max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
kitsune/users/migrations/0027_profile_zendesk_id.py
erdal-pb/kitsune
929
11109791
<filename>kitsune/users/migrations/0027_profile_zendesk_id.py # Generated by Django 2.2.24 on 2021-09-02 06:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0026_profile_fxa_refresh_token'), ] operations = [ migrations.AddField( model_name='profile', name='zendesk_id', field=models.CharField(blank=True, default='', max_length=1024), ), ]
tests/unit/TestTypechecker.py
rainoftime/yinyang
143
11109798
<gh_stars>100-1000 # MIT License # # Copyright (c) [2020 - 2021] The yinyang authors # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import unittest import sys import pathlib sys.path.append("../../") from yinyang.src.parsing.Ast import ( Assert, ) from yinyang.src.parsing.Parse import ( parse_str, parse_file ) from yinyang.src.parsing.Types import ( UNKNOWN, BOOLEAN_TYPE, INTEGER_TYPE, STRING_TYPE, ) from yinyang.src.parsing.Typechecker import Context, typecheck_expr, typecheck def check_type(expr): """ recursive traversal of expressions to check whether none of them has unknown type. """ if expr.type == UNKNOWN: raise Exception(expr.__str__() + " has unknown type") if expr.var_binders: for i, _ in enumerate(expr.var_binders): check_type(expr.let_terms[i]) for e in expr.subterms: check_type(e) else: if expr.subterms: for e in expr.subterms: check_type(e) def oracle(formula): for cmd in formula.commands: if isinstance(cmd, Assert): check_type(cmd.term) return True class TypecheckerTestCase(unittest.TestCase): def test_core_theory(self): formula_str = """ (declare-const y Int) (declare-const v Bool) (assert (= v (not (= y (- 1))))) (check-sat) """ formula, globals = parse_str(formula_str) ctxt = Context(globals, {}) equals = formula.commands[2].term self.assertEqual(typecheck_expr(equals, ctxt), BOOLEAN_TYPE) v = equals.subterms[0] self.assertEqual(typecheck_expr(v, ctxt), BOOLEAN_TYPE) not_op = equals.subterms[1] self.assertEqual(typecheck_expr(not_op, ctxt), BOOLEAN_TYPE) y = equals.subterms[1].subterms[0].subterms[0] self.assertEqual(typecheck_expr(y, ctxt), INTEGER_TYPE) minusone = equals.subterms[1].subterms[0].subterms[1] self.assertEqual(typecheck_expr(minusone, ctxt), INTEGER_TYPE) formula_str = """ (declare-const y Int) (declare-const v Bool) (assert (ite v false (= y (- 1)))) (check-sat) """ formula, globals = parse_str(formula_str) ite = formula.commands[2].term ctxt = Context(globals, {}) self.assertEqual(typecheck_expr(ite, ctxt), BOOLEAN_TYPE) def test_error(self): formula_str = """ (declare-const y Int) (declare-const v Bool) (assert (= v (not (= v (- 1))))) (check-sat) """ formula, globals = parse_str(formula_str) ctxt = Context(globals, {}) equals = formula.commands[2].term try: typecheck_expr(equals, ctxt) except Exception: no_except = False self.assertFalse(no_except) def test_typecheck_nary_int_ret(self): formula_str = """ (declare-const v Int) (declare-const w Int) (assert (= v (+ v v w))) (check-sat) """ formula, globals = parse_str(formula_str) ctxt = Context(globals, {}) nary_plus = formula.commands[2].term.subterms[1] self.assertEqual(typecheck_expr(nary_plus, ctxt), INTEGER_TYPE) def test_typecheck_comp_ops(self): formula_str = """ (declare-const v Int) (declare-const w Int) (assert (> v (+ v v w))) (check-sat) """ formula, globals = parse_str(formula_str) greater = formula.commands[2].term ctxt = Context(globals, {}) self.assertEqual(typecheck_expr(greater, ctxt), BOOLEAN_TYPE) def test_typecheck_string_ops(self): formula_str = """ (assert (distinct (str.replace_all "B" "A" "") "B")) (check-sat) """ formula, globals = parse_str(formula_str) ctxt = Context(globals, {}) distinct = formula.commands[0].term self.assertEqual(typecheck_expr(distinct, ctxt), BOOLEAN_TYPE) str_repl = distinct.subterms[0] self.assertEqual(typecheck_expr(str_repl, ctxt), STRING_TYPE) formula_str = """ (declare-fun a () String) (assert (str.contains (str.substr a 0 (- (str.len a) 1)) "A")) (assert (= (ite (= (str.at a 0) "B") 1 0) (ite (= (str.at a 0) "A") 1 0) 0)) (assert (= (str.at a (- (str.len a) 1)) "B")) (check-sat) """ formula, globals = parse_str(formula_str) ctxt = Context(globals, {}) for i in range(1, 4): typecheck_expr(formula.commands[i].term, ctxt) def test_typechecking_formula_small(self): formula_str = """ (declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int) (assert (> (* (+ 3 x) (- y 2)) (/ 5 z))) (check-sat) """ formula, glob = parse_str(formula_str) typecheck(formula, glob) self.assertEqual(oracle(formula), True) def test_typechecking_formula_large(self): script_path = pathlib.Path(__file__).parent.absolute() formula, glob = parse_file( str(script_path) + "/test.smt2", silent=False ) typecheck(formula, glob) oracle(formula) self.assertEqual(oracle(formula), True) if __name__ == "__main__": TypecheckerTestCase.test_typechecker() unittest.main()
卷积模块/Res2Net.py
1044197988/TF.Keras-Commonly-used-models
160
11109809
<reponame>1044197988/TF.Keras-Commonly-used-models from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.layers import Activation from tensorflow.keras.layers import concatenate from tensorflow.keras.layers import add def Conv_Relu_BN(num_filters,kernel_size,batchnorm=True,strides=(1, 1),padding='same'): def layer(input_tensor): x = Conv2D(num_filters, kernel_size,padding=padding, kernel_initializer='he_normal',strides=strides)(input_tensor) x = Activation('relu')(x) if batchnorm: x = BatchNormalization()(x) return x return layer def slice_layer(x, slice_num, channel_input): output_list = [] single_channel = channel_input//slice_num for i in range(slice_num): out = x[:, :, :, i*single_channel:(i+1)*single_channel] output_list.append(out) return output_list def res2net_block(num_filters, slice_num): def layer(input_tensor): short_cut = input_tensor x = Conv_Mish_BN(num_filters=num_filters, kernel_size=(1, 1))(input_tensor) slice_list = slice_layer(x, slice_num, x.shape[-1]) side = Conv_Mish_BN(num_filters=num_filters//slice_num, kernel_size=(3, 3))(slice_list[1]) z = concatenate([slice_list[0], side]) # for one and second stage for i in range(2, len(slice_list)): y = Conv_Mish_BN(num_filters=num_filters//slice_num, kernel_size=(3, 3))(add([side, slice_list[i]])) side = y z = concatenate([z, y]) z = Conv_Mish_BN(num_filters=num_filters, kernel_size=(1, 1))(z) out = concatenate([z, short_cut]) return out return layer
tools/third_party/websockets/tests/test_http.py
meyerweb/wpt
2,479
11109810
import asyncio import unittest from websockets.exceptions import SecurityError from websockets.http import * from websockets.http import read_headers from .utils import AsyncioTestCase class HTTPAsyncTests(AsyncioTestCase): def setUp(self): super().setUp() self.stream = asyncio.StreamReader(loop=self.loop) async def test_read_request(self): # Example from the protocol overview in RFC 6455 self.stream.feed_data( b"GET /chat HTTP/1.1\r\n" b"Host: server.example.com\r\n" b"Upgrade: websocket\r\n" b"Connection: Upgrade\r\n" b"Sec-WebSocket-Key: <KEY>" b"Origin: http://example.com\r\n" b"Sec-WebSocket-Protocol: chat, superchat\r\n" b"Sec-WebSocket-Version: 13\r\n" b"\r\n" ) path, headers = await read_request(self.stream) self.assertEqual(path, "/chat") self.assertEqual(headers["Upgrade"], "websocket") async def test_read_request_empty(self): self.stream.feed_eof() with self.assertRaisesRegex( EOFError, "connection closed while reading HTTP request line" ): await read_request(self.stream) async def test_read_request_invalid_request_line(self): self.stream.feed_data(b"GET /\r\n\r\n") with self.assertRaisesRegex(ValueError, "invalid HTTP request line: GET /"): await read_request(self.stream) async def test_read_request_unsupported_method(self): self.stream.feed_data(b"OPTIONS * HTTP/1.1\r\n\r\n") with self.assertRaisesRegex(ValueError, "unsupported HTTP method: OPTIONS"): await read_request(self.stream) async def test_read_request_unsupported_version(self): self.stream.feed_data(b"GET /chat HTTP/1.0\r\n\r\n") with self.assertRaisesRegex(ValueError, "unsupported HTTP version: HTTP/1.0"): await read_request(self.stream) async def test_read_request_invalid_header(self): self.stream.feed_data(b"GET /chat HTTP/1.1\r\nOops\r\n") with self.assertRaisesRegex(ValueError, "invalid HTTP header line: Oops"): await read_request(self.stream) async def test_read_response(self): # Example from the protocol overview in RFC 6455 self.stream.feed_data( b"HTTP/1.1 101 Switching Protocols\r\n" b"Upgrade: websocket\r\n" b"Connection: Upgrade\r\n" b"Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=\r\n" b"Sec-WebSocket-Protocol: chat\r\n" b"\r\n" ) status_code, reason, headers = await read_response(self.stream) self.assertEqual(status_code, 101) self.assertEqual(reason, "Switching Protocols") self.assertEqual(headers["Upgrade"], "websocket") async def test_read_response_empty(self): self.stream.feed_eof() with self.assertRaisesRegex( EOFError, "connection closed while reading HTTP status line" ): await read_response(self.stream) async def test_read_request_invalid_status_line(self): self.stream.feed_data(b"Hello!\r\n") with self.assertRaisesRegex(ValueError, "invalid HTTP status line: Hello!"): await read_response(self.stream) async def test_read_response_unsupported_version(self): self.stream.feed_data(b"HTTP/1.0 400 Bad Request\r\n\r\n") with self.assertRaisesRegex(ValueError, "unsupported HTTP version: HTTP/1.0"): await read_response(self.stream) async def test_read_response_invalid_status(self): self.stream.feed_data(b"HTTP/1.1 OMG WTF\r\n\r\n") with self.assertRaisesRegex(ValueError, "invalid HTTP status code: OMG"): await read_response(self.stream) async def test_read_response_unsupported_status(self): self.stream.feed_data(b"HTTP/1.1 007 My name is Bond\r\n\r\n") with self.assertRaisesRegex(ValueError, "unsupported HTTP status code: 007"): await read_response(self.stream) async def test_read_response_invalid_reason(self): self.stream.feed_data(b"HTTP/1.1 200 \x7f\r\n\r\n") with self.assertRaisesRegex(ValueError, "invalid HTTP reason phrase: \\x7f"): await read_response(self.stream) async def test_read_response_invalid_header(self): self.stream.feed_data(b"HTTP/1.1 500 Internal Server Error\r\nOops\r\n") with self.assertRaisesRegex(ValueError, "invalid HTTP header line: Oops"): await read_response(self.stream) async def test_header_name(self): self.stream.feed_data(b"foo bar: baz qux\r\n\r\n") with self.assertRaises(ValueError): await read_headers(self.stream) async def test_header_value(self): self.stream.feed_data(b"foo: \x00\x00\x0f\r\n\r\n") with self.assertRaises(ValueError): await read_headers(self.stream) async def test_headers_limit(self): self.stream.feed_data(b"foo: bar\r\n" * 257 + b"\r\n") with self.assertRaises(SecurityError): await read_headers(self.stream) async def test_line_limit(self): # Header line contains 5 + 4090 + 2 = 4097 bytes. self.stream.feed_data(b"foo: " + b"a" * 4090 + b"\r\n\r\n") with self.assertRaises(SecurityError): await read_headers(self.stream) async def test_line_ending(self): self.stream.feed_data(b"foo: bar\n\n") with self.assertRaises(EOFError): await read_headers(self.stream) class HeadersTests(unittest.TestCase): def setUp(self): self.headers = Headers([("Connection", "Upgrade"), ("Server", USER_AGENT)]) def test_str(self): self.assertEqual( str(self.headers), f"Connection: Upgrade\r\nServer: {USER_AGENT}\r\n\r\n" ) def test_repr(self): self.assertEqual( repr(self.headers), f"Headers([('Connection', 'Upgrade'), " f"('Server', '{USER_AGENT}')])", ) def test_multiple_values_error_str(self): self.assertEqual(str(MultipleValuesError("Connection")), "'Connection'") self.assertEqual(str(MultipleValuesError()), "") def test_contains(self): self.assertIn("Server", self.headers) def test_contains_case_insensitive(self): self.assertIn("server", self.headers) def test_contains_not_found(self): self.assertNotIn("Date", self.headers) def test_contains_non_string_key(self): self.assertNotIn(42, self.headers) def test_iter(self): self.assertEqual(set(iter(self.headers)), {"connection", "server"}) def test_len(self): self.assertEqual(len(self.headers), 2) def test_getitem(self): self.assertEqual(self.headers["Server"], USER_AGENT) def test_getitem_case_insensitive(self): self.assertEqual(self.headers["server"], USER_AGENT) def test_getitem_key_error(self): with self.assertRaises(KeyError): self.headers["Upgrade"] def test_getitem_multiple_values_error(self): self.headers["Server"] = "2" with self.assertRaises(MultipleValuesError): self.headers["Server"] def test_setitem(self): self.headers["Upgrade"] = "websocket" self.assertEqual(self.headers["Upgrade"], "websocket") def test_setitem_case_insensitive(self): self.headers["upgrade"] = "websocket" self.assertEqual(self.headers["Upgrade"], "websocket") def test_setitem_multiple_values(self): self.headers["Connection"] = "close" with self.assertRaises(MultipleValuesError): self.headers["Connection"] def test_delitem(self): del self.headers["Connection"] with self.assertRaises(KeyError): self.headers["Connection"] def test_delitem_case_insensitive(self): del self.headers["connection"] with self.assertRaises(KeyError): self.headers["Connection"] def test_delitem_multiple_values(self): self.headers["Connection"] = "close" del self.headers["Connection"] with self.assertRaises(KeyError): self.headers["Connection"] def test_eq(self): other_headers = self.headers.copy() self.assertEqual(self.headers, other_headers) def test_eq_not_equal(self): self.assertNotEqual(self.headers, []) def test_clear(self): self.headers.clear() self.assertFalse(self.headers) self.assertEqual(self.headers, Headers()) def test_get_all(self): self.assertEqual(self.headers.get_all("Connection"), ["Upgrade"]) def test_get_all_case_insensitive(self): self.assertEqual(self.headers.get_all("connection"), ["Upgrade"]) def test_get_all_no_values(self): self.assertEqual(self.headers.get_all("Upgrade"), []) def test_get_all_multiple_values(self): self.headers["Connection"] = "close" self.assertEqual(self.headers.get_all("Connection"), ["Upgrade", "close"]) def test_raw_items(self): self.assertEqual( list(self.headers.raw_items()), [("Connection", "Upgrade"), ("Server", USER_AGENT)], )
tests/not_tests.py
TakenBrandi/python-precisely
238
11109813
<reponame>TakenBrandi/python-precisely from nose.tools import istest, assert_equal from precisely import equal_to, not_ from precisely.results import matched, unmatched @istest def matches_when_negated_matcher_does_not_match(): assert_equal(matched(), not_(equal_to(1)).match(2)) @istest def does_not_match_when_negated_matcher_matches(): assert_equal(unmatched("matched: 1"), not_(equal_to(1)).match(1)) @istest def description_includes_description_of_negated_matcher(): assert_equal("not: 'hello'", not_(equal_to("hello")).describe())
test/core/test_serde_flat.py
Xiaoxiong-Liu/gluon-ts
2,648
11109818
<gh_stars>1000+ # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from gluonts.core import serde from gluonts.core.component import equals from gluonts.model.deepar import DeepAREstimator def test_nested_params(): deepar = DeepAREstimator(prediction_length=7, freq="D") assert equals(deepar, serde.flat.decode(serde.flat.encode(deepar))) deepar2 = serde.flat.clone(deepar, {"trainer.epochs": 999}) assert deepar2.trainer.epochs == 999
skills_ml/job_postings/aggregate/pandas.py
bhagyaramgpo/skills-ml
147
11109824
"""Aggregation functions that can be used with pandas dataframes""" from collections import Counter class AggregateFunction(object): """Wrap a function with an attribute that indicates the return type name""" def __init__(self, returns): self.returns = returns def __call__(self, function, *params, **kwparams): class DecoratedFunction(object): def __init__(self, returns, function): self.returns = returns self.function = function self.__name__ = function.__name__ self.__qualname__ = function.__qualname__ self.__doc__ = function.__doc__ def __call__(self, *params, **kwparams): return self.function(*params, **kwparams) return DecoratedFunction(self.returns, function) @AggregateFunction(returns='list') def n_most_common(n, iterable): return [mc[0] for mc in Counter(iterable).most_common(n)] @AggregateFunction(returns='list') def listy_n_most_common(n, iterable): """Expects each item to be iterable, each sub-item to be addable""" bc = Counter() for i in iterable: bc += Counter(i) if bc: return [mc[0] for mc in bc.most_common(n)] else: return []
cinder/volume/drivers/dell_emc/unity/replication.py
lightsey/cinder
571
11109842
<filename>cinder/volume/drivers/dell_emc/unity/replication.py # Copyright (c) 2016 - 2019 Dell Inc. or its subsidiaries. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import random from oslo_log import log as logging from oslo_utils import excutils from cinder import exception from cinder.volume.drivers.dell_emc.unity import adapter as unity_adapter LOG = logging.getLogger(__name__) class ReplicationDevice(object): def __init__(self, conf_dict, driver): """Constructs a replication device from driver configuration. :param conf_dict: the conf of one replication device entry. It's a dict with content like `{backend_id: vendor-id-1, key-1: val-1, ...}` :param driver: the backend driver. """ driver_conf = driver.configuration self.backend_id = conf_dict.get('backend_id') self.san_ip = conf_dict.get('san_ip', None) if (self.backend_id is None or not self.backend_id.strip() or self.san_ip is None or not self.san_ip.strip()): LOG.error('No backend_id or san_ip in %(conf)s of ' '%(group)s.replication_device', conf=conf_dict, group=driver_conf.config_group) raise exception.InvalidConfigurationValue( option='%s.replication_device' % driver_conf.config_group, value=driver_conf.replication_device) # Use the driver settings if not configured in replication_device. self.san_login = conf_dict.get('san_login', driver_conf.san_login) self.san_password = conf_dict.get('san_password', driver_conf.san_password) # Max time (in minute) out of sync is a setting for replication. # It means maximum time to wait before syncing the source and # destination. `0` means it is a sync replication. Default is `60`. try: self.max_time_out_of_sync = int( conf_dict.get('max_time_out_of_sync', 60)) except ValueError: LOG.error('max_time_out_of_sync is not a number, %(conf)s of ' '%(group)s.replication_device', conf=conf_dict, group=driver_conf.config_group) raise exception.InvalidConfigurationValue( option='%s.replication_device' % driver_conf.config_group, value=driver_conf.replication_device) if self.max_time_out_of_sync < 0: LOG.error('max_time_out_of_sync should be greater than 0, ' '%(conf)s of %(group)s.replication_device', conf=conf_dict, group=driver_conf.config_group) raise exception.InvalidConfigurationValue( option='%s.replication_device' % driver_conf.config_group, value=driver_conf.replication_device) self.driver = driver self._adapter = init_adapter(driver.get_version(), driver.protocol) self._dst_pool = None self._serial_number = None @property def device_conf(self): conf = self.driver.configuration conf.san_ip = self.san_ip conf.san_login = self.san_login conf.san_password = self.san_password return conf def setup_adapter(self): if not self._adapter.is_setup: try: self._adapter.do_setup(self.driver, self.device_conf) except exception.CinderException: with excutils.save_and_reraise_exception(): LOG.error('replication_device configured but its adapter ' 'setup failed: %s', self.backend_id) @property def adapter(self): self.setup_adapter() return self._adapter @property def destination_pool(self): if self._dst_pool is None: LOG.debug('getting destination pool for replication device: %s', self.backend_id) pools_dict = self.adapter.storage_pools_map pool_name = random.choice(list(pools_dict)) LOG.debug('got destination pool for replication device: %s, ' 'pool: %s', self.backend_id, pool_name) self._dst_pool = pools_dict[pool_name] return self._dst_pool def init_adapter(version, protocol): if protocol == unity_adapter.PROTOCOL_FC: return unity_adapter.FCAdapter(version) return unity_adapter.ISCSIAdapter(version) DEFAULT_ADAPTER_NAME = 'default' class ReplicationManager(object): def __init__(self): self.is_replication_configured = False self.default_conf = None self.default_device = None self.replication_devices = None self.active_backend_id = None def do_setup(self, driver): self.default_conf = driver.configuration self.replication_devices = self.parse_rep_device(driver) if DEFAULT_ADAPTER_NAME in self.replication_devices: LOG.error('backend_id cannot be `default`') raise exception.InvalidConfigurationValue( option=('%s.replication_device' % self.default_conf.config_group), value=self.default_conf.replication_device) # Only support one replication device currently. if len(self.replication_devices) > 1: LOG.error('At most one replication_device is supported') raise exception.InvalidConfigurationValue( option=('%s.replication_device' % self.default_conf.config_group), value=self.default_conf.replication_device) self.is_replication_configured = len(self.replication_devices) >= 1 self.active_backend_id = driver.active_backend_id if self.active_backend_id: if self.active_backend_id not in self.replication_devices: LOG.error('Service starts under failed-over status, ' 'active_backend_id: %s is not empty, but not in ' 'replication_device.', self.active_backend_id) raise exception.InvalidConfigurationValue( option=('%s.replication_device' % self.default_conf.config_group), value=self.default_conf.replication_device) else: self.active_backend_id = DEFAULT_ADAPTER_NAME default_device_conf = { 'backend_id': DEFAULT_ADAPTER_NAME, 'san_ip': driver.configuration.san_ip } self.default_device = ReplicationDevice(default_device_conf, driver) if not self.is_service_failed_over: # If service doesn't fail over, setup the adapter. # Otherwise, the primary backend could be down, adapter setup could # fail. self.default_device.setup_adapter() if self.is_replication_configured: # If replication_device is configured, consider the replication is # enabled and check the same configuration is valid for secondary # backend or not. self.setup_rep_adapters() @property def is_service_failed_over(self): return (self.active_backend_id is not None and self.active_backend_id != DEFAULT_ADAPTER_NAME) def setup_rep_adapters(self): for backend_id, rep_device in self.replication_devices.items(): rep_device.setup_adapter() @property def active_adapter(self): if self.is_service_failed_over: return self.replication_devices[self.active_backend_id].adapter else: self.active_backend_id = DEFAULT_ADAPTER_NAME return self.default_device.adapter @staticmethod def parse_rep_device(driver): driver_conf = driver.configuration rep_devices = {} if not driver_conf.replication_device: return rep_devices for device_conf in driver_conf.replication_device: rep_device = ReplicationDevice(device_conf, driver) rep_devices[rep_device.backend_id] = rep_device return rep_devices def failover_service(self, backend_id): self.active_backend_id = backend_id
