max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
aliyun/log/etl_core/trans_comp/trans_base.py
topdown618/aliyun-log-python-sdk
130
11092592
<filename>aliyun/log/etl_core/trans_comp/trans_base.py import json import six from ..etl_util import u from ..etl_util import get_re_full_match, get_set_mode_if_skip_fn import logging logger = logging.getLogger(__name__) class trans_comp_base(object): @property def __name__(self): return str(type(self)) @staticmethod def _n(v): """ convert string to utf8 in Py2 or unicode in Py3 :param v: :return: """ if v is None: return "" if isinstance(v, (dict, list)): try: v = json.dumps(v) except Exception: pass elif six.PY2 and isinstance(v, six.text_type): v = v.encode('utf8', "ignore") elif six.PY3 and isinstance(v, six.binary_type): v = v.decode('utf8', "ignore") return str(v) @staticmethod def _u(d): """ convert string, string container or unicode :param d: :return: """ return u(d) class trans_comp_check_mdoe_base(trans_comp_base): DEFAULT_KEYWORD_PTN = u'[\u4e00-\u9fa5\u0800-\u4e00a-zA-Z][\u4e00-\u9fa5\u0800-\u4e00\\w\\.\\-]*' SET_MODE = { "fill": get_set_mode_if_skip_fn(False, True, False), "add": get_set_mode_if_skip_fn(True, False, False), "overwrite": get_set_mode_if_skip_fn(False, False, False), "fill-auto": get_set_mode_if_skip_fn(False, True, True), "add-auto": get_set_mode_if_skip_fn(True, False, True), "overwrite-auto": get_set_mode_if_skip_fn(False, False, True) } DEFAULT_SET_MODE = 'fill-auto' def __init__(self, mode=None): super(trans_comp_check_mdoe_base, self).__init__() self.kw_ptn = get_re_full_match(self.DEFAULT_KEYWORD_PTN) self.skip_if = self.SET_MODE.get(mode, self.SET_MODE[self.DEFAULT_SET_MODE]) def set(self, e, k, v, real_k=None, check_kw_name=False): if not check_kw_name or (check_kw_name and self.kw_ptn(k)): real_k = real_k or k if k and not self.skip_if(e, k, v): e[real_k] = v return True logger.debug("{1}: skip detected k-v due to current mode: {0}".format((k, v), type(self))) return False def sets(self, e, e_new, check_kw_name=False): has_update = False for k, v in six.iteritems(e_new): has_update = self.set(e, k, v, check_kw_name=check_kw_name) or has_update return has_update
MNIST_with_centerloss.py
jxgu1016/MNIST_with_centerloss.pytorch
346
11092603
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.optim.lr_scheduler as lr_scheduler from CenterLoss import CenterLoss import matplotlib.pyplot as plt class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1_1 = nn.Conv2d(1, 32, kernel_size=5, padding=2) self.prelu1_1 = nn.PReLU() self.conv1_2 = nn.Conv2d(32, 32, kernel_size=5, padding=2) self.prelu1_2 = nn.PReLU() self.conv2_1 = nn.Conv2d(32, 64, kernel_size=5, padding=2) self.prelu2_1 = nn.PReLU() self.conv2_2 = nn.Conv2d(64, 64, kernel_size=5, padding=2) self.prelu2_2 = nn.PReLU() self.conv3_1 = nn.Conv2d(64, 128, kernel_size=5, padding=2) self.prelu3_1 = nn.PReLU() self.conv3_2 = nn.Conv2d(128, 128, kernel_size=5, padding=2) self.prelu3_2 = nn.PReLU() self.preluip1 = nn.PReLU() self.ip1 = nn.Linear(128*3*3, 2) self.ip2 = nn.Linear(2, 10, bias=False) def forward(self, x): x = self.prelu1_1(self.conv1_1(x)) x = self.prelu1_2(self.conv1_2(x)) x = F.max_pool2d(x,2) x = self.prelu2_1(self.conv2_1(x)) x = self.prelu2_2(self.conv2_2(x)) x = F.max_pool2d(x,2) x = self.prelu3_1(self.conv3_1(x)) x = self.prelu3_2(self.conv3_2(x)) x = F.max_pool2d(x,2) x = x.view(-1, 128*3*3) ip1 = self.preluip1(self.ip1(x)) ip2 = self.ip2(ip1) return ip1, F.log_softmax(ip2, dim=1) def visualize(feat, labels, epoch): plt.ion() c = ['#ff0000', '#ffff00', '#00ff00', '#00ffff', '#0000ff', '#ff00ff', '#990000', '#999900', '#009900', '#009999'] plt.clf() for i in range(10): plt.plot(feat[labels == i, 0], feat[labels == i, 1], '.', c=c[i]) plt.legend(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], loc = 'upper right') plt.xlim(xmin=-8,xmax=8) plt.ylim(ymin=-8,ymax=8) plt.text(-7.8,7.3,"epoch=%d" % epoch) plt.savefig('./images/epoch=%d.jpg' % epoch) plt.draw() plt.pause(0.001) def train(epoch): print "Training... Epoch = %d" % epoch ip1_loader = [] idx_loader = [] for i,(data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) ip1, pred = model(data) loss = nllloss(pred, target) + loss_weight * centerloss(target, ip1) optimizer4nn.zero_grad() optimzer4center.zero_grad() loss.backward() optimizer4nn.step() optimzer4center.step() ip1_loader.append(ip1) idx_loader.append((target)) feat = torch.cat(ip1_loader, 0) labels = torch.cat(idx_loader, 0) visualize(feat.data.cpu().numpy(),labels.data.cpu().numpy(),epoch) use_cuda = torch.cuda.is_available() and True device = torch.device("cuda" if use_cuda else "cpu") # Dataset trainset = datasets.MNIST('../MNIST', download=True,train=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])) train_loader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=4) # Model model = Net().to(device) # NLLLoss nllloss = nn.NLLLoss().to(device) #CrossEntropyLoss = log_softmax + NLLLoss # CenterLoss loss_weight = 1 centerloss = CenterLoss(10, 2).to(device) # optimzer4nn optimizer4nn = optim.SGD(model.parameters(),lr=0.001,momentum=0.9, weight_decay=0.0005) sheduler = lr_scheduler.StepLR(optimizer4nn,20,gamma=0.8) # optimzer4center optimzer4center = optim.SGD(centerloss.parameters(), lr =0.5) for epoch in range(100): sheduler.step() # print optimizer4nn.param_groups[0]['lr'] train(epoch+1)
idaes/commands/examples.py
carldlaird/idaes-pse
112
11092671
<filename>idaes/commands/examples.py<gh_stars>100-1000 ################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# """ Install IDAES example files locally. By default, this will download the examples from "examples-pse/src" on Github, with a release matching the version of the currently installed idaes package, into a sub-directory of the current directory named "examples". It will also, unless directed otherwise, install all Python modules from the downloaded directory into a package called "idaes_examples". Options let the user choose a different version, directory, and whether to actually download or install. """ # Pyomo utility for delayed import from pyomo.common.dependencies import attempt_import # stdlib from collections import namedtuple from datetime import datetime from io import StringIO import logging from operator import attrgetter import os import re from pathlib import Path import shutil import sys from typing import List from uuid import uuid4 from zipfile import ZipFile import json # third-party import click # third-party slow nb_exporters= attempt_import("nbconvert.exporters")[0] nb_writers = attempt_import("nbconvert.writers")[0] traitlets_config = attempt_import("traitlets.config")[0] nbformat = attempt_import("nbformat")[0] requests = attempt_import("requests")[0] # package from idaes.commands import cb from idaes.commands.base import how_to_report_an_error from idaes.ver import package_version as V __author__ = "<NAME>" _log = logging.getLogger("idaes.commands.examples") # Constants GITHUB = "https://github.com" GITHUB_API = "https://api.github.com" REPO_ORG = "idaes" REPO_NAME = "examples-pse" REPO_DIR = "src" PKG_VERSION = f"{V.major}.{V.minor}.{V.micro}" INSTALL_PKG = "idaes_examples" JUPYTER_NB_VERSION = 4 # for parsing REMOVE_CELL_TAG = "remove_cell" # for stripping Jupyter notebook cells SOLUTION_CELL_TAG = "solution" # ditto EXERCISE_CELL_TAG = "exercise" # ditto STRIPPED_NOTEBOOK_SUFFIX = "_s" # Global vars g_tempdir, g_egg = None, None # Exceptions class DownloadError(Exception): """Used for errors downloading the release files. """ pass class CopyError(Exception): """Used for errors copying files. """ pass class InstallError(Exception): """Used for errors installing the source as a Python package. """ pass class GithubError(Exception): pass Release = namedtuple("Release", ["date", "tag", "info"]) @cb.command( name="get-examples", help="Fetch example scripts and Jupyter Notebooks." ) @click.option( "--dir", "-d", "directory", help="installation target directory", default="examples", type=str, ) @click.option( "--local", "local_dir", help="For developers: instead of downloading, copy from an " "idaes-examples repository on local disk" ) @click.option( "--no-install", "-I", "no_install", help="Do *not* install examples into 'idaes_examples' package", is_flag=True ) @click.option( "--list", "-l", "list_releases", help="List all available released versions, and stop", is_flag=True, ) @click.option( "--no-download", "-N", "no_download", help="Do not download anything", is_flag=True ) @click.option( "--unstable", "-U", help="Allow and list unstable/pre-release versions", is_flag=True ) @click.option( "--version", "-V", help=f"Version of examples to download", default=None, show_default=False, ) def get_examples(directory, no_install, list_releases, no_download, version, unstable, local_dir): """Get the examples from Github and put them in a local directory. """ # list-releases mode if list_releases: try: releases = get_releases(unstable) except GithubError as err: click.echo(f"Error getting data from Github: {err}") sys.exit(-1) print_releases(releases, unstable) sys.exit(0) # otherwise.. target_dir = Path(directory) # do nothing? if no_download and no_install: click.echo("Download and installation disabled. Done.") sys.exit(0) # download? if no_download: # no download _log.info("skipping download step (use existing examples)") click.echo("Skip download") else: # download if target_dir.exists(): click.echo(f"Target directory '{target_dir}' already exists. Please " f"remove it, or choose a different directory.") sys.exit(-1) if local_dir is not None: click.echo(f"Copying from local directory: {local_dir}") local_path = Path(local_dir) if not local_path.exists() or not local_path.is_dir(): click.echo(f"Cannot copy from local directory '{local_dir}': " f"directory does not exist, or not a directory") sys.exit(-1) try: copy_contents(target_dir, local_path) except CopyError as err: click.echo(f"Failed to copy from '{local_dir}' to '{target_dir}': " f"{err}") sys.exit(-1) ex_version = version if version else PKG_VERSION else: try: releases = get_releases(unstable) except GithubError as err: click.echo(f"Error getting data from Github: {err}") sys.exit(-1) # check that unstable flag is given before downloading unstable version if version is not None: stable_ver = re.match(r".*-\w+$", version) is None if not stable_ver and not unstable: click.echo(f"Cannot download unstable version {version} unless you add " f"the -U/--unstable flag") sys.exit(-1) # set version if version is None: ex_version = get_examples_version(PKG_VERSION) else: ex_version = version # give an error if selected version does not exist if ex_version not in [r.tag for r in releases]: if version is None: click.echo(f"Internal Error: Could not find an examples release\n" f"matching IDAES version {PKG_VERSION}\n" f"You can manually pick version with '-V/--version'\n" f"or install from a local directory with '--local'.\n" f"Use '-l/--list-releases' to see all versions.\n" f"{how_to_report_an_error()}\n") else: click.echo(f"Could not find an examples release matching IDAES version " f"{version}.\n Use -l/--list-releases to see all " f"available versions.") sys.exit(-1) click.echo("Downloading...") try: download(target_dir, ex_version) except DownloadError as err: _log.warning(f"abort due to failed download: {err}") clean_up_temporary_files() sys.exit(-1) full_dir = os.path.realpath(target_dir) _log.info(f"downloaded examples to: '{full_dir}'") # install if no_install: _log.info("skipping installation step") click.echo("Skip install") else: if not target_dir.exists(): if no_download: click.echo(f"Target directory '{target_dir}' does not exist") sys.exit(-1) else: click.echo(f"Internal error: After download, directory '{target_dir}'\n" f"does not exist.\n" f"{how_to_report_an_error()}") sys.exit(-1) click.echo("Installing...") try: install_src(ex_version, target_dir) except InstallError as err: click.echo(f"Install error: {err}") clean_up_temporary_files() sys.exit(-1) _log.info(f"Installed examples as package {INSTALL_PKG}") click.echo("Cleaning up...") # strip notebooks _log.info("Stripping test/solution cells from notebooks") strip_special_cells(target_dir) # temporary files _log.info("Removing temporary files") clean_up_temporary_files() # Done print_summary( ex_version, target_dir, not no_install) def print_summary(version, dirname, installed): sep1, sep2 = "-" * 40, "=" * 40 print(f"{sep1}\nIDAES Examples {version}\n{sep2}") print(f"Path : {dirname}") if installed: print(f"Package: {INSTALL_PKG}") else: print(f"Package: not installed") print(sep2) def get_examples_version(idaes_version: str): """Given the specified 'idaes-pse' repository release version, identify the matching 'examples-pse' repository release version. Args: idaes_version: IDAES version, e.g. "1.5.0" or "1.5.0.dev0+e1bbb[...]" Returns: Examples version, or if there is no match, return None. """ # Fetch the idaes:examples version mapping from Github compat_file = 'idaes-compatibility.json' url = f"{GITHUB_API}/repos/{REPO_ORG}/{REPO_NAME}/contents/{compat_file}" headers = {'Accept': 'application/vnd.github.v3.raw'} _log.debug(f'About to call requests.get({url}, {headers})') res = requests.get(url, headers=headers) if not res.ok: _log.debug(f'Problem getting mapping file: {res.json()}') raise DownloadError(res.json()) try: compat_mapping = json.loads(res.text)['mapping'] except KeyError: # return the latest version instead _log.warning('Ill-formed compatibility mapping file for examples repository:') _log.debug(f'compat_mapping: {res.text}') _log.info('Defaulting to latest released version of examples.') return None idaes_version_num = idaes_version version_numbers = idaes_version.split('.') if len(version_numbers) > 3: idaes_version_num = '.'.join(version_numbers[:3]) click.echo(f"Warning: non-release version of IDAES detected. " f"Using IDAES {idaes_version_num} as reference; " f"examples version compatibility is not guaranteed.") try: examples_version = compat_mapping[idaes_version_num] except KeyError: # return the latest version instead, as above _log.warning('IDAES version not found in compatibility mapping file. \ Defaulting to latest released version of examples.') return None _log.debug(f'get_examples_version({idaes_version}: {examples_version}') return examples_version def download(target_dir: Path, version: str): """Download `version` into `target_dir`. Raises: DownloadError """ # check target directory if target_dir.exists(): click.echo(f"Directory '{target_dir}' exists. Please move or delete and " f"try this command again") raise DownloadError("directory exists") # download try: download_contents(target_dir, version) except DownloadError as err: click.echo(f"Download failed: {err}") raise def is_illegal_dir(d: Path): """Refuse to remove directories for some situations, for safety. """ if (d / ".git").exists(): return ".git file found" if d.absolute() == Path.home().absolute(): return "cannot replace home directory" if d.absolute == Path("/").absolute(): return "cannot replace root directory" return None def download_contents(target_dir, version): """Download the given version from the Github releases and make its `REPO_DIR` subdirectory be the `target_dir`. Raises: DownloadError: if the GET on the release URL returns non-200 status """ global g_tempdir url = archive_file_url(version) _log.info(f"get examples from: {url}") # stream out to a big .zip file req = requests.get(url, stream=True) if req.status_code != 200: if req.status_code in (400, 404): raise DownloadError(f"file not found") raise DownloadError(f"status={req.status_code}") # note: mkdtemp() creates a directory that seems un-removable on Windows. # So, instead, just create the directory yourself in the current directory random_name = str(uuid4()) try: os.mkdir(random_name) except Exception as err: _log.fatal(f"making directory '{random_name}': {err}") click.echo("Cannot make temporary directory in current directory. Abort.") sys.exit(-1) g_tempdir = tempdir = Path(random_name) _log.debug(f"created temporary directory '{tempdir.name}'") tempfile = tempdir / "examples.zip" with tempfile.open("wb") as f: for chunk in req.iter_content(chunk_size=65536): f.write(chunk) _log.info(f"downloaded zipfile to {tempfile}") # open as a zip file, and extract all files into the temporary directory _log.debug(f"open zip file: {tempfile}") zipf = ZipFile(str(tempfile)) zipf.extractall(path=tempdir.name) # move the REPO_DIR subdirectory into the target dir subdir = Path(tempdir.name) / f"{REPO_NAME}-{version}" / REPO_DIR _log.debug(f"move {subdir} -> {target_dir}") shutil.move(str(subdir), str(target_dir)) zipf.close() def copy_contents(target_dir, repo_root): subdir = repo_root / REPO_DIR if not subdir.is_dir(): raise CopyError(f"Could not copy from '{subdir}': not a directory") _log.info(f"copy.local.start from={subdir} to={target_dir}") try: shutil.copytree(subdir, target_dir) except shutil.Error as err: raise CopyError(err) except FileNotFoundError: raise CopyError(f"Could not find file '{subdir}'") except Exception as err: raise CopyError(f"Unknown problem copying: {err}") _log.info(f"copy.local.end from={subdir} to={target_dir}") def clean_up_temporary_files(): # temporary directory created for unzipping and renaming if g_tempdir: d = g_tempdir _log.debug(f"remove temporary directory.start name='{d}'") try: shutil.rmtree(d) except Exception as err: # WTF _log.warning(f"remove temporary directory.error name='{d}' msg='{err}'") else: _log.debug(f"removed temporary directory.end name='{d}'") # egg file created by setuptools if g_egg and g_egg.exists() and g_egg.is_dir(): _log.debug(f"remove setuptools egg path='{g_egg}'") try: shutil.rmtree(g_egg.name) except Exception as err: _log.warning(f"remove temporary directory.error name='{g_egg}' msg='{err}'") # dist directory created by setuptools d = Path("dist") if d.exists() and d.is_dir(): for f in d.glob("idaes_examples-*.egg"): try: f.unlink() except Exception as err: _log.warning(f"could not remove distribution file {f}: {err}") # remove directory, if now empty num_files = len(list(d.glob("*"))) if num_files == 0: _log.info(f"removing dist directory '{d.absolute()}'") try: d.rmdir() except Exception as err: _log.warning(f"could not remove distribution directory {d}: {err}") def archive_file_url(version, org=REPO_ORG, repo=REPO_NAME): """Build & return URL for a given release version. """ return f"{GITHUB}/{org}/{repo}/archive/{version}.zip" def get_releases(unstable) -> List[Release]: """Returns a list of releases. The list is sorted in ascending order by date. """ releases = [] url = f"{GITHUB_API}/repos/{REPO_ORG}/{REPO_NAME}/releases" resp = requests.get(url) data, headers = resp.json(), resp.headers check_github_response(data, headers) for rel in data: if not unstable and rel["prerelease"]: continue releases.append(Release(rel["published_at"], rel["tag_name"], rel["name"])) releases.sort(key=attrgetter("date")) # sort by publication date return releases def check_github_response(data, headers): """Check whether GitHub gave an error message. If so, raise a GithubError with a hopefully informative and useful message. """ if isinstance(data, list): return # lists are assumed to be the releases if isinstance(data, dict) and "message" in data: if "rate limit exceeded" in data["message"]: reset_ts = int(headers["X-RateLimit-Reset"]) now = datetime.now() now_ts, tzinfo = now.timestamp(), now.astimezone().tzinfo wait_min = int((reset_ts - now_ts) // 60) + 1 reset_dt = datetime.fromtimestamp(reset_ts) datestr = reset_dt.astimezone(tzinfo).isoformat() raise GithubError(f"API rate limit exceeded.\n" f"You will need to wait {wait_min} minutes," f" until {datestr}, to try again from " f"this computer.") else: raise GithubError(f"Error connecting to Github: {data['message']}") else: raise GithubError(f"Invalid result from Github: data={data} headers={headers}") def print_releases(releases: List[Release], unstable): """Print the releases, as returned by `get_releases()`, as a table to standard output. """ if len(releases) == 0: if unstable: print("No releases found") else: print("No stable releases found. Add -U/--unstable to also look " "for pre-releases.") return # determine column widths widths = [4, 7, 7] # widths of column titles: date,version,details widths[0] = len(releases[0].date) # dates are all the same # tags and names can have different widths for rel in releases: for i in range(1, 3): widths[i] = max(widths[i], len(rel[i])) # make row format pad = " " fmt = f"{{date:{widths[0]}s}}{pad}{{tag:{widths[1]}s}}{pad}{{name:{widths[2]}s}}" # print header print("") print(fmt.format(date="Date", tag="Version", name="Details")) print(fmt.format(date="-" * widths[0], tag="-" * widths[1], name="-" * widths[2])) # print rows for rel in releases: print(fmt.format(date=rel.date, tag=rel.tag, name=rel.info)) # print footer print("") def install_src(version, target_dir): """Install the 'src' subdirectory as a package, given by `INSTALL_PKG`, by renaming the directory, adding '__init__.py' files, and then running `setuptools.setup()` on the directory tree. When done, name the directory back to 'src', and remove '__init__.py' files. Then clean up whatever cruft is left behind.. """ from setuptools import setup, find_packages # import here due to slowness global g_egg orig_dir = Path(os.curdir).absolute() target_dir = Path(target_dir.absolute()) root_dir = target_dir.parent examples_dir = root_dir.absolute() / INSTALL_PKG if examples_dir.exists(): raise InstallError(f"package directory {examples_dir} already exists") _log.info(f"install into {INSTALL_PKG} package") # set the args to make it look like the 'install' command has been invoked saved_args = sys.argv[:] sys.argv = ["setup.py", "install"] # add some empty __init__.py files _log.debug("add temporary __init__.py files") pydirs = find_python_directories(target_dir) pydirs.append(target_dir) # include top-level dir try: for d in pydirs: init_py = d / "__init__.py" init_py.open("w") except IOError as err: raise InstallError(f"error writing temporary __init__.py files: {err}") # temporarily rename target directory to the package name _log.info(f"rename {target_dir} -> {examples_dir}") shutil.move(target_dir, examples_dir) # if there is a 'build' directory, move it aside build_dir = root_dir / 'build' if build_dir.exists(): from uuid import uuid1 random_letters = str(uuid1()) moved_build_dir = f"{build_dir}.{random_letters}" _log.debug(f"move existing build dir to {moved_build_dir}") shutil.move(str(build_dir), moved_build_dir) else: _log.debug("no existing build directory (nothing to do)") moved_build_dir = None # run setuptools' setup command (in root directory) _log.info(f"run setup command in directory {root_dir}") os.chdir(root_dir) packages = [d for d in find_packages() if d.startswith(INSTALL_PKG)] _log.debug(f"install packages: {packages}") # before running, grab stdout orig_stdout = sys.stdout sys.stdout = setup_out = StringIO() # run setup setup( name=INSTALL_PKG, version=version, # description='IDAES examples', packages=packages, python_requires=">=3.5, <4", zip_safe=False ) # restore stdout sys.stdout = orig_stdout # print/log output output_str = setup_out.getvalue() if _log.isEnabledFor(logging.DEBUG): for line in output_str.split("\n"): _log.debug(f"(setup) {line}") # name the target directory back to original _log.info(f"rename '{examples_dir}' to '{target_dir}'") shutil.move(examples_dir, target_dir) # remove the empty __init__.py files _log.info("remove temporary __init__.py files") for d in pydirs: init_py = d / "__init__.py" _log.debug(f"remove '{init_py}") init_py.unlink() # remove build dir, and restore any moved build dir _log.info(f"remove build directory '{build_dir}'") try: shutil.rmtree(build_dir) except Exception as err: _log.warning(f"failed to remove build directory {build_dir}: {err}") if moved_build_dir is not None: _log.info(f"restore build dir '{build_dir}' from '{moved_build_dir}'") shutil.move(moved_build_dir, build_dir) # restore previous args sys.argv = saved_args # change back to previous directory os.chdir(orig_dir) # save name of egg file, for later cleanup f = root_dir / (INSTALL_PKG + ".egg-info") if f.exists(): g_egg = f else: _log.warning(f"egg-info file not found path='{f}'") def find_python_directories(target_dir: Path) -> List[Path]: """Find all directories from target_dir, on down, that contain a Python module or sub-package. """ # get directories that contain python files -> pydirs pydirs = set((x.parent for x in target_dir.rglob("*.py"))) # get all directories in the tree leading to the 'pydirs' alldirs = set() for d in pydirs: while d != target_dir: alldirs.add(d) d = d.parent return list(alldirs) def find_notebook_files(target_dir: Path) -> List[Path]: """Find all files ending in ".ipynb", at or below target_dir. """ return list(target_dir.rglob("*.ipynb")) def strip_special_cells(target_dir: Path): """Strip 'special' cells from notebooks below `target_dir`. See `strip_tags()` for how that is done. """ nb_files = find_notebook_files(target_dir) for nb_file in nb_files: if strip_tags(nb_file): _log.info(f"removing original file '{nb_file}'") nb_file.unlink() def strip_tags(nb: Path) -> bool: """Strip tags from notebook, if there are any. Behavior depends on filename (case-insensitive). - if the notebook file name ends with "_solution_testing", create two files: 1. chop off "_testing" from name, remove test and exercise cells 2. chop off "_solution_testing" from name & add "_exercise", remove solution and test cells - if the file ends with "_testing" only, create one file: 1. chop off "_testing" from name, remove test cells - otherwise: do nothing Returns: Was anything stripped (and new files created)? Raises: IOError: If the desired target for the stripped notebook already exists """ _log.info(f"stripping tags from notebook {nb}") nb_name = nb.stem # Figure out which tags to strip: # - check for case (1), solution_testing.ipynb if nb_name.lower().endswith("_solution_testing"): pre = nb_name[:-17] names = [f"{pre}_solution.ipynb", f"{pre}_exercise.ipynb"] tags_to_strip = [(REMOVE_CELL_TAG, EXERCISE_CELL_TAG), (REMOVE_CELL_TAG, SOLUTION_CELL_TAG)] # - check for case (2), _testing.ipynb elif nb_name.lower().endswith("_testing"): pre = nb_name[:-8] names = [f"{pre}.ipynb"] tags_to_strip = [(REMOVE_CELL_TAG,)] # - if neither, we are done here else: _log.debug(f"notebook '{nb}' does not need to have tags stripped") return False # Create all desired tag-stripped copies for name, remove_tags in zip(names, tags_to_strip): target_nb = nb.parent / name _log.info(f"creating new notebook '{target_nb}'") # Don't overwrite an existing file if target_nb.exists(): _log.warning(f"cannot create new notebook '{target_nb}': file exists") continue # Set up configuration for removing specially tagged cells conf = traitlets_config.Config() conf.TagRemovePreprocessor.remove_cell_tags = remove_tags conf.NotebookExporter.preprocessors = [ # this requires the full module path "nbconvert.preprocessors.TagRemovePreprocessor" ] # Convert from Notebook format to Notebook format, stripping tags (body, resources) = nb_exporters.NotebookExporter( config=conf).from_filename(str(nb)) # Set up output destination wrt = nb_writers.FilesWriter() wrt.build_directory = str(target_nb.parent) # Write stripped notebook to output file wrt.write(body, resources, notebook_name=target_nb.stem) return True def has_tagged_cells(nb: Path): """Quickly check whether this notebook has any cells with the "special" tag. Returns: True = yes, it does; False = no specially tagged cells Raises: NotebookFormatError, if notebook at 'entry' is not parseable """ # parse the notebook (assuming this is fast; otherwise should cache it) try: nb = nbformat.read(str(nb), as_version=JUPYTER_NB_VERSION) except nbformat.reader.NotJSONError: raise ValueError(f"Notebook '{nb}' is not valid JSON") # look for tagged cells; return immediately if one is found for i, c in enumerate(nb.cells): if "tags" in c.metadata and REMOVE_CELL_TAG in c.metadata.tags: _log.debug(f"Found {REMOVE_CELL_TAG} tag in cell {i}") return True # can stop now, one is enough # no tagged cells return False
tests/test_simulator.py
eugenpt/seagull
162
11092673
# -*- coding: utf-8 -*- # Import modules import pytest import numpy as np from matplotlib import animation # Import from package from seagull import lifeforms as lf import seagull as sg def test_simulator_run(): """Test if the run() method returns the computed statistics""" board = sg.Board(size=(10, 10)) board.add(lf.Blinker(length=3), loc=(0, 1)) sim = sg.Simulator(board) stats = sim.run(sg.rules.conway_classic, iters=10) assert isinstance(stats, dict) @pytest.mark.parametrize("exclude_init", [True, False]) def test_simulator_get_history_shape(exclude_init): """Test if get_history() will return the expected shape""" board = sg.Board(size=(10, 10)) board.add(lf.Blinker(length=3), loc=(0, 1)) sim = sg.Simulator(board) sim.run(sg.rules.conway_classic, iters=10) hist = sim.get_history(exclude_init) expected_depth = 10 if exclude_init else 11 assert hist.shape == (expected_depth, 10, 10) def test_simulator_animate(): """Test if animate() method returns a FuncAnimation""" board = sg.Board(size=(10, 10)) board.add(lf.Blinker(length=3), loc=(0, 1)) sim = sg.Simulator(board) sim.run(sg.rules.conway_classic, iters=10) anim = sim.animate() assert isinstance(anim, animation.FuncAnimation) def test_simulator_animate_without_run(): """Test if animate() method throws an error when called before run()""" board = sg.Board(size=(10, 10)) board.add(lf.Blinker(length=3), loc=(0, 1)) sim = sg.Simulator(board) with pytest.raises(ValueError): sim.animate() def test_compute_statistics(): """Test if compute_statistics() returns a dictionary""" board = sg.Board(size=(10, 10)) board.add(lf.Blinker(length=3), loc=(0, 1)) sim = sg.Simulator(board) sim.run(sg.rules.conway_classic, iters=10) stats = sim.compute_statistics(sim.get_history()) assert isinstance(stats, dict) def test_simulator_inplace(): """Test if board state didn't change after a simulation run""" board = sg.Board(size=(10, 10)) board.add(lf.Glider(), loc=(0, 0)) # Initial board state, must be the same always init_board = board.state.copy() # Run simulator sim = sg.Simulator(board) sim.run(sg.rules.conway_classic, iters=10) assert np.array_equal(board.state, init_board)
sharppy/sharptab/params.py
skovic/SHARPpy
163
11092730
<filename>sharppy/sharptab/params.py<gh_stars>100-1000 # -*- coding: utf-8 -*- ''' Thermodynamic Parameter Routines ''' from __future__ import division import numpy as np import numpy.ma as ma from sharppy.sharptab import interp, utils, thermo, winds from sharppy.sharptab.constants import * ''' This file contains various functions to perform the calculation of various convection indices. Because of this, parcel lifting routines are also found in this file. Functions denoted with a (*) in the docstring refer to functions that were added to the SHARPpy package that were not ported from the Storm Prediction Center. They have been included as they have been used by the community in an effort to expand SHARPpy to support the many parameters used in atmospheric science. While the logic for these functions are based in the scientific literature, validation of the output from these functions is occasionally difficult to perform. Although we have made an effort to resolve code issues when they arise, values from these functions may be erronious and may require additional inspection by the user. We appreciate any contributions by the meteorological community that can help better validate these SHARPpy functions! ''' __all__ = ['DefineParcel', 'Parcel', 'inferred_temp_advection'] __all__ += ['k_index', 't_totals', 'c_totals', 'v_totals', 'precip_water'] __all__ += ['temp_lvl', 'max_temp', 'mean_mixratio', 'mean_theta', 'mean_thetae', 'mean_relh'] __all__ += ['lapse_rate', 'max_lapse_rate', 'most_unstable_level', 'parcelx', 'bulk_rich'] __all__ += ['bunkers_storm_motion', 'effective_inflow_layer'] __all__ += ['convective_temp', 'esp', 'pbl_top', 'precip_eff', 'dcape', 'sig_severe'] __all__ += ['dgz', 'ship', 'stp_cin', 'stp_fixed', 'scp', 'mmp', 'wndg', 'sherb', 'tei', 'cape'] __all__ += ['mburst', 'dcp', 'ehi', 'sweat', 'hgz', 'lhp', 'integrate_parcel'] class DefineParcel(object): ''' Create a parcel from a supplied profile object. Parameters ---------- prof : profile object Profile object Optional Keywords flag : int (default = 1) Parcel Selection 1 - Observed Surface Parcel 2 - Forecast Surface Parcel 3 - Most Unstable Parcel 4 - Mean Mixed Layer Parcel 5 - User Defined Parcel 6 - Mean Effective Layer Parcel Optional Keywords (Depending on Parcel Selected) Parcel (flag) == 1: Observed Surface Parcel None Parcel (flag) == 2: Forecast Surface Parcel pres : number (default = 100 hPa) Depth over which to mix the boundary layer; only changes temperature; does not affect moisture Parcel (flag) == 3: Most Unstable Parcel pres : number (default = 400 hPa) Depth over which to look for the the most unstable parcel starting from the surface pressure Parcel (flag) == 4: Mixed Layer Parcel pres : number (default = 100 hPa) Depth over which to mix the surface parcel Parcel (flag) == 5: User Defined Parcel pres : number (default = SFC - 100 hPa) Pressure of the parcel to lift tmpc : number (default = Temperature at the provided pressure) Temperature of the parcel to lift dwpc : number (default = Dew Point at the provided pressure) Dew Point of the parcel to lift Parcel (flag) == 6: Effective Inflow Layer ecape : number (default = 100) The minimum amount of CAPE a parcel needs to be considered part of the inflow layer ecinh : number (default = -250) The maximum amount of CINH allowed for a parcel to be considered as part of the inflow layer ''' def __init__(self, prof, flag, **kwargs): self.flag = flag if flag == 1: self.presval = prof.pres[prof.sfc] self.__sfc(prof) elif flag == 2: self.presval = kwargs.get('pres', 100) self.__fcst(prof, **kwargs) elif flag == 3: self.presval = kwargs.get('pres', 300) self.__mu(prof, **kwargs) elif flag == 4: self.presval = kwargs.get('pres', 100) self.__ml(prof, **kwargs) elif flag == 5: self.presval = kwargs.get('pres', prof.pres[prof.sfc]) self.__user(prof, **kwargs) elif flag == 6: self.presval = kwargs.get('pres', 100) self.__effective(prof, **kwargs) else: self.presval = kwargs.get('pres', prof.gSndg[prof.sfc]) self.__sfc(prof) def __sfc(self, prof): ''' Create a parcel using surface conditions ''' self.desc = 'Surface Parcel' self.pres = prof.pres[prof.sfc] self.tmpc = prof.tmpc[prof.sfc] self.dwpc = prof.dwpc[prof.sfc] def __fcst(self, prof, **kwargs): ''' Create a parcel using forecast conditions. ''' self.desc = 'Forecast Surface Parcel' self.tmpc = max_temp(prof) self.pres = prof.pres[prof.sfc] pbot = self.pres; ptop = self.pres - 100. self.dwpc = thermo.temp_at_mixrat(mean_mixratio(prof, pbot, ptop, exact=True), self.pres) def __mu(self, prof, **kwargs): ''' Create the most unstable parcel within the lowest XXX hPa, where XXX is supplied. Default XXX is 400 hPa. ''' self.desc = 'Most Unstable Parcel in Lowest %.2f hPa' % self.presval pbot = prof.pres[prof.sfc] ptop = pbot - self.presval self.pres = most_unstable_level(prof, pbot=pbot, ptop=ptop) self.tmpc = interp.temp(prof, self.pres) self.dwpc = interp.dwpt(prof, self.pres) def __ml(self, prof, **kwargs): ''' Create a mixed-layer parcel with mixing within the lowest XXX hPa, where XXX is supplied. Default is 100 hPa. If ''' self.desc = '%.2f hPa Mixed Layer Parcel' % self.presval pbot = kwargs.get('pbot', prof.pres[prof.sfc]) ptop = pbot - self.presval self.pres = pbot mtheta = mean_theta(prof, pbot, ptop, exact=True) self.tmpc = thermo.theta(1000., mtheta, self.pres) mmr = mean_mixratio(prof, pbot, ptop, exact=True) self.dwpc = thermo.temp_at_mixrat(mmr, self.pres) def __user(self, prof, **kwargs): ''' Create a user defined parcel. ''' self.desc = '%.2f hPa Parcel' % self.presval self.pres = self.presval self.tmpc = kwargs.get('tmpc', interp.temp(prof, self.pres)) self.dwpc = kwargs.get('dwpc', interp.dwpt(prof, self.pres)) def __effective(self, prof, **kwargs): ''' Create the mean-effective layer parcel. ''' ecape = kwargs.get('ecape', 100) ecinh = kwargs.get('ecinh', -250) pbot, ptop = effective_inflow_layer(prof, ecape, ecinh) if utils.QC(pbot) and pbot > 0: self.desc = '%.2f hPa Mean Effective Layer Centered at %.2f' % ( pbot-ptop, (pbot+ptop)/2.) mtha = mean_theta(prof, pbot, ptop) mmr = mean_mixratio(prof, pbot, ptop) self.pres = (pbot+ptop)/2. self.tmpc = thermo.theta(1000., mtha, self.pres) self.dwpc = thermo.temp_at_mixrat(mmr, self.pres) else: self.desc = 'Defaulting to Surface Layer' self.pres = prof.pres[prof.sfc] self.tmpc = prof.tmpc[prof.sfc] self.dwpc = prof.dwpc[prof.sfc] if utils.QC(pbot): self.pbot = pbot else: self.pbot = ma.masked if utils.QC(ptop): self.ptop = ptop else: self.pbot = ma.masked class Parcel(object): ''' Initialize the parcel variables Parameters ---------- pbot : number Lower-bound (pressure; hPa) that the parcel is lifted ptop : number Upper-bound (pressure; hPa) that the parcel is lifted pres : number Pressure of the parcel to lift (hPa) tmpc : number Temperature of the parcel to lift (C) dwpc : number Dew Point of the parcel to lift (C) Attributes ---------- pres : number parcel beginning pressure (mb) tmpc : number parcel beginning temperature (C) dwpc : number parcel beginning dewpoint (C) ptrace : array parcel trace pressure (mb) ttrace : array parcel trace temperature (C) blayer : number Pressure of the bottom of the layer the parcel is lifted (mb) tlayer : number Pressure of the top of the layer the parcel is lifted (mb) entrain : number Parcel entrainment fraction (not yet implemented) lclpres : number Parcel LCL (lifted condensation level) pressure (mb) lclhght : number Parcel LCL height (m AGL) lfcpres : number Parcel LFC (level of free convection) pressure (mb) lfchght: number Parcel LCL height (m AGL) elpres : number Parcel EL (equilibrium level) pressure (mb) elhght : number Parcel EL height (m AGL) mplpres : number Maximum Parcel Level (mb) mplhght : number Maximum Parcel Level (m AGL) bplus : number Parcel CAPE (J/kg) bminus : number Parcel CIN below 500 mb (J/kg) bfzl : number Parcel CAPE up to freezing level (J/kg) b3km : number Parcel CAPE up to 3 km (J/kg) b6km : number Parcel CAPE up to 6 km (J/kg) p0c: number Pressure value at 0 C (mb) pm10c : number Pressure value at -10 C (mb) pm20c : number Pressure value at -20 C (mb) pm30c : number Pressure value at -30 C (mb) hght0c : number Height value at 0 C (m AGL) hghtm10c : number Height value at -10 C (m AGL) hghtm20c : number Height value at -20 C (m AGL) hghtm30c : number Height value at -30 C (m AGL) wm10c : number Wetbulb at -10 C (C) wm20c : number Wetbulb at -20 C (C) wm30c : number Wetbulb at -30 C (C) li5 : number 500-mb lifted index (C) li3 : number 300-mb lifted index (C) brnshear : number Bulk Richardson Number Shear (kts) brnu : number U-component Bulk Richardson Number Shear (kts) brnv : number V-component Bulk Richardson Number Shear (kts) brn : number Bulk Richardson Number (unitless) limax : number Maximum lifted index value (C) limaxpres : number Pressure at Maximum lifted index (mb) cap : number Cap strength (C) cappres : number Cap strength pressure (mb) bmin : number Buoyancy minimum (C) bminpres : number Pressure at the buoyancy minimum (mb) ''' def __init__(self, **kwargs): self.pres = ma.masked # Parcel beginning pressure (mb) self.tmpc = ma.masked # Parcel beginning temperature (C) self.dwpc = ma.masked # Parcel beginning dewpoint (C) self.ptrace = ma.masked # Parcel trace pressure (mb) self.ttrace = ma.masked # Parcel trace temperature (C) self.blayer = ma.masked # Pressure of the bottom of the layer the parcel is lifted (mb) self.tlayer = ma.masked # Pressure of the top of the layer the parcel is lifted (mb) self.entrain = 0. # A parcel entrainment setting (not yet implemented) self.lclpres = ma.masked # Parcel LCL (lifted condensation level) pressure (mb) self.lclhght = ma.masked # Parcel LCL height (m AGL) self.lfcpres = ma.masked # Parcel LFC (level of free convection) pressure (mb) self.lfchght = ma.masked # Parcel LFC height (m AGL) self.elpres = ma.masked # Parcel EL (equilibrium level) pressure (mb) self.elhght = ma.masked # Parcel EL height (m AGL) self.mplpres = ma.masked # Maximum Parcel Level (mb) self.mplhght = ma.masked # Maximum Parcel Level (m AGL) self.bplus = ma.masked # Parcel CAPE (J/kg) self.bminus = ma.masked # Parcel CIN (J/kg) self.bfzl = ma.masked # Parcel CAPE up to freezing level (J/kg) self.b3km = ma.masked # Parcel CAPE up to 3 km (J/kg) self.b6km = ma.masked # Parcel CAPE up to 6 km (J/kg) self.p0c = ma.masked # Pressure value at 0 C (mb) self.pm10c = ma.masked # Pressure value at -10 C (mb) self.pm20c = ma.masked # Pressure value at -20 C (mb) self.pm30c = ma.masked # Pressure value at -30 C (mb) self.hght0c = ma.masked # Height value at 0 C (m AGL) self.hghtm10c = ma.masked # Height value at -10 C (m AGL) self.hghtm20c = ma.masked # Height value at -20 C (m AGL) self.hghtm30c = ma.masked # Height value at -30 C (m AGL) self.wm10c = ma.masked # w velocity at -10 C ? self.wm20c = ma.masked # w velocity at -20 C ? self.wm30c = ma.masked # Wet bulb at -30 C ? self.li5 = ma.masked # Lifted Index at 500 mb (C) self.li3 = ma.masked # Lifted Index at 300 mb (C) self.brnshear = ma.masked # Bulk Richardson Number Shear self.brnu = ma.masked # Bulk Richardson Number U (kts) self.brnv = ma.masked # Bulk Richardson Number V (kts) self.brn = ma.masked # Bulk Richardson Number (unitless) self.limax = ma.masked # Maximum Lifted Index (C) self.limaxpres = ma.masked # Pressure at Maximum Lifted Index (mb) self.cap = ma.masked # Cap Strength (C) self.cappres = ma.masked # Cap strength pressure (mb) self.bmin = ma.masked # Buoyancy minimum in profile (C) self.bminpres = ma.masked # Buoyancy minimum pressure (mb) for kw in kwargs: setattr(self, kw, kwargs.get(kw)) def hgz(prof): ''' Hail Growth Zone Levels This function finds the pressure levels for the dendritic growth zone (from -10 C to -30 C). If either temperature cannot be found, it is set to be the surface pressure. Parameters ---------- prof : profile object Profile Object Returns ------- pbot : number Pressure of the bottom level (mb) ptop : number Pressure of the top level (mb) ''' pbot = temp_lvl(prof, -10) ptop = temp_lvl(prof, -30) if not utils.QC(pbot): pbot = prof.pres[prof.sfc] if not utils.QC(ptop): ptop = prof.pres[prof.sfc] return pbot, ptop def dgz(prof): ''' Dendritic Growth Zone Levels This function finds the pressure levels for the dendritic growth zone (from -12 C to -17 C). If either temperature cannot be found, it is set to be the surface pressure. Parameters ---------- prof : profile object Profile Object Returns ------- pbot : number Pressure of the bottom level (mb) ptop : number Pressure of the top level (mb) ''' pbot = temp_lvl(prof, -12) ptop = temp_lvl(prof, -17) if not utils.QC(pbot): pbot = prof.pres[prof.sfc] if not utils.QC(ptop): ptop = prof.pres[prof.sfc] return pbot, ptop def lhp(prof): ''' Large Hail Parameter From Johnson and Sugden (2014), EJSSM .. warning:: This code has not been compared directly against an SPC version. Parameters ---------- prof : profile object ConvectiveProfile object Returns ------- lhp : number large hail parameter (unitless) ''' mag06_shr = utils.KTS2MS(utils.mag(*prof.sfc_6km_shear)) if prof.mupcl.bplus >= 400 and mag06_shr >= 14: lr75 = prof.lapserate_700_500 zbot, ztop = interp.hght(prof, hgz(prof)) thk_hgz = ztop - zbot term_a = (((prof.mupcl.bplus - 2000.)/1000.) +\ ((3200 - thk_hgz)/500.) +\ ((lr75 - 6.5)/2.)) if term_a < 0: term_a = 0 p_1km, p_3km, p_6km = interp.pres(prof, interp.to_msl(prof, [1000, 3000, 6000])) shear_el = utils.KTS2MS(utils.mag(*winds.wind_shear(prof, pbot=prof.pres[prof.sfc], ptop=prof.mupcl.elpres))) grw_el_dir = interp.vec(prof, prof.mupcl.elpres)[0] grw_36_dir = utils.comp2vec(*winds.mean_wind(prof, pbot=p_3km, ptop=p_6km))[0] grw_alpha_el = grw_el_dir - grw_36_dir if grw_alpha_el > 180: grw_alpha_el = -10 srw_01_dir = utils.comp2vec(*winds.sr_wind(prof, pbot=prof.pres[prof.sfc], ptop=p_1km, stu=prof.srwind[0], stv=prof.srwind[1]))[0] srw_36_dir = utils.comp2vec(*winds.sr_wind(prof, pbot=p_3km, ptop=p_6km, stu=prof.srwind[0], stv=prof.srwind[1]))[0] srw_alpha_mid = srw_36_dir - srw_01_dir term_b = (((shear_el - 25.)/5.) +\ ((grw_alpha_el + 5.)/20.) +\ ((srw_alpha_mid - 80.)/10.)) if term_b < 0: term_b = 0 lhp = term_a * term_b + 5 else: lhp = 0 return lhp def ship(prof, **kwargs): ''' Calculate the Sig Hail Parameter (SHIP) <NAME> (SPC) helped in correcting this equation as the SPC sounding help page version did not have the correct information of how SHIP was calculated. The significant hail parameter (SHIP; SPC 2014) is an index developed in-house at the SPC. (Johnson and Sugden 2014) Parameters ---------- prof : profile object Profile object mupcl : parcel object, optional Most Unstable Parcel object lr75 : float, optional 700 - 500 mb lapse rate (C/km) h5_temp : float, optional 500 mb temperature (C) shr06 : float, optional 0-6 km shear (m/s) frz_lvl : float, optional freezing level (m) Returns ------- ship : number significant hail parameter (unitless) ''' mupcl = kwargs.get('mupcl', None) sfc6shr = kwargs.get('sfc6shr', None) frz_lvl = kwargs.get('frz_lvl', None) h5_temp = kwargs.get('h5_temp', None) lr75 = kwargs.get('lr75', None) if not mupcl: try: mupcl = prof.mupcl except: mulplvals = DefineParcel(prof, flag=3, pres=300) mupcl = cape(prof, lplvals=mulplvals) mucape = mupcl.bplus mumr = thermo.mixratio(mupcl.pres, mupcl.dwpc) if not frz_lvl: frz_lvl = interp.hght(prof, temp_lvl(prof, 0)) if not h5_temp: h5_temp = interp.temp(prof, 500.) if not lr75: lr75 = lapse_rate(prof, 700., 500., pres=True) if not sfc6shr: try: sfc_6km_shear = prof.sfc_6km_shear except: sfc = prof.pres[prof.sfc] p6km = interp.pres(prof, interp.to_msl(prof, 6000.)) sfc_6km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p6km) sfc_6km_shear = utils.mag(sfc_6km_shear[0], sfc_6km_shear[1]) shr06 = utils.KTS2MS(sfc_6km_shear) if shr06 > 27: shr06 = 27. elif shr06 < 7: shr06 = 7. if mumr > 13.6: mumr = 13.6 elif mumr < 11.: mumr = 11. if h5_temp > -5.5: h5_temp = -5.5 ship = -1. * (mucape * mumr * lr75 * h5_temp * shr06) / 42000000. if mucape < 1300: ship = ship*(mucape/1300.) if lr75 < 5.8: ship = ship*(lr75/5.8) if frz_lvl < 2400: ship = ship * (frz_lvl/2400.) return ship def stp_cin(mlcape, esrh, ebwd, mllcl, mlcinh): ''' Significant Tornado Parameter (w/CIN) Formulated using the methodology outlined in [1]_. Used to detect environments where significant tornadoes are possible within the United States. Uses the effective inflow layer calculations in [3]_ and was created as an alternative to [2]_. .. [1] <NAME>., <NAME>, <NAME>, <NAME>, and <NAME>, 2012: Convective modes for significant severe thunderstorms in the contiguous United States.Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 1136–1154,doi:https://doi.org/10.1175/WAF-D-11-00116.1. .. [3] <NAME>., <NAME>, and <NAME>, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102–115, doi:https://doi.org/10.1175/WAF969.1. Parameters ---------- mlcape : float Mixed-layer CAPE from the parcel class (J/kg) esrh : float effective storm relative helicity (m2/s2) ebwd : float effective bulk wind difference (m/s) mllcl : float mixed-layer lifted condensation level (m) mlcinh : float mixed-layer convective inhibition (J/kg) Returns ------- stp_cin : number significant tornado parameter (unitless) See Also -------- stp_fixed ''' cape_term = mlcape / 1500. eshr_term = esrh / 150. if ebwd < 12.5: ebwd_term = 0. elif ebwd > 30.: ebwd_term = 1.5 else: ebwd_term = ebwd / 20. if mllcl < 1000.: lcl_term = 1.0 elif mllcl > 2000.: lcl_term = 0.0 else: lcl_term = ((2000. - mllcl) / 1000.) if mlcinh > -50: cinh_term = 1.0 elif mlcinh < -200: cinh_term = 0 else: cinh_term = ((mlcinh + 200.) / 150.) stp_cin = np.maximum(cape_term * eshr_term * ebwd_term * lcl_term * cinh_term, 0) return stp_cin def stp_fixed(sbcape, sblcl, srh01, bwd6): ''' Significant Tornado Parameter (fixed layer) Formulated using the methodology in [2]_. Used to detect environments where significant tornadoes are possible within the United States. .. [2] <NAME>., <NAME>, <NAME>, <NAME>, and <NAME>, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 1243–1261, doi:https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2 Parameters ---------- sbcape : number Surface based CAPE from the parcel class (J/kg) sblcl : number Surface based lifted condensation level (LCL) (m) srh01 : number Surface to 1 km storm relative helicity (m2/s2) bwd6 : number Bulk wind difference between 0 to 6 km (m/s) Returns ------- stp_fixed : number signifcant tornado parameter (fixed-layer) ''' # Calculate SBLCL term if sblcl < 1000.: # less than 1000. meters lcl_term = 1.0 elif sblcl > 2000.: # greater than 2000. meters lcl_term = 0.0 else: lcl_term = ((2000.-sblcl)/1000.) # Calculate 6BWD term if bwd6 > 30.: # greater than 30 m/s bwd6 = 30 elif bwd6 < 12.5: bwd6 = 0.0 bwd6_term = bwd6 / 20. cape_term = sbcape / 1500. srh_term = srh01 / 150. stp_fixed = cape_term * lcl_term * srh_term * bwd6_term return stp_fixed def scp(mucape, srh, ebwd): ''' Supercell Composite Parameter From Thompson et al. 2004, updated from the methodology in [2]_ and uses the effective inflow layer. Parameters ---------- prof : profile object Profile object mucape : number, optional Most Unstable CAPE from the parcel class (J/kg) (optional) srh : number, optional the effective SRH from the winds.helicity function (m2/s2) ebwd : number, optional effective bulk wind difference (m/s) Returns ------- scp : number supercell composite parameter ''' if ebwd > 20: ebwd = 20. elif ebwd < 10: ebwd = 0. muCAPE_term = mucape / 1000. esrh_term = srh / 50. ebwd_term = ebwd / 20. scp = muCAPE_term * esrh_term * ebwd_term return scp def k_index(prof): ''' Calculates the K-Index from a profile object Parameters ---------- prof : profile object Profile Object Returns ------- k_index : number K-Index ''' t8 = interp.temp(prof, 850.) t7 = interp.temp(prof, 700.) t5 = interp.temp(prof, 500.) td7 = interp.dwpt(prof, 700.) td8 = interp.dwpt(prof, 850.) return t8 - t5 + td8 - (t7 - td7) def t_totals(prof): ''' Calculates the Total Totals Index from a profile object Parameters ---------- prof : profile object Profile Object Returns ------- t_totals : number Total Totals Index ''' return c_totals(prof) + v_totals(prof) def c_totals(prof): ''' Calculates the Cross Totals Index from a profile object Parameters ---------- prof : profile object Profile Object Returns ------- c_totals : number Cross Totals Index ''' return interp.dwpt(prof, 850.) - interp.temp(prof, 500.) def v_totals(prof): ''' Calculates the Vertical Totals Index from a profile object Parameters ---------- prof : profile object Profile Object Returns ------- v_totals : number Vertical Totals Index ''' return interp.temp(prof, 850.) - interp.temp(prof, 500.) def precip_water(prof, pbot=None, ptop=400, dp=-1, exact=False): ''' Calculates the precipitable water from a profile object within the specified layer. The default layer (lower=-1 & upper=-1) is defined to be surface to 400 hPa. Parameters ---------- prof : profile object Profile Object pbot : number (optional; default surface) Pressure of the bottom level (hPa) ptop : number (optional; default 400 hPa) Pressure of the top level (hPa). dp : negative integer (optional; default = -1) The pressure increment for the interpolated sounding exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) Returns ------- pwat : number, Precipitable Water (in) ''' if not pbot: pbot = prof.pres[prof.sfc] if prof.pres[-1] > ptop: ptop = prof.pres[-1] if exact: ind1 = np.where(pbot > prof.pres)[0].min() ind2 = np.where(ptop < prof.pres)[0].max() dwpt1 = interp.dwpt(prof, pbot) dwpt2 = interp.dwpt(prof, ptop) mask = ~prof.dwpc.mask[ind1:ind2+1] * ~prof.pres.mask[ind1:ind2+1] dwpt = np.concatenate([[dwpt1], prof.dwpc[ind1:ind2+1][mask], [dwpt2]]) p = np.concatenate([[pbot], prof.pres[ind1:ind2+1][mask], [ptop]]) else: dp = -1 p = np.arange(pbot, ptop+dp, dp, dtype=type(pbot)) dwpt = interp.dwpt(prof, p) w = thermo.mixratio(p, dwpt) return (((w[:-1]+w[1:])/2 * (p[:-1]-p[1:])) * 0.00040173).sum() def inferred_temp_adv(prof, dp=-100, lat=35): ''' Inferred Temperature Advection SHARP code deduced by <NAME>. Not based on actual SPC code. Calculates the inferred temperature advection from the surface pressure and up every 100 mb assuming all winds are geostrophic. The units returned are in C/hr. If no latitude is specified the function defaults to 35 degrees North. This code uses Equation 4.1.139 from Bluestein's "Synoptic-Dynamic Meteorology in Midlatitudes (Volume I)" .. important:: While this code compares well qualitatively to the version at SPC, the SPC output is much larger. Scale analysis suggests that the values provided by this function are much more reasonable (10 K/day is typical for synoptic scale values). Parameters ---------- prof : profile object Profile object dp : number, optional layer size to compute temperature advection over lat : number, optional latitude in decimal degrees Returns ------- temp_adv : array an array of temperature advection values (C/hr) pressure_bounds: array a 2D array indicating the top and bottom bounds of the temperature advection layers (mb) ''' if prof.wdir.count() == 0: return ma.masked, ma.masked if np.ma.max(prof.pres) <= 100: return ma.masked, ma.masked omega = (2. * np.pi) / (86164.) pres_idx = np.where(prof.pres >= 100.)