/tests/latest/test_storage_file_scenarios.py
haroonf/azure-cli-extensions
207
39336
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import os from azure.cli.testsdk import (ResourceGroupPreparer, StorageAccountPreparer, JMESPathCheck, ScenarioTest) from ..storage_test_util import StorageScenarioMixin class StorageFileShareScenarios(StorageScenarioMixin, ScenarioTest): @ResourceGroupPreparer() @StorageAccountPreparer() def test_storage_file_upload_small_file_v2(self, resource_group, storage_account_info): account_info = storage_account_info share_name = self.create_share(account_info) curr_dir = os.path.dirname(os.path.realpath(__file__)) local_file = os.path.join(curr_dir, 'upload_file').replace('\\', '\\\\') local_file_name = 'upload_file' self.storage_cmd('storage file upload -s {} --source "{}" ' '--content-cache-control no-cache ' '--content-disposition attachment ' '--content-encoding compress ' '--content-language en-US ' '--content-type "multipart/form-data;" ' '--metadata key=val ', account_info, share_name, local_file) self.storage_cmd('storage file show -s {} -p "{}"', account_info, share_name, local_file_name) \ .assert_with_checks(JMESPathCheck('name', local_file_name), JMESPathCheck('properties.contentSettings.cacheControl', 'no-cache'), JMESPathCheck('properties.contentSettings.contentDisposition', 'attachment'), JMESPathCheck('properties.contentSettings.contentEncoding', 'compress'), JMESPathCheck('properties.contentSettings.contentLanguage', 'en-US'), JMESPathCheck('properties.contentSettings.contentType', 'multipart/form-data;'), JMESPathCheck('metadata', {'key': 'val'})) dest_dir = 'dest_dir' from azure.core.exceptions import ResourceNotFoundError with self.assertRaises(ResourceNotFoundError): self.storage_cmd('storage file upload -s {} --source "{}" -p {}', account_info, share_name, local_file, dest_dir) self.storage_cmd('storage directory create -s {} -n {}', account_info, share_name, dest_dir) self.storage_cmd('storage file upload -s {} --source "{}" -p {}', account_info, share_name, local_file, dest_dir) self.storage_cmd('storage file show -s {} -p "{}"', account_info, share_name, dest_dir + '/' + local_file_name) \ .assert_with_checks(JMESPathCheck('name', local_file_name)) dest_file = 'dest_file.json' self.storage_cmd('storage file upload -s {} --source "{}" -p {}', account_info, share_name, local_file, dest_file) self.storage_cmd('storage file show -s {} -p "{}"', account_info, share_name, dest_file) \ .assert_with_checks(JMESPathCheck('name', dest_file)) dest_path = dest_dir + '/' + dest_file self.storage_cmd('storage file upload -s {} --source "{}" -p {}', account_info, share_name, local_file, dest_path) self.storage_cmd('storage file show -s {} -p "{}"', account_info, share_name, dest_path) \ .assert_with_checks(JMESPathCheck('name', dest_file)) sub_deep_path = dest_dir + '/' + 'sub_dir' self.storage_cmd('storage directory create -s {} -n {}', account_info, share_name, sub_deep_path) self.storage_cmd('storage file upload -s {} --source "{}" -p {}', account_info, share_name, local_file, sub_deep_path) self.storage_cmd('storage file show -s {} -p "{}"', account_info, share_name, sub_deep_path + '/' + local_file_name). \ assert_with_checks(JMESPathCheck('name', local_file_name)) sub_deep_file = sub_deep_path + '/' + dest_file self.storage_cmd('storage file upload -s {} --source "{}" -p {}', account_info, share_name, local_file, sub_deep_file) self.storage_cmd('storage file show -s {} -p "{}"', account_info, share_name, sub_deep_file).assert_with_checks(JMESPathCheck('name', dest_file))
plugins/lucid/ui/explorer.py
gaasedelen/lucid
342
39359
import ctypes import ida_ida import ida_funcs import ida_graph import ida_idaapi import ida_kernwin import ida_hexrays from PyQt5 import QtWidgets, QtGui, QtCore, sip from lucid.ui.sync import MicroCursorHighlight from lucid.ui.subtree import MicroSubtreeView from lucid.util.python import register_callback, notify_callback from lucid.util.hexrays import get_microcode, get_mmat, get_mmat_name, get_mmat_levels from lucid.microtext import MicrocodeText, MicroInstructionToken, MicroOperandToken, AddressToken, BlockNumberToken, translate_mtext_position, remap_mtext_position #------------------------------------------------------------------------------ # Microcode Explorer #------------------------------------------------------------------------------ # # The Microcode Explorer UI is mostly implemented following a standard # Model-View-Controller pattern. This is a little abnormal for Qt, but # I've come to appreciate it more for its portability and testability. # class MicrocodeExplorer(object): """ The controller component of the microcode explorer. The role of the controller is to handle user gestures, map user actions to model updates, and change views based on controls. In theory, the controller should be able to drive the 'view' headlessly or simulate user UI interaction. """ def __init__(self): self.model = MicrocodeExplorerModel() self.view = MicrocodeExplorerView(self, self.model) self.view._code_sync.enable_sync(True) # XXX/HACK def show(self, address=None): """ Show the microcode explorer. """ if address is None: address = ida_kernwin.get_screen_ea() self.select_function(address) self.view.show() def show_subtree(self, insn_token): """ Show the sub-instruction graph for the given instruction token. """ graph = MicroSubtreeView(insn_token.insn) graph.show() # TODO/HACK: this is dumb, but moving it breaks my centering code so # i'll figure it out later... gv = ida_graph.get_graph_viewer(graph.GetWidget()) ida_graph.viewer_set_titlebar_height(gv, 15) #------------------------------------------------------------------------- # View Toggles #------------------------------------------------------------------------- def set_highlight_mutual(self, status): """ Toggle the highlighting of lines containing the same active address. """ if status: self.view._code_sync.hook() else: self.view._code_sync.unhook() ida_kernwin.refresh_idaview_anyway() def set_verbose(self, status): """ Toggle the verbosity of the printed microcode text. """ self.model.verbose = status ida_kernwin.refresh_idaview_anyway() #------------------------------------------------------------------------- # View Controls #------------------------------------------------------------------------- def select_function(self, address): """ Switch the microcode view to the specified function. """ func = ida_funcs.get_func(address) if not func: return False for maturity in get_mmat_levels(): mba = get_microcode(func, maturity) mtext = MicrocodeText(mba, self.model.verbose) self.model.update_mtext(mtext, maturity) self.view.refresh() ida_kernwin.refresh_idaview_anyway() return True def select_maturity(self, maturity_name): """ Switch the microcode view to the specified maturity level. """ self.model.active_maturity = get_mmat(maturity_name) #self.view.refresh() def select_address(self, address): """ Select a token in the microcode view matching the given address. """ tokens = self.model.mtext.get_tokens_for_address(address) if not tokens: return None token_line_num, token_x = self.model.mtext.get_pos_of_token(tokens[0]) rel_y = self.model.current_position[2] if self.model.current_position[2] == 0: rel_y = 30 self.model.current_position = (token_line_num, token_x, rel_y) return tokens[0] def select_position(self, line_num, x, y): """ Select the given text position in the microcode view. """ self.model.current_position = (line_num, x, y) #print(" - hovered token: %s" % self.model.current_token.text) #print(" - hovered taddr: 0x%08X" % self.model.current_token.address) #print(" - hovered laddr: 0x%08X" % self.model.current_address) def activate_position(self, line_num, x, y): """ Activate (eg. double click) the given text position in the microcode view. """ token = self.model.mtext.get_token_at_position(line_num, x) if isinstance(token, AddressToken): ida_kernwin.jumpto(token.target_address, -1, 0) return if isinstance(token, BlockNumberToken) or (isinstance(token, MicroOperandToken) and token.mop.t == ida_hexrays.mop_b): blk_idx = token.blk_idx if isinstance(token, BlockNumberToken) else token.mop.b blk_token = self.model.mtext.blks[blk_idx] blk_line_num, _ = self.model.mtext.get_pos_of_token(blk_token.lines[0]) self.model.current_position = (blk_line_num, 0, y) self.view._code_view.Jump(*self.model.current_position) return class MicrocodeExplorerModel(object): """ The model component of the microcode explorer. The role of the model is to encapsulate application state, respond to state queries, and notify views of changes. Ideally, the model could be serialized / unserialized to save and restore state. """ def __init__(self): # # 'mtext' is short for MicrocodeText objects (see microtext.py) # # this dictionary will contain a mtext object (the renderable text # mapping of a given hexrays mba_t) for each microcode maturity level # of the current function. # # at any given time, one mtext will be 'active' in the model, and # therefore visible in the UI/Views # self._mtext = {x: None for x in get_mmat_levels()} # # there is a 'cursor' (ViewCursor) for each microcode maturity level / # mtext object. cursors don't actually contain the 'position' in the # rendered text (line_num, x), but also information to position the # cursor within the line view (y) # self._view_cursors = {x: None for x in get_mmat_levels()} # # the currently active / selected maturity level of the model. this # determines which mtext is currently visible / active in the # microcode view, and which cursor will be used # self._active_maturity = ida_hexrays.MMAT_GENERATED # this flag tracks the verbosity toggle state self._verbose = False #---------------------------------------------------------------------- # Callbacks #---------------------------------------------------------------------- self._mtext_refreshed_callbacks = [] self._position_changed_callbacks = [] self._maturity_changed_callbacks = [] #------------------------------------------------------------------------- # Read-Only Properties #------------------------------------------------------------------------- @property def mtext(self): """ Return the microcode text mapping for the current maturity level. """ return self._mtext[self._active_maturity] @property def current_line(self): """ Return the line token at the current viewport cursor position. """ if not self.mtext: return None line_num, _, _ = self.current_position return self.mtext.lines[line_num] @property def current_function(self): """ Return the current function address. """ if not self.mtext: return ida_idaapi.BADADDR return self.mtext.mba.entry_ea @property def current_token(self): """ Return the token at the current viewport cursor position. """ return self.mtext.get_token_at_position(*self.current_position[:2]) @property def current_address(self): """ Return the address at the current viewport cursor position. """ return self.mtext.get_address_at_position(*self.current_position[:2]) @property def current_cursor(self): """ Return the current viewport cursor. """ return self._view_cursors[self._active_maturity] #------------------------------------------------------------------------- # Mutable Properties #------------------------------------------------------------------------- @property def current_position(self): """ Return the current viewport cursor position (line_num, view_x, view_y). """ return self.current_cursor.viewport_position @current_position.setter def current_position(self, value): """ Set the cursor position of the viewport. """ self._gen_cursors(value, self.active_maturity) self._notify_position_changed() @property def verbose(self): """ Return the microcode verbosity status of the viewport. """ return self._verbose @verbose.setter def verbose(self, value): """ Set the verbosity of the microcode displayed by the viewport. """ if self._verbose == value: return # update the active verbosity setting self._verbose = value # verbosity must have changed, so force a mtext refresh self.refresh_mtext() @property def active_maturity(self): """ Return the active microcode maturity level. """ return self._active_maturity @active_maturity.setter def active_maturity(self, new_maturity): """ Set the active microcode maturity level. """ self._active_maturity = new_maturity self._notify_maturity_changed() #---------------------------------------------------------------------- # Misc #---------------------------------------------------------------------- def update_mtext(self, mtext, maturity): """ Set the mtext for a given microcode maturity level. """ self._mtext[maturity] = mtext self._view_cursors[maturity] = ViewCursor(0, 0, 0) def refresh_mtext(self): """ Regenerate the rendered text for all microcode maturity levels. TODO: This is a bit sloppy, and is basically only used for the verbosity toggle. """ for maturity, mtext in self._mtext.items(): if maturity == self.active_maturity: new_mtext = MicrocodeText(mtext.mba, self.verbose) self._mtext[maturity] = new_mtext self.current_position = translate_mtext_position(self.current_position, mtext, new_mtext) continue mtext.refresh(self.verbose) self._notify_mtext_refreshed() def _gen_cursors(self, position, mmat_src): """ Generate the cursors for all levels from a source position and maturity. """ mmat_levels = get_mmat_levels() mmat_first, mmat_final = mmat_levels[0], mmat_levels[-1] # clear out all the existing cursor mappings self._view_cursors = {x: None for x in mmat_levels} # save the starting cursor line_num, x, y = position self._view_cursors[mmat_src] = ViewCursor(line_num, x, y, True) # map the cursor backwards from the source maturity mmat_lower = range(mmat_first, mmat_src)[::-1] current_maturity = mmat_src for next_maturity in mmat_lower: self._transfer_cursor(current_maturity, next_maturity) current_maturity = next_maturity # map the cursor forward from the source maturity mmat_higher = range(mmat_src+1, mmat_final + 1) current_maturity = mmat_src for next_maturity in mmat_higher: self._transfer_cursor(current_maturity, next_maturity) current_maturity = next_maturity def _transfer_cursor(self, mmat_src, mmat_dst): """ Translate the cursor position from one maturity to the next. """ position = self._view_cursors[mmat_src].viewport_position mapped = self._view_cursors[mmat_src].mapped # attempt to translate the position in one mtext to another projection = translate_mtext_position(position, self._mtext[mmat_src], self._mtext[mmat_dst]) # if translation failed, we will generate an approximate cursor if not projection: mapped = False projection = remap_mtext_position(position, self._mtext[mmat_src], self._mtext[mmat_dst]) # save the generated cursor line_num, x, y = projection self._view_cursors[mmat_dst] = ViewCursor(line_num, x, y, mapped) #---------------------------------------------------------------------- # Callbacks #---------------------------------------------------------------------- def mtext_refreshed(self, callback): """ Subscribe a callback for mtext refresh events. """ register_callback(self._mtext_refreshed_callbacks, callback) def _notify_mtext_refreshed(self): """ Notify listeners of a mtext refresh event. """ notify_callback(self._mtext_refreshed_callbacks) def position_changed(self, callback): """ Subscribe a callback for cursor position changed events. """ register_callback(self._position_changed_callbacks, callback) def _notify_position_changed(self): """ Notify listeners of a cursor position changed event. """ notify_callback(self._position_changed_callbacks) def maturity_changed(self, callback): """ Subscribe a callback for maturity changed events. """ register_callback(self._maturity_changed_callbacks, callback) def _notify_maturity_changed(self): """ Notify listeners of a maturity changed event. """ notify_callback(self._maturity_changed_callbacks) #----------------------------------------------------------------------------- # UI Components #----------------------------------------------------------------------------- class MicrocodeExplorerView(QtWidgets.QWidget): """ The view component of the Microcode Explorer. """ WINDOW_TITLE = "Microcode Explorer" def __init__(self, controller, model): super(MicrocodeExplorerView, self).__init__() self.visible = False # the backing model, and controller for this view (eg, mvc pattern) self.model = model self.controller = controller # initialize the plugin UI self._ui_init() self._ui_init_signals() #-------------------------------------------------------------------------- # Pseudo Widget Functions #-------------------------------------------------------------------------- def show(self): self.refresh() # show the dockable widget flags = ida_kernwin.PluginForm.WOPN_DP_RIGHT | 0x200 # WOPN_SZHINT ida_kernwin.display_widget(self._twidget, flags) ida_kernwin.set_dock_pos(self.WINDOW_TITLE, "IDATopLevelDockArea", ida_kernwin.DP_RIGHT) self._code_sync.hook() def _cleanup(self): self.visible = False self._twidget = None self.widget = None self._code_sync.unhook() self._ui_hooks.unhook() # TODO cleanup controller / model #-------------------------------------------------------------------------- # Initialization - UI #-------------------------------------------------------------------------- def _ui_init(self): """ Initialize UI elements. """ self._ui_init_widget() # initialize our ui elements self._ui_init_list() self._ui_init_code() self._ui_init_settings() # layout the populated ui just before showing it self._ui_layout() def _ui_init_widget(self): """ Initialize an IDA widget for this UI control. """ # create a dockable widget, and save a reference to it for later use self._twidget = ida_kernwin.create_empty_widget(self.WINDOW_TITLE) # cast the IDA 'twidget' to a less opaque QWidget object self.widget = ida_kernwin.PluginForm.TWidgetToPyQtWidget(self._twidget) # hooks to help track the container/widget lifetime class ExplorerUIHooks(ida_kernwin.UI_Hooks): def widget_invisible(_, twidget): if twidget == self._twidget: self.visible = False self._cleanup() def widget_visible(_, twidget): if twidget == self._twidget: self.visible = True # install the widget lifetime hooks self._ui_hooks = ExplorerUIHooks() self._ui_hooks.hook() def _ui_init_list(self): """ Initialize the microcode maturity list. """ self._maturity_list = LayerListWidget() def _ui_init_code(self): """ Initialize the microcode view(s). """ self._code_view = MicrocodeView(self.model) self._code_sync = MicroCursorHighlight(self.controller, self.model) self._code_sync.track_view(self._code_view.widget) def _ui_init_settings(self): """ Initialize the explorer settings groupbox. """ self._checkbox_cursor = QtWidgets.QCheckBox("Highlight mutual") self._checkbox_cursor.setCheckState(QtCore.Qt.Checked) self._checkbox_verbose = QtWidgets.QCheckBox("Show use/def") self._checkbox_sync = QtWidgets.QCheckBox("Sync hexrays") self._checkbox_sync.setCheckState(QtCore.Qt.Checked) self._groupbox_settings = QtWidgets.QGroupBox("Settings") layout = QtWidgets.QVBoxLayout() layout.addWidget(self._checkbox_cursor) layout.addWidget(self._checkbox_verbose) layout.addWidget(self._checkbox_sync) self._groupbox_settings.setLayout(layout) def _ui_layout(self): """ Layout the major UI elements of the widget. """ layout = QtWidgets.QGridLayout() # arrange the widgets in a 'grid' row col row span col span layout.addWidget(self._code_view.widget, 0, 0, 0, 1) layout.addWidget(self._maturity_list, 0, 1, 1, 1) layout.addWidget(self._groupbox_settings, 1, 1, 1, 1) # apply the layout to the widget self.widget.setLayout(layout) def _ui_init_signals(self): """ Connect UI signals. """ self._maturity_list.currentItemChanged.connect(lambda x, y: self.controller.select_maturity(x.text())) self._code_view.connect_signals(self.controller) self._code_view.OnClose = self.hide # HACK # checkboxes self._checkbox_cursor.stateChanged.connect(lambda x: self.controller.set_highlight_mutual(bool(x))) self._checkbox_verbose.stateChanged.connect(lambda x: self.controller.set_verbose(bool(x))) self._checkbox_sync.stateChanged.connect(lambda x: self._code_sync.enable_sync(bool(x))) # model signals self.model.mtext_refreshed(self.refresh) self.model.maturity_changed(self.refresh) #-------------------------------------------------------------------------- # Misc #-------------------------------------------------------------------------- def refresh(self): """ Refresh the microcode explorer UI based on the model state. """ self._maturity_list.setCurrentRow(self.model.active_maturity - 1) self._code_view.refresh() class LayerListWidget(QtWidgets.QListWidget): """ The microcode maturity list widget """ def __init__(self): super(LayerListWidget, self).__init__() # populate the list widget with the microcode maturity levels self.addItems([get_mmat_name(x) for x in get_mmat_levels()]) # select the first maturity level, by default self.setCurrentRow(0) # make the list widget a fixed size, slightly wider than it needs to be width = self.sizeHintForColumn(0) self.setMaximumWidth(int(width + width * 0.10)) def wheelEvent(self, event): """ Handle mouse wheel scroll events. """ y = event.angleDelta().y() # scrolling down, clamp to last row if y < 0: next_row = min(self.currentRow()+1, self.count()-1) # scrolling up, clamp to first row (0) elif y > 0: next_row = max(self.currentRow()-1, 0) # horizontal scroll ? nothing to do.. else: return self.setCurrentRow(next_row) class MicrocodeView(ida_kernwin.simplecustviewer_t): """ An IDA-based text area that will render the Hex-Rays microcode. TODO: I'll probably rip this out in the future, as I'll have finer control over the interaction / implementation if I just roll my own microcode text widget. For that reason, excuse its hacky-ness / lack of comments. """ def __init__(self, model): super(MicrocodeView, self).__init__() self.model = model self.Create() def connect_signals(self, controller): self.controller = controller self.OnCursorPosChanged = lambda: controller.select_position(*self.GetPos()) self.OnDblClick = lambda _: controller.activate_position(*self.GetPos()) self.model.position_changed(self.refresh_cursor) def refresh(self): self.ClearLines() for line in self.model.mtext.lines: self.AddLine(line.tagged_text) self.refresh_cursor() def refresh_cursor(self): if not self.model.current_position: return self.Jump(*self.model.current_position) def Create(self): if not super(MicrocodeView, self).Create(None): return False self._twidget = self.GetWidget() self.widget = ida_kernwin.PluginForm.TWidgetToPyQtWidget(self._twidget) return True def OnClose(self): pass def OnCursorPosChanged(self): pass def OnDblClick(self, shift): pass def OnPopup(self, form, popup_handle): controller = self.controller # # so, i'm pretty picky about my UI / interactions. IDA puts items in # the right click context menus of custom (code) viewers. # # these items aren't really relevant (imo) to the microcode viewer, # so I do some dirty stuff here to filter them out and ensure only # my items will appear in the context menu. # # there's only one right click context item right now, but in the # future i'm sure there will be more. # class FilterMenu(QtCore.QObject): def __init__(self, qmenu): super(QtCore.QObject, self).__init__() self.qmenu = qmenu def eventFilter(self, obj, event): if event.type() != QtCore.QEvent.Polish: return False for action in self.qmenu.actions(): if action.text() in ["&Font...", "&Synchronize with"]: # lol.. qmenu.removeAction(action) self.qmenu.removeEventFilter(self) self.qmenu = None return True p_qmenu = ctypes.cast(int(popup_handle), ctypes.POINTER(ctypes.c_void_p))[0] qmenu = sip.wrapinstance(int(p_qmenu), QtWidgets.QMenu) self.filter = FilterMenu(qmenu) qmenu.installEventFilter(self.filter) # only handle right clicks on lines containing micro instructions ins_token = self.model.mtext.get_ins_for_line(self.model.current_line) if not ins_token: return False class MyHandler(ida_kernwin.action_handler_t): def activate(self, ctx): controller.show_subtree(ins_token) def update(self, ctx): return ida_kernwin.AST_ENABLE_ALWAYS # inject the 'View subtree' action into the right click context menu desc = ida_kernwin.action_desc_t(None, 'View subtree', MyHandler()) ida_kernwin.attach_dynamic_action_to_popup(form, popup_handle, desc, None) return True #----------------------------------------------------------------------------- # Util #----------------------------------------------------------------------------- class ViewCursor(object): """ TODO """ def __init__(self, line_num, x, y, mapped=True): self.line_num = line_num self.x = x self.y = y self.mapped = mapped @property def text_position(self): return (self.line_num, self.x) @property def viewport_position(self): return (self.line_num, self.x, self.y)
third_party/libtcod/.ci/conan_build.py
csb6/libtcod-ada
686
39363
<reponame>csb6/libtcod-ada<filename>third_party/libtcod/.ci/conan_build.py<gh_stars>100-1000 #!/usr/bin/env python3 """Build script for conan-package-tools: https://github.com/conan-io/conan-package-tools """ import os import subprocess from cpt.packager import ConanMultiPackager try: version = subprocess.check_output( ["git", "describe", "--abbrev=0"], universal_newlines=True ) except subprocess.CalledProcessError: version = "0.0" if __name__ == "__main__": if "CI" in os.environ: os.environ["CONAN_SYSREQUIRES_MODE"] = "enabled" # Fix GitHub Actions version tag. if os.environ.get("GITHUB_REF", "").startswith("refs/tags/"): version = os.environ["GITHUB_REF"].replace("refs/tags/", "") builder = ConanMultiPackager( username="hexdecimal", channel="conan", upload="https://api.bintray.com/conan/hexdecimal/conan", upload_only_when_tag=True, reference="libtcod/" + version, remotes=[ "https://conan.bintray.com", "https://api.bintray.com/conan/bincrafters/public-conan", ], cppstds=["14"], visual_runtimes=["MD", "MDd"], # test_folder="tests/", build_policy="missing", upload_dependencies="all", ) builder.add_common_builds(pure_c=False) builder.run()
scripts/mnpr_system.py
semontesdeoca/MNPR
218
39390
