max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
unit_test/options_test.py
bbayles/cibuildwheel
371
42115
import platform as platform_module import pytest from cibuildwheel.__main__ import get_build_identifiers from cibuildwheel.environment import parse_environment from cibuildwheel.options import Options, _get_pinned_docker_images from .utils import get_default_command_line_arguments PYPROJECT_1 = """ [tool.cibuildwheel] build = ["cp38*", "cp37*"] environment = {FOO="BAR"} test-command = "pyproject" manylinux-x86_64-image = "manylinux1" environment-pass = ["<PASSWORD>"] [tool.cibuildwheel.macos] test-requires = "else" [[tool.cibuildwheel.overrides]] select = "cp37*" test-command = "pyproject-override" manylinux-x86_64-image = "manylinux2014" """ def test_options_1(tmp_path, monkeypatch): with tmp_path.joinpath("pyproject.toml").open("w") as f: f.write(PYPROJECT_1) args = get_default_command_line_arguments() args.package_dir = str(tmp_path) monkeypatch.setattr(platform_module, "machine", lambda: "x86_64") options = Options(platform="linux", command_line_arguments=args) identifiers = get_build_identifiers( platform="linux", build_selector=options.globals.build_selector, architectures=options.globals.architectures, ) override_display = """\ test_command: 'pyproject' cp37-manylinux_x86_64: 'pyproject-override'""" print(options.summary(identifiers)) assert override_display in options.summary(identifiers) default_build_options = options.build_options(identifier=None) assert default_build_options.environment == parse_environment('FOO="BAR"') all_pinned_docker_images = _get_pinned_docker_images() pinned_x86_64_docker_image = all_pinned_docker_images["x86_64"] local = options.build_options("cp38-manylinux_x86_64") assert local.manylinux_images is not None assert local.test_command == "pyproject" assert local.manylinux_images["x86_64"] == pinned_x86_64_docker_image["manylinux1"] local = options.build_options("cp37-manylinux_x86_64") assert local.manylinux_images is not None assert local.test_command == "pyproject-override" assert local.manylinux_images["x86_64"] == pinned_x86_64_docker_image["manylinux2014"] def test_passthrough(tmp_path, monkeypatch): with tmp_path.joinpath("pyproject.toml").open("w") as f: f.write(PYPROJECT_1) args = get_default_command_line_arguments() args.package_dir = str(tmp_path) monkeypatch.setattr(platform_module, "machine", lambda: "x86_64") monkeypatch.setenv("EXAMPLE_ENV", "ONE") options = Options(platform="linux", command_line_arguments=args) default_build_options = options.build_options(identifier=None) assert default_build_options.environment.as_dictionary(prev_environment={}) == { "FOO": "BAR", "EXAMPLE_ENV": "ONE", } @pytest.mark.parametrize( "env_var_value", [ "normal value", '"value wrapped in quotes"', "an unclosed single-quote: '", 'an unclosed double-quote: "', "string\nwith\ncarriage\nreturns\n", "a trailing backslash \\", ], ) def test_passthrough_evil(tmp_path, monkeypatch, env_var_value): args = get_default_command_line_arguments() args.package_dir = str(tmp_path) monkeypatch.setattr(platform_module, "machine", lambda: "x86_64") monkeypatch.setenv("CIBW_ENVIRONMENT_PASS_LINUX", "ENV_VAR") options = Options(platform="linux", command_line_arguments=args) monkeypatch.setenv("ENV_VAR", env_var_value) parsed_environment = options.build_options(identifier=None).environment assert parsed_environment.as_dictionary(prev_environment={}) == {"ENV_VAR": env_var_value}
tests/starkex/test_helpers.py
clifton/dydx-v3-python
109
42125
<gh_stars>100-1000 from dydx3.starkex.helpers import fact_to_condition from dydx3.starkex.helpers import generate_private_key_hex_unsafe from dydx3.starkex.helpers import get_transfer_erc20_fact from dydx3.starkex.helpers import nonce_from_client_id from dydx3.starkex.helpers import private_key_from_bytes from dydx3.starkex.helpers import private_key_to_public_hex from dydx3.starkex.helpers import private_key_to_public_key_pair_hex class TestHelpers(): def test_nonce_from_client_id(self): assert nonce_from_client_id('') == 2018687061 assert nonce_from_client_id('1') == 3079101259 assert nonce_from_client_id('a') == 2951628987 assert nonce_from_client_id( 'A really long client ID used to identify an order or withdrawal', ) == 2913863714 assert nonce_from_client_id( 'A really long client ID used to identify an order or withdrawal!', ) == 230317226 def test_get_transfer_erc20_fact(self): assert get_transfer_erc20_fact( recipient='0x1234567890123456789012345678901234567890', token_decimals=3, human_amount=123.456, token_address='0xaAaAaAaaAaAaAaaAaAAAAAAAAaaaAaAaAaaAaaAa', salt=int('0x1234567890abcdef', 16), ).hex() == ( '34052387b5efb6132a42b244cff52a85a507ab319c414564d7a89207d4473672' ) def test_fact_to_condition(self): fact = bytes.fromhex( 'cf9492ae0554c642b57f5d9cabee36fb512dd6b6629bdc51e60efb3118b8c2d8' ) condition = fact_to_condition( '0xe4a295420b58a4a7aa5c98920d6e8a0ef875b17a', fact, ) assert hex(condition) == ( '0x4d794792504b063843afdf759534f5ed510a3ca52e7baba2e999e02349dd24' ) def test_generate_private_key_hex_unsafe(self): assert ( generate_private_key_hex_unsafe() != generate_private_key_hex_unsafe() ) def test_private_key_from_bytes(self): assert ( private_key_from_bytes(b'0') == '<KEY>' ) assert ( private_key_from_bytes(b'a') == '0x1d61128b46faa109512e0e00fe9adf5ff52047ed61718eeeb7c0525dfcd2f8e' ) assert ( private_key_from_bytes( b'really long input data for key generation with the ' b'keyPairFromData() function' ) == '0x7c4946831bde597b73f1d5721af9c67731eafeb75c1b8e92ac457a61819a29' ) def test_private_key_to_public_hex(self): assert private_key_to_public_hex( '<KEY>', ) == ( '<KEY>' ) def test_private_key_to_public_key_pair_hex(self): x, y = private_key_to_public_key_pair_hex( '<KEY>', ) assert x == ( '<KEY>' ) assert y == ( '<KEY>' )
plugins/custom_resolver/run_test/custom_resolver.py
jingtaoh/USD-Cookbook
332
42153
<reponame>jingtaoh/USD-Cookbook<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- """This module tests if the custom resolver works.""" # IMPORT FUTURE LIBRARIES from __future__ import print_function # IMPORT THIRD-PARTY LIBRARIES from pxr import Ar def main(): """Run the main execution of the current script.""" print("This should still print an empty string", Ar.GetResolver().Resolve("this_wont_resolve")) print("This should print /bar", Ar.GetResolver().Resolve("/foo")) if __name__ == "__main__": main()
caffe2/python/operator_test/jsd_ops_test.py
chocjy/caffe2
585
42188
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np def entropy(p): q = 1. - p return -p * np.log(p) - q * np.log(q) def jsd(p, q): return [entropy(p / 2. + q / 2.) - entropy(p) / 2. - entropy(q) / 2.] def jsd_grad(go, o, pq_list): p, q = pq_list m = (p + q) / 2. return [np.log(p * (1 - m) / (1 - p) / m) / 2. * go, None] class TestJSDOps(hu.HypothesisTestCase): @given(n=st.integers(10, 100), **hu.gcs_cpu_only) def test_bernoulli_jsd(self, n, gc, dc): p = np.random.rand(n).astype(np.float32) q = np.random.rand(n).astype(np.float32) op = core.CreateOperator("BernoulliJSD", ["p", "q"], ["l"]) self.assertReferenceChecks( device_option=gc, op=op, inputs=[p, q], reference=jsd, output_to_grad='l', grad_reference=jsd_grad, )
pandapower/shortcircuit/__init__.py
yougnen/pandapower
104
42228
from pandapower.shortcircuit.calc_sc import calc_sc from pandapower.shortcircuit.toolbox import *
test/test_simulation.py
andrea-simonetto/qiskit
2,660
42230
<gh_stars>1000+ # -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for Aer simulation""" import qiskit from .base import QiskitTestCase class TestAerSimulation(QiskitTestCase): """Tests for Aer simulation""" def test_execute_in_aer(self): """Test executing a circuit in an Aer simulator""" qr = qiskit.QuantumRegister(1) cr = qiskit.ClassicalRegister(1) circuit = qiskit.QuantumCircuit(qr, cr) circuit.h(qr[0]) circuit.measure(qr, cr) backend = qiskit.Aer.get_backend('qasm_simulator') shots = 2000 results = qiskit.execute(circuit, backend, shots=shots).result() self.assertDictAlmostEqual({'0': 1000, '1': 1000}, results.get_counts(), delta=100)
ivy/test/afterinit1.py
b1f6c1c4/cfg-enum
113
42268
from ivy import ivy_module as im from ivy.ivy_compiler import ivy_from_string from ivy.tk_ui import new_ui from ivy import ivy_utils as iu prog = """#lang ivy1.6 type t individual x(X:t) : t object foo(me:t) = { after init { x(me) := me; assert false } } isolate iso_foo(me:t) = foo(me) with x(me) """ with im.Module(): iu.set_parameters({'mode':'induction','isolate':'iso_foo','show_compiled':'true'}) main_ui = new_ui() ui = main_ui.add(ivy_from_string(prog)) main_ui.tk.update_idletasks() main_ui.answer("OK") ui.check_safety_node(ui.node(0)) assert not ui.node(0).safe # ui.check_inductiveness() # # ui = ui.cti # cg = ui.current_concept_graph # cg.show_relation(cg.relation('link(X,Y)'),'+') # cg.gather() # main_ui.answer("OK") # cg.strengthen() # main_ui.answer("OK") # ui.check_inductiveness() # # cg.show_relation(cg.relation('semaphore'),'+') # cg.gather() # main_ui.answer("View") # cg.bmc_conjecture(bound=1) # main_ui.mainloop()
blitzdb/fields/integer.py
marcinguy/blitzdb3
252
42277
<gh_stars>100-1000 from .base import BaseField class IntegerField(BaseField): pass
cotk/scripts/resources.py
ishine/cotk
117
42295
''' A command library help user upload their results to dashboard. ''' #!/usr/bin/env python import argparse from ..file_utils import get_resource_file_path, get_resource_list from . import cli_constant as cli def entry(args): '''Entrance of show resources path and whether resource is cached or not''' resource_names = get_resource_list() parser = argparse.ArgumentParser(prog="cotk resources", \ description="check resources site and whether s specific resource cache is available") parser.add_argument("--show_all", action="store_true", help="Show path of all resources") parser.add_argument("--show_stored", action="store_true", help="Show path of all stored resource") parser.add_argument("--show", type=str, help="Show path of a specific resource") cargs = parser.parse_args(args) if cargs.show_all: cli.LOGGER.info("{:30}\t{:100}".format( "Resource IDs", "Cache paths")) for resource in resource_names: cache_path = get_resource_file_path("resources://"+resource, download=False) if cache_path is not None: cli.LOGGER.info("{:30}\t{:100}".format( resource, cache_path)) else: cli.LOGGER.info("{:30}\t{:100}".format( resource, "Not cached")) elif cargs.show_stored: cli.LOGGER.info("{:30}\t{:100}".format( "Resource IDs", "Cache paths")) for resource in resource_names: cache_path = get_resource_file_path("resources://"+resource, download=False) if cache_path is not None: cli.LOGGER.info("{:30}\t{:100}".format( resource, cache_path)) elif cargs.show is not None: if cargs.show[:12] != ("resources://"): raise RuntimeError('Please input a string starting with "resources://"') if cargs.show[12:] not in resource_names: raise RuntimeError("Unkown resource name {}".format(cargs.show[12:])) cache_path = get_resource_file_path(cargs.show, download=False) if cache_path is not None: cli.LOGGER.info("{:30}\t{:100}".format( "Resource IDs", "Cache paths")) cli.LOGGER.info("{:30}\t{:100}".format( cargs.show, cache_path)) else: cli.LOGGER.info("resource {} is not cached.".format(cargs.show)) else: raise RuntimeError("Unkown params.")
examples/highfreq/highfreq_ops.py
wan9c9/qlib
8,637
42326
<filename>examples/highfreq/highfreq_ops.py<gh_stars>1000+ import numpy as np import pandas as pd import importlib from qlib.data.ops import ElemOperator, PairOperator from qlib.config import C from qlib.data.cache import H from qlib.data.data import Cal from qlib.contrib.ops.high_freq import get_calendar_day class DayLast(ElemOperator): """DayLast Operator Parameters ---------- feature : Expression feature instance Returns ---------- feature: a series of that each value equals the last value of its day """ def _load_internal(self, instrument, start_index, end_index, freq): _calendar = get_calendar_day(freq=freq) series = self.feature.load(instrument, start_index, end_index, freq) return series.groupby(_calendar[series.index]).transform("last") class FFillNan(ElemOperator): """FFillNan Operator Parameters ---------- feature : Expression feature instance Returns ---------- feature: a forward fill nan feature """ def _load_internal(self, instrument, start_index, end_index, freq): series = self.feature.load(instrument, start_index, end_index, freq) return series.fillna(method="ffill") class BFillNan(ElemOperator): """BFillNan Operator Parameters ---------- feature : Expression feature instance Returns ---------- feature: a backfoward fill nan feature """ def _load_internal(self, instrument, start_index, end_index, freq): series = self.feature.load(instrument, start_index, end_index, freq) return series.fillna(method="bfill") class Date(ElemOperator): """Date Operator Parameters ---------- feature : Expression feature instance Returns ---------- feature: a series of that each value is the date corresponding to feature.index """ def _load_internal(self, instrument, start_index, end_index, freq): _calendar = get_calendar_day(freq=freq) series = self.feature.load(instrument, start_index, end_index, freq) return pd.Series(_calendar[series.index], index=series.index) class Select(PairOperator): """Select Operator Parameters ---------- feature_left : Expression feature instance, select condition feature_right : Expression feature instance, select value Returns ---------- feature: value(feature_right) that meets the condition(feature_left) """ def _load_internal(self, instrument, start_index, end_index, freq): series_condition = self.feature_left.load(instrument, start_index, end_index, freq) series_feature = self.feature_right.load(instrument, start_index, end_index, freq) return series_feature.loc[series_condition] class IsNull(ElemOperator): """IsNull Operator Parameters ---------- feature : Expression feature instance Returns ---------- feature: A series indicating whether the feature is nan """ def _load_internal(self, instrument, start_index, end_index, freq): series = self.feature.load(instrument, start_index, end_index, freq) return series.isnull() class Cut(ElemOperator): """Cut Operator Parameters ---------- feature : Expression feature instance l : int l > 0, delete the first l elements of feature (default is None, which means 0) r : int r < 0, delete the last -r elements of feature (default is None, which means 0) Returns ---------- feature: A series with the first l and last -r elements deleted from the feature. Note: It is deleted from the raw data, not the sliced data """ def __init__(self, feature, l=None, r=None): self.l = l self.r = r if (self.l is not None and self.l <= 0) or (self.r is not None and self.r >= 0): raise ValueError("Cut operator l shoud > 0 and r should < 0") super(Cut, self).__init__(feature) def _load_internal(self, instrument, start_index, end_index, freq): series = self.feature.load(instrument, start_index, end_index, freq) return series.iloc[self.l : self.r] def get_extended_window_size(self): ll = 0 if self.l is None else self.l rr = 0 if self.r is None else abs(self.r) lft_etd, rght_etd = self.feature.get_extended_window_size() lft_etd = lft_etd + ll rght_etd = rght_etd + rr return lft_etd, rght_etd
test/unit/00.nop-commit.py
rescrv/Consus
239
42333
<gh_stars>100-1000 import consus c1 = consus.Client() t1 = c1.begin_transaction() t1.commit() c2 = consus.Client(b'127.0.0.1') t2 = c1.begin_transaction() t2.commit() c3 = consus.Client('127.0.0.1') t3 = c1.begin_transaction() t3.commit() c4 = consus.Client(b'127.0.0.1', 1982) t4 = c1.begin_transaction() t4.commit() c5 = consus.Client('127.0.0.1', 1982) t5 = c1.begin_transaction() t5.commit() c6 = consus.Client(b'127.0.0.1:1982') t6 = c1.begin_transaction() t6.commit() c7 = consus.Client('127.0.0.1:1982') t7 = c1.begin_transaction() t7.commit() c8 = consus.Client(b'[::]:1982,127.0.0.1:1982') t8 = c1.begin_transaction() t8.commit() c9 = consus.Client('[::]:1982,127.0.0.1:1982') t9 = c1.begin_transaction() t9.commit()
syzygy/scripts/benchmark/ibmperf_test.py
nzeh/syzygy
343
42361
#!/usr/bin/python2.6 # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unittests for the ibmperf module. If the IBM Performance Inspector tools are installed at "C:\ibmperf\bin" it will run some tests using the actual tools. However, if the tools are not installed it still runs a suite of tests using mocked versions of the tools. """ __author__ = "<EMAIL> (<NAME>)" import ibmperf import logging import os import random import unittest class MockPopen(object): """A mock subprocess.Popen object. Implements "returncode" and "communicate", the only attributes/routines used by the ibmperf module. Attributes: returncode: The return code of the mocked sub-process. """ def __init__(self, stdout="", stderr="", returncode=0, raise_on_init=None, raise_on_communicate=None): """Initializes this mock Popen object with the given output and returncode. Args: stdout: The data to return for stdout in "communicate". stderr: The data to return for stderr in "communicate". returncode: The return code to expose via the "returncode" attribute. raise_on_init: If this is not None, will cause the constructor to raise an error. Expected to be a 2-tuple, containing (type, args), and will call "raise type(args)". raise_on_communicate: Similar to raise_on_init, but will cause the error to be raised on calls to "communicate". """ if raise_on_init: raise raise_on_init[0](*raise_on_init[1]) self._stdout = stdout self._stderr = stderr self.returncode = returncode self._raise_on_communicate = raise_on_communicate def communicate(self): """Simulates running the command, returning its stdout and stderr. Raises an exception if raise_on_communicate was specified in the constructor. """ if self._raise_on_communicate: return self._raise_on_communicate[0](*self._raise_on_communicate[1]) return (self._stdout, self._stderr) class MockHardwarePerformanceCounter(ibmperf.HardwarePerformanceCounter): """A mocked ibmperf.HardwarePerformanceCounter object. Replaces the _Popen member function with one that returns canned results. """ def __init__(self, popen_results, *args, **kwargs): """Initializes the mock HardwarePerformanceCounter object. Passes args and kwargs directly through to the ibmperf.HardwarePerformanceCounter initializer. Args: popen_results: A list of (type, args, kwargs) 3-tuples that will be returned from calls to _Popen, in order. """ self._popen_results = list(popen_results) super(MockHardwarePerformanceCounter, self).__init__(*args, **kwargs) def AddPopenResult(self, result_tuple): """Adds the given result tuple to the queue of results to return. Args: result_tuple: A (type, args, kwargs) triplet. """ self._popen_results.append(result_tuple) def _Popen(self, dummy_command_line): """Overrides _Popen from ibmperf.HardwarePerformanceCounter. Returns the mocked object from the head of the _popen_results queue. """ object_type, args, kwargs = self._popen_results.pop(0) return object_type(*args, **kwargs) # A few specific metric names. _CYCLES = "CYCLES" _UOPS = "UOPS" # A list of metrics that we will simulate supporting. _METRICS = { _CYCLES: None, "NONHALTED_CYCLES": ("Number of cycles during which the processor is not " "halted (and not in Thermal Trip on Pentium Ms)"), "INSTR": "Number of instructions retired", _UOPS: "Number of uOps retired", "BRANCH": "Number of branch instruction retired", "MISPRED_BRANCH": "Number of mispredicted branch instructions retired"} # A generic command that is successful outputs nothing and returns the default # error code of 0. _GENERIC_SUCCESS = (MockPopen, [], {}) # Simulates a successful run of "ddq", indicating that the toolkit is # installed. _DDQ_INSTALLED = _GENERIC_SUCCESS # The simulated output of a successful call to "ptt". _PTT_OUTPUT = "\n".join([" - %s" % _metric for _metric in _METRICS]) _PTT_SUCCESS = (MockPopen, [], {"stdout": _PTT_OUTPUT}) # The simulated output of a successful call to "mpevt -ld". _MPEVT_OUTPUT = "Id Name Description\n-- ---- -----------" for i, _metric in enumerate(_METRICS): desc = _METRICS[_metric] if desc: _MPEVT_OUTPUT += "\n%d %s %s" % (100 + i, _metric, desc) _MPEVT_SUCCESS = (MockPopen, [], {"stdout": _MPEVT_OUTPUT, "returncode": -1}) # This is a set of MockPopen results that imitates a successful initialization # of the toolkit. _SUCCESSFUL_INIT = [_DDQ_INSTALLED, _PTT_SUCCESS, _MPEVT_SUCCESS] def _CreateQueryResults(metrics): """Returns a set of made up results for the given metrics. Args: metrics: An iterable collection of metric names. """ results = {} pids = [1015, 1016] for metric in metrics: pid_results = {} for pid in pids: pid_results[pid] = random.randint(100000, 1000000) results[metric] = pid_results return results def _CreateQueryStdout(results): """Returns a "ptt dump" stdout for the given dict of results. See ibmperf.py for a full listing of sample output. Args: results: A dict of results as returned by ibmperf.HardwarePerformanceCounters.Query. """ stdout = "***** ptt v2.0.8 for x86 ***** pid=1944/0x798 *****\n" stdout += "\n" pids = results[results.keys()[0]].keys() for pid in pids: stdout += " PID %d is foo\n" % pid stdout += "\n" stdout += "PTT Facility Per-Thread Information\n" stdout += "-----------------------------------\n" stdout += "\n" stdout += " PID TID Disp Intr" for metric in results: stdout += " %s" % metric stdout += "\n" stdout += " --- --- ---- ----" for metric in results: stdout += " %s" % ("-" * len(metric)) stdout += "\n" for pid in pids: tid = random.randint(100, 1000) disp = random.randint(1, 10000) intr = random.randint(1, 10000) metric_values = "" for metric in results: metric_values += " %d" % results[metric][pid] stdout += " %d %d %d %d%s\n" % (pid, tid, disp, intr, metric_values) stdout += " " stdout += "-".join("%s" % ("-" * len(metric)) for metric in results) stdout += "\n" stdout += " " stdout += metric_values stdout += "\n\n" stdout += "Execution ended: 1 iterations.\n" return stdout class TestHardwarePerformanceCounter(unittest.TestCase): """Unittests for ibmperf.HardwarePerformanceCounter.""" def setUp(self): # By default we create a mock HardwarePerformanceCounter object that # successfully initializes the toolkit. self._hpc = MockHardwarePerformanceCounter( _SUCCESSFUL_INIT) def _TestStart(self, metrics): """Utility function for starting data collection. Args: metrics: Iterable collection of metrics to be started. """ self._hpc.AddPopenResult(_GENERIC_SUCCESS) # ptt term self._hpc.AddPopenResult(_GENERIC_SUCCESS) # ptt noautoterm self._hpc.AddPopenResult(_GENERIC_SUCCESS) # ptt init self._hpc.Start(metrics) def _TestStop(self): """Utility function for stopping data collection.""" self._hpc.AddPopenResult(_GENERIC_SUCCESS) # ptt term self._hpc.Stop() # Pylint complains that this need not be a member function, but the # unittest machinery requires this. # pylint: disable=R0201 def testInstallsIfNotInstalled(self): MockHardwarePerformanceCounter( [(MockPopen, [], {"returncode": -1}), # ddq failure. (MockPopen, [], {"returncode": 0}), # tinstall success. _PTT_SUCCESS, _MPEVT_SUCCESS]) def testFailedInstall(self): self.assertRaises(ibmperf.ExecutionFailed, MockHardwarePerformanceCounter, [(MockPopen, [], {"returncode": -1}), # ddq failure. (MockPopen, [], {"returncode": -1})]) # tinstall failure. def testHaveMetrics(self): self.assertEqual(set(_METRICS.keys()), set(self._hpc.metrics.keys())) def testQueryFailsWhenNotRunning(self): self.assertRaises(ibmperf.NotRunning, self._hpc.Query, "foo") def testStopFailsWhenNotRunning(self): self.assertRaises(ibmperf.NotRunning, self._hpc.Stop) def testStartFailsOnInvalidMetric(self): self.assertRaises(ibmperf.InvalidMetric, self._TestStart, ["INVALID_METRIC_NAME"]) def testAllMetricsCanBeStartedIndividually(self): for name in self._hpc.metrics: self._TestStart([name]) self._TestStop() def testDumpFails(self): self._TestStart([_CYCLES]) # ptt returns 210 when it fails. self._hpc.AddPopenResult((MockPopen, [], {"returncode": 210})) self.assertRaises(ibmperf.ExecutionFailed, MockHardwarePerformanceCounter.Query, self._hpc, "foo") def testUnexpectedDumpOutput(self): self._TestStart([_CYCLES]) stdout = "This is garbage, and is not parsable." self._hpc.AddPopenResult((MockPopen, [], {"stdout": stdout})) self.assertRaises(ibmperf.UnexpectedOutput, MockHardwarePerformanceCounter.Query, self._hpc, "foo") def testWrongMetricsDumped(self): self._TestStart([_CYCLES]) results = _CreateQueryResults([_UOPS]) stdout = _CreateQueryStdout(results) self._hpc.AddPopenResult((MockPopen, [], {"stdout": stdout})) self.assertRaises(ibmperf.UnexpectedOutput, MockHardwarePerformanceCounter.Query, self._hpc, "foo") def _TestMetricsFully(self, metrics): """Collects the provided metrics for an imaginary process 'foo'. This helper function starts the metrics, sleeps for 2 seconds, queries them and finally stops them. It ensures that the reported metrics match those that were requested to be collected. Args: metrics: Iterable collection of metrics to be started. """ self._TestStart(metrics) expected_results = _CreateQueryResults(metrics) query_stdout = _CreateQueryStdout(expected_results) self._hpc.AddPopenResult((MockPopen, [], {"stdout": query_stdout})) results = self._hpc.Query("foo") self.assertTrue(isinstance(results, dict)) self.assertEqual(expected_results, results) self._TestStop() def testOneMetricFully(self): name = self._hpc.metrics.keys()[0] self._TestMetricsFully([name]) def _GetMaximalMetrics(self): """Helper function that returns a set of maximal metrics. This returns all free metrics, plus max_counters non-free metrics. """ metrics = list(self._hpc.free_metrics) metrics += list(self._hpc.non_free_metrics)[0:self._hpc.max_counters] return metrics def testMaximalMetricsFully(self): metrics = self._GetMaximalMetrics() self._TestMetricsFully(metrics) def testMaximalMetricsFullyForReal(self): # Only run this test if the toolkit is actually present at the # default path. if (not os.path.isdir(ibmperf.DEFAULT_DIR) or not os.path.exists(os.path.join(ibmperf.DEFAULT_DIR, 'ddq.exe'))): return self._hpc = ibmperf.HardwarePerformanceCounter() metrics = self._GetMaximalMetrics() self._hpc.Start(metrics) try: results = self._hpc.Query("python") self.assertTrue(isinstance(results, dict)) self.assertEqual(set(metrics), set(results)) except ibmperf.ExecutionFailed: # We swallow this error, as it can happen if the local machine doesn't # actually support per-thread metrics. Some versions of Windows don't. pass self._hpc.Stop() if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) unittest.main()
hypermax/optimizer.py
00sapo/hypermax
107
42415
import hyperopt import csv import json import traceback import os.path from pprint import pprint import datetime import time import numpy.random import threading import queue import copy import tempfile import random import subprocess import concurrent.futures import tempfile import functools import math import atexit import jsonschema import pkg_resources from hypermax.execution import Execution from hypermax.hyperparameter import Hyperparameter from hypermax.results_analyzer import ResultsAnalyzer from hypermax.algorithms.atpe_optimizer import ATPEOptimizer from hypermax.algorithms.human_guided_optimizer_wrapper import HumanGuidedOptimizerWrapper from hypermax.algorithms.tpe_optimizer import TPEOptimizer from hypermax.algorithms.random_search_optimizer import RandomSearchOptimizer from hypermax.algorithms.adaptive_bayesian_hyperband_optimizer import AdaptiveBayesianHyperband from hypermax.configuration import Configuration class Optimizer: resultInformationKeys = [ 'trial', 'status', 'loss', 'time', 'log', 'error' ] def __init__(self, configuration): self.config = Configuration(configuration) self.searchConfig = configuration.get('search', {}) # jsonschema.validate(self.searchConfig, self.configurationSchema()) self.space = self.config.createHyperparameterSpace() self.threadExecutor = concurrent.futures.ThreadPoolExecutor() self.resultsAnalyzer = ResultsAnalyzer(configuration) self.results = [] self.resultFutures = [] self.best = None self.bestLoss = None self.thread = threading.Thread(target=lambda: self.optimizationThread(), daemon=True if configuration.get("ui", {}).get("enabled", True) else False) self.totalTrials = self.searchConfig.get("iterations") self.trialsSinceResultsUpload = None self.resultsExportFuture = None self.currentTrials = [] self.allWorkers = set(range(self.config.data['function'].get('parallel', 1))) self.occupiedWorkers = set() self.trialNumber = 0 self.lastATPEParameters = None self.lastLockedParameters = None self.atpeParamDetails = None self.tpeOptimizer = TPEOptimizer() self.atpeOptimizer = ATPEOptimizer() self.abhOptimizer = AdaptiveBayesianHyperband(self.atpeOptimizer, self.searchConfig.get("min_budget", 1), self.searchConfig.get("max_budget", 100), self.searchConfig.get("eta", 3)) self.humanGuidedATPEOptimizer = HumanGuidedOptimizerWrapper(self.atpeOptimizer) self.randomSearchOptimizer = RandomSearchOptimizer() def __del__(self): if self.threadExecutor: self.threadExecutor.shutdown(wait=True) @classmethod def configurationSchema(self): """ This method returns the configuration schema for the optimization module. The schema is a standard JSON-schema object.""" return { "type": "object", "properties": { "method": {"type": "string", "enum": ['atpe', 'tpe', 'random']}, "iterations": {"type": "number"}, "budget": {"type": "number"} }, "required": ['method', 'iterations'] } def completed(self): return len(self.results) def sampleNext(self): if self.searchConfig['method'] == 'tpe': return self.tpeOptimizer.recommendNextParameters(self.config.data['hyperparameters'], self.results, self.currentTrials) elif self.searchConfig['method'] == 'random': return self.randomSearchOptimizer.recommendNextParameters(self.config.data['hyperparameters'], self.results, self.currentTrials) elif self.searchConfig['method'] == 'atpe': params = self.humanGuidedATPEOptimizer.recommendNextParameters(self.config.data['hyperparameters'], self.results, self.currentTrials) self.lastATPEParameters = self.atpeOptimizer.lastATPEParameters self.lastLockedParameters = self.atpeOptimizer.lastLockedParameters self.atpeParamDetails = self.atpeOptimizer.atpeParamDetails return params elif self.searchConfig['method'] == 'abh': params = self.abhOptimizer.recommendNextParameters(self.config.data['hyperparameters'], self.results, self.currentTrials) self.lastATPEParameters = self.atpeOptimizer.lastATPEParameters self.lastLockedParameters = self.atpeOptimizer.lastLockedParameters self.atpeParamDetails = self.atpeOptimizer.atpeParamDetails return params def computeCurrentBest(self): best = None bestLoss = None for result in self.results: if (best is None and result['loss'] is not None ) or (result['loss'] is not None and result['loss'] < bestLoss): best = result bestLoss = result['loss'] self.best = best self.bestLoss = bestLoss def startOptmizationJob(self): availableWorkers = list(sorted(self.allWorkers.difference(self.occupiedWorkers))) sampleWorker = availableWorkers[0] sample = None while sample is None: # Hedge against any exceptions in the atpe optimizer. try: sample = self.sampleNext() except Exception: traceback.print_exc() pass def testSample(params, trial, worker): currentTrial = { "start": datetime.datetime.now(), "trial": trial, "worker": worker, "params": copy.deepcopy(params) } self.currentTrials.append(currentTrial) start = datetime.datetime.now() execution = Execution(self.config.data['function'], parameters=params, worker_n=worker) modelResult = execution.run() end = datetime.datetime.now() result = Hyperparameter(self.config.data['hyperparameters']).convertToFlatValues(params) for key in params.keys(): if key.startswith("$"): result[key] = params[key] result['trial'] = trial self.resultsAnalyzer.makeDirs(os.path.join(self.resultsAnalyzer.directory, "logs")) if 'loss' in modelResult: result['loss'] = modelResult['loss'] elif 'accuracy' in modelResult: result['loss'] = modelResult['accuracy'] if 'status' in modelResult: result['status'] = modelResult['status'] else: result['status'] = 'ok' if 'log' in modelResult: fileName = os.path.join(self.resultsAnalyzer.directory, "logs", "trial_" + str(trial) + ".txt") with open(fileName, "wt") as file: file.write(modelResult['log']) result['log'] = fileName else: result['log'] = '' if 'error' in modelResult: result['error'] = modelResult['error'] else: result['error'] = '' if 'time' in modelResult: result['time'] = modelResult['time'] else: result['time'] = (end-start).total_seconds() self.currentTrials.remove(currentTrial) return result def onCompletion(worker, future): self.occupiedWorkers.remove(worker) self.results.append(future.result()) self.computeCurrentBest() if not self.config.data.get("ui", {}).get("enabled", True): pprint(future.result()) if self.resultsExportFuture is None or (self.resultsExportFuture.done() and len(self.results) > 5): self.resultsExportFuture = self.threadExecutor.submit( lambda: self.outputResultsWithBackup(self.config.data.get("results", {}).get("graphs", True))) else: self.outputResultsWithBackup(False) if 'hypermax_results' in self.config.data: if self.trialsSinceResultsUpload is None or self.trialsSinceResultsUpload >= self.config.data['hypermax_results']['upload_frequency']: self.saveResultsToHypermaxResultsRepository() self.trialsSinceResultsUpload = 1 else: self.trialsSinceResultsUpload += 1 self.occupiedWorkers.add(sampleWorker) sampleFuture = self.threadExecutor.submit(testSample, sample, self.trialNumber, sampleWorker) sampleFuture.add_done_callback(functools.partial(onCompletion, sampleWorker)) self.trialNumber += 1 return sampleFuture def runOptimizationThread(self): self.thread.start() def outputResultsWithBackup(self, graphs, workers=1): self.resultsAnalyzer.outputResultsFolder(self, graphs, workers=workers) directory_head, directory_tail = os.path.split(self.resultsAnalyzer.directory) backup_directory = os.path.join(directory_head, ".backup_" + directory_tail + "~") self.resultsAnalyzer.outputResultsFolder(self, graphs, directory=backup_directory, workers=workers) def optimizationThread(self): # Make sure we output basic results if the process is killed for some reason. atexit.register(lambda: self.outputResultsWithBackup(False)) futures = [] for worker in range(min(len(self.allWorkers), self.totalTrials - len(self.results))): futures.append(self.startOptmizationJob()) time.sleep(1.0) while (len(self.results) + len(self.currentTrials)) < self.totalTrials: completedFuture = list(concurrent.futures.wait(futures, return_when=concurrent.futures.FIRST_COMPLETED)[0])[0] futures.remove(completedFuture) time.sleep(0.05) futures.append(self.startOptmizationJob()) concurrent.futures.wait(futures) # We are completed, so we can allocate a full contingent of workers self.outputResultsWithBackup(True, workers=4) def exportGuidanceJSON(self, fileName): with open(fileName, 'wt') as file: json.dump(self.humanGuidedATPEOptimizer.guidanceOptions, file, indent=4, sort_keys=True) def importGuidanceJSON(self, fileName): with open(fileName, 'rt') as file: self.humanGuidedATPEOptimizer.guidanceOptions = json.load(file) def exportResultsCSV(self, fileName): allKeys = set() for result in self.results: for key in result: allKeys.add(key) fieldNames = self.resultInformationKeys + sorted(allKeys.difference(set(self.resultInformationKeys))) # Make sure we keep the order of the field names consistent when writing the csv with open(fileName, 'wt') as file: writer = csv.DictWriter(file, fieldnames=fieldNames if len(self.results) > 0 else [], dialect='unix') writer.writeheader() writer.writerows(self.results) def importResultsCSV(self, fileName): with open(fileName) as file: reader = csv.DictReader(file) results = list(reader) newResults = [] for result in results: newResult = {} for key,value in result.items(): if value is not None and value != "": try: if '.' in value or 'e' in value: newResult[key] = float(value) else: newResult[key] = int(value) except ValueError: newResult[key] = value elif key == 'loss': newResult[key] = None elif key == 'log': newResult[key] = '' else: newResult[key] = None newResults.append(newResult) self.results = newResults self.computeCurrentBest() self.trialNumber = len(self.results) def saveResultsToHypermaxResultsRepository(self): try: hypermaxResultsConfig = self.config.data['hypermax_results'] with tempfile.TemporaryDirectory() as directory: process = subprocess.run(['git', 'clone', '<EMAIL>:electricbrainio/hypermax-results.git'], cwd=directory, stdout=subprocess.PIPE, stderr=subprocess.PIPE) hypermaxResultsDirectory = os.path.join(directory, 'hypermax-results', hypermaxResultsConfig['name']) self.resultsAnalyzer.outputResultsFolder(self, detailed=False, directory=hypermaxResultsDirectory) with open(os.path.join(hypermaxResultsDirectory, "metadata.json"), 'wt') as file: json.dump(self.config.data['hypermax_results'], file, indent=4) process = subprocess.run(['git', 'add', hypermaxResultsDirectory], cwd=os.path.join(directory, 'hypermax-results')) process = subprocess.run(['git', 'commit', '-m', 'Hypermax automatically storing results for model ' + hypermaxResultsConfig['name'] + ' with ' + str(len(self.results)) + " trials."], cwd=os.path.join(directory, 'hypermax-results'), stdout=subprocess.PIPE, stderr=subprocess.PIPE) process = subprocess.run(['git push'], cwd=os.path.join(directory, 'hypermax-results'), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) except Exception as e: print(e)
alipay/aop/api/domain/AlipayCommerceTransportTaxiDriverlevelQueryModel.py
antopen/alipay-sdk-python-all
213
42421
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayCommerceTransportTaxiDriverlevelQueryModel(object): def __init__(self): self._channel = None self._driver_name = None self._driver_phone = None self._ext_info = None @property def channel(self): return self._channel @channel.setter def channel(self, value): self._channel = value @property def driver_name(self): return self._driver_name @driver_name.setter def driver_name(self, value): self._driver_name = value @property def driver_phone(self): return self._driver_phone @driver_phone.setter def driver_phone(self, value): self._driver_phone = value @property def ext_info(self): return self._ext_info @ext_info.setter def ext_info(self, value): self._ext_info = value def to_alipay_dict(self): params = dict() if self.channel: if hasattr(self.channel, 'to_alipay_dict'): params['channel'] = self.channel.to_alipay_dict() else: params['channel'] = self.channel if self.driver_name: if hasattr(self.driver_name, 'to_alipay_dict'): params['driver_name'] = self.driver_name.to_alipay_dict() else: params['driver_name'] = self.driver_name if self.driver_phone: if hasattr(self.driver_phone, 'to_alipay_dict'): params['driver_phone'] = self.driver_phone.to_alipay_dict() else: params['driver_phone'] = self.driver_phone if self.ext_info: if hasattr(self.ext_info, 'to_alipay_dict'): params['ext_info'] = self.ext_info.to_alipay_dict() else: params['ext_info'] = self.ext_info return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayCommerceTransportTaxiDriverlevelQueryModel() if 'channel' in d: o.channel = d['channel'] if 'driver_name' in d: o.driver_name = d['driver_name'] if 'driver_phone' in d: o.driver_phone = d['driver_phone'] if 'ext_info' in d: o.ext_info = d['ext_info'] return o
selim_sef-solution/lucid/misc/io/__init__.py
Hulihrach/RoadDetector
4,537
42424
<reponame>Hulihrach/RoadDetector from lucid.misc.io.showing import show from lucid.misc.io.loading import load from lucid.misc.io.saving import save, CaptureSaveContext, batch_save from lucid.misc.io.scoping import io_scope, scope_url
Stephanie/local_libs/search_module.py
JeremyARussell/stephanie-va
866
42469
class SearchModule: def __init__(self): pass def search_for_competition_by_name(self, competitions, query): m, answer = self.search(competitions, attribute_name="caption", query=query) if m == 0: return False return answer def search_for_competition_by_code(self, competitions, query): return self.search_by_code(competitions, attribute_name="league", query=query) def search_for_team_by_name(self, teams, query): m, answer = self.search(teams, attribute_name="name", query=query) if m == 0: return False return answer def search_for_team_by_code(self, teams, query): return self.search_by_code(teams, attribute_name="code", query=query) def search_for_player_by_name(self, players, query): m, answer = self.search(players, attribute_name="name", query=query) if m == 0: return False return answer def search_for_team_from_standing_by_name(self, teams, query): m, answer = self.search(teams, attribute_name="team_name", query=query) if m == 0: return False return answer @staticmethod def search_by_code(dataset, attribute_name, query): search = query.lower() for index, data in enumerate(dataset): code = getattr(data, attribute_name).lower() if code == search: return dataset[index] return False @staticmethod def search(dataset, attribute_name, query): values = [0 for _ in range(0, len(dataset))] search = query.lower().split() upper_threshold = len(search) for index, data in enumerate(dataset): data_name = getattr(data, attribute_name).lower() search_array = data_name.split() for index2, text in enumerate(search_array): if index2 >= upper_threshold: break threshold = len(search[index2]) for i in range(0, len(text)): if i >= threshold - 1: break if text[i] == search[index2][i]: values[index] += 1 max_value = max(values) max_index = values.index(max_value) return max_value, dataset[max_index]
drf_admin/apps/monitor/serializers/crud.py
guohaihan/myproject
228
42490
# -*- coding: utf-8 -*- """ @author : <NAME> @github : https://github.com/tianpangji @software : PyCharm @file : crud.py @create : 2020/12/9 20:44 """ from django.contrib.contenttypes.models import ContentType from easyaudit.models import CRUDEvent from rest_framework import serializers class CRUDSerializer(serializers.ModelSerializer): event_type_display = serializers.SerializerMethodField() datetime = serializers.DateTimeField(format='%Y-%m-%d %H:%M:%S', read_only=True) username = serializers.SerializerMethodField() content_type_display = serializers.SerializerMethodField() class Meta: model = CRUDEvent fields = ['id', 'event_type_display', 'datetime', 'username', 'content_type_display', 'object_id', 'changed_fields'] def get_event_type_display(self, obj): return obj.get_event_type_display() def get_username(self, obj): try: username = obj.user.username except AttributeError: username = '未知' return username def get_content_type_display(self, obj): content_type = ContentType.objects.get(id=obj.content_type_id) return content_type.app_label + '.' + content_type.model def to_representation(self, instance): ret = super().to_representation(instance) if ret.get('changed_fields') == 'null': ret['changed_fields'] = '' return ret
爬虫小demo/22 JDPython.py
lb2281075105/Python-Spider
713
42499
import time from selenium import webdriver from lxml import etree driver = webdriver.PhantomJS(executable_path='./phantomjs-2.1.1-macosx/bin/phantomjs') # 获取第一页的数据 def get_html(): url = "https://detail.tmall.com/item.htm?id=531993957001&skuId=3609796167425&user_id=268451883&cat_id=2&is_b=1&rn=71b9b0aeb233411c4f59fe8c610bc34b" driver.get(url) time.sleep(5) driver.execute_script('window.scrollBy(0,3000)') time.sleep(2) driver.execute_script('window.scrollBy(0,5000)') time.sleep(2) # 累计评价 btnNext = driver.find_element_by_xpath('//*[@id="J_TabBar"]/li[3]/a') btnNext.click() html = driver.page_source return html def get_comments(html): source = etree.HTML(html) commens = source.xpath("//*[@id='J_TabBar']/li[3]/a/em/text()") print('评论数:', commens) # 将评论转为int类型 commens = (int(commens[0]) / 20) + 1 # 获取到总评论 print('评论数:', int(commens)) return int(commens) def parse_html(html): html = etree.HTML(html) commentlist = html.xpath("//*[@class='rate-grid']/table/tbody") for comment in commentlist: # 评论 vercomment = comment.xpath( "./tr/td[@class='tm-col-master']/div[@class='tm-rate-content']/div[@class='tm-rate-fulltxt']/text()") # 机器类型 verphone = comment.xpath("./tr/td[@class='col-meta']/div[@class='rate-sku']/p[@title]/text()") print(vercomment) print(verphone) # 用户(头尾各一个字,中间用****代替) veruser = comment.xpath("./tr/td[@class='col-author']/div[@class='rate-user-info']/text()") print(veruser) def next_button_work(num): if num != 0: driver.execute_script('window.scrollBy(0,3000)') time.sleep(2) try: driver.find_element_by_css_selector('#J_Reviews > div > div.rate-page > div > a:last-child').click() except Exception as e: print(e) time.sleep(2) driver.execute_script('window.scrollBy(0,3000)') time.sleep(2) driver.execute_script('window.scrollBy(0,5000)') time.sleep(2) html = driver.page_source parse_html(html) def selenuim_work(html): parse_html(html) next_button_work(1) pass def gettotalpagecomments(comments): html = get_html() for i in range(0, comments): selenuim_work(html) data = get_html() # 得到评论 commens = get_comments(data) # 根据评论内容进行遍历 gettotalpagecomments(commens)
demo/cities/urls.py
mrmikardo/django-map-widgets
425
42534
<reponame>mrmikardo/django-map-widgets from django.urls import path, re_path from cities.views import CityCreateView, CityListView, CityDetailView app_name = 'cities' urlpatterns = [ path('', CityListView.as_view(), name="list"), re_path(r'^(?P<pk>\d+)/$', CityDetailView.as_view(), name="detail"), re_path(r'^create/$', CityCreateView.as_view(), name="create"), ]
docker/GetAndResizeImages.py
vaquarkhan/ecs-refarch-batch-processing
105
42588
#!/usr/bin/env python # Copyright 2016 Amazon.com, Inc. or its # affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License is # located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import os import json import urllib import boto3 from PIL import Image from PIL.ExifTags import TAGS resized_dir = '/images/resized' thumb_dir = '/images/thumbs' input_bucket_name = os.environ['s3InputBucket'] output_bucket_name = os.environ['s3OutputBucket'] sqsqueue_name = os.environ['SQSBatchQueue'] aws_region = os.environ['AWSRegion'] s3 = boto3.client('s3', region_name=aws_region) sqs = boto3.resource('sqs', region_name=aws_region) def create_dirs(): for dirs in [resized_dir, thumb_dir]: if not os.path.exists(dirs): os.makedirs(dirs) def process_images(): """Process the image No real error handling in this sample code. In case of error we'll put the message back in the queue and make it visable again. It will end up in the dead letter queue after five failed attempts. """ for message in get_messages_from_sqs(): try: message_content = json.loads(message.body) image = urllib.unquote_plus(message_content ['Records'][0]['s3']['object'] ['key']).encode('utf-8') s3.download_file(input_bucket_name, image, image) resize_image(image) upload_image(image) cleanup_files(image) except: message.change_visibility(VisibilityTimeout=0) continue else: message.delete() def cleanup_files(image): os.remove(image) os.remove(resized_dir + '/' + image) os.remove(thumb_dir + '/' + image) def upload_image(image): s3.upload_file(resized_dir + '/' + image, output_bucket_name, 'resized/' + image) s3.upload_file(thumb_dir + '/' + image, output_bucket_name, 'thumbs/' + image) def get_messages_from_sqs(): results = [] queue = sqs.get_queue_by_name(QueueName=sqsqueue_name) for message in queue.receive_messages(VisibilityTimeout=120, WaitTimeSeconds=20, MaxNumberOfMessages=10): results.append(message) return(results) def resize_image(image): img = Image.open(image) exif = img._getexif() if exif is not None: for tag, value in exif.items(): decoded = TAGS.get(tag, tag) if decoded == 'Orientation': if value == 3: img = img.rotate(180) if value == 6: img = img.rotate(270) if value == 8: img = img.rotate(90) img.thumbnail((1024, 768), Image.ANTIALIAS) try: img.save(resized_dir + '/' + image, 'JPEG', quality=100) except IOError as e: print("Unable to save resized image") img.thumbnail((192, 192), Image.ANTIALIAS) try: img.save(thumb_dir + '/' + image, 'JPEG') except IOError as e: print("Unable to save thumbnail") def main(): create_dirs() while True: process_images() if __name__ == "__main__": main()
theano/compile/tests/test_function_name.py
mdda/Theano
295
42592
<gh_stars>100-1000 import unittest import os import re import theano from theano import tensor class FunctionName(unittest.TestCase): def test_function_name(self): x = tensor.vector('x') func = theano.function([x], x + 1.) regex = re.compile(os.path.basename('.*test_function_name.pyc?:13')) assert(regex.match(func.name) is not None)
util/data_type_util.py
Chandru01061997/pythonDB
409
42601
from uuid import UUID from datetime import datetime def uuid_from_string(string): return UUID('{s}'.format(s=string)) def format_timestamp(string): if isinstance(string, str): return datetime.strptime(string, '%Y-%m-%dT%H:%M:%S.%fZ') if isinstance(string, datetime): return string
pushkin/util/__init__.py
Nordeus/pushkin
281
42643
from . import pool from . import multiprocesslogging from . import tools
tests/config_test.py
akshaysharma096/clusterman
281
42646
<reponame>akshaysharma096/clusterman # Copyright 2019 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import mock import pytest import staticconf import staticconf.testing import yaml import clusterman.config as config from clusterman.config import POOL_NAMESPACE from tests.conftest import mock_open @pytest.fixture def mock_config_files(): with staticconf.testing.PatchConfiguration({"cluster_config_directory": "/nail/whatever"}), mock_open( config.get_pool_config_path("cluster-A", "pool-1", "mesos"), contents=yaml.dump({"resource_groups": "cluster-A", "other_config": 18,}), ), mock_open( config.get_pool_config_path("cluster-A", "pool-2", "mesos"), contents=yaml.dump({"resource_groups": "cluster-A", "other_config": 20,}), ), mock_open( config.get_pool_config_path("cluster-A", "pool-2", "kubernetes"), contents=yaml.dump({"resource_groups": "cluster-A", "other_config": 29,}), ), mock_open( config.get_pool_config_path("cluster-B", "pool-1", "mesos"), contents=yaml.dump( {"resource_groups": "cluster-B", "other_config": 200, "autoscale_signal": {"branch_or_tag": "v42"},} ), ), mock_open( "/etc/no_cfg/clusterman.json", contents=json.dumps({"accessKeyId": "foo", "secretAccessKey": "bar", "region": "nowhere-useful",}), ): yield @pytest.fixture(autouse=True) def mock_config_namespaces(): # To avoid polluting staticconf for other tests, and clear out stuff from conftest that mocks configuration with staticconf.testing.MockConfiguration( {}, namespace=POOL_NAMESPACE.format(pool="pool-1", scheduler="mesos"), ), staticconf.testing.MockConfiguration( {}, namespace=POOL_NAMESPACE.format(pool="pool-2", scheduler="mesos"), ), staticconf.testing.MockConfiguration( { "clusters": {"cluster-A": {"mesos_url_api": "service.leader", "aws_region": "us-test-3",},}, "aws": {"access_key_file": "/etc/no_cfg/clusterman.json",}, }, namespace=staticconf.config.DEFAULT, ): yield @pytest.mark.parametrize( "cluster,pool,scheduler,tag", [ ("cluster-A", "pool-1", "mesos", None), ("cluster-A", "pool-2", "mesos", "v52"), ("cluster-A", "pool-2", "kubernetes", None), ("cluster-A", None, "mesos", None), ], ) def test_setup_config_cluster(cluster, pool, scheduler, tag, mock_config_files): args = argparse.Namespace( env_config_path="/nail/etc/config.yaml", cluster=cluster, pool=pool, scheduler=scheduler, signals_branch_or_tag=tag, ) with mock.patch("clusterman.config.load_cluster_pool_config", autospec=True,) as mock_pool_load, mock.patch( "clusterman.config._load_module_configs", ) as mock_load_module_configs: config.setup_config(args) assert mock_load_module_configs.call_args == mock.call("/nail/etc/config.yaml") assert staticconf.read_string("aws.region") == "us-test-3" if pool: assert mock_pool_load.call_args == mock.call(cluster, pool, scheduler, tag) else: assert mock_pool_load.call_count == 0 if tag: assert staticconf.read_string("autoscale_signal.branch_or_tag") == tag def test_setup_config_region_and_cluster(): args = argparse.Namespace(env_config_path="/nail/etc/config.yaml", cluster="foo", aws_region="bar",) with mock.patch("clusterman.config._load_module_configs"), pytest.raises(argparse.ArgumentError): config.setup_config(args) @mock.patch("clusterman.config._load_module_configs") def test_setup_config_region(mock_load_module_configs, mock_config_files): args = argparse.Namespace(env_config_path="/nail/etc/config.yaml", aws_region="fake-region-A",) config.setup_config(args) assert staticconf.read_string("aws.region") == "fake-region-A" assert mock_load_module_configs.call_args == mock.call("/nail/etc/config.yaml") @pytest.mark.parametrize("cluster,pool,pool_other_config", [("cluster-B", "pool-1", 200)]) def test_load_cluster_pool_config(cluster, pool, pool_other_config, mock_config_files): config.load_cluster_pool_config(cluster, pool, "mesos", None) pool_namespace = POOL_NAMESPACE.format(pool=pool, scheduler="mesos") assert staticconf.read_int("other_config", namespace=pool_namespace) == pool_other_config assert staticconf.read_string("resource_groups", namespace=pool_namespace) == cluster
mayan/apps/acls/permissions.py
eshbeata/open-paperless
2,743
42648
<filename>mayan/apps/acls/permissions.py from __future__ import absolute_import, unicode_literals from django.utils.translation import ugettext_lazy as _ from permissions import PermissionNamespace namespace = PermissionNamespace('acls', _('Access control lists')) permission_acl_edit = namespace.add_permission( name='acl_edit', label=_('Edit ACLs') ) permission_acl_view = namespace.add_permission( name='acl_view', label=_('View ACLs') )
src/orders/tests/order_content_type_replacement/tests_order_item.py
iNerV/education-backend
151
42660
<reponame>iNerV/education-backend<filename>src/orders/tests/order_content_type_replacement/tests_order_item.py<gh_stars>100-1000 import pytest pytestmark = [pytest.mark.django_db] def test_order_without_items(order): order = order() assert order.item is None def test_order_with_record(order, record): order = order(record=record) assert order.item == record def test_order_with_course(order, course): order = order(course=course) assert order.item == course def test_order_with_bundle(order, bundle): order = order(bundle=bundle) assert order.item == bundle
codigo/Live102/exemplo_2.py
cassiasamp/live-de-python
572
42689
from expects import expect, contain, be_an class Bacon: ... sanduiche = 'sanduiche com queijo' expect(sanduiche).to(contain('queijo')) expect(sanduiche).to_not(be_an(Bacon))
tartiflette/language/ast/base.py
remorses/tartiflette-whl
530
42736
<gh_stars>100-1000 __all__ = ( "Node", "DefinitionNode", "ExecutableDefinitionNode", "TypeSystemDefinitionNode", "TypeSystemExtensionNode", "TypeDefinitionNode", "TypeExtensionNode", "SelectionNode", "ValueNode", "TypeNode", ) class Node: __slots__ = () class DefinitionNode(Node): __slots__ = () class ExecutableDefinitionNode(DefinitionNode): __slots__ = () class TypeSystemDefinitionNode(DefinitionNode): __slots__ = () class TypeSystemExtensionNode(DefinitionNode): __slots__ = () class TypeDefinitionNode(TypeSystemDefinitionNode): __slots__ = () class TypeExtensionNode(TypeSystemExtensionNode): __slots__ = () class SelectionNode(Node): __slots__ = () class ValueNode(Node): __slots__ = () class TypeNode(Node): __slots__ = ()
Chapter08/transformers_textgen.py
arifmudi/Advanced-Deep-Learning-with-Python
107
42752
<reponame>arifmudi/Advanced-Deep-Learning-with-Python import torch from transformers import TransfoXLLMHeadModel, TransfoXLTokenizer device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Instantiate pre-trained model-specific tokenizer and the model itself tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103') model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103').to(device) # Initial input sequence text = "The company was founded in" tokens_tensor = \ torch.tensor(tokenizer.encode(text)) \ .unsqueeze(0) \ .to(device) mems = None # recurrence mechanism predicted_tokens = list() for i in range(50): # stop at 50 predicted tokens # Generate predictions predictions, mems = model(tokens_tensor, mems=mems) # Get most probable word index predicted_index = torch.topk(predictions[0, -1, :], 1)[1] # Extract the word from the index predicted_token = tokenizer.decode(predicted_index) # break if [EOS] reached if predicted_token == tokenizer.eos_token: break # Store the current token predicted_tokens.append(predicted_token) # Append new token to the existing sequence tokens_tensor = torch.cat((tokens_tensor, predicted_index.unsqueeze(1)), dim=1) print('Initial sequence: ' + text) print('Predicted output: ' + " ".join(predicted_tokens))
nets/vgg.py
bubbliiiing/faster-rcnn-tf2
133
42760
from tensorflow.keras.layers import (Conv2D, Dense, Flatten, MaxPooling2D, TimeDistributed) def VGG16(inputs): x = Conv2D(64,(3,3),activation = 'relu',padding = 'same',name = 'block1_conv1')(inputs) x = Conv2D(64,(3,3),activation = 'relu',padding = 'same', name = 'block1_conv2')(x) x = MaxPooling2D((2,2), strides = (2,2), name = 'block1_pool')(x) x = Conv2D(128,(3,3),activation = 'relu',padding = 'same',name = 'block2_conv1')(x) x = Conv2D(128,(3,3),activation = 'relu',padding = 'same',name = 'block2_conv2')(x) x = MaxPooling2D((2,2),strides = (2,2), name = 'block2_pool')(x) x = Conv2D(256,(3,3),activation = 'relu',padding = 'same',name = 'block3_conv1')(x) x = Conv2D(256,(3,3),activation = 'relu',padding = 'same',name = 'block3_conv2')(x) x = Conv2D(256,(3,3),activation = 'relu',padding = 'same',name = 'block3_conv3')(x) x = MaxPooling2D((2,2),strides = (2,2), name = 'block3_pool')(x) # 第四个卷积部分 # 14,14,512 x = Conv2D(512,(3,3),activation = 'relu',padding = 'same', name = 'block4_conv1')(x) x = Conv2D(512,(3,3),activation = 'relu',padding = 'same', name = 'block4_conv2')(x) x = Conv2D(512,(3,3),activation = 'relu',padding = 'same', name = 'block4_conv3')(x) x = MaxPooling2D((2,2),strides = (2,2), name = 'block4_pool')(x) # 第五个卷积部分 # 7,7,512 x = Conv2D(512,(3,3),activation = 'relu', padding = 'same', name = 'block5_conv1')(x) x = Conv2D(512,(3,3),activation = 'relu', padding = 'same', name = 'block5_conv2')(x) x = Conv2D(512,(3,3),activation = 'relu', padding = 'same', name = 'block5_conv3')(x) return x def vgg_classifier_layers(x): # num_rois, 14, 14, 1024 -> num_rois, 7, 7, 2048 x = TimeDistributed(Flatten(name='flatten'))(x) x = TimeDistributed(Dense(4096, activation='relu'), name='fc1')(x) x = TimeDistributed(Dense(4096, activation='relu'), name='fc2')(x) return x
notebooks-text-format/vdvae_jax_cifar_demo.py
arpitvaghela/probml-notebooks
166
42804