[0] pressures = np.arange(prof.pres[prof.get_sfc()], prof.pres[pres_idx][-1], dp, dtype=type(prof.pres[prof.get_sfc()])) # Units: mb temps = thermo.ctok(interp.temp(prof, pressures)) heights = interp.hght(prof, pressures) temp_adv = np.empty(len(pressures) - 1) dirs = interp.vec(prof, pressures)[0] pressure_bounds = np.empty((len(pressures) - 1, 2)) if utils.QC(lat): f = 2. * omega * np.sin(np.radians(lat)) # Units: (s**-1) else: temp_adv[:] = np.nan return temp_adv, pressure_bounds multiplier = (f / 9.81) * (np.pi / 180.) # Units: (s**-1 / (m/s**2)) * (radians/degrees) for i in range(1, len(pressures)): bottom_pres = pressures[i-1] top_pres = pressures[i] # Get the temperatures from both levels (in Kelvin) btemp = temps[i-1] ttemp = temps[i] # Get the two heights of the top and bottom layer bhght = heights[i-1] # Units: meters thght = heights[i] # Units: meters bottom_wdir = dirs[i-1] # Meteorological degrees (degrees from north) top_wdir = dirs[i] # same units as top_wdir # Calculate the average temperature avg_temp = (ttemp + btemp) * 2. # Calculate the mean wind between the two levels (this is assumed to be geostrophic) mean_u, mean_v = winds.mean_wind(prof, pbot=bottom_pres, ptop=top_pres) mean_wdir, mean_wspd = utils.comp2vec(mean_u, mean_v) # Wind speed is in knots here mean_wspd = utils.KTS2MS(mean_wspd) # Convert this geostrophic wind speed to m/s # Here we calculate the change in wind direction with height (thanks to <NAME> for help with this) # The sign of d_theta will dictate whether or not it is warm or cold advection mod = 180 - bottom_wdir top_wdir = top_wdir + mod if top_wdir < 0: top_wdir = top_wdir + 360 elif top_wdir >= 360: top_wdir = top_wdir - 360 d_theta = top_wdir - 180. # Here we calculate t_adv (which is -V_g * del(T) or the local change in temperature term) # K/s s * rad/m * deg m^2/s^2 K degrees / m t_adv = multiplier * np.power(mean_wspd,2) * avg_temp * (d_theta / (thght - bhght)) # Units: Kelvin / seconds # Append the pressure bounds so the person knows the pressure pressure_bounds[i-1, :] = bottom_pres, top_pres temp_adv[i-1] = t_adv*60.*60. # Converts Kelvin/seconds to Kelvin/hour (or Celsius/hour) return temp_adv, pressure_bounds def temp_lvl(prof, temp, wetbulb=False): ''' Calculates the level (hPa) of the first occurrence of the specified temperature. Parameters ---------- prof : profile object Profile Object temp : number Temperature being searched (C) wetbulb : boolean Flag to indicate whether or not the wetbulb profile should be used instead Returns ------- First Level of the temperature (hPa) : number ''' if wetbulb is False: profile = prof.tmpc else: profile = prof.wetbulb difft = profile - temp if not np.any(difft <= 0) or not np.any(difft >= 0): # Temp doesn't occur anywhere; return masked return ma.masked elif np.any(difft == 0): # Temp is one of the data points; don't bother interpolating return prof.pres[difft == 0][0] mask = difft.mask | prof.logp.mask difft = difft[~mask] profile = profile[~mask] logp = prof.logp[~mask] # Find where subsequent values of difft are of opposite sign (i.e. when multiplied together, the result is negative) ind = np.where((difft[:-1] * difft[1:]) < 0)[0] try: ind = ind.min() except: ind = ind1[-1] return np.power(10, np.interp(temp, [profile[ind+1], profile[ind]], [logp[ind+1], logp[ind]])) def max_temp(prof, mixlayer=100): ''' Calculates a maximum temperature forecast based on the depth of the mixing layer and low-level temperatures Parameters ---------- prof : profile object Profile Object mixlayer : number (optional; default = 100) Top of layer over which to "mix" (hPa) Returns ------- mtemp : number Forecast Maximum Temperature ''' mixlayer = prof.pres[prof.sfc] - mixlayer temp = thermo.ctok(interp.temp(prof, mixlayer)) + 2 return thermo.ktoc(temp * (prof.pres[prof.sfc] / mixlayer)**ROCP) def mean_relh(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Calculates the mean relative humidity from a profile object within the specified layer. Parameters ---------- prof : profile object Profile Object pbot : number (optional; default surface) Pressure of the bottom level (hPa) ptop : number (optional; default 400 hPa) Pressure of the top level (hPa) dp : negative integer (optional; default = -1) The pressure increment for the interpolated sounding (mb) exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) Returns ------- Mean Relative Humidity : number ''' if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 100. if not utils.QC(interp.temp(prof, pbot)): pbot = prof.pres[prof.sfc] if not utils.QC(interp.temp(prof, ptop)): return ma.masked if exact: ind1 = np.where(pbot > prof.pres)[0].min() ind2 = np.where(ptop < prof.pres)[0].max() dwpt1 = interp.dwpt(prof, pbot) dwpt2 = interp.dwpt(prof, ptop) mask = ~prof.dwpc.mask[ind1:ind2+1] * ~prof.pres.mask[ind1:ind2+1] dwpt = np.concatenate([[dwpt1], prof.dwpc[ind1:ind2+1][mask], [dwpt2]]) p = np.concatenate([[pbot], prof.pres[ind1:ind2+1][mask], [ptop]]) else: dp = -1 p = np.arange(pbot, ptop+dp, dp, dtype=type(pbot)) tmp = interp.temp(prof, p) dwpt = interp.dwpt(prof, p) rh = thermo.relh(p, tmp, dwpt) return ma.average(rh, weights=p) def mean_omega(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Calculates the mean omega from a profile object within the specified layer. Parameters ---------- prof : profile object Profile Object pbot : number (optional; default surface) Pressure of the bottom level (hPa) ptop : number (optional; default 400 hPa) Pressure of the top level (hPa) dp : negative integer (optional; default = -1) The pressure increment for the interpolated sounding (mb) exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) Returns ------- Mean Omega : number ''' if hasattr(prof, 'omeg'): if prof.omeg.all() is np.ma.masked: return prof.missing else: return prof.missing if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 100. if not utils.QC(interp.omeg(prof, pbot)): pbot = prof.pres[prof.sfc] if not utils.QC(interp.omeg(prof, ptop)): return ma.masked if exact: # This condition of the if statement is not tested omeg = prof.omeg ind1 = np.where(pbot > prof.pres)[0].min() ind2 = np.where(ptop < prof.pres)[0].max() omeg1 = interp.omeg(prof, pbot) omeg2 = interp.omeg(prof, ptop) omeg = omeg[ind1:ind2+1] mask = ~omeg.mask omeg = np.concatenate([[omeg1], omeg[mask], omeg[mask], [omeg2]]) tott = omeg.sum() / 2. num = float(len(omeg)) / 2. thta = tott / num else: dp = -1 p = np.arange(pbot, ptop+dp, dp, dtype=type(pbot)) omeg = interp.omeg(prof, p) omeg = ma.average(omeg, weights=p) return omeg def mean_mixratio(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Calculates the mean mixing ratio from a profile object within the specified layer. Parameters ---------- prof : profile object Profile Object pbot : number (optional; default surface) Pressure of the bottom level (hPa) ptop : number (optional; default 400 hPa) Pressure of the top level (hPa) dp : negative integer (optional; default = -1) The pressure increment for the interpolated sounding (mb) exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) Returns ------- Mean Mixing Ratio : number ''' if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 100. if not utils.QC(interp.temp(prof, pbot)): pbot = prof.pres[prof.sfc] if not utils.QC(interp.temp(prof, ptop)): return ma.masked if exact: ind1 = np.where(pbot > prof.pres)[0].min() ind2 = np.where(ptop < prof.pres)[0].max() dwpt1 = interp.dwpt(prof, pbot) dwpt2 = interp.dwpt(prof, ptop) mask = ~prof.dwpc.mask[ind1:ind2+1] * ~prof.pres.mask[ind1:ind2+1] dwpt = np.concatenate([[dwpt1], prof.dwpc[ind1:ind2+1][mask], prof.dwpc[ind1:ind2+1][mask], [dwpt2]]) p = np.concatenate([[pbot], prof.pres[ind1:ind2+1][mask],prof.pres[ind1:ind2+1][mask], [ptop]]) totd = dwpt.sum() / 2. totp = p.sum() / 2. num = float(len(dwpt)) / 2. w = thermo.mixratio(totp/num, totd/num) else: dp = -1 p = np.arange(pbot, ptop+dp, dp, dtype=type(pbot)) dwpt = interp.dwpt(prof, p) w = ma.average(thermo.mixratio(p, dwpt)) return w def mean_thetae(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Calculates the mean theta-e from a profile object within the specified layer. Parameters ---------- prof : profile object Profile Object pbot : number (optional; default surface) Pressure of the bottom level (hPa) ptop : number (optional; default 400 hPa) Pressure of the top level (hPa) dp : negative integer (optional; default = -1) The pressure increment for the interpolated sounding (mb) exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) Returns ------- Mean Theta-E : number ''' if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 100. if not utils.QC(interp.temp(prof, pbot)): pbot = prof.pres[prof.sfc] if not utils.QC(interp.temp(prof, ptop)): return ma.masked if exact: ind1 = np.where(pbot > prof.pres)[0].min() ind2 = np.where(ptop < prof.pres)[0].max() thetae1 = thermo.thetae(pbot, interp.temp(prof, pbot), interp.dwpt(prof, pbot)) thetae2 = thermo.thetae(ptop, interp.temp(prof, ptop), interp.dwpt(prof, pbot)) thetae = np.ma.empty(prof.pres[ind1:ind2+1].shape) for i in np.arange(0, len(thetae), 1): thetae[i] = thermo.thetae(prof.pres[ind1:ind2+1][i], prof.tmpc[ind1:ind2+1][i], prof.dwpc[ind1:ind2+1][i]) mask = ~thetae.mask thetae = np.concatenate([[thetae1], thetae[mask], thetae[mask], [thetae2]]) tott = thetae.sum() / 2. num = float(len(thetae)) / 2. thtae = tott / num else: dp = -1 p = np.arange(pbot, ptop+dp, dp, dtype=type(pbot)) #temp = interp.temp(prof, p) #dwpt = interp.dwpt(prof, p) #thetae = np.empty(p.shape) #for i in np.arange(0, len(thetae), 1): # thetae[i] = thermo.thetae(p[i], temp[i], dwpt[i]) thetae = interp.thetae(prof, p) thtae = ma.average(thetae, weights=p) return thtae def mean_theta(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Calculates the mean theta from a profile object within the specified layer. Parameters ---------- prof : profile object Profile Object pbot : number (optional; default surface) Pressure of the bottom level (hPa) ptop : number (optional; default 400 hPa) Pressure of the top level (hPa) dp : negative integer (optional; default = -1) The pressure increment for the interpolated sounding (mb) exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) Returns ------- Mean Theta : number ''' if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 100. if not utils.QC(interp.temp(prof, pbot)): pbot = prof.pres[prof.sfc] if not utils.QC(interp.temp(prof, ptop)): return ma.masked if exact: ind1 = np.where(pbot > prof.pres)[0].min() ind2 = np.where(ptop < prof.pres)[0].max() theta1 = thermo.theta(pbot, interp.temp(prof, pbot)) theta2 = thermo.theta(ptop, interp.temp(prof, ptop)) theta = thermo.theta(prof.pres[ind1:ind2+1], prof.tmpc[ind1:ind2+1]) mask = ~theta.mask theta = np.concatenate([[theta1], theta[mask], theta[mask], [theta2]]) tott = theta.sum() / 2. num = float(len(theta)) / 2. thta = tott / num else: dp = -1 p = np.arange(pbot, ptop+dp, dp, dtype=type(pbot)) temp = interp.temp(prof, p) theta = thermo.theta(p, temp) thta = ma.average(theta, weights=p) return thta def lapse_rate(prof, lower, upper, pres=True): ''' Calculates the lapse rate (C/km) from a profile object Parameters ---------- prof : profile object Profile Object lower : number Lower Bound of lapse rate (mb or m AGL) upper : number Upper Bound of lapse rate (mb or m AGL) pres : bool (optional; default = True) Flag to determine if lower/upper are pressure [True] or height [False] Returns ------- lapse rate (C/km) : number ''' if pres: if (prof.pres[-1] > upper): return ma.masked p1 = lower p2 = upper z1 = interp.hght(prof, lower) z2 = interp.hght(prof, upper) else: z1 = interp.to_msl(prof, lower) z2 = interp.to_msl(prof, upper) p1 = interp.pres(prof, z1) p2 = interp.pres(prof, z2) tv1 = interp.vtmp(prof, p1) tv2 = interp.vtmp(prof, p2) return (tv2 - tv1) / (z2 - z1) * -1000. def max_lapse_rate(prof, lower=2000, upper=6000, interval=250, depth=2000): ''' Calculates the maximum lapse rate (C/km) between a layer at a specified interval Parameters ---------- prof: profile object Profile object lower : number Lower bound in height (m) upper : number Upper bound in height (m) interval : number Interval to assess the lapse rate at (m) depth : number Depth of the layer to assess the lapse rate over (m) Returns ------- max lapse rate (C/km) : float lower pressure of max lapse rate (mb) : number upper pressure of max lapse rate (mb) : number ''' bottom_levels = interp.to_msl(prof, np.arange(lower, upper-depth+interval, interval)) top_levels = interp.to_msl(prof, np.arange(lower+depth, upper+interval, interval)) bottom_pres = interp.pres(prof, bottom_levels) top_pres = interp.pres(prof, top_levels) all_lapse_rates = (interp.vtmp(prof, top_pres) - interp.vtmp(prof, bottom_pres)) * -1000. max_lapse_rate_idx = np.ma.argmax(all_lapse_rates) return all_lapse_rates[max_lapse_rate_idx]/depth, bottom_pres[max_lapse_rate_idx], top_pres[max_lapse_rate_idx] def most_unstable_level(prof, pbot=None, ptop=None, dp=-1, exact=False): ''' Finds the most unstable level between the lower and upper levels. Parameters ---------- prof : profile object Profile Object pbot : number (optional; default surface) Pressure of the bottom level (hPa) ptop : number (optional; default 400 hPa) Pressure of the top level (hPa) dp : negative integer (optional; default = -1) The pressure increment for the interpolated sounding (mb) exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) Returns ------- Pressure level of most unstable level (hPa) : number ''' if not pbot: pbot = prof.pres[prof.sfc] if not ptop: ptop = prof.pres[prof.sfc] - 400 if not utils.QC(interp.temp(prof, pbot)): pbot = prof.pres[prof.sfc] if not utils.QC(interp.temp(prof, ptop)): return ma.masked if exact: ind1 = np.where(pbot > prof.pres)[0].min() ind2 = np.where(ptop < prof.pres)[0].max() t1 = interp.temp(prof, pbot) t2 = interp.temp(prof, ptop) d1 = interp.dwpt(prof, pbot) d2 = interp.dwpt(prof, ptop) t = prof.tmpc[ind1:ind2+1] d = prof.dwpc[ind1:ind2+1] p = prof.pres[ind1:ind2+1] mask = ~t.mask * ~d.mask * ~p.mask t = np.concatenate([[t1], t[mask], [t2]]) d = np.concatenate([[d1], d[mask], [d2]]) p = np.concatenate([[pbot], p[mask], [ptop]]) else: dp = -1 p = np.arange(pbot, ptop+dp, dp, dtype=type(pbot)) t = interp.temp(prof, p) d = interp.dwpt(prof, p) p2, t2 = thermo.drylift(p, t, d) mt = thermo.wetlift(p2, t2, 1000.) # Essentially this is making the Theta-E profile, which we are already doing in the Profile object! ind = np.where(np.fabs(mt - np.nanmax(mt)) < TOL)[0] return p[ind[0]] def parcelTraj(prof, parcel, smu=None, smv=None): ''' Parcel Trajectory Routine (Storm Slinky) Coded by <NAME> This routine is a simple 3D thermodynamic parcel trajectory model that takes a thermodynamic profile and a parcel trace and computes the trajectory of a parcel that is lifted to its LFC, then given a 5 m/s nudge upwards, and then left to accelerate up to the EL. (Based on a description in the AWIPS 2 Online Training.) This parcel is assumed to be moving horizontally via the storm motion vector, which if not supplied is taken to be the Bunkers Right Mover storm motion vector. As the parcel accelerates upwards, it is advected by the storm relative winds. The environmental winds are assumed to be steady-state. This simulates the path a parcel in a storm updraft would take using pure parcel theory. .. important:: The code for this function was not directly ported from SPC. Parameters ---------- prof : profile object Profile object parcel : parcel object Parcel object smu : number, optional U-component of the storm motion vector (kts) smv: number, optional V-component of the storm motion vector (kts) Returns ------- pos_vector : list a list of tuples, where each element of the list is a location of the parcel in time (m) theta : number the tilt of the updraft measured by the angle of the updraft with respect to the horizon (degrees) ''' t_parcel = parcel.ttrace # temperature p_parcel = parcel.ptrace # mb elhght = parcel.elhght # meter y_0 = 0 # meter x_0 = 0 # meter z_0 = parcel.lfchght # meter p_0 = parcel.lfcpres # meter g = 9.8 # m/s**2 t_0 = 0 # seconds w_0 = 5 # m/s (the initial parcel nudge) u_0 = 0 # m/s v_0 = 0 # m/s (initial parcel location, which is storm motion relative) delta_t = 25 # the trajectory increment pos_vector = [(x_0,y_0,z_0)] speed_vector = [(u_0, v_0, w_0)] if smu==None or smv==None: smu = prof.srwind[0] # Expected to be in knots smv = prof.srwind[1] # Is expected to be in knots if parcel.bplus < 1e-3: # The parcel doesn't have any positively buoyant areas. return np.ma.masked, np.nan if not utils.QC(elhght): elhght = prof.hght[-1] while z_0 < elhght: t_1 = delta_t + t_0 # the time step increment # Compute the vertical acceleration env_tempv = interp.vtmp(prof, p_0) + 273.15 pcl_tempv = interp.generic_interp_pres(np.log10(p_0), np.log10(p_parcel.copy())[::-1], t_parcel[::-1]) + 273.15 accel = g * ((pcl_tempv - env_tempv) / env_tempv) # Compute the vertical displacement z_1 = (.5 * accel * np.power(t_1 - t_0, 2)) + (w_0 * (t_1 - t_0)) + z_0 w_1 = accel * (t_1 - t_0) + w_0 # Compute the parcel-relative winds u, v = interp.components(prof, p_0) u_0 = utils.KTS2MS(u - smu) v_0 = utils.KTS2MS(v - smv) # Compute the horizontal displacements x_1 = u_0 * (t_1 - t_0) + x_0 y_1 = v_0 * (t_1 - t_0) + y_0 pos_vector.append((x_1, y_1, z_1)) speed_vector.append((u_0, v_0, w_1)) # Update parcel position z_0 = z_1 y_0 = y_1 x_0 = x_1 t_0 = t_1 p_0 = interp.pres(prof, interp.to_msl(prof, z_1)) # Update parcel vertical velocity w_0 = w_1 # Compute the angle tilt of the updraft r = np.sqrt(np.power(pos_vector[-1][0], 2) + np.power(pos_vector[-1][1], 2)) theta = np.degrees(np.arctan2(pos_vector[-1][2],r)) return pos_vector, theta def cape(prof, pbot=None, ptop=None, dp=-1, new_lifter=False, trunc=False, **kwargs): ''' Lifts the specified parcel, calculates various levels and parameters from the profile object. Only B+/B- are calculated based on the specified layer. This is a convenience function for effective_inflow_layer and convective_temp, as well as any function that needs to lift a parcel in an iterative process. This function is a stripped back version of the parcelx function, that only handles bplus and bminus. The intention is to reduce the computation time in the iterative functions by reducing the calculations needed. This method of creating a stripped down parcelx function for CAPE/CIN calculations was developed by <NAME> and <NAME> and later implemented in SPC's version of SHARP to speed up their program. For full parcel objects, use the parcelx function. !! All calculations use the virtual temperature correction unless noted. !! Parameters ---------- prof : profile object Profile Object pbot : number (optional; default surface) Pressure of the bottom level (hPa) ptop : number (optional; default 400 hPa) Pressure of the top level (hPa) pres : number (optional) Pressure of parcel to lift (hPa) tmpc : number (optional) Temperature of parcel to lift (C) dwpc : number (optional) Dew Point of parcel to lift (C) dp : negative integer (optional; default = -1) The pressure increment for the interpolated sounding (mb) exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) flag : number (optional; default = 5) Flag to determine what kind of parcel to create; See DefineParcel for flag values lplvals : lifting parcel layer object (optional) Contains the necessary parameters to describe a lifting parcel Returns ------- pcl : parcel object Parcel Object ''' flag = kwargs.get('flag', 5) pcl = Parcel(pbot=pbot, ptop=ptop) pcl.lplvals = kwargs.get('lplvals', DefineParcel(prof, flag)) if prof.pres.compressed().shape[0] < 1: return pcl # Variables pres = kwargs.get('pres', pcl.lplvals.pres) tmpc = kwargs.get('tmpc', pcl.lplvals.tmpc) dwpc = kwargs.get('dwpc', pcl.lplvals.dwpc) pcl.pres = pres pcl.tmpc = tmpc pcl.dwpc = dwpc totp = 0. totn = 0. cinh_old = 0. # See if default layer is specified if not pbot: pbot = prof.pres[prof.sfc] pcl.blayer = pbot pcl.pbot = pbot if not ptop: ptop = prof.pres[prof.pres.shape[0]-1] pcl.tlayer = ptop pcl.ptop = ptop # Make sure this is a valid layer if pbot > pres: pbot = pres pcl.blayer = pbot if type(interp.vtmp(prof, pbot)) == type(ma.masked) or type(interp.vtmp(prof, ptop)) == type(ma.masked): return pcl # Begin with the Mixing Layer pe1 = pbot h1 = interp.hght(prof, pe1) tp1 = thermo.virtemp(pres, tmpc, dwpc) # Lift parcel and return LCL pres (hPa) and LCL temp (C) pe2, tp2 = thermo.drylift(pres, tmpc, dwpc) if np.ma.is_masked(pe2) or not utils.QC(pe2) or np.isnan(pe2): return pcl blupper = pe2 # Calculate lifted parcel theta for use in iterative CINH loop below # RECALL: lifted parcel theta is CONSTANT from LPL to LCL theta_parcel = thermo.theta(pe2, tp2, 1000.) # Environmental theta and mixing ratio at LPL blmr = thermo.mixratio(pres, dwpc) # ACCUMULATED CINH IN THE MIXING LAYER BELOW THE LCL # This will be done in 'dp' increments and will use the virtual # temperature correction where possible pp = np.arange(pbot, blupper+dp, dp, dtype=type(pbot)) hh = interp.hght(prof, pp) tmp_env_theta = thermo.theta(pp, interp.temp(prof, pp), 1000.) tmp_env_dwpt = interp.dwpt(prof, pp) tv_env = thermo.virtemp(pp, tmp_env_theta, tmp_env_dwpt) tmp1 = thermo.virtemp(pp, theta_parcel, thermo.temp_at_mixrat(blmr, pp)) tdef = (tmp1 - tv_env) / thermo.ctok(tv_env) lyre = G * (tdef[:-1]+tdef[1:]) / 2 * (hh[1:]-hh[:-1]) totn = lyre[lyre < 0].sum() if not totn: totn = 0. # TODO: Because this function is used often to search for parcels that meet a certain # CAPE/CIN threshold, we can add a few statments here and there in the code # that checks to see if these thresholds are met and if they are, return a flag. # We don't need to call wetlift() anymore than we need to. This is one location # where we can do this. If the CIN is too large, return here...don't have to worry # about ever entering the loop! # Move the bottom layer to the top of the boundary layer if pbot > pe2: pbot = pe2 pcl.blayer = pbot if pbot < prof.pres[-1]: # Check for the case where the LCL is above the # upper boundary of the data (e.g. a dropsonde) return pcl # Find lowest observation in layer lptr = ma.where(pbot > prof.pres)[0].min() uptr = ma.where(ptop < prof.pres)[0].max() # START WITH INTERPOLATED BOTTOM LAYER # Begin moist ascent from lifted parcel LCL (pe2, tp2) pe1 = pbot h1 = interp.hght(prof, pe1) te1 = interp.vtmp(prof, pe1) tp1 = tp2 lyre = 0 if new_lifter: env_temp = prof.vtmp[lptr:] try: keep = ~env_temp.mask * np.ones(env_temp.shape, dtype=bool) except AttributeError: keep = np.ones(env_temp.shape, dtype=bool) env_temp = np.append(te1, env_temp[keep]) env_pres = np.append(pe1, prof.pres[lptr:][keep]) env_hght = np.append(h1, prof.hght[lptr:][keep]) pcl_temp = integrate_parcel(env_pres, tp1) tdef = (thermo.virtemp(env_pres, pcl_temp, pcl_temp) - env_temp) / thermo.ctok(env_temp) lyre = G * (tdef[1:] + tdef[:-1]) / 2 * (env_hght[1:] - env_hght[:-1]) totp = lyre[lyre > 0].sum() neg_layers = (lyre <= 0) & (env_pres[1:] > 500) if np.any(neg_layers): totn += lyre[neg_layers].sum() if lyre[-1] > 0: pcl.bplus = totp - lyre[-1] pcl.bminus = totn else: pcl.bplus = totp if env_pres[-1] > 500.: pcl.bminus = totn + lyre[-1] else: pcl.bminus = totn if pcl.bplus == 0: pcl.bminus = 0. else: for i in range(lptr, prof.pres.shape[0]): if not utils.QC(prof.tmpc[i]): continue pe2 = prof.pres[i] h2 = prof.hght[i] te2 = prof.vtmp[i] tp2 = thermo.wetlift(pe1, tp1, pe2) tdef1 = (thermo.virtemp(pe1, tp1, tp1) - te1) / thermo.ctok(te1) tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2) lyre = G * (tdef1 + tdef2) / 2. * (h2 - h1) # Add layer energy to total positive if lyre > 0 if lyre > 0: totp += lyre # Add layer energy to total negative if lyre < 0, only up to EL else: if pe2 > 500.: totn += lyre pe1 = pe2 h1 = h2 te1 = te2 tp1 = tp2 # Is this the top of the specified layer # Because CIN is only computed below 500 mb, we can cut off additional lifting when # computing convective temperature! if (trunc is True and pe2 <= 500) or (i >= uptr and not utils.QC(pcl.bplus)): pe3 = pe1 h3 = h1 te3 = te1 tp3 = tp1 lyrf = lyre if lyrf > 0: pcl.bplus = totp - lyrf pcl.bminus = totn else: pcl.bplus = totp if pe2 > 500.: pcl.bminus = totn + lyrf else: pcl.bminus = totn pe2 = ptop h2 = interp.hght(prof, pe2) te2 = interp.vtmp(prof, pe2) tp2 = thermo.wetlift(pe3, tp3, pe2) tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / thermo.ctok(te3) tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3) if lyrf > 0: pcl.bplus += lyrf else: if pe2 > 500.: pcl.bminus += lyrf if pcl.bplus == 0: pcl.bminus = 0. break return pcl def integrate_parcel(pres, tbot): pcl_tmpc = np.empty(pres.shape, dtype=pres.dtype) pcl_tmpc[0] = tbot for idx in range(1, len(pres)): pcl_tmpc[idx] = thermo.wetlift(pres[idx - 1], pcl_tmpc[idx - 1], pres[idx]) return pcl_tmpc def parcelx(prof, pbot=None, ptop=None, dp=-1, **kwargs): ''' Lifts the specified parcel, calculates various levels and parameters from the profile object. B+/B- are calculated based on the specified layer. Such parameters include CAPE, CIN, LCL height, LFC height, buoyancy minimum, EL height, MPL height. !! All calculations use the virtual temperature correction unless noted. !! Parameters ---------- prof : profile object Profile Object pbot : number (optional; default surface) Pressure of the bottom level (hPa) ptop : number (optional; default 400 hPa) Pressure of the top level (hPa) pres : number (optional) Pressure of parcel to lift (hPa) tmpc : number (optional) Temperature of parcel to lift (C) dwpc : number (optional) Dew Point of parcel to lift (C) dp : negative integer (optional; default = -1) The pressure increment for the interpolated sounding (mb) exact : bool (optional; default = False) Switch to choose between using the exact data (slower) or using interpolated sounding at 'dp' pressure levels (faster) flag : number (optional; default = 5) Flag to determine what kind of parcel to create; See DefineParcel for flag values lplvals : lifting parcel layer object (optional) Contains the necessary parameters to describe a lifting parcel Returns ------- Parcel Object ''' flag = kwargs.get('flag', 5) pcl = Parcel(pbot=pbot, ptop=ptop) pcl.lplvals = kwargs.get('lplvals', DefineParcel(prof, flag)) if prof.pres.compressed().shape[0] < 1: return pcl # Variables pres = kwargs.get('pres', pcl.lplvals.pres) tmpc = kwargs.get('tmpc', pcl.lplvals.tmpc) dwpc = kwargs.get('dwpc', pcl.lplvals.dwpc) pcl.pres = pres pcl.tmpc = tmpc pcl.dwpc = dwpc cap_strength = -9999. cap_strengthpres = -9999. li_max = -9999. li_maxpres = -9999. totp = 0. totn = 0. tote = 0. cinh_old = 0. # See if default layer is specified if not pbot: pbot = prof.pres[prof.sfc] pcl.blayer = pbot pcl.pbot = pbot if not ptop: ptop = prof.pres[prof.pres.shape[0]-1] pcl.tlayer = ptop pcl.ptop = ptop # Make sure this is a valid layer if pbot > pres: pbot = pres pcl.blayer = pbot #if type(interp.vtmp(prof, pbot)) == type(ma.masked) or type(interp.vtmp(prof, ptop)) == type(ma.masked): # return pcl # Begin with the Mixing Layer pe1 = pbot h1 = interp.hght(prof, pe1) tp1 = thermo.virtemp(pres, tmpc, dwpc) ttrace = [tp1] ptrace = [pe1] # Lift parcel and return LCL pres (hPa) and LCL temp (C) pe2, tp2 = thermo.drylift(pres, tmpc, dwpc) if type(pe2) == type(ma.masked) or np.isnan(pe2): return pcl blupper = pe2 h2 = interp.hght(prof, pe2) te2 = interp.vtmp(prof, pe2) pcl.lclpres = min(pe2, prof.pres[prof.sfc]) # Make sure the LCL pressure is # never below the surface pcl.lclhght = interp.to_agl(prof, h2) ptrace.append(pe2) ttrace.append(thermo.virtemp(pe2, tp2, tp2)) # Calculate lifted parcel theta for use in iterative CINH loop below # RECALL: lifted parcel theta is CONSTANT from LPL to LCL theta_parcel = thermo.theta(pe2, tp2, 1000.) # Environmental theta and mixing ratio at LPL bltheta = thermo.theta(pres, interp.temp(prof, pres), 1000.) blmr = thermo.mixratio(pres, dwpc) # ACCUMULATED CINH IN THE MIXING LAYER BELOW THE LCL # This will be done in 'dp' increments and will use the virtual # temperature correction where possible pp = np.arange(pbot, blupper+dp, dp, dtype=type(pbot)) hh = interp.hght(prof, pp) tmp_env_theta = thermo.theta(pp, interp.temp(prof, pp), 1000.) tmp_env_dwpt = interp.dwpt(prof, pp) tv_env = thermo.virtemp(pp, tmp_env_theta, tmp_env_dwpt) tmp1 = thermo.virtemp(pp, theta_parcel, thermo.temp_at_mixrat(blmr, pp)) tdef = (tmp1 - tv_env) / thermo.ctok(tv_env) tidx1 = np.arange(0, len(tdef)-1, 1) tidx2 = np.arange(1, len(tdef), 1) lyre = G * (tdef[tidx1]+tdef[tidx2]) / 2 * (hh[tidx2]-hh[tidx1]) totn = lyre[lyre < 0].sum() if not totn: totn = 0. # Move the bottom layer to the top of the boundary layer if pbot > pe2: pbot = pe2 pcl.blayer = pbot # Calculate height of various temperature levels p0c = temp_lvl(prof, 0.) pm10c = temp_lvl(prof, -10.) pm20c = temp_lvl(prof, -20.) pm30c = temp_lvl(prof, -30.) hgt0c = interp.hght(prof, p0c) hgtm10c = interp.hght(prof, pm10c) hgtm20c = interp.hght(prof, pm20c) hgtm30c = interp.hght(prof, pm30c) pcl.p0c = p0c pcl.pm10c = pm10c pcl.pm20c = pm20c pcl.pm30c = pm30c pcl.hght0c = hgt0c pcl.hghtm10c = hgtm10c pcl.hghtm20c = hgtm20c pcl.hghtm30c = hgtm30c if pbot < prof.pres[-1]: # Check for the case where the LCL is above the # upper boundary of the data (e.g. a dropsonde) return pcl # Find lowest observation in layer lptr = ma.where(pbot >= prof.pres)[0].min() uptr = ma.where(ptop <= prof.pres)[0].max() # START WITH INTERPOLATED BOTTOM LAYER # Begin moist ascent from lifted parcel LCL (pe2, tp2) pe1 = pbot h1 = interp.hght(prof, pe1) te1 = interp.vtmp(prof, pe1) tp1 = thermo.wetlift(pe2, tp2, pe1) lyre = 0 lyrlast = 0 iter_ranges = np.arange(lptr, prof.pres.shape[0]) ttraces = ma.zeros(len(iter_ranges)) ptraces = ma.zeros(len(iter_ranges)) ttraces[:] = ptraces[:] = ma.masked for i in iter_ranges: if not utils.QC(prof.tmpc[i]): continue pe2 = prof.pres[i] h2 = prof.hght[i] te2 = prof.vtmp[i] #te2 = thermo.virtemp(prof.pres[i], prof.tmpc[i], prof.dwpc[i]) tp2 = thermo.wetlift(pe1, tp1, pe2) tdef1 = (thermo.virtemp(pe1, tp1, tp1) - te1) / thermo.ctok(te1) tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2) ptraces[i-iter_ranges[0]] = pe2 ttraces[i-iter_ranges[0]] = thermo.virtemp(pe2, tp2, tp2) lyrlast = lyre lyre = G * (tdef1 + tdef2) / 2. * (h2 - h1) #print(pe1, pe2, te1, te2, tp1, tp2, lyre, totp, totn, pcl.lfcpres) # Add layer energy to total positive if lyre > 0 if lyre > 0: totp += lyre # Add layer energy to total negative if lyre < 0, only up to EL else: if pe2 > 500.: totn += lyre # Check for Max LI mli = thermo.virtemp(pe2, tp2, tp2) - te2 if mli > li_max: li_max = mli li_maxpres = pe2 # Check for Max Cap Strength mcap = te2 - mli if mcap > cap_strength: cap_strength = mcap cap_strengthpres = pe2 tote += lyre pelast = pe1 pe1 = pe2 te1 = te2 tp1 = tp2 # Is this the top of the specified layer if i >= uptr and not utils.QC(pcl.bplus): pe3 = pe1 h3 = h2 te3 = te1 tp3 = tp1 lyrf = lyre if lyrf > 0: pcl.bplus = totp - lyrf pcl.bminus = totn else: pcl.bplus = totp if pe2 > 500.: pcl.bminus = totn + lyrf else: pcl.bminus = totn pe2 = ptop h2 = interp.hght(prof, pe2) te2 = interp.vtmp(prof, pe2) tp2 = thermo.wetlift(pe3, tp3, pe2) tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / thermo.ctok(te3) tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3) if lyrf > 0: pcl.bplus += lyrf else: if pe2 > 500.: pcl.bminus += lyrf if pcl.bplus == 0: pcl.bminus = 0. # Is this the freezing level if te2 < 0. and not utils.QC(pcl.bfzl): pe3 = pelast h3 = interp.hght(prof, pe3) te3 = interp.vtmp(prof, pe3) tp3 = thermo.wetlift(pe1, tp1, pe3) lyrf = lyre if lyrf > 0.: pcl.bfzl = totp - lyrf else: pcl.bfzl = totp if not utils.QC(p0c) or p0c > pe3: pcl.bfzl = 0 elif utils.QC(pe2): te2 = interp.vtmp(prof, pe2) tp2 = thermo.wetlift(pe3, tp3, pe2) tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \ thermo.ctok(te3) tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \ thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (hgt0c - h3) if lyrf > 0: pcl.bfzl += lyrf # Is this the -10C level if te2 < -10. and not utils.QC(pcl.wm10c): pe3 = pelast h3 = interp.hght(prof, pe3) te3 = interp.vtmp(prof, pe3) tp3 = thermo.wetlift(pe1, tp1, pe3) lyrf = lyre if lyrf > 0.: pcl.wm10c = totp - lyrf else: pcl.wm10c = totp if not utils.QC(pm10c) or pm10c > pcl.lclpres: pcl.wm10c = 0 elif utils.QC(pe2): te2 = interp.vtmp(prof, pe2) tp2 = thermo.wetlift(pe3, tp3, pe2) tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \ thermo.ctok(te3) tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \ thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (hgtm10c - h3) if lyrf > 0: pcl.wm10c += lyrf # Is this the -20C level if te2 < -20. and not utils.QC(pcl.wm20c): pe3 = pelast h3 = interp.hght(prof, pe3) te3 = interp.vtmp(prof, pe3) tp3 = thermo.wetlift(pe1, tp1, pe3) lyrf = lyre if lyrf > 0.: pcl.wm20c = totp - lyrf else: pcl.wm20c = totp if not utils.QC(pm20c) or pm20c > pcl.lclpres: pcl.wm20c = 0 elif utils.QC(pe2): te2 = interp.vtmp(prof, pe2) tp2 = thermo.wetlift(pe3, tp3, pe2) tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \ thermo.ctok(te3) tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \ thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (hgtm20c - h3) if lyrf > 0: pcl.wm20c += lyrf # Is this the -30C level if te2 < -30. and not utils.QC(pcl.wm30c): pe3 = pelast h3 = interp.hght(prof, pe3) te3 = interp.vtmp(prof, pe3) tp3 = thermo.wetlift(pe1, tp1, pe3) lyrf = lyre if lyrf > 0.: pcl.wm30c = totp - lyrf else: pcl.wm30c = totp if not utils.QC(pm30c) or pm30c > pcl.lclpres: pcl.wm30c = 0 elif utils.QC(pe2): te2 = interp.vtmp(prof, pe2) tp2 = thermo.wetlift(pe3, tp3, pe2) tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \ thermo.ctok(te3) tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \ thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (hgtm30c - h3) if lyrf > 0: pcl.wm30c += lyrf # Is this the 3km level if pcl.lclhght < 3000.: if interp.to_agl(prof, h1) <=3000. and interp.to_agl(prof, h2) >= 3000. and not utils.QC(pcl.b3km): pe3 = pelast h3 = interp.hght(prof, pe3) te3 = interp.vtmp(prof, pe3) tp3 = thermo.wetlift(pe1, tp1, pe3) lyrf = lyre if lyrf > 0: pcl.b3km = totp - lyrf else: pcl.b3km = totp h4 = interp.to_msl(prof, 3000.) pe4 = interp.pres(prof, h4) if utils.QC(pe2): te2 = interp.vtmp(prof, pe4) tp2 = thermo.wetlift(pe3, tp3, pe4) tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \ thermo.ctok(te3) tdef2 = (thermo.virtemp(pe4, tp2, tp2) - te2) / \ thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (h4 - h3) if lyrf > 0: pcl.b3km += lyrf else: pcl.b3km = 0. # Is this the 6km level if pcl.lclhght < 6000.: if interp.to_agl(prof, h1) <=6000. and interp.to_agl(prof, h2) >= 6000. and not utils.QC(pcl.b6km): pe3 = pelast h3 = interp.hght(prof, pe3) te3 = interp.vtmp(prof, pe3) tp3 = thermo.wetlift(pe1, tp1, pe3) lyrf = lyre if lyrf > 0: pcl.b6km = totp - lyrf else: pcl.b6km = totp h4 = interp.to_msl(prof, 6000.) pe4 = interp.pres(prof, h4) if utils.QC(pe2): te2 = interp.vtmp(prof, pe4) tp2 = thermo.wetlift(pe3, tp3, pe4) tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \ thermo.ctok(te3) tdef2 = (thermo.virtemp(pe4, tp2, tp2) - te2) / \ thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (h4 - h3) if lyrf > 0: pcl.b6km += lyrf else: pcl.b6km = 0. h1 = h2 # LFC Possibility if lyre >= 0. and lyrlast <= 0.: tp3 = tp1 #te3 = te1 pe2 = pe1 pe3 = pelast if interp.vtmp(prof, pe3) < thermo.virtemp(pe3, thermo.wetlift(pe2, tp3, pe3), thermo.wetlift(pe2, tp3, pe3)): # Found an LFC, store height/pres and reset EL/MPL pcl.lfcpres = pe3 pcl.lfchght = interp.to_agl(prof, interp.hght(prof, pe3)) pcl.elpres = ma.masked pcl.elhght = ma.masked pcl.mplpres = ma.masked else: while interp.vtmp(prof, pe3) > thermo.virtemp(pe3, thermo.wetlift(pe2, tp3, pe3), thermo.wetlift(pe2, tp3, pe3)) and pe3 > 0: pe3 -= 5 if pe3 > 0: # Found a LFC, store height/pres and reset EL/MPL pcl.lfcpres = pe3 pcl.lfchght = interp.to_agl(prof, interp.hght(prof, pe3)) cinh_old = totn tote = 0. li_max = -9999. if cap_strength < 0.: cap_strength = 0. pcl.cap = cap_strength pcl.cappres = cap_strengthpres pcl.elpres = ma.masked pcl.elhght = ma.masked pcl.mplpres = ma.masked # Hack to force LFC to be at least at the LCL if pcl.lfcpres >= pcl.lclpres: pcl.lfcpres = pcl.lclpres pcl.lfchght = pcl.lclhght # EL Possibility if lyre <= 0. and lyrlast >= 0.: tp3 = tp1 #te3 = te1 pe2 = pe1 pe3 = pelast while interp.vtmp(prof, pe3) < thermo.virtemp(pe3, thermo.wetlift(pe2, tp3, pe3), thermo.wetlift(pe2, tp3, pe3)): pe3 -= 5 pcl.elpres = pe3 pcl.elhght = interp.to_agl(prof, interp.hght(prof, pcl.elpres)) pcl.mplpres = ma.masked pcl.limax = -li_max pcl.limaxpres = li_maxpres # MPL Possibility if tote < 0. and not utils.QC(pcl.mplpres) and utils.QC(pcl.elpres): pe3 = pelast h3 = interp.hght(prof, pe3) te3 = interp.vtmp(prof, pe3) tp3 = thermo.wetlift(pe1, tp1, pe3) totx = tote - lyre pe2 = pelast while totx > 0: pe2 -= 1 te2 = interp.vtmp(prof, pe2) tp2 = thermo.wetlift(pe3, tp3, pe2) h2 = interp.hght(prof, pe2) tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \ thermo.ctok(te3) tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \ thermo.ctok(te2) lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3) totx += lyrf tp3 = tp2 te3 = te2 pe3 = pe2 pcl.mplpres = pe2 pcl.mplhght = interp.to_agl(prof, interp.hght(prof, pe2)) # 500 hPa Lifted Index if prof.pres[i] <= 500. and not utils.QC(pcl.li5): a = interp.vtmp(prof, 500.) b = thermo.wetlift(pe1, tp1, 500.) pcl.li5 = a - thermo.virtemp(500, b, b) # 300 hPa Lifted Index if prof.pres[i] <= 300. and not utils.QC(pcl.li3): a = interp.vtmp(prof, 300.) b = thermo.wetlift(pe1, tp1, 300.) pcl.li3 = a - thermo.virtemp(300, b, b) # pcl.bminus = cinh_old if not utils.QC(pcl.bplus): pcl.bplus = totp # Calculate BRN if available bulk_rich(prof, pcl) # Save params if np.floor(pcl.bplus) == 0: pcl.bminus = 0. pcl.ptrace = ma.concatenate((ptrace, ptraces)) pcl.ttrace = ma.concatenate((ttrace, ttraces)) # Find minimum buoyancy from Trier et al. 2014, Part 1 idx = np.ma.where(pcl.ptrace >= 500.)[0] if len(idx) != 0: b = pcl.ttrace[idx] - interp.vtmp(prof, pcl.ptrace[idx]) idx2 = np.ma.argmin(b) pcl.bmin = b[idx2] pcl.bminpres = pcl.ptrace[idx][idx2] return pcl def bulk_rich(prof, pcl): ''' Calculates the Bulk Richardson Number for a given parcel. Parameters ---------- prof : profile object Profile object pcl : parcel object Parcel object Returns ------- Bulk Richardson Number : number ''' # Make sure parcel is initialized if not utils.QC(pcl.lplvals): pbot = ma.masked elif pcl.lplvals.flag > 0 and pcl.lplvals.flag < 4: ptop = interp.pres(prof, interp.to_msl(prof, 6000.)) pbot = prof.pres[prof.sfc] else: h0 = interp.hght(prof, pcl.pres) try: pbot = interp.pres(prof, h0-500.) except: pbot = ma.masked if utils.QC(pbot): pbot = prof.pres[prof.sfc] h1 = interp.hght(prof, pbot) ptop = interp.pres(prof, h1+6000.) if not utils.QC(pbot) or not utils.QC(ptop): pcl.brnshear = ma.masked pcl.brn = ma.masked pcl.brnu = ma.masked pcl.brnv = ma.masked return pcl # Calculate the lowest 500m mean wind p = interp.pres(prof, interp.hght(prof, pbot)+500.) #print(p, pbot) mnlu, mnlv = winds.mean_wind(prof, pbot, p) # Calculate the 6000m mean wind mnuu, mnuv = winds.mean_wind(prof, pbot, ptop) # Make sure CAPE and Shear are available if not utils.QC(pcl.bplus) or not utils.QC(mnlu) or not utils.QC(mnuu): pcl.brnshear = ma.masked pcl.brnu = ma.masked pcl.brnv = ma.masked pcl.brn = ma.masked return pcl # Calculate shear between levels dx = mnuu - mnlu dy = mnuv - mnlv pcl.brnu = dx pcl.brnv = dy pcl.brnshear = utils.KTS2MS(utils.mag(dx, dy)) pcl.brnshear = pcl.brnshear**2 / 2. pcl.brn = pcl.bplus / pcl.brnshear return pcl def effective_inflow_layer(prof, ecape=100, ecinh=-250, **kwargs): ''' Calculates the top and bottom of the effective inflow layer based on research by [3]_. Parameters ---------- prof : profile object Profile object ecape : number (optional; default=100) Minimum amount of CAPE in the layer to be considered part of the effective inflow layer. echine : number (optional; default=250) Maximum amount of CINH in the layer to be considered part of the effective inflow layer mupcl : parcel object Most Unstable Layer parcel Returns ------- pbot : number Pressure at the bottom of the layer (hPa) ptop : number Pressure at the top of the layer (hPa) ''' mupcl = kwargs.get('mupcl', None) if not mupcl: try: mupcl = prof.mupcl except: mulplvals = DefineParcel(prof, flag=3, pres=300) mupcl = cape(prof, lplvals=mulplvals) mucape = mupcl.bplus mucinh = mupcl.bminus pbot = ma.masked ptop = ma.masked if mucape != 0: if mucape >= ecape and mucinh > ecinh: # Begin at surface and search upward for effective surface for i in range(prof.sfc, prof.top): pcl = cape(prof, pres=prof.pres[i], tmpc=prof.tmpc[i], dwpc=prof.dwpc[i]) if pcl.bplus >= ecape and pcl.bminus > ecinh: pbot = prof.pres[i] break if not utils.QC(pbot): return ma.masked, ma.masked bptr = i # Keep searching upward for the effective top for i in range(bptr+1, prof.top): if not prof.dwpc[i] or not prof.tmpc[i]: continue pcl = cape(prof, pres=prof.pres[i], tmpc=prof.tmpc[i], dwpc=prof.dwpc[i]) if pcl.bplus < ecape or pcl.bminus <= ecinh: #Is this a potential "top"? j = 1 while not utils.QC(prof.dwpc[i-j]) and not utils.QC(prof.tmpc[i-j]): j += 1 ptop = prof.pres[i-j] if ptop > pbot: ptop = pbot break return pbot, ptop def _binary_cape(prof, ibot, itop, ecape=100, ecinh=-250): if ibot == itop: return prof.pres[ibot] elif ibot == itop - 1: pcl = cape(prof, pres=prof.pres[ibot], tmpc=prof.tmpc[ibot], dwpc=prof.dwpc[ibot]) if pcl.bplus < ecape or pcl.bminus <= ecinh: return prof.pres[ibot] else: return prof.pres[itop] else: i = ibot + (itop - ibot) // 2 pcl = cape(prof, pres=prof.pres[i], tmpc=prof.tmpc[i], dwpc=prof.dwpc[i]) if pcl.bplus < ecape or pcl.bminus <= ecinh: return _binary_cape(prof, ibot, i, ecape=ecape, ecinh=ecinh) else: return _binary_cape(prof, i, itop, ecape=ecape, ecinh=ecinh) def effective_inflow_layer_binary(prof, ecape=100, ecinh=-250, **kwargs): ''' Calculates the top and bottom of the effective inflow layer based on research by [3]_. Uses a binary search. Parameters ---------- prof : profile object Profile object ecape : number (optional; default=100) Minimum amount of CAPE in the layer to be considered part of the effective inflow layer. echine : number (optional; default=250) Maximum amount of CINH in the layer to be considered part of the effective inflow layer mupcl : parcel object Most Unstable Layer parcel Returns ------- pbot : number Pressure at the bottom of the layer (hPa) ptop : number Pressure at the top of the layer (hPa) ''' mupcl = kwargs.get('mupcl', None) if not mupcl: try: mupcl = prof.mupcl except: mulplvals = DefineParcel(prof, flag=3, pres=300) mupcl = cape(prof, lplvals=mulplvals) mucape = mupcl.bplus mucinh = mupcl.bminus pbot = ma.masked ptop = ma.masked if mucape >= ecape and mucinh > ecinh: istart = np.argmin(np.abs(mupcl.lplvals.pres - prof.pres)) itop = np.argmin(np.abs(300 - prof.pres)) pbot = _binary_cape(prof, istart, prof.sfc, ecape=ecape, ecinh=ecinh) ptop = _binary_cape(prof, istart, itop, ecape=ecape, ecinh=ecinh) return pbot, ptop def bunkers_storm_motion(prof, **kwargs): ''' Compute the Bunkers Storm Motion for a right moving supercell using a parcel based approach. This code is consistent with the findings in Bunkers et. al 2014, using the Effective Inflow Base as the base, and 65% of the most unstable parcel equilibrium level height using the pressure weighted mean wind. Parameters ---------- prof : profile object Profile Object pbot : float (optional) Base of effective-inflow layer (hPa) mupcl : parcel object (optional) Most Unstable Layer parcel Returns ------- rstu : number Right Storm Motion U-component (kts) rstv : number Right Storm Motion V-component (kts) lstu : number Left Storm Motion U-component (kts) lstv : number Left Storm Motion V-component (kts) ''' d = utils.MS2KTS(7.5) # Deviation value emperically derived at 7.5 m/s mupcl = kwargs.get('mupcl', None) pbot = kwargs.get('pbot', None) if not mupcl: try: mupcl = prof.mupcl except: mulplvals = DefineParcel(prof, flag=3, pres=400) mupcl = parcelx(prof, lplvals=mulplvals) mucape = mupcl.bplus mucinh = mupcl.bminus muel = mupcl.elhght if not pbot: pbot, ptop = effective_inflow_layer(prof, 100, -250, mupcl=mupcl) base = interp.to_agl(prof, interp.hght(prof, pbot)) if mucape > 100. and utils.QC(muel): depth = muel - base htop = base + ( depth * (65./100.) ) ptop = interp.pres(prof, interp.to_msl(prof, htop)) mnu, mnv = winds.mean_wind(prof, pbot, ptop) sru, srv = winds.wind_shear(prof, pbot, ptop) srmag = utils.mag(sru, srv) uchg = d / srmag * srv vchg = d / srmag * sru rstu = mnu + uchg rstv = mnv - vchg lstu = mnu - uchg lstv = mnv + vchg else: rstu, rstv, lstu, lstv = winds.non_parcel_bunkers_motion(prof) return rstu, rstv, lstu, lstv def convective_temp(prof, **kwargs): ''' Computes the convective temperature, assuming no change in the moisture profile. Parcels are iteratively lifted until only mincinh is left as a cap. The first guess is the observed surface temperature. Parameters ---------- prof : profile object Profile Object mincinh : parcel object (optional; default -1) Amount of CINH left at CI pres : number (optional) Pressure of parcel to lift (hPa) tmpc : number (optional) Temperature of parcel to lift (C) dwpc : number (optional) Dew Point of parcel to lift (C) Returns ------- Convective Temperature (C) : number ''' mincinh = kwargs.get('mincinh', 0.) mmr = mean_mixratio(prof) pres = kwargs.get('pres', prof.pres[prof.sfc]) tmpc = kwargs.get('tmpc', prof.tmpc[prof.sfc]) dwpc = kwargs.get('dwpc', thermo.temp_at_mixrat(mmr, pres)) # Do a quick search to fine whether to continue. If you need to heat # up more than 25C, don't compute. pcl = cape(prof, flag=5, pres=pres, tmpc=tmpc+25., dwpc=dwpc, trunc=True) if pcl.bplus == 0. or not utils.QC(pcl.bminus) or pcl.bminus < mincinh: return ma.masked excess = dwpc - tmpc if excess > 0: tmpc = tmpc + excess + 4. pcl = cape(prof, flag=5, pres=pres, tmpc=tmpc, dwpc=dwpc, trunc=True) if pcl.bplus == 0. or not utils.QC(pcl.bminus): pcl.bminus = ma.masked while not utils.QC(pcl.bminus) or pcl.bminus < mincinh: if pcl.bminus < -100: tmpc += 2. else: tmpc += 0.5 pcl = cape(prof, flag=5, pres=pres, tmpc=tmpc, dwpc=dwpc, trunc=True) if pcl.bplus == 0.: pcl.bminus = ma.masked return tmpc def tei(prof): ''' Theta-E Index (TEI) TEI is the difference between the surface theta-e and the minimum theta-e value in the lowest 400 mb AGL Note: This is the definition of TEI on the SPC help page, but these calculations do not match up with the TEI values on the SPC Online Soundings. The TEI values online are more consistent with the max Theta-E minus the minimum Theta-E found in the lowest 400 mb AGL. Parameters ---------- prof : profile object Profile object Returns ------- tei : number Theta-E Index ''' sfc_theta = prof.thetae[prof.sfc] sfc_pres = prof.pres[prof.sfc] top_pres = sfc_pres - 400. layer_idxs = ma.where(prof.pres >= top_pres)[0] min_thetae = ma.min(prof.thetae[layer_idxs]) max_thetae = ma.max(prof.thetae[layer_idxs]) #tei = sfc_theta - min_thetae tei = max_thetae - min_thetae return tei def esp(prof, **kwargs): ''' Enhanced Stretching Potential (ESP) This composite parameter identifies areas where low-level buoyancy and steep low-level lapse rates are co-located, which may favor low-level vortex stretching and tornado potential. REQUIRES: 0-3 km MLCAPE (from MLPCL) Parameters ---------- prof : profile object Profile object mlpcl : parcel object, optional Mixed-Layer Parcel object Returns ------- ESP Index : number ''' mlpcl = kwargs.get('mlpcl', None) if not mlpcl: try: mlpcl = prof.mlpcl except: mlpcl = parcelx(prof, flag=4) mlcape = mlpcl.b3km lr03 = prof.lapserate_3km # C/km if lr03 < 7. or mlpcl.bplus < 250.: return 0 esp = (mlcape / 50.) * ((lr03 - 7.0) / (1.0)) return esp def sherb(prof, **kwargs): ''' Severe Hazards In Environments with Reduced Buoyancy (SHERB) Parameter (*) A composite parameter designed to assist forecasters in the High-Shear Low CAPE (HSLC) environment. This allows better discrimination between significant severe and non-severe convection in HSLC enviroments. It can detect significant tornadoes and significant winds. Values above 1 are more likely associated with significant severe. See Sherburn et. al. 2014 WAF for more information REQUIRES (if effective==True): The effective inflow layer be defined .. warning:: This function has not been evaluated or tested against the version used at SPC. Parameters ---------- prof : profile object Profile object effective : bool, optional Use the effective layer computation or not the effective bulk wind difference (prof.ebwd) must exist first if not specified it will (Default is False) ebottom : number, optional bottom of the effective inflow layer (mb) etop : number, optional top of the effective inflow layer (mb) mupcl : parcel object, optional Most-Unstable Parcel Returns ------- SHERB : number ''' effective = kwargs.get('effective', False) ebottom = kwargs.get('ebottom', None) etop = kwargs.get('etop', None) lr03 = lapse_rate(prof, 0, 3000, pres=False) lr75 = lapse_rate(prof, 700, 500, pres=True) if effective == False: p3km = interp.pres(prof, interp.to_msl(prof, 3000)) sfc_pres = prof.pres[prof.get_sfc()] shear = utils.KTS2MS(utils.mag(*winds.wind_shear(prof, pbot=sfc_pres, ptop=p3km))) sherb = ( shear / 26. ) * ( lr03 / 5.2 ) * ( lr75 / 5.6 ) else: if hasattr(prof, 'ebwd'): # If the Profile object has the attribute "ebwd" shear = utils.KTS2MS(utils.mag( prof.ebwd[0], prof.ebwd[1] )) elif ((not ebottom) or (not etop)) or \ ((not hasattr(prof, 'ebottom') or not hasattr(prof, 'etop'))): # if the effective inflow layer hasn't been specified via the function arguments # or doesn't exist in the Profile object we need to calculate it, but we need mupcl if ebottom is None or etop is None: #only calculate ebottom and etop if they're not supplied by the kwargs if not hasattr(prof, 'mupcl') or not kwargs.get('mupcl', None): # If the mupcl attribute doesn't exist in the Profile # or the mupcl hasn't been passed as an argument # compute the mupcl mulplvals = DefineParcel(prof, flag=3, pres=300) mupcl = cape(prof, lplvals=mulplvals) else: mupcl = prof.mupcl # Calculate the effective inflow layer ebottom, etop = effective_inflow_layer( prof, mupcl=mupcl ) if ebottom is np.masked or etop is np.masked: # If the inflow layer doesn't exist, return missing return prof.missing else: # Calculate the Effective Bulk Wind Difference ebotm = interp.to_agl(prof, interp.hght(prof, ebottom)) depth = ( mupcl.elhght - ebotm ) / 2 elh = interp.pres(prof, interp.to_msl(prof, ebotm + depth)) ebwd = winds.wind_shear(prof, pbot=ebottom, ptop=elh) else: # If there's no way to compute the effective SHERB # because there's no information about how to get the # inflow layer, return missing. return prof.missing shear = utils.KTS2MS(utils.mag( prof.ebwd[0], prof.ebwd[1] )) sherb = ( shear / 27. ) * ( lr03 / 5.2 ) * ( lr75 / 5.6 ) return sherb def mmp(prof, **kwargs): """ MCS Maintenance Probability (MMP) The probability that a mature MCS will maintain peak intensity for the next hour. This equation was developed using proximity soundings and a regression equation Uses MUCAPE, 3-8 km lapse rate, maximum bulk shear, 3-12 km mean wind speed. Derived in [4]_. .. [4] <NAME>., <NAME>, and <NAME>, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 1231–1251, doi:https://doi.org/10.1175/JAS3681.1. Note: Per <NAME> (personal comm.), the maximum deep shear value is computed by computing the shear vector between all the wind vectors in the lowest 1 km and all the wind vectors in the 6-10 km layer. The maximum speed shear from this is the max_bulk_shear value (m/s). Parameters ---------- prof : profile object Profile object mupcl : parcel object, optional Most-Unstable Parcel object Returns ------- MMP index (%): number """ mupcl = kwargs.get('mupcl', None) if not mupcl: try: mupcl = prof.mupcl except: mulplvals = DefineParcel(prof, flag=3, pres=300) mupcl = cape(prof, lplvals=mulplvals) mucape = mupcl.bplus if mucape < 100.: return 0. agl_hght = interp.to_agl(prof, prof.hght) lowest_idx = np.where(agl_hght <= 1000)[0] highest_idx = np.where((agl_hght >= 6000) & (agl_hght < 10000))[0] if len(lowest_idx) == 0 or len(highest_idx) == 0: return ma.masked possible_shears = np.empty((len(lowest_idx),len(highest_idx))) pbots = interp.pres(prof, prof.hght[lowest_idx]) ptops = interp.pres(prof, prof.hght[highest_idx]) if len(lowest_idx) == 0 or len(highest_idx) == 0: return np.ma.masked for b in range(len(pbots)): for t in range(len(ptops)): if b < t: continue u_shear, v_shear = winds.wind_shear(prof, pbot=pbots[b], ptop=ptops[t]) possible_shears[b,t] = utils.mag(u_shear, v_shear) max_bulk_shear = utils.KTS2MS(np.nanmax(possible_shears.ravel())) lr38 = lapse_rate(prof, 3000., 8000., pres=False) plower = interp.pres(prof, interp.to_msl(prof, 3000.)) pupper = interp.pres(prof, interp.to_msl(prof, 12000.)) mean_wind_3t12 = winds.mean_wind( prof, pbot=plower, ptop=pupper) mean_wind_3t12 = utils.KTS2MS(utils.mag(mean_wind_3t12[0], mean_wind_3t12[1])) a_0 = 13.0 # unitless a_1 = -4.59*10**-2 # m**-1 * s a_2 = -1.16 # K**-1 * km a_3 = -6.17*10**-4 # J**-1 * kg a_4 = -0.17 # m**-1 * s mmp = 1. / (1. + np.exp(a_0 + (a_1 * max_bulk_shear) + (a_2 * lr38) + (a_3 * mucape) + (a_4 * mean_wind_3t12))) return mmp def wndg(prof, **kwargs): ''' Wind Damage Parameter (WNDG) A non-dimensional composite parameter that identifies areas where large CAPE, steep low-level lapse rates, enhanced flow in the low-mid levels, and minimal convective inhibition are co-located. WNDG values > 1 favor an enhanced risk for scattered damaging outflow gusts with multicell thunderstorm clusters, primarily during the afternoon in the summer. Parameters ---------- prof : profile object Profile object mlpcl : parcel object, optional Mixed-Layer Parcel object (optional) Returns ------- WNDG Index : number ''' mlpcl = kwargs.get('mlpcl', None) if not mlpcl: try: mlpcl = prof.mlpcl except: mllplvals = DefineParcel(prof, flag=4) mlpcl = cape(prof, lplvals=mllplvals) mlcape = mlpcl.bplus lr03 = lapse_rate( prof, 0, 3000., pres=False ) # C/km bot = interp.pres( prof, interp.to_msl( prof, 1000. ) ) top = interp.pres( prof, interp.to_msl( prof, 3500. ) ) mean_wind = winds.mean_wind(prof, pbot=bot, ptop=top) # needs to be in m/s mean_wind = utils.KTS2MS(utils.mag(mean_wind[0], mean_wind[1])) mlcin = mlpcl.bminus # J/kg if lr03 < 7: lr03 = 0. if mlcin < -50: mlcin = -50. wndg = (mlcape / 2000.) * (lr03 / 9.) * (mean_wind / 15.) * ((50. + mlcin)/40.) return wndg def sig_severe(prof, **kwargs): ''' Significant Severe (SigSevere) Craven and Brooks, 2004 Parameters ---------- prof : profile object Profile object mlpcl : parcel object, optional Mixed-Layer Parcel object Returns ------- significant severe parameter (m3/s3) : number ''' mlpcl = kwargs.get('mlpcl', None) sfc6shr = kwargs.get('sfc6shr', None) if not mlpcl: try: mlpcl = prof.mlpcl except: mllplvals = DefineParcel(prof, flag=4) mlpcl = cape(prof, lplvals=mllplvals) mlcape = mlpcl.bplus if not sfc6shr: try: sfc_6km_shear = prof.sfc_6km_shear except: sfc = prof.pres[prof.sfc] p6km = interp.pres(prof, interp.to_msl(prof, 6000.)) sfc_6km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p6km) sfc_6km_shear = utils.mag(sfc_6km_shear[0], sfc_6km_shear[1]) shr06 = utils.KTS2MS(sfc_6km_shear) sigsevere = mlcape * shr06 return sigsevere def dcape(prof): ''' Downdraft CAPE (DCAPE) Adapted from <NAME>'s (SPC) DCAPE code in NSHARP donated by <NAME> (SPC) Calculates the downdraft CAPE value using the downdraft parcel source found in the lowest 400 mb of the sounding. This downdraft parcel is found by identifying the minimum 100 mb layer averaged Theta-E. Afterwards, this parcel is lowered to the surface moist adiabatically (w/o virtual temperature correction) and the energy accumulated is called the DCAPE. Future adaptations of this function may utilize the Parcel/DefineParcel object. Parameters ---------- prof : profile object Profile object Returns ------- dcape : number downdraft CAPE (J/kg) ttrace : array downdraft parcel trace temperature (C) ptrace : array downdraft parcel trace pressure (mb) ''' sfc_pres = prof.pres[prof.sfc] prof_thetae = prof.thetae prof_wetbulb = prof.wetbulb mask1 = prof_thetae.mask mask2 = prof.pres.mask mask = np.maximum( mask1, mask2 ) prof_thetae = prof_thetae[~mask] prof_wetbulb = prof_wetbulb[~mask] pres = prof.pres[~mask] hght = prof.hght[~mask] dwpc = prof.dwpc[~mask] tmpc = prof.tmpc[~mask] idx = np.where(pres >= sfc_pres - 400.)