""" @license: MIT @repository: https://github.com/semontesdeoca/MNPR _ _ __ ___ _ __ _ __ _ __ ___ _ _ ___| |_ ___ _ __ ___ | '_ ` _ \| '_ \| '_ \| '__| / __| | | / __| __/ _ \ '_ ` _ \ | | | | | | | | | |_) | | \__ \ |_| \__ \ || __/ | | | | | |_| |_| |_|_| |_| .__/|_| |___/\__, |___/\__\___|_| |_| |_| |_| |___/ @summary: MNPR related functions """ from __future__ import print_function import os import traceback import maya.cmds as cmds import maya.mel as mel import coopLib as lib import mnpr_info import mnpr_runner import mnpr_matPresets mnpr_info.loadPlugin() dx2sfxAttr = {"xUseColorTexture": "Albedo_Texture", "xColorTint": "Color_Tint", "xUseNormalTexture": "Normal_Map", "xFlipU": "Invert_U", "xFlipV": "Invert_V", "xBumpDepth": "Bump_Depth", "xUseSpecularTexture": "Specular_Map", "xSpecular": "Specular_Roll_Off", "xSpecDiffusion": "Specular_Diffusion", "xSpecTransparency": "Specular_Transparency", "xUseShadows": "", "xShadowDepthBias": "", "xDiffuseFactor": "Diffuse_Factor", "xShadeColor": "Shade_Color", "xShadeWrap": "Shade_Wrap", "xUseOverrideShade": "Shade_Override", "xDilute": "Dilute_Paint", "xCangiante": "Cangiante", "xDiluteArea": "Dilute_Area", "xHighArea": "Highlight_Roll_Off", "xHighTransparency": "Highlight_Transparency", "xAtmosphereColor": "", "xRangeStart": "", "xRangeEnd": "", "xDarkEdges": "", "xMainTex": "Albedo_Texture_File", "xNormalTex": "Normal_Map_File", "xSpecTex": "Specular_Map_File" } def check(): """Makes sure everything is running right""" print("SYSTEM CHECK FOR {0}".format(mnpr_info.prototype)) # check viewport viewport = lib.getActiveModelPanel() cmds.modelEditor(viewport, dtx=True, e=True) # display textures # plugin needs to be loaded mnpr_info.loadRenderer() # 3rd party plugins must be loaded cmds.loadPlugin('shaderFXPlugin', quiet=True) if cmds.about(nt=True, q=True): cmds.loadPlugin('dx11Shader', quiet=True) # deprecated (only shadeFXPlugin in the future) cmds.loadPlugin('glslShader', quiet=True) # deprecated (only shaderFXPlugin in the future) # viewport renderer must be set mel.eval("setRendererAndOverrideInModelPanel vp2Renderer {0} {1};".format(mnpr_info.prototype, viewport)) # modify color of heads up display cmds.displayColor("headsUpDisplayLabels", 2, dormant=True) cmds.displayColor("headsUpDisplayValues", 2, dormant=True) # make sure a config node exists if not cmds.objExists(mnpr_info.configNode): selected = cmds.ls(sl=True, l=True) selectConfig() cmds.select(selected, r=True) lib.printInfo("-> SYSTEM CHECK SUCCESSFUL") def changeStyle(): """Resets MNPR to load a new style""" # reset stylization cmds.mnpr(resetStylization=True) # delete old config node if cmds.objExists(mnpr_info.configNode): cmds.delete(mnpr_info.configNode) # flush undo cmds.flushUndo() print("style deleted") # deregister node cmds.mnpr(rn=False) # register node cmds.mnpr(rn=True) # create new config node selectConfig() # refresh AETemplate mnpr_runner.reloadConfig() # set new media type mnpr_info.media = cmds.mnpr(style=True, q=True) # rebuild opened UI's import mnpr_UIs if cmds.window(mnpr_UIs.BreakdownUI.windowTitle, exists=True): mnpr_runner.openOverrideSettings(rebuild=True) import mnpr_FX if cmds.window(mnpr_FX.MNPR_FX_UI.windowTitle, exists=True): mnpr_runner.openPaintFX(rebuild=True) lib.printInfo("Style changed") def togglePlugin(force=""): """ Toggles active or forces desired plugin prototype Args: force (str): plugin name to force """ if force: unloadPlugin(mnpr_info.prototype) mnpr_info.prototype = force check() else: # toggle loaded prototype if cmds.pluginInfo(mnpr_info.prototype, loaded=True, q=True): unloadPlugin(mnpr_info.prototype) else: check() def unloadPlugin(plugin): """ Unloads plugin and cleans scene from plugin traces Args: plugin (str): name of plugin to be unloaded """ # check which prototype is active if cmds.pluginInfo(plugin, loaded=True, q=True): # remove traces and unload if cmds.objExists(mnpr_info.configNode): cmds.delete(mnpr_info.configNode) # delete config node cmds.flushUndo() # clear undo queue cmds.unloadPlugin(plugin) # unload plugin lib.printInfo("->PLUGIN SUCCESSFULLY UNLOADED") def showShaderAttr(): """ Select material and show in attribute editor """ if cmds.ls(sl=True): cmds.hyperShade(smn=True) mel.eval("openAEWindow") else: cmds.warning("Select object with shader") def refreshShaders(): """ Refreshes object-space plugin shaders """ shaderDir = systemDir("shaders") if os.name == 'nt' and mnpr_info.backend == 'dx11': shaderFile = os.path.join(shaderDir, "PrototypeC.fx") if not os.path.isfile(shaderFile): shaderFile = os.path.join(shaderDir, "prototypeC.fxo") shaders = cmds.ls(type="dx11Shader") else: shaderFile = os.path.join(shaderDir, "PrototypeC.ogsfx") shaders = cmds.ls(type="GLSLShader") for shader in shaders: cmds.setAttr("{0}.shader".format(shader), shaderFile, type="string") lib.printInfo('Shaders refreshed') return True def updateShaderFX(): """ Updates shaderFX shaders""" shaderDir = systemDir("shaders") materials = cmds.ls(type="ShaderfxShader") counter = 0 for mat in materials: counter += 1 # get materials attributes matAttrs = {} mnpr_matPresets.getMaterialAttrs(mat, matAttrs) # load new graph shaderFile = os.path.join(shaderDir, "{0}.sfx".format(matAttrs["graph"])) cmds.shaderfx(sfxnode=mat, loadGraph=shaderFile) # set attributes mnpr_matPresets.setMaterialAttrs(mat, matAttrs) print("{0} has been updated to the latest version".format(mat)) print("{0}/{1} materials updated".format(counter, len(materials))) lib.printInfo('Shaders updated') def dx112glsl(): """ Converts dx11 materials to glsl materials """ check() dx11Shaders = cmds.ls(type="dx11Shader") print(dx11Shaders) for dx11Shader in dx11Shaders: print("Transfering {0} shader".format(dx11Shader)) # get all attributes attributes = cmds.listAttr(dx11Shader, ud=True, st="x*", k=True) print(attributes) # get all connected nodes connectedNodes = cmds.listConnections(dx11Shader, t="file", c=True, p=True) print(connectedNodes) # get all shapes cmds.select(dx11Shader, r=True) cmds.hyperShade(objects="") shapes = cmds.ls(sl=True) print(shapes) # create glsl shader shader = cmds.shadingNode('GLSLShader', asShader=True, n="{0}_GL".format(dx11Shader)) cmds.select(shapes, r=True) cmds.hyperShade(assign=shader) print(">>> Shader {0} created".format(shader)) # assign attributes shaderFile = os.path.join(mnpr_info.environment,"shaders","PrototypeC.ogsfx") cmds.setAttr("{0}.shader".format(shader), shaderFile, type="string") print("Setting attributes for {0}".format(shader)) for attr in attributes: value = cmds.getAttr("{0}.{1}".format(dx11Shader, attr)) try: if type(value) == type([]): cmds.setAttr("{0}.{1}".format(shader, attr), value[0][0], value[0][1], value[0][2], typ="double3") else: cmds.setAttr("{0}.{1}".format(shader, attr), value) except: print("Found problemt when setting {0}.{1}, skipping for now".format(shader, attr)) # connect nodes if connectedNodes: for i in range(0, len(connectedNodes), 2): inputAttr = connectedNodes[i].split(".")[1] cmds.connectAttr(connectedNodes[i+1], "{0}.{1}".format(shader, inputAttr)) # set control sets if cmds.attributeQuery("Color0_Source", node=shader, ex=True): cmds.setAttr("{0}.Color0_Source".format(shader), "color:controlSetA", type="string" ) if cmds.attributeQuery("Color1_Source", node=shader, ex=True): cmds.setAttr("{0}.Color1_Source".format(shader), "color:controlSetB", type="string" ) if cmds.attributeQuery("Color2_Source", node=shader, ex=True): cmds.setAttr("{0}.Color2_Source".format(shader), "color:controlSetC", type="string" ) # delete dx11 shader #cmds.delete(dx11Shader) def dx112sfx(graph="mnpr_uber"): """ Converts dx11 materials to shaderFX materials Args: graph (str): ShaderFX graph name (filename) """ check() dx11Shaders = cmds.ls(type="dx11Shader") prototypeCNodes = [] for dx11Shader in dx11Shaders: shaderPath = cmds.getAttr("{0}.shader".format(dx11Shader)) if "rototypeC" not in shaderPath: continue prototypeCNodes.append(dx11Shader) print("Converting {0} shader".format(dx11Shader)) # get all attributes attributes = cmds.listAttr(dx11Shader, ud=True, st="x*", k=True) print(attributes) # get all connected nodes connectedNodes = cmds.listConnections(dx11Shader, t="file", c=True) print(connectedNodes) # get all shapes cmds.select(dx11Shader, r=True) cmds.hyperShade(objects="") shapes = cmds.ls(sl=True) print(shapes) # create shaderFX shader shader = cmds.shadingNode('ShaderfxShader', asShader=True, name="{0}".format(dx11Shader.replace("_WC", "_SFX"))) cmds.select(shapes, r=True) cmds.hyperShade(assign=shader) shaderFile = os.path.join(mnpr_info.environment, "shaders", "{0}.sfx".format(graph)) cmds.shaderfx(sfxnode=shader, loadGraph=shaderFile) print(">>> Shader {0} created".format(shader)) # assign settings vtxControl = bool(cmds.getAttr("{0}.{1}".format(dx11Shader, "xUseControl"))) if vtxControl: nodeId = cmds.shaderfx(sfxnode=shader, getNodeIDByName="vtxControls") cmds.shaderfx(sfxnode=shader, edit_bool=(nodeId, "value", vtxControl)) shadows = bool(cmds.getAttr("{0}.{1}".format(dx11Shader, "xUseShadows"))) if not shadows: nodeId = cmds.shaderfx(sfxnode=shader, getNodeIDByName="Shadow") cmds.shaderfx(sfxnode=shader, edit_bool=(nodeId, "value", shadows)) specularity = bool(cmds.getAttr("{0}.{1}".format(dx11Shader, "xSpecular"))) if specularity: nodeId = cmds.shaderfx(sfxnode=shader, getNodeIDByName="Specularity") cmds.shaderfx(sfxnode=shader, edit_bool=(nodeId, "value", specularity)) # assign attributes print("Setting attributes for {0}".format(shader)) for attr in attributes: value = cmds.getAttr("{0}.{1}".format(dx11Shader, attr)) if attr in dx2sfxAttr: lib.setAttr(shader, dx2sfxAttr[attr], value) # assign textures if connectedNodes: for i in range(0, len(connectedNodes), 2): textureDir = cmds.getAttr("{0}.{1}".format(connectedNodes[i+1], "fileTextureName")) attr = connectedNodes[i].split(".")[1] lib.setAttr(shader, dx2sfxAttr[attr], textureDir) # delete prototypeC shaders cmds.delete(prototypeCNodes) def systemDir(folder=''): """ Returns the system directory Args: folder (str): folder to append to system directory Returns: (str): path to system directory """ rootDir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) return os.path.join(rootDir, folder) def selectConfig(): """Select configuration node and re-check connections""" # delete old configuration nodes if cmds.objExists("NPRConfig"): cmds.delete("NPRConfig") if not cmds.objExists(mnpr_info.configNode): print(mnpr_info.configNode) cmds.createNode("mnprConfig", n=mnpr_info.configNode) cmds.connectAttr("{0}.evaluate".format(mnpr_info.configNode), "persp.visibility", f=True) mel.eval("AttributeEditor") lib.printInfo("-> CONFIG NODE CREATED AND CONNECTED") else: cmds.select(mnpr_info.configNode) mel.eval("AttributeEditor") lib.printInfo("Selected {0} configuration node".format(mnpr_info.prototype)) def optimizePerformance(): """Function to optimize performance by disabling some Maya functions""" cmds.evaluationManager(mode="off") # set up animation evaluation to DG def renderFrame(saveDir, width, height, renderSize=1, imgFormat=".jpg", override=mnpr_info.prototype): """ Renders current frame in the viewport Args: saveDir (str): save directory width (int): width in pixels height (int): height in pixels renderSize (float): render size (factor) imgFormat (str): .jpg, .exr, etc) override (str): name of desired override (if any) """ check() # check that everything is in order renderSize = resolutionCheck(width, height, renderSize) # make sure resolution is reasonable # get working values to be changed workingRenderSize = cmds.getAttr("{0}.renderScale".format(mnpr_info.configNode)) workingColorDepth = cmds.getAttr("{0}.colorDepth".format(mnpr_info.configNode)) # set desired attributes if workingColorDepth != 2: lib.setAttr(mnpr_info.configNode, "colorDepth", 2) if renderSize != workingRenderSize: lib.setAttr(mnpr_info.configNode, "renderScale", renderSize) # prepare renderer cmds.mnpr(g=True) # enable mnprGamma mnprOperations = len(cmds.mnpr(lsO=True)) cmds.mnpr(renderOperation=mnprOperations-1, s=0) # HUD cmds.mnpr(renderOperation=mnprOperations-2, s=0) # UI cmds.refresh() # render frame try: screenshotPath = lib.screenshot(saveDir, width, height, format=imgFormat, override=override) # render the frame except WindowsError: print("Screenshot saving has been canceled") except: traceback.print_exc() if screenshotPath: # bring everything back to normal cmds.mnpr(renderOperation=mnprOperations-1, s=1) # HUD cmds.mnpr(renderOperation=mnprOperations-2, s=1) # UI lib.setAttr(mnpr_info.configNode, "renderScale", workingRenderSize) lib.setAttr(mnpr_info.configNode, "colorDepth", workingColorDepth) cmds.mnpr(g=False) cmds.refresh() return screenshotPath def playblast(saveDir, width, height, renderCamera, modelPanel, renderSize=1): """ Playblasts the timeslider Args: saveDir (str): save directory with *.mov extension width (int): width in pixels height: height in pixels renderCamera: camera to playblast from modelPanel: modelPanel to playblast from renderSize: render size (factor) """ check() # check that everything is in order renderSize = resolutionCheck(width, height, renderSize) # make sure resolution is reasonable aPlayBackSliderPython = mel.eval('$tmpVar=$gPlayBackSlider') audioNode = cmds.timeControl(aPlayBackSliderPython, q=True, s=True) # get audio node # get working values to be changed workingRenderSize = cmds.getAttr("{0}.renderScale".format(mnpr_info.configNode)) workingColorDepth = cmds.getAttr("{0}.colorDepth".format(mnpr_info.configNode)) workingCamera = cmds.modelEditor(modelPanel, cam=True, q=True) workingCameraShape = cmds.listRelatives(workingCamera, s=True) if workingCameraShape: workingCameraShape = workingCameraShape[0] else: # we already have the shape workingCameraShape = workingCamera # set desired attributes cmds.mnpr(g=True) mnprOperations = len(cmds.mnpr(lsO=True)) cmds.mnpr(renderOperation=mnprOperations-1, s=0) # HUD cmds.mnpr(renderOperation=mnprOperations-2, s=0) # UI cmds.modelEditor(modelPanel, cam=renderCamera, e=True) # change modelPanel lib.setAttr(mnpr_info.configNode, "renderScale", renderSize) lib.setAttr(mnpr_info.configNode, "colorDepth", 2) # needs to be 32bit to avoid artefacts cmds.refresh() # try playblasting try: cmds.playblast(f=saveDir, format="qt", w=width, h=height, percent=100, qlt=100, v=True, fo=True, os=True, s=audioNode, compression="PNG") except RuntimeError: try: cmds.playblast(f=saveDir, format="avi", w=width, h=height, percent=100, qlt=100, v=True, fo=True, os=True, s=audioNode) except RuntimeError: cmds.error("Video cannot be playblasted as qt or avi, please check the installed codecs.") # bring everything back to normal cmds.mnpr(renderOperation=mnprOperations-1, s=1) # HUD cmds.mnpr(renderOperation=mnprOperations-2, s=1) # UI cmds.modelEditor(modelPanel, cam=workingCameraShape, e=True) lib.setAttr(mnpr_info.configNode, "renderScale", workingRenderSize) lib.setAttr(mnpr_info.configNode, "colorDepth", workingColorDepth) cmds.mnpr(g=False) cmds.refresh() lib.printInfo("Video has been successfully playblasted to: {0}".format(saveDir)) def resolutionCheck(width, height, renderSize=1.0): """ Checks if resolution is between reasonable hardware limitations Args: width (int): viewport width height (int): viewport height renderSize (float): render size (factor) Returns: renderSize (int): viable render size (factor) """ if (width*renderSize > 16384) or (height*renderSize > 16384): cmds.warning("Resolution too high to supersample, reducing render size") return resolutionCheck(width, height, renderSize/2.0) else: if (width * height * pow(renderSize, 2)) > 150000000: confirm = cmds.confirmDialog(title='Crash Warning', message='Rendering a frame at such high resolutions might take long and even crash Maya\nWould you like to continue anyway?', icn="warning", button=['Yes', 'No'], defaultButton='Yes', cancelButton='No', dismissString='No', ma='center') if confirm == 'No': cmds.error("Frame capture cancelled by user") return renderSize def updateAE(): mel.eval("refreshEditorTemplates;") return True
python/dgl/contrib/data/__init__.py
ketyi/dgl
9,516
39392
<filename>python/dgl/contrib/data/__init__.py from __future__ import absolute_import from . import knowledge_graph as knwlgrh def load_data(dataset, bfs_level=3, relabel=False): if dataset in ['aifb', 'mutag', 'bgs', 'am']: return knwlgrh.load_entity(dataset, bfs_level, relabel) elif dataset in ['FB15k', 'wn18', 'FB15k-237']: return knwlgrh.load_link(dataset) else: raise ValueError('Unknown dataset: {}'.format(dataset))
tests/chem/test_mol.py
ShantamShorewala/aizynthfinder
219
39400
import pytest from rdkit import Chem from aizynthfinder.chem import MoleculeException, Molecule def test_no_input(): with pytest.raises(MoleculeException): Molecule() def test_create_with_mol(): rd_mol = Chem.MolFromSmiles("O") mol = Molecule(rd_mol=rd_mol) assert mol.smiles == "O" def test_create_with_smiles(): mol = Molecule(smiles="O") assert Chem.MolToSmiles(mol.rd_mol) == "O" def test_inchi(): mol = Molecule(smiles="O") assert mol.inchi == "InChI=1S/H2O/h1H2" def test_inchi_key(): mol = Molecule(smiles="O") assert mol.inchi_key == "<KEY>" def test_fingerprint(): mol = Molecule(smiles="O") assert sum(mol.fingerprint(2)) == 1 assert sum(mol.fingerprint(2, 10)) == 1 def test_sanitize(): mol = Molecule(smiles="O", sanitize=True) assert Chem.MolToSmiles(mol.rd_mol) == "O" mol = Molecule(smiles="c1ccccc1(C)(C)") with pytest.raises(MoleculeException): mol.sanitize() mol.sanitize(raise_exception=False) assert mol.smiles == "CC1(C)CCCCC1" def test_equality(): mol1 = Molecule(smiles="CCCCO") mol2 = Molecule(smiles="OCCCC") assert mol1 == mol2 def test_basic_equality(): mol1 = Molecule(smiles="CC[C@@H](C)O") # R-2-butanol mol2 = Molecule(smiles="CC[C@H](C)O") # S-2-butanol assert mol1 != mol2 assert mol1.basic_compare(mol2) def test_has_atom_mapping(): mol1 = Molecule(smiles="CCCCO") mol2 = Molecule(smiles="C[C:5]CCO") assert not mol1.has_atom_mapping() assert mol2.has_atom_mapping() def test_remove_atom_mapping(): mol = Molecule(smiles="C[C:5]CCO") assert mol.has_atom_mapping() mol.remove_atom_mapping() assert not mol.has_atom_mapping()
tests/test_tree.py
tgragnato/geneva
1,182
39444
import logging import os from scapy.all import IP, TCP import actions.tree import actions.drop import actions.tamper import actions.duplicate import actions.utils import layers.packet def test_init(): """ Tests initialization """ print(actions.action.Action.get_actions("out")) def test_count_leaves(): """ Tests leaf count is correct. """ a = actions.tree.ActionTree("out") logger = logging.getLogger("test") assert not a.parse("TCP:reserved:0tamper{TCP:flags:replace:S}-|", logger), "Tree parsed malformed DNA" a.parse("[TCP:reserved:0]-tamper{TCP:flags:replace:S}-|", logger) duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() assert a.count_leaves() == 1 assert a.remove_one() a.add_action(duplicate) assert a.count_leaves() == 1 duplicate.left = duplicate2 assert a.count_leaves() == 1 duplicate.right = drop assert a.count_leaves() == 2 def test_check(): """ Tests action tree check function. """ a = actions.tree.ActionTree("out") logger = logging.getLogger("test") a.parse("[TCP:flags:RA]-tamper{TCP:flags:replace:S}-|", logger) p = layers.packet.Packet(IP()/TCP(flags="A")) assert not a.check(p, logger) p = layers.packet.Packet(IP(ttl=64)/TCP(flags="RA")) assert a.check(p, logger) assert a.remove_one() assert a.check(p, logger) a.parse("[TCP:reserved:0]-tamper{TCP:flags:replace:S}-|", logger) assert a.check(p, logger) a.parse("[IP:ttl:64]-tamper{TCP:flags:replace:S}-|", logger) assert a.check(p, logger) p = layers.packet.Packet(IP(ttl=15)/TCP(flags="RA")) assert not a.check(p, logger) def test_scapy(): """ Tests misc. scapy aspects relevant to strategies. """ a = actions.tree.ActionTree("out") logger = logging.getLogger("test") a.parse("[TCP:reserved:0]-tamper{TCP:flags:replace:S}-|", logger) p = layers.packet.Packet(IP()/TCP(flags="A")) assert a.check(p, logger) packets = a.run(p, logger) assert packets[0][TCP].flags == "S" p = layers.packet.Packet(IP()/TCP(flags="A")) assert a.check(p, logger) a.parse("[TCP:reserved:0]-tamper{TCP:chksum:corrupt}-|", logger) packets = a.run(p, logger) assert packets[0][TCP].chksum assert a.check(p, logger) def test_str(): """ Tests string representation. """ logger = logging.getLogger("test") t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) assert str(a).strip() == "[%s]-|" % str(t) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") assert a.add_action(tamper) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}-|" # Tree will not add a duplicate action assert not a.add_action(tamper) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}-|" assert a.add_action(tamper2) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R},)-|" assert a.add_action(actions.duplicate.DuplicateAction()) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(duplicate,),)-|" drop = actions.drop.DropAction() assert a.add_action(drop) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(duplicate(drop,),),)-|" or \ str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(duplicate(,drop),),)-|" assert a.remove_action(drop) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(duplicate,),)-|" # Cannot remove action that is not present assert not a.remove_action(drop) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(duplicate,),)-|" a = actions.tree.ActionTree("out", trigger=t) orig = "[TCP:urgptr:15963]-duplicate(,drop)-|" a.parse(orig, logger) assert a.remove_one() assert orig != str(a) assert str(a) in ["[TCP:urgptr:15963]-drop-|", "[TCP:urgptr:15963]-duplicate-|"] def test_pretty_print_send(): t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) duplicate = actions.duplicate.DuplicateAction() a.add_action(duplicate) correct_string = "TCP:flags:0\nduplicate\n├── ===> \n└── ===> " assert a.pretty_print() == correct_string def test_pretty_print(logger): """ Print complex tree, although difficult to test """ t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() duplicate3 = actions.duplicate.DuplicateAction() duplicate4 = actions.duplicate.DuplicateAction() duplicate5 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() drop2 = actions.drop.DropAction() drop3 = actions.drop.DropAction() drop4 = actions.drop.DropAction() duplicate.left = duplicate2 duplicate.right = duplicate3 duplicate2.left = tamper duplicate2.right = drop duplicate3.left = duplicate4 duplicate3.right = drop2 duplicate4.left = duplicate5 duplicate4.right = drop3 duplicate5.left = drop4 duplicate5.right = tamper2 a.add_action(duplicate) correct_string = "TCP:flags:0\nduplicate\n├── duplicate\n│ ├── tamper{TCP:flags:replace:S}\n│ │ └── ===> \n│ └── drop\n└── duplicate\n ├── duplicate\n │ ├── duplicate\n │ │ ├── drop\n │ │ └── tamper{TCP:flags:replace:R}\n │ │ └── ===> \n │ └── drop\n └── drop" assert a.pretty_print() == correct_string assert a.pretty_print(visual=True) assert os.path.exists("tree.png") os.remove("tree.png") a.parse("[TCP:flags:0]-|", logger) a.pretty_print(visual=True) # Empty action tree assert not os.path.exists("tree.png") def test_pretty_print_order(): """ Tests the left/right ordering by reading in a new tree """ logger = logging.getLogger("test") a = actions.tree.ActionTree("out") assert a.parse("[TCP:flags:A]-duplicate(tamper{TCP:flags:replace:R}(tamper{TCP:chksum:replace:14239},),duplicate(tamper{TCP:flags:replace:S}(tamper{TCP:chksum:replace:14239},),))-|", logger) correct_pretty_print = "TCP:flags:A\nduplicate\n├── tamper{TCP:flags:replace:R}\n│ └── tamper{TCP:chksum:replace:14239}\n│ └── ===> \n└── duplicate\n ├── tamper{TCP:flags:replace:S}\n │ └── tamper{TCP:chksum:replace:14239}\n │ └── ===> \n └── ===> " assert a.pretty_print() == correct_pretty_print def test_parse(): """ Tests string parsing. """ logger = logging.getLogger("test") t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) base_t = actions.trigger.Trigger("field", "flags", "TCP") base_a = actions.tree.ActionTree("out", trigger=base_t) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") tamper3 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper4 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") a.parse("[TCP:flags:0]-|", logger) assert str(a) == str(base_a) assert len(a) == 0 base_a.add_action(tamper) assert a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}-|", logger) assert str(a) == str(base_a) assert len(a) == 1 assert a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R},)-|", logging.getLogger("test")) base_a.add_action(tamper2) assert str(a) == str(base_a) assert len(a) == 2 base_a.add_action(tamper3) base_a.add_action(tamper4) assert a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R}(tamper{TCP:flags:replace:S}(tamper{TCP:flags:replace:R},),),)-|", logging.getLogger("test")) assert str(a) == str(base_a) assert len(a) == 4 base_t = actions.trigger.Trigger("field", "flags", "TCP") base_a = actions.tree.ActionTree("out", trigger=base_t) duplicate = actions.duplicate.DuplicateAction() assert a.parse("[TCP:flags:0]-duplicate-|", logger) base_a.add_action(duplicate) assert str(a) == str(base_a) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") tamper3 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="A") tamper4 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") duplicate.left = tamper assert a.parse("[TCP:flags:0]-duplicate(tamper{TCP:flags:replace:S},)-|", logger) assert str(a) == str(base_a) duplicate.right = tamper2 assert a.parse("[TCP:flags:0]-duplicate(tamper{TCP:flags:replace:S},tamper{TCP:flags:replace:R})-|", logger) assert str(a) == str(base_a) tamper2.left = tamper3 assert a.parse("[TCP:flags:0]-duplicate(tamper{TCP:flags:replace:S},tamper{TCP:flags:replace:R}(tamper{TCP:flags:replace:A},))-|", logger) assert str(a) == str(base_a) strategy = actions.utils.parse("[TCP:flags:0]-duplicate(tamper{TCP:flags:replace:S},tamper{TCP:flags:replace:R})-| \/", logger) assert strategy assert len(strategy.out_actions[0]) == 3 assert len(strategy.in_actions) == 0 assert not a.parse("[]", logger) # No valid trigger assert not a.parse("[TCP:flags:0]-", logger) # No valid ending "|" assert not a.parse("[TCP:]-|", logger) # invalid trigger assert not a.parse("[TCP:flags:0]-foo-|", logger) # Non-existent action assert not a.parse("[TCP:flags:0]--|", logger) # Empty action assert not a.parse("[TCP:flags:0]-duplicate(,,,)-|", logger) # Bad tree assert not a.parse("[TCP:flags:0]-duplicate()))-|", logger) # Bad tree assert not a.parse("[TCP:flags:0]-duplicate(((()-|", logger) # Bad tree assert not a.parse("[TCP:flags:0]-duplicate(,))))-|", logger) # Bad tree assert not a.parse("[TCP:flags:0]-drop(duplicate,)-|", logger) # Terminal action with children assert not a.parse("[TCP:flags:0]-drop(duplicate,duplicate)-|", logger) # Terminal action with children assert not a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}(,duplicate)-|", logger) # Non-branching action with right child assert not a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}(drop,duplicate)-|", logger) # Non-branching action with children def test_tree(): """ Tests basic tree functionality. """ t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction() tamper2 = actions.tamper.TamperAction() duplicate = actions.duplicate.DuplicateAction() a.add_action(None) a.add_action(tamper) assert a.get_slots() == 1 a.add_action(tamper2) assert a.get_slots() == 1 a.add_action(duplicate) assert a.get_slots() == 2 t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) drop = actions.drop.DropAction() a.add_action(drop) assert a.get_slots() == 0 add_success = a.add_action(tamper) assert not add_success assert a.get_slots() == 0 rep = "" for s in a.string_repr(a.action_root): rep += s assert rep == "drop" print(str(a)) assert a.parse("[TCP:flags:A]-duplicate(tamper{TCP:seq:corrupt},)-|", logging.getLogger("test")) for act in a: print(str(a)) assert len(a) == 2 assert a.get_slots() == 2 for _ in range(100): assert str(a.get_rand_action("out", request="DropAction")) == "drop" def test_remove(): """ Tests remove """ t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction() tamper2 = actions.tamper.TamperAction() tamper3 = actions.tamper.TamperAction() assert not a.remove_action(tamper) a.add_action(tamper) assert a.remove_action(tamper) a.add_action(tamper) a.add_action(tamper2) a.add_action(tamper3) assert a.remove_action(tamper2) assert tamper2 not in a assert tamper.left == tamper3 assert not tamper.right assert len(a) == 2 a = actions.tree.ActionTree("out", trigger=t) duplicate = actions.duplicate.DuplicateAction() tamper = actions.tamper.TamperAction() tamper2 = actions.tamper.TamperAction() tamper3 = actions.tamper.TamperAction() a.add_action(tamper) assert a.action_root == tamper duplicate.left = tamper2 duplicate.right = tamper3 a.add_action(duplicate) assert len(a) == 4 assert a.remove_action(duplicate) assert duplicate not in a assert tamper.left == tamper2 assert not tamper.right assert len(a) == 2 a.parse("[TCP:flags:A]-|", logging.getLogger("test")) assert not a.remove_one(), "Cannot remove one with no action root" def test_len(): """ Tests length calculation. """ t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction() tamper2 = actions.tamper.TamperAction() assert len(a) == 0, "__len__ returned wrong length" a.add_action(tamper) assert len(a) == 1, "__len__ returned wrong length" a.add_action(tamper) assert len(a) == 1, "__len__ returned wrong length" a.add_action(tamper2) assert len(a) == 2, "__len__ returned wrong length" duplicate = actions.duplicate.DuplicateAction() a.add_action(duplicate) assert len(a) == 3, "__len__ returned wrong length" def test_contains(): """ Tests contains method """ t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction() tamper2 = actions.tamper.TamperAction() tamper3 = actions.tamper.TamperAction() assert not a.contains(tamper), "contains incorrect behavior" assert not a.contains(tamper2), "contains incorrect behavior" a.add_action(tamper) assert a.contains(tamper), "contains incorrect behavior" assert not a.contains(tamper2), "contains incorrect behavior" add_success = a.add_action(tamper) assert not add_success, "added duplicate action" assert a.contains(tamper), "contains incorrect behavior" assert not a.contains(tamper2), "contains incorrect behavior" a.add_action(tamper2) assert a.contains(tamper), "contains incorrect behavior" assert a.contains(tamper2), "contains incorrect behavior" a.remove_action(tamper2) assert a.contains(tamper), "contains incorrect behavior" assert not a.contains(tamper2), "contains incorrect behavior" a.add_action(tamper2) assert a.contains(tamper), "contains incorrect behavior" assert a.contains(tamper2), "contains incorrect behavior" remove_success = a.remove_action(tamper) assert remove_success assert not a.contains(tamper), "contains incorrect behavior" assert a.contains(tamper2), "contains incorrect behavior" a.add_action(tamper3) assert a.contains(tamper3), "contains incorrect behavior" assert len(a) == 2, "len incorrect return" remove_success = a.remove_action(tamper2) assert remove_success def test_iter(): """ Tests iterator. """ t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") assert a.add_action(tamper) assert a.add_action(tamper2) assert not a.add_action(tamper) for node in a: print(node) def test_run(): """ Tests running packets through the chain. """ logger = logging.getLogger("test") t = actions.trigger.Trigger(None, None, None) a = actions.tree.ActionTree("out", trigger=t) tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() packet = layers.packet.Packet(IP()/TCP()) a.add_action(tamper) packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 1 assert None not in packets assert packets[0].get("TCP", "flags") == "S" a.add_action(tamper2) print(str(a)) packet = layers.packet.Packet(IP()/TCP()) assert not a.add_action(tamper), "tree added duplicate action" packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 1 assert None not in packets assert packets[0].get("TCP", "flags") == "R" print(str(a)) a.remove_action(tamper2) a.remove_action(tamper) a.add_action(duplicate) packet = layers.packet.Packet(IP()/TCP(flags="RA")) packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 2 assert None not in packets assert packets[0][TCP].flags == "RA" assert packets[1][TCP].flags == "RA" print(str(a)) duplicate.left = tamper duplicate.right = tamper2 packet = layers.packet.Packet(IP()/TCP(flags="RA")) print("ABUT TO RUN") packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 2 assert None not in packets print(str(a)) print(str(packets[0])) print(str(packets[1])) assert packets[0][TCP].flags == "S" assert packets[1][TCP].flags == "R" print(str(a)) tamper.left = duplicate2 packet = layers.packet.Packet(IP()/TCP(flags="RA")) packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 3 assert None not in packets assert packets[0][TCP].flags == "S" assert packets[1][TCP].flags == "S" assert packets[2][TCP].flags == "R" print(str(a)) tamper2.left = drop packet = layers.packet.Packet(IP()/TCP(flags="RA")) packets = a.run(packet, logging.getLogger("test")) assert len(packets) == 2 assert None not in packets assert packets[0][TCP].flags == "S" assert packets[1][TCP].flags == "S" print(str(a)) assert a.remove_action(duplicate2) tamper.left = actions.drop.DropAction() packet = layers.packet.Packet(IP()/TCP(flags="RA")) packets = a.run(packet, logger ) assert len(packets) == 0 print(str(a)) a.parse("[TCP:flags:A]-duplicate(tamper{TCP:flags:replace:R}(tamper{TCP:chksum:replace:14239},),duplicate(tamper{TCP:flags:replace:S},))-|", logger) packet = layers.packet.Packet(IP()/TCP(flags="A")) assert a.check(packet, logger) packets = a.run(packet, logger) assert len(packets) == 3 assert packets[0][TCP].flags == "R" assert packets[1][TCP].flags == "S" assert packets[2][TCP].flags == "A" def test_index(): """ Tests index """ a = actions.tree.ActionTree("out") tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") tamper3 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="F") assert a.add_action(tamper) assert a[0] == tamper assert not a[1] assert a.add_action(tamper2) assert a[0] == tamper assert a[1] == tamper2 assert a[-1] == tamper2 assert not a[10] assert a.add_action(tamper3) assert a[-1] == tamper3 assert not a[-11] def test_mate(): """ Tests mate primitive """ logger = logging.getLogger("test") t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) assert not a.choose_one() tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() other_a = actions.tree.ActionTree("out", trigger=t) assert not a.mate(other_a), "Can't mate empty trees" assert a.add_action(tamper) assert other_a.add_action(tamper2) assert a.choose_one() == tamper assert other_a.choose_one() == tamper2 assert a.get_parent(tamper) == (None, None) assert other_a.get_parent(tamper2) == (None, None) assert a.add_action(duplicate) assert a.get_parent(duplicate) == (tamper, "left") duplicate.right = drop assert a.get_parent(drop) == (duplicate, "right") assert other_a.add_action(duplicate2) # Test mating a full tree with a full tree assert str(a) == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(duplicate(,drop),)-|" assert str(other_a) == "[TCP:flags:0]-tamper{TCP:flags:replace:R}(duplicate,)-|" assert a.swap(duplicate, other_a, duplicate2) assert str(a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(duplicate,)-|" assert str(other_a).strip() == "[TCP:flags:0]-tamper{TCP:flags:replace:R}(duplicate(,drop),)-|" assert len(a) == 2 assert len(other_a) == 3 assert duplicate2 not in other_a assert duplicate not in a assert tamper.left == duplicate2 assert tamper2.left == duplicate assert other_a.get_parent(duplicate) == (tamper2, "left") assert a.get_parent(duplicate2) == (tamper, "left") assert other_a.get_parent(drop) == (duplicate, "right") assert a.get_parent(None) == (None, None) # Test mating two trees with just root nodes t = actions.trigger.Trigger("field", "flags", "TCP") a = actions.tree.ActionTree("out", trigger=t) assert not a.choose_one() tamper = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="S") tamper2 = actions.tamper.TamperAction(field="flags", tamper_type="replace", tamper_value="R") duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() other_a = actions.tree.ActionTree("out", trigger=t) assert not a.mate(other_a) assert a.add_action(duplicate) assert other_a.add_action(duplicate2) assert a.mate(other_a) assert a.action_root == duplicate2 assert other_a.action_root == duplicate assert not duplicate.left and not duplicate.right assert not duplicate2.left and not duplicate2.right # Confirm that no nodes have been aliased or connected between the trees for node in a: for other_node in other_a: assert not node.left == other_node assert not node.right == other_node # Test mating two trees where one is empty assert a.remove_action(duplicate2) # This should swap the duplicate action to be the action root of the other tree assert str(a) == "[TCP:flags:0]-|" assert str(other_a) == "[TCP:flags:0]-duplicate-|" assert a.mate(other_a) assert not other_a.action_root assert a.action_root == duplicate assert len(a) == 1 assert len(other_a) == 0 # Confirm that no nodes have been aliased or connected between the trees for node in a: for other_node in other_a: if other_node: assert not node.left == other_node assert not node.right == other_node assert a.parse("[TCP:flags:0]-tamper{TCP:flags:replace:S}(duplicate(,drop),)-|", logger) drop = a.action_root.left.right assert str(drop) == "drop" # Note that this will return a valid ActionTree, but because it is empty, # it is technically a False-y value, as it's length is 0 assert other_a.parse("[TCP:flags:0]-|", logger) == other_a a.swap(drop, other_a, None) assert other_a.action_root == drop assert not a.action_root.left.right assert str(other_a) == "[TCP:flags:0]-drop-|" assert str(a) == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(duplicate,)-|" other_a.swap(drop, a, a.action_root.left) # Confirm that no nodes have been aliased or connected between the trees for node in a: for other_node in other_a: if other_node: assert not node.left == other_node assert not node.right == other_node assert str(other_a) == "[TCP:flags:0]-duplicate-|" assert str(a) == "[TCP:flags:0]-tamper{TCP:flags:replace:S}(drop,)-|" a.parse("[TCP:flags:0]-drop-|", logger) other_a.parse("[TCP:flags:0]-duplicate(drop,drop)-|", logger) a_drop = a.action_root other_duplicate = other_a.action_root a.swap(a_drop, other_a, other_duplicate) print(str(a)) print(str(other_a)) assert str(other_a) == "[TCP:flags:0]-drop-|" assert str(a) == "[TCP:flags:0]-duplicate(drop,drop)-|" duplicate = actions.duplicate.DuplicateAction() duplicate2 = actions.duplicate.DuplicateAction() drop = actions.drop.DropAction() drop2 = actions.drop.DropAction() drop3 = actions.drop.DropAction() a = actions.tree.ActionTree("out", trigger=t) a.add_action(duplicate) a.add_action(drop) a.add_action(drop2) assert str(a) == "[TCP:flags:0]-duplicate(drop,drop)-|" assert a.get_slots() == 0 other_a = actions.tree.ActionTree("out", trigger=t) other_a.add_action(drop3) a.swap(drop, other_a, drop3) assert str(a) == "[TCP:flags:0]-duplicate(drop,drop)-|" a.swap(drop3, other_a, drop) assert str(a) == "[TCP:flags:0]-duplicate(drop,drop)-|" assert a.mate(other_a) def test_choose_one(): """ Tests choose_one functionality """ a = actions.tree.ActionTree("out") drop = actions.drop.DropAction() assert not a.choose_one() assert a.add_action(drop) assert a.choose_one() == drop assert a.remove_action(drop) assert not a.choose_one() duplicate = actions.duplicate.DuplicateAction() a.add_action(duplicate) assert a.choose_one() == duplicate duplicate.left = drop assert a.choose_one() in [duplicate, drop] # Make sure that both actions get chosen chosen = set() for i in range(0, 10000): act = a.choose_one() chosen.add(act) assert chosen == set([duplicate, drop])
ide/tests/test_import_archive.py
Ramonrlb/cloudpebble
147
39474
""" These tests check basic operation of ide.tasks.archive.do_import_archive """ import mock from django.core.exceptions import ValidationError from ide.tasks.archive import do_import_archive, InvalidProjectArchiveException from ide.utils.cloudpebble_test import CloudpebbleTestCase, make_package, make_appinfo, build_bundle, override_settings from ide.models.project import Project from utils.fakes import FakeS3 __author__ = 'joe' fake_s3 = FakeS3() @mock.patch('ide.models.s3file.s3', fake_s3) class TestImportArchive(CloudpebbleTestCase): def setUp(self): self.login() @staticmethod def make_resource_spec(name='IMAGE_BLAH'): return { 'resources': { 'media': [{ 'file': 'images/blah.png', 'name': name, 'type': 'bitmap' }] } } def test_import_basic_bundle_with_appinfo(self): """ Check that a minimal bundle imports without error """ bundle = build_bundle({ 'src/main.c': '', 'appinfo.json': make_appinfo() }) do_import_archive(self.project_id, bundle) def test_throws_with_invalid_appinfo(self): """ Check that appinfo validation is performed with a few invalid values """ invalid_things = [ ('projectType', 'invalid'), ('sdkVersion', '1'), ('versionLabel', '01.0'), ] for k, v in invalid_things: bundle = build_bundle({ 'src/main.c': '', 'appinfo.json': make_appinfo({k: v}) }) with self.assertRaises(ValidationError): do_import_archive(self.project_id, bundle) def test_import_basic_bundle_with_npm_manifest(self): """ Check that archives with package.json can be imported """ bundle = build_bundle({ 'src/main.c': '', 'package.json': make_package(package_options={'name': 'myproject'}) }) do_import_archive(self.project_id, bundle) project = Project.objects.get(pk=self.project_id) self.assertEqual(project.app_long_name, 'test') self.assertEqual(project.app_short_name, 'myproject') def test_import_package_with_dependencies(self): """ Check that dependencies in a package.json file are imported into the database """ deps = { 'some_package': '3.14.15', 'another': 'http://blah.com/package.git', } bundle = build_bundle({ 'src/main.c': '', 'package.json': make_package(package_options={ 'dependencies': deps }) }) do_import_archive(self.project_id, bundle) project = Project.objects.get(pk=self.project_id) actual_deps = {d.name: d.version for d in project.dependencies.all()} self.assertDictEqual(actual_deps, deps) def test_import_package_with_keywords(self): """ Check that keywords in a package.json file are imported into the database """ keywords = ['pebbles', 'watch', 'bunnies'] bundle = build_bundle({ 'src/main.c': '', 'package.json': make_package(package_options={ 'keywords': keywords }) }) do_import_archive(self.project_id, bundle) project = Project.objects.get(pk=self.project_id) self.assertEqual(set(keywords), set(project.keywords)) def test_import_appinfo_with_resources(self): """ Check that a resource can be imported in an appinfo.json project """ bundle = build_bundle({ 'src/main.c': '', 'resources/images/blah.png': 'contents!', 'appinfo.json': make_appinfo(options=self.make_resource_spec()) }) do_import_archive(self.project_id, bundle) project = Project.objects.get(pk=self.project_id) self.assertEqual(project.resources.get().variants.get().get_contents(), 'contents!') def test_import_package_with_resources(self): """ Check that a resource can be imported in an package.json project """ bundle = build_bundle({ 'src/main.c': '', 'resources/images/blah.png': 'contents!', 'package.json': make_package(pebble_options=self.make_resource_spec()) }) do_import_archive(self.project_id, bundle) project = Project.objects.get(pk=self.project_id) self.assertEqual(project.resources.get().variants.get().get_contents(), 'contents!') def test_throws_with_local_file_dependencies(self): """ Throw if any dependencies reference local files """ bad_versions = [ 'file:security/breach', '/security/breach', './security/breach', '../security/breach', '~/security/breach' ] for version in bad_versions: bundle = build_bundle({ 'src/main.c': '', 'package.json': make_package(package_options={ 'dependencies': {'some_package': version} }) }) with self.assertRaises(ValidationError): do_import_archive(self.project_id, bundle) def test_throws_if_sdk2_project_has_array_appkeys(self): """ Throw when trying to import an sdk 2 project with array appkeys """ bundle = build_bundle({ 'src/main.c': '', 'appinfo.json': make_appinfo(options={'appKeys': [], 'sdkVersion': '2'}) }) with self.assertRaises(ValidationError): do_import_archive(self.project_id, bundle) def test_invalid_resource_id(self): """ Check that invalid characters are banned from resource IDs """ bundle = build_bundle({ 'src/main.c': '', 'resources/images/blah.png': 'contents!', 'package.json': make_package(pebble_options=self.make_resource_spec("<>")) }) with self.assertRaises(ValidationError): do_import_archive(self.project_id, bundle) def test_import_json_file(self): """ Check that json files are correctly imported """ bundle = build_bundle({ 'src/js/test.json': '{}', 'src/main.c': '', 'package.json': make_package() }) do_import_archive(self.project_id, bundle) project = Project.objects.get(pk=self.project_id) self.assertEqual(project.source_files.filter(file_name='test.json').count(), 1) def test_import_rocky(self): """ Check that json files are correctly imported """ bundle = build_bundle({ 'src/rocky/index.js': '', 'src/common/lib.js': '', 'src/pkjs/app.js': '', 'package.json': make_package(pebble_options={'projectType': 'rocky'}) }) do_import_archive(self.project_id, bundle) project = Project.objects.get(pk=self.project_id) self.assertEqual(project.source_files.filter(file_name='index.js', target='app').count(), 1) self.assertEqual(project.source_files.filter(file_name='lib.js', target='common').count(), 1) self.assertEqual(project.source_files.filter(file_name='app.js', target='pkjs').count(), 1) @mock.patch('ide.models.s3file.s3', fake_s3) class TestImportLibrary(CloudpebbleTestCase): def setUp(self): self.login(type='package') def test_import_basic_library(self): """ Try importing a basic library """ bundle = build_bundle({ 'include/my-lib.h': '', 'package.json': make_package(pebble_options={'projectType': 'package'}), 'src/c/my-lib.c': '', 'src/c/my-priv.h': '', }) do_import_archive(self.project_id, bundle) project = Project.objects.get(pk=self.project_id) files = {f.file_name: f for f in project.source_files.all()} self.assertSetEqual(set(files.keys()), {'my-lib.h', 'my-lib.c', 'my-priv.h'}) self.assertEqual(files['my-lib.h'].target, 'public') self.assertEqual(files['my-lib.c'].target, 'app') self.assertEqual(files['my-priv.h'].target, 'app') def test_import_library_with_resources(self): """ Try importing a basic library with resources """ bundle = build_bundle({ 'package.json': make_package(pebble_options={ 'projectType': 'package', 'resources': {'media': [{ 'type': 'bitmap', 'name': 'MY_RES1', 'file': 'res1.png' }, { 'type': 'bitmap', 'name': 'MY_RES2', 'file': 'res2.png' }]} }), 'src/resources/res1.png': '', 'src/resources/res2.png': '', }) do_import_archive(self.project_id, bundle) project = Project.objects.get(pk=self.project_id) self.assertSetEqual({f.file_name for f in project.resources.all()}, {'res1.png', 'res2.png'})
fairlearn/metrics/__init__.py
alliesaizan/fairlearn
1,142
39491
<filename>fairlearn/metrics/__init__.py # Copyright (c) Microsoft Corporation and Fairlearn contributors. # Licensed under the MIT License. """Functionality for computing metrics, with a particular focus on disaggregated metrics. For our purpose, a metric is a function with signature ``f(y_true, y_pred, ....)`` where ``y_true`` are the set of true values and ``y_pred`` are values predicted by a machine learning algorithm. Other arguments may be present (most often sample weights), which will affect how the metric is calculated. This module provides the concept of a *disaggregated metric*. This is a metric where in addition to ``y_true`` and ``y_pred`` values, the user provides information about group membership for each sample. For example, a user could provide a 'Gender' column, and the disaggregated metric would contain separate results for the subgroups 'male', 'female' and 'nonbinary' indicated by that column. The underlying metric function is evaluated for each of these three subgroups. This extends to multiple grouping columns, calculating the metric for each combination of subgroups. """ import sys as _sys from ._metric_frame import MetricFrame # noqa: F401 from ._make_derived_metric import make_derived_metric # noqa: F401 from ._generated_metrics import _generated_metric_dict from ._disparities import ( # noqa: F401 demographic_parity_difference, demographic_parity_ratio, equalized_odds_difference, equalized_odds_ratio) from ._extra_metrics import ( # noqa: F401 true_positive_rate, true_negative_rate, false_positive_rate, false_negative_rate, _balanced_root_mean_squared_error, mean_prediction, selection_rate, _mean_overprediction, _mean_underprediction, count) # Add the generated metrics of the form and # `<metric>_{difference,ratio,group_min,group_max` _module_obj = _sys.modules[__name__] for _name, _func in _generated_metric_dict.items(): setattr(_module_obj, _name, _func) # ============================================ # Build list of items to be listed in the docs _core = [ "MetricFrame", "make_derived_metric" ] _disparities = [ "demographic_parity_difference", "demographic_parity_ratio", "equalized_odds_difference", "equalized_odds_ratio" ] _extra_metrics = [ "true_positive_rate", "true_negative_rate", "false_positive_rate", "false_negative_rate", "mean_prediction", "selection_rate", "count" ] __all__ = _core + _disparities + _extra_metrics + list(sorted(_generated_metric_dict.keys()))
Projects/Healthcare/breast-cancer/src/data_loading/augmentations.py
DanielMabadeje/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials
3,266
39506
# Copyright (C) 2019 <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME> # # This file is part of breast_cancer_classifier. # # breast_cancer_classifier is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # breast_cancer_classifier is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with breast_cancer_classifier. If not, see <http://www.gnu.org/licenses/>. # ============================================================================== import cv2 import numpy as np from src.constants import VIEWS def shift_window_inside_image(start, end, image_axis_size, input_axis_size): """ If the window goes outside the bound of the image, then shifts it to fit inside the image. """ if start < 0: start = 0 end = start + input_axis_size elif end > image_axis_size: end = image_axis_size start = end - input_axis_size return start, end def zero_pad_and_align_window(image_axis_size, input_axis_size, max_crop_and_size_noise, bidirectional): """ Adds Zero padding to the image if cropped image is smaller than required window size. """ pad_width = input_axis_size - image_axis_size + max_crop_and_size_noise * (2 if bidirectional else 1) assert (pad_width >= 0) if bidirectional: pad_front = int(pad_width / 2) start = max_crop_and_size_noise else: start, pad_front = 0, 0 pad_back = pad_width - pad_front end = start + input_axis_size return start, end, pad_front, pad_back def simple_resize(image_to_resize, size): """ Resizes image to the required size """ image_resized = cv2.resize(image_to_resize, (size[1], size[0]), interpolation=cv2.INTER_CUBIC) if len(image_to_resize.shape) == 3 and len(image_resized.shape) == 2 and image_to_resize.shape[2] == 1: image_resized = np.expand_dims(image_resized, 2) return image_resized def crop_image(image, input_size, borders): """ Crops image to the required size using window location """ cropped_image = image[borders[0]: borders[1], borders[2]: borders[3]] if ((borders[1] - borders[0]) != input_size[0]) or ((borders[3] - borders[2]) != input_size[1]): cropped_image = simple_resize(cropped_image, input_size) return cropped_image def window_location_at_center_point(input_size, center_y, center_x): """ Calculates window location (top, bottom, left, right) given center point and size of augmentation window """ half_height = input_size[0] // 2 half_width = input_size[1] // 2 top = center_y - half_height bottom = center_y + input_size[0] - half_height left = center_x - half_width right = center_x + input_size[1] - half_width return top, bottom, left, right def sample_crop_best_center(image, input_size, random_number_generator, max_crop_noise, max_crop_size_noise, best_center, view): """ Crops using the best center point and ideal window size. Pads small images to have enough room for crop noise and size noise. Applies crop noise in location of the window borders. """ max_crop_noise = np.array(max_crop_noise) crop_noise_multiplier = np.zeros(2, dtype=np.float32) if max_crop_noise.any(): # there is no point in sampling crop_noise_multiplier if it's going to be multiplied by (0, 0) crop_noise_multiplier = random_number_generator.uniform(low=-1.0, high=1.0, size=2) center_y, center_x = best_center # get the window around the center point. The window might be outside of the image. top, bottom, left, right = window_location_at_center_point(input_size, center_y, center_x) pad_y_top, pad_y_bottom, pad_x_right = 0, 0, 0 if VIEWS.is_cc(view): if image.shape[0] < input_size[0] + (max_crop_noise[0] + max_crop_size_noise) * 2: # Image is smaller than window size + noise margin in y direction. # CC view: pad at both top and bottom top, bottom, pad_y_top, pad_y_bottom = zero_pad_and_align_window(image.shape[0], input_size[0], max_crop_noise[0] + max_crop_size_noise, True) elif VIEWS.is_mlo(view): if image.shape[0] < input_size[0] + max_crop_noise[0] + max_crop_size_noise: # Image is smaller than window size + noise margin in y direction. # MLO view: only pad at the bottom top, bottom, _, pad_y_bottom = zero_pad_and_align_window(image.shape[0], input_size[0], max_crop_noise[0] + max_crop_size_noise, False) else: raise KeyError("Unknown view", view) if image.shape[1] < input_size[1] + max_crop_noise[1] + max_crop_size_noise: # Image is smaller than window size + noise margin in x direction. left, right, _, pad_x_right = zero_pad_and_align_window(image.shape[1], input_size[1], max_crop_noise[1] + max_crop_size_noise, False) # Pad image if necessary by allocating new memory and copying contents over if pad_y_top > 0 or pad_y_bottom > 0 or pad_x_right > 0: new_zero_array = np.zeros(( image.shape[0] + pad_y_top + pad_y_bottom, image.shape[1] + pad_x_right, image.shape[2]), dtype=image.dtype) new_zero_array[pad_y_top: image.shape[0] + pad_y_top, 0: image.shape[1]] = image image = new_zero_array # if window is drawn outside of image, shift it to be inside the image. top, bottom = shift_window_inside_image(top, bottom, image.shape[0], input_size[0]) left, right = shift_window_inside_image(left, right, image.shape[1], input_size[1]) if top == 0: # there is nowhere to shift upwards, we only apply noise downwards crop_noise_multiplier[0] = np.abs(crop_noise_multiplier[0]) elif bottom == image.shape[0]: # there is nowhere to shift down, we only apply noise upwards crop_noise_multiplier[0] = -np.abs(crop_noise_multiplier[0]) # else: we do nothing to the noise multiplier if left == 0: # there is nowhere to shift left, we only apply noise to move right crop_noise_multiplier[1] = np.abs(crop_noise_multiplier[1]) elif right == image.shape[1]: # there is nowhere to shift right, we only apply noise to move left crop_noise_multiplier[1] = -np.abs(crop_noise_multiplier[1]) # else: we do nothing to the noise multiplier borders = np.array((top, bottom, left, right), dtype=np.int32) # Calculate maximum amount of how much the window can move for cropping noise top_margin = top bottom_margin = image.shape[0] - bottom left_margin = left right_margin = image.shape[1] - right if crop_noise_multiplier[0] >= 0: vertical_margin = bottom_margin else: vertical_margin = top_margin if crop_noise_multiplier[1] >= 0: horizontal_margin = right_margin else: horizontal_margin = left_margin if vertical_margin < max_crop_noise[0]: max_crop_noise[0] = vertical_margin if horizontal_margin < max_crop_noise[1]: max_crop_noise[1] = horizontal_margin crop_noise = np.round(max_crop_noise * crop_noise_multiplier) crop_noise = np.array((crop_noise[0], crop_noise[0], crop_noise[1], crop_noise[1]), dtype=np.int32) borders = borders + crop_noise # this is to make sure that the cropping window isn't outside of the image assert (borders[0] >= 0) and (borders[1] <= image.shape[0]) and (borders[2] >= 0) and (borders[3] <= image.shape[ 1]), "Centre of the crop area is sampled such that the borders are outside of the image. Borders: " + str( borders) + ', image shape: ' + str(image.shape) # return the padded image and cropping window information return image, borders def sample_crop(image, input_size, borders, random_number_generator, max_crop_size_noise): """ Applies size noise of the window borders. """ size_noise_multiplier = random_number_generator.uniform(low=-1.0, high=1.0, size=4) top_margin = borders[0] bottom_margin = image.shape[0] - borders[1] left_margin = borders[2] right_margin = image.shape[1] - borders[3] max_crop_size_noise = min(max_crop_size_noise, top_margin, bottom_margin, left_margin, right_margin) if input_size[0] >= input_size[1]: max_crop_size_vertical_noise = max_crop_size_noise max_crop_size_horizontal_noise = np.round(max_crop_size_noise * (input_size[1] / input_size[0])) elif input_size[0] < input_size[1]: max_crop_size_vertical_noise = np.round(max_crop_size_noise * (input_size[0] / input_size[1])) max_crop_size_horizontal_noise = max_crop_size_noise else: raise RuntimeError() max_crop_size_noise = np.array((max_crop_size_vertical_noise, max_crop_size_vertical_noise, max_crop_size_horizontal_noise, max_crop_size_horizontal_noise), dtype=np.int32) size_noise = np.round(max_crop_size_noise * size_noise_multiplier) size_noise = np.array(size_noise, dtype=np.int32) borders = borders + size_noise # this is to make sure that the cropping window isn't outside of the image assert (borders[0] >= 0) and (borders[1] <= image.shape[0]) and (borders[2] >= 0) and (borders[3] <= image.shape[ 1]), "Center of the crop area is sampled such that the borders are outside of the image. Borders: " + str( borders) + ', image shape: ' + str(image.shape) # Sanity check. make sure that the top is above the bottom assert borders[1] > borders[0], "Bottom above the top. Top: " + str(borders[0]) + ', bottom: ' + str(borders[1]) # Sanity check. make sure that the left is left to the right assert borders[3] > borders[2], "Left on the right. Left: " + str(borders[2]) + ', right: ' + str(borders[3]) return borders def random_augmentation_best_center(image, input_size, random_number_generator, max_crop_noise=(0, 0), max_crop_size_noise=0, auxiliary_image=None, best_center=None, view=""): """ Crops augmentation window from a given image by applying noise in location and size of the window. """ joint_image = np.expand_dims(image, 2) if auxiliary_image is not None: joint_image = np.concatenate([joint_image, auxiliary_image], axis=2) joint_image, borders = sample_crop_best_center(joint_image, input_size, random_number_generator, max_crop_noise, max_crop_size_noise, best_center, view) borders = sample_crop(joint_image, input_size, borders, random_number_generator, max_crop_size_noise) sampled_joint_image = crop_image(joint_image, input_size, borders) if auxiliary_image is None: return sampled_joint_image[:, :, 0], None else: return sampled_joint_image[:, :, 0], sampled_joint_image[:, :, 1:]
data_pipeline/_kafka_producer.py
poros/data_pipeline
110
39512
