max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
main.py
impressive8/Practice
197
44090
# =================================== # Import the libraries # =================================== import numpy as np from matplotlib import pylab as plt import imaging import utility import os,sys # =================================== # Which stages to run # =================================== do_add_noise = False do_black_level_correction = True do_lens_shading_correction = True do_bad_pixel_correction = True do_channel_gain_white_balance = True do_bayer_denoise = False do_demosaic = True do_demosaic_artifact_reduction = True do_color_correction = True do_gamma = True do_chromatic_aberration_correction = True do_tone_mapping = True do_memory_color_enhancement = True do_noise_reduction = True do_sharpening = True do_distortion_correction = False # =================================== # Remove all the .png files os.system("rm images/*.png") # =================================== # =================================== # raw image and set up the metadata # =================================== # uncomment the image_name to run it via pipeline image_name = "DSC_1339_768x512_rggb" # image content: Rose rggb # image_name = "DSC_1339_768x512_gbrg" # image content: Rose gbrg # image_name = "DSC_1339_768x512_grbg" # image content: Rose grbg # image_name = "DSC_1339_768x512_bggr" # image content: Rose bggr # image_name = "DSC_1320_2048x2048_rggb" # image content: Potrait # image_name = "DSC_1372_6032x4032_rggb" # image content: Downtown San Jose # image_name = "DSC_1372_12096x6032_rgb_out_demosaic" # image content: Downtown San Jose after demosaic # read the raw image temp = np.fromfile("images/" + image_name + ".raw", dtype="uint16", sep="") if (image_name == "DSC_1339_768x512_rggb"): temp = temp.reshape([512, 768]) raw = imaging.ImageInfo("1339_768x512_rggb", temp) raw.set_color_space("raw") raw.set_bayer_pattern("rggb") raw.set_channel_gain((1.94921875, 1.0, 1.0, 1.34375)) # Please shuffle the values # depending on bayer_pattern raw.set_bit_depth(14) raw.set_black_level((600, 600, 600, 600)) raw.set_white_level((15520, 15520, 15520, 15520)) # the ColorMatrix2 found from the metadata raw.set_color_matrix([[.9020, -.2890, -.0715],\ [-.4535, 1.2436, .2348],\ [-.0934, .1919, .7086]]) data = raw.data elif (image_name == "DSC_1339_768x512_gbrg"): temp = temp.reshape([512, 768]) raw = imaging.ImageInfo("1339_768x512_gbrg", temp) raw.set_color_space("raw") raw.set_bayer_pattern("gbrg") raw.set_channel_gain((1.0, 1.34375, 1.94921875, 1.0)) # Please shuffle the values # depending on bayer_pattern raw.set_bit_depth(14) raw.set_black_level((600, 600, 600, 600)) raw.set_white_level((15520, 15520, 15520, 15520)) # the ColorMatrix2 found from the metadata raw.set_color_matrix([[.9020, -.2890, -.0715],\ [-.4535, 1.2436, .2348],\ [-.0934, .1919, .7086]]) data = raw.data elif (image_name == "DSC_1339_768x512_grbg"): temp = temp.reshape([512, 768]) raw = imaging.ImageInfo("1339_768x512_grbg", temp) raw.set_color_space("raw") raw.set_bayer_pattern("grbg") raw.set_channel_gain((1.0, 1.94921875, 1.34375, 1.0)) # Please shuffle the values # depending on bayer_pattern raw.set_bit_depth(14) raw.set_black_level((600, 600, 600, 600)) raw.set_white_level((15520, 15520, 15520, 15520)) # the ColorMatrix2 found from the metadata raw.set_color_matrix([[.9020, -.2890, -.0715],\ [-.4535, 1.2436, .2348],\ [-.0934, .1919, .7086]]) data = raw.data elif (image_name == "DSC_1339_768x512_bggr"): temp = temp.reshape([512, 768]) raw = imaging.ImageInfo("1339_768x512_bggr", temp) raw.set_color_space("raw") raw.set_bayer_pattern("bggr") raw.set_channel_gain((1.34375, 1.0, 1.0, 1.94921875,)) # Please shuffle the values # depending on bayer_pattern raw.set_bit_depth(14) raw.set_black_level((600, 600, 600, 600)) raw.set_white_level((15520, 15520, 15520, 15520)) # the ColorMatrix2 found from the metadata raw.set_color_matrix([[.9020, -.2890, -.0715],\ [-.4535, 1.2436, .2348],\ [-.0934, .1919, .7086]]) data = raw.data elif (image_name == "DSC_1320_2048x2048_rggb"): temp = temp.reshape([2048, 2048]) raw = imaging.ImageInfo("1320_2048x2048_rggb", temp) raw.set_color_space("raw") raw.set_bayer_pattern("rggb") raw.set_channel_gain((1.94921875, 1.0, 1.0, 1.34375)) # Please shuffle the values # depending on bayer_pattern raw.set_bit_depth(14) raw.set_black_level((600, 600, 600, 600)) raw.set_white_level((15520, 15520, 15520, 15520)) # the ColotMatrix2 found from the metadata raw.set_color_matrix([[.9020, -.2890, -.0715],\ [-.4535, 1.2436, .2348],\ [-.0934, .1919, .7086]]) data = raw.data elif (image_name == "DSC_1372_6032x4032_rggb"): temp = temp.reshape([4032, 6032]) raw = imaging.ImageInfo("DSC_1372_6032x4032_rggb", temp) raw.set_color_space("raw") raw.set_bayer_pattern("rggb") raw.set_channel_gain((1.94921875, 1.0, 1.0, 1.34375)) # Please shuffle the values # depending on bayer_pattern raw.set_bit_depth(14) raw.set_black_level((600, 600, 600, 600)) raw.set_white_level((15520, 15520, 15520, 15520)) # the ColotMatrix2 found from the metadata raw.set_color_matrix([[.9020, -.2890, -.0715],\ [-.4535, 1.2436, .2348],\ [-.0934, .1919, .7086]]) data = raw.data elif (image_name == "DSC_1372_12096x6032_rgb_out_demosaic"): temp = temp.reshape([12096, 6032]) temp = np.float32(temp) data = np.empty((4032, 6032, 3), dtype=np.float32) data[:, :, 0] = temp[0:4032, :] data[:, :, 1] = temp[4032 : 2*4032, :] data[:, :, 2] = temp[2*4032 : 3*4032, :] raw = imaging.ImageInfo("DSC_1372_12096x6032_rgb_out_demosaic", data) raw.set_color_space("raw") raw.set_bayer_pattern("rggb") raw.set_channel_gain((1.94921875, 1.0, 1.0, 1.34375)) # Please shuffle the values # depending on bayer_pattern raw.set_bit_depth(14) raw.set_black_level((600, 600, 600, 600)) raw.set_white_level((15520, 15520, 15520, 15520)) # the ColotMatrix2 found from the metadata raw.set_color_matrix([[.9020, -.2890, -.0715],\ [-.4535, 1.2436, .2348],\ [-.0934, .1919, .7086]]) else: print("Warning! image_name not recognized.") # =================================== # Add noise # =================================== if do_add_noise: noise_mean = 0 noise_standard_deviation = 100 seed = 100 clip_range = [600, 65535] data = utility.synthetic_image_generate(\ raw.get_width(), raw.get_height()).create_noisy_image(\ data, noise_mean, noise_standard_deviation, seed, clip_range) else: pass # =================================== # Black level correction # =================================== if do_black_level_correction: data = imaging.black_level_correction(data, \ raw.get_black_level(),\ raw.get_white_level(),\ [0, 2**raw.get_bit_depth() - 1]) utility.imsave(data, "images/" + image_name + "_out_black_level_correction.png", "uint16") else: pass # =================================== # Lens shading correction # =================================== if do_lens_shading_correction: # normally dark_current_image and flat_field_image are # captured in the image quality lab using flat field chart # here we are synthetically generating thouse two images dark_current_image, flat_field_image = utility.synthetic_image_generate(\ raw.get_width(), raw.get_height()).create_lens_shading_correction_images(\ 0, 65535, 40000) # save the dark_current_image and flat_field_image for viewing utility.imsave(dark_current_image, "images/" + image_name + "_dark_current_image.png", "uint16") utility.imsave(flat_field_image, "images/" + image_name + "_flat_field_image.png", "uint16") data = imaging.lens_shading_correction(data).flat_field_compensation(\ dark_current_image, flat_field_image) # data = lsc.approximate_mathematical_compensation([0.01759, -28.37, -13.36]) utility.imsave(data, "images/" + image_name + "_out_lens_shading_correction.png", "uint16") else: pass # =================================== # Bad pixel correction # =================================== if do_bad_pixel_correction: neighborhood_size = 3 data = imaging.bad_pixel_correction(data, neighborhood_size) utility.imsave(data, "images/" + image_name + "_out_bad_pixel_correction.png", "uint16") else: pass # =================================== # Channel gain for white balance # =================================== if do_channel_gain_white_balance: data = imaging.channel_gain_white_balance(data,\ raw.get_channel_gain()) utility.imsave(data, "images/" + image_name + "_out_channel_gain_white_balance.png", "uint16") else: pass # =================================== # Bayer denoising # =================================== if do_bayer_denoise: # bayer denoising parameters neighborhood_size = 5 initial_noise_level = 65535 * 10 / 100 hvs_min = 1000 hvs_max = 2000 clip_range = [0, 65535] threshold_red_blue = 1300 # data is the denoised output, ignoring the second output data, _ = imaging.bayer_denoising(data).utilize_hvs_behavior(\ raw.get_bayer_pattern(), initial_noise_level, hvs_min, hvs_max, threshold_red_blue, clip_range) utility.imsave(data, "images/" + image_name + "_out_bayer_denoising.png", "uint16") # utility.imsave(np.clip(texture_degree_debug*65535, 0, 65535), "images/" + image_name + "_out_texture_degree_debug.png", "uint16") else: pass # =================================== # Demosacing # =================================== if do_demosaic: #data = imaging.demosaic(data, raw.get_bayer_pattern()).mhc(False) data = imaging.demosaic(data, raw.get_bayer_pattern()).directionally_weighted_gradient_based_interpolation() utility.imsave(data, "images/" + image_name + "_out_demosaic.png", "uint16") else: pass # =================================== # Demosaic artifact reduction # =================================== if do_demosaic_artifact_reduction: data = imaging.demosaic(data).post_process_local_color_ratio(0.80 * 65535) utility.imsave(data, "images/" + image_name + "_out_local_color_ratio.png", "uint16") edge_detection_kernel_size = 5 edge_threshold = 0.05 # first output is main output, second output is edge_location is a debug output data, _ = imaging.demosaic(data).post_process_median_filter(edge_detection_kernel_size, edge_threshold) utility.imsave(data, "images/" + image_name + "_out_median_filter.png", "uint16") # utility.imsave(edge_location*65535, "images/" + image_name + "_edge_location.png", "uint16") else: pass # =================================== # Color correction # =================================== if do_color_correction: data = imaging.color_correction(data, raw.get_color_matrix()).apply_cmatrix() utility.imsave(data, "images/" + image_name + "_out_color_correction.png", "uint16") else: pass # =================================== # Gamma # =================================== if do_gamma: # brightening data = imaging.nonlinearity(data, "brightening").luma_adjustment(80.) # gamma by value #data = imaging.nonlinearity(data, "gamma").by_value(1/2.2, [0, 65535]) # gamma by table # data = imaging.nonlinearity(data, "gamma").by_table("tables/gamma_2.4.txt", "gamma", [0, 65535]) # gamma by value data = imaging.nonlinearity(data, "gamma").by_equation(-0.9, -8.0, [0, 65535]) utility.imsave(data, "images/" + image_name + "_out_gamma.png", "uint16") else: pass # =================================== # Chromatic aberration correction # =================================== if do_chromatic_aberration_correction: nsr_threshold = 90. cr_threshold = 6425./2 data = imaging.chromatic_aberration_correction(data).purple_fringe_removal(nsr_threshold, cr_threshold) utility.imsave(data, "images/" + image_name + "_out_purple_fringe_removal.png", "uint16") else: pass # =================================== # Tone mapping # =================================== if do_tone_mapping: data = imaging.tone_mapping(data).nonlinear_masking(1.0) utility.imsave(data, "images/" + image_name + "_out_tone_mapping_nl_masking.png", "uint16") # data = imaging.tone_mapping(data).dynamic_range_compression("normal", [-25., 260.], [0, 65535]) # utility.imsave(data, "images/" + image_name + "_out_tone_mapping_drc.png", "uint16") else: pass # =================================== # Memory color enhancement # =================================== if do_memory_color_enhancement: # target_hue = [30., -115., 100.] # hue_preference = [45., -90., 130.] # hue_sigma = [20., 10., 5.] # is_both_side = [True, False, False] # multiplier = [0.6, 0.6, 0.6] # chroma_preference = [25., 17., 30.] # chroma_sigma = [10., 10., 5.] target_hue = [30., -125., 100.] hue_preference = [20., -118., 130.] hue_sigma = [20., 10., 5.] is_both_side = [True, False, False] multiplier = [0.6, 0.6, 0.6] chroma_preference = [25., 14., 30.] chroma_sigma = [10., 10., 5.] data = imaging.memory_color_enhancement(data).by_hue_squeeze(target_hue,\ hue_preference,\ hue_sigma,\ is_both_side,\ multiplier,\ chroma_preference,\ chroma_sigma) utility.imsave(data, "images/" + image_name + "_out_memory_color_enhancement.png", "uint16") else: pass # =================================== # Noise reduction # =================================== if do_noise_reduction: # sigma filter parameters neighborhood_size = 7 sigma = [1000, 500, 500] data = imaging.noise_reduction(data).sigma_filter(neighborhood_size, sigma) utility.imsave(data, "images/" + image_name + "_out_noise_reduction.png", "uint16") else: pass # =================================== # Sharpening # =================================== if do_sharpening: data = imaging.sharpening(data).unsharp_masking() utility.imsave(data, "images/" + image_name + "_out_sharpening.png", "uint16") else: pass # =================================== # Distortion correction # =================================== if do_distortion_correction: correction_type="barrel-1" strength=0.5 zoom_type="fit" clip_range=[0, 65535] data = imaging.distortion_correction(data).empirical_correction(correction_type, strength, zoom_type, clip_range) utility.imsave(data, "images/" + image_name + "_out_distortion_correction.png", "uint16") else: pass
coldsweat/fetcher.py
jeroenh/coldsweat
106
44091
# -*- coding: utf-8 -*- ''' Description: the feed fetcher Copyright (c) 2013—2016 <NAME> Portions are copyright (c) 2013 <NAME> License: MIT (see LICENSE for details) ''' import sys, os, re, time, urlparse from datetime import datetime from peewee import IntegrityError import feedparser import requests from requests.exceptions import * from webob.exc import * from coldsweat import * from plugins import trigger_event from models import * from utilities import * from translators import * import markup import filters __all__ = [ 'Fetcher', 'fetch_url' ] FETCH_ICONS_DELTA = 30 # Days class Fetcher(object): ''' Fetch a single given feed ''' def __init__(self, feed): # Save timestamp for current fetch operation self.instant = datetime.utcnow() # Extract netloc _, self.netloc, _, _, _ = urlparse.urlsplit(feed.self_link) self.feed = feed def handle_500(self, response): ''' Internal server error ''' self.feed.error_count += 1 self.feed.last_status = response.status_code logger.warn(u"%s has caused an error on server, skipped" % self.netloc) raise HTTPInternalServerError def handle_403(self, response): ''' Forbidden ''' self.feed.error_count += 1 self.feed.last_status = response.status_code logger.warn(u"%s access was denied, skipped" % self.netloc) raise HTTPForbidden def handle_404(self, response): ''' Not Found ''' self.feed.error_count += 1 self.feed.last_status = response.status_code logger.warn(u"%s has been not found, skipped" % self.netloc) raise HTTPNotFound def handle_410(self, response): ''' Gone ''' self.feed.is_enabled = False self.feed.error_count += 1 self.feed.last_status = response.status_code logger.warn(u"%s is gone, disabled" % self.netloc) self._synthesize_entry('Feed has been removed from the origin server.') raise HTTPGone def handle_304(self, response): ''' Not modified ''' logger.debug(u"%s hasn't been modified, skipped" % self.netloc) self.feed.last_status = response.status_code raise HTTPNotModified def handle_301(self, response): ''' Moved permanently ''' self_link = response.url try: Feed.get(self_link=self_link) except Feed.DoesNotExist: self.feed.self_link = self_link self.feed.last_status = response.status_code logger.info(u"%s has changed its location, updated to %s" % (self.netloc, self_link)) else: self.feed.is_enabled = False self.feed.last_status = DuplicatedFeedError.code self.feed.error_count += 1 self._synthesize_entry('Feed has a duplicated web address.') logger.warn(u"new %s location %s is duplicated, disabled" % (self.netloc, self_link)) raise DuplicatedFeedError def handle_200(self, response): ''' OK plus redirects ''' self.feed.etag = response.headers.get('ETag', None) # Save final status code discarding redirects self.feed.last_status = response.status_code handle_307 = handle_200 # Alias handle_302 = handle_200 # Alias def update_feed(self): logger.debug(u"updating %s" % self.netloc) # Check freshness for value in [self.feed.last_checked_on, self.feed.last_updated_on]: if not value: continue # No datetime.timedelta since we need to # deal with large seconds values delta = datetime_as_epoch(self.instant) - datetime_as_epoch(value) if delta < config.fetcher.min_interval: logger.debug(u"%s is below minimun fetch interval, skipped" % self.netloc) return try: response = fetch_url(self.feed.self_link, timeout=config.fetcher.timeout, etag=self.feed.etag, modified_since=self.feed.last_updated_on) except RequestException: # Record any network error as 'Service Unavailable' self.feed.last_status = HTTPServiceUnavailable.code self.feed.error_count += 1 logger.warn(u"a network error occured while fetching %s, skipped" % self.netloc) self.check_feed_health() self.feed.save() return self.feed.last_checked_on = self.instant # Check if we got a redirect first if response.history: status = response.history[0].status_code else: status = response.status_code try: handler = getattr(self, 'handle_%d' % status, None) if handler: logger.debug(u"got status %s from server" % status) handler(response) else: self.feed.last_status = status logger.warn(u"%s replied with unhandled status %d, aborted" % (self.netloc, status)) return self._parse_feed(response.text) self._fetch_icon() except HTTPNotModified: pass # Nothing to do except (HTTPError, DuplicatedFeedError): self.check_feed_health() finally: self.feed.save() def check_feed_health(self): if config.fetcher.max_errors and self.feed.error_count > config.fetcher.max_errors: self._synthesize_entry('Feed has accumulated too many errors (last was %s).' % filters.status_title(self.feed.last_status)) logger.warn(u"%s has accomulated too many errors, disabled" % self.netloc) self.feed.is_enabled = False return def update_feed_with_data(self, data): self._parse_feed(data) self.feed.save() def _parse_feed(self, data): soup = feedparser.parse(data) # Got parsing error? if hasattr(soup, 'bozo') and soup.bozo: logger.debug(u"%s caused a parser error (%s), tried to parse it anyway" % (self.netloc, soup.bozo_exception)) ft = FeedTranslator(soup.feed) self.feed.last_updated_on = ft.get_timestamp(self.instant) self.feed.alternate_link = ft.get_alternate_link() self.feed.title = self.feed.title or ft.get_title() # Do not set again if already set #entries = [] feed_author = ft.get_author() for entry_dict in soup.entries: t = EntryTranslator(entry_dict) link = t.get_link() guid = t.get_guid(default=link) if not guid: logger.warn(u'could not find GUID for entry from %s, skipped' % self.netloc) continue timestamp = t.get_timestamp(self.instant) content_type, content = t.get_content(('text/plain', '')) # Skip ancient entries if config.fetcher.max_history and (self.instant - timestamp).days > config.fetcher.max_history: logger.debug(u"entry %s from %s is over maximum history, skipped" % (guid, self.netloc)) continue try: # If entry is already in database with same hashed GUID, skip it Entry.get(guid_hash=make_sha1_hash(guid)) logger.debug(u"duplicated entry %s, skipped" % guid) continue except Entry.DoesNotExist: pass entry = Entry( feed = self.feed, guid = guid, link = link, title = t.get_title(default='Untitled'), author = t.get_author() or feed_author, content = content, content_type = content_type, last_updated_on = timestamp ) # At this point we are pretty sure we doesn't have the entry # already in the database so alert plugins and save data trigger_event('entry_parsed', entry, entry_dict) entry.save() #@@TODO: entries.append(entry) logger.debug(u"parsed entry %s from %s" % (guid, self.netloc)) #return entries def _fetch_icon(self): if not self.feed.icon or not self.feed.icon_last_updated_on or (self.instant - self.feed.icon_last_updated_on).days > FETCH_ICONS_DELTA: # Prefer alternate_link if available since self_link could # point to Feed Burner or similar services self.feed.icon = self._google_favicon_fetcher(self.feed.alternate_link or self.feed.self_link) self.feed.icon_last_updated_on = self.instant logger.debug(u"fetched favicon %s..." % (self.feed.icon[:70])) def _google_favicon_fetcher(self, url): ''' Fetch a site favicon via Google service ''' endpoint = "http://www.google.com/s2/favicons?domain=%s" % urlparse.urlsplit(url).hostname try: response = fetch_url(endpoint) except RequestException, exc: logger.warn(u"could not fetch favicon for %s (%s)" % (url, exc)) return Feed.DEFAULT_ICON return make_data_uri(response.headers['Content-Type'], response.content) def add_synthesized_entry(self, title, content_type, content): ''' Create an HTML entry for this feed ''' # Since we don't know the mechanism the feed used to build a GUID for its entries # synthesize an tag URI from the link and a random string. This makes # entries internally generated by Coldsweat reasonably globally unique guid = ENTRY_TAG_URI % make_sha1_hash(self.feed.self_link + make_nonce()) entry = Entry( feed = self.feed, guid = guid, title = title, author = 'Coldsweat', content = content, content_type = content_type, last_updated_on = self.instant ) entry.save() logger.debug(u"synthesized entry %s" % guid) return entry def _synthesize_entry(self, reason): title = u'This feed has been disabled' content = render_template(os.path.join(template_dir, '_entry_feed_disabled.html'), {'reason': reason}) return self.add_synthesized_entry(title, 'text/html', content) def fetch_url(url, timeout=10, etag=None, modified_since=None): ''' Fecth a given URL optionally issuing a 'Conditional GET' request ''' request_headers = { 'User-Agent': USER_AGENT } # Conditional GET headers if etag and modified_since: logger.debug(u"fetching %s with a conditional GET (%s %s)" % (url, etag, format_http_datetime(modified_since))) request_headers['If-None-Match'] = etag request_headers['If-Modified-Since'] = format_http_datetime(modified_since) try: response = requests.get(url, timeout=timeout, headers=request_headers) except RequestException, exc: logger.debug(u"tried to fetch %s but got %s" % (url, exc.__class__.__name__)) raise exc return response # ------------------------------------------------------ # Custom error codes 9xx & exceptions # ------------------------------------------------------ class DuplicatedFeedError(Exception): code = 900 title = 'Duplicated feed' explanation = 'Feed address matches another already present in the database.' # Update WebOb status codes map for klass in (DuplicatedFeedError,): status_map[klass.code] = klass
leo/modes/velocity.py
ATikhonov2/leo-editor
1,550
44096
# Leo colorizer control file for velocity mode. # This file is in the public domain. # Properties for velocity mode. properties = { "commentEnd": "*#", "commentStart": "#*", "lineComment": "##", } # Attributes dict for velocity_main ruleset. velocity_main_attributes_dict = { "default": "null", "digit_re": "", "escape": "", "highlight_digits": "true", "ignore_case": "true", "no_word_sep": "", } # Attributes dict for velocity_velocity ruleset. velocity_velocity_attributes_dict = { "default": "null", "digit_re": "", "escape": "", "highlight_digits": "true", "ignore_case": "true", "no_word_sep": "", } # Attributes dict for velocity_javascript ruleset. velocity_javascript_attributes_dict = { "default": "MARKUP", "digit_re": "", "escape": "", "highlight_digits": "true", "ignore_case": "true", "no_word_sep": "", } # Attributes dict for velocity_javascript2 ruleset. velocity_javascript2_attributes_dict = { "default": "MARKUP", "digit_re": "(0x[[:xdigit:]]+[lL]?|[[:digit:]]+(e[[:digit:]]*)?[lLdDfF]?)", "escape": "\\", "highlight_digits": "true", "ignore_case": "false", "no_word_sep": "", } # Attributes dict for velocity_back_to_html ruleset. velocity_back_to_html_attributes_dict = { "default": "MARKUP", "digit_re": "(0x[[:xdigit:]]+[lL]?|[[:digit:]]+(e[[:digit:]]*)?[lLdDfF]?)", "escape": "\\", "highlight_digits": "true", "ignore_case": "false", "no_word_sep": "", } # Attributes dict for velocity_css ruleset. velocity_css_attributes_dict = { "default": "MARKUP", "digit_re": "(0x[[:xdigit:]]+[lL]?|[[:digit:]]+(e[[:digit:]]*)?[lLdDfF]?)", "escape": "\\", "highlight_digits": "true", "ignore_case": "false", "no_word_sep": "", } # Attributes dict for velocity_css2 ruleset. velocity_css2_attributes_dict = { "default": "MARKUP", "digit_re": "[[:digit:]]+(pt|pc|in|mm|cm|em|ex|px|ms|s|%)", "escape": "\\", "highlight_digits": "true", "ignore_case": "true", "no_word_sep": "-_", } # Dictionary of attributes dictionaries for velocity mode. attributesDictDict = { "velocity_back_to_html": velocity_back_to_html_attributes_dict, "velocity_css": velocity_css_attributes_dict, "velocity_css2": velocity_css2_attributes_dict, "velocity_javascript": velocity_javascript_attributes_dict, "velocity_javascript2": velocity_javascript2_attributes_dict, "velocity_main": velocity_main_attributes_dict, "velocity_velocity": velocity_velocity_attributes_dict, } # Keywords dict for velocity_main ruleset. velocity_main_keywords_dict = {} # Keywords dict for velocity_velocity ruleset. velocity_velocity_keywords_dict = { "#else": "keyword1", "#elseif": "keyword1", "#end": "keyword1", "#foreach": "keyword1", "#if": "keyword1", "#include": "keyword1", "#macro": "keyword1", "#parse": "keyword1", "#set": "keyword1", "#stop": "keyword1", } # Keywords dict for velocity_javascript ruleset. velocity_javascript_keywords_dict = {} # Keywords dict for velocity_javascript2 ruleset. velocity_javascript2_keywords_dict = {} # Keywords dict for velocity_back_to_html ruleset. velocity_back_to_html_keywords_dict = {} # Keywords dict for velocity_css ruleset. velocity_css_keywords_dict = {} # Keywords dict for velocity_css2 ruleset. velocity_css2_keywords_dict = {} # Dictionary of keywords dictionaries for velocity mode. keywordsDictDict = { "velocity_back_to_html": velocity_back_to_html_keywords_dict, "velocity_css": velocity_css_keywords_dict, "velocity_css2": velocity_css2_keywords_dict, "velocity_javascript": velocity_javascript_keywords_dict, "velocity_javascript2": velocity_javascript2_keywords_dict, "velocity_main": velocity_main_keywords_dict, "velocity_velocity": velocity_velocity_keywords_dict, } # Rules for velocity_main ruleset. def velocity_rule0(colorer, s, i): return colorer.match_span(s, i, kind="comment1", begin="<!--", end="-->", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=False) def velocity_rule1(colorer, s, i): return colorer.match_span(s, i, kind="markup", begin="<SCRIPT", end="</SCRIPT>", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="velocity::javascript",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=False) def velocity_rule2(colorer, s, i): return colorer.match_span(s, i, kind="markup", begin="<STYLE", end="</STYLE>", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="velocity::css",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=False) def velocity_rule3(colorer, s, i): return colorer.match_span(s, i, kind="keyword2", begin="<!", end=">", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="xml::dtd-tags",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=False) def velocity_rule4(colorer, s, i): return colorer.match_span(s, i, kind="markup", begin="<", end=">", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="html::tags",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=False) def velocity_rule5(colorer, s, i): return colorer.match_span(s, i, kind="literal2", begin="&", end=";", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=True) # Rules dict for velocity_main ruleset. rulesDict1 = { "&": [velocity_rule5,], "<": [velocity_rule0,velocity_rule1,velocity_rule2,velocity_rule3,velocity_rule4,], } # Rules for velocity_velocity ruleset. def velocity_rule6(colorer, s, i): return colorer.match_span(s, i, kind="comment2", begin="#*", end="*#", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=False, no_word_break=False) def velocity_rule7(colorer, s, i): return colorer.match_eol_span(s, i, kind="comment3", seq="##", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="", exclude_match=False) def velocity_rule8(colorer, s, i): return colorer.match_span(s, i, kind="keyword3", begin="${", end="}", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="",exclude_match=False, no_escape=False, no_line_break=True, no_word_break=False) def velocity_rule9(colorer, s, i): return colorer.match_mark_following(s, i, kind="keyword3", pattern="$!", at_line_start=False, at_whitespace_end=False, at_word_start=False, exclude_match=False) def velocity_rule10(colorer, s, i): return colorer.match_mark_following(s, i, kind="keyword3", pattern="$", at_line_start=False, at_whitespace_end=False, at_word_start=False, exclude_match=False) def velocity_rule11(colorer, s, i): return colorer.match_keywords(s, i) # Rules dict for velocity_velocity ruleset. rulesDict2 = { "#": [velocity_rule6,velocity_rule7,velocity_rule11,], "$": [velocity_rule8,velocity_rule9,velocity_rule10,], "0": [velocity_rule11,], "1": [velocity_rule11,], "2": [velocity_rule11,], "3": [velocity_rule11,], "4": [velocity_rule11,], "5": [velocity_rule11,], "6": [velocity_rule11,], "7": [velocity_rule11,], "8": [velocity_rule11,], "9": [velocity_rule11,], "@": [velocity_rule11,], "A": [velocity_rule11,], "B": [velocity_rule11,], "C": [velocity_rule11,], "D": [velocity_rule11,], "E": [velocity_rule11,], "F": [velocity_rule11,], "G": [velocity_rule11,], "H": [velocity_rule11,], "I": [velocity_rule11,], "J": [velocity_rule11,], "K": [velocity_rule11,], "L": [velocity_rule11,], "M": [velocity_rule11,], "N": [velocity_rule11,], "O": [velocity_rule11,], "P": [velocity_rule11,], "Q": [velocity_rule11,], "R": [velocity_rule11,], "S": [velocity_rule11,], "T": [velocity_rule11,], "U": [velocity_rule11,], "V": [velocity_rule11,], "W": [velocity_rule11,], "X": [velocity_rule11,], "Y": [velocity_rule11,], "Z": [velocity_rule11,], "a": [velocity_rule11,], "b": [velocity_rule11,], "c": [velocity_rule11,], "d": [velocity_rule11,], "e": [velocity_rule11,], "f": [velocity_rule11,], "g": [velocity_rule11,], "h": [velocity_rule11,], "i": [velocity_rule11,], "j": [velocity_rule11,], "k": [velocity_rule11,], "l": [velocity_rule11,], "m": [velocity_rule11,], "n": [velocity_rule11,], "o": [velocity_rule11,], "p": [velocity_rule11,], "q": [velocity_rule11,], "r": [velocity_rule11,], "s": [velocity_rule11,], "t": [velocity_rule11,], "u": [velocity_rule11,], "v": [velocity_rule11,], "w": [velocity_rule11,], "x": [velocity_rule11,], "y": [velocity_rule11,], "z": [velocity_rule11,], } # Rules for velocity_javascript ruleset. def velocity_rule12(colorer, s, i): return colorer.match_seq(s, i, kind="markup", seq=">", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="velocity::javascript2") def velocity_rule13(colorer, s, i): return colorer.match_seq(s, i, kind="markup", seq="SRC=", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="velocity::back_to_html") # Rules dict for velocity_javascript ruleset. rulesDict3 = { ">": [velocity_rule12,], "S": [velocity_rule13,], } # Rules for velocity_javascript2 ruleset. # Rules dict for velocity_javascript2 ruleset. rulesDict4 = {} # Rules for velocity_back_to_html ruleset. def velocity_rule14(colorer, s, i): return colorer.match_seq(s, i, kind="markup", seq=">", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="velocity::main") # Rules dict for velocity_back_to_html ruleset. rulesDict5 = { ">": [velocity_rule14,], } # Rules for velocity_css ruleset. def velocity_rule15(colorer, s, i): return colorer.match_seq(s, i, kind="markup", seq=">", at_line_start=False, at_whitespace_end=False, at_word_start=False, delegate="velocity::css2") # Rules dict for velocity_css ruleset. rulesDict6 = { ">": [velocity_rule15,], } # Rules for velocity_css2 ruleset. # Rules dict for velocity_css2 ruleset. rulesDict7 = {} # x.rulesDictDict for velocity mode. rulesDictDict = { "velocity_back_to_html": rulesDict5, "velocity_css": rulesDict6, "velocity_css2": rulesDict7, "velocity_javascript": rulesDict3, "velocity_javascript2": rulesDict4, "velocity_main": rulesDict1, "velocity_velocity": rulesDict2, } # Import dict for velocity mode. importDict = { "velocity_css2": ["velocity_css2::velocity","css::main",], "velocity_javascript2": ["velocity_javascript2::velocity","javascript::main",], "velocity_main": ["velocity_main::velocity",], }
phasing/utils/tag_bam_post_phasing.py
ArthurDondi/cDNA_Cupcake
205
44099
<reponame>ArthurDondi/cDNA_Cupcake __author__ = "<EMAIL>" """ Tagging BAM files with phasing info """ import pysam from csv import DictReader def main(read_bam, hap_info, output_bam, celltype_file=None): d = {} celltype_info = {} #for r in DictReader(open('phased.partial.cleaned.hap_info.txt'),delimiter=','): for r in DictReader(open(hap_info), delimiter=','): d[r['id']] = r['hap_postclean'] if celltype_file is not None: for r in DictReader(open(celltype_file), delimiter=','): if r['id'] in d: celltype_info[r['id']] = r['Celltype'].replace(' ','_').replace(':','_') reader = pysam.AlignmentFile(read_bam, 'rb', check_sq=False) f2 = pysam.AlignmentFile(output_bam, 'wb', header=reader.header) for r in reader: d2 = r.to_dict() if r.qname in d: d2['tags'].append('RG:Z:' + str(d[r.qname])) if r.qname in celltype_info: d2['tags'].append('XC:Z:' + str(celltype_info[r.qname])) else: d2['tags'].append('RG:Z:NA') x = pysam.AlignedSegment.from_dict(d2, r.header) f2.write(x) f2.close() if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser("Tagging BAM files with phasing info") parser.add_argument("read_bam", help="Aligned BAM file that be tagged") parser.add_argument("hap_info", help="Comma-delimited hap info CSV, must have column 'id' and 'hap_postclean'") parser.add_argument("output_bam", help="Output tagged BAM filename") parser.add_argument("--celltype", default=None, help="[Optional] Comma-delimited celltype info CSV, must have column 'id' and 'Celltype'") args = parser.parse_args() main(args.read_bam, args.hap_info, args.output_bam, args.celltype)
pudzu/sandbox/tinytim.py
Udzu/pudzu
119
44144
from collections import namedtuple from turtle import fd, heading, lt, pd, position, pu, rt, setheading, setposition # pylint: disable=no-name-in-module from pudzu.utils import weighted_choice class LSystem: Rule = namedtuple("Rule", "predecessor successor weight", defaults=(1.0,)) def __init__(self, axiom, rules, angle=4): self.axiom = axiom self.angle = 360 / angle self.rules = {} self.weights = {} for rule in rules: pr = self.Rule(*rule) self.rules.setdefault(pr.predecessor, []).append(pr.successor) self.weights.setdefault(pr.predecessor, []).append(pr.weight) def expand(self, iterations): state = self.axiom for _ in range(iterations): state = "".join([weighted_choice(self.rules.get(c, [c]), self.weights.get(c, [1])) for c in state]) return state def plot(self, screen, iterations, size, reset=True, tracer=(0, 0)): if reset: screen.clearscreen() screen.tracer(*tracer) stack = [] for c in self.expand(iterations): if c == "F": fd(size) elif c == "G": pu() fd(size) pd() elif c == "+": rt(self.angle) elif c == "-": lt(self.angle) elif c == "[": stack.append((position(), heading())) elif c == "]": p, h = stack.pop() pu() setposition(p) setheading(h) pd() screen.update() Koch = LSystem("F--F--F", [("F", "F+F--F+F")], 6) Dragon = LSystem("FX", [("F", ""), ("Y", "+FX--FY+"), ("X", "-FX++FY-")], 8) Plant07 = LSystem("Z", [("Z", "ZFX[+Z][-Z]"), ("X", "X[-FFF][+FFF]FX")], 14) Plant08 = LSystem("SLFFF", [("S", "[+++Z][---Z]TS"), ("Z", "+H[-Z]L"), ("H", "-Z[+H]L"), ("T", "TL"), ("L", "[-FFF][+FFF]F")], 20) Sierpinski = LSystem("AF", [("A", "BF+AF+BF"), ("B", "AF-BF-AF"), ("F", "")], 6) Barnsley = LSystem("X", [("X", "F+[[X]-X]-F[-FX]+X"), ("F", "FF")], 14.4) RandomWalk = LSystem("F", [("F", "FF"), ("F", "F+F"), ("F", "F++F"), ("F", "F-F")], 4)
examples/pytorch/diffpool/model/tensorized_layers/assignment.py
ketyi/dgl
9,516
44156
import torch from torch import nn as nn from torch.nn import functional as F from torch.autograd import Variable from model.tensorized_layers.graphsage import BatchedGraphSAGE class DiffPoolAssignment(nn.Module): def __init__(self, nfeat, nnext): super().__init__() self.assign_mat = BatchedGraphSAGE(nfeat, nnext, use_bn=True) def forward(self, x, adj, log=False): s_l_init = self.assign_mat(x, adj) s_l = F.softmax(s_l_init, dim=-1) return s_l
Algo and DSA/LeetCode-Solutions-master/Python/insert-delete-getrandom-o1.py
Sourav692/FAANG-Interview-Preparation
3,269
44171
# Time: O(1) # Space: O(n) from random import randint class RandomizedSet(object): def __init__(self): """ Initialize your data structure here. """ self.__set = [] self.__used = {} def insert(self, val): """ Inserts a value to the set. Returns true if the set did not already contain the specified element. :type val: int :rtype: bool """ if val in self.__used: return False self.__set += val, self.__used[val] = len(self.__set)-1 return True def remove(self, val): """ Removes a value from the set. Returns true if the set contained the specified element. :type val: int :rtype: bool """ if val not in self.__used: return False self.__used[self.__set[-1]] = self.__used[val] self.__set[self.__used[val]], self.__set[-1] = self.__set[-1], self.__set[self.__used[val]] self.__used.pop(val) self.__set.pop() return True def getRandom(self): """ Get a random element from the set. :rtype: int """ return self.__set[randint(0, len(self.__set)-1)]
examples/pubsub_broadcaster_server_example.py
sondrelg/fastapi_websocket_pubsub
125
44192
""" Multiple Servers linked via broadcaster example. To run this example. - 0. Setup a broadcast medium and pass its configuration to the endpoint (e.g. postgres on 'postgres://localhost:5432/' ) - 1. run this script for the servers (as many instances as you'd like) - use the PORT env-variable to run them on different ports - 2. once the servers are up, run notifier_client_test.py and connect to one of them - 3. send get request to one server on: '/trigger' - 4. See that the client recives the event -no matter which server you connected it to, or which server got the initial trigger to publish """ import sys import os sys.path.append(os.path.abspath(os.path.join(os.path.basename(__file__), ".."))) from fastapi_websocket_pubsub import PubSubEndpoint import asyncio import os from starlette.websockets import WebSocket import uvicorn from fastapi import FastAPI from fastapi.routing import APIRouter PORT = int(os.environ.get("PORT") or "8000") app = FastAPI() router = APIRouter() endpoint = PubSubEndpoint(broadcaster="postgres://localhost:5432/") @router.websocket("/pubsub") async def websocket_rpc_endpoint(websocket: WebSocket): async with endpoint.broadcaster: await endpoint.main_loop(websocket) app.include_router(router) async def events(): await asyncio.sleep(1) await endpoint.publish(["guns", "germs"]) await asyncio.sleep(1) await endpoint.publish(["germs"]) await asyncio.sleep(1) await endpoint.publish(["steel"]) @app.get("/trigger") async def trigger_events(): asyncio.create_task(events()) uvicorn.run(app, host="0.0.0.0", port=PORT)
Chapter03/plot_convolution.py
arifmudi/Advanced-Deep-Learning-with-Python
107
44209
import matplotlib.pyplot as plt import numpy as np def plot_convolution(f, g): fig, (ax1, ax2, ax3) = plt.subplots(3, 1) ax1.set_yticklabels([]) ax1.set_xticklabels([]) ax1.plot(f, color='blue', label='f') ax1.legend() ax2.set_yticklabels([]) ax2.set_xticklabels([]) ax2.plot(g, color='red', label='g') ax2.legend() filtered = np.convolve(f, g, "same") / sum(g) ax3.set_yticklabels([]) ax3.set_xticklabels([]) ax3.plot(filtered, color='green', label='f * g') ax3.legend() plt.show() def plot_convolution_step_by_step(f, g): fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, 1) ax1.set_yticklabels([]) ax1.set_xticklabels([]) ax1.plot(f, color='blue', label='f') ax1.plot(np.roll(g, -10000), color='red', label='g') ax2.set_yticklabels([]) ax2.set_xticklabels([]) ax2.plot(f, color='blue', label='f') ax2.plot(np.roll(g, -5000), color='red', label='g') ax3.set_yticklabels([]) ax3.set_xticklabels([]) ax3.plot(f, color='blue', label='f') ax3.plot(g, color='red', label='g') ax4.set_yticklabels([]) ax4.set_xticklabels([]) ax4.plot(f, color='blue', label='f') ax4.plot(np.roll(g, 5000), color='red', label='g') ax5.set_yticklabels([]) ax5.set_xticklabels([]) ax5.plot(f, color='blue', label='f') ax5.plot(np.roll(g, 10000), color='red', label='g') plt.show() signal = np.zeros(30000) signal[10000:20000] = 1 kernel = np.zeros(30000) kernel[10000:20000] = np.linspace(1, 0, 10000) plot_convolution(signal, kernel) plot_convolution_step_by_step(signal, kernel)
rocAL/rocAL_pybind/example/tf_mnistTrainingExample/tf_mnist_classification_rali.py
asalmanp/MIVisionX
153
44215
from __future__ import print_function from amd.rali.plugin.tf import RALIIterator from amd.rali.pipeline import Pipeline import amd.rali.ops as ops import amd.rali.types as types import sys import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import numpy as np ############################### HYPER PARAMETERS FOR TRAINING ############################### learning_rate = 0.001 image_size = 28 # Network Parameters n_hidden_1 = 256 # 1st layer number of neurons n_hidden_2 = 256 # 2nd layer number of neurons num_input = 784 # MNIST data input (img shape: 28*28) num_classes = 10 # MNIST total classes (0-9 digits) ############################### HYPER PARAMETERS FOR TRAINING ############################### def get_label_one_hot(label_ndArray): one_hot_vector_list = [] for label in label_ndArray: one_hot_vector = np.zeros(num_classes) np.put(one_hot_vector, label - 1, 1) one_hot_vector_list.append(one_hot_vector) return one_hot_vector_list # Create model weights = { 'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([num_classes])) } def neural_net(x): # Hidden fully connected layer with 256 neurons layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) # Hidden fully connected layer with 256 neurons layer_1 = tf.nn.relu(layer_1) layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) layer_2 = tf.nn.relu(layer_2) # Output fully connected layer with a neuron for each class out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] return out_layer #helper function not used in training def decode(tfrecord_serialized): tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={ 'image/height': tf.FixedLenFeature([], tf.int64), 'image/width': tf.FixedLenFeature([], tf.int64), 'image/class/label': tf.FixedLenFeature([], tf.int64), 'image/raw': tf.FixedLenFeature([], tf.string), }, name='features') image = tf.decode_raw(tfrecord_features['image/raw'], tf.float32) image.set_shape([784]) label = tf.cast(tfrecord_features['image/class/label'], tf.int32) # image_batch, label_batch = tf.train.batch([image, label], batch_size=bs) return image, label #RALI pipeline class HybridPipe(Pipeline): def __init__(self, feature_key_map, tfrecordreader_type, batch_size, num_threads, device_id, data_dir, crop, rali_cpu = True): super(HybridPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id,rali_cpu=rali_cpu) self.input = ops.TFRecordReader(path=data_dir, index_path = "", reader_type=tfrecordreader_type, user_feature_key_map=feature_key_map, features={ 'image/encoded':tf.FixedLenFeature((), tf.string, ""), 'image/class/label':tf.FixedLenFeature([1], tf.int64, -1), 'image/filename':tf.FixedLenFeature((), tf.string, "") }, ) rali_device = 'cpu' if rali_cpu else 'gpu' decoder_device = 'cpu' if rali_cpu else 'mixed' self.decode = ops.ImageDecoderRaw(user_feature_key_map=feature_key_map, device=decoder_device, output_type=types.RGB) #self.res = ops.Resize(device=rali_device, resize_x=crop[0], resize_y=crop[1]) self.cmnp = ops.CropMirrorNormalize(device="cpu", output_dtype=types.FLOAT, output_layout=types.NCHW, crop=(crop,crop), image_type=types.GRAY, mean=[0 ,0,0], std=[255,255,255], mirror=0) self.coin = ops.CoinFlip(probability=0.5) print('rali "{0}" variant'.format(rali_device)) def define_graph(self): inputs = self.input(name ="Reader") images = inputs["image/encoded"] labels = inputs["image/class/label"] images = self.decode(images) #rng = self.coin() output = self.cmnp(images) return [output, labels] # compute accuracy def compute_accuracy(predictions, labels): correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32)) return accuracy def train_mnist_rali(data_path, _rali_cpu, batch_size): # setup keep_prob input_X = tf.placeholder('float32',shape = (batch_size,784)) labels = tf.placeholder('float32',shape = (batch_size,10)) logits = neural_net(input_X) cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits), name="loss" ) optimizer = tf.train.AdamOptimizer().minimize(cost) train_prediction = tf.nn.softmax(logits) accuracy = compute_accuracy(train_prediction, labels) #correct_label = tf.argmax(labels, 1) num_epochs = 10 crop_size = 28 TFRecordReaderType = 0 featureKeyMap = { 'image/encoded':'image_raw', 'image/class/label':'label', 'image/filename':'' } trainPipe = HybridPipe(feature_key_map=featureKeyMap, tfrecordreader_type=TFRecordReaderType, batch_size=batch_size, num_threads=1, device_id=0, data_dir=data_path+"/train", crop=crop_size, rali_cpu=_rali_cpu) valPipe = HybridPipe(feature_key_map=featureKeyMap, tfrecordreader_type=TFRecordReaderType, batch_size=batch_size, num_threads=1, device_id=0, data_dir=data_path+"/val", crop=crop_size, rali_cpu=_rali_cpu) trainPipe.build() valPipe.build() trainIterator = RALIIterator(trainPipe) valIterator = RALIIterator(valPipe) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) for epoch in range(num_epochs): print('\n\n----------------------------Training Model for Epoch: ', epoch, "-----------------------------------------------") epoch_loss = 0 train_accuracy = 0 for i, (image_train, label_train) in enumerate(trainIterator, 0): image_train_res = image_train.reshape(batch_size, 784) train_label_one_hot_list = get_label_one_hot(label_train) _, c, tacc = sess.run([optimizer, cost, accuracy], feed_dict={input_X:image_train_res, labels: train_label_one_hot_list}) epoch_loss += c train_accuracy += tacc print('Epoch', epoch, 'completed out of',num_epochs,'loss:',epoch_loss, 'accuracy:',(train_accuracy*100)/i, 'count :', i) #run evaluation for every epoch mean_acc = 0 print("\n\n----------------------------Evaluating Model ---------------------------------------------------------------") for j, (val_image_ndArray, val_label_ndArray) in enumerate(valIterator, 0): #val_image_ndArray_transposed = np.transpose(val_image_ndArray, [0, 2, 3, 1]) val_image_ndArray_res = val_image_ndArray.reshape(batch_size, 784) val_label_one_hot_list = get_label_one_hot(val_label_ndArray) val_accuracy = sess.run(accuracy, #[optimizer, accuracy, prediction, correct_label, correct_pred], feed_dict={input_X: val_image_ndArray_res, labels: val_label_one_hot_list}) mean_acc += val_accuracy #mean_loss = mean_loss + val_loss #num_correct_predicate = 0 #for predicate in correct_predicate: # if predicate == True: # num_correct_predicate += 1 #print ("Step :: %s\tTarget :: %s\tPrediction :: %s\tCorrect Predictions :: %s/%s\tValidation Loss :: %.2f\tValidation Accuracy :: %.2f%%\t" % (j, val_target, val_prediction, num_correct_predicate, len(correct_predicate), val_loss, (val_accuracy * 100))) mean_acc = (mean_acc * 100) / j #mean_loss = (mean_loss * 100)/ j print("\nSUMMARY:\nMean Accuracy :: %.2f%% count: %d" % (mean_acc, j)) def main(): if len(sys.argv) < 4: print ('Please pass mnistTFRecord_dir cpu/gpu batch_size') exit(0) image_path = sys.argv[1] if(sys.argv[2] == "cpu"): _rali_cpu = True else: _rali_cpu = False bs = int(sys.argv[3]) train_mnist_rali(image_path, _rali_cpu, bs) if __name__ == '__main__': main()
tests/test_casefold_migration.py
clmnin/sydent
220
44234