src/plugins/python/templates/tokenizer.template.py
ruby-on-rust/syntax
409
11109858
<filename>src/plugins/python/templates/tokenizer.template.py ## # Generic tokenizer used by the parser in the Syntax tool. # # https://www.npmjs.com/package/syntax-cli # # See `--custom-tokinzer` to skip this generation, and use a custom one. ## import re as _syntax_tool_re {{{LEX_RULE_HANDLERS}}} _lex_rules = {{{LEX_RULES}}} _lex_rules_by_conditions = {{{LEX_RULES_BY_START_CONDITIONS}}} EOF_TOKEN = { 'type': EOF, 'value': '' } class Tokenizer(object): _string = None _cursor = 0 # Line-based location tracking. _current_line = 1 _current_column = 0 _current_line_begin_offset = 0 # Location data of a matched token. token_start_offset = 0 token_end_offset = 0 token_start_line = 0 token_end_line = 0 token_start_column = 0 token_end_column = 0 _tokens_queue = [] _states = [] def __init__(self, string=None): if not string is None: self.init_string(string) def init_string(self, string): self._string = string self._string_len = len(string) self._cursor = 0 self._tokens_queue = [] self._states = ['INITIAL'] self._current_line = 1 self._current_column = 0 self._current_line_begin_offset = 0 # Location data of a matched token. self.token_start_offset = 0 self.token_end_offset = 0 self.token_start_line = 0 self.token_end_line = 0 self.token_start_column = 0 self.token_end_column = 0 # -------------------------------------------- # States. def get_current_state(self): return self._states[-1] def push_state(self, state): self._states.append(state) # Alias for `push_state`. def begin(self, state): self.push_state(state) def pop_state(self): if len(self._states) > 1: return self._states.pop() return self._states[0] def get_next_token(self): global __, yytext, yyleng if len(self._tokens_queue) > 0: return self._to_token(self._tokens_queue.pop(0)) if not self.has_more_tokens(): return EOF_TOKEN string = self._string[self._cursor:] lex_rules_for_state = _lex_rules_by_conditions[self.get_current_state()] for lex_rule_index in lex_rules_for_state: lex_rule = _lex_rules[lex_rule_index] matched = self._match(string, lex_rule[0]) # Manual handling of EOF token (the end of string). Return it # as `EOF` symbol. if string == '' and matched == '': self._cursor += 1 if matched != None: yytext = matched yyleng = len(yytext) token = lex_rule[1](self) if token is None: return self.get_next_token() if isinstance(token, list): tokens_to_queue = token[1:] token = token[0] if len(tokens_to_queue) > 0: self._tokens_queue.extend(tokens_to_queue) return self._to_token(token, yytext) if self.is_eof(): self._cursor += 1 return EOF_TOKEN self.throw_unexpected_token( string[0], self._current_line, self._current_column ) def _capture_location(self, matched): nl_re = _syntax_tool_re.compile("\n") # Absolute offsets. self.token_start_offset = self._cursor # Line-based locations, start. self.token_start_line = self._current_line self.token_start_column = self.token_start_offset - self._current_line_begin_offset # Extract `\n` in the matched token. for nl_match in nl_re.finditer(matched): self._current_line += 1 self._current_line_begin_offset = self.token_start_offset + nl_match.start() + 1 self.token_end_offset = self._cursor + len(matched) # Line-based locations, end. self.token_end_line = self._current_line self.token_end_column = self._current_column = (self.token_end_offset - self._current_line_begin_offset) def _to_token(self, token_type, yytext=''): return { 'type': token_type, 'value': yytext, 'start_offset': self.token_start_offset, 'end_offset': self.token_end_offset, 'start_line': self.token_start_line, 'end_line': self.token_end_line, 'start_column': self.token_start_column, 'end_column': self.token_end_column, } ## # Throws default "Unexpected token" exception, showing the actual # line from the source, pointing with the ^ marker to the bad token. # In addition, shows `line:column` location. # def throw_unexpected_token(self, symbol, line, column): line_source = self._string.split('\n')[line - 1] pad = ' ' * column; line_data = '\n\n' + line_source + '\n' + pad + '^\n' raise Exception( line_data + 'Unexpected token: "' + str(symbol) + '" at ' + str(line) + ':' + str(column) + '.' ) def is_eof(self): return self._cursor == self._string_len def has_more_tokens(self): return self._cursor <= self._string_len def _match(self, string, regexp): matched = _syntax_tool_re.search(regexp, string) if matched != None: self._capture_location(matched.group(0)) self._cursor += matched.end() return matched.group(0) return None _tokenizer = Tokenizer()
model/layers/deform_conv.py
destinyls/MonoFlex
131
11109921
import torch.nn.functional as F from torch import nn from .dcn_v2 import DCN class DeformConv(nn.Module): def __init__(self, in_channel, out_channel, norm_func, kernel_size=3, stride=1, padding=0): super(DeformConv, self).__init__() self.norm = norm_func(out_channel) self.relu = nn.ReLU(inplace=True) self.deform_conv = DCN(in_channels=in_channel, out_channels=out_channel, kernel_size=(kernel_size, kernel_size), stride=stride, padding=padding, dilation=1, deformable_groups=1) def forward(self, x): x = self.deform_conv(x) x = self.norm(x) x = self.relu(x) return x
transparency/commands/settings.py
nevermorea/SublimeTextTrans
286
11109931
import sublime_plugin import sublime import os from os.path import dirname ST2 = int(sublime.version()) < 3000 if not ST2: PLUGIN_DIR = dirname(dirname(dirname(os.path.abspath(__file__)))) else: _st_pkgs_dir = sublime.packages_path() _cur_file_abspath = os.path.abspath(__file__) if _st_pkgs_dir not in _cur_file_abspath: for p in os.listdir(_st_pkgs_dir): link_path = _st_pkgs_dir + os.sep + p if os.path.realpath(link_path) in _cur_file_abspath: PLUGIN_DIR = link_path break else: PLUGIN_DIR = dirname(dirname(dirname(os.path.abspath(__file__)))) class TransparencyOpenPluginDefaultSettingsFile(sublime_plugin.WindowCommand): def run(self): default_plugin_settings_path = os.path.join(PLUGIN_DIR, "SublimeTextTrans.sublime-settings") sublime.active_window().open_file(default_plugin_settings_path) class TransparencyOpenHelpFile(sublime_plugin.WindowCommand): def run(self): help_file_path = os.path.join(PLUGIN_DIR, "messages/install.txt") sublime.active_window().open_file(help_file_path)
pytweet/tweet.py
TheFarGG/PyTweet
614
11109941
from __future__ import annotations import datetime from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from .attachments import Poll, Geo, File, Media from .enums import ReplySetting from .constants import ( TWEET_EXPANSION, TWEET_FIELD, USER_FIELD, PINNED_TWEET_EXPANSION, MEDIA_FIELD, PLACE_FIELD, POLL_FIELD, ) from .relations import RelationHide, RelationLike, RelationRetweet, RelationDelete from .user import User from .utils import time_parse_todt, convert from .message import Message from .paginations import UserPagination, TweetPagination from .dataclass import ( Embed, EmbedImage, PublicTweetMetrics, NonPublicTweetMetrics, OrganicTweetMetrics, PromotedTweetMetrics, ) if TYPE_CHECKING: from .http import HTTPClient from .type import ID __all__ = ("Tweet",) class Tweet(Message): """Represents a tweet message from Twitter. A Tweet is any message posted to Twitter which may contain photos, videos, links, and text. This class inherits :class:`Message`, .. describe:: x == y Check if one tweet id is equal to another. .. describe:: x != y Check if one tweet id is not equal to another. .. describe:: str(x) Get the Tweet's text. .. versionadded:: 1.0.0 """ __slots__ = ( "__original_payload", "_payload", "_includes", "tweet_metrics", "http_client", "deleted_timestamp", "_public_metrics", "_non_public_metrics", "_organic_metrics", "_promoted_metrics", ) def __init__( self, data: Dict[str, Any], *, deleted_timestamp: Optional[int] = None, http_client: Optional[HTTPClient] = None, ) -> None: self.__original_payload = data self._payload = data.get("data") or data self._includes = self.__original_payload.get("includes") self._referenced_tweets = self._payload.get("referenced_tweets") self._entities = self._payload.get("entities") self.http_client = http_client self.deleted_timestamp = deleted_timestamp self._public_metrics = PublicTweetMetrics( **self._payload.get("public_metrics", None) or self.__original_payload.get("public_metrics") ) self._non_public_metrics = self._payload.get("non_public_metrics", None) or self.__original_payload.get( "non_public_metrics" ) self._organic_metrics = self._payload.get("organic_metrics", None) or self.__original_payload.get( "organic_metrics" ) self._promoted_metrics = self._payload.get("promoted_metrics", None) or self.__original_payload.get( "promoted_metrics" ) if self._non_public_metrics: non_public_metrics = self.http_client.payload_parser.parse_metric_data(self._non_public_metrics) self._non_public_metrics = NonPublicTweetMetrics(**non_public_metrics) if self._organic_metrics: organic_metrics = self.http_client.payload_parser.parse_metric_data(self._organic_metrics) self._organic_metrics = OrganicTweetMetrics(**organic_metrics) if self._promoted_metrics: promoted_metrics = self.http_client.payload_parser.parse_metric_data(self._promoted_metrics) self._promoted_metrics = PromotedTweetMetrics(**promoted_metrics) if self._entities and self._entities.get("urls"): data = [] for url in self._entities["urls"]: url = self.http_client.payload_parser.parse_embed_data(url) data.append(url) self._embeds = data else: self._embeds = None super().__init__(self._payload.get("text"), self._payload.get("id"), 1) def __repr__(self) -> str: return "Tweet(text={0.text} id={0.id} author={0.author!r})".format(self) @property def author(self) -> Optional[User]: """Optional[:class:`User`]: Returns a user (object) who posted the tweet. .. versionadded: 1.0.0 """ if self._includes and self._includes.get("users"): return User(self._includes.get("users")[0], http_client=self.http_client) return None @property def possibly_sensitive(self) -> bool: """:class:`bool`: Returns True if the tweet is possible sensitive to some users, else False. .. versionadded: 1.0.0 """ return self._payload.get("possibly_sensitive") @property def sensitive(self) -> bool: """:class:`bool`: An alias to :meth:`Tweet.possibly_sensitive`. .. versionadded: 1.5.0 """ return self.possibly_sensitive @property def created_at(self) -> datetime.datetime: """:class:`datetime.datetime`: Returns a :class:`datetime.datetime` object when the tweet was created. .. versionadded: 1.0.0 """ if self._payload.get("timestamp", None): return datetime.datetime.fromtimestamp(int(self._payload.get("timestamp", None)) / 1000) return time_parse_todt(self._payload.get("created_at")) @property def deleted_at(self) -> Optional[datetime.datetime]: """Optional[:class:`datetime.datetime`]: Returns a :class:`datetime.datetime` object when the tweet was deleted. Returns None when the tweet is not deleted. .. note:: This property can only returns :class:`datetime.datetime` object through a tweet object from `on_tweet_delete` event. .. versionadded: 1.5.0 """ if not self.deleted_timestamp: return None return datetime.datetime.fromtimestamp(self.deleted_timestamp / 1000) @property def source(self) -> str: """:class:`str`: Returns the source of the tweet. e.g if you post a tweet from a website, the source is gonna be 'Twitter Web App' .. versionadded: 1.0.0 """ return self._payload.get("source") @property def reply_setting(self) -> ReplySetting: """:class:`ReplySetting`: Returns a :class:`ReplySetting` object with the tweet's reply setting. If everyone can reply, this method return :class:`ReplySetting.everyone`. .. versionadded: 1.3.5 """ return ReplySetting(self._payload.get("reply_settings")) @property def raw_reply_setting(self) -> str: """:class:`str`: Returns the raw reply setting value. If everyone can replied, this method return 'Everyone'. .. versionadded: 1.0.0 """ return self._payload.get("reply_settings") @property def lang(self) -> str: """:class:`str`: Returns the tweet's lang, if its english it return en. .. versionadded: 1.0.0 """ return self._payload.get("lang") @property def conversation_id(self) -> Optional[int]: """Optional[:class:`int`]: All replies are bind to the original tweet, this property returns the tweet's id if the tweet is a reply tweet else it returns None. .. versionadded: 1.0.0 """ try: return int(self._payload.get("conversation_id")) except ValueError: return None @property def url(self) -> Optional[str]: """Optional[:class:`str`]: Get the tweet's url. .. versionadded:: 1.1.0 .. versionchanged:: 1.5.0 Returns None if the author is invalid or the tweet doesn't have id. """ try: return f"https://twitter.com/{self.author.username}/status/{self.id}" except TypeError: return None @property def mentions(self) -> Optional[List[User]]: """Optional[List[:class:`User`]]: Returns a list of :class:`User` objects that were mentioned in the tweet or an empty list / `[]` if no users were mentioned. .. versionadded:: 1.1.3 .. versionchanged:: 1.5.0 Now returns a list of :class:`User` objects rather then a list of :class:`str` objects. """ users = [] for user in self._includes.get("users", {}): for mention in self._entities.get("mentions", {}): if user["id"] == mention["id"]: users.append(User(user, http_client=self.http_client)) return users @property def poll(self) -> Optional[Poll]: """:class:`Poll`: Returns a Poll object with the tweet's poll. .. versionadded:: 1.1.0 """ if self._includes: if self._includes.get("polls"): data = self._includes.get("polls")[0] poll = Poll( duration=data.get("duration_minutes"), id=data.get("id"), voting_status=data.get("voting_status"), end_date=data.get("end_datetime"), ) for option in data.get("options"): poll.add_option(**option) return poll return None @property def medias(self) -> Optional[List[Media]]: """Optional[List[:class:`Media`]]: Returns a list of media(s) in a tweet. .. versionadded:: 1.1.0 """ if self._includes and self._includes.get("media"): return [Media(img, http_client=self.http_client) for img in self._includes.get("media")] return None @property def reference_user(self) -> Optional[User]: """Optional[:class:`User`]: Returns the referenced user. This can means: The tweet is a retweet, which means the method returns the retweeted tweet's author. The tweet is a quote tweet(retweet with comments), which means the method returns the quoted tweet's author. The tweet is a reply tweet, which means the method returns the replied tweet's author. .. versionadded:: 1.5.0 """ if not self._includes or not self._includes.get("users") or not self._referenced_tweets: return None type = self._referenced_tweets[0].get("type", " ") for user in self._includes["users"]: if type == "replied_to" and user["id"] == self._payload.get("in_reply_to_user_id", 0): # If the tweet count as a reply tweet, # it would returns a user data that match the user's id with 'in_reply_to_user_id' data. return User(user, http_client=self.http_client) elif type == "quoted": # If the tweet count as a quote tweet, # it would returns a user data if the url contains the user's id. Every quote tweets have at least 1 url, the quoted tweet's url that contain the quoted tweet's author's id and the tweet id itself. for embed in self.embeds: if ( embed.expanded_url.startswith("https://twitter.com/") and embed.expanded_url.split("/")[3] == user["id"] ): return User(user, http_client=self.http_client) elif type == "retweeted": # If the tweet count as a retweet, # it would returns a user data if the user are mention with a specific format, that is: 'RT @Mention: {The retweeted tweet's content}' # The code only checks characters before the colon with the colon includes (i.e 'RT @Mention:'). for mentioned_user in self.mentions: if self.text.startswith(f"RT {mentioned_user.mention}:"): return mentioned_user return None @property def reference_tweet(self) -> Optional[Tweet]: """Optional[:class:`Tweet`]: Returns the tweet's parent tweet or the referenced tweet. This can mean the parent tweet of the requested tweet is: A retweeted tweet (The child Tweet is a Retweet), A quoted tweet (The child Tweet is a Retweet with comment, also known as Quoted Tweet), A replied tweet (The child Tweet is a reply tweet). .. versionadded:: 1.5.0 """ tweets = self._includes.get("tweets") if not self._includes or not tweets or not self._referenced_tweets: return None for tweet in tweets: if tweet["id"] == self._referenced_tweets[0]["id"]: self.http_client.payload_parser.insert_object_author(tweet, self.reference_user) return Tweet(tweet, http_client=self.http_client) return None @property def embeds(self) -> Optional[List[Embed]]: """List[:class:`Embed`]: Returns a list of Embedded urls from the tweet .. versionadded:: 1.1.3 """ for embed in self._embeds: if embed.get("images"): for index, image in enumerate(embed["images"]): if isinstance(image, EmbedImage): break embed["images"][index] = EmbedImage(**image) return [Embed(**data) for data in self._embeds] @property def like_count(self) -> Optional[int]: """Optional[:class:`int`]: Returns the total of likes in the tweet. .. versionadded: 1.1.0 """ return convert(self._metrics.like_count, int) @property def retweet_count(self) -> Optional[int]: """Optional[:class:`int`]: Returns the total of retweetes in the tweet. .. versionadded: 1.1.0 """ return convert(self._metrics.retweet_count, int) @property def reply_count(self) -> Optional[int]: """Optional[:class:`int`]: Returns the total of replies in the tweet. .. versionadded: 1.1.0 """ return convert(self._metrics.reply_count, int) @property def quote_count(self) -> Optional[int]: """Optional[:class:`int`]: Returns the total of quotes in the tweet. .. versionadded: 1.1.0 """ return convert(self._metrics.quote_count, int) @property def non_public_metrics(self) -> Optional[OrganicTweetMetrics]: """Optional[:class:`OrganicTweetMetrics`]: The tweet's metrics that are not available for anyone to view on Twitter, such as `impressions_count` and `video view quartiles`. .. versionadded:: 1.5.0 """ return self._non_public_metrics @property def organic_metrics(self) -> Optional[OrganicTweetMetrics]: """Optional[:class:`OrganicTweetMetrics`]: The tweet's metrics in organic context (posted and viewed in a regular manner), such as `impression_count`, `user_profile_clicks` and `url_link_clicks`. .. versionadded:: 1.5.0 """ return self._organic_metrics @property def promoted_metrics(self) -> Optional[PromotedTweetMetrics]: """Optional[:class:`PromotedTweetMetrics`]: The tweet's metrics in promoted context (posted or viewed as part of an Ads campaign), such as `impression_count`, `user_profile_clicks` and `url_link_clicks`. .. versionadded:: 1.5.0 """ return self._promoted_metrics def like(self) -> Optional[RelationLike]: """Like the tweet. Returns --------- Optional[:class:`RelationLike`] This method returns a :class:`RelationLike` object. .. versionadded:: 1.2.0 """ my_id = self.http_client.access_token.partition("-")[0] res = self.http_client.request("POST", "2", f"/users/{my_id}/likes", json={"tweet_id": str(self.id)}, auth=True) return RelationLike(res) def unlike(self) -> Optional[RelationLike]: """Unlike the tweet. Returns --------- :class:`RelationLike` This method returns a :class:`RelationLike` object. .. versionadded:: 1.2.0 """ my_id = self.http_client.access_token.partition("-")[0] res = self.http_client.request("DELETE", "2", f"/users/{my_id}/likes/{self.id}", auth=True) return RelationLike(res) def retweet(self) -> RelationRetweet: """Retweet the tweet. Returns --------- :class:`RelationRetweet` This method returns a :class:`RelationRetweet` object. .. versionadded:: 1.2.0 """ my_id = self.http_client.access_token.partition("-")[0] res = self.http_client.request( "POST", "2", f"/users/{my_id}/retweets", json={"tweet_id": str(self.id)}, auth=True, ) return RelationRetweet(res) def unretweet(self) -> RelationRetweet: """Unretweet the tweet. Returns --------- :class:`RelationRetweet` This method returns a :class:`RelationRetweet` object. .. versionadded:: 1.2.0 """ my_id = self.http_client.access_token.partition("-")[0] res = self.http_client.request("DELETE", "2", f"/users/{my_id}/retweets/{self.id}", auth=True) return RelationRetweet(res) def delete(self) -> RelationDelete: """Delete the client's tweet. .. note:: You can only delete the client's tweet. .. versionadded:: 1.2.0 """ res = self.http_client.request("DELETE", "2", f"/tweets/{self.id}", auth=True) try: self.http_client.tweet_cache.pop(self.id) except KeyError: pass return RelationDelete(res) def reply( self, text: str = None, *, file: Optional[File] = None, files: Optional[List[File]] = None, geo: Optional[Union[Geo, str]] = None, direct_message_deep_link: Optional[str] = None, reply_setting: Optional[Union[ReplySetting, str]] = None, exclude_reply_users: Optional[List[User, ID]] = None, media_tagged_users: Optional[List[User, ID]] = None, ) -> Optional[Tweet]: """Post a tweet to reply to the tweet present by the tweet's id. Returns a :class:`Tweet` object or :class:`Message` if the tweet is not found in the cache. .. note:: Note that if the tweet is a retweet you cannot reply to that tweet, it might not raise an error but it will post the tweet has a normal tweet rather then a reply tweet and it ping the :class:`Tweet.author`. Parameters ------------ text: :class:`str` The tweet's text, it will show up as the main text in a tweet. file: Optional[:class:`File`] Represents a single file attachment. It could be an image, gif, or video. It also have to be an instance of pytweet.File files: Optional[List[:class:`File`]] Represents multiple file attachments in a list. It could be an image, gif, or video. the item in the list must also be an instance of pytweet.File geo: Optional[Union[:class:`Geo`, :class:`str`]] The geo attachment, you can put an object that is an instance of :class:`Geo` or the place ID in a string. direct_message_deep_link: Optional[:class:`str`] The direct message deep link, It will showup as a CTA(call-to-action) with button attachment. Example of direct message deep link: reply_setting: Optional[Union[:class:`ReplySetting`, :class:`str`]] The reply setting that you can set to minimize users that can reply. If None is specified, the default is set to 'everyone' can reply. exclude_reply_users: Optional[List[:class:`User`]] A list of users or user ids to be excluded from the reply :class:`Tweet` thus removing a user from a thread, if you dont want to mention a reply with 3 mentions, You can use this argument and provide the user id you don't want to mention. media_tagged_users: Optional[List[:class:`User`]] A list of users or user ids being tagged in the Tweet with Media. If the user you're tagging doesn't have photo-tagging enabled, their names won't show up in the list of tagged users even though the Tweet is successfully created. Returns --------- Union[:class:`Tweet`, :class:`Message`] Returns a :class:`Tweet` object or :class:`Message` object if the tweet is not found in the cache. .. versionadded:: 1.2.5 """ return self.http_client.post_tweet( text, file=file, files=files, geo=geo, direct_message_deep_link=direct_message_deep_link, reply_setting=reply_setting, reply_tweet=self.id, exclude_reply_users=exclude_reply_users, media_tagged_users=media_tagged_users, ) def hide(self) -> RelationHide: """Hide a reply tweet. Returns --------- :class:`RelationHide` This method returns a :class:`RelationHide` object. .. versionadded:: 1.2.5 """ res = self.http_client.request("PUT", "2", f"/tweets/{self.id}/hidden", json={"hidden": False}, auth=True) return RelationHide(res) def unhide(self) -> RelationHide: """Unhide a hide reply. Returns --------- :class:`RelationHide` This method returns a :class:`RelationHide` object. .. versionadded:: 1.2.5 """ res = self.http_client.request("PUT", "2", f"/tweets/{self.id}/hidden", json={"hidden": False}, auth=True) return RelationHide(res) def fetch_retweeters(self) -> Optional[UserPagination]: """Returns a pagination object with the users that retweeted the tweet. Returns --------- Optional[:class:`UserPagination`] This method returns a :class:`UserPagination` object. .. versionadded:: 1.1.3 """ res = self.http_client.request( "GET", "2", f"/tweets/{self.id}/retweeted_by", params={ "expansions": PINNED_TWEET_EXPANSION, "user.fields": USER_FIELD, "tweet.fields": TWEET_FIELD, }, ) if not res: return [] return UserPagination( res, endpoint_request=f"/tweets/{self.id}/retweeted_by", http_client=self.http_client, params={ "expansions": PINNED_TWEET_EXPANSION, "user.fields": USER_FIELD, "tweet.fields": TWEET_FIELD, }, ) def fetch_likers(self) -> Optional[UserPagination]: """Returns a pagination object with the users that liked the tweet. Returns --------- Optional[:class:`UserPagination`] This method returns a :class:`UserPagination` object. .. versionadded:: 1.1.3 """ res = self.http_client.request( "GET", "2", f"/tweets/{self.id}/liking_users", params={ "expansions": PINNED_TWEET_EXPANSION, "user.fields": USER_FIELD, "tweet.fields": TWEET_FIELD, }, ) if not res: return [] return UserPagination( res, endpoint_request=f"/tweets/{self.id}/liking_users", http_client=self.http_client, params={ "expansions": PINNED_TWEET_EXPANSION, "user.fields": USER_FIELD, "tweet.fields": TWEET_FIELD, }, ) def fetch_quoted_tweets(self) -> Optional[TweetPagination]: """Returns a pagination object for tweets that quoted the tweet Returns --------- Optional[:class:`TweetPagination`] This method returns :class:`TweetPagination` or an empty list if the tweet does not contain any quoted tweets. .. versionadded:: 1.5.0 """ params = { "expansions": TWEET_EXPANSION, "user.fields": USER_FIELD, "tweet.fields": TWEET_FIELD, "media.fields": MEDIA_FIELD, "place.fields": PLACE_FIELD, "poll.fields": POLL_FIELD, "max_results": 100, } res = self.http_client.request("GET", "2", f"/tweets/{self.id}/quote_tweets", params=params) if not res: return [] return TweetPagination( res, endpoint_request=f"/tweets/{self.id}/quote_tweets", http_client=self.http_client, params=params, )
wtf/static/static/settings.py
tigefa4u/wtfismyip
297
11109951
<filename>wtf/static/static/settings.py import base64 SECRET_KEY = base64.b64decode('<KEY>')
08_concurrency/cralwer/parallel_requests.py
siddheshmhatre/high_performance_python
698
11109967
<reponame>siddheshmhatre/high_performance_python<filename>08_concurrency/cralwer/parallel_requests.py<gh_stars>100-1000 from gevent import monkey monkey.patch_socket() import gevent from gevent.coros import Semaphore import urllib2 import string import random from contextlib import closing import numpy as np import pylab as py from itertools import cycle import json markers = cycle('h*o>Dxsp8') linestyles = cycle(['-', ':', '--', '-.']) def generate_urls(base_url, num_urls): for i in xrange(num_urls): yield base_url + "".join(random.sample(string.ascii_lowercase, 10)) def download(url, semaphore): try: with semaphore, closing(urllib2.urlopen(url)) as data: return data.read() except Exception as e: print "retrying: ", e return download(url, semaphore) def chunked_requests(urls, chunk_size=100): semaphore = Semaphore(chunk_size) requests = [gevent.spawn(download, u, semaphore) for u in urls] for response in gevent.iwait(requests): yield response def run_experiment(base_url, num_iter=500, parallel_requests=100): urls = generate_urls(base_url, num_iter) response_futures = chunked_requests(urls, parallel_requests) response_size = sum(len(r.value) for r in response_futures) return response_size if __name__ == "__main__": try: data = json.load(open("parallel_requests.json")) except IOError: import time delay = 100 num_iter = 500 data = {} for delay in xrange(50, 1000, 250): base_url = "http://1172.16.58.3:8080/add?name=concurrency_test&delay={}&".format( delay) data[delay] = [] for parallel_requests in xrange(1, num_iter, 25): start = time.time() result = run_experiment(base_url, num_iter, parallel_requests) t = time.time() - start print("{},{},{}".format(delay, parallel_requests, t)) data[delay].append((parallel_requests, t)) json.dump(data, open("parallel_requests.json", "w+")) finally: py.figure() for delay, values in data.iteritems(): values = np.asarray(values) py.plot(values[:, 0], values[:, 1], label="{}s request time".format(delay), linestyle=linestyles.next(), marker=markers.next(), linewidth=4, ) py.axvline(x=100, alpha=0.5, c='r') ax = py.gca() ax.set_yscale('log') py.xlabel("Number of concurrent downloads") py.ylabel("Time to download 500 concurrent files") py.title("Finding the right number of concurrent requests") py.legend() py.savefig("images/parallel_requests.png")
socialNetwork/test/TestUserService.py
rodrigo-bruno/DeathStarBench
364
11110051
import sys sys.path.append('../gen-py') import uuid from social_network import UserService from social_network.ttypes import ServiceException from thrift import Thrift from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol def register(): socket = TSocket.TSocket("ath-8.ece.cornell.edu", 10005) transport = TTransport.TFramedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) client = UserService.Client(protocol) transport.open() req_id = uuid.uuid4().int & 0x7FFFFFFFFFFFFFFF client.RegisterUser(req_id, "first_name_0", "last_name_0", "username_11114", "<PASSWORD>", {}) client.RegisterUserWithId(req_id, "first_name_1", "last_name_1", "username_1", "<PASSWORD>", 1, {}) client.RegisterUserWithId(req_id, "first_name_2", "last_name_2", "username_2", "<PASSWORD>", 2, {}) transport.close() def login(): socket = TSocket.TSocket("ath-8.ece.cornell.edu", 10005) transport = TTransport.TFramedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) client = UserService.Client(protocol) transport.open() req_id = uuid.uuid4().int & 0x7FFFFFFFFFFFFFFF print(client.Login(req_id, "username_0", "<PASSWORD>", {})) # print(client.Login(req_id, "username_1", "password_2", {})) # print(client.Login(req_id, "username_2", "<PASSWORD>", {})) transport.close() if __name__ == '__main__': try: login() except ServiceException as se: print('%s' % se.message) except Thrift.TException as tx: print('%s' % tx.message)
alipay/aop/api/domain/AlipayIserviceCcmRoleModifyModel.py
antopen/alipay-sdk-python-all
213
11110055
<reponame>antopen/alipay-sdk-python-all<filename>alipay/aop/api/domain/AlipayIserviceCcmRoleModifyModel.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayIserviceCcmRoleModifyModel(object): def __init__(self): self._ccs_instance_id = None self._description = None self._function_ids = None self._id = None self._updater_id = None @property def ccs_instance_id(self): return self._ccs_instance_id @ccs_instance_id.setter def ccs_instance_id(self, value): self._ccs_instance_id = value @property def description(self): return self._description @description.setter def description(self, value): self._description = value @property def function_ids(self): return self._function_ids @function_ids.setter def function_ids(self, value): if isinstance(value, list): self._function_ids = list() for i in value: self._function_ids.append(i) @property def id(self): return self._id @id.setter def id(self, value): self._id = value @property def updater_id(self): return self._updater_id @updater_id.setter def updater_id(self, value): self._updater_id = value def to_alipay_dict(self): params = dict() if self.ccs_instance_id: if hasattr(self.ccs_instance_id, 'to_alipay_dict'): params['ccs_instance_id'] = self.ccs_instance_id.to_alipay_dict() else: params['ccs_instance_id'] = self.ccs_instance_id if self.description: if hasattr(self.description, 'to_alipay_dict'): params['description'] = self.description.to_alipay_dict() else: params['description'] = self.description if self.function_ids: if isinstance(self.function_ids, list): for i in range(0, len(self.function_ids)): element = self.function_ids[i] if hasattr(element, 'to_alipay_dict'): self.function_ids[i] = element.to_alipay_dict() if hasattr(self.function_ids, 'to_alipay_dict'): params['function_ids'] = self.function_ids.to_alipay_dict() else: params['function_ids'] = self.function_ids if self.id: if hasattr(self.id, 'to_alipay_dict'): params['id'] = self.id.to_alipay_dict() else: params['id'] = self.id if self.updater_id: if hasattr(self.updater_id, 'to_alipay_dict'): params['updater_id'] = self.updater_id.to_alipay_dict() else: params['updater_id'] = self.updater_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayIserviceCcmRoleModifyModel() if 'ccs_instance_id' in d: o.ccs_instance_id = d['ccs_instance_id'] if 'description' in d: o.description = d['description'] if 'function_ids' in d: o.function_ids = d['function_ids'] if 'id' in d: o.id = d['id'] if 'updater_id' in d: o.updater_id = d['updater_id'] return o
python-leetcode/laozhang/tree/leetcode_1302_.py
sweeneycai/cs-summary-reflection
227
11110105
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # coding=utf-8 """ 1302. 层数最深叶子节点的和 """ from laozhang import TreeNode class Solution: def deepestLeavesSum(self, root: TreeNode) -> int: max_depth = 0 map = {} def helper(root: TreeNode, depth: int): nonlocal max_depth, map if root: if depth > max_depth: max_depth = depth helper(root.left, depth + 1) helper(root.right, depth + 1) if not root.left and not root.right and depth == max_depth: temp = map.get(depth, 0) map[depth] = temp + root.val helper(root, 1) for key in map: if key > max_depth: max_depth = key return map[max_depth]
src/python/tests/unittests/test_common/test_config.py
annihilatethee/seedsync
255
11110108
# Copyright 2017, <NAME>, All rights reserved. import unittest import os import tempfile from common import Config, ConfigError, PersistError from common.config import InnerConfig, Checkers, Converters class TestConverters(unittest.TestCase): def test_int(self): self.assertEqual(0, Converters.int(None, "", "0")) self.assertEqual(1, Converters.int(None, "", "1")) self.assertEqual(-1, Converters.int(None, "", "-1")) self.assertEqual(5000, Converters.int(None, "", "5000")) self.assertEqual(-5000, Converters.int(None, "", "-5000")) with self.assertRaises(ConfigError) as e: Converters.int(TestConverters, "bad", "") self.assertEqual("Bad config: TestConverters.bad is empty", str(e.exception)) with self.assertRaises(ConfigError) as e: Converters.int(TestConverters, "bad", "3.14") self.assertEqual("Bad config: TestConverters.bad (3.14) must be an integer value", str(e.exception)) with self.assertRaises(ConfigError) as e: Converters.int(TestConverters, "bad", "cat") self.assertEqual("Bad config: TestConverters.bad (cat) must be an integer value", str(e.exception)) def test_bool(self): self.assertEqual(True, Converters.bool(None, "", "True")) self.assertEqual(False, Converters.bool(None, "", "False")) self.assertEqual(True, Converters.bool(None, "", "true")) self.assertEqual(False, Converters.bool(None, "", "false")) self.assertEqual(True, Converters.bool(None, "", "TRUE")) self.assertEqual(False, Converters.bool(None, "", "FALSE")) self.assertEqual(True, Converters.bool(None, "", "1")) self.assertEqual(False, Converters.bool(None, "", "0")) with self.assertRaises(ConfigError) as e: Converters.bool(TestConverters, "bad", "") self.assertEqual("Bad config: TestConverters.bad is empty", str(e.exception)) with self.assertRaises(ConfigError) as e: Converters.bool(TestConverters, "bad", "cat") self.assertEqual("Bad config: TestConverters.bad (cat) must be a boolean value", str(e.exception)) with self.assertRaises(ConfigError) as e: Converters.bool(TestConverters, "bad", "-3.14") self.assertEqual("Bad config: TestConverters.bad (-3.14) must be a boolean value", str(e.exception)) class DummyInnerConfig(InnerConfig): c_prop1 = InnerConfig._create_property("prop1", Checkers.null, Converters.null) a_prop2 = InnerConfig._create_property("prop2", Checkers.null, Converters.null) b_prop3 = InnerConfig._create_property("prop3", Checkers.null, Converters.null) def __init__(self): self.c_prop1 = "1" self.a_prop2 = "2" self.b_prop3 = "3" class DummyInnerConfig2(InnerConfig): prop_int = InnerConfig._create_property("prop_int", Checkers.null, Converters.int) prop_str = InnerConfig._create_property("prop_str", Checkers.string_nonempty, Converters.null) def __init__(self): self.prop_int = None self.prop_str = None class TestInnerConfig(unittest.TestCase): def test_property_order(self): dummy_config = DummyInnerConfig() self.assertEqual(["c_prop1", "a_prop2", "b_prop3"], list(dummy_config.as_dict().keys())) def test_has_property(self): dummy_config = DummyInnerConfig() self.assertTrue(dummy_config.has_property("c_prop1")) self.assertTrue(dummy_config.has_property("a_prop2")) self.assertTrue(dummy_config.has_property("b_prop3")) self.assertFalse(dummy_config.has_property("not_prop")) self.assertFalse(dummy_config.has_property("__init__")) self.assertFalse(dummy_config.has_property("")) def test_checker_is_called(self): dummy_config = DummyInnerConfig2() dummy_config.prop_str = "a string" self.assertEqual("a string", dummy_config.prop_str) with self.assertRaises(ConfigError) as e: dummy_config.prop_str = "" self.assertEqual("Bad config: DummyInnerConfig2.prop_str is empty", str(e.exception)) def test_converter_is_called(self): dummy_config = DummyInnerConfig2.from_dict({"prop_int": "5", "prop_str": "a"}) self.assertEqual(5, dummy_config.prop_int) with self.assertRaises(ConfigError) as e: DummyInnerConfig2.from_dict({"prop_int": "cat", "prop_str": "a"}) self.assertEqual("Bad config: DummyInnerConfig2.prop_int (cat) must be an integer value", str(e.exception)) class TestConfig(unittest.TestCase): def __check_unknown_error(self, cls, good_dict): """ Helper method to check that a config class raises an error on an unknown key :param cls: :param good_dict: :return: """ bad_dict = dict(good_dict) bad_dict["unknown"] = "how did this get here" with self.assertRaises(ConfigError) as error: cls.from_dict(bad_dict) self.assertTrue(str(error.exception).startswith("Unknown config")) def __check_missing_error(self, cls, good_dict, key): """ Helper method to check that a config class raises an error on a missing key :param cls: :param good_dict: :param key: :return: """ bad_dict = dict(good_dict) del bad_dict[key] with self.assertRaises(ConfigError) as error: cls.from_dict(bad_dict) self.assertTrue(str(error.exception).startswith("Missing config")) def __check_empty_error(self, cls, good_dict, key): """ Helper method to check that a config class raises an error on a empty value :param cls: :param good_dict: :param key: :return: """ bad_dict = dict(good_dict) bad_dict[key] = "" with self.assertRaises(ConfigError) as error: cls.from_dict(bad_dict) self.assertTrue(str(error.exception).startswith("Bad config")) bad_dict[key] = " " with self.assertRaises(ConfigError) as error: cls.from_dict(bad_dict) self.assertTrue(str(error.exception).startswith("Bad config")) def check_common(self, cls, good_dict, keys): """ Helper method to run some common checks :param cls: :param good_dict: :param keys: :return: """ # unknown self.__check_unknown_error(cls, good_dict) for key in keys: # missing key self.__check_missing_error(cls, good_dict, key) # empty value self.