# -*- coding: utf-8 -*- # Copyright 2016 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import absolute_import from __future__ import unicode_literals import time from collections import defaultdict from collections import namedtuple from contextlib import contextmanager from cached_property import cached_property from kafka import create_message from kafka import KafkaClient from kafka.common import ProduceRequest from data_pipeline._position_data_tracker import PositionDataTracker from data_pipeline._producer_retry import RetryHandler from data_pipeline._retry_util import ExpBackoffPolicy from data_pipeline._retry_util import MaxRetryError from data_pipeline._retry_util import Predicate from data_pipeline._retry_util import retry_on_condition from data_pipeline._retry_util import RetryPolicy from data_pipeline.config import get_config from data_pipeline.envelope import Envelope _EnvelopeAndMessage = namedtuple("_EnvelopeAndMessage", ["envelope", "message"]) logger = get_config().logger # prepare needs to be in the module top level so it can be serialized for # multiprocessing def _prepare(envelope_and_message): try: kwargs = {} if envelope_and_message.message.keys: kwargs['key'] = envelope_and_message.message.encoded_keys return create_message( envelope_and_message.envelope.pack(envelope_and_message.message), **kwargs ) except: logger.exception('Prepare failed') raise class KafkaProducer(object): """The KafkaProducer deals with buffering messages that need to be published into Kafka, preparing them for publication, and ultimately publishing them. Args: producer_position_callback (function): The producer position callback is called when the KafkaProducer is instantiated, and every time messages are published to notify the producer of current position information of successfully published messages. dry_run (Optional[bool]): When dry_run mode is on, the producer won't talk to real KafKa topic, nor to real Schematizer. Default to False. """ @cached_property def envelope(self): return Envelope() def __init__(self, producer_position_callback, dry_run=False): self.producer_position_callback = producer_position_callback self.dry_run = dry_run self.kafka_client = KafkaClient(get_config().cluster_config.broker_list) self.position_data_tracker = PositionDataTracker() self._reset_message_buffer() self.skip_messages_with_pii = get_config().skip_messages_with_pii self._publish_retry_policy = RetryPolicy( ExpBackoffPolicy(with_jitter=True), max_retry_count=get_config().producer_max_publish_retry_count ) self._automatic_flush_enabled = True @contextmanager def disable_automatic_flushing(self): """Prevents the producer from flushing automatically (e.g. for timeouts or batch size) while the context manager is open. """ try: self._automatic_flush_enabled = False yield finally: self._automatic_flush_enabled = True def wake(self): """Should be called periodically if we're not otherwise waking up by publishing, to ensure that messages are actually published. """ # if we haven't woken up in a while, we may need to flush messages self._flush_if_necessary() def publish(self, message): if message.contains_pii and self.skip_messages_with_pii: logger.info( "Skipping a PII message - " "uuid hex: {0}, " "schema_id: {1}, " "timestamp: {2}, " "type: {3}".format( message.uuid_hex, message.schema_id, message.timestamp, message.message_type.name ) ) return self._add_message_to_buffer(message) self.position_data_tracker.record_message_buffered(message) self._flush_if_necessary() def flush_buffered_messages(self): produce_method = (self._publish_produce_requests_dry_run if self.dry_run else self._publish_produce_requests) produce_method(self._generate_produce_requests()) self._reset_message_buffer() def close(self): self.flush_buffered_messages() self.kafka_client.close() def _publish_produce_requests(self, requests): """It will try to publish all the produce requests for topics, and retry a number of times until either all the requests are successfully published or it can no longer retry, in which case, the exception will be thrown. Each time the requests that are successfully published in the previous round will be removed from the requests and won't be published again. """ unpublished_requests = list(requests) retry_handler = RetryHandler(self.kafka_client, unpublished_requests) def has_requests_to_be_sent(): return bool(retry_handler.requests_to_be_sent) retry_handler = retry_on_condition( retry_policy=self._publish_retry_policy, retry_conditions=[Predicate(has_requests_to_be_sent)], func_to_retry=self._publish_requests, use_previous_result_as_param=True, retry_handler=retry_handler ) if retry_handler.has_unpublished_request: raise MaxRetryError(last_result=retry_handler) def _publish_requests(self, retry_handler): """Main function to publish message requests. This function is wrapped with retry function and will be retried based on specified retry policy Args: retry_handler: :class:`data_pipeline._producer_retry.RetryHandler` that determines which messages should be retried next time. """ if not retry_handler.requests_to_be_sent: return retry_handler responses = self._try_send_produce_requests( retry_handler.requests_to_be_sent ) retry_handler.update_requests_to_be_sent( responses, self.position_data_tracker.topic_to_kafka_offset_map ) self._record_success_requests(retry_handler.success_topic_stats_map) return retry_handler def _try_send_produce_requests(self, requests): # Either it throws exceptions and none of them succeeds, or it returns # responses of all the requests (success or fail response). try: return self.kafka_client.send_produce_request( payloads=requests, acks=get_config().kafka_client_ack_count, fail_on_error=False ) except Exception: # Exceptions like KafkaUnavailableError, LeaderNotAvailableError, # UnknownTopicOrPartitionError, etc., are not controlled by # `fail_on_error` flag and could be thrown from the kafka client, # and fail all the requests. We will retry all the requests until # either all of them are successfully published or it exceeds the # maximum retry criteria. return [] def _record_success_requests(self, success_topic_stats_map): for topic_partition, stats in success_topic_stats_map.iteritems(): topic = topic_partition.topic_name assert stats.message_count == len(self.message_buffer[topic]) self.position_data_tracker.record_messages_published( topic=topic, offset=stats.original_offset, message_count=stats.message_count ) self.message_buffer.pop(topic) def _publish_produce_requests_dry_run(self, requests): for request in requests: self._publish_single_request_dry_run(request) def _publish_single_request_dry_run(self, request): topic = request.topic message_count = len(request.messages) self.position_data_tracker.record_messages_published( topic, -1, message_count ) def _is_ready_to_flush(self): time_limit = get_config().kafka_producer_flush_time_limit_seconds return (self._automatic_flush_enabled and ( (time.time() - self.start_time) >= time_limit or self.message_buffer_size >= get_config().kafka_producer_buffer_size )) def _flush_if_necessary(self): if self._is_ready_to_flush(): self.flush_buffered_messages() def _add_message_to_buffer(self, message): topic = message.topic message = self._prepare_message(message) self.message_buffer[topic].append(message) self.message_buffer_size += 1 def _generate_produce_requests(self): return [ ProduceRequest(topic=topic, partition=0, messages=messages) for topic, messages in self._generate_prepared_topic_and_messages() ] def _generate_prepared_topic_and_messages(self): return self.message_buffer.iteritems() def _prepare_message(self, message): return _prepare(_EnvelopeAndMessage(envelope=self.envelope, message=message)) def _reset_message_buffer(self): if not hasattr(self, 'message_buffer_size') or self.message_buffer_size > 0: self.producer_position_callback(self.position_data_tracker.get_position_data()) self.start_time = time.time() self.message_buffer = defaultdict(list) self.message_buffer_size = 0 class LoggingKafkaProducer(KafkaProducer): def _publish_produce_requests(self, requests): logger.info( "Flushing buffered messages - requests={0}, messages={1}".format( len(requests), self.message_buffer_size ) ) try: super(LoggingKafkaProducer, self)._publish_produce_requests(requests) logger.info("All messages published successfully") except MaxRetryError as e: logger.exception( "Failed to publish all produce requests. {0}".format(repr(e)) ) raise def _reset_message_buffer(self): logger.info("Resetting message buffer for success requests.") super(LoggingKafkaProducer, self)._reset_message_buffer() def _publish_single_request_dry_run(self, request): super(LoggingKafkaProducer, self)._publish_single_request_dry_run(request) logger.debug("dry_run mode: Would have published {0} messages to {1}".format( len(request.messages), request.topic ))
stackimpact/utils.py
timgates42/stackimpact-python
742
39544
import time import uuid import base64 import hashlib def millis(): return int(round(time.time() * 1000)) def timestamp(): return int(time.time()) def base64_encode(s): return base64.b64encode(s.encode('utf-8')).decode('utf-8') def base64_decode(b): return base64.b64decode(b).decode('utf-8') def generate_uuid(): return str(uuid.uuid4()) def generate_sha1(text): sha1_hash = hashlib.sha1() sha1_hash.update(text.encode('utf-8')) return sha1_hash.hexdigest()
example/app/views.py
aolkin/django-bootstrap-form
324
39545
<gh_stars>100-1000 from django.shortcuts import render from app.forms import ExampleForm def index(request): form = ExampleForm() return render(request, 'index.html', {'form': form})
myia/operations/op_array_getitem_wrap.py
strint/myia
222
39617
"""Implementation of the 'array_getitem_wrap' operation.""" from ..lib import Slice, core, myia_static from ..operations import array_getitem, reshape def _dim_explicit(dim, dim_size): if dim < 0: dim = dim_size + dim assert dim >= 0 return dim @myia_static def _build_slices(a_shp, item): begin = () end = () stride = () remove_dims = () for adx, a in enumerate(a_shp): if adx < len(item): i = item[adx] if isinstance(i, (slice, Slice)): begin = begin + ( 0 if i.start is None else _dim_explicit(i.start, a), ) end = end + (a if i.stop is None else _dim_explicit(i.stop, a),) stride = stride + (1 if i.step is None else i.step,) remove_dims = remove_dims + (False,) else: begin = begin + (_dim_explicit(i, a),) end = end + (_dim_explicit(i, a) + 1,) stride = stride + (1,) remove_dims = remove_dims + (True,) else: begin = begin + (0,) end = end + (a,) stride = stride + (1,) remove_dims = remove_dims + (False,) return begin, end, stride, remove_dims @core def array_getitem_wrap(array, item): """Implementation of `array_getitem`.""" if isinstance(item, tuple): begin, end, stride, remove_dims = _build_slices(array.shape, item) else: begin, end, stride, remove_dims = _build_slices(array.shape, (item,)) ret = array_getitem(array, begin, end, stride) final_shape = () for o, r in zip(ret.shape, remove_dims): if not r: final_shape = final_shape + (o,) ret = reshape(ret, final_shape) return ret __operation_defaults__ = { "name": "array_getitem_wrap", "registered_name": "array_getitem_wrap", "mapping": array_getitem_wrap, "python_implementation": None, }
django_tutorial/views/error_views.py
twtrubiks/django-tutorial
431
39628
<reponame>twtrubiks/django-tutorial from django.shortcuts import render def view_404(request): return render(request, 'django_tutorial/error_pages/page_404.html', status=404) def view_500(request): return render(request, 'django_tutorial/error_pages/page_500.html', status=500)
examples/anagrams_demo.py
aathi2002/open-tamil
218
39641
import codecs from solthiruthi.dictionary import * from tamil import wordutils TVU, TVU_size = DictionaryBuilder.create(TamilVU) ag, ag2 = wordutils.anagrams_in_dictionary(TVU) with codecs.open("demo.txt", "w", "utf-8") as fp: itr = 1 for k, c in ag: v = ag2[k] fp.write("%03d) %s\n" % (itr, " | ".join(v))) itr += 1
data/kitti_raw_loader.py
infinityofspace/SfmLearner-Pytorch
908
39647
from __future__ import division import numpy as np from path import Path from imageio import imread from skimage.transform import resize as imresize from kitti_util import pose_from_oxts_packet, generate_depth_map, read_calib_file, transform_from_rot_trans from datetime import datetime class KittiRawLoader(object): def __init__(self, dataset_dir, static_frames_file=None, img_height=128, img_width=416, min_disp=0.2, get_depth=False, get_pose=False, depth_size_ratio=1): dir_path = Path(__file__).realpath().dirname() test_scene_file = dir_path/'test_scenes.txt' self.from_speed = static_frames_file is None if static_frames_file is not None: self.collect_static_frames(static_frames_file) with open(test_scene_file, 'r') as f: test_scenes = f.readlines() self.test_scenes = [t[:-1] for t in test_scenes] self.dataset_dir = dataset_dir self.img_height = img_height self.img_width = img_width self.cam_ids = ['02', '03'] self.date_list = ['2011_09_26', '2011_09_28', '2011_09_29', '2011_09_30', '2011_10_03'] self.min_disp = min_disp self.get_depth = get_depth self.get_pose = get_pose self.depth_size_ratio = depth_size_ratio self.collect_train_folders() def collect_static_frames(self, static_frames_file): with open(static_frames_file, 'r') as f: frames = f.readlines() self.static_frames = {} for fr in frames: if fr == '\n': continue date, drive, frame_id = fr.split(' ') curr_fid = '%.10d' % (np.int(frame_id[:-1])) if drive not in self.static_frames.keys(): self.static_frames[drive] = [] self.static_frames[drive].append(curr_fid) def collect_train_folders(self): self.scenes = [] for date in self.date_list: drive_set = (self.dataset_dir/date).dirs() for dr in drive_set: if dr.name[:-5] not in self.test_scenes: self.scenes.append(dr) def collect_scenes(self, drive): train_scenes = [] for c in self.cam_ids: oxts = sorted((drive/'oxts'/'data').files('*.txt')) with open(drive/'oxts'/'timestamps.txt', 'r') as f: times = [datetime.strptime(time_string[:-4], "%Y-%m-%d %H:%M:%S.%f") for time_string in f.readlines()] scene_data = {'cid': c, 'dir': drive, 'speed': [], 'time': [t.timestamp() for t in times], 'frame_id': [], 'pose': [], 'rel_path': drive.name + '_' + c} scale = None origin = None imu2velo = read_calib_file(drive.parent/'calib_imu_to_velo.txt') velo2cam = read_calib_file(drive.parent/'calib_velo_to_cam.txt') cam2cam = read_calib_file(drive.parent/'calib_cam_to_cam.txt') velo2cam_mat = transform_from_rot_trans(velo2cam['R'], velo2cam['T']) imu2velo_mat = transform_from_rot_trans(imu2velo['R'], imu2velo['T']) cam_2rect_mat = transform_from_rot_trans(cam2cam['R_rect_00'], np.zeros(3)) imu2cam = cam_2rect_mat @ velo2cam_mat @ imu2velo_mat for n, f in enumerate(oxts): metadata = np.genfromtxt(f) speed = metadata[8:11] scene_data['speed'].append(speed) scene_data['frame_id'].append('{:010d}'.format(n)) lat = metadata[0] if scale is None: scale = np.cos(lat * np.pi / 180.) pose_matrix = pose_from_oxts_packet(metadata[:6], scale) if origin is None: origin = pose_matrix odo_pose = imu2cam @ np.linalg.inv(origin) @ pose_matrix @ np.linalg.inv(imu2cam) scene_data['pose'].append(odo_pose[:3]) sample = self.load_image(scene_data, 0) if sample is None: return [] scene_data['P_rect'] = self.get_P_rect(scene_data, sample[1], sample[2]) scene_data['intrinsics'] = scene_data['P_rect'][:, :3] train_scenes.append(scene_data) return train_scenes def get_scene_imgs(self, scene_data): def construct_sample(scene_data, i, frame_id): sample = {"img": self.load_image(scene_data, i)[0], "id": frame_id} if self.get_depth: sample['depth'] = self.get_depth_map(scene_data, i) if self.get_pose: sample['pose'] = scene_data['pose'][i] return sample if self.from_speed: cum_displacement = np.zeros(3) for i, (speed1, speed2, t1, t2) in enumerate(zip(scene_data['speed'][1:], scene_data['speed'][:-1], scene_data['time'][1:], scene_data['time'][:-1])): print(speed1, speed2, t1, t2) cum_displacement += 0.5*(speed1 + speed2) / (t2-t1) disp_mag = np.linalg.norm(cum_displacement) if disp_mag > self.min_disp: frame_id = scene_data['frame_id'][i] yield construct_sample(scene_data, i, frame_id) cum_displacement *= 0 else: # from static frame file drive = str(scene_data['dir'].name) for (i, frame_id) in enumerate(scene_data['frame_id']): if (drive not in self.static_frames.keys()) or (frame_id not in self.static_frames[drive]): yield construct_sample(scene_data, i, frame_id) def get_P_rect(self, scene_data, zoom_x, zoom_y): calib_file = scene_data['dir'].parent/'calib_cam_to_cam.txt' filedata = read_calib_file(calib_file) P_rect = np.reshape(filedata['P_rect_' + scene_data['cid']], (3, 4)) P_rect[0] *= zoom_x P_rect[1] *= zoom_y return P_rect def load_image(self, scene_data, tgt_idx): img_file = scene_data['dir']/'image_{}'.format(scene_data['cid'])/'data'/scene_data['frame_id'][tgt_idx]+'.png' if not img_file.isfile(): return None img = imread(img_file) zoom_y = self.img_height/img.shape[0] zoom_x = self.img_width/img.shape[1] img = imresize(img, (self.img_height, self.img_width)) # workaround for skimage (float [0 .. 1]) and imageio (uint8 [0 .. 255]) interoperability img = (img * 255).astype(np.uint8) return img, zoom_x, zoom_y def get_depth_map(self, scene_data, tgt_idx): # compute projection matrix velodyne->image plane R_cam2rect = np.eye(4) calib_dir = scene_data['dir'].parent cam2cam = read_calib_file(calib_dir/'calib_cam_to_cam.txt') velo2cam = read_calib_file(calib_dir/'calib_velo_to_cam.txt') velo2cam = np.hstack((velo2cam['R'].reshape(3, 3), velo2cam['T'][..., np.newaxis])) velo2cam = np.vstack((velo2cam, np.array([0, 0, 0, 1.0]))) R_cam2rect[:3, :3] = cam2cam['R_rect_00'].reshape(3, 3) velo2cam = np.dot(R_cam2rect, velo2cam) velo_file_name = scene_data['dir']/'velodyne_points'/'data'/'{}.bin'.format(scene_data['frame_id'][tgt_idx]) return generate_depth_map(velo_file_name, scene_data['P_rect'], velo2cam, self.img_width, self.img_height, self.depth_size_ratio)
cloudtunes-server/cloudtunes/async.py
skymemoryGit/cloudtunes
529
39676
"""Asynchronous MongoDB and Redis connections.""" from functools import partial import motor import tornadoredis from cloudtunes import settings RedisClient = partial(tornadoredis.Client, **settings.REDIS) mongo = motor.MotorClient(**settings.MONGODB).cloudtunes redis = RedisClient()
code/applications/qs_predict_probablistic.py
ninamiolane/quicksilver
126
39682
# add LDDMM shooting code into path import sys sys.path.append('../vectormomentum/Code/Python'); sys.path.append('../library') from subprocess import call import argparse import os.path #Add deep learning related libraries from collections import Counter import torch import prediction_network import util import numpy as np from skimage import exposure #Add LDDMM registration related libraries # pyca modules import PyCA.Core as ca import PyCA.Common as common #import PyCA.Display as display # vector momentum modules # others import logging import copy import math import registration_methods #parse command line input parser = argparse.ArgumentParser(description='Deformation prediction given set of moving and target images.') requiredNamed = parser.add_argument_group('required named arguments') requiredNamed.add_argument('--moving-image', nargs='+', required=True, metavar=('m1', 'm2, m3...'), help='List of moving images, seperated by space.') requiredNamed.add_argument('--target-image', nargs='+', required=True, metavar=('t1', 't2, t3...'), help='List of target images, seperated by space.') requiredNamed.add_argument('--output-prefix', nargs='+', required=True, metavar=('o1', 'o2, o3...'), help='List of registration output prefixes for every moving/target image pair, seperated by space. Preferred to be a directory (e.g. /some_path/output_dir/)') parser.add_argument('--samples', type=int, default=50, metavar='N', help='number of times to sample the network (default: 64)') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for prediction network (default: 64)') parser.add_argument('--n-GPU', type=int, default=1, metavar='N', help='number of GPUs used for prediction (default: 1). For maximum efficiency please set the batch size divisible by the number of GPUs.') parser.add_argument('--use-CPU-for-shooting', action='store_true', default=False, help='Use CPU for geodesic shooting. Slow, but saves GPU memory.') parser.add_argument('--shoot-steps', type=int, default=0, metavar='N', help='time steps for geodesic shooting. Ignore this option to use the default step size used by the registration model.') parser.add_argument('--affine-align', action='store_true', default=False, help='Perform affine registration to align moving and target images to ICBM152 atlas space. Require niftireg.') parser.add_argument('--histeq', action='store_true', default=False, help='Perform histogram equalization to the moving and target images.') parser.add_argument('--atlas', default="../data/atlas/icbm152.nii", help="Atlas to use for (affine) pre-registration") parser.add_argument('--prediction-parameter', default='../../network_configs/OASIS_predict_probabilistic.pth.tar', help="network parameters for the prediction network") args = parser.parse_args() # check validity of input arguments from command line def check_args(args): # number of input images/output prefix consistency check n_moving_images = len(args.moving_image) n_target_images = len(args.target_image) n_output_prefix = len(args.output_prefix) if (n_moving_images != n_target_images): print('The number of moving images is not consistent with the number of target images!') sys.exit(1) elif (n_moving_images != n_output_prefix ): print('The number of output prefix is not consistent with the number of input images!') sys.exit(1) # number of GPU check (positive integers) if (args.n_GPU <= 0): print('Number of GPUs must be positive!') sys.exit(1) # geodesic shooting step check (positive integers) if (args.shoot_steps < 0): print('Shooting steps (--shoot-steps) is negative. Using model default step.') # geodesic shooting step check (positive integers) if (args.samples < 1): print('Number of samples (--samples) is smaller than 1. Using model default step.') #enddef def create_net(args, network_config): net_single = prediction_network.net(network_config['network_feature']).cuda(); net_single.load_state_dict(network_config['state_dict']) if (args.n_GPU > 1) : device_ids=range(0, args.n_GPU) net = torch.nn.DataParallel(net_single, device_ids=device_ids).cuda() else: net = net_single net.train() return net; #enddef def preprocess_image(image_pyca, histeq): image_np = common.AsNPCopy(image_pyca) nan_mask = np.isnan(image_np) image_np[nan_mask] = 0 image_np /= np.amax(image_np) # perform histogram equalization if needed if histeq: image_np[image_np != 0] = exposure.equalize_hist(image_np[image_np != 0]) return image_np #perform deformation prediction def predict_image(args): if (args.use_CPU_for_shooting): mType = ca.MEM_HOST else: mType = ca.MEM_DEVICE # load the prediction network predict_network_config = torch.load(args.prediction_parameter) prediction_net = create_net(args, predict_network_config); batch_size = args.batch_size patch_size = predict_network_config['patch_size'] input_batch = torch.zeros(batch_size, 2, patch_size, patch_size, patch_size).cuda() # start prediction for i in range(0, len(args.moving_image)): common.Mkdir_p(os.path.dirname(args.output_prefix[i])) if (args.affine_align): # Perform affine registration to both moving and target image to the ICBM152 atlas space. # Registration is done using Niftireg. call(["reg_aladin", "-noSym", "-speeeeed", "-ref", args.atlas , "-flo", args.moving_image[i], "-res", args.output_prefix[i]+"moving_affine.nii", "-aff", args.output_prefix[i]+'moving_affine_transform.txt']) call(["reg_aladin", "-noSym", "-speeeeed" ,"-ref", args.atlas , "-flo", args.target_image[i], "-res", args.output_prefix[i]+"target_affine.nii", "-aff", args.output_prefix[i]+'target_affine_transform.txt']) moving_image = common.LoadITKImage(args.output_prefix[i]+"moving_affine.nii", mType) target_image = common.LoadITKImage(args.output_prefix[i]+"target_affine.nii", mType) else: moving_image = common.LoadITKImage(args.moving_image[i], mType) target_image = common.LoadITKImage(args.target_image[i], mType) #preprocessing of the image moving_image_np = preprocess_image(moving_image, args.histeq); target_image_np = preprocess_image(target_image, args.histeq); grid = moving_image.grid() moving_image_processed = common.ImFromNPArr(moving_image_np, mType) target_image_processed = common.ImFromNPArr(target_image_np, mType) moving_image.setGrid(grid) target_image.setGrid(grid) predict_transform_space = False if 'matlab_t7' in predict_network_config: predict_transform_space = True # run actual prediction prediction_result = util.predict_momentum(moving_image_np, target_image_np, input_batch, batch_size, patch_size, prediction_net, predict_transform_space); m0 = prediction_result['image_space'] m0_reg = common.FieldFromNPArr(prediction_result['image_space'], mType); registration_result = registration_methods.geodesic_shooting(moving_image_processed, target_image_processed, m0_reg, args.shoot_steps, mType, predict_network_config) phi = common.AsNPCopy(registration_result['phiinv']) phi_square = np.power(phi,2) for sample_iter in range(1, args.samples): print(sample_iter) prediction_result = util.predict_momentum(moving_image_np, target_image_np, input_batch, batch_size, patch_size, prediction_net, predict_transform_space); m0 += prediction_result['image_space'] m0_reg = common.FieldFromNPArr(prediction_result['image_space'], mType); registration_result = registration_methods.geodesic_shooting(moving_image_processed, target_image_processed, m0_reg, args.shoot_steps, mType, predict_network_config) phi += common.AsNPCopy(registration_result['phiinv']) phi_square += np.power(common.AsNPCopy(registration_result['phiinv']),2) m0_mean = np.divide(m0, args.samples); m0_reg = common.FieldFromNPArr(m0_mean, mType); registration_result = registration_methods.geodesic_shooting(moving_image_processed, target_image_processed, m0_reg, args.shoot_steps, mType, predict_network_config) phi_mean = registration_result['phiinv'] phi_var = np.divide(phi_square, args.samples) - np.power(np.divide(phi, args.samples), 2) #save result common.SaveITKImage(registration_result['I1'], args.output_prefix[i]+"I1.mhd") common.SaveITKField(phi_mean, args.output_prefix[i]+"phiinv_mean.mhd") common.SaveITKField(common.FieldFromNPArr(phi_var, mType), args.output_prefix[i]+"phiinv_var.mhd") #enddef if __name__ == '__main__': check_args(args); predict_image(args)
tods/sk_interface/detection_algorithm/SOD_skinterface.py
ZhuangweiKang/tods
544
39739
import numpy as np from ..base import BaseSKI from tods.detection_algorithm.PyodSOD import SODPrimitive class SODSKI(BaseSKI): def __init__(self, **hyperparams): super().__init__(primitive=SODPrimitive, **hyperparams) self.fit_available = True self.predict_available = True self.produce_available = False
munjong/remove_sejong_period_error.py
cjdans5545/khaiii
1,235
39758
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ remove wrong sentence breaking marks after period error eojeol __author__ = 'Jamie (<EMAIL>)' __copyright__ = 'Copyright (C) 2017-, Kakao Corp. All rights reserved.' """ ########### # imports # ########### from argparse import ArgumentParser import logging import os import re import sys from typing import TextIO, Tuple from khaiii.munjong.sejong_corpus import Morph, WORD_ID_PTN ############# # functions # ############# def _get_three_lines(fin: TextIO) -> Tuple[str, str, str]: """ get three lines tuple from file (generator) Args: fin: input file Yields: prev. prev. line prev. line curr. line """ prev_prev_line = fin.readline().rstrip('\r\n') prev_line = fin.readline().rstrip('\r\n') # print first two lines print(prev_prev_line) print(prev_line) for curr_line in fin: curr_line = curr_line.rstrip('\r\n') yield prev_prev_line, prev_line, curr_line prev_prev_line = prev_line prev_line = curr_line def _is_known_period_error_eojeol(line: str) -> bool: """ 알려진 특정 문장분리 오류를 포함하는 어절인 지 여부 Args: line: line (eojeol) Returns: whether has error or not """ cols = line.split('\t') if len(cols) != 3 or not WORD_ID_PTN.match(cols[0]): return False if '/SF + ' not in cols[2] or re.match(r'.+/EF \+ ./SF$', cols[2]): return False if re.match(r'.+/SF \+ [\'"’”]/SS$', cols[2]): return False morphs = [Morph.parse(_) for _ in cols[2].split(' + ')] tags_str = '+'.join([_.tag for _ in morphs]) if 'SN+SF+SN' in tags_str and not tags_str.endswith('+SF'): # 4.6판: 4/SN + ./SF + 6/SN + 판/NNB if 'XSN+SF+SN' not in tags_str: return True elif 'SL+SF+SL' in tags_str and not tags_str.endswith('+SF'): # S.M.오너: S/SL + ./SF + M/SL + ./SF + 오너/NNG return True return False def run(): """ run function which is the start point of program """ file_name = os.path.basename(sys.stdin.name) for line_num, (prev_prev_line, prev_line, curr_line) in enumerate(_get_three_lines(sys.stdin), start=1): if curr_line == '</p>' and _is_known_period_error_eojeol(prev_line): continue elif prev_line == '</p>' and curr_line == '<p>' and \ _is_known_period_error_eojeol(prev_prev_line): logging.info('%s:%d\t%s', file_name, line_num, prev_prev_line) continue print(curr_line) ######## # main # ######## def main(): """ main function processes only argument parsing """ parser = ArgumentParser(description='remove wrong sentence breaking marks after' ' period error eojeol') parser.add_argument('--input', help='input file <default: stdin>', metavar='FILE') parser.add_argument('--output', help='output file <default: stdout>', metavar='FILE') parser.add_argument('--debug', help='enable debug', action='store_true') args = parser.parse_args() if args.input: sys.stdin = open(args.input, 'rt') if args.output: sys.stdout = open(args.output, 'wt') if args.debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) run() if __name__ == '__main__': main()
