max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
src/app/test/api/http/unit/handlers/v1/job_test.py
jlrpnbbngtn/beer-garden
230
11094365
<gh_stars>100-1000 # -*- coding: utf-8 -*- import copy import json import unittest from datetime import datetime from mock import patch from beer_garden.db.mongo.models import DateTrigger, Job, RequestTemplate from .. import TestHandlerBase @unittest.skip("TODO") class JobAPITest(TestHandlerBase): def setUp(self): self.ts_epoch = 1451606400000 self.ts_dt = datetime(2016, 1, 1) self.job_dict = { "name": "job_name", "trigger_type": "date", "trigger": {"run_date": self.ts_epoch, "timezone": "utc"}, "request_template": { "system": "system", "system_version": "1.0.0", "instance_name": "default", "command": "speak", "parameters": {"message": "hey!"}, "comment": "hi!", "metadata": {"request": "stuff"}, }, "misfire_grace_time": 3, "coalesce": True, "next_run_time": self.ts_epoch, "success_count": 0, "error_count": 0, "status": "RUNNING", "max_instances": 3, } db_dict = copy.deepcopy(self.job_dict) db_dict["request_template"] = RequestTemplate(**db_dict["request_template"]) db_dict["trigger"]["run_date"] = self.ts_dt db_dict["trigger"] = DateTrigger(**db_dict["trigger"]) db_dict["next_run_time"] = self.ts_dt self.job = Job(**db_dict) super(JobAPITest, self).setUp() def tearDown(self): Job.objects.delete() def test_get_404(self): self.job.save() bad_id = "".join(["1" for _ in range(24)]) if bad_id == self.job.id: bad_id = "".join(["2" for _ in range(24)]) response = self.fetch("/api/v1/jobs/" + bad_id) self.assertEqual(404, response.code) def test_get(self): self.job.save() self.job_dict["id"] = str(self.job.id) response = self.fetch("/api/v1/jobs/" + str(self.job.id)) self.assertEqual(200, response.code) self.assertEqual(json.loads(response.body.decode("utf-8")), self.job_dict) @patch("brew_view.request_scheduler") def test_delete(self, scheduler_mock): self.job.save() response = self.fetch("/api/v1/jobs/" + str(self.job.id), method="DELETE") self.assertEqual(204, response.code) scheduler_mock.remove_job.assert_called_with( str(self.job.id), jobstore="beer_garden" ) @patch("brew_view.request_scheduler") def test_pause(self, scheduler_mock): self.job.save() body = json.dumps( { "operations": [ {"operation": "update", "path": "/status", "value": "PAUSED"} ] } ) response = self.fetch( "/api/v1/jobs/" + str(self.job.id), method="PATCH", body=body, headers={"content-type": "application/json"}, ) self.assertEqual(200, response.code) scheduler_mock.pause_job.assert_called_with( str(self.job.id), jobstore="beer_garden" ) self.job.reload() self.assertEqual(self.job.status, "PAUSED") @patch("brew_view.request_scheduler") def test_resume(self, scheduler_mock): self.job.status = "PAUSED" self.job.save() body = json.dumps( { "operations": [ {"operation": "update", "path": "/status", "value": "RUNNING"} ] } ) response = self.fetch( "/api/v1/jobs/" + str(self.job.id), method="PATCH", body=body, headers={"content-type": "application/json"}, ) self.assertEqual(200, response.code) scheduler_mock.resume_job.assert_called_with( str(self.job.id), jobstore="beer_garden" ) self.job.reload() self.assertEqual(self.job.status, "RUNNING") def test_invalid_operation(self): self.job.save() body = json.dumps( { "operations": [ {"operation": "INVALID", "path": "/status", "value": "RUNNING"} ] } ) response = self.fetch( "/api/v1/jobs/" + str(self.job.id), method="PATCH", body=body, headers={"content-type": "application/json"}, ) self.assertGreaterEqual(400, response.code) def test_invalid_path(self): self.job.save() body = json.dumps( { "operations": [ {"operation": "update", "path": "/INVALID", "value": "RUNNING"} ] } ) response = self.fetch( "/api/v1/jobs/" + str(self.job.id), method="PATCH", body=body, headers={"content-type": "application/json"}, ) self.assertGreaterEqual(400, response.code) def test_invalid_value(self): self.job.save() body = json.dumps( { "operations": [ {"operation": "update", "path": "/status", "value": "INVALID"} ] } ) response = self.fetch( "/api/v1/jobs/" + str(self.job.id), method="PATCH", body=body, headers={"content-type": "application/json"}, ) self.assertGreaterEqual(400, response.code) @unittest.skip("TODO") class JobListAPITest(TestHandlerBase): def setUp(self): self.ts_epoch = 1451606400000 self.ts_dt = datetime(2016, 1, 1) self.job_dict = { "name": "job_name", "trigger_type": "date", "trigger": {"run_date": self.ts_epoch, "timezone": "utc"}, "request_template": { "system": "system", "system_version": "1.0.0", "instance_name": "default", "command": "speak", "parameters": {"message": "hey!"}, "comment": "hi!", "metadata": {"request": "stuff"}, }, "misfire_grace_time": 3, "coalesce": True, "next_run_time": self.ts_epoch, "success_count": 0, "error_count": 0, "status": "RUNNING", "max_instances": 3, } db_dict = copy.deepcopy(self.job_dict) db_dict["request_template"] = RequestTemplate(**db_dict["request_template"]) db_dict["trigger"]["run_date"] = self.ts_dt db_dict["trigger"] = DateTrigger(**db_dict["trigger"]) db_dict["next_run_time"] = self.ts_dt self.job = Job(**db_dict) super(JobListAPITest, self).setUp() def tearDown(self): Job.objects.delete() def test_get(self): self.job.save() self.job_dict["id"] = str(self.job.id) response = self.fetch("/api/v1/jobs") self.assertEqual(200, response.code) self.assertEqual(json.loads(response.body.decode("utf-8")), [self.job_dict]) def test_get_with_filter_param(self): self.job.save() self.job_dict["id"] = str(self.job.id) response = self.fetch("/api/v1/jobs?name=DOES_NOT_EXIST") self.assertEqual(200, response.code) self.assertEqual(json.loads(response.body.decode("utf-8")), []) response = self.fetch("/api/v1/jobs?name=job_name") self.assertEqual(200, response.code) self.assertEqual(json.loads(response.body.decode("utf-8")), [self.job_dict]) @patch("brew_view.request_scheduler") def test_post(self, scheduler_mock): body = json.dumps(self.job_dict) self.job_dict["id"] = None response = self.fetch("/api/v1/jobs", method="POST", body=body) self.assertEqual(response.code, 201) data_without_id = json.loads(response.body.decode("utf-8")) data_without_id["id"] = None self.assertEqual(data_without_id, self.job_dict) self.assertEqual(scheduler_mock.add_job.call_count, 1) @patch("brew_view.request_scheduler") def test_post_error_delete(self, scheduler_mock): body = json.dumps(self.job_dict) self.job_dict["id"] = None scheduler_mock.add_job.side_effect = ValueError response = self.fetch("/api/v1/jobs", method="POST", body=body) self.assertGreaterEqual(response.code, 500)
tests/transforms/test_collate.py
siahuat0727/torchio
1,340
11094373
from torch.utils.data import DataLoader import torchio as tio from ..utils import TorchioTestCase class TestCollate(TorchioTestCase): def get_heterogeneous_dataset(self): # Keys missing in one of the samples will not be present in the batch # This is relevant for the case in which a transform is applied to some # samples only, according to its probability (p argument) transform_no = tio.RandomElasticDeformation(p=0, max_displacement=1) transform_yes = tio.RandomElasticDeformation(p=1, max_displacement=1) sample_no = transform_no(self.sample_subject) sample_yes = transform_yes(self.sample_subject) data = sample_no, sample_yes class Dataset: def __init__(self, data): self.data = data def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index] return Dataset(data) def test_collate(self): loader = DataLoader(self.get_heterogeneous_dataset(), batch_size=2) tio.utils.get_first_item(loader) def test_history_collate(self): loader = DataLoader( self.get_heterogeneous_dataset(), batch_size=4, collate_fn=tio.utils.history_collate, ) batch = tio.utils.get_first_item(loader) empty_history, one_history = batch['history'] assert not empty_history assert len(one_history) == 1
octopus/engine/helper.py
SillyTin/octopus
212
11094389
<reponame>SillyTin/octopus #from .constants import TT256, TT255 import re from z3 import * TT256 = 2 ** 256 TT256M1 = 2 ** 256 - 1 TT255 = 2 ** 255 class helper(object): def is_symbolic(value): return not isinstance(value, int) def is_real(value): return isinstance(value, int) def isAllReal(*args): for i in args: if is_symbolic(i): return False return True def safe_decode(hex_encoded_string): if (hex_encoded_string.startswith("0x")): return bytes.fromhex(hex_encoded_string[2:]) else: return bytes.fromhex(hex_encoded_string) def to_signed(i): return i if i < TT255 else i - TT256 def get_trace_line(instr, state): stack = str(state.stack[::-1]) # stack = re.sub("(\d+)", lambda m: hex(int(m.group(1))), stack) stack = re.sub("\n", "", stack) return str(instr['address']) + " " + instr['opcode'] + "\tSTACK: " + stack def convert_to_bitvec(item): # converting boolean expression to bitvector if type(item) == BoolRef: return If(item, BitVecVal(1, 256), BitVecVal(0, 256)) elif type(item) == bool: if item: return BitVecVal(1, 256) else: return BitVecVal(0, 256) elif type(item) == int: return BitVecVal(item, 256) else: return simplify(item) def convert_to_concrete_int(item): if (type(item) == int): return item if (type(item) == BitVecNumRef): return item.as_long() return simplify(item).as_long() def get_concrete_int(item): if (type(item) == int): return item if (type(item) == BitVecNumRef): return item.as_long() return simplify(item).as_long() def concrete_int_from_bytes(_bytes, start_index): # logging.debug("-- concrete_int_from_bytes: " + str(_bytes[start_index:start_index+32])) b = _bytes[start_index:start_index+32] val = int.from_bytes(b, byteorder='big') return val def concrete_int_to_bytes(val): # logging.debug("concrete_int_to_bytes " + str(val)) if (type(val) == int): return val.to_bytes(32, byteorder='big') return (simplify(val).as_long()).to_bytes(32, byteorder='big')
examples/python/setup.py
C-NERD/nimview
103
11094414
<reponame>C-NERD/nimview<filename>examples/python/setup.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- # python setup.py sdist from setuptools import setup, Extension from setuptools.command.build_ext import build_ext from subprocess import check_call import os from shutil import copy, rmtree this_directory = os.path.abspath(os.path.dirname(__file__)) targetDir = "nimview" # create another nimview subfolder as setup.py is much friendlier if you do so rmtree(targetDir, ignore_errors=True) os.makedirs(targetDir, exist_ok=True) os.makedirs(targetDir + "/src", exist_ok=True) srcFiles = [ "src/library.nim", "nakefile.nim", "LICENSE", "README.md"] for index, fileName in enumerate(srcFiles): fullFileName = os.path.join(this_directory, fileName) if os.path.isfile(fullFileName): copy(fullFileName, targetDir + "/" + fileName) class NimExtension(Extension): def __init__(self, name, sourcedir=''): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) class NimBuild(build_ext): def run(self): for ext in self.extensions: self.build_extension(ext) def build_extension(self, ext): print("=> build_extension") os.makedirs(self.build_temp, exist_ok=True) os.makedirs(self.build_temp + "/src", exist_ok=True) extdir = self.get_ext_fullpath(ext.name) os.makedirs(extdir + "/src", exist_ok=True) for fileName in srcFiles: fullFileName = os.path.join(targetDir, fileName) if os.path.isfile(fullFileName): target = self.build_temp + "/" + fileName print("copy " + fullFileName + " => " + target) copy(fullFileName, target) check_call(['nimble', 'install', 'nimview', '-dy'], cwd=self.build_temp) print("=> dependencies installed") check_call(['nake', 'pyLib'], cwd=self.build_temp, shell=True) print("=> pyLib created") libFiles = [ "out/nimview.so", "out/nimview.pyd"] install_target = os.path.abspath(os.path.dirname(extdir)) os.makedirs(install_target + "/src", exist_ok=True) for fileName in libFiles: fullFileName = os.path.join(self.build_temp, fileName) if os.path.isfile(fullFileName): print("copy " + fullFileName + " => " + install_target) copy(fullFileName, install_target) setup( ext_modules=[NimExtension('.')], cmdclass={ 'build_ext': NimBuild, }, package_data={ "nimview": srcFiles + ["nimview.so", "nimview.pyd"] }, install_requires=[ "choosenim_install" # Auto-installs Nim compiler ] )
tests/CLI/modules/vs/vs_placement_tests.py
dvzrv/softlayer-python
126
11094422
<gh_stars>100-1000 """ SoftLayer.tests.CLI.modules.vs_placement_tests ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :license: MIT, see LICENSE for more details. """ from unittest import mock as mock from SoftLayer import testing class VSPlacementTests(testing.TestCase): def test_create_options(self): result = self.run_command(['vs', 'placementgroup', 'create-options']) self.assert_no_fail(result) self.assert_called_with('SoftLayer_Virtual_PlacementGroup', 'getAvailableRouters') self.assert_called_with('SoftLayer_Virtual_PlacementGroup_Rule', 'getAllObjects') self.assertEqual([], self.calls('SoftLayer_Virtual_PlacementGroup', 'createObject')) @mock.patch('SoftLayer.CLI.formatting.confirm') def test_create_group(self, confirm_mock): confirm_mock.return_value = True result = self.run_command(['vs', 'placementgroup', 'create', '--name=test', '--backend_router=1', '--rule=2']) create_args = { 'name': 'test', 'backendRouterId': 1, 'ruleId': 2 } self.assert_no_fail(result) self.assert_called_with('SoftLayer_Virtual_PlacementGroup', 'createObject', args=(create_args,)) self.assertEqual([], self.calls('SoftLayer_Virtual_PlacementGroup', 'getAvailableRouters')) def test_list_groups(self): result = self.run_command(['vs', 'placementgroup', 'list']) self.assert_no_fail(result) self.assert_called_with('SoftLayer_Account', 'getPlacementGroups') def test_detail_group_id(self): result = self.run_command(['vs', 'placementgroup', 'detail', '12345']) self.assert_no_fail(result) self.assert_called_with('SoftLayer_Virtual_PlacementGroup', 'getObject', identifier=12345) def test_detail_group_name(self): result = self.run_command(['vs', 'placementgroup', 'detail', 'test']) self.assert_no_fail(result) group_filter = { 'placementGroups': { 'name': {'operation': 'test'} } } self.assert_called_with('SoftLayer_Account', 'getPlacementGroups', filter=group_filter) self.assert_called_with('SoftLayer_Virtual_PlacementGroup', 'getObject', identifier=12345) @mock.patch('SoftLayer.CLI.formatting.confirm') def test_delete_group_id(self, confirm_mock): confirm_mock.return_value = True result = self.run_command(['vs', 'placementgroup', 'delete', '12345']) self.assert_no_fail(result) self.assert_called_with('SoftLayer_Virtual_PlacementGroup', 'deleteObject', identifier=12345) @mock.patch('SoftLayer.CLI.formatting.confirm') def test_delete_group_id_cancel(self, confirm_mock): confirm_mock.return_value = False result = self.run_command(['vs', 'placementgroup', 'delete', '12345']) self.assertEqual(result.exit_code, 2) self.assertEqual([], self.calls('SoftLayer_Virtual_PlacementGroup', 'deleteObject')) @mock.patch('SoftLayer.CLI.formatting.confirm') def test_delete_group_name(self, confirm_mock): confirm_mock.return_value = True result = self.run_command(['vs', 'placementgroup', 'delete', 'test']) group_filter = { 'placementGroups': { 'name': {'operation': 'test'} } } self.assert_no_fail(result) self.assert_called_with('SoftLayer_Account', 'getPlacementGroups', filter=group_filter) self.assert_called_with('SoftLayer_Virtual_PlacementGroup', 'deleteObject', identifier=12345) @mock.patch('SoftLayer.CLI.formatting.confirm') def test_delete_group_purge(self, confirm_mock): confirm_mock.return_value = True result = self.run_command(['vs', 'placementgroup', 'delete', '1234', '--purge']) self.assert_no_fail(result) self.assert_called_with('SoftLayer_Virtual_PlacementGroup', 'getObject') self.assert_called_with('SoftLayer_Virtual_Guest', 'deleteObject', identifier=69131875) @mock.patch('SoftLayer.CLI.formatting.confirm') def test_delete_group_purge_cancel(self, confirm_mock): confirm_mock.return_value = False result = self.run_command(['vs', 'placementgroup', 'delete', '1234', '--purge']) self.assertEqual(result.exit_code, 2) self.assertEqual([], self.calls('SoftLayer_Virtual_Guest', 'deleteObject')) @mock.patch('SoftLayer.CLI.formatting.confirm') def test_delete_group_purge_nothing(self, confirm_mock): group_mock = self.set_mock('SoftLayer_Virtual_PlacementGroup', 'getObject') group_mock.return_value = { "id": 1234, "name": "test-group", "guests": [], } confirm_mock.return_value = True result = self.run_command(['vs', 'placementgroup', 'delete', '1234', '--purge']) self.assertEqual(result.exit_code, 2) self.assert_called_with('SoftLayer_Virtual_PlacementGroup', 'getObject') self.assertEqual([], self.calls('SoftLayer_Virtual_Guest', 'deleteObject'))
142_HITNET/test.py
IgiArdiyanto/PINTO_model_zoo
1,529
11094427
import warnings import os os.environ['TF_CPP_MIN_LOG_LEVEL']='3' warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=Warning) import tensorflow as tf import numpy as np from pprint import pprint import time import platform H=256 W=256 THREADS=4 # MODEL='flyingthings_finalpass_xl' # CHANNEL=6 MODEL='eth3d' CHANNEL=2 # MODEL='middlebury_d400' # CHANNEL=6 interpreter = tf.lite.Interpreter(f'{MODEL}/saved_model_{H}x{W}/model_float32.tflite', num_threads=THREADS) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]['shape'] input_height = input_shape[1] input_width = input_shape[2] channels = input_shape[3] size = (1, input_height, input_width, CHANNEL) input_tensor = np.ones(size, dtype=np.float32) start = time.perf_counter() roop_count = 10 reference_output_disparity = None for i in range(roop_count): interpreter.set_tensor(input_details[0]['index'], input_tensor) interpreter.invoke() reference_output_disparity = interpreter.get_tensor(output_details[0]['index']) inference_time = (time.perf_counter() - start) / roop_count # pprint(reference_output_disparity) print(f'Model: {MODEL}') print(f'Input resolution: {H}x{W}') print(f'Number of Threads: {THREADS}') print(f'Platform: {platform.platform()}') print(f'Average of {roop_count} times inference: {(inference_time * 1000):.1f}ms') """ $ python3 test.py INFO: Created TensorFlow Lite XNNPACK delegate for CPU. INFO: Created TensorFlow Lite delegate for select TF ops. INFO: TfLiteFlexDelegate delegate: 20 nodes delegated out of 772 nodes with 10 partitions. Model: eth3d Input resolution: 256x256 Number of Threads: 4 Platform: Linux-5.11.0-27-generic-x86_64-with-glibc2.29 Average of 10 times inference: 360.6ms """
neurogym/envs/contrib/cv_learning.py
ruyuanzhang/neurogym
112
11094432
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np from gym import spaces import neurogym as ngym import matplotlib.pyplot as plt class CVLearning(ngym.TrialEnv): r"""Implements shaping for the delay-response task, in which agents have to integrate two stimuli and report which one is larger on average after a delay. Args: stim_scale: Controls the difficulty of the experiment. (def: 1., float) max_num_reps: Maximum number of times that agent can go in a row to the same side during phase 0. (def: 3, int) th_stage: Performance threshold needed to proceed to the following phase. (def: 0.7, float) keep_days: Number of days that the agent will be kept in the same phase once arrived to the goal performacance. (def: 1, int) trials_day: Number of trials performed during one day. (def: 200, int) perf_len: Number of trials used to compute instantaneous performance. (def: 20, int) stages: Stages used to train the agent. (def: [0, 1, 2, 3, 4], list) """ metadata = { 'paper_link': 'https://www.nature.com/articles/s41586-019-0919-7', 'paper_name': 'Discrete attractor dynamics underlies persistent' + ' activity in the frontal cortex', 'tags': ['perceptual', 'delayed response', 'two-alternative', 'supervised'] } def __init__(self, dt=100, rewards=None, timing=None, stim_scale=1., sigma=1.0, max_num_reps=3, th_stage=0.7, keep_days=1, trials_day=300, perf_len=20, stages=[0, 1, 2, 3, 4], n_ch=10): super().__init__(dt=dt) self.choices = [1, 2] self.n_ch = n_ch # number of obs and actions different from fixation # cohs specifies the amount of evidence # (which is modulated by stim_scale) self.cohs = np.array([0, 6.4, 12.8, 25.6, 51.2])*stim_scale self.sigma = sigma / np.sqrt(self.dt) # Input noise # Rewards self.rewards = {'abort': -0.1, 'correct': +1., 'fail': -1.} if rewards: self.rewards.update(rewards) self.delay_durs = [1000, 3000] self.timing = { 'fixation': 200, 'stimulus': 1150, 'delay': lambda: self.rng.uniform(*self.delay_durs), 'decision': 1500} if timing: self.timing.update(timing) self.stages = stages self.r_fail = self.rewards['fail'] self.action = 0 self.abort = False self.firstcounts = True # whether trial ends at first attempt self.first_flag = False # whether first attempt has been done self.ind = 0 # index of the current stage if th_stage == -1: self.curr_ph = self.stages[-1] else: self.curr_ph = self.stages[self.ind] self.rew = 0 # PERFORMANCE VARIABLES self.trials_counter = 0 # Day/session performance self.curr_perf = 0 self.trials_day = trials_day self.th_perf = th_stage self.day_perf = np.empty(trials_day) self.w_keep = [keep_days]*len(self.stages) # TODO: simplify?? # number of days to keep an agent on a stage # once it has reached th_perf self.days_keep = self.w_keep[self.ind] self.keep_stage = False # wether the agent can move to the next stage # Instantaneous performance (moving window) self.inst_perf = 0 self.perf_len = perf_len # window length self.mov_perf = np.zeros(perf_len) # STAGE VARIABLES # stage 0 # max number of consecutive times that an agent can repeat an action # receiving positive reward on stage 0 self.max_num_reps = max_num_reps # counter of consecutive actions at the same side self.action_counter = 0 # stage 2 # min performance to keep the agent in stage 2 self.min_perf = 0.5 # TODO: no magic numbers self.stage_reminder = False # control if a stage has been explored # stage 3 self.inc_delays = 0 # proportion of the total delays dur to keep self.delay_milestone = 0 # delays durs at the beggining of a day # proportion of the total delays dur to incease every time that the # agent reaches a threshold performance self.inc_factor = 0.25 self.inc_delays_th = th_stage # th perf to increase delays in stage 3 self.dec_delays_th = 0.5 # th perf to decrease delays in stage 3 # number of trials spent on a specific delays duration self.trials_delay = 0 self.max_delays = True # wheter delays have reached their max dur self.dur = [0]*len(self.delay_durs) # action and observation spaces self.action_space = spaces.Discrete(n_ch+1) self.observation_space = spaces.Box(-np.inf, np.inf, shape=(n_ch+1,), dtype=np.float32) def _new_trial(self, **kwargs): """ new_trial() is called when a trial ends to generate the next trial. The following variables are created: durations: Stores the duration of the different periods. ground truth: Correct response for the trial. coh: Stimulus coherence (evidence) for the trial. obs: Observation. """ self.set_phase() if self.curr_ph == 0: # control that agent does not repeat side more than 3 times self.count(self.action) trial = { 'ground_truth': self.rng.choice(self.choices), 'coh': self.rng.choice(self.cohs), 'sigma': self.sigma, } # init durations with None self.durs = {key: None for key in self.timing} self.firstcounts = True self.first_choice_rew = None if self.curr_ph == 0: # no stim, reward is in both left and right # agent cannot go N times in a row to the same side if np.abs(self.action_counter) >= self.max_num_reps: ground_truth = 1 if self.action == 2 else 2 trial.update({'ground_truth': ground_truth}) self.rewards['fail'] = 0 else: self.rewards['fail'] = self.rewards['correct'] self.durs.update({'stimulus': 0, 'delay': 0}) trial.update({'sigma': 0}) elif self.curr_ph == 1: # stim introduced with no ambiguity # wrong answer is not penalized # agent can keep exploring until finding the right answer self.durs.update({'delay': 0}) trial.update({'coh': 100}) trial.update({'sigma': 0}) self.rewards['fail'] = 0 self.firstcounts = False elif self.curr_ph == 2: # first answer counts # wrong answer is penalized self.durs.update({'delay': (0)}) trial.update({'coh': 100}) trial.update({'sigma': 0}) self.rewards['fail'] = self.r_fail elif self.curr_ph == 3: self.rewards['fail'] = self.r_fail # increasing or decreasing delays durs if self.trials_delay > self.perf_len: if self.inst_perf >= self.inc_delays_th and\ self.inc_delays < 1: self.inc_delays += self.inc_factor self.trials_delay = 0 elif (self.inst_perf <= self.dec_delays_th and self.inc_delays > self.delay_milestone): self.inc_delays -= self.inc_factor self.trials_delay = 0 self.dur = [int(d*self.inc_delays) for d in self.delay_durs] if self.dur == self.delay_durs: self.max_delays = True else: self.max_delays = False self.durs.update({'delay': np.random.choice(self.dur)}) # delay component is introduced trial.update({'coh': 100}) trial.update({'sigma': 0}) # phase 4: ambiguity component is introduced self.first_flag = False # --------------------------------------------------------------------- # Trial # --------------------------------------------------------------------- trial.update(kwargs) # --------------------------------------------------------------------- # Periods # --------------------------------------------------------------------- self.add_period('fixation') self.add_period('stimulus', duration=self.durs['stimulus'], after='fixation') self.add_period('delay', duration=self.durs['delay'], after='stimulus') self.add_period('decision', after='delay') # define observations self.set_ob([1]+[0]*self.n_ch, 'fixation') stim = self.view_ob('stimulus') stim[:, 0] = 1 stim[:, 1:3] = (1 - trial['coh']/100)/2 stim[:, trial['ground_truth']] = (1 + trial['coh']/100)/2 stim[:, 3:] = 0.5 stim[:, 1:] +=\ self.rng.randn(stim.shape[0], self.n_ch) * trial['sigma'] self.set_ob([1]+[0]*self.n_ch, 'delay') self.set_groundtruth(trial['ground_truth'], 'decision') return trial def count(self, action): ''' check the last three answers during stage 0 so the network has to alternate between left and right ''' if action != 0: new = action - 2/action if np.sign(self.action_counter) == np.sign(new): self.action_counter += new else: self.action_counter = new def set_phase(self): # print(self.curr_ph) self.day_perf[self.trials_counter] =\ 1*(self.rew == self.rewards['correct']) self.mov_perf[self.trials_counter % self.perf_len] =\ 1*(self.rew == self.rewards['correct']) self.trials_counter += 1 self.trials_delay += 1 # Instantaneous perfromace if self.trials_counter > self.perf_len: self.inst_perf = np.mean(self.mov_perf) if self.inst_perf < self.min_perf and self.curr_ph == 2: if 1 in self.stages: self.curr_ph = 1 self.stage_reminder = True self.ind -= 1 elif self.inst_perf > self.th_perf and self.stage_reminder: self.curr_ph = 2 self.ind += 1 self.stage_reminder = False # End of the day if self.trials_counter >= self.trials_day: self.trials_counter = 0 self.curr_perf = np.mean(self.day_perf) self.day_perf = np.empty(self.trials_day) self.delay_milestone = self.inc_delays # Keeping or changing stage if self.curr_perf >= self.th_perf and self.max_delays: self.keep_stage = True else: self.keep_stage = False self.days_keep = self.w_keep[self.ind] if self.keep_stage: if self.days_keep <= 0 and\ self.curr_ph < self.stages[-1]: self.ind += 1 self.curr_ph = self.stages[self.ind] self.days_keep = self.w_keep[self.ind] + 1 self.keep_stage = False self.days_keep -= 1 def _step(self, action): # obs, reward, done, info = self.env._step(action) # --------------------------------------------------------------------- new_trial = False # rewards reward = 0 gt = self.gt_now first_choice = False if action != 0 and not self.in_period('decision'): new_trial = self.abort reward = self.rewards['abort'] elif self.in_period('decision'): if action == gt: reward = self.rewards['correct'] new_trial = True if not self.first_flag: first_choice = True self.first_flag = True self.performance = 1 elif action == 3 - gt: # 3-action is the other act reward = self.rewards['fail'] new_trial = self.firstcounts if not self.first_flag: first_choice = True self.first_flag = True self.performance =\ self.rewards['fail'] == self.rewards['correct'] # check if first choice (phase 1) if not self.firstcounts and first_choice: self.first_choice_rew = reward # set reward for all phases self.rew = self.first_choice_rew or reward if new_trial and self.curr_ph == 0: self.action = action info = {'new_trial': new_trial, 'gt': gt, 'num_tr': self.num_tr, 'curr_ph': self.curr_ph, 'first_rew': self.rew, 'keep_stage': self.keep_stage, 'inst_perf': self.inst_perf, 'trials_day': self.trials_counter, 'durs': self.dur, 'inc_delays': self.inc_delays, 'curr_perf': self.curr_perf, 'trials_count': self.trials_counter, 'th_perf': self.th_perf, 'num_stps': self.t_ind} return self.ob_now, reward, False, info if __name__ == '__main__': plt.close('all') env = CVLearning(stages=[0, 2, 3, 4], trials_day=2, keep_days=1) data = ngym.utils.plot_env(env, num_steps=200) env = CVLearning(stages=[3, 4], trials_day=2, keep_days=1) data = ngym.utils.plot_env(env, num_steps=200)
pyq/astmatch.py
mindriot101/pyq
144
11094450
from sizzle.match import MatchEngine import ast import astor class ASTMatchEngine(MatchEngine): def __init__(self): super(ASTMatchEngine, self).__init__() self.register_pseudo('extends', self.pseudo_extends) def match(self, selector, filename): module = astor.parsefile(filename) for match in super(ASTMatchEngine, self).match(selector, module.body): lineno = match.lineno if isinstance(match, (ast.ClassDef, ast.FunctionDef)): for d in match.decorator_list: lineno += 1 yield match, lineno @staticmethod def pseudo_extends(matcher, node, value): if not isinstance(node, ast.ClassDef): return False if not value: return node.bases == [] bases = node.bases selectors = value.split(',') for selector in selectors: matches = matcher.match_data( matcher.parse_selector(selector)[0], bases) if any(matches): return True def match_type(self, typ, node): if typ == 'class': return isinstance(node, ast.ClassDef) if typ == 'def': return isinstance(node, ast.FunctionDef) if typ == 'import': return isinstance(node, (ast.Import, ast.ImportFrom)) if typ == 'assign': return isinstance(node, ast.Assign) if typ == 'attr': return isinstance(node, ast.Attribute) if typ == 'call': if isinstance(node, ast.Call): return True # Python 2.x compatibility return hasattr(ast, 'Print') and isinstance(node, ast.Print) def match_id(self, id_, node): if isinstance(node, (ast.ClassDef, ast.FunctionDef)): return node.name == id_ if isinstance(node, ast.Name): return node.id == id_ if isinstance(node, ast.Attribute): return node.attr == id_ if isinstance(node, ast.Assign): for target in node.targets: if hasattr(target, 'id'): if target.id == id_: return True if hasattr(target, 'elts'): if id_ in self._extract_names_from_tuple(target): return True elif isinstance(target, ast.Subscript): if hasattr(target.value, 'id'): if target.value.id == id_: return True if isinstance(node, ast.Call): if isinstance(node.func, ast.Name) and node.func.id == id_: return True if id_ == 'print' \ and hasattr(ast, 'Print') and isinstance(node, ast.Print): # Python 2.x compatibility return True def match_attr(self, lft, op, rgt, node): values = [] if lft == 'from': if isinstance(node, ast.ImportFrom) and node.module: values.append(node.module) elif lft == 'full': if isinstance(node, (ast.Import, ast.ImportFrom)): module = '' if isinstance(node, ast.ImportFrom): if node.module: module = node.module + '.' for n in node.names: values.append(module + n.name) if n.asname: values.append(module + n.asname) elif lft == 'name': if isinstance(node, (ast.Import, ast.ImportFrom)): for alias in node.names: if alias.asname: values.append(alias.asname) values.append(alias.name) elif isinstance(node, ast.Call): if hasattr(node.func, 'id'): values.append(node.func.id) elif hasattr(ast, 'Print') and isinstance(node, ast.Print): values.append('print') elif isinstance(node, ast.Assign): for target in node.targets: if hasattr(target, 'id'): values.append(target.id) elif hasattr(target, 'elts'): values.extend(self._extract_names_from_tuple(target)) elif isinstance(target, ast.Subscript): if hasattr(target.value, 'id'): values.append(target.value.id) elif hasattr(node, lft): values.append(getattr(node, lft)) elif lft in ('kwarg', 'arg'): if isinstance(node, ast.Call): if lft == 'kwarg': values = [kw.arg for kw in node.keywords] elif lft == 'arg': values = [arg.id for arg in node.args] if op == '=': return any(value == rgt for value in values) if op == '!=': return any(value != rgt for value in values) if op == '*=': return any(rgt in value for value in values) if op == '^=': return any(value.startswith(rgt) for value in values) if op == '$=': return any(value.endswith(rgt) for value in values) raise Exception('Attribute operator {} not implemented'.format(op)) def iter_data(self, data): for node in data: for n in self.iter_node(node): yield n def iter_node(self, node): silence = (ast.Expr,) if not isinstance(node, silence): try: body = node.body # check if is iterable list(body) except TypeError: body = [node.body] except AttributeError: body = None yield node, body for attr in ('value', 'func', 'right', 'left'): if hasattr(node, attr): value = getattr(node, attr) # reversed is used here so matches are returned in the # sequence they are read, eg.: foo.bar.bang for n in reversed(list(self.iter_node(value))): yield n @classmethod def _extract_names_from_tuple(cls, tupl): r = [] for item in tupl.elts: if hasattr(item, 'elts'): r.extend(cls._extract_names_from_tuple(item)) else: r.append(item.id) return r
tracking/eval/formatchecker.py
holajoa/keras-YOLOv3-model-set
601
11094464
<gh_stars>100-1000 #! /usr/bin/env python3 # -*- coding: utf-8 -*- from utilities import write_stderr_red class FormatChecker: def __init__(self, groundtruth, hypotheses): """Constructor """ self.groundtruth_ = groundtruth self.hypotheses_ = hypotheses def checkForAmbiguousIDs(self): """Check ground truth and hypotheses for multiple use of the same id per frame""" result = True for frame in self.groundtruth_["frames"]: ids = set() for groundtruth in frame["annotations"]: if not "id" in groundtruth: # We should have already warned about a missing ID in checkForExistingIDs # no need to raise an exception in this function by trying to access missing IDs continue if groundtruth["id"] in ids: result &= False write_stderr_red("Warning:", "Ambiguous id (%s) found in ground truth, timestamp %f, frame %d!" % (str(groundtruth["id"]), frame["timestamp"], frame["num"] if "num" in frame else -1)) else: ids.add(groundtruth["id"]) for frame in self.hypotheses_["frames"]: ids = set() for hypothesis in frame["hypotheses"]: if hypothesis["id"] in ids: result &= False write_stderr_red("Warning:", "Ambiguous hypothesis (%s) found in hypotheses, timestamp %f, frame %d!" % (str(hypothesis["id"]), frame["timestamp"], frame["num"] if "num" in frame else -1)) else: ids.add(hypothesis["id"]) return result # true: OK, false: ambiguous id found def checkForExistingIDs(self): """Check ground truth and hypotheses for having a valid id. Valid: existing and non-empty.""" result = True for f in self.groundtruth_["frames"]: for g in f["annotations"]: if not "id" in g.keys(): write_stderr_red("Warning:", "Groundtruth without ID found, timestamp %f, frame %d!" % (f["timestamp"], f["num"] if "num" in f else -1)) result &= False continue if g["id"] == "": write_stderr_red("Warning:", "Groundtruth with empty ID found, timestamp %f, frame %d!" % (f["timestamp"], f["num"] if "num" in f else -1)) result &= False continue # Hypotheses without ids or with empty ids for f in self.hypotheses_["frames"]: for h in f["hypotheses"]: if not "id" in h.keys(): write_stderr_red("Warning:", "Hypothesis without ID found, timestamp %f, frame %d!" % (f["timestamp"], f["num"] if "num" in f else -1)) result &= False continue if h["id"] == "": write_stderr_red("Warning:", "Hypothesis with empty ID found, timestamp %f, frame %d!" % (f["timestamp"], f["num"] if "num" in f else -1)) result &= False continue return result # true: OK, false: missing id found def checkForCompleteness(self): """Check ground truth and hypotheses for containing width, height, x and y""" result = True expectedKeys = ("x", "y", "width", "height") for f in self.groundtruth_["frames"]: for g in f["annotations"]: for key in expectedKeys: if not key in g.keys(): write_stderr_red("Warning:", "Groundtruth without key %s found, timestamp %f, frame %d!" % (key, f["timestamp"], f["num"] if "num" in f else -1)) result &= False # Hypotheses without ids or with empty ids for f in self.hypotheses_["frames"]: for h in f["hypotheses"]: for key in expectedKeys: if not key in h.keys(): write_stderr_red("Warning:", "Hypothesis without key %s found, timestamp %f, frame %d!" % (key, f["timestamp"], f["num"] if "num" in f else -1)) result &= False return result # true: OK, false: missing id found
tests/test_globals.py
hacs/integration
2,039
11094522
<gh_stars>1000+ """Test globals.""" # pylint: disable=missing-docstring def test_global_hacs(hacs): assert hacs.core.lovelace_mode == "yaml" hacs.core.lovelace_mode = "storage" assert hacs.core.lovelace_mode == "storage"
slashtags/mixins/__init__.py
Onii-Chan-Discord/phen-cogs
105
11094546
<reponame>Onii-Chan-Discord/phen-cogs<gh_stars>100-1000 from .commands import Commands # noqa from .processor import Processor # noqa
etl/parsers/etw/Microsoft_Windows_L2NACP.py
IMULMUL/etl-parser
104
11094548
<gh_stars>100-1000 # -*- coding: utf-8 -*- """ Microsoft-Windows-L2NACP GUID : 85fe7609-ff4a-48e9-9d50-12918e43e1da """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("85fe7609-ff4a-48e9-9d50-12918e43e1da"), event_id=13003, version=0) class Microsoft_Windows_L2NACP_13003_0(Etw): pattern = Struct( "Result" / Int32ul, "Reason" / Int32ul, "InterfaceGuid" / Guid, "ProfileName" / WString ) @declare(guid=guid("85fe7609-ff4a-48e9-9d50-12918e43e1da"), event_id=13004, version=0) class Microsoft_Windows_L2NACP_13004_0(Etw): pattern = Struct( "Result" / Int32ul, "InterfaceGuid" / Guid, "ProfileName" / WString ) @declare(guid=guid("85fe7609-ff4a-48e9-9d50-12918e43e1da"), event_id=13023, version=0) class Microsoft_Windows_L2NACP_13023_0(Etw): pattern = Struct( "Result" / Int32ul, "Reason" / Int32ul, "InterfaceGuid" / Guid ) @declare(guid=guid("85fe7609-ff4a-48e9-9d50-12918e43e1da"), event_id=13024, version=0) class Microsoft_Windows_L2NACP_13024_0(Etw): pattern = Struct( "Result" / Int32ul, "InterfaceGuid" / Guid ) @declare(guid=guid("85fe7609-ff4a-48e9-9d50-12918e43e1da"), event_id=14000, version=0) class Microsoft_Windows_L2NACP_14000_0(Etw): pattern = Struct( "Enabled" / Int8ul, "Remote" / Int8ul, "Dot3Allowed" / Int8ul, "WlanAllowed" / Int8ul, "CredentialsFound" / Int8ul )
atcoder/abc068/b.py
Ashindustry007/competitive-programming
506
11094560
<gh_stars>100-1000 #!/usr/bin/env python3 # https://abc068.contest.atcoder.jp/tasks/abc068_b n = int(input()) k = 1 while k * 2 <= n: k *= 2 print(k)
examples/generation/docking_generation/guacamol_tdc/guacamol_baselines/smiles_lstm_ppo/running_reward.py
Shicheng-Guo/TDC
577
11094561
class RunningReward(object): def __init__(self, keep_factor: float, initial_value=0) -> None: """ Args: keep_factor: How much of the last value to keep when a new one is added. initial_value: Initial reward """ assert keep_factor >= 0.0 assert keep_factor <= 1.0 self._keep_factor = keep_factor self._reward = initial_value self.last_added = initial_value @property def value(self): """Get the current running reward.""" return self._reward def update(self, reward): """Update the running reward with a new value.""" self._reward *= self._keep_factor self._reward += reward * (1.0 - self._keep_factor) self.last_added = reward
Scripted/attic/PicasaSnap/gdata/calendar/client.py
hung-lab/SlicerCIP
267
11094584
