max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
example_nodes/__init__.py
996268132/NodeGraphQt
582
40556
<reponame>996268132/NodeGraphQt #!/usr/bin/python import os import sys import ast VALID_NODE_TYPE = ['BaseNode', 'AutoNode'] def detectNodesFromText(filepath): """returns Node names from a python script""" froms = [] with open(filepath, "r") as source: tree = ast.parse(source.read()) for node in tree.body: if isinstance(node, ast.ClassDef): for base in node.bases: if base.id in VALID_NODE_TYPE: for indef in node.body: if isinstance(indef, ast.Assign): for target in indef.targets: if target.id == '__identifier__': froms.append(node.name) return froms def getNodesRecursively(path=__file__): """ Returns imported nodes. """ Nodes = [] basedir, filename = os.path.split(path) rootModule = os.path.basename(basedir) for root, dirs, files in os.walk(basedir, topdown=False): if root not in sys.path: sys.path.append(root) for name in files: if name.endswith('.py') and not name.startswith('_'): module_name = root.split(rootModule)[1].replace('\\', '.') + name[:-3] modulePath = os.path.join(root, name) froms = detectNodesFromText(modulePath) if not froms: continue try: mod = __import__(module_name, globals(), locals(), froms, 0) for node in froms: Nodes.append(getattr(mod, node)) except ImportError as e: print ('Error in importing class: %s' % (e)) continue return Nodes Nodes = getNodesRecursively()
33. Python Programs/FactorialOfNumbers.py
Ujjawalgupta42/Hacktoberfest2021-DSA
225
40580
<reponame>Ujjawalgupta42/Hacktoberfest2021-DSA for i in range(int(input())): fact=1 a=int(input()) for j in range(1,a+1,1): fact=fact*j print(fact) def factorial(n): return 1 if (n==1 or n==0) else n * factorial(n - 1); num = int(input('Enter number')) print("Factorial of",num,"is", factorial(num))
legacy/models/resnet/tensorflow2/train_tf2_resnet.py
kevinyang8/deep-learning-models
129
40624
<reponame>kevinyang8/deep-learning-models<filename>legacy/models/resnet/tensorflow2/train_tf2_resnet.py # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' mpirun -np 8 --H localhost:8 \ -bind-to none -map-by slot -mca pml ob1 -mca -x TF_CUDNN_USE_AUTOTUNE=0 \ -x TF_ENABLE_NHWC=1 -x FI_OFI_RXR_INLINE_MR_ENABLE=1 -x NCCL_TREE_THRESHOLD=4294967296 \ -x PATH -x NCCL_SOCKET_IFNAME=^docker0,lo -x NCCL_MIN_NRINGS=13 -x NCCL_DEBUG=INFO \ -x HOROVOD_CYCLE_TIME=0.5 -x HOROVOD_FUSION_THRESHOLD=67108864 python new_resnet.py --synthetic source activate tensorflow2_p36 && \ mpirun -np 8 --H localhost:8 -mca plm_rsh_no_tree_spawn 1 \ -bind-to socket -map-by slot \ -x HOROVOD_HIERARCHICAL_ALLREDUCE=1 -x HOROVOD_FUSION_THRESHOLD=16777216 \ -x NCCL_MIN_NRINGS=4 -x LD_LIBRARY_PATH -x PATH -mca pml ob1 -mca btl ^openib \ -x NCCL_SOCKET_IFNAME=$INTERFACE -mca btl_tcp_if_exclude lo,docker0 \ -x TF_CPP_MIN_LOG_LEVEL=0 \ python -W ignore ~/new_resnet.py \ --synthetic --batch_size 128 --num_batches 100 --clear_log 2 > train.log ''' import os import numpy as np import getpass import tensorflow as tf import horovod.tensorflow as hvd from tensorflow.python.util import nest import argparse from time import time, sleep @tf.function def parse(record): features = {'image/encoded': tf.io.FixedLenFeature((), tf.string), 'image/class/label': tf.io.FixedLenFeature((), tf.int64)} parsed = tf.io.parse_single_example(record, features) image = tf.image.decode_jpeg(parsed['image/encoded']) image = tf.image.resize(image, (224, 224)) image = tf.image.random_brightness(image, .1) image = tf.image.random_jpeg_quality(image, 70, 100) image = tf.image.random_flip_left_right(image) image = tf.cast(image, tf.float32) label = tf.cast(parsed['image/class/label'] - 1, tf.int32) return image, label def data_gen(): input_shape = [224, 224, 3] while True: image = tf.random.uniform(input_shape) label = tf.random.uniform(minval=0, maxval=999, shape=[1], dtype=tf.int32) yield image, label def create_data(data_dir = None, synthetic=False, batch_size=256): if synthetic: ds = tf.data.Dataset.from_generator(data_gen, output_types=(tf.float32, tf.int32)) else: filenames = [os.path.join(data_dir, i) for i in os.listdir(data_dir)] ds = tf.data.Dataset.from_tensor_slices(filenames).shard(hvd.size(), hvd.rank()) ds = ds.shuffle(1000, seed=7 * (1 + hvd.rank())) ds = ds.interleave( tf.data.TFRecordDataset, cycle_length=1, block_length=1) ds = ds.map(parse, num_parallel_calls=10) ds = ds.apply(tf.data.experimental.shuffle_and_repeat(10000, seed=5 * (1 + hvd.rank()))) ds = ds.batch(batch_size) return ds @tf.function def train_step(model, opt, loss_func, images, labels, first_batch): with tf.GradientTape() as tape: probs = model(images, training=True) loss_value = loss_func(labels, probs) tape = hvd.DistributedGradientTape(tape, compression=hvd.Compression.fp16) grads = tape.gradient(loss_value, model.trainable_variables) opt.apply_gradients(zip(grads, model.trainable_variables)) if first_batch: hvd.broadcast_variables(model.variables, root_rank=0) hvd.broadcast_variables(opt.variables(), root_rank=0) return loss_value def add_bool_argument(cmdline, shortname, longname=None, default=False, help=None): if longname is None: shortname, longname = None, shortname elif default == True: raise ValueError("""Boolean arguments that are True by default should not have short names.""") name = longname[2:] feature_parser = cmdline.add_mutually_exclusive_group(required=False) if shortname is not None: feature_parser.add_argument(shortname, '--' + name, dest=name, action='store_true', help=help, default=default) else: feature_parser.add_argument('--' + name, dest=name, action='store_true', help=help, default=default) feature_parser.add_argument('--no' + name, dest=name, action='store_false') return cmdline def add_cli_args(): cmdline = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) cmdline.add_argument('--data_dir', default='', help="""Path to dataset in TFRecord format (aka Example protobufs). Files should be named 'train-*' and 'validation-*'.""") cmdline.add_argument('-b', '--batch_size', default=128, type=int, help="""Size of each minibatch per GPU""") cmdline.add_argument('--num_batches', default=100, type=int, help="""Number of batches to run. Ignored during eval or if num epochs given""") cmdline.add_argument('-lr', '--learning_rate', default=0.01, type=float, help="""Start learning rate""") cmdline.add_argument('--momentum', default=0.01, type=float, help="""Start learning rate""") add_bool_argument(cmdline, '--synthetic', help="""Whether to use synthetic data for training""") return cmdline def main(): # setup horovod start = time() hvd.init() gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) if gpus: tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU') os.environ['TF_CUDNN_DETERMINISTIC'] = '1' # get command line args cmdline = add_cli_args() FLAGS, unknown_args = cmdline.parse_known_args() ds = create_data(FLAGS.data_dir, FLAGS.synthetic, FLAGS.batch_size) model = tf.keras.applications.ResNet50(weights=None, classes=1000) opt = tf.keras.optimizers.SGD(learning_rate=FLAGS.learning_rate * hvd.size(), momentum=0.1) loss_func = tf.keras.losses.SparseCategoricalCrossentropy() loop_time = time() if hvd.local_rank() == 0: print("Step \t Throughput \t Loss") for batch, (images, labels) in enumerate(ds): loss = train_step(model, opt, loss_func, images, labels, batch==0) if hvd.local_rank() == 0: duration = time() - loop_time loop_time = time() throughput = (hvd.size()*FLAGS.batch_size)/duration print("{} \t images/sec: {} \t {}".format(batch, throughput, loss)) if batch==FLAGS.num_batches: break if hvd.rank() == 0: print("\nFinished in {}".format(time()-start)) if __name__=='__main__': main()
faketests/slowtests/test_3.py
Djailla/pytest-sugar
418
40627
import time import pytest @pytest.mark.parametrize("index", range(7)) def test_cat(index): """Perform several tests with varying execution times.""" time.sleep(0.2 + (index * 0.1)) assert True
recipes/Python/577462_A_Buttonbar_program_with_color_/recipe-577462.py
tdiprima/code
2,023
40631
''' ;#template` {-path} {-menu} {-s1} {-s2} {-s3} ;#option`-path`Path to controlling file`F`c:\source\python\projects\menu\buttonbar.py` ;#option`-menu`Path to menu file`F`c:\source\python\projects\menu\test.ini` ;#option`-s1`First section`X`info` ;#option`-s2`Second section`X`help` ;#option`-s3`Third section`X`data` ;#end ''' mHelpText = ''' # ---------------------------------------------- # Name: ButtonBarV1Ex # Description: ## D20G-76 Popup button bar using Qeditor style menus.ini file, selects sections to use (ExPopen) # # Author: <NAME> # Date: 10/27/2010 # Copyright 2010 by St. Thomas Software # ---------------------------------------------- # This program is freeware. It may be used # for any moral purpose. You use it at your # own risk. St. Thomas Software makes no # guarantees to its fitness to do anything. # # If you feel you must pay for it. Please # send one million dollars to # # The International Rescue Committee # 122 East 42nd Street # New York, N.Y. 10168-1289 # # Ok, we are in a recession. So, make it a half # million. # # Example of .reg file entry # [HKEY_CLASSES_ROOT\textfile\Shell\TextTools] # @="T&ext Tools # "EditFlags"=hex:01,00,00,00 # [HKEY_CLASSES_ROOT\textfile\Shell\TextTools\Command] # @="c:\\sys\\python25\\python.exe c:\\bin\\ButtonBarV1Ex.py \"%1\" {p}\\menus.ini;{o}\\menus.ini;c:\\bin\\menus.ini ide " # # # Syntax: # ButtonBarV1Ex.py [options] <file path> <menu path> <first section> [ <another section> ... ] # # Options: # # -b <color> - default button background color # -d <directory> - set working directory # -e <name>=<value> - set environment variable # -h - print help text # -l <color> - default label background color # -o - set orientation to horizontal # # The command line template extracted from the menu file may contain macros of the form '{x}' which # are replaced by parts of the file path or other string. The Do.py and Do2.py modules are used. # %1 is replaced by the selected file path. The file path string is also used for display # at the top of the button bar. If no expansion is performed any string can be used and displayed. # # The second parameter is the name of an initialization file similar to the one shown below. # Each line contains a prompt displayed on a button and a command separated by a comma. # Macros are replaced before execution. # # The remaining parameters name sections to be used to make the button bar. The order in the # initialization file is maintained. Selection is case insensitive. # # Do.py and Do2.py are used to expand the command line, the menu selection and each section # name. The command line can also contain '{pr}' which will be replaced by the prompt # displayed on the button. Also, any string enclosed in braces not a macro will be taken # as a command name in the registry entry for the primary files file type. # # The Menu File: # # The menu file follows the syntax used by the QEditor menus.ini file. The same syntax as an .ini # file except a ',' is used to separate key from value. In this case the values are command # line templates usually containing one or more macro strings. # # Lines beginning with ';' are comments unless followed by '#' in which case the line may contain # a special command. Command line options are also available for the same functions # # ;#cd`c:\bin - Sets the working directory to c:\bin or '-d c:\bin' # ;#set`abc=def - Sets the environment variable abc to 'def' or '-s abc=def' # ;#button`#00CCCC - Sets the background of succeeding buttons to #00CCCC. or '-b #00CCCC' # ;#label`light blue - Sets the background of labels created by succeeding '-' lines # to light blue. If included before the first section the # color will also be used for section header labels or '-l "light blue"' # Within sections not included in the button bar special commands are ignored. The '`' usually # appears under the '~' on the keyboard. # # -o option will produce a horizontal button bar # # Section names and command prompts can contan a file pattern enclosed within two '/' or two '!' # to include the section or line if the file path matches or does not match the pattern. Examples # are shown below. # # Example initialization file (Text Tools.ini) ;#set`test=A Short String ;#set`use=c:\sys\python27\pythonw.exe ;#set`gain=none ;#cd`\source\tcl ;#cd`c:\source\python\Projects\Program Execution ;#label`yellow [Test1] ;#button`#00EEEE ;#label`#00CCCC test 1,c:\bin\messagebox.exe {a} {b} {p} "{f}" {n} {e} {o} %test% -Directory List Dir,c:\windows\system32\cmd.exe /C dir "{p}\*.{e}" DirX,c:\windows\system32\cmd.exe /C dir *.* Dir2,c:\windows\system32\cmd.exe /C dir c:\source\Python\*.* ;#label`light gray -Program execution /*.exe/Run,"{a}" I am running "{a}" /*.py/Run,c:\bin\messagebox.exe I am running a Python program "{a}" /*.py/Run 2,%use% "{a}" /*.exe/Run 2,"{a}" I am running "{a}" [/*.py/Test2] Edit T,{o}\qeditor.exe "{a}" Dir *,%comspec% /C dir {.}\*.* ''' import sys import os import getopt import fnmatch import Tkinter from Tkconstants import * import tkMessageBox from _winreg import * import Do # Recipe: 577439 from Do2 import ExpandArg # Recipe: 577440 from DoCommand import BuildCommand # Recipe: 577441 import subprocess mCmds = {} def Expand(pCommand, pFilePath, pPrompt, pSep=','): ''' Expand ''' # ---- Standard macro expansion with added {pr} macro # Can separate arguments with ',' fo force argument by argument # expansion if pCommand.find(pSep) >= 0: try: lArgs = pCommand.split(pSep) lCommand = '' lDefaultPath = pFilePath for lArg in lArgs: lVal = ExpandArg(lArg, pFilePath, lDefaultPath) if lVal.find('{pr}') >= 0: # insert button prompt lVal = lVal.replace('{pr}', pPrompt) lCommand = lCommand + lVal + " " except Exception, e: print 'BBV1Ex',e else: lCommand = Do.Expand(pCommand, pFilePath) if lCommand.find('{pr}') >= 0: lCommand = lCommand.replace('{pr}', pPrompt) # ---- Remove {} for compatibility with DoM.py lCommand = lCommand.replace('{}', ' ') # ---- Remaining macros will be replaced by command of same name # in registry lPos = lCommand.find("{") if lPos >= 0: lEndPos = lCommand.find("}") if lEndPos > lPos: try: lKey = lCommand[lPos+1:lEndPos] lDotPos = lKey.rfind('.') if lDotPos > 0: lExt = lKey[lDotPos] lKey = lKey[0:lDotPos] else: lDotPos = pFilePath.rfind('.') lExt = pFilePath[lDotPos:] lReplace = BuildCommand(pFilePath, lKey, lExt, []) lCommand = lCommand[0:lPos] + lReplace + lCommand[lEndPos+1:] except: pass # ---- replace %1 and %* else: lPos = lCommand.rfind("%1") if lPos >= 0: lCommand = lCommand.replace("%1", pFilePath) lPos = lCommand.rfind("%*") if lPos >= 0: lCommand = lCommand.replace("%*", "") # ---- Remove !! used by DoM.py lPos = lCommand.rfind('!!') if lPos > 0: lCommand = lCommand[0:lPos] return lCommand def showit(pEvent): 'View expansion of selected command' lPrompt = pEvent.widget.cget("text") lCommand = mCmds[lPrompt] lCommand = Expand(lCommand, mFileName, lPrompt) tkMessageBox.showinfo('Expanded Command:', lPrompt + " = " + lCommand) def submitnow(pEvent): 'Execute selected command' lPrompt = pEvent.widget.cget("text") lCommand = mCmds[lPrompt] lCommand = Expand(lCommand, mFileName, lPrompt) lCommand = '"' + lCommand + '"' subprocess.Popen(lCommand, shell=True) def Commands(): return mCmds def Build(pFrame, pMenuName, pFileName, pLabelList, pSubmit=submitnow, pCallBack=None, pDefaultLabel='yellow', pDefaultButton='light blue', pSide=TOP, pFill=X): ''' Build menu from menu file The menu file may contain commands to set the current directory and to set specified environment variables. This is done while the file is being read. They are not dependent on the selected button. The last command encountered will be active. set environment variable name to value ;#set`name=value set current directory to path ;#cd`path set label background color ;#label`color set button background color ;#button`color ''' # lPos = pFileName.rfind('\\') if lPos >= 0: lFileName = pFileName[lPos+1:].lower() else: lFileName = pFileName.lower() lExist = os.path.exists(pFileName) lFile = open(pMenuName,'r') lFileText = lFile.readlines() lFile.close lDefaultButton = lButtonColor = pDefaultButton lDefaultLabel = lLabelColor = pDefaultLabel label = Tkinter.Label(pFrame, text=pFileName, bg=lLabelColor) #label.pack(side=TOP, fill=X) label.pack(side=pSide, fill=pFill) lKeep = False lSectionCount = 0 for lText in lFileText: if len(lText) > 1: if lText[0] != "[": # ---- Menu splitter line if lText[0] == "-" and lKeep: if len(lText) > 1: lPrompt = lText[1:-1] if lPrompt.find('{') >= 0: lPrompt = ExpandCmd(lPrompt, pFileName) # ---- Display label for - line # can be removed without affecting remainder of program if len(lPrompt) > 0 and lKeep == True: label= Tkinter.Label(pFrame, text=lPrompt, bg=lLabelColor) #label.pack(side=TOP, fill=X) label.pack(side=pSide, fill=pFill) # ---- process special command elif lText.startswith(";#") and (lSectionCount == 0 or lKeep == True): lPos = lText.find("`") # <---- Fields are separated by ` (below ~) if lPos > 0: lCh = lText[2] # ---- Set environment variable if lCh == 's': # set environment variable lEqPos = lText.find("=") if lEqPos > lPos: lKey = lText[lPos+1:lEqPos].strip() lValue = lText[lEqPos+1:].strip() if lValue.find('{') >= 0: lValue = ExpandCmd(lValue, pFileName) os.environ[lKey] = lValue # ---- Change working directory elif lCh == 'c': # set working directory if lPos > 0 and lPos < len(lText): lText = lText[lPos+1:].strip() if lText.find('{') >= 0: lText = ExpandCmd(lText, pFileName) os.chdir(lText) elif lCh == 'b': lButtonColor = lText[lPos+1:].strip().lower() if lSectionCount == 0: lDefaultButton = lButtonColor elif lCh == 'l': lLabelColor = lText[lPos+1:].strip().lower() if lSectionCount == 0: lDefaultLabel = lLabelColor elif pCallBack != None: pCallBack(lText) else: # ignore pass # ---- Comment elif lText[0] == ";": pass # ---- Menu section is being skipped elif lKeep == False: pass # ---- Command template else: lPos = lText.find(",") if lPos > 0: lPrompt = lText[:lPos] lCommand = lText[lPos+1:] # ---- Filter commands based on match with file name # /*3.py/Run,c:\source\python31\pyrhonw.exe ... # can be removed without affecting remainder of program if lPrompt[0] == '/': try: (lMask, lPrompt) = lPrompt[1:].split('/') if not fnmatch.fnmatch(lFileName, lMask.lower()): continue except Exception, e: continue # ---- Filter commands based on mismatch with file name # !*3.py!Run,c:\source\python27\pythonw.exe ... # can be removed without affecting remainder of program elif lPrompt[0] == '!': try: (lMask, lPrompt) = lPrompt[1:].split('!') if fnmatch.fnmatch(lFileName, lMask.lower()): continue except Exception, e: continue # ---- Create toolbar button mCmds[lPrompt] = lCommand try: button = Tkinter.Button(pFrame, text=lPrompt, bg=lButtonColor) except: button = Tkinter.Button(pFrame, text=lPrompt) #button.pack(side=TOP,fill=X) button.pack(side=pSide, fill=pFill) button.bind("<Button-1>", pSubmit) ### (1) button.bind("<Button-3>", showit) # ---- Section Header else: lSectionCount += 1 lLabelColor = lDefaultLabel lButtonColor = lDefaultButton if lText.find('{') >= 0: lText = ExpandCmd(label, pFileName) label = lText[1:-2].lower() # ---- Filter section based on match with file name # [/*3.py/Special] # can be removed without affecting remainder of program if label[0] == '/': try: (lMask, label) = label[1:].split('/') if not fnmatch.fnmatch(lFileName, lMask.lower()): lKeep = False continue except Exception, e: lKeep = False continue # ---- Filter section based on mismatch with file name # [!*3.py!Special] # can be removed without affecting remainder of program elif label[0] == '!': try: (lMask, label) = label[1:].split('!') if fnmatch.fnmatch(lFileName, lMask.lower()): lKeep = False continue except Exception, e: lKeep = False continue # ---- label must begin with letter elif (label[0] < 'a') or (label[0] > 'z'): label = label[1:] # ---- Select/Unselect section if pLabelList == [] or label in pLabelList: lKeep = True label = Tkinter.Label(pFrame,text=label.capitalize(), bg=lLabelColor) #label.pack(side=TOP, fill=X) label.pack(side=pSide, fill=pFill) else: lKeep = False label = Tkinter.Label(pFrame,text="", bg=lLabelColor) #label.pack(side=TOP, fill=X) label.pack(side=pSide, fill=pFill) button = Tkinter.Button(pFrame,text='Exit', command=pFrame.quit, bg=lButtonColor) #button.pack(side=TOP, fill=X) button.pack(side=pSide, fill=pFill) if __name__ == '__main__': (mOptions, mArgs) = getopt.getopt(sys.argv[1:], 'b:d:e:hl:o') # ---- Set run options mDefaultLabel = 'light green' mDefaultButton = 'light blue' mOrient = VERTICAL for (mKey, mValue) in mOptions: if mKey == '-b': mDefaultButton = mValue elif mKey == '-d': # Set current directory if mValue.find('}') >= 0: mValue = Expand(mValue, mFileName) os.chdir(mValue) elif mKey == '-e': # Set environment variable Do.setenviron(mValue, mFileName) elif mKey == '-h': print mHelpText elif mKey == '-l': mDefaultLabel = mValue elif mKey == '-o': mOrient = HORIZONTAL tk = Tkinter.Tk() if len(mArgs) > 0: try: mDefaultMenu = os.environ['MENUPATH'] if mVerbose: print 'BB1Ex Default menu path', mDefaultMenu except: mDefaultMenu = '' try: mDefaultSection = os.environ['SECTION'] if mVerbose: print 'BB1Ex Default section', mDefaultSection except: mDefaultSection = '' # <------- Default section - Change this if mDefaultSection == '': mDefaultSection = '' # ---- First argument is absolute path to file to be processed mFileName = mArgs[0] mFileName = mFileName.replace("/","\\") # ---- Second argument is absolute path to initialization menu # Selected menu can depend on file path (ie. {o}\menus.ini) See do2.py if len(mArgs) > 1: mMenuArg = mArgs[1] # generate button bar mMenuArg += ';' + mDefaultMenu else: mMenuArg = mDefaultMenu # ---- Prevent QEditor from performing replacement, may be removed mMenuArg = mMenuArg.replace("(","{") mMenuArg = mMenuArg.replace(")","}") # ---- Expand menu name and/or select from list if mMenuArg.find('{') >= 0: mMenuName = ExpandArg(mMenuArg, mFileName, mDefaultMenu) elif mMenuArg.find(';') >= 0: for mMenu in mMenuArg.split(';'): if os.path.exists(mMenu): mMenuName = mMenu break else: mMenuName = mDefaultMenu else: mMenuName = mMenuArg # ---- Remaining arguments list sections to include in menu if len(mArgs) > 2: mLabelList = [] for lItem in mArgs[2:]: if lItem == '*': break if lItem == '-': lItem = mDefaultSection lItem = lItem.lower() # ---- Prevent QEditor from performing replacement, may be removed lItem = lItem.replace("(","{") lItem = lItem.replace(")","}") # ---- Selected section can be dependent on file path if lItem.find('{') >= 0: lItem = ExpandArg(lItem, mFileName, '') mLabelList.append(lItem) elif mDefaultSection != '': mLabelList = [ mDefaultSection ] else: mLabelList = [ ] # ---- Build buttonbar mFrame = Tkinter.Frame(tk, relief=RIDGE, borderwidth=2) mFrame.pack(fill=BOTH, expand=1) if mOrient == VERTICAL: Build(mFrame, mMenuName, mFileName, mLabelList, pDefaultLabel=mDefaultLabel, pDefaultButton=mDefaultButton, pSide=TOP, pFill=X) else: Build(mFrame, mMenuName, mFileName, mLabelList, pDefaultLabel=mDefaultLabel, pDefaultButton=mDefaultButton, pSide=LEFT, pFill=Y) # ---- Enter event loop tk.mainloop() else: tkMessageBox.showinfo('Syntax Error','File name required')
osp/graphs/osp_graph.py
davidmcclure/open-syllabus-project
220
40657
<reponame>davidmcclure/open-syllabus-project import networkx as nx import random from osp.common.utils import query_bar from osp.graphs.graph import Graph from osp.citations.models import Text, Citation, Text_Index from osp.corpus.models import Document from itertools import combinations from peewee import fn from clint.textui import progress class OSP_Graph(Graph): def add_edges(self, max_texts=20): """ For each syllabus, register citation pairs as edges. Args: max_texts (int): Ignore docs with > than N citations. """ text_ids = ( fn.array_agg(Text.id) .coerce(False) .alias('text_ids') ) docs = ( Citation .select(Citation.document, text_ids) .join(Text) .having(fn.count(Text.id) <= max_texts) .where(Text.display==True) .where(Text.valid==True) .group_by(Citation.document) ) for row in query_bar(docs): for tid1, tid2 in combinations(row.text_ids, 2): # If the edge exists, increment the weight. if self.graph.has_edge(tid1, tid2): self.graph[tid1][tid2]['weight'] += 1 # Otherwise, initialize the edge. else: self.graph.add_edge(tid1, tid2, weight=1) def add_nodes(self): """ Register displayed texts. """ for t in progress.bar(Text_Index.rank_texts()): text = t['text'] self.graph.add_node(text.id, dict( label = text.pretty('title'), author = text.pretty('surname'), count = text.count, score = t['score'], )) def trim_unconnected_components(self): """ Remove all but the largest connected component. """ subgraphs = sorted( nx.connected_component_subgraphs(self.graph), key=len, reverse=True ) self.graph = subgraphs[0] def trim_texts_by_count(self, min_count=100): """ Remove all texts with counts below a threshold. Args: min_count (int) """ for tid, text in self.graph.nodes(data=True): if text['count'] < min_count: self.graph.remove_node(tid) def trim_edges(self, keep=0.5): """ Randomly prune a certain percentage of edges. Args: keey (float) """ for tid1, tid2 in self.graph.edges(): if random.random() > keep: self.graph.remove_edge(tid1, tid2)
RecoJets/JetProducers/python/ak4PFClusterJets_cfi.py
ckamtsikis/cmssw
852
40706
import FWCore.ParameterSet.Config as cms from RecoJets.JetProducers.PFClusterJetParameters_cfi import * from RecoJets.JetProducers.AnomalousCellParameters_cfi import * ak4PFClusterJets = cms.EDProducer( "FastjetJetProducer", PFClusterJetParameters, AnomalousCellParameters, jetAlgorithm = cms.string("AntiKt"), rParam = cms.double(0.4) )
template/python/base-class.py
hiroebe/sonictemplate-vim
130
40710
<gh_stars>100-1000 """ {{_name_}} """ class {{_expr_:substitute('{{_input_:name}}', '\w\+', '\u\0', '')}}(object): def __init__(self{{_cursor_}}): def __repr__(self): return
atlas/foundations_contrib/src/foundations_contrib/models/project_listing.py
DeepLearnI/atlas
296
40745
class ProjectListing(object): @staticmethod def list_projects(redis_connection): """Returns a list of projects store in redis with their creation timestamps Arguments: redis_connection {RedisConnection} -- Redis connection to use as a provider for data Returns: list -- The list of project names and creation dates """ from foundations_contrib.utils import string_from_bytes projects = redis_connection.zrange('projects', 0, -1, withscores=True) return [{'name': string_from_bytes(name), 'created_at': created_at} for name, created_at in projects] @staticmethod def find_project(redis_connection, project_name): """Returns a single of projects store in redis with it's creation timestamp Arguments: redis_connection {RedisConnection} -- Redis connection to use as a provider for data project_name {str} -- Name of the project to find Returns: dict -- The dictionary of the 2 attribute from the description above or None if the project does not exist """ created_at = redis_connection.zscore('projects', project_name) if created_at is None: return None return {'name': project_name, 'created_at': created_at}
quantsbin/derivativepricing/namesnmapper.py
quantsbin/Quantsbin
132
40746
""" developed by Quantsbin - Jun'18 """ from enum import Enum class AssetClass(Enum): EQOPTION = 'EqOption' FXOPTION = 'FXOption' FUTOPTION = 'FutOption' COMOPTION = 'ComOption' class DerivativeType(Enum): VANILLA_OPTION = 'Vanilla Option' class PricingModel(Enum): BLACKSCHOLESMERTON = 'BSM' BLACK76 = 'B76' GK = 'GK' MC_GBM = "MC_GBM" MC_GBM_LSM = "MC_GBM_LSM" BINOMIAL = "Binomial" class UnderlyingParameters(Enum): SPOT = "spot0" VOLATILITY = "volatility" PRICEDATE = "_pricing_date" RF_RATE = "rf_rate" CNV_YIELD = "cnv_yield" COST_YIELD = "cost_yield" UNEXPLAINED = "unexplained" class RiskParameter(Enum): DELTA = 'delta' GAMMA = 'gamma' THETA = 'theta' VEGA = 'vega' RHO = 'rho' PHI = 'phi' RHO_FOREIGN = 'rho_foreign' RHO_CONV = 'rho_conv_yield' class VanillaOptionType(Enum): CALL = 'Call' PUT = 'Put' class ExpiryType(Enum): AMERICAN = 'American' EUROPEAN = 'European' class UdlType(Enum): INDEX = 'Index' STOCK = 'Stock' FX = 'Currency' COMMODITY = 'Commodity' FUTURES = 'Futures' class DivType(Enum): DISCRETE = 'Discrete' YIELD = 'Yield' OBJECT_MODEL = { UdlType.STOCK.value: {ExpiryType.EUROPEAN.value: [PricingModel.BLACKSCHOLESMERTON.value, PricingModel.MC_GBM.value , PricingModel.BINOMIAL.value], ExpiryType.AMERICAN.value: [PricingModel.MC_GBM.value, PricingModel.BINOMIAL.value]} , UdlType.FUTURES.value: {ExpiryType.EUROPEAN.value: [PricingModel.BLACK76.value, PricingModel.MC_GBM.value , PricingModel.BINOMIAL.value], ExpiryType.AMERICAN.value: [PricingModel.MC_GBM.value, PricingModel.BINOMIAL.value]} , UdlType.FX.value: {ExpiryType.EUROPEAN.value: [PricingModel.GK.value, PricingModel.MC_GBM.value , PricingModel.BINOMIAL.value], ExpiryType.AMERICAN.value: [PricingModel.MC_GBM.value, PricingModel.BINOMIAL.value]} , UdlType.COMMODITY.value: {ExpiryType.EUROPEAN.value: [PricingModel.GK.value, PricingModel.MC_GBM.value , PricingModel.BINOMIAL.value], ExpiryType.AMERICAN.value: [PricingModel.MC_GBM.value, PricingModel.BINOMIAL.value]} } DEFAULT_MODEL = { UdlType.STOCK.value: {DerivativeType.VANILLA_OPTION.value: {ExpiryType.EUROPEAN.value: PricingModel.BLACKSCHOLESMERTON.value, ExpiryType.AMERICAN.value: PricingModel.BINOMIAL.value}, }, UdlType.FUTURES.value: {DerivativeType.VANILLA_OPTION.value: {ExpiryType.EUROPEAN.value: PricingModel.BLACK76.value, ExpiryType.AMERICAN.value: PricingModel.BINOMIAL.value}, }, UdlType.FX.value: {DerivativeType.VANILLA_OPTION.value: {ExpiryType.EUROPEAN.value: PricingModel.GK.value, ExpiryType.AMERICAN.value: PricingModel.BINOMIAL.value}, }, UdlType.COMMODITY.value: {DerivativeType.VANILLA_OPTION.value: {ExpiryType.EUROPEAN.value: PricingModel.GK.value, ExpiryType.AMERICAN.value: PricingModel.BINOMIAL.value}, } } IV_MODELS = [PricingModel.BLACKSCHOLESMERTON.value, PricingModel.BLACK76.value, PricingModel.GK.value] ANALYTICAL_GREEKS = [PricingModel.BLACKSCHOLESMERTON.value, PricingModel.BLACK76.value, PricingModel.GK.value] from . import pricingmodels as pm MODEL_MAPPER = { PricingModel.BLACKSCHOLESMERTON.value: pm.BSM, PricingModel.BLACK76.value: pm.B76, PricingModel.GK.value: pm.GK, PricingModel.MC_GBM.value: pm.MonteCarloGBM, PricingModel.BINOMIAL.value: pm.BinomialModel }
tests/test_jwt.py
kschu91/pyoidc
373
40779
import os from oic.utils.jwt import JWT from oic.utils.keyio import build_keyjar from oic.utils.keyio import keybundle_from_local_file __author__ = "roland" BASE_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "data/keys")) keys = [ {"type": "RSA", "key": os.path.join(BASE_PATH, "cert.key"), "use": ["enc", "sig"]}, {"type": "EC", "crv": "P-256", "use": ["sig"]}, {"type": "EC", "crv": "P-256", "use": ["enc"]}, ] jwks, keyjar, kidd = build_keyjar(keys) issuer = "https://fedop.example.org" def _eq(l1, l2): return set(l1) == set(l2) def test_jwt_pack(): _jwt = JWT(keyjar, lifetime=3600, iss=issuer).pack() assert _jwt assert len(_jwt.split(".")) == 3 def test_jwt_pack_and_unpack(): srv = JWT(keyjar, iss=issuer) _jwt = srv.pack(sub="sub") info = srv.unpack(_jwt) assert _eq(info.keys(), ["jti", "iat", "exp", "iss", "sub", "kid"]) class TestJWT(object): """Tests for JWT.""" def test_unpack_verify_key(self): srv = JWT(keyjar, iss=issuer) _jwt = srv.pack(sub="sub") # Remove the signing key from keyjar keyjar.remove_key("", "RSA", "") # And add it back as verify kb = keybundle_from_local_file( os.path.join(BASE_PATH, "cert.key"), "RSA", ["ver"] ) # keybundle_from_local_file doesn'assign kid, so assign manually kb._keys[0].kid = kidd["sig"]["RSA"] keyjar.add_kb("", kb) info = srv.unpack(_jwt) assert info["sub"] == "sub"
kili/queries/issue/queries.py
ASonay/kili-playground
214
40799
<gh_stars>100-1000 """ Queries of issue queries """ def gql_issues(fragment): """ Return the GraphQL issues query """ return f''' query ($where: IssueWhere!, $first: PageSize!, $skip: Int!) {{ data: issues(where: $where, first: $first, skip: $skip) {{ {fragment} }} }} ''' GQL_ISSUES_COUNT = ''' query($where: IssueWhere!) { data: countIssues(where: $where) } '''
server/bench-wrk/hge_wrk_bench.py
gh-oss-contributor/graphql-engine-1
27,416
40812
from sportsdb_setup import HGETestSetup, HGETestSetupArgs from run_hge import HGE import graphql import multiprocessing import json import os import docker import ruamel.yaml as yaml import cpuinfo import subprocess import threading import time import datetime from colorama import Fore, Style from plot import run_dash_server import webbrowser import pathlib from urllib.parse import urlparse, urlunparse import boto3 fileLoc = os.path.dirname(os.path.abspath(__file__)) def uri_path_join(uri, *paths): p = urlparse(uri) new_path = os.path.join(p.path, *paths) return urlunparse(p._replace(path=new_path)) class HGEWrkBench(HGETestSetup): wrk_docker_image = 'hasura/wrk:v0.3' # We'll bind mount the lua script dir to this directory within the wrk container: lua_dir = '/tmp/bench_scripts' rps_steps = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000] def __init__( self, pg_url, remote_pg_url, pg_docker_image, hge_url=None, remote_hge_url=None, hge_docker_image=None, hge_args=[], skip_stack_build=False, graphql_queries_file='queries.graphql', connections=50, duration=300, results_hge_url = None, results_hge_admin_secret = None ): self.load_queries(graphql_queries_file) super().__init__( pg_url = pg_url, remote_pg_url = remote_pg_url, pg_docker_image = pg_docker_image, hge_url = hge_url, remote_hge_url = remote_hge_url, hge_docker_image = hge_docker_image, hge_args = hge_args, skip_stack_build = skip_stack_build ) self.connections = connections self.duration = duration self.results_hge_url = results_hge_url self.results_hge_admin_secret = results_hge_admin_secret self.extract_cpu_info() # NOTE: we generally want to do this just once; otherwise if we happen # to be editing the tree while this script is running the shasum will # keep changing: self.server_shasum = self.get_server_shasum() def load_queries(self, graphql_queries_file): self.graphql_queries_file = graphql_queries_file with open(self.graphql_queries_file) as f: queries = f.read() self.query_names = [] self.queries = [] for oper in graphql.parse(queries).definitions: self.query_names.append(oper.name.value) self.queries.append(oper) def get_wrk2_params(self): cpu_count = multiprocessing.cpu_count() return { 'threads': cpu_count, 'connections': self.connections, 'duration': self.duration } def get_current_user(self): return '{}:{}'.format(os.geteuid(), os.getegid()) def wrk2_test(self, query, rps): def upload_files(files): if self.upload_root_uri: p = urlparse(self.upload_root_uri) if p.scheme == 's3': bucket = p.netloc key = p.path.lstrip('/') s3_client = boto3.client('s3') for (f, f_key) in files: s3_client.upload_file(f, bucket, os.path.join(key, f_key)) query_str = graphql.print_ast(query) params = self.get_wrk2_params() print(Fore.GREEN + "Running benchmark wrk2 for at {} req/s (duration: {}) for query\n".format(rps, params['duration']), query_str + Style.RESET_ALL) bench_script = os.path.join(self.lua_dir, 'bench-wrk2.lua') graphql_url = self.hge.url + '/v1/graphql' timestamp = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') results_dir = self.results_root_dir tests_path = [str(rps), timestamp] results_dir = os.path.join(results_dir, *tests_path) os.makedirs(results_dir, exist_ok=True) wrk2_command = [ 'wrk2', '-R', str(rps), '-t', str(params['threads']), '-c', str(params['connections']), '-d', str(params['duration']), '--latency', '-s', bench_script, graphql_url, query_str, results_dir ] volumes = self.get_scripts_vol() volumes[results_dir] = { 'bind': results_dir, 'mode': 'rw' } self.docker_client = docker.from_env() result = self.docker_client.containers.run( self.wrk_docker_image, detach = False, stdout = True, stderr = False, command = wrk2_command, network_mode = 'host', environment = self.get_lua_env(), volumes = volumes, remove = True, user = self.get_current_user() ).decode('ascii') histogram_file = os.path.join(results_dir, 'latencies.hgrm') histogram = self.get_latency_histogram(result, histogram_file) summary_file = os.path.join(results_dir, 'summary.json') with open(summary_file) as f: summary = json.load(f) latencies_file = os.path.join(results_dir, 'latencies') def extract_data(v): return v['data'] if isinstance(v, dict) and 'data' in v else v tests_info = { k:extract_data(v) for (k, v) in self.gen_test_info(query, rps).items() } tests_setup_file = os.path.join(results_dir, 'test_setup.json') with open(tests_setup_file, 'w') as f: f.write(json.dumps(tests_info, indent=2)) upload_files([ (x, os.path.join(*tests_path,y)) for (x,y) in [ (summary_file, 'summary.json'), (latencies_file, 'latencies'), (histogram_file, 'latencies.hgrm'), (tests_setup_file, 'test_setup.json') ] ]) if self.upload_root_uri: latencies_uri = uri_path_join(self.upload_root_uri, *tests_path, 'latencies') else: latencies_uri = pathlib.Path(latencies_file).as_uri() self.insert_result(query, rps, summary, histogram, latencies_uri) return (summary, histogram) def get_latency_histogram(self, result, write_histogram_file): const_true = lambda l : True state_changes = { 'start' : { (lambda l: 'Detailed Percentile spectrum' in l) : 'histogram_start' }, 'histogram_start': { (lambda l: 'Value' in l and 'Percentile' in l): 'histogram_headers' }, 'histogram_headers': { const_true: 'histogram_empty_line' }, 'histogram_empty_line' : { const_true: 'histogram_values' }, 'histogram_values': { (lambda l: l.strip().startswith('#')): 'histogram_summary' }, 'histogram_summary': { (lambda l: not l.strip().startswith('#')): 'histogram_end' } } state = 'start' histogram = [] print(Fore.CYAN + "Latency histogram summary" + Style.RESET_ALL) with open(write_histogram_file, 'w') as f: for line in result.splitlines(): # Change the state for (check, next_state) in state_changes[state].items(): if check(line): state = next_state break if state == 'start': continue elif state == 'histogram_end': break if state == 'histogram_summary': print(Fore.CYAN + line + Style.RESET_ALL) if state in ['histogram_headers','histogram_values','histogram_summary']: f.write(line+'\n') if state == 'histogram_values': (val, percentile, total_count, _) = line.strip().split() histogram.append({ 'percentile': float(percentile), 'latency': float(val), 'total_count': float(total_count) }) return histogram # The appropriate Lua env vars for execution within wrk container: def get_lua_env(self): return { 'LUA_PATH': '/usr/share/lua/5.1/?.lua;' + os.path.join(self.lua_dir, '?.lua') + ';;', 'LUA_CPATH': '/usr/lib/lua/5.1/?.so;/usr/lib/x86_64-linux-gnu/lua/5.1/?.so;;' } def get_scripts_vol(self): return { os.path.join(fileLoc, 'wrk-websocket-server', 'bench_scripts'): { 'bind' : self.lua_dir, 'mode' : 'ro' } } def max_rps_test(self, query): query_str = graphql.print_ast(query) print(Fore.GREEN + "(Compute maximum Request per second) Running wrk benchmark for query\n", query_str + Style.RESET_ALL) self.hge.graphql_q(query_str) # Test query once for errors bench_script = os.path.join(self.lua_dir + '/bench-wrk.lua') graphql_url = self.hge.url + '/v1/graphql' params = self.get_wrk2_params() duration = 30 wrk_command = [ 'wrk', '-t', str(params['threads']), '-c', str(params['connections']), '-d', str(duration), '--latency', '-s', bench_script, graphql_url, query_str ] self.docker_client = docker.from_env() result = self.docker_client.containers.run( self.wrk_docker_image, detach = False, stdout = False, stderr = True, command = wrk_command, network_mode = 'host', environment = self.get_lua_env(), volumes = self.get_scripts_vol(), remove = True, user = self.get_current_user() ) summary = json.loads(result)['summary'] # TODO explain this calculation. Why aren't we using wrk's reported 'max'? Should we call this avg_sustained_rps or something? max_rps = round(summary['requests']/float(duration)) self.insert_max_rps_result(query, max_rps) print("Max RPS", max_rps) return max_rps def get_version(self): script = os.path.join(fileLoc, 'gen-version.sh') return subprocess.check_output([script]).decode('ascii').strip() def get_server_shasum(self): script = os.path.join(fileLoc, 'get-server-sha.sh') return subprocess.check_output([script]).decode('ascii').strip() def extract_cpu_info(self): self.cpu_info = cpuinfo.get_cpu_info() for k in ['flags', 'python_version', 'hz_actual', 'hz_actual_raw']: if self.cpu_info.get(k): del self.cpu_info[k] def get_results(self): query = ''' query results { latency: hge_bench_latest_results { query_name requests_per_sec docker_image version latencies_uri latency_histogram { percentile latency } } max_rps: hge_bench_avg_query_max_rps { query_name docker_image version max_rps } } ''' output = self.results_hge.graphql_q(query) return output['data'] def set_cpu_info(self, insert_var): cpu_key = self.cpu_info['brand'] + ' vCPUs: ' + str(self.cpu_info['count']) insert_var['cpu']= { 'data' : { 'info': self.cpu_info, 'key': cpu_key }, "on_conflict": { "constraint": "cpu_info_pkey", "update_columns": "key" } } def set_query_info(self, insert_var, query): insert_var["query"] = { "data": { "name" : query.name.value, "query" : graphql.print_ast(query) }, "on_conflict" : { "constraint": "gql_query_query_key", "update_columns": "query" } } #TODO add executable shasum also def set_version_info(self, insert_var): if self.hge_docker_image: insert_var["docker_image"] = self.hge_docker_image else: insert_var["version"] = self.get_version() insert_var["server_shasum"] = self.server_shasum insert_var['postgres_version'] = self.pg.get_server_version() if self.scenario_name: insert_var['scenario_name'] = self.scenario_name def set_hge_args_env_vars(self, insert_var): to_hide_env = ['HASURA_GRAPHQL_' + env for env in [ 'ADMIN_SECRET', 'DATABASE_URL', 'JWT_SECRET'] ] env = { k:v for (k,v) in self.hge.get_hge_env().items() if (k.startswith('HASURA_GRAPHQL') and k not in to_hide_env) or k in ['GHCRTS'] } args = self.hge.args insert_var['hge_conf'] = { 'env': env, 'args': args } def gen_max_rps_insert_var(self, query, max_rps): insert_var = dict() self.set_cpu_info(insert_var) self.set_query_info(insert_var, query) self.set_version_info(insert_var) self.set_hge_args_env_vars(insert_var) insert_var['max_rps'] = max_rps insert_var['wrk_parameters'] = self.get_wrk2_params() return insert_var def plot_results(self): def open_plot_in_browser(): time.sleep(1) webbrowser.open_new_tab('http://127.0.0.1:8050/') threading.Thread(target=open_plot_in_browser).start() run_dash_server(self.get_results()) # Collect info about the test environment def gen_test_info(self, query, rps): test_info = dict() self.set_cpu_info(test_info) self.set_query_info(test_info, query) self.set_version_info(test_info) self.set_hge_args_env_vars(test_info) test_info["requests_per_sec"] = rps test_info['wrk2_parameters'] = self.get_wrk2_params() return test_info def gen_result_insert_var(self, query, rps, summary, latency_histogram, latencies_uri): insert_var = self.gen_test_info(query, rps) insert_var["summary"] = summary insert_var['latency_histogram'] = { 'data' : latency_histogram } insert_var['latencies_uri'] = latencies_uri return insert_var def insert_result(self, query, rps, summary, latency_histogram, latencies_uri): result_var = self.gen_result_insert_var(query, rps, summary, latency_histogram, latencies_uri) insert_query = """ mutation insertResult($result: hge_bench_results_insert_input!) { insert_hge_bench_results(objects: [$result]){ affected_rows } }""" variables = {'result': result_var} self.results_hge.graphql_q(insert_query, variables) def insert_max_rps_result(self, query, max_rps): result_var = self.gen_max_rps_insert_var(query, max_rps) insert_query = """ mutation insertMaxRps($result: hge_bench_query_max_rps_insert_input!) { insert_hge_bench_query_max_rps(objects: [$result]){ affected_rows } }""" variables = {'result': result_var} self.results_hge.graphql_q(insert_query, variables) def setup_results_schema(self): if not self.results_hge_url: self.results_hge_url = self.hge.url self.results_hge_admin_secret = self.hge.admin_secret() if self.results_hge_admin_secret: results_hge_args = ['--admin-secret', self.results_hge_admin_secret] else: results_hge_args = [] self.results_hge = HGE(None, None, args=results_hge_args, log_file=None, url=self.results_hge_url) results_table = { 'name' : 'results', 'schema': 'hge_bench' } if results_table in self.results_hge.get_all_tracked_tables(): return schema_file = os.path.join(fileLoc, 'results_schema.yaml') with open(schema_file) as f: queries = yaml.safe_load(f) self.results_hge.run_bulk(queries) def run_query_benchmarks(self): def get_results_root_dir(query): if self.hge_docker_image: ver_info = 'docker-tag-' + self.hge_docker_image.split(':')[1] else: ver_info = self.get_version() query_name = query.name.value # Store versioned runs under e.g. test_output/benchmark_runs/<hge_version>/ results_root_dir = os.path.abspath(os.path.join(self.work_dir, 'benchmark_runs')) return os.path.join(results_root_dir, ver_info, query_name) for query in self.queries: try: self.results_root_dir = get_results_root_dir(query) max_rps = self.max_rps_test(query) # The tests should definitely not be running very close to or higher than maximum requests per second rps_steps = [ r for r in self.rps_steps if r < 0.6*max_rps] print("Benchmarking queries with wrk2 for the following requests/sec", rps_steps) for rps in rps_steps: if rps < int(0.6*max_rps): self.wrk2_test(query, rps) except Exception: print(Fore.RED + "Benchmarking Graphql Query '" + query.name.value + "' failed" + Style.RESET_ALL) raise def run_tests(self): with self.graphql_engines_setup(): self.setup_results_schema() if self.run_benchmarks: self.run_query_benchmarks() if not self.skip_plots: self.plot_results() class HGEWrkBenchArgs(HGETestSetupArgs): def __init__(self): self.set_arg_parse_options() self.parse_args() def set_arg_parse_options(self): HGETestSetupArgs.set_arg_parse_options(self) self.set_wrk_options() def parse_args(self): HGETestSetupArgs.parse_args(self) self.parse_wrk_options() def set_wrk_options(self): def boolean_string(s): s = s.lower() if s not in {'false', 'true'}: raise ValueError('Not a valid boolean string') return s == 'true' wrk_opts = self.arg_parser.add_argument_group('wrk') wrk_opts.add_argument('--queries-file', metavar='HASURA_BENCH_QUERIES_FILE', help='Queries file for benchmarks', default='queries.graphql') wrk_opts.add_argument('--connections', metavar='HASURA_BENCH_CONNECTIONS', help='Total number of open connections', default=50) wrk_opts.add_argument('--duration', metavar='HASURA_BENCH_DURATION', help='Duration of tests in seconds', default=300) wrk_opts.add_argument('--upload-root-uri', metavar='HASURA_BENCH_UPLOAD_ROOT_URI', help='The URI to which the latency results should be uploaded. Curently only s3 is supported', required=False) wrk_opts.add_argument('--set-scenario-name', metavar='HASURA_BENCH_SCENARIO_NAME', help='Set a name for the test scenario. This will be shown in logs', required=False) wrk_opts.add_argument('--results-hge-url', metavar='HASURA_BENCH_RESULTS_HGE_URL', help='The GraphQL engine to which the results should be uploaded', required=False) wrk_opts.add_argument('--results-hge-admin-secret', metavar='HASURA_BENCH_RESULTS_HGE_ADMIN_SECRET', help='Admin secret of the GraphQL engine to which the results should be uploaded', required=False) wrk_opts.add_argument('--skip-plots', help='Skip plotting', action='store_true', required=False) wrk_opts.add_argument('--run-benchmarks', metavar='HASURA_BENCH_RUN_BENCHMARKS', help='Whether benchmarks should be run or not', default=True, type=boolean_string) def get_s3_caller_identity(self): return boto3.client('sts').get_caller_identity() def parse_wrk_options(self): self.connections, self.duration, self.graphql_queries_file, self.res_hge_url, upload_root_uri, self.res_hge_admin_secret, self.run_benchmarks, self.scenario_name = \ self.get_params([ ('connections', 'HASURA_BENCH_CONNECTIONS'), ('duration', 'HASURA_BENCH_DURATION'), ('queries_file', 'HASURA_BENCH_QUERIES_FILE'), ('results_hge_url', 'HASURA_BENCH_RESULTS_HGE_URL'), ('upload_root_uri', 'HASURA_BENCH_UPLOAD_ROOT_URI'), ('results_hge_admin_secret', 'HASURA_BENCH_RESULTS_HGE_ADMIN_SECRET'), ('run_benchmarks', 'HASURA_BENCH_RUN_BENCHMARKS'), ('set_scenario_name', 'HASURA_BENCH_SCENARIO_NAME'), ]) self.upload_root_uri = None if upload_root_uri: p = urlparse(upload_root_uri) if p.scheme == 's3': # Check if aws credentials are set self.get_s3_caller_identity() self.upload_root_uri = upload_root_uri self.skip_plots = self.parsed_args.skip_plots class HGEWrkBenchWithArgs(HGEWrkBenchArgs, HGEWrkBench): def __init__(self): HGEWrkBenchArgs.__init__(self) HGEWrkBench.__init__( self, pg_url = self.pg_url, remote_pg_url = self.remote_pg_url, pg_docker_image = self.pg_docker_image, hge_url = self.hge_url, remote_hge_url = self.remote_hge_url, hge_docker_image = self.hge_docker_image, hge_args = self.hge_args, skip_stack_build = self.skip_stack_build, graphql_queries_file = self.graphql_queries_file, connections = self.connections, duration = self.duration ) if __name__ == "__main__": bench = HGEWrkBenchWithArgs() bench.run_tests()
warp/tests/test_import.py
NVIDIA/warp
306
40816
<filename>warp/tests/test_import.py # Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. # include parent path import numpy as np import math import warp as wp from warp.tests.test_base import * import unittest wp.init() #from test_func import sqr import warp.tests.test_func as test_func @wp.kernel def test_import_func(): # test a cross-module function reference is resolved correctly x = test_func.sqr(2.0) y = test_func.cube(2.0) wp.expect_eq(x, 4.0) wp.expect_eq(y, 8.0) def register(parent): devices = wp.get_devices() class TestImport(parent): pass add_kernel_test(TestImport, kernel=test_import_func, name="test_import_func", dim=1, devices=devices) return TestImport if __name__ == '__main__': c = register(unittest.TestCase) #unittest.main(verbosity=2) wp.force_load() loader = unittest.defaultTestLoader testSuite = loader.loadTestsFromTestCase(c) testSuite.debug()
genetic_algorithm/mutation.py
mig029/SnakeAI
181
40822