[0] # Find the minimum average theta-e in a 100 mb layer mine = 1000.0 minp = -999.0 for i in idx: thta_e_mean = mean_thetae(prof, pbot=pres[i], ptop=pres[i]-100.) if utils.QC(thta_e_mean) and thta_e_mean < mine: minp = pres[i] - 50. mine = thta_e_mean upper = minp uptr = np.where(pres >= upper)[0] uptr = uptr[-1] # Define parcel starting point tp1 = thermo.wetbulb(upper, interp.temp(prof, upper), interp.dwpt(prof, upper)) pe1 = upper te1 = interp.temp(prof, pe1) h1 = interp.hght(prof, pe1) tote = 0 lyre = 0 # To keep track of the parcel trace from the downdraft ttrace = [tp1] ptrace = [upper] # Lower the parcel to the surface moist adiabatically and compute # total energy (DCAPE) iter_ranges = range(uptr, -1, -1) ttraces = ma.zeros(len(iter_ranges)) ptraces = ma.zeros(len(iter_ranges)) ttraces[:] = ptraces[:] = ma.masked for i in iter_ranges: pe2 = pres[i] te2 = tmpc[i] h2 = hght[i] tp2 = thermo.wetlift(pe1, tp1, pe2) if utils.QC(te1) and utils.QC(te2): tdef1 = (tp1 - te1) / (thermo.ctok(te1)) tdef2 = (tp2 - te2) / (thermo.ctok(te2)) lyrlast = lyre lyre = 9.8 * (tdef1 + tdef2) / 2.0 * (h2 - h1) tote += lyre ttraces[i] = tp2 ptraces[i] = pe2 pe1 = pe2 te1 = te2 h1 = h2 tp1 = tp2 drtemp = tp2 # Downrush temp in Celsius return tote, ma.concatenate((ttrace, ttraces[::-1])), ma.concatenate((ptrace, ptraces[::-1])) def precip_eff(prof, **kwargs): ''' Precipitation Efficiency (*) This calculation comes from Noel and Dobur 2002, published in NWA Digest Vol 26, No 34. The calculation multiplies the PW from the whole atmosphere by the 1000 - 700 mb mean relative humidity (in decimal form) Values on the SPC Mesoanalysis range from 0 to 2.6. Larger values means that the precipitation is more efficient. .. warning:: This function has not been directly compared with a version at SPC. Parameters ---------- prof : profile object Profile object pwat : number, optional precomputed precipitable water vapor (inch) pbot : number, optional the bottom pressure of the RH layer (mb) ptop : number, optional the top pressure of the RH layer (mb) Returns ------- precip_efficency (inches) : number ''' pw = kwargs.get('pwat', None) pbot = kwargs.get('pbot', 1000) ptop = kwargs.get('ptop', 700) if pw is None or not hasattr(prof, 'pwat'): pw = precip_water(prof) else: pw = prof.pwat mean_rh = mean_relh(prof, pbot=pbot, ptop=ptop) / 100. return pw*mean_rh def pbl_top(prof): ''' Planetary Boundary Layer Depth Adapted from NSHARP code donated by <NAME> (SPC) Calculates the planetary boundary layer depth by calculating the virtual potential temperature of the surface parcel + .5 K, and then searching for the location above the surface where the virtual potential temperature of the profile is greater than the surface virtual potential temperature. While this routine suggests a parcel lift, this Python adaptation does not use loop like parcelx(). Parameters ---------- prof : profile object Profile object Returns ------- ppbl_top (mb) : number ''' thetav = thermo.theta(prof.pres, thermo.virtemp(prof.pres, prof.tmpc, prof.dwpc)) try: level = np.where(thetav[prof.sfc]+.5 < thetav)[0][0] except IndexError: print("Warning: PBL top could not be found.") level = thetav.shape[0] - 1 return prof.pres[level] def dcp(prof): ''' Derecho Composite Parameter (*) This parameter is based on a data set of 113 derecho events compiled by Evans and Doswell (2001). The DCP was developed to identify environments considered favorable for cold pool "driven" wind events through four primary mechanisms: 1) Cold pool production [DCAPE] 2) Ability to sustain strong storms along the leading edge of a gust front [MUCAPE] 3) Organization potential for any ensuing convection [0-6 km shear] 4) Sufficient flow within the ambient environment to favor development along downstream portion of the gust front [0-6 km mean wind]. This index is fomulated as follows: DCP = (DCAPE/980)*(MUCAPE/2000)*(0-6 km shear/20 kt)*(0-6 km mean wind/16 kt) Reference: <NAME>., and <NAME>, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329-342. Parameters ---------- prof : profile object Profile object Returns ------- dcp : number Derecho Composite Parameter (unitless) ''' sfc = prof.pres[prof.sfc] p6km = interp.pres(prof, interp.to_msl(prof, 6000.)) dcape_val = getattr(prof, 'dcape', dcape( prof )[0]) mupcl = getattr(prof, 'mupcl', None) if mupcl is None: mupcl = parcelx(prof, flag=1) sfc_6km_shear = getattr(prof, 'sfc_6km_shear', winds.wind_shear(prof, pbot=sfc, ptop=p6km)) mean_6km = getattr(prof, 'mean_6km', utils.comp2vec(*winds.mean_wind(prof, pbot=sfc, ptop=p6km))) mag_shear = utils.mag(sfc_6km_shear[0], sfc_6km_shear[1]) mag_mean_wind = mean_6km[1] dcp = (dcape_val/980.) * (mupcl.bplus/2000.) * (mag_shear / 20. ) * (mag_mean_wind / 16.) return dcp def mburst(prof): ''' Microburst Composite Index Formulated by <NAME> NWS JAN 12/7/2014 Code donated by <NAME> (SPC) Below is taken from the SPC Mesoanalysis: The Microburst Composite is a weighted sum of the following individual parameters: SBCAPE, SBLI, lapse rates, vertical totals (850-500 mb temperature difference), DCAPE, and precipitable water. All of the terms are summed to arrive at the final microburst composite value. The values can be interpreted in the following manner: 3-4 infers a "slight chance" of a microburst; 5-8 infers a "chance" of a microburst; >= 9 infers that microbursts are "likely". These values can also be viewed as conditional upon the existence of a storm. This code was updated on 9/11/2018 - TT was being used in the function instead of VT. The original SPC code was checked to confirm this was the problem. This error was not identified during the testing phase for some reason. Parameters ---------- prof : profile object Profile object Returns ------- mburst : number Microburst Composite (unitless) ''' sbpcl = getattr(prof, 'sfcpcl', None) if sbpcl is None: sbpcl = parcelx(prof, flag=1) lr03 = getattr(prof, 'lapserate_3km', lapse_rate( prof, 0., 3000., pres=False )) vt = getattr(prof, 'vertical_totals', v_totals(prof)) dcape_val = getattr(prof, 'dcape', dcape( prof )[0]) pwat = getattr(prof, 'pwat', precip_water( prof )) tei_val = thetae_diff(prof) sfc_thetae = thermo.thetae(sbpcl.lplvals.pres, sbpcl.lplvals.tmpc, sbpcl.lplvals.dwpc) # SFC Theta-E term if thermo.ctok(sfc_thetae) >= 355: te = 1 else: te = 0 # Surface-based CAPE Term if not utils.QC(sbpcl.bplus): sbcape_term = np.nan else: if sbpcl.bplus < 2000: sbcape_term = -5 if sbpcl.bplus >= 2000: sbcape_term = 0 if sbpcl.bplus >= 3300: sbcape_term = 1 if sbpcl.bplus >= 3700: sbcape_term = 2 if sbpcl.bplus >= 4300: sbcape_term = 4 # Surface based LI term if not utils.QC(sbpcl.li5): sbli_term = np.nan else: if sbpcl.li5 > -7.5: sbli_term = 0 if sbpcl.li5 <= -7.5: sbli_term = 1 if sbpcl.li5 <= -9.0: sbli_term = 2 if sbpcl.li5 <= -10.0: sbli_term = 3 # PWAT Term if not utils.QC(pwat): pwat_term = np.nan else: if pwat < 1.5: pwat_term = -3 else: pwat_term = 0 # DCAPE Term if not utils.QC(dcape_val): dcape_term = np.nan else: if pwat > 1.70: if dcape_val > 900: dcape_term = 1 else: dcape_term = 0 else: dcape_term = 0 # Lapse Rate Term if not utils.QC(lr03): lr03_term = np.nan else: if lr03 <= 8.4: lr03_term = 0 else: lr03_term = 1 # Vertical Totals term if not utils.QC(vt): vt_term = np.nan else: if vt < 27: vt_term = 0 elif vt >= 27 and vt < 28: vt_term = 1 elif vt >= 28 and vt < 29: vt_term = 2 else: vt_term = 3 # TEI term? if not utils.QC(tei_val): ted = np.nan else: if tei_val >= 35: ted = 1 else: ted = 0 mburst = te + sbcape_term + sbli_term + pwat_term + dcape_term + lr03_term + vt_term + ted if mburst < 0: mburst = 0 if np.isnan(mburst): mburst = np.ma.masked return mburst def ehi(prof, pcl, hbot, htop, stu=0, stv=0): ''' Energy-Helicity Index Computes the energy helicity index (EHI) using a parcel object and a profile object. The equation is EHI = (CAPE * HELICITY) / 160000. Parameters ---------- prof : profile object Profile object pcl : parcel object Parcel object hbot : number Height of the bottom of the helicity layer [m] htop : number Height of the top of the helicity layer [m] stu : number Storm-relative wind U component [kts] (optional; default=0) stv : number Storm-relative wind V component [kts] (optional; default=0) Returns ------- ehi : number Energy Helicity Index (unitless) ''' helicity = winds.helicity(prof, hbot, htop, stu=stu, stv=stv)[0] ehi = (helicity * pcl.bplus) / 160000. return ehi def sweat(prof): ''' SWEAT Index Computes the SWEAT (Severe Weather Threat Index) using the following numbers: 1. 850 Dewpoint 2. Total Totals Index 3. 850 mb wind speed 4. 500 mb wind speed 5. Direction of wind at 500 6. Direction of wind at 850 Formulation taken from Notes on Analysis and Severe-Storm Forecasting Procedures of the Air Force Global Weather Central, 1972 by <NAME>. .. warning:: This function has not been tested against the SPC version of SHARP. Parameters ---------- prof : profile object Profile object Returns ------- sweat : number SWEAT Index (number) ''' td850 = interp.dwpt(prof, 850) vec850 = interp.vec(prof, 850) vec500 = interp.vec(prof, 500) tt = getattr(prof, 'totals_totals', t_totals( prof )) if td850 > 0: term1 = 12. * td850 else: term1 = 0 if tt < 49: term2 = 0 else: term2 = 20. * (tt - 49) term3 = 2 * vec850[1] term4 = vec500[1] if 130 <= vec850[0] and 250 >= vec850[0] and 210 <= vec500[0] and 310 >= vec500[0] and vec500[0] - vec850[0] > 0 and vec850[1] >= 15 and vec500[1] >= 15: term5 = 125 * (np.sin( np.radians(vec500[0] - vec850[0])) + 0.2) else: term5 = 0 sweat = term1 + term2 + term3 + term4 + term5 return sweat def thetae_diff(prof): ''' thetae_diff() Adapted from code for thetae_diff2() provided by <NAME> (SPC) Find the maximum and minimum Theta-E values in the lowest 3000 m of the sounding and returns the difference. Only positive difference values (where the minimum Theta-E is above the maximum) are returned. Parameters ---------- prof : profile object Profile object Returns ------- thetae_diff : number the Theta-E difference between the max and min values (K) ''' thetae = getattr(prof, 'thetae', prof.get_thetae_profile()) idx = np.where(interp.to_agl(prof, prof.hght) <= 3000)[0] maxe_idx = np.ma.argmax(thetae[idx]) mine_idx = np.ma.argmin(thetae[idx]) maxe_pres = prof.pres[idx][maxe_idx] mine_pres = prof.pres[idx][mine_idx] thetae_diff = thetae[idx][maxe_idx] - thetae[idx][mine_idx] if maxe_pres < mine_pres: return 0 else: return thetae_diff def bore_lift(prof, hbot=0., htop=3000., pbot=None, ptop=None): """ Lift all parcels in the layer. Calculate and return the difference between the liften parcel level height and the LFC height. hbot: bottom of layer in meters (AGL) htop: top of layer in meters(AGL) OR pbot: bottom of layer (in hPa) ptop: top of layer (in hPa) """ pres = prof.pres; hght = prof.hght tmpc = prof.tmpc; dwpc = prof.dwpc mask = ~prof.pres.mask * ~prof.hght.mask * ~prof.tmpc.mask * ~prof.dwpc.mask if pbot is not None: layer_idxs = np.where( (prof.pres[mask] <= pbot ) & ( prof.pres[mask] >= ptop ) )[0] else: hbot = interp.to_msl(prof, hbot) htop = interp.to_msl(prof, htop) pbot = interp.pres(prof, hbot) ptop = interp.pres(prof, htop) layer_idxs = np.where( ( prof.hght[mask] >= hbot ) & ( prof.hght[mask] <= htop ) )[0] delta_lfc = np.zeros((len(layer_idxs))) delta_lfc[:] = np.ma.masked i = 0 for idx in layer_idxs: lpl = DefineParcel(prof, 5, pres=pres[idx]) pcl = parcelx(prof, pres=pres[idx], tmpc=tmpc[idx], dwpc=dwpc[idx], pbot=pres[idx]) delta_lfc[i] = pcl.lfchght - hght[idx] i += 1 return np.ma.masked_invalid(delta_lfc)
instagram_scraper/endpoints.py
luengwaiban/instagram-python-scraper
139
11092733
# -*- coding:utf-8 -*- import urllib.parse USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36' BASE_URL = 'https://www.instagram.com' LOGIN_URL = 'https://www.instagram.com/accounts/login/ajax/' ACCOUNT_MEDIAS = "http://www.instagram.com/graphql/query/?query_hash=42323d64886122307be10013ad2dcc44&variables=%s" ACCOUNT_PAGE = 'https://www.instagram.com/%s' MEDIA_LINK = 'https://www.instagram.com/p/%s' INSTAGRAM_CDN_URL = 'https://scontent.cdninstagram.com/' ACCOUNT_JSON_PRIVATE_INFO_BY_ID = 'https://i.instagram.com/api/v1/users/%s/info/' FOLLOWERS_URL = 'https://www.instagram.com/graphql/query/?query_id=17851374694183129&id={{accountId}}&first={{count}}&after={{after}}' FOLLOWING_URL = 'https://www.instagram.com/graphql/query/?query_id=17874545323001329&id={{accountId}}&first={{count}}&after={{after}}' COMMENTS_BEFORE_COMMENT_ID_BY_CODE = 'https://www.instagram.com/graphql/query/?query_hash=33ba35852cb50da46f5b5e889df7d159&variables=%s' LIKES_BY_SHORTCODE = 'https://www.instagram.com/graphql/query/?query_id=17864450716183058&variables=%s' MEDIA_JSON_BY_TAG = 'https://www.instagram.com/explore/tags/%s/?__a=1&max_id=%s' GENERAL_SEARCH = 'https://www.instagram.com/web/search/topsearch/?query=%s' MEDIA_JSON_BY_LOCATION_ID = 'https://www.instagram.com/explore/locations/%s/?__a=1&max_id=%s' ACCOUNT_JSON_INFO = 'https://www.instagram.com/%s/?__a=1' USER_STORIES_LINK = 'https://www.instagram.com/graphql/query/?query_id=17890626976041463&variables=%s' STORIES_LINK = 'https://www.instagram.com/graphql/query/?query_id=17873473675158481&variables=%s' LIKE_URL = 'https://www.instagram.com/web/likes/%s/like/' UNLIKE_URL = 'https://www.instagram.com/web/likes/%s/unlike/' ADD_COMMENT_URL = 'https://www.instagram.com/web/comments/%s/add/' DELETE_COMMENT_URL = 'https://www.instagram.com/web/comments/%s/delete/%s/' def get_account_media_url(variables): return ACCOUNT_MEDIAS % urllib.parse.quote(variables) def get_account_page_link(user_name): return ACCOUNT_PAGE % user_name def get_media_url(media_url): return media_url.rstrip('/') + '/?__a=1' def get_media_page_link(code): return MEDIA_LINK % urllib.parse.quote(code) def get_account_json_private_info_link_by_account_id(id): return ACCOUNT_JSON_PRIVATE_INFO_BY_ID % urllib.parse.quote(str(id)) def get_followers_json_link(account_id, count, after=''): url = FOLLOWERS_URL.replace('{{accountId}}', urllib.parse.quote(account_id)) url = url.replace('{{count}}', urllib.parse.quote(str(count))) if after == '': url = url.replace('&after={{after}}', '') else: url = url.replace('{{after}}', urllib.parse.quote(after)) return url def get_following_json_link(account_id, count, after=''): url = FOLLOWING_URL.replace('{{accountId}}', urllib.parse.quote(account_id)) url = url.replace('{{count}}', urllib.parse.quote(str(count))) if after == '': url = url.replace('&after={{after}}', '') else: url = url.replace('{{after}}', urllib.parse.quote(after)) return url def get_comments_before_comment_id_by_code(variables): return COMMENTS_BEFORE_COMMENT_ID_BY_CODE % urllib.parse.quote(variables) def get_medias_json_by_tag_link(tag, max_id=''): return MEDIA_JSON_BY_TAG % (urllib.parse.quote(tag), urllib.parse.quote(max_id)) def get_general_search_json_link(query): return GENERAL_SEARCH % urllib.parse.quote(query) def get_medias_json_by_location_id_link(facebook_location_id, max_id=''): return MEDIA_JSON_BY_LOCATION_ID % (urllib.parse.quote(str(facebook_location_id)), urllib.parse.quote(max_id)) def get_account_json_link(username): return ACCOUNT_JSON_INFO % urllib.parse.quote(str(username)) def get_user_stories_link(variables): return USER_STORIES_LINK % urllib.parse.quote(variables) def get_stories_link(variables): return STORIES_LINK % urllib.parse.quote(variables) def get_like_url(media_id): return LIKE_URL % urllib.parse.quote(str(media_id)) def get_unlike_url(media_id): return UNLIKE_URL % urllib.parse.quote(str(media_id)) def get_add_comment_url(media_id): return ADD_COMMENT_URL % urllib.parse.quote(str(media_id)) def get_delete_comment_url(media_id, comment_id): return DELETE_COMMENT_URL % (urllib.parse.quote(str(media_id)), urllib.parse.quote(str(comment_id))) def get_last_likes_by_code(variables): return LIKES_BY_SHORTCODE % urllib.parse.quote(variables)
cd4ml/problems/groceries/problem.py
camila-contreras/CD4ML-Scenarios
113
11092771
from cd4ml.problems.problem_base import ProblemBase import cd4ml.problems.groceries.splitting as splitting import cd4ml.problems.groceries.readers.stream_data as data_streamer import cd4ml.problems.groceries.download_data.download_data as dd import logging from cd4ml.utils.utils import create_lookup class Problem(ProblemBase): def __init__(self, problem_name, data_downloader='default', ml_pipeline_params_name='default', feature_set_name='default', algorithm_name='default', algorithm_params_name='default'): super(Problem, self).__init__(problem_name, data_downloader, feature_set_name=feature_set_name, ml_pipeline_params_name=ml_pipeline_params_name, algorithm_name=algorithm_name, algorithm_params_name=algorithm_params_name) self.logger = logging.getLogger(__name__) get_training_validation_filters = splitting.get_training_validation_filters self._stream_data = data_streamer.stream_data self.date_lookup = None self.item_nbr_lookup = None self.training_filter, self.validation_filter = get_training_validation_filters(self.ml_pipeline_params) def prepare_feature_data(self): self.logger.info('Preparing feature data') train_data = self.training_stream() date_lookup = create_lookup(train_data, ['dayofweek', 'days_til_end_of_data', 'dayoff'], 'date') train_data = self.training_stream() item_nbr_lookup = create_lookup(train_data, ['class', 'family'], 'item_nbr') if self.feature_set is not None: self.feature_set.info['date_lookup'] = date_lookup self.feature_set.info['item_nbr_lookup'] = item_nbr_lookup @staticmethod def get_feature_set_constructor(feature_set_name): if feature_set_name == "default": from cd4ml.problems.groceries.features.feature_sets.default import feature_set as fs return fs.get_feature_set elif feature_set_name == "original": from cd4ml.problems.groceries.features.feature_sets.original import feature_set as fs return fs.get_feature_set else: raise ValueError("feature_set_name '{}' is invalid. Please check your groceries configuration" .format(feature_set_name)) pass def download_data(self): dd.download(self.problem_name)
config/oktoberkite/rotors.py
leozz37/makani
1,178
11092783
<reponame>leozz37/makani # Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rotor parameters.""" from makani.config import mconfig from makani.control import system_types as m import numpy as np @mconfig.Config(deps={ 'flight_plan': 'common.flight_plan', 'propellers': 'prop.propellers', 'wing_serial': 'common.wing_serial', }) def MakeParams(params): """Returns parameters about the kite rotors.""" # Motor rotor moment-of-inertia [kg-m^2]. yasa_rotor_moment_of_inertia = 0.33 bottom_row = [m.kMotorSbo, m.kMotorSbi, m.kMotorPbi, m.kMotorPbo] # Assign propeller versions. propeller_versions = [None for _ in range(m.kNumMotors)] # This arrangment has been shown to minimize net torques. # Oktoberkite uses very similar rotors as Rev4. propeller_versions[m.kMotorSbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorPto] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSto] = m.kPropVersionRev4PositiveX # Set rotor inclination axis. # Oktoberkite rotors are not inclined 3deg down as the M600's are. rotor_tilt_down_deg = 0.0 rotors = [None for _ in range(m.kNumMotors)] for r in range(m.kNumMotors): rotors[r] = { # Normal vector to the propeller plane. 'axis': [np.cos(rotor_tilt_down_deg * np.pi / 180.0), 0.0, np.sin(rotor_tilt_down_deg * np.pi / 180.0)], # Direction cosine matrix from body to rotor frame. 'dcm_b2r': {'d': [[np.cos(-rotor_tilt_down_deg * np.pi / 180.0), 0.0, np.sin(-rotor_tilt_down_deg * np.pi / 180.0)], [0.0, 1.0, 0.0], [-np.sin(-rotor_tilt_down_deg * np.pi / 180.0), 0.0, np.cos(-rotor_tilt_down_deg * np.pi / 180.0)]]}, # Local pressure coefficient [#] at the rotor position. The # pressure coefficient, C_P, is related to local airspeed # through the equation: # # C_P = 1 - (v / v_freestream)^2 # # There is a significant difference in airspeeds between the top # and bottom propellers caused by the lift of the wing. # # TODO: OktKite. Input proper pressure coefficient due to wing # circulation. Currently derived from M600 CFD with the slatted # kite at 4 deg alpha (https://goo.gl/yfkJJS): 'local_pressure_coeff': 0.1448 if r in bottom_row else -0.1501, # The rotor direction, diameter [m] and moment of inertia [kg # m^2] are set from the corresponding propeller's information. 'version': propeller_versions[r], 'dir': params['propellers'][propeller_versions[r]]['dir'], 'D': params['propellers'][propeller_versions[r]]['D'], 'I': (yasa_rotor_moment_of_inertia + params['propellers'][propeller_versions[r]]['I']), } # We check that the rotor axis is normalized. because it is used # to determine the force-moment conversion matrix in # rotor_control.py. assert abs(np.linalg.norm(rotors[r]['axis']) - 1.0) < 1e-9 # Rotor positions [m]. # TODO: Confirm values, provide source. # Looks like M600 x and z values with new y values. rotors[m.kMotorSbo]['pos'] = [1.613, 4.5, 1.597] rotors[m.kMotorSbi]['pos'] = [1.613, 1.5, 1.597] rotors[m.kMotorPbi]['pos'] = [1.613, -1.5, 1.597] rotors[m.kMotorPbo]['pos'] = [1.613, -4.5, 1.597] rotors[m.kMotorPto]['pos'] = [1.960, -4.5, -1.216] rotors[m.kMotorPti]['pos'] = [1.960, -1.5, -1.216] rotors[m.kMotorSti]['pos'] = [1.960, 1.5, -1.216] rotors[m.kMotorSto]['pos'] = [1.960, 4.5, -1.216] return rotors
tacker/sol_refactored/conductor/conductor_v2.py
h1r0mu/tacker
116
11092786
<reponame>h1r0mu/tacker<filename>tacker/sol_refactored/conductor/conductor_v2.py # Copyright (C) 2021 Nippon Telegraph and Telephone Corporation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as logging from tacker.common import log from tacker.sol_refactored.common import config from tacker.sol_refactored.common import coordinate from tacker.sol_refactored.common import exceptions as sol_ex from tacker.sol_refactored.common import lcm_op_occ_utils as lcmocc_utils from tacker.sol_refactored.common import vnf_instance_utils as inst_utils from tacker.sol_refactored.conductor import vnflcm_driver_v2 from tacker.sol_refactored.nfvo import nfvo_client from tacker.sol_refactored import objects from tacker.sol_refactored.objects.v2 import fields LOG = logging.getLogger(__name__) CONF = config.CONF class ConductorV2(object): def __init__(self): self.vnflcm_driver = vnflcm_driver_v2.VnfLcmDriverV2() self.endpoint = CONF.v2_vnfm.endpoint self.nfvo_client = nfvo_client.NfvoClient() def _get_lcm_op_method(self, op, postfix): method = getattr(self.vnflcm_driver, "%s_%s" % (op.lower(), postfix)) return method def _set_lcmocc_error(self, lcmocc, ex): if isinstance(ex, sol_ex.SolException): problem_details = ex.make_problem_details() else: # program bug. it occurs only under development. problem_details = {'status': 500, 'detail': str(ex)} lcmocc.error = objects.ProblemDetails.from_dict(problem_details) @log.log def start_lcm_op(self, context, lcmocc_id): lcmocc = lcmocc_utils.get_lcmocc(context, lcmocc_id) self._start_lcm_op(context, lcmocc) @coordinate.lock_vnf_instance('{lcmocc.vnfInstanceId}', delay=True) def _start_lcm_op(self, context, lcmocc): # just consistency check if lcmocc.operationState != fields.LcmOperationStateType.STARTING: LOG.error("VnfLcmOpOcc unexpected operationState.") return inst = inst_utils.get_inst(context, lcmocc.vnfInstanceId) # NOTE: error cannot happen to here basically. # if an error occurred lcmocc.opetationState remains STARTING. # see the log of the tacker-conductor to investigate the cause # of error. # NOTE: the following flow follows SOL003 5.4.1.2 # send notification STARTING self.nfvo_client.send_lcmocc_notification(context, lcmocc, inst, self.endpoint) try: vnfd = self.nfvo_client.get_vnfd(context, inst.vnfdId, all_contents=True) # NOTE: perform grant exchange mainly but also perform # something to do at STATING phase ex. request check. grant_method = self._get_lcm_op_method(lcmocc.operation, 'grant') grant_req, grant = grant_method(context, lcmocc, inst, vnfd) lcmocc.operationState = fields.LcmOperationStateType.PROCESSING lcmocc.update(context) except Exception as ex: LOG.exception("STARTING %s failed", lcmocc.operation) lcmocc.operationState = fields.LcmOperationStateType.ROLLED_BACK self._set_lcmocc_error(lcmocc, ex) lcmocc.update(context) # send notification PROCESSING or ROLLED_BACK self.nfvo_client.send_lcmocc_notification(context, lcmocc, inst, self.endpoint) if lcmocc.operationState != fields.LcmOperationStateType.PROCESSING: return try: # perform preamble LCM script start_method = self._get_lcm_op_method(lcmocc.operation, 'start') start_method(context, lcmocc, inst, grant_req, grant, vnfd) process_method = self._get_lcm_op_method(lcmocc.operation, 'process') process_method(context, lcmocc, inst, grant_req, grant, vnfd) # perform postamble LCM script end_method = self._get_lcm_op_method(lcmocc.operation, 'end') end_method(context, lcmocc, inst, grant_req, grant, vnfd) lcmocc.operationState = fields.LcmOperationStateType.COMPLETED # update inst and lcmocc at the same time with context.session.begin(subtransactions=True): inst.update(context) lcmocc.update(context) except Exception as ex: LOG.exception("PROCESSING %s failed", lcmocc.operation) lcmocc.operationState = fields.LcmOperationStateType.FAILED_TEMP self._set_lcmocc_error(lcmocc, ex) lcmocc.update(context) # send notification COMPLETED or FAILED_TEMP self.nfvo_client.send_lcmocc_notification(context, lcmocc, inst, self.endpoint)
manopth/argutils.py
BiggerBinBin/e3d_handpose_x-master
544
11092807
<reponame>BiggerBinBin/e3d_handpose_x-master import datetime import os import pickle import subprocess import sys def print_args(args): opts = vars(args) print('======= Options ========') for k, v in sorted(opts.items()): print('{}: {}'.format(k, v)) print('========================') def save_args(args, save_folder, opt_prefix='opt', verbose=True): opts = vars(args) # Create checkpoint folder if not os.path.exists(save_folder): os.makedirs(save_folder, exist_ok=True) # Save options opt_filename = '{}.txt'.format(opt_prefix) opt_path = os.path.join(save_folder, opt_filename) with open(opt_path, 'a') as opt_file: opt_file.write('====== Options ======\n') for k, v in sorted(opts.items()): opt_file.write( '{option}: {value}\n'.format(option=str(k), value=str(v))) opt_file.write('=====================\n') opt_file.write('launched {} at {}\n'.format( str(sys.argv[0]), str(datetime.datetime.now()))) # Add git info label = subprocess.check_output(["git", "describe", "--always"]).strip() if subprocess.call( ["git", "branch"], stderr=subprocess.STDOUT, stdout=open(os.devnull, 'w')) == 0: opt_file.write('=== Git info ====\n') opt_file.write('{}\n'.format(label)) commit = subprocess.check_output(['git', 'rev-parse', 'HEAD']) opt_file.write('commit : {}\n'.format(commit.strip())) opt_picklename = '{}.pkl'.format(opt_prefix) opt_picklepath = os.path.join(save_folder, opt_picklename) with open(opt_picklepath, 'wb') as opt_file: pickle.dump(opts, opt_file) if verbose: print('Saved options to {}'.format(opt_path))
core/dataset/loader_multi_realdata.py
hyunynim/DIST-Renderer
176
11092811
<reponame>hyunynim/DIST-Renderer<filename>core/dataset/loader_multi_realdata.py import numpy as np import os, sys import copy import json import torch import trimesh import torch.utils.data import cv2 import easydict sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..')) from common.geometry import Camera class LoaderMultiReal(torch.utils.data.Dataset): def __init__(self, data_dir, scale=1, refine_sim=False): self.data_dir = data_dir self.scale = scale self.folder_list = [f.name for f in os.scandir(self.data_dir) if f.is_dir()] self.refine_sim = refine_sim def transform_camera(self, R, t, sim_transform, scale): R_new = np.matmul(R, sim_transform[:3, :3]) t_new = np.matmul(R, sim_transform[:, 3]) + t R_new = R_new/scale t_new = t_new/scale return R_new, t_new def __len__(self): return len(self.folder_list) def __getitem__(self, idx): instance_name = self.folder_list[idx] base_path = os.path.join(self.data_dir, instance_name) data_parsed = np.load(os.path.join(base_path, 'parsed.npz'), allow_pickle=True) data_all = data_parsed['frames'] num_img = len(data_all) if os.path.exists(os.path.join(base_path, 'picked_frame.npz')): f_pick = np.load(os.path.join(base_path, 'picked_frame.npz')) picked_frame = f_pick['picked_frame'] img_list = [] mask_list = [] camera_list = [] sim_transform = np.load(os.path.join(base_path, 'estim_3Dsim.npy')) # estimate the scale from the provided similarity transform scale = np.max(np.linalg.svd(sim_transform[:3, :3])[1]) for i in range(num_img): if (picked_frame is not None) and (i not in picked_frame): continue else: img_cur = cv2.imread(os.path.join(base_path+'/images_clean', data_all[i]['name']))/255 if self.refine_sim is False: R_cur = data_all[i]['extr'][:3, :3] t_cur = data_all[i]['extr'][:, 3] data_all[i]['extr'][:3, :3], data_all[i]['extr'][:, 3] = self.transform_camera(R_cur, t_cur, sim_transform, scale) cam_cur = Camera(data_all[i]['intr'], data_all[i]['extr']) mask_cur = np.zeros((img_cur.shape[0], img_cur.shape[1])) if self.scale != 1: img_cur = cv2.resize(img_cur, None, fx=self.scale, fy=self.scale) mask_cur = cv2.resize(mask_cur, None, fx=self.scale, fy=self.scale) cam_cur.intrinsic[:2] = cam_cur.intrinsic[:2] * self.scale img_list.append(torch.from_numpy(img_cur).float()) mask_list.append(torch.from_numpy(mask_cur).type(torch.uint8).cuda()) camera_list.append(cam_cur) sim_transform = torch.from_numpy(np.load(os.path.join(base_path, 'estim_3Dsim.npy'))).float().cuda() return instance_name, img_list, mask_list, camera_list, sim_transform
detection_img.py
tingyumao94/groupsoftmax-simpledet
153
11092822
<reponame>tingyumao94/groupsoftmax-simpledet<gh_stars>100-1000 import os from core.detection_module import DetModule from core.detection_input import Loader from utils.load_model import load_checkpoint from operator_py.nms import py_nms_wrapper from utils import callback from mxnet.base import _as_list from six.moves import reduce from six.moves.queue import Queue from threading import Thread import argparse import importlib import mxnet as mx import numpy as np import six.moves.cPickle as pkl import time import json import cv2 def parse_args(): parser = argparse.ArgumentParser(description='Test Detection') # general parser.add_argument('--config', help='config file path', type=str) parser.add_argument('--gpu_id', help='gpu_id', type=int, default=0) parser.add_argument('--epoch', help='load params epoch', type=int, default=0) parser.add_argument('--thr', help='detection threshold', type=float, default=0.80) parser.add_argument('--path', help='images path to detect', type=str) args = parser.parse_args() config = importlib.import_module(args.config.replace('.py', '').replace('/', '.')) return args, config if __name__ == "__main__": # os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0" args, config = parse_args() pGen, pKv, pRpn, pRoi, pBbox, pDataset, pModel, pOpt, pTest, \ transform, data_name, label_name, metric_list = config.get_config(is_train=False) nms = py_nms_wrapper(pTest.nms.thr) sym = pModel.test_symbol pshort = 800 plong = 2000 arg_params, aux_params = load_checkpoint(pTest.model.prefix, args.epoch) mod = DetModule(sym, data_names=["data", "im_info", "im_id", "rec_id"], context=mx.gpu(args.gpu_id)) provide_data = [("data", (1, 3, pshort, plong)), ("im_info", (1, 3)), ("im_id", (1,)), ("rec_id", (1,))] mod.bind(data_shapes=provide_data, for_training=False) mod.set_params(arg_params, aux_params, allow_extra=False) image_list = [] if os.path.isfile(args.path): if ".txt" in args.path: list_file = open(args.path, 'r') list_lines = list_file.readlines() list_file.close() (fpath, fname) = os.path.split(args.path) for aline in list_lines: uints = aline.split(' ') imgpath = os.path.join(fpath, uints[0]) image_list.append(imgpath) else: image_list.append(args.path) else: for fname in os.listdir(args.path): fpath = os.path.join(args.path, fname) if os.path.isfile(fpath): image_list.append(fpath) for imgpath in image_list: img = cv2.imread(imgpath, cv2.IMREAD_COLOR) image = img[:, :, ::-1] short = image.shape[0] long = image.shape[1] scale = min(pshort / short, plong / long) image = cv2.resize(image, None, None, scale, scale, interpolation=cv2.INTER_LINEAR) # exactly as opencv h, w = image.shape[:2] im_info = (h, w, scale) # shape = (plong, pshort, 3) if h >= w else (pshort, plong, 3) shape = (pshort, plong, 3) padded_image = np.zeros(shape, dtype=np.float32) padded_image[:h, :w] = image padded_image = padded_image.transpose((2, 0, 1)) img_array = [] img_array.append(padded_image) iminfo_array = [] iminfo_array.append(im_info) im_id = mx.nd.array([1]) rec_id = mx.nd.array([1]) data = [mx.nd.array(img_array)] data.append(mx.nd.array(iminfo_array)) data.append(im_id) data.append(rec_id) mbatch = mx.io.DataBatch(data=data, provide_data=provide_data) start_t = time.time() mod.forward(mbatch, is_train=False) outs = [x.asnumpy() for x in mod.get_outputs()] im_info = outs[2] # h_raw, w_raw, scale cls_score = outs[3] bbox_xyxy = outs[4] if cls_score.ndim == 3: cls_score = cls_score[0] bbox_xyxy = bbox_xyxy[0] bbox_xyxy = bbox_xyxy / scale # scale to original image scale cls_score = cls_score[:, 1:] # remove background score # TODO: the output shape of class_agnostic box is [n, 4], while class_aware box is [n, 4 * (1 + class)] bbox_xyxy = bbox_xyxy[:, 4:] if bbox_xyxy.shape[1] != 4 else bbox_xyxy final_dets = {} for cid in range(cls_score.shape[1]): score = cls_score[:, cid] if bbox_xyxy.shape[1] != 4: cls_box = bbox_xyxy[:, cid * 4:(cid + 1) * 4] else: cls_box = bbox_xyxy valid_inds = np.where(score > args.thr)[0] box = cls_box[valid_inds] score = score[valid_inds] det = np.concatenate((box, score.reshape(-1, 1)), axis=1).astype(np.float32) final_dets[cid] = nms(det) end_t = time.time() print("detection use: %.3f seconds." % (end_t - start_t)) for cid in final_dets: det = final_dets[cid] if det.shape[0] == 0: continue scores = det[:, -1] x1 = det[:, 0] y1 = det[:, 1] x2 = det[:, 2] y2 = det[:, 3] for k in range(det.shape[0]): bbox = [float(x1[k]), float(y1[k]), float(x2[k]), float(y2[k])] score = float(scores[k]) cv2.rectangle(img, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 0, 255), 2) # cv2.putText(img, "{}:{:.2}".format(str(cid), score), (int(bbox[0]), int(bbox[1] - 10)), 4, 0.6, (0, 0, 255)) (filepath, filename) = os.path.split(imgpath) cv2.imwrite(filename, img) exit()
mayan/apps/document_signatures/migrations/0011_rename_signaturebasemodel_field.py
nattangwiwat/Mayan-EDMS-recitation
343
11092827
<filename>mayan/apps/document_signatures/migrations/0011_rename_signaturebasemodel_field.py from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('documents', '0057_auto_20200916_1057'), ('document_signatures', '0010_auto_20191201_0146') ] operations = [ migrations.RenameField( model_name='signaturebasemodel', old_name='document_version', new_name='document_file', ), ]
src/visitpy/mpicom/py_src/__init__.py
visit-dav/vis
226
11092833
# Copyright (c) Lawrence Livermore National Security, LLC and other VisIt # Project developers. See the top-level LICENSE file for dates and other # details. No copyright assignment is required to contribute to VisIt. ############################################################################### # file: __init__.py # Purpose: Main init for the mpicom module. # # Programmer: <NAME> # Creation: Thu Apr 5 08:51:03 PDT 2012 # # # Modifications: # <NAME>, Thu Feb 18 16:06:46 PST 2021 # Change the way the compiled lib import works to support Python 3. # ############################################################################### # import the serial stub module from . import mpistub # try to import the compiled module # (this will only exist if visit was built with mpi support) try: from . import mpicom except ImportError: pass
blesuite/entities/gatt_include.py
jreynders/BLESuite-1
198
11092843
<reponame>jreynders/BLESuite-1<filename>blesuite/entities/gatt_include.py import blesuite.utils.att_utils as att_utils class BLEInclude(object): """ BLEInclude is used to represent an included service located on a BTLE device :var handle: Handle of attribute. Type int :var included_service_att_handle: Start handle for included service. Type int :var included_service_end_group_handle: End handle for included service. Type int :var included_service_uuid: UUID of included service. Type str :var attribute_type: Attribute type UUID (default "2802" - include service), Type str :var include_definition_attribute_properties: Attribute properties (default blesuite.utils.att_utils.ATT_PROP_READ). Type: blesuite.utils.att_utils.ATT_PROP_* :var include_definition_attribute_read_permission: Required security mode to read attribute (default blesuite.utils.att_utils.ATT_SECURITY_MODE_OPEN). Type: blesuite.utils.att_utils.ATT_SECURITY_MODE_* :var include_definition_attribute_write_permission: Required security mode to write to attribute (default blesuite.utils.att_utils.ATT_SECURITY_MODE_NO_ACCESS). Type: blesuite.utils.att_utils.ATT_SECURITY_MODE_* :var include_definition_attribute_require_authorization: Flag to indicate that access of the attribute requires authorization (default False) :type handle: int :type included_service_att_handle: int :type included_service_end_group_handle: int :type included_service_uuid: str :type attribute_type: str :type include_definition_attribute_properties: blesuite.utils.att_utils.ATT_PROP_* :type include_definition_attribute_read_permission: blesuite.utils.att_utils.ATT_SECURITY_MODE_* :type include_definition_attribute_write_permission: blesuite.utils.att_utils.ATT_SECURITY_MODE_* :type include_definition_attribute_require_authorization: bool """ def __init__(self, handle, included_service_att_handle, included_service_end_group_handle, included_service_uuid, attribute_type="2802", include_definition_attribute_properties=att_utils.ATT_PROP_READ, include_definition_attribute_read_permission=att_utils.ATT_SECURITY_MODE_OPEN, include_definition_attribute_write_permission=att_utils.ATT_SECURITY_MODE_NO_ACCESS, include_definition_attribute_require_authorization=False): self.handle = handle self.included_service_att_handle = included_service_att_handle self.included_service_uuid = included_service_uuid self.included_service_end_group_handle = included_service_end_group_handle self.characteristics = [] self.includes = [] self.type = None self.type_string = "" self.attribute_type = attribute_type self.include_definition_attribute_properties = include_definition_attribute_properties self.include_definition_attribute_read_permission = include_definition_attribute_read_permission self.include_definition_attribute_write_permission = include_definition_attribute_write_permission self.include_definition_attribute_require_authorization = include_definition_attribute_require_authorization self.determine_type() def determine_type(self): """ Used by blesuite.entities.gatt_include to populate gatt_include.type_string with a readable type based on the include's UUID. The defined include service types were pulled from https://www.bluetooth.com/specifications/gatt/characteristics :return: :rtype: """ # Defined Services from https://www.bluetooth.com/specifications/gatt/services # last updated dict on 1/12/18 type_dict = { 0x1800: "Generic Access", 0x1811: "Alert Notification Service", 0x1815: "Automation IO", 0x180F: "Battery Service", 0x1810: "Blood Pressure", 0x181B: "Body Composition", 0x181E: "Bond Management Service", 0x181F: "Continuous Glucose Monitoring", 0x1805: "Current Time Service", 0x1818: "Cycling Power", 0x1816: "Cycling Speed and Cadence", 0x180A: "Device Information", 0x181A: "Environmental Sensing", 0x1826: "Fitness Machine", 0x1801: "Generic Attribute", 0x1808: "Glucose", 0x1809: "Health Thermometer", 0x180D: "Heart Rate", 0x1823: "HTTP Proxy", 0x1812: "Human Interface Device", 0x1802: "Immediate Alert", 0x1821: "Indoor Positioning", 0x1820: "Internet Protocol Support Service", 0x1803: "Link Loss", 0x1819: "Location and Navigation", 0x1827: "Mesh Provisioning Service", 0x1828: "Mesh Proxy Service", 0x1807: "Next DST Change Service", 0x1825: "Object Transfer Service", 0x180E: "Phone Alert Status Service", 0x1822: "Pulse Oximeter Service", 0x1806: "Reference Time Update Service", 0x1814: "Running Speed and Cadence", 0x1813: "Scan Parameters", 0x1824: "Transport Discovery", 0x1804: "Tx Power", 0x181C: "User Data", 0x181D: "Weight Scale", } if self.included_service_uuid is None: return type_int = int(self.included_service_uuid[:8], 16) self.type = type_int if type_int in type_dict.keys(): self.type_string = type_dict[type_int] def get_type_string(self): """ Returns readable type string of the included service. :return: Type of service :rtype: str """ return self.type_string def export_include_to_dictionary(self): """ Exports include service information to a dictionary for use by the BLEDevice export functionality. :return: Dictionary representation of include :rtype: dict """ from collections import OrderedDict # ordered dictionary allows us to maintain the order we insert keys, this makes reading the resulting # dictionary easier include_dictionary = OrderedDict() include_dictionary['handle'] = self.handle include_dictionary['included_service_att_handle'] = self.included_service_att_handle include_dictionary['included_service_end_group_handle'] = self.included_service_end_group_handle include_dictionary['included_service_uuid'] = self.included_service_uuid # include_dictionary['attribute_type'] = self.attribute_type attribute_properties = [] if self.include_definition_attribute_properties & att_utils.ATT_PROP_READ == att_utils.ATT_PROP_READ: attribute_properties.append("read") if self.include_definition_attribute_properties & att_utils.ATT_PROP_WRITE == att_utils.ATT_PROP_WRITE: attribute_properties.append("write") include_dictionary['include_definition_attribute_properties'] = attribute_properties attribute_read_permissions = {"security_mode": self.include_definition_attribute_read_permission.security_mode, "security_level": self.include_definition_attribute_read_permission.security_level } include_dictionary['include_definition_attribute_read_permission'] = attribute_read_permissions attribute_write_permissions = { "security_mode": self.include_definition_attribute_write_permission.security_mode, "security_level": self.include_definition_attribute_write_permission.security_level } include_dictionary['include_definition_attribute_write_permission'] = attribute_write_permissions include_dictionary['include_definition_attribute_require_authorization'] = self.include_definition_attribute_require_authorization return include_dictionary def import_include_from_dictionary(self, include_dictionary): """ Populate include attributes from a dictionary containing included service information. This is complimentary to export_include_to_dictionary . :param include_dictionary: Dictionary containing include information :type include_dictionary: dict :return: :rtype: :raises blesuite.pybt.gatt.InvalidUUIDException: if the provided include dictionary contains an include with an invalid UUID :raises blesuite.utils.validators.InvalidATTHandle: if the provided include dictionary contains an include with an invalid handle :raises blesuite.utils.validators.InvalidATTProperty: if the provided include dictionary contains an include with an invalid attribute property :raises blesuite.utils.validators.InvalidATTSecurityMode: if the provided include dictionary contains an include with an invalid attribute permission """ import blesuite.utils.validators as validator include_attributes = include_dictionary.keys() if 'included_service_uuid' in include_attributes: uuid = validator.validate_attribute_uuid(include_dictionary['included_service_uuid']) self.included_service_uuid = uuid else: raise validator.InvalidUUIDException(None) self.determine_type() if 'handle' in include_attributes: handle = validator.validate_int_att_handle(include_dictionary['handle']) self.handle = handle else: # This will allow us to disregard adding handles to our import JSON file and we can calculate during # the gatt_server creation that uses the BLEDevice (flag enabled by default) self.included_service_att_handle = 0x00 if 'included_service_att_handle' in include_attributes: included_service_att_handle = validator.validate_int_att_handle(include_dictionary['included_service_att_handle']) self.included_service_att_handle = included_service_att_handle else: # This will allow us to disregard adding handles to our import JSON file and we can calculate during # the gatt_server creation that uses the BLEDevice (flag enabled by default) self.included_service_att_handle = 0x00 if 'included_service_end_group_handle' in include_attributes: end = validator.validate_int_att_handle(include_dictionary['included_service_end_group_handle']) self.included_service_end_group_handle = end else: self.included_service_end_group_handle = 0x00 if 'include_definition_attribute_properties' in include_attributes: att_properties = include_dictionary['include_definition_attribute_properties'] for att_property in att_properties: self.include_definition_attribute_properties = 0 validated_att_property = validator.validate_att_property(att_property) if validated_att_property == "read": self.include_definition_attribute_properties |= att_utils.ATT_PROP_READ elif validated_att_property == "write": self.include_definition_attribute_properties |= att_utils.ATT_PROP_WRITE if 'include_definition_attribute_read_permission' in include_attributes: permission_dictionary = include_dictionary['include_definition_attribute_read_permission'] permission_keys = permission_dictionary.keys() if "security_mode" not in permission_keys: mode = None else: mode = permission_dictionary['security_mode'] if "security_level" not in permission_keys: level = None else: level = permission_dictionary['security_level'] mode, level = validator.validate_att_security_mode(mode, level) self.include_definition_attribute_read_permission = att_utils.get_att_security_mode_from_mode_and_level( mode, level) if 'include_definition_attribute_write_permission' in include_attributes: permission_dictionary = include_dictionary['include_definition_attribute_write_permission'] permission_keys = permission_dictionary.keys() if "security_mode" not in permission_keys: mode = None else: mode = permission_dictionary['security_mode'] if "security_level" not in permission_keys: level = None else: level = permission_dictionary['security_level'] mode, level = validator.validate_att_security_mode(mode, level) self.include_definition_attribute_write_permission = att_utils.get_att_security_mode_from_mode_and_level( mode, level) if 'include_definition_attribute_require_authorization' in include_attributes: require_auth = include_dictionary['include_definition_attribute_require_authorization'] if require_auth is not None: self.include_definition_attribute_require_authorization = require_auth return
towhee/trainer/models/utils/pretrained_utils.py
ThyeeZz/towhee
365
11092856
<reponame>ThyeeZz/towhee # Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torch.utils import model_zoo import torch import logging def load_pretrained_weights( model, model_name=None, model_configs=None, weights_path=None, ): """ Load pretrained weights from path or url. Args: model(nn.Module): Model. model_name(str): Model name model_configs(dict): Model configs weights_path(str, optional): Path to pretrained weights file on the local disk. verbose (bool): If printing is done when downloading is over. """ logging.info('model_name is %s', str(model_name)) logging.info('weights_path is %s', str(weights_path)) assert bool(model_name), 'Expected model_name' # Load or download weights if weights_path is None: logging.info(model_configs.keys()) url = model_configs['url'] if url: logging.info('Please check hub connection in case weights can not be downloaded!') state_dict = model_zoo.load_url(url, map_location=torch.device('cpu')) else: raise ValueError(f'Pretrained model for {model_name} is not available.') else: state_dict = torch.load(weights_path) # Load state dict ret = model.load_state_dict(state_dict['model'], strict=False) return ret
isserviceup/services/pagerduty.py
EvgeshaGars/is-service-up
182
11092864
<filename>isserviceup/services/pagerduty.py from isserviceup.services.models.statuspage import StatusPagePlugin class PagerDuty(StatusPagePlugin): name = 'PagerDuty' status_url = 'https://status.pagerduty.com/' icon_url = '/images/icons/pagerduty.png'
qiskit/transpiler/passes/scheduling/padding/base_padding.py
itoko/qiskit-terra
1,456
11092883
