max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
map_vectorizer/config/vectorize_config_parser.py
mgiraldo/map-vectorizer
148
11107591
import csv def parse(fp): ''' :param str fp: File pointer :rtype dict: :returns: ''' tempcolors = [] index = 0 configdata = csv.reader(fp, delimiter=',') for row in configdata: if index > 0: tempcolors.append([int(row[0]), int(row[1]), int(row[2])]) else: # brightness/contrast/threshold values brightness = int(row[0]) contrast = int(row[1]) thresholdblack = int(row[2]) thresholdwhite = int(row[3]) index = index + 1 if len(tempcolors) > 2: basecolors = tempcolors return { 'basecolors': basecolors, 'brightness': brightness, 'contrast': contrast, 'thresholdblack': thresholdblack, 'thresholdwhite': thresholdwhite, }
src/web/reactionforms/mysql-execute-query/__init__.py
anderson-attilio/runbook
155
11107598
<reponame>anderson-attilio/runbook """Reactions form class for email notifications.""" from wtforms import SelectField, TextAreaField, TextField from wtforms.validators import DataRequired, Optional from ..base import BaseReactForm class ReactForm(BaseReactForm): #pylint: disable=no-init ''' Class that creates an form for the reaction ''' title = "MySQL: Execute SQL Statement" description = """ <p>This reaction will connect to a remote MySQL server and execute the specified SQL statement.</p> """ placeholders = BaseReactForm.placeholders field_descriptions = BaseReactForm.descriptions placeholders.update({ 'server' : 'mysql.example.com', 'user' : 'dbuser', 'sql' : 'flush privileges', }) server = TextField( "MySQL Server Address", description=""" Specify a hostname or IP address to connect to. """, validators=[DataRequired(message='Server is a required field')]) user = TextField( "Username", description=""" Specify the MySQL user to connect with. """, validators=[DataRequired(message="Username is a required field")]) password = TextField( "Password", description=""" Specify the above MySQL user's password. """, validators=[DataRequired(message="Password is a required field")]) sql = TextAreaField( "SQL Statement", description=""" Specify the SQL statement to execute """, validators=[DataRequired(message='SQL Statement is a required field')]) call_on = SelectField( 'Call On', description=field_descriptions['callon'], choices=[('false', 'False Monitors'), ('true', 'True Monitors')], validators=[DataRequired(message='Call on is a required field.')]) if __name__ == '__main__': pass
045_ssd_mobilenet_v2_oid_v4/01_float32/03_float16_quantization.py
IgiArdiyanto/PINTO_model_zoo
1,529
11107611
### tf-nightly==2.3.0-rc1 import tensorflow.compat.v1 as tf import numpy as np # Float16 Quantization - Input/Output=float32 graph_def_file="export/tflite_graph.pb" input_arrays=["normalized_input_image_tensor"] output_arrays=['TFLite_Detection_PostProcess','TFLite_Detection_PostProcess:1','TFLite_Detection_PostProcess:2','TFLite_Detection_PostProcess:3'] input_tensor={"normalized_input_image_tensor":[1,300,300,3]} converter = tf.compat.v1.lite.TFLiteConverter.from_frozen_graph(graph_def_file, input_arrays, output_arrays,input_tensor) converter.allow_custom_ops=True converter.optimizations = [tf.lite.Optimize.DEFAULT] # converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,tf.lite.OpsSet.SELECT_TF_OPS] converter.target_spec.supported_types = [tf.float16] tflite_quant_model = converter.convert() with open('ssd_mobilenet_v2_oid_v4_300x300_float16_quant.tflite', 'wb') as w: w.write(tflite_quant_model) print("Float16 Quantization complete! - ssd_mobilenet_v2_oid_v4_300x300_float16_quant.tflite")
spec/mock_patch_example_spec.py
michaelelin/mamba
462
11107618
from mamba import description, context, it from unittest.mock import patch from expects import expect, be class ExampleClass(object): def hello(self): return 'Hello' with description('Testing with unittest.mock'): with context('when class method is mocked'): with it('returns mocked value'): with patch.object(ExampleClass, 'hello', return_value='World!') as mock_method: expect(mock_method()).to(be('World!'))
python/akg/ops/nn/ascend/maxpool_grad_with_argmax.py
tianjiashuo/akg
286
11107634
<reponame>tianjiashuo/akg #!/usr/bin/env python3 # coding: utf-8 # Copyright 2019-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function: maxpool_grad_with_argmax""" import akg.tvm import akg.topi import akg from akg.ops.nn.ascend.avgpool import cal_pad_shapes_by_strategy import akg.utils as utils @utils.check_input_type(akg.tvm.tensor.Tensor, akg.tvm.tensor.Tensor, (list, tuple), (list, tuple), (list, tuple), (str, list, tuple), (str, type(None))) def MaxpoolGradWithArgmax(head, mask, shape, kernel, stride, pad, target=utils.CCE): """ Automatic differentiate of maxpool with manual schedule. Args: head (tvm.tensor.Tensor): Tensor, the gradient needed to be propagation. mask (tvm.tensor.Tensor): Tensor, the mask indicating where the gradient is propagation. shape (Union[list, tuple]): five int numbers for pooling input image's size. kernel (Union[list, tuple]): two int numbers for pooling window's size. stride (Union[list, tuple]): two int numbers for window's stride. pad (Union[str, list, tuple]): padding, should be 'VALID','SAME' or instance of list(four int numbers, as 'CONSTANTS' strategy). Support **pad** is the same as avgpool's **Strategies**. Returns: tvm.tensor.Tensor as result for gradient of maxpooling. Supported Platforms: 'Ascend' """ dtype = head.dtype kernel_h, kernel_w = kernel stride_h, stride_w = stride [ph_h, _, pw_h, _], [out_size_h, out_size_w] = \ cal_pad_shapes_by_strategy(shape, kernel, stride, pad) batch_size, input_c1, input_h, input_w, input_c0 = shape # tile size 14 by 14 is proved to be the most efficient one tile_scale_h = 7 tile_scale_w = 7 tile_h = stride_h * tile_scale_h if kernel_h == stride_h: # non-overlapping case tile_h_pad_u = ph_h % stride_h elif kernel_h % stride_h == 0: tile_h_pad_u = kernel_h - stride_h - ph_h else: tile_h_pad_u = kernel_h - kernel_h % stride_h - ph_h tile_h_pad_l = kernel_h - stride_h + ph_h tile_input_h = tile_h + tile_h_pad_u + tile_h_pad_l tile_h_out = (input_h - 1) // tile_h + 1 if ph_h % stride_h == 0: pad_output_h = ph_h // stride_h else: pad_output_h = ph_h // stride_h + 1 if tile_h_pad_u % stride_h == 0: pad_output_h -= tile_h_pad_u // stride_h else: pad_output_h -= tile_h_pad_u // stride_h + 1 tile_output_h = (tile_input_h - kernel_h) // stride_h + 1 tile_w = stride_w * tile_scale_w if kernel_w == stride_w: # non-overlapping case tile_w_pad_u = pw_h % stride_w elif kernel_w % stride_w == 0: tile_w_pad_u = kernel_w - stride_w - pw_h else: tile_w_pad_u = kernel_w - kernel_w % stride_w - pw_h tile_w_pad_l = kernel_w - stride_w + pw_h tile_input_w = tile_w + tile_w_pad_u + tile_w_pad_l tile_w_out = (input_w - 1) // tile_w + 1 if pw_h % stride_w == 0: pad_output_w = pw_h // stride_w else: pad_output_w = pw_h // stride_w + 1 if tile_w_pad_u % stride_w == 0: pad_output_w -= tile_w_pad_u // stride_w else: pad_output_w -= tile_w_pad_u // stride_w + 1 tile_output_w = (tile_input_w - kernel_w) // stride_w + 1 cce_col2img = intrin_col2im((tile_h, tile_w), (tile_output_h, tile_output_w), kernel, stride, (tile_h_pad_u, tile_h_pad_l, tile_h_pad_u, tile_h_pad_l), "float32") head_reshaped = akg.tvm.compute((batch_size, input_c1, tile_h_out, tile_w_out, tile_output_h, tile_output_w, input_c0), lambda b, c1, h_out, w_out, oh, ow, c0: akg.tvm.expr.Select( akg.tvm.any(h_out * tile_scale_h + pad_output_h + oh < 0, h_out * tile_scale_h + pad_output_h + oh > out_size_h - 1, w_out * tile_scale_w + pad_output_w + ow < 0, w_out * tile_scale_w + pad_output_w + ow > out_size_w - 1), akg.tvm.const(0.0, dtype=dtype), head(b, c1, h_out * tile_scale_h + pad_output_h + oh, w_out * tile_scale_w + pad_output_w + ow, c0)), name="head_reshaped") mask_reshaped = akg.tvm.compute((batch_size, input_c1, tile_h_out, tile_w_out, kernel_h, kernel_w, tile_output_h, tile_output_w, input_c0), lambda b, c1, h_out, w_out, kh, kw, oh, ow, c0: akg.tvm.expr.Select( akg.tvm.any(h_out * tile_scale_h + pad_output_h + oh < 0, h_out * tile_scale_h + pad_output_h + oh > out_size_h - 1, w_out * tile_scale_w + pad_output_w + ow < 0, w_out * tile_scale_w + pad_output_w + ow > out_size_w - 1), akg.tvm.const(0.0, dtype=dtype), mask(b, c1, kh, kw, h_out * tile_scale_h + pad_output_h + oh, w_out * tile_scale_w + pad_output_w + ow, c0)), name="mask_reshaped") d_data = akg.tvm.compute((batch_size, input_c1, tile_h_out, tile_w_out, kernel_h, kernel_w, tile_output_h, tile_output_w, input_c0), lambda b, c1, h_out, w_out, kh, kw, oh, ow, c0: mask_reshaped(b, c1, h_out, w_out, kh, kw, oh, ow, c0) * head_reshaped(b, c1, h_out, w_out, oh, ow, c0), name="d_data") d_data_cast = akg.tvm.compute(d_data.shape, lambda *i: d_data(*i).astype("float32"), name="d_data_cast.local.UB") result_tile = akg.tvm.compute((batch_size, input_c1, tile_h_out, tile_w_out, tile_h, tile_w, input_c0), lambda b, c1, h_out, w_out: cce_col2img(d_data_cast[b, c1, h_out, w_out, 0:kernel_h, 0:kernel_w, 0:tile_output_h, 0:tile_output_w, 0:input_c0]), name="result_tile.local.UB") result_cast = akg.topi.cast(result_tile, dtype) result = akg.tvm.compute(shape, lambda b, c1, h, w, c0: result_cast(b, c1, h // tile_h, w // tile_w, h % tile_h, w % tile_w, c0), name="result") def comp_func(s): data_ub = s.cache_read(mask, "local.UB", [mask_reshaped]) head_ub = s.cache_read(head, "local.UB", [head_reshaped]) result_ub = s.cache_write(result, "local.UB") s[mask_reshaped].set_scope("local.UB") s[head_reshaped].set_scope("local.UB") s[d_data].set_scope("local.UB") s[d_data_cast].set_scope("local.UB") s[result_tile].set_scope("local.UB") s[result_cast].set_scope("local.UB") # inline output s[result_ub].compute_inline() # inline inputs s[head_ub].compute_inline() s[data_ub].compute_inline() # result_tile dependencies s[d_data_cast].compute_at(s[result_tile], result_tile.op.axis[3]) s[d_data].compute_at(s[result_tile], result_tile.op.axis[3]) s[mask_reshaped].compute_at(s[result_tile], result_tile.op.axis[3]) s[head_reshaped].compute_at(s[result_tile], result_tile.op.axis[3]) # tile result b, c1, h, w, c0 = result.op.axis h_out, h_in = s[result].split(h, tile_h) w_out, w_in = s[result].split(w, tile_w) s[result].reorder(b, c1, h_out, w_out, h_in, w_in, c0) s[result_tile].compute_at(s[result], w_out) s[result_cast].compute_at(s[result], w_out) return result, comp_func def intrin_col2im(input_shape, output_shape, kernel, stride, pad, dtype): """ Compute col2im via cce col2im intrin function call directly Args: input_shape: the shape of the image output_shape: the shape of the result of im2col given the input image kernel: kernel sizes for im2col stride: stride sizes for im2col pad: padding sizes for im2col, including padding top, bottom, left, and right dtype: type of the data Return: cce intrin function call for col2im """ input_w, input_h = input_shape output_w, output_h = output_shape pad_left, pad_right, pad_top, pad_bottom = pad w_idx_kernel = 0 h_idx_kernel = 0 w_idx = (-pad_left) & 0xffff h_idx = (-pad_top) & 0xffff c1_idx = 0 stride_w, stride_h = stride kernel_w, kernel_h = kernel dilation_w = dilation_h = 1 jump_offset = 0 repeat_mode = 0 repeat_time = (output_w * output_h + 15) // 16 input_b = 1 input_c1 = 1 input_h_tile = 1 input_w_tile = 1 input_c0 = 16 input_shape = (input_b, input_c1, input_h_tile, input_w_tile, kernel_w, kernel_h, output_w, output_h, input_c0) input_data = akg.tvm.placeholder(input_shape, dtype=dtype) result = akg.tvm.compute((input_w, input_h, input_c0), lambda h, w, c0: input_data[0, 0, 0, 0, h // kernel_h, w // kernel_w, h % kernel_h, w % kernel_w, c0], name='col2im_intrinsic') input_data_buff = akg.tvm.decl_buffer(input_data.shape, input_data.dtype, name="input_data_buff", offset_factor=1, scope="local.UB") result_buff = akg.tvm.decl_buffer(result.shape, result.dtype, name="result_buff", offset_factor=1, scope="local.UB") def pack_args(sp): if len(sp) != 20: raise RuntimeError("20 args are expected to pack but got {}" "".format(len(sp))) # fcol2img = (sp[0] & 0xffff) << 0 | (sp[1] & 0xffff) << 16 # | (sp[2] & 0xff) << 32 | (sp[3] & 0xff) << 40 # | (sp[4] & 0xff) << 48 | (sp[5] & 0xff) << 56 # Xm = (sp[6] & 0xff) << 16 | (sp[7] & 0xff) << 24 # | (sp[8] & 0xffff) << 32 | (sp[9] & 0xffff) << 48 # | (sp[10] & 0xfff) << 0 # Xt = (sp[11] & 63) << 0 | (sp[12] & 63) << 6 # | (sp[13] & 0xff) << 12 | (sp[14] & 0xff) << 20 # | (sp[15] & 0xff) << 28 | (sp[16] & 0xff) << 36 # | (sp[17] & 0xff) << 44 | (sp[18] & 1) << 52 | (sp[19] & 0xff) << 56 fcol2img = akg.tvm.const(sp[0], 'uint64') + akg.tvm.const(sp[1] * 2**16, 'uint64') \ + akg.tvm.const(sp[2] * 2**32, 'uint64') + akg.tvm.const(sp[3] * 2**40, 'uint64') \ + akg.tvm.const(sp[4] * 2**48, 'uint64') + akg.tvm.const(sp[5] * 2**56, 'uint64') xm = akg.tvm.const(sp[6] * 2**16, 'uint64') + akg.tvm.const(sp[7] * 2**24, 'uint64') \ + akg.tvm.const(sp[8] * 2**32, 'uint64') + akg.tvm.const(sp[9] * 2**48, 'uint64') \ + akg.tvm.const(sp[10], 'uint64') xt = akg.tvm.const(sp[11], 'uint64') + akg.tvm.const(sp[12] * 2**6, 'uint64') \ + akg.tvm.const(sp[13] * 2**12, 'uint64') + akg.tvm.const(sp[14] * 2**20, 'uint64') \ + akg.tvm.const(sp[15] * 2**28, 'uint64') + akg.tvm.const(sp[16] * 2**36, 'uint64') \ + akg.tvm.const(sp[17] * 2**44, 'uint64') + akg.tvm.const(sp[18] * 2**52, 'uint64') \ + akg.tvm.const(sp[19] * 2**56, 'uint64') return (fcol2img, xm, xt) def intrin_func(ins, outs): sp = [input_w, input_h, pad_left, pad_right, pad_top, pad_bottom, # fmatrix w_idx_kernel, h_idx_kernel, w_idx, h_idx, c1_idx, # xm stride_w, stride_h, kernel_w, kernel_h, dilation_w, dilation_h, jump_offset, repeat_mode, repeat_time] aa = ins[0] bb = outs[0] ib = akg.tvm.ir_builder.create() fcol2img, xm, xt = pack_args(sp) ib.emit(akg.tvm.call_extern(dtype, "set_fcol2img", fcol2img)) ib.emit(akg.tvm.call_extern(dtype, "vector_dup", bb.access_ptr("w"), 0, (input_w * input_h * 16 + 63) // 64, 1, 1, 8, 8)) for kh in range(kernel_h): for kw in range(kernel_w): sp[6] = kw sp[7] = kh _, xm, xt = pack_args(sp) offset = (kh * kernel_h + kw) * output_h * output_w * 16 ib.emit(akg.tvm.call_extern(dtype, "col2img", bb.access_ptr("rw"), aa.access_ptr("r", offset=offset), xm, xt)) return ib.get() with akg.tvm.build_config(offset_factor=1): return akg.tvm.decl_tensor_intrin(result.op, intrin_func, binds={input_data: input_data_buff, result: result_buff})
python-midonetclient/src/midonetclient/tenant.py
yantarou/midonet
221
11107636
<reponame>yantarou/midonet # vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2013 Midokura PTE LTD. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from midonetclient import bridge from midonetclient import chain from midonetclient import port_group from midonetclient import resource_base from midonetclient import router from midonetclient import vendor_media_type class Tenant(resource_base.ResourceBase): media_type = vendor_media_type.APPLICATION_TENANT_JSON def __init__(self, uri, dto, auth): super(Tenant, self).__init__(uri, dto, auth) def get_name(self): return self.dto['name'] def get_id(self): return self.dto['id'] def get_description(self): return self.dto['description'] def get_enabled(self): return self.dto['enabled'] def name(self, name): self.dto['name'] = name return self def description(self, description): self.dto['description'] = description return self def enabled(self, enabled): self.dto['enabled'] = enabled return self def get_bridges(self, query=None): headers = {'Accept': vendor_media_type.APPLICATION_BRIDGE_COLLECTION_JSON} return self.get_children(self.dto['bridges'], query, headers, bridge.Bridge) def get_chains(self, query=None): headers = {'Accept': vendor_media_type.APPLICATION_CHAIN_COLLECTION_JSON} return self.get_children(self.dto['chains'], query, headers, chain.Chain) def get_port_groups(self, query=None): headers = {'Accept': vendor_media_type.APPLICATION_PORTGROUP_COLLECTION_JSON} return self.get_children(self.dto['portGroups'], query, headers, port_group.PortGroup) def get_routers(self, query=None): headers = {'Accept': vendor_media_type.APPLICATION_ROUTER_COLLECTION_JSON} return self.get_children(self.dto['routers'], query, headers, router.Router)
igibson/utils/data_utils/ext_object/scripts_wip/query_object_placement_probs.py
suresh-guttikonda/iGibson
360
11107649
import argparse import json import os from igibson.render.mesh_renderer.mesh_renderer_settings import MeshRendererSettings from igibson.scenes.igibson_indoor_scene import InteractiveIndoorScene from igibson.simulator import Simulator def input_number_or_name(selection_name, options): if len(options) == 1: print("Only %s option is %s" % (selection_name, options[0])) return options[0] for i, option in enumerate(options): print("%s option %d: %s" % (selection_name, i, option)) user_input = input("Input number or name to assign probability, or done to finish\n") if user_input == "done": return "done" try: obj_num = int(user_input) choice = options[obj_num] except: if user_input.lower() not in [option.lower() for option in options]: print("Input %s is not valid, try again" % user_input) return False choice = [option for option in options if option.lower() == user_input.lower()][0] return choice def main(args): object_cat_dir = "data/ig_dataset/objects/%s" % (args.object_cat) if not os.path.isdir(object_cat_dir): print("%s is not a valid object" % (args.object_cat)) return if args.object_id: object_ids = [args.object_id] else: object_ids = os.listdir(object_cat_dir) obj_json_paths = [] existing_placement_rules = {} obj_probs = {} total_prob = 0.0 for object_id in object_ids: obj_dir = "%s/%s/misc/" % (object_cat_dir, object_id) if not os.path.isdir(obj_dir): print("%s %s is not a valid object" % (args.object_cat, object_id)) return obj_json_path = "%s/placement_probs.json" % (obj_dir) if os.path.isfile(obj_json_path) and not args.overwrite: if args.add: if total_prob == 0.0: with open(obj_json_path, "r") as f: obj_probs = json.load(f) total_prob = 1.0 elif not args.overwrite: print("%s exists and overwrite false, quitting" % obj_json_path) return obj_json_paths.append(obj_json_path) scene_names = [ "Beechwood_1_int", "Benevolence_1_int", "Ihlen_0_int", "Merom_0_int", "Pomaria_0_int", "Pomaria_2_int", "Wainscott_0_int", "Beechwood_0_int", "Benevolence_0_int", "Benevolence_2_int", "Ihlen_1_int", "Merom_1_int", "Pomaria_1_int", "Rs_int", "Wainscott_1_int", ] support_obj_dicts = [] for scene_name in scene_names: support_objs_json = "data/ig_dataset/scenes/%s/misc/all_support_objs.json" % scene_name if os.path.isfile(support_objs_json): with open(support_objs_json, "r") as f: support_obj_dicts += json.load(f) else: settings = MeshRendererSettings(enable_shadow=False, msaa=False, enable_pbr=False) s = Simulator(mode="headless", image_width=800, image_height=800, rendering_settings=settings) simulator = s scene = InteractiveIndoorScene(scene_name, texture_randomization=False, object_randomization=False) s.import_ig_scene(scene) for obj_name in scene.objects_by_name: obj = scene.objects_by_name[obj_name] if not obj.supporting_surfaces: continue info_dict = {} info_dict["name"] = obj_name info_dict["category"] = obj.category info_dict["room"] = obj.in_rooms[0] info_dict["supporting_surface_types"] = list(obj.supporting_surfaces.keys()) support_obj_dicts.append(info_dict) with open(support_objs_json, "w") as f: json.dump(support_obj_dicts, f) s.disconnect() unique_categories = set() unique_rooms = set() room_category_support_types = {} for support_obj_dict in support_obj_dicts: obj_category = support_obj_dict["category"] unique_categories.add(obj_category) obj_room = support_obj_dict["room"][:-2] unique_rooms.add(obj_room) room_category_support_types[(obj_category, obj_room)] = support_obj_dict["supporting_surface_types"] unique_categories = list(unique_categories) unique_rooms = list(unique_rooms) room_categories = {room: set() for room in unique_rooms} for support_obj_dict in support_obj_dicts: obj_category = support_obj_dict["category"] obj_room = support_obj_dict["room"][:-2] room_categories[obj_room].add(obj_category) for room in room_categories: room_categories[room] = list(room_categories[room]) done = False while not done: room = input_number_or_name("room", unique_rooms) while not room: room = input_number_or_name("room", unique_rooms) if room == "done": break categories = room_categories[room] obj_category = input_number_or_name("object category", categories) while not obj_category: obj_category = input_number_or_name("object category", categories) if obj_category == "done": break support_types = room_category_support_types[(obj_category, room)] support_type = input_number_or_name("support_type", support_types) while not support_type: support_type = input_number_or_name("support_type", support_types) if support_type == "done": break prob = float( input( "Enter probability for object %s being %s %s in room %s\n" % (args.object_cat, support_type, obj_category, room) ) ) obj_probs["%s-%s-%s" % (obj_category, room, support_type)] = prob total_prob += prob for key in obj_probs: obj_probs[key] /= total_prob for obj_json_path in obj_json_paths: with open(obj_json_path, "w") as f: json.dump(obj_probs, f) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Configure which surfaces and containers in a scene an object might go in." ) parser.add_argument("object_cat", type=str, default=None) parser.add_argument("--object_id", type=str, default=None) parser.add_argument("--overwrite", action="store_true", default=False) parser.add_argument("--add", action="store_true", default=False) args = parser.parse_args() main(args)
cxxtest/python/convert.py
coreyp1/graphlab
333
11107691
# # Execute this script to copy the cxxtest/*.py files # and run 2to3 to convert them to Python 3. # import glob import subprocess import os import shutil os.chdir('cxxtest') for file in glob.glob('*.py'): shutil.copyfile(file, '../python3/cxxtest/'+file) # os.chdir('../python3/cxxtest') # for file in glob.glob('*.py'): subprocess.call('2to3 -w '+file, shell=True)
ntm/updates.py
snipsco/ntm-lasagne
316
11107717
import theano import theano.tensor as T import numpy as np from lasagne.updates import get_or_compute_grads from collections import OrderedDict def graves_rmsprop(loss_or_grads, params, learning_rate=1e-4, chi=0.95, alpha=0.9, epsilon=1e-4): r""" <NAME>' RMSProp [1]_. .. math :: n_{i} &= \chi * n_i-1 + (1 - \chi) * grad^{2}\\ g_{i} &= \chi * g_i-1 + (1 - \chi) * grad\\ \Delta_{i} &= \alpha * Delta_{i-1} - learning_rate * grad / sqrt(n_{i} - g_{i}^{2} + \epsilon)\\ w_{i} &= w_{i-1} + \Delta_{i} References ---------- .. [1] Graves, Alex. "Generating Sequences With Recurrent Neural Networks", p.23 arXiv:1308.0850 """ grads = get_or_compute_grads(loss_or_grads, params) updates = OrderedDict() for param, grad in zip(params, grads): value = param.get_value(borrow=True) n = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) g = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) delta = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=param.broadcastable) n_ip1 = chi * n + (1. - chi) * grad ** 2 g_ip1 = chi * g + (1. - chi) * grad delta_ip1 = alpha * delta - learning_rate * grad / T.sqrt(n_ip1 + \ g_ip1 ** 2 + epsilon) updates[n] = n_ip1 updates[g] = g_ip1 updates[delta] = delta_ip1 updates[param] = param + delta_ip1 return updates
examples/callcontext/client.py
brubbel/Pyro4
638
11107727
<gh_stars>100-1000 from __future__ import print_function import sys import Pyro4 import uuid # example: set a single correlation id on the context that should be passed along Pyro4.current_context.correlation_id = uuid.uuid4() print("correlation id set to:", Pyro4.current_context.correlation_id) if sys.version_info < (3, 0): input = raw_input # custom proxy needed to get to annotation data, before Pyro 4.56 class CustomAnnotationProxy(Pyro4.Proxy): def __init__(self, uri): super(CustomAnnotationProxy, self).__init__(uri) self._pyroHmacKey = b"secr3t_k3y" # override the method that adds annotations and add our own def _pyroAnnotations(self): return {"XYZZ": b"Hello, I am a custom annotation from the proxy!"} def _pyroResponseAnnotations(self, annotations, msgtype): print(" Got response (msgtype=%d). Annotations:" % msgtype) for key in annotations: if key == "CORR": value = uuid.UUID(bytes=annotations[key]) elif key == "HMAC": value = "[...]" else: value = annotations[key] print(" {0} -> {1}".format(key, value)) uri = input("Enter the URI of the server object: ") print("\n------- (older) method to get annotations via callback on custom proxy... -----\n") with CustomAnnotationProxy(uri) as proxy: print("Sending a few messages using one proxy...") for i in range(4): msg = proxy.echo("hello-%d" % i) proxies = [CustomAnnotationProxy(uri) for _ in range(5)] for p in proxies: print("Sending one message from new proxy...") msg = p.echo("hello-%d" % id(p)) p._pyroRelease() with CustomAnnotationProxy(uri) as proxy: # oneway print("Sending a oneway message... (should only print a connection ok response)") proxy.oneway("hello-ONEWAY-1") print("Sending another oneway message... (should not print a response at all)") proxy.oneway("hello-ONEWAY-2") # asynchronous print("Asynchronous proxy message...") proxy._pyroAsync() result = proxy.echo("hello-ASYNC") _ = result.value print("\n------- get annotations via normal proxy and the call context... -----\n") input("press enter:") # the code below works as of Pyro 4.56. with Pyro4.Proxy(uri) as proxy: proxy._pyroHmacKey = b"secr3t_k3y" print("normal call") Pyro4.current_context.annotations = {"XYZZ": b"custom annotation from client via new way(1)"} result = proxy.echo("hi there - new method of annotation access in client") print("Annotations in response were: ", Pyro4.current_context.response_annotations) print("\noneway call") Pyro4.current_context.annotations = {"XYZZ": b"custom annotation from client via new way(2)"} proxy.oneway("hi there ONEWAY - new method of annotation access in client") print("Annotations in response were: ", Pyro4.current_context.response_annotations) print(" (should be empty because oneway!)") print("\nSee the console output on the server for more results.")