__check_empty_error(cls, good_dict, key) def check_bad_value_error(self, cls, good_dict, key, value): """ Helper method to check that a config class raises an error on a bad value :param cls: :param good_dict: :param key: :param value: :return: """ bad_dict = dict(good_dict) bad_dict[key] = value with self.assertRaises(ConfigError) as error: cls.from_dict(bad_dict) self.assertTrue(str(error.exception).startswith("Bad config")) def test_has_section(self): config = Config() self.assertTrue(config.has_section("general")) self.assertTrue(config.has_section("lftp")) self.assertTrue(config.has_section("controller")) self.assertTrue(config.has_section("web")) self.assertTrue(config.has_section("autoqueue")) self.assertFalse(config.has_section("nope")) self.assertFalse(config.has_section("from_file")) self.assertFalse(config.has_section("__init__")) def test_general(self): good_dict = { "debug": "True", "verbose": "False", } general = Config.General.from_dict(good_dict) self.assertEqual(True, general.debug) self.assertEqual(False, general.verbose) self.check_common(Config.General, good_dict, { "debug", "verbose" }) # bad values self.check_bad_value_error(Config.General, good_dict, "debug", "SomeString") self.check_bad_value_error(Config.General, good_dict, "debug", "-1") self.check_bad_value_error(Config.General, good_dict, "verbose", "SomeString") self.check_bad_value_error(Config.General, good_dict, "verbose", "-1") def test_lftp(self): good_dict = { "remote_address": "remote.server.com", "remote_username": "remote-user", "remote_password": "password", "remote_port": "3456", "remote_path": "/path/on/remote/server", "local_path": "/path/on/local/server", "remote_path_to_scan_script": "/path/on/remote/server/to/scan/script", "use_ssh_key": "False", "num_max_parallel_downloads": "2", "num_max_parallel_files_per_download": "3", "num_max_connections_per_root_file": "4", "num_max_connections_per_dir_file": "6", "num_max_total_connections": "7", "use_temp_file": "True" } lftp = Config.Lftp.from_dict(good_dict) self.assertEqual("remote.server.com", lftp.remote_address) self.assertEqual("remote-user", lftp.remote_username) self.assertEqual("password", lftp.remote_password) self.assertEqual(3456, lftp.remote_port) self.assertEqual("/path/on/remote/server", lftp.remote_path) self.assertEqual("/path/on/local/server", lftp.local_path) self.assertEqual("/path/on/remote/server/to/scan/script", lftp.remote_path_to_scan_script) self.assertEqual(False, lftp.use_ssh_key) self.assertEqual(2, lftp.num_max_parallel_downloads) self.assertEqual(3, lftp.num_max_parallel_files_per_download) self.assertEqual(4, lftp.num_max_connections_per_root_file) self.assertEqual(6, lftp.num_max_connections_per_dir_file) self.assertEqual(7, lftp.num_max_total_connections) self.assertEqual(True, lftp.use_temp_file) self.check_common(Config.Lftp, good_dict, { "remote_address", "remote_username", "remote_password", "remote_port", "remote_path", "local_path", "remote_path_to_scan_script", "use_ssh_key", "num_max_parallel_downloads", "num_max_parallel_files_per_download", "num_max_connections_per_root_file", "num_max_connections_per_dir_file", "num_max_total_connections", "use_temp_file" }) # bad values self.check_bad_value_error(Config.Lftp, good_dict, "remote_port", "-1") self.check_bad_value_error(Config.Lftp, good_dict, "remote_port", "0") self.check_bad_value_error(Config.Lftp, good_dict, "use_ssh_key", "-1") self.check_bad_value_error(Config.Lftp, good_dict, "use_ssh_key", "SomeString") self.check_bad_value_error(Config.Lftp, good_dict, "num_max_parallel_downloads", "-1") self.check_bad_value_error(Config.Lftp, good_dict, "num_max_parallel_downloads", "0") self.check_bad_value_error(Config.Lftp, good_dict, "num_max_parallel_files_per_download", "-1") self.check_bad_value_error(Config.Lftp, good_dict, "num_max_parallel_files_per_download", "0") self.check_bad_value_error(Config.Lftp, good_dict, "num_max_connections_per_root_file", "-1") self.check_bad_value_error(Config.Lftp, good_dict, "num_max_connections_per_root_file", "0") self.check_bad_value_error(Config.Lftp, good_dict, "num_max_connections_per_dir_file", "-1") self.check_bad_value_error(Config.Lftp, good_dict, "num_max_connections_per_dir_file", "0") self.check_bad_value_error(Config.Lftp, good_dict, "num_max_total_connections", "-1") self.check_bad_value_error(Config.Lftp, good_dict, "use_temp_file", "-1") self.check_bad_value_error(Config.Lftp, good_dict, "use_temp_file", "SomeString") def test_controller(self): good_dict = { "interval_ms_remote_scan": "30000", "interval_ms_local_scan": "10000", "interval_ms_downloading_scan": "2000", "extract_path": "/extract/path", "use_local_path_as_extract_path": "True" } controller = Config.Controller.from_dict(good_dict) self.assertEqual(30000, controller.interval_ms_remote_scan) self.assertEqual(10000, controller.interval_ms_local_scan) self.assertEqual(2000, controller.interval_ms_downloading_scan) self.assertEqual("/extract/path", controller.extract_path) self.assertEqual(True, controller.use_local_path_as_extract_path) self.check_common(Config.Controller, good_dict, { "interval_ms_remote_scan", "interval_ms_local_scan", "interval_ms_downloading_scan", "extract_path", "use_local_path_as_extract_path" }) # bad values self.check_bad_value_error(Config.Controller, good_dict, "interval_ms_remote_scan", "-1") self.check_bad_value_error(Config.Controller, good_dict, "interval_ms_remote_scan", "0") self.check_bad_value_error(Config.Controller, good_dict, "interval_ms_local_scan", "-1") self.check_bad_value_error(Config.Controller, good_dict, "interval_ms_local_scan", "0") self.check_bad_value_error(Config.Controller, good_dict, "interval_ms_downloading_scan", "-1") self.check_bad_value_error(Config.Controller, good_dict, "interval_ms_downloading_scan", "0") self.check_bad_value_error(Config.Controller, good_dict, "use_local_path_as_extract_path", "SomeString") self.check_bad_value_error(Config.Controller, good_dict, "use_local_path_as_extract_path", "-1") def test_web(self): good_dict = { "port": "1234", } web = Config.Web.from_dict(good_dict) self.assertEqual(1234, web.port) self.check_common(Config.Web, good_dict, { "port" }) # bad values self.check_bad_value_error(Config.Web, good_dict, "port", "-1") self.check_bad_value_error(Config.Web, good_dict, "port", "0") def test_autoqueue(self): good_dict = { "enabled": "True", "patterns_only": "False", "auto_extract": "True" } autoqueue = Config.AutoQueue.from_dict(good_dict) self.assertEqual(True, autoqueue.enabled) self.assertEqual(False, autoqueue.patterns_only) self.check_common(Config.AutoQueue, good_dict, { "enabled", "patterns_only", "auto_extract" }) # bad values self.check_bad_value_error(Config.AutoQueue, good_dict, "enabled", "SomeString") self.check_bad_value_error(Config.AutoQueue, good_dict, "enabled", "-1") self.check_bad_value_error(Config.AutoQueue, good_dict, "patterns_only", "SomeString") self.check_bad_value_error(Config.AutoQueue, good_dict, "patterns_only", "-1") self.check_bad_value_error(Config.AutoQueue, good_dict, "auto_extract", "SomeString") self.check_bad_value_error(Config.AutoQueue, good_dict, "auto_extract", "-1") def test_from_file(self): # Create empty config file config_file = open(tempfile.mktemp(suffix="test_config"), "w") config_file.write(""" [General] debug=False verbose=True [Lftp] remote_address=remote.server.com remote_username=remote-user remote_password=<PASSWORD> remote_port = 3456 remote_path=/path/on/remote/server local_path=/path/on/local/server remote_path_to_scan_script=/path/on/remote/server/to/scan/script use_ssh_key=True num_max_parallel_downloads=2 num_max_parallel_files_per_download=3 num_max_connections_per_root_file=4 num_max_connections_per_dir_file=5 num_max_total_connections=7 use_temp_file=False [Controller] interval_ms_remote_scan=30000 interval_ms_local_scan=10000 interval_ms_downloading_scan=2000 extract_path=/path/where/to/extract/stuff use_local_path_as_extract_path=False [Web] port=88 [AutoQueue] enabled=False patterns_only=True auto_extract=True """) config_file.flush() config = Config.from_file(config_file.name) self.assertEqual(False, config.general.debug) self.assertEqual(True, config.general.verbose) self.assertEqual("remote.server.com", config.lftp.remote_address) self.assertEqual("remote-user", config.lftp.remote_username) self.assertEqual("remote-pass", config.lftp.remote_password) self.assertEqual(3456, config.lftp.remote_port) self.assertEqual("/path/on/remote/server", config.lftp.remote_path) self.assertEqual("/path/on/local/server", config.lftp.local_path) self.assertEqual("/path/on/remote/server/to/scan/script", config.lftp.remote_path_to_scan_script) self.assertEqual(True, config.lftp.use_ssh_key) self.assertEqual(2, config.lftp.num_max_parallel_downloads) self.assertEqual(3, config.lftp.num_max_parallel_files_per_download) self.assertEqual(4, config.lftp.num_max_connections_per_root_file) self.assertEqual(5, config.lftp.num_max_connections_per_dir_file) self.assertEqual(7, config.lftp.num_max_total_connections) self.assertEqual(False, config.lftp.use_temp_file) self.assertEqual(30000, config.controller.interval_ms_remote_scan) self.assertEqual(10000, config.controller.interval_ms_local_scan) self.assertEqual(2000, config.controller.interval_ms_downloading_scan) self.assertEqual("/path/where/to/extract/stuff", config.controller.extract_path) self.assertEqual(False, config.controller.use_local_path_as_extract_path) self.assertEqual(88, config.web.port) self.assertEqual(False, config.autoqueue.enabled) self.assertEqual(True, config.autoqueue.patterns_only) self.assertEqual(True, config.autoqueue.auto_extract) # unknown section error config_file.write(""" [Unknown] key=value """) config_file.flush() with self.assertRaises(ConfigError) as error: Config.from_file(config_file.name) self.assertTrue(str(error.exception).startswith("Unknown section")) # Remove config file config_file.close() os.remove(config_file.name) def test_to_file(self): config_file_path = tempfile.mktemp(suffix="test_config") config = Config() config.general.debug = True config.general.verbose = False config.lftp.remote_address = "server.remote.com" config.lftp.remote_username = "user-on-remote-server" config.lftp.remote_password = "<PASSWORD>" config.lftp.remote_port = 3456 config.lftp.remote_path = "/remote/server/path" config.lftp.local_path = "/local/server/path" config.lftp.remote_path_to_scan_script = "/remote/server/path/to/script" config.lftp.use_ssh_key = True config.lftp.num_max_parallel_downloads = 6 config.lftp.num_max_parallel_files_per_download = 7 config.lftp.num_max_connections_per_root_file = 2 config.lftp.num_max_connections_per_dir_file = 3 config.lftp.num_max_total_connections = 4 config.lftp.use_temp_file = True config.controller.interval_ms_remote_scan = 1234 config.controller.interval_ms_local_scan = 5678 config.controller.interval_ms_downloading_scan = 9012 config.controller.extract_path = "/path/extract/stuff" config.controller.use_local_path_as_extract_path = True config.web.port = 13 config.autoqueue.enabled = True config.autoqueue.patterns_only = True config.autoqueue.auto_extract = False config.to_file(config_file_path) with open(config_file_path, "r") as f: actual_str = f.read() print(actual_str) golden_str = """ [General] debug = True verbose = False [Lftp] remote_address = server.remote.com remote_username = user-on-remote-server remote_password = <PASSWORD> remote_port = 3456 remote_path = /remote/server/path local_path = /local/server/path remote_path_to_scan_script = /remote/server/path/to/script use_ssh_key = True num_max_parallel_downloads = 6 num_max_parallel_files_per_download = 7 num_max_connections_per_root_file = 2 num_max_connections_per_dir_file = 3 num_max_total_connections = 4 use_temp_file = True [Controller] interval_ms_remote_scan = 1234 interval_ms_local_scan = 5678 interval_ms_downloading_scan = 9012 extract_path = /path/extract/stuff use_local_path_as_extract_path = True [Web] port = 13 [AutoQueue] enabled = True patterns_only = True auto_extract = False """ golden_lines = [s.strip() for s in golden_str.splitlines()] golden_lines = list(filter(None, golden_lines)) # remove blank lines actual_lines = [s.strip() for s in actual_str.splitlines()] actual_lines = list(filter(None, actual_lines)) # remove blank lines self.assertEqual(len(golden_lines), len(actual_lines)) for i, _ in enumerate(golden_lines): self.assertEqual(golden_lines[i], actual_lines[i]) def test_persist_read_error(self): # bad section content = """ [Web port=88 """ with self.assertRaises(PersistError): Config.from_str(content) # bad value content = """ [Web] port88 """ with self.assertRaises(PersistError): Config.from_str(content) # bad line content = """ [Web] port=88 what am i doing here """ with self.assertRaises(PersistError): Config.from_str(content)
tests/preprocessing/test_replace.py
austinjp/textacy
1,929
11110110
import pytest from textacy import preprocessing @pytest.mark.parametrize( "text_in, text_out", [ ("$1.00 equals 100¢.", "_CUR_1.00 equals 100_CUR_."), ("How much is ¥100 in £?", "How much is _CUR_100 in _CUR_?"), ("My password is <PASSWORD>฿.", "My password is <PASSWORD>_CUR_<PASSWORD>_."), ] ) def test_replace_currency_symbols(text_in, text_out): assert preprocessing.replace.currency_symbols(text_in) == text_out @pytest.mark.parametrize( "text_in, text_out", [ ("Reach out at <EMAIL>.", "Reach out at _EMAIL_."), ("Click here: mailto:<EMAIL>.", "Click here: _EMAIL_."), ] ) def test_replace_emails(text_in, text_out): assert preprocessing.replace.emails(text_in) == text_out @pytest.mark.parametrize( "text_in, text_out", [ ("ugh, it's raining *again* ☔", "ugh, it's raining *again* _EMOJI_"), ("✌ tests are passing ✌", "_EMOJI_ tests are passing _EMOJI_"), ] ) def test_replace_emojis(text_in, text_out): assert preprocessing.replace.emojis(text_in) == text_out @pytest.mark.parametrize( "text_in, text_out", [ ("like omg it's #ThrowbackThursday", "like omg it's _TAG_"), ("#TextacyIn4Words: \"but it's honest work\"", "_TAG_: \"but it's honest work\""), ("wth twitter #ican'teven #why-even-try", "wth twitter _TAG_'teven _TAG_-even-try"), ("www.foo.com#fragment is not a hashtag", "www.foo.com#fragment is not a hashtag"), ] ) def test_replace_hashtags(text_in, text_out): assert preprocessing.replace.hashtags(text_in) == text_out @pytest.mark.parametrize( "text_in, text_out", [ ( "I owe $1,000.99 to 123 people for 2 +1 reasons.", "I owe $_NUMBER_ to _NUMBER_ people for _NUMBER_ _NUMBER_ reasons.", ), ] ) def test_replace_numbers(text_in, text_out): assert preprocessing.replace.numbers(text_in) == text_out @pytest.mark.parametrize( "text_in, text_out", [ ( "I can be reached at 555-123-4567 through next Friday.", "I can be reached at _PHONE_ through next Friday.", ), ] ) def test_replace_phone_numbers(text_in, text_out): assert preprocessing.replace.phone_numbers(text_in) == text_out @pytest.mark.parametrize( "text_in, text_out", [ ( "I learned everything I know from www.stackoverflow.com and http://wikipedia.org/ and Mom.", "I learned everything I know from _URL_ and _URL_ and Mom.", ), ] ) def test_replace_urls(text_in, text_out): assert preprocessing.replace.urls(text_in) == text_out @pytest.mark.parametrize( "text_in, text_out", [ ("like omg it's @bjdewilde", "like omg it's _USER_"), ("@Real_Burton_DeWilde: definitely not a bot", "_USER_: definitely not a bot"), ("wth twitter @b.j.dewilde", "wth twitter _USER_.j.dewilde"), ("<EMAIL> is not a user handle", "<EMAIL> is not a user handle"), ] ) def test_replace_user_handles(text_in, text_out): assert preprocessing.replace.user_handles(text_in) == text_out
lib/utils.py
juliocamposmachado/gain2
242
11110136
import os import chainer.functions as F from chainer.dataset import download from chainer.serializers import npz from chainer.backends.cuda import get_array_module import numpy as np from PIL import Image from cupy import get_array_module def convert_caffemodel_to_npz(path_caffemodel, path_npz): from chainer.links.caffe.caffe_function import CaffeFunction caffemodel = CaffeFunction(path_caffemodel) npz.save_npz(path_npz, caffemodel, compression=False) def _make_npz(path_npz, url, model): path_caffemodel = download.cached_download(url) print('Now loading caffemodel (usually it may take few minutes)') convert_caffemodel_to_npz(path_caffemodel, path_npz) npz.load_npz(path_npz, model) return model def _retrieve(name, url, model): root = download.get_dataset_directory('pfnet/chainer/models/') path = os.path.join(root, name) return download.cache_or_load_file( path, lambda path: _make_npz(path, url, model), lambda path: npz.load_npz(path, model)) def read_image(path, dtype=np.float32, color=True): """Read an image from a file. This function reads an image from given file. The image is CHW format and the range of its value is :math:`[0, 255]`. If :obj:`color = True`, the order of the channels is RGB. Args: path (string): A path of image file. dtype: The type of array. The default value is :obj:`~numpy.float32`. color (bool): This option determines the number of channels. If :obj:`True`, the number of channels is three. In this case, the order of the channels is RGB. This is the default behaviour. If :obj:`False`, this function returns a grayscale image. Returns: ~numpy.ndarray: An image. """ f = Image.open(path) try: if color: img = f.convert('RGB') else: img = f.convert('P') img = np.asarray(img, dtype=dtype) finally: if hasattr(f, 'close'): f.close() return img def VGGprepare(image=None, path=None, size=(224, 224)): """Converts the given image to the numpy array for VGG models. Note that you have to call this method before ``__call__`` because the pre-trained vgg model requires to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling. Args: image (PIL.Image or numpy.ndarray): Input image. If an input is ``numpy.ndarray``, its shape must be ``(height, width)``, ``(height, width, channels)``, or ``(channels, height, width)``, and the order of the channels must be RGB. size (pair of ints): Size of converted images. If ``None``, the given image is not resized. Returns: numpy.ndarray: The converted output array. """ if path is not None: image = read_image(path) if image.ndim == 4: image = np.squeeze(image, 0) if isinstance(image, np.ndarray): if image.ndim == 3: if image.shape[0] == 1: image = image[0, :, :] elif image.shape[0] == 3: image = image.transpose((1, 2, 0)) image = Image.fromarray(image.astype(np.uint8)) image = image.convert('RGB') if size: image = image.resize(size) image = np.asarray(image, dtype=np.float32) image = image[:, :, ::-1] image -= np.array( [103.939, 116.779, 123.68], dtype=np.float32) image = image.transpose((2, 0, 1)) return np.expand_dims(image, 0) def VGGprepare_am_input(var): xp = get_array_module(var) # var = F.resize_images(var, size) var = F.transpose(var, (0, 2, 3, 1)) # [[W, H, C]] var = F.flip(var, 3) var -= xp.array([[103.939, 116.779, 123.68]], dtype=xp.float32) var = F.transpose(var, (0, 3, 1, 2)) return var
sohu.py
1py/youku-lixian
445
11110156
#!/usr/bin/env python __all__ = ['sohu_download'] from common import * def real_url(host, prot, file, new): url = 'http://%s/?prot=%s&file=%s&new=%s' % (host, prot, file, new) start, _, host, key, _, _ = get_html(url).split('|') return '%s%s?key=%s' % (start[:-1], new, key) def sohu_download(url, merge=True): vid = r1('vid="(\d+)"', get_html(url)) assert vid import json data = json.loads(get_decoded_html('http://hot.vrs.sohu.com/vrs_flash.action?vid=%s' % vid)) host = data['allot'] prot = data['prot'] urls = [] data = data['data'] title = data['tvName'] size = sum(data['clipsBytes']) assert len(data['clipsURL']) == len(data['clipsBytes']) == len(data['su']) for file, new in zip(data['clipsURL'], data['su']): urls.append(real_url(host, prot, file, new)) assert data['clipsURL'][0].endswith('.mp4') download_urls(urls, title, 'mp4', total_size=size, refer=url, merge=merge) download = sohu_download download_playlist = playlist_not_supported('sohu') def main(): script_main('sohu', sohu_download) if __name__ == '__main__': main()
pxr/usdImaging/bin/testusdview/testenv/testUsdviewInterpreterNoRender/testUsdviewInterpreterNoRender.py
DougRogers-DigitalFish/USD
3,680
11110163
#!/pxrpythonsubst # # Copyright 2017 Pixar # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # # Leaving these in for future debugging from __future__ import print_function import sys from pxr.Usdviewq.qt import QtCore, QtGui, QtWidgets def _emitShowInterpreter(appController): appController._ui.showInterpreter.triggered.emit() QtWidgets.QApplication.processEvents() def _postKeyPress(key, widget): event = QtGui.QKeyEvent(QtCore.QEvent.KeyPress, key, QtCore.Qt.NoModifier) QtWidgets.QApplication.postEvent(widget, event) QtWidgets.QApplication.processEvents() def _testInterpreterWorks(appController): # # Trigger the interpreter console to display, then verify it worked # by making sure the appController._console's context got initialized # properly. This is somewhat unfortunate a test, but sending key events # to the console to mimic typing doesn't seem to work. # # usdview happily swallows exceptions. It would be really nice if we could # put it into a mode where it didn't - were that the case, the following # try/except block is all we would need. Currently it has no value, but # we leave it in for future aspirations. try: _emitShowInterpreter(appController) except: successfullyBroughtUpInterpreter = False assert successfullyBroughtUpInterpreter assert appController._console # So instead, we check the last context variable that the interpreter # initializes. This is pretty brittle, but other options seem just as # brittle, assert "usdviewApi" in appController._console.locals() def testUsdviewInputFunction(appController): _testInterpreterWorks(appController)
backend/avatar/service.py
restato/bunnybook
131
11110165
import glob import hashlib import random from pathlib import Path from typing import Any, List from PIL import Image from injector import singleton, inject from common.concurrency import cpu_bound_task from config import cfg @singleton class AvatarService: @inject def __init__(self): self._avatar_images_path = Path(cfg.avatar_data_folder) self._avatar_images_path.mkdir(exist_ok=True, parents=True) self._bodies = self._get_layers_paths("bodies") self._accessories = self._get_layers_paths("accessories") self._glasses = self._get_layers_paths("glasses") self._hats = self._get_layers_paths("hats") async def generate_and_save_avatar(self, identifier: str, filename: str) \ -> None: await cpu_bound_task( self._generate_and_save_avatar, identifier, filename) async def generate_avatar(self, identifier: str) -> Any: return await cpu_bound_task(self._generate_avatar, identifier) def _generate_and_save_avatar(self, identifier: str, filename: str) -> None: avatar_image = self._generate_avatar(identifier) avatar_image.save( self._avatar_images_path / f"{filename}.png", "PNG", optimize=True) def _generate_avatar(self, identifier: str) -> Any: identifier_hash = int(hashlib.md5(str(identifier).encode()).hexdigest(), base=16) random.seed(identifier_hash) layer0 = self._bodies[random.randint(0, len(self._bodies) - 1)] layer1 = self._accessories[ random.randint(0, len(self._accessories) - 1)] layer2 = self._glasses[random.randint(0, len(self._glasses) - 1)] layer3 = self._hats[random.randint(0, len(self._hats) - 1)] avatar = Image.alpha_composite(Image.open(layer0), Image.open(layer1)) avatar = Image.alpha_composite(avatar, Image.open(layer2)) avatar = Image.alpha_composite(avatar, Image.open(layer3)) return avatar def _get_layers_paths(self, layer_type: str) -> List[str]: paths = glob.glob(f"avatar/images/{layer_type}/*") paths.sort() return paths
test/point_tier_tests.py
timmahrt/praatIO
208
11110193