src/pretalx/event/migrations/0023_update_featured_visibility.py
lili668668/pretalx
418
39779
<filename>src/pretalx/event/migrations/0023_update_featured_visibility.py # Generated by Django 3.0.5 on 2020-07-26 15:45 from django.db import migrations def update_show_featured(apps, schema_editor): Event = apps.get_model("event", "Event") EventSettings = apps.get_model("event", "Event_SettingsStore") for event in Event.objects.all(): old_value = EventSettings.objects.filter( object=event, key="show_sneak_peek" ).first() if old_value and old_value.value == "False": EventSettings.objects.create( object=event, key="show_featured", value="never", ) class Migration(migrations.Migration): dependencies = [ ("event", "0022_auto_20200124_1213"), ] operations = [ migrations.RunPython(update_show_featured, migrations.RunPython.noop), ]
dash_docs/chapters/dash_bio/examples/ideogram.py
joelostblom/dash-docs
379
39829
import dash import dash_bio as dashbio import dash_html_components as html import dash_core_components as dcc external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div([ 'Select which chromosomes to display on the ideogram below:', dcc.Dropdown( id='displayed-chromosomes', options=[{'label': str(i), 'value': str(i)} for i in range(1, 23)], multi=True, value=[str(i) for i in range(1, 23)] ), dashbio.Ideogram( id='my-dashbio-ideogram' ), html.Div(id='ideogram-rotated') ]) @app.callback( dash.dependencies.Output('my-dashbio-ideogram', 'chromosomes'), [dash.dependencies.Input('displayed-chromosomes', 'value')] ) def update_ideogram(value): return value @app.callback( dash.dependencies.Output('ideogram-rotated', 'children'), [dash.dependencies.Input('my-dashbio-ideogram', 'rotated')] ) def update_ideogram_rotated(rot): return 'You have {} selected a chromosome.'.format( '' if rot else 'not') if __name__ == '__main__': app.run_server(debug=True)
objectModel/Python/tests/storage/test_github.py
rt112000/CDM
884
39869
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. import json import unittest import unittest.mock as mock import random from tests.common import async_test from cdm.storage.github import GithubAdapter class GithubStorageAdapterTestCase(unittest.TestCase): def test_make_corpus_path(self): adapter = GithubAdapter() adapter.timeout = 2000 adapter.maximum_timeout = 5000 adapter.number_of_retries = 0 # Valid path. self.assertEqual(adapter.create_corpus_path( 'https://raw.githubusercontent.com/Microsoft/CDM/master/schemaDocuments/dir1/dir2/file.json'), '/dir1/dir2/file.json') # Invalid path. self.assertIsNone(adapter.create_corpus_path('https://raw.githubusercontent.com/Microsoft/CDM/master/schemaDocument/dir1/dir2/file.json')) @mock.patch('cdm.utilities.network.cdm_http_client.urllib.request.urlopen', new_callable=mock.mock_open, read_data=json.dumps({'Ḽơᶉëᶆ': 'ȋṕšᶙṁ'}).encode()) @async_test async def test_read(self, mock_urlopen): adapter = GithubAdapter() adapter.timeout = 2000 adapter.maximum_timeout = 5000 raw_data = await adapter.read_async('/dir1/dir2/file.json') data = json.loads(raw_data) # Verify URL. self.assertEqual(mock_urlopen.call_args[0][0].full_url, 'https://raw.githubusercontent.com/Microsoft/CDM/master/schemaDocuments/dir1/dir2/file.json') self.assertEqual(data, {'Ḽơᶉëᶆ': 'ȋṕšᶙṁ'}) # Verify data. if __name__ == '__main__': unittest.main()
speedTester/logs/average.py
saurabhcommand/Hello-world
1,428
39870
<reponame>saurabhcommand/Hello-world file1 = open("./logs/pythonlog.txt", 'r+') avg1 = 0.0 lines1 = 0.0 for line in file1: lines1 = lines1 + 1.0 avg1 = (avg1 + float(line)) avg1 = avg1/lines1 print(avg1, "for Python with", lines1, "lines") file2 = open("./logs/clog.txt", 'r+') avg2 = 0.0 lines2 = 0.0 for line in file2: lines2 = lines2 + 1.0 avg2 = (avg2 + float(line)) avg2 = avg2/lines2 print(avg2, "for C with", lines2, "lines") file3 = open("./logs/cpplog.txt", 'r+') avg3 = 0.0 lines3 = 0.0 for line in file3: lines3 = lines3 + 1.0 avg3 = (avg3 + float(line)) avg3 = avg3/lines3 print(avg3, "for C++ with", lines3, "lines") file4 = open("./logs/javalog.txt", 'r+') avg4 = 0.0 lines4 = 0.0 for line in file4: lines4 = lines4 + 1.0 avg4 = (avg4 + float(line)) avg4 = avg4/lines4 print(avg4, "for Java with", lines4, "lines") word = "" while(word.lower() != "y" and word.lower() != "n"): word = input("Do you want to wipe the previous log? [Y/N]") if(word.lower() == "y"): file1.truncate(0) file3.truncate(0) file2.truncate(0) file4.truncate(0) print("Done.") file4.close() file3.close() file2.close() file1.close()
tensorflow_ranking/python/keras/estimator_test.py
renyi533/ranking
2,482
39878
<filename>tensorflow_ranking/python/keras/estimator_test.py # Copyright 2021 The TensorFlow Ranking Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for Keras Estimator.""" import os from absl.testing import parameterized import tensorflow as tf from google.protobuf import text_format from tensorflow_ranking.python import data from tensorflow_ranking.python.keras import estimator as estimator_lib from tensorflow_ranking.python.keras import losses from tensorflow_ranking.python.keras import metrics from tensorflow_ranking.python.keras import model from tensorflow_ranking.python.keras import network from tensorflow_serving.apis import input_pb2 _SIZE = 'example_list_size' _ELWC_PROTO = text_format.Parse( """ context { features { feature { key: "query_length" value { int64_list { value: 3 } } } } } examples { features { feature { key: "unigrams" value { bytes_list { value: "tensorflow" } } } feature { key: "utility" value { float_list { value: 0.0 } } } feature { key: "dense_feature" value { float_list { value: -0.5 value: 0.5 } } } feature { key: "doc_weight" value { float_list { value: 0.0 } } } } } examples { features { feature { key: "unigrams" value { bytes_list { value: ["learning", "to", "rank"] } } } feature { key: "utility" value { float_list { value: 1.0 } } } feature { key: "dense_feature" value { float_list { value: 0.5 value: 0.5 } } } feature { key: "doc_weight" value { float_list { value: 1.0 } } } } } """, input_pb2.ExampleListWithContext()) _LABEL_FEATURE = 'utility' _PADDING_LABEL = -1. _EXAMPLE_WEIGHT_FEATURE = 'doc_weight' def _get_feature_columns(): def _normalizer_fn(t): return 2 * t context_feature_columns = { 'query_length': tf.feature_column.numeric_column( 'query_length', shape=(1,), default_value=0, dtype=tf.int64, normalizer_fn=_normalizer_fn) } example_feature_columns = { 'utility': tf.feature_column.numeric_column( 'utility', shape=(1,), default_value=_PADDING_LABEL, dtype=tf.float32), 'unigrams': tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( 'unigrams', vocabulary_list=[ 'ranking', 'regression', 'classification', 'ordinal' ]), dimension=10), 'dense_feature': tf.feature_column.numeric_column( 'dense_feature', shape=(2,), default_value=0.0, dtype=tf.float32) } custom_objects = {'_normalizer_fn': _normalizer_fn} return context_feature_columns, example_feature_columns, custom_objects def _get_example_weight_feature_column(): return tf.feature_column.numeric_column( _EXAMPLE_WEIGHT_FEATURE, dtype=tf.float32, default_value=1.) # This network needs actual layers, otherwise the estimator training fails. class _DummyUnivariateRankingNetwork(network.UnivariateRankingNetwork): """Dummy univariate ranking network with a simple scoring function.""" def __init__(self, context_feature_columns=None, example_feature_columns=None, name='dummy_ranking_network', **kwargs): super(_DummyUnivariateRankingNetwork, self).__init__( context_feature_columns=context_feature_columns, example_feature_columns=example_feature_columns, name=name, **kwargs) self._score_layer = tf.keras.layers.Dense(units=1) def score(self, context_features=None, example_features=None, training=True): example_input = [ tf.keras.layers.Flatten()(example_features[name]) for name in sorted(self.example_feature_columns) ] return self._score_layer(tf.concat(example_input, axis=1)) class KerasModelToEstimatorTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(KerasModelToEstimatorTest, self).setUp() (context_feature_columns, example_feature_columns, custom_objects) = _get_feature_columns() self._context_feature_columns = context_feature_columns self._example_feature_columns = example_feature_columns # Remove label feature from example feature column. del self._example_feature_columns[_LABEL_FEATURE] self._custom_objects = custom_objects self._network = _DummyUnivariateRankingNetwork( context_feature_columns=self._context_feature_columns, example_feature_columns=self._example_feature_columns) self._loss = losses.get( losses.RankingLossKey.SOFTMAX_LOSS, reduction=tf.compat.v2.losses.Reduction.SUM_OVER_BATCH_SIZE) self._eval_metrics = metrics.default_keras_metrics() self._optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.1) self._config = tf.estimator.RunConfig( keep_checkpoint_max=2, save_checkpoints_secs=2) self._data_file = os.path.join(tf.compat.v1.test.get_temp_dir(), 'test_elwc.tfrecord') serialized_elwc_list = [ _ELWC_PROTO.SerializeToString(), ] * 20 if tf.io.gfile.exists(self._data_file): tf.io.gfile.remove(self._data_file) with tf.io.TFRecordWriter(self._data_file) as writer: for serialized_elwc in serialized_elwc_list: writer.write(serialized_elwc) def tearDown(self): super(KerasModelToEstimatorTest, self).tearDown() if tf.io.gfile.exists(self._data_file): tf.io.gfile.remove(self._data_file) self._data_file = None def _make_input_fn(self, weights_feature_name=None): """Return an input function, serves weights defined in weights_feature_name. Args: weights_feature_name: (str) A string defines the weights feature in dataset. None if no weights is used. Returns: A function serves features and labels. Weights will be served in features. """ def _input_fn(): context_feature_columns, example_feature_columns, _ = ( _get_feature_columns()) context_feature_spec = tf.feature_column.make_parse_example_spec( list(context_feature_columns.values())) label_column = tf.feature_column.numeric_column( _LABEL_FEATURE, dtype=tf.float32, default_value=_PADDING_LABEL) weight_column = ( _get_example_weight_feature_column() if weights_feature_name == _EXAMPLE_WEIGHT_FEATURE else None) example_fc_list = ( list(example_feature_columns.values()) + [label_column] + ([weight_column] if weight_column else [])) example_feature_spec = tf.feature_column.make_parse_example_spec( example_fc_list) dataset = data.build_ranking_dataset( file_pattern=self._data_file, data_format=data.ELWC, batch_size=10, context_feature_spec=context_feature_spec, example_feature_spec=example_feature_spec, list_size=2, reader=tf.data.TFRecordDataset, size_feature_name=_SIZE) features = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next() label = tf.squeeze(features.pop(_LABEL_FEATURE), axis=2) return features, label return _input_fn def test_model_to_estimator_missing_custom_objects(self): keras_model = model.create_keras_model( network=self._network, loss=self._loss, metrics=self._eval_metrics, optimizer=self._optimizer, size_feature_name=_SIZE) estimator = estimator_lib.model_to_estimator( model=keras_model, config=self._config, custom_objects=None) self.assertIsInstance(estimator, tf.compat.v1.estimator.Estimator) # Train and export model. train_spec = tf.estimator.TrainSpec( input_fn=self._make_input_fn(), max_steps=1) eval_spec = tf.estimator.EvalSpec( name='eval', input_fn=self._make_input_fn(), steps=10) with self.assertRaises(AttributeError): tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) @parameterized.named_parameters( ('without_weights', None, 'predict'), ('with_example_weights', _EXAMPLE_WEIGHT_FEATURE, 'predict'), ('pointwise_inference', None, 'regress')) def test_model_to_estimator(self, weights_feature_name, serving_default): keras_model = model.create_keras_model( network=self._network, loss=self._loss, metrics=self._eval_metrics, optimizer=self._optimizer, size_feature_name=_SIZE) estimator = estimator_lib.model_to_estimator( model=keras_model, config=self._config, weights_feature_name=weights_feature_name, custom_objects=self._custom_objects, serving_default=serving_default) self.assertIsInstance(estimator, tf.compat.v1.estimator.Estimator) # Train and export model. train_spec = tf.estimator.TrainSpec( input_fn=self._make_input_fn(weights_feature_name), max_steps=1) eval_spec = tf.estimator.EvalSpec( name='eval', input_fn=self._make_input_fn(weights_feature_name), steps=10) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) context_feature_spec = tf.feature_column.make_parse_example_spec( self._context_feature_columns.values()) example_feature_spec = tf.feature_column.make_parse_example_spec( self._example_feature_columns.values()) def _make_serving_input_fn(serving_default): if serving_default == 'predict': return data.build_ranking_serving_input_receiver_fn( data.ELWC, context_feature_spec=context_feature_spec, example_feature_spec=example_feature_spec, size_feature_name=_SIZE) else: def pointwise_serving_fn(): serialized = tf.compat.v1.placeholder( dtype=tf.string, shape=[None], name='input_ranking_tensor') receiver_tensors = {'input_ranking_data': serialized} features = data.parse_from_tf_example( serialized, context_feature_spec=context_feature_spec, example_feature_spec=example_feature_spec, size_feature_name=_SIZE) return tf.estimator.export.ServingInputReceiver(features, receiver_tensors) return pointwise_serving_fn serving_input_receiver_fn = _make_serving_input_fn(serving_default) export_dir = os.path.join(tf.compat.v1.test.get_temp_dir(), 'export') estimator.export_saved_model(export_dir, serving_input_receiver_fn) # Confirm model ran and created checkpoints and saved model. final_ckpt_path = os.path.join(estimator.model_dir, 'model.ckpt-1.meta') self.assertTrue(tf.io.gfile.exists(final_ckpt_path)) saved_model_pb = os.path.join(export_dir, tf.io.gfile.listdir(export_dir)[0], 'saved_model.pb') self.assertTrue(tf.io.gfile.exists(saved_model_pb)) def test_model_to_estimator_wrong_weights_name(self): keras_model = model.create_keras_model( network=self._network, loss=self._loss, metrics=self._eval_metrics, optimizer=self._optimizer, size_feature_name=_SIZE) estimator = estimator_lib.model_to_estimator( model=keras_model, config=self._config, weights_feature_name='weights', custom_objects=self._custom_objects) self.assertIsInstance(estimator, tf.compat.v1.estimator.Estimator) # Train and export model. train_spec = tf.estimator.TrainSpec( input_fn=self._make_input_fn(), max_steps=1) eval_spec = tf.estimator.EvalSpec( name='eval', input_fn=self._make_input_fn(), steps=10) with self.assertRaises(ValueError): tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) if __name__ == '__main__': tf.test.main()
tools/Polygraphy/tests/backend/trt/test_profile.py
KaliberAI/TensorRT
5,249
39915
<filename>tools/Polygraphy/tests/backend/trt/test_profile.py # # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest import tensorrt as trt from polygraphy import mod from polygraphy.backend.trt import Profile, network_from_onnx_bytes from tests.models.meta import ONNX_MODELS @pytest.fixture(scope="session") def dynamic_identity_network(): builder, network, parser = network_from_onnx_bytes(ONNX_MODELS["dynamic_identity"].loader) with builder, network, parser: yield builder, network, parser class TestProfile(object): def test_can_add(self): profile = Profile() min, opt, max = (1, 1), (2, 2), (4, 4) assert profile.add("input", min=min, opt=opt, max=max) is profile shape_tuple = profile["input"] assert shape_tuple.min == min assert shape_tuple.opt == opt assert shape_tuple.max == max @pytest.mark.skipif(mod.version(trt.__version__) < mod.version("7.0"), reason="Unsupported for TRT 6") def test_fill_defaults_does_not_overwrite(self, dynamic_identity_network): _, network, _ = dynamic_identity_network profile = Profile().add("X", (1, 1, 1, 1), (1, 1, 2, 2), (1, 1, 3, 3)) profile.fill_defaults(network) is profile assert profile["X"].min == (1, 1, 1, 1) assert profile["X"].opt == (1, 1, 2, 2) assert profile["X"].max == (1, 1, 3, 3) @pytest.mark.skipif(mod.version(trt.__version__) < mod.version("7.0"), reason="Unsupported for TRT 6") def test_to_trt(self, dynamic_identity_network): builder, network, _ = dynamic_identity_network profile = Profile().add("X", (1, 2, 1, 1), (1, 2, 2, 2), (1, 2, 4, 4)) trt_profile = profile.to_trt(builder, network) trt_profile.get_shape("X") == ((1, 2, 1, 1), (1, 2, 2, 2), (1, 2, 4, 4))
tests/attention/test_attention_layer.py
SamuelCahyawijaya/fast-transformers
1,171
39922
# # Copyright (c) 2020 Idiap Research Institute, http://www.idiap.ch/ # Written by <NAME> <<EMAIL>>, # <NAME> <<EMAIL>> # import unittest import torch from fast_transformers.attention.attention_layer import AttentionLayer class TestAttentionLayer(unittest.TestCase): def _assert_sizes_attention(self, qshape, kshape, vshape): def inner(q, k, v, m1, m2, m3): self.assertEqual(q.shape, qshape) self.assertEqual(k.shape, kshape) self.assertEqual(v.shape, vshape) N, L, H, E = q.shape _, S, _, D = v.shape return v.new_zeros((N, L, H, D)) return inner def test_forward(self): att = AttentionLayer( self._assert_sizes_attention( (10, 5, 4, 25), (10, 8, 4, 25), (10, 8, 4, 25) ), 100, 4 ) v = att( torch.rand(10, 5, 100), torch.rand(10, 8, 100), torch.rand(10, 8, 100), None, None, None ) self.assertEqual(v.shape, (10, 5, 100)) att = AttentionLayer( self._assert_sizes_attention( (10, 5, 4, 32), (10, 8, 4, 32), (10, 8, 4, 64) ), 100, 4, d_keys=32, d_values=64 ) v = att( torch.rand(10, 5, 100), torch.rand(10, 8, 100), torch.rand(10, 8, 100), None, None, None ) self.assertEqual(v.shape, (10, 5, 100)) if __name__ == "__main__": unittest.main()
pulsar/async/_subprocess.py
PyCN/pulsar
1,410
39940
if __name__ == '__main__': import sys import pickle from multiprocessing import current_process from multiprocessing.spawn import import_main_path data = pickle.load(sys.stdin.buffer) current_process().authkey = data['authkey'] sys.path = data['path'] import_main_path(data['main']) impl = pickle.loads(data['impl']) from pulsar.async.concurrency import run_actor run_actor(impl)
django_slack/templatetags/django_slack.py
lociii/django-slack
237
39961
<gh_stars>100-1000 from django import template from django.utils.encoding import force_str from django.utils.functional import keep_lazy from django.utils.safestring import SafeText, mark_safe from django.template.defaultfilters import stringfilter register = template.Library() _slack_escapes = { ord('&'): u'&amp;', ord('<'): u'&lt;', ord('>'): u'&gt;', } @keep_lazy(str, SafeText) @register.filter(is_safe=True) @stringfilter def escapeslack(value): """ Returns the given text with ampersands and angle brackets encoded for use in the Slack API, per the Slack API documentation: <https://api.slack.com/docs/formatting#how_to_escape_characters> This is based on django.template.defaultfilters.escapejs. """ return mark_safe(force_str(value).translate(_slack_escapes))
python/tests/utils/test_environment_decorator_test.py
xuyanbo03/lab
7,407
39991
<reponame>xuyanbo03/lab # Copyright 2018 Google Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. """Tests TestEnvironmentDecorator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import unittest import numpy as np import six from PIL import Image from python.tests.utils import test_environment_decorator _OBSERVATION_SPEC = [{'name': 'RGB_INTERLEAVED', 'shape': [1, 2, 3]}] class EnvironmentStub(object): def __init__(self): self.test_observation_spec = _OBSERVATION_SPEC self.test_observations = [ { 'RGB_INTERLEAVED': np.array( [[[255, 0, 0], [128, 0, 0], [0, 0, 255]], [[0, 255, 0], [128, 0, 0], [0, 255, 0]]], dtype=np.uint8) }, { 'RGB_INTERLEAVED': np.array([[[0, 255, 0], [0, 128, 0]]], dtype=np.uint8) }, { 'RGB_INTERLEAVED': np.array([[[0, 0, 255], [0, 0, 128]]], dtype=np.uint8) }, ] self.test_rewards = [0, 1, 2, 3] self._frame_index = 0 self.last_actions = None self.last_steps = None self.events_return = None self.is_running_return = None self.action_spec_return = None self.reset_return = None def step(self, actions, steps): self.last_actions = actions self.last_steps = steps self._frame_index += 1 return self.test_rewards[self._frame_index - 1] def is_running(self): return self.is_running_return def observations(self): return self.test_observations[self._frame_index] def events(self): return self.events_return def action_spec(self): return self.action_spec_return def observation_spec(self): return self.test_observation_spec def reset(self, **_): self._frame_index = 0 return self.reset_return def num_steps(self): return self._frame_index class TestEnvironmentDecoratorTest(unittest.TestCase): def setUp(self): self._env = EnvironmentStub() self._decorator = test_environment_decorator.TestEnvironmentDecorator( self._env) def testStepIsCalled(self): actions = object() steps = 3 self.assertEqual( self._decorator.step(actions, steps), self._env.test_rewards[0]) self.assertEqual(self._env.last_actions, actions) self.assertEqual(self._env.last_steps, steps) def testAccumulatedReward(self): self._decorator.step(None, 1) self._decorator.step(None, 1) self.assertEqual(self._decorator.accumulated_reward(), np.sum(self._env.test_rewards[0:2])) def testResetAccumulatedReward(self): self._decorator.step(None, 1) self._decorator.reset() self.assertEqual(self._decorator.accumulated_reward(), 0) def testRewardHistory(self): self._decorator.step(None, 1) self._decorator.step(None, 1) six.assertCountEqual(self, self._decorator.reward_history(), self._env.test_rewards[0:2]) def testResetRewardHistory(self): self._decorator.step(None, 1) self._decorator.reset() six.assertCountEqual(self, self._decorator.reward_history(), []) def testAccumulatedEvents(self): events = ['event1', 'event2', 'event3'] self._env.events_return = events[0] self._decorator.reset() self._env.events_return = events[1] self._decorator.step(None, 1) self._env.events_return = events[2] self._decorator.step(None, 1) six.assertCountEqual(self, self._decorator.accumulated_events(), events) def testResetAccumulatedEvents(self): events = ['event1', 'event2'] self._env.events_return = events[0] self._decorator.step(None, 1) self._env.events_return = events[1] self._decorator.reset() six.assertCountEqual(self, self._decorator.accumulated_events(), [events[1]]) def testObservationDelegation(self): self.assertEqual(self._env.test_observations[0], self._decorator.observations()) def testObservationSpecDelegation(self): self.assertEqual(self._env.test_observation_spec, self._decorator.observation_spec()) def testNumSteps(self): self._decorator.reset() self.assertEqual(self._decorator.num_steps(), 0) self._decorator.step(None, None) self.assertEqual(self._decorator.num_steps(), 1) def testMethodDelegation(self): method_names = ['is_running', 'events', 'action_spec', 'reset'] for name in method_names: result = object() setattr(self._env, name + '_return', result) self.assertEqual(getattr(self._decorator, name)(), result) def testSavingFrames(self): self._decorator.reset() self._decorator.step(None, 1) self._decorator.step(None, 1) temp_dir = tempfile.mkdtemp() self._decorator.save_frames(temp_dir) for index, observation in enumerate(self._env.test_observations): expected_image = observation['RGB_INTERLEAVED'] image_file_name = os.path.join(temp_dir, 'frame{0}.png'.format(index)) image = np.asarray(Image.open(image_file_name)) self.assertTrue(np.array_equal(image, expected_image)) if __name__ == '__main__': unittest.main()
roles/openshift_openstack/library/os_service_catalog.py
Roscoe198/Ansible-Openshift
164
40022
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2018 Red Hat, Inc. and/or its affiliates # and other contributors as indicated by the @author tags. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=unused-wildcard-import,wildcard-import,unused-import,redefined-builtin ''' os_service_catalog_facts ''' from ansible.module_utils.basic import AnsibleModule try: import shade HAS_SHADE = True except ImportError: HAS_SHADE = False DOCUMENTATION = ''' --- module: os_service_catalog_facts short_description: Retrieve OpenStack service catalog facts description: - Retrieves all the available OpenStack services notes: - This module creates a new top-level C(openstack_service_catalog) fact which contains a dictionary of OpenStack service endpoints like network and load-balancers. author: - "<NAME> <<EMAIL>>" ''' RETURN = ''' openstack_service_catalog: description: OpenStack available services. type: dict returned: always sample: alarming: - adminURL: http://172.16.0.9:8042 id: 2c40b50da0bb44178db91c8a9a29a46e internalURL: http://172.16.0.9:8042 publicURL: https://mycloud.org:13042 region: regionOne cloudformation: - adminURL: http://172.16.0.9:8000/v1 id: 46648eded04e463281a9cba7ddcc45cb internalURL: http://172.16.0.9:8000/v1 publicURL: https://mycloud.org:13005/v1 region: regionOne compute: - adminURL: http://172.16.0.9:8774/v2.1 id: bff1bc5dd92842c281b2358a6d15c5bc internalURL: http://172.16.0.9:8774/v2.1 publicURL: https://mycloud.org:13774/v2.1 region: regionOne event: - adminURL: http://172.16.0.9:8779 id: 608ac3666ef24f2e8f240785b8612efb internalURL: http://172.16.0.9:8779 publicURL: https://mycloud.org:13779 region: regionOne identity: - adminURL: https://mycloud.org:35357 id: 4d07689ce46b4d51a01cc873bc772c80 internalURL: http://172.16.0.9:5000 publicURL: https://mycloud.org:13000 region: regionOne image: - adminURL: http://172.16.0.9:9292 id: 1850105115ea493eb65f3f704d421291 internalURL: http://172.16.0.9:9292 publicURL: https://mycloud.org:13292 region: regionOne metering: - adminURL: http://172.16.0.9:8777 id: 4cae4dcabe0a4914a6ec6dabd62490ba internalURL: http://172.16.0.9:8777 publicURL: https://mycloud.org:13777 region: regionOne metric: - adminURL: http://172.16.0.9:8041 id: 29bcecf9a06f40f782f19dd7492af352 internalURL: http://172.16.0.9:8041 publicURL: https://mycloud.org:13041 region: regionOne network: - adminURL: http://172.16.0.9:9696 id: 5d5785c9b8174c21bfb19dc3b16c87fa internalURL: http://172.16.0.9:9696 publicURL: https://mycloud.org:13696 region: regionOne object-store: - adminURL: http://172.17.0.9:8080 id: 031f1e342fdf4f25b6099d1f3b0847e3 internalURL: http://172.17.0.9:8080/v1/AUTH_6d2847d6a6414308a67644eefc7b98c7 publicURL: https://mycloud.org:13808/v1/AUTH_6d2847d6a6414308a67644eefc7b98c7 region: regionOne orchestration: - adminURL: http://172.16.0.9:8004/v1/6d2847d6a6414308a67644eefc7b98c7 id: 1e6cecbd15b3413d9411052c52b9d433 internalURL: http://172.16.0.9:8004/v1/6d2847d6a6414308a67644eefc7b98c7 publicURL: https://mycloud.org:13004/v1/6d2847d6a6414308a67644eefc7b98c7 region: regionOne placement: - adminURL: http://172.16.0.9:8778/placement id: 1f2551e5450c4bd6a9f716f92e93a154 internalURL: http://172.16.0.9:8778/placement publicURL: https://mycloud.org:13778/placement region: regionOne volume: - adminURL: http://172.16.0.9:8776/v1/6d2847d6a6414308a67644eefc7b98c7 id: 38e369a0e17346fe8e37a20146e005ef internalURL: http://172.16.0.9:8776/v1/6d2847d6a6414308a67644eefc7b98c7 publicURL: https://mycloud.org:13776/v1/6d2847d6a6414308a67644eefc7b98c7 region: regionOne volumev2: - adminURL: http://172.16.0.9:8776/v2/6d2847d6a6414308a67644eefc7b98c7 id: <KEY> internalURL: http://172.16.0.9:8776/v2/6d2847d6a6414308a67644eefc7b98c7 publicURL: https://mycloud.org:13776/v2/6d2847d6a6414308a67644eefc7b98c7 region: regionOne volumev3: - adminURL: http://172.16.0.9:8776/v3/6d2847d6a6414308a67644eefc7b98c7 id: <KEY> internalURL: http://172.16.0.9:8776/v3/6d2847d6a6414308a67644eefc7b98c7 publicURL: https://mycloud.org:13776/v3/6d2847d6a6414308a67644eefc7b98c7 region: regionOne ''' def main(): ''' Main module function ''' module = AnsibleModule(argument_spec={}, supports_check_mode=True) if not HAS_SHADE: module.fail_json(msg='shade is required for this module') try: cloud = shade.openstack_cloud() # pylint: disable=broad-except except Exception: module.fail_json(msg='Failed to connect to the cloud') try: service_catalog = cloud.cloud_config.get_service_catalog() # pylint: disable=broad-except except Exception: module.fail_json(msg='Failed to retrieve the service catalog') try: endpoints = service_catalog.get_endpoints() # pylint: disable=broad-except except Exception: module.fail_json(msg='Failed to retrieve the service catalog ' 'endpoints') module.exit_json( changed=False, ansible_facts={'openstack_service_catalog': endpoints}) if __name__ == '__main__': main()