tools/generate_intersection_routes.py
L-Net-1992/transfuser
447
11107828
<filename>tools/generate_intersection_routes.py import glob import os import sys import lxml.etree as ET import argparse import random import time import carla SAMPLING_DISTANCE = [100] def add_intersection(transform, root, route_id): ''' Sample (start wp, end wp) pair along the canonical axes in a 100x100 grid Args: transform: carla transform of the grid center (position of traffic light) root: root of the xml tree structure route_id: route counter ''' x, y, yaw = transform.location.x, transform.location.y, transform.rotation.yaw req_yaw = yaw + 180.0 # the vehicle should be opposite the traffic light for dist in SAMPLING_DISTANCE: for mul in [-1, 1]: route = ET.SubElement(root, 'route', id='%d'%route_id, town=args.town) ET.SubElement(route, 'waypoint', x='%f'%(x+mul*dist), y='%f'%(y), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) ET.SubElement(route, 'waypoint', x='%f'%(x), y='%f'%(y+mul*dist), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) route_id += 1 route = ET.SubElement(root, 'route', id='%d'%route_id, town=args.town) ET.SubElement(route, 'waypoint', x='%f'%(x+mul*dist), y='%f'%y, z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) ET.SubElement(route, 'waypoint', x='%f'%(x), y='%f'%(y-mul*dist), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) route_id += 1 route = ET.SubElement(root, 'route', id='%d'%route_id, town=args.town) ET.SubElement(route, 'waypoint', x='%f'%(x-mul*dist), y='%f'%(y), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) ET.SubElement(route, 'waypoint', x='%f'%(x), y='%f'%(y+mul*dist), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) route_id += 1 route = ET.SubElement(root, 'route', id='%d'%route_id, town=args.town) ET.SubElement(route, 'waypoint', x='%f'%(x+mul*dist), y='%f'%y, z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) ET.SubElement(route, 'waypoint', x='%f'%(x), y='%f'%(y-mul*dist), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) route_id += 1 return root, route_id def add_intersection_subsample(transform, root, route_id): ''' Same function as above but samples 75% fewer routes Args: transform: carla transform of the grid center (position of traffic light) root: root of the xml tree structure route_id: route counter ''' x, y, yaw = transform.location.x, transform.location.y, transform.rotation.yaw req_yaw = yaw + 180.0 # the vehicle should be opposite the traffic light for dist in SAMPLING_DISTANCE: for mul in [-1, 1]: if random.randint(0,7) == 0: route = ET.SubElement(root, 'route', id='%d'%route_id, town=args.town) ET.SubElement(route, 'waypoint', x='%f'%(x+mul*dist), y='%f'%(y), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) ET.SubElement(route, 'waypoint', x='%f'%(x), y='%f'%(y+mul*dist), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) route_id += 1 if random.randint(0,7) == 0: route = ET.SubElement(root, 'route', id='%d'%route_id, town=args.town) ET.SubElement(route, 'waypoint', x='%f'%(x+mul*dist), y='%f'%y, z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) ET.SubElement(route, 'waypoint', x='%f'%(x), y='%f'%(y-mul*dist), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) route_id += 1 if random.randint(0,7) == 0: route = ET.SubElement(root, 'route', id='%d'%route_id, town=args.town) ET.SubElement(route, 'waypoint', x='%f'%(x-mul*dist), y='%f'%(y), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) ET.SubElement(route, 'waypoint', x='%f'%(x), y='%f'%(y+mul*dist), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) route_id += 1 if random.randint(0,7) == 0: route = ET.SubElement(root, 'route', id='%d'%route_id, town=args.town) ET.SubElement(route, 'waypoint', x='%f'%(x+mul*dist), y='%f'%y, z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) ET.SubElement(route, 'waypoint', x='%f'%(x), y='%f'%(y-mul*dist), z='0.0', pitch='0.0', roll='0.0', yaw='%f'%req_yaw) route_id += 1 return root, route_id def main(): client = carla.Client('localhost', 2100) client.set_timeout(200.0) world = client.load_world(args.town) print ('loaded world') actors = world.get_actors() traffic_lights_list = actors.filter('*traffic_light') print ('got %d traffic lights'%len(traffic_lights_list)) # each traffic light group at an intersection counted once count = 0 route_id = 0 root = ET.Element('routes') traffic_light_visited = [] for traffic_light in traffic_lights_list: if traffic_light.id not in traffic_light_visited: traffic_light_visited.append(traffic_light.id) count += 1 if not args.subsample: root, route_id = add_intersection(traffic_light.get_transform(), root, route_id) else: root, route_id = add_intersection_subsample(traffic_light.get_transform(), root, route_id) for adjacent_traffic_light in traffic_light.get_group_traffic_lights(): traffic_light_visited.append(adjacent_traffic_light.id) print ('unique intersections: ', count) tree = ET.ElementTree(root) if args.save_file is not None: tree.write(args.save_file, xml_declaration=True, encoding='utf-8', pretty_print=True) len_tree = 0 for _ in tree.iter('route'): len_tree += 1 print ('total routes: ', len_tree) if __name__ == '__main__': global args parser = argparse.ArgumentParser() parser.add_argument('--save_file', type=str, required=False, default=None, help='xml file path to save the route waypoints') parser.add_argument('--town', type=str, default='Town05', help='town for generating routes') parser.add_argument('--subsample', action='store_true', default=False, help='sample 75% fewer routes') args = parser.parse_args() main()
backend/lk/models/appstore_app.py
Purus/LaunchKitDocker
2,341
11107832
<filename>backend/lk/models/appstore_app.py # encoding: utf-8 # # Copyright 2016 Cluster Labs, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re from django.db import models from djorm_pgarray.fields import TextArrayField from backend.lk.models.apimodel import APIModel class AppStoreApp(APIModel): ENCRYPTED_ID_KEY_TOKEN = 'appstoreapp' create_time = models.DateTimeField(auto_now_add=True) update_time = models.DateTimeField(auto_now=True) itunes_id = models.CharField(max_length=128, unique=True) bundle_id = models.CharField(max_length=128, unique=True) app_info_ingestion_time = models.DateTimeField(null=True) app_info_countries = TextArrayField(null=True) decorated_country = None decorated_info = None def __getattr__(self, attr): return getattr(self.decorated_info, attr) @property def itunes_url(self): return 'https://itunes.apple.com/us/app/id%s' % self.itunes_id @property def public_small_icon(self): return self.icon_60 @property def public_medium_icon(self): return self.icon_512 def to_dict(self): return { 'id': self.encrypted_id, 'country': self.country, 'version': self.version, 'names': { 'short': self.short_name, 'full': self.name, }, 'icon': { 'small': self.public_small_icon, 'medium': self.public_medium_icon, }, 'iTunesId': self.itunes_id, 'bundleId': self.bundle_id, 'developer': self.developer_name, }
spokestack/nlu/parsers/__init__.py
jonra1993/WakeWord-Detection
139
11107850
import re DIGIT_SPLIT_RE = re.compile("[-,()\\s]+")
single_view_mpi/libs/mpi.py
deepneuralmachine/google-research
23,901
11107899
<reponame>deepneuralmachine/google-research<gh_stars>1000+ # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- """Utilities for working with Multiplane Images (MPIs). A multiplane image is a set of RGB + alpha textures, positioned as fronto- parallel planes at specific depths from a reference camera. It represents a lightfield and can be used to render new views from nearby camera positions by warping each texture according to its plane homography and combining the results with an over operation. More detail at: https://people.eecs.berkeley.edu/~tinghuiz/projects/mpi/ In this code, an MPI is represented by a tensor of layer textures and a tensor of depths: layers: [..., L, H, W, 4] -- L is the number of layers, last dimension is typically RGBA but it can be any number of channels as long as the last channel is alpha. depths: [..., L] -- distances of the planes from the reference camera. Layers and depths are stored back-to-front, i.e. farthest layer ("layer 0") comes first. Typically the depths are chosen so that the corresponding disparities (inverse depths) form an arithmetic sequence. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from single_view_mpi.libs import geometry from single_view_mpi.libs import utils @utils.name_scope def layer_visibility(alphas): """Compute visibility for each pixel in each layer. Visibility says how unoccluded each pixel is by the corresponding pixels in front of it (i.e. those pixels with the same (x,y) position in subsequent layers). The front layer has visibility 1 everywhere since nothing can occlude it. Each other layer has visibility equal to the product of (1 - alpha) for all the layers in front of it. Args: alphas: [..., L, H, W, 1] Alpha channels for L layers, back to front. Returns: [..., L, H, W, 1] visibilities. """ return tf.math.cumprod( 1.0 - alphas, axis=-4, exclusive=True, reverse=True) @utils.name_scope def layer_weights(alphas): """Compute contribution weights for each layer from a set of alpha channels. The weights w_i for each layer are determined from the layer alphas so that to composite the layers we simple multiply each by its weight and add them up. In other words, the weight says how much each layer contributes to the final composed image. For alpha-blending, the weight of a layer at a point is its visibility at that point times its alpha at that point, i.e: alpha_i * (1 - alpha_i+1) * (1 - alpha_i+2) * ... (1 - alpha_n-1) If the first (i.e. the back) layer has alpha=1 everywhere, then the output weights will sum to 1 at each point. Args: alphas: [..., L, H, W, 1] Alpha channels for L layers, back to front. Returns: [..., L, H, W, 1] The resulting layer weights. """ return alphas * layer_visibility(alphas) @utils.name_scope def compose_back_to_front(images): """Compose a set of images (for example, RGBA), back to front. Args: images: [..., L, H, W, C+1] Set of L images, with alpha in the last channel. Returns: [..., H, W, C] Composed image. """ weights = layer_weights(images[Ellipsis, -1:]) return tf.reduce_sum(images[Ellipsis, :-1] * weights, axis=-4) @utils.name_scope def disparity_from_layers(layers, depths): """Compute disparity map from a set of MPI layers. From reference view. Args: layers: [..., L, H, W, C+1] MPI layers, back to front. depths: [..., L] depths for each layer. Returns: [..., H, W, 1] Single-channel disparity map from reference viewpoint. """ disparities = 1.0 / depths # Add height, width and channel axes to disparities, so it can broadcast. disparities = disparities[Ellipsis, tf.newaxis, tf.newaxis, tf.newaxis] weights = layer_weights(layers[Ellipsis, -1:]) # Weighted sum of per-layer disparities: return tf.reduce_sum(disparities * weights, axis=-4) @utils.name_scope def make_depths(front_depth, back_depth, num_planes): """Returns a list of MPI plane depths, back to front. The first element in the list will be back_depth, and last will be near-depth, and in between there will be num_planes intermediate depths, which are interpolated linearly in disparity. Args: front_depth: The depth of the front-most MPI plane. back_depth: The depth of the back-most MPI plane. num_planes: The total number of planes to create. Returns: [num_planes] A tensor of depths sorted in descending order (so furthest first). This order is useful for back to front compositing. """ assert front_depth < back_depth front_disparity = 1.0 / front_depth back_disparity = 1.0 / back_depth disparities = tf.linspace(back_disparity, front_disparity, num_planes) return 1.0 / disparities @utils.name_scope def render_layers(layers, depths, pose, intrinsics, target_pose, target_intrinsics, height=None, width=None, clamp=True): """Render target layers from MPI representation. Args: layers: [..., L, H, W, C] MPI layers, back to front. depths: [..., L] MPI plane depths, back to front. pose: [..., 3, 4] reference camera pose. intrinsics: [..., 4] reference intrinsics. target_pose: [..., 3, 4] target camera pose. target_intrinsics: [..., 4] target intrinsics. height: height to render to in pixels (or None for input height). width: width to render to in pixels (or None for input width). clamp: whether to clamp image coordinates (see geometry.sample_image doc), i.e. extending the image beyond its size or not. Returns: [..., L, height, width, C] The layers warped to the target view by applying an appropriate homography to each one. """ source_to_target_pose = geometry.mat34_product( target_pose, geometry.mat34_pose_inverse(pose)) # Add a dimension to correspond to L in the poses and intrinsics. pose = pose[Ellipsis, tf.newaxis, :, :] # [..., 1, 3, 4] target_pose = target_pose[Ellipsis, tf.newaxis, :, :] # [..., 1, 3, 4] intrinsics = intrinsics[Ellipsis, tf.newaxis, :] # [..., 1, 4] target_intrinsics = target_intrinsics[Ellipsis, tf.newaxis, :] # [..., 1, 4] # Fronto-parallel plane equations at the given depths, in the reference # camera's frame. normals = tf.constant([0.0, 0.0, 1.0], shape=[1, 3]) depths = -depths[Ellipsis, tf.newaxis] # [..., L, 1] normals, depths = utils.broadcast_to_match(normals, depths, ignore_axes=1) planes = tf.concat([normals, depths], axis=-1) # [..., L, 4] homographies = geometry.inverse_homography(pose, intrinsics, target_pose, target_intrinsics, planes) # [..., L, 3, 3] # Each of the resulting [..., L] homographies knows how to inverse-warp one # of the [..., (H,W), L] images into a new [... (H',W')] target images. target_layers = geometry.homography_warp( layers, homographies, height=height, width=width, clamp=clamp) # The next few lines implement back-face culling. # # We don't want to render content that is behind the camera. (If we did, we # might see upside-down images of the layers.) A typical graphics approach # would be to test each pixel of each layer against a near-plane and discard # those that are in front of it. Here we implement something cheaper: # back-face culling. If the target camera sees the "back" of a layer then we # set that layer's alpha to zero. This is simple and sufficient in practice # to avoid nasty artefacts. # Convert planes to target camera space. target_planes is [..., L, 4] target_planes = geometry.mat34_transform_planes(source_to_target_pose, planes) # Fourth coordinate of plane is negative distance in front of the camera. # target_visible is [..., L] target_visible = tf.cast(target_planes[Ellipsis, -1] < 0.0, dtype=tf.float32) # per_layer_alpha is [..., L, 1, 1, 1] per_layer_alpha = target_visible[Ellipsis, tf.newaxis, tf.newaxis, tf.newaxis] # Multiply alpha channel by per_layer_alpha: non_alpha_channels = target_layers[Ellipsis, :-1] alpha = target_layers[Ellipsis, -1:] * per_layer_alpha target_layers = tf.concat([non_alpha_channels, alpha], axis=-1) return target_layers @utils.name_scope def render(layers, depths, pose, intrinsics, target_pose, target_intrinsics, height=None, width=None, clamp=True): """Render target image from MPI representation. Args: layers: [..., L, H, W, C+1] MPI layers back to front, alpha in last channel. depths: [..., L] MPI plane depths, back to front pose: [..., 3, 4] reference camera pose intrinsics: [..., 4] reference intrinsics target_pose: [..., 3, 4] target camera pose target_intrinsics: [..., 4] target intrinsics height: height to render to in pixels (or None for input height) width: width to render to in pixels (or None for input width) clamp: whether to clamp image coordinates (see geometry.sample_image doc). i.e. extending the image beyond its size or not Returns: [...., height, width, C] Rendered image at the target view. """ target_layers = render_layers( layers, depths, pose, intrinsics, target_pose, target_intrinsics, height=height, width=width, clamp=clamp) return compose_back_to_front(target_layers)
project/game/bots_battle/replays/test_tenhou_encoder.py
MahjongRepository/tenhou-python-bot
201
11108010
<filename>project/game/bots_battle/replays/test_tenhou_encoder.py<gh_stars>100-1000 from game.bots_battle.replays.tenhou import TenhouReplay from mahjong.meld import Meld from utils.test_helpers import make_meld def test_encode_called_chi(): meld = make_meld(Meld.CHI, tiles=[26, 29, 35]) meld.who = 3 meld.from_who = 2 meld.called_tile = 29 replay = TenhouReplay("", [], "") result = replay._encode_meld(meld) assert result == "19895" meld = make_meld(Meld.CHI, tiles=[4, 11, 13]) meld.who = 1 meld.from_who = 0 meld.called_tile = 4 replay = TenhouReplay("", [], "") result = replay._encode_meld(meld) assert result == "3303" def test_encode_called_pon(): meld = make_meld(Meld.PON, tiles=[104, 105, 107]) meld.who = 0 meld.from_who = 1 meld.called_tile = 105 replay = TenhouReplay("", [], "") result = replay._encode_meld(meld) assert result == "40521" meld = make_meld(Meld.PON, tiles=[124, 126, 127]) meld.who = 0 meld.from_who = 2 meld.called_tile = 124 replay = TenhouReplay("", [], "") result = replay._encode_meld(meld) assert result == "47658" def test_encode_called_daiminkan(): meld = make_meld(Meld.KAN, tiles=[100, 101, 102, 103]) meld.who = 2 meld.from_who = 3 meld.called_tile = 103 replay = TenhouReplay("", [], "") result = replay._encode_meld(meld) assert result == "26369" def test_encode_called_shouminkan(): meld = make_meld(Meld.SHOUMINKAN, tiles=[112, 113, 115, 114]) meld.who = 2 meld.from_who = 3 meld.called_tile = 114 replay = TenhouReplay("", [], "") result = replay._encode_meld(meld) assert result == "44113" def test_encode_called_ankan(): meld = make_meld(Meld.KAN, tiles=[72, 73, 74, 75]) meld.who = 2 meld.from_who = 2 meld.called_tile = 74 replay = TenhouReplay("", [], "") result = replay._encode_meld(meld) assert result == "18944"
insights/parsr/examples/httpd_conf.py
lhuett/insights-core
121
11108016
<gh_stars>100-1000 import string from insights.parsr import (Char, EOF, EOL, EndTagName, Forward, FS, GT, LT, Letters, Lift, LineEnd, Many, Number, OneLineComment, PosMarker, QuotedString, skip_none, StartTagName, String, WS, WSChar) from insights.parsr.query import Directive, Entry, Section def loads(data): return Entry(children=Top(data)[0]) def load(f): return loads(f.read()) def simple_to_entry(name, attrs): return Directive(name=name.value, attrs=attrs, lineno=name.lineno) def complex_to_entry(tag, children): name, attrs = tag return Section(name=name.value, attrs=attrs, children=children, lineno=name.lineno) Complex = Forward() Num = Number & (WSChar | LineEnd) Cont = Char("\\") + EOL StartName = WS >> PosMarker(StartTagName(Letters)) << WS EndName = WS >> EndTagName(Letters) << WS Comment = (WS >> OneLineComment("#")).map(lambda x: None) AttrStart = Many(WSChar) AttrEnd = (Many(WSChar) + Cont) | Many(WSChar) BareAttr = String(set(string.printable) - (set(string.whitespace) | set(";{}<>\\'\""))) Attr = AttrStart >> (Num | BareAttr | QuotedString) << AttrEnd Attrs = Many(Attr) StartTag = (WS + LT) >> (StartName + Attrs) << (GT + WS) EndTag = (WS + LT + FS) >> EndName << (GT + WS) Simple = WS >> (Lift(simple_to_entry) * PosMarker(Letters) * Attrs) << WS Stanza = Simple | Complex | Comment Complex <= (Lift(complex_to_entry) * StartTag * Many(Stanza).map(skip_none)) << EndTag Doc = Many(Stanza).map(skip_none) Top = Doc + EOF
astroNN/data/__init__.py
igomezv/astroNN
156
11108018
<reponame>igomezv/astroNN # ---------------------------------------------------------# # astroNN.data.__init__: tools for loading data # ---------------------------------------------------------# import os import astroNN def datapath(): """ Get astroNN embedded data path :return: full path to embedded data folder :rtype: str :History: | 2018-May-16 - Written - <NAME> (University of Toronto) | 2019-July-02 - Updated - <NAME> (University of Toronto) """ return os.path.join(os.path.dirname(astroNN.__path__[0]), 'astroNN', 'data') def data_description(): """ Print data description for astroNN embedded data :History: | 2018-May-16 - Written - <NAME> (University of Toronto) | 2019-July-02 - Updated - <NAME> (University of Toronto) """ items = { 'anderson_2017_dr14_parallax.npz': 'Anderson 2017 improved Gaia TGAS parallax from Data-Driven Stellar Model', 'dr13_contmask.npz': "APOGEE DR13 continuum mask from Bovy's APOGEE tools", 'dr14_contmask.npz': "APOGEE DR14 continuum mask from Bovy's APOGEE tools", 'dr16_contmask.npz': "APOGEE DR16 continuum mask", 'gaiadr2_apogeedr14_parallax.npz': 'Gaia DR2 - APOGEE DR14 matches, indices corresponds ' 'to APOGEE allstar DR14 file', 'aspcap_l31c_masks.npy': 'ASPCAP l31c (DR14) elements windows mask represented by bits on the 7514px spectrum', 'tf1_12.patch': 'Patch required to make astroNN fully functional with Tensorflow 1.12.x, also used in test suite', 'tf1_14.patch': 'Patch required to make astroNN fully functional with Tensorflow 1.14.x', } for item in items: print(item, ': ', items[item])
scripts/rename_logged_data.py
mageofboy/pylot
231
11108080
<reponame>mageofboy/pylot import glob import os def two_values_before_number(filebase, file_format='png'): for index, filename in enumerate(glob.glob(filebase)): vals = filename.split('-') new_filename = ('test@' + vals[0] + '-' + vals[1] + '-' + str(index) + '.' + file_format) os.rename(filename, new_filename) for filename in (glob.glob('test@*')): vals = filename.split('@') os.rename(filename, vals[1]) def one_value_before_number(filebase, file_format='png'): for index, filename in enumerate(glob.glob(filebase)): vals = filename.split('-') new_filename = 'test@' + vals[0] + '-' + str(index) + '.' + file_format os.rename(filename, new_filename) for filename in (glob.glob('test@*')): vals = filename.split('@') os.rename(filename, vals[1]) def main(): two_values_before_number('annotated*') one_value_before_number('signs*') one_value_before_number('bboxes*', file_format='json') two_values_before_number('center*') two_values_before_number('left*') two_values_before_number('right*') two_values_before_number('lidar*', file_format='ply') two_values_before_number('segmented*') two_values_before_number('perfect-detector*') two_values_before_number('depth*', file_format='pkl') if __name__ == '__main__': main()
tods/searcher/__init__.py
ZhuangweiKang/tods
544
11108098
from .brute_force_search import BruteForceSearch
saleor/graphql/app/tests/mutations/test_app_token_delete.py
fairhopeweb/saleor
15,337
11108102
<filename>saleor/graphql/app/tests/mutations/test_app_token_delete.py<gh_stars>1000+ import graphene from .....app.error_codes import AppErrorCode from .....app.models import App, AppToken from ....tests.utils import assert_no_permission, get_graphql_content APP_TOKEN_DELETE_MUTATION = """ mutation appTokenDelete($id: ID!){ appTokenDelete(id: $id){ errors{ field message code } appToken{ name authToken } } } """ def test_app_token_delete( permission_manage_apps, staff_api_client, staff_user, app, permission_manage_products, ): query = APP_TOKEN_DELETE_MUTATION token = app.tokens.get() staff_user.user_permissions.add(permission_manage_products) app.permissions.add(permission_manage_products) id = graphene.Node.to_global_id("AppToken", token.id) staff_user.user_permissions.add(permission_manage_apps) variables = {"id": id} response = staff_api_client.post_graphql(query, variables=variables) get_graphql_content(response) assert not AppToken.objects.filter(id=token.id).first() def test_app_token_delete_for_app( permission_manage_apps, app_api_client, permission_manage_products, ): app = App.objects.create(name="New_app", is_active=True) token = AppToken.objects.create(app=app) query = APP_TOKEN_DELETE_MUTATION token = app.tokens.get() requestor = app_api_client.app requestor.permissions.add(permission_manage_products) app.permissions.add(permission_manage_products) id = graphene.Node.to_global_id("AppToken", token.id) variables = {"id": id} response = app_api_client.post_graphql( query, variables=variables, permissions=(permission_manage_apps,) ) get_graphql_content(response) assert not AppToken.objects.filter(id=token.id).first() def test_app_token_delete_no_permissions(staff_api_client, staff_user, app): query = APP_TOKEN_DELETE_MUTATION token = app.tokens.get() id = graphene.Node.to_global_id("AppToken", token.id) variables = {"id": id} response = staff_api_client.post_graphql(query, variables=variables) assert_no_permission(response) token.refresh_from_db() def test_app_token_delete_out_of_scope_app( permission_manage_apps, staff_api_client, staff_user, app, permission_manage_products, ): """Ensure user can't delete app token with wider scope of permissions.""" query = APP_TOKEN_DELETE_MUTATION token = app.tokens.get() app.permissions.add(permission_manage_products) id = graphene.Node.to_global_id("AppToken", token.id) variables = {"id": id} # for staff user response = staff_api_client.post_graphql( query, variables=variables, permissions=(permission_manage_apps,) ) content = get_graphql_content(response) data = content["data"]["appTokenDelete"] errors = data["errors"] assert not data["appToken"] assert len(errors) == 1 error = errors[0] assert error["code"] == AppErrorCode.OUT_OF_SCOPE_APP.name assert error["field"] == "id" assert AppToken.objects.filter(id=token.id).exists() def test_app_token_delete_superuser_can_delete_token_for_any_app( permission_manage_apps, superuser_api_client, app, permission_manage_products, ): """Ensure superuser can delete app token for app with any scope of permissions.""" query = APP_TOKEN_DELETE_MUTATION token = app.tokens.get() app.permissions.add(permission_manage_products) id = graphene.Node.to_global_id("AppToken", token.id) variables = {"id": id} response = superuser_api_client.post_graphql(query, variables=variables) content = get_graphql_content(response) data = content["data"]["appTokenDelete"] errors = data["errors"] assert data["appToken"] assert not errors assert not AppToken.objects.filter(id=token.id).exists() def test_app_token_delete_for_app_out_of_scope_app( permission_manage_apps, app_api_client, permission_manage_products, ): app = App.objects.create(name="New_app", is_active=True) token = AppToken.objects.create(app=app) query = APP_TOKEN_DELETE_MUTATION app.permissions.add(permission_manage_products) id = graphene.Node.to_global_id("AppToken", token.id) variables = {"id": id} response = app_api_client.post_graphql( query, variables=variables, permissions=(permission_manage_apps,) ) content = get_graphql_content(response) data = content["data"]["appTokenDelete"] errors = data["errors"] assert not data["appToken"] assert len(errors) == 1 error = errors[0] assert error["code"] == AppErrorCode.OUT_OF_SCOPE_APP.name assert error["field"] == "id" assert AppToken.objects.filter(id=token.id).exists()
drl_grasping/control/moveit2.py
Tiamat-Tech/drl_grasping
126
11108103
from moveit2 import MoveIt2Interface from rclpy.executors import MultiThreadedExecutor from threading import Thread import rclpy class MoveIt2(MoveIt2Interface): def __init__(self, robot_model: str, separate_gripper_controller: bool = True, use_sim_time: bool = True, node_name: str = 'ign_moveit2_py'): try: rclpy.init() except: if not rclpy.ok(): import sys sys.exit("ROS 2 could not be initialised") super().__init__(robot_model=robot_model, separate_gripper_controller=separate_gripper_controller, use_sim_time=use_sim_time, node_name=node_name) self._moveit2_executor = MultiThreadedExecutor(1) self._moveit2_executor.add_node(self) thread = Thread(target=self._moveit2_executor.spin, args=()) thread.daemon = True thread.start()
analysis/sys_id/make_random_waveform.py
leozz37/makani
1,178
11108123
<gh_stars>1000+ #!/usr/bin/python # Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Write a low-pass-filtered Gaussian random timeseries to a text file.""" import sys import gflags import numpy as np import scipy.signal gflags.DEFINE_float('sample_rate', 100.0, 'Sample rate [Hz]') gflags.DEFINE_integer('filter_order', 2, 'Order of low-pass filter') gflags.DEFINE_float('mean', 130.0, 'Mean value of time series') gflags.DEFINE_float('rms', 1.0, 'Standard deviation of time series') gflags.DEFINE_float('ramp_time', 10.0, 'Ramp time [s]') gflags.DEFINE_boolean('ramp_up', True, 'Apply ramp at beginning of waveform?') gflags.DEFINE_boolean('ramp_down', True, 'Apply ramp at end of waveform?') gflags.DEFINE_float('duration', 300.0, 'Time series duration [s]') gflags.DEFINE_integer('columns', 8, 'Number of time series data columns') gflags.DEFINE_float('cutoff_frequency', 2.0, 'Low-pass filter cutoff frequency [Hz]') gflags.DEFINE_string('output_file', '', 'Output filename.') gflags.DEFINE_boolean('use_motor_client_format', None, 'Produce data in a format suitable for the motor client.') FLAGS = gflags.FLAGS def main(argv): try: argv = FLAGS(argv) except gflags.FlagsError, e: print '\nError: %s\n\nUsage: %s\n%s' % (e, sys.argv[0], FLAGS) sys.exit(1) nyquist_frequency = FLAGS.sample_rate / 2.0 b, a = scipy.signal.butter(FLAGS.filter_order, FLAGS.cutoff_frequency / nyquist_frequency, 'low', analog=False) settling_time = 5.0 * (1.0 / FLAGS.cutoff_frequency) x = np.random.randn((FLAGS.duration + settling_time) * FLAGS.sample_rate) y = scipy.signal.lfilter(b, a, x) y = y[int(round(FLAGS.sample_rate * settling_time)):] y *= FLAGS.rms / np.std(y) y += FLAGS.mean t = np.arange(len(y)) / FLAGS.sample_rate # Apply ramp-up and/or ramp-down if desired. ramp_samples = int(FLAGS.ramp_time * FLAGS.sample_rate) if FLAGS.ramp_up: y[0:ramp_samples] = np.linspace(0.0, y[ramp_samples], ramp_samples) if FLAGS.ramp_down: y[-ramp_samples:] = np.linspace(y[-ramp_samples], 0.0, ramp_samples) filename = FLAGS.output_file if not filename: filename = 'blrms_%d_to_%d_mHz_rms_%.0f_mean_%.0f_order_%d.txt' % ( 0.0, FLAGS.cutoff_frequency * 1000, FLAGS.rms, FLAGS.mean, FLAGS.filter_order) print "Writing to '%s'..." % filename output = np.tile(y, (FLAGS.columns, 1)) # Default "use_motor_client_format" to true if eight columns of data # were requested. if FLAGS.use_motor_client_format is None: FLAGS.use_motor_client_format = (FLAGS.columns == 8) # The motor client expects three blocks of eight columns each, # giving, respectively, the commanded torque [Nm], the lower motor # speed limit [rad/s], and the upper speed limit [rad/s]. To # achieve a speed command, we set the upper and lower speed limits # equal, and set the torque command (which does nothing) to zero. if FLAGS.use_motor_client_format: assert FLAGS.columns == 8 output = np.vstack((np.zeros(output.shape), output, output)) np.savetxt(filename, np.vstack((t, output)).T, fmt='%0.02f' + ' %f' * output.shape[0]) if __name__ == '__main__': main(sys.argv)
scripts/generate_spirv.py
samuelig/Vulkan-ValidationLayers
432
11108136
#!/usr/bin/env python3 # # Copyright (c) 2016-2021 Valve Corporation # Copyright (c) 2016-2021 LunarG, Inc. # Copyright (c) 2016-2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compile GLSL to SPIR-V. Depends on glslangValidator """ import os import sys import subprocess import struct import re import argparse SPIRV_MAGIC = 0x07230203 COLUMNS = 4 INDENT = 4 parser = argparse.ArgumentParser(description='Generate spirv code for this repository') parser.add_argument('--outfilename', action='store', help='Output Filename') parser.add_argument('infilename', action='store', type=str, help='Input Filename') parser.add_argument('glslangvalidator', action='store', help='glslangvalidator') args_in = parser.parse_args() if not os.path.isfile(args_in.infilename): sys.exit("Cannot find infilename " + args_in.infilename) if not os.path.isfile(args_in.glslangvalidator): sys.exit("Cannot find glslangvalidator " + args_in.glslangvalidator) def identifierize(s): # translate invalid chars s = re.sub("[^0-9a-zA-Z_]", "_", s) # translate leading digits return re.sub("^[^a-zA-Z_]+", "_", s) def compile(filename, tmpfile): # invoke glslangValidator try: args = [args_in.glslangvalidator, "-V", "-H", "-o", tmpfile, filename] output = subprocess.check_output(args, universal_newlines=True) except subprocess.CalledProcessError as e: raise(e.output) # read the temp file into a list of SPIR-V words words = [] with open(tmpfile, "rb") as f: data = f.read() assert(len(data) and len(data) % 4 == 0) # determine endianness fmt = ("<" if data[0] == (SPIRV_MAGIC & 0xff) else ">") + "I" for i in range(0, len(data), 4): words.append(struct.unpack(fmt, data[i:(i + 4)])[0]) assert(words[0] == SPIRV_MAGIC) # remove temp file os.remove(tmpfile) return (words, output.rstrip()) base = os.path.basename(args_in.infilename) words, comments = compile(args_in.infilename, base + ".tmp") literals = [] for i in range(0, len(words), COLUMNS): columns = ["0x%08x" % word for word in words[i:(i + COLUMNS)]] literals.append(" " * INDENT + ", ".join(columns) + ",") header = """#include <stdint.h> #pragma once // This file is ***GENERATED***. Do Not Edit. /* Copyright (c) 2021 The Khronos Group Inc. * Copyright (c) 2021 Valve Corporation * Copyright (c) 2021 LunarG, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: <NAME> <<EMAIL>> */ #if 0 %s #endif static const uint32_t %s[%d] = { %s }; """ % (comments, identifierize(base), len(words), "\n".join(literals)) if args_in.outfilename: with open(args_in.outfilename, "w") as f: print(header, end="", file=f) else: print(header, end="")
data_structures/binary_trees/print_odd_level_nodes.py
FatiahBalo/python-ds
1,723
11108139
# Print all the nodes at odd levels of a binary tree class Node: def __init__(self, val): self.val = val self.left = None self.right = None def print_odd(root, is_odd=True): if not root: return if is_odd: print(root.val, end=' ') print_odd(root, not is_odd) print_odd(root, not is_odd)
build/chip/java/jar_runner.py
summercms/connectedhomeip
3,495
11108148
<gh_stars>1000+ #!/usr/bin/env python # Copyright (c) 2020 Project CHIP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Wrapper script to run javac command as an action with gn.""" import os import subprocess import sys EXIT_SUCCESS = 0 EXIT_FAILURE = 1 def IsExecutable(path): """Returns whether file at |path| exists and is executable. Args: path: absolute or relative path to test. Returns: True if the file at |path| exists, False otherwise. """ return os.path.isfile(path) and os.access(path, os.X_OK) def FindCommand(command): """Looks up for |command| in PATH. Args: command: name of the command to lookup, if command is a relative or absolute path (i.e. contains some path separator) then only that path will be tested. Returns: Full path to command or None if the command was not found. On Windows, this respects the PATHEXT environment variable when the command name does not have an extension. """ fpath, _ = os.path.split(command) if fpath: if IsExecutable(command): return command if sys.platform == 'win32': # On Windows, if the command does not have an extension, cmd.exe will # try all extensions from PATHEXT when resolving the full path. command, ext = os.path.splitext(command) if not ext: exts = os.environ['PATHEXT'].split(os.path.pathsep) else: exts = [ext] else: exts = [''] for path in os.environ['PATH'].split(os.path.pathsep): for ext in exts: path = os.path.join(path, command) + ext if IsExecutable(path): return path return None def main(): java_path = FindCommand('jar') if not java_path: sys.stderr.write('jar: command not found\n') sys.exit(EXIT_FAILURE) args = sys.argv[1:] if len(args) < 1: sys.stderr.write('usage: %s [jar_args]...\n' % sys.argv[0]) sys.exit(EXIT_FAILURE) return subprocess.check_call([java_path] + args) if __name__ == '__main__': sys.exit(main())