import unittest from praatio import textgrid from praatio.utilities.constants import Interval, Point, POINT_TIER from praatio.utilities import constants from praatio.utilities import errors from test.praatio_test_case import PraatioTestCase def makePointTier(name="pitch_values", points=None, minT=0, maxT=5.0): if points is None: points = [Point(1.3, "55"), Point(3.7, "99")] return textgrid.PointTier(name, points, minT, maxT) class PointTierTests(PraatioTestCase): def test_append_tier_with_mixed_type_throws_exception(self): pointTier = makePointTier() intervalTier = textgrid.IntervalTier( "words", [Interval(1, 2, "hello"), Interval(3.5, 4.0, "world")], minT=0, maxT=5.0, ) with self.assertRaises(errors.ArgumentError) as _: pointTier.appendTier(intervalTier) def test_append_tier_with_point_tiers(self): pointTier = textgrid.PointTier( "pitch_values", [Point(1.3, "55"), Point(3.7, "99")], minT=0, maxT=5 ) pointTier2 = textgrid.PointTier( "new_pitch_values", [Point(4.2, "153"), Point(7.1, "89")], minT=0, maxT=10 ) sut = pointTier.appendTier(pointTier2) self.assertEqual(0, sut.minTimestamp) self.assertEqual(15, sut.maxTimestamp) self.assertEqual( [Point(1.3, "55"), Point(3.7, "99"), Point(9.2, "153"), Point(12.1, "89")], sut.entryList, ) self.assertEqual(POINT_TIER, sut.tierType) def test_find_with_point_tiers(self): sut = makePointTier( points=[ Point(1, "hello"), Point(2.5, "the"), Point(3.5, "world"), ] ) self.assertEqual([], sut.find("mage", substrMatchFlag=False, usingRE=False)) self.assertEqual([1], sut.find("the", substrMatchFlag=False, usingRE=False)) self.assertEqual([], sut.find("mage", substrMatchFlag=True, usingRE=False)) self.assertEqual([0, 1], sut.find("he", substrMatchFlag=True, usingRE=False)) self.assertEqual([], sut.find("mage", substrMatchFlag=False, usingRE=True)) self.assertEqual([0, 1], sut.find("he", substrMatchFlag=False, usingRE=True)) self.assertEqual( [0, 1, 2], sut.find("[eo]", substrMatchFlag=False, usingRE=True) ) def test_point_tier_creation_with_no_times(self): with self.assertRaises(errors.TimelessTextgridTierException) as cm: textgrid.PointTier("pitch_values", [], None, None) self.assertEqual( "All textgrid tiers much have a min and max duration", str(cm.exception) ) def test_crop_raises_error_if_crop_start_time_occurs_after_crop_end_time(self): sut = makePointTier() with self.assertRaises(errors.ArgumentError) as cm: sut.crop(2.1, 1.1, "lax", True) self.assertEqual( "Crop error: start time (2.1) must occur before end time (1.1)", str(cm.exception), ) def test_crop_when_rebase_to_zero_is_true(self): pointTier = makePointTier( points=[ Point(0.5, "12"), Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32"), ], minT=0, maxT=5, ) sut = pointTier.crop(1.0, 3.8, rebaseToZero=True) expectedPointTier = makePointTier( points=[Point(0.3, "55"), Point(2.7, "99")], minT=0, maxT=2.8, ) self.assertEqual(expectedPointTier, sut) def test_crop_when_rebase_to_zero_is_false(self): pointTier = makePointTier( points=[ Point(0.5, "12"), Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32"), ], minT=0, maxT=5, ) sut = pointTier.crop(1.0, 3.8, rebaseToZero=False) expectedPointTier = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99")], minT=1, maxT=3.8, ) self.assertEqual(expectedPointTier, sut) def test_erase_region_when_do_shrink_is_true(self): pointTier = makePointTier( points=[ Point(0.5, "12"), Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32"), ], minT=0, maxT=5, ) sut = pointTier.eraseRegion(1.0, 2.1, doShrink=True) expectedPointTier = makePointTier( points=[Point(0.5, "12"), Point(2.6, "99"), Point(3.4, "32")], minT=0, maxT=3.9, ) self.assertEqual(expectedPointTier, sut) def test_erase_region_when_do_shrink_is_false(self): pointTier = makePointTier( points=[ Point(0.5, "12"), Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32"), ] ) sut = pointTier.eraseRegion(1.0, 2.1, doShrink=False) expectedPointTier = makePointTier( points=[Point(0.5, "12"), Point(3.7, "99"), Point(4.5, "32")], ) self.assertEqual(expectedPointTier, sut) def test_get_values_at_points_when_fuzzy_matching_is_false(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) dataList = [ (0.9, 100, 55), (1.3, 34, 92), (1.5, 32, 15), (1.8, 21, 34), (4.5, 31, 2), (4.8, 99, 44), ] self.assertEqual( [(1.3, 34, 92), (), (4.5, 31, 2)], sut.getValuesAtPoints(dataList, fuzzyMatching=False), ) dataList2 = [(0.9, 100), (1.3, 34), (1.5, 32), (1.8, 21)] self.assertEqual( [(1.3, 34), (), ()], sut.getValuesAtPoints(dataList2, fuzzyMatching=False), ) def test_get_values_at_points_when_fuzzy_matching_is_true(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) dataList = [ (0.9, 100, 55), (1.3, 34, 92), (1.5, 32, 15), (1.8, 21, 34), (4.5, 31, 2), (4.8, 99, 44), ] self.assertEqual( [(1.3, 34, 92), (4.5, 31, 2), (4.5, 31, 2)], sut.getValuesAtPoints(dataList, fuzzyMatching=True), ) dataList2 = [(0.9, 100), (1.3, 34), (1.5, 32), (1.8, 21)] self.assertEqual( [(1.3, 34), (1.8, 21), (1.8, 21)], sut.getValuesAtPoints(dataList2, fuzzyMatching=True), ) def test_insert_point_at_start_of_point_tier(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) sut.insertEntry(Point(0.5, "21")) self.assertEqual( [Point(0.5, "21"), Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], sut.entryList, ) def test_insert_point_at_middle_of_point_tier(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) sut.insertEntry(Point(3.9, "21")) self.assertEqual( [Point(1.3, "55"), Point(3.7, "99"), Point(3.9, "21"), Point(4.5, "32")], sut.entryList, ) def test_insert_entry_works_with_points_tuples_or_lists(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) sut.insertEntry(Point(3.9, "21")) sut.insertEntry((4.0, "23")) sut.insertEntry((4.1, "99")) self.assertEqual( [ Point(1.3, "55"), Point(3.7, "99"), Point(3.9, "21"), Point(4.0, "23"), Point(4.1, "99"), Point(4.5, "32"), ], sut.entryList, ) def test_insert_point_at_end_of_point_tier(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) sut.insertEntry(Point(4.9, "21")) self.assertEqual( [Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32"), Point(4.9, "21")], sut.entryList, ) def test_insert_point_when_collision_occurs(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) with self.assertRaises(errors.CollisionError) as _: sut.insertEntry( Point(3.7, "hello"), constants.ErrorReportingMode.ERROR, constants.ErrorReportingMode.SILENCE, ) def test_insert_point_when_collision_occurs_and_merge(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) sut.insertEntry( Point(3.7, "hello"), constants.IntervalCollision.MERGE, constants.ErrorReportingMode.SILENCE, ) self.assertEqual( [Point(1.3, "55"), Point(3.7, "99-hello"), Point(4.5, "32")], sut.entryList, ) def test_insert_point_when_collision_occurs_and_replace(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) sut.insertEntry( Point(3.7, "hello"), constants.IntervalCollision.REPLACE, constants.ErrorReportingMode.SILENCE, ) self.assertEqual( [Point(1.3, "55"), Point(3.7, "hello"), Point(4.5, "32")], sut.entryList, ) def test_edit_timestamps_throws_error_if_reporting_mode_is_invalid(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) with self.assertRaises(errors.WrongOption) as _: sut.editTimestamps( 2.0, "cats", ) def test_edit_timestamps_can_make_points_appear_later(self): originalPointTier = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) sut = originalPointTier.editTimestamps(0.4) expectedPointTier = makePointTier( points=[Point(1.7, "55"), Point(4.1, "99"), Point(4.9, "32")], ) self.assertEqual(expectedPointTier, sut) def test_edit_timestamps_can_make_points_appear_earlier(self): originalPointTier = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) sut = originalPointTier.editTimestamps(-0.4) expectedPointTier = makePointTier( points=[Point(0.9, "55"), Point(3.3, "99"), Point(4.1, "32")], ) self.assertEqual(expectedPointTier, sut) def test_edit_timestamp_can_raise_exception_when_reporting_mode_is_silence(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], minT=0, maxT=5, ) with self.assertRaises(errors.OutOfBounds) as _: sut.editTimestamps( -1.4, constants.ErrorReportingMode.ERROR, ) with self.assertRaises(errors.OutOfBounds) as _: sut.editTimestamps( 1.4, constants.ErrorReportingMode.ERROR, ) def test_edit_timestamp_can_exceed_maxtimestamp_when_reporting_mode_is_silence( self, ): originalPointTier = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], maxT=5, ) sut = originalPointTier.editTimestamps( 1.4, constants.ErrorReportingMode.SILENCE ) expectedPointTier = makePointTier( points=[Point(2.7, "55"), Point(5.1, "99"), Point(5.9, "32")], maxT=5.9, ) self.assertEqual(expectedPointTier, sut) def test_edit_timestamp_drops_points_that_are_moved_before_zero(self): originalPointTier = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) sut = originalPointTier.editTimestamps( -1.4, constants.ErrorReportingMode.SILENCE ) expectedPointTier = makePointTier( points=[Point(2.3, "99"), Point(3.1, "32")], ) self.assertEqual(expectedPointTier, sut) def test_insert_space(self): originalPointTier = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], maxT=5, ) sut = originalPointTier.insertSpace(2.0, 1.1) predictedPointTier = makePointTier( points=[Point(1.3, "55"), Point(4.8, "99"), Point(5.6, "32")], maxT=6.1, ) self.assertEqual(predictedPointTier, sut) def test_validate_throws_error_if_points_are_not_in_sequence(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], ) self.assertTrue(sut.validate()) sut.entryList.append(Point(3.9, "21")) self.assertFalse(sut.validate(constants.ErrorReportingMode.SILENCE)) with self.assertRaises(errors.TextgridStateError) as _: sut.validate(constants.ErrorReportingMode.ERROR) def test_validate_throws_error_if_points_are_less_than_minimum_time(self): sut = makePointTier( points=[Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], minT=0, ) self.assertTrue(sut.validate()) sut.minTimestamp = 2.0 self.assertFalse(sut.validate(constants.ErrorReportingMode.SILENCE)) with self.assertRaises(errors.OutOfBounds) as _: sut.validate(constants.ErrorReportingMode.ERROR) def test_validate_throws_error_if_points_are_more_than_maximum_time(self): sut = makePointTier( [Point(1.3, "55"), Point(3.7, "99"), Point(4.5, "32")], maxT=5, ) self.assertTrue(sut.validate()) sut.maxTimestamp = 3.0 self.assertFalse(sut.validate(constants.ErrorReportingMode.SILENCE)) with self.assertRaises(errors.OutOfBounds) as _: sut.validate(constants.ErrorReportingMode.ERROR) if __name__ == "__main__": unittest.main()
ch08/birds.py
ricjuanflores/practice-of-the-python
319
11110226
class Bird: def fly(self): print('flying!') class Hummingbird(Bird): def fly(self): print('zzzzzooommm!') class Penguin(Bird): def fly(self): print('no can do.')
tensorflow_model_analysis/notebook/jupyter/renderer.py
rtg0795/model-analysis
1,118
11110257
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Jupyter renderer API.""" import tensorflow_model_analysis.notebook.jupyter.tfma_widget as tfma_widget def render_slicing_metrics(data, config, event_handlers=None): """Renders the slicing metrics view in Jupyter. Args: data: A list of dictionary containing metrics for correpsonding slices. config: A dictionary of the configuration. event_handlers: A dictionary of where keys are event types and values are event handlers. Returns: A SlicingMetricsViewer. """ view = tfma_widget.SlicingMetricsViewer() view.data = data view.config = config view.event_handlers = event_handlers return view def render_time_series(data, config): """Renders the time series view in Jupyter. Args: data: A list of dictionary containing metrics for different evaluation runs. config: A dictionary of the configuration. Returns: A TimeSeriesViewer. """ view = tfma_widget.TimeSeriesViewer() view.data = data view.config = config return view def render_plot(data, config): """Renders the plot view in Jupyter. Args: data: A dictionary containing plot data. config: A dictionary of the configuration. Returns: A PlotViewer. """ view = tfma_widget.PlotViewer() view.data = data view.config = config return view
tests/opytimizer/optimizers/evolutionary/test_es.py
anukaal/opytimizer
528
11110276
<gh_stars>100-1000 import numpy as np from opytimizer.optimizers.evolutionary import es from opytimizer.spaces import search def test_es_params(): params = { 'child_ratio': 0.5 } new_es = es.ES(params=params) assert new_es.child_ratio == 0.5 def test_es_params_setter(): new_es = es.ES() try: new_es.child_ratio = 'a' except: new_es.child_ratio = 0.5 try: new_es.child_ratio = -1 except: new_es.child_ratio = 0.5 assert new_es.child_ratio == 0.5 def test_es_compile(): search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_es = es.ES() new_es.compile(search_space) try: new_es.n_children = 'a' except: new_es.n_children = 0 assert new_es.n_children == 0 try: new_es.n_children = -1 except: new_es.n_children = 0 assert new_es.n_children == 0 try: new_es.strategy = 1 except: new_es.strategy = np.array([1]) assert new_es.strategy == np.array([1]) def test_es_mutate_parent(): def square(x): return np.sum(x**2) search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_es = es.ES() new_es.compile(search_space) agent = new_es._mutate_parent(search_space.agents[0], 0, square) assert agent.position[0][0] > 0 def test_es_update_strategy(): search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_es = es.ES() new_es.compile(search_space) new_es._update_strategy(0) assert new_es.strategy[0][0] > 0 def test_es_update(): def square(x): return np.sum(x**2) search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_es = es.ES() new_es.compile(search_space) new_es.update(search_space, square)
caffe2/python/operator_test/mul_gradient_benchmark.py
raven38/pytorch
206
11110282
import argparse import numpy as np from caffe2.python import core, workspace def benchmark_mul_gradient(args): workspace.FeedBlob("dC", np.random.rand(args.m, args.n).astype(np.float32)) workspace.FeedBlob("A", np.random.rand(args.m, args.n).astype(np.float32)) workspace.FeedBlob("B", np.random.rand(args.m).astype(np.float32)) net = core.Net("mynet") net.MulGradient(["dC", "A", "B"], ["dA", "dB"], broadcast=True, axis=0) workspace.CreateNet(net) workspace.BenchmarkNet(net.Name(), 1, args.iteration, True) if __name__ == "__main__": parser = argparse.ArgumentParser( description="benchmark for MulGradient.") parser.add_argument( '-m', type=int, default=9508, help="The number of rows of A") parser.add_argument( "-n", type=int, default=80, help="The number of columns of A") parser.add_argument( '-i', "--iteration", type=int, default=100, help="The number of iterations.") args, extra_args = parser.parse_known_args() core.GlobalInit(['python'] + extra_args) benchmark_mul_gradient(args)
scripts/measure_classifier_score.py
BrandoZhang/alis
176
11110332
import os import argparse import random import pickle from shutil import copyfile from typing import Optional, Callable, List from torchvision.datasets import VisionDataset from torchvision.datasets.folder import pil_loader import numpy as np from PIL import Image import torchvision.transforms.functional as TVF from torchvision import transforms import torch from torchvision.models import wide_resnet50_2 from torch.utils.data import DataLoader from tqdm import tqdm import torch.nn.functional as F class ImagePathsDataset(VisionDataset): def __init__(self, img_paths: List[os.PathLike], transform: Callable): self.transform = transform self.imgs_paths = img_paths def __len__(self): return len(self.imgs_paths) * 2 def __getitem__(self, idx: int): image = pil_loader(self.imgs_paths[idx // 2]) image = self.transform(image) w = image.shape[2] if idx % 2 == 0: half = image[:, :, :w//2] y = 0 else: half = image[:, :, w//2:] y = 1 return {"img": half, "label": y} @torch.no_grad() def validate(model, dataloader): model.eval() accs = [] losses = [] for batch in dataloader: img, label = batch['img'].to(device), batch['label'].to(device) preds = model(img).squeeze(1) loss = F.binary_cross_entropy_with_logits(preds, label.float()) acc = ((preds.sigmoid() > 0.5).long() == label).float().mean() losses.append(loss.item()) accs.append(acc.item()) return np.mean(losses), np.mean(accs) if __name__ == '__main__': random.seed(42) np.random.seed(42) torch.manual_seed(42) torch.cuda.manual_seed_all(42) parser = argparse.ArgumentParser() parser.add_argument('data_dir', type=str, help='Path to the dataset directory') parser.add_argument('--train_ratio', type=float, default=0.15, help='Amount of training images') parser.add_argument('--val_ratio', type=float, default=0.05, help='Amount of training images') parser.add_argument('--num_epochs', type=int, default=10, help='Number of training epochs') parser.add_argument('--batch_size', type=int, default=64, help='Batch size for training/inference') args = parser.parse_args() data_dir = args.data_dir all_img_names = [f for f in os.listdir(data_dir) if os.path.splitext(f)[1].lower() in Image.EXTENSION] random.shuffle(all_img_names) NUM_TRAIN_IMGS = int(args.train_ratio * len(all_img_names)) NUM_VAL_IMGS = int(args.val_ratio * len(all_img_names)) img_paths_train = [os.path.join(data_dir, f) for f in all_img_names[:NUM_TRAIN_IMGS]] img_paths_val = [os.path.join(data_dir, f) for f in all_img_names[NUM_TRAIN_IMGS:NUM_TRAIN_IMGS+NUM_VAL_IMGS]] model = wide_resnet50_2(pretrained=True) model.fc = torch.nn.Linear(2048, 1) optim = torch.optim.Adam([ {'params': [p for n, p in model.named_parameters() if not n.startswith('fc.')], 'lr': 1e-5}, {'params': model.fc.parameters(), 'lr': 1e-4}, ]) transform_train = transforms.Compose([ transforms.Resize(256, interpolation=Image.LANCZOS), transforms.RandomHorizontalFlip(0.5), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_val = transforms.Compose([ transforms.Resize(256, interpolation=Image.LANCZOS), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) dataset_train = ImagePathsDataset(img_paths_train, transform=transform_train) dataset_val = ImagePathsDataset(img_paths_val, transform=transform_val) batch_size = args.batch_size dataloader_train = DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=5) dataloader_val = DataLoader(dataset_val, batch_size=batch_size, shuffle=False, num_workers=5) device = 'cuda' model = model.to(device) total_num_epochs = args.num_epochs for epoch in range(total_num_epochs): pbar = tqdm(enumerate(dataloader_train), total=len(dataloader_train)) for i, batch in pbar: model.train() img, label = batch['img'].to(device), batch['label'].to(device) preds = model(img).squeeze(1) loss = F.binary_cross_entropy_with_logits(preds, label.float()) acc = ((preds.sigmoid() > 0.5).long() == label).float().mean() optim.zero_grad() loss.backward() optim.step() pbar.set_description(f'Epoch {epoch}. Loss: {loss.detach().item():.03f}. Acc: {acc.cpu().item():.03f}') val_loss, val_acc = validate(model, dataloader_val) print(f'Val loss: {val_loss:.03f}. Val acc: {val_acc: .03f}') ### Testing ### img_paths_test = [os.path.join(data_dir, f) for f in all_img_names[NUM_TRAIN_IMGS+NUM_VAL_IMGS:]] transform_test = transforms.Compose([ transforms.Resize(256, interpolation=Image.LANCZOS), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) dataset_test = ImagePathsDataset(img_paths_test, transform=transform_test) dataloader_test = DataLoader(dataset_test, batch_size=args.batch_size, shuffle=False, num_workers=10) scores = [] model.eval() with torch.no_grad(): for batch in tqdm(dataloader_test): img = batch['img'].to(device) preds = model(img).sigmoid() # We compute the scores as the maximum between left and right # Because even if one side is easily predictable, then it will be very # difficult to connect/continue it curr_scores = preds.view(-1, 2).max(dim=1)[0] scores.extend(curr_scores.cpu().tolist()) assert len(scores) == len(img_paths_test) print(f'[{data_dir}] Average score on the test set:', np.mean(scores)) save_dir = f'{data_dir}_spatial_inv' dataset_name = os.path.basename(data_dir) os.makedirs(save_dir, exist_ok=True) ### Preprocessing data and saving ### with open(f'{save_dir}/{dataset_name}_scores.pkl', 'wb') as f: pickle.dump(scores, f) for threshold in [0.5, 0.7, 0.95, 0.99]: final_img_paths = np.array(img_paths_test)[np.array(scores) < threshold].tolist() target_dir = f'{save_dir}/{dataset_name}_t_{threshold}' os.makedirs(target_dir, exist_ok=True) for src_img_path in tqdm(final_img_paths): trg_img_path = os.path.join(target_dir, os.path.basename(src_img_path)) copyfile(src_img_path, trg_img_path)
src/Testing/utils.py
CMYanko/Zope
289
11110363
<reponame>CMYanko/Zope ############################################################################## # # Copyright (c) 2002 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE # ############################################################################## """ Some utility functions for unit tests """ import contextlib import sys @contextlib.contextmanager def capture_stdout(file): old_out = sys.stdout sys.stdout = file yield sys.stdout = old_out
gratipay/models/participant/packages.py
kant/gratipay.com
517
11110382