<gh_stars>100-1000 import json import os.path from unittest.mock import patch from twisted.trial import unittest from scripts.casefold_db import ( calculate_lookup_hash, update_global_associations, update_local_associations, ) from sydent.util import json_decoder from sydent.util.emailutils import sendEmail from tests.utils import make_sydent class MigrationTestCase(unittest.TestCase): def create_signedassoc(self, medium, address, mxid, ts, not_before, not_after): return { "medium": medium, "address": address, "mxid": mxid, "ts": ts, "not_before": not_before, "not_after": not_after, } def setUp(self): # Create a new sydent config = { "general": { "templates.path": os.path.join( os.path.dirname(os.path.dirname(__file__)), "res" ), }, "crypto": { "ed25519.signingkey": "<KEY>" }, } self.sydent = make_sydent(test_config=config) # create some local associations associations = [] for i in range(10): address = "<EMAIL>" % i associations.append( { "medium": "email", "address": address, "lookup_hash": calculate_lookup_hash(self.sydent, address), "mxid": "@bob%d:example.com" % i, "ts": (i * 10000), "not_before": 0, "not_after": 99999999999, } ) # create some casefold-conflicting associations for i in range(5): address = "<EMAIL>" % i associations.append( { "medium": "email", "address": address, "lookup_hash": calculate_lookup_hash(self.sydent, address), "mxid": "@otherbob%d:example.com" % i, "ts": (i * 10000), "not_before": 0, "not_after": 99999999999, } ) # add all associations to db cur = self.sydent.db.cursor() cur.executemany( "INSERT INTO local_threepid_associations " "(medium, address, lookup_hash, mxid, ts, notBefore, notAfter) " "VALUES (?, ?, ?, ?, ?, ?, ?)", [ ( assoc["medium"], assoc["address"], assoc["lookup_hash"], assoc["mxid"], assoc["ts"], assoc["not_before"], assoc["not_after"], ) for assoc in associations ], ) self.sydent.db.commit() # create some global associations associations = [] originServer = self.sydent.config.general.server_name for i in range(10): address = "<EMAIL>" % i mxid = "@bob%d:example.com" % i ts = 10000 * i associations.append( { "medium": "email", "address": address, "lookup_hash": calculate_lookup_hash(self.sydent, address), "mxid": mxid, "ts": ts, "not_before": 0, "not_after": 99999999999, "originServer": originServer, "originId": i, "sgAssoc": json.dumps( self.create_signedassoc( "email", address, mxid, ts, 0, 99999999999 ) ), } ) # create some casefold-conflicting associations for i in range(5): address = "<EMAIL>" % i mxid = "@BOB%d:example.com" % i ts = 10000 * i associations.append( { "medium": "email", "address": address, "lookup_hash": calculate_lookup_hash(self.sydent, address), "mxid": mxid, "ts": ts + 1, "not_before": 0, "not_after": 99999999999, "originServer": originServer, "originId": i + 10, "sgAssoc": json.dumps( self.create_signedassoc( "email", address, mxid, ts, 0, 99999999999 ) ), } ) # add all associations to db cur = self.sydent.db.cursor() cur.executemany( "INSERT INTO global_threepid_associations " "(medium, address, lookup_hash, mxid, ts, notBefore, notAfter, originServer, originId, sgAssoc) " "VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", [ ( assoc["medium"], assoc["address"], assoc["lookup_hash"], assoc["mxid"], assoc["ts"], assoc["not_before"], assoc["not_after"], assoc["originServer"], assoc["originId"], assoc["sgAssoc"], ) for assoc in associations ], ) self.sydent.db.commit() def test_migration_email(self): with patch("sydent.util.emailutils.smtplib") as smtplib: # self.sydent.config.email.template is deprecated if self.sydent.config.email.template is None: templateFile = self.sydent.get_branded_template( None, "migration_template.eml", ) else: templateFile = self.sydent.config.email.template sendEmail( self.sydent, templateFile, "<EMAIL>", { "mxid": "@bob:example.com", "subject_header_value": "MatrixID Deletion", }, ) smtp = smtplib.SMTP.return_value email_contents = smtp.sendmail.call_args[0][2].decode("utf-8") self.assertIn("In the past", email_contents) # test email was sent smtp.sendmail.assert_called() def test_local_db_migration(self): with patch("sydent.util.emailutils.smtplib") as smtplib: update_local_associations( self.sydent, self.sydent.db, send_email=True, dry_run=False, test=True, ) # test 5 emails were sent smtp = smtplib.SMTP.return_value self.assertEqual(smtp.sendmail.call_count, 5) # don't send emails to people who weren't affected self.assertNotIn( smtp.sendmail.call_args_list, [ "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>", ], ) # make sure someone who is affected gets email self.assertIn("<EMAIL>", smtp.sendmail.call_args_list[0][0]) cur = self.sydent.db.cursor() res = cur.execute("SELECT * FROM local_threepid_associations") db_state = res.fetchall() # five addresses should have been deleted self.assertEqual(len(db_state), 10) # iterate through db and make sure all addresses are casefolded and hash matches casefolded address for row in db_state: casefolded = row[2].casefold() self.assertEqual(row[2], casefolded) self.assertEqual( calculate_lookup_hash(self.sydent, row[2]), calculate_lookup_hash(self.sydent, casefolded), ) def test_global_db_migration(self): update_global_associations( self.sydent, self.sydent.db, dry_run=False, ) cur = self.sydent.db.cursor() res = cur.execute("SELECT * FROM global_threepid_associations") db_state = res.fetchall() # five addresses should have been deleted self.assertEqual(len(db_state), 10) # iterate through db and make sure all addresses are casefolded and hash matches casefolded address # and make sure the casefolded address matches the address in sgAssoc for row in db_state: casefolded = row[2].casefold() self.assertEqual(row[2], casefolded) self.assertEqual( calculate_lookup_hash(self.sydent, row[2]), calculate_lookup_hash(self.sydent, casefolded), ) sgassoc = json_decoder.decode(row[9]) self.assertEqual(row[2], sgassoc["address"]) def test_local_no_email_does_not_send_email(self): with patch("sydent.util.emailutils.smtplib") as smtplib: update_local_associations( self.sydent, self.sydent.db, send_email=False, dry_run=False, test=True, ) smtp = smtplib.SMTP.return_value # test no emails were sent self.assertEqual(smtp.sendmail.call_count, 0) def test_dry_run_does_nothing(self): # reset DB self.setUp() cur = self.sydent.db.cursor() # grab a snapshot of global table before running script res1 = cur.execute("SELECT mxid FROM global_threepid_associations") list1 = res1.fetchall() with patch("sydent.util.emailutils.smtplib") as smtplib: update_global_associations( self.sydent, self.sydent.db, dry_run=True, ) # test no emails were sent smtp = smtplib.SMTP.return_value self.assertEqual(smtp.sendmail.call_count, 0) res2 = cur.execute("SELECT mxid FROM global_threepid_associations") list2 = res2.fetchall() self.assertEqual(list1, list2) # grab a snapshot of local table db before running script res3 = cur.execute("SELECT mxid FROM local_threepid_associations") list3 = res3.fetchall() with patch("sydent.util.emailutils.smtplib") as smtplib: update_local_associations( self.sydent, self.sydent.db, send_email=True, dry_run=True, test=True, ) # test no emails were sent smtp = smtplib.SMTP.return_value self.assertEqual(smtp.sendmail.call_count, 0) res4 = cur.execute("SELECT mxid FROM local_threepid_associations") list4 = res4.fetchall() self.assertEqual(list3, list4)
test_soundcard.py
bastibe/pysound
490
44236
import sys import soundcard import numpy import pytest skip_if_not_linux = pytest.mark.skipif(sys.platform != 'linux', reason='Only implemented for PulseAudio so far') ones = numpy.ones(1024) signal = numpy.concatenate([[ones], [-ones]]).T def test_speakers(): for speaker in soundcard.all_speakers(): assert isinstance(speaker.name, str) assert hasattr(speaker, 'id') assert isinstance(speaker.channels, int) assert speaker.channels > 0 def test_microphones(): for microphone in soundcard.all_microphones(): assert isinstance(microphone.name, str) assert hasattr(microphone, 'id') assert isinstance(microphone.channels, int) assert microphone.channels > 0 def test_default_playback(): soundcard.default_speaker().play(signal, 44100, channels=2) def test_default_record(): recording = soundcard.default_microphone().record(1024, 44100) assert len(recording == 1024) def test_default_blockless_record(): recording = soundcard.default_microphone().record(None, 44100) @skip_if_not_linux def test_name(): # The default is the application name, so when run from pytest, # it’s “pytest” or “_jb_pytest_runner.py” or so. assert 'pytest' in soundcard.get_name() soundcard.set_name('testapp') assert soundcard.get_name() == 'testapp' @skip_if_not_linux @pytest.mark.parametrize("argv,progname", [ (["./script.py"], "script.py"), # chmod +x script.py; ./script.py (["path/to/script.py"], "script.py"), # python path/to/script.py or # python -m path.to.script (["module/__main__.py"], "module"), # python -m module (["-m", "module.submodule"], "module.submodule"), # rare unresolved case (["-c", "import soundcard; soundcard.foo()"], "import soundcard; soundcard.fo..."), ]) def test_infer_name(monkeypatch, argv, progname): infer = soundcard.pulseaudio._PulseAudio._infer_program_name monkeypatch.setattr(sys, "argv", argv) assert infer() == progname @pytest.fixture def loopback_speaker(): import sys if sys.platform == 'win32': # must install https://www.vb-audio.com/Cable/index.htm return soundcard.get_speaker('Cable') elif sys.platform == 'darwin': # must install soundflower return soundcard.get_speaker('Soundflower64') elif sys.platform == 'linux': # pacmd load-module module-null-sink channels=6 rate=48000 return soundcard.get_speaker('Null') else: raise RuntimeError('Unknown platform {}'.format(sys.platform)) @pytest.fixture def loopback_player(loopback_speaker): with loopback_speaker.player(48000, channels=2, blocksize=512) as player: yield player @pytest.fixture def loopback_microphone(): if sys.platform == 'win32': # must install https://www.vb-audio.com/Cable/index.htm return soundcard.get_microphone('Cable') elif sys.platform == 'darwin': # must install soundflower return soundcard.get_microphone('Soundflower64') elif sys.platform == 'linux': return soundcard.get_microphone('Null', include_loopback=True) else: raise RuntimeError('Unknown platform {}'.format(sys.platform)) @pytest.fixture def loopback_recorder(loopback_microphone): with loopback_microphone.recorder(48000, channels=2, blocksize=512) as recorder: yield recorder def test_loopback_playback(loopback_player, loopback_recorder): loopback_player.play(signal) recording = loopback_recorder.record(1024*10) assert recording.shape[1] == 2 left, right = recording.T assert left.mean() > 0 assert right.mean() < 0 assert (left > 0.5).sum() == len(signal) assert (right < -0.5).sum() == len(signal) def test_loopback_reverse_recorder_channelmap(loopback_player, loopback_microphone): with loopback_microphone.recorder(48000, channels=[1, 0], blocksize=512) as loopback_recorder: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert recording.shape[1] == 2 left, right = recording.T assert right.mean() > 0 assert left.mean() < 0 assert (right > 0.5).sum() == len(signal) assert (left < -0.5).sum() == len(signal) def test_loopback_reverse_player_channelmap(loopback_speaker, loopback_recorder): with loopback_speaker.player(48000, channels=[1, 0], blocksize=512) as loopback_player: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert recording.shape[1] == 2 left, right = recording.T assert right.mean() > 0 assert left.mean() < 0 assert (right > 0.5).sum() == len(signal) assert (left < -0.5).sum() == len(signal) def test_loopback_mono_player_channelmap(loopback_speaker, loopback_recorder): with loopback_speaker.player(48000, channels=[0], blocksize=512) as loopback_player: loopback_player.play(signal[:,0]) recording = loopback_recorder.record(1024*12) assert recording.shape[1] == 2 left, right = recording.T assert left.mean() > 0 if sys.platform == 'linux': # unmapped channels on linux are filled with the mean of other channels assert right.mean() < left.mean() else: assert abs(right.mean()) < 0.01 # something like zero assert (left > 0.5).sum() == len(signal) def test_loopback_mono_recorder_channelmap(loopback_player, loopback_microphone): with loopback_microphone.recorder(48000, channels=[0], blocksize=512) as loopback_recorder: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert len(recording.shape) == 1 or recording.shape[1] == 1 assert recording.mean() > 0 assert (recording > 0.5).sum() == len(signal) def test_loopback_multichannel_channelmap(loopback_speaker, loopback_microphone): with loopback_speaker.player(48000, channels=[2, 0], blocksize=512) as loopback_player: with loopback_microphone.recorder(48000, channels=[2, 0], blocksize=512) as loopback_recorder: loopback_player.play(signal) recording = loopback_recorder.record(1024*12) assert len(recording.shape) == 2 left, right = recording.T assert left.mean() > 0 assert right.mean() < 0 assert (left > 0.5).sum() == len(signal) assert (right < -0.5).sum() == len(signal)
migrations/versions/c0e8d68e84fa_added_anomaly_config_to_kpi.py
eltociear/chaos_genius
320
44237
<gh_stars>100-1000 """added anomaly config to kpi Revision ID: c0e8d68e84fa Revises: <PASSWORD> Create Date: 2021-09-02 09:08:21.174195 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'c0e8d68e84fa' down_revision = '<PASSWORD>0d4ab3bc9' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('kpi', sa.Column('anomaly_params', sa.JSON(), nullable=True)) op.add_column('kpi', sa.Column('anomaly_frequency', sa.String(length=80), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('kpi', 'anomaly_frequency') op.drop_column('kpi', 'anomaly_params') # ### end Alembic commands ###
chromecast/tools/build/package_test_deps.py
zealoussnow/chromium
14,668
44251
#!/usr/bin/env python # # Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Packages test dependencies as tar.gz file.""" import argparse import json import logging import os import sys import tarfile parser = argparse.ArgumentParser( description='Package test dependencies as tar.gz files.') parser.add_argument('--output', required=True, help='Full path to the output file.') parser.add_argument('--deps_list_path', required=True, help='Full path to the json dependencies file.') parser.add_argument('--exclude_deps', required=False, default='', help=('Comma separated list of dependencies to exclude' ' from tar.gz file.')) parser.add_argument('--additional_deps', required=False, default='', help=('Comma separated list of additional deps' ' to include in tar.gz.')) def read_dependencies(file_path): """Reads a json file and creates an iterable of unique dependencies. Args: file_path: The path to the runtime dependencies file. Returns: An iterable with unique dependencies. """ deps = None with open(file_path) as deps_file: deps = json.load(deps_file) deps_set = set() for _, dep_list in deps.items(): deps_set.update(dep_list) return deps_set def filter_dependencies(dependencies, filters): """Filters out dependencies from a dependencies iterable. Args: dependencies: An iterable with the full list of dependencies. filters: A list of dependencies to remove. Returns: An iterable with the filtered dependencies. """ filters_list = filters.strip(',').split(',') logging.info('Filtering: %s', filters_list) filtered_deps = set() for dep in dependencies: norm_dep = os.path.normpath(dep) if not any(norm_dep.startswith(f) for f in filters_list): filtered_deps.add(norm_dep) return filtered_deps def create_tarfile(output_path, dependencies): """Creates a tar.gz file and saves it to output_path. Args: output_path: A string with the path to where tar.gz file will be saved to. dependencies: An iterable with file/folders test dependencies. """ total_deps = len(dependencies) if total_deps < 1: logging.error('There are no dependencies to archive') sys.exit(1) step = (total_deps / 10) or 1 logging.info('Adding %s files', total_deps) with tarfile.open(output_path, 'w:gz') as tar_file: for idx, dep in enumerate(dependencies): dep = os.path.normpath(dep) archive_name = os.path.join('fuchsia/release', dep) archive_name = os.path.normpath(archive_name) tar_file.add(dep, arcname=archive_name) if idx % step == 0 or idx == (total_deps - 1): logging.info('Progress: %s percent', int(round(100.0/total_deps * idx))) def main(): logging.basicConfig(level=logging.INFO) args = parser.parse_args() dependencies = read_dependencies(args.deps_list_path) if args.additional_deps: to_include = args.additional_deps.strip(',').split(',') logging.info('Including: %s', to_include) dependencies.update(to_include) if args.exclude_deps: dependencies = filter_dependencies(dependencies, args.exclude_deps) create_tarfile(args.output, dependencies) if __name__ == '__main__': main()
hls4ml/backends/fpga/fpga_types.py
jaemyungkim/hls4ml
380
44253
<reponame>jaemyungkim/hls4ml import numpy as np from hls4ml.model.types import CompressedType, NamedType, ExponentType, FixedPrecisionType, IntegerPrecisionType, XnorPrecisionType, ExponentPrecisionType, TensorVariable, PackedType, WeightVariable #region Precision types class PrecisionDefinition(object): def definition_cpp(self): raise NotImplementedError class APIntegerPrecisionDefinition(PrecisionDefinition): def definition_cpp(self): typestring = 'ap_{signed}int<{width}>'.format(signed='u' if not self.signed else '', width=self.width) return typestring class APFixedPrecisionDefinition(PrecisionDefinition): def _rounding_mode_cpp(self, mode): if mode is not None: return 'AP_' + str(mode) def _saturation_mode_cpp(self, mode): if mode is not None: return 'AP_' + str(mode) def definition_cpp(self): args = [self.width, self.integer, self._rounding_mode_cpp(self.rounding_mode), self._saturation_mode_cpp(self.saturation_mode), self.saturation_bits] args = ','.join([str(arg) for arg in args if arg is not None]) typestring = 'ap_{signed}fixed<{args}>'.format(signed='u' if not self.signed else '', args=args) return typestring class ACIntegerPrecisionDefinition(PrecisionDefinition): def definition_cpp(self): typestring = 'ac_int<{width}, {signed}>'.format(width=self.width, signed=str(self.signed).lower()) return typestring class ACFixedPrecisionDefinition(PrecisionDefinition): def _rounding_mode_cpp(self, mode): if mode is not None: return 'AC_' + str(mode) def _saturation_mode_cpp(self, mode): if mode is not None: return 'AC_' + str(mode) def definition_cpp(self): args = [self.width, self.integer, str(self.signed).lower(), self._rounding_mode_cpp(self.rounding_mode), self._saturation_mode_cpp(self.saturation_mode), self.saturation_bits] args = ','.join([str(arg) for arg in args if arg is not None]) typestring = 'ac_fixed<{args}>'.format(args=args) return typestring class PrecisionConverter(object): def convert(self, precision_type): raise NotImplementedError class FixedPrecisionConverter(PrecisionConverter): def __init__(self, type_map, prefix): self.type_map = type_map self.prefix = prefix def convert(self, precision_type): type_cls = type(precision_type) type_cls_name = type_cls.__name__ # If the type is already converted, do nothing if type_cls_name.startswith(self.prefix): return precision_type definition_cls = self.type_map.get(type_cls, None) if definition_cls is not None: precision_type.__class__ = type(self.prefix + type_cls_name, (type_cls, definition_cls), {}) return precision_type else: raise Exception('Cannot convert precision type to {}: {}'.format(self.prefix, precision_type.__class__.__name__)) class APTypeConverter(FixedPrecisionConverter): def __init__(self): super().__init__( type_map={ FixedPrecisionType: APFixedPrecisionDefinition, IntegerPrecisionType: APIntegerPrecisionDefinition, ExponentPrecisionType: APIntegerPrecisionDefinition, XnorPrecisionType: APIntegerPrecisionDefinition, }, prefix='AP' ) class ACTypeConverter(FixedPrecisionConverter): def __init__(self): super().__init__( type_map={ FixedPrecisionType: ACFixedPrecisionDefinition, IntegerPrecisionType: ACIntegerPrecisionDefinition, ExponentPrecisionType: ACIntegerPrecisionDefinition, XnorPrecisionType: ACIntegerPrecisionDefinition, }, prefix='AC' ) #endregion #region Data types class TypeDefinition(object): def definition_cpp(self): raise NotImplementedError class TypePrecisionConverter(object): def convert_precision(self, precision_converter): self.precision = precision_converter.convert(self.precision) class NamedTypeConverter(TypeDefinition, TypePrecisionConverter): def definition_cpp(self): return 'typedef {precision} {name};\n'.format(name=self.name, precision=self.precision.definition_cpp()) class CompressedTypeConverter(TypeDefinition, TypePrecisionConverter): def definition_cpp(self): cpp_fmt = ( 'typedef struct {name} {{' '{index} row_index;' '{index} col_index;' '{precision} weight; }} {name};\n' ) return cpp_fmt.format(name=self.name, index=self.index_precision, precision=self.precision.definition_cpp()) def convert_precision(self, precision_converter): super().convert_precision(precision_converter) self.index_precision = precision_converter.convert(self.index_precision) class ExponentTypeConverter(TypeDefinition, TypePrecisionConverter): def definition_cpp(self): cpp_fmt = ( 'typedef struct {name} {{' '{sign} sign;' '{precision} weight; }} {name};\n' ) return cpp_fmt.format(name=self.name, precision=self.precision.definition_cpp(), sign=self.sign.definition_cpp()) def convert_precision(self, precision_converter): super().convert_precision(precision_converter) self.sign = precision_converter.convert(self.sign) class PackedTypeConverter(TypeDefinition, TypePrecisionConverter): def definition_cpp(self): n_elem_expr = '/' if self.unpack else '*' return 'typedef nnet::array<{precision}, {n_elem}> {name};\n'.format(name=self.name, precision=self.precision.definition_cpp(), n_elem=str(self.n_elem) + n_elem_expr + str(self.n_pack)) class HLSTypeConverter(object): def __init__(self, precision_converter): self.precision_converter = precision_converter self.type_map = { NamedType: NamedTypeConverter, CompressedType: CompressedTypeConverter, ExponentType: ExponentTypeConverter, PackedType: PackedTypeConverter, } def convert(self, atype): type_cls = type(atype) type_cls_name = type_cls.__name__ # If the type is already converted, do nothing if type_cls_name.startswith('HLS'): return atype conversion_cls = self.type_map.get(type_cls, None) if conversion_cls is not None: atype.__class__ = type('HLS' + type_cls_name, (type_cls, conversion_cls), {}) atype.convert_precision(self.precision_converter) return atype else: raise Exception('Cannot convert type: {}'.format(atype.__class__.__name__)) #endregion #region Variables class VariableDefinition(object): def definition_cpp(self, name_suffix='', as_reference=False): raise NotImplementedError #region ArrayVariable class VivadoArrayVariableDefinition(VariableDefinition): def definition_cpp(self, name_suffix='', as_reference=False): return '{type} {name}{suffix}[{shape}]'.format(type=self.type.name, name=self.cppname, suffix=name_suffix, shape=self.size_cpp()) class QuartusArrayVariableDefinition(VariableDefinition): def definition_cpp(self, name_suffix='', as_reference=False): return '{type} {name}{suffix}[{shape}] {pragma}'.format(type=self.type.name, name=self.cppname, suffix=name_suffix, shape=self.size_cpp(), pragma=self.pragma) class ArrayVariableConverter(object): def __init__(self, type_converter, prefix, definition_cls): self.type_converter = type_converter self.prefix = prefix self.definition_cls = definition_cls def convert(self, tensor_var, pragma='partition'): if isinstance(tensor_var, self.definition_cls): # Already converted return tensor_var tensor_var.pragma = pragma tensor_var.type = self.type_converter.convert(tensor_var.type) tensor_var.__class__ = type(self.prefix + 'ArrayVariable', (type(tensor_var), self.definition_cls), {}) return tensor_var class VivadoArrayVariableConverter(ArrayVariableConverter): def __init__(self, type_converter): super().__init__(type_converter=type_converter, prefix='Vivado', definition_cls=VivadoArrayVariableDefinition) class QuartusArrayVariableConverter(ArrayVariableConverter): def __init__(self, type_converter): super().__init__(type_converter=type_converter, prefix='Quartus', definition_cls=QuartusArrayVariableDefinition) #endregion #region StructMemberVariable class QuartusStructMemberVariableDefinition(VariableDefinition): def definition_cpp(self, name_suffix='', as_reference=False): return '{type} {name}{suffix}[{shape}]'.format(type=self.type.name, name=self.member_name, suffix=name_suffix, shape=self.size_cpp()) class StructMemberVariableConverter(object): def __init__(self, type_converter, prefix, definition_cls): self.type_converter = type_converter self.prefix = prefix self.definition_cls = definition_cls def convert(self, tensor_var, pragma='partition', struct_name=None): if isinstance(tensor_var, self.definition_cls): # Already converted return tensor_var tensor_var.pragma = pragma tensor_var.type = self.type_converter.convert(tensor_var.type) assert struct_name is not None, 'struct_name must be provided when creating a StructMemberVariable' tensor_var.struct_name = str(struct_name) tensor_var.member_name = tensor_var.name tensor_var.name = tensor_var.struct_name + '.' + tensor_var.member_name tensor_var.__class__ = type(self.prefix + 'StructMemberVariable', (type(tensor_var), self.definition_cls), {}) return tensor_var class QuartusStructMemberVariableConverter(StructMemberVariableConverter): def __init__(self, type_converter): super().__init__(type_converter=type_converter, prefix='Quartus', definition_cls=QuartusStructMemberVariableDefinition) #endregion #region StreamVariable class VivadoStreamVariableDefinition(VariableDefinition): def definition_cpp(self, name_suffix='', as_reference=False): if as_reference: # Function parameter return 'hls::stream<{type}> &{name}{suffix}'.format(type=self.type.name, name=self.cppname, suffix=name_suffix) else: # Declaration return 'hls::stream<{type}> {name}{suffix}("{name}")'.format(type=self.type.name, name=self.cppname, suffix=name_suffix) class StreamVariableConverter(object): def __init__(self, type_converter, prefix, definition_cls): self.type_converter = type_converter self.prefix = prefix self.definition_cls = definition_cls def convert(self, tensor_var, n_pack=1, depth=0): if isinstance(tensor_var, self.definition_cls): # Already converted return tensor_var if depth == 0: depth = np.prod(tensor_var.shape) // tensor_var.shape[-1] tensor_var.pragma = ('stream', depth) tensor_var.type = self.type_converter.convert(PackedType(tensor_var.type.name, tensor_var.type.precision, tensor_var.shape[-1], n_pack)) tensor_var.__class__ = type(self.prefix + 'StreamVariable', (type(tensor_var), self.definition_cls), {}) return tensor_var class VivadoStreamVariableConverter(StreamVariableConverter): def __init__(self, type_converter): super().__init__(type_converter=type_converter, prefix='Vivado', definition_cls=VivadoStreamVariableDefinition) #endregion #region InplaceVariable class InplaceVariableConverter(object): def __init__(self, type_converter, prefix): self.type_converter = type_converter self.prefix = prefix def convert(self, tensor_var, io_type): if tensor_var.__class__.__name__.startswith(self.prefix): # Already converted return tensor_var if io_type == 'io_stream': tensor_var.type = self.type_converter.convert(PackedType(tensor_var.type.name, tensor_var.type.precision, tensor_var.shape[-1], n_pack=1)) else: tensor_var.type = self.type_converter.convert(tensor_var.type) tensor_var.__class__ = type(self.prefix + 'InplaceVariable', (type(tensor_var),), {}) return tensor_var class VivadoInplaceVariableConverter(InplaceVariableConverter): def __init__(self, type_converter): super().__init__(type_converter=type_converter, prefix='Vivado') class QuartusInplaceVariableConverter(InplaceVariableConverter): def __init__(self, type_converter): super().__init__(type_converter=type_converter, prefix='Quartus') #endregion #region WeightsVariable class StaticWeightVariableDefinition(VariableDefinition): def definition_cpp(self, name_suffix='', as_reference=False): return '{type} {name}[{size}]'.format(type=self.type.name, name=self.cppname, size=self.data_length) class StaticWeightVariableConverter(object): def __init__(self, type_converter): self.type_converter = type_converter def convert(self, weight_var): if isinstance(weight_var, StaticWeightVariableDefinition): # Already converted return weight_var weight_var.weight_class = weight_var.__class__.__name__ weight_var.storage = 'register' weight_var.type = self.type_converter.convert(weight_var.type) weight_var.__class__ = type('StaticWeightVariable', (type(weight_var), StaticWeightVariableDefinition), {}) return weight_var class BramWeightVariableConverter(object): @classmethod def convert(cls, weight_var): weight_var.storage = 'bram' return weight_var #endregion #endregion
pycoin/symbols/mona.py
jaschadub/pycoin
1,210
44280
from pycoin.networks.bitcoinish import create_bitcoinish_network network = create_bitcoinish_network( network_name="Monacoin", symbol="MONA", subnet_name="mainnet", wif_prefix_hex="b0", sec_prefix="MONASEC:", address_prefix_hex="32", pay_to_script_prefix_hex="37", bip32_prv_prefix_hex="0488ade4", bip32_pub_prefix_hex="0488b21e", bech32_hrp="mona", magic_header_hex="fbc0b6db", default_port=9401, dns_bootstrap=["dnsseed.monacoin.org"])
PR_BCI_team/Team_StarLab/DKHan/examples/eeg_dg/train_eval.py
PatternRecognition/OpenBMI
217
44309
import torch import torch.nn.functional as F from torch.autograd import Variable import numpy as np class LabelSmoothingCrossEntropy(torch.nn.Module): def __init__(self): super(LabelSmoothingCrossEntropy, self).__init__() def forward(self, x, target, smoothing=0.1): confidence = 1. - smoothing logprobs = F.log_softmax(x, dim=-1) nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) nll_loss = nll_loss.squeeze(1) smooth_loss = -logprobs.mean(dim=-1) loss = confidence * nll_loss + smoothing * smooth_loss return loss.mean() class ConfidenceLabelSmoothingCrossEntropy(torch.nn.Module): def __init__(self): super(ConfidenceLabelSmoothingCrossEntropy, self).__init__() # self.confidence = [0.7425, 0.9325, 0.965, 0.5395, 0.86025, 0.754, 0.66475, 0.618, 0.7925, 0.6525, 0.5415, # 0.5705, 0.6525, 0.59625, 0.6145, 0.62125, 0.7755, 0.866, 0.83425, 0.64125, 0.986, 0.82225, # 0.70525, 0.5625, 0.5145, 0.5275, 0.57775, 0.918, 0.9175, 0.69575, 0.6555, 0.867, 0.945, # 0.5155, 0.593, 0.976, 0.963, 0.591, 0.749, 0.5575, 0.52625, 0.6125, 0.83725, 0.97225, # 0.93725, 0.6415, 0.61225, 0.584, 0.69175, 0.60825, 0.63575, 0.756, 0.61375, 0.53575] self.confidence = [0.713, 0.953, 0.947, 0.514, 0.933, 0.725, 0.6025, 0.5855, 0.821, 0.6175, 0.547, 0.5605, 0.7, 0.609, 0.5785, 0.638, 0.8005, 0.824, 0.834, 0.5155, 0.9775, 0.8615, 0.6305, 0.549, 0.517, 0.5915, 0.5285, 0.923, 0.855, 0.751, 0.675, 0.773, 0.9805, 0.53, 0.5255, 0.9685, 0.9535, 0.5515, 0.8795, 0.497, 0.529, 0.5335, 0.8645, 0.9595, 0.9245, 0.5265, 0.452, 0.6415, 0.696, 0.617, 0.683, 0.7255, 0.5995, 0.5815, 0.772, 0.912, 0.983, 0.565, 0.7875, 0.783, 0.727, 0.6505, 0.764, 0.6875, 0.536, 0.5805, 0.605, 0.5835, 0.6505, 0.6045, 0.7505, 0.908, 0.8345, 0.767, 0.9945, 0.783, 0.78, 0.576, 0.512, 0.4635, 0.627, 0.913, 0.98, 0.6405, 0.636, 0.961, 0.9095, 0.501, 0.6605, 0.9835, 0.9725, 0.6305, 0.6185, 0.618, 0.5235, 0.6915, 0.81, 0.985, 0.95, 0.7565, 0.7725, 0.5265, 0.6875, 0.5995, 0.5885, 0.7865, 0.628, 0.49, 0.985, 0.95, 0.7565, 0.7725, 0.5265, 0.6875, 0.5995, 0.5885, 0.7865, 0.628, 0.49 ] def forward(self, x, target, sid): confidencemat = torch.zeros_like(target,dtype=torch.float32) for i in range(len(target)): confidencemat[i] = self.confidence[sid[i]] smoothing = 1 - confidencemat logprobs = F.log_softmax(x, dim=-1) nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) nll_loss = nll_loss.squeeze(1) smooth_loss = -logprobs.mean(dim=-1) loss = torch.mul(confidencemat,nll_loss) + torch.mul(smoothing,smooth_loss) return loss.mean() class CroppedLoss: def __init__(self, loss_function): self.loss_function = loss_function def __call__(self, preds, targets): avg_preds = torch.mean(preds, dim=2) avg_preds = avg_preds.squeeze(dim=1) return self.loss_function(avg_preds, targets) def train_crop(log_interval, model, device, train_loader, optimizer, scheduler, cuda, gpuidx, epoch=1): criterion = torch.nn.NLLLoss() lossfn = CroppedLoss(criterion) model.train() for batch_idx, datas in enumerate(train_loader): data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) optimizer.zero_grad() output = model(data) output = model.embedding_net(data) loss = lossfn(output, target) loss.backward() optimizer.step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) scheduler.step() def eval_crop(model, device, test_loader): model.eval() test_loss = [] correct = [] with torch.no_grad(): for datas in test_loader: data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) outputs = [] for i in range(2): outputs.append(model(data[:, :, :, i * 125:i * 125 + 1000])) result = torch.cat([outputs[0], outputs[1][:, :, model.out_size - 125:model.out_size]], dim=2) y_preds_per_trial = result.mean(dim=2) test_loss.append(F.nll_loss(y_preds_per_trial, target, reduction='sum').item()) # sum up batch loss pred = y_preds_per_trial.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = sum(test_loss) / len(test_loader.dataset) # print('{:.0f}'.format(100. * correct / len(test_loader.dataset))) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)'.format( loss, sum(correct), len(test_loader.dataset), 100. * sum(correct) / len(test_loader.dataset))) return loss, 100. * sum(correct) / len(test_loader.dataset) class MAE_loss(torch.nn.Module): def __init__(self, device): super(MAE_loss, self).__init__() self.device = device self.loss_function = torch.nn.L1Loss() def __call__(self, preds, targets): y_onehot = torch.FloatTensor(targets.size(0), 2).to(self.device) y_onehot.zero_() y_onehot.scatter_(1, targets.unsqueeze(1), 1) return self.loss_function(preds, y_onehot) class MAE_loss(torch.nn.Module): def __init__(self, device): super(MAE_loss, self).__init__() self.device = device self.loss_function = torch.nn.L1Loss() def __call__(self, preds, targets): y_onehot = torch.FloatTensor(targets.size(0), 2).to(self.device) y_onehot.zero_() y_onehot.scatter_(1, targets.unsqueeze(1), 1) return self.loss_function(preds, y_onehot) import utils import time def train(log_interval, model, device, train_loader, optimizer, scheduler, cuda, gpuidx, epoch): losses = utils.AverageMeter('Loss', ':.4e') if isinstance(model, torch.nn.DataParallel): lossfn = model.module.criterion else: lossfn = model.criterion # lossfn = LabelSmoothingCrossEntropy() # lossfn = ConfidenceLabelSmoothingCrossEntropy() correct = [] start = time.time() model.train() t_data = [] t_model = [] t3 = time.time() for batch_idx, datas in enumerate(train_loader): data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) t2 = time.time() t_data.append(t2 - t3) # print(t2) optimizer.zero_grad() output = model(data.unsqueeze(dim=1)) pred = F.log_softmax(output, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = lossfn(output, target) loss.backward() optimizer.step() losses.update(loss.item(), data.size(0)) if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) t3 = time.time() t_model.append(t3 - t2) print("time :", time.time() - start) print(f"t_data : {sum(t_data)} , t_model : {sum(t_model)}") print(f'Train set: Accuracy: {sum(correct)}/{len(train_loader.dataset)} ({100. * sum(correct) / len(train_loader.dataset):.4f}%)') def train_mtl(log_interval, model, device, train_loader, optimizer, scheduler, cuda, gpuidx, epoch): losses = utils.AverageMeter('Loss', ':.4e') if isinstance(model, torch.nn.DataParallel): lossfn = model.module.criterion else: lossfn = model.criterion # lossfn = LabelSmoothingCrossEntropy() # lossfn = ConfidenceLabelSmoothingCrossEntropy() correct = [] start = time.time() model.train() t_data = [] t_model = [] t3 = time.time() for batch_idx, datas in enumerate(train_loader): data, target, subjid = datas[0].to(device), datas[1].to(device, dtype=torch.int64), datas[2].to(device, dtype=torch.int64) t2 = time.time() t_data.append(t2 - t3) # print(t2) optimizer.zero_grad() output = model(data.unsqueeze(dim=1)) pred = F.log_softmax(output, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = lossfn(output, 2*subjid+target) loss.backward() optimizer.step() losses.update(loss.item(), data.size(0)) if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) t3 = time.time() t_model.append(t3 - t2) print("time :", time.time() - start) print(f"t_data : {sum(t_data)} , t_model : {sum(t_model)}") print(f'Train set: Accuracy: {sum(correct)}/{len(train_loader.dataset)} ({100. * sum(correct) / len(train_loader.dataset):.4f}%)') def train_gpu(log_interval, model, device, train_loader, optimizer, scheduler, cuda, gpuidx, epoch=1): losses = utils.AverageMeter('Loss', ':.4e') if isinstance(model, torch.nn.DataParallel): lossfn = model.module.criterion else: lossfn = model.criterion correct = [] import time start = time.time() model.train() t_data = [] t_model = [] t3 = time.time() for batch_idx, datas in enumerate(train_loader): data, target = datas[0], datas[1] t2 = time.time() t_data.append(t2 - t3) optimizer.zero_grad() output = model(data.unsqueeze(dim=1)) pred = F.log_softmax(output, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = lossfn(output, target) loss.backward() optimizer.step() losses.update(loss.item(), data.size(0)) if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) t3 = time.time() t_model.append(t3 - t2) print("time :", time.time() - start) print(f"t_data : {sum(t_data)} , t_model : {sum(t_model)}") scheduler.step(losses.avg) print(f'Train set: Accuracy: {sum(correct)}/{len(train_loader.dataset)} ({100. * sum(correct) / len(train_loader.dataset):.4f}%)') def eval(model, device, test_loader): model.eval() test_loss = [] correct = [] with torch.no_grad(): for datas in test_loader: data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) output = model(data.unsqueeze(dim=1)) test_loss.append(F.cross_entropy(output, target, reduction='sum').item()) # sum up batch loss pred = F.log_softmax(output, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = sum(test_loss) / len(test_loader.dataset) # print('{:.0f}'.format(100. * correct / len(test_loader.dataset))) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)'.format( loss, sum(correct), len(test_loader.dataset), 100. * sum(correct) / len(test_loader.dataset))) return loss, 100. * sum(correct) / len(test_loader.dataset) from sklearn.metrics import roc_curve from sklearn.metrics import auc def eval_cali(model, device, test_loader): model.eval() test_loss = [] correct = [] with torch.no_grad(): for datas in test_loader: data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) output = model(data.unsqueeze(dim=1)) test_loss.append(F.cross_entropy(output, target, reduction='sum').item()) # sum up batch loss pred = F.softmax(output, dim=1) fpr, tpr, thresholds = roc_curve(target.cpu(), pred.cpu()[:,0]) AUC = auc(fpr, tpr) correct.append(AUC) loss = sum(test_loss) / len(test_loader.dataset) # print('{:.0f}'.format(100. * correct / len(test_loader.dataset))) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)'.format( loss, sum(correct), len(test_loader.dataset), 100. * sum(correct) / len(test_loader.dataset))) return loss, 100. * sum(correct) / len(test_loader.dataset) def vote(output, target, topk=(1,)): """ Computes the precision@k for the specified values of k """ maxk = max(topk) batch_size = target.size(0) output = F.log_softmax(output, dim=1) _, pred = output.topk(maxk, 1, True, True) # pred = pred.t() # one-hot case if target.ndimension() > 1: target = target.max(1)[1] modevalue = torch.mode(pred%2)[0] return modevalue def eval_mtl(model, device, test_loader): model.eval() test_loss = [] correct = [] with torch.no_grad(): for datas in test_loader: data, target, subjid = datas[0].to(device), datas[1].to(device, dtype=torch.int64), datas[2].to(device, dtype=torch.int64) output = model(data.unsqueeze(dim=1)) pred = vote(output, subjid*2+target, (1,5)) test_loss.append(F.cross_entropy(output, subjid*2+target, reduction='sum').item()) # sum up batch loss # pred_0 = F.log_softmax(output, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability # pred = pred_0%2 correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = sum(test_loss) / len(test_loader.dataset) # print('{:.0f}'.format(100. * correct / len(test_loader.dataset))) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)'.format( loss, sum(correct), len(test_loader.dataset), 100. * sum(correct) / len(test_loader.dataset))) return loss, 100. * sum(correct) / len(test_loader.dataset) def eval_ensemble(models, device, test_loader): for model in models: model.eval() test_loss = [] correct = [] with torch.no_grad(): for datas in test_loader: data, target = datas[0].to(device), datas[1].to(device, dtype=torch.int64) output = [] for model in models: output.append(model(data.unsqueeze(dim=1)).unsqueeze(dim=2)) temp = torch.cat(output, dim=2) temp2 = temp.mean(dim=2) test_loss.append(F.cross_entropy(temp2, target, reduction='sum').item()) # sum up batch loss pred = F.log_softmax(temp2, dim=1).argmax(dim=1, keepdim=True) # get the index of the max log-probability correct.append(pred.eq(target.view_as(pred)).sum().item()) loss = sum(test_loss) / len(test_loader.dataset) # print('{:.0f}'.format(100. * correct / len(test_loader.dataset))) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)'.format( loss, sum(correct), len(test_loader.dataset), 100. * sum(correct) / len(test_loader.dataset))) return loss, 100. * sum(correct) / len(test_loader.dataset)
xbox/webapi/api/provider/titlehub/models.py
OpenXbox/xbox-webapi-python
122
44315
<reponame>OpenXbox/xbox-webapi-python from datetime import datetime from enum import Enum from typing import Any, List, Optional from xbox.webapi.common.models import CamelCaseModel, PascalCaseModel class TitleFields(str, Enum): SERVICE_CONFIG_ID = "scid" ACHIEVEMENT = "achievement" STATS = "stats" GAME_PASS = "gamepass" IMAGE = "image" DETAIL = "detail" FRIENDS_WHO_PLAYED = "friendswhoplayed" ALTERNATE_TITLE_ID = "alternateTitleId" class Achievement(CamelCaseModel): current_achievements: int total_achievements: int current_gamerscore: int total_gamerscore: int progress_percentage: float source_version: int class Stats(CamelCaseModel): source_version: int class GamePass(CamelCaseModel): is_game_pass: bool class Image(CamelCaseModel): url: str type: str class TitleHistory(CamelCaseModel): last_time_played: datetime visible: bool can_hide: bool class Attribute(CamelCaseModel): applicable_platforms: Optional[List[str]] maximum: Optional[int] minimum: Optional[int] name: str class Availability(PascalCaseModel): actions: List[str] availability_id: str platforms: List[str] sku_id: str class Detail(CamelCaseModel): attributes: List[Attribute] availabilities: List[Availability] capabilities: List[str] description: str developer_name: str genres: Optional[List[str]] publisher_name: str min_age: int release_date: Optional[datetime] short_description: Optional[str] vui_display_name: Optional[str] xbox_live_gold_required: bool class Title(CamelCaseModel): title_id: str pfn: Optional[str] bing_id: Optional[str] service_config_id: Optional[str] windows_phone_product_id: Optional[str] name: str type: str devices: List[str] display_image: str media_item_type: str modern_title_id: Optional[str] is_bundle: bool achievement: Optional[Achievement] stats: Optional[Stats] game_pass: Optional[GamePass] images: Optional[List[Image]] title_history: Optional[TitleHistory] detail: Optional[Detail] friends_who_played: Any alternate_title_ids: Any content_boards: Any xbox_live_tier: Optional[str] is_streamable: Optional[bool] class TitleHubResponse(CamelCaseModel): xuid: Optional[str] titles: List[Title]
examples/py/factorization/parse_netflix.py
pnijhara/h2o4gpu
458
44325
<reponame>pnijhara/h2o4gpu<gh_stars>100-1000 import numpy as np import scipy from sklearn.model_selection import train_test_split files = [ '../data/combined_data_1.txt', '../data/combined_data_2.txt', '../data/combined_data_3.txt', '../data/combined_data_4.txt', ] if __name__ == '__main__': coo_row = [] coo_col = [] coo_val = [] for file_name in files: print('processing {0}'.format(file_name)) with open(file_name, "r") as f: movie = -1 for line in f: if line.endswith(':\n'): movie = int(line[:-2]) - 1 continue assert movie >= 0 splitted = line.split(',') user = int(splitted[0]) rating = float(splitted[1]) coo_row.append(user) coo_col.append(movie) coo_val.append(rating) print('transformation...') coo_col = np.array(coo_col) user, indices = np.unique(coo_row, return_inverse=True) coo_val = np.array(coo_val).astype(np.float32) coo_matrix = scipy.sparse.coo_matrix((coo_val, (indices, coo_col))) shape = coo_matrix.shape print(shape) train_row, test_row, train_col, test_col, train_data, test_data = train_test_split( coo_matrix.row, coo_matrix.col, coo_matrix.data, test_size=0.2, random_state=42) train = scipy.sparse.coo_matrix( (train_data, (train_row, train_col)), shape=shape) test = scipy.sparse.coo_matrix( (test_data, (test_row, test_col)), shape=shape) scipy.sparse.save_npz('../data/netflix_train.npz', train) scipy.sparse.save_npz('../data/netflix_test.npz', test) np.savez_compressed('../data/netflix_.npz', user)
vkbottle/api/token_generator/__init__.py
homus32/vkbottle
698
44332
from .abc import ABCTokenGenerator, Token from .consistent import ConsistentTokenGenerator from .single import SingleTokenGenerator from .util import get_token_generator
diff_between_dates.py
DazEB2/SimplePyScripts
117
44353
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' from datetime import datetime items = [ '23/03/2007', '05/12/2007', '22/08/2008', '02/10/2009', ] for i in range(len(items) - 1): date_str_1, date_str_2 = items[i], items[i + 1] date_1 = datetime.strptime(date_str_1, '%d/%m/%Y') date_2 = datetime.strptime(date_str_2, '%d/%m/%Y') days = (date_2 - date_1).days print('{} - {} -> {} days'.format(date_str_1, date_str_2, days))
PyObjCTest/test_nsdocktile.py
Khan/pyobjc-framework-Cocoa
132
44387
<reponame>Khan/pyobjc-framework-Cocoa from AppKit import * from PyObjCTools.TestSupport import * class TestNSDockTile (TestCase): def testMethods(self): self.assertResultIsBOOL(NSDockTile.showsApplicationBadge) self.assertArgIsBOOL(NSDockTile.setShowsApplicationBadge_, 0) def testConstants(self): self.assertEqual(NSAppKitVersionNumberWithDockTilePlugInSupport, 1001.0) if __name__ == "__main__": main()
src/tests/ftest/pool/uuid_corner_case.py
fedepad/daos
429
44388
#!/usr/bin/python3 """ (C) Copyright 2018-2021 Intel Corporation. SPDX-License-Identifier: BSD-2-Clause-Patent """ from apricot import TestWithServers class UUIDCornerCase(TestWithServers): """Create and destroy a pool with UUID. This test covers some corner case and regression regarding UUID usage in pool destroy. :avocado: recursive """ def verify_destroy_uuid(self): """Destroy a pool with UUID and verify that it works. Assume that self.pool is configured to use UUID. """ if not self.pool.destroy(): self.fail("pool isn't defined!") self.log.info("pool destroy with UUID succeeded") def test_create_label_destroy_uuid(self): """Test ID: JIRA-7943 Test Description: Create with a label, destroy with UUID. :avocado: tags=all,full_regression :avocado: tags=small :avocado: tags=pool,uuid_corner_case,create_label_destroy_uuid """ # Create with a label - Default. self.add_pool(connect=False) # Make self.pool use UUID. self.pool.use_label = False # Destroy with UUID. self.verify_destroy_uuid()
maintenance/templates/nodeclass.py
JFlynnXYZ/pymel
287
44394
<gh_stars>100-1000 {% if not existing %} class {{ classname }}({{ parents }}): {% endif %} {% if attrs %} {% for attr in attrs %} {% for line in attr.getLines() %} {{line}} {% endfor %} {% endfor %} {% endif %} {% if methods %} {% for method in methods %} {% for line in method.getLines() %} {{line}} {% endfor %} {% endfor %} {% else %} {% endif %}
yasql/apps/sqlquery/migrations/0001_initial.py
Fanduzi/YaSQL
443
44398