<reponame>itoko/qiskit-terra<gh_stars>1000+ # This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Padding pass to fill empty timeslot.""" from typing import List, Optional, Union from qiskit.circuit import Qubit, Clbit, Instruction from qiskit.circuit.delay import Delay from qiskit.dagcircuit import DAGCircuit, DAGNode from qiskit.transpiler.basepasses import TransformationPass from qiskit.transpiler.exceptions import TranspilerError class BasePadding(TransformationPass): """The base class of padding pass. This pass requires one of scheduling passes to be executed before itself. Since there are multiple scheduling strategies, the selection of scheduling pass is left in the hands of the pass manager designer. Once a scheduling analysis pass is run, ``node_start_time`` is generated in the :attr:`property_set`. This information is represented by a python dictionary of the expected instruction execution times keyed on the node instances. Entries in the dictionary are only created for non-delay nodes. The padding pass expects all ``DAGOpNode`` in the circuit to be scheduled. This base class doesn't define any sequence to interleave, but it manages the location where the sequence is inserted, and provides a set of information necessary to construct the proper sequence. Thus, a subclass of this pass just needs to implement :meth:`_pad` method, in which the subclass constructs a circuit block to insert. This mechanism removes lots of boilerplate logic to manage whole DAG circuits. Note that padding pass subclasses should define interleaving sequences satisfying: - Interleaved sequence does not change start time of other nodes - Interleaved sequence should have total duration of the provided ``time_interval``. Any manipulation violating these constraints may prevent this base pass from correctly tracking the start time of each instruction, which may result in violation of hardware alignment constraints. """ def run(self, dag: DAGCircuit): """Run the padding pass on ``dag``. Args: dag: DAG to be checked. Returns: DAGCircuit: DAG with idle time filled with instructions. Raises: TranspilerError: When a particular node is not scheduled, likely some transform pass is inserted before this node is called. """ self._pre_runhook(dag) node_start_time = self.property_set["node_start_time"].copy() new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) # Update start time dictionary for the new_dag. # This information may be used for further scheduling tasks, # but this is immediately invalidated becasue node id is updated in the new_dag. self.property_set["node_start_time"].clear() new_dag.name = dag.name new_dag.metadata = dag.metadata new_dag.unit = self.property_set["time_unit"] new_dag.calibrations = dag.calibrations new_dag.global_phase = dag.global_phase idle_after = {bit: 0 for bit in dag.qubits} # Compute fresh circuit duration from the node start time dictionary and op duration. # Note that pre-scheduled duration may change within the alignment passes, i.e. # if some instruction time t0 violating the hardware alignment constraint, # the alignment pass may delay t0 and accordingly the circuit duration changes. circuit_duration = 0 for node in dag.topological_op_nodes(): if node in node_start_time: t0 = node_start_time[node] t1 = t0 + node.op.duration circuit_duration = max(circuit_duration, t1) if isinstance(node.op, Delay): # The padding class considers a delay instruction as idle time # rather than instruction. Delay node is removed so that # we can extract non-delay predecessors. dag.remove_op_node(node) continue for bit in node.qargs: # Fill idle time with some sequence if t0 - idle_after[bit] > 0: # Find previous node on the wire, i.e. always the latest node on the wire prev_node = next(new_dag.predecessors(new_dag.output_map[bit])) self._pad( dag=new_dag, qubit=bit, t_start=idle_after[bit], t_end=t0, next_node=node, prev_node=prev_node, ) idle_after[bit] = t1 self._apply_scheduled_op(new_dag, t0, node.op, node.qargs, node.cargs) else: raise TranspilerError( f"Operation {repr(node)} is likely added after the circuit is scheduled. " "Schedule the circuit again if you transformed it." ) # Add delays until the end of circuit. for bit in new_dag.qubits: if circuit_duration - idle_after[bit] > 0: node = new_dag.output_map[bit] prev_node = next(new_dag.predecessors(node)) self._pad( dag=new_dag, qubit=bit, t_start=idle_after[bit], t_end=circuit_duration, next_node=node, prev_node=prev_node, ) new_dag.duration = circuit_duration return new_dag def _pre_runhook(self, dag: DAGCircuit): """Extra routine inserted before running the padding pass. Args: dag: DAG circuit on which the sequence is applied. Raises: TranspilerError: If the whole circuit or instruction is not scheduled. """ if "node_start_time" not in self.property_set: raise TranspilerError( f"The input circuit {dag.name} is not scheduled. Call one of scheduling passes " f"before running the {self.__class__.__name__} pass." ) def _apply_scheduled_op( self, dag: DAGCircuit, t_start: int, oper: Instruction, qubits: Union[Qubit, List[Qubit]], clbits: Optional[Union[Clbit, List[Clbit]]] = None, ): """Add new operation to DAG with scheduled information. This is identical to apply_operation_back + updating the node_start_time propety. Args: dag: DAG circuit on which the sequence is applied. t_start: Start time of new node. oper: New operation that is added to the DAG circuit. qubits: The list of qubits that the operation acts on. clbits: The list of clbits that the operation acts on. """ if isinstance(qubits, Qubit): qubits = [qubits] if isinstance(clbits, Clbit): clbits = [clbits] new_node = dag.apply_operation_back(oper, qargs=qubits, cargs=clbits) self.property_set["node_start_time"][new_node] = t_start def _pad( self, dag: DAGCircuit, qubit: Qubit, t_start: int, t_end: int, next_node: DAGNode, prev_node: DAGNode, ): """Interleave instruction sequence in between two nodes. .. note:: If a DAGOpNode is added here, it should update node_start_time property in the property set so that the added node is also scheduled. This is achieved by adding operation via :meth:`_apply_scheduled_op`. .. note:: This method doesn't check if the total duration of new DAGOpNode added here is identical to the interval (``t_end - t_start``). A developer of the pass must guarantee this is satisfied. If the duration is greater than the interval, your circuit may be compiled down to the target code with extra duration on the backend compiler, which is then played normally without error. However, the outcome of your circuit might be unexpected due to erroneous scheduling. Args: dag: DAG circuit that sequence is applied. qubit: The wire that the sequence is applied on. t_start: Absolute start time of this interval. t_end: Absolute end time of this interval. next_node: Node that follows the sequence. prev_node: Node ahead of the sequence. """ raise NotImplementedError
Toxicity/toxic.py
UmaTaru/run
163
11092895
import re, string import numpy as np import pandas as pd import pickle from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score re_tok = re.compile(f'([{string.punctuation}“”¨«»®´·º½¾¿¡§£₤‘’])') def tokenize(s): return re_tok.sub(r' \1 ', s).split() class NBTfidfVectorizer(TfidfVectorizer): """Class for generating Naive Bayes features with tf-idf priors. Can also be used to generate tf-idf only. """ def __init__(self): super().__init__( ngram_range=(1,2), tokenizer=tokenize, min_df=3, max_df=0.9, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1) # Nive Bayes parameter self._r = None def fit(self, X, y): """Calculate NB and tf-idf parameters """ # fit and generate TF-IDF features X_tfidf = super().fit_transform(X) # get NB features p = (X_tfidf[y == 1].sum(0) + 1) / ((y == 1).sum() + 1) q = (X_tfidf[y == 0].sum(0) + 1) / ((y == 0).sum() + 1) self._r = np.log(p / q) def transform(self, X): X_tfidf = super().transform(X) return X_tfidf.multiply(self._r) def fit_transform(self, X, y): self.fit(X, y) return self.transform(X) class NBLogisticRegression(LogisticRegression, NBTfidfVectorizer): def __init__(self): self.regressor = LogisticRegression(C=4, dual=True) self.vectorizer = NBTfidfVectorizer() def fit(self, X, y): print('Fitting NBTfidf') X_NBTfidf = self.vectorizer.fit_transform(X, y) print('Fitting LogisticRegression') self.regressor.fit(X_NBTfidf, y) def predict_proba(self, X): X_NBTfidf = self.vectorizer.transform(X) return self.regressor.predict_proba(X_NBTfidf)[:,1] def predict(self, X): X_NBTfidf = self.vectorizer.transform(X) return self.regressor.predict(X_NBTfidf) if __name__ == '__main__': # Code from https://www.kaggle.com/jhoward/nb-svm-strong-linear-baseline data = pd.read_csv('../datasets/Kaggle_Toxic/data/train.csv') data['toxic'] = data['toxic'] + data['insult'] + data['obscene'] + data['severe_toxic'] + data['identity_hate'] + data['threat'] data['toxic'][data['toxic'] != 0] = 1 train, test = train_test_split(data, test_size=0.25) train['none'] = 1-train['toxic'] print('{} none labels out of {} comments'.format(train['none'].sum(), train.shape[0])) print('so {} of the comments are non toxic'.format(train['none'].sum() / train.shape[0])) COMMENT = 'comment_text' train[COMMENT].fillna("<unk>", inplace=True) test[COMMENT].fillna("<unk>", inplace=True) logistic = NBLogisticRegression() logistic.fit(train[COMMENT], train['toxic'].values) train_preds = logistic.predict(train[COMMENT]) test_preds = logistic.predict(test[COMMENT]) print('Train accuracy is: {:.3f}'.format(accuracy_score(train['toxic'], train_preds))) print('Train recall (True positive) is {:.3f}'.format(recall_score(train['toxic'], train_preds))) print('Train precision is {:.3f}'.format(precision_score(train['toxic'], train_preds))) print('Train F1 is {:3f}'.format(f1_score(train['toxic'], train_preds))) print('*' * 20) print('*' * 20) print('Test accuracy is: {:.3f}'.format(accuracy_score(test['toxic'], test_preds))) print('Test recall (True positive) is {:.3f}'.format(recall_score(test['toxic'], test_preds))) print('Test precision is {:.3f}'.format(precision_score(test['toxic'], test_preds))) print('Test F1 is {:3f}'.format(f1_score(test['toxic'], test_preds))) print('#' * 20) print('#' * 20) print('Training model on full data') logistic = NBLogisticRegression() logistic.fit(data[COMMENT], data['toxic'].values) print('Saving trained toxicity model') with open('toxicity_model.pkl', 'wb') as f: pickle.dump(logistic, f)
tools/ops/script_runner/lib/custom_commands/management/commands/estimate_concurrent_users.py
yetsun/hue
5,079
11092906
<reponame>yetsun/hue #!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import sys import logging import heapq import datetime import time import subprocess from collections import OrderedDict from django.core.management.base import BaseCommand, CommandError import desktop.conf from desktop.conf import TIME_ZONE from search.conf import SOLR_URL, SECURITY_ENABLED as SOLR_SECURITY_ENABLED from liboozie.conf import OOZIE_URL, SECURITY_ENABLED as OOZIE_SECURITY_ENABLED from hadoop import conf as hdfs_conf from hadoop import cluster if sys.version_info[0] > 2: from django.utils.translation import gettext_lazy as _t, gettext as _ else: from django.utils.translation import ugettext_lazy as _t, ugettext as _ DEFAULT_LOG_DIR = 'logs' log_dir = os.getenv("DESKTOP_LOG_DIR", DEFAULT_LOG_DIR) class Command(BaseCommand): """ Handler for renaming duplicate User objects """ try: from optparse import make_option option_list = BaseCommand.option_list + ( make_option("--today", help=_t("Estimate users for today."), action="store_true", default=False, dest='today'), make_option("--logdir", help=_t("Specify directory to process access logs."), action="store", default=log_dir, dest='logdir'), make_option("--increment", help=_t("Increments to count users, hour, min10, day"), action="store", default="day", dest='increment'), make_option("--date", help=_t("Estimate users for date. In form of YYYY-MM-DD"), action="store", default=False, dest='date'), make_option("--last10", help=_t("Process logs for last 10 minutes."), action="store_true", default=False, dest='last10'), make_option("--last1h", help=_t("Process logs for last hour."), action="store_true", default=False, dest='last1h'), make_option("--includejb", help=_t("Include Jobbrowser entries."), action="store_true", default=False, dest='includejb'), make_option("--verbose", help=_t("Verbose."), action="store_true", default=False, dest='verbose'), ) except AttributeError, e: baseoption_test = 'BaseCommand' in str(e) and 'option_list' in str(e) if baseoption_test: def add_arguments(self, parser): parser.add_argument("--today", help=_t("Estimate users for today."), action="store_true", default=False, dest='today'), parser.add_argument("--logdir", help=_t("Specify directory to process access logs."), action="store", default=log_dir, dest='logdir'), parser.add_argument("--increment", help=_t("Increments to count users, hour, min10, day"), action="store", default="day", dest='increment'), parser.add_argument("--date", help=_t("Estimate users for date. In form of YYYY-MM-DD"), action="store", default=False, dest='date'), parser.add_argument("--last10", help=_t("Process logs for last 10 minutes."), action="store_true", default=False, dest='last10'), parser.add_argument("--last1h", help=_t("Process logs for last hour."), action="store_true", default=False, dest='last1h'), parser.add_argument("--includejb", help=_t("Include Jobbrowser entries."), action="store_true", default=False, dest='includejb'), parser.add_argument("--verbose", help=_t("Verbose."), action="store_true", default=False, dest='verbose') else: logging.warn(str(e)) sys.exit(1) def handle(self, *args, **options): if options['date']: now = datetime.datetime.strptime(options['date'], '%Y-%m-%d') else: now = datetime.datetime.now() minus10 = now - datetime.timedelta(minutes=10) minus1h = now - datetime.timedelta(minutes=60) date = now - datetime.timedelta(days=1999) previous_date = now - datetime.timedelta(days=2000) totalconcurrent = 0 userlist = [] numlist = [] regex = re.compile( # Example line # [20/Jun/2017 04:40:07 -0700] DEBUG 172.31.112.36 -anon- - "HEAD /desktop/debug/is_alive HTTP/1.1" r'\[' r'(?P<date>' r'\d{2}/\w{3}/\d{4} ' # Parse Date in form of '25/Oct/2015' r'\d{2}:\d{2}:\d{2}' # Parse Time in form of '12:34:56' r') ' r'[-+]?\d{4}' # Ignore the timezone r'\] ' r'(?P<level>\w+) +' r'(?P<ip>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) ' r'(?P<user>\w+) ' r'\S+ "' # Ignore unknown r'(?P<method>\w+) ' r'(?P<url>\S+) ' ) for filename in sorted(os.listdir(options['logdir']), reverse=True): if not filename.startswith("access"): continue # Only process access log files for line in open(options['logdir'] + "/" + filename).xreadlines(): if not line.startswith("["): continue # Only process lines that start with a date # Make sure this log entry is a user access m = regex.match(line) if m: previous_date = date date = datetime.datetime.strptime(m.group('date'), '%d/%b/%Y %H:%M:%S') if not options['includejb']: if re.match(m.group('url'), '/jobbrowser/jobs/$'): continue if options['today']: if \ date.year != now.year or \ date.month != now.month or \ date.day != now.day: continue if options['last10']: # Skip anything older than 10 mins ago if date < minus10: continue if options['last1h']: # Skip anything older than 1 hour ago if date < minus1h: continue user = m.group('user') if previous_date.day == date.day: if not user == "-anon-": userlist.append(user) else: newuserlist = list(OrderedDict.fromkeys(userlist)) userlist = [] totalconcurrent = len(newuserlist) numlist.append(totalconcurrent) newuserlist = list(OrderedDict.fromkeys(userlist)) totalconcurrent = len(newuserlist) numlist.append(totalconcurrent) # Sort the list and remove any unique values numlist = sorted(set(numlist)) # Print the top 10 most concurrent counts logging.warn("largest: %s" % heapq.nlargest(10, numlist)) # print "newuserlist: %s" % newuserlist # print "userlist: %s" % userlist
ranking/management/modules/adventofcode.py
aropan/clist
166
11092921
<gh_stars>100-1000 #!/usr/bin/env python import html import json import re from collections import OrderedDict, defaultdict from datetime import datetime, timedelta, timezone from urllib.parse import urljoin import arrow from ranking.management.modules import conf from ranking.management.modules.common import REQ, BaseModule class Statistic(BaseModule): def get_standings(self, *args, **kwargs): func = self._get_private_standings if '/private/' in self.url else self._get_global_standings return func(*args, **kwargs) def _get_private_standings(self, users=None, statistics=None): REQ.add_cookie('session', conf.ADVENTOFCODE_SESSION, '.adventofcode.com') page = REQ.get(self.url.rstrip('/') + '.json') data = json.loads(page) year = int(data['event']) problems_infos = OrderedDict() times = defaultdict(list) def items_sort(d): return sorted(d.items(), key=lambda i: int(i[0])) result = {} total_members = len(data['members']) tz = timezone(timedelta(hours=-5)) for r in data['members'].values(): handle = r.pop('id') row = result.setdefault(handle, OrderedDict()) row['member'] = handle row['solving'] = r.pop('local_score') row['name'] = r.pop('name') row['global_score'] = r.pop('global_score') row['stars'] = r.pop('stars') ts = int(r.pop('last_star_ts')) if ts: row['last_star'] = ts solutions = r.pop('completion_day_level') problems = row.setdefault('problems', OrderedDict()) for day, solution in items_sort(solutions): if not solution: continue day = str(day) for star, res in items_sort(solution): star = str(star) k = f'{day}.{star}' if k not in problems_infos: problems_infos[k] = {'name': day, 'code': k, 'group': day, 'subname': '*', 'subname_class': 'first-star' if star == '1' else 'both-stars', 'url': urljoin(self.url, f'/{year}/day/{day}'), '_order': (int(day), int(star)), 'visible': False} times[k].append(res['get_star_ts']) day_start_time = datetime(year=year, month=12, day=int(day), tzinfo=tz) delta = datetime.fromtimestamp(res['get_star_ts'], tz=timezone.utc) - day_start_time problems[k] = { 'ts': res['get_star_ts'], 'time': self.to_time(delta), } for v in times.values(): v.sort() for row in result.values(): problems = row.setdefault('problems', {}) for k, p in row['problems'].items(): ts = p.pop('ts') rank = times[k].index(ts) + 1 score = total_members - rank + 1 p['time_in_seconds'] = ts p['result'] = score last = None for idx, r in enumerate(sorted(result.values(), key=lambda r: -r['solving']), start=1): if r['solving'] != last: last = r['solving'] rank = idx r['place'] = rank problems = list(sorted(problems_infos.values(), key=lambda p: p['_order'])) for p in problems: p.pop('_order') ret = { 'hidden_fields': {'last_star', 'stars', 'ranks'}, 'result': result, 'fields_types': {'last_star': ['timestamp']}, 'problems': problems, } now = datetime.now(tz=tz) if now.year == year and now.month == 12: start = now.replace(hour=0, minute=0, second=0) delta = start - now if delta < timedelta(): delta += timedelta(days=1, seconds=42) if delta > timedelta(hours=23): delta = timedelta(minutes=5) else: delta = min(delta, timedelta(hours=4)) ret['timing_statistic_delta'] = delta return ret def _get_global_standings(self, users=None, statistics=None): year = self.start_time.year year = year if self.start_time.month >= 9 else year - 1 season = '%d-%d' % (year, year + 1) ret = {} if '/day/' not in self.url: match = re.search(r'\bday\b\s+(?P<day>[0-9]+)', self.name, re.IGNORECASE) contest_url = self.url.rstrip('/') + '/day/' + match['day'] else: contest_url = self.url page = REQ.get(contest_url) match = re.search(r'<h2>[^<]*Day\s*[0-9]+:\s*(?P<problem_name>[^<]*)</h2>', page) problem_name = match.group('problem_name').strip('-').strip() if self.name.count('.') == 1 and problem_name: ret['title'] = f'{self.name}. {problem_name}' standings_url = self.standings_url or contest_url.replace('/day/', '/leaderboard/day/') page = REQ.get(standings_url) matches = re.finditer( r''' <div[^>]*class="leaderboard-entry"[^>]*>\s* <span[^>]*class="leaderboard-position"[^>]*>\s*(?P<rank>[0-9]+)[^<]*</span>\s* <span[^>]*class="leaderboard-time"[^>]*>(?P<time>[^<]*)</span>\s* (?:<a[^>]*href="(?P<href>[^"]*)"[^>]*>\s*)? <span[^>]*class="leaderboard-userphoto"[^>]*>(\s*<img[^>]*src="(?P<avatar>[^"]*)"[^>]*>)?[^<]*</span>\s* (?:<span[^>]*class="leaderboard-anon"[^>]*>)?(?P<name>[^<]*) ''', page, re.VERBOSE ) problems_info = OrderedDict() result = {} last = None n_problems = 0 n_results = 0 for match in matches: n_results += 1 href = match.group('href') name = html.unescape(match.group('name')).strip() if href: handle = href.split('//')[-1].strip('/') elif re.match(r'^\(anonymous user #[0-9]+\)$', name): handle = name else: handle = f'{name}, {season}' handle = handle.replace('/', '-') rank = int(match.group('rank')) if last is None or last >= rank: n_problems += 1 last = rank row = result.setdefault(handle, {'solving': 0, '_skip_for_problem_stat': True}) score = 100 - rank + 1 row['solving'] += score row['name'] = name row['member'] = handle avatar = match.group('avatar') if avatar: row['info'] = {'avatar': avatar} k = str(n_problems) if k not in problems_info: problems_info[k] = {'name': problem_name, 'code': k, 'url': contest_url, 'group': 0} problem = row.setdefault('problems', {}).setdefault(k, {}) problem['result'] = score time = f'''{self.start_time.year} {match.group('time')} -05:00''' problem['time'] = self.to_time(arrow.get(time, 'YYYY MMM D HH:mm:ss ZZ') - self.start_time) if rank == 1: problem['first_ac'] = True if rank <= 3: problem['_class'] = ['gold-medal', 'silver-medal', 'bronze-medal'][rank - 1] problems = list(reversed(problems_info.values())) problems[0].update({'subname': '*', 'subname_class': 'first-star'}) if len(problems) > 1: problems[1].update({'subname': '*', 'subname_class': 'both-stars'}) place = None last = None for rank, row in enumerate(sorted(result.values(), key=lambda r: -r['solving']), start=1): score = row['solving'] if last != score: place = rank last = score row['place'] = place ret.update({ 'contest_url': contest_url, 'result': result, 'url': standings_url, 'problems': problems, }) if n_results < 200: ret['timing_statistic_delta'] = timedelta(minutes=5) return ret
yasql/libs/RenderColumns.py
Fanduzi/YaSQL
443
11092934
<reponame>Fanduzi/YaSQL # -*- coding:utf-8 -*- # edit by fuzongfei def render_dynamic_columns(render_columns): try: columns = [] for x in render_columns: col = {'title': x['value'], 'dataIndex': x['key'], 'key': x['key'], 'scopedSlots': {'customRender': x['key']} } if x.get('width'): col['width'] = x['width'] if x.get('fixed'): col['fixed'] = x['fixed'] if x.get('ellipsis'): col['ellipsis'] = True columns.append(col) except IndexError as err: columns = [] return columns
tcapy/conf/celeryconfig.py
Ahrvo-Trading-Systems/tcapy
189
11092940
__author__ = 'saeedamen' # <NAME> / <EMAIL> # # Copyright 2017 Cuemacro Ltd. - http//www.cuemacro.com / @cuemacro # # See the License for the specific language governing permissions and limitations under the License. # """Has the configuration settings for celery. The main thing that needs to be changed is the broker URL settings (in the ConstantsGen file" """ from tcapy.conf.constants import Constants constants = Constants() broker_url = constants.celery_broker_url result_backend = constants.celery_result_backend # from kombu import serialization # serialization.registry._decoders.("application/x-python-serialize") # the below should not need to be changed by nearly all users # result_backend = "amqp" # result_backend = "redis://localhost:6379/2" event_serializer = 'pickle' accept_content = ['pickle'] # task_serializer = 'pickle' result_serializer = 'pickle' worker_hijack_root_logger = False task_store_errors_even_if_ignored = True worker_max_tasks_per_child = 50 # Stop memory leaks, so restart workers after a 100 tasks tasks_acks_late = True result_expires = 900 # Clear memory after a while of results, if not picked up # task_always_eager = True # For debugging, to run Celery in the same process broker_transport_options = {'socket_timeout': 900} # broker_pool_limit = 0
mac/pyobjc-framework-Quartz/PyObjCTest/test_ikimageeditpanel.py
albertz/music-player
132
11092970
<reponame>albertz/music-player from PyObjCTools.TestSupport import * from Quartz import * class TestIKImageEditPanelHelper (NSObject): def thumbnailWithMaximumSize_(self, sz): return None def hasAdjustMode(self): return 1 def hasEffectsMode(self): return 1 def hasDetailsMode(self): return 1 class TestIKImageEditPanel (TestCase): @min_os_level('10.5') def no_testProtocols(self): self.assertIsInstance(objc.protocolNamed('IKImageEditPanel'), objc.formal_protocol) @min_os_level('10.5') def testProtocolMethods(self): self.assertArgHasType(TestIKImageEditPanelHelper.thumbnailWithMaximumSize_, 0, NSSize.__typestr__) @min_os_level('10.6') def testProtocolMethods10_6(self): self.assertResultIsBOOL(TestIKImageEditPanelHelper.hasAdjustMode) self.assertResultIsBOOL(TestIKImageEditPanelHelper.hasEffectsMode) self.assertResultIsBOOL(TestIKImageEditPanelHelper.hasDetailsMode) if __name__ == "__main__": main()
urls.py
wuzhongdehua/SinaWeibo-Emotion-Classification
137
11093002
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = '<NAME>' import time, json, base64, logging, hashlib from datetime import datetime, tzinfo, timedelta from transwarp.web import ctx, get, post, route, seeother, forbidden, jsonresult, Template from transwarp import db from weibo import APIError, APIClient import pickle, random, jieba,jieba.analyse import StringIO try: import pylibmc except Exception,e: pass try: import nltk except Exception, e: print e try: from nltk import FreqDist import nltk.NaiveBayesClassifier except Exception, e: pass #import nltk _TD_ZERO = timedelta(0) _TD_8 = timedelta(hours=8) #using memcache #mc = pylibmc.Client() #mc.set('test','testyourmoathaf') #mc.incr('test') #word_features = mc.get('word_features') #classifier = mc.get('classifier') #if not mc.get('word_features'): # word_features = pickle.load(open('word_features.dat','r')) # mc.set("word_features", str(word_features) ) word_features = pickle.load(open('word_features.dat','r')) classifier = pickle.load(open("classifierdata.dat","r")) class UTC8(tzinfo): def utcoffset(self, dt): return _TD_8 def tzname(self, dt): return "UTC+8:00" def dst(self, dt): return _TD_ZERO _UTC8 = UTC8() def _format_datetime(dt): t = datetime.strptime(dt, '%a %b %d %H:%M:%S +0800 %Y').replace(tzinfo=_UTC8) return time.mktime(t.timetuple()) def _format_user(u): return dict(id=str(u.id), screen_name=u.screen_name, profile_url=u.profile_url, verified=u.verified, verified_type=u.verified_type, profile_image_url=u.profile_image_url) def _format_weibo(st): # user = st.user # print "type", type(st),st['rank'] r = dict( text = st.text, created_at = _format_datetime(st.created_at) ) try: r['user'] = _format_user(st.user) except Exception, e: print e r['user'] = dict(id='123456',screen_name='weibo',profile_url='',verified='0',verified_type='0',profile_image_url='') try: r['reposts_count'] = st.reposts_count except Exception, e: r['reposts_count'] = 0 try: r['comments_count'] = st.comments_count except Exception, e: r['comments_count'] = 0 else: pass try: r['type'] = st.rank except Exception, e: print e if 'original_pic' in st: r['original_pic'] = st.original_pic if 'thumbnail_pic' in st: r['thumbnail_pic'] = st.thumbnail_pic if 'retweeted_status' in st: r['retweeted_status'] = _format_weibo(st.retweeted_status) return r @get('/') def index(): u = _check_cookie() #return Template('./static/signin.html') if u is None: return Template('./static/signin.html') return Template('static/myweibo.html', user=u) @get('/go') def app(): u = _check_cookie() if u is None: return Template('static/signin.html') return Template('static/index.html', user=u) @post('/update') @jsonresult def update(): u = _check_cookie() if u is None: return dict(error='failed', redirect='/signin') client = _create_client() client.set_access_token(u.auth_token, u.expired_time) try: r = client.statuses.update.post(status=ctx.request['status']) # r = client.statuses.update.post(status=ctx.request['status'], pic = StringIO.StringIO(ctx.request['dataurl'].encode('utf8'))) if 'error' in r: return r return dict(result='success') except APIError, e: return dict(error='failed') @route('/friends') @jsonresult def friends(): u = _check_cookie() if u is None: return dict(error='failed', redirect='/signin') client = _create_client() client.set_access_token(u.auth_token, u.expired_time) try: r = client.friendships.friends.get(uid=u.id, count=99) return [_format_user(u) for u in r.users] except APIError, e: return dict(error='failed') @route('/bifriends') @jsonresult def bifriends(): u = _check_cookie() if u is None: return dict(error='failed', redirect='/signin') # return client = _create_client() client.set_access_token(u.auth_token, u.expired_time) try: r = client.friendships.friends.bilateral.get(uid=u.id, count=99) return [_format_user(u) for u in r.users] except APIError, e: return dict(error='failed') @route('/analysis') @jsonresult def analysis(): u = _check_cookie() if u is None: return dict(error='failed', redirect='/signin') month = int(ctx.request.get('month')) weibo = getWeiboByTime(months = month) analysis_result, weibo, keywords= weiboAnalysis(weibo) # for w in weibo: # print "analysis", w['rank'] weibo = [_format_weibo(wb) for wb in weibo] remark = '' if analysis_result[0] > analysis_result[2]: remark = u'经检测我这段时间内的负能量过高,需要补充正能量!' else: remark = u'经检测我这段时间内正能量爆棚啦哇咔咔!' return json.dumps({'total':len(weibo), 'pos' : analysis_result[2], 'neu' : analysis_result[1], 'neg' : analysis_result[0], 'weibo' : weibo, 'keywords' : keywords, 'remark' : remark}) @route('/load') @jsonresult def load(): u = _check_cookie() if u is None: return dict(error='failed', redirect='/signin') client = _create_client() client.set_access_token(u.auth_token, u.expired_time) try: r = client.statuses.home_timeline.get() return [_format_weibo(s) for s in r.statuses] except APIError, e: return dict(error='failed') @route('/myweibo') @jsonresult def myweibo(): u = _check_cookie() if u is None: return dict(error='failed', redirect='/signin') # return client = _create_client() client.set_access_token(u.auth_token, u.expired_time) try: r = client.statuses.user_timeline.get() return [_format_weibo(s) for s in r.statuses] except APIError, e: return dict(error='failed') @post('/hint') @jsonresult def hint(): u = _check_cookie() if u is None: return dict(error='failed', redirect='/signin') client = _create_client() client.set_access_token(u.auth_token, u.expired_time) try: return client.remind.unread_count.get() except APIError, e: return dict(error='failed') @get('/signin') def signin(): client = _create_client() raise seeother(client.get_authorize_url()) @get('/signout') def signout(): ctx.response.set_cookie(_COOKIE, 'deleted', max_age=0) raise seeother('/') @get('/callback') def callback(): i = ctx.request.input(code='') code = i.code client = _create_client() r = client.request_access_token(code) logging.info('access token: %s' % json.dumps(r)) access_token, expires_in, uid = r.access_token, r.expires_in, r.uid client.set_access_token(access_token, expires_in) u = client.users.show.get(uid=uid) logging.info('got user: %s' % uid) users = db.select('select * from users where id=?', uid) user = dict(name=u.screen_name, \ image_url=u.avatar_large or u.profile_image_url, \ statuses_count=u.statuses_count, \ friends_count=u.friends_count, \ followers_count=u.followers_count, \ verified=u.verified, \ verified_type=u.verified_type, \ auth_token=access_token, \ expired_time=expires_in) if users: db.update_kw('users', 'id=?', uid, **user) else: user['id'] = uid db.insert('users', **user) _make_cookie(uid, access_token, expires_in) raise seeother('/') _COOKIE = 'authuser' _SALT = 'A random string' def _make_cookie(uid, token, expires_in): expires = str(int(expires_in)) s = '%s:%s:%s:%s' % (str(uid), str(token), expires, _SALT) md5 = hashlib.md5(s).hexdigest() cookie = '%s:%s:%s' % (str(uid), expires, md5) ctx.response.set_cookie(_COOKIE, base64.b64encode(cookie).replace('=', '_'), expires=expires_in) def _check_cookie(): try: b64cookie = ctx.request.cookies[_COOKIE] cookie = base64.b64decode(b64cookie.replace('_', '=')) uid, expires, md5 = cookie.split(':', 2) if int(expires) < time.time(): return L = db.select('select * from users where id=?', uid) if not L: return u = L[0] s = '%s:%s:%s:%s' % (uid, str(u.auth_token), expires, _SALT) if md5 != hashlib.md5(s).hexdigest(): return return u except BaseException: pass _APP_ID = '' _APP_SECRET = '' _ADMIN_PASS = '<PASSWORD>' @get('/admin') def show_admin(): return '''<html> <body> <form action="/admin" method="post"> <p>Input password:</p> <p><input type="password" name="passwd" /></p> </form> </body> </html> ''' @post('/admin') def do_admin(): global _APP_ID, _APP_SECRET, _ADMIN_PASS i = ctx.request.input() if i.passwd != _ADMIN_PASS: raise forbidden() admin_pass = i.get('new_passwd', '') app_id = i.get('app_id', '') app_secret = i.get('app_secret', '') msg = '' if admin_pass and app_id and app_secret: db.update('delete from settings') db.update('insert into settings (id, value) values (?, ?)', 'app_id', app_id) db.update('insert into settings (id, value) values (?, ?)', 'app_secret', app_secret) db.update('insert into settings (id, value) values (?, ?)', 'admin_pass', admin_pass) msg = 'Updated!' _APP_ID = app_id _APP_SECRET = app_secret _ADMIN_PASS = admin_pass return '''<html> <body> <p>%s</p> <form action="/admin" method="post"> <p>App ID:</p> <p><input type="text" name="app_id" value="%s" /></p> <p>App Secret:</p> <p><input type="text" name="app_secret" value="%s" /></p> <p>Old Password:</p> <p><input type="text" name="passwd" readonly="readonly" value="%s" /></p> <p>New Password:</p> <p><input type="text" name="new_passwd" value="%s" /></p> <p>WARNING: click submit will update app_id, app_secret and admin password!</p> <p><input type="submit" name="submit" value="Submit" /></p> </form> </body> </html> ''' % (msg, _APP_ID, _APP_SECRET, _ADMIN_PASS, _ADMIN_PASS) def _load_app_info(): global _APP_ID, _APP_SECRET, _ADMIN_PASS for s in db.select('select * from settings'): if s.id == 'app_id': _APP_ID = s.value if s.id == 'app_secret': _APP_SECRET = s.value if s.id == 'admin_pass': _ADMIN_PASS = s.value def _create_client(): global _APP_ID, _APP_SECRET try: import sae except Exception, e: return APIClient(_APP_ID, _APP_SECRET, 'http://127.0.0.1:8080/callback') else: return APIClient(_APP_ID, _APP_SECRET, 'http://tobeornottobe.sinaapp.com/callback') def transformTime(created_time): a = created_time.split() month_mapping = {'Jan' : '01', 'Feb' : '02', 'Mar' : '03', 'Apr' : '04', 'May' : '05', 'Jun' : '06', 'Jul' : '07', 'Aug' : '08', 'Sep' : '09', 'Oct' : '10', 'Nov' : '11', 'Dec' : '12'} t = a[-1] + month_mapping[a[1]] + a[2] return t def getWeiboByTime(assigned_time = None, months = 3): import time t = time.strftime('%Y%m',time.localtime(time.time() - 2592000 * (months-1))) + '01' if assigned_time: t = assigned_time weibo = [] page = 1 u = _check_cookie() if u is None: return dict(error='failed', redirect='/signin') client = _create_client() client.set_access_token(u.auth_token, u.expired_time) while True: wbs = client.statuses.user_timeline.get( count = 100, page = page) flag = False for wb in wbs['statuses']: if transformTime(wb['created_at']) >= t: # text = wb['text'] # if 'retweeted_status' in wb: # text += wb['retweeted_status']['text'] weibo.append(wb) # print transformTime(wb['created_at']) else: flag = True break page += 1 if flag: break print "Total weibos: %d" %(len(weibo)) return weibo def gender_features(weibo): global word_features a = jieba.cut(weibo) fl = (" ".join(a)).split() fd = {} for word in word_features: fd[u'contains(%s)'%word] = (word in fl) return fd def weiboAnalysis(weibo): """weibo analysis tool""" data = [0] * 3 keywords = [] global classifier for i in range(len(weibo)): w = weibo[i] text = w['text'] if 'retweeted_status' in w: text += w['retweeted_status']['text'] keywords += jieba.analyse.extract_tags(text, topK=10) rank = int(classifier.classify(gender_features(text))) weibo[i]['rank'] = rank data[rank] += 1 # print rank, '\n\n' # for w in weibo: # print "rank", w['rank'] print u'Total analysis: %d' %(len(weibo)) for i in range(3) : print i, ' ', data[i] keywords = nltk.FreqDist(keywords).keys()[:300] # for i in keywords: # print i return data, weibo,keywords _load_app_info()
keepercommander/importer/lastpass/attachment_reader.py
Keeper-Security/commander
151
11093003
from base64 import b64decode from io import RawIOBase, BufferedReader, TextIOWrapper from Cryptodome.Cipher import AES # Chunk size must be a multiple of 256 # Two b64 decodes each requiring a multiple of four times multiple of 16 needed for AES decryption (4 * 16 * 4 = 256) CHUNK_SIZE = 8 * 1024 def decode_aes256_base64_from_stream(stream, encryption_key, chunk_size=CHUNK_SIZE): """Decrypts base64 encoded AES-256 from file in chunks CHUNK_SIZE is read in but only 9/16 of CHUNK_SIZE is yielded for every iteration due to b64 decoding """ first_chunk = stream.read(chunk_size) if not first_chunk: return # LastPass AES-256/CBC/base64 encryted string starts with an "!". # Next 24 bytes are the base64 encoded IV for the cipher. # Then comes the "|". # And the rest is the base64 encoded encrypted payload. if first_chunk[0] == b'!'[0]: iv = b64decode(first_chunk[1:25]) aes = AES.new(encryption_key, AES.MODE_CBC, iv) chunk = b64decode(first_chunk[26:] + stream.read(26)) if not chunk: return else: aes = AES.new(encryption_key, AES.MODE_ECB) chunk = b64decode(first_chunk) d = aes.decrypt(chunk) chunk = b64decode(stream.read(chunk_size)) while chunk: yield b64decode(d) d = aes.decrypt(chunk) chunk = b64decode(stream.read(chunk_size)) yield b64decode(d[:-d[-1]]) class LastpassAttachmentReader(RawIOBase): """A RawIOBase reader that decrypts and decodes the input stream of a Lastpass attachment""" def __init__(self, attachment): self.attachment = attachment self.encrypted_stream = open(attachment.tmpfile, 'rb') key = attachment.parent.attach_key self.decryption_generator = decode_aes256_base64_from_stream(self.encrypted_stream, key) self.leftover = None self.size = 0 def readable(self): return True def readinto(self, b): try: buf_len = len(b) chunk = self.leftover or next(self.decryption_generator) output = chunk[:buf_len] self.leftover = chunk[buf_len:] ret_len = len(output) b[:ret_len] = output self.size += ret_len return ret_len except StopIteration: return 0 def close(self): self.encrypted_stream.close() self.attachment.size = self.size @classmethod def get_buffered_reader(cls, attachment): return BufferedReader(cls(attachment)) @classmethod def get_text_reader(cls, attachment, **kwargs): buffered_reader = cls.get_buffered_reader(attachment) return TextIOWrapper(buffered_reader, **kwargs)
tests/run_tests.py
CurrySoftware/style-elements
493
11093006
# Run tests via selenium, either locally or on saucelabs # # Compile elm test code # Open up a browser # # from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.desired_capabilities import DesiredCapabilities # This is the only code you need to edit in your existing scripts. # The command_executor tells the test to run on Sauce, while the desired_capabilities # parameter tells us which browsers and OS to spin up. desired_cap = { 'platform': "Mac OS X 10.9", 'browserName': "chrome", 'version': "31", } driver = webdriver.Remote( command_executor='http://YOUR_SAUCE_USERNAME:[email protected]:80/wd/hub', desired_capabilities=desired_cap) # This is your test logic. You can add multiple tests here. driver.implicitly_wait(10) driver.get("http://www.google.com") if not "Google" in driver.title: raise Exception("Unable to load google page!") elem = driver.find_element_by_name("q") elem.send_keys("<NAME>") elem.submit() print driver.title # This is where you tell Sauce Labs to stop running tests on your behalf. # It's important so that you aren't billed after your test finishes. driver.quit()
tests/test_album.py
jack-debug/LyricsGenius
692
11093011
<gh_stars>100-1000 import unittest import os import warnings from . import genius from lyricsgenius.types import Album class TestAlbum(unittest.TestCase): @classmethod def setUpClass(cls): print("\n---------------------\nSetting up Album tests...\n") warnings.simplefilter("ignore", ResourceWarning) cls.album_name = "The Party" cls.artist_name = "<NAME>" cls.num_tracks = 10 cls.album = genius.search_album( cls.album_name, cls.artist_name ) def test_type(self): self.assertIsInstance(self.album, Album) def test_album_name(self): self.assertEqual(self.album.name, self.album_name) def test_album_artist(self): self.assertEqual(self.album.artist.name, self.artist_name) def test_tracks(self): self.assertEqual(len(self.album.tracks), self.num_tracks) def test_saving_json_file(self): print('\n') extension = 'json' msg = "Could not save {} file.".format(extension) expected_filename = ('Lyrics_' + self.album.name.replace(' ', '') + '.' + extension) # Remove the test file if it already exists if os.path.isfile(expected_filename): os.remove(expected_filename) # Test saving json file self.album.save_lyrics(extension=extension, overwrite=True) self.assertTrue(os.path.isfile(expected_filename), msg) # Test overwriting json file (now that file is written) try: self.album.save_lyrics(extension=extension, overwrite=True) except Exception: self.fail("Failed {} overwrite test".format(extension)) os.remove(expected_filename) def test_saving_txt_file(self): print('\n') extension = 'txt' msg = "Could not save {} file.".format(extension) expected_filename = ('Lyrics_' + self.album.name.replace(' ', '') + '.' + extension) # Remove the test file if it already exists if os.path.isfile(expected_filename): os.remove(expected_filename) # Test saving txt file self.album.save_lyrics(extension=extension, overwrite=True) self.assertTrue(os.path.isfile(expected_filename), msg) # Test overwriting txt file (now that file is written) try: self.album.save_lyrics( extension=extension, overwrite=True) except Exception: self.fail("Failed {} overwrite test".format(extension)) os.remove(expected_filename)
pyanomaly/networks/meta/pcn_parts/pcm.py
YuhaoCheng/PyAnomaly
102
11093017
<filename>pyanomaly/networks/meta/pcn_parts/pcm.py import torch import torch.nn as nn import torch.nn.functional as F import torchsnooper from pyanomaly.networks.parts.base.commonness import Conv2dLeakly from pyanomaly.networks.parts.base.commonness import DoubleConv, Down, Up, OutConv, BasicConv2d from .convolution_lstm import ConvLSTMCell class SingleStampConvLSTM(nn.Module): # input_channels corresponds to the first input feature map # hidden state is a list of succeeding lstm layers. def __init__(self, input_channels, hidden_channels, kernel_size): super(SingleStampConvLSTM, self).__init__() self.input_channels = [input_channels] + hidden_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.num_layers = len(hidden_channels) # 是len(hidden_channels) self._all_layers = [] for i in range(self.num_layers): name = 'cell{}'.format(i) cell = ConvLSTMCell(self.input_channels[i], self.hidden_channels[i], self.kernel_size) setattr(self, name, cell) self._all_layers.append(cell) # for each sequence, we need to clear the internal_state self.internal_state = list() # @torchsnooper.snoop() def forward(self, input, step): x = input # the input is a single image, shape is N C H W for i in range(self.num_layers): if step == 0 and i==0: self.internal_state = list() # 清空state中的状态,因为换到下一个video clip了 name = 'cell{}'.format(i) if step == 0: # all cells are initialized in the first step bsize, _, height, width = x.size() (h, c) = getattr(self, name).init_hidden(batch_size=bsize, hidden=self.hidden_channels[i], shape=(height, width)) self.internal_state.append((h, c)) # do forward (h, c) = self.internal_state[i] x, new_c = getattr(self, name)(x, h, c) self.internal_state[i] = (x, new_c) return x, new_c class PEP(nn.Module): def __init__(self, c_in, c_out, bilinear=False): super(PEP, self).__init__() self.c_in = c_in self.c_out = c_out self.bilinear = bilinear self.inc = DoubleConv(self.c_in, 64) self.down1 = Down(64, 128) self.down2 = Down(128, 256) self.down3 = Down(256,512) self.up1 = Up(768, 512, 256, self.bilinear) self.up2 = Up(384,256,128, self.bilinear) self.up3 = Up(192,128,64, self.bilinear) # @torchsnooper.snoop() def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x = self.up1(x4, x3) x = self.up2(x, x2) x = self.up3(x, x1) return x class PCM(nn.Module): def __init__(self): super(PCM, self).__init__() self.convlstm = SingleStampConvLSTM(input_channels=64, hidden_channels=[128, 64], kernel_size=3) self.pep = PEP(c_in=3, c_out=64, bilinear=True) # self.fr = Conv2dLeakly(c_in=64, c_out=3,kernel_size=3, stride=1, padding=1) self.fr = nn.Sequential( nn.Conv2d(64, 32, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(32, 16, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(16, 3, 3, 1, 1) ) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight = nn.init.kaiming_normal_(m.weight, mode='fan_out') if isinstance(m, nn.ConvTranspose2d): m.weight = nn.init.kaiming_normal_(m.weight, mode='fan_out') # @torchsnooper.snoop() def forward(self, video_clip): # the video_clip is [N C D H W] len_video = video_clip.shape[2] frames = torch.chunk(video_clip, len_video, 2) for time_stamp in range(len_video): # print(time_stamp) frame = frames[time_stamp].squeeze(2) if time_stamp == 0: E = torch.zeros_like(frame) else: E = torch.sub(frame, temp) R = self.pep(E) x, _ = self.convlstm(R, time_stamp) Ihat = self.fr(x) # import ipdb; ipdb.set_trace() # temp = Ihat.detach() temp = Ihat if time_stamp == len_video-1: # 最后一个 result = Ihat return result class ConvLSTM(nn.Module): # input_channels corresponds to the first input feature map # hidden state is a list of succeeding lstm layers. def __init__(self, input_channels, hidden_channels, kernel_size, step=1, effective_step=[1]): super(ConvLSTM, self).__init__() # the part to initalize the convLSTM self.input_channels = [input_channels] + hidden_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.num_layers = len(hidden_channels) self.step = step self.effective_step = effective_step self._all_layers = [] for i in range(self.num_layers): name = 'cell{}'.format(i) cell = ConvLSTMCell(self.input_channels[i], self.hidden_channels[i], self.kernel_size) setattr(self, name, cell) self._all_layers.append(cell) self.pep = PEP(c_in=3, c_out=64, bilinear=False) def forward(self, input): internal_state = [] outputs = [] for step in range(self.step): x = input for i in range(self.num_layers): # all cells are initialized in the first step name = 'cell{}'.format(i) print(name) if step == 0: bsize, _, height, width = x.size() (h, c) = getattr(self, name).init_hidden(batch_size=bsize, hidden=self.hidden_channels[i], shape=(height, width)) internal_state.append((h, c)) # do forward (h, c) = internal_state[i] x, new_c = getattr(self, name)(x, h, c) internal_state[i] = (x, new_c) # only record effective steps if step in self.effective_step: outputs.append(x) return outputs, (x, new_c) if __name__ == '__main__': data = torch.randn([8,3,4,128,192]).cuda() label = torch.randn([8,3,128,192]).cuda() model = PCM().cuda() result = model(data) loss = nn.L1Loss() l = loss(result, label) l.backward() import ipdb; ipdb.set_trace()
vincent/scales.py
ahlusar1989/vincent
1,052
11093064
<reponame>ahlusar1989/vincent # -*- coding: utf-8 -*- """ Scales: Classes to define Vega scales """ from .core import grammar, GrammarClass from ._compat import str_types class DataRef(GrammarClass): """Definitions for how data is referenced by scales Data can be referenced in multiple ways, and sometimes it makes sense to reference multiple data fields at once. """ @grammar(str_types) def data(value): """string : Name of data-set containing the domain values""" @grammar((list,) + str_types) def field(value): """string or list of strings : Reference to desired data field(s) If multiple fields are given, then the values of all fields are included in the domain. """ class Scale(GrammarClass): """Definitions for mapping from data space to visual space Scales determine the way in which data is mapped from a data space (such as numbers, time stamps, etc.) to a visual space (length of a line, height of a bar, etc.), for both independent and dependent variables. """ @grammar(str_types) def name(value): """string : Unique name for the scale This is used for referencing by other components (mainly ``Mark``). """ @grammar(str_types) def type(value): """string : Type of the scale Valid types are as follows: * ``'ordinal'``: ordinal scale types * ``'time'`` or ``'utc'``: time scale types * ``'linear'``, ``'log'``, ``'pow'``, ``'sqrt'``, ``'quantile'``, ``'quantize'``, and ``'threshold'``: quantitative scale types For time scales, the value should be a Javascript-style numeric value of seconds. ``'time'`` implies the value is in local time. If unspecified, then the scale is assumed to be linear. See the d3 documentation for scale type details. """ @grammar((list, DataRef)) def domain(value): """list or DataRef : Domain of the scale """ @grammar(grammar_type=(float, int, DataRef), grammar_name='domainMin') def domain_min(value): """float, int, or DataRef : Minimum domain value Only used for quantitative/time scales. This takes precedence over the minimum of the ``domain`` property. """ @grammar(grammar_type=(float, int, DataRef), grammar_name='domainMax') def domain_max(value): """float, int, or DataRef : Maximum domain value Only used for quantitative/time scales. This takes precedence over the maximum of the ``domain`` property. """ @grammar((list,) + str_types) def range(value): """list or string : Range of the scale For quantitative scales, the range may be specified as a two-element list of min/max values. For ordinal scales, the range should be a list of output values mapped to the input values. String values may be used to automatically set a range: - ``'width'`` - Set the range to the width of the visualization - ``'height'`` - Set the range to the height of the visualization - ``'shapes'`` - Equivalent to the symbol types ``['circle', 'cross', 'diamond', 'square', 'triangle-down', 'triangle-up']`` - ``'category10'`` - A pre-determined 10-color pallet - ``'category20'`` - A pre-determined 20-color pallet """ @grammar(grammar_type=(float, int, DataRef), grammar_name='rangeMin') def range_min(value): """float, int, or DataRef : Minimum range value Only used for quantitative/time scales. This takes precedence over the minimum of the ``range`` property. """ @grammar(grammar_type=(float, int, DataRef), grammar_name='rangeMax') def range_max(value): """float, int, or DataRef : Maximum range value Only used for quantitative/time scales. This takes precedence over the maximum of the ``range`` property. """ @grammar(bool) def reverse(value): """boolean : If True, flip the scale range""" @grammar(bool) def round(value): """boolean : If True, numeric output values are rounded to integers""" @grammar(bool) def points(value): """boolean : If True, distribute ordinal values over evenly spaced points between ``range_min`` and ``range_max`` Ignored for non-ordinal scales. """ @grammar(bool) def clamp(value): """boolean : If True, values that exceed the domain are clamped to within the domain Ignored for ordinal scales. """ @grammar((bool,) + str_types) def nice(value): """boolean or string : scale the domain to a more human-friendly set If the scale ``type`` is ``'time'`` or ``'utc'``, then the value should be one of ``'second'``, ``'minute'``, ``'hour'``, ``'day'``, ``'week'``, ``'month'``, or ``'year'``. If the scale ``type`` is a quantitative scale, then the value should be a boolean. The input values are rounded to a more human-friendly value. The details of the rounding are in the d3 documentation. Ignored for ordinal scales. """ @grammar((float, int)) def exponent(value): """float or int : Exponent for ``'pow'`` scale types Ignored for all scale types other than ``'pow'``. """ @grammar(bool) def zero(value): """boolean : If True, include zero in the domain Only valid for quantitative scale types. This is useful if the domain is defined as a DataRef that may not include 0 exactly. """ @grammar((float, int)) def padding(value): """string: Ordinal element padding Only valid for ordinal scale types """
chemberta/utils/roberta_regression.py
BogdanDidenko/bert-loves-chemistry
183
11093107
import math from dataclasses import dataclass from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.utils.checkpoint from torch.nn import CrossEntropyLoss, MSELoss from transformers import PreTrainedModel, RobertaModel from transformers.file_utils import ModelOutput from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel class RobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @dataclass class SequenceClassifierOutput(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class RobertaForSequenceClassification(RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = ["position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHead(config) self.init_weights() def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): """ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) if labels is None: return logits loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(-1, self.num_labels), labels.long().view(-1) ) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class RobertaForRegression(RobertaPreTrainedModel): _keys_to_ignore_on_load_missing = ["position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.register_buffer("norm_mean", torch.tensor(config.norm_mean)) # Replace any 0 stddev norms with 1 self.register_buffer( "norm_std", torch.tensor( [label_std if label_std != 0 else 1 for label_std in config.norm_std] ), ) self.roberta = RobertaModel(config, add_pooling_layer=False) self.regression = RobertaRegressionHead(config) self.init_weights() def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): """ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = ( outputs.last_hidden_state ) # shape = (batch, seq_len, hidden_size) logits = self.regression(sequence_output) if labels is None: return self.unnormalize_logits(logits) if labels is not None: normalized_labels = self.normalize_logits(labels) loss_fct = MSELoss() loss = loss_fct(logits.view(-1), normalized_labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return RegressionOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def normalize_logits(self, tensor): return (tensor - self.norm_mean) / self.norm_std def unnormalize_logits(self, tensor): return (tensor * self.norm_std) + self.norm_mean class RobertaRegressionHead(nn.Module): """Head for multitask regression models.""" def __init__(self, config): super(RobertaRegressionHead, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.relu(x) x = self.dropout(x) x = self.out_proj(x) return x @dataclass class RegressionOutput(ModelOutput): """ Base class for outputs of regression models. Supports single and multi-task regression. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided) logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Regression scores for each task (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
dnachisel/biotools/bowtie.py
simone-pignotti/DnaChisel
124
11093122