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.3 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/always-newbie161/probml-notebooks/blob/jax_vdvae/notebooks/vdvae_jax_cifar_demo.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + [markdown] id="cTSe7I6g45v8" # This notebook shows demo working with vdvae in jax and the code used is from [vdvae-jax](https://github.com/j-towns/vdvae-jax) from [<NAME>](https://j-towns.github.io/) # + [markdown] id="PxtpxTPEMS4C" # ## Setup # + id="ipHVirxUHTDJ" from google.colab import auth auth.authenticate_user() # + colab={"base_uri": "https://localhost:8080/"} id="Z6gM2ytSHnO0" outputId="3e63de9d-6808-4cd9-eb1f-08996a6a7fed" project_id = 'probml' # !gcloud config set project {project_id} # + id="a3__DVx74sso" colab={"base_uri": "https://localhost:8080/", "height": 52} outputId="579bc832-9028-49f3-c164-c426d32f66a6" ''' this should be the format of the checkpoint filetree: checkpoint_path >> model(optimizer)_checkpoint_file. checkpoint_path_ema >> ema_checkpoint_file ''' checkpoint_path='/content/vdvae_cifar10_2.86/latest_cifar10' # checkpoints are downloaded at these paths. # vdvae_cifar10_2.86/latest_cifar10 - optimizer+mode # vdvae_cifar10_2.86/latest_cifar10_ema - ema_params' # + id="4_RnWXhwIV85" colab={"base_uri": "https://localhost:8080/"} cellView="form" outputId="de8dedaf-bdd3-4fb7-99ee-7cfe96229d1c" #@title Download checkpoints # !gsutil cp -r gs://gsoc_bucket/vdvae_cifar10_2.86 ./ # !ls -l /content/vdvae_cifar10_2.86/latest_cifar10 # !ls -l /content/vdvae_cifar10_2.86/latest_cifar10_ema # + colab={"base_uri": "https://localhost:8080/"} id="z3fThb8PIYHG" outputId="8406f5b2-cb50-42f5-aa78-4dc4f85afb02" # !git clone https://github.com/j-towns/vdvae-jax.git # + colab={"base_uri": "https://localhost:8080/"} id="053XPypoMobJ" outputId="0e415f07-00a4-4815-c2c5-288236ac2c98" # %cd vdvae-jax # + colab={"base_uri": "https://localhost:8080/"} id="X1hY6VqmNApP" outputId="41014f01-32bf-4377-85e5-e18328d2161a" # !pip install --quiet flax # + id="y013geSvWQUg" import os try: os.environ['COLAB_TPU_ADDR'] import jax.tools.colab_tpu jax.tools.colab_tpu.setup_tpu() except: pass # + colab={"base_uri": "https://localhost:8080/"} id="XDzBF1uZXOlu" outputId="929c368c-4610-49b0-bc94-76b891bc9b0e" import jax jax.local_devices() # + [markdown] id="KrFas8alNwJ0" # ## Model # (for cifar10) # + [markdown] id="4Mr89HhnTbaF" # ### Setting up hyperparams # + id="B0QZ6aKoP08z" from hps import HPARAMS_REGISTRY, Hyperparams, add_vae_arguments from train_helpers import setup_save_dirs import argparse import dataclasses H = Hyperparams() parser = argparse.ArgumentParser() parser = add_vae_arguments(parser) parser.set_defaults(hps= 'cifar10',conv_precision='highest') H = dataclasses.replace(H, **vars(parser.parse_args([]))) hparam_sets = [x for x in H.hps.split(',') if x] for hp_set in hparam_sets: hps = HPARAMS_REGISTRY[hp_set] parser.set_defaults(**hps) H = dataclasses.replace(H, **vars(parser.parse_args([]))) H = setup_save_dirs(H) # + [markdown] id="NisrtOPlfmef" # This model is a hierarchical model with multiple stochastic blocks with multiple deterministic layers. You can know about model skeleton by observing the encoder and decoder "strings" # # **How to understand the string:** # * blocks are comma seperated # * `axb` implies there are `b` res blocks(set of Conv layers) for dimensions `axa` # * `amb` implies it is a mixin block which increases the inter-image dims from `a` to `b` using **nearest neighbour upsampling** (used in decoder) # * `adb` implies it's a block with avg-pooling layer which reduces the dims from `a` to `b`(used in encoder) # # for more understanding refer to this [paper](https://arxiv.org/abs/2011.10650) # # # + colab={"base_uri": "https://localhost:8080/"} id="-OyvG1KbP2qT" outputId="bc0a16e1-0cbb-4951-c5ef-e8310bc9deb4" hparams = dataclasses.asdict(H) for k in ['enc_blocks','dec_blocks','zdim','n_batch','device_count']: print(f'{k}:{hparams[k]}') # + id="FGD3wwRxvF3Y" from utils import logger from jax.interpreters.xla import DeviceArray log = logger(H.logdir) if H.log_wandb: import wandb def logprint(*args, pprint=False, **kwargs): if len(args) > 0: log(*args) wandb.log({k: np.array(x) if type(x) is DeviceArray else x for k, x in kwargs.items()}) wandb.init(config=dataclasses.asdict(H)) else: logprint = log # + colab={"base_uri": "https://localhost:8080/"} id="cABtXQvqSG2Z" outputId="2c43dea8-4c53-44cc-dd91-0c7577d07a7e" import numpy as np from jax import lax import torch import imageio from PIL import Image import glob from torch.utils.data import DataLoader from torchvision import transforms np.random.seed(H.seed) torch.manual_seed(H.seed) H = dataclasses.replace( H, conv_precision = {'default': lax.Precision.DEFAULT, 'high': lax.Precision.HIGH, 'highest': lax.Precision.HIGHEST}[H.conv_precision], seed_init =H.seed, seed_sample=H.seed + 1, seed_train =H.seed + 2 + H.host_id, seed_eval =H.seed + 2 + H.host_count + H.host_id, ) print('training model on ', H.dataset) # + [markdown] id="Gs8bNNXpTMxZ" # ### Downloading cifar10 dataset # + colab={"base_uri": "https://localhost:8080/"} id="4An20_C-SvCT" outputId="023f5c9a-87fd-4ad8-abc3-0945b9fe4374" # !./setup_cifar10.sh # + [markdown] id="Js-LK-vojdSw" # ### Setting up the model, data and the preprocess fn. # + id="AylLXttfTSca" from data import set_up_data H, data_train, data_valid_or_test, preprocess_fn = set_up_data(H) # + colab={"base_uri": "https://localhost:8080/"} id="GWsr1xszZ_te" outputId="a5ba8d4e-b088-46ec-ac31-b4fbd250618d" from train_helpers import load_vaes H = dataclasses.replace(H, restore_path=checkpoint_path) optimizer, ema_params, start_epoch = load_vaes(H, logprint) # + colab={"base_uri": "https://localhost:8080/"} id="PEH8BtbmaK4O" outputId="f32e3fa2-746e-404b-bbae-aaca80078568" start_epoch # no.of.epochs trained # + colab={"base_uri": "https://localhost:8080/"} id="9nAJ3EGLICEh" outputId="6a47c0b6-aaf0-45a3-8a1c-b0c6bb6b3d40" # Hparams for the current model hparams = dataclasses.asdict(H) for i, k in enumerate(sorted(hparams)): logprint(f'type=hparam, key={k}, value={getattr(H, k)}') # + [markdown] id="HS2o9uFqjgyv" # ### Evaluation # + colab={"base_uri": "https://localhost:8080/"} id="jhiF_NjEuWQv" outputId="b0d88a47-5af0-4452-d1c0-88d90ef1a71e" from train import run_test_eval run_test_eval(H, ema_params, data_valid_or_test, preprocess_fn, logprint) # + [markdown] id="tppWoc_hypdn" # ### Function to save and show of batch of images given as a numpy array. # # # + id="AJbKzeuzzGcS" def zoom_in(fname, shape): im = Image.open(fname) resized_im = im.resize(shape) resized_im.save(fname) def save_n_show(images, order, image_shape, fname, zoom=True, show=False): n_rows, n_images = order im = images.reshape((n_rows, n_images, *image_shape))\ .transpose([0, 2, 1, 3, 4])\ .reshape([n_rows * image_shape[0], n_images * image_shape[1], 3]) print(f'printing samples to {fname}') imageio.imwrite(fname, im) if zoom: zoom_in(fname, (640, 64)) # w=640, h=64 if show: display(Image.open(fname)) # + [markdown] id="9TlNptkdd5ME" # ## Generations # + id="EcnvaTn3iJfo" n_images = 10 num_temperatures = 3 image_shape = [H.image_size,H.image_size,H.image_channels] H = dataclasses.replace(H, num_images_visualize=n_images, num_temperatures_visualize=num_temperatures) # + [markdown] id="LDHUzIgBbjuX" # Images will be saved in the following dir # + colab={"base_uri": "https://localhost:8080/", "height": 0} id="EhJ17q1dfSNu" outputId="fb923dee-dc4d-4e68-e2c5-20f3f41874c1" H.save_dir # + [markdown] id="Xm_BYJYjiuzt" # As the model params are replicated over multiple devices, unreplicated copy of them is made to use it for sampling and generations. # + id="VJbqZRxWilR9" from jax import random from vae import VAE from flax import jax_utils from functools import partial rng = random.PRNGKey(H.seed_sample) ema_apply = partial(VAE(H).apply,{'params': jax_utils.unreplicate(ema_params)}) forward_uncond_samples = partial(ema_apply, method=VAE(H).forward_uncond_samples) # + colab={"base_uri": "https://localhost:8080/"} id="XF5dvNqeRcIC" outputId="477884a0-d016-43c3-96ac-26b3cfd65d55" temperatures = [1.0, 0.9, 0.8, 0.7] for t in temperatures[:H.num_temperatures_visualize]: im = forward_uncond_samples(n_images, rng, t=t) im = np.asarray(im) save_n_show(im, [1,n_images], image_shape, f'{H.save_dir}/generations-tem-{t}.png') # + colab={"base_uri": "https://localhost:8080/", "height": 0} id="RdypV3PJfyfN" outputId="bc5042cf-54c7-4380-e2f2-d36ab4951d65" for t in temperatures[:H.num_temperatures_visualize]: print("="*25) print(f"Generation of {n_images} new images for t={t}") print("="*25) fname = f'{H.save_dir}/generations-tem-{t}.png' display(Image.open(fname)) # + [markdown] id="89M1-l8Ogd2k" # ## Reconstructions # + id="014yXaJfgfhq" n_images = 10 image_shape = [H.image_size,H.image_size,H.image_channels] # + [markdown] id="z5xtClDEYTI-" # Preprocessing images before getting the latents # + id="81EExYe0glPu" from train import get_sample_for_visualization viz_batch_original, viz_batch_processed = get_sample_for_visualization( data_valid_or_test, preprocess_fn, n_images, H.dataset) # + [markdown] id="eDENCERSiMm6" # Getting the partial functions from the model methods # + id="vPpzIoM_hQHK" forward_get_latents = partial(ema_apply, method=VAE(H).forward_get_latents) forward_samples_set_latents = partial( ema_apply, method=VAE(H).forward_samples_set_latents) # + [markdown] id="AnNFN7S7YZe1" # Getting latents of different levels. # + id="nt2_Zjqlha1U" zs = [s['z'] for s in forward_get_latents(viz_batch_processed, rng)] # + [markdown] id="7RA8e6qJYcqF" # No of latent observations used depends on `H.num_variables_visualize `, altering it gives different resolutions of the reconstructions. # + id="ThgwoF6ihe9e" recons = [] lv_points = np.floor(np.linspace(0, 1, H.num_variables_visualize + 2) * len(zs)).astype(int)[1:-1] for i in lv_points: recons.append(forward_samples_set_latents(n_images, zs[:i], rng, t=0.1)) # + [markdown] id="iawVwy7XYp9Z" # Original Images # + colab={"base_uri": "https://localhost:8080/", "height": 115} id="ih0D1sfRhy6F" outputId="8696bbaf-2a7c-4d89-9d7d-ebea19d37e7a" orig_im = np.array(viz_batch_original) print("Original test images") save_n_show(orig_im, [1, n_images], image_shape, f'{H.save_dir}/orig_test.png', show=True) # + [markdown] id="vbFgprJuYr7R" # Reconstructions. # + colab={"base_uri": "https://localhost:8080/", "height": 809} id="Ol7rNCgfh57R" outputId="e8d562cf-206e-42ae-a84b-5a5fd02489e8" for i,r in enumerate(recons): r = np.array(r) print("="*25) print(f"Generation of {n_images} new images for {i+1}x resolution") print("="*25) fname = f'{H.save_dir}/recon_test-res-{i+1}x.png' save_n_show(r, [1, n_images], image_shape, fname, show=True)
kivy/tests/pyinstaller/video_widget/main.py
Galland/kivy
13,889
42807
<reponame>Galland/kivy from project import VideoApp if __name__ == '__main__': from kivy.core.video import Video assert Video is not None VideoApp().run()
scripts/ln_jnas_subset.py
nameless-writer/become-yukarin
562
42817
<gh_stars>100-1000 import argparse import multiprocessing from pathlib import Path from jnas_metadata_loader import load_from_directory from jnas_metadata_loader.jnas_metadata import JnasMetadata parser = argparse.ArgumentParser() parser.add_argument('jnas', type=Path) parser.add_argument('output', type=Path) parser.add_argument('--format', default='{sex}{text_id}_{mic}_atr_{subset}{sen_id}.wav') argument = parser.parse_args() jnas = argument.jnas # type: Path output = argument.output # type: Path jnas_list = load_from_directory(str(jnas)) atr_list = jnas_list.subset_news_or_atr('B') output.mkdir(exist_ok=True) def process(d: JnasMetadata): p = d.path out = output / argument.format.format(**d._asdict()) out.symlink_to(p) pool = multiprocessing.Pool() pool.map(process, atr_list)
speedtest/python3/speedtest.py
guyue/google-diff-match-patch
304
42819
#!/usr/bin/python3 # # Copyright 2010 Google Inc. # All Rights Reserved. """Diff Speed Test """ __author__ = "<EMAIL> (<NAME>)" import imp import gc import sys import time import diff_match_patch as dmp_module # Force a module reload. Allows one to edit the DMP module and rerun the test # without leaving the Python interpreter. imp.reload(dmp_module) def main(): text1 = open("speedtest1.txt").read() text2 = open("speedtest2.txt").read() dmp = dmp_module.diff_match_patch() dmp.Diff_Timeout = 0.0 # Execute one reverse diff as a warmup. dmp.diff_main(text2, text1, False) gc.collect() start_time = time.time() dmp.diff_main(text1, text2, False) end_time = time.time() print("Elapsed time: %f" % (end_time - start_time)) if __name__ == "__main__": main()
chap8/mxnet/benchmark_model.py
wang420349864/dlcv_for_beginners
1,424
42826
import time import mxnet as mx benchmark_dataiter = mx.io.ImageRecordIter( path_imgrec="../data/test.rec", data_shape=(1, 28, 28), batch_size=64, mean_r=128, scale=0.00390625, ) mod = mx.mod.Module.load('mnist_lenet', 35, context=mx.gpu(2)) mod.bind( data_shapes=benchmark_dataiter.provide_data, label_shapes=benchmark_dataiter.provide_label, for_training=False) start = time.time() for i, batch in enumerate(benchmark_dataiter): mod.forward(batch) time_elapsed = time.time() - start msg = '{} batches iterated!\nAverage forward time per batch: {:.6f} ms' print(msg.format(i+1, 1000*time_elapsed/float(i)))
www/apis.py
yumaojun03/blog-python-app
200
42842
<reponame>yumaojun03/blog-python-app #!/usr/bin/env python # -*- coding: utf-8 -*- """ 实现以Json数据格式进行交换的RESTful API 设计原因: 由于API就是把Web App的功能全部封装了,所以,通过API操作数据, 可以极大地把前端和后端的代码隔离,使得后端代码易于测试, 前端代码编写更简单 实现方式: 一个API也是一个URL的处理函数,我们希望能直接通过一个@api来 把函数变成JSON格式的REST API, 因此我们需要实现一个装饰器, 由该装饰器将 函数返回的数据 处理成 json 格式 """ import json import logging import functools from transwarp.web import ctx def dumps(obj): """ Serialize ``obj`` to a JSON formatted ``str``. 序列化对象 """ return json.dumps(obj) class APIError(StandardError): """ the base APIError which contains error(required), data(optional) and message(optional). 存储所有API 异常对象的数据 """ def __init__(self, error, data='', message=''): super(APIError, self).__init__(message) self.error = error self.data = data self.message = message class APIValueError(APIError): """ Indicate the input value has error or invalid. The data specifies the error field of input form. 输入不合法 异常对象 """ def __init__(self, field, message=''): super(APIValueError, self).__init__('value:invalid', field, message) class APIResourceNotFoundError(APIError): """ Indicate the resource was not found. The data specifies the resource name. 资源未找到 异常对象 """ def __init__(self, field, message=''): super(APIResourceNotFoundError, self).__init__('value:notfound', field, message) class APIPermissionError(APIError): """ Indicate the api has no permission. 权限 异常对象 """ def __init__(self, message=''): super(APIPermissionError, self).__init__('permission:forbidden', 'permission', message) def api(func): """ A decorator that makes a function to json api, makes the return value as json. 将函数返回结果 转换成json 的装饰器 @api需要对Error进行处理。我们定义一个APIError, 这种Error是指API调用时发生了逻辑错误(比如用户不存在) 其他的Error视为Bug,返回的错误代码为internalerror @app.route('/api/test') @api def api_test(): return dict(result='123', items=[]) """ @functools.wraps(func) def _wrapper(*args, **kw): try: r = dumps(func(*args, **kw)) except APIError, e: r = json.dumps(dict(error=e.error, data=e.data, message=e.message)) except Exception, e: logging.exception(e) r = json.dumps(dict(error='internalerror', data=e.__class__.__name__, message=e.message)) ctx.response.content_type = 'application/json' return r return _wrapper if __name__ == '__main__': import doctest doctest.testmod()
tools/bin/pythonSrc/pychecker-0.8.18/test_input/test25.py
YangHao666666/hawq
450
42859
'doc' import sys class A: 'doc' z = 1 def x(self): pass def xxx(): print A.x() print A.z print A.a print A.y() print sys.lkjsdflksjasdlf
vakt/storage/sql/__init__.py
chuxuantinh/vakt
132
42863
<filename>vakt/storage/sql/__init__.py """ SQL Storage for Policies. """ import logging from sqlalchemy import and_, or_, literal, func from sqlalchemy.exc import IntegrityError from sqlalchemy.orm.exc import FlushError from .model import PolicyModel, PolicyActionModel, PolicyResourceModel, PolicySubjectModel from ..abc import Storage from ...checker import StringExactChecker, StringFuzzyChecker, RegexChecker, RulesChecker from ...exceptions import PolicyExistsError, UnknownCheckerType from ...policy import TYPE_STRING_BASED, TYPE_RULE_BASED log = logging.getLogger(__name__) class SQLStorage(Storage): """Stores all policies in SQL Database""" def __init__(self, scoped_session): """ Initialize SQL Storage :param scoped_session: SQL Alchemy scoped session """ self.session = scoped_session self.dialect = self.session.bind.engine.dialect.name def add(self, policy): try: policy_model = PolicyModel.from_policy(policy) self.session.add(policy_model) self.session.commit() except IntegrityError: self.session.rollback() log.error('Error trying to create already existing policy with UID=%s.', policy.uid) raise PolicyExistsError(policy.uid) # todo - figure out why FlushError is raised instead of IntegrityError on PyPy tests except FlushError as e: if 'conflicts with persistent instance' in str(e): self.session.rollback() log.error('Error trying to create already existing policy with UID=%s.', policy.uid) raise PolicyExistsError(policy.uid) log.info('Added Policy: %s', policy) def get(self, uid): policy_model = self.session.query(PolicyModel).get(uid) if not policy_model: return None return policy_model.to_policy() def get_all(self, limit, offset): self._check_limit_and_offset(limit, offset) cur = self.session.query(PolicyModel).order_by(PolicyModel.uid.asc()).slice(offset, offset + limit) for policy_model in cur: yield policy_model.to_policy() def find_for_inquiry(self, inquiry, checker=None): cur = self._get_filtered_cursor(inquiry, checker) for policy_model in cur: yield policy_model.to_policy() def update(self, policy): try: policy_model = self.session.query(PolicyModel).get(policy.uid) if not policy_model: return policy_model.update(policy) self.session.commit() except IntegrityError: self.session.rollback() raise log.info('Updated Policy with UID=%s. New value is: %s', policy.uid, policy) def delete(self, uid): self.session.query(PolicyModel).filter(PolicyModel.uid == uid).delete() log.info('Deleted Policy with UID=%s.', uid) def _get_filtered_cursor(self, inquiry, checker): """ Returns cursor with proper query-filter based on the checker type. """ cur = self.session.query(PolicyModel) if isinstance(checker, StringFuzzyChecker): return cur.filter( PolicyModel.type == TYPE_STRING_BASED, PolicyModel.actions.any(PolicyActionModel.action_string.like('%{}%'.format(inquiry.action))), PolicyModel.resources.any(PolicyResourceModel.resource_string.like('%{}%'.format(inquiry.resource))), PolicyModel.subjects.any(PolicySubjectModel.subject_string.like('%{}%'.format(inquiry.subject)))) elif isinstance(checker, StringExactChecker): return cur.filter( PolicyModel.type == TYPE_STRING_BASED, PolicyModel.actions.any(PolicyActionModel.action_string == inquiry.action), PolicyModel.resources.any(PolicyResourceModel.resource_string == inquiry.resource), PolicyModel.subjects.any(PolicySubjectModel.subject_string == inquiry.subject)) elif isinstance(checker, RegexChecker): if not self._supports_regex_operator(): return cur.filter(PolicyModel.type == TYPE_STRING_BASED) return cur.filter( PolicyModel.type == TYPE_STRING_BASED, PolicyModel.actions.any( or_( and_(PolicyActionModel.action_regex.is_(None), PolicyActionModel.action_string == inquiry.action), and_(PolicyActionModel.action_regex.isnot(None), self._regex_operation(inquiry.action, PolicyActionModel.action_regex)) ), ), PolicyModel.resources.any( or_( and_(PolicyResourceModel.resource_regex.is_(None), PolicyResourceModel.resource_string == inquiry.resource), and_(PolicyResourceModel.resource_regex.isnot(None), self._regex_operation(inquiry.resource, PolicyResourceModel.resource_regex)) ), ), PolicyModel.subjects.any( or_( and_(PolicySubjectModel.subject_regex.is_(None), PolicySubjectModel.subject_string == inquiry.subject), and_(PolicySubjectModel.subject_regex.isnot(None), self._regex_operation(inquiry.subject, PolicySubjectModel.subject_regex)) ), ) ) elif isinstance(checker, RulesChecker): return cur.filter(PolicyModel.type == TYPE_RULE_BASED) elif not checker: return cur else: log.error('Provided Checker type is not supported.') raise UnknownCheckerType(checker) def _supports_regex_operator(self): """ Does database support regex operator? """ return self.dialect in ['mysql', 'postgresql', 'oracle'] def _regex_operation(self, left, right): """ Get database-specific regex operation. Don't forget to check if there is a support for regex operator before using it. """ if self.dialect == 'mysql': return literal(left).op('REGEXP BINARY', is_comparison=True)(right) elif self.dialect == 'postgresql': return literal(left).op('~', is_comparison=True)(right) elif self.dialect == 'oracle': return func.REGEXP_LIKE(left, right) return None
objax/functional/parallel.py
kihyuks/objax
715
42868
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['partial', 'pmax', 'pmean', 'pmin', 'psum'] from functools import partial import jax from jax import lax def pmax(x: jax.interpreters.pxla.ShardedDeviceArray, axis_name: str = 'device'): """Compute a multi-device reduce max on x over the device axis axis_name.""" return lax.pmax(x, axis_name) def pmean(x: jax.interpreters.pxla.ShardedDeviceArray, axis_name: str = 'device'): """Compute a multi-device reduce mean on x over the device axis axis_name.""" return lax.pmean(x, axis_name) def pmin(x: jax.interpreters.pxla.ShardedDeviceArray, axis_name: str = 'device'): """Compute a multi-device reduce min on x over the device axis axis_name.""" return lax.pmin(x, axis_name) def psum(x: jax.interpreters.pxla.ShardedDeviceArray, axis_name: str = 'device'): """Compute a multi-device reduce sum on x over the device axis axis_name.""" return lax.psum(x, axis_name)
doubanfm/model.py
fakegit/douban.fm
783
42911
<gh_stars>100-1000 #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ 数据层 """ from threading import RLock, Thread import logging import functools from six.moves import queue from doubanfm.API.api import Doubanfm from doubanfm.API.netease_api import Netease from doubanfm.config import db_config logger = logging.getLogger('doubanfm') douban = Doubanfm() mutex = RLock() QUEUE_SIZE = 5 class Playlist(object): """ 播放列表, 各个方法互斥 使用方法: playlist = Playlist() playingsong = playlist.get_song() 获取当前播放歌曲 playingsong = playlist.get_playingsong() """ def __init__(self): self._playlist = queue.Queue(QUEUE_SIZE) self._daily_playlist = [] # 每日推荐歌曲 self._daily_playlist_index = -1 # 歌曲 self._playingsong = None self._get_first_song() # 根据歌曲来改变歌词 self._lrc = {} self._pre_playingsong = None # 会有重复的歌曲避免重复播放 self.hash_sid = {} def lock(func): """ 互斥锁 """ @functools.wraps(func) def _func(*args, **kwargs): mutex.acquire() try: return func(*args, **kwargs) finally: mutex.release() return _func def _watchdog(self): """ 更新队列线程 """ sid = self._playingsong['sid'] while 1: # 本次播放里去重 while 1: song = douban.get_song(sid) if not song: continue sid = song['sid'] if sid not in self.hash_sid: break self._playlist.put(song) if not self._playingsong: self._playlist.get(False) @lock def _get_first_song(self): song = douban.get_first_song() if song: self._playlist.put(song) self._playingsong = song Thread(target=self._watchdog).start() def get_lrc(self): """ 返回当前播放歌曲歌词 """ if self._playingsong != self._pre_playingsong: self._lrc = douban.get_lrc(self._playingsong) self._pre_playingsong = self._playingsong return self._lrc def set_channel(self, channel_num): """ 设置api发送的FM频道 :params channel_num: channel_list的索引值 int """ douban.set_channel(channel_num) self.empty() if channel_num != 2: self._get_first_song() def set_song_like(self, playingsong): douban.rate_music(playingsong['sid']) def set_song_unlike(self, playingsong): douban.unrate_music(playingsong['sid']) def get_daily_songs(self): """ 获取每日推荐歌曲 """ self._daily_playlist = douban.get_daily_songs() # 加入索引 for index, i in enumerate(self._daily_playlist): i['title'] = str(index + 1) + '/' + str(len(self._daily_playlist)) + ' ' + i['title'] def get_daily_song(self, netease=False): """ 获取单个歌曲 """ if not self._daily_playlist: self.get_daily_songs() self._daily_playlist_index = 0 else: self._daily_playlist_index = (self._daily_playlist_index + 1) % len(self._daily_playlist) song = self._daily_playlist[self._daily_playlist_index] song['index'] = self._daily_playlist_index self.get_netease_song(song, netease) # 判断是否网易320k self._playingsong = song return song @lock def bye(self): """ 不再播放, 返回新列表 """ douban.bye(self._playingsong['sid']) @lock def get_song(self, netease=False): """ 获取歌曲, 对外统一接口 """ song = self._playlist.get(True) self.hash_sid[song['sid']] = True # 去重 self.get_netease_song(song, netease) # 判断是否网易320k self._playingsong = song return song def get_netease_song(self, song, netease): # 网易320k音乐 if netease: url, kbps = Netease().get_url_and_bitrate(song['title']) if url and kbps: song['url'], song['kbps'] = url, kbps @lock def get_playingsong(self): return self._playingsong @lock def empty(self): """ 清空playlist """ self._playingsong = None self._playlist = queue.Queue(QUEUE_SIZE) def submit_music(self, playingsong): douban.submit_music(playingsong['sid']) class History(object): def __init__(self): db_config.history class Channel(object): def __init__(self): self.lines = douban.channels
froide/campaign/listeners.py
xenein/froide
198
42920
<gh_stars>100-1000 from .utils import connect_foirequest def connect_campaign(sender, **kwargs): reference = kwargs.get("reference") if not reference: return if "@" in reference: parts = reference.split("@", 1) else: parts = reference.split(":", 1) if len(parts) != 2: return namespace = parts[0] connect_foirequest(sender, namespace)
rayleigh/searchable_collection.py
mgsh/rayleigh
185
42921
""" Methods to search an ImageCollection with brute force, exhaustive search. """ import cgi import abc import cPickle import numpy as np from sklearn.decomposition import PCA from sklearn.metrics.pairwise import \ manhattan_distances, euclidean_distances, additive_chi2_kernel import pyflann from scipy.spatial import cKDTree import util from image import Image from rayleigh.util import TicToc tt = TicToc() class SearchableImageCollection(object): """ Initialize with a rayleigh.ImageCollection, a distance_metric, and the number of dimensions to reduce the histograms to. Parameters ---------- image_collection : rayleigh.ImageCollection dist_metric : string must be in self.DISTANCE_METRICS sigma : nonnegative float Amount of smoothing applied to histograms. If 0, none. num_dimensions : int number of dimensions to reduce the histograms to, using PCA. If 0, do not reduce dimensions. """ def __init__(self, image_collection, dist_metric, sigma, num_dimensions): self.ic = image_collection self.id_ind_map = self.ic.get_id_ind_map() self.distance_metric = dist_metric if self.distance_metric not in self.DISTANCE_METRICS: raise Exception("Unsupported distance metric.") self.num_dimensions = num_dimensions self.hists_reduced = self.ic.get_hists() self.sigma = sigma if self.sigma > 0: self.smooth_histograms() if self.num_dimensions > 0: self.reduce_dimensionality() @staticmethod def load(filename): """ Load ImageCollection from filename. """ return cPickle.load(open(filename)) def save(self, filename): """ Save self to filename. """ cPickle.dump(self, open(filename, 'w'), 2) def smooth_histograms(self): """ Smooth histograms with a Gaussian. """ for i in range(self.hists_reduced.shape[0]): color_hist = self.hists_reduced[i, :] self.hists_reduced[i, :] = util.smooth_histogram( color_hist, self.ic.palette, self.sigma) def reduce_dimensionality(self): """ Compute and store PCA dimensionality-reduced histograms. """ tt.tic('reduce_dimensionality') self.pca = PCA(n_components=self.num_dimensions, whiten=True) self.pca.fit(self.hists_reduced) self.hists_reduced = self.pca.transform(self.hists_reduced) tt.toc('reduce_dimensionality') def get_image_hist(self, img_id): """ Return the smoothed image histogram of the image with the given id. Parameters ---------- img_id : string Returns ------- color_hist : ndarray """ img_ind = self.id_ind_map[img_id] color_hist = self.hists_reduced[img_ind, :] return color_hist def search_by_image_in_dataset(self, img_id, num=20): """ Search images in database for similarity to the image with img_id in the database. See search_by_color_hist() for implementation. Parameters ---------- img_id : string num : int, optional Returns ------- query_img_data : dict results : list list of dicts of nearest neighbors to query """ query_img_data = self.ic.get_image(img_id, no_hist=True) color_hist = self.get_image_hist(img_id) results, time_elapsed = self.search_by_color_hist(color_hist, num, reduced=True) return query_img_data, results, time_elapsed def search_by_image(self, image_filename, num=20): """ Search images in database by color similarity to image. See search_by_color_hist(). """ query_img = Image(image_filename) color_hist = util.histogram_colors_smoothed( query_img.lab_array, self.ic.palette, sigma=self.sigma, direct=False) results, time_elapsed = self.search_by_color_hist(color_hist) return query_img.as_dict(), results, time_elapsed def search_by_color_hist(self, color_hist, num=20, reduced=False): """ Search images in database by color similarity to the given histogram. Parameters ---------- color_hist : (K,) ndarray histogram over the color palette num : int, optional number of nearest neighbors to ret reduced : boolean, optional is the given color_hist already reduced in dimensionality? Returns ------- query_img : dict info about the query image results : list list of dicts of nearest neighbors to query """ if self.num_dimensions > 0 and not reduced: color_hist = self.pca.transform(color_hist) tt.tic('nn_ind') nn_ind, nn_dists = self.nn_ind(color_hist, num) time_elapsed = tt.qtoc('nn_ind') results = [] # TODO: tone up the amount of data returned: don't need resized size, # _id, maybe something else? for ind, dist in zip(nn_ind, nn_dists): img_id = self.id_ind_map[ind] img = self.ic.get_image(img_id, no_hist=True) img['url'] = cgi.escape(img['url']) img['distance'] = dist results.append(img) return results, time_elapsed @abc.abstractmethod def nn_ind(self, color_hist, num): """ Return num closest nearest neighbors (potentially approximate) to the query color_hist, and the distances to them. Override this search method in extending classes. Parameters ---------- color_hist : (K,) ndarray histogram over the color palette num : int number of nearest neighbors to return. Returns ------- nn_ind : (num,) ndarray Indices of the neighbors in the dataset. nn_dists (num,) ndarray Distances to the neighbors returned. """ pass class SearchableImageCollectionExact(SearchableImageCollection): """ Search the image collection exhaustively (mainly through np.dot). """ DISTANCE_METRICS = ['manhattan', 'euclidean', 'chi_square'] def nn_ind(self, color_hist, num): """ Exact nearest neighbor seach through exhaustive comparison. """ if self.distance_metric == 'manhattan': dists = manhattan_distances(color_hist, self.hists_reduced) elif self.distance_metric == 'euclidean': dists = euclidean_distances(color_hist, self.hists_reduced, squared=True) elif self.distance_metric == 'chi_square': dists = -additive_chi2_kernel(color_hist, self.hists_reduced) dists = dists.flatten() nn_ind = np.argsort(dists).flatten()[:num] nn_dists = dists[nn_ind] return nn_ind, nn_dists class SearchableImageCollectionFLANN(SearchableImageCollection): """ Search the image collection using the FLANN library for aNN indexing. The FLANN index is built with automatic tuning of the search algorithm, which can take a while (~90s on 25K images). """ DISTANCE_METRICS = ['manhattan', 'euclidean', 'chi_square'] @staticmethod def load(filename): # Saving the flann object results in memory errors, so we use its own # method to save its index in a separate file. sic = cPickle.load(open(filename)) return sic.build_index(filename + '_flann_index') def save(self, filename): # See comment in load(). flann = self.flann self.flann = None cPickle.dump(self, open(filename, 'w'), 2) flann.save_index(filename + '_flann_index') self.flann = flann def __init__(self, image_collection, distance_metric, sigma, dimensions): super(SearchableImageCollectionFLANN, self).__init__( image_collection, distance_metric, sigma, dimensions) self.build_index() def build_index(self, index_filename=None): tt.tic('build_index') pyflann.set_distance_type(self.distance_metric) self.flann = pyflann.FLANN() if index_filename: self.flann.load_index(index_filename, self.hists_reduced) else: self.params = self.flann.build_index( self.hists_reduced, algorithm='autotuned', sample_fraction=0.3, target_precision=.8, build_weight=0.01, memory_weight=0.) print(self.params) tt.toc('build_index') return self def nn_ind(self, color_hist, num): nn_ind, nn_dists = self.flann.nn_index( color_hist, num, checks=self.params['checks']) return nn_ind.flatten(), nn_dists.flatten() class SearchableImageCollectionCKDTree(SearchableImageCollection): """ Use the cKDTree data structure from scipy.spatial for the index. Parameters: - LEAF_SIZE (int): The number of points at which the algorithm switches over to brute-force. - EPS (non-negative float): Parameter for query(), such that the k-th returned value is guaranteed to be no further than (1 + eps) times the distance to the real k-th nearest neighbor. NOTE: These parameters have not been tuned. """ DISTANCE_METRICS = ['manhattan', 'euclidean'] Ps = {'manhattan': 1, 'euclidean': 2} LEAF_SIZE = 5 EPSILON = 1 @staticmethod def load(filename): return cPickle.load(open(filename)).build_index() def __init__(self, image_collection, distance_metric, sigma, dimensions): super(SearchableImageCollectionCKDTree, self).__init__( image_collection, distance_metric, sigma, dimensions) self.build_index() def build_index(self): tt.tic('build_index_ckdtree') self.ckdtree = cKDTree(self.hists_reduced, self.LEAF_SIZE) self.p = self.Ps[self.distance_metric] tt.toc('build_index_ckdtree') return self def nn_ind(self, color_hist, num): nn_dists, nn_ind = self.ckdtree.query( color_hist, num, eps=self.EPSILON, p=self.p) return nn_ind.flatten(), nn_dists.flatten()
Code/coupon_collector.py
PacktPublishing/Modern-Python-Cookbook
107
42922
<reponame>PacktPublishing/Modern-Python-Cookbook<gh_stars>100-1000 """Python Cookbook See http://www.brynmawr.edu/math/people/anmyers/PAPERS/SIGEST_Coupons.pdf and https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind and https://en.wikipedia.org/wiki/Binomial_coefficient """ from math import factorial def expected(n, population=8): """ What is the probability p(n, d) that exactly n boxes of cereal will have to be purchased in order to obtain, for the first time, a complete collection of at least one of each of the d kinds of souvenir coupons? .. math:: p(n, d) = \frac{d!}{d^n} \lbrace\textstyle{ n-1 \atop d-1 }\rbrace """ return factorial(population)/population**n * stirling2(n-1, population-1) def binom(n, k): """ .. math:: \binom n k = \frac{n!}{k!\,(n-k)!} \quad \text{for }\ 0\leq k\leq n """ return factorial(n)/(factorial(k)*factorial(n-k)) def stirling2(n, k): """ The Stirling numbers of the second kind, written S(n,k) or :math:`\lbrace\textstyle{n\atop k}\rbrace` count the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets. .. math:: \lbrace\textstyle{n\atop n}\rbrace = 1 \\ \lbrace\textstyle{n\atop 1}\rbrace = 1 \\ \lbrace\textstyle{n\atop k}\rbrace = k \lbrace\textstyle{n-1 \atop k}\rbrace + \lbrace\textstyle{n-1 \atop k-1}\rbrace Or .. math:: \left\{ {n \atop k}\right\} = \frac{1}{k!}\sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^n """ return 1/factorial(k)*sum( (-1 if (k-j)%2 else 1)*binom(k,j)*j**n for j in range(0,k+1) ) if __name__ == "__main__": for i in range(8,30): print(i, expected(i, 8)) print(binom(24,12))
kaldi/base/__init__.py
mxmpl/pykaldi
916
42930
from ._kaldi_error import * from ._timer import * __all__ = [name for name in dir() if name[0] != '_' and not name.endswith('Base')]