<reponame>Fanduzi/YaSQL<gh_stars>100-1000 # Generated by Django 2.2.16 on 2020-12-15 07:18 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('sqlorders', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='DbQuerySchemas', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='主键ID')), ('schema', models.CharField(default='', max_length=64, verbose_name='库名')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('cid', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='sqlorders.DbConfig', verbose_name='数据库')), ], options={ 'verbose_name': 'DB查询库', 'verbose_name_plural': 'DB查询库', 'db_table': 'yasql_sqlquery_schemas', 'default_permissions': (), 'unique_together': {('cid', 'schema')}, }, ), migrations.CreateModel( name='DbQueryTables', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='主键ID')), ('table', models.CharField(default='', max_length=128, verbose_name='表名')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('schema', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='sqlquery.DbQuerySchemas', verbose_name='库名')), ], options={ 'verbose_name': 'DB查询表', 'verbose_name_plural': 'DB查询表', 'db_table': 'yasql_sqlquery_tables', 'default_permissions': (), }, ), migrations.CreateModel( name='DbQueryUserPrivs', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='主键ID')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('schemas', models.ManyToManyField(to='sqlquery.DbQuerySchemas', verbose_name='允许访问的库')), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, verbose_name='用户')), ], options={ 'verbose_name': 'DB查询用户权限', 'verbose_name_plural': 'DB查询用户权限', 'db_table': 'yasql_sqlquery_user_privileges', 'default_permissions': (), }, ), migrations.CreateModel( name='DbQueryUserDenyTables', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='主键ID')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('tables', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='sqlquery.DbQueryTables', verbose_name='表')), ('user_privs', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='sqlquery.DbQueryUserPrivs', verbose_name='权限')), ], options={ 'verbose_name': '禁止用户访问的表', 'verbose_name_plural': '禁止用户访问的表', 'db_table': 'yasql_sqlquery_user_deny_tables', 'default_permissions': (), }, ), migrations.CreateModel( name='DbQueryUserAllowedTables', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='主键ID')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('tables', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='sqlquery.DbQueryTables', verbose_name='表')), ('user_privs', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='sqlquery.DbQueryUserPrivs', verbose_name='权限')), ], options={ 'verbose_name': '允许用户访问的表', 'verbose_name_plural': '允许用户访问的表', 'db_table': 'yasql_sqlquery_user_allowed_tables', 'default_permissions': (), }, ), migrations.CreateModel( name='DbQueryLog', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='主键id')), ('username', models.CharField(max_length=64, verbose_name='用户名')), ('host', models.CharField(max_length=256, verbose_name='目标数据库地址')), ('schema', models.CharField(default='', max_length=128, verbose_name='目标数据库')), ('tables', models.CharField(default='', max_length=200, verbose_name='目标表名')), ('query_sql', models.TextField(default='', verbose_name='查询SQL')), ('query_consume_time', models.FloatField(default=0.0, verbose_name='查询耗时,单位s')), ('query_status', models.CharField(default='', max_length=2048, verbose_name='查询是否成功或失败的原因')), ('affected_rows', models.IntegerField(default=0, verbose_name='影响影响行数')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='查询时间')), ], options={ 'verbose_name': 'DB查询日志', 'verbose_name_plural': 'DB查询日志', 'db_table': 'yasql_sqlquery_log', 'default_permissions': (), 'index_together': {('tables',), ('schema',), ('username',)}, }, ), migrations.CreateModel( name='DbQueryGroupPrivs', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='主键ID')), ('group', models.CharField(default='', max_length=128, verbose_name='组名')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('schemas', models.ManyToManyField(to='sqlquery.DbQuerySchemas', verbose_name='允许访问的库')), ('user', models.ManyToManyField(to=settings.AUTH_USER_MODEL, verbose_name='用户')), ], options={ 'verbose_name': 'DB查询组权限', 'verbose_name_plural': 'DB查询组权限', 'db_table': 'yasql_sqlquery_group_privileges', 'default_permissions': (), }, ), migrations.CreateModel( name='DbQueryGroupDenyTables', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='主键ID')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('group_privs', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='sqlquery.DbQueryGroupPrivs', verbose_name='权限')), ('tables', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='sqlquery.DbQueryTables', verbose_name='表')), ], options={ 'verbose_name': '禁止组访问的表', 'verbose_name_plural': '禁止组访问的表', 'db_table': 'yasql_sqlquery_group_deny_tables', 'default_permissions': (), }, ), migrations.CreateModel( name='DbQueryGroupAllowedTables', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='主键ID')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('group_privs', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='sqlquery.DbQueryGroupPrivs', verbose_name='权限')), ('tables', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='sqlquery.DbQueryTables', verbose_name='表')), ], options={ 'verbose_name': '允许组访问的表', 'verbose_name_plural': '允许组访问的表', 'db_table': 'yasql_sqlquery_group_allowed_tables', 'default_permissions': (), }, ), ]
Giveme5W1H/examples/datasets/news_cluster/data_fixer.py
bkrrr/Giveme5W
410
44416
<reponame>bkrrr/Giveme5W import glob """ this script is fixing errors found in the data, after processing """ # final fixes for known errors for filepath in glob.glob('output/*.json'): # Read in the file with open(filepath, 'r') as file: filedata = file.read() # AIDA has a wrong URL for the Dallas Airport wrong = 'http://en.wikipedia.org/wiki/Dallas/Dallas%2FFort%20Worth%20International%20Airport' correct = 'http://en.wikipedia.org/wiki/Dallas%2FFort%20Worth%20International%20Airport' # Replace the target string filedata = filedata.replace(wrong, correct) # Write the file out again with open(filepath, 'w') as file: file.write(filedata)
elliot/recommender/neural/NeuMF/tf_custom_sampler_2.py
gategill/elliot
175
44446
""" Module description: """ __version__ = '0.3.1' __author__ = '<NAME>, <NAME>' __email__ = '<EMAIL>, <EMAIL>' import tensorflow as tf import numpy as np import random class Sampler(): def __init__(self, indexed_ratings=None, m=None, num_users=None, num_items=None, transactions=None, batch_size=512, random_seed=42): np.random.seed(random_seed) random.seed(random_seed) self._UIDICT = {u: list(set(indexed_ratings[u])) for u in indexed_ratings} self._POS = list({(u, i, 1) for u, items in self._UIDICT.items() for i in items}) self._POS = random.sample(self._POS, len(self._POS)) self._M = m self._NUM_USERS = num_users self._NUM_ITEMS = num_items self._transactions = transactions self._batch_size = batch_size def _full_generator(self): r_int = np.random.randint n_items = self._NUM_ITEMS ui_dict = self._UIDICT neg = set() for u, i, _ in self._POS: ui = ui_dict[u] for _ in range(self._M): j = r_int(n_items) while j in ui: j = r_int(n_items) neg.add((u, j, 0)) samples = self._POS[:] samples.extend(list(neg)) samples = random.sample(samples, len(samples)) # u, i, b = map(np.array, zip(*samples)) # yield u,i,b for start in range(0, len(samples), self._batch_size): u, i, b = map(np.array, zip(*samples[start:min(start + self._batch_size, len(samples))])) yield u, i, b def step(self, batch_size: int): r_int = np.random.randint n_items = self._NUM_ITEMS ui_dict = self._UIDICT pos = {(u, i, 1) for u, items in ui_dict.items() for i in items} neg = set() for u, i, _ in pos: ui = ui_dict[u] for _ in range(self._M): j = r_int(n_items) while j in ui: j = r_int(n_items) neg.add((u, j, 0)) samples = list(pos) samples.extend(list(neg)) samples = random.sample(samples, len(samples)) for start in range(0, len(samples), batch_size): u, i, b = map(np.array, zip(*samples[start:min(start + batch_size, len(samples))])) yield u, i, b def create_tf_dataset(self): data = tf.data.Dataset.from_generator(generator=self._full_generator, output_types=(np.int64, np.int64, np.int64), ) # data = data.unbatch().batch(batch_size=self._batch_size) data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) return data
hottbox/utils/validation/__init__.py
adamurban98/hottbox
167
44460
<gh_stars>100-1000 from .checks import is_toeplitz_matrix, is_super_symmetric, is_toeplitz_tensor __all__ = [ "is_toeplitz_matrix", "is_super_symmetric", "is_toeplitz_tensor", ]
google_or_tools/knapsack_cp_sat.py
tias/hakank
279
44467
<gh_stars>100-1000 # Copyright 2021 <NAME> <EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Knapsack problem in OR-tools CP-SAT Solver. Simple knapsack problem. This is a port of my old CP model knapsack_cp.py This model was created by <NAME> (<EMAIL>) Also see my other OR-tools models: http://www.hakank.org/or_tools/ """ from __future__ import print_function from ortools.sat.python import cp_model as cp import math, sys from cp_sat_utils import knapsack def main(values, weights, n): model = cp.CpModel() # # data # print("values:", values) print("weights:", weights) print("n:", n) print() # declare variables # # constraints # x, z, w = knapsack(model, values, weights, n) # objective model.Maximize(z) # # solution and search # solver = cp.CpSolver() status = solver.Solve(model) if status == cp.OPTIMAL: print("x:", [solver.Value(x[i]) for i in range(len(values))]) print("z:", solver.Value(z)) print("w:", solver.Value(w)) print() print("NumConflicts:", solver.NumConflicts()) print("NumBranches:", solver.NumBranches()) print("WallTime:", solver.WallTime()) values = [15, 100, 90, 60, 40, 15, 10, 1, 12, 12, 100] weights = [2, 20, 20, 30, 40, 30, 60, 10, 21, 12, 2] n = 102 if __name__ == "__main__": main(values, weights, n)
L1TriggerConfig/L1ScalesProducers/python/L1CaloScalesConfig_cff.py
ckamtsikis/cmssw
852
44471
<reponame>ckamtsikis/cmssw<filename>L1TriggerConfig/L1ScalesProducers/python/L1CaloScalesConfig_cff.py import FWCore.ParameterSet.Config as cms from L1TriggerConfig.L1ScalesProducers.l1CaloScales_cfi import * emrcdsrc = cms.ESSource("EmptyESSource", recordName = cms.string('L1EmEtScaleRcd'), iovIsRunNotTime = cms.bool(True), firstValid = cms.vuint32(1) ) jetrcdsrc = cms.ESSource("EmptyESSource", recordName = cms.string('L1JetEtScaleRcd'), iovIsRunNotTime = cms.bool(True), firstValid = cms.vuint32(1) ) htmrcdsrc = cms.ESSource("EmptyESSource", recordName = cms.string('L1HtMissScaleRcd'), iovIsRunNotTime = cms.bool(True), firstValid = cms.vuint32(1) ) hfrrcdsrc = cms.ESSource("EmptyESSource", recordName = cms.string('L1HfRingEtScaleRcd'), iovIsRunNotTime = cms.bool(True), firstValid = cms.vuint32(1) )
S2.Surface_Normal/unet/unet_model.py
leoshine/Spherical_Regression
133
44477
<reponame>leoshine/Spherical_Regression """ @Author : <NAME> """ # full assembly of the sub-parts to form the complete net import numpy as np from unet_parts import * class UNet(nn.Module): def __init__(self, n_channels, n_classes): super(UNet, self).__init__() self.inc = inconv(n_channels, 64) self.down1 = down(64, 128) self.down2 = down(128, 256) self.down3 = down(256, 512) self.down4 = down(512, 512) self.up1 = up(1024, 256) self.up2 = up(512, 128) self.up3 = up(256, 64) self.up4 = up(128, 64) self.outc = outconv(64, n_classes) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x4_ = self.up1(x5, x4) x3_ = self.up2(x4_, x3) x2_ = self.up3(x3_, x2) x1_ = self.up4(x2_, x1) x_ = self.outc(x1_) print('x1 ', x1.shape) print('x2 ', x2.shape) print('x3 ', x3.shape) print('x4 ', x4.shape) print('x5 ', x5.shape) print('x4_', x4_.shape) print('x3_', x3_.shape) print('x2_', x2_.shape) print('x1_', x1_.shape) print('x_ ', x_ .shape) return x if __name__ == '__main__': model = UNet(n_channels=3, n_classes=1) # import numpy as np dummy_batch_data = np.zeros((2,3,224,224),dtype=np.float32) dummy_batch_data = torch.from_numpy(dummy_batch_data ) Pred = model(dummy_batch_data) print(Pred.shape)
xnmt/simultaneous/simult_state.py
neulab/xnmt
195
44505
import numbers import xnmt.tensor_tools as tt import xnmt.modelparts.decoders as decoders import xnmt.transducers.recurrent as recurrent import xnmt.transducers.base as transducers_base import xnmt.expression_seqs as expr_seq import xnmt.vocabs as vocabs class SimultaneousState(decoders.AutoRegressiveDecoderState): """ The read/write state used to determine the state of the SimultaneousTranslator. """ def __init__(self, model, encoder_state: recurrent.UniLSTMState, context_state: decoders.AutoRegressiveDecoderState, output_embed: tt.Tensor, to_read:int = 0, to_write:int = 0, prev_written_word: numbers.Integral = None, reset_attender:bool = True): super().__init__(None, None) self.model = model self.encoder_state = encoder_state self.context_state = context_state self.output_embed = output_embed self.has_been_read = to_read self.has_been_written = to_write self.prev_written_word = prev_written_word self.reset_attender = reset_attender def read(self, src): src_embed = self.model.src_embedder.embed(src[self.has_been_read]) next_encoder_state = self.encoder_state.add_input(src_embed) return SimultaneousState(self.model, next_encoder_state, self.context_state, self.output_embed, self.has_been_read+1, self.has_been_written, self.prev_written_word, True) def calc_context(self, src_encoding): # Generating h_t based on RNN(h_{t-1}, embed(e_{t-1})) if self.prev_written_word is None: final_transducer_state = [transducers_base.FinalTransducerState(h, c) \ for h, c in zip(self.encoder_state.h(), self.encoder_state.c())] context_state = self.model.decoder.initial_state(final_transducer_state, vocabs.Vocab.SS) else: context_state = self.model.decoder.add_input(self.context_state, self.prev_written_word) # Reset attender if there is a read action reset_attender = self.reset_attender if reset_attender: self.model.attender.init_sent(expr_seq.ExpressionSequence(expr_list=src_encoding)) reset_attender = False # Calc context for decoding context_state.context = self.model.attender.calc_context(context_state.rnn_state.output()) return SimultaneousState(self.model, self.encoder_state, context_state, self.output_embed, self.has_been_read, self.has_been_written, self.prev_written_word, reset_attender) def write(self, next_word): return SimultaneousState(self.model, self.encoder_state, self.context_state, self.model.decoder.embedder.embed(next_word), self.has_been_read, self.has_been_written+1, next_word, self.reset_attender) # These states are used for decoding def as_vector(self): return self.context_state.as_vector() @property def rnn_state(self): return self.context_state.rnn_state @property def context(self): return self.context_state.context @context.setter def context(self, value): self.context_state.context = value
tests/components/luftdaten/__init__.py
domwillcode/home-assistant
30,023
44537
<filename>tests/components/luftdaten/__init__.py """Define tests for the Luftdaten component."""
tensorflow_federated/python/core/impl/bindings_utils/data_conversions.py
RyanMarten/federated
1,918
44562
# Copyright 2021, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers for converting Python data representations for CPP bindings.""" import collections from typing import Mapping from tensorflow_federated.python.core.impl.types import placements def convert_cardinalities_dict_to_string_keyed( cardinalities: Mapping[placements.PlacementLiteral, int]) -> Mapping[str, int]: """Ensures incoming cardinalities dict is formatted correctly.""" if not isinstance(cardinalities, collections.abc.Mapping): raise TypeError('`cardinalities` must be a `Mapping`. Received a type: ' f'{type(cardinalities)}.') uri_cardinalities = {} for placement, cardinality in cardinalities.items(): if not isinstance(placement, placements.PlacementLiteral): raise TypeError('`cardinalities` must be a `Mapping` with ' '`PlacementLiteral` (e.g. `tff.CLIENTS`) keys. ' f'Received a key of type: {type(placement)}.') if not isinstance(cardinality, int): raise TypeError('`cardinalities` must be a `Mapping` with `int` values. ' f'Received a value of type: {type(cardinality)} for ' f'placement {placement}.') uri_cardinalities[placement.uri] = cardinality return uri_cardinalities
pixiedust/display/streamingDisplay.py
elgalu/pixiedust
598
44566
# ------------------------------------------------------------------------------- # Copyright IBM Corp. 2017 # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------- from pixiedust.display.display import * from pixiedust.display import addDisplayRunListener #add a display Run Listener addDisplayRunListener( lambda entity, options: onNewDisplayRun(entity, options) ) activesStreamingEntities = {} def onNewDisplayRun(entity, options): if "cell_id" in options and "showchrome" in options: if options["cell_id"] in activesStreamingEntities: del activesStreamingEntities[options["cell_id"]] class StreamingDisplay(Display): def __init__(self, options, entity, dataHandler=None): super(StreamingDisplay,self).__init__(options,entity,dataHandler) self.windowSize = 100
import_3dm/converters/curve.py
jesterKing/import_3dm
167
44601
# MIT License # Copyright (c) 2018-2019 <NAME>, <NAME>, <NAME>, <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import rhino3dm as r3d from . import utils from mathutils import Vector CONVERT = {} def import_null(rcurve, bcurve, scale): print("Failed to convert type", type(rcurve)) return None def import_line(rcurve, bcurve, scale): fr = rcurve.Line.From to = rcurve.Line.To line = bcurve.splines.new('POLY') line.points.add(1) line.points[0].co = (fr.X * scale, fr.Y * scale, fr.Z * scale, 1) line.points[1].co = (to.X * scale, to.Y * scale, to.Z * scale, 1) return line CONVERT[r3d.LineCurve] = import_line def import_polyline(rcurve, bcurve, scale): N = rcurve.PointCount polyline = bcurve.splines.new('POLY') polyline.use_cyclic_u = rcurve.IsClosed if rcurve.IsClosed: N -= 1 polyline.points.add(N - 1) for i in range(0, N): rpt = rcurve.Point(i) polyline.points[i].co = (rpt.X * scale, rpt.Y * scale, rpt.Z * scale, 1) return polyline CONVERT[r3d.PolylineCurve] = import_polyline def import_nurbs_curve(rcurve, bcurve, scale): N = len(rcurve.Points) nurbs = bcurve.splines.new('NURBS') nurbs.use_cyclic_u = rcurve.IsClosed nurbs.points.add(N - 1) for i in range(0, N): rpt = rcurve.Points[i] nurbs.points[i].co = (rpt.X * scale, rpt.Y * scale, rpt.Z * scale, rpt.W * scale) #nurbs.use_bezier_u = True nurbs.use_endpoint_u = True nurbs.order_u = rcurve.Order return nurbs CONVERT[r3d.NurbsCurve] = import_nurbs_curve def import_arc(rcurve, bcurve, scale): spt = Vector((rcurve.Arc.StartPoint.X, rcurve.Arc.StartPoint.Y, rcurve.Arc.StartPoint.Z)) * scale ept = Vector((rcurve.Arc.EndPoint.X, rcurve.Arc.EndPoint.Y, rcurve.Arc.EndPoint.Z)) * scale cpt = Vector((rcurve.Arc.Center.X, rcurve.Arc.Center.Y, rcurve.Arc.Center.Z)) * scale r1 = spt - cpt r2 = ept - cpt r1.normalize() r2.normalize() d = rcurve.Arc.Length * scale normal = r1.cross(r2) t1 = normal.cross(r1) t2 = normal.cross(r2) ''' Temporary arc ''' arc = bcurve.splines.new('NURBS') arc.use_cyclic_u = False arc.points.add(3) arc.points[0].co = (spt.x, spt.y, spt.z, 1) sspt = spt + t1 * d * 0.33 arc.points[1].co = (sspt.x, sspt.y, sspt.z, 1) eept = ept - t2 * d * 0.33 arc.points[2].co = (eept.x, eept.y, eept.z, 1) arc.points[3].co = (ept.x, ept.y, ept.z, 1) ''' print("ARC") print(" StartPoint:", rcurve.Arc.StartPoint) print(" EndPoint:", rcurve.Arc.EndPoint) print(" Center:", rcurve.Arc.Center) print(" Radius:", rcurve.Radius) ''' arc.use_endpoint_u = True arc.order_u = 3 return arc CONVERT[r3d.ArcCurve] = import_arc def import_polycurve(rcurve, bcurve, scale): for seg in range(rcurve.SegmentCount): segcurve = rcurve.SegmentCurve(seg) if type(segcurve) in CONVERT.keys(): CONVERT[type(segcurve)](segcurve, bcurve, scale) CONVERT[r3d.PolyCurve] = import_polycurve def import_curve(context, ob, name, scale, options): og = ob.Geometry oa = ob.Attributes curve_data = context.blend_data.curves.new(name, type="CURVE") if type(og) in CONVERT.keys(): curve_data.dimensions = '3D' curve_data.resolution_u = 2 CONVERT[type(og)](og, curve_data, scale) return curve_data
nailgun-client/py/__init__.py
h4l/nailgun
362
44603
<filename>nailgun-client/py/__init__.py<gh_stars>100-1000 # Copyright 2004-2015, <NAME>, Inc. # Copyright 2017-Present Facebook, Inc. from ng import NailgunConnection, NailgunException
Week15/2.py
bobsingh149/LeetCode
101
44636
<filename>Week15/2.py ### DO NOT REMOVE THIS from typing import List class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next ### DO NOT REMOVE THIS # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: a1=0 a2=0 current=l1 i=0 while current: a1+=current.val*(10**i) current=current.next i+=1 j=0 current=l2 while current: a2+=current.val*(10**j) current=current.next j+=1 result=a1+a2 link=ListNode(0) current=link if result==0: return link while result>0: current.next=ListNode(result%10) result=result//10 current=current.next return link.next
lib/synthetic_data.py
ppmdatix/rtdl
298
44644
"Code used to generate data for experiments with synthetic data" import math import typing as ty import numba import numpy as np import torch import torch.nn as nn from numba.experimental import jitclass from tqdm.auto import tqdm class MLP(nn.Module): def __init__( self, *, d_in: int, d_layers: ty.List[int], d_out: int, bias: bool = True, ) -> None: super().__init__() self.layers = nn.ModuleList( [ nn.Linear(d_layers[i - 1] if i else d_in, x, bias=bias) for i, x in enumerate(d_layers) ] ) self.head = nn.Linear(d_layers[-1] if d_layers else d_in, d_out) def init_weights(m): if isinstance(m, nn.Linear): torch.nn.init.kaiming_normal_(m.weight, mode='fan_in') if m.bias is not None: fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(m.weight) bound = 1 / math.sqrt(fan_in) torch.nn.init.uniform_(m.bias, -bound, bound) self.apply(init_weights) def forward(self, x: torch.Tensor) -> torch.Tensor: for layer in self.layers: x = layer(x) x = torch.relu(x) x = self.head(x) x = x.squeeze(-1) return x @jitclass( spec=[ ('left_children', numba.int64[:]), ('right_children', numba.int64[:]), ('feature', numba.int64[:]), ('threshold', numba.float32[:]), ('value', numba.float32[:]), ('is_leaf', numba.int64[:]), ] ) class Tree: "Randomly initialized decision tree" def __init__(self, n_features, n_nodes, max_depth): assert (2 ** np.arange(max_depth + 1)).sum() >= n_nodes, "Too much nodes" self.left_children = np.ones(n_nodes, dtype=np.int64) * -1 self.right_children = np.ones(n_nodes, dtype=np.int64) * -1 self.feature = np.random.randint(0, n_features, (n_nodes,)) self.threshold = np.random.randn(n_nodes).astype(np.float32) self.value = np.random.randn(n_nodes).astype(np.float32) depth = np.zeros(n_nodes, dtype=np.int64) # Root is 0 self.is_leaf = np.zeros(n_nodes, dtype=np.int64) self.is_leaf[0] = 1 # Keep adding nodes while we can (new node must have 2 children) while True: idx = np.flatnonzero(self.is_leaf)[np.random.choice(self.is_leaf.sum())] if depth[idx] < max_depth: unused = np.flatnonzero( (self.left_children == -1) & (self.right_children == -1) & ~self.is_leaf ) if len(unused) < 2: break lr_child = unused[np.random.permutation(unused.shape[0])[:2]] self.is_leaf[lr_child] = 1 self.is_leaf[lr_child] = 1 depth[lr_child] = depth[idx] + 1 self.left_children[idx] = lr_child[0] self.right_children[idx] = lr_child[1] self.is_leaf[idx] = 0 def apply(self, x): y = np.zeros(x.shape[0]) for i in range(x.shape[0]): idx = 0 while not self.is_leaf[idx]: if x[i, self.feature[idx]] < self.threshold[idx]: idx = self.left_children[idx] else: idx = self.right_children[idx] y[i] = self.value[idx] return y class TreeEnsemble: "Combine multiple trees" def __init__(self, *, n_trees, n_features, n_nodes, max_depth): self.trees = [ Tree(n_features=n_features, n_nodes=n_nodes, max_depth=max_depth) for _ in range(n_trees) ] def apply(self, x): return np.mean([t.apply(x) for t in tqdm(self.trees)], axis=0)
mitreattack/navlayers/generators/usage_generator.py
wetkind/mitreattack-python
137
44653
<filename>mitreattack/navlayers/generators/usage_generator.py<gh_stars>100-1000 from stix2 import Filter from itertools import chain import copy from mitreattack.navlayers.exporters.matrix_gen import MatrixGen from mitreattack.navlayers.core.exceptions import BadInput, typeChecker from mitreattack.navlayers.core.layer import Layer from mitreattack.navlayers.generators.gen_helpers import remove_revoked_depreciated, get_attack_id, build_data_strings class UnableToFindStixObject(Exception): pass class StixObjectIsNotValid(Exception): pass class UsageLayerGenerator: """Generates a Layer that shows techniques mapped to an input group, software or mitigation""" def __init__(self, source, domain='enterprise', resource=None): """ Initialize the Generator :param source: Which source to use for data (local, taxii [server], or [remote] ATT&CK Workbench) :param domain: Which matrix to use during generation :param resource: string path to local STIX data (local) or url of workbench to reach out to (remote) """ self.matrix_handle = MatrixGen(source, resource) self.domain = domain try: self.source_handle = self.matrix_handle.collections[domain] except KeyError: print(f"[UsageGenerator] - unable to load collection {domain} (current source = {source}).") raise BadInput self.full_matrix = self.matrix_handle.get_matrix(self.domain) self.sources = self.source_handle.query([Filter('type', '=', 'x-mitre-data-source')]) self.components = self.source_handle.query([Filter('type', '=', 'x-mitre-data-component')]) self.source_mapping = build_data_strings(self.sources, self.components) def get_stix_object(self, match): """ Retrieve the stix object for a given string :param match: The string to match on - can be a name, alias, or ATT&CK ID :return: the corresponding stix object """ filts = [ [Filter('name', '=', match)], [Filter(match, 'in', 'aliases')], [Filter(match, 'in', 'x_mitre_aliases')], [Filter('external_references.external_id', '=', match)], [Filter('id', '=', match)] # Support data component type objects from sum generator ] data = list(chain.from_iterable(self.source_handle.query(f) for f in filts)) data = remove_revoked_depreciated(data) if len(data): if len(data) > 1: print(f"[Usage Generator] - WARNING! Multiple matches found for {match}: [{data}]. Selecting the first " f"one as default.") return data[0] raise UnableToFindStixObject def get_matrix_data(self, match_pattern): """ Retrieve a list of attack-pattern (technique) objects that map to a group, software or mitigation. :param match_pattern: Name, associated group/software (alias), or ATT&CK ID. Techniques mapped to the object matching this pattern are returned.``` """ obj = self.get_stix_object(match_pattern) if obj['type'] == 'course-of-action': verb = 'mitigates' elif obj['type'] == 'x-mitre-data-component' or obj['type'] == 'x-mitre-data-source': verb = 'detects' else: verb = 'uses' related = self.source_handle.relationships(obj['id'], verb, source_only=True) out = self.source_handle.query([ Filter('type', '=', 'attack-pattern'), Filter('id', 'in', [r.target_ref for r in related]) ]) return remove_revoked_depreciated(out), obj def generate_technique_data(self, raw_matches): """ Generate technique list of dictionary objects (dictionary form of technique listing for a layer) :param raw_matches: matching attack-pattern objects :return: list of dictionary objects for every technique: score=0 if not in raw_matches, 1 otherwise, description in comments """ shortlist = [] for match in raw_matches: xid = '' xphase = '' for ref in match.external_references: if ref.source_name == 'mitre-attack': xid = ref.external_id for phase in match.kill_chain_phases: if phase.kill_chain_name == 'mitre-attack': xphase = phase.phase_name shortlist.append((xid, xphase, match.description)) full_matrix_listing = copy.deepcopy(self.full_matrix) construct = list() for tactic in full_matrix_listing: for tech in tactic.techniques: construct.append(dict(techniqueID=tech.id, score=0, tactic=self.matrix_handle.convert(tactic.tactic.name))) for tech_key in tactic.subtechniques: for subtech in tactic.subtechniques[tech_key]: construct.append(dict(techniqueID=subtech.id, score=0, tactic=self.matrix_handle.convert(tactic.tactic.name))) for entry in shortlist: for tac in construct: if entry[0] == tac['techniqueID'] and (entry[1] == '' or entry[1] == tac['tactic']): tac['score'] = 1 tac['comment'] = entry[2] return construct def generate_layer(self, match): """ Generate a layer :param match: the pattern to match :return: layer object with annotated techniques """ typeChecker(type(self).__name__, match, str, "match") raw_data, matched_obj = self.get_matrix_data(match) if matched_obj['type'] not in ["course-of-action", 'tool', 'malware', 'intrusion-set', 'x-mitre-data-source', 'x-mitre-data-component']: print(f"Warning: The input match {match} corresponds with an ATT&CK Technique, which is not supported. " f"Please provide a group, software, or mitigation instead.") raise StixObjectIsNotValid a_id = get_attack_id(matched_obj) processed_listing = self.generate_technique_data(raw_data) raw_layer = dict(name=f"{matched_obj['name']} ({matched_obj['id']})", domain=self.domain + '-attack') raw_layer['techniques'] = processed_listing output_layer = Layer(raw_layer) if matched_obj['type'] != 'x-mitre-data-component': name = matched_obj['name'] else: name = self.source_mapping[matched_obj['id']] output_layer.description = f"{self.domain.capitalize() if len(self.domain) > 3 else self.domain.upper()} " \ f"techniques used by {name}, ATT&CK {matched_obj['type']} {a_id}" return output_layer
uefi_firmware/guids/efiguids_asrock.py
MikeSpreitzer/uefi-firmware-parser
492
44666
GUIDs = { "ASROCK_ACPIS4_DXE_GUID": [69196166, 45078, 18382, 175, 197, 34, 105, 237, 212, 173, 100], "ASROCK_USBRT_GUID": [82487969, 10657, 4567, 136, 56, 0, 80, 4, 115, 212, 235], "ASROCK_RAID_SETUP_GUID": [152494882, 14144, 12750, 173, 98, 189, 23, 44, 236, 202, 54], "ASROCK_RAID_LOADER_GUID": [164506669, 19843, 17592, 151, 208, 16, 133, 235, 84, 144, 184], "ASROCK_SIOSLPSMI_GUID": [204970154, 53806, 19926, 140, 180, 60, 156, 251, 29, 134, 211], "ASROCK_PLEDDXE_GUID": [260599413, 12329, 20175, 182, 148, 34, 137, 77, 63, 33, 67], "ASROCK_A_DEFAULT_DXE_GUID": [303480106, 49246, 19565, 145, 231, 235, 142, 55, 173, 59, 122], "ASROCK_USER_DEF_SETUP_DXE_GUID": [321832763, 48422, 20415, 177, 147, 138, 203, 80, 239, 189, 137], "ASROCK_WAKEUP_CTRL_SMM_GUID": [460234064, 4836, 19285, 129, 217, 26, 191, 236, 89, 212, 252], "ASROCK_AMI_AGESA_DXE_GUID": [503020538, 49038, 19729, 151, 102, 47, 176, 208, 68, 35, 16], "ASROCK_HDD_READY_SMI_GUID": [560462180, 29336, 19087, 154, 42, 191, 228, 152, 214, 0, 168], "ASROCK_MOUSE_DRIVER_GUID": [719032155, 51156, 20094, 190, 42, 35, 99, 77, 246, 104, 161], "ASROCK_IDESMM_GUID": [829100592, 1280, 17810, 140, 9, 234, 186, 15, 182, 176, 127], "ASROCK_BFGSMI_GUID": [978522445, 22131, 19929, 181, 179, 203, 114, 195, 71, 102, 155], "ASROCK_ASRLOGODXE_GUID": [1033880909, 6629, 19152, 185, 134, 2, 214, 135, 215, 96, 229], "ASROCK_ASM104_X_DXE_GUID": [1080004582, 21011, 19333, 184, 33, 151, 183, 122, 255, 121, 91], "ASROCK_HDAUDIO_SMI_GUID": [1254707048, 58961, 19256, 161, 216, 45, 93, 239, 250, 15, 96], "ASROCK_SM_BUS_DXE_GUID": [1265110573, 3427, 20322, 185, 48, 122, 233, 149, 185, 179, 163], "ASROCK_USBINT13_GUID": [1275096281, 6586, 17943, 132, 131, 96, 145, 148, 161, 172, 252], "ASROCK_SLP_SUPPORT_GUID": [1279872597, 22601, 21314, 69, 84, 84, 69, 82, 33, 33, 33], "ASROCK_PATA_CONTROLLER_GUID": [1334921163, 38702, 20316, 184, 105, 160, 33, 130, 201, 217, 60], "ASROCK_SATA_CONTROLLER_GUID": [1359869601, 46785, 18760, 174, 231, 89, 242, 32, 248, 152, 189], "ASROCK_ACPIS4_SMM_GUID": [1368992111, 10248, 19194, 148, 196, 153, 246, 176, 108, 135, 30], "ASROCK_POST_REPORT_GUID": [1413923475, 13211, 18381, 183, 25, 88, 93, 227, 148, 8, 204], "ASROCK_CLOCK_GEN_DXE_GUID": [1447053695, 25694, 17937, 185, 21, 230, 130, 200, 189, 71, 131], "ASROCK_UHCD_GUID": [1477302528, 14429, 4567, 136, 58, 0, 80, 4, 115, 212, 235], "ASROCK_LEGACY_REGION_GUID": [1495543256, 59343, 18809, 182, 14, 166, 6, 126, 42, 24, 95], "ASROCK_SLEEP_SMI_GUID": [1654193688, 54767, 17079, 187, 12, 41, 83, 40, 63, 87, 4], "ASROCK_CMOS_MANAGER_SMM_GUID": [1751762355, 44173, 18803, 139, 55, 227, 84, 219, 243, 74, 221], "ASROCK_AMD_AGESA_DXE_DRIVER_GUID": [1766895615, 28387, 4573, 173, 139, 8, 0, 32, 12, 154, 102], "ASROCK_RE_FLASH_GUID": [1893836824, 3041, 17481, 191, 212, 158, 246, 140, 127, 2, 168], "ASROCK_LEGACY_INTERRUPT_GUID": [1911362257, 9483, 17147, 140, 23, 16, 220, 250, 119, 23, 1], "ASROCK_SMM_CHILD_DISPATCHER_GUID": [1966485705, 64229, 18345, 187, 191, 136, 214, 33, 205, 114, 130], "ASROCK_BFGDXE_GUID": [1988600983, 65358, 18687, 188, 170, 103, 219, 246, 92, 66, 209], "ASROCK_IFLASHSETUP_GUID": [2011543064, 9746, 19496, 188, 223, 162, 177, 77, 138, 62, 254], "ASROCK_S4_SLEEPDELAY_GUID": [2075935011, 23902, 19484, 149, 209, 48, 235, 164, 135, 1, 202], "ASROCK_HDD_READY_DXE_GUID": [2179248970, 9868, 20428, 142, 57, 28, 29, 62, 111, 110, 105], "ASROCK_RTLANDXE_GUID": [2332955475, 13708, 20015, 147, 69, 238, 191, 29, 171, 152, 155], "ASROCK_AMD_SB900_DXE_GUID": [2333274783, 28981, 20139, 175, 218, 5, 18, 247, 75, 101, 234], "ASROCK_SB900_SMBUS_LIGHT_GUID": [2551896525, 34437, 19115, 175, 218, 5, 18, 247, 75, 101, 234], "ASROCK_AAFTBL_SMI_GUID": [2667102838, 46054, 19161, 143, 231, 199, 79, 113, 196, 114, 72], "ASROCK_NVRAMID_GUID": [2708185858, 25876, 17031, 190, 227, 98, 35, 183, 222, 44, 33], "ASROCK_IDE_SECURITY_GUID": [2847342799, 414, 19851, 163, 167, 136, 225, 234, 1, 105, 158], "ASROCK_ASM1061_DXE_GUID": [2848876245, 27959, 17694, 169, 191, 245, 143, 122, 11, 60, 194], "ASROCK_ASM104_X_SMI_GUID": [2904508538, 47702, 18652, 142, 170, 232, 251, 234, 116, 184, 242], "ASROCK_RTLANSMI_GUID": [3005543067, 24215, 19449, 180, 224, 81, 37, 193, 246, 5, 213], "ASROCK_GEC_UPDATE_SMI_GUID": [3092850716, 5882, 17832, 146, 1, 28, 56, 48, 169, 115, 189], "ASROCK_APMOFF_GUID": [3146872289, 16021, 19326, 135, 80, 157, 106, 163, 78, 183, 246], "ASROCK_SMIFLASH_GUID": [3157425597, 47490, 20309, 159, 121, 5, 106, 215, 233, 135, 197], "ASROCK_RAID_X64_GUID": [3295196034, 17744, 18697, 173, 87, 36, 150, 20, 27, 63, 74], "ASROCK_AMD_SB900_SMM_GUID": [3351810409, 6722, 20062, 179, 75, 230, 131, 6, 113, 201, 166], "ASROCK_FIREWIRE_GUID": [3367390790, 38937, 17835, 135, 93, 9, 223, 218, 109, 139, 27], "ASROCK_IDE_SMART_GUID": [3581707566, 32927, 17871, 163, 119, 215, 123, 192, 203, 120, 238], "ASROCK_SB_INTERFACE_DXE_GUID": [3622218689, 38683, 17947, 181, 228, 60, 55, 102, 38, 122, 217], "ASROCK_AMD_SB900_SMM_DISPATCHER_GUID": [3748899802, 31298, 20062, 179, 75, 230, 131, 6, 113, 201, 166], "ASROCK_AMDCPU_DXE_GUID": [3786566962, 16719, 18139, 154, 238, 66, 0, 119, 243, 93, 190], "ASROCK_SMBIOS_DMIEDIT_GUID": [3802613560, 35124, 18677, 132, 18, 153, 233, 72, 200, 220, 27], "ASROCK_SECURITY_SELECT_DXE_GUID": [3832130086, 37480, 20144, 160, 135, 221, 76, 238, 55, 64, 75], "ASROCK_FILE_EXPLORER_LITE_GUID": [3875982164, 33976, 16573, 131, 47, 127, 178, 213, 203, 135, 179], "ASROCK_PLEDSMM_GUID": [3911953940, 15869, 19568, 159, 230, 56, 153, 243, 108, 120, 70], "ASROCK_CPU_SMBIOS_DRIVER_GUID": [3930959592, 43089, 19103, 171, 244, 183, 159, 162, 82, 130, 145], "ASROCK_AAFTBL_DXE_GUID": [4279363330, 35107, 18380, 173, 48, 217, 224, 226, 64, 221, 16], }
tf3d/utils/projections_test.py
deepneuralmachine/google-research
23,901
44671
<reponame>deepneuralmachine/google-research # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tf3d.utils.projections.""" import numpy as np import tensorflow as tf from tf3d.utils import projections class ProjectionsTest(tf.test.TestCase): def _get_transformation_matrices(self): # pylint: disable=bad-whitespace rotate_world_to_camera = tf.constant([ [ 2.34773703e-04, -9.99944150e-01, -1.05634779e-02], [ 1.04494076e-02, 1.05653536e-02, -9.99889553e-01], [ 9.99945402e-01, 1.24365382e-04, 1.04513029e-02] ], dtype=tf.float32) translate_world_to_camera = tf.constant([0.05705245, -0.07546672, -0.26938692], dtype=tf.float32) tr_camera_to_image = tf.constant([ [ 721.53771973, 0. , 609.55932617], [ 0. , 721.53771973, 172.85400391], [ 0. , 0. , 1. ]], dtype=tf.float32) # pylint: enable=bad-whitespace return (rotate_world_to_camera, translate_world_to_camera, tr_camera_to_image) def test_to_camera_frame(self): num_points = 1000 original_wf_points = tf.random.uniform((num_points, 3), minval=-10.0, maxval=10.0) (rotate_world_to_camera, translate_world_to_camera, _) = self._get_transformation_matrices() cf_points = projections.to_camera_frame(original_wf_points, rotate_world_to_camera, translate_world_to_camera) computed_wf_points = projections.to_world_frame(cf_points, rotate_world_to_camera, translate_world_to_camera) self.assertAllClose(original_wf_points.numpy(), computed_wf_points.numpy()) self.assertEqual(original_wf_points.shape, (num_points, 3)) self.assertEqual(cf_points.shape, (num_points, 3)) self.assertEqual(computed_wf_points.shape, (num_points, 3)) def test_to_image_frame(self): height = 375 width = 1242 cf_points = tf.convert_to_tensor([ [0.0, 0.0, 10.0], [0.0, 0.2, 12.0], [0.0, -0.2, 20.0], [1.0, 0.0, 20.0], [-1.0, 0.0, 20.0], [0, 0, -10], [-1, 1, -20]], dtype=tf.float32) _, _, camera_intrinsics = self._get_transformation_matrices() image_points, within_image = projections.to_image_frame(cf_points, height, width, camera_intrinsics) np_image_points = image_points.numpy() np_within_image = within_image.numpy() self.assertEqual(np_within_image.sum(), 5) self.assertTrue((np_image_points[np_within_image] >= 0).all()) self.assertTrue((np_image_points[np_within_image, 0] < width).all()) self.assertTrue((np_image_points[np_within_image, 1] < height).all()) def test_image_frame_to_camera_frame(self): num_points = 10 height, width = 480, 640 image_frame = tf.concat([ tf.random.uniform( [num_points, 1], minval=0.0, maxval=width, dtype=tf.float32), tf.random.uniform( [num_points, 1], minval=0.0, maxval=height, dtype=tf.float32) ], axis=1) camera_intrinsics = tf.constant( [[500, 0., 320.], [0., 500., 120.], [0., 0., 1.]], dtype=tf.float32) camera_frame = projections.image_frame_to_camera_frame( image_frame=image_frame, camera_intrinsics=camera_intrinsics) self.assertEqual(camera_frame.shape, (num_points, 3)) def _test_create_image_from_rank1_values_unbatched(self, use_sparse_tensor): image_height, image_width = (240, 320) xx = tf.random.uniform((10,), minval=0, maxval=image_width, dtype=tf.int32) yy = tf.random.uniform((10,), minval=0, maxval=image_height, dtype=tf.int32) pixel_locations = tf.stack([yy, xx], axis=1) pixel_values = tf.ones((tf.shape(pixel_locations)[0],), dtype=tf.float32) created_image = projections.create_image_from_point_values_unbatched( pixel_locations=pixel_locations, pixel_values=pixel_values, image_height=image_height, image_width=image_width, default_value=255, use_sparse_tensor=use_sparse_tensor) self.assertAllClose(pixel_values.numpy(), np.ones((10,), dtype=np.uint8)) np_expected_image = np.full((image_height, image_width, 1), 255, np.uint8) np_yy = pixel_locations.numpy()[:, 0] np_xx = pixel_locations.numpy()[:, 1] np_expected_image[np_yy, np_xx, Ellipsis] = [1] self.assertAllClose(created_image.numpy(), np_expected_image) def _test_create_image_from_rank1_values(self, use_sparse_tensor): image_height, image_width = (240, 320) xx = tf.random.uniform((4, 10), minval=0, maxval=image_width, dtype=tf.int32) yy = tf.random.uniform((4, 10), minval=0, maxval=image_height, dtype=tf.int32) pixel_locations = tf.stack([yy, xx], axis=2) pixel_values = tf.random.uniform([4, 10, 3], minval=-2.0, maxval=2.0, dtype=tf.float32) num_valid_points = tf.constant([10, 3, 5, 7], dtype=tf.int32) created_image = projections.create_image_from_point_values( pixel_locations=pixel_locations, pixel_values=pixel_values, num_valid_points=num_valid_points, image_height=image_height, image_width=image_width, default_value=255.0, use_sparse_tensor=use_sparse_tensor) self.assertAllEqual(created_image.shape, np.array([4, 240, 320, 3])) def _test_create_image_from_rank2_values_unbatched(self, use_sparse_tensor): image_height, image_width = (240, 320) xx = tf.random.uniform((10,), minval=0, maxval=image_width, dtype=tf.int32) yy = tf.random.uniform((10,), minval=0, maxval=image_height, dtype=tf.int32) pixel_locations = tf.stack([yy, xx], axis=1) pixel_values = tf.random.uniform((10, 3), minval=0, maxval=255, dtype=tf.float32) created_image = projections.create_image_from_point_values_unbatched( pixel_locations=pixel_locations, pixel_values=pixel_values, image_height=image_height, image_width=image_width, default_value=0, use_sparse_tensor=use_sparse_tensor) self.assertEqual(created_image.shape, (image_height, image_width, 3)) np_pixel_locations = pixel_locations.numpy().round().astype(np.int32) np_yy = np_pixel_locations[:, 0] np_xx = np_pixel_locations[:, 1] self.assertAllClose( created_image.numpy()[np_yy, np_xx], pixel_values.numpy(), atol=1e-3) def test_create_image_rank1_unbatched_sparse(self): self._test_create_image_from_rank1_values_unbatched(use_sparse_tensor=True) def test_create_image_rank1_unbatched_scatter(self): self._test_create_image_from_rank1_values_unbatched(use_sparse_tensor=False) def test_create_image_rank1_sparse(self): self._test_create_image_from_rank1_values(use_sparse_tensor=True) def test_create_image_rank1_scatter(self): self._test_create_image_from_rank1_values(use_sparse_tensor=False) def test_create_image_rank2_unbatched_sparse(self): self._test_create_image_from_rank2_values_unbatched(use_sparse_tensor=True) def test_create_image_rank2_unbatched_scatter(self): self._test_create_image_from_rank2_values_unbatched(use_sparse_tensor=False) def _test_move_image_values_to_points(self, use_sparse_tensor): image_values = tf.constant( [[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]], [[9.0, 10.0], [11.0, 12.0]]], dtype=tf.float32) image_point_indices = tf.constant([[[1], [-1]], [[6], [-1]], [[0], [3]]], dtype=tf.int32) num_points = 10 point_values = projections.move_image_values_to_points( image_values=image_values, image_point_indices=image_point_indices, num_points=num_points, default_value=-1.0, use_sparse_tensor=use_sparse_tensor) expected_point_values = tf.constant( [[9.0, 10.0], [1.0, 2.0], [-1.0, -1.0], [11.0, 12.0], [-1.0, -1.0], [-1.0, -1.0], [5.0, 6.0], [-1.0, -1.0], [-1.0, -1.0], [-1.0, -1.0]], dtype=tf.float32) self.assertAllClose(point_values.numpy(), expected_point_values.numpy()) def test_move_image_values_to_points_sparse(self): self._test_move_image_values_to_points(use_sparse_tensor=True) def test_move_image_values_to_points_scatter(self): self._test_move_image_values_to_points(use_sparse_tensor=False) def test_update_pixel_locations_given_deformed_meshgrid(self): pixel_locations = tf.constant([[0, 1], [1, 1], [2, 0], [2, 2], [0, 2], [0, 1], [1, 1], [3, 3]], dtype=tf.int32) meshgrid_y = tf.constant([[1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3], [4, 4, 4, 4, 4]]) meshgrid_x = tf.constant([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]) meshgrid_yx = tf.stack([meshgrid_y, meshgrid_x], axis=2) deformed_meshgrid_y = tf.constant([[-1, 3, 2, 2], [-1, -1, 3, 2], [1, -1, 2, -1]]) deformed_meshgrid_x = tf.constant([[2, -2, 2, -1], [-1, 3, 2, 3], [2, -1, 3, -1]]) deformed_meshgrid_yx = tf.stack([deformed_meshgrid_y, deformed_meshgrid_x], axis=2) updated_pixel_locations = ( projections.update_pixel_locations_given_deformed_meshgrid( pixel_locations=pixel_locations, original_meshgrid=meshgrid_yx, deformed_meshgrid=deformed_meshgrid_yx)) expected_updated_pixel_locations = tf.constant([[2, 0], [0, 2], [-1, -1], [-1, -1], [-1, -1], [2, 0], [0, 2], [-1, -1]], dtype=tf.int32) self.assertAllEqual(updated_pixel_locations.numpy(), expected_updated_pixel_locations.numpy()) def test_project_points_with_depth_visibility_check(self): point_positions = tf.constant([[-1.0, -1.0, 1.0], [-1.0, 1.0, 1.0], [1.0, -1.0, 1.0], [1.0, 1.0, 1.0]], dtype=tf.float32) camera_intrinsics = tf.constant([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], dtype=tf.float32) camera_rotation_matrix = tf.constant([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], dtype=tf.float32) camera_translation = tf.constant([5.0, 5.0, 0.0], dtype=tf.float32) image_width = 10 image_height = 10 depth_image_00 = tf.ones([5, 5, 1], dtype=tf.float32) * 1.0 depth_image_01 = tf.ones([5, 5, 1], dtype=tf.float32) * 2.0 depth_image_10 = tf.ones([5, 5, 1], dtype=tf.float32) * 1.0 depth_image_11 = tf.ones([5, 5, 1], dtype=tf.float32) * 4.0 depth_image = tf.concat([ tf.concat([depth_image_00, depth_image_01], axis=1), tf.concat([depth_image_10, depth_image_11], axis=1) ], axis=0) depth_threshold = 0.1 (points_in_image_frame, visibility) = projections.project_points_with_depth_visibility_check( point_positions=point_positions, camera_intrinsics=camera_intrinsics, camera_rotation_matrix=camera_rotation_matrix, camera_translation=camera_translation, image_width=image_width, image_height=image_height, depth_image=depth_image, depth_intrinsics=camera_intrinsics, depth_threshold=depth_threshold) self.assertAllEqual( visibility.numpy().astype(np.int32), np.array([1, 1, 0, 0])) self.assertAllEqual(points_in_image_frame.numpy(), np.array([[4, 4], [4, 6], [6, 4], [6, 6]])) if __name__ == '__main__': tf.test.main()
docs/core/examples/stdin.py
Khymeira/twisted
4,612
44674
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ An example of reading a line at a time from standard input without blocking the reactor. """ from os import linesep from twisted.internet import stdio from twisted.protocols import basic class Echo(basic.LineReceiver): delimiter = linesep.encode("ascii") def connectionMade(self): self.transport.write(b">>> ") def lineReceived(self, line): self.sendLine(b"Echo: " + line) self.transport.write(b">>> ") def main(): stdio.StandardIO(Echo()) from twisted.internet import reactor reactor.run() if __name__ == "__main__": main()
floweaver/hierarchy.py
fullflu/floweaver
342
44675
import networkx as nx class Hierarchy: def __init__(self, tree, column): self.tree = tree self.column = column def _leaves_below(self, node): leaves = sum(([vv for vv in v if self.tree.out_degree(vv) == 0] for k, v in nx.dfs_successors(self.tree, node).items()), []) return sorted(leaves) or [node] def __call__(self, *nodes): """Return process IDs below the given nodes in the tree""" s = set() for node in nodes: if self.tree.in_degree(node) == 0: return None # all s.update(self._leaves_below(node)) if len(s) == 1: query = '{} == "{}"'.format(self.column, s.pop()) else: query = '{} in {}'.format(self.column, repr(sorted(s))) return query
venv/Lib/site-packages/win32/Demos/win32gui_demo.py
ajayiagbebaku/NFL-Model
150
44684
<reponame>ajayiagbebaku/NFL-Model # The start of a win32gui generic demo. # Feel free to contribute more demos back ;-) import win32gui, win32con, win32api import time, math, random def _MyCallback(hwnd, extra): hwnds, classes = extra hwnds.append(hwnd) classes[win32gui.GetClassName(hwnd)] = 1 def TestEnumWindows(): windows = [] classes = {} win32gui.EnumWindows(_MyCallback, (windows, classes)) print( "Enumerated a total of %d windows with %d classes" % (len(windows), len(classes)) ) if "tooltips_class32" not in classes: print("Hrmmmm - I'm very surprised to not find a 'tooltips_class32' class.") def OnPaint_1(hwnd, msg, wp, lp): dc, ps = win32gui.BeginPaint(hwnd) win32gui.SetGraphicsMode(dc, win32con.GM_ADVANCED) br = win32gui.CreateSolidBrush(win32api.RGB(255, 0, 0)) win32gui.SelectObject(dc, br) angle = win32gui.GetWindowLong(hwnd, win32con.GWL_USERDATA) win32gui.SetWindowLong(hwnd, win32con.GWL_USERDATA, angle + 2) r_angle = angle * (math.pi / 180) win32gui.SetWorldTransform( dc, { "M11": math.cos(r_angle), "M12": math.sin(r_angle), "M21": math.sin(r_angle) * -1, "M22": math.cos(r_angle), "Dx": 250, "Dy": 250, }, ) win32gui.MoveToEx(dc, 250, 250) win32gui.BeginPath(dc) win32gui.Pie(dc, 10, 70, 200, 200, 350, 350, 75, 10) win32gui.Chord(dc, 200, 200, 850, 0, 350, 350, 75, 10) win32gui.LineTo(dc, 300, 300) win32gui.LineTo(dc, 100, 20) win32gui.LineTo(dc, 20, 100) win32gui.LineTo(dc, 400, 0) win32gui.LineTo(dc, 0, 400) win32gui.EndPath(dc) win32gui.StrokeAndFillPath(dc) win32gui.EndPaint(hwnd, ps) return 0 wndproc_1 = {win32con.WM_PAINT: OnPaint_1} def OnPaint_2(hwnd, msg, wp, lp): dc, ps = win32gui.BeginPaint(hwnd) win32gui.SetGraphicsMode(dc, win32con.GM_ADVANCED) l, t, r, b = win32gui.GetClientRect(hwnd) for x in range(25): vertices = ( { "x": int(random.random() * r), "y": int(random.random() * b), "Red": int(random.random() * 0xFF00), "Green": 0, "Blue": 0, "Alpha": 0, }, { "x": int(random.random() * r), "y": int(random.random() * b), "Red": 0, "Green": int(random.random() * 0xFF00), "Blue": 0, "Alpha": 0, }, { "x": int(random.random() * r), "y": int(random.random() * b), "Red": 0, "Green": 0, "Blue": int(random.random() * 0xFF00), "Alpha": 0, }, ) mesh = ((0, 1, 2),) win32gui.GradientFill(dc, vertices, mesh, win32con.GRADIENT_FILL_TRIANGLE) win32gui.EndPaint(hwnd, ps) return 0 wndproc_2 = {win32con.WM_PAINT: OnPaint_2} def TestSetWorldTransform(): wc = win32gui.WNDCLASS() wc.lpszClassName = "test_win32gui_1" wc.style = win32con.CS_GLOBALCLASS | win32con.CS_VREDRAW | win32con.CS_HREDRAW wc.hbrBackground = win32con.COLOR_WINDOW + 1 wc.lpfnWndProc = wndproc_1 class_atom = win32gui.RegisterClass(wc) hwnd = win32gui.CreateWindow( wc.lpszClassName, "Spin the Lobster!", win32con.WS_CAPTION | win32con.WS_VISIBLE, 100, 100, 900, 900, 0, 0, 0, None, ) for x in range(500): win32gui.InvalidateRect(hwnd, None, True) win32gui.PumpWaitingMessages() time.sleep(0.01) win32gui.DestroyWindow(hwnd) win32gui.UnregisterClass(wc.lpszClassName, None) def TestGradientFill(): wc = win32gui.WNDCLASS() wc.lpszClassName = "test_win32gui_2" wc.style = win32con.CS_GLOBALCLASS | win32con.CS_VREDRAW | win32con.CS_HREDRAW wc.hbrBackground = win32con.COLOR_WINDOW + 1 wc.lpfnWndProc = wndproc_2 class_atom = win32gui.RegisterClass(wc) hwnd = win32gui.CreateWindowEx( 0, class_atom, "Kaleidoscope", win32con.WS_CAPTION | win32con.WS_VISIBLE | win32con.WS_THICKFRAME | win32con.WS_SYSMENU, 100, 100, 900, 900, 0, 0, 0, None, ) s = win32gui.GetWindowLong(hwnd, win32con.GWL_EXSTYLE) win32gui.SetWindowLong(hwnd, win32con.GWL_EXSTYLE, s | win32con.WS_EX_LAYERED) win32gui.SetLayeredWindowAttributes(hwnd, 0, 175, win32con.LWA_ALPHA) for x in range(30): win32gui.InvalidateRect(hwnd, None, True) win32gui.PumpWaitingMessages() time.sleep(0.3) win32gui.DestroyWindow(hwnd) win32gui.UnregisterClass(class_atom, None) print("Enumerating all windows...") TestEnumWindows() print("Testing drawing functions ...") TestSetWorldTransform() TestGradientFill() print("All tests done!")