trainModel.py
NYUMedML/DeepEHR
242
40023
<reponame>NYUMedML/DeepEHR<filename>trainModel.py import torch # import torch.nn as nn # import torch.nn.functional as F import numpy as np from torch.autograd import Variable # import torchwordemb import torch.optim as optim import sys import time import gc import pickle import os import models2 as m import enc_model as m3 # import pandas as pd # from util import * import torch.utils.data # from sklearn.metrics import auc # from sklearn import metrics ''' General Training Script for PyTorch Models -- Modified to accommodate more flexible LSTM structure ''' if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument("--nClassGender", type = int, default=2) # Number of classes in gender variable parser.add_argument("--nClassRace", type=int, default=25) # Number of classes in race variable parser.add_argument("--nClassEthnic", type=int, default=29) # Number of classes in ethnic variable parser.add_argument("--modelName", default="Enc_CNN_LSTM") parser.add_argument("--dimLSTM", type=int, default=128) # LSTM dimension parser.add_argument("--dimLSTM_num", type=int, default=128) # LSTM dimension for numericals parser.add_argument("--p_dropOut", type=float, default=.5) parser.add_argument("--batch_norm", action='store_true') parser.add_argument("--bidir", action='store_true') parser.add_argument("--train_embed", action='store_true') parser.add_argument("--rnnType", default="GRU") parser.add_argument("--enc_len", type=int, default=20) parser.add_argument("--doc_len", type=int, default=1000) parser.add_argument("--n_iter", type=int, default=10) parser.add_argument("--lr", type=float, default=0.001) parser.add_argument("--lr_decay3", type=int, default=10) # Decay learning rate every lr_decay3 epochs parser.add_argument("--i", type=int, default=1) # Index of the element in the parameter set to be tuned parser.add_argument("--batchSizePos", type=int, default=16) parser.add_argument("--batchSizeNeg", type=int, default=0) parser.add_argument("--num_workers", type=int, default=4) parser.add_argument("--flg_cuda", action='store_true') parser.add_argument("--emb_dim", type=int, default=300) # Embedding dimension parser.add_argument("--logInterval", type=int, default=1) # Print test accuracy every n epochs parser.add_argument("--flgSave", action='store_true') parser.add_argument("--savePath", default='./') parser.add_argument("--filters", type=int, default=128) parser.add_argument("--nK", type=int, default=3) # Number of kernels parser.add_argument("--randSeed", type=int, default=42) parser.add_argument("--posThres", type=float, default=0.5) parser.add_argument("--inputPath", default="/ifs/data/razavianlab/encSeq_input/dim50/") parser.add_argument("--alpha_L1", type=float, default=0.0) parser.add_argument("--randn_std", type=float, default=None) parser.add_argument("--flgBias", action='store_true') parser.add_argument("--flg_gradClip", action='store_true') parser.add_argument("--flg_AllLSTM", action='store_true') parser.add_argument("--flg_useNum", action='store_true') args = parser.parse_args() torch.manual_seed(args.randSeed) # For reproducible results if args.flgSave: if not os.path.isdir(args.savePath): os.mkdir(args.savePath) # args.d = ['chf', 'kf', 'str'][args.i -1] # lsAlpha = [0.0, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1] # args.alpha_L1 = lsAlpha[args.i -1] if args.flg_AllLSTM: dimLSTM = args.dimLSTM * args.enc_len else: dimLSTM = args.dimLSTM lsDim = [[dimLSTM, 256, 3], [dimLSTM, 512, 256, 3]][args.i-1] print('General parameters: ', args) unique = False print("Loading Data") # if args.modelName in ['Enc_SumLSTM', 'Enc_CNN_LSTM']: embedding = pickle.load(open(args.inputPath + 'embedding.p', 'rb')) embedding = torch.from_numpy(embedding).float() if args.modelName in ['Enc_SumLSTM', 'Enc_CNN_LSTM', 'DemoLab', 'Enc_CNN_LSTM_DemoLab']: trainset_pos = m3.encDataset(args.inputPath, 'dfTrainPos.json', args.nClassGender, args.nClassRace, args.nClassEthnic, transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len)) trainset_neg = m3.encDataset(args.inputPath, 'dfTrainNeg.json', args.nClassGender, args.nClassRace, args.nClassEthnic, transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len)) testset = m3.encDataset(args.inputPath, 'dfDev.json', args.nClassGender, args.nClassRace, args.nClassEthnic, transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len)) else: trainset_pos = m3.staticDataset(args.inputPath, 'dfTrainPos.json', args.nClassGender, args.nClassRace, args.nClassEthnic, transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len)) trainset_neg = m3.staticDataset(args.inputPath, 'dfTrainNeg.json', args.nClassGender, args.nClassRace, args.nClassEthnic, transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len)) testset = m3.staticDataset(args.inputPath, 'dfDev.json', args.nClassGender, args.nClassRace, args.nClassEthnic, transform=m3.padOrTruncateToTensor(args.enc_len, args.doc_len)) print('To Loader') if args.flg_cuda: train_loader_pos = torch.utils.data.DataLoader(trainset_pos, batch_size=args.batchSizePos, shuffle=True, pin_memory=True) test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batchSizePos + args.batchSizeNeg, shuffle=False, pin_memory=True) if trainset_neg is not None: train_loader_neg = torch.utils.data.DataLoader(trainset_neg, batch_size=args.batchSizeNeg, shuffle=True, pin_memory=True) else: train_loader_pos = torch.utils.data.DataLoader(trainset_pos, batch_size=args.batchSizePos, shuffle=True, pin_memory=False) test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batchSizePos + args.batchSizeNeg, shuffle=False, pin_memory=False) if trainset_neg is not None: train_loader_neg = torch.utils.data.DataLoader(trainset_neg, batch_size=args.batchSizeNeg, shuffle=True, pin_memory=False) model_paras = {'enc_len': args.enc_len, 'doc_len': args.doc_len, 'flg_updateEmb': args.train_embed, 'flg_bn': args.batch_norm, 'rnnType': args.rnnType, 'bidir': args.bidir, 'p_dropOut': args.p_dropOut, 'lsDim': lsDim, 'dimLSTM': args.dimLSTM, 'flg_cuda': args.flg_cuda, 'filters': args.filters, 'Ks': [i + 1 for i in range(args.nK)], 'randn_std': args.randn_std, 'lastRelu': True, 'flgBias': args.flgBias, 'flg_AllLSTM': args.flg_AllLSTM, 'flg_useNum': args.flg_useNum, 'dimLSTM_num': args.dimLSTM_num} print('Model parameters: ', model_paras) if args.modelName in ['Enc_SumLSTM', 'Enc_CNN_LSTM', 'DemoLab', 'Enc_CNN_LSTM_DemoLab']: model = getattr(m3, args.modelName)(model_paras, embedding) else: from argparse import Namespace static_model_args = Namespace() static_model_args.dropout = args.p_dropOut static_model_args.batch_norm = args.batch_norm static_model_args.kernels = args.nK static_model_args.bidir = args.bidir static_model_args.train_embed = args.train_embed static_model_args.max_len = 2000 static_model_args.n_out = 3 static_model_args.h = args.filters static_model_args.n_demo_feat = 208 model = getattr(m, args.modelName)(embedding , static_model_args) if args.flg_cuda: model = model.cuda() print(model) opt = optim.Adam(model.params, lr=args.lr) print("Beginning Training") train_paras = {'n_iter': args.n_iter, 'log_interval': [args.logInterval, 1000], 'flg_cuda': args.flg_cuda, 'lr_decay': [args.lr, 0.9, args.lr_decay3, 1e-5], 'flgSave': args.flgSave, 'savePath': args.savePath, 'posThres': args.posThres, 'alpha_L1': args.alpha_L1, 'flg_gradClip': args.flg_gradClip} m = m3.trainModel(train_paras, train_loader_pos, test_loader, model, opt, train_loader_neg=train_loader_neg) _, lsTrainAccuracy, lsTestAccuracy = m.run() testAuc = [np.mean(x[1]) for x in lsTestAccuracy] print('Test AUC max: %.3f' % (max(testAuc))) print('Test AUC final: %.3f' % (testAuc[-1])) stopIdx = min(testAuc.index(max(testAuc)) * args.logInterval, args.n_iter) print('Stop at: %d' % (stopIdx))
packages/dcos-integration-test/extra/test_applications.py
timgates42/dcos
2,577
40040
import logging import uuid from typing import Any import pytest import requests import test_helpers from dcos_test_utils import marathon from dcos_test_utils.dcos_api import DcosApiSession __maintainer__ = 'kensipe' __contact__ = '<EMAIL>' log = logging.getLogger(__name__) def deploy_test_app_and_check(dcos_api_session: DcosApiSession, app: dict, test_uuid: str) -> None: """This method deploys the test server app and then pings its /operating_environment endpoint to retrieve the container user running the task. In a mesos container, this will be the marathon user In a docker container this user comes from the USER setting from the app's Dockerfile, which, for the test application is the default, root """ expanded_config = test_helpers.get_expanded_config() default_os_user = 'nobody' if expanded_config.get('security') == 'strict' else 'root' if 'container' in app and app['container']['type'] == 'DOCKER': marathon_user = 'root' else: marathon_user = app.get('user', default_os_user) with dcos_api_session.marathon.deploy_and_cleanup(app): service_points = dcos_api_session.marathon.get_app_service_endpoints(app['id']) r = requests.get('http://{}:{}/test_uuid'.format(service_points[0].host, service_points[0].port)) if r.status_code != 200: msg = "Test server replied with non-200 reply: '{0} {1}. " msg += "Detailed explanation of the problem: {2}" raise Exception(msg.format(r.status_code, r.reason, r.text)) r_data = r.json() assert r_data['test_uuid'] == test_uuid r = requests.get('http://{}:{}/operating_environment'.format( service_points[0].host, service_points[0].port)) if r.status_code != 200: msg = "Test server replied with non-200 reply: '{0} {1}. " msg += "Detailed explanation of the problem: {2}" raise Exception(msg.format(r.status_code, r.reason, r.text)) json_uid = r.json()['uid'] if marathon_user == 'root': assert json_uid == 0, "App running as root should have uid 0." else: assert json_uid != 0, ("App running as {} should not have uid 0.".format(marathon_user)) @pytest.mark.first def test_docker_image_availablity() -> None: assert test_helpers.docker_pull_image("debian:stretch-slim"), "docker pull failed for image used in the test" def test_if_marathon_app_can_be_deployed(dcos_api_session: DcosApiSession) -> None: """Marathon app deployment integration test This test verifies that marathon app can be deployed, and that service points returned by Marathon indeed point to the app that was deployed. The application being deployed is a simple http server written in python. Please test_server.py for more details. This is done by assigning an unique UUID to each app and passing it to the docker container as an env variable. After successful deployment, the "GET /test_uuid" request is issued to the app. If the returned UUID matches the one assigned to test - test succeeds. """ deploy_test_app_and_check(dcos_api_session, *test_helpers.marathon_test_app()) def test_if_docker_app_can_be_deployed(dcos_api_session: DcosApiSession) -> None: """Marathon app inside docker deployment integration test. Verifies that a marathon app inside of a docker daemon container can be deployed and accessed as expected. """ deploy_test_app_and_check( dcos_api_session, *test_helpers.marathon_test_app( network=marathon.Network.BRIDGE, container_type=marathon.Container.DOCKER, container_port=9080)) @pytest.mark.parametrize('healthcheck', [ marathon.Healthcheck.HTTP, marathon.Healthcheck.MESOS_HTTP, ]) def test_if_ucr_app_can_be_deployed(dcos_api_session: DcosApiSession, healthcheck: Any) -> None: """Marathon app inside ucr deployment integration test. Verifies that a marathon docker app inside of a ucr container can be deployed and accessed as expected. """ deploy_test_app_and_check( dcos_api_session, *test_helpers.marathon_test_app( container_type=marathon.Container.MESOS, healthcheck_protocol=healthcheck)) def test_if_marathon_app_can_be_deployed_with_mesos_containerizer(dcos_api_session: DcosApiSession) -> None: """Marathon app deployment integration test using the Mesos Containerizer This test verifies that a Marathon app using the Mesos containerizer with a Docker image can be deployed. This is done by assigning an unique UUID to each app and passing it to the docker container as an env variable. After successfull deployment, the "GET /test_uuid" request is issued to the app. If the returned UUID matches the one assigned to test - test succeds. When port mapping is available (MESOS-4777), this test should be updated to reflect that. """ deploy_test_app_and_check( dcos_api_session, *test_helpers.marathon_test_app(container_type=marathon.Container.MESOS)) def test_if_marathon_app_can_be_deployed_with_nfs_csi_volume(dcos_api_session: DcosApiSession) -> None: """Marathon app deployment integration test using an NFS CSI volume. This test verifies that a Marathon app can be deployed which attaches to an NFS volume provided by the NFS CSI plugin. In order to accomplish this, we must first set up an NFS share on one agent. """ # We will run an NFS server on one agent and an app on another agent to # verify CSI volume functionality. if len(dcos_api_session.slaves) < 2: pytest.skip("CSI Volume Tests require a minimum of two agents.") expanded_config = test_helpers.get_expanded_config() if expanded_config.get('security') == 'strict': pytest.skip('Cannot setup NFS server as root user with EE strict mode enabled') test_uuid = uuid.uuid4().hex hosts = dcos_api_session.slaves[0], dcos_api_session.slaves[1] # A helper to run a Metronome job as root to clean up the NFS share on an agent. # We define this here so that it can be used during error handling. def cleanup_nfs() -> None: cleanup_command = """ sudo systemctl stop nfs-server && \ echo '' | sudo tee /etc/exports && \ sudo systemctl restart nfs-utils && \ sudo exportfs -arv && \ sudo rm -rf /var/lib/dcos-nfs-shares/test-volume-001 """ cleanup_job = { 'description': 'Clean up NFS share', 'id': 'nfs-share-cleanup-{}'.format(test_uuid), 'run': { 'cmd': cleanup_command, 'cpus': 0.5, 'mem': 256, 'disk': 32, 'user': 'root', 'restart': {'policy': 'ON_FAILURE'}, 'placement': { 'constraints': [{ 'attribute': '@hostname', 'operator': 'LIKE', 'value': hosts[0] }] } } } dcos_api_session.metronome_one_off(cleanup_job) # Run a Metronome job as root to set up the NFS share on an agent. command = """sudo mkdir -p /var/lib/dcos-nfs-shares/test-volume-001 && \ sudo chown -R nobody: /var/lib/dcos-nfs-shares/test-volume-001 && \ sudo chmod 777 /var/lib/dcos-nfs-shares/test-volume-001 && \ echo '/var/lib/dcos-nfs-shares/test-volume-001 *(rw,sync)' | sudo tee /etc/exports && \ sudo systemctl restart nfs-utils && \ sudo exportfs -arv && \ sudo systemctl start nfs-server && \ sudo systemctl enable nfs-server """ setup_job = { 'description': 'Set up NFS share', 'id': 'nfs-share-setup-{}'.format(test_uuid), 'run': { 'cmd': command, 'cpus': 0.5, 'mem': 256, 'disk': 32, 'user': 'root', 'restart': {'policy': 'ON_FAILURE'}, 'placement': { 'constraints': [{ 'attribute': '@hostname', 'operator': 'LIKE', 'value': hosts[0] }] } } } dcos_api_session.metronome_one_off(setup_job) # Create an app which writes to the NFS volume. app = { 'id': 'csi-nfs-write-app-{}'.format(test_uuid), 'instances': 1, 'cpus': 0.5, 'mem': 256, 'cmd': 'echo some-stuff > test-volume-dir/output && sleep 999999', 'user': 'root', 'container': { 'type': 'MESOS', 'volumes': [{ 'mode': 'rw', 'containerPath': 'test-volume-dir', 'external': { 'provider': 'csi', 'name': 'test-volume-001', 'options': { 'pluginName': 'nfs.csi.k8s.io', 'capability': { 'accessType': 'mount', 'accessMode': 'MULTI_NODE_MULTI_WRITER', 'fsType': 'nfs' }, 'volumeContext': { 'server': hosts[0], 'share': '/var/lib/dcos-nfs-shares/test-volume-001' } } } }] }, 'constraints': [ [ 'hostname', 'LIKE', hosts[1] ] ], 'healthChecks': [{ 'protocol': 'COMMAND', 'command': {'value': 'test `cat test-volume-dir/output` = some-stuff'}, 'gracePeriodSeconds': 5, 'intervalSeconds': 10, 'timeoutSeconds': 10, 'maxConsecutiveFailures': 3 }] } try: with dcos_api_session.marathon.deploy_and_cleanup(app): # Trivial app if it deploys, there is nothing else to check pass except Exception as error: raise(error) finally: cleanup_nfs() def test_if_marathon_pods_can_be_deployed_with_mesos_containerizer(dcos_api_session: DcosApiSession) -> None: """Marathon pods deployment integration test using the Mesos Containerizer This test verifies that a Marathon pods can be deployed. """ test_uuid = uuid.uuid4().hex # create pod with trivial apps that function as long running processes pod_definition = { 'id': '/integration-test-pods-{}'.format(test_uuid), 'scaling': {'kind': 'fixed', 'instances': 1}, 'environment': {'PING': 'PONG'}, 'containers': [ { 'name': 'ct1', 'resources': {'cpus': 0.1, 'mem': 32}, 'image': {'kind': 'DOCKER', 'id': 'debian:stretch-slim'}, 'exec': {'command': {'shell': 'touch foo; while true; do sleep 1; done'}}, 'healthcheck': {'command': {'shell': 'test -f foo'}} }, { 'name': 'ct2', 'resources': {'cpus': 0.1, 'mem': 32}, 'exec': {'command': {'shell': 'echo $PING > foo; while true; do sleep 1; done'}}, 'healthcheck': {'command': {'shell': 'test $PING = `cat foo`'}} } ], 'networks': [{'mode': 'host'}] } with dcos_api_session.marathon.deploy_pod_and_cleanup(pod_definition): # Trivial app if it deploys, there is nothing else to check pass
dataloader/stereo_kittilist15.py
ne3x7/VCN
148
40068
<reponame>ne3x7/VCN import torch.utils.data as data import pdb from PIL import Image import os import os.path import numpy as np IMG_EXTENSIONS = [ '.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', ] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def dataloader(filepath, typ = 'train'): left_fold = 'image_2/' right_fold = 'image_3/' disp_L = 'disp_occ_0/' disp_R = 'disp_occ_1/' image = [img for img in os.listdir(filepath+left_fold) if img.find('_10') > -1] image = sorted(image) imglist = [1,3,6,20,26,35,38,41,43,44,49,60,67,70,81,84,89,97,109,119,122,123,129,130,132,134,141,144,152,158,159,165,171,174,179,182, 184,186,187,196] if typ == 'train': train = [image[i] for i in range(200) if i not in imglist] elif typ == 'trainval': train = [image[i] for i in range(200)] val = [image[i] for i in imglist] left_train = [filepath+left_fold+img for img in train] right_train = [filepath+right_fold+img for img in train] disp_train_L = [filepath+disp_L+img for img in train] #disp_train_R = [filepath+disp_R+img for img in train] left_val = [filepath+left_fold+img for img in val] right_val = [filepath+right_fold+img for img in val] disp_val_L = [filepath+disp_L+img for img in val] #disp_val_R = [filepath+disp_R+img for img in val] return left_train, right_train, disp_train_L, left_val, right_val, disp_val_L
src/textacy/extract/keyterms/__init__.py
austinjp/textacy
1,929
40086
""" Keyterms -------- :mod:`textacy.extract.keyterms`: Extract keyterms from documents using a variety of rule-based algorithms. """ from .scake import scake from .sgrank import sgrank from .textrank import textrank from .yake import yake
tests/settings/imagemagick.py
apahomov/sorl-thumbnail
630
40095
<filename>tests/settings/imagemagick.py from .default import * THUMBNAIL_ENGINE = 'sorl.thumbnail.engines.convert_engine.Engine' THUMBNAIL_CONVERT = 'convert'
app/oauth_office365/tests.py
ricardojba/PwnAuth
304
40110
<filename>app/oauth_office365/tests.py<gh_stars>100-1000 from django.test import TestCase # Create your tests here. # TODO add test to validate application scopes are enforced when creating # TODO add test to validate that application redirect and refresh URL match the site's base url # TODO add unicode handling tests # TODO test large attachments # TODO basic tests for getting and deleting messages, attachments
kolibri/core/content/zip_wsgi.py
MBKayro/kolibri
545
40151
<filename>kolibri/core/content/zip_wsgi.py from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import logging import mimetypes import os import re import time import zipfile import html5lib from cheroot import wsgi from django.core.cache import cache from django.core.handlers.wsgi import WSGIRequest from django.http import HttpResponse from django.http import HttpResponseNotAllowed from django.http import HttpResponseNotFound from django.http import HttpResponseNotModified from django.http.response import FileResponse from django.http.response import StreamingHttpResponse from django.utils.cache import patch_response_headers from django.utils.encoding import force_str from django.utils.http import http_date from kolibri.core.content.errors import InvalidStorageFilenameError from kolibri.core.content.utils.paths import get_content_storage_file_path from kolibri.core.content.utils.paths import get_zip_content_base_path logger = logging.getLogger(__name__) def add_security_headers(request, response): response["Access-Control-Allow-Origin"] = "*" response["Access-Control-Allow-Methods"] = "GET, OPTIONS" requested_headers = request.META.get("HTTP_ACCESS_CONTROL_REQUEST_HEADERS", "") if requested_headers: response["Access-Control-Allow-Headers"] = requested_headers # restrict CSP to only allow resources to be loaded from self, to prevent info leakage # (e.g. via passing user info out as GET parameters to an attacker's server), or inadvertent data usage response[ "Content-Security-Policy" ] = "default-src 'self' 'unsafe-inline' 'unsafe-eval' data: blob:" return response def django_response_to_wsgi(response, environ, start_response): status = "%d %s" % (response.status_code, response.reason_phrase) response_headers = [(str(k), str(v)) for k, v in response.items()] for c in response.cookies.values(): response_headers.append((str("Set-Cookie"), str(c.output(header="")))) start_response(force_str(status), response_headers) if getattr(response, "file_to_stream", None) is not None and environ.get( "wsgi.file_wrapper" ): response = environ["wsgi.file_wrapper"](response.file_to_stream) return response allowed_methods = set(["GET", "OPTIONS"]) # This is also included in packages/hashi/src/h5p.html # ideally, we should never ever update this code # but if we do we should update it there. INITIALIZE_HASHI_FROM_IFRAME = "if (window.parent && window.parent.hashi) {try {window.parent.hashi.initializeIframe(window);} catch (e) {}}" def parse_html(content): try: document = html5lib.parse(content, namespaceHTMLElements=False) if not document: # Could not parse return content # Because html5lib parses like a browser, it will # always create head and body tags if they are missing. head = document.find("head") # Use the makeelement method of the head tag here to ensure that we use the same # Element class for both. Depending on the system and python version we are on, # we may be using the C implementation or the pure python and a mismatch will cause an error. script_tag = head.makeelement("script", {"type": "text/javascript"}) script_tag.text = INITIALIZE_HASHI_FROM_IFRAME head.insert(0, script_tag) # Currently, html5lib strips the doctype, but it's important for correct rendering, so check the original # content for the doctype and, if found, prepend it to the content serialized by html5lib doctype = None try: # Now parse the content as a dom tree instead, so that we capture # any doctype node as a dom node that we can read. tree_builder_dom = html5lib.treebuilders.getTreeBuilder("dom") parser_dom = html5lib.HTMLParser( tree_builder_dom, namespaceHTMLElements=False ) tree = parser_dom.parse(content) # By HTML Spec if doctype is included, it must be the first thing # in the document, so it has to be the first child node of the document doctype_node = tree.childNodes[0] # Check that this node is in fact a doctype node if doctype_node.nodeType == doctype_node.DOCUMENT_TYPE_NODE: # render to a string by calling the toxml method # toxml uses single quotes by default, replace with "" doctype = doctype_node.toxml().replace("'", '"') except Exception as e: logger.warn("Error in HTML5 parsing to determine doctype {}".format(e)) html = html5lib.serialize( document, quote_attr_values="always", omit_optional_tags=False, minimize_boolean_attributes=False, use_trailing_solidus=True, space_before_trailing_solidus=False, ) if doctype: html = doctype + html return html except html5lib.html5parser.ParseError: return content def get_embedded_file(zipped_path, zipped_filename, embedded_filepath): with zipfile.ZipFile(zipped_path) as zf: # if no path, or a directory, is being referenced, look for an index.html file if not embedded_filepath or embedded_filepath.endswith("/"): embedded_filepath += "index.html" # get the details about the embedded file, and ensure it exists try: info = zf.getinfo(embedded_filepath) except KeyError: return HttpResponseNotFound( '"{}" does not exist inside "{}"'.format( embedded_filepath, zipped_filename ) ) # file size file_size = 0 # try to guess the MIME type of the embedded file being referenced content_type = ( mimetypes.guess_type(embedded_filepath)[0] or "application/octet-stream" ) if embedded_filepath.endswith("htm") or embedded_filepath.endswith("html"): content = zf.open(info).read() html = parse_html(content) response = HttpResponse(html, content_type=content_type) file_size = len(response.content) else: # generate a streaming response object, pulling data from within the zip file response = FileResponse(zf.open(info), content_type=content_type) file_size = info.file_size # set the content-length header to the size of the embedded file if file_size: response["Content-Length"] = file_size return response path_regex = re.compile("/(?P<zipped_filename>[^/]+)/(?P<embedded_filepath>.*)") YEAR_IN_SECONDS = 60 * 60 * 24 * 365 def _zip_content_from_request(request): # noqa: C901 if request.method not in allowed_methods: return HttpResponseNotAllowed(allowed_methods) match = path_regex.match(request.path_info) if match is None: return HttpResponseNotFound("Path not found") if request.method == "OPTIONS": return HttpResponse() zipped_filename, embedded_filepath = match.groups() try: # calculate the local file path to the zip file zipped_path = get_content_storage_file_path(zipped_filename) except InvalidStorageFilenameError: return HttpResponseNotFound( '"%(filename)s" is not a valid file name' % {"filename": zipped_filename} ) # if the zipfile does not exist on disk, return a 404 if not os.path.exists(zipped_path): return HttpResponseNotFound( '"%(filename)s" is not a valid zip file' % {"filename": zipped_filename} ) # Sometimes due to URL concatenation, we get URLs with double-slashes in them, like //path/to/file.html. # the zipped_filename and embedded_filepath are defined by the regex capturing groups in the URL defined # in urls.py in the same folder as this file: # r"^zipcontent/(?P<zipped_filename>[^/]+)/(?P<embedded_filepath>.*)" # If the embedded_filepath contains a leading slash because of an input URL like: # /zipcontent/filename.zip//file.html # then the embedded_filepath will have a value of "/file.html" # we detect this leading slash in embedded_filepath and remove it. if embedded_filepath.startswith("/"): embedded_filepath = embedded_filepath[1:] # Any double-slashes later in the URL will be present as double-slashes, such as: # /zipcontent/filename.zip/path//file.html # giving an embedded_filepath value of "path//file.html" # Normalize the path by converting double-slashes occurring later in the path to a single slash. # This would change our example embedded_filepath to "path/file.html" which will resolve properly. embedded_filepath = embedded_filepath.replace("//", "/") # if client has a cached version, use that (we can safely assume nothing has changed, due to MD5) if request.META.get("HTTP_IF_MODIFIED_SINCE"): return HttpResponseNotModified() CACHE_KEY = "ZIPCONTENT_VIEW_RESPONSE_{}/{}".format( zipped_filename, embedded_filepath ) cached_response = cache.get(CACHE_KEY) if cached_response is not None: return cached_response response = get_embedded_file(zipped_path, zipped_filename, embedded_filepath) # ensure the browser knows not to try byte-range requests, as we don't support them here response["Accept-Ranges"] = "none" response["Last-Modified"] = http_date(time.time()) patch_response_headers(response, cache_timeout=YEAR_IN_SECONDS) if not isinstance(response, StreamingHttpResponse): cache.set(CACHE_KEY, response, YEAR_IN_SECONDS) return response def generate_zip_content_response(environ): request = WSGIRequest(environ) response = _zip_content_from_request(request) add_security_headers(request, response) return response def zip_content_view(environ, start_response): """ Handles GET requests and serves a static file from within the zip file. """ response = generate_zip_content_response(environ) return django_response_to_wsgi(response, environ, start_response) def get_application(): path_map = { get_zip_content_base_path(): zip_content_view, } return wsgi.PathInfoDispatcher(path_map)
mamonsu/tools/report/format.py
sgrinko/mamonsu