import subprocess import tempfile import os def run_process(name, parameters): process = subprocess.run( parameters, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) if process.returncode: error = process.stderr.decode() raise OSError("%s failed:\n\n%s" % (name, error)) return process.stdout def create_bowtie_index_from_sequences(sequences, path): fasta_path = os.path.join(path, 'sequences.fa') bowtie_path = os.path.join(path, 'bowtie') with open(fasta_path, 'w') as f: f.write("\n".join([ ">%d\n%s" % (i, sequence) for i, sequence in enumerate(sequences) ])) run_process("build-bowtie", [ "bowtie-build", "-f", fasta_path, bowtie_path, "--quiet" ]) return bowtie_path def find_all_bowtie_matches( sequence, bowtie_index_path, match_length, max_mismatches=0 ): """Return (short) matches between a sequence and a Bowtie index. The result is of the form [(start, end), n_mismatches)] where (start, end) indicates the position of the match in the sequence, and n_mismatches is the number of mismatches with the closest homology in the index. """ # CREATE THE PARAMETERS parameters = ["bowtie"] parameters += ["--best", "-k", "1"] # only return the best alignments parameters += ["-v", str(max_mismatches)] # only allow that N mismatches parameters += [bowtie_index_path] parameters += ["--quiet", "--suppress", "2,3,4,5,6,7"] # small output k = match_length kmers = [sequence[i : i + k] for i in range(len(sequence) - k + 1)] if k * len(kmers) < 10000: # Input the sequences directly tmp_fasta_path = None parameters += ["-c", ",".join(kmers)] else: # Write sequences to a file if too many. tmp_fasta_path = tempfile.mktemp(".fa") with open(tmp_fasta_path, "w") as f: entries = [">%d\n%s" % (i, s) for i, s in enumerate(kmers)] f.write("\n\n".join(entries)) parameters += ["-f", tmp_fasta_path] # RUN THE PROCESS try: output = run_process("BOWTIE", parameters) except Exception as err: raise err finally: if tmp_fasta_path is not None: os.remove(tmp_fasta_path) output_records = [ line.split("\t") for line in output.decode().split("\n") if len(line) ] return [ ((int(index), int(index) + k), edits.count(":")) for index, edits in output_records ]
hashtable/linear_probing.py
x899/algorithms
472
11093155
<reponame>x899/algorithms class LinearProbing: def __init__(self): self.size = 10 self.arr = [None for _ in range(self.size)] def get_hash(self, key): hash_value = 0 for char in key: hash_value += ord(char) return hash_value % self.size def put(self, key, value): index = self.get_hash(key) if self.arr[index] is not None: if self.arr[index][0] == key: # update existing value self.arr[index] = (key, value) return # rehash try to find another slot index = (index + 1) % self.size # insert new value self.arr[index] = (key, value) def get(self, key): index = self.get_hash(key) if self.arr[index] is not None: if self.arr[index][0] == key: return self.arr[index][1] index = (index + 1) % self.size # if key is not present return None def main(): """ operational function """ table = LinearProbing() table.put("apple", 10) table.put("orange", 20) table.put("car", 30) table.put("table", 40) print(table.get("orange")) # 20 print(table.get("kevin")) # None table.put("orange", 50) print(table.get("orange")) # 50 if __name__ == "__main__": main()
google_or_tools/send_more_money_scalar_product_sat.py
tias/hakank
279
11093156
# Copyright 2021 <NAME> <EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SEND+MORE=MONEY in 'any' base in OR-tools CP-SAT Solver. Alphametic problem SEND+MORE=MONEY in any base. Examples: Base 10 has one solution: {9, 5, 6, 7, 1, 0, 8, 2} Base 11 has three soltutions: {10, 5, 6, 8, 1, 0, 9, 2} {10, 6, 7, 8, 1, 0, 9, 3} {10, 7, 8, 6, 1, 0, 9, 2} This model was created by <NAME> (<EMAIL>) Also see my other OR-tools models: http://www.hakank.org/or_tools/ """ from __future__ import print_function from ortools.sat.python import cp_model as cp import math, sys from cp_sat_utils import ListPrinter import sys import string def main(base=10): model = cp.CpModel() # data # declare variables x = [model.NewIntVar(0,base-1,f"x[{i}") for i in range(8)] s,e,n,d,m,o,r,y = x xx = [s,e,n,d, m,o,r,e, m,o,n,e,y] coeffs = [1000, 100, 10, 1, # S E N D + 1000, 100, 10, 1, # M O R E -10000,-1000, -100,-10,-1 # == M O N E Y ] # # constraints # model.AddAllDifferent(x) model.Add(0 == cp.LinearExpr.ScalProd(xx, coeffs)) model.Add(s > 0) model.Add(m > 0) # # solution and search # solver = cp.CpSolver() solution_printer = ListPrinter(x) status = solver.SearchForAllSolutions(model, solution_printer) if status != cp.OPTIMAL: print("No solution!") print() print("NumConflicts:", solver.NumConflicts()) print("NumBranches:", solver.NumBranches()) print("WallTime:", solver.WallTime()) print() base = 10 if __name__ == '__main__': # for base in range(10,30): # main(base) if len(sys.argv) > 1: base=int(sys.argv[1]) main(base)
nussl/separation/base/separation_base.py
JTTurner/nussl
259
11093160
import copy import warnings import numpy as np from ... import AudioSignal, play_utils class SeparationBase(object): """Base class for all separation algorithms in nussl. Do not call this. It will not do anything. Parameters: input_audio_signal (AudioSignal). AudioSignal` object. This will always be a copy of the provided AudioSignal object. """ def __init__(self, input_audio_signal): self.metadata = {} self._audio_signal = None self.audio_signal = input_audio_signal @property def sample_rate(self): """ (int): Sample rate of :attr:`audio_signal`. Literally :attr:`audio_signal.sample_rate`. """ return self.audio_signal.sample_rate @property def stft_params(self): """ STFTParams object containing the STFT parameters of the copied AudioSignal. """ return self.audio_signal.stft_params @property def audio_signal(self): """ Copy of AudioSignal that is made on initialization. """ return self._audio_signal def _preprocess_audio_signal(self): """ This function should be implemented by the subclass. It can do things like take the STFT of the audio signal, or resample it to a desired sample rate, build the input data for a deep model, etc. Here, it does nothing. """ pass @audio_signal.setter def audio_signal(self, input_audio_signal): """ When setting the AudioSignal object for a separation algorithm (which can happen on initialization or later one), it is copied on set so as to not alter the data within the original audio signal. If the AudioSignal object has data, then it the function `_preprocess_audio_signal` is run, which is implemented by the subclass. Args: input_audio_signal ([type]): [description] """ if not isinstance(input_audio_signal, AudioSignal): raise ValueError('input_audio_signal is not an AudioSignal object!') self._audio_signal = copy.deepcopy(input_audio_signal) if self.audio_signal is not None: if not self.audio_signal.has_data: warnings.warn('input_audio_signal has no data!') # initialize to empty arrays so that we don't crash randomly self.audio_signal.audio_data = np.array([]) self.audio_signal.stft_data = np.array([[]]) else: self._preprocess_audio_signal() def interact(self, add_residual=False, source='upload', label=None, ext='.wav', separate_fn=None, outputs="html", inline=None, inbrowser=None, share=False, debug=False, auth=None, **kwargs): """ Uses gradio to create a small interactive interface for the separation algorithm. Fair warning, there may be some race conditions with this... When you call this from a notebook, the interface will be displayed below the cell. When you call this from a regular Python script, you'll see a link print out (a localhost link and a gradio link if you called this with sharing on). The sessions will last for the duration of the notebook or the script. To use this functionality, you must install gradio: `pip install gradio`. Args: add_residual: Whether or not to add the residual signal. source: Either "upload" (upload a file to separate), or "microphone", record. label (str): Label of interface. ext (str): Extension for audio file returned. separate_fn (function): Function that takes in a file object and then returns a matching element for audio_out. outputs (str): Defaults to "html", the type of output interface for Gradio to display. inline (bool): whether to display in the interface inline on python notebooks. inbrowser (bool): whether to automatically launch the interface in a new tab on the default browser. share (bool): whether to create a publicly shareable link from your computer for the interface. debug (bool): if True, and the interface was launched from Google Colab, prints the errors in the cell output. auth (Tuple[str, str]): If provided, username and password required to access interface. kwargs: Keyword arguments to gradio.Interface. Example: >>> import nussl >>> nussl.separation.primitive.HPSS( >>> nussl.AudioSignal()).interact() """ try: import gradio except: # pragma: no cover raise ImportError( "To use this functionality, you must install gradio: " "pip install gradio.") def _separate(file_obj): # pragma: no cover mix = AudioSignal(file_obj.name) self.audio_signal = mix estimates = self() if add_residual: estimates.append(mix - estimates[0]) estimates = {f'Estimate {i}': s for i, s in enumerate(estimates)} html = play_utils.multitrack(estimates, ext=ext, display=False) return html if label is None: label = f"Separation via {type(self).__name__}" audio_in = gradio.inputs.Audio(source=source, type="file", label=label) if separate_fn is None: separate_fn = _separate gradio.Interface( fn=separate_fn, inputs=audio_in, outputs=outputs, **kwargs ).launch( inline=inline, inbrowser=inbrowser, debug=debug, auth=auth, share=share ) def run(self, *args, audio_signal=None, **kwargs): """ Runs separation algorithm. Raises: NotImplementedError: Cannot call base class """ raise NotImplementedError('Cannot call base class.') def make_audio_signals(self): """ Makes :class:`audio_signal.AudioSignal` objects after separation algorithm is run Raises: NotImplementedError: Cannot call base class """ raise NotImplementedError('Cannot call base class.') def get_metadata(self, to_str=False, **kwargs): """ Returns metadata associated with this separation algorithm. Args: to_str (bool): Whether to return the metadata as a string. Returns: Formatted metadata if `to_str` is True, else metadata dict. Raises: NotImplementedError: Cannot call base class """ raise NotImplementedError('Cannot call base class.') def __call__(self, *args, audio_signal=None, **kwargs): if audio_signal is not None: self.audio_signal = audio_signal self.run(*args, **kwargs) return self.make_audio_signals() def __repr__(self): return f"{self.__class__.__name__} on {str(self.audio_signal)}" def __eq__(self, other): for k, v in list(self.__dict__.items()): if isinstance(v, np.ndarray): if not np.array_equal(v, other.__dict__[k]): return False elif v != other.__dict__[k]: return False return True def __ne__(self, other): return not self == other class SeparationException(Exception): pass
homeassistant/components/youless/const.py
MrDelik/core
30,023
11093195
"""Constants for the youless integration.""" DOMAIN = "youless"
tests/e2e/scale/noobaa/test_scale_obc_creation_repsin_noobaa_pods.py
annagitel/ocs-ci
130
11093203
import logging import pytest from ocs_ci.ocs import constants, scale_noobaa_lib from ocs_ci.framework.testlib import scale, E2ETest from ocs_ci.ocs.resources.objectconfigfile import ObjectConfFile from ocs_ci.framework.pytest_customization.marks import on_prem_platform_required log = logging.getLogger(__name__) @pytest.fixture(autouse=True) def teardown(request): def finalizer(): scale_noobaa_lib.cleanup(constants.OPENSHIFT_STORAGE_NAMESPACE) request.addfinalizer(finalizer) @scale class TestScaleOCBCreation(E2ETest): """ OBC scale creation, creating up to max support number of OBCs. OBCs are created in the Multicloud Object Gateway and Ceph Object Gateway (RGW) """ namespace = constants.OPENSHIFT_STORAGE_NAMESPACE scale_obc_count = 1000 # Will increase number of obc with i/o when issue is fixed # BZ https://bugzilla.redhat.com/show_bug.cgi?id=2010560 scale_obc_count_io = 5 num_obc_batch = 50 @pytest.mark.parametrize( argnames=["pod_name", "sc_name"], argvalues=[ pytest.param( *["noobaa-core", constants.NOOBAA_SC], marks=[ pytest.mark.polarion_id("OCS-2645"), ], ), pytest.param( *["noobaa-db", constants.NOOBAA_SC], marks=[ pytest.mark.polarion_id("OCS-2646"), ], ), pytest.param( *["noobaa-core", constants.DEFAULT_STORAGECLASS_RGW], marks=[ on_prem_platform_required, pytest.mark.polarion_id("OCS-2647"), ], ), pytest.param( *["noobaa-db", constants.DEFAULT_STORAGECLASS_RGW], marks=[ on_prem_platform_required, pytest.mark.polarion_id("OCS-2648"), ], ), ], ) def test_scale_obc_creation_noobaa_pod_respin( self, tmp_path, pod_name, sc_name, mcg_job_factory ): """ OBC creation using RGW storage class This test case only runs on vSphere cluster deployment """ # Create OBCs with FIO running using mcg_job_factory() for i in range(self.scale_obc_count_io): exec(f"job{i} = mcg_job_factory()") log.info( f"Start creating {self.scale_obc_count} " f"OBC in a batch of {self.num_obc_batch}" ) for i in range(int(self.scale_obc_count / self.num_obc_batch)): obc_dict_list = ( scale_noobaa_lib.construct_obc_creation_yaml_bulk_for_kube_job( no_of_obc=self.num_obc_batch, sc_name=sc_name, namespace=self.namespace, ) ) # Create job profile job_file = ObjectConfFile( name="job_profile", obj_dict_list=obc_dict_list, project=self.namespace, tmp_path=tmp_path, ) # Create kube_job job_file.create(namespace=self.namespace) # Check all the OBCs reached Bound state obc_bound_list = ( scale_noobaa_lib.check_all_obc_reached_bound_state_in_kube_job( kube_job_obj=job_file, namespace=self.namespace, no_of_obc=self.num_obc_batch, ) ) log.info(f"Number of OBCs in Bound state: {len(obc_bound_list)}") # Reset node which noobaa pods is running on # And validate noobaa pods are re-spinned and in running state scale_noobaa_lib.noobaa_running_node_restart(pod_name=pod_name) # Verify all OBCs are in Bound state after node restart log.info("Verify all OBCs are in Bound state after node restart.....") obc_status_list = scale_noobaa_lib.check_all_obcs_status( namespace=self.namespace ) log.info( f"Number of OBCs in Bound state after node reset: " f"{len(obc_status_list)}" ) assert ( len(obc_status_list) == self.scale_obc_count ), "Not all OBCs in Bound state"
tests/test_api/test_paste.py
cipherboy/modern-paste
271
11093217
<filename>tests/test_api/test_paste.py # coding=utf-8 import json import random import time import mock from sqlalchemy.exc import SQLAlchemyError import config import constants.api import database.attachment import database.paste import database.user import util.cryptography import util.testing from uri.authentication import * from uri.main import * from uri.paste import * class TestPaste(util.testing.DatabaseTestCase): def test_submit_paste_invalid(self): # Invalid input resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({}), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.INCOMPLETE_PARAMS_FAILURE_CODE) self.assertEqual(json.loads(resp.data), constants.api.INCOMPLETE_PARAMS_FAILURE) def test_submit_paste_login_required(self): # Config requires authentication to post paste config.REQUIRE_LOGIN_TO_PASTE = True resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'paste', }), content_type='application/json', ) self.assertEqual(constants.api.UNAUTHENTICATED_PASTES_DISABLED_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.UNAUTHENTICATED_PASTES_DISABLED_FAILURE, json.loads(resp.data)) user = util.testing.UserFactory.generate() resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'paste', 'api_key': user.api_key, }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) def test_submit_paste_no_auth(self): # Successful paste without authentication resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) resp_data = json.loads(resp.data) self.assertIsNotNone(resp_data['post_time']) self.assertIsNotNone(resp_data['paste_id_repr']) self.assertTrue(resp_data['is_active']) self.assertEquals('contents', resp_data['contents']) self.assertIsNotNone(resp_data['deactivation_token']) resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', 'user_id': 1, }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) resp_data = json.loads(resp.data) self.assertIsNotNone(resp_data['post_time']) self.assertIsNotNone(resp_data['paste_id_repr']) self.assertTrue(resp_data['is_active']) self.assertEquals('contents', resp_data['contents']) self.assertIsNone(database.paste.get_paste_by_id(1).user_id) def test_submit_paste_logged_in(self): # Paste should automatically be associated with user who is logged in user = util.testing.UserFactory.generate(username='username', password='password') resp = self.client.post( LoginUserURI.uri(), data=json.dumps({ 'username': 'username', 'password': 'password', }), content_type='application/json', ) self.assertEquals(resp.status_code, constants.api.SUCCESS_CODE) resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) resp_data = json.loads(resp.data) self.assertIsNotNone(resp_data['post_time']) self.assertIsNotNone(resp_data['paste_id_repr']) self.assertTrue(resp_data['is_active']) self.assertEquals('contents', resp_data['contents']) self.assertIsNotNone(resp_data['deactivation_token']) self.assertEqual(user.user_id, database.paste.get_paste_by_id(util.cryptography.get_decid(resp_data['paste_id_repr'])).user_id) def test_submit_paste_api_post(self): # Ensure that the is_api_post flag is appropriately set resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) paste_id = util.cryptography.get_decid(json.loads(resp.data)['paste_id_repr'], force=True) self.assertTrue(database.paste.get_paste_by_id(paste_id).is_api_post) def test_submit_paste_non_api_post(self): for referrer in [PastePostInterfaceURI.full_uri(), HomeURI.full_uri(), PastePostInterfaceURI.full_uri() + '/?extra=stuff']: resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', }), content_type='application/json', headers={ 'referer': referrer, # TIL "referer" is a deliberate misspelling of "referrer" }, ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) paste_id = util.cryptography.get_decid(json.loads(resp.data)['paste_id_repr'], force=True) self.assertFalse(database.paste.get_paste_by_id(paste_id).is_api_post) def test_submit_paste_non_ascii(self): resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': '어머', }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': json.loads(resp.data)['paste_id_repr'], }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) self.assertEqual(json.loads(resp.data)['details']['contents'], unicode('어머', 'utf8')) def test_submit_paste_attachments_disabled(self): config.ENABLE_PASTE_ATTACHMENTS = False resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', 'attachments': [ { 'name': 'file name', 'size': 12345, 'mime_type': 'image/png', 'data': 'binary data', } ] }), content_type='application/json', ) self.assertEqual(constants.api.PASTE_ATTACHMENTS_DISABLED_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.PASTE_ATTACHMENTS_DISABLED_FAILURE, json.loads(resp.data)) def test_submit_paste_with_attachments(self): with mock.patch.object(database.attachment, '_store_attachment_file') as mock_store_attachment_file: resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', 'attachments': [ { 'name': 'file name', 'size': 12345, 'mime_type': 'image/png', 'data': 'binary data', }, { 'name': 'file name 2', 'size': 12345, 'mime_type': 'image/png', 'data': 'binary data 2', } ] }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual(2, mock_store_attachment_file.call_count) resp_data = json.loads(resp.data) self.assertEqual('file_name', resp_data['attachments'][0]['name']) self.assertEqual(12345, resp_data['attachments'][0]['size']) self.assertEqual('image/png', resp_data['attachments'][0]['mime_type']) self.assertIsNotNone(database.attachment.get_attachment_by_name( util.cryptography.get_decid(resp_data['paste_id_repr']), 'file_name') ) self.assertEqual('file_name_2', resp_data['attachments'][1]['name']) self.assertEqual(12345, resp_data['attachments'][1]['size']) self.assertEqual('image/png', resp_data['attachments'][1]['mime_type']) self.assertIsNotNone(database.attachment.get_attachment_by_name( util.cryptography.get_decid(resp_data['paste_id_repr']), 'file_name_2') ) def test_submit_paste_invalid_attachments(self): with mock.patch.object(database.attachment, '_store_attachment_file') as mock_store_attachment_file: resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', 'attachments': [ { 'name': 'file name', } ] }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual(1, mock_store_attachment_file.call_count) def test_submit_paste_too_large(self): config.MAX_ATTACHMENT_SIZE = 10.0 / (1000 * 1000) # 10 B with mock.patch.object(database.attachment, '_store_attachment_file'): resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', 'attachments': [ { 'name': 'file name', 'size': 12345, 'mime_type': 'image/png', 'data': util.testing.random_alphanumeric_string(length=20), }, ] }), content_type='application/json', ) self.assertEqual(constants.api.PASTE_ATTACHMENT_TOO_LARGE_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.PASTE_ATTACHMENT_TOO_LARGE_FAILURE, json.loads(resp.data)) resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', 'attachments': [ { 'name': 'file name', 'size': 12345, 'mime_type': 'image/png', 'data': util.testing.random_alphanumeric_string(length=5), }, ] }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) def test_submit_paste_base64_size_threshold(self): config.MAX_ATTACHMENT_SIZE = 3.0 / (1000 * 1000) # 3 B with mock.patch.object(database.attachment, '_store_attachment_file'): resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', 'attachments': [ { 'name': 'file name', 'size': 12345, 'mime_type': 'image/png', 'data': util.testing.random_alphanumeric_string(length=5), }, ] }), content_type='application/json', ) self.assertEqual(constants.api.PASTE_ATTACHMENT_TOO_LARGE_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.PASTE_ATTACHMENT_TOO_LARGE_FAILURE, json.loads(resp.data)) resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', 'attachments': [ { 'name': 'file name', 'size': 12345, 'mime_type': 'image/png', 'data': util.testing.random_alphanumeric_string(length=4), }, ] }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) def test_submit_paste_server_error(self): with mock.patch.object(database.paste, 'create_new_paste', side_effect=SQLAlchemyError): resp = self.client.post( PasteSubmitURI.uri(), data=json.dumps({ 'contents': 'contents', }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.UNDEFINED_FAILURE_CODE) self.assertEqual(json.loads(resp.data), constants.api.UNDEFINED_FAILURE) def test_deactivate_paste_invalid(self): resp = self.client.post( PasteDeactivateURI.uri(), data=json.dumps({}), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.INCOMPLETE_PARAMS_FAILURE_CODE) self.assertEqual(json.loads(resp.data), constants.api.INCOMPLETE_PARAMS_FAILURE) resp = self.client.post( PasteDeactivateURI.uri(), data=json.dumps({ 'paste_id': -1, }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.NONEXISTENT_PASTE_FAILURE_CODE) self.assertEqual(json.loads(resp.data), constants.api.NONEXISTENT_PASTE_FAILURE) def test_deactivate_paste_auth(self): # Deactivate paste by being authenticated and owning the paste user = util.testing.UserFactory.generate(username='username', password='password') paste = util.testing.PasteFactory.generate(user_id=user.user_id) resp = self.client.post( PasteDeactivateURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.AUTH_FAILURE_CODE) resp = self.client.post( LoginUserURI.uri(), data=json.dumps({ 'username': 'username', 'password': 'password', }), content_type='application/json', ) self.assertEquals(resp.status_code, constants.api.SUCCESS_CODE) resp = self.client.post( PasteDeactivateURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) self.assertFalse(database.paste.get_paste_by_id(paste.paste_id).is_active) def test_deactivate_paste_api_key(self): # Deactivate paste by authentication via an API key user = util.testing.UserFactory.generate() paste = util.testing.PasteFactory.generate(user_id=user.user_id) resp = self.client.post( PasteDeactivateURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'api_key': user.api_key, }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertFalse(database.paste.get_paste_by_id(paste.paste_id).is_active) def test_deactivate_paste_token(self): # Deactivate paste using deactivation token paste = util.testing.PasteFactory.generate() resp = self.client.post( PasteDeactivateURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'deactivation_token': 'invalid', }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.AUTH_FAILURE_CODE) resp = self.client.post( PasteDeactivateURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'deactivation_token': paste.deactivation_token, }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) self.assertFalse(database.paste.get_paste_by_id(paste.paste_id).is_active) def test_deactivate_paste_already_deactivated(self): # Deactivate paste using deactivation token paste = util.testing.PasteFactory.generate() database.paste.deactivate_paste(paste.paste_id) resp = self.client.post( PasteDeactivateURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'deactivation_token': paste.deactivation_token, }), content_type='application/json', ) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE, json.loads(resp.data)) def test_deactivate_paste_server_error(self): with mock.patch.object(database.paste, 'deactivate_paste', side_effect=SQLAlchemyError): paste = util.testing.PasteFactory.generate() resp = self.client.post( PasteDeactivateURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'deactivation_token': paste.deactivation_token, }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.UNDEFINED_FAILURE_CODE) self.assertEqual(json.loads(resp.data), constants.api.UNDEFINED_FAILURE) def test_set_paste_password(self): user = util.testing.UserFactory.generate(username='username', password='password') self.api_login_user('username', 'password') paste = util.testing.PasteFactory.generate(user_id=user.user_id) old_password_hash = paste.password_hash resp = self.client.post( PasteSetPasswordURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'password': 'password', }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertNotEqual(database.paste.get_paste_by_id(paste.paste_id).password_hash, old_password_hash) def test_set_paste_password_unauth(self): # Modifying your own paste without authorization user = util.testing.UserFactory.generate(username='username', password='password') paste = util.testing.PasteFactory.generate(user_id=user.user_id) resp = self.client.post( PasteSetPasswordURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'password': 'password', }), content_type='application/json', ) self.assertEqual(constants.api.AUTH_FAILURE_CODE, resp.status_code) self.assertEqual('auth_failure', json.loads(resp.data)[constants.api.FAILURE]) def test_set_paste_password_invalid_auth(self): # Modifying someone else's paste user = util.testing.UserFactory.generate(username='username', password='password') self.api_login_user('username', 'password') paste = util.testing.PasteFactory.generate(user_id=user.user_id + 1) resp = self.client.post( PasteSetPasswordURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'password': 'password', }), content_type='application/json', ) self.assertEqual(constants.api.AUTH_FAILURE_CODE, resp.status_code) self.assertEqual('auth_failure', json.loads(resp.data)[constants.api.FAILURE]) def test_set_paste_password_nonexistent(self): util.testing.UserFactory.generate(username='username', password='password') self.api_login_user('username', 'password') resp = self.client.post( PasteSetPasswordURI.uri(), data=json.dumps({ 'paste_id': -1, 'password': 'password', }), content_type='application/json', ) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE, json.loads(resp.data)) def test_add_paste_password(self): user = util.testing.UserFactory.generate(username='username', password='password') self.api_login_user('username', 'password') paste = util.testing.PasteFactory.generate(user_id=user.user_id, password=None) self.assertIsNone(paste.password_hash) resp = self.client.post( PasteSetPasswordURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'password': 'password', }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertIsNotNone(database.paste.get_paste_by_id(paste.paste_id).password_hash) def test_remove_paste_password(self): user = util.testing.UserFactory.generate(username='username', password='password') self.api_login_user('username', 'password') paste = util.testing.PasteFactory.generate(user_id=user.user_id, password='password') self.assertIsNotNone(paste.password_hash) resp = self.client.post( PasteSetPasswordURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'password': <PASSWORD>, }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertIsNone(database.paste.get_paste_by_id(paste.paste_id).password_hash) def test_set_paste_password_server_error(self): with mock.patch.object(database.paste, 'set_paste_password', side_effect=SQLAlchemyError): user = util.testing.UserFactory.generate(username='username', password='password') self.api_login_user('username', 'password') paste = util.testing.PasteFactory.generate(user_id=user.user_id) resp = self.client.post( PasteSetPasswordURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'password': 'password', }), content_type='application/json', ) self.assertEqual(constants.api.UNDEFINED_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.UNDEFINED_FAILURE, json.loads(resp.data)) def test_paste_details_invalid(self): resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({}), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.INCOMPLETE_PARAMS_FAILURE_CODE) self.assertEqual(json.loads(resp.data), constants.api.INCOMPLETE_PARAMS_FAILURE) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': -1, }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.NONEXISTENT_PASTE_FAILURE_CODE) self.assertEqual(json.loads(resp.data), constants.api.NONEXISTENT_PASTE_FAILURE) def test_paste_details_no_password(self): user = util.testing.UserFactory.generate(username='username') paste = util.testing.PasteFactory.generate(password=None, user_id=user.user_id) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) paste_details = database.paste.get_paste_by_id(paste.paste_id).as_dict() paste_details['poster_username'] = 'username' paste_details['attachments'] = [] self.assertEqual(paste_details, json.loads(resp.data)['details']) def test_paste_details_password(self): user = util.testing.UserFactory.generate(username='username') paste = util.testing.PasteFactory.generate(password='<PASSWORD>', user_id=user.user_id) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.AUTH_FAILURE_CODE) paste = util.testing.PasteFactory.generate(password='password', user_id=user.user_id) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.AUTH_FAILURE_CODE) paste = util.testing.PasteFactory.generate(password='password', user_id=user.user_id) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'password': '<PASSWORD>', }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.AUTH_FAILURE_CODE) paste = util.testing.PasteFactory.generate(password='password', user_id=user.user_id) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), 'password': 'password', }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.SUCCESS_CODE) paste_details = database.paste.get_paste_by_id(paste.paste_id).as_dict() paste_details['poster_username'] = 'username' paste_details['attachments'] = [] self.assertEqual(paste_details, json.loads(resp.data)['details']) def test_paste_details_anonymous(self): paste = util.testing.PasteFactory.generate(password=<PASSWORD>, user_id=None) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual('Anonymous', json.loads(resp.data)['details']['poster_username']) user = util.testing.UserFactory.generate(username='username') paste = util.testing.PasteFactory.generate(password=<PASSWORD>, user_id=user.user_id) database.user.deactivate_user(user.user_id) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE, json.loads(resp.data)) def test_paste_details_nonexistent(self): resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(1), }), content_type='application/json', ) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE, json.loads(resp.data)) def test_paste_details_inactive(self): paste = util.testing.PasteFactory.generate(password=<PASSWORD>, user_id=None) database.paste.deactivate_paste(paste.paste_id) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE, json.loads(resp.data)) def test_paste_details_expired(self): paste = util.testing.PasteFactory.generate(password=<PASSWORD>, user_id=None, expiry_time=int(time.time()) - 1000) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.NONEXISTENT_PASTE_FAILURE, json.loads(resp.data)) def test_paste_details_with_attachments(self): paste = util.testing.PasteFactory.generate(password=<PASSWORD>, user_id=None) attachments = [ util.testing.AttachmentFactory.generate(paste_id=paste.paste_id).as_dict() for _ in range(5) ] resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual(5, len(json.loads(resp.data)['details']['attachments'])) for attachment in attachments: self.assertIn(attachment, json.loads(resp.data)['details']['attachments']) def test_paste_details_server_error(self): with mock.patch.object(database.paste, 'get_paste_by_id', side_effect=SQLAlchemyError): paste = util.testing.PasteFactory.generate(password=None) resp = self.client.post( PasteDetailsURI.uri(), data=json.dumps({ 'paste_id': util.cryptography.get_id_repr(paste.paste_id), }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.UNDEFINED_FAILURE_CODE) self.assertEqual(json.loads(resp.data), constants.api.UNDEFINED_FAILURE) def test_pastes_for_user_unauthorized(self): resp = self.client.post( PastesForUserURI.uri(), data=json.dumps({}), content_type='application/json', ) self.assertEqual(constants.api.AUTH_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.AUTH_FAILURE, json.loads(resp.data)) def test_pastes_for_user_empty(self): util.testing.UserFactory.generate(username='username', password='password') self.api_login_user('username', 'password') resp = self.client.post( PastesForUserURI.uri(), data=json.dumps({}), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual([], json.loads(resp.data)['pastes']) def test_pastes_for_user_no_inactive(self): user = util.testing.UserFactory.generate(username='username', password='password') self.api_login_user('username', 'password') pastes = [util.testing.PasteFactory.generate(user_id=user.user_id).as_dict() for i in range(10)] [database.paste.deactivate_paste(util.cryptography.get_decid(paste['paste_id_repr'], force=True)) for paste in pastes] resp = self.client.post( PastesForUserURI.uri(), data=json.dumps({}), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual(0, len(json.loads(resp.data)['pastes'])) def test_pastes_for_user_valid(self): user = util.testing.UserFactory.generate(username='username', password='password') self.api_login_user('username', 'password') pastes = [util.testing.PasteFactory.generate(user_id=user.user_id).as_dict() for i in range(10)] resp = self.client.post( PastesForUserURI.uri(), data=json.dumps({}), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual(len(pastes), len(json.loads(resp.data)['pastes'])) for paste in json.loads(resp.data)['pastes']: self.assertIn(paste, pastes) def test_pastes_for_user_server_error(self): user = util.testing.UserFactory.generate(username='username', password='password') self.api_login_user('username', 'password') for i in range(3): util.testing.PasteFactory.generate(user_id=user.user_id) with mock.patch.object(database.paste, 'get_all_pastes_for_user', side_effect=SQLAlchemyError): resp = self.client.post( PastesForUserURI.uri(), data=json.dumps({}), content_type='application/json', ) self.assertEqual(constants.api.UNDEFINED_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.UNDEFINED_FAILURE, json.loads(resp.data)) def test_recent_pastes_invalid(self): resp = self.client.post( RecentPastesURI.uri(), data=json.dumps({}), content_type='application/json', ) self.assertEqual(constants.api.INCOMPLETE_PARAMS_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.INCOMPLETE_PARAMS_FAILURE, json.loads(resp.data)) resp = self.client.post( RecentPastesURI.uri(), data=json.dumps({ 'page_num': 0, }), content_type='application/json', ) self.assertEqual(constants.api.INCOMPLETE_PARAMS_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.INCOMPLETE_PARAMS_FAILURE, json.loads(resp.data)) def test_recent_pastes_no_results(self): resp = self.client.post( RecentPastesURI.uri(), data=json.dumps({ 'page_num': 0, 'num_per_page': 5, }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual([], json.loads(resp.data)['pastes']) resp = self.client.post( RecentPastesURI.uri(), data=json.dumps({ 'page_num': 3, 'num_per_page': 5, }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual([], json.loads(resp.data)['pastes']) def test_recent_pastes_results(self): pastes = [] for i in range(15): with mock.patch.object(time, 'time', return_value=time.time() + random.randint(-10000, 10000)): pastes.append(util.testing.PasteFactory.generate(expiry_time=None)) recent_pastes_sorted = map( lambda paste: paste.as_dict(), sorted(pastes, key=lambda paste: paste.post_time, reverse=True), ) resp = self.client.post( RecentPastesURI.uri(), data=json.dumps({ 'page_num': 0, 'num_per_page': 5, }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual(recent_pastes_sorted[0:5], json.loads(resp.data)['pastes']) def test_top_pastes_invalid(self): resp = self.client.post( TopPastesURI.uri(), data=json.dumps({}), content_type='application/json', ) self.assertEqual(constants.api.INCOMPLETE_PARAMS_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.INCOMPLETE_PARAMS_FAILURE, json.loads(resp.data)) resp = self.client.post( TopPastesURI.uri(), data=json.dumps({ 'page_num': 0, }), content_type='application/json', ) self.assertEqual(constants.api.INCOMPLETE_PARAMS_FAILURE_CODE, resp.status_code) self.assertEqual(constants.api.INCOMPLETE_PARAMS_FAILURE, json.loads(resp.data)) def test_top_pastes_no_results(self): resp = self.client.post( TopPastesURI.uri(), data=json.dumps({ 'page_num': 0, 'num_per_page': 5, }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual([], json.loads(resp.data)['pastes']) resp = self.client.post( TopPastesURI.uri(), data=json.dumps({ 'page_num': 3, 'num_per_page': 5, }), content_type='application/json', ) self.assertEqual(constants.api.SUCCESS_CODE, resp.status_code) self.assertEqual([], json.loads(resp.data)['pastes']) def test_recent_pastes_server_error(self): with mock.patch.object(database.paste, 'get_recent_pastes', side_effect=SQLAlchemyError): resp = self.client.post( RecentPastesURI.uri(), data=json.dumps({ 'page_num': 0, 'num_per_page': 5, }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.UNDEFINED_FAILURE_CODE) self.assertEqual(json.loads(resp.data), constants.api.UNDEFINED_FAILURE) def test_top_pastes_results(self): pastes = [util.testing.PasteFactory.generate() for i in range(15)] for paste in pastes: for i in range(random.randint(0, 50)): database.paste.increment_paste_views(paste.paste_id) for page_num in range(3): resp = self.client.post( TopPastesURI.uri(), data=json.dumps({ 'page_num': page_num, 'num_per_page': 5, }), content_type='application/json', ) self.assertEqual(5, len(json.loads(resp.data)['pastes'])) for i in range(4): self.assertGreaterEqual( json.loads(resp.data)['pastes'][i]['views'], json.loads(resp.data)['pastes'][i + 1]['views'] ) resp = self.client.post( TopPastesURI.uri(), data=json.dumps({ 'page_num': 3, 'num_per_page': 5, }), content_type='application/json', ) self.assertEqual([], json.loads(resp.data)['pastes']) def test_top_pastes_server_error(self): with mock.patch.object(database.paste, 'get_top_pastes', side_effect=SQLAlchemyError): resp = self.client.post( TopPastesURI.uri(), data=json.dumps({ 'page_num': 0, 'num_per_page': 5, }), content_type='application/json', ) self.assertEqual(resp.status_code, constants.api.UNDEFINED_FAILURE_CODE) self.assertEqual(json.loads(resp.data), constants.api.UNDEFINED_FAILURE)
src/lime_python/__init__.py
mirlarof/lime-python
400
11093227
<reponame>mirlarof/lime-python from .protocol import *
apex/pyprof/prof/base.py
oyj0594/apex
6,523
11093254
<reponame>oyj0594/apex<filename>apex/pyprof/prof/base.py from abc import ABC, abstractmethod class OperatorLayerBase(ABC): """ Base class for all layers and operators. Every derived class should have the following functions. """ @abstractmethod def tc(self): """ Tensor core usage by the kernel. Return "1" (yes), "0" (no, but possible), "-" (not applicable) """ pass @abstractmethod def params(self): """ Kernel parameters to be printed. """ pass @abstractmethod def flops(self): """ Note that 1 FMA = 2 flops. """ pass @abstractmethod def bytes(self): pass @abstractmethod def mod(self): """ Name of the module/class e.g. torch.nn.functional. """ pass @abstractmethod def op(self): """ Name of the operator e.g. sigmoid. """ pass
docx/enum/table.py
thebongy/MakeMyOutputs
169
11093287
# encoding: utf-8 """ Enumerations related to tables in WordprocessingML files """ from __future__ import ( absolute_import, division, print_function, unicode_literals ) from .base import ( Enumeration, EnumMember, XmlEnumeration, XmlMappedEnumMember ) class WD_TABLE_ALIGNMENT(XmlEnumeration): """ Specifies table justification type. Example:: from docx.enum.table import WD_TABLE_ALIGNMENT table = document.add_table(3, 3) table.alignment = WD_TABLE_ALIGNMENT.CENTER """ __ms_name__ = 'WdRowAlignment' __url__ = ' http://office.microsoft.com/en-us/word-help/HV080607259.aspx' __members__ = ( XmlMappedEnumMember( 'LEFT', 0, 'left', 'Left-aligned' ), XmlMappedEnumMember( 'CENTER', 1, 'center', 'Center-aligned.' ), XmlMappedEnumMember( 'RIGHT', 2, 'right', 'Right-aligned.' ), ) class WD_TABLE_DIRECTION(Enumeration): """ Specifies the direction in which an application orders cells in the specified table or row. Example:: from docx.enum.table import WD_TABLE_DIRECTION table = document.add_table(3, 3) table.direction = WD_TABLE_DIRECTION.RTL """ __ms_name__ = 'WdTableDirection' __url__ = ' http://msdn.microsoft.com/en-us/library/ff835141.aspx' __members__ = ( EnumMember( 'LTR', 0, 'The table or row is arranged with the first column ' 'in the leftmost position.' ), EnumMember( 'RTL', 1, 'The table or row is arranged with the first column ' 'in the rightmost position.' ), )
Python/interview-questions/rotateImage.py
saneravi/ML_Stuff
209
11093303
def rotateImage(a): """ >>> rotateImage([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) [[7, 4, 1], [8, 5, 2], [9, 6, 3]] """ return transpose(flip(a)) def flip(a): """ >>> flip([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) [[7, 8, 9], [4, 5, 6], [1, 2, 3]] """ # n = len(a) # for x in range(n // 2): # for y in range(n): # a[n-x-1][y], a[x][y] = a[x][y], a[n-x-1][y] return a[::-1] def transpose(a): """ >>> transpose([[7, 8, 9], [4, 5, 6], [1, 2, 3]]) [[7, 4, 1], [8, 5, 2], [9, 6, 3]] """ n = len(a) for x in range(n - 1): for y in range(x + 1, n): a[y][x], a[x][y] = a[x][y], a[y][x] return a if __name__ == "__main__": import doctest doctest.testmod()
senseact_mod/test/test_rtrl_base_env.py
homayoonfarrahi/cycle-time-study
188
11093309
<gh_stars>100-1000 # Copyright (c) 2018, The SenseAct Authors. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import copy import numpy as np import unittest import time import psutil from multiprocessing import Process, Value, Array from senseact import utils from senseact.rtrl_base_env import RTRLBaseEnv from senseact.communicator import Communicator class MockCommunicator(Communicator): """ Basic barebone test communicator that can crash on demand. """ def __init__(self): self._dt = 0.008 # shared variable that all processes will see self.crash_flag = Value('i', 0) sensor_args = {'array_len': 1, 'array_type': 'd', 'np_array_type': 'd'} actuator_args = {'array_len': 1, 'array_type': 'd', 'np_array_type': 'd'} super().__init__(use_sensor=True, use_actuator=True, sensor_args=sensor_args, actuator_args=actuator_args) def _sensor_handler(self): if self.crash_flag.value == 1: raise Exception("Random sensor exception encountering") self.sensor_buffer.write(0) time.sleep(self._dt) def _actuator_handler(self): if self.crash_flag.value == 2: raise Exception("Random actuator exception encountering") if self.actuator_buffer.updated(): actuation, _, _ = self.actuator_buffer.read_update() time.sleep(self._dt) class MockEnv(RTRLBaseEnv): """ Basic barebone test environment that can crash on demand. """ def __init__(self, action_dim, observation_dim, **kwargs): # shared variable that all processes will see self.crash_flag = Value('i', 0) self.reset_call_flag = Value('i', 0) # Communicator Parameters communicator_setups = {'generic1': {'Communicator': MockCommunicator, 'kwargs': {}}, 'generic2': {'Communicator': MockCommunicator, 'kwargs': {}} } self._uniform_array_ = np.frombuffer(Array('d', 3).get_obj(), dtype=np.float64) super().__init__(communicator_setups=communicator_setups, action_dim=action_dim, observation_dim=observation_dim, **kwargs) def _write_action(self, action): if self.crash_flag.value == 3: raise Exception("Write action crash triggered.") super(MockEnv, self)._write_action(action) def _compute_sensation_(self, name, sensor_window, timestamp_window, index_window): if self.crash_flag.value == 1: raise Exception("Compute sensation crash triggered.") return [3,2,1] def _compute_actuation_(self, action, timestamp, index): if self.crash_flag.value == 2: raise Exception("Compute actuation crash triggered.") self._actuation_packet_['generic1'] = action self._actuation_packet_['generic2'] = action values = self._rand_obj_.uniform(-1, +1, 3) rand_state_array_type, rand_state_array_size, rand_state_array = utils.get_random_state_array( self._rand_obj_.get_state() ) np.copyto(self._shared_rstate_array_, np.frombuffer(rand_state_array, dtype=rand_state_array_type)) np.copyto(self._uniform_array_, values) def _reset_(self): self.reset_call_flag.value = 1 class TestRTRLBaseEnv(unittest.TestCase): def setUp(self): return def tearDown(self): return def testInit(self): env = RTRLBaseEnv({}, 2, 3) self.assertFalse(env._running) self.assertEqual(env._action_buffer.array_len, 2) self.assertEqual(env._sensation_buffer.array_len, 5) def testInitWithCommunicator(self): env = RTRLBaseEnv({'generic': {'Communicator': MockCommunicator, 'kwargs': {}}}, 2, 3) self.assertFalse(env._running) self.assertEqual(len(env._all_comms), 1) self.assertEqual(env._action_buffer.array_len, 2) self.assertEqual(env._sensation_buffer.array_len, 5) def testStartSingalthread(self): env = RTRLBaseEnv({}, 2, 3, run_mode='singlethread') env.start() self.assertTrue(env._running) env.close() self.assertFalse(env._running) def testStartMultithread(self): env = RTRLBaseEnv({}, 2, 3, run_mode='multithread') env.start() self.assertTrue(env._running) time.sleep(0.5) self.assertTrue(env._polling_loop.is_alive()) env.close() self.assertFalse(env._running) self.assertFalse(env._polling_loop.is_alive()) def testStartMultiprocess(self): env = RTRLBaseEnv({}, 2, 3, run_mode='multiprocess') env.start() self.assertTrue(env._running) time.sleep(0.5) self.assertTrue(env._polling_loop.is_alive()) env.close() self.assertFalse(env._running) self.assertFalse(env._polling_loop.is_alive()) def testNotImplementedError(self): env = RTRLBaseEnv({}, 2, 3, run_mode='singlethread') env.start() with self.assertRaises(NotImplementedError): env.step(0) env.close() def testStartWithCommunicator(self): env = RTRLBaseEnv({'generic': {'Communicator': MockCommunicator, 'kwargs': {}}}, 2, 3, run_mode='singlethread') env.start() time.sleep(0.5) self.assertTrue(env._running) self.assertTrue(env._all_comms['generic'].is_alive()) env.close() self.assertFalse(env._running) self.assertFalse(env._all_comms['generic'].is_alive()) def testStepWithSinglethread(self): env = MockEnv(1, 1, run_mode='singlethread') env.start() time.sleep(0.5) obs, reward, done, info = env.step(0) self.assertEqual(obs, [3]) self.assertEqual(reward, 2) self.assertEqual(done, 1) env.close() def testStepWithMultithread(self): env = MockEnv(1, 1, run_mode='multithread') env.start() time.sleep(0.5) obs, reward, done, info = env.step(0) self.assertEqual(obs, [3]) self.assertEqual(reward, 2) self.assertEqual(done, 1) env.close() def testStepWithMultiprocess(self): env = MockEnv(1, 1, run_mode='multiprocess') env.start() time.sleep(0.5) obs, reward, done, info = env.step(0) self.assertEqual(obs, [3]) self.assertEqual(reward, 2) self.assertEqual(done, 1) env.close() def testResetSinglethread(self): env = MockEnv(1, 1, run_mode='singlethread') env.start() time.sleep(0.5) obs = env.reset() self.assertEqual(obs, [3]) self.assertEqual(env.reset_call_flag.value, 1) env.close() def testResetMultithreadBlocking(self): env = MockEnv(1, 1, run_mode='multithread') env.start() time.sleep(0.5) obs = env.reset() self.assertEqual(obs, [3]) self.assertEqual(env.reset_call_flag.value, 1) env.close() def testResetMultithreadNonblocking(self): env = MockEnv(1, 1, run_mode='multithread') env.start() time.sleep(0.5) obs = env.reset(blocking=False) time.sleep(0.5) self.assertEqual(obs, [3]) self.assertEqual(env.reset_call_flag.value, 1) env.close() def testResetMultiprocessBlocking(self): env = MockEnv(1, 1, run_mode='multiprocess') env.start() time.sleep(0.5) obs = env.reset() self.assertEqual(obs, [3]) self.assertEqual(env.reset_call_flag.value, 1) env.close() def testResetMultiprocessNonblocking(self): env = MockEnv(1, 1, run_mode='multiprocess') env.start() time.sleep(0.5) obs = env.reset(blocking=False) time.sleep(0.5) self.assertEqual(obs, [3]) self.assertEqual(env.reset_call_flag.value, 1) env.close() def testSinglethreadCommNotAlive(self): self._env = MockEnv(action_dim=1, observation_dim=1, run_mode='singlethread') self._env.start() self._env.step(0) # set the communicator flag to 1, wait a few time steps and check that step will crash self._env._all_comms['generic1'].crash_flag.value = 1 time.sleep(1.5) with self.assertRaises(Exception): self._env.step(0) # give some time for process to completely close time.sleep(1.5) # check all communicators has been closed for comm in self._env._all_comms.values(): self.assertFalse(comm.is_alive()) self._env.close() def testMultithreadCommNotAlive(self): self._env = MockEnv(action_dim=1, observation_dim=1, run_mode='multithread') self._env.start() self._env.step(0) # set the communicator flag to 1, wait a few time steps and check that step will crash self._env._all_comms['generic1'].crash_flag.value = 1 time.sleep(1.5) with self.assertRaises(Exception): self._env.step(0) # give some time for process to completely close time.sleep(1.5) # check all communicators has been closed for comm in self._env._all_comms.values(): self.assertFalse(comm.is_alive()) # check the polling thread has been closed self.assertFalse(self._env._polling_loop.is_alive()) self._env.close() def testMultiprocessCommNotAlive(self): self._env = MockEnv(action_dim=1, observation_dim=1, run_mode='multiprocess') self._env.start() self._env.step(0) # set the communicator flag to 1, wait a few time steps and check that step will crash self._env._all_comms['generic1'].crash_flag.value = 1 time.sleep(1.5) with self.assertRaises(Exception): self._env.step(0) # give some time for process to completely close time.sleep(1.5) # check all communicators has been closed for comm in self._env._all_comms.values(): self.assertFalse(comm.is_alive()) # check the polling thread has been closed self.assertFalse(self._env._polling_loop.is_alive()) self._env.close() def testMultithreadPollingDead(self): self._env = MockEnv(action_dim=1, observation_dim=1, run_mode='multithread') self._env.start() self._env.step(0) self._env.crash_flag.value = 1 time.sleep(1.5) with self.assertRaises(Exception): self._env.step(0) # give some time for process to completely close time.sleep(1.5) # check all communicators has been closed for comm in self._env._all_comms.values(): self.assertFalse(comm.is_alive()) # check the polling thread has been closed self.assertFalse(self._env._polling_loop.is_alive()) self._env.close() def testMultiprocessPollingDead(self): self._env = MockEnv(action_dim=1, observation_dim=1, run_mode='multiprocess') self._env.start() self._env.step(0) self._env.crash_flag.value = 1 time.sleep(1.5) with self.assertRaises(Exception): self._env.step(0) # give some time for process to completely close time.sleep(1.5) # check all communicators has been closed for comm in self._env._all_comms.values(): self.assertFalse(comm.is_alive()) # check the polling thread has been closed self.assertFalse(self._env._polling_loop.is_alive()) self._env.close() def testSinglethreadMainProcessDead(self): def spawn_main_process(): env = MockEnv(action_dim=1, observation_dim=1, run_mode='singlethread') env.start() while True: env.step(0) curr_process_util = psutil.Process() main_process = Process(target=spawn_main_process) main_process.start() # give some time to make sure everything running time.sleep(1.0) child_processes = curr_process_util.children(recursive=True) self.assertEqual(len(child_processes), 3) main_process.terminate() main_process.join() time.sleep(2.0) self.assertFalse(any([c.is_running() for c in child_processes])) def testMultithreadMainProcessDead(self): def spawn_main_process(): env = MockEnv(action_dim=1, observation_dim=1, run_mode='multithread') env.start() while True: env.step(0) curr_process_util = psutil.Process() main_process = Process(target=spawn_main_process) main_process.start() # give some time to make sure everything running time.sleep(1.0) child_processes = curr_process_util.children(recursive=True) self.assertEqual(len(child_processes), 3) main_process.terminate() main_process.join() time.sleep(2.0) self.assertFalse(any([c.is_running() for c in child_processes])) def testMultiprocessMainProcessDead(self): def spawn_main_process(): env = MockEnv(action_dim=1, observation_dim=1, run_mode='multiprocess') env.start() while True: env.step(0) curr_process_util = psutil.Process() main_process = Process(target=spawn_main_process) main_process.start() # give some time to make sure everything running time.sleep(1.0) child_processes = curr_process_util.children(recursive=True) self.assertEqual(len(child_processes), 4) main_process.terminate() main_process.join() time.sleep(2.0) self.assertFalse(any([c.is_running() for c in child_processes])) def testSinglethreadMainProcessException(self): def spawn_main_process(): env = MockEnv(action_dim=1, observation_dim=1, run_mode='singlethread') env.start() env.crash_flag.value = 3 env.step(0) main_process = Process(target=spawn_main_process) main_process.start() time.sleep(1.0) main_process.join() curr_process_util = psutil.Process() child_processes = curr_process_util.children(recursive=True) self.assertFalse(any([c.is_running() for c in child_processes])) def testMultithreadMainProcessException(self): def spawn_main_process(): env = MockEnv(action_dim=1, observation_dim=1, run_mode='multithread') env.start() env.crash_flag.value = 3 env.step(0) main_process = Process(target=spawn_main_process) main_process.start() time.sleep(1.0) main_process.join() curr_process_util = psutil.Process() child_processes = curr_process_util.children(recursive=True) self.assertFalse(any([c.is_running() for c in child_processes])) def testMultiprocessMainProcessException(self): def spawn_main_process(): env = MockEnv(action_dim=1, observation_dim=1, run_mode='multiprocess') env.start() env.crash_flag.value = 3 env.step(0) main_process = Process(target=spawn_main_process) main_process.start() time.sleep(1.0) main_process.join() curr_process_util = psutil.Process() child_processes = curr_process_util.children(recursive=True) self.assertFalse(any([c.is_running() for c in child_processes])) def testSharedRandomState(self): env = MockEnv(action_dim=1, observation_dim=1, run_mode='multiprocess') initial_rand_obj = copy.deepcopy(env._rand_obj_) initial_values = initial_rand_obj.uniform(-1, +1, 3) env.start() for _ in range(3): env.step(0) updated_rand_obj = np.random.RandomState() updated_rand_obj.set_state(utils.get_random_state_from_array(env._shared_rstate_array_)) safe_final_values = updated_rand_obj.uniform(-1, +1, 3) unsafe_final_values = env._rand_obj_.uniform(-1, +1, 3) env.step(0) env.close() assert np.all(initial_values == unsafe_final_values) assert np.all(initial_values != safe_final_values) assert np.all(safe_final_values == env._uniform_array_) if __name__ == '__main__': unittest.main(buffer=True)