<filename>genetic_algorithm/mutation.py # 9.3.2 # 11.2.1 # 12.4.3 import numpy as np from typing import List, Union, Optional from .individual import Individual def gaussian_mutation(chromosome: np.ndarray, prob_mutation: float, mu: List[float] = None, sigma: List[float] = None, scale: Optional[float] = None) -> None: """ Perform a gaussian mutation for each gene in an individual with probability, prob_mutation. If mu and sigma are defined then the gaussian distribution will be drawn from that, otherwise it will be drawn from N(0, 1) for the shape of the individual. """ # Determine which genes will be mutated mutation_array = np.random.random(chromosome.shape) < prob_mutation # If mu and sigma are defined, create gaussian distribution around each one if mu and sigma: gaussian_mutation = np.random.normal(mu, sigma) # Otherwise center around N(0,1) else: gaussian_mutation = np.random.normal(size=chromosome.shape) if scale: gaussian_mutation[mutation_array] *= scale # Update chromosome[mutation_array] += gaussian_mutation[mutation_array] def random_uniform_mutation(chromosome: np.ndarray, prob_mutation: float, low: Union[List[float], float], high: Union[List[float], float] ) -> None: """ Randomly mutate each gene in an individual with probability, prob_mutation. If a gene is selected for mutation it will be assigned a value with uniform probability between [low, high). @Note [low, high) is defined for each gene to help get the full range of possible values @TODO: Eq 11.4 """ assert type(low) == type(high), 'low and high must have the same type' mutation_array = np.random.random(chromosome.shape) < prob_mutation if isinstance(low, list): uniform_mutation = np.random.uniform(low, high) else: uniform_mutation = np.random.uniform(low, high, size=chromosome.shape) chromosome[mutation_array] = uniform_mutation[mutation_array] def uniform_mutation_with_respect_to_best_individual(chromosome: np.ndarray, best_chromosome: np.ndarray, prob_mutation: float) -> None: """ Ranomly mutate each gene in an individual with probability, prob_mutation. If a gene is selected for mutation it will nudged towards the gene from the best individual. @TODO: Eq 11.6 """ mutation_array = np.random.random(chromosome.shape) < prob_mutation uniform_mutation = np.random.uniform(size=chromosome.shape) chromosome[mutation_array] += uniform_mutation[mutation_array] * (best_chromosome[mutation_array] - chromosome[mutation_array]) def cauchy_mutation(individual: np.ndarray, scale: float) -> np.ndarray: pass def exponential_mutation(chromosome: np.ndarray, xi: Union[float, np.ndarray], prob_mutation: float) -> None: mutation_array = np.random.random(chromosome.shape) < prob_mutation # Fill xi if necessary if not isinstance(xi, np.ndarray): xi_val = xi xi = np.empty(chromosome.shape) xi.fill(xi_val) # Change xi so we get E(0, 1), instead of E(0, xi) xi_div = 1.0 / xi xi.fill(1.0) # Eq 11.17 y = np.random.uniform(size=chromosome.shape) x = np.empty(chromosome.shape) x[y <= 0.5] = (1.0 / xi[y <= 0.5]) * np.log(2 * y[y <= 0.5]) x[y > 0.5] = -(1.0 / xi[y > 0.5]) * np.log(2 * (1 - y[y > 0.5])) # Eq 11.16 delta = np.empty(chromosome.shape) delta[mutation_array] = (xi[mutation_array] / 2.0) * np.exp(-xi[mutation_array] * np.abs(x[mutation_array])) # Update delta such that E(0, xi) = (1 / xi) * E(0 , 1) delta[mutation_array] = xi_div[mutation_array] * delta[mutation_array] # Update individual chromosome[mutation_array] += delta[mutation_array] def mmo_mutation(chromosome: np.ndarray, prob_mutation: float) -> None: from scipy import stats mutation_array = np.random.random(chromosome.shape) < prob_mutation normal = np.random.normal(size=chromosome.shape) # Eq 11.21 cauchy = stats.cauchy.rvs(size=chromosome.shape) # Eq 11.22 # Eq 11.20 delta = np.empty(chromosome.shape) delta[mutation_array] = normal[mutation_array] + cauchy[mutation_array] # Update individual chromosome[mutation_array] += delta[mutation_array]
src/backend/common/models/tests/team_test.py
guineawheek/ftc-data-take-2
266
40828
import pytest from backend.common.models.team import Team from backend.common.models.tests.util import ( CITY_STATE_COUNTRY_PARAMETERS, LOCATION_PARAMETERS, ) @pytest.mark.parametrize("key", ["frc177", "frc1"]) def test_valid_key_names(key: str) -> None: assert Team.validate_key_name(key) is True @pytest.mark.parametrize("key", ["bcr077", "frc 011", "frc711\\"]) def test_invalid_key_names(key: str) -> None: assert Team.validate_key_name(key) is False def test_key_name() -> None: team = Team(id="frc254", team_number=254) assert team.key_name == "frc254" @pytest.mark.parametrize(LOCATION_PARAMETERS[0], LOCATION_PARAMETERS[1]) def test_location( city: str, state: str, country: str, postalcode: str, output: str ) -> None: team = Team( city=city, state_prov=state, country=country, postalcode=postalcode, ) assert team.location == output @pytest.mark.parametrize( CITY_STATE_COUNTRY_PARAMETERS[0], CITY_STATE_COUNTRY_PARAMETERS[1] ) def test_city_state_country(city: str, state: str, country: str, output: str) -> None: team = Team( city=city, state_prov=state, country=country, ) assert team.city_state_country == output def test_details_url() -> None: team = Team( id="frc254", team_number=254, ) assert team.details_url == "/team/254"
pymtl3/datatypes/bitstructs.py
kevinyuan/pymtl3
152
40842
""" ========================================================================== bitstruct.py ========================================================================== APIs to generate a bitstruct type. Using decorators and type annotations to create bit struct is much inspired by python3 dataclass implementation. Note that the implementation (such as the _CAPITAL constants to add some private metadata) in this file is very similar to the **original python3 dataclass implementation**. The syntax of creating bit struct is very similar to that of python3 dataclass. https://github.com/python/cpython/blob/master/Lib/dataclasses.py For example, @bitstruct class Point: x : Bits4 y : Bits4 will automatically generate some methods, such as __init__, __str__, __repr__, for the Point class. Similar to the built-in dataclasses module, we also provide a mk_bitstruct function for user to dynamically generate bit struct types. For example, mk_bitstruct( 'Pixel',{ 'r' : Bits4, 'g' : Bits4, 'b' : Bits4, }, name_space = { '__str__' : lambda self: f'({self.r},{self.g},{self.b})' } ) is equivalent to: @bitstruct class Pixel: r : Bits4 g : Bits4 b : Bits4 def __str__( self ): return f'({self.r},{self.g},{self.b})' Author : <NAME>, <NAME> Date : Oct 19, 2019 """ import functools import keyword import operator import types import warnings import py from pymtl3.extra.pypy import custom_exec from .bits_import import * from .helpers import concat #------------------------------------------------------------------------- # Constants #------------------------------------------------------------------------- # Object with this attribute is considered as bit struct, as we assume # only the bitstruct decorator will stamp this attribute to a class. This # attribute also stores the field information and can be used for # translation. # # The original dataclass use hasattr( cls, _FIELDS ) to check dataclass. # We do this here as well _FIELDS = '__bitstruct_fields__' def is_bitstruct_inst( obj ): """Returns True if obj is an instance of a dataclass.""" return hasattr(type(obj), _FIELDS) def is_bitstruct_class(cls): """Returns True if obj is a dataclass .""" return isinstance(cls, type) and hasattr(cls, _FIELDS) def get_bitstruct_inst_all_classes( obj ): # list: put all types together if isinstance( obj, list ): return functools.reduce( operator.or_, [ get_bitstruct_inst_all_classes(x) for x in obj ] ) ret = { obj.__class__ } # BitsN or int if isinstance( obj, (Bits, int) ): return ret # BitStruct assert is_bitstruct_inst( obj ), f"{obj} is not a valid PyMTL Bitstruct!" return ret | functools.reduce( operator.or_, [ get_bitstruct_inst_all_classes(getattr(obj, v)) for v in obj.__bitstruct_fields__.keys() ] ) _DEFAULT_SELF_NAME = 's' _ANTI_CONFLICT_SELF_NAME = '__bitstruct_self__' #------------------------------------------------------------------------- # _create_fn #------------------------------------------------------------------------- # A helper function that creates a function based on # - fn_name : name of the function # - args_lst : a list of arguments in string # - body_lst : a list of statement of the function body in string # Also note that this whole _create_fn thing is similar to the original # dataclass implementation! def _create_fn( fn_name, args_lst, body_lst, _globals=None ): # Assemble argument string and body string args = ', '.join(args_lst) body = '\n'.join(f' {statement}' for statement in body_lst) # Assemble the source code and execute it src = f'def {fn_name}({args}):\n{body}' if _globals is None: _globals = {} _locals = {} custom_exec( py.code.Source(src).compile(), _globals, _locals ) return _locals[fn_name] #------------------------------------------------------------------------- # _mk_init_arg #------------------------------------------------------------------------- # Creates a init argument string from a field. # # Shunning: I revamped the whole thing because they are indeed mutable # objects. def _mk_init_arg( name, type_ ): # default is always None if isinstance( type_, list ) or is_bitstruct_class( type_ ): return f'{name} = None' return f'{name} = 0' #------------------------------------------------------------------------- # _mk_init_body #------------------------------------------------------------------------- # Creates one line of __init__ body from a field # to globals. def _mk_init_body( self_name, name, type_ ): def _recursive_generate_init( x ): if isinstance( x, list ): return f"[{', '.join( [ _recursive_generate_init(x[0]) ] * len(x) )}]" return f"_type_{name}()" if isinstance( type_, list ) or is_bitstruct_class( type_ ): return f'{self_name}.{name} = {name} or {_recursive_generate_init(type_)}' assert issubclass( type_, Bits ) return f'{self_name}.{name} = _type_{name}({name})' #------------------------------------------------------------------------- # _mk_tuple_str #------------------------------------------------------------------------- # Creates a tuple of string representations of each field. For example, # if the self_name is 'self' and fields is [ 'x', 'y' ], it will return # ('self.x', 'self.y'). This is used for creating the default __eq__ and # __hash__ function. def _mk_tuple_str( self_name, fields ): return f'({",".join([f"{self_name}.{name}" for name in fields])},)' #------------------------------------------------------------------------- # _mk_init_fn #------------------------------------------------------------------------- # Creates a __init__ function based on fields. For example, if fields # contains two field x (Bits4) and y (Bits4), _mk_init_fn will return a # function that looks like the following: # # def __init__( s, x = 0, y = 0, z = None, p = None ): # s.x = _type_x(x) # s.y = _type_y(y) # s.z = z or _type_z() # s.p = p or [ _type_p(), _type_p() ] # # NOTE: # _mk_init_fn also takes as argument the name of self in case there is a # field with name 's' or 'self'. # # TODO: should we provide a __post_init__ function like dataclass does? def _mk_init_fn( self_name, fields ): # Register necessary types in _globals _globals = {} for name, type_ in fields.items(): if isinstance( type_, list ): x = type_[0] while isinstance( x, list ): x = x[0] _globals[ f"_type_{name}" ] = x else: assert issubclass( type_, Bits ) or is_bitstruct_class( type_ ) _globals[ f"_type_{name}" ] = type_ return _create_fn( '__init__', [ self_name ] + [ _mk_init_arg( *field ) for field in fields.items() ], [ _mk_init_body( self_name, *field ) for field in fields.items() ], _globals = _globals, ) #------------------------------------------------------------------------- # _mk_str_fn #------------------------------------------------------------------------- # Creates a __str__ function based on fields. For example, if fields # contains two field x (Bits4) and y (Bits4), _mk_str_fn will return a # function that looks like the following: # # def __str__( self ): # return f'{self.x}:{self.y}' def _mk_str_fn( fields ): return _create_fn( '__str__', [ 'self' ], [ 'return f"' + ':'.join([ f'{{self.{name}}}' for name in fields ]) + '"'] ) #------------------------------------------------------------------------- # _mk_repr_fn #------------------------------------------------------------------------- # Creates a __repr__ function based on fields. For example, if fields # contains two field x (Bits4) and y (Bits4), _mk_repr_fn will return a # function that looks like the following: # # def __repr__( self ): # return self.__class__.__name__ + f'(x={self.x!r}, y={self.y!r})' def _mk_repr_fn( fields ): return _create_fn( '__repr__', [ 'self' ], [ 'return self.__class__.__name__ + f"(' + ','.join([ f'{{self.{name}!r}}' for name in fields ]) + ')"'] ) #------------------------------------------------------------------------- # _mk_eq_fn #------------------------------------------------------------------------- # Creates a __eq__ function based on fields. By default it just compares # each field. For example, if fields contains two field x (Bits4) and y # (Bits4), _mk_eq_fn will return a function that looks like the # following: # # def __eq__( self, other ): # if other.__class__ is self.__class__: # return (self.x,self.y,) == (other.x,other.y,) # else: # raise NotImplemented def _mk_eq_fn( fields ): self_tuple = _mk_tuple_str( 'self', fields ) other_tuple = _mk_tuple_str( 'other', fields ) return _create_fn( '__eq__', [ 'self', 'other' ], [ f'return (other.__class__ is self.__class__) and {self_tuple} == {other_tuple}' ] ) #------------------------------------------------------------------------- # _mk_hash_fn #------------------------------------------------------------------------- # Creates a __hash__ function based on fields. By default it just hashes # all fields. For example, if fields contains two field x (Bits4) and y # (Bits4), _mk_hash_fn will return a function that looks like the # following: # # def __hash__( self ): # return hash((self.x,self.y,)) def _mk_hash_fn( fields ): self_tuple = _mk_tuple_str( 'self', fields ) return _create_fn( '__hash__', [ 'self' ], [ f'return hash({self_tuple})' ] ) #--------------------------PyMTL3 specific-------------------------------- #------------------------------------------------------------------------- # _mk_ff_fn #------------------------------------------------------------------------- # Creates __ilshift__ and _flip functions that looks like the following: # # def __ilshift__( self, other ): # if self.__class__ is not other.__class__: # other = self.__class__.from_bits( other.to_bits() ) # self.x <<= other.x # self.y[0][0] <<= other.y[0][0] # # def _flip( self ): # self.x._flip() # self.y[i][j]._flip() def _mk_ff_fn( fields ): def _gen_list_ilshift_strs( type_, prefix='' ): if isinstance( type_, list ): ilshift_strs, flip_strs = [], [] for i in range(len(type_)): ils, fls = _gen_list_ilshift_strs( type_[0], f"{prefix}[{i}]" ) ilshift_strs.extend( ils ) flip_strs.extend( fls ) return ilshift_strs, flip_strs else: return [ f"self.{prefix} <<= other.{prefix}" ], [f"self.{prefix}._flip()"] ilshift_strs = [ 'if self.__class__ is not other.__class__:', ' other = self.__class__.from_bits( other.to_bits() )'] flip_strs = [] for name, type_ in fields.items(): ils, fls = _gen_list_ilshift_strs( type_, name ) ilshift_strs.extend( ils ) flip_strs.extend( fls ) return _create_fn( '__ilshift__', [ 'self', 'other' ], ilshift_strs + [ "return self" ], ), _create_fn( '_flip', [ 'self' ], flip_strs, ), #------------------------------------------------------------------------- # _mk_clone_fn #------------------------------------------------------------------------- # Creates clone function that looks like the following: # Use this clone function in any place that you need to perform a # deepcopy on a bitstruct. # # def clone( self ): # return self.__class__( self.x.clone(), [ self.y[0].clone(), self.y[1].clone() ] ) def _gen_list_clone_strs( type_, prefix='' ): if isinstance( type_, list ): return "[" + ",".join( [ _gen_list_clone_strs( type_[0], f"{prefix}[{i}]" ) for i in range(len(type_)) ] ) + "]" else: return f"{prefix}.clone()" def _mk_clone_fn( fields ): clone_strs = [ 'return self.__class__(' ] for name, type_ in fields.items(): clone_strs.append( " " + _gen_list_clone_strs( type_, f'self.{name}' ) + "," ) return _create_fn( 'clone', [ 'self' ], clone_strs + [ ')' ], ) def _mk_deepcopy_fn( fields ): clone_strs = [ 'return self.__class__(' ] for name, type_ in fields.items(): clone_strs.append( " " + _gen_list_clone_strs( type_, f'self.{name}' ) + "," ) return _create_fn( '__deepcopy__', [ 'self', 'memo' ], clone_strs + [ ')' ], ) #------------------------------------------------------------------------- # _mk_imatmul_fn #------------------------------------------------------------------------- # Creates @= function that copies the value over ... # TODO create individual from_bits for imatmul and ilshift # def __imatmul__( self, other ): # if self.__class__ is not other.__class__: # other = self.__class__.from_bits( other.to_bits() ) # self.x @= other.x # self.y[0] @= other.y[0] # self.y[1] @= other.y[1] def _mk_imatmul_fn( fields ): def _gen_list_imatmul_strs( type_, prefix='' ): if isinstance( type_, list ): ret = [] for i in range(len(type_)): ret.extend( _gen_list_imatmul_strs( type_[0], f"{prefix}[{i}]" ) ) return ret else: return [ f"self.{prefix} @= other.{prefix}" ] imatmul_strs = [ 'if self.__class__ is not other.__class__:', ' other = self.__class__.from_bits( other.to_bits() )'] for name, type_ in fields.items(): imatmul_strs.extend( _gen_list_imatmul_strs( type_, name ) ) return _create_fn( '__imatmul__', [ 'self', 'other' ], imatmul_strs + [ "return self" ], ) #------------------------------------------------------------------------- # _mk_nbits_to_bits_fn #------------------------------------------------------------------------- # Creates nbits, to_bits function that copies the value over ... # # def to_bits( self ): # return concat( self.x, self.y[0], self.y[1] ) # # TODO packing order of array? x[0] is LSB or MSB of a list # current we do LSB def _mk_nbits_to_bits_fn( fields ): def _gen_to_bits_strs( type_, prefix, start_bit ): if isinstance( type_, list ): to_strs = [] # The packing order is LSB, so we need to reverse the list to make x[-1] higher bits for i in reversed(range(len(type_))): start_bit, tos = _gen_to_bits_strs( type_[0], f"{prefix}[{i}]", start_bit ) to_strs.extend( tos ) return start_bit, to_strs elif is_bitstruct_class( type_ ): to_strs = [] for name, typ in getattr(type_, _FIELDS).items(): start_bit, tos = _gen_to_bits_strs( typ, f"{prefix}.{name}", start_bit ) to_strs.extend( tos ) return start_bit, to_strs else: end_bit = start_bit + type_.nbits return end_bit, [ f"self.{prefix}" ] to_bits_strs = [] total_nbits = 0 for name, type_ in fields.items(): total_nbits, tos = _gen_to_bits_strs( type_, name, total_nbits ) to_bits_strs.extend( tos ) return total_nbits, _create_fn( 'to_bits', [ 'self' ], [ f"return concat({', '.join(to_bits_strs)})" ], _globals={'concat':concat} ) #------------------------------------------------------------------------- # _mk_from_bits_fn #------------------------------------------------------------------------- # Creates static method from_bits that creates a new bitstruct based on Bits # and instance method _from_bits that copies the value over # # @staticmethod # def from_bits( other ): # return self.__class__( other[16:32], other[0:16] ) def _mk_from_bits_fns( fields, total_nbits ): def _gen_from_bits_strs( type_, end_bit ): if isinstance( type_, list ): from_strs = [] # Since we are doing LSB for x[0], we need to unpack from the last # element of the list, and then reverse it again to construct a list ... for i in range(len(type_)): end_bit, fs = _gen_from_bits_strs( type_[0], end_bit ) from_strs.extend( fs ) return end_bit, [ f"[{','.join(reversed(from_strs))}]" ] elif is_bitstruct_class( type_ ): if type_ in type_name_mapping: type_name = type_name_mapping[ type_ ] else: type_name = f"_type{len(type_name_mapping)}" type_name_mapping[ type_ ] = type_name from_strs = [] for name, typ in getattr(type_, _FIELDS).items(): end_bit, fs = _gen_from_bits_strs( typ, end_bit ) from_strs.extend( fs ) return end_bit, [ f"{type_name}({','.join(from_strs)})" ] else: if type_ not in type_name_mapping: type_name_mapping[ type_ ] = type_.__name__ else: assert type_name_mapping[ type_ ] == type_.__name__ start_bit = end_bit - type_.nbits return start_bit, [ f"other[{start_bit}:{end_bit}]" ] from_bits_strs = [] end_bit = total_nbits # This is to make sure we capture two types with the same name but different # attributes type_name_mapping = {} type_count = 0 for _, type_ in fields.items(): end_bit, fs = _gen_from_bits_strs( type_, end_bit ) from_bits_strs.extend( fs ) assert end_bit == 0 _globals = { y: x for x,y in type_name_mapping.items() } assert len(_globals) == len(type_name_mapping) # TODO add assertion in bits return _create_fn( 'from_bits', [ 'cls', 'other' ], [ "assert cls.nbits == other.nbits, f'LHS bitstruct {cls.nbits}-bit <> RHS other {other.nbits}-bit'", "other = other.to_bits()", f"return cls({','.join(from_bits_strs)})" ], _globals ) #------------------------------------------------------------------------- # _check_valid_array #------------------------------------------------------------------------- def _recursive_check_array_types( current ): x = current[0] if isinstance( x, list ): x_len = len(x) x_type = _recursive_check_array_types( x ) for y in current[1:]: assert isinstance( y, list ) and len(y) == x_len y_type = _recursive_check_array_types( y ) assert y_type is x_type return x_type assert issubclass( x, Bits ) or is_bitstruct_class( x ) for y in current[1:]: assert y is x return x def _check_valid_array_of_types( arr ): # Check if the provided list is a strict multidimensional array try: return _recursive_check_array_types( arr ) except Exception as e: print(e) return None #------------------------------------------------------------------------- # _check_field_annotation #------------------------------------------------------------------------- def _check_field_annotation( cls, name, type_ ): # Make sure not default is annotated if hasattr( cls, name ): default = getattr( cls, name ) raise TypeError( "We don't allow subfields to have default value:\n" f"- Field '{name}' of BitStruct {cls.__name__} has default value {default!r}." ) # Special case if the type is an instance of list if isinstance( type_, list ): if _check_valid_array_of_types( type_ ) is None: raise TypeError( "The provided list spec should be a strict multidimensional ARRAY " "with no varying sizes or types. All non-list elements should be VALID types." ) else: # Now we work with types if not isinstance( type_, type ): raise TypeError(f"{type_} is not a type\n"\ f"- Field '{name}' of BitStruct {cls.__name__} is annotated as {type_}.") # More specifically, Bits and BitStruct if not issubclass( type_, Bits ) and not is_bitstruct_class( type_ ): raise TypeError( "We currently only support BitsN, list, or another BitStruct as BitStruct field:\n" f"- Field '{name}' of BitStruct {cls.__name__} is annotated as {type_}." ) #------------------------------------------------------------------------- # _get_self_name #------------------------------------------------------------------------- # Return a self name based on fields. def _get_self_name( fields ): return( _ANTI_CONFLICT_SELF_NAME if _DEFAULT_SELF_NAME in fields else _DEFAULT_SELF_NAME ) #------------------------------------------------------------------------- # _process_cls #------------------------------------------------------------------------- # Process the input cls and add methods to it. _bitstruct_hash_cache = {} def _process_class( cls, add_init=True, add_str=True, add_repr=True, add_hash=True ): # Get annotations of the class cls_annotations = cls.__dict__.get('__annotations__', {}) if not cls_annotations: raise AttributeError( "No field is declared in the bit struct definition.\n" f"Suggestion: check the definition of {cls.__name__} to" " make sure it only contains 'field_name(string): Type(type).'" ) # Get field information from the annotation and prepare for hashing fields = {} hashable_fields = {} def _convert_list_to_tuple( x ): if isinstance( x, list ): return tuple( [ _convert_list_to_tuple( y ) for y in x ] ) return x reserved_fields = ['to_bits', 'from_bits', 'nbits'] for x in reserved_fields: assert x not in cls.__dict__, f"Currently a bitstruct cannot have {reserved_fields}, but "\ f"{x} is provided as {cls.__dict__[x]}" for a_name, a_type in cls_annotations.items(): assert a_name not in reserved_fields, f"Currently a bitstruct cannot have {reserved_fields}, but "\ f"{a_name} is annotated as {a_type}" _check_field_annotation( cls, a_name, a_type ) fields[ a_name ] = a_type hashable_fields[ a_name ] = _convert_list_to_tuple( a_type ) cls._hash = _hash = hash( (cls.__name__, *tuple(hashable_fields.items()), add_init, add_str, add_repr, add_hash) ) if _hash in _bitstruct_hash_cache: return _bitstruct_hash_cache[ _hash ] _bitstruct_hash_cache[ _hash ] = cls # Stamp the special attribute so that translation pass can identify it # as bit struct. setattr( cls, _FIELDS, fields ) # Add methods to the class # Create __init__. Here I follow the dataclass convention that we only # add our generated __init__ function when add_init is true and user # did not define their own init. if add_init: if not '__init__' in cls.__dict__: cls.__init__ = _mk_init_fn( _get_self_name(fields), fields ) # Create __str__ if add_str: if not '__str__' in cls.__dict__: cls.__str__ = _mk_str_fn( fields ) # Create __repr__ if add_repr: if not '__repr__' in cls.__dict__: cls.__repr__ = _mk_repr_fn( fields ) # Create __eq__. There is no need for a __ne__ method as python will # call __eq__ and negate it. # NOTE: if user overwrites __eq__ it may lead to different behavior for # the translated verilog as in the verilog world two bit structs are # equal only if all the fields are equal. We always try to add __eq__ if not '__eq__' in cls.__dict__: cls.__eq__ = _mk_eq_fn( fields ) else: w_msg = ( f'Overwriting {cls.__qualname__}\'s __eq__ may cause the ' 'translated verilog behaves differently from PyMTL ' 'simulation.') warnings.warn( w_msg ) # Create __hash__. if add_hash: if not '__hash__' in cls.__dict__: cls.__hash__ = _mk_hash_fn( fields ) # Shunning: add __ilshift__ and _flip for update_ff assert not '__ilshift__' in cls.__dict__ and not '_flip' in cls.__dict__ cls.__ilshift__, cls._flip = _mk_ff_fn( fields ) # Shunning: add clone assert not 'clone' in cls.__dict__ and not '__deepcopy__' in cls.__dict__ cls.clone = _mk_clone_fn( fields ) cls.__deepcopy__ = _mk_deepcopy_fn( fields ) # Shunning: add imatmul for assignment, as well as nbits/to_bits/from_bits assert '__imatmul__' not in cls.__dict__ and 'to_bits' not in cls.__dict__ and \ 'nbits' not in cls.__dict__ and 'from_bits' not in cls.__dict__ cls.__imatmul__ = _mk_imatmul_fn( fields ) cls.nbits, cls.to_bits = _mk_nbits_to_bits_fn( fields ) from_bits = _mk_from_bits_fns( fields, cls.nbits ) cls.from_bits = classmethod(from_bits) assert not 'get_field_type' in cls.__dict__ def get_field_type( cls, name ): if name in cls.__bitstruct_fields__: return cls.__bitstruct_fields__[ name ] raise AttributeError( f"{cls} has no field '{name}'" ) cls.get_field_type = classmethod(get_field_type) # TODO: maybe add a to_bits and from bits function. return cls #------------------------------------------------------------------------- # bitstruct #------------------------------------------------------------------------- # The actual class decorator. We add a * in the argument list so that the # following argument can only be used as keyword arguments. def bitstruct( _cls=None, *, add_init=True, add_str=True, add_repr=True, add_hash=True ): def wrap( cls ): return _process_class( cls, add_init, add_str, add_repr ) # Called as @bitstruct(...) if _cls is None: return wrap # Called as @bitstruct without parens. return wrap( _cls ) #------------------------------------------------------------------------- # mk_bitstruct #------------------------------------------------------------------------- # Dynamically generate a bit struct class. # TODO: should we add base parameters to support inheritence? def mk_bitstruct( cls_name, fields, *, namespace=None, add_init=True, add_str=True, add_repr=True, add_hash=True ): # copy namespace since will mutate it namespace = {} if namespace is None else namespace.copy() # We assume fields is a dictionary and thus there won't be duplicate # field names. So we only check if the field names are indeed strings # and that they are not keywords. annos = {} for name, f in fields.items(): if not isinstance( name, str ) or not name.isidentifier(): raise TypeError( f'Field name {name!r} is not a valid identifier!' ) if keyword.iskeyword( name ): raise TypeError( f'Field name {name!r} is a keyword!' ) annos[ name ] = f namespace['__annotations__'] = annos cls = types.new_class( cls_name, (), {}, lambda ns: ns.update( namespace ) ) return bitstruct( cls, add_init=add_init, add_str=add_str, add_repr=add_repr, add_hash=add_hash )
utils/surface.py
fsanges/glTools
165
40848
<filename>utils/surface.py<gh_stars>100-1000 import maya.cmds as mc import maya.OpenMaya as OpenMaya import glTools.utils.base import glTools.utils.curve import glTools.utils.component import glTools.utils.mathUtils import glTools.utils.matrix import glTools.utils.shape import glTools.utils.stringUtils import math def isSurface(surface): ''' Check if the specified object is a nurbs surface or transform parent of a surface @param surface: Object to query @type surface: str ''' # Check object exists if not mc.objExists(surface): return False # Check shape if mc.objectType(surface) == 'transform': surface = mc.listRelatives(surface,s=True,ni=True,pa=True)[0] if mc.objectType(surface) != 'nurbsSurface': return False # Return result return True def getSurfaceFn(surface): ''' Create an MFnNurbsSurface class object from the specified nurbs surface @param surface: Surface to create function class for @type surface: str ''' # Checks if not isSurface(surface): raise Exception('Object '+surface+' is not a valid surface!') if mc.objectType(surface) == 'transform': surface = mc.listRelatives(surface,s=True,ni=True,pa=True)[0] # Get MFnNurbsSurface selection = OpenMaya.MSelectionList() OpenMaya.MGlobal.getSelectionListByName(surface,selection) surfacePath = OpenMaya.MDagPath() selection.getDagPath(0,surfacePath) surfaceFn = OpenMaya.MFnNurbsSurface() surfaceFn.setObject(surfacePath) # Return result return surfaceFn def chordLength(surface,param=0.0,direction='u'): ''' Return the length of a surface isoparm given a parameter and a direction @param surface: Surface to query closest point from @type surface: str @param param: The parameter on the surface to query length of @type param: float @param direction: Direction along the surface to measure length of @type direction: str ''' # Check surface if not isSurface(surface): raise Exception('Object '+surface+' is not a valid surface!') # Duplicate surface curve curve = mc.duplicateCurve(surface+'.'+direction+'['+str(param)+']',ch=0,rn=0,local=0) # Measure curve length length = mc.arclen(curve[0]) # Cleanup mc.delete(curve) # Return result return length def closestPoint(surface,pos=(0,0,0)): ''' Return closest point on surface to target position @param surface: Surface to query closest point from @type surface: str @param pos: Position to query surface from @type pos: tuple/list ''' # Check surface if not isSurface(surface): raise Exception('Object '+surface+' is not a valid surface!') # Get point world position pos = glTools.utils.base.getPosition(pos) pt = OpenMaya.MPoint(pos[0],pos[1],pos[2],1.0) # Get surface function set surfFn = getSurfaceFn(surface) # Get uCoord and vCoord pointer objects uCoord = OpenMaya.MScriptUtil() uCoord.createFromDouble(0.0) uCoordPtr = uCoord.asDoublePtr() vCoord = OpenMaya.MScriptUtil() vCoord.createFromDouble(0.0) vCoordPtr = vCoord.asDoublePtr() # get closest uCoord to edit point position surfFn.closestPoint(pt,uCoordPtr,vCoordPtr,True,0.0001,OpenMaya.MSpace.kWorld) return (OpenMaya.MScriptUtil(uCoordPtr).asDouble(),OpenMaya.MScriptUtil(vCoordPtr).asDouble()) def distToSurface(surface,pos=(0,0,0)): ''' ''' # Get point world position pos = glTools.utils.base.getPosition(pos) # Get closest point to surface uv = closestPoint(surface,pos) pt = mc.pointOnSurface(surface,u=uv[0],v=uv[1],p=True) # Get distance to surface point dist = glTools.utils.mathUtils.distanceBetween(pos,pt) # Return Result return dist def snapPtsToSurface(surface,pointList): ''' @param surface: Nurbs surface to snap points to @type surface: str @param pointList: Point to snap to the specified surface @type pointList: list ''' # Check surface if not isSurface(surface): raise Exception('Object '+surface+' is not a valid surface!') # Check points pointList = mc.ls(pointList,fl=True) # Transform types transform = ['transform','joint','ikHandle','effector'] # Snap points for pt in pointList: # Check Transform if transform.count(mc.objectType(pt)): snapToSurface(surface,pt,0.0,0.0,True,snapPivot=False) continue # Move Point pos = mc.pointPosition(pt) (uParam,vParam) = closestPoint(surface,pos) sPt = mc.pointOnSurface(surface,u=uParam,v=vParam,position=True) mc.move(sPt[0],sPt[1],sPt[2],pt,ws=True,a=True) def locatorSurface(surface,controlPoints=[],locatorScale=0.075,prefix=''): ''' Drive the control point positions of a surface with a set of control locators @param surface: Input surface to connect locators positions to @type surface: str @param controlPoints: List of control points to be driven by locators. If left as default (None), all control points will be connected. @type controlPoints: list @param locatorScale: Scale of the locators relative to the area of the surface @type locatorScale: float @param prefix: Name prefix for newly created nodes @type prefix: str ''' # Check surface if not glTools.utils.surface.isSurface(surface): raise Exception('Object '+surface+' is not a valid surface!') if mc.objectType(surface) == 'transform': surface = mc.listRelatives(surface,s=True,ni=True,pa=True)[0] # Check prefix if not prefix: prefix = glTools.utils.stringUtils.stripSuffix(surface) # Calculate locator scale locatorScale *= math.sqrt(glTools.utils.surface.surfaceArea(surface)) # Get Control Points if not controlPoints: controlPoints = glTools.utils.component.getComponentIndexList(surface)[surface] else: controlPoints = glTools.utils.component.getComponentIndexList(controlPoints)[surface] # Create locators and connect to control points locatorList = [] for cv in controlPoints: # Get index (string) ind = glTools.utils.component.getSingleIndex(surface,cv) indStr = glTools.utils.stringUtils.stringIndex(ind,2) # Create locator loc = prefix+'_cv'+indStr+'_loc' loc = mc.spaceLocator(n=loc)[0] locatorList.append(loc) mc.setAttr(loc+'.localScale',locatorScale,locatorScale,locatorScale) # Get control point world position pos = mc.pointPosition(surface+'.cv['+str(cv[0])+']['+str(cv[1])+']') mc.setAttr(loc+'.t',pos[0],pos[1],pos[2]) mc.makeIdentity(loc,apply=True,t=1,r=1,s=1,n=0) # Connect locator position to control point mc.connectAttr(loc+'.worldPosition[0]',surface+'.controlPoints['+str(ind)+']') return locatorList def surfaceArea(surface,worldSpace=True): ''' Calculates the surface area of a specified nurbs surface. @param surface: Nurbs surface to calculate the surface area for @type surface: str @param worldSpace: Calculate the surface area in world or local space units @type worldSpace: bool ''' # Check Surface if not mc.objExists(surface): raise Exception('Object '+surface+' does not exist!') if mc.objectType(surface) == 'transform': surfaceShape = mc.listRelatives(surface,s=True,ni=True,pa=True)[0] if mc.objectType(surfaceShape) != 'nurbsSurface': raise Exception('Object '+surface+' is not a valid nurbs surface!') surface = surfaceShape # Get MFnNurbsSurface surfaceFn = getSurfaceFn(surface) # Get surface area area = 0.0 if worldSpace: area = surfaceFn.area(OpenMaya.MSpace.kWorld) else: area = surfaceFn.area(OpenMaya.MSpace.kObject) # Return result return area def snapToSurface(surface,obj,uValue=0.0,vValue=0.0,useClosestPoint=False,snapPivot=False): ''' Snap an object (or transform pivot) to a specified point on a surface. @param surface: Curve to snap to @type surface: str @param obj: Object to move to point on surface @type obj: str @param uValue: U Paramater value of the surface to snap to @type uValue: float @param vValue: V Paramater value of the surface to snap to @type vValue: float @param useClosestPoint: Use the closest point on the surface instead of the specified uv parameter @type useClosestPoint: bool @param snapPivot: Move only the objects pivot to the surface point @type snapPivot: bool ''' # Check surface if not isSurface(surface): raise Exception('Object '+surface+' is not a valid surface!!') # Check uValue/vValue minu = mc.getAttr(surface+'.minValueU') maxu = mc.getAttr(surface+'.maxValueU') minv = mc.getAttr(surface+'.minValueV') maxv = mc.getAttr(surface+'.maxValueV') # Closest Point if useClosestPoint: pos = mc.xform(obj,q=True,ws=True,rp=True) (uValue,vValue) = closestPoint(surface,pos) # Verify surface parameter if uValue < minu or uValue > maxu: raise Exception('U paramater '+str(uValue)+' is not within the U parameter range for '+surface+'!!') if vValue < minv or vValue > maxv: raise Exception('V paramater '+str(vValue)+' is not within the V parameter range for '+surface+'!!') # Get surface point position pnt = mc.pointPosition(surface+'.uv['+str(uValue)+']['+str(vValue)+']') # Snap to Curve piv = mc.xform(obj,q=True,ws=True,rp=True) if snapPivot: mc.xform(obj,piv=pnt,ws=True) else: mc.move(pnt[0]-piv[0],pnt[1]-piv[1],pnt[2]-piv[2],obj,r=True,ws=True) def orientToSurface( surface, obj, uValue = 0.0, vValue = 0.0, useClosestPoint = False, tangentUAxis = 'x', tangentVAxis = 'y', alignTo = 'u' ): ''' Orient object to a specified point on a surface. @param surface: Surface to orient object to @type surface: str @param obj: Object to orient @type obj: str @param uValue: U Paramater value of the surface to orient to @type uValue: float @param vValue: V Paramater value of the surface to orient to @type vValue: float @param useClosestPoint: Use the closest point on the surface instead of the specified uv parameter @type useClosestPoint: bool @param tangentUAxis: Basis axis that will be derived from the U tangent of the surface point @type tangentUAxis: str @param tangentVAxis: Basis axis that will be derived from the V tangent of the surface point @type tangentVAxis: str @param upAxis: Basis axis that will be derived from the upVector @type upAxis: str ''' # Check surface if not isSurface(surface): raise Exception('Object '+surface+' is not a valid surface!!') # Check Obj transform = ['transform','joint','ikHandle','effector'] if not transform.count(mc.objectType(obj)): raise Exception('Object '+obj+' is not a valid transform!!') # Check uValue/vValue minu = mc.getAttr(surface+'.minValueU') maxu = mc.getAttr(surface+'.maxValueU') minv = mc.getAttr(surface+'.minValueV') maxv = mc.getAttr(surface+'.maxValueV') # Closest Point if useClosestPoint: pos = mc.xform(obj,q=True,ws=True,rp=True) (uValue,vValue) = closestPoint(surface,pos) # Verify surface parameter if uValue < minu or uValue > maxu: raise Exception('U paramater '+str(uValue)+' is not within the U parameter range for '+surface+'!!') if vValue < minv or vValue > maxv: raise Exception('V paramater '+str(uValue)+' is not within the V parameter range for '+surface+'!!') # Check object if not mc.objExists(obj): raise Exception('Object '+obj+' does not exist!!') rotateOrder = mc.getAttr(obj+'.ro') # Get tangents at surface point tanU = mc.pointOnSurface(surface,u=uValue,v=vValue,ntu=True) tanV = mc.pointOnSurface(surface,u=uValue,v=vValue,ntv=True) # Build rotation matrix aimVector = tanU if alignTo == 'v': aimVector = tanV upVector = tanV if alignTo == 'v': upVector = tanU aimAxis = tangentUAxis if alignTo == 'v': aimAxis = tangentVAxis upAxis = tangentVAxis if alignTo == 'v': upAxis = tangentUAxis mat = glTools.utils.matrix.buildRotation(aimVector,upVector,aimAxis,upAxis) rot = glTools.utils.matrix.getRotation(mat,rotateOrder) # Orient object to surface mc.rotate(rot[0],rot[1],rot[2],obj,a=True,ws=True) def rebuild(surface,spansU=0,spansV=0,fullRebuildU=False,fullRebuildV=False,rebuildUfirst=True,replaceOrig=False): ''' Do brute force surface rebuild for even parameterization @param surface: Nurbs surface to rebuild @type surface: str @param spansU: Number of spans along U. If 0, keep original value. @type spansU: int @param spansV: Number of spans along V. If 0, keep original value. @type spansV: int @param replaceOrig: Replace original surface, or create new rebuilt surface. @type replaceOrig: bool ''' # ========== # - Checks - # ========== # Check surface if not isSurface(surface): raise Exception('Object "'+surface+'" is not a valid surface!') # Check spans if not spansU: spansU = mc.getAttr(surface+'.spansU') if not spansV: spansV = mc.getAttr(surface+'.spansV') # ============= # - Rebuild U - # ============= # Get V range if rebuildUfirst: dir = 'u' opp = 'v' spans = spansU min = mc.getAttr(surface+'.minValueV') max = mc.getAttr(surface+'.maxValueV') else: dir = 'v' opp = 'u' spans = spansV min = mc.getAttr(surface+'.minValueU') max = mc.getAttr(surface+'.maxValueU') val = min + (max - min) * 0.5 # Caluculate surface length iso_crv = mc.duplicateCurve(surface+'.'+opp+'['+str(val)+']',ch=0,rn=0,local=0)[0] iso_len = mc.arclen(iso_crv) iso_inc = iso_len / spans # Get spaced isoparm list curveFn = glTools.utils.curve.getCurveFn(iso_crv) iso_list = [surface+'.'+dir+'['+str(curveFn.findParamFromLength(iso_inc*i))+']' for i in range(spans+1)] mc.delete(iso_crv) # Check full rebuild if fullRebuildV: # Extract isoparm curves iso_crv_list = [mc.duplicateCurve(iso,ch=False,rn=False,local=False)[0] for iso in iso_list] # Rebuild isoparm curves for iso_crv in iso_crv_list: mc.rebuildCurve(iso_crv,ch=False,rpo=True,rt=0,end=1,kr=0,kcp=0,kep=1,kt=1,s=0,d=3,tol=0) # Loft final surface int_surface = mc.loft(iso_crv_list,ch=0,u=1,c=0,ar=1,d=3,ss=1,rn=0,po=0,rsn=True)[0] # Delete intermediate curves mc.delete(iso_crv_list) else: # Loft intermediate surface int_surface = mc.loft(iso_list,ch=0,u=1,c=0,ar=1,d=3,ss=1,rn=0,po=0,rsn=True)[0] # ============= # - Rebuild V - # ============= # Get V range (intermediate surface) if rebuildUfirst: dir = 'u' opp = 'v' spans = spansV min = mc.getAttr(int_surface+'.minValueU') max = mc.getAttr(int_surface+'.maxValueU') else: dir = 'v' opp = 'u' spans = spansU min = mc.getAttr(int_surface+'.minValueV') max = mc.getAttr(int_surface+'.maxValueV') val = min + (max - min) * 0.5 # Caluculate surface length (intermediate surface) iso_crv = mc.duplicateCurve(int_surface+'.'+opp+'['+str(val)+']',ch=0,rn=0,local=0)[0] iso_len = mc.arclen(iso_crv) iso_inc = iso_len / spans # Get spaced isoparm list curveFn = glTools.utils.curve.getCurveFn(iso_crv) iso_list = [int_surface+'.'+dir+'['+str(curveFn.findParamFromLength(iso_inc*i))+']' for i in range(spans+1)] mc.delete(iso_crv) # Check full rebuild if fullRebuildU: # Extract isoparm curves iso_crv_list = [mc.duplicateCurve(iso,ch=False,rn=False,local=False)[0] for iso in iso_list] # Rebuild isoparm curves for iso_crv in iso_crv_list: mc.rebuildCurve(iso_crv,ch=False,rpo=True,rt=0,end=1,kr=0,kcp=0,kep=1,kt=1,s=0,d=3,tol=0) # Loft final surface rebuild_surface = mc.loft(iso_crv_list,ch=0,u=1,c=0,ar=1,d=3,ss=1,rn=0,po=0,rsn=True)[0] # Delete intermediate curves mc.delete(iso_crv_list) else: # Loft final surface rebuild_surface = mc.loft(iso_list,ch=0,u=1,c=0,ar=1,d=3,ss=1,rn=0,po=0,rsn=True)[0] # Rename rebuilt surface rebuild_surface = mc.rename(rebuild_surface,surface+'_rebuild') rebuild_surfaceShape = mc.listRelatives(surface,s=True,ni=True,pa=True)[0] mc.delete(int_surface) # Re-parameterize 0-1 mc.rebuildSurface(rebuild_surface,ch=False,rpo=True,dir=2,rt=0,end=1,kr=0,kcp=1,kc=1,tol=0,fr=0) # Initialize return value outputShape = rebuild_surfaceShape # ==================== # - Replace Original - # ==================== if replaceOrig: """ # Get original shape shapes = glTools.utils.shape.getShapes(surface,nonIntermediates=True,intermediates=False) if not shapes: # Find Intermediate Shapes shapes = glTools.utils.shape.listIntermediates(surface) # Check shapes if not shapes: raise Exception('Unable to determine shape for surface "'+surface+'"!') # Check connections if mc.listConnections(shapes[0]+'.create',s=True,d=False): # Find Intermediate Shapes shapes = glTools.utils.shape.findInputShape(shapes[0]) """ # Check history shapes = mc.listRelatives(surface,s=True,ni=True,pa=True) if not shapes: raise Exception('Unable to determine shape for surface "'+surface+'"!') shape = shapes[0] shapeHist = mc.listHistory(shape) if shapeHist.count(shape): shapeHist.remove(shape) if shapeHist: print('Surface "" contains construction history, creating new shape!') # Override shape info and delete intermediate mc.connectAttr(rebuild_surfaceShape+'.local',shape+'.create',f=True) outputShape = shape # ================= # - Return Result - # ================= return outputShape def rebuild_old(surface,spansU=0,spansV=0,fullRebuildU=False,fullRebuildV=False,replaceOrig=False): ''' Do brute force surface rebuild for even parameterization @param surface: Nurbs surface to rebuild @type surface: str @param spansU: Number of spans along U. If 0, keep original value. @type spansU: int @param spansV: Number of spans along V. If 0, keep original value. @type spansV: int @param replaceOrig: Replace original surface, or create new rebuilt surface. @type replaceOrig: bool ''' # Check surface if not isSurface(surface): raise Exception('Object "'+surface+'" is not a valid surface!') # Check spans if not spansU: spansU = mc.getAttr(surface+'.spansU') if not spansV: spansV = mc.getAttr(surface+'.spansV') # ------------- # - Rebuild V - # Get V range minu = mc.getAttr(surface+'.minValueU') maxu = mc.getAttr(surface+'.maxValueU') u = minu + (maxu - minu) * 0.5 # Extract isoparm curve iso_crv = mc.duplicateCurve(surface+'.u['+str(u)+']',ch=0,rn=0,local=0)[0] iso_len = mc.arclen(iso_crv) iso_inc = iso_len / spansV curveFn = glTools.utils.curve.getCurveFn(iso_crv) iso_list = [surface+'.v['+str(curveFn.findParamFromLength(iso_inc*i))+']' for i in range(spansV+1)] mc.delete(iso_crv) # Check full rebuild if fullRebuildU: # Extract isoparm curves iso_crv_list = [mc.duplicateCurve(iso,ch=False,rn=False,local=False)[0] for iso in iso_list] # Rebuild isoparm curves for iso_crv in iso_crv_list: mc.rebuildCurve(iso_crv,ch=False,rpo=True,rt=0,end=1,kr=0,kcp=0,kep=1,kt=1,s=0,d=3,tol=0) # Loft final surface int_surface = mc.loft(iso_crv_list,ch=0,u=1,c=0,ar=1,d=3,ss=1,rn=0,po=0,rsn=True)[0] # Delete intermediate curves mc.delete(iso_crv_list) else: # Loft intermediate surface int_surface = mc.loft(iso_list,ch=0,u=1,c=0,ar=1,d=3,ss=1,rn=0,po=0,rsn=True)[0] # ------------- # - Rebuild U - # Get V range (intermediate surface) minv = mc.getAttr(int_surface+'.minValueV') maxv = mc.getAttr(int_surface+'.maxValueV') v = minv + (maxv - minv) * 0.5 # Extract isoparm curve (intermediate surface) iso_crv = mc.duplicateCurve(int_surface+'.v['+str(v)+']',ch=0,rn=0,local=0)[0] iso_len = mc.arclen(iso_crv) iso_inc = iso_len / spansU curveFn = glTools.utils.curve.getCurveFn(iso_crv) iso_list = [int_surface+'.u['+str(curveFn.findParamFromLength(iso_inc*i))+']' for i in range(spansU+1)] mc.delete(iso_crv) # Check full rebuild if fullRebuildV: # Extract isoparm curves iso_crv_list = [mc.duplicateCurve(iso,ch=False,rn=False,local=False)[0] for iso in iso_list] # Rebuild isoparm curves for iso_crv in iso_crv_list: mc.rebuildCurve(iso_crv,ch=False,rpo=True,rt=0,end=1,kr=0,kcp=0,kep=1,kt=1,s=0,d=3,tol=0) # Loft final surface rebuild_surface = mc.loft(iso_crv_list,ch=0,u=1,c=0,ar=1,d=3,ss=1,rn=0,po=0,rsn=True)[0] # Delete intermediate curves mc.delete(iso_crv_list) else: # Loft final surface rebuild_surface = mc.loft(iso_list,ch=0,u=1,c=0,ar=1,d=3,ss=1,rn=0,po=0,rsn=True)[0] rebuild_surface = mc.rename(rebuild_surface,surface+'_rebuild') rebuild_surfaceShape = mc.listRelatives(surface,s=True,ni=True,pa=True)[0] mc.delete(int_surface) # Initialize return value outputShape = rebuild_surfaceShape # -------------------- # - Replace Original - if replaceOrig: """ # Get original shape shapes = glTools.utils.shape.getShapes(surface,nonIntermediates=True,intermediates=False) if not shapes: # Find Intermediate Shapes shapes = glTools.utils.shape.listIntermediates(surface) # Check shapes if not shapes: raise Exception('Unable to determine shape for surface "'+surface+'"!') # Check connections if mc.listConnections(shapes[0]+'.create',s=True,d=False): # Find Intermediate Shapes shapes = glTools.utils.shape.findInputShape(shapes[0]) """ # Check history shapes = mc.listRelatives(surface,s=True,ni=True,pa=True) if not shapes: raise Exception('Unable to determine shape for surface "'+surface+'"!') shape = shapes[0] shapeHist = mc.listHistory(shape) if shapeHist.count(shape): shapeHist.remove(shape) if shapeHist: print('Surface "" contains construction history, creating new shape!') # Override shape info and delete intermediate mc.connectAttr(rebuild_surfaceShape+'.local',shape+'.create',f=True) outputShape = shape # Return result return outputShape def intersect(surface,source,direction): ''' Return the intersection point on a specified nurbs surface given a source point and direction @param surface: Nurbs surface to perform intersection on @type surface: str @param source: Source point for the intersection ray @type source: list or tuple or str @param direction: Direction of the intersection ray intersection @type direction: list or tuple ''' # Get surfaceFn surfaceFn = getSurfaceFn(surface) # Get source point source = glTools.utils.base.getMPoint(source) # Get direction vector direction = OpenMaya.MVector(direction[0],direction[1],direction[2]) # Calculate intersection hitPt = OpenMaya.MPoint() hit = surfaceFn.intersect(source,direction,None,None,hitPt,0.0001,OpenMaya.MSpace.kWorld,False,None,None) if not hit: print 'No intersection found!' hitPt = OpenMaya.MPoint.origin # Return intersection hit point return [hitPt[0],hitPt[1],hitPt[2]] def projectToSurface(surface,targetSurface,direction='u',keepOriginal=False,prefix=''): ''' Project the edit points of the specified nurbs surface to another nurbs or polygon object @param surface: Surface to project @type surface: str @param targetSurface: Surface to project onto @type targetSurface: str @param direction: Surface direction to extract isoparm curves from @type direction: str @param keepOriginal: Create new surface or replace original @type keepOriginal: bool @param prefix: Name prefix for all created nodes @type prefix: str ''' # Check surface if not mc.objExists(surface): raise Exception('Surface "'+surface+'" does not exist!!') if not isSurface(surface): raise Exception('Object "'+surface+'" is not a valid nurbs surface!!') # Check target surface if not mc.objExists(targetSurface): raise Exception('Target surface "'+targetSurface+'" does not exist!!') # Check prefix if not prefix: prefix = glTools.utils.stringUtils.stripSuffix(surface) # Check direction direction = direction.upper() if (direction != 'U') and (direction != 'V'): raise Exception('Invalid surface direction specified! Must specify either "u" or "v"!!') # Get surface information spans = mc.getAttr(surface+'.spans'+direction) minVal = mc.getAttr(surface+'.minValue'+direction) maxVal = mc.getAttr(surface+'.maxValue'+direction) # Create main surface group mainGrp = mc.createNode('transform',n=prefix+'_grp') # Extract curves curveList = [] curveGrpList = [] curveLocList = [] geomConstraintList = [] spanInc = (maxVal - minVal)/spans for i in range(spans+1): # Curve prefix strInd = glTools.utils.stringUtils.stringIndex(i,2) crvPrefix = prefix+'_crv'+strInd # Create curve group curveGrp = crvPrefix+'_grp' curveGrp = mc.createNode('transform',n=curveGrp) curveGrp = mc.parent(curveGrp,mainGrp)[0] curveGrpList.append(curveGrp) # Get surface curve srfCurveName = crvPrefix+'_crv' srfCurve = mc.duplicateCurve(surface+'.'+direction.lower()+'['+str(i*spanInc)+']',ch=0,rn=0,local=0,n=srfCurveName) srfCurve = mc.parent(srfCurve[0],curveGrp)[0] curveList.append(srfCurve) # Generate curve locators curveLocatorList = glTools.utils.curve.locatorEpCurve(srfCurve,locatorScale=0.05,prefix=crvPrefix) curveLocatorList = mc.parent(curveLocatorList,curveGrp) curveLocList.append(curveLocatorList) # Create geometry constraints for loc in curveLocatorList: geomConstraint = crvPrefix+'_geometryConstraint' geomConstraint = mc.geometryConstraint(targetSurface,loc,n=geomConstraint) geomConstraintList.append(geomConstraint[0]) # Center group pivot mc.xform(curveGrp,cp=True) # Delete original surface surfaceName = prefix+'_surface' if not keepOriginal: surfaceName = surface mc.delete(surface) # Loft new surface surfaceLoft = mc.loft(curveList,ch=1,u=1,c=0,ar=1,d=3,ss=1,rn=0,po=0,rsn=True) surface = mc.rename(surfaceLoft[0],surface) surface = mc.parent(surface,mainGrp)[0] mc.reorder(surface,f=True) loft = mc.rename(surfaceLoft[1],prefix+'_loft') # Return result return[surface,loft,curveList,curveGrpList,curveLocList,geomConstraintList] def rebuildFromExistingIsoparms(surface,direction='u',degree=3,close=False,keepHistory=False): ''' Build a new nurbs surface from an existing surfaces isoparms @param surface: Surface to build from @type surface: str @param direction: Surface direction to build from @type direction: str @param degree: Degree to build new surface to @type degree: int @param close: Close lofted surface @type close: bool @param keepHistory: Keep loft surface history @type keepHistory: bool ''' # Check surface if not mc.objExists(surface): raise Exception('Surface "'+surface+'" does not exist!!') if not isSurface(surface): raise Exception('Object "'+surface+'" is not a valid nurbs surface!!') # Check direction direction = direction.lower() if not direction == 'u' and not direction == 'v': raise Exception('Invalid surface direction! Accepted values are "u" and "v"!') # Get surface details surfFn = getSurfaceFn(surface) spans = mc.getAttr(surface+'.spans'+direction.upper()) degree = mc.getAttr(surface+'.degree'+direction.upper()) form = mc.getAttr(surface+'.form'+direction.upper()) knots = OpenMaya.MDoubleArray() if direction == 'u': surfFn.getKnotsInU(knots) if direction == 'v': surfFn.getKnotsInV(knots) # Build iso list for surface rebuild if degree > 1: knots = knots[(degree-1):-(degree-1)] isoList = [surface+'.'+direction+'['+str(i)+']' for i in knots] if not close and form: #isoList.append(isoList[0]) isoList[-1] = isoList[-1] - 0.0001 # Loft new rebuild surface rebuild = mc.loft(isoList,ch=keepHistory,u=True,c=close,ar=False,d=degree,ss=1,rn=False,po=False,rsn=(direction=='v')) rebuild = mc.rename(rebuild[0],surface+'_rebuild') # Return result return rebuild def rebuildFromIsoparms(surface,spansU=0,spansV=0,degree=3,keepHistory=False): ''' Build a new nurbs surface from an existing surfaces isoparms @param surface: Surface to build from @type surface: str @param direction: Surface direction to build from @type direction: str @param degree: Degree to build new surface to @type degree: int @param keepHistory: Keep loft surface history @type keepHistory: bool ''' # Check Surface if not mc.objExists(surface): raise Exception('Surface "'+surface+'" does not exist!!') if not isSurface(surface): raise Exception('Object "'+surface+'" is not a valid nurbs surface!!') # Initialize function pointers uMinPtr = OpenMaya.MScriptUtil().asDoublePtr() uMaxPtr = OpenMaya.MScriptUtil().asDoublePtr() vMinPtr = OpenMaya.MScriptUtil().asDoublePtr() vMaxPtr = OpenMaya.MScriptUtil().asDoublePtr() # Get surface details surfFn = getSurfaceFn(surface) surfFn.getKnotDomain(uMinPtr,uMaxPtr,vMinPtr,vMaxPtr) uMin = OpenMaya.MScriptUtil(uMinPtr).asDouble() uMax = OpenMaya.MScriptUtil(uMaxPtr).asDouble() vMin = OpenMaya.MScriptUtil(vMinPtr).asDouble() vMax = OpenMaya.MScriptUtil(vMaxPtr).asDouble() uDif = uMax - uMin vDif = vMax - vMin # Get surface form closeU = bool(mc.getAttr(surface+'.formU')) closeV = bool(mc.getAttr(surface+'.formV')) # Check spans if not spansU: spansU = surfFn.numKnotsInU() if not spansV: spansV = surfFn.numKnotsInV() # Get new knot values uList = [] vList = [] uInc = uDif/(spansU-int(not closeU)) vInc = vDif/(spansV-int(not closeV)) for u in range(spansU): uList.append(uMin+(uInc*u)) for v in range(spansV): vList.append(vMin+(vInc*v)) # Rebuild in U uLoft = mc.loft([surface+'.u['+str(i)+']' for i in uList],close=closeU,degree=degree) uSurface = uLoft[0] # Rebuld in V vLoft = mc.loft([uSurface+'.v['+str(i)+']' for i in vList],close=closeV,degree=degree) rebuildSurface = vLoft[0] # Return result return rebuildSurface