#!/usr/bin/python # # Copyright (C) 2011 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """CalendarClient extends the GDataService to streamline Google Calendar operations. CalendarService: Provides methods to query feeds and manipulate items. Extends GDataService. DictionaryToParamList: Function which converts a dictionary into a list of URL arguments (represented as strings). This is a utility function used in CRUD operations. """ __author__ = 'alainv (<NAME>)' import urllib.request, urllib.parse, urllib.error import gdata.client import gdata.calendar.data import atom.data import atom.http_core import gdata.gauth DEFAULT_BATCH_URL = ('https://www.google.com/calendar/feeds/default/private' '/full/batch') class CalendarClient(gdata.client.GDClient): """Client for the Google Calendar service.""" api_version = '2' auth_service = 'cl' server = "www.google.com" contact_list = "default" auth_scopes = gdata.gauth.AUTH_SCOPES['cl'] def __init__(self, domain=None, auth_token=None, **kwargs): """Constructs a new client for the Calendar API. Args: domain: string The Google Apps domain (if any). kwargs: The other parameters to pass to the gdata.client.GDClient constructor. """ gdata.client.GDClient.__init__(self, auth_token=auth_token, **kwargs) self.domain = domain def get_calendar_feed_uri(self, feed='', projection='full', scheme="https"): """Builds a feed URI. Args: projection: The projection to apply to the feed contents, for example 'full', 'base', 'base/12345', 'full/batch'. Default value: 'full'. scheme: The URL scheme such as 'http' or 'https', None to return a relative URI without hostname. Returns: A feed URI using the given scheme and projection. Example: '/calendar/feeds/default/owncalendars/full'. """ prefix = scheme and '%s://%s' % (scheme, self.server) or '' suffix = feed and '/%s/%s' % (feed, projection) or '' return '%s/calendar/feeds/default%s' % (prefix, suffix) GetCalendarFeedUri = get_calendar_feed_uri def get_calendar_event_feed_uri(self, calendar='default', visibility='private', projection='full', scheme="https"): """Builds a feed URI. Args: projection: The projection to apply to the feed contents, for example 'full', 'base', 'base/12345', 'full/batch'. Default value: 'full'. scheme: The URL scheme such as 'http' or 'https', None to return a relative URI without hostname. Returns: A feed URI using the given scheme and projection. Example: '/calendar/feeds/default/private/full'. """ prefix = scheme and '%s://%s' % (scheme, self.server) or '' return '%s/calendar/feeds/%s/%s/%s' % (prefix, calendar, visibility, projection) GetCalendarEventFeedUri = get_calendar_event_feed_uri def get_calendars_feed(self, uri, desired_class=gdata.calendar.data.CalendarFeed, auth_token=None, **kwargs): """Obtains a calendar feed. Args: uri: The uri of the calendar feed to request. desired_class: class descended from atom.core.XmlElement to which a successful response should be converted. If there is no converter function specified (desired_class=None) then the desired_class will be used in calling the atom.core.parse function. If neither the desired_class nor the converter is specified, an HTTP reponse object will be returned. Defaults to gdata.calendar.data.CalendarFeed. auth_token: An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. Represents the current user. Defaults to None and if None, this method will look for a value in the auth_token member of SpreadsheetsClient. """ return self.get_feed(uri, auth_token=auth_token, desired_class=desired_class, **kwargs) GetCalendarsFeed = get_calendars_feed def get_own_calendars_feed(self, desired_class=gdata.calendar.data.CalendarFeed, auth_token=None, **kwargs): """Obtains a feed containing the calendars owned by the current user. Args: desired_class: class descended from atom.core.XmlElement to which a successful response should be converted. If there is no converter function specified (desired_class=None) then the desired_class will be used in calling the atom.core.parse function. If neither the desired_class nor the converter is specified, an HTTP reponse object will be returned. Defaults to gdata.calendar.data.CalendarFeed. auth_token: An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. Represents the current user. Defaults to None and if None, this method will look for a value in the auth_token member of SpreadsheetsClient. """ return self.GetCalendarsFeed(uri=self.GetCalendarFeedUri(feed='owncalendars'), desired_class=desired_class, auth_token=auth_token, **kwargs) GetOwnCalendarsFeed = get_own_calendars_feed def get_all_calendars_feed(self, desired_class=gdata.calendar.data.CalendarFeed, auth_token=None, **kwargs): """Obtains a feed containing all the ccalendars the current user has access to. Args: desired_class: class descended from atom.core.XmlElement to which a successful response should be converted. If there is no converter function specified (desired_class=None) then the desired_class will be used in calling the atom.core.parse function. If neither the desired_class nor the converter is specified, an HTTP reponse object will be returned. Defaults to gdata.calendar.data.CalendarFeed. auth_token: An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. Represents the current user. Defaults to None and if None, this method will look for a value in the auth_token member of SpreadsheetsClient. """ return self.GetCalendarsFeed(uri=self.GetCalendarFeedUri(feed='allcalendars'), desired_class=desired_class, auth_token=auth_token, **kwargs) GetAllCalendarsFeed = get_all_calendars_feed def get_calendar_entry(self, uri, desired_class=gdata.calendar.data.CalendarEntry, auth_token=None, **kwargs): """Obtains a single calendar entry. Args: uri: The uri of the desired calendar entry. desired_class: class descended from atom.core.XmlElement to which a successful response should be converted. If there is no converter function specified (desired_class=None) then the desired_class will be used in calling the atom.core.parse function. If neither the desired_class nor the converter is specified, an HTTP reponse object will be returned. Defaults to gdata.calendar.data.CalendarEntry. auth_token: An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. Represents the current user. Defaults to None and if None, this method will look for a value in the auth_token member of SpreadsheetsClient. """ return self.get_entry(uri, auth_token=auth_token, desired_class=desired_class, **kwargs) GetCalendarEntry = get_calendar_entry def get_calendar_event_feed(self, uri=None, desired_class=gdata.calendar.data.CalendarEventFeed, auth_token=None, **kwargs): """Obtains a feed of events for the desired calendar. Args: uri: The uri of the desired calendar entry. Defaults to https://www.google.com/calendar/feeds/default/private/full. desired_class: class descended from atom.core.XmlElement to which a successful response should be converted. If there is no converter function specified (desired_class=None) then the desired_class will be used in calling the atom.core.parse function. If neither the desired_class nor the converter is specified, an HTTP reponse object will be returned. Defaults to gdata.calendar.data.CalendarEventFeed. auth_token: An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. Represents the current user. Defaults to None and if None, this method will look for a value in the auth_token member of SpreadsheetsClient. """ uri = uri or self.GetCalendarEventFeedUri() return self.get_feed(uri, auth_token=auth_token, desired_class=desired_class, **kwargs) GetCalendarEventFeed = get_calendar_event_feed def get_event_entry(self, uri, desired_class=gdata.calendar.data.CalendarEventEntry, auth_token=None, **kwargs): """Obtains a single event entry. Args: uri: The uri of the desired calendar event entry. desired_class: class descended from atom.core.XmlElement to which a successful response should be converted. If there is no converter function specified (desired_class=None) then the desired_class will be used in calling the atom.core.parse function. If neither the desired_class nor the converter is specified, an HTTP reponse object will be returned. Defaults to gdata.calendar.data.CalendarEventEntry. auth_token: An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. Represents the current user. Defaults to None and if None, this method will look for a value in the auth_token member of SpreadsheetsClient. """ return self.get_entry(uri, auth_token=auth_token, desired_class=desired_class, **kwargs) GetEventEntry = get_event_entry def get_calendar_acl_feed(self, uri='https://www.google.com/calendar/feeds/default/acl/full', desired_class=gdata.calendar.data.CalendarAclFeed, auth_token=None, **kwargs): """Obtains an Access Control List feed. Args: uri: The uri of the desired Acl feed. Defaults to https://www.google.com/calendar/feeds/default/acl/full. desired_class: class descended from atom.core.XmlElement to which a successful response should be converted. If there is no converter function specified (desired_class=None) then the desired_class will be used in calling the atom.core.parse function. If neither the desired_class nor the converter is specified, an HTTP reponse object will be returned. Defaults to gdata.calendar.data.CalendarAclFeed. auth_token: An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. Represents the current user. Defaults to None and if None, this method will look for a value in the auth_token member of SpreadsheetsClient. """ return self.get_feed(uri, auth_token=auth_token, desired_class=desired_class, **kwargs) GetCalendarAclFeed = get_calendar_acl_feed def get_calendar_acl_entry(self, uri, desired_class=gdata.calendar.data.CalendarAclEntry, auth_token=None, **kwargs): """Obtains a single Access Control List entry. Args: uri: The uri of the desired Acl feed. desired_class: class descended from atom.core.XmlElement to which a successful response should be converted. If there is no converter function specified (desired_class=None) then the desired_class will be used in calling the atom.core.parse function. If neither the desired_class nor the converter is specified, an HTTP reponse object will be returned. Defaults to gdata.calendar.data.CalendarAclEntry. auth_token: An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. Represents the current user. Defaults to None and if None, this method will look for a value in the auth_token member of SpreadsheetsClient. """ return self.get_entry(uri, auth_token=auth_token, desired_class=desired_class, **kwargs) GetCalendarAclEntry = get_calendar_acl_entry def insert_calendar(self, new_calendar, insert_uri=None, auth_token=None, **kwargs): """Adds an new calendar to Google Calendar. Args: new_calendar: atom.Entry or subclass A new calendar which is to be added to Google Calendar. insert_uri: the URL to post new contacts to the feed url_params: dict (optional) Additional URL parameters to be included in the insertion request. escape_params: boolean (optional) If true, the url_parameters will be escaped before they are included in the request. Returns: On successful insert, an entry containing the contact created On failure, a RequestError is raised of the form: {'status': HTTP status code from server, 'reason': HTTP reason from the server, 'body': HTTP body of the server's response} """ insert_uri = insert_uri or self.GetCalendarFeedUri(feed='owncalendars') return self.Post(new_calendar, insert_uri, auth_token=auth_token, **kwargs) InsertCalendar = insert_calendar def insert_calendar_subscription(self, calendar, insert_uri=None, auth_token=None, **kwargs): """Subscribes the authenticated user to the provided calendar. Args: calendar: The calendar to which the user should be subscribed. url_params: dict (optional) Additional URL parameters to be included in the insertion request. escape_params: boolean (optional) If true, the url_parameters will be escaped before they are included in the request. Returns: On successful insert, an entry containing the subscription created On failure, a RequestError is raised of the form: {'status': HTTP status code from server, 'reason': HTTP reason from the server, 'body': HTTP body of the server's response} """ insert_uri = insert_uri or self.GetCalendarFeedUri(feed='allcalendars') return self.Post(calendar, insert_uri, auth_token=auth_token, **kwargs) InsertCalendarSubscription = insert_calendar_subscription def insert_event(self, new_event, insert_uri=None, auth_token=None, **kwargs): """Adds an new event to Google Calendar. Args: new_event: atom.Entry or subclass A new event which is to be added to Google Calendar. insert_uri: the URL to post new contacts to the feed url_params: dict (optional) Additional URL parameters to be included in the insertion request. escape_params: boolean (optional) If true, the url_parameters will be escaped before they are included in the request. Returns: On successful insert, an entry containing the contact created On failure, a RequestError is raised of the form: {'status': HTTP status code from server, 'reason': HTTP reason from the server, 'body': HTTP body of the server's response} """ insert_uri = insert_uri or self.GetCalendarEventFeedUri() return self.Post(new_event, insert_uri, auth_token=auth_token, **kwargs) InsertEvent = insert_event def insert_acl_entry(self, new_acl_entry, insert_uri = 'https://www.google.com/calendar/feeds/default/acl/full', auth_token=None, **kwargs): """Adds an new Acl entry to Google Calendar. Args: new_acl_event: atom.Entry or subclass A new acl which is to be added to Google Calendar. insert_uri: the URL to post new contacts to the feed url_params: dict (optional) Additional URL parameters to be included in the insertion request. escape_params: boolean (optional) If true, the url_parameters will be escaped before they are included in the request. Returns: On successful insert, an entry containing the contact created On failure, a RequestError is raised of the form: {'status': HTTP status code from server, 'reason': HTTP reason from the server, 'body': HTTP body of the server's response} """ return self.Post(new_acl_entry, insert_uri, auth_token=auth_token, **kwargs) InsertAclEntry = insert_acl_entry def execute_batch(self, batch_feed, url, desired_class=None): """Sends a batch request feed to the server. Args: batch_feed: gdata.contacts.CalendarEventFeed A feed containing batch request entries. Each entry contains the operation to be performed on the data contained in the entry. For example an entry with an operation type of insert will be used as if the individual entry had been inserted. url: str The batch URL to which these operations should be applied. converter: Function (optional) The function used to convert the server's response to an object. Returns: The results of the batch request's execution on the server. If the default converter is used, this is stored in a ContactsFeed. """ return self.Post(batch_feed, url, desired_class=desired_class) ExecuteBatch = execute_batch def update(self, entry, auth_token=None, **kwargs): """Edits the entry on the server by sending the XML for this entry. Performs a PUT and converts the response to a new entry object with a matching class to the entry passed in. Args: entry: auth_token: Returns: A new Entry object of a matching type to the entry which was passed in. """ return gdata.client.GDClient.Update(self, entry, auth_token=auth_token, force=True, **kwargs) Update = update class CalendarEventQuery(gdata.client.Query): """ Create a custom Calendar Query Full specs can be found at: U{Calendar query parameters reference <http://code.google.com/apis/calendar/data/2.0/reference.html#Parameters>} """ def __init__(self, feed=None, ctz=None, fields=None, futureevents=None, max_attendees=None, orderby=None, recurrence_expansion_start=None, recurrence_expansion_end=None, singleevents=None, showdeleted=None, showhidden=None, sortorder=None, start_min=None, start_max=None, updated_min=None, **kwargs): """ @param max_results: The maximum number of entries to return. If you want to receive all of the contacts, rather than only the default maximum, you can specify a very large number for max-results. @param start-index: The 1-based index of the first result to be retrieved. @param updated-min: The lower bound on entry update dates. @param group: Constrains the results to only the contacts belonging to the group specified. Value of this parameter specifies group ID @param orderby: Sorting criterion. The only supported value is lastmodified. @param showdeleted: Include deleted contacts in the returned contacts feed @pram sortorder: Sorting order direction. Can be either ascending or descending. @param requirealldeleted: Only relevant if showdeleted and updated-min are also provided. It dictates the behavior of the server in case it detects that placeholders of some entries deleted since the point in time specified as updated-min may have been lost. """ gdata.client.Query.__init__(self, **kwargs) self.ctz = ctz self.fields = fields self.futureevents = futureevents self.max_attendees = max_attendees self.orderby = orderby self.recurrence_expansion_start = recurrence_expansion_start self.recurrence_expansion_end = recurrence_expansion_end self.singleevents = singleevents self.showdeleted = showdeleted self.showhidden = showhidden self.sortorder = sortorder self.start_min = start_min self.start_max = start_max self.updated_min = updated_min def modify_request(self, http_request): if self.ctz: gdata.client._add_query_param('ctz', self.ctz, http_request) if self.fields: gdata.client._add_query_param('fields', self.fields, http_request) if self.futureevents: gdata.client._add_query_param('futureevents', self.futureevents, http_request) if self.max_attendees: gdata.client._add_query_param('max-attendees', self.max_attendees, http_request) if self.orderby: gdata.client._add_query_param('orderby', self.orderby, http_request) if self.recurrence_expansion_start: gdata.client._add_query_param('recurrence-expansion-start', self.recurrence_expansion_start, http_request) if self.recurrence_expansion_end: gdata.client._add_query_param('recurrence-expansion-end', self.recurrence_expansion_end, http_request) if self.singleevents: gdata.client._add_query_param('singleevents', self.singleevents, http_request) if self.showdeleted: gdata.client._add_query_param('showdeleted', self.showdeleted, http_request) if self.showhidden: gdata.client._add_query_param('showhidden', self.showhidden, http_request) if self.sortorder: gdata.client._add_query_param('sortorder', self.sortorder, http_request) if self.start_min: gdata.client._add_query_param('start-min', self.start_min, http_request) if self.start_max: gdata.client._add_query_param('start-max', self.start_max, http_request) if self.updated_min: gdata.client._add_query_param('updated-min', self.updated_min, http_request) gdata.client.Query.modify_request(self, http_request) ModifyRequest = modify_request
src/ssort/__init__.py
bwhmather/ssort
238
11094597
<reponame>bwhmather/ssort """ The python source code statement sorter. """ from ssort._exceptions import ResolutionError from ssort._ssort import ssort # Let linting tools know that we mean to re-export ResolutionError. assert ResolutionError is not None __version__ = "0.9.0" __all__ = ["ssort"]
koku/api/resource_types/test/openshift_projects/test_views.py
rubik-ai/koku
157
11094608
# # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """Test the Resource Types views.""" from django.db.models import F from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient from tenant_schemas.utils import schema_context from api.iam.test.iam_test_case import IamTestCase from api.iam.test.iam_test_case import RbacPermissions from reporting.provider.ocp.models import OCPCostSummaryByProjectP class ResourceTypesViewTestOpenshiftProjects(IamTestCase): """Tests the resource types views.""" def setUp(self): """Set up the customer view tests.""" super().setUp() self.client = APIClient() @RbacPermissions({"openshift.project": {"read": ["cost-management"]}}) def test_openshift_project_with_project_access_view(self): """Test endpoint runs with a customer owner.""" with schema_context(self.schema_name): expected = ( OCPCostSummaryByProjectP.objects.annotate(**{"value": F("namespace")}) .values("value") .distinct() .filter(namespace__in=["cost-management"]) .count() ) # check that the expected is not zero self.assertTrue(expected) url = reverse("openshift-projects") response = self.client.get(url, **self.headers) self.assertEqual(response.status_code, status.HTTP_200_OK) json_result = response.json() self.assertIsNotNone(json_result.get("data")) self.assertIsInstance(json_result.get("data"), list) self.assertEqual(len(json_result.get("data")), expected) @RbacPermissions({"openshift.cluster": {"read": ["OCP-on-AWS"]}}) def test_openshift_project_with_cluster_access_view(self): """Test endpoint runs with a customer owner.""" with schema_context(self.schema_name): expected = ( OCPCostSummaryByProjectP.objects.annotate(**{"value": F("namespace")}) .values("value") .distinct() .filter(cluster_id__in=["OCP-on-AWS"]) .count() ) # check that the expected is not zero self.assertTrue(expected) url = reverse("openshift-projects") response = self.client.get(url, **self.headers) self.assertEqual(response.status_code, status.HTTP_200_OK) json_result = response.json() self.assertIsNotNone(json_result.get("data")) self.assertIsInstance(json_result.get("data"), list) self.assertEqual(len(json_result.get("data")), expected) @RbacPermissions( {"openshift.cluster": {"read": ["OCP-on-AWS"]}, "openshift.project": {"read": ["cost-management"]}} ) def test_openshift_project_with_cluster_and_project_access_view(self): """Test endpoint runs with a customer owner.""" with schema_context(self.schema_name): expected = ( OCPCostSummaryByProjectP.objects.annotate(**{"value": F("namespace")}) .values("value") .distinct() .filter(namespace__in=["cost-management"], cluster_id__in=["OCP-on-AWS"]) .count() ) # check that the expected is not zero self.assertTrue(expected) url = reverse("openshift-projects") response = self.client.get(url, **self.headers) self.assertEqual(response.status_code, status.HTTP_200_OK) json_result = response.json() self.assertIsNotNone(json_result.get("data")) self.assertIsInstance(json_result.get("data"), list) self.assertEqual(len(json_result.get("data")), expected) @RbacPermissions({"openshift.cluster": {"read": ["OCP-on-AWS"]}, "openshift.project": {"read": ["*"]}}) def test_openshift_project_with_cluster_and_all_project_access_view(self): """Test endpoint runs with a customer owner.""" with schema_context(self.schema_name): expected = ( OCPCostSummaryByProjectP.objects.annotate(**{"value": F("namespace")}) .values("value") .distinct() .filter(cluster_id__in=["OCP-on-AWS"]) .count() ) # check that the expected is not zero self.assertTrue(expected) url = reverse("openshift-projects") response = self.client.get(url, **self.headers) self.assertEqual(response.status_code, status.HTTP_200_OK) json_result = response.json() self.assertIsNotNone(json_result.get("data")) self.assertIsInstance(json_result.get("data"), list) self.assertEqual(len(json_result.get("data")), expected) @RbacPermissions({"openshift.cluster": {"read": ["*"]}, "openshift.project": {"read": ["cost-management"]}}) def test_openshift_project_with_all_cluster_and_project_access_view(self): """Test endpoint runs with a customer owner.""" with schema_context(self.schema_name): expected = ( OCPCostSummaryByProjectP.objects.annotate(**{"value": F("namespace")}) .values("value") .distinct() .filter(namespace__in=["cost-management"]) .count() ) # check that the expected is not zero self.assertTrue(expected) url = reverse("openshift-projects") response = self.client.get(url, **self.headers) self.assertEqual(response.status_code, status.HTTP_200_OK) json_result = response.json() self.assertIsNotNone(json_result.get("data")) self.assertIsInstance(json_result.get("data"), list) self.assertEqual(len(json_result.get("data")), expected)
bgp-add-fake-routes.py
9l/scapy
129
11094616
<reponame>9l/scapy #!/usr/bin/env python3 #Import time so we can set a sleep timer import time #Import scapy from scapy.all import * #Import BGP load_contrib('bgp') #Capture a BGP packet off the wire #You will need to change the IP address here to a valid #BGP neighbor to impersonate pkt = sniff(filter="tcp and ip dst 192.168.1.249",count=1) #Loop for sending packets for i in range (0, 3): #Create a new Ethernet frame frame1=Ether() #Set destination MAC address to captured BGP frame frame1.dst = pkt[0].dst #Set source MAC address to captured BGP frame frame1.src = pkt[0].src #Set Ethernet Type to captured BGP frame frame1.type = pkt[0].type #Set destination port to captured BGP packet TCP port number mydport = pkt[0].dport #Set source port to captured BGP packet TCP port number mysport = pkt[0].sport #Set sequence number to captured BGP packet + i (loop value) seq_num = pkt[0].seq + i #Set ack number to captured BGP packet ack_num = pkt[0].ack #Set source IP address to captured BGP packet ipsrc = pkt[0][IP].src #Set desination IP address to captured BGP packet ipdst = pkt[0][IP].dst #Set BGP origin to IGP setORIGIN=BGPPathAttr(type_flags="Transitive", type_code="ORIGIN", attribute=[BGPPAOrigin(origin="IGP")]) #Set BGP autonomos system path - change this to the right value setAS=BGPPathAttr(type_flags="Transitive", type_code="AS_PATH", attribute=None) #Set BGP next hop - change this to the right value setNEXTHOP=BGPPathAttr(type_flags="Transitive", type_code="NEXT_HOP", attribute=[BGPPANextHop(next_hop="192.168.1.246")]) #Set BGP MED - change this to the right value setMED=BGPPathAttr(type_flags="Optional", type_code="MULTI_EXIT_DISC", attribute=[BGPPAMultiExitDisc(med=0)]) #Set BGP local preference - change this to the right value setLOCALPREF=BGPPathAttr(type_flags="Transitive", type_code="LOCAL_PREF", attribute=[BGPPALocalPref(local_pref=100)]) #Create BGP Update packet with source and destination IP address #Set Attributes and route to update bgp_update = IP(src=ipsrc, dst=ipdst, ttl=1)\ /TCP(dport=mydport, sport=mysport, flags="PA", seq=seq_num, ack=ack_num)\ /BGPHeader(marker=340282366920938463463374607431768211455, type="UPDATE")\ /BGPUpdate(withdrawn_routes_len=0, \ path_attr=[setORIGIN, setAS, setNEXTHOP, setMED, setLOCALPREF], nlri=[BGPNLRI_IPv4(prefix="12.12.12.12/32")]) #Display new packet bgp_update.show() #Reset len values to force recalculation del bgp_update[BGPHeader].len del bgp_update[BGPHeader].path_attr_len del bgp_update[BGPUpdate].path_attr_len del bgp_update[BGPUpdate][0][BGPPathAttr].attr_len del bgp_update[BGPUpdate][1][BGPPathAttr].attr_len del bgp_update[BGPUpdate][3][BGPPathAttr].attr_len del bgp_update[BGPUpdate][4][BGPPathAttr].attr_len del bgp_update[IP].len #Send packet into network = frame1 + bgp_update sendp(frame1/bgp_update)
rotkehlchen/api/websockets/notifier.py
rotkehlchenio/rotkehlchen
137
11094656
<gh_stars>100-1000 import json import logging from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional from geventwebsocket import WebSocketApplication from geventwebsocket.exceptions import WebSocketError from geventwebsocket.websocket import WebSocket from rotkehlchen.greenlets import GreenletManager from rotkehlchen.logging import RotkehlchenLogsAdapter if TYPE_CHECKING: from rotkehlchen.api.websockets.typedefs import WSMessageType logger = logging.getLogger(__name__) log = RotkehlchenLogsAdapter(logger) def _ws_send_impl( websocket: WebSocket, to_send_msg: str, success_callback: Optional[Callable] = None, success_callback_args: Optional[Dict[str, Any]] = None, failure_callback: Optional[Callable] = None, failure_callback_args: Optional[Dict[str, Any]] = None, ) -> None: try: websocket.send(to_send_msg) except WebSocketError as e: log.error(f'Websocket send with message {to_send_msg} failed due to {str(e)}') if failure_callback: failure_callback_args = {} if failure_callback_args is None else failure_callback_args # noqa: E501 failure_callback(**failure_callback_args) return if success_callback: # send success success_callback_args = {} if success_callback_args is None else success_callback_args # noqa: E501 success_callback(**success_callback_args) class RotkiNotifier(): def __init__( self, greenlet_manager: GreenletManager, ) -> None: self.greenlet_manager = greenlet_manager self.subscribers: List[WebSocket] = [] def subscribe(self, websocket: WebSocket) -> None: log.info(f'Websocket with hash id {hash(websocket)} subscribed to rotki notifier') self.subscribers.append(websocket) def unsubscribe(self, websocket: WebSocket) -> None: try: self.subscribers.remove(websocket) log.info(f'Websocket with hash id {hash(websocket)} unsubscribed from rotki notifier') # noqa: E501 except ValueError: pass def broadcast( self, message_type: 'WSMessageType', to_send_data: Dict[str, Any], success_callback: Optional[Callable] = None, success_callback_args: Optional[Dict[str, Any]] = None, failure_callback: Optional[Callable] = None, failure_callback_args: Optional[Dict[str, Any]] = None, ) -> None: message_data = {'type': str(message_type), 'data': to_send_data} message = json.dumps(message_data) # TODO: Check for dumps error to_remove_indices = set() spawned_one_broadcast = False for idx, websocket in enumerate(self.subscribers): if websocket.closed is True: to_remove_indices.add(idx) continue self.greenlet_manager.spawn_and_track( after_seconds=None, task_name=f'Websocket send for {str(message_type)}', exception_is_error=True, method=_ws_send_impl, websocket=websocket, to_send_msg=message, success_callback=success_callback, success_callback_args=success_callback_args, failure_callback=failure_callback, failure_callback_args=failure_callback_args, ) spawned_one_broadcast = True if len(to_remove_indices) != 0: # removed closed websockets from the list self.subscribers = [ i for j, i in enumerate(self.subscribers) if j not in to_remove_indices ] if spawned_one_broadcast is False and failure_callback is not None: failure_callback_args = {} if failure_callback_args is None else failure_callback_args # noqa: E501 failure_callback(**failure_callback_args) class RotkiWSApp(WebSocketApplication): """The WebSocket app that's instantiated for every message as it seems from the code Only way to pass it extra arguments is through "environ" which is why we have a different class "RotkiNotifier" handling the bulk of the work """ def on_open(self, *args: Any, **kwargs: Any) -> None: rotki_notifier: RotkiNotifier = self.ws.environ['rotki_notifier'] rotki_notifier.subscribe(self.ws) def on_message(self, message: Optional[str], *args: Any, **kwargs: Any) -> None: if self.ws.closed: return try: self.ws.send(message, **kwargs) except WebSocketError as e: log.warning( f'Got WebSocketError {str(e)} for sending message {message} to a websocket', ) def on_close(self, *args: Any, **kwargs: Any) -> None: if self.ws.environ is not None: rotki_notifier: RotkiNotifier = self.ws.environ['rotki_notifier'] rotki_notifier.unsubscribe(self.ws)
tools/Polygraphy/polygraphy/exception/__init__.py
KaliberAI/TensorRT
5,249
11094676
<reponame>KaliberAI/TensorRT<filename>tools/Polygraphy/polygraphy/exception/__init__.py<gh_stars>1000+ from polygraphy.exception.exception import *
nipio_tests/backend_test.py
onlyrico/nip.io
648
11094677
<reponame>onlyrico/nip.io<filename>nipio_tests/backend_test.py # Copyright 2019 Exentrique Solutions Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import ipaddress import os import sys import unittest from assertpy import assert_that from mock.mock import patch, call from nipio.backend import DynamicBackend def _get_test_config_filename(filename): return os.path.join(os.path.dirname(os.path.realpath(__file__)), filename) class DynamicBackendTest(unittest.TestCase): def setUp(self): os.environ.clear() self.mock_sys_patcher = patch("nipio.backend.sys") self.mock_sys = self.mock_sys_patcher.start() self.mock_sys.stderr.write = sys.stderr.write import nipio nipio.backend._is_debug = lambda: True def tearDown(self): sys.stderr.flush() self.mock_sys_patcher.stop() def test_backend_ends_response_to_ANY_request_if_ip_is_blacklisted(self): self._send_commands( ["Q", "subdomain.127.0.0.2.nip.io.test", "IN", "ANY", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses(["LOG", "Blacklisted: 127.0.0.2"]) def test_backend_ends_response_to_A_request_if_ip_is_blacklisted(self): self._send_commands( ["Q", "subdomain.127.0.0.2.nip.io.test", "IN", "A", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses(["LOG", "Blacklisted: 127.0.0.2"]) def test_backend_ends_response_to_ANY_request_if_ip_is_not_whitelisted(self): self._send_commands( ["Q", "subdomain.10.0.10.1.nip.io.test", "IN", "ANY", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses(["LOG", "Not Whitelisted: 10.0.10.1"]) def test_backend_ends_response_to_A_request_if_ip_is_not_whitelisted(self): self._send_commands( ["Q", "subdomain.10.0.10.1.nip.io.test", "IN", "A", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses(["LOG", "Not Whitelisted: 10.0.10.1"]) def test_backend_with_empty_whitelist_responds_to_ANY_request_for_valid_ip(self): self._send_commands( ["Q", "subdomain.10.0.10.1.nip.io.test", "IN", "ANY", "1", "127.0.0.1"] ) self._run_backend_without_whitelist() self._assert_expected_responses( ["DATA", "0", "1", "subdomain.10.0.10.1.nip.io.test", "IN", "A", "200", "22", "10.0.10.1"], [ "DATA", "0", "1", "subdomain.10.0.10.1.nip.io.test", "IN", "NS", "200", "22", "ns1.nip.io.test", ], [ "DATA", "0", "1", "subdomain.10.0.10.1.nip.io.test", "IN", "NS", "200", "22", "ns2.nip.io.test", ], ) def test_backend_with_empty_whitelist_responds_to_A_request_for_valid_ip(self): self._send_commands( ["Q", "subdomain.10.0.10.1.nip.io.test", "IN", "A", "1", "127.0.0.1"] ) self._run_backend_without_whitelist() self._assert_expected_responses( ["DATA", "0", "1", "subdomain.10.0.10.1.nip.io.test", "IN", "A", "200", "22", "10.0.10.1"], [ "DATA", "0", "1", "subdomain.10.0.10.1.nip.io.test", "IN", "NS", "200", "22", "ns1.nip.io.test", ], [ "DATA", "0", "1", "subdomain.10.0.10.1.nip.io.test", "IN", "NS", "200", "22", "ns2.nip.io.test", ], ) def test_backend_responds_to_ANY_request_with_valid_ip(self): self._send_commands( ["Q", "subdomain.127.0.0.1.nip.io.test", "IN", "ANY", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "subdomain.127.0.0.1.nip.io.test", "IN", "A", "200", "22", "127.0.0.1"], [ "DATA", "0", "1", "subdomain.127.0.0.1.nip.io.test", "IN", "NS", "200", "22", "ns1.nip.io.test", ], [ "DATA", "0", "1", "subdomain.127.0.0.1.nip.io.test", "IN", "NS", "200", "22", "ns2.nip.io.test", ], ) def test_backend_responds_to_A_request_with_valid_ip(self): self._send_commands( ["Q", "subdomain.127.0.0.1.nip.io.test", "IN", "A", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "subdomain.127.0.0.1.nip.io.test", "IN", "A", "200", "22", "127.0.0.1"], [ "DATA", "0", "1", "subdomain.127.0.0.1.nip.io.test", "IN", "NS", "200", "22", "ns1.nip.io.test", ], [ "DATA", "0", "1", "subdomain.127.0.0.1.nip.io.test", "IN", "NS", "200", "22", "ns2.nip.io.test", ], ) def test_backend_responds_to_ANY_request_with_valid_ip_separated_by_dashes(self): self._send_commands( ["Q", "subdomain-127-0-0-1.nip.io.test", "IN", "ANY", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "subdomain-127-0-0-1.nip.io.test", "IN", "A", "200", "22", "127.0.0.1"], [ "DATA", "0", "1", "subdomain-127-0-0-1.nip.io.test", "IN", "NS", "200", "22", "ns1.nip.io.test", ], [ "DATA", "0", "1", "subdomain-127-0-0-1.nip.io.test", "IN", "NS", "200", "22", "ns2.nip.io.test", ], ) def test_backend_responds_to_A_request_with_valid_ip_separated_by_dashes(self): self._send_commands( ["Q", "subdomain-127-0-0-1.nip.io.test", "IN", "A", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "subdomain-127-0-0-1.nip.io.test", "IN", "A", "200", "22", "127.0.0.1"], [ "DATA", "0", "1", "subdomain-127-0-0-1.nip.io.test", "IN", "NS", "200", "22", "ns1.nip.io.test", ], [ "DATA", "0", "1", "subdomain-127-0-0-1.nip.io.test", "IN", "NS", "200", "22", "ns2.nip.io.test", ], ) def test_backend_responds_to_A_request_with_valid_ip_hexstring(self): self._send_commands(["Q", "user-deadbeef.nip.io.test", "IN", "A", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "user-deadbeef.nip.io.test", "IN", "A", "200", "22", "172.16.58.3"], ["DATA", "0", "1", "user-deadbeef.nip.io.test", "IN", "NS", "200", "22", "ns1.nip.io.test"], ["DATA", "0", "1", "user-deadbeef.nip.io.test", "IN", "NS", "200", "22", "ns2.nip.io.test"], ) def test_backend_responds_to_long_hexstring_with_invalid_response(self): self._send_commands(["Q", "deadbeefcafe.nip.io.test", "IN", "A", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: deadbeefcafe.nip.io.test"] ) def test_backend_responds_to_short_hexstring_with_invalid_response(self): self._send_commands(["Q", "user-dec0ded.nip.io.test", "IN", "A", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: user-dec0ded.nip.io.test"] ) def test_backend_responds_to_invalid_hexstring_with_invalid_response(self): self._send_commands(["Q", "deadcode.nip.io.test", "IN", "A", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: deadcode.nip.io.test"] ) def test_backend_responds_to_invalid_ip_in_ANY_request_with_invalid_response(self): self._send_commands( ["Q", "subdomain.127.0.1.nip.io.test", "IN", "ANY", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: subdomain.127.0.1.nip.io.test"] ) def test_backend_responds_to_invalid_ip_in_A_request_with_invalid_response(self): self._send_commands( ["Q", "subdomain.127.0.1.nip.io.test", "IN", "A", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: subdomain.127.0.1.nip.io.test"] ) def test_backend_responds_to_short_ip_in_ANY_request_with_invalid_response(self): self._send_commands(["Q", "127.0.1.nip.io.test", "IN", "ANY", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: 127.0.1.nip.io.test"] ) def test_backend_responds_to_short_ip_in_A_request_with_invalid_response(self): self._send_commands(["Q", "127.0.1.nip.io.test", "IN", "A", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: 127.0.1.nip.io.test"] ) def test_backend_responds_to_large_ip_in_ANY_request_with_invalid_response(self): self._send_commands( ["Q", "subdomain.127.0.300.1.nip.io.test", "IN", "ANY", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: subdomain.127.0.300.1.nip.io.test"] ) def test_backend_responds_to_large_ip_in_A_request_with_invalid_response(self): self._send_commands( ["Q", "subdomain.127.0.300.1.nip.io.test", "IN", "A", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: subdomain.127.0.300.1.nip.io.test"] ) def test_backend_responds_to_string_in_ip_in_ANY_request_with_invalid_response(self): self._send_commands( ["Q", "subdomain.127.0.STRING.1.nip.io.test", "IN", "ANY", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: subdomain.127.0.string.1.nip.io.test"] ) def test_backend_responds_to_string_in_ip_in_A_request_with_invalid_response(self): self._send_commands( ["Q", "subdomain.127.0.STRING.1.nip.io.test", "IN", "A", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: subdomain.127.0.string.1.nip.io.test"] ) def test_backend_responds_to_no_ip_in_ANY_request_with_invalid_response(self): self._send_commands( ["Q", "subdomain.127.0.1.nip.io.test", "IN", "ANY", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: subdomain.127.0.1.nip.io.test"] ) def test_backend_responds_to_no_ip_in_A_request_with_invalid_response(self): self._send_commands( ["Q", "subdomain.127.0.1.nip.io.test", "IN", "A", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["LOG", "Invalid IP address: subdomain.127.0.1.nip.io.test"] ) def test_backend_responds_to_self_domain_to_A_request(self): self._send_commands(["Q", "nip.io.test", "IN", "A", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "nip.io.test", "IN", "A", "200", "22", "127.0.0.33"], ["DATA", "0", "1", "nip.io.test", "IN", "NS", "200", "22", "ns1.nip.io.test"], ["DATA", "0", "1", "nip.io.test", "IN", "NS", "200", "22", "ns2.nip.io.test"], ) def test_backend_responds_to_self_domain_to_ANY_request(self): self._send_commands(["Q", "nip.io.test", "IN", "ANY", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "nip.io.test", "IN", "A", "200", "22", "127.0.0.33"], ["DATA", "0", "1", "nip.io.test", "IN", "NS", "200", "22", "ns1.nip.io.test"], ["DATA", "0", "1", "nip.io.test", "IN", "NS", "200", "22", "ns2.nip.io.test"], ) def test_backend_responds_to_name_servers_A_request_with_valid_ip(self): self._send_commands(["Q", "ns1.nip.io.test", "IN", "A", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "ns1.nip.io.test", "IN", "A", "200", "22", "127.0.0.34"], ) def test_backend_responds_to_name_servers_ANY_request_with_valid_ip(self): self._send_commands(["Q", "ns2.nip.io.test", "IN", "ANY", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "ns2.nip.io.test", "IN", "A", "200", "22", "127.0.0.35"], ) def test_backend_responds_to_SOA_request_for_self(self): self._send_commands(["Q", "nip.io.test", "IN", "SOA", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "nip.io.test", "IN", "SOA", "200", "22", "MY_SOA"] ) def test_backend_responds_to_SOA_request_for_valid_ip(self): self._send_commands( ["Q", "subdomain.1192.168.3.11.nip.io.test", "IN", "SOA", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "subdomain.127.0.0.1.nip.io.test", "IN", "SOA", "200", "22", "MY_SOA"] ) def test_backend_responds_to_SOA_request_for_invalid_ip(self): self._send_commands( ["Q", "subdomain.127.0.1.nip.io.test", "IN", "SOA", "1", "127.0.0.1"] ) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "subdomain.127.0.1.nip.io.test", "IN", "SOA", "200", "22", "MY_SOA"] ) def test_backend_responds_to_SOA_request_for_no_ip(self): self._send_commands(["Q", "subdomain.nip.io.test", "IN", "SOA", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "subdomain.nip.io.test", "IN", "SOA", "200", "22", "MY_SOA"] ) def test_backend_responds_to_SOA_request_for_nameserver(self): self._send_commands(["Q", "ns1.nip.io.test", "IN", "SOA", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["DATA", "0", "1", "ns1.nip.io.test", "IN", "SOA", "200", "22", "MY_SOA"] ) def test_backend_responds_to_A_request_for_unknown_domain_with_invalid_response( self, ): self._send_commands(["Q", "unknown.domain", "IN", "A", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["LOG", "Unknown type: A, domain: unknown.domain"] ) def test_backend_responds_to_invalid_request_with_invalid_response(self): self._send_commands(["Q", "nip.io.test", "IN", "INVALID", "1", "127.0.0.1"]) self._run_backend() self._assert_expected_responses( ["LOG", "Unknown type: INVALID, domain: nip.io.test"] ) def test_backend_responds_to_invalid_command_with_fail(self): self._send_commands(["INVALID", "COMMAND"]) self._run_backend() calls = [ call("OK"), call("\t"), call("nip.io backend - We are good"), call("\n"), call("FAIL"), call("\n"), ] self.mock_sys.stdout.write.assert_has_calls(calls) assert_that(self.mock_sys.stdout.write.call_count).is_equal_to(len(calls)) assert_that(self.mock_sys.stdout.flush.call_count).is_equal_to(2) def test_configure_with_full_config(self): backend = self._configure_backend() assert_that(backend.id).is_equal_to("55") assert_that(backend.ip_address).is_equal_to("127.0.0.40") assert_that(backend.domain).is_equal_to("nip.io.test") assert_that(backend.ttl).is_equal_to("1000") assert_that(backend.name_servers).is_equal_to( {"ns1.nip.io.test": "127.0.0.41", "ns2.nip.io.test": "127.0.0.42"} ) assert_that(backend.whitelisted_ranges).is_equal_to([ ipaddress.IPv4Network('127.0.0.0/8'), ipaddress.IPv4Network('192.168.0.0/16'), ]) assert_that(backend.blacklisted_ips).is_equal_to(["10.0.0.100"]) assert_that(backend.soa).is_equal_to("ns1.nip.io.test [email protected] 55") def test_configure_with_environment_variables_set(self): os.environ["NIPIO_DOMAIN"] = "example.com" os.environ["NIPIO_TTL"] = "1000" os.environ["NIPIO_NONWILD_DEFAULT_IP"] = "127.0.0.30" os.environ["NIPIO_SOA_ID"] = "99" os.environ["NIPIO_SOA_HOSTMASTER"] = "<EMAIL>" os.environ["NIPIO_SOA_NS"] = "ns1.example.com" os.environ[ "NIPIO_NAMESERVERS" ] = "ns1.example.com=127.0.0.31 ns2.example.com=127.0.0.32" os.environ["NIPIO_WHITELIST"] = "whitelist1=10.0.0.0/8" os.environ[ "NIPIO_BLACKLIST" ] = "black_listed=10.0.0.111 black_listed2=10.0.0.112" backend = self._configure_backend() assert_that(backend.id).is_equal_to("99") assert_that(backend.ip_address).is_equal_to("127.0.0.30") assert_that(backend.domain).is_equal_to("example.com") assert_that(backend.ttl).is_equal_to("1000") assert_that(backend.name_servers).is_equal_to( {"ns1.example.com": "127.0.0.31", "ns2.example.com": "127.0.0.32"} ) assert_that(backend.whitelisted_ranges).is_equal_to([ ipaddress.IPv4Network('10.0.0.0/8'), ]) assert_that(backend.blacklisted_ips).is_equal_to(["10.0.0.111", "10.0.0.112"]) assert_that(backend.soa).is_equal_to( "ns1.example.com host<EMAIL> 99" ) def test_configure_with_env_lists_config(self): os.environ["NIPIO_WHITELIST"] = "whitelist1=10.0.0.0/8" os.environ[ "NIPIO_BLACKLIST" ] = "black_listed=10.0.0.111 black_listed2=10.0.0.112" backend = self._configure_backend(filename="backend_test_no_lists.conf") assert_that(backend.whitelisted_ranges).is_equal_to([ ipaddress.IPv4Network('10.0.0.0/8'), ]) assert_that(backend.blacklisted_ips).is_equal_to(["10.0.0.111", "10.0.0.112"]) def test_configure_with_config_missing_lists(self): backend = self._configure_backend(filename="backend_test_no_lists.conf") assert_that(backend.whitelisted_ranges).is_empty() assert_that(backend.blacklisted_ips).is_empty() def _run_backend(self): backend = self._create_backend() backend.run() def _run_backend_without_whitelist(self): backend = self._create_backend() backend.whitelisted_ranges = [] backend.run() def _send_commands(self, *commands): commands_to_send = ["HELO\t5\n"] for command in commands: commands_to_send.append("\t".join(command) + "\n") commands_to_send.append("END\n") self.mock_sys.stdin.readline.side_effect = commands_to_send def _assert_expected_responses(self, *responses): calls = [ call("OK"), call("\t"), call("nip.io backend - We are good"), call("\n"), ] for response in responses: tab_separated = ["\t"] * (len(response) * 2 - 1) tab_separated[0::2] = response tab_separated.append("\n") calls.extend([call(response_item) for response_item in tab_separated]) calls.extend( [call("END"), call("\n"), ] ) self.mock_sys.stdout.write.assert_has_calls(calls) assert_that(self.mock_sys.stdout.write.call_count).is_equal_to(len(calls)) assert_that(self.mock_sys.stdout.flush.call_count).is_equal_to( len(responses) + 2 ) @staticmethod def _create_backend(): backend = DynamicBackend() backend.id = "22" backend.soa = "MY_SOA" backend.ip_address = "127.0.0.33" backend.ttl = "200" backend.name_servers = collections.OrderedDict( [("ns1.nip.io.test", "127.0.0.34"), ("ns2.nip.io.test", "127.0.0.35"), ] ) backend.domain = "nip.io.test" backend.whitelisted_ranges = [ # This allows us to test that the blacklist works even when the IPs are # part of whitelisted ranges ipaddress.IPv4Network('127.0.0.0/8'), # This range covers deadbeef ipaddress.IPv4Network('172.16.58.3/32'), ] backend.blacklisted_ips = ["127.0.0.2"] return backend @staticmethod def _configure_backend(filename="backend_test.conf"): backend = DynamicBackend() backend.configure(_get_test_config_filename(filename)) return backend
turla/carbon_tool.py
macdaliot/malware-ioc
1,141
11094691
#!/usr/bin/env python2 # Copyright (c) 2017, ESET # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from Crypto.Cipher import CAST import sys import argparse def main(): parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("-e", "--encrypt", help="encrypt carbon file", required=False) parser.add_argument("-d", "--decrypt", help="decrypt carbon file", required=False) try: args = parser.parse_args() except IOError as e: parser.error(e) return 0 if len(sys.argv) != 3: parser.print_help() return 0 key = <KEY>" iv = "\x12\x34\x56\x78\x9A\xBC\xDE\xF0" cipher = CAST.new(key, CAST.MODE_OFB, iv) if args.encrypt: plaintext = open(args.encrypt, "rb").read() while len(plaintext) % 8 != 0: plaintext += "\x00" data = cipher.encrypt(plaintext) open(args.encrypt + "_encrypted", "wb").write(data) else: ciphertext = open(args.decrypt, "rb").read() while len(ciphertext) % 8 != 0: ciphertext += "\x00" data = cipher.decrypt(ciphertext) open(args.decrypt + "_decrypted", "wb").write(data) if __name__ == "__main__": main()
tests/micropython/heapalloc.py
braytac/micropython
303
11094708
# check that we can do certain things without allocating heap memory import gc def f1(a): print(a) def f2(a, b=2): print(a, b) def f3(a, b, c, d): x1 = x2 = a x3 = x4 = b x5 = x6 = c x7 = x8 = d print(x1, x3, x5, x7, x2 + x4 + x6 + x8) global_var = 1 def test(): global global_var global_var = 2 # set an existing global variable for i in range(2): # for loop f1(i) # function call f1(i * 2 + 1) # binary operation with small ints f1(a=i) # keyword arguments f2(i) # default arg (second one) f2(i, i) # 2 args f3(1, 2, 3, 4) # function with lots of local state # call h with heap allocation disabled and all memory used up gc.disable() try: while True: 'a'.lower # allocates 1 cell for boundmeth except MemoryError: pass test() gc.enable()
app/modules/teams/parameters.py
IsmaelJS/test-github-actions
1,420
11094712