products/ui/llbuildui/graphalgorithms.py
uraimo/swift-llbuild
1,034
44688
import orderedset def find_cycle(nodes, successors): path = orderedset.orderedset() visited = set() def visit(node): # If the node is already in the current path, we have found a cycle. if not path.add(node): return (path, node) # If we have otherwise already visited this node, we don't need to visit # it again. if node in visited: item = path.pop() assert item == node return visited.add(node) # Otherwise, visit all the successors. for succ in successors(node): cycle = visit(succ) if cycle is not None: return cycle item = path.pop() assert item == node return None for node in nodes: cycle = visit(node) if cycle is not None: return cycle else: assert not path.items return None
tests/python/kaolin/metrics/__init__.py
mlej8/kaolin
3,747
44700
from . import test_trianglemesh from . import test_voxelgrid
securityheaders/checkers/hsts/test_maxagezero.py
th3cyb3rc0p/securityheaders
151
44722
<reponame>th3cyb3rc0p/securityheaders import unittest from securityheaders.checkers.hsts import HSTSMaxAgeZeroChecker class HSTSMaxAgeZeroCheckerTest(unittest.TestCase): def setUp(self): self.x = HSTSMaxAgeZeroChecker() def test_checkNoHSTS(self): nox = dict() nox['test'] = 'value' self.assertEqual(self.x.check(nox), []) def test_checkNone(self): nonex = None self.assertEqual(self.x.check(nonex), []) def test_checkNoneHSTS(self): hasx = dict() hasx['strict-transport-security'] = None self.assertEqual(self.x.check(hasx), []) def test_ValidHSTS(self): hasx4 = dict() hasx4['strict-transport-security'] = "max-age=31536000; includeSubDomains" result = self.x.check(hasx4) self.assertEqual(self.x.check(hasx4), []) def test_ZeroMaxAge(self): hasx5 = dict() hasx5['strict-transport-security'] = "max-age=0; includeSubDomains" result = self.x.check(hasx5) self.assertIsNotNone(result) self.assertEqual(len(result), 1) if __name__ == '__main__': unittest.main()
merlion/models/anomaly/forecast_based/arima.py
ankitakashyap05/Merlion
2,215
44753
<reponame>ankitakashyap05/Merlion # # Copyright (c) 2021 salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause # """ Classic ARIMA (AutoRegressive Integrated Moving Average) forecasting model, adapted for anomaly detection. """ from merlion.models.anomaly.forecast_based.base import ForecastingDetectorBase from merlion.models.anomaly.base import DetectorConfig from merlion.models.forecast.arima import ArimaConfig, Arima from merlion.post_process.threshold import AggregateAlarms class ArimaDetectorConfig(ArimaConfig, DetectorConfig): _default_threshold = AggregateAlarms(alm_threshold=2.5) class ArimaDetector(ForecastingDetectorBase, Arima): config_class = ArimaDetectorConfig
tests/conftest.py
GoodMonsters/Building-Data-Science-Applications-with-FastAPI
107
44757
from typing import Callable, AsyncGenerator, Generator import asyncio import httpx import pytest from asgi_lifespan import LifespanManager from fastapi import FastAPI from fastapi.testclient import TestClient TestClientGenerator = Callable[[FastAPI], AsyncGenerator[httpx.AsyncClient, None]] @pytest.fixture(scope="session") def event_loop(): loop = asyncio.get_event_loop() yield loop loop.close() @pytest.fixture async def client( request: pytest.FixtureRequest, ) -> AsyncGenerator[httpx.AsyncClient, None]: marker = request.node.get_closest_marker("fastapi") if marker is None: raise ValueError("client fixture: the marker fastapi must be provided") try: app = marker.kwargs["app"] except KeyError: raise ValueError( "client fixture: keyword argument app must be provided in the marker" ) if not isinstance(app, FastAPI): raise ValueError("client fixture: app must be a FastAPI instance") dependency_overrides = marker.kwargs.get("dependency_overrides") if dependency_overrides: if not isinstance(dependency_overrides, dict): raise ValueError( "client fixture: dependency_overrides must be a dictionary" ) app.dependency_overrides = dependency_overrides run_lifespan_events = marker.kwargs.get("run_lifespan_events", True) if not isinstance(run_lifespan_events, bool): raise ValueError("client fixture: run_lifespan_events must be a bool") test_client_generator = httpx.AsyncClient(app=app, base_url="http://app.io") if run_lifespan_events: async with LifespanManager(app): async with test_client_generator as test_client: yield test_client else: async with test_client_generator as test_client: yield test_client @pytest.fixture def websocket_client( request: pytest.FixtureRequest, event_loop: asyncio.AbstractEventLoop, ) -> Generator[TestClient, None, None]: asyncio.set_event_loop(event_loop) marker = request.node.get_closest_marker("fastapi") if marker is None: raise ValueError("client fixture: the marker fastapi must be provided") try: app = marker.kwargs["app"] except KeyError: raise ValueError( "client fixture: keyword argument app must be provided in the marker" ) if not isinstance(app, FastAPI): raise ValueError("client fixture: app must be a FastAPI instance") dependency_overrides = marker.kwargs.get("dependency_overrides") if dependency_overrides: if not isinstance(dependency_overrides, dict): raise ValueError( "client fixture: dependency_overrides must be a dictionary" ) app.dependency_overrides = dependency_overrides with TestClient(app) as test_client: yield test_client
examples/applications/restapi/example_ws_client/ws_client.py
electrumsv/electrumsv
136
44814
import aiohttp import asyncio import json import logging import requests from typing import cast, Iterable, List, Optional from electrumsv.constants import TxFlags logging.basicConfig(level=logging.DEBUG) class TxStateWSClient: def __init__(self, host: str="127.0.0.1", port: int=9999, wallet_name: str="worker1.sqlite", wallet_password: str="<PASSWORD>", account: int=1) -> None: self.host = host self.port = port self.url = f'http://{self.host}:{self.port}/v1/regtest/dapp/' \ f'wallets/{wallet_name}/{account}/txs/websocket/text-events' self.wallet_name = wallet_name self.wallet_password = <PASSWORD> self.account = account self.session = aiohttp.ClientSession() self._ws: Optional[aiohttp.client.ClientWebSocketResponse] = None self.msg_queue = asyncio.Queue() self.logger = logging.getLogger("tx-state-ws-client") async def __aenter__(self): # Normally the RESTAPI pulls the password out of the body, but `ws_connect` cannot be # passed a data/json parameter even if it's method is changed to POST. self._ws = await self.session.ws_connect(self.url, headers={ "X-Wallet-Password": self.wallet_password }) return self async def __aexit__(self, exc_type, exc_val, exc_tb): await cast(aiohttp.client.ClientWebSocketResponse, self._ws).close() await self.session.close() async def send_str(self, msg: str): await cast(aiohttp.client.ClientWebSocketResponse, self._ws).send_str(msg) async def _receive_msgs(self): try: async for msg in cast(aiohttp.client.ClientWebSocketResponse, self._ws): if json.loads(msg.data).get('code'): self.logger.debug(f'Error message received from server: {msg.data}') continue self.logger.debug(f'Message received from server: {msg.data}') self.msg_queue.put_nowait(msg.data) await asyncio.sleep(0) if msg.type in (aiohttp.WSMsgType.CLOSED, aiohttp.WSMsgType.ERROR): break finally: self.msg_queue.put_nowait(None) # poison pill async def block_until_mempool(self, txids: Iterable[str]) -> None: self._receive_msg_task = asyncio.create_task(self._receive_msgs()) subs = json.dumps({ "txids": list(txids) }) txids_set = set(txids) await self.send_str(subs) while True: msg = await self.msg_queue.get() if not msg: # poison pill break msg = json.loads(msg) txid = msg.get("txid") if not txid: continue tx_flags = msg.get("tx_flags") if msg.get("txid") in txids_set and \ (tx_flags & TxFlags.STATE_CLEARED) == TxFlags.STATE_CLEARED or \ (tx_flags & TxFlags.STATE_SETTLED) == TxFlags.STATE_SETTLED: txids_set.remove(txid) if len(txids_set) == 0: break async def block_until_confirmed(self, txids: List[str]) -> None: self._receive_msg_task = asyncio.create_task(self._receive_msgs()) subs = json.dumps({ "txids": list(txids) }) txids_set = set(txids) await self.send_str(subs) while True: msg = await self.msg_queue.get() if not msg: # poison pill break self.logger.debug(msg) msg = json.loads(msg) txid = msg.get("txid") if not txid: continue tx_flags = msg.get("tx_flags") if msg.get("txid") in txids_set and \ (tx_flags & TxFlags.STATE_SETTLED == TxFlags.STATE_SETTLED): txids_set.remove(txid) if len(txids_set) == 0: break if __name__ == "__main__": logger = logging.getLogger("main") logger_urllib3 = logging.getLogger("urllib3") logger_urllib3.setLevel(logging.WARNING) async def wait_for_mempool(txids): async with TxStateWSClient() as ws_client: await ws_client.block_until_mempool(txids) async def wait_for_confirmation(txids): async with TxStateWSClient() as ws_client: await ws_client.block_until_confirmed(txids) result1 = requests.post(f'http://127.0.0.1:9999/v1/regtest/dapp/wallets/' f'worker1.sqlite/load_wallet') result2 = requests.post(f'http://127.0.0.1:9999/v1/regtest/dapp/wallets/' f'worker1.sqlite/1/topup_account') if result2.status_code != 200: raise requests.exceptions.HTTPError(result2.text) txids = [result2.json()["txid"]] logger.info("mine a block to observe the websocket receiving the push notification and " "unblocking the thread") asyncio.run(wait_for_confirmation(txids))
opendatatools/hedgefund/simu_agent.py
jjcc/OpenData
1,179
44821
from opendatatools.common import RestAgent, md5 from progressbar import ProgressBar import json import pandas as pd import io import hashlib import time index_map = { 'Barclay_Hedge_Fund_Index' : 'ghsndx', 'Convertible_Arbitrage_Index' : 'ghsca', 'Distressed_Securities_Index' : 'ghsds', 'Emerging_Markets_Index' : 'ghsem', 'Equity_Long_Bias_Index' : 'ghselb', 'Equity_Long_Short_Index' : 'ghsels', 'Equity_Market_Neutral_Index' : 'ghsemn', 'European_Equities_Index' : 'ghsee', 'Event_Driven_Index' : 'ghsed', 'Fixed_Income_Arbitrage_Index' : 'ghsfia', 'Fund_of_Funds_Index' : 'ghsfof', 'Global_Macro_Index' : 'ghsmc', 'Healthcare_&_Biotechnology_Index': 'ghsbio', 'Merger_Arbitrage_Index' : 'ghsma', 'Multi_Strategy_Index' : 'ghsms', 'Pacific_Rim_Equities_Index' : 'ghspre', 'Technology_Index' : 'ghstec', } class SimuAgent(RestAgent): def __init__(self): RestAgent.__init__(self) self.user_info = None self.df_fundlist = None self.cookies = None def login(self, username, password): url = 'https://passport.simuwang.com/index.php?m=Passport&c=auth&a=login&type=login&name=%s&pass=%s&reme=1&rn=1' % (username, password) self.add_headers({'Referer': 'https://dc.simuwang.com/'}) response = self.do_request(url) if response is None: return None, '登录失败' jsonobj = json.loads(response) suc = jsonobj['suc'] msg = jsonobj['msg'] if suc != 1: return None, msg self.cookies = self.get_cookies() self.user_info = jsonobj['data'] return self.user_info, msg def prepare_cookies(self, url): response = self.do_request(url, None) if response is not None: cookies = self.get_cookies() return cookies else: return None def _get_rz_token(self, time): mk = time * 158995555893 mtoken = md5(md5(str(mk))) + '.' + str(time) return mtoken def _get_fund_list_page(self, page_no): url = 'https://dc.simuwang.com/ranking/get?page=%s&condition=fund_type:1,6,4,3,8,2;ret:9;rating_year:1;istiered:0;company_type:1;sort_name:profit_col2;sort_asc:desc;keyword:' % page_no response = self.do_request(url) if response is None: return None, '获取数据失败', None jsonobj = json.loads(response) code = jsonobj['code'] msg = jsonobj['msg'] if code != 1000: return None, msg, None df = pd.DataFrame(jsonobj['data']) pageinfo = jsonobj['pager'] return df, '', pageinfo def load_data(self): page_no = 1 df_list = [] df, msg, pageinfo = self._get_fund_list_page(page_no) if df is None: return None, msg df_list.append(df) page_count = pageinfo['pagecount'] process_bar = ProgressBar().start(max_value=page_count) page_no = page_no + 1 while page_no <= page_count: df, msg, pageinfo = self._get_fund_list_page(page_no) if df is None: return None, msg df_list.append(df) process_bar.update(page_no) page_no = page_no + 1 self.df_fundlist = pd.concat(df_list) return self.df_fundlist, '' def get_fund_list(self): if self.df_fundlist is None: return None, '请先加载数据 load_data' return self.df_fundlist, '' def _get_sign(self, url, params): str = url for k,v in params.items(): str = str + k + params[k] sha1 = hashlib.sha1() sha1.update(str.encode('utf8')) sign = sha1.hexdigest() return sign def _get_token(self, fund_id): sign = self._get_sign('https://dc.simuwang.com/Api/getToken', {'id' : fund_id}) url = 'https://dc.simuwang.com/Api/getToken?id=%s&sign=%s' % (fund_id, sign) self.add_headers({'Referer': 'https://dc.simuwang.com/'}) response = self.do_request(url) if response is None: return None, '获取数据失败' jsonobj = json.loads(response) code = jsonobj['code'] msg = jsonobj['message'] if code != 1000 : return code, msg self.cookies.update(self.get_cookies()) salt = jsonobj['data'] muid = self.user_info['userid'] #str = 'id%smuid%spage%s%s' % (fund_id, muid, page_no, salt) str = '%s%s' % (fund_id, salt) sha1 = hashlib.sha1() sha1.update(str.encode('utf8')) token = sha1.hexdigest() return token, '' def _get_fund_nav_page(self, fund_id, page_no): muid = self.user_info['userid'] token, msg = self._get_token(fund_id) if token is None: return None, '获取token失败: ' + msg, '' url = 'https://dc.simuwang.com/fund/getNavList.html' self.add_headers({'Referer': 'https://dc.simuwang.com/product/%s.html' % fund_id}) data = { 'id' : fund_id, 'muid' : muid, 'page' : str(page_no), 'token': token, } response = self.do_request(url, param=data, cookies=self.cookies, encoding="utf8") if response is None: return None, '获取数据失败', '' jsonobj = json.loads(response) code = jsonobj['code'] msg = jsonobj['msg'] if code != 1000 : return code, msg, '' df = pd.DataFrame(jsonobj['data']) pageinfo = jsonobj['pager'] return df, '', pageinfo def _bit_encrypt(self, str, key): cryText = '' keyLen = len(key) strLen = len(str) for i in range(strLen): k = i % keyLen cryText = cryText + chr(ord(str[i]) - k) return cryText def _bit_encrypt2(self, str, key): cryText = '' keyLen = len(key) strLen = len(str) for i in range(strLen): k = i % keyLen cryText = cryText + chr(ord(str[i]) ^ ord(key[k])) return cryText def _decrypt_data(self, str, func, key): # return self._bit_encrypt(str, 'cd0a8bee4c6b2f8a91ad5538dde2eb34') # return self._bit_encrypt(str, '937ab03370497f2b4e8d0599ad25c44c') # return self._bit_encrypt(str, '083975ce19392492bbccff21a52f1ace') return func(str, key) def _get_decrypt_info(self, fund_id): url = 'https://dc.simuwang.com/product/%s.html' % fund_id response = self.do_request(url, param=None, cookies=self.cookies, encoding="utf8") if response is None: return None, '获取数据失败', '' if "String.fromCharCode(str.charCodeAt(i) - k)" in response: decrypt_func = self._bit_encrypt else: decrypt_func = self._bit_encrypt2 if response.find("return xOrEncrypt(str, ")> 0: tag = "return xOrEncrypt(str, " else: tag = "return bitEncrypt(str, " pos = response.index(tag) + len(tag) + 1 key = response[pos:pos+32] return decrypt_func, key def get_fund_nav(self, fund_id, time_elapse = 0): if self.user_info is None: return None, '请先登录' page_no = 1 df_list = [] df, msg, pageinfo = self._get_fund_nav_page(fund_id, page_no) if df is None: return None, msg df_list.append(df) page_count = pageinfo['pagecount'] page_no = page_no + 1 while page_no <= page_count: try_times = 1 while try_times <= 3: df, msg, pageinfo = self._get_fund_nav_page(fund_id, page_no) if df is None: if try_times > 3: return None, msg else: try_times = try_times + 1 continue else: df_list.append(df) break page_no = page_no + 1 if time_elapse > 0: time.sleep(time_elapse) df_nav = pd.concat(df_list) df_nav.drop('c', axis=1, inplace=True) df_nav.rename(columns={'d': 'date', 'n': 'nav', 'cn' : 'accu_nav', 'cnw' : 'accu_nav_w'}, inplace=True) # 这个网站搞了太多的小坑 func, key = self._get_decrypt_info(fund_id) df_nav['nav'] = df_nav['nav'].apply(lambda x : self._decrypt_data(x, func, key)) df_nav['accu_nav'] = df_nav['accu_nav'].apply(lambda x : self._decrypt_data(x, func, key)) df_nav['accu_nav_w'] = df_nav['accu_nav_w'].apply(lambda x : self._decrypt_data(x, func, key)) #df_nav['nav'] = df_nav['nav'] - df_nav.index * 0.01 - 0.01 #df_nav['accu_nav'] = df_nav['accu_nav'].apply(lambda x: float(x) - 0.01) #df_nav['accu_nav_w'] = df_nav['accu_nav_w'].apply(lambda x: float(x) - 0.02) return df_nav, '' class BarclayAgent(RestAgent): def __init__(self): RestAgent.__init__(self) self.add_headers({'Referer': 'https://www.barclayhedge.com/research/indices/ghs/Equity_Long_Short_Index.html'}) self.add_headers({'Content - Type': 'application / x - www - form - urlencoded'}) def get_data(self, index): prog_cod = index_map[index] url = "https://www.barclayhedge.com/cgi-bin/barclay_stats/ghsndx.cgi" param = { 'dump': 'excel', 'prog_cod': prog_cod, } response = self.do_request(url, param=param, method='POST', type='binary') if response is not None: excel = pd.ExcelFile(io.BytesIO(response)) df = excel.parse('Sheet1').dropna(how='all').copy().reset_index().drop(0) df.columns = ['year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'YTD'] df = df.set_index('year') return df, '' return None, "获取数据失败"
examples/geo/divvy.py
fding253/nxviz
385
44826
import networkx as nx import matplotlib.pyplot as plt from nxviz import GeoPlot G = nx.read_gpickle("divvy.pkl") print(list(G.nodes(data=True))[0]) G_new = G.copy() for n1, n2, d in G.edges(data=True): if d["count"] < 200: G_new.remove_edge(n1, n2) g = GeoPlot( G_new, node_lat="latitude", node_lon="longitude", node_color="dpcapacity", node_size=0.005, ) g.draw() plt.show()
experiments/smal_shape.py
silviazuffi/smalst
121
44842
<filename>experiments/smal_shape.py """ Example usage: python -m smalst.experiments.smal_shape --zebra_dir='smalst/zebra_no_toys_wtex_1000_0' --num_epochs=100000 --save_epoch_freq=20 --name=smal_net_600 --save_training_imgs=True --num_images=20000 --do_validation=True """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags import os.path as osp import numpy as np import torch import torchvision from torch.autograd import Variable import scipy.io as sio import scipy import scipy.misc from collections import OrderedDict import pickle as pkl from ..data import zebra as zebra_data from ..utils import visutil from ..utils import smal_vis from ..utils import image as image_utils from ..nnutils import train_utils from ..nnutils import loss_utils from ..nnutils import smal_mesh_net from ..nnutils.nmr import NeuralRenderer from ..nnutils import geom_utils flags.DEFINE_string('dataset', 'zebra', 'zebra') # Weights: flags.DEFINE_float('kp_loss_wt', 10., 'keypoint loss weight') flags.DEFINE_float('kp_2D_loss_wt', 10., 'loss weight for the 2D keypoints predicted by the network') flags.DEFINE_float('mask_loss_wt', 30., 'mask loss weight') flags.DEFINE_float('cam_loss_wt', 10000., 'weights to camera loss') flags.DEFINE_float('deform_reg_wt', 100., 'reg to deformation') flags.DEFINE_float('triangle_reg_wt', 100., 'weights to triangle smoothness prior') flags.DEFINE_float('vert2kp_loss_wt', .16, 'reg to vertex assignment') flags.DEFINE_float('tex_loss_wt', 10., 'weights to tex loss') flags.DEFINE_boolean('grad_v_in_tex_loss', False, '') flags.DEFINE_boolean('use_keypoints', True, 'use keypoints loss') flags.DEFINE_boolean('use_mask', True, 'use mask loss') flags.DEFINE_boolean('use_shape_reg', False, 'use shape regularizers') flags.DEFINE_float('tex_map_loss_wt', 10., 'weights to tex map loss') flags.DEFINE_float('tex_dt_loss_wt', .5, 'weights to tex dt loss') flags.DEFINE_float('mod_trans_loss_wt', 4000., 'weights for model translation loss') flags.DEFINE_float('mod_pose_loss_wt', 200000., 'weights for model pose loss') flags.DEFINE_float('betas_reg_wt', 100000., 'weights for betas prior loss') flags.DEFINE_float('delta_v_loss_wt', 100000., 'weights for model delta_v') flags.DEFINE_float('occ_loss_wt', 100., 'weights for occlusion loss') flags.DEFINE_boolean('infer_vert2kp', False, 'estimate keypoints on the 3D model instead of using predefined values.') flags.DEFINE_boolean('no_delta_v', False, 'set predicted deformations to zero') flags.DEFINE_boolean('use_gtpose', False, 'if true uses gt pose for projection, but trans still gets trained.') flags.DEFINE_boolean('use_gttrans', False, 'if true uses gt trans for projection, but pose still gets trained.') flags.DEFINE_boolean('use_gtcam', False, 'if true uses gt cam for projection, but cam still gets trained.') flags.DEFINE_boolean('use_gtbetas', False, 'if true uses gt betas for projection, but betas still gets trained.') flags.DEFINE_boolean('use_gtdeltav', False, '') flags.DEFINE_boolean('use_gttexture', False, '') flags.DEFINE_boolean('use_camera_loss', True, 'if train with gt camera') flags.DEFINE_boolean('random_bkg', False, 'if using a random background rather than black in the pred image') flags.DEFINE_boolean('use_perceptual_loss', True, '') flags.DEFINE_boolean('uv_flow', True, '') flags.DEFINE_float('uv_flow_loss_wt', 100000., 'weights for uv_flow loss') flags.DEFINE_boolean('use_pose_geodesic_loss', True, '') flags.DEFINE_boolean('use_loss_on_whole_image', False, 'if compose the predicted animal with the image background') flags.DEFINE_boolean('use_tex_dt', True, 'if use loss (4) in the birds paper') flags.DEFINE_boolean('white_balance_for_texture_map', False, '') flags.DEFINE_boolean('use_img_as_background', False, 'if to use the input image as background for the optimization') flags.DEFINE_boolean('use_gtmask_for_background', False, 'if to use the input image as background for the optimization') flags.DEFINE_boolean('use_per_image_rgb_bg', False, 'if to compute per-imag rgb colors for background in optimization') opts = flags.FLAGS curr_path = osp.dirname(osp.abspath(__file__)) cache_path = osp.join(curr_path, '..', 'cachedir') class ShapeTrainer(train_utils.Trainer): def define_model(self): opts = self.opts self.symmetric = opts.symmetric img_size = (opts.img_size, opts.img_size) texture_mask_path = 'smalst/'+opts.dataset+'_data/texture_maps/my_smpl_00781_4_all_template_w_tex_uv_001_mask_small.png' self.texture_map_mask = torch.Tensor(scipy.misc.imread(texture_mask_path) / 255.0).cuda(device=opts.gpu_id) tex_masks = None data_path = 'smalst/smpl_models/my_smpl_data_00781_4_all.pkl' data = pkl.load(open(data_path)) pca_var = data['eigenvalues'][:opts.num_betas] self.betas_prec = torch.Tensor(pca_var).cuda(device=opts.gpu_id).expand(opts.batch_size, opts.num_betas) self.model = smal_mesh_net.MeshNet( img_size, opts, nz_feat=opts.nz_feat, num_kps=opts.num_kps, tex_masks=tex_masks) if opts.num_pretrain_epochs > 0: self.load_network(self.model, 'pred', opts.num_pretrain_epochs) self.model = self.model.cuda(device=opts.gpu_id) if not opts.infer_vert2kp: self.vert2kp = torch.Tensor(pkl.load(open('smalst/'+opts.dataset+'_data/verts2kp.pkl'))).cuda(device=opts.gpu_id) # Data structures to use for triangle priors. edges2verts = self.model.edges2verts # B x E x 4 edges2verts = np.tile(np.expand_dims(edges2verts, 0), (opts.batch_size, 1, 1)) self.edges2verts = Variable(torch.LongTensor(edges2verts).cuda(device=opts.gpu_id), requires_grad=False) # For renderering. faces = self.model.faces.view(1, -1, 3) self.faces = faces.repeat(opts.batch_size, 1, 1) self.renderer = NeuralRenderer(opts.img_size, opts.projection_type, opts.norm_f, opts.norm_z, opts.norm_f0) if opts.texture: self.tex_renderer = NeuralRenderer(opts.img_size, opts.projection_type, opts.norm_f, opts.norm_z, opts.norm_f0) # Only use ambient light for tex renderer if opts.use_directional_light: self.tex_renderer.directional_light_only() else: self.tex_renderer.ambient_light_only() # For visualization self.vis_rend = smal_vis.VisRenderer(opts.img_size, faces.data.cpu().numpy(), opts.projection_type, opts.norm_f, opts.norm_z, opts.norm_f0) self.background_imgs = None return def init_dataset(self): opts = self.opts if opts.dataset == 'zebra': self.data_module = zebra_data else: print('Unknown dataset %d!' % opts.dataset) self.dataloader = self.data_module.data_loader(opts) self.resnet_transform = torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def define_criterion(self): if opts.use_keypoints: self.projection_loss = loss_utils.kp_l2_loss if opts.use_mask: self.mask_loss_fn = loss_utils.mask_loss if opts.infer_vert2kp: self.entropy_loss = loss_utils.entropy_loss if self.opts.use_camera_loss: self.camera_loss = loss_utils.camera_loss if opts.use_smal_betas: self.betas_loss_fn = loss_utils.betas_loss self.delta_v_loss_fn = loss_utils.delta_v_loss if self.opts.texture: if self.opts.use_perceptual_loss: if False: self.texture_loss = loss_utils.MSE_texture_loss else: self.texture_loss = loss_utils.PerceptualTextureLoss() else: self.texture_loss = loss_utils.texture_loss self.texture_dt_loss_fn = loss_utils.texture_dt_loss if opts.texture_map: self.texture_map_loss = loss_utils.texture_map_loss if opts.uv_flow: self.uv_flow_loss = loss_utils.uv_flow_loss self.model_trans_loss_fn = loss_utils.model_trans_loss self.model_pose_loss_fn = loss_utils.model_pose_loss def set_optimization_input(self): opts = self.opts cams = np.zeros((self.scale_pred.shape[0], 3)) cams[:,0] = self.scale_pred.data cams[:,1:] = 128 self.cams = Variable(torch.FloatTensor(cams).cuda(device=opts.gpu_id), requires_grad=False) self.model_trans = Variable(self.trans_pred.cuda(device=opts.gpu_id), requires_grad=False) def set_optimization_variables(self): ''' Sets as optimization variables those obtained as prediction from the network ''' opts = self.opts cams = np.zeros((self.scale_pred.shape[0], 3)) cams[:,0] = self.scale_pred.data cams[:,1:] = 128 # Prediction is gt self.cams = Variable(torch.FloatTensor(cams).cuda(device=opts.gpu_id), requires_grad=False) self.model_pose = Variable(self.pose_pred.cuda(device=opts.gpu_id), requires_grad=False) self.model_trans = Variable(self.trans_pred.cuda(device=opts.gpu_id), requires_grad=False) self.delta_v= Variable(self.delta_v.cuda(device=opts.gpu_id), requires_grad=False) def set_input(self, batch): opts = self.opts # Image with annotations. input_img_tensor = batch['img'].type(torch.FloatTensor) for b in range(input_img_tensor.size(0)): input_img_tensor[b] = self.resnet_transform(input_img_tensor[b]) img_tensor = batch['img'].type(torch.FloatTensor) self.input_imgs = Variable( input_img_tensor.cuda(device=opts.gpu_id), requires_grad=False) self.imgs = Variable( img_tensor.cuda(device=opts.gpu_id), requires_grad=False) #if opts.use_mask and 'mask' in batch.keys(): if 'mask' in batch.keys(): mask_tensor = batch['mask'].type(torch.FloatTensor) self.masks = Variable( mask_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.masks = None if opts.use_keypoints and 'kp' in batch.keys(): kp_tensor = batch['kp'].type(torch.FloatTensor) self.kps = Variable( kp_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.kps = None self.img_paths = batch['img_path'] if 'camera_params' in batch.keys(): cam_tensor = batch['camera_params'].type(torch.FloatTensor) if opts.use_norm_f_and_z: cam_tensor[:,0] = (cam_tensor[:,0]-opts.norm_f0)/opts.norm_f self.cams = Variable( cam_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.cams = None cam_c_tensor = batch['camera_params_c'].type(torch.FloatTensor) self.cams_center = Variable(cam_c_tensor.cuda(device=opts.gpu_id), requires_grad=False) if 'model_trans' in batch.keys(): model_trans_tensor = batch['model_trans'].type(torch.FloatTensor) if opts.use_norm_f_and_z: model_trans_tensor[:,2] = model_trans_tensor[:,2]-opts.norm_z +1. self.model_trans = Variable( model_trans_tensor.cuda(device=opts.gpu_id), requires_grad=False) if 'model_pose' in batch.keys(): model_pose_tensor = batch['model_pose'].type(torch.FloatTensor) self.model_pose = Variable( model_pose_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.model_trans = None self.model_pose = None if 'model_betas' in batch.keys(): model_betas_tensor = batch['model_betas'][:,:self.opts.num_betas].type(torch.FloatTensor) self.model_betas = Variable( model_betas_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.model_betas = None if 'model_delta_v' in batch.keys(): model_delta_v_tensor = batch['model_delta_v'].type(torch.FloatTensor) self.model_delta_v = Variable( model_delta_v_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.model_delta_v = None if opts.texture_map: assert('texture_map' in batch.keys()) texture_map_tensor = batch['texture_map'].type(torch.FloatTensor) self.texture_map = Variable(texture_map_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.texture_map = None if 'uv_flow' in batch.keys(): uv_flow_tensor = batch['uv_flow'].type(torch.FloatTensor).permute(0,3,1,2) self.uv_flow_gt = Variable(uv_flow_tensor.cuda(device=opts.gpu_id), requires_grad=False) else: self.uv_flow_gt = None # Compute barrier distance transform. #if opts.use_mask and self.masks is not None: if self.masks is not None: mask_dts = np.stack([image_utils.compute_dt_barrier(m) for m in batch['mask']]) dt_tensor = torch.FloatTensor(mask_dts).cuda(device=opts.gpu_id) # B x 1 x N x N self.dts_barrier = Variable(dt_tensor, requires_grad=False).unsqueeze(1) def forward(self, opts_scale=None, opts_pose=None, opts_trans=None, opts_delta_v=None): opts = self.opts if opts.use_double_input: masks = self.input_imgs*self.masks else: masks = None if opts.texture: pred_codes, self.textures = self.model.forward(self.input_imgs, masks) else: pred_codes = self.model.forward(self.input_imgs, masks) self.delta_v, self.scale_pred, self.trans_pred, self.pose_pred, self.betas_pred, self.kp_2D_pred = pred_codes if opts.fix_trans: self.trans_pred[:,2] = self.model_trans[:,2] if opts.use_gttrans: print('Using gt trans') self.trans_pred = self.model_trans if opts.use_gtpose: print('Using gt pose') self.pose_pred = self.model_pose if opts.use_gtcam: print('Using gt cam') self.scale_pred = self.cams[:,0,None] if opts.use_gtbetas: print('Using gt betas') self.betas_pred = self.model_betas if opts.use_gtdeltav: print('Using gt delta_v') self.delta_v = self.model_delta_v if self.cams is not None: # The camera center does not change; here we predicting flength self.cam_pred = torch.cat([self.scale_pred, self.cams[:,1:]], 1) else: self.cam_pred = torch.cat([self.scale_pred, self.cams_center], 1) if opts.only_mean_sym: del_v = self.delta_v else: del_v = self.model.symmetrize(self.delta_v) if opts.no_delta_v: del_v[:] = 0 if opts.use_smal_pose: self.pred_v = self.model.get_smal_verts(self.pose_pred, self.betas_pred, self.trans_pred, del_v) else: # TODO self.mean_shape = self.model.get_mean_shape() self.pred_v = self.mean_shape + del_v + self.trans_pred # Compute keypoints. if opts.infer_vert2kp: self.vert2kp = torch.nn.functional.softmax(self.model.vert2kp, dim=1) self.kp_verts = torch.matmul(self.vert2kp, self.pred_v) # Set projection camera proj_cam = self.cam_pred # Project keypoints if opts.use_keypoints: self.kp_pred = self.renderer.project_points(self.kp_verts, proj_cam) # Render mask. self.mask_pred = self.renderer.forward(self.pred_v, self.faces, proj_cam) if opts.texture: self.texture_flow = self.textures self.textures = geom_utils.sample_textures(self.texture_flow, self.imgs) tex_size = self.textures.size(2) self.textures = self.textures.unsqueeze(4).repeat(1, 1, 1, 1, tex_size, 1) if opts.use_gttexture: idx=0 from ..utils.obj2nmr import obj2nmr_uvmap uv_map = obj2nmr_uvmap(self.model.ft, self.model.vt, tex_size=tex_size) uv_img = self.texture_map[idx,:,:,:] uv_img = uv_img.permute(1,2,0) texture_t = sample_texture(uv_map, uv_img) self.textures[0,:,:,:,:,:] = texture_t[0,:,:,:,:,:] if opts.grad_v_in_tex_loss: self.texture_pred = self.tex_renderer.forward(self.pred_v, self.faces, proj_cam.detach(), textures=self.textures) else: self.texture_pred = self.tex_renderer.forward(self.pred_v.detach(), self.faces, proj_cam.detach(), textures=self.textures) else: self.textures = None if opts.save_training_imgs and opts.use_mask and self.masks is not None: T = 255*self.mask_pred.cpu().detach().numpy()[0,:,:] scipy.misc.imsave(opts.name + '_mask_pred.png', T) T = 255*self.masks.cpu().detach().numpy()[0,:,:,:] T = np.transpose(T,(1,2,0))[:,:,0] scipy.misc.imsave(opts.name + '_mask_gt.png', T) # Compute losses for this instance. if self.opts.use_keypoints and self.kps is not None: self.kp_loss = self.projection_loss(self.kp_pred, self.kps) if self.opts.use_mask and self.masks is not None: self.mask_loss = self.mask_loss_fn(self.mask_pred, self.masks[:,0,:,:]) if self.opts.use_camera_loss and self.cams is not None: self.cam_loss = self.camera_loss(self.cam_pred, self.cams, 0, self.opts.use_norm_f_and_z) if self.model_trans is not None: self.mod_trans_loss = self.model_trans_loss_fn(self.trans_pred, self.model_trans) if self.model_pose is not None: self.mod_pose_loss = self.model_pose_loss_fn(self.pose_pred, self.model_pose, self.opts) if opts.texture: if opts.use_loss_on_whole_image: if self.background_imgs is None: print("SETTING BACKGROUND MODEL") self.background_imgs = np.zeros(self.imgs.shape) fg_mask = self.mask_pred.detach().cpu().numpy() I = self.imgs.detach().cpu().numpy() bg_mask = np.abs(fg_mask-1) rgb = np.zeros((3)) n = np.sum(bg_mask) for c in range(3): I[:,c,:,:] = I[:,c,:,:] * bg_mask rgb[c] = np.sum(I[0,c,:,:])/n if self.background_model_top is not None: N = 128 for c in range(3): self.background_imgs[:,c,:N,:] = self.background_model_top[c] self.background_imgs[:,c,N:,:] = self.background_model_bottom[c] else: # This is what we use for optimization if opts.use_per_image_rgb_bg: self.background_imgs[:,0,:,:] = rgb[0] self.background_imgs[:,1,:,:] = rgb[1] self.background_imgs[:,2,:,:] = rgb[2] else: self.background_imgs[:,0,:,:] = .6964 self.background_imgs[:,1,:,:] = .5806 self.background_imgs[:,2,:,:] = .4780 # Verification experiment: replace with image if opts.use_img_as_background: self.background_imgs[:,0,:,:] = self.imgs.data[:,0,:,:] self.background_imgs[:,1,:,:] = self.imgs.data[:,1,:,:] self.background_imgs[:,2,:,:] = self.imgs.data[:,2,:,:] self.background_imgs = torch.Tensor(self.background_imgs).cuda(device=opts.gpu_id) if self.masks is not None: if opts.use_loss_on_whole_image: self.tex_loss = self.texture_loss(self.texture_pred, self.imgs, self.mask_pred, None, self.background_imgs) else: self.tex_loss = self.texture_loss(self.texture_pred, self.imgs, self.mask_pred, self.masks[:,0,:,:]) if opts.use_tex_dt: self.tex_dt_loss = self.texture_dt_loss_fn(self.texture_flow, self.dts_barrier[:,:,:,:,0]) else: if opts.use_loss_on_whole_image: self.tex_loss = self.texture_loss(self.texture_pred, self.imgs, self.mask_pred, None, self.background_imgs) else: self.tex_loss = self.texture_loss(self.texture_pred, self.imgs, self.mask_pred, None) if opts.texture_map and self.texture_map is not None: uv_flows = self.model.texture_predictor.uvimage_pred uv_flows = uv_flows.permute(0, 2, 3, 1) uv_images = torch.nn.functional.grid_sample(self.imgs, uv_flows) self.tex_map_loss = self.texture_map_loss(uv_images, self.texture_map, self.texture_map_mask, self.opts) if opts.uv_flow and self.uv_flow_gt is not None: uv_flows = self.model.texture_predictor.uvimage_pred self.uv_f_loss = self.uv_flow_loss(uv_flows, self.uv_flow_gt) # Priors: if opts.infer_vert2kp: self.vert2kp_loss = self.entropy_loss(self.vert2kp) if opts.use_smal_betas: self.betas_loss = self.betas_loss_fn(self.betas_pred, self.model_betas, self.betas_prec) if self.model_delta_v is not None: self.delta_v_loss = self.delta_v_loss_fn(self.delta_v, self.model_delta_v) # Finally sum up the loss. # Instance loss: if opts.use_keypoints and self.kps is not None: self.total_loss = opts.kp_loss_wt * self.kp_loss if opts.use_mask and self.masks is not None: self.total_loss += opts.mask_loss_wt * self.mask_loss else: if opts.use_mask and self.masks is not None: self.total_loss = opts.mask_loss_wt * self.mask_loss else: self.total_loss = 0 if not opts.use_gtcam and self.opts.use_camera_loss and self.cams is not None: self.total_loss += opts.cam_loss_wt * self.cam_loss if opts.texture: self.total_loss += opts.tex_loss_wt * self.tex_loss if opts.texture_map and self.texture_map is not None: self.total_loss += opts.tex_map_loss_wt * self.tex_map_loss if opts.uv_flow and self.uv_flow_gt is not None: self.total_loss += opts.uv_flow_loss_wt * self.uv_f_loss if self.model_trans is not None: if not opts.use_gttrans: self.total_loss += opts.mod_trans_loss_wt * self.mod_trans_loss if self.model_pose is not None: if not opts.use_gtpose: self.total_loss += opts.mod_pose_loss_wt * self.mod_pose_loss if self.model_delta_v is not None: self.total_loss += opts.delta_v_loss_wt*self.delta_v_loss # Priors: if opts.infer_vert2kp: self.total_loss += opts.vert2kp_loss_wt * self.vert2kp_loss if opts.use_smal_betas: self.total_loss += opts.betas_reg_wt * self.betas_loss if opts.texture and self.masks is not None and opts.use_tex_dt: self.total_loss += opts.tex_dt_loss_wt * self.tex_dt_loss def get_current_visuals(self): vis_dict = {} try: mask_concat = torch.cat([self.masks[:,0,:,:], self.mask_pred], 2) except: import pdb; pdb.set_trace() if self.opts.texture: # B x 2 x H x W uv_flows = self.model.texture_predictor.uvimage_pred # B x H x W x 2 uv_flows = uv_flows.permute(0, 2, 3, 1) uv_images = torch.nn.functional.grid_sample(self.imgs, uv_flows) num_show = min(2, self.opts.batch_size) show_uv_imgs = [] show_uv_flows = [] for i in range(num_show): input_img = smal_vis.kp2im(self.kps[i].data, self.imgs[i].data) pred_kp_img = smal_vis.kp2im(self.kp_pred[i].data, self.imgs[i].data) masks = smal_vis.tensor2mask(mask_concat[i].data) if self.opts.texture: texture_here = self.textures[i] else: texture_here = None rend_predcam = self.vis_rend(self.pred_v[i], self.cam_pred[i], texture=texture_here) # Render from front & back: rend_frontal = self.vis_rend.diff_vp(self.pred_v[i], self.cam_pred[i], texture=texture_here, kp_verts=self.kp_verts[i]) rend_top = self.vis_rend.diff_vp(self.pred_v[i], self.cam_pred[i], axis=[0, 1, 0], texture=texture_here, kp_verts=self.kp_verts[i]) diff_rends = np.hstack((rend_frontal, rend_top)) if self.opts.texture: uv_img = smal_vis.tensor2im(uv_images[i].data) show_uv_imgs.append(uv_img) uv_flow = smal_vis.visflow(uv_flows[i].data) show_uv_flows.append(uv_flow) tex_img = smal_vis.tensor2im(self.texture_pred[i].data) imgs = np.hstack((input_img, pred_kp_img, tex_img)) else: imgs = np.hstack((input_img, pred_kp_img)) rend_gtcam = self.vis_rend(self.pred_v[i], self.cams[i], texture=texture_here) rends = np.hstack((diff_rends, rend_predcam, rend_gtcam)) vis_dict['%d' % i] = np.hstack((imgs, rends, masks)) vis_dict['masked_img %d' % i] = smal_vis.tensor2im((self.imgs[i] * self.masks[i]).data) if self.opts.texture: vis_dict['uv_images'] = np.hstack(show_uv_imgs) vis_dict['uv_flow_vis'] = np.hstack(show_uv_flows) return vis_dict def get_current_points(self): return { 'mean_shape': visutil.tensor2verts(self.mean_shape.data), 'verts': visutil.tensor2verts(self.pred_v.data), } def get_current_scalars(self): sc_dict = OrderedDict([ ('smoothed_total_loss', self.smoothed_total_loss), ('total_loss', self.total_loss.item()), ]) if self.opts.use_smal_betas: sc_dict['betas_reg'] = self.betas_loss.item() if self.opts.use_mask and self.masks is not None: sc_dict['mask_loss'] = self.mask_loss.item() if self.opts.use_keypoints and self.kps is not None: sc_dict['kp_loss'] = self.kp_loss.item() if self.opts.use_camera_loss and self.cams is not None: sc_dict['cam_loss'] = self.cam_loss.item() if self.opts.texture: sc_dict['tex_loss'] = self.tex_loss.item() if self.opts.texture_map and self.opts.use_tex_dt and self.masks is not None: sc_dict['tex_dt_loss'] = self.tex_dt_loss.item() if self.opts.uv_flow and self.uv_flow_gt is not None: sc_dict['uv_flow_loss'] = self.uv_f_loss.item() if self.opts.texture_map and self.texture_map is not None: sc_dict['tex_map_loss'] = self.tex_map_loss.item() if self.model_trans is not None: sc_dict['model_trans_loss'] = self.mod_trans_loss.item() if self.model_pose is not None: sc_dict['model_pose_loss'] = self.mod_pose_loss.item() if opts.infer_vert2kp: sc_dict['vert2kp_loss'] = self.vert2kp_loss.item() if self.model_delta_v is not None: sc_dict['model_delta_v_loss'] = self.delta_v_loss.item() return sc_dict def main(_): torch.manual_seed(0) np.random.seed(0) trainer = ShapeTrainer(opts) trainer.init_training() trainer.train() if __name__ == '__main__': app.run(main)
everbug/utils/manager.py
everhide/everbug
182
44854
<reponame>everhide/everbug class _Manager(type): """ Singletone for cProfile manager """ _inst = {} def __call__(cls, *args, **kwargs): if cls not in cls._inst: cls._inst[cls] = super(_Manager, cls).__call__(*args, **kwargs) return cls._inst[cls] class ProfileManager(metaclass=_Manager): def __init__(self): self._profiles = list() def clear(self): self._profiles.clear() def add(self, profile): self._profiles.append(profile) def profiles(self): return self._profiles @property def count(self): return len(self._profiles)
examples/rl/train/play.py
ONLYA/RoboGrammar
156
44902
<reponame>ONLYA/RoboGrammar import sys import os base_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../') sys.path.append(base_dir) sys.path.append(os.path.join(base_dir, 'rl')) import numpy as np import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import gym gym.logger.set_level(40) import environments from rl.train.evaluation import render, render_full from rl.train.arguments import get_parser from a2c_ppo_acktr import algo, utils from a2c_ppo_acktr.envs import make_vec_envs, make_env from a2c_ppo_acktr.model import Policy parser = get_parser() parser.add_argument('--model-path', type = str, required = True) args = parser.parse_args() if not os.path.isfile(args.model_path): print_error('Model file does not exist') torch.manual_seed(0) torch.set_num_threads(1) device = torch.device('cpu') render_env = gym.make(args.env_name, args = args) render_env.seed(0) envs = make_vec_envs(args.env_name, 0, 4, 0.995, None, device, False, args = args) actor_critic = Policy( envs.observation_space.shape, envs.action_space, base_kwargs={'recurrent': False}) actor_critic.to(device) ob_rms = utils.get_vec_normalize(envs).ob_rms actor_critic, ob_rms = torch.load(args.model_path) actor_critic.eval() envs.close() render_full(render_env, actor_critic, ob_rms, deterministic = True, repeat = True)
learning_python/lesson7/exercise4.py
fallenfuzz/pynet
528
44905
<filename>learning_python/lesson7/exercise4.py #!/usr/bin/env python """ Take the YAML file and corresponding data structure that you defined in exercise3b: {'interfaces': { 'Ethernet1': {'mode': 'access', 'vlan': 10}, 'Ethernet2': {'mode': 'access', 'vlan': 20}, 'Ethernet3': {'mode': 'trunk', 'native_vlan': 1, 'trunk_vlans': 'all'} } } From this YAML data input source, use Jinja templating to generate the following configuration output: ---- interface Ethernet1 switchport mode access switchport access vlan 10 interface Ethernet2 switchport mode access switchport access vlan 20 interface Ethernet3 switchport mode trunk switchport trunk native vlan 1 switchport trunk allowed vlan all ---- The following should all be variables in your Jinja template (the names may be different than below, but they should be variabilized and not be hard-coded in your template). ---- interface_name switchport_mode access_vlan native_vlan trunk_vlans ---- All your Jinja2 variables should be retrieved from your YAML file. This exercise might be challenging. """ from __future__ import print_function, unicode_literals import yaml import jinja2 yaml_file = "exercise3b.yml" with open(yaml_file) as f: template_vars = yaml.load(f) template_file = "interface_config.j2" with open(template_file) as f: jinja_template = f.read() template = jinja2.Template(jinja_template) print(template.render(template_vars))
finance_ml/model_selection/__init__.py
BTETON/finance_ml
446
44906
from .kfold import PurgedKFold, CPKFold, generate_signals from .score import cv_score from .pipeline import Pipeline from .hyper import clf_hyper_fit from .distribution import LogUniformGen, log_uniform from .utils import evaluate
alipay/aop/api/domain/MiniAppDeployResponse.py
antopen/alipay-sdk-python-all
213
44913
<filename>alipay/aop/api/domain/MiniAppDeployResponse.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class MiniAppDeployResponse(object): def __init__(self): self._android_client_max = None self._android_client_min = None self._app_version = None self._bundle_id = None self._deploy_version = None self._gmt_create = None self._gmt_modified = None self._ios_client_max = None self._ios_client_min = None self._mini_app_id = None self._package_size = None self._status = None @property def android_client_max(self): return self._android_client_max @android_client_max.setter def android_client_max(self, value): self._android_client_max = value @property def android_client_min(self): return self._android_client_min @android_client_min.setter def android_client_min(self, value): self._android_client_min = value @property def app_version(self): return self._app_version @app_version.setter def app_version(self, value): self._app_version = value @property def bundle_id(self): return self._bundle_id @bundle_id.setter def bundle_id(self, value): self._bundle_id = value @property def deploy_version(self): return self._deploy_version @deploy_version.setter def deploy_version(self, value): self._deploy_version = value @property def gmt_create(self): return self._gmt_create @gmt_create.setter def gmt_create(self, value): self._gmt_create = value @property def gmt_modified(self): return self._gmt_modified @gmt_modified.setter def gmt_modified(self, value): self._gmt_modified = value @property def ios_client_max(self): return self._ios_client_max @ios_client_max.setter def ios_client_max(self, value): self._ios_client_max = value @property def ios_client_min(self): return self._ios_client_min @ios_client_min.setter def ios_client_min(self, value): self._ios_client_min = value @property def mini_app_id(self): return self._mini_app_id @mini_app_id.setter def mini_app_id(self, value): self._mini_app_id = value @property def package_size(self): return self._package_size @package_size.setter def package_size(self, value): self._package_size = value @property def status(self): return self._status @status.setter def status(self, value): self._status = value def to_alipay_dict(self): params = dict() if self.android_client_max: if hasattr(self.android_client_max, 'to_alipay_dict'): params['android_client_max'] = self.android_client_max.to_alipay_dict() else: params['android_client_max'] = self.android_client_max if self.android_client_min: if hasattr(self.android_client_min, 'to_alipay_dict'): params['android_client_min'] = self.android_client_min.to_alipay_dict() else: params['android_client_min'] = self.android_client_min if self.app_version: if hasattr(self.app_version, 'to_alipay_dict'): params['app_version'] = self.app_version.to_alipay_dict() else: params['app_version'] = self.app_version if self.bundle_id: if hasattr(self.bundle_id, 'to_alipay_dict'): params['bundle_id'] = self.bundle_id.to_alipay_dict() else: params['bundle_id'] = self.bundle_id if self.deploy_version: if hasattr(self.deploy_version, 'to_alipay_dict'): params['deploy_version'] = self.deploy_version.to_alipay_dict() else: params['deploy_version'] = self.deploy_version if self.gmt_create: if hasattr(self.gmt_create, 'to_alipay_dict'): params['gmt_create'] = self.gmt_create.to_alipay_dict() else: params['gmt_create'] = self.gmt_create if self.gmt_modified: if hasattr(self.gmt_modified, 'to_alipay_dict'): params['gmt_modified'] = self.gmt_modified.to_alipay_dict() else: params['gmt_modified'] = self.gmt_modified if self.ios_client_max: if hasattr(self.ios_client_max, 'to_alipay_dict'): params['ios_client_max'] = self.ios_client_max.to_alipay_dict() else: params['ios_client_max'] = self.ios_client_max if self.ios_client_min: if hasattr(self.ios_client_min, 'to_alipay_dict'): params['ios_client_min'] = self.ios_client_min.to_alipay_dict() else: params['ios_client_min'] = self.ios_client_min if self.mini_app_id: if hasattr(self.mini_app_id, 'to_alipay_dict'): params['mini_app_id'] = self.mini_app_id.to_alipay_dict() else: params['mini_app_id'] = self.mini_app_id if self.package_size: if hasattr(self.package_size, 'to_alipay_dict'): params['package_size'] = self.package_size.to_alipay_dict() else: params['package_size'] = self.package_size if self.status: if hasattr(self.status, 'to_alipay_dict'): params['status'] = self.status.to_alipay_dict() else: params['status'] = self.status return params @staticmethod def from_alipay_dict(d): if not d: return None o = MiniAppDeployResponse() if 'android_client_max' in d: o.android_client_max = d['android_client_max'] if 'android_client_min' in d: o.android_client_min = d['android_client_min'] if 'app_version' in d: o.app_version = d['app_version'] if 'bundle_id' in d: o.bundle_id = d['bundle_id'] if 'deploy_version' in d: o.deploy_version = d['deploy_version'] if 'gmt_create' in d: o.gmt_create = d['gmt_create'] if 'gmt_modified' in d: o.gmt_modified = d['gmt_modified'] if 'ios_client_max' in d: o.ios_client_max = d['ios_client_max'] if 'ios_client_min' in d: o.ios_client_min = d['ios_client_min'] if 'mini_app_id' in d: o.mini_app_id = d['mini_app_id'] if 'package_size' in d: o.package_size = d['package_size'] if 'status' in d: o.status = d['status'] return o
test/util_test.py
sbienkow/eg
1,389
44966