pytouch/handlers/__init__.py
Pandinosaurus/PyTouch
149
11108157
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from .image import ImageHandler from .sensor import SensorHandler from .video import VideoHandler
keras_extensions/models.py
xgenpanda/keras_extension
225
11108177
from keras.models import Model, standardize_X from keras.layers import containers from keras import optimizers, objectives from keras import backend as K class SingleLayerUnsupervised(Model, containers.Sequential): """ Single layer unsupervised learning Model. """ # add Layer, adapted from keras.layers.containers.Sequential def add(self, layer): if len(self.layers) > 0: warnings.warn('Cannot add more than one Layer to SingleLayerUnsupervised!') return super(SingleLayerUnsupervised, self).add(layer) # compile theano graph, adapted from keras.models.Sequential def compile(self, optimizer, loss): self.optimizer = optimizers.get(optimizer) self.loss = objectives.get(loss) # input of model self.X_train = self.get_input(train=True) self.X_test = self.get_input(train=False) train_loss = self.loss(self.X_train) test_loss = self.loss(self.X_test) train_loss.name = 'train_loss' test_loss.name = 'test_loss' for r in self.regularizers: train_loss = r(train_loss) updates = self.optimizer.get_updates(self.params, self.constraints, train_loss) updates += self.updates if type(self.X_train) == list: train_ins = self.X_train test_ins = self.X_test else: train_ins = [self.X_train] test_ins = [self.X_test] self._train = K.function(train_ins, train_loss, updates=updates) self._test = K.function(test_ins, test_loss) # train model, adapted from keras.models.Sequential def fit(self, X, batch_size=128, nb_epoch=100, verbose=1, callbacks=[], validation_split=0., validation_data=None, shuffle=True, show_accuracy=False): X = standardize_X(X) val_f = None val_ins = None if validation_data or validation_split: if show_accuracy: val_f = self._test_with_acc else: val_f = self._test if show_accuracy: f = self._train_with_acc out_labels = ['loss', 'acc'] else: f = self._train out_labels = ['loss'] ins = X# + [y, sample_weight] metrics = ['loss', 'acc', 'val_loss', 'val_acc'] return self._fit(f, ins, out_labels=out_labels, batch_size=batch_size, nb_epoch=nb_epoch, verbose=verbose, callbacks=callbacks, val_f=val_f, val_ins=val_ins, shuffle=shuffle, metrics=metrics)
workspace/lesson1.py
hito0512/tensorRT_Pro
537
11108182
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 1, 3, stride=1, padding=1, bias=True) self.conv.weight.data.fill_(0.3) self.conv.bias.data.fill_(0.2) def forward(self, x): x = self.conv(x) # return x.view(int(x.size(0)), -1) return x.view(-1, int(x.numel() // x.size(0))) model = Model().eval() x = torch.full((1, 1, 3, 3), 1.0) y = model(x) print(y) torch.onnx.export( model, (x, ), "lesson1.onnx", verbose=True )
technology/sky130/modules/sky130_row_cap.py
im-world/OpenRAM
335
11108193
<gh_stars>100-1000 #!/usr/bin/env python3 # See LICENSE for licensing information. # # Copyright (c) 2016-2021 Regents of the University of California # All rights reserved. # import debug import design from tech import cell_properties as props class sky130_row_cap(design.design): def __init__(self, version, name=""): if version == "rowend": cell_name = "sky130_fd_bd_sram__sram_sp_rowend" elif version == "rowenda": cell_name = "sky130_fd_bd_sram__sram_sp_rowenda" elif version == "rowend_replica": cell_name = "sky130_fd_bd_sram__openram_sp_rowend_replica" elif version == "rowenda_replica": cell_name = "sky130_fd_bd_sram__openram_sp_rowenda_replica" else: debug.error("Invalid type for row_end", -1) super().__init__(name=name, cell_name=cell_name, prop=props.row_cap_1port_cell)
esphome/components/anova/climate.py
OttoWinter/esphomeyaml
249
11108196
import esphome.codegen as cg import esphome.config_validation as cv from esphome.components import climate, ble_client from esphome.const import CONF_ID, CONF_UNIT_OF_MEASUREMENT UNITS = { "f": "f", "c": "c", } CODEOWNERS = ["@buxtronix"] DEPENDENCIES = ["ble_client"] anova_ns = cg.esphome_ns.namespace("anova") Anova = anova_ns.class_( "Anova", climate.Climate, ble_client.BLEClientNode, cg.PollingComponent ) CONFIG_SCHEMA = ( climate.CLIMATE_SCHEMA.extend( { cv.GenerateID(): cv.declare_id(Anova), cv.Required(CONF_UNIT_OF_MEASUREMENT): cv.enum(UNITS), } ) .extend(ble_client.BLE_CLIENT_SCHEMA) .extend(cv.polling_component_schema("60s")) ) async def to_code(config): var = cg.new_Pvariable(config[CONF_ID]) await cg.register_component(var, config) await climate.register_climate(var, config) await ble_client.register_ble_node(var, config) cg.add(var.set_unit_of_measurement(config[CONF_UNIT_OF_MEASUREMENT]))
spyne/util/resource.py
edustaff/spyne
786
11108203
<reponame>edustaff/spyne # encoding: utf8 # # spyne - Copyright (C) Spyne contributors. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 # import os.path import spyne.util.autorel def get_resource_path(ns, fn): try: from spyne._deploymentinfo import resource_filename except ImportError: from pkg_resources import resource_filename resfn = resource_filename(ns, fn) spyne.util.autorel.AutoReloader.FILES.add(resfn) path = os.path.abspath(resfn) return path def get_resource_file(ns, fn): return open(get_resource_path(ns, fn), 'rb') def get_resource_file_contents(ns, fn, enc=None): resfn = get_resource_path(ns, fn) if enc is None: return open(resfn, 'rb').read() else: return open(resfn, 'rb').read().decode(enc) def parse_xml_resource(ns, fn): from lxml import etree retval = etree.parse(get_resource_file(ns, fn)) return retval.getroot() def parse_html_resource(ns, fn): from lxml import html retval = html.parse(get_resource_file(ns, fn)) return retval.getroot() def parse_cloth_resource(ns, fn): from lxml import html retval = html.fragment_fromstring(get_resource_file_contents(ns, fn), create_parent='spyne-root') retval.attrib['spyne-tagbag'] = '' return retval
tests/test_elements/test_ui_window.py
glipR/pygame_gui
339
11108286
import os import pytest import pygame import pygame_gui from tests.shared_fixtures import _init_pygame, default_ui_manager from tests.shared_fixtures import default_display_surface, _display_surface_return_none from tests.shared_comparators import compare_surfaces from pygame_gui.elements.ui_window import UIWindow from pygame_gui.elements.ui_button import UIButton from pygame_gui.core.interfaces import IUIManagerInterface from pygame_gui import UIManager from pygame_gui.elements.ui_drop_down_menu import UIDropDownMenu try: # mouse button constants not defined in pygame 1.9.3 pygame.BUTTON_LEFT pygame.BUTTON_MIDDLE pygame.BUTTON_RIGHT except AttributeError: pygame.BUTTON_LEFT = 1 pygame.BUTTON_MIDDLE = 2 pygame.BUTTON_RIGHT = 3 class TestUIWindow: def test_creation(self, _init_pygame, default_ui_manager, _display_surface_return_none): UIWindow(pygame.Rect(100, 100, 200, 200), window_display_title="Test Window", manager=default_ui_manager, element_id='window') def test_set_blocking(self, _init_pygame, default_ui_manager: IUIManagerInterface, _display_surface_return_none): window = UIWindow(pygame.Rect(200, 200, 200, 200), window_display_title="Test Window", manager=default_ui_manager, element_id='window') button = UIButton(relative_rect=pygame.Rect(10, 10, 150, 30), text="Test Button", tool_tip_text="This is a test of the button's tool tip functionality.", manager=default_ui_manager, allow_double_clicks=True) default_ui_manager.process_events(pygame.event.Event(pygame.MOUSEBUTTONDOWN, {'button': pygame.BUTTON_LEFT, 'pos': button.rect.center})) assert button.held default_ui_manager.process_events(pygame.event.Event(pygame.MOUSEBUTTONUP, {'button': pygame.BUTTON_LEFT, 'pos': button.rect.center})) window.set_blocking(True) default_ui_manager.process_events(pygame.event.Event(pygame.MOUSEBUTTONDOWN, {'button': pygame.BUTTON_LEFT, 'pos': button.rect.center})) assert not button.held def test_set_minimum_dimensions(self, _init_pygame, default_ui_manager: IUIManagerInterface, _display_surface_return_none): window = UIWindow(pygame.Rect(200, 200, 200, 200), window_display_title="Test Window", manager=default_ui_manager) window.set_minimum_dimensions((200, 200)) window.set_dimensions((100, 100)) assert window.rect.size == (200, 200) window.set_minimum_dimensions((250, 250)) assert window.rect.size == (250, 250) def test_set_dimensions(self, _init_pygame, default_ui_manager: IUIManagerInterface, _display_surface_return_none): window = UIWindow(pygame.Rect(200, 200, 200, 200), window_display_title="Test Window", manager=default_ui_manager) button_rect = pygame.Rect(0, 0, 150, 30) button_rect.topright = (-10, 10) button = UIButton(relative_rect=button_rect, text="Test Button", tool_tip_text="This is a test of the button's tool tip functionality.", manager=default_ui_manager, container=window, anchors={'left': 'right', 'right': 'right', 'top': 'top', 'bottom': 'top'}) assert button.rect.topright == (window.get_container().rect.right - 10, window.get_container().rect.top + 10) assert button.rect.topright == (374, 253) window.set_dimensions((300, 400)) assert button.rect.topright == (window.get_container().rect.right - 10, window.get_container().rect.top + 10) assert button.rect.topright == (474, 253) def test_set_relative_position(self, _init_pygame, default_ui_manager: IUIManagerInterface, _display_surface_return_none): window = UIWindow(pygame.Rect(200, 200, 200, 200), window_display_title="Test Window", manager=default_ui_manager) button_rect = pygame.Rect(0, 0, 150, 30) button_rect.topright = (-10, 10) button = UIButton(relative_rect=button_rect, text="Test Button", tool_tip_text="This is a test of the button's tool tip functionality.", manager=default_ui_manager, container=window, anchors={'left': 'right', 'right': 'right', 'top': 'top', 'bottom': 'top'}) assert button.rect.topright == (374, 253) window.set_relative_position((100, 100)) assert button.rect.topright == (274, 153) def test_set_position(self, _init_pygame, default_ui_manager: IUIManagerInterface, _display_surface_return_none): window = UIWindow(pygame.Rect(200, 200, 200, 200), window_display_title="Test Window", manager=default_ui_manager) button_rect = pygame.Rect(0, 0, 150, 30) button_rect.topright = (-10, 10) button = UIButton(relative_rect=button_rect, text="Test Button", tool_tip_text="This is a test of the button's tool tip functionality.", manager=default_ui_manager, container=window, anchors={'left': 'right', 'right': 'right', 'top': 'top', 'bottom': 'top'}) assert button.rect.topright == (374, 253) window.set_position((100, 100)) assert button.rect.topright == (274, 153) def test_process_event(self, _init_pygame, default_ui_manager, _display_surface_return_none: None): window = UIWindow(pygame.Rect(0, 0, 200, 200), window_display_title="Test Window", manager=default_ui_manager) button_rect = pygame.Rect(0, 0, 150, 30) button_rect.topright = (-10, 10) button = UIButton(relative_rect=button_rect, text="Test Button", tool_tip_text="This is a test of the button's tool tip functionality.", manager=default_ui_manager, container=window, object_id='#specific_id_test', anchors={'left': 'right', 'right': 'right', 'top': 'top', 'bottom': 'top'}) button.process_event(pygame.event.Event(pygame.MOUSEBUTTONDOWN, {'button': pygame.BUTTON_LEFT, 'pos': button.rect.center})) button.process_event(pygame.event.Event(pygame.MOUSEBUTTONUP, {'button': pygame.BUTTON_LEFT, 'pos': button.rect.center})) confirm_event_fired = False event_object_id = None for event in pygame.event.get(): if (event.type == pygame.USEREVENT and event.user_type == pygame_gui.UI_BUTTON_PRESSED and event.ui_element == button): confirm_event_fired = True event_object_id = event.ui_object_id assert confirm_event_fired assert event_object_id == 'window.#specific_id_test' consumed_event = window.process_event(pygame.event.Event(pygame.MOUSEBUTTONDOWN, {'button': pygame.BUTTON_RIGHT, 'pos': window.rect.center})) assert consumed_event is True window.edge_hovering[0] = True consumed_event = window.process_event(pygame.event.Event(pygame.MOUSEBUTTONDOWN, {'button': pygame.BUTTON_LEFT, 'pos': window.rect.topleft})) assert consumed_event and window.resizing_mode_active consumed_event = window.process_event(pygame.event.Event(pygame.MOUSEBUTTONUP, {'button': pygame.BUTTON_LEFT, 'pos': (500, 500)})) assert not (consumed_event or window.resizing_mode_active) consumed_event = window.process_event(pygame.event.Event(pygame.USEREVENT, {'user_type': pygame_gui.UI_BUTTON_PRESSED, 'ui_element': window.close_window_button})) assert not (consumed_event or window.alive()) def test_check_clicked_inside(self, _init_pygame, default_ui_manager, _display_surface_return_none: None): window = UIWindow(pygame.Rect(0, 0, 200, 200), window_display_title="Test Window", manager=default_ui_manager) clicked_inside = window.check_clicked_inside_or_blocking(pygame.event.Event(pygame.MOUSEBUTTONDOWN, {'button': 1, 'pos': (100, 100)})) assert clicked_inside is True def test_update(self, _init_pygame, default_ui_manager, _display_surface_return_none: None): window = UIWindow(pygame.Rect(0, 0, 200, 200), window_display_title="Test Window", manager=default_ui_manager) button_rect = pygame.Rect(0, 0, 150, 30) button_rect.topright = (-10, 10) button = UIButton(relative_rect=button_rect, text="Test Button", tool_tip_text="This is a test of the button's tool tip functionality.", manager=default_ui_manager, container=window, anchors={'left': 'right', 'right': 'right', 'top': 'top', 'bottom': 'top'}) window.update(time_delta=0.05) window.title_bar.held = True window.update(time_delta=0.05) window.update(time_delta=0.05) window.title_bar.held = False window.update(time_delta=0.05) window.resizing_mode_active = True window.start_resize_rect = pygame.Rect(0, 0, 190, 190) window.edge_hovering[0] = True window.edge_hovering[1] = True window.update(time_delta=0.05) window.edge_hovering[0] = False window.edge_hovering[1] = False window.edge_hovering[2] = True window.edge_hovering[3] = True window.update(time_delta=0.05) def test_check_hover(self, _init_pygame, default_ui_manager: UIManager, _display_surface_return_none: None): window = UIWindow(pygame.Rect(100, 100, 200, 200), window_display_title="Test Window", manager=default_ui_manager, resizable=True) default_ui_manager.mouse_position = (window.rect.left + window.shadow_width, window.rect.centery) window.resizing_mode_active = False window.check_hover(0.05, False) assert window.edge_hovering[0] default_ui_manager.mouse_position = (window.rect.right - window.shadow_width, window.rect.centery) window.resizing_mode_active = False window.check_hover(0.05, False) assert window.edge_hovering[2] default_ui_manager.mouse_position = (window.rect.centerx, window.rect.top + window.shadow_width) window.resizing_mode_active = False window.check_hover(0.05, False) assert window.edge_hovering[1] default_ui_manager.mouse_position = (window.rect.centerx, window.rect.bottom - window.shadow_width) window.resizing_mode_active = False window.check_hover(0.05, False) assert window.edge_hovering[3] default_ui_manager.mouse_position = (800, 800) window.resizing_mode_active = True assert window.check_hover(0.05, False) window.resizing_mode_active = False window.is_blocking = True assert window.check_hover(0.05, False) window.is_blocking = False assert not window.check_hover(0.05, False) def test_get_top_layer(self, _init_pygame, default_ui_manager, _display_surface_return_none): window = UIWindow(pygame.Rect(0, 0, 400, 300), window_display_title="Test Window", manager=default_ui_manager) button_rect = pygame.Rect(0, 0, 150, 30) button_rect.topright = (-10, 10) button = UIButton(relative_rect=button_rect, text="Test Button", tool_tip_text="This is a test of the button's tool tip functionality.", manager=default_ui_manager, container=window, anchors={'left': 'right', 'right': 'right', 'top': 'top', 'bottom': 'top'}) menu = UIDropDownMenu(options_list=['eggs', 'flour', 'sugar'], starting_option='eggs', relative_rect=pygame.Rect(10, 10, 150, 30), manager=default_ui_manager, container=window) assert window.get_top_layer() == 4 window.update(0.05) assert window.get_top_layer() == 6 def test_change_layer(self, _init_pygame, default_ui_manager, _display_surface_return_none): window = UIWindow(pygame.Rect(0, 0, 200, 200), window_display_title="Test Window", manager=default_ui_manager) assert window.get_top_layer() == 4 window.change_layer(10) assert window.get_top_layer() == 12 window.update(0.05) assert window.get_top_layer() == 12 def test_kill(self, _init_pygame, default_ui_manager: IUIManagerInterface, _display_surface_return_none: None): window = UIWindow(pygame.Rect(0, 0, 200, 200), window_display_title="Test Window", manager=default_ui_manager) assert len(default_ui_manager.get_root_container().elements) == 2 assert len(default_ui_manager.get_sprite_group().sprites()) == 6 assert default_ui_manager.get_sprite_group().sprites() == [default_ui_manager.get_root_container(), window, window._window_root_container, window.window_element_container, window.title_bar, window.close_window_button ] window.kill() confirm_event_fired = False event_object_id = None for event in pygame.event.get(): if (event.type == pygame.USEREVENT and event.user_type == pygame_gui.UI_WINDOW_CLOSE and event.ui_element == window): confirm_event_fired = True event_object_id = event.ui_object_id assert confirm_event_fired assert event_object_id == 'window' assert len(default_ui_manager.get_root_container().elements) == 0 assert len(default_ui_manager.get_sprite_group().sprites()) == 1 assert default_ui_manager.get_sprite_group().sprites() == [default_ui_manager.get_root_container()] def test_rebuild_from_changed_theme_data_non_default(self, _init_pygame, _display_surface_return_none): manager = UIManager((800, 600), os.path.join("tests", "data", "themes", "ui_window_non_default.json")) window = UIWindow(pygame.Rect(0, 0, 200, 200), window_display_title="Test Window", manager=manager) assert window.image is not None def test_using_theme_prototype(self, _init_pygame, _display_surface_return_none): manager = UIManager((800, 600), os.path.join("tests", "data", "themes", "ui_window_prototype.json")) window = UIWindow(pygame.Rect(0, 0, 200, 200), window_display_title="Test Window", manager=manager) button_rect = pygame.Rect(0, 0, 150, 30) button_rect.topright = (-10, 10) button = UIButton(relative_rect=button_rect, text="Test Button", tool_tip_text="This is a test of the button's tool tip functionality.", manager=manager, container=window, anchors={'left': 'right', 'right': 'right', 'top': 'top', 'bottom': 'top'}) assert window.image is not None assert window.shadow_width == 1 assert window.border_width == 2 assert window.shape_corner_radius == 10 assert button.shadow_width == 1 assert button.border_width == 2 assert button.shape_corner_radius == 4 def test_rebuild_from_changed_theme_data_no_title_bar(self, _init_pygame, _display_surface_return_none): manager = UIManager((800, 600), os.path.join("tests", "data", "themes", "ui_window_no_title_bar.json")) window = UIWindow(pygame.Rect(0, 0, 200, 200), window_display_title="Test Window", manager=manager) assert window.title_bar is None assert window.close_window_button is None assert window.image is not None @pytest.mark.filterwarnings("ignore:Invalid value") @pytest.mark.filterwarnings("ignore:Colour hex code") @pytest.mark.filterwarnings("ignore:Invalid gradient") @pytest.mark.filterwarnings("ignore:Unable to load") def test_rebuild_from_changed_theme_data_bad_values(self, _init_pygame, _display_surface_return_none): manager = UIManager((800, 600), os.path.join("tests", "data", "themes", "ui_window_bad_values.json")) window = UIWindow(pygame.Rect(0, 0, 200, 200), window_display_title="Test Window", manager=manager) assert window.image is not None def test_stub_methods(self, _init_pygame, default_ui_manager, _display_surface_return_none): window = UIWindow(pygame.Rect(100, 100, 200, 200), window_display_title="Test Window", manager=default_ui_manager) window.focus() window.unfocus() def test_disable(self, _init_pygame: None, default_ui_manager: UIManager, _display_surface_return_none: None): window = UIWindow(pygame.Rect(200, 200, 200, 200), window_display_title="Test Window", manager=default_ui_manager) button_1 = UIButton(relative_rect=pygame.Rect(10, 10, 150, 30), text="Test Button", tool_tip_text="This is a test of the button's tool tip functionality.", manager=default_ui_manager, container=window) button_2 = UIButton(relative_rect=pygame.Rect(10, 50, 150, 30), text="Test Button 2", manager=default_ui_manager, container=window) window.disable() assert window.is_enabled is False assert window.title_bar.is_enabled is False assert button_1.is_enabled is False assert button_2.is_enabled is False # process a mouse button down event button_1.process_event( pygame.event.Event(pygame.MOUSEBUTTONDOWN, {'button': 1, 'pos': button_1.rect.center})) # process a mouse button up event button_1.process_event( pygame.event.Event(pygame.MOUSEBUTTONUP, {'button': 1, 'pos': button_1.rect.center})) button_1.update(0.01) assert button_1.check_pressed() is False def test_enable(self, _init_pygame: None, default_ui_manager: UIManager, _display_surface_return_none: None): window = UIWindow(pygame.Rect(200, 200, 200, 200), window_display_title="Test Window", manager=default_ui_manager) button_1 = UIButton(relative_rect=pygame.Rect(10, 10, 150, 30), text="Test Button", tool_tip_text="This is a test of the button's tool tip functionality.", manager=default_ui_manager, container=window) button_2 = UIButton(relative_rect=pygame.Rect(10, 50, 150, 30), text="Test Button 2", manager=default_ui_manager, container=window) window.disable() window.enable() assert window.is_enabled is True assert window.title_bar.is_enabled is True assert button_1.is_enabled is True assert button_2.is_enabled is True # process a mouse button down event button_1.process_event( pygame.event.Event(pygame.MOUSEBUTTONDOWN, {'button': 1, 'pos': button_1.rect.center})) # process a mouse button up event button_1.process_event( pygame.event.Event(pygame.MOUSEBUTTONUP, {'button': 1, 'pos': button_1.rect.center})) button_1.update(0.01) assert button_1.check_pressed() is True def test_show(self, _init_pygame, default_ui_manager, _display_surface_return_none): window = UIWindow(pygame.Rect(100, 100, 200, 200), window_display_title="Test Window", manager=default_ui_manager, visible=0) assert window.visible == 0 assert window._window_root_container.visible == 0 assert window.title_bar.visible == 0 assert window.window_element_container.visible == 0 assert window.close_window_button.visible == 0 window.show() assert window.visible == 1 assert window._window_root_container.visible == 1 assert window.title_bar.visible == 1 assert window.window_element_container.visible == 1 assert window.close_window_button.visible == 1 def test_hide(self, _init_pygame, default_ui_manager, _display_surface_return_none): window = UIWindow(pygame.Rect(100, 100, 200, 200), window_display_title="Test Window", manager=default_ui_manager) assert window.visible == 1 assert window._window_root_container.visible == 1 assert window.title_bar.visible == 1 assert window.window_element_container.visible == 1 assert window.close_window_button.visible == 1 window.hide() assert window.visible == 0 assert window._window_root_container.visible == 0 assert window.title_bar.visible == 0 assert window.window_element_container.visible == 0 assert window.close_window_button.visible == 0 def test_show_hide_rendering(self, _init_pygame, default_ui_manager, _display_surface_return_none): resolution = (400, 400) empty_surface = pygame.Surface(resolution) empty_surface.fill(pygame.Color(0, 0, 0)) surface = empty_surface.copy() manager = UIManager(resolution) window = UIWindow(pygame.Rect(100, 100, 400, 400), window_display_title="Test Window", manager=manager, visible=0) manager.update(0.01) manager.draw_ui(surface) assert compare_surfaces(empty_surface, surface) surface.fill(pygame.Color(0, 0, 0)) window.show() manager.update(0.01) manager.draw_ui(surface) assert not compare_surfaces(empty_surface, surface) surface.fill(pygame.Color(0, 0, 0)) window.hide() manager.update(0.01) manager.draw_ui(surface) assert compare_surfaces(empty_surface, surface)
retrieval_pt/predict.py
baidu/knowledge-driven-dialogue
299
11108308
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################ # # Copyright (c) 2019 Baidu.com, Inc. All Rights Reserved # ################################################################################ """ File: predict.py """ import torch import torch.nn.functional as F import source.inputters.data_provider as reader from source.models.retrieval_model import RetrievalModel from args import base_parser from args import print_arguments def build_data(args): """ build test data """ task_name = args.task_name.lower() processor = reader.MatchProcessor(data_dir=args.data_dir, task_name=task_name, vocab_path=args.vocab_path, max_seq_len=args.max_seq_len, do_lower_case=args.do_lower_case) test_data_generator = processor.data_generator( batch_size=args.batch_size, phase='test', epoch=1, shuffle=False, device=args.gpu) num_test_examples = processor.get_num_examples(phase='test') test_data = [test_data_generator, num_test_examples] return processor, test_data def build_model(args, num_labels): """ build retrieval model """ retrieval_model = RetrievalModel(emb_size=args.emb_size, n_layer=args.layers, n_head=args.heads, voc_size=args.voc_size, sent_types=2, num_labels=num_labels, dropout=args.dropout, use_knowledge=args.use_knowledge, share_embedding=args.share_embedding, padding_idx=0, use_gpu=args.use_gpu) checkpoint = torch.load(args.init_checkpoint, map_location=lambda storage, loc: storage) retrieval_model.load_state_dict(checkpoint['model']) return retrieval_model def main(args): """ main """ args.use_gpu = torch.cuda.is_available() and args.use_gpu and args.gpu >= 0 args.gpu = args.gpu if args.use_gpu else -1 torch.cuda.set_device(args.gpu) if 'kn' in args.task_name: args.use_knowledge = True else: args.use_knowledge = False processor, test_data = build_data(args) args.voc_size = len(open(args.vocab_path, 'r').readlines()) num_labels = len(processor.get_labels()) retrieval_model = build_model(args, num_labels) out_scores = open(args.output, 'w') test_data_generator, num_test_examples = test_data for batch_id, data in enumerate(test_data_generator()): inputs, _ = data["inputs"] positions, _ = data["positions"] senttypes, _ = data["senttypes"] labels, _ = data["labels"] knowledge, _ = data["knowledge"] if args.use_knowledge and "knowledge" in data else [None, None] outputs = retrieval_model.score(inputs, positions, senttypes, knowledge) outputs = F.softmax(outputs, dim=1) scores = outputs.tolist() for i, score in enumerate(scores): out_scores.write("%.4f\n" % (score[1])) out_scores.flush() out_scores.close() if __name__ == '__main__': args = base_parser() print_arguments(args) main(args)
py/phl/phlsys_multiprocessing__t.py
aevri/phabricator-tools
150
11108334
"""Test suite for phlsys_multiprocessing.""" # ============================================================================= # TEST PLAN # ----------------------------------------------------------------------------- # Here we detail the things we are concerned to test and specify which tests # cover those concerns. # # Concerns: # TODO # ----------------------------------------------------------------------------- # Tests: # TODO # ============================================================================= from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import multiprocessing import unittest import phlsys_multiprocessing class Test(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_logging_context_breathing(self): def logger_config(): logging.basicConfig() with phlsys_multiprocessing.logging_context(logger_config): logging.debug("logging test") def test_multiresource_breathing(self): def factory(): return "resource" # make sure that we can get a resource in the main process multi_resource = phlsys_multiprocessing.MultiResource(1, factory) with multi_resource.resource_context() as resource: self.assertEqual("resource", resource) with multi_resource.resource_context() as resource: self.assertEqual("resource", resource) def test_multiresource_changes_propagate(self): def worker(resource): with resource.resource_context() as r: r.append("worker process") def factory(): return ["main process"] multi_resource = phlsys_multiprocessing.MultiResource(1, factory) worker_list = [] num_workers = 5 for _ in xrange(num_workers): worker_list.append( multiprocessing.Process(target=worker, args=(multi_resource,))) worker_list[-1].start() for w in worker_list: w.join() with multi_resource.resource_context() as r: self.assertEqual(len(r), num_workers + 1) # ----------------------------------------------------------------------------- # Copyright (C) 2014 Bloomberg Finance L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------ END-OF-FILE ----------------------------------
mantraml/core/management/commands/ui.py
cclauss/mantra
330
11108368
import os import shutil import uuid import subprocess import mantraml from mantraml.core.management.commands.BaseCommand import BaseCommand class UICmd(BaseCommand): def add_arguments(self, parser): parser.add_argument("project_path", default=".", type=str, nargs="?") return parser def handle(self, args, unknown): path = args.project_path path = os.path.abspath(path) project_root = None # check if the path is to an mantra.yml file or contains it if path.endswith("mantra.yml"): project_root = os.path.dirname(path) else: if os.path.isfile(os.path.join(path, "mantra.yml")): project_root = path # run the Django server if we found the project root if project_root: cmd = ["python", "manage.py", "runserver"] os.environ["MANTRA_PROJECT_ROOT"] = project_root cwd = os.path.join(os.path.dirname(mantraml.__file__), "ui") subprocess.run(cmd, cwd=cwd) else: if path == os.path.abspath("."): print("ERROR: Cannot find mantra.yml in the current directory") else: print("ERROR: Path '%s' does not contain an mantra project" % path)
example/blog_gcdatastore.py
ice1x/Flask-Blogging
767
11108384
from flask import Flask, render_template_string, redirect from flask_login import UserMixin, LoginManager, login_user, logout_user from flask_blogging import SQLAStorage, BloggingEngine from flask_blogging.gcdatastore import GoogleCloudDatastore from flask_fileupload.storage.gcstorage import GoogleCloudStorage from flask_fileupload import FlaskFileUpload import os os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/path/to/credentials.json" app = Flask(__name__) app.config["SECRET_KEY"] = "secret" # for WTF-forms and login app.config["BLOGGING_URL_PREFIX"] = "/blog" app.config["BLOGGING_DISQUS_SITENAME"] = "test" app.config["BLOGGING_SITEURL"] = "http://localhost:8000" app.config["BLOGGING_SITENAME"] = "My Site" app.config["BLOGGING_TWITTER_USERNAME"] = "@me" app.config["BLOGGING_ALLOW_FILEUPLOAD"] = True app.config["FILEUPLOAD_LOCALSTORAGE_IMG_FOLDER"] = "fileupload" app.config["FILEUPLOAD_PREFIX"] = "/fileupload" app.config["FILEUPLOAD_ALLOWED_EXTENSIONS"] = ["png", "jpg", "jpeg", "gif"] # extensions """Google Cloud Storage configuration docs: https://github.com/Speedy1991/Flask-FileUpload/tree/master/doc/google_cloud_storage.md """ gcstorage = GoogleCloudStorage(app) file_upload = FlaskFileUpload(app, storage=gcstorage) gc_datastore = GoogleCloudDatastore() blog_engine = BloggingEngine(app, gc_datastore, file_upload=file_upload) login_manager = LoginManager(app) class User(UserMixin): def __init__(self, user_id): self.id = user_id def get_name(self): return "<NAME>" # typically the user's name @login_manager.user_loader @blog_engine.user_loader def load_user(user_id): return User(user_id) index_template = """ <!DOCTYPE html> <html> <head> </head> <body> {% if current_user.is_authenticated %} <a href="/logout/"> Logout </a> {% else %} <a href="/login/"> Login </a> {% endif %} &nbsp&nbsp<a href="/blog/"> Blog </a> &nbsp&nbsp<a href="/blog/sitemap.xml">Sitemap</a> &nbsp&nbsp<a href="/blog/feeds/all.atom.xml">ATOM</a> &nbsp&nbsp<a href="/fileupload/">FileUpload</a> </body> </html> """ @app.route("/") def index(): return render_template_string(index_template) @app.route("/login/") def login(): user = User("testuser") login_user(user) return redirect("/blog") @app.route("/logout/") def logout(): logout_user() return redirect("/") if __name__ == "__main__": app.run(debug=True, port=8000, use_reloader=True)
one-day-build-discord-bot/discord-bot.py
dapopov-st/python-youtube-code
262
11108399
<reponame>dapopov-st/python-youtube-code import os import discord import asyncio import random import datetime token = os.getenv("DISCORD_API_TOKEN") bot = discord.Client() @bot.event async def on_member_join(member): if member.id == bot.id: return channel = discord.utils.get(bot.guilds[0].channels, name="general") response = f"Welcome to Kite Fitness, {member.name}." await channel.send(response) @bot.event async def on_message(message): print(vars(bot)) if message.author == bot.user: return channel = message.channel keywords = ["work", "workout", "push", "push up", "up", "fitness", "health", "muscle", "pull"] for keyword in keywords: if keyword.lower() in message.content.lower(): response = f"Did someone say {keyword.lower()}? Drop and give me 10 <@{message.author.id}>!" await channel.send(response) @bot.event async def pushup_reminder(): while(True): await bot.wait_until_ready() online_members = [] for member in bot.get_all_members(): if member.status != discord.Status.offline and member.id != bot.user.id: online_members.append(member.id) if len(online_members) > 0: user = random.choice(online_members) current_time = int(datetime.datetime.now().strftime("%I")) channel = discord.utils.get(bot.guilds[0].channels, name="general") message = f"It's {current_time} o'clock! Time for some push ups <@{user}>" await channel.send(message) await asyncio.sleep(3600) bot.loop.create_task(pushup_reminder()) bot.run(token)
utils/plot.py
magicly/sample-factory
320
11108413
<filename>utils/plot.py MAP_FIGURE_ID = 2 HEATMAP_FIGURE_ID = 3
examples/obtain_statistics_lord_of_rings.py
alifaraz14/a-nice-mc
118
11108426
<gh_stars>100-1000 import os import sys import numpy as np sys.path.append(os.getcwd()) def prior(bs): return np.random.normal(0.0, 1.0, [bs, 2]) if __name__ == '__main__': from a_nice_mc.objectives.expression.lord_of_rings import LordOfRings from a_nice_mc.utils.hmc import HamiltonianMonteCarloSampler from a_nice_mc.utils.statistics import obtain_statistics os.environ['CUDA_VISIBLE_DEVICES'] = '' energy_fn = LordOfRings(display=False) sampler = HamiltonianMonteCarloSampler(energy_fn, prior) obtain_statistics(sampler, steps=5000, burn_in=1000, batch_size=32)
Exec/radiation_tests/RadShestakovBolstad/python/paper.py