<reponame>IsmaelJS/test-github-actions # encoding: utf-8 """ Input arguments (Parameters) for Team resources RESTful API ----------------------------------------------------------- """ from flask_marshmallow import base_fields from flask_restplus_patched import PostFormParameters, PatchJSONParameters from . import schemas from .models import Team class CreateTeamParameters(PostFormParameters, schemas.BaseTeamSchema): class Meta(schemas.BaseTeamSchema.Meta): pass class PatchTeamDetailsParameters(PatchJSONParameters): # pylint: disable=abstract-method,missing-docstring OPERATION_CHOICES = ( PatchJSONParameters.OP_REPLACE, ) PATH_CHOICES = tuple( '/%s' % field for field in ( Team.title.key, ) ) class AddTeamMemberParameters(PostFormParameters): user_id = base_fields.Integer(required=True) is_leader = base_fields.Boolean(required=False)
theme/management/commands/report_quota_inconsistency.py
hydroshare/hydroshare
178
11094722
import csv import math from django.core.management.base import BaseCommand from django.core.exceptions import ValidationError from hs_core.hydroshare import convert_file_size_to_unit from theme.models import UserQuota from hs_core.hydroshare.resource import get_quota_usage_from_irods class Command(BaseCommand): help = "Output potential quota inconsistencies between iRODS and Django for all users in HydroShare" def add_arguments(self, parser): parser.add_argument('output_file_name_with_path', help='output file name with path') def handle(self, *args, **options): quota_report_list = [] for uq in UserQuota.objects.filter( user__is_active=True).filter(user__is_superuser=False): used_value = 0.0 try: used_value = get_quota_usage_from_irods(uq.user.username) except ValidationError: pass used_value = convert_file_size_to_unit(used_value, "gb") if not math.isclose(used_value, uq.used_value, abs_tol=0.1): # report inconsistency report_dict = { 'user': uq.user.username, 'django': uq.used_value, 'irods': used_value} quota_report_list.append(report_dict) print('quota incosistency: {} reported in django vs {} reported in iRODS for user {}'.format( uq.used_value, used_value, uq.user.username), flush=True) if quota_report_list: with open(options['output_file_name_with_path'], 'w') as csvfile: w = csv.writer(csvfile) fields = [ 'User' 'Quota reported in Django', 'Quota reported in iRODS' ] w.writerow(fields) for q in quota_report_list: values = [ q['user'], q['django'], q['irods'] ] w.writerow([str(v) for v in values])
pysmi/borrower/pyfile.py
itsmehara/pysmi
121
11094738
# # This file is part of pysmi software. # # Copyright (c) 2015-2020, <NAME> <<EMAIL>> # License: http://snmplabs.com/pysmi/license.html # try: import importlib try: SOURCE_SUFFIXES = importlib.machinery.SOURCE_SUFFIXES except Exception: raise ImportError() except ImportError: import imp SOURCE_SUFFIXES = [s[0] for s in imp.get_suffixes() if s[2] == imp.PY_SOURCE] from pysmi.borrower.base import AbstractBorrower class PyFileBorrower(AbstractBorrower): """Create PySNMP MIB file borrowing object""" exts = SOURCE_SUFFIXES
execution_trace/tests/functions/f_try_ok.py
yoyonel/python-execution-trace
197
11094741
<reponame>yoyonel/python-execution-trace from execution_trace.record import record @record(10) # 1 def f(): # 2 """Fn with a try that does not raise.""" # 3 x = 3 # 4 try: # 5 x = x + 1 # 6 except: # 7 y = 2 # 8 args = () expected_trace = [{u'data': [{u'lineno': 3, u'state': {}}, {u'lineno': 4, u'state': {u'x': u'3'}}, {u'lineno': 5, u'state': {u'x': u'3'}}, {u'lineno': 6, u'state': {u'x': u'4'}}]}]
feapder/templates/project_template/main.py
RuixiangS/feapder
876
11094764
<filename>feapder/templates/project_template/main.py<gh_stars>100-1000 # -*- coding: utf-8 -*- """ Created on {DATE} --------- @summary: 爬虫入口 --------- @author: {USER} """ from feapder import ArgumentParser from spiders import * def crawl_xxx(): """ AirSpider爬虫 """ spider = xxx.XXXSpider() spider.start() def crawl_xxx(): """ Spider爬虫 """ spider = xxx.XXXSpider(redis_key="xxx:xxx") spider.start() def crawl_xxx(args): """ BatchSpider爬虫 """ spider = xxx_spider.XXXSpider( task_table="", # mysql中的任务表 batch_record_table="", # mysql中的批次记录表 batch_name="xxx(周全)", # 批次名字 batch_interval=7, # 批次时间 天为单位 若为小时 可写 1 / 24 task_keys=["<KEY>"], # 需要获取任务表里的字段名,可添加多个 redis_key="xxx:xxxx", # redis中存放request等信息的根key task_state="state", # mysql中任务状态字段 ) if args == 1: spider.start_monitor_task() elif args == 2: spider.start() elif args == 3: spider.init_task() if __name__ == "__main__": parser = ArgumentParser(description="xxx爬虫") parser.add_argument( "--crawl_xxx", action="store_true", help="xxx爬虫", function=crawl_xxx ) parser.add_argument( "--crawl_xxx", action="store_true", help="xxx爬虫", function=crawl_xxx ) parser.add_argument( "--crawl_xxx", type=int, nargs=1, help="xxx爬虫", choices=[1, 2, 3], function=crawl_xxx, ) parser.start() # main.py作为爬虫启动的统一入口,提供命令行的方式启动多个爬虫,若只有一个爬虫,可不编写main.py # 将上面的xxx修改为自己实际的爬虫名 # 查看运行命令 python main.py --help # AirSpider与Spider爬虫运行方式 python main.py --crawl_xxx # BatchSpider运行方式 # 1. 下发任务:python main.py --crawl_xxx 1 # 2. 采集:python main.py --crawl_xxx 2 # 3. 重置任务:python main.py --crawl_xxx 3
tests/functional/kvpy/sfx_test_tomb.py
efeslab/hse
558
11094769
<reponame>efeslab/hse<filename>tests/functional/kvpy/sfx_test_tomb.py #!/usr/bin/env python3 # SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2021 Micron Technology, Inc. All rights reserved. from contextlib import ExitStack from hse2 import hse from utility import lifecycle, cli hse.init(cli.CONFIG) try: with ExitStack() as stack: kvdb_ctx = lifecycle.KvdbContext().rparams("durability.enabled=false") kvdb = stack.enter_context(kvdb_ctx) kvs_ctx = lifecycle.KvsContext(kvdb, "sfx_test_tomb").cparams( "prefix.length=1", "suffix.length=2" ) kvs = stack.enter_context(kvs_ctx) kvs.put(b"AbcXX", b"1") kvs.put(b"AbdXX", b"1") kvs.put(b"AbdXY", b"2") kvdb.sync(flags=hse.KvdbSyncFlag.ASYNC) cnt, *_ = kvs.prefix_probe(b"Abd") assert cnt == hse.KvsPfxProbeCnt.MUL kvs.delete(b"AbdXY") cnt, k, _, v, _ = kvs.prefix_probe(b"Abd") assert cnt == hse.KvsPfxProbeCnt.ONE assert (k, v) == (b"AbdXX", b"1") kvdb.sync() cnt, k, _, v, _ = kvs.prefix_probe(b"Abd") assert cnt == hse.KvsPfxProbeCnt.ONE assert (k, v) == (b"AbdXX", b"1") # Multiple tombs cnt, k, _, v, _ = kvs.prefix_probe(b"Abc") assert cnt == hse.KvsPfxProbeCnt.ONE assert (k, v) == (b"AbcXX", b"1") kvs.prefix_delete(b"A") kvs.put(b"AbcX1", b"1") kvs.put(b"AbcX2", b"1") kvs.put(b"AbcX3", b"1") kvs.put(b"AbcX4", b"1") kvs.put(b"AbcX5", b"1") kvs.put(b"AbcX6", b"1") kvdb.sync() kvs.put(b"AbcX7", b"1") kvs.put(b"AbcX8", b"1") kvs.put(b"AbcX9", b"1") cnt, *_ = kvs.prefix_probe(b"Abc") assert cnt == hse.KvsPfxProbeCnt.MUL kvs.delete(b"AbcX1") kvs.delete(b"AbcX2") kvs.delete(b"AbcX3") kvs.delete(b"AbcX7") kvs.delete(b"AbcX8") cnt, k, _, v, _ = kvs.prefix_probe(b"Abc") assert cnt == hse.KvsPfxProbeCnt.MUL assert (k, v) == (b"AbcX9", b"1") """ [HSE_REVISIT] - why is this commented out? @gaurav txn = kvdb.transaction() txn.begin() kvs.delete(b"AbcX9", txn=txn) cnt, k, _, v, _ = kvs.prefix_probe(b"Abc", txn=txn) assert cnt == hse.KvsPfxProbeCnt.MUL assert (k, v) == (b"AbcX4", b"1") txn.commit() """ kvs.delete(b"AbcX9") cnt, k, _, v, _ = kvs.prefix_probe(b"Abc") assert cnt == hse.KvsPfxProbeCnt.MUL assert (k, v) == (b"AbcX4", b"1") kvdb.sync() cnt, k, _, v, _ = kvs.prefix_probe(b"Abc") assert cnt == hse.KvsPfxProbeCnt.MUL assert (k, v) == (b"AbcX4", b"1") finally: hse.fini()
test/files/exprs_optics_out1.py
symbiont-sam-halliday/hpython
160
11094786
for a_, b_ in c_: a_ += 1 b_ += 2
phobos/io/libraries/__init__.py
hawkina/phobos
323
11094796
#!/usr/bin/python3 # coding=utf-8 # ------------------------------------------------------------------------------- # This file is part of Phobos, a Blender Add-On to edit robot models. # Copyright (C) 2020 University of Bremen & DFKI GmbH Robotics Innovation Center # # You should have received a copy of the 3-Clause BSD License in the LICENSE file. # If not, see <https://opensource.org/licenses/BSD-3-Clause>. # ------------------------------------------------------------------------------- """ Registers the :mod:`models` and :mod:`mechanisms` submodules to Blender. """ from . import models, mechanisms def register(): """TODO Missing documentation""" models.register() mechanisms.register() def unregister(): """TODO Missing documentation""" models.unregister() mechanisms.unregister()
small_text/utils/datetime.py
chschroeder/small-text
218
11094830
def format_timedelta(td): if td.days < 0: raise ValueError('timedelta must be positive') hours, sec = divmod(td.seconds, 3600) mins, sec = divmod(sec, 60) return f'{hours:02}:{mins:02}:{sec:02}'
tests/apps/good_flow_app/migrations/0024_add_index_with_condition.py
15five/django-pg-zero-downtime-migrations
376
11094849
# Generated by Django 3.1 on 2019-09-22 20:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('good_flow_app', '0023_drop_index'), ] operations = [ migrations.AddIndex( model_name='testtable', index=models.Index( condition=models.Q(test_field_int__isnull=False), fields=['test_field_int'], name='test_index', ), ), ]
pywick/transforms/image_transforms.py
achaiah/pywick
408
11094904
<filename>pywick/transforms/image_transforms.py """ Transforms very specific to images such as color, lighting, contrast, brightness, etc transforms NOTE: Most of these transforms assume your image intensity is between 0 and 1, and are torch tensors (NOT numpy or PIL) """ import random import torch as th from torchvision.transforms.functional import to_tensor import numpy as np from ..utils import th_random_choice class DeNormalize: """ Denormalizes a tensor using provided mean, std """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) return tensor class MaskToSqueezedTensor: """ Removes empty dimensions from the mask and converts to a torch.float32 tensor. Typically used with B/W masks to remove the "channel" dimension :return tensor """ def __init__(self): self.to_tensor = MaskToFloatTensor() def __call__(self, img): # Note, we cannot call the normal torchvision to_tensor method here because it automatically divides by 255 which is NOT what we want. return self.to_tensor(img).squeeze() class MaskPixelsToMap: """ Replaces the pixel values in range [0-255] with class values from supplied value_map. :return : numpy.ndarray with dtype=np.uint8 """ def __init__(self, value_map: dict = None): """ :param value_map: Value map to encode. Typically classes are a set of continuous integers starting at 0 (e.g. {55:0, 100:1, 255:2}) """ self.value_map = value_map def __call__(self, mask): """ :param mask: PIL or OpenCV mask with pixel values in [0-255] range :return: """ mask = np.array(mask) # convert to np for k, v in self.value_map.items(): mask[mask == k] = v # replace pixels with class values return mask.astype(np.uint8) # make sure it's in UINT8 format class MaskToTensor: """ Converts a PIL, numpy or CV image to a torch.long representation """ def __call__(self, img): return th.from_numpy(np.array(img, dtype=np.int32)).long() class MaskToFloatTensor: """ Converts a PIL, numpy or CV image to a torch.float32 representation """ def __init__(self, divisor: float = None): """ :param divisor: Optional divisor for the conversion. Can be specified to convert supplied images from [0-255] range to [0.0-1.0] """ self.divisor = divisor def __call__(self, img): if self.divisor is None: return th.from_numpy(np.array(img, dtype=np.float32)) else: return th.from_numpy(np.array(img, dtype=np.float32) / self.divisor) def _blend(img1, img2, alpha): """ Weighted sum of two images Arguments --------- img1 : torch tensor img2 : torch tensor alpha : float between 0 and 1 how much weight to put on img1 and 1-alpha weight to put on img2 """ return img1.mul(alpha).add(1 - alpha, img2) class Grayscale: def __init__(self, keep_channels=False): """ Convert RGB image to grayscale Arguments --------- keep_channels : boolean If true, will keep all 3 channels and they will be the same If false, will just return 1 grayscale channel """ self.keep_channels = keep_channels if keep_channels: self.channels = 3 else: self.channels = 1 def __call__(self, *inputs): outputs = [] idx = None for idx, _input in enumerate(inputs): _input_dst = _input[0]*0.299 + _input[1]*0.587 + _input[2]*0.114 _input_gs = _input_dst.repeat(self.channels,1,1) outputs.append(_input_gs) return outputs if idx >= 1 else outputs[0] class RandomGrayscale: def __init__(self, p=0.5): """ Randomly convert RGB image(s) to Grayscale w/ some probability, NOTE: Always retains the 3 channels if image is grayscaled p : a float probability that image will be grayscaled """ self.p = p def __call__(self, *inputs): pval = random.random() if pval < self.p: outputs = Grayscale(keep_channels=True)(*inputs) else: outputs = inputs return outputs # ---------------------------------------------------- # ---------------------------------------------------- class Gamma: def __init__(self, value): """ Performs Gamma Correction on the input image. Also known as Power Law Transform. This function transforms the input image pixelwise according to the equation Out = In**gamma after scaling each pixel to the range 0 to 1. Arguments --------- value : float <1 : image will tend to be lighter =1 : image will stay the same >1 : image will tend to be darker """ self.value = value def __call__(self, *inputs): outputs = [] idx = None for idx, _input in enumerate(inputs): _input = th.pow(_input, self.value) outputs.append(_input) return outputs if idx >= 1 else outputs[0] class RandomGamma: def __init__(self, min_val, max_val): """ Performs Gamma Correction on the input image with some randomly selected gamma value between min_val and max_val. Also known as Power Law Transform. This function transforms the input image pixelwise according to the equation Out = In**gamma after scaling each pixel to the range 0 to 1. Arguments --------- min_val : float min range max_val : float max range NOTE: for values: <1 : image will tend to be lighter =1 : image will stay the same >1 : image will tend to be darker """ self.values = (min_val, max_val) def __call__(self, *inputs): value = random.uniform(self.values[0], self.values[1]) outputs = Gamma(value)(*inputs) return outputs class RandomChoiceGamma: def __init__(self, values, p=None): """ Performs Gamma Correction on the input image with some gamma value selected in the list of given values. Also known as Power Law Transform. This function transforms the input image pixelwise according to the equation Out = In**gamma after scaling each pixel to the range 0 to 1. Arguments --------- values : list of floats gamma values to sampled from p : list of floats - same length as `values` if None, values will be sampled uniformly. Must sum to 1. NOTE: for values: <1 : image will tend to be lighter =1 : image will stay the same >1 : image will tend to be darker """ self.values = values self.p = p def __call__(self, *inputs): value = th_random_choice(self.values, p=self.p) outputs = Gamma(value)(*inputs) return outputs # ---------------------------------------------------- # ---------------------------------------------------- class Brightness: def __init__(self, value): """ Alter the Brightness of an image Arguments --------- value : brightness factor =-1 = completely black <0 = darker 0 = no change >0 = brighter =1 = completely white """ self.value = max(min(value,1.0),-1.0) def __call__(self, *inputs): outputs = [] idx = None for idx, _input in enumerate(inputs): _input = th.clamp(_input.float().add(self.value).type(_input.type()), 0, 1) outputs.append(_input) return outputs if idx >= 1 else outputs[0] class RandomBrightness: def __init__(self, min_val, max_val): """ Alter the Brightness of an image with a value randomly selected between `min_val` and `max_val` Arguments --------- min_val : float min range max_val : float max range """ self.values = (min_val, max_val) def __call__(self, *inputs): value = random.uniform(self.values[0], self.values[1]) outputs = Brightness(value)(*inputs) return outputs class RandomChoiceBrightness: def __init__(self, values, p=None): """ Alter the Brightness of an image with a value randomly selected from the list of given values with given probabilities Arguments --------- values : list of floats brightness values to sampled from p : list of floats - same length as `values` if None, values will be sampled uniformly. Must sum to 1. """ self.values = values self.p = p def __call__(self, *inputs): value = th_random_choice(self.values, p=self.p) outputs = Brightness(value)(*inputs) return outputs # ---------------------------------------------------- # ---------------------------------------------------- class Saturation: def __init__(self, value): """ Alter the Saturation of image Arguments --------- value : float =-1 : gray <0 : colors are more muted =0 : image stays the same >0 : colors are more pure =1 : most saturated """ self.value = max(min(value,1.0),-1.0) def __call__(self, *inputs): outputs = [] idx = None for idx, _input in enumerate(inputs): _in_gs = Grayscale(keep_channels=True)(_input) alpha = 1.0 + self.value _in = th.clamp(_blend(_input, _in_gs, alpha), 0, 1) outputs.append(_in) return outputs if idx >= 1 else outputs[0] class RandomSaturation: def __init__(self, min_val, max_val): """ Alter the Saturation of an image with a value randomly selected between `min_val` and `max_val` Arguments --------- min_val : float min range max_val : float max range """ self.values = (min_val, max_val) def __call__(self, *inputs): value = random.uniform(self.values[0], self.values[1]) outputs = Saturation(value)(*inputs) return outputs class RandomChoiceSaturation: def __init__(self, values, p=None): """ Alter the Saturation of an image with a value randomly selected from the list of given values with given probabilities Arguments --------- values : list of floats saturation values to sampled from p : list of floats - same length as `values` if None, values will be sampled uniformly. Must sum to 1. """ self.values = values self.p = p def __call__(self, *inputs): value = th_random_choice(self.values, p=self.p) outputs = Saturation(value)(*inputs) return outputs # ---------------------------------------------------- # ---------------------------------------------------- class Contrast: """ """ def __init__(self, value): """ Adjust Contrast of image. Contrast is adjusted independently for each channel of each image. For each channel, this Op computes the mean of the image pixels in the channel and then adjusts each component x of each pixel to (x - mean) * contrast_factor + mean. Arguments --------- value : float smaller value: less contrast ZERO: channel means larger positive value: greater contrast larger negative value: greater inverse contrast """ self.value = value def __call__(self, *inputs): outputs = [] idx = None for idx, _input in enumerate(inputs): channel_means = _input.mean(1, keepdim=True).mean(2, keepdim=True) channel_means = channel_means.expand_as(_input) _input = th.clamp((_input - channel_means) * self.value + channel_means,0,1) outputs.append(_input) return outputs if idx >= 1 else outputs[0] class RandomContrast: def __init__(self, min_val, max_val): """ Alter the Contrast of an image with a value randomly selected between `min_val` and `max_val` Arguments --------- min_val : float min range max_val : float max range """ self.values = (min_val, max_val) def __call__(self, *inputs): value = random.uniform(self.values[0], self.values[1]) outputs = Contrast(value)(*inputs) return outputs class RandomChoiceContrast: def __init__(self, values, p=None): """ Alter the Contrast of an image with a value randomly selected from the list of given values with given probabilities Arguments --------- values : list of floats contrast values to sampled from p : list of floats - same length as `values` if None, values will be sampled uniformly. Must sum to 1. """ self.values = values self.p = p def __call__(self, *inputs): value = th_random_choice(self.values, p=self.p) outputs = Contrast(value)(*inputs) return outputs # ---------------------------------------------------- # ---------------------------------------------------- def rgb_to_hsv(x): """ Convert from RGB to HSV """ hsv = th.zeros(*x.size()) c_min = x.min(0) c_max = x.max(0) delta = c_max[0] - c_min[0] # set H r_idx = c_max[1].eq(0) hsv[0][r_idx] = ((x[1][r_idx] - x[2][r_idx]) / delta[r_idx]) % 6 g_idx = c_max[1].eq(1) hsv[0][g_idx] = 2 + ((x[2][g_idx] - x[0][g_idx]) / delta[g_idx]) b_idx = c_max[1].eq(2) hsv[0][b_idx] = 4 + ((x[0][b_idx] - x[1][b_idx]) / delta[b_idx]) hsv[0] = hsv[0].mul(60) # set S hsv[1] = delta / c_max[0] # set V - good hsv[2] = c_max[0] return hsv
solutions/python/largest-continuous-sum.py
lhayhurst/interview-with-python
201
11094907
"""solution to the largest-continuous-sum problem""" import unittest from functools import reduce def largest_continuous_sum_one(arr): """ returns the largest continous sub sequence in the given list of numbers. """ largest = 0 queue = [] for num in arr: queue.append(num) if len(queue) > 1: curr_sum = reduce(lambda x, y: x + y, queue) curr_sum = curr_sum if curr_sum > num else num if largest < curr_sum: largest = curr_sum return largest def largest_continous_sum_two(arr): if len(arr) == 0: # handle an edge case return None max_sum = current_sum = arr[0] for num in arr[1:]: current_sum=max(current_sum+num, num) max_sum=max(current_sum, max_sum) return max_sum # Unit testing class largest_continous_sum_test(unittest.TestCase): def setUp(self): self.arrOne = [1,2,3,4,5] self.arrTwo = [4,5,1,-1000] def test_largest_continuous_sum_one(self): self.assertEqual( largest_continuous_sum_one( self.arrOne ), 15 ) self.assertEqual( largest_continuous_sum_one( self.arrTwo ), 10 ) def test_largest_continous_sum_two(self): self.assertEqual( largest_continous_sum_two( self.arrOne ) , 15 ) self.assertEqual( largest_continous_sum_two( self.arrTwo ), 10 ) if __name__ == '__main__': unittest.main()
application/device/smartindustry/motor.py
jason-fox/fogflow
102
11094919
#!/usr/bin/env python import time import os import signal import sys import json import requests from flask import Flask, jsonify, abort, request, make_response from threading import Thread, Lock import logging import nxt app = Flask(__name__, static_url_path = "") discoveryURL = 'http://192.168.1.80:8070/ngsi9' brokerURL = '' profile = {} subscriptionID = '' b = nxt.find_one_brick() mxA = nxt.Motor(b, nxt.PORT_A) mxB = nxt.Motor(b, nxt.PORT_B) @app.route('/notifyContext', methods = ['POST']) def notifyContext(): if not request.json: abort(400) objs = readContextElements(request.json) handleNotify(objs) return jsonify({ 'responseCode': 200 }) def readContextElements(data): # print data ctxObjects = [] for response in data['contextResponses']: if response['statusCode']['code'] == 200: ctxObj = element2Object(response['contextElement']) ctxObjects.append(ctxObj) return ctxObjects def handleNotify(contextObjs): #print("received notification") #print(contextObjs) for ctxObj in contextObjs: processInputStreamData(ctxObj) def processInputStreamData(obj): #print '===============receive context entity====================' #print obj if 'attributes' in obj: attributes = obj['attributes'] if 'detectedEvent' in attributes: event = attributes['detectedEvent']['value'] handleEvent(event) # if 'command' in attributes: # command = attributes['command']['value'] # handleCommand(command) def signal_handler(signal, frame): print('You pressed Ctrl+C!') # delete my registration and context entity unpublishMySelf() unsubscribeCmd() mxA.brake() mxB.brake() sys.exit(0) def findNearbyBroker(): global profile, discoveryURL nearby = {} nearby['latitude'] = profile['location']['latitude'] nearby['longitude'] = profile['location']['longitude'] nearby['limit'] = 1 discoveryReq = {} discoveryReq['entities'] = [{'type': 'IoTBroker', 'isPattern': True}] discoveryReq['restriction'] = {'scopes':[{'scopeType': 'nearby', 'scopeValue': nearby}]} discoveryURL = profile['discoveryURL'] headers = {'Accept' : 'application/json', 'Content-Type' : 'application/json'} response = requests.post(discoveryURL + '/discoverContextAvailability', data=json.dumps(discoveryReq), headers=headers) if response.status_code != 200: print 'failed to find a nearby IoT Broker' return '' print response.text registrations = json.loads(response.text) for registration in registrations['contextRegistrationResponses']: providerURL = registration['contextRegistration']['providingApplication'] if providerURL != '': return providerURL return '' def publishMySelf(): global profile, brokerURL # for motor1 deviceCtxObj = {} deviceCtxObj['entityId'] = {} deviceCtxObj['entityId']['id'] = 'Device.' + profile['type'] + '.' + '001' deviceCtxObj['entityId']['type'] = profile['type'] deviceCtxObj['entityId']['isPattern'] = False deviceCtxObj['attributes'] = {} deviceCtxObj['attributes']['iconURL'] = {'type': 'string', 'value': profile['iconURL']} deviceCtxObj['metadata'] = {} deviceCtxObj['metadata']['location'] = {'type': 'point', 'value': {'latitude': profile['location']['latitude'], 'longitude': profile['location']['longitude'] }} updateContext(brokerURL, deviceCtxObj) # for motor2 deviceCtxObj = {} deviceCtxObj['entityId'] = {} deviceCtxObj['entityId']['id'] = 'Device.' + profile['type'] + '.' + '002' deviceCtxObj['entityId']['type'] = profile['type'] deviceCtxObj['entityId']['isPattern'] = False deviceCtxObj['attributes'] = {} deviceCtxObj['attributes']['iconURL'] = {'type': 'string', 'value': profile['iconURL']} deviceCtxObj['metadata'] = {} deviceCtxObj['metadata']['location'] = {'type': 'point', 'value': {'latitude': profile['location']['latitude'], 'longitude': profile['location']['longitude'] }} return updateContext(brokerURL, deviceCtxObj) def unpublishMySelf(): global profile, brokerURL # for motor1 deviceCtxObj = {} deviceCtxObj['entityId'] = {} deviceCtxObj['entityId']['id'] = 'Device.' + profile['type'] + '.' + '001' deviceCtxObj['entityId']['type'] = profile['type'] deviceCtxObj['entityId']['isPattern'] = False deleteContext(brokerURL, deviceCtxObj) # for motor2 deviceCtxObj = {} deviceCtxObj['entityId'] = {} deviceCtxObj['entityId']['id'] = 'Device.' + profile['type'] + '.' + '002' deviceCtxObj['entityId']['type'] = profile['type'] deviceCtxObj['entityId']['isPattern'] = False deleteContext(brokerURL, deviceCtxObj) def element2Object(element): ctxObj = {} ctxObj['entityId'] = element['entityId']; ctxObj['attributes'] = {} if 'attributes' in element: for attr in element['attributes']: ctxObj['attributes'][attr['name']] = {'type': attr['type'], 'value': attr['value']} ctxObj['metadata'] = {} if 'domainMetadata' in element: for meta in element['domainMetadata']: ctxObj['metadata'][meta['name']] = {'type': meta['type'], 'value': meta['value']} return ctxObj def object2Element(ctxObj): ctxElement = {} ctxElement['entityId'] = ctxObj['entityId']; ctxElement['attributes'] = [] if 'attributes' in ctxObj: for key in ctxObj['attributes']: attr = ctxObj['attributes'][key] ctxElement['attributes'].append({'name': key, 'type': attr['type'], 'value': attr['value']}) ctxElement['domainMetadata'] = [] if 'metadata' in ctxObj: for key in ctxObj['metadata']: meta = ctxObj['metadata'][key] ctxElement['domainMetadata'].append({'name': key, 'type': meta['type'], 'value': meta['value']}) return ctxElement def updateContext(broker, ctxObj): ctxElement = object2Element(ctxObj) updateCtxReq = {} updateCtxReq['updateAction'] = 'UPDATE' updateCtxReq['contextElements'] = [] updateCtxReq['contextElements'].append(ctxElement) headers = {'Accept' : 'application/json', 'Content-Type' : 'application/json'} response = requests.post(broker + '/updateContext', data=json.dumps(updateCtxReq), headers=headers) if response.status_code != 200: print 'failed to update context' print response.text return False else: return True def deleteContext(broker, ctxObj): ctxElement = object2Element(ctxObj) updateCtxReq = {} updateCtxReq['updateAction'] = 'DELETE' updateCtxReq['contextElements'] = [] updateCtxReq['contextElements'].append(ctxElement) headers = {'Accept' : 'application/json', 'Content-Type' : 'application/json'} response = requests.post(broker + '/updateContext', data=json.dumps(updateCtxReq), headers=headers) if response.status_code != 200: print 'failed to delete context' print response.text def unsubscribeCmd(): global brokerURL global subscriptionID print(brokerURL + '/subscription/' + subscriptionID) response = requests.delete(brokerURL + '/subscription/' + subscriptionID) print(response.text) def subscribeCmd(): global subscriptionID subscribeCtxReq = {} subscribeCtxReq['entities'] = [] # subscribe push button on behalf of TPU myID = 'Device.Motor.001' subscribeCtxReq['entities'].append({'id': myID, 'isPattern': False}) #subscribeCtxReq['attributes'] = ['command'] subscribeCtxReq['reference'] = 'http://' + profile['myIP'] + ':' + str(profile['myPort']) headers = {'Accept' : 'application/json', 'Content-Type' : 'application/json', 'Require-Reliability' : 'true'} response = requests.post(brokerURL + '/subscribeContext', data=json.dumps(subscribeCtxReq), headers=headers) if response.status_code != 200: print 'failed to subscribe context' print response.text return '' else: json_data = json.loads(response.text) subscriptionID = json_data['subscribeResponse']['subscriptionId'] print(subscriptionID) return subscriptionID # # subscribe to motor1 # myID = 'Device.' + profile['type'] + '.' + '001' # subscribeCtxReq['entities'].append({'id': myID, 'isPattern': False}) # subscribeCtxReq['attributes'] = ['command'] # subscribeCtxReq['reference'] = 'http://' + profile['myIP'] + ':' + str(profile['myPort']) # headers = {'Accept' : 'application/json', 'Content-Type' : 'application/json', 'Require-Reliability' : 'true'} # response = requests.post(brokerURL + '/subscribeContext', data=json.dumps(subscribeCtxReq), headers=headers) # if response.status_code != 200: # print 'failed to subscribe context' # print response.text # # subscribe to motor2 # myID = 'Device.' + profile['type'] + '.' + '002' # subscribeCtxReq['entities'].append({'id': myID, 'isPattern': False}) # subscribeCtxReq['attributes'] = ['command'] # subscribeCtxReq['reference'] = 'http://' + profile['myIP'] + ':' + str(profile['myPort']) # headers = {'Accept' : 'application/json', 'Content-Type' : 'application/json', 'Require-Reliability' : 'true'} # response = requests.post(brokerURL + '/subscribeContext', data=json.dumps(subscribeCtxReq), headers=headers) # if response.status_code != 200: # print 'failed to subscribe context' # print response.text # # subscribe camera on behalf of TPU # myID = 'Device.Camera.001' # subscribeCtxReq['entities'].append({'id': myID, 'isPattern': False}) # subscribeCtxReq['attributes'] = ['command'] # subscribeCtxReq['reference'] = 'http://' + profile['myIP'] + ':8008' # headers = {'Accept' : 'application/json', 'Content-Type' : 'application/json', 'Require-Reliability' : 'true'} # response = requests.post(brokerURL + '/subscribeContext', data=json.dumps(subscribeCtxReq), headers=headers) # if response.status_code != 200: # print 'failed to subscribe context' # print response.text def run(): # find a nearby broker for data exchange global brokerURL brokerURL = profile['brokerURL'] #findNearbyBroker() if brokerURL == '': print 'failed to find a nearby broker' sys.exit(0) print "selected broker" print brokerURL #announce myself while True: ok = publishMySelf() if ok == True: break else: time.sleep(1) print("publish myself") #subscribe to the control commands while True: sid = subscribeCmd() if sid != '': break else: time.sleep(1) print("subscribe command for myself") signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) print('start to handle the incoming control commands') myport = profile['myPort'] app.run(host='0.0.0.0', port=myport) def handleEvent(event): print event eventType = event['type'] print(eventType) if eventType == 'MOVE_FORWARD': print("MOVE_FORWARD") mxA.run(-100) time.sleep(1) mxA.brake() if eventType == 'MOVE_LEFT': print("MOVE_LEFT") mxB.run(80) time.sleep(1) mxB.brake() if eventType == 'MOVE_RIGHT': print("MOVE_RIGHT") mxB.run(-80) time.sleep(1) mxB.brake() if eventType == 'MOVE_BACKWARD': print("MOVE_BACKWARD") mxA.run(100) time.sleep(1) mxA.brake() if __name__ == '__main__': cfgFileName = 'motor.json' if len(sys.argv) >= 2: cfgFileName = sys.argv[1] try: with open(cfgFileName) as json_file: profile = json.load(json_file) profile['type'] = 'Motor' except Exception as error: print 'failed to load the device profile' sys.exit(0) run()
python/mixed/x86_lstm_demo/data_reader.py
PaddlePaddle/Paddle-Inference-demo
115
11094923
import numpy as np import struct from paddle import fluid def get_data(data_path, place): inputs = [] labels = [] with open(data_path, 'rb') as in_f: while True: plen = in_f.read(4) if plen is None or len(plen) != 4: break alllen = struct.unpack('i', plen)[0] label_len = alllen & 0xFFFF seq_len = (alllen >> 16) & 0xFFFF label = in_f.read(4 * label_len) label = np.frombuffer( label, dtype=np.int32).reshape([len(label) // 4]) feat = in_f.read(4 * seq_len * 8) feat = np.frombuffer( feat, dtype=np.float32).reshape([len(feat) // 4 // 8, 8]) lod_feat = [feat.shape[0]] minputs = fluid.create_lod_tensor(feat, [lod_feat], place) infer_data = fluid.core.PaddleTensor() infer_data.lod = minputs.lod() infer_data.data = fluid.core.PaddleBuf(np.array(minputs)) infer_data.shape = minputs.shape() infer_data.dtype = fluid.core.PaddleDType.FLOAT32 infer_label = fluid.core.PaddleTensor() infer_label.data = fluid.core.PaddleBuf(np.array(label)) infer_label.shape = label.shape infer_label.dtype = fluid.core.PaddleDType.INT32 inputs.append(infer_data) labels.append(infer_label) return inputs, labels def get_data_with_ptq_warmup(data_path, place, warmup_batch_size=1): all_inputs, all_labels = get_data(data_path, place) warmup_inputs = all_inputs[:warmup_batch_size] inputs = all_inputs[warmup_batch_size:] labels = all_labels[warmup_batch_size:] return warmup_inputs, inputs, labels
tests/test_scripts.py
vincentfretin/kinto
4,618
11094928
<filename>tests/test_scripts.py import unittest from unittest import mock from kinto import scripts class RebuildQuotasTest(unittest.TestCase): def setUp(self): self.registry = mock.MagicMock() self.registry.settings = {"includes": "kinto.plugins.quotas"} def test_rebuild_quotas_in_read_only_display_an_error(self): with mock.patch("kinto.scripts.logger") as mocked: self.registry.settings["readonly"] = "true" code = scripts.rebuild_quotas({"registry": self.registry}) assert code == 41 mocked.error.assert_any_call("Cannot rebuild quotas while " "in readonly mode.") def test_rebuild_quotas_when_not_included_display_an_error(self): with mock.patch("kinto.scripts.logger") as mocked: self.registry.settings["includes"] = "" code = scripts.rebuild_quotas({"registry": self.registry}) assert code == 42 mocked.error.assert_any_call( "Cannot rebuild quotas when " "quotas plugin is not installed." ) def test_rebuild_quotas_calls_quotas_script(self): with mock.patch("kinto.scripts.quotas.rebuild_quotas") as mocked: code = scripts.rebuild_quotas({"registry": self.registry}) assert code == 0 mocked.assert_called_with(self.registry.storage, dry_run=False)
dataset.py
amorgun/pose-with-style
168
11094962
<reponame>amorgun/pose-with-style<gh_stars>100-1000 from PIL import Image from torch.utils.data import Dataset import torchvision.transforms as transforms import os import pandas as pd import numpy as np import torch import random import pickle class DeepFashionDataset(Dataset): def __init__(self, path, phase, size): self.phase = phase # train or test self.size = size # 256 or 512 FOR 174x256 or 348x512 # set root directories self.image_root = os.path.join(path, 'DeepFashion_highres', phase) self.densepose_root = os.path.join(path, 'densepose', phase) self.parsing_root = os.path.join(path, 'silhouette', phase) # path to pairs of data pairs_csv_path = os.path.join(path, 'DeepFashion_highres', 'tools', 'fashion-pairs-%s.csv'%phase) # uv space self.uv_root = os.path.join(path, 'complete_coordinates', phase) # initialize the pairs of data self.init_pairs(pairs_csv_path) self.data_size = len(self.pairs) print('%s data pairs (#=%d)...'%(phase, self.data_size)) if phase == 'train': # get dictionary of image name and transfrom to detect and align the face with open(os.path.join(path, 'resources', 'train_face_T.pickle'), 'rb') as handle: self.faceTransform = pickle.load(handle) self.transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) def init_pairs(self, pairs_csv_path): pairs_file = pd.read_csv(pairs_csv_path) self.pairs = [] self.sources = {} print('Loading data pairs ...') for i in range(len(pairs_file)): pair = [pairs_file.iloc[i]['from'], pairs_file.iloc[i]['to']] self.pairs.append(pair) print('Loading data pairs finished ...') def __len__(self): return self.data_size def resize_height_PIL(self, x, height=512): w, h = x.size width = int(height * w / h) return x.resize((width, height), Image.NEAREST) #Image.ANTIALIAS def resize_PIL(self, x, height=512, width=348, type=Image.NEAREST): return x.resize((width, height), type) def tensors2square(self, im, pose, sil): width = im.shape[2] diff = self.size - width if self.phase == 'train': left = random.randint(0, diff) right = diff - left else: # when testing put in the center left = int((self.size-width)/2) right = diff - left im = torch.nn.functional.pad(input=im, pad=(right, left, 0, 0), mode='constant', value=0) pose = torch.nn.functional.pad(input=pose, pad=(right, left, 0, 0), mode='constant', value=0) sil = torch.nn.functional.pad(input=sil, pad=(right, left, 0, 0), mode='constant', value=0) return im, pose, sil, left, right def __getitem__(self, index): # get current pair im1_name, im2_name = self.pairs[index] # get path to dataset input_image_path = os.path.join(self.image_root, im1_name) target_image_path = os.path.join(self.image_root, im2_name) # dense pose input_densepose_path = os.path.join(self.densepose_root, im1_name.split('.')[0]+'_iuv.png') target_densepose_path = os.path.join(self.densepose_root, im2_name.split('.')[0]+'_iuv.png') # silhouette input_sil_path = os.path.join(self.parsing_root, im1_name.split('.')[0]+'_sil.png') target_sil_path = os.path.join(self.parsing_root, im2_name.split('.')[0]+'_sil.png') # uv space complete_coor_path = os.path.join(self.uv_root, im1_name.split('.')[0]+'_uv_coor.npy') # read data # get original size of data -> for augmentation input_image_pil = Image.open(input_image_path).convert('RGB') orig_w, orig_h = input_image_pil.size if self.phase == 'test': # set target height and target width if self.size == 512: target_h = 512 target_w = 348 if self.size == 256: target_h = 256 target_w = 174 # images input_image = self.resize_PIL(input_image_pil, height=target_h, width=target_w, type=Image.ANTIALIAS) target_image = self.resize_PIL(Image.open(target_image_path).convert('RGB'), height=target_h, width=target_w, type=Image.ANTIALIAS) # dense pose input_densepose = np.array(self.resize_PIL(Image.open(input_densepose_path), height=target_h, width=target_w)) target_densepose = np.array(self.resize_PIL(Image.open(target_densepose_path), height=target_h, width=target_w)) # silhouette silhouette1 = np.array(self.resize_PIL(Image.open(input_sil_path), height=target_h, width=target_w))/255 silhouette2 = np.array(self.resize_PIL(Image.open(target_sil_path), height=target_h, width=target_w))/255 # union with densepose mask for a more accurate mask silhouette1 = 1-((1-silhouette1) * (input_densepose[:, :, 0] == 0).astype('float')) else: input_image = self.resize_height_PIL(input_image_pil, self.size) target_image = self.resize_height_PIL(Image.open(target_image_path).convert('RGB'), self.size) # dense pose input_densepose = np.array(self.resize_height_PIL(Image.open(input_densepose_path), self.size)) target_densepose = np.array(self.resize_height_PIL(Image.open(target_densepose_path), self.size)) # silhouette silhouette1 = np.array(self.resize_height_PIL(Image.open(input_sil_path), self.size))/255 silhouette2 = np.array(self.resize_height_PIL(Image.open(target_sil_path), self.size))/255 # union with densepose masks silhouette1 = 1-((1-silhouette1) * (input_densepose[:, :, 0] == 0).astype('float')) silhouette2 = 1-((1-silhouette2) * (target_densepose[:, :, 0] == 0).astype('float')) # read uv-space data complete_coor = np.load(complete_coor_path) # Transform input_image = self.transform(input_image) target_image = self.transform(target_image) # Dense Pose input_densepose = torch.from_numpy(input_densepose).permute(2, 0, 1) target_densepose = torch.from_numpy(target_densepose).permute(2, 0, 1) # silhouette silhouette1 = torch.from_numpy(silhouette1).float().unsqueeze(0) # from h,w to c,h,w silhouette2 = torch.from_numpy(silhouette2).float().unsqueeze(0) # from h,w to c,h,w # put into a square input_image, input_densepose, silhouette1, Sleft, Sright = self.tensors2square(input_image, input_densepose, silhouette1) target_image, target_densepose, silhouette2, Tleft, Tright = self.tensors2square(target_image, target_densepose, silhouette2) if self.phase == 'train': # remove loaded center shift and add augmentation shift loaded_shift = int((orig_h-orig_w)/2) complete_coor = ((complete_coor+1)/2)*(orig_h-1) # [-1, 1] to [0, orig_h] complete_coor[:,:,0] = complete_coor[:,:,0] - loaded_shift # remove center shift complete_coor = ((2*complete_coor/(orig_h-1))-1) # [0, orig_h] (no shift in w) to [-1, 1] complete_coor = ((complete_coor+1)/2) * (self.size-1) # [-1, 1] to [0, size] (no shift in w) complete_coor[:,:,0] = complete_coor[:,:,0] + Sright # add augmentation shift to w complete_coor = ((2*complete_coor/(self.size-1))-1) # [0, size] (with shift in w) to [-1,1] # to tensor complete_coor = torch.from_numpy(complete_coor).float().permute(2, 0, 1) else: # might have hxw inconsistencies since dp is of different sizes.. fixing this.. loaded_shift = int((orig_h-orig_w)/2) complete_coor = ((complete_coor+1)/2)*(orig_h-1) # [-1, 1] to [0, orig_h] complete_coor[:,:,0] = complete_coor[:,:,0] - loaded_shift # remove center shift # before: width complete_coor[:,:,0] 0-orig_w-1 # and height complete_coor[:,:,1] 0-orig_h-1 complete_coor[:,:,0] = (complete_coor[:,:,0]/(orig_w-1))*(target_w-1) complete_coor[:,:,1] = (complete_coor[:,:,1]/(orig_h-1))*(target_h-1) complete_coor[:,:,0] = complete_coor[:,:,0] + Sright # add center shift to w complete_coor = ((2*complete_coor/(self.size-1))-1) # [0, size] (with shift in w) to [-1,1] # to tensor complete_coor = torch.from_numpy(complete_coor).float().permute(2, 0, 1) # either source or target pass 1:5 if self.phase == 'train': choice = random.randint(0, 6) if choice == 0: # source pass target_im = input_image target_p = input_densepose target_sil = silhouette1 target_image_name = im1_name target_left_pad = Sleft target_right_pad = Sright else: # target pass target_im = target_image target_p = target_densepose target_sil = silhouette2 target_image_name = im2_name target_left_pad = Tleft target_right_pad = Tright else: target_im = target_image target_p = target_densepose target_sil = silhouette2 target_image_name = im2_name target_left_pad = Tleft target_right_pad = Tright # Get the face transfrom if self.phase == 'train': if target_image_name in self.faceTransform.keys(): FT = torch.from_numpy(self.faceTransform[target_image_name]).float() else: # no face detected FT = torch.zeros((3,3)) # return data if self.phase == 'train': return {'input_image':input_image, 'target_image':target_im, 'target_sil': target_sil, 'target_pose':target_p, 'TargetFaceTransform': FT, 'target_left_pad':torch.tensor(target_left_pad), 'target_right_pad':torch.tensor(target_right_pad), 'input_sil': silhouette1, 'complete_coor':complete_coor, } if self.phase == 'test': save_name = im1_name.split('.')[0] + '_2_' + im2_name.split('.')[0] + '_vis.png' return {'input_image':input_image, 'target_image':target_im, 'target_sil': target_sil, 'target_pose':target_p, 'target_left_pad':torch.tensor(target_left_pad), 'target_right_pad':torch.tensor(target_right_pad), 'input_sil': silhouette1, 'complete_coor':complete_coor, 'save_name':save_name, }
python2/pracmln/mln/inference/__init__.py
seba90/pracmln
123
11094969
<filename>python2/pracmln/mln/inference/__init__.py from exact import EnumerationAsk from mcsat import MCSAT, SampleSAT from gibbs import GibbsSampler # from ipfpm import IPFPM from maxwalk import SAMaxWalkSAT from wcspinfer import WCSPInference from infer import Inference
mpf/tests/test_Playfield.py
Scottacus64/mpf
163
11094970
from mpf.tests.MpfTestCase import MpfTestCase class TestPlayfield(MpfTestCase): def get_config_file(self): return 'test_playfield.yaml' def get_machine_path(self): return 'tests/machine_files/playfield/' # nothing to test currently
leetcode.com/python/946_Validate_Stack_Sequences.py
vansh-tiwari/coding-interview-gym
713
11094988