import json import os from eg import config from eg import substitute from eg import util from mock import Mock from mock import patch PATH_UNSQUEEZED_FILE = os.path.join( 'test', 'assets', 'pwd_unsqueezed.md' ) PATH_SQUEEZED_FILE = os.path.join( 'test', 'assets', 'pwd_squeezed.md' ) def _create_config( examples_dir=None, custom_dir=None, color_config=None, use_color=True, pager_cmd=None, editor_cmd=None, squeeze=False, subs=None ): """ Create a config.Config object with default values for expediency in testing. """ return config.Config( examples_dir=examples_dir, custom_dir=custom_dir, color_config=color_config, use_color=use_color, pager_cmd=pager_cmd, editor_cmd=editor_cmd, squeeze=squeeze, subs=subs ) @patch('os.walk') def test_get_file_paths_for_program_with_single(mock_walk): program = 'cp' examples_dir = '/Users/tyrion' program_file = program + util.EXAMPLE_FILE_SUFFIX expected = ['/Users/tyrion/cp.md'] mock_walk.return_value = [ [examples_dir, [], [program_file, 'cp.txt', 'other_file.md']], ] actual = util.get_file_paths_for_program(program, examples_dir) assert actual == expected mock_walk.assert_called_once_with(examples_dir) @patch('os.walk') def test_get_file_paths_for_program_with_nested(mock_walk): program = 'cp' examples_dir = '/Users/tyrion' program_file = 'cp.md' mock_walk.return_value = [ [ examples_dir, ['dirA', 'dirB'], [program_file, 'cp.txt', 'other_file.md'], ], [ examples_dir + '/dirA', ['dirA-child'], [program_file, 'bad.md'], ], [ examples_dir + '/dirA/dirA-child', [], ['bad.md', program_file, 'wtf.md'], ], [ examples_dir + '/dirB', [], ['foo.md', program_file], ], ] expected = [ '/Users/tyrion/cp.md', '/Users/tyrion/dirA/cp.md', '/Users/tyrion/dirA/dirA-child/cp.md', '/Users/tyrion/dirB/cp.md', ] actual = util.get_file_paths_for_program(program, examples_dir) assert actual == expected mock_walk.assert_called_once_with(examples_dir) @patch('os.walk') def test_get_file_paths_for_program_with_none(mock_walk): expected = [] mock_walk.return_value = [] actual = util.get_file_paths_for_program('cp', '/Users/tyrion') assert actual == expected mock_walk.assert_called_once_with('/Users/tyrion') @patch('os.walk') def test_get_file_paths_for_program_with_no_dir(mock_walk): assert util.get_file_paths_for_program('cp', None) == [] @patch('eg.util.page_string') @patch('eg.util.get_formatted_contents') @patch('eg.util.get_contents_from_files') @patch('eg.util.get_resolved_program') def test_handle_program_no_entries( mock_resolve_program, mock_get_contents, mock_format, mock_page_string, ): """ We should do the right thing if there are no entries for a given program. """ program = 'cp' test_config = _create_config() mock_resolve_program.return_value = program util.handle_program(program, test_config) mock_resolve_program.assert_called_once_with( program, test_config ) # We should have aborted and not called any of the # other methods. assert mock_get_contents.call_count == 0 assert mock_format.call_count == 0 assert mock_page_string.call_count == 0 @patch('eg.util.get_resolved_program') @patch('eg.util.get_contents_from_files') @patch('eg.util.get_file_paths_for_program') @patch('eg.util.get_formatted_contents') @patch('eg.util.page_string') def test_handle_program_finds_paths_and_calls_open_pager_no_alias( mock_page, mock_format, mock_get_paths, mock_get_contents, mock_resolve, ): """ If there are entries for the program, handle_program needs to get the paths, get the contents, format the contents, and page the resulting string. """ program = 'mv' examples_dir = 'test-eg-dir' custom_dir = 'test-custom-dir' color_config = None use_color = False pager_cmd = 'foo bar' squeeze = False subs = ['foo', 'bar'] file_contents = 'I am the contents of mv.md.' formatted_contents = 'and I am the formatted contents of mv.md.' test_config = _create_config( examples_dir=examples_dir, custom_dir=custom_dir, color_config=color_config, use_color=use_color, pager_cmd=pager_cmd, squeeze=squeeze, subs=subs ) default_paths = ['test-eg-dir/mv.md', 'test-eg-dir/foo/mv.md'] custom_paths = ['test-custom-dir/mv.md', 'test-custom-dir/bar.md'] def return_correct_path(*args, **kwargs): program_param = args[0] dir_param = args[1] if program_param != program: raise NameError('expected ' + program + ', got ' + program_param) if dir_param == examples_dir: return default_paths elif dir_param == custom_dir: return custom_paths else: raise NameError( 'got ' + dir_param + ', expected ' + examples_dir + ' or ' + custom_dir) mock_format.return_value = formatted_contents mock_get_paths.side_effect=return_correct_path mock_get_contents.return_value = file_contents mock_resolve.return_value = program util.handle_program(program, test_config) mock_resolve.assert_called_once_with( program, test_config ) mock_get_paths.assert_any_call( program, examples_dir ) mock_get_paths.assert_any_call( program, custom_dir, ) mock_get_contents.assert_called_once_with( custom_paths[0], custom_paths[1], default_paths[0], default_paths[1], ) mock_format.assert_called_once_with( file_contents, use_color=test_config.use_color, color_config=test_config.color_config, squeeze=test_config.squeeze, subs=test_config.subs ) mock_page.assert_called_once_with( formatted_contents, test_config.pager_cmd ) @patch('eg.util.get_resolved_program') @patch('eg.util.get_contents_from_files') @patch('eg.util.get_file_paths_for_program') @patch('eg.util.get_formatted_contents') @patch('eg.util.page_string') def test_handle_program_finds_paths_and_calls_open_pager_with_alias( mock_page, mock_format, mock_get_paths, mock_get_contents, mock_resolve, ): """ If there are entries for the program, handle_program needs to get the paths, get the contents, format the contents, and page the resulting string. """ alias_for_program = 'link' resolved_program = 'ln' examples_dir = 'test-eg-dir' custom_dir = 'test-custom-dir' color_config = None use_color = False pager_cmd = 'foo bar' squeeze = False subs = ['foo', 'bar'] file_contents = 'I am the contents of ln.md.' formatted_contents = 'and I am the formatted contents of ln.md.' test_config = _create_config( examples_dir=examples_dir, custom_dir=custom_dir, color_config=color_config, use_color=use_color, pager_cmd=pager_cmd, squeeze=squeeze, subs=subs ) default_paths = ['test-eg-dir/ln.md'] custom_paths = ['test-custom-dir/ln.md'] def return_correct_path(*args, **kwargs): program_param = args[0] dir_param = args[1] if program_param != resolved_program: raise NameError( 'expected ' + resolved_program + ', got ' + program_param ) if dir_param == examples_dir: return default_paths elif dir_param == custom_dir: return custom_paths else: raise NameError( 'got ' + dir_param + ', expected ' + examples_dir + ' or ' + custom_dir) mock_format.return_value = formatted_contents mock_get_paths.side_effect = return_correct_path mock_get_contents.return_value = file_contents mock_resolve.return_value = resolved_program util.handle_program( alias_for_program, test_config ) mock_resolve.assert_called_once_with( alias_for_program, test_config ) mock_get_paths.assert_any_call( resolved_program, examples_dir ) mock_get_paths.assert_any_call( resolved_program, custom_dir, ) mock_get_contents.assert_called_once_with( custom_paths[0], default_paths[0] ) mock_format.assert_called_once_with( file_contents, use_color=test_config.use_color, color_config=test_config.color_config, squeeze=test_config.squeeze, subs=test_config.subs ) mock_page.assert_called_once_with( formatted_contents, test_config.pager_cmd ) def test_get_list_of_all_supported_commands(tmpdir): dir_example = tmpdir.mkdir('examples') dir_custom = tmpdir.mkdir('custom') config = _create_config( examples_dir=str(dir_example), custom_dir=str(dir_custom), ) expected = [ 'a-only-default', 'b-both *', 'c-only-custom +', 'd-only-custom-nested +', 'e-only-default-nested', 'f-default-custom-nested', 'g-both-different-levels *', 't-a-only-default-alias -> a-only-default', 'u-b-both-alias -> b-both *', 'v-c-only-custom-alias -> c-only-custom +' ] aliases = { 't-a-only-default-alias': 'a-only-default', 'u-b-both-alias': 'b-both', 'v-c-only-custom-alias': 'c-only-custom' } # Make the directory structure we expect. dir_example_nested = dir_example.mkdir('default-nested') dir_custom_nested = dir_custom.mkdir('custom-nested') dir_example.join('a-only-default.md').write('foo') dir_example.join('b-both.md').write('foo') dir_custom.join('b-both.md').write('foo') dir_custom.join('c-only-custom.md').write('foo') dir_custom_nested.join('d-only-custom-nested.md').write('foo') dir_example_nested.join('e-only-default-nested.md').write('foo') dir_example_nested.join('f-default-custom-nested.md').write('foo') dir_example.join('g-both-different-levels.md').write('foo') dir_custom_nested.join('g-both-different-levels.md').write('foo') # Use the 'with' context manager rather than the @decorator, because the # tmpdir fixture doesn't play nice with the decorator. with patch('eg.util.get_alias_dict') as mock_get_alias: mock_get_alias.return_value = aliases actual = util.get_list_of_all_supported_commands(config) assert actual == expected mock_get_alias.assert_called_once_with(config) def test_list_supported_programs_fails_gracefully_if_no_dirs(): test_config = _create_config() actual = util.get_list_of_all_supported_commands(test_config) target = [] assert actual == target def test_calls_pipepager_if_not_less(): """ We're special casing less a bit, as it is the default value, so if a custom command has been set that is NOT less, we should call pipepager straight away. """ _helper_assert_about_pager('page me plz', 'cat', False) def test_calls_fallback_pager_if_none(): """ If pager_cmd is None, we should just use the fallback pager. """ _helper_assert_about_pager('page me plz', None, True) def test_calls_pipepager_if_less(): """ We should call pipepager if we ask to use less and less is installed on the machine. """ _helper_assert_about_pager('a fancy value to page', 'less -R', False) def test_calls_fallback_if_cmd_is_flag_string(): """ We are using a flag string to indicate if we should use the fallback pager. """ _helper_assert_about_pager( 'page via fallback', util.FLAG_FALLBACK, True ) @patch('pydoc.pager') @patch('pydoc.pipepager') def _helper_assert_about_pager( str_to_page, pager_cmd, use_fallback, pipepager, default_pager, ): """ Help with asserting about pager. str_to_page: what you're paging pager_cmd: the string you're passing to pipepager (or None) use_default: false if we should actually use pydoc.pipepager, true if we instead are going to fallback to pydoc.pager """ util.page_string(str_to_page, pager_cmd) if use_fallback: default_pager.assert_called_once_with(str_to_page) assert pipepager.call_count == 0 else: assert default_pager.call_count == 0 pipepager.assert_called_once_with( str_to_page, cmd=pager_cmd ) @patch('eg.util.pydoc.pipepager', side_effect=KeyboardInterrupt) def test_page_string_excepts_keyboard_interrupt_if_not_less(pipepager_mock): """ Do not fail when user hits ctrl-c while in pager. """ try: util.page_string('page me plz', 'cat') except KeyboardInterrupt: raise AssertionError('Should not have got this far') pipepager_mock.assert_called_once_with('page me plz', cmd='cat') @patch('eg.util.pydoc.pager', side_effect=KeyboardInterrupt) def test_page_string_excepts_keyboard_interrupt_if_none(pager_mock): """ Do not fail when user hits ctrl-c while in pipepager. """ try: util.page_string('page me plz', None) except KeyboardInterrupt: raise AssertionError('Should not have got this far') pager_mock.assert_called_once_with('page me plz') def test_get_contents_from_files_handles_none(): """ Empty string if no files. """ _helper_assert_file_contents( [], '' ) def test_get_contents_from_files_handles_one(): file_infos = [ { 'path': 'test/path', 'contents': 'contents of file' } ] combined_contents = 'contents of file' _helper_assert_file_contents( file_infos, combined_contents ) def test_get_contents_from_files_handles_multiple(): file_infos = [ { 'path': 'path/1', 'contents': 'foo\n' }, { 'path': 'path/2/foo', 'contents': 'bar\n' }, { 'path': 'another/path', 'contents': 'baz' } ] combined_contents = 'foo\nbar\nbaz' _helper_assert_file_contents( file_infos, combined_contents ) @patch('eg.util._get_contents_of_file') def _helper_assert_file_contents( file_infos, target_contents, get_contents_mock, ): """ Helper method to assert things about the get_contents_from_files method. Does not actually hit the disk. file_infos: array of { path, contents } dicts representing files. Array so that we can assert proper order calling target_contents: the final combined contents that should be returned by the get_contents_from_files method. """ # This method will be used by the mock framework to return the right file # contents based on the file name. def return_file_contents(*args, **kwargs): for file_info in file_infos: if file_info['path'] == args[0]: return file_info['contents'] raise TypeError('did not find path in test obj') get_contents_mock.side_effect = return_file_contents paths = [el['path'] for el in file_infos] actual = util.get_contents_from_files(*paths) assert actual == target_contents @patch('eg.util.get_colorized_contents') @patch('eg.util.get_squeezed_contents') @patch('eg.util.get_substituted_contents') def _helper_assert_formatted_contents( starting_contents, use_color, color_config, squeeze, subs, colorized_contents, squeezed_contents, subbed_contents, formatted_result, sub_method, squeeze_method, color_method, ): """ Helper method to assist in asserting things about the get_formatted_contents method. starting_contents: the starting string that we are working with use_color: True if we should use color color_config: the color config to be passed to get_colorized_contents squeeze: True if we should squeeze subs: the list of Substitutions that we should pass to get_substituted_contents colored_contents: the result of get_colorized_contents squeezed_contents: the result of get_squeezed_contents subbed_contents: the result of subbed_contents formatted_result: the final, formatted string that should be returned """ sub_method.return_value = subbed_contents squeeze_method.return_value = squeezed_contents color_method.return_value = colorized_contents actual = util.get_formatted_contents( starting_contents, use_color, color_config, squeeze, subs ) # We'll update the contents as they get formatted to make sure # we pass the right thing to the various methods. contents_thus_far = starting_contents if use_color: color_method.assert_called_once_with( contents_thus_far, color_config ) contents_thus_far = colorized_contents else: assert color_method.call_count == 0 if squeeze: squeeze_method.assert_called_once_with(contents_thus_far) contents_thus_far = squeezed_contents else: assert squeeze_method.call_count == 0 if subs: sub_method.assert_called_once_with( contents_thus_far, subs ) contents_thus_far = subbed_contents else: assert sub_method.call_count == 0 assert actual == formatted_result def test_get_formatted_contents_does_not_format_methods_if_all_falsey(): """ We should invoke none of the formatter methods if the flags are false and subs is not truthy. """ starting_contents = 'this is where we start' _helper_assert_formatted_contents( starting_contents, False, 'some color config', False, None, 'this was colored', 'this was squeezed', 'these contents were subbed', starting_contents ) def test_get_formatted_contents_calls_colorize_if_use_color(): """ Colorize the contents if use_color = True. """ starting_contents = 'this is where we start' colorized_contents = 'COLORIZED: this is where we start' _helper_assert_formatted_contents( starting_contents, True, 'some color config', False, None, colorized_contents, 'this was squeezed', 'these contents were subbed', colorized_contents ) def test_get_formatted_contents_squeezes(): """If squeeze, we need to squeeze.""" starting_contents = 'this is where we start' squeezed_contents = 'this is the result of a squeezing' _helper_assert_formatted_contents( starting_contents, False, 'some color config', True, None, 'this was colored', squeezed_contents, 'these contents were subbed', squeezed_contents ) def test_get_formatted_contents_subsitutes(): """If subs is truthy, get_substituted contents should be called.""" starting_contents = 'this is where we start' subbed_contents = 'substituted like a teacher' _helper_assert_formatted_contents( starting_contents, False, 'some color config', False, ['truthy', 'list'], 'this was colored', 'this was squeezed', subbed_contents, subbed_contents ) def test_perform_all_formatting(): """ When use_color, squeeze, and subs are all truthy, all the formatting should be applied in that order. """ starting_contents = 'the starting point for grand formatting' subbed_contents = 'subbed is the last thing called so should be the result' _helper_assert_formatted_contents( starting_contents, True, 'some color config', True, ['truthy', 'list'], 'this was colored', 'this was squeezed', subbed_contents, subbed_contents ) def _get_file_as_string(path): """Get the contents of the file as a string.""" with open(path, 'r') as f: data = f.read() return data def test_get_squeezed_contents_correctly_squeezes(): """ Our squeeze method should follow our convention, which is to remove the blank line between a description and an example, to keep two blank lines between sections, and otherwise have only single blank lines. """ unsqueezed = _get_file_as_string(PATH_UNSQUEEZED_FILE) # the target squeezed output is a reference implementation in # pwd_squeezed.md. target = _get_file_as_string(PATH_SQUEEZED_FILE) actual = util.get_squeezed_contents(unsqueezed) assert actual == target def test_get_substituted_contents_handles_empty_subs(): """Nothing should be formatted if there are no substitutions.""" raw_contents = 'this should not be subbed' actual = util.get_substituted_contents(raw_contents, []) assert actual == raw_contents def test_get_substituted_contents_substitutes_calls_correct_methods(): """ The get_substituted_contents method calls things in the correct order. """ sub_one = Mock(auto_spec=substitute.Substitution) sub_one_result = 'result of sub one' sub_one.apply_and_get_result.return_value = sub_one_result sub_two = Mock(auto_spec=substitute.Substitution) sub_two_result = 'result of sub two' sub_two.apply_and_get_result.return_value = sub_two_result starting_contents = 'the string we should be substituting into' target = sub_two_result subs = [sub_one, sub_two] actual = util.get_substituted_contents(starting_contents, subs) sub_one.apply_and_get_result.assert_called_once_with(starting_contents) sub_two.apply_and_get_result.assert_called_once_with(sub_one_result) assert actual == target def test_get_substituted_contents_substitutes_correctly(): """ Basic test to make sure Substitutions can get applied correctly. """ sub_one = substitute.Substitution('foo', 'bar', False) sub_two = substitute.Substitution('bar\n\n', 'baz\n', True) start = 'foo\n\n something else\n\n bar\n\n' target = 'baz\n something else\n\n baz\n' subs = [sub_one, sub_two] actual = util.get_substituted_contents(start, subs) assert actual == target @patch('eg.color.EgColorizer') def test_get_colorized_contents_calls_methods(patched_colorizer_class): """ We should call the correct methods on the EgColorizer objects when we color a file. """ raw_contents = 'these are uncolored contents' colored_contents = 'COLORED: ' + raw_contents color_config = 'some color config' # The actual instance created by these calls is stored at return_value. colorizer_instance = patched_colorizer_class.return_value colorizer_instance.colorize_text.return_value = colored_contents actual = util.get_colorized_contents(raw_contents, color_config) assert actual == colored_contents colorizer_instance.colorize_text.assert_called_once_with(raw_contents) @patch('eg.util.get_alias_dict') def _helper_assert_get_resolved_program( program, resolved_program, config_obj, alias_dict, mock_dict, ): """ program: the program to resolved for as an alias resolved_program: the result of the resolution. config_obj: the config_obj to use toe resolve the alias path alias_dict: the dict of aliases to be returned """ mock_dict.return_value = alias_dict actual = util.get_resolved_program(program, config_obj) assert actual == resolved_program mock_dict.assert_called_once_with(config_obj) def test_get_resolved_program_no_alias(): """ A program that is not an alias should return itself. """ alias_dict = { 'link': 'ln', 'nc': 'netcat' } config_obj = 'a config' _helper_assert_get_resolved_program('link', 'ln', config_obj, alias_dict) def test_get_resolved_program_is_alias(): """ A program that is an alias should return the resolved value. """ alias_dict = { 'link': 'ln', 'nc': 'netcat' } config_obj = 'some new config' _helper_assert_get_resolved_program('cp', 'cp', config_obj, alias_dict) def test_get_alias_dict_returns_contents_of_correct_file(): """ get_alias_dict should read data from the file at the default path. """ alias_dict = { 'link': 'ln', 'nc': 'netcat' } config_obj = _create_config( examples_dir='path/to/examples/dir', ) alias_file_path = 'path/to/alias/file' alias_dict_str = json.dumps(alias_dict) _helper_assert_get_alias_dict( alias_dict_str, alias_dict, config_obj, alias_file_path, True ) def test_get_alias_dict_fails_gracefully_if_not_file(): """ Since users can specify a directory for examples that might not contain the aliases file, we want to fail gracefully if the file doesn't exist. """ contents_of_alias_dict_file = 'should never be reached' config_obj = _create_config( examples_dir='path/to/examples/dir', ) alias_file_path = 'path/to/the/alias/file' _helper_assert_get_alias_dict( contents_of_alias_dict_file, {}, config_obj, alias_file_path, False ) @patch('eg.util._get_contents_of_file') @patch('eg.util._get_alias_file_path') @patch('os.path.isfile') def _helper_assert_get_alias_dict( contents_of_alias_dict_file, target_alias_dict, config_obj, alias_file_path, alias_file_path_is_file, mock_is_file, mock_get_alias_file_path, mock_get_contents, ): """ contents_of_alias_dict_file: the string contents of the file storing the dictionary of aliases target_alias_dict: the target result of get_alias_dict config_obj: the Config object alias_file_path: the path to be returned by _get_alias_file_path alias_file_path_is_file: True if the alias path is a file, else False """ mock_is_file.return_value = alias_file_path_is_file mock_get_alias_file_path.return_value = alias_file_path mock_get_contents.return_value = contents_of_alias_dict_file actual = util.get_alias_dict(config_obj) assert actual == target_alias_dict mock_get_alias_file_path.assert_called_once_with(config_obj) mock_is_file.assert_called_once_with(alias_file_path) if alias_file_path_is_file: mock_get_contents.assert_called_once_with(alias_file_path) else: assert mock_get_contents.call_count == 0 @patch('os.path.join') def test_get_alias_file_path(mock_join): """ _get_alias_file_path should just join the example dir and the alias file name, to make sure we look in the right place for the file. """ config_obj = _create_config( examples_dir='handy/dandy/examples/dir', ) join_result = 'joined path' mock_join.return_value = join_result actual = util._get_alias_file_path(config_obj) assert actual == join_result mock_join.assert_called_once_with( config_obj.examples_dir, util.ALIAS_FILE_NAME ) def test_is_example_file_true_if_has_suffix(): """ Should be true if ends in EXAMPLE_FILE_SUFFIX. """ file_name = 'find.md' actual = util._is_example_file(file_name) assert actual == True def test_is_example_file_true_if_not_suffix(): """ Should be false if the file does not end in EXAMPLE_FILE_SUFFIX. """ file_name = 'aliases.json' actual = util._is_example_file(file_name) assert actual == False def test_can_parse_alias_file(): """ Make sure aliases.json file can be parsed. This is to make sure an edit doesn't accidentally corrupt it. """ # We'll have to hardcode this. alias_file_path = os.path.join( config.DEFAULT_EXAMPLES_DIR, util.ALIAS_FILE_NAME ) alias_file_contents = util._get_contents_of_file(alias_file_path) alias_dict = json.loads(alias_file_contents) # We'll check that link goes to ln, as we know that one will be present. assert alias_dict['link'] == 'ln' @patch('os.path.exists') @patch('eg.util._inform_cannot_edit_no_custom_dir') @patch('eg.util.get_resolved_program') @patch('eg.util.get_file_paths_for_program') @patch('subprocess.call') def test_edit_custom_examples_correct_with_custom_dir( mock_call, mock_get_paths, mock_get_program, mock_inform, mock_exists, ): """ We should resolve aliases, get the custom file path, and call subprocess. """ program = 'du' resolved_program = 'alias for du' config = _create_config(custom_dir='path/to/custom', editor_cmd='nano') paths = ['path/to/custom/du.md', 'foo.md'] mock_get_program.return_value = resolved_program mock_get_paths.return_value = paths mock_exists.return_value = True util.edit_custom_examples(program, config) mock_get_program.assert_called_once_with(program, config) mock_get_paths.assert_called_once_with(resolved_program, config.custom_dir) mock_call.assert_called_once_with([config.editor_cmd, paths[0]]) assert mock_inform.call_count == 0 @patch('os.path.exists') @patch('eg.util._inform_cannot_edit_no_custom_dir') @patch('eg.util.get_resolved_program') @patch('eg.util.get_file_paths_for_program') @patch('subprocess.call') def test_edit_custom_examples_creates_file_if_none_exist( mock_call, mock_get_paths, mock_get_program, mock_inform, mock_exists, ): program = 'du' resolved_program = 'alias-for-du' config = _create_config(custom_dir='path/to/custom', editor_cmd='nano') paths = [] mock_get_program.return_value = resolved_program mock_get_paths.return_value = paths mock_exists.return_value = True util.edit_custom_examples(program, config) mock_get_program.assert_called_once_with(program, config) mock_get_paths.assert_called_once_with(resolved_program, config.custom_dir) mock_call.assert_called_once_with( [config.editor_cmd, 'path/to/custom/alias-for-du.md']) assert mock_inform.call_count == 0 @patch('os.path.exists') @patch('eg.util._inform_cannot_edit_no_custom_dir') @patch('eg.util.get_resolved_program') @patch('eg.util.get_file_paths_for_program') @patch('subprocess.call') def test_edit_custom_examples_informs_if_no_custom_dir( mock_call, mock_get_paths, mock_get_program, mock_inform, mock_exists, ): """ We should inform the user if they are trying to edit with no custom dir. This should be true if it is not set and if the path does not exist. """ program = 'awk' # First with no custom dir set. config = _create_config(editor_cmd='vi -e') mock_exists.return_value = True util.edit_custom_examples(program, config) assert mock_inform.call_count == 1 # And now with it set but a nonexistent path. config = _create_config(custom_dir='/path/to/custom', editor_cmd='vi -e') mock_exists.return_value = False util.edit_custom_examples(program, config) assert mock_inform.call_count == 2 assert mock_call.call_count == 0 assert mock_get_paths.call_count == 0 assert mock_get_program.call_count == 0
src/sage/symbolic/constant.py
UCD4IDS/sage
1,742
44969
<reponame>UCD4IDS/sage<filename>src/sage/symbolic/constant.py<gh_stars>1000+ from sage.misc.lazy_import import lazy_import lazy_import('sage.symbolic.expression', 'PynacConstant', deprecation=32386)
tools/bin/pythonSrc/pychecker-0.8.18/test_input/test23.py
YangHao666666/hawq
450
44991
'doc' class X: 'doc' def __init__(self): self.fff = 0 def x(self): pass def y(self): 'should generate a warning' if self.x: pass if self.x and globals(): pass if globals() and self.x: pass def z(self): 'should NOT generate a warning' if globals() : pass if self.x() and self.fff: pass if self.x() and globals(): pass if globals() and self.x(): pass if self.fff: pass print self.x print self.fff class Y(X): 'doc' def j(self): 'should generate a warning' if self.x: pass print self.fff def h(self): 'should NOT generate a warning' if self.x(): pass print self.x print self.fff
deepy/layers/prelu.py
uaca/deepy
260
44993
<reponame>uaca/deepy<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- from . import NeuralLayer from conv import Convolution class PRelu(NeuralLayer): """ Probabilistic ReLU. - http://arxiv.org/pdf/1502.01852v1.pdf """ def __init__(self, input_tensor=2): super(PRelu, self).__init__("prelu") self.input_tensor = input_tensor def prepare(self): self.alphas = self.create_bias(self.output_dim, "alphas") self.register_parameters(self.alphas) if self.input_tensor == 3: self.alphas = self.alphas.dimshuffle('x', 0, 'x') elif self.input_tensor == 4: self.alphas = self.alphas.dimshuffle('x', 0, 'x', 'x') def compute_tensor(self, x): positive_vector = x * (x >= 0) negative_vector = self.alphas * (x * (x < 0)) return positive_vector + negative_vector
tools/hippydebug.py
jweinraub/hippyvm
289
45016
#!/usr/bin/env python """Hippy debugger. Usage: hippydebug.py [debugger_options] ../hippy-c args... (There are no debugger_options so far.) """ import sys, os, signal import getopt import subprocess sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from hippy.debugger import Connection, Message def run_interactive(read_fd, write_fd): import readline # for raw_input() below con = Connection(read_fd, write_fd) last_command = '' while True: try: msg = con.read() except EOFError: break if msg.command == '>': line = raw_input('> ') if not line: # Ctrl-D break line = line.strip() if not line: line = last_command else: last_command = line lst = line.split(" ", 1) if len(lst) == 1: con.write(Message(lst[0], None)) else: con.write(Message(lst[0], [lst[1]])) else: print msg.command, " ".join(msg.args) con.write(Message(".", None)) def reopen_terminal(): f = open("/dev/tty", "r+", 0) sys.stdin = sys.stdout = sys.stderr = f os.dup2(f.fileno(), 0) os.dup2(f.fileno(), 1) os.dup2(f.fileno(), 2) def printable_process_status(status): if os.WIFEXITED(status): return 'exit code %s' % (os.WEXITSTATUS(status),) elif os.WIFSIGNALED(status): return 'terminated by signal %s' % (os.WTERMSIG(status),) else: return 'unknown exit status 0x%x' % (status,) def main(hippy_command, *hippy_args): read_fd1, write_fd1 = os.pipe() read_fd2, write_fd2 = os.pipe() child_pid = os.fork() if child_pid == 0: # in the child os.close(read_fd1) os.close(write_fd2) hippy_command_list = [ hippy_command, '--debugger_pipes', str(read_fd2), str(write_fd1), ] + list(hippy_args) os.execvp(hippy_command, hippy_command_list) # this point never reached os.close(read_fd2) os.close(write_fd1) try: reopen_terminal() print >> sys.stderr, 'Hippy Debugger' run_interactive(read_fd1, write_fd2) finally: os.kill(child_pid, signal.SIGQUIT) print >> sys.stderr, 'Hippy finished:', _, status = os.waitpid(child_pid, 0) print >> sys.stderr, printable_process_status(status) if __name__ == '__main__': options, args = getopt.getopt(sys.argv[1:], '', []) if not args: print >> sys.stderr, __doc__ sys.exit(1) if not os.path.isfile(args[0]): print >> sys.stderr, '%s: No such file' % (args[0],) sys.exit(1) main(*args)
RecoBTag/PerformanceDB/python/measure/Btag_btagTtbarWp0612.py
ckamtsikis/cmssw
852
45039
import FWCore.ParameterSet.Config as cms BtagPerformanceESProducer_TTBARWPBTAGCSVL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGCSVL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGCSVLtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGCSVLwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGCSVM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGCSVM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGCSVMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGCSVMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGCSVT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGCSVT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGCSVTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGCSVTwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJPL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJPLtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJPLwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJPM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJPMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJPMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJPT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJPTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJPTwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPLtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPLwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPTwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPLtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPLwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGJBPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGJBPT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGJBPTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGJBPTwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGSSVHEM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGSSVHEM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGSSVHEMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGSSVHEMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGSSVHET = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGSSVHET'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGSSVHETtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGSSVHETwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGSSVHPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGSSVHPT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGSSVHPTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGSSVHPTwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHEL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHEL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHELtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHELwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHEM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHEM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHEMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHEMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHET = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHET'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHETtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHETwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHPL'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHPLtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHPLwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHPM'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHPMtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHPMwp_v8_offline') ) BtagPerformanceESProducer_TTBARWPBTAGTCHPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('TTBARWPBTAGTCHPT'), # this is where it gets the payload from PayloadName = cms.string('BTagTTBARWPBTAGTCHPTtable_v8_offline'), WorkingPointName = cms.string('BTagTTBARWPBTAGTCHPTwp_v8_offline') )
pycg/machinery/imports.py
WenJinfeng/PyCG
121
45068
# # Copyright (c) 2020 <NAME>. # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import sys import ast import os import importlib import copy from pycg import utils def get_custom_loader(ig_obj): """ Closure which returns a custom loader that modifies an ImportManager object """ class CustomLoader(importlib.abc.SourceLoader): def __init__(self, fullname, path): self.fullname = fullname self.path = path ig_obj.create_edge(self.fullname) if not ig_obj.get_node(self.fullname): ig_obj.create_node(self.fullname) ig_obj.set_filepath(self.fullname, self.path) def get_filename(self, fullname): return self.path def get_data(self, filename): return "" return CustomLoader class ImportManager(object): def __init__(self): self.import_graph = dict() self.current_module = "" self.input_file = "" self.mod_dir = None self.old_path_hooks = None self.old_path = None def set_pkg(self, input_pkg): self.mod_dir = input_pkg def get_mod_dir(self): return self.mod_dir def get_node(self, name): if name in self.import_graph: return self.import_graph[name] def create_node(self, name): if not name or not isinstance(name, str): raise ImportManagerError("Invalid node name") if self.get_node(name): raise ImportManagerError("Can't create a node a second time") self.import_graph[name] = {"filename": "", "imports": set()} return self.import_graph[name] def create_edge(self, dest): if not dest or not isinstance(dest, str): raise ImportManagerError("Invalid node name") node = self.get_node(self._get_module_path()) if not node: raise ImportManagerError("Can't add edge to a non existing node") node["imports"].add(dest) def _clear_caches(self): importlib.invalidate_caches() sys.path_importer_cache.clear() # TODO: maybe not do that since it empties the whole cache for name in self.import_graph: if name in sys.modules: del sys.modules[name] def _get_module_path(self): return self.current_module def set_current_mod(self, name, fname): self.current_module = name self.input_file = os.path.abspath(fname) def get_filepath(self, modname): if modname in self.import_graph: return self.import_graph[modname]["filename"] def set_filepath(self, node_name, filename): if not filename or not isinstance(filename, str): raise ImportManagerError("Invalid node name") node = self.get_node(node_name) if not node: raise ImportManagerError("Node does not exist") node["filename"] = os.path.abspath(filename) def get_imports(self, modname): if not modname in self.import_graph: return [] return self.import_graph[modname]["imports"] def _is_init_file(self): return self.input_file.endswith("__init__.py") def _handle_import_level(self, name, level): # add a dot for each level package = self._get_module_path().split(".") if level > len(package): raise ImportError("Attempting import beyond top level package") mod_name = ("." * level) + name # When an __init__ file is analyzed, then the module name doesn't contain # the __init__ part in it, so special care must be taken for levels. if self._is_init_file() and level >= 1: if level != 1: level -= 1 package = package[:-level] else: package = package[:-level] return mod_name, ".".join(package) def _do_import(self, mod_name, package): if mod_name in sys.modules: self.create_edge(mod_name) return sys.modules[mod_name] return importlib.import_module(mod_name, package=package) def handle_import(self, name, level): # We currently don't support builtin modules because they're frozen. # Add an edge and continue. # TODO: identify a way to include frozen modules root = name.split(".")[0] if root in sys.builtin_module_names: self.create_edge(root) return # Import the module try: mod_name, package = self._handle_import_level(name, level) except ImportError: return parent = ".".join(mod_name.split(".")[:-1]) parent_name = ".".join(name.split(".")[:-1]) combos = [(mod_name, package), (parent, package), (utils.join_ns(package, name), ""), (utils.join_ns(package, parent_name), "")] mod = None for mn, pkg in combos: try: mod = self._do_import(mn, pkg) break except: continue if not mod: return if not hasattr(mod, "__file__") or not mod.__file__: return if self.mod_dir not in mod.__file__: return fname = mod.__file__ if fname.endswith("__init__.py"): fname = os.path.split(fname)[0] return utils.to_mod_name( os.path.relpath(fname, self.mod_dir)) def get_import_graph(self): return self.import_graph def install_hooks(self): loader = get_custom_loader(self) self.old_path_hooks = copy.deepcopy(sys.path_hooks) self.old_path = copy.deepcopy(sys.path) loader_details = loader, importlib.machinery.all_suffixes() sys.path_hooks.insert(0, importlib.machinery.FileFinder.path_hook(loader_details)) sys.path.insert(0, os.path.abspath(self.mod_dir)) self._clear_caches() def remove_hooks(self): sys.path_hooks = self.old_path_hooks sys.path = self.old_path self._clear_caches() class ImportManagerError(Exception): pass
src/products/migrations/0006_ShippableFullName.py
denkasyanov/education-backend
151
45086
<gh_stars>100-1000 # Generated by Django 2.2.7 on 2019-11-15 21:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0005_ClickMeeetingRoomURL'), ] operations = [ migrations.AddField( model_name='course', name='full_name', field=models.CharField(default='', help_text='Билет на мастер-класс о TDD или «запись курсов кройки и шитья»', max_length=255, verbose_name='Full name for letters'), preserve_default=False, ), migrations.AddField( model_name='record', name='full_name', field=models.CharField(default='', help_text='«Запись мастер-класса о TDD»', max_length=255, verbose_name='Full name for letters'), preserve_default=False, ), migrations.AlterField( model_name='course', name='name_genitive', field=models.CharField(help_text='«мастер-класса о TDD». К примеру для записей.', max_length=255, verbose_name='Genitive name'), ), migrations.AlterField( model_name='course', name='name_receipt', field=models.CharField(help_text='«посещение мастер-класса по TDD» или «Доступ к записи курсов кройки и шитья»', max_length=255, verbose_name='Name for receipts'), ), migrations.AlterField( model_name='record', name='name_receipt', field=models.CharField(help_text='«Доступ к записи курсов кройки и шитья»', max_length=255, verbose_name='Name for receipts'), ), ]
samsungctl/upnp/UPNP_Device/upnp_class.py
p3g4asus/samsungctl
135
45093
# -*- coding: utf-8 -*- import requests import os from lxml import etree try: from urlparse import urlparse except ImportError: from urllib.parse import urlparse try: from .xmlns import strip_xmlns from .service import Service from .embedded_device import EmbeddedDevice from .instance_singleton import InstanceSingleton except ImportError: from xmlns import strip_xmlns from service import Service from embedded_device import EmbeddedDevice from instance_singleton import InstanceSingleton class UPNPObject(object): def __init__(self, ip, locations, dump=''): self.ip_address = ip self._devices = {} self._services = {} for location in locations: parsed_url = urlparse(location) url = parsed_url.scheme + '://' + parsed_url.netloc response = requests.get(location) content = response.content.decode('utf-8') if dump: path = location if path.startswith('/'): path = path[1:] if '/' in path: path, file_name = path.rsplit('/', 1) path = os.path.join(dump, path) else: file_name = path path = dump if not os.path.exists(path): os.makedirs(path) if not file_name.endswith('.xml'): file_name += '.xml' with open(os.path.join(path, file_name), 'w') as f: f.write(content) try: root = etree.fromstring(content) except etree.XMLSyntaxError: continue root = strip_xmlns(root) node = root.find('device') services = node.find('serviceList') if services is None: services = [] devices = node.find('deviceList') if devices is None: devices = [] for service in services: scpdurl = service.find('SCPDURL').text.replace(url, '') control_url = service.find('controlURL').text if control_url is None: if scpdurl.endswith('.xml'): control_url = scpdurl.rsplit('/', 1)[0] if control_url == scpdurl: control_url = '' else: control_url = scpdurl else: control_url = control_url.replace(url, '') service_id = service.find('serviceId').text service_type = service.find('serviceType').text service = Service( self, url, scpdurl, service_type, control_url, node, dump=dump ) name = service_id.split(':')[-1] service.__name__ = name self._services[name] = service for device in devices: device = EmbeddedDevice( url, node=device, parent=self, dump=dump ) self._devices[device.__name__] = device def __getattr__(self, item): if item in self.__dict__: return self.__dict__[item] if item in self._devices: return self._devices[item] if item in self._services: return self._services[item] if item in self.__class__.__dict__: if hasattr(self.__class__.__dict__[item], 'fget'): return self.__class__.__dict__[item].fget(self) raise AttributeError(item) @property def as_dict(self): res = dict( services=list(service.as_dict for service in self.services), devices=list(device.as_dict for device in self.devices) ) return res @property def access_point(self): return self.__class__.__name__ @property def services(self): return list(self._services.values())[:] @property def devices(self): return list(self._devices.values())[:] def __str__(self): output = '\n\n' + str(self.__name__) + '\n' output += 'IP Address: ' + self.ip_address + '\n' output += '==============================================\n' if self.services: output += 'Services:\n' for cls in self.services: output += cls.__str__(indent=' ').rstrip() + '\n' else: output += 'Services: None\n' if self.devices: output += 'Devices:\n' for cls in self.devices: output += cls.__str__(indent=' ').rstrip() + '\n' else: output += 'Devices: None\n' return output
src/condor_tests/ornithology/io.py
sridish123/htcondor
217
45102
<reponame>sridish123/htcondor # Copyright 2019 HTCondor Team, Computer Sciences Department, # University of Wisconsin-Madison, WI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import textwrap from pathlib import Path logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # TODO: does this way of doing permissions work on Windows? def write_file(path: Path, text: str, permissions: int = 0o777) -> Path: """ Write the given ``text`` to a new file at the given ``path``, stomping anything that might exist there. Parameters ---------- path The path to write to. text The text to write. permissions The permissions to give the file. Returns ------- path : pathlib.Path The path the file was written to (as an absolute path). """ path = Path(path).absolute() path.parent.mkdir(parents=True, exist_ok=True) path.write_text(textwrap.dedent(text)) path.chmod(permissions) return path
magma/t.py
leonardt/magma
167
45201
<filename>magma/t.py import abc import enum from magma.common import deprecated from magma.compatibility import IntegerTypes, StringTypes from magma.ref import AnonRef, NamedRef, TempNamedRef, DefnRef, InstRef from magma.protocol_type import magma_value from magma.wire import wire class Direction(enum.Enum): In = 0 Out = 1 InOut = 2 Undirected = 3 class Type(object): def __init__(self, name=None): if name is None: name = AnonRef() elif isinstance(name, str): name = TempNamedRef(name=name, value=self) self.name = name __hash__ = object.__hash__ def __repr__(self): if self.name.anon(): return f"{type(self)}()" has_name = (isinstance(self.name, NamedRef) and not isinstance(self.name, (InstRef, DefnRef))) if has_name: return f"{type(self)}(name=\"{repr(self.name)}\")" return repr(self.name) def __str__(self): if self.name.anon(): # Anon names aren't very useful, so just return a repr instead so # it's easier to find the value return repr(self) return str(self.name) # An instance has an anon name. def anon(self): return self.name.anon() # Abstract method to be implemented by subclasses. @classmethod def is_oriented(cls, direction): raise NotImplementedError() @classmethod def is_clock(cls): raise NotImplementedError() @classmethod def is_input(cls): return cls.is_oriented(Direction.In) @classmethod def is_output(cls): return cls.is_oriented(Direction.Out) @classmethod def is_inout(cls): return cls.is_oriented(Direction.InOut) @classmethod @deprecated def isoriented(cls, direction): return cls.is_oriented(direction) @classmethod @deprecated def isinput(cls): return cls.is_input() @classmethod @deprecated def isoutput(cls): return cls.is_output() @classmethod @deprecated def isinout(cls): return cls.is_inout() @property def debug_name(self): defn_str = "" inst_str = "" if isinstance(self.name, DefnRef): defn_str = str(self.name.defn.name) + "." elif isinstance(self.name, InstRef): inst_str = str(self.name.inst.name) + "." defn_str = str(self.name.inst.defn.name) + "." return f"{defn_str}{inst_str}{str(self)}" def __le__(self, other): if self.is_output(): raise TypeError(f"Cannot use <= to assign to output: " f"{self.debug_name} (trying to assign " f"{other.debug_name})") wire(other, self) def __imatmul__(self, other): other = magma_value(other) if self.is_output(): raise TypeError(f"Cannot use @= to assign to output: {self} " f"(trying to assign {other})") wire(other, self) return self @abc.abstractmethod def unused(self): # Mark value is unused by calling unused on the underlying magma # elements. For example, m.Bit is wired up to a coreir term primitive A # general m.Array and m.Tuple will recursively call `unused` on its # members. raise NotImplementedError() @abc.abstractmethod def undriven(self): # Mark value is undriven by calling undriven on the underlying magma # elements. For example, m.Bit is wired up to a coreir undriven # primitive A general m.Array and m.Tuple will recursively call # `undriven` on its members. raise NotImplementedError() def is_driven_anon_temporary(self): """ Returns true if this is an anonymous temporary value (not an output) that is driven """ return self.name.anon() and not self.is_output() and self.driven() class Kind(type): # Subclasses only need to implement one of these methods. def __eq__(cls, rhs): return cls is rhs __hash__ = type.__hash__ def __repr__(cls): return cls.__name__ def __str__(cls): return cls.__name__ @abc.abstractmethod def qualify(cls, direction): raise NotImplementedError() def flip(cls): if cls.direction == Direction.In: return cls[Direction.Out] if cls.direction == Direction.Out: return cls[Direction.In] # Flip of inout is inout, and flip of undirected is undirected. return cls @property def undirected_t(cls): return cls.qualify(Direction.Undirected) @property def is_directed(cls): return cls is not cls.qualify(Direction.Undirected) def In(T): return T.qualify(Direction.In) def Out(T): return T.qualify(Direction.Out) def InOut(T): return T.qualify(Direction.InOut) def Flip(T): return T.flip()
tests/fixtures/script-files/sample_script.py
avoltz/poetry-core
205
45209
<gh_stars>100-1000 #!/usr/bin/env python hello = "Hello World!"