saas/dataops/api/dataset/APP-META-PRIVATE/postrun/00_init_job.py
iuskye/SREWorks
407
42963
<filename>saas/dataops/api/dataset/APP-META-PRIVATE/postrun/00_init_job.py<gh_stars>100-1000 # coding: utf-8 from common import checker from warehouse import entry as warehouse_entry from pmdb import entry as pmdb_entry from dataset import entry as dataset_entry from health import entry as health_entry from job import entry as job_entry from es import entry as es_entry checker.check_sreworks_data_service_ready() print("======start init warehouse======") warehouse_entry.init() print("======end init warehouse======") print("======start init pmdb======") pmdb_entry.init() print("======end init pmdb======") print("======start init dataset======") dataset_entry.init() print("======end init dataset======") print("======start init health======") health_entry.init() print("======end init health======") print("======start init es======") es_entry.init() print("======end init es======") print("======start init job======") job_entry.init() print("======end init job======")
tests/util_test.py
gurpradeep/securitybot
1,053
42970
<gh_stars>1000+ from unittest2 import TestCase from datetime import datetime, timedelta import securitybot.util as util class VarTest(TestCase): def test_hours(self): assert util.OPENING_HOUR < util.CLOSING_HOUR, 'Closing hour must be after opening hour.' class NamedTupleTest(TestCase): def test_empty(self): tup = util.tuple_builder() assert tup.answer is None assert tup.text == '' def test_full(self): tup = util.tuple_builder(True, 'Yes') assert tup.answer is True assert tup.text == 'Yes' class BusinessHoursTest(TestCase): def test_weekday(self): '''Test business hours during a weekday.''' # 18 July 2016 is a Monday. If this changes, please contact the IERS. morning = datetime(year=2016, month=7, day=18, hour=util.OPENING_HOUR, tzinfo=util.LOCAL_TZ) assert util.during_business_hours(morning) noon = datetime(year=2016, month=7, day=18, hour=12, tzinfo=util.LOCAL_TZ) assert util.during_business_hours(noon), \ 'This may fail if noon is no longer during business hours.' afternoon = datetime(year=2016, month=7, day=18, hour=util.CLOSING_HOUR - 1, minute=59, second=59, tzinfo=util.LOCAL_TZ) assert util.during_business_hours(afternoon) breakfast = datetime(year=2016, month=7, day=18, hour=util.OPENING_HOUR - 1, minute=59, second=59, tzinfo=util.LOCAL_TZ) assert not util.during_business_hours(breakfast) supper = datetime(year=2016, month=7, day=18, hour=util.CLOSING_HOUR, tzinfo=util.LOCAL_TZ) assert not util.during_business_hours(supper) def test_weekend(self): '''Test "business hours" during a weekend.''' # As such, 17 July 2016 is a Sunday. sunday_morning = datetime(year=2016, month=7, day=17, hour=util.OPENING_HOUR, tzinfo=util.LOCAL_TZ) assert not util.during_business_hours(sunday_morning) class ExpirationTimeTest(TestCase): def test_same_day(self): '''Test time delta within the same day.''' date = datetime(year=2016, month=7, day=18, hour=util.OPENING_HOUR, tzinfo=util.LOCAL_TZ) td = timedelta(hours=((util.CLOSING_HOUR - util.OPENING_HOUR) % 24) / 2) after = date + td assert util.get_expiration_time(date, td) == after def test_next_weekday(self): '''Test time delta overnight.''' date = datetime(year=2016, month=7, day=18, hour=util.CLOSING_HOUR - 1, tzinfo=util.LOCAL_TZ) next_date = datetime(year=2016, month=7, day=19, hour=util.OPENING_HOUR + 1, tzinfo=util.LOCAL_TZ) assert util.get_expiration_time(date, timedelta(hours=2)) == next_date def test_edge_weekday(self): '''Test time delta overnight just barely within range.''' date = datetime(year=2016, month=7, day=18, hour=util.CLOSING_HOUR - 1, minute=59, second=59, tzinfo=util.LOCAL_TZ) td = timedelta(seconds=1) after = datetime(year=2016, month=7, day=19, hour=util.OPENING_HOUR, tzinfo=util.LOCAL_TZ) assert util.get_expiration_time(date, td) == after def test_next_weekend(self): '''Test time delta over a weekend.''' date = datetime(year=2016, month=7, day=15, hour=util.CLOSING_HOUR - 1, tzinfo=util.LOCAL_TZ) next_date = datetime(year=2016, month=7, day=18, hour=util.OPENING_HOUR + 1, tzinfo=util.LOCAL_TZ) assert util.get_expiration_time(date, timedelta(hours=2)) == next_date def test_edge_weekend(self): '''Test time delta over a weekend just barely within range.''' date = datetime(year=2016, month=7, day=15, hour=util.CLOSING_HOUR - 1, minute=59, second=59, tzinfo=util.LOCAL_TZ) td = timedelta(seconds=1) after = datetime(year=2016, month=7, day=18, hour=util.OPENING_HOUR, tzinfo=util.LOCAL_TZ) assert util.get_expiration_time(date, td) == after
observations/r/swahili.py
hajime9652/observations
199
42973
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def swahili(path): """Swahili Attitudes towards the Swahili language among Kenyan school children A dataset with 480 observations on the following 4 variables. `Province` `NAIROBI` or `PWANI` `Sex` `female` or `male` `Attitude.Score` Score (out a possible 200 points) on a survey of attitude towards the Swahili language `School` Code for the school: `A` through `L` Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `swahili.csv`. Returns: Tuple of np.ndarray `x_train` with 480 rows and 4 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'swahili.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/Stat2Data/Swahili.csv' maybe_download_and_extract(path, url, save_file_name='swahili.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
gdal/perftests/overview.py
jpapadakis/gdal
3,100
43035
<reponame>jpapadakis/gdal<filename>gdal/perftests/overview.py # SPDX-License-Identifier: MIT # Copyright 2020 <NAME> from osgeo import gdal import time def doit(compress, threads): gdal.SetConfigOption('GDAL_NUM_THREADS', str(threads)) filename = '/vsimem/test.tif' ds = gdal.GetDriverByName('GTiff').Create(filename, 20000, 20000, 3, options = ['COMPRESS=' + compress, 'TILED=YES']) ds.GetRasterBand(1).Fill(50) ds.GetRasterBand(3).Fill(100) ds.GetRasterBand(3).Fill(200) ds = None ds = gdal.Open(filename, gdal.GA_Update) start = time.time() ds.BuildOverviews('CUBIC', [2,4,8]) end = time.time() print('COMPRESS=%s, NUM_THREADS=%d: %.2f' % (compress, threads, end - start)) gdal.SetConfigOption('GDAL_NUM_THREADS', None) doit('NONE', 0) doit('NONE', 2) doit('NONE', 4) doit('NONE', 8) doit('ZSTD', 0) doit('ZSTD', 2) doit('ZSTD', 4) doit('ZSTD', 8)
tests/perf_test/mind_expression_perf/generate_report.py
PowerOlive/mindspore
3,200
43055
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import sys import re import json import os import time import openpyxl as opx def parse_arguments(): print(sys.argv) me_report_path = sys.argv[1] log_path = sys.argv[2] n_iter = sys.argv[3] out = sys.argv[4] assert n_iter.isdigit() return me_report_path, log_path, int(n_iter), out def extract_by_keyword(doc, keyword, pattern): rst = [] for i, s in enumerate(doc): if keyword in s: p = re.findall(pattern, s) print("L%d: extracted %s from '%s'" % (i, p, s.strip())) rst.extend(p) return rst def process_log(fname, log_path, n_iter, keyword, pattern): rnt = {} for i in range(1, 1+n_iter): fname_path = os.path.join(log_path, fname % i) with open(fname_path) as f: print("\nLoading %s" % fname_path) rst = extract_by_keyword(f, keyword, pattern) rnt[fname % i] = rst return rnt def summarize(func): def wrapper(*args, **kwargs): log = func(*args, **kwargs) times = list(log.items()) times.sort(key=lambda x: x[1]) min_file, min_time = times[0] avg = sum(map(lambda x: x[1], times)) / len(times) log["min_time"] = min_time log["min_file"] = min_file log["avg_time"] = avg return log return wrapper @summarize def process_bert_log(log_path, n_iter): fname = "bert%d.log" total = process_log(fname, log_path, n_iter, "TotalTime", r"\d+.\d+") task = process_log(fname, log_path, n_iter, "task_emit", r"\d+.\d+") log = {} for fname in total: log[fname] = float(total[fname][0]) - float(task[fname][0]) return log @summarize def process_resnet_log(log_path, n_iter): fname = "resnet%d.log" total = process_log(fname, log_path, n_iter, "TotalTime", r"\d+.\d+") task = process_log(fname, log_path, n_iter, "task_emit", r"\d+.\d+") log = {} for fname in total: log[fname] = float(total[fname][0]) - float(task[fname][0]) return log @summarize def process_gpt_log(log_path, n_iter): fname = "gpt%d.log" total = process_log(fname, log_path, n_iter, "TotalTime", r"\d+.\d+") task = process_log(fname, log_path, n_iter, "task_emit", r"\d+.\d+") log = {} for fname in total: log[fname] = float(total[fname][0]) - float(task[fname][0]) return log @summarize def process_reid_log(log_path, n_iter): log = {} for i in range(8): fname = "reid_%d_"+str(i)+".log" total = process_log(fname, log_path, n_iter, "TotalTime", r"\d+.\d+") task = process_log(fname, log_path, n_iter, "task_emit", r"\d+.\d+") for fname in total: log[fname] = float(total[fname][0]) - float(task[fname][0]) return log def write_to_me_report(log, me_report_path): wb = opx.load_workbook(me_report_path) sheet = wb["Sheet"] idx = sheet.max_row + 1 date = time.strftime('%m%d', time.localtime()) sheet['A%d' % idx] = date sheet['B%d' % idx] = round(log["reid"]["min_time"], 2) sheet['C%d' % idx] = round(log["bert"]["min_time"], 2) sheet['D%d' % idx] = round(log['resnet']["min_time"], 2) sheet['E%d' % idx] = round(log['gpt']["min_time"], 2) wb.save(me_report_path) def generate_report(): me_report_path, log_path, n_iter, out = parse_arguments() log_data = {} bert_log = process_bert_log(log_path, n_iter) resnet_log = process_resnet_log(log_path, n_iter) gpt_log = process_gpt_log(log_path, n_iter) reid_log = process_reid_log(log_path, n_iter) log_data["bert"] = bert_log log_data["resnet"] = resnet_log log_data["gpt"] = gpt_log log_data["reid"] = reid_log with open(out, "w") as f: json.dump(log_data, f, indent=2) write_to_me_report(log_data, me_report_path) if __name__ == "__main__": generate_report()
Model_Free_L2O/L2O-Swarm/src/loss.py
JohnZ03/Open-L2O
112
43067
import pickle import numpy as np import matplotlib.pyplot as plt with open('./quadratic/eval_record.pickle','rb') as loss: data = pickle.load(loss) print('Mat_record',len(data['Mat_record'])) #print('bias',data['inter_gradient_record']) #print('constant',data['intra_record']) with open('./quadratic/evaluate_record.pickle','rb') as loss1: data1 = pickle.load(loss1) x = np.array(data1['x_record']) print('x_record',x.shape) #print('bias',data1['inter_gradient_record']) #print('constant',data1['intra_record']) #x = range(10000) #ax = plt.axes(yscale='log') #ax.plot(x,data,'b') #plt.show('loss')
tools/similarity.py
bruinxiong/gnerf
137
43069
<reponame>bruinxiong/gnerf import torch from kornia.losses import ssim as dssim from lpips_pytorch import LPIPS lpips_fn = LPIPS(net_type='alex', version='0.1') lpips_fn.eval() def mse(image_pred, image_gt, valid_mask=None, reduction='mean'): value = (image_pred - image_gt) ** 2 if valid_mask is not None: value = value[valid_mask] if reduction == 'mean': return torch.mean(value) return value def psnr(image_pred, image_gt, valid_mask=None, reduction='mean'): image_pred = image_pred / 2 + 0.5 image_gt = image_gt / 2 + 0.5 return -10 * torch.log10(mse(image_pred, image_gt, valid_mask, reduction)) def ssim(image_pred, image_gt, reduction='mean'): image_pred = image_pred / 2 + 0.5 image_gt = image_gt / 2 + 0.5 dssim_ = dssim(image_pred, image_gt, 3, reduction) # dissimilarity in [0, 1] return 1 - 2 * dssim_ # in [-1, 1] def lpips(image_pred, image_gt, device='cpu'): lpips_fn.to(device) with torch.no_grad(): lpips_ = lpips_fn(image_pred, image_gt) return lpips_.mean().item()
tests/utils.py
sjamgade/python-socks
158
43090
import socket def is_connectable(host, port): sock = None try: sock = socket.create_connection((host, port), 1) result = True except socket.error: result = False finally: if sock: sock.close() return result
pypyr/steps/append.py
mofm/pypyr
261
43174
<reponame>mofm/pypyr<filename>pypyr/steps/append.py """pypyr step that appends items to a mutable sequence, such as a list.""" import logging from pypyr.utils.asserts import assert_key_exists, assert_key_is_truthy logger = logging.getLogger(__name__) def run_step(context): """Append item to a mutable sequence. Expects input: append: list (list or str): Add addMe to this mutable sequence. addMe (any): Add this item to the list. unpack (bool): Optional. Defaults False. If True, enumerate addMe and append each item individually. If append.list is a str, it refers to a key in context which contains a list, e.g context['my_list'] = [1, 2, 3]. If no such key exists, will create a list with that name and add addMe as the 1st item on the new list. This is an append, not an extend, unless append.unpack = True. If you want to add to a set, use pypyr.steps.add instead. Args: context (pypyr.context.Context): Mandatory. Context is a dictionary or dictionary-like. Context must contain key 'append' """ logger.debug("started") context.assert_key_has_value(key='append', caller=__name__) step_input = context.get_formatted('append') assert_key_is_truthy(obj=step_input, key='list', caller=__name__, parent='append') assert_key_exists(obj=step_input, key='addMe', caller=__name__, parent='append') lst = step_input['list'] add_me = step_input['addMe'] is_extend = step_input.get('unpack', False) # str value means referring to a key in context rather than list instance if isinstance(lst, str): existing_sequence = context.get(lst, None) if existing_sequence: append_or_extend_list(existing_sequence, add_me, is_extend) else: # list(x) works only if x is iterable, [x] works when x != iterable context[lst] = list(add_me) if is_extend else [add_me] else: # anything that supports append: list, deque, array... if not is_extend append_or_extend_list(lst, add_me, is_extend) logger.debug("started") def append_or_extend_list(lst, add_me, is_extend): """Append or extend list. Args: lst (list-like): The list to append/extend add_me (any): Item(s) to append/extend to lst is_extend (bool): If True does extend rather than append. Returns: None """ if is_extend: lst.extend(add_me) else: lst.append(add_me)
dvc/utils/pkg.py
lucasalavapena/dvc
9,136
43199
<filename>dvc/utils/pkg.py try: # file is created during dvc build from .build import PKG # noqa, pylint:disable=unused-import except ImportError: PKG = None # type: ignore[assignment]
utils/cpu_affinity.py
jie311/RangeDet
125
43224
<filename>utils/cpu_affinity.py<gh_stars>100-1000 import psutil import os import subprocess import logging def simple_bind_cpus(rank, num_partition, logical=False): pid = os.getpid() p = psutil.Process(pid) cpu_count = psutil.cpu_count(logical=logical) cpu_count_per_worker = cpu_count // num_partition cpu_list = list(range(rank * cpu_count_per_worker, (rank + 1) * cpu_count_per_worker)) print("bind cpu list:{}".format(cpu_list)) p.cpu_affinity(cpu_list) logging.info("rank: {}, pid:{}, affinity to cpu {}".format(rank, pid, cpu_list)) def simple_bind_cpus_with_superthread(rank, num_partition): pid = os.getpid() p = psutil.Process(pid) phy_cpu_count = psutil.cpu_count(logical=False) cpu_count_per_worker = phy_cpu_count // num_partition cpu_list = list(range(rank * cpu_count_per_worker, (rank + 1) * cpu_count_per_worker)) cpu_list += list( range(phy_cpu_count + rank * cpu_count_per_worker, phy_cpu_count + (rank + 1) * cpu_count_per_worker)) p.cpu_affinity(cpu_list) logging.info("rank: {}, pid:{}, affinity to cpu {}".format(rank, pid, cpu_list)) def bind_cpus_with_list(cpu_list): pid = os.getpid() p = psutil.Process(pid) p.cpu_affinity(cpu_list) logging.info("pid:{}, affinity to cpu {}".format(pid, cpu_list)) def bind_cpus_on_ecos(rank, num_partition): pid = os.getpid() p = psutil.Process(pid) allowed_list = cpu_allowed_list() if rank == 0: print("cpu allowed list len:{}, {}".format(len(allowed_list), allowed_list)) cpu_count_per_worker = len(allowed_list) // num_partition cpu_list = allowed_list[int(rank * cpu_count_per_worker):int((rank + 1) * cpu_count_per_worker)] p.cpu_affinity(cpu_list) logging.info("rank: {}, pid:{}, affinity to cpu {}".format(rank, pid, cpu_list)) def cpu_allowed_list(): byte_info = subprocess.check_output("cat /proc/$$/status|grep Cpus_allowed_list|awk '{print $2}'", shell=True) cpu_list = byte_info.decode("utf-8").replace("\n", "").split(",") allowed_list = [] for item in cpu_list: ranges = [int(cpuid) for cpuid in item.split('-')] if len(ranges) == 1: allowed_list.append(ranges[0]) else: allowed_list += list(range(ranges[0], ranges[1] + 1)) return allowed_list
rosetta/__init__.py
UnitedLexCorp/rosetta
132
43258
from rosetta.text.api import *
core/management/commands/sync_events_dashboard.py
vanessa/djangogirls
446
43268
import datetime import re import time from collections import namedtuple from django.conf import settings from django.core.management.base import BaseCommand from trello import ResourceUnavailable, TrelloClient from core.models import Event # Create new command class Command(BaseCommand): help = 'Syncs event in trello board. Need a token.' missing_args_message = ( 'You need to add a token! Get one here: ' 'https://trello.com/1/authorize?key=01ab0348ca020573e7f728ae7400928a&scope=read%2Cwrite&' 'name=My+Application&expiration=1hour&response_type=token' ) def add_arguments(self, parser): parser.add_argument('trello_token', type=str) def handle(self, *args, **options): token = options['trello_token'] events = event_list() sync(events, token) # Get data EventTuple = namedtuple('EventTuple', 'name id city date') def event_list(): event = Event.objects.all() result = [] for e in event: name = e.name _id = str(e.pk) city = e.city date = datetime.date(e.date.year, e.date.month, e.date.day or 1) result.append(EventTuple(name, _id, city, date)) return result # Sync to trello ADMIN_BASE_URL = 'https://djangogirls.org/admin/core/event/' def sync(events, token): trello = TrelloClient(api_key=settings.TRELLO_API_KEY, token=token) board = trello.get_board('55f7167c46760fcb5d68b385') far_away, less_2_months, less_1_month, less_1_week, today, past = board.all_lists() all_cards = {card_id(c): c for c in board.all_cards()} date_today = datetime.date.today() for e in events: card = all_cards.get(e.id) if not card: card = create_card(e, far_away) create_checklist(card) # fetch card to get due date try: card.fetch() except ResourceUnavailable: print("Oopsie: too many requests! Let's wait 10 seconds!") time.sleep(10) card.fetch() if e.date != card.due_date.date(): print('Changing due date of {} to {}'.format(e.city, e.date)) card.set_due(e.date) distance = (e.date - date_today).days if distance < 0: right_list = past elif distance == 0: right_list = today elif distance < 7: right_list = less_1_week elif distance < 30: right_list = less_1_month elif distance < 60: right_list = less_2_months else: right_list = far_away ensure_card_in_list(card, right_list) def card_id(card): m = re.search(ADMIN_BASE_URL + r'(\d+)', card.desc) return m.group(1) def create_card(event, list): print('Creating card {} ({})'.format(event.city, event.date.isoformat())) return list.add_card(name=event.city, desc=ADMIN_BASE_URL + event.id, due=event.date.isoformat()) def create_checklist(card): card.add_checklist("Things to do:", [ "2 month check", "1 month check", "Thank you email and request for stats", "Stats obtained"]) def ensure_checklist_in_card(card): if not card.checklists: print("Adding checklist to {} card.".format(card.name)) create_checklist(card) def ensure_card_in_list(card, list): if card.list_id != list.id: print('Moving {} to {}'.format( card.name, list.name)) card.change_list(list.id)
session/vad/finetune-inception-v4.py
ishine/malaya-speech
111
43287
<reponame>ishine/malaya-speech<gh_stars>100-1000 import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import tensorflow as tf import collections import re import random def get_assignment_map_from_checkpoint(tvars, init_checkpoint): """Compute the union of the current variables and checkpoint variables.""" assignment_map = {} initialized_variable_names = {} name_to_variable = collections.OrderedDict() for var in tvars: name = var.name m = re.match('^(.*):\\d+$', name) if m is not None: name = m.group(1) name_to_variable[name] = var init_vars = tf.train.list_variables(init_checkpoint) assignment_map = collections.OrderedDict() for x in init_vars: (name, var) = (x[0], x[1]) if name not in name_to_variable: continue assignment_map[name] = name assignment_map[name] = name_to_variable[name] initialized_variable_names[name] = 1 initialized_variable_names[name + ':0'] = 1 tf.logging.info('**** Trainable Variables ****') for var in tvars: init_string = '' if var.name in initialized_variable_names: init_string = ', *INIT_FROM_CKPT*' tf.logging.info( ' name = %s, shape = %s%s', var.name, var.shape, init_string ) return (assignment_map, initialized_variable_names) import malaya_speech.train as train import malaya_speech from glob import glob import librosa import numpy as np def lin_spectogram_from_wav(wav, hop_length, win_length, n_fft=1024): linear = librosa.stft( wav, n_fft=n_fft, win_length=win_length, hop_length=hop_length ) # linear spectrogram return linear.T def load_data( wav, win_length=400, sr=16000, hop_length=24, n_fft=512, spec_len=100, mode='train', ): linear_spect = lin_spectogram_from_wav(wav, hop_length, win_length, n_fft) mag, _ = librosa.magphase(linear_spect) # magnitude mag_T = mag.T freq, time = mag_T.shape if mode == 'train': if time < spec_len: spec_mag = np.pad(mag_T, ((0, 0), (0, spec_len - time)), 'constant') else: spec_mag = mag_T else: spec_mag = mag_T # preprocessing, subtract mean, divided by time-wise var mu = np.mean(spec_mag, 0, keepdims=True) std = np.std(spec_mag, 0, keepdims=True) return (spec_mag - mu) / (std + 1e-5) n_mels = 257 def calc(v): r = load_data(v, mode='train') return r def preprocess_inputs(example): s = tf.compat.v1.numpy_function(calc, [example['waveforms']], tf.float32) s = tf.reshape(s, (n_mels, -1, 1)) example['inputs'] = s return example def parse(serialized_example): data_fields = { 'waveforms': tf.VarLenFeature(tf.float32), 'targets': tf.VarLenFeature(tf.int64), } features = tf.parse_single_example( serialized_example, features=data_fields ) for k in features.keys(): features[k] = features[k].values features = preprocess_inputs(features) keys = list(features.keys()) for k in keys: if k not in ['inputs', 'targets']: features.pop(k, None) return features def get_dataset(files, batch_size=16, shuffle_size=5, thread_count=24): def get(): dataset = tf.data.TFRecordDataset(files) dataset = dataset.map(parse, num_parallel_calls=thread_count) dataset = dataset.padded_batch( batch_size, padded_shapes={ 'inputs': tf.TensorShape([n_mels, None, 1]), 'targets': tf.TensorShape([None]), }, padding_values={ 'inputs': tf.constant(0, dtype=tf.float32), 'targets': tf.constant(0, dtype=tf.int64), }, ) dataset = dataset.shuffle(shuffle_size) dataset = dataset.repeat() return dataset return get import tf_slim as slim import inception_utils def block_inception_a(inputs, scope=None, reuse=None): """Builds Inception-A block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope( [slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME', ): with tf.variable_scope( scope, 'BlockInceptionA', [inputs], reuse=reuse ): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( inputs, 96, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( inputs, 64, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 96, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( inputs, 64, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 96, [3, 3], scope='Conv2d_0b_3x3' ) branch_2 = slim.conv2d( branch_2, 96, [3, 3], scope='Conv2d_0c_3x3' ) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d( inputs, [3, 3], scope='AvgPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 96, [1, 1], scope='Conv2d_0b_1x1' ) return tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3] ) def block_reduction_a(inputs, scope=None, reuse=None): """Builds Reduction-A block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope( [slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME', ): with tf.variable_scope( scope, 'BlockReductionA', [inputs], reuse=reuse ): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( inputs, 384, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3', ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( inputs, 192, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 224, [3, 3], scope='Conv2d_0b_3x3' ) branch_1 = slim.conv2d( branch_1, 256, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3', ) with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d( inputs, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3', ) return tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) def block_inception_b(inputs, scope=None, reuse=None): """Builds Inception-B block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope( [slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME', ): with tf.variable_scope( scope, 'BlockInceptionB', [inputs], reuse=reuse ): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( inputs, 384, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( inputs, 192, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 224, [1, 7], scope='Conv2d_0b_1x7' ) branch_1 = slim.conv2d( branch_1, 256, [7, 1], scope='Conv2d_0c_7x1' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( inputs, 192, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 192, [7, 1], scope='Conv2d_0b_7x1' ) branch_2 = slim.conv2d( branch_2, 224, [1, 7], scope='Conv2d_0c_1x7' ) branch_2 = slim.conv2d( branch_2, 224, [7, 1], scope='Conv2d_0d_7x1' ) branch_2 = slim.conv2d( branch_2, 256, [1, 7], scope='Conv2d_0e_1x7' ) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d( inputs, [3, 3], scope='AvgPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 128, [1, 1], scope='Conv2d_0b_1x1' ) return tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3] ) def block_reduction_b(inputs, scope=None, reuse=None): """Builds Reduction-B block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope( [slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME', ): with tf.variable_scope( scope, 'BlockReductionB', [inputs], reuse=reuse ): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( inputs, 192, [1, 1], scope='Conv2d_0a_1x1' ) branch_0 = slim.conv2d( branch_0, 192, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3', ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( inputs, 256, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 256, [1, 7], scope='Conv2d_0b_1x7' ) branch_1 = slim.conv2d( branch_1, 320, [7, 1], scope='Conv2d_0c_7x1' ) branch_1 = slim.conv2d( branch_1, 320, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3', ) with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d( inputs, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3', ) return tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) def block_inception_c(inputs, scope=None, reuse=None): """Builds Inception-C block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope( [slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME', ): with tf.variable_scope( scope, 'BlockInceptionC', [inputs], reuse=reuse ): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( inputs, 256, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( inputs, 384, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = tf.concat( axis=3, values=[ slim.conv2d( branch_1, 256, [1, 3], scope='Conv2d_0b_1x3' ), slim.conv2d( branch_1, 256, [3, 1], scope='Conv2d_0c_3x1' ), ], ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( inputs, 384, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 448, [3, 1], scope='Conv2d_0b_3x1' ) branch_2 = slim.conv2d( branch_2, 512, [1, 3], scope='Conv2d_0c_1x3' ) branch_2 = tf.concat( axis=3, values=[ slim.conv2d( branch_2, 256, [1, 3], scope='Conv2d_0d_1x3' ), slim.conv2d( branch_2, 256, [3, 1], scope='Conv2d_0e_3x1' ), ], ) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d( inputs, [3, 3], scope='AvgPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 256, [1, 1], scope='Conv2d_0b_1x1' ) return tf.concat( axis=3, values=[branch_0, branch_1, branch_2, branch_3] ) def inception_v4_base(inputs, final_endpoint='Mixed_7d', scope=None): """Creates the Inception V4 network up to the given final endpoint. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c', 'Mixed_7d'] scope: Optional variable_scope. Returns: logits: the logits outputs of the model. end_points: the set of end_points from the inception model. Raises: ValueError: if final_endpoint is not set to one of the predefined values, """ end_points = {} def add_and_check_final(name, net): end_points[name] = net return name == final_endpoint with tf.variable_scope(scope, 'InceptionV4', [inputs]): with slim.arg_scope( [slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME', ): # 299 x 299 x 3 net = slim.conv2d( inputs, 32, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3', ) if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points # 149 x 149 x 32 net = slim.conv2d( net, 32, [3, 3], padding='VALID', scope='Conv2d_2a_3x3' ) if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points # 147 x 147 x 32 net = slim.conv2d(net, 64, [3, 3], scope='Conv2d_2b_3x3') if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points # 147 x 147 x 64 with tf.variable_scope('Mixed_3a'): with tf.variable_scope('Branch_0'): branch_0 = slim.max_pool2d( net, [3, 3], stride=2, padding='VALID', scope='MaxPool_0a_3x3', ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 96, [3, 3], stride=2, padding='VALID', scope='Conv2d_0a_3x3', ) net = tf.concat(axis=3, values=[branch_0, branch_1]) if add_and_check_final('Mixed_3a', net): return net, end_points # 73 x 73 x 160 with tf.variable_scope('Mixed_4a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 64, [1, 1], scope='Conv2d_0a_1x1' ) branch_0 = slim.conv2d( branch_0, 96, [3, 3], padding='VALID', scope='Conv2d_1a_3x3', ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 64, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 64, [1, 7], scope='Conv2d_0b_1x7' ) branch_1 = slim.conv2d( branch_1, 64, [7, 1], scope='Conv2d_0c_7x1' ) branch_1 = slim.conv2d( branch_1, 96, [3, 3], padding='VALID', scope='Conv2d_1a_3x3', ) net = tf.concat(axis=3, values=[branch_0, branch_1]) if add_and_check_final('Mixed_4a', net): return net, end_points # 71 x 71 x 192 with tf.variable_scope('Mixed_5a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 192, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3', ) with tf.variable_scope('Branch_1'): branch_1 = slim.max_pool2d( net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3', ) net = tf.concat(axis=3, values=[branch_0, branch_1]) if add_and_check_final('Mixed_5a', net): return net, end_points # 35 x 35 x 384 # 4 x Inception-A blocks for idx in range(4): block_scope = 'Mixed_5' + chr(ord('b') + idx) net = block_inception_a(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points # 35 x 35 x 384 # Reduction-A block net = block_reduction_a(net, 'Mixed_6a') if add_and_check_final('Mixed_6a', net): return net, end_points # 17 x 17 x 1024 # 7 x Inception-B blocks for idx in range(7): block_scope = 'Mixed_6' + chr(ord('b') + idx) net = block_inception_b(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points # 17 x 17 x 1024 # Reduction-B block net = block_reduction_b(net, 'Mixed_7a') if add_and_check_final('Mixed_7a', net): return net, end_points # 8 x 8 x 1536 # 3 x Inception-C blocks for idx in range(3): block_scope = 'Mixed_7' + chr(ord('b') + idx) net = block_inception_c(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def model( inputs, is_training=True, dropout_keep_prob=0.8, reuse=None, scope='InceptionV4', bottleneck_dim=512, ): # inputs = tf.image.grayscale_to_rgb(inputs) with tf.variable_scope( scope, 'InceptionV4', [inputs], reuse=reuse ) as scope: with slim.arg_scope( [slim.batch_norm, slim.dropout], is_training=is_training ): net, end_points = inception_v4_base(inputs, scope=scope) print(net.shape) with slim.arg_scope( [slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME', ): with tf.variable_scope('Logits'): # 8 x 8 x 1536 kernel_size = net.get_shape()[1:3] print(kernel_size) if kernel_size.is_fully_defined(): net = slim.avg_pool2d( net, kernel_size, padding='VALID', scope='AvgPool_1a', ) else: net = tf.reduce_mean( input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool', ) end_points['global_pool'] = net # 1 x 1 x 1536 net = slim.dropout( net, dropout_keep_prob, scope='Dropout_1b' ) net = slim.flatten(net, scope='PreLogitsFlatten') end_points['PreLogitsFlatten'] = net bottleneck = slim.fully_connected( net, bottleneck_dim, scope='bottleneck' ) logits = slim.fully_connected( bottleneck, 2, activation_fn=None, scope='Logits_vad', ) return logits init_lr = 1e-3 epochs = 300000 init_checkpoint = 'output-inception-v4/model.ckpt-401000' def model_fn(features, labels, mode, params): Y = tf.cast(features['targets'][:, 0], tf.int32) with slim.arg_scope(inception_utils.inception_arg_scope()): logits = model(features['inputs']) loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=Y ) ) tf.identity(loss, 'train_loss') accuracy = tf.metrics.accuracy( labels=Y, predictions=tf.argmax(logits, axis=1) ) tf.identity(accuracy[1], name='train_accuracy') variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) assignment_map, initialized_variable_names = get_assignment_map_from_checkpoint( variables, init_checkpoint ) tf.train.init_from_checkpoint(init_checkpoint, assignment_map) if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() learning_rate = tf.constant( value=init_lr, shape=[], dtype=tf.float32 ) learning_rate = tf.train.polynomial_decay( learning_rate, global_step, epochs, end_learning_rate=0.00001, power=1.0, cycle=False, ) optimizer = tf.train.RMSPropOptimizer( learning_rate, decay=0.9, momentum=0.9, epsilon=1.0 ) train_op = optimizer.minimize(loss, global_step=global_step) estimator_spec = tf.estimator.EstimatorSpec( mode=mode, loss=loss, train_op=train_op ) elif mode == tf.estimator.ModeKeys.EVAL: estimator_spec = tf.estimator.EstimatorSpec( mode=tf.estimator.ModeKeys.EVAL, loss=loss, eval_metric_ops={'accuracy': accuracy}, ) return estimator_spec train_hooks = [ tf.train.LoggingTensorHook( ['train_accuracy', 'train_loss'], every_n_iter=1 ) ] train_files = glob('vad2/data/vad-train-*') + glob('noise/data/vad-train-*') train_dataset = get_dataset(train_files, batch_size=32) dev_files = glob('vad2/data/vad-dev-*') + glob('noise/data/vad-dev-*') dev_dataset = get_dataset(dev_files, batch_size=16) save_directory = 'output-inception-v4-vad' train.run_training( train_fn=train_dataset, model_fn=model_fn, model_dir=save_directory, num_gpus=1, log_step=1, save_checkpoint_step=25000, max_steps=epochs, eval_fn=dev_dataset, train_hooks=train_hooks, )