menpo3d/base.py
apapaion/menpo3d
134
40854
import os from pathlib import Path def menpo3d_src_dir_path(): r"""The path to the top of the menpo3d Python package. Useful for locating where the data folder is stored. Returns ------- path : str The full path to the top of the Menpo3d package """ return Path(os.path.abspath(__file__)).parent
language/orqa/ops/orqa_ops_test.py
Xtuden-com/language
1,199
40863
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for ORQA ops.""" from language.orqa import ops as orqa_ops import tensorflow.compat.v1 as tf class OrqaOpsTest(tf.test.TestCase): def test_reader_inputs(self): concat_inputs = orqa_ops.reader_inputs( question_token_ids=[0, 1], block_token_ids=[[2, 3, 4], [5, 6, 0]], block_lengths=[3, 2], block_token_map=[[1, 2, 5], [1, 3, 4]], answer_token_ids=[[3, 4], [7, 0]], answer_lengths=[2, 1], cls_token_id=10, sep_token_id=11, max_sequence_len=10) self.assertAllEqual( concat_inputs.token_ids.numpy(), [[10, 0, 1, 11, 2, 3, 4, 11, 0, 0], [10, 0, 1, 11, 5, 6, 11, 0, 0, 0]]) self.assertAllEqual( concat_inputs.mask.numpy(), [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0]]) self.assertAllEqual( concat_inputs.segment_ids.numpy(), [[0, 0, 0, 0, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 0, 0, 0]]) self.assertAllEqual( concat_inputs.block_mask.numpy(), [[0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0, 0, 0]]) self.assertAllEqual(concat_inputs.token_map.numpy(), [[-1, -1, -1, -1, 1, 2, 5, -1, -1, -1], [-1, -1, -1, -1, 1, 3, -1, -1, -1, -1]]) self.assertAllEqual(concat_inputs.gold_starts.numpy(), [[5], [-1]]) self.assertAllEqual(concat_inputs.gold_ends.numpy(), [[6], [-1]]) def test_has_answer(self): result = orqa_ops.has_answer(blocks=["abcdefg", "hijklmn"], answers=["hij"]) self.assertAllEqual(result.numpy(), [False, True]) if __name__ == "__main__": tf.test.main()
Firmware/adctest.py
sanielfishawy/ODrive
1,068
40867
<reponame>sanielfishawy/ODrive<gh_stars>1000+ import numpy as np import matplotlib.pyplot as plt adchist = [(0, 137477), (1, 98524), (2, 71744), (3, 60967), (4, 44372), (5, 46348), (6, 19944), (7, 10092), (8, 13713), (9, 11182), (10, 6903), (11, 4072), (12, 2642), (13, 968), (14, 296), (15, 166), (16, 17), (17, 2), (-1, 39662), (-2, 43502), (-3, 57596), (-4, 33915), (-5, 25611), (-6, 10880), (-7, 8237), (-8, 3518), (-9, 4789), (-10, 4689), (-11, 6345), (-12, 3901), (-13, 5781), (-14, 4803), (-15, 6428), (-16, 3563), (-17, 4478), (-18, 976), (-19, 491)] adchist.sort() adchist = np.array(adchist) plt.figure() plt.bar(adchist[:,0], adchist[:,1]) plt.show()
api/tests/integration/tests/todo/load_utf8.py
epam/Indigo
204
40954
<reponame>epam/Indigo # coding=utf-8 import sys sys.path.append('../../common') from env_indigo import * indigo = Indigo() indigo.setOption("molfile-saving-skip-date", "1") print("****** Load molfile with UTF-8 characters in Data S-group ********") m = indigo.loadMoleculeFromFile(joinPathPy("molecules/sgroups_utf8.mol", __file__)) indigo.setOption("molfile-saving-mode", "2000") res = m.molfile() m = indigo.loadMolecule(res) # TODO: Fails on IronPython 2.7.9: # - M SED 1 single-value-бензол # + M SED 1 single-value-������ if isIronPython(): from System.Text import Encoding from System import Console print(m.molfile()) print(res) print(m.cml()) # reload(sys) # sys.setdefaultencoding('utf-8') # sys.stdout = codecs.getwriter('utf8')(sys.stdout) # Console.WriteLine(m.molfile().encode("utf-8-sig")) # print(Encoding.UTF8.GetString(Encoding.Default.GetBytes(m.molfile().encode("utf-8-sig")))) # Console.Write(Encoding.UTF8.GetString(Encoding.UTF8.GetBytes(m.molfile().encode("utf-8")))) # Console.Write(Encoding.UTF8.GetString(Encoding.UTF8.GetBytes(res.encode("utf-8")))) # Console.Write(Encoding.UTF8.GetString(Encoding.UTF8.GetBytes(m.cml().encode("utf-8")))) # m.saveMolfile("test.mol") # with codecs.open(joinPathPy("test.mol", __file__), "r", "utf-8-sig") as temp: # print(temp.read()[510:]) # with codecs.open('test', 'w', "utf-8") as f: # f.write(m.molfile()) # Console.WriteLine(m.molfile()) # f.write(repr(Encoding.UTF8.GetString(Encoding.Default.GetBytes(m.molfile())))) # f.write(temp.read()) # f.write(Encoding.UTF8.GetString(Encoding.Default.GetBytes(m.molfile().encode('utf-8')))) # Console.Write(str(temp.read()).encode('utf-8')) else: if sys.version_info[0] < 3: print(m.molfile().encode("utf-8")) print(res.encode("utf-8")) print(m.cml().encode("utf-8")) else: print(m.molfile()) print(res) print(m.cml())
Sorting/sort list strings with numbers.py
DazEB2/SimplePyScripts
117
40967
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # Генерация списка items = ['KMS1.kmch.pos.out_dE_%s.mx' % i for i in range(20)] # Перемешивание элементов списка import random random.shuffle(items) print(items) # Обычная сортировка не работает print(sorted(items)) print() def get_number_1(x): return int(x.split('.')[-2].split('_')[-1]) def get_number_2(x): import re match = re.search('KMS1.kmch.pos.out_dE_(\d+).mx', x) return int(match.group(1)) print(sorted(items, key=get_number_1)) print(sorted(items, key=get_number_2))
SimCalorimetry/EcalSelectiveReadoutProducers/python/ecalDigis_cff.py
ckamtsikis/cmssw
852
40977
<reponame>ckamtsikis/cmssw<filename>SimCalorimetry/EcalSelectiveReadoutProducers/python/ecalDigis_cff.py import FWCore.ParameterSet.Config as cms # Define EcalSelectiveReadoutProducer module as "simEcalDigis" with default settings from SimCalorimetry.EcalSelectiveReadoutProducers.ecalDigis_cfi import *
pythran/tests/cython/setup_tax.py
davidbrochart/pythran
1,647
40978
from distutils.core import setup from Cython.Build import cythonize setup( name = "tax", ext_modules = cythonize('tax.pyx'), script_name = 'setup.py', script_args = ['build_ext', '--inplace'] ) import tax import numpy as np print(tax.tax(np.ones(10)))
src/pretalx/api/permissions.py
lili668668/pretalx
418
40984
from rest_framework.permissions import SAFE_METHODS, BasePermission class ApiPermission(BasePermission): def _has_permission(self, view, obj, request): event = getattr(request, "event", None) if not event: # Only true for root API view return True if request.method in SAFE_METHODS: read_permission = getattr(view, "read_permission_required", None) if read_permission: return request.user.has_perm(read_permission, obj) return True write_permission = getattr(view, "write_permission_required", None) if write_permission: return request.user.has_perm(write_permission, obj) return False def has_permission(self, request, view): return self._has_permission(view, getattr(request, "event", None), request) def has_object_permission(self, request, view, obj): return self._has_permission(view, obj, request)
odinw/download.py
microsoft/GLIP
295
41002
import argparse import os argparser = argparse.ArgumentParser() argparser.add_argument("--dataset_names", default="all", type=str) # "all" or names joined by comma argparser.add_argument("--dataset_path", default="DATASET/odinw", type=str) args = argparser.parse_args() root = "https://vlpdatasets.blob.core.windows.net/odinw/odinw/odinw_35" all_datasets = ["AerialMaritimeDrone", "AmericanSignLanguageLetters", "Aquarium", "BCCD", "ChessPieces", "CottontailRabbits", "DroneControl", "EgoHands", "HardHatWorkers", "MaskWearing", "MountainDewCommercial", "NorthAmericaMushrooms", "OxfordPets", "PKLot", "Packages", "PascalVOC", "Raccoon", "ShellfishOpenImages", "ThermalCheetah", "UnoCards", "VehiclesOpenImages", "WildfireSmoke", "boggleBoards", "brackishUnderwater", "dice", "openPoetryVision", "pistols", "plantdoc", "pothole", "selfdrivingCar", "thermalDogsAndPeople", "vector", "websiteScreenshots"] datasets_to_download = [] if args.dataset_names == "all": datasets_to_download = all_datasets else: datasets_to_download = args.dataset_names.split(",") for dataset in datasets_to_download: if dataset in all_datasets: print("Downloading dataset: ", dataset) os.system("wget " + root + "/" + dataset + ".zip" + " -O " + args.dataset_path + "/" + dataset + ".zip") os.system("unzip " + args.dataset_path + "/" + dataset + ".zip -d " + args.dataset_path) os.system("rm " + args.dataset_path + "/" + dataset + ".zip") else: print("Dataset not found: ", dataset)
tests/test_experiment.py
movermeyer/pyexperiment
220
41026
<reponame>movermeyer/pyexperiment """Tests the experiment module of pyexperiment Written by <NAME> """ from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import import unittest import argparse import io import mock import tempfile import logging import multiprocessing from pyexperiment import experiment from pyexperiment.utils.stdout_redirector import stdout_redirector from pyexperiment import state from pyexperiment import conf from pyexperiment import Logger from pyexperiment import log class TestExperimentBasic(unittest.TestCase): """Test the experiment module's basic functions """ def test_main_runs_function(self): """Test running main calls function """ run = [False] def custom_function(): """User function """ run[0] = True # Monkey patch arg parser here argparse._sys.argv = [ # pylint: disable=W0212 "test", "custom_function"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(commands=[custom_function]) self.assertTrue(run[0]) self.assertEqual(len(buf.getvalue()), 0) def test_main_prints_result(self): """Test running main prints the result of a function """ def custom_function(): """User function """ return "Foo" # Monkey patch arg parser here argparse._sys.argv = [ # pylint: disable=W0212 "test", "custom_function"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(commands=[custom_function]) self.assertNotEqual(len(buf.getvalue()), 0) self.assertRegexpMatches(buf.getvalue(), r'Foo') def test_main_shows_commands(self): """Test running main shows commands """ def default_function(): """Default function """ pass def custom_function1(): """User function """ pass def custom_function2(): """User function """ pass # Monkey patch arg parser here argparse._sys.argv = [ # pylint: disable=W0212 "test", "show_commands"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(default=default_function, commands=[custom_function1, custom_function2]) self.assertNotEqual(len(buf.getvalue()), 0) self.assertRegexpMatches(buf.getvalue(), r"default_function") self.assertRegexpMatches(buf.getvalue(), r"custom_function1") self.assertRegexpMatches(buf.getvalue(), r"custom_function2") def test_main_not_enough_arguments(self): """Test running main without command """ # Monkey patch arg parser here argparse._sys.argv = [ # pylint: disable=W0212 "test"] buf = io.StringIO() with stdout_redirector(buf): experiment.main() self.assertNotEqual(len(buf.getvalue()), 0) self.assertRegexpMatches(buf.getvalue(), r"[Nn]ot enough arguments") def test_main_runs_default(self): """Test running main with default command """ # Monkey patch arg parser here argparse._sys.argv = [ # pylint: disable=W0212 "test"] run = [False] def custom_function(): """User function """ run[0] = True buf = io.StringIO() with stdout_redirector(buf): experiment.main(default=custom_function) self.assertEqual(len(buf.getvalue()), 0) self.assertTrue(run[0]) def test_main_complains_default(self): """Test running main with default command taking an argument """ # Monkey patch arg parser here argparse._sys.argv = [ # pylint: disable=W0212 "test"] def custom_function(_argument): """User function that takes an argument """ pass self.assertRaises( TypeError, experiment.main, default=custom_function) def test_main_runs_other_function(self): """Test running main with default command and other function """ # Monkey patch arg parser here argparse._sys.argv = [ # pylint: disable=W0212 "test", "custom_function2"] run = [False, False] def custom_function(): """User function """ run[0] = True def custom_function2(): """User function2 """ run[1] = True buf = io.StringIO() with stdout_redirector(buf): experiment.main(default=custom_function, commands=[custom_function2]) self.assertEqual(len(buf.getvalue()), 0) self.assertFalse(run[0]) self.assertTrue(run[1]) def test_main_does_not_run_function(self): """Test running main does not call unnecessary function but complains """ run = [False] def custom_function(): """User function """ run[0] = True # Monkey patch arg parser here argparse._sys.argv = [ # pylint: disable=W0212 "test", "help"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(commands=[custom_function]) self.assertFalse(run[0]) self.assertNotEqual(len(buf.getvalue()), 0) def test_main_gives_help(self): """Test running help shows docstring """ run = [False] def custom_function(): """This should be printed!! """ run[0] = True # Monkey patch arg parser here argparse._sys.argv = [ # pylint: disable=W0212 "test", "help", "custom_function"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(commands=[custom_function]) self.assertFalse(run[0]) self.assertIn("This should be printed!!", buf.getvalue()) def test_main_complains_on_help(self): """Test running help complains on help for wrong command """ def custom_function(): """Foo function """ pass # Monkey patch arg parser here argparse._sys.argv = [ # pylint: disable=W0212 "test", "help", "foo"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(commands=[custom_function]) self.assertRegexpMatches(buf.getvalue(), r"[cC]ommand") self.assertRegexpMatches(buf.getvalue(), r"not") self.assertRegexpMatches(buf.getvalue(), r"foo") def test_main_runs_test(self): """Test running main calls tests when needed """ class ExampleTest(unittest.TestCase): """Test case for the test """ pass # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "test"] with mock.patch.object(unittest, 'TextTestRunner') as mock_method: experiment.main(commands=[], tests=[ExampleTest]) self.assertEqual(mock_method.call_count, 1) def test_main_shows_test(self): """Test running main shows tests when needed """ class ExampleTest(unittest.TestCase): """Test case for the test """ pass # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "show_tests"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(tests=[ExampleTest]) self.assertRegexpMatches(buf.getvalue(), r"ExampleTest") def test_main_shows_no_test(self): """Test running main complains if there are no tests """ # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "show_tests"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(tests=[]) self.assertRegexpMatches(buf.getvalue(), r"No tests available") def test_main_doesnt_test_on_help(self): """Test running main does not call tests when not needed """ class ExampleTest(unittest.TestCase): """Test case for the test """ pass # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "-h"] buf = io.StringIO() with stdout_redirector(buf): with mock.patch.object(unittest, 'TextTestRunner') as mock_method: try: experiment.main(commands=[], tests=[ExampleTest]) self.assertEqual(mock_method.call_count, 0) except SystemExit: pass @mock.patch('pyexperiment.experiment.embed_interactive') def test_main_runs_interactive(self, mock_interactive): """Test running main runs interactive session """ argparse._sys.argv = [ # pylint: disable=W0212 "test", "--interactive"] experiment.main(commands=[], tests=[]) self.assertTrue(mock_interactive.call_count == 1) def test_main_shows_empty_state(self): """Test running main shows empty state """ with tempfile.NamedTemporaryFile() as temp: state['bla'] = 12 del state['bla'] state.save(temp.name) spec = ('[pyexperiment]\n' 'state_filename = string(default=%s)' % temp.name) # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "show_state"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(config_spec=spec) self.assertRegexpMatches(buf.getvalue(), r"[Ss]tate empty") def test_main_shows_default_state(self): """Test running main shows the default state """ with tempfile.NamedTemporaryFile() as temp: state['bla'] = 12 state.save(temp.name) spec = ('[pyexperiment]\n' 'state_filename = string(default=%s)' % temp.name) # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "show_state"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(config_spec=spec) self.assertRegexpMatches(buf.getvalue(), r"bla") self.assertRegexpMatches(buf.getvalue(), r"12") def test_main_shows_other_state(self): """Test running main shows state from file """ with tempfile.NamedTemporaryFile() as temp: state['foo'] = 42 state.save(temp.name) # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "show_state", temp.name] buf = io.StringIO() with stdout_redirector(buf): experiment.main() self.assertRegexpMatches(buf.getvalue(), r"foo") self.assertRegexpMatches(buf.getvalue(), r"42") def test_main_shows_config(self): """Test running main shows the configuration """ # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "show_config"] buf = io.StringIO() with stdout_redirector(buf): experiment.main() self.assertRegexpMatches(buf.getvalue(), r"\[pyexperiment\]") self.assertRegexpMatches(buf.getvalue(), r"n_processes") def test_main_saves_config(self): """Test running main saves the configuration """ with tempfile.NamedTemporaryFile() as temp: # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "save_config", temp.name] buf = io.StringIO() with stdout_redirector(buf): experiment.main() lines = open(temp.name).readlines() self.assertNotEqual(len(lines), 0) self.assertRegexpMatches("".join(lines), r"\[pyexperiment\]") self.assertRegexpMatches("".join(lines), r"n_processes") self.assertRegexpMatches(buf.getvalue(), r'Wrote configuration') class TestExperimentOverrides(unittest.TestCase): """Test the experiment module's option overriding """ def test_main_overrides_option(self): """Test running main called with -o works as expected """ called = [False] def foo_fun(): """Foo function """ called[0] = True self.assertEqual(conf['bla'], 'foo') conf['bla'] = 'bla' # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "-o", "bla", "foo", "foo_fun"] self.assertFalse(called[0]) buf = io.StringIO() with stdout_redirector(buf): experiment.main(commands=[foo_fun]) self.assertTrue(called[0]) self.assertEqual(conf['bla'], 'foo') def test_main_no_processes_default(self): """Test running main called without -j works as expected """ called = [False] def foo_fun(): """Foo function """ called[0] = True # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "foo_fun"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(commands=[foo_fun]) self.assertTrue(called[0]) self.assertEqual(conf['pyexperiment.n_processes'], multiprocessing.cpu_count()) def test_main_no_processes_simple(self): """Test running main called with -j works as expected """ called = [False] def foo_fun(): """Foo function """ called[0] = True # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "-j", "42", "foo_fun"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(commands=[foo_fun]) self.assertTrue(called[0]) self.assertEqual(conf['pyexperiment.n_processes'], 42) def test_main_no_processes_long(self): """Test running main called with --processes works as expected """ called = [False] def foo_fun(): """Foo function """ called[0] = True # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "--processes", "44", "foo_fun"] buf = io.StringIO() with stdout_redirector(buf): experiment.main(commands=[foo_fun]) self.assertTrue(called[0]) self.assertEqual(conf['pyexperiment.n_processes'], 44) class TestExperimentLogging(unittest.TestCase): """Test the experiment's logging context """ def setUp(self): """Set up the test """ self.log_stream = io.StringIO() Logger.CONSOLE_STREAM_HANDLER = logging.StreamHandler(self.log_stream) log.reset_instance() conf.reset_instance() def test_main_logs_console(self): """Test running main logs as expected """ argparse._sys.argv = [ # pylint: disable=W0212 "test"] def hello(): """Logs a message """ log.fatal("Hello") experiment.main(default=hello) self.assertNotEqual(len(self.log_stream.getvalue()), 0) self.assertRegexpMatches(self.log_stream.getvalue(), r'Hello') def test_main_prints_timings(self): """Test running main logs timings as expected """ argparse._sys.argv = [ # pylint: disable=W0212 "test", "-o", "pyexperiment.print_timings", "True"] def hello(): """Logs a message """ with log.timed("bla"): pass buf = io.StringIO() with stdout_redirector(buf): experiment.main(default=hello) self.assertNotEqual(len(buf.getvalue()), 0) self.assertRegexpMatches(buf.getvalue(), r'bla') def test_main_prints_timings_simple(self): """Test running main logs timings as expected with --print_timings """ argparse._sys.argv = [ # pylint: disable=W0212 "test", "--print-timings"] def hello(): """Logs a message """ with log.timed("bla"): pass buf = io.StringIO() with stdout_redirector(buf): experiment.main(default=hello) self.assertNotEqual(len(buf.getvalue()), 0) self.assertRegexpMatches(buf.getvalue(), r'bla') def test_main_logs_file(self): """Test running main logs as expected """ conf['pyexperiment.rotate_n_logs'] = 0 argparse._sys.argv = [ # pylint: disable=W0212 "test"] def hello(): """Logs a message """ log.debug("Hello") with tempfile.NamedTemporaryFile() as temp: conf['pyexperiment.log_filename'] = temp.name conf['pyexperiment.log_to_file'] = True experiment.main(default=hello) lines = open(temp.name).readlines() self.assertNotEqual(len(lines), 0) self.assertRegexpMatches("".join(lines), r'Hello') self.assertEqual(len(self.log_stream.getvalue()), 0) def test_main_verbosity_debug(self): """Test running main called with -v works as expected """ called = [False] def foo_fun(): """Foo function """ called[0] = True # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "-v", "foo_fun"] self.assertFalse(called[0]) experiment.main(commands=[foo_fun]) self.assertTrue(called[0]) self.assertEqual(conf['pyexperiment.verbosity'], 'DEBUG') def test_main_overrides_verbosity(self): """Test running main called with --verbosity works as expected """ called = [False] def foo_fun(): """Foo function """ called[0] = True # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "--verbosity", "DEBUG", "foo_fun"] self.assertFalse(called[0]) buf = io.StringIO() with stdout_redirector(buf): experiment.main(commands=[foo_fun]) self.assertTrue(called[0]) self.assertEqual(conf['pyexperiment.verbosity'], 'DEBUG') called[0] = False # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "--verbosity", "WARNING", "foo_fun"] self.assertFalse(called[0]) experiment.main(commands=[foo_fun]) self.assertTrue(called[0]) self.assertEqual(conf['pyexperiment.verbosity'], 'WARNING') def test_logger_after_exception(self): """Test logger closing correctly after exception """ # Monkey patch log closing close_old = Logger.Logger.close called = [False] def close(self): """Close the logger and record it""" close_old(self) called[0] = True Logger.Logger.close = close def foo_fun(): """Foo function """ raise RuntimeError # Monkey patch arg parser argparse._sys.argv = [ # pylint: disable=W0212 "test", "foo_fun"] try: experiment.main(commands=[foo_fun]) except RuntimeError: pass else: raise AssertionError("RuntimeError not raised") # Make sure logger is closed self.assertTrue(called[0]) Logger.Logger.close = close_old if __name__ == '__main__': unittest.main()
utils/general.py
bfortuner/VOCdetect
336
41055
<reponame>bfortuner/VOCdetect import uuid def gen_unique_id(prefix='', length=5): return prefix + str(uuid.uuid4()).upper().replace('-','')[:length] def get_class_name(obj): invalid_class_names = ['function'] classname = obj.__class__.__name__ if classname is None or classname in invalid_class_names: classname = obj.__name__ return classname def dict_to_html(dd, level=0): """ Convert dict to html using basic html tags """ import simplejson text = '' for k, v in dd.items(): text += '<br>' + '&nbsp;'*(4*level) + '<b>%s</b>: %s' % (k, dict_to_html(v, level+1) if isinstance(v, dict) else (simplejson.dumps(v) if isinstance(v, list) else v)) return text def dict_to_html_ul(dd, level=0): """ Convert dict to html using ul/li tags """ import simplejson text = '<ul>' for k, v in dd.items(): text += '<li><b>%s</b>: %s</li>' % (k, dict_to_html_ul(v, level+1) if isinstance(v, dict) else (simplejson.dumps(v) if isinstance(v, list) else v)) text += '</ul>' return text
setup.py
KevinMusgrave/pytorch-adapt
131
41092
import sys import setuptools sys.path.insert(0, "src") import pytorch_adapt with open("README.md", "r") as fh: long_description = fh.read() extras_require_ignite = ["pytorch-ignite == 0.5.0.dev20220221"] extras_require_lightning = ["pytorch-lightning"] extras_require_record_keeper = ["record-keeper >= 0.9.31"] extras_require_timm = ["timm"] extras_require_docs = [ "mkdocs-material", "mkdocstrings[python]", "griffe", "mkdocs-gen-files", "mkdocs-section-index", "mkdocs-literate-nav", ] extras_require_dev = ["black", "isort", "nbqa", "flake8"] setuptools.setup( name="pytorch-adapt", version=pytorch_adapt.__version__, author="<NAME>", description="Domain adaptation made easy. Fully featured, modular, and customizable.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/KevinMusgrave/pytorch-adapt", package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.0", install_requires=[ "numpy", "torch", "torchvision", "torchmetrics", "pytorch-metric-learning >= 1.3.1.dev0", ], extras_require={ "ignite": extras_require_ignite, "lightning": extras_require_lightning, "record-keeper": extras_require_record_keeper, "timm": extras_require_timm, "docs": extras_require_docs, "dev": extras_require_dev, }, )
bh_modules/erlangcase.py
jfcherng-sublime/ST-BracketHighlighter
1,047
41093
<gh_stars>1000+ """ BracketHighlighter. Copyright (c) 2013 - 2016 <NAME> <<EMAIL>> License: MIT """ from BracketHighlighter.bh_plugin import import_module lowercase = import_module("bh_modules.lowercase") def validate(*args): """Check if bracket is lowercase.""" return lowercase.validate(*args)
codigo/Live171/exemplo_04.py
BrunoPontesLira/live-de-python
572
41118
<gh_stars>100-1000 d = {'a': 1, 'c': 3} match d: case {'a': chave_a, 'b': _}: print(f'chave A {chave_a=} + chave B') case {'a': _} | {'c': _}: print('chave A ou C') case {}: print('vazio') case _: print('Não sei')
sionna/channel/apply_time_channel.py
NVlabs/sionna
163
41129
<filename>sionna/channel/apply_time_channel.py # # SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # """Layer for applying channel responses to channel inputs in the time domain""" import tensorflow as tf import numpy as np import scipy from sionna.utils import insert_dims from .awgn import AWGN class ApplyTimeChannel(tf.keras.layers.Layer): # pylint: disable=line-too-long r"""ApplyTimeChannel(num_time_samples, l_tot, add_awgn=True, dtype=tf.complex64, **kwargs) Apply time domain channel responses ``h_time`` to channel inputs ``x``, by filtering the channel inputs with time-variant channel responses. This class inherits from the Keras `Layer` class and can be used as layer in a Keras model. For each batch example, ``num_time_samples`` + ``l_tot`` - 1 time steps of a channel realization are required to filter the channel inputs. The channel output consists of ``num_time_samples`` + ``l_tot`` - 1 time samples, as it is the result of filtering the channel input of length ``num_time_samples`` with the time-variant channel filter of length ``l_tot``. In the case of a single-input single-output link and given a sequence of channel inputs :math:`x_0,\cdots,x_{N_B}`, where :math:`N_B` is ``num_time_samples``, this layer outputs .. math:: y_b = \sum_{\ell = 0}^{L_{\text{tot}}} x_{b-\ell} \bar{h}_{b,\ell} + w_b where :math:`L_{\text{tot}}` corresponds ``l_tot``, :math:`w_b` to the additive noise, and :math:`\bar{h}_{b,\ell}` to the :math:`\ell^{th}` tap of the :math:`b^{th}` channel sample. This layer outputs :math:`y_b` for :math:`b` ranging from 0 to :math:`N_B + L_{\text{tot}} - 1`, and :math:`x_{b}` is set to 0 for :math:`b \geq N_B`. For multiple-input multiple-output (MIMO) links, the channel output is computed for each antenna of each receiver and by summing over all the antennas of all transmitters. Parameters ---------- num_time_samples : int Number of time samples forming the channel input (:math:`N_B`) l_tot : int Length of the channel filter (:math:`L_{\text{tot}} = L_{\text{max}} - L_{\text{min}} + 1`) add_awgn : bool If set to `False`, no white Gaussian noise is added. Defaults to `True`. dtype : tf.DType Complex datatype to use for internal processing and output. Defaults to `tf.complex64`. Input ----- (x, h_time, no) or (x, h_time): Tuple: x : [batch size, num_tx, num_tx_ant, num_time_samples], tf.complex Channel inputs h_time : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_time_samples + l_tot - 1, l_tot], tf.complex Channel responses. For each batch example, ``num_time_samples`` + ``l_tot`` - 1 time steps of a channel realization are required to filter the channel inputs. no : Scalar or Tensor, tf.float Scalar or tensor whose shape can be broadcast to the shape of the channel outputs: [batch size, num_rx, num_rx_ant, num_time_samples + l_tot - 1]. Only required if ``add_awgn`` is set to `True`. The noise power ``no`` is per complex dimension. If ``no`` is a scalar, noise of the same variance will be added to the outputs. If ``no`` is a tensor, it must have a shape that can be broadcast to the shape of the channel outputs. This allows, e.g., adding noise of different variance to each example in a batch. If ``no`` has a lower rank than the channel outputs, then ``no`` will be broadcast to the shape of the channel outputs by adding dummy dimensions after the last axis. Output ------- y : [batch size, num_rx, num_rx_ant, num_time_samples + l_tot - 1], tf.complex Channel outputs. The channel output consists of ``num_time_samples`` + ``l_tot`` - 1 time samples, as it is the result of filtering the channel input of length ``num_time_samples`` with the time-variant channel filter of length ``l_tot``. """ def __init__(self, num_time_samples, l_tot, add_awgn=True, dtype=tf.complex64, **kwargs): super().__init__(trainable=False, dtype=dtype, **kwargs) self._add_awgn = add_awgn # The channel transfert function is implemented by first gathering from # the vector of transmitted baseband symbols # x = [x_0,...,x_{num_time_samples-1}]^T the symbols that are then # multiplied by the channel tap coefficients. # We build here the matrix of indices G, with size # `num_time_samples + l_tot - 1` x `l_tot` that is used to perform this # gathering. # For example, if there are 4 channel taps # h = [h_0, h_1, h_2, h_3]^T # and `num_time_samples` = 10 time steps then G would be # [[0, 10, 10, 10] # [1, 0, 10, 10] # [2, 1, 0, 10] # [3, 2, 1, 0] # [4, 3, 2, 1] # [5, 4, 3, 2] # [6, 5, 4, 3] # [7, 6, 5, 4] # [8, 7, 6, 5] # [9, 8, 7, 6] # [10, 9, 8, 7] # [10,10, 9, 8] # [10,10, 10, 9] # Note that G is a Toeplitz matrix. # In this example, the index `num_time_samples`=10 corresponds to the # zero symbol. The vector of transmitted symbols is padded with one # zero at the end. first_colum = np.concatenate([ np.arange(0, num_time_samples), np.full([l_tot-1], num_time_samples)]) first_row = np.concatenate([[0], np.full([l_tot-1], num_time_samples)]) self._g = scipy.linalg.toeplitz(first_colum, first_row) def build(self, input_shape): #pylint: disable=unused-argument if self._add_awgn: self._awgn = AWGN(dtype=self.dtype) def call(self, inputs): if self._add_awgn: x, h_time, no = inputs else: x, h_time = inputs # Preparing the channel input for broadcasting and matrix multiplication x = tf.pad(x, [[0,0], [0,0], [0,0], [0,1]]) x = insert_dims(x, 2, axis=1) x = tf.gather(x, self._g, axis=-1) # Apply the channel response y = tf.reduce_sum(h_time*x, axis=-1) y = tf.reduce_sum(tf.reduce_sum(y, axis=4), axis=3) # Add AWGN if requested if self._add_awgn: y = self._awgn((y, no)) return y
fbssdc/ast.py
Eijebong/binjs-ref
391
41143
<reponame>Eijebong/binjs-ref<gh_stars>100-1000 #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import doctest import json import os import subprocess import idl BINJS_SIGNATURE = b'BINJS\x02' def load_ast(filename): with open(filename) as inp: return json.loads(inp.read()) def load_test_ast(filename): return load_ast(os.path.join(os.path.dirname(__file__), 'test-data', filename)) # Map ASTs to something which includes all of the data. # Values: # - tagged object (with "type") # - int # - float # - string # - bool # - None # - list # TODO: Add a "specials" for objects added by AST mutilations, like LazyIOUs. class AstVisitor(object): def __init__(self, types): self.types = types def visit(self, ty, value): '''Visits value with declared type ty. Declared types may be much broader than the actual type of value. The encoder must narrow this uncertainty for the decoder to make coordinated decisions. ''' if type(value) in [bool, float, int, str, type(None)]: self.visit_primitive(ty, value) elif type(value) is list: # FIXME: When es6 IDL uses ... or FrozenArray<...>, unpack and # narrow the type to this value. assert isinstance(ty, idl.TyFrozenArray), str(ty) self.visit_list(ty, value) elif type(value) is dict: actual_ty = self.types.interfaces[value['type']] self.visit_struct(ty, actual_ty, value) else: assert False, f'unreachable: {type(value)}' def visit_list(self, ty, xs): for i, x in enumerate(xs): self.visit_list_item(ty.element_ty, i, x) def visit_list_item(self, ty, i, x): self.visit(ty, x) def visit_struct(self, declared_ty, actual_ty, obj): for i, attr in enumerate(actual_ty.attributes()): self.visit_field(actual_ty, obj, i, attr) def visit_field(self, struct_ty, obj, i, attr): self.visit(attr.resolved_ty, obj[attr.name]) def visit_primitive(self, ty, value): pass # This type is not used but it is useful as a unit test for AstVisitor. class AstStringIndexer(AstVisitor): ''' >>> types = idl.parse_es6_idl() >>> tree = load_test_ast('y5R7cnYctJv.js.dump') >>> visitor = AstStringIndexer(types) >>> visitor.visit(types.interfaces['Script'], tree) >>> len(visitor.strings) 1330 >>> visitor.strings[10:14] ['IdentifierExpression', 'CavalryLogger', 'start_js', 'ArrayExpression'] ''' def __init__(self, types): super().__init__(types) self.strings = list() def visit_primitive(self, ty, value): super().visit_primitive(ty, value) if type(value) is str: self.strings.append(value) # When a lazy node is deported, this breadcrumb is dropped in its # place. References to lazy functions are deserialized in order so # there is no need to add indexes to them. # TODO: Make this a singleton. class LazyIOU(object): pass if __name__ == '__main__': doctest.testmod()
CountingGridsPy/tests/time_models/time_gpuvscpu.py
microsoft/browsecloud
159
41149
<filename>CountingGridsPy/tests/time_models/time_gpuvscpu.py # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import unittest import numpy as np import torch import os import cProfile from CountingGridsPy.models import CountingGridModel, CountingGridModelWithGPU class TimeGPUvsCPU(object): def __init__(self): SEED = "03071994" np.random.seed(int(SEED)) M, N = [5000, 1000] extentSize = 40 self.data = np.round(np.random.random((M, N)) * 10) self.extent = np.array([extentSize, extentSize]) self.window = np.array([5, 5]) self.pi_init = np.ones([extentSize] * 2 + [N]) / N self.cpuModel = CountingGridModel(self.extent, self.window) self.gpuModel = CountingGridModelWithGPU(self.extent, self.window) def run_nolayers(self): numIters = 50 device = torch.device("cuda:0") outfileForGPU = "gpuProfile.txt" gpuJob = '''self.gpuModel.fit( self.data, max_iter=numIters, pi=torch.tensor(self.pi_init, device=device, dtype=torch.double), layers=1 ) ''' cProfile.runctx(gpuJob, globals(), locals(), outfileForGPU) outfileForCPU = "cpuProfile.txt" cpuJob = '''self.cpuModel.fit( self.data, max_iter=numIters, returnSumSquareDifferencesOfPi=False, pi=np.copy(self.pi_init), layers=1 ) ''' cProfile.runctx(cpuJob, globals(), locals(), outfileForCPU) def run_withlayers(self): numIters = 50 device = torch.device("cuda:0") outfileForGPU = "gpu2LayersProfile.txt" gpuJob = '''self.gpuModel.fit( self.data, max_iter=numIters, pi=torch.tensor(self.pi_init, device=device, dtype=torch.double), layers=2, writeOutput=False ) ''' cProfile.runctx(gpuJob, globals(), locals(), outfileForGPU) outfileForCPU = "cpu2LayersProfile.txt" cpuJob = '''self.cpuModel.fit( self.data, max_iter=numIters, returnSumSquareDifferencesOfPi=False, pi=np.copy(self.pi_init), layers=2, writeOutput=False ) ''' cProfile.runctx(cpuJob, globals(), locals(), outfileForCPU) if __name__ == "__main__": o = TimeGPUvsCPU() o.run_withlayers()
external/lemonade/dist/examples/calc/calc.py
almartin82/bayeslite
964
41185
<reponame>almartin82/bayeslite<filename>external/lemonade/dist/examples/calc/calc.py import sys def generateGrammar(): from lemonade.main import generate from os.path import join, dirname from StringIO import StringIO inputFile = join(dirname(__file__), "gram.y") outputStream = StringIO() generate(inputFile, outputStream) return outputStream.getvalue() # generate and import our grammar exec generateGrammar() in globals() # # the lexer # tokenType = { '+': PLUS, '-': MINUS, '/': DIVIDE, '*': TIMES, } def tokenize(input): import re tokenText = re.split("([+-/*])|\s*", input) for text in tokenText: if text is None: continue type = tokenType.get(text) if type is None: type = NUM value = float(text) else: value = None yield (type, value) return # # the delegate # class Delegate(object): def accept(self): return def parse_failed(self): assert False, "Giving up. Parser is hopelessly lost..." def syntax_error(self, token): print >>sys.stderr, "Syntax error!" return # # reduce actions # def sub(self, a, b): return a - b def add(self, a, b): return a + b def mul(self, a, b): return a * b def div(self, a, b): return a / b def num(self, value): return value def print_result(self, result): print result return p = Parser(Delegate()) #p.trace(sys.stdout, "# ") if len(sys.argv) == 2: p.parse(tokenize(sys.argv[1])) else: print >>sys.stderr, "usage: %s EXPRESSION" % sys.argv[0]
examples/pybullet/gym/pybullet_envs/minitaur/agents/scripts/configs.py
felipeek/bullet3
9,136
41203
<reponame>felipeek/bullet3 # Copyright 2017 The TensorFlow Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example configurations using the PPO algorithm.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-variable from pybullet_envs.minitaur.agents import ppo from pybullet_envs.minitaur.agents.scripts import networks def default(): """Default configuration for PPO.""" # General algorithm = ppo.PPOAlgorithm num_agents = 10 eval_episodes = 25 use_gpu = False # Network network = networks.ForwardGaussianPolicy weight_summaries = dict(all=r'.*', policy=r'.*/policy/.*', value=r'.*/value/.*') policy_layers = 200, 100 value_layers = 200, 100 init_mean_factor = 0.05 init_logstd = -1 # Optimization update_every = 25 policy_optimizer = 'AdamOptimizer' value_optimizer = 'AdamOptimizer' update_epochs_policy = 50 update_epochs_value = 50 policy_lr = 1e-4 value_lr = 3e-4 # Losses discount = 0.985 kl_target = 1e-2 kl_cutoff_factor = 2 kl_cutoff_coef = 1000 kl_init_penalty = 1 return locals() def pendulum(): """Configuration for the pendulum classic control task.""" locals().update(default()) # Environment env = 'Pendulum-v0' max_length = 200 steps = 1e6 # 1M return locals() def cheetah(): """Configuration for MuJoCo's half cheetah task.""" locals().update(default()) # Environment env = 'HalfCheetah-v1' max_length = 1000 steps = 1e7 # 10M return locals() def walker(): """Configuration for MuJoCo's walker task.""" locals().update(default()) # Environment env = 'Walker2d-v1' max_length = 1000 steps = 1e7 # 10M return locals() def reacher(): """Configuration for MuJoCo's reacher task.""" locals().update(default()) # Environment env = 'Reacher-v1' max_length = 1000 steps = 1e7 # 10M return locals() def hopper(): """Configuration for MuJoCo's hopper task.""" locals().update(default()) # Environment env = 'Hopper-v1' max_length = 1000 steps = 2e7 # 20M return locals() def ant(): """Configuration for MuJoCo's ant task.""" locals().update(default()) # Environment env = 'Ant-v1' max_length = 1000 steps = 5e7 # 50M return locals() def humanoid(): """Configuration for MuJoCo's humanoid task.""" locals().update(default()) # Environment env = 'Humanoid-v1' max_length = 1000 steps = 5e7 # 50M return locals()
test/test_util.py
jeffw-github/autoprotocol-python
113
41233
<reponame>jeffw-github/autoprotocol-python import json class TestUtils: @staticmethod def read_json_file(file_path: str): file = open("./test/data/{0}".format(file_path)) data = json.load(file) return json.dumps(data, indent=2, sort_keys=True)
code/get_ordinals.py
lebronlambert/Information_Extraction_DeepRL
251
41244
<gh_stars>100-1000 import pickle import inflect p = inflect.engine() words = set(['first','second','third','fourth','fifth','sixth','seventh','eighth','ninth','tenth','eleventh','twelfth','thirteenth','fourteenth','fifteenth', 'sixteenth','seventeenth','eighteenth','nineteenth','twentieth','twenty-first','twenty-second','twenty-third','twenty-fourth','twenty-fifth']) pickle.dump(words, open("../data/constants/word_ordinals.p", "wb"))
plenum/test/pool_transactions/test_change_ha_persists_post_nodes_restart.py
andkononykhin/plenum
148
41257
<reponame>andkononykhin/plenum from plenum.common.util import hexToFriendly, randomString from stp_core.common.log import getlogger from plenum.test.node_catchup.helper import waitNodeDataEquality from plenum.test.node_request.helper import sdk_ensure_pool_functional from plenum.test.pool_transactions.helper import sdk_send_update_node, sdk_pool_refresh, \ sdk_add_new_steward_and_node from plenum.test.test_node import TestNode, checkNodesConnected from stp_core.network.port_dispenser import genHa from plenum.common.config_helper import PNodeConfigHelper logger = getlogger() def testChangeHaPersistsPostNodesRestart(looper, txnPoolNodeSet, tdir, tconf, sdk_pool_handle, sdk_wallet_client, sdk_wallet_steward): new_steward_wallet, new_node = \ sdk_add_new_steward_and_node(looper, sdk_pool_handle, sdk_wallet_steward, 'AnotherSteward' + randomString(4), 'AnotherNode' + randomString(4), tdir, tconf) txnPoolNodeSet.append(new_node) looper.run(checkNodesConnected(txnPoolNodeSet)) sdk_pool_refresh(looper, sdk_pool_handle) node_new_ha, client_new_ha = genHa(2) logger.debug("{} changing HAs to {} {}".format(new_node, node_new_ha, client_new_ha)) # Making the change HA txn an confirming its succeeded node_dest = hexToFriendly(new_node.nodestack.verhex) sdk_send_update_node(looper, new_steward_wallet, sdk_pool_handle, node_dest, new_node.name, node_new_ha.host, node_new_ha.port, client_new_ha.host, client_new_ha.port) # Stopping existing nodes for node in txnPoolNodeSet: node.stop() looper.removeProdable(node) # Starting nodes again by creating `Node` objects since that simulates # what happens when starting the node with script restartedNodes = [] for node in txnPoolNodeSet[:-1]: config_helper = PNodeConfigHelper(node.name, tconf, chroot=tdir) restartedNode = TestNode(node.name, config_helper=config_helper, config=tconf, ha=node.nodestack.ha, cliha=node.clientstack.ha) looper.add(restartedNode) restartedNodes.append(restartedNode) # Starting the node whose HA was changed config_helper = PNodeConfigHelper(new_node.name, tconf, chroot=tdir) node = TestNode(new_node.name, config_helper=config_helper, config=tconf, ha=node_new_ha, cliha=client_new_ha) looper.add(node) restartedNodes.append(node) looper.run(checkNodesConnected(restartedNodes)) waitNodeDataEquality(looper, node, *restartedNodes[:-1]) sdk_pool_refresh(looper, sdk_pool_handle) sdk_ensure_pool_functional(looper, restartedNodes, sdk_wallet_client, sdk_pool_handle)
setup.py
tgsmith61591/smite
113
41261
# -*- coding: utf-8 -*- # # Author: <NAME> <<EMAIL>> # # Setup the SMRT module from __future__ import print_function, absolute_import, division from distutils.command.clean import clean # from setuptools import setup # DO NOT use setuptools!!!!!! import shutil import os import sys if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins # Hacky, adopted from sklearn. This sets a global variable # so smrt __init__ can detect if it's being loaded in the setup # routine, so it won't load submodules that haven't yet been built. builtins.__SMRT_SETUP__ = True # metadata DISTNAME = 'smrt' DESCRIPTION = 'Handle class imbalance intelligently by using Variational Autoencoders ' \ 'to generate synthetic observations of your minority class.' MAINTAINER = '<NAME>' MAINTAINER_EMAIL = '<EMAIL>' LICENSE = 'new BSD' # import restricted version import smrt VERSION = smrt.__version__ # get the installation requirements: with open('requirements.txt') as req: REQUIREMENTS = req.read().split(os.linesep) # Custom clean command to remove build artifacts -- adopted from sklearn class CleanCommand(clean): description = "Remove build artifacts from the source tree" # this is mostly in case we ever add a Cython module to SMRT def run(self): clean.run(self) # Remove c files if we are not within a sdist package cwd = os.path.abspath(os.path.dirname(__file__)) remove_c_files = not os.path.exists(os.path.join(cwd, 'PKG-INFO')) if remove_c_files: cython_hash_file = os.path.join(cwd, 'cythonize.dat') if os.path.exists(cython_hash_file): os.unlink(cython_hash_file) print('Will remove generated .c & .so files') if os.path.exists('build'): shutil.rmtree('build') for dirpath, dirnames, filenames in os.walk(DISTNAME): for filename in filenames: if any(filename.endswith(suffix) for suffix in (".so", ".pyd", ".dll", ".pyc")): print('Removing file: %s' % filename) os.unlink(os.path.join(dirpath, filename)) continue extension = os.path.splitext(filename)[1] if remove_c_files and extension in ['.c', '.cpp']: pyx_file = str.replace(filename, extension, '.pyx') if os.path.exists(os.path.join(dirpath, pyx_file)): os.unlink(os.path.join(dirpath, filename)) # this is for FORTRAN modules, which some of my other packages have used in the past... for dirname in dirnames: if dirname == '__pycache__' or dirname.endswith('.so.dSYM'): print('Removing directory: %s' % dirname) shutil.rmtree(os.path.join(dirpath, dirname)) cmdclass = {'clean': CleanCommand} def configuration(parent_package='', top_path=None): # we know numpy is a valid import now from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) # Avoid non-useful msg # "Ignoring attempt to set 'name' (from ... " config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage(DISTNAME) return config def do_setup(): # setup the config metadata = dict(name=DISTNAME, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, version=VERSION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Intended Audience :: Scikit-learn users', 'Programming Language :: Python', 'Topic :: Machine Learning', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2.7' ], keywords='sklearn scikit-learn tensorflow auto-encoders neural-networks class-imbalance', # packages=[DISTNAME], # install_requires=REQUIREMENTS, cmdclass=cmdclass) if len(sys.argv) == 1 or ( len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg-info', '--version', 'clean'))): # For these actions, NumPy is not required try: from setuptools import setup except ImportError: from distutils.core import setup else: # we DO need numpy try: from numpy.distutils.core import setup except ImportError: raise RuntimeError('Need numpy to build %s' % DISTNAME) # add the config to the metadata metadata['configuration'] = configuration # call setup on the dict setup(**metadata) if __name__ == '__main__': do_setup()
applications/CableNetApplication/python_scripts/edge_cable_element_process.py
lkusch/Kratos
778
41268
<reponame>lkusch/Kratos<gh_stars>100-1000 import KratosMultiphysics as KratosMultiphysics import KratosMultiphysics.CableNetApplication as CableNetApplication from KratosMultiphysics import Logger def Factory(settings, Model): if(type(settings) != KratosMultiphysics.Parameters): raise Exception("expected input shall be a Parameters object, encapsulating a json string") return EdgeCableElementProcess(Model, settings["Parameters"]) class custom_node: def __init__(self,start_distance,kratos_node): self.start_distance = start_distance self.kratos_node = kratos_node def return_distance_to_line_start(self): return self.start_distance def return_node_distance_to_line_start(node): return node.return_distance_to_line_start() class EdgeCableElementProcess(KratosMultiphysics.Process): def __init__(self, Model, settings ): KratosMultiphysics.Process.__init__(self) default_settings = KratosMultiphysics.Parameters(""" { "edge_sub_model_part_name" : "Structure.example_part", "element_type" : "cable", "node_id_order" : [1,2,3], "element_id" : 1, "property_id" : 1 } """) default_settings.ValidateAndAssignDefaults(settings) self.edge_model_part = Model[settings["edge_sub_model_part_name"].GetString()] node_list = settings["node_id_order"].GetVector() if len(node_list)==0: node_list = self.CreateCorrectNodeOrder() settings["node_id_order"].SetVector(node_list) self.edge_cable_element_process = CableNetApplication.EdgeCableElementProcess(self.edge_model_part, settings) def ExecuteInitialize(self): self.edge_cable_element_process.ExecuteInitialize() Logger.PrintInfo("Initialized","EdgeCableElementProcess") def CreateCorrectNodeOrder(self): ## find start/end nodes and calculate total distance max_distance,end_points = 0, [] for node_i in self.edge_model_part.Nodes: for node_j in self.edge_model_part.Nodes: distance_i = (node_i.X0 - node_j.X0)*(node_i.X0 - node_j.X0) distance_i += (node_i.Y0 - node_j.Y0)*(node_i.Y0 - node_j.Y0) distance_i += (node_i.Z0 - node_j.Z0)*(node_i.Z0 - node_j.Z0) distance_i = distance_i**0.5 if distance_i>max_distance: max_distance=distance_i end_points = [node_i,node_j] ## create sorted node_list custom_node_list = [] for node_i in self.edge_model_part.Nodes: distance_i = (node_i.X0 - end_points[0].X0)*(node_i.X0 - end_points[0].X0) distance_i += (node_i.Y0 - end_points[0].Y0)*(node_i.Y0 - end_points[0].Y0) distance_i += (node_i.Z0 - end_points[0].Z0)*(node_i.Z0 - end_points[0].Z0) distance_i = distance_i**0.5 custom_node_i = custom_node(distance_i,node_i) custom_node_list.append(custom_node_i) sorted_node_list = sorted(custom_node_list, key=return_node_distance_to_line_start) return [node.kratos_node.Id for node in sorted_node_list]