hvplot/tests/testgridplots.py
lhoupert/hvplot
338
45224
<reponame>lhoupert/hvplot from unittest import SkipTest from collections import OrderedDict import numpy as np from holoviews import Store from holoviews.element import RGB, Image from holoviews.element.comparison import ComparisonTestCase try: import xarray as xr except: raise SkipTest('XArray not available') else: import hvplot.xarray # noqa class TestGridPlots(ComparisonTestCase): def setUp(self): coords = OrderedDict([('band', [1, 2, 3]), ('y', [0, 1]), ('x', [0, 1])]) self.da_rgb = xr.DataArray(np.arange(12).reshape((3, 2, 2)), coords, ['band', 'y', 'x']) coords = OrderedDict([('time', [0, 1]), ('band', [1, 2, 3]), ('y', [0, 1]), ('x', [0, 1])]) self.da_rgb_by_time = xr.DataArray(np.arange(24).reshape((2, 3, 2, 2)), coords, ['time', 'band', 'y', 'x']) coords = OrderedDict([('time', [0, 1]), ('lat', [0, 1]), ('lon', [0, 1])]) self.da_img_by_time = xr.DataArray(np.arange(8).reshape((2, 2, 2)), coords, ['time', 'lat', 'lon']).assign_coords( lat1=xr.DataArray([2,3], dims=['lat'])) self.xarr_with_attrs = xr.DataArray( np.random.rand(10, 10), coords=[('x', range(10)), ('y', range(10))], dims=['y', 'x'], attrs={'long_name': 'luminosity', 'units': 'lm'}) self.xarr_with_attrs.x.attrs['long_name'] = 'Declination' self.xarr_with_attrs.y.attrs['long_name'] = 'Right Ascension' self.xds_with_attrs = xr.Dataset({'light': self.xarr_with_attrs }) self.da_img = xr.DataArray(np.arange(-2, 2).reshape((2, 2)), name='foo') self.big_img = xr.DataArray(np.arange(-1e6, 1e6).reshape(1000, 2000)) self.ds = xr.Dataset({ 'temp': (('lon', 'lat'), 15 + 8 * np.random.randn(2, 2)), 'precip': (('lon', 'lat'), 10 * np.random.rand(2, 2))}, coords={'lon': [-99.83, -99.32],'lat': [42.25, 42.21]}) xs = np.linspace(0, 10, 5) lon = xs*xs[np.newaxis, :].T lat = xs+xs[:, np.newaxis] coords = { 'lon': (('ny', 'nx'), lon), 'lat': (('ny', 'nx'), lat), 'time': [1, 2, 3], 'samples': ('nsamples', [0, 1, 2, 3]) } self.ds_unindexed = xr.DataArray( np.random.rand(5, 5, 3, 4), coords=coords, dims=('nx', 'ny', 'time', 'nsamples') ) def test_rgb_dataarray_no_args(self): rgb = self.da_rgb.hvplot() self.assertEqual(rgb, RGB(([0, 1], [0, 1])+tuple(self.da_rgb.values))) def test_rgb_dataarray_explicit_args(self): rgb = self.da_rgb.hvplot('x', 'y') self.assertEqual(rgb, RGB(([0, 1], [0, 1])+tuple(self.da_rgb.values))) def test_rgb_dataarray_explicit_args_and_kind(self): rgb = self.da_rgb.hvplot.rgb('x', 'y') self.assertEqual(rgb, RGB(([0, 1], [0, 1])+tuple(self.da_rgb.values))) def test_rgb_dataset(self): rgb = self.da_rgb.to_dataset(name='z').hvplot.rgb() self.assertEqual(rgb, RGB(([0, 1], [0, 1])+tuple(self.da_rgb.values))) def test_rgb_dataset_explicit_z(self): rgb = self.da_rgb.to_dataset(name='z').hvplot.rgb(z='z') self.assertEqual(rgb, RGB(([0, 1], [0, 1])+tuple(self.da_rgb.values))) def test_rgb_dataarray_groupby_explicit(self): rgb = self.da_rgb_by_time.hvplot.rgb('x', 'y', groupby='time') self.assertEqual(rgb[0], RGB(([0, 1], [0, 1])+tuple(self.da_rgb_by_time.values[0]))) self.assertEqual(rgb[1], RGB(([0, 1], [0, 1])+tuple(self.da_rgb_by_time.values[1]))) def test_rgb_dataarray_groupby_infer(self): rgb = self.da_rgb_by_time.hvplot.rgb('x', 'y', bands='band') self.assertEqual(rgb[0], RGB(([0, 1], [0, 1])+tuple(self.da_rgb_by_time.values[0]))) self.assertEqual(rgb[1], RGB(([0, 1], [0, 1])+tuple(self.da_rgb_by_time.values[1]))) def test_img_dataarray_infers_correct_other_dims(self): img = self.da_img_by_time[0].hvplot() self.assertEqual(img, Image(self.da_img_by_time[0], ['lon', 'lat'], ['value'])) def test_img_dataarray_groupby_infers_correct_other_dims(self): img = self.da_img_by_time.hvplot(groupby='time') self.assertEqual(img[0], Image(self.da_img_by_time[0], ['lon', 'lat'], ['value'])) self.assertEqual(img[1], Image(self.da_img_by_time[1], ['lon', 'lat'], ['value'])) def test_line_infer_dimension_params_from_xarray_attrs(self): hmap = self.xarr_with_attrs.hvplot.line(groupby='x', dynamic=False) self.assertEqual(hmap.kdims[0].label, 'Declination') self.assertEqual(hmap.last.kdims[0].label, 'Right Ascension') self.assertEqual(hmap.last.vdims[0].label, 'luminosity') self.assertEqual(hmap.last.vdims[0].unit, 'lm') def test_img_infer_dimension_params_from_xarray_attrs(self): img = self.xarr_with_attrs.hvplot.image(clim=(0, 2)) self.assertEqual(img.kdims[0].label, 'Declination') self.assertEqual(img.kdims[1].label, 'Right Ascension') self.assertEqual(img.vdims[0].label, 'luminosity') self.assertEqual(img.vdims[0].unit, 'lm') self.assertEqual(img.vdims[0].range, (0, 2)) def test_table_infer_dimension_params_from_xarray_ds_attrs(self): table = self.xds_with_attrs.hvplot.dataset() self.assertEqual(table.kdims[0].label, 'Declination') self.assertEqual(table.kdims[1].label, 'Right Ascension') self.assertEqual(table.vdims[0].label, 'luminosity') self.assertEqual(table.vdims[0].unit, 'lm') def test_points_infer_dimension_params_from_xarray_attrs(self): points = self.xarr_with_attrs.hvplot.points(c='value', clim=(0, 2)) self.assertEqual(points.kdims[0].label, 'Declination') self.assertEqual(points.kdims[1].label, 'Right Ascension') self.assertEqual(points.vdims[0].label, 'luminosity') self.assertEqual(points.vdims[0].unit, 'lm') self.assertEqual(points.vdims[0].range, (0, 2)) def test_dataset_infer_dimension_params_from_xarray_attrs(self): ds = self.xarr_with_attrs.hvplot.dataset() self.assertEqual(ds.kdims[0].label, 'Declination') self.assertEqual(ds.kdims[1].label, 'Right Ascension') self.assertEqual(ds.vdims[0].label, 'luminosity') self.assertEqual(ds.vdims[0].unit, 'lm') def test_table_infer_dimension_params_from_xarray_attrs(self): table = self.xarr_with_attrs.hvplot.dataset() self.assertEqual(table.kdims[0].label, 'Declination') self.assertEqual(table.kdims[1].label, 'Right Ascension') self.assertEqual(table.vdims[0].label, 'luminosity') self.assertEqual(table.vdims[0].unit, 'lm') def test_symmetric_img_deduces_symmetric(self): plot = self.da_img.hvplot.image() plot_opts = Store.lookup_options('bokeh', plot, 'plot') self.assertEqual(plot_opts.kwargs.get('symmetric'), True) style_opts = Store.lookup_options('bokeh', plot, 'style') self.assertEqual(style_opts.kwargs['cmap'], 'coolwarm') def test_symmetric_img_with_symmetric_set_to_false(self): plot = self.da_img.hvplot.image(symmetric=False) plot_opts = Store.lookup_options('bokeh', plot, 'plot') self.assertEqual(plot_opts.kwargs.get('symmetric'), False) style_opts = Store.lookup_options('bokeh', plot, 'style') self.assertEqual(style_opts.kwargs['cmap'], 'kbc_r') def test_symmetric_img_with_cmap_set(self): plot = self.da_img.hvplot.image(cmap='fire') plot_opts = Store.lookup_options('bokeh', plot, 'plot') self.assertEqual(plot_opts.kwargs.get('symmetric'), True) style_opts = Store.lookup_options('bokeh', plot, 'style') self.assertEqual(style_opts.kwargs['cmap'], 'fire') def test_symmetric_with_big_img_sets_symmetric_to_false_without_calculating(self): plot = self.big_img.hvplot.image() plot_opts = Store.lookup_options('bokeh', plot, 'plot') self.assertEqual(plot_opts.kwargs.get('symmetric'), False) style_opts = Store.lookup_options('bokeh', plot, 'style') self.assertEqual(style_opts.kwargs['cmap'], 'kbc_r') def test_symmetric_with_big_img_and_check_symmetric_max_calculates_symmetric(self): plot = self.big_img.hvplot.image(check_symmetric_max=int(1e7)) plot_opts = Store.lookup_options('bokeh', plot, 'plot') self.assertEqual(plot_opts.kwargs.get('symmetric'), True) style_opts = Store.lookup_options('bokeh', plot, 'style') self.assertEqual(style_opts.kwargs['cmap'], 'coolwarm') def test_multiple_zs(self): plot = self.ds.hvplot(x='lat', y='lon', z=['temp', 'precip'], dynamic=False) assert 'temp' in plot.keys() assert 'precip' in plot.keys() assert plot['temp'].kdims == ['lat', 'lon'] assert plot['precip'].kdims == ['lat', 'lon'] def test_unindexed_quadmesh(self): plot = self.ds_unindexed.hvplot.quadmesh(x='lon', y='lat') assert len(plot.kdims) == 2 assert plot.kdims[0].name == 'time' assert plot.kdims[1].name == 'nsamples' p = plot[1, 0] assert len(p.kdims) == 2 assert p.kdims[0].name == 'lon' assert p.kdims[1].name == 'lat'
src/karta_manual_anchor.py
CrackerCat/Karta
716
45233
#!/usr/bin/python from config.utils import * from elementals import Prompter from function_context import SourceContext, BinaryContext, IslandContext import os import sys import argparse import logging from collections import defaultdict def recordManualAnchors(library_config, knowledge_config, lib_name, prompter): """Record the list of user defined manual anchor matches. Args: library_config (json): json loaded data from the library's configuration knowledge_config (dict): a mapping of all of the accumulated knowledge for the currently analysed binary lib_name (str): name of the open source library that will contain these manual anchors prompter (prompter): prompter instance Return Value: Updated knowledge mapping (to be stored back as a *json file) """ # Prepare & load the stats from each file (using the functions file) src_file_names = [] prompter.info("Loading the information regarding the compiled source files") prompter.addIndent() files_config = library_config[JSON_TAG_FILES] for full_file_path in files_config: prompter.debug(f"Parsing the canonical representation of file: {full_file_path.split(os.path.sep)[-1]}") src_file_names.append(full_file_path) parseFileStats(full_file_path, files_config[full_file_path]) prompter.removeIndent() # get the variables from the utils file src_functions_list, src_functions_ctx, src_file_mappings = getSourceFunctions() # pre-processed list indices (efficiency improvement) func_indices = defaultdict(list) for func_idx, func_name in enumerate(src_functions_list): func_indices[func_name].append(func_idx) # Start requesting the user to add his manual records manual_anchors = {} prompter.info("Starting the input loop") prompter.addIndent() finished = False while not finished: prompter.info("Enter the details for the current manual anchor:") parsed_correctly = True while parsed_correctly: function_name = prompter.input("Function Name (case sensitive): ") # check existence if src_functions_list.count(function_name) == 0: prompter.error(f"Function \"{function_name}\" does not exist") parsed_correctly = False break # check uniqueness if src_functions_list.count(function_name) > 1: file_name = prompter.input("File Name (case sensitive): ") src_indices = list(filter(lambda x: src_functions_ctx[x].file == file_name, func_indices[function_name])) if len(src_indices) == 0: prompter.error(f"Function \"{function_name}\" does not exist in file \"{file_name}\"") parsed_correctly = False break src_index = src_indices[0] else: src_index = func_indices[function_name][0] # get the binary address bin_ea_str_raw = prompter.input("Function Address (ea in the form: 0x12345678): ") if bin_ea_str_raw.startswith("0x"): bin_ea_str = bin_ea_str_raw[2:] else: bin_ea_str = bin_ea_str_raw try: bin_ea = int(bin_ea_str, 16) except ValueError: prompter.error(f"Illegal hexa address: \"{bin_ea_str_raw}\"") parsed_correctly = False break # finished successfully :) manual_anchors[src_index] = bin_ea break should_continue = prompter.input("Do you want to add another manual anchor? <Y/N>: ") finished = should_continue.lower() != "y" prompter.removeIndent() # add the info to the json if len(manual_anchors) > 0: if JSON_TAG_MANUAL_ANCHORS not in knowledge_config: knowledge_config[JSON_TAG_MANUAL_ANCHORS] = {} all_manual_anchors = knowledge_config[JSON_TAG_MANUAL_ANCHORS] if lib_name not in all_manual_anchors: all_manual_anchors[lib_name] = {} cur_manual_anchors = all_manual_anchors[lib_name] # merge the results for new_index in manual_anchors: src_ctx = src_functions_ctx[new_index] cur_manual_anchors[str(new_index)] = [src_ctx.file, src_ctx.name, hex(manual_anchors[new_index]), manual_anchors[new_index]] # return back the data return knowledge_config def main(args): """Run the manual anchors script. Args: args (list): list of command line arguments """ global disas_cmd # argument parser parser = argparse.ArgumentParser(description=f"Enables the user to manually defined matches, acting as manual anchors, later to be used by {LIBRARY_NAME}'s Matcher.") parser.add_argument("bin", metavar="bin", type=str, help="path to the disassembler's database for the wanted binary") parser.add_argument("name", metavar="lib-name", type=str, help="name (case sensitive) of the relevant open source library") parser.add_argument("version", metavar="lib-version", type=str, help="version string (case sensitive) as used by the identifier") parser.add_argument("config", metavar="configs", type=str, help="path to the *.json \"configs\" directory") parser.add_argument("-D", "--debug", action="store_true", help="set logging level to logging.DEBUG") parser.add_argument("-W", "--windows", action="store_true", help="signals that the binary was compiled for Windows") # parse the args args = parser.parse_args(args) library_name = args.name library_version = args.version bin_path = args.bin config_path = args.config is_debug = args.debug is_windows = args.windows # open the log prompter = Prompter(min_log_level=logging.INFO if not is_debug else logging.DEBUG) prompter.info("Starting the Script") # use the user supplied flag if is_windows: setWindowsMode() # always init the utils before we start initUtils(prompter, None, invoked_before=True) # register our contexts registerContexts(SourceContext, BinaryContext, IslandContext) # Load the information from the relevant library lib_config_file = constructConfigPath(library_name, library_version) prompter.debug(f"Loading the configuration file for library: {library_name}") prompter.addIndent() cur_config_path = os.path.join(config_path, lib_config_file) if not os.path.exists(cur_config_path): prompter.error(f"Missing configuration file ({lib_config_file}) for \"{library_name}\" Version: \"{library_version}\"") return # Load the configuration file fd = open(cur_config_path, "r") library_config = json.load(fd) fd.close() prompter.removeIndent() # Load the existing knowledge config, if exists prompter.debug(f"Opening knowledge configuration file from path: {accumulatedKnowledgePath(bin_path)}") prompter.addIndent() knowledge_config = loadKnowledge(bin_path) if knowledge_config is None: prompter.debug("Failed to find an existing configuration file") knowledge_config = {} prompter.removeIndent() # receive all of the couples from the user knowledge_config = recordManualAnchors(library_config, knowledge_config, library_name, prompter) prompter.info("Storing the data to the knowledge configuration file") storeKnowledge(knowledge_config, bin_path) # finished prompter.info("Finished Successfully") if __name__ == "__main__": main(sys.argv[1:])
test/com/facebook/buck/parser/testdata/python_user_defined_rules/errors/invalid_attr_name/bad_attrs.bzl
Unknoob/buck
8,027
45276
<reponame>Unknoob/buck def _impl(_ctx): pass bad_attrs = rule(implementation = _impl, attrs = {"1234isntvalid": attr.int()})
scripts/misc/redis_test.py
cclauss/archai
344
45288
import redis redis_client = redis.StrictRedis(host="127.0.0.1", port=6379) input("")
tests/test_analytics.py
lakshyaag/csgo
118
45292
import pytest import numpy as np from csgo.analytics.distance import ( bombsite_distance, point_distance, polygon_area, area_distance, ) from csgo.analytics.coords import Encoder class TestCSGOAnalytics: """Class to test CSGO analytics""" def test_bombsite_distance(self): """Test bombsite distance function.""" assert bombsite_distance([0, 0, 0]) == 35 assert bombsite_distance([0, 0, 0], bombsite="B") == 38 assert bombsite_distance([0, 0, 0], bombsite="A", map="de_inferno") == 30 def test_point_distance(self): """Test point distance function""" assert point_distance([0, 0], [1, 1], type="euclidean") == 1.4142135623730951 assert point_distance([0, 0], [1, 1], type="manhattan") == 2 assert point_distance([0, 0], [1, 1], type="canberra") == 2.0 assert point_distance([-1, 5], [2, 1], type="cosine") == 0.7368825942078912 assert point_distance([0, 0, 0], [100, 100, 100]) == 4 assert point_distance([0, 0, 0], [100, 100, 100], map="de_vertigo") == 1 def test_polygon_area(self): """Test polygon area function""" assert polygon_area([0, 1, 2], [0, 1, 0]) == 1.0 def test_bombsite_invalid_map(self): """ Test bombsite function with an invalid map. """ with pytest.raises(ValueError): bombsite_distance([0, 0, 0], map="dust2") def test_point_invalid_map(self): """ Test point distance function with an invalid map. """ with pytest.raises(ValueError): point_distance([0, 0, 0], [1, 1, 1], map="dust2") def test_area_invalid_map(self): """ Test area distance function with an invalid map. """ with pytest.raises(ValueError): area_distance(26, 42, map="dust2") def test_area_dist(self): """ Tests that area distance returns correct value. """ assert area_distance(26, 42, map="de_mirage") == 26 def test_place_encode(self): """ Tests that place encoding works for correct values """ e = Encoder() assert np.sum(e.encode("place", "TSpawn")) == 1 assert np.sum(e.encode("place", "TSpawnnn")) == 0 assert np.sum(e.encode("map", "de_dust2")) == 1 assert np.sum(e.encode("map", "de_dust0")) == 0
text/src/autogluon/text/text_prediction/infer_types.py
zhiqiangdon/autogluon
4,462
45305
<gh_stars>1000+ import collections import pandas as pd import warnings from typing import Union, Optional, List, Dict, Tuple from autogluon.core.constants import MULTICLASS, BINARY, REGRESSION from .constants import NULL, CATEGORICAL, NUMERICAL, TEXT #TODO, This file may later be merged with the infer type logic in tabular. def is_categorical_column(data: pd.Series, valid_data: pd.Series, threshold: int = None, ratio: Optional[float] = None, oov_ratio_threshold: Optional[float] = None, is_label: bool = False) -> bool: """Check whether the column is a categorical column. If the number of unique elements in the column is smaller than min(#Total Sample * ratio, threshold), it will be treated as a categorical column. Parameters ---------- data The column data valid_data Additional validation data threshold The threshold for detecting categorical column ratio The ratio detecting categorical column oov_ratio_threshold The out-of-vocabulary ratio between training and validation. This is used to determine if the column is a categorical column. Usually, a categorical column can tolerate a small OOV ratio is_label Whether the column is a label column. Returns ------- is_categorical Whether the column is a categorical column """ if data.dtype.name == 'category': return True else: if threshold is None: if is_label: threshold = 100 oov_ratio_threshold = 0 ratio = 0.1 else: threshold = 20 oov_ratio_threshold = 0 ratio = 0.1 threshold = min(int(len(data) * ratio), threshold) data_value_counts = data.value_counts(dropna=False) key_set = set(data_value_counts.keys()) if len(data_value_counts) < threshold: valid_value_counts = valid_data.value_counts(dropna=False) total_valid_num = len(valid_data) oov_num = 0 for k, v in zip(valid_value_counts.keys(), valid_value_counts.values): if k not in key_set: oov_num += v if is_label and oov_num != 0: return False if oov_num / total_valid_num > oov_ratio_threshold: return False return True return False def is_numerical_column(data: pd.Series, valid_data: Optional[pd.Series] = None): """Try to identify if a column is a numerical column. We adopted a very simple rule to verify if the column is a numerical column. Parameters ---------- data The training data series valid_data The validation data series Returns ------- is_numerical Whether the column is a numerical column """ try: numerical_data = pd.to_numeric(data) if valid_data is not None: numerical_valid_data = pd.to_numeric(valid_data) return True except: return False def infer_column_problem_types( train_df: pd.DataFrame, valid_df: pd.DataFrame, label_columns: Union[str, List[str]], problem_type: Optional[str] = None, provided_column_types: Optional[Dict] = None) -> Tuple[collections.OrderedDict, str]: """Infer the column types of the data frame + the problem type Parameters ---------- train_df The training Pandas DataFrame valid_df The validation Pandas DataFrame label_columns The chosen label column names problem_type The type of the problem provided_column_types Additional dictionary that you can use to specify the columns types that you know. {'col_name': TYPE} Returns ------- column_types Dictionary of column types If the column does not contain any useful information, we will filter the column with type = NULL problem_type The inferred problem type """ if isinstance(label_columns, str): label_columns = [label_columns] elif isinstance(label_columns, (list, tuple)): pass else: raise NotImplementedError(f'label_columns is not supported. label_columns={label_columns}.') label_set = set(label_columns) assert len(label_set) == 1, 'Currently, only a single label column is supported.' column_types = collections.OrderedDict() # Process all feature columns for col_name in train_df.columns: is_label = col_name in label_set if provided_column_types is not None and col_name in provided_column_types: column_types[col_name] = provided_column_types[col_name] continue if is_label: num_train_missing = train_df[col_name].isnull().sum() num_valid_missing = valid_df[col_name].isnull().sum() if num_train_missing > 0: raise ValueError(f'Label column "{col_name}" contains missing values in the ' f'training data frame. You may want to filter your data because ' f'missing label is currently not supported.') if num_valid_missing > 0: raise ValueError(f'Label column "{col_name}" contains missing values in the ' f'validation data frame. You may want to filter your data because ' f'missing label is currently not supported.') if problem_type == MULTICLASS or problem_type == BINARY: column_types[col_name] = CATEGORICAL continue elif problem_type == REGRESSION: column_types[col_name] = NUMERICAL continue # Identify columns that provide no information idx = train_df[col_name].first_valid_index() if idx is None or len(train_df[col_name].unique()) == 1: # No valid index, thus, we will just ignore the column if not is_label: column_types[col_name] = NULL else: warnings.warn(f'Label column "{col_name}" contains only one label. You may want' f' to check your dataset again.') # Use the following way for type inference # 1) Inference categorical column # 2) Inference numerical column # 3) All the other columns are treated as text column if is_categorical_column(train_df[col_name], valid_df[col_name], is_label=is_label): column_types[col_name] = CATEGORICAL elif is_numerical_column(train_df[col_name], valid_df[col_name]): column_types[col_name] = NUMERICAL else: column_types[col_name] = TEXT problem_type = infer_problem_type(column_types, label_columns[0], train_df, problem_type) return column_types, problem_type def printable_column_type_string(column_types): ret = 'Column Types:\n' for col_name, col_type in column_types.items(): ret += f' - "{col_name}": {col_type}\n' return ret def infer_problem_type(column_types, label_column, data_df, provided_problem_type=None): """Inference the type of the problem based on type of the column and the training data. Also, it will try to check the correctness of the column types and the provided problem_type. Parameters ---------- column_types Type of the columns label_column The label column data_df The dataframe provided_problem_type The provided problem type Returns ------- problem_type Type of the problem """ if provided_problem_type is not None: if provided_problem_type == MULTICLASS or provided_problem_type == BINARY: err_msg = f'Provided problem type is "{provided_problem_type}" while the number of ' \ f'unique value in the label column is {len(data_df[label_column].unique())}' if provided_problem_type == BINARY and len(data_df[label_column].unique()) != 2: raise AssertionError(err_msg) elif provided_problem_type == MULTICLASS and len(data_df[label_column].unique()) <= 2: raise AssertionError(err_msg) return provided_problem_type else: if column_types[label_column] == CATEGORICAL: if len(data_df[label_column].value_counts()) == 2: return BINARY else: return MULTICLASS elif column_types[label_column] == NUMERICAL: return REGRESSION else: raise ValueError(f'The label column "{label_column}" has type' f' "{column_types[label_column]}" and is supported yet.')