testsuite/array-reg/run.py
LongerVision/OpenShadingLanguage
1,105
43293
#!/usr/bin/env python # Copyright Contributors to the Open Shading Language project. # SPDX-License-Identifier: BSD-3-Clause # https://github.com/AcademySoftwareFoundation/OpenShadingLanguage command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_float.tif test_varying_index_float") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_int.tif test_varying_index_int") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_string.tif test_varying_index_string") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_matrix.tif test_varying_index_matrix") outputs.append ("out_varying_index_float.tif") outputs.append ("out_varying_index_int.tif") outputs.append ("out_varying_index_string.tif") outputs.append ("out_varying_index_matrix.tif") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_color.tif test_varying_index_color") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_point.tif test_varying_index_point") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_vector.tif test_varying_index_vector") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_normal.tif test_varying_index_normal") outputs.append ("out_varying_index_color.tif") outputs.append ("out_varying_index_point.tif") outputs.append ("out_varying_index_vector.tif") outputs.append ("out_varying_index_normal.tif") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_out_of_bounds_index_int.tif test_varying_out_of_bounds_index_int") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_out_of_bounds_index_float.tif test_varying_out_of_bounds_index_float") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_out_of_bounds_index_string.tif test_varying_out_of_bounds_index_string") outputs.append ("out_varying_out_of_bounds_index_int.tif") outputs.append ("out_varying_out_of_bounds_index_float.tif") outputs.append ("out_varying_out_of_bounds_index_string.tif") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_ray.tif test_varying_index_ray") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_cube.tif test_varying_index_cube") outputs.append ("out_varying_index_ray.tif") outputs.append ("out_varying_index_cube.tif") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_varying_float.tif test_varying_index_varying_float") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_varying_int.tif test_varying_index_varying_int") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_varying_point.tif test_varying_index_varying_point") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_varying_normal.tif test_varying_index_varying_normal") outputs.append ("out_varying_index_varying_float.tif") outputs.append ("out_varying_index_varying_int.tif") outputs.append ("out_varying_index_varying_point.tif") outputs.append ("out_varying_index_varying_normal.tif") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_varying_vector.tif test_varying_index_varying_vector") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_varying_color.tif test_varying_index_varying_color") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_varying_string.tif test_varying_index_varying_string") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_varying_matrix.tif test_varying_index_varying_matrix") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_varying_index_varying_ray.tif test_varying_index_varying_ray") outputs.append ("out_varying_index_varying_vector.tif") outputs.append ("out_varying_index_varying_color.tif") outputs.append ("out_varying_index_varying_string.tif") outputs.append ("out_varying_index_varying_matrix.tif") outputs.append ("out_varying_index_varying_ray.tif") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_uniform_index_varying_float.tif test_uniform_index_varying_float") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_uniform_index_varying_int.tif test_uniform_index_varying_int") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_uniform_index_varying_point.tif test_uniform_index_varying_point") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_uniform_index_varying_normal.tif test_uniform_index_varying_normal") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_uniform_index_varying_vector.tif test_uniform_index_varying_vector") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_uniform_index_varying_color.tif test_uniform_index_varying_color") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_uniform_index_varying_string.tif test_uniform_index_varying_string") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_uniform_index_varying_matrix.tif test_uniform_index_varying_matrix") command += testshade("-t 1 -g 256 256 -od uint8 -o Cout out_uniform_index_varying_ray.tif test_uniform_index_varying_ray") outputs.append ("out_uniform_index_varying_float.tif") outputs.append ("out_uniform_index_varying_int.tif") outputs.append ("out_uniform_index_varying_point.tif") outputs.append ("out_uniform_index_varying_normal.tif") outputs.append ("out_uniform_index_varying_vector.tif") outputs.append ("out_uniform_index_varying_color.tif") outputs.append ("out_uniform_index_varying_string.tif") outputs.append ("out_uniform_index_varying_matrix.tif") outputs.append ("out_uniform_index_varying_ray.tif") # expect a few LSB failures failthresh = 0.008 failpercent = 3
bigflow_python/python/bigflow/util/log.py
advancedxy/bigflow_python
1,236
43312
#!/usr/bin/env python #encoding=utf-8 # Copyright (c) 2012 Baidu, Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ A utility wraps Python built-in loggings """ import logging import logging.handlers import os import platform import sys unicode_type = unicode bytes_type = str basestring_type = str try: import curses except ImportError: curses = None logger = logging.getLogger("com.baidu.bigflow") def _safe_unicode(obj, encoding='utf-8'): """ Converts any given object to unicode string. >>> safeunicode('hello') u'hello' >>> safeunicode(2) u'2' >>> safeunicode('\xe1\x88\xb4') u'\u1234' """ t = type(obj) if t is unicode: return obj elif t is str: return obj.decode(encoding, 'ignore') elif t in [int, float, bool]: return unicode(obj) elif hasattr(obj, '__unicode__') or isinstance(obj, unicode): try: return unicode(obj) except Exception as e: return u"" else: return str(obj).decode(encoding, 'ignore') def _stderr_supports_color(): import sys color = False if curses and hasattr(sys.stderr, 'isatty') and sys.stderr.isatty(): try: curses.setupterm() if curses.tigetnum("colors") > 0: color = True except Exception: pass return color class LogFormatter(logging.Formatter): """Log formatter used in Tornado. Key features of this formatter are: * Color support when logging to a terminal that supports it. * Timestamps on every log line. * Robust against str/bytes encoding problems. This formatter is enabled automatically by `tornado.options.parse_command_line` (unless ``--logging=none`` is used). """ DEFAULT_FORMAT = '%(color)s[%(levelname)1.1s %(asctime)s %(module)s:%(lineno)d]%(end_color)s %(message)s' DEFAULT_DATE_FORMAT = '%y%m%d %H:%M:%S' DEFAULT_COLORS = { logging.DEBUG: 4, # Blue logging.INFO: 2, # Green logging.WARNING: 3, # Yellow logging.ERROR: 1, # Red } def __init__(self, color=True, fmt=DEFAULT_FORMAT, datefmt=DEFAULT_DATE_FORMAT, colors=None): r""" :arg bool color: Enables color support. :arg string fmt: Log message format. It will be applied to the attributes dict of log records. The text between ``%(color)s`` and ``%(end_color)s`` will be colored depending on the level if color support is on. :arg dict colors: color mappings from logging level to terminal color code :arg string datefmt: Datetime format. Used for formatting ``(asctime)`` placeholder in ``prefix_fmt``. .. versionchanged:: 3.2 Added ``fmt`` and ``datefmt`` arguments. """ logging.Formatter.__init__(self, datefmt=datefmt) self._fmt = fmt if colors is None: colors = LogFormatter.DEFAULT_COLORS self._colors = {} if color and _stderr_supports_color(): # The curses module has some str/bytes confusion in # python3. Until version 3.2.3, most methods return # bytes, but only accept strings. In addition, we want to # output these strings with the logging module, which # works with unicode strings. The explicit calls to # unicode() below are harmless in python2 but will do the # right conversion in python 3. fg_color = (curses.tigetstr("setaf") or curses.tigetstr("setf") or "") if (3, 0) < sys.version_info < (3, 2, 3): fg_color = unicode_type(fg_color, "ascii") for levelno, code in colors.items(): self._colors[levelno] = unicode_type(curses.tparm(fg_color, code), "ascii") self._normal = unicode_type(curses.tigetstr("sgr0"), "ascii") else: self._normal = '' def format(self, record): try: message = record.getMessage() # assert isinstance(message, basestring_type) # guaranteed by logging # Encoding notes: The logging module prefers to work with character # strings, but only enforces that log messages are instances of # basestring. In python 2, non-ascii bytestrings will make # their way through the logging framework until they blow up with # an unhelpful decoding error (with this formatter it happens # when we attach the prefix, but there are other opportunities for # exceptions further along in the framework). # # If a byte string makes it this far, convert it to unicode to # ensure it will make it out to the logs. Use repr() as a fallback # to ensure that all byte strings can be converted successfully, # but don't do it by default so we don't add extra quotes to ascii # bytestrings. This is a bit of a hacky place to do this, but # it's worth it since the encoding errors that would otherwise # result are so useless (and tornado is fond of using utf8-encoded # byte strings whereever possible). record.message = _safe_unicode(message) except Exception as e: record.message = "Bad message (%r): %r" % (e, record.__dict__) record.asctime = self.formatTime(record, self.datefmt) if record.levelno in self._colors: record.color = self._colors[record.levelno] record.end_color = self._normal else: record.color = record.end_color = '' formatted = self._fmt % record.__dict__ if record.exc_info: if not record.exc_text: record.exc_text = self.formatException(record.exc_info) if record.exc_text: # exc_text contains multiple lines. We need to _safe_unicode # each line separately so that non-utf8 bytes don't cause # all the newlines to turn into '\n'. lines = [formatted.rstrip()] lines.extend(_safe_unicode(ln) for ln in record.exc_text.split('\n')) formatted = '\n'.join(lines) return formatted.replace("\n", "\n ") def enable_pretty_logging( logger, level, log_file="", backupCount=10, maxBytes=10000000): """Turns on formatted logging output as configured. """ if logger is None: raise error.BigflowPlanningException("logger cannot be None") if "__PYTHON_IN_REMOTE_SIDE" in os.environ: # Do not do logging at runtime logger.addHandler(logging.NullHandler()) else: logger.setLevel(level) if log_file: channel = logging.handlers.RotatingFileHandler( filename=log_file, maxBytes=maxBytes, backupCount=backupCount) channel.setFormatter(LogFormatter(color=False)) logger.addHandler(channel) if not logger.handlers: # Set up color if we are in a tty and curses is installed channel = logging.StreamHandler() channel.setFormatter(LogFormatter()) logger.addHandler(channel) def enable_pretty_logging_at_debug( logger, level, log_file="", backupCount=10, maxBytes=10000000): """Turns on formatted logging output only at DEBUG level """ if level == logging.DEBUG: enable_pretty_logging(logger, level, log_file, backupCount, maxBytes) else: logger.addHandler(logging.NullHandler()) def init_log(level=logging.INFO): """ init_log - initialize log module Args: level (str): msg above the level will be displayed DEBUG < INFO < WARNING < ERROR < CRITICAL \n ``the default value is logging.INFO`` Raises: OSError: fail to create log directories IOError: fail to open log file """ log_file = os.environ.get("BIGFLOW_LOG_FILE", "") if log_file: log_file = os.path.abspath(log_file + ".log") print >> sys.stderr, "Bigflow Log file is written to [%s]" % log_file enable_pretty_logging(logger, level, log_file=log_file) #enable_pretty_logging_at_debug( # logging.getLogger("pbrpc"), # level, # log_file=log_file) #enable_pretty_logging_at_debug( # logging.getLogger("pbrpcrpc_client"), # level, # log_file=log_file) init_log(logging.INFO)
tests/slack_bolt/app/test_dev_server.py
hirosassa/bolt-python
504
43322
from slack_sdk import WebClient from slack_bolt.app.app import SlackAppDevelopmentServer, App from tests.mock_web_api_server import ( setup_mock_web_api_server, cleanup_mock_web_api_server, ) from tests.utils import remove_os_env_temporarily, restore_os_env class TestDevServer: signing_secret = "secret" valid_token = "<PASSWORD>" mock_api_server_base_url = "http://localhost:8888" web_client = WebClient( token=valid_token, base_url=mock_api_server_base_url, ) def setup_method(self): self.old_os_env = remove_os_env_temporarily() setup_mock_web_api_server(self) def teardown_method(self): cleanup_mock_web_api_server(self) restore_os_env(self.old_os_env) def test_instance(self): server = SlackAppDevelopmentServer( port=3001, path="/slack/events", app=App(signing_secret=self.signing_secret, client=self.web_client), ) assert server is not None
sas_kernel/magics/sas_session_magic.py
gvelasq/sas_kernel
207
43342
# # Copyright SAS Institute # # Licensed under the Apache License, Version 2.0 (the License); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from metakernel import Magic class SASsessionMagic(Magic): def __init__(self, *args, **kwargs): super(SASsessionMagic, self).__init__(*args, **kwargs) def line_SASsession(self, *args): """ SAS Kernel magic allows a programatic way to submit configuration details. This magic is only available within the SAS Kernel """ if len(args) > 1: args = ''.join(args) elif len(args) == 1: args = ''.join(args[0]) args = args.replace(' ', '') args = args.replace('"', '') args = args.replace("'", '') sess_params = dict(s.split('=') for s in args.split(',')) self.kernel._allow_stdin = True self.kernel._start_sas(**sess_params) def register_magics(kernel): kernel.register_magics(SASsessionMagic) def register_ipython_magics(): from metakernel import IPythonKernel from IPython.core.magic import register_line_magic kernel = IPythonKernel() magic = SASsessionMagic(kernel) # Make magics callable: kernel.line_magics["SASsession"] = magic @register_line_magic def SASsession(line): kernel.call_magic("%SASsession " + line)
examples/protocols/http_server/file_serving/http_server_file_serving_test.py
iPlon-org/esp-idf
8,747
43347
#!/usr/bin/env python # # Copyright 2021 Espressif Systems (Shanghai) CO LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import http.client import os import re import tiny_test_fw import ttfw_idf from idf_http_server_test import adder as client from tiny_test_fw import Utility @ttfw_idf.idf_example_test(env_tag='Example_WIFI_Protocols') def test_examples_protocol_http_server_file_serving(env, extra_data): # type: (tiny_test_fw.Env.Env, None) -> None # pylint: disable=unused-argument # Acquire DUT dut1 = env.get_dut('http file_serving', 'examples/protocols/http_server/file_serving', dut_class=ttfw_idf.ESP32DUT) # Get binary file binary_file = os.path.join(dut1.app.binary_path, 'file_server.bin') bin_size = os.path.getsize(binary_file) ttfw_idf.log_performance('file_server_bin_size', '{}KB'.format(bin_size // 1024)) Utility.console_log('Erasing the flash on the chip') # erase the flash dut1.erase_flash() # Upload binary and start testing Utility.console_log('Starting http file serving simple test app') dut1.start_app() # Parse IP address of STA Utility.console_log('Waiting to connect with AP') got_ip = dut1.expect(re.compile(r'IPv4 address: (\d+\.\d+\.\d+\.\d+)'), timeout=30)[0] # Expected logs dut1.expect('Initializing SPIFFS', timeout=30) got_port = dut1.expect(re.compile(r"Starting HTTP Server on port: '(\d+)'"), timeout=30)[0] Utility.console_log('Got IP : ' + got_ip) Utility.console_log('Got Port : ' + got_port) # Run test script conn = client.start_session(got_ip, got_port) # upload a file onto the server upload_data = 'Test data to be sent to the server' upload_file_name = 'example.txt' upload_file_hash = hashlib.md5(upload_data.encode('UTF-8')) upload_file_digest = upload_file_hash.digest() Utility.console_log('\nTesting the uploading of file on the file server') client.postreq(conn, '/upload/' + str(upload_file_name), upload_data) try: dut1.expect('File reception complete', timeout=10) except Exception: Utility.console_log('Failed the test to upload file on the file server') raise Utility.console_log('Passed the test to uploaded file on the file server') # Download the uploaded file from the file server Utility.console_log("\nTesting for Download of \"existing\" file from the file server") download_data = client.getreq(conn, '/' + str(upload_file_name)) try: dut1.expect('File sending complete', timeout=10) except Exception: Utility.console_log('Failed the test to download existing file from the file server') raise Utility.console_log('Passed the test to downloaded existing file from the file server') download_file_hash = hashlib.md5(download_data) download_file_digest = download_file_hash.digest() if download_file_digest != upload_file_digest: raise RuntimeError('The md5 hash of the downloaded file does not match with that of the uploaded file') # Upload existing file on the file server Utility.console_log("\nTesting the upload of \"already existing\" file on the file server") client.postreq(conn, '/upload/' + str(upload_file_name), data=None) try: dut1.expect('File already exists : /spiffs/' + str(upload_file_name), timeout=10) except Exception: Utility.console_log('Failed the test for uploading existing file on the file server') raise Utility.console_log('Passed the test for uploading existing file on the file server') # Previous URI was an invalid URI so the server should have closed the connection. # Trying to send request to the server try: client.getreq(conn, '/') except http.client.RemoteDisconnected: # It is correct behavior that the connection was closed by the server pass except Exception: Utility.console_log('Connection was not closed successfully by the server after last invalid URI') raise conn = client.start_session(got_ip, got_port) # Delete the existing file from the file server Utility.console_log("\nTesting the deletion of \"existing\" file on the file server") client.postreq(conn, '/delete/' + str(upload_file_name), data=None) try: dut1.expect('Deleting file : /' + str(upload_file_name), timeout=10) except Exception: Utility.console_log('Failed the test for deletion of existing file on the file server') raise Utility.console_log('Passed the test for deletion of existing file on the file server') conn = client.start_session(got_ip, got_port) # Try to delete non existing file from the file server Utility.console_log("\nTesting the deletion of \"non existing\" file on the file server") client.postreq(conn, '/delete/' + str(upload_file_name), data=None) try: dut1.expect('File does not exist : /' + str(upload_file_name), timeout=10) except Exception: Utility.console_log('Failed the test for deleting non existing file on the file server') raise Utility.console_log('Passed the test for deleting non existing file on the file server') conn = client.start_session(got_ip, got_port) # Try to download non existing file from the file server Utility.console_log("\nTesting for Download of \"non existing\" file from the file server") download_data = client.getreq(conn, '/' + str(upload_file_name)) try: dut1.expect('Failed to stat file : /spiffs/' + str(upload_file_name), timeout=10) except Exception: Utility.console_log('Failed the test to download non existing file from the file server') raise Utility.console_log('Passed the test to downloaded non existing file from the file server') if __name__ == '__main__': test_examples_protocol_http_server_file_serving() # pylint: disable=no-value-for-parameter
modules/dbnd/test_dbnd/py2only/test_python2_newstr.py
busunkim96/dbnd
224
43362
<reponame>busunkim96/dbnd from __future__ import absolute_import import logging import pytest import six from dbnd import parameter, task from dbnd._core.current import try_get_current_task from dbnd._core.task_ctrl.task_ctrl import TaskCtrl from targets.values import ObjectValueType, StrValueType if six.PY2: from future.builtins import * __future_module__ = True py_2_only_import = pytest.importorskip("__builtin__") @task def task_with_str_param(something=parameter(default=None)[str]): current_task = try_get_current_task() ctrl = current_task.ctrl # type: TaskCtrl task_as_cmd_line = ctrl.task_repr.calculate_command_line_for_task() logging.info("Str type: %s, task repr: %s", type(str), task_as_cmd_line) assert "newstr.BaseNewStr" in str(type(str)) assert "@" not in task_as_cmd_line return "task_with_str" @task def task_with_object_param(something=parameter(default=None)[object]): current_task = try_get_current_task() ctrl = current_task.ctrl # type: TaskCtrl task_as_cmd_line = ctrl.task_repr.calculate_command_line_for_task() logging.info("Object type: %s, task repr: %s", type(object), task_as_cmd_line) assert "newobject" in object.__name__ assert "@" not in task_as_cmd_line return "task_with_object_param" class TestPy3ObjectsBuiltins(object): def test_newstr_as_type(self): # future.builtins.str is actually "newstr", # we want to check that correct value type is selected assert "newstr" in repr(str) p = parameter(default=None)[str] assert isinstance(p.parameter.value_type, StrValueType) def test_newstr_run(self): a = task_with_str_param.dbnd_run(something="333") print(a.root_task.something) def test_object_as_type(self): # future.builtins.str is actually "newstr", # we want to check that correct value type is selected assert "newobject" in repr(object) p = parameter(default=None)[object] assert isinstance(p.parameter.value_type, ObjectValueType) def test_object_run(self): a = task_with_object_param.dbnd_run(something="333") print(a.root_task.something)
testing/merge_scripts/code_coverage/merge_lib_test.py
zealoussnow/chromium
14,668
43376
<filename>testing/merge_scripts/code_coverage/merge_lib_test.py #!/usr/bin/env vpython # Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys import unittest import mock import merge_lib as merger class MergeLibTest(unittest.TestCase): def __init__(self, *args, **kwargs): super(MergeLibTest, self).__init__(*args, **kwargs) self.maxDiff = None @mock.patch.object(subprocess, 'check_output') def test_validate_and_convert_profraw(self, mock_cmd): test_cases = [ ([''], [['mock.profdata'], [], []]), (['Counter overflow'], [[], ['mock.profraw'], ['mock.profraw']]), (subprocess.CalledProcessError( 255, 'llvm-cov merge -o mock.profdata -sparse=true mock.profraw', output='Malformed profile'), [[], ['mock.profraw'], []]), ] for side_effect, expected_results in test_cases: mock_cmd.side_effect = side_effect output_profdata_files = [] invalid_profraw_files = [] counter_overflows = [] merger._validate_and_convert_profraw( 'mock.profraw', output_profdata_files, invalid_profraw_files, counter_overflows, '/usr/bin/llvm-cov') self.assertEqual( expected_results, [output_profdata_files, invalid_profraw_files, counter_overflows]) if __name__ == '__main__': unittest.main()
pex/tools/command.py
ShellAddicted/pex
2,160
43386
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import from abc import abstractmethod from pex.commands.command import Command, Result from pex.pex import PEX class PEXCommand(Command): @abstractmethod def run(self, pex): # type: (PEX) -> Result raise NotImplementedError()
src/python/tests/integration/test_web/test_handler/test_auto_queue.py
annihilatethee/seedsync
255
43418
<gh_stars>100-1000 # Copyright 2017, <NAME>, All rights reserved. import json from urllib.parse import quote from controller import AutoQueuePattern from tests.integration.test_web.test_web_app import BaseTestWebApp class TestAutoQueueHandler(BaseTestWebApp): def test_get(self): self.auto_queue_persist.add_pattern(AutoQueuePattern(pattern="one")) self.auto_queue_persist.add_pattern(AutoQueuePattern(pattern="t wo")) self.auto_queue_persist.add_pattern(AutoQueuePattern(pattern="thr'ee")) self.auto_queue_persist.add_pattern(AutoQueuePattern(pattern="fo\"ur")) self.auto_queue_persist.add_pattern(AutoQueuePattern(pattern="fi%ve")) resp = self.test_app.get("/server/autoqueue/get") self.assertEqual(200, resp.status_int) json_list = json.loads(str(resp.html)) self.assertEqual(5, len(json_list)) self.assertIn({"pattern": "one"}, json_list) self.assertIn({"pattern": "t wo"}, json_list) self.assertIn({"pattern": "thr'ee"}, json_list) self.assertIn({"pattern": "fo\"ur"}, json_list) self.assertIn({"pattern": "fi%ve"}, json_list) def test_get_is_ordered(self): self.auto_queue_persist.add_pattern(AutoQueuePattern(pattern="a")) self.auto_queue_persist.add_pattern(AutoQueuePattern(pattern="b")) self.auto_queue_persist.add_pattern(AutoQueuePattern(pattern="c")) self.auto_queue_persist.add_pattern(AutoQueuePattern(pattern="d")) self.auto_queue_persist.add_pattern(AutoQueuePattern(pattern="e")) resp = self.test_app.get("/server/autoqueue/get") self.assertEqual(200, resp.status_int) json_list = json.loads(str(resp.html)) self.assertEqual(5, len(json_list)) self.assertEqual([ {"pattern": "a"}, {"pattern": "b"}, {"pattern": "c"}, {"pattern": "d"}, {"pattern": "e"} ], json_list) def test_add_good(self): resp = self.test_app.get("/server/autoqueue/add/one") self.assertEqual(200, resp.status_int) self.assertEqual(1, len(self.auto_queue_persist.patterns)) self.assertIn(AutoQueuePattern("one"), self.auto_queue_persist.patterns) uri = quote(quote("/value/with/slashes", safe=""), safe="") resp = self.test_app.get("/server/autoqueue/add/" + uri) self.assertEqual(200, resp.status_int) self.assertEqual(2, len(self.auto_queue_persist.patterns)) self.assertIn(AutoQueuePattern("/value/with/slashes"), self.auto_queue_persist.patterns) uri = quote(quote(" value with spaces", safe=""), safe="") resp = self.test_app.get("/server/autoqueue/add/" + uri) self.assertEqual(200, resp.status_int) self.assertEqual(3, len(self.auto_queue_persist.patterns)) self.assertIn(AutoQueuePattern(" value with spaces"), self.auto_queue_persist.patterns) uri = quote(quote("value'with'singlequote", safe=""), safe="") resp = self.test_app.get("/server/autoqueue/add/" + uri) self.assertEqual(200, resp.status_int) self.assertEqual(4, len(self.auto_queue_persist.patterns)) self.assertIn(AutoQueuePattern("value'with'singlequote"), self.auto_queue_persist.patterns) uri = quote(quote("value\"with\"doublequote", safe=""), safe="") resp = self.test_app.get("/server/autoqueue/add/" + uri) self.assertEqual(200, resp.status_int) self.assertEqual(5, len(self.auto_queue_persist.patterns)) self.assertIn(AutoQueuePattern("value\"with\"doublequote"), self.auto_queue_persist.patterns) def test_add_double(self): resp = self.test_app.get("/server/autoqueue/add/one") self.assertEqual(200, resp.status_int) resp = self.test_app.get("/server/autoqueue/add/one", expect_errors=True) self.assertEqual(400, resp.status_int) self.assertEqual("Auto-queue pattern 'one' already exists.", str(resp.html)) def test_add_empty_value(self): uri = quote(quote(" ", safe=""), safe="") resp = self.test_app.get("/server/autoqueue/add/" + uri, expect_errors=True) self.assertEqual(400, resp.status_int) self.assertEqual(0, len(self.auto_queue_persist.patterns)) resp = self.test_app.get("/server/autoqueue/add/", expect_errors=True) self.assertEqual(404, resp.status_int) self.assertEqual(0, len(self.auto_queue_persist.patterns)) def test_remove_good(self): self.auto_queue_persist.add_pattern(AutoQueuePattern("one")) self.auto_queue_persist.add_pattern(AutoQueuePattern("/value/with/slashes")) self.auto_queue_persist.add_pattern(AutoQueuePattern(" value with spaces")) self.auto_queue_persist.add_pattern(AutoQueuePattern("value'with'singlequote")) self.auto_queue_persist.add_pattern(AutoQueuePattern("value\"with\"doublequote")) resp = self.test_app.get("/server/autoqueue/remove/one") self.assertEqual(200, resp.status_int) self.assertEqual(4, len(self.auto_queue_persist.patterns)) self.assertNotIn(AutoQueuePattern("one"), self.auto_queue_persist.patterns) uri = quote(quote("/value/with/slashes", safe=""), safe="") resp = self.test_app.get("/server/autoqueue/remove/" + uri) self.assertEqual(200, resp.status_int) self.assertEqual(3, len(self.auto_queue_persist.patterns)) self.assertNotIn(AutoQueuePattern("/value/with/slashes"), self.auto_queue_persist.patterns) uri = quote(quote(" value with spaces", safe=""), safe="") resp = self.test_app.get("/server/autoqueue/remove/" + uri) self.assertEqual(200, resp.status_int) self.assertEqual(2, len(self.auto_queue_persist.patterns)) self.assertNotIn(AutoQueuePattern(" value with spaces"), self.auto_queue_persist.patterns) uri = quote(quote("value'with'singlequote", safe=""), safe="") resp = self.test_app.get("/server/autoqueue/remove/" + uri) self.assertEqual(200, resp.status_int) self.assertEqual(1, len(self.auto_queue_persist.patterns)) self.assertNotIn(AutoQueuePattern("value'with'singlequote"), self.auto_queue_persist.patterns) uri = quote(quote("value\"with\"doublequote", safe=""), safe="") resp = self.test_app.get("/server/autoqueue/remove/" + uri) self.assertEqual(200, resp.status_int) self.assertEqual(0, len(self.auto_queue_persist.patterns)) self.assertNotIn(AutoQueuePattern("value\"with\"doublequote"), self.auto_queue_persist.patterns) def test_remove_non_existing(self): resp = self.test_app.get("/server/autoqueue/remove/one", expect_errors=True) self.assertEqual(400, resp.status_int) self.assertEqual("Auto-queue pattern 'one' doesn't exist.", str(resp.html)) def test_remove_empty_value(self): uri = quote(quote(" ", safe=""), safe="") resp = self.test_app.get("/server/autoqueue/remove/" + uri, expect_errors=True) self.assertEqual(400, resp.status_int) self.assertEqual("Auto-queue pattern ' ' doesn't exist.", str(resp.html)) self.assertEqual(0, len(self.auto_queue_persist.patterns)) resp = self.test_app.get("/server/autoqueue/remove/", expect_errors=True) self.assertEqual(404, resp.status_int) self.assertEqual(0, len(self.auto_queue_persist.patterns))