<reponame>vansh-tiwari/coding-interview-gym<filename>leetcode.com/python/946_Validate_Stack_Sequences.py<gh_stars>100-1000 # Time and space both O(n) class Solution(object): def validateStackSequences(self, pushed, popped): """ :type pushed: List[int] :type popped: List[int] :rtype: bool """ stack = [] for i in range(len(pushed)): stack.append(pushed[i]) while stack and popped and popped[0] == stack[-1]: stack.pop() popped.pop(0) return len(stack) == 0 # Time : :(n) | Space: O(1) class Solution(object): def validateStackSequences(self, pushed, popped): """ :type pushed: List[int] :type popped: List[int] :rtype: bool """
hypergan/train_hooks/needs_pytorch/learning_rate_dropout_train_hook.py
limberc/HyperGAN
889
11094995
from __future__ import absolute_import from __future__ import division from __future__ import print_function from hypergan.train_hooks.base_train_hook import BaseTrainHook from operator import itemgetter from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.training import optimizer from torch.autograd import Variable from torch.autograd import grad as torch_grad import hyperchamber as hc import inspect import numpy as np import torch import torch.nn as nn class LearningRateDropoutTrainHook(BaseTrainHook): """ https://arxiv.org/abs/1912.00144 """ def __init__(self, gan=None, config=None, trainer=None): super().__init__(config=config, gan=gan, trainer=trainer) self.ones = self.gan.configurable_param(self.config.ones or 1.0) self.zeros = self.gan.configurable_param(self.config.zeros or 0.0) self.dropout = self.gan.configurable_param(self.config.dropout or 0.9) def forward(self): return [None, None] def gradients(self, d_grads, g_grads): d_ones = [torch.ones_like(_g) for _g in d_grads] g_ones = [torch.ones_like(_g) for _g in g_grads] d_zeros = [torch.zeros_like(_g) for _g in d_grads] g_zeros = [torch.zeros_like(_g) for _g in g_grads] da = [torch.where((torch.rand_like(_d_grads)- (1.0-self.dropout)) < 0, _o, _z) for _d_grads, _o, _z in zip(d_grads, d_ones, d_zeros)] ga = [torch.where((torch.rand_like(_g_grads)- (1.0-self.dropout)) < 0, _o, _z) for _g_grads, _o, _z in zip(g_grads, g_ones, g_zeros)] if self.config.skip_d is None: d_grads = [_a * _grad for _a, _grad in zip(da, d_grads)] if self.config.skip_g is None: g_grads = [_a * _grad for _a, _grad in zip(ga, g_grads)] #def count_params(variables): # return np.sum([np.prod(self.ops.shape(t)) for t in variables ]) #self.gan.add_metric('dropout-one', ones) #self.gan.add_metric('dropout-perc', dropout) #self.gan.add_metric('dropout', sum([self.ops.squash((1.0-_a/ones), tf.reduce_sum) for _a in da]) / count_params(da)) return [d_grads, g_grads]
Packs/XSOARContentUpdateNotifications/Scripts/ListInstalledContentPacks/ListInstalledContentPacks.py
diCagri/content
799
11095023
import demistomock as demisto # noqa: F401 from CommonServerPython import * # noqa: F401 args = demisto.args() updated = True if args.get('updates') == 'true' else False packs = demisto.executeCommand("demisto-api-get", {"uri": "/contentpacks/installed-expired"})[0]['Contents'].get('response') parsed_packs = [{ "name": x.get('name'), "version": x.get('currentVersion'), "update": x.get('updateAvailable', False) } for x in packs] if updated: parsed_packs[:] = [x for x in parsed_packs if x.get('update')] command_results = CommandResults( outputs_prefix="InstalledPacks", outputs_key_field="name", outputs=parsed_packs, readable_output=tableToMarkdown("Installed Content Packs:", parsed_packs, ["name", "version", "update"]) ) return_results(command_results)
examples/independent_marl.py
apexrl/malib
258
11095024
<filename>examples/independent_marl.py<gh_stars>100-1000 # """ # Implementation of independent learning applied to MARL cases. # """ # import argparse # from malib.envs.mpe.env import MPE # from malib.runner import run # parser = argparse.ArgumentParser( # "Independent multi-agent learning on mpe environments." # ) # parser.add_argument("--batch_size", type=int, default=64) # parser.add_argument("--num_epoch", type=int, default=100) # parser.add_argument("--fragment_length", type=int, default=25) # parser.add_argument("--worker_num", type=int, default=6) # parser.add_argument("--algorithm", type=str, default="PPO") # if __name__ == "__main__": # args = parser.parse_args() # env_description = { # "creator": MPE, # "config": { # "env_id": "simple_tag_v2", # "scenario_configs": { # "num_good": 2, # "num_adversaries": 2, # "num_obstacles": 2, # "max_cycles": 25, # }, # }, # } # env = MPE(**env_description["config"]) # env_description["possible_agents"] = env.possible_agents # run( # env_description=env_description, # training={ # "interface": { # "type": "independent", # "observation_spaces": env.observation_spaces, # "action_spaces": env.action_spaces, # }, # "config": { # "agent": { # "observation_spaces": env.observation_spaces, # "action_spaces": env.action_spaces, # }, # "batch_size": args.batch_size, # "grad_norm_clipping": 0.5, # }, # }, # algorithms={"PPO": {"name": "PPO"}}, # rollout={ # "type": "async", # "stopper": "simple_rollout", # "metric_type": "simple", # "fragment_length": 75, # "num_episodes": 100, # }, # global_evaluator={ # "name": "generic", # "config": {"stop_metrics": {}}, # }, # )
tests/utils/test_shell.py
tomekr/cement
826
11095039
import time import mock from pytest import raises from cement.utils import shell from cement.core.exc import FrameworkError INPUT = 'builtins.input' def add(a, b): return a + b def test_cmd(): out, err, ret = shell.cmd('echo KAPLA!') assert ret == 0 assert out == b'KAPLA!\n' ret = shell.cmd('echo KAPLA', capture=False) assert ret == 0 def test_exec_cmd(): out, err, ret = shell.exec_cmd(['echo', 'KAPLA!']) assert ret == 0 assert out == b'KAPLA!\n' def test_exec_cmd_shell_true(): out, err, ret = shell.exec_cmd(['echo KAPLA!'], shell=True) assert ret == 0 assert out == b'KAPLA!\n' def test_exec_cmd2(): ret = shell.exec_cmd2(['echo']) assert ret == 0 def test_exec_cmd2_shell_true(): ret = shell.exec_cmd2(['echo johnny'], shell=True) assert ret == 0 def test_exec_cmd_bad_command(): out, err, ret = shell.exec_cmd(['false']) assert ret == 1 def test_exec_cmd2_bad_command(): ret = shell.exec_cmd2(['false']) assert ret == 1 def test_spawn(): p = shell.spawn(add, args=(23, 2)) p.join() assert p.exitcode == 0 t = shell.spawn(time.sleep, args=(2,), thread=True) # before joining it is alive res = t.is_alive() assert res is True t.join() # after joining it is not alive res = t.is_alive() assert res is False def test_spawn_process(): p = shell.spawn_process(add, args=(23, 2)) p.join() assert p.exitcode == 0 p = shell.spawn_process(add, join=True, args=(23, 2)) assert p.exitcode == 0 def test_spawn_thread(): t = shell.spawn_thread(time.sleep, args=(2,)) # before joining it is alive res = t.is_alive() assert res is True t.join() # after joining it is not alive res = t.is_alive() assert res is False t = shell.spawn_thread(time.sleep, join=True, args=(2,)) res = t.is_alive() assert res is False def test_prompt_simple(): with mock.patch(INPUT, return_value='Test Input'): p = shell.Prompt("Test Prompt") assert p.input == 'Test Input' def test_prompt_clear(): # test with a non-clear command: with mock.patch(INPUT, return_value='Test Input'): p = shell.Prompt("Test Prompt", clear=True, clear_command='true', ) assert p.input == 'Test Input' def test_prompt_options(): # test options (non-numbered.. user inputs actual option) with mock.patch(INPUT, return_value='y'): p = shell.Prompt("Test Prompt", options=['y', 'n']) assert p.input == 'y' # test default value with mock.patch(INPUT, return_value=''): p = shell.Prompt("Test Prompt", options=['y', 'n'], default='n') assert p.input == 'n' def test_prompt_numbered_options(): # test numbered selection (user inputs number) with mock.patch(INPUT, return_value='3'): p = shell.Prompt("Test Prompt", options=['yes', 'no', 'maybe'], numbered=True, ) assert p.input == 'maybe' # test default value with mock.patch(INPUT, return_value=''): p = shell.Prompt( "Test Prompt", options=['yes', 'no', 'maybe'], numbered=True, default='2', ) assert p.input == 'no' def test_prompt_input_is_none(): # test that self.input is none if no default, and no input with mock.patch(INPUT, return_value=''): p = shell.Prompt('Test Prompt', max_attempts=3, max_attempts_exception=False, ) assert p.input is None def test_prompt_max_attempts(): # test that self.input is none if no default, and no input with mock.patch(INPUT, return_value=''): msg = "Maximum attempts exceeded getting valid user input" with raises(FrameworkError, match=msg): shell.Prompt('Test Prompt', max_attempts=3, max_attempts_exception=True, ) def test_prompt_index_and_value_errors(): with mock.patch(INPUT, return_value='5'): p = shell.Prompt( "Test Prompt", options=['yes', 'no', 'maybe'], numbered=True, max_attempts=3, max_attempts_exception=False, ) assert p.input is None def test_prompt_case_insensitive(): with mock.patch(INPUT, return_value='NO'): p = shell.Prompt( "Test Prompt", options=['yes', 'no', 'maybe'], case_insensitive=True, ) assert p.input == 'NO' with mock.patch(INPUT, return_value='NOT VALID'): p = shell.Prompt( "Test Prompt", options=['yes', 'no', 'maybe'], case_insensitive=True, max_attempts=3, max_attempts_exception=False, ) assert p.input is None def test_prompt_case_sensitive(): with mock.patch(INPUT, return_value='NO'): p = shell.Prompt( "Test Prompt", options=['yes', 'no', 'maybe'], case_insensitive=False, max_attempts=3, max_attempts_exception=False, ) assert p.input is None
code/quaternions/blender_camera_quaternions.py
ricklentz/2dimageto3dmodel
150
11095040
""" author: <NAME> """ from math import sqrt, pow, acos, pi, asin from scipy.spatial.transform import Rotation as R import numpy as np import torch def scale_to_n(axis, n): return axis / n def blender_camera_position_to_torch_tensor_quaternion(blender_camera_info): x, y, z = blender_camera_info[0] # distance from camera d = sqrt(pow(x, 2) + pow(y, 2) + pow(z, 2)) x, y, z = scale_to_n(x, d), scale_to_n(y, d), scale_to_n(z, d) d_2D = sqrt(pow(x, 2) + pow(y, 2)) x2D, y2D = scale_to_n(x, d_2D), scale_to_n(y, d_2D) # z axis yaw = acos(x2D) if y2D > 0: yaw = 2 * pi - yaw """ Yaw, pitch and roll is a way of describing the rotation of the camera in 3D. There is other ways like quaternions but this is the simplest. Yaw, pitch and roll is the name of how much we should rotate around each axis. Think about yourself as the camera right now. Look around a bit. Yaw is the angle when moving the head left <=> right (rotation around Y-axis). Pitch is up and down (rotation around X-axis). Roll, which we usually don't experience is when you tilt your head (rotation around Z-axis). """ roll = 0 pitch = asin(z) yaw = yaw + pi # Initialize from Euler angles quaternion = R.from_euler( seq="yzx", angles=[yaw, pitch, roll] # Euler angles specified in radians ).as_quat() # form matrix: scalar part, vector part quaternion = np.r_[quaternion[-1], quaternion[:-1]] return torch.tensor(quaternion.astype( dtype=np.float32 ))
course/migrations/0007_add_participation_preapproval.py
inducer/courseflow
284
11095090
<reponame>inducer/courseflow from django.db import models, migrations import django.utils.timezone from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('course', '0006_flowpagevisit_remote_address'), ] operations = [ migrations.CreateModel( name='ParticipationPreapproval', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('email', models.EmailField(max_length=254)), ('role', models.CharField(max_length=50, choices=[('instructor', 'Instructor'), ('ta', 'Teaching Assistant'), ('student', 'Student')])), ('creation_time', models.DateTimeField(default=django.utils.timezone.now, db_index=True)), ('course', models.ForeignKey(to='course.Course', on_delete=models.CASCADE)), ('creator', models.ForeignKey(to=settings.AUTH_USER_MODEL, null=True, on_delete=models.CASCADE)), ], options={ 'ordering': ('course', 'email'), }, bases=(models.Model,), ), migrations.AlterUniqueTogether( name='participationpreapproval', unique_together={('course', 'email')}, ), ]
source/mitparallel/util.py
jaesikchoi/gpss-research
151
11095091
<reponame>jaesikchoi/gpss-research import config import os import tempfile def mkstemp_safe(directory, suffix): (os_file_handle, file_name) = tempfile.mkstemp(dir=directory, suffix=suffix) os.close(os_file_handle) return file_name def create_temp_file(extension): return mkstemp_safe(config.TEMP_PATH, extension)
hyperglass/external/bgptools.py
blkmajik/hyperglass
298
11095123
"""Query & parse data from bgp.tools. - See https://bgp.tools/credits for acknowledgements and licensing. - See https://bgp.tools/kb/api for query documentation. """ # Standard Library import re import socket import asyncio from typing import Dict, List # Project from hyperglass.log import log from hyperglass.cache import SyncCache, AsyncCache from hyperglass.configuration import REDIS_CONFIG, params DEFAULT_KEYS = ("asn", "ip", "prefix", "country", "rir", "allocated", "org") CACHE_KEY = "hyperglass.external.bgptools" def parse_whois(output: str, targets: List[str]) -> Dict[str, str]: """Parse raw whois output from bgp.tools. Sample output: AS | IP | BGP Prefix | CC | Registry | Allocated | AS Name 13335 | 1.1.1.1 | 1.1.1.0/24 | US | ARIN | 2010-07-14 | Cloudflare, Inc. """ def lines(raw): """Generate clean string values for each column.""" for r in (r for r in raw.split("\n") if r): fields = ( re.sub(r"(\n|\r)", "", field).strip(" ") for field in r.split("|") ) yield fields data = {} for line in lines(output): # Unpack each line's parsed values. asn, ip, prefix, country, rir, allocated, org = line # Match the line to the item in the list of resources to query. if ip in targets: i = targets.index(ip) data[targets[i]] = { "asn": asn, "ip": ip, "prefix": prefix, "country": country, "rir": rir, "allocated": allocated, "org": org, } log.debug("Parsed bgp.tools data: {}", data) return data async def run_whois(targets: List[str]) -> str: """Open raw socket to bgp.tools and execute query.""" # Construct bulk query query = "\n".join(("begin", *targets, "end\n")).encode() # Open the socket to bgp.tools log.debug("Opening connection to bgp.tools") reader, writer = await asyncio.open_connection("bgp.tools", port=43) # Send the query writer.write(query) if writer.can_write_eof(): writer.write_eof() await writer.drain() # Read the response response = b"" while True: data = await reader.read(128) if data: response += data else: log.debug("Closing connection to bgp.tools") writer.close() break return response.decode() def run_whois_sync(targets: List[str]) -> str: """Open raw socket to bgp.tools and execute query.""" # Construct bulk query query = "\n".join(("begin", *targets, "end\n")).encode() # Open the socket to bgp.tools log.debug("Opening connection to bgp.tools") sock = socket.socket() sock.connect(("bgp.tools", 43)) sock.send(query) # Read the response response = b"" while True: data = sock.recv(128) if data: response += data else: log.debug("Closing connection to bgp.tools") sock.shutdown(1) sock.close() break return response.decode() async def network_info(*targets: str) -> Dict[str, Dict[str, str]]: """Get ASN, Containing Prefix, and other info about an internet resource.""" targets = [str(t) for t in targets] cache = AsyncCache(db=params.cache.database, **REDIS_CONFIG) # Set default data structure. data = {t: {k: "" for k in DEFAULT_KEYS} for t in targets} # Get all cached bgp.tools data. cached = await cache.get_dict(CACHE_KEY) # Try to use cached data for each of the items in the list of # resources. for t in targets: if t in cached: # Reassign the cached network info to the matching resource. data[t] = cached[t] log.debug("Using cached network info for {}", t) # Remove cached items from the resource list so they're not queried. targets = [t for t in targets if t not in cached] try: if targets: whoisdata = await run_whois(targets) if whoisdata: # If the response is not empty, parse it. data.update(parse_whois(whoisdata, targets)) # Cache the response for t in targets: await cache.set_dict(CACHE_KEY, t, data[t]) log.debug("Cached network info for {}", t) except Exception as err: log.error(str(err)) return data def network_info_sync(*targets: str) -> Dict[str, Dict[str, str]]: """Get ASN, Containing Prefix, and other info about an internet resource.""" targets = [str(t) for t in targets] cache = SyncCache(db=params.cache.database, **REDIS_CONFIG) # Set default data structure. data = {t: {k: "" for k in DEFAULT_KEYS} for t in targets} # Get all cached bgp.tools data. cached = cache.get_dict(CACHE_KEY) # Try to use cached data for each of the items in the list of # resources. for t in targets: if t in cached: # Reassign the cached network info to the matching resource. data[t] = cached[t] log.debug("Using cached network info for {}", t) # Remove cached items from the resource list so they're not queried. targets = [t for t in targets if t not in cached] try: if targets: whoisdata = run_whois_sync(targets) if whoisdata: # If the response is not empty, parse it. data.update(parse_whois(whoisdata, targets)) # Cache the response for t in targets: cache.set_dict(CACHE_KEY, t, data[t]) log.debug("Cached network info for {}", t) except Exception as err: log.error(str(err)) return data
testing/cookbook/table_query_result_mapper.py
kstepanmpmg/mldb
665
11095148
# # table_query_result_mapper.py # Mich, 2016-01-13 # Copyright (c) 2016 mldb.ai inc. All rights reserved. # # MLDB doesn't guarantee column ordering of SQL queries will match the ordering # of the result. Here is a column mapper example to work around that. # from mldb import mldb class TableQueryResultMapper(object): class MappedRow(object): def __init__(self, mapping, row): self._mapping = mapping self._row = row def __getattr__(self, name): return self._row[self._mapping[name]] def __getitem__(self, name): return self._row[self._mapping[name]] def __str__(self): return str({ k : self._row[v] for k, v in self._mapping.items()}) def __init__(self, result): assert result[0][0] == '_rowName' self.result = result[1:] self._mapping = { name: idx for idx, name in enumerate(result[0]) } def __getitem__(self, idx): return self.__class__.MappedRow(self._mapping, self.result[idx]) mldb.log("Creating a demo dataset") ds = mldb.create_dataset({'id' : 'ds', 'type' : 'sparse.mutable'}) ds.record_row('user1', [['colD', 'd', 0], ['colZ', 'zz', 0], ['colA', 'a', 0]]) ds.commit() query = "SELECT colZ, colD, colA FROM ds" res = mldb.query("SELECT colZ, colD, colA FROM ds") mldb.log(query) mldb.log(res[0]) mldb.log("As you can see, the following result is not in the same order as " "the query.") mapped_res = TableQueryResultMapper(res) mldb.log("Example usage of the mapper.") mldb.log("Dot notation: mapped_res[1]._rowName") mldb.log(mapped_res[0]._rowName) mldb.log("Bracket notation: mapped_res[1]['colD']") mldb.log(mapped_res[0]['colD']) request.set_return("success")
terrascript/data/external.py
mjuenema/python-terrascript
507
11095153
<gh_stars>100-1000 # terrascript/data/external.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:16:09 UTC) # # For imports without namespace, e.g. # # >>> import terrascript.data.external # # instead of # # >>> import terrascript.data.hashicorp.external # # This is only available for 'official' and 'partner' providers. from terrascript.data.hashicorp.external import *
imagetagger/imagetagger/administration/views.py
jbargu/imagetagger
212
11095166
from django.shortcuts import render, get_object_or_404, redirect from django.urls import reverse from django.utils.translation import ugettext_lazy as _ from django.contrib.admin.views.decorators import staff_member_required from django.contrib import messages from django.db import transaction from .forms import AnnotationTypeCreationForm, AnnotationTypeEditForm from imagetagger.annotations.models import Annotation, AnnotationType @staff_member_required def annotation_types(request): return render(request, 'administration/annotation_type.html', { 'annotation_types': AnnotationType.objects.all().order_by('name'), 'create_form': AnnotationTypeCreationForm, }) @staff_member_required def annotation_type(request, annotation_type_id): selected_annotation_type = get_object_or_404(AnnotationType, id=annotation_type_id) return render(request, 'administration/annotation_type.html', { 'annotation_types': AnnotationType.objects.all().order_by('name'), 'annotation_type': selected_annotation_type, 'vector_type_name': AnnotationType.get_vector_type_name(selected_annotation_type.vector_type), 'create_form': AnnotationTypeCreationForm(), 'edit_form': AnnotationTypeEditForm(instance=selected_annotation_type) }) @staff_member_required def create_annotation_type(request): if request.method == 'POST': form = AnnotationTypeCreationForm(request.POST) if form.is_valid(): if AnnotationType.objects.filter(name=form.cleaned_data.get('name')).exists(): form.add_error( 'name', _('The name is already in use by an annotation type.')) else: with transaction.atomic(): type = form.save() messages.success(request, _('The annotation type was created successfully.')) return redirect(reverse('administration:annotation_type', args=(type.id,))) else: return redirect(reverse('administration:annotation_types')) @staff_member_required def edit_annotation_type(request, annotation_type_id): selected_annotation_type = get_object_or_404(AnnotationType, id=annotation_type_id) if request.method == 'POST': if not request.POST['name'] == selected_annotation_type.name and AnnotationType.objects.filter(name=request.POST['name']).exists(): messages.error(request, _('The name is already in use by an annotation type.')) else: selected_annotation_type.name = request.POST['name'] selected_annotation_type.active = 'active' in request.POST.keys() selected_annotation_type.enable_concealed = 'enable_concealed' in request.POST.keys() selected_annotation_type.enable_blurred = 'enable_blurred' in request.POST.keys() selected_annotation_type.save() messages.success(request, _('The annotation type was edited successfully.')) return redirect(reverse('administration:annotation_type', args=(annotation_type_id, ))) @staff_member_required def migrate_bounding_box_to_0_polygon(request, annotation_type_id): selected_annotation_type = get_object_or_404(AnnotationType, id=annotation_type_id) if selected_annotation_type.vector_type is AnnotationType.VECTOR_TYPE.BOUNDING_BOX: annotations = Annotation.objects.filter(annotation_type=selected_annotation_type) for annotation in annotations: annotation.verifications.all().delete() if annotation.vector: annotation.vector = { 'x1': annotation.vector['x1'], 'y1': annotation.vector['y1'], 'x2': annotation.vector['x2'], 'y2': annotation.vector['y1'], 'x3': annotation.vector['x2'], 'y3': annotation.vector['y2'], 'x4': annotation.vector['x1'], 'y4': annotation.vector['y2'], } annotation.save() selected_annotation_type.vector_type = AnnotationType.VECTOR_TYPE.POLYGON selected_annotation_type.node_count = 0 selected_annotation_type.save() return redirect(reverse('administration:annotation_type', args=(annotation_type_id, ))) @staff_member_required def migrate_bounding_box_to_4_polygon(request, annotation_type_id): selected_annotation_type = get_object_or_404(AnnotationType, id=annotation_type_id) if selected_annotation_type.vector_type is AnnotationType.VECTOR_TYPE.BOUNDING_BOX: annotations = Annotation.objects.filter(annotation_type=selected_annotation_type) for annotation in annotations: annotation.verifications.all().delete() if annotation.vector: annotation.vector = { 'x1': annotation.vector['x1'], 'y1': annotation.vector['y1'], 'x2': annotation.vector['x2'], 'y2': annotation.vector['y1'], 'x3': annotation.vector['x2'], 'y3': annotation.vector['y2'], 'x4': annotation.vector['x1'], 'y4': annotation.vector['y2'], } annotation.save() selected_annotation_type.vector_type = AnnotationType.VECTOR_TYPE.POLYGON selected_annotation_type.node_count = 4 selected_annotation_type.save() return redirect(reverse('administration:annotation_type', args=(annotation_type_id, )))
src/genie/libs/parser/ios/show_service.py
nujo/genieparser
204
11095184
<filename>src/genie/libs/parser/ios/show_service.py<gh_stars>100-1000 '''show_service.py IOS parser for the following show command * show service-group state * show service-group stats ''' # import iosxe parser from genie.libs.parser.iosxe.show_service import \ ShowServiceGroupState as ShowServiceGroupState_iosxe, \ ShowServiceGroupStats as ShowServiceGroupStats_iosxe, \ ShowServiceGroupTrafficStats as ShowServiceGroupTrafficStats_iosxe class ShowServiceGroupState(ShowServiceGroupState_iosxe): '''Parser for show service-group state''' pass class ShowServiceGroupStats(ShowServiceGroupStats_iosxe): '''Parser for show service-group stats''' pass class ShowServiceGroupTrafficStats(ShowServiceGroupTrafficStats_iosxe): """Parser for : show service-group traffic-stats show service-group traffic-stats <group> """ pass
tools/site_compare/scrapers/__init__.py
zealoussnow/chromium
14,668
11095249
#!/usr/bin/env python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Selects the appropriate scraper for a given browser and version.""" from __future__ import print_function import types # TODO(jhaas): unify all optional scraper parameters into kwargs def GetScraper(browser): """Given a browser and an optional version, returns the scraper module. Args: browser: either a string (browser name) or a tuple (name, version) Returns: module """ if type(browser) == types.StringType: browser = (browser, None) package = __import__(browser[0], globals(), locals(), ['']) module = package.GetScraper(browser[1]) if browser[1] is not None: module.version = browser[1] return module # if invoked rather than imported, do some tests if __name__ == "__main__": print(GetScraper("IE"))
alipay/aop/api/response/AlipayCommerceDataScenicMappingQueryResponse.py
antopen/alipay-sdk-python-all
213
11095273
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.ScenicAuditResponse import ScenicAuditResponse class AlipayCommerceDataScenicMappingQueryResponse(AlipayResponse): def __init__(self): super(AlipayCommerceDataScenicMappingQueryResponse, self).__init__() self._scenic_audit_response = None @property def scenic_audit_response(self): return self._scenic_audit_response @scenic_audit_response.setter def scenic_audit_response(self, value): if isinstance(value, ScenicAuditResponse): self._scenic_audit_response = value else: self._scenic_audit_response = ScenicAuditResponse.from_alipay_dict(value) def parse_response_content(self, response_content): response = super(AlipayCommerceDataScenicMappingQueryResponse, self).parse_response_content(response_content) if 'scenic_audit_response' in response: self.scenic_audit_response = response['scenic_audit_response']
inflate/pack_exe.py
bocke/Amiga-Stuff
153
11095283
<filename>inflate/pack_exe.py # pack_exe.py # # Convert an Amiga load file into a self-unpacking executable. # # Written & released by <NAME> <<EMAIL>> # # This is free and unencumbered software released into the public domain. # See the file COPYING for more details, or visit <http://unlicense.org>. import crcmod.predefined import struct, sys, os # The unpacker code fragments and the degzip binary are in the # same directory as the script. scriptdir = os.path.split(os.path.abspath(__file__))[0] + '/' # Hunk/Block identifiers. HUNK_HEADER = 0x3f3 HUNK_CODE = 0x3e9 HUNK_DATA = 0x3ea HUNK_BSS = 0x3eb HUNK_RELOC32 = 0x3ec HUNK_END = 0x3f2 # Dictionary of Hunk/Block names. hname = { HUNK_CODE: 'Code', HUNK_DATA: 'Data', HUNK_BSS: 'BSS ', } memname = { 0: '', 1: 'Chip', 2: 'Fast', 3: 'Extra-Attr', } # Minimum number of bytes that compression must save. MIN_COMPRESSION = 8 # Command for creating gzip files. GZIP = "zopfli" #GZIP = "gzip -fk9" # Prefix for intermediate (temporary) files. PREFIX = '_pack' # Relocation table: # u16 hunk (0xffff = sentinel) # u16 nr (0 = sentinel) # u16 target # u8 delta1[, delta3[3]] (delta3 iff delta1==0) # delta = (deltaN + 1) * 2 relocs = bytes() # List of allocation sizes and attributes (HUNK_HEADER). allocs = [] # DEFLATE stream size (in bytes) for each hunk. # If 0 then that hunk is stored uncompressed. stream_sizes = [] # List of output hunks hunks = [] # Summary information about each hunk's processing infos = [] # Delta-encode a list of Amiga RELOC32 offsets: # Delta_n = (Off_n - Off_n-1) / 2 - 1; Off_0 = -4 def process_relocs(target, offs): global relocs offs.sort() relocs += struct.pack('>2H', len(offs), target) p = -4 for o in offs: assert o > p and -(o-p)&1 == 0 delta = ((o - p) >> 1) - 1 assert 0 <= delta <= ((1<<24)-1) relocs += struct.pack('>B' if 1 <= delta <= 255 else '>I', delta) p = o relocs += bytes(-len(relocs)&1) # Get the (one) position-independent code hunk from an Amiga load file. def get_code(name): with open(scriptdir + name, 'rb') as f: (id, x, nr, first, last) = struct.unpack('>5I', f.read(5*4)) assert id == HUNK_HEADER and x == 0 assert nr == 1 and first == 0 and last == 0 (x, id, nr) = struct.unpack('>3I', f.read(3*4)) assert id == HUNK_CODE and nr == x code = bytes(f.read(nr * 4)) (id,) = struct.unpack('>I', f.read(4)) assert id == HUNK_END #print('"%s": %u bytes (%u longs)' % (name, len(code), len(code)//4)) return code # Compress the given raw byte sequence. def pack(raw): # Compress to a DEFLATE stream. with open(PREFIX, 'wb') as f: f.write(raw) os.system(GZIP + ' ' + PREFIX) os.system(scriptdir + 'degzip -H ' + PREFIX + '.gz ' + PREFIX + '.raw' ' >/dev/null') with open(PREFIX+'.raw', 'rb') as f: packed = f.read() (inb, outb, crc, leeway) = struct.unpack('>2I2H', packed[:12]) # Extract the DEFLATE stream and check the header's length fields. inb -= 14 packed = packed[12:-2] assert inb == len(packed) and outb == len(raw) # Check the header CRC. crc16 = crcmod.predefined.Crc('crc-ccitt-false') crc16.update(raw) assert crc == crc16.crcValue # Pad the DEFLATE stream. padding = -len(packed) & 3 packed += bytes(padding) # Extend and pad leeway. leeway += padding leeway += -leeway & 3 return (packed, crc, leeway) # Read next hunk from the input file, compress it if appropriate, and appends # the encoded output hunk to hunks[], updates allocs[i], and appends # delta-encoded RELOC32 blocks to relocs[]. def process_hunk(f, i): global allocs, stream_sizes, relocs, hunks, infos old_pos = f.tell() alloc = _alloc = (allocs[i] & 0x3fffffff) * 4 first_reloc = True # Have we seen a RELOC32 block yet? seen_dat = False # Have we seen CODE/DATA/BSS yet? hunk = bytes() # Full encoding of this hunk while True: (_id,) = struct.unpack('>I', f.read(4)) id = _id & 0x3fffffff if id == HUNK_CODE or id == HUNK_DATA: if seen_dat: f.seek(-4, os.SEEK_CUR) break # Done with this hunk! seen_dat = id (_nr,) = struct.unpack('>I', f.read(4)) nr = _nr & 0x3fffffff raw = f.read(nr*4) assert alloc >= len(raw) (packed, crc, leeway) = pack(raw) if i != 0 and nr*4 < len(packed)+MIN_COMPRESSION: # This hunk is not worth compressing. Store it as is. packed = raw stream_sizes.append(0) # No compression else: if i == 0: # First hunk must be code: we inject our entry/exit code assert id == HUNK_CODE packed = get_code('depacker_entry') + packed # Allocate explicit extra space for the final exit code # This must always extend the allocation as these bytes # will not be zeroed before we jump to the original exe. alloc += 8 # Extend the hunk allocation for depacker leeway. # We also deal with compression making the hunk longer here # (hunk 0 only, as other hunks we would store uncompressed). alloc = max(alloc, len(raw) + leeway, len(packed)) stream_sizes.append(len(packed)) # DEFLATE stream size # Write out this block. hunk += struct.pack('>2I', id, len(packed)//4) + packed elif id == HUNK_BSS: assert i != 0 if seen_dat: f.seek(-4, os.SEEK_CUR) break # Done with this hunk! seen_dat = id (_nr,) = struct.unpack('>I', f.read(4)) nr = _nr & 0x3fffffff assert alloc >= nr*4 stream_sizes.append(0) # No compression # Write out this block as is. hunk += struct.pack('>2I', id, alloc//4) elif id == HUNK_END: assert seen_dat break # Done with this hunk! elif id == HUNK_RELOC32: while True: (nr,) = struct.unpack('>I', f.read(4)) if nr == 0: break # Done with RELOC32 (h,) = struct.unpack('>I', f.read(4)) offs = list(struct.unpack('>%dI' % nr, f.read(nr*4))) if first_reloc: # Write out this hunk's number. relocs += struct.pack('>H', i) first_reloc = False # Write out the target hunk number and delta-encoded offsets. process_relocs(h, offs) else: print("Unexpected hunk %04x" % (id)) assert False # Generate HUNK_END (optional?) # hunk += struct.pack('>I', HUNK_END) if not first_reloc: # There were relocations for this hunk: Write the sentinel value. relocs += struct.pack('>H', 0) # Update the allocation size for this hunk. assert alloc&3 == 0 allocs[i] &= 0xc0000000 allocs[i] |= alloc // 4 # Add this hunk to the global list for later write-out. hunks.append(hunk) infos.append((seen_dat, _alloc, alloc, f.tell()-old_pos, len(hunk))) # Generate the final hunk, which contains the depacker, the packed-stream # size table, the delta-encoded relocation tables, and the relocator. # Everything except the depacker itself is stored compressed. def generate_final_hunk(): global allocs, relocs, hunks, infos depacker = get_code('depacker_main') # Generate the raw byte sequence for compression: # 1. Table of stream sizes; stream_sizes.append(0) # Sentinel value for the stream-size table raw = struct.pack('>%dI' % len(stream_sizes), *stream_sizes) # 2. Relocation and epilogue code; and 3. Relocation tables. raw += get_code('depacker_packed') + relocs # Ensure everything is a longword multiple. raw += bytes(-len(raw) & 3) assert len(depacker)&3 == 0 and len(raw)&3 == 0 # Allocation size covers the depacker and the depacked stream. alloc = len(depacker) + 4 + len(raw) # Compress the raw byte sequence. (packed, crc, leeway) = pack(raw) if len(raw) < len(packed)+MIN_COMPRESSION: # Not worth compressing, so don't bother. hunk = depacker + bytes(4) + raw # 'bytes(4)' means not packed else: # Compress everything except the depacker itself (and the # longword containing the size of the compressed stream). packed_len = len(depacker) + len(packed) alloc += leeway # Include depacker leeway in the hunk allocation hunk = depacker + struct.pack('>I', len(packed)) + packed assert alloc&3 == 0 and len(hunk)&3 == 0 # Add the hunk header/footer metadata to the code block. hunk = struct.pack('>2I', HUNK_CODE, len(hunk)//4) + hunk hunk += struct.pack('>I', HUNK_END) # Add this hunk and its allocation size to the global lists. hunks.append(hunk) allocs.append(alloc//4) infos.append((0, 0, alloc, 0, len(hunk))) def process(f, out_f): global allocs, relocs, hunks # Read the load-file header of the input file, including every # hunk's original allocation size. (id, x, nr, first, last) = struct.unpack('>5I', f.read(5*4)) assert id == HUNK_HEADER and x == 0 assert first == 0 and last == nr-1 and nr > 0 allocs = list(struct.unpack('>%dI' % nr, f.read(nr*4))) # Read and process each input hunk. for i in range(nr): process_hunk(f, i) # Append the final sentinel value to the relocation table. relocs += struct.pack('>H', 0xffff) # Generate the depacker hunk. generate_final_hunk() nr += 1 # Remove intermediate temporary files. os.system('rm ' + PREFIX + '*') # Write out the compressed executable: HUNK_HEADER, then each hunk in turn. out_f.write(struct.pack('>5I', HUNK_HEADER, 0, nr, 0, nr-1)) out_f.write(struct.pack('>%dI' % nr, *allocs)) [out_f.write(hunk) for hunk in hunks] # Return the original- and compressed-file sizes to the caller. f.seek(0, os.SEEK_END) in_sz = f.tell() out_sz = out_f.tell() return (in_sz, out_sz) def usage(argv): print("%s input-file output-file" % argv[0]) sys.exit(1) def main(argv): if sys.version_info[0] < 3: print("** Requires Python 3") usage(argv) if len(argv) != 3: usage(argv) (in_sz, out_sz) = process(open(argv[1], 'rb'), open(argv[2], 'wb')) tot_old_alloc = tot_new_alloc = tot_old_store = tot_new_store = 0 for (id, old_alloc, new_alloc, old_store, new_store) in infos: tot_old_alloc += old_alloc tot_new_alloc += new_alloc tot_old_store += old_store tot_new_store += new_store print(' [Nr] Type File ( delta, %) Memory (delta)') print('-----------------------------------------------------------') # Account for HUNK_HEADER: We grew it by 4 bytes (one extra hunk). hlen = (len(infos)+5)*4 tot_old_store += hlen-4 tot_new_store += hlen print(' [--] Header %7u (%+8u, %+5.1f%%)' % (hlen, 4, 400/(hlen-4))) # Stats summary for all the original hunks. for i in range(len(infos)-1): (id, old_alloc, new_alloc, old_store, new_store) = infos[i] if new_store != 0: print(' [%02u] %s %9u (%+8u, %+5.1f%%) %7u (%+5u) %s' % (i, hname[id], new_store, new_store-old_store, (new_store-old_store)*100/old_store, new_alloc, new_alloc-old_alloc, memname[allocs[i] >> 30])) # Summarise the new depacker/relocation hunk. (id, old_alloc, new_alloc, old_store, new_store) = infos[-1] print(' [%02u] DEPACK %7u %20s %7u' % (len(infos)-1, new_store, '', new_alloc)) # Print totals. Note that extra allocation reduces after unpacking: # The depacker/relocation hunk is freed before running the original exe. print('-----------------------------------------------------------') print('%20u (%+8u, %+5.1f%%) %7u (%+5u)' % (tot_new_store, tot_new_store-tot_old_store, (tot_new_store-tot_old_store)*100/tot_old_store, tot_new_alloc, tot_new_alloc-tot_old_alloc)) print('After depack: %25s %7u (%+5u)' % ('', tot_new_alloc-new_alloc, tot_new_alloc-new_alloc-tot_old_alloc)) # A very final summary. print('\n** RESULT:\n** Original: {} = {} bytes\n' '** Compressed: {} = {} bytes\n' '** Shrunk {} bytes ({:.1f}%)' .format(argv[1], in_sz, argv[2], out_sz, in_sz - out_sz, (in_sz-out_sz)*100/in_sz)) if __name__ == "__main__": main(sys.argv)
genrate_fragments/step1_clean_triple.py
YangLingWHU/gAnswer
328
11095287
import re ''' Step 1: Clean the triple file. In the dbpedia case, we just need the part of resource URI that indicate entity/type/predicate names. ''' fileName = []#List of triple files to be process notRdf = open('./notRdf.txt','w')#Record the lines that refers to a type but not rdf:type for index2,fname in enumerate(fileName): f = open('./'+fname) triple = open('output triple files here','w') prefix_f = open('output prefix files here','w')# save the prefix in files in case of it may be useful in the future. i = 0 count = 0 prefix_set = set() for line in f: if line[0] != '<': print(i) i = i + 1 count += 1 continue line = line[:-3].replace('> <','>$-$-$<').replace('> "','>$-$-$"') line = line.split('$-$-$') if i==0: i += 1 continue new_line=[] if "type>" in line[1]: if "rdf" not in line[1]: notRdf.write(str(line)+'\n') continue for index,item in enumerate(line): if not item: count +=1 break if item[0]=='<': pos = item.rfind('/') word = item[pos+1:-1].split("#") if len(word)<2: new_line.append('<'+word[0]+'>') else: new_line.append('<'+word[1]+'>') if index == 1: tmp = new_line[1][1:len(new_line[1])-1] pos2 = line[1].rfind(tmp) prefix = line[1][1:pos2-1] prefix_set.add(tmp + '^^^'+prefix+'\n') continue elif item.count('"') >=2: item = item.split('^^')[0].split('@')[0] pattern = re.compile('"(.*)"') word = '"'+''.join(pattern.findall(item))+'"' new_line.append(word) continue else: print(i) i += 1 #print('\t'.join(new_line)) if i%1000000==0: print("%d:%d"%(8,i)) triple.write('\t'.join(new_line)+'\n') for item in prefix_set: prefix_f.write(item) f.close() triple.close() prefix_f.close()
tests/types/test_geometry.py
peterandluc/PyHDB
332
11095302
<gh_stars>100-1000 from io import BytesIO import random # import pytest from pyhdb.protocol import types # ########################## Test value unpacking ##################################### @pytest.mark.parametrize("given,expected", [ (b"\xFF", None), (b"\x2d\x50\x4f\x49\x4e\x54\x20\x28\x31\x2e\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x32\x2e\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x29", "POINT (1.0000000000000000 2.0000000000000000)"), (b"\x59\x4c\x49\x4e\x45\x53\x54\x52\x49\x4e\x47\x20\x28\x31\x2e\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x32\x2e" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x2c" + \ b"\x20\x32\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x20\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x29", "LINESTRING (1.0000000000000000 2.0000000000000000, " + \ "2.0000000000000000 1.0000000000000000)"), (b"\xa7\x50\x4f\x4c\x59\x47\x4f\x4e\x20\x28\x28\x31\x2e\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x31\x2e\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x2c\x20\x30" + \ b"\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x20\x30\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x2c\x20\x2d\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x20\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x2c\x20\x31\x2e\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x31\x2e\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x29\x29", "POLYGON ((1.0000000000000000 1.0000000000000000, " + \ "0.0000000000000000 0.0000000000000000, " + \ "-1.0000000000000000 1.0000000000000000, " + \ "1.0000000000000000 1.0000000000000000))"), (b"\x32\x4d\x55\x4c\x54\x49\x50\x4f\x49\x4e\x54\x20\x28\x31\x2e\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x32\x2e" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x29", "MULTIPOINT (1.0000000000000000 2.0000000000000000)"), (b"\x60\x4d\x55\x4c\x54\x49\x4c\x49\x4e\x45\x53\x54\x52\x49\x4e\x47\x20" + \ b"\x28\x28\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x20\x32\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x2c\x20\x32\x2e\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x20\x31\x2e\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x29\x29", "MULTILINESTRING ((1.0000000000000000 2.0000000000000000, " + \ "2.0000000000000000 1.0000000000000000))"), (b"\xae\x4d\x55\x4c\x54\x49\x50\x4f\x4c\x59\x47\x4f\x4e\x20\x28\x28\x28" + \ b"\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x20\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x2c\x20\x30\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x20\x30\x2e\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x2c\x20\x2d\x31\x2e\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x31\x2e\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x2c\x20\x31" + \ b"\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x20\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x29\x29\x29", "MULTIPOLYGON (((1.0000000000000000 1.0000000000000000, " + \ "0.0000000000000000 0.0000000000000000, " + \ "-1.0000000000000000 1.0000000000000000, " + \ "1.0000000000000000 1.0000000000000000)))"), ]) def test_unpack_geometry_wkt(given, expected): given = BytesIO(given) assert types.Geometry.from_resultset(given) == expected # ########################## Test value packing ##################################### @pytest.mark.parametrize("given,expected", [ (None, b"\x1d\xFF", ), ("POINT (1.0000000000000000 2.0000000000000000)", b"\x1d\x2d\x50\x4f\x49\x4e\x54\x20\x28\x31\x2e\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x32\x2e\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x29"), ("LINESTRING (1.0000000000000000 2.0000000000000000, " + \ "2.0000000000000000 1.0000000000000000)", b"\x1d\x59\x4c\x49\x4e\x45\x53\x54\x52\x49\x4e\x47\x20\x28\x31\x2e\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x32" + \ b"\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x2c\x20\x32\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x20\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x29"), ("POLYGON ((1.0000000000000000 1.0000000000000000, " + \ "0.0000000000000000 0.0000000000000000, " + \ "-1.0000000000000000 1.0000000000000000, " + \ "1.0000000000000000 1.0000000000000000))", b"\x1d\xa7\x50\x4f\x4c\x59\x47\x4f\x4e\x20\x28\x28\x31\x2e\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x31\x2e\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x2c\x20" + \ b"\x30\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x20\x30\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x2c\x20\x2d\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x20\x31\x2e\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x2c\x20\x31\x2e\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x31\x2e\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x29\x29"), ("MULTIPOINT (1.0000000000000000 2.0000000000000000)", b"\x1d\x32\x4d\x55\x4c\x54\x49\x50\x4f\x49\x4e\x54\x20\x28\x31\x2e\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x32" + \ b"\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x29"), ("MULTILINESTRING ((1.0000000000000000 2.0000000000000000, " + \ "2.0000000000000000 1.0000000000000000))", b"\x1d\x60\x4d\x55\x4c\x54\x49\x4c\x49\x4e\x45\x53\x54\x52\x49\x4e\x47" + \ b"\x20\x28\x28\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x20\x32\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x2c\x20\x32\x2e\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x31\x2e\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x29\x29"), ("MULTIPOLYGON (((1.0000000000000000 1.0000000000000000, " + \ "0.0000000000000000 0.0000000000000000, " + \ "-1.0000000000000000 1.0000000000000000, " + \ "1.0000000000000000 1.0000000000000000)))", b"\x1d\xae\x4d\x55\x4c\x54\x49\x50\x4f\x4c\x59\x47\x4f\x4e\x20\x28\x28" + \ b"\x28\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x20\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x2c\x20\x30\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x20\x30\x2e\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x2c\x20\x2d\x31\x2e\x30\x30\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x20\x31\x2e\x30" + \ b"\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x2c\x20" + \ b"\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x20\x31\x2e\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30" + \ b"\x30\x30\x30\x29\x29\x29"), ]) def test_pack_geometry_wkt(given, expected): assert types.Geometry.prepare(given) == expected # ############################################################################################################# # Real HANA interaction with geormetry (integration tests) # ############################################################################################################# import tests.helper TABLE = 'PYHDB_TEST_GEOMETRY' TABLE_POINT = TABLE + "_POINT" TABLE_GEOMETRY = TABLE + "_GEOMETRY" TABLE_FIELDS_POINT = "point ST_POINT NOT NULL" TABLE_FIELDS_GEOMETRY = "geo ST_GEOMETRY NOT NULL" @pytest.fixture def test_table_point(request, connection): tests.helper.create_table_fixture(request, connection, TABLE_POINT, TABLE_FIELDS_POINT, column_table=True) @pytest.fixture def test_table_geometry(request, connection): tests.helper.create_table_fixture(request, connection, TABLE_GEOMETRY, TABLE_FIELDS_GEOMETRY, column_table=True) @pytest.mark.hanatest def test_insert_point(connection, test_table_point): """Insert spatial point into table""" cursor = connection.cursor() point_x = random.randint(-100.0, 100.0) point_y = random.randint(-100.0, 100.0) wkt_string = "POINT(%f %f)" % (point_x, point_y) cursor.execute("insert into %s (point) values (:1)" % TABLE_POINT, [wkt_string]) connection.commit() cursor = connection.cursor() row = cursor.execute('select point.ST_X(), point.ST_Y() from %s' % TABLE_POINT).fetchone() assert row[0] == point_x assert row[1] == point_y @pytest.mark.hanatest def test_insert_linestring(connection, test_table_geometry): """Insert spatial linestring into table""" cursor = connection.cursor() point1_x = random.randint(-100.0, 100.0) point1_y = random.randint(-100.0, 100.0) point2_x = random.randint(-100.0, 100.0) point2_y = random.randint(-100.0, 100.0) wkt_string = "LINESTRING(%f %f, %f %f)" % (point1_x, point1_y, point2_x, point2_y) cursor.execute("insert into %s (geo) values (:1)" % TABLE_GEOMETRY, [wkt_string]) connection.commit() cursor = connection.cursor() sql = """ Select geo.ST_StartPoint().ST_X(), geo.ST_StartPoint().ST_Y(), geo.ST_EndPoint().ST_X(), geo.ST_EndPoint().ST_Y() From %s """ row = cursor.execute(sql % TABLE_GEOMETRY).fetchone() assert row[0] == point1_x assert row[1] == point1_y assert row[2] == point2_x assert row[3] == point2_y @pytest.mark.hanatest def test_insert_polygon(connection, test_table_geometry): """Insert spatial polygon into table""" cursor = connection.cursor() # The edges of a polygon can not cross. Therefore we build an arbitrary quadtrangle. point1_x = random.randint(0, 100.0) point1_y = random.randint(0, 100.0) point2_x = random.randint(0, 100.0) point2_y = random.randint(-100.0, 0) point3_x = random.randint(-100.0, 0) point3_y = random.randint(-100.0, 0) point4_x = random.randint(-100.0, 0) point4_y = random.randint(0, 100.0) wkt_string = "POLYGON((%f %f, %f %f, %f %f, %f %f, %f %f))" % ( point1_x, point1_y, point2_x, point2_y, point3_x, point3_y, point4_x, point4_y, point1_x, point1_y ) cursor.execute("insert into %s (geo) values (:1)" % TABLE_GEOMETRY, [wkt_string]) connection.commit() cursor = connection.cursor() # We don't want to check all points of the polygon. # We will only check the minimal and maximal values. sql = """ Select geo.ST_XMin(), geo.ST_XMax(), geo.ST_YMin(), geo.ST_YMax() From %s """ row = cursor.execute(sql % TABLE_GEOMETRY).fetchone() assert row[0] == min(point1_x, point2_x, point3_x, point4_x) assert row[1] == max(point1_x, point2_x, point3_x, point4_x) assert row[2] == min(point1_y, point2_y, point3_y, point4_y) assert row[3] == max(point1_y, point2_y, point3_y, point4_y)