code/tools/prepare_instance.py
santomon/taskonomy
789
45333
import subprocess import os def download_task_model(task): m_path = os.path.join('/home/ubuntu/s3', "model_log_final", task, "logs/model.permanent-ckpt") dirs, fname = os.path.split(m_path) dst_dir = dirs.replace('/home/ubuntu/s3', "s3://taskonomy-unpacked-oregon") tmp_path = "/home/ubuntu/temp/{}".format(task) subprocess.call('mkdir -p {}'.format(tmp_path), shell=True) tmp_fname = os.path.join(tmp_path, fname) aws_cp_command = "aws s3 cp {}.data-00000-of-00001 {}".format(os.path.join(dst_dir, fname), tmp_path) subprocess.call(aws_cp_command, shell=True) aws_cp_command = "aws s3 cp {}.meta {}".format(os.path.join(dst_dir, fname), tmp_path) subprocess.call(aws_cp_command, shell=True) aws_cp_command = "aws s3 cp {}.index {}".format(os.path.join(dst_dir, fname), tmp_path) subprocess.call(aws_cp_command, shell=True) list_of_tasks = 'autoencoder curvature denoise edge2d edge3d \ keypoint2d keypoint3d colorization jigsaw \ reshade rgb2depth rgb2mist rgb2sfnorm \ room_layout segment25d segment2d vanishing_point_well_defined \ segmentsemantic_rb class_1000 class_places impainting_whole' list_of_tasks = 'impainting_whole' list_of_tasks = list_of_tasks.split() for t in list_of_tasks: download_task_model(t)
resotocore/resotocore/db/jobdb.py
someengineering/resoto
126
45393
<filename>resotocore/resotocore/db/jobdb.py from resotocore.db.async_arangodb import AsyncArangoDB from resotocore.db.entitydb import EntityDb, EventEntityDb, ArangoEntityDb from resotocore.task.task_description import Job JobDb = EntityDb[Job] EventJobDb = EventEntityDb[Job] def job_db(db: AsyncArangoDB, collection: str) -> ArangoEntityDb[Job]: return ArangoEntityDb(db, collection, Job, lambda k: k.id)
todo/migrations/0004_rename_list_tasklist.py
Sowmya-1998/https-github.com-shacker-django-todo
567
45401
<gh_stars>100-1000 # Generated by Django 2.0.2 on 2018-02-09 23:15 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ("auth", "0009_alter_user_last_name_max_length"), ("todo", "0003_assignee_optional"), ] operations = [ migrations.CreateModel( name="TaskList", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID" ), ), ("name", models.CharField(max_length=60)), ("slug", models.SlugField(default="")), ( "group", models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to="auth.Group"), ), ], options={"verbose_name_plural": "Lists", "ordering": ["name"]}, ), migrations.AlterUniqueTogether(name="list", unique_together=set()), migrations.RemoveField(model_name="list", name="group"), migrations.RemoveField(model_name="item", name="list"), migrations.DeleteModel(name="List"), migrations.AddField( model_name="item", name="task_list", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.CASCADE, to="todo.TaskList" ), ), migrations.AlterUniqueTogether(name="tasklist", unique_together={("group", "slug")}), ]
app/apiv2/internal/tasking/mobius_task.py
Joey-Wondersign/Staffjoy-suite-Joey
890
45459
from flask_restful import marshal, abort, Resource from app.models import Schedule2 from app.apiv2.decorators import permission_sudo from app.apiv2.marshal import tasking_schedule_fields class MobiusTaskApi(Resource): method_decorators = [permission_sudo] def get(self, schedule_id): """ Peek at a schedule """ s = Schedule2.query.get_or_404(schedule_id) return marshal(s, tasking_schedule_fields) def delete(self, schedule_id): """ Mark a task as done """ s = Schedule2.query.get_or_404(schedule_id) if s.state != "mobius-processing": abort(400) s.transition_to_published() return "{}", 204
genpac/template.py
kaixinguo360/genpac
2,331
45516
<gh_stars>1000+ # -*- coding: utf-8 -*- from __future__ import (unicode_literals, absolute_import, division, print_function) from ._compat import string_types from .util import get_resource_path, read_file # 模板文件 # is_buildin == True时为内建模板文件,在脚本源码目录下寻找 class TemplateFile(object): def __init__(self, path, is_buildin=False): self.tpl_file = get_resource_path(path) if is_buildin else path def __str__(self): return read_file(self.tpl_file, fail_msg='读取自定义模板文件{path}失败') PAC = TemplateFile('res/tpl-pac.js', True) PAC_MIN = TemplateFile('res/tpl-pac.min.js', True) PAC_PRECISE = TemplateFile('res/tpl-pac-precise.js', True) PAC_PRECISE_MIN = TemplateFile('res/tpl-pac-precise.min.js', True) WINGY = TemplateFile('res/tpl-wingy.yaml', True) DNSMASQ = ''' #! __GENPAC__ __DNSMASQ__ #! Generated: __GENERATED__ #! GFWList: __GFWLIST_DETAIL__ ''' SS_ACL = ''' #! __GENPAC__ [bypass_all] [proxy_list] __GFWED_RULES__ #! Generated: __GENERATED__ #! GFWList: __GFWLIST_DETAIL__ ''' POTATSO = ''' #! __GENPAC__ [RULESET.gfwed] name = "GFWed rules" rules = [ __GFWED_RULES__ ] [RULESET.direct] name = "Direct rules" rules = [ __DIRECT_RULES__ ] #! Generated: __GENERATED__ #! GFWList: __GFWLIST_DETAIL__ ''' # 去除文本模板的前后换行符 for name in dir(): if name.isupper() and isinstance(vars()[name], string_types): vars()[name] = vars()[name].strip('\n')
tests/ut/datavisual/data_transform/test_data_loader.py
fapbatista/mindinsight
216
45542
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Function: Test mindinsight.datavisual.data_transform.data_loader. Usage: pytest tests/ut/datavisual """ import os import shutil import tempfile import pytest from mindinsight.datavisual.common.exceptions import SummaryLogPathInvalid from mindinsight.datavisual.data_transform import data_loader from mindinsight.datavisual.data_transform.data_loader import DataLoader from ..mock import MockLogger class TestDataLoader: """Test data_loader.""" @classmethod def setup_class(cls): data_loader.logger = MockLogger def setup_method(self): self._summary_dir = tempfile.mkdtemp() if os.path.exists(self._summary_dir): shutil.rmtree(self._summary_dir) os.mkdir(self._summary_dir) def teardown_method(self): if os.path.exists(self._summary_dir): shutil.rmtree(self._summary_dir) def _generate_files(self, dir_path, file_list): for file_name in file_list: with open(os.path.join(dir_path, file_name), 'w'): pass def test_load_with_not_file_list(self): """Test loading method with empty file list.""" loader = DataLoader(self._summary_dir) with pytest.raises(SummaryLogPathInvalid): loader.load() assert 'No valid files can be loaded' in str(MockLogger.log_msg['warning']) def test_load_with_invalid_file_list(self): """Test loading method with valid path and invalid file_list.""" file_list = ['summary.abc01', 'summary.abc02'] self._generate_files(self._summary_dir, file_list) loader = DataLoader(self._summary_dir) with pytest.raises(SummaryLogPathInvalid): loader.load() assert 'No valid files can be loaded' in str(MockLogger.log_msg['warning']) def test_load_success(self): """Test loading method with valid path and file_list.""" dir_path = tempfile.NamedTemporaryFile().name if not os.path.exists(dir_path): os.mkdir(dir_path) file_list = ['summary.001', 'summary.002'] self._generate_files(dir_path, file_list) dataloader = DataLoader(dir_path) dataloader.load() assert dataloader._loader is not None shutil.rmtree(dir_path)
app/tests/teams_tests/test_views.py
njmhendrix/grand-challenge.org
101
45554
<reponame>njmhendrix/grand-challenge.org import pytest from django.conf import settings from django.test import Client from tests.factories import TeamFactory, TeamMemberFactory from tests.utils import ( assert_viewname_redirect, assert_viewname_status, get_view_for_user, validate_admin_or_participant_view, validate_open_view, ) def validate_owner_or_admin_view( *, two_challenge_set, client: Client, **kwargs ): """ Assert that a view is only accessible to administrators or participants of that particular challenge. """ # No user assert_viewname_redirect( redirect_url=settings.LOGIN_URL, challenge=two_challenge_set.challenge_set_1.challenge, client=client, **kwargs, ) tests = [ (403, two_challenge_set.challenge_set_1.non_participant), (200, two_challenge_set.challenge_set_1.participant), (403, two_challenge_set.challenge_set_1.participant1), (200, two_challenge_set.challenge_set_1.creator), (200, two_challenge_set.challenge_set_1.admin), (403, two_challenge_set.challenge_set_2.non_participant), (403, two_challenge_set.challenge_set_2.participant), (403, two_challenge_set.challenge_set_2.participant1), (403, two_challenge_set.challenge_set_2.creator), (403, two_challenge_set.challenge_set_2.admin), (200, two_challenge_set.admin12), (403, two_challenge_set.participant12), (200, two_challenge_set.admin1participant2), ] for test in tests: assert_viewname_status( code=test[0], challenge=two_challenge_set.challenge_set_1.challenge, client=client, user=test[1], **kwargs, ) def validate_member_owner_or_admin_view( *, two_challenge_set, client: Client, **kwargs ): """ Assert that a view is only accessible to administrators or participants of that particular challenge. """ # No user assert_viewname_redirect( redirect_url=settings.LOGIN_URL, challenge=two_challenge_set.challenge_set_1.challenge, client=client, **kwargs, ) tests = [ (403, two_challenge_set.challenge_set_1.non_participant), (200, two_challenge_set.challenge_set_1.participant), (200, two_challenge_set.challenge_set_1.participant1), (200, two_challenge_set.challenge_set_1.creator), (200, two_challenge_set.challenge_set_1.admin), (403, two_challenge_set.challenge_set_2.non_participant), (403, two_challenge_set.challenge_set_2.participant), (403, two_challenge_set.challenge_set_2.participant1), (403, two_challenge_set.challenge_set_2.creator), (403, two_challenge_set.challenge_set_2.admin), (200, two_challenge_set.admin12), (403, two_challenge_set.participant12), (200, two_challenge_set.admin1participant2), ] for test in tests: assert_viewname_status( code=test[0], challenge=two_challenge_set.challenge_set_1.challenge, client=client, user=test[1], **kwargs, ) @pytest.mark.django_db @pytest.mark.parametrize( "view", ["teams:list", "teams:create", "teams:member-create"] ) def test_admin_or_participant_permissions(client, two_challenge_sets, view): team = TeamFactory( challenge=two_challenge_sets.challenge_set_1.challenge, owner=two_challenge_sets.challenge_set_1.participant, ) if view in ("teams:detail", "teams:member-create"): pk = team.pk else: pk = None validate_admin_or_participant_view( viewname=view, reverse_kwargs={"pk": pk}, two_challenge_set=two_challenge_sets, client=client, ) @pytest.mark.django_db def test_open_views(client, challenge_set): team = TeamFactory( challenge=challenge_set.challenge, owner=challenge_set.participant ) validate_open_view( viewname="teams:detail", reverse_kwargs={"pk": team.pk}, challenge_set=challenge_set, client=client, ) @pytest.mark.django_db @pytest.mark.parametrize("view", ["teams:update", "teams:delete"]) def test_team_update_delete_permissions(client, two_challenge_sets, view): team = TeamFactory( challenge=two_challenge_sets.challenge_set_1.challenge, owner=two_challenge_sets.challenge_set_1.participant, ) TeamFactory( challenge=two_challenge_sets.challenge_set_1.challenge, owner=two_challenge_sets.challenge_set_1.participant1, ) validate_owner_or_admin_view( viewname=view, reverse_kwargs={"pk": team.pk}, two_challenge_set=two_challenge_sets, client=client, ) @pytest.mark.django_db def test_team_member_delete_permissions(client, two_challenge_sets): team = TeamFactory( challenge=two_challenge_sets.challenge_set_1.challenge, owner=two_challenge_sets.challenge_set_1.participant, ) team_member = TeamMemberFactory( team=team, user=two_challenge_sets.challenge_set_1.participant1 ) validate_member_owner_or_admin_view( viewname="teams:member-delete", reverse_kwargs={"pk": team_member.pk}, two_challenge_set=two_challenge_sets, client=client, ) @pytest.mark.django_db @pytest.mark.parametrize("team_name", ["test_team_name"]) def test_team_creation(client, two_challenge_sets, team_name): response = get_view_for_user( viewname="teams:create", challenge=two_challenge_sets.challenge_set_1.challenge, client=client, method=client.post, user=two_challenge_sets.challenge_set_1.participant, data={"name": team_name}, ) assert response.status_code == 302 response = get_view_for_user( url=response.url, client=client, user=two_challenge_sets.challenge_set_1.participant, ) assert response.status_code == 200 assert team_name in response.rendered_content.lower() @pytest.mark.django_db def test_team_member_addition(client, two_challenge_sets): team = TeamFactory( challenge=two_challenge_sets.challenge_set_1.challenge, owner=two_challenge_sets.challenge_set_1.participant, ) assert two_challenge_sets.challenge_set_1.participant in team.get_members() assert ( two_challenge_sets.challenge_set_1.participant1 not in team.get_members() ) # Participant1 requests to join team response = get_view_for_user( viewname="teams:member-create", challenge=two_challenge_sets.challenge_set_1.challenge, client=client, method=client.post, user=two_challenge_sets.challenge_set_1.participant1, reverse_kwargs={"pk": team.pk}, ) assert ( two_challenge_sets.challenge_set_1.participant1 in team.get_members() ) assert response.status_code == 302 @pytest.mark.django_db def test_unique_membership(client, two_challenge_sets): team = TeamFactory( challenge=two_challenge_sets.challenge_set_1.challenge, owner=two_challenge_sets.challenge_set_1.participant, ) team1 = TeamFactory( challenge=two_challenge_sets.challenge_set_1.challenge, owner=two_challenge_sets.challenge_set_1.participant1, ) # Try to create a new team, should be denied response = get_view_for_user( viewname="teams:create", challenge=two_challenge_sets.challenge_set_1.challenge, client=client, method=client.post, user=two_challenge_sets.challenge_set_1.participant, data={"name": "thisteamshouldnotbecreated"}, ) assert response.status_code == 200 assert ( "You are already a member of another team for this challenge" in response.rendered_content ) # Participant1 requests to join team, should be denied response = get_view_for_user( viewname="teams:member-create", challenge=two_challenge_sets.challenge_set_1.challenge, client=client, method=client.post, user=two_challenge_sets.challenge_set_1.participant1, reverse_kwargs={"pk": team.pk}, ) assert response.status_code == 200 assert ( "You are already a member of another team for this challenge" in response.rendered_content ) # participant12 should be able to create a team in their challenge and join # another team response = get_view_for_user( viewname="teams:create", challenge=two_challenge_sets.challenge_set_2.challenge, client=client, method=client.post, user=two_challenge_sets.participant12, data={"name": "thisteamshouldbecreated"}, ) assert response.status_code == 302 response = get_view_for_user( viewname="teams:member-create", challenge=two_challenge_sets.challenge_set_1.challenge, client=client, method=client.post, user=two_challenge_sets.participant12, reverse_kwargs={"pk": team.pk}, ) assert response.status_code == 302 assert two_challenge_sets.participant12 in team.get_members() response = get_view_for_user( viewname="teams:member-create", challenge=two_challenge_sets.challenge_set_1.challenge, client=client, method=client.post, user=two_challenge_sets.participant12, reverse_kwargs={"pk": team1.pk}, ) assert response.status_code == 200 assert ( "You are already a member of another team for this challenge" in response.rendered_content )
test/programytest/config/brain/test_dynamic.py
cdoebler1/AIML2
345
45561
import unittest from programy.clients.events.console.config import ConsoleConfiguration from programy.config.brain.dynamic import BrainDynamicsConfiguration from programy.config.file.yaml_file import YamlConfigurationFile class BrainDynamicsConfigurationTests(unittest.TestCase): def test_with_data(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" brain: dynamic: variables: gettime: programy.dynamic.variables.datetime.GetTime sets: number: programy.dynamic.sets.numeric.IsNumeric roman: programy.dynamic.sets.roman.IsRomanNumeral maps: romantodec: programy.dynamic.maps.roman.MapRomanToDecimal dectoroman: programy.dynamic.maps.roman.MapDecimalToRoman """, ConsoleConfiguration(), ".") brain_config = yaml.get_section("brain") dynamic_config = BrainDynamicsConfiguration() dynamic_config.load_config_section(yaml, brain_config, ".") self.assertEquals({'GETTIME': 'programy.dynamic.variables.datetime.GetTime'}, dynamic_config.dynamic_vars) self.assertEquals({'NUMBER': 'programy.dynamic.sets.numeric.IsNumeric', 'ROMAN': 'programy.dynamic.sets.roman.IsRomanNumeral'}, dynamic_config.dynamic_sets) self.assertEquals({'ROMANTODEC': 'programy.dynamic.maps.roman.MapRomanToDecimal', 'DECTOROMAN': 'programy.dynamic.maps.roman.MapDecimalToRoman'}, dynamic_config.dynamic_maps) def test_with_missing_vars_sets_maps(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" brain: dynamic: """, ConsoleConfiguration(), ".") brain_config = yaml.get_section("brain") dynamic_config = BrainDynamicsConfiguration() dynamic_config.load_config_section(yaml, brain_config, ".") self.assertEquals({}, dynamic_config.dynamic_vars) self.assertEquals({}, dynamic_config.dynamic_sets) self.assertEquals({}, dynamic_config.dynamic_maps) def test_with_missing_vars_sets_maps2(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" brain: dynamic: something: else """, ConsoleConfiguration(), ".") brain_config = yaml.get_section("brain") dynamic_config = BrainDynamicsConfiguration() dynamic_config.load_config_section(yaml, brain_config, ".") self.assertEquals({}, dynamic_config.dynamic_vars) self.assertEquals({}, dynamic_config.dynamic_sets) self.assertEquals({}, dynamic_config.dynamic_maps) def test_without_data(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" brain: dynamic: """, ConsoleConfiguration(), ".") brain_config = yaml.get_section("brain") dynamic_config = BrainDynamicsConfiguration() dynamic_config.load_config_section(yaml, brain_config, ".") self.assertEquals({}, dynamic_config.dynamic_vars) self.assertEquals({}, dynamic_config.dynamic_sets) self.assertEquals({}, dynamic_config.dynamic_maps) def test_with_no_data(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" brain: """, ConsoleConfiguration(), ".") brain_config = yaml.get_section("brain") dynamic_config = BrainDynamicsConfiguration() dynamic_config.load_config_section(yaml, brain_config, ".") self.assertEquals({}, dynamic_config.dynamic_vars) self.assertEquals({}, dynamic_config.dynamic_sets) self.assertEquals({}, dynamic_config.dynamic_maps) def test_to_yaml_defaults(self): yaml = {} dynamic_config = BrainDynamicsConfiguration() dynamic_config.to_yaml(yaml, defaults=True) self.assertEquals({'GETTIME': 'programy.dynamic.variables.datetime.GetTime'}, yaml['variables']) self.assertEquals({'NUMBER': 'programy.dynamic.sets.numeric.IsNumeric', 'ROMAN': 'programy.dynamic.sets.roman.IsRomanNumeral', 'STOPWORD': 'programy.dynamic.sets.stopword.IsStopWord', 'SYNSETS': 'programy.dynamic.sets.synsets.IsSynset'}, yaml['sets']) self.assertEquals({'ROMANTODDEC': 'programy.dynamic.maps.roman.MapRomanToDecimal', 'DECTOROMAN': 'programy.dynamic.maps.roman.MapDecimalToRoman', 'LEMMATIZE': 'programy.dynamic.maps.lemmatize.LemmatizeMap', 'STEMMER': 'programy.dynamic.maps.stemmer.StemmerMap'}, yaml['maps']) def test_to_yaml_no_defaults(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" brain: dynamic: variables: gettime: programy.dynamic.variables.datetime.GetTime sets: number: programy.dynamic.sets.numeric.IsNumeric roman: programy.dynamic.sets.roman.IsRomanNumeral maps: romantodec: programy.dynamic.maps.roman.MapRomanToDecimal dectoroman: programy.dynamic.maps.roman.MapDecimalToRoman """, ConsoleConfiguration(), ".") brain_config = yaml.get_section("brain") dynamic_config = BrainDynamicsConfiguration() dynamic_config.load_config_section(yaml, brain_config, ".") data = {} dynamic_config.to_yaml(data, defaults=False) self.assertEquals({'GETTIME': 'programy.dynamic.variables.datetime.GetTime'}, data['variables']) self.assertEquals({'NUMBER': 'programy.dynamic.sets.numeric.IsNumeric', 'ROMAN': 'programy.dynamic.sets.roman.IsRomanNumeral'}, data['sets']) self.assertEquals({'ROMANTODEC': 'programy.dynamic.maps.roman.MapRomanToDecimal', 'DECTOROMAN': 'programy.dynamic.maps.roman.MapDecimalToRoman'}, data['maps']) def test_to_yaml_no_defaults_no_data(self): yaml = {} dynamic_config = BrainDynamicsConfiguration() dynamic_config.to_yaml(yaml, defaults=False) self.assertEquals({}, yaml['variables']) self.assertEquals({}, yaml['sets']) self.assertEquals({}, yaml['maps']) def test_defaults(self): dynamic_config = BrainDynamicsConfiguration() data = {} dynamic_config.to_yaml(data, True) BrainDynamicsConfigurationTests.assert_defaults(self, data) @staticmethod def assert_defaults(test, data): test.assertTrue('sets' in data) test.assertEqual(data['sets']['NUMBER'], 'programy.dynamic.sets.numeric.IsNumeric') test.assertEqual(data['sets']['ROMAN'], 'programy.dynamic.sets.roman.IsRomanNumeral') test.assertEqual(data['sets']['STOPWORD'], 'programy.dynamic.sets.stopword.IsStopWord') test.assertEqual(data['sets']['SYNSETS'], 'programy.dynamic.sets.synsets.IsSynset') test.assertTrue('maps' in data) test.assertEqual(data['maps']['ROMANTODDEC'], 'programy.dynamic.maps.roman.MapRomanToDecimal') test.assertEqual(data['maps']['DECTOROMAN'], 'programy.dynamic.maps.roman.MapDecimalToRoman') test.assertEqual(data['maps']['LEMMATIZE'], 'programy.dynamic.maps.lemmatize.LemmatizeMap') test.assertEqual(data['maps']['STEMMER'], 'programy.dynamic.maps.stemmer.StemmerMap') test.assertTrue('variables' in data) test.assertEqual(data['variables']['GETTIME'], 'programy.dynamic.variables.datetime.GetTime')
api/organisations/managers.py
mevinbabuc/flagsmith
1,259
45575
<reponame>mevinbabuc/flagsmith from django.db.models import Manager from permissions.models import ORGANISATION_PERMISSION_TYPE class OrganisationPermissionManager(Manager): def get_queryset(self): return super().get_queryset().filter(type=ORGANISATION_PERMISSION_TYPE)
nuplan/planning/metrics/evaluation_metrics/common/clearance_from_static_agents.py
motional/nuplan-devkit
128
45595
from collections import defaultdict from dataclasses import dataclass from typing import Dict, List, Optional import numpy as np import numpy.typing as npt from nuplan.common.actor_state.agent import Agent from nuplan.common.actor_state.ego_state import EgoState from nuplan.common.actor_state.vehicle_parameters import get_pacifica_parameters from nuplan.common.geometry.compute import signed_lateral_distance, signed_longitudinal_distance from nuplan.planning.metrics.evaluation_metrics.base.metric_base import MetricBase from nuplan.planning.metrics.metric_result import MetricStatistics, MetricStatisticsType, Statistic, TimeSeries from nuplan.planning.scenario_builder.abstract_scenario import AbstractScenario from nuplan.planning.simulation.history.simulation_history import SimulationHistory from nuplan.planning.simulation.observation.observation_type import DetectionsTracks @dataclass class EgoAgentPair: """Class to pair ego and agent.""" ego_state: EgoState # Ego state agent: Agent # Agent @dataclass class EgoToAgentDistances: """ Class to keep track of the history of projected distances from ego to an agent. It also contains the length of the agent. """ agent_lengths: List[float] # A list of Length of agents [m] longitudinal_distances: List[float] # Longitudinal distance from ego to the agent [m] lateral_distances: List[float] # Lateral distance from ego to the agent [m] class ClearanceFromStaticAgentsStatistics(MetricBase): """Metric on clearance while passing static vehicles.""" def __init__(self, name: str, category: str, lateral_distance_threshold: float) -> None: """ Initializes the ClearanceFromStaticAgentsStatistics class :param name: Metric name :param category: Metric category :param lateral_distance_threshold: Agents laterally further away than this threshold are not considered. """ super().__init__(name=name, category=category) self._lateral_distance_threshold = lateral_distance_threshold self._ego_half_length = get_pacifica_parameters().half_length def compute_score( self, scenario: AbstractScenario, metric_statistics: Dict[str, Statistic], time_series: Optional[TimeSeries] = None, ) -> float: """Inherited, see superclass.""" # TODO: Define the metric score return 0.0 def compute(self, history: SimulationHistory, scenario: AbstractScenario) -> List[MetricStatistics]: """ Returns the estimated metric :param history: History from a simulation engine :param scenario: Scenario running this metric :return the estimated metric. """ # Compute projected distances agents_distances = self._extract_agent_projected_distances(history) clearances_during_passing = self._extract_passing_clearances(agents_distances) if not clearances_during_passing: return [] statistics = { MetricStatisticsType.MAX: Statistic( name='max_clearance_overtaking_static_agent', unit='meters', value=np.amax(clearances_during_passing) ), MetricStatisticsType.MIN: Statistic( name='min_clearance_overtaking_static_agent', unit='meters', value=np.amin(clearances_during_passing) ), MetricStatisticsType.P90: Statistic( name='p90_clearance_overtaking_static_agent', unit='meters', value=np.percentile(np.abs(clearances_during_passing), 90), ), } results = self._construct_metric_results(metric_statistics=statistics, time_series=None, scenario=scenario) return results # type: ignore def get_overtake_start_idx( self, longitudinal_dist: List[float], idx_overtake: int, critical_dist_abs: float ) -> int: """ Finds the index of the element which represents the start of the overtake :param longitudinal_dist: longitudinal distances :param idx_overtake: index of the distance closest to zero :param critical_dist_abs: critical distance which represent start of overtake :return index of the start of overtake. """ offset = self._get_overtake_edge(longitudinal_dist[idx_overtake::-1], critical_dist_abs) return idx_overtake - offset if offset is not None else 0 def get_overtake_end_idx(self, longitudinal_dist: List[float], idx_overtake: int, critical_dist_abs: float) -> int: """ Finds the index of the element which represents the end of the overtake :param longitudinal_dist: longitudinal distances :param idx_overtake: index of the distance closest to zero :param critical_dist_abs: critical distance which represent end of overtake :return index of the end of overtake. """ offset = self._get_overtake_edge(longitudinal_dist[idx_overtake:], critical_dist_abs) return idx_overtake + offset if offset is not None else -1 @staticmethod def _get_overtake_edge(distances: List[float], critical_distance: float) -> Optional[int]: """ Finds the index of the first element which exceeds the given amount in a list :param distances: list of distances :param critical_distance: threshold distance :return index of the first element exceeding the given amount, None if it doesn't happen. """ for idx_start, d in enumerate(distances): if abs(d) > critical_distance: return idx_start return None def _extract_agent_projected_distances(self, history: SimulationHistory) -> Dict[str, EgoToAgentDistances]: """ Computes the projected distances, for inactive agents only :param history: The history of the scenario :return A dict containing the projected distances to each inactive track in the entire scenario. """ agents_distances: Dict[str, EgoToAgentDistances] = {} inactive_agents_scenario = self._get_inactive_agents_scenario(history) for track_token, ego_agent_pairs in inactive_agents_scenario.items(): lateral_dist = [ signed_lateral_distance(ego_agent_pair.ego_state.rear_axle, ego_agent_pair.agent.box.geometry) for ego_agent_pair in ego_agent_pairs ] longitudinal_dist = [ signed_longitudinal_distance(ego_agent_pair.ego_state.rear_axle, ego_agent_pair.agent.box.geometry) for ego_agent_pair in ego_agent_pairs ] lengths = [ego_agent_pair.agent.box.length for ego_agent_pair in ego_agent_pairs] agents_distances[track_token] = EgoToAgentDistances( agent_lengths=lengths, longitudinal_distances=longitudinal_dist, lateral_distances=lateral_dist ) return agents_distances def _extract_passing_clearances(self, agents_distances: Dict[str, EgoToAgentDistances]) -> List[float]: """ Extracts the portion of projected distances relative to the passing of every agent and saves them to a list :param agents_distances: The projected distances to each inactive agent :return A list containing the lateral clearance of all inactive agents while ego is passing them. """ clearances_during_overtake = [] for distances in agents_distances.values(): max_longitudinal_dist = max(distances.longitudinal_distances) idx_max = distances.longitudinal_distances.index(max_longitudinal_dist) min_longitudinal_dist = min(distances.longitudinal_distances) idx_min = distances.longitudinal_distances.index(min_longitudinal_dist) if max_longitudinal_dist > 0 > min_longitudinal_dist and idx_max < idx_min: overtake_idx = int(np.argmin(np.abs(distances.longitudinal_distances))) if abs(distances.lateral_distances[overtake_idx]) < self._lateral_distance_threshold: threshold = self._ego_half_length + distances.agent_lengths[overtake_idx] / 2.0 start_idx = self.get_overtake_start_idx( distances.longitudinal_distances, int(overtake_idx), threshold ) end_idx = self.get_overtake_end_idx(distances.longitudinal_distances, int(overtake_idx), threshold) clearances_during_overtake.extend(np.abs(distances.lateral_distances[start_idx : end_idx + 1])) return clearances_during_overtake @staticmethod def _get_inactive_agents_scenario(history: SimulationHistory) -> Dict[str, List[EgoAgentPair]]: """ Get a set of agents which are inactive for the full length of the scenario An inactive agents in this context is an agent that for the entire scenario never moves :param history: The history from the scenario :return A dict of inactive tracks and their ego poses with agents. """ # Collect a series of agents to their tracks agent_tracks = defaultdict(list) for sample in history.data: ego_state = sample.ego_state if not isinstance(sample.observation, DetectionsTracks): continue for tracked_object in sample.observation.tracked_objects.get_agents(): agent_tracks[tracked_object.track_token].append(EgoAgentPair(ego_state=ego_state, agent=tracked_object)) inactive_track_agents = defaultdict(list) for track_token, ego_agent_pairs in agent_tracks.items(): velocities: npt.NDArray[np.float64] = np.asarray( [ego_agent_pair.agent.velocity.magnitude() for ego_agent_pair in ego_agent_pairs] ) inactive_status = np.isclose(velocities, 0.0) # Must all inactive if np.sum(inactive_status) != len(velocities): continue inactive_track_agents[track_token] = ego_agent_pairs return inactive_track_agents
dotnet/private/copy_files.bzl
TamsilAmani/selenium
25,151
45630
<filename>dotnet/private/copy_files.bzl def _copy_cmd(ctx, file_list, target_dir): dest_list = [] if file_list == None or len(file_list) == 0: return dest_list shell_content = "" batch_file_name = "%s-copy-files.bat" % (ctx.label.name) bat = ctx.actions.declare_file(batch_file_name) src_file_list = [] for (src_file, relative_dest_file) in file_list: src_file_list.append(src_file) dest_file = ctx.actions.declare_file("{}/{}".format(target_dir, relative_dest_file)) dest_list.append(dest_file) shell_content += "@copy /Y \"%s\" \"%s\" >NUL\n" % ( src_file.path.replace("/", "\\"), dest_file.path.replace("/", "\\"), ) ctx.actions.write( output = bat, content = shell_content, is_executable = True, ) ctx.actions.run( inputs = src_file_list, tools = [bat], outputs = dest_list, executable = "cmd.exe", arguments = ["/C", bat.path.replace("/", "\\")], mnemonic = "CopyFile", progress_message = "Copying files", use_default_shell_env = True, ) return dest_list def _copy_bash(ctx, src_list, target_dir): dest_list = [] for (src_file, relative_dest_file) in src_list: dest_file = ctx.actions.declare_file("{}/{}".format(target_dir, relative_dest_file)) dest_list.append(dest_file) ctx.actions.run_shell( tools = [src_file], outputs = [dest_file], command = "cp -f \"$1\" \"$2\"", arguments = [src_file.path, dest_file.path], mnemonic = "CopyFile", progress_message = "Copying files", use_default_shell_env = True, ) return dest_list def copy_files(ctx, file_list, base_dest_directory, is_windows): dest_list = [] if is_windows: dest_list = _copy_cmd(ctx, file_list, base_dest_directory) else: dest_list = _copy_bash(ctx, file_list, base_dest_directory) return dest_list
Trakttv.bundle/Contents/Libraries/Shared/trakt_sync/cache/enums.py
disrupted/Trakttv.bundle
1,346
45632
class Enum(object): @classmethod def parse(cls, value): options = cls.options() result = [] for k, v in options.items(): if type(v) is not int or v == 0: continue if value == 0 or (value & v) == v: result.append(v) return result @classmethod def options(cls): result = {} for key in dir(cls): if key.startswith('_'): continue result[key] = getattr(cls, key) return result class Media(Enum): All = 0 Movies = 1 Shows = 2 Seasons = 4 Episodes = 8 Lists = 16 __map__ = None @classmethod def get(cls, key): if cls.__map__ is None: cls.__map__ = { Media.Movies: 'movies', Media.Shows: 'shows', Media.Seasons: 'seasons', Media.Episodes: 'episodes', Media.Lists: 'lists' } return cls.__map__.get(key) class Data(Enum): All = 0 Collection = 1 Playback = 2 Ratings = 4 Watched = 8 Watchlist = 16 # Lists Liked = 32 Personal = 64 __attributes__ = None __map__ = None @classmethod def initialize(cls): if cls.__attributes__: return cls.__attributes__ = { Data.Collection: { 'interface': 'sync/collection', 'timestamp': 'collected_at' }, Data.Playback: { 'interface': 'sync/playback', 'timestamp': 'paused_at' }, Data.Ratings: { 'interface': 'sync/ratings', 'timestamp': 'rated_at' }, Data.Watched: { 'interface': 'sync/watched', 'timestamp': 'watched_at' }, Data.Watchlist: { 'interface': 'sync/watchlist', 'timestamp': 'watchlisted_at' }, # Lists Data.Liked: { 'interface': 'users/likes', 'timestamp': 'updated_at' }, Data.Personal: { 'interface': 'users/*/lists', 'timestamp': 'updated_at' } } @classmethod def get(cls, key): if cls.__map__ is None: cls.__map__ = { Data.Collection: 'collection', Data.Playback: 'playback', Data.Ratings: 'ratings', Data.Watched: 'watched', Data.Watchlist: 'watchlist', # Lists Data.Liked: 'liked', Data.Personal: 'personal' } return cls.__map__.get(key) @classmethod def get_interface(cls, key): return cls.get_attribute(key, 'interface') @classmethod def get_timestamp_key(cls, key): return cls.get_attribute(key, 'timestamp') @classmethod def get_attribute(cls, key, attribute): cls.initialize() attributes = cls.__attributes__.get(key) if not attributes: return None return attributes.get(attribute)
Tools/resourceCompiler/mayaExporter/workers/skinclusterExporter.py
giordi91/SirEngineThe3rd
114
45650
import sys sys.path.append( "E:\\WORK_IN_PROGRESS\\C\\platfoorm\\engine\\misc\\exporters") from maya import cmds from maya import OpenMaya from maya import OpenMayaAnim import skeletonExporter reload(skeletonExporter) import json MAX_INFLUENCE = 6; def map_shadow_to_skeleton(root): data,joints = skeletonExporter.get_skeleton_data(root) shadow_to_skele = {} skele_to_shadow={} #for each joints we need to follow the constraint to find the driver and build #a map with that data for j in joints: const = cmds.listConnections(j + '.tx', d=0,s=1)[0] driver = cmds.listConnections(const + '.target[0].targetTranslate',s=1,d=0) shadow_to_skele[j] = driver[0] skele_to_shadow[driver[0]] = j return shadow_to_skele, skele_to_shadow def getWeightsData (mesh,skinNode, skele_to_shadow, joints): ''' This procedure let you create a dictionary holding all the needed information to rebuild a skinCluster map ''' sknN = skinNode cmds.undoInfo(openChunk = 1) infls = cmds.skinCluster(skinNode, q=True, inf=True) weightMap = [] # get the dag path of the shape node sel = OpenMaya.MSelectionList() cmds.select(skinNode) OpenMaya.MGlobal.getActiveSelectionList(sel) skinClusterObject = OpenMaya.MObject() sel.getDependNode(0,skinClusterObject ) skinClusterFn = OpenMayaAnim.MFnSkinCluster(skinClusterObject) cmds.select(mesh) sel = OpenMaya.MSelectionList() OpenMaya.MGlobal.getActiveSelectionList(sel) shapeDag = OpenMaya.MDagPath() sel.getDagPath(0, shapeDag) # create the geometry iterator geoIter = OpenMaya.MItGeometry(shapeDag) # create a pointer object for the influence count of the MFnSkinCluster infCount = OpenMaya.MScriptUtil() infCountPtr = infCount.asUintPtr() OpenMaya.MScriptUtil.setUint(infCountPtr, 0) value = OpenMaya.MDoubleArray() weightMap = [] infls= OpenMaya.MDagPathArray() skinClusterFn.influenceObjects(infls) while geoIter.isDone() == False: skinClusterFn.getWeights(shapeDag, geoIter.currentItem(), value, infCountPtr) vtx_data ={"idx": geoIter.index(), "j":[], "w":[]} for j in range(0, infls.length()): if value[j] > 0: if skele_to_shadow: jnt_idx = joints.index(skele_to_shadow[infls[j]]) else: #node = cmds.listConnections(skinN + ".matrix[" + str(j) + "]",s=1,d=0)[0] #jnt_idx = joints.index(node) node = infls[j].fullPathName().rsplit("|",1)[1] #print node jnt_idx = joints.index(node) #jnt_idx = j weight= value[j] vtx_data["j"].append(int(jnt_idx)) vtx_data["w"].append(float(weight)) currL = len(vtx_data["j"]) if currL>MAX_INFLUENCE: print "vertex",vtx_data["idx"], "joints got more than "+str(MAX_INFLUENCE) + " infs" return; if currL!= MAX_INFLUENCE: #lets format the data to have always 4 elemets deltaSize = MAX_INFLUENCE - currL vtx_data['j'].extend([int(0)]*deltaSize) vtx_data['w'].extend([0.0]*deltaSize) if len(vtx_data["j"]) != MAX_INFLUENCE: print "vertex",vtx_data["idx"], "wrong formatting after correction" if len(vtx_data["w"]) != MAX_INFLUENCE: print "vertex",vtx_data["idx"], "wrong formatting after correction" weightMap.append(vtx_data) geoIter.next() cmds.undoInfo(closeChunk = 1) print "------> WeightMap has been saved!" return weightMap def export_skin(root, skin_name, path, mesh , tootle_path=None, is_shadow=True): data,joints = skeletonExporter.get_skeleton_data(root) #print joints.index("L_EyeAim0") if is_shadow: print "----> Remapping to shadow skeleton" shadow_to_skele, skele_to_shadow = map_shadow_to_skeleton(root) data = getWeightsData(mesh,skin_name,skele_to_shadow, joints) else : data = getWeightsData(mesh,skin_name,None, joints) full = {"type":"skinCluster", "data":data, "skeleton": "dogSkeleton" } if tootle_path != None: #read in the tootle print "---> remapping skin using tootle data" t = open(tootle_path, 'r') tootle_map = json.load(t) newData = [0]*len(full["data"]) for i,d in enumerate(full["data"]): new = tootle_map[str(i)] newData[new] = d full["data"] = newData else: print "skippping tootle" to_save = json.dumps(full) f = open( path, 'w') f.write(to_save) f.close() print "saved to", path if __name__ == "__main__" or __name__ == "__builtin__": print "exporting skin" root = "root" skin = "skinCluster1" path = r"E:\WORK_IN_PROGRESS\C\platfoorm\engine\misc\exporters\temp_data\mannequin_skin.json" mesh = "mannequin" tootle_path = r"E:\WORK_IN_PROGRESS\C\platfoorm\engine\misc\exporters\temp_data\mannequin.tootle" tootle_path=None export_skin(root, skin, path, mesh, tootle_path, False) """ data,joints = skeleton_exporter.get_skeleton_data(root) shadow_to_skele, skele_to_shadow = map_shadow_to_skeleton(root) data = getWeightsData(mesh,skin,skele_to_shadow, joints) full = {"type":"skinCluster", "data":data, "skeleton": "dogSkeleton" } to_save = json.dumps(full) f = open( path, 'w') f.write(to_save) f.close() print "saved to", path """
gluon/gluoncv2/models/res2net.py
naviocean/imgclsmob
2,649
45661
""" Res2Net for ImageNet-1K, implemented in Gluon. Original paper: 'Res2Net: A New Multi-scale Backbone Architecture,' https://arxiv.org/abs/1904.01169. """ __all__ = ['Res2Net', 'res2net50_w14_s8', 'res2net50_w26_s8'] import os from mxnet import cpu from mxnet.gluon import nn, HybridBlock from mxnet.gluon.contrib.nn import Identity from .common import conv1x1, conv3x3, conv1x1_block from .resnet import ResInitBlock from .preresnet import PreResActivation class HierarchicalConcurrent(nn.HybridSequential): """ A container for hierarchical concatenation of blocks with parameters. Parameters: ---------- axis : int, default 1 The axis on which to concatenate the outputs. multi_input : bool, default False Whether input is multiple. """ def __init__(self, axis=1, multi_input=False, **kwargs): super(HierarchicalConcurrent, self).__init__(**kwargs) self.axis = axis self.multi_input = multi_input def hybrid_forward(self, F, x): out = [] y_prev = None if self.multi_input: xs = F.split(x, axis=self.axis, num_outputs=len(self._children.values())) for i, block in enumerate(self._children.values()): if self.multi_input: y = block(xs[i]) else: y = block(x) if y_prev is not None: y = y + y_prev out.append(y) y_prev = y out = F.concat(*out, dim=self.axis) return out class Res2NetUnit(HybridBlock): """ Res2Net unit. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int Strides of the branch convolution layers. width : int Width of filters. scale : int Number of scale. bn_use_global_stats : bool Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. """ def __init__(self, in_channels, out_channels, strides, width, scale, bn_use_global_stats, **kwargs): super(Res2NetUnit, self).__init__(**kwargs) self.scale = scale downsample = (strides != 1) self.resize_identity = (in_channels != out_channels) or downsample mid_channels = width * scale brn_channels = width with self.name_scope(): self.reduce_conv = conv1x1_block( in_channels=in_channels, out_channels=mid_channels, bn_use_global_stats=bn_use_global_stats) self.branches = HierarchicalConcurrent(axis=1, multi_input=True, prefix="") if downsample: self.branches.add(conv1x1( in_channels=brn_channels, out_channels=brn_channels, strides=strides)) else: self.branches.add(Identity()) for i in range(scale - 1): self.branches.add(conv3x3( in_channels=brn_channels, out_channels=brn_channels, strides=strides)) self.preactiv = PreResActivation(in_channels=mid_channels) self.merge_conv = conv1x1_block( in_channels=mid_channels, out_channels=out_channels, bn_use_global_stats=bn_use_global_stats, activation=None) if self.resize_identity: self.identity_conv = conv1x1_block( in_channels=in_channels, out_channels=out_channels, strides=strides, bn_use_global_stats=bn_use_global_stats, activation=None) self.activ = nn.Activation("relu") def hybrid_forward(self, F, x): if self.resize_identity: identity = self.identity_conv(x) else: identity = x y = self.reduce_conv(x) y = self.branches(y) y = self.preactiv(y) y = self.merge_conv(y) y = y + identity y = self.activ(y) return y class Res2Net(HybridBlock): """ Res2Net model from 'Res2Net: A New Multi-scale Backbone Architecture,' https://arxiv.org/abs/1904.01169. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. width : int Width of filters. scale : int Number of scale. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. Useful for fine-tuning. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. classes : int, default 1000 Number of classification classes. """ def __init__(self, channels, init_block_channels, width, scale, bn_use_global_stats=False, in_channels=3, in_size=(224, 224), classes=1000, **kwargs): super(Res2Net, self).__init__(**kwargs) self.in_size = in_size self.classes = classes with self.name_scope(): self.features = nn.HybridSequential(prefix="") self.features.add(ResInitBlock( in_channels=in_channels, out_channels=init_block_channels, bn_use_global_stats=bn_use_global_stats)) in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): stage = nn.HybridSequential(prefix="stage{}_".format(i + 1)) with stage.name_scope(): for j, out_channels in enumerate(channels_per_stage): strides = 2 if (j == 0) and (i != 0) else 1 stage.add(Res2NetUnit( in_channels=in_channels, out_channels=out_channels, strides=strides, width=width, scale=scale, bn_use_global_stats=bn_use_global_stats)) in_channels = out_channels self.features.add(stage) self.features.add(nn.AvgPool2D( pool_size=7, strides=1)) self.output = nn.HybridSequential(prefix="") self.output.add(nn.Flatten()) self.output.add(nn.Dense( units=classes, in_units=in_channels)) def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x def get_res2net(blocks, width, scale, model_name=None, pretrained=False, ctx=cpu(), root=os.path.join("~", ".mxnet", "models"), **kwargs): """ Create Res2Net model with specific parameters. Parameters: ---------- blocks : int Number of blocks. width : int Width of filters. scale : int Number of scale. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ bottleneck = True if blocks == 50: layers = [3, 4, 6, 3] elif blocks == 101: layers = [3, 4, 23, 3] elif blocks == 152: layers = [3, 8, 36, 3] else: raise ValueError("Unsupported Res2Net with number of blocks: {}".format(blocks)) assert (sum(layers) * 3 + 2 == blocks) init_block_channels = 64 channels_per_layers = [64, 128, 256, 512] if bottleneck: bottleneck_factor = 4 channels_per_layers = [ci * bottleneck_factor for ci in channels_per_layers] channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] net = Res2Net( channels=channels, init_block_channels=init_block_channels, width=width, scale=scale, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file net.load_parameters( filename=get_model_file( model_name=model_name, local_model_store_dir_path=root), ctx=ctx) return net def res2net50_w14_s8(**kwargs): """ Res2Net-50 (14wx8s) model from 'Res2Net: A New Multi-scale Backbone Architecture,' https://arxiv.org/abs/1904.01169. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_res2net(blocks=50, width=14, scale=8, model_name="res2net50_w14_s8", **kwargs) def res2net50_w26_s8(**kwargs): """ Res2Net-50 (26wx8s) model from 'Res2Net: A New Multi-scale Backbone Architecture,' https://arxiv.org/abs/1904.01169. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_res2net(blocks=50, width=26, scale=8, model_name="res2net50_w14_s8", **kwargs) def _test(): import numpy as np import mxnet as mx pretrained = False models = [ res2net50_w14_s8, res2net50_w26_s8, ] for model in models: net = model(pretrained=pretrained) ctx = mx.cpu() if not pretrained: net.initialize(ctx=ctx) # net.hybridize() net_params = net.collect_params() weight_count = 0 for param in net_params.values(): if (param.shape is None) or (not param._differentiable): continue weight_count += np.prod(param.shape) print("m={}, {}".format(model.__name__, weight_count)) assert (model != res2net50_w14_s8 or weight_count == 8231732) assert (model != res2net50_w26_s8 or weight_count == 11432660) x = mx.nd.zeros((1, 3, 224, 224), ctx=ctx) y = net(x) assert (y.shape == (1, 1000)) if __name__ == "__main__": _test()
rls/common/decorator.py
StepNeverStop/RLs
371
45695
<reponame>StepNeverStop/RLs #!/usr/bin/env python3 # encoding: utf-8 import functools import torch as th from rls.utils.converter import to_numpy, to_tensor def lazy_property(func): attribute = '_lazy_' + func.__name__ @property # 将原函数对象(func)的指定属性复制给包装函数对象(wrapper), 默认有 module、name、doc,或者通过参数选择 @functools.wraps(func) def wrapper(self): if not hasattr(self, attribute): setattr(self, attribute, func(self)) return getattr(self, attribute) return wrapper def iton(func, dtype=th.float32, device='cpu'): def wrapper(*args, **kwargs): if args and hasattr(args[0], 'device'): _device = getattr(args[0], 'device') args = [args[0]] + \ [to_tensor(x, dtype=dtype, device=_device) for x in args[1:]] else: args = [to_tensor(x, dtype=dtype, device=device) for x in args] kwargs = {k: to_tensor(v, dtype=dtype, device=device) for k, v in kwargs.items()} output = func(*args, **kwargs) output = to_numpy(output) return output return wrapper
detectors/__init__.py
bc-jcarlson/secret-bridge
152
45717
from detectors.detectsecrets import DetectSecrets from detectors.gitsecrets import GitSecrets from detectors.trufflehog import TruffleHog # TODO: Turn this into a registry to match the notifiers pattern? AvailableDetectors = { 'detect-secrets': DetectSecrets, 'git-secrets': GitSecrets, 'trufflehog': TruffleHog }
fhir/resources/tests/test_specimendefinition.py
cstoltze/fhir.resources
144
45732
<reponame>cstoltze/fhir.resources # -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/StructureDefinition/SpecimenDefinition Release: R4 Version: 4.0.1 Build ID: 9346c8cc45 Last updated: 2019-11-01T09:29:23.356+11:00 """ from pydantic.validators import bytes_validator # noqa: F401 from .. import fhirtypes # noqa: F401 from .. import specimendefinition def impl_specimendefinition_1(inst): assert inst.id == "2364" assert inst.meta.tag[0].code == "HTEST" assert inst.meta.tag[0].display == "test health data" assert ( inst.meta.tag[0].system == "http://terminology.hl7.org/CodeSystem/v3-ActReason" ) assert inst.patientPreparation[0].text == "12 hour fasting" assert inst.patientPreparation[1].coding[0].code == "263678003" assert inst.patientPreparation[1].coding[0].display == "At rest" assert inst.patientPreparation[1].coding[0].system == "http://snomed.info/sct" assert inst.text.status == "generated" assert inst.timeAspect == "preferrably morning time" assert inst.typeCollected.coding[0].code == "122555007" assert inst.typeCollected.coding[0].display == "Venous blood specimen" assert inst.typeCollected.coding[0].system == "http://snomed.info/sct" assert inst.typeTested[0].container.cap.coding[0].code == "yellow" assert inst.typeTested[0].container.cap.coding[0].display == "yellow cap" assert ( inst.typeTested[0].container.cap.coding[0].system == "urn:iso:std:iso:6710:2017" ) assert inst.typeTested[0].container.material.coding[0].code == "61088005" assert inst.typeTested[0].container.material.coding[0].display == "plastic" assert ( inst.typeTested[0].container.material.coding[0].system == "http://snomed.info/sct" ) assert inst.typeTested[0].container.minimumVolumeQuantity.code == "mL" assert ( inst.typeTested[0].container.minimumVolumeQuantity.system == "http://unitsofmeasure.org" ) assert inst.typeTested[0].container.minimumVolumeQuantity.unit == "ml" assert float(inst.typeTested[0].container.minimumVolumeQuantity.value) == float(2) assert inst.typeTested[0].container.type.coding[0].code == "702281005" assert inst.typeTested[0].container.type.coding[0].display == ( "Evacuated blood collection tube, thrombin/clot activator/gel" " separator" ) assert ( inst.typeTested[0].container.type.coding[0].system == "http://snomed.info/sct" ) assert inst.typeTested[0].handling[0].maxDuration.code == "min" assert ( inst.typeTested[0].handling[0].maxDuration.system == "http://unitsofmeasure.org" ) assert inst.typeTested[0].handling[0].maxDuration.unit == "minute" assert float(inst.typeTested[0].handling[0].maxDuration.value) == float(60) assert ( inst.typeTested[0].handling[0].temperatureQualifier.text == "Ambient temperature" ) assert inst.typeTested[0].handling[0].temperatureRange.high.code == "Cel" assert ( inst.typeTested[0].handling[0].temperatureRange.high.system == "http://unitsofmeasure.org" ) assert inst.typeTested[0].handling[0].temperatureRange.high.unit == "°C" assert float(inst.typeTested[0].handling[0].temperatureRange.high.value) == float( 25 ) assert inst.typeTested[0].handling[0].temperatureRange.low.code == "Cel" assert ( inst.typeTested[0].handling[0].temperatureRange.low.system == "http://unitsofmeasure.org" ) assert inst.typeTested[0].handling[0].temperatureRange.low.unit == "°C" assert float(inst.typeTested[0].handling[0].temperatureRange.low.value) == float(15) assert inst.typeTested[0].handling[1].maxDuration.code == "h" assert ( inst.typeTested[0].handling[1].maxDuration.system == "http://unitsofmeasure.org" ) assert inst.typeTested[0].handling[1].maxDuration.unit == "hour" assert float(inst.typeTested[0].handling[1].maxDuration.value) == float(8) assert ( inst.typeTested[0].handling[1].temperatureQualifier.text == "Refrigerated temperature" ) assert inst.typeTested[0].handling[1].temperatureRange.high.code == "Cel" assert ( inst.typeTested[0].handling[1].temperatureRange.high.system == "http://unitsofmeasure.org" ) assert inst.typeTested[0].handling[1].temperatureRange.high.unit == "°C" assert float(inst.typeTested[0].handling[1].temperatureRange.high.value) == float(8) assert inst.typeTested[0].handling[1].temperatureRange.low.code == "Cel" assert ( inst.typeTested[0].handling[1].temperatureRange.low.system == "http://unitsofmeasure.org" ) assert inst.typeTested[0].handling[1].temperatureRange.low.unit == "°C" assert float(inst.typeTested[0].handling[1].temperatureRange.low.value) == float(2) assert inst.typeTested[0].preference == "preferred" assert inst.typeTested[0].type.coding[0].code == "119364003" assert inst.typeTested[0].type.coding[0].display == "Serum specimen" assert inst.typeTested[0].type.coding[0].system == "http://snomed.info/sct" assert inst.typeTested[1].container.cap.coding[0].code == "green" assert inst.typeTested[1].container.cap.coding[0].display == "green cap" assert ( inst.typeTested[1].container.cap.coding[0].system == "urn:iso:std:iso:6710:2017" ) assert inst.typeTested[1].container.material.coding[0].code == "32039001" assert inst.typeTested[1].container.material.coding[0].display == "glass" assert ( inst.typeTested[1].container.material.coding[0].system == "http://snomed.info/sct" ) assert inst.typeTested[1].container.minimumVolumeQuantity.code == "mL" assert ( inst.typeTested[1].container.minimumVolumeQuantity.system == "http://unitsofmeasure.org" ) assert inst.typeTested[1].container.minimumVolumeQuantity.unit == "ml" assert float(inst.typeTested[1].container.minimumVolumeQuantity.value) == float(2) assert inst.typeTested[1].container.type.coding[0].code == "767390000" assert inst.typeTested[1].container.type.coding[0].display == ( "Evacuated blood collection tube with heparin lithium and gel" " separator" ) assert ( inst.typeTested[1].container.type.coding[0].system == "http://snomed.info/sct" ) assert inst.typeTested[1].handling[0].maxDuration.code == "min" assert ( inst.typeTested[1].handling[0].maxDuration.system == "http://unitsofmeasure.org" ) assert inst.typeTested[1].handling[0].maxDuration.unit == "minute" assert float(inst.typeTested[1].handling[0].maxDuration.value) == float(60) assert ( inst.typeTested[1].handling[0].temperatureQualifier.text == "Ambient temperature" ) assert inst.typeTested[1].handling[0].temperatureRange.high.code == "Cel" assert ( inst.typeTested[1].handling[0].temperatureRange.high.system == "http://unitsofmeasure.org" ) assert inst.typeTested[1].handling[0].temperatureRange.high.unit == "°C" assert float(inst.typeTested[1].handling[0].temperatureRange.high.value) == float( 25 ) assert inst.typeTested[1].handling[0].temperatureRange.low.code == "Cel" assert ( inst.typeTested[1].handling[0].temperatureRange.low.system == "http://unitsofmeasure.org" ) assert inst.typeTested[1].handling[0].temperatureRange.low.unit == "°C" assert float(inst.typeTested[1].handling[0].temperatureRange.low.value) == float(15) assert inst.typeTested[1].handling[1].maxDuration.code == "h" assert ( inst.typeTested[1].handling[1].maxDuration.system == "http://unitsofmeasure.org" ) assert inst.typeTested[1].handling[1].maxDuration.unit == "hour" assert float(inst.typeTested[1].handling[1].maxDuration.value) == float(8) assert ( inst.typeTested[1].handling[1].temperatureQualifier.text == "Refrigerated temperature" ) assert inst.typeTested[1].handling[1].temperatureRange.high.code == "Cel" assert ( inst.typeTested[1].handling[1].temperatureRange.high.system == "http://unitsofmeasure.org" ) assert inst.typeTested[1].handling[1].temperatureRange.high.unit == "°C" assert float(inst.typeTested[1].handling[1].temperatureRange.high.value) == float(8) assert inst.typeTested[1].handling[1].temperatureRange.low.code == "Cel" assert ( inst.typeTested[1].handling[1].temperatureRange.low.system == "http://unitsofmeasure.org" ) assert inst.typeTested[1].handling[1].temperatureRange.low.unit == "°C" assert float(inst.typeTested[1].handling[1].temperatureRange.low.value) == float(2) assert inst.typeTested[1].preference == "alternate" assert inst.typeTested[1].rejectionCriterion[0].coding[0].code == "insufficient" assert ( inst.typeTested[1].rejectionCriterion[0].coding[0].display == "insufficient specimen volume" ) assert ( inst.typeTested[1].rejectionCriterion[0].coding[0].system == "http://terminology.hl7.org/CodeSystem/rejection-criteria" ) assert inst.typeTested[1].rejectionCriterion[1].coding[0].code == "hemolized" assert ( inst.typeTested[1].rejectionCriterion[1].coding[0].display == "hemolized specimen" ) assert ( inst.typeTested[1].rejectionCriterion[1].coding[0].system == "http://terminology.hl7.org/CodeSystem/rejection-criteria" ) assert inst.typeTested[1].type.coding[0].code == "119361006" assert inst.typeTested[1].type.coding[0].display == "Plasma specimen" assert inst.typeTested[1].type.coding[0].system == "http://snomed.info/sct" def test_specimendefinition_1(base_settings): """No. 1 tests collection for SpecimenDefinition. Test File: specimendefinition-example-serum-plasma.json """ filename = ( base_settings["unittest_data_dir"] / "specimendefinition-example-serum-plasma.json" ) inst = specimendefinition.SpecimenDefinition.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "SpecimenDefinition" == inst.resource_type impl_specimendefinition_1(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "SpecimenDefinition" == data["resourceType"] inst2 = specimendefinition.SpecimenDefinition(**data) impl_specimendefinition_1(inst2)