fasta/reorient_sequences_by_id.py
senjoro/biocode
355
43420
<reponame>senjoro/biocode<filename>fasta/reorient_sequences_by_id.py #!/usr/bin/env python3 ''' Description: Use this when you have a multi-FASTA file and you want to reverse or reverse complement only select sequences within that file. For example, strand-specific RNA-Seq read alignment showed that some assembled transcripts were in the wrong orientation, and this allowed us to correct them. Input: - A (multi-)FASTA file. The IDs in the header (up to the first whitespace) must match the identifiers in the ID file. - An ID file with one sequence ID per line. - An action, either 'reverse' or 'revcomp' Output: Output will be multi-FASTA data printed to STDOUT or a file if you pass the -o option. Those sequences with entries within the ID file will be processed, the rest will just be printed back out. ''' import argparse import sys from biocode import utils def main(): parser = argparse.ArgumentParser( description='Reverse or reverse-complement selected sequences within a multi-FASTA') ## output file to be written parser.add_argument('-f', '--fasta_file', type=str, required=True, help='Path to an input FASTA file' ) parser.add_argument('-i', '--id_file', type=str, required=True, help='Path to file with IDs to process' ) parser.add_argument('-a', '--action', type=str, required=True, choices=['reverse', 'revcomp'], help='What should be done to the sequences in the ID file' ) parser.add_argument('-o', '--output_file', type=str, required=False, default=None, help='Optional Path to an output file to be created' ) args = parser.parse_args() ## output will either be a file or STDOUT fout = sys.stdout if args.output_file is not None: fout = open(args.output_file, 'wt') seqs = utils.fasta_dict_from_file(args.fasta_file) ids = list() for line in open(args.id_file): line = line.rstrip() ids.append(line) for seq_id in seqs: seq = seqs[seq_id] if seq_id in ids: if args.action == 'reverse': seq['s'] = seq['s'][::-1] elif args.action == 'revcomp': seq['s'] = utils.reverse_complement(seq['s']) ## write this sequence, 60bp per line fout.write(">{0}\n".format(seq_id)) for i in range(0, len(seq['s']), 60): fout.write(seq['s'][i : i + 60] + "\n") if __name__ == '__main__': main()
docs/code_snippets/hello_world_infix.py
Ying1123/pysmt
435
43445
from pysmt.shortcuts import Symbol from pysmt.typing import INT h = Symbol("H", INT) domain = (1 <= h) & (10 >= h)
third_party/angle/src/libANGLE/renderer/vulkan/gen_vk_format_table.py
zipated/src
2,151
43450
<filename>third_party/angle/src/libANGLE/renderer/vulkan/gen_vk_format_table.py<gh_stars>1000+ #!/usr/bin/python # Copyright 2016 The ANGLE Project Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # # gen_vk_format_table.py: # Code generation for vk format map. See vk_format_map.json for data source. from datetime import date import json import math import pprint import os import re import sys sys.path.append('..') import angle_format template_table_autogen_cpp = """// GENERATED FILE - DO NOT EDIT. // Generated by {script_name} using data from {input_file_name} // // Copyright {copyright_year} The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // {out_file_name}: // Queries for full Vulkan format information based on GL format. #include "libANGLE/renderer/vulkan/vk_format_utils.h" #include "image_util/copyimage.h" #include "image_util/generatemip.h" #include "image_util/loadimage.h" using namespace angle; namespace rx {{ namespace vk {{ void Format::initialize(VkPhysicalDevice physicalDevice, const angle::Format &angleFormat) {{ switch (angleFormat.id) {{ {format_case_data} default: UNREACHABLE(); break; }} }} }} // namespace vk }} // namespace rx """ empty_format_entry_template = """{space}case angle::Format::ID::{format_id}: {space} // This format is not implemented in Vulkan. {space} break; """ format_entry_template = """{space}case angle::Format::ID::{format_id}: {space}{{ {space} internalFormat = {internal_format}; {space} textureFormatID = angle::Format::ID::{texture}; {space} vkTextureFormat = {vk_texture_format}; {space} bufferFormatID = angle::Format::ID::{buffer}; {space} vkBufferFormat = {vk_buffer_format}; {space} dataInitializerFunction = {initializer}; {space} break; {space}}} """ # This currently only handles texture fallback formats. fallback_format_entry_template = """{space}case angle::Format::ID::{format_id}: {space}{{ {space} internalFormat = {internal_format}; {space} if (!HasFullFormatSupport(physicalDevice, {vk_texture_format})) {space} {{ {space} textureFormatID = angle::Format::ID::{fallback_texture}; {space} vkTextureFormat = {fallback_vk_texture_format}; {space} dataInitializerFunction = {fallback_initializer}; {space} ASSERT(HasFullFormatSupport(physicalDevice, {fallback_vk_texture_format})); {space} }} {space} else {space} {{ {space} textureFormatID = angle::Format::ID::{texture}; {space} vkTextureFormat = {vk_texture_format}; {space} dataInitializerFunction = {initializer}; {space} }} {space} bufferFormatID = angle::Format::ID::{buffer}; {space} vkBufferFormat = {vk_buffer_format}; {space} break; {space}}} """ def gen_format_case(angle, internal_format, vk_json_data): vk_map = vk_json_data["map"] vk_overrides = vk_json_data["overrides"] vk_fallbacks = vk_json_data["fallbacks"] args = { "space": " ", "format_id": angle, "internal_format": internal_format } if ((angle not in vk_map) and (angle not in vk_overrides) and (angle not in vk_fallbacks)) or angle == 'NONE': return empty_format_entry_template.format(**args) template = format_entry_template if angle in vk_map: args["buffer"] = angle args["texture"] = angle if angle in vk_overrides: args.update(vk_overrides[angle]) if angle in vk_fallbacks: template = fallback_format_entry_template fallback = vk_fallbacks[angle] assert not "buffer" in fallback, "Buffer fallbacks not yet supported" assert "texture" in fallback, "Fallback must have a texture fallback" args["fallback_texture"] = fallback["texture"] args["fallback_vk_texture_format"] = vk_map[fallback["texture"]] args["fallback_initializer"] = angle_format.get_internal_format_initializer( internal_format, fallback["texture"]) assert "buffer" in args, "Missing buffer format for " + angle assert "texture" in args, "Missing texture format for " + angle args["vk_buffer_format"] = vk_map[args["buffer"]] args["vk_texture_format"] = vk_map[args["texture"]] args["initializer"] = angle_format.get_internal_format_initializer( internal_format, args["texture"]) return template.format(**args) input_file_name = 'vk_format_map.json' out_file_name = 'vk_format_table' angle_to_gl = angle_format.load_inverse_table(os.path.join('..', 'angle_format_map.json')) vk_json_data = angle_format.load_json(input_file_name) vk_cases = [gen_format_case(angle, gl, vk_json_data) for angle, gl in sorted(angle_to_gl.iteritems())] output_cpp = template_table_autogen_cpp.format( copyright_year = date.today().year, format_case_data = "\n".join(vk_cases), script_name = __file__, out_file_name = out_file_name, input_file_name = input_file_name) with open(out_file_name + '_autogen.cpp', 'wt') as out_file: out_file.write(output_cpp) out_file.close()
src/azure-cli/azure/cli/command_modules/synapse/manual/operations/accesscontrol.py
YuanyuanNi/azure-cli
3,287
43474
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.util import CLIError from azure.cli.core.azclierror import InvalidArgumentValueError, ArgumentUsageError from azure.cli.core.util import is_guid from azure.graphrbac.models import GraphErrorException from msrestazure.azure_exceptions import CloudError from .._client_factory import cf_synapse_role_assignments, cf_synapse_role_definitions, cf_graph_client_factory from ..constant import ITEM_NAME_MAPPING # List Synapse Role Assignment def list_role_assignments(cmd, workspace_name, role=None, assignee=None, assignee_object_id=None, scope=None, item=None, item_type=None): if bool(assignee) and bool(assignee_object_id): raise ArgumentUsageError('usage error: --assignee STRING | --assignee-object-id GUID') if bool(item) != bool(item_type): raise ArgumentUsageError('usage error: --item-type STRING --item STRING') return _list_role_assignments(cmd, workspace_name, role, assignee or assignee_object_id, scope, resolve_assignee=(not assignee_object_id), item=item, item_type=item_type) def _list_role_assignments(cmd, workspace_name, role=None, assignee=None, scope=None, resolve_assignee=True, item=None, item_type=None): """Prepare scope, role ID and resolve object ID from Graph API.""" if any([scope, item, item_type]): scope = _build_role_scope(workspace_name, scope, item, item_type) role_id = _resolve_role_id(cmd, role, workspace_name) object_id = _resolve_object_id(cmd, assignee, fallback_to_object_id=True) if resolve_assignee else assignee client = cf_synapse_role_assignments(cmd.cli_ctx, workspace_name) role_assignments = client.list_role_assignments(role_id, object_id, scope).value return role_assignments # Show Synapse Role Assignment By Id def get_role_assignment_by_id(cmd, workspace_name, role_assignment_id): client = cf_synapse_role_assignments(cmd.cli_ctx, workspace_name) return client.get_role_assignment_by_id(role_assignment_id) # Delete Synapse Role Assignment def delete_role_assignment(cmd, workspace_name, ids=None, assignee=None, assignee_object_id=None, role=None, scope=None, item=None, item_type=None): client = cf_synapse_role_assignments(cmd.cli_ctx, workspace_name) if not any([ids, assignee, assignee_object_id, role, scope, item, item_type]): raise ArgumentUsageError('usage error: No argument are provided. --assignee STRING | --ids GUID') if ids: if any([assignee, assignee_object_id, role, scope, item, item_type]): raise ArgumentUsageError('You should not provide --role or --assignee or --assignee_object_id ' 'or --scope or --principal-type when --ids is provided.') role_assignments = list_role_assignments(cmd, workspace_name, None, None, None, None, None, None) assignment_id_list = [x.id for x in role_assignments] # check role assignment id for assignment_id in ids: if assignment_id not in assignment_id_list: raise ArgumentUsageError("role assignment id:'{}' doesn't exist.".format(assignment_id)) # delete when all ids check pass for assignment_id in ids: client.delete_role_assignment_by_id(assignment_id) return role_assignments = list_role_assignments(cmd, workspace_name, role, assignee, assignee_object_id, scope, item, item_type) if any([scope, item, item_type]): scope = _build_role_scope(workspace_name, scope, item, item_type) role_assignments = [x for x in role_assignments if x.scope == scope] if role_assignments: for assignment in role_assignments: client.delete_role_assignment_by_id(assignment.id) else: raise CLIError('No matched assignments were found to delete, please provide correct --role or --assignee.' 'Use `az synapse role assignment list` to get role assignments.') def create_role_assignment(cmd, workspace_name, role, assignee=None, assignee_object_id=None, scope=None, assignee_principal_type=None, item_type=None, item=None, assignment_id=None): """Check parameters are provided correctly, then call _create_role_assignment.""" if assignment_id and not is_guid(assignment_id): raise InvalidArgumentValueError('usage error: --id GUID') if bool(assignee) == bool(assignee_object_id): raise ArgumentUsageError('usage error: --assignee STRING | --assignee-object-id GUID') if assignee_principal_type and not assignee_object_id: raise ArgumentUsageError('usage error: --assignee-object-id GUID [--assignee-principal-type]') if bool(item) != bool(item_type): raise ArgumentUsageError('usage error: --item-type STRING --item STRING') try: return _create_role_assignment(cmd, workspace_name, role, assignee or assignee_object_id, scope, item, item_type, resolve_assignee=(not assignee_object_id), assignee_principal_type=assignee_principal_type, assignment_id=assignment_id) except Exception as ex: # pylint: disable=broad-except if _error_caused_by_role_assignment_exists(ex): # for idempotent return list_role_assignments(cmd, workspace_name, role=role, assignee=assignee, assignee_object_id=assignee_object_id, scope=scope, item=item, item_type=item_type) raise def _resolve_object_id(cmd, assignee, fallback_to_object_id=False): if assignee is None: return None client = cf_graph_client_factory(cmd.cli_ctx) result = None try: result = list(client.users.list(filter="userPrincipalName eq '{0}' or mail eq '{0}' or displayName eq '{0}'" .format(assignee))) if not result: result = list(client.service_principals.list(filter="displayName eq '{}'".format(assignee))) if not result: result = list(client.groups.list(filter="mail eq '{}'".format(assignee))) if not result and is_guid(assignee): # assume an object id, let us verify it result = _get_object_stubs(client, [assignee]) # 2+ matches should never happen, so we only check 'no match' here if not result: raise CLIError("Cannot find user or group or service principal in graph database for '{assignee}'. " "If the assignee is a principal id, make sure the corresponding principal is created " "with 'az ad sp create --id {assignee}'.".format(assignee=assignee)) if len(result) > 1: raise CLIError("Find more than one user or group or service principal in graph database for '{assignee}'. " "Please using --assignee-object-id GUID to specify assignee accurately" .format(assignee=assignee)) return result[0].object_id except (CloudError, GraphErrorException): if fallback_to_object_id and is_guid(assignee): return assignee raise def _get_object_stubs(graph_client, assignees): from azure.graphrbac.models import GetObjectsParameters result = [] assignees = list(assignees) # callers could pass in a set for i in range(0, len(assignees), 1000): params = GetObjectsParameters(include_directory_object_references=True, object_ids=assignees[i:i + 1000]) result += list(graph_client.objects.get_objects_by_object_ids(params)) return result def _error_caused_by_role_assignment_exists(ex): return getattr(ex, 'status_code', None) == 409 and 'role assignment already exists' in ex.message def _create_role_assignment(cmd, workspace_name, role, assignee, scope=None, item=None, item_type=None, resolve_assignee=True, assignee_principal_type=None, assignment_id=None): """Prepare scope, role ID and resolve object ID from Graph API.""" scope = _build_role_scope(workspace_name, scope, item, item_type) role_id = _resolve_role_id(cmd, role, workspace_name) object_id = _resolve_object_id(cmd, assignee, fallback_to_object_id=True) if resolve_assignee else assignee assignment_client = cf_synapse_role_assignments(cmd.cli_ctx, workspace_name) return assignment_client.create_role_assignment(assignment_id if assignment_id is not None else _gen_guid(), role_id, object_id, scope, assignee_principal_type) def _build_role_scope(workspace_name, scope, item, item_type): if scope: return scope if item and item_type: # workspaces/{workspaceName}/bigDataPools/{bigDataPoolName} scope = "workspaces/" + workspace_name + "/" + item_type + "/" + item else: scope = "workspaces/" + workspace_name return scope def _resolve_role_id(cmd, role, workspace_name): role_id = None if not role: return role_id if is_guid(role): role_id = role else: role_definition_client = cf_synapse_role_definitions(cmd.cli_ctx, workspace_name) role_definition = role_definition_client.list_role_definitions() role_dict = {x.name.lower(): x.id for x in role_definition if x.name} if role.lower() not in role_dict: raise CLIError("Role '{}' doesn't exist.".format(role)) role_id = role_dict[role.lower()] return role_id def _gen_guid(): import uuid return uuid.uuid4() # List Synapse Role Definitions Scope def list_scopes(cmd, workspace_name): client = cf_synapse_role_definitions(cmd.cli_ctx, workspace_name) return client.list_scopes() # List Synapse Role Definitions def list_role_definitions(cmd, workspace_name, is_built_in=None): client = cf_synapse_role_definitions(cmd.cli_ctx, workspace_name) role_definitions = client.list_role_definitions(is_built_in) return role_definitions def _build_role_scope_format(scope, item_type): if scope: return scope if item_type: scope = "workspaces/{workspaceName}/" + item_type + "/" + ITEM_NAME_MAPPING[item_type] else: scope = "workspaces/{workspaceName}" return scope # Get Synapse Role Definition def get_role_definition(cmd, workspace_name, role): role_id = _resolve_role_id(cmd, role, workspace_name) client = cf_synapse_role_definitions(cmd.cli_ctx, workspace_name) return client.get_role_definition_by_id(role_id)
ml_logger/ml_logger_tests/test_cloud/test_s3.py
mcx/ml_logger
107
43482
<filename>ml_logger/ml_logger_tests/test_cloud/test_s3.py """ # AWS S3 Tests """ from os.path import join as pathJoin import pytest from ml_logger import logger @pytest.fixture(scope='session') def log_dir(request): return request.config.getoption('--logdir') @pytest.fixture(scope="session") def setup(log_dir): logger.configure('main_test_script', root=log_dir) print(f"logging to {pathJoin(logger.root, logger.prefix)}") def test_s3_upload(setup): import os, pathlib profile = os.environ.get('ML_LOGGER_TEST_AWS_PROFILE', None) if profile: os.environ['AWS_PROFILE'] = profile s3_bucket = os.environ['ML_LOGGER_TEST_S3_BUCKET'] target = "s3://" + s3_bucket + "/test_dir.tar" logger.upload_dir(pathlib.Path(__file__).absolute().parent, target) def test_s3_download(setup): import os, glob profile = os.environ.get('ML_LOGGER_TEST_AWS_PROFILE', None) if profile: os.environ['AWS_PROFILE'] = profile s3_bucket = os.environ['ML_LOGGER_TEST_S3_BUCKET'] source = "s3://" + s3_bucket + "/test_dir.tar" local_prefix = '/tmp/test_dir_download' logger.download_dir(source, to=local_prefix) assert local_prefix + '/test_s3.py' in glob.glob(local_prefix + "/*") logger.remove("test_dir_download") def test_s3_glob(setup): import os profile = os.environ.get('ML_LOGGER_TEST_AWS_PROFILE', None) if profile: os.environ['AWS_PROFILE'] = profile s3_bucket = os.environ['ML_LOGGER_TEST_S3_BUCKET'] target = "s3://" + s3_bucket + "/test_dir.tar" logger.upload_dir('.', target) files = logger.glob_s3(s3_bucket) assert 'test_dir.tar' in files files = logger.glob_s3(wd=s3_bucket) assert 'test_dir.tar' in files files = logger.glob_s3(s3_bucket + "/test_dir.tar") assert 'test_dir.tar' in files files = logger.glob_s3(s3_bucket + "/this_does_not_exist") assert not files def test_s3_glob_prefix(setup): import os profile = os.environ.get('ML_LOGGER_TEST_AWS_PROFILE', None) if profile: os.environ['AWS_PROFILE'] = profile s3_bucket = os.environ['ML_LOGGER_TEST_S3_BUCKET'] target = "s3://" + s3_bucket + "/prefix/prefix-2/test_dir.tar" logger.upload_dir(".", target) files = logger.glob_s3(wd=s3_bucket + "/prefix/prefix-2") assert 'test_dir.tar' in files def test_s3_remove(setup): import os example_data = {'a': 1, 'b': 2} s3_bucket = os.environ.get('ML_LOGGER_TEST_S3_BUCKET', None) target = "s3://" + s3_bucket + "/prefix/prefix-2/example_data.pt" logger.save_torch(example_data, target) file, = logger.glob_s3(target[5:]) logger.remove_s3(s3_bucket, file) assert not logger.glob_s3(target[5:]) def test_s3_upload_download_torch(setup): import os example_data = {'a': 1, 'b': 2} s3_bucket = os.environ.get('ML_LOGGER_TEST_S3_BUCKET', None) file = "prefix/prefix-2/example_data.pt" target = "s3://" + s3_bucket + "/" + file logger.remove_s3(s3_bucket, file) logger.save_torch(example_data, target) downloaded_data = logger.load_torch(target) assert downloaded_data['a'] == 1 assert downloaded_data['b'] == 2
examples/paint-nd.py
MaksHess/napari
1,345
43507
<gh_stars>1000+ """ Display a 4D labels layer and paint only in 3D. This is useful e.g. when proofreading segmentations within a time series. """ import numpy as np from skimage import data import napari blobs = np.stack( [ data.binary_blobs( length=128, blob_size_fraction=0.05, n_dim=3, volume_fraction=f ) for f in np.linspace(0.05, 0.5, 10) ], axis=0, ) viewer = napari.view_image(blobs.astype(float), rendering='attenuated_mip') labels = viewer.add_labels(np.zeros_like(blobs, dtype=np.int32)) labels.n_edit_dimensions = 3 labels.brush_size = 15 labels.mode = 'paint' labels.n_dimensional = True napari.run()
deepconcolic/recviz.py
nberth/DeepConcolic
102
43514
<gh_stars>100-1000 #!/usr/bin/env python3 from utils_io import * from utils_args import * import yaml def check_record (r): def chk (k, t): if k not in r or not isinstance (r[k], t): raise ValueError (f'missing or wrong `{k}\' entry in record') chk ('adversarials', list) chk ('passed_tests', list) chk ('norm', str) def read_yaml_record_file (f): with open (f, 'r') as f: r = yaml.safe_load (f) try: check_record (r) return r except ValueError as e: raise ValueError (f'Malformed record file: {e}') class Record: def __init__(self, **kwds): super().__init__(**kwds) self.roots = () self.nodes = {} def reset_from_yaml_record (self, record, dir = None): self.roots = () self.nodes = {} lr = [None] * (len (record['passed_tests']) + len (record['adversarials'])) for t in record['passed_tests']: lr[t['index']] = t t['status'] = 'pass' if 'gen_test_id' in t else 'raw' for t in record['adversarials']: lr[t['index']] = t t['status'] = 'adversarial' def tnode_idx (t): return -t['index'] - 1 if 'gen_test_id' not in t else t['gen_test_id'] # Note some elements in [lr] may still be [None] if there are # duplicated inputs in the initial test suite. We can safely # ignore those indexes as no generated test case may derive from # them (i.e. those point to the index of the unique duplicated # input that is in [lr]). for t in lr: if t is None: continue id = tnode_idx (t) t['id'] = id t['childs'] = () self.nodes[id] = t if 'origin_index' in t: origin = self.nodes[tnode_idx (lr[t['origin_index']])] t['origin'] = origin['id'] origin['childs'] += (id,) else: t['origin'] = None self.roots += (id,) def set_image (t, f): if os.path.exists (os.path.join (dir, f) if dir else f): t['image'] = f for t in lr: if t is None: continue if t['status'] == 'raw': tchilds = t["childs"] if tchilds != (): set_image (t, f'{self.nodes[tchilds[0]]["id"]}-original-{t["label"]}.png') elif t['status'] == 'pass': set_image (t, f'{t["id"]}-ok-{t["label"]}.png') elif t['status'] == 'adversarial': set_image (t, f'{t["id"]}-adv-{t["label"]}.png') @classmethod def from_yaml_record (cls, yr, **_): self = cls.__new__(cls) self.reset_from_yaml_record (yr, **_) return self def traverse (self, exclude_dangling_roots = True): """Parents first; yields pairs of dictionaries `(node, parent)`, with `parent = None` for roots.""" def node (t): parent = self.nodes[t['origin']] if t['origin'] is not None else None yield (t, parent) for c in t['childs']: yield from node (self.nodes[c]) for ridx in self.roots: r = self.nodes[ridx] if not exclude_dangling_roots or r['childs'] != (): for x in node (r): yield x # --- try: from pyvis.network import Network _has_pyvis = True _pyvis_all_images = ('raw', 'pass', 'adversarial') def record_to_pyvis (record, show_images = _pyvis_all_images, level_scaling = True, **_): n = Network (directed = True, **_) mean_dist = 1. if level_scaling: mean_dist = 0.0 for i, (t, _) in enumerate (record.traverse (exclude_dangling_roots = True)): if 'origin_dist' in t: mean_dist += t['origin_dist'] / i mean_dist /= 16. for t, parent in record.traverse (exclude_dangling_roots = True): tid = t['id'] label = t['label'] props = dict () if t['status'] == 'raw': props['label'] = 'raw' props['title'] = f'Label: {label}' elif t['status'] == 'pass': props['color'] = 'green' props['title'] = f'Predicted label: {label}' elif t['status'] == 'adversarial': props['color'] = 'red' props['title'] = f'Predicted label: {label}' if 'image' in t and t['status'] in show_images: props['image'] = t['image'] props['shape'] = 'image' props['size'] = 40 props['shadow'] = True if 'root_dist' in t: dist = t['root_dist'] props['title'] += f'<br/>Distance to root: {dist:.4g}' props['level'] = dist if dist <= 0 or dist >= 1 else dist / mean_dist else: props['level'] = 0 n.add_node (tid, **props) if parent is not None: dist = t['origin_dist'] n.add_edge (parent['id'], tid, label = f'{dist:.3}', color = props['color'], width = 3) return n except: _has_pyvis = False # --- ap = argparse.ArgumentParser \ (description = 'Interactive visualisation of DeepConcolic testing record', formatter_class = argparse.ArgumentDefaultsHelpFormatter) add_named_n_pos_args (ap, 'record', ('--record', '-r'), metavar = 'YAML', help = 'record file') if _has_pyvis: _pyvis_all_buttons = ('nodes', 'edges', 'layout', 'interaction', 'manipulation', 'physics', 'selection', 'renderer') _pyvis_default_buttons = ('layout', 'physics') try: import json # for dict load ap.add_argument ('--pyvis-open', '-pvopen', action = 'store_true', help = 'open the saved HTML network') ap.add_argument ('--pyvis-non-hierarchical', '-pvnh', action = 'store_true', help = 'do not use a hierarchical layout to render ' 'the pyvis network') ap.add_argument ('--pyvis-network-options', '-pvo', type = json.loads, default = '{"width": "98vw", "height": "98vh"}', help = 'dictionary of options for pyvis network creation') ap.add_argument ('--pyvis-show-images', '-pvimgs', nargs = '+', choices = _pyvis_all_images, default = _pyvis_all_images, help = 'images to show in the pyvis network visualisation') ap.add_argument ('--pyvis-show-buttons', '-pvbuttons', nargs = '*', choices = _pyvis_all_buttons, default = _pyvis_default_buttons, help = 'buttons to show in the resulting HTML page') except: pass def get_args (args = None, parser = ap): return parser.parse_args () if args is None else args def main (args = None, parser = ap): try: args = get_args (args, parser = parser) destdir = os.path.dirname (args.record) record = Record.from_yaml_record (read_yaml_record_file (args.record), dir = destdir) if _has_pyvis: layout = 'hierarchical' if not args.pyvis_non_hierarchical else None n = record_to_pyvis (record, layout = layout, show_images = args.pyvis_show_images, **args.pyvis_network_options) if not args.pyvis_non_hierarchical: # A tad on the brittle side: n.options.layout.hierarchical.direction = "LR" if len (args.pyvis_show_buttons) != 0: n.show_buttons (filter_ = args.pyvis_show_buttons) htmldest = f'{os.path.splitext (args.record)[0]}.html' xmsg, save = ((', and opening', n.show) if args.pyvis_open else \ ('', n.save_graph)) p1 (f'Saving pyvis record graph into `{htmldest}\'{xmsg}') save (htmldest) else: sys.exit ('No backend available') except ValueError as e: sys.exit (f'Error: {e}') except FileNotFoundError as e: sys.exit (f'Error: {e}') except KeyboardInterrupt: sys.exit ('Interrupted.') # --- if __name__=="__main__": main ()
examples/numerical/unsupervised_num.py
stjordanis/QMLT
117
43518
<reponame>stjordanis/QMLT #!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2018 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. currentmodule:: qmlt.examples.numerical .. code-author:: <NAME> <<EMAIL>> Example of a simple unsupervised learning task with the numerical circuit learner. This example fails to learn the structure of the data, namely to have zero photons in the first mode, irrespective of the second mode. """ import strawberryfields as sf from strawberryfields.ops import * import numpy as np from qmlt.numerical import CircuitLearner from qmlt.numerical.helpers import make_param from qmlt.numerical.regularizers import l2 from qmlt.helpers import sample_from_distribution # Create some parameters. Mark some of them to be regularized. my_params = [ make_param(name='phi', stdev=0.2, regularize=False), make_param(name='theta', stdev=0.2, regularize=False), make_param(name='a', stdev=0.2, regularize=True), make_param(name='rtheta', stdev=0.2, regularize=False), make_param(name='r', stdev=0.2, regularize=True), make_param(name='kappa', stdev=0.2, regularize=True) ] # Define the variational circuit and its output def circuit(params): eng, q = sf.Engine(2) with eng: BSgate(params[0], params[1]) | (q[0], q[1]) Dgate(params[2]) | q[0] Rgate(params[3]) | q[0] Sgate(params[4]) | q[0] Kgate(params[5]) | q[0] state = eng.run('fock', cutoff_dim=7) circuit_output = state.all_fock_probs() return circuit_output # Define a loss function that maximises the probabilities of the states we want to learn def myloss(circuit_output, X): probs = [circuit_output[x[0], x[1]] for x in X] prob_total = sum(np.reshape(probs, -1)) return -prob_total def myregularizer(regularized_params): return l2(regularized_params) # Generate some training data. # The goal is to learn that the first mode contains no photons. X_train = np.array([[0, 1], [0, 2], [0, 3], [0, 4]]) # Set the hyperparameters of the model and the training algorithm hyperparams = {'circuit': circuit, 'init_circuit_params': my_params, 'task': 'unsupervised', 'optimizer': 'Nelder-Mead', 'loss': myloss, 'regularizer': myregularizer, 'regularization_strength': 0.1, 'print_log': True, 'log_every': 100 } # Create the learner learner = CircuitLearner(hyperparams=hyperparams) # Train the learner learner.train_circuit(X=X_train, steps=500) # Get the final distribution, which is the circuit output outcomes = learner.run_circuit() final_distribution = outcomes['outputs'] # Use a helper function to sample fock states from this state. # They should show a similar distribution to the training data for i in range(10): sample = sample_from_distribution(distribution=final_distribution) print("Fock state sample {}:{}".format(i, sample))
torchrs/datasets/whu_rs19.py
isaaccorley/torchrs
146
43526
import torchvision.transforms as T from torchvision.datasets import ImageFolder class WHURS19(ImageFolder): """ WHU-RS19 dataset from'Structural High-resolution Satellite Image Indexing', Xia at al. (2010) https://hal.archives-ouvertes.fr/file/index/docid/458685/filename/structural_satellite_indexing_XYDG.pdf """ def __init__( self, root: str = ".data/WHU-RS19", transform: T.Compose = T.Compose([T.ToTensor()]) ): super().__init__( root=root, transform=transform )