MargotF/Castro
178
11108534
#!/usr/bin/env python from pylab import * from read_gnu import * import cPickle as pickle n = '0200' ew, x, t = read_gnu_file('../run-paper/eint_'+n+'.gnu') Ew, x, t = read_gnu_file('../run-paper/Er_'+n+'.gnu') fid = open('SBunits.p', 'rb') units = pickle.load(fid) fid.close() Tw = (ew/units['cv']) / units['Temp'] Ew = Ew / units['Eg'] x = x / units['L'] t = t / units['time'] print 't = ', t ex = array([0.0, 0.2, 0.4, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.6, 0.8, 1.0]) eT = array([9.9373253e-1, 9.9339523e-1, 9.8969664e-1, 9.8060848e-1, 9.7609654e-1, 9.6819424e-1, 9.5044751e-1, 4.9704000e-1, 4.3632445e-2, 2.5885608e-2, 1.7983134e-2, 1.3470947e-2, 4.3797848e-3, 6.4654865e-4, 1.9181546e-4]) eE = array([5.6401674e-3, 5.5646351e-3, 5.1047352e-3, 4.5542134e-3, 4.3744933e-3, 4.1294850e-3, 3.7570008e-3, 2.9096931e-3, 2.0623647e-3, 1.6898183e-3, 1.4447063e-3, 1.2648409e-3, 7.1255738e-4, 2.3412650e-4, 1.0934921e-4]) figure(1, figsize=(7,6.5)) subplots_adjust(left=0.15, bottom=0.08, right=0.97, top=0.97, wspace=0,hspace=0) ax1 = subplot(211) plot(ex, eE, 'o', markeredgecolor='k', markerfacecolor='w', markeredgewidth=2, markersize=8) plot(x,Ew,'k') xticks(visible=False) xlim(0,1.05) #ylim(0.0,0.14) ylabel('$E_r$') minorticks_on() text(0.9,0.86,'(a)', transform = ax1.transAxes) ax2 = subplot(212) plot(ex,eT,'o', markeredgecolor='k', markerfacecolor='w', markeredgewidth=2, markersize=8) plot(x,Tw,'k') legend(['Exact', 'Numerical'], loc='lower left') xlabel('x') xlim(0,1.05) ylim(-0.04,1.14) ylabel('$T$') minorticks_on() text(0.9,0.86,'(b)', transform = ax2.transAxes) draw() show()
node/rules.bzl
bowlofstew/rules_protobuf
252
11108548
load("@org_pubref_rules_node//node:rules.bzl", "node_module") load("//cpp:rules.bzl", "cpp_proto_repositories") load("//node:deps.bzl", "DEPS") load("//protobuf:rules.bzl", "proto_compile", "proto_language_deps", "proto_repositories") def node_proto_repositories( omit_cpp_repositories = False, lang_deps = DEPS, lang_requires = [ # "npm_protobuf_stack", # "npm_grpc", ], **kwargs): if not omit_cpp_repositories: cpp_proto_repositories(**kwargs) rem = proto_repositories(lang_deps = lang_deps, lang_requires = lang_requires, **kwargs) # Load remaining (special) deps for dep in rem: rule = dep.pop("rule") if "npm_repository" == rule: fail("Unknown loading rule %s for %s" % (rule, dep)) #npm_repository(**dep) else: fail("Unknown loading rule %s for %s" % (rule, dep)) def _get_js_variable_name(file): name = file.basename.rstrip(".js") # Deal with special characters here? return name def _node_proto_module_impl(ctx): compilation = ctx.attr.compilation.proto_compile_result index_js = ctx.new_file("%s/index.js" % ctx.label.name) exports = {} for unit in compilation.transitive_units: for file in unit.outputs: if file.path.endswith("_pb.js"): name = _get_js_variable_name(file) exports[name] = file.short_path elif file.path.endswith("_grpc_pb.js"): name = _get_js_variable_name(file) exports[name] = file.short_path content = [] content.append("module.exports = {") for name, path in exports.items(): content.append(" '%s': require('./%s')," % (name, path)) content.append("}") ctx.file_action( output = index_js, content = "\n".join(content) ) return struct( files = depset([index_js]), ) _node_proto_module = rule( implementation = _node_proto_module_impl, attrs = { "compilation": attr.label( providers = ["proto_compile_result"], mandatory = True, ) } ) def node_proto_compile(langs = [str(Label("//node"))], **kwargs): proto_compile(langs = langs, **kwargs) def node_proto_library( name, langs = [str(Label("//node"))], protos = [], imports = [], inputs = [], output_to_workspace = False, proto_deps = [ ], protoc = None, pb_plugin = None, pb_options = [], proto_compile_args = {}, srcs = [], deps = [ "@yarn_modules//:google-protobuf", ], data = [], verbose = 0, with_grpc = False, **kwargs): proto_compile_args += { "name": name + ".pb", "protos": protos, "deps": [dep + ".pb" for dep in proto_deps], "langs": langs, "imports": imports, "inputs": inputs, "pb_options": pb_options, "output_to_workspace": output_to_workspace, "verbose": verbose, "with_grpc": with_grpc, } if protoc: proto_compile_args["protoc"] = protoc if pb_plugin: proto_compile_args["pb_plugin"] = pb_plugin proto_compile(**proto_compile_args) _node_proto_module( name = name + "_index", compilation = name + ".pb", ) node_module( name = name, index = name + "_index", layout = "workspace", srcs = srcs + [name + ".pb"], data = data + [dep + ".pb" for dep in proto_deps], deps = depset(deps + proto_deps).to_list(), **kwargs)
leet/trees/flatten.py
monishshah18/python-cp-cheatsheet
140
11108555
<reponame>monishshah18/python-cp-cheatsheet # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right """ Morris Traversal 5 / \ 2 1 \ / \ 6 10 11 / 44 \ 23 5 \ 2 \ 6 / \ 44 1 \ / \ 23 10 11 5 \ 2 \ 6 \ 44 \ 23 \ 1 / \ 10 11 1 / \ 2 5 / \ \ 3 4 6 1 \ 2 / \ 3 4 \ 5 \ 6 """ class Solution: def flatten(self, root: TreeNode) -> None: """ Do not return anything, modify root in-place instead. """ # Get rightmostgrandchild # change left child to right child # attach former right child to rightmostgrandchild if not root: return None node = root while node: if node.left: rightmost = node.left while rightmost.right: rightmost = rightmost.right rightmost.right = node.right node.right = node.left node.left = None node = node.right
tools/device_file_generator/dfg/avr/avr_mcu.py
roboterclubaachen/xpcc
161
11108598
# -*- coding: utf-8 -*- # Copyright (c) 2014, Roboterclub Aachen e.V. # All rights reserved. # # The file is part of the xpcc library and is released under the 3-clause BSD # license. See the file `LICENSE` for the full license governing this code. # ----------------------------------------------------------------------------- mcu = \ [ {"device": "at32uc3a0512", "mcu": "uc3a0512"}, {"device": "at90can128", "mcu": "c128"}, {"device": "at90can32", "mcu": "c32"}, {"device": "at90can64", "mcu": "c64"}, {"device": "at90pwm2", "mcu": "pwm2"}, {"device": "at90pwm2b", "mcu": "pwm2b"}, {"device": "at90pwm3", "mcu": "pwm3"}, {"device": "at90pwm316", "mcu": "pwm316"}, {"device": "at90pwm3b", "mcu": "pwm3b"}, {"device": "at90s1200", "mcu": "1200"}, {"device": "at90s2313", "mcu": "2313"}, {"device": "at90s2333", "mcu": "2333"}, {"device": "at90s2343", "mcu": "2343"}, {"device": "at90s4414", "mcu": "4414"}, {"device": "at90s4433", "mcu": "4433"}, {"device": "at90s4434", "mcu": "4434"}, {"device": "at90s8515", "mcu": "8515"}, {"device": "at90s8535", "mcu": "8535"}, {"device": "at90usb1286", "mcu": "usb1286"}, {"device": "at90usb1287", "mcu": "usb1287"}, {"device": "at90usb162", "mcu": "usb162"}, {"device": "at90usb646", "mcu": "usb646"}, {"device": "at90usb647", "mcu": "usb647"}, {"device": "at90usb82", "mcu": "usb82"}, {"device": "atmega103", "mcu": "m103"}, {"device": "atmega128", "mcu": "m128"}, {"device": "atmega1280", "mcu": "m1280"}, {"device": "atmega1281", "mcu": "m1281"}, {"device": "atmega1284p", "mcu": "m1284p"}, {"device": "atmega1284rfr2", "mcu": "m1284rfr2"}, {"device": "atmega128rfa1", "mcu": "m128rfa1"}, {"device": "atmega128rfr2", "mcu": "m128rfr2"}, {"device": "atmega16", "mcu": "m16"}, {"device": "atmega161", "mcu": "m161"}, {"device": "atmega162", "mcu": "m162"}, {"device": "atmega163", "mcu": "m163"}, {"device": "atmega164p", "mcu": "m164p"}, {"device": "atmega168", "mcu": "m168"}, {"device": "atmega168p", "mcu": "m168p"}, {"device": "atmega169", "mcu": "m169"}, {"device": "atmega16u2", "mcu": "m16u2"}, {"device": "atmega2560", "mcu": "m2560"}, {"device": "atmega2561", "mcu": "m2561"}, {"device": "atmega2564rfr2", "mcu": "m2564rfr2"}, {"device": "atmega256rfr2", "mcu": "m256rfr2"}, {"device": "atmega32", "mcu": "m32"}, {"device": "atmega324p", "mcu": "m324p"}, {"device": "atmega324pa", "mcu": "m324pa"}, {"device": "atmega325", "mcu": "m325"}, {"device": "atmega3250", "mcu": "m3250"}, {"device": "atmega328", "mcu": "m328"}, {"device": "atmega328p", "mcu": "m328p"}, {"device": "atmega329", "mcu": "m329"}, {"device": "atmega3290", "mcu": "m3290"}, {"device": "atmega3290p", "mcu": "m3290p"}, {"device": "atmega329p", "mcu": "m329p"}, {"device": "atmega32u2", "mcu": "m32u2"}, {"device": "atmega32u4", "mcu": "m32u4"}, {"device": "atmega406", "mcu": "m406"}, {"device": "atmega48", "mcu": "m48"}, {"device": "atmega48p", "mcu": "m48p"}, {"device": "atmega64", "mcu": "m64"}, {"device": "atmega640", "mcu": "m640"}, {"device": "atmega644", "mcu": "m644"}, {"device": "atmega644p", "mcu": "m644p"}, {"device": "atmega644rfr2", "mcu": "m644rfr2"}, {"device": "atmega645", "mcu": "m645"}, {"device": "atmega6450", "mcu": "m6450"}, {"device": "atmega649", "mcu": "m649"}, {"device": "atmega6490", "mcu": "m6490"}, {"device": "atmega64rfr2", "mcu": "m64rfr2"}, {"device": "atmega8", "mcu": "m8"}, {"device": "atmega8515", "mcu": "m8515"}, {"device": "atmega8535", "mcu": "m8535"}, {"device": "atmega88", "mcu": "m88"}, {"device": "atmega88p", "mcu": "m88p"}, {"device": "atmega8u2", "mcu": "m8u2"}, {"device": "attiny10", "mcu": "t10"}, {"device": "attiny11", "mcu": "t11"}, {"device": "attiny12", "mcu": "t12"}, {"device": "attiny13", "mcu": "t13"}, {"device": "attiny15", "mcu": "t15"}, {"device": "attiny1634", "mcu": "t1634"}, {"device": "attiny20", "mcu": "t20"}, {"device": "attiny2313", "mcu": "t2313"}, {"device": "attiny24", "mcu": "t24"}, {"device": "attiny25", "mcu": "t25"}, {"device": "attiny26", "mcu": "t26"}, {"device": "attiny261", "mcu": "t261"}, {"device": "attiny4", "mcu": "t4"}, {"device": "attiny40", "mcu": "t40"}, {"device": "attiny4313", "mcu": "t4313"}, {"device": "attiny43u", "mcu": "t43u"}, {"device": "attiny44", "mcu": "t44"}, {"device": "attiny45", "mcu": "t45"}, {"device": "attiny461", "mcu": "t461"}, {"device": "attiny5", "mcu": "t5"}, {"device": "attiny84", "mcu": "t84"}, {"device": "attiny85", "mcu": "t85"}, {"device": "attiny861", "mcu": "t861"}, {"device": "attiny88", "mcu": "t88"}, {"device": "attiny9", "mcu": "t9"}, {"device": "atxmega128a1", "mcu": "x128a1"}, {"device": "atxmega128a1revd", "mcu": "x128a1d"}, {"device": "atxmega128a1u", "mcu": "128a1u"}, {"device": "atxmega128a3", "mcu": "x128a3"}, {"device": "atxmega128a3u", "mcu": "x128a3u"}, {"device": "atxmega128a4", "mcu": "x128a4"}, {"device": "atxmega128a4u", "mcu": "x128a4u"}, {"device": "atxmega128b1", "mcu": "x128b1"}, {"device": "atxmega128b3", "mcu": "x128b3"}, {"device": "atxmega128c3", "mcu": "x128c3"}, {"device": "atxmega128d3", "mcu": "x128d3"}, {"device": "atxmega128d4", "mcu": "x128d4"}, {"device": "atxmega16a4", "mcu": "x16a4"}, {"device": "atxmega16a4u", "mcu": "x16a4u"}, {"device": "atxmega16c4", "mcu": "x16c4"}, {"device": "atxmega16d4", "mcu": "x16d4"}, {"device": "atxmega16e5", "mcu": "x16e5"}, {"device": "atxmega192a1", "mcu": "x192a1"}, {"device": "atxmega192a3", "mcu": "x192a3"}, {"device": "atxmega192a3u", "mcu": "x192a3u"}, {"device": "atxmega192c3", "mcu": "x192c3"}, {"device": "atxmega192d3", "mcu": "x192d3"}, {"device": "atxmega256a1", "mcu": "x256a1"}, {"device": "atxmega256a3", "mcu": "x256a3"}, {"device": "atxmega256a3b", "mcu": "x256a3b"}, {"device": "atxmega256a3bu", "mcu": "x256a3bu"}, {"device": "atxmega256a3u", "mcu": "x256a3u"}, {"device": "atxmega256c3", "mcu": "x256c3"}, {"device": "atxmega256d3", "mcu": "x256d3"}, {"device": "atxmega32a4", "mcu": "x32a4"}, {"device": "atxmega32a4u", "mcu": "x32a4u"}, {"device": "atxmega32c4", "mcu": "x32c4"}, {"device": "atxmega32d4", "mcu": "x32d4"}, {"device": "atxmega32e5", "mcu": "x32e5"}, {"device": "atxmega384c3", "mcu": "x384c3"}, {"device": "atxmega384d3", "mcu": "x384d3"}, {"device": "atxmega64a1", "mcu": "x64a1"}, {"device": "atxmega64a1u", "mcu": "x64a1u"}, {"device": "atxmega64a3", "mcu": "x64a3"}, {"device": "atxmega64a3u", "mcu": "x64a3u"}, {"device": "atxmega64a4", "mcu": "x64a4"}, {"device": "atxmega64a4u", "mcu": "x64a4u"}, {"device": "atxmega64b1", "mcu": "x64b1"}, {"device": "atxmega64b3", "mcu": "x64b3"}, {"device": "atxmega64c3", "mcu": "x64c3"}, {"device": "atxmega64d3", "mcu": "x64d3"}, {"device": "atxmega64d4", "mcu": "x64d4"}, {"device": "atxmega8e5", "mcu": "x8e5"} ]
ros_ws/src/crazyswarm/scripts/test_ros.py
marios-stam/crazyswarm
219
11108600
<reponame>marios-stam/crazyswarm import pytest @pytest.mark.ros def test_ros_import(): from pycrazyswarm.crazyflie import TimeHelper, CrazyflieServer
fairseq/models/mcbert/model.py
motefly/MC-BERT
104
11108631
<reponame>motefly/MC-BERT # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ MC-BERT: Efficient Language Pre-Training via a Meta Controller """ import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqDecoder, FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.modules import ( LayerNorm, TransformerSentenceEncoder, ) from fairseq.modules.transformer_sentence_encoder import init_bert_params from .hub_interface import McbertHubInterface @register_model('mcbert') class McbertModel(FairseqLanguageModel): @classmethod def hub_models(cls): return { } def __init__(self, args, mc_encoder, gen_encoder, neither_idx): super().__init__(gen_encoder) self.mc = mc_encoder self.args = args self.neither_idx = neither_idx # We follow BERT's random weight initialization self.apply(init_bert_params) self.classification_heads = nn.ModuleDict() @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument('--encoder-layers', type=int, metavar='L', help='num encoder layers') parser.add_argument('--encoder-embed-dim', type=int, metavar='H', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='F', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-attention-heads', type=int, metavar='A', help='num encoder attention heads') parser.add_argument('--mc-size-divider', type=int, help='divider for mc: layer size, FFN size and attention heads') parser.add_argument('--class-num', type=int, default=10, help='total number of classes') parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--pooler-activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use for pooler layer') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--embedding-normalize', action='store_true', help='add layernorm after the embedding layer') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', type=float, metavar='D', help='dropout probability after activation in FFN') parser.add_argument('--pooler-dropout', type=float, metavar='D', help='dropout probability in the masked_lm pooler layers') parser.add_argument('--max-positions', type=int, help='number of positional embeddings to learn') parser.add_argument('--load-checkpoint-heads', action='store_true', help='(re-)register and load heads when loading checkpoints') parser.add_argument('--debug', action='store_true', help='trigger for pdb') @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present base_architecture(args) args.vocab_num = len(task.source_dictionary) args.vocab_nspecial = task.source_dictionary.nspecial if not hasattr(args, 'max_positions'): args.max_positions = args.tokens_per_sample gen_encoder = GenEncoder(args, task.source_dictionary) if args.task == 'mcbert': mc_encoder = MCEncoder(args, task.source_dictionary, gen_encoder.sentence_encoder.embed_tokens, gen_encoder.lm_head.bias.weight) else: mc_encoder = None return cls(args, mc_encoder, gen_encoder, task.source_dictionary.index('<neither>')) def forward(self, src_tokens, features_only=False, return_all_hiddens=False, classification_head_name=None, masked_tokens=None, targets=None, **kwargs): if classification_head_name is not None: features_only = True if self.args.task == 'mcbert': mc_x_mask, features, _ = self.mc( src_tokens, features_only=False, return_all_hiddens=False, masked_tokens=masked_tokens, return_top_features=True, **kwargs ) # Float[num_masked, vocab] with torch.no_grad(): mc_x_all = self.mc.lm_head(features, masked_tokens=None) sample_probs = torch.softmax(mc_x_all.detach(), -1, dtype=torch.float32) # Float[bs, seq_len, vocab] sample_probs = sample_probs.view(-1, sample_probs.size(-1)) # Float[bs * seq_len, vocab] sampled_tokens = torch.multinomial( sample_probs, self.args.class_num, replacement=True ).view(src_tokens.size(0), src_tokens.size(1), self.args.class_num) # Float[bs, seq_len, class_num] src_tokens = src_tokens.clone() if masked_tokens is not None: # masked_tokens : Float[bs, seq_len] src_tokens[masked_tokens] = sampled_tokens[:, :, 0][masked_tokens] # for replaced tokens, the correct label is 1-th element (the target) replace_tokens = src_tokens.ne(targets) sampled_tokens[:, :, 1][replace_tokens] = targets[replace_tokens] # for non-replaced tokens, the correct label is 0-th element (the <neither> token) sampled_tokens[:, :, 0] = self.neither_idx # mcerate targets according to the rule mentioned above gen_target = replace_tokens.long() gen_x, extra = self.decoder( src_tokens, features_only=features_only, return_all_hiddens=return_all_hiddens, masked_tokens=None, # for generator, predict all of the tokens out_helper=sampled_tokens if self.args.task == 'mcbert' else None, **kwargs ) if classification_head_name is not None: gen_x = self.classification_heads[classification_head_name](gen_x) if self.args.task == 'mcbert': return mc_x_mask, gen_x, src_tokens, gen_target, extra else: return gen_x, extra def register_classification_head(self, name, num_classes=None, inner_dim=None, **kwargs): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: print( 'WARNING: re-registering head "{}" with num_classes {} (prev: {}) ' 'and inner_dim {} (prev: {})'.format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = McbertClassificationHead( self.args.encoder_embed_dim, inner_dim or self.args.encoder_embed_dim, num_classes, self.args.pooler_activation_fn, self.args.pooler_dropout, ) @property def supported_targets(self): return {'self'} @classmethod def from_pretrained(cls, model_name_or_path, checkpoint_file='model.pt', data_name_or_path='.', bpe='gpt2', **kwargs): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, **kwargs, ) return McbertHubInterface(x['args'], x['task'], x['models'][0]) def upgrade_state_dict_named(self, state_dict, name): prefix = name + '.' if name != '' else '' current_head_names = [] if not hasattr(self, 'classification_heads') else \ self.classification_heads.keys() # Handle new classification heads present in the state dict. keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + 'classification_heads.'): continue head_name = k[len(prefix + 'classification_heads.'):].split('.')[0] num_classes = state_dict[prefix + 'classification_heads.' + head_name + '.out_proj.weight'].size(0) inner_dim = state_dict[prefix + 'classification_heads.' + head_name + '.dense.weight'].size(0) if getattr(self.args, 'load_checkpoint_heads', False): if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: print( 'WARNING: deleting classification head ({}) from checkpoint ' 'not present in current model: {}'.format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): print( 'WARNING: deleting classification head ({}) from checkpoint ' 'with different dimensions than current model: {}'.format(head_name, k) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, 'classification_heads'): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + 'classification_heads.' + k not in state_dict: print('Overwriting', prefix + 'classification_heads.' + k) state_dict[prefix + 'classification_heads.' + k] = v class MCLMHead(nn.Module): """Head for Meta Controller""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None, share_emb_pro=None, bias=None): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight elif share_emb_pro is not None: self.add_one_linear = True self.share_emb_pro = share_emb_pro else: self.add_one_linear = False self.weight = weight if bias is None: self.bias = nn.Parameter(torch.zeros(output_dim)) self.bias = bias def forward(self, features, masked_tokens=None, **kwargs): # Only project the unmasked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x) x = self.layer_norm(x) if self.add_one_linear: weight = self.share_emb_pro(self.weight) else: weight = self.weight # project back to size of vocabulary with bias x = F.linear(x, weight) + self.bias.view(-1) return x class McbertClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x) x = self.dropout(x) x = self.out_proj(x) return x class MCEncoder(FairseqDecoder): """MC encoder. Implements the :class:`~fairseq.models.FairseqDecoder` interface required by :class:`~fairseq.models.FairseqLanguageModel`. """ def __init__(self, args, dictionary, share_embed_tokens, lmhead_bias_helper): super().__init__(dictionary) self.args = args self.sentence_encoder = TransformerSentenceEncoder( padding_idx=dictionary.pad(), vocab_size=len(dictionary), num_encoder_layers=args.encoder_layers, embedding_dim=int(args.encoder_embed_dim / args.mc_size_divider), ffn_embedding_dim=int(args.encoder_ffn_embed_dim / args.mc_size_divider), num_attention_heads=int(args.encoder_attention_heads / args.mc_size_divider), dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, max_seq_len=args.max_positions, num_segments=0, encoder_normalize_before=args.encoder_normalize_before, embedding_normalize=args.embedding_normalize, apply_bert_init=True, activation_fn=args.activation_fn, share_embed_tokens=share_embed_tokens, shared_embedding_dim=args.encoder_embed_dim, ) self.lm_head = MCLMHead( embed_dim=int(args.encoder_embed_dim / args.mc_size_divider), output_dim=len(dictionary), activation_fn=args.activation_fn, weight=self.sentence_encoder.embed_tokens.weight, share_emb_pro=self.sentence_encoder.embed_linear, bias=lmhead_bias_helper, ) def forward(self, src_tokens, features_only=False, return_all_hiddens=False, masked_tokens=None, return_top_features=False, **unused): """ Args: src_tokens (LongTensor): input tokens of shape `(batch, src_len)` features_only (bool, optional): skip LM head and just return features. If True, the output will be of shape `(batch, src_len, embed_dim)`. return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). Returns: tuple: - the LM output of shape `(batch, src_len, vocab)` - a dictionary of additional data, where 'inner_states' is a list of hidden states. """ x, extra = self.extract_features(src_tokens, return_all_hiddens) if return_top_features: features = x if not features_only: x = self.output_layer(x, masked_tokens=masked_tokens) if return_top_features: return x, features, extra return x, extra def extract_features(self, src_tokens, return_all_hiddens=False, **unused): inner_states, _ = self.sentence_encoder( src_tokens, last_state_only=not return_all_hiddens, ) features = inner_states[-1] return features, {'inner_states': inner_states if return_all_hiddens else None} def output_layer(self, features, masked_tokens=None, **unused): return self.lm_head(features, masked_tokens) def max_positions(self): """Maximum output length supported by the encoder.""" return self.args.max_positions class GenEncoder(FairseqDecoder): """McbertModel generator encoder. Implements the :class:`~fairseq.models.FairseqDecoder` interface required by :class:`~fairseq.models.FairseqLanguageModel`. """ def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args self.sentence_encoder = TransformerSentenceEncoder( padding_idx=dictionary.pad(), vocab_size=len(dictionary), num_encoder_layers=args.encoder_layers, embedding_dim=args.encoder_embed_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, max_seq_len=args.max_positions, num_segments=0, encoder_normalize_before=args.encoder_normalize_before, embedding_normalize=args.embedding_normalize, apply_bert_init=True, activation_fn=args.activation_fn, ) self.lm_head = GenLMHead( embed_dim=int(args.encoder_embed_dim), output_dim=args.class_num, activation_fn=args.activation_fn, embed_tokens=self.sentence_encoder.embed_tokens, ) def forward(self, src_tokens, features_only=False, return_all_hiddens=False, masked_tokens=None, out_helper=None, **unused): """ Args: src_tokens (LongTensor): input tokens of shape `(batch, src_len)` features_only (bool, optional): skip LM head and just return features. If True, the output will be of shape `(batch, src_len, embed_dim)`. return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). Returns: tuple: - the LM output of shape `(batch, src_len, vocab)` - a dictionary of additional data, where 'inner_states' is a list of hidden states. """ x, extra = self.extract_features(src_tokens, return_all_hiddens) if not features_only: x = self.output_layer(x, masked_tokens=masked_tokens, out_helper=out_helper) return x, extra def extract_features(self, src_tokens, return_all_hiddens=False, **unused): inner_states, _ = self.sentence_encoder( src_tokens, last_state_only=not return_all_hiddens, ) features = inner_states[-1] return features, {'inner_states': inner_states if return_all_hiddens else None} def output_layer(self, features, masked_tokens=None, out_helper=None, **unused): return self.lm_head(features, masked_tokens, out_helper) def max_positions(self): """Maximum output length supported by the encoder.""" return self.args.max_positions class GenLMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, embed_tokens): super().__init__() self.embed_dim = embed_dim self.output_dim = output_dim self.dense = nn.Linear(embed_dim, embed_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) self.embed_tokens = embed_tokens self.bias = nn.Embedding(embed_tokens.num_embeddings, 1) def forward(self, features, masked_tokens=None, out_helper=None, **kwargs): # Only project the unmasked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x) x = self.layer_norm(x) if out_helper is not None: # x: Float[bs, seq_len, dim] weight = self.embed_tokens(out_helper).transpose(2, 3) # Float[bs, seq_len, dim, num_class] bias = self.bias(out_helper).transpose(2, 3) # Float[bs, seq_len, 1, num_class] bs = x.size(0) x = torch.baddbmm( input=bias.view(-1, bias.size(-2), bias.size(-1)), batch1=x.view(-1, 1, x.size(-1)), batch2=weight.view(-1, weight.size(-2), weight.size(-1)) ) # Float[bs * seq_len, 1, num_class] return x.view(bs, -1, x.size(-1)) # Float[bs, seq_len, num_class] else: return x @register_model_architecture('mcbert', 'mcbert') def base_architecture(args): args.encoder_layers = getattr(args, 'encoder_layers', 12) args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 3072) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 12) args.mc_size_divider = getattr(args, 'mc_size_divider', 3) args.activation_fn = getattr(args, 'activation_fn', 'gelu') args.pooler_activation_fn = getattr(args, 'pooler_activation_fn', 'tanh') args.dropout = getattr(args, 'dropout', 0.1) args.attention_dropout = getattr(args, 'attention_dropout', 0.1) args.activation_dropout = getattr(args, 'activation_dropout', 0.0) args.pooler_dropout = getattr(args, 'pooler_dropout', 0.0) args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', False) args.embedding_normalize = getattr(args, 'embedding_normalize', False) @register_model_architecture('mcbert', 'mcbert_base') def mcbert_base_architecture(args): base_architecture(args) @register_model_architecture('mcbert', 'mcbert_small') def mcbert_small_architecture(args): args.encoder_layers = getattr(args, 'encoder_layers', 12) args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 256) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 1024) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 4) args.mc_size_divider = getattr(args, 'mc_size_divider', 2) base_architecture(args) @register_model_architecture('mcbert', 'mcbert_large') def mcbert_small_architecture(args): args.encoder_layers = getattr(args, 'encoder_layers', 24) args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 4096) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 16) args.mc_size_divider = getattr(args, 'mc_size_divider', 4) base_architecture(args)
recipes/Python/440627_Encoding_A_String/recipe-440627.py
tdiprima/code
2,023
11108635
<filename>recipes/Python/440627_Encoding_A_String/recipe-440627.py '''code_module.py The purpose of this module is to provide functions for the coding of strings. This is a level 1 module.''' #================================== # Level 1 Functions: String To Code #================================== def string_to_number(string): '''string_to_number(string) Create a starting number. Tranlate the string into the number. Return the number.''' number = 1 for character in string: number *= 256 number += ord(character) return number def number_to_code(number): '''number_to_code(long) Create a starting string. Translate the number into the code. Return the string.''' code = str() while number != 0: code = chr(number % 255 + 1) + code number /= 255 return code #================================== # Level 1 Functions: Code To String #================================== def code_to_number(code): '''code_to_number(string) Create a starting number. Tranlate the code into the number. Return the number.''' number = 0 for character in code: number *= 255 number += ord(character) - 1 return number def number_to_string(number): '''number_to_string(long) Create a starting string. Translate the number into the string. Return the string.''' string = str() while number > 1: string = chr(number % 256) + string number /= 256 return string #=============================== # Level 2 Functions: To And From #=============================== def string_to_code(string): '''string_to_code(string) Returns a string converted to code.''' return number_to_code(string_to_number(string)) def code_to_string(code): '''code_to_string(string) Returns code converted to a string.''' return number_to_string(code_to_number(code)) #================ # CGI: Print File #================ if __name__ == '__main__': from sys import argv print 'Content-type: text/plain' print print file(argv[0]).read()
4_dend_airflow_data_pipelines/exercises/dags/3_ex4_full_dag.py
AAbdul12/Data-engineering-nanodegree
253
11108670
import datetime from airflow import DAG from airflow.operators import ( FactsCalculatorOperator, HasRowsOperator, S3ToRedshiftOperator ) # This DAG performs the following functions # 1. Loads Trip data from S3 to RedShift # 2. Performs a data quality check on the Trips table in RedShift # 3. Uses the FactsCalculatorOperator to create a Facts table in Redshift # a. **NOTE**: to complete this step you must complete the FactsCalcuatorOperator # skeleton defined in plugins/operators/facts_calculator.py # dag = DAG("lesson3.exercise4", start_date=datetime.datetime.utcnow()) copy_trips_task = S3ToRedshiftOperator( task_id="load_trips_from_s3_to_redshift", dag=dag, table="trips", redshift_conn_id="redshift", aws_credentials_id="aws_credentials", s3_bucket="udacity-dend", s3_key="data-pipelines/divvy/unpartitioned/divvy_trips_2018.csv" ) check_trips = HasRowsOperator( task_id="trips_has_rows", dag=dag, redshift_conn_id="redshift", table="trips", provide_context=True ) calculate_facts = FactsCalculatorOperator( task_id="calculate_facts", dag=dag, postgres_conn_id="redshift", origin_table="trips", destination_table="trips_facts", fact_column="tripduration", groupbycolumn="bikeid" ) copy_trips_task >> check_trips check_trips >> calculate_facts
moya/dbexpression.py
moyaproject/moya
129
11108693