Validation/HGCalValidation/python/simhitValidation_cff.py
ckamtsikis/cmssw
852
11093371
import FWCore.ParameterSet.Config as cms from Validation.HGCalValidation.hgcalSimHitValidationEE_cfi import * from Configuration.ProcessModifiers.dd4hep_cff import dd4hep dd4hep.toModify( hgcalSimHitValidationEE, fromDDD = False ) hgcalSimHitValidationHEF = hgcalSimHitValidationEE.clone( DetectorName = cms.string("HGCalHESiliconSensitive"), CaloHitSource = cms.string("HGCHitsHEfront")) hgcalSimHitValidationHEB = hgcalSimHitValidationEE.clone( DetectorName = cms.string("HGCalHEScintillatorSensitive"), CaloHitSource = cms.string("HGCHitsHEback"), )
deepscm/datasets/morphomnist/__init__.py
mobarakol/deepscm
183
11093375
import os from typing import Tuple import numpy as np import pandas as pd import torch from torch.utils.data import Dataset from deepscm.morphomnist import io def _get_paths(root_dir, train): prefix = "train" if train else "t10k" images_filename = prefix + "-images-idx3-ubyte.gz" labels_filename = prefix + "-labels-idx1-ubyte.gz" metrics_filename = prefix + "-morpho.csv" images_path = os.path.join(root_dir, images_filename) labels_path = os.path.join(root_dir, labels_filename) metrics_path = os.path.join(root_dir, metrics_filename) return images_path, labels_path, metrics_path def load_morphomnist_like(root_dir, train: bool = True, columns=None) \ -> Tuple[np.ndarray, np.ndarray, pd.DataFrame]: """ Args: root_dir: path to data directory train: whether to load the training subset (``True``, ``'train-*'`` files) or the test subset (``False``, ``'t10k-*'`` files) columns: list of morphometrics to load; by default (``None``) loads the image index and all available metrics: area, length, thickness, slant, width, and height Returns: images, labels, metrics """ images_path, labels_path, metrics_path = _get_paths(root_dir, train) images = io.load_idx(images_path) labels = io.load_idx(labels_path) if columns is not None and 'index' not in columns: usecols = ['index'] + list(columns) else: usecols = columns metrics = pd.read_csv(metrics_path, usecols=usecols, index_col='index') return images, labels, metrics def save_morphomnist_like(images: np.ndarray, labels: np.ndarray, metrics: pd.DataFrame, root_dir, train: bool): """ Args: images: array of MNIST-like images labels: array of class labels metrics: data frame of morphometrics root_dir: path to the target data directory train: whether to save as the training subset (``True``, ``'train-*'`` files) or the test subset (``False``, ``'t10k-*'`` files) """ assert len(images) == len(labels) assert len(images) == len(metrics) images_path, labels_path, metrics_path = _get_paths(root_dir, train) os.makedirs(root_dir, exist_ok=True) io.save_idx(images, images_path) io.save_idx(labels, labels_path) metrics.to_csv(metrics_path, index_label='index') class MorphoMNISTLike(Dataset): def __init__(self, root_dir, train: bool = True, columns=None): """ Args: root_dir: path to data directory train: whether to load the training subset (``True``, ``'train-*'`` files) or the test subset (``False``, ``'t10k-*'`` files) columns: list of morphometrics to load; by default (``None``) loads the image index and all available metrics: area, length, thickness, slant, width, and height """ self.root_dir = root_dir self.train = train images, labels, metrics_df = load_morphomnist_like(root_dir, train, columns) self.images = torch.as_tensor(images) self.labels = torch.as_tensor(labels) if columns is None: columns = metrics_df.columns self.metrics = {col: torch.as_tensor(metrics_df[col]) for col in columns} self.columns = columns assert len(self.images) == len(self.labels) and len(self.images) == len(metrics_df) def __len__(self): return len(self.images) def __getitem__(self, idx): item = {col: values[idx] for col, values in self.metrics.items()} item['image'] = self.images[idx] item['label'] = self.labels[idx] return item if __name__ == '__main__': from torch.utils.data import DataLoader # Example usage dataset = MorphoMNISTLike(root_dir="/vol/biomedic/users/dc315/mnist/original", columns=['slant', 'thickness'], train=False) print(dataset.columns) data_loader = DataLoader(dataset, batch_size=10, shuffle=True) for batch in data_loader: print(batch) break
dbReports/iondb/product_integration/tests/ThermoFisherCloudAccountTests.py
konradotto/TS
125
11093380
<filename>dbReports/iondb/product_integration/tests/ThermoFisherCloudAccountTests.py # Copyright (C) 2017 Ion Torrent Systems, Inc. All Rights Reserved from django.test import TestCase from iondb.product_integration.models import ThermoFisherCloudAccount class ThermoFisherCloudAccountTest(TestCase): """This will test the thermo fisher cloud account model""" def test_init(self): """Tests the constructor""" ThermoFisherCloudAccount("MyUserName")
tf_agents/utils/xla.py
Francis777/agents
3,175
11093413
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XLA utilities for TF-Agents.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import # Dictionary mapping a device name to a python bool. _IS_XLA_AVAILABLE = {} def is_xla_available(): """Is XLA compilation available for the current device context?""" global _IS_XLA_AVAILABLE # There's unfortunately no cleaner way to get the device other than creating a # new op and querying it. with tf.name_scope("is_xla_available"): device = tf.constant(0.0).device if device not in _IS_XLA_AVAILABLE: try: # Take ourselves outside of any tf.function calls. with tf.init_scope(): # Create temporary xla subgraph with tf.compat.v1.Graph().as_default(): # We'll use a session so we can be compatible with both TF1 and TF2 with tf.compat.v1.Session() as sess: # Check for XLA on the given device. with tf.device(device): sess.run(tf.xla.experimental.compile(lambda: tf.constant(0.0))) except (ValueError, tf.errors.InvalidArgumentError): _IS_XLA_AVAILABLE[device] = False else: _IS_XLA_AVAILABLE[device] = True return _IS_XLA_AVAILABLE[device] def compile_in_graph_mode(fn): """Decorator for XLA compilation iff in graph mode and XLA is available. Example: ```python @compile_in_graph_mode def fn(x, y, z): return {'a': x + y, 'b': y * z} @common.function def calls_fn(inputs): return fn(inputs.x, inputs.y, inputs.z) # Call calls_fn(). Args: fn: A callable that accepts a list of possibly nested tensor arguments. kwargs and inputs taking the value `None` are not supported. Non-tensor arguments are treated as nest objects, and leaves are converted to tensors. Returns: A function that, when called, checks if XLA is compiled in and enabled for the current device, and that it's being built in graph mode, and returns an XLA-compiled version of `fn`. If in eager mode, or XLA is not available, then `fn` is called directly. ``` """ @functools.wraps(fn) def _compiled(*args, **kwargs): """Helper function for optionally XLA compiling `fn`.""" if kwargs: raise ValueError( "kwargs are not supported for functions that are XLA-compiled, " "but saw kwargs: {}".format(kwargs)) args = tf.nest.map_structure(tf.convert_to_tensor, args) if tf.compat.v1.executing_eagerly() or not is_xla_available(): return fn(*args) else: # The flattening/unpacking is necessary because xla compile only allows # flat inputs and outputs: no substructures. But we provide support for # nested inputs and outputs. outputs_for_structure = [None] flat_args = tf.nest.flatten(args) def _fn(*flattened_args): unflattened_args = tf.nest.pack_sequence_as(args, flattened_args) fn_outputs = fn(*unflattened_args) outputs_for_structure[0] = fn_outputs return tf.nest.flatten(fn_outputs) outputs = tf.xla.experimental.compile(_fn, flat_args) return tf.nest.pack_sequence_as(outputs_for_structure[0], outputs) return _compiled
alipay/aop/api/response/AlipayDataDataexchangeSfasdfResponse.py
snowxmas/alipay-sdk-python-all
213
11093435
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.AlipayItemGoodsList import AlipayItemGoodsList class AlipayDataDataexchangeSfasdfResponse(AlipayResponse): def __init__(self): super(AlipayDataDataexchangeSfasdfResponse, self).__init__() self._azxfghd = None self._gfdhsdasafg = None self._gfhjfdsa = None self._ghjfdsafgh = None self._sdvsdv = None self._wrty = None @property def azxfghd(self): return self._azxfghd @azxfghd.setter def azxfghd(self, value): if isinstance(value, list): self._azxfghd = list() for i in value: self._azxfghd.append(i) @property def gfdhsdasafg(self): return self._gfdhsdasafg @gfdhsdasafg.setter def gfdhsdasafg(self, value): if isinstance(value, list): self._gfdhsdasafg = list() for i in value: self._gfdhsdasafg.append(i) @property def gfhjfdsa(self): return self._gfhjfdsa @gfhjfdsa.setter def gfhjfdsa(self, value): if isinstance(value, list): self._gfhjfdsa = list() for i in value: self._gfhjfdsa.append(i) @property def ghjfdsafgh(self): return self._ghjfdsafgh @ghjfdsafgh.setter def ghjfdsafgh(self, value): if isinstance(value, list): self._ghjfdsafgh = list() for i in value: self._ghjfdsafgh.append(i) @property def sdvsdv(self): return self._sdvsdv @sdvsdv.setter def sdvsdv(self, value): self._sdvsdv = value @property def wrty(self): return self._wrty @wrty.setter def wrty(self, value): if isinstance(value, list): self._wrty = list() for i in value: if isinstance(i, AlipayItemGoodsList): self._wrty.append(i) else: self._wrty.append(AlipayItemGoodsList.from_alipay_dict(i)) def parse_response_content(self, response_content): response = super(AlipayDataDataexchangeSfasdfResponse, self).parse_response_content(response_content) if 'azxfghd' in response: self.azxfghd = response['azxfghd'] if 'gfdhsdasafg' in response: self.gfdhsdasafg = response['gfdhsdasafg'] if 'gfhjfdsa' in response: self.gfhjfdsa = response['gfhjfdsa'] if 'ghjfdsafgh' in response: self.ghjfdsafgh = response['ghjfdsafgh'] if 'sdvsdv' in response: self.sdvsdv = response['sdvsdv'] if 'wrty' in response: self.wrty = response['wrty']
exadata/exastat.py
nenadnoveljic/tpt-oracle
483
11093502
#!/usr/bin/env python ################################################################################ ## ## File name: exastat.py (v1.0) ## Purpose: Show cumulative exadata metrics from CELLCLI and their deltas ## in multicolumn format ## ## Author: <NAME> ( <EMAIL> | @tanelpoder | blog.tanelpoder.com ) ## Copyright: <NAME>. All Rights Reserved. ## ## Usage: Save LIST METRICHISTORY into a file or pipe directly to exastat ## ## Example: cellcli -e "LIST METRICHISTORY WHERE name LIKE 'FL_.*' AND collectionTime > '"`date --date \ ## '1 day ago' "+%Y-%m-%dT%H:%M:%S%:z"`"'" | ./exastat FL_DISK_FIRST FL_FLASH_FIRST ## ## The above example lists you two metrics FL_DISK_FIRST and FL_FLASH_FIRST in columnar format ## You can list any number of metrics (you're not restricted to only two) ## ## ################################################################################ import fileinput, re, datetime, time, sys DEBUG=False rawmetrics = {} # main metric array errors = [] # unparsable lines timestamps = [] cell_pattern = re.compile(r"^\s*(?P<name>\w+)\s+(?P<obj>\w+)\s+(?P<value>[\w,]+)\s(?P<unit>.*)\s+(?P<timestamp>.{25})$") def extract_metric_value(s, pattern): match = pattern.match(s) if match: name = match.group("name").strip() obj = match.group("obj").strip() value = int(match.group("value").strip().replace(',','')) unit = match.group("unit").strip() timestamp = datetime.datetime.fromtimestamp(time.mktime(time.strptime(match.group("timestamp").strip()[:-6], "%Y-%m-%dT%H:%M:%S"))) return {"METRIC_NAME":name, "METRIC_OBJECT":obj, "METRIC_VALUE":value, "METRIC_UNIT":unit, "TIMESTAMP":timestamp} def get_timestamps(m): t = [] for i in (key for key in sorted(m.keys(), key=lambda x: x[1])): if not t.__contains__(i[1]): t.append( i[1] ) return t def get_ordered_metric_values(m, metric_name): r = [] for i in (key for key in sorted(m.keys(), key=lambda x: x[1]) if key[0]==metric_name): if DEBUG: print "key = %s value = %s" % (i, m[i]) r.append({ "METRIC_NAME":i[0], "TIMESTAMP":i[1], "METRIC_OBJECT":i[2], "METRIC_VALUE":m[i]["METRIC_VALUE"], "METRIC_UNIT":m[i]["METRIC_UNIT"] }) return r def get_delta_metric_values(m, metric_name): r = {} prev_metric_value = None # requires ordered input for i in (key for key in (get_ordered_metric_values(m, metric_name))): if prev_metric_value: if DEBUG: print "%s delta %s = %s (%s - %s)" % ( i["TIMESTAMP"], i["METRIC_NAME"], i["METRIC_VALUE"] - prev_metric_value, i["METRIC_VALUE"], prev_metric_value ) r[i["TIMESTAMP"]] = ( i["TIMESTAMP"], i["METRIC_NAME"], i["METRIC_VALUE"] - prev_metric_value, i["METRIC_VALUE"], prev_metric_value ) prev_metric_value = i["METRIC_VALUE"] else: prev_metric_value = i["METRIC_VALUE"] return r # main() metric_list = sys.argv[1:] for line in sys.stdin.readlines(): e = extract_metric_value(line, cell_pattern) if e: if e["METRIC_NAME"] in metric_list: rawmetrics[e["METRIC_NAME"], e["TIMESTAMP"], e["METRIC_OBJECT"]] = { "METRIC_VALUE":e["METRIC_VALUE"], "METRIC_UNIT":e["METRIC_UNIT"] } else: errors.append(line) if DEBUG: print "len(rawmetrics) = %s len(errors) = %s" % (len(rawmetrics), len(errors)) m = {} for mn in metric_list: m[mn] = get_delta_metric_values(rawmetrics, mn) timestamps = get_timestamps(rawmetrics) if DEBUG: print timestamps.pop(0) # 0-th sample doesn't have delta output_header = ("%-26s %10s" % ("TIMESTAMP", "SECONDS")) output_separator = "%-26s %10s" % ("-" * 26, "-" * 10) for x in metric_list: output_header += ("%" + str(len(x)+1) +"s") % x output_separator += ' ' + '-' * len(x) print "" print output_header print output_separator prev_ts = None for ts in iter(timestamps): if prev_ts: out = "%-26s %10s" % (ts, (ts - prev_ts).seconds) prev_ts = ts else: out = "%-26s %10s" % (ts, "") prev_ts = ts for mn in metric_list: if ts in m[mn]: v = m[mn][ts][2] else: v = 0 out += (" %"+str(len(mn)) +"d") % v print out print ""
mistral/tests/unit/engine/test_task_pause_resume.py
soda-research/mistral
205
11093504
# Copyright 2015 - StackStorm, Inc. # Copyright 2016 - Brocade Communications Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from mistral.db.v2 import api as db_api from mistral.services import workflows as wf_service from mistral.tests.unit.engine import base from mistral.workflow import states from mistral_lib import actions as ml_actions class TaskPauseResumeTest(base.EngineTestCase): def test_pause_resume_action_ex(self): workflow = """ version: '2.0' wf: tasks: task1: action: std.async_noop on-success: - task2 task2: action: std.noop """ wf_service.create_workflows(workflow) wf_ex = self.engine.start_workflow('wf') self.await_workflow_state(wf_ex.id, states.RUNNING) with db_api.transaction(): wf_execs = db_api.get_workflow_executions() wf_ex = self._assert_single_item(wf_execs, name='wf') task_execs = wf_ex.task_executions task_1_ex = self._assert_single_item( wf_ex.task_executions, name='task1' ) task_1_action_exs = db_api.get_action_executions( task_execution_id=task_1_ex.id ) self.assertEqual(states.RUNNING, wf_ex.state) self.assertEqual(1, len(task_execs)) self.assertEqual(states.RUNNING, task_1_ex.state) self.assertEqual(1, len(task_1_action_exs)) self.assertEqual(states.RUNNING, task_1_action_exs[0].state) # Pause the action execution of task 1. self.engine.on_action_update(task_1_action_exs[0].id, states.PAUSED) self.await_task_paused(task_1_ex.id) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) task_execs = wf_ex.task_executions task_1_ex = self._assert_single_item( wf_ex.task_executions, name='task1' ) task_1_action_exs = db_api.get_action_executions( task_execution_id=task_1_ex.id ) self.assertEqual(states.PAUSED, wf_ex.state) self.assertEqual(1, len(task_execs)) self.assertEqual(states.PAUSED, task_1_ex.state) self.assertEqual(1, len(task_1_action_exs)) self.assertEqual(states.PAUSED, task_1_action_exs[0].state) # Resume the action execution of task 1. self.engine.on_action_update(task_1_action_exs[0].id, states.RUNNING) self.await_task_running(task_1_ex.id) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) task_1_ex = self._assert_single_item( wf_ex.task_executions, name='task1' ) task_1_action_exs = db_api.get_action_executions( task_execution_id=task_1_ex.id ) self.assertEqual(states.RUNNING, wf_ex.state) self.assertEqual(1, len(task_execs)) self.assertEqual(states.RUNNING, task_1_ex.state) self.assertEqual(1, len(task_1_action_exs)) self.assertEqual(states.RUNNING, task_1_action_exs[0].state) # Complete action execution of task 1. self.engine.on_action_complete( task_1_action_exs[0].id, ml_actions.Result(data={'result': 'foobar'}) ) # Wait for the workflow execution to complete. self.await_workflow_success(wf_ex.id) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) task_execs = wf_ex.task_executions task_1_ex = self._assert_single_item(task_execs, name='task1') task_1_action_exs = db_api.get_action_executions( task_execution_id=task_1_ex.id ) task_2_ex = self._assert_single_item(task_execs, name='task2') self.assertEqual(states.SUCCESS, wf_ex.state) self.assertEqual(2, len(task_execs)) self.assertEqual(states.SUCCESS, task_1_ex.state) self.assertEqual(1, len(task_1_action_exs)) self.assertEqual(states.SUCCESS, task_1_action_exs[0].state) self.assertEqual(states.SUCCESS, task_2_ex.state) def test_pause_resume_action_ex_with_items_task(self): workflow = """ version: '2.0' wf: tasks: task1: with-items: i in <% range(3) %> action: std.async_noop on-success: - task2 task2: action: std.noop """ wf_service.create_workflows(workflow) wf_ex = self.engine.start_workflow('wf') self.await_workflow_state(wf_ex.id, states.RUNNING) with db_api.transaction(): wf_execs = db_api.get_workflow_executions() wf_ex = self._assert_single_item(wf_execs, name='wf') task_execs = wf_ex.task_executions task_1_ex = self._assert_single_item( wf_ex.task_executions, name='task1' ) task_1_action_exs = sorted( db_api.get_action_executions(task_execution_id=task_1_ex.id), key=lambda x: x['runtime_context']['index'] ) self.assertEqual(states.RUNNING, wf_ex.state) self.assertEqual(1, len(task_execs)) self.assertEqual(states.RUNNING, task_1_ex.state) self.assertEqual(3, len(task_1_action_exs)) self.assertEqual(states.RUNNING, task_1_action_exs[0].state) self.assertEqual(states.RUNNING, task_1_action_exs[1].state) self.assertEqual(states.RUNNING, task_1_action_exs[2].state) # Pause the 1st action execution of task 1. self.engine.on_action_update(task_1_action_exs[0].id, states.PAUSED) self.await_task_paused(task_1_ex.id) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) task_execs = wf_ex.task_executions task_1_ex = self._assert_single_item( wf_ex.task_executions, name='task1' ) task_1_action_exs = sorted( db_api.get_action_executions(task_execution_id=task_1_ex.id), key=lambda x: x['runtime_context']['index'] ) self.assertEqual(states.PAUSED, wf_ex.state) self.assertEqual(1, len(task_execs)) self.assertEqual(states.PAUSED, task_1_ex.state) self.assertEqual(3, len(task_1_action_exs)) self.assertEqual(states.PAUSED, task_1_action_exs[0].state) self.assertEqual(states.RUNNING, task_1_action_exs[1].state) self.assertEqual(states.RUNNING, task_1_action_exs[2].state) # Complete 2nd and 3rd action executions of task 1. self.engine.on_action_complete( task_1_action_exs[1].id, ml_actions.Result(data={'result': 'two'}) ) self.engine.on_action_complete( task_1_action_exs[2].id, ml_actions.Result(data={'result': 'three'}) ) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) task_execs = wf_ex.task_executions task_1_ex = self._assert_single_item( wf_ex.task_executions, name='task1' ) task_1_action_exs = sorted( db_api.get_action_executions(task_execution_id=task_1_ex.id), key=lambda x: x['runtime_context']['index'] ) self.assertEqual(states.PAUSED, wf_ex.state) self.assertEqual(1, len(task_execs)) self.assertEqual(states.PAUSED, task_1_ex.state) self.assertEqual(3, len(task_1_action_exs)) self.assertEqual(states.PAUSED, task_1_action_exs[0].state) self.assertEqual(states.SUCCESS, task_1_action_exs[1].state) self.assertEqual(states.SUCCESS, task_1_action_exs[2].state) # Resume the 1st action execution of task 1. self.engine.on_action_update(task_1_action_exs[0].id, states.RUNNING) self.await_task_running(task_1_ex.id) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) task_1_ex = self._assert_single_item( wf_ex.task_executions, name='task1' ) task_1_action_exs = sorted( db_api.get_action_executions(task_execution_id=task_1_ex.id), key=lambda x: x['runtime_context']['index'] ) self.assertEqual(states.RUNNING, wf_ex.state) self.assertEqual(1, len(task_execs)) self.assertEqual(states.RUNNING, task_1_ex.state) self.assertEqual(3, len(task_1_action_exs)) self.assertEqual(states.RUNNING, task_1_action_exs[0].state) self.assertEqual(states.SUCCESS, task_1_action_exs[1].state) self.assertEqual(states.SUCCESS, task_1_action_exs[2].state) # Complete the 1st action execution of task 1. self.engine.on_action_complete( task_1_action_exs[0].id, ml_actions.Result(data={'result': 'foobar'}) ) # Wait for the workflow execution to complete. self.await_workflow_success(wf_ex.id) with db_api.transaction(): wf_ex = db_api.get_workflow_execution(wf_ex.id) task_execs = wf_ex.task_executions task_1_ex = self._assert_single_item(task_execs, name='task1') task_1_action_exs = sorted( db_api.get_action_executions(task_execution_id=task_1_ex.id), key=lambda x: x['runtime_context']['index'] ) task_2_ex = self._assert_single_item(task_execs, name='task2') self.assertEqual(states.SUCCESS, wf_ex.state) self.assertEqual(2, len(task_execs)) self.assertEqual(states.SUCCESS, task_1_ex.state) self.assertEqual(3, len(task_1_action_exs)) self.assertEqual(states.SUCCESS, task_1_action_exs[0].state) self.assertEqual(states.SUCCESS, task_1_action_exs[1].state) self.assertEqual(states.SUCCESS, task_1_action_exs[2].state) self.assertEqual(states.SUCCESS, task_2_ex.state)
sigal/plugins/encrypt/__init__.py
Lucas-C/sigal
648
11093559
""" Plugin to protect gallery by encrypting image files using a password. Options:: encrypt_options = { 'password': 'password', 'ask_password': False, 'gcm_tag': 'randomly_generated', 'kdf_salt': 'randomly_generated', 'kdf_iters': 10000, } - ``password``: The password used to encrypt the images on gallery build, and decrypt them when viewers access the gallery. No default value. You must specify a password. - ``ask_password``: Whether or not viewers are asked for the password to view the gallery. If set to ``False``, the password will be present in the HTML files so the images are decrypted automatically. Defaults to ``False``. - ``gcm_tag``, ``kdf_salt``, ``kdf_iters``: Cryptographic parameters used when encrypting the files. ``gcm_tag``, ``kdf_salt`` are meant to be randomly generated, ``kdf_iters`` defaults to 10000. Do not specify them in the config file unless you have good reasons to do so. Note: The plugin caches the cryptographic parameters (but not the password) after the first build, so that incremental builds can share the same credentials. DO NOT CHANGE THE PASSWORD OR OTHER CRYPTOGRAPHIC PARAMETERS ONCE A GALLERY IS BUILT, or there will be inconsistency in encrypted files and viewers will not be able to see some of the images any more. .. _compatibility-with-encrypt: Compatibility with other plugins: - ``zip_gallery``: if you enable both this plugin and the ``zip_gallery`` plugin, the generated zip archives will contain encrypted images, which is generally meaningless since viewers cannot easily decrypt them outside a browser. """ from .encrypt import register # noqa
gunnery/event/tests/test_models.py
timgates42/gunnery
314
11093569
<filename>gunnery/event/tests/test_models.py from django.contrib.contenttypes.models import ContentType from django.test import TestCase from account.tests.fixtures import UserFactory from core.tests.fixtures import ApplicationFactory, DepartmentFactory from event.models import NotificationPreferences class TestNotificationPreferences(TestCase): def setUp(self): self.department = DepartmentFactory() self.user = UserFactory() self.user.groups.add(self.department.groups.get(system_name='user')) self.user.save() self.application = ApplicationFactory(department=self.department) def test_on_save_application(self): content_type = ContentType.objects.get_for_model(type(self.application)) notifications = NotificationPreferences.objects.filter(user=self.user, content_type=content_type, object_id=self.application.id, event_type='ExecutionFinish', is_active=True) self.assertEqual(len(notifications), 1)
Game24/modules/endInterface.py
dwlcreat/dsf
4,013
11093570
''' Function: 游戏结束界面 Author: Charles 微信公众号: Charles的皮卡丘 ''' import sys import pygame '''游戏结束界面''' def endInterface(screen, cfg): font_size_big = 60 font_size_small = 30 font_color = (255, 255, 255) font_big = pygame.font.Font(cfg.FONTPATH, font_size_big) font_small = pygame.font.Font(cfg.FONTPATH, font_size_small) surface = screen.convert_alpha() surface.fill((0, 0, 0, 5)) text = font_big.render('Game Over!', True, font_color) text_rect = text.get_rect() text_rect.centerx, text_rect.centery = cfg.SCREENSIZE[0]/2, cfg.SCREENSIZE[1]/2-50 surface.blit(text, text_rect) button_width, button_height = 100, 40 button_start_x_left = cfg.SCREENSIZE[0] / 2 - button_width - 20 button_start_x_right = cfg.SCREENSIZE[0] / 2 + 20 button_start_y = cfg.SCREENSIZE[1] / 2 - button_height / 2 + 20 pygame.draw.rect(surface, (128, 128, 128), (button_start_x_left, button_start_y, button_width, button_height)) text_restart = font_small.render('Restart', True, font_color) text_restart_rect = text_restart.get_rect() text_restart_rect.centerx, text_restart_rect.centery = button_start_x_left + button_width / 2, button_start_y + button_height / 2 surface.blit(text_restart, text_restart_rect) pygame.draw.rect(surface, (128, 128, 128), (button_start_x_right, button_start_y, button_width, button_height)) text_quit = font_small.render('Quit', True, font_color) text_quit_rect = text_quit.get_rect() text_quit_rect.centerx, text_quit_rect.centery = button_start_x_right + button_width / 2, button_start_y + button_height / 2 surface.blit(text_quit, text_quit_rect) while True: screen.blit(surface, (0, 0)) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() elif event.type == pygame.MOUSEBUTTONDOWN and event.button: if text_quit_rect.collidepoint(pygame.mouse.get_pos()): return False if text_restart_rect.collidepoint(pygame.mouse.get_pos()): return True pygame.display.update()
src/openfermion/linalg/wave_fitting_test.py
Emieeel/OpenFermion
1,291
11093582
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for wave_fitting.py""" import numpy from .wave_fitting import prony, fit_known_frequencies def test_prony_zeros(): signal = numpy.zeros(10) amplitudes, phases = prony(signal) assert (len(amplitudes) == 5) assert (len(phases) == 5) for j in range(5): numpy.testing.assert_allclose(amplitudes[j], 0) numpy.testing.assert_allclose(phases[j], 0) def test_prony_signal(): x_vec = numpy.linspace(0, 1, 11) y_vec = (0.5 * numpy.exp(1j * x_vec * 3) + 0.3 * numpy.exp(1j * x_vec * 5) + 0.15 * numpy.exp(1j * x_vec * 1.5) + 0.1 * numpy.exp(1j * x_vec * 4) + 0.05 * numpy.exp(1j * x_vec * 1.2)) print(y_vec) amplitudes, phases = prony(y_vec) assert (len(amplitudes) == 5) assert (len(phases) == 5) for a, p in zip(amplitudes, phases): print(a, numpy.angle(p)) numpy.testing.assert_allclose(numpy.abs(amplitudes[0]), 0.5, atol=1e-4) numpy.testing.assert_allclose(numpy.abs(amplitudes[1]), 0.3, atol=1e-4) numpy.testing.assert_allclose(numpy.abs(amplitudes[2]), 0.15, atol=1e-4) numpy.testing.assert_allclose(numpy.abs(amplitudes[3]), 0.1, atol=1e-4) numpy.testing.assert_allclose(numpy.abs(amplitudes[4]), 0.05, atol=1e-4) numpy.testing.assert_allclose(numpy.angle(phases[0]), 0.3, atol=1e-4) numpy.testing.assert_allclose(numpy.angle(phases[1]), 0.5, atol=1e-4) numpy.testing.assert_allclose(numpy.angle(phases[2]), 0.15, atol=1e-4) numpy.testing.assert_allclose(numpy.angle(phases[3]), 0.4, atol=1e-4) numpy.testing.assert_allclose(numpy.angle(phases[4]), 0.12, atol=1e-4) def test_fitting_signal(): frequencies = numpy.array([0.4, 0.5, 0.8]) amplitudes = numpy.array([0.2, 0.4, 0.4]) times = numpy.linspace(0, 10, 21) signal = numpy.array([ numpy.sum([ amp * numpy.exp(1j * time * freq) for freq, amp in zip(frequencies, amplitudes) ]) for time in times ]) amplitudes_guess = fit_known_frequencies(signal, times, frequencies) assert len(amplitudes_guess == 3) for index in range(3): assert numpy.isclose(amplitudes_guess[index], amplitudes[index])
anipose/label_videos_3d.py
SjoerdBruijn/anipose
230
11093586
#!/usr/bin/env python3 from mayavi import mlab mlab.options.offscreen = True import numpy as np from glob import glob import pandas as pd import os.path import cv2 import sys import skvideo.io from tqdm import tqdm, trange import sys from collections import defaultdict from matplotlib.pyplot import get_cmap from .common import make_process_fun, get_nframes, get_video_name, get_video_params, get_data_length, natural_keys def connect(points, bps, bp_dict, color): ixs = [bp_dict[bp] for bp in bps] return mlab.plot3d(points[ixs, 0], points[ixs, 1], points[ixs, 2], np.ones(len(ixs)), reset_zoom=False, color=color, tube_radius=None, line_width=10) def connect_all(points, scheme, bp_dict, cmap): lines = [] for i, bps in enumerate(scheme): line = connect(points, bps, bp_dict, color=cmap(i)[:3]) lines.append(line) return lines def update_line(line, points, bps, bp_dict): ixs = [bp_dict[bp] for bp in bps] # ixs = [bodyparts.index(bp) for bp in bps] new = np.vstack([points[ixs, 0], points[ixs, 1], points[ixs, 2]]).T line.mlab_source.points = new def update_all_lines(lines, points, scheme, bp_dict): for line, bps in zip(lines, scheme): update_line(line, points, bps, bp_dict) def visualize_labels(config, labels_fname, outname, fps=300): try: scheme = config['labeling']['scheme'] except KeyError: scheme = [] data = pd.read_csv(labels_fname) cols = [x for x in data.columns if '_error' in x] if len(scheme) == 0: bodyparts = [c.replace('_error', '') for c in cols] else: bodyparts = sorted(set([x for dx in scheme for x in dx])) bp_dict = dict(zip(bodyparts, range(len(bodyparts)))) all_points = np.array([np.array(data.loc[:, (bp+'_x', bp+'_y', bp+'_z')]) for bp in bodyparts], dtype='float64') all_errors = np.array([np.array(data.loc[:, bp+'_error']) for bp in bodyparts], dtype='float64') all_scores = np.array([np.array(data.loc[:, bp+'_score']) for bp in bodyparts], dtype='float64') if config['triangulation']['optim']: all_errors[np.isnan(all_errors)] = 0 else: all_errors[np.isnan(all_errors)] = 10000 good = (all_errors < 100) all_points[~good] = np.nan all_points_flat = all_points.reshape(-1, 3) check = ~np.isnan(all_points_flat[:, 0]) if np.sum(check) < 10: print('too few points to plot, skipping...') return low, high = np.percentile(all_points_flat[check], [5, 95], axis=0) nparts = len(bodyparts) framedict = dict(zip(data['fnum'], data.index)) writer = skvideo.io.FFmpegWriter(outname, inputdict={ # '-hwaccel': 'auto', '-framerate': str(fps), }, outputdict={ '-vcodec': 'h264', '-qp': '28', '-pix_fmt': 'yuv420p' }) cmap = get_cmap('tab10') points = np.copy(all_points[:, 20]) points[0] = low points[1] = high s = np.arange(points.shape[0]) good = ~np.isnan(points[:, 0]) fig = mlab.figure(bgcolor=(1,1,1), size=(500,500)) fig.scene.anti_aliasing_frames = 2 low, high = np.percentile(points[good, 0], [10,90]) scale_factor = (high - low) / 12.0 mlab.clf() pts = mlab.points3d(points[:, 0], points[:, 1], points[:, 2], s, color=(0.8, 0.8, 0.8), scale_mode='none', scale_factor=scale_factor) lines = connect_all(points, scheme, bp_dict, cmap) mlab.orientation_axes() view = list(mlab.view()) mlab.view(focalpoint='auto', distance='auto') for framenum in trange(data.shape[0], ncols=70): fig.scene.disable_render = True if framenum in framedict: points = all_points[:, framenum] else: points = np.ones((nparts, 3))*np.nan s = np.arange(points.shape[0]) good = ~np.isnan(points[:, 0]) new = np.vstack([points[:, 0], points[:, 1], points[:, 2]]).T pts.mlab_source.points = new update_all_lines(lines, points, scheme, bp_dict) fig.scene.disable_render = False img = mlab.screenshot() mlab.view(*view, reset_roll=False) writer.writeFrame(img) mlab.close(all=True) writer.close() def process_session(config, session_path, filtered=False): pipeline_videos_raw = config['pipeline']['videos_raw'] if filtered: pipeline_videos_labeled_3d = config['pipeline']['videos_labeled_3d_filter'] pipeline_3d = config['pipeline']['pose_3d_filter'] else: pipeline_videos_labeled_3d = config['pipeline']['videos_labeled_3d'] pipeline_3d = config['pipeline']['pose_3d'] video_ext = config['video_extension'] vid_fnames = glob(os.path.join(session_path, pipeline_videos_raw, "*."+video_ext)) orig_fnames = defaultdict(list) for vid in vid_fnames: vidname = get_video_name(config, vid) orig_fnames[vidname].append(vid) labels_fnames = glob(os.path.join(session_path, pipeline_3d, '*.csv')) labels_fnames = sorted(labels_fnames, key=natural_keys) outdir = os.path.join(session_path, pipeline_videos_labeled_3d) if len(labels_fnames) > 0: os.makedirs(outdir, exist_ok=True) for fname in labels_fnames: basename = os.path.basename(fname) basename = os.path.splitext(basename)[0] out_fname = os.path.join(outdir, basename+'.mp4') if os.path.exists(out_fname) and \ abs(get_nframes(out_fname) - get_data_length(fname)) < 100: continue print(out_fname) some_vid = orig_fnames[basename][0] params = get_video_params(some_vid) visualize_labels(config, fname, out_fname, params['fps']) label_videos_3d_all = make_process_fun(process_session, filtered=False) label_videos_3d_filtered_all = make_process_fun(process_session, filtered=True)
docs/introduction/codeexamples/twistdPlugin.py
tristanlatr/klein
643
11093621
<filename>docs/introduction/codeexamples/twistdPlugin.py from klein import Klein app = Klein() @app.route("/") def hello(request): return "Hello, world!" resource = app.resource
doc/example8.py
ajschumacher/plac
233
11093665
<filename>doc/example8.py # example8.py def main(command: ("SQL query", 'option', 'c'), dsn): if command: print('executing %s on %s' % (command, dsn)) # ... if __name__ == '__main__': import plac; plac.call(main)
autocolorize/__init__.py
gustavla/autocolorizer
234
11093677
from __future__ import division, print_function, absolute_import from .extraction import (extract_sparse, extract, load_classifier, load_default_classifier, colorize) from .color import match_lightness from . import image from .datasets import load_image_list from .checker import checker_main VERSION = (0, 2, 2) ISRELEASED = False __version__ = '{0}.{1}.{2}'.format(*VERSION) if not ISRELEASED: __version__ += '.git' __all__ = ['extract_sparse', 'extract', 'load_classifier', 'load_default_classifier', 'colorize', 'match_lightness', 'image', 'load_image_list', 'checker_main']
flatdata-generator/flatdata/generator/app.py
gferon/flatdata
140
11093692
<reponame>gferon/flatdata ''' Copyright (c) 2017 HERE Europe B.V. See the LICENSE file in the root of this project for license details. ''' import argparse import logging import os.path import sys # check that requirements are installed here try: # pylint: disable=unused-import import pyparsing import jinja2 except ModuleNotFoundError as exc: print("Cannot import `%s`, you probably need to install it. See `generator/requirements.txt` or `README.md`." % exc.name, file=sys.stderr) sys.exit(2) from flatdata.generator.engine import Engine from flatdata.generator.tree.errors import FlatdataSyntaxError def _parse_command_line(): parser = argparse.ArgumentParser( description="Generates code for a given flatdata schema file.") parser.add_argument("-s", "--schema", type=str, required=True, help="Path to the flatdata schema file") parser.add_argument("-g", "--gen", type=str, required=True, help="Language to generate bindings for. Supported values: %s" % (', '.join(Engine.available_generators()))) parser.add_argument("-O", "--output-file", type=str, required=True, default=None, help="Destination file. Forces all output to be stored in one file") parser.add_argument("-v", "--verbose", action="store_true", help="Enable verbose mode") parser.add_argument("--debug", action="store_true", help="Enable debug output") return parser.parse_args() def _setup_logging(args): level = logging.WARNING if args.debug: level = logging.DEBUG elif args.verbose: level = logging.INFO logging.basicConfig( format="%(asctime)s - %(levelname)s - %(module)s:%(lineno)d - %(message)s", datefmt="%H:%M:%S", level=level) def _check_args(args): if not os.path.isfile(args.schema): logging.fatal("Cannot find schema file at %s", args.schema) sys.exit(1) def _run(args): _setup_logging(args) _check_args(args) with open(args.schema, 'r') as input_file: schema = input_file.read() try: engine = Engine(schema) logging.debug("Tree: %s", engine.tree) except FlatdataSyntaxError as ex: logging.fatal("Error reading schema: %s ", ex) sys.exit(1) try: logging.info("Generating %s...", args.gen) output_content = engine.render(args.gen) except ValueError as ex: logging.fatal("%s", ex) sys.exit(1) dirname = os.path.dirname(os.path.abspath(args.output_file)) if not os.path.exists(dirname): os.makedirs(dirname) with open(args.output_file, "w") as output: output.write(output_content) logging.info("Code for %s is written to %s", args.gen, args.output_file) def main(): """Entrypoint""" _run(_parse_command_line())
vstruct/defs/pe.py
rnui2k/vivisect
716
11093717
<reponame>rnui2k/vivisect import vstruct from vstruct.primitives import * class IMAGE_BASE_RELOCATION(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.VirtualAddress = v_uint32() self.SizeOfBlock = v_uint32() class IMAGE_DATA_DIRECTORY(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.VirtualAddress = v_uint32() self.Size = v_uint32() class IMAGE_DOS_HEADER(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.e_magic = v_uint16() self.e_cblp = v_uint16() self.e_cp = v_uint16() self.e_crlc = v_uint16() self.e_cparhdr = v_uint16() self.e_minalloc = v_uint16() self.e_maxalloc = v_uint16() self.e_ss = v_uint16() self.e_sp = v_uint16() self.e_csum = v_uint16() self.e_ip = v_uint16() self.e_cs = v_uint16() self.e_lfarlc = v_uint16() self.e_ovno = v_uint16() self.e_res = vstruct.VArray([v_uint16() for i in range(4)]) self.e_oemid = v_uint16() self.e_oeminfo = v_uint16() self.e_res2 = vstruct.VArray([v_uint16() for i in range(10)]) self.e_lfanew = v_uint32() class IMAGE_EXPORT_DIRECTORY(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Characteristics = v_uint32() self.TimeDateStamp = v_uint32() self.MajorVersion = v_uint16() self.MinorVersion = v_uint16() self.Name = v_uint32() self.Base = v_uint32() self.NumberOfFunctions = v_uint32() self.NumberOfNames = v_uint32() self.AddressOfFunctions = v_uint32() self.AddressOfNames = v_uint32() self.AddressOfOrdinals = v_uint32() class IMAGE_DEBUG_DIRECTORY(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Characteristics = v_uint32() self.TimeDateStamp = v_uint32() self.MajorVersion = v_uint16() self.MinorVersion = v_uint16() self.Type = v_uint32() self.SizeOfData = v_uint32() self.AddressOfRawData= v_uint32() self.PointerToRawData= v_uint32() class CV_INFO_PDB70(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.CvSignature = v_uint32() self.Signature = GUID() self.Age = v_uint32() self.PdbFileName = v_str(260) def vsParse(self, bytez, offset=0): bsize = len(bytez) - offset self.vsGetField('PdbFileName').vsSetLength( bsize - 24 ) return vstruct.VStruct.vsParse(self, bytez, offset=offset) class IMAGE_FILE_HEADER(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Machine = v_uint16() self.NumberOfSections = v_uint16() self.TimeDateStamp = v_uint32() self.PointerToSymbolTable = v_uint32() self.NumberOfSymbols = v_uint32() self.SizeOfOptionalHeader = v_uint16() self.Characteristics = v_uint16() class IMAGE_IMPORT_DIRECTORY(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.OriginalFirstThunk = v_uint32() self.TimeDateStamp = v_uint32() self.ForwarderChain = v_uint32() self.Name = v_uint32() self.FirstThunk = v_uint32() # https://docs.microsoft.com/en-us/cpp/build/reference/structure-and-constant-definitions?view=vs-2019 class IMAGE_DELAY_IMPORT_DIRECTORY(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.grAttrs = v_uint32() self.rvaDLLName = v_uint32() self.rvaHmod = v_uint32() self.rvaIAT = v_uint32() self.rvaINT = v_uint32() self.rvaBoundIAT = v_uint32() self.rvaUnloadIAT = v_uint32() self.dwTimeStamp = v_uint32() class IMAGE_IMPORT_BY_NAME(vstruct.VStruct): def __init__(self, namelen=128): vstruct.VStruct.__init__(self) self.Hint = v_uint16() self.Name = v_str(size=namelen) class IMAGE_LOAD_CONFIG_DIRECTORY(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Size = v_uint32() self.TimeDateStamp = v_uint32() self.MajorVersion = v_uint16() self.MinorVersion = v_uint16() self.GlobalFlagsClear = v_uint32() self.GlobalFlagsSet = v_uint32() self.CriticalSectionDefaultTimeout = v_uint32() self.DeCommitFreeBlockThreshold = v_uint32() self.DeCommitTotalFreeThreshold = v_uint32() self.LockPrefixTable = v_uint32() self.MaximumAllocationSize = v_uint32() self.VirtualMemoryThreshold = v_uint32() self.ProcessHeapFlags = v_uint32() self.ProcessAffinityMask = v_uint32() self.CSDVersion = v_uint16() self.Reserved1 = v_uint16() self.EditList = v_uint32() self.SecurityCookie = v_uint32() self.SEHandlerTable = v_uint32() self.SEHandlerCount = v_uint32() class IMAGE_NT_HEADERS(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Signature = v_bytes(4) self.FileHeader = IMAGE_FILE_HEADER() self.OptionalHeader = IMAGE_OPTIONAL_HEADER() class IMAGE_NT_HEADERS64(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Signature = v_bytes(4) self.FileHeader = IMAGE_FILE_HEADER() self.OptionalHeader = IMAGE_OPTIONAL_HEADER64() class IMAGE_OPTIONAL_HEADER(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Magic = v_bytes(2) self.MajorLinkerVersion = v_uint8() self.MinorLinkerVersion = v_uint8() self.SizeOfCode = v_uint32() self.SizeOfInitializedData = v_uint32() self.SizeOfUninitializedData = v_uint32() self.AddressOfEntryPoint = v_uint32() self.BaseOfCode = v_uint32() self.BaseOfData = v_uint32() self.ImageBase = v_uint32() self.SectionAlignment = v_uint32() self.FileAlignment = v_uint32() self.MajorOperatingSystemVersion = v_uint16() self.MinorOperatingSystemVersion = v_uint16() self.MajorImageVersion = v_uint16() self.MinorImageVersion = v_uint16() self.MajorSubsystemVersion = v_uint16() self.MinorSubsystemVersion = v_uint16() self.Win32VersionValue = v_uint32() self.SizeOfImage = v_uint32() self.SizeOfHeaders = v_uint32() self.CheckSum = v_uint32() self.Subsystem = v_uint16() self.DllCharacteristics = v_uint16() self.SizeOfStackReserve = v_uint32() self.SizeOfStackCommit = v_uint32() self.SizeOfHeapReserve = v_uint32() self.SizeOfHeapCommit = v_uint32() self.LoaderFlags = v_uint32() self.NumberOfRvaAndSizes = v_uint32() self.DataDirectory = vstruct.VArray([IMAGE_DATA_DIRECTORY() for i in range(16)]) class IMAGE_OPTIONAL_HEADER64(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Magic = v_bytes(2) self.MajorLinkerVersion = v_uint8() self.MinorLinkerVersion = v_uint8() self.SizeOfCode = v_uint32() self.SizeOfInitializedData = v_uint32() self.SizeOfUninitializedData = v_uint32() self.AddressOfEntryPoint = v_uint32() self.BaseOfCode = v_uint32() self.ImageBase = v_uint64() self.SectionAlignment = v_uint32() self.FileAlignment = v_uint32() self.MajorOperatingSystemVersion = v_uint16() self.MinorOperatingSystemVersion = v_uint16() self.MajorImageVersion = v_uint16() self.MinorImageVersion = v_uint16() self.MajorSubsystemVersion = v_uint16() self.MinorSubsystemVersion = v_uint16() self.Win32VersionValue = v_uint32() self.SizeOfImage = v_uint32() self.SizeOfHeaders = v_uint32() self.CheckSum = v_uint32() self.Subsystem = v_uint16() self.DllCharacteristics = v_uint16() self.SizeOfStackReserve = v_uint64() self.SizeOfStackCommit = v_uint64() self.SizeOfHeapReserve = v_uint64() self.SizeOfHeapCommit = v_uint64() self.LoaderFlags = v_uint32() self.NumberOfRvaAndSizes = v_uint32() self.DataDirectory = vstruct.VArray([IMAGE_DATA_DIRECTORY() for i in range(16)]) class IMAGE_RESOURCE_DIRECTORY(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Characteristics = v_uint32() self.TimeDateStamp = v_uint32() self.MajorVersion = v_uint16() self.MinorVersion = v_uint16() self.NumberOfNamedEntries = v_uint16() self.NumberOfIdEntries = v_uint16() class IMAGE_RESOURCE_DIRECTORY_ENTRY(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Name = v_uint32() self.OffsetToData = v_uint32() class IMAGE_RESOURCE_DATA_ENTRY(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.OffsetToData = v_uint32() self.Size = v_uint32() self.CodePage = v_uint32() self.Reserved = v_uint32() class VS_FIXEDFILEINFO(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Signature = v_uint32() self.StrucVersion = v_uint32() self.FileVersionMS = v_uint32() self.FileVersionLS = v_uint32() self.ProductVersionMS = v_uint32() self.ProductVersionLS = v_uint32() self.FileFlagsMask = v_uint32() self.FileFlags = v_uint32() self.FileOS = v_uint32() self.FileType = v_uint32() self.FileSubtype = v_uint32() self.FileDateMS = v_uint32() self.FileDateLS = v_uint32() class IMAGE_SECTION_HEADER(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.Name = v_str(8) self.VirtualSize = v_uint32() self.VirtualAddress = v_uint32() self.SizeOfRawData = v_uint32() self.PointerToRawData = v_uint32() self.PointerToRelocations = v_uint32() self.PointerToLineNumbers = v_uint32() self.NumberOfRelocations = v_uint16() self.NumberOfLineNumbers = v_uint16() self.Characteristics = v_uint32() class IMAGE_RUNTIME_FUNCTION_ENTRY(vstruct.VStruct): """ Used in the .pdata section of a PE32+ for all non leaf functions. """ def __init__(self): vstruct.VStruct.__init__(self) self.BeginAddress = v_uint32() self.EndAddress = v_uint32() self.UnwindInfoAddress = v_uint32() class UNWIND_INFO(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.VerFlags = v_uint8() self.SizeOfProlog = v_uint8() self.CountOfCodes = v_uint8() self.FrameRegister = v_uint8() class SignatureEntry(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.size = v_int32(bigend=False) # should always be 0x00020200 self.magic = v_bytes(size=4) self.pkcs7 = v_bytes() def pcb_size(self): size = self.size self.vsGetField('pkcs7').vsSetLength(size)
tests/backend/topology/conftest.py
goncalogteixeira/pyswarns
959
11093725
<reponame>goncalogteixeira/pyswarns<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- """Fixtures for tests""" # Import modules import numpy as np import pytest # Import from pyswarms # Import from package from pyswarms.backend.swarms import Swarm @pytest.fixture(scope="module") def swarm(): """A contrived instance of the Swarm class at a certain timestep""" # fmt: off attrs_at_t = { "position": np.array([[40.95838686e-01, 5.87433429e-04, 6.49113772e-03], [1.00559609e+00, 3.96477697e-02, 7.67205397e-01], [8.87990950e-01, -3.64932609e-02, 1.89750725e-02], [1.11646877e+00, 3.12037361e-03, 1.97885369e-01], [8.96117216e-01, -9.79602053e-03, -1.66139336e-01], [9.90423669e-01, 1.99307974e-03, -1.23386797e-02], [2.06800701e-01, -1.67869387e-02, 1.14268810e-01], [4.21786494e-01, 2.58755510e-02, 6.62254843e-01], [9.90350831e-01, 3.81575154e-03, 8.80833545e-01], [9.94353749e-01, -4.85086205e-02, 9.85313500e-03]]), "velocity": np.array([[2.09076818e-02, 2.04936403e-03, 1.06761248e-02], [1.64940497e-03, 5.67924469e-03, 9.74902301e-02], [1.50445516e-01, 9.11699158e-03, 1.51474794e-02], [2.94238740e-01, 5.71545680e-04, 1.54122294e-02], [4.10430034e-02, 6.51847479e-04, 6.25109226e-02], [6.71076116e-06, 1.89615516e-04, 4.65023770e-03], [4.76081378e-02, 4.24416089e-03, 7.11856172e-02], [1.33832808e-01, 1.81818698e-02, 1.16947941e-01], [1.22849955e-03, 1.55685312e-03, 1.67819003e-02], [5.60617396e-03, 4.31819608e-02, 2.52217220e-02]]), "current_cost": np.array([1.07818462, 5.5647911, 19.6046078, 14.05300016, 3.72597614, 1.01169386, 16.51846203, 32.72262829, 3.80274901, 1.05237138]), "pbest_cost": np.array([1.00362006, 2.39151041, 2.55208424, 5.00176207, 1.04510827, 1.00025284, 6.31216654, 2.53873121, 2.00530884, 1.05237138]), "pbest_pos": np.array([[9.98033031e-01, 4.97392619e-03, 3.07726256e-03], [1.00665809e+00, 4.22504014e-02, 9.84334657e-01], [1.12159389e-02, 1.11429739e-01, 2.86388193e-02], [1.64059236e-01, 6.85791237e-03, -2.32137604e-02], [9.93740665e-01, -6.16501403e-03, -1.46096578e-02], [9.90438476e-01, 2.50379538e-03, 1.87405987e-05], [1.12301876e-01, 1.77099784e-03, 1.45382457e-01], [4.41204876e-02, 4.84059652e-02, 1.05454822e+00], [9.89348409e-01, -1.31692358e-03, 9.88291764e-01], [9.99959923e-01, -5.32665972e-03, -1.53685870e-02]]), "best_cost": 1.0002528364353296, "best_pos": np.array([9.90438476e-01, 2.50379538e-03, 1.87405987e-05]), "options": {'c1': 0.5, 'c2': 0.3, 'w': 0.9}, } # fmt: on return Swarm(**attrs_at_t)
tests/gdata_tests/apps/organization/data_test.py
gauravuniverse/gdata-python-client
483
11093727