tf_verify/spatial/t_2_norm_transformer.py
Neelanjana314/eran
254
41271
<reponame>Neelanjana314/eran<filename>tf_verify/spatial/t_2_norm_transformer.py """ Copyright 2020 ETH Zurich, Secure, Reliable, and Intelligent Systems Lab Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import math from itertools import product import numpy as np import torch from mpmath import polyroots from spatial.t_inf_norm_transformer import TInfNormTransformer from spatial.t_norm_transformer import TNormTransformer from spatial.interpolation import interpolate class T2NormTransformer(TNormTransformer): def add_norm_constraints(self, model, vx, vy): model.addConstr(vx + vy <= math.sqrt(2) * self.delta) model.addConstr(vx - vy <= math.sqrt(2) * self.delta) model.addConstr(-vx + vy <= math.sqrt(2) * self.delta) model.addConstr(-vx - vy <= math.sqrt(2) * self.delta) def compute_candidates(self): delta_sqr = self.delta ** 2 radius = math.ceil(self.delta) for row, col in product(range(-radius, radius), repeat=2): lb_row, ub_row = row, row + 1 lb_col, ub_col = col, col + 1 interpolation_region = [[lb_col, ub_col], [lb_row, ub_row]] distances_row = sorted((abs(lb_row), abs(ub_row))) distances_col = sorted((abs(lb_col), abs(ub_col))) # no overlap with adversarial region if distances_row[0] ** 2 + distances_col[0] ** 2 >= delta_sqr: continue flows = list() flows_by_channel = list() # full overlap with interpolation region if distances_row[1] ** 2 + distances_col[1] ** 2 <= delta_sqr: flows = [ torch.tensor([lb_col, lb_row]).repeat( self.batch_size, self.height, self.width, 1 ).float().to(self.device), torch.tensor([ub_col, lb_row]).repeat( self.batch_size, self.height, self.width, 1 ).float().to(self.device), torch.tensor([lb_col, ub_row]).repeat( self.batch_size, self.height, self.width, 1 ).float().to(self.device), torch.tensor([ub_col, ub_row]).repeat( self.batch_size, self.height, self.width, 1 ).float().to(self.device) ] else: if lb_col ** 2 + lb_row ** 2 <= delta_sqr: flows.append( torch.tensor([lb_col, lb_row]).repeat( self.batch_size, self.height, self.width, 1 ).float().to(self.device) ) if ub_col ** 2 + lb_row ** 2 <= delta_sqr: flows.append( torch.tensor([ub_col, lb_row]).repeat( self.batch_size, self.height, self.width, 1 ).float().to(self.device) ) if lb_col ** 2 + ub_row ** 2 <= delta_sqr: flows.append( torch.tensor([lb_col, ub_row]).repeat( self.batch_size, self.height, self.width, 1 ).float().to(self.device) ) if ub_col ** 2 + ub_row ** 2 <= delta_sqr: flows.append( torch.tensor([ub_col, ub_row]).repeat( self.batch_size, self.height, self.width, 1 ).float().to(self.device) ) box_row = sorted((lb_row, ub_row), key=abs) box_col = sorted((lb_col, ub_col), key=abs) candidates = list() row_sign = -1 if row < 0 else 1 col_sign = -1 if col < 0 else 1 if box_col[0] ** 2 <= delta_sqr: candidates.append([ box_col[0], row_sign * math.sqrt(delta_sqr - box_col[0] ** 2) ]) if box_col[1] ** 2 <= delta_sqr: candidates.append([ box_col[1], row_sign * math.sqrt(delta_sqr - box_col[1] ** 2) ]) if box_row[0] ** 2 <= delta_sqr: candidates.append([ col_sign * math.sqrt(delta_sqr - box_row[0] ** 2), box_row[0] ]) if box_row[1] ** 2 <= delta_sqr: candidates.append([ col_sign * math.sqrt(delta_sqr - box_row[1] ** 2), box_row[1] ]) endpoints = [ candidate for candidate in candidates if self.in_box( candidate, lb_col, ub_col, lb_row, ub_row ) ] for endpoint in endpoints: flows.append( torch.tensor(endpoint).repeat( self.batch_size, self.height, self.width, 1 ).float().to(self.device) ) flows_by_channel = self.compute_extremum_on_arc( col=col, row=row, endpoints=endpoints, interpolation_region=interpolation_region ) for flow in flows: candidate = interpolate(self.images, flow) for channel in range(self.channels): self.candidates[channel].append(candidate[:, channel]) self.candidate_flows[channel].append(flow) for channel, flows in enumerate(flows_by_channel): for flow in flows: self.candidates[channel].append( interpolate(self.images, flow)[:, channel] ) self.candidate_flows[channel].append(flow) def in_box(self, point, lb_x, ub_x, lb_y, ub_y): return (lb_x <= point[0] <= ub_x) and (lb_y <= point[1] <= ub_y) def compute_extremum_on_arc(self, col, row, endpoints, interpolation_region): (lb_col, ub_col), (lb_row, ub_row) = interpolation_region alpha = interpolate( self.images.double(), torch.tensor([lb_col, lb_row]).double().to(self.device) ) beta = interpolate( self.images.double(), torch.tensor([ub_col, lb_row]).double().to(self.device) ) gamma = interpolate( self.images.double(), torch.tensor([lb_col, ub_row]).double().to(self.device) ) delta = interpolate( self.images.double(), torch.tensor([ub_col, ub_row]).double().to(self.device) ) # a = torch.add( # alpha * ub_col * ub_row - beta * lb_col * ub_row, # delta * lb_col * lb_row - gamma * ub_col * lb_row # ) b = (beta - alpha) * ub_row + (gamma - delta) * lb_row c = (gamma - alpha) * ub_col + (beta - delta) * lb_col d = alpha - beta - gamma + delta e = - b / (2 * d) f = b * b / (4 * d * d) g = c / d h = e * e + f j = (self.delta ** 2 - h) ** 2 - 4 * f * e * e k = - 2 * g * ((self.delta ** 2 - h) + 2 * e * e) l = g * g - 4 * ((self.delta ** 2 - h) + e * e) m = 4 * g n = torch.full_like(m, 4).double().to(self.device) flows = [ [ torch.zeros( self.batch_size, self.height, self.width, 2 ).float().to(self.device) for _ in range(16) ] for channel in range(self.channels) ] for batch in range(self.batch_size): for channel in range(self.channels): for height in range(self.height): for width in range(self.width): b_val = b[batch, channel, height, width].item() c_val = c[batch, channel, height, width].item() d_val = d[batch, channel, height, width].item() if math.isclose(d_val, 0, abs_tol=1e-6): if (c_val == 0) or (b_val == 0): continue denominator = math.sqrt(b_val ** 2 + c_val ** 2) x = b_val * self.delta / denominator y = c_val * self.delta / denominator flows[channel][0][batch, height, width, 0] = x flows[channel][0][batch, height, width, 1] = y flows[channel][1][batch, height, width, 0] = x flows[channel][1][batch, height, width, 1] = -y flows[channel][2][batch, height, width, 0] = -x flows[channel][2][batch, height, width, 1] = y flows[channel][3][batch, height, width, 0] = -x flows[channel][3][batch, height, width, 1] = -y continue coeffs = [ n[batch, channel, height, width].item(), m[batch, channel, height, width].item(), l[batch, channel, height, width].item(), k[batch, channel, height, width].item(), j[batch, channel, height, width].item() ] roots = polyroots(coeffs, maxsteps=500, extraprec=100) for idx, root in enumerate(roots): root = complex(root) if not math.isclose(root.imag, 0, abs_tol=1e-7): continue x = float(root.real) if self.delta ** 2 < x ** 2: continue y = math.sqrt(self.delta ** 2 - x ** 2) i = 4 * idx flows[channel][i + 0][batch, height, width, 0] = x flows[channel][i + 0][batch, height, width, 1] = y flows[channel][i + 1][batch, height, width, 0] = x flows[channel][i + 1][batch, height, width, 1] = -y flows[channel][i + 2][batch, height, width, 0] = -x flows[channel][i + 2][batch, height, width, 1] = y flows[channel][i + 3][batch, height, width, 0] = -x flows[channel][i + 3][batch, height, width, 1] = -y for channel in range(self.channels): for idx in range(16): vx = flows[channel][idx][:, :, :, 0] vy = flows[channel][idx][:, :, :, 1] box_col_constraint = (lb_col <= vx) & (vx <= ub_col) box_row_constraint = (lb_row <= vy) & (vy <= ub_row) box_constraint = box_col_constraint & box_row_constraint flows[channel][idx][:, :, :, 0] = torch.where( box_constraint, vx, torch.zeros_like(vx) ) flows[channel][idx][:, :, :, 1] = torch.where( box_constraint, vy, torch.zeros_like(vy) ) return flows def linear_constraints(self): return TInfNormTransformer( self.images, self.delta ).linear_constraints()
landlab/components/species_evolution/zone_controller.py
amanaster2/landlab
257
41274
#!/usr/bin/env python # -*- coding: utf-8 -*- """ZoneController of SpeciesEvolver.""" import numpy as np from scipy.ndimage.measurements import label from .record import Record from .zone import Zone, _update_zones from .zone_taxon import ZoneTaxon class ZoneController(object): """Controls zones and populates them with taxa. This object manages 'zones' that are used to evaluate the spatial aspect of taxa. A zone represents a portion of a model grid. It is made up of spatially continuous grid nodes. This controller creates zones using the initialization parameter, ``zone_function``. This function identifies all of the grid nodes where zones are to be created. A zone is created for each cluster of spatially continuous nodes. Zones are updated also using this function when the ``run_one_step`` method of this controller is called. The structure of an example model grid is diagrammed below to demonstrate how zones are created. The grid contains six columns and six rows. In this example, the function returns True where node values are greater than 0. Nodes marked with an ``*`` are nodes that will belong to a zone because the mask is True at these nodes. All other nodes are marked with a ``·``. A zone is created for each cluster of continuous nodes where the mask is True. :: values mask returned evaluated by zone function 0 0 0 0 0 0 · · · · · · 0 0 0 5 4 2 · · · * * * 0 6 0 4 6 0 · * · * * · 0 2 0 0 0 0 · * · · · · 0 0 4 0 4 0 · · * · * · 0 0 0 0 0 0 · · · · · · The above example is continued in the following four diagrams that demonstrate how individual zones are identified. Each zone is marked with a ``x``, ``o``, ``+``, or ``@``. Clusters can be identified using ``D8`` where diagonal neighbors are included or ``D4`` where diagonal neighbors are excluded. A minimum zone area can be enforced with the ``minimum_area`` initialization parameter. :: D8 D4 D8 D4 min area = 0 min area = 0 min area = 2 min area = 2 · · · · · · · · · · · · · · · · · · · · · · · · · · · + + + · · · + + + · · · + + + · · · + + + · x · + + · · x · + + · · x · + + · · x · + + · · x · · · · · x · · · · · x · · · · · x · · · · · · x · o · · · @ · o · · · x · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · The grid perimeter affects zone creation. Zones can include perimeter nodes (the nodes along grid edges), although because perimeter nodes are not associated with cells that have area, perimeter nodes do not contribute to the area summation of clusters. The area summation only takes into account the cells associated with core nodes. Creation of zones along boundaries is illustrated below. A zone extent mask different from the above example was produced by the hypothetical zone function in this example. Again ``*`` indicates where a zone can exist. Distinct zones include the symbols, ``$`` and ``#`` in addition to the symbols defined above. Individual zone masks and the count of zones are affected by the use of ``D8`` or ``D4`` along with the minimum area parameter, especially when zone clusters are along the grid parameter. :: zone function D8 D4 D8 D4 returned mask min area = 0 min area = 0 min_area = 2 min_area = 2 * · · * * · + · · x x · + · · x x · + · · · · · · · · · · · · * · · * · · + · · x · · # · · x · · + · · · · · # · · · · · * · · · · · + · · · · · # · · · · · + · · · · · # · · · · * · · · * * + · · · o o $ · · · o o + · · · o o · · · · o o · · · · * · · · · · o · · · · · o · · · · · o · · · · · o · · * * · · · · @ @ · · · · @ @ · · · · · · · · · · · · · · · By default, ``ZoneTaxon`` are used with this controller, and the following paragraphs make that assumption. See the documentation of the populate methods to learn how to use other types. Speciation of ``ZoneTaxon`` objects occurs when the taxon exists in more than one zone once the allopatric wait time has been exceeded in that zone. See ``ZoneTaxon`` documentation for more about allopatric wait time. A different example grid demonstrates here the temporal connectivity of zones. The grid represents the time, ``T0`` with the nodes of a zone marked with ``x``. The following examples will use D8 neighborhoods and a minimum zone area of 0. :: T0 · · · · · · · · · · · · · x x x x · · x x x x · · · · · · · · · · · · · Below are variations of the grid at a later time, ``T1`` in four variations where each contains one zone. In ``T1a``, ``T1b``, and ``T1c`` the zone stayed the same, moved, and changed size, respectively. Taxa migrate with the zone when at least one zone node overlaps between the two time steps. However, in ``T1d``, no nodes overlaps, therefore taxa do not disperse from the zone in T0 to the zone in T1d. :: T1a T1b T1c T1d · · · · · · · · · · · · · · · · · · · · · · · · · + + + + · · · · · · · · · + + · · · · · · · · · + + + + · · + + + + · · + + + + · · · · · · · · · · · · · · + + + + · · · · · + · · + + + + · · · · · · · · · · · · · · · · · · · · + + + + · · · · · · · · · · · · · · · · · · · · · · · · · Another ``T1`` variation, now demonstrating two zones, ``+`` and ``x``. Multiple zones overlapping a zone in the prior time step can be interpreted as a zone that fragmented, which may affect resident taxa. The number of zone fragmentations can be viewed in the ``record_data_frame`` attribute. In the T1e example, the fragmentation count for time 1 would be 2 because 2 zones that fragmented from a prior zone were recognized at this time. :: T1e · · · · · · · · · · + · · x · · + · · x x · · · · x x · · · · · · · · · The controller had to decide which of the two clusters of continuous nodes in T1 should be designated as the same zone in T0. This decision must be made in general when multiple clusters overlap the same zone in the prior time step. The zone in the current time step that overlaps the prior time step zone the most becomes the same zone in the earlier time step. In this example, the cluster to the right overlapped four nodes and the left cluster overlapped only one node, therefore the right cluster became the star zone. This is merely for creating new zones objects. The grid diagrammed below continues from T1e. The continuous nodes overlapped two zones in T1e. When multiple zones overlap, one zone is assumed to be the prior zone and the others are considered captured zones. The number of zone captures can be viewed in the ``record_data_frame`` attribute. :: T2 · · · · · · · · · · · · · x x x x · · x x x · · · · · · · · · · · · · · The controller had to again decide which of the two clusters of continuous nodes in T1e should be designated as the same zone in T2. This decision must be made in general when multiple clusters in the prior time step overlap a zone in the current time step. The zone in the prior time step that overlaps the current time step zone the most becomes the zone in the earlier time step. In this example, the cluster to the left overlapped two nodes and the right cluster overlapped only one node, therefore the new zone keeps the designation of the left cluster. However, this is merely for creating new zone objects. ZoneController is currently designed for use with only the grid type, ``RasterModelGrid``. Examples -------- Import modules used in the following examples. >>> from landlab import RasterModelGrid >>> from landlab.components.species_evolution import ZoneController The first example uses the default parameters of ZoneController. Create a model grid and an elevation field for this grid. >>> mg = RasterModelGrid((3, 7)) >>> z = mg.add_zeros('topographic__elevation', at='node') Set elevation to 1 for some nodes. >>> z[[9, 10, 11, 12]] = 1 Define a zone function that returns a boolean array where `True` values indicate the nodes where zones can be created. >>> def zone_func(grid): ... z = grid.at_node['topographic__elevation'] ... return z == 1 Instantiate ZoneController. Only one zone exists because the nodes that were set to one are adjacent to each other in the grid. >>> zc = ZoneController(mg, zone_func) >>> zc.record_data_frame[['time', 'zones']] time zones 0 0 1 Populate each zone with a taxon. >>> taxon = zc.populate_zones_uniformly(1) >>> len(taxon) 1 A change in elevation is forced to demonstrate a zone fragmentation, and then the zones are updated by advancing the record time by 1000. >>> z[10] = 0 >>> zc.run_one_step(1000) Two zones now exist because the zone in time 0 fragmented into two zones. >>> zc.record_data_frame[['time', 'zones', 'fragmentations']] time zones fragmentations 0 0 1 NaN 1 1000 2 2.0 A change in elevation is forced again, this time to demonstrate zone capture where multiple zones are overlapped by a zone in the later time step. Statistics of the capture can be attained with ``record_data_frame``. >>> z[10] = 1 >>> zc.run_one_step(1000) >>> zc.record_data_frame[['time', 'zones', 'captures', ... 'area_captured_sum', 'area_captured_max']] time zones captures area_captured_sum area_captured_max 0 0 1 NaN NaN NaN 1 1000 2 0.0 0.0 0.0 2 2000 1 1.0 2.0 2.0 The follow example demonstrates non-default ZoneController parameters. >>> mg = RasterModelGrid((3, 7)) >>> z = mg.add_zeros('topographic__elevation', at='node') Similar to the prior example, define a zone function that returns a boolean array where `True` values indicate the nodes where zones can be created. >>> def zone_func(grid): ... z = grid.at_node['topographic__elevation'] ... return z == 1 Set elevation to 1 for nodes so that two clusters of nodes within the zone mask exist. >>> z[[9, 10, 12]] = 1 Instantiate ZoneController with options. >>> zc = ZoneController(mg, zone_func, minimum_area=2, initial_time=100) Only one zone exist, despite two clusters of nodes meeting the zone definition, because the ``minimum_area`` was set to 2. Also, the first time in the record was set by the ``initial_time`` parameter. >>> zc.record_data_frame[['time', 'zones']] time zones 0 100 1 """ def __init__( self, grid, zone_function, minimum_area=0, neighborhood_structure="D8", initial_time=0, **kwargs ): """Initialize the controller. Parameters ---------- grid : RasterModelGrid A Landlab RasterModelGrid. zone_function : function A function that return a mask of the total zone extent. The first input parameter of this function must be `grid`. minimum_area : float, optional The minimum area of the zones that will be created. neighborhood_structure : {'D8', 'D4'}, optional The structure describes how zones are identified. The default, 'D8' evaluates the eight neighboring nodes. The diagonal neighboring nodes are excluded when 'D4' is selected. initial_time : float, int, optional The initial time. The unit of time is unspecified within the controller. The default is 0. kwargs Keyword arguments for ``zone_function``. Do not include ``grid`` in kwargs because ``grid``, the first parameter of this method, is automatically added to ``kwargs``. """ # Set parameters. self._grid = grid self._zone_func = zone_function self._zone_params = kwargs self._min_area = minimum_area self._record = Record(initial_time) if neighborhood_structure in ["D8", "D4"]: self._neighborhood_struct = neighborhood_structure else: raise ValueError("`neighborhood_structure` must be 'D8' or 'D4'") # Set record initial values. self._record.set_value("zones", np.nan) self._record.set_value("fragmentations", np.nan) self._record.set_value("captures", np.nan) self._record.set_value("area_captured_sum", np.nan) self._record.set_value("area_captured_max", np.nan) # Include `grid` in the zone params dictionary. self._zone_params["grid"] = self._grid # Set initial zones. initial_zone_extent = self._zone_func(**self._zone_params) self._zones = self._get_zones_with_mask(initial_zone_extent) self._record.set_value("zones", len(self._zones)) @property def zones(self): """The zones of the ZoneController.""" return self._zones @property def record_data_frame(self): """A DataFrame of ZoneController variables over time. Each row is data of a model time step. The step time is recorded in the `time` column. The columns, `zones`, `fragmentations`, and `captures` are the count of these variables at a given time. `area_captured_sum` is the summation of captures over a time. `area_captured_max` is the maximum area captured of a single capture during a time. """ return self._record.data_frame def populate_zones_uniformly(self, count, taxon_type=ZoneTaxon, **kwargs): """Populate each zone with the same type and count of taxa. Parameters ---------- count : int The count of taxon to populate to each zone. taxon_type : type of Taxon A Taxon type that takes a Zone as its first parameter. kwargs : dictionary Keyword arguments of ``taxon_type``. """ taxa = [] for z in self._zones: taxa.extend([taxon_type([z], **kwargs) for _ in range(count)]) return taxa def run_one_step(self, dt): """Update the zones for a single timestep. This method advances time in the record and determines the connectivity of zones between the current and prior time steps. Parameters ---------- dt : float The model time step duration. """ self._record.advance_time(dt) # Resolve the spatiotemporal connectivity of the prior time step zones # to the new zones. prior_zones = self._zones zone_mask = self._zone_func(**self._zone_params) new_zones = self._get_zones_with_mask(zone_mask) self._zones = _update_zones(self._grid, prior_zones, new_zones, self._record) self._record.set_value("zones", len(self._zones)) def _get_zones_with_mask(self, mask): """Get zones using a mask. Parameters ---------- mask : ndarray A boolean array with the grid number of nodes where `True` values are nodes within the extent of all the zones to be created. Returns ------- list of Zones The discrete zones identified in the mask. """ # Label clusters of `True` values in `mask`. if self._neighborhood_struct == "D8": s = 3 * [[1, 1, 1]] elif self._neighborhood_struct == "D4": s = [[0, 1, 0], [1, 1, 1], [0, 1, 0]] cluster_arr, cluster_ct = label(mask.reshape(self._grid.shape), structure=s) # Create zones for clusters. zones = [] for i in range(1, cluster_ct + 1): mask = (cluster_arr == i).flatten() cluster_area = self._grid.cell_area_at_node[mask].sum() if cluster_area >= self._min_area: zones.append(Zone(self, mask)) return zones
torchbenchmark/models/fastNLP/fastNLP/core/batch.py
Chillee/benchmark
2,693
41275
<gh_stars>1000+ r""" batch 模块实现了 fastNLP 所需的 :class:`~fastNLP.core.batch.DataSetIter` 类。 """ __all__ = [ "BatchIter", "DataSetIter", "TorchLoaderIter", ] import atexit import abc from numbers import Number import numpy as np import torch import torch.utils.data from collections import defaultdict from .dataset import DataSet from .sampler import SequentialSampler, Sampler from ._logger import logger _python_is_exit = False def _set_python_is_exit(): global _python_is_exit _python_is_exit = True atexit.register(_set_python_is_exit) def _pad(batch_dict, dataset, as_numpy): result = {} for n, vlist in batch_dict.items(): f = dataset.field_arrays[n] if f.padder is None: result[n] = np.array(vlist) else: res = f.pad(vlist) if not as_numpy: res, _ = _to_tensor(res, field_dtype=f.dtype) result[n] = res return result class DataSetGetter: r""" 传递给torch.utils.data.DataLoader获取数据,DataLoder会传入int的idx获取数据(调用这里的__getitem__()函数)。 """ def __init__(self, dataset: DataSet, as_numpy=False): self.dataset = dataset self.as_numpy = as_numpy self.idx_list = list(range(len(dataset))) self.x_names = {n for n, f in dataset.get_all_fields().items() if f.is_input} self.y_names = {n for n, f in dataset.get_all_fields().items() if f.is_target} def __getitem__(self, idx: int): # mapping idx to sampled idx idx = self.idx_list[idx] ins = self.dataset[idx] return idx, ins def __len__(self): return len(self.dataset) def collate_fn(self, ins_list: list): r""" :param batch: [[idx1, x_dict1, y_dict1], [idx2, x_dict2, y_dict2], [xx, xx, xx]] :return: """ indices = [] sin_x, sin_y = defaultdict(list), defaultdict(list) # 收集需要关注的field的数据 for idx, ins in ins_list: indices.append(idx) for n, v in ins.items(): if n in self.x_names: sin_x[n].append(v) if n in self.y_names: sin_y[n].append(v) # 根据情况,进行pad sin_x = _pad(sin_x, dataset=self.dataset, as_numpy=self.as_numpy) sin_y = _pad(sin_y, dataset=self.dataset, as_numpy=self.as_numpy) if not self.dataset.collater.is_empty(): bx, by = self.dataset._collate_batch(ins_list) sin_x.update(bx) sin_y.update(by) return indices, sin_x, sin_y def __getattr__(self, item): if hasattr(self.dataset, item): return getattr(self.dataset, item) else: raise AttributeError("'DataSetGetter' object has no attribute '{}'".format(item)) class SamplerAdapter(torch.utils.data.Sampler): r""" 用于传入torch.utils.data.DataLoader中,DataLoader会调用__iter__()方法获取index(一次只取一个int) """ def __init__(self, sampler, dataset): super().__init__(dataset) self.sampler = sampler self.dataset = dataset def __len__(self): return len(self.dataset) def __iter__(self): return iter(self.sampler(self.dataset)) class BatchIter: r""" Trainer用于迭代数据的类。继承该类,并实现get_num_batches(), get_batch_indices(), num_batches(), __iter__()方法以及dataset属性。 """ def __init__(self, dataset, batch_size=1, sampler=None, num_workers=0, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, collate_fn=None, batch_sampler=None): if isinstance(sampler, Sampler): # 如果时fastNLP的sampler需要adapt一下 sampler = SamplerAdapter(sampler=sampler or SequentialSampler(), dataset=dataset) self.sampler = sampler self.batch_sampler = batch_sampler # DataLoader的collate_fn输入是List[],里面的元素是dataset[index]返回的结果 if collate_fn is None: # pytoch <= 1.1 中不能设置collate_fn=None self.dataiter = torch.utils.data.DataLoader( dataset=dataset, batch_size=batch_size, sampler=self.sampler, num_workers=num_workers, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, batch_sampler=batch_sampler) else: self.dataiter = torch.utils.data.DataLoader( dataset=dataset, batch_size=batch_size, sampler=self.sampler, collate_fn=collate_fn, num_workers=num_workers, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, batch_sampler=batch_sampler) # 以sampler的数量为准,因为DistributedSampler的时候每个进程上并不是所有的数据都用上了 if self.batch_sampler is None: self._num_batches = self.get_num_batches(len(self.dataiter.sampler), batch_size, drop_last) else: self._num_batches = len(self.batch_sampler) self.batch_size = batch_size self.cur_batch_indices = None @property def num_batches(self): return self._num_batches @num_batches.setter def num_batches(self, value): self._num_batches = value def init_iter(self): pass @staticmethod def get_num_batches(num_samples, batch_size, drop_last): r""" 计算batch的数量。用于前端显示进度 :param int num_samples: :param int batch_size: :param bool drop_last: 如果最后一个batch没有batch_size这么多,是否就丢掉。 :return: """ num_batches = num_samples // batch_size if not drop_last and (num_samples % batch_size > 0): num_batches += 1 return num_batches def get_batch_indices(self): r""" 获取最近输出的batch的index。用于溯源当前batch的数据 :return: """ return self.cur_batch_indices def __len__(self): return self.num_batches @property def dataset(self): r""" 获取正在参与iterate的dataset :return: """ return self.dataiter.dataset @abc.abstractmethod def __iter__(self): r""" 用于实际数据循环的类,返回值需要为两个dict, 第一个dict中的内容会认为是input, 第二个dict中的内容会认为是target :return: """ raise NotImplemented class DataSetIter(BatchIter): r""" DataSetIter 用于从 `DataSet` 中按一定的顺序, 依次按 ``batch_size`` 的大小将数据取出,通过使用DataSetIter,可以不需要考虑 输入的padding(由DataSet中每列的Padder决定了)以及不需要考虑将数据转为tensor。 组成 `x` 和 `y`:: batch = DataSetIter(data_set, batch_size=16, sampler=SequentialSampler()) num_batch = len(batch) for batch_x, batch_y in batch: # do stuff ... """ def __init__(self, dataset, batch_size=1, sampler=None, as_numpy=False, num_workers=0, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, batch_sampler=None): r""" :param dataset: :class:`~fastNLP.DataSet` 对象, 数据集 :param int batch_size: 取出的batch大小 :param sampler: 规定使用的 :class:`~fastNLP.Sampler` 方式. 若为 ``None`` , 使用 :class:`~fastNLP.SequentialSampler`. Default: ``None`` :param bool as_numpy: 若为 ``True`` , 输出batch为 numpy.array. 否则为 :class:`torch.Tensor`. Default: ``False`` :param int num_workers: 使用多少个进程来预处理数据 :param bool pin_memory: 是否将产生的tensor使用pin memory, 可能会加快速度。 :param bool drop_last: 如果最后一个batch没有batch_size这么多sample,就扔掉最后一个 :param timeout: 生成一个batch的timeout值 :param worker_init_fn: 在每个worker启动时调用该函数,会传入一个值,该值是worker的index。 :param batch_sampler: 当每次batch取出的数据数量不一致时,可以使用该sampler。batch_sampler每次iter应该输出一个list的index。 当batch_sampler不为None时,参数batch_size, sampler, drop_last会被忽略。 """ assert isinstance(dataset, DataSet) dataset = DataSetGetter(dataset, as_numpy) collate_fn = dataset.collate_fn if batch_sampler is not None: batch_size = 1 sampler = None drop_last = False super().__init__( dataset=dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, collate_fn=collate_fn, batch_sampler=batch_sampler ) def __iter__(self): self.init_iter() for indices, batch_x, batch_y in self.dataiter: self.cur_batch_indices = indices yield batch_x, batch_y class TorchLoaderIter(BatchIter): r""" 与DataSetIter类似,但可以用于非fastNLP的数据容器对象,以及可以实现完全自定义的生成batch的方式,然后与Trainer,Tester可以实现 与DataSetIter一样的对接。 需要保证传入的数据容器实现了实现了以下的方法 Example:: import random from fastNLP import TorchLoaderIter import torch class UdfDataSet: def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): # 必须实现的方法,输入参数是一个int,范围为[0, len(self)) x = [random.random() for _ in range(3)] y = random.random() return x,y def __len__(self): # 需要实现该方法返回值需要是一个int数据 return self.num_samples # 需要实现collact_fn将数据转换为tensor def collate_fn(data_list): # [(x1,y1), (x2,y2), ...], 这里的输入实际上是将UdfDataSet的__getitem__输入结合为list xs, ys = [], [] for l in data_list: x, y = l xs.append(x) ys.append(y) # 不需要转移到gpu,Trainer或Tester会将其转移到model所在的device x,y = torch.FloatTensor(xs), torch.FloatTensor(ys) return {'x':x, 'y':y}, {'y':y} # 第一个dict中内容类似于DataSet中的input列,第二个dict的内容类似于target列 udf_dataset = UdfDataSet(10) dataset = TorchLoaderIter(udf_dataset, collate_fn=collate_fn) class Model(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(3, 1) def forward(self, x, y): return {'loss':torch.pow(self.fc(x).squeeze(-1)-y, 2).sum()} def predict(self, x): return {'pred':self.fc(x).squeeze(0)} model = Model() trainer = Trainer(train_data=dataset, model=model, loss=None, print_every=2, dev_data=dataset, metrics=AccuracyMetric(target='y'), use_tqdm=False) trainer.train(load_best_model=False) 除此之外,还可以通过该方法实现OnTheFly的训练,如下面的代码所示 Example:: import tempfile import random import torch tmp_file_handler, tmp_file_path = tempfile.mkstemp(text=True) try: num_samples, data = 10, [] for _ in range(num_samples): x, y = [random.random() for _ in range(3)], random.random() data.append(x + [y]) with open(tmp_file_path, 'w') as f: for d in data: f.write(' '.join(map(str, d)) + '\n') class FileDataSet: def __init__(self, tmp_file): num_samples = 0 line_pos = [0] # 对应idx是某一行对应的位置 self.tmp_file_handler = open(tmp_file, 'r', encoding='utf-8') line = self.tmp_file_handler.readline() while line: if line.strip(): num_samples += 1 line_pos.append(self.tmp_file_handler.tell()) line = self.tmp_file_handler.readline() self.tmp_file_handler.seek(0) self.num_samples = num_samples self.line_pos = line_pos def __getitem__(self, idx): line_start, line_end = self.line_pos[idx], self.line_pos[idx + 1] self.tmp_file_handler.seek(line_start) line = self.tmp_file_handler.read(line_end - line_start).strip() values = list(map(float, line.split())) x, y = values[:3], values[-1] return x, y def __len__(self): return self.num_samples def collate_fn(data_list): # [(x1,y1), (x2,y2), ...], 这里的输入实际上是将UdfDataSet的__getitem__输入结合为list xs, ys = [], [] for l in data_list: x, y = l xs.append(x) ys.append(y) x, y = torch.FloatTensor(xs), torch.FloatTensor(ys) return {'x': x, 'y': y}, {'y': y} # 第一个dict中内容类似于DataSet中的input列,第二个dict的内容类似于target列 file_data = FileDataSet(tmp_file_path) dataset = TorchLoaderIter(file_data, collate_fn=collate_fn) class Model(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(3, 1) def forward(self, x, y): return {'loss': torch.pow(self.fc(x).squeeze(-1) - y, 2).sum()} def predict(self, x): return {'pred': self.fc(x).squeeze(0)} model = Model() trainer = Trainer(train_data=dataset, model=model, loss=None, print_every=2, dev_data=dataset, metrics=AccuracyMetric(target='y'), use_tqdm=False, n_epochs=2) trainer.train(load_best_model=False) finally: import os if os.path.exists(tmp_file_path): os.remove(tmp_file_path) """ def __init__(self, dataset, collate_fn, batch_size=1, sampler=None, num_workers=0, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, batch_sampler=None): r""" :param dataset: 实现了__getitem__和__len__方法的数据容器。 :param callable collate_fn: 用于将样本组合成batch的函数。输入为[dataset[idx1], dataset[idx2], ...], 即dataset中 __getitem__返回值组成的list,返回值必须为两个dict,其中第一个dict会被认为是input,第二个dict中的内容被认为是target。 需要转换为tensor的数据,需要在collate_fn中转化,但不需要转移到对应device。 :param int batch_size: 取出的batch大小 :param sampler: 规定使用的 :class:`~fastNLP.Sampler` 方式. 若为 ``None`` , 使用 :class:`~fastNLP.SequentialSampler`. Default: ``None`` :param int num_workers: 使用多少个进程来预处理数据 :param bool pin_memory: 是否将产生的tensor使用pin memory, 可能会加快速度。 :param bool drop_last: 如果最后一个batch没有batch_size这么多sample,就扔掉最后一个 :param timeout: 生成一个batch的timeout值 :param worker_init_fn: 在每个worker启动时调用该函数,会传入一个值,该值是worker的index。 :param batch_sampler: 当每次batch取出的数据数量不一致时,可以使用该sampler。batch_sampler每次iter应该输出一个list的index。 当batch_sampler不为None时,参数batch_size, sampler, drop_last会被忽略。 """ assert len(dataset) > 0 assert collate_fn is not None, "You must pass collate_fn to pad the batch." if batch_sampler is not None: batch_size = 1 sampler = None drop_last = False super().__init__( dataset=dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, collate_fn=collate_fn, batch_sampler=batch_sampler ) def __iter__(self): self.init_iter() for batch_x, batch_y in self.dataiter: self.cur_batch_indices = None yield batch_x, batch_y def _to_tensor(batch, field_dtype): r""" :param batch: np.array() :param field_dtype: 数据类型 :return: batch, flag. 如果传入的数据支持转为tensor,返回的batch就是tensor,且flag为True;如果传入的数据不支持转为tensor, 返回的batch就是原来的数据,且flag为False """ try: if field_dtype is not None and isinstance(field_dtype, type)\ and issubclass(field_dtype, Number) \ and not isinstance(batch, torch.Tensor): new_batch = torch.as_tensor(batch) flag = True else: new_batch = batch flag = False if torch.is_tensor(new_batch): if 'float' in new_batch.dtype.__repr__(): new_batch = new_batch.float() elif 'int' in new_batch.dtype.__repr__(): new_batch = new_batch.long() return new_batch, flag except Exception as e: raise e
hungarian_tf_tests.py
shaolinkhoa/rec-attend-public
118
41277
import numpy as np import tensorflow as tf import unittest hungarian_module = tf.load_op_library("hungarian.so") class HungarianTests(unittest.TestCase): def test_min_weighted_bp_cover_1(self): W = np.array([[3, 2, 2], [1, 2, 0], [2, 2, 1]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() c_0 = c_0.eval() c_1 = c_1.eval() c_0_t = np.array([2, 1, 1]) c_1_t = np.array([1, 1, 0]) M_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) self.assertTrue((c_0.flatten() == c_0_t.flatten()).all()) self.assertTrue((c_1.flatten() == c_1_t.flatten()).all()) self.assertTrue((M == M_t).all()) pass def test_min_weighted_bp_cover_2(self): W = np.array([[5, 0, 4, 0], [0, 4, 6, 8], [4, 0, 5, 7]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() c_0 = c_0.eval() c_1 = c_1.eval() c_0_t = np.array([5, 6, 5]) c_1_t = np.array([0, 0, 0, 2]) M_t = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) self.assertTrue((c_0.flatten() == c_0_t.flatten()).all()) self.assertTrue((c_1.flatten() == c_1_t.flatten()).all()) self.assertTrue((M == M_t).all()) def test_min_weighted_bp_cover_3(self): W = np.array([[5, 0, 2], [3, 1, 0], [0, 5, 0]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() c_0 = c_0.eval() c_1 = c_1.eval() c_0_t = np.array([2, 0, 4]) c_1_t = np.array([3, 1, 0]) M_t = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) self.assertTrue((c_0.flatten() == c_0_t.flatten()).all()) self.assertTrue((c_1.flatten() == c_1_t.flatten()).all()) self.assertTrue((M == M_t).all()) def test_min_weighted_bp_cover_4(self): W = np.array([[[5, 0, 2], [3, 1, 0], [0, 5, 0]], [[3, 2, 2], [1, 2, 0], [2, 2, 1]]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() c_0 = c_0.eval() c_1 = c_1.eval() c_0_t = np.array([[2, 0, 4], [2, 1, 1]]) c_1_t = np.array([[3, 1, 0], [1, 1, 0]]) M_t = np.array([[[0, 0, 1], [1, 0, 0], [0, 1, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]]) self.assertTrue((c_0.flatten() == c_0_t.flatten()).all()) self.assertTrue((c_1.flatten() == c_1_t.flatten()).all()) self.assertTrue((M == M_t).all()) def test_real_values_1(self): # Test the while loop terminates with real values. W = np.array( [[0.90, 0.70, 0.30, 0.20, 0.40, 0.001, 0.001, 0.001, 0.001, 0.001], [0.80, 0.75, 0.92, 0.10, 0.15, 0.001, 0.001, 0.001, 0.001, 0.001], [0.78, 0.85, 0.66, 0.29, 0.21, 0.001, 0.001, 0.001, 0.001, 0.001], [0.42, 0.55, 0.23, 0.43, 0.33, 0.002, 0.001, 0.001, 0.001, 0.001], [0.64, 0.44, 0.33, 0.33, 0.34, 0.001, 0.002, 0.001, 0.001, 0.001], [0.22, 0.55, 0.43, 0.43, 0.14, 0.001, 0.001, 0.002, 0.001, 0.001], [0.43, 0.33, 0.34, 0.22, 0.14, 0.001, 0.001, 0.001, 0.002, 0.001], [0.33, 0.42, 0.23, 0.13, 0.43, 0.001, 0.001, 0.001, 0.001, 0.002], [0.39, 0.24, 0.53, 0.56, 0.89, 0.001, 0.001, 0.001, 0.001, 0.001], [0.12, 0.34, 0.82, 0.82, 0.77, 0.001, 0.001, 0.001, 0.001, 0.001]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() M_t = np.array( [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]]) self.assertTrue((M == M_t).all()) def test_real_values_2(self): W = np.array([[ 0.00604139, 0.0126045, 0.0117373, 0.01245, 0.00808836, 0.0162662, 0.0137996, 0.00403898, 0.0123786, 1e-05 ], [ 0.00604229, 0.0126071, 0.0117400, 0.0124528, 0.00808971, 0.0162703, 0.0138028, 0.00403935, 0.0123812, 1e-05 ], [ 0.00604234, 0.0126073, 0.0117402, 0.012453, 0.00808980, 0.0162706, 0.0138030, 0.00403937, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() def test_real_values_3(self): W = np.array([[ 0.00302646, 0.00321431, 0.0217552, 0.00836773, 0.0256353, 0.0177026, 0.0289461, 0.0214768, 0.0101898, 1e-05 ], [ 0.00302875, 0.003217, 0.0217628, 0.00836405, 0.0256229, 0.0177137, 0.0289468, 0.0214719, 0.0101904, 1e-05 ], [ 0.00302897, 0.00321726, 0.0217636, 0.00836369, 0.0256217, 0.0177148, 0.0289468, 0.0214714, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.0177149, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.0177149, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05 ]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() def test_real_values_4(self): W = np.array([[ 1e-05, 0.0634311, 1e-05, 4.76687e-05, 1.00079e-05, 1.00378e-05, 1e-05, 1e-05, 1e-05, 3.9034e-05 ], [ 1e-05, 3.42696e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1.0122e-05, 3.43236e-05, 1e-05 ], [ 1e-05, 0.0426792, 0.031155, 1.0008e-05, 0.00483961, 0.0228187, 1e-05, 1e-05, 1e-05, 0.102463 ], [ 1e-05, 1e-05, 1e-05, 1.07065e-05, 1e-05, 1.00185e-05, 1e-05, 1e-05, 1e-05, 1.00007e-05 ], [ 1e-05, 4.22947e-05, 0.00062168, 0.623917, 1.03468e-05, 0.00588984, 1.00004e-05, 1.44433e-05, 1.00014e-05, 0.000213425 ], [ 1e-05, 1.01764e-05, 1e-05, 0.000667249, 1e-05, 0.000485082, 1e-05, 1e-05, 1.00002e-05, 1e-05 ], [ 1e-05, 1e-05, 1.50331e-05, 1e-05, 0.11269, 1e-05, 1e-05, 1e-05, 1e-05, 1.13251e-05 ], [ 1.0001e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 0.0246974, 1e-05, 1e-05, 1e-05 ], [ 1e-05, 2.89144e-05, 1e-05, 1.05147e-05, 1e-05, 0.000894762, 1.03587e-05, 0.150301, 1e-05, 1.00045e-05 ], [ 1e-05, 3.97901e-05, 1e-05, 1.11641e-05, 1e-05, 2.34249e-05, 1.0007e-05, 2.42828e-05, 1e-05, 1.10529e-05 ]]) p = 1e6 W = np.round(W * p) / p M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() def test_real_values_5(self): W = np.array([[ 1.4e-05, 1e-05, 1e-05, 0.053306, 0.044139, 1e-05, 1.2e-05, 1e-05, 1e-05, 1e-05 ], [ 0.001234, 1e-05, 1e-05, 2.1e-05, 1e-05, 0.001535, 0.019553, 1e-05, 1e-05, 1e-05 ], [ 0.002148, 1e-05, 1e-05, 1.6e-05, 0.651536, 2e-05, 7.4e-05, 0.002359, 1e-05, 1e-05 ], [ 3.8e-05, 1e-05, 0.000592, 4.7e-05, 0.09173, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05 ], [ 1e-05, 1e-05, 1e-05, 0.213736, 1e-05, 4.5e-05, 0.000768, 1e-05, 1e-05, 1e-05 ], [ 1e-05, 1e-05, 1e-05, 0.317609, 1e-05, 1e-05, 0.002151, 1e-05, 1e-05, 1e-05 ], [ 0.002802, 1e-05, 1.2e-05, 1e-05, 1e-05, 0.002999, 4.8e-05, 1.1e-05, 0.000919, 1e-05 ], [ 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 0.028816, 1e-05 ], [ 1e-05, 1e-05, 0.047335, 1e-05, 1.2e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05 ], [1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05]]) p = 1e6 W = np.round(W * p) / p M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() def test_real_values_6(self): W = np.array([[ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ]]) p = 1e6 W = np.round(W * p) / p M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(HungarianTests) unittest.TextTestRunner(verbosity=2).run(suite)
bcs-ui/backend/templatesets/legacy_apps/configuration/k8s/constants.py
laodiu/bk-bcs
599
41278
<gh_stars>100-1000 # -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 TH<NAME>, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from backend.templatesets.legacy_apps.instance.funutils import update_nested_dict from ..constants import FILE_DIR_PATTERN, KRESOURCE_NAMES, NUM_VAR_PATTERN # 资源名称 K8S_RES_NAME_PATTERN = "^[a-z0-9]([-a-z0-9]*[a-z0-9])?(\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$" # 挂载卷名称限制 VOLUMR_NAME_PATTERN = "^[a-zA-Z{]{1}[a-zA-Z0-9-_{}]{0,254}$" # TODO 验证变量的情况 PORT_NAME_PATTERN = "^[a-zA-Z{]{1}[a-zA-Z0-9-{}_]{0,254}$" # configmap/secret key 名称限制 KEY_NAME_PATTERN = "^[.a-zA-Z{]{1}[a-zA-Z0-9-_.{}]{0,254}$" # 亲和性验证 AFFINITY_MATCH_EXPRESSION_SCHEMA = { "type": "array", "items": { "type": "object", "required": ["key", "operator"], "properties": { "key": {"type": "string", "minLength": 1}, "operator": {"type": "string", "enum": ["In", "NotIn", "Exists", "DoesNotExist", "Gt", "Lt"]}, "values": {"type": "array", "items": {"type": "string", "minLength": 1}}, }, "additionalProperties": False, }, } POD_AFFINITY_TERM_SCHEMA = { "type": "object", "properties": { "labelSelector": {"type": "object", "properties": {"matchExpressions": AFFINITY_MATCH_EXPRESSION_SCHEMA}}, "namespaces": {"type": "array", "items": {"type": "string"}}, "topologyKey": {"type": "string"}, }, "additionalProperties": False, } POD_AFFINITY_SCHEMA = { "type": "object", "properties": { "requiredDuringSchedulingIgnoredDuringExecution": {"type": "array", "items": POD_AFFINITY_TERM_SCHEMA}, "preferredDuringSchedulingIgnoredDuringExecution": { "type": "array", "items": { "type": "object", "required": ["podAffinityTerm"], "properties": { "weight": { "oneOf": [ {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 1, "maximum": 100}, ] }, "podAffinityTerm": POD_AFFINITY_TERM_SCHEMA, }, }, }, }, "additionalProperties": False, } # 健康检查 & 就绪检查 K8S_CHECK_SCHEMA = { "type": "object", "required": ["initialDelaySeconds", "periodSeconds", "timeoutSeconds", "failureThreshold", "successThreshold"], "properties": { "initialDelaySeconds": { "oneOf": [{"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}] }, "periodSeconds": {"oneOf": [{"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 1}]}, "timeoutSeconds": { "oneOf": [{"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 1}] }, "failureThreshold": { "oneOf": [{"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 1}] }, "successThreshold": { "oneOf": [{"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 1}] }, "exec": {"type": "object", "properties": {"command": {"type": "string"}}}, "tcpSocket": {"type": "object", "properties": {"port": {"oneOf": [{"type": "number"}, {"type": "string"}]}}}, "httpGet": { "type": "object", "properties": { "port": {"oneOf": [{"type": "number"}, {"type": "string"}]}, "path": {"type": "string"}, "httpHeaders": { "type": "array", "items": { "type": "object", "properties": {"name": {"type": "string"}, "value": {"type": "string"}}, }, }, }, }, }, } INIT_CONTAINER_SCHEMA = { "type": "array", "items": { "type": "object", "required": ["name", "image", "imagePullPolicy", "volumeMounts", "ports", "resources"], "properties": { "name": {"type": "string", "minLength": 1}, "image": {"type": "string", "minLength": 1}, "imagePullPolicy": {"type": "string", "enum": ["Always", "IfNotPresent", "Never"]}, "volumeMounts": { "type": "array", "items": { "type": "object", "required": ["name", "mountPath", "readOnly"], "properties": { "name": {"type": "string", "pattern": VOLUMR_NAME_PATTERN}, "mountPath": {"type": "string", "pattern": FILE_DIR_PATTERN}, "readOnly": {"type": "boolean"}, }, }, }, "ports": { "type": "array", "items": { "type": "object", "required": ["name", "containerPort"], "properties": { "name": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "string", "pattern": PORT_NAME_PATTERN}, ] }, "containerPort": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 1, "maximum": 65535}, ] }, }, }, }, "command": {"type": "string"}, "args": {"type": "string"}, # 环境变量前端统一存放在 webCache.env_list 中,有后台组装为 env & envFrom "env": { "type": "array", "items": { "type": "object", "required": ["name"], "properties": { "name": {"type": "string", "minLength": 1}, "value": {"type": "string"}, "valueFrom": { "type": "object", "properties": { "fieldRef": { "type": "object", "required": ["fieldPath"], "properties": {"fieldPath": {"type": "string"}}, }, "configMapKeyRef": { "type": "object", "required": ["name", "key"], "properties": { "name": {"type": "string", "minLength": 1}, "key": {"type": "string", "minLength": 1}, }, }, "secretKeyRef": { "type": "object", "required": ["name", "key"], "properties": { "name": {"type": "string", "minLength": 1}, "key": {"type": "string", "minLength": 1}, }, }, }, }, }, }, }, "envFrom": { "type": "array", "items": { "type": "object", "properties": { "configMapRef": { "type": "object", "properties": {"name": {"type": "string", "minLength": 1}}, }, "secretRef": {"type": "object", "properties": {"name": {"type": "string", "minLength": 1}}}, }, }, }, "resources": { "type": "object", "properties": { "limits": { "type": "object", "properties": { "cpu": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}, ] }, "memory": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "number", "minimum": 0}, {"type": "string", "pattern": NUM_VAR_PATTERN}, ] }, }, }, "requests": { "type": "object", "properties": { "cpu": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "number", "minimum": 0}, {"type": "string", "pattern": NUM_VAR_PATTERN}, ] }, "memory": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "number", "minimum": 0}, {"type": "string", "pattern": NUM_VAR_PATTERN}, ] }, }, }, }, }, }, }, } CONTAINER_SCHEMA = { "type": "array", "items": { "type": "object", "required": [ "name", "image", "imagePullPolicy", "volumeMounts", "ports", "resources", "livenessProbe", "readinessProbe", "lifecycle", ], "properties": { "name": {"type": "string", "minLength": 1}, "image": {"type": "string", "minLength": 1}, "imagePullPolicy": {"type": "string", "enum": ["Always", "IfNotPresent", "Never"]}, "volumeMounts": { "type": "array", "items": { "type": "object", "required": ["name", "mountPath", "readOnly"], "properties": { "name": {"type": "string", "pattern": VOLUMR_NAME_PATTERN}, "mountPath": {"type": "string", "pattern": FILE_DIR_PATTERN}, "readOnly": {"type": "boolean"}, }, }, }, "ports": { "type": "array", "items": { "type": "object", "required": ["name", "containerPort"], "properties": { "name": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "string", "pattern": PORT_NAME_PATTERN}, ] }, "containerPort": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 1, "maximum": 65535}, ] }, }, }, }, "command": {"type": "string"}, "args": {"type": "string"}, # 环境变量前端统一存放在 webCache.env_list 中,有后台组装为 env & envFrom "env": { "type": "array", "items": { "type": "object", "required": ["name"], "properties": { "name": {"type": "string", "minLength": 1}, "value": {"type": "string"}, "valueFrom": { "type": "object", "properties": { "fieldRef": { "type": "object", "required": ["fieldPath"], "properties": {"fieldPath": {"type": "string"}}, }, "configMapKeyRef": { "type": "object", "required": ["name", "key"], "properties": { "name": {"type": "string", "minLength": 1}, "key": {"type": "string", "minLength": 1}, }, }, "secretKeyRef": { "type": "object", "required": ["name", "key"], "properties": { "name": {"type": "string", "minLength": 1}, "key": {"type": "string", "minLength": 1}, }, }, }, }, }, }, }, "envFrom": { "type": "array", "items": { "type": "object", "properties": { "configMapRef": { "type": "object", "properties": {"name": {"type": "string", "minLength": 1}}, }, "secretRef": {"type": "object", "properties": {"name": {"type": "string", "minLength": 1}}}, }, }, }, "resources": { "type": "object", "properties": { "limits": { "type": "object", "properties": { "cpu": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}, ] }, "memory": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "number", "minimum": 0}, {"type": "string", "pattern": NUM_VAR_PATTERN}, ] }, }, }, "requests": { "type": "object", "properties": { "cpu": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "number", "minimum": 0}, {"type": "string", "pattern": NUM_VAR_PATTERN}, ] }, "memory": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "number", "minimum": 0}, {"type": "string", "pattern": NUM_VAR_PATTERN}, ] }, }, }, }, }, "livenessProbe": K8S_CHECK_SCHEMA, "readinessProbe": K8S_CHECK_SCHEMA, "lifecycle": { "type": "object", "required": ["preStop", "postStart"], "properties": { "preStop": {"type": "object", "required": ["exec"], "properties": {"command": {"type": "string"}}}, "postStart": { "type": "object", "required": ["exec"], "properties": {"command": {"type": "string"}}, }, }, }, }, }, } K8S_DEPLOYMENT_SCHEMA = { "type": "object", "required": ["metadata", "spec"], "properties": { "metadata": { "type": "object", "required": ["name"], "properties": {"name": {"type": "string", "pattern": K8S_RES_NAME_PATTERN}}, }, "spec": { "type": "object", "required": ["replicas", "strategy", "template"], "properties": { "replicas": { "oneOf": [{"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}] }, "strategy": { "type": "object", "required": ["type"], "properties": { "type": {"type": "string", "enum": ["RollingUpdate", "Recreate"]}, "rollingUpdate": {"type": "object", "required": ["maxUnavailable", "maxSurge"]}, }, }, "template": { "type": "object", "required": ["metadata", "spec"], "properties": { "metadata": { "type": "object", "properties": {"lables": {"type": "object"}, "annotations": {"type": "object"}}, }, "spec": { "type": "object", "required": [ "restartPolicy", "terminationGracePeriodSeconds", "nodeSelector", "hostNetwork", "dnsPolicy", "volumes", "containers", ], "properties": { "restartPolicy": {"type": "string", "enum": ["Always", "OnFailure", "Never"]}, "terminationGracePeriodSeconds": { "oneOf": [ {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}, ] }, "nodeSelector": {"type": "object"}, "hostNetwork": {"oneOf": [{"type": "number"}, {"type": "string"}]}, "dnsPolicy": { "type": "string", "enum": ["ClusterFirst", "Default", "None", "ClusterFirstWithHostNet"], }, "volumes": { "type": "array", "items": { "type": "object", "required": ["name"], "properties": { "name": {"type": "string", "pattern": VOLUMR_NAME_PATTERN}, "hostPath": { "type": "object", "required": ["path"], "properties": { "path": {"type": "string", "pattern": FILE_DIR_PATTERN} }, }, "emptyDir": {"type": "object"}, "configMap": { "type": "object", "required": ["name"], "properties": {"name": {"type": "string", "minLength": 1}}, }, "secret": { "type": "object", "required": ["secretName"], "properties": {"secretName": {"type": "string", "minLength": 1}}, }, "persistentVolumeClaim": { "type": "object", "required": ["claimName"], "properties": {"claimName": {"type": "string", "minLength": 1}}, }, }, }, }, "containers": CONTAINER_SCHEMA, "initContainers": INIT_CONTAINER_SCHEMA, }, }, }, }, }, }, }, } AFFINITY_SCHEMA = { "type": "object", "properties": { "nodeAffinity": { "type": "object", "properties": { "requiredDuringSchedulingIgnoredDuringExecution": { "type": "object", "required": ["nodeSelectorTerms"], "properties": { "nodeSelectorTerms": { "type": "array", "items": { "type": "object", "required": ["matchExpressions"], "properties": {"matchExpressions": AFFINITY_MATCH_EXPRESSION_SCHEMA}, }, } }, }, "preferredDuringSchedulingIgnoredDuringExecution": { "type": "array", "items": { "type": "object", "required": ["preference"], "properties": { "weight": { "oneOf": [ {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 1, "maximum": 100}, ] }, "preference": { "type": "object", "required": ["matchExpressions"], "properties": {"matchExpressions": AFFINITY_MATCH_EXPRESSION_SCHEMA}, }, }, }, }, }, "additionalProperties": False, }, "podAffinity": POD_AFFINITY_SCHEMA, "podAntiAffinity": POD_AFFINITY_SCHEMA, }, "additionalProperties": False, } # DS 与 Deployment 的差异项:滚动升级策略 中 选择 RollingUpdate 时,只可以选择 maxUnavailable # "required": ["replicas", "strategy", "template"], K8S_DAEMONSET_DIFF = { "properties": { "spec": { "required": ["updateStrategy", "template"], "properties": {"updateStrategy": {"properties": {"rollingUpdate": {"required": ["maxUnavailable"]}}}}, } } } K8S_DAEMONSET_SCHEMA = update_nested_dict(K8S_DEPLOYMENT_SCHEMA, K8S_DAEMONSET_DIFF) # Job 与 Deployment 的差异项: Pod 运行时设置 # TODO: 确认 job 中 replicas 和 parallelism 怎么配置 K8S_JOB_DIFF = { "properties": { "spec": { "type": "object", "required": ["template", "completions", "parallelism", "backoffLimit", "activeDeadlineSeconds"], "properties": { "parallelism": { "oneOf": [{"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}] }, "completions": { "oneOf": [{"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}] }, "backoffLimit": { "oneOf": [{"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}] }, "activeDeadlineSeconds": { "oneOf": [{"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}] }, }, } } } K8S_JOB_SCHEMA = update_nested_dict(K8S_DEPLOYMENT_SCHEMA, K8S_JOB_DIFF) # statefulset 与 Deployment 的差异项 K8S_STATEFULSET_DIFF = { "properties": { "spec": { "required": ["template", "updateStrategy", "podManagementPolicy", "volumeClaimTemplates"], "properties": { "updateStrategy": { "type": "object", "required": ["type"], "properties": { "type": {"type": "string", "enum": ["OnDelete", "RollingUpdate"]}, "rollingUpdate": { "type": "object", "required": ["partition"], "properties": { "partition": { "oneOf": [ {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}, ] } }, }, }, }, "podManagementPolicy": {"type": "string", "enum": ["OrderedReady", "Parallel"]}, "serviceName": {"type": "string", "minLength": 1}, "volumeClaimTemplates": { "type": "array", "items": { "type": "object", "required": ["metadata", "spec"], "properties": { "metadata": { "type": "object", "required": ["name"], "properties": { # "name": {"type": "string", "minLength": 1} }, }, "spec": { "type": "object", "required": ["accessModes", "storageClassName", "resources"], "properties": { # "storageClassName": {"type": "string", "minLength": 1}, "accessModes": { "type": "array", "items": { "type": "string", "enum": ["ReadWriteOnce", "ReadOnlyMany", "ReadWriteMany"], }, }, "resources": { "type": "object", "required": ["requests"], "properties": { "requests": { "type": "object", "required": ["storage"], "properties": { "storage": { "oneOf": [ {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 0}, ] } }, } }, }, }, }, }, }, }, }, } } } K8S_STATEFULSET_SCHEMA = update_nested_dict(K8S_DEPLOYMENT_SCHEMA, K8S_STATEFULSET_DIFF) K8S_CONFIGMAP_SCHEMA = { "type": "object", "required": ["metadata", "data"], "properties": { "metadata": { "type": "object", "required": ["name"], "properties": {"name": {"type": "string", "pattern": K8S_RES_NAME_PATTERN}}, }, "data": { "type": "object", "patternProperties": {KEY_NAME_PATTERN: {"type": "string"}}, "additionalProperties": False, }, }, } K8S_SECRET_SCHEMA = { "type": "object", "required": ["metadata", "data"], "properties": { "metadata": { "type": "object", "required": ["name"], "properties": {"name": {"type": "string", "pattern": K8S_RES_NAME_PATTERN}}, }, "data": { "type": "object", "patternProperties": {KEY_NAME_PATTERN: {"type": "string"}}, "additionalProperties": False, }, }, } K8S_SERVICE_SCHEMA = { "type": "object", "required": ["metadata", "spec"], "properties": { "metadata": {"type": "object", "required": ["name"], "properties": {"name": {"type": "string"}}}, "spec": { "type": "object", "required": ["type", "clusterIP", "ports"], "properties": { "type": {"type": "string", "enum": ["ClusterIP", "NodePort"]}, "clusterIP": {"type": "string"}, "ports": { "type": "array", "items": { "type": "object", "required": ["port", "protocol"], "properties": { "name": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "string", "pattern": PORT_NAME_PATTERN}, ] }, "port": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 1, "maximum": 65535}, ] }, "protocol": {"type": "string", "enum": ["TCP", "UDP"]}, "targetPort": { "anyof": [ {"type": "number", "minimum": 1, "maximum": 65535}, {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "string", "minLength": 1}, ] }, "nodePort": { "oneOf": [ {"type": "string", "pattern": "^$"}, {"type": "string", "pattern": NUM_VAR_PATTERN}, {"type": "number", "minimum": 30000, "maximum": 32767}, ] }, }, }, }, }, }, }, } K8S_INGRESS_SCHEMA = {"type": "object", "required": ["metadata", "spec"]} K8S_HPA_SCHNEA = { "$schema": "http://json-schema.org/draft-04/schema#", "id": "k8s_hpa", "type": "object", "required": ["apiVersion", "kind", "metadata", "spec"], "properties": { "apiVersion": {"type": "string", "enum": ["autoscaling/v2beta2"]}, "kind": {"type": "string", "enum": ["HorizontalPodAutoscaler"]}, "metadata": { "type": "object", "required": ["name"], "properties": {"name": {"type": "string", "pattern": K8S_RES_NAME_PATTERN}}, }, "spec": { "type": "object", "required": ["scaleTargetRef", "minReplicas", "maxReplicas", "metrics"], "properties": { "scaleTargetRef": { "type": "object", "required": ["kind", "name"], "properties": { "kind": {"type": "string", "enum": ["Deployment"]}, "name": {"type": "string", "pattern": K8S_RES_NAME_PATTERN}, }, }, "minReplicas": {"type": "number", "minimum": 0}, "maxReplicas": {"type": "number", "minimum": 0}, "metrics": { "type": "array", "items": { "type": "object", "required": ["type", "resource"], "properties": { "type": {"type": "string", "enum": ["Resource"]}, "resource": { "type": "object", "required": ["name", "target"], "properties": { "name": {"type": "string", "enum": ["cpu", "memory"]}, "target": { "type": "object", "required": ["type", "averageUtilization"], "properties": { "type": {"type": "string", "enum": ["Utilization"]}, "averageUtilization": {"type": "number", "minimum": 0}, }, }, }, }, }, }, }, }, }, }, } CONFIG_SCHEMA = [ K8S_DEPLOYMENT_SCHEMA, K8S_DAEMONSET_SCHEMA, K8S_JOB_SCHEMA, K8S_STATEFULSET_SCHEMA, K8S_SERVICE_SCHEMA, K8S_CONFIGMAP_SCHEMA, K8S_SECRET_SCHEMA, K8S_INGRESS_SCHEMA, K8S_HPA_SCHNEA, ] CONFIG_SCHEMA_MAP = dict(zip(KRESOURCE_NAMES, CONFIG_SCHEMA))
modules/dbnd-airflow/test_dbnd_airflow/test_logging.py
ipattarapong/dbnd
224
41299
import logging from logging.config import dictConfig import dbnd from dbnd.testing.helpers import run_dbnd_subprocess__with_home from dbnd_airflow_contrib.dbnd_airflow_default_logger import DEFAULT_LOGGING_CONFIG class TestDbndAirflowLogging(object): def test_dbnd_airflow_logging_conifg(self): # we implement it as a separte test, as we don't want to affect current logging system dbnd_config = DEFAULT_LOGGING_CONFIG assert dbnd_config def test_can_be_loaded(self): # we can't just load config, it will affect all future tests output = run_dbnd_subprocess__with_home([__file__.replace(".pyc", ".py")]) assert "test_can_be_loaded OK" in output logging.error("Done") if __name__ == "__main__": print( dbnd.__version__ ) # we need it first to import, before we import any airflow code dbnd_config = DEFAULT_LOGGING_CONFIG dictConfig(dbnd_config) logging.info("test_can_be_loaded OK")
scrounger/modules/analysis/ios/app_transport_security.py
noraj/scrounger
217
41316
<filename>scrounger/modules/analysis/ios/app_transport_security.py from scrounger.core.module import BaseModule #helper functions from scrounger.utils.ios import plist_dict_to_xml, plist from scrounger.utils.config import Log class Module(BaseModule): meta = { "author": "RDC", "description": "Checks if there are any Application Transport Security \ misconfigurations", "certainty": 90 } options = [ { "name": "info", "description": "path to a local Info.plist file", "required": True, "default": None } ] _ats_key = "NSAppTransportSecurity" _insecure_options = [ "NSAllowsArbitraryLoads", "NSExceptionAllowsInsecureHTTPLoads", "NSThirdPartyExceptionAllowsInsecureHTTPLoads" ] def run(self): result = { "title": "Application Has Insecure ATS Configurations", "details": "", "severity": "Medium", "report": False } info_content = plist(self.info) Log.info("Parsing Info.plist file contents") ats_xml = plist_dict_to_xml(info_content, self._ats_key) Log.info("Analysing Info.plist file") if self._ats_key not in info_content or not info_content[self._ats_key]: result.update({ "report": True, "details": "No evidence of ATS being implemented found." }) if any(option in ats_xml for option in self._insecure_options): result.update({ "report": True, "details": "The following insecure ATS configuration was \ found : {}".format(ats_xml) }) return { "{}_result".format(self.name()): result }
test/test_parsetron.py
clinc/parsetron
123
41323
<gh_stars>100-1000 from parsetron import * # NOQA import re import pytest __author__ = '<NAME>' class TestMul(object): def test_mul(self): s = String("t")('t') # valid grammar: class G(Grammar): GOAL = s * 1 s_1 = RobustParser(G()) assert s_1.print_parse("t", strict_match=True) assert False is s_1.print_parse("t t", strict_match=True) class G(Grammar): GOAL = s * (1, 2) s_1_2 = RobustParser(G()) assert s_1_2.print_parse("t", strict_match=True) assert s_1_2.print_parse("t t", strict_match=True) assert False is s_1_2.print_parse("t t t", strict_match=True) class G(Grammar): GOAL = s * [1, ] s_1_none = RobustParser(G()) assert s_1_none.print_parse("t", strict_match=True) assert s_1_none.print_parse("t t", strict_match=True) assert s_1_none.print_parse("t t t t t t", strict_match=True) class G(Grammar): GOAL = s * [1, None] s_1_none_a = RobustParser(G()) assert s_1_none_a.print_parse("t", strict_match=True) assert s_1_none_a.print_parse("t t", strict_match=True) assert s_1_none_a.print_parse("t t t t t t", strict_match=True) class G(Grammar): GOAL = s * [3, ] s_3_none = RobustParser(G()) assert False is s_3_none.print_parse("t", strict_match=True) assert False is s_3_none.print_parse("t t", strict_match=True) assert s_3_none.print_parse("t t t", strict_match=True) assert s_3_none.print_parse("t t t t t", strict_match=True) class G(Grammar): GOAL = s * [3, None] s_3_none_a = RobustParser(G()) assert False is s_3_none_a.print_parse("t", strict_match=True) assert False is s_3_none_a.print_parse("t t", strict_match=True) assert s_3_none_a.print_parse("t t t", strict_match=True) assert s_3_none_a.print_parse("t t t t t", strict_match=True) class G(Grammar): GOAL = s * [None, 1] s_none_1 = RobustParser(G()) assert s_none_1.print_parse("t", strict_match=True) class G(Grammar): GOAL = s * [None, 3] s_none_3 = RobustParser(G()) assert s_none_3.print_parse("t", strict_match=True) assert s_none_3.print_parse("t t", strict_match=True) assert s_none_3.print_parse("t t t", strict_match=True) assert False is s_none_3.print_parse("t t t t", strict_match=True) class G(Grammar): GOAL = s * [0, 1] s_0_1 = RobustParser(G()) assert s_0_1.print_parse("t", strict_match=True) assert False is s_0_1.print_parse("a", strict_match=True) class G(Grammar): GOAL = s * [0, None] s_0_1 = RobustParser(G()) assert s_0_1.print_parse("t", strict_match=True) assert False is s_0_1.print_parse("a", strict_match=True) class G(Grammar): GOAL = s * [0, 1] + "b" s_0_1 = RobustParser(G()) assert s_0_1.print_parse("t b", strict_match=True) assert s_0_1.print_parse("b") class G(Grammar): GOAL = s * [0, 3] s_0_3 = RobustParser(G()) assert s_0_3.print_parse("t", strict_match=True) assert s_0_3.print_parse("t t", strict_match=True) assert s_0_3.print_parse("t t t", strict_match=True) assert False is s_0_3.print_parse("t t t t t", strict_match=True) class G(Grammar): GOAL = s * [3, 5] s_3_5 = RobustParser(G()) assert False is s_3_5.print_parse("t t", strict_match=True) assert s_3_5.print_parse("t t t", strict_match=True) assert s_3_5.print_parse("t t t t", strict_match=True) assert s_3_5.print_parse("t t t t t", strict_match=True) assert False is s_3_5.print_parse("t t t t t t", strict_match=True) class G(Grammar): GOAL = s * [3, 3] s_3_3 = RobustParser(G()) assert False is s_3_3.print_parse("t t", strict_match=True) assert s_3_3.print_parse("t t t", strict_match=True) assert False is s_3_3.print_parse("t t t t", strict_match=True) # invalid grammar: with pytest.raises(ValueError): s * [3, 2] with pytest.raises(ValueError): s * (3, 2) with pytest.raises(ValueError): s * 3.0 with pytest.raises(ValueError): s * [3.0, 4] with pytest.raises(ValueError): s * (3, 4.5) with pytest.raises(ValueError): s * None with pytest.raises(ValueError): s * 0 with pytest.raises(ValueError): s * -1 with pytest.raises(ValueError): s * [-1, 3] with pytest.raises(ValueError): s * [-1, None] with pytest.raises(ValueError): s * [1, -1] with pytest.raises(ValueError): s * [None, -1] with pytest.raises(ValueError): s * [1, 2, 3] class TestString(object): def test_empty_init(self): with pytest.raises(ValueError): String("") def test_parse(self): s = StringCs("hello") assert s.parse("hello") with pytest.raises(ParseException): s.parse("Hello") with pytest.raises(ParseException): s.parse("") with pytest.raises(ParseException): s.parse("helloo") with pytest.raises(ParseException): s.parse("hell") class TestRegex(object): def test_empty_init(self): with pytest.raises(ValueError): Regex("") def test_equal(self): assert Regex("ab") == "ab" assert Regex("ab") == "AB" assert Regex("ab") != "ac" assert Regex("ab") != 1 def test_parse(self): r = Regex(r"(ab|bc)") repr(r) assert r.parse("ab") assert r.parse("bc") with pytest.raises(ParseException): assert r.parse("cd") with pytest.raises(ParseException): assert r.parse("abc") r1 = Regex("ab", match_whole=True) with pytest.raises(ParseException): assert r1.parse("abc") r2 = Regex(re.compile("ab")) r2.parse("ab") with pytest.raises(ValueError): Regex(12) r3 = Regex("ab", match_whole=False) r3.parse("abc") class TestSet(object): def test_parse(self): with pytest.raises(ValueError): Set(123) s1 = Set("a b c") s2 = Set(["a", "b", "c"]) s3 = Set({"a", "b", "c"}) s4 = Set("abc") for s in [s1, s2, s3, s4]: s.parse("A") s.parse("B") s.parse("C") with pytest.raises(ParseException): s.parse("d") def test_parse_casesensitive(self): s1 = SetCs("a b c") s2 = SetCs(["a", "b", "c"]) s3 = SetCs({"a", "b", "c"}) s4 = SetCs("abc") for s in [s1, s2, s3, s4]: s.parse("a") s.parse("b") s.parse("c") with pytest.raises(ParseException): s.parse("A") class TestAnd(object): def test_plus(self): a = String("1") + Optional(String("1")) assert len(a.exprs) == 2 a += Regex("3") assert len(a.exprs) == 3 b = "1" + a assert len(b.exprs) == 2 b += "3" assert len(b.exprs) == 3 assert b[0].str == "1" def test_streamline(self): a = String("1") + Optional(String("1")) b = String("1") + Optional(String("1")) c = a + b with pytest.raises(GrammarException): c.parse("1 1") class TestOr(object): def test_or(self): a = String("1") | Optional(String("1")) assert len(a.exprs) == 2 a |= Regex("3") assert len(a.exprs) == 3 a |= String("4") + Optional(String("4")) assert len(a.exprs) == 4 a |= "3" assert len(a.exprs) == 5 with pytest.raises(GrammarException): print(a | 3.3) class TestStr(object): def test_str(self): s = String("a string") assert str(s) == "String(a string)" o = Optional("a string") assert str(o) == "Optional(String(a string))" r = Regex(r"abc")('regex') assert str(r) == 'regex' r1 = r.set_name('xeger') assert str(r1) == 'xeger' class TestGrammar(object): class LightGrammar(Grammar): light_general = String("light") action = Regex(r"(turn on|turn off|off|blink)") times = Regex(r"(once|twice|three times)") optional_times = Optional(times) one_more_light = OneOrMore(light_general) zero_more_action = ZeroOrMore(action) GOAL = zero_more_action + optional_times + one_more_light + \ optional_times + OneOrMore(String("quickly")('quick')) def test_constructor(self): assert 2 == len(GrammarExpression(["1", "2"]).exprs) assert 1 == len(GrammarExpression("2").exprs) with pytest.raises(GrammarException): GrammarExpression(1) def test_grammar_str(self): light = TestGrammar.LightGrammar() repr(light) assert light.name == "LightGrammar" print(light) parser = RobustParser(light) parser_bu = RobustParser(light, BottomUpStrategy) # TODO: this semantics is NOT tesing "grammar" assert True == parser.print_parse("blink light light light quickly") assert True == parser_bu.print_parse("blink light light light quickly") assert True == parser.print_parse("light quickly") assert True == parser_bu.print_parse("light quickly") def test_reserved(self): with pytest.raises(GrammarException): class ReservedGrammar(Grammar): _grammar_ = "reserved" GOAL = _grammar_ ReservedGrammar() def test_goal(self): with pytest.raises(GrammarException): class NoGoalGrammar(Grammar): random = 'random' NoGoalGrammar() def test_test(self): with pytest.raises(NotImplementedError): TestGrammar.LightGrammar.test() class TestZeroOrMore(object): def test_or(self): class OrGrammar(Grammar): GOAL = "1" | ZeroOrMore("1") p = RobustParser(OrGrammar()) p.parse("1 1") class TestParser(object): class LightGrammar(Grammar): def times2int(r): if r.get() == "once": r.set(1) elif r.get() == "twice": r.set(2) elif r.get() == "three times": r.set(3) light = String("light").ignore() color = String("red").replace_result_with((255, 0, 0)) action = Regex(r"(turn on|turn off|off|blink)") times = Regex(r"(once|twice|three times)").set_result_action(times2int) GOAL = action + Optional(color) + light + ZeroOrMore(times) + \ String("quickly")('quick') light = LightGrammar() parser = RobustParser(light) test_str = "blink red light once quickly ignore" def test_parse(self): parser = TestParser.parser test_str = TestParser.test_str assert True == parser.print_parse(test_str, print_json=True) assert True == parser.print_parse(test_str, best_parse=False) assert True == parser.print_parse( test_str, best_parse=False, print_json=True) assert (None, None) == parser.parse("can't parse") assert (None, None) == parser.parse_string("can't parse") t, r = parser.parse(test_str) # test result assert r.times == [1] assert r.color == (255, 0, 0) print(repr(r)) # test __repr__() assert 'quickly' in r.values() assert 'quick' in r.keys() del r['quick'] assert 'quick' not in r.keys() r.quick = 'quickly' assert 'quickly' in r.values() del r.quick assert 'quick' not in r r['quick'] = 'quickly' assert 'quickly' == r.get('quick') assert 'light' not in r # test tree d = t.get_flat_dict(key='GOAL', only_leaf=True) assert 'action' in d[0] d = t.get_flat_dict(key='GOAL', only_leaf=False) assert 'action' in d[0] d = t.get_flat_dict(key='action', only_leaf=False) assert 'action' in d[0] TreeNode.recursive_str_verbose(t) with pytest.raises(ParseException): parser.parse("") with pytest.raises(ValueError): parser._parse_multi_token("") _, tokens = parser._parse_multi_token("can't parse") assert len(tokens) == 0 with pytest.raises(TypeError): parser._parse_multi_token(1) def test_incremental_parse(self): parser = TestParser.parser test_str = TestParser.test_str parser.print_incremental_parse(test_str) assert (None, None) == parser.incremental_parse('blink', False, is_first=True) assert (None, None) == parser.incremental_parse('light', False) t, r = parser.incremental_parse('quickly', is_final=True) assert t is not None assert (None, None) == parser.incremental_parse('light', is_final=True) parser.clear_cache() def test_num_edges(self): class BadRule(ChartRule): NUM_EDGES = 2 with pytest.raises(ValueError): ParsingStrategy([BadRule]) with pytest.raises(NotImplementedError): BadRule().apply() # def test_full_trees(self): # class CatalanGrammar(Grammar): # a = String("a") # A = NULL | a # A |= A + A # GOAL = A # p = RobustParser(CatalanGrammar(), TopDownStrategy) # chart, tokens = p.parse_to_chart("a a a a") # trees = list(chart.trees(tokens, # all_trees=True, # goal=CatalanGrammar.GOAL)) # assert len(trees) == 5 def test_full_trees(self): class FullGrammar(Grammar): a = String("a") b = String("a") GOAL = a + b | b + a | a + a | b + b p = RobustParser(FullGrammar(), TopDownStrategy) chart, tokens = p.parse_to_chart("a a") trees = list(chart.trees(tokens, all_trees=True, goal=FullGrammar.GOAL)) print(chart) # test chart __str__() assert len(trees) == 4 def test_lex_span(self): parser = TestParser.parser test_str = "please turn off the light once twice quickly" _ = " 0 1 2 3 4 5 6 7" tree, result = parser.parse(test_str) # turn off assert parser.chart.get_lexical_span(0) == (1, 3) # light assert parser.chart.get_lexical_span(1) == (4, 5) # once assert parser.chart.get_lexical_span(2) == (5, 6) # twice assert parser.chart.get_lexical_span(3) == (6, 7) # quickly assert parser.chart.get_lexical_span(4) == (7, 8) # turn off (the) light assert parser.chart.get_lexical_span(0, 2) == (1, 5) assert result.action == "turn off" assert result.times == [1, 2] assert result.lex_span() == (1, 8) assert result.lex_span('action') == (1, 3) assert result.lex_span('times') == [(5, 6), (6, 7)] assert result.lex_span('quick') == (7, 8) class TestHierarchicalParser(object): class LightGrammar(Grammar): light = String("light").ignore() color = String("red").replace_result_with((255, 0, 0)) action = Regex(r"(turn on|turn off|off|blink)") times = Regex(r"(once|twice|three times)") one_parse = action + Optional(color) + light + ZeroOrMore(times) GOAL = OneOrMore(one_parse) light = LightGrammar() parser = RobustParser(light) test_str = "blink the red light once turn off red the light twice" _ = " 0 1 2 3 4 5 6 7 8 9 10 " def test_parse(self): parser = TestHierarchicalParser.parser test_str = TestHierarchicalParser.test_str tree, result = parser.parse(test_str) assert len(result.one_parse) == 2 assert result.lex_span() == (0, 11) assert result.one_parse[0].lex_span() == (0, 5) assert result.one_parse[1].lex_span() == (5, 11) assert result.one_parse[1].lex_span('action') == (5, 7) def test_topdown_init_rule(): class CornerGrammar(Grammar): GOAL = String("a") + String("b") p = RobustParser(CornerGrammar(), TopDownStrategy) assert (None, None) == p.parse("b") t, _ = p.parse("a b") assert t is not None assert (None, None) == p.parse("b a") class TestOptional(object): def test_o2(self): class OptionalGrammar(Grammar): s = String("t")('t') o1 = Optional(s) o2 = Optional(o1) GOAL = s + o2 parser = RobustParser(OptionalGrammar(), strategy=TopDownStrategy) assert True == parser.print_parse("t t") assert True == parser.print_parse("t") OptionalGrammar.o2.parse("t") def test_o3(self): class OptionalGrammar(Grammar): s = String("t")('t') o3 = Optional(Optional(s)) GOAL = s + o3 parser = RobustParser(OptionalGrammar(), strategy=BottomUpStrategy) assert True == parser.print_parse("t t") assert True == parser.print_parse("t") class TestNullAnd(object): def test_o2(self): class OptionalGrammar(Grammar): s = String("t")('t') o1 = Optional(s) o2 = ZeroOrMore(s) o3 = o1 + o2 GOAL = s + o3 parser = RobustParser(OptionalGrammar(), strategy=TopDownStrategy) assert True == parser.print_parse("t t") # known bug, FIXME assert False == parser.print_parse("t") class TestDocGrammar(object): def test_o2(self): class LightGrammar(Grammar): action = Set(['change', 'flash', 'set', 'blink']) light = Set(['top', 'middle', 'bottom']) color = Regex(r'(red|yellow|blue|orange|purple|...)') times = Set(['once', 'twice', 'three times']) | Regex(r'\d+ times') one_parse = action + light + Optional(times) + color GOAL = OneOrMore(one_parse) parser = RobustParser(LightGrammar(), strategy=TopDownStrategy) # assert parser.print_parse("set my top light to red") # assert parser.print_parse("set my top light to red and change " # "middle light to yellow") # assert parser.print_parse("set my top light to red and change " # "middle light to yellow and flash bottom light twice in blue") sents = [ "set my top light to red", "set my top light to red and change middle light to yellow", "set my top light to red and change middle light to yellow and " "flash bottom light twice in blue" ] for sent in sents: tree, result = parser.parse_string(sent) print('"%s"' % sent) print("parse tree:") print(tree) print("parse result:") print(result) assert type(result.one_parse) is list print() def test_find_word_boundaries(): boundaries, starts, ends = find_word_boundaries(strip_string( "my lights are off")) assert boundaries == [(0, 2), (3, 9), (10, 13), (14, 17)] assert [0, 3, 10, 14] == sorted(list(starts)) assert [2, 9, 13, 17] == sorted(list(ends)) boundaries, starts, ends = find_word_boundaries(strip_string("")) assert len(boundaries) == 0 assert len(starts) == 0 assert len(ends) == 0
combo/blm/basis/__init__.py
zhangkunliang/BayesOptimization
139
41334
<reponame>zhangkunliang/BayesOptimization from fourier import fourier
Chapter 06/code/prime.py
shivampotdar/Artificial-Intelligence-with-Python
387
41352
<gh_stars>100-1000 import itertools as it import logpy.core as lc from sympy.ntheory.generate import prime, isprime # Check if the elements of x are prime def check_prime(x): if lc.isvar(x): return lc.condeseq([(lc.eq, x, p)] for p in map(prime, it.count(1))) else: return lc.success if isprime(x) else lc.fail # Declate the variable x = lc.var() # Check if an element in the list is a prime number list_nums = (23, 4, 27, 17, 13, 10, 21, 29, 3, 32, 11, 19) print('\nList of primes in the list:') print(set(lc.run(0, x, (lc.membero, x, list_nums), (check_prime, x)))) # Print first 7 prime numbers print('\nList of first 7 prime numbers:') print(lc.run(7, x, check_prime(x)))
transpyle/general/misc.py
EraYaN/transpyle
107
41361
<gh_stars>100-1000 """Various utility functions.""" import ast import collections.abc import typing as t import typed_ast.ast3 as typed_ast3 def dict_mirror(dict_: dict): return {value: key for key, value in dict_.items() if value is not None} def flatten_sequence(sequence: t.MutableSequence[t.Any]) -> None: """Transform a given list of lists of lists (...) of lists into a flat list in-place.""" assert isinstance(sequence, collections.abc.MutableSequence), type(sequence) for i, elem in enumerate(sequence): if isinstance(elem, collections.abc.MutableSequence): flatten_sequence(elem) for value in reversed(elem): sequence.insert(i, value) del sequence[i + len(elem)] def make_flatten_syntax(ast_module): def flatten_syntax(syntax: t.Union[ast_module.AST, t.MutableSequence[t.Any]]) -> None: """Flatten all lists of lists within the given syntax in-place.""" if isinstance(syntax, (ast_module.Module, ast_module.FunctionDef, ast_module.ClassDef, ast_module.For, ast_module.While, ast_module.If, ast_module.With, ast_module.Try, ast_module.ExceptHandler, ast_module.AsyncFunctionDef, ast_module.AsyncFor, ast_module.AsyncWith)): for node in syntax.body: flatten_syntax(node) flatten_sequence(syntax.body) return if isinstance(syntax, (ast_module.For, ast_module.While, ast_module.If, ast_module.Try, ast_module.AsyncFor)): for node in syntax.orelse: flatten_syntax(node) flatten_sequence(syntax.orelse) return if isinstance(syntax, ast_module.Try): for node in syntax.handlers: flatten_syntax(node) # flatten_sequence(syntax.handlers) # unnecessary for node in syntax.finalbody: flatten_syntax(node) flatten_sequence(syntax.finalbody) return if not isinstance(syntax, collections.abc.MutableSequence): return for node in syntax: flatten_syntax(node) flatten_sequence(syntax) return flatten_syntax flatten_syntax = {ast_module: make_flatten_syntax(ast_module) for ast_module in (ast, typed_ast3)}
alipay/aop/api/domain/EntityBasicInfo.py
antopen/alipay-sdk-python-all
213
41366
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class EntityBasicInfo(object): def __init__(self): self._address_desc = None self._category_code = None self._city = None self._contact_number = None self._entity_code = None self._entity_name = None self._latitude = None self._longitude = None self._office_hours_desc = None self._open_day = None self._province = None self._rent_free_time = None self._rent_max_price = None self._rent_price = None self._rent_price_unit = None self._rent_price_unit_cnt = None self._suburb = None @property def address_desc(self): return self._address_desc @address_desc.setter def address_desc(self, value): self._address_desc = value @property def category_code(self): return self._category_code @category_code.setter def category_code(self, value): self._category_code = value @property def city(self): return self._city @city.setter def city(self, value): self._city = value @property def contact_number(self): return self._contact_number @contact_number.setter def contact_number(self, value): self._contact_number = value @property def entity_code(self): return self._entity_code @entity_code.setter def entity_code(self, value): self._entity_code = value @property def entity_name(self): return self._entity_name @entity_name.setter def entity_name(self, value): self._entity_name = value @property def latitude(self): return self._latitude @latitude.setter def latitude(self, value): self._latitude = value @property def longitude(self): return self._longitude @longitude.setter def longitude(self, value): self._longitude = value @property def office_hours_desc(self): return self._office_hours_desc @office_hours_desc.setter def office_hours_desc(self, value): self._office_hours_desc = value @property def open_day(self): return self._open_day @open_day.setter def open_day(self, value): if isinstance(value, list): self._open_day = list() for i in value: self._open_day.append(i) @property def province(self): return self._province @province.setter def province(self, value): self._province = value @property def rent_free_time(self): return self._rent_free_time @rent_free_time.setter def rent_free_time(self, value): self._rent_free_time = value @property def rent_max_price(self): return self._rent_max_price @rent_max_price.setter def rent_max_price(self, value): self._rent_max_price = value @property def rent_price(self): return self._rent_price @rent_price.setter def rent_price(self, value): self._rent_price = value @property def rent_price_unit(self): return self._rent_price_unit @rent_price_unit.setter def rent_price_unit(self, value): self._rent_price_unit = value @property def rent_price_unit_cnt(self): return self._rent_price_unit_cnt @rent_price_unit_cnt.setter def rent_price_unit_cnt(self, value): self._rent_price_unit_cnt = value @property def suburb(self): return self._suburb @suburb.setter def suburb(self, value): self._suburb = value def to_alipay_dict(self): params = dict() if self.address_desc: if hasattr(self.address_desc, 'to_alipay_dict'): params['address_desc'] = self.address_desc.to_alipay_dict() else: params['address_desc'] = self.address_desc if self.category_code: if hasattr(self.category_code, 'to_alipay_dict'): params['category_code'] = self.category_code.to_alipay_dict() else: params['category_code'] = self.category_code if self.city: if hasattr(self.city, 'to_alipay_dict'): params['city'] = self.city.to_alipay_dict() else: params['city'] = self.city if self.contact_number: if hasattr(self.contact_number, 'to_alipay_dict'): params['contact_number'] = self.contact_number.to_alipay_dict() else: params['contact_number'] = self.contact_number if self.entity_code: if hasattr(self.entity_code, 'to_alipay_dict'): params['entity_code'] = self.entity_code.to_alipay_dict() else: params['entity_code'] = self.entity_code if self.entity_name: if hasattr(self.entity_name, 'to_alipay_dict'): params['entity_name'] = self.entity_name.to_alipay_dict() else: params['entity_name'] = self.entity_name if self.latitude: if hasattr(self.latitude, 'to_alipay_dict'): params['latitude'] = self.latitude.to_alipay_dict() else: params['latitude'] = self.latitude if self.longitude: if hasattr(self.longitude, 'to_alipay_dict'): params['longitude'] = self.longitude.to_alipay_dict() else: params['longitude'] = self.longitude if self.office_hours_desc: if hasattr(self.office_hours_desc, 'to_alipay_dict'): params['office_hours_desc'] = self.office_hours_desc.to_alipay_dict() else: params['office_hours_desc'] = self.office_hours_desc if self.open_day: if isinstance(self.open_day, list): for i in range(0, len(self.open_day)): element = self.open_day[i] if hasattr(element, 'to_alipay_dict'): self.open_day[i] = element.to_alipay_dict() if hasattr(self.open_day, 'to_alipay_dict'): params['open_day'] = self.open_day.to_alipay_dict() else: params['open_day'] = self.open_day if self.province: if hasattr(self.province, 'to_alipay_dict'): params['province'] = self.province.to_alipay_dict() else: params['province'] = self.province if self.rent_free_time: if hasattr(self.rent_free_time, 'to_alipay_dict'): params['rent_free_time'] = self.rent_free_time.to_alipay_dict() else: params['rent_free_time'] = self.rent_free_time if self.rent_max_price: if hasattr(self.rent_max_price, 'to_alipay_dict'): params['rent_max_price'] = self.rent_max_price.to_alipay_dict() else: params['rent_max_price'] = self.rent_max_price if self.rent_price: if hasattr(self.rent_price, 'to_alipay_dict'): params['rent_price'] = self.rent_price.to_alipay_dict() else: params['rent_price'] = self.rent_price if self.rent_price_unit: if hasattr(self.rent_price_unit, 'to_alipay_dict'): params['rent_price_unit'] = self.rent_price_unit.to_alipay_dict() else: params['rent_price_unit'] = self.rent_price_unit if self.rent_price_unit_cnt: if hasattr(self.rent_price_unit_cnt, 'to_alipay_dict'): params['rent_price_unit_cnt'] = self.rent_price_unit_cnt.to_alipay_dict() else: params['rent_price_unit_cnt'] = self.rent_price_unit_cnt if self.suburb: if hasattr(self.suburb, 'to_alipay_dict'): params['suburb'] = self.suburb.to_alipay_dict() else: params['suburb'] = self.suburb return params @staticmethod def from_alipay_dict(d): if not d: return None o = EntityBasicInfo() if 'address_desc' in d: o.address_desc = d['address_desc'] if 'category_code' in d: o.category_code = d['category_code'] if 'city' in d: o.city = d['city'] if 'contact_number' in d: o.contact_number = d['contact_number'] if 'entity_code' in d: o.entity_code = d['entity_code'] if 'entity_name' in d: o.entity_name = d['entity_name'] if 'latitude' in d: o.latitude = d['latitude'] if 'longitude' in d: o.longitude = d['longitude'] if 'office_hours_desc' in d: o.office_hours_desc = d['office_hours_desc'] if 'open_day' in d: o.open_day = d['open_day'] if 'province' in d: o.province = d['province'] if 'rent_free_time' in d: o.rent_free_time = d['rent_free_time'] if 'rent_max_price' in d: o.rent_max_price = d['rent_max_price'] if 'rent_price' in d: o.rent_price = d['rent_price'] if 'rent_price_unit' in d: o.rent_price_unit = d['rent_price_unit'] if 'rent_price_unit_cnt' in d: o.rent_price_unit_cnt = d['rent_price_unit_cnt'] if 'suburb' in d: o.suburb = d['suburb'] return o
old/eval_scripts/evaluate_model.py
konatasick/face-of-art
220
41385
<filename>old/eval_scripts/evaluate_model.py from evaluation_functions import * flags = tf.app.flags data_dir = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/conventional_landmark_detection_dataset/' model_path = '/Users/arik/Dropbox/a_mac_thesis/face_heatmap_networks/tests/primary/old/no_flip/basic/' \ 'tests_lr_primary_basic_no_flip/0.01/model/deep_heatmaps-80000' # define paths flags.DEFINE_string('img_dir', data_dir, 'data directory') flags.DEFINE_string('test_data', 'test', 'test set to use full/common/challenging/test/art') flags.DEFINE_string('model_path', model_path, 'model path') # parameters used to train network flags.DEFINE_string('network_type', 'Primary', 'network architecture Fusion/Primary') flags.DEFINE_integer('image_size', 256, 'image size') flags.DEFINE_integer('c_dim', 3, 'color channels') flags.DEFINE_integer('num_landmarks', 68, 'number of face landmarks') flags.DEFINE_integer('scale', 1, 'scale for image normalization 255/1/0') flags.DEFINE_float('margin', 0.25, 'margin for face crops - % of bb size') flags.DEFINE_string('bb_type', 'gt', "bb to use - 'gt':for ground truth / 'init':for face detector output") # choose batch size and debug data size flags.DEFINE_integer('batch_size', 2, 'batch size') flags.DEFINE_bool('debug', True, 'run in debug mode - use subset of the data') flags.DEFINE_integer('debug_data_size', 4, 'subset data size to test in debug mode') # statistics parameters flags.DEFINE_float('max_error', 0.08, 'error threshold to be considered as failure') flags.DEFINE_bool('save_log', True, 'save statistics to log_dir') flags.DEFINE_string('log_path', 'logs/nme_statistics', 'directory for saving NME statistics') FLAGS = flags.FLAGS def main(_): # create directories if not exist if not tf.gfile.Exists(FLAGS.log_path): tf.gfile.MakeDirs(FLAGS.log_path) err = evaluate_heatmap_network( model_path=FLAGS.model_path, network_type=FLAGS.network_type, img_path=FLAGS.img_dir, test_data=FLAGS.test_data, batch_size=FLAGS.batch_size, image_size=FLAGS.image_size, margin=FLAGS.margin, bb_type=FLAGS.bb_type, c_dim=FLAGS.c_dim, scale=FLAGS.scale, num_landmarks=FLAGS.num_landmarks, debug=FLAGS.debug, debug_data_size=FLAGS.debug_data_size) print_nme_statistics( errors=err, model_path=FLAGS.model_path, network_type=FLAGS.network_type, test_data=FLAGS.test_data, max_error=FLAGS.max_error, save_log=FLAGS.save_log, log_path=FLAGS.log_path) if __name__ == '__main__': tf.app.run()
pywick/models/segmentation/testnets/drnet/__init__.py
achaiah/pywick
408
41402
from .drnet import DRNet
src/logos.py
NitikaGupta16/logohunter
128
41415
<filename>src/logos.py import cv2 import numpy as np import os from PIL import Image from timeit import default_timer as timer import utils from utils import contents_of_bbox, features_from_image from similarity import load_brands_compute_cutoffs, similar_matches, similarity_cutoff, draw_matches def detect_logo(yolo, img_path, save_img, save_img_path='./', postfix=''): """ Call YOLO logo detector on input image, optionally save resulting image. Args: yolo: keras-yolo3 initialized YOLO instance img_path: path to image file save_img: bool to save annotated image save_img_path: path to directory where to save image postfix: string to add to filenames Returns: prediction: list of bounding boxes in format (xmin,ymin,xmax,ymax,class_id,confidence) image: unaltered input image as (H,W,C) array """ try: image = Image.open(img_path) if image.mode != "RGB": image = image.convert("RGB") image_array = np.array(image) except: print('File Open Error! Try again!') return None, None prediction, new_image = yolo.detect_image(image) img_out = postfix.join(os.path.splitext(os.path.basename(img_path))) if save_img: new_image.save(os.path.join(save_img_path, img_out)) return prediction, image_array def match_logo(img_test, prediction, model_preproc, outtxt, input_features_cdf_cutoff_labels, save_img, save_img_path='./', timing=False): """ Given an a path to an image and a list of predicted bounding boxes, extract features and check each against input brand features. Declare a match if the cosine similarity is smaller than an input-dependent cutoff. Draw and annotate resulting boxes on image. Args: img_test: input image prediction: bounding box candidates model_preproc: (model, preprocess) tuple of the feature extractor model and the preprocessing function to be applied to image before the model input_features_cdf_cutoff_labels = (feat_input, sim_cutoff, bins, cdf_list, input_labels) tuple of lists related to input brand, giving pre-computed features, similarity cutoffs, cumulative similarity distribution and relative bins specifications, and labels to be drawn when matches are found. save_img: bool flag to save annotated image save_img_path: path to directory where to save image timing: bool flag to output timing information for each step, make plot Returns: outtxt: one line detailing input file path and resulting matched bounding boxes, space-separated in format (xmin,ymin,xmax,ymax,class_label,logo_confidence,similarity_percentile) timing: timing for each step of the pipeline, namely image read, logog candidate extraction, feature computation, matching to input brands (optional, only if timing=True) """ start = timer() model, my_preprocess = model_preproc feat_input, sim_cutoff, bins, cdf_list, input_labels = input_features_cdf_cutoff_labels # from PIL image to np array #img_test = np.array(image) # img_test = cv2.imread(img_path) # could be removed by passing previous PIL image t_read = timer()-start candidates, i_candidates_too_small = contents_of_bbox(img_test, prediction) # filter predicted bboxes to discard small logos prediction = [ pred for i, pred in enumerate(prediction) if i not in i_candidates_too_small] t_box = timer()-start features_cand = features_from_image(candidates, model, my_preprocess) t_feat = timer()-start matches, cos_sim = similar_matches(feat_input, features_cand, sim_cutoff, bins, cdf_list) t_match = timer()-start img_path = outtxt for idx in matches: bb = prediction[idx] label = input_labels[matches[idx][0]] print('Logo #{} - {} {} - classified as {} {:.2f}'.format(idx, tuple(bb[:2]), tuple(bb[2:4]), label, matches[idx][1])) outtxt += ' {},{},{},{},{},{:.2f},{:.3f}'.format(*bb[:4], label,bb[-1], matches[idx][1]) outtxt += '\n' new_img = draw_matches(img_test, input_labels, prediction, matches) t_draw = timer()-start if save_img == True: save_img_path = os.path.abspath(save_img_path) saved = Image.fromarray(new_img).save(os.path.join(save_img_path, os.path.basename(img_path))) # save with opencv, remember to flip RGB->BGR # saved = cv2.imwrite(os.path.join(save_img_path, os.path.basename(img_path)), new_img[...,::-1]) t_save = timer()-start if timing: return outtxt, (t_read, t_box-t_read, t_feat-t_box, t_match-t_feat, t_draw-t_match, t_save-t_draw) return outtxt def detect_video(yolo, video_path, output_path=""): import cv2 vid = cv2.VideoCapture(video_path) if not vid.isOpened(): raise IOError("Couldn't open video") video_FourCC = cv2.VideoWriter_fourcc(*'mp4v') #int(vid.get(cv2.CAP_PROP_FOURCC)) video_fps = vid.get(cv2.CAP_PROP_FPS) video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)), int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))) isOutput = True if output_path != "" else False if isOutput: print(output_path, video_FourCC, video_fps, video_size) out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size) accum_time = 0 curr_fps = 0 fps = "FPS: ??" prev_time = timer() while vid.isOpened(): return_value, frame = vid.read() if not return_value: break # opencv images are BGR, translate to RGB frame = frame[:,:,::-1] image = Image.fromarray(frame) out_pred, image = yolo.detect_image(image) result = np.asarray(image) if isOutput: out.write(result[:,:,::-1]) vid.release() out.release() yolo.close_session()
RecoLocalCalo/Configuration/python/ecalLocalRecoSequenceCosmics_cff.py
Purva-Chaudhari/cmssw
852
41439
<reponame>Purva-Chaudhari/cmssw import FWCore.ParameterSet.Config as cms # Calo geometry service model # # removed by tommaso # #ECAL conditions # include "CalibCalorimetry/EcalTrivialCondModules/data/EcalTrivialCondRetriever.cfi" # #TPG condition needed by ecalRecHit producer if TT recovery is ON from RecoLocalCalo.EcalRecProducers.ecalRecHitTPGConditions_cff import * #ECAL reconstruction from RecoLocalCalo.EcalRecProducers.ecalWeightUncalibRecHit_cfi import * from RecoLocalCalo.EcalRecProducers.ecalFixedAlphaBetaFitUncalibRecHit_cfi import * from RecoLocalCalo.EcalRecProducers.ecalRecHit_cff import * ecalRecHit.cpu.EBuncalibRecHitCollection = 'ecalFixedAlphaBetaFitUncalibRecHit:EcalUncalibRecHitsEB' ecalRecHit.cpu.EEuncalibRecHitCollection = 'ecalFixedAlphaBetaFitUncalibRecHit:EcalUncalibRecHitsEE' ecalRecHit.cpu.ChannelStatusToBeExcluded = [ 'kDAC', 'kNoLaser', 'kNoisy', 'kNNoisy', 'kFixedG6', 'kFixedG1', 'kFixedG0', 'kNonRespondingIsolated', 'kDeadVFE', 'kDeadFE', 'kNoDataNoTP' ] from RecoLocalCalo.EcalRecProducers.ecalPreshowerRecHit_cfi import * from RecoLocalCalo.EcalRecProducers.ecalDetIdToBeRecovered_cfi import * ecalLocalRecoTaskCosmics = cms.Task( ecalFixedAlphaBetaFitUncalibRecHit, ecalWeightUncalibRecHit, ecalDetIdToBeRecovered, ecalCalibratedRecHitTask, ecalPreshowerRecHit ) ecalLocalRecoSequenceCosmics = cms.Sequence(ecalLocalRecoTaskCosmics)
onnxruntime/test/python/quantization/test_op_relu.py
jamill/onnxruntime
669
41446
#!/usr/bin/env python # coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import unittest import numpy as np import onnx from onnx import TensorProto, helper from op_test_utils import TestDataFeeds, check_model_correctness, check_op_type_count, check_qtype_by_node_type from onnxruntime.quantization import QuantFormat, QuantType, quantize_static class TestOpRelu(unittest.TestCase): def input_feeds(self, n, name2shape): input_data_list = [] for i in range(n): inputs = {} for name, shape in name2shape.items(): inputs.update({name: np.random.randint(-1, 2, shape).astype(np.float32)}) input_data_list.extend([inputs]) dr = TestDataFeeds(input_data_list) return dr def construct_model_gemm(self, output_model_path): # (input) # | # Gemm # | # Relu # | # Gemm # | # (output) input_name = "input" output_name = "output" initializers = [] def make_gemm(input_name, weight_shape, weight_name, bias_shape, bias_name, output_name): weight_data = np.random.normal(0, 0.1, weight_shape).astype(np.float32) initializers.append(onnx.numpy_helper.from_array(weight_data, name=weight_name)) bias_data = np.random.normal(0, 0.1, bias_shape).astype(np.float32) initializers.append(onnx.numpy_helper.from_array(bias_data, name=bias_name)) return onnx.helper.make_node( "Gemm", [input_name, weight_name, bias_name], [output_name], alpha=1.0, beta=1.0, transB=1, ) # make gemm1 node gemm1_output_name = "gemm1_output" gemm1_node = make_gemm( input_name, [100, 10], "linear1.weight", [100], "linear1.bias", gemm1_output_name, ) # make Relu relu_output = "relu_output" relu_node = onnx.helper.make_node("Relu", [gemm1_output_name], [relu_output]) # make gemm2 node gemm2_node = make_gemm( relu_output, [10, 100], "linear2.weight", [10], "linear2.bias", output_name, ) # make graph input_tensor = helper.make_tensor_value_info(input_name, TensorProto.FLOAT, [-1, 10]) output_tensor = helper.make_tensor_value_info(output_name, TensorProto.FLOAT, [-1, 10]) graph_name = "relu_test" graph = helper.make_graph( [gemm1_node, relu_node, gemm2_node], graph_name, [input_tensor], [output_tensor], initializer=initializers, ) model = helper.make_model(graph, opset_imports=[helper.make_opsetid("", 13)]) model.ir_version = onnx.IR_VERSION onnx.save(model, output_model_path) def static_quant_test( self, model_fp32_path, data_reader, activation_type, weight_type, extra_options={}, ): activation_proto_qtype = TensorProto.UINT8 if activation_type == QuantType.QUInt8 else TensorProto.INT8 activation_type_str = "u8" if (activation_type == QuantType.QUInt8) else "s8" weight_type_str = "u8" if (weight_type == QuantType.QUInt8) else "s8" model_int8_path = "relu_fp32.quant_{}{}.onnx".format(activation_type_str, weight_type_str) data_reader.rewind() quantize_static( model_fp32_path, model_int8_path, data_reader, quant_format=QuantFormat.QOperator, activation_type=activation_type, weight_type=weight_type, extra_options=extra_options, ) qdq_count = 1 if activation_type == QuantType.QUInt8 else 2 relu_count = 0 if activation_type == QuantType.QUInt8 else 1 quant_nodes = {"QGemm": 2, "QuantizeLinear": qdq_count, "DequantizeLinear": qdq_count, "Relu": relu_count} check_op_type_count(self, model_int8_path, **quant_nodes) qnode_io_qtypes = { "QuantizeLinear": [ ["i", 2, activation_proto_qtype], ["o", 0, activation_proto_qtype], ] } qnode_io_qtypes.update({"DequantizeLinear": [["i", 2, activation_proto_qtype]]}) check_qtype_by_node_type(self, model_int8_path, qnode_io_qtypes) data_reader.rewind() check_model_correctness(self, model_fp32_path, model_int8_path, data_reader.get_next()) def static_quant_test_qdq( self, model_fp32_path, data_reader, activation_type, weight_type, extra_options={}, ): activation_proto_qtype = TensorProto.UINT8 if activation_type == QuantType.QUInt8 else TensorProto.INT8 activation_type_str = "u8" if (activation_type == QuantType.QUInt8) else "s8" weight_type_str = "u8" if (weight_type == QuantType.QUInt8) else "s8" model_int8_path = "relu_fp32.quant_dqd_{}{}.onnx".format(activation_type_str, weight_type_str) data_reader.rewind() quantize_static( model_fp32_path, model_int8_path, data_reader, quant_format=QuantFormat.QDQ, activation_type=activation_type, weight_type=weight_type, extra_options=extra_options, ) relu_count = 0 if activation_type == QuantType.QUInt8 else 1 q_count = 3 if activation_type == QuantType.QUInt8 else 4 dq_count = 7 if activation_type == QuantType.QUInt8 else 8 quant_nodes = {"Gemm": 2, "QuantizeLinear": q_count, "DequantizeLinear": dq_count, "Relu": relu_count} check_op_type_count(self, model_int8_path, **quant_nodes) qnode_io_qtypes = { "QuantizeLinear": [ ["i", 2, activation_proto_qtype], ["o", 0, activation_proto_qtype], ] } check_qtype_by_node_type(self, model_int8_path, qnode_io_qtypes) data_reader.rewind() check_model_correctness(self, model_fp32_path, model_int8_path, data_reader.get_next()) def test_quantize_gemm(self): np.random.seed(1) model_fp32_path = "relu_fp32.onnx" self.construct_model_gemm(model_fp32_path) data_reader = self.input_feeds(1, {"input": [5, 10]}) self.static_quant_test( model_fp32_path, data_reader, activation_type=QuantType.QUInt8, weight_type=QuantType.QUInt8, ) self.static_quant_test_qdq( model_fp32_path, data_reader, activation_type=QuantType.QUInt8, weight_type=QuantType.QUInt8, ) def test_quantize_relu_s8s8(self): np.random.seed(1) model_fp32_path = "relu_fp32.onnx" self.construct_model_gemm(model_fp32_path) data_reader = self.input_feeds(1, {"input": [5, 10]}) self.static_quant_test( model_fp32_path, data_reader, activation_type=QuantType.QInt8, weight_type=QuantType.QInt8, extra_options={"ActivationSymmetric": True}, ) self.static_quant_test_qdq( model_fp32_path, data_reader, activation_type=QuantType.QInt8, weight_type=QuantType.QInt8, extra_options={"ActivationSymmetric": True}, ) if __name__ == "__main__": unittest.main()
tests/config/test_structure.py
gcollard/lightbus
178
41452