from __future__ import unicode_literals from __future__ import print_function from .context import dataindex from .context.tools import to_expression from .compat import implements_to_string, text_type from .context.missing import is_missing from .interface import unproxy from pyparsing import ( Word, WordEnd, nums, alphas, Combine, oneOf, opAssoc, operatorPrecedence, QuotedString, Literal, ParserElement, ParseException, Forward, Group, Suppress, Optional, Regex, ) from sqlalchemy import and_, or_, func, not_ import operator import re import threading def dbobject(obj): return getattr(obj, "__moyadbobject__", lambda: obj)() @implements_to_string class DBExpressionError(Exception): hide_py_traceback = True error_type = "Database expression error" def __init__(self, exp, msg=None, col=None): self.exp = exp self.msg = msg or "" self.col = col def __str__(self): return self.msg def __moyaconsole__(self, console): indent = "" console(indent + self.exp, bold=True, fg="magenta").nl() if self.col: console(indent)(" " * (self.col - 1) + "^", bold=True, fg="red").nl() class DBEvalError(Exception): pass def pairs(tokenlist): """Converts a list in to a sequence of paired values""" return zip(tokenlist[::2], tokenlist[1::2]) class ExpressionContext(object): def __init__(self, exp): self.exp = exp self._joins = [] super(ExpressionContext, self).__init__() def __repr__(self): return "<expressioncontext '{}'>".format(self.exp) def add_joins(self, joins): self._joins.append(joins) def process_qs(self, qs): # TODO: Is this deprecated now? for j in self._joins: if isinstance(j, (tuple, list)): qs = qs.join(*j) else: qs = qs.join(j) return qs class ExpressionModifiers(object): def abs(self, context, v): return func.abs(v) def count(self, context, v): return func.count(v) def sum(self, context, v): return func.sum(v) def min(self, context, v): return func.min(v) def max(self, context, v): return func.max(v) def lower(self, context, v): return func.lower(v) class EvalModifierOp(object): modifiers = ExpressionModifiers() def __init__(self, tokens): filter, value = tokens[0] self.value = value self._eval = value.eval try: self.filter_func = getattr(self.modifiers, filter[:-1]) except AttributeError: raise DBEvalError("unknown filter type '%s'" % filter) def eval(self, archive, context, app, exp_context): return self.filter_func(context, self._eval(archive, context, app, exp_context)) class EvalMultOp(object): "Class to evaluate multiplication and division expressions" ops = { "*": operator.imul, "/": operator.itruediv, "//": operator.ifloordiv, "%": operator.imod, } def __init__(self, tokens): self.value = tokens[0] self._eval = self.value[0].eval ops = self.ops self.operator_eval = [(ops[op], val.eval) for op, val in pairs(self.value[1:])] def eval(self, archive, context, app, exp_context): prod = self._eval(archive, context, app, exp) for op_func, _eval in self.operator_eval: prod = op_func(prod, _eval(archive, context, app, exp_context)) return prod class EvalAddOp(object): "Class to evaluate addition and subtraction expressions" ops = {"+": operator.add, "-": operator.sub} def __init__(self, tokens): self.value = tokens[0] self._eval = self.value[0].eval ops = self.ops self.operator_eval = [(ops[op], val.eval) for op, val in pairs(self.value[1:])] def eval(self, archive, context, app, exp_context): sum = self._eval(archive, context, app, exp_context) for op_func, _eval in self.operator_eval: sum = op_func(sum, _eval(archive, context, app, exp_context)) return sum class EvalConstant(object): """Evaluates a constant""" constants = {"None": None, "True": True, "False": False, "yes": True, "no": False} def __init__(self, tokens): self.key = tokens[0] self.value = self.constants[self.key] def eval(self, archive, context, app, exp_context): return self.value class EvalInteger(object): "Class to evaluate an integer value" def __init__(self, tokens): self.value = int(tokens[0]) def eval(self, archive, context, app, exp_context): return self.value class EvalReal(object): "Class to evaluate a real number value" def __init__(self, tokens): self.value = float(tokens[0]) def eval(self, archive, context, app, exp_context): return self.value class EvalString(object): "Class to evaluate a string" def __init__(self, tokens): self.value = tokens[0] def eval(self, archive, context, app, exp_context): return self.value def qs(value): if hasattr(value, "__moyadbobject__"): value = value.__moyadbobject__() if hasattr(value, "_get_query_set"): value = value._get_query_set() if isinstance(value, list): return [getattr(v, "id", v) for v in value] return value class EvalVariable(object): "Class to evaluate a parsed variable" def __init__(self, tokens): key = tokens[0] self.index = dataindex.parse(key) def eval(self, archive, context, app, exp_context): value = context[self.index] if is_missing(value): raise DBEvalError( "Database expression value '{}' is missing from the context".format( self.index ) ) return dbobject(unproxy(value)) class EvalModelReference(object): """Gets a model reference""" _ref_model_ref = re.compile("^(.*?#.*?)(?:\.(.*?))?$") def __init__(self, tokens): self.index = tokens[0] def eval(self, archive, context, app, exp_context): model_ref, index = self._ref_model_ref.match(self.index).groups() app = app or context.get(".app", None) if app is None: raise DBEvalError("unable to get app from '{}'".format(self.index)) if index is None: app, model_element = app.get_element(model_ref) try: table_class = model_element.get_table_class(app) except Exception as e: raise DBEvalError(str(e)) return table_class index = list(dataindex.parse(index)) app, model_element = app.get_element(model_ref) try: table_class = model_element.get_table_class(app) except Exception as e: raise DBEvalError(str(e)) try: model_reference_result = table_class._get_index( archive, context, app, exp_context, index ) except (KeyError, AttributeError): raise DBEvalError('no column or object called "{}"'.format(self.index)) else: return model_reference_result class EvalComparisonOp(object): "Class to evaluate comparison expressions" @classmethod def match_re(cls, a, b): return bool(b.match(a)) @classmethod def escape_like(cls, like, _should_escape="\\%_".__contains__): """escape LIKE comparisons""" if not isinstance(like, text_type): return like return "".join("\\" + c if _should_escape(c) else c for c in like) def in_(context, a, b): if hasattr(b, "__moyadbsubselect__"): sub_b = b.__moyadbsubselect__(context) if sub_b is not None: b = sub_b a = qs(a) try: return a.in_(qs(b)) except: raise DBEvalError( "db expression 'in' operator works on columns only (did you mean .id)?" ) def notin_(context, a, b): if hasattr(b, "__moyadbsubselect__"): sub_b = b.__moyadbsubselect__(context) if sub_b is not None: b = sub_b a = qs(a) try: return a.notin_(qs(b)) except: raise DBEvalError( "db expression 'not in' operator works on columns only (did you mean .id)?" ) def contains_(context, a, b): try: return qs(a).contains(qs(b)) except: raise DBEvalError( "value {} is an invalid operand for the 'contains' operator".format( to_expression(context, b) ) ) def icontains_(context, a, b): if not isinstance(b, text_type): raise DBEvalError( "icontains right hand side should be a string, not {}".format( context.to_expr(b) ) ) b = "%{}%".format(EvalComparisonOp.escape_like(b)) try: return qs(a).like(b) except: raise DBEvalError( "{} may not be used with 'icontains' operator".format( context.to_expr(a) ) ) def ieq(context, a, b): if not isinstance(b, text_type): raise DBEvalError( "case insensitive equality operator (~=) right hand side should be a string, not {}".format( context.to_expr(b) ) ) return qs(a).ilike(EvalComparisonOp.escape_like(b), escape="\\") opMap = { "<": lambda c, a, b: qs(a) < qs(b), "lt": lambda c, a, b: qs(a) < qs(b), "<=": lambda c, a, b: qs(a) <= qs(b), "lte": lambda c, a, b: qs(a) <= qs(b), ">": lambda c, a, b: qs(a) > qs(b), "gt": lambda c, a, b: qs(a) > qs(b), ">=": lambda c, a, b: qs(a) >= qs(b), "gte": lambda c, a, b: qs(a) >= qs(b), "!=": lambda c, a, b: qs(a) != qs(b), "==": lambda c, a, b: qs(a) == qs(b), "like": lambda c, a, b: qs(a).like(qs(b)), "ilike": lambda c, a, b: qs(a).ilike(qs(b)), # "~=": lambda c, a, b: qs(a).ilike(qs(EvalComparisonOp.escape_like(b)), escape='\\'), "~=": ieq, "^=": lambda c, a, b: qs(a).startswith(qs(b)), "$=": lambda c, a, b: qs(a).endswith(qs(b)), "in": in_, "not in": notin_, "contains": contains_, "icontains": icontains_, # "icontains": lambda c, a, b: qs(a).like('%' + EvalComparisonOp.escape_like(b) + '%', escape='\\') } def __init__(self, tokens): self.value = tokens[0] self._eval = self.value[0].eval self.operator_eval = [ (self.opMap[op], val.eval) for op, val in pairs(self.value[1:]) ] def eval(self, archive, context, app, exp_context): val1 = self._eval(archive, context, app, exp_context) for op_func, _eval in self.operator_eval: val2 = _eval(archive, context, app, exp_context) val1 = op_func(context, val1, val2) return val1 class EvalLogicOpAND(object): def __init__(self, tokens): self.value = tokens[0] self._eval = self.value[0].eval self.operator_eval = [val.eval for op, val in pairs(self.value[1:])] def eval(self, archive, context, app, exp_context): val1 = self._eval(archive, context, app, exp_context) for _eval in self.operator_eval: val2 = _eval(archive, context, app, exp_context) val1 = and_(val1, val2) return val1 class EvalLogicOpOR(object): def __init__(self, tokens): self.value = tokens[0] self._eval = self.value[0].eval self.operator_eval = [val.eval for op, val in pairs(self.value[1:])] def eval(self, archive, context, app, exp_context): val1 = self._eval(archive, context, app, exp_context) for _eval in self.operator_eval: val2 = _eval(archive, context, app, exp_context) val1 = or_(val1, val2) return val1 class EvalGroupOp(object): def __init__(self, tokens): self._evals = [t.eval for t in tokens[0][0::2]] def eval(self, archive, context, app, exp_context): val = [eval(archive, context, app, exp_context) for eval in self._evals] return val class EvalNotOp(object): """Class to evaluate expressions with logical NOT""" def __init__(self, tokens): self._eval = tokens[0][1].eval def eval(self, archive, context, app, exp_context): return not_(self._eval(archive, context, app, exp_context)) integer = Word(nums) real = Combine(Word(nums) + "." + Word(nums)) constant = ( Literal("True") | Literal("False") | Literal("None") | Literal("yes") | Literal("no") ) + WordEnd() model_reference = Regex(r"([\w\.]*#[\w\.]+)") variable = Regex(r"([a-zA-Z0-9\._]+)") string = QuotedString('"', escChar="\\") | QuotedString("'", escChar="\\") operand = model_reference | real | integer | constant | string | variable plusop = oneOf("+ -") multop = oneOf("* / // %") groupop = Literal(",") expr = Forward() notop = Literal("not") + WordEnd() modifier = Combine(Word(alphas + nums) + ":") integer.setParseAction(EvalInteger) real.setParseAction(EvalReal) string.setParseAction(EvalString) constant.setParseAction(EvalConstant) variable.setParseAction(EvalVariable) model_reference.setParseAction(EvalModelReference) comparisonop = ( oneOf("< <= > >= != == ~= ^= $=") | (Literal("not in") + WordEnd()) | (oneOf("in lt lte gt gte matches contains icontains like ilike") + WordEnd()) ) logicopOR = Literal("or") + WordEnd() logicopAND = Literal("and") + WordEnd() expr << operatorPrecedence( operand, [ (notop, 1, opAssoc.RIGHT, EvalNotOp), (modifier, 1, opAssoc.RIGHT, EvalModifierOp), (multop, 2, opAssoc.LEFT, EvalMultOp), (plusop, 2, opAssoc.LEFT, EvalAddOp), (comparisonop, 2, opAssoc.LEFT, EvalComparisonOp), (logicopAND, 2, opAssoc.LEFT, EvalLogicOpAND), (logicopOR, 2, opAssoc.LEFT, EvalLogicOpOR), (groupop, 2, opAssoc.LEFT, EvalGroupOp), ], ) @implements_to_string class DBExpression(object): exp_cache = {} _lock = threading.Lock() def __init__(self, exp): self.exp = exp def __repr__(self): return '<DBExpression "%s">' % self.exp def __str__(self): return self.exp def eval(self, archive, context, app=None): exp_context = ExpressionContext(self.exp) try: eval = self.compile_cache(self.exp) result = eval(archive, context, app, exp_context) except DBEvalError as e: raise DBExpressionError(self.exp, text_type(e)) return result def eval2(self, archive, context, app=None): exp_context = ExpressionContext(self.exp) try: eval = self.compile_cache(self.exp) result = eval(archive, context, app, exp_context) except DBEvalError as e: raise DBExpressionError(self.exp, text_type(e)) return result, exp_context def compile(self): return self.compile_cache(self.exp) def compile_cache(self, exp): with self._lock: try: return self.exp_cache[exp] except KeyError: try: compiled_exp = expr.parseString(exp, parseAll=True) except ParseException as e: raise DBExpressionError(exp, text_type(e), col=e.col) eval = self.exp_cache[exp] = compiled_exp[0].eval return eval if __name__ == "__main__": """ <db:filter model="#TagDB">#TagDB.name==name and #TagDB.company.pk==company_pk</db:filter> """ exp = DBExpression("moya.auth#User.username=='will'") print(exp.compile()) exp = DBExpression("auth#User.username=='will'") print(exp.compile()) exp = DBExpression( "comments#Comment.namespace == app.name and comments#Comment.object in comment_keys" ) print(exp.compile()) exp = DBExpression("#CommentObject.count + 1") print(exp.compile)
examples/models/templates/ModelName.py
jsreid13/seldon-core
3,049
11108694
from <your_loading_library> import <your_loading_function> class ModelName(object): def __init__(self): self.model = <your_loading_function>(<your_model_file>) def predict(self,X,features_names): return self.model.predict(X)
samples/add_user_group.py
kevinsigwart/ArcREST
208
11108711
""" This sample shows how to add a user to a group Python 2/3 ArcREST 3.5.1 """ from __future__ import print_function import arcrest from arcresthelper import securityhandlerhelper from arcresthelper import common def trace(): """ trace finds the line, the filename and error message and returns it to the user """ import traceback, inspect, sys tb = sys.exc_info()[2] tbinfo = traceback.format_tb(tb)[0] filename = inspect.getfile(inspect.currentframe()) # script name + line number line = tbinfo.split(", ")[1] # Get Python syntax error # synerror = traceback.format_exc().splitlines()[-1] return line, filename, synerror def main(): proxy_port = None proxy_url = None securityinfo = {} securityinfo['security_type'] = 'Portal'#LDAP, NTLM, OAuth, Portal, PKI securityinfo['username'] = ""#<UserName> securityinfo['password'] = ""#<Password> securityinfo['org_url'] = "http://www.arcgis.com" securityinfo['proxy_url'] = proxy_url securityinfo['proxy_port'] = proxy_port securityinfo['referer_url'] = None securityinfo['token_url'] = None securityinfo['certificatefile'] = None securityinfo['keyfile'] = None securityinfo['client_id'] = None securityinfo['secret_id'] = None username = "" #Username to add groupname = "" #Group Name try: shh = securityhandlerhelper.securityhandlerhelper(securityinfo=securityinfo) if shh.valid == False: print (shh.message) else: admin = arcrest.manageorg.Administration(securityHandler=shh.securityhandler) community = admin.community groups = community.groups groupIds = community.getGroupIDs(groupNames=groupname) if groupIds is None: print ("Group not found") if len(groupIds) == 0: print ("Group not found") groupId = groupIds[0] group = groups.group(groupId=groupId) if group is None: print ("Group not found") res = group.addUsersToGroups(users=username) print (res) except (common.ArcRestHelperError),e: print ("error in function: %s" % e[0]['function']) print ("error on line: %s" % e[0]['line']) print ("error in file name: %s" % e[0]['filename']) print ("with error message: %s" % e[0]['synerror']) if 'arcpyError' in e[0]: print ("with arcpy message: %s" % e[0]['arcpyError']) except: line, filename, synerror = trace() print ("error on line: %s" % line) print ("error in file name: %s" % filename) print ("with error message: %s" % synerror) if __name__ == "__main__": main()
mmtbx/validation/mean_devs_VAL_THR_ILE_phi_psi.py
dperl-sol/cctbx_project
155
11108779
<gh_stars>100-1000 from __future__ import division # Phi/Psi corrections in Angstrom and Radials mean_devs = { (-170, -180) : (0.039100, -1.177605), # 20 (-170, -170) : (0.035297, -1.183224), # 12 (-170, 140) : (0.010351, -0.992488), # 39 (-170, 150) : (0.019600, 0.905143), # 84 (-170, 160) : (0.039774, 0.475851), # 72 (-170, 170) : (0.039804, 0.537838), # 32 (-170, 180) : (0.034055, 0.228127), # 22 (-160, -180) : (0.055875, -1.071045), # 71 (-160, -170) : (0.066824, -0.922656), # 61 (-160, -160) : (0.069252, -0.904102), # 14 (-160, 130) : (0.018519, -1.690495), # 48 (-160, 140) : (0.035125, -1.193746), # 212 (-160, 150) : (0.027591, -0.348835), # 538 (-160, 160) : (0.028775, -0.078730), # 329 (-160, 170) : (0.030259, -0.494728), # 125 (-160, 180) : (0.045031, -0.859731), # 72 (-150, -180) : (0.053651, -1.126372), # 92 (-150, -170) : (0.085264, -1.234147), # 142 (-150, -160) : (0.090567, -1.113362), # 31 (-150, 100) : (0.038911, 1.637471), # 13 (-150, 110) : (0.039372, 1.041075), # 23 (-150, 120) : (0.003001, -1.219585), # 54 (-150, 130) : (0.020729, -1.128077), # 259 (-150, 140) : (0.029106, -0.956691), # 863 (-150, 150) : (0.029243, -0.810366), # 937 (-150, 160) : (0.018249, 0.916283), # 601 (-150, 170) : (0.020163, 1.255210), # 388 (-150, 180) : (0.020676, -0.853797), # 134 (-140, -180) : (0.018951, 0.298835), # 141 (-140, -170) : (0.040871, -1.080730), # 117 (-140, -160) : (0.104336, -1.239540), # 32 (-140, -150) : (0.118324, -1.314583), # 10 (-140, -60) : (0.033567, -1.726091), # 10 (-140, -50) : (0.004572, 2.864564), # 12 (-140, -40) : (0.048146, -2.037771), # 10 (-140, -30) : (0.035968, -2.056307), # 25 (-140, -20) : (0.044028, -2.459679), # 19 (-140, -10) : (0.028699, 2.496739), # 40 (-140, 0) : (0.012065, 3.128299), # 42 (-140, 10) : (0.005250, 2.917852), # 32 (-140, 20) : (0.003626, -2.880002), # 46 (-140, 30) : (0.038224, -1.292172), # 24 (-140, 40) : (0.039848, -1.458059), # 26 (-140, 50) : (0.045414, -1.691334), # 23 (-140, 60) : (0.028321, -1.383843), # 31 (-140, 70) : (0.020617, -0.776091), # 52 (-140, 80) : (0.019672, -0.966172), # 49 (-140, 90) : (0.027733, 0.451979), # 60 (-140, 100) : (0.031654, 1.119220), # 95 (-140, 110) : (0.031791, 1.263151), # 216 (-140, 120) : (0.033046, 1.348114), # 742 (-140, 130) : (0.031191, 1.116316), # 1970 (-140, 140) : (0.020804, 0.392644), # 2293 (-140, 150) : (0.002702, 0.908554), # 1826 (-140, 160) : (0.025906, 1.927208), # 2502 (-140, 170) : (0.035307, 1.559917), # 1439 (-140, 180) : (0.028871, 1.357359), # 303 (-130, -180) : (0.011292, -0.022455), # 178 (-130, -170) : (0.025431, -0.841925), # 121 (-130, -160) : (0.092040, -1.256506), # 36 (-130, -100) : (0.083186, -1.702218), # 15 (-130, -90) : (0.086638, -1.547633), # 24 (-130, -80) : (0.061876, -1.617552), # 23 (-130, -70) : (0.042582, -1.329022), # 22 (-130, -60) : (0.032320, -1.638576), # 72 (-130, -50) : (0.032905, -1.463480), # 62 (-130, -40) : (0.038181, -1.928063), # 54 (-130, -30) : (0.042138, -2.388421), # 93 (-130, -20) : (0.032274, -2.650007), # 252 (-130, -10) : (0.025416, -2.690438), # 293 (-130, 0) : (0.031060, -2.265391), # 279 (-130, 10) : (0.026805, -2.026934), # 266 (-130, 20) : (0.033225, -1.752752), # 231 (-130, 30) : (0.043239, -1.663039), # 154 (-130, 40) : (0.049720, -1.673735), # 97 (-130, 50) : (0.061324, -1.606206), # 60 (-130, 60) : (0.054534, -1.520821), # 109 (-130, 70) : (0.031602, -0.951458), # 149 (-130, 80) : (0.021598, -0.828470), # 177 (-130, 90) : (0.015097, -0.291520), # 220 (-130, 100) : (0.020191, 0.558579), # 375 (-130, 110) : (0.020975, 0.723288), # 1076 (-130, 120) : (0.024324, 1.009148), # 3515 (-130, 130) : (0.027783, 0.887899), # 6274 (-130, 140) : (0.024640, 0.511681), # 3901 (-130, 150) : (0.013799, -2.199653), # 2879 (-130, 160) : (0.009897, 3.135324), # 3748 (-130, 170) : (0.015384, 1.493375), # 1917 (-130, 180) : (0.016643, 1.145796), # 373 (-120, -180) : (0.015445, -0.152133), # 105 (-120, -170) : (0.039681, -1.175070), # 70 (-120, -160) : (0.067194, -1.325840), # 11 (-120, -150) : (0.087968, -1.366773), # 11 (-120, -140) : (0.152628, -1.450107), # 10 (-120, -100) : (0.129841, -1.541614), # 14 (-120, -90) : (0.082933, -1.369499), # 31 (-120, -80) : (0.073783, -1.548882), # 40 (-120, -70) : (0.064228, -1.505918), # 65 (-120, -60) : (0.044445, -1.590806), # 186 (-120, -50) : (0.035180, -1.270478), # 210 (-120, -40) : (0.027087, -1.166147), # 128 (-120, -30) : (0.047747, -2.124127), # 203 (-120, -20) : (0.037015, -2.374941), # 556 (-120, -10) : (0.042211, -2.195318), # 773 (-120, 0) : (0.037122, -2.030320), # 677 (-120, 10) : (0.042402, -1.921795), # 608 (-120, 20) : (0.051830, -1.797003), # 527 (-120, 30) : (0.065015, -1.717984), # 217 (-120, 40) : (0.069011, -1.610637), # 65 (-120, 60) : (0.033718, -1.615376), # 14 (-120, 70) : (0.040346, -1.353159), # 37 (-120, 80) : (0.025695, -0.647170), # 99 (-120, 90) : (0.023101, -0.187190), # 203 (-120, 100) : (0.022700, 0.113396), # 588 (-120, 110) : (0.018771, 0.369761), # 1808 (-120, 120) : (0.024071, 0.664790), # 5812 (-120, 130) : (0.028615, 0.635577), # 7908 (-120, 140) : (0.025823, 0.295269), # 3286 (-120, 150) : (0.023733, -1.918635), # 1811 (-120, 160) : (0.013737, -2.271646), # 1917 (-120, 170) : (0.006331, 1.333296), # 909 (-120, 180) : (0.017084, 1.021596), # 205 (-110, -180) : (0.020220, -0.834912), # 68 (-110, -170) : (0.020710, -0.422097), # 53 (-110, -160) : (0.072020, -1.362856), # 12 (-110, -100) : (0.095726, -1.431237), # 11 (-110, -90) : (0.114713, -1.551160), # 23 (-110, -80) : (0.082703, -1.425735), # 29 (-110, -70) : (0.066952, -1.566962), # 51 (-110, -60) : (0.044522, -1.501933), # 169 (-110, -50) : (0.026507, -1.183272), # 312 (-110, -40) : (0.031472, -1.295729), # 251 (-110, -30) : (0.041576, -1.867514), # 258 (-110, -20) : (0.036150, -2.202371), # 745 (-110, -10) : (0.040648, -2.027974), # 873 (-110, 0) : (0.038531, -2.025919), # 819 (-110, 10) : (0.050562, -1.896469), # 764 (-110, 20) : (0.072009, -1.783872), # 476 (-110, 30) : (0.065275, -1.779605), # 141 (-110, 40) : (0.048289, -1.438638), # 17 (-110, 50) : (0.102641, -1.754653), # 12 (-110, 80) : (0.038746, -0.872601), # 18 (-110, 90) : (0.026924, -0.488421), # 102 (-110, 100) : (0.027291, -0.062153), # 572 (-110, 110) : (0.022013, 0.217559), # 2044 (-110, 120) : (0.025312, 0.529715), # 5518 (-110, 130) : (0.029844, 0.528276), # 6161 (-110, 140) : (0.026977, 0.182348), # 2112 (-110, 150) : (0.023594, -1.845726), # 853 (-110, 160) : (0.005900, -2.088980), # 907 (-110, 170) : (0.018649, 1.201660), # 517 (-110, 180) : (0.015396, 1.027305), # 120 (-100, -180) : (0.020408, 0.185498), # 46 (-100, -170) : (0.026144, -0.757265), # 48 (-100, -160) : (0.090657, -1.046887), # 13 (-100, -90) : (0.102330, -1.521455), # 14 (-100, -80) : (0.072720, -1.310019), # 16 (-100, -70) : (0.062296, -1.319038), # 39 (-100, -60) : (0.046745, -1.544039), # 160 (-100, -50) : (0.025759, -1.110632), # 443 (-100, -40) : (0.026827, -0.896894), # 412 (-100, -30) : (0.034651, -1.838309), # 318 (-100, -20) : (0.031750, -2.194610), # 690 (-100, -10) : (0.034680, -2.197765), # 840 (-100, 0) : (0.038343, -2.030933), # 998 (-100, 10) : (0.049948, -1.890953), # 738 (-100, 20) : (0.062976, -1.829923), # 258 (-100, 30) : (0.071842, -1.682743), # 42 (-100, 40) : (0.096815, -1.623131), # 11 (-100, 60) : (0.049525, -1.335983), # 10 (-100, 70) : (0.041289, -0.772956), # 16 (-100, 80) : (0.034276, -0.976998), # 30 (-100, 90) : (0.037794, -0.713208), # 90 (-100, 100) : (0.024078, -0.209898), # 444 (-100, 110) : (0.023245, 0.140584), # 1782 (-100, 120) : (0.025831, 0.393736), # 3931 (-100, 130) : (0.029760, 0.479753), # 3940 (-100, 140) : (0.030358, 0.169726), # 1295 (-100, 150) : (0.021572, -1.575677), # 492 (-100, 160) : (0.003847, 2.058461), # 578 (-100, 170) : (0.024890, 1.159575), # 430 (-100, 180) : (0.020909, 1.053170), # 102 (-90, -180) : (0.025057, 0.627467), # 45 (-90, -170) : (0.036556, -1.208946), # 22 (-90, -160) : (0.032532, -0.693381), # 11 (-90, -70) : (0.075865, -1.576000), # 35 (-90, -60) : (0.046183, -1.550310), # 141 (-90, -50) : (0.024688, -1.053965), # 606 (-90, -40) : (0.030710, -1.008599), # 589 (-90, -30) : (0.039961, -1.689632), # 416 (-90, -20) : (0.031583, -2.157844), # 792 (-90, -10) : (0.033368, -2.227301), # 1074 (-90, 0) : (0.035012, -2.095990), # 1028 (-90, 10) : (0.044279, -1.880319), # 394 (-90, 20) : (0.051895, -1.832240), # 44 (-90, 40) : (0.064170, -1.647912), # 10 (-90, 50) : (0.042887, -1.243863), # 12 (-90, 60) : (0.051084, -1.355028), # 23 (-90, 70) : (0.078866, -1.421970), # 45 (-90, 80) : (0.050852, -1.155882), # 125 (-90, 90) : (0.039571, -0.971753), # 179 (-90, 100) : (0.025085, -0.450660), # 433 (-90, 110) : (0.021645, -0.071709), # 1360 (-90, 120) : (0.023916, 0.239667), # 2775 (-90, 130) : (0.029990, 0.297050), # 2804 (-90, 140) : (0.033344, 0.135823), # 998 (-90, 150) : (0.016757, -1.104586), # 379 (-90, 160) : (0.014991, 1.466174), # 666 (-90, 170) : (0.039526, 1.252086), # 533 (-90, 180) : (0.024542, 0.954524), # 94 (-80, -180) : (0.038022, 0.986759), # 40 (-80, -170) : (0.038421, 1.010631), # 28 (-80, -60) : (0.047030, -1.550948), # 156 (-80, -50) : (0.031225, -1.211185), # 1091 (-80, -40) : (0.038368, -1.151238), # 1342 (-80, -30) : (0.060821, -1.728169), # 809 (-80, -20) : (0.048417, -2.095827), # 1019 (-80, -10) : (0.043192, -2.206976), # 1178 (-80, 0) : (0.054472, -1.953496), # 474 (-80, 10) : (0.048692, -1.811687), # 82 (-80, 60) : (0.088120, -1.489534), # 18 (-80, 70) : (0.051681, -1.155341), # 26 (-80, 80) : (0.063863, -1.322189), # 67 (-80, 90) : (0.048564, -1.152976), # 82 (-80, 100) : (0.028063, -0.843964), # 224 (-80, 110) : (0.020497, -0.449375), # 775 (-80, 120) : (0.021419, 0.102185), # 2273 (-80, 130) : (0.026538, 0.122153), # 2638 (-80, 140) : (0.035253, -0.015866), # 1079 (-80, 150) : (0.015586, -1.340575), # 487 (-80, 160) : (0.016404, 1.651580), # 935 (-80, 170) : (0.041047, 1.269616), # 818 (-80, 180) : (0.039924, 1.268462), # 109 (-70, -60) : (0.059024, -1.616031), # 229 (-70, -50) : (0.038942, -1.251738), # 6470 (-70, -40) : (0.050463, -1.321426), # 13825 (-70, -30) : (0.083713, -1.767829), # 3619 (-70, -20) : (0.065105, -1.977661), # 2028 (-70, -10) : (0.064499, -2.065330), # 1160 (-70, 0) : (0.069219, -1.966177), # 157 (-70, 100) : (0.023202, -0.341432), # 24 (-70, 110) : (0.022787, -0.805295), # 176 (-70, 120) : (0.018220, -0.282864), # 1247 (-70, 130) : (0.025526, -0.117578), # 2656 (-70, 140) : (0.031534, -0.272924), # 1353 (-70, 150) : (0.019928, -1.494329), # 766 (-70, 160) : (0.009805, 1.790617), # 1090 (-70, 170) : (0.033224, 1.206697), # 492 (-70, 180) : (0.015042, 0.333699), # 32 (-60, -60) : (0.068141, -1.649754), # 330 (-60, -50) : (0.039577, -1.281559), # 19101 (-60, -40) : (0.047504, -1.289895), # 19952 (-60, -30) : (0.070756, -1.644570), # 3416 (-60, -20) : (0.063359, -1.873275), # 1241 (-60, -10) : (0.077656, -2.023494), # 124 (-60, 110) : (0.016187, -0.490848), # 19 (-60, 120) : (0.020170, -0.302879), # 463 (-60, 130) : (0.025008, -0.380850), # 1938 (-60, 140) : (0.030405, -0.621625), # 1316 (-60, 150) : (0.025029, -1.592350), # 522 (-60, 160) : (0.003992, 2.751709), # 224 (-60, 170) : (0.020786, 0.485073), # 38 (-50, -60) : (0.075194, -1.706880), # 129 (-50, -50) : (0.046158, -1.449030), # 2092 (-50, -40) : (0.057016, -1.443656), # 1517 (-50, -30) : (0.068207, -1.601243), # 325 (-50, -20) : (0.047212, -1.586467), # 23 (-50, 120) : (0.019259, -0.337252), # 147 (-50, 130) : (0.026765, -0.385795), # 648 (-50, 140) : (0.035590, -0.750828), # 314 (-50, 150) : (0.027311, -1.520417), # 43 (-40, -60) : (0.070546, -1.619691), # 25 (-40, -50) : (0.054911, -1.512325), # 65 (-40, -40) : (0.041599, -1.153152), # 20 (-40, 120) : (0.017717, 0.142113), # 21 (-40, 130) : (0.022994, -0.572740), # 36 (40, 40) : (0.199025, -1.892311), # 13 (40, 50) : (0.129214, -1.808620), # 20 (40, 60) : (0.109516, -1.887967), # 17 (50, 40) : (0.150394, -1.777165), # 25 (50, 50) : (0.102268, -1.849139), # 29 (50, 60) : (0.078204, -1.638902), # 21 (60, 40) : (0.099065, -1.771405), # 17 (60, 50) : (0.078828, -1.817775), # 16 (60, 60) : (0.113703, -1.792203), # 22 (60, 70) : (0.112526, -1.761346), # 10 (70, -60) : (0.118713, -2.020618), # 29 (70, -50) : (0.097268, -2.024971), # 23 (70, 0) : (0.141350, -2.247120), # 12 (70, 160) : (0.128734, -2.394952), # 13 (70, 170) : (0.081413, -2.838786), # 14 (80, -10) : (0.173921, -2.422485), # 20 (80, 0) : (0.186558, -2.434710), # 19 } if __name__ == '__main__': for phi_psi in [(0,0), (-60,-60)]: print(phi_psi, mean_devs.get(phi_psi, None))
pyvgdlmaster/examples/gridphysics/frogs_video.py
LRHammond/pv4dsrl
111
11108798
''' VGDL example: Same as frogs.py, but uploads video on youtube @author: <NAME>, <NAME> ''' from frogs import frog_level, frog_game if __name__ == "__main__": from vgdl.core import VGDLParser from vgdl.youtube import upload game = VGDLParser.playGame(frog_game, frog_level, persist_movie=True) upload(game.video_file)
tests/unit/ops/test_normalize.py
NVIDIA/NVTabular
543
11108833
<reponame>NVIDIA/NVTabular # # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import math import numpy as np import pandas as pd import pytest import nvtabular as nvt import nvtabular.io from nvtabular import ColumnSelector, dispatch, ops from nvtabular.dispatch import HAS_GPU if HAS_GPU: _CPU = [True, False] _HAS_GPU = True else: _CPU = [True] _HAS_GPU = False @pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1] if _HAS_GPU else [None]) @pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"]) # TODO: dask workflow doesn't support min/max on string columns, so won't work # with op_columns=None @pytest.mark.parametrize("op_columns", [["x"], ["x", "y"]]) @pytest.mark.parametrize("cpu", _CPU) def test_normalize_minmax(tmpdir, dataset, gpu_memory_frac, engine, op_columns, cpu): df = dataset.to_ddf().compute() cont_features = op_columns >> ops.NormalizeMinMax() processor = nvtabular.Workflow(cont_features) processor.fit(dataset) new_gdf = processor.transform(dataset).to_ddf().compute() new_gdf.index = df.index # Make sure index is aligned for checks for col in op_columns: col_min = df[col].min() assert col_min == pytest.approx(processor.output_node.op.mins[col], 1e-2) col_max = df[col].max() assert col_max == pytest.approx(processor.output_node.op.maxs[col], 1e-2) df[col] = (df[col] - processor.output_node.op.mins[col]) / ( processor.output_node.op.maxs[col] - processor.output_node.op.mins[col] ) assert np.all((df[col] - new_gdf[col]).abs().values <= 1e-2) @pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1]) @pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"]) @pytest.mark.parametrize("op_columns", [["x"], ["x", "y"]]) def test_normalize(tmpdir, df, dataset, gpu_memory_frac, engine, op_columns): cont_features = op_columns >> ops.Normalize() processor = nvtabular.Workflow(cont_features) processor.fit(dataset) new_gdf = processor.transform(dataset).to_ddf().compute() new_gdf.index = df.index # Make sure index is aligned for checks for col in op_columns: assert math.isclose(df[col].mean(), processor.output_node.op.means[col], rel_tol=1e-4) assert math.isclose(df[col].std(), processor.output_node.op.stds[col], rel_tol=1e-4) df[col] = (df[col] - processor.output_node.op.means[col]) / processor.output_node.op.stds[ col ] assert np.all((df[col] - new_gdf[col]).abs().values <= 1e-2) # our normalize op also works on dicts of cupy/numpy tensors. make sure this works like we'd # expect df = dataset.compute() cupy_inputs = {col: df[col].values for col in op_columns} cupy_outputs = cont_features.op.transform(ColumnSelector(op_columns), cupy_inputs) for col in op_columns: assert np.allclose(cupy_outputs[col], new_gdf[col].values) @pytest.mark.parametrize("cpu", _CPU) def test_normalize_std_zero(cpu): df = pd.DataFrame({"a": 7 * [10]}) dataset = nvt.Dataset(df, cpu=cpu) processor = nvtabular.Workflow(["a"] >> ops.Normalize()) processor.fit(dataset) result = processor.transform(dataset).compute()["a"] assert (result == 0).all() @pytest.mark.parametrize("gpu_memory_frac", [0.1]) @pytest.mark.parametrize("engine", ["parquet"]) @pytest.mark.parametrize("op_columns", [["x"]]) def test_normalize_upcastfloat64(tmpdir, dataset, gpu_memory_frac, engine, op_columns): df = dispatch._make_df({"x": [1.9e10, 2.3e16, 3.4e18, 1.6e19], "label": [1.0, 0.0, 1.0, 0.0]}) cont_features = op_columns >> ops.Normalize() processor = nvtabular.Workflow(cont_features) dataset = nvt.Dataset(df) processor.fit(dataset) new_gdf = processor.transform(dataset).to_ddf().compute() for col in op_columns: assert math.isclose(df[col].mean(), processor.output_node.op.means[col], rel_tol=1e-4) assert math.isclose(df[col].std(), processor.output_node.op.stds[col], rel_tol=1e-4) df[col] = (df[col] - processor.output_node.op.means[col]) / processor.output_node.op.stds[ col ] assert np.all((df[col] - new_gdf[col]).abs().values <= 1e-2)
spirit/core/storage.py
Ke-xueting/Spirit
974
11108847
# -*- coding: utf-8 -*- import django from django.core.files.storage import ( FileSystemStorage, default_storage, get_storage_class) from .conf import settings __all__ = [ 'spirit_storage', 'spirit_storage_or_none', 'OverwriteFileSystemStorage'] class OverwriteFileSystemStorage(FileSystemStorage): def get_available_name(self, name, **kwargs): self.delete(name) return name def select_storage(default=default_storage): """returns ``None`` if there is no custom storage""" if settings.ST_STORAGE is None: return default if settings.ST_STORAGE == 'spirit.core.storage.OverwriteFileSystemStorage': return OverwriteFileSystemStorage() return get_storage_class(settings.ST_STORAGE)() # In Django +3.1 the callback can be passed to FileField # storage, and it won't create a migration if django.VERSION[:2] >= (3, 1): spirit_storage_or_none = select_storage else: spirit_storage_or_none = select_storage(default=None) spirit_storage = select_storage()
addition_module/DMUE/config.py
weihaoxie/FaceX-Zoo
1,329
11108894
import os import getpass def parse_lb_txt(filename): lines = open(filename, 'r').readlines() train_dataset, test_dataset = [], [] for line in lines: key, label = line.split(' ')[0], line[-2] label = int(label) mode, img_path = key.split('_') # if mode == 'train': train_dataset.append([key, label]) elif mode == 'test': test_dataset.append([key, label]) return train_dataset, test_dataset class Config: num_classes = 8 ori_shape = (256, 256) label_path = "/path/to/your/lb2.txt" lmdb_f = "/path/to/your/AffectNet_lmdb/" train_dataset, val_dataset = parse_lb_txt(label_path) w, T = 0.5, 1.2 gamma = 1000 ramp_a = 6 # affectnet 4/6; ferplus 10/12/14; raf 9/10 batch_size = 72 test_minibatch=16 num_workers = 4 lr1 = [[6, 0.0001], [12, 0.00005], [20, 0.00001], [22, 0.00001], [25, 0.00005], [60, 0.00001]] lr2 = [[4, 0.001], [8, 0.0005], [14, 0.0001], [22, 0.00001], [25, 0.00005], [60, 0.00001]] bnneck = True # False for resnet50_ibn use_dropout = True BiasInCls = False fc_num = 2 train_mode = 'sp_confidence' second_order_statics = 'mean' # all, mean, var # -----------saving dirs-------# ckpt_root_dir = './checkpoints' output_dir = 'AffectNet_res18' # ---------------------------------------------------------------------------- # # Input # ---------------------------------------------------------------------------- # image_crop_size = (224, 224) padding = 0 image_channel = 3 horizontal_flip_p = 0.5 normalize_mean = [0.5, 0.5, 0.5] normalize_std = [0.5, 0.5, 0.5] # ---------------------------------------------------------------------------- # # Model # ---------------------------------------------------------------------------- # num_branches = num_classes + 1 assert num_branches == (num_classes + 1) backbone = 'resnet18' pretrained = './pretrain/checkpoints/out_dir_res18/mv_epoch_17.pt' pretrained_choice = 'msra' # '' or 'msra' last_stride = 2 frozen_stages = -1 pooling_method = 'GAP' # ---------------------------------------------------------------------------- # # Optimizer # ---------------------------------------------------------------------------- # start_epoch = 0 max_epoch = 36 weight_decay = 1e-4 # set different lr to the backbone and the classifier def get_lr(self, epoch): for it_lr in self.lr1: if epoch < it_lr[0]: _lr1 = it_lr[1] break for it_lr in self.lr2: if epoch < it_lr[0]: _lr2 = it_lr[1] break return _lr1, _lr2 config = Config()
update_version.py
xarala221/django-erp
345
11108924
<gh_stars>100-1000 # -*- coding: utf-8 -*- import os import sys from datetime import datetime def replace(root, replace_dict): if root[-1] == "/": root = root[0:-1] for x in os.listdir(root): path = root + "/" + x if os.path.isdir(path): replace(path, replace_dict) else: p, sep, ext = path.partition('.') if ext in ("py", "py.tmpl"): replaced = False infile = open(path, "r+") text = infile.read() infile.seek(0) for old_string, new_string in replace_dict.items(): if text.find(old_string) != -1: text = text.replace(old_string, new_string) replaced = True infile.seek(0) infile.truncate() infile.write(text) if replaced: print "Replaced in " + path infile.close() if __name__ == "__main__": if len(sys.argv) < 2: print "Usage: %s <new_version>" % sys.argv[0] sys.exit(1) ref_file = open("djangoerp/__init__.py") text = ref_file.read() ref_file.close() replace_dict = {} for line in text.split("\n"): if line.startswith("__copyright__"): replace_dict[line] = "__copyright__ = 'Copyright (c) 2013-%d, django ERP Team'" % datetime.now().year if line.startswith("__version__"): replace_dict[line] = "__version__ = '%s'" % sys.argv[1] replace("djangoerp", replace_dict)
benedict/__init__.py
fabiocaccamo/python-benedict
365
11108944
# -*- coding: utf-8 -*- from benedict.dicts import benedict from benedict.metadata import ( __author__, __copyright__, __description__, __license__, __title__, __version__, )
pages/extensions/amp_dev/markdown_extras/block_tip.py
sss55b/amp.dev
300
11108973
# -*- coding: utf-8 -*- from __future__ import unicode_literals import re TIP_TRIGGER = '[tip' TIP_START_TAG_PATTERN = re.compile(r'(\[tip( type=\"(.*?)\")?\])', re.MULTILINE) TIP_END_TAG_PATTERN = '[/tip]' ALLOWED_TYPES = ['default', 'important', 'read-on'] def trigger(original_body, content): if TIP_TRIGGER in original_body: return _transform(content) return content def _transform(content): for match in TIP_START_TAG_PATTERN.findall(content): # For tips without a type if not match[1]: content = content.replace( match[0], '{% call tip(\'\', type=\'note\') %}') if match[2]: type = 'default' if not match[2] in ALLOWED_TYPES else match[2] content = content.replace(match[0], '{% call tip(\'\', type=\'' + type + '\') %}') # Then also replace end tags content = content.replace(TIP_END_TAG_PATTERN, '{% endcall %}') return content
extensions/RichardHe.you-complete-me-1.0.36/ycmd/ycmd/tests/cs/subcommands_test.py
Sunshengjin/RoboWare-Studio
239
11108986