#!/usr/bin/python # # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data model tests for the Organization Unit Provisioning API.""" __author__ = '<NAME> <<EMAIL>>' import unittest import atom.core from gdata import test_data import gdata.apps.organization.data import gdata.test_config as conf class CustomerIdEntryTest(unittest.TestCase): def setUp(self): self.entry = atom.core.parse(test_data.ORGANIZATION_UNIT_CUSTOMER_ID_ENTRY, gdata.apps.organization.data.CustomerIdEntry) def testCustomerIdEntryFromString(self): self.assert_(isinstance(self.entry, gdata.apps.organization.data.CustomerIdEntry)) self.assertEquals(self.entry.customer_id, 'C123A456B') self.assertEquals(self.entry.customer_org_unit_name, 'example.com') self.assertEquals(self.entry.customer_org_unit_description, 'example.com') self.assertEquals(self.entry.org_unit_name, 'example.com') self.assertEquals(self.entry.org_unit_description, 'tempdescription') class OrgUnitEntryTest(unittest.TestCase): def setUp(self): self.entry = atom.core.parse(test_data.ORGANIZATION_UNIT_ORGUNIT_ENTRY, gdata.apps.organization.data.OrgUnitEntry) self.feed = atom.core.parse(test_data.ORGANIZATION_UNIT_ORGUNIT_FEED, gdata.apps.organization.data.OrgUnitFeed) def testOrgUnitEntryFromString(self): self.assert_(isinstance(self.entry, gdata.apps.organization.data.OrgUnitEntry)) self.assertEquals(self.entry.org_unit_description, 'New Test Org') self.assertEquals(self.entry.org_unit_name, 'Test Organization') self.assertEquals(self.entry.org_unit_path, 'Test/Test+Organization') self.assertEquals(self.entry.parent_org_unit_path, 'Test') self.assertEquals(self.entry.org_unit_block_inheritance, 'false') def testOrgUnitFeedFromString(self): self.assertEquals(len(self.feed.entry), 2) self.assert_(isinstance(self.feed, gdata.apps.organization.data.OrgUnitFeed)) self.assert_(isinstance(self.feed.entry[0], gdata.apps.organization.data.OrgUnitEntry)) self.assert_(isinstance(self.feed.entry[1], gdata.apps.organization.data.OrgUnitEntry)) self.assertEquals( self.feed.entry[0].find_edit_link(), ('https://apps-apis.google.com/a/feeds/orgunit/2.0/' 'C123A456B/testOrgUnit92')) self.assertEquals(self.feed.entry[0].org_unit_description, 'test92') self.assertEquals(self.feed.entry[0].org_unit_name, 'testOrgUnit92') self.assertEquals(self.feed.entry[0].org_unit_path, 'Test/testOrgUnit92') self.assertEquals(self.feed.entry[0].parent_org_unit_path, 'Test') self.assertEquals(self.feed.entry[0].org_unit_block_inheritance, 'false') self.assertEquals( self.feed.entry[1].find_edit_link(), ('https://apps-apis.google.com/a/feeds/orgunit/2.0/' 'C123A456B/testOrgUnit93')) self.assertEquals(self.feed.entry[1].org_unit_description, 'test93') self.assertEquals(self.feed.entry[1].org_unit_name, 'testOrgUnit93') self.assertEquals(self.feed.entry[1].org_unit_path, 'Test/testOrgUnit93') self.assertEquals(self.feed.entry[1].parent_org_unit_path, 'Test') self.assertEquals(self.feed.entry[1].org_unit_block_inheritance, 'false') class OrgUserEntryTest(unittest.TestCase): def setUp(self): self.entry = atom.core.parse(test_data.ORGANIZATION_UNIT_ORGUSER_ENTRY, gdata.apps.organization.data.OrgUserEntry) self.feed = atom.core.parse(test_data.ORGANIZATION_UNIT_ORGUSER_FEED, gdata.apps.organization.data.OrgUserFeed) def testOrgUserEntryFromString(self): self.assert_(isinstance(self.entry, gdata.apps.organization.data.OrgUserEntry)) self.assertEquals(self.entry.user_email, '<EMAIL>') self.assertEquals(self.entry.org_unit_path, 'Test') def testOrgUserFeedFromString(self): self.assertEquals(len(self.feed.entry), 2) self.assert_(isinstance(self.feed, gdata.apps.organization.data.OrgUserFeed)) self.assert_(isinstance(self.feed.entry[0], gdata.apps.organization.data.OrgUserEntry)) self.assert_(isinstance(self.feed.entry[1], gdata.apps.organization.data.OrgUserEntry)) self.assertEquals( self.feed.entry[0].find_edit_link(), ('https://apps-apis.google.com/a/feeds/orguser/2.0/' 'C123A456B/user720430%40example.com')) self.assertEquals(self.feed.entry[0].user_email, '<EMAIL>') self.assertEquals(self.feed.entry[0].org_unit_path, 'Test') self.assertEquals( self.feed.entry[1].find_edit_link(), ('https://apps-apis.google.com/a/feeds/orguser/2.0/' 'C123A456B/user832648%40example.com')) self.assertEquals(self.feed.entry[1].user_email, '<EMAIL>') self.assertEquals(self.feed.entry[1].org_unit_path, 'Test') def suite(): return conf.build_suite([OrgUnitEntryTest, OrgUserEntryTest]) if __name__ == '__main__': unittest.main()
OpenAttack/attackers/pso/__init__.py
e-tornike/OpenAttack
444
11093737
from typing import List, Optional import numpy as np import copy from ..classification import ClassificationAttacker, Classifier, ClassifierGoal from ...text_process.tokenizer import Tokenizer, get_default_tokenizer from ...attack_assist.substitute.word import WordSubstitute, get_default_substitute from ...utils import get_language, check_language, language_by_name from ...exceptions import WordNotInDictionaryException from ...tags import Tag from ...attack_assist.filter_words import get_default_filter_words class PSOAttacker(ClassificationAttacker): @property def TAGS(self): return { self.__lang_tag, Tag("get_pred", "victim"), Tag("get_prob", "victim")} def __init__(self, pop_size : int = 20, max_iters : int = 20, tokenizer : Optional[Tokenizer] = None, substitute : Optional[WordSubstitute] = None, filter_words : List[str] = None, lang = None ): """ Word-level Textual Adversarial Attacking as Combinatorial Optimization. <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> and <NAME>. ACL 2020. `[pdf] <https://www.aclweb.org/anthology/2020.acl-main.540.pdf>`__ `[code] <https://github.com/thunlp/SememePSO-Attack>`__ Args: pop_size: Genetic algorithm popluation size. **Default:** 20 max_iter: Maximum generations of pso algorithm. **Default:** 20 tokenizer: A tokenizer that will be used during the attack procedure. Must be an instance of :py:class:`.Tokenizer` substitute: A substitute that will be used during the attack procedure. Must be an instance of :py:class:`.WordSubstitute` lang: The language used in attacker. If is `None` then `attacker` will intelligently select the language based on other parameters. filter_words: A list of words that will be preserved in the attack procesudre. :Classifier Capacity: * get_pred * get_prob """ lst = [] if tokenizer is not None: lst.append(tokenizer) if substitute is not None: lst.append(substitute) if len(lst) > 0: self.__lang_tag = get_language(lst) else: self.__lang_tag = language_by_name(lang) if self.__lang_tag is None: raise ValueError("Unknown language `%s`" % lang) if substitute is None: substitute = get_default_substitute(self.__lang_tag) self.substitute = substitute if tokenizer is None: tokenizer = get_default_tokenizer(self.__lang_tag) self.tokenizer = tokenizer self.pop_size = pop_size self.max_iters = max_iters if filter_words is None: filter_words = get_default_filter_words(self.__lang_tag) self.filter_words = set(filter_words) check_language([self.tokenizer, self.substitute], self.__lang_tag) def attack(self, victim: Classifier, sentence, goal: ClassifierGoal): self.invoke_dict = {} x_orig = sentence.lower() x_orig = self.tokenizer.tokenize(x_orig) x_pos = list(map(lambda x: x[1], x_orig)) x_orig = list(map(lambda x: x[0], x_orig)) x_len = len(x_orig) neighbours_nums = [ min(self.get_neighbour_num(word, pos),10) if word not in self.filter_words else 0 for word, pos in zip(x_orig, x_pos) ] neighbours = [ self.get_neighbours(word, pos) if word not in self.filter_words else [] for word, pos in zip(x_orig, x_pos) ] if np.sum(neighbours_nums) == 0: return None w_select_probs = neighbours_nums / np.sum(neighbours_nums) pop = self.generate_population(x_orig, neighbours, w_select_probs, x_len) part_elites = pop if goal.targeted: all_elite_score = 100 part_elites_scores = [100 for _ in range(self.pop_size)] else: all_elite_score = -1 part_elites_scores = [-1 for _ in range(self.pop_size)] all_elite = pop[0] Omega_1 = 0.8 Omega_2 = 0.2 C1_origin = 0.8 C2_origin = 0.2 V = [np.random.uniform(-3, 3) for _ in range(self.pop_size)] V_P = [[V[t] for _ in range(x_len)] for t in range(self.pop_size)] for i in range(self.max_iters): pop_preds = self.predict_batch(victim, pop) pop_scores = pop_preds[:, goal.target] if goal.targeted: pop_ranks = np.argsort(pop_scores)[::-1] top_attack = pop_ranks[0] if np.max(pop_scores) > all_elite_score: all_elite = pop[top_attack] all_elite_score = np.max(pop_scores) for k in range(self.pop_size): if pop_scores[k] > part_elites_scores[k]: part_elites[k] = pop[k] part_elites_scores[k] = pop_scores[k] if np.argmax(pop_preds[top_attack, :]) == goal.target: return self.tokenizer.detokenize(pop[top_attack]) else: pop_ranks = np.argsort(pop_scores) top_attack = pop_ranks[0] if np.min(pop_scores) < all_elite_score: all_elite = pop[top_attack] all_elite_score = np.min(pop_scores) for k in range(self.pop_size): if pop_scores[k] < part_elites_scores[k]: part_elites[k] = pop[k] part_elites_scores[k] = pop_scores[k] if np.argmax(pop_preds[top_attack, :]) != goal.target: return self.tokenizer.detokenize(pop[top_attack]) Omega = (Omega_1 - Omega_2) * (self.max_iters - i) / self.max_iters + Omega_2 C1 = C1_origin - i / self.max_iters * (C1_origin - C2_origin) C2 = C2_origin + i / self.max_iters * (C1_origin - C2_origin) for id in range(self.pop_size): for dim in range(x_len): V_P[id][dim] = Omega * V_P[id][dim] + (1 - Omega) * ( self.equal(pop[id][dim], part_elites[id][dim]) + self.equal(pop[id][dim], all_elite[dim])) turn_prob = [self.sigmod(V_P[id][d]) for d in range(x_len)] P1 = C1 P2 = C2 if np.random.uniform() < P1: pop[id] = self.turn(part_elites[id], pop[id], turn_prob, x_len) if np.random.uniform() < P2: pop[id] = self.turn(all_elite, pop[id], turn_prob, x_len) pop_preds = self.predict_batch(victim, pop) pop_scores = pop_preds[:, goal.target] if goal.targeted: pop_ranks = np.argsort(pop_scores)[::-1] top_attack = pop_ranks[0] if np.max(pop_scores) > all_elite_score: all_elite = pop[top_attack] all_elite_score = np.max(pop_scores) for k in range(self.pop_size): if pop_scores[k] > part_elites_scores[k]: part_elites[k] = pop[k] part_elites_scores[k] = pop_scores[k] if np.argmax(pop_preds[top_attack, :]) == goal.target: return self.tokenizer.detokenize( pop[top_attack] ) else: pop_ranks = np.argsort(pop_scores) top_attack = pop_ranks[0] if np.min(pop_scores) < all_elite_score: all_elite = pop[top_attack] all_elite_score = np.min(pop_scores) for k in range(self.pop_size): if pop_scores[k] < part_elites_scores[k]: part_elites[k] = pop[k] part_elites_scores[k] = pop_scores[k] if np.argmax(pop_preds[top_attack, :]) != goal.target: return self.tokenizer.detokenize( pop[top_attack] ) new_pop = [] for x in pop: change_ratio = self.count_change_ratio(x, x_orig, x_len) p_change = 1 - 2 * change_ratio if np.random.uniform() < p_change: tem = self.mutate( x, x_orig, neighbours, w_select_probs) new_pop.append(tem) else: new_pop.append(x) pop = new_pop return None #Failed def predict_batch(self, victim, sentences): return np.array([self.predict(victim, s) for s in sentences]) def predict(self, victim, sentence): if tuple(sentence) in self.invoke_dict: return self.invoke_dict[tuple(sentence)] tem = victim.get_prob(self.make_batch([sentence]))[0] self.invoke_dict[tuple(sentence)] = tem return tem def do_replace(self, x_cur, pos, new_word): x_new = x_cur.copy() x_new[pos] = new_word return x_new def generate_population(self, x_orig, neighbours_list, w_select_probs, x_len): pop = [] x_len = w_select_probs.shape[0] for i in range(self.pop_size): r = np.random.choice(x_len, 1, p=w_select_probs)[0] replace_list = neighbours_list[r] sub = np.random.choice(replace_list, 1)[0] tem = self.do_replace(x_orig, r, sub) pop.append(tem) return pop def turn(self, x1, x2, prob, x_len): x_new = copy.deepcopy(x2) for i in range(x_len): if np.random.uniform() < prob[i]: x_new[i] = x1[i] return x_new def mutate(self, x, x_orig, neigbhours_list, w_select_probs): x_len = w_select_probs.shape[0] rand_idx = np.random.choice(x_len, 1,p=w_select_probs)[0] while x[rand_idx] != x_orig[rand_idx] and self.sum_diff(x_orig,x) < np.sum(np.sign(w_select_probs)): rand_idx = np.random.choice(x_len, 1,p=w_select_probs)[0] replace_list = neigbhours_list[rand_idx] sub_idx= np.random.choice(len(replace_list), 1)[0] new_x=copy.deepcopy(x) new_x[rand_idx]=replace_list[sub_idx] return new_x def sum_diff(self, x_orig, x_cur): ret = 0 for wa, wb in zip(x_orig, x_cur): if wa != wb: ret += 1 return ret def norm(self, n): tn = [] for i in n: if i <= 0: tn.append(0) else: tn.append(i) s = np.sum(tn) if s == 0: for i in range(len(tn)): tn[i] = 1 return [t / len(tn) for t in tn] new_n = [t / s for t in tn] return new_n def get_neighbour_num(self, word, pos): try: return len(self.substitute(word, pos)) except WordNotInDictionaryException: return 0 def get_neighbours(self, word, pos): try: return list( map( lambda x: x[0], self.substitute(word, pos), ) ) except WordNotInDictionaryException: return [] def make_batch(self, sents): return [self.tokenizer.detokenize(sent) for sent in sents] def equal(self, a, b): if a == b: return -3 else: return 3 def sigmod(self, n): return 1 / (1 + np.exp(-n)) def count_change_ratio(self, x, x_orig, x_len): change_ratio = float(np.sum(np.array(x) != np.array(x_orig))) / float(x_len) return change_ratio
pyroomacoustics/transform/tests/test_stft_timing.py
Womac/pyroomacoustics
915
11093779
<reponame>Womac/pyroomacoustics<filename>pyroomacoustics/transform/tests/test_stft_timing.py from __future__ import division, print_function import numpy as np import pyroomacoustics as pra from pyroomacoustics.transform import STFT import time import warnings # test signal np.random.seed(0) num_mic = 25 signals = np.random.randn(100000, num_mic).astype(np.float32) fs = 16000 # STFT parameters block_size = 512 hop = block_size // 2 win = pra.hann(block_size) x_r = np.zeros(signals.shape) num_times = 50 print() """ One frame at a time """ print( "Averaging computation time over %d cases of %d channels of %d samples (%0.1f s at %0.1f kHz)." % (num_times, num_mic, len(signals), (len(signals) / fs), fs / 1000) ) print() print("----- SINGLE FRAME AT A TIME -----") print("With STFT object (not fixed) : ", end="") stft = STFT(block_size, hop=hop, channels=num_mic, streaming=True, analysis_window=win) start = time.time() for k in range(num_times): x_r = np.zeros(signals.shape) n = 0 while signals.shape[0] - n > hop: stft.analysis( signals[ n : n + hop, ] ) x_r[ n : n + hop, ] = stft.synthesis() n += hop avg_time = (time.time() - start) / num_times print("%0.3f sec" % avg_time) err_dB = 20 * np.log10( np.max( np.abs( signals[ : n - hop, ] - x_r[ hop:n, ] ) ) ) print("Error [dB] : %0.3f" % err_dB) print("With STFT object (fixed) : ", end="") stft = STFT( block_size, hop=hop, channels=num_mic, num_frames=1, streaming=True, analysis_window=win, ) start = time.time() for k in range(num_times): x_r = np.zeros(signals.shape) n = 0 while signals.shape[0] - n > hop: stft.analysis( signals[ n : n + hop, ] ) x_r[ n : n + hop, ] = stft.synthesis() n += hop avg_time = (time.time() - start) / num_times print("%0.3f sec" % avg_time) err_dB = 20 * np.log10( np.max( np.abs( signals[ : n - hop, ] - x_r[ hop:n, ] ) ) ) print("Error [dB] : %0.3f" % err_dB) """ Multiple frame at a time (non-streaming) """ print() print("----- MULTIPLE FRAMES AT A TIME -----") warnings.filterwarnings("ignore") # to avoid warning of appending zeros to be printed print("With STFT object (not fixed) : ", end="") stft = STFT(block_size, hop=hop, channels=num_mic, analysis_window=win, streaming=False) start = time.time() for k in range(num_times): stft.analysis(signals) x_r = stft.synthesis() avg_time = (time.time() - start) / num_times print("%0.3f sec" % avg_time) err_dB = 20 * np.log10( np.max(np.abs(signals[hop : len(x_r) - hop] - x_r[hop : len(x_r) - hop])) ) print("Error [dB] : %0.3f" % err_dB) warnings.filterwarnings("default") print("With STFT object (fixed) : ", end="") num_frames = (len(signals) - block_size) // hop + 1 stft = STFT( block_size, hop=hop, channels=num_mic, num_frames=num_frames, analysis_window=win, streaming=False, ) start = time.time() for k in range(num_times): stft.analysis(signals[: (num_frames - 1) * hop + block_size, :]) x_r = stft.synthesis() avg_time = (time.time() - start) / num_times print("%0.3f sec" % avg_time) err_dB = 20 * np.log10( np.max(np.abs(signals[hop : len(x_r) - hop] - x_r[hop : len(x_r) - hop])) ) print("Error [dB] : %0.3f" % err_dB)
nncf/version.py
MaximProshin/nncf
136
11093785
__version__ = '2.1.0' BKC_TORCH_VERSION = '1.9.1' BKC_TORCHVISION_VERSION = '0.10.1' BKC_TF_VERSION = '2.5.*'
backend/services/tools/push_notify.py
sleepingAnt/viewfinder
645
11093796
# Copyright 2012 Viewfinder Inc. All Rights Reserved. """Manual push notification facility. """ __author__ = '<EMAIL> (<NAME>)' from tornado import options from viewfinder.backend.services.apns import APNS from viewfinder.backend.services.push_notification import PushNotification from viewfinder.backend.www import www_main options.define('token', default=None, help='push notification token (e.g. "apns-prod:(.*)")') options.define('badge', default=1, help='badge value (integer)') def _Start(callback): """Allows manual push notifications.""" assert options.options.token, 'must specify a push notification token' assert options.options.badge is not None, 'must specify a badge value' PushNotification.Push(options.options.token, badge=int(options.options.badge)) if __name__ == '__main__': www_main.InitAndRun(_Start)
tests/test_soap_bridge.py
rexyeah/jira-cli
125
11093847
<filename>tests/test_soap_bridge.py """ """ import os import tempfile import unittest import jiracli from jiracli.bridge import JiraSoapBridge from jiracli.utils import Config from .common_bridge_cases import BridgeTests, jiravcr class SoapBridgeTests(unittest.TestCase, BridgeTests): def setUp(self): tmp_config = tempfile.mktemp() self.config = Config(tmp_config) jiracli.utils.CONFIG_FILE = tmp_config self.cache_dir = tempfile.mkdtemp() jiracli.cache.CACHE_DIR = self.cache_dir self.config.username = "testuser" self.config.password = "<PASSWORD>" self.vcr_directory = "fixtures/soap" with jiravcr.use_cassette(os.path.join(self.vcr_directory, "login.yaml")): self.bridge = JiraSoapBridge("https://indydevs.atlassian.net", self.config) self.bridge.login(self.config.username, self.config.password)
grr/client/grr_response_client/unprivileged/windows/sandbox.py
khanhgithead/grr
4,238
11093851
<reponame>khanhgithead/grr #!/usr/bin/env python """Interface to Windows Sandboxing for the `process` module. Adds support for global sandbox initialization and handles checks for whether sandboxing is supported by the current platform. """ import logging import platform from typing import Iterable, Optional _sandbox_name: Optional[str] = None class Error(Exception): pass def InitSandbox(name: str, paths_read_only: Iterable[str]) -> None: """Initializes a global sandbox. Args: name: The unique name of the Sandbox. Windows will create unique state (directory tree, regisry tree and a SID) based on the name. paths_read_only: Lists of paths which will be shared in read-only and execute mode with the Sandbox SID. Raises: Error: if the global sandbox has been already initialized. """ if int(platform.release()) < 8: logging.info( "Skipping sandbox initialization. Unsupported platform release: %s.", platform.release()) return global _sandbox_name if _sandbox_name is not None: raise Error( f"Sandbox has been already initialized with name {_sandbox_name}.") logging.info("Initializing sandbox. Name: %s. Read-only paths: %s.", name, paths_read_only) # pylint:disable=g-import-not-at-top from grr_response_client.unprivileged.windows import sandbox_lib # pylint:enable=g-import-not-at-top sandbox_lib.InitSandbox(name, paths_read_only) _sandbox_name = name class Sandbox: """Represents an optional, app container based sandbox. Provides necessary data to be used for the win32 API `CreateProcesss` for running a process in the context of a sandbox. """ @property def sid_string(self) -> Optional[str]: """App container SID represented as string. `None` if an App container is not available. """ return None @property def desktop_name(self) -> Optional[str]: """Full alternate desktop name of the App container. `None` if an App container is not available. """ return None def __enter__(self) -> "Sandbox": return self def __exit__(self, exc_type, exc_value, traceback) -> None: pass class NullSandbox(Sandbox): """A Sandbox implementation performing no sandboxing.""" class AppContainerSandbox(Sandbox): """A `Sandbox` implementation performing AppContainer based sandboxing. See https://docs.microsoft.com/en-us/windows/win32/secauthz/appcontainer-for-legacy-applications- for details on AppContainers. """ def __init__(self, name: str) -> None: """Constructor. Args: name: Name of the app container. """ # pylint:disable=g-import-not-at-top from grr_response_client.unprivileged.windows import sandbox_lib # pylint:enable=g-import-not-at-top self._sandbox = sandbox_lib.Sandbox(name) @property def sid_string(self) -> Optional[str]: return self._sandbox.sid_string @property def desktop_name(self) -> Optional[str]: return self._sandbox.desktop_name def __enter__(self) -> "AppContainerSandbox": self._sandbox.Open() logging.info("Entering sandbox. SID: %s. Desktop: %s.", self.sid_string, self.desktop_name) return self def __exit__(self, exc_type, exc_value, traceback) -> None: self._sandbox.Close() def CreateSandbox() -> Sandbox: """Creates an app container based sandbox. Returns: A null `Sandbox` implementation in case of sandboxing is not available or if `InitSandbox` has not been called. """ global _sandbox_name if _sandbox_name is None: return NullSandbox() else: return AppContainerSandbox(_sandbox_name) def IsSandboxInitialized() -> bool: """Returns `True` if a global sandbox has been successfully initialized.""" return _sandbox_name is not None
glue/plugins/dendro_viewer/state.py
HPLegion/glue
550
11093881
# -*- coding: utf-8 -*- from glue.core import BaseData from glue.viewers.matplotlib.state import (MatplotlibDataViewerState, MatplotlibLayerState, DeferredDrawCallbackProperty as DDCProperty, DeferredDrawSelectionCallbackProperty as DDSCProperty) from glue.core.data_combo_helper import ComponentIDComboHelper from echo import keep_in_sync from .dendro_helpers import dendrogram_layout __all__ = ['DendrogramViewerState', 'DendrogramLayerState'] class Layout(object): def __init__(self, x, y): self.x = x self.y = y @property def xy(self): return self.x, self.y class DendrogramViewerState(MatplotlibDataViewerState): """ A state class that includes all the attributes for a dendrogram viewer. """ height_att = DDSCProperty() parent_att = DDSCProperty() order_att = DDSCProperty() y_log = DDCProperty(False) select_substruct = DDCProperty(True) reference_data = DDCProperty() _layout = DDCProperty() def __init__(self, **kwargs): super(DendrogramViewerState, self).__init__() self.add_callback('layers', self._layers_changed) self.height_att_helper = ComponentIDComboHelper(self, 'height_att') self.parent_att_helper = ComponentIDComboHelper(self, 'parent_att') self.order_att_helper = ComponentIDComboHelper(self, 'order_att') self.add_callback('height_att', self._update_layout) self.add_callback('parent_att', self._update_layout) self.add_callback('order_att', self._update_layout) self.add_callback('reference_data', self._on_reference_data_change) self.update_from_dict(kwargs) def _on_reference_data_change(self, data): if self.reference_data is None: return self.height_att = self.reference_data.find_component_id('height') self.parent_att = self.reference_data.find_component_id('parent') self.order_att = self.height_att def _update_layout(self, att): if self.height_att is None or self.parent_att is None or self.order_att is None or self.reference_data is None: self._layout = None else: height = self.reference_data[self.height_att].ravel() parent = self.reference_data[self.parent_att].astype(int).ravel() order = self.reference_data[self.order_att].ravel() x, y = dendrogram_layout(parent, height, order) self._layout = Layout(x, y) def _layers_changed(self, *args): layers_data = self.layers_data layers_data_cache = getattr(self, '_layers_data_cache', []) if layers_data == layers_data_cache: return self.height_att_helper.set_multiple_data(layers_data) self.parent_att_helper.set_multiple_data(layers_data) self.order_att_helper.set_multiple_data(layers_data) for layer in layers_data: if isinstance(layer, BaseData): self.reference_data = layer break self._layers_data_cache = layers_data class DendrogramLayerState(MatplotlibLayerState): """ A state class that includes all the attributes for layers in a dendrogram plot. """ linewidth = DDCProperty(1, docstring="The line width") def __init__(self, viewer_state=None, **kwargs): super(DendrogramLayerState, self).__init__(viewer_state=viewer_state, **kwargs) self.linewidth = self.layer.style.linewidth self._sync_linewidth = keep_in_sync(self, 'linewidth', self.layer.style, 'linewidth')
tests/test_fetch_cord_computer.py
TabulateJarl8/FetchCord
286
11093887
import unittest from fetch_cord.computer.Computer import Computer def make_orderer(): order = {} def ordered(f): order[f.__name__] = len(order) return f def compare(a, b): return [1, -1][order[a] < order[b]] return ordered, compare ordered, compare = make_orderer() unittest.defaultTestLoader.sortTestMethodsUsing = compare class TestFetchCordComputer(unittest.TestCase): """Test class for Computer module""" pc: Computer @classmethod def setUpClass(cls): """Setup the Computer class and load the neofetch info""" cls.pc = Computer() @classmethod def tearDownClass(self): """Called once at the end""" pass @ordered def test_detected_os(self): """Test the detected os result""" print("Detected OS : " + self.pc.os) @ordered def test_detected_neofetch(self): """Test detected neofetch""" print("Detected Neofetch : ", end="") if self.pc.neofetch: print("neofetch") elif self.pc.neofetchwin: print("neofetch-win") else: print("None") @ordered def test_detected_cpu(self): """Test detected CPU""" if len(self.pc.cpu) == 0 or self.pc.cpu == ["N/A"]: print("No CPU detected !") else: for cpu in self.pc.cpu: print("Detected CPU : " + cpu.model) print("Detected CPU Temp : " + str(cpu.temp) + "°c") @ordered def test_detected_gpu(self): """Test detected GPU""" if len(self.pc.gpu) == 0 or self.pc.gpu == ["N/A"]: print("No GPU detected !") else: for gpu in self.pc.gpu: print("Detected GPU : " + gpu.model) @ordered def test_detected_disks(self): """Test detected disks""" if len(self.pc.disks) == 0 or self.pc.disks == ["N/A"]: print("No Disk detected !") else: for disk in self.pc.disks: print("Detected Disk : " + disk) @ordered def test_detected_memory(self): """Test detected memory""" print("Detected Memory : " + "\t".join(self.pc.memory)) @ordered def test_detected_osinfo(self): """Test detected OS info""" print("Detected OS info : " + "\t".join(self.pc.osinfo)) @ordered def test_detected_motherboard(self): """Test detected motherboard""" print("Detected Motherboard : " + "\t".join(self.pc.motherboard)) @ordered def test_detected_host(self): """Test detected host""" print("Detected host : " + "\t".join(self.pc.host)) @ordered def test_detected_resolution(self): """Test detected resolution""" print("Detected resolution : " + "\t".join(self.pc.resolution)) @ordered def test_detected_theme(self): """Test detected theme""" print("Detected theme : " + "\t".join(self.pc.theme)) @ordered def test_detected_packages(self): """Test detected packages""" print("Detected packages : " + "\t".join(self.pc.packages)) @ordered def test_detected_shell(self): """Test detected shell""" print("Detected shell : " + "\t".join(self.pc.shell)) @ordered def test_detected_kernel(self): """Test detected kernel""" print("Detected kernel : " + "\t".join(self.pc.kernel)) @ordered def test_detected_terminal(self): """Test detected terminal""" print("Detected terminal : " + "\t".join(self.pc.terminal)) @ordered def test_detected_font(self): """Test detected font""" print("Detected font : " + "\t".join(self.pc.font)) @ordered def test_detected_de(self): """Test detected de""" print("Detected de : " + "\t".join(self.pc.de)) @ordered def test_detected_wm(self): """Test detected wm""" print("Detected wm : " + "\t".join(self.pc.wm)) if __name__ == "__main__": unittest.main()
api/core/agent.py
zaxtyson/anime-api
543
11093901
<reponame>zaxtyson/anime-api from typing import Callable, Coroutine from api.config import Config from api.core.anime import * from api.core.cache import CacheDB from api.core.danmaku import * from api.core.proxy import AnimeProxy from api.core.scheduler import Scheduler from api.iptv.iptv import TVSource, get_sources from api.update.bangumi import Bangumi class Agent: """ 代理人, 代理响应路由的请求 从调度器获取、过滤、缓存数据, 发送给路由 """ def __init__(self): self._scheduler = Scheduler() self._bangumi = Bangumi() self._config = Config() # Memory Database for cache self._anime_db = CacheDB() self._danmaku_db = CacheDB() self._proxy_db = CacheDB() self._others_db = CacheDB() def cache_clear(self) -> float: """清空缓存, 返回释放的内存(KB)""" mem_free = 0 mem_free += self._anime_db.clear() mem_free += self._danmaku_db.clear() mem_free += self._proxy_db.clear() mem_free += self._others_db.clear() return mem_free def get_global_config(self): """获取全局配置""" return self._config.all_configs def change_module_state(self, module: str, enable: bool): """设置模块启用状态""" return self._scheduler.change_module_state(module, enable) async def get_bangumi_updates(self): """获取番组表信息""" bangumi = self._others_db.fetch("bangumi") if not bangumi: # 缓存起来 bangumi = await self._bangumi.get_bangumi_updates() self._others_db.store(bangumi, "bangumi") return bangumi def get_iptv_sources(self) -> List[TVSource]: """获取 IPTV 源列表""" return get_sources() async def get_anime_metas( self, keyword: str, *, callback: Callable[[AnimeMeta], None] = None, co_callback: Callable[[AnimeMeta], Coroutine] = None ) -> None: """搜索番剧, 返回摘要信息, 过滤相似度低的数据""" # 番剧搜索不缓存, 异步推送 return await self._scheduler.search_anime(keyword, callback=callback, co_callback=co_callback) async def get_danmaku_metas( self, keyword: str, *, callback: Callable[[DanmakuMeta], None] = None, co_callback: Callable[[DanmakuMeta], Coroutine] = None ) -> None: """搜索弹幕库, 返回摘要信息, 过滤相似度低的数据""" # TODO: Implement data filter # 番剧搜索结果是相似的, 对应的弹幕搜索结果相对固定, 缓存备用 if metas := self._danmaku_db.fetch(keyword): if callback is not None: for meta in metas: callback(meta) return if co_callback is not None: for meta in metas: await co_callback(meta) return # 没有缓存, 搜索一次 metas = [] def _callback(_meta): metas.append(_meta) # 缓存一份 callback(_meta) async def _co_callback(_meta): metas.append(_meta) await co_callback(_meta) if callback is not None: await self._scheduler.search_danmaku(keyword, callback=_callback) elif co_callback is not None: await self._scheduler.search_danmaku(keyword, co_callback=_co_callback) if metas: self._danmaku_db.store(metas, keyword) async def get_anime_detail(self, token: str) -> Optional[AnimeDetail]: """获取番剧详情信息, 如果有缓存, 使用缓存的值""" detail: AnimeDetail = self._anime_db.fetch(token) if detail is not None: logger.info(f"Using cached {detail}") return detail # 没有缓存, 通过 token 构建 AnimeMeta 对象, 解析一次 meta = AnimeMeta.build_from(token) logger.debug(f"Build AnimeMeta from token: {meta.module} | {meta.detail_url}") detail = await self._scheduler.parse_anime_detail(meta) if not detail or detail.is_empty(): # 没解析出来或者解析出来是空信息 logger.error(f"Parse anime detail info failed") return None self._anime_db.store(detail, token) # 解析成功, 缓存起来 return detail async def get_anime_real_url(self, token: str, playlist: int, episode: int) -> AnimeInfo: """获取资源直链, 如果存在未过期的缓存, 使用缓存的值, 否则重新解析""" url_token = f"{token}|{playlist}|{episode}" url: AnimeInfo = self._anime_db.fetch(url_token) if url and url.is_available(): # 存在缓存且未过期 logger.info(f"Using cached real url: {url}") return url # 没有发现缓存或者缓存的直链过期, 解析一次 detail = await self.get_anime_detail(token) if detail is not None: anime: Anime = detail.get_anime(int(playlist), int(episode)) if anime is not None: url = await self._scheduler.parse_anime_real_url(anime) if url.is_available(): self._anime_db.store(url, url_token) return url # 其它各种情况, 解析失败 return AnimeInfo() async def get_anime_proxy(self, token: str, playlist: int, episode: int) -> Optional[AnimeProxy]: """获取视频数据流代理器对象""" proxy_token = f"{token}|{playlist}|{episode}" proxy: AnimeProxy = self._proxy_db.fetch(proxy_token) if proxy and proxy.is_available(): # 缓存的 proxy 对象可用 return proxy url = await self.get_anime_real_url(token, int(playlist), int(episode)) if not url.is_available(): return meta = AnimeMeta.build_from(token) proxy_cls = self._scheduler.get_anime_proxy_class(meta) proxy: AnimeProxy = proxy_cls(url) # 重新构建一个 self._proxy_db.store(proxy, proxy_token) return proxy async def get_danmaku_detail(self, token: str) -> DanmakuDetail: """获取弹幕库详情信息, 如果存在缓存, 使用缓存的值""" detail: DanmakuDetail = self._danmaku_db.fetch(token) if detail is not None: logger.info(f"Using cached {detail}") return detail # 没有缓存, 通过 token 构建 AnimeMeta 对象, 解析一次 meta = DanmakuMeta.build_from(token) logger.debug(f"Build DanmakuMeta from token: {meta.module} | {meta.play_url}") detail = await self._scheduler.parse_danmaku_detail(meta) if detail.is_empty(): # 没解析出来或者解析出来是空信息 logger.error(f"Parse anime detail info failed") return detail self._danmaku_db.store(detail, token) # 解析成功, 缓存起来 return detail async def get_danmaku_data(self, token: str, episode: int) -> DanmakuData: """获取弹幕数据, 如果有缓存, 使用缓存的值""" danmaku_token = f"{token}|{episode}" data_token = f"{danmaku_token}|data" data: DanmakuData = self._danmaku_db.fetch(data_token) if data is not None: logger.info(f"Using cached danmaku data: {data}") return data detail: DanmakuDetail = await self.get_danmaku_detail(token) if not detail.is_empty(): danmaku = detail.get_danmaku(int(episode)) if danmaku is not None: data = await self._scheduler.parse_danmaku_data(danmaku) if not data.is_empty(): # 如果有数据就缓存起来 self._danmaku_db.store(data, data_token) return data return DanmakuData()
mmdet3d/core/utils/__init__.py
Guangyun-Xu/mmdetection3d
2,216
11093903
# Copyright (c) OpenMMLab. All rights reserved. from .gaussian import draw_heatmap_gaussian, gaussian_2d, gaussian_radius __all__ = ['gaussian_2d', 'gaussian_radius', 'draw_heatmap_gaussian']
HLTrigger/Configuration/python/extend_argparse.py
ckamtsikis/cmssw
852
11093907
import argparse as _argparse import textwrap as _textwrap # argparse's formatters remove newlines from comand descriptions, so we define a new one class HelpFormatterRespectNewlines(_argparse.HelpFormatter): """Help message formatter which retains line breaks in argument descriptions. Only the name of this class is considered a public API. All the methods provided by the class are considered an implementation detail. """ def _split_lines(self, text, width): lines = [] for line in text.splitlines(): line = self._whitespace_matcher.sub(' ', line).strip() lines.extend( _textwrap.wrap(line, width) ) return lines # argparse's formatters are not really able to discover the terminale size, so we override them def FixedWidthFormatter(formatter, width): """Adaptor for argparse formatters using an explicit fixed width """ def f(*args, **keywords): # add or replace the "width" parameter keywords['width'] = width return formatter(*args, **keywords) return f
bindings/python/cntk/ops/tests/transpose_test.py
shyamalschandra/CNTK
17,702
11093944
# ============================================================================== # Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== import numpy as np from cntk import transpose def test_transpose(): """ Test for transpose() :return: Nothing """ repeat_for = 5 for repeat in range(repeat_for): for i in range(1, 5): permutation = np.random.permutation(i + 1) permutation = [int(p) for p in permutation] shape = [np.random.randint(2, 5) for _ in range(i + 1)] entries = np.product(shape) data = np.arange(entries) data.shape = shape np_transposed = np.transpose(np.copy(data), np.copy(permutation)) by_transposeCNTK = transpose(np.ascontiguousarray(data), permutation).eval() assert np.alltrue(np_transposed == by_transposeCNTK) if __name__ == "__main__": test_transpose()
elfi/examples/bignk.py
diadochos/elfi
166
11093992
<gh_stars>100-1000 """Implementation of the bivariate g-and-k example model.""" from functools import partial import numpy as np import scipy.stats as ss import elfi from elfi.examples.gnk import euclidean_multiss, ss_robust def BiGNK(A1, A2, B1, B2, g1, g2, k1, k2, rho, c=.8, n_obs=150, batch_size=1, random_state=None): """Sample the bivariate g-and-k distribution. References ---------- [1] <NAME>., & <NAME>. (2011). Likelihood-free Bayesian estimation of multivariate quantile distributions. Computational Statistics & Data Analysis, 55(9), 2541-2556. [2] <NAME>., <NAME>., & <NAME>. (2009). Bayesian estimation of quantile distributions. Statistics and Computing, 19(2), 189-201. The quantile function of g-and-k distribution is defined as follows: Q_{gnk} = A + B * (1 + c * (1 - exp(-g * z(p)) / 1 + exp(-g * z(p)))) * (1 + z(p)^2)^k * z(p), where z(p) is the p-th standard normal quantile. To sample from the g-and-k distribution, draw z(p) ~ N(0, 1) and evaluate Q_{gnk}. Parameters ---------- A1 : float or array_like Location parameter (the 1st dimension). A2 : float or array_like Location parameter (the 2nd dimension). B1 : float or array_like Scale parameter (the 1st dimension). B2 : float or array_like Scale parameter (the 2nd dimension). g1 : float or array_like Skewness parameter (the 1st dimension). g2 : float or array_like Skewness parameter (the 2nd dimension). k1 : float or array_like Kurtosis parameter (the 1st dimension). k2 : float or array_like Kurtosis parameter (the 2nd dimension). rho : float or array_like Parameters' covariance. c : float, optional Overall asymmetry parameter, by default fixed to 0.8 as in Allingham et al. (2009). n_obs : int, optional batch_size : int, optional random_state : np.random.RandomState, optional Returns ------- array_like Yielded points. """ # Transforming the arrays' shape to be compatible with batching. A1 = np.asanyarray(A1).reshape((-1, 1)) A2 = np.asanyarray(A2).reshape((-1, 1)) B1 = np.asanyarray(B1).reshape((-1, 1)) B2 = np.asanyarray(B2).reshape((-1, 1)) g1 = np.asanyarray(g1).reshape((-1, 1)) g2 = np.asanyarray(g2).reshape((-1, 1)) k1 = np.asanyarray(k1).reshape((-1, 1, 1)) k2 = np.asanyarray(k2).reshape((-1, 1, 1)) rho = np.asanyarray(rho).reshape((-1, 1)) # Merging the multi-dimensional parameters. A = np.hstack((A1, A2)) B = np.hstack((B1, B2)) g = np.hstack((g1, g2)) k = np.hstack((k1, k2)) # Obtaining z(p) ~ N(0, 1). z_batches = [] for i in range(batch_size): # Initialising a separate covariance matrix for each batch. matrix_cov = np.array([[1, rho[i]], [rho[i], 1]]) z_batch = ss.multivariate_normal.rvs(cov=matrix_cov, size=n_obs, random_state=random_state) z_batches.append(z_batch) z = np.array(z_batches) # Obtaining the first bracket term of the quantile function Q_{gnk}. gdotz = np.einsum('ik,ijk->ijk', g, z) term_exp = (1 - np.exp(-gdotz)) / (1 + np.exp(-gdotz)) term_first = np.einsum('ik,ijk->ijk', B, (1 + c * (term_exp))) # Obtaining the second bracket term, of the quantile function Q_{gnk}. term_second_unraised = 1 + np.power(z, 2) k = np.repeat(k, n_obs, axis=2) k = np.swapaxes(k, 1, 2) term_second = np.power(term_second_unraised, k) # Evaluating the quantile function Q_{gnk}. term_product = term_first * term_second * z term_product_misaligned = np.swapaxes(term_product, 1, 0) y_misaligned = np.add(A, term_product_misaligned) y_obs = np.swapaxes(y_misaligned, 1, 0) return y_obs def get_model(n_obs=150, true_params=None, seed=None): """Return an initialised bivariate g-and-k model. Parameters ---------- n_obs : int, optional Number of the observations. true_params : array_like, optional Parameters defining the model. seed : np.random.RandomState, optional Returns ------- elfi.ElfiModel """ m = elfi.new_model() # Initialising the parameters as in Drovandi & Pettitt (2011). if true_params is None: true_params = [3, 4, 1, 0.5, 1, 2, .5, .4, 0.6] # Initialising the prior settings as in Drovandi & Pettitt (2011). priors = [] priors.append(elfi.Prior('uniform', 0, 5, model=m, name='a1')) priors.append(elfi.Prior('uniform', 0, 5, model=m, name='a2')) priors.append(elfi.Prior('uniform', 0, 5, model=m, name='b1')) priors.append(elfi.Prior('uniform', 0, 5, model=m, name='b2')) priors.append(elfi.Prior('uniform', -5, 10, model=m, name='g1')) priors.append(elfi.Prior('uniform', -5, 10, model=m, name='g2')) priors.append(elfi.Prior('uniform', -.5, 5.5, model=m, name='k1')) priors.append(elfi.Prior('uniform', -.5, 5.5, model=m, name='k2')) EPS = np.finfo(float).eps priors.append(elfi.Prior('uniform', -1 + EPS, 2 - 2 * EPS, model=m, name='rho')) # Obtaining the observations. y_obs = BiGNK(*true_params, n_obs=n_obs, random_state=np.random.RandomState(seed)) # Defining the simulator. fn_simulator = partial(BiGNK, n_obs=n_obs) elfi.Simulator(fn_simulator, *priors, observed=y_obs, name='BiGNK') # Initialising the default summary statistics. default_ss = elfi.Summary(ss_robust, m['BiGNK'], name='ss_robust') # Using the customEuclidean distance function designed for # the summary statistics of shape (batch_size, dim_ss, dim_ss_point). elfi.Discrepancy(euclidean_multiss, default_ss, name='d') return m
tests/lifecycles/test_real_invocation.py
tavaresrodrigo/kopf
855
11093994
<gh_stars>100-1000 import logging import pytest import kopf from kopf._cogs.structs.bodies import Body from kopf._cogs.structs.ephemera import Memo from kopf._cogs.structs.patches import Patch from kopf._core.actions.progression import State from kopf._core.engines.indexing import OperatorIndexers from kopf._core.intents.causes import ChangingCause, Reason @pytest.mark.parametrize('lifecycle', [ kopf.lifecycles.all_at_once, kopf.lifecycles.one_by_one, kopf.lifecycles.randomized, kopf.lifecycles.shuffled, kopf.lifecycles.asap, ]) async def test_protocol_invocation(lifecycle, resource): """ To be sure that all kwargs are accepted properly. Especially when the new kwargs are added or an invocation protocol changed. """ # The values are irrelevant, they can be anything. state = State.from_scratch() cause = ChangingCause( logger=logging.getLogger('kopf.test.fake.logger'), indices=OperatorIndexers().indices, resource=resource, patch=Patch(), memo=Memo(), body=Body({}), initial=False, reason=Reason.NOOP, ) handlers = [] selected = lifecycle(handlers, state=state, **cause.kwargs) assert isinstance(selected, (tuple, list)) assert len(selected) == 0
api/organisations/permissions/permissions.py
mevinbabuc/flagsmith
1,259
11094025
<gh_stars>1000+ from django.conf import settings from rest_framework.exceptions import PermissionDenied from rest_framework.permissions import BasePermission from organisations.models import Organisation CREATE_PROJECT = "CREATE_PROJECT" ORGANISATION_PERMISSIONS = ( (CREATE_PROJECT, "Allows the user to create projects in this organisation."), ) class NestedOrganisationEntityPermission(BasePermission): def has_permission(self, request, view): organisation_pk = view.kwargs.get("organisation_pk") if organisation_pk and request.user.is_admin( Organisation.objects.get(pk=organisation_pk) ): return True raise PermissionDenied( "User does not have sufficient privileges to perform this action" ) def has_object_permission(self, request, view, obj): organisation_id = view.kwargs.get("organisation_pk") organisation = Organisation.objects.get(id=organisation_id) return request.user.is_admin(organisation) class OrganisationPermission(BasePermission): def has_permission(self, request, view): if view.action == "create" and settings.RESTRICT_ORG_CREATE_TO_SUPERUSERS: return request.user.is_superuser return True def has_object_permission(self, request, view, obj): if request.user.is_admin(obj) or ( view.action == "my_permissions" and obj in request.user.organisations.all() ): return True raise PermissionDenied( "User does not have sufficient privileges to perform this action" ) class OrganisationUsersPermission(BasePermission): def has_permission(self, request, view): organisation_id = view.kwargs.get("organisation_pk") organisation = Organisation.objects.get(id=organisation_id) if request.user.is_admin(organisation): return True if view.action == "list" and request.user.belongs_to(organisation.id): return True return False def has_object_permission(self, request, view, obj): organisation_id = view.kwargs.get("organisation_pk") organisation = Organisation.objects.get(id=organisation_id) if request.user.is_admin(organisation): return True return False class UserPermissionGroupPermission(BasePermission): def has_permission(self, request, view): organisation_pk = view.kwargs.get("organisation_pk") if organisation_pk and request.user.is_admin( Organisation.objects.get(pk=organisation_pk) ): return True if view.action == "list" and request.user.belongs_to(int(organisation_pk)): return True return False def has_object_permission(self, request, view, obj): organisation_id = view.kwargs.get("organisation_pk") organisation = Organisation.objects.get(id=organisation_id) if request.user.is_admin(organisation): return True return False
03-adversarial-examples/dataset.py
PeiqinSun/tf-tutorials
184
11094029
<gh_stars>100-1000 #!/usr/bin/env python import os import cv2 import numpy as np import pickle from common import config class Dataset(): dataset_path = '../../cifar10-dataset/' def __init__(self, dataset_name): self.ds_name = dataset_name self.minibatch_size = config.minibatch_size self.rng = np.random self.instances = config.nr_instances if self.ds_name == 'train': self.files = [self.dataset_path + 'data_batch_{}'.format(i + 1) for i in range(5)] else: self.files = [self.dataset_path + 'test_batch'] def load(self): datas_list, labels_list = [], [] for file in self.files: with open(file, 'rb') as f: samples = pickle.load(f, encoding = 'bytes') datas_list.extend(samples[b'data']) labels_list.extend(samples[b'labels']) self.samples_mat = {'X': datas_list, 'Y': labels_list} return self @property def total_instances(self): return self.instances @property def minibatches(self): return self.instances // config.minibatch_size def instance_generator(self): for i in range(self.instances): img_r = self.samples_mat['X'][i][:1024].reshape(config.image_shape[0], config.image_shape[1], 1) img_g = self.samples_mat['X'][i][1024:2048].reshape(config.image_shape[0], config.image_shape[1], 1) img_b = self.samples_mat['X'][i][2048:].reshape(config.image_shape[0], config.image_shape[1], 1) img = np.concatenate((img_r, img_g, img_b), axis = 2) label = self.samples_mat['Y'][i] yield img.astype(np.float32), np.array(label, dtype=np.int32) if __name__ == "__main__": ds = Dataset('train') ds = ds.load() gen = ds.instance_generator() imggrid = [] while True: for i in range(25): img, label = next(gen) img = cv2.resize(img, (96, 96)) cv2.putText(img, str(label), (0, config.image_shape[0]), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) imggrid.append(img) imggrid = np.array(imggrid).reshape((5, 5, img.shape[0], img.shape[1], img.shape[2])) imggrid = imggrid.transpose((0, 2, 1, 3, 4)).reshape((5*img.shape[0], 5*img.shape[1], 3)) cv2.imshow('', imggrid.astype('uint8')) c = chr(cv2.waitKey(0) & 0xff) if c == 'q': exit() imggrid = []
src/datasets/packaged_modules/text/text.py
rpatil524/datasets
3,395
11094040
<gh_stars>1000+ from dataclasses import dataclass from io import StringIO from typing import Optional import pyarrow as pa import datasets from datasets.features.features import require_storage_cast from datasets.table import table_cast logger = datasets.utils.logging.get_logger(__name__) @dataclass class TextConfig(datasets.BuilderConfig): """BuilderConfig for text files.""" features: Optional[datasets.Features] = None encoding: str = "utf-8" chunksize: int = 10 << 20 # 10MB keep_linebreaks: bool = False sample_by: str = "line" class Text(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = TextConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """The `data_files` kwarg in load_dataset() can be a str, List[str], Dict[str,str], or Dict[str,List[str]]. If str or List[str], then the dataset returns only the 'train' split. If dict, then keys should be from the `datasets.Split` enum. """ if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download_and_extract(self.config.data_files) if isinstance(data_files, (str, list, tuple)): files = data_files if isinstance(files, str): files = [files] return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_files(files)}) ] splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": dl_manager.iter_files(files)})) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa_table.cast(schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table else: return pa_table.cast(pa.schema({"text": pa.string()})) def _generate_tables(self, files): pa_table_names = list(self.config.features) if self.config.features is not None else ["text"] for file_idx, file in enumerate(files): # open in text mode, by default translates universal newlines ("\n", "\r\n" and "\r") into "\n" with open(file, encoding=self.config.encoding) as f: if self.config.sample_by == "line": batch_idx = 0 while True: batch = f.read(self.config.chunksize) if not batch: break batch += f.readline() # finish current line # StringIO.readlines, by default splits only on "\n" (and keeps line breaks) batch = StringIO(batch).readlines() if not self.config.keep_linebreaks: batch = [line.rstrip("\n") for line in batch] pa_table = pa.Table.from_arrays([pa.array(batch)], names=pa_table_names) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(pa_table) batch_idx += 1 elif self.config.sample_by == "paragraph": batch_idx = 0 batch = "" while True: batch += f.read(self.config.chunksize) if not batch: break batch += f.readline() # finish current line batch = batch.split("\n\n") pa_table = pa.Table.from_arrays( [pa.array([example for example in batch[:-1] if example])], names=pa_table_names ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(pa_table) batch_idx += 1 batch = batch[-1] elif self.config.sample_by == "document": text = f.read() pa_table = pa.Table.from_arrays([pa.array([text])], names=pa_table_names) yield file_idx, self._cast_table(pa_table)
open/users/migrations/0006_auto_20200812_0936.py
lawrendran/open
105
11094059
# Generated by Django 2.2.13 on 2020-08-12 13:36 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("users", "0005_add_created_modified_to_user"), ] operations = [ migrations.AlterModelOptions(name="user", options={"ordering": ["-id"]},), ]
tests/unit/test_merchant_account.py
futureironman/braintree_python
182
11094064
<reponame>futureironman/braintree_python from tests.test_helper import * class TestMerchantAccount(unittest.TestCase): def test_create_new_merchant_account_with_all_params(self): params = { "id": "sub_merchant_account", "status": "active", "master_merchant_account": { "id": "master_merchant_account", "status": "active" }, "individual": { "first_name": "John", "last_name": "Doe", "email": "<EMAIL>", "date_of_birth": "1970-01-01", "phone": "3125551234", "ssn_last_4": "6789", "address": { "street_address": "123 Fake St", "locality": "Chicago", "region": "IL", "postal_code": "60622", } }, "business": { "dba_name": "<NAME>", "tax_id": "123456789", }, "funding": { "account_number_last_4": "8798", "routing_number": "071000013", "descriptor": "Joes Bloggs MI", } } merchant_account = MerchantAccount(None, params) self.assertEqual(merchant_account.status, "active") self.assertEqual(merchant_account.id, "sub_merchant_account") self.assertEqual(merchant_account.master_merchant_account.id, "master_merchant_account") self.assertEqual(merchant_account.master_merchant_account.status, "active") self.assertEqual(merchant_account.individual_details.first_name, "John") self.assertEqual(merchant_account.individual_details.last_name, "Doe") self.assertEqual(merchant_account.individual_details.email, "<EMAIL>") self.assertEqual(merchant_account.individual_details.date_of_birth, "1970-01-01") self.assertEqual(merchant_account.individual_details.phone, "3125551234") self.assertEqual(merchant_account.individual_details.ssn_last_4, "6789") self.assertEqual(merchant_account.individual_details.address_details.street_address, "123 Fake St") self.assertEqual(merchant_account.individual_details.address_details.locality, "Chicago") self.assertEqual(merchant_account.individual_details.address_details.region, "IL") self.assertEqual(merchant_account.individual_details.address_details.postal_code, "60622") self.assertEqual(merchant_account.business_details.dba_name, "<NAME>") self.assertEqual(merchant_account.business_details.tax_id, "123456789") self.assertEqual(merchant_account.funding_details.account_number_last_4, "8798") self.assertEqual(merchant_account.funding_details.routing_number, "071000013") self.assertEqual(merchant_account.funding_details.descriptor, "<NAME> MI")
examples/plot_5_unicode_everywhere.py
andriyor/sphinx-gallery
309
11094072
# -*- coding: utf-8 -*- """ Using Unicode everywhere 🤗 =========================== This example demonstrates how to include non-ASCII characters, mostly emoji 🎉 to stress test the build and test environments that parse the example files. """ from __future__ import unicode_literals # 🎉 👍 # Code source: <NAME> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.size'] = 20 plt.rcParams["font.monospace"] = ["DejaVu Sans Mono"] plt.rcParams["font.family"] = "monospace" plt.figure() x = np.random.randn(100) * 2 + 1 y = np.random.randn(100) * 6 + 3 s = np.random.rand(*x.shape) * 800 + 500 plt.scatter(x, y, s, marker=r'$\oint$') x = np.random.randn(60) * 7 - 4 y = np.random.randn(60) * 3 - 2 s = s[:x.size] plt.scatter(x, y, s, alpha=0.5, c='g', marker=r'$\clubsuit$') plt.xlabel('⇒') plt.ylabel('⇒') plt.title('♲' * 10) print('Std out capture 😎') # To avoid matplotlib text output plt.show() # %% # Debug fonts print(plt.rcParams)
ztag/annotations/common_smtp.py
justinbastress/ztag
107
11094089
from ztag.annotation import * class CommonSMTP(Annotation): protocol = protocols.SMTP subprotocol = protocols.SMTP.STARTTLS port = None def process(self, obj, meta): s_banner = obj["banner"][4:] if "Postfix" in s_banner: meta.local_metadata.product = "Postfix" return meta elif "Sendmail" in s_banner: meta.local_metadata.product = "Sendmail" return meta elif "Exim" in s_banner: meta.local_metadata.product = "Exim" return meta elif "gsmtp" in s_banner: meta.local_metadata.manufacturer = "Google" meta.local_metadata.product = "SMTP" return meta
src/pymap3d/vallado.py
scivision/pymap3d
108
11094102