<filename>tests/config/test_structure.py import pytest from lightbus.config.structure import make_transport_selector_structure, ApiConfig, RootConfig pytestmark = pytest.mark.unit def test_make_transport_config_structure(): EventTransportSelector = make_transport_selector_structure("event") assert "redis" in EventTransportSelector.__annotations__ def test_make_api_config_structure(): assert "event_transport" in ApiConfig.__annotations__ assert "rpc_transport" in ApiConfig.__annotations__ assert "result_transport" in ApiConfig.__annotations__ assert "validate" in ApiConfig.__annotations__ def test_root_config_service_name(): service_name = RootConfig().service_name assert service_name assert type(service_name) == str assert len(service_name) > 3 # No format parameters in there, should have been formatted upon instantiation assert "{" not in service_name def test_root_config_process_name(): process_name = RootConfig().process_name assert process_name assert type(process_name) == str assert len(process_name) > 3 # No format parameters in there, should have been formatted upon instantiation assert "{" not in process_name
mathics/builtin/files_io/__init__.py
skirpichev/Mathics
1,920
41454
<filename>mathics/builtin/files_io/__init__.py """ Input/Output, Files, and Filesystem """ from mathics.version import __version__ # noqa used in loading to check consistency.
SimGeneral/MixingModule/python/pileupVtxDigitizer_cfi.py
ckamtsikis/cmssw
852
41459
import FWCore.ParameterSet.Config as cms pileupVtxDigitizer = cms.PSet( accumulatorType = cms.string("PileupVertexAccumulator"), hitsProducer = cms.string('generator'), vtxTag = cms.InputTag("generatorSmeared"), vtxFallbackTag = cms.InputTag("generator"), makeDigiSimLinks = cms.untracked.bool(False), saveVtxTimes = cms.bool(False)) from Configuration.Eras.Modifier_phase2_timing_cff import phase2_timing phase2_timing.toModify( pileupVtxDigitizer, saveVtxTimes = cms.bool(True) )
basisnet/personalization/centralized_so_nwp/stackoverflow_basis_models.py
xxdreck/google-research
23,901
41461
<reponame>xxdreck/google-research<filename>basisnet/personalization/centralized_so_nwp/stackoverflow_basis_models.py<gh_stars>1000+ # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RNN models of BasisNet with LSTM cells. It implements a RNN wrapper with specialized LSTM cell with bases for the kernels. """ import functools from typing import Optional import tensorflow as tf CLIENT_SZIE = 500000 class BasisRNNLayer(tf.keras.layers.Layer): """A RNN wrapper using LSTM cell with Basis kernels.""" def __init__(self, cell, num_units, num_basis, recurrent_initializer, kernel_initializer, return_sequences=False): super().__init__() self.rnn_cell = cell( num_units=num_units, num_basis=num_basis, recurrent_initializer=recurrent_initializer, kernel_initializer=kernel_initializer) self.rnn = tf.keras.layers.RNN( self.rnn_cell, return_sequences=return_sequences) def call(self, input_tensor): return self.rnn(input_tensor) class BasisLSTMCell(tf.keras.layers.Layer): """A LSTM cell with Basis kernels.""" def __init__(self, num_units, num_basis, kernel_initializer, recurrent_initializer, word_emb_size=96, use_bias=True, activation=None, ): """Initialize the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. num_basis: The number of bases to learn. kernel_initializer: The initializer of the input/output kernels. recurrent_initializer: The initializer of the recurrent kernels. word_emb_size: The word embedding size. use_bias: Add bias or not. activation: Activation function of the inner states. Default: `tanh`. """ super().__init__() self._num_basis = num_basis self.kernel_initializer = kernel_initializer self.recurrent_initializer = recurrent_initializer self._num_units = num_units self.word_emb_size = word_emb_size self.activation = activation or tf.tanh self.recurrent_activation = tf.sigmoid self.use_bias = use_bias def build(self, input_shape): # the basis embedding is concatenated to the input embedding, # then split out in call(). weight_shape = [self.word_emb_size, self._num_basis, 4 * self._num_units] self.basis_kernel = self.add_weight( shape=weight_shape, name='kernel', initializer=self.kernel_initializer,) self.basis_recurrent_kernel = self.add_weight( shape=(self._num_units, self._num_basis, self._num_units * 4), name='recurrent_kernel', initializer=self.recurrent_initializer, ) self.bias = tf.Variable([0.0]*weight_shape[-1], name='bias') @property def state_size(self): return tf.compat.v1.nn.rnn_cell.LSTMStateTuple(self._num_units, self._num_units) @property def output_size(self): return self._num_units def compose_basis(self, c_prob): """Compose bases into a kernel.""" composed_kernel = tf.keras.backend.sum( tf.expand_dims(self.basis_kernel, 0) * c_prob, axis=2) composed_recurrent_kernel = tf.keras.backend.sum( tf.expand_dims(self.basis_recurrent_kernel, 0) * c_prob, axis=2) return composed_kernel, composed_recurrent_kernel def _compute_carry_and_output_fused(self, z, c_tm1): """Computes carry and output using fused kernels.""" z0, z1, z2, z3 = z i = self.recurrent_activation(z0) f = self.recurrent_activation(z1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3) return c, o def call(self, inputs, states): h_tm1 = states[0] # previous memory state c_tm1 = states[1] # previous carry state inputs, c_prob = tf.split(inputs, [self.word_emb_size, self._num_basis], -1) c_prob = tf.reshape(c_prob, [-1, 1, self._num_basis, 1]) composed_kernel, composed_recurrent_kernel = self.compose_basis(c_prob) # inputs: # [batch_size, 1, self.word_emb_size] # composed_kernel: # [batch_size, self.word_emb_size, self._num_units] # outputs (need to be squeezed): # [batch_size, 1, self._num_units] z = tf.matmul(tf.expand_dims(inputs, 1), composed_kernel) z += tf.matmul(tf.expand_dims(h_tm1, 1), composed_recurrent_kernel) if self.use_bias: z = tf.keras.backend.bias_add(z, self.bias) z = tf.squeeze(z) z = tf.split(z, num_or_size_splits=4, axis=1) c, o = self._compute_carry_and_output_fused(z, c_tm1) h = o * self.activation(c) return h, [h, c] class TransposableEmbedding(tf.keras.layers.Layer): """A Keras layer implements a transposed projection for output.""" def __init__(self, embedding_layer): super().__init__() self.embeddings = embedding_layer.embeddings # Placing `tf.matmul` under the `call` method is important for backpropagating # the gradients of `self.embeddings` in graph mode. def call(self, inputs): return tf.matmul(inputs, self.embeddings, transpose_b=True) def create_basis_recurrent_model(vocab_size = 10000, num_oov_buckets = 1, embedding_size = 96, latent_size = 670, num_basis = 1, seqeunce_length = 20, name = 'rnn', shared_embedding = False, global_embedding_only = False, seed = 0): """Constructs zero-padded keras model with the given parameters and cell. Args: vocab_size: Size of vocabulary to use. num_oov_buckets: Number of out of vocabulary buckets. embedding_size: The size of the embedding. latent_size: The size of the recurrent state. num_basis: The number of bases to learn. seqeunce_length: The seqeunce length of an input. name: (Optional) string to name the returned `tf.keras.Model`. shared_embedding: (Optional) Whether to tie the input and output embeddings. global_embedding_only: use the global embedding only or not. seed: A random seed governing the model initialization and layer randomness. If set to `None`, No random seed is used. Returns: `tf.keras.Model`. """ extended_vocab_size = vocab_size + 3 + num_oov_buckets # For pad/bos/eos/oov. input_x = tf.keras.layers.Input(shape=(None,), name='input_x') input_id = tf.keras.layers.Input(shape=(1,), dtype=tf.int64, name='input_id') input_embedding = tf.keras.layers.Embedding( input_dim=extended_vocab_size, output_dim=embedding_size, mask_zero=True, embeddings_initializer=tf.keras.initializers.RandomUniform(seed=seed), ) embedded = input_embedding(input_x) projected = embedded # Somehow if the vocabulary size is too small, # no out-of-range error will be reported and the model is still good basis_embeddings = tf.keras.layers.Embedding( CLIENT_SZIE, num_basis, name='client_embedding') if global_embedding_only: # using id = 0 for the global embedding basis_vec = basis_embeddings(tf.zeros_like(input_id)) else: basis_vec = basis_embeddings(input_id) # [batch_size, 1, num_basis] basis_vec = tf.reshape(basis_vec, shape=[-1, 1, num_basis]) basis_prob = tf.keras.layers.Softmax()(basis_vec) basis_tensor = tf.tile( basis_prob, tf.constant([1, seqeunce_length, 1], tf.int32)) projected = tf.concat([projected, basis_tensor], -1) recurrent_initializer = tf.keras.initializers.Orthogonal(seed=seed) kernel_initializer = tf.keras.initializers.HeNormal(seed=seed) lstm_layer_builder = functools.partial( BasisRNNLayer, cell=BasisLSTMCell, num_units=latent_size, num_basis=num_basis, recurrent_initializer=recurrent_initializer, kernel_initializer=kernel_initializer, return_sequences=True,) dense_layer_builder = functools.partial( tf.keras.layers.Dense, kernel_initializer=tf.keras.initializers.GlorotNormal(seed=seed)) layer = lstm_layer_builder() processed = layer(projected) # A projection changes dimension from rnn_layer_size to input_embedding_size dense_layer = dense_layer_builder(units=embedding_size) projected = dense_layer(processed) projected = tf.concat([projected, basis_tensor], -1) if shared_embedding: transposed_embedding = TransposableEmbedding(input_embedding) logits = transposed_embedding(projected) else: final_dense_layer = dense_layer_builder( units=extended_vocab_size, activation=None) logits = final_dense_layer(projected) return tf.keras.Model(inputs=[input_x, input_id], outputs=logits, name=name) def create_recurrent_model(vocab_size = 10000, num_oov_buckets = 1, embedding_size = 96, latent_size = 670, num_layers = 1, name = 'rnn', shared_embedding = False, seed = 0): """Constructs zero-padded keras model with the given parameters and cell. Args: vocab_size: Size of vocabulary to use. num_oov_buckets: Number of out of vocabulary buckets. embedding_size: The size of the embedding. latent_size: The size of the recurrent state. num_layers: The number of layers. name: (Optional) string to name the returned `tf.keras.Model`. shared_embedding: (Optional) Whether to tie the input and output embeddings. seed: A random seed governing the model initialization and layer randomness. If set to `None`, No random seed is used. Returns: `tf.keras.Model`. """ extended_vocab_size = vocab_size + 3 + num_oov_buckets # For pad/bos/eos/oov. input_x = tf.keras.layers.Input(shape=(None,), name='input_x') # To be consistent with BasisNet pipeline, not using client id input_id = tf.keras.layers.Input(shape=(1,), dtype=tf.int64, name='input_id') input_embedding = tf.keras.layers.Embedding( input_dim=extended_vocab_size, output_dim=embedding_size, mask_zero=True, embeddings_initializer=tf.keras.initializers.RandomUniform(seed=seed), ) embedded = input_embedding(input_x) projected = embedded lstm_layer_builder = functools.partial( tf.keras.layers.LSTM, units=latent_size, return_sequences=True, recurrent_initializer=tf.keras.initializers.Orthogonal(seed=seed), kernel_initializer=tf.keras.initializers.HeNormal(seed=seed)) dense_layer_builder = functools.partial( tf.keras.layers.Dense, kernel_initializer=tf.keras.initializers.GlorotNormal(seed=seed)) for _ in range(num_layers): layer = lstm_layer_builder() processed = layer(projected) # A projection changes dimension from rnn_layer_size to input_embedding_size dense_layer = dense_layer_builder(units=embedding_size) projected = dense_layer(processed) if shared_embedding: transposed_embedding = TransposableEmbedding(input_embedding) logits = transposed_embedding(projected) else: final_dense_layer = dense_layer_builder( units=extended_vocab_size, activation=None) logits = final_dense_layer(projected) return tf.keras.Model(inputs=[input_x, input_id], outputs=logits, name=name)
tests/test_node_symlink.py
odidev/anytree
700
41502
<gh_stars>100-1000 # -*- coding: utf-8 -*- from nose.tools import eq_ from anytree import AnyNode from anytree import Node from anytree import NodeMixin from anytree import PostOrderIter from anytree import PreOrderIter from anytree import SymlinkNode def test_symlink(): root = Node("root") s0 = Node("sub0", parent=root) s0b = Node("sub0B", parent=s0) s0a = Node("sub0A", parent=s0) s1 = Node("sub1", parent=root, foo=4) s1a = Node("sub1A", parent=s1) s1b = Node("sub1B", parent=s1) s1c = Node("sub1C", parent=s1) s1ca = Node("sub1Ca", parent=s1c) ln = SymlinkNode(s1, parent=root, blub=17) l0 = Node("l0", parent=ln) eq_(root.parent, None) eq_(root.children, tuple([s0, s1, ln])) eq_(s0.parent, root) eq_(s0.children, tuple([s0b, s0a])) eq_(s0b.parent, s0) eq_(s0b.children, tuple()) eq_(s0a.parent, s0) eq_(s0a.children, tuple()) eq_(s1.parent, root) eq_(s1.children, tuple([s1a, s1b, s1c])) eq_(s1.foo, 4) eq_(s1a.parent, s1) eq_(s1a.children, tuple()) eq_(s1b.parent, s1) eq_(s1b.children, tuple()) eq_(s1c.parent, s1) eq_(s1c.children, tuple([s1ca])) eq_(s1ca.parent, s1c) eq_(s1ca.children, tuple()) eq_(ln.parent, root) eq_(ln.children, tuple([l0])) eq_(ln.foo, 4) eq_(s1.blub, 17) eq_(ln.blub, 17) ln.bar = 9 eq_(ln.bar, 9) eq_(s1.bar, 9) result = [node.name for node in PreOrderIter(root)] eq_(result, ['root', 'sub0', 'sub0B', 'sub0A', 'sub1', 'sub1A', 'sub1B', 'sub1C', 'sub1Ca', 'sub1', 'l0']) result = [node.name for node in PostOrderIter(root)] eq_(result, ['sub0B', 'sub0A', 'sub0', 'sub1A', 'sub1B', 'sub1Ca', 'sub1C', 'sub1', 'l0', 'sub1', 'root'])
python/akg/ops/array/tile.py
tianjiashuo/akg
286
41503
# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function: tile""" import akg.tvm import akg.topi import akg.utils as utils @utils.check_input_type(akg.tvm.tensor.Tensor, (list, tuple), (str, type(None))) def Tile(data, multiples, target=utils.CCE): """ Repeats the data in the specified dimensions according to the multiples. Args: data (tvm.tensor.Tensor): Tensor of type float16, float32. multiples (Union[list, tuple]): Elements must be int. The number of repetitions. Returns: tvm.tensor.Tensor, has the same dtype as data. Supported Platforms: 'Ascend', 'GPU', 'CPU' """ utils.check_supported_target(target) shape = [x.value for x in data.shape] dtype = data.dtype utils.check_shape(shape) utils.ops_dtype_check(dtype, utils.DtypeForDavinci.ALL_TYPES) utils.check_int_list(multiples, "multiples") output = akg.topi.tile(data, multiples) return output
test_bot/cogs/misc.py
Enegg/disnake
290
41508
<filename>test_bot/cogs/misc.py import io from base64 import b64decode import disnake from disnake.ext import commands class Misc(commands.Cog): def __init__(self, bot): self.bot: commands.Bot = bot def _get_file(self, description: str) -> disnake.File: # just a white 100x100 png data = b64decode( "<KEY>" ) return disnake.File(io.BytesIO(data), "image.png", description=description) @commands.slash_command() async def attachment_desc(self, inter: disnake.AppCmdInter, desc: str = "test") -> None: """ Send an attachment with the given description (or the default) Parameters ---------- desc: The attachment description """ await inter.response.send_message(file=self._get_file(desc)) @commands.slash_command() async def attachment_desc_edit(self, inter: disnake.AppCmdInter, desc: str = "test") -> None: """ Send a message with a button, which sends an attachment with the given description (or the default) Parameters ---------- desc: The attachment description """ button = disnake.ui.Button(label="edit") button.callback = lambda interaction: interaction.response.edit_message( file=self._get_file(desc) ) view = disnake.ui.View() view.add_item(button) await inter.response.send_message(".", view=view) def setup(bot): bot.add_cog(Misc(bot)) print(f"> Extension {__name__} is ready\n")
tests/test_config.py
DuXiao1997/lyrebird
223
41525
<gh_stars>100-1000 from lyrebird import config from pathlib import Path import json import codecs def test_create(tmpdir): custom_config = {"myconf":"myval"} conf_path = Path(tmpdir)/'conf.json' with codecs.open(conf_path, 'w', 'utf-8') as f: f.write(json.dumps(custom_config, indent=4, ensure_ascii=False)) cm = config.ConfigManager(conf_path=conf_path) assert str(cm.conf_file) == str(tmpdir) + '/conf.json' assert cm.conf_file.exists() assert cm.config assert cm.config['myconf'] == 'myval'
scvi/external/__init__.py
njbernstein/scvi-tools
398
41533
<gh_stars>100-1000 from .cellassign import CellAssign from .gimvi import GIMVI from .solo import SOLO from .stereoscope import RNAStereoscope, SpatialStereoscope __all__ = ["SOLO", "GIMVI", "RNAStereoscope", "SpatialStereoscope", "CellAssign"]
edb/common/binwrapper.py
aaronbrighton/edgedb
7,302
41552
<filename>edb/common/binwrapper.py # # This source file is part of the EdgeDB open source project. # # Copyright 2019-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations import io import struct class BinWrapper: """A utility binary-reader wrapper over any io.BytesIO object.""" i64 = struct.Struct('!q') i32 = struct.Struct('!l') i16 = struct.Struct('!h') i8 = struct.Struct('!b') ui64 = struct.Struct('!Q') ui32 = struct.Struct('!L') ui16 = struct.Struct('!H') ui8 = struct.Struct('!B') def __init__(self, buf: io.BytesIO) -> None: self.buf = buf def write_ui64(self, val: int) -> None: self.buf.write(self.ui64.pack(val)) def write_ui32(self, val: int) -> None: self.buf.write(self.ui32.pack(val)) def write_ui16(self, val: int) -> None: self.buf.write(self.ui16.pack(val)) def write_ui8(self, val: int) -> None: self.buf.write(self.ui8.pack(val)) def write_i64(self, val: int) -> None: self.buf.write(self.i64.pack(val)) def write_i32(self, val: int) -> None: self.buf.write(self.i32.pack(val)) def write_i16(self, val: int) -> None: self.buf.write(self.i16.pack(val)) def write_i8(self, val: int) -> None: self.buf.write(self.i8.pack(val)) def write_len32_prefixed_bytes(self, val: bytes) -> None: self.write_ui32(len(val)) self.buf.write(val) def write_bytes(self, val: bytes) -> None: self.buf.write(val) def read_ui64(self) -> int: data = self.buf.read(8) return self.ui64.unpack(data)[0] def read_ui32(self) -> int: data = self.buf.read(4) return self.ui32.unpack(data)[0] def read_ui16(self) -> int: data = self.buf.read(2) return self.ui16.unpack(data)[0] def read_ui8(self) -> int: data = self.buf.read(1) return self.ui8.unpack(data)[0] def read_i64(self) -> int: data = self.buf.read(8) return self.i64.unpack(data)[0] def read_i32(self) -> int: data = self.buf.read(4) return self.i32.unpack(data)[0] def read_i16(self) -> int: data = self.buf.read(2) return self.i16.unpack(data)[0] def read_i8(self) -> int: data = self.buf.read(1) return self.i8.unpack(data)[0] def read_bytes(self, size: int) -> bytes: data = self.buf.read(size) if len(data) != size: raise BufferError(f'cannot read bytes with len={size}') return data def read_len32_prefixed_bytes(self) -> bytes: size = self.read_ui32() return self.read_bytes(size)
tests/test_resource_library_parser.py
tervay/the-blue-alliance
266
41553
import unittest2 import json from datafeeds.resource_library_parser import ResourceLibraryParser class TestResourceLibraryParser(unittest2.TestCase): def test_parse_hall_of_fame(self): with open('test_data/hall_of_fame.html', 'r') as f: teams, _ = ResourceLibraryParser.parse(f.read()) # Test number of teams self.assertEqual(len(teams), 14) # Test team 987 team = teams[0] self.assertEqual(team["team_id"], "frc987") self.assertEqual(team["team_number"], 987) self.assertEqual(team["year"], 2016) self.assertEqual(team["video"], "wpv-9yd_CJk") self.assertEqual(team["presentation"], "ILxVggTpXhs") self.assertEqual(team["essay"], "https://www.firstinspires.org/sites/default/files/uploads/resource_library/frc/game-and-season-info/awards/2016/chairmans/week-five/team-987.pdf") # Test team 597 team = teams[1] self.assertEqual(team["team_id"], "frc597") self.assertEqual(team["team_number"], 597) self.assertEqual(team["year"], 2015) self.assertEqual(team["video"], "2FKks-d6LOo") self.assertEqual(team["presentation"], "RBXj490clow") self.assertEqual(team["essay"], None) # Test team 27 team = teams[2] self.assertEqual(team["team_id"], "frc27") self.assertEqual(team["team_number"], 27) self.assertEqual(team["year"], 2014) self.assertEqual(team["video"], "BCz2yTVPxbM") self.assertEqual(team["presentation"], "1rE67fTRl98") self.assertEqual(team["essay"], "https://www.firstinspires.org/sites/default/files/uploads/resource_library/frc/game-and-season-info/awards/2015/2014-67-chairmans-handout.pdf") # Test team 1538 team = teams[3] self.assertEqual(team["team_id"], "frc1538") self.assertEqual(team["team_number"], 1538) self.assertEqual(team["year"], 2013) self.assertEqual(team["video"], "p62jRCMkoiw") self.assertEqual(team["presentation"], None) self.assertEqual(team["essay"], None) # Test team 1114 team = teams[4] self.assertEqual(team["team_id"], "frc1114") self.assertEqual(team["team_number"], 1114) self.assertEqual(team["year"], 2012) self.assertEqual(team["video"], "VqciMgjw-SY") self.assertEqual(team["presentation"], None) self.assertEqual(team["essay"], None) # Test team 359 team = teams[5] self.assertEqual(team["team_id"], "frc359") self.assertEqual(team["team_number"], 359) self.assertEqual(team["year"], 2011) self.assertEqual(team["video"], "e9IV1chHJtg") self.assertEqual(team["presentation"], None) self.assertEqual(team["essay"], None) # Test team 341 team = teams[6] self.assertEqual(team["team_id"], "frc341") self.assertEqual(team["team_number"], 341) self.assertEqual(team["year"], 2010) self.assertEqual(team["video"], "-AzvT02ZCNk") self.assertEqual(team["presentation"], None) self.assertEqual(team["essay"], None) # Test team 236 team = teams[7] self.assertEqual(team["team_id"], "frc236") self.assertEqual(team["team_number"], 236) self.assertEqual(team["year"], 2009) self.assertEqual(team["video"], "NmzCLohIZLg") self.assertEqual(team["presentation"], None) self.assertEqual(team["essay"], None) # Test team 842 team = teams[8] self.assertEqual(team["team_id"], "frc842") self.assertEqual(team["team_number"], 842) self.assertEqual(team["year"], 2008) self.assertEqual(team["video"], "N0LMLz6LK7U") self.assertEqual(team["presentation"], None) self.assertEqual(team["essay"], None) # Test team 365 team = teams[9] self.assertEqual(team["team_id"], "frc365") self.assertEqual(team["team_number"], 365) self.assertEqual(team["year"], 2007) self.assertEqual(team["video"], "f8MT7pSRXtg") self.assertEqual(team["presentation"], None) self.assertEqual(team["essay"], None) # Test team 111 team = teams[10] self.assertEqual(team["team_id"], "frc111") self.assertEqual(team["team_number"], 111) self.assertEqual(team["year"], 2006) self.assertEqual(team["video"], "SfCjZMMIt0k") self.assertEqual(team["presentation"], None) self.assertEqual(team["essay"], None)
atlas-aapt/external/libcxx/run-tests.py
MaTriXy/atlas
8,865
41578
# # Copyright (C) 2015 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import argparse import os import subprocess import sys THIS_DIR = os.path.dirname(os.path.realpath(__file__)) ANDROID_DIR = os.path.realpath(os.path.join(THIS_DIR, '../..')) class ArgParser(argparse.ArgumentParser): def __init__(self): super(ArgParser, self).__init__() self.add_argument( '--compiler', choices=('clang', 'gcc'), default='clang') self.add_argument( '--bitness', choices=(32, 64), type=int, default=32) self.add_argument('--host', action='store_true') def gen_test_config(bitness, compiler, host): testconfig_mk_path = os.path.join(THIS_DIR, 'buildcmds/testconfig.mk') with open(testconfig_mk_path, 'w') as test_config: if compiler == 'clang': print('LOCAL_CLANG := true', file=test_config) elif compiler == 'gcc': print('LOCAL_CLANG := false', file=test_config) if bitness == 32: print('LOCAL_MULTILIB := 32', file=test_config) elif bitness == 64: print('LOCAL_MULTILIB := 64', file=test_config) if compiler == 'clang': print('LOCAL_CXX := $(LOCAL_PATH)/buildcmdscc $(CLANG_CXX)', file=test_config) else: if host: prefix = 'HOST_' else: prefix = 'TARGET_' print('LOCAL_CXX := $(LOCAL_PATH)/buildcmdscc ' '$($(LOCAL_2ND_ARCH_VAR_PREFIX){}CXX)'.format(prefix), file=test_config) if host: print('include $(BUILD_HOST_EXECUTABLE)', file=test_config) else: print('include $(BUILD_EXECUTABLE)', file=test_config) def mmm(path): makefile = os.path.join(path, 'Android.mk') main_mk = 'build/core/main.mk' env = dict(os.environ) env['ONE_SHOT_MAKEFILE'] = makefile env['LIBCXX_TESTING'] = 'true' cmd = ['make', '-C', ANDROID_DIR, '-f', main_mk, 'all_modules'] subprocess.check_call(cmd, env=env) def gen_build_cmds(bitness, compiler, host): gen_test_config(bitness, compiler, host) mmm(os.path.join(THIS_DIR, 'buildcmds')) def main(): args, lit_args = ArgParser().parse_known_args() lit_path = os.path.join(ANDROID_DIR, 'external/llvm/utils/lit/lit.py') gen_build_cmds(args.bitness, args.compiler, args.host) mode_str = 'host' if args.host else 'device' android_mode_arg = '--param=android_mode=' + mode_str test_path = os.path.join(THIS_DIR, 'test') lit_args = ['-sv', android_mode_arg] + lit_args cmd = ['python', lit_path] + lit_args + [test_path] sys.exit(subprocess.call(cmd)) if __name__ == '__main__': main()
opennre/tokenization/basic_tokenizer.py
WinterSoHot/OpenNRE
3,284
41592
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BasicTokenizer classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from .utils import (convert_to_unicode, clean_text, split_on_whitespace, split_on_punctuation, tokenize_chinese_chars, strip_accents) class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True, never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): """Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input. """ self.do_lower_case = do_lower_case self.never_split = never_split def tokenize(self, text): """Tokenizes a piece of text.""" text = convert_to_unicode(text) text = clean_text(text) text = tokenize_chinese_chars(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). orig_tokens = split_on_whitespace(text) split_tokens = [] current_positions = [] for token in orig_tokens: if self.do_lower_case and token not in self.never_split: token = token.lower() token = strip_accents(token) current_positions.append([]) current_positions[-1].append(len(split_tokens)) split_tokens.extend(split_on_punctuation(token)) current_positions[-1].append(len(split_tokens)) return split_tokens, current_positions
djangae/models.py
bocribbz/djangae
467
41612
from django.db import models from djangae import patches # noqa class DeferIterationMarker(models.Model): """ Marker to keep track of sharded defer iteration tasks """ # Set to True when all shards have been deferred is_ready = models.BooleanField(default=False) shard_count = models.PositiveIntegerField(default=0) shards_complete = models.PositiveIntegerField(default=0) delete_on_completion = models.BooleanField(default=True) created = models.DateTimeField(auto_now_add=True) callback_name = models.CharField(max_length=100) finalize_name = models.CharField(max_length=100) class Meta: app_label = "djangae" @property def is_finished(self): return self.is_ready and self.shard_count == self.shards_complete def __unicode__(self): return "Background Task (%s -> %s) at %s" % ( self.callback_name, self.finalize_name, self.created )
aws-blog-campanile/bin/objectcopy.py
securityscorecard/aws-big-data-blog
305
41629
#!/usr/bin/python2.7 import sys import os import fileinput import argparse import random import tempfile import ConfigParser # ----------------------------------------------------------------------------- # Support for Hadoop Streaming Sandbox Env # ----------------------------------------------------------------------------- sys.path.append(os.environ.get('PWD')) os.environ["BOTO_PATH"] = '/etc/boto.cfg:~/.boto:./.boto' import campanile import boto from boto.s3.connection import S3Connection # ----------------------------------------------------------------------------- # Global # ----------------------------------------------------------------------------- # cfgfiles Config file search path # ----------------------------------------------------------------------------- cfgfiles = [ "/etc/campanile.cfg", "./campanile.cfg" ] # ----------------------------------------------------------------------------- # Functions # ----------------------------------------------------------------------------- def main(): ## Args parser = argparse.ArgumentParser() parser.add_argument('--src-bucket', required=True, dest='src', help='Source S3 bucket') parser.add_argument('--dst-bucket', required=True, dest='dst', help='Destination S3 bucket') parser.add_argument('--src-endpoint', default=boto.s3.connection.NoHostProvided, help='S3 source endpoint') parser.add_argument('--dst-endpoint', default=boto.s3.connection.NoHostProvided, help='S3 destination endpoint') parser.add_argument('--src-profile', help='Boto profile used for source connection') parser.add_argument('--dst-profile', help='Boto profile used for destination connection') parser.add_argument('--config', '-c', default="./campanile.cfg", help='Path to config file') args = parser.parse_args() ## Config Object cfgfiles = campanile.cfg_file_locations() cfgfiles.insert(0, args.config) c = ConfigParser.SafeConfigParser({'ephemeral':'/tmp'}) c.read(cfgfiles) ## S3 Bucket Connections src_bucket = S3Connection(suppress_consec_slashes=False,\ host=args.src_endpoint,is_secure=True, profile_name=args.src_profile).\ get_bucket(args.src,validate=False) dst_bucket = S3Connection(suppress_consec_slashes=False,\ host=args.dst_endpoint,is_secure=True, profile_name=args.dst_profile).\ get_bucket(args.dst,validate=False) ## Reporting Counters files = 0 movedbytes = 0 ## Select random tmpdir to distribute load across disks tmpdir = random.choice(c.get('DEFAULT',"ephemeral").split(',')) start_index = campanile.stream_index() for line in fileinput.input("-"): name, etag, size, mtime, mid, part, partcount, startbyte, stopbyte \ = line.rstrip('\n').split('\t')[start_index:] srckey = src_bucket.get_key(name, validate=False) dstkey = dst_bucket.get_key(name, validate=False) if mid == campanile.NULL: headers={} report_name = name expected_size = int(size) else: headers={'Range' : "bytes=%s-%s" % (startbyte, stopbyte)} report_name = "%s-%s" % (name, 'part') expected_size = int(stopbyte) - int(startbyte) + 1 with tempfile.SpooledTemporaryFile(max_size=c.getint('DEFAULT',\ 'maxtmpsize'),dir=tmpdir) as fp: ## Download p = campanile.FileProgress(name, verbose=1) srckey.get_contents_to_file(fp, headers=headers, cb=p.progress) if fp.tell() != expected_size: raise Exception("Something bad happened for %s. \ Expecting %s, but got %s" % \ (report_name, expected_size, fp.tell())) campanile.counter(args.src, "OutputBytes", size) fp.flush fp.seek(0) if mid == campanile.NULL: dstkey.cache_control= srckey.cache_control dstkey.content_type = srckey.content_type dstkey.content_encoding = srckey.content_encoding dstkey.content_disposition = srckey.content_disposition dstkey.content_language = srckey.content_language dstkey.metadata = srckey.metadata dstkey.md5 = srckey.md5 report_name = name else: mp = boto.s3.multipart.MultiPartUpload(bucket=dst_bucket) mp.id = mid mp.key_name = name report_name = "%s-%s" % (name, part) ## Upload p = campanile.FileProgress(report_name, verbose=1) if mid == campanile.NULL: dstkey.set_contents_from_file(fp, encrypt_key=srckey.encrypted, cb=p.progress) newetag = dstkey.etag.replace("\"","") else: mpart = mp.upload_part_from_file(fp,part_num=int(part), cb=p.progress) newetag = mpart.etag.replace("\"","") if newetag != srckey.md5: ## Add alert raise Exception("Something bad happened for %s. \ Expecting %s md5, but got %s" % \ (report_name, srckey.md5, newetag)) if mid != campanile.NULL: print "%s\t%s\t%s\t%s\t%s\t%s\t%s" % \ (name, etag, mid, newetag, part, startbyte, stopbyte) campanile.counter(args.dst, "InputBytes", expected_size) campanile.status("%s/%s:OK" % (args.dst,report_name)) # ----------------------------------------------------------------------------- # Main # ----------------------------------------------------------------------------- if __name__ == "__main__": main()
smart_open/tests/test_package.py
sivchand/smart_open
2,047
41635
<reponame>sivchand/smart_open<filename>smart_open/tests/test_package.py # -*- coding: utf-8 -*- import os import unittest import pytest from smart_open import open skip_tests = "SMART_OPEN_TEST_MISSING_DEPS" not in os.environ class PackageTests(unittest.TestCase): @pytest.mark.skipif(skip_tests, reason="requires missing dependencies") def test_azure_raises_helpful_error_with_missing_deps(self): with pytest.raises(ImportError, match=r"pip install smart_open\[azure\]"): open("azure://foo/bar") @pytest.mark.skipif(skip_tests, reason="requires missing dependencies") def test_aws_raises_helpful_error_with_missing_deps(self): match = r"pip install smart_open\[s3\]" with pytest.raises(ImportError, match=match): open("s3://foo/bar") @pytest.mark.skipif(skip_tests, reason="requires missing dependencies") def test_gcs_raises_helpful_error_with_missing_deps(self): with pytest.raises(ImportError, match=r"pip install smart_open\[gcs\]"): open("gs://foo/bar")
src/commands/jsdoc/generate_jsdoc.py
PranjalPansuriya/JavaScriptEnhancements
690
41661
import sublime, sublime_plugin import os from ...libs import util from ...libs import JavascriptEnhancementsExecuteOnTerminalCommand class JavascriptEnhancementsGenerateJsdocCommand(JavascriptEnhancementsExecuteOnTerminalCommand, sublime_plugin.WindowCommand): is_node = True is_bin_path = True def prepare_command(self): jsdoc_conf_file = os.path.join(self.settings['project_dir_name'], self.settings['project_settings']['jsdoc']['conf_file']) if os.path.isfile(jsdoc_conf_file) : self.command = ["jsdoc", "-c", jsdoc_conf_file] else : sublime.error_message("JSDOC ERROR: Can't load "+jsdoc_conf_file+" file!\nConfiguration file REQUIRED!") return self._run() def _run(self): super(JavascriptEnhancementsGenerateJsdocCommand, self)._run() def is_enabled(self): return True if util.is_javascript_project() else False
src/architectures/transformer_encoder.py
francismontalbo/attention-is-all-you-need-paper
167
41665
import torch.nn as nn from architectures.position_wise_feed_forward_net import PositionWiseFeedForwardNet from architectures.multi_head_attention import MultiHeadAttention from architectures.add_and_norm import AddAndNorm class TransformerEncoderBlock(nn.Module): def __init__(self, d_model, n_heads, d_ff, dropout_proba): super(TransformerEncoderBlock, self).__init__() self.W_q = nn.Linear(d_model, d_model) self.W_k = nn.Linear(d_model, d_model) self.W_v = nn.Linear(d_model, d_model) self.mha_layer=MultiHeadAttention(d_model, n_heads) self.dropout_layer_1=nn.Dropout(dropout_proba) self.add_and_norm_layer_1 = AddAndNorm(d_model) self.ffn_layer = PositionWiseFeedForwardNet(d_model, d_ff) self.dropout_layer_2=nn.Dropout(dropout_proba) self.add_and_norm_layer_2 = AddAndNorm(d_model) def forward(self, x, mask): # x dims: (batch_size, src_seq_len, d_model) # mask dim: (batch_size, 1, 1, src_seq_len) q = self.W_q(x) # (batch_size, src_seq_len, d_model) k = self.W_k(x) # (batch_size, src_seq_len, d_model) v = self.W_v(x) # (batch_size, src_seq_len, d_model) mha_out = self.mha_layer(q, k, v, mask) # (batch_size, src_seq_len, d_model) mha_out= self.dropout_layer_1(mha_out) # (batch_size, src_seq_len, d_model) mha_out = self.add_and_norm_layer_1(x, mha_out) # (batch_size, src_seq_len, d_model) ffn_out = self.ffn_layer(mha_out) # (batch_size, src_seq_len, d_model) ffn_out= self.dropout_layer_2(ffn_out) # (batch_size, src_seq_len, d_model) ffn_out = self.add_and_norm_layer_2(mha_out, ffn_out) # (batch_size, src_seq_len, d_model) return ffn_out class TransformerEncoder(nn.Module): def __init__(self, n_blocks, n_heads, d_model, d_ff, dropout_proba=0.1): super(TransformerEncoder, self).__init__() self.encoder_blocks=nn.ModuleList([TransformerEncoderBlock(d_model, n_heads, d_ff, dropout_proba) for _ in range(n_blocks)]) def forward(self, x, mask): for encoder_block in self.encoder_blocks: x = encoder_block(x, mask) return x
Payloads/Zip-Traversal/make.py
5tr1x/SecLists
39,901
41668
#!/usr/bin/env python3 import zipfile # The file to USE inside the zip, before compression filein = "index.php" print("[i] FileIn: %s\n" % filein) # How deep are we going? depth = "" # Loop 11 times (00-10) for i in range(11): # The .zip file to use zipname = "depth-%02d.zip" % i print("[i] ZipName: %s" % zipname) # Get the zip file out ready with zipfile.ZipFile(zipname , 'w') as zip: # The file INSIDDE the zip filezip = "%s%s" % (depth, filein) print("[i] ZipFile: %s" % filezip) # Write the zip file out zip.write(filein, filezip) # Increase depth for next loop depth += "../" print("\n[i] Done")
addons/Sprytile-6b68d00/rx/linq/observable/transduce.py
trisadmeslek/V-Sekai-Blender-tools
733
41679
"""Transducers for RxPY. There are several different implementations of transducers in Python. This implementation is currently targeted for: - http://code.sixty-north.com/python-transducers You should also read the excellent article series "Understanding Transducers through Python" at: - http://sixty-north.com/blog/series/understanding-transducers-through-python Other implementations of transducers in Python are: - https://github.com/cognitect-labs/transducers-python """ from rx.core import Observable, AnonymousObservable from rx.internal import extensionmethod class Observing(object): """An observing transducer.""" def __init__(self, observer): self.observer = observer def initial(self): return self.observer def step(self, obs, input): return obs.on_next(input) def complete(self, obs): return obs.on_completed() def __call__(self, result, item): return self.step(result, item) @extensionmethod(Observable) def transduce(self, transducer): """Execute a transducer to transform the observable sequence. Keyword arguments: :param Transducer transducer: A transducer to execute. :returns: An Observable sequence containing the results from the transducer. :rtype: Observable """ source = self def subscribe(observer): xform = transducer(Observing(observer)) def on_next(v): try: xform.step(observer, v) except Exception as e: observer.on_error(e) def on_completed(): xform.complete(observer) return source.subscribe(on_next, observer.on_error, on_completed) return AnonymousObservable(subscribe)
tests/api/endpoints/admin/test_institution_users.py
weimens/seahub
420
41706
import json import logging from django.urls import reverse from seahub.test_utils import BaseTestCase from tests.common.utils import randstring from seahub.institutions.models import Institution, InstitutionAdmin from seahub.profile.models import Profile logger = logging.getLogger(__name__) class AdminInstitutionUsersTest(BaseTestCase): def setUp(self): pass def _add_institution(self, name=''): return Institution.objects.create(name=name) def _delete_institution(self, name=''): try: institution = Institution.objects.get(name=name) institution.delete() except Exception as e: logger.error(e) def test_can_get(self): self.login_as(self.admin) inst = self._add_institution('int1') url = reverse('api-v2.1-admin-institution-users', args=[inst.id]) resp = self.client.get(url) self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert type(json_resp['user_list']) is list inst.delete() def test_no_permission(self): self.logout() self.login_as(self.admin_no_other_permission) inst = self._add_institution('int1') url = reverse('api-v2.1-admin-institution-users', args=[inst.id]) resp = self.client.get(url) self.assertEqual(403, resp.status_code) def test_can_create(self): self.login_as(self.admin) inst = self._add_institution('int1') url = reverse('api-v2.1-admin-institution-users', args=[inst.id]) data = { 'email': 'invalid_email_string', } resp = self.client.post(url, data) self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert type(json_resp['success']) is list assert type(json_resp['failed']) is list class AdminInstitutionUserTest(BaseTestCase): def setUp(self): pass def _add_institution(self, name=''): return Institution.objects.create(name=name) def _delete_institution(self, name=''): try: institution = Institution.objects.get(name=name) institution.delete() except Exception as e: logger.error(e) def _add_user_in_institution(self, email, inst_name): profile = Profile.objects.get_profile_by_user(email) if not profile: profile = Profile.objects.add_or_update(username=email, institution=inst_name) else: profile.institution = inst_name profile.save() def test_can_update(self): self.login_as(self.admin) inst = self._add_institution('int1') self._add_user_in_institution(self.user.email, inst.name) url = reverse('api-v2.1-admin-institution-user', args=[inst.id, self.user.email]) data = 'is_institution_admin=True' resp = self.client.put(url, data, 'application/x-www-form-urlencoded') self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert json_resp['is_institution_admin'] is True inst.delete() def test_can_delete(self): self.login_as(self.admin) inst = self._add_institution('int1') self._add_user_in_institution(self.user.email, inst.name) url = reverse('api-v2.1-admin-institution-user', args=[inst.id, self.user.email]) resp = self.client.delete(url) self.assertEqual(200, resp.status_code) inst.delete()
sdk/python/pulumi_azure/appservice/public_certificate.py
henriktao/pulumi-azure
109
41716
<reponame>henriktao/pulumi-azure<filename>sdk/python/pulumi_azure/appservice/public_certificate.py # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['PublicCertificateArgs', 'PublicCertificate'] @pulumi.input_type class PublicCertificateArgs: def __init__(__self__, *, app_service_name: pulumi.Input[str], blob: pulumi.Input[str], certificate_location: pulumi.Input[str], certificate_name: pulumi.Input[str], resource_group_name: pulumi.Input[str]): """ The set of arguments for constructing a PublicCertificate resource. :param pulumi.Input[str] app_service_name: The name of the App Service. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] blob: The base64-encoded contents of the certificate. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] certificate_location: The location of the certificate. Possible values are `CurrentUserMy`, `LocalMachineMy` and `Unknown`. :param pulumi.Input[str] certificate_name: The name of the public certificate. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] resource_group_name: The name of the Resource Group where the App Service Public Certificate should exist. Changing this forces a new App Service Public Certificate to be created. """ pulumi.set(__self__, "app_service_name", app_service_name) pulumi.set(__self__, "blob", blob) pulumi.set(__self__, "certificate_location", certificate_location) pulumi.set(__self__, "certificate_name", certificate_name) pulumi.set(__self__, "resource_group_name", resource_group_name) @property @pulumi.getter(name="appServiceName") def app_service_name(self) -> pulumi.Input[str]: """ The name of the App Service. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "app_service_name") @app_service_name.setter def app_service_name(self, value: pulumi.Input[str]): pulumi.set(self, "app_service_name", value) @property @pulumi.getter def blob(self) -> pulumi.Input[str]: """ The base64-encoded contents of the certificate. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "blob") @blob.setter def blob(self, value: pulumi.Input[str]): pulumi.set(self, "blob", value) @property @pulumi.getter(name="certificateLocation") def certificate_location(self) -> pulumi.Input[str]: """ The location of the certificate. Possible values are `CurrentUserMy`, `LocalMachineMy` and `Unknown`. """ return pulumi.get(self, "certificate_location") @certificate_location.setter def certificate_location(self, value: pulumi.Input[str]): pulumi.set(self, "certificate_location", value) @property @pulumi.getter(name="certificateName") def certificate_name(self) -> pulumi.Input[str]: """ The name of the public certificate. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "certificate_name") @certificate_name.setter def certificate_name(self, value: pulumi.Input[str]): pulumi.set(self, "certificate_name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the Resource Group where the App Service Public Certificate should exist. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @pulumi.input_type class _PublicCertificateState: def __init__(__self__, *, app_service_name: Optional[pulumi.Input[str]] = None, blob: Optional[pulumi.Input[str]] = None, certificate_location: Optional[pulumi.Input[str]] = None, certificate_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, thumbprint: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering PublicCertificate resources. :param pulumi.Input[str] app_service_name: The name of the App Service. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] blob: The base64-encoded contents of the certificate. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] certificate_location: The location of the certificate. Possible values are `CurrentUserMy`, `LocalMachineMy` and `Unknown`. :param pulumi.Input[str] certificate_name: The name of the public certificate. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] resource_group_name: The name of the Resource Group where the App Service Public Certificate should exist. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] thumbprint: The thumbprint of the public certificate. """ if app_service_name is not None: pulumi.set(__self__, "app_service_name", app_service_name) if blob is not None: pulumi.set(__self__, "blob", blob) if certificate_location is not None: pulumi.set(__self__, "certificate_location", certificate_location) if certificate_name is not None: pulumi.set(__self__, "certificate_name", certificate_name) if resource_group_name is not None: pulumi.set(__self__, "resource_group_name", resource_group_name) if thumbprint is not None: pulumi.set(__self__, "thumbprint", thumbprint) @property @pulumi.getter(name="appServiceName") def app_service_name(self) -> Optional[pulumi.Input[str]]: """ The name of the App Service. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "app_service_name") @app_service_name.setter def app_service_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "app_service_name", value) @property @pulumi.getter def blob(self) -> Optional[pulumi.Input[str]]: """ The base64-encoded contents of the certificate. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "blob") @blob.setter def blob(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "blob", value) @property @pulumi.getter(name="certificateLocation") def certificate_location(self) -> Optional[pulumi.Input[str]]: """ The location of the certificate. Possible values are `CurrentUserMy`, `LocalMachineMy` and `Unknown`. """ return pulumi.get(self, "certificate_location") @certificate_location.setter def certificate_location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "certificate_location", value) @property @pulumi.getter(name="certificateName") def certificate_name(self) -> Optional[pulumi.Input[str]]: """ The name of the public certificate. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "certificate_name") @certificate_name.setter def certificate_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "certificate_name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> Optional[pulumi.Input[str]]: """ The name of the Resource Group where the App Service Public Certificate should exist. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter def thumbprint(self) -> Optional[pulumi.Input[str]]: """ The thumbprint of the public certificate. """ return pulumi.get(self, "thumbprint") @thumbprint.setter def thumbprint(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "thumbprint", value) class PublicCertificate(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, app_service_name: Optional[pulumi.Input[str]] = None, blob: Optional[pulumi.Input[str]] = None, certificate_location: Optional[pulumi.Input[str]] = None, certificate_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Manages an App Service Public Certificate. ## Example Usage ```python import pulumi import base64 import pulumi_azure as azure example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West Europe") example_plan = azure.appservice.Plan("examplePlan", location=example_resource_group.location, resource_group_name=example_resource_group.name, sku=azure.appservice.PlanSkuArgs( tier="Standard", size="S1", )) example_app_service = azure.appservice.AppService("exampleAppService", location=example_resource_group.location, resource_group_name=example_resource_group.name, app_service_plan_id=example_plan.id) example_public_certificate = azure.appservice.PublicCertificate("examplePublicCertificate", resource_group_name=example_resource_group.name, app_service_name=example_app_service.name, certificate_name="example-public-certificate", certificate_location="Unknown", blob=(lambda path: base64.b64encode(open(path).read().encode()).decode())("app_service_public_certificate.cer")) ``` ## Import App Service Public Certificates can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:appservice/publicCertificate:PublicCertificate example /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/group1/providers/Microsoft.Web/sites/site1/publicCertificates/publicCertificate1 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] app_service_name: The name of the App Service. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] blob: The base64-encoded contents of the certificate. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] certificate_location: The location of the certificate. Possible values are `CurrentUserMy`, `LocalMachineMy` and `Unknown`. :param pulumi.Input[str] certificate_name: The name of the public certificate. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] resource_group_name: The name of the Resource Group where the App Service Public Certificate should exist. Changing this forces a new App Service Public Certificate to be created. """ ... @overload def __init__(__self__, resource_name: str, args: PublicCertificateArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages an App Service Public Certificate. ## Example Usage ```python import pulumi import base64 import pulumi_azure as azure example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West Europe") example_plan = azure.appservice.Plan("examplePlan", location=example_resource_group.location, resource_group_name=example_resource_group.name, sku=azure.appservice.PlanSkuArgs( tier="Standard", size="S1", )) example_app_service = azure.appservice.AppService("exampleAppService", location=example_resource_group.location, resource_group_name=example_resource_group.name, app_service_plan_id=example_plan.id) example_public_certificate = azure.appservice.PublicCertificate("examplePublicCertificate", resource_group_name=example_resource_group.name, app_service_name=example_app_service.name, certificate_name="example-public-certificate", certificate_location="Unknown", blob=(lambda path: base64.b64encode(open(path).read().encode()).decode())("app_service_public_certificate.cer")) ``` ## Import App Service Public Certificates can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:appservice/publicCertificate:PublicCertificate example /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/group1/providers/Microsoft.Web/sites/site1/publicCertificates/publicCertificate1 ``` :param str resource_name: The name of the resource. :param PublicCertificateArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(PublicCertificateArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, app_service_name: Optional[pulumi.Input[str]] = None, blob: Optional[pulumi.Input[str]] = None, certificate_location: Optional[pulumi.Input[str]] = None, certificate_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = PublicCertificateArgs.__new__(PublicCertificateArgs) if app_service_name is None and not opts.urn: raise TypeError("Missing required property 'app_service_name'") __props__.__dict__["app_service_name"] = app_service_name if blob is None and not opts.urn: raise TypeError("Missing required property 'blob'") __props__.__dict__["blob"] = blob if certificate_location is None and not opts.urn: raise TypeError("Missing required property 'certificate_location'") __props__.__dict__["certificate_location"] = certificate_location if certificate_name is None and not opts.urn: raise TypeError("Missing required property 'certificate_name'") __props__.__dict__["certificate_name"] = certificate_name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["thumbprint"] = None super(PublicCertificate, __self__).__init__( 'azure:appservice/publicCertificate:PublicCertificate', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, app_service_name: Optional[pulumi.Input[str]] = None, blob: Optional[pulumi.Input[str]] = None, certificate_location: Optional[pulumi.Input[str]] = None, certificate_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, thumbprint: Optional[pulumi.Input[str]] = None) -> 'PublicCertificate': """ Get an existing PublicCertificate resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] app_service_name: The name of the App Service. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] blob: The base64-encoded contents of the certificate. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] certificate_location: The location of the certificate. Possible values are `CurrentUserMy`, `LocalMachineMy` and `Unknown`. :param pulumi.Input[str] certificate_name: The name of the public certificate. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] resource_group_name: The name of the Resource Group where the App Service Public Certificate should exist. Changing this forces a new App Service Public Certificate to be created. :param pulumi.Input[str] thumbprint: The thumbprint of the public certificate. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _PublicCertificateState.__new__(_PublicCertificateState) __props__.__dict__["app_service_name"] = app_service_name __props__.__dict__["blob"] = blob __props__.__dict__["certificate_location"] = certificate_location __props__.__dict__["certificate_name"] = certificate_name __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["thumbprint"] = thumbprint return PublicCertificate(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="appServiceName") def app_service_name(self) -> pulumi.Output[str]: """ The name of the App Service. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "app_service_name") @property @pulumi.getter def blob(self) -> pulumi.Output[str]: """ The base64-encoded contents of the certificate. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "blob") @property @pulumi.getter(name="certificateLocation") def certificate_location(self) -> pulumi.Output[str]: """ The location of the certificate. Possible values are `CurrentUserMy`, `LocalMachineMy` and `Unknown`. """ return pulumi.get(self, "certificate_location") @property @pulumi.getter(name="certificateName") def certificate_name(self) -> pulumi.Output[str]: """ The name of the public certificate. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "certificate_name") @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Output[str]: """ The name of the Resource Group where the App Service Public Certificate should exist. Changing this forces a new App Service Public Certificate to be created. """ return pulumi.get(self, "resource_group_name") @property @pulumi.getter def thumbprint(self) -> pulumi.Output[str]: """ The thumbprint of the public certificate. """ return pulumi.get(self, "thumbprint")