#!/usr/bin/env python # # Copyright (C) 2015 ycmd contributors. # # This file is part of ycmd. # # ycmd is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ycmd is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ycmd. If not, see <http://www.gnu.org/licenses/>. from webtest import TestApp, AppError from nose.tools import eq_, ok_ from ... import handlers from .cs_handlers_test import Cs_Handlers_test import re import os.path class Cs_Subcommands_test( Cs_Handlers_test ): def GoTo_Basic_test( self ): filepath = self._PathToTestFile( 'testy', 'GotoTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) goto_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GoTo' ], line_num = 9, column_num = 15, contents = contents, filetype = 'cs', filepath = filepath ) eq_( { 'filepath': self._PathToTestFile( 'testy', 'Program.cs' ), 'line_num': 7, 'column_num': 3 }, self._app.post_json( '/run_completer_command', goto_data ).json ) self._StopOmniSharpServer( filepath ) def GoToImplementation_Basic_test( self ): filepath = self._PathToTestFile( 'testy', 'GotoTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) goto_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GoToImplementation' ], line_num = 13, column_num = 13, contents = contents, filetype = 'cs', filepath = filepath ) eq_( { 'filepath': self._PathToTestFile( 'testy', 'GotoTestCase.cs' ), 'line_num': 30, 'column_num': 3 }, self._app.post_json( '/run_completer_command', goto_data ).json ) self._StopOmniSharpServer( filepath ) def GoToImplementation_NoImplementation_test( self ): filepath = self._PathToTestFile( 'testy', 'GotoTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) goto_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GoToImplementation' ], line_num = 17, column_num = 13, contents = contents, filetype = 'cs', filepath = filepath ) try: self._app.post_json( '/run_completer_command', goto_data ).json raise Exception("Expected a 'No implementations found' error") except AppError as e: if 'No implementations found' in str(e): pass else: raise finally: self._StopOmniSharpServer( filepath ) def CsCompleter_InvalidLocation_test( self ): filepath = self._PathToTestFile( 'testy', 'GotoTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) goto_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GoToImplementation' ], line_num = 2, column_num = 1, contents = contents, filetype = 'cs', filepath = filepath ) try: self._app.post_json( '/run_completer_command', goto_data ).json raise Exception( 'Expected a "Can\\\'t jump to implementation" error' ) except AppError as e: if 'Can\\\'t jump to implementation' in str(e): pass else: raise finally: self._StopOmniSharpServer( filepath ) def GoToImplementationElseDeclaration_NoImplementation_test( self ): filepath = self._PathToTestFile( 'testy', 'GotoTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) goto_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GoToImplementationElseDeclaration' ], line_num = 17, column_num = 13, contents = contents, filetype = 'cs', filepath = filepath ) eq_( { 'filepath': self._PathToTestFile( 'testy', 'GotoTestCase.cs' ), 'line_num': 35, 'column_num': 3 }, self._app.post_json( '/run_completer_command', goto_data ).json ) self._StopOmniSharpServer( filepath ) def GoToImplementationElseDeclaration_SingleImplementation_test( self ): filepath = self._PathToTestFile( 'testy', 'GotoTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) goto_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GoToImplementationElseDeclaration' ], line_num = 13, column_num = 13, contents = contents, filetype = 'cs', filepath = filepath ) eq_( { 'filepath': self._PathToTestFile( 'testy', 'GotoTestCase.cs' ), 'line_num': 30, 'column_num': 3 }, self._app.post_json( '/run_completer_command', goto_data ).json ) self._StopOmniSharpServer( filepath ) def GoToImplementationElseDeclaration_MultipleImplementations_test( self ): filepath = self._PathToTestFile( 'testy', 'GotoTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) goto_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GoToImplementationElseDeclaration' ], line_num = 21, column_num = 13, contents = contents, filetype = 'cs', filepath = filepath ) eq_( [ { 'filepath': self._PathToTestFile( 'testy', 'GotoTestCase.cs' ), 'line_num': 43, 'column_num': 3 }, { 'filepath': self._PathToTestFile( 'testy', 'GotoTestCase.cs' ), 'line_num': 48, 'column_num': 3 } ], self._app.post_json( '/run_completer_command', goto_data ).json ) self._StopOmniSharpServer( filepath ) def GetType_EmptyMessage_test( self ): filepath = self._PathToTestFile( 'testy', 'GetTypeTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) gettype_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GetType' ], line_num = 1, column_num = 1, contents = contents, filetype = 'cs', filepath = filepath ) eq_( { u'message': u"" }, self._app.post_json( '/run_completer_command', gettype_data ).json ) self._StopOmniSharpServer( filepath ) def GetType_VariableDeclaration_test( self ): filepath = self._PathToTestFile( 'testy', 'GetTypeTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) gettype_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GetType' ], line_num = 4, column_num = 5, contents = contents, filetype = 'cs', filepath = filepath ) eq_( { u'message': u"string" }, self._app.post_json( '/run_completer_command', gettype_data ).json ) self._StopOmniSharpServer( filepath ) def GetType_VariableUsage_test( self ): filepath = self._PathToTestFile( 'testy', 'GetTypeTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) gettype_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GetType' ], line_num = 5, column_num = 5, contents = contents, filetype = 'cs', filepath = filepath ) eq_( { u'message': u"string str" }, self._app.post_json( '/run_completer_command', gettype_data ).json ) self._StopOmniSharpServer( filepath ) def GetType_Constant_test( self ): filepath = self._PathToTestFile( 'testy', 'GetTypeTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) gettype_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GetType' ], line_num = 4, column_num = 14, contents = contents, filetype = 'cs', filepath = filepath ) eq_( { u'message': u"System.String" }, self._app.post_json( '/run_completer_command', gettype_data ).json ) self._StopOmniSharpServer( filepath ) def GetType_DocsIgnored_test( self ): filepath = self._PathToTestFile( 'testy', 'GetTypeTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) gettype_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GetType' ], line_num = 9, column_num = 34, contents = contents, filetype = 'cs', filepath = filepath ) eq_( { u'message': u"int GetTypeTestCase.an_int_with_docs;", }, self._app.post_json( '/run_completer_command', gettype_data ).json ) self._StopOmniSharpServer( filepath ) def GetDoc_Variable_test( self ): filepath = self._PathToTestFile( 'testy', 'GetDocTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) getdoc_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GetDoc' ], line_num = 13, column_num = 28, contents = contents, filetype = 'cs', filepath = filepath ) eq_( { 'detailed_info': 'int GetDocTestCase.an_int;\n' 'an integer, or something', }, self._app.post_json( '/run_completer_command', getdoc_data ).json ) self._StopOmniSharpServer( filepath ) def GetDoc_Function_test( self ): filepath = self._PathToTestFile( 'testy', 'GetDocTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) getdoc_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'GetDoc' ], line_num = 33, column_num = 27, contents = contents, filetype = 'cs', filepath = filepath ) # It seems that Omnisharp server eats newlines eq_( { 'detailed_info': 'int GetDocTestCase.DoATest();\n' ' Very important method. With multiple lines of ' 'commentary And Format- -ting', }, self._app.post_json( '/run_completer_command', getdoc_data ).json ) self._StopOmniSharpServer( filepath ) def _RunFixIt( self, line, column, expected_result ): filepath = self._PathToTestFile( 'testy', 'FixItTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) fixit_data = self._BuildRequest( completer_target = 'filetype_default', command_arguments = [ 'FixIt' ], line_num = line, column_num = column, contents = contents, filetype = 'cs', filepath = filepath ) eq_( expected_result, self._app.post_json( '/run_completer_command', fixit_data ).json ) self._StopOmniSharpServer( filepath ) def FixIt_RemoveSingleLine_test( self ): filepath = self._PathToTestFile( 'testy', 'FixItTestCase.cs' ) self._RunFixIt( 11, 1, { u'fixits': [ { u'location': { u'line_num': 11, u'column_num': 1, u'filepath': filepath }, u'chunks': [ { u'replacement_text': '', u'range': { u'start': { u'line_num': 10, u'column_num': 20, u'filepath': filepath }, u'end': { u'line_num': 11, u'column_num': 30, u'filepath': filepath }, } } ] } ] } ) def FixIt_MultipleLines_test( self ): filepath = self._PathToTestFile( 'testy', 'FixItTestCase.cs' ) self._RunFixIt( 19, 1, { u'fixits': [ { u'location': { u'line_num': 19, u'column_num': 1, u'filepath': filepath }, u'chunks': [ { u'replacement_text': "return On", u'range': { u'start': { u'line_num': 20, u'column_num': 13, u'filepath': filepath }, u'end': { u'line_num': 21, u'column_num': 35, u'filepath': filepath }, } } ] } ] } ) def FixIt_SpanFileEdge_test( self ): filepath = self._PathToTestFile( 'testy', 'FixItTestCase.cs' ) self._RunFixIt( 1, 1, { u'fixits': [ { u'location': { u'line_num': 1, u'column_num': 1, u'filepath': filepath }, u'chunks': [ { u'replacement_text': 'System', u'range': { u'start': { u'line_num': 1, u'column_num': 7, u'filepath': filepath }, u'end': { u'line_num': 3, u'column_num': 18, u'filepath': filepath }, } } ] } ] } ) def FixIt_AddTextInLine_test( self ): filepath = self._PathToTestFile( 'testy', 'FixItTestCase.cs' ) self._RunFixIt( 9, 1, { u'fixits': [ { u'location': { u'line_num': 9, u'column_num': 1, u'filepath': filepath }, u'chunks': [ { u'replacement_text': ', StringComparison.Ordinal', u'range': { u'start': { u'line_num': 9, u'column_num': 29, u'filepath': filepath }, u'end': { u'line_num': 9, u'column_num': 29, u'filepath': filepath }, } } ] } ] } ) def FixIt_ReplaceTextInLine_test( self ): filepath = self._PathToTestFile( 'testy', 'FixItTestCase.cs' ) self._RunFixIt( 10, 1, { u'fixits': [ { u'location': { u'line_num': 10, u'column_num': 1, u'filepath': filepath }, u'chunks': [ { u'replacement_text': 'const int', u'range': { u'start': { u'line_num': 10, u'column_num': 13, u'filepath': filepath }, u'end': { u'line_num': 10, u'column_num': 16, u'filepath': filepath }, } } ] } ] } ) def StopServer_NoErrorIfNotStarted_test( self ): filepath = self._PathToTestFile( 'testy', 'GotoTestCase.cs' ) self._StopOmniSharpServer( filepath ) # Success = no raise def StopServer_KeepLogFiles_test( self ): yield self._StopServer_KeepLogFiles, True yield self._StopServer_KeepLogFiles, False def _StopServer_KeepLogFiles( self, keeping_log_files ): self._ChangeSpecificOptions( { 'server_keep_logfiles': keeping_log_files } ) self._app = TestApp( handlers.app ) self._app.post_json( '/ignore_extra_conf_file', { 'filepath': self._PathToTestFile( '.ycm_extra_conf.py' ) } ) filepath = self._PathToTestFile( 'testy', 'GotoTestCase.cs' ) contents = open( filepath ).read() event_data = self._BuildRequest( filepath = filepath, filetype = 'cs', contents = contents, event_name = 'FileReadyToParse' ) self._app.post_json( '/event_notification', event_data ) self._WaitUntilOmniSharpServerReady( filepath ) event_data = self._BuildRequest( filetype = 'cs', filepath = filepath ) debuginfo = self._app.post_json( '/debug_info', event_data ).json log_files_match = re.search( "^OmniSharp logfiles:\n(.*)\n(.*)", debuginfo, re.MULTILINE ) stdout_logfiles_location = log_files_match.group( 1 ) stderr_logfiles_location = log_files_match.group( 2 ) try: ok_( os.path.exists(stdout_logfiles_location ), "Logfile should exist at {0}".format( stdout_logfiles_location ) ) ok_( os.path.exists( stderr_logfiles_location ), "Logfile should exist at {0}".format( stderr_logfiles_location ) ) finally: self._StopOmniSharpServer( filepath ) if keeping_log_files: ok_( os.path.exists( stdout_logfiles_location ), "Logfile should still exist at " "{0}".format( stdout_logfiles_location ) ) ok_( os.path.exists( stderr_logfiles_location ), "Logfile should still exist at " "{0}".format( stderr_logfiles_location ) ) else: ok_( not os.path.exists( stdout_logfiles_location ), "Logfile should no longer exist at " "{0}".format( stdout_logfiles_location ) ) ok_( not os.path.exists( stderr_logfiles_location ), "Logfile should no longer exist at " "{0}".format( stderr_logfiles_location ) )
app.py
e-naharnovic/university-domains-list-api
102
11108990
<gh_stars>100-1000 import json from collections import defaultdict from flask import Flask, request, Response from pytrie import Trie import uuid import requests import time import re app = Flask(__name__) data = list() country_index = defaultdict(list) name_index = dict() domain_index = defaultdict(list) # Time to wait before allowing an update to our dataset. 86400 seconds = 24 hours UPDATE_WAIT_TIME = 86400 @app.route("/search") def search(): if not data_loaded: load_data() country = request.args.get('country') name = request.args.get('name') name_contains = request.args.get('name_contains') domain = request.args.get("domain") filtered = data if name and country: name = name.lower() country = country.lower() name_filtered = prefix_tree.values(prefix=name) filtered = [uni for uni in name_filtered if uni['country'].lower() == country] elif name_contains and country: country = country.lower() regex = re.compile(r'\b{0}'.format(name_contains.lower())) name_filtered = [uni for uni in data if regex.search(uni['name'].lower())] filtered = [uni for uni in name_filtered if uni['country'].lower() == country] elif name_contains: regex = re.compile(r'\b{0}'.format(name_contains.lower())) filtered = [uni for uni in data if regex.search(uni['name'].lower())] elif name: name = name.lower() filtered = prefix_tree.values(prefix=name) elif country: country = country.lower() filtered = country_index[country] elif domain: filtered = domain_index[domain] return Response(json.dumps(filtered), mimetype='application/json') data_loaded = False last_updated = 0 def load_data(): global data_loaded, prefix_tree, data, country_index, name_index, domain_index response = requests.get("https://raw.githubusercontent.com/Hipo/university-domains-list/master/world_universities_and_domains.json") data = response.json() for i in data: country_index[i["country"].lower()].append(i) name_index[i['name'].lower()] = i for domain in i["domains"]: domain_index[domain].append(i) splitted = i['name'].split(" ") if len(splitted) > 1: for splitted_name in splitted[1:]: name_index[splitted_name.lower() + str(uuid.uuid1())] = i prefix_tree = Trie(**name_index) data_loaded = True @app.route('/update') def update(): global last_updated if (time.time() >= last_updated + UPDATE_WAIT_TIME): load_data() last_updated = time.time() response = {'status': 'success', 'message': 'Dataset updated!'} else: response = {'status': 'error', 'message': 'Dataset had been updated recently. Try again later.'} return json.dumps(response) @app.route('/') def index(): if not data_loaded: load_data() data = {'author': {'name': 'hipo', 'website': 'http://hipolabs.com'}, 'example': 'http://universities.hipolabs.com/search?name=middle&country=Turkey', 'github': 'https://github.com/Hipo/university-domains-list'} return json.dumps(data) if __name__ == "__main__": app.run(debug=False)
alipay/aop/api/response/AlipayMerchantPayforprivilegeMerchantremainingQueryResponse.py
antopen/alipay-sdk-python-all
213
11108997
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayMerchantPayforprivilegeMerchantremainingQueryResponse(AlipayResponse): def __init__(self): super(AlipayMerchantPayforprivilegeMerchantremainingQueryResponse, self).__init__() self._unused_benefit = None self._unused_principal = None self._used_benefit = None self._used_principal = None @property def unused_benefit(self): return self._unused_benefit @unused_benefit.setter def unused_benefit(self, value): self._unused_benefit = value @property def unused_principal(self): return self._unused_principal @unused_principal.setter def unused_principal(self, value): self._unused_principal = value @property def used_benefit(self): return self._used_benefit @used_benefit.setter def used_benefit(self, value): self._used_benefit = value @property def used_principal(self): return self._used_principal @used_principal.setter def used_principal(self, value): self._used_principal = value def parse_response_content(self, response_content): response = super(AlipayMerchantPayforprivilegeMerchantremainingQueryResponse, self).parse_response_content(response_content) if 'unused_benefit' in response: self.unused_benefit = response['unused_benefit'] if 'unused_principal' in response: self.unused_principal = response['unused_principal'] if 'used_benefit' in response: self.used_benefit = response['used_benefit'] if 'used_principal' in response: self.used_principal = response['used_principal']
websauna/system/admin/views.py
stevepiercy/websauna
286
11109025
<filename>websauna/system/admin/views.py """Admin interface main views. """ # Pyramid from pyramid.httpexceptions import HTTPFound from pyramid.view import view_config from pyramid_layout.panel import panel_config # Websauna from websauna.system.admin.modeladmin import ModelAdmin from websauna.system.admin.modeladmin import ModelAdminRoot from websauna.system.admin.utils import get_admin from websauna.system.core.panel import render_panel from websauna.system.core.viewconfig import view_overrides from websauna.system.crud import views as crud_views from websauna.system.crud import listing from websauna.system.crud.formgenerator import SQLAlchemyFormGenerator from websauna.system.crud.sqlalchemy import sqlalchemy_deleter from websauna.system.crud.views import TraverseLinkButton @view_config(route_name='admin_home', renderer='admin/admin.html', permission='view') def admin(request): """Admin front page page.""" admin = get_admin(request) # For now, admin panels always appear in ascending order model_admin_root = admin["models"] # TODO: Have renderer adapters for panels, so that they can override views admin_panels = sorted(model_admin_root.items(), key=lambda pair: pair[1].title) rendered_panels = [render_panel(ma, request, name="admin_panel") for id, ma in admin_panels] return dict(panels=rendered_panels) @panel_config(name='admin_panel', context=ModelAdmin, renderer='admin/model_panel.html') def default_model_admin_panel(context, request, **kwargs): """Generic panel for any model admin. Display count of items in the database. """ model_admin = context count = model_admin.get_query().count() admin = model_admin.__parent__ title = model_admin.title return dict(locals(), **kwargs) class Listing(crud_views.Listing): """Base listing view for all admin models. """ base_template = "admin/base.html" table = listing.Table( columns=[ listing.Column(id="id", name="Id",), listing.StringPresentationColumn(id="value", name="Value"), listing.ControlsColumn() ] ) @property def title(self): return "All {}".format(self.context.title) @view_config(context=ModelAdmin, name="listing", renderer="crud/listing.html", route_name="admin", permission='view') def listing(self): # We override this method just to define admin route_name traversing return super(Listing, self).listing() class Show(crud_views.Show): """Default show view for model admin.""" base_template = "admin/base.html" form_generator = SQLAlchemyFormGenerator() resource_buttons = [ TraverseLinkButton(id="edit", name="Edit", view_name="edit", permission="edit"), TraverseLinkButton(id="delete", name="Delete", view_name="delete", permission="delete"), TraverseLinkButton(id="shell", name="Shell", view_name="shell", permission="shell", tooltip="Open IPython Notebook shell and have this item prepopulated in obj variable.", feature="notebook"), ] @view_config(context=ModelAdmin.Resource, name="show", renderer="crud/show.html", route_name="admin", permission='view') def show(self): # We override this method just to define admin route_name traversing return super(Show, self).show() class Edit(crud_views.Edit): """Default edit vie for model admin.""" base_template = "admin/base.html" form_generator = SQLAlchemyFormGenerator() @view_config(context=ModelAdmin.Resource, name="edit", renderer="crud/edit.html", route_name="admin", permission='edit') def edit(self): # We override this method just to define admin route_name traversing return super(Edit, self).edit() class Add(crud_views.Add): """Default add view for model admin.""" base_template = "admin/base.html" form_generator = SQLAlchemyFormGenerator() @view_config(context=ModelAdmin, name="add", renderer="crud/add.html", route_name="admin", permission='add') def add(self): # We override this method just to define admin route_name traversing return super(Add, self).add() @view_overrides(context=ModelAdmin.Resource, route_name="admin") class Delete(crud_views.Delete): """Delete view for SQLAlchemy model admins.""" base_template = "admin/base.html" deleter = sqlalchemy_deleter @view_config(context=ModelAdmin, name="", route_name="admin", permission='view') def model_admin_default_view(context, request): """Redirect to listing if model admin URL is being accessed without a view name.""" return HTTPFound(request.resource_url(context, "listing")) @view_config(context=ModelAdmin.Resource, name="", route_name="admin", permission='view') def model_resource_default_view(context, request): """Redirect to show if model instance URL is being accessed without a view name.""" return HTTPFound(request.resource_url(context, "show")) @view_config(route_name='admin', context=ModelAdminRoot, permission='view') def view__model_admin_root(context, request): """Model admin root does not have a view per se so we redirect to admin root.""" return HTTPFound(request.resource_url(context.__parent__))
starfish/core/intensity_table/test/factories.py
haoxusci/starfish
164
11109031
import numpy as np import xarray as xr from starfish import DecodedIntensityTable, IntensityTable from starfish.core.codebook.test.factories import codebook_array_factory, loaded_codebook from starfish.core.types import Coordinates, Features from ..overlap import Area def synthetic_intensity_table() -> IntensityTable: return IntensityTable.synthetic_intensities(loaded_codebook(), n_spots=2) def synthetic_decoded_intensity_table( codebook, num_z: int = 12, height: int = 50, width: int = 40, n_spots: int = 10, mean_fluor_per_spot: int = 200, mean_photons_per_fluor: int = 50, ) -> DecodedIntensityTable: """ Creates an IntensityTable with synthetic spots, that correspond to valid codes in a provided codebook. Parameters ---------- codebook : Codebook Starfish codebook object. num_z : int Number of z-planes to use when localizing spots. height : int y dimension of each synthetic plane. width : int x dimension of each synthetic plane. n_spots : int Number of spots to generate. mean_fluor_per_spot : int Mean number of fluorophores per spot. mean_photons_per_fluor : int Mean number of photons per fluorophore. Returns ------- DecodedIntensityTable """ intensities = IntensityTable.synthetic_intensities( codebook, num_z=num_z, height=height, width=width, n_spots=n_spots, mean_fluor_per_spot=mean_fluor_per_spot, mean_photons_per_fluor=mean_photons_per_fluor ) targets = np.random.choice( codebook.coords[Features.TARGET], size=n_spots, replace=True) return DecodedIntensityTable.from_intensity_table(intensities, targets=(Features.AXIS, targets)) def assign_synthetic_targets(intensities: IntensityTable) -> DecodedIntensityTable: """ Assign fake target values to the given IntensityTable Parameters ---------- intensities : IntensityTable intensity_table to assign target values to Returns ------- DecodedIntensityTable """ intensities = DecodedIntensityTable(intensities) return DecodedIntensityTable.from_intensity_table( intensities, targets=(Features.AXIS, np.random.choice(list('ABCD'), size=20)), distances=(Features.AXIS, np.random.rand(20))) def create_intensity_table_with_coords(area: Area, n_spots: int=10) -> IntensityTable: """ Creates a 50X50 intensity table with physical coordinates within the given Area. Parameters ---------- area: Area The area of physical space the IntensityTable should be defined over n_spots: Number of spots to add to the IntensityTable """ codebook = codebook_array_factory() it = IntensityTable.synthetic_intensities( codebook, num_z=1, height=50, width=50, n_spots=n_spots ) # intensity table 1 has 10 spots, xmin = 0, ymin = 0, xmax = 2, ymax = 1 it[Coordinates.X.value] = xr.DataArray(np.linspace(area.min_x, area.max_x, n_spots), dims=Features.AXIS) it[Coordinates.Y.value] = xr.DataArray(np.linspace(area.min_y, area.max_y, n_spots), dims=Features.AXIS) return it
Challenge2/main.py
Gerifield/websocket-smuggle
284
11109043
<filename>Challenge2/main.py #!/usr/bin/python from flask import Flask, render_template, request, Response from flask_socketio import SocketIO from flask_restful import Resource, Api from urlparse import urlparse import requests requests.packages.urllib3.disable_warnings() app = Flask(__name__) api = Api(app) socketio = SocketIO(app, cors_allowed_origins='*', path='/api/public/socket.io') class PublicProxyAPI(Resource): def get(self): return Response(status=405) def post(self): def check(_url): parsed = urlparse(_url) if parsed.port == 5000: return False if 'flag' in parsed.path.lower(): return False bad = ('localhost', '127.', 'xip.io') # shitty check if any(w for w in bad if w in parsed.netloc.lower()): return False return True url = request.form.get('url') if not url: return {'message': 'Mandatory URL not specified'}, 400 if not check(url): return {'message': 'Access to URL is denied'}, 403 try: response = requests.get(url, allow_redirects=False, verify=False, timeout=40) except: return Response(status=500) return Response(status=response.status_code) class Flag(Resource): def get(self): return {'flag': 'WHAt A WoNdeRFUL dAY for a cry OF De5p4iR ANd h3Ar7acH3'} api.add_resource(Flag, '/flag') api.add_resource(PublicProxyAPI, '/api/public/healthcheck') @socketio.on('my event') def handle_my_custom_event(json): #print('received json: ' + str(json)) pass if __name__ == '__main__': socketio.run(app, port=5000, host='127.0.0.1')
vroom/environment.py
groschovskiy/vroom
134
11109057
"""A vroom test execution environment. This is an object with all of the vroom verifiers asked. Good for one file. """ import vroom.buffer import vroom.messages import vroom.output import vroom.shell import vroom.vim class Environment(object): """The environment object. Sets up all the verifiers and managers and communicators you'll ever need. """ def __init__(self, filename, args): self.args = args self.message_strictness = args.message_strictness self.system_strictness = args.system_strictness self.filename = filename self.writer = vroom.output.Writer(filename, args) self.shell = vroom.shell.Communicator(filename, self, self.writer) if args.neovim: import vroom.neovim_mod as neovim_mod self.vim = neovim_mod.Communicator(args, self.shell.env, self.writer) else: self.vim = vroom.vim.Communicator(args, self.shell.env, self.writer) self.buffer = vroom.buffer.Manager(self.vim) self.messenger = vroom.messages.Messenger(self.vim, self, self.writer)
beagle/datasources/elasticsearch_qs.py
limkokhian/beagle
1,139
11109100
<filename>beagle/datasources/elasticsearch_qs.py from typing import Generator from beagle.common.logging import logger from beagle.config import Config from beagle.datasources.base_datasource import ExternalDataSource from beagle.transformers.generic_transformer import GenericTransformer class ElasticSearchQSSerach(ExternalDataSource): """Datasource which allows transforming the results of a Elasticsearch Query String search into a graph. Parameters ---------- index : str Elasticsearch index, by default "logs-*" query : str Elasticsearch query string, by default "*" earilest : str, optional The earliest time modifier, by default "-7d" latest : str, optional The latest time modifier, by default "now" Raises ------ RuntimeError If there are no Elasticsearch credentials configured. """ name = "Elasticsearch Query String" transformers = [GenericTransformer] category = "Elasticsearch" def __init__( self, index: str = "logs-*", query: str = "*", earliest: str = "-7d", latest: str = "now" ): """Creates a splunk query to pull data from Parameters ---------- index : str Elasticsearch index, by default "logs-*" query : str Elasticsearch query string, by default "*" earilest : str, optional The earliest time modifier, by default "-7d" latest : str, optional The latest time modifier, by default "now" """ self.earliest = earliest self.latest = latest self.index = index self.query = query self.client = self._setup_session() def _setup_session(self): # pragma: no cover from elasticsearch import Elasticsearch client_kwargs = { "host": Config.get("elasticsearch", "host"), "scheme": Config.get("elasticsearch", "scheme"), "port": int(Config.get("elasticsearch", "port", fallback=9200)), } if Config.get("elasticsearch", "username") and Config.get("elasticsearch", "password"): client_kwargs["http_auth"] = ( Config.get("elasticsearch", "username"), Config.get("elasticsearch", "password"), ) logger.info(f"Creating Elasticsearch client for host={client_kwargs['host']}") return Elasticsearch(**client_kwargs) def events(self) -> Generator[dict, None, None]: query = { "query": { "bool": { "must": {"query_string": {"query": self.query}}, "filter": [ { "range": { "@timestamp": {"gte": "now" + self.earliest, "lte": self.latest} } } ], } } } # Number of hits to return size = int(Config.get("elasticsearch", "scroll_size", fallback=100)) data = self.client.search(index=self.index, body=query, scroll="2m", size=size) # Get the scroll ID sid = data["_scroll_id"] scroll_size = len(data["hits"]["hits"]) while scroll_size > 0: # Before scroll, process current batch of hits for item in data["hits"]["hits"]: source = item["_source"] source["_id"] = item["_id"] yield source data = self.client.scroll(scroll_id=sid, scroll="2m") # Update the scroll ID sid = data["_scroll_id"] # Get the number of results that returned in the last scroll scroll_size = len(data["hits"]["hits"]) def metadata(self) -> dict: # pragma: no cover return { "index": self.index, "query": self.query, "earliest": self.earliest, "latest": self.latest, }
tests/test_sklearn_mlp_converter.py
vumichien/hummingbird
2,772
11109101
<filename>tests/test_sklearn_mlp_converter.py """ Tests sklearn MLP models (MLPClassifier, MLPRegressor) converters. """ import unittest import warnings import numpy as np import torch from sklearn.neural_network import MLPClassifier, MLPRegressor import hummingbird.ml from hummingbird.ml import constants from hummingbird.ml._utils import tvm_installed class TestSklearnMLPClassifier(unittest.TestCase): # MLPClassifier test function to be parameterized def _test_mlp_classifer(self, num_classes, activation="relu", labels_shift=0, backend="torch", extra_config={}): model = MLPClassifier(hidden_layer_sizes=(100, 100, 50,), activation=activation) np.random.seed(0) X = np.random.rand(100, 200) X = np.array(X, dtype=np.float32) y = np.random.randint(num_classes, size=100) + labels_shift model.fit(X, y) torch_model = hummingbird.ml.convert(model, backend, X, extra_config=extra_config) self.assertTrue(torch_model is not None) np.testing.assert_allclose(model.predict_proba(X), torch_model.predict_proba(X), rtol=1e-6, atol=1e-6) # MLPClassifier binary def test_mlp_classifer_bi(self): self._test_mlp_classifer(2) # MLPClassifier multi-class def test_mlp_classifer_multi(self): self._test_mlp_classifer(3) # MLPClassifier multi-class w/ shifted labels def test_mlp_classifer_multi_shifted_labels(self): self._test_mlp_classifer(3, labels_shift=3) # MLPClassifier multi-class w/ tanh activation def test_mlp_classifer_multi_logistic(self): self._test_mlp_classifer(3, activation="tanh") # MLPClassifier multi-class w/ logistic activation def test_mlp_classifer_multi_tanh(self): self._test_mlp_classifer(3, activation="logistic") # MLPClassifier multi-class w/ identity activation def test_mlp_classifer_multi_identity(self): self._test_mlp_classifer(3, activation="identity") # Test TVM backend # MLPClassifier binary @unittest.skipIf(not (tvm_installed()), reason="TVM tests require TVM") def test_mlp_classifer_bi_tvm(self): self._test_mlp_classifer(2, backend="tvm", extra_config={constants.TVM_MAX_FUSE_DEPTH: 30}) # MLPClassifier multi-class @unittest.skipIf(not (tvm_installed()), reason="TVM tests require TVM") def test_mlp_classifer_multi_tvm(self): self._test_mlp_classifer(3, backend="tvm", extra_config={constants.TVM_MAX_FUSE_DEPTH: 30}) # MLPClassifier multi-class w/ shifted labels @unittest.skipIf(not (tvm_installed()), reason="TVM tests require TVM") def test_mlp_classifer_multi_shifted_labels_tvm(self): self._test_mlp_classifer(3, labels_shift=3, backend="tvm", extra_config={constants.TVM_MAX_FUSE_DEPTH: 30}) # MLPClassifier multi-class w/ tanh activation @unittest.skipIf(not (tvm_installed()), reason="TVM tests require TVM") def test_mlp_classifer_multi_logistic_tvm(self): self._test_mlp_classifer(3, activation="tanh", backend="tvm", extra_config={constants.TVM_MAX_FUSE_DEPTH: 30}) # MLPClassifier multi-class w/ logistic activation @unittest.skipIf(not (tvm_installed()), reason="TVM tests require TVM") def test_mlp_classifer_multi_tanh_tvm(self): self._test_mlp_classifer(3, activation="logistic", backend="tvm", extra_config={constants.TVM_MAX_FUSE_DEPTH: 30}) # MLPClassifier multi-class w/ identity activation @unittest.skipIf(not (tvm_installed()), reason="TVM tests require TVM") def test_mlp_classifer_multi_identity_tvm(self): self._test_mlp_classifer(3, activation="identity", backend="tvm", extra_config={constants.TVM_MAX_FUSE_DEPTH: 30}) # MLPRegressor test function to be parameterized def _test_mlp_regressor(self, activation="relu"): model = MLPRegressor(hidden_layer_sizes=(100, 100, 50,), activation=activation) np.random.seed(0) X = np.random.rand(100, 200) X = np.array(X, dtype=np.float32) y = np.random.rand(100) model.fit(X, y) torch_model = hummingbird.ml.convert(model, "torch") self.assertTrue(torch_model is not None) np.testing.assert_allclose(model.predict(X), torch_model.predict(X), rtol=1e-6, atol=1e-6) # MLPRegressor def test_mlp_regressor(self): self._test_mlp_regressor() # MLPRegressor w/ tanh activation def test_mlp_regressor_multi_logistic(self): self._test_mlp_regressor(activation="tanh") # MLPRegressor w/ logistic activation def test_mlp_regressor_multi_tanh(self): self._test_mlp_regressor(activation="logistic") # MLPRegressor multi-class w/ identity activation def test_mlp_regressor_multi_identity(self): self._test_mlp_regressor(activation="identity") if __name__ == "__main__": unittest.main()
aztk_cli/entrypoint.py
Geims83/aztk
161
11109113