""" converts right ascension, declination to azimuth, elevation and vice versa. Normally do this via AstroPy. These functions are fallbacks for those wihtout AstroPy. Michael Hirsch implementation of algorithms from <NAME> """ from __future__ import annotations from datetime import datetime from .mathfun import sin, cos, degrees, radians, asin, atan2 from .sidereal import datetime2sidereal __all__ = ["azel2radec", "radec2azel"] def azel2radec( az_deg: float, el_deg: float, lat_deg: float, lon_deg: float, time: datetime, ) -> tuple[float, float]: """ converts azimuth, elevation to right ascension, declination Parameters ---------- az_deg : float azimuth (clockwise) to point [degrees] el_deg : float elevation above horizon to point [degrees] lat_deg : float observer WGS84 latitude [degrees] lon_deg : float observer WGS84 longitude [degrees] time : datetime.datetime time of observation Results ------- ra_deg : float right ascension to target [degrees] dec_deg : float declination of target [degrees] from D.Vallado Fundamentals of Astrodynamics and Applications p.258-259 """ if abs(lat_deg) > 90: raise ValueError("-90 <= lat <= 90") az = radians(az_deg) el = radians(el_deg) lat = radians(lat_deg) lon = radians(lon_deg) # %% Vallado "algorithm 28" p 268 dec = asin(sin(el) * sin(lat) + cos(el) * cos(lat) * cos(az)) lha = atan2( -(sin(az) * cos(el)) / cos(dec), (sin(el) - sin(lat) * sin(dec)) / (cos(dec) * cos(lat)) ) lst = datetime2sidereal(time, lon) # lon, ra in RADIANS """ by definition right ascension [0, 360) degrees """ return degrees(lst - lha) % 360, degrees(dec) def radec2azel( ra_deg: float, dec_deg: float, lat_deg: float, lon_deg: float, time: datetime, ) -> tuple[float, float]: """ converts right ascension, declination to azimuth, elevation Parameters ---------- ra_deg : float right ascension to target [degrees] dec_deg : float declination to target [degrees] lat_deg : float observer WGS84 latitude [degrees] lon_deg : float observer WGS84 longitude [degrees] time : datetime.datetime time of observation Results ------- az_deg : float azimuth clockwise from north to point [degrees] el_deg : float elevation above horizon to point [degrees] from <NAME> "Fundamentals of Astrodynamics and Applications " 4th Edition Ch. 4.4 pg. 266-268 """ if abs(lat_deg) > 90: raise ValueError("-90 <= lat <= 90") ra = radians(ra_deg) dec = radians(dec_deg) lat = radians(lat_deg) lon = radians(lon_deg) lst = datetime2sidereal(time, lon) # RADIANS # %% Eq. 4-11 p. 267 LOCAL HOUR ANGLE lha = lst - ra # %% #Eq. 4-12 p. 267 el = asin(sin(lat) * sin(dec) + cos(lat) * cos(dec) * cos(lha)) # %% combine Eq. 4-13 and 4-14 p. 268 az = atan2( -sin(lha) * cos(dec) / cos(el), (sin(dec) - sin(el) * sin(lat)) / (cos(el) * cos(lat)) ) return degrees(az) % 360.0, degrees(el)
aliyun-python-sdk-alb/aliyunsdkalb/request/v20200616/ListLoadBalancersRequest.py
leafcoder/aliyun-openapi-python-sdk
1,001
11094121
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkalb.endpoint import endpoint_data class ListLoadBalancersRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Alb', '2020-06-16', 'ListLoadBalancers','alb') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_LoadBalancerNames(self): # Array return self.get_query_params().get('LoadBalancerNames') def set_LoadBalancerNames(self, LoadBalancerNames): # Array for index1, value1 in enumerate(LoadBalancerNames): self.add_query_param('LoadBalancerNames.' + str(index1 + 1) + '.LoadBalancerNames', value1) def get_LoadBalancerIds(self): # Array return self.get_query_params().get('LoadBalancerIds') def set_LoadBalancerIds(self, LoadBalancerIds): # Array for index1, value1 in enumerate(LoadBalancerIds): self.add_query_param('LoadBalancerIds.' + str(index1 + 1) + '.LoadBalancerIds', value1) def get_ResourceGroupId(self): # String return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self, ResourceGroupId): # String self.add_query_param('ResourceGroupId', ResourceGroupId) def get_NextToken(self): # String return self.get_query_params().get('NextToken') def set_NextToken(self, NextToken): # String self.add_query_param('NextToken', NextToken) def get_LoadBalancerBussinessStatus(self): # String return self.get_query_params().get('LoadBalancerBussinessStatus') def set_LoadBalancerBussinessStatus(self, LoadBalancerBussinessStatus): # String self.add_query_param('LoadBalancerBussinessStatus', LoadBalancerBussinessStatus) def get_AddressType(self): # String return self.get_query_params().get('AddressType') def set_AddressType(self, AddressType): # String self.add_query_param('AddressType', AddressType) def get_VpcIds(self): # Array return self.get_query_params().get('VpcIds') def set_VpcIds(self, VpcIds): # Array for index1, value1 in enumerate(VpcIds): self.add_query_param('VpcIds.' + str(index1 + 1) + '.VpcIds', value1) def get_Tag(self): # Array return self.get_query_params().get('Tag') def set_Tag(self, Tag): # Array for index1, value1 in enumerate(Tag): for key2, value2 in value1.items(): self.add_query_param('Tag.' + str(index1 + 1) + '.' + key2 + '.Value', value2) self.add_query_param('Tag.' + str(index1 + 1) + '.' + key2 + '.Key', value2) def get_LoadBalancerStatus(self): # String return self.get_query_params().get('LoadBalancerStatus') def set_LoadBalancerStatus(self, LoadBalancerStatus): # String self.add_query_param('LoadBalancerStatus', LoadBalancerStatus) def get_MaxResults(self): # Integer return self.get_query_params().get('MaxResults') def set_MaxResults(self, MaxResults): # Integer self.add_query_param('MaxResults', MaxResults) def get_ZoneId(self): # String return self.get_query_params().get('ZoneId') def set_ZoneId(self, ZoneId): # String self.add_query_param('ZoneId', ZoneId) def get_PayType(self): # String return self.get_query_params().get('PayType') def set_PayType(self, PayType): # String self.add_query_param('PayType', PayType)
split_folder/__init__.py
Nivratti/split-folders
292
11094127
__version__ = "0.4.3" from .split import *
src/WebApp/App_Data/jobs/continuous/DatabricksAndSimulatedDevicesSetup/simulated_devices_setup.py
Azure/AI
110
11094146
import os import json import random from iot_hub_helpers import IoTHub def create_device(iot_hub, device_id, simulation_parameters): iot_hub.create_device(device_id) tags = { 'simulated': True } tags.update(simulation_parameters) twin_properties = { 'tags': tags } iot_hub.update_twin(device_id, json.dumps(twin_properties)) if __name__ == "__main__": IOT_HUB_NAME = os.environ['IOT_HUB_NAME'] IOT_HUB_OWNER_KEY = os.environ['IOT_HUB_OWNER_KEY'] iot_hub = IoTHub(IOT_HUB_NAME, IOT_HUB_OWNER_KEY) count = 5 for i in range(count): device_id = 'Machine-{0:03d}'.format(i) h1 = random.uniform(0.8, 0.95) h2 = random.uniform(0.8, 0.95) simulation_parameters = { 'simulator': 'devices.engines.Engine', 'h1': h1, 'h2': h2 } create_device(iot_hub, device_id, simulation_parameters)
server/actor_libs/database/orm/utils.py
goodfree/ActorCloud
173
11094155
from datetime import datetime from typing import List, Dict from flask import g, request from sqlalchemy import asc, desc, inspect, or_ from sqlalchemy.sql.sqltypes import Integer, String from actor_libs.cache import Cache from actor_libs.errors import ParameterInvalid def dumps_query_result(query_result, **kwargs): """ Dump a query result """ record = {} if query_result.__class__.__name__ == 'result': query_result_dict = mapping_result(query_result) for key, value in query_result_dict.items(): # When query has with_entities if hasattr(value, '__tablename__'): schema = get_model_schema(value.__class__.__name__) dump_dict = schema.dump(value).data record.update(dump_dict) elif isinstance(value, datetime): record[key] = value.strftime("%Y-%m-%d %H:%M:%S") else: record[key] = value else: schema = get_model_schema(query_result.__class__.__name__) record = schema.dump(query_result).data if kwargs.get('code_list'): record = dict_code_label(record, kwargs['code_list']) return record def dumps_query_results(query_results: List, **kwargs): """ Dump multiple query results """ records = [] records_append = records.append for query_result in query_results: record = dumps_query_result(query_result) if kwargs.get('code_list'): record = dict_code_label(record, kwargs['code_list']) records_append(record) return records def paginate(query, code_list=None): """ Result display by paging of query """ page = request.args.get('_page', 1, type=int) limit = request.args.get('_limit', 10, type=int) limit = 1000 if limit > 1000 else limit offset = (page - 1) * limit if (page - 1) * limit > 0 else 0 if request.args.get('paginate', type=str) == 'false': query_results = query.limit(10000).all() page, limit = 0, 10000 else: query_results = query.limit(limit).offset(offset).all() # paginate items count if page == 1 and len(query_results) < limit: total_count = len(query_results) else: total_count = query.order_by(None).count() records = dumps_query_results(query_results, code_list=code_list) meta = {'page': page, 'limit': limit, 'count': total_count} # build paginate schema result = {'items': records, 'meta': meta} return result def sort_query(model, query): """ sort query """ order = request.args.get('_order', 'desc', type=str) sort_key = request.args.get('_sort', type=str) if sort_key: sort_key = sort_key elif hasattr(model, 'createAt'): sort_key = 'createAt' elif hasattr(model, 'msgTime'): sort_key = 'msgTime' if hasattr(model, sort_key): if order == 'asc': query = query.order_by(asc(getattr(model, sort_key))) else: query = query.order_by(desc(getattr(model, sort_key))) return query def base_filter_tenant(model, query, tenant_uid): """ Filter tenant """ if not tenant_uid: tenant_uid = g.get('tenant_uid') exclude_models = ['Message', 'Lwm2mObject', 'Lwm2mItem'] if model.__name__ in exclude_models or not tenant_uid: # admin user not filter return query if hasattr(model, 'userIntID'): from app.models import User mapper = inspect(User) # inspect model is join user query if mapper not in query._join_entities: query = query.join(User, User.id == model.userIntID) query = query.filter(User.tenantID == tenant_uid) elif hasattr(model, 'tenantID'): if model.__name__ == 'Role': from app.models import Role query = query.filter(or_(Role.tenantID == tenant_uid, Role.isShare == 1)) else: query = query.filter(model.tenantID == tenant_uid) return query def filter_api(model, query): """ Filter by application """ exclude_models = [] app_uid = g.get('app_uid') if any([ not app_uid, model.__name__ in exclude_models ]): return query group_uid_attr = hasattr(model, 'groupID') device_uid_attr = hasattr(model, 'deviceID') device_id_attr = hasattr(model, 'deviceIntID') if not any([group_uid_attr, device_uid_attr, device_id_attr]): return query from app.models import ApplicationGroup, Group, GroupDevice, Device app_groups = Group.query \ .join(ApplicationGroup, ApplicationGroup.c.groupID == Group.groupID) \ .filter(Group.userIntID == g.user_id) \ .with_entities(Group.groupID).all() if group_uid_attr: query = query.filter(model.groupID.in_(app_groups)) elif device_uid_attr: devices_uid = Device.query \ .join(GroupDevice, GroupDevice.c.deviceIntID == Device.id) \ .filter(GroupDevice.c.groupID.in_(app_groups)) \ .with_entities(Device.deviceID).all() query = query.filter(model.deviceID.in_(devices_uid)) elif device_id_attr: devices_id = Device.query \ .join(GroupDevice, GroupDevice.c.deviceIntID == Device.id) \ .filter(GroupDevice.c.groupID.in_(app_groups)) \ .with_entities(Device.id).all() query = query.filter(model.deviceIntID.in_(devices_id)) return query def filter_group(model, query): """ Filter by group """ exclude_models = [] user_auth_type = g.get('user_auth_type') if any([ not user_auth_type, user_auth_type == 1, model.__name__ in exclude_models ]): return query group_uid_attr = hasattr(model, 'groupID') device_uid_attr = hasattr(model, 'deviceID') device_id_attr = hasattr(model, 'deviceIntID') if not any([group_uid_attr, device_uid_attr, device_id_attr]): return query from app.models import UserGroup, GroupDevice, Device, Group user_groups = Group.query \ .join(UserGroup, UserGroup.c.groupID == Group.groupID) \ .filter(UserGroup.c.userIntID == g.user_id) \ .with_entities(Group.groupID).all() if group_uid_attr: query = query.filter(model.groupID.in_(user_groups)) elif device_uid_attr: devices_uid = Device.query \ .join(GroupDevice, GroupDevice.c.deviceIntID == Device.id) \ .filter(GroupDevice.c.groupID.in_(user_groups)) \ .with_entities(Device.deviceID).all() query = query.filter(model.deviceID.in_(devices_uid)) elif device_id_attr: devices_id = Device.query \ .join(GroupDevice, GroupDevice.c.deviceIntID == Device.id) \ .filter(GroupDevice.c.groupID.in_(user_groups)) \ .with_entities(Device.id).all() query = query.filter(model.deviceIntID.in_(devices_id)) return query def filter_request_args(model, query): """ Query by request args """ exclude_args = [ '_page', '_limit', 'paginate', '_sort', '_order', 'startTime', 'endTime', 'createAt', 'msgTime', 'password', 'token', 'id', 'userIntID', 'tenantID' ] for key, value in request.args.items(): if any([key in exclude_args, value == '', value is None]): continue elif key.endswith('_like'): # 相似类型查询 key = key.replace('_like', '') if hasattr(model, key) and key not in exclude_args: column = getattr(model, key) if not check_column_type(column, value): continue query = query.filter(column.ilike(u'%{0}%'.format(value))) elif key.endswith('_in'): # 范围查询 key = key.replace('_in', '') try: in_value_list = [int(row) for row in value.split(',')] except Exception: raise ParameterInvalid(field=key) if hasattr(model, key) and key not in exclude_args: column = getattr(model, key) if not check_column_type(column, value): continue query = query.filter(column.in_(in_value_list)) elif key == 'time_name' and value in ['startTime', 'endTime', 'createAt', 'msgTime']: start_time = request.args.get('start_time') end_time = request.args.get('end_time') query = query.filter(getattr(model, value).between(start_time, end_time)) elif hasattr(model, key): column = getattr(model, key) if not check_column_type(column, value): continue query = query.filter(column == value) else: continue return query def mapping_result(query_result): convert_dict = { key: getattr(query_result, key) for key in query_result.keys() } return convert_dict def dict_code_label(record: Dict, code_list: List = None): """ Convert dict_code """ cache = Cache() dict_code_cache = cache.dict_code if not dict_code_cache: return record for code in code_list: if record.get(code) is None or not dict_code_cache.get(code): continue code_value_dict = dict_code_cache[code] code_value = record[code] if code_value_dict.get(code_value): record[f'{code}Label'] = code_value_dict[code_value].get(f'{g.language}Label') else: record[f'{code}Label'] = None return record def get_model_schema(model_name): cache = Cache() models_schema_cache = cache.models_schema_cache if models_schema_cache.get(model_name): model_schema = models_schema_cache[model_name] else: from app import schemas schema_name = f"{model_name}Schema" if hasattr(schemas, schema_name): model_schema = getattr(schemas, schema_name)() cache.models_schema_cache[model_name] = model_schema else: model_schema = None return model_schema def check_column_type(model_column, value): value_type = type(value) column_type = type(model_column.type) status = False if value_type == int and issubclass(column_type, Integer): status = True elif value_type == str: if value.isdigit() and issubclass(column_type, Integer): status = True elif issubclass(column_type, String): status = True return status
libcity/model/traffic_speed_prediction/Seq2Seq.py
moghadas76/test_bigcity
221
11094186
import torch import torch.nn as nn import random from logging import getLogger from libcity.model import loss from libcity.model.abstract_traffic_state_model import AbstractTrafficStateModel class Encoder(nn.Module): def __init__(self, device, rnn_type, input_size, hidden_size=64, num_layers=1, dropout=0, bidirectional=False): super().__init__() self.device = device self.rnn_type = rnn_type self.layers = num_layers self.hidden_size = hidden_size self.dropout = dropout if bidirectional: self.num_directions = 2 else: self.num_directions = 1 if self.rnn_type.upper() == 'GRU': self.rnn = nn.GRU(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional) elif self.rnn_type.upper() == 'LSTM': self.rnn = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional) elif self.rnn_type.upper() == 'RNN': self.rnn = nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional) else: raise ValueError('Unknown RNN type: {}'.format(self.rnn_type)) def forward(self, x): # x = [seq_len, batch_size, input_size] # h_0 = [layers * num_directions, batch_size, hidden_size] h_0 = torch.zeros(self.layers * self.num_directions, x.shape[1], self.hidden_size).to(self.device) if self.rnn_type == 'LSTM': c_0 = torch.zeros(self.layers * self.num_directions, x.shape[1], self.hidden_size).to(self.device) out, (hn, cn) = self.rnn(x, (h_0, c_0)) # output = [seq_len, batch_size, hidden_size * num_directions] # hn/cn = [layers * num_directions, batch_size, hidden_size] else: out, hn = self.rnn(x, h_0) cn = torch.zeros(hn.shape) # output = [seq_len, batch_size, hidden_size * num_directions] # hn = [layers * num_directions, batch_size, hidden_size] return hn, cn class Decoder(nn.Module): def __init__(self, device, rnn_type, input_size, hidden_size=64, num_layers=1, dropout=0, bidirectional=False): super().__init__() self.device = device self.rnn_type = rnn_type self.layers = num_layers self.hidden_size = hidden_size self.dropout = dropout if bidirectional: self.num_directions = 2 else: self.num_directions = 1 if self.rnn_type.upper() == 'GRU': self.rnn = nn.GRU(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional) elif self.rnn_type.upper() == 'LSTM': self.rnn = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional) elif self.rnn_type.upper() == 'RNN': self.rnn = nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional) else: raise ValueError('Unknown RNN type: {}'.format(self.rnn_type)) self.fc = nn.Linear(hidden_size * self.num_directions, input_size) def forward(self, x, hn, cn): # x = [batch_size, input_size] # hn, cn = [layers * num_directions, batch_size, hidden_size] x = x.unsqueeze(0) # x = [seq_len = 1, batch_size, input_size] if self.rnn_type == 'LSTM': out, (hn, cn) = self.rnn(x, (hn, cn)) else: out, hn = self.rnn(x, hn) cn = torch.zeros(hn.shape) # out = [seq_len = 1, batch_size, hidden_size * num_directions] # hn = [layers * num_directions, batch_size, hidden_size] out = self.fc(out.squeeze(0)) # out = [batch_size, input_size] return out, hn, cn class Seq2Seq(AbstractTrafficStateModel): def __init__(self, config, data_feature): super().__init__(config, data_feature) self._scaler = self.data_feature.get('scaler') self.num_nodes = self.data_feature.get('num_nodes', 1) self.feature_dim = self.data_feature.get('feature_dim', 1) self.output_dim = self.data_feature.get('output_dim', 1) self.input_window = config.get('input_window', 1) self.output_window = config.get('output_window', 1) self.device = config.get('device', torch.device('cpu')) self._logger = getLogger() self._scaler = self.data_feature.get('scaler') self.rnn_type = config.get('rnn_type', 'GRU') self.hidden_size = config.get('hidden_size', 64) self.num_layers = config.get('num_layers', 1) self.dropout = config.get('dropout', 0) self.bidirectional = config.get('bidirectional', False) self.teacher_forcing_ratio = config.get('teacher_forcing_ratio', 0) self.encoder = Encoder(self.device, self.rnn_type, self.num_nodes * self.feature_dim, self.hidden_size, self.num_layers, self.dropout, self.bidirectional) self.decoder = Decoder(self.device, self.rnn_type, self.num_nodes * self.output_dim, self.hidden_size, self.num_layers, self.dropout, self.bidirectional) self._logger.info('You select rnn_type {} in Seq2Seq!'.format(self.rnn_type)) def forward(self, batch): src = batch['X'] # [batch_size, input_window, num_nodes, feature_dim] target = batch['y'] # [batch_size, output_window, num_nodes, feature_dim] src = src.permute(1, 0, 2, 3) # [input_window, batch_size, num_nodes, feature_dim] target = target.permute(1, 0, 2, 3) # [output_window, batch_size, num_nodes, feature_dim] batch_size = src.shape[1] src = src.reshape(self.input_window, batch_size, self.num_nodes * self.feature_dim) target = target[..., :self.output_dim].contiguous().reshape( self.output_window, batch_size, self.num_nodes * self.output_dim) # src = [self.input_window, batch_size, self.num_nodes * self.feature_dim] # target = [self.output_window, batch_size, self.num_nodes * self.output_dim] encoder_hn, encoder_cn = self.encoder(src) decoder_hn = encoder_hn decoder_cn = encoder_cn # encoder_hidden_state = [layers * num_directions, batch_size, hidden_size] decoder_input = torch.randn(batch_size, self.num_nodes * self.output_dim).to(self.device) # decoder_input = [batch_size, self.num_nodes * self.output_dim] outputs = [] for i in range(self.output_window): decoder_output, decoder_hn, decoder_cn = \ self.decoder(decoder_input, decoder_hn, decoder_cn) # decoder_output = [batch_size, self.num_nodes * self.output_dim] # decoder_hn = [layers * num_directions, batch_size, hidden_size] outputs.append(decoder_output.reshape(batch_size, self.num_nodes, self.output_dim)) # 只有训练的时候才考虑用真值 if self.training and random.random() < self.teacher_forcing_ratio: decoder_input = target[i] else: decoder_input = decoder_output outputs = torch.stack(outputs) # outputs = [self.output_window, batch_size, self.num_nodes, self.output_dim] return outputs.permute(1, 0, 2, 3) def calculate_loss(self, batch): y_true = batch['y'] y_predicted = self.predict(batch) y_true = self._scaler.inverse_transform(y_true[..., :self.output_dim]) y_predicted = self._scaler.inverse_transform(y_predicted[..., :self.output_dim]) return loss.masked_mae_torch(y_predicted, y_true, 0) def predict(self, batch): return self.forward(batch)
venv/lib/python3.8/site-packages/cloudinary/cache/storage/key_value_storage.py
Joshua-Barawa/My-Photos
199
11094197
from abc import ABCMeta, abstractmethod class KeyValueStorage: """ A simple key-value storage abstract base class """ __metaclass__ = ABCMeta @abstractmethod def get(self, key): """ Get a value identified by the given key :param key: The unique identifier :return: The value identified by key or None if no value was found """ raise NotImplementedError @abstractmethod def set(self, key, value): """ Store the value identified by the key :param key: The unique identifier :param value: Value to store :return: bool True on success or False on failure """ raise NotImplementedError @abstractmethod def delete(self, key): """ Deletes item by key :param key: The unique identifier :return: bool True on success or False on failure """ raise NotImplementedError @abstractmethod def clear(self): """ Clears all entries :return: bool True on success or False on failure """ raise NotImplementedError
examples/metapath2vec/utils/config.py
zbmain/PGL
1,389
11094213
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """doc """ import sys import datetime import os import yaml import random import shutil import six import warnings import glob def get_last_dir(path): """Get the last directory of a path. """ if os.path.isfile(path): # e.g: "../checkpoints/task_name/epoch0_step300/predict.txt" # return "epoch0_step300" last_dir = path.split("/")[-2] elif os.path.isdir(path): if path[-1] == '/': # e.g: "../checkpoints/task_name/epoch0_step300/" last_dir = path.split('/')[-2] else: # e.g: "../checkpoints/task_name/epoch0_step300" last_dir = path.split('/')[-1] else: # path or file is not existed warnings.warn('%s is not a existed file or path' % path) last_dir = "" return last_dir class AttrDict(dict): def __init__(self, d={}, **kwargs): if kwargs: d.update(**kwargs) for k, v in d.items(): setattr(self, k, v) # Class attributes # for k in self.__class__.__dict__.keys(): # if not (k.startswith('__') and k.endswith('__')) and not k in ('update', 'pop'): # setattr(self, k, getattr(self, k)) def __setattr__(self, name, value): if isinstance(value, (list, tuple)): value = [ self.__class__(x) if isinstance(x, dict) else x for x in value ] elif isinstance(value, dict) and not isinstance(value, self.__class__): value = self.__class__(value) super(AttrDict, self).__setattr__(name, value) super(AttrDict, self).__setitem__(name, value) __setitem__ = __setattr__ def __getattr__(self, attr): try: value = super(AttrDict, self).__getitem__(attr) except KeyError: # log.warn("%s attribute is not existed, return None" % attr) warnings.warn("%s attribute is not existed, return None" % attr) value = None return value def update(self, e=None, **f): d = e or dict() d.update(f) for k in d: setattr(self, k, d[k]) def pop(self, k, d=None): delattr(self, k) return super(EasyDict, self).pop(k, d) def make_dir(path): """Build directory""" if not os.path.exists(path): os.makedirs(path) def load_config(config_file): """Load config file""" with open(config_file) as f: if hasattr(yaml, 'FullLoader'): config = yaml.load(f, Loader=yaml.FullLoader) else: config = yaml.load(f) return config def create_necessary_dirs(config): """Create some necessary directories to save some important files. """ config.log_dir = os.path.join(config.log_dir, config.task_name) config.save_dir = os.path.join(config.save_dir, config.task_name) config.output_dir = os.path.join(config.output_dir, config.task_name) make_dir(config.log_dir) make_dir(config.save_dir) make_dir(config.output_dir) def save_files(config): """Save config file so that we can know the config when we look back """ filelist = config.files2saved targetpath = config.log_dir if filelist is not None: for file_or_dir in filelist: if os.path.isdir(file_or_dir): last_name = get_last_dir(file_or_dir) dst = os.path.join(targetpath, last_name) try: copy_and_overwrite(file_or_dir, dst) except Exception as e: print(e) print("backup %s to %s" % (file_or_dir, targetpath)) else: for filename in files(files=file_or_dir): if os.path.isfile(filename): print("backup %s to %s" % (filename, targetpath)) shutil.copy2(filename, targetpath) else: print("%s is not existed." % filename) def copy_and_overwrite(from_path, to_path): if os.path.exists(to_path): shutil.rmtree(to_path) shutil.copytree(from_path, to_path) def files(curr_dir='./', files='*.py'): for i in glob.glob(os.path.join(curr_dir, files)): yield i def prepare_config(config_file, isCreate=False, isSave=False): if os.path.isfile(config_file): config = load_config(config_file) config = AttrDict(config) else: raise TypeError("%s is not a yaml file" % config_file) if isCreate: create_necessary_dirs(config) if isSave: save_files(config) return config
util/make_ascii.py
wenq1/duktape
4,268
11094233
#!/usr/bin/env python2 # # Paranoia escape input file to be printable ASCII. # import os, sys inp = sys.stdin.read().decode('utf-8') for c in inp: if (ord(c) >= 0x20 and ord(c) <= 0x7e) or (c in '\x0a'): sys.stdout.write(c) else: sys.stdout.write('\\u%04x' % ord(c))
tests/python/contrib/test_ethosu/cascader/test_propagator.py
XiaoSong9905/tvm
4,640
11094235
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest pytest.importorskip("ethosu.vela") from math import isclose from tvm.contrib.ethosu.cascader import StripeConfig, Propagator def test_propagator(): transform = [ [1, 0, 0, 0], [0, 1 / 2, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1], ] offset = [-1, 1, 2] propagator = Propagator( transform=transform, offset=offset, ) assert list(propagator.offset) == offset for i, row in enumerate(transform): for j, value in enumerate(row): assert isclose(propagator.transform[i][j], value) @pytest.mark.parametrize( ["propagator", "input_stripe_config", "output_stripe_config"], [ ( Propagator( transform=[ [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 1 / 16, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 16], [0, 0, 0, 0, 1], ], offset=[0, 0, 0, 0, 0], ), StripeConfig( shape=[1, 12, 14, 36], extent=[1, 24, 18, 72], strides=[1, 12, 14, 36], order=[1, 2, 3, 4], stripes=[1, 2, 2, 2], offset=[0, 0, 0, 0], ), StripeConfig( shape=[1, 12, 3, 14, 16], extent=[1, 24, 5, 18, 16], strides=[1, 12, 2.25, 14, 0], order=[1, 2, 4, 3, 0], stripes=[1, 2, 2, 2, 1], offset=[0, 0, 0, 0, 0], ), ), ( Propagator( transform=[ [0.5, 0, 0], [0, 0.5, 0], [0, 0, 1], ], offset=[0, 0], ), StripeConfig( shape=[3, 5], extent=[27, 50], strides=[3, 5], order=[1, 2], stripes=[9, 10], offset=[0, 0], ), StripeConfig( shape=[2, 3], extent=[14, 25], strides=[1.5, 2.5], order=[1, 2], stripes=[9, 10], offset=[0, 0], ), ), ( Propagator( transform=[ [2, 0, 0, 4], [0, 1, 0, 2], [0, 0, 0, 8], [0, 0, 0, 1], ], offset=[-2, -1, 0], ), StripeConfig( shape=[4, 6, 32], extent=[48, 60, 64], strides=[4, 6, 32], order=[1, 2, 3], stripes=[12, 10, 2], offset=[0, 0, 0], ), StripeConfig( shape=[12, 8, 8], extent=[100, 62, 8], strides=[8, 6, 0], order=[1, 2, 0], stripes=[12, 10, 1], offset=[-2, -1, 0], ), ), ], ) def test_propagate(propagator, input_stripe_config, output_stripe_config): result_stripe_config = propagator.propagate(input_stripe_config) assert result_stripe_config == output_stripe_config if __name__ == "__main__": pytest.main([__file__])
mythril/analysis/module/__init__.py
kalloc/mythril
1,887
11094284
<reponame>kalloc/mythril<filename>mythril/analysis/module/__init__.py<gh_stars>1000+ from mythril.analysis.module.base import EntryPoint, DetectionModule from mythril.analysis.module.loader import ModuleLoader from mythril.analysis.module.util import ( get_detection_module_hooks, reset_callback_modules, )
python/242_Valid_Anagram.py
dvlpsh/leetcode-1
4,416
11094295
class Solution(object): # def isAnagram(self, s, t): # """ # :type s: str # :type t: str # :rtype: bool # """ # # sort # return sorted(s) == sorted(t) def isAnagram(self, s, t): """ :type s: str :type t: str :rtype: bool """ # hash # https://leetcode.com/articles/valid-anagram/ if len(s) != len(t): return False counter = [0] * 26 for i in range(len(s)): counter[ord(s[i]) - ord('a')] += 1 counter[ord(t[i]) - ord('a')] -= 1 for num in counter: if num != 0: return False return True
dm_main.py
david-gpu/deep-makeover
267
11094309
import os # Disable Tensorflow's INFO and WARNING messages # See http://stackoverflow.com/questions/35911252 if 'TF_CPP_MIN_LOG_LEVEL' not in os.environ: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import numpy as np import numpy.random import os.path import random import tensorflow as tf import dm_celeba import dm_flags import dm_infer import dm_input import dm_model import dm_show import dm_train import dm_utils FLAGS = tf.app.flags.FLAGS def _setup_tensorflow(): # Create session config = tf.ConfigProto(log_device_placement=False) #, intra_op_parallelism_threads=1) sess = tf.Session(config=config) # Initialize all RNGs with a deterministic seed with sess.graph.as_default(): tf.set_random_seed(FLAGS.random_seed) random.seed(FLAGS.random_seed) np.random.seed(FLAGS.random_seed) return sess # TBD: Move to dm_train.py? def _prepare_train_dirs(): # Create checkpoint dir (do not delete anything) if not tf.gfile.Exists(FLAGS.checkpoint_dir): tf.gfile.MakeDirs(FLAGS.checkpoint_dir) # Cleanup train dir if tf.gfile.Exists(FLAGS.train_dir): try: tf.gfile.DeleteRecursively(FLAGS.train_dir) except: pass tf.gfile.MakeDirs(FLAGS.train_dir) # Ensure dataset folder exists if not tf.gfile.Exists(FLAGS.dataset) or \ not tf.gfile.IsDirectory(FLAGS.dataset): raise FileNotFoundError("Could not find folder `%s'" % (FLAGS.dataset,)) # TBD: Move to dm_train.py? def _get_train_data(): # Setup global tensorflow state sess = _setup_tensorflow() # Prepare directories _prepare_train_dirs() # Which type of transformation? # Note: eyeglasses and sunglasses are filtered out because they tend to produce artifacts if FLAGS.train_mode == 'ftm' or FLAGS.train_mode == 'f2m': # Trans filter: from female to attractive male # Note: removed facial hair from target images because otherwise the network becomes overly focused on rendering facial hair source_filter = {'Male':False, 'Blurry':False, 'Eyeglasses':False} target_filter = {'Male':True, 'Blurry':False, 'Eyeglasses':False, 'Attractive':True, 'Goatee':False, 'Mustache':False, 'No_Beard':True} elif FLAGS.train_mode == 'mtf' or FLAGS.train_mode == 'm2f': # Trans filter: from male to attractuve female source_filter = {'Male':True, 'Blurry':False, 'Eyeglasses':False} target_filter = {'Male':False, 'Blurry':False, 'Eyeglasses':False, 'Attractive':True} elif FLAGS.train_mode == 'ftf' or FLAGS.train_mode == 'f2f': # Vanity filter: from female to attractive female source_filter = {'Male':False, 'Blurry':False, 'Eyeglasses':False} target_filter = {'Male':False, 'Blurry':False, 'Eyeglasses':False, 'Attractive':True} elif FLAGS.train_mode == "mtm" or FLAGS.train_mode == 'm2m': # Vanity filter: from male to attractive male source_filter = {'Male':True, 'Blurry':False, 'Eyeglasses':False} target_filter = {'Male':True, 'Blurry':False, 'Eyeglasses':False, 'Attractive':True} else: raise ValueError('`train_mode` must be one of: `ftm`, `mtf`, `ftf` or `mtm`') # Setup async input queues selected = dm_celeba.select_samples(source_filter) source_images = dm_input.input_data(sess, 'train', selected) test_images = dm_input.input_data(sess, 'test', selected) print('%8d source images selected' % (len(selected),)) selected = dm_celeba.select_samples(target_filter) target_images = dm_input.input_data(sess, 'train', selected) print('%8d target images selected' % (len(selected),)) print() # Annealing temperature: starts at 1.0 and decreases exponentially over time annealing = tf.Variable(initial_value=1.0, trainable=False, name='annealing') halve_annealing = tf.assign(annealing, 0.5*annealing) # Create and initialize training and testing models train_model = dm_model.create_model(sess, source_images, target_images, annealing, verbose=True) print("Building testing model...") test_model = dm_model.create_model(sess, test_images, None, annealing) print("Done.") # Forget this line and TF will deadlock at the beginning of training tf.train.start_queue_runners(sess=sess) # Pack all for convenience train_data = dm_utils.Container(locals()) return train_data # TBD: Move to dm_infer.py? def _get_inference_data(): # Setup global tensorflow state sess = _setup_tensorflow() # Load single image to use for inference if FLAGS.infile is None: raise ValueError('Must specify inference input file through `--infile <filename>` command line argument') if not tf.gfile.Exists(FLAGS.infile) or tf.gfile.IsDirectory(FLAGS.infile): raise FileNotFoundError('File `%s` does not exist or is a directory' % (FLAGS.infile,)) filenames = [FLAGS.infile] infer_images = dm_input.input_data(sess, 'inference', filenames) print('Loading model...') # Create inference model infer_model = dm_model.create_model(sess, infer_images) # Load model parameters from checkpoint checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) try: saver = tf.train.Saver() saver.restore(sess, checkpoint.model_checkpoint_path) del saver del checkpoint except: raise RuntimeError('Unable to read checkpoint from `%s`' % (FLAGS.checkpoint_dir,)) print('Done.') # Pack all for convenience infer_data = dm_utils.Container(locals()) return infer_data def main(argv=None): if FLAGS.run == 'train': train_data = _get_train_data() dm_train.train_model(train_data) elif FLAGS.run == 'inference': infer_data = _get_inference_data() dm_infer.inference(infer_data) else: print("Operation `%s` not supported" % (FLAGS.run,)) if __name__ == '__main__': dm_flags.define_flags() tf.app.run()
train.py
kanchen-usc/QRC-Net
117
11094314
<filename>train.py import tensorflow as tf import os, sys import numpy as np import time from dataprovider import dataprovider from model import ground_model from util.iou import calc_iou from util.iou import calc_iou_by_reg_feat from util.nms import nms import argparse parser = argparse.ArgumentParser() parser.add_argument("-m", "--model_name", type=str, default='qrc') parser.add_argument("-r", "--reward_con", type=float, default=0.2) parser.add_argument("-g", "--gpu", type=str, default='0') parser.add_argument("--restore_id", type=int, default=0) args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu class Config(object): batch_size = 40 img_feat_dir = './feature' sen_dir = './annotation' train_file_list = 'flickr30k_train_val.lst' test_file_list = 'flickr30k_test.lst' log_file = './log/ground_supervised' save_path = './model/ground_supervised' vocab_size = 17869 num_epoch = 3 max_step = 40000 optim='adam' dropout = 0.5 lr = 0.0001 weight_decay=0.0 lstm_dim = 500 def update_feed_dict(dataprovider, model, is_train): img_feat, sen_feat, gt_reg, bbx_label, reward_batch, pos_all, pos_reg_all = dataprovider.get_next_batch_reg() feed_dict = { model.sen_data: sen_feat, model.vis_data: img_feat, model.bbx_label: bbx_label, model.gt_reg: gt_reg, model.reward: reward_batch, model.is_train: is_train} if dataprovider.multi_reg: feed_dict[model.pos_all] = pos_all feed_dict[model.pos_reg_all] = pos_reg_all feed_dict[model.num_reg] = float(pos_all.shape[0]) return feed_dict def eval_cur_batch(gt_label, cur_logits, is_train=True, num_sample=0, pos_or_reg=None, bbx_loc=None, gt_loc_all=None, ht = 1.0, wt = 1.0): accu = 0.0 if is_train: res_prob = cur_logits[:, :, 0] res_label = np.argmax(res_prob, axis=1) accu = float(np.sum(res_label == gt_label)) / float(len(gt_label)) else: num_bbx = len(bbx_loc) res_prob = cur_logits[:, :num_bbx, 0] res_label = np.argmax(res_prob, axis=1) for gt_id in range(len(pos_or_reg)): cur_gt_pos = gt_label[gt_id] success = False cur_gt = gt_loc_all[gt_id] if np.any(cur_gt): cur_bbx = bbx_loc[res_label[gt_id]] cur_reg = cur_logits[gt_id, res_label[gt_id], 1:] #print 'IOU Stats: ', cur_gt, cur_bbx, cur_reg iou, _ = calc_iou_by_reg_feat(cur_gt, cur_bbx, cur_reg, ht, wt) if iou > 0.5: success = True if success: accu += 1.0 accu /= float(num_sample) return accu def load_img_id_list(file_list): img_list = [] with open(file_list) as fin: for img_id in fin.readlines(): img_list.append(int(img_id.strip())) img_list = np.array(img_list).astype('int') return img_list def run_eval(sess, dataprovider, model, eval_op, feed_dict): num_test = 0.0 num_corr_all = 0.0 num_cnt_all = 0.0 for img_ind, img_id in enumerate(dataprovider.test_list): img_feat_raw, sen_feat_batch, bbx_gt_batch, gt_loc_all, \ bbx_loc, num_sample_all, pos_or_reg, ht, wt = dataprovider.get_test_feat_reg(img_id) if num_sample_all > 0: num_test += 1.0 num_corr = 0 num_sample = len(bbx_gt_batch) img_feat = feed_dict[model.vis_data] for i in range(num_sample): img_feat[i] = img_feat_raw sen_feat = feed_dict[model.sen_data] sen_feat[:num_sample] = sen_feat_batch eval_feed_dict = { model.sen_data: sen_feat, model.vis_data: img_feat, model.is_train: False} cur_att_logits = sess.run(eval_op, feed_dict=eval_feed_dict) cur_att_logits = cur_att_logits[:num_sample] # print cur_att_logits cur_accuracy = eval_cur_batch(bbx_gt_batch, cur_att_logits, False, num_sample_all, pos_or_reg, bbx_loc, gt_loc_all, ht , wt) num_valid = np.sum(np.all(gt_loc_all, 1)) print '%d/%d: %d/%d, %.4f'%(img_ind, len(dataprovider.test_list), num_valid, num_sample, cur_accuracy) num_corr_all += cur_accuracy*num_sample_all num_cnt_all += float(num_sample_all) accu = num_corr_all/num_cnt_all print 'Accuracy = %.4f'%(accu) return accu def run_training(): train_list = [] test_list = [] config = Config() train_list = load_img_id_list(config.train_file_list) test_list = load_img_id_list(config.test_file_list) config.save_path = config.save_path + '_' + args.model_name if not os.path.isdir(config.save_path): print 'Save models into %s'%config.save_path os.mkdir(config.save_path) log_file = config.log_file + '_' + args.model_name + '.log' config.hidden_size = 500 config.is_multi = True config.reward_con = args.reward_con log = open(log_file, 'w', 0) restore_id = args.restore_id cur_dataset = dataprovider(train_list, test_list, config.img_feat_dir, config.sen_dir, config.vocab_size, reward_con=config.reward_con, batch_size=config.batch_size) model = ground_model(config) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.33) with tf.Graph().as_default(): loss, loss_vec, logits, rwd_pred, loss_rwd = model.build_model() # Create a session for running Ops on the Graph. sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # Run the Op to initialize the variables. saver = tf.train.Saver(max_to_keep=20) duration = 0.0 if restore_id > 0: print 'Restore model_%d'%restore_id # cur_dataset.epoch_id = restore_id cur_dataset.is_save = False temp_vars = set(tf.global_variables()) saver.restore(sess, './model/%s/model_%d.ckpt'%(config.save_path, restore_id)) model.train_op = model.build_train_op(loss, loss_vec, model.reward_w, rwd_pred) train_op = model.train_op sess.run(tf.variables_initializer(set(tf.global_variables()) - temp_vars)) else: print 'Train from scratch' cur_dataset.is_save = False model.train_op = model.build_train_op(loss, loss_vec, loss_rwd, rwd_pred) train_op = model.train_op init = tf.global_variables_initializer() sess.run(init) for step in xrange(config.max_step): start_time = time.time() feed_dict = update_feed_dict(cur_dataset, model, True) _,loss_value,loss_vec_value, cur_logits = sess.run([train_op, loss, loss_vec, logits], feed_dict=feed_dict) duration += time.time()-start_time if cur_dataset.is_save: print 'Save model_%d into %s'%(cur_dataset.epoch_id, config.save_path) saver.save(sess, '%s/model_%d.ckpt'%(config.save_path, cur_dataset.epoch_id)) cur_dataset.is_save = False if step%10 == 0: cur_accu = eval_cur_batch(feed_dict[model.bbx_label], cur_logits, True) print 'Step %d: loss = %.4f, accu = %.4f (%.4f sec)'%(step, loss_value, cur_accu, duration/10.0) duration = 0.0 if ((step)%600)==0: print "-----------------------------------------------" eval_accu = run_eval(sess, cur_dataset, model, logits, feed_dict) log.write('%d/%d: %.4f, %.4f\n'%(step+1, cur_dataset.epoch_id, loss_value, eval_accu)) print "-----------------------------------------------" model.batch_size = config.batch_size cur_dataset.is_save = False log.close() def main(_): run_training() if __name__ == '__main__': tf.app.run()
tests/test_compat.py
KazakovDenis/django-extensions
4,057
11094322
<reponame>KazakovDenis/django-extensions # -*- coding: utf-8 -*- from django.test import TestCase from django.test.utils import override_settings from django_extensions.compat import get_template_setting class CompatTests(TestCase): @override_settings(TEMPLATES=None) def test_should_return_None_by_default_if_TEMPLATES_setting_is_none(self): self.assertIsNone(get_template_setting('template_key')) @override_settings(TEMPLATES=None) def test_should_return_default_if_TEMPLATES_setting_is_none(self): self.assertEqual(get_template_setting('template_key', 'test'), 'test') @override_settings(TEMPLATES=[ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['templates'], 'APP_DIRS': True }]) def test_should_return_value_for_key(self): self.assertEqual(get_template_setting('BACKEND'), 'django.template.backends.django.DjangoTemplates')
ipypublish/port_api/plugin_to_json.py
parmentelat/ipypublish
220
11094325
<reponame>parmentelat/ipypublish<filename>ipypublish/port_api/plugin_to_json.py<gh_stars>100-1000 """ a module to convert between the old (Python script) plugin format, and the new (JSON) one """ from typing import Dict, Tuple # noqa: F401 import ast import json def assess_syntax(path): with open(path) as file_obj: content = file_obj.read() syntax_tree = ast.parse(content) docstring = "" # docstring = ast.get_docstring(syntaxTree) unknowns = [] imported = {} assignments = {} for i, child in enumerate(ast.iter_child_nodes(syntax_tree)): if i == 0 and isinstance(child, ast.Expr) and isinstance(child.value, ast.Str): docstring = child.value.s elif isinstance(child, ast.ImportFrom): module = child.module for n in child.names: import_pth = module + "." + n.name imported[n.name if n.asname is None else n.asname] = import_pth elif isinstance(child, ast.Assign): targets = child.targets if len(targets) > 1: raise IOError( "cannot handle expansion assignments " "(e.g. `a, b = [1, 2]`)" ) target = child.targets[0] # type: ast.Name assignments[target.id] = child.value else: unknowns.append(child) if unknowns: print( "Warning this script can only handle 'ImportFrom' and 'Assign' " "syntax, found additional items: {}".format(unknowns) ) return docstring, imported, assignments def ast_to_json(item, imported, assignments): """recursively convert ast items to json friendly values""" value = None if item in ["True", "False", "None"]: # python 2.7 value = {"True": True, "False": False, "None": None}[item] elif hasattr(ast, "NameConstant") and isinstance(item, ast.NameConstant): value = item.value elif isinstance(item, ast.Str): value = item.s elif isinstance(item, ast.Num): value = item.n elif isinstance(item, ast.Name): if item.id in imported: value = imported[item.id] elif item.id in assignments: value = ast_to_json(assignments[item.id], imported, assignments) elif item.id in ["True", "False", "None"]: # python 2.7 value = {"True": True, "False": False, "None": None}[item.id] else: raise ValueError("could not find assignment '{}' in config".format(item.id)) elif isinstance(item, (ast.List, ast.Tuple, ast.Set)): value = [ast_to_json(i, imported, assignments) for i in item.elts] elif isinstance(item, ast.Dict): value = convert_dict(item, imported, assignments) else: raise ValueError("could not handle ast item: {}".format(item)) return value def convert_dict(dct, imported, assignments): # type: (ast.Dict, Dict[str, str], dict) -> dict """recurse through and replace keys""" out_dict = {} for key, val in zip(dct.keys, dct.values): if not isinstance(key, ast.Str): raise ValueError("expected key to be a Str; {}".format(key)) out_dict[key.s] = ast_to_json(val, imported, assignments) return out_dict def convert_oformat(oformat): if oformat == "Notebook": outline = None # TODO do notebooks need template (they have currently) exporter = "nbconvert.exporters.NotebookExporter" elif oformat == "Latex": exporter = "nbconvert.exporters.LatexExporter" outline = { "module": "ipypublish.templates.outline_schemas", "file": "latex_outline.latex.j2", } elif oformat == "HTML": exporter = "nbconvert.exporters.HTMLExporter" outline = { "module": "ipypublish.templates.outline_schemas", "file": "html_outline.html.j2", } elif oformat == "Slides": exporter = "nbconvert.exporters.SlidesExporter" outline = { "module": "ipypublish.templates.outline_schemas", "file": "html_outline.html.j2", } else: raise ValueError( "expected oformat to be: " "'Notebook', 'Latex', 'HTML' or 'Slides'" ) return exporter, outline def convert_config(config, exporter_class, allow_other): # type: (dict, str) -> dict """convert config into required exporter format""" filters = {} preprocs = {} other = {} # first parse for key, val in config.items(): # TODO Exporter.filters and TemplateExporter.filters always the same? if key in ["Exporter.filters", "TemplateExporter.filters"]: filters.update(config[key]) if key in ["Exporter.preprocessors", "TemplateExporter.preprocessors"]: if preprocs: raise ValueError( "'config' contains both Exporter.preprocessors and " "TemplateExporter.preprocessors" ) for p in val: pname = p.split(".")[-1] preprocs[pname] = {"class": p, "args": {}} # TODO move these special cases to seperate input/function if pname in ["LatexDocLinks", "LatexDocHTML"]: preprocs[pname]["args"]["metapath"] = "${meta_path}" preprocs[pname]["args"]["filesfolder"] = "${files_path}" # second parse for key, val in config.items(): if key in [ "Exporter.filters", "TemplateExporter.filters", "Exporter.preprocessors", "TemplateExporter.preprocessors", ]: continue if key.split(".")[0] in preprocs: preprocs[key.split(".")[0]]["args"][".".join(key.split(".")[1:])] = val else: other[key] = val if other and not allow_other: print("Warning: ignoring other args: {}".format(other)) other = {} output = { "class": exporter_class, "filters": filters, "preprocessors": list(preprocs.values()), "other_args": other, } return output def replace_template_path(path): """ replace original template path with new dict """ segments = path.split(".") module = ".".join(segments[0:-1]) name = segments[-1] if module == "ipypublish.html.ipypublish": return { "module": "ipypublish.templates.segments", "file": "ipy-{0}.html-tplx.json".format(name), } elif module == "ipypublish.html.standard": return { "module": "ipypublish.templates.segments", "file": "std-{0}.html-tplx.json".format(name), } elif module == "ipypublish.latex.standard": return { "module": "ipypublish.templates.segments", "file": "std-{0}.latex-tpl.json".format(name), } elif module == "ipypublish.latex.ipypublish": return { "module": "ipypublish.templates.segments", "file": "ipy-{0}.latex-tpl.json".format(name), } else: print("Warning: unknown template path: {}".format(path)) return {"module": module, "file": "{0}.json".format(name)} def create_json(docstring, imported, assignments, allow_other=True): # type: (str, Dict[str, str], dict, bool) -> dict """Set docstring here. Parameters ---------- docstring: str the doc string of the module imported: dict imported classes assignments: dict assigned values (i.e. 'a = b') allow_other: bool whether to allow arguments in config, which do not relate to preprocessors Returns ------- """ oformat = None config = None template = None for value, expr in assignments.items(): if value == "oformat": if not isinstance(expr, ast.Str): raise ValueError("expected 'oformat' to be a Str; {}".format(expr)) oformat = expr.s elif value == "config": if not isinstance(expr, ast.Dict): raise ValueError("expected 'config' to be a Dict; {}".format(expr)) config = convert_dict(expr, imported, assignments) elif value == "template": if not isinstance(expr, ast.Call): raise ValueError("expected 'config' to be a call to create_tpl(x)") # func = expr.func # TODO make sure func name is create_tpl/tplx args = expr.args keywords = expr.keywords if len(args) != 1 or len(keywords) > 0: raise ValueError("expected create_tpl(x) to have one argument") seg_list = args[0] if isinstance(seg_list, ast.ListComp): seg_list = seg_list.generators[0].iter if not isinstance(seg_list, ast.List): raise ValueError( "expected create_tpl(x) arg to be a List; {}".format(seg_list) ) segments = [] for seg in seg_list.elts: if isinstance(seg, ast.Attribute): seg_name = seg.value.id elif isinstance(seg, ast.Name): seg_name = seg.id else: raise ValueError( "expected seg in template to be an Attribute; " + "{1}".format(seg) ) if seg_name not in imported: raise ValueError("segment '{}' not found".format(seg_name)) segments.append(imported[seg_name]) template = segments if oformat is None: raise ValueError("could not find 'oformat' assignment") if config is None: raise ValueError("could not find 'config' assignment") if template is None: raise ValueError("could not find 'template' assignment") exporter_class, outline = convert_oformat(oformat) exporter = convert_config(config, exporter_class, allow_other) if any(["biblio_natbib" in s for s in template]): exporter["filters"]["strip_ext"] = "ipypublish.filters.filters.strip_ext" return { "description": docstring.splitlines(), "exporter": exporter, "template": None if outline is None else { "outline": outline, "segments": [replace_template_path(s) for s in template], }, } def convert_to_json(path, outpath=None, ignore_other=False): """Set docstring here. Parameters ---------- path: str input module path outpath=None: str or None if set, output json to this path ignore_other: bool whether to ignore arguments in config, which do not relate to preprocessors Returns ------- """ _docstring, _imported, _assignments = assess_syntax(path) # print(_docstring) # print() # print(_imported) # print() # print(_assignments) output = create_json(_docstring, _imported, _assignments, not ignore_other) if outpath: with open(outpath, "w") as file_obj: json.dump(output, file_obj, indent=2) return json.dumps(output, indent=2) if __name__ == "__main__": if False: import glob import os for path in glob.glob( "/Users/cjs14/GitHub/ipypublish" "/ipypublish/export_plugins/*.py" ): dirname = os.path.dirname(path) name = os.path.splitext(os.path.basename(path))[0] try: convert_to_json( path, os.path.join(dirname, name + ".json"), ignore_other=True ) except ValueError as err: print("{0} failed: {1}".format(path, err)) convert_to_json( "/Users/cjs14/GitHub/ipypublish" "/ipypublish_plugins/example_new_plugin.py", "/Users/cjs14/GitHub/ipypublish" "/ipypublish_plugins/example_new_plugin.json", )
api/src/opentrons/protocol_engine/commands/pick_up_tip.py
knownmed/opentrons
235
11094349
"""Pick up tip command request, result, and implementation models.""" from __future__ import annotations from pydantic import BaseModel from typing import Optional, Type from typing_extensions import Literal from .pipetting_common import BasePipettingData from .command import AbstractCommandImpl, BaseCommand, BaseCommandRequest PickUpTipCommandType = Literal["pickUpTip"] class PickUpTipData(BasePipettingData): """Data needed to move a pipette to a specific well.""" pass class PickUpTipResult(BaseModel): """Result data from the execution of a PickUpTip.""" pass class PickUpTipImplementation(AbstractCommandImpl[PickUpTipData, PickUpTipResult]): """Pick up tip command implementation.""" async def execute(self, data: PickUpTipData) -> PickUpTipResult: """Move to and pick up a tip using the requested pipette.""" await self._pipetting.pick_up_tip( pipette_id=data.pipetteId, labware_id=data.labwareId, well_name=data.wellName, ) return PickUpTipResult() class PickUpTip(BaseCommand[PickUpTipData, PickUpTipResult]): """Pick up tip command model.""" commandType: PickUpTipCommandType = "pickUpTip" data: PickUpTipData result: Optional[PickUpTipResult] _ImplementationCls: Type[PickUpTipImplementation] = PickUpTipImplementation class PickUpTipRequest(BaseCommandRequest[PickUpTipData]): """Pick up tip command creation request model.""" commandType: PickUpTipCommandType = "pickUpTip" data: PickUpTipData _CommandCls: Type[PickUpTip] = PickUpTip