188
40176
<filename>mamonsu/tools/report/format.py # -*- coding: utf-8 -*- import re import sys import mamonsu.lib.platform as platform class color(object): mapping = { 'BOLD': '\033[0;0m\033[1;1m', 'RED': '\033[1;31m', 'GRAY': '\033[1;30m', 'PURPLE': '\033[1;35m', 'BLUE': '\033[1;34m', 'END': '\033[1;m' } def __init__(self): self.color = sys.stdout.isatty() def disable(self): self.color = False def __getattr__(self, name): if self.color: return self.mapping[name] else: return '' TermColor = color() # int (bytes) => str (human readable) def humansize_bytes(nbytes): fmt = '{0:>6} {1}' if not isinstance(nbytes, platform.INTEGER_TYPES): return 'ERROR' if nbytes == 0: return fmt.format(0, 'B') i, suffixes, = 0, ['B', 'KB', 'MB', 'GB', 'TB', 'PB'] while nbytes >= 1024 and i < len(suffixes) - 1: nbytes /= 1024. i += 1 f = ('%.2f' % nbytes).rstrip('0').rstrip('.') return fmt.format(f, suffixes[i]) # str (some formates) => str (human readable) def humansize(value): m = re.search('(\d+) (\S+)', value) if m is None: return value val, suff = m.group(1), m.group(2) val, suff = int(val), suff.upper() if suff == 'S': return value if suff == 'MS': return value if suff == 'B': return humansize_bytes(val) if suff == 'KB': return humansize_bytes(val * 1024) if suff == '4KB': return humansize_bytes(val * 1024 * 4) if suff == '8KB': return humansize_bytes(val * 1024 * 8) if suff == '16KB': return humansize_bytes(val * 1024 * 16) if suff == 'MB': return humansize_bytes(val * 1024 * 1024) if suff == 'GB': return humansize_bytes(val * 1024 * 1024 * 1024) if suff == 'TB': return humansize_bytes(val * 1024 * 1024 * 1024 * 1024) return value def header_h1(info): return "\n{0}{1}{2}{3}\n".format( TermColor.BOLD, TermColor.RED, info.upper(), TermColor.END) def key_val_h1(key, val, spaces=12): fmt = " {0}{1}{2:" + str(spaces) + "}{3}: {4}\n" return fmt.format( TermColor.BOLD, TermColor.PURPLE, key, TermColor.END, val) def header_h2(info): return " {0}{1}{2}{3}\n".format( TermColor.BOLD, TermColor.PURPLE, info, TermColor.END) def key_val_h2(key, val, delim=': '): return " {0}{1}{2:4}{3}{4}{5}\n".format( TermColor.BOLD, TermColor.BLUE, key, TermColor.END, delim, val) def topline_h1(arr=None, delim=" \t"): if arr is None: arr = [] result = "{0}{1}".format(TermColor.BOLD, TermColor.BLUE) for x in arr: result = "{0}{1}{2}".format(result, delim, x) return "{0}{1}\n".format(result, TermColor.END) def format_raw_h1(raw=""): result = [] for i, line in enumerate(raw.split("\n")): if i == 0: result.append(" {0}{1}{2}{3}".format( TermColor.BOLD, TermColor.BLUE, line, TermColor.END)) else: result.append(" {0}".format(line)) return "\n".join(result) + "\n"
contrib/report_builders/__init__.py
berndonline/flan
3,711
40182
<gh_stars>1000+ from .report_builder import ReportBuilder from .latex_report_builder import LatexReportBuilder from .markdown_report_builder import MarkdownReportBuilder from .json_report_builder import JsonReportBuilder from .html_report_builder import JinjaHtmlReportBuilder
hnn/src/apps/training_utils.py
anlewy/mt-dnn
2,075
40267
# # Author: <EMAIL> # Date: 01/25/2019 # """ Utils for training and optimization """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import utils logger=utils.get_logger() import numpy as np import torch from bert.optimization import BertAdam def zero_grad(model, optimizer_param): model.zero_grad() for n, p in optimizer_param: p.grad = None def dump_parameter_names(model, path): with open(path, 'w', encoding='utf8') as fs: fs.write('{}\n'.format('\n'.join([n for n,p in model.named_parameters()]))) def copy_optimizer_params_to_model(named_params_model, named_params_optimizer): """ Utility function for optimize_on_cpu and 16-bits training. Copy the parameters optimized on CPU/RAM back to the model on GPU """ for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): if name_opti != name_model: logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) raise ValueError param_model.data.copy_(param_opti.data) def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False): """ Utility function for optimize_on_cpu and 16-bits training. Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model """ is_nan = False for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): if name_opti != name_model: logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) raise ValueError if param_model.grad is not None: norm = param_model.grad.norm() if test_nan and (torch.isnan(norm) or torch.isinf(norm)): is_nan = True if param_opti.grad is None: param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size())) param_opti.grad.data.copy_(param_model.grad.data) else: param_opti.grad = None return is_nan def create_optimizer(model, args, num_train_steps=None, init_spec=None, no_decay=['bias', 'LayerNorm.weight']): # Prepare optimizer if args.fp16: dcnt = torch.cuda.device_count() if args.no_even_grad: param_optimizer = [(n, param.detach().clone().type(torch.cuda.FloatTensor).\ requires_grad_()) for i,(n,param) in enumerate(model.named_parameters())] else: total_size = sum(np.prod(p.size()) for p in model.parameters()) quota={i:0 for i in range(dcnt)} quota[0]=total_size//(dcnt*2) param_optimizer = [] for i,(n, param) in enumerate(model.named_parameters()): ps = np.prod(param.size()) index = list(sorted(quota.items(), key=lambda x: x[1]))[0][0] quota[index]+=ps cp = param.clone().type(torch.cuda.FloatTensor).detach().to('cuda:{}'.format(index)).requires_grad_() param_optimizer += [(n, cp)] elif args.optimize_on_cpu: param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \ for n, param in model.named_parameters()] else: param_optimizer = [(n,p) for n,p in model.named_parameters()] group0=dict(params=[], weight_decay_rate=args.weight_decay, names=[]) group1=dict(params=[], weight_decay_rate=0.00, names=[]) for (n,p) in param_optimizer: if not any(nd in n for nd in no_decay): group0['params'].append(p) group0['names'].append(n) else: group1['params'].append(p) group1['names'].append(n) optimizer_grouped_parameters = [group0, group1] t_total = num_train_steps optimizer=None if t_total: if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, b1=args.adam_beta1, b2=args.adam_beta2, v1=args.qhadam_v1, v2=args.qhadam_v2, lr_ends=args.lr_schedule_ends, e=args.epsilon, warmup=args.warmup_proportion if args.warmup_proportion<1 else args.warmup_proportion/t_total, t_total=t_total, schedule=args.lr_schedule, max_grad_norm=args.max_grad_norm, global_grad_norm=args.global_grad_norm, init_spec = init_spec, weight_decay_rate = args.weight_decay) return optimizer, param_optimizer, t_total
src/hobbits-plugins/analyzers/KaitaiStruct/ksy_py/hardware/mifare/mifare_classic.py
SabheeR/hobbits
304
40282
<gh_stars>100-1000 # This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild from pkg_resources import parse_version import kaitaistruct from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO import collections if parse_version(kaitaistruct.__version__) < parse_version('0.9'): raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__)) class MifareClassic(KaitaiStruct): """You can get a dump for testing by the link: https://github.com/zhovner/mfdread/raw/master/dump.mfd .. seealso:: Source - https://github.com/nfc-tools/libnfc https://www.nxp.com/docs/en/data-sheet/MF1S70YYX_V1.pdf """ SEQ_FIELDS = ["sectors"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['sectors']['start'] = self._io.pos() self._raw_sectors = [] self.sectors = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['sectors']: self._debug['sectors']['arr'] = [] self._debug['sectors']['arr'].append({'start': self._io.pos()}) self._raw_sectors.append(self._io.read_bytes((((4 if i >= 32 else 1) * 4) * 16))) _io__raw_sectors = KaitaiStream(BytesIO(self._raw_sectors[-1])) _t_sectors = MifareClassic.Sector(i == 0, _io__raw_sectors, self, self._root) _t_sectors._read() self.sectors.append(_t_sectors) self._debug['sectors']['arr'][len(self.sectors) - 1]['end'] = self._io.pos() i += 1 self._debug['sectors']['end'] = self._io.pos() class Key(KaitaiStruct): SEQ_FIELDS = ["key"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['key']['start'] = self._io.pos() self.key = self._io.read_bytes(6) self._debug['key']['end'] = self._io.pos() class Sector(KaitaiStruct): SEQ_FIELDS = ["manufacturer", "data_filler", "trailer"] def __init__(self, has_manufacturer, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.has_manufacturer = has_manufacturer self._debug = collections.defaultdict(dict) def _read(self): if self.has_manufacturer: self._debug['manufacturer']['start'] = self._io.pos() self.manufacturer = MifareClassic.Manufacturer(self._io, self, self._root) self.manufacturer._read() self._debug['manufacturer']['end'] = self._io.pos() self._debug['data_filler']['start'] = self._io.pos() self._raw_data_filler = self._io.read_bytes(((self._io.size() - self._io.pos()) - 16)) _io__raw_data_filler = KaitaiStream(BytesIO(self._raw_data_filler)) self.data_filler = MifareClassic.Sector.Filler(_io__raw_data_filler, self, self._root) self.data_filler._read() self._debug['data_filler']['end'] = self._io.pos() self._debug['trailer']['start'] = self._io.pos() self.trailer = MifareClassic.Trailer(self._io, self, self._root) self.trailer._read() self._debug['trailer']['end'] = self._io.pos() class Values(KaitaiStruct): SEQ_FIELDS = ["values"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['values']['start'] = self._io.pos() self.values = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['values']: self._debug['values']['arr'] = [] self._debug['values']['arr'].append({'start': self._io.pos()}) _t_values = MifareClassic.Sector.Values.ValueBlock(self._io, self, self._root) _t_values._read() self.values.append(_t_values) self._debug['values']['arr'][len(self.values) - 1]['end'] = self._io.pos() i += 1 self._debug['values']['end'] = self._io.pos() class ValueBlock(KaitaiStruct): SEQ_FIELDS = ["valuez", "addrz"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['valuez']['start'] = self._io.pos() self.valuez = [None] * (3) for i in range(3): if not 'arr' in self._debug['valuez']: self._debug['valuez']['arr'] = [] self._debug['valuez']['arr'].append({'start': self._io.pos()}) self.valuez[i] = self._io.read_u4le() self._debug['valuez']['arr'][i]['end'] = self._io.pos() self._debug['valuez']['end'] = self._io.pos() self._debug['addrz']['start'] = self._io.pos() self.addrz = [None] * (4) for i in range(4): if not 'arr' in self._debug['addrz']: self._debug['addrz']['arr'] = [] self._debug['addrz']['arr'].append({'start': self._io.pos()}) self.addrz[i] = self._io.read_u1() self._debug['addrz']['arr'][i]['end'] = self._io.pos() self._debug['addrz']['end'] = self._io.pos() @property def addr(self): if hasattr(self, '_m_addr'): return self._m_addr if hasattr(self, '_m_addr') else None if self.valid: self._m_addr = self.addrz[0] return self._m_addr if hasattr(self, '_m_addr') else None @property def addr_valid(self): if hasattr(self, '_m_addr_valid'): return self._m_addr_valid if hasattr(self, '_m_addr_valid') else None self._m_addr_valid = ((self.addrz[0] == ~(self.addrz[1])) and (self.addrz[0] == self.addrz[2]) and (self.addrz[1] == self.addrz[3])) return self._m_addr_valid if hasattr(self, '_m_addr_valid') else None @property def valid(self): if hasattr(self, '_m_valid'): return self._m_valid if hasattr(self, '_m_valid') else None self._m_valid = ((self.value_valid) and (self.addr_valid)) return self._m_valid if hasattr(self, '_m_valid') else None @property def value_valid(self): if hasattr(self, '_m_value_valid'): return self._m_value_valid if hasattr(self, '_m_value_valid') else None self._m_value_valid = ((self.valuez[0] == ~(self.valuez[1])) and (self.valuez[0] == self.valuez[2])) return self._m_value_valid if hasattr(self, '_m_value_valid') else None @property def value(self): if hasattr(self, '_m_value'): return self._m_value if hasattr(self, '_m_value') else None if self.valid: self._m_value = self.valuez[0] return self._m_value if hasattr(self, '_m_value') else None class Filler(KaitaiStruct): """only to create _io.""" SEQ_FIELDS = ["data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['data']['start'] = self._io.pos() self.data = self._io.read_bytes(self._io.size()) self._debug['data']['end'] = self._io.pos() @property def block_size(self): if hasattr(self, '_m_block_size'): return self._m_block_size if hasattr(self, '_m_block_size') else None self._m_block_size = 16 return self._m_block_size if hasattr(self, '_m_block_size') else None @property def data(self): if hasattr(self, '_m_data'): return self._m_data if hasattr(self, '_m_data') else None self._m_data = self.data_filler.data return self._m_data if hasattr(self, '_m_data') else None @property def blocks(self): if hasattr(self, '_m_blocks'): return self._m_blocks if hasattr(self, '_m_blocks') else None io = self.data_filler._io _pos = io.pos() io.seek(0) self._debug['_m_blocks']['start'] = io.pos() self._m_blocks = [] i = 0 while not io.is_eof(): if not 'arr' in self._debug['_m_blocks']: self._debug['_m_blocks']['arr'] = [] self._debug['_m_blocks']['arr'].append({'start': io.pos()}) self._m_blocks.append(io.read_bytes(self.block_size)) self._debug['_m_blocks']['arr'][len(self._m_blocks) - 1]['end'] = io.pos() i += 1 self._debug['_m_blocks']['end'] = io.pos() io.seek(_pos) return self._m_blocks if hasattr(self, '_m_blocks') else None @property def values(self): if hasattr(self, '_m_values'): return self._m_values if hasattr(self, '_m_values') else None io = self.data_filler._io _pos = io.pos() io.seek(0) self._debug['_m_values']['start'] = io.pos() self._m_values = MifareClassic.Sector.Values(io, self, self._root) self._m_values._read() self._debug['_m_values']['end'] = io.pos() io.seek(_pos) return self._m_values if hasattr(self, '_m_values') else None class Manufacturer(KaitaiStruct): SEQ_FIELDS = ["nuid", "bcc", "sak", "atqa", "manufacturer"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['nuid']['start'] = self._io.pos() self.nuid = self._io.read_u4le() self._debug['nuid']['end'] = self._io.pos() self._debug['bcc']['start'] = self._io.pos() self.bcc = self._io.read_u1() self._debug['bcc']['end'] = self._io.pos() self._debug['sak']['start'] = self._io.pos() self.sak = self._io.read_u1() self._debug['sak']['end'] = self._io.pos() self._debug['atqa']['start'] = self._io.pos() self.atqa = self._io.read_u2le() self._debug['atqa']['end'] = self._io.pos() self._debug['manufacturer']['start'] = self._io.pos() self.manufacturer = self._io.read_bytes(8) self._debug['manufacturer']['end'] = self._io.pos() class Trailer(KaitaiStruct): SEQ_FIELDS = ["key_a", "access_bits", "user_byte", "key_b"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['key_a']['start'] = self._io.pos() self.key_a = MifareClassic.Key(self._io, self, self._root) self.key_a._read() self._debug['key_a']['end'] = self._io.pos() self._debug['access_bits']['start'] = self._io.pos() self._raw_access_bits = self._io.read_bytes(3) _io__raw_access_bits = KaitaiStream(BytesIO(self._raw_access_bits)) self.access_bits = MifareClassic.Trailer.AccessConditions(_io__raw_access_bits, self, self._root) self.access_bits._read() self._debug['access_bits']['end'] = self._io.pos() self._debug['user_byte']['start'] = self._io.pos() self.user_byte = self._io.read_u1() self._debug['user_byte']['end'] = self._io.pos() self._debug['key_b']['start'] = self._io.pos() self.key_b = MifareClassic.Key(self._io, self, self._root) self.key_b._read() self._debug['key_b']['end'] = self._io.pos() class AccessConditions(KaitaiStruct): SEQ_FIELDS = ["raw_chunks"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['raw_chunks']['start'] = self._io.pos() self.raw_chunks = [None] * (self._parent.ac_count_of_chunks) for i in range(self._parent.ac_count_of_chunks): if not 'arr' in self._debug['raw_chunks']: self._debug['raw_chunks']['arr'] = [] self._debug['raw_chunks']['arr'].append({'start': self._io.pos()}) self.raw_chunks[i] = self._io.read_bits_int_be(4) self._debug['raw_chunks']['arr'][i]['end'] = self._io.pos() self._debug['raw_chunks']['end'] = self._io.pos() class TrailerAc(KaitaiStruct): SEQ_FIELDS = [] def __init__(self, ac, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.ac = ac self._debug = collections.defaultdict(dict) def _read(self): pass @property def can_read_key_b(self): """key A is required.""" if hasattr(self, '_m_can_read_key_b'): return self._m_can_read_key_b if hasattr(self, '_m_can_read_key_b') else None self._m_can_read_key_b = self.ac.inv_shift_val <= 2 return self._m_can_read_key_b if hasattr(self, '_m_can_read_key_b') else None @property def can_write_keys(self): if hasattr(self, '_m_can_write_keys'): return self._m_can_write_keys if hasattr(self, '_m_can_write_keys') else None self._m_can_write_keys = ((((self.ac.inv_shift_val + 1) % 3) != 0) and (self.ac.inv_shift_val < 6)) return self._m_can_write_keys if hasattr(self, '_m_can_write_keys') else None @property def can_write_access_bits(self): if hasattr(self, '_m_can_write_access_bits'): return self._m_can_write_access_bits if hasattr(self, '_m_can_write_access_bits') else None self._m_can_write_access_bits = self.ac.bits[2].b return self._m_can_write_access_bits if hasattr(self, '_m_can_write_access_bits') else None @property def key_b_controls_write(self): if hasattr(self, '_m_key_b_controls_write'): return self._m_key_b_controls_write if hasattr(self, '_m_key_b_controls_write') else None self._m_key_b_controls_write = not (self.can_read_key_b) return self._m_key_b_controls_write if hasattr(self, '_m_key_b_controls_write') else None class ChunkBitRemap(KaitaiStruct): SEQ_FIELDS = [] def __init__(self, bit_no, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.bit_no = bit_no self._debug = collections.defaultdict(dict) def _read(self): pass @property def shift_value(self): if hasattr(self, '_m_shift_value'): return self._m_shift_value if hasattr(self, '_m_shift_value') else None self._m_shift_value = (-1 if self.bit_no == 1 else 1) return self._m_shift_value if hasattr(self, '_m_shift_value') else None @property def chunk_no(self): if hasattr(self, '_m_chunk_no'): return self._m_chunk_no if hasattr(self, '_m_chunk_no') else None self._m_chunk_no = (((self.inv_chunk_no + self.shift_value) + self._parent._parent.ac_count_of_chunks) % self._parent._parent.ac_count_of_chunks) return self._m_chunk_no if hasattr(self, '_m_chunk_no') else None @property def inv_chunk_no(self): if hasattr(self, '_m_inv_chunk_no'): return self._m_inv_chunk_no if hasattr(self, '_m_inv_chunk_no') else None self._m_inv_chunk_no = (self.bit_no + self.shift_value) return self._m_inv_chunk_no if hasattr(self, '_m_inv_chunk_no') else None class DataAc(KaitaiStruct): SEQ_FIELDS = [] def __init__(self, ac, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.ac = ac self._debug = collections.defaultdict(dict) def _read(self): pass @property def read_key_a_required(self): if hasattr(self, '_m_read_key_a_required'): return self._m_read_key_a_required if hasattr(self, '_m_read_key_a_required') else None self._m_read_key_a_required = self.ac.val <= 4 return self._m_read_key_a_required if hasattr(self, '_m_read_key_a_required') else None @property def write_key_b_required(self): if hasattr(self, '_m_write_key_b_required'): return self._m_write_key_b_required if hasattr(self, '_m_write_key_b_required') else None self._m_write_key_b_required = (( ((not (self.read_key_a_required)) or (self.read_key_b_required)) ) and (not (self.ac.bits[0].b))) return self._m_write_key_b_required if hasattr(self, '_m_write_key_b_required') else None @property def write_key_a_required(self): if hasattr(self, '_m_write_key_a_required'): return self._m_write_key_a_required if hasattr(self, '_m_write_key_a_required') else None self._m_write_key_a_required = self.ac.val == 0 return self._m_write_key_a_required if hasattr(self, '_m_write_key_a_required') else None @property def read_key_b_required(self): if hasattr(self, '_m_read_key_b_required'): return self._m_read_key_b_required if hasattr(self, '_m_read_key_b_required') else None self._m_read_key_b_required = self.ac.val <= 6 return self._m_read_key_b_required if hasattr(self, '_m_read_key_b_required') else None @property def decrement_available(self): if hasattr(self, '_m_decrement_available'): return self._m_decrement_available if hasattr(self, '_m_decrement_available') else None self._m_decrement_available = (( ((self.ac.bits[1].b) or (not (self.ac.bits[0].b))) ) and (not (self.ac.bits[2].b))) return self._m_decrement_available if hasattr(self, '_m_decrement_available') else None @property def increment_available(self): if hasattr(self, '_m_increment_available'): return self._m_increment_available if hasattr(self, '_m_increment_available') else None self._m_increment_available = (( ((not (self.ac.bits[0].b)) and (not (self.read_key_a_required)) and (not (self.read_key_b_required))) ) or ( ((not (self.ac.bits[0].b)) and (self.read_key_a_required) and (self.read_key_b_required)) )) return self._m_increment_available if hasattr(self, '_m_increment_available') else None class Ac(KaitaiStruct): SEQ_FIELDS = [] def __init__(self, index, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.index = index self._debug = collections.defaultdict(dict) def _read(self): pass class AcBit(KaitaiStruct): SEQ_FIELDS = [] def __init__(self, i, chunk, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.i = i self.chunk = chunk self._debug = collections.defaultdict(dict) def _read(self): pass @property def n(self): if hasattr(self, '_m_n'): return self._m_n if hasattr(self, '_m_n') else None self._m_n = ((self.chunk >> self.i) & 1) return self._m_n if hasattr(self, '_m_n') else None @property def b(self): if hasattr(self, '_m_b'): return self._m_b if hasattr(self, '_m_b') else None self._m_b = self.n == 1 return self._m_b if hasattr(self, '_m_b') else None @property def bits(self): if hasattr(self, '_m_bits'): return self._m_bits if hasattr(self, '_m_bits') else None _pos = self._io.pos() self._io.seek(0) self._debug['_m_bits']['start'] = self._io.pos() self._m_bits = [None] * (self._parent._parent.ac_bits) for i in range(self._parent._parent.ac_bits): if not 'arr' in self._debug['_m_bits']: self._debug['_m_bits']['arr'] = [] self._debug['_m_bits']['arr'].append({'start': self._io.pos()}) _t__m_bits = MifareClassic.Trailer.AccessConditions.Ac.AcBit(self.index, self._parent.chunks[i].chunk, self._io, self, self._root) _t__m_bits._read() self._m_bits[i] = _t__m_bits self._debug['_m_bits']['arr'][i]['end'] = self._io.pos() self._debug['_m_bits']['end'] = self._io.pos() self._io.seek(_pos) return self._m_bits if hasattr(self, '_m_bits') else None @property def val(self): """c3 c2 c1.""" if hasattr(self, '_m_val'): return self._m_val if hasattr(self, '_m_val') else None self._m_val = (((self.bits[2].n << 2) | (self.bits[1].n << 1)) | self.bits[0].n) return self._m_val if hasattr(self, '_m_val') else None @property def inv_shift_val(self): if hasattr(self, '_m_inv_shift_val'): return self._m_inv_shift_val if hasattr(self, '_m_inv_shift_val') else None self._m_inv_shift_val = (((self.bits[0].n << 2) | (self.bits[1].n << 1)) | self.bits[2].n) return self._m_inv_shift_val if hasattr(self, '_m_inv_shift_val') else None class ValidChunk(KaitaiStruct): SEQ_FIELDS = [] def __init__(self, inv_chunk, chunk, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.inv_chunk = inv_chunk self.chunk = chunk self._debug = collections.defaultdict(dict) def _read(self): pass @property def valid(self): if hasattr(self, '_m_valid'): return self._m_valid if hasattr(self, '_m_valid') else None self._m_valid = (self.inv_chunk ^ self.chunk) == 15 return self._m_valid if hasattr(self, '_m_valid') else None @property def data_acs(self): if hasattr(self, '_m_data_acs'): return self._m_data_acs if hasattr(self, '_m_data_acs') else None _pos = self._io.pos() self._io.seek(0) self._debug['_m_data_acs']['start'] = self._io.pos() self._m_data_acs = [None] * ((self._parent.acs_in_sector - 1)) for i in range((self._parent.acs_in_sector - 1)): if not 'arr' in self._debug['_m_data_acs']: self._debug['_m_data_acs']['arr'] = [] self._debug['_m_data_acs']['arr'].append({'start': self._io.pos()}) _t__m_data_acs = MifareClassic.Trailer.AccessConditions.DataAc(self.acs_raw[i], self._io, self, self._root) _t__m_data_acs._read() self._m_data_acs[i] = _t__m_data_acs self._debug['_m_data_acs']['arr'][i]['end'] = self._io.pos() self._debug['_m_data_acs']['end'] = self._io.pos() self._io.seek(_pos) return self._m_data_acs if hasattr(self, '_m_data_acs') else None @property def remaps(self): if hasattr(self, '_m_remaps'): return self._m_remaps if hasattr(self, '_m_remaps') else None _pos = self._io.pos() self._io.seek(0) self._debug['_m_remaps']['start'] = self._io.pos() self._m_remaps = [None] * (self._parent.ac_bits) for i in range(self._parent.ac_bits): if not 'arr' in self._debug['_m_remaps']: self._debug['_m_remaps']['arr'] = [] self._debug['_m_remaps']['arr'].append({'start': self._io.pos()}) _t__m_remaps = MifareClassic.Trailer.AccessConditions.ChunkBitRemap(i, self._io, self, self._root) _t__m_remaps._read() self._m_remaps[i] = _t__m_remaps self._debug['_m_remaps']['arr'][i]['end'] = self._io.pos() self._debug['_m_remaps']['end'] = self._io.pos() self._io.seek(_pos) return self._m_remaps if hasattr(self, '_m_remaps') else None @property def acs_raw(self): if hasattr(self, '_m_acs_raw'): return self._m_acs_raw if hasattr(self, '_m_acs_raw') else None _pos = self._io.pos() self._io.seek(0) self._debug['_m_acs_raw']['start'] = self._io.pos() self._m_acs_raw = [None] * (self._parent.acs_in_sector) for i in range(self._parent.acs_in_sector): if not 'arr' in self._debug['_m_acs_raw']: self._debug['_m_acs_raw']['arr'] = [] self._debug['_m_acs_raw']['arr'].append({'start': self._io.pos()}) _t__m_acs_raw = MifareClassic.Trailer.AccessConditions.Ac(i, self._io, self, self._root) _t__m_acs_raw._read() self._m_acs_raw[i] = _t__m_acs_raw self._debug['_m_acs_raw']['arr'][i]['end'] = self._io.pos() self._debug['_m_acs_raw']['end'] = self._io.pos() self._io.seek(_pos) return self._m_acs_raw if hasattr(self, '_m_acs_raw') else None @property def trailer_ac(self): if hasattr(self, '_m_trailer_ac'): return self._m_trailer_ac if hasattr(self, '_m_trailer_ac') else None _pos = self._io.pos() self._io.seek(0) self._debug['_m_trailer_ac']['start'] = self._io.pos() self._m_trailer_ac = MifareClassic.Trailer.AccessConditions.TrailerAc(self.acs_raw[(self._parent.acs_in_sector - 1)], self._io, self, self._root) self._m_trailer_ac._read() self._debug['_m_trailer_ac']['end'] = self._io.pos() self._io.seek(_pos) return self._m_trailer_ac if hasattr(self, '_m_trailer_ac') else None @property def chunks(self): if hasattr(self, '_m_chunks'): return self._m_chunks if hasattr(self, '_m_chunks') else None _pos = self._io.pos() self._io.seek(0) self._debug['_m_chunks']['start'] = self._io.pos() self._m_chunks = [None] * (self._parent.ac_bits) for i in range(self._parent.ac_bits): if not 'arr' in self._debug['_m_chunks']: self._debug['_m_chunks']['arr'] = [] self._debug['_m_chunks']['arr'].append({'start': self._io.pos()}) _t__m_chunks = MifareClassic.Trailer.AccessConditions.ValidChunk(self.raw_chunks[self.remaps[i].inv_chunk_no], self.raw_chunks[self.remaps[i].chunk_no], self._io, self, self._root) _t__m_chunks._read() self._m_chunks[i] = _t__m_chunks self._debug['_m_chunks']['arr'][i]['end'] = self._io.pos() self._debug['_m_chunks']['end'] = self._io.pos() self._io.seek(_pos) return self._m_chunks if hasattr(self, '_m_chunks') else None @property def ac_bits(self): if hasattr(self, '_m_ac_bits'): return self._m_ac_bits if hasattr(self, '_m_ac_bits') else None self._m_ac_bits = 3 return self._m_ac_bits if hasattr(self, '_m_ac_bits') else None @property def acs_in_sector(self): if hasattr(self, '_m_acs_in_sector'): return self._m_acs_in_sector if hasattr(self, '_m_acs_in_sector') else None self._m_acs_in_sector = 4 return self._m_acs_in_sector if hasattr(self, '_m_acs_in_sector') else None @property def ac_count_of_chunks(self): if hasattr(self, '_m_ac_count_of_chunks'): return self._m_ac_count_of_chunks if hasattr(self, '_m_ac_count_of_chunks') else None self._m_ac_count_of_chunks = (self.ac_bits * 2) return self._m_ac_count_of_chunks if hasattr(self, '_m_ac_count_of_chunks') else None
leetcode/coding/editor.py
chishui/terminal-leetcode
254
40389