<reponame>Geims83/aztk """ AZTK module for the CLI entry point Note: any changes to this file need have the package reinstalled pip install -e . """ import argparse import warnings from typing import NamedTuple from azure.batch.models import BatchErrorException import aztk from aztk_cli import constants, log, logger, utils from aztk_cli.spark.endpoints import spark from . import plugins, toolkit # Makes sure the warnings are displayed nicely in the CLI without a stacktrace def _show_warn(message, *_args): log.warning(str(message)) def main(): parser = argparse.ArgumentParser(prog=constants.CLI_EXE) setup_common_args(parser) subparsers = parser.add_subparsers(title="Available Softwares", dest="software", metavar="<software>") subparsers.required = True spark_parser = subparsers.add_parser("spark", help="Commands to run spark jobs") plugins_parser = subparsers.add_parser("plugins", help="Commands to list and view plugins") toolkit_parser = subparsers.add_parser("toolkit", help="List current toolkit information and browse available ones") spark.setup_parser(spark_parser) plugins.setup_parser(plugins_parser) toolkit.setup_parser(toolkit_parser) args = parser.parse_args() parse_common_args(args) try: run_software(args) except BatchErrorException as e: utils.print_batch_exception(e) except aztk.error.AztkError as e: log.error(str(e)) def setup_common_args(parser: argparse.ArgumentParser): parser.add_argument("--version", action="version", version=aztk.version.__version__) parser.add_argument("--verbose", action="store_true", help="Enable verbose logging.") def parse_common_args(args: NamedTuple): if args.verbose: logger.setup_logging(True) log.debug("Verbose logging enabled") else: warnings.showwarning = _show_warn logger.setup_logging(False) def run_software(args: NamedTuple): softwares = {} softwares[aztk.models.Software.spark] = spark.execute softwares["plugins"] = plugins.execute softwares["toolkit"] = toolkit.execute func = softwares[args.software] func(args) if __name__ == "__main__": main()
mmdeploy/codebase/mmocr/models/text_detection/fpn_cat.py
aegis-rider/mmdeploy
746
11109160
<gh_stars>100-1000 # Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn.functional as F from packaging import version from mmdeploy.core import FUNCTION_REWRITER @FUNCTION_REWRITER.register_rewriter( func_name='mmocr.models.textdet.FPNC.forward', backend='tensorrt') def fpnc__forward__tensorrt(ctx, self, inputs, **kwargs): """Rewrite `forward` of FPNC for tensorrt backend. Rewrite this function to replace nearest upsampling with bilinear upsampling. TensorRT-7 backend applies different nearest sampling strategy from pytorch, which heavily influenced the final performance. Args: ctx (ContextCaller): The context with additional information. self: The instance of the class FPNC. inputs (Sequence[Tensor]): The feature maps for each scale level with shape (N, num_anchors * num_classes, H, W) Returns: outs (Tensor): A feature map output from FPNC. The tensor shape (N, C, H, W). """ # TensorRT version 8+ matches the upsampling with pytorch import tensorrt as trt apply_rewrite = version.parse(trt.__version__) < version.parse('8') mode = 'bilinear' if apply_rewrite else 'nearest' assert len(inputs) == len(self.in_channels) # build laterals laterals = [ lateral_conv(inputs[i]) for i, lateral_conv in enumerate(self.lateral_convs) ] used_backbone_levels = len(laterals) # build top-down path for i in range(used_backbone_levels - 1, 0, -1): prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] += F.interpolate( laterals[i], size=prev_shape, mode=mode) # build outputs # part 1: from original levels outs = [ self.smooth_convs[i](laterals[i]) for i in range(used_backbone_levels) ] for i, out in enumerate(outs): outs[i] = F.interpolate(outs[i], size=outs[0].shape[2:], mode=mode) out = torch.cat(outs, dim=1) if self.conv_after_concat: out = self.out_conv(out) return out
TradzQAI/tools/indicators/function_helper.py
kkuette/AI_project
164
11109163
<reponame>kkuette/AI_project import numpy as np def fill_for_noncomputable_vals(input_data, result_data): non_computable_values = np.repeat( np.nan, len(input_data) - len(result_data) ) filled_result_data = np.append(non_computable_values, result_data) return filled_result_data
anuga/shallow_water/tests/test_loadsave.py
samcom12/anuga_core
136
11109168
#!/usr/bin/env python from future import standard_library standard_library.install_aliases() from builtins import range import unittest, os, time import os.path from math import pi, sqrt import tempfile from anuga.file.netcdf import NetCDFFile from anuga.file.sww import extent_sww from anuga.config import g, epsilon from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a from anuga.utilities.numerical_tools import mean, ensure_numeric from anuga.geometry.polygon import is_inside_polygon from anuga.coordinate_transforms.geo_reference import Geo_reference from anuga.geospatial_data.geospatial_data import Geospatial_data from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross, \ rectangular from anuga.abstract_2d_finite_volumes.quantity import Quantity from anuga.shallow_water.forcing import Inflow, Cross_section from anuga.geospatial_data.geospatial_data import ensure_geospatial from anuga.utilities.system_tools import get_pathname_from_package from anuga.abstract_2d_finite_volumes.generic_boundary_conditions \ import Dirichlet_boundary from anuga.shallow_water.forcing import Rainfall, Wind_stress from anuga.shallow_water.forcing import Inflow, Cross_section from anuga.shallow_water.sww_interrogate import get_flow_through_cross_section from anuga.shallow_water.shallow_water_domain import Domain # boundary functions from anuga.shallow_water.boundaries import Reflective_boundary, \ Field_boundary, Transmissive_momentum_set_stage_boundary, \ Transmissive_stage_zero_momentum_boundary from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ import Transmissive_boundary, Dirichlet_boundary, \ Time_boundary, File_boundary, AWI_boundary import numpy as num from anuga.config import g # Get gateway to C implementation of flux function for direct testing from anuga.shallow_water.shallow_water_ext import flux_function_central as flux_function from anuga.shallow_water.shallow_water_ext import rotate def set_bottom_friction(tag, elements, domain): if tag == "bottom": domain.set_quantity('friction', 0.09, indices = elements) def set_top_friction(tag, elements, domain): if tag == "top": domain.set_quantity('friction', 1., indices = elements) def set_all_friction(tag, elements, domain): if tag == 'all': new_values = domain.get_quantity('friction').get_values(indices = elements) + 10.0 domain.set_quantity('friction', new_values, indices = elements) # For test_fitting_using_shallow_water_domain example def linear_function(point): point = num.array(point) return point[:,0]+point[:,1] def scalar_func(t, x, y): """Function that returns a scalar. Used to test error message when numeric array is expected """ return 17.7 class Test_LoadSave(unittest.TestCase): def setUp(self): pass def tearDown(self): for file in ['domain.sww', 'domain_pickle.pickle']: try: os.remove(file) except: pass def test_get_flow_through_cross_section_with_geo(self): """test_get_flow_through_cross_section(self): Test that the total flow through a cross section can be correctly obtained at run-time from the ANUGA domain. This test creates a flat bed with a known flow through it and tests that the function correctly returns the expected flow. The specifics are e = -1 m u = 2 m/s h = 2 m w = 3 m (width of channel) q = u*h*w = 12 m^3/s This run tries it with georeferencing and with elevation = -1 """ # Create basic mesh (20m x 3m) width = 3 length = 20 t_end = 1 points, vertices, boundary = rectangular(length, width, length, width) # Create shallow water domain domain = Domain(points, vertices, boundary, geo_reference=Geo_reference(56, 308500, 6189000)) domain.default_order = 2 domain.set_quantities_to_be_stored(None) e = -1.0 w = 1.0 h = w-e u = 2.0 uh = u*h Br = Reflective_boundary(domain) # Side walls Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet: # Initial conditions domain.set_quantity('elevation', e) domain.set_quantity('stage', w) domain.set_quantity('xmomentum', uh) domain.set_boundary({'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br}) # Interpolation points down the middle I = [[0, width/2.], [length/2., width/2.], [length, width/2.]] interpolation_points = domain.geo_reference.get_absolute(I) for t in domain.evolve(yieldstep=0.1, finaltime=0.5): # Shortcuts to quantites stage = domain.get_quantity('stage') xmomentum = domain.get_quantity('xmomentum') ymomentum = domain.get_quantity('ymomentum') # Check that quantities are they should be in the interior w_t = stage.get_values(interpolation_points) uh_t = xmomentum.get_values(interpolation_points) vh_t = ymomentum.get_values(interpolation_points) assert num.allclose(w_t, w) assert num.allclose(uh_t, uh) assert num.allclose(vh_t, 0.0, atol=1.0e-6) # Check flows through the middle for i in range(5): x = length/2. + i*0.23674563 # Arbitrary cross_section = [[x, 0], [x, width]] cross_section = domain.geo_reference.get_absolute(cross_section) Q = domain.get_flow_through_cross_section(cross_section, verbose=False) assert num.allclose(Q, uh*width) import pickle fid = open('domain_pickle.pickle', 'wb') pickle.dump(domain, fid) fid = open('domain_pickle.pickle', 'rb') domain_restored = pickle.load(fid) for t in domain_restored.evolve(yieldstep=0.1, finaltime=1.0): # Shortcuts to quantites stage = domain_restored.get_quantity('stage') xmomentum = domain_restored.get_quantity('xmomentum') ymomentum = domain_restored.get_quantity('ymomentum') # Check that quantities are they should be in the interior w_t = stage.get_values(interpolation_points) uh_t = xmomentum.get_values(interpolation_points) vh_t = ymomentum.get_values(interpolation_points) assert num.allclose(w_t, w) assert num.allclose(uh_t, uh) assert num.allclose(vh_t, 0.0, atol=1.0e-6) # Check flows through the middle for i in range(5): x = length/2. + i*0.23674563 # Arbitrary cross_section = [[x, 0], [x, width]] cross_section = domain_restored.geo_reference.get_absolute(cross_section) Q = domain_restored.get_flow_through_cross_section(cross_section, verbose=False) assert num.allclose(Q, uh*width) #------------------------------------------------------------- if __name__ == "__main__": suite = unittest.makeSuite(Test_LoadSave, 'test') runner = unittest.TextTestRunner() #verbosity=2) runner.run(suite)
icg/variationalnetwork.py
mklasby/mri-variationalnetwork
119
11109204
import tensorflow as tf class VnBasicCell(object): """Variational Network Basic Cell class. The call function defines the calculation for a single stage. Args: inputs: list of inputs constants: dictionary of constants params: dictionary of (changing) parameters const_params: dictionary of non-changing parameters options: dictionary of additional options """ def __init__(self, inputs, params, const_params, constants, options=None): self._inputs = inputs self._constants = constants self._params = params self._const_params = const_params self._options = options @property def inputs(self): return self._inputs @property def constants(self): return self._constants @property def params(self): return self._params def call(self, inputs, t): return NotImplementedError('This has to be implemented in the derived class.') class VariationalNetwork(object): """Variational Network class. Defines variational network for a given cell, defining a single stage, and a given number of stages. Args: cell: single stage, defined by the given application labels: number of stages num_cycles: number of cycles (optional). For all standard variational applications its default value 1 is used. parallel_iterations: number of parallel iterations used in while loop (optional) default=1 swap_memory: Allow swapping of memory in while loop (optional). default=false """ def __init__(self, cell, num_stages, num_cycles=1, parallel_iterations=1, swap_memory=False): # Basic computational graph of a vn cell self.cell = cell # Define the number of repetitions self._num_cycles = num_cycles self._num_stages = num_stages # Tensorflow specific details self._parallel_iterations = parallel_iterations self._swap_memory = swap_memory # Define the iteration method def time_to_param_index(t): return t % self._num_stages self._cell.time_to_param_index = time_to_param_index self._t = tf.constant(0) # define condition and body for while loop self._cond = lambda t, *inputs: t < self._num_stages * self._num_cycles def body(t, *inputs): cell_outputs = self.cell.call(t, inputs) outputs = [tf.concat([i, tf.expand_dims(j, 0)], axis=0) for (i, j) in zip(inputs, cell_outputs)] return [t+1] + outputs self._body = body self._inputs = [tf.expand_dims(inp, 0) for inp in self.cell.inputs] self._input_shapes = [tf.TensorShape([None]).concatenate(inp.get_shape()) for inp in self._cell.inputs] self._outputs = tf.while_loop( self._cond, self._body, loop_vars=[self._t] + self._inputs, shape_invariants=[self._t.get_shape()] + self._input_shapes, parallel_iterations=self._parallel_iterations, swap_memory=self._swap_memory) def get_outputs(self, stage_outputs=False): """ Get the outputs of the variational network. Args: stage_outputs: get all stage outputs (optional) default=False """ if stage_outputs: return self._outputs[1:] else: return [out[-1] for out in self._outputs[1:]] @property def cell(self): return self._cell @cell.setter def cell(self, value): assert isinstance(value, VnBasicCell) self._cell = value
compressai/utils/bench/__main__.py
Conzel/CompressAI
515
11109231
<filename>compressai/utils/bench/__main__.py # Copyright (c) 2021-2022, InterDigital Communications, Inc # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted (subject to the limitations in the disclaimer # below) provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of InterDigital Communications, Inc nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY # THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT # NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Collect performance metrics of published traditional or end-to-end image codecs. """ import argparse import json import multiprocessing as mp import sys from collections import defaultdict from itertools import starmap from pathlib import Path from typing import List from .codecs import AV1, BPG, HM, JPEG, JPEG2000, TFCI, VTM, Codec, WebP # from torchvision.datasets.folder IMG_EXTENSIONS = ( ".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm", ".tif", ".tiff", ".webp", ) codecs = [JPEG, WebP, JPEG2000, BPG, TFCI, VTM, HM, AV1] # we need the quality index (not value) to compute the stats later def func(codec, i, *args): rv = codec.run(*args) return i, rv def collect( codec: Codec, dataset: str, qps: List[int], metrics: List[str], num_jobs: int = 1, ): if not Path(dataset).is_dir(): raise OSError(f"No such directory: {dataset}") filepaths = [] for ext in IMG_EXTENSIONS: filepaths.extend(Path(dataset).rglob(f"*{ext}")) pool = mp.Pool(num_jobs) if num_jobs > 1 else None if len(filepaths) == 0: print("No images found in the dataset directory") sys.exit(1) args = [(codec, i, f, q, metrics) for i, q in enumerate(qps) for f in filepaths] if pool: rv = pool.starmap(func, args) else: rv = list(starmap(func, args)) results = [defaultdict(float) for _ in range(len(qps))] for i, metrics in rv: for k, v in metrics.items(): results[i][k] += v # aggregate results for all images for i, _ in enumerate(results): for k, v in results[i].items(): results[i][k] = v / len(filepaths) # list of dict -> dict of list out = defaultdict(list) for r in results: for k, v in r.items(): out[k].append(v) return out def setup_args(): description = "Collect codec metrics." parser = argparse.ArgumentParser(description=description) subparsers = parser.add_subparsers(dest="codec", help="Select codec") subparsers.required = True return parser, subparsers def setup_common_args(parser): parser.add_argument("dataset", type=str) parser.add_argument( "-j", "--num-jobs", type=int, metavar="N", default=1, help="number of parallel jobs (default: %(default)s)", ) parser.add_argument( "-q", "--qps", dest="qps", metavar="Q", default=[75], nargs="+", type=int, help="list of quality/quantization parameter (default: %(default)s)", ) parser.add_argument( "--metrics", dest="metrics", default=["psnr", "ms-ssim"], nargs="+", help="do not return PSNR and MS-SSIM metrics (use for very small images)", ) def main(argv): parser, subparsers = setup_args() for c in codecs: cparser = subparsers.add_parser(c.__name__.lower(), help=f"{c.__name__}") setup_common_args(cparser) c.setup_args(cparser) args = parser.parse_args(argv) codec_cls = next(c for c in codecs if c.__name__.lower() == args.codec) codec = codec_cls(args) results = collect( codec, args.dataset, args.qps, args.metrics, args.num_jobs, ) output = { "name": codec.name, "description": codec.description, "results": results, } print(json.dumps(output, indent=2)) if __name__ == "__main__": main(sys.argv[1:])
desktop/core/ext-py/nose-1.3.7/functional_tests/support/issue143/not-a-package/test.py
kokosing/hue
5,079
11109248
<gh_stars>1000+ def test(): raise Exception("do not run")
extraction/convert_anchor_tags_to_wikidata.py
BenHammersley/deeptype
614
11109254
import argparse from os.path import join from os import makedirs import marisa_trie import numpy as np from wikidata_linker_utils.bash import count_lines from wikidata_linker_utils.progressbar import get_progress_bar from wikidata_linker_utils.wikipedia import match_wikipedia_to_wikidata, load_redirections from wikidata_linker_utils.successor_mask import construct_mapping, construct_anchor_trie def parse_args(argv=None): parser = argparse.ArgumentParser() parser.add_argument("wikipedia2wikidata_trie", help="Location of wikipedia -> wikidata mapping trie.") parser.add_argument("prefix", type=str, help="What language is being processed, e.g. enwiki, frwiki, etc.") parser.add_argument("anchor_tags", type=str, help="Location where anchor tags were saved (tsv).") parser.add_argument("redirections", type=str, help="Location where redirections were saved (tsv).") parser.add_argument("out", type=str, help="Directory to save trie/data in.") return parser.parse_args(argv) def main(): args = parse_args() makedirs(args.out, exist_ok=True) wikipedia2wikidata_trie = marisa_trie.RecordTrie('i').load( args.wikipedia2wikidata_trie ) print('loaded trie') redirections = load_redirections(args.redirections) anchor_trie = construct_anchor_trie( anchor_tags=args.anchor_tags, wikipedia2wikidata_trie=wikipedia2wikidata_trie, redirections=redirections, prefix=args.prefix ) anchor_trie.save(join(args.out, 'trie.marisa')) ( ( trie_index2indices_offsets, trie_index2indices_values, trie_index2indices_counts ), ( trie_index2contexts_offsets, trie_index2contexts_values, trie_index2contexts_counts ) ) = construct_mapping( anchor_tags=args.anchor_tags, wikipedia2wikidata_trie=wikipedia2wikidata_trie, redirections=redirections, prefix=args.prefix, anchor_trie=anchor_trie ) np.save(join(args.out, "trie_index2indices_offsets.npy"), trie_index2indices_offsets) np.save(join(args.out, "trie_index2indices_values.npy"), trie_index2indices_values) np.save(join(args.out, "trie_index2indices_counts.npy"), trie_index2indices_counts) np.save(join(args.out, "trie_index2contexts_offsets.npy"), trie_index2contexts_offsets) np.save(join(args.out, "trie_index2contexts_values.npy"), trie_index2contexts_values) np.save(join(args.out, "trie_index2contexts_counts.npy"), trie_index2contexts_counts) if __name__ == "__main__": main()
test_project/views.py
martey/django-wysiwyg
128
11109290
from django.shortcuts import render_to_response def basic_test(request): return render_to_response("basic_test.html")
easyfsl/methods/abstract_meta_learner.py
lnowakow/easy-few-shot-learning
208
11109326
<gh_stars>100-1000 from abc import abstractmethod from pathlib import Path from statistics import mean from typing import Union import torch from torch import nn, optim from torch.utils.data import DataLoader from tqdm import tqdm from easyfsl.utils import sliding_average, compute_backbone_output_shape class AbstractMetaLearner(nn.Module): """ Abstract class providing methods usable by all few-shot classification algorithms """ def __init__(self, backbone: nn.Module): super().__init__() self.backbone = backbone self.backbone_output_shape = compute_backbone_output_shape(backbone) self.feature_dimension = self.backbone_output_shape[0] self.loss_function = nn.CrossEntropyLoss() self.best_validation_accuracy = 0.0 self.best_model_state = None # pylint: disable=all @abstractmethod def forward( self, query_images: torch.Tensor, ) -> torch.Tensor: """ Predict classification labels. Args: query_images: images of the query set Returns: a prediction of classification scores for query images """ raise NotImplementedError( "All few-shot algorithms must implement a forward method." ) @abstractmethod def process_support_set( self, support_images: torch.Tensor, support_labels: torch.Tensor, ): """ Harness information from the support set, so that query labels can later be predicted using a forward call Args: support_images: images of the support set support_labels: labels of support set images """ raise NotImplementedError( "All few-shot algorithms must implement a process_support_set method." ) # pylint: enable=all def evaluate_on_one_task( self, support_images: torch.Tensor, support_labels: torch.Tensor, query_images: torch.Tensor, query_labels: torch.Tensor, ) -> [int, int]: """ Returns the number of correct predictions of query labels, and the total number of predictions. """ self.process_support_set(support_images.cuda(), support_labels.cuda()) return ( torch.max( self(query_images.cuda()).detach().data, 1, )[1] == query_labels.cuda() ).sum().item(), len(query_labels) def evaluate(self, data_loader: DataLoader) -> float: """ Evaluate the model on few-shot classification tasks Args: data_loader: loads data in the shape of few-shot classification tasks Returns: average classification accuracy """ # We'll count everything and compute the ratio at the end total_predictions = 0 correct_predictions = 0 # eval mode affects the behaviour of some layers (such as batch normalization or dropout) # no_grad() tells torch not to keep in memory the whole computational graph self.eval() with torch.no_grad(): with tqdm( enumerate(data_loader), total=len(data_loader), desc="Evaluation" ) as tqdm_eval: for _, ( support_images, support_labels, query_images, query_labels, _, ) in tqdm_eval: correct, total = self.evaluate_on_one_task( support_images, support_labels, query_images, query_labels ) total_predictions += total correct_predictions += correct # Log accuracy in real time tqdm_eval.set_postfix( accuracy=correct_predictions / total_predictions ) return correct_predictions / total_predictions def compute_loss( self, classification_scores: torch.Tensor, query_labels: torch.Tensor ) -> torch.Tensor: """ Apply the method's criterion to compute the loss between predicted classification scores, and query labels. We do this in a separate function because some few-shot learning algorithms don't apply the loss function directly to classification scores and query labels. For instance, Relation Networks use Mean Square Error, so query labels need to be put in the one hot encoding. Args: classification_scores: predicted classification scores of shape (n_query, n_classes) query_labels: ground truth labels. 1-dim tensor of length n_query Returns: loss """ return self.loss_function(classification_scores, query_labels) def fit_on_task( self, support_images: torch.Tensor, support_labels: torch.Tensor, query_images: torch.Tensor, query_labels: torch.Tensor, optimizer: optim.Optimizer, ) -> float: """ Predict query set labels and updates model's parameters using classification loss Args: support_images: images of the support set support_labels: labels of support set images (used in the forward pass) query_images: query set images query_labels: labels of query set images (only used for loss computation) optimizer: optimizer to train the model Returns: the value of the classification loss (for reporting purposes) """ self.train() optimizer.zero_grad() self.process_support_set(support_images.cuda(), support_labels.cuda()) classification_scores = self(query_images.cuda()) loss = self.compute_loss(classification_scores, query_labels.cuda()) loss.backward() optimizer.step() return loss.item() def fit( self, train_loader: DataLoader, optimizer: optim.Optimizer, val_loader: DataLoader = None, validation_frequency: int = 1000, ) -> float: """ Train the model on few-shot classification tasks. Args: train_loader: loads training data in the shape of few-shot classification tasks optimizer: optimizer to train the model val_loader: loads data from the validation set in the shape of few-shot classification tasks validation_frequency: number of training episodes between two validations Returns: average loss """ log_update_frequency = 10 all_loss = [] with tqdm( enumerate(train_loader), total=len(train_loader), desc="Meta-Training" ) as tqdm_train: for episode_index, ( support_images, support_labels, query_images, query_labels, _, ) in tqdm_train: loss_value = self.fit_on_task( support_images, support_labels, query_images, query_labels, optimizer, ) all_loss.append(loss_value) # Log training loss in real time if episode_index % log_update_frequency == 0: tqdm_train.set_postfix( loss=sliding_average(all_loss, log_update_frequency) ) # Validation if val_loader: if (episode_index + 1) % validation_frequency == 0: self.validate(val_loader) return mean(all_loss) def validate(self, val_loader: DataLoader) -> float: """ Validate the model on the validation set. Args: val_loader: loads data from the validation set in the shape of few-shot classification tasks Returns: average classification accuracy on the validation set """ validation_accuracy = self.evaluate(val_loader) print(f"Validation accuracy: {(100 * validation_accuracy):.2f}%") # If this was the best validation performance, we save the model state if validation_accuracy > self.best_validation_accuracy: print("Best validation accuracy so far!") self.best_model_state = self.state_dict() self.best_validation_accuracy = validation_accuracy return validation_accuracy def _check_that_best_state_is_defined(self): """ Raises: AttributeError: if self.best_model_state is None, i.e. if no best sate has been defined yet. """ if not self.best_model_state: raise AttributeError( "There is not best state defined for this model. " "You need to train the model using validation to define a best state." ) def restore_best_state(self): """ Retrieves the state (i.e. a dictionary of model parameters) of the model at the time it obtained its best performance on the validation set. """ self._check_that_best_state_is_defined() self.load_state_dict(self.best_model_state) def dump_best_state(self, output_path: Union[Path, str]): """ Retrieves the state (i.e. a dictionary of model parameters) of the model at the time it obtained its best performance on the validation set. Args: output_path: path to the output file. Common practice in PyTorch is to save models using either a .pt or .pth file extension. """ self._check_that_best_state_is_defined() torch.save(self.best_model_state, output_path)
mmdeploy/codebase/mmdet/models/dense_heads/ssd_head.py
grimoire/mmdeploy
746
11109328
<gh_stars>100-1000 # Copyright (c) OpenMMLab. All rights reserved. import torch from mmdeploy.codebase.mmdet import get_post_processing_params from mmdeploy.codebase.mmdet.core.ops import (ncnn_detection_output_forward, ncnn_prior_box_forward) from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import is_dynamic_shape @FUNCTION_REWRITER.register_rewriter( func_name='mmdet.models.dense_heads.SSDHead.get_bboxes', backend='ncnn') def ssd_head__get_bboxes__ncnn(ctx, self, cls_scores, bbox_preds, img_metas, with_nms=True, cfg=None, **kwargs): """Rewrite `get_bboxes` of SSDHead for ncnn backend. This rewriter using ncnn PriorBox and DetectionOutput layer to support dynamic deployment, and has higher speed. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Box scores for each level in the feature pyramid, has shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each level in the feature pyramid, has shape (N, num_anchors * 4, H, W). img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. with_nms (bool): If True, do nms before return boxes. Default: True. cfg (mmcv.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. Returns: Tensor: outputs, shape is [N, num_det, 6]. """ assert len(cls_scores) == len(bbox_preds) deploy_cfg = ctx.cfg is_dynamic_flag = is_dynamic_shape(deploy_cfg) num_levels = len(cls_scores) aspect_ratio = [ ratio[ratio > 1].detach().cpu().numpy() for ratio in self.anchor_generator.ratios ] strides = self.anchor_generator.strides min_sizes = self.anchor_generator.base_sizes if is_dynamic_flag: max_sizes = min_sizes[1:] + img_metas[0]['img_shape'][0:1].tolist() img_height = img_metas[0]['img_shape'][0].item() img_width = img_metas[0]['img_shape'][1].item() else: max_sizes = min_sizes[1:] + img_metas[0]['img_shape'][0:1] img_height = img_metas[0]['img_shape'][0] img_width = img_metas[0]['img_shape'][1] # if no reshape, concat will be error in ncnn. mlvl_anchors = [ ncnn_prior_box_forward(cls_scores[i], aspect_ratio[i], img_height, img_width, strides[i][0], strides[i][1], max_sizes[i:i + 1], min_sizes[i:i + 1]).reshape(1, 2, -1) for i in range(num_levels) ] mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)] mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)] cfg = self.test_cfg if cfg is None else cfg assert len(mlvl_cls_scores) == len(mlvl_bbox_preds) == len(mlvl_anchors) batch_size = 1 mlvl_valid_bboxes = [] mlvl_scores = [] for level_id, cls_score, bbox_pred in zip( range(num_levels), mlvl_cls_scores, mlvl_bbox_preds): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] cls_score = cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) mlvl_valid_bboxes.append(bbox_pred) mlvl_scores.append(cls_score) # ncnn DetectionOutput layer uses background class at 0 position, but # in mmdetection, background class is at self.num_classes position. # We should adapt for ncnn. batch_mlvl_valid_bboxes = torch.cat(mlvl_valid_bboxes, dim=1) batch_mlvl_scores = torch.cat(mlvl_scores, dim=1) if self.use_sigmoid_cls: batch_mlvl_scores = batch_mlvl_scores.sigmoid() else: batch_mlvl_scores = batch_mlvl_scores.softmax(-1) batch_mlvl_anchors = torch.cat(mlvl_anchors, dim=2) batch_mlvl_scores = torch.cat([ batch_mlvl_scores[:, :, self.num_classes:], batch_mlvl_scores[:, :, 0:self.num_classes] ], dim=2) batch_mlvl_valid_bboxes = batch_mlvl_valid_bboxes.reshape( batch_size, 1, -1) batch_mlvl_scores = batch_mlvl_scores.reshape(batch_size, 1, -1) batch_mlvl_anchors = batch_mlvl_anchors.reshape(batch_size, 2, -1) post_params = get_post_processing_params(deploy_cfg) iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) output__ncnn = ncnn_detection_output_forward( batch_mlvl_valid_bboxes, batch_mlvl_scores, batch_mlvl_anchors, score_threshold, iou_threshold, pre_top_k, keep_top_k, self.num_classes + 1) return output__ncnn
test/www/python/postdata.py
henricazottes/zero
6,247
11109339
from flask import request def handler(): if request.method == 'POST': email = request.form.get('email') password = request.form.get('password') return 'Got ' + email return "POST email and password here"
website/content/02-introduction-to-python/175-running-code/code/formatting_example.py
profread/python
389
11109408
# Use \n to add a new line, before, in the middle of, or after a string. print("\nExtra New Line Before") print("One Print\nTwo New Lines!") print("Extra New Line After\n") # Use \t to add a tab. print("\t Here's some tabbed output.") # Or, combine both! print("\nOne Print\n\tOne Tab")
library/test/test_eof.py
creativemindplus/skybison
278
11109428
<gh_stars>100-1000 #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. (http://www.facebook.com) # WARNING: This is a temporary copy of code from the cpython library to # facilitate bringup. Please file a task for anything you change! # flake8: noqa # fmt: off # TODO(T39919550): unfork this file """test script for a few new invalid token catches""" from test import support import unittest class EOFTestCase(unittest.TestCase): def test_EOFC(self): expect = "EOL while scanning string literal (<string>, line 1)" try: eval("""'this is a test\ """) except SyntaxError as msg: self.assertEqual(str(msg), expect) else: raise support.TestFailed def test_EOFS(self): expect = ("EOF while scanning triple-quoted string literal " "(<string>, line 1)") try: eval("""'''this is a test""") except SyntaxError as msg: self.assertEqual(str(msg), expect) else: raise support.TestFailed def test_line_continuation_EOF(self): """A continuation at the end of input must be an error; bpo2180.""" expect = 'unexpected EOF while parsing (<string>, line 1)' with self.assertRaises(SyntaxError) as excinfo: exec('x = 5\\') self.assertEqual(str(excinfo.exception), expect) with self.assertRaises(SyntaxError) as excinfo: exec('\\') self.assertEqual(str(excinfo.exception), expect) if __name__ == "__main__": unittest.main()
train/dag/gen_phrase.py
chuan717/Pinyin2Hanzi
473
11109434
<gh_stars>100-1000 # coding: utf-8 from __future__ import (print_function, unicode_literals) import sys import json sys.path = ['../..'] + sys.path from Pinyin2Hanzi import util from ChineseTone import PinyinHelper, PinyinFormat import jieba def cut(s): return jieba.cut(s, cut_all=False) def writejson2file(obj, filename): with open(filename, 'w') as outfile: data = json.dumps(obj, indent=4, sort_keys=True) outfile.write(data) def readdatafromfile(filename): with open(filename) as outfile: return json.load(outfile) result = {} max_num = 0. min_num = 100000000000000. for line in open('./word.txt'): line = util.as_text(line.strip()) if '=' not in line: continue word, num = line.split('=') num = float(num) pinyin_list = PinyinHelper.convertToPinyinFromSentence(word, segment=cut) pinyins = ','.join(pinyin_list) pinyins = util.simplify_pinyin(pinyins) result.setdefault(pinyins, {}) result[pinyins].setdefault(word, 0) result[pinyins][word] += num max_num = max(max_num, result[pinyins][word]) min_num = min(min_num, result[pinyins][word]) for line in open('./phrase.txt'): line = util.as_text(line.strip()) if '=' not in line: continue word, _ = line.split('=') num = 1. pinyin_list = PinyinHelper.convertToPinyinFromSentence(word, segment=cut) pinyins = ','.join(pinyin_list) pinyins = util.simplify_pinyin(pinyins) result.setdefault(pinyins, {}) result[pinyins].setdefault(word, 0) result[pinyins][word] += num max_num = max(max_num, result[pinyins][word]) min_num = min(min_num, result[pinyins][word]) result['max_num'] = max_num result['min_num'] = min_num writejson2file(result, './result/dag_phrase.json') # with open('./result/dag_phrase.txt', 'w') as output: # s = '' # for pinyin in result: # for word in result[pinyin]: # num = result[pinyin][word] # s = s + pinyin + '=' + word + '=' + str(num) + '\n' # output.write(s)
scripts/update_changelog_link.py
normalchaos/intellij-rust
4,168
11109478