<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals from gratipay.exceptions import NoPackages class Packages(object): def get_packages_for_claiming(self, manager): """Return a list of packages on the named ``manager`` for which the participant has verified an email address on Gratipay, along with the current package owner on Gratipay (if any). :param string manager: the name of the package manager on which to look for potential packages :return: a list of (:py:class:`~gratipay.models.package.Package`, :py:class:`Participant`, is_primary, email_address) tuples, where the participant is the one who has already claimed the package (or ``None``), and the email address is the single best match (primary, then alphabetically first from among non-primary verified addresses) """ return self.db.all(''' WITH verified_email_addresses AS ( SELECT e.address , e.address = p.email_address is_primary FROM email_addresses e LEFT JOIN participants p ON p.id = e.participant_id WHERE e.participant_id=%s AND e.verified is true ) SELECT pkg.*::packages package , p.*::participants claimed_by , (SELECT is_primary FROM verified_email_addresses WHERE address = ANY(emails) ORDER BY is_primary DESC, address LIMIT 1) email_address_is_primary , (SELECT address FROM verified_email_addresses WHERE address = ANY(emails) ORDER BY is_primary DESC, address LIMIT 1) email_address FROM packages pkg LEFT JOIN teams_to_packages tp ON pkg.id = tp.package_id LEFT JOIN teams t ON t.id = tp.team_id LEFT JOIN participants p ON t.owner = p.username WHERE package_manager=%s AND pkg.emails && array(SELECT address FROM verified_email_addresses) ORDER BY email_address_is_primary DESC , email_address ASC , pkg.name ASC ''', (self.id, manager)) def start_package_claims(self, c, nonce, *packages): """Takes a cursor, nonce and list of packages, inserts into ``claims`` and returns ``None`` (or raise :py:exc:`NoPackages`). """ if not packages: raise NoPackages() # We want to make a single db call to insert all claims, so we need to # do a little SQL construction. Do it in such a way that we still avoid # Python string interpolation (~= SQLi vector). extra_sql, values = [], [] for p in packages: extra_sql.append('(%s, %s)') values += [nonce, p.id] c.run('INSERT INTO claims (nonce, package_id) VALUES' + ', '.join(extra_sql), values) self.app.add_event( c , 'participant' , dict( id=self.id , action='start-claim' , values=dict(package_ids=[p.id for p in packages]) ) ) def get_packages_claiming(self, cursor, nonce): """Given a nonce, return :py:class:`~gratipay.models.package.Package` objects associated with it. """ return cursor.all(""" SELECT p.*::packages FROM packages p JOIN claims c ON p.id = c.package_id WHERE c.nonce=%s ORDER BY p.name ASC """, (nonce,)) def finish_package_claims(self, cursor, nonce, *packages): """Create teams if needed and associate them with the packages. """ if not packages: raise NoPackages() package_ids, teams, team_ids = [], [], [] for package in packages: package_ids.append(package.id) team = package.get_or_create_linked_team(cursor, self) teams.append(team) team_ids.append(team.id) review_url = self.app.project_review_process.start(*teams) cursor.run('DELETE FROM claims WHERE nonce=%s', (nonce,)) cursor.run('UPDATE teams SET review_url=%s WHERE id=ANY(%s)', (review_url, team_ids,)) self.app.add_event( cursor , 'participant' , dict( id=self.id , action='finish-claim' , values=dict(package_ids=package_ids) ) )
nmtpytorch/vocabulary.py
tejas1995/nmtpytorch
420
11110414
<reponame>tejas1995/nmtpytorch<filename>nmtpytorch/vocabulary.py<gh_stars>100-1000 # -*- coding: utf-8 -*- import json import pathlib import logging from collections import OrderedDict logger = logging.getLogger('nmtpytorch') class Vocabulary: r"""Vocabulary class for integer<->token mapping. Arguments: fname (str): The filename of the JSON vocabulary file created by `nmtpy-build-vocab` script. short_list (int, optional): If > 0, only the most frequent `short_list` items are kept in the vocabulary. Attributes: vocab (pathlib.Path): A :class:`pathlib.Path` instance holding the filepath of the vocabulary file. short_list (int): Short-list threshold. freqs (dict): A dictionary which maps vocabulary strings to their normalized frequency across the training set. counts (dict): A dictionary which maps vocabulary strings to their occurrence counts across the training set. n_tokens (int): The final number of elements in the vocabulary. has_bos (bool): `True` if the vocabulary has <bos> token. has_eos (bool): `True` if the vocabulary has <eos> token. has_pad (bool): `True` if the vocabulary has <pad> token. has_unk (bool): `True` if the vocabulary has <unk> token. Note: The final instance can be easily queried in both directions with bracket notation using integers and strings. Example: >>> vocab = Vocabulary('train.vocab.en') >>> vocab['woman'] 23 >>> vocab[23] 'woman' Returns: A :class:`Vocabulary` instance. """ TOKENS = {"<pad>": 0, "<bos>": 1, "<eos>": 2, "<unk>": 3} def __init__(self, fname, short_list=0): self.vocab = pathlib.Path(fname).expanduser() self.short_list = short_list self._map = None self._imap = None self.freqs = None self.counts = None self._allmap = None self.n_tokens = None # Load file with open(self.vocab) as f: data = json.load(f) if self.short_list > 0: # Get a slice of most frequent `short_list` items data = dict(list(data.items())[:self.short_list]) self._map = {k: int(v.split()[0]) for k, v in data.items()} self.counts = {k: int(v.split()[1]) for k, v in data.items()} total_count = sum(self.counts.values()) self.freqs = {k: v / total_count for k, v in self.counts.items()} # Sanity check for placeholder tokens for tok, idx in self.TOKENS.items(): if self._map.get(tok, -1) != idx: logger.info(f'{tok} not found in {self.vocab.name!r}') setattr(self, f'has_{tok[1:-1]}', False) else: setattr(self, f'has_{tok[1:-1]}', True) # Set # of tokens self.n_tokens = len(self._map) # Invert dictionary self._imap = OrderedDict([(v, k) for k, v in self._map.items()]) # Merge forward and backward lookups into single dict for convenience self._allmap = OrderedDict() self._allmap.update(self._map) self._allmap.update(self._imap) assert len(self._allmap) == (len(self._map) + len(self._imap)), \ "Merged vocabulary size is not equal to sum of both." def sent_to_idxs(self, line, explicit_bos=False, explicit_eos=True): """Convert from list of strings to list of token indices.""" tidxs = [] if explicit_bos and self.has_bos: tidxs.append(self.TOKENS["<bos>"]) if self.has_unk: for tok in line.split(): tidxs.append(self._map.get(tok, self.TOKENS["<unk>"])) else: # Remove unknown tokens from the words for tok in line.split(): try: tidxs.append(self._map[tok]) except KeyError as _: # make this verbose and repetitive as this should be # used cautiously only for some specific models logger.info('No <unk> token, removing word from sentence') if explicit_eos and self.has_eos: tidxs.append(self.TOKENS["<eos>"]) return tidxs def idxs_to_sent(self, idxs, debug=False): r"""Converts list of integers to string representation. Arguments: idxs (list): Python list of integers as previously mapped from string tokens by this instance. debug (bool, optional): If `True`, the string representation will go beyond and include the end-of-sentence token as well. Returns: A whitespace separated string representing the given list of integers. """ result = [] for idx in idxs: if not debug and self.has_eos and idx == self.TOKENS["<eos>"]: break result.append(self._imap.get(idx, self.TOKENS["<unk>"])) return " ".join(result) def list_of_idxs_to_sents(self, lidxs): r"""Converts list of list of integers to string representations. This is handy for batched conversion after beam search for example. Arguments: lidxs(list): A list containing multiple lists of integers as previously mapped from string tokens by this instance. Returns: A list of whitespace separated strings representing the given input. """ results = [] unk = self.TOKENS["<unk>"] for idxs in lidxs: result = [] for idx in idxs: if idx == self.TOKENS["<eos>"]: break result.append(self._imap.get(idx, unk)) results.append(" ".join(result)) return results def __getitem__(self, key): return self._allmap[key] def __len__(self): return len(self._map) def __repr__(self): return f"Vocabulary of {self.n_tokens} items ({self.vocab.name!r})"
exercises/zh/test_01_08_01.py
Jette16/spacy-course
2,085
11110416
def test(): assert ( "token_text = token.text" in __solution__ ), "你有正确拿到词符的文本吗?" assert ( "token_pos = token.pos_" in __solution__ ), "你有正确拿到词符的词性标注了吗?记着要用带下划线的属性。" assert ( "token_dep = token.dep_" in __solution__ ), "你有正确拿到词符的依存关系标签了吗?记着要用带下划线的属性。" __msg__.good("完美!")
deprecated_gallery/ext2.py
guyongqiangx/construct
629
11110487
<filename>deprecated_gallery/ext2.py """ Extension 2 (ext2) used in Linux systems """ from construct import * Char = SLInt8 UChar = ULInt8 Short = SLInt16 UShort = ULInt16 Long = SLInt32 ULong = ULInt32 BlockPointer = Struct( "block_number" / ULong, # WARNING: unnamed field? OnDemandPointer(this.block_number), ) superblock = Struct( "inodes_count" / ULong, "blocks_count" / ULong, "reserved_blocks_count" / ULong, "free_blocks_count" / ULong, "free_inodes_count" / ULong, "first_data_block" / ULong, "log_block_size" / Enum(ULong, OneKB = 0, TwoKB = 1, FourKB = 2, ), "log_frag_size" / Long, "blocks_per_group" / ULong, "frags_per_group" / ULong, "inodes_per_group" / ULong, "mtime" / ULong, "wtime" / ULong, "mnt_count" / UShort, "max_mnt_count" / Short, "magic" / Const(UShort, 0xEF53), "state" / UShort, "errors" / UShort, Padding(2), "lastcheck" / ULong, "checkinterval" / ULong, "creator_os" / ULong, "rev_level" / ULong, Padding(235*4), ) group_descriptor = Struct( "block_bitmap" / ULong, "inode_bitmap" / ULong, "inode_table" / ULong, "free_blocks_count" / UShort, "free_inodes_count" / UShort, "used_dirs_count" / UShort, Padding(14), ) inode = Struct( "mode" / FlagsEnum(UShort, IXOTH = 0x0001, IWOTH = 0x0002, IROTH = 0x0004, IRWXO = 0x0007, IXGRP = 0x0008, IWGRP = 0x0010, IRGRP = 0x0020, IRWXG = 0x0038, IXUSR = 0x0040, IWUSR = 0x0080, IRUSR = 0x0100, IRWXU = 0x01C0, ISVTX = 0x0200, ISGID = 0x0400, ISUID = 0x0800, IFIFO = 0x1000, IFCHR = 0x2000, IFDIR = 0x4000, IFBLK = 0x6000, IFREG = 0x8000, IFLNK = 0xC000, IFSOCK = 0xA000, IFMT = 0xF000, ), "uid" / UShort, "size" / ULong, "atime" / ULong, "ctime" / ULong, "mtime" / ULong, "dtime" / ULong, "gid" / UShort, "links_count" / UShort, "blocks" / ULong, "flags" / FlagsEnum(ULong, SecureDelete = 0x0001, AllowUndelete = 0x0002, Compressed = 0x0004, Synchronous = 0x0008, ), Padding(4), # WARNING: doubled name "blocks" / ULong[12], "indirect1_block" / ULong, "indirect2_block" / ULong, "indirect3_block" / ULong, "version" / ULong, "file_acl" / ULong, "dir_acl" / ULong, "faddr" / ULong, "frag" / UChar, "fsize" / UChar, Padding(10), ) # special inodes EXT2_BAD_INO = 1 EXT2_ROOT_INO = 2 EXT2_ACL_IDX_INO = 3 EXT2_ACL_DATA_INO = 4 EXT2_BOOT_LOADER_INO = 5 EXT2_UNDEL_DIR_INO = 6 EXT2_FIRST_INO = 11 directory_record = Struct( "inode" / ULong, "rec_length" / UShort, "name_length" / UShort, "name" / Bytes(this.name_length), Padding(this.rec_length - this.name_length), )
lldb/packages/Python/lldbsuite/test/lang/objc/objc-new-syntax/TestObjCNewSyntaxArray.py
medismailben/llvm-project
305
11110488
"""Test that the Objective-C syntax for dictionary/array literals and indexing works""" import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil from ObjCNewSyntaxTest import ObjCNewSyntaxTest class ObjCNewSyntaxTestCaseArray(ObjCNewSyntaxTest): @skipUnlessDarwin @skipIf(macos_version=["<", "10.12"]) @expectedFailureAll(archs=["i[3-6]86"]) def test_read_array(self): self.runToBreakpoint() self.expect( "expr --object-description -- immutable_array[0]", VARIABLES_DISPLAYED_CORRECTLY, substrs=["foo"]) self.expect( "expr --object-description -- mutable_array[0]", VARIABLES_DISPLAYED_CORRECTLY, substrs=["foo"]) @skipUnlessDarwin @skipIf(macos_version=["<", "10.12"]) @expectedFailureAll(archs=["i[3-6]86"]) def test_update_array(self): self.runToBreakpoint() self.expect( "expr --object-description -- mutable_array[0] = @\"bar\"", VARIABLES_DISPLAYED_CORRECTLY, substrs=["bar"]) self.expect( "expr --object-description -- mutable_array[0]", VARIABLES_DISPLAYED_CORRECTLY, substrs=["bar"]) @skipUnlessDarwin @skipIf(macos_version=["<", "10.12"]) @expectedFailureAll(archs=["i[3-6]86"]) def test_array_literal(self): self.runToBreakpoint() self.expect( "expr --object-description -- @[ @\"foo\", @\"bar\" ]", VARIABLES_DISPLAYED_CORRECTLY, substrs=[ "NSArray", "foo", "bar"])
tfne/encodings/codeepneat/modules/codeepneat_module_densedropout.py
githealthy18/Tensorflow-Neuroevolution
121
11110559
from __future__ import annotations import math import random import statistics import numpy as np import tensorflow as tf from .codeepneat_module_base import CoDeepNEATModuleBase from tfne.helper_functions import round_with_step class CoDeepNEATModuleDenseDropout(CoDeepNEATModuleBase): """ TFNE CoDeepNEAT module encapsulating a Dense layer followed by an optional Dropout layer. No Downsampling layer defined. """ def __init__(self, config_params, module_id, parent_mutation, dtype, merge_method=None, units=None, activation=None, kernel_init=None, bias_init=None, dropout_flag=None, dropout_rate=None, self_initialization_flag=False): """ Create module by storing supplied parameters. If self initialization flag is supplied, randomly initialize the module parameters based on the range of parameters allowed by config_params @param config_params: dict of the module parameter range supplied via config @param module_id: int of unique module ID @param parent_mutation: dict summarizing the mutation of the parent module @param dtype: string of deserializable TF dtype @param merge_method: dict representing a TF deserializable merge layer @param units: see TF documentation @param activation: see TF documentation @param kernel_init: see TF documentation @param bias_init: see TF documentation @param dropout_flag: see TF documentation @param dropout_rate: see TF documentation @param self_initialization_flag: bool flag indicating if all module parameters should be randomly initialized """ # Register the implementation specifics by calling parent class super().__init__(config_params, module_id, parent_mutation, dtype) # Register the module parameters self.merge_method = merge_method self.units = units self.activation = activation self.kernel_init = kernel_init self.bias_init = bias_init self.dropout_flag = dropout_flag self.dropout_rate = dropout_rate # If self initialization flag is provided, initialize the module parameters as they are currently set to None if self_initialization_flag: self._initialize() def __str__(self) -> str: """ @return: string representation of the module """ return "CoDeepNEAT DENSE Module | ID: {:>6} | Fitness: {:>6} | Units: {:>4} | Activ: {:>6} | Dropout: {:>4}" \ .format('#' + str(self.module_id), self.fitness, self.units, self.activation, "None" if self.dropout_flag is False else self.dropout_rate) def _initialize(self): """ Randomly initialize all parameters of the module based on the range of parameters allowed by the config_params variable. """ # Uniform randomly set module parameters self.merge_method = random.choice(self.config_params['merge_method']) self.merge_method['config']['dtype'] = self.dtype random_units = random.randint(self.config_params['units']['min'], self.config_params['units']['max']) self.units = round_with_step(random_units, self.config_params['units']['min'], self.config_params['units']['max'], self.config_params['units']['step']) self.activation = random.choice(self.config_params['activation']) self.kernel_init = random.choice(self.config_params['kernel_init']) self.bias_init = random.choice(self.config_params['bias_init']) self.dropout_flag = random.random() < self.config_params['dropout_flag'] random_dropout_rate = random.uniform(self.config_params['dropout_rate']['min'], self.config_params['dropout_rate']['max']) self.dropout_rate = round_with_step(random_dropout_rate, self.config_params['dropout_rate']['min'], self.config_params['dropout_rate']['max'], self.config_params['dropout_rate']['step']) def create_module_layers(self) -> (tf.keras.layers.Layer, ...): """ Instantiate TF layers with their respective configuration that are represented by the current module configuration. Return the instantiated module layers in their respective order as a tuple. @return: tuple of instantiated TF layers represented by the module configuration. """ # Create the basic keras Dense layer, needed in all variants of the module dense_layer = tf.keras.layers.Dense(units=self.units, activation=self.activation, kernel_initializer=self.kernel_init, bias_initializer=self.bias_init, dtype=self.dtype) # If no dropout flag present, return solely the created dense layer as iterable. If dropout flag present, return # the dense layer and together with the dropout layer if not self.dropout_flag: return (dense_layer,) else: dropout_layer = tf.keras.layers.Dropout(rate=self.dropout_rate, dtype=self.dtype) return dense_layer, dropout_layer def create_downsampling_layer(self, in_shape, out_shape) -> tf.keras.layers.Layer: """""" raise NotImplementedError("Downsampling has not yet been implemented for DenseDropout Modules") def create_mutation(self, offspring_id, max_degree_of_mutation) -> CoDeepNEATModuleDenseDropout: """ Create mutated DenseDropout module and return it. Categorical parameters are chosen randomly from all available values. Sortable parameters are perturbed through a random normal distribution with the current value as mean and the config specified stddev @param offspring_id: int of unique module ID of the offspring @param max_degree_of_mutation: float between 0 and 1 specifying the maximum degree of mutation @return: instantiated DenseDropout module with mutated parameters """ # Copy the parameters of this parent module for the parameters of the offspring offspring_params = {'merge_method': self.merge_method, 'units': self.units, 'activation': self.activation, 'kernel_init': self.kernel_init, 'bias_init': self.bias_init, 'dropout_flag': self.dropout_flag, 'dropout_rate': self.dropout_rate} # Create the dict that keeps track of the mutations occuring for the offspring parent_mutation = {'parent_id': self.module_id, 'mutation': 'mutation', 'mutated_params': dict()} # Determine exact integer amount of parameters to be mutated, though minimum is 1 param_mutation_count = math.ceil(max_degree_of_mutation * 7) # Uniform randomly choose the parameters to be mutated parameters_to_mutate = random.sample(range(7), k=param_mutation_count) # Mutate offspring parameters. Categorical parameters are chosen randomly from all available values. Sortable # parameters are perturbed through a random normal distribution with the current value as mean and the config # specified stddev for param_to_mutate in parameters_to_mutate: if param_to_mutate == 0: offspring_params['merge_method'] = random.choice(self.config_params['merge_method']) parent_mutation['mutated_params']['merge_method'] = self.merge_method elif param_to_mutate == 1: perturbed_units = int(np.random.normal(loc=self.units, scale=self.config_params['units']['stddev'])) offspring_params['units'] = round_with_step(perturbed_units, self.config_params['units']['min'], self.config_params['units']['max'], self.config_params['units']['step']) parent_mutation['mutated_params']['units'] = self.units elif param_to_mutate == 2: offspring_params['activation'] = random.choice(self.config_params['activation']) parent_mutation['mutated_params']['activation'] = self.activation elif param_to_mutate == 3: offspring_params['kernel_init'] = random.choice(self.config_params['kernel_init']) parent_mutation['mutated_params']['kernel_init'] = self.kernel_init elif param_to_mutate == 4: offspring_params['bias_init'] = random.choice(self.config_params['bias_init']) parent_mutation['mutated_params']['bias_init'] = self.bias_init elif param_to_mutate == 5: offspring_params['dropout_flag'] = not self.dropout_flag parent_mutation['mutated_params']['dropout_flag'] = self.dropout_flag else: # param_to_mutate == 6: perturbed_dropout_rate = np.random.normal(loc=self.dropout_rate, scale=self.config_params['dropout_rate']['stddev']) offspring_params['dropout_rate'] = round_with_step(perturbed_dropout_rate, self.config_params['dropout_rate']['min'], self.config_params['dropout_rate']['max'], self.config_params['dropout_rate']['step']) parent_mutation['mutated_params']['dropout_rate'] = self.dropout_rate return CoDeepNEATModuleDenseDropout(config_params=self.config_params, module_id=offspring_id, parent_mutation=parent_mutation, dtype=self.dtype, **offspring_params) def create_crossover(self, offspring_id, less_fit_module, max_degree_of_mutation) -> CoDeepNEATModuleDenseDropout: """ Create crossed over DenseDropout module and return it. Carry over parameters of fitter parent for categorical parameters and calculate parameter average between both modules for sortable parameters @param offspring_id: int of unique module ID of the offspring @param less_fit_module: second DenseDropout module with lower fitness @param max_degree_of_mutation: float between 0 and 1 specifying the maximum degree of mutation @return: instantiated DenseDropout module with crossed over parameters """ # Create offspring parameters by carrying over parameters of fitter parent for categorical parameters and # calculating parameter average between both modules for sortable parameters offspring_params = dict() # Create the dict that keeps track of the mutations occuring for the offspring parent_mutation = {'parent_id': (self.module_id, less_fit_module.get_id()), 'mutation': 'crossover'} offspring_params['merge_method'] = self.merge_method offspring_params['units'] = round_with_step(int((self.units + less_fit_module.units) / 2), self.config_params['units']['min'], self.config_params['units']['max'], self.config_params['units']['step']) offspring_params['activation'] = self.activation offspring_params['kernel_init'] = self.kernel_init offspring_params['bias_init'] = self.bias_init offspring_params['dropout_flag'] = self.dropout_flag offspring_params['dropout_rate'] = round_with_step((self.dropout_rate + less_fit_module.dropout_rate) / 2, self.config_params['dropout_rate']['min'], self.config_params['dropout_rate']['max'], self.config_params['dropout_rate']['step']) return CoDeepNEATModuleDenseDropout(config_params=self.config_params, module_id=offspring_id, parent_mutation=parent_mutation, dtype=self.dtype, **offspring_params) def serialize(self) -> dict: """ @return: serialized constructor variables of the module as json compatible dict """ return { 'module_type': self.get_module_type(), 'module_id': self.module_id, 'parent_mutation': self.parent_mutation, 'merge_method': self.merge_method, 'units': self.units, 'activation': self.activation, 'kernel_init': self.kernel_init, 'bias_init': self.bias_init, 'dropout_flag': self.dropout_flag, 'dropout_rate': self.dropout_rate } def get_distance(self, other_module) -> float: """ Calculate distance between 2 DenseDropout modules by inspecting each parameter, calculating the congruence between each and eventually averaging the out the congruence. The distance is returned as the average congruences distance to 1.0. The congruence of continuous parameters is calculated by their relative distance. The congruence of categorical parameters is either 1.0 in case they are the same or it's 1 divided to the amount of possible values for that specific parameter. Return the calculated distance. @param other_module: second DenseDropout module to which the distance has to be calculated @return: float between 0 and 1. High values indicating difference, low values indicating similarity """ congruence_list = list() if self.merge_method == other_module.merge_method: congruence_list.append(1.0) else: congruence_list.append(1 / len(self.config_params['merge_method'])) if self.units >= other_module.units: congruence_list.append(other_module.units / self.units) else: congruence_list.append(self.units / other_module.units) if self.activation == other_module.activation: congruence_list.append(1.0) else: congruence_list.append(1 / len(self.config_params['activation'])) if self.kernel_init == other_module.kernel_init: congruence_list.append(1.0) else: congruence_list.append(1 / len(self.config_params['kernel_init'])) if self.bias_init == other_module.bias_init: congruence_list.append(1.0) else: congruence_list.append(1 / len(self.config_params['bias_init'])) congruence_list.append(abs(self.dropout_flag - other_module.dropout_flag)) if self.dropout_rate >= other_module.dropout_rate: congruence_list.append(other_module.dropout_rate / self.dropout_rate) else: congruence_list.append(self.dropout_rate / other_module.dropout_rate) # Return the distance as the distance of the average congruence to the perfect congruence of 1.0 return round(1.0 - statistics.mean(congruence_list), 4) def get_module_type(self) -> str: """""" return 'DenseDropout'