visualization/view_scene.py
PratyushaMaiti/gtsfm
122
11095303
<reponame>PratyushaMaiti/gtsfm<filename>visualization/view_scene.py<gh_stars>100-1000 """ Script to render a GTSFM scene using either Open3d or Mayavi mlab. Authors: <NAME> """ import argparse import os from pathlib import Path import numpy as np from gtsam import Rot3, Pose3 import gtsfm.utils.io as io_utils #from visualization.mayavi_vis_utils import draw_scene_mayavi from visualization.open3d_vis_utils import draw_scene_open3d REPO_ROOT = Path(__file__).parent.parent.resolve() def compute_point_cloud_center_robust(point_cloud: np.ndarray) -> np.ndarray: """Robustly estimate the point cloud center. Args: point_cloud: array of shape (N,3) representing 3d points. Returns: mean_pt: coordinates of central point, ignoring outliers. """ ranges = np.linalg.norm(point_cloud, axis=1) outlier_thresh = np.percentile(ranges, 75) mean_pt = point_cloud[ranges < outlier_thresh].mean(axis=0) return mean_pt def view_scene(args: argparse.Namespace) -> None: """Read GTSFM output from .txt files and render the scene to the GUI. We also zero-center the point cloud, and transform camera poses to a new world frame, where the point cloud is zero-centered. Args: args: rendering options. """ points_fpath = f"{args.output_dir}/points3D.txt" images_fpath = f"{args.output_dir}/images.txt" cameras_fpath = f"{args.output_dir}/cameras.txt" wTi_list, img_fnames = io_utils.read_images_txt(images_fpath) calibrations = io_utils.read_cameras_txt(cameras_fpath) if len(calibrations) == 1: calibrations = calibrations * len(img_fnames) point_cloud, rgb = io_utils.read_points_txt(points_fpath) mean_pt = compute_point_cloud_center_robust(point_cloud) # Zero-center the point cloud (about estimated center) zcwTw = Pose3(Rot3(np.eye(3)), -mean_pt) # expression below is equivalent to applying zcwTw.transformFrom() to each world point point_cloud -= mean_pt is_nearby = np.linalg.norm(point_cloud, axis=1) < args.max_range point_cloud = point_cloud[is_nearby] rgb = rgb[is_nearby] for i in range(len(wTi_list)): wTi_list[i] = zcwTw.compose(wTi_list[i]) if args.rendering_library == "open3d": draw_scene_open3d(point_cloud, rgb, wTi_list, calibrations, args) # elif args.rendering_library == "mayavi": # draw_scene_mayavi(point_cloud, rgb, wTi_list, calibrations, args) else: raise RuntimeError("Unsupported rendering library") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Visualize GTSFM result with Mayavi or Open3d.") parser.add_argument( "--rendering_library", type=str, default="open3d", choices=["mayavi", "open3d"], help="3d rendering library to use.", ) parser.add_argument( "--output_dir", type=str, default=os.path.join(REPO_ROOT, "results", "ba_output"), help="Path to a directory containing GTSFM output. " "This directory should contain 3 files: cameras.txt, images.txt, and points3D.txt", ) parser.add_argument( "--point_rendering_mode", type=str, default="point", choices=["point", "sphere"], help="Render each 3d point as a `point` (optimized in Open3d) or `sphere` (optimized in Mayavi).", ) parser.add_argument( "--max_range", type=float, default=20, help="maximum range of points (from estimated point cloud center) to render.", ) parser.add_argument( "--sphere_radius", type=float, default=0.1, help="if points are rendered as spheres, then spheres are rendered with this radius.", ) args = parser.parse_args() if args.point_rendering_mode == "point" and args.rendering_library == "mayavi": raise RuntimeError("Mayavi only supports rendering points as spheres.") view_scene(args)
h2o-docs/src/booklets/v2_2015/source/GLM_Vignette_code_examples/glm_gamma_example.py
ahmedengu/h2o-3
6,098
11095340
import h2o from h2o.estimators.glm import H2OGeneralizedLinearEstimator h2o.init() h2o_df = h2o.import_file("http://h2o-public-test-data.s3.amazonaws.com/smalldata/prostate/prostate.csv") gamma_inverse = H2OGeneralizedLinearEstimator(family = "gamma", link = "inverse") gamma_inverse.train(y = "DPROS", x = ["AGE","RACE","CAPSULE","DCAPS","PSA","VOL"], training_frame = h2o_df) gamma_log = H2OGeneralizedLinearEstimator(family = "gamma", link = "log") gamma_log.train(y="DPROS", x = ["AGE","RACE","CAPSULE","DCAPS","PSA","VOL"], training_frame = h2o_df)
jedi/api/errors.py
mrclary/jedi
641
11095366
""" This file is about errors in Python files and not about exception handling in Jedi. """ def parso_to_jedi_errors(grammar, module_node): return [SyntaxError(e) for e in grammar.iter_errors(module_node)] class SyntaxError(object): """ Syntax errors are generated by :meth:`.Script.get_syntax_errors`. """ def __init__(self, parso_error): self._parso_error = parso_error @property def line(self): """The line where the error starts (starting with 1).""" return self._parso_error.start_pos[0] @property def column(self): """The column where the error starts (starting with 0).""" return self._parso_error.start_pos[1] @property def until_line(self): """The line where the error ends (starting with 1).""" return self._parso_error.end_pos[0] @property def until_column(self): """The column where the error ends (starting with 0).""" return self._parso_error.end_pos[1] def __repr__(self): return '<%s from=%s to=%s>' % ( self.__class__.__name__, self._parso_error.start_pos, self._parso_error.end_pos, )
pytorch-DRIT-PONO-MS/src/dataset.py
Boyiliee/PONO
133
11095398
<filename>pytorch-DRIT-PONO-MS/src/dataset.py import os import torch.utils.data as data from PIL import Image from torchvision.transforms import Compose, Resize, RandomCrop, CenterCrop, RandomHorizontalFlip, ToTensor, Normalize import random class dataset_single(data.Dataset): def __init__(self, opts, setname, input_dim): self.dataroot = opts.dataroot images = os.listdir(os.path.join(self.dataroot, opts.phase + setname)) self.img = [os.path.join(self.dataroot, opts.phase + setname, x) for x in images] self.size = len(self.img) self.input_dim = input_dim # setup image transformation transforms = [Resize((opts.resize_size, opts.resize_size), Image.BICUBIC)] transforms.append(CenterCrop(opts.crop_size)) transforms.append(ToTensor()) transforms.append(Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])) self.transforms = Compose(transforms) print('%s: %d images'%(setname, self.size)) return def __getitem__(self, index): data = self.load_img(self.img[index], self.input_dim) return data def load_img(self, img_name, input_dim): img = Image.open(img_name).convert('RGB') img = self.transforms(img) if input_dim == 1: img = img[0, ...] * 0.299 + img[1, ...] * 0.587 + img[2, ...] * 0.114 img = img.unsqueeze(0) return img def __len__(self): return self.size class dataset_unpair(data.Dataset): def __init__(self, opts): self.dataroot = opts.dataroot # A images_A = os.listdir(os.path.join(self.dataroot, opts.phase + 'A')) self.A = [os.path.join(self.dataroot, opts.phase + 'A', x) for x in images_A] # B images_B = os.listdir(os.path.join(self.dataroot, opts.phase + 'B')) self.B = [os.path.join(self.dataroot, opts.phase + 'B', x) for x in images_B] self.A_size = len(self.A) self.B_size = len(self.B) self.dataset_size = max(self.A_size, self.B_size) self.input_dim_A = opts.input_dim_a self.input_dim_B = opts.input_dim_b # setup image transformation transforms = [Resize((opts.resize_size, opts.resize_size), Image.BICUBIC)] if opts.phase == 'train': transforms.append(RandomCrop(opts.crop_size)) else: transforms.append(CenterCrop(opts.crop_size)) if not opts.no_flip: transforms.append(RandomHorizontalFlip()) transforms.append(ToTensor()) transforms.append(Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])) self.transforms = Compose(transforms) print('A: %d, B: %d images'%(self.A_size, self.B_size)) return def __getitem__(self, index): if self.dataset_size == self.A_size: data_A = self.load_img(self.A[index], self.input_dim_A) data_B = self.load_img(self.B[random.randint(0, self.B_size - 1)], self.input_dim_B) else: data_A = self.load_img(self.A[random.randint(0, self.A_size - 1)], self.input_dim_A) data_B = self.load_img(self.B[index], self.input_dim_B) return data_A, data_B def load_img(self, img_name, input_dim): img = Image.open(img_name).convert('RGB') img = self.transforms(img) if input_dim == 1: img = img[0, ...] * 0.299 + img[1, ...] * 0.587 + img[2, ...] * 0.114 img = img.unsqueeze(0) return img def __len__(self): return self.dataset_size
test/phonon/test_band_structure.py
ladyteam/phonopy
127
11095442
"""Tests for band structure calculation.""" from phonopy.phonon.band_structure import get_band_qpoints def test_band_structure(ph_nacl): """Test band structure calculation by NaCl.""" ph_nacl.run_band_structure( _get_band_qpoints(), with_group_velocities=False, is_band_connection=False ) ph_nacl.get_band_structure_dict() def test_band_structure_gv(ph_nacl): """Test band structure calculation with group velocity by NaCl.""" ph_nacl.run_band_structure( _get_band_qpoints(), with_group_velocities=True, is_band_connection=False ) ph_nacl.get_band_structure_dict() def test_band_structure_bc(ph_nacl): """Test band structure calculation with band connection by NaCl.""" ph_nacl.run_band_structure( _get_band_qpoints(), with_group_velocities=False, is_band_connection=True ) ph_nacl.get_band_structure_dict() def _get_band_qpoints(): band_paths = [ [[0, 0, 0], [0.5, 0.5, 0.5]], [[0.5, 0.5, 0], [0, 0, 0], [0.5, 0.25, 0.75]], ] qpoints = get_band_qpoints(band_paths, npoints=11) return qpoints
couler/tests/daemon_step_test.py
javoweb/couler
700
11095462
<reponame>javoweb/couler # Copyright 2021 The Couler Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import couler.argo as couler from couler.tests.argo_test import ArgoBaseTestCase class DaemonStepTest(ArgoBaseTestCase): def setUp(self) -> None: couler._cleanup() def tearDown(self): couler._cleanup() def test_run_daemon_container(self): self.assertEqual(len(couler.workflow.templates), 0) couler.run_container( image="python:3.6", command="echo $uname", daemon=True ) self.assertEqual(len(couler.workflow.templates), 1) template = couler.workflow.get_template( "test-run-daemon-container" ).to_dict() self.assertEqual("test-run-daemon-container", template["name"]) self.assertTrue(template["daemon"]) self.assertEqual("python:3.6", template["container"]["image"]) self.assertEqual(["echo $uname"], template["container"]["command"]) def test_run_daemon_script(self): self.assertEqual(len(couler.workflow.templates), 0) couler.run_script( image="python:3.6", command="bash", source="ls", daemon=True ) self.assertEqual(len(couler.workflow.templates), 1) template = couler.workflow.get_template( "test-run-daemon-script" ).to_dict() self.assertEqual("test-run-daemon-script", template["name"]) self.assertTrue(template["daemon"]) self.assertEqual("python:3.6", template["script"]["image"]) self.assertEqual(["bash"], template["script"]["command"]) self.assertEqual("ls", template["script"]["source"])
gslib/tests/test_cloud_api_delegator.py
stanhu/gsutil
649
11095475
# -*- coding: utf-8 -*- # Copyright 2020 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for cloud_api_delegator.py.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from __future__ import unicode_literals from gslib import cloud_api from gslib import cloud_api_delegator from gslib import context_config from gslib import cs_api_map from gslib.tests import testcase from gslib.tests.testcase import base from gslib.tests.util import unittest from six import add_move, MovedModule add_move(MovedModule('mock', 'mock', 'unittest.mock')) from six.moves import mock class TestCloudApiDelegator(testcase.GsUtilUnitTestCase): """Test delegator class for cloud provider API clients.""" @mock.patch.object(context_config, 'get_context_config') def testRaisesErrorIfMtlsUsedWithXml(self, mock_get_context_config): mock_context_config = mock.Mock() mock_context_config.use_client_certificate = True mock_get_context_config.return_value = mock_context_config # api_map setup from command_runner.py. api_map = cs_api_map.GsutilApiMapFactory.GetApiMap( gsutil_api_class_map_factory=cs_api_map.GsutilApiClassMapFactory, support_map={'s3': [cs_api_map.ApiSelector.XML]}, default_map={'s3': cs_api_map.ApiSelector.XML}) delegator = cloud_api_delegator.CloudApiDelegator(None, api_map, None, None) with self.assertRaises(cloud_api.ArgumentException): delegator.GetApiSelector(provider='s3')
machina/apps/forum/migrations/0001_initial.py
OneRainbowDev/django-machina
572
11095485
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import mptt.fields import machina.models.fields class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Forum', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('is_active', models.BooleanField(default=True, db_index=True)), ('created', models.DateTimeField(auto_now_add=True, verbose_name='Creation date')), ('updated', models.DateTimeField(auto_now=True, verbose_name='Update date')), ('name', models.CharField(max_length=100, verbose_name='Name')), ('slug', models.SlugField(max_length=255, verbose_name='Slug')), ('description', machina.models.fields.MarkupTextField(no_rendered_field=True, null=True, verbose_name='Description', blank=True)), ('image', machina.models.fields.ExtendedImageField(upload_to='machina/forum_images', null=True, verbose_name='Forum image', blank=True)), ('link', models.URLField(null=True, verbose_name='Forum link', blank=True)), ('link_redirects', models.BooleanField(default=False, help_text='Records the number of times a forum link was clicked', verbose_name='Track link redirects count')), ('type', models.PositiveSmallIntegerField(db_index=True, verbose_name='Forum type', choices=[(0, 'Default forum'), (1, 'Category forum'), (2, 'Link forum')])), ('posts_count', models.PositiveIntegerField(default=0, verbose_name='Number of posts', editable=False, blank=True)), ('topics_count', models.PositiveIntegerField(default=0, verbose_name='Number of topics', editable=False, blank=True)), ('link_redirects_count', models.PositiveIntegerField(default=0, verbose_name='Track link redirects count', editable=False, blank=True)), ('last_post_on', models.DateTimeField(null=True, verbose_name='Last post added on', blank=True)), ('display_sub_forum_list', models.BooleanField(default=True, help_text='Displays this forum on the legend of its parent-forum (sub forums list)', verbose_name='Display in parent-forums legend')), ('_description_rendered', models.TextField(null=True, editable=False, blank=True)), ('lft', models.PositiveIntegerField(editable=False, db_index=True)), ('rght', models.PositiveIntegerField(editable=False, db_index=True)), ('tree_id', models.PositiveIntegerField(editable=False, db_index=True)), ('level', models.PositiveIntegerField(editable=False, db_index=True)), ('parent', mptt.fields.TreeForeignKey(related_name='children', verbose_name='Parent', blank=True, to='forum.Forum', null=True, on_delete=models.CASCADE)), ], options={ 'ordering': ['tree_id', 'lft'], 'abstract': False, 'verbose_name': 'Forum', 'verbose_name_plural': 'Forums', 'permissions': [], }, ), ]
tests/input/portugal/test.py
jacobwhall/panflute
361
11095494
import panflute as pf input_fn = 'benchmark.json' output_fn = 'panflute.json' def empty_test(element, doc): return def test_filter(element, doc): if type(element)==pf.Header: return [] if type(element)==pf.Str: element.text = element.text + '!!' return element print('\nLoading JSON...') with open(input_fn, encoding='utf-8') as f: doc = pf.load(f) print('Dumping JSON...') with open(output_fn, mode='w', encoding='utf-8') as f: pf.dump(doc, f) f.write('\n') print(' - Done!') print('\nComparing...') with open(input_fn, encoding='utf-8') as f: input_data = f.read() with open(output_fn, encoding='utf-8') as f: output_data = f.read() print('Are both files the same?') print(' - Length:', len(input_data) == len(output_data), len(input_data), len(output_data)) print(' - Content:', input_data == output_data) print('\nApplying trivial filter...') doc = doc.walk(action=empty_test, doc=doc) print(' - Done!') print(' - Dumping JSON...') with open(output_fn, mode='w', encoding='utf-8') as f: pf.dump(doc, f) f.write('\n') print(' - Done!') print(' - Comparing...') with open(input_fn, encoding='utf-8') as f: input_data = f.read() with open(output_fn, encoding='utf-8') as f: output_data = f.read() print(' - Are both files the same?') print(' - Length:', len(input_data) == len(output_data), len(input_data), len(output_data)) print(' - Content:', input_data == output_data) assert input_data == output_data
tests/test_optimizers.py
JohnDenis/keras-radam
357
11095513
<filename>tests/test_optimizers.py import os import tempfile from unittest import TestCase import numpy as np from keras_radam.backend import keras from keras_radam import RAdam class TestRAdam(TestCase): @staticmethod def gen_linear_model(optimizer) -> keras.models.Model: model = keras.models.Sequential() model.add(keras.layers.Dense( input_shape=(17,), units=3, bias_constraint=keras.constraints.max_norm(), name='Dense', )) model.compile(optimizer, loss='mse') return model @staticmethod def gen_linear_data(w=None) -> (np.ndarray, np.ndarray): np.random.seed(0xcafe) x = np.random.standard_normal((4096 * 30, 17)) if w is None: w = np.random.standard_normal((17, 3)) y = np.dot(x, w) return x, y, w def _test_fit(self, optimizer, atol=1e-2): x, y, w = self.gen_linear_data() model = self.gen_linear_model(optimizer) callbacks = [keras.callbacks.EarlyStopping(monitor='loss', patience=3, min_delta=1e-8)] if isinstance(optimizer, RAdam): model_path = os.path.join(tempfile.gettempdir(), 'test_accumulation_%f.h5' % np.random.random()) model.save(model_path) from tensorflow.python.keras.utils.generic_utils import CustomObjectScope with CustomObjectScope({'RAdam': RAdam}): # Workaround for incorrect global variable used in keras model = keras.models.load_model(model_path, custom_objects={'RAdam': RAdam}) callbacks.append(keras.callbacks.ReduceLROnPlateau(monitor='loss', min_lr=1e-8, patience=2, verbose=True)) model.fit(x, y, epochs=100, batch_size=32, callbacks=callbacks) model_path = os.path.join(tempfile.gettempdir(), 'test_accumulation_%f.h5' % np.random.random()) model.save(model_path) from tensorflow.python.keras.utils.generic_utils import CustomObjectScope with CustomObjectScope({'RAdam': RAdam}): # Workaround for incorrect global variable used in keras model = keras.models.load_model(model_path, custom_objects={'RAdam': RAdam}) x, y, w = self.gen_linear_data(w) predicted = model.predict(x) self.assertLess(np.max(np.abs(predicted - y)), atol) def test_amsgrad(self): self._test_fit(RAdam(amsgrad=True)) def test_decay(self): self._test_fit(RAdam(decay=1e-4, weight_decay=1e-6), atol=0.1) def test_warmup(self): self._test_fit(RAdam(total_steps=38400, warmup_proportion=0.1, min_lr=1e-6)) def test_fit_embed(self): optimizers = [RAdam] for optimizer in optimizers: for amsgrad in [False, True]: model = keras.models.Sequential() model.add(keras.layers.Embedding( input_shape=(None,), input_dim=5, output_dim=16, mask_zero=True, )) model.add(keras.layers.Bidirectional(keras.layers.LSTM(units=8))) model.add(keras.layers.Dense(units=2, activation='softmax')) model.compile(optimizer( total_steps=38400, warmup_proportion=0.1, min_lr=1e-6, weight_decay=1e-6, amsgrad=amsgrad, ), loss='sparse_categorical_crossentropy') x = np.random.randint(0, 5, (64, 3)) y = [] for i in range(x.shape[0]): if 2 in x[i]: y.append(1) else: y.append(0) y = np.array(y) model.fit(x, y, epochs=10) model_path = os.path.join(tempfile.gettempdir(), 'test_accumulation_%f.h5' % np.random.random()) model.save(model_path) from tensorflow.python.keras.utils.generic_utils import CustomObjectScope with CustomObjectScope({'RAdam': RAdam}): # Workaround for incorrect global variable used in keras keras.models.load_model(model_path, custom_objects={'RAdam': RAdam})
docs/codesnippets/194_top_x_of_user.py
rm1410/instaloader
4,170
11095533
<filename>docs/codesnippets/194_top_x_of_user.py from itertools import islice from math import ceil from instaloader import Instaloader, Profile PROFILE = ... # profile to download from X_percentage = 10 # percentage of posts that should be downloaded L = Instaloader() profile = Profile.from_username(L.context, PROFILE) posts_sorted_by_likes = sorted(profile.get_posts(), key=lambda p: p.likes + p.comments, reverse=True) for post in islice(posts_sorted_by_likes, ceil(profile.mediacount * X_percentage / 100)): L.download_post(post, PROFILE)
CircleciScripts/copy_resourcefiles.py
leaksentinel/aws-sdk-ios
1,026
11095553
<gh_stars>1000+ import os import sys from shutil import copyfile from functions import log, run_command root = sys.argv[1] dest = sys.argv[2] files = { "LICENSE": "LICENSE", "LICENSE.APACHE": "LICENSE.APACHE", "NOTICE": "NOTICE", "README.md": "README.md", "CircleciScripts/src/README.html": "src/source.html", "CircleciScripts/samples/README.html": "samples/samples.html", } for source, target in files.items(): s = os.path.join(root, source) t = os.path.join(dest, target) target_dir = os.path.dirname(t) exit_code, out, err = run_command(["mkdir", "-p", target_dir]) if exit_code != 0: log(f"Failed to make directory '{target_dir}'; output={out}, error={err}") copyfile(s, t)
others/TestMdiArea/HomeWindow.py
sesu089/stackoverflow
302
11095559
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'HomeWindow.ui' # # Created by: PyQt5 UI code generator 5.8.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_HomeWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.setWindowModality(QtCore.Qt.WindowModal) MainWindow.resize(356, 442) MainWindow.setToolButtonStyle(QtCore.Qt.ToolButtonIconOnly) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayout_2 = QtWidgets.QGridLayout(self.centralwidget) self.gridLayout_2.setObjectName("gridLayout_2") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.frame = QtWidgets.QFrame(self.centralwidget) self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame.setFrameShadow(QtWidgets.QFrame.Raised) self.frame.setObjectName("frame") self.gridLayout = QtWidgets.QGridLayout(self.frame) self.gridLayout.setObjectName("gridLayout") self.pushButton = QtWidgets.QPushButton(self.frame) self.pushButton.setObjectName("pushButton") self.gridLayout.addWidget(self.pushButton, 0, 0, 1, 1) self.pushButton_2 = QtWidgets.QPushButton(self.frame) self.pushButton_2.setObjectName("pushButton_2") self.gridLayout.addWidget(self.pushButton_2, 1, 0, 1, 1) self.pushButton_3 = QtWidgets.QPushButton(self.frame) self.pushButton_3.setObjectName("pushButton_3") self.gridLayout.addWidget(self.pushButton_3, 2, 0, 1, 1) self.verticalLayout.addWidget(self.frame) self.gridLayout_2.addLayout(self.verticalLayout, 0, 0, 1, 1) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Home")) self.pushButton.setText(_translate("MainWindow", "Open Valve Simulator")) self.pushButton_2.setText(_translate("MainWindow", "Open Module Program")) self.pushButton_3.setText(_translate("MainWindow", "Open Metal Sizing"))
tests/test_create.py
RemiRigal/jsonpath-ng
339
11095570
import doctest from collections import namedtuple import pytest import jsonpath_ng from jsonpath_ng.ext import parse Params = namedtuple('Params', 'string initial_data insert_val target') @pytest.mark.parametrize('string, initial_data, insert_val, target', [ Params(string='$.foo', initial_data={}, insert_val=42, target={'foo': 42}), Params(string='$.foo.bar', initial_data={}, insert_val=42, target={'foo': {'bar': 42}}), Params(string='$.foo[0]', initial_data={}, insert_val=42, target={'foo': [42]}), Params(string='$.foo[1]', initial_data={}, insert_val=42, target={'foo': [{}, 42]}), Params(string='$.foo[0].bar', initial_data={}, insert_val=42, target={'foo': [{'bar': 42}]}), Params(string='$.foo[1].bar', initial_data={}, insert_val=42, target={'foo': [{}, {'bar': 42}]}), Params(string='$.foo[0][0]', initial_data={}, insert_val=42, target={'foo': [[42]]}), Params(string='$.foo[1][1]', initial_data={}, insert_val=42, target={'foo': [{}, [{}, 42]]}), Params(string='foo[0]', initial_data={}, insert_val=42, target={'foo': [42]}), Params(string='foo[1]', initial_data={}, insert_val=42, target={'foo': [{}, 42]}), Params(string='foo', initial_data={}, insert_val=42, target={'foo': 42}), # Initial data can be a list if we expect a list back Params(string='[0]', initial_data=[], insert_val=42, target=[42]), Params(string='[1]', initial_data=[], insert_val=42, target=[{}, 42]), # Converts initial data to a list if necessary Params(string='[0]', initial_data={}, insert_val=42, target=[42]), Params(string='[1]', initial_data={}, insert_val=42, target=[{}, 42]), Params(string='foo[?bar="baz"].qux', initial_data={'foo': [ {'bar': 'baz'}, {'bar': 'bizzle'}, ]}, insert_val=42, target={'foo': [ {'bar': 'baz', 'qux': 42}, {'bar': 'bizzle'} ]}), ]) def test_update_or_create(string, initial_data, insert_val, target): jsonpath = parse(string) result = jsonpath.update_or_create(initial_data, insert_val) assert result == target @pytest.mark.parametrize('string, initial_data, insert_val, target', [ # Slice not supported Params(string='foo[0:1]', initial_data={}, insert_val=42, target={'foo': [42, 42]}), # result is {'foo': {}} # Filter does not create items to meet criteria Params(string='foo[?bar="baz"].qux', initial_data={}, insert_val=42, target={'foo': [{'bar': 'baz', 'qux': 42}]}), # result is {'foo': {}} # Does not convert initial data to a dictionary Params(string='foo', initial_data=[], insert_val=42, target={'foo': 42}), # raises TypeError ]) @pytest.mark.xfail def test_unsupported_classes(string, initial_data, insert_val, target): jsonpath = parse(string) result = jsonpath.update_or_create(initial_data, insert_val) assert result == target @pytest.mark.parametrize('string, initial_data, insert_val, target', [ Params(string='$.name[0].text', initial_data={}, insert_val='<NAME>', target={'name': [{'text': 'Sir Michael'}]}), Params(string='$.name[0].given[0]', initial_data={'name': [{'text': '<NAME>'}]}, insert_val='Michael', target={'name': [{'text': 'Sir Michael', 'given': ['Michael']}]}), Params(string='$.name[0].prefix[0]', initial_data={'name': [{'text': 'Sir Michael', 'given': ['Michael']}]}, insert_val='Sir', target={'name': [{'text': 'Sir Michael', 'given': ['Michael'], 'prefix': ['Sir']}]}), Params(string='$.birthDate', initial_data={'name': [{'text': 'Sir Michael', 'given': ['Michael'], 'prefix': ['Sir']}]}, insert_val='1943-05-05', target={'name': [{'text': '<NAME>', 'given': ['Michael'], 'prefix': ['Sir']}], 'birthDate': '1943-05-05'}), ]) def test_build_doc(string, initial_data, insert_val, target): jsonpath = parse(string) result = jsonpath.update_or_create(initial_data, insert_val) assert result == target def test_doctests(): results = doctest.testmod(jsonpath_ng) assert results.failed == 0
quokka/core/content/utils.py
songshansitulv/quokka
1,141
11095580
from quokka.utils.text import slugify_category, slugify from flask import current_app as app def url_for_content(content, include_ext=True): """Return a relative URL for content dict or Content model """ if not isinstance(content, dict): data = content.data else: data = content category_slug = ( data.get('category_slug') or slugify_category(data.get('category') or '') ) slug = data.get('slug') or slugify(data.get('title')) if category_slug: slug = f'{category_slug}/{slug}' content_type = data.get('content_type') if content_type not in (None, 'article', 'page'): slug = f'{content_type}/{slug}' if not include_ext: return slug ext = app.config.get("CONTENT_EXTENSION", "html") if data.get('published'): # return url_for('quokka.core.content.detail', slug=slug) return f'{slug}.{ext}' else: # return url_for('quokka.core.content.preview', slug=slug) return f'{slug}.preview' # TODO: remove this and use model def url_for_category(category): # TODO: handle extension for static site # ext = app.config.get("CONTENT_EXTENSION", "html") if isinstance(category, str): return slugify_category(category) return category.url def strftime(value, dtformat): return value.strftime(dtformat)
third_party/Paste/paste/progress.py
tingshao/catapult
5,079
11095592
<filename>third_party/Paste/paste/progress.py # (c) 2005 <NAME> and contributors; written for Paste (http://pythonpaste.org) # Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php # (c) 2005 <NAME> # This module is part of the Python Paste Project and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php # This code was written with funding by http://prometheusresearch.com """ Upload Progress Monitor This is a WSGI middleware component which monitors the status of files being uploaded. It includes a small query application which will return a list of all files being uploaded by particular session/user. >>> from paste.httpserver import serve >>> from paste.urlmap import URLMap >>> from paste.auth.basic import AuthBasicHandler >>> from paste.debug.debugapp import SlowConsumer, SimpleApplication >>> # from paste.progress import * >>> realm = 'Test Realm' >>> def authfunc(username, password): ... return username == password >>> map = URLMap({}) >>> ups = UploadProgressMonitor(map, threshold=1024) >>> map['/upload'] = SlowConsumer() >>> map['/simple'] = SimpleApplication() >>> map['/report'] = UploadProgressReporter(ups) >>> serve(AuthBasicHandler(ups, realm, authfunc)) serving on... .. note:: This is experimental, and will change in the future. """ import time from paste.wsgilib import catch_errors DEFAULT_THRESHOLD = 1024 * 1024 # one megabyte DEFAULT_TIMEOUT = 60*5 # five minutes ENVIRON_RECEIVED = 'paste.bytes_received' REQUEST_STARTED = 'paste.request_started' REQUEST_FINISHED = 'paste.request_finished' class _ProgressFile(object): """ This is the input-file wrapper used to record the number of ``paste.bytes_received`` for the given request. """ def __init__(self, environ, rfile): self._ProgressFile_environ = environ self._ProgressFile_rfile = rfile self.flush = rfile.flush self.write = rfile.write self.writelines = rfile.writelines def __iter__(self): environ = self._ProgressFile_environ riter = iter(self._ProgressFile_rfile) def iterwrap(): for chunk in riter: environ[ENVIRON_RECEIVED] += len(chunk) yield chunk return iter(iterwrap) def read(self, size=-1): chunk = self._ProgressFile_rfile.read(size) self._ProgressFile_environ[ENVIRON_RECEIVED] += len(chunk) return chunk def readline(self): chunk = self._ProgressFile_rfile.readline() self._ProgressFile_environ[ENVIRON_RECEIVED] += len(chunk) return chunk def readlines(self, hint=None): chunk = self._ProgressFile_rfile.readlines(hint) self._ProgressFile_environ[ENVIRON_RECEIVED] += len(chunk) return chunk class UploadProgressMonitor(object): """ monitors and reports on the status of uploads in progress Parameters: ``application`` This is the next application in the WSGI stack. ``threshold`` This is the size in bytes that is needed for the upload to be included in the monitor. ``timeout`` This is the amount of time (in seconds) that a upload remains in the monitor after it has finished. Methods: ``uploads()`` This returns a list of ``environ`` dict objects for each upload being currently monitored, or finished but whose time has not yet expired. For each request ``environ`` that is monitored, there are several variables that are stored: ``paste.bytes_received`` This is the total number of bytes received for the given request; it can be compared with ``CONTENT_LENGTH`` to build a percentage complete. This is an integer value. ``paste.request_started`` This is the time (in seconds) when the request was started as obtained from ``time.time()``. One would want to format this for presentation to the user, if necessary. ``paste.request_finished`` This is the time (in seconds) when the request was finished, canceled, or otherwise disconnected. This is None while the given upload is still in-progress. TODO: turn monitor into a queue and purge queue of finished requests that have passed the timeout period. """ def __init__(self, application, threshold=None, timeout=None): self.application = application self.threshold = threshold or DEFAULT_THRESHOLD self.timeout = timeout or DEFAULT_TIMEOUT self.monitor = [] def __call__(self, environ, start_response): length = environ.get('CONTENT_LENGTH', 0) if length and int(length) > self.threshold: # replace input file object self.monitor.append(environ) environ[ENVIRON_RECEIVED] = 0 environ[REQUEST_STARTED] = time.time() environ[REQUEST_FINISHED] = None environ['wsgi.input'] = \ _ProgressFile(environ, environ['wsgi.input']) def finalizer(exc_info=None): environ[REQUEST_FINISHED] = time.time() return catch_errors(self.application, environ, start_response, finalizer, finalizer) return self.application(environ, start_response) def uploads(self): return self.monitor class UploadProgressReporter(object): """ reports on the progress of uploads for a given user This reporter returns a JSON file (for use in AJAX) listing the uploads in progress for the given user. By default, this reporter uses the ``REMOTE_USER`` environment to compare between the current request and uploads in-progress. If they match, then a response record is formed. ``match()`` This member function can be overriden to provide alternative matching criteria. It takes two environments, the first is the current request, the second is a current upload. ``report()`` This member function takes an environment and builds a ``dict`` that will be used to create a JSON mapping for the given upload. By default, this just includes the percent complete and the request url. """ def __init__(self, monitor): self.monitor = monitor def match(self, search_environ, upload_environ): if search_environ.get('REMOTE_USER', None) == \ upload_environ.get('REMOTE_USER', 0): return True return False def report(self, environ): retval = { 'started': time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime(environ[REQUEST_STARTED])), 'finished': '', 'content_length': environ.get('CONTENT_LENGTH'), 'bytes_received': environ[ENVIRON_RECEIVED], 'path_info': environ.get('PATH_INFO',''), 'query_string': environ.get('QUERY_STRING','')} finished = environ[REQUEST_FINISHED] if finished: retval['finished'] = time.strftime("%Y:%m:%d %H:%M:%S", time.gmtime(finished)) return retval def __call__(self, environ, start_response): body = [] for map in [self.report(env) for env in self.monitor.uploads() if self.match(environ, env)]: parts = [] for k, v in map.items(): v = str(v).replace("\\", "\\\\").replace('"', '\\"') parts.append('%s: "%s"' % (k, v)) body.append("{ %s }" % ", ".join(parts)) body = "[ %s ]" % ", ".join(body) start_response("200 OK", [('Content-Type', 'text/plain'), ('Content-Length', len(body))]) return [body] __all__ = ['UploadProgressMonitor', 'UploadProgressReporter'] if "__main__" == __name__: import doctest doctest.testmod(optionflags=doctest.ELLIPSIS)
tests/syntax/test_imports.py
abol-karimi/Scenic
141
11095596
<filename>tests/syntax/test_imports.py """Tests for imports of Scenic modules. Note that this is different from modular scenarios defined using the 'scenario' statement. This file simply tests imports of old-style Scenic modules; the new system of modular scenarios is tested in 'test_modular.py'. """ import os.path import pytest from scenic import scenarioFromFile from scenic.syntax.translator import InvalidScenarioError from tests.utils import compileScenic, sampleScene, sampleSceneFrom def test_import_top_absolute(request): base = os.path.dirname(request.fspath) fullpathImports = os.path.join(base, 'imports.scenic') fullpathHelper = os.path.join(base, 'helper.scenic') scenario = scenarioFromFile(fullpathImports) assert len(scenario.requirements) == 0 scene, iterations = scenario.generate(maxIterations=1) # Top-level and inherited Objects assert len(scene.objects) == 2 ego = scene.egoObject assert ego.species == 'killer' assert scene.objects[1].species == 'helpful' # Parameter depending on imported Python module assert scene.params['thingy'] == 42 # Parameters depending on import circumstances assert scene.params['imports_name'] == '__main__' assert scene.params['imports_file'] == fullpathImports # Inherited parameters as above assert scene.params['helper_name'] == 'helper' assert scene.params['helper_file'] == fullpathHelper def test_import_top_relative(request): base = os.path.dirname(request.fspath) fullpathHelper = os.path.join(base, 'helper.scenic') oldDirectory = os.getcwd() os.chdir(base) try: scenario = scenarioFromFile('imports.scenic') assert len(scenario.requirements) == 0 scene, iterations = scenario.generate(maxIterations=1) assert len(scene.objects) == 2 ego = scene.egoObject assert ego.species == 'killer' assert scene.objects[1].species == 'helpful' assert scene.params['thingy'] == 42 assert scene.params['imports_name'] == '__main__' assert scene.params['imports_file'] == 'imports.scenic' assert scene.params['helper_name'] == 'helper' assert scene.params['helper_file'] == fullpathHelper finally: os.chdir(oldDirectory) def test_module_name_main(): scenario = compileScenic('param name = __name__\n' 'ego = Object') scene, iterations = scenario.generate(maxIterations=1) assert scene.params['name'] == '__main__' def test_import_ego(runLocally): with runLocally(), pytest.raises(InvalidScenarioError): compileScenic('import imports') def test_inherit_requirements(runLocally): with runLocally(): scenario = compileScenic( 'import helper3\n' 'ego = Object' ) assert len(scenario.requirements) == 1 for i in range(50): scene, iterations = scenario.generate(maxIterations=100) assert len(scene.objects) == 2 constrainedObj = scene.objects[1] assert constrainedObj.position.x > 0 def test_inherit_constructors(runLocally): with runLocally(): scenario = compileScenic( 'from helper import Caerbannog\n' 'ego = Caerbannog' ) def test_multiple_imports(runLocally): with runLocally(): scenario = compileScenic(""" import helper import helper ego = Object import helper """) assert len(scenario.objects) == 2 scene = sampleScene(scenario) assert len(scene.objects) == 2 def test_import_in_try(runLocally): with runLocally(): scenario = compileScenic(""" try: from helper import Caerbannog x = 12 finally: y = 4 ego = Caerbannog at x @ y """) def test_import_in_except(runLocally): with runLocally(): scenario = compileScenic(""" try: import __non_ex_ist_ent___ except ImportError: from helper import Caerbannog ego = Caerbannog """) def test_import_multiline_1(): compileScenic( 'from math import factorial, \\\n' ' pow\n' 'ego = Object with width pow(factorial(4), 2)' ) def test_import_multiline_2(): compileScenic( 'from math import (factorial,\n' ' pow)\n' 'ego = Object with width pow(factorial(4), 2)' ) def test_import_override_param(): scene = sampleSceneFrom(""" param helper_file = 'foo' import tests.syntax.helper ego = Object """) assert scene.params['helper_file'] != 'foo' def test_model_not_override_param(): scene = sampleSceneFrom(""" param helper_file = 'foo' model tests.syntax.helper ego = Object """) assert scene.params['helper_file'] == 'foo'
recommender/datasets/movielens.py
yugandharaloori/Recommender-Systems-Comparison
136
11095607