mindinsight/datavisual/data_transform/graph/optimized_graph.py
mindspore-ai/mindinsight
216
45757
<reponame>mindspore-ai/mindinsight<gh_stars>100-1000 # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """This file is used to define the MindSpore graph.""" from collections import defaultdict from mindinsight.datavisual.common.log import logger from mindinsight.datavisual.data_transform.graph.msgraph import MSGraph from mindinsight.domain.graph.base import NodeTypeEnum class OptimizedGraph(MSGraph): """The object describes the MindSpore graph, and it is defined in the anf_ir proto file.""" MIN_GROUP_NODE_COUNT = 10 def __init__(self): super().__init__() self._load_node_temp_cache = {} def _inherit_input_output_from_subnode(self, parent_node, subnode_list, filtered_type=None): """ Adds the input and output of all direct child nodes to the current node. Args: parent_node (Node): The nodes that inherit the input and output of the child nodes. subnode_list (list[Node]): A list of child nodes that are inherited from the input and output. filtered_type (set(str)): Filter some input and output that do not require inheritance based on the node type. Default is filter const node. Note: - Only the inputs and outputs of the external scope are inherited. - Before add_const_node method, if the input is a const, the scope of the const node is not startswith the name of parent node. So in this scenario, we need to filter the const nodes. """ filtered_type = {NodeTypeEnum.CONST.value} if filtered_type is None else filtered_type for method in ['inputs', 'outputs', 'proxy_inputs', 'proxy_outputs']: for node in subnode_list: for item_name, item_attr in getattr(node, method).items(): target_node = self._get_normal_node(node_name=item_name) if target_node is None: logger.warning("inherit %s from subnode, target node (%s) is None", method, item_name) continue if item_name.startswith(f'{parent_node.name}/'): continue if target_node.type in filtered_type: continue getattr(parent_node, f'add_{method}')(item_name, item_attr) def _cache_node(self, node): """Store the node in the cache.""" # Notice: # The additional caching is used to handle the Const, Parameter and LOAD nodes separately later. super()._cache_node(node) if node.type == NodeTypeEnum.LOAD.value: self._load_node_temp_cache.update({node.name: node}) def _delete_nodes_of_cache(self, node_names): """Delete node from cache.""" logger.debug("These nodes will be removed from the cache, node names: %s.", node_names) for name in node_names: if self._parameter_node_temp_cache.get(name): self._parameter_node_temp_cache.pop(name) if self._const_node_temp_cache.get(name): self._const_node_temp_cache.pop(name) if self._load_node_temp_cache.get(name): self._load_node_temp_cache.pop(name) node = self._get_normal_node(node_name=name) self._normal_node_map.pop(name) self._node_id_map_name.pop(node.node_id) def _parse_data(self, proto_data): """ The proto data is parsed and all nodes are stored in the specified structure. Args: proto_data (anf_ir_pb2.GraphProto): Refer to anf_ir_pb2.GraphProto object. """ logger.info("Start to parse graph proto data.") self._parse_op_nodes(proto_data.node) self._parse_parameters(proto_data.parameters) self._parse_consts(proto_data.const_vals) self._update_input_after_create_node() self._update_output_after_create_node() self._delete_non_computational_ops() self._clean_no_input_output_node() self._extract_node_by_single_node_in_scope() logger.info("Parse proto data end, normal node count(only contain op node, " "parameter, const): %s.", self.normal_node_count) def _parse_op_nodes(self, node_protos): """ Parse `anf_ir_pb2.NodeProto` object, and create a normal node. Args: node_protos (list[anf_ir_pb2.NodeProto]): Refer to anf_ir_pb2.NodeProto. """ logger.debug("Start to parse op nodes from proto.") for topological_index, node_proto in enumerate(node_protos): if not node_proto.name: logger.warning("Finding a node with an empty name will not save it.") continue if node_proto.full_name.startswith("Gradients") or "optimizer" in node_proto.full_name \ or "opt" in node_proto.instance_name: continue self._parse_op_node(topological_index, node_proto) def _update_input_after_create_node(self): """Update the input of node after create node.""" for node in self._normal_node_map.values(): for src_node_id, input_attr in dict(node.inputs).items(): node.delete_inputs(src_node_id) if not self._is_node_exist(node_id=src_node_id): continue src_node = self._get_normal_node(node_id=src_node_id) input_attr['shape'] = src_node.output_shape input_attr['data_type'] = src_node.output_data_type node.add_inputs(src_name=src_node.name, input_attr=input_attr) nodes = self._list_nodes_without_parameter_const() for node in nodes: for src_node_name, _ in dict(node.inputs).items(): if not self._is_node_exist(node_name=src_node_name): logger.warning("Source node (%s) is None.", src_node_name) continue src_node = self._get_normal_node(node_name=src_node_name) if src_node.type in (NodeTypeEnum.LOAD.value, NodeTypeEnum.TUPLE_GET_ITEM.value, NodeTypeEnum.MAKETUPLE.value, NodeTypeEnum.UPDATE_STATE.value): node.delete_inputs(src_node_name) for source_node_name, source_attr in dict(src_node.inputs).items(): source_node = self._get_normal_node(node_name=source_node_name) if source_node is None: logger.warning("Source node (%s) is None.", source_node_name) continue source_attr['shape'] = source_node.output_shape source_attr['data_type'] = source_node.output_data_type node.add_inputs(src_name=source_node.name, input_attr=source_attr) def _update_output_after_create_node(self): """Update the output of node after create node.""" super()._update_output_after_create_node() nodes = self._list_nodes_without_parameter_const() for node in nodes: for src_node_name, _ in dict(node.outputs).items(): if not self._is_node_exist(node_name=src_node_name): logger.warning("Source node (%s}) is None.", src_node_name) continue src_node = self._get_normal_node(node_name=src_node_name) if src_node.type in (NodeTypeEnum.LOAD.value, NodeTypeEnum.TUPLE_GET_ITEM.value, NodeTypeEnum.MAKETUPLE.value, NodeTypeEnum.UPDATE_STATE.value): node.delete_outputs(src_node_name) for source_node_name, source_attr in dict(src_node.outputs).items(): source_node = self._get_normal_node(node_name=source_node_name) if source_node is None: logger.warning("Source node (%s) is None.", source_node_name) continue source_attr['shape'] = source_node.output_shape source_attr['data_type'] = source_node.output_data_type node.add_outputs(src_name=source_node.name, output_attr=source_attr) def _delete_non_computational_ops(self): """Deleted non-computational operators.""" delete_names = [] for node in self._normal_node_map.values(): if node.type in (NodeTypeEnum.LOAD.value, NodeTypeEnum.TUPLE_GET_ITEM.value, NodeTypeEnum.MAKETUPLE.value, NodeTypeEnum.UPDATE_STATE.value): delete_names.append(node.name) self._delete_nodes_of_cache(delete_names) def _list_nodes_without_parameter_const(self): """List nodes without parameter and const node.""" nodes = self._normal_node_map.values() not_expect_type = (NodeTypeEnum.CONST.value, NodeTypeEnum.PARAMETER.value) nodes = filter(lambda node: node.type not in not_expect_type, nodes) nodes = sorted(nodes, key=lambda node: node.topological_index) return nodes def _extract_node_by_single_node_in_scope(self): """Extract node from the scope which has only one node.""" nodes = self._list_nodes_without_parameter_const() scope_map_types = defaultdict(set) scope_map_node_cnt = defaultdict(int) for node in nodes: if not node.scope or '/' not in node.scope: continue scope_map_types[node.scope].add(node.type) scope_map_node_cnt[node.scope] += 1 filter_scopes = set() for scope, types in scope_map_types.items(): if len(types) == 1 and scope_map_node_cnt[scope] > 1 and types.pop() in scope: filter_scopes.add(scope) for filter_scope in list(filter_scopes): for scope in scope_map_types: if scope.startswith(f'{filter_scope}/'): filter_scopes.remove(filter_scope) break if not filter_scopes: return for node in nodes: if node.scope in filter_scopes and '/' in node.scope: name = node.name.rsplit('/', 1)[1] new_scope = node.scope.rsplit('/', 1)[0] new_name = f'{new_scope}/{name}' self._update_node_name_of_cache(node, new_name) return def _clean_no_input_output_node(self): """Clean nodes which has no input and output.""" nodes = self._list_nodes_without_parameter_const() deleted_names = [] for node in nodes: if not node.inputs and not node.outputs: deleted_names.append(node.name) self._delete_nodes_of_cache(deleted_names)
Athos/RandomForests/parse_graphviz_to_ezpc_input.py
kanav99/EzPC
221
45761
""" Authors: <NAME>, <NAME>. Copyright: Copyright (c) 2021 Microsoft Research Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ This python file takes in a graphviz text file, creates a tree in memory and outputs the tree's characteristic (feature and threshold at each node) where it is ASSUMED that initially each node of the tree is either leaf or it has 2 children. This file also takes care of adding dummy nodes to create a new funtionally equivalent complete binary tree to be used by EzPC code. """ import math import os class TreeNode(object): def __init__(self): self.left = None self.right = None self.value = 0 self.feature = -1 self.depth = -1 def fill_recur(ctx, features, threshold, depth): ctx.max_depth = max(ctx.max_depth, depth) if features[ctx.ctr] == -1: # Leaf Node node = TreeNode() node.value = threshold[ctx.ctr] node.depth = depth ctx.ctr += 1 return node else: node = TreeNode() node.value = threshold[ctx.ctr] node.feature = features[ctx.ctr] node.depth = depth ctx.ctr += 1 node_left = fill_recur(ctx, features, threshold, depth + 1) node_right = fill_recur(ctx, features, threshold, depth + 1) node.left = node_left node.right = node_right return node def is_internal(node): if node.feature == -1: return False else: return True def get_to_pad_subtree(ctx, node, depth_diff): if depth_diff == 1: # New leafs node_left = TreeNode() node_right = TreeNode() node_left.value = node.value node_right.value = node.value node_left.depth = ctx.max_depth + 1 - depth_diff node_right.depth = ctx.max_depth + 1 - depth_diff node.left = node_left node.right = node_right node.feature = 1 node.value = 0.0 return node else: node_left = TreeNode() node_right = TreeNode() node_left.value = node.value node_right.value = node.value node_left.feature = node.feature node_right.feature = node.feature node_left.depth = ctx.max_depth + 1 - depth_diff node_right.depth = ctx.max_depth + 1 - depth_diff node_left = get_to_pad_subtree(ctx, node_left, depth_diff - 1) node_right = get_to_pad_subtree(ctx, node_right, depth_diff - 1) node.left = node_left node.right = node_right node.feature = 1 node.value = 0.0 return node def pad_to_complete_tree(ctx, node): if not is_internal(node): # Leaf node if node.depth != ctx.max_depth: # Needs padding node = get_to_pad_subtree(ctx, node, ctx.max_depth - node.depth) else: pad_to_complete_tree(ctx, node.left) pad_to_complete_tree(ctx, node.right) def dump_complete_tree(ctx, root): queue = [root] ctr_local = 0 while ctr_local < ctx.nodes_in_complete_tree: current_node = queue[ctr_local] ctr_local += 1 if is_internal(current_node): ctx.ezpc_features.append(current_node.feature) ctx.ezpc_threshold.append(current_node.value) ctx.ezpc_depth.append(current_node.depth) queue.append(current_node.left) queue.append(current_node.right) else: ctx.ezpc_features.append(-1) ctx.ezpc_threshold.append(current_node.value) ctx.ezpc_depth.append(current_node.depth) def parse_graphviz_to_ezpc_input(tree_file_path, task, scaling_factor): with open(tree_file_path, "r") as f: lines = f.readlines() lines = lines[1:] depth = 0 nodes_this_tree = 0 features = [] threshold = [] for i in range(len(lines)): curline = lines[i] # print("processing :", curline) start_location = curline.find('"') start_location += 1 if start_location == 0: break nodes_this_tree += 1 if curline[start_location] == "X": # This is an internal node end_location_feature = curline.find("]") start_location_th = curline.find("<=") end_location_th = curline.find("\\n") feature_val = int(curline[start_location + 2 : end_location_feature]) threshold_val = float(curline[start_location_th + 3 : end_location_th]) features.append(feature_val) threshold.append(threshold_val) # print("Internal Node") # print(feature_val) # print(threshold_val) else: # This is a leaf start_location_val = -1 if task == "reg": start_location_val = curline.find("value =") else: start_location_val = curline.find("class =") assert start_location_val != -1, ( "Task specified: " + task + " may be incorrect!" ) end_location_val = curline.find('" filled') output_val = float(curline[start_location_val + 7 : end_location_val]) features.append(-1) threshold.append(output_val) # print("Leaf Node") # print(output_val) class Context(object): def __init__(self): self.ctr = 0 self.ezpc_features = [] self.ezpc_threshold = [] self.ezpc_depth = [] self.max_depth = -1 self.nodes_in_complete_tree = -1 ctx = Context() root = fill_recur(ctx, features, threshold, 1) ctx.nodes_in_complete_tree = pow(2, ctx.max_depth) - 1 # if nodes_in_complete_tree != nodes_this_tree: # print("[PADDING] Input tree not complete. Padding to make complete.") # else: # print("Input tree already complete. No need to pad.") pad_to_complete_tree(ctx, root) dump_complete_tree(ctx, root) model_weights = "weight_sf_" + str(scaling_factor) + ".inp" ezpc_tree_path = os.path.join(os.path.dirname(tree_file_path), model_weights) # print("Writing to " + ezpc_tree_path) # print("[FLOAT TO FIXED] Scaling by 2^" + str(scaling_factor) + " times") with open(ezpc_tree_path, "a") as output_file: for i in range(len(ctx.ezpc_features)): output_file.write(str(ctx.ezpc_features[i]) + "\n") for i in range(len(ctx.ezpc_threshold)): output_file.write( str(int(math.floor((2 ** scaling_factor) * ctx.ezpc_threshold[i]))) + "\n" ) return ctx.max_depth
lib/sundials_6.0.0/benchmarks/advection_reaction_3D/scripts/pickle_solution_output.py
detcitty/math
256
45799
<gh_stars>100-1000 #!/usr/bin/env python # ----------------------------------------------------------------------------- # SUNDIALS Copyright Start # Copyright (c) 2002-2021, Lawrence Livermore National Security # and Southern Methodist University. # All rights reserved. # # See the top-level LICENSE and NOTICE files for details. # # SPDX-License-Identifier: BSD-3-Clause # SUNDIALS Copyright End # ----------------------------------------------------------------------------- # imports import glob import sys import pylab as plt import pandas as pd import numpy as np # load mesh data file mesh = np.loadtxt('mesh.txt', dtype=np.double) # X,Y,Z = np.meshgrid(mesh[0,:], mesh[1,:], mesh[2,:]) # calculate h hx = mesh[0,1] - mesh[0,0] hy = mesh[1,1] - mesh[1,0] hz = mesh[2,1] - mesh[2,0] nx = len(mesh[0,:]) ny = len(mesh[1,:]) nz = len(mesh[2,:]) print("nx, ny, nz = %d, %d, %d" % (nx, ny, nz)) print("hx, hy, hz = %g, %g, %g" % (hx, hy, hz)) # load output time file times = np.loadtxt('t.000000.txt', dtype=np.double) # load solution data files ufiles = glob.glob('u.' + ('[0-9]'*6) + '.txt'); ufiles.sort() vfiles = glob.glob('v.' + ('[0-9]'*6) + '.txt'); vfiles.sort() wfiles = glob.glob('w.' + ('[0-9]'*6) + '.txt'); wfiles.sort() udata = [] vdata = [] wdata = [] sys.stdout.write("reading 1/%d...\r" % len(ufiles)) sys.stdout.flush() for idx in range(0,len(ufiles)): sys.stdout.write("reading %d/%d...\r" % (idx+1,len(ufiles))) sys.stdout.flush() udata.append(pd.read_csv(ufiles[idx], header=None, delimiter=' ', skipinitialspace=True, dtype=np.double)) vdata.append(pd.read_csv(vfiles[idx], header=None, delimiter=' ', skipinitialspace=True, dtype=np.double)) wdata.append(pd.read_csv(wfiles[idx], header=None, delimiter=' ', skipinitialspace=True, dtype=np.double)) sys.stdout.write("\n") sys.stdout.flush() print("stacking...") udata = pd.concat(udata, axis=1).to_numpy() vdata = pd.concat(vdata, axis=1).to_numpy() wdata = pd.concat(wdata, axis=1).to_numpy() # reshape data into time,x,y,z arrays print("reshaping...") nt = len(times) udata = np.reshape(udata, (nt, nx, ny, nz)) vdata = np.reshape(vdata, (nt, nx, ny, nz)) wdata = np.reshape(wdata, (nt, nx, ny, nz)) # save data to pickle print("saving...") np.savez_compressed('output-with-h-%.2e.npz' % hx, t=times, u=udata, v=vdata, w=wdata, mesh=mesh)
BubbleChart/BubbleChart.py
O-Aiden/Danim
218
45808
<reponame>O-Aiden/Danim from manimlib.imports import * from Danim.BubbleChart.BCutils import * from Danim.BubbleChart.bubble_constants import * class BubbleChart(VGroup): # A class to quickly create the bubble chart animation # may not have the freedom to change things CONFIG = { "show_axes_lable": SHOW_AXIS_LABLES, #default True "show_time_lable": True, # names to show are stored in SHOWN_ENTITY_NAMES "show_color_lables": True, # default group names "set_bubble_colors": "randomly",# two options: "by_group" or "randomly" "x_axis_lable": X_AXIS_LABLE, "y_axis_lable": Y_AXIS_LABLE, "show_creation": False } def __init__(self, X, Y, R, entity_names, T, **kwargs): #CONFIG to attributes digest_config(self,kwargs) self.entity_names = entity_names self.times = T #create axes (self.axes_config, self.axes ) = import_data_and_set_axes(X,Y) #transform X,Y,R into screen coordinates self.coordinates,self.radiusdata = transform_from_data_to_screencoordinates(X,Y,R,self.axes) #set the colors of bubbles: #COLORMAT is a list of shape(num_of_bubbles,1) #each element is a color array self.COLORMAT = self.generate_colormatrix() if not self.show_creation: #set the bubble to the start time self.bubbles = set_up_the_bubbles( self.coordinates[:,0], self.radiusdata[:,0], self.axes, color_mat = self.COLORMAT ) #create lables self.lables_creation() VGroup.__init__(self, **kwargs) self.add( self.axes, self.bubbles, self.lables ) else: self.lables_creation() VGroup.__init__(self, **kwargs) self.add( self.axes, self.lables ) #the bubbles and will be created later #using animation method self.Get_Creation_Animation(directly_show_creation = False) def get_current_timeindex(self): return self.times.index(self.time_lable.get_tex_string()) def generate_colormatrix(self, colors = None): # the color of each bubbles can be set by some group lables # for example: if each bubble represents a contry, then # you can set all the contry in Asia as red bubbles, # North American Contries as blue bubbles # you need a cvs file called the "Group_lable.csv" to store each tags # or you can just put a dic to represents that relationship if self.set_bubble_colors == "by_group": #generate color matrices with default color red COLORMAT = [RED]*self.coordinates.shape[0] #read information from "Group_lable.csv" group_lable_data = np.array( pd.DataFrame( pd.read_csv(GROUP_LABLE_CSV_FILE, encoding = "gbk", index_col = 0), index = self.entity_names ) ) #check whether the numbers of rows are the same assert(len(COLORMAT) == group_lable_data.shape[0]) self.group_index = [] #match color to COLORMAT with relationship in COLOR_LABLE_DICT for i,lable in enumerate(group_lable_data): if lable[0] in COLOR_LABLE_DICT: COLORMAT[i] = COLOR_LABLE_DICT[lable[0]] self.group_index.append(COLOR_LABLE_INDEX_DICT[lable[0]]) #generate color randomly elif self.set_bubble_colors == "randomly": COLORMAT = [] for i in range(0,self.coordinates.shape[0]+1): COLORMAT.append(random_color()) else: COLORMAT = [RED*self.coordinates.shape[0]] return COLORMAT def lables_creation(self): #lable creation: self.lables = VGroup() if self.show_axes_lable: #Create the x_axis_lable self.lables.add( (TextMobject( self.x_axis_lable, color = TEXT_COLOR ).scale( TEXT_SCALE_FACTOR ) ).shift( self.axes.x_axis.number_to_point(self.axes.x_axis.x_max) + X_LABLE_ADJUST_VECTOR ) ) #create the y_axis_lable: self.lables.add( (TextMobject( self.y_axis_lable, color = TEXT_COLOR ).scale( TEXT_SCALE_FACTOR ) ).shift( self.axes.y_axis.number_to_point(self.axes.y_axis.x_max) + Y_LABLE_ADJUST_VECTOR ) ) #create the time lable if self.show_time_lable: self.time_lable = (TextMobject( str(self.times[0]), color = TIME_LABLE_COLOR).scale( TIME_LABLE_SCALE_FACTOR )).shift(TIME_LABLE_POSITION) #self.lables.add(self.time_lable) #create color lables(with rectangles) if self.show_color_lables and (not self.show_creation): entity_color_map = dict( dict(zip(self.entity_names,self.COLORMAT)), **COLOR_LABLE_DICT ) self.color_lables = VGroup() for i,entity in enumerate(SHOWN_ENTITY_NAMES): if entity in entity_color_map: rect = Rectangle( height = RECT_HIGHT, width = RECT_WIDTH, color = entity_color_map[entity], fill_opacity = 1) if SHOW_CN_NAMES: name_to_show = online_translation(entity) rect_name = TextMobject(name_to_show).scale( RECT_TEXT_SCALE_FACTOR) else: rect_name = TextMobject(entity).scale( RECT_TEXT_SCALE_FACTOR) if i == 0: rect.shift(RECT_POSITION) rect_name.next_to(rect,RIGHT) else: rect.align_to(self.color_lables,direction = LEFT+DOWN) rect.shift(DOWN* RECT_HIGHT*RECT_INTERVAL_FACTOR) rect_name.next_to(rect,RIGHT) self.color_lables.add(rect,rect_name) self.lables.add(self.color_lables) def Get_Creation_Animation( self, directly_show_creation = True, maximum_circles_to_show = 50, creation_time_index = 0, initial_position = 3*UP + 3*RIGHT ): creation_time = self.times[creation_time_index] #Show Creation all together if directly_show_creation: self.lables_creation() #self.add(self.lables) return ShowCreation(self,run_time = CREATION_RUN_TIME) #Show creaton with all name listed else: self.color_lables = VGroup() old_bubbles = [] transfered_bubbles = [] name_lables = [] self.circle_index = [] self.bubbles = VGroup() self.grow_animation = [] self.transfer_animation = [] self.color_lables_animation = [] def generate_circle_matrix(indices): #indices is the relative index #position in self.entity_names new_entity = [] y0 = self.axes.x_axis.number_to_point(self.axes.x_axis.x_max)[1] for i,name in enumerate(self.entity_names): if i in indices: new_entity.append(name) if not len(old_bubbles) == 0: start_index = len(old_bubbles) else: start_index = 0 for j,name in enumerate(new_entity): #old_bubble creation if j == 0: previous_index = start_index cornor_index = start_index old_bubbles.append( set_up_the_bubbles( initial_position, self.radiusdata[indices[j],creation_time_index], self.axes, self.COLORMAT[indices[j]], mode = 'single' ) ) else: old_bubbles.append( set_up_the_bubbles( np.array([0,0,0]), self.radiusdata[indices[j],creation_time_index], self.axes, self.COLORMAT[indices[j]], mode = 'single' ) ) #name_lable creation if SHOW_CN_NAMES: name_shown = online_translation(name) else: name_shown = name name_lables.append( TextMobject( name_shown ).scale( NAME_TEXT_SCALE_FACTOR ) ) name_lables[-1].next_to(old_bubbles[-1],RIGHT) #check if circle matrix reaches the bottom height = old_bubbles[-1].get_critical_point(UP)[1] - old_bubbles[-1].get_critical_point(DOWN)[1] cell = old_bubbles[previous_index].get_critical_point(DOWN)[1] if not j == 0: current_VGroup = VGroup(old_bubbles[-1],name_lables[-1]) # if the curreny circle touches the bottom: if cell - height < y0 + 0.5: current_VGroup.next_to(old_bubbles[cornor_index],LEFT) current_VGroup.shift(0.25*LEFT) cornor_index = len(old_bubbles) - 1 # if the curreny circle does not touch the bottom: else: current_VGroup.next_to(previous_VGroup,DOWN) #transfered_bubbles creation: transfered_bubbles.append( set_up_the_bubbles( self.coordinates[indices[j],creation_time_index], self.radiusdata[indices[j],creation_time_index], self.axes, self.COLORMAT[indices[j]], mode = 'single' ) ) #record the circle index self.circle_index.append(indices[j]) #append the animation self.grow_animation.append( AnimationGroup( FadeIn( old_bubbles[-1] ), Write( name_lables[-1] ), run_time = SINGLE_GROW_RUN_TIME ) ) self.transfer_animation.append( AnimationGroup( ReplacementTransform( old_bubbles[-1], transfered_bubbles[-1] ), FadeOut( name_lables[-1]), run_time = SINGLE_TRANSFER_TIME ) ) previous_index = len(old_bubbles) - 1 previous_VGroup = VGroup(old_bubbles[-1],name_lables[-1]) if self.set_bubble_colors == "randomly": indices = [] for i,name in enumerate(self.entity_names): indices.append(i) quotient = len(self.entity_names)//maximum_circles_to_show remainder = len(self.entity_names)%maximum_circles_to_show for i in range(quotient): generate_circle_matrix(indices[maximum_circles_to_show*(i):maximum_circles_to_show*(i+1)]) #generate_circle_matrix(indices[maximum_circles_to_show*(i+1):len(self.entity_names)]) self.bubbles = VGroup(*transfered_bubbles) #if set bubbles by group #usurally with self.show_color_lables = True: else: if self.show_color_lables: entity_color_map = dict( dict(zip(self.entity_names,self.COLORMAT)), **COLOR_LABLE_DICT ) self.indices = [] for i,entity in enumerate(SHOWN_ENTITY_NAMES): if entity in entity_color_map: rect = Rectangle( height = RECT_HIGHT, width = RECT_WIDTH, color = entity_color_map[entity], fill_opacity = 1) if SHOW_CN_NAMES: name_to_show = online_translation(entity) rect_name = TextMobject(name_to_show).scale( RECT_TEXT_SCALE_FACTOR) else: rect_name = TextMobject(entity).scale( RECT_TEXT_SCALE_FACTOR) if i == 0: rect.shift(RECT_POSITION) rect_name.next_to(rect,RIGHT) else: rect.align_to(self.color_lables,direction = LEFT+DOWN) rect.shift(DOWN* RECT_HIGHT*RECT_INTERVAL_FACTOR) rect_name.next_to(rect,RIGHT) self.color_lables_animation.append( AnimationGroup( FadeIn(rect), Write(rect_name) ) ) self.color_lables.add(rect,rect_name) indice = [] for j,name in enumerate(self.entity_names): if self.COLORMAT[j] == COLOR_LABLE_DICT[entity]: indice.append(j) generate_circle_matrix(indice) self.indices.append(indice) def sort_by_index(listA,index_list): assert(len(listA) == len(index_list)) new_list = [] for z,element in enumerate(listA): new_list.append(listA[index_list[z]]) return new_list index_list = [] for indice in self.indices: index_list = index_list + indice new_bubbles = sort_by_index(transfered_bubbles,index_list) #self.bubbles = VGroup() for bubble in new_bubbles: self.bubbles.add(bubble) #self.lables.add(self.color_lables) self.add(self.bubbles) #sort the animation by data index #originally theanimation list is sort by creation order def Get_Hightlight_Animation( self, names_to_show,#list of str, must be elements in self.entity_names wait_time = None,#a number or list of numbers, lens must match the number of entities intersection_wait_time = 1, directions = None, #directions is a list of direction vectors, #lens must match the number of entities, #if none, lables will choose lable_sizes = None, #lable_sizes is a list of numbers indicating the size of each lable #lens must match the number of entities to show wiggle_time = None, wiggle_factor = None, fadeout_time = None, current_time_index = 0, fadeout_at_once = False# ): if isinstance(names_to_show,list): numbers_of_entities = len(names_to_show) else: numbers_of_entities = 1 if directions is None: directions = [UP]*numbers_of_entities if wiggle_factor is None: wiggle_factor = [1.5]*numbers_of_entities if wiggle_time is None: wiggle_time = [1.5]*numbers_of_entities if lable_sizes is None: lable_sizes = [0.7]*numbers_of_entities if fadeout_time is None: fadeout_time = [1]*numbers_of_entities if wait_time is None: wait_time = [1]*numbers_of_entities old_lables = [] new_lables = [] indices = [] animation = [] #TODO: add empty animation more efficiently #Currently I add empty animation the dumb way! #add a black dot outside the screen! #I don't know how to add empty dumb_dot = Dot(color = BLACK).shift(100*UR) intersection_wait_animation = ApplyMethod( dumb_dot.shift, 0.1*RIGHT, run_time = intersection_wait_time ) for i,name in enumerate(names_to_show): if name in self.entity_names: indices.append(self.entity_names.index(name)) if SHOW_CN_NAMES: name_to_show = online_translation(name) else: name_to_show = name mid_wait_animation = ApplyMethod( dumb_dot.shift, 0.1*RIGHT, run_time = wait_time[i] ) old_lables.append( TextMobject( name_to_show, color = self.COLORMAT[indices[i]] ).scale(0.1) ) new_lables.append( TextMobject( name_to_show, color = self.COLORMAT[indices[i]] ).scale(lable_sizes[i]) ) old_lables[i].move_to( self.coordinates[indices[i],current_time_index] ) new_lables[i].next_to( self.bubbles.submobjects[indices[i]], directions[i] ) animation.append( ShowCreation(old_lables[i],run_time = 0.02) ) ''' animation.append( AnimationGroup( ReplacementTransform( old_lables[i], new_lables[i], run_time = wiggle_time[i] ), WiggleOutThenIn( self.bubbles.submobjects[indices[i]], scale_value = wiggle_factor[i], run_time = wiggle_time[i] ) ) ) ''' animation.append( [ReplacementTransform( old_lables[i], new_lables[i], run_time = wiggle_time[i] ), WiggleOutThenIn( self.bubbles.submobjects[indices[i]], scale_value = wiggle_factor[i], run_time = wiggle_time[i] )] ) animation.append(mid_wait_animation) if not fadeout_at_once: animation.append( FadeOut( new_lables[i], run_time = fadeout_time[i] ) ) animation.append(intersection_wait_animation) if fadeout_at_once: lables = VGroup() for lable in new_lables: lables.add(lable) print(len(lables.submobjects)) animation.append(FadeOut(lables,run_time = fadeout_time[0])) print(len(animation)) return animation def Time_Update_Animation( self, t, bubble_transform_time = BUBBLE_TRANSFROMATION_RUN_TIME, time_lable_run_time = TIME_LABLE_TRANSFROMATION_RUN_TIME, show_track = False ): # to a specific time, t can be index(integer) within range(0,len(self.times+1)) # or t can be a element in self.times args = [] #if t is not a index, we need to convert it into index if not isinstance(t,int): if not t in self.times: raise Exception("input argument 't' is not in self.times") else:#if t is not a index, but is a element in self.times t = self.times.index(t) #update the bubbles new_circles = VGroup() for i,bubbledata in enumerate(zip(self.coordinates[:,t],self.radiusdata[:,t])): new_circle = Circle( radius = bubbledata[1], color = self.COLORMAT[i], fill_opacity = FILL_OPACITY).shift(bubbledata[0] ) new_circles.add(new_circle) new_circles, self.bubbles = self.bubbles,new_circles if not show_track: args.append( ReplacementTransform( new_circles, self.bubbles, run_time = bubble_transform_time ) ) else: args.append( Transform( new_circles, self.bubbles, run_time = bubble_transform_time ) ) ''' #new_circle,self.bubbles.submobjects[i] = self.bubbles.submobjects[i],new_circle if not show_track: args.append( ReplacementTransform( new_circle, self.bubbles.submobjects[i], run_time = bubble_transform_time ) ) else: args.append( Transform( new_circle, self.bubbles.submobjects[i], run_time = bubble_transform_time ) ) ''' # update the time lable: if hasattr(self,"time_lable"): new_time_lable = (TextMobject( str(self.times[t]), color = TIME_LABLE_COLOR).scale( TIME_LABLE_SCALE_FACTOR ) ).shift(TIME_LABLE_POSITION) new_time_lable,self.time_lable = self.time_lable,new_time_lable args.append( ReplacementTransform( new_time_lable, self.time_lable, run_time = time_lable_run_time) ) return args
inversefed/utils.py
hyunjoors/invertinggradients
119
45813
<reponame>hyunjoors/invertinggradients """Various utilities.""" import os import csv import torch import random import numpy as np import socket import datetime def system_startup(args=None, defs=None): """Print useful system information.""" # Choose GPU device and print status information: device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') setup = dict(device=device, dtype=torch.float) # non_blocking=NON_BLOCKING print('Currently evaluating -------------------------------:') print(datetime.datetime.now().strftime("%A, %d. %B %Y %I:%M%p")) print(f'CPUs: {torch.get_num_threads()}, GPUs: {torch.cuda.device_count()} on {socket.gethostname()}.') if args is not None: print(args) if defs is not None: print(repr(defs)) if torch.cuda.is_available(): print(f'GPU : {torch.cuda.get_device_name(device=device)}') return setup def save_to_table(out_dir, name, dryrun, **kwargs): """Save keys to .csv files. Function adapted from Micah.""" # Check for file if not os.path.isdir(out_dir): os.makedirs(out_dir) fname = os.path.join(out_dir, f'table_{name}.csv') fieldnames = list(kwargs.keys()) # Read or write header try: with open(fname, 'r') as f: reader = csv.reader(f, delimiter='\t') header = [line for line in reader][0] except Exception as e: print('Creating a new .csv table...') with open(fname, 'w') as f: writer = csv.DictWriter(f, delimiter='\t', fieldnames=fieldnames) writer.writeheader() if not dryrun: # Add row for this experiment with open(fname, 'a') as f: writer = csv.DictWriter(f, delimiter='\t', fieldnames=fieldnames) writer.writerow(kwargs) print('\nResults saved to ' + fname + '.') else: print(f'Would save results to {fname}.') print(f'Would save these keys: {fieldnames}.') def set_random_seed(seed=233): """233 = 144 + 89 is my favorite number.""" torch.manual_seed(seed + 1) torch.cuda.manual_seed(seed + 2) torch.cuda.manual_seed_all(seed + 3) np.random.seed(seed + 4) torch.cuda.manual_seed_all(seed + 5) random.seed(seed + 6) def set_deterministic(): """Switch pytorch into a deterministic computation mode.""" torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False
tests/python/cuda/test_features.py
jakeKonrad/torch-quiver
196
45846
import torch import torch_quiver as torch_qv import random import numpy as np import time from typing import List from quiver.shard_tensor import ShardTensor, ShardTensorConfig, Topo from quiver.utils import reindex_feature import torch.multiprocessing as mp from torch.multiprocessing import Process import os import sys import quiver import torch.distributed as dist import torch import torch_quiver as torch_qv import random import numpy as np import time from typing import List from quiver.shard_tensor import ShardTensor, ShardTensorConfig, Topo from quiver.utils import reindex_feature __all__ = ["Feature"] class Feature: def __init__(self, rank, device_list, device_cache_size=0, cache_policy='device_replicate', csr_topo=None): self.device_cache_size = device_cache_size self.cache_policy = cache_policy self.device_list = device_list self.device_tensor_list = {} self.numa_tensor_list = {} self.rank = rank self.topo = Topo(self.device_list) self.csr_topo = csr_topo self.ipc_handle_ = None def cal_memory_budget_bytes(self, memory_budget): if isinstance(memory_budget, int): return memory_budget elif isinstance(memory_budget, float): memory_budget = int(memory_budget) elif isinstance(memory_budget, str): if memory_budget.upper().endswith( "M") or memory_budget.upper().endswith("MB"): end = -1 if memory_budget.upper().endswith("M") else -2 memory_budget = int(float(memory_budget[:end]) * 1024 * 1024) elif memory_budget.upper().endswith( "G") or memory_budget.upper().endswith("GB"): end = -1 if memory_budget.upper().endswith("G") else -2 memory_budget = int( float(memory_budget[:end]) * 1024 * 1024 * 1024) else: raise Exception("memory budget input is not valid") return memory_budget def cal_size(self, cpu_tensor, cache_memory_budget): element_size = cpu_tensor.shape[1] * 4 cache_size = cache_memory_budget // element_size return cache_size def partition(self, cpu_tensor, cache_memory_budget): cache_size = self.cal_size(cpu_tensor, cache_memory_budget) return [cpu_tensor[:cache_size], cpu_tensor[cache_size:]] def from_cpu_tensor(self, cpu_tensor): if self.cache_policy == "device_replicate": cache_memory_budget = self.cal_memory_budget_bytes( self.device_cache_size) shuffle_ratio = 0.0 else: cache_memory_budget = self.cal_memory_budget_bytes( self.device_cache_size) * len(self.topo.Numa2Device[0]) shuffle_ratio = self.cal_size( cpu_tensor, cache_memory_budget) / cpu_tensor.size(0) print( f"LOG>>> {min(100, int(100 * cache_memory_budget / cpu_tensor.numel() / 4))}% data cached" ) if self.csr_topo is not None: print("Create") cpu_tensor, self.csr_topo.feature_order = reindex_feature( self.csr_topo, cpu_tensor, shuffle_ratio) self.feature_order = self.csr_topo.feature_order.to(self.rank) print("Done Create") cache_part, self.cpu_part = self.partition(cpu_tensor, cache_memory_budget) self.cpu_part = self.cpu_part.clone() if cache_part.shape[0] > 0 and self.cache_policy == "device_replicate": for device in self.device_list: shard_tensor = ShardTensor(self.rank, ShardTensorConfig({})) shard_tensor.append(cache_part, device) self.device_tensor_list[device] = shard_tensor elif cache_part.shape[0] > 0: numa0_device_list = self.topo.Numa2Device[0] numa1_device_list = self.topo.Numa2Device[1] block_size = self.cal_size( cpu_tensor, cache_memory_budget // len(self.topo.Numa2Device[0])) if len(numa0_device_list) > 0: print( f"LOG>>> GPU {numa0_device_list} belong to the same NUMA Domain" ) shard_tensor = ShardTensor(self.rank, ShardTensorConfig({})) cur_pos = 0 for idx, device in enumerate(numa0_device_list): if idx == len(numa0_device_list) - 1: shard_tensor.append(cache_part[cur_pos:], device) else: shard_tensor.append( cache_part[cur_pos:cur_pos + block_size], device) cur_pos += block_size self.numa_tensor_list[0] = shard_tensor if len(numa1_device_list) > 0: print( f"LOG>>> GPU {numa1_device_list} belong to the same NUMA Domain" ) shard_tensor = ShardTensor(self.rank, ShardTensorConfig({})) cur_pos = 0 for idx, device in enumerate(numa1_device_list): if idx == len(numa1_device_list) - 1: shard_tensor.append(cache_part[cur_pos:], device) else: shard_tensor.append( cache_part[cur_pos:cur_pos + block_size], device) cur_pos += block_size self.numa_tensor_list[1] = shard_tensor # 构建CPU Tensor if self.cpu_part.numel() > 0: if self.cache_policy == "device_replicate": shard_tensor = self.device_tensor_list.get( self.rank, None) or ShardTensor(self.rank, ShardTensorConfig({})) shard_tensor.append(self.cpu_part, -1) self.device_tensor_list[self.rank] = shard_tensor else: numa_id = self.topo.get_numa_node(self.rank) shard_tensor = self.numa_tensor_list.get( numa_id, None) or ShardTensor(self.rank, ShardTensorConfig({})) shard_tensor.append(self.cpu_part, -1) self.numa_tensor_list[numa_id] = shard_tensor def __getitem__(self, node_idx): self.lazy_init_from_ipc_handle() node_idx = node_idx.to(self.rank) if self.feature_order is not None: node_idx = self.feature_order[node_idx] if self.cache_policy == "device_replicate": shard_tensor = self.device_tensor_list[self.rank] return shard_tensor[node_idx] else: numa_id = self.topo.get_numa_node(self.rank) shard_tensor = self.numa_tensor_list[numa_id] return shard_tensor[node_idx] def size(self, dim): self.lazy_init_from_ipc_handle() if self.cache_policy == "device_replicate": shard_tensor = self.device_tensor_list[self.rank] return shard_tensor.size(dim) else: numa_id = self.topo.get_numa_node(self.rank) shard_tensor = self.numa_tensor_list[numa_id] return shard_tensor.size(dim) @property def shape(self): self.lazy_init_from_ipc_handle() if self.cache_policy == "device_replicate": shard_tensor = self.device_tensor_list[self.rank] return shard_tensor.shape else: numa_id = self.topo.get_numa_node(self.rank) shard_tensor = self.numa_tensor_list[numa_id] return shard_tensor.shape @property def ipc_handle(self): return self.ipc_handle_ @ipc_handle.setter def ipc_handle(self, ipc_handle): self.ipc_handle_ = ipc_handle def share_ipc(self): gpu_ipc_handle_dict = {} if self.cache_policy == "device_replicate": for device in self.device_tensor_list: gpu_ipc_handle_dict[device] = self.device_tensor_list[ device].share_ipc()[0] else: for numa_node in self.numa_tensor_list: gpu_ipc_handle_dict[numa_node] = self.numa_tensor_list[ numa_node].share_ipc()[0] return gpu_ipc_handle_dict, self.cpu_part, self.device_list, self.device_cache_size, self.cache_policy, self.csr_topo def from_gpu_ipc_handle_dict(self, gpu_ipc_handle_dict, cpu_tensor): if self.cache_policy == "device_replicate": ipc_handle = gpu_ipc_handle_dict.get( self.rank, []), cpu_tensor, ShardTensorConfig({}) shard_tensor = ShardTensor.new_from_share_ipc( ipc_handle, self.rank) self.device_tensor_list[self.rank] = shard_tensor else: numa_node = self.topo.get_numa_node(self.rank) ipc_handle = gpu_ipc_handle_dict.get( numa_node, []), cpu_tensor, ShardTensorConfig({}) shard_tensor = ShardTensor.new_from_share_ipc( ipc_handle, self.rank) self.numa_tensor_list[numa_node] = shard_tensor self.cpu_part = cpu_tensor @classmethod def new_from_ipc_handle(cls, rank, ipc_handle): gpu_ipc_handle_dict, cpu_part, device_list, device_cache_size, cache_policy, csr_topo = ipc_handle feature = cls(rank, device_list, device_cache_size, cache_policy) feature.from_gpu_ipc_handle_dict(gpu_ipc_handle_dict, cpu_part) if csr_topo is not None: feature.feature_order = csr_topo.feature_order.to(rank) self.csr_topo = csr_topo return feature @classmethod def lazy_from_ipc_handle(cls, ipc_handle): gpu_ipc_handle_dict, cpu_part, device_list, device_cache_size, cache_policy, _ = ipc_handle feature = cls(device_list[0], device_list, device_cache_size, cache_policy) feature.ipc_handle = ipc_handle return feature def lazy_init_from_ipc_handle(self): if self.ipc_handle is None: return self.rank = torch.cuda.current_device() gpu_ipc_handle_dict, cpu_part, device_list, device_cache_size, cache_policy, csr_topo = self.ipc_handle self.from_gpu_ipc_handle_dict(gpu_ipc_handle_dict, cpu_part) self.csr_topo = csr_topo if csr_topo is not None: self.feature_order = csr_topo.feature_order.to(self.rank) self.ipc_handle = None from multiprocessing.reduction import ForkingPickler def rebuild_feature(ipc_handle): print("check rebuild") feature = Feature.lazy_from_ipc_handle(ipc_handle) return feature def reduce_feature(feature): ipc_handle = feature.share_ipc() return (rebuild_feature, (ipc_handle, )) def rebuild_pyg_sampler(cls, ipc_handle): sampler = cls.lazy_from_ipc_handle(ipc_handle) return sampler def reduce_pyg_sampler(sampler): ipc_handle = sampler.share_ipc() return (rebuild_pyg_sampler, ( type(sampler), ipc_handle, )) def init_reductions(): ForkingPickler.register(Feature, reduce_feature) def test_feature_basic(): rank = 0 NUM_ELEMENT = 1000000 SAMPLE_SIZE = 80000 FEATURE_DIM = 600 ######################### # Init With Numpy ######################## torch.cuda.set_device(rank) host_tensor = np.random.randint(0, high=10, size=(2 * NUM_ELEMENT, FEATURE_DIM)) tensor = torch.from_numpy(host_tensor).type(torch.float32) host_indice = np.random.randint(0, 2 * NUM_ELEMENT - 1, (SAMPLE_SIZE, )) indices = torch.from_numpy(host_indice).type(torch.long) print("host data size", host_tensor.size * 4 // 1024 // 1024, "MB") device_indices = indices.to(rank) ############################ # define a quiver.Feature ########################### feature = quiver.Feature(rank=rank, device_list=[0, 1, 2, 3], device_cache_size="0.9G", cache_policy="numa_replicate") feature.from_cpu_tensor(tensor) #################### # Indexing #################### res = feature[device_indices] start = time.time() res = feature[device_indices] consumed_time = time.time() - start res = res.cpu().numpy() feature_gt = tensor[indices].numpy() print("Correctness Check : ", np.array_equal(res, feature_gt)) print( f"Process {os.getpid()}: TEST SUCCEED!, With Memory Bandwidth = {res.size * 4 / consumed_time / 1024 / 1024 / 1024} GB/s, consumed {consumed_time}s" ) def child_proc(rank, world_size, host_tensor, feature): torch.cuda.set_device(rank) print( f"Process {os.getpid()}: check current device {torch.cuda.current_device()}" ) NUM_ELEMENT = host_tensor.shape[0] SAMPLE_SIZE = 80000 device_tensor = host_tensor.to(rank) bandwidth = [] for _ in range(30): device_indices = torch.randint(0, NUM_ELEMENT - 1, (SAMPLE_SIZE, ), device=rank) torch.cuda.synchronize() start = time.time() res = feature[device_indices] consumed_time = time.time() - start bandwidth.append(res.numel() * 4 / consumed_time / 1024 / 1024 / 1024) assert torch.equal(res, device_tensor[device_indices]) print("Correctness check passed") print( f"Process {os.getpid()}: TEST SUCCEED!, With Memory Bandwidth = {np.mean(np.array(bandwidth[1:]))} GB/s, consumed {consumed_time}s, res size {res.numel() * 4 / 1024 / 1024 / 1024}GB" ) def test_ipc(): rank = 0 NUM_ELEMENT = 1000000 FEATURE_DIM = 600 ######################### # Init With Numpy ######################## torch.cuda.set_device(rank) host_tensor = np.random.randint(0, high=10, size=(2 * NUM_ELEMENT, FEATURE_DIM)) tensor = torch.from_numpy(host_tensor).type(torch.float32) print("host data size", host_tensor.size * 4 // 1024 // 1024, "MB") ############################ # define a quiver.Feature ########################### feature = quiver.Feature(rank=rank, device_list=[0, 1], device_cache_size=0, cache_policy="numa_replicate") feature.from_cpu_tensor(tensor) world_size = 2 mp.spawn(child_proc, args=(world_size, tensor, feature), nprocs=world_size, join=True) def child_proc_real_data(rank, feature, host_tensor): NUM_ELEMENT = 2000000 SAMPLE_SIZE = 800000 bandwidth = [] torch.cuda.set_device(rank) device_tensor = host_tensor.to(rank) for _ in range(300): device_indices = torch.randint(0, NUM_ELEMENT - 1, (SAMPLE_SIZE, ), device=rank) torch.cuda.synchronize() start = time.time() res = feature[device_indices] consumed_time = time.time() - start bandwidth.append(res.numel() * 4 / consumed_time / 1024 / 1024 / 1024) assert torch.equal(device_tensor[device_indices], res) print("Correctness check passed") print( f"Process {os.getpid()}: TEST SUCCEED!, With Memory Bandwidth = {np.mean(np.array(bandwidth[1:]))} GB/s, consumed {consumed_time}s, res size {res.numel() * 4 / 1024 / 1024 / 1024}GB" ) def test_ipc_with_real_data(): from ogb.nodeproppred import PygNodePropPredDataset root = "/data/data/products" dataset = PygNodePropPredDataset('ogbn-products', root) data = dataset[0] world_size = torch.cuda.device_count() ############################## # Create Sampler And Feature ############################## csr_topo = quiver.CSRTopo(data.edge_index) feature = torch.zeros(data.x.shape) feature[:] = data.x quiver_feature = Feature(rank=0, device_list=list(range(world_size)), device_cache_size="200M", cache_policy="device_replicate", csr_topo=csr_topo) quiver_feature.from_cpu_tensor(feature) print('Let\'s use', world_size, 'GPUs!') mp.spawn(child_proc_real_data, args=(quiver_feature, feature), nprocs=world_size, join=True) def normal_test(): rank = 0 NUM_ELEMENT = 1000000 FEATURE_DIM = 600 SAMPLE_SIZE = 80000 ######################### # Init With Numpy ######################## torch.cuda.set_device(rank) host_tensor = np.random.randint(0, high=10, size=(2 * NUM_ELEMENT, FEATURE_DIM)) tensor = torch.from_numpy(host_tensor).type(torch.float32) host_indice = np.random.randint(0, 2 * NUM_ELEMENT - 1, (SAMPLE_SIZE, )) indices = torch.from_numpy(host_indice).type(torch.long) tensor.to(rank) torch.cuda.synchronize() start = time.time() feature = tensor[indices] feature = feature.to(rank) torch.cuda.synchronize() consumed_time = time.time() - start print( f"Process {os.getpid()}: TEST SUCCEED!, With Memory Bandwidth = {feature.numel() * 4 / consumed_time / 1024 / 1024 / 1024} GB/s, consumed {consumed_time}s" ) def test_paper100M(): dataset = torch.load( "/data/papers/ogbn_papers100M/quiver_preprocess/paper100M.pth") csr_topo = dataset["csr_topo"] feature = dataset["sorted_feature"] NUM_ELEMENT = feature.shape[0] SAMPLE_SIZE = 80000 world_size = 4 rank = 0 dataset["label"] = torch.from_numpy(dataset["label"]) dataset["num_features"] = feature.shape[1] dataset["num_classes"] = 172 quiver_sampler = quiver.pyg.GraphSageSampler(csr_topo, [15, 10, 5], 0, mode="UVA") quiver_feature = quiver.Feature(rank=0, device_list=list(range(world_size)), device_cache_size="12G", cache_policy="numa_replicate") quiver_feature.from_cpu_tensor(feature) device_indices = torch.randint(0, NUM_ELEMENT - 1, (SAMPLE_SIZE, ), device=rank) res = quiver_feature[device_indices] start = time.time() res = quiver_feature[device_indices] consumed_time = time.time() - start print( f"Process {os.getpid()}: TEST SUCCEED!, With Memory Bandwidth = {res.numel() * 4 / consumed_time / 1024 / 1024 / 1024} GB/s, consumed {consumed_time}s" ) if __name__ == "__main__": mp.set_start_method("spawn") torch_qv.init_p2p([0, 1, 2, 3]) test_paper100M() #init_reductions() #test_feature_basic() #test_ipc() #normal_test() #test_ipc_with_real_data()