tools/bin/gppylib/test/regress/test_regress_gpssh.py
YangHao666666/hawq
450
11110598
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os, signal, time, re import unittest2 as unittest import psi.process, subprocess class GpsshTestCase(unittest.TestCase): # return count of stranded ssh processes def searchForProcessOrChildren(self): euid = os.getuid() count = 0 for p in psi.process.ProcessTable().values(): if p.euid != euid: continue if not re.search('ssh', p.command): continue if p.ppid != 1: continue count += 1 return count def test00_gpssh_sighup(self): """Verify that gppsh handles sighup and terminates cleanly. """ before_count = self.searchForProcessOrChildren() p = subprocess.Popen("gpssh -h localhost", shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) pid = p.pid time.sleep(3) try: os.kill(int(pid), signal.SIGHUP) except Exception: pass max_attempts = 6 for i in range(max_attempts): after_count = self.searchForProcessOrChildren() error_count = after_count - before_count if error_count: if (i + 1) == max_attempts: self.fail("Found %d new stranded gpssh processes after issuing sig HUP" % error_count) time.sleep(.5) if __name__ == "__main__": unittest.main()
vumi/transports/tests/helpers.py
seidu626/vumi
199
11110615
<reponame>seidu626/vumi from twisted.internet.defer import inlineCallbacks from zope.interface import implements from vumi.transports.failures import FailureMessage from vumi.tests.helpers import ( MessageHelper, WorkerHelper, PersistenceHelper, MessageDispatchHelper, generate_proxies, IHelper, ) class TransportHelper(object): """ Test helper for transport workers. This helper construct and wraps several lower-level helpers and provides higher-level functionality for transport tests. :param transport_class: The worker class for the transport being tested. :param bool use_riak: Set to ``True`` if the test requires Riak. This is passed to the underlying :class:`~vumi.tests.helpers.PersistenceHelper`. :param \**msg_helper_args: All other keyword params are passed to the underlying :class:`~vumi.tests.helpers.MessageHelper`. """ implements(IHelper) def __init__(self, transport_class, use_riak=False, **msg_helper_args): self.transport_class = transport_class self.persistence_helper = PersistenceHelper(use_riak=use_riak) self.msg_helper = MessageHelper(**msg_helper_args) self.transport_name = self.msg_helper.transport_name self.worker_helper = WorkerHelper( connector_name=self.transport_name, status_connector_name="%s.status" % (self.transport_name,)) self.dispatch_helper = MessageDispatchHelper( self.msg_helper, self.worker_helper) # Proxy methods from our helpers. generate_proxies(self, self.msg_helper) generate_proxies(self, self.worker_helper) generate_proxies(self, self.dispatch_helper) generate_proxies(self, self.persistence_helper) def setup(self): self.persistence_helper.setup() self.worker_helper.setup() @inlineCallbacks def cleanup(self): yield self.worker_helper.cleanup() yield self.persistence_helper.cleanup() def get_transport(self, config, cls=None, start=True): """ Get an instance of a transport class. :param config: Config dict. :param cls: The transport class to instantiate. Defaults to :attr:`transport_class` :param start: True to start the transport (default), False otherwise. Some default config values are helpfully provided in the interests of reducing boilerplate: * ``transport_name`` defaults to :attr:`self.transport_name` """ if cls is None: cls = self.transport_class config = self.mk_config(config) config.setdefault('transport_name', self.transport_name) return self.get_worker(cls, config, start) def get_dispatched_failures(self, connector_name=None): """ Get failures dispatched by a transport. :param str connector_name: Connector name. If ``None``, the default connector name for the helper instance will be used. :returns: A list of :class:`~vumi.transports.failures.FailureMessage` instances. """ return self.get_dispatched(connector_name, 'failures', FailureMessage)
data/tracking/sampler/_sampling_algos/stateful/sequential.py
zhangzhengde0225/SwinTrack
143
11110648
<reponame>zhangzhengde0225/SwinTrack class SamplingAlgo_SequentialSampling: def __init__(self, length): assert length > 0 self.position = -1 self.length_ = length def __getstate__(self): return self.position, self.length_ def __setstate__(self, state): position, length = state self.position = position self.length_ = length def move_next(self): self.position += 1 return self.position < self.length_ def current(self): if not 0 <= self.position < self.length_: raise IndexError return self.position def reset(self): self.position = -1 def length(self): return self.length_
tests/test_modeling_gpt2.py
legacyai/tf-transformers
116
11110666
<filename>tests/test_modeling_gpt2.py # coding=utf-8 # Copyright 2021 TF-Transformers Authors. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test GPT2 Models""" import unittest import tensorflow as tf import tempfile import shutil from absl import logging from transformers import GPT2TokenizerFast as Tokenizer from tf_transformers.text import TextDecoder, TextDecoderSerializable from tf_transformers.models import GPT2Model as Model logging.get_absl_logger().name = "gpt2_testing" MODEL_NAME = 'gpt2' class ModelTest(unittest.TestCase): @classmethod def setUpClass(self): print("--------------------setUP--------------------------------------") self.model = Model.from_pretrained(MODEL_NAME) self.model_ar = Model.from_pretrained(MODEL_NAME, use_auto_regressive=True) self.tokenizer = Tokenizer.from_pretrained(MODEL_NAME) # @unittest.skip def test_tf_conversion(self): import shutil try: shutil.rmtree("/tmp/tf_transformers_cache/{}".format(MODEL_NAME)) except: pass _ = Model.from_pretrained(MODEL_NAME, convert_fn_type='tf') logging.info("Test: TF Conversion. ✅") # @unittest.skip def test_pt_conversion(self): import shutil try: shutil.rmtree("/tmp/tf_transformers_cache/{}".format(MODEL_NAME)) except: pass _ = Model.from_pretrained(MODEL_NAME, convert_fn_type='pt') logging.info("Test: PT Conversion. ✅") # @unittest.skip def test_auto_regressive(self): """Test Text Generation using Non Cache and Cached""" text = "<NAME> is one of the finest" inputs_tf = self.tokenizer(text, return_tensors="tf") inputs = {} inputs["input_ids"] = inputs_tf["input_ids"] predictions_non_auto_regressive = [] predictions_prob_non_auto_regressive = [] for i in range(10): outputs = self.model(inputs) predicted_ids = tf.cast(tf.expand_dims(tf.argmax(outputs["last_token_logits"], axis=1), 1), tf.int32) inputs["input_ids"] = tf.concat([inputs["input_ids"], predicted_ids], axis=1) predictions_non_auto_regressive.append(predicted_ids) predictions_prob_non_auto_regressive.append( tf.expand_dims(tf.reduce_max(outputs["last_token_logits"], axis=1), 1) ) predictions_non_auto_regressive = tf.concat(predictions_non_auto_regressive, axis=1) predictions_prob_non_auto_regressive = tf.concat(predictions_prob_non_auto_regressive, axis=1) # -------------------------------------------------------------------------------------------- # noqa # Cached inputs_tf = self.tokenizer(text, return_tensors="tf") inputs = {} inputs["input_ids"] = inputs_tf["input_ids"] seq_length = tf.shape(inputs["input_ids"])[1] batch_size = tf.shape(inputs["input_ids"])[0] inputs["all_cache_key"] = tf.zeros((12, batch_size, 12, seq_length, 64)) inputs["all_cache_value"] = tf.zeros((12, batch_size, 12, seq_length, 64)) inputs["past_length"] = tf.zeros(shape=(1, batch_size), dtype=tf.int32) predictions_auto_regressive = [] predictions_prob_auto_regressive = [] past_lengths = [] for i in range(10): outputs = self.model_ar(inputs) predicted_ids = tf.cast(tf.expand_dims(tf.argmax(outputs["last_token_logits"], axis=1), 1), tf.int32) inputs["input_ids"] = predicted_ids inputs["all_cache_key"] = outputs["all_cache_key"] inputs["all_cache_value"] = outputs["all_cache_value"] inputs["past_length"] = outputs["past_length"] past_lengths.append(inputs["past_length"]) predictions_auto_regressive.append(predicted_ids) predictions_prob_auto_regressive.append( tf.expand_dims(tf.reduce_max(outputs["last_token_logits"], axis=1), 1) ) predictions_auto_regressive = tf.concat(predictions_auto_regressive, axis=1) predictions_prob_auto_regressive = tf.concat(predictions_prob_auto_regressive, axis=1) # Assert predictions tf.debugging.assert_near(predictions_prob_auto_regressive, predictions_prob_non_auto_regressive, rtol=1.0) tf.debugging.assert_equal(predictions_auto_regressive, predictions_non_auto_regressive) logging.info("Test: Successful Auto Regressive Encoder. ✅") # @unittest.skip def test_auto_regressive_batch(self): """Test Batch Text Generation Auto Regressive""" text = ['<NAME> is one of the finest', 'I love stars because'] # -1 is important input_ids = tf.ragged.constant(self.tokenizer(text)["input_ids"]).to_tensor(-1) inputs = {} inputs["input_ids"] = input_ids seq_length = tf.shape(inputs["input_ids"])[1] batch_size = tf.shape(inputs["input_ids"])[0] inputs["all_cache_key"] = tf.zeros((12, batch_size, 12, seq_length, 64)) inputs["all_cache_value"] = tf.zeros((12, batch_size, 12, seq_length, 64)) inputs["past_length"] = tf.zeros(shape=(1, batch_size), dtype=tf.int32) predictions_auto_regressive = [] predictions_prob_auto_regressive = [] past_lengths = [] for i in range(10): outputs = self.model_ar(inputs) predicted_ids = tf.cast(tf.expand_dims(tf.argmax(outputs["last_token_logits"], axis=1), 1), tf.int32) if i == 0: masks = tf.cast(tf.not_equal(input_ids, -1), tf.float32) masks = tf.reshape(masks, (1, batch_size, 1, seq_length, 1),) outputs["all_cache_key"] = outputs["all_cache_key"] * masks outputs["all_cache_value"] = outputs["all_cache_value"] * masks inputs["input_ids"] = predicted_ids inputs["all_cache_key"] = outputs["all_cache_key"] inputs["all_cache_value"] = outputs["all_cache_value"] inputs["past_length"] = outputs["past_length"] past_lengths.append(inputs["past_length"]) predictions_auto_regressive.append(predicted_ids) predictions_prob_auto_regressive.append( tf.expand_dims(tf.reduce_max(outputs["last_token_logits"], axis=1), 1) ) predictions_auto_regressive = tf.concat(predictions_auto_regressive, axis=1) predictions_prob_auto_regressive = tf.concat(predictions_prob_auto_regressive, axis=1) expected_prediction = [ [1938, 287, 262, 995, 13, 679, 318, 257, 845, 922], [484, 821, 523, 881, 517, 621, 655, 257, 3491, 13], ] expected_probs = [ [ -110.00343322753906, -84.10372161865234, -60.758541107177734, -94.87692260742188, -72.66572570800781, -124.67924499511719, -100.1087417602539, -103.07884216308594, -108.038330078125, -108.75567626953125, ], [ -92.4664535522461, -122.232177734375, -114.12687683105469, -110.21340942382812, -106.74520111083984, -108.79459381103516, -89.76094055175781, -84.4063720703125, -102.25302124023438, -78.72990417480469, ], ] tf.debugging.assert_equal(predictions_auto_regressive.numpy().tolist(), expected_prediction) tf.debugging.assert_near(predictions_prob_auto_regressive.numpy().tolist(), expected_probs) logging.info("Test: Successful Batch Auto Regressive Encoder. ✅") # @unittest.skip def test_auto_regressive_saved_model_greedy(self): """Test Auto Regressive using Decoder Saved Model""" text = ['<NAME> is one of the finest', 'I love stars because'] dirpath = tempfile.mkdtemp() saved_model_dir = "{}/model_pb".format(dirpath) self.model_ar.save_as_serialize_module(saved_model_dir, overwrite=True) # Load saved model . loaded = tf.saved_model.load(saved_model_dir) decoder = TextDecoder(model=loaded) # Pad -1 input_ids = tf.ragged.constant(self.tokenizer(text)["input_ids"]).to_tensor(-1) inputs = {} inputs["input_ids"] = input_ids decoder_results = decoder.decode(inputs, mode="greedy", max_iterations=10, eos_id=-100) predicted_ids = decoder_results["predicted_ids"].numpy().tolist() expected_ids = [ [1938, 287, 262, 995, 13, 679, 318, 257, 845, 922], [484, 821, 523, 881, 517, 621, 655, 257, 3491, 13], ] tf.debugging.assert_equal(predicted_ids, expected_ids) shutil.rmtree(dirpath) logging.info("Test: Successful Auto Regressive Saved Model Greedy. ✅") # @unittest.skip def test_auto_regressive_keras_model_greedy(self): """Test Auto Regressive using Decoder Keras Model""" text = ['<NAME> is one of the finest', 'I love stars because'] decoder = TextDecoder(model=self.model_ar) # Pad -1 input_ids = tf.ragged.constant(self.tokenizer(text)["input_ids"]).to_tensor(-1) inputs = {} inputs["input_ids"] = input_ids decoder_results = decoder.decode(inputs, mode="greedy", max_iterations=10, eos_id=-100) predicted_ids = decoder_results["predicted_ids"].numpy().tolist() expected_ids = [ [1938, 287, 262, 995, 13, 679, 318, 257, 845, 922], [484, 821, 523, 881, 517, 621, 655, 257, 3491, 13], ] tf.debugging.assert_equal(predicted_ids, expected_ids) logging.info("Test: Successful Auto Regressive Keras Model Greedy. ✅") # @unittest.skip def test_auto_regressive_saved_model_beam(self): """Test Auto Regressive using Decoder Saved Model""" text = ['<NAME> is one of the finest', 'I love stars because'] dirpath = tempfile.mkdtemp() saved_model_dir = "{}/model_pb".format(dirpath) self.model_ar.save_as_serialize_module(saved_model_dir, overwrite=True) # Load saved model . loaded = tf.saved_model.load(saved_model_dir) decoder = TextDecoder(model=loaded) # Pad -1 input_ids = tf.ragged.constant(self.tokenizer(text)["input_ids"]).to_tensor(-1) inputs = {} inputs["input_ids"] = input_ids decoder_results = decoder.decode(inputs, mode="beam", num_beams=3, max_iterations=10, eos_id=-100) predicted_ids = decoder_results["predicted_ids"].numpy().tolist() print("Predicted ids beam", predicted_ids) expected_ids = [ [[19553, 3653, 287, 262, 995, 13, 679, 318, 530, 286]], [[484, 821, 262, 691, 1517, 326, 6067, 284, 502, 13]], ] # tf.debugging.assert_equal(predicted_ids, expected_ids) shutil.rmtree(dirpath) logging.info("Test: Successful Auto Regressive Saved Model Beam. ✅") # @unittest.skip def test_auto_regressive_keras_model_beam(self): """Test Auto Regressive using Decoder Keras Model""" text = ['<NAME> is one of the finest', 'I love stars because'] decoder = TextDecoder(model=self.model_ar) # Pad -1 input_ids = tf.ragged.constant(self.tokenizer(text)["input_ids"]).to_tensor(-1) inputs = {} inputs["input_ids"] = input_ids decoder_results = decoder.decode(inputs, mode="beam", num_beams=3, max_iterations=10, eos_id=-100) predicted_ids = decoder_results["predicted_ids"].numpy().tolist() expected_ids = [ [[19553, 3653, 287, 262, 995, 13, 679, 318, 530, 286]], [[484, 821, 262, 691, 1517, 326, 6067, 284, 502, 13]], ] # tf.debugging.assert_equal(predicted_ids, expected_ids) logging.info("Test: Successful Auto Regressive Keras Model Greedy. ✅") @unittest.skip def test_auto_regressive_saved_model_top_k_top_p(self): """Test Auto Regressive using Decoder Saved Model""" text = ['<NAME> is one of the finest', 'I love stars because'] dirpath = tempfile.mkdtemp() saved_model_dir = "{}/model_pb".format(dirpath) self.model_ar.save_as_serialize_module(saved_model_dir, overwrite=True) # Load saved model . loaded = tf.saved_model.load(saved_model_dir) decoder = TextDecoder(model=loaded) # Pad -1 input_ids = tf.ragged.constant(self.tokenizer(text)["input_ids"]).to_tensor(-1) inputs = {} inputs["input_ids"] = input_ids decoder_results = decoder.decode( inputs, mode="top_k_top_p", top_k=100, top_p=0.7, max_iterations=10, eos_id=-100 ) _ = decoder_results["predicted_ids"].numpy().tolist() shutil.rmtree(dirpath) logging.info("Test: Successful Auto Regressive Saved Model top K top P. ✅") @unittest.skip def test_auto_regressive_keras_model_top_k_top_p(self): """Test Auto Regressive using Decoder Keras Model""" text = ['<NAME> is one of the finest', 'I love stars because'] decoder = TextDecoder(model=self.model_ar) # Pad -1 input_ids = tf.ragged.constant(self.tokenizer(text)["input_ids"]).to_tensor(-1) inputs = {} inputs["input_ids"] = input_ids decoder_results = decoder.decode( inputs, mode="top_k_top_p", top_k=100, top_p=0.7, max_iterations=10, eos_id=-100 ) _ = decoder_results["predicted_ids"].numpy().tolist() logging.info("Test: Successful Auto Regressive Keras Model top k top P. ✅") @unittest.skip def test_tflite(self): """Test GPT2 Tflite""" model = Model.from_pretrained(model_name=MODEL_NAME, batch_size=1, sequence_length=32,) tempdir = tempfile.mkdtemp() model.save_serialized(tempdir, overwrite=True) converter = tf.lite.TFLiteConverter.from_saved_model("{}".format(tempdir)) # path to the SavedModel directory converter.experimental_new_converter = True tflite_model = converter.convert() open("{}/converted_model.tflite".format(tempdir), "wb").write(tflite_model) # Load the TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path="{}/converted_model.tflite".format(tempdir)) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Get result # encoder input_ids interpreter.set_tensor( input_details[0]['index'], tf.random.uniform(input_details[0]['shape'], minval=0, maxval=100, dtype=tf.int32), ) interpreter.invoke() tflite_output = interpreter.get_tensor(output_details[-1]['index']) print("Tflite output shape", tflite_output.shape) # tf.debugging.assert_equal(tflite_output.shape, (1, 32, 32128)) logging.info("Test: TFlite Conversion. ✅") shutil.rmtree(tempdir) if __name__ == '__main__': unittest.main()
examples/swap.py
bpmbank/pyql
488
11110683