import os import subprocess from pathlib import Path from ..views.viewhelper import delay_refresh_detail from ..helper.config import config def edit(filepath: Path, loop): if isinstance(filepath, str): filepath = Path(filepath) editor = os.environ.get('EDITOR', 'vi').lower() # vim if editor == 'vi' or editor == 'vim': cmd = editor + ' ' + str(filepath) current_directory = Path.cwd() os.chdir(filepath.parent) if config.tmux_support and is_inside_tmux(): open_in_new_tmux_window(cmd) else: subprocess.call(cmd, shell=True) delay_refresh_detail(loop) os.chdir(current_directory) # sublime text elif editor == 'sublime': cmd = 'subl ' + str(filepath) subprocess.call(cmd, shell=True) def is_inside_tmux(): return 'TMUX' in os.environ def open_in_new_tmux_window(edit_cmd): # close other panes if exist, so that the detail pane is the only pane try: output = subprocess.check_output("tmux list-panes | wc -l", shell=True) num_pane = int(output) if num_pane > 1: subprocess.check_call("tmux kill-pane -a", shell=True) except Exception: pass cmd = "tmux split-window -h" os.system(cmd) cmd = "tmux send-keys -t right '%s' C-m" % edit_cmd os.system(cmd)
setup.py
nad2000/swagger_to_uml
190
40393
<gh_stars>100-1000 from setuptools import setup, find_packages requires = [ 'PyYAML==5.1' ] setup( name='swagger_to_uml', version='0.1', description='swagger_to_uml', classifiers=[ "Programming Language :: Python" ], author='<NAME>', author_email='<EMAIL>', license='MIT', url='http://nlohmann.me', keywords='swagger uml plantuml', packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=requires, tests_require=requires, scripts=['bin/swagger_to_uml'] )
multimedia/gui/lvgl/lvgl_multiple_screens.py
708yamaguchi/MaixPy_scripts
485
40402
<reponame>708yamaguchi/MaixPy_scripts<filename>multimedia/gui/lvgl/lvgl_multiple_screens.py #this demo shows how to create multiple screens, load and unload them properly without causing memory leak import lvgl as lv import lvgl_helper as lv_h import lcd import time from machine import Timer from machine import I2C from touch import Touch, TouchLow import KPU as kpu import gc config_touchscreen_support = True board_m1n = False lcd.init() TOUCH = None def read_cb(drv, ptr): data = lv.indev_data_t.cast(ptr) TOUCH.event() data.point = lv.point_t({'x': TOUCH.points[1][0], 'y': TOUCH.points[1][1]}) data.state = lv.INDEV_STATE.PR if TOUCH.state == 1 else lv.INDEV_STATE.REL return False if config_touchscreen_support: i2c = I2C(I2C.I2C0, freq=1000*1000, scl=24, sda=27) # 24 27) devices = i2c.scan() print("devs", devices) # devs 0 [16, 38, 52, 56] TouchLow.config(i2c) TOUCH = Touch(480, 320, 200) lv.init() disp_buf1 = lv.disp_buf_t() buf1_1 = bytearray(320*10) lv.disp_buf_init(disp_buf1,buf1_1, None, len(buf1_1)//4) disp_drv = lv.disp_drv_t() lv.disp_drv_init(disp_drv) disp_drv.buffer = disp_buf1 disp_drv.flush_cb = lv_h.flush if board_m1n: disp_drv.hor_res = 240 disp_drv.ver_res = 240 else: disp_drv.hor_res = 480 disp_drv.ver_res = 320 lv.disp_drv_register(disp_drv) if config_touchscreen_support: indev_drv = lv.indev_drv_t() lv.indev_drv_init(indev_drv) indev_drv.type = lv.INDEV_TYPE.POINTER indev_drv.read_cb = read_cb lv.indev_drv_register(indev_drv) lv.log_register_print_cb(lambda level,path,line,msg: print('%s(%d): %s' % (path, line, msg))) class UI: def __init__(self): self.scr1 = self.create_scr1() self.scr2 = self.create_scr2() def create_scr1(self): scr1 = lv.obj() btn1 = lv.btn(scr1) btn1.align(scr1, lv.ALIGN.CENTER, 0, 0) label1 = lv.label(btn1) label1.set_text("Button 1") label1.set_size(20,20) return scr1 def create_scr2(self): scr2 = lv.obj() btn2 = lv.btn(scr2) btn2.align(scr2, lv.ALIGN.CENTER, 0, 0) label2 = lv.label(btn2) label2.set_text("Button 2") label2.set_size(20,20) return scr2 ui = UI() kpu.memtest() def on_timer(timer): lv.tick_inc(5) lv.task_handler() gc.collect() timer = Timer(Timer.TIMER0, Timer.CHANNEL0, mode=Timer.MODE_PERIODIC, period=5, unit=Timer.UNIT_MS, callback=on_timer, arg=None) while True: tim = time.ticks_ms() while time.ticks_ms()-tim < 500: pass lv.scr_load(ui.scr1) kpu.memtest() tim = time.ticks_ms() while time.ticks_ms()-tim < 500: pass lv.scr_load(ui.scr2) kpu.memtest()
quantecon/markov/utilities.py
Smit-create/QuantEcon.py
1,462
40415
<reponame>Smit-create/QuantEcon.py<gh_stars>1000+ """ Utility routines for the markov submodule """ import numpy as np from numba import jit @jit(nopython=True, cache=True) def sa_indices(num_states, num_actions): """ Generate `s_indices` and `a_indices` for `DiscreteDP`, for the case where all the actions are feasible at every state. Parameters ---------- num_states : scalar(int) Number of states. num_actions : scalar(int) Number of actions. Returns ------- s_indices : ndarray(int, ndim=1) Array containing the state indices. a_indices : ndarray(int, ndim=1) Array containing the action indices. Examples -------- >>> s_indices, a_indices = qe.markov.sa_indices(4, 3) >>> s_indices array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]) >>> a_indices array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]) """ L = num_states * num_actions dtype = np.int_ s_indices = np.empty(L, dtype=dtype) a_indices = np.empty(L, dtype=dtype) i = 0 for s in range(num_states): for a in range(num_actions): s_indices[i] = s a_indices[i] = a i += 1 return s_indices, a_indices @jit(nopython=True, cache=True) def _fill_dense_Q(s_indices, a_indices, Q_in, Q_out): L = Q_in.shape[0] for i in range(L): Q_out[s_indices[i], a_indices[i], :] = Q_in[i, :] return Q_out @jit(nopython=True, cache=True) def _s_wise_max_argmax(a_indices, a_indptr, vals, out_max, out_argmax): n = len(out_max) for i in range(n): if a_indptr[i] != a_indptr[i+1]: m = a_indptr[i] for j in range(a_indptr[i]+1, a_indptr[i+1]): if vals[j] > vals[m]: m = j out_max[i] = vals[m] out_argmax[i] = a_indices[m] @jit(nopython=True, cache=True) def _s_wise_max(a_indices, a_indptr, vals, out_max): n = len(out_max) for i in range(n): if a_indptr[i] != a_indptr[i+1]: m = a_indptr[i] for j in range(a_indptr[i]+1, a_indptr[i+1]): if vals[j] > vals[m]: m = j out_max[i] = vals[m] @jit(nopython=True, cache=True) def _find_indices(a_indices, a_indptr, sigma, out): n = len(sigma) for i in range(n): for j in range(a_indptr[i], a_indptr[i+1]): if sigma[i] == a_indices[j]: out[i] = j @jit(nopython=True, cache=True) def _has_sorted_sa_indices(s_indices, a_indices): """ Check whether `s_indices` and `a_indices` are sorted in lexicographic order. Parameters ---------- s_indices, a_indices : ndarray(ndim=1) Returns ------- bool Whether `s_indices` and `a_indices` are sorted. """ L = len(s_indices) for i in range(L-1): if s_indices[i] > s_indices[i+1]: return False if s_indices[i] == s_indices[i+1]: if a_indices[i] >= a_indices[i+1]: return False return True @jit(nopython=True, cache=True) def _generate_a_indptr(num_states, s_indices, out): """ Generate `a_indptr`; stored in `out`. `s_indices` is assumed to be in sorted order. Parameters ---------- num_states : scalar(int) s_indices : ndarray(int, ndim=1) out : ndarray(int, ndim=1) Length must be num_states+1. """ idx = 0 out[0] = 0 for s in range(num_states-1): while(s_indices[idx] == s): idx += 1 out[s+1] = idx out[num_states] = len(s_indices)
examples/run_bidaf/cmrc_bidaf.py
ishine/SMRCToolkit
1,238
40437
<reponame>ishine/SMRCToolkit<gh_stars>1000+ # coding: utf-8 from sogou_mrc.data.vocabulary import Vocabulary from sogou_mrc.dataset.squad import SquadReader, SquadEvaluator from sogou_mrc.dataset.cmrc import CMRCReader,CMRCEvaluator from sogou_mrc.model.bidaf import BiDAF import tensorflow as tf import logging from sogou_mrc.data.batch_generator import BatchGenerator tf.logging.set_verbosity(tf.logging.ERROR) logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') data_folder = '' embedding_folder = '' train_file = data_folder+"cmrc2018_train.json" dev_file = data_folder+"cmrc2018_dev.json" reader = CMRCReader() train_data = reader.read(train_file) eval_data = reader.read(dev_file) evaluator = CMRCEvaluator(dev_file) vocab = Vocabulary(do_lowercase=False) vocab.build_vocab(train_data + eval_data, min_word_count=3, min_char_count=10) word_embedding = vocab.make_word_embedding(embedding_folder ) train_batch_generator = BatchGenerator(vocab, train_data, batch_size=32, training=True) eval_batch_generator = BatchGenerator(vocab, eval_data, batch_size=60) model = BiDAF(vocab, pretrained_word_embedding=word_embedding,word_embedding_size=300) model.compile(tf.train.AdamOptimizer, 0.001) model.train_and_evaluate(train_batch_generator, eval_batch_generator, evaluator, epochs=50, eposides=2)
pynes/examples/mario.py
timgates42/pyNES
1,046
40438
<filename>pynes/examples/mario.py import pynes from pynes.bitbag import * if __name__ == "__main__": pynes.press_start() exit() palette = [ 0x22,0x29, 0x1A,0x0F, 0x22,0x36,0x17,0x0F, 0x22,0x30,0x21,0x0F, 0x22,0x27,0x17,0x0F, 0x22,0x16,0x27,0x18, 0x22,0x1A,0x30,0x27, 0x22,0x16,0x30,0x27, 0x22,0x0F,0x36,0x17] chr_asset = import_chr('mario.chr') tinymario = define_sprite(108,144, [50,51,52,53], 0) mario = define_sprite(128, 128, [0, 1, 2, 3, 4, 5, 6, 7], 0) firemario = define_sprite(164,128, [0, 1, 2, 3, 4, 5, 6, 7], 0) def reset(): wait_vblank() clearmem() wait_vblank() load_palette(palette) load_sprite(tinymario, 0) load_sprite(mario, 4) load_sprite(firemario, 12) def joypad1_up(): get_sprite(mario).y -= 1 def joypad1_down(): get_sprite(mario).y += 1 def joypad1_left(): get_sprite(mario).x -= 1 def joypad1_right(): get_sprite(mario).x += 1
tests/__init__.py
Kua-Fu/rally
1,577
40461
<filename>tests/__init__.py # Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import asyncio def run_async(t): """ A wrapper that ensures that a test is run in an asyncio context. :param t: The test case to wrap. """ def async_wrapper(*args, **kwargs): asyncio.run(t(*args, **kwargs), debug=True) return async_wrapper
alipay/aop/api/domain/ItapDeviceInfo.py
antopen/alipay-sdk-python-all
213
40463
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class ItapDeviceInfo(object): def __init__(self): self._fw_version = None self._hw_version = None self._manufacturer = None self._model = None self._product_name = None @property def fw_version(self): return self._fw_version @fw_version.setter def fw_version(self, value): self._fw_version = value @property def hw_version(self): return self._hw_version @hw_version.setter def hw_version(self, value): self._hw_version = value @property def manufacturer(self): return self._manufacturer @manufacturer.setter def manufacturer(self, value): self._manufacturer = value @property def model(self): return self._model @model.setter def model(self, value): self._model = value @property def product_name(self): return self._product_name @product_name.setter def product_name(self, value): self._product_name = value def to_alipay_dict(self): params = dict() if self.fw_version: if hasattr(self.fw_version, 'to_alipay_dict'): params['fw_version'] = self.fw_version.to_alipay_dict() else: params['fw_version'] = self.fw_version if self.hw_version: if hasattr(self.hw_version, 'to_alipay_dict'): params['hw_version'] = self.hw_version.to_alipay_dict() else: params['hw_version'] = self.hw_version if self.manufacturer: if hasattr(self.manufacturer, 'to_alipay_dict'): params['manufacturer'] = self.manufacturer.to_alipay_dict() else: params['manufacturer'] = self.manufacturer if self.model: if hasattr(self.model, 'to_alipay_dict'): params['model'] = self.model.to_alipay_dict() else: params['model'] = self.model if self.product_name: if hasattr(self.product_name, 'to_alipay_dict'): params['product_name'] = self.product_name.to_alipay_dict() else: params['product_name'] = self.product_name return params @staticmethod def from_alipay_dict(d): if not d: return None o = ItapDeviceInfo() if 'fw_version' in d: o.fw_version = d['fw_version'] if 'hw_version' in d: o.hw_version = d['hw_version'] if 'manufacturer' in d: o.manufacturer = d['manufacturer'] if 'model' in d: o.model = d['model'] if 'product_name' in d: o.product_name = d['product_name'] return o
synapse/servers/aha.py
ackroute/synapse
216
40464
<gh_stars>100-1000 # pragma: no cover import sys import asyncio import synapse.lib.aha as s_aha if __name__ == '__main__': # pragma: no cover asyncio.run(s_aha.AhaCell.execmain(sys.argv[1:]))
tests/python/contrib/test_ethosu/cascader/test_integration.py
shengxinhu/tvm
4,640
40466
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wrong-import-position,invalid-name """ Test the cascader in the compilation flow. """ import pytest pytest.importorskip("ethosu.vela") import numpy as np import tvm from tvm import relay from tvm.relay.backend.contrib.ethosu.codegen import _create_cascader from tvm.relay.backend.contrib.ethosu.tir.compiler import _lower_to_tir from tvm.contrib.ethosu.cascader import MemoryRegion, EthosuDeviceConfig from .. import infra as test_infra from . import infra as cascader_test_infra def _ethos_u55_cascader(): sram = MemoryRegion( name="SRAM", size=10**6, read_bandwidth=16, write_bandwidth=16, read_latency=0, write_latency=0, burst_length=1, ) flash = MemoryRegion(name="FLASH", size=10**7, read_bandwidth=4, write_bandwidth=4) device_config = EthosuDeviceConfig("ethos-u55-256") cascader_options = cascader_test_infra.make_options( cascade_region=sram, max_proposals=64, stripe_factors=4, max_plan_size=10, max_open_plans=8, max_closed_plans=32, always_copy_size=1024, disable_pareto_plans=False, disable_pareto_proposals=False, enable_striping=False, ) return _create_cascader( options=cascader_options, io_region=sram, constant_region=flash, working_regions=[sram], device_config=device_config, ) def _compile_model(relay_function): mod = tvm.IRModule() mod["main"] = relay_function mod = relay.transform.InferType()(mod) tir_mod = _lower_to_tir(mod["main"], _ethos_u55_cascader())[0] return tir_mod["main"] def _create_single_conv2d(): ifm = relay.var("x", shape=(1, 8, 8, 4), dtype="int8") conv1 = test_infra.make_ethosu_conv2d(ifm, 4, 4, (3, 3), (1, 1), (1, 1), (1, 1)) func = relay.Function(relay.analysis.free_vars(conv1), conv1) return func def _create_double_conv2d(): ifm = relay.var("x", shape=(1, 8, 8, 4), dtype="int8") conv1 = test_infra.make_ethosu_conv2d(ifm, 4, 4, (3, 3), (1, 1), (1, 1), (1, 1)) conv2 = test_infra.make_ethosu_conv2d(conv1, 4, 4, (1, 3), (1, 1), (1, 1), (1, 1)) func = relay.Function(relay.analysis.free_vars(conv2), conv2) return func def _create_scalar_add(): ifm = relay.var("x", shape=(1, 5, 4, 3), dtype="int8") ifm2 = relay.const(np.ones((1, 1, 1, 1)), dtype="int8") add = test_infra.make_ethosu_binary_elementwise( ifm, ifm2, ifm_channels=3, ifm2_channels=1, operator_type="ADD", ofm_dtype="int8" ) func = relay.Function(relay.analysis.free_vars(add), add) return func def test_single_conv_compute_cycles_hint(): """ Check the "compute_cycles_hint" annotation remains in the lowering flow for single convolution. """ primfunc = _compile_model(_create_single_conv2d()) ops = primfunc.body.body.body.seq compute_cycles_hints = [2304, 640, 320] for op, compute_cycle_hint in zip(ops, compute_cycles_hints): assert op.attr_key == "pragma_compute_cycles_hint" assert op.value == compute_cycle_hint def test_double_conv_compute_cycles_hint(): """ Check the "compute_cycles_hint" annotation remains in the lowering flow for double convolution. """ primfunc = _compile_model(_create_double_conv2d()) ops = primfunc.body.body.body.body.body.body.seq compute_cycles_hints = [2304, 640, 768, 640, 320, 240] for op, compute_cycle_hint in zip(ops, compute_cycles_hints): assert op.attr_key == "pragma_compute_cycles_hint" assert op.value == compute_cycle_hint def test_scalar_add_compute_cycles_hint(): """ Check the "compute_cycles_hint" annotation remains in the lowering flow for add with scalar values. """ primfunc = _compile_model(_create_scalar_add()) ops = primfunc.body.body.seq compute_cycles_hints = [16, 24] for op, compute_cycle_hint in zip(ops, compute_cycles_hints): assert op.attr_key == "pragma_compute_cycles_hint" assert op.value == compute_cycle_hint
pymterm/term_pylibui/key_translate.py
stonewell/pymterm
102
40467
<gh_stars>100-1000 __key_mapping = { 'return' : 'enter', 'up_arrow' : 'up', 'down_arrow' : 'down', 'left_arrow' : 'left', 'right_arrow' : 'right', 'page_up' : 'pageup', 'page_down' : 'pagedown', } def translate_key(e): if len(e.key) > 0: return __key_mapping[e.key] if e.key in __key_mapping else e.key else: if e.char == '\x08': return 'backspace' elif e.char == '\t': return 'tab' else: return e.key
tests/test_core.py
srdjanrosic/supervisor
597
40475
"""Testing handling with CoreState.""" from supervisor.const import CoreState from supervisor.coresys import CoreSys def test_write_state(run_dir, coresys: CoreSys): """Test write corestate to /run/supervisor.""" coresys.core.state = CoreState.RUNNING assert run_dir.read_text() == CoreState.RUNNING.value coresys.core.state = CoreState.SHUTDOWN assert run_dir.read_text() == CoreState.SHUTDOWN.value
faceQuality/get_quality.py
awesome-archive/MaskInsightface
269
40490
# -*- coding: utf-8 -*- from keras.models import load_model import numpy as np import os import cv2 from FaceQNet import load_Qnet_model, face_quality # Loading the pretrained model model = load_Qnet_model() IMG_PATH = '/home/sai/YANG/image/video/nanning/haha' dir = os.listdir(IMG_PATH) count = len(dir) print('count:', count) for i in dir: count -= 1 if count%1000==0: print('count:', count) dir_path = os.path.join(IMG_PATH, i) imgs_dir = os.listdir(dir_path) for j in imgs_dir: img_path = os.path.join(dir_path, j) img = cv2.imread(img_path) score = face_quality(model, img) # img = [cv2.resize(cv2.imread(img_path, cv2.IMREAD_COLOR), (224, 224))] # test_data = np.array(img, copy=False, dtype=np.float32) # score = model.predict(test_data, batch_size=1, verbose=1) path1 = str(score[0][0]) + '@' rename = path1 + j os.rename(img_path, os.path.join(dir_path, rename))
imagetagger/imagetagger/administration/forms.py
jbargu/imagetagger
212
40500
<reponame>jbargu/imagetagger from django import forms from imagetagger.annotations.models import AnnotationType class AnnotationTypeCreationForm(forms.ModelForm): class Meta: model = AnnotationType fields = [ 'name', 'active', 'node_count', 'vector_type', 'enable_concealed', 'enable_blurred', ] class AnnotationTypeEditForm(forms.ModelForm): class Meta: model = AnnotationType fields = [ 'name', 'active', 'enable_concealed', 'enable_blurred', ]
tenkit/lib/python/striped_smith_waterman/pyssw.py
qiangli/cellranger
239
40523
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- """ @package pyssw @brief Python standalone program for ssw alignment using the C library Complete-Striped-Smith-Waterman-Library Biopython module is require for fastq/fastq parsing @copyright [The MIT licence](http://opensource.org/licenses/MIT) @author <NAME> - 2014 * <<EMAIL>> * <<EMAIL>> * <<EMAIL>> * [Github](https://github.com/a-slide) * [Atlantic Gene Therapies - INSERM 1089] (http://www.atlantic-gene-therapies.fr/) """ #~~~~~~~GLOBAL IMPORTS~~~~~~~# # Standard library packages import optparse import sys from time import time import gzip #~~~~~~~MAIN FUNCTION~~~~~~~# def main (opt): print ("Inport subject sequence") # Import fasta subject if opt.subject.rpartition(".")[2].lower() == "gz": subject_handle = gzip.open(opt.subject, "r") else: subject_handle = open(opt.subject, "r") subject = SeqIO.read(subject_handle, "fasta") print ("Inport query sequences and count the number of sequences") # Import fasta subject if opt.query.rpartition(".")[2].lower() == "gz": nseq = count_seq(opt.query, opt.qtype, True) query_handle = gzip.open(opt.query, "r") else: nseq = count_seq(opt.query, opt.qtype, False) query_handle = open(opt.query, "r") query_gen = SeqIO.parse(query_handle, opt.qtype) print("{} contains {} sequences to align".format(opt.query, nseq)) # Calculate a step list for the progress bar nseq_list = [int(nseq*i/100.0) for i in range(5,101,5)] print ("Initialize ssw aligner with the subject sequence") # Init the an Aligner object with the reference value ssw = Aligner( str(subject.seq), match=int(opt.match), mismatch=int(opt.mismatch), gap_open=int(opt.gap_open), gap_extend= int(opt.gap_extend), report_secondary=False, report_cigar=True) # Write the header of the SAM file with open("result.sam", "w") as f: f.write("@HD\tVN:1.0\tSO:unsorted\n") f.write("@SQ\tSN:{}\tLN:{}\n".format(subject.id, len(subject.seq))) f.write("@PG\tID:Striped-Smith-Waterman\tPN:pyssw\tVN:0.1\n") f.write("@CO\tScore_values = match {}, mismatch {}, gap_open {}, gap_extend {}\n".format( opt.match, opt.mismatch, opt.gap_open, opt.gap_extend)) f.write("@CO\tFilter Options = min_score {}, min_len {}\n".format( opt.min_score, opt.min_len)) print ("Starting alignment of queries against the subject sequence") start = time() # Align each query along the subject an write result in a SAM file i = 0 for query in query_gen: # Find the best alignment if opt.reverse: al, orient = find_best_align (ssw, query, float(opt.min_score), int(opt.min_len)) else: al, orient = ssw.align(str(query.seq), float(opt.min_score), int(opt.min_len)), True # If valid match found if al: f.write(sam_line( qname=query.id, flag=0 if orient else 16, rname=subject.id, pos=al.ref_begin+1, cigar=al.cigar_string, seq=str(query.seq), qual=SeqIO.QualityIO._get_sanger_quality_str(query) if opt.qtype == "fastq" else "*", tags=["AS:i:{}".format(al.score)])) # If no valid match found and -u flag activated (report unaligned) elif opt.unaligned: f.write(sam_line( qname=query.id, flag=4, seq=str(query.seq), qual=SeqIO.QualityIO._get_sanger_quality_str(query) if opt.qtype == "fastq" else "*")) # Else = match unreported # Progress bar i+=1 if i in nseq_list: frac = i/float(nseq) t = time()-start print ("{} sequences \t{}% \tRemaining time = {}s".format(i, int(frac*100), round(t/frac-t, 2))) print ("\n{} Sequences processed in {}s".format(i, round(time()-start, 2))) #~~~~~~~HELPER FUNCTIONS~~~~~~~# def sam_line (qname='*', flag=4, rname='*', pos=0, mapq=0, cigar='*', rnext='*', pnext=0, tlen=0, seq='*', qual='*', tags=None): """ Return a minimal sam line = by default return an undetermined sam line. Check the document [SAM Format Specification](http://samtools.sourceforge.net/SAM1.pdf) for a full description. @param qname Query template NAME @param flag bitwise FLAG @param rname Reference sequence NAME of the alignment @param pos 1-based leftmost mapping POSition of the first matching base @param mapq MAPping Quality @param cigar CIGAR string @param rnext Reference sequence name of the primary alignment of the mate @param pnext 1-based leftmost position of the primary alignment of the mate @param tlen signed observed Template LENgth @param seq segment SEQuence @param qual ASCII of base QUALity plus 33 @param tags list of optional tags @return A Sam alignment line """ if tags: return "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format( qname, flag, rname, pos, mapq, cigar, rnext, pnext, tlen, seq, qual, " ".join(tags)) else: return "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}".format( qname, flag, rname, pos, mapq, cigar, rnext, pnext, tlen, seq, qual) def find_best_align (ssw, query, min_score, min_len): # Align reverse and forward query forward_al = ssw.align(str(query.seq), min_score, min_len) reverse_al = ssw.align(str(query.seq.reverse_complement()), min_score, min_len) # Decision tree to return the best aligned sequence taking into acount the absence of result # by ssw_wrap in case of score filtering if not forward_al: if not reverse_al: return (None, None) else: return (reverse_al, False) else: if not reverse_al: return (forward_al, True) else: if forward_al.score >= reverse_al.score: return (forward_al, True) else: return (reverse_al, False) def count_seq (filename, seq_type="fasta", gziped=False): """ Count the number of sequences in a fastq or a fastq file @param filename Path to a valid readeable file @param file_type Should be either fastq or fastq. Default fasta @param gziped Boolean indicating if the file is gziped or not. Default False """ #Standard library import import gzip from mmap import mmap # Verify if the file is fasta or fastq type assert seq_type in ["fasta", "fastq"], "The file has to be either fastq or fasta format" # Open the file if gziped: f = gzip.open(filename, "r") else: f = open(filename, "r") # FASTA Find a start line seq character ">" an increment the counter each time if seq_type == "fasta": nline = 0 for line in f: if line[0] == ">": nline+=1 f.close() return nline # FASTQ No motif to find, but 4 lines correspond to 1 sequence else: nline = 0 for line in f: nline+=1 f.close() return nline/4 def optparser(): print("Parse command line options") # Usage and version strings program_name = "pyssw" program_version = 0.1 version_string = "{}\t{}".format(program_name, program_version) usage_string = "{}.py -s subject.fasta -q fastq (or fasta) [Facultative options]".format(program_name) optparser = optparse.OptionParser(usage = usage_string, version = version_string) # Define optparser options hstr = "Path of the fasta file containing the subject genome sequence. Can be gziped. [REQUIRED] " optparser.add_option( '-s', '--subject', dest="subject", help=hstr) hstr = "Path of the fastq or fasta file containing the short read to be aligned. Can be gziped. [REQUIRED]" optparser.add_option( '-q', '--query', dest="query", help=hstr) hstr = "Type of the query file = fastq or fasta. [default: fastq]" optparser.add_option( '-t', '--qtype', dest="qtype", default="fastq", help=hstr) hstr = "Positive integer for weight match in genome sequence alignment. [default: 2]" optparser.add_option( '-m', '--match', dest="match",default=2, help=hstr) hstr = "Positive integer. The negative value will be used as weight mismatch in genome sequence alignment. [default: 2]" optparser.add_option( '-x', '--mismatch', dest="mismatch", default=2, help=hstr) hstr = "Positive integer. The negative value will be used as weight for the gap opening. [default: 3]" optparser.add_option( '-o', '--gap_open', dest="gap_open", default=3, help=hstr) hstr = "Positive integer. The negative value will be used as weight for the gap opening. [default: 1]" optparser.add_option( '-e', '--gap_extend', dest="gap_extend", default=1, help=hstr) hstr = "Integer. Consider alignments having a score <= as not aligned. [default: 0]" optparser.add_option( '-f', '--min_score', dest="min_score", default=0, help=hstr) hstr = "Integer. Consider alignments having a length <= as not aligned. [default: 0]" optparser.add_option( '-l', '--min_len', dest="min_len", default=0, help=hstr) hstr = "Flag. Align query in forward and reverse orientation and choose the best alignment. [Set by default]" optparser.add_option( '-r', '--reverse', dest="reverse", action="store_true", default=True, help=hstr) hstr = "Flag. Write unaligned reads in sam output [Unset by default]" optparser.add_option( '-u', '--unaligned', dest="unaligned", action="store_true", default=False, help=hstr) # Parse arg and return a dictionnary_like object of options opt, args = optparser.parse_args() if not opt.subject: print ("\nERROR: a subject fasta file has to be provided (-s option)\n") optparser.print_help() sys.exit() if not opt.query: print ("\nERROR: a query fasta or fastq file has to be provided (-q option)\n") optparser.print_help() sys.exit() return opt #~~~~~~~TOP LEVEL INSTRUCTIONS~~~~~~~# if __name__ == '__main__': # try to import Third party and local packages try: from Bio import SeqIO except ImportError: print ("ERROR: Please install Biopython package") sys.exit() try: from ssw_wrap import Aligner except ImportError: print ("ERROR: Please place ssw_wrap in the current directory or add its dir to python path") sys.exit() # Parse command line arguments opt = optparser() # Run the main function main(opt)
pyclustering/cluster/tests/rock_templates.py
JosephChataignon/pyclustering
1,013
40547
"""! @brief Test templates for ROCK clustering module. @authors <NAME> (<EMAIL>) @date 2014-2020 @copyright BSD-3-Clause """ from pyclustering.cluster.rock import rock; from pyclustering.utils import read_sample; from random import random; class RockTestTemplates: @staticmethod def templateLengthProcessData(path_to_file, radius, cluster_numbers, threshold, expected_cluster_length, ccore): sample = read_sample(path_to_file); rock_instance = rock(sample, radius, cluster_numbers, threshold, ccore); rock_instance.process(); clusters = rock_instance.get_clusters(); length = sum([len(cluster) for cluster in clusters]); assert len(sample) == length; obtained_cluster_sizes = [len(cluster) for cluster in clusters]; obtained_cluster_sizes.sort(); expected_cluster_length.sort(); assert obtained_cluster_sizes == expected_cluster_length; @staticmethod def templateClusterAllocationOneDimensionData(ccore_flag): input_data = [ [random()] for i in range(10) ] + [ [random() + 3] for i in range(10) ] + [ [random() + 5] for i in range(10) ] + [ [random() + 8] for i in range(10) ]; rock_instance = rock(input_data, 1, 4, 0.5, ccore_flag); rock_instance.process(); clusters = rock_instance.get_clusters(); assert len(clusters) == 4; for cluster in clusters: assert len(cluster) == 10;