<reponame>normalchaos/intellij-rust<filename>scripts/update_changelog_link.py import re from datetime import date from common import get_patch_version from git import git_command PLUGIN_XML = "plugin/src/main/resources/META-INF/plugin.xml" if __name__ == '__main__': with open(PLUGIN_XML) as f: text = f.read() today = date.today() version = get_patch_version() - 1 new_text = re.sub(r"https://intellij-rust\.github\.io/.*\.html", f"https://intellij-rust.github.io/{today.year}/{today.month:02d}/{today.day:02d}/changelog-{version}.html", text) with (open(PLUGIN_XML, mode="w")) as f: f.write(new_text) git_command("add", PLUGIN_XML) # [skip ci] says GitHub not to emit `push` and `pull_request` events, i.e. don't trigger `check` workflow. # It allows not to occupy GitHub Actions agents that are needed for building release builds # See https://github.blog/changelog/2021-02-08-github-actions-skip-pull-request-and-push-workflows-with-skip-ci/ git_command("commit", "-m", "Changelog\n\n[skip ci]") head = git_command("rev-parse", "HEAD") release_branch = f"release-{version}" git_command("checkout", release_branch) git_command("cherry-pick", head) git_command("push", "origin", "master") git_command("push", "origin", release_branch)
academicstoday_project/landpage/tests/test_google.py
LeeDoona/EasyGrading
146
11109495
<reponame>LeeDoona/EasyGrading from django.core.urlresolvers import resolve from django.http import HttpRequest from django.http import QueryDict from django.test import TestCase from django.test import Client from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from landpage.views import google import json class GoogleVerifyTest(TestCase): """ python manage.py test landpage.tests.test_google """ def tearDown(self): pass def setUp(self): pass def test_url_resolves_to_google_verify_page_view(self): found = resolve('/googlee81f1c16590924d1.html') self.assertEqual(found.func,google.google_verify_page) def test_google_verify_page_returns_correct_html(self): client = Client() response = client.post( '/googlee81f1c16590924d1.html', ) self.assertEqual(response.status_code, 200) self.assertIn(b'googlee81f1c16590924d1.html',response.content)
tests/test_downshiftology.py
mathiazom/recipe-scrapers
811
11109502
from recipe_scrapers.downshiftology import Downshiftology from tests import ScraperTest class TestDownshiftologyScraper(ScraperTest): scraper_class = Downshiftology def test_host(self): self.assertEqual("downshiftology.com", self.harvester_class.host()) def test_author(self): self.assertEqual("<NAME>", self.harvester_class.author()) def test_title(self): self.assertEqual("Greek Chicken Kabobs", self.harvester_class.title()) def test_total_time(self): self.assertEqual(55, self.harvester_class.total_time()) def test_yields(self): self.assertEqual("6 serving(s)", self.harvester_class.yields()) def test_image(self): self.assertEqual( "https://i2.wp.com/www.downshiftology.com/wp-content/uploads/2020/09/Greek-Chicken-Kabobs-3.jpg", self.harvester_class.image(), ) def test_ingredients(self): self.assertCountEqual( [ "1/4 cup olive oil", "2 tablespoons red wine vinegar", "3 tablespoons lemon juice", "1 teaspoon Dijon mustard", "3 garlic cloves (minced)", "1 teaspoon dried oregano", "1/2 teaspoon salt", "1/4 teaspoon black pepper", "1 1/2 pounds boneless skinless chicken breasts (about 3 large chicken breasts, cut into 1 1/2-inch pieces.)", "1 red bell pepper (seeded, cut into 1 1/2-Inch pieces)", "1 yellow bell pepper (seeded, cut into 1 1/2-inch pieces)", "1 red onion (cut into 1 1/2-inch chunks)", "1 zucchini (sliced)", ], self.harvester_class.ingredients(), ) def test_instructions(self): self.assertEqual( "Make marinade\nTo make the marinade, whisk together the olive oil, red wine vinegar, lemon juice, Dijon mustard, minced garlic, dried oregano, salt, and pepper.\nMarinate chicken\nPlace chicken pieces in a glass dish and pour the marinade over the chicken. Cover and marinate in the fridge for at least one hour.\nThread skewers\nLight a gas or charcoal grill on medium-high heat. Thread the skewers with pieces of red onion, chicken, zucchini, and bell pepper. You can alternate the order.\nGrill kabobs\nPlace the kabobs on the preheated grill, and cook about 5-7 minutes per side. The kabobs are done when the chicken is cooked through and the vegetables are lightly charred, about 15 minutes.\nServe with lemon wedges and tzatziki sauce.", self.harvester_class.instructions(), ) def test_ratings(self): self.assertEqual(5.0, self.harvester_class.ratings())
Modules/object_detection/py_nodes/fisheye_undistort.py
473867143/Prometheus
1,217
11109505
<gh_stars>1000+ #!/usr/bin/env python # -*- coding: utf-8 -*- import rospy from sensor_msgs.msg import Image from geometry_msgs.msg import Pose, Point, Quaternion from cv_bridge import CvBridge from std_msgs.msg import String from std_msgs.msg import Bool import numpy as np import cv2 import os import yaml import math import glob camera_matrix = np.array([[274.4425695994789, 0.0, 422.808978794362], [0.0, 273.66842474114827, 407.3969079515446], [0.0, 0.0, 1.0]], np.float32) distortion_coefficients = np.array([[0.01841136025813201], [-0.006751972660967855], [0.009935398363079766], [-0.008198696622455868]], np.float32) rospy.init_node('fisheye_undistort', anonymous=True) img_pub = rospy.Publisher('/camera/fisheye1/image_undistort', Image, queue_size = 10) def image_callback(imgmsg): bridge = CvBridge() frame = bridge.imgmsg_to_cv2(imgmsg, "bgr8") # processing DIM = (848, 800) map1, map2 = cv2.fisheye.initUndistortRectifyMap(camera_matrix, distortion_coefficients, np.eye(3), camera_matrix, DIM, cv2.CV_16SC2) undistorted_img = cv2.remap(frame, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT) # end """ h, w = frame.shape[:2] img_resize = 360 if h > w: h = int(float(h) / w * img_resize) w = img_resize else: w = int(float(w) / h * img_resize) h = img_resize frame = cv2.resize(frame, (w, h)) """ # cv2.imshow("undistorted_img", undistorted_img) # cv2.imshow("area", area) # cv2.waitKey(10) img_pub.publish(bridge.cv2_to_imgmsg(undistorted_img, "bgr8")) def fisheye_undistort(topic_name): rospy.Subscriber(topic_name, Image, image_callback) rospy.spin() def get_K_and_D(checkerboard, imgsPath): CHECKERBOARD = checkerboard subpix_criteria = (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1) calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC+cv2.fisheye.CALIB_CHECK_COND+cv2.fisheye.CALIB_FIX_SKEW objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32) objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2) _img_shape = None objpoints = [] imgpoints = [] images = glob.glob(imgsPath) for fname in images: img = cv2.imread(fname) if _img_shape == None: _img_shape = img.shape[:2] else: assert _img_shape == img.shape[:2], "All images must share the same size." gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD,cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE) if ret == True: objpoints.append(objp) cv2.cornerSubPix(gray,corners,(3,3),(-1,-1),subpix_criteria) imgpoints.append(corners) N_OK = len(objpoints) K = np.zeros((3, 3)) D = np.zeros((4, 1)) rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)] tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)] rms, _, _, _, _ = cv2.fisheye.calibrate( objpoints, imgpoints, gray.shape[::-1], K, D, rvecs, tvecs, calibration_flags, (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6) ) DIM = _img_shape[::-1] print("Found " + str(N_OK) + " valid images for calibration") print("DIM=" + str(_img_shape[::-1])) print("K=np.array(" + str(K.tolist()) + ")") print("D=np.array(" + str(D.tolist()) + ")") return DIM, K, D if __name__ == '__main__': DIM, K, D = get_K_and_D((6, 9), os.path.dirname(os.path.abspath(__file__)) + '/checkerboard_imgs/*.png') subscriber = rospy.get_param('~camera_topic', '/camera/fisheye1/image_raw') camera_matrix = K distortion_coefficients = D try: fisheye_undistort(subscriber) except rospy.ROSInterruptException: pass
stix_shifter_modules/arcsight/stix_transmission/status_connector.py
pyromaneact/stix-shifter
129
11109528
<reponame>pyromaneact/stix-shifter import json import math from stix_shifter_utils.modules.base.stix_transmission.base_status_connector import BaseStatusConnector from stix_shifter_utils.modules.base.stix_transmission.base_status_connector import Status from enum import Enum from stix_shifter_utils.utils.error_response import ErrorResponder DEFAULT_LIMIT = 10000 class ArcsightStatus(Enum): # STARTING, RUNNING, TIMEOUT, COMPLETE, STOP. ERROR STARTING = 'starting' RUNNING = 'running' TIMEOUT = 'timeout' COMPLETE = 'complete' STOP = 'stop' ERROR = 'error' class StatusConnector(BaseStatusConnector): def __init__(self, api_client): self.api_client = api_client # Map data source status to connector status @staticmethod def __getStatus(arcsight_status): """ Return the status of the search id :param arcsight_status: str, status :return: str """ switcher = { ArcsightStatus.STARTING.value: Status.RUNNING, ArcsightStatus.RUNNING.value: Status.RUNNING, ArcsightStatus.TIMEOUT.value: Status.TIMEOUT, ArcsightStatus.COMPLETE.value: Status.COMPLETED, ArcsightStatus.STOP.value: Status.CANCELED, ArcsightStatus.ERROR.value: Status.ERROR } return switcher.get(arcsight_status).value def create_status_connection(self, search_id): """ Fetching the progress and the status of the search id :param search_id: str, search id :return: dict """ return_obj = dict() limit = DEFAULT_LIMIT user_limit = None try: search_id_length = len(search_id.split(':')) search_id_values = search_id.split(':') if search_id_length == 2: search_session_id, user_session_id = search_id_values elif search_id_length == 3: search_session_id, user_session_id, user_limit = search_id_values else: raise SyntaxError("Invalid search_id format : " + str(search_id)) if user_limit and int(user_limit) <= DEFAULT_LIMIT: limit = user_limit response = self.api_client.get_search_status(search_session_id, user_session_id) raw_response = response.read() response_code = response.code self.status_progress(return_obj, response_code, raw_response, limit) except Exception as err: response_error = err ErrorResponder.fill_error(return_obj, response_error, ['message']) return return_obj def status_progress(self, return_obj, response_code, raw_response, limit): """ status progress calculation :param return_obj: dict, building return response dict :param raw_response: str, Api response, :param response_code: int, Api call response code :param limit: int, limit for status calculation """ if 199 < response_code < 300: response_dict = json.loads(raw_response) return_obj['success'] = True return_obj['status'] = self.__getStatus(response_dict['status']) results = int(response_dict['hit']) if return_obj['status'] == 'COMPLETED': return_obj['progress'] = 100 elif return_obj['status'] == 'RUNNING': progress = (results / int(limit)) * 100 progress_floor = math.floor(progress) return_obj['progress'] = progress_floor if return_obj['progress'] >= 100: return_obj['progress'] = 100 return_obj['status'] = 'COMPLETED' else: return_obj['progress'] = 0 # arcsight logger error codes - currently unavailable state elif response_code in [500, 503]: response_string = raw_response.decode() ErrorResponder.fill_error(return_obj, response_string, ['message']) elif isinstance(json.loads(raw_response), dict): response_error = json.loads(raw_response) response_dict = response_error['errors'][0] ErrorResponder.fill_error(return_obj, response_dict, ['message']) else: raise Exception(raw_response)
fedlab/core/network.py
SMILELab-FL/FedLab
171
11109558
<filename>fedlab/core/network.py # Copyright 2021 Peng Cheng Laboratory (http://www.szpclab.com/) and FedLab Authors (smilelab.group) # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch.distributed as dist class DistNetwork(object): """Manage ``torch.distributed`` network. Args: address (tuple): Address of this server in form of ``(SERVER_ADDR, SERVER_IP)`` world_size (int): the size of this distributed group (including server). rank (int): the rank of process in distributed group. ethernet (str) dist_backend (str or torch.distributed.Backend): :attr:`backend` of ``torch.distributed``. Valid values include ``mpi``, ``gloo``, and ``nccl``. Default: ``"gloo"``. """ def __init__(self, address, world_size, rank, ethernet=None, dist_backend="gloo"): super(DistNetwork, self).__init__() self.address = address self.rank = rank self.world_size = world_size self.dist_backend = dist_backend self.ethernet = ethernet def init_network_connection(self): """Initialize ``torch.distributed`` communication group""" print(self.__str__()) if self.ethernet is not None: os.environ["GLOO_SOCKET_IFNAME"] = self.ethernet dist.init_process_group( backend=self.dist_backend, init_method="tcp://{}:{}".format(self.address[0], self.address[1]), rank=self.rank, world_size=self.world_size, ) def close_network_connection(self): """Destroy current ``torch.distributed`` process group""" if dist.is_initialized(): dist.destroy_process_group() def __str__(self): info_str = "torch.distributed connection is initializing with server ip address {}:{}, rank {}, world size: {}, backend {}, ethernet {}.".format( self.address[0], self.address[1], self.rank, self.world_size, self.dist_backend, self.ethernet, ) return info_str
tests/clpy_tests/opencl_tests/test_rollaxis.py
fixstars/clpy
142
11109561
# -*- coding: utf-8 -*- import unittest import clpy import numpy class TestRollaxis(unittest.TestCase): """test class of rollaxis""" def test_import(self): self.assertTrue(True) # Always OK if no exeption from import def test_2_3_matrix(self): npA = numpy.array([[1, 2, 3], [4, 5, 6]]) expectedA = numpy.rollaxis(npA, 1, 0) clpA = clpy.array([[1, 2, 3], [4, 5, 6]]) actualA = clpy.rollaxis(clpA, 1, 0) self.assertTrue(numpy.allclose(expectedA, actualA.get())) def test_2_3_4_matrix(self): npA = numpy.array([[[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]], [ [4, 5, 6, 7], [5, 6, 7, 8], [6, 7, 8, 9]]]) expectedA = numpy.rollaxis(npA, 1, 0) clpA = clpy.array([[[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]], [ [4, 5, 6, 7], [5, 6, 7, 8], [6, 7, 8, 9]]]) actualA = clpy.rollaxis(clpA, 1, 0) self.assertTrue(numpy.allclose(expectedA, actualA.get())) if __name__ == "__main__": unittest.main()
lib/datasets/tless/handle_rendering_data.py
bertid/clean-pvnet
284
11109601
<reponame>bertid/clean-pvnet import os import glob from PIL import Image import numpy as np import tqdm from lib.utils.renderer import render_utils from lib.utils.base_utils import read_pickle import json import cv2 blender = '/home/pengsida/Software/blender-2.79a-linux-glibc219-x86_64/blender' blank_blend = 'lib/datasets/tless/blank.blend' backend = 'lib/datasets/tless/render_backend.py' data_root = 'data/tless' ply_path_pattern = os.path.join(data_root, 'models_cad/colobj_{:02}.ply') output_dir_pattern = os.path.join(data_root, 'renders/{}') def get_bg_imgs(): bg_path = 'data/tless/bg_imgs.npy' bg_dataset = 'data/sun/JPEGImages' if os.path.exists(bg_path): return img_paths = glob.glob(os.path.join(bg_dataset, '*.jpg')) bg_imgs = [] for img_path in tqdm.tqdm(img_paths): img = Image.open(img_path) row, col = img.size if row > 500 and col > 500: bg_imgs.append(img_path) np.save(bg_path, bg_imgs) def get_poses(num_samples): euler = render_utils.ViewpointSampler.sample_sphere(num_samples) x = np.random.uniform(-0.01, 0.01, num_samples) y = np.random.uniform(-0.01, 0.01, num_samples) z = np.random.uniform(0.18, 0.2, num_samples) # z = np.random.uniform(0.27, 0.30, num_samples) translation = np.stack([x, y, z], axis=1) poses = np.concatenate([euler, translation], axis=1) np.save('data/tless/poses.npy', poses) def _render(obj_id, num_syn): ply_path = ply_path_pattern.format(obj_id) output_dir = output_dir_pattern.format(obj_id) os.system('{} {} --background --python {} -- --cad_path {} --output_dir {} --num_syn {}'.format(blender, blank_blend, backend, ply_path, output_dir, num_syn)) depth_paths = glob.glob(os.path.join(output_dir, '*.exr')) for depth_path in depth_paths: render_utils.exr_to_png(depth_path) def render(): get_bg_imgs() num_syn = 5000 get_poses(num_syn) obj_ids = [30] for obj_id in obj_ids: _render(obj_id, num_syn) def render_to_coco(): data_root = 'data/tless/renders/' obj_ids = [i + 1 for i in range(30)] img_id = 0 ann_id = 0 images = [] annotations = [] for obj_id in tqdm.tqdm(obj_ids): obj_dir = os.path.join(data_root, str(obj_id)) pkl_paths = glob.glob(os.path.join(obj_dir, '*.pkl')) for pkl_path in tqdm.tqdm(pkl_paths): rgb_path = pkl_path.replace('_RT.pkl', '.png') mask_path = pkl_path.replace('_RT.pkl', '_depth.png') if not os.path.exists(rgb_path) or not os.path.exists(mask_path): continue rgb = Image.open(rgb_path) img_size = rgb.size img_id += 1 info = {'rgb_path': rgb_path, 'height': img_size[1], 'width': img_size[0], 'id': img_id} images.append(info) K_P = read_pickle(pkl_path) ann_id += 1 anno = {'mask_path': mask_path, 'image_id': img_id, 'category_id': obj_id, 'id': ann_id} anno.update({'K': K_P['K'].tolist(), 'pose': K_P['RT'].tolist()}) annotations.append(anno) categories = [{'supercategory': 'none', 'id': obj_id, 'name': str(obj_id)} for obj_id in obj_ids] instance = {'images': images, 'annotations': annotations, 'categories': categories} anno_path = os.path.join(data_root, 'render.json') with open(anno_path, 'w') as f: json.dump(instance, f)
all/bodies/vision.py
kcorder/autonomous-learning-library
584
11109603
import torch from all.core import State, StateArray from ._body import Body class FrameStack(Body): def __init__(self, agent, size=4, lazy=False): super().__init__(agent) self._frames = [] self._size = size self._lazy = lazy self._to_cache = TensorDeviceCache() def process_state(self, state): if not self._frames: self._frames = [state.observation] * self._size else: self._frames = self._frames[1:] + [state.observation] if self._lazy: return LazyState.from_state(state, self._frames, self._to_cache) if isinstance(state, StateArray): return state.update('observation', torch.cat(self._frames, dim=1)) return state.update('observation', torch.cat(self._frames, dim=0)) class TensorDeviceCache: ''' To efficiently implement device trasfer of lazy states, this class caches the transfered tensor so that it is not copied multiple times. ''' def __init__(self, max_size=16): self.max_size = max_size self.cache_data = [] def convert(self, value, device): cached = None for el in self.cache_data: if el[0] is value: cached = el[1] break if cached is not None and cached.device == torch.device(device): new_v = cached else: new_v = value.to(device) self.cache_data.append((value, new_v)) if len(self.cache_data) > self.max_size: self.cache_data.pop(0) return new_v class LazyState(State): @classmethod def from_state(cls, state, frames, to_cache): state = LazyState(state, device=frames[0].device) state.to_cache = to_cache state['observation'] = frames return state def __getitem__(self, key): if key == 'observation': v = dict.__getitem__(self, key) if torch.is_tensor(v): return v return torch.cat(dict.__getitem__(self, key), dim=0) return super().__getitem__(key) def update(self, key, value): x = {} for k in self.keys(): if not k == key: x[k] = dict.__getitem__(self, k) x[key] = value state = LazyState.from_state(x, x['observation'], self.to_cache) return state def to(self, device): if device == self.device: return self x = {} for key, value in self.items(): if key == 'observation': x[key] = [self.to_cache.convert(v, device) for v in value] # x[key] = [v.to(device) for v in value]#torch.cat(value,axis=0).to(device) elif torch.is_tensor(value): x[key] = value.to(device) else: x[key] = value state = LazyState.from_state(x, x['observation'], self.to_cache) return state
QA/co_optimization_parallel_plate_waveguide_test.py
jbellevi/lumopt
101
11109618
""" Copyright chriskeraly Copyright (c) 2019 Lumerical Inc. """ import sys sys.path.append(".") import os import numpy as np from qatools import * from lumopt.utilities.wavelengths import Wavelengths from lumopt.utilities.materials import Material from lumopt.geometries.polygon import FunctionDefinedPolygon from lumopt.figures_of_merit.modematch import ModeMatch from lumopt.optimizers.generic_optimizers import ScipyOptimizers from lumopt.optimization import Optimization class TestCoOptimizationParallelPlateWaveguide(TestCase): """ Unit test for the Optimization class. It performs a co-optimization using a parallel plate waveguide filled by a dielectric excited with two different polarizations (TE and TM). The waveguide has a gap that must be filled all the way to maximize transmission. """ file_dir = os.path.abspath(os.path.dirname(__file__)) def setUp(self): # Base simulation project files self.base_TE_sim = os.path.join(self.file_dir, 'co_optimization_parallel_plate_waveguide_TE_base.fsp') self.base_TM_sim = os.path.join(self.file_dir, 'co_optimization_parallel_plate_waveguide_TM_base.fsp') # Simulation bandwidth self.wavelengths = Wavelengths(start = 1500e-9, stop = 1600e-9, points = 12) # Polygon defining a rectangle that can grow or shrink along the y-axis to fill the gap self.mesh_del = 10.0e-9; # must be kept in sych with self.base_script initial_points_y = np.array([1.75 * self.mesh_del, 0.01 * self.mesh_del]) def wall(param = initial_points_y): assert param.size == 2, "walls defined by two points." self.wg_gap = 10.0 * self.mesh_del # must be kept in sych points_x = 0.5 * np.array([-self.wg_gap, self.wg_gap, self.wg_gap, -self.wg_gap]) points_y = np.array([-param[0], -param[1], param[1], param[0]]) polygon_points = [(x, y) for x, y in zip(points_x, points_y)] return np.array(polygon_points) self.wg_width = 50.0 * self.mesh_del # must be kept in synch bounds = [(0.0, self.wg_width / 2.0)] * initial_points_y.size self.geometry = FunctionDefinedPolygon(func = wall, initial_params = initial_points_y, bounds = bounds, z = 0.0, # must be kept in sych depth = self.wg_width, eps_out = Material(base_epsilon = 1.0 ** 2, name = '<Object defined dielectric>', mesh_order = 2), # must be kept in synch eps_in = Material(base_epsilon = 4.0 ** 2, name = '<Object defined dielectric>', mesh_order = 1), # must be kept in sych edge_precision = 50, dx = 1.0e-10) # Figure of merit self.fom = ModeMatch(monitor_name = 'fom', # must be kept in sych mode_number = 1, # must be kept in sych direction = 'Forward', multi_freq_src = True, target_T_fwd = lambda wl: np.ones(wl.size), norm_p = 1) # Scipy optimizer self.optimizer = ScipyOptimizers(max_iter = 5, method = 'L-BFGS-B', scaling_factor = 1.0e7, pgtol = 1.0e-5, ftol = 1.0e-12, target_fom = 0.0, scale_initial_gradient_to = None) def test_co_optimization_in_2D(self): print("2D TE-TM co-optimization (use_deps = True): ") #base_script, wavelengths, fom, geometry, optimizer, use_var_fdtd = False, hide_fdtd_cad = False, use_deps = True, plot_history = True, store_all_simulations = True optTE = Optimization(base_script = self.base_TE_sim, wavelengths = self.wavelengths, fom = self.fom, geometry = self.geometry, optimizer = self.optimizer, use_var_fdtd = False, hide_fdtd_cad = True, use_deps = True, plot_history = False, store_all_simulations = False) optTM = Optimization(base_script = self.base_TM_sim, wavelengths = self.wavelengths, fom = self.fom, geometry = self.geometry, optimizer = self.optimizer, use_var_fdtd = False, hide_fdtd_cad = True, use_deps = True, plot_history = False, store_all_simulations = False) opt = optTE + optTM fom, params = opt.run() self.assertGreaterEqual(fom, 1.99990) reference_value = self.wg_width / 2.0 * self.optimizer.scaling_factor[0] self.assertAlmostEqual(params[0], reference_value) self.assertAlmostEqual(params[1], reference_value) if __name__ == "__main__": run([__file__])
SMPyBandits/Policies/klUCBPlusPlus.py
balbok0/SMPyBandits
309
11109658
# -*- coding: utf-8 -*- """ The improved kl-UCB++ policy, for one-parameter exponential distributions. Reference: [Menard & Garivier, ALT 2017](https://hal.inria.fr/hal-01475078) """ from __future__ import division, print_function # Python 2 compatibility __author__ = "<NAME>" __version__ = "0.5" from math import log import numpy as np np.seterr(divide='ignore') # XXX dangerous in general, controlled here! try: from .kullback import klucbBern from .klUCB import klUCB, c except ImportError: from kullback import klucbBern from klUCB import klUCB, c # --- Numerical functions required for the function g(n) for kl-UCB++ def logplus(x): """..math:: \log^+(x) := \max(0, \log(x)).""" return max(0., log(x)) def g(t, T, K): r"""The exploration function g(t) (for t current time, T horizon, K nb arms), as defined in page 3 of the reference paper. .. math:: g(t, T, K) &:= \log^+(y (1 + \log^+(y)^2)),\\ y &:= \frac{T}{K t}. """ y = T / (K * t) return max(0., log(y * (1. + max(0., log(y)) ** 2))) def g_vect(t, T, K): r"""The exploration function g(t) (for t current time, T horizon, K nb arms), as defined in page 3 of the reference paper, for numpy vectorized inputs. .. math:: g(t, T, K) &:= \log^+(y (1 + \log^+(y)^2)),\\ y &:= \frac{T}{K t}. """ y = T / (K * t) return np.maximum(0., np.log(y * (1. + np.maximum(0., np.log(y)) ** 2))) class klUCBPlusPlus(klUCB): """ The improved kl-UCB++ policy, for one-parameter exponential distributions. Reference: [Menard & Garivier, ALT 2017](https://hal.inria.fr/hal-01475078) """ def __init__(self, nbArms, horizon=None, tolerance=1e-4, klucb=klucbBern, c=c, lower=0., amplitude=1.): super(klUCBPlusPlus, self).__init__(nbArms, tolerance=tolerance, klucb=klucb, c=c, lower=lower, amplitude=amplitude) self.nbArms = float(self.nbArms) # Just speed up type casting by forcing it to be a float self.horizon = int(horizon) #: Parameter :math:`T` = known horizon of the experiment. def __str__(self): name = "" if self.klucb.__name__[5:] == "Bern" else ", " + self.klucb.__name__[5:] complement = "$T={}${}{}".format(self.horizon, name, "" if self.c == 1 else r", $c={:.3g}$".format(self.c)) return r"kl-UCB{}({})".format("$^{++}$", complement) def computeIndex(self, arm): r""" Compute the current index, at time t and after :math:`N_k(t)` pulls of arm k: .. math:: \hat{\mu}_k(t) &= \frac{X_k(t)}{N_k(t)}, \\ U_k(t) &= \sup\limits_{q \in [a, b]} \left\{ q : \mathrm{kl}(\hat{\mu}_k(t), q) \leq \frac{c g(N_k(t), T, K)}{N_k(t)} \right\},\\ I_k(t) &= U_k(t). If rewards are in :math:`[a, b]` (default to :math:`[0, 1]`) and :math:`\mathrm{kl}(x, y)` is the Kullback-Leibler divergence between two distributions of means x and y (see :mod:`Arms.kullback`), and c is the parameter (default to 1), and where :math:`g(t, T, K)` is this function: .. math:: g(t, T, K) &:= \log^+(y (1 + \log^+(y)^2)),\\ y &:= \frac{T}{K t}. """ if self.pulls[arm] < 1: return float('+inf') else: # XXX We could adapt tolerance to the value of self.t return self.klucb(self.rewards[arm] / self.pulls[arm], self.c * g(self.pulls[arm], self.horizon, self.nbArms) / self.pulls[arm], self.tolerance) def computeAllIndex(self): """ Compute the current indexes for all arms, in a vectorized manner.""" indexes = self.klucb_vect(self.rewards / self.pulls, self.c * g_vect(self.pulls, self.horizon, self.nbArms) / self.pulls, self.tolerance) indexes[self.pulls < 1] = float('+inf') self.index[:] = indexes
mordred/tests/__init__.py
UnixJunkie/mordred
199
11109689
<filename>mordred/tests/__init__.py """Mordred test package."""
examples/guv_simple_server.py
timgates42/guv
120
11109730
<reponame>timgates42/guv """Simple low-level network server This module demonstrates how to use guv to create fast network servers. In addition, it can be used to serve valid HTTP (as far as ``wrk`` is concerned) to benchmark concurrency and requests/sec. Three basic client handlers are provided: - :func:`handle_http_10` acts as an HTTP 1.0 server which sends a static message and closes the connection (HTTP header ``Connection: close``, which is default for HTTP 1.0). - :func:`handle_http_11` acts as an HTTP 1.1 server which sends a static message, but keeps the connection alive (HTTP header ``Connection: keep-alive``, which is default for HTTP 1.1). - :func:`handle_http` is a slightly more complex client handler which actually reads the client's request and decides to either close or keep-alive the connection based on the HTTP version and what the client wants. If the connection is to be kept alive, this handler cooperatively yields control to other greenlets after every request, which significantly improves request/response latency (as reported by wrk). """ import guv guv.monkey_patch() import guv.server import guv.hubs import guv.greenio from guv import gyield from guv.support import PYPY import logging import logger logger.configure() log = logging.getLogger() if PYPY: from http_parser.pyparser import HttpParser log.debug('Using pure-Python HTTP parser') USING_PYPARSER = True else: from http_parser.parser import HttpParser log.debug('Using fast C HTTP parser') USING_PYPARSER = False def create_response(body, headers): """Create a simple HTTP response :type body: str :type headers: dict[str, str] :rtype: bytes """ final_headers = { 'Connection': 'keep-alive', 'Content-Type': 'text/plain; charset=utf-8', 'Content-Encoding': 'UTF-8' } final_headers.update(headers) lines = ['HTTP/1.1 200 OK'] lines.extend(['%s: %s' % (k, v) for k, v in final_headers.items()]) lines.append('Content-Length: %s' % len(body)) resp = ('\r\n'.join(lines)).encode('latin-1') resp += ('\r\n\r\n' + body).encode(final_headers['Content-Encoding']) return resp def handle_http_10(sock, addr): """Very minimal client handler for HTTP 1.0 (Connection: close) """ data = sock.recv(4096) if not data: return resp = create_response('Hello, world!', {'Connection': 'close'}) sock.sendall(resp) sock.close() def handle_http_11(sock, addr): """Very minimal client handler for HTTP 1.1 (Connection: keep-alive) """ while True: data = sock.recv(4096) if not data: break resp = create_response('Hello, world!', {'Connection': 'keep-alive'}) sock.sendall(resp) sock.close() def handle_http(sock, addr): """A more complicated handler which detects HTTP headers """ def recv_request(p): while True: data = sock.recv(8192) if not data: return False nb = len(data) nparsed = p.execute(data, nb) assert nparsed == nb if USING_PYPARSER and p.is_headers_complete(): h = p.get_headers() if not (h.get('content-length') or h.get('transfer-length')): # pass length=0 to signal end of body # TODO: pyparser requires this, but not the C parser for some reason p.execute(data, 0) return True if p.is_message_complete(): return True # main request loop while True: p = HttpParser() if not recv_request(p): break h = p.get_headers() ka = p.should_keep_alive() h_connection = 'keep-alive' if ka else 'close' resp = create_response('Hello, world!', {'Connection': h_connection}) sock.sendall(resp) if not ka: break else: # we should keep-alive, but yield to drastically improve overall request/response # latency gyield() sock.close() handle = handle_http def main(): try: log.debug('Start') server_sock = guv.listen(('0.0.0.0', 8001)) server = guv.server.Server(server_sock, handle, None, None) server.start() except (SystemExit, KeyboardInterrupt): log.debug('Bye!') if __name__ == '__main__': main()
test/libs/Hybrid.py
kavyapnaik/PythonRemoteServer
118
11109747
<filename>test/libs/Hybrid.py class Hybrid(object): def get_keyword_names(self): return ['passing', 'failing', 'logging', 'returning', 'kwargs'] def __getattr__(self, name): try: return globals()[name] except KeyError: raise AttributeError(name) def passing(arg=None): assert not arg or '=' not in arg def failing(message): raise AssertionError(message) def logging(message, level='INFO'): print('*%s* %s' % (level, message)) def returning(): return 'Hello, world!' def kwargs(expected, **kws): actual = ', '.join('%s: %s' % (k, kws[k]) for k in sorted(kws)) assert actual == expected if __name__ == '__main__': import sys from robotremoteserver import RobotRemoteServer RobotRemoteServer(Hybrid(), '127.0.0.1', *sys.argv[1:])
next_steps/operations/ml_ops_ds_sdk/lambda/stepfunction_waitforDatasetGroup.py
kamoljan/amazon-personalize-samples
442
11109757
<gh_stars>100-1000 import json import base64 import boto3 personalize = boto3.client('personalize') personalize_runtime = boto3.client('personalize-runtime') def lambda_handler(event, context): # TODO implement datasetGroupArnVal = event['input'] describe_dataset_group_response = personalize.describe_dataset_group( datasetGroupArn = datasetGroupArnVal #datasetGroupArn = event['Payload']['datasetGroupArn'] ) #personalize.describe_dataset_group #print("DatasetGroup: {}".format(datasetGroupArn)) return_status = False status = describe_dataset_group_response["datasetGroup"]["status"] print("DatasetGroup: {}".format(status)) return { 'status': status, 'DatasetGroup': status, 'datasetGroupArn': datasetGroupArnVal, 'schemaArn': event['schemaArn'] #'body': json.dumps('Hello from Lambda!') }
tests/integration/butterfree/load/conftest.py
fossabot/butterfree
208
11109759
from pytest import fixture from butterfree.constants import DataType, columns from butterfree.transform import FeatureSet from butterfree.transform.features import Feature, KeyFeature, TimestampFeature @fixture def input_dataframe(spark_context, spark_session): data = [ { "id": 1, "timestamp": "2019-12-01", "feature": 100, columns.PARTITION_YEAR: 2019, columns.PARTITION_MONTH: 12, columns.PARTITION_DAY: 1, }, { "id": 2, "timestamp": "2020-01-01", "feature": 200, columns.PARTITION_YEAR: 2020, columns.PARTITION_MONTH: 1, columns.PARTITION_DAY: 1, }, { "id": 1, "timestamp": "2020-02-01", "feature": 110, columns.PARTITION_YEAR: 2020, columns.PARTITION_MONTH: 2, columns.PARTITION_DAY: 1, }, { "id": 1, "timestamp": "2020-02-02", "feature": 120, columns.PARTITION_YEAR: 2020, columns.PARTITION_MONTH: 2, columns.PARTITION_DAY: 2, }, ] return spark_session.read.json(spark_context.parallelize(data, 1)) @fixture def feature_set(): key_features = [ KeyFeature(name="id", description="Description", dtype=DataType.INTEGER) ] ts_feature = TimestampFeature(from_column="timestamp") features = [ Feature(name="feature", description="Description", dtype=DataType.FLOAT), ] return FeatureSet( "test_sink_feature_set", "test_sink_entity", "description", keys=key_features, timestamp=ts_feature, features=features, )
tests/cell_fabric/test_gen_lef.py
pretl/ALIGN-public
119
11109762
<filename>tests/cell_fabric/test_gen_lef.py from align.cell_fabric import gen_lef, pdk import filecmp import pathlib mydir = pathlib.Path(__file__).resolve().parent pdkdir = pathlib.Path(__file__).parent.parent.parent / "pdks" / "FinFET14nm_Mock_PDK" p = pdk.Pdk().load(pdkdir / 'layers.json') def test_lef(): block_name = "foo" json_file_name = mydir / "__json_diff_pair_cand_lef" with open( json_file_name, "rt") as fp0, \ open( mydir / "foo.lef_cand", 'wt') as fp1: gen_lef.json_lef( json_file_name, 'foo_cand', cell_pin=['DA','DB','S', 'B'], bodyswitch=0, blockM=0, p=p) assert filecmp.cmp( mydir / "foo_cand.lef", mydir / "foo.lef_gold")
resnet/frelu.py
megvii-model/FunnelAct
178
11109785
<gh_stars>100-1000 import megengine.functional as F import megengine.module as M class FReLU(M.Module): r""" FReLU formulation. The funnel condition has a window size of kxk. (k=3 by default) """ def __init__(self, in_channels): super().__init__() self.conv_frelu = M.Conv2d(in_channels, in_channels, 3, 1, 1, groups=in_channels) self.bn_frelu = M.BatchNorm2d(in_channels) def forward(self, x): x1 = self.conv_frelu(x) x1 = self.bn_frelu(x1) x = F.maximum(x, x1) return x