tempest/tests/lib/services/identity/v3/test_protocols_client.py
cityofships/tempest
254
43564
<filename>tempest/tests/lib/services/identity/v3/test_protocols_client.py<gh_stars>100-1000 # Copyright 2020 Samsung Electronics Co., Ltd # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. from tempest.lib.services.identity.v3 import protocols_client from tempest.tests.lib import fake_auth_provider from tempest.tests.lib.services import base class TestProtocolsClient(base.BaseServiceTest): FAKE_PROTOCOLS_INFO = { "links": { "next": None, "previous": None, "self": "http://example.com/identity/v3/OS-FEDERATION/" + "identity_providers/FAKE_ID/protocols" }, "protocols": [ { "id": "fake_id1", "links": { "identity_provider": "http://example.com/identity/v3/" + "OS-FEDERATION/identity_providers/" + "FAKE_ID", "self": "http://example.com/identity/v3/OS-FEDERATION/" "identity_providers/FAKE_ID/protocols/fake_id1" }, "mapping_id": "fake123" } ] } FAKE_PROTOCOL_INFO = { "protocol": { "id": "fake_id1", "links": { "identity_provider": "http://example.com/identity/v3/OS-" + "FEDERATION/identity_providers/FAKE_ID", "self": "http://example.com/identity/v3/OS-FEDERATION/" + "identity_providers/FAKE_ID/protocols/fake_id1" }, "mapping_id": "fake123" } } def setUp(self): super(TestProtocolsClient, self).setUp() fake_auth = fake_auth_provider.FakeAuthProvider() self.client = protocols_client.ProtocolsClient( fake_auth, 'identity', 'regionOne') def _test_add_protocol_to_identity_provider(self, bytes_body=False): self.check_service_client_function( self.client.add_protocol_to_identity_provider, 'tempest.lib.common.rest_client.RestClient.put', self.FAKE_PROTOCOL_INFO, bytes_body, idp_id="FAKE_ID", protocol_id="fake_id1", status=201) def _test_list_protocols_of_identity_provider(self, bytes_body=False): self.check_service_client_function( self.client.list_protocols_of_identity_provider, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_PROTOCOLS_INFO, bytes_body, idp_id="FAKE_ID", status=200) def _test_get_protocol_for_identity_provider(self, bytes_body=False): self.check_service_client_function( self.client.get_protocol_for_identity_provider, 'tempest.lib.common.rest_client.RestClient.get', self.FAKE_PROTOCOL_INFO, bytes_body, idp_id="FAKE_ID", protocol_id="fake_id1", status=200) def _test_update_mapping_for_identity_provider(self, bytes_body=False): self.check_service_client_function( self.client.update_mapping_for_identity_provider, 'tempest.lib.common.rest_client.RestClient.patch', self.FAKE_PROTOCOL_INFO, bytes_body, idp_id="FAKE_ID", protocol_id="fake_id1", status=200) def _test_delete_protocol_from_identity_provider(self, bytes_body=False): self.check_service_client_function( self.client.delete_protocol_from_identity_provider, 'tempest.lib.common.rest_client.RestClient.delete', {}, bytes_body, idp_id="FAKE_ID", protocol_id="fake_id1", status=204) def test_add_protocol_to_identity_provider_with_str_body(self): self._test_add_protocol_to_identity_provider() def test_add_protocol_to_identity_provider_with_bytes_body(self): self._test_add_protocol_to_identity_provider(bytes_body=True) def test_list_protocols_of_identity_provider_with_str_body(self): self._test_list_protocols_of_identity_provider() def test_list_protocols_of_identity_provider_with_bytes_body(self): self._test_list_protocols_of_identity_provider(bytes_body=True) def test_get_protocol_for_identity_provider_with_str_body(self): self._test_get_protocol_for_identity_provider() def test_get_protocol_for_identity_provider_with_bytes_body(self): self._test_get_protocol_for_identity_provider(bytes_body=True) def test_update_mapping_for_identity_provider_with_str_body(self): self._test_update_mapping_for_identity_provider() def test_update_mapping_for_identity_provider_with_bytes_body(self): self._test_update_mapping_for_identity_provider(bytes_body=True) def test_delete_protocol_from_identity_provider_with_str_body(self): self._test_delete_protocol_from_identity_provider() def test_delete_protocol_from_identity_provider_with_bytes_body(self): self._test_delete_protocol_from_identity_provider(bytes_body=False)
tools/compare_rep.py
Woffee/deformer
114
43574
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import os from collections import defaultdict import numpy as np from scipy.spatial import distance from tqdm import tqdm np.set_printoptions(threshold=np.inf, suppress=True) def main(args): num_batches = args.num_batches bert_data = defaultdict(list) s_or_e_bert_data = defaultdict(list) print('loading data...') for para_idx in range(num_batches): bert_filename = os.path.join(args.in_dir, 'bert_b{}.npz'.format(para_idx + 1)) bert_outputs = np.load(bert_filename) for k, v in bert_outputs.items(): bert_data[k].append(v) sbert_filename = os.path.join(args.in_dir, '{}_b{}.npz'.format(args.model, para_idx + 1)) sbert_outputs = np.load(sbert_filename) for k, v in sbert_outputs.items(): s_or_e_bert_data[k].append(v) print('stacking all examples of both bert and {}...'.format(args.model)) for k, v in s_or_e_bert_data.items(): s_or_e_bert_data[k] = np.concatenate(v) # stack along batch dim for k, v in bert_data.items(): bert_data[k] = np.concatenate(v) # stack along batch dim print('begin computing...') all_para_distances = [[] for _ in range(12)] all_q_distances = [[] for _ in range(12)] # 500 examples paragraphs for para_idx in tqdm(range(500)): in_ids = bert_data['input_ids'][para_idx] seg_ids = bert_data['segment_ids'][para_idx] feature_ids = bert_data['feature_id'][para_idx] q_ids = s_or_e_bert_data["question_ids"][para_idx] c_ids = s_or_e_bert_data["context_ids"][para_idx] q_length = np.sum(q_ids.astype(np.bool)) c_length = np.sum(c_ids.astype(np.bool)) sequence_length = np.sum(in_ids.astype(np.bool)) second_length = np.sum(seg_ids.astype(np.bool)) first_length = sequence_length - second_length if not (c_length == second_length): print('shifted paragraphs:', feature_ids, c_length, second_length) continue if not (q_length == first_length): print('shifted questions:', feature_ids, q_length, first_length) continue for l in range(12): b_layer_vectors = bert_data['layer{}'.format(l)][para_idx] s_layer_vectors = s_or_e_bert_data['layer{}'.format(l)][para_idx] # b_pvs is layer paragraph tokens vectors for bert b_pvs = b_layer_vectors[first_length:second_length] s_pvs = s_layer_vectors[len(q_ids):len(q_ids) + c_length] # calculate variance of distances of 5 paragraph vectors to the centroid p_dist = np.mean([distance.cosine(b_p, s_p) for b_p, s_p in zip(b_pvs, s_pvs)]) all_para_distances[l].append(p_dist) # q_pvs is layer question tokens vectors for bert b_qvs = b_layer_vectors[:first_length] s_qvs = s_layer_vectors[:q_length] q_dist = np.mean([distance.cosine(b_q, s_q) for b_q, s_q in zip(b_qvs, s_qvs)]) all_q_distances[l].append(q_dist) # all_para_variances has 12 list, each has 100 variances all_para_mean_variances = [np.mean(v) for v in all_para_distances] all_q_mean_variances = [np.mean(v) for v in all_q_distances] print(all_para_mean_variances) print(all_q_mean_variances) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('in_dir', type=str, default=None) parser.add_argument('-n', '--num_batches', type=int, default=20) parser.add_argument('-m', '--model', type=str, default='sbert', choices=('ebert', 'sbert'), help='choose which model compare distance') main(parser.parse_args())
src/api/log/__init__.py
fekblom/critic
216
43584
import rebase import partition
angr/procedures/posix/accept.py
Kyle-Kyle/angr
6,132
43614
import angr ###################################### # accept (but not really) ###################################### class accept(angr.SimProcedure): #pylint:disable=arguments-differ def run(self, sockfd, addr, addrlen): conc_addrlen = self.state.mem[addrlen].int.concrete addr_data = self.state.solver.BVS('accept_addr', conc_addrlen*8, key=('api', 'accept', 'addr')) self.state.memory.store(addr, addr_data) ident = 'unknown' if not sockfd.symbolic: sockfd = self.state.solver.eval(sockfd) if sockfd in self.state.posix.fd: simsockfd = self.state.posix.fd[sockfd] for potential_ident in self.state.posix.sockets: if self.state.posix.sockets[potential_ident][0] is simsockfd.read_storage and \ self.state.posix.sockets[potential_ident][1] is simsockfd.write_storage: ident = potential_ident break ident_counters = dict(self.state.globals.get('accept_idents', {})) ident_counters[ident] = ident_counters.get(ident, 0) + 1 self.state.globals['accept_idents'] = ident_counters fd = self.state.posix.open_socket(('accept', ident, ident_counters[ident])) return fd
scripts/sample_data/discourse_1369.py
gmatteo/awesome-panel
179
43627
import panel as pn def test_alert(): my_alert = pn.pane.Alert("foo", alert_type="primary") my_button = pn.widgets.Button(name="Toggle") def toggle(event): if my_alert.alert_type == "primary": my_alert.alert_type == "success" else: my_alert.alert_type = "primary" my_alert.object = my_alert.alert_type my_button.on_click(toggle) pn.Row(my_alert, my_button).show() test_alert()
tests/conftest.py
chadwhitacre/confidant
1,820
43650
<filename>tests/conftest.py<gh_stars>1000+ import pytest @pytest.fixture(autouse=True) def encrypted_settings_mock(mocker): mocker.patch('confidant.settings.encrypted_settings.secret_string', {}) mocker.patch( 'confidant.settings.encrypted_settings.decrypted_secrets', {'SESSION_SECRET': 'TEST_KEY'}, )
vega/algorithms/nas/modnas/optim/model_optim/base.py
This-50m/vega
724
43651
# -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Score model optimum finder.""" import random from collections import OrderedDict from typing import Set class ModelOptim(): """Score model optimum finder class.""" def __init__(self, space): self.space = space def get_random_index(self, excludes: Set[int]) -> int: """Return random categorical index from search space.""" index = random.randint(0, self.space.categorical_size() - 1) while index in excludes: index = random.randint(0, self.space.categorical_size() - 1) return index def get_random_params(self, excludes: Set[int]) -> OrderedDict: """Return random categorical parameters from search space.""" return self.space.get_categorical_params(self.get_random_index(excludes)) def get_optimums(self, model, size, excludes): """Return optimums in score model.""" raise NotImplementedError
tests/test_adjacency.py
jpmaterial/trimesh
1,882
43700
try: from . import generic as g except BaseException: import generic as g class AdjacencyTest(g.unittest.TestCase): def test_radius(self): for radius in [0.1, 1.0, 3.1459, 29.20]: m = g.trimesh.creation.cylinder( radius=radius, height=radius * 10) # remove the cylinder cap signs = (g.np.sign(m.vertices[:, 2]) < 0)[m.faces] not_cap = ~g.np.logical_or( signs.all(axis=1), ~signs.any(axis=1)) m.update_faces(not_cap) # compare the calculated radius radii = m.face_adjacency_radius radii = radii[g.np.isfinite(radii)] assert g.np.allclose(radii, radius, atol=radius / 100) if __name__ == '__main__': g.trimesh.util.attach_to_log() g.unittest.main()
clastic/tests/test_obj_browser.py
mahmoud/clastic
140
43708
# -*- coding: utf-8 -*- from __future__ import unicode_literals import sys import pytest from clastic.contrib.obj_browser import create_app _IS_PYPY = '__pypy__' in sys.builtin_module_names @pytest.mark.skipif(_IS_PYPY, reason='pypy gc cannot support obj browsing') def test_flaw_basic(): app = create_app() cl = app.get_local_client() resp = cl.get('/') assert resp.status_code == 302 # take me to the default resp = cl.get('/', follow_redirects=True) assert resp.status_code == 200 # default should be sys assert 'modules' in resp.get_data(True)
tests/rororo/test_openapi.py
fajfer/rororo
105
43711
import datetime import io import json import zipfile from pathlib import Path import pyrsistent import pytest import yaml from aiohttp import web from openapi_core.shortcuts import create_spec from yarl import URL from rororo import ( BaseSettings, get_openapi_context, get_openapi_schema, get_openapi_spec, openapi_context, OperationTableDef, setup_openapi, setup_settings_from_environ, ) from rororo.annotations import DictStrAny from rororo.openapi import get_validated_data from rororo.openapi.exceptions import ( ConfigurationError, OperationError, validation_error_context, ValidationError, ) ROOT_PATH = Path(__file__).parent INVALID_OPENAPI_JSON_PATH = ROOT_PATH / "invalid-openapi.json" INVALID_OPENAPI_YAML_PATH = ROOT_PATH / "invalid-openapi.yaml" OPENAPI_JSON_PATH = ROOT_PATH / "openapi.json" OPENAPI_YAML_PATH = ROOT_PATH / "openapi.yaml" TEST_NESTED_OBJECT = { "uid": "6fccda1b-0873-4c8a-bceb-a2acfe5851da", "type": "nested-object", "data": { "data_item": {"key": "value1", "any_data": {}}, "data_items": [ {"key": "value2", "any_data": {"two": 2}}, {"key": "value3", "any_data": {"three": 3}}, ], "str_items": ["1", "2", "3"], }, "any_data": {"key1": "value1", "key2": "value2", "list": [1, 2, 3]}, } operations = OperationTableDef() invalid_operations = OperationTableDef() def custom_json_loader(content: bytes) -> DictStrAny: return json.load(io.BytesIO(content)) def custom_yaml_loader(content: bytes) -> DictStrAny: return yaml.load(content, Loader=yaml.SafeLoader) @invalid_operations.register("does-not-exist") async def does_not_exist(request: web.Request) -> web.Response: return web.Response(text="Hello, world!") @operations.register("create-post") async def create_post(request: web.Request) -> web.Response: data = get_validated_data(request) published_at: datetime.datetime = data["published_at"] with validation_error_context("body", "published_at"): if published_at.tzinfo is None: raise ValidationError(message="Invalid value") return web.json_response( {**data, "id": 1, "published_at": data["published_at"].isoformat()}, status=201, ) @operations.register async def hello_world(request: web.Request) -> web.Response: with openapi_context(request) as context: name = context.parameters.query.get("name") or "world" email = context.parameters.query.get("email") or "<EMAIL>" return web.json_response( {"message": f"Hello, {name}!", "email": email} ) @operations.register async def retrieve_any_object_from_request_body( request: web.Request, ) -> web.Response: return web.json_response(pyrsistent.thaw(get_validated_data(request))) @operations.register async def retrieve_array_from_request_body( request: web.Request, ) -> web.Response: with openapi_context(request) as context: return web.json_response(pyrsistent.thaw(context.data)) @operations.register async def retrieve_empty(request: web.Request) -> web.Response: context = get_openapi_context(request) return web.Response( status=204, headers={"X-API-Key": context.security.get("apiKey") or ""} ) @operations.register async def retrieve_invalid_response(request: web.Request) -> web.Response: return web.json_response({}) @operations.register async def retrieve_post(request: web.Request) -> web.Response: context = get_openapi_context(request) return web.json_response( {"id": context.parameters.path["post_id"], "title": "The Post"} ) @operations.register async def retrieve_nested_object_from_request_body( request: web.Request, ) -> web.Response: with openapi_context(request) as context: data = pyrsistent.thaw(context.data) data["uid"] = str(data["uid"]) return web.json_response( data, headers={ "X-Data-Type": str(type(context.data)), "X-Data-Data-Data-Items-Type": str( type(context.data["data"]["data_items"]) ), "X-Data-Data-Str-Items-Type": str( type(context.data["data"]["str_items"]) ), "X-Data-UID-Type": str(type(context.data["uid"])), }, ) @operations.register async def retrieve_zip(request: web.Request) -> web.Response: output = io.BytesIO() with zipfile.ZipFile(output, "w") as handler: handler.writestr("hello.txt", "Hello, world!") output.seek(0) return web.Response( body=output, content_type="application/zip", headers={"Content-Disposition": "attachment; filename=hello.zip"}, ) @operations.register async def upload_image(request: web.Request) -> web.Response: return web.Response( body=get_openapi_context(request).data, content_type=request.content_type, status=201, ) @operations.register async def upload_text(request: web.Request) -> web.Response: return web.Response( text=get_openapi_context(request).data, content_type=request.content_type, status=201, ) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_any_object_request_body(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url=URL("/api/") ) client = await aiohttp_client(app) response = await client.post("/api/any-object", json=TEST_NESTED_OBJECT) assert response.status == 200 assert await response.json() == TEST_NESTED_OBJECT @pytest.mark.parametrize( "data, expected_status, expected_response", ( ( {}, 422, {"detail": [{"loc": ["body"], "message": "[] is too short"}]}, ), ( [], 422, {"detail": [{"loc": ["body"], "message": "[] is too short"}]}, ), ( [""], 422, {"detail": [{"loc": ["body", 0], "message": "'' is too short"}]}, ), (["Hello", "world!"], 200, ["Hello", "world!"]), ), ) async def test_array_request_body( aiohttp_client, data, expected_status, expected_response ): app = setup_openapi( web.Application(), OPENAPI_YAML_PATH, operations, server_url=URL("/api"), ) client = await aiohttp_client(app) response = await client.post("/api/array", json=data) assert response.status == expected_status assert await response.json() == expected_response @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_create_post_201(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) published_at = "2020-04-01T12:00:00+02:00" client = await aiohttp_client(app) response = await client.post( "/api/create-post", json={ "title": "Post", "slug": "post", "content": "Post Content", "published_at": published_at, }, ) assert response.status == 201 assert await response.json() == { "id": 1, "title": "Post", "slug": "post", "content": "Post Content", "published_at": published_at, } @pytest.mark.parametrize( "schema_path, invalid_data, expected_detail", ( ( OPENAPI_JSON_PATH, {}, [ {"loc": ["body", "title"], "message": "Field required"}, {"loc": ["body", "slug"], "message": "Field required"}, {"loc": ["body", "content"], "message": "Field required"}, {"loc": ["body", "published_at"], "message": "Field required"}, ], ), ( OPENAPI_YAML_PATH, {"title": "Title"}, [ {"loc": ["body", "slug"], "message": "Field required"}, {"loc": ["body", "content"], "message": "Field required"}, {"loc": ["body", "published_at"], "message": "Field required"}, ], ), ( OPENAPI_JSON_PATH, {"title": "Title", "slug": "slug"}, [ {"loc": ["body", "content"], "message": "Field required"}, {"loc": ["body", "published_at"], "message": "Field required"}, ], ), ( OPENAPI_YAML_PATH, {"title": "Title", "slug": "slug", "content": "Content"}, [{"loc": ["body", "published_at"], "message": "Field required"}], ), ), ) async def test_create_post_422( aiohttp_client, schema_path, invalid_data, expected_detail ): app = setup_openapi( web.Application(), schema_path, operations, server_url=URL("/dev-api"), ) client = await aiohttp_client(app) response = await client.post("/dev-api/create-post", json=invalid_data) assert response.status == 422 assert (await response.json())["detail"] == expected_detail @pytest.mark.parametrize( "schema_path, schema_loader", ( (OPENAPI_JSON_PATH, custom_json_loader), (OPENAPI_YAML_PATH, custom_yaml_loader), ), ) def test_custom_schema_loader(schema_path, schema_loader): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/", schema_loader=schema_loader, ) assert isinstance(get_openapi_schema(app), dict) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_email_format(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.get( "/api/hello", params={"email": "<EMAIL>"} ) assert response.status == 200 assert (await response.json())["email"] == "<EMAIL>" @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_invalid_parameter_format(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.get("/api/posts/not-an-integer") assert response.status == 422 assert await response.json() == { "detail": [ { "loc": ["parameters", "post_id"], "message": "'not-an-integer' is not a type of 'integer'", } ] } @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_invalid_parameter_value(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.get("/api/posts/0") assert response.status == 422 assert await response.json() == { "detail": [ { "loc": ["parameters", "post_id"], "message": "0 is less than the minimum of 1", } ] } def test_get_openapi_schema_no_schema(): with pytest.raises(ConfigurationError): get_openapi_schema(web.Application()) def test_get_openapi_spec_no_spec(): with pytest.raises(ConfigurationError): get_openapi_spec(web.Application()) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_multiple_request_errors(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.get("/api/hello?name=&email=") assert response.status == 422 assert await response.json() == { "detail": [ { "loc": ["parameters", "name"], "message": "Empty parameter value", }, { "loc": ["parameters", "email"], "message": "Empty parameter value", }, ] } @pytest.mark.parametrize( "schema_path, query_string, expected_message", ( (OPENAPI_JSON_PATH, None, "Hello, world!"), (OPENAPI_JSON_PATH, "?name=Name", "Hello, Name!"), (str(OPENAPI_JSON_PATH), None, "Hello, world!"), (str(OPENAPI_JSON_PATH), "?name=Name", "Hello, Name!"), (OPENAPI_YAML_PATH, None, "Hello, world!"), (OPENAPI_YAML_PATH, "?name=Name", "Hello, Name!"), (str(OPENAPI_YAML_PATH), None, "Hello, world!"), (str(OPENAPI_YAML_PATH), "?name=Name", "Hello, Name!"), ), ) async def test_openapi( aiohttp_client, schema_path, query_string, expected_message ): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api" ) client = await aiohttp_client(app) url = "/api/hello" response = await client.get( f"{url}{query_string}" if query_string is not None else url ) assert response.status == 200 assert (await response.json())["message"] == expected_message @pytest.mark.parametrize("is_enabled", (False, True)) async def test_openapi_validate_response(aiohttp_client, is_enabled): app = web.Application() setup_openapi( app, OPENAPI_YAML_PATH, operations, server_url="/api", is_validate_response=is_enabled, ) client = await aiohttp_client(app) response = await client.get("/api/hello") assert response.status == 200 assert await response.json() == { "message": "Hello, world!", "email": "<EMAIL>", } @pytest.mark.parametrize( "has_openapi_schema_handler, url, expected_status", ( (True, "/api/openapi.json", 200), (False, "/api/openapi.yaml", 404), (True, "/api/openapi.yaml", 200), (False, "/api/openapi.yaml", 404), (True, "/api/openapi.txt", 500), (False, "/api/openapi.txt", 404), ), ) async def test_openapi_schema_handler( aiohttp_client, has_openapi_schema_handler, url, expected_status ): app = web.Application() setup_openapi( app, OPENAPI_YAML_PATH, operations, server_url=URL("/api"), has_openapi_schema_handler=has_openapi_schema_handler, ) client = await aiohttp_client(app) response = await client.get(url) assert response.status == expected_status @pytest.mark.parametrize( "schema_path, headers, expected", ( (OPENAPI_JSON_PATH, {}, ""), (OPENAPI_JSON_PATH, {"X-API-Key": "apiKey"}, "apiKey"), (OPENAPI_YAML_PATH, {}, ""), (OPENAPI_YAML_PATH, {"X-API-Key": "apiKey"}, "apiKey"), ), ) async def test_optional_security_scheme( aiohttp_client, schema_path, headers, expected ): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.get("/api/empty", headers=headers) assert response.status == 204 assert response.headers["X-API-Key"] == expected @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_request_body_nested_object(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api/" ) client = await aiohttp_client(app) response = await client.post("/api/nested-object", json=TEST_NESTED_OBJECT) assert response.status == 200 assert response.headers["X-Data-Type"] == "<class 'pyrsistent._pmap.PMap'>" assert ( response.headers["X-Data-Data-Data-Items-Type"] == "<class 'pvectorc.PVector'>" ) assert ( response.headers["X-Data-Data-Str-Items-Type"] == "<class 'pvectorc.PVector'>" ) assert response.headers["X-Data-UID-Type"] == "<class 'uuid.UUID'>" assert await response.json() == TEST_NESTED_OBJECT @pytest.mark.parametrize( "schema_path, loader", ( (OPENAPI_JSON_PATH, custom_json_loader), (OPENAPI_YAML_PATH, custom_yaml_loader), ), ) async def test_setup_openapi_schema_and_spec( aiohttp_client, schema_path, loader ): schema = loader(schema_path.read_bytes()) spec = create_spec(schema) app = setup_openapi( web.Application(), operations, schema=schema, spec=spec, server_url="/api/", ) client = await aiohttp_client(app) response = await client.get("/api/hello") assert response.status == 200 assert await response.json() == { "message": "Hello, world!", "email": "<EMAIL>", } @pytest.mark.parametrize( "schema_path, loader", ( (OPENAPI_JSON_PATH, custom_json_loader), (OPENAPI_YAML_PATH, custom_yaml_loader), ), ) async def test_setup_openapi_schema_and_path_ignore_invalid_schema_path( aiohttp_client, schema_path, loader ): schema = loader(schema_path.read_bytes()) spec = create_spec(schema) setup_openapi( web.Application(), INVALID_OPENAPI_JSON_PATH, operations, schema=schema, spec=spec, server_url="/api/", ) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) def test_setup_openapi_invalid_operation(schema_path): with pytest.raises(OperationError): setup_openapi( web.Application(), schema_path, invalid_operations, server_url="/api", ) def test_setup_openapi_invalid_path(): with pytest.raises(ConfigurationError): setup_openapi( web.Application(), ROOT_PATH / "does-not-exist.yaml", operations ) def test_setup_openapi_invalid_file(): with pytest.raises(ConfigurationError): setup_openapi(web.Application(), ROOT_PATH / "settings.py", operations) @pytest.mark.parametrize( "schema_path", (INVALID_OPENAPI_JSON_PATH, INVALID_OPENAPI_YAML_PATH) ) def test_setup_openapi_invalid_spec(schema_path): with pytest.raises(ConfigurationError): setup_openapi(web.Application(), schema_path, operations) @pytest.mark.parametrize( "schema_path, level, url, expected_status", ( (OPENAPI_JSON_PATH, "test", "/api/hello", 200), (OPENAPI_JSON_PATH, "test", "/dev-api/hello", 404), (OPENAPI_YAML_PATH, "test", "/api/hello", 200), (OPENAPI_YAML_PATH, "test", "/dev-api/hello", 404), (OPENAPI_JSON_PATH, "dev", "/api/hello", 404), (OPENAPI_JSON_PATH, "dev", "/dev-api/hello", 200), (OPENAPI_YAML_PATH, "dev", "/api/hello", 404), (OPENAPI_YAML_PATH, "dev", "/dev-api/hello", 200), ), ) async def test_setup_openapi_server_url_from_settings( monkeypatch, aiohttp_client, schema_path, level, url, expected_status ): monkeypatch.setenv("LEVEL", level) app = setup_openapi( setup_settings_from_environ(web.Application(), BaseSettings), schema_path, operations, ) client = await aiohttp_client(app) response = await client.get(url) assert response.status == expected_status @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) def test_setup_openapi_server_url_invalid_level(monkeypatch, schema_path): monkeypatch.setenv("LEVEL", "prod") with pytest.raises(ConfigurationError): setup_openapi( setup_settings_from_environ(web.Application(), BaseSettings), schema_path, operations, ) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) def test_setup_openapi_server_url_does_not_set(schema_path): with pytest.raises(ConfigurationError): setup_openapi(web.Application(), schema_path, operations) @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_upload_image(aiohttp_client, schema_path): blank_png = (Path(__file__).parent / "data" / "blank.png").read_bytes() app = setup_openapi( web.Application(), schema_path, operations, server_url="/api" ) client = await aiohttp_client(app) response = await client.post( "/api/upload-image", data=blank_png, headers={"Content-Type": "image/png"}, ) assert response.status == 201 assert await response.read() == blank_png @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_upload_text(aiohttp_client, schema_path): text = "Hello, world! And other things..." app = setup_openapi( web.Application(), schema_path, operations, server_url="/api" ) client = await aiohttp_client(app) response = await client.post( "/api/upload-text", data=text.encode("utf-8"), headers={"Content-Type": "text/plain"}, ) assert response.status == 201 assert await response.text() == text @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_validate_binary_response(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api", is_validate_response=True, ) client = await aiohttp_client(app) response = await client.get("/api/download.zip") assert response.status == 200 assert response.content_type == "application/zip" content = io.BytesIO(await response.read()) with zipfile.ZipFile(content) as handler: with handler.open("hello.txt") as item: assert item.read() == b"Hello, world!" @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_validate_empty_response(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api", is_validate_response=True, ) client = await aiohttp_client(app) response = await client.get("/api/empty") assert response.status == 204 @pytest.mark.parametrize( "schema_path, is_validate_response, expected_status", ( (OPENAPI_JSON_PATH, False, 200), (OPENAPI_JSON_PATH, True, 422), (OPENAPI_YAML_PATH, False, 200), (OPENAPI_JSON_PATH, True, 422), ), ) async def test_validate_response( aiohttp_client, schema_path, is_validate_response, expected_status ): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api", is_validate_response=is_validate_response, ) client = await aiohttp_client(app) response = await client.get("/api/invalid-response") assert response.status == expected_status @pytest.mark.parametrize("schema_path", (OPENAPI_JSON_PATH, OPENAPI_YAML_PATH)) async def test_validate_response_error(aiohttp_client, schema_path): app = setup_openapi( web.Application(), schema_path, operations, server_url="/api", is_validate_response=True, ) client = await aiohttp_client(app) response = await client.get("/api/invalid-response") assert response.status == 422 assert await response.json() == { "detail": [ {"loc": ["response", "uid"], "message": "Field required"}, {"loc": ["response", "type"], "message": "Field required"}, {"loc": ["response", "data"], "message": "Field required"}, {"loc": ["response", "any_data"], "message": "Field required"}, ] }
armi/materials/inconel600.py
celikten/armi
162
43725
# Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Inconel600 """ import numpy from armi.utils.units import getTc from armi.materials.material import Material class Inconel600(Material): name = "Inconel600" references = { "mass fractions": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", "density": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", "thermalConductivity": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", "specific heat": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", "linear expansion percent": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", "linear expansion": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", } def __init__(self): Material.__init__(self) self.p.refTempK = 294.15 self.p.refDens = 8.47 # g/cc # Only density measurement presented in the reference. # Presumed to be performed at 21C since this was the reference temperature for linear expansion measurements. def setDefaultMassFracs(self): massFracs = { "NI": 0.7541, "CR": 0.1550, "FE": 0.0800, "C": 0.0008, "MN55": 0.0050, "S": 0.0001, "SI": 0.0025, "CU": 0.0025, } for element, massFrac in massFracs.items(): self.setMassFrac(element, massFrac) def polyfitThermalConductivity(self, power=2): r""" Calculates the coefficients of a polynomial fit for thermalConductivity. Based on data from http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf Fits a polynomial to the data set and returns the coefficients. Parameters ---------- power : int, optional power of the polynomial fit equation Returns ------- list of length 'power' containing the polynomial fit coefficients for thermal conductivity. """ Tc = [20.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0] k = [14.9, 15.9, 17.3, 19.0, 20.5, 22.1, 23.9, 25.7, 27.5] return numpy.polyfit(numpy.array(Tc), numpy.array(k), power).tolist() def thermalConductivity(self, Tk=None, Tc=None): r""" Returns the thermal conductivity of Inconel600. Parameters ---------- Tk : float, optional temperature in (K) Tc : float, optional Temperature in (C) Returns ------- thermalCond : float thermal conductivity in W/m/C """ Tc = getTc(Tc, Tk) self.checkTempRange(20.0, 800.0, Tc, "thermal conductivity") thermalCond = 3.4938e-6 * Tc ** 2 + 1.3403e-2 * Tc + 14.572 return thermalCond # W/m-C def polyfitHeatCapacity(self, power=2): r""" Calculates the coefficients of a polynomial fit for heatCapacity. Based on data from http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf Fits a polynomial to the data set and returns the coefficients. Parameters ---------- power : int, optional power of the polynomial fit equation Returns ------- list of length 'power' containing the polynomial fit coefficients for heat capacity. """ Tc = [20.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0] cp = [444.0, 465.0, 486.0, 502.0, 519.0, 536.0, 578.0, 595.0, 611.0, 628.0] return numpy.polyfit(numpy.array(Tc), numpy.array(cp), power).tolist() def heatCapacity(self, Tk=None, Tc=None): r""" Returns the specific heat capacity of Inconel600. Parameters ---------- Tk : float, optional Temperature in Kelvin. Tc : float, optional Temperature in degrees Celsius. Returns ------- heatCapacity : float heat capacity in J/kg/C """ Tc = getTc(Tc, Tk) self.checkTempRange(20, 900, Tc, "heat capacity") heatCapacity = 7.4021e-6 * Tc ** 2 + 0.20573 * Tc + 441.3 return heatCapacity # J/kg-C def polyfitLinearExpansionPercent(self, power=2): r""" Calculates the coefficients of a polynomial fit for linearExpansionPercent. Based on data from http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf Uses mean CTE values to find percent thermal strain values. Fits a polynomial to the data set and returns the coefficients. Parameters ---------- power : int, optional power of the polynomial fit equation Returns ------- list of length 'power' containing the polynomial fit coefficients for linearExpansionPercent """ refTempC = getTc(None, Tk=self.p.refTempK) Tc = [100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0] alpha_mean = [ 1.33e-05, 1.38e-05, 1.42e-05, 1.45e-05, 1.49e-05, 1.53e-05, 1.58e-05, 1.61e-05, 1.64e-05, ] linExpPercent = [0.0] for i, alpha in enumerate(alpha_mean): linExpPercentVal = 100.0 * alpha * (Tc[i] - refTempC) linExpPercent.append(linExpPercentVal) Tc.insert(0, refTempC) return numpy.polyfit( numpy.array(Tc), numpy.array(linExpPercent), power ).tolist() def linearExpansionPercent(self, Tk=None, Tc=None): r""" Returns percent linear expansion of Inconel600. Parameters ---------- Tk : float temperature in (K) Tc : float Temperature in (C) Returns ------- linExpPercent in %-m/m/C """ Tc = getTc(Tc, Tk) self.checkTempRange(21.0, 900.0, Tc, "linear expansion percent") linExpPercent = 3.722e-7 * Tc ** 2 + 1.303e-3 * Tc - 2.863e-2 return linExpPercent def linearExpansion(self, Tk=None, Tc=None): r""" From http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf Using the correlation for linearExpansionPercent, the 2nd order polynomial is divided by 100 to convert from percent strain to strain, then differentiated with respect to temperature to find the correlation for instantaneous linear expansion. i.e. for a linearExpansionPercent correlation of a*Tc**2 + b*Tc + c, the linearExpansion correlation is 2*a/100*Tc + b/100 2*(3.722e-7/100.0)*Tc + 1.303e-3/100.0 Parameters ---------- Tk : float temperature in (K) Tc : float Temperature in (C) Returns ------- linExp in m/m/C """ Tc = getTc(Tc, Tk) self.checkTempRange(21.0, 900.0, Tc, "linear expansion") linExp = 7.444e-9 * Tc + 1.303e-5 return linExp
hubspot/crm/products/api/__init__.py
fakepop/hubspot-api-python
117
43727
<reponame>fakepop/hubspot-api-python from __future__ import absolute_import # flake8: noqa # import apis into api package from hubspot.crm.products.api.associations_api import AssociationsApi from hubspot.crm.products.api.basic_api import BasicApi from hubspot.crm.products.api.batch_api import BatchApi from hubspot.crm.products.api.search_api import SearchApi
apps/base/urls/product_category_uom.py
youssriaboelseod/pyerp
115
43757
<reponame>youssriaboelseod/pyerp """The store routes """ # Django Library from django.urls import path # Localfolder Library from ..views.product_category_uom import ( ProductCategoryUOMCreateView, ProductCategoryUOMDeleteView, ProductCategoryUOMDetailView, ProductCategoryUOMListView, ProductCategoryUOMUpdateView) app_name = 'PyProductCategoryUOM' urlpatterns = [ path('', ProductCategoryUOMListView.as_view(), name='list'), path('add/', ProductCategoryUOMCreateView.as_view(), name='add'), path('int:pk>/', ProductCategoryUOMDetailView.as_view(), name='product-category-uom-detail'), path('<int:pk>/update', ProductCategoryUOMUpdateView.as_view(), name='update'), path('<int:pk>/delete/', ProductCategoryUOMDeleteView.as_view(), name='delete'), ]
muddery/server/statements/statement_func_set.py
dongwudanci/muddery
127
43772
<gh_stars>100-1000 """ A statement function set holds a set of statement functions that can be used in statements. """ class BaseStatementFuncSet(object): """ A statement function set holds a set of statement functions that can be used in statements. """ def __init__(self): self.funcs = {} self.at_creation() def at_creation(self): """ Load statement functions here. """ pass def add(self, func_cls): """ Add a statement function's class. Args: func_cls: statement function's class Returns: None """ # save an instance of the function class self.funcs[func_cls.key] = func_cls def get_func_class(self, key): """ Get statement function's class. Args: key: statement function's key. Returns: function's class """ if key in self.funcs: return self.funcs[key] else: return None
tagger/data/__init__.py
XMUNLP/Tagger
335
43871
<reponame>XMUNLP/Tagger<filename>tagger/data/__init__.py<gh_stars>100-1000 from tagger.data.dataset import get_dataset from tagger.data.vocab import load_vocabulary, lookup from tagger.data.embedding import load_glove_embedding
tools/parse_log.py
KyleHai/DeepSpeech2
158
43910
import fileinput as fin # funcs: def findValWithFormat(line): lines.append(line) taken = line.split(" ") raw_val = taken[-1] val = raw_val.split("/")[-1] val = val[0:-2] if 'us' in val: val = float(val[0:val.find('us')]) val = val/1000 else: val = float(val[0:val.find('ms')]) return val def getCellNum(line): cell_num = line[line.find(rnn_cell_string):line.find(rnn_cell_string) + len(rnn_cell_string) + 1] return cell_num def profRNNCell(line, rnncell_prof): cell_num = getCellNum(line) val = findValWithFormat(line) rnncell_prof[cell_num] += val # variables: lines = [] module_rnncell = "CustomRNNCell2" module_grad = 'gradients' num_rnn_layer = 7 rnn_cell_string = "cell_" module_rnn = 'rnn' module_conv1 = 'conv1' module_conv2 = 'conv2' module_softmax = 'softmax_linear' module_ctc = ['ctc_loss', 'CTCLoss'] module_bn = 'bn2' rnn_cells = [rnn_cell_string+str(i) for i in range(num_rnn_layer)] rnncell_f_prof = dict.fromkeys(rnn_cells) rnncell_b_prof = dict.fromkeys(rnn_cells) # prf estimator: for el in rnncell_f_prof: rnncell_f_prof[el] = 0.0 for el in rnncell_b_prof: rnncell_b_prof[el] = 0.0 overall_cost = 0.0 profs ={\ 'rnn_trans_f_prof': 0.0, \ 'rnn_trans_b_prof': 0.0, \ 'rnn_reshape_f_prof': 0.0, \ 'rnn_reshape_b_prof': 0.0, \ 'rnn_ReverseSequence_f_prof': 0.0, \ 'rnn_ReverseSequence_b_prof': 0.0, \ 'conv1_f_prof': 0.0, \ 'conv1_b_prof': 0.0, \ 'bn1_f_prof': 0.0, \ 'bn1_b_prof': 0.0, \ 'relu1_f_prof': 0.0, \ 'relu1_b_prof': 0.0, \ 'conv2_f_prof': 0.0, \ 'conv2_b_prof': 0.0, \ 'bn2_f_prof': 0.0, \ 'bn2_b_prof': 0.0, \ 'relu2_f_prof': 0.0, \ 'relu2_b_prof': 0.0, \ 'softmax_f_prof': 0.0, \ 'softmax_b_prof': 0.0, \ 'ctc_f_prof': 0.0, \ 'ctc_b_prof': 0.0 \ } with open('timing_memory.log', 'r') as f: for line in f: if len(line) > 3: if ((line[3] != ' ') or 'Adam/update_' in line) and ('flops' not in line): # flops is not considered # conv1 if (module_grad not in line) and (module_conv1 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn not in line): val = findValWithFormat(line) profs['conv1_f_prof'] += val if (module_grad in line) and (module_conv1 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn not in line): val = findValWithFormat(line) profs['conv1_b_prof'] += val # BN1 if (module_grad not in line) and (module_conv1 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn in line): val = findValWithFormat(line) profs['bn1_f_prof'] += val if (module_grad in line) and (module_conv1 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn in line): val = findValWithFormat(line) profs['bn1_b_prof'] += val # Relu1 if (module_grad not in line) and (module_conv1 in line) and ('Minimum' in line or 'Relu' in line) and (module_bn not in line): val = findValWithFormat(line) profs['relu1_f_prof'] += val if (module_grad in line) and (module_conv1 in line) and ('Minimum' in line or 'Relu' in line) and (module_bn not in line): val = findValWithFormat(line) profs['relu1_b_prof'] += val # conv2 if (module_grad not in line) and (module_conv2 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn not in line): val = findValWithFormat(line) profs['conv2_f_prof'] += val if (module_grad in line) and (module_conv2 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn not in line): val = findValWithFormat(line) profs['conv2_b_prof'] += val # BN2 if (module_grad not in line) and (module_conv2 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn in line): val = findValWithFormat(line) profs['bn2_f_prof'] += val if (module_grad in line) and (module_conv2 in line) and ('Minimum' not in line) and ('Relu' not in line) and (module_bn in line): val = findValWithFormat(line) profs['bn2_b_prof'] += val # Relu2 if (module_grad not in line) and (module_conv2 in line) and ('Minimum' in line or 'Relu' in line) and (module_bn not in line): val = findValWithFormat(line) profs['relu2_f_prof'] += val if (module_grad in line) and (module_conv2 in line) and ('Minimum' in line or 'Relu' in line) and (module_bn not in line): val = findValWithFormat(line) profs['relu2_b_prof'] += val #rnn transpose if (module_grad not in line) and (module_rnn in line) and ('transpose' in line) and (module_rnncell not in line): val = findValWithFormat(line) profs['rnn_trans_f_prof'] += val if (module_grad in line) and (module_rnn in line) and ('transpose' in line) and (module_rnncell not in line): val = findValWithFormat(line) profs['rnn_trans_b_prof'] += val #rnn reshape if (module_grad not in line) and (module_rnn in line) and ('rnn/Reshape' in line) and (module_rnncell not in line): val = findValWithFormat(line) profs['rnn_reshape_f_prof'] += val if (module_grad in line) and (module_rnn in line) and ('rnn/Reshape' in line) and (module_rnncell not in line): val = findValWithFormat(line) profs['rnn_reshape_b_prof'] += val #rnn reshape if (module_grad not in line) and (module_rnn in line) and ('ReverseSequence' in line): val = findValWithFormat(line) profs['rnn_ReverseSequence_f_prof'] += val if (module_grad in line) and (module_rnn in line) and ('ReverseSequence' in line): val = findValWithFormat(line) profs['rnn_ReverseSequence_b_prof'] += val # rnn forward profiling by cell if (module_grad not in line) and (module_rnncell in line): profRNNCell(line, rnncell_f_prof) # rnn backward profiling by cell if (module_grad in line) and (module_rnncell in line): profRNNCell(line, rnncell_b_prof) # softmax if (module_grad not in line) and (module_softmax in line): val = findValWithFormat(line) profs['softmax_f_prof'] += val if (module_grad in line) and (module_softmax in line): val = findValWithFormat(line) profs['softmax_b_prof'] += val # ctc for c in module_ctc: if (c in line) and (module_grad not in line): val = findValWithFormat(line) profs['ctc_f_prof'] += val if (c in line) and (module_grad in line): val = findValWithFormat(line) profs['ctc_b_prof'] +=val for key, val in dict.iteritems(rnncell_f_prof): overall_cost += val print "(RNN forward by cell) " + str(key) + ": " + str(val) + "ms" for key, val in dict.iteritems(rnncell_b_prof): overall_cost += val print "(RNN backward by cell) " + str(key) + ": " + str(val) + "ms" # Profiling result for k in dict.fromkeys(profs): overall_cost += profs[k] print k + ": " + str(profs[k]) + "ms" print "overall: " + str(overall_cost) + "ms" prf_file1 = open('prf1.txt', 'w') for k in dict.fromkeys(profs): prf_file1.write("%s:%f\n" % (k, profs[k])) prf_file1.close() # write including modules prf_file2 = open('prf2.txt', 'w') for el in lines: prf_file2.write("%s\n" % el) prf_file2.close()
maskrcnn_benchmark/modeling/roi_heads/ke_head/inference.py
happog/Box_Discretization_Network
285
43949
import torch from torch import nn import pdb, os from shapely.geometry import * from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist import time import matplotlib.pyplot as plt import numpy as np from scipy.signal import argrelextrema import random import string all_types = [[1,2,3,4],[1,2,4,3],[1,3,2,4],[1,3,4,2],[1,4,2,3],[1,4,3,2],\ [2,1,3,4],[2,1,4,3],[2,3,1,4],[2,3,4,1],[2,4,1,3],[2,4,3,1],\ [3,1,2,4],[3,1,4,2],[3,2,1,4],[3,2,4,1],[3,4,1,2],[3,4,2,1],\ [4,1,2,3],[4,1,3,2],[4,2,1,3],[4,2,3,1],[4,3,1,2],[4,3,2,1]] class kePostProcessor(nn.Module): def __init__(self, keer=None, cfg=None): super(kePostProcessor, self).__init__() self.keer = keer self.cfg = cfg def forward(self, ft_x, ft_y, mty, boxes): ke_prob_x = ft_x ke_prob_y = ft_y mty_prob = mty boxes_per_image = [box.bbox.size(0) for box in boxes] ke_prob_x = ke_prob_x.split(boxes_per_image, dim=0) ke_prob_y = ke_prob_y.split(boxes_per_image, dim=0) mty_prob = mty_prob.split(boxes_per_image, dim=0) results = [] for prob_x, prob_y, prob_mty, box in zip(ke_prob_x, ke_prob_y, mty_prob, boxes): bbox = BoxList(box.bbox, box.size, mode='xyxy') for field in box.fields(): bbox.add_field(field, box.get_field(field)) if self.keer: prob_x, rescores_x = self.keer(prob_x, box) prob_y, rescores_y = self.keer(prob_y, box) rescores = (rescores_x+rescores_y)*0.5 if self.cfg.MODEL.ROI_KE_HEAD.RESCORING: bbox.add_field('scores', rescores) prob = torch.cat((prob_x,prob_y), dim = -2) prob = prob[..., :1] prob = textKES(prob, box.size) bbox.add_field('ke', prob) bbox.add_field('mty', prob_mty) results.append(bbox) return results # TODO remove and use only the keer import numpy as np import cv2 def scores_to_probs(scores): """Transforms CxHxW of scores to probabilities spatially.""" channels = scores.shape[0] for c in range(channels): temp = scores[c, :, :] max_score = temp.max() temp = np.exp(temp - max_score) / np.sum(np.exp(temp - max_score)) scores[c, :, :] = temp return scores def kes_decode(kes): # BDN decode for ix, i in enumerate(kes): mnd = i[0, 0] nkes = i.shape[1]-2 kes[ix][0, 1:5] = kes[ix][0, 1:5]*2 - mnd return kes def heatmaps_to_kes(maps, rois, scores, cfg): """Extract predicted ke locations from heatmaps. Output has shape (#rois, 4, #kes) with the 4 rows corresponding to (x, y, logit, prob) for each ke. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous ke coordinate. We maintain # consistency with kes_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. offset_x = rois[:, 0] offset_y = rois[:, 1] widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = np.maximum(widths, 1) heights = np.maximum(heights, 1) widths_ceil = np.ceil(widths) heights_ceil = np.ceil(heights) resol = cfg.MODEL.ROI_KE_HEAD.RESOLUTION # cfg.mo... 56 if maps.shape[-2:] == (1, resol): xory_mode = 0 # x mode elif maps.shape[-2:] == (resol, 1): xory_mode = 1 # y mode else: assert(0), 'invalid mode.' # print("maps", maps.shape, maps[0,0], maps[0,1]) # NCHW to NHWC for use with OpenCV maps = np.transpose(maps, [0, 2, 3, 1]) min_size = 0 # cfg num_kes = int(cfg.MODEL.ROI_KE_HEAD.NUM_KES/2)+2 d_preds = np.zeros( (len(rois), 2, num_kes), dtype=np.float32) d_scores = np.zeros(scores.shape, dtype=np.float32) assert(len(rois) == maps.shape[0]), 'shape mismatch {}, {}, {}, {}'.format(str(len(rois)), \ str(rois.shape), \ str(maps.shape[0]), \ str(maps.shape)) normal = 0 innormal = 0 for i in range(len(rois)): if min_size > 0: roi_map_width = int(np.maximum(widths_ceil[i], min_size)) roi_map_height = int(np.maximum(heights_ceil[i], min_size)) else: roi_map_width = widths_ceil[i] roi_map_height = heights_ceil[i] width_correction = widths[i] / roi_map_width height_correction = heights[i] / roi_map_height np.set_printoptions(suppress=True) # print(i, "stop", maps.shape, np.around(maps[i][0, :, :], decimals=2)) if not xory_mode: roi_map = cv2.resize( maps[i], (roi_map_width, 1), interpolation=cv2.INTER_CUBIC) else: roi_map = cv2.resize( maps[i], (1, roi_map_height), interpolation=cv2.INTER_CUBIC) # print(roi_map.shape, np.around(roi_map[0, :, :], decimals=2)) # Bring back to CHW roi_map = np.transpose(roi_map, [2, 0, 1]) roi_map_probs = scores_to_probs(roi_map.copy()) # kescore visulize. map_vis = np.transpose(maps[i], [2, 0, 1]) map_vis = scores_to_probs(map_vis.copy()) sum_score = [] if cfg.MODEL.ROI_KE_HEAD.RESCORING: for k in range(num_kes): if map_vis[k].shape[0] == 1: x = np.arange(0, len(map_vis[k][0]), 1) y = map_vis[k][0] else: x = np.arange(0, len(map_vis[k][:, 0]), 1) y = map_vis[k][:, 0] top = y.max() atop = y.argmax() # lf2&1 lf2 = max(atop-2, 0) lf1 = max(atop-1, 0) rt2 = min(atop+2, 55) rt1 = min(atop+1, 55) sum_score.append(top+y[lf2]+y[lf1]+y[rt1]+y[rt2]) kes_score_mean = sum(sum_score)*1.0/len(sum_score) gama = cfg.MODEL.ROI_KE_HEAD.RESCORING_GAMA final_score = (scores[i]*(2.0-gama)+gama*kes_score_mean)*0.5 # rescore d_scores[i] = final_score else: d_scores[i] = scores[i] w = roi_map.shape[2] for k in range(num_kes): pos = roi_map[k, :, :].argmax() x_int = pos % w y_int = (pos - x_int) // w assert (roi_map_probs[k, y_int, x_int] == roi_map_probs[k, :, :].max()) x = (x_int + 0.5) * width_correction y = (y_int + 0.5) * height_correction if not xory_mode: d_preds[i, 0, k] = x + offset_x[i] d_preds[i, 1, k] = roi_map_probs[k, y_int, x_int] else: d_preds[i, 0, k] = y + offset_y[i] d_preds[i, 1, k] = roi_map_probs[k, y_int, x_int] out_kes_d = kes_decode(d_preds) return np.transpose(out_kes_d, [0, 2, 1]), d_scores from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.ke import textKES class KEer(object): """ Projects a set of masks in an image on the locations specified by the bounding boxes """ def __init__(self, padding=0, cfg =None): self.padding = padding self.cfg =cfg def compute_flow_field_cpu(self, boxes): im_w, im_h = boxes.size boxes_data = boxes.bbox num_boxes = len(boxes_data) device = boxes_data.device TO_REMOVE = 1 boxes_data = boxes_data.int() box_widths = boxes_data[:, 2] - boxes_data[:, 0] + TO_REMOVE box_heights = boxes_data[:, 3] - boxes_data[:, 1] + TO_REMOVE box_widths.clamp_(min=1) box_heights.clamp_(min=1) boxes_data = boxes_data.tolist() box_widths = box_widths.tolist() box_heights = box_heights.tolist() flow_field = torch.full((num_boxes, im_h, im_w, 2), -2) # TODO maybe optimize to make it GPU-friendly with advanced indexing # or dedicated kernel for i in range(num_boxes): w = box_widths[i] h = box_heights[i] if w < 2 or h < 2: continue x = torch.linspace(-1, 1, w) y = torch.linspace(-1, 1, h) # meshogrid x = x[None, :].expand(h, w) y = y[:, None].expand(h, w) b = boxes_data[i] x_0 = max(b[0], 0) x_1 = min(b[2] + 0, im_w) y_0 = max(b[1], 0) y_1 = min(b[3] + 0, im_h) flow_field[i, y_0:y_1, x_0:x_1, 0] = x[(y_0 - b[1]):(y_1 - b[1]),(x_0 - b[0]):(x_1 - b[0])] flow_field[i, y_0:y_1, x_0:x_1, 1] = y[(y_0 - b[1]):(y_1 - b[1]),(x_0 - b[0]):(x_1 - b[0])] return flow_field.to(device) def compute_flow_field(self, boxes): return self.compute_flow_field_cpu(boxes) # TODO make it work better for batches def forward_single_image(self, masks, boxes): boxes = boxes.convert('xyxy') if self.padding: boxes = BoxList(boxes.bbox.clone(), boxes.size, boxes.mode) masks, scale = expand_masks(masks, self.padding) boxes.bbox = expand_boxes(boxes.bbox, scale) flow_field = self.compute_flow_field(boxes) result = torch.nn.functional.grid_sample(masks, flow_field) return result def to_points(self, masks): height, width = masks.shape[-2:] m = masks.view(masks.shape[:2] + (-1,)) scores, pos = m.max(-1) x_int = pos % width y_int = (pos - x_int) // width result = torch.stack([x_int.float(), y_int.float(), torch.ones_like(x_int, dtype=torch.float32)], dim=2) return result def __call__(self, masks, boxes): # TODO do this properly if isinstance(boxes, BoxList): boxes = [boxes] if isinstance(masks, list): masks = torch.stack(masks, dim=0) assert(len(masks.size()) == 4) scores = boxes[0].get_field("scores") result, rescores = heatmaps_to_kes(masks.detach().cpu().numpy(), boxes[0].bbox.cpu().numpy(), scores.cpu().numpy(), self.cfg) return torch.from_numpy(result).to(masks.device), torch.from_numpy(rescores).to(masks.device) def make_roi_ke_post_processor(cfg): if cfg.MODEL.ROI_KE_HEAD.POSTPROCESS_KES: keer = KEer(padding=0, cfg=cfg) else: keer = None ke_post_processor = kePostProcessor(keer,cfg) return ke_post_processor
submission/util.py
pwqbot/eoj3
107
43952
<reponame>pwqbot/eoj3<filename>submission/util.py class SubmissionStatus(object): SUBMITTED = -4 WAITING = -3 JUDGING = -2 WRONG_ANSWER = -1 ACCEPTED = 0 TIME_LIMIT_EXCEEDED = 1 IDLENESS_LIMIT_EXCEEDED = 2 MEMORY_LIMIT_EXCEEDED = 3 RUNTIME_ERROR = 4 SYSTEM_ERROR = 5 COMPILE_ERROR = 6 SCORED = 7 REJECTED = 10 JUDGE_ERROR = 11 PRETEST_PASSED = 12 @staticmethod def is_judged(status): return status >= SubmissionStatus.WRONG_ANSWER @staticmethod def is_penalty(status): return SubmissionStatus.is_judged(status) and status != SubmissionStatus.COMPILE_ERROR @staticmethod def is_accepted(status): return status == SubmissionStatus.ACCEPTED or status == SubmissionStatus.PRETEST_PASSED @staticmethod def is_scored(status): return status == SubmissionStatus.SCORED STATUS_CHOICE = ( (-4, 'Submitted'), (-3, 'In queue'), (-2, 'Running'), (-1, 'Wrong answer'), (0, 'Accepted'), (1, 'Time limit exceeded'), (2, 'Idleness limit exceeded'), (3, 'Memory limit exceeded'), (4, 'Runtime error'), (5, 'Denial of judgement'), (6, 'Compilation error'), (7, 'Partial score'), (10, 'Rejected'), (11, 'Checker error'), (12, 'Pretest passed'), )
repoxplorer/tests/test_yamlbackend.py
Priya-100/repoxplorer
107
43965
<reponame>Priya-100/repoxplorer # Copyright 2017, Red Hat # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import tempfile from unittest import TestCase from repoxplorer.index.yamlbackend import YAMLBackend class TestYAMLBackend(TestCase): def setUp(self): pass def tearDown(self): if os.path.isdir(self.db): shutil.rmtree(self.db) def create_db(self, files): self.db = tempfile.mkdtemp() for filename, content in files.items(): open(os.path.join(self.db, filename), 'w+').write(content) def test_yamlbackend_load(self): f1 = """ --- key: value """ f2 = """ --- key2: value2 """ files = {'f1.yaml': f1, 'f2.yaml': f2} self.create_db(files) backend = YAMLBackend(db_path=self.db) backend.load_db() default_data, data = backend.get_data() self.assertEqual(default_data, None) self.assertEqual(len(data), 2) def test_yamlbackend_load_with_default(self): f1 = """ --- key: value """ f2 = """ --- key2: value2 """ files = {'default.yaml': f1, 'f2.yaml': f2} self.create_db(files) backend = YAMLBackend( db_path=self.db, db_default_file=os.path.join(self.db, 'default.yaml')) backend.load_db() default_data, data = backend.get_data() self.assertDictEqual(default_data, {'key': 'value'}) self.assertEqual(len(data), 1) self.assertDictEqual(data[0], {'key2': 'value2'})
pdns-admin-base-ngoduykhanh/run.py
xoxefdp/docker-pdns
153
43991
#!/usr/bin/env python3 from powerdnsadmin import create_app app = create_app()
tkinter/scrolled-frame-canvas/scrolledframe.py
whitmans-max/python-examples
140
44005
import tkinter as tk class ScrolledFrame(tk.Frame): def __init__(self, parent, vertical=True, horizontal=False): super().__init__(parent) # canvas for inner frame self._canvas = tk.Canvas(self) self._canvas.grid(row=0, column=0, sticky='news') # changed # create right scrollbar and connect to canvas Y self._vertical_bar = tk.Scrollbar(self, orient='vertical', command=self._canvas.yview) if vertical: self._vertical_bar.grid(row=0, column=1, sticky='ns') self._canvas.configure(yscrollcommand=self._vertical_bar.set) # create bottom scrollbar and connect to canvas X self._horizontal_bar = tk.Scrollbar(self, orient='horizontal', command=self._canvas.xview) if horizontal: self._horizontal_bar.grid(row=1, column=0, sticky='we') self._canvas.configure(xscrollcommand=self._horizontal_bar.set) # inner frame for widgets self.inner = tk.Frame(self._canvas) self._window = self._canvas.create_window((0, 0), window=self.inner, anchor='nw') # autoresize inner frame self.columnconfigure(0, weight=1) # changed self.rowconfigure(0, weight=1) # changed # resize when configure changed self.inner.bind('<Configure>', self.resize) # resize inner frame to canvas size self.resize_width = False self.resize_height = False self._canvas.bind('<Configure>', self.inner_resize) def resize(self, event=None): self._canvas.configure(scrollregion=self._canvas.bbox('all')) def inner_resize(self, event): # resize inner frame to canvas size if self.resize_width: self._canvas.itemconfig(self._window, width=event.width) if self.resize_height: self._canvas.itemconfig(self._window, height=event.height)
openbook_circles/validators.py
TamaraAbells/okuna-api
164
44044
<filename>openbook_circles/validators.py from rest_framework.exceptions import ValidationError from django.utils.translation import ugettext_lazy as _ from openbook_circles.models import Circle def circle_id_exists(circle_id): count = Circle.objects.filter(id=circle_id).count() if count == 0: raise ValidationError( _('The circle does not exist.'), )
dtreeviz/__init__.py
alitrack/dtreeviz
1,905
44057
<gh_stars>1000+ from .version import __version__ from dtreeviz.classifiers import clfviz
DN/ioUtils.py
dendisuhubdy/dwt
206
44087
<filename>DN/ioUtils.py import numpy as np import skimage import skimage.io import scipy.io as sio import skimage.transform import sys np.random.seed(0) VGG_MEAN = [103.939, 116.779, 123.68] def read_mat(path): return np.load(path) def write_mat(path, m): np.save(path, m) def read_ids(path): return [line.rstrip('\n') for line in open(path)] class Batch_Feeder: def __init__(self, dataset, indices, train, batchSize, padWidth=None, padHeight=None, flip=False, keepEmpty=True): self._epochs_completed = 0 self._index_in_epoch = 0 self._dataset = dataset self._indices = indices self._train = train self._batchSize = batchSize self._padWidth = padWidth self._padHeight = padHeight self._flip = flip self._keepEmpty = keepEmpty def set_paths(self, idList=None, imageDir=None, gtDir=None, ssDir=None): self._paths = [] if self._train: for id in idList: self._paths.append([id, imageDir + '/' + id + '_leftImg8bit.png', gtDir + '/' + id + '_unified_GT.mat', ssDir + '/' + id + '_unified_ss.mat']) self.shuffle() else: for id in idList: self._paths.append([id, imageDir + '/' + id + '_leftImg8bit.png', ssDir + '/' + id + '_unified_ss.mat']) self._numData = len(self._paths) if self._numData < self._batchSize: self._batchSize = self._numData def shuffle(self): np.random.shuffle(self._paths) def next_batch(self): idBatch = [] imageBatch = [] gtBatch = [] ssBatch = [] ssMaskBatch = [] weightBatch = [] if self._train: while(len(idBatch) < self._batchSize): ss = (sio.loadmat(self._paths[self._index_in_epoch][3])['mask']).astype(float) ssMask = ss ss = np.sum(ss[:,:,self._indices], 2) background = np.zeros(ssMask.shape[0:2] + (1,)) ssMask = np.concatenate((ssMask[:,:,[1,2,3,4]], background, ssMask[:,:,[0,5,6,7]]), axis=-1) ssMask = np.argmax(ssMask, axis=-1) ssMask = ssMask.astype(float) ssMask = (ssMask - 4) * 32 # centered at 0, with 0 being background, spaced 32 apart for classes if ss.sum() > 0 or self._keepEmpty: idBatch.append(self._paths[self._index_in_epoch][0]) image = (self.image_scaling(skimage.io.imread(self._paths[self._index_in_epoch][1]))).astype(float) gt = (sio.loadmat(self._paths[self._index_in_epoch][2])['dir_map']).astype(float) weight = (sio.loadmat(self._paths[self._index_in_epoch][2])['weight_map']).astype(float) imageBatch.append(self.pad(image)) gtBatch.append(self.pad(gt)) weightBatch.append(self.pad(weight)) ssBatch.append(self.pad(ss)) ssMaskBatch.append(self.pad(ssMask)) else: pass # raw_input("skipping " + self._paths[self._index_in_epoch][0]) self._index_in_epoch += 1 if self._index_in_epoch == self._numData: self._index_in_epoch = 0 self.shuffle() imageBatch = np.array(imageBatch) gtBatch = np.array(gtBatch) ssBatch = np.array(ssBatch) ssMaskBatch = np.array(ssMaskBatch) weightBatch = np.array(weightBatch) if self._flip and np.random.uniform() > 0.5: for i in range(len(imageBatch)): for j in range(3): imageBatch[i,:,:,j] = np.fliplr(imageBatch[i,:,:,j]) weightBatch[i] = np.fliplr(weightBatch[i]) ssBatch[i] = np.fliplr(ssBatch[i]) ssMaskBatch[i] = np.fliplr(ssMaskBatch[i]) for j in range(2): gtBatch[i,:,:,j] = np.fliplr(gtBatch[i,:,:,j]) gtBatch[i,:,:,0] = -1 * gtBatch[i,:,:,0] return imageBatch, gtBatch, weightBatch, ssBatch, ssMaskBatch, idBatch else: for example in self._paths[self._index_in_epoch:min(self._index_in_epoch+self._batchSize, self._numData)]: imageBatch.append(self.pad((self.image_scaling(skimage.io.imread(example[1]))).astype(float))) idBatch.append(example[0]) ss = (sio.loadmat(example[2])['mask']).astype(float) ssMask = ss ss = np.sum(ss[:, :, self._indices], 2) background = np.zeros(ssMask.shape[0:2] + (1,)) ssMask = np.concatenate((ssMask[:,:,[1,2,3,4]], background, ssMask[:,:,[0,5,6,7]]), axis=-1) ssMask = np.argmax(ssMask, axis=-1) ssMask = ssMask.astype(float) ssMask = (ssMask - 4) * 32 # centered at 0, with 0 being background, spaced 32 apart for classes ssBatch.append(self.pad(ss)) ssMaskBatch.append(self.pad(ssMask)) imageBatch = np.array(imageBatch) ssBatch = np.array(ssBatch) ssMaskBatch = np.array(ssMaskBatch) self._index_in_epoch += self._batchSize return imageBatch, ssBatch, ssMaskBatch, idBatch def total_samples(self): return self._numData def image_scaling(self, rgb_in): if rgb_in.dtype == np.float32: rgb_in = rgb_in*255 elif rgb_in.dtype == np.uint8: rgb_in = rgb_in.astype(np.float32) # VGG16 was trained using opencv which reads images as BGR, but skimage reads images as RGB rgb_out = np.zeros(rgb_in.shape).astype(np.float32) rgb_out[:,:,0] = rgb_in[:,:,2] - VGG_MEAN[2] rgb_out[:,:,1] = rgb_in[:,:,1] - VGG_MEAN[1] rgb_out[:,:,2] = rgb_in[:,:,0] - VGG_MEAN[0] return rgb_out def pad(self, data): if self._padHeight and self._padWidth: if data.ndim == 3: npad = ((0,self._padHeight-data.shape[0]),(0,self._padWidth-data.shape[1]),(0,0)) elif data.ndim == 2: npad = ((0, self._padHeight - data.shape[0]), (0, self._padWidth - data.shape[1])) padData = np.pad(data, npad, mode='constant', constant_values=0) else: padData = data return padData