<filename>recommender/datasets/movielens.py from io import BytesIO import numpy as np import pandas as pd try: from pandas.io.common import ZipFile except ImportError: from zipfile import ZipFile def get_movielens_data(local_file=None, get_ratings=True, get_genres=False, split_genres=True, mdb_mapping=False, get_tags=False, include_time=False): '''Downloads movielens data and stores it in pandas dataframe. ''' fields = ['userid', 'movieid', 'rating'] if include_time: fields.append('timestamp') if not local_file: # downloading data from requests import get zip_file_url = 'http://files.grouplens.org/datasets/movielens/ml-1m.zip' zip_response = get(zip_file_url) zip_contents = BytesIO(zip_response.content) else: zip_contents = local_file ml_data = ml_genres = ml_tags = mapping = None # loading data into memory with ZipFile(zip_contents) as zfile: zip_files = pd.Series(zfile.namelist()) zip_file = zip_files[zip_files.str.contains('ratings')].iat[0] is_new_format = ('latest' in zip_file) or ('20m' in zip_file) delimiter = ',' header = 0 if is_new_format else None if get_ratings: zdata = zfile.read(zip_file) zdata = zdata.replace(b'::', delimiter.encode()) # makes data compatible with pandas c-engine # returns string objects instead of bytes in that case ml_data = pd.read_csv(BytesIO(zdata), sep=delimiter, header=header, engine='c', names=fields, usecols=fields) if get_genres: zip_file = zip_files[zip_files.str.contains('movies')].iat[0] zdata = zfile.read(zip_file) if not is_new_format: # make data compatible with pandas c-engine # pandas returns string objects instead of bytes in that case delimiter = '^' zdata = zdata.replace(b'::', delimiter.encode()) genres_data = pd.read_csv(BytesIO(zdata), sep=delimiter, header=header, engine='c', encoding='unicode_escape', names=['movieid', 'movienm', 'genres']) ml_genres = get_split_genres(genres_data) if split_genres else genres_data if get_tags: zip_file = zip_files[zip_files.str.contains('/tags')].iat[0] #not genome zdata = zfile.read(zip_file) if not is_new_format: # make data compatible with pandas c-engine # pandas returns string objects instead of bytes in that case delimiter = '^' zdata = zdata.replace(b'::', delimiter.encode()) fields[2] = 'tag' ml_tags = pd.read_csv(BytesIO(zdata), sep=delimiter, header=header, engine='c', encoding='latin1', names=fields, usecols=range(len(fields))) if mdb_mapping and is_new_format: # imdb and tmdb mapping - exists only in ml-latest or 20m datasets zip_file = zip_files[zip_files.str.contains('links')].iat[0] with zfile.open(zip_file) as zdata: mapping = pd.read_csv(zdata, sep=',', header=0, engine='c', names=['movieid', 'imdbid', 'tmdbid']) res = [data for data in [ml_data, ml_genres, ml_tags, mapping] if data is not None] if len(res)==1: res = res[0] return res def get_split_genres(genres_data): return (genres_data[['movieid', 'movienm']] .join(pd.DataFrame([(i, x) for i, g in enumerate(genres_data['genres']) for x in g.split('|') ], columns=['index', 'genreid'] ).set_index('index')) .reset_index(drop=True)) def filter_short_head(data, threshold=0.01): short_head = data.groupby('movieid', sort=False)['userid'].nunique() short_head.sort_values(ascending=False, inplace=True) ratings_perc = short_head.cumsum()*1.0/short_head.sum() movies_perc = np.arange(1, len(short_head)+1, dtype='f8') / len(short_head) long_tail_movies = ratings_perc[movies_perc > threshold].index return long_tail_movies
scrapera/text/tests/medium_test.py
Baras64/Scrapera
300
11095620
from scrapera.text.medium import MediumScraper scraper = MediumScraper() scraper.scrape(topic="artificial-intelligence", n_posts=2)
recipes/Python/520585_VectorObject/recipe-520585.py
tdiprima/code
2,023
11095627
#a class used for creating any object moving in 2D or a Vector Object (VObject) #for direction use degrees, think of a 2d environment like: # # 90 # | # | # 180 ----+----- 0 # | # | # 270 # from math import cos as _cos, sin as _sin, radians as _rad class VObject(): def __init__(self,x,y,speed,direction): self.x = x self.y = y self.s = speed self.d = _rad(direction) def update(self,time=1): distance = self.s*time y = (_sin(self.d))*distance x = (_cos(self.d))*distance self.x += x self.y += y def addspeed(self,speed): self.s += speed def steer(self,angle): self.d += _rad(angle) def getx(self): return self.x def gety(self): return self.y
samcli/commands/_utils/option_value_processor.py
michaelbrewer/aws-sam-cli
2,959
11095640
<filename>samcli/commands/_utils/option_value_processor.py """ Parsing utilities commonly used to process information for commands """ import logging from typing import Optional, Dict, Tuple from samcli.commands.exceptions import InvalidImageException LOG = logging.getLogger(__name__) def process_env_var(container_env_var: Optional[Tuple[str]]) -> Dict: """ Parameters ---------- container_env_var : Tuple the tuple of command line env vars received from --container-env-var flag Each input format needs to be either function specific format (FuncName.VarName=Value) or global format (VarName=Value) Returns ------- dictionary Processed command line environment variables """ processed_env_vars: Dict = {} if container_env_var: for env_var in container_env_var: location_key = "Parameters" env_var_name, value = _parse_key_value_pair(env_var) if not env_var_name or not value: LOG.error("Invalid command line --container-env-var input %s, skipped", env_var) continue if "." in env_var_name: location_key, env_var_name = env_var_name.split(".", 1) if not location_key.strip() or not env_var_name.strip(): LOG.error("Invalid command line --container-env-var input %s, skipped", env_var) continue if not processed_env_vars.get(location_key): processed_env_vars[location_key] = {} processed_env_vars[location_key][env_var_name] = value return processed_env_vars def process_image_options(image_args: Optional[Tuple[str]]) -> Dict: """ Parameters ---------- image_args : Tuple Tuple of command line image options in the format of "Function1=public.ecr.aws/abc/abc:latest" or "public.ecr.aws/abc/abc:latest" Returns ------- dictionary Function as key and the corresponding image URI as value. Global default image URI is contained in the None key. """ images: Dict[Optional[str], str] = {} if image_args: for image_string in image_args: function_name, image_uri = _parse_key_value_pair(image_string) if not image_uri: raise InvalidImageException(f"Invalid command line image input {image_string}.") images[function_name] = image_uri return images def _parse_key_value_pair(arg: str) -> Tuple[Optional[str], str]: """ Parameters ---------- arg : str Arg in the format of "Value" or "Key=Value" Returns ------- key : Optional[str] If key is not specified, None will be the key. value : str """ key: Optional[str] value: str if "=" in arg: parts = arg.split("=", 1) key = parts[0].strip() value = parts[1].strip() else: key = None value = arg.strip() return key, value
T-RNN/Experiment_MNIST.py
ericzy89/DEEPEYE
106
11095682
__author__ = "<NAME>" __copyright__ = "Siemens AG, 2017" __licencse__ = "MIT" __version__ = "0.1" """ MIT License Copyright (c) 2017 Siemens AG Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ On the MNIST data we experiment two 2-layered NN models: The first model contains two dense layers, while the second model replaces the first dense layer with TT layer. It can be shown that the when applying a TT layer with significantly less parameters, one can speed up the training and inference to a very large extent. In detail: The first standard model has 1048576 parameters in the first layer. It takes ca 48 seconds to train for one epoch. The accuracy after 50 epochs is 0.9686. The second model with a TT layer contains 1248 weights and each epoch takes ca 9 seconds; the accuracy after 50 epochs is 0.9785. Compression factor = 1248 / 1048576 = 0.00119018554688 According to the original paper, the TT layer is considered to compress the otherwise dense layer. In this case, however, due to the fact that the model with TT layer actually shows better performances, """ # Basic import numpy as np # Keras Model from keras.layers import Input, Dense from keras.models import Model from keras.regularizers import l2 from keras.optimizers import * # TT Layer from TTLayer import TT_Layer # Data from keras.datasets import mnist # Others from keras.utils.np_utils import to_categorical from keras.preprocessing.image import ImageDataGenerator from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score np.random.seed(11111986) # Load the MNIST data (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.astype('float32') y_train = y_train.astype('int32') X_test = X_test.astype('float32') y_test = y_test.astype('int32') Y_train = to_categorical(y_train, 10) Y_test = to_categorical(y_test, 10) # Put 2 arrays on the border of the images to form a 32x32 shape N = X_train.shape[0] left0 = np.zeros((N, 2, 28)) right0 = np.zeros((N, 2, 28)) upper0 = np.zeros((N, 32, 2)) lower0 = np.zeros((N, 32, 2)) X_train = np.concatenate([left0, X_train, right0], axis=1) X_train = np.concatenate([upper0, X_train, lower0], axis=2) N = X_test.shape[0] left0 = np.zeros((N, 2, 28)) right0 = np.zeros((N, 2, 28)) upper0 = np.zeros((N, 32, 2)) lower0 = np.zeros((N, 32, 2)) X_test = np.concatenate([left0, X_test, right0], axis=1) X_test = np.concatenate([upper0, X_test, lower0], axis=2) X_train /= 255. X_test /= 255. X_train = X_train[:, None, :, :] X_test = X_test[:, None, :, :] if False: # if apply the imagegenerator valid_size = int(0.2*X_train.shape[0]) valid_inds = np.random.choice(range(X_train.shape[0]), valid_size, False) X_valid = X_train[valid_inds] Y_valid = Y_train[valid_inds] tr_inds = np.setdiff1d(np.arange(X_train.shape[0]), valid_inds) X_train = X_train[tr_inds] Y_train = Y_train[tr_inds] train_gen = ImageDataGenerator( featurewise_center=True, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=30, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) height_shift_range=0.1, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images train_gen.fit(X_train) valid_gen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0, width_shift_range=0, height_shift_range=0, horizontal_flip=False, vertical_flip=False ) valid_gen.fit(X_valid) # Define the model input = Input(shape=(1, 32, 32,)) h1 = TT_Layer(tt_input_shape=[4, 8, 8, 4], tt_output_shape=[4, 8, 8, 4], tt_ranks=[1, 3, 3, 3, 1], bias=True, activation='relu', kernel_regularizer=l2(5e-4), debug=False, ortho_init=True)(input) # Alternatively, try a dense layer: # h1 = Dense(output_dim=32*32, activation='relu', kernel_regularizer=l2(5e-4))(input) output = Dense(output_dim=10, activation='softmax', kernel_regularizer=l2(1e-3))(h1) model = Model(input=input, output=output) model.compile(optimizer=Adam(1e-3), loss='categorical_crossentropy', metrics=['accuracy']) # Train the model # either the old fashion: model.fit(x=X_train, y=Y_train, verbose=2, epochs=50, batch_size=128, validation_split=0.2) # or with ImageDataGenerator # model.fit_generator(train_gen.flow(X_train, Y_train, batch_size=128), # samples_per_epoch=len(X_train), nb_epoch=50, verbose=2, # validation_data=valid_gen.flow(X_valid, Y_valid), # nb_val_samples=X_valid.shape[0]) # Fitted values: AUROC/AUPRC/ACC Y_hat = model.predict(x=X_train) print roc_auc_score(Y_train, Y_hat) print average_precision_score(Y_train, Y_hat) print accuracy_score(Y_train, np.round(Y_hat)) # Predicted values: Y_pred = model.predict(x=X_test) print roc_auc_score(Y_test, Y_pred) print average_precision_score(Y_test, Y_pred) print accuracy_score(Y_test, np.round(Y_pred)) # 0.99970343541 # 0.997838863715 # 0.9785 # TT Layer compresses the first weight matrix to a factor of 1248 / 1048576 = 0.00119 # 9s per epoch # Test error 0.0215 after 50 epochs, I think we can definitely train/tune the model further # Without the TT Layer: X_train = X_train.reshape((X_train.shape[0], 32*32)) X_test = X_test.reshape((X_test.shape[0], 32*32)) input = Input(shape=(32*32,)) h1 = Dense(output_dim=32*32, activation='relu', kernel_regularizer=l2(5e-4))(input) output = Dense(output_dim=10, activation='softmax', kernel_regularizer=l2(1e-3))(h1) model = Model(input=input, output=output) model.compile(optimizer=Adam(1e-3), loss='categorical_crossentropy', metrics=['accuracy']) # Train the model model.fit(x=X_train, y=Y_train, verbose=2, nb_epoch=50, batch_size=128, validation_split=0.2) # Fitted values: AUROC/AUPRC/ACC Y_hat = model.predict(x=X_train) print roc_auc_score(Y_train, Y_hat) print average_precision_score(Y_train, Y_hat) print accuracy_score(Y_train, np.round(Y_hat)) # Predicted values: Y_pred = model.predict(x=X_test) print roc_auc_score(Y_test, Y_pred) print average_precision_score(Y_test, Y_pred) print accuracy_score(Y_test, np.round(Y_pred)) # 0.999554701249 # 0.996718126202 # 0.9686 # ca 48s on average per epoch # Test error 0.0313 after 50 epochs.
examples/008_sklearn.py
szghlm/smote_variants
271
11095692
<gh_stars>100-1000 # coding: utf-8 # # Integration with sklearn pipelines # # In this notebook, provide some illustration for integration with sklearn pipelines. # In[1]: import keras import imblearn import numpy as np import smote_variants as sv import imblearn.datasets as imb_datasets from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier random_seed= 3 # ## Preparing the data # In[2]: np.random.seed(random_seed) # In[3]: libras= imb_datasets.fetch_datasets()['libras_move'] X, y= libras['data'], libras['target'] # In[4]: X_train, X_test, y_train, y_test= train_test_split(X, y, test_size= 0.33) # ## Fitting a pipeline # In[5]: oversampler= sv.MulticlassOversampling(sv.distance_SMOTE()) classifier= KNeighborsClassifier(n_neighbors= 5) # In[6]: model= Pipeline([('scale', StandardScaler()), ('clf', sv.OversamplingClassifier(oversampler, classifier))]) # In[7]: model.fit(X, y) # ## Grid search # In[8]: param_grid= {'clf__oversampler':[sv.distance_SMOTE(proportion=0.5), sv.distance_SMOTE(proportion=1.0), sv.distance_SMOTE(proportion=1.5)]} # In[9]: grid= GridSearchCV(model, param_grid= param_grid, cv= 3, n_jobs= 1, verbose= 2, scoring= 'accuracy') # In[10]: grid.fit(X, y) # In[11]: print(grid.best_score_) print(grid.cv_results_)
Beginers/stdlib/theCEOspeech/solution.py
arunkgupta/PythonTrainingExercises
150
11095694
"""Your job is to write a speech for your CEO. You have a list of meaningful phrases that he is fond of such as "knowledge optimization initiatives" and your task is to weave them in to a speech. You also have the opening words "Our clear strategic direction is to invoke..." and some useful joining phrases such as "whilst not forgetting". The speech that you will write takes the opening words and randomly jumbles the phrases alternated with joining phrases to make a more complete, if meaningless, speech. After execution the speech might need some light editing. Note to my current employer: This is no reflection whatsoever on the organisation that I work for. This all comes from one of my former CEOs, <NAME>, during his tenure at Nokia. The code is mine but the words are all his, slightly transliterated ("<big corp.>" replaces "Nokia", "<little corp.>" replaces "Symbian" and "<other corp.>" replaces "Microsoft"). Created on 19 Feb 2016 @author: paulross """ import random import textwrap OPENING_WORDS = ['Our', 'clear', 'strategic', 'direction', 'is', 'to', 'invoke',] PHRASE_TABLE = ( ("accountable", "transition", "leadership"), ("driving", "strategy", "implementation"), ("drilling down into", "active", "core business objectives"), ("next billion", "execution", "with our friends in <other corp.>"), ("creating", "next-generation", "franchise platform"), ("<big corp.>'s", "volume and", "value leadership"), ("significant", "end-user", "experience"), ("transition", "from <small corp.>", "to <other corp.>'s platform"), ("integrating", "shared", "services"), ("empowered to", "improve and expand", "our portfolio of experience"), ("deliver", "new", "innovation"), ("ramping up", "diverse", "collaboration"), ("next generation", "mobile", "ecosystem"), ("focus on", "growth and", "consumer delight"), ("management", "planning", "interlocks"), ("necessary", "operative", "capabilities"), ("knowledge", "optimization", "initiatives"), ("modular", "integration", "environment"), ("software", "creation", "processes"), ("agile", "working", "practices"), ) INSERTS = ('for', 'with', 'and', 'as well as', 'by', 'whilst not forgetting', '. Of course', '. To be absolutely clear', '. We need', 'and unrelenting', 'with unstoppable', ) def get_phrase(): """Return a phrase by choosing words at random from each column of the PHRASE_TABLE.""" return [random.choice(PHRASE_TABLE)[i] for i in range(3)] def get_insert(): """Return a randomly chosen set of words to insert between phrases.""" return random.choice(INSERTS) def write_speech(n): """Write a speech with the opening words followed by n random phrases interspersed with random inserts.""" phrases = OPENING_WORDS while n: phrases.extend(get_phrase()) if n > 1: phrases.append(get_insert()) n -= 1 text = ' '.join(phrases) + '.' print textwrap.fill(text) if __name__ == '__main__': write_speech(40)
etl/parsers/etw/Microsoft_Windows_MediaFoundation_Performance.py
IMULMUL/etl-parser
104
11095728
# -*- coding: utf-8 -*- """ Microsoft-Windows-MediaFoundation-Performance GUID : f404b94e-27e0-4384-bfe8-1d8d390b0aa3 """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3062, version=0) class Microsoft_Windows_MediaFoundation_Performance_3062_0(Etw): pattern = Struct( "dwType" / Int32ul, "dwConfig" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3063, version=0) class Microsoft_Windows_MediaFoundation_Performance_3063_0(Etw): pattern = Struct( "dwScaleX" / Int32ul, "dwScaleY" / Int32ul, "dwWindowX" / Int32ul, "dwWindowY" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3067, version=0) class Microsoft_Windows_MediaFoundation_Performance_3067_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3068, version=0) class Microsoft_Windows_MediaFoundation_Performance_3068_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3069, version=0) class Microsoft_Windows_MediaFoundation_Performance_3069_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3070, version=0) class Microsoft_Windows_MediaFoundation_Performance_3070_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3071, version=0) class Microsoft_Windows_MediaFoundation_Performance_3071_0(Etw): pattern = Struct( "subtype" / Guid ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3072, version=0) class Microsoft_Windows_MediaFoundation_Performance_3072_0(Etw): pattern = Struct( "result" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3073, version=0) class Microsoft_Windows_MediaFoundation_Performance_3073_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3074, version=0) class Microsoft_Windows_MediaFoundation_Performance_3074_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3075, version=0) class Microsoft_Windows_MediaFoundation_Performance_3075_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=3076, version=0) class Microsoft_Windows_MediaFoundation_Performance_3076_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4000, version=0) class Microsoft_Windows_MediaFoundation_Performance_4000_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "objectType" / Int8ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4001, version=0) class Microsoft_Windows_MediaFoundation_Performance_4001_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "objectType" / Int8ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4002, version=0) class Microsoft_Windows_MediaFoundation_Performance_4002_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "byteCount" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4003, version=0) class Microsoft_Windows_MediaFoundation_Performance_4003_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "timestamp" / Int64sl, "targetTime" / Int64sl, "offset" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4004, version=0) class Microsoft_Windows_MediaFoundation_Performance_4004_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "targetQPC" / Int64sl, "submittedQPC" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4005, version=0) class Microsoft_Windows_MediaFoundation_Performance_4005_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "originalTargetQPC" / Int64sl, "targetQPC" / Int64sl, "targetAhead" / Int64sl, "submittedQPC" / Int64sl, "submittedAhead" / Int64sl, "now" / Int64sl, "presentTime" / Int64sl, "dwmFramesPresented" / Int64ul, "dwmRefreshStartCount" / Int64sl, "buffersEmpty" / Int32ul, "refreshFrameCount" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4006, version=0) class Microsoft_Windows_MediaFoundation_Performance_4006_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "cPresentCount" / Int32ul, "dwFlags" / Int32ul, "hrResult" / Int32ul, "llPresentTime" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4007, version=0) class Microsoft_Windows_MediaFoundation_Performance_4007_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "screenHeight" / Int32ul, "frameHeightx1000" / Int32sl, "frameRatex1000" / Int32sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4008, version=0) class Microsoft_Windows_MediaFoundation_Performance_4008_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hThread" / Int64ul, "sleepType" / Int8ul, "width" / Int32sl, "height" / Int32sl, "format" / Int32ul, "retryCount" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4009, version=0) class Microsoft_Windows_MediaFoundation_Performance_4009_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "dataType" / Int8ul, "sampleTime" / Int64sl, "bytesDropped" / Int32ul, "dropReasons" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4010, version=0) class Microsoft_Windows_MediaFoundation_Performance_4010_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "time" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4011, version=0) class Microsoft_Windows_MediaFoundation_Performance_4011_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "time" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4012, version=0) class Microsoft_Windows_MediaFoundation_Performance_4012_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "streamType" / Int8ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4013, version=0) class Microsoft_Windows_MediaFoundation_Performance_4013_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "stream" / Int64ul, "byteCount" / Int32ul, "type" / Bytes(lambda this: this.byteCount) ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4014, version=0) class Microsoft_Windows_MediaFoundation_Performance_4014_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "clsid" / Guid, "transform" / Int64ul, "userTransform" / Int8ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4015, version=0) class Microsoft_Windows_MediaFoundation_Performance_4015_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "objectCategory" / Int8ul, "stream" / Int64ul, "timestamp" / Int64sl, "clock" / Int64ul, "sample" / Int64ul, "bufferSize" / Int32ul, "sampleSize" / Int32ul, "duration" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4016, version=0) class Microsoft_Windows_MediaFoundation_Performance_4016_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "objectCategory" / Int8ul, "stream" / Int64ul, "timestamp" / Int64sl, "clock" / Int64ul, "sample" / Int64ul, "bufferSize" / Int32ul, "sampleSize" / Int32ul, "duration" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4017, version=0) class Microsoft_Windows_MediaFoundation_Performance_4017_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "objectCategory" / Int8ul, "stream" / Int64ul, "timestamp" / Int64sl, "clock" / Int64ul, "sample" / Int64ul, "bufferSize" / Int32ul, "sampleSize" / Int32ul, "duration" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4018, version=0) class Microsoft_Windows_MediaFoundation_Performance_4018_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "objectCategory" / Int8ul, "stream" / Int64ul, "timestamp" / Int64sl, "clock" / Int64ul, "sample" / Int64ul, "bufferSize" / Int32ul, "sampleSize" / Int32ul, "duration" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4019, version=0) class Microsoft_Windows_MediaFoundation_Performance_4019_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "objectCategory" / Int8ul, "sample" / Int64ul, "byteCount" / Int32ul, "sampleTime" / Int64sl, "processTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4020, version=0) class Microsoft_Windows_MediaFoundation_Performance_4020_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "objectCategory" / Int8ul, "sample" / Int64ul, "byteCount" / Int32ul, "sampleTime" / Int64sl, "processTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4021, version=0) class Microsoft_Windows_MediaFoundation_Performance_4021_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "objectCategory" / Int8ul, "sample" / Int64ul, "byteCount" / Int32ul, "sampleTime" / Int64sl, "processTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4022, version=0) class Microsoft_Windows_MediaFoundation_Performance_4022_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "processingType" / Int8sl, "event" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4023, version=0) class Microsoft_Windows_MediaFoundation_Performance_4023_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "handle" / Int64ul, "fileName" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4024, version=0) class Microsoft_Windows_MediaFoundation_Performance_4024_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "handle" / Int64ul, "offset" / Int64ul, "byteCount" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4025, version=0) class Microsoft_Windows_MediaFoundation_Performance_4025_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "handle" / Int64ul, "offset" / Int64ul, "byteCount" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4026, version=0) class Microsoft_Windows_MediaFoundation_Performance_4026_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "handle" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4027, version=0) class Microsoft_Windows_MediaFoundation_Performance_4027_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "handle" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4028, version=0) class Microsoft_Windows_MediaFoundation_Performance_4028_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4029, version=0) class Microsoft_Windows_MediaFoundation_Performance_4029_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4030, version=0) class Microsoft_Windows_MediaFoundation_Performance_4030_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4031, version=0) class Microsoft_Windows_MediaFoundation_Performance_4031_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4032, version=0) class Microsoft_Windows_MediaFoundation_Performance_4032_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4033, version=0) class Microsoft_Windows_MediaFoundation_Performance_4033_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4034, version=0) class Microsoft_Windows_MediaFoundation_Performance_4034_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4035, version=0) class Microsoft_Windows_MediaFoundation_Performance_4035_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4036, version=0) class Microsoft_Windows_MediaFoundation_Performance_4036_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4037, version=0) class Microsoft_Windows_MediaFoundation_Performance_4037_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4038, version=0) class Microsoft_Windows_MediaFoundation_Performance_4038_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4039, version=0) class Microsoft_Windows_MediaFoundation_Performance_4039_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4040, version=0) class Microsoft_Windows_MediaFoundation_Performance_4040_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4041, version=0) class Microsoft_Windows_MediaFoundation_Performance_4041_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4042, version=0) class Microsoft_Windows_MediaFoundation_Performance_4042_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4043, version=0) class Microsoft_Windows_MediaFoundation_Performance_4043_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4044, version=0) class Microsoft_Windows_MediaFoundation_Performance_4044_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clock" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4045, version=0) class Microsoft_Windows_MediaFoundation_Performance_4045_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "fullness" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4046, version=0) class Microsoft_Windows_MediaFoundation_Performance_4046_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4047, version=0) class Microsoft_Windows_MediaFoundation_Performance_4047_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4048, version=0) class Microsoft_Windows_MediaFoundation_Performance_4048_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4049, version=0) class Microsoft_Windows_MediaFoundation_Performance_4049_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4050, version=0) class Microsoft_Windows_MediaFoundation_Performance_4050_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4051, version=0) class Microsoft_Windows_MediaFoundation_Performance_4051_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4052, version=0) class Microsoft_Windows_MediaFoundation_Performance_4052_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4053, version=0) class Microsoft_Windows_MediaFoundation_Performance_4053_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "rtpSeq" / Int32ul, "packetNumber" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4054, version=0) class Microsoft_Windows_MediaFoundation_Performance_4054_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "rtpSeq" / Int32ul, "packetNumber" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4055, version=0) class Microsoft_Windows_MediaFoundation_Performance_4055_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "rtpSeq" / Int32ul, "packetNumber" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4056, version=0) class Microsoft_Windows_MediaFoundation_Performance_4056_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "segmentID" / Int32ul, "numberPending" / Int32ul, "time" / Int64sl, "sample" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4057, version=0) class Microsoft_Windows_MediaFoundation_Performance_4057_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "segmentID" / Int32ul, "numberPending" / Int32ul, "time" / Int64sl, "sample" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4058, version=0) class Microsoft_Windows_MediaFoundation_Performance_4058_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "segmentID" / Int32ul, "numberPending" / Int32ul, "time" / Int64sl, "sample" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4059, version=0) class Microsoft_Windows_MediaFoundation_Performance_4059_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "segmentID" / Int32ul, "numberPending" / Int32ul, "time" / Int64sl, "sample" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4060, version=0) class Microsoft_Windows_MediaFoundation_Performance_4060_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "segmentID" / Int32ul, "numberPending" / Int32ul, "time" / Int64sl, "sample" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4061, version=0) class Microsoft_Windows_MediaFoundation_Performance_4061_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "segmentID" / Int32ul, "numberPending" / Int32ul, "time" / Int64sl, "sample" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4062, version=0) class Microsoft_Windows_MediaFoundation_Performance_4062_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "segmentID" / Int32ul, "numberPending" / Int32ul, "time" / Int64sl, "sample" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4063, version=0) class Microsoft_Windows_MediaFoundation_Performance_4063_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "segmentID" / Int32ul, "numberPending" / Int32ul, "time" / Int64sl, "sample" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4064, version=0) class Microsoft_Windows_MediaFoundation_Performance_4064_0(Etw): pattern = Struct( "tag" / CString, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4065, version=0) class Microsoft_Windows_MediaFoundation_Performance_4065_0(Etw): pattern = Struct( "tag" / CString, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4066, version=0) class Microsoft_Windows_MediaFoundation_Performance_4066_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4067, version=0) class Microsoft_Windows_MediaFoundation_Performance_4067_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4068, version=0) class Microsoft_Windows_MediaFoundation_Performance_4068_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4069, version=0) class Microsoft_Windows_MediaFoundation_Performance_4069_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4070, version=0) class Microsoft_Windows_MediaFoundation_Performance_4070_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4071, version=0) class Microsoft_Windows_MediaFoundation_Performance_4071_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4072, version=0) class Microsoft_Windows_MediaFoundation_Performance_4072_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4073, version=0) class Microsoft_Windows_MediaFoundation_Performance_4073_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4074, version=0) class Microsoft_Windows_MediaFoundation_Performance_4074_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4075, version=0) class Microsoft_Windows_MediaFoundation_Performance_4075_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4076, version=0) class Microsoft_Windows_MediaFoundation_Performance_4076_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4077, version=0) class Microsoft_Windows_MediaFoundation_Performance_4077_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4078, version=0) class Microsoft_Windows_MediaFoundation_Performance_4078_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4079, version=0) class Microsoft_Windows_MediaFoundation_Performance_4079_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4080, version=0) class Microsoft_Windows_MediaFoundation_Performance_4080_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "bytes" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4081, version=0) class Microsoft_Windows_MediaFoundation_Performance_4081_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4082, version=0) class Microsoft_Windows_MediaFoundation_Performance_4082_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4083, version=0) class Microsoft_Windows_MediaFoundation_Performance_4083_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4084, version=0) class Microsoft_Windows_MediaFoundation_Performance_4084_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4085, version=0) class Microsoft_Windows_MediaFoundation_Performance_4085_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4086, version=0) class Microsoft_Windows_MediaFoundation_Performance_4086_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4087, version=0) class Microsoft_Windows_MediaFoundation_Performance_4087_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4088, version=0) class Microsoft_Windows_MediaFoundation_Performance_4088_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4089, version=0) class Microsoft_Windows_MediaFoundation_Performance_4089_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4090, version=0) class Microsoft_Windows_MediaFoundation_Performance_4090_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4091, version=0) class Microsoft_Windows_MediaFoundation_Performance_4091_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4092, version=0) class Microsoft_Windows_MediaFoundation_Performance_4092_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4093, version=0) class Microsoft_Windows_MediaFoundation_Performance_4093_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4094, version=0) class Microsoft_Windows_MediaFoundation_Performance_4094_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4095, version=0) class Microsoft_Windows_MediaFoundation_Performance_4095_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4096, version=0) class Microsoft_Windows_MediaFoundation_Performance_4096_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4097, version=0) class Microsoft_Windows_MediaFoundation_Performance_4097_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4098, version=0) class Microsoft_Windows_MediaFoundation_Performance_4098_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4099, version=0) class Microsoft_Windows_MediaFoundation_Performance_4099_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4100, version=0) class Microsoft_Windows_MediaFoundation_Performance_4100_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4101, version=0) class Microsoft_Windows_MediaFoundation_Performance_4101_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4102, version=0) class Microsoft_Windows_MediaFoundation_Performance_4102_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4103, version=0) class Microsoft_Windows_MediaFoundation_Performance_4103_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4104, version=0) class Microsoft_Windows_MediaFoundation_Performance_4104_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4105, version=0) class Microsoft_Windows_MediaFoundation_Performance_4105_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4106, version=0) class Microsoft_Windows_MediaFoundation_Performance_4106_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4107, version=0) class Microsoft_Windows_MediaFoundation_Performance_4107_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4108, version=0) class Microsoft_Windows_MediaFoundation_Performance_4108_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4109, version=0) class Microsoft_Windows_MediaFoundation_Performance_4109_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4110, version=0) class Microsoft_Windows_MediaFoundation_Performance_4110_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4111, version=0) class Microsoft_Windows_MediaFoundation_Performance_4111_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4112, version=0) class Microsoft_Windows_MediaFoundation_Performance_4112_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4113, version=0) class Microsoft_Windows_MediaFoundation_Performance_4113_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4114, version=0) class Microsoft_Windows_MediaFoundation_Performance_4114_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "guid" / Guid ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4115, version=0) class Microsoft_Windows_MediaFoundation_Performance_4115_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4116, version=0) class Microsoft_Windows_MediaFoundation_Performance_4116_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4117, version=0) class Microsoft_Windows_MediaFoundation_Performance_4117_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4118, version=0) class Microsoft_Windows_MediaFoundation_Performance_4118_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4119, version=0) class Microsoft_Windows_MediaFoundation_Performance_4119_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4120, version=0) class Microsoft_Windows_MediaFoundation_Performance_4120_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4121, version=0) class Microsoft_Windows_MediaFoundation_Performance_4121_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4122, version=0) class Microsoft_Windows_MediaFoundation_Performance_4122_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4123, version=0) class Microsoft_Windows_MediaFoundation_Performance_4123_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4124, version=0) class Microsoft_Windows_MediaFoundation_Performance_4124_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4125, version=0) class Microsoft_Windows_MediaFoundation_Performance_4125_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4126, version=0) class Microsoft_Windows_MediaFoundation_Performance_4126_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4127, version=0) class Microsoft_Windows_MediaFoundation_Performance_4127_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4128, version=0) class Microsoft_Windows_MediaFoundation_Performance_4128_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "arg1" / Int32ul, "arg2" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4129, version=0) class Microsoft_Windows_MediaFoundation_Performance_4129_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4130, version=0) class Microsoft_Windows_MediaFoundation_Performance_4130_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4131, version=0) class Microsoft_Windows_MediaFoundation_Performance_4131_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4132, version=0) class Microsoft_Windows_MediaFoundation_Performance_4132_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4133, version=0) class Microsoft_Windows_MediaFoundation_Performance_4133_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4134, version=0) class Microsoft_Windows_MediaFoundation_Performance_4134_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4135, version=0) class Microsoft_Windows_MediaFoundation_Performance_4135_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4136, version=0) class Microsoft_Windows_MediaFoundation_Performance_4136_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4137, version=0) class Microsoft_Windows_MediaFoundation_Performance_4137_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4138, version=0) class Microsoft_Windows_MediaFoundation_Performance_4138_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4139, version=0) class Microsoft_Windows_MediaFoundation_Performance_4139_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4140, version=0) class Microsoft_Windows_MediaFoundation_Performance_4140_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4141, version=0) class Microsoft_Windows_MediaFoundation_Performance_4141_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4142, version=0) class Microsoft_Windows_MediaFoundation_Performance_4142_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4143, version=0) class Microsoft_Windows_MediaFoundation_Performance_4143_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4144, version=0) class Microsoft_Windows_MediaFoundation_Performance_4144_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4145, version=0) class Microsoft_Windows_MediaFoundation_Performance_4145_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4146, version=0) class Microsoft_Windows_MediaFoundation_Performance_4146_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4147, version=0) class Microsoft_Windows_MediaFoundation_Performance_4147_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4148, version=0) class Microsoft_Windows_MediaFoundation_Performance_4148_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4149, version=0) class Microsoft_Windows_MediaFoundation_Performance_4149_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4150, version=0) class Microsoft_Windows_MediaFoundation_Performance_4150_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4151, version=0) class Microsoft_Windows_MediaFoundation_Performance_4151_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4152, version=0) class Microsoft_Windows_MediaFoundation_Performance_4152_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4153, version=0) class Microsoft_Windows_MediaFoundation_Performance_4153_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4154, version=0) class Microsoft_Windows_MediaFoundation_Performance_4154_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4155, version=0) class Microsoft_Windows_MediaFoundation_Performance_4155_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4156, version=0) class Microsoft_Windows_MediaFoundation_Performance_4156_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4157, version=0) class Microsoft_Windows_MediaFoundation_Performance_4157_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4158, version=0) class Microsoft_Windows_MediaFoundation_Performance_4158_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4159, version=0) class Microsoft_Windows_MediaFoundation_Performance_4159_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4160, version=0) class Microsoft_Windows_MediaFoundation_Performance_4160_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4161, version=0) class Microsoft_Windows_MediaFoundation_Performance_4161_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4162, version=0) class Microsoft_Windows_MediaFoundation_Performance_4162_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4163, version=0) class Microsoft_Windows_MediaFoundation_Performance_4163_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4164, version=0) class Microsoft_Windows_MediaFoundation_Performance_4164_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4165, version=0) class