stackoverflow/spiders/items.py
Janeho454199/stackoverflow-spider
131
41725
<filename>stackoverflow/spiders/items.py #!/usr/bin/env python # -*- coding: utf-8 -*- import scrapy class StackoverflowItem(scrapy.Item): links = scrapy.Field() views = scrapy.Field() votes = scrapy.Field() answers = scrapy.Field() tags = scrapy.Field() questions = scrapy.Field()
entity/query_item.py
will4906/PatentCrawler
136
41735
<reponame>will4906/PatentCrawler<gh_stars>100-1000 # -*- coding: utf-8 -*- """ Created on 2017/3/19 @author: will4906 """ import re def handle_item_group(item_group): """ 处理item_group函数 :param item_group: :return: """ AND = ' AND ' OR = ' OR ' NOT = ' NOT ' exp_str = "" keyand = item_group.__getattribute__('And') keyor = item_group.__getattribute__('Or') keynot = item_group.__getattribute__('Not') if keyand is not None: parms = keyand.__getattribute__('parm') for parm in parms: exp_str += AND + parm exp_str = exp_str.replace(AND, '', 1) if keyor is not None: parms = keyor.__getattribute__('parm') for parm in parms: exp_str += OR + parm if keyand is None: exp_str = exp_str.replace(OR, '', 1) if keynot is not None: parms = keynot.__getattribute__('parm') for parm in parms: exp_str += NOT + parm if keyand is None and keyor is None: exp_str = exp_str.replace(NOT, '', 1) return exp_str # 处理申请号的函数 def handle_number(title, request_number): word_reg = '[a-zA-Z]' if isinstance(request_number, ItemGroup): search_exp = handle_item_group(request_number) is_word = re.search(word_reg, search_exp[:2]) if is_word is not None: return title + '=(' + search_exp + '+)' else: return title + '=(+' + search_exp + '+)' else: is_word = re.search(word_reg, request_number[:2]) if is_word is not None: return title + '=(' + request_number + '+)' else: return title + '=(+' + request_number + '+)' def handle_date_element(title, date_element): """ 处理日期元素的函数 :param title: :param date_element: :return: """ if isinstance(date_element, DateSelect): return title + date_element.__getattribute__('search_exp') else: raise Exception('We just support DateSelect for date element!') def handle_invention_type(title, invention_type): """ 处理发明类型的函数 :param title: :param invention_type: :return: """ exp_str = "" if isinstance(invention_type, Or): OR = ' OR ' keyor = invention_type if keyor is not None: parms = keyor.__getattribute__('parm') for parm in parms: if parm == 'I' or parm == 'U' or parm == 'D': parm = '\"' + parm + '\"' elif parm.find('发明申请') != -1: parm = '\"I\"' elif parm.find('实用新型') != -1: parm = '\"U\"' elif parm.find('外观设计') != -1: parm = '\"D\"' exp_str += OR + parm exp_str = exp_str.replace(OR, '', 1) elif isinstance(invention_type, str): if invention_type == 'I' or invention_type == 'U' or invention_type == 'D': exp_str = '\"' + invention_type + '\"' elif invention_type.find('发明申请') != -1: exp_str = '\"I\"' elif invention_type.find('实用新型') != -1: exp_str = '\"U\"' elif invention_type.find('外观设计') != -1: exp_str = '\"D\"' else: raise Exception('We just support string or Or for invention_type element!') return title + "=(" + exp_str + ")" def default_handle(title, default): """ 默认处理函数 :param title: :param default: :return: """ if isinstance(default, ItemGroup): return title + '=(' + handle_item_group(default) + ')' elif isinstance(default, str): return title + '=(' + default + ')' else: raise Exception('We just support string or ItemGroup!') def find_element_in_item_group(element, item_group): """ 在ItemGroup里面寻找相应的的element :param element: :param item_group: :return: """ keyand = item_group.__getattribute__('And') keyor = item_group.__getattribute__('Or') keynot = item_group.__getattribute__('Not') if keyand is not None: parms = keyand.__getattribute__('parm') try: return parms.index(element) except: pass if keyor is not None: parms = keyor.__getattribute__('parm') try: return parms.index(element) except: pass if keynot is not None: parms = keynot.__getattribute__('parm') try: return parms.index(element) except: pass return None title_case = { 'request_number': handle_number, 'request_date': handle_date_element, 'publish_number': handle_number, 'publish_date': handle_date_element, 'invention_name': default_handle, 'ipc_class_number': default_handle, 'proposer': default_handle, 'inventor': default_handle, 'priority_number': default_handle, 'priority_date': handle_date_element, 'abstract': default_handle, 'claim': default_handle, 'instructions': default_handle, 'key_word': default_handle, 'locarno_class_number': default_handle, 'description_of_the_design': default_handle, 'agent': default_handle, 'agency': default_handle, 'proposer_post_code': default_handle, 'proposer_address': default_handle, 'proposer_location': default_handle, 'FT_class_number': default_handle, 'UC_class_number': default_handle, 'ECLA_class_number': default_handle, 'FI_class_number': default_handle, 'English_invention_name': default_handle, 'French_invention_name': default_handle, 'German_invention_name': default_handle, 'other_invention_name': default_handle, 'English_abstract': default_handle, 'PCT_enters_national_phase_date': handle_date_element, 'PCT_international_application_number': handle_number, 'French_abstract': default_handle, 'German_abstract': default_handle, 'other_abstract': default_handle, 'PCT_international_application_date': handle_date_element, 'PCT_international_publish_number': handle_number, 'PCT_international_publish_date': handle_date_element, 'CPC_class_number': default_handle, 'C-SETS': default_handle, 'invention_type': handle_invention_type, 'publish_country': default_handle, } title_define = { 'patent_id': '专利id', 'request_number': '申请号', 'request_date': '申请日', 'publish_number': '公开(公告)号', 'publish_date': '公开(公告)日', 'invention_name': '发明名称', 'ipc_class_number': 'IPC分类号', 'proposer': '申请(专利权)人', 'inventor': '发明人', 'priority_number': '优先权号', 'priority_date': '优先权日', 'abstract': '摘要', 'claim': '权利要求', 'instructions': '说明书', 'key_word': '关键词', 'locarno_class_number': '外观设计洛迦诺分类号', 'description_of_the_design': '外观设计简要说明', 'agent': '代理人', 'agency': '代理机构', 'proposer_post_code': '申请人邮编', 'proposer_address': '申请人地址', 'proposer_location': '申请人所在国(省)', 'FT_class_number': 'FT分类号', 'UC_class_number': 'UC分类号', 'ECLA_class_number': 'ECLA分类号', 'FI_class_number': 'FI分类号', 'English_invention_name': '发明名称(英)', 'French_invention_name': '发明名称(法)', 'German_invention_name': '发明名称(德)', 'other_invention_name': '发明名称(其他)', 'English_abstract': '摘要(英)', 'PCT_enters_national_phase_date': 'PCT进入国家阶段日期', 'PCT_international_application_number': 'PCT国际申请号', 'French_abstract': '摘要(法)', 'German_abstract': '摘要(德)', 'other_abstract': '摘要(其他)', 'PCT_international_application_date': 'PCT国际申请日期', 'PCT_international_publish_number': 'PCT国际申请公开号', 'PCT_international_publish_date': 'PCT国际申请公开日期', 'CPC_class_number': 'CPC分类号', 'C-SETS': 'C-SETS', 'invention_type': '发明类型', 'publish_country': '公开国', 'legal_status': '法律状态', 'legal_status_effective_date': '法律状态生效日' } # 日期选择器 class DateSelect: def __init__(self, select='=', date='2001-01-01', enddate=None): # 符号:'=', '>', '>=', '<', '<=', ':' self.select = select # 日期(固定格式),eg: 2001-01-01 self.date = date # 结束日期,当符号位为":"时,此变量有效,只从date开始到enddate结束 self.enddate = enddate self.search_exp = '' if self.select != ':': self.search_exp = self.select + self.date else: self.search_exp = '=' + self.date + self.select + self.enddate def __repr__(self): return 'DateSelect{select=' + str(self.select) + ',date=' + str(self.date) + ',enddate=' + str( self.enddate) + '}' def __str__(self): return 'DateSelect{select=' + str(self.select) + ',date=' + str(self.date) + ',enddate=' + str( self.enddate) + '}' class ItemGroup: def __init__(self, And=None, Or=None, Not=None): self.And = And self.Or = Or self.Not = Not def add_or(self, *parm): if self.Or is None: self.Or = Or(*parm) else: self.Or.add_parm(*parm) def __repr__(self): whole = '' if self.And is not None: whole += str(self.And) if self.Or is not None: whole += str(self.Or) if self.Not is not None: whole += str(self.Not) return whole class And: def __init__(self, *parm): self.parm = list(parm) def add_parm(self, *ps): self.parm = self.parm + list(ps) def __repr__(self): andStr = '' for p in self.parm: andStr += str(p) + ';' return andStr class Or: def __init__(self, *parm): self.parm = list(parm) def add_parm(self, *ps): self.parm = self.parm + ps def __repr__(self): andStr = '' for p in self.parm: andStr += str(p) + ';' return andStr class Not: def __init__(self, *parm): self.parm = list(parm) def __repr__(self): andStr = '' for p in self.parm: andStr += str(p) + ';' return andStr class SipoItem: """ 一个用来解析专利网站专利检索表达式的实例 """ def __init__(self, **kwargs): self.startIndex = 0 self.__queryAnd = And() self.target_parm = {} # 经过整理后的目标参数 self.__prepare_item(kwargs) for title, value in title_define.items(): key = kwargs.get(title) if key is not None: self.__queryAnd.add_parm(title_case.get(title)(value, key)) self.__itemGroup = ItemGroup(And=self.__queryAnd) self.search_exp_cn = handle_item_group(self.__itemGroup) # 生成的检索表达式 self.target_parm = self.__check_target_parm(kwargs) def __prepare_item(self, items): invention_type = items.get('invention_type') if invention_type is not None: publish_country = items.get('publish_country') if publish_country is None: items['publish_country'] = 'CN' else: if isinstance(publish_country, str): if publish_country != 'CN': items['publish_country'] = ItemGroup(Or=Or(publish_country, 'CN')) elif isinstance(publish_country, ItemGroup): if find_element_in_item_group('CN', publish_country) is None: publish_country.add_or('CN') def __check_target_parm(self, parm): target = {} if isinstance(parm, dict): for key, value in parm.items(): if key == 'invention_type': if isinstance(value, Or): for index, pvalue in enumerate(value.parm): if pvalue == '"I"' or pvalue == '发明申请': pvalue = {'en': '"I"', 'cn': '发明申请'} elif pvalue == '"U"' or pvalue == '实用新型': pvalue = {'en': '"U"', 'cn': '实用新型'} elif pvalue == '"D"' or pvalue == '外观设计': pvalue = {'en': '"D"', 'cn': '外观设计'} else: raise Exception('Please check the inventor_type') value.parm[index] = pvalue else: if value == '"I"' or value == '发明申请': value = {'en': '"I"', 'cn': '发明申请'} elif value == '"U"' or value == '实用新型': value = {'en': '"U"', 'cn': '实用新型'} elif value == '"D"' or value == '外观设计': value = {'en': '"D"', 'cn': '外观设计'} else: raise Exception('Please check the inventor_type') target[key] = value return target def __repr__(self): return self.search_exp_cn
feature_engine/imputation/drop_missing_data.py
kylegilde/feature_engine
196
41746
# Authors: <NAME> <<EMAIL>> # License: BSD 3 clause from typing import List, Optional, Union import pandas as pd from feature_engine.dataframe_checks import _is_dataframe from feature_engine.imputation.base_imputer import BaseImputer from feature_engine.variable_manipulation import _check_input_parameter_variables class DropMissingData(BaseImputer): """ DropMissingData() will delete rows containing missing values. It provides similar functionality to pandas.drop_na(). It works for numerical and categorical variables. You can enter the list of variables for which missing values should be evaluated. Alternatively, the imputer will evaluate missing data in all variables in the dataframe. More details in the :ref:`User Guide <drop_missing_data>`. Parameters ---------- missing_only: bool, default=True If `True`, rows will be dropped when they show missing data in variables with missing data in the train set, that is, in the data set used in `fit()`. If `False`, rows will be dropped if there is missing data in any of the variables. This parameter only works when `threshold=None`, otherwise it is ignored. variables: list, default=None The list of variables to consider for the imputation. If None, the imputer will evaluate missing data in all variables in the dataframe. Alternatively, the imputer will evaluate missing data only in the variables in the list. Note that if `missing_only=True` only variables with missing data in the train set will be considered to drop a row, which might be a subset of the indicated list. threshold: int or float, default=None Require that percentage of non-NA values in a row to keep it. If `threshold=1`, all variables need to have data to keep the row. If `threshold=0.5`, 50% of the variables need to have data to keep the row. If `threshold=0.01`, 10% of the variables need to have data to keep the row. If `thresh=None`, rows with NA in any of the variables will be dropped. Attributes ---------- variables_: The variables for which missing data will be examined to decide if a row is dropped. The attribute `variables_` is different from the parameter `variables` when the latter is `None`, or when only a subset of the indicated variables show NA in the train set if `missing_only=True`. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: Find the variables for which missing data should be evaluated. transform: Remove rows with missing data. fit_transform: Fit to the data, then transform it. return_na_data: Returns a dataframe with the rows that contain missing data. """ def __init__( self, missing_only: bool = True, threshold: Union[None, int, float] = None, variables: Union[None, int, str, List[Union[str, int]]] = None, ) -> None: if not isinstance(missing_only, bool): raise ValueError( "missing_only takes values True or False. " f"Got {missing_only} instead." ) if threshold is not None: if not isinstance(threshold, (int, float)) or not (0 < threshold <= 1): raise ValueError( "threshold must be a value between 0 < x <= 1. " f"Got {threshold} instead." ) self.variables = _check_input_parameter_variables(variables) self.missing_only = missing_only self.threshold = threshold def fit(self, X: pd.DataFrame, y: Optional[pd.Series] = None): """ Find the variables for which missing data should be evaluated to decide if a row should be dropped. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The training data set. y: pandas Series, default=None y is not needed in this imputation. You can pass None or y. """ # check input dataframe X = _is_dataframe(X) # find variables for which indicator should be added # if threshold, then missing_only is ignored: if self.threshold is not None: if not self.variables: self.variables_ = [var for var in X.columns] else: self.variables_ = self.variables # if threshold is None, we have the option to identify # variables with NA only. else: if self.missing_only: if not self.variables: self.variables_ = [ var for var in X.columns if X[var].isnull().sum() > 0 ] else: self.variables_ = [ var for var in self.variables if X[var].isnull().sum() > 0 ] else: if not self.variables: self.variables_ = [var for var in X.columns] else: self.variables_ = self.variables self.n_features_in_ = X.shape[1] return self def transform(self, X: pd.DataFrame) -> pd.DataFrame: """ Remove rows with missing data. Parameters ---------- X: pandas dataframe of shape = [n_samples, n_features] The dataframe to be transformed. Returns ------- X_new: pandas dataframe The complete case dataframe for the selected variables, of shape [n_samples - n_samples_with_na, n_features] """ X = self._check_transform_input_and_state(X) if self.threshold: X.dropna( thresh=len(self.variables_) * self.threshold, subset=self.variables_, axis=0, inplace=True, ) else: X.dropna(axis=0, how="any", subset=self.variables_, inplace=True) return X def return_na_data(self, X: pd.DataFrame) -> pd.DataFrame: """ Returns the subset of the dataframe with the rows with missing values. That is, the subset of the dataframe that would be removed with the `transform()` method. This method may be useful in production, for example if we want to store or log the removed observations, that is, rows that will not be fed into the model. Parameters ---------- X_na: pandas dataframe of shape = [n_samples_with_na, features] The subset of the dataframe with the rows with missing data. """ X = self._check_transform_input_and_state(X) if self.threshold: idx = pd.isnull(X[self.variables_]).mean(axis=1) >= self.threshold idx = idx[idx] else: idx = pd.isnull(X[self.variables_]).any(1) idx = idx[idx] return X.loc[idx.index, :]
dev/examples/tungraph.py
Cam2337/snap-python
242
41768
<gh_stars>100-1000 import random import sys sys.path.append("../swig-r") import snap def PrintGStats(s, Graph): ''' Print graph statistics ''' print "graph %s, nodes %d, edges %d, empty %s" % ( s, Graph.GetNodes(), Graph.GetEdges(), "yes" if Graph.Empty() else "no") def DefaultConstructor(): ''' Test the default constructor ''' Graph = snap.TUNGraph() PrintGStats("DefaultConstructor:Graph",Graph) def ManipulateNodesEdges(): ''' Test node, edge creation ''' NNodes = 10000 NEdges = 100000 FName = "test.graph" Graph = snap.TUNGraph() t = Graph.Empty() # create the nodes for i in range(0, NNodes): Graph.AddNode(i) t = Graph.Empty() n = Graph.GetNodes() # create random edges NCount = NEdges while NCount > 0: x = int(random.random() * NNodes) y = int(random.random() * NNodes) # skip the loops in this test if x != y and not Graph.IsEdge(x,y): n = Graph.AddEdge(x, y) NCount -= 1 PrintGStats("ManipulateNodesEdges:Graph1",Graph) # get all the nodes NCount = 0 NI = Graph.BegNI() while NI < Graph.EndNI(): NCount += 1 NI.Next() # get all the edges for all the nodes ECount1 = 0; NI = Graph.BegNI() while NI < Graph.EndNI(): ECount1 += NI.GetOutDeg() NI.Next() ECount1 = ECount1 / 2 # get all the edges directly ECount2 = 0; EI = Graph.BegEI() while EI < Graph.EndEI(): ECount2 += 1 EI.Next() print "graph ManipulateNodesEdges:Graph2, nodes %d, edges1 %d, edges2 %d" % ( NCount, ECount1, ECount2) # assignment Graph1 = Graph; PrintGStats("ManipulateNodesEdges:Graph3",Graph1) # save the graph FOut = snap.TFOut(snap.TStr(FName)) Graph.Save(FOut) FOut.Flush() # load the graph FIn = snap.TFIn(snap.TStr(FName)) Graph2 = snap.TUNGraph(FIn) PrintGStats("ManipulateNodesEdges:Graph4",Graph2) # remove all the nodes and edges for i in range(0, NNodes): n = Graph.GetRndNId() Graph.DelNode(n) PrintGStats("ManipulateNodesEdges:Graph5",Graph) Graph1.Clr() PrintGStats("ManipulateNodesEdges:Graph6",Graph1) def GetSmallGraph(): ''' Test small graph ''' Graph = snap.TUNGraph() Graph.GetSmallGraph() PrintGStats("GetSmallGraph:Graph",Graph) if __name__ == '__main__': print "----- DefaultConstructor -----" DefaultConstructor() print "----- ManipulateNodesEdges -----" ManipulateNodesEdges() print "----- GetSmallGraph -----" GetSmallGraph()
doc/source/conf.py
Steap/glance
309
41775
# Copyright (c) 2010 OpenStack Foundation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # Glance documentation build configuration file import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../..')) sys.path.insert(0, os.path.abspath('../../bin')) # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'stevedore.sphinxext', 'sphinx.ext.viewcode', 'oslo_config.sphinxext', 'oslo_config.sphinxconfiggen', 'oslo_policy.sphinxpolicygen', 'openstackdocstheme', 'sphinxcontrib.apidoc', ] # openstackdocstheme options openstackdocs_repo_name = 'openstack/glance' openstackdocs_bug_project = 'glance' openstackdocs_bug_tag = 'documentation' # sphinxcontrib.apidoc options apidoc_module_dir = '../../glance' apidoc_output_dir = 'contributor/api' apidoc_excluded_paths = [ 'hacking/*', 'hacking', 'tests/*', 'tests', 'db/sqlalchemy/*', 'db/sqlalchemy'] apidoc_separate_modules = True config_generator_config_file = [ ('../../etc/oslo-config-generator/glance-api.conf', '_static/glance-api'), ('../../etc/oslo-config-generator/glance-cache.conf', '_static/glance-cache'), ('../../etc/oslo-config-generator/glance-manage.conf', '_static/glance-manage'), ('../../etc/oslo-config-generator/glance-scrubber.conf', '_static/glance-scrubber'), ] policy_generator_config_file = [ ('../../etc/glance-policy-generator.conf', '_static/glance'), ] # The master toctree document. master_doc = 'index' # General information about the project. copyright = u'2010-present, OpenStack Foundation.' exclude_patterns = [ # The man directory includes some snippet files that are included # in other documents during the build but that should not be # included in the toctree themselves, so tell Sphinx to ignore # them when scanning for input files. 'cli/footer.txt', 'cli/general_options.txt', 'cli/openstack_options.txt', ] # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. show_authors = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'native' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['glance.'] # -- Options for man page output -------------------------------------------- # Grouping the document tree for man pages. # List of tuples 'sourcefile', 'target', u'title', u'Authors name', 'manual' man_pages = [ ('cli/glanceapi', 'glance-api', u'Glance API Server', [u'OpenStack'], 1), ('cli/glancecachecleaner', 'glance-cache-cleaner', u'Glance Cache Cleaner', [u'OpenStack'], 1), ('cli/glancecachemanage', 'glance-cache-manage', u'Glance Cache Manager', [u'OpenStack'], 1), ('cli/glancecacheprefetcher', 'glance-cache-prefetcher', u'Glance Cache Pre-fetcher', [u'OpenStack'], 1), ('cli/glancecachepruner', 'glance-cache-pruner', u'Glance Cache Pruner', [u'OpenStack'], 1), ('cli/glancecontrol', 'glance-control', u'Glance Daemon Control Helper ', [u'OpenStack'], 1), ('cli/glancemanage', 'glance-manage', u'Glance Management Utility', [u'OpenStack'], 1), ('cli/glancereplicator', 'glance-replicator', u'Glance Replicator', [u'OpenStack'], 1), ('cli/glancescrubber', 'glance-scrubber', u'Glance Scrubber Service', [u'OpenStack'], 1) ] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. # html_theme_path = ["."] # html_theme = '_theme' html_theme = 'openstackdocs' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any paths that contain "extra" files, such as .htaccess or # robots.txt. html_extra_path = ['_extra'] # If false, no module index is generated. html_use_modindex = True # If false, no index is generated. html_use_index = True # -- Options for LaTeX output ------------------------------------------------ # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, # documentclass [howto/manual]). latex_documents = [ ('index', 'Glance.tex', u'Glance Documentation', u'Glance Team', 'manual'), ]
test_frame/test_redis_ack_able/test_redis_ack_able_consumer.py
DJMIN/funboost
120
41829
""" 这个是用来测试,以redis为中间件,随意关闭代码会不会造成任务丢失的。 """ import time from funboost import boost,BrokerEnum @boost('test_cost_long_time_fun_queue2', broker_kind=BrokerEnum.REDIS_ACK_ABLE, concurrent_num=5) def cost_long_time_fun(x): print(f'正在消费 {x} 中 。。。。') time.sleep(3) print(f'消费完成 {x} ') if __name__ == '__main__': cost_long_time_fun.consume()
observations/r/edc_t.py
hajime9652/observations
199
41839
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def edc_t(path): """EPICA Dome C Ice Core 800KYr Temperature Estimates Temperature record, using Deuterium as a proxy, from the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core covering 0 to 800 kyr BP. A data frame with 5788 observations on the following 5 variables. `Bag` Bag number `ztop` Top depth (m) `Age` Years before 1950 `Deuterium` Deuterium dD data `dT` Temperature difference from the average of the last 1000 years ~ -54.5degC http://www.ncdc.noaa.gov/paleo/icecore/antarctica/domec/domec_epica_data.html Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `edc_t.csv`. Returns: Tuple of np.ndarray `x_train` with 5788 rows and 5 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'edc_t.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/DAAG/edcT.csv' maybe_download_and_extract(path, url, save_file_name='edc_t.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
exercises/es/test_01_02_02.py
Jette16/spacy-course
2,085
41851
<filename>exercises/es/test_01_02_02.py<gh_stars>1000+ def test(): import spacy.tokens import spacy.lang.de assert isinstance( nlp, spacy.lang.de.German ), "El objeto nlp debería ser un instance de la clase de alemán." assert isinstance( doc, spacy.tokens.Doc ), "¿Procesaste el texto con el objeto nlp para crear un doc?" assert "print(doc.text)" in __solution__, "¿Imprimiste en pantalla el doc.text?" __msg__.good("Sehr gut! :)")
modules/core/dbshell/dbshell.py
petabyteboy/nixcloud-webservices
121
41905
<filename>modules/core/dbshell/dbshell.py<gh_stars>100-1000 #!@interpreter@ import os from pwd import getpwnam from argparse import ArgumentParser DBSHELL_CONFIG = @dbshellConfig@ # noqa WEBSERVICES_PREFIX = "/var/lib/nixcloud/webservices" def run_shell(dbname, user, command): os.setuid(getpwnam(user).pw_uid) os.execl(command, command, user, dbname) def determine_wsname(): rel_to_ws_dir = os.path.relpath(os.getcwd(), WEBSERVICES_PREFIX) components = rel_to_ws_dir.split(os.sep, 1) if len(components) != 2: return None wsname_canidate = components[0] if wsname_canidate in [os.curdir, os.pardir]: return None if wsname_canidate not in DBSHELL_CONFIG: return None return wsname_canidate if __name__ == '__main__': desc = "Connect to a database within a web service instance" parser = ArgumentParser(description=desc) parser.add_argument("webservice_name", nargs='?', help="The web service name. If the argument is" " omitted, the service name is determined" " by inspecting the current directory.") parser.add_argument("database", help="The database name to connect to.") options = parser.parse_args() if options.webservice_name is None: wsname = determine_wsname() if wsname is None: parser.error("Unable to determine web service name.") elif options.webservice_name not in DBSHELL_CONFIG: msg = "Web service {!r} does not exist." parser.error(msg.format(options.webservice_name)) else: wsname = options.webservice_name wsdef = DBSHELL_CONFIG[wsname] if options.database not in wsdef: msg = "Database {!r} does not exist for web service {!r}." parser.error(msg.format(options.database, wsname)) else: run_shell(options.database, **wsdef[options.database])
wxpusher/tests/test_send_message.py
hnauto/wxpusher-sdk-python
124
41914
<filename>wxpusher/tests/test_send_message.py #!/usr/bin/env python # -*- coding: utf-8 -*- """ Unittest for sending message. File: test_send_message.py Author: huxuan Email: <EMAIL> """ import unittest from wxpusher import WxPusher from . import config class TestSendMessage(unittest.TestCase): """Unittest for sending message.""" @classmethod def setUpClass(cls): """Set up for class.""" WxPusher.default_token = config.TOKEN def test_send_message_uid(self): """Positive case for sending message with uid.""" res = WxPusher.send_message( self.test_send_message_uid.__doc__, uids=config.UIDS, url='http://example.com/', ) self.assertIsInstance(res, dict) self.assertIn('code', res) self.assertEqual(1000, res['code']) def test_send_message_topic_id(self): """Positive case for sending message with topic_id.""" res = WxPusher.send_message( self.test_send_message_topic_id.__doc__, topic_ids=config.TOPIC_IDS, url='http://example.com/', ) self.assertIsInstance(res, dict) self.assertIn('code', res) self.assertEqual(1000, res['code'])
apps/jobs/migrations/0014_rename_job_id_field_in_submission_model_to_job_name.py
kaustubh-s1/EvalAI
1,470
41937
# -*- coding: utf-8 -*- # Generated by Django 1.11.23 on 2020-01-20 05:23 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [("jobs", "0013_add_job_id_field_in_submission_model")] operations = [ migrations.RenameField( model_name="submission", old_name="job_id", new_name="job_name" ) ]
rotkehlchen/tests/exchanges/test_independentreserve.py
rotkehlchenio/rotkehlchen
137
41963
<reponame>rotkehlchenio/rotkehlchen<gh_stars>100-1000 import warnings as test_warnings from unittest.mock import patch import pytest from rotkehlchen.accounting.structures.balance import Balance from rotkehlchen.constants.assets import A_AUD, A_ETC, A_ETH from rotkehlchen.errors.asset import UnknownAsset from rotkehlchen.exchanges.data_structures import Location, Trade, TradeType from rotkehlchen.exchanges.independentreserve import ( IR_TO_WORLD, Independentreserve, independentreserve_asset, ) from rotkehlchen.fval import FVal from rotkehlchen.tests.utils.mock import MockResponse def test_location(): exchange = Independentreserve('independentreserve1', 'a', b'a', object(), object()) assert exchange.location == Location.INDEPENDENTRESERVE assert exchange.name == 'independentreserve1' def test_assets_are_known(): exchange = Independentreserve('independentreserve1', 'a', b'a', object(), object()) response = exchange._api_query('get', 'Public', 'GetValidPrimaryCurrencyCodes') for currency in response: try: independentreserve_asset(currency) except UnknownAsset: test_warnings.warn(UserWarning( f'Found unknown primary asset {currency} in IndependentReserve. ' f'Support for it has to be added', )) response = exchange._api_query('get', 'Public', 'GetValidSecondaryCurrencyCodes') for currency in response: try: independentreserve_asset(currency) except UnknownAsset: test_warnings.warn(UserWarning( f'Found unknown secondary asset {currency} in IndependentReserve. ' f'Support for it has to be added', )) @pytest.mark.parametrize('should_mock_current_price_queries', [True]) def test_query_balances( function_scope_independentreserve, inquirer, # pylint: disable=unused-argument ): """Test all balances returned by IndependentReserve are proccessed properly""" exchange = function_scope_independentreserve def mock_api_return(method, url, **kwargs): # pylint: disable=unused-argument assert method == 'post' response = """[{"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Aud", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Usd", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Nzd", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Sgd", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Xbt", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Eth", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Xrp", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Ada", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Dot", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Uni", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Link", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Usdt", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Usdc", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Bch", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Ltc", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Mkr", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Dai", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Comp", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Snx", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Grt", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Eos", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Xlm", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Etc", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Bat", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Pmgt", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Yfi", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Aave", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Zrx", "TotalBalance": 150.55}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 150.55, "CurrencyCode": "Omg", "TotalBalance": 150.55}]""" # noqa: E501 return MockResponse(200, response) with patch.object(exchange.session, 'request', side_effect=mock_api_return): balances, msg = exchange.query_balances() assert msg == '' assets_seen = {0} for asset, balance in balances.items(): assert asset in IR_TO_WORLD.values() assert asset not in assets_seen assets_seen.add(asset) assert balance.amount == FVal('150.55') @pytest.mark.parametrize('should_mock_current_price_queries', [True]) def test_query_some_balances( function_scope_independentreserve, inquirer, # pylint: disable=unused-argument ): """Just like test_query_balances but make sure 0 balances are skipped""" exchange = function_scope_independentreserve def mock_api_return(method, url, **kwargs): # pylint: disable=unused-argument assert method == 'post' response = """[{"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 1.2, "CurrencyCode": "Aud", "TotalBalance": 2.5}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Usd", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Nzd", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Sgd", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Xbt", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Eth", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Xrp", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Ada", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Dot", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Uni", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Link", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Usdt", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Usdc", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Bch", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Ltc", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Mkr", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Dai", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Comp", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Snx", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Grt", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Eos", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Xlm", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Etc", "TotalBalance": 100.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Bat", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Pmgt", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Yfi", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Aave", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Zrx", "TotalBalance": 0.0}, {"AccountGuid": "foo", "AccountStatus": "Active", "AvailableBalance": 0.0, "CurrencyCode": "Omg", "TotalBalance": 0.0}]""" # noqa: E501 return MockResponse(200, response) with patch.object(exchange.session, 'request', side_effect=mock_api_return): balances, msg = exchange.query_balances() assert msg == '' assert balances == { A_AUD: Balance(amount=FVal(2.5), usd_value=FVal(3.75)), A_ETC: Balance(amount=FVal(100), usd_value=FVal(150)), } def test_query_trade_history(function_scope_independentreserve): """Happy path test for independentreserve trade history querying""" exchange = function_scope_independentreserve def mock_api_return(method, url, **kwargs): # pylint: disable=unused-argument assert method == 'post' response = """{"Data": [ {"AvgPrice": 603.7, "CreatedTimestampUtc": "2017-11-22T22:54:40.3249401Z", "FeePercent": 0.005, "OrderGuid": "foo1", "OrderType": "MarketOffer", "Original": {"Outstanding": 0.0, "Volume": 0.5, "VolumeCurrencyType": "Primary"}, "Outstanding": 0.0, "Price": null, "PrimaryCurrencyCode": "Eth", "SecondaryCurrencyCode": "Aud", "Status": "Filled", "Value": 301.85, "Volume": 0.5 }, { "AvgPrice": 257.25, "CreatedTimestampUtc": "2017-07-28T09:39:19.8799244Z", "FeePercent": 0.005, "OrderGuid": "foo2", "OrderType": "MarketBid", "Original": {"Outstanding": 0.0, "Volume": 2.64117379, "VolumeCurrencyType": "Primary"}, "Outstanding": 0.0, "Price": null, "PrimaryCurrencyCode": "Eth", "SecondaryCurrencyCode": "Aud", "Status": "Filled", "Value": 679.44, "Volume": 2.64117379 }], "PageSize": 50, "TotalItems": 2, "TotalPages": 1} """ # noqa: E501 return MockResponse(200, response) with patch.object(exchange.session, 'request', side_effect=mock_api_return): trades = exchange.query_trade_history( start_ts=0, end_ts=1565732120, only_cache=False, ) expected_trades = [ Trade( timestamp=1501234760, location=Location.INDEPENDENTRESERVE, base_asset=A_ETH, quote_asset=A_AUD, trade_type=TradeType.BUY, amount=FVal('2.64117379'), rate=FVal('257.25'), fee=FVal('0.01320586895'), fee_currency=A_ETH, link='foo2', ), Trade( timestamp=1511391280, location=Location.INDEPENDENTRESERVE, base_asset=A_ETH, quote_asset=A_AUD, trade_type=TradeType.SELL, amount=FVal('0.5'), rate=FVal('603.7'), fee=FVal('0.0025'), fee_currency=A_ETH, link='foo1', )] assert trades == expected_trades[::-1] # TODO: Make a test for asset movements. # Would need more mocking as it would require mocking of multiple calls
ctpbee/interface/ctp_mini/lib.py
mcFore/ctpbee
461
41967
<reponame>mcFore/ctpbee<filename>ctpbee/interface/ctp_mini/lib.py<gh_stars>100-1000 import pytz from ctpbee_api.ctp_mini import * from ctpbee.constant import * STATUS_MINI2VT = { THOST_FTDC_OAS_Submitted: Status.SUBMITTING, THOST_FTDC_OAS_Accepted: Status.SUBMITTING, THOST_FTDC_OAS_Rejected: Status.REJECTED, THOST_FTDC_OST_NoTradeQueueing: Status.NOTTRADED, THOST_FTDC_OST_PartTradedQueueing: Status.PARTTRADED, THOST_FTDC_OST_AllTraded: Status.ALLTRADED, THOST_FTDC_OST_Canceled: Status.CANCELLED } DIRECTION_VT2MINI = { Direction.LONG: THOST_FTDC_D_Buy, Direction.SHORT: THOST_FTDC_D_Sell } DIRECTION_MINI2VT = {v: k for k, v in DIRECTION_VT2MINI.items()} DIRECTION_MINI2VT[THOST_FTDC_PD_Long] = Direction.LONG DIRECTION_MINI2VT[THOST_FTDC_PD_Short] = Direction.SHORT ORDERTYPE_VT2MINI = { OrderType.LIMIT: THOST_FTDC_OPT_LimitPrice, OrderType.MARKET: THOST_FTDC_OPT_AnyPrice } ORDERTYPE_MINI2VT = {v: k for k, v in ORDERTYPE_VT2MINI.items()} OFFSET_VT2MINI = { Offset.OPEN: THOST_FTDC_OF_Open, Offset.CLOSE: THOST_FTDC_OFEN_Close, Offset.CLOSETODAY: THOST_FTDC_OFEN_CloseToday, Offset.CLOSEYESTERDAY: THOST_FTDC_OFEN_CloseYesterday, } OFFSET_MINI2VT = {v: k for k, v in OFFSET_VT2MINI.items()} EXCHANGE_MINI2VT = { "CFFEX": Exchange.CFFEX, "SHFE": Exchange.SHFE, "CZCE": Exchange.CZCE, "DCE": Exchange.DCE, "INE": Exchange.INE } PRODUCT_MINI2VT = { THOST_FTDC_PC_Futures: Product.FUTURES, THOST_FTDC_PC_Options: Product.OPTION, THOST_FTDC_PC_Combination: Product.SPREAD } OPTIONTYPE_MINI2VT = { THOST_FTDC_CP_CallOptions: OptionType.CALL, THOST_FTDC_CP_PutOptions: OptionType.PUT } CHINA_TZ = pytz.timezone("Asia/Shanghai") symbol_exchange_map = {} symbol_name_map = {} symbol_size_map = {}
app/update_logs_test.py
limshengli/tinypilot
1,334
41977
import unittest import update_logs class UpdateLogsTest(unittest.TestCase): def test_get_new_logs_with_more_next_logs(self): self.assertEqual( "56789", update_logs.get_new_logs(prev_logs="01234", next_logs="0123456789")) def test_get_new_logs_with_more_prev_logs(self): self.assertEqual( "", update_logs.get_new_logs(prev_logs="0123456789", next_logs="01234")) def test_get_new_logs_with_no_common_logs(self): self.assertEqual( "56789", update_logs.get_new_logs(prev_logs="01234", next_logs="56789")) def test_get_new_logs_with_no_prev_logs(self): self.assertEqual( "0123456789", update_logs.get_new_logs(prev_logs="", next_logs="0123456789")) def test_get_new_logs_with_no_next_logs(self): self.assertEqual( "", update_logs.get_new_logs(prev_logs="01234", next_logs=""))
sdk/python/pulumi_gcp/compute/region_instance_group_manager.py
sisisin/pulumi-gcp
121
42004
<filename>sdk/python/pulumi_gcp/compute/region_instance_group_manager.py<gh_stars>100-1000 # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = ['RegionInstanceGroupManagerArgs', 'RegionInstanceGroupManager'] @pulumi.input_type class RegionInstanceGroupManagerArgs: def __init__(__self__, *, base_instance_name: pulumi.Input[str], versions: pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerVersionArgs']]], auto_healing_policies: Optional[pulumi.Input['RegionInstanceGroupManagerAutoHealingPoliciesArgs']] = None, description: Optional[pulumi.Input[str]] = None, distribution_policy_target_shape: Optional[pulumi.Input[str]] = None, distribution_policy_zones: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, name: Optional[pulumi.Input[str]] = None, named_ports: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerNamedPortArgs']]]] = None, project: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, stateful_disks: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatefulDiskArgs']]]] = None, target_pools: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, target_size: Optional[pulumi.Input[int]] = None, update_policy: Optional[pulumi.Input['RegionInstanceGroupManagerUpdatePolicyArgs']] = None, wait_for_instances: Optional[pulumi.Input[bool]] = None, wait_for_instances_status: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a RegionInstanceGroupManager resource. :param pulumi.Input[str] base_instance_name: The base instance name to use for instances in this group. The value must be a valid [RFC1035](https://www.ietf.org/rfc/rfc1035.txt) name. Supported characters are lowercase letters, numbers, and hyphens (-). Instances are named by appending a hyphen and a random four-character string to the base instance name. :param pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerVersionArgs']]] versions: Application versions managed by this instance group. Each version deals with a specific instance template, allowing canary release scenarios. Structure is documented below. :param pulumi.Input['RegionInstanceGroupManagerAutoHealingPoliciesArgs'] auto_healing_policies: The autohealing policies for this managed instance group. You can specify only one value. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-instances#monitoring_groups). :param pulumi.Input[str] description: An optional textual description of the instance group manager. :param pulumi.Input[str] distribution_policy_target_shape: The shape to which the group converges either proactively or on resize events (depending on the value set in update_policy.0.instance_redistribution_type). For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/regional-mig-distribution-shape). :param pulumi.Input[Sequence[pulumi.Input[str]]] distribution_policy_zones: The distribution policy for this managed instance group. You can specify one or more values. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/distributing-instances-with-regional-instance-groups#selectingzones). :param pulumi.Input[str] name: - Version name. :param pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerNamedPortArgs']]] named_ports: The named port configuration. See the section below for details on configuration. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] region: The region where the managed instance group resides. If not provided, the provider region is used. :param pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatefulDiskArgs']]] stateful_disks: Disks created on the instances that will be preserved on instance delete, update, etc. Structure is documented below. For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/configuring-stateful-disks-in-migs). Proactive cross zone instance redistribution must be disabled before you can update stateful disks on existing instance group managers. This can be controlled via the `update_policy`. :param pulumi.Input[Sequence[pulumi.Input[str]]] target_pools: The full URL of all target pools to which new instances in the group are added. Updating the target pools attribute does not affect existing instances. :param pulumi.Input[int] target_size: - The number of instances calculated as a fixed number or a percentage depending on the settings. Structure is documented below. :param pulumi.Input['RegionInstanceGroupManagerUpdatePolicyArgs'] update_policy: The update policy for this managed instance group. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/updating-managed-instance-groups) and [API](https://cloud.google.com/compute/docs/reference/rest/beta/regionInstanceGroupManagers/patch) :param pulumi.Input[bool] wait_for_instances: Whether to wait for all instances to be created/updated before returning. Note that if this is set to true and the operation does not succeed, the provider will continue trying until it times out. :param pulumi.Input[str] wait_for_instances_status: When used with `wait_for_instances` it specifies the status to wait for. When `STABLE` is specified this resource will wait until the instances are stable before returning. When `UPDATED` is set, it will wait for the version target to be reached and any per instance configs to be effective as well as all instances to be stable before returning. The possible values are `STABLE` and `UPDATED` """ pulumi.set(__self__, "base_instance_name", base_instance_name) pulumi.set(__self__, "versions", versions) if auto_healing_policies is not None: pulumi.set(__self__, "auto_healing_policies", auto_healing_policies) if description is not None: pulumi.set(__self__, "description", description) if distribution_policy_target_shape is not None: pulumi.set(__self__, "distribution_policy_target_shape", distribution_policy_target_shape) if distribution_policy_zones is not None: pulumi.set(__self__, "distribution_policy_zones", distribution_policy_zones) if name is not None: pulumi.set(__self__, "name", name) if named_ports is not None: pulumi.set(__self__, "named_ports", named_ports) if project is not None: pulumi.set(__self__, "project", project) if region is not None: pulumi.set(__self__, "region", region) if stateful_disks is not None: pulumi.set(__self__, "stateful_disks", stateful_disks) if target_pools is not None: pulumi.set(__self__, "target_pools", target_pools) if target_size is not None: pulumi.set(__self__, "target_size", target_size) if update_policy is not None: pulumi.set(__self__, "update_policy", update_policy) if wait_for_instances is not None: pulumi.set(__self__, "wait_for_instances", wait_for_instances) if wait_for_instances_status is not None: pulumi.set(__self__, "wait_for_instances_status", wait_for_instances_status) @property @pulumi.getter(name="baseInstanceName") def base_instance_name(self) -> pulumi.Input[str]: """ The base instance name to use for instances in this group. The value must be a valid [RFC1035](https://www.ietf.org/rfc/rfc1035.txt) name. Supported characters are lowercase letters, numbers, and hyphens (-). Instances are named by appending a hyphen and a random four-character string to the base instance name. """ return pulumi.get(self, "base_instance_name") @base_instance_name.setter def base_instance_name(self, value: pulumi.Input[str]): pulumi.set(self, "base_instance_name", value) @property @pulumi.getter def versions(self) -> pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerVersionArgs']]]: """ Application versions managed by this instance group. Each version deals with a specific instance template, allowing canary release scenarios. Structure is documented below. """ return pulumi.get(self, "versions") @versions.setter def versions(self, value: pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerVersionArgs']]]): pulumi.set(self, "versions", value) @property @pulumi.getter(name="autoHealingPolicies") def auto_healing_policies(self) -> Optional[pulumi.Input['RegionInstanceGroupManagerAutoHealingPoliciesArgs']]: """ The autohealing policies for this managed instance group. You can specify only one value. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-instances#monitoring_groups). """ return pulumi.get(self, "auto_healing_policies") @auto_healing_policies.setter def auto_healing_policies(self, value: Optional[pulumi.Input['RegionInstanceGroupManagerAutoHealingPoliciesArgs']]): pulumi.set(self, "auto_healing_policies", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ An optional textual description of the instance group manager. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="distributionPolicyTargetShape") def distribution_policy_target_shape(self) -> Optional[pulumi.Input[str]]: """ The shape to which the group converges either proactively or on resize events (depending on the value set in update_policy.0.instance_redistribution_type). For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/regional-mig-distribution-shape). """ return pulumi.get(self, "distribution_policy_target_shape") @distribution_policy_target_shape.setter def distribution_policy_target_shape(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "distribution_policy_target_shape", value) @property @pulumi.getter(name="distributionPolicyZones") def distribution_policy_zones(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The distribution policy for this managed instance group. You can specify one or more values. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/distributing-instances-with-regional-instance-groups#selectingzones). """ return pulumi.get(self, "distribution_policy_zones") @distribution_policy_zones.setter def distribution_policy_zones(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "distribution_policy_zones", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ - Version name. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="namedPorts") def named_ports(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerNamedPortArgs']]]]: """ The named port configuration. See the section below for details on configuration. """ return pulumi.get(self, "named_ports") @named_ports.setter def named_ports(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerNamedPortArgs']]]]): pulumi.set(self, "named_ports", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter def region(self) -> Optional[pulumi.Input[str]]: """ The region where the managed instance group resides. If not provided, the provider region is used. """ return pulumi.get(self, "region") @region.setter def region(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "region", value) @property @pulumi.getter(name="statefulDisks") def stateful_disks(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatefulDiskArgs']]]]: """ Disks created on the instances that will be preserved on instance delete, update, etc. Structure is documented below. For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/configuring-stateful-disks-in-migs). Proactive cross zone instance redistribution must be disabled before you can update stateful disks on existing instance group managers. This can be controlled via the `update_policy`. """ return pulumi.get(self, "stateful_disks") @stateful_disks.setter def stateful_disks(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatefulDiskArgs']]]]): pulumi.set(self, "stateful_disks", value) @property @pulumi.getter(name="targetPools") def target_pools(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The full URL of all target pools to which new instances in the group are added. Updating the target pools attribute does not affect existing instances. """ return pulumi.get(self, "target_pools") @target_pools.setter def target_pools(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "target_pools", value) @property @pulumi.getter(name="targetSize") def target_size(self) -> Optional[pulumi.Input[int]]: """ - The number of instances calculated as a fixed number or a percentage depending on the settings. Structure is documented below. """ return pulumi.get(self, "target_size") @target_size.setter def target_size(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "target_size", value) @property @pulumi.getter(name="updatePolicy") def update_policy(self) -> Optional[pulumi.Input['RegionInstanceGroupManagerUpdatePolicyArgs']]: """ The update policy for this managed instance group. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/updating-managed-instance-groups) and [API](https://cloud.google.com/compute/docs/reference/rest/beta/regionInstanceGroupManagers/patch) """ return pulumi.get(self, "update_policy") @update_policy.setter def update_policy(self, value: Optional[pulumi.Input['RegionInstanceGroupManagerUpdatePolicyArgs']]): pulumi.set(self, "update_policy", value) @property @pulumi.getter(name="waitForInstances") def wait_for_instances(self) -> Optional[pulumi.Input[bool]]: """ Whether to wait for all instances to be created/updated before returning. Note that if this is set to true and the operation does not succeed, the provider will continue trying until it times out. """ return pulumi.get(self, "wait_for_instances") @wait_for_instances.setter def wait_for_instances(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "wait_for_instances", value) @property @pulumi.getter(name="waitForInstancesStatus") def wait_for_instances_status(self) -> Optional[pulumi.Input[str]]: """ When used with `wait_for_instances` it specifies the status to wait for. When `STABLE` is specified this resource will wait until the instances are stable before returning. When `UPDATED` is set, it will wait for the version target to be reached and any per instance configs to be effective as well as all instances to be stable before returning. The possible values are `STABLE` and `UPDATED` """ return pulumi.get(self, "wait_for_instances_status") @wait_for_instances_status.setter def wait_for_instances_status(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "wait_for_instances_status", value) @pulumi.input_type class _RegionInstanceGroupManagerState: def __init__(__self__, *, auto_healing_policies: Optional[pulumi.Input['RegionInstanceGroupManagerAutoHealingPoliciesArgs']] = None, base_instance_name: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, distribution_policy_target_shape: Optional[pulumi.Input[str]] = None, distribution_policy_zones: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, fingerprint: Optional[pulumi.Input[str]] = None, instance_group: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, named_ports: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerNamedPortArgs']]]] = None, project: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, self_link: Optional[pulumi.Input[str]] = None, stateful_disks: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatefulDiskArgs']]]] = None, statuses: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatusArgs']]]] = None, target_pools: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, target_size: Optional[pulumi.Input[int]] = None, update_policy: Optional[pulumi.Input['RegionInstanceGroupManagerUpdatePolicyArgs']] = None, versions: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerVersionArgs']]]] = None, wait_for_instances: Optional[pulumi.Input[bool]] = None, wait_for_instances_status: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering RegionInstanceGroupManager resources. :param pulumi.Input['RegionInstanceGroupManagerAutoHealingPoliciesArgs'] auto_healing_policies: The autohealing policies for this managed instance group. You can specify only one value. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-instances#monitoring_groups). :param pulumi.Input[str] base_instance_name: The base instance name to use for instances in this group. The value must be a valid [RFC1035](https://www.ietf.org/rfc/rfc1035.txt) name. Supported characters are lowercase letters, numbers, and hyphens (-). Instances are named by appending a hyphen and a random four-character string to the base instance name. :param pulumi.Input[str] description: An optional textual description of the instance group manager. :param pulumi.Input[str] distribution_policy_target_shape: The shape to which the group converges either proactively or on resize events (depending on the value set in update_policy.0.instance_redistribution_type). For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/regional-mig-distribution-shape). :param pulumi.Input[Sequence[pulumi.Input[str]]] distribution_policy_zones: The distribution policy for this managed instance group. You can specify one or more values. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/distributing-instances-with-regional-instance-groups#selectingzones). :param pulumi.Input[str] fingerprint: The fingerprint of the instance group manager. :param pulumi.Input[str] instance_group: The full URL of the instance group created by the manager. :param pulumi.Input[str] name: - Version name. :param pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerNamedPortArgs']]] named_ports: The named port configuration. See the section below for details on configuration. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] region: The region where the managed instance group resides. If not provided, the provider region is used. :param pulumi.Input[str] self_link: The URL of the created resource. :param pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatefulDiskArgs']]] stateful_disks: Disks created on the instances that will be preserved on instance delete, update, etc. Structure is documented below. For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/configuring-stateful-disks-in-migs). Proactive cross zone instance redistribution must be disabled before you can update stateful disks on existing instance group managers. This can be controlled via the `update_policy`. :param pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatusArgs']]] statuses: The status of this managed instance group. :param pulumi.Input[Sequence[pulumi.Input[str]]] target_pools: The full URL of all target pools to which new instances in the group are added. Updating the target pools attribute does not affect existing instances. :param pulumi.Input[int] target_size: - The number of instances calculated as a fixed number or a percentage depending on the settings. Structure is documented below. :param pulumi.Input['RegionInstanceGroupManagerUpdatePolicyArgs'] update_policy: The update policy for this managed instance group. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/updating-managed-instance-groups) and [API](https://cloud.google.com/compute/docs/reference/rest/beta/regionInstanceGroupManagers/patch) :param pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerVersionArgs']]] versions: Application versions managed by this instance group. Each version deals with a specific instance template, allowing canary release scenarios. Structure is documented below. :param pulumi.Input[bool] wait_for_instances: Whether to wait for all instances to be created/updated before returning. Note that if this is set to true and the operation does not succeed, the provider will continue trying until it times out. :param pulumi.Input[str] wait_for_instances_status: When used with `wait_for_instances` it specifies the status to wait for. When `STABLE` is specified this resource will wait until the instances are stable before returning. When `UPDATED` is set, it will wait for the version target to be reached and any per instance configs to be effective as well as all instances to be stable before returning. The possible values are `STABLE` and `UPDATED` """ if auto_healing_policies is not None: pulumi.set(__self__, "auto_healing_policies", auto_healing_policies) if base_instance_name is not None: pulumi.set(__self__, "base_instance_name", base_instance_name) if description is not None: pulumi.set(__self__, "description", description) if distribution_policy_target_shape is not None: pulumi.set(__self__, "distribution_policy_target_shape", distribution_policy_target_shape) if distribution_policy_zones is not None: pulumi.set(__self__, "distribution_policy_zones", distribution_policy_zones) if fingerprint is not None: pulumi.set(__self__, "fingerprint", fingerprint) if instance_group is not None: pulumi.set(__self__, "instance_group", instance_group) if name is not None: pulumi.set(__self__, "name", name) if named_ports is not None: pulumi.set(__self__, "named_ports", named_ports) if project is not None: pulumi.set(__self__, "project", project) if region is not None: pulumi.set(__self__, "region", region) if self_link is not None: pulumi.set(__self__, "self_link", self_link) if stateful_disks is not None: pulumi.set(__self__, "stateful_disks", stateful_disks) if statuses is not None: pulumi.set(__self__, "statuses", statuses) if target_pools is not None: pulumi.set(__self__, "target_pools", target_pools) if target_size is not None: pulumi.set(__self__, "target_size", target_size) if update_policy is not None: pulumi.set(__self__, "update_policy", update_policy) if versions is not None: pulumi.set(__self__, "versions", versions) if wait_for_instances is not None: pulumi.set(__self__, "wait_for_instances", wait_for_instances) if wait_for_instances_status is not None: pulumi.set(__self__, "wait_for_instances_status", wait_for_instances_status) @property @pulumi.getter(name="autoHealingPolicies") def auto_healing_policies(self) -> Optional[pulumi.Input['RegionInstanceGroupManagerAutoHealingPoliciesArgs']]: """ The autohealing policies for this managed instance group. You can specify only one value. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-instances#monitoring_groups). """ return pulumi.get(self, "auto_healing_policies") @auto_healing_policies.setter def auto_healing_policies(self, value: Optional[pulumi.Input['RegionInstanceGroupManagerAutoHealingPoliciesArgs']]): pulumi.set(self, "auto_healing_policies", value) @property @pulumi.getter(name="baseInstanceName") def base_instance_name(self) -> Optional[pulumi.Input[str]]: """ The base instance name to use for instances in this group. The value must be a valid [RFC1035](https://www.ietf.org/rfc/rfc1035.txt) name. Supported characters are lowercase letters, numbers, and hyphens (-). Instances are named by appending a hyphen and a random four-character string to the base instance name. """ return pulumi.get(self, "base_instance_name") @base_instance_name.setter def base_instance_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "base_instance_name", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ An optional textual description of the instance group manager. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="distributionPolicyTargetShape") def distribution_policy_target_shape(self) -> Optional[pulumi.Input[str]]: """ The shape to which the group converges either proactively or on resize events (depending on the value set in update_policy.0.instance_redistribution_type). For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/regional-mig-distribution-shape). """ return pulumi.get(self, "distribution_policy_target_shape") @distribution_policy_target_shape.setter def distribution_policy_target_shape(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "distribution_policy_target_shape", value) @property @pulumi.getter(name="distributionPolicyZones") def distribution_policy_zones(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The distribution policy for this managed instance group. You can specify one or more values. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/distributing-instances-with-regional-instance-groups#selectingzones). """ return pulumi.get(self, "distribution_policy_zones") @distribution_policy_zones.setter def distribution_policy_zones(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "distribution_policy_zones", value) @property @pulumi.getter def fingerprint(self) -> Optional[pulumi.Input[str]]: """ The fingerprint of the instance group manager. """ return pulumi.get(self, "fingerprint") @fingerprint.setter def fingerprint(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "fingerprint", value) @property @pulumi.getter(name="instanceGroup") def instance_group(self) -> Optional[pulumi.Input[str]]: """ The full URL of the instance group created by the manager. """ return pulumi.get(self, "instance_group") @instance_group.setter def instance_group(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "instance_group", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ - Version name. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="namedPorts") def named_ports(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerNamedPortArgs']]]]: """ The named port configuration. See the section below for details on configuration. """ return pulumi.get(self, "named_ports") @named_ports.setter def named_ports(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerNamedPortArgs']]]]): pulumi.set(self, "named_ports", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter def region(self) -> Optional[pulumi.Input[str]]: """ The region where the managed instance group resides. If not provided, the provider region is used. """ return pulumi.get(self, "region") @region.setter def region(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "region", value) @property @pulumi.getter(name="selfLink") def self_link(self) -> Optional[pulumi.Input[str]]: """ The URL of the created resource. """ return pulumi.get(self, "self_link") @self_link.setter def self_link(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "self_link", value) @property @pulumi.getter(name="statefulDisks") def stateful_disks(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatefulDiskArgs']]]]: """ Disks created on the instances that will be preserved on instance delete, update, etc. Structure is documented below. For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/configuring-stateful-disks-in-migs). Proactive cross zone instance redistribution must be disabled before you can update stateful disks on existing instance group managers. This can be controlled via the `update_policy`. """ return pulumi.get(self, "stateful_disks") @stateful_disks.setter def stateful_disks(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatefulDiskArgs']]]]): pulumi.set(self, "stateful_disks", value) @property @pulumi.getter def statuses(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatusArgs']]]]: """ The status of this managed instance group. """ return pulumi.get(self, "statuses") @statuses.setter def statuses(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerStatusArgs']]]]): pulumi.set(self, "statuses", value) @property @pulumi.getter(name="targetPools") def target_pools(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The full URL of all target pools to which new instances in the group are added. Updating the target pools attribute does not affect existing instances. """ return pulumi.get(self, "target_pools") @target_pools.setter def target_pools(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "target_pools", value) @property @pulumi.getter(name="targetSize") def target_size(self) -> Optional[pulumi.Input[int]]: """ - The number of instances calculated as a fixed number or a percentage depending on the settings. Structure is documented below. """ return pulumi.get(self, "target_size") @target_size.setter def target_size(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "target_size", value) @property @pulumi.getter(name="updatePolicy") def update_policy(self) -> Optional[pulumi.Input['RegionInstanceGroupManagerUpdatePolicyArgs']]: """ The update policy for this managed instance group. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/updating-managed-instance-groups) and [API](https://cloud.google.com/compute/docs/reference/rest/beta/regionInstanceGroupManagers/patch) """ return pulumi.get(self, "update_policy") @update_policy.setter def update_policy(self, value: Optional[pulumi.Input['RegionInstanceGroupManagerUpdatePolicyArgs']]): pulumi.set(self, "update_policy", value) @property @pulumi.getter def versions(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerVersionArgs']]]]: """ Application versions managed by this instance group. Each version deals with a specific instance template, allowing canary release scenarios. Structure is documented below. """ return pulumi.get(self, "versions") @versions.setter def versions(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['RegionInstanceGroupManagerVersionArgs']]]]): pulumi.set(self, "versions", value) @property @pulumi.getter(name="waitForInstances") def wait_for_instances(self) -> Optional[pulumi.Input[bool]]: """ Whether to wait for all instances to be created/updated before returning. Note that if this is set to true and the operation does not succeed, the provider will continue trying until it times out. """ return pulumi.get(self, "wait_for_instances") @wait_for_instances.setter def wait_for_instances(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "wait_for_instances", value) @property @pulumi.getter(name="waitForInstancesStatus") def wait_for_instances_status(self) -> Optional[pulumi.Input[str]]: """ When used with `wait_for_instances` it specifies the status to wait for. When `STABLE` is specified this resource will wait until the instances are stable before returning. When `UPDATED` is set, it will wait for the version target to be reached and any per instance configs to be effective as well as all instances to be stable before returning. The possible values are `STABLE` and `UPDATED` """ return pulumi.get(self, "wait_for_instances_status") @wait_for_instances_status.setter def wait_for_instances_status(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "wait_for_instances_status", value) class RegionInstanceGroupManager(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, auto_healing_policies: Optional[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerAutoHealingPoliciesArgs']]] = None, base_instance_name: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, distribution_policy_target_shape: Optional[pulumi.Input[str]] = None, distribution_policy_zones: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, name: Optional[pulumi.Input[str]] = None, named_ports: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerNamedPortArgs']]]]] = None, project: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, stateful_disks: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerStatefulDiskArgs']]]]] = None, target_pools: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, target_size: Optional[pulumi.Input[int]] = None, update_policy: Optional[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerUpdatePolicyArgs']]] = None, versions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerVersionArgs']]]]] = None, wait_for_instances: Optional[pulumi.Input[bool]] = None, wait_for_instances_status: Optional[pulumi.Input[str]] = None, __props__=None): """ The Google Compute Engine Regional Instance Group Manager API creates and manages pools of homogeneous Compute Engine virtual machine instances from a common instance template. To get more information about regionInstanceGroupManagers, see: * [API documentation](https://cloud.google.com/compute/docs/reference/latest/regionInstanceGroupManagers) * How-to Guides * [Regional Instance Groups Guide](https://cloud.google.com/compute/docs/instance-groups/distributing-instances-with-regional-instance-groups) > **Note:** Use [compute.InstanceGroupManager](https://www.terraform.io/docs/providers/google/r/compute_instance_group_manager.html) to create a zonal instance group manager. ## Example Usage ### With Top Level Instance Template (`Google` Provider) ```python import pulumi import pulumi_gcp as gcp autohealing = gcp.compute.HealthCheck("autohealing", check_interval_sec=5, timeout_sec=5, healthy_threshold=2, unhealthy_threshold=10, http_health_check=gcp.compute.HealthCheckHttpHealthCheckArgs( request_path="/healthz", port=8080, )) appserver = gcp.compute.RegionInstanceGroupManager("appserver", base_instance_name="app", region="us-central1", distribution_policy_zones=[ "us-central1-a", "us-central1-f", ], versions=[gcp.compute.RegionInstanceGroupManagerVersionArgs( instance_template=google_compute_instance_template["appserver"]["id"], )], target_pools=[google_compute_target_pool["appserver"]["id"]], target_size=2, named_ports=[gcp.compute.RegionInstanceGroupManagerNamedPortArgs( name="custom", port=8888, )], auto_healing_policies=gcp.compute.RegionInstanceGroupManagerAutoHealingPoliciesArgs( health_check=autohealing.id, initial_delay_sec=300, )) ``` ### With Multiple Versions ```python import pulumi import pulumi_gcp as gcp appserver = gcp.compute.RegionInstanceGroupManager("appserver", base_instance_name="app", region="us-central1", target_size=5, versions=[ gcp.compute.RegionInstanceGroupManagerVersionArgs( instance_template=google_compute_instance_template["appserver"]["id"], ), gcp.compute.RegionInstanceGroupManagerVersionArgs( instance_template=google_compute_instance_template["appserver-canary"]["id"], target_size=gcp.compute.RegionInstanceGroupManagerVersionTargetSizeArgs( fixed=1, ), ), ]) ``` ## Import Instance group managers can be imported using the `name`, e.g. ```sh $ pulumi import gcp:compute/regionInstanceGroupManager:RegionInstanceGroupManager appserver appserver-igm ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerAutoHealingPoliciesArgs']] auto_healing_policies: The autohealing policies for this managed instance group. You can specify only one value. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-instances#monitoring_groups). :param pulumi.Input[str] base_instance_name: The base instance name to use for instances in this group. The value must be a valid [RFC1035](https://www.ietf.org/rfc/rfc1035.txt) name. Supported characters are lowercase letters, numbers, and hyphens (-). Instances are named by appending a hyphen and a random four-character string to the base instance name. :param pulumi.Input[str] description: An optional textual description of the instance group manager. :param pulumi.Input[str] distribution_policy_target_shape: The shape to which the group converges either proactively or on resize events (depending on the value set in update_policy.0.instance_redistribution_type). For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/regional-mig-distribution-shape). :param pulumi.Input[Sequence[pulumi.Input[str]]] distribution_policy_zones: The distribution policy for this managed instance group. You can specify one or more values. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/distributing-instances-with-regional-instance-groups#selectingzones). :param pulumi.Input[str] name: - Version name. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerNamedPortArgs']]]] named_ports: The named port configuration. See the section below for details on configuration. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] region: The region where the managed instance group resides. If not provided, the provider region is used. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerStatefulDiskArgs']]]] stateful_disks: Disks created on the instances that will be preserved on instance delete, update, etc. Structure is documented below. For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/configuring-stateful-disks-in-migs). Proactive cross zone instance redistribution must be disabled before you can update stateful disks on existing instance group managers. This can be controlled via the `update_policy`. :param pulumi.Input[Sequence[pulumi.Input[str]]] target_pools: The full URL of all target pools to which new instances in the group are added. Updating the target pools attribute does not affect existing instances. :param pulumi.Input[int] target_size: - The number of instances calculated as a fixed number or a percentage depending on the settings. Structure is documented below. :param pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerUpdatePolicyArgs']] update_policy: The update policy for this managed instance group. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/updating-managed-instance-groups) and [API](https://cloud.google.com/compute/docs/reference/rest/beta/regionInstanceGroupManagers/patch) :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerVersionArgs']]]] versions: Application versions managed by this instance group. Each version deals with a specific instance template, allowing canary release scenarios. Structure is documented below. :param pulumi.Input[bool] wait_for_instances: Whether to wait for all instances to be created/updated before returning. Note that if this is set to true and the operation does not succeed, the provider will continue trying until it times out. :param pulumi.Input[str] wait_for_instances_status: When used with `wait_for_instances` it specifies the status to wait for. When `STABLE` is specified this resource will wait until the instances are stable before returning. When `UPDATED` is set, it will wait for the version target to be reached and any per instance configs to be effective as well as all instances to be stable before returning. The possible values are `STABLE` and `UPDATED` """ ... @overload def __init__(__self__, resource_name: str, args: RegionInstanceGroupManagerArgs, opts: Optional[pulumi.ResourceOptions] = None): """ The Google Compute Engine Regional Instance Group Manager API creates and manages pools of homogeneous Compute Engine virtual machine instances from a common instance template. To get more information about regionInstanceGroupManagers, see: * [API documentation](https://cloud.google.com/compute/docs/reference/latest/regionInstanceGroupManagers) * How-to Guides * [Regional Instance Groups Guide](https://cloud.google.com/compute/docs/instance-groups/distributing-instances-with-regional-instance-groups) > **Note:** Use [compute.InstanceGroupManager](https://www.terraform.io/docs/providers/google/r/compute_instance_group_manager.html) to create a zonal instance group manager. ## Example Usage ### With Top Level Instance Template (`Google` Provider) ```python import pulumi import pulumi_gcp as gcp autohealing = gcp.compute.HealthCheck("autohealing", check_interval_sec=5, timeout_sec=5, healthy_threshold=2, unhealthy_threshold=10, http_health_check=gcp.compute.HealthCheckHttpHealthCheckArgs( request_path="/healthz", port=8080, )) appserver = gcp.compute.RegionInstanceGroupManager("appserver", base_instance_name="app", region="us-central1", distribution_policy_zones=[ "us-central1-a", "us-central1-f", ], versions=[gcp.compute.RegionInstanceGroupManagerVersionArgs( instance_template=google_compute_instance_template["appserver"]["id"], )], target_pools=[google_compute_target_pool["appserver"]["id"]], target_size=2, named_ports=[gcp.compute.RegionInstanceGroupManagerNamedPortArgs( name="custom", port=8888, )], auto_healing_policies=gcp.compute.RegionInstanceGroupManagerAutoHealingPoliciesArgs( health_check=autohealing.id, initial_delay_sec=300, )) ``` ### With Multiple Versions ```python import pulumi import pulumi_gcp as gcp appserver = gcp.compute.RegionInstanceGroupManager("appserver", base_instance_name="app", region="us-central1", target_size=5, versions=[ gcp.compute.RegionInstanceGroupManagerVersionArgs( instance_template=google_compute_instance_template["appserver"]["id"], ), gcp.compute.RegionInstanceGroupManagerVersionArgs( instance_template=google_compute_instance_template["appserver-canary"]["id"], target_size=gcp.compute.RegionInstanceGroupManagerVersionTargetSizeArgs( fixed=1, ), ), ]) ``` ## Import Instance group managers can be imported using the `name`, e.g. ```sh $ pulumi import gcp:compute/regionInstanceGroupManager:RegionInstanceGroupManager appserver appserver-igm ``` :param str resource_name: The name of the resource. :param RegionInstanceGroupManagerArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(RegionInstanceGroupManagerArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, auto_healing_policies: Optional[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerAutoHealingPoliciesArgs']]] = None, base_instance_name: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, distribution_policy_target_shape: Optional[pulumi.Input[str]] = None, distribution_policy_zones: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, name: Optional[pulumi.Input[str]] = None, named_ports: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerNamedPortArgs']]]]] = None, project: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, stateful_disks: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerStatefulDiskArgs']]]]] = None, target_pools: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, target_size: Optional[pulumi.Input[int]] = None, update_policy: Optional[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerUpdatePolicyArgs']]] = None, versions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerVersionArgs']]]]] = None, wait_for_instances: Optional[pulumi.Input[bool]] = None, wait_for_instances_status: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = RegionInstanceGroupManagerArgs.__new__(RegionInstanceGroupManagerArgs) __props__.__dict__["auto_healing_policies"] = auto_healing_policies if base_instance_name is None and not opts.urn: raise TypeError("Missing required property 'base_instance_name'") __props__.__dict__["base_instance_name"] = base_instance_name __props__.__dict__["description"] = description __props__.__dict__["distribution_policy_target_shape"] = distribution_policy_target_shape __props__.__dict__["distribution_policy_zones"] = distribution_policy_zones __props__.__dict__["name"] = name __props__.__dict__["named_ports"] = named_ports __props__.__dict__["project"] = project __props__.__dict__["region"] = region __props__.__dict__["stateful_disks"] = stateful_disks __props__.__dict__["target_pools"] = target_pools __props__.__dict__["target_size"] = target_size __props__.__dict__["update_policy"] = update_policy if versions is None and not opts.urn: raise TypeError("Missing required property 'versions'") __props__.__dict__["versions"] = versions __props__.__dict__["wait_for_instances"] = wait_for_instances __props__.__dict__["wait_for_instances_status"] = wait_for_instances_status __props__.__dict__["fingerprint"] = None __props__.__dict__["instance_group"] = None __props__.__dict__["self_link"] = None __props__.__dict__["statuses"] = None super(RegionInstanceGroupManager, __self__).__init__( 'gcp:compute/regionInstanceGroupManager:RegionInstanceGroupManager', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, auto_healing_policies: Optional[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerAutoHealingPoliciesArgs']]] = None, base_instance_name: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, distribution_policy_target_shape: Optional[pulumi.Input[str]] = None, distribution_policy_zones: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, fingerprint: Optional[pulumi.Input[str]] = None, instance_group: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, named_ports: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerNamedPortArgs']]]]] = None, project: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, self_link: Optional[pulumi.Input[str]] = None, stateful_disks: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerStatefulDiskArgs']]]]] = None, statuses: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerStatusArgs']]]]] = None, target_pools: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, target_size: Optional[pulumi.Input[int]] = None, update_policy: Optional[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerUpdatePolicyArgs']]] = None, versions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerVersionArgs']]]]] = None, wait_for_instances: Optional[pulumi.Input[bool]] = None, wait_for_instances_status: Optional[pulumi.Input[str]] = None) -> 'RegionInstanceGroupManager': """ Get an existing RegionInstanceGroupManager resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerAutoHealingPoliciesArgs']] auto_healing_policies: The autohealing policies for this managed instance group. You can specify only one value. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-instances#monitoring_groups). :param pulumi.Input[str] base_instance_name: The base instance name to use for instances in this group. The value must be a valid [RFC1035](https://www.ietf.org/rfc/rfc1035.txt) name. Supported characters are lowercase letters, numbers, and hyphens (-). Instances are named by appending a hyphen and a random four-character string to the base instance name. :param pulumi.Input[str] description: An optional textual description of the instance group manager. :param pulumi.Input[str] distribution_policy_target_shape: The shape to which the group converges either proactively or on resize events (depending on the value set in update_policy.0.instance_redistribution_type). For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/regional-mig-distribution-shape). :param pulumi.Input[Sequence[pulumi.Input[str]]] distribution_policy_zones: The distribution policy for this managed instance group. You can specify one or more values. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/distributing-instances-with-regional-instance-groups#selectingzones). :param pulumi.Input[str] fingerprint: The fingerprint of the instance group manager. :param pulumi.Input[str] instance_group: The full URL of the instance group created by the manager. :param pulumi.Input[str] name: - Version name. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerNamedPortArgs']]]] named_ports: The named port configuration. See the section below for details on configuration. :param pulumi.Input[str] project: The ID of the project in which the resource belongs. If it is not provided, the provider project is used. :param pulumi.Input[str] region: The region where the managed instance group resides. If not provided, the provider region is used. :param pulumi.Input[str] self_link: The URL of the created resource. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerStatefulDiskArgs']]]] stateful_disks: Disks created on the instances that will be preserved on instance delete, update, etc. Structure is documented below. For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/configuring-stateful-disks-in-migs). Proactive cross zone instance redistribution must be disabled before you can update stateful disks on existing instance group managers. This can be controlled via the `update_policy`. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerStatusArgs']]]] statuses: The status of this managed instance group. :param pulumi.Input[Sequence[pulumi.Input[str]]] target_pools: The full URL of all target pools to which new instances in the group are added. Updating the target pools attribute does not affect existing instances. :param pulumi.Input[int] target_size: - The number of instances calculated as a fixed number or a percentage depending on the settings. Structure is documented below. :param pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerUpdatePolicyArgs']] update_policy: The update policy for this managed instance group. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/updating-managed-instance-groups) and [API](https://cloud.google.com/compute/docs/reference/rest/beta/regionInstanceGroupManagers/patch) :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['RegionInstanceGroupManagerVersionArgs']]]] versions: Application versions managed by this instance group. Each version deals with a specific instance template, allowing canary release scenarios. Structure is documented below. :param pulumi.Input[bool] wait_for_instances: Whether to wait for all instances to be created/updated before returning. Note that if this is set to true and the operation does not succeed, the provider will continue trying until it times out. :param pulumi.Input[str] wait_for_instances_status: When used with `wait_for_instances` it specifies the status to wait for. When `STABLE` is specified this resource will wait until the instances are stable before returning. When `UPDATED` is set, it will wait for the version target to be reached and any per instance configs to be effective as well as all instances to be stable before returning. The possible values are `STABLE` and `UPDATED` """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _RegionInstanceGroupManagerState.__new__(_RegionInstanceGroupManagerState) __props__.__dict__["auto_healing_policies"] = auto_healing_policies __props__.__dict__["base_instance_name"] = base_instance_name __props__.__dict__["description"] = description __props__.__dict__["distribution_policy_target_shape"] = distribution_policy_target_shape __props__.__dict__["distribution_policy_zones"] = distribution_policy_zones __props__.__dict__["fingerprint"] = fingerprint __props__.__dict__["instance_group"] = instance_group __props__.__dict__["name"] = name __props__.__dict__["named_ports"] = named_ports __props__.__dict__["project"] = project __props__.__dict__["region"] = region __props__.__dict__["self_link"] = self_link __props__.__dict__["stateful_disks"] = stateful_disks __props__.__dict__["statuses"] = statuses __props__.__dict__["target_pools"] = target_pools __props__.__dict__["target_size"] = target_size __props__.__dict__["update_policy"] = update_policy __props__.__dict__["versions"] = versions __props__.__dict__["wait_for_instances"] = wait_for_instances __props__.__dict__["wait_for_instances_status"] = wait_for_instances_status return RegionInstanceGroupManager(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="autoHealingPolicies") def auto_healing_policies(self) -> pulumi.Output[Optional['outputs.RegionInstanceGroupManagerAutoHealingPolicies']]: """ The autohealing policies for this managed instance group. You can specify only one value. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/creating-groups-of-managed-instances#monitoring_groups). """ return pulumi.get(self, "auto_healing_policies") @property @pulumi.getter(name="baseInstanceName") def base_instance_name(self) -> pulumi.Output[str]: """ The base instance name to use for instances in this group. The value must be a valid [RFC1035](https://www.ietf.org/rfc/rfc1035.txt) name. Supported characters are lowercase letters, numbers, and hyphens (-). Instances are named by appending a hyphen and a random four-character string to the base instance name. """ return pulumi.get(self, "base_instance_name") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ An optional textual description of the instance group manager. """ return pulumi.get(self, "description") @property @pulumi.getter(name="distributionPolicyTargetShape") def distribution_policy_target_shape(self) -> pulumi.Output[str]: """ The shape to which the group converges either proactively or on resize events (depending on the value set in update_policy.0.instance_redistribution_type). For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/regional-mig-distribution-shape). """ return pulumi.get(self, "distribution_policy_target_shape") @property @pulumi.getter(name="distributionPolicyZones") def distribution_policy_zones(self) -> pulumi.Output[Sequence[str]]: """ The distribution policy for this managed instance group. You can specify one or more values. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/distributing-instances-with-regional-instance-groups#selectingzones). """ return pulumi.get(self, "distribution_policy_zones") @property @pulumi.getter def fingerprint(self) -> pulumi.Output[str]: """ The fingerprint of the instance group manager. """ return pulumi.get(self, "fingerprint") @property @pulumi.getter(name="instanceGroup") def instance_group(self) -> pulumi.Output[str]: """ The full URL of the instance group created by the manager. """ return pulumi.get(self, "instance_group") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ - Version name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="namedPorts") def named_ports(self) -> pulumi.Output[Optional[Sequence['outputs.RegionInstanceGroupManagerNamedPort']]]: """ The named port configuration. See the section below for details on configuration. """ return pulumi.get(self, "named_ports") @property @pulumi.getter def project(self) -> pulumi.Output[str]: """ The ID of the project in which the resource belongs. If it is not provided, the provider project is used. """ return pulumi.get(self, "project") @property @pulumi.getter def region(self) -> pulumi.Output[str]: """ The region where the managed instance group resides. If not provided, the provider region is used. """ return pulumi.get(self, "region") @property @pulumi.getter(name="selfLink") def self_link(self) -> pulumi.Output[str]: """ The URL of the created resource. """ return pulumi.get(self, "self_link") @property @pulumi.getter(name="statefulDisks") def stateful_disks(self) -> pulumi.Output[Optional[Sequence['outputs.RegionInstanceGroupManagerStatefulDisk']]]: """ Disks created on the instances that will be preserved on instance delete, update, etc. Structure is documented below. For more information see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/configuring-stateful-disks-in-migs). Proactive cross zone instance redistribution must be disabled before you can update stateful disks on existing instance group managers. This can be controlled via the `update_policy`. """ return pulumi.get(self, "stateful_disks") @property @pulumi.getter def statuses(self) -> pulumi.Output[Sequence['outputs.RegionInstanceGroupManagerStatus']]: """ The status of this managed instance group. """ return pulumi.get(self, "statuses") @property @pulumi.getter(name="targetPools") def target_pools(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The full URL of all target pools to which new instances in the group are added. Updating the target pools attribute does not affect existing instances. """ return pulumi.get(self, "target_pools") @property @pulumi.getter(name="targetSize") def target_size(self) -> pulumi.Output[int]: """ - The number of instances calculated as a fixed number or a percentage depending on the settings. Structure is documented below. """ return pulumi.get(self, "target_size") @property @pulumi.getter(name="updatePolicy") def update_policy(self) -> pulumi.Output['outputs.RegionInstanceGroupManagerUpdatePolicy']: """ The update policy for this managed instance group. Structure is documented below. For more information, see the [official documentation](https://cloud.google.com/compute/docs/instance-groups/updating-managed-instance-groups) and [API](https://cloud.google.com/compute/docs/reference/rest/beta/regionInstanceGroupManagers/patch) """ return pulumi.get(self, "update_policy") @property @pulumi.getter def versions(self) -> pulumi.Output[Sequence['outputs.RegionInstanceGroupManagerVersion']]: """ Application versions managed by this instance group. Each version deals with a specific instance template, allowing canary release scenarios. Structure is documented below. """ return pulumi.get(self, "versions") @property @pulumi.getter(name="waitForInstances") def wait_for_instances(self) -> pulumi.Output[Optional[bool]]: """ Whether to wait for all instances to be created/updated before returning. Note that if this is set to true and the operation does not succeed, the provider will continue trying until it times out. """ return pulumi.get(self, "wait_for_instances") @property @pulumi.getter(name="waitForInstancesStatus") def wait_for_instances_status(self) -> pulumi.Output[Optional[str]]: """ When used with `wait_for_instances` it specifies the status to wait for. When `STABLE` is specified this resource will wait until the instances are stable before returning. When `UPDATED` is set, it will wait for the version target to be reached and any per instance configs to be effective as well as all instances to be stable before returning. The possible values are `STABLE` and `UPDATED` """ return pulumi.get(self, "wait_for_instances_status")
webapp/models/mnist_model.py
dushik/AdversarialDNN-Playground
125
42013
<filename>webapp/models/mnist_model.py<gh_stars>100-1000 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial=tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1,2,2,1], padding='SAME') def train_and_save_model(filename): mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # Placeholders: x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) # Model Parameters W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) # x is a [picture_ct, 28*28], so x_image is [picture_ct, 28, 28, 1] h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2)+b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder_with_default(1.0, ()) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2=weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) correct_count = tf.count_nonzero(correct_prediction) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Set up training criterion cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # Initializer step init_op = tf.global_variables_initializer() # must be after adamoptimizer, since that creates more vars # Configure saver saver = tf.train.Saver() tf.add_to_collection('mnist', x) tf.add_to_collection('mnist', y_) tf.add_to_collection('mnist', keep_prob) tf.add_to_collection('mnist', y_conv) tf.add_to_collection('mnist', correct_count) tf.add_to_collection('mnist', cross_entropy) # Train the model with tf.Session() as sess: sess.run(init_op) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1], keep_prob:1.0}) print("Step {}: Training accuracy {}".format(i, train_accuracy)) sess.run(train_step, feed_dict={x: batch[0], y_:batch[1], keep_prob:0.5}) save_path = saver.save(sess, filename) print('Model saved to: {}'.format(filename)) if __name__ == '__main__': train_and_save_model('./mnist-model')
eosfactory/core/vscode.py
tuan-tl/eosfactory
255
42091
''' .. module:: eosfactory.core.vscode :platform: Unix, Darwin :synopsis: Default configuration items of a contract project. .. moduleauthor:: Tokenika ''' import json import argparse import eosfactory.core.config as config INCLUDE_PATH = "includePath" LIBS = "libs" CODE_OPTIONS = "codeOptions" TEST_OPTIONS = "testOptions" def get_includes(): includes = config.eosio_cpp_includes() retval = [] root = config.wsl_root() for include in includes: retval.append(root + include) retval.append("${workspaceFolder}") retval.append("${workspaceFolder}/include") return retval LIB_LIST = [ ] OPTIONS = [ ] TASKS = ''' { "version": "2.0.0", "tasks": [ { "label": "Compile", "type": "shell", "windows": { "options": { "shell": { "executable": "bash.exe", "args": [ "-c" ] } }, "command": "mkdir -p build; python3 -m eosfactory.build '${workspaceFolder}' --compile" }, "osx": { "command": "mkdir -p build; python3 -m eosfactory.build '${workspaceFolder}' --compile" }, "linux": { "command": "mkdir -p build; python3 -m eosfactory.build '${workspaceFolder}' --compile" }, "presentation": { "reveal": "always", "panel": "dedicated" }, "problemMatcher": [ ] }, { "label": "Build", "type": "shell", "windows": { "options": { "shell": { "executable": "bash.exe", "args": [ "-c" ] } }, "command": "mkdir -p build; python3 -m eosfactory.build '${workspaceFolder}'" }, "osx": { "command": "mkdir -p build; python3 -m eosfactory.build '${workspaceFolder}'" }, "linux": { "command": "mkdir -p build; python3 -m eosfactory.build '${workspaceFolder}'" }, "problemMatcher": [], "presentation": { "reveal": "always", "panel": "dedicated" }, "group": { "kind": "build", "isDefault": true }, "problemMatcher": [ ] }, { "label": "Test", "type": "shell", "windows": { "options": { "shell": { "executable": "bash.exe", "args": [ "-c" ] } }, "command": "python3 ./tests/test1.py" }, "osx": { "command": "python3 ./tests/test1.py" }, "linux": { "command": "python3 ./tests/test1.py" }, "presentation": { "reveal": "always", "panel": "dedicated" }, "problemMatcher": [ ] }, { "label": "Unittest", "type": "shell", "windows": { "options": { "shell": { "executable": "bash.exe", "args": [ "-c" ] } }, "command": "python3 ./tests/unittest1.py" }, "osx": { "command": "python3 ./tests/unittest1.py" }, "linux": { "command": "python3 ./tests/unittest1.py" }, "presentation": { "reveal": "always", "panel": "dedicated" }, "problemMatcher": [ ] }, { "label": "EOSIO API", "type": "shell", "windows": { "options": { "shell": { "executable": "bash.exe", "args": [ "-c" ] } }, "command": "explorer.exe" }, "osx": { "command": "open" }, "linux": { "command": "sensible-browser" }, "args": [ "https://developers.eos.io/" ], "presentation": { "reveal": "always", "panel": "dedicated" }, "problemMatcher": [ ] } ] } ''' def c_cpp_properties(): includes = get_includes() retval = """ { "configurations": [ { "%s": %s, "%s": %s, "%s": %s, "%s": %s, "defines": [], "intelliSenseMode": "clang-x64", "browse": { "path": %s, "limitSymbolsToIncludedHeaders": true, "databaseFilename": "" } } ], "version": 4 } """ % ( INCLUDE_PATH, json.dumps(includes, indent=4), LIBS, json.dumps(LIB_LIST, indent=4), CODE_OPTIONS, json.dumps(OPTIONS, indent=4), TEST_OPTIONS, json.dumps(OPTIONS, indent=4), json.dumps(includes, indent=4)) return retval def main(c_cpp_properties_path=None): if c_cpp_properties_path: config.update_vscode(c_cpp_properties_path) else: print(c_cpp_properties()) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--c_cpp_prop_path", default="") args = parser.parse_args() main(args.c_cpp_prop_path)
tests/functional/services/policy_engine/utils/api/query_vulnerabilities.py
rbrady/anchore-engine
1,484
42092
from tests.functional.services.policy_engine.utils.api.conf import ( policy_engine_api_conf, ) from tests.functional.services.utils import http_utils def get_vulnerabilities( vulnerability_ids=[], affected_package=None, affected_package_version=None, namespace=None, ): if not vulnerability_ids: raise ValueError("Cannot fetch vulnerabilities without ids") query = { "id": ",".join(vulnerability_ids), "affected_package": affected_package, "affected_package_version": affected_package_version, "namespace": namespace, } vulnerabilities_resp = http_utils.http_get( ["query", "vulnerabilities"], query, config=policy_engine_api_conf ) if vulnerabilities_resp.code != 200: raise http_utils.RequestFailedError( vulnerabilities_resp.url, vulnerabilities_resp.code, vulnerabilities_resp.body, ) return vulnerabilities_resp
admin_tools/theming/apps.py
asherf/django-admin-tools
711
42093
<gh_stars>100-1000 # coding: utf-8 from django.apps import AppConfig class ThemingConfig(AppConfig): name = 'admin_tools.theming'