Microsoft_Windows_MediaFoundation_Performance_4165_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4166, version=0) class Microsoft_Windows_MediaFoundation_Performance_4166_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4167, version=0) class Microsoft_Windows_MediaFoundation_Performance_4167_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4168, version=0) class Microsoft_Windows_MediaFoundation_Performance_4168_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4169, version=0) class Microsoft_Windows_MediaFoundation_Performance_4169_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4170, version=0) class Microsoft_Windows_MediaFoundation_Performance_4170_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4171, version=0) class Microsoft_Windows_MediaFoundation_Performance_4171_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4172, version=0) class Microsoft_Windows_MediaFoundation_Performance_4172_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4173, version=0) class Microsoft_Windows_MediaFoundation_Performance_4173_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4174, version=0) class Microsoft_Windows_MediaFoundation_Performance_4174_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4175, version=0) class Microsoft_Windows_MediaFoundation_Performance_4175_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4176, version=0) class Microsoft_Windows_MediaFoundation_Performance_4176_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4177, version=0) class Microsoft_Windows_MediaFoundation_Performance_4177_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4178, version=0) class Microsoft_Windows_MediaFoundation_Performance_4178_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4179, version=0) class Microsoft_Windows_MediaFoundation_Performance_4179_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4180, version=0) class Microsoft_Windows_MediaFoundation_Performance_4180_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4181, version=0) class Microsoft_Windows_MediaFoundation_Performance_4181_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4182, version=0) class Microsoft_Windows_MediaFoundation_Performance_4182_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4183, version=0) class Microsoft_Windows_MediaFoundation_Performance_4183_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4184, version=0) class Microsoft_Windows_MediaFoundation_Performance_4184_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4185, version=0) class Microsoft_Windows_MediaFoundation_Performance_4185_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4186, version=0) class Microsoft_Windows_MediaFoundation_Performance_4186_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4187, version=0) class Microsoft_Windows_MediaFoundation_Performance_4187_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4188, version=0) class Microsoft_Windows_MediaFoundation_Performance_4188_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4189, version=0) class Microsoft_Windows_MediaFoundation_Performance_4189_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4190, version=0) class Microsoft_Windows_MediaFoundation_Performance_4190_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4191, version=0) class Microsoft_Windows_MediaFoundation_Performance_4191_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4192, version=0) class Microsoft_Windows_MediaFoundation_Performance_4192_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4193, version=0) class Microsoft_Windows_MediaFoundation_Performance_4193_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4194, version=0) class Microsoft_Windows_MediaFoundation_Performance_4194_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4195, version=0) class Microsoft_Windows_MediaFoundation_Performance_4195_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4196, version=0) class Microsoft_Windows_MediaFoundation_Performance_4196_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4197, version=0) class Microsoft_Windows_MediaFoundation_Performance_4197_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4198, version=0) class Microsoft_Windows_MediaFoundation_Performance_4198_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4199, version=0) class Microsoft_Windows_MediaFoundation_Performance_4199_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4200, version=0) class Microsoft_Windows_MediaFoundation_Performance_4200_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4201, version=0) class Microsoft_Windows_MediaFoundation_Performance_4201_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4202, version=0) class Microsoft_Windows_MediaFoundation_Performance_4202_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4203, version=0) class Microsoft_Windows_MediaFoundation_Performance_4203_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4204, version=0) class Microsoft_Windows_MediaFoundation_Performance_4204_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4205, version=0) class Microsoft_Windows_MediaFoundation_Performance_4205_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4206, version=0) class Microsoft_Windows_MediaFoundation_Performance_4206_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "arg" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4207, version=0) class Microsoft_Windows_MediaFoundation_Performance_4207_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4208, version=0) class Microsoft_Windows_MediaFoundation_Performance_4208_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4209, version=0) class Microsoft_Windows_MediaFoundation_Performance_4209_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4210, version=0) class Microsoft_Windows_MediaFoundation_Performance_4210_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4211, version=0) class Microsoft_Windows_MediaFoundation_Performance_4211_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4212, version=0) class Microsoft_Windows_MediaFoundation_Performance_4212_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4213, version=0) class Microsoft_Windows_MediaFoundation_Performance_4213_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4214, version=0) class Microsoft_Windows_MediaFoundation_Performance_4214_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4215, version=0) class Microsoft_Windows_MediaFoundation_Performance_4215_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4216, version=0) class Microsoft_Windows_MediaFoundation_Performance_4216_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4217, version=0) class Microsoft_Windows_MediaFoundation_Performance_4217_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4218, version=0) class Microsoft_Windows_MediaFoundation_Performance_4218_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4219, version=0) class Microsoft_Windows_MediaFoundation_Performance_4219_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4220, version=0) class Microsoft_Windows_MediaFoundation_Performance_4220_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4221, version=0) class Microsoft_Windows_MediaFoundation_Performance_4221_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4222, version=0) class Microsoft_Windows_MediaFoundation_Performance_4222_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4223, version=0) class Microsoft_Windows_MediaFoundation_Performance_4223_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4224, version=0) class Microsoft_Windows_MediaFoundation_Performance_4224_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4225, version=0) class Microsoft_Windows_MediaFoundation_Performance_4225_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4226, version=0) class Microsoft_Windows_MediaFoundation_Performance_4226_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4227, version=0) class Microsoft_Windows_MediaFoundation_Performance_4227_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4228, version=0) class Microsoft_Windows_MediaFoundation_Performance_4228_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4229, version=0) class Microsoft_Windows_MediaFoundation_Performance_4229_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4230, version=0) class Microsoft_Windows_MediaFoundation_Performance_4230_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "url" / WString, "objectCreated" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4231, version=0) class Microsoft_Windows_MediaFoundation_Performance_4231_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "state" / Int32ul, "context" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4232, version=0) class Microsoft_Windows_MediaFoundation_Performance_4232_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "state" / Int32ul, "context" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4233, version=0) class Microsoft_Windows_MediaFoundation_Performance_4233_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "state" / Int32ul, "context" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4234, version=0) class Microsoft_Windows_MediaFoundation_Performance_4234_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "state" / Int32ul, "context" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4235, version=0) class Microsoft_Windows_MediaFoundation_Performance_4235_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "state" / Int32ul, "context" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4236, version=0) class Microsoft_Windows_MediaFoundation_Performance_4236_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "state" / Int32ul, "context" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4237, version=0) class Microsoft_Windows_MediaFoundation_Performance_4237_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "state" / Int32ul, "context" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4238, version=0) class Microsoft_Windows_MediaFoundation_Performance_4238_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "state" / Int32ul, "context" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4239, version=0) class Microsoft_Windows_MediaFoundation_Performance_4239_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "state" / Int32ul, "context" / Int32ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4240, version=0) class Microsoft_Windows_MediaFoundation_Performance_4240_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4241, version=0) class Microsoft_Windows_MediaFoundation_Performance_4241_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4242, version=0) class Microsoft_Windows_MediaFoundation_Performance_4242_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4243, version=0) class Microsoft_Windows_MediaFoundation_Performance_4243_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4244, version=0) class Microsoft_Windows_MediaFoundation_Performance_4244_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4245, version=0) class Microsoft_Windows_MediaFoundation_Performance_4245_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4246, version=0) class Microsoft_Windows_MediaFoundation_Performance_4246_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4247, version=0) class Microsoft_Windows_MediaFoundation_Performance_4247_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4248, version=0) class Microsoft_Windows_MediaFoundation_Performance_4248_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4249, version=0) class Microsoft_Windows_MediaFoundation_Performance_4249_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4250, version=0) class Microsoft_Windows_MediaFoundation_Performance_4250_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4251, version=0) class Microsoft_Windows_MediaFoundation_Performance_4251_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4252, version=0) class Microsoft_Windows_MediaFoundation_Performance_4252_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4253, version=0) class Microsoft_Windows_MediaFoundation_Performance_4253_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4254, version=0) class Microsoft_Windows_MediaFoundation_Performance_4254_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4255, version=0) class Microsoft_Windows_MediaFoundation_Performance_4255_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4256, version=0) class Microsoft_Windows_MediaFoundation_Performance_4256_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4257, version=0) class Microsoft_Windows_MediaFoundation_Performance_4257_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4258, version=0) class Microsoft_Windows_MediaFoundation_Performance_4258_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4259, version=0) class Microsoft_Windows_MediaFoundation_Performance_4259_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4260, version=0) class Microsoft_Windows_MediaFoundation_Performance_4260_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4261, version=0) class Microsoft_Windows_MediaFoundation_Performance_4261_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "knobID" / Int32ul, "previousLevel" / Int32ul, "newLevel" / Int32ul, "dropTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4262, version=0) class Microsoft_Windows_MediaFoundation_Performance_4262_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "knobID" / Int32ul, "previousLevel" / Int32ul, "newLevel" / Int32ul, "dropTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4263, version=0) class Microsoft_Windows_MediaFoundation_Performance_4263_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "knobID" / Int32ul, "previousLevel" / Int32ul, "newLevel" / Int32ul, "dropTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4264, version=0) class Microsoft_Windows_MediaFoundation_Performance_4264_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4265, version=0) class Microsoft_Windows_MediaFoundation_Performance_4265_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4266, version=0) class Microsoft_Windows_MediaFoundation_Performance_4266_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4267, version=0) class Microsoft_Windows_MediaFoundation_Performance_4267_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4268, version=0) class Microsoft_Windows_MediaFoundation_Performance_4268_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4269, version=0) class Microsoft_Windows_MediaFoundation_Performance_4269_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4270, version=0) class Microsoft_Windows_MediaFoundation_Performance_4270_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4271, version=0) class Microsoft_Windows_MediaFoundation_Performance_4271_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventType" / Int32ul, "time" / Int64sl, "parameter" / Int64ul, "url" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4272, version=0) class Microsoft_Windows_MediaFoundation_Performance_4272_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "originalTime" / Int64sl, "adjustment" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4273, version=0) class Microsoft_Windows_MediaFoundation_Performance_4273_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "originalTime" / Int64sl, "adjustment" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4274, version=0) class Microsoft_Windows_MediaFoundation_Performance_4274_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "clockTime" / Int64sl, "hwnd" / Int64ul, "refreshRate" / Int32ul, "width" / Int32ul, "height" / Int32ul, "left" / Int32ul, "top" / Int32ul, "right" / Int32ul, "bottom" / Int32ul, "left1" / Int32ul, "top1" / Int32ul, "right1" / Int32ul, "bottom1" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4275, version=0) class Microsoft_Windows_MediaFoundation_Performance_4275_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "sample" / Int64ul, "sampleTime" / Int64sl, "sampleDuration" / Int64sl, "masterTime" / Int64sl, "deviceTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4276, version=0) class Microsoft_Windows_MediaFoundation_Performance_4276_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4277, version=0) class Microsoft_Windows_MediaFoundation_Performance_4277_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4278, version=0) class Microsoft_Windows_MediaFoundation_Performance_4278_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4279, version=0) class Microsoft_Windows_MediaFoundation_Performance_4279_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4280, version=0) class Microsoft_Windows_MediaFoundation_Performance_4280_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4281, version=0) class Microsoft_Windows_MediaFoundation_Performance_4281_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4282, version=0) class Microsoft_Windows_MediaFoundation_Performance_4282_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4283, version=0) class Microsoft_Windows_MediaFoundation_Performance_4283_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4284, version=0) class Microsoft_Windows_MediaFoundation_Performance_4284_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4285, version=0) class Microsoft_Windows_MediaFoundation_Performance_4285_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4286, version=0) class Microsoft_Windows_MediaFoundation_Performance_4286_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4287, version=0) class Microsoft_Windows_MediaFoundation_Performance_4287_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul, "propertyKey" / Int64ul, "propvariant" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4288, version=0) class Microsoft_Windows_MediaFoundation_Performance_4288_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "streamNumber" / Int32ul, "sampleTime" / Int64sl, "sampleByteCount" / Int32ul, "packetNumber" / Int64sl, "packetSendTime" / Int64sl, "packetByteCount" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4289, version=0) class Microsoft_Windows_MediaFoundation_Performance_4289_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "streamNumber" / Int32ul, "sampleTime" / Int64sl, "sampleByteCount" / Int32ul, "packetNumber" / Int64sl, "packetSendTime" / Int64sl, "packetByteCount" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4290, version=0) class Microsoft_Windows_MediaFoundation_Performance_4290_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "streamNumber" / Int32ul, "sampleTime" / Int64sl, "sampleByteCount" / Int32ul, "packetNumber" / Int64sl, "packetSendTime" / Int64sl, "packetByteCount" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4291, version=0) class Microsoft_Windows_MediaFoundation_Performance_4291_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "eventTime" / Int64sl, "lateBy" / Int64sl, "callback" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4292, version=0) class Microsoft_Windows_MediaFoundation_Performance_4292_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4293, version=0) class Microsoft_Windows_MediaFoundation_Performance_4293_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4294, version=0) class Microsoft_Windows_MediaFoundation_Performance_4294_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4295, version=0) class Microsoft_Windows_MediaFoundation_Performance_4295_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4296, version=0) class Microsoft_Windows_MediaFoundation_Performance_4296_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4297, version=0) class Microsoft_Windows_MediaFoundation_Performance_4297_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4298, version=0) class Microsoft_Windows_MediaFoundation_Performance_4298_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4299, version=0) class Microsoft_Windows_MediaFoundation_Performance_4299_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4300, version=0) class Microsoft_Windows_MediaFoundation_Performance_4300_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4301, version=0) class Microsoft_Windows_MediaFoundation_Performance_4301_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4302, version=0) class Microsoft_Windows_MediaFoundation_Performance_4302_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4303, version=0) class Microsoft_Windows_MediaFoundation_Performance_4303_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4304, version=0) class Microsoft_Windows_MediaFoundation_Performance_4304_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4305, version=0) class Microsoft_Windows_MediaFoundation_Performance_4305_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4306, version=0) class Microsoft_Windows_MediaFoundation_Performance_4306_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4307, version=0) class Microsoft_Windows_MediaFoundation_Performance_4307_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4308, version=0) class Microsoft_Windows_MediaFoundation_Performance_4308_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4309, version=0) class Microsoft_Windows_MediaFoundation_Performance_4309_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4310, version=0) class Microsoft_Windows_MediaFoundation_Performance_4310_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4311, version=0) class Microsoft_Windows_MediaFoundation_Performance_4311_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4312, version=0) class Microsoft_Windows_MediaFoundation_Performance_4312_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4313, version=0) class Microsoft_Windows_MediaFoundation_Performance_4313_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4314, version=0) class Microsoft_Windows_MediaFoundation_Performance_4314_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4315, version=0) class Microsoft_Windows_MediaFoundation_Performance_4315_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4316, version=0) class Microsoft_Windows_MediaFoundation_Performance_4316_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4317, version=0) class Microsoft_Windows_MediaFoundation_Performance_4317_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4318, version=0) class Microsoft_Windows_MediaFoundation_Performance_4318_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4319, version=0) class Microsoft_Windows_MediaFoundation_Performance_4319_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4320, version=0) class Microsoft_Windows_MediaFoundation_Performance_4320_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4321, version=0) class Microsoft_Windows_MediaFoundation_Performance_4321_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4322, version=0) class Microsoft_Windows_MediaFoundation_Performance_4322_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4323, version=0) class Microsoft_Windows_MediaFoundation_Performance_4323_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4324, version=0) class Microsoft_Windows_MediaFoundation_Performance_4324_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4325, version=0) class Microsoft_Windows_MediaFoundation_Performance_4325_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4326, version=0) class Microsoft_Windows_MediaFoundation_Performance_4326_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4327, version=0) class Microsoft_Windows_MediaFoundation_Performance_4327_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4328, version=0) class Microsoft_Windows_MediaFoundation_Performance_4328_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4329, version=0) class Microsoft_Windows_MediaFoundation_Performance_4329_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4330, version=0) class Microsoft_Windows_MediaFoundation_Performance_4330_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4331, version=0) class Microsoft_Windows_MediaFoundation_Performance_4331_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4332, version=0) class Microsoft_Windows_MediaFoundation_Performance_4332_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4333, version=0) class Microsoft_Windows_MediaFoundation_Performance_4333_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4334, version=0) class Microsoft_Windows_MediaFoundation_Performance_4334_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4335, version=0) class Microsoft_Windows_MediaFoundation_Performance_4335_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4336, version=0) class Microsoft_Windows_MediaFoundation_Performance_4336_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4337, version=0) class Microsoft_Windows_MediaFoundation_Performance_4337_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4338, version=0) class Microsoft_Windows_MediaFoundation_Performance_4338_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4339, version=0) class Microsoft_Windows_MediaFoundation_Performance_4339_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4340, version=0) class Microsoft_Windows_MediaFoundation_Performance_4340_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4341, version=0) class Microsoft_Windows_MediaFoundation_Performance_4341_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4342, version=0) class Microsoft_Windows_MediaFoundation_Performance_4342_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4343, version=0) class Microsoft_Windows_MediaFoundation_Performance_4343_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4344, version=0) class Microsoft_Windows_MediaFoundation_Performance_4344_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4345, version=0) class Microsoft_Windows_MediaFoundation_Performance_4345_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4346, version=0) class Microsoft_Windows_MediaFoundation_Performance_4346_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4347, version=0) class Microsoft_Windows_MediaFoundation_Performance_4347_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4348, version=0) class Microsoft_Windows_MediaFoundation_Performance_4348_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4349, version=0) class Microsoft_Windows_MediaFoundation_Performance_4349_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4350, version=0) class Microsoft_Windows_MediaFoundation_Performance_4350_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4351, version=0) class Microsoft_Windows_MediaFoundation_Performance_4351_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4352, version=0) class Microsoft_Windows_MediaFoundation_Performance_4352_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4353, version=0) class Microsoft_Windows_MediaFoundation_Performance_4353_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4354, version=0) class Microsoft_Windows_MediaFoundation_Performance_4354_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4355, version=0) class Microsoft_Windows_MediaFoundation_Performance_4355_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4356, version=0) class Microsoft_Windows_MediaFoundation_Performance_4356_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4357, version=0) class Microsoft_Windows_MediaFoundation_Performance_4357_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4358, version=0) class Microsoft_Windows_MediaFoundation_Performance_4358_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4359, version=0) class Microsoft_Windows_MediaFoundation_Performance_4359_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4360, version=0) class Microsoft_Windows_MediaFoundation_Performance_4360_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4361, version=0) class Microsoft_Windows_MediaFoundation_Performance_4361_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4362, version=0) class Microsoft_Windows_MediaFoundation_Performance_4362_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4363, version=0) class Microsoft_Windows_MediaFoundation_Performance_4363_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4364, version=0) class Microsoft_Windows_MediaFoundation_Performance_4364_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4365, version=0) class Microsoft_Windows_MediaFoundation_Performance_4365_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4366, version=0) class Microsoft_Windows_MediaFoundation_Performance_4366_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4367, version=0) class Microsoft_Windows_MediaFoundation_Performance_4367_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4368, version=0) class Microsoft_Windows_MediaFoundation_Performance_4368_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4369, version=0) class Microsoft_Windows_MediaFoundation_Performance_4369_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4370, version=0) class Microsoft_Windows_MediaFoundation_Performance_4370_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4371, version=0) class Microsoft_Windows_MediaFoundation_Performance_4371_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4372, version=0) class Microsoft_Windows_MediaFoundation_Performance_4372_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4373, version=0) class Microsoft_Windows_MediaFoundation_Performance_4373_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4374, version=0) class Microsoft_Windows_MediaFoundation_Performance_4374_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4375, version=0) class Microsoft_Windows_MediaFoundation_Performance_4375_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4376, version=0) class Microsoft_Windows_MediaFoundation_Performance_4376_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4377, version=0) class Microsoft_Windows_MediaFoundation_Performance_4377_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4378, version=0) class Microsoft_Windows_MediaFoundation_Performance_4378_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4379, version=0) class Microsoft_Windows_MediaFoundation_Performance_4379_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4380, version=0) class Microsoft_Windows_MediaFoundation_Performance_4380_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4381, version=0) class Microsoft_Windows_MediaFoundation_Performance_4381_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4382, version=0) class Microsoft_Windows_MediaFoundation_Performance_4382_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4383, version=0) class Microsoft_Windows_MediaFoundation_Performance_4383_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4384, version=0) class Microsoft_Windows_MediaFoundation_Performance_4384_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4385, version=0) class Microsoft_Windows_MediaFoundation_Performance_4385_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int32ul, "bstr" / WString ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4386, version=0) class Microsoft_Windows_MediaFoundation_Performance_4386_0(Etw): pattern = Struct( "fileName" / WString, "graphType" / Int8ul, "lastHr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4387, version=0) class Microsoft_Windows_MediaFoundation_Performance_4387_0(Etw): pattern = Struct( "fileName" / WString, "graphType" / Int8ul, "lastHr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4388, version=0) class Microsoft_Windows_MediaFoundation_Performance_4388_0(Etw): pattern = Struct( "fileName" / WString, "graphType" / Int8ul, "lastHr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4389, version=0) class Microsoft_Windows_MediaFoundation_Performance_4389_0(Etw): pattern = Struct( "fileName" / WString, "graphType" / Int8ul, "lastHr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4390, version=0) class Microsoft_Windows_MediaFoundation_Performance_4390_0(Etw): pattern = Struct( "fileName" / WString, "graphType" / Int8ul, "lastHr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4391, version=0) class Microsoft_Windows_MediaFoundation_Performance_4391_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4392, version=0) class Microsoft_Windows_MediaFoundation_Performance_4392_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4393, version=0) class Microsoft_Windows_MediaFoundation_Performance_4393_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4394, version=0) class Microsoft_Windows_MediaFoundation_Performance_4394_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4395, version=0) class Microsoft_Windows_MediaFoundation_Performance_4395_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4396, version=0) class Microsoft_Windows_MediaFoundation_Performance_4396_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4397, version=0) class Microsoft_Windows_MediaFoundation_Performance_4397_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4398, version=0) class Microsoft_Windows_MediaFoundation_Performance_4398_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4399, version=0) class Microsoft_Windows_MediaFoundation_Performance_4399_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4400, version=0) class Microsoft_Windows_MediaFoundation_Performance_4400_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4401, version=0) class Microsoft_Windows_MediaFoundation_Performance_4401_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "initialOffset" / Int64sl, "finalOffset" / Int64sl, "bytesInCache" / Int32ul, "cacheSize" / Int32ul, "sectorSize" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4402, version=0) class Microsoft_Windows_MediaFoundation_Performance_4402_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "frameIndex" / Int32ul, "sampleTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4403, version=0) class Microsoft_Windows_MediaFoundation_Performance_4403_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "frameIndex" / Int32ul, "sampleTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4404, version=0) class Microsoft_Windows_MediaFoundation_Performance_4404_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "frameIndex" / Int32ul, "sampleTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4405, version=0) class Microsoft_Windows_MediaFoundation_Performance_4405_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "frameIndex" / Int32ul, "sampleTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4406, version=0) class Microsoft_Windows_MediaFoundation_Performance_4406_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "frameIndex" / Int32ul, "sampleTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4407, version=0) class Microsoft_Windows_MediaFoundation_Performance_4407_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "frameIndex" / Int32ul, "sampleTime" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4408, version=0) class Microsoft_Windows_MediaFoundation_Performance_4408_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4409, version=0) class Microsoft_Windows_MediaFoundation_Performance_4409_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "parameter" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4410, version=0) class Microsoft_Windows_MediaFoundation_Performance_4410_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "operation" / Int32sl, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4411, version=0) class Microsoft_Windows_MediaFoundation_Performance_4411_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "operation" / Int32sl, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4412, version=0) class Microsoft_Windows_MediaFoundation_Performance_4412_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4413, version=0) class Microsoft_Windows_MediaFoundation_Performance_4413_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4414, version=0) class Microsoft_Windows_MediaFoundation_Performance_4414_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4415, version=0) class Microsoft_Windows_MediaFoundation_Performance_4415_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4416, version=0) class Microsoft_Windows_MediaFoundation_Performance_4416_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4417, version=0) class Microsoft_Windows_MediaFoundation_Performance_4417_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4418, version=0) class Microsoft_Windows_MediaFoundation_Performance_4418_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4419, version=0) class Microsoft_Windows_MediaFoundation_Performance_4419_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4420, version=0) class Microsoft_Windows_MediaFoundation_Performance_4420_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul, "propertyKeyGuid" / Guid, "propertyKeyFmtId" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4421, version=0) class Microsoft_Windows_MediaFoundation_Performance_4421_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul, "propertyKeyGuid" / Guid, "propertyKeyFmtId" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4422, version=0) class Microsoft_Windows_MediaFoundation_Performance_4422_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul, "propertyKeyGuid" / Guid, "propertyKeyFmtId" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4423, version=0) class Microsoft_Windows_MediaFoundation_Performance_4423_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul, "propertyKeyGuid" / Guid, "propertyKeyFmtId" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4424, version=0) class Microsoft_Windows_MediaFoundation_Performance_4424_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul, "propertyKeyGuid" / Guid, "propertyKeyFmtId" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4425, version=0) class Microsoft_Windows_MediaFoundation_Performance_4425_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul, "propertyKeyGuid" / Guid, "propertyKeyFmtId" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4426, version=0) class Microsoft_Windows_MediaFoundation_Performance_4426_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul, "propertyKeyGuid" / Guid, "propertyKeyFmtId" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4427, version=0) class Microsoft_Windows_MediaFoundation_Performance_4427_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "contentType" / Int32ul, "propertyKeyGuid" / Guid, "propertyKeyFmtId" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4428, version=0) class Microsoft_Windows_MediaFoundation_Performance_4428_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4429, version=0) class Microsoft_Windows_MediaFoundation_Performance_4429_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4430, version=0) class Microsoft_Windows_MediaFoundation_Performance_4430_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4431, version=0) class Microsoft_Windows_MediaFoundation_Performance_4431_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4432, version=0) class Microsoft_Windows_MediaFoundation_Performance_4432_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "duration" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4433, version=0) class Microsoft_Windows_MediaFoundation_Performance_4433_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "duration" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4434, version=0) class Microsoft_Windows_MediaFoundation_Performance_4434_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "duration" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4437, version=0) class Microsoft_Windows_MediaFoundation_Performance_4437_0(Etw): pattern = Struct( "Buffer" / Int64ul, "Width" / Int32ul, "Height" / Int32ul, "Format" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4438, version=0) class Microsoft_Windows_MediaFoundation_Performance_4438_0(Etw): pattern = Struct( "Buffer" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4439, version=0) class Microsoft_Windows_MediaFoundation_Performance_4439_0(Etw): pattern = Struct( "Buffer" / Int64ul, "GUID" / Guid, "Unknown" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4440, version=0) class Microsoft_Windows_MediaFoundation_Performance_4440_0(Etw): pattern = Struct( "Buffer" / Int64ul, "GUID" / Guid, "Unknown" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4441, version=0) class Microsoft_Windows_MediaFoundation_Performance_4441_0(Etw): pattern = Struct( "Pointer" / Int64ul, "Length" / Int32sl, "Type" / Int32sl, "Max" / Int32sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4442, version=0) class Microsoft_Windows_MediaFoundation_Performance_4442_0(Etw): pattern = Struct( "Pointer" / Int64ul, "Length" / Int32sl, "Type" / Int32sl, "Max" / Int32sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4443, version=0) class Microsoft_Windows_MediaFoundation_Performance_4443_0(Etw): pattern = Struct( "Pointer" / Int64ul, "ParentQueuePointer" / Int64ul, "Free" / Int32sl, "Allocated" / Int32sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4444, version=0) class Microsoft_Windows_MediaFoundation_Performance_4444_0(Etw): pattern = Struct( "Pointer" / Int64ul, "ParentQueuePointer" / Int64ul, "Free" / Int32sl, "Allocated" / Int32sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4445, version=0) class Microsoft_Windows_MediaFoundation_Performance_4445_0(Etw): pattern = Struct( "Pointer" / Int64ul, "Direction" / Int32sl, "Width" / Int32sl, "Height" / Int32sl, "Format" / Int32sl, "Length" / Int32sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4446, version=0) class Microsoft_Windows_MediaFoundation_Performance_4446_0(Etw): pattern = Struct( "Pointer" / Int64ul, "Direction" / Int32sl, "Width" / Int32sl, "Height" / Int32sl, "Format" / Int32sl, "Length" / Int32sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4447, version=0) class Microsoft_Windows_MediaFoundation_Performance_4447_0(Etw): pattern = Struct( "object" / Int64ul, "contentType" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4448, version=0) class Microsoft_Windows_MediaFoundation_Performance_4448_0(Etw): pattern = Struct( "object" / Int64ul, "contentType" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4449, version=0) class Microsoft_Windows_MediaFoundation_Performance_4449_0(Etw): pattern = Struct( "object" / Int64ul, "contentType" / Int32ul, "bestFrameIndex" / Int32ul, "totalFrameDecoded" / Int32ul, "timeoutin100NS" / Int64ul, "isTimeout" / Int8ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4450, version=0) class Microsoft_Windows_MediaFoundation_Performance_4450_0(Etw): pattern = Struct( "Sample" / Int64ul, "StreamIndex" / Int32ul, "SampleTimestamp" / Int64ul, "AdjustedTimestamp" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4451, version=0) class Microsoft_Windows_MediaFoundation_Performance_4451_0(Etw): pattern = Struct( "Sample" / Int64ul, "StreamIndex" / Int32ul, "SampleTimestamp" / Int64ul, "AdjustedTimestamp" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4452, version=0) class Microsoft_Windows_MediaFoundation_Performance_4452_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4453, version=0) class Microsoft_Windows_MediaFoundation_Performance_4453_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4456, version=0) class Microsoft_Windows_MediaFoundation_Performance_4456_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "isLowLatency" / Int8ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4457, version=0) class Microsoft_Windows_MediaFoundation_Performance_4457_0(Etw): pattern = Struct( "object" / Int64ul, "StreamIndex" / Int32ul, "SampleTimestamp" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4458, version=0) class Microsoft_Windows_MediaFoundation_Performance_4458_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "byteCount" / Int64ul, "totalByteCount" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4459, version=0) class Microsoft_Windows_MediaFoundation_Performance_4459_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "isRetryWorkItem" / Int8ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4460, version=0) class Microsoft_Windows_MediaFoundation_Performance_4460_0(Etw): pattern = Struct( "surface" / Int64ul, "uSubresource" / Int32ul, "Type" / Int32ul, "Flags" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4461, version=0) class Microsoft_Windows_MediaFoundation_Performance_4461_0(Etw): pattern = Struct( "surface" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4462, version=0) class Microsoft_Windows_MediaFoundation_Performance_4462_0(Etw): pattern = Struct( "isLosigHardwareResource" / Int8ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4463, version=0) class Microsoft_Windows_MediaFoundation_Performance_4463_0(Etw): pattern = Struct( "IsGoingOn" / Int8ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4464, version=0) class Microsoft_Windows_MediaFoundation_Performance_4464_0(Etw): pattern = Struct( "SoundLevel" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4465, version=0) class Microsoft_Windows_MediaFoundation_Performance_4465_0(Etw): pattern = Struct( "status" / Int8ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4466, version=0) class Microsoft_Windows_MediaFoundation_Performance_4466_0(Etw): pattern = Struct( "tag" / CString, "object" / Int64ul, "BufferDuration" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4467, version=0) class Microsoft_Windows_MediaFoundation_Performance_4467_0(Etw): pattern = Struct( "SrcPtr" / Int64ul, "DstPtr" / Int64ul, "Width" / Int32sl, "Height" / Int32sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4468, version=0) class Microsoft_Windows_MediaFoundation_Performance_4468_0(Etw): pattern = Struct( "SrcPtr" / Int64ul, "DstPtr" / Int64ul, "ReturnCode" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4469, version=0) class Microsoft_Windows_MediaFoundation_Performance_4469_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4470, version=0) class Microsoft_Windows_MediaFoundation_Performance_4470_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4471, version=0) class Microsoft_Windows_MediaFoundation_Performance_4471_0(Etw): pattern = Struct( "object" / Int64ul, "dwStreamID" / Int32ul, "uiPinID" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4472, version=0) class Microsoft_Windows_MediaFoundation_Performance_4472_0(Etw): pattern = Struct( "Object" / Int64ul, "Sample" / Int64ul, "Free" / Int32sl, "Allocated" / Int32sl, "MinSampleCount" / Int32sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4473, version=0) class Microsoft_Windows_MediaFoundation_Performance_4473_0(Etw): pattern = Struct( "SrcPtr" / Int64ul, "Count" / Int32ul, "DstPtr" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4474, version=0) class Microsoft_Windows_MediaFoundation_Performance_4474_0(Etw): pattern = Struct( "SrcPtr" / Int64ul, "HResult" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4475, version=0) class Microsoft_Windows_MediaFoundation_Performance_4475_0(Etw): pattern = Struct( "surface" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4476, version=0) class Microsoft_Windows_MediaFoundation_Performance_4476_0(Etw): pattern = Struct( "surface" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4500, version=0) class Microsoft_Windows_MediaFoundation_Performance_4500_0(Etw): pattern = Struct( "Object" / Int64ul, "PendingCount" / Int32sl, "BytesSent" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4501, version=0) class Microsoft_Windows_MediaFoundation_Performance_4501_0(Etw): pattern = Struct( "Object" / Int64ul, "PendingCount" / Int32sl, "BytesSent" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4502, version=0) class Microsoft_Windows_MediaFoundation_Performance_4502_0(Etw): pattern = Struct( "Object" / Int64ul, "PendingCount" / Int32sl, "BytesSent" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4503, version=0) class Microsoft_Windows_MediaFoundation_Performance_4503_0(Etw): pattern = Struct( "Object" / Int64ul, "PendingReceives" / Int32sl, "BytesReceived" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4504, version=0) class Microsoft_Windows_MediaFoundation_Performance_4504_0(Etw): pattern = Struct( "Object" / Int64ul, "PendingReceives" / Int32sl, "BytesReceived" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4505, version=0) class Microsoft_Windows_MediaFoundation_Performance_4505_0(Etw): pattern = Struct( "Object" / Int64ul, "PendingReceives" / Int32sl, "BytesReceived" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4600, version=0) class Microsoft_Windows_MediaFoundation_Performance_4600_0(Etw): pattern = Struct( "system" / Guid ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4601, version=0) class Microsoft_Windows_MediaFoundation_Performance_4601_0(Etw): pattern = Struct( "object" / Int64ul, "hrResult" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4602, version=0) class Microsoft_Windows_MediaFoundation_Performance_4602_0(Etw): pattern = Struct( "system" / Guid ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4603, version=0) class Microsoft_Windows_MediaFoundation_Performance_4603_0(Etw): pattern = Struct( "available" / Int8ul, "hrResult" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4604, version=0) class Microsoft_Windows_MediaFoundation_Performance_4604_0(Etw): pattern = Struct( "object" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4605, version=0) class Microsoft_Windows_MediaFoundation_Performance_4605_0(Etw): pattern = Struct( "object" / Int64ul, "functionID" / Int32ul, "inputbytes" / Int32ul, "outputbytes" / Int32ul, "msTransportTime" / Int32ul, "msExecutionTime" / Int32ul, "msTotal" / Int32ul, "hrResult" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4606, version=0) class Microsoft_Windows_MediaFoundation_Performance_4606_0(Etw): pattern = Struct( "system" / Guid, "manager" / Int64ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4607, version=0) class Microsoft_Windows_MediaFoundation_Performance_4607_0(Etw): pattern = Struct( "object" / Int64ul, "hrResult" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4608, version=0) class Microsoft_Windows_MediaFoundation_Performance_4608_0(Etw): pattern = Struct( "object" / Int64ul, "hrResult" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4612, version=0) class Microsoft_Windows_MediaFoundation_Performance_4612_0(Etw): pattern = Struct( "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4614, version=0) class Microsoft_Windows_MediaFoundation_Performance_4614_0(Etw): pattern = Struct( "hr" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4615, version=0) class Microsoft_Windows_MediaFoundation_Performance_4615_0(Etw): pattern = Struct( "object" / Int64ul, "bytestowrite" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4616, version=0) class Microsoft_Windows_MediaFoundation_Performance_4616_0(Etw): pattern = Struct( "object" / Int64ul, "byteswritten" / Int32ul, "hrResult" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4617, version=0) class Microsoft_Windows_MediaFoundation_Performance_4617_0(Etw): pattern = Struct( "object" / Int64ul, "StreamIndex" / Int32ul, "StreamType" / Int32ul, "timestamp" / Int64sl, "sample" / Int64ul, "duration" / Int64sl ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4618, version=0) class Microsoft_Windows_MediaFoundation_Performance_4618_0(Etw): pattern = Struct( "object" / Int64ul, "StreamIndex" / Int32ul, "hrResult" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4619, version=0) class Microsoft_Windows_MediaFoundation_Performance_4619_0(Etw): pattern = Struct( "object" / Int64ul, "Index" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4620, version=0) class Microsoft_Windows_MediaFoundation_Performance_4620_0(Etw): pattern = Struct( "object" / Int64ul, "hrResult" / Int32ul ) @declare(guid=guid("f404b94e-27e0-4384-bfe8-1d8d390b0aa3"), event_id=4621, version=0) class Microsoft_Windows_MediaFoundation_Performance_4621_0(Etw): pattern = Struct( "object" / Int64ul, "StreamIndex" / Int32ul, "StreamType" / Int32ul, "timestamp" / Int64sl, "sample" / Int64ul, "duration" / Int64sl )
util/patch/aslr.py
EarthCompass/patchkit
631
11095737
<reponame>EarthCompass/patchkit import random from collections import defaultdict from util.patch.dis import irdis, IR def aslr(pt, count=3): funcs = {} saved = [] holes = [] pos = pt.binary.next_alloc() for func in pt.funcs(): if func.size < 5: continue ir = irdis(func.dis()) size = len(pt.asm(ir.asm(), addr=pos)) saved.append((func, ir, size)) holes.append((func.addr + 5, func.size - 5)) func.nop() pt.make_writable(func.addr) funcs = defaultdict(list) tmp = [] for func, ir, size in saved: for hook in pt.binary.asm_hook: pt.info('[ASM Hook] %s.%s() on 0x%x' % (hook.__module__, hook.__name__, func.addr)) tmpir = hook(pt, ir) if tmpir: ir = IR(tmpir) tmp.append((func, ir, size)) saved = tmp holes.sort(key=lambda x: x[1]) for i in xrange(count): random.shuffle(saved) for func, ir, size in saved: txt = ir.asm() tmp = [h for h in holes if h[0] != func.addr + 5 and h[1] >= size] if tmp: addr, hsize = tmp[0] holes.remove(tmp[0]) raw = pt.asm(txt, addr=addr) if len(raw) <= hsize: pt.patch(addr, raw=raw, is_asm=True) funcs[func].append((addr, len(raw))) continue addr, isize = pt.inject(asm=txt, size=True, is_asm=True) funcs[func].append((addr, isize)) return funcs
DQMOffline/Trigger/python/susyHLTEleCaloJetsClient_cfi.py
ckamtsikis/cmssw
852
11095755
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDHarvester import DQMEDHarvester susyHLTEleCaloJetsClient = DQMEDHarvester("DQMGenericClient", subDirs = cms.untracked.vstring( 'HLT/SUSY/Ele8CaloJet30/*', 'HLT/SUSY/Ele8CaloIdMJet30/*', 'HLT/SUSY/Ele12CaloJet30/*', 'HLT/SUSY/Ele17CaloIdMJet30/*', 'HLT/SUSY/Ele23CaloJet30/*', 'HLT/SUSY/Ele23CaloIdMJet30/*' ), verbose = cms.untracked.uint32(0), # Set to 2 for all messages resolution = cms.vstring(), efficiency = cms.vstring( "effic_metME 'efficiency vs MET; MET [GeV]; efficiency' metME_numerator metME_denominator", "effic_elePt_1 'efficiency vs electron pt; electron pt [GeV]; efficiency' elePt_1_numerator elePt_1_denominator", "effic_eleEta_1 'efficiency vs electron eta; electron eta ; efficiency' eleEta_1_numerator eleEta_1_denominator", "effic_elePhi_1 'efficiency vs electron phi; electron phi ; efficiency' elePhi_1_numerator elePhi_1_denominator", "effic_jetPt_1 'efficiency vs leading jet pt; jet pt [GeV]; efficiency' jetPt_1_numerator jetPt_1_denominator", "effic_jetEta_1 'efficiency vs leading jet eta; jet eta ; efficiency' jetEta_1_numerator jetEta_1_denominator", "effic_jetPhi_1 'efficiency vs leading jet phi; jet phi ; efficiency' jetPhi_1_numerator jetPhi_1_denominator", "effic_eventHT 'efficiency vs event HT; event HT [GeV]; efficiency' eventHT_numerator eventHT_denominator", "effic_jetEtaPhi_HEP17 'efficiency vs jet #eta-#phi; jet #eta; jet #phi' jetEtaPhi_HEP17_numerator jetEtaPhi_HEP17_denominator", "effic_elePt_1_variableBinning 'efficiency vs electron pt; electron pt [GeV]; efficiency' elePt_1_variableBinning_numerator elePt_1_variableBinning_denominator", "effic_eleEta_1_variableBinning 'efficiency vs electron eta; electron eta ; efficiency' eleEta_1_variableBinning_numerator eleEta_1_variableBinning_denominator", "effic_jetPt_1_variableBinning 'efficiency vs leading jet pt; jet pt [GeV]; efficiency' jetPt_1_variableBinning_numerator jetPt_1_variableBinning_denominator", "effic_jetEta_1_variableBinning 'efficiency vs leading jet eta; jet eta ; efficiency' jetEta_1_variableBinning_numerator jetEta_1_variableBinning_denominator", "effic_eventHT_variableBinning 'efficiency vs event HT; event HT [GeV]; efficiency' eventHT_variableBinning_numerator eventHT_variableBinning_denominator", "effic_jetMulti 'efficiency vs jet multiplicity; jet multiplicity; efficiency' jetMulti_numerator jetMulti_denominator", "effic_eleMulti 'efficiency vs electron multiplicity; electron multiplicity; efficiency' eleMulti_numerator eleMulti_denominator", "effic_muMulti 'efficiency vs muon multiplicity; muon multiplicity; efficiency' muMulti_numerator muMulti_denominator", "effic_elePtEta_1 'efficiency vs electron pt-#eta; electron pt [GeV]; electron #eta' elePtEta_1_numerator elePtEta_1_denominator", "effic_eleEtaPhi_1 'efficiency vs electron #eta-#phi; electron #eta ; electron #phi' eleEtaPhi_1_numerator eleEtaPhi_1_denominator", "effic_jetPtEta_1 'efficiency vs jet pt-#eta; jet pt [GeV]; jet #eta' jetPtEta_1_numerator jetPtEta_1_denominator", "effic_jetEtaPhi_1 'efficiency vs jet #eta-#phi; jet #eta ; jet #phi' jetEtaPhi_1_numerator jetEtaPhi_1_denominator", "effic_elePt_jetPt 'efficiency vs electron pt - jet pt; electron pt [GeV] ; jet pt [GeV]' elePt_jetPt_numerator elePt_jetPt_denominator", "effic_elePt_eventHT 'efficiency vs electron pt - event HT; electron pt [GeV] ; event HT [GeV]' elePt_eventHT_numerator elePt_eventHT_denominator", ), )
hwt/pyUtils/testUtils.py
ufo2011/hwt
134
11095763
from itertools import product class TestMatrix(): """ Class which instance is a decorator which executes unittest.TestCase test method with every combination of argumets """ def __init__(self, *args, **kwargs): """ :note: args, kwargs are lists of arguments which should be passed as a test arguments """ self.args = args kwargs = sorted(kwargs.items(), key=lambda x: x[0]) self.kwargs_keys = [x[0] for x in kwargs] self.kwargs_values = [x[1] for x in kwargs] self.test_arg_values = list(product(*args, *self.kwargs_values)) def split_args_kwargs(self, args): kwargs_cnt = len(self.kwargs_keys) if kwargs_cnt: _args = args[:kwargs_cnt] kwargs = {k: v for k, v in zip( self.kwargs_keys, args[:kwargs_cnt])} return _args, kwargs else: return args, {} def __call__(self, test_fn): test_matrix = self def test_wrap(self): for args in test_matrix.test_arg_values: args, kwargs = test_matrix.split_args_kwargs(args) try: test_fn(self, *args, **kwargs) except Exception as e: # add note to an exception about which test arguments were # used # import traceback # traceback.print_exc() msg_buff = [] for a in args: msg_buff.append(repr(a)) for k in test_matrix.kwargs_keys: msg_buff.append("%s=%r" % (k, kwargs[k])) raise Exception( "Test failed %s" % (", ".join(msg_buff)), ) from e return test_wrap
robot-server/tests/test_app.py
anuwrag/opentrons
235
11095791
<reponame>anuwrag/opentrons """Tests for FastAPI application object of the robot server.""" import pytest from mock import MagicMock, patch from fastapi import status from fastapi.testclient import TestClient from typing import Iterator from robot_server.versioning import API_VERSION_HEADER, API_VERSION @pytest.fixture def mock_log_control() -> Iterator[MagicMock]: """Patch out the log retrieval logic.""" with patch("opentrons.system.log_control.get_records_dumb") as p: p.return_value = b"" yield p @pytest.mark.parametrize( argnames="path", argvalues=[ "/logs/serial.log", "/logs/api.log", "/", ], ) def test_api_versioning_non_versions_endpoints( api_client: TestClient, path: str, mock_log_control: MagicMock, ) -> None: """It should not enforce versioning requirements on some endpoints.""" del api_client.headers["Opentrons-Version"] resp = api_client.get(path) assert resp.status_code != status.HTTP_422_UNPROCESSABLE_ENTITY assert resp.headers.get(API_VERSION_HEADER) == str(API_VERSION)
tracardi/process_engine/action/v1/connectors/mongo/query/plugin.py
Tracardi/tracardi
153
11095793
<gh_stars>100-1000 import json from json import JSONDecodeError from tracardi.domain.resource import ResourceCredentials from tracardi.domain.resource_config import ResourceConfig from tracardi.service.plugin.plugin_endpoint import PluginEndpoint from tracardi.service.storage.driver import storage from tracardi.service.plugin.domain.register import Plugin, Spec, MetaData, Form, FormGroup, FormField, FormComponent from tracardi.service.plugin.runner import ActionRunner from tracardi.service.plugin.domain.result import Result from .model.client import MongoClient from .model.configuration import PluginConfiguration, MongoConfiguration, DatabaseConfig def validate(config: dict) -> PluginConfiguration: config = PluginConfiguration(**config) try: json.loads(config.query) except JSONDecodeError as e: raise ValueError("Can not parse this data as JSON. Error: `{}`".format(str(e))) return config class MongoConnectorAction(ActionRunner): @staticmethod async def build(**kwargs) -> 'MongoConnectorAction': config = PluginConfiguration(**kwargs) resource = await storage.driver.resource.load(config.source.id) return MongoConnectorAction(config, resource.credentials) def __init__(self, config: PluginConfiguration, credentials: ResourceCredentials): mongo_config = credentials.get_credentials(self, output=MongoConfiguration) # type: MongoConfiguration self.client = MongoClient(mongo_config) self.config = config async def run(self, payload): try: query = json.loads(self.config.query) except JSONDecodeError as e: raise ValueError("Can not parse this data as JSON. Error: `{}`".format(str(e))) result = await self.client.find(self.config.database.id, self.config.collection.id, query) return Result(port="payload", value={"result": result}) # async def close(self): # await self.client.close() class Endpoint(PluginEndpoint): @staticmethod async def fetch_databases(config): config = ResourceConfig(**config) resource = await storage.driver.resource.load(config.source.id) mongo_config = MongoConfiguration(**resource.credentials.production) client = MongoClient(mongo_config) databases = await client.dbs() return { "total": len(databases), "result": [{"name": db, "id": db} for db in databases] } @staticmethod async def fetch_collections(config): config = DatabaseConfig(**config) resource = await storage.driver.resource.load(config.source.id) mongo_config = MongoConfiguration(**resource.credentials.production) client = MongoClient(mongo_config) collections = await client.collections(config.database.id) return { "total": len(collections), "result": [{"name": item, "id": item} for item in collections] } def register() -> Plugin: return Plugin( start=False, spec=Spec( module=__name__, className='MongoConnectorAction', inputs=["payload"], outputs=['payload'], version='0.6.2', license="MIT", author="<NAME>", manual="mongo_query_action", init={ "source": { "id": None, }, "database": None, "collection": None, "query": "{}" }, form=Form(groups=[ FormGroup( name="MongoDB connection settings", fields=[ FormField( id="source", name="MongoDB resource", description="Select MongoDB resource. Authentication credentials will be used to " "connect to MongoDB server.", component=FormComponent( type="resource", props={"label": "resource", "tag": "mongo"}) ) ] ), FormGroup( name="Query settings", fields=[ FormField( id="database", name="Database", description="Select database URI you want to connect to. If you see error select resource " "first so we know which resource to connect to fetch a list of databases.", component=FormComponent(type="autocomplete", props={ "label": "Database URI", "endpoint": { "url": Endpoint.url(__name__, "fetch_databases"), "method": "post" } }) ), FormField( id="collection", name="Collection", description="Select collection you would like to fetch data from. If you see error select " "resource and database first so we know which resource and database to connect " "to fetch a list of collections.", component=FormComponent(type="autocomplete", props={ "label": "Collection", "endpoint": { "url": Endpoint.url(__name__, "fetch_collections"), "method": "post" } }) ), FormField( id="query", name="Query", description="Type query.", component=FormComponent(type="json", props={"label": "Query"}) ), ]) ]), ), metadata=MetaData( name='Mongo connector', desc='Connects to mongodb and reads data.', icon='mongo', group=["Connectors"] ) )
tests/blocks/signal/pulseamplitudemodulator_spec.py
grascher-oe8agk/luaradio
559
11095807
<reponame>grascher-oe8agk/luaradio import math import numpy from generate import * def generate(): def process(symbol_rate, sample_rate, levels, amplitudes, msb_first, x): symbol_period = int(sample_rate / symbol_rate) symbol_bits = int(math.log2(levels)) if amplitudes is None: scaling = math.sqrt((levels ** 2 - 1) / 3) amplitudes = {} for level in range(levels): gray_level = level ^ (level >> 1) amplitudes[gray_level] = (2 * level - levels + 1) / scaling out = [] for i in range(0, (len(x) // symbol_bits) * symbol_bits, symbol_bits): bits = x[i:i + symbol_bits][::1 if msb_first else -1] value = sum([bits[j] << (symbol_bits - j - 1) for j in range(symbol_bits)]) out += [amplitudes[value]] * symbol_period return [numpy.array(out).astype(numpy.float32)] vectors = [] # Symbol rate of 0.4 with sample rate of 2.0 means we have a symbol period of 5 x = random_bit(256) vectors.append(TestVector([0.4, 2.0, 2], [x], process(0.4, 2.0, 2, None, True, x), "0.4 symbol rate, 2.0 sample rate, 256 Bit input, 2 levels, 1280 Float32 output")) vectors.append(TestVector([0.4, 2.0, 4], [x], process(0.4, 2.0, 4, None, True, x), "0.4 symbol rate, 2.0 sample rate, 256 Bit input, 4 levels, 640 Float32 output")) vectors.append(TestVector([0.4, 2.0, 8], [x], process(0.4, 2.0, 8, None, True, x), "0.4 symbol rate, 2.0 sample rate, 256 Bit input, 8 levels, 425 Float32 output")) vectors.append(TestVector([0.4, 2.0, 4, "{amplitudes = {[0] = -2, [1] = -1, [3] = 1, [2] = 2}}"], [x], process(0.4, 2.0, 4, {0: -2, 1: -1, 3: 1, 2: 2}, True, x), "0.4 symbol rate, 2.0 sample rate, custom 4 level amplitudes, 256 Bit input, 640 Float32 output")) vectors.append(TestVector([0.4, 2.0, 8, "{msb_first = false}"], [x], process(0.4, 2.0, 8, None, False, x), "0.4 symbol rate, 2.0 sample rate, 8 levels, lsb first, 256 Bit input, 425 Float32 output")) return BlockSpec("PulseAmplitudeModulatorBlock", vectors, 1e-6)
redisco/models/modelset.py
iamteem/redisco
110
11095822
""" Handles the queries. """ from attributes import IntegerField, DateTimeField import redisco from redisco.containers import SortedSet, Set, List, NonPersistentList from exceptions import AttributeNotIndexed from utils import _encode_key from attributes import ZINDEXABLE # Model Set class ModelSet(Set): def __init__(self, model_class): self.model_class = model_class self.key = model_class._key['all'] self._db = redisco.get_client() self._filters = {} self._exclusions = {} self._zfilters = [] self._ordering = [] self._limit = None self._offset = None ################# # MAGIC METHODS # ################# def __getitem__(self, index): if isinstance(index, slice): return map(lambda id: self._get_item_with_id(id), self._set[index]) else: id = self._set[index] if id: return self._get_item_with_id(id) else: raise IndexError def __repr__(self): if len(self._set) > 30: m = self._set[:30] else: m = self._set s = map(lambda id: self._get_item_with_id(id), m) return "%s" % s def __iter__(self): for id in self._set: yield self._get_item_with_id(id) def __len__(self): return len(self._set) def __contains__(self, val): return val.id in self._set ########################################## # METHODS THAT RETURN A SET OF INSTANCES # ########################################## def get_by_id(self, id): if self.model_class.exists(id): return self._get_item_with_id(id) def first(self): try: return self.limit(1).__getitem__(0) except IndexError: return None ##################################### # METHODS THAT MODIFY THE MODEL SET # ##################################### def filter(self, **kwargs): clone = self._clone() if not clone._filters: clone._filters = {} clone._filters.update(kwargs) return clone def exclude(self, **kwargs): clone = self._clone() if not clone._exclusions: clone._exclusions = {} clone._exclusions.update(kwargs) return clone def zfilter(self, **kwargs): clone = self._clone() if not clone._zfilters: clone._zfilters = [] clone._zfilters.append(kwargs) return clone # this should only be called once def order(self, field): fname = field.lstrip('-') if fname not in self.model_class._indices: raise ValueError("Order parameter should be an indexed attribute.") alpha = True if fname in self.model_class._attributes: v = self.model_class._attributes[fname] alpha = not isinstance(v, ZINDEXABLE) clone = self._clone() if not clone._ordering: clone._ordering = [] clone._ordering.append((field, alpha,)) return clone def limit(self, n, offset=0): clone = self._clone() clone._limit = n clone._offset = offset return clone def create(self, **kwargs): instance = self.model_class(**kwargs) if instance.save(): return instance else: return None def all(self): return self._clone() def get_or_create(self, **kwargs): opts = {} for k, v in kwargs.iteritems(): if k in self.model_class._indices: opts[k] = v o = self.filter(**opts).first() if o: return o else: return self.create(**kwargs) # @property def db(self): return self._db ################### # PRIVATE METHODS # ################### @property def _set(self): # For performance reasons, only one zfilter is allowed. if hasattr(self, '_cached_set'): return self._cached_set if self._zfilters: self._cached_set = self._add_zfilters() return self._cached_set s = Set(self.key) self._expire_or_delete = [] if self._filters: s = self._add_set_filter(s) if self._exclusions: s = self._add_set_exclusions(s) n = self._order(s.key) self._cached_set = list(self._order(s.key)) for key in filter(lambda key: key != self.key, self._expire_or_delete): del self.db[key] return self._cached_set def _add_set_filter(self, s): indices = [] for k, v in self._filters.iteritems(): index = self._build_key_from_filter_item(k, v) if k not in self.model_class._indices: raise AttributeNotIndexed( "Attribute %s is not indexed in %s class." % (k, self.model_class.__name__)) indices.append(index) new_set_key = "~%s.%s" % ("+".join([self.key] + indices), id(self)) s.intersection(new_set_key, *[Set(n) for n in indices]) self._expire_or_delete.append(new_set_key) return Set(new_set_key) def _add_set_exclusions(self, s): indices = [] for k, v in self._exclusions.iteritems(): index = self._build_key_from_filter_item(k, v) if k not in self.model_class._indices: raise AttributeNotIndexed( "Attribute %s is not indexed in %s class." % (k, self.model_class.__name__)) indices.append(index) new_set_key = "~%s.%s" % ("-".join([self.key] + indices), id(self)) s.difference(new_set_key, *[Set(n) for n in indices]) self._expire_or_delete.append(new_set_key) return Set(new_set_key) def _add_zfilters(self): k, v = self._zfilters[0].items()[0] try: att, op = k.split('__') except ValueError: raise ValueError("zfilter should have an operator.") index = self.model_class._key[att] desc = self.model_class._attributes[att] zset = SortedSet(index) limit, offset = self._get_limit_and_offset() if isinstance(v, (tuple, list,)): min, max = v min = float(desc.typecast_for_storage(min)) max = float(desc.typecast_for_storage(max)) else: v = float(desc.typecast_for_storage(v)) if op == 'lt': return zset.lt(v, limit, offset) elif op == 'gt': return zset.gt(v, limit, offset) elif op == 'gte': return zset.ge(v, limit, offset) elif op == 'lte': return zset.le(v, limit, offset) elif op == 'in': return zset.between(min, max, limit, offset) def _order(self, skey): if self._ordering: return self._set_with_ordering(skey) else: return self._set_without_ordering(skey) def _set_with_ordering(self, skey): num, start = self._get_limit_and_offset() old_set_key = skey for ordering, alpha in self._ordering: if ordering.startswith('-'): desc = True ordering = ordering.lstrip('-') else: desc = False new_set_key = "%s#%s.%s" % (old_set_key, ordering, id(self)) by = "%s->%s" % (self.model_class._key['*'], ordering) self.db.sort(old_set_key, by=by, store=new_set_key, alpha=alpha, start=start, num=num, desc=desc) self._expire_or_delete.append(old_set_key) self._expire_or_delete.append(new_set_key) return List(new_set_key) def _set_without_ordering(self, skey): # sort by id num, start = self._get_limit_and_offset() old_set_key = skey new_set_key = "%s#.%s" % (old_set_key, id(self)) self.db.sort(old_set_key, store=new_set_key, start=start, num=num) self._expire_or_delete.append(old_set_key) self._expire_or_delete.append(new_set_key) return List(new_set_key) def _get_limit_and_offset(self): if (self._limit is not None and self._offset is None) or \ (self._limit is None and self._offset is not None): raise "Limit and offset must be specified" if self._limit is None: return (None, None) else: return (self._limit, self._offset) def _get_item_with_id(self, id): instance = self.model_class() instance._id = str(id) return instance def _build_key_from_filter_item(self, index, value): desc = self.model_class._attributes.get(index) if desc: value = desc.typecast_for_storage(value) return self.model_class._key[index][_encode_key(value)] def _clone(self): klass = self.__class__ c = klass(self.model_class) if self._filters: c._filters = self._filters if self._exclusions: c._exclusions = self._exclusions if self._zfilters: c._zfilters = self._zfilters if self._ordering: c._ordering = self._ordering c._limit = self._limit c._offset = self._offset return c
flatdata-py/flatdata/lib/archive_builder.py
heremaps/flatdata
140
11095829
<gh_stars>100-1000 ''' Copyright (c) 2021 HERE Europe B.V. See the LICENSE file in the root of this project for license details. ''' from collections import namedtuple import os from .errors import IndexWriterError, MissingFieldError, UnknownFieldError, \ UnknownStructureError, UnknownResourceError, ResourceAlreadySetError from .resources import Instance, Vector, Multivector, RawData from .data_access import write_value _SCHEMA_EXT = ".schema" ResourceSignature = namedtuple("ResourceSignature", ["container", "initializer", "schema", "is_optional", "doc"]) class IndexWriter: """ IndexWriter class. Only applicable when multivector is present in archive schema. """ def __init__(self, name, size, resource_storage): """ Create IndexWriter class. All arguments are required. """ if not (name and resource_storage and size): raise IndexWriterError( f"Either ResourceStorage: {resource_storage} or name: {name} or size:" "{size} not provided.") self._name = name self._index_size = size self._fout = resource_storage.get(f'{self._name}_index', False) def add(self, index): """ Convert index(number) to bytearray and add to in memory store """ index_bytes = int(index).to_bytes(self._index_size, byteorder="little", signed=False) self._fout.write(index_bytes) def finish(self): """ Complete index resource by adding size and padding followed by writing to file """ self._fout.add_size() self._fout.add_padding() self._fout.close() class ArchiveBuilder: """ ArchiveBuilder class. Entry point to writing Flatdata. Provides methods to create flatdata archives. """ def __init__(self, resource_storage, path=""): """ Opens archive from a given resource writer. :param resource_storage: storage manager to store and write to disc :param path: file path where archive is created """ self._path = os.path.join(path, self._NAME) self._resource_storage = resource_storage self._write_archive_signature() self._write_archive_schema() self._resources_written = [f"{self._NAME}.archive"] @classmethod def name(cls): '''Returns archive name''' return cls._NAME @classmethod def schema(cls): '''Returns archive schema''' return cls._SCHEMA def _write_raw_data(self, name, data): ''' Helper function to write data :param name(str): resource name :param data(bytearray): data to be written to disc ''' storage = self._resource_storage.get(name) storage.write(data) storage.close() def _write_schema(self, name): ''' Writes resource schema :param name: name of resource ''' self._write_raw_data(f"{name}.schema", bytes( self._RESOURCES[name].schema, 'utf-8')) def _write_archive_signature(self): '''Writes archive's signature''' self._write_raw_data(f"{self._NAME}.archive", b'\x00' * 16) def _write_archive_schema(self): '''Writes archive schema''' self._write_raw_data( f"{self._NAME}.archive.schema", bytes(self._SCHEMA, 'utf-8')) def _write_index_schema(self, resource_name, schema): self._write_raw_data( f"{resource_name}_index.schema", bytes(schema, 'utf-8')) def subarchive(self, name): """ Returns an archive builder for the sub-archive `name`. :raises $name_not_subarchive_error :param name: name of the sub-archive """ NotImplemented @classmethod def __validate_structure_fields(cls, name, struct, initializer): ''' Validates whether passed object has all required fields :raises MissingFieldError :raises UnknownFieldError :param name(str): name of object(struct) :param struct(object): object to validate :param initializer(object): provided field keys to validate from ''' for key in initializer._FIELD_KEYS: if key not in struct: raise MissingFieldError(key, name) for key in struct.keys(): if key not in initializer._FIELD_KEYS: raise UnknownFieldError(key, name) def __set_instance(self, storage, name, value): ''' Creates and writes instance type resource :param storage(object): handles storage and writing to disc :param name(str): instance name :param value(dict): instance object replicates struct ''' initializer = self._RESOURCES[name].initializer ArchiveBuilder.__validate_structure_fields(name, value, initializer) bout = bytearray(initializer._SIZE_IN_BYTES) for (key, field) in initializer._FIELDS.items(): write_value(bout, field.offset, field.width, field.is_signed, value[key]) storage.write(bout) def __set_vector(self, storage, name, vector): ''' Creates and writes vector resource :param storage(object): handles storage and writing to disc :param name(str): resource name :param vector(list): vector, provided as list of dict ie [{},{}] ''' initializer = self._RESOURCES[name].initializer for value in vector: ArchiveBuilder.__validate_structure_fields( name, value, initializer) for value in vector: bout = bytearray(initializer._SIZE_IN_BYTES) for (key, field) in initializer._FIELDS.items(): write_value(bout, field.offset, field.width, field.is_signed, value[key]) storage.write(bout) def __set_multivector(self, storage, name, value): ''' Creates and writes multivector resource :param storage(object): handles storage and writing to disc :param name(str): resource name :param value(list): mulitvector, provided as list of list of dict ie [[{},{}],[]] ''' initializer_list = self._RESOURCES[name].initializer initializers = {} for index, obj_type in enumerate(initializer_list[1:]): initializers[obj_type._NAME] = (index, obj_type) def valid_structure_name(_obj): return _obj['name'] in [_initializer._NAME for _initializer in initializer_list[1:]] def validate_fields(_obj): matched_obj_list = [ _initializer for _initializer in initializer_list[1:] \ if _initializer._NAME == _obj['name']] if len(matched_obj_list) == 1: ArchiveBuilder.__validate_structure_fields( name, _obj['attributes'], matched_obj_list[0]) for sub_list in value: for obj in sub_list: if not valid_structure_name(obj): raise UnknownStructureError(obj['name']) validate_fields(obj) index_data_points = [] data_point = 0 data_size = 0 for sub_list in value: index_data_points.append(data_point) if sub_list: for obj in sub_list: # find out correct initializer type_index, matched_initializer = initializers[obj['name']] size = matched_initializer._SIZE_IN_BYTES + 1 data_size += size data_point += size bout = bytearray(size) bout[0] = int(type_index).to_bytes( 1, byteorder="little", signed=False)[0] for (key, field) in matched_initializer._FIELDS.items(): write_value(bout, field.offset + 1 * 8, field.width, field.is_signed, obj['attributes'][key]) storage.write(bout) index_data_points.append(data_point) index_writer = IndexWriter( name, initializer_list[0]._SIZE_IN_BYTES, self._resource_storage) for index in index_data_points: index_writer.add(index) index_writer.finish() # Write index schema self._write_index_schema( name, f'index({self._RESOURCES[name].schema})') self._resources_written.append(name) self._resources_written.append(f'{name}_index') def set(self, name, value): """ Write a resource for this archive at once. Can only be done once. `set` and `start` can't be used for the same resource. :raises $already_set_error :raises $unknown_resource_error :param name: name of the resource :param value: value to write """ if name not in self._RESOURCES: raise UnknownResourceError(name) if not self._resources_written.count(name): self._write_schema(name) else: raise ResourceAlreadySetError() storage = self._resource_storage.get(name, False) if self._RESOURCES[name].container is Instance: self.__set_instance(storage, name, value) elif self._RESOURCES[name].container is Vector: self.__set_vector(storage, name, value) elif self._RESOURCES[name].container is Multivector: self.__set_multivector(storage, name, value) elif self._RESOURCES[name].container is RawData: storage.write(value) else: NotImplementedError storage.add_size() storage.add_padding() storage.close() self._resources_written.append(name) def finish(self): """ Closes the storage manager """ self._resource_storage.close()
zapcli/commands/session.py
kiwi-bop/zap-cli
196
11095837
""" Group of commands to manage the sessions. .. moduleauthor:: <NAME> (grunny) """ import os import click from zapcli.exceptions import ZAPError from zapcli.helpers import zap_error_handler from zapcli.log import console @click.group(name='session', short_help='Manage sessions.') @click.pass_context def session_group(ctx): """Manage sessions.""" pass @session_group.command('new') @click.pass_obj def new_session(zap_helper): """Start a new session.""" console.debug('Starting a new session') zap_helper.zap.core.new_session() @session_group.command('save') @click.argument('file-path') @click.pass_obj def save_session(zap_helper, file_path): """Save the session.""" console.debug('Saving the session to "{0}"'.format(file_path)) zap_helper.zap.core.save_session(file_path, overwrite='true') @session_group.command('load') @click.argument('file-path') @click.pass_obj def load_session(zap_helper, file_path): """Load a given session.""" with zap_error_handler(): if not os.path.isfile(file_path): raise ZAPError('No file found at "{0}", cannot load session.'.format(file_path)) console.debug('Loading session from "{0}"'.format(file_path)) zap_helper.zap.core.load_session(file_path)
cactus/exceptions.py
danielchasehooper/Cactus
1,048
11095910
#coding:utf-8 class InvalidCredentials(Exception): """ Raised when invalid credentials are used to connect. """ pass
dmb/modeling/stereo/disp_refinement/__init__.py
jiaw-z/DenseMatchingBenchmark
160
11095912
<reponame>jiaw-z/DenseMatchingBenchmark from .builder import build_disp_refinement
chapter11-detection/model.py
gabrielmahia/obamAI
1,291
11095916
<gh_stars>1000+ """SSD model builder Utilities for building network layers are also provided """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from tensorflow.keras.layers import Activation, Dense, Input from tensorflow.keras.layers import Conv2D, Flatten from tensorflow.keras.layers import BatchNormalization, Concatenate from tensorflow.keras.layers import ELU, MaxPooling2D, Reshape from tensorflow.keras.models import Model from tensorflow.keras import backend as K import numpy as np def conv2d(inputs, filters=32, kernel_size=3, strides=1, name=None): conv = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, kernel_initializer='he_normal', name=name, padding='same') return conv(inputs) def conv_layer(inputs, filters=32, kernel_size=3, strides=1, use_maxpool=True, postfix=None, activation=None): x = conv2d(inputs, filters=filters, kernel_size=kernel_size, strides=strides, name='conv'+postfix) x = BatchNormalization(name="bn"+postfix)(x) x = ELU(name='elu'+postfix)(x) if use_maxpool: x = MaxPooling2D(name='pool'+postfix)(x) return x def build_ssd(input_shape, backbone, n_layers=4, n_classes=4, aspect_ratios=(1, 2, 0.5)): """Build SSD model given a backbone Arguments: input_shape (list): input image shape backbone (model): Keras backbone model n_layers (int): Number of layers of ssd head n_classes (int): Number of obj classes aspect_ratios (list): annchor box aspect ratios Returns: n_anchors (int): Number of anchor boxes per feature pt feature_shape (tensor): SSD head feature maps model (Keras model): SSD model """ # number of anchor boxes per feature map pt n_anchors = len(aspect_ratios) + 1 inputs = Input(shape=input_shape) # no. of base_outputs depends on n_layers base_outputs = backbone(inputs) outputs = [] feature_shapes = [] out_cls = [] out_off = [] for i in range(n_layers): # each conv layer from backbone is used # as feature maps for class and offset predictions # also known as multi-scale predictions conv = base_outputs if n_layers==1 else base_outputs[i] name = "cls" + str(i+1) classes = conv2d(conv, n_anchors*n_classes, kernel_size=3, name=name) # offsets: (batch, height, width, n_anchors * 4) name = "off" + str(i+1) offsets = conv2d(conv, n_anchors*4, kernel_size=3, name=name) shape = np.array(K.int_shape(offsets))[1:] feature_shapes.append(shape) # reshape the class predictions, yielding 3D tensors of # shape (batch, height * width * n_anchors, n_classes) # last axis to perform softmax on them name = "cls_res" + str(i+1) classes = Reshape((-1, n_classes), name=name)(classes) # reshape the offset predictions, yielding 3D tensors of # shape (batch, height * width * n_anchors, 4) # last axis to compute the (smooth) L1 or L2 loss name = "off_res" + str(i+1) offsets = Reshape((-1, 4), name=name)(offsets) # concat for alignment with ground truth size # made of ground truth offsets and mask of same dim # needed during loss computation offsets = [offsets, offsets] name = "off_cat" + str(i+1) offsets = Concatenate(axis=-1, name=name)(offsets) # collect offset prediction per scale out_off.append(offsets) name = "cls_out" + str(i+1) #activation = 'sigmoid' if n_classes==1 else 'softmax' #print("Activation:", activation) classes = Activation('softmax', name=name)(classes) # collect class prediction per scale out_cls.append(classes) if n_layers > 1: # concat all class and offset from each scale name = "offsets" offsets = Concatenate(axis=1, name=name)(out_off) name = "classes" classes = Concatenate(axis=1, name=name)(out_cls) else: offsets = out_off[0] classes = out_cls[0] outputs = [classes, offsets] model = Model(inputs=inputs, outputs=outputs, name='ssd_head') return n_anchors, feature_shapes, model
tkinter/label/label-width-font/main.py
whitmans-max/python-examples
140
11095928
<filename>tkinter/label/label-width-font/main.py #If you display text in the label, these options define the size of the label in text units. If you display bitmaps or images instead, they define the size in pixels (or other screen units) import tkinter as tk root = tk.Tk() f = None l1 = tk.Label(root, text='Hello', width=7, fg='white', bg='blue', font=f) f = ('HelveticaNeue Light', 12) l2 = tk.Label(root, text='Hello', width=7, fg='white', bg='green', font=f) f = ('HelveticaNeue Light', 12, 'bold') l3 = tk.Label(root, text='Hello', width=7, fg='white', bg='red', font=f) l1.grid() l2.grid() l3.grid() root.mainloop()
third_party/tests/Opentitan/util/reggen/version.py
parzival3/Surelog
156
11095973
<reponame>parzival3/Surelog<gh_stars>100-1000 # Copyright lowRISC contributors. # Licensed under the Apache License, Version 2.0, see LICENSE for details. # SPDX-License-Identifier: Apache-2.0 r"""Standard version printing """ import os import subprocess import sys import pkg_resources # part of setuptools def show_and_exit(clitool, packages): util_path = os.path.dirname(os.path.realpath(clitool)) os.chdir(util_path) ver = subprocess.run( ["git", "describe", "--always", "--dirty", "--broken"], stdout=subprocess.PIPE).stdout.strip().decode('ascii') if (ver == ''): ver = 'not found (not in Git repository?)' sys.stderr.write(clitool + " Git version " + ver + '\n') for p in packages: sys.stderr.write(p + ' ' + pkg_resources.require(p)[0].version + '\n') exit(0)
my.py
deep-fry/mayo
110
11096003
<reponame>deep-fry/mayo<filename>my.py #!/usr/bin/env python3 import os from importlib.util import spec_from_file_location, module_from_spec root = os.path.dirname(__file__) if root == '.': root = '' path = os.path.join(root, 'mayo', 'cli.py') spec = spec_from_file_location('cli', path) cli = module_from_spec(spec) spec.loader.exec_module(cli) cli.CLI().main()
examples/showcase/src/demos_panels/absolutePanel.py
takipsizad/pyjs
739
11096018
""" ``ui.AbsolutePanel`` is a panel that positions its children using absolute pixel positions. This allows the panel's children to overlap. Note that the AbsolutePanel does not automatically resize itself to fit its children. There is no straightforward way of doing this unless all the children are explicitly sized; the easier workaround is just to call ``panel.setWidth(width)`` and ``panel.setHeight(height)`` explicitly after adding the children, choosing an appropriate width and height based on the children you have added. """ from pyjamas.ui.SimplePanel import SimplePanel from pyjamas.ui.AbsolutePanel import AbsolutePanel from pyjamas.ui.VerticalPanel import VerticalPanel from pyjamas.ui.HTML import HTML from pyjamas import DOM class AbsolutePanelDemo(SimplePanel): def __init__(self): SimplePanel.__init__(self) panel = AbsolutePanel(Width="100%", Height="100px") panel.add(self.makeBox("Child 1"), 20, 10) panel.add(self.makeBox("Child 2"), 30, 30) self.add(panel) def makeBox(self, label): wrapper = VerticalPanel(BorderWidth=1) wrapper.add(HTML(label)) DOM.setAttribute(wrapper.getTable(), "cellPadding", "10") DOM.setAttribute(wrapper.getTable(), "bgColor", "#C3D9FF") return wrapper