<gh_stars>100-1000 """ Port of the swap example of QuantLib SWIG to PyQL. Warning: this is work in progress and currently not working. """ from __future__ import print_function from quantlib.indexes.api import Euribor6M from quantlib.instruments.swap import VanillaSwap, Payer from quantlib.pricingengines.swap import DiscountingSwapEngine from quantlib.settings import Settings from quantlib.quotes import SimpleQuote from quantlib.termstructures.yields.api import DepositRateHelper, FraRateHelper from quantlib.termstructures.yields.api import FuturesRateHelper, SwapRateHelper from quantlib.termstructures.yields.api import YieldTermStructure from quantlib.termstructures.yields.api import ( PiecewiseYieldCurve, BootstrapTrait, Interpolator ) from quantlib.time.api import Actual360, Date, November, TARGET, Weeks, Annual from quantlib.time.api import Months, Years, Period, ModifiedFollowing from quantlib.time.api import Unadjusted, Thirty360, Semiannual, Schedule from quantlib.time.api import ActualActual, ISDA from quantlib.time.schedule import Forward # global data calendar = TARGET() todaysDate = Date(6,November,2001); Settings.instance().evaluation_date = todaysDate settlementDate = Date(8,November,2001); # market quotes deposits = { (1,Weeks): 0.0382, (1,Months): 0.0372, (3,Months): 0.0363, (6,Months): 0.0353, (9,Months): 0.0348, (1,Years): 0.0345 } FRAs = { (3,6): 0.037125, (6,9): 0.037125, (9,12): 0.037125 } futures = { Date(19,12,2001): 96.2875, Date(20,3,2002): 96.7875, Date(19,6,2002): 96.9875, Date(18,9,2002): 96.6875, Date(18,12,2002): 96.4875, Date(19,3,2003): 96.3875, Date(18,6,2003): 96.2875, Date(17,9,2003): 96.0875 } swaps = { (2,Years): 0.037125, (3,Years): 0.0398, (5,Years): 0.0443, (10,Years): 0.05165, (15,Years): 0.055175 } # convert them to Quote objects #for n,unit in deposits.keys(): # deposits[(n,unit)] = SimpleQuote(deposits[(n,unit)]) for n,m in FRAs.keys(): FRAs[(n,m)] = SimpleQuote(FRAs[(n,m)]) for d in futures.keys(): futures[d] = SimpleQuote(futures[d]) for s in swaps.keys(): swaps[s] = SimpleQuote(swaps[s]) #for n,unit in swaps.keys(): # swaps[(n,unit)] = SimpleQuote(swaps[(n,unit)]) # build rate helpers day_counter = Actual360() settlementDays = 2 depositHelpers = [ DepositRateHelper(v, Period(n,unit), settlementDays, calendar, ModifiedFollowing, False, day_counter) for (n, unit), v in deposits.items()] day_counter = Actual360() settlementDays = 2 fraHelpers = [ FraRateHelper(v, n, m, settlementDays, calendar, ModifiedFollowing, False, day_counter) for (n, m), v in FRAs.items() ] day_counter = Actual360() months = 3 futuresHelpers = [ FuturesRateHelper(futures[d], d, months, calendar, ModifiedFollowing, True, day_counter) for d in futures.keys() ] settlementDays = 2 fixedLegFrequency = Annual fixedLegTenor = Period(1,Years) fixedLegAdjustment = Unadjusted fixedLegDayCounter = Thirty360() floatingLegFrequency = Semiannual floatingLegTenor = Period(6,Months) floatingLegAdjustment = ModifiedFollowing swapHelpers = [ SwapRateHelper.from_tenor(swaps[(n,unit)], Period(n,unit), calendar, fixedLegFrequency, fixedLegAdjustment, fixedLegDayCounter, Euribor6M()) for n, unit in swaps.keys() ] ### Curve building ts_daycounter = ActualActual(ISDA) # term-structure construction helpers = depositHelpers + swapHelpers depoSwapCurve = PiecewiseYieldCurve.from_reference_date( BootstrapTrait.Discount, Interpolator.LogLinear, settlementDate, helpers, ts_daycounter ) helpers = depositHelpers[:2] + futuresHelpers + swapHelpers[1:] depoFuturesSwapCurve = PiecewiseYieldCurve.from_reference_date( BootstrapTrait.Discount, Interpolator.LogLinear,settlementDate, helpers, ts_daycounter ) helpers = depositHelpers[:3] + fraHelpers + swapHelpers depoFraSwapCurve = PiecewiseYieldCurve.from_reference_date( BootstrapTrait.Discount, Interpolator.LogLinear, settlementDate, helpers, ts_daycounter ) # Term structures that will be used for pricing: discountTermStructure = YieldTermStructure() forecastTermStructure = YieldTermStructure() ### SWAPS TO BE PRICED nominal = 1000000 length = 5 maturity = calendar.advance(settlementDate,length,Years) payFixed = True fixedLegFrequency = Annual fixedLegAdjustment = Unadjusted fixedLegDayCounter = Thirty360() fixedRate = 0.04 floatingLegFrequency = Semiannual spread = 0.0 fixingDays = 2 index = Euribor6M(forecastTermStructure) floatingLegAdjustment = ModifiedFollowing floatingLegDayCounter = index.day_counter fixedSchedule = Schedule.from_rule(settlementDate, maturity, fixedLegTenor, calendar, fixedLegAdjustment, fixedLegAdjustment, Forward, False) floatingSchedule = Schedule.from_rule(settlementDate, maturity, floatingLegTenor, calendar, floatingLegAdjustment, floatingLegAdjustment, Forward, False) swapEngine = DiscountingSwapEngine(discountTermStructure) spot = VanillaSwap(Payer, nominal, fixedSchedule, fixedRate, fixedLegDayCounter, floatingSchedule, index, spread, floatingLegDayCounter) spot.set_pricing_engine(swapEngine) forwardStart = calendar.advance(settlementDate,1,Years) forwardEnd = calendar.advance(forwardStart,length,Years) fixedSchedule = Schedule.from_rule(forwardStart, forwardEnd, fixedLegTenor, calendar, fixedLegAdjustment, fixedLegAdjustment, Forward, False) floatingSchedule = Schedule.from_rule(forwardStart, forwardEnd, floatingLegTenor, calendar, floatingLegAdjustment, floatingLegAdjustment, Forward, False) forward = VanillaSwap(Payer, nominal, fixedSchedule, fixedRate, fixedLegDayCounter, floatingSchedule, index, spread, floatingLegDayCounter) forward.set_pricing_engine(swapEngine) # price on the bootstrapped curves def formatPrice(p, digits=2): format = '%%.%df' % digits return format % p def formatRate(r, digits=2): format = '%%.%df %%%%' % digits if isinstance(r, SimpleQuote): r = r.value return format % (r * 100) headers = ("term structure", "net present value", "fair spread", "fair fixed rate" ) separator = " | " format = '' width = 0 for h in headers[:-1]: format += '%%%ds' % len(h) format += separator width += len(h) + len(separator) format += '%%%ds' % len(headers[-1]) width += len(headers[-1]) rule = "-" * width dblrule = "=" * width tab = " " * 8 def report(swap, name): print(format % (name, formatPrice(swap.npv,2), formatRate(swap.fair_spread,4), formatRate(swap.fair_rate,4))) print(dblrule) print("5-year market swap-rate = %s" % formatRate(swaps[(5,Years)])) print(dblrule) # price on two different term structures print(tab + "5-years swap paying %s" % formatRate(fixedRate)) print(separator.join(headers)) print(rule) discountTermStructure.link_to(depoFuturesSwapCurve) forecastTermStructure.link_to(depoFuturesSwapCurve) report(spot,'depo-fut-swap') discountTermStructure.link_to(depoFraSwapCurve) forecastTermStructure.link_to(depoFraSwapCurve) report(spot,'depo-FRA-swap') print(rule) # price the 1-year forward swap print(tab + "5-years, 1-year forward swap paying %s" % formatRate(fixedRate)) print(rule) discountTermStructure.link_to(depoFuturesSwapCurve) forecastTermStructure.link_to(depoFuturesSwapCurve) report(forward,'depo-fut-swap') discountTermStructure.link_to(depoFraSwapCurve) forecastTermStructure.link_to(depoFraSwapCurve) report(forward,'depo-FRA-swap') # modify the 5-years swap rate and reprice swaps[(5,Years)].value = 0.046 print(dblrule) print("5-year market swap-rate = %s" % formatRate(swaps[(5,Years)])) print(dblrule) print(tab + "5-years swap paying %s" % formatRate(fixedRate)) print(separator.join(headers)) print(rule) discountTermStructure.link_to(depoFuturesSwapCurve) forecastTermStructure.link_to(depoFuturesSwapCurve) report(spot,'depo-fut-swap') discountTermStructure.link_to(depoFraSwapCurve) forecastTermStructure.link_to(depoFraSwapCurve) report(spot,'depo-FRA-swap') print(rule) print(tab + "5-years, 1-year forward swap paying %s" % formatRate(fixedRate)) print(rule) discountTermStructure.link_to(depoFuturesSwapCurve) forecastTermStructure.link_to(depoFuturesSwapCurve) report(forward,'depo-fut-swap') discountTermStructure.link_to(depoFraSwapCurve) forecastTermStructure.link_to(depoFraSwapCurve) report(forward,'depo-FRA-swap')
boto3_type_annotations_with_docs/boto3_type_annotations/iot_jobs_data/client.py
cowboygneox/boto3_type_annotations
119
11110704
from typing import Optional from botocore.client import BaseClient from typing import Dict from botocore.paginate import Paginator from botocore.waiter import Waiter from typing import Union class Client(BaseClient): def can_paginate(self, operation_name: str = None): """ Check if an operation can be paginated. :type operation_name: string :param operation_name: The operation name. This is the same name as the method name on the client. For example, if the method name is ``create_foo``, and you\'d normally invoke the operation as ``client.create_foo(**kwargs)``, if the ``create_foo`` operation can be paginated, you can use the call ``client.get_paginator(\"create_foo\")``. :return: ``True`` if the operation can be paginated, ``False`` otherwise. """ pass def describe_job_execution(self, jobId: str, thingName: str, includeJobDocument: bool = None, executionNumber: int = None) -> Dict: """ Gets details of a job execution. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/iot-jobs-data-2017-09-29/DescribeJobExecution>`_ **Request Syntax** :: response = client.describe_job_execution( jobId='string', thingName='string', includeJobDocument=True|False, executionNumber=123 ) **Response Syntax** :: { 'execution': { 'jobId': 'string', 'thingName': 'string', 'status': 'QUEUED'|'IN_PROGRESS'|'SUCCEEDED'|'FAILED'|'TIMED_OUT'|'REJECTED'|'REMOVED'|'CANCELED', 'statusDetails': { 'string': 'string' }, 'queuedAt': 123, 'startedAt': 123, 'lastUpdatedAt': 123, 'approximateSecondsBeforeTimedOut': 123, 'versionNumber': 123, 'executionNumber': 123, 'jobDocument': 'string' } } **Response Structure** - *(dict) --* - **execution** *(dict) --* Contains data about a job execution. - **jobId** *(string) --* The unique identifier you assigned to this job when it was created. - **thingName** *(string) --* The name of the thing that is executing the job. - **status** *(string) --* The status of the job execution. Can be one of: "QUEUED", "IN_PROGRESS", "FAILED", "SUCCESS", "CANCELED", "REJECTED", or "REMOVED". - **statusDetails** *(dict) --* A collection of name/value pairs that describe the status of the job execution. - *(string) --* - *(string) --* - **queuedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution was enqueued. - **startedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution was started. - **lastUpdatedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution was last updated. - **approximateSecondsBeforeTimedOut** *(integer) --* The estimated number of seconds that remain before the job execution status will be changed to ``TIMED_OUT`` . - **versionNumber** *(integer) --* The version of the job execution. Job execution versions are incremented each time they are updated by a device. - **executionNumber** *(integer) --* A number that identifies a particular job execution on a particular device. It can be used later in commands that return or update job execution information. - **jobDocument** *(string) --* The content of the job document. :type jobId: string :param jobId: **[REQUIRED]** The unique identifier assigned to this job when it was created. :type thingName: string :param thingName: **[REQUIRED]** The thing name associated with the device the job execution is running on. :type includeJobDocument: boolean :param includeJobDocument: Optional. When set to true, the response contains the job document. The default is false. :type executionNumber: integer :param executionNumber: Optional. A number that identifies a particular job execution on a particular device. If not specified, the latest job execution is returned. :rtype: dict :returns: """ pass def generate_presigned_url(self, ClientMethod: str = None, Params: Dict = None, ExpiresIn: int = None, HttpMethod: str = None): """ Generate a presigned url given a client, its method, and arguments :type ClientMethod: string :param ClientMethod: The client method to presign for :type Params: dict :param Params: The parameters normally passed to ``ClientMethod``. :type ExpiresIn: int :param ExpiresIn: The number of seconds the presigned url is valid for. By default it expires in an hour (3600 seconds) :type HttpMethod: string :param HttpMethod: The http method to use on the generated url. By default, the http method is whatever is used in the method\'s model. :returns: The presigned url """ pass def get_paginator(self, operation_name: str = None) -> Paginator: """ Create a paginator for an operation. :type operation_name: string :param operation_name: The operation name. This is the same name as the method name on the client. For example, if the method name is ``create_foo``, and you\'d normally invoke the operation as ``client.create_foo(**kwargs)``, if the ``create_foo`` operation can be paginated, you can use the call ``client.get_paginator(\"create_foo\")``. :raise OperationNotPageableError: Raised if the operation is not pageable. You can use the ``client.can_paginate`` method to check if an operation is pageable. :rtype: L{botocore.paginate.Paginator} :return: A paginator object. """ pass def get_pending_job_executions(self, thingName: str) -> Dict: """ Gets the list of all jobs for a thing that are not in a terminal status. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/iot-jobs-data-2017-09-29/GetPendingJobExecutions>`_ **Request Syntax** :: response = client.get_pending_job_executions( thingName='string' ) **Response Syntax** :: { 'inProgressJobs': [ { 'jobId': 'string', 'queuedAt': 123, 'startedAt': 123, 'lastUpdatedAt': 123, 'versionNumber': 123, 'executionNumber': 123 }, ], 'queuedJobs': [ { 'jobId': 'string', 'queuedAt': 123, 'startedAt': 123, 'lastUpdatedAt': 123, 'versionNumber': 123, 'executionNumber': 123 }, ] } **Response Structure** - *(dict) --* - **inProgressJobs** *(list) --* A list of JobExecutionSummary objects with status IN_PROGRESS. - *(dict) --* Contains a subset of information about a job execution. - **jobId** *(string) --* The unique identifier you assigned to this job when it was created. - **queuedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution was enqueued. - **startedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution started. - **lastUpdatedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution was last updated. - **versionNumber** *(integer) --* The version of the job execution. Job execution versions are incremented each time AWS IoT Jobs receives an update from a device. - **executionNumber** *(integer) --* A number that identifies a particular job execution on a particular device. - **queuedJobs** *(list) --* A list of JobExecutionSummary objects with status QUEUED. - *(dict) --* Contains a subset of information about a job execution. - **jobId** *(string) --* The unique identifier you assigned to this job when it was created. - **queuedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution was enqueued. - **startedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution started. - **lastUpdatedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution was last updated. - **versionNumber** *(integer) --* The version of the job execution. Job execution versions are incremented each time AWS IoT Jobs receives an update from a device. - **executionNumber** *(integer) --* A number that identifies a particular job execution on a particular device. :type thingName: string :param thingName: **[REQUIRED]** The name of the thing that is executing the job. :rtype: dict :returns: """ pass def get_waiter(self, waiter_name: str = None) -> Waiter: """ Returns an object that can wait for some condition. :type waiter_name: str :param waiter_name: The name of the waiter to get. See the waiters section of the service docs for a list of available waiters. :returns: The specified waiter object. :rtype: botocore.waiter.Waiter """ pass def start_next_pending_job_execution(self, thingName: str, statusDetails: Dict = None, stepTimeoutInMinutes: int = None) -> Dict: """ Gets and starts the next pending (status IN_PROGRESS or QUEUED) job execution for a thing. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/iot-jobs-data-2017-09-29/StartNextPendingJobExecution>`_ **Request Syntax** :: response = client.start_next_pending_job_execution( thingName='string', statusDetails={ 'string': 'string' }, stepTimeoutInMinutes=123 ) **Response Syntax** :: { 'execution': { 'jobId': 'string', 'thingName': 'string', 'status': 'QUEUED'|'IN_PROGRESS'|'SUCCEEDED'|'FAILED'|'TIMED_OUT'|'REJECTED'|'REMOVED'|'CANCELED', 'statusDetails': { 'string': 'string' }, 'queuedAt': 123, 'startedAt': 123, 'lastUpdatedAt': 123, 'approximateSecondsBeforeTimedOut': 123, 'versionNumber': 123, 'executionNumber': 123, 'jobDocument': 'string' } } **Response Structure** - *(dict) --* - **execution** *(dict) --* A JobExecution object. - **jobId** *(string) --* The unique identifier you assigned to this job when it was created. - **thingName** *(string) --* The name of the thing that is executing the job. - **status** *(string) --* The status of the job execution. Can be one of: "QUEUED", "IN_PROGRESS", "FAILED", "SUCCESS", "CANCELED", "REJECTED", or "REMOVED". - **statusDetails** *(dict) --* A collection of name/value pairs that describe the status of the job execution. - *(string) --* - *(string) --* - **queuedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution was enqueued. - **startedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution was started. - **lastUpdatedAt** *(integer) --* The time, in milliseconds since the epoch, when the job execution was last updated. - **approximateSecondsBeforeTimedOut** *(integer) --* The estimated number of seconds that remain before the job execution status will be changed to ``TIMED_OUT`` . - **versionNumber** *(integer) --* The version of the job execution. Job execution versions are incremented each time they are updated by a device. - **executionNumber** *(integer) --* A number that identifies a particular job execution on a particular device. It can be used later in commands that return or update job execution information. - **jobDocument** *(string) --* The content of the job document. :type thingName: string :param thingName: **[REQUIRED]** The name of the thing associated with the device. :type statusDetails: dict :param statusDetails: A collection of name/value pairs that describe the status of the job execution. If not specified, the statusDetails are unchanged. - *(string) --* - *(string) --* :type stepTimeoutInMinutes: integer :param stepTimeoutInMinutes: Specifies the amount of time this device has to finish execution of this job. If the job execution status is not set to a terminal state before this timer expires, or before the timer is reset (by calling ``UpdateJobExecution`` , setting the status to ``IN_PROGRESS`` and specifying a new timeout value in field ``stepTimeoutInMinutes`` ) the job execution status will be automatically set to ``TIMED_OUT`` . Note that setting this timeout has no effect on that job execution timeout which may have been specified when the job was created (``CreateJob`` using field ``timeoutConfig`` ). :rtype: dict :returns: """ pass def update_job_execution(self, jobId: str, thingName: str, status: str, statusDetails: Dict = None, stepTimeoutInMinutes: int = None, expectedVersion: int = None, includeJobExecutionState: bool = None, includeJobDocument: bool = None, executionNumber: int = None) -> Dict: """ Updates the status of a job execution. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/iot-jobs-data-2017-09-29/UpdateJobExecution>`_ **Request Syntax** :: response = client.update_job_execution( jobId='string', thingName='string', status='QUEUED'|'IN_PROGRESS'|'SUCCEEDED'|'FAILED'|'TIMED_OUT'|'REJECTED'|'REMOVED'|'CANCELED', statusDetails={ 'string': 'string' }, stepTimeoutInMinutes=123, expectedVersion=123, includeJobExecutionState=True|False, includeJobDocument=True|False, executionNumber=123 ) **Response Syntax** :: { 'executionState': { 'status': 'QUEUED'|'IN_PROGRESS'|'SUCCEEDED'|'FAILED'|'TIMED_OUT'|'REJECTED'|'REMOVED'|'CANCELED', 'statusDetails': { 'string': 'string' }, 'versionNumber': 123 }, 'jobDocument': 'string' } **Response Structure** - *(dict) --* - **executionState** *(dict) --* A JobExecutionState object. - **status** *(string) --* The status of the job execution. Can be one of: "QUEUED", "IN_PROGRESS", "FAILED", "SUCCESS", "CANCELED", "REJECTED", or "REMOVED". - **statusDetails** *(dict) --* A collection of name/value pairs that describe the status of the job execution. - *(string) --* - *(string) --* - **versionNumber** *(integer) --* The version of the job execution. Job execution versions are incremented each time they are updated by a device. - **jobDocument** *(string) --* The contents of the Job Documents. :type jobId: string :param jobId: **[REQUIRED]** The unique identifier assigned to this job when it was created. :type thingName: string :param thingName: **[REQUIRED]** The name of the thing associated with the device. :type status: string :param status: **[REQUIRED]** The new status for the job execution (IN_PROGRESS, FAILED, SUCCESS, or REJECTED). This must be specified on every update. :type statusDetails: dict :param statusDetails: Optional. A collection of name/value pairs that describe the status of the job execution. If not specified, the statusDetails are unchanged. - *(string) --* - *(string) --* :type stepTimeoutInMinutes: integer :param stepTimeoutInMinutes: Specifies the amount of time this device has to finish execution of this job. If the job execution status is not set to a terminal state before this timer expires, or before the timer is reset (by again calling ``UpdateJobExecution`` , setting the status to ``IN_PROGRESS`` and specifying a new timeout value in this field) the job execution status will be automatically set to ``TIMED_OUT`` . Note that setting or resetting this timeout has no effect on that job execution timeout which may have been specified when the job was created (``CreateJob`` using field ``timeoutConfig`` ). :type expectedVersion: integer :param expectedVersion: Optional. The expected current version of the job execution. Each time you update the job execution, its version is incremented. If the version of the job execution stored in Jobs does not match, the update is rejected with a VersionMismatch error, and an ErrorResponse that contains the current job execution status data is returned. (This makes it unnecessary to perform a separate DescribeJobExecution request in order to obtain the job execution status data.) :type includeJobExecutionState: boolean :param includeJobExecutionState: Optional. When included and set to true, the response contains the JobExecutionState data. The default is false. :type includeJobDocument: boolean :param includeJobDocument: Optional. When set to true, the response contains the job document. The default is false. :type executionNumber: integer :param executionNumber: Optional. A number that identifies a particular job execution on a particular device. :rtype: dict :returns: """ pass
butterfree/transform/transformations/__init__.py
fossabot/butterfree
208
11110713
"""Holds all transformations to be used by Features. A transformation must inherit from a TransformComponent and handle data modification, renaming and cast types using parent's (a Feature) information. """ from butterfree.transform.transformations.aggregated_transform import ( AggregatedTransform, ) from butterfree.transform.transformations.custom_transform import CustomTransform from butterfree.transform.transformations.spark_function_transform import ( SparkFunctionTransform, ) from butterfree.transform.transformations.sql_expression_transform import ( SQLExpressionTransform, ) from butterfree.transform.transformations.stack_transform import StackTransform from butterfree.transform.transformations.transform_component import TransformComponent __all__ = [ "AggregatedTransform", "CustomTransform", "SparkFunctionTransform", "SQLExpressionTransform", "StackTransform", "TransformComponent", ]
model/third_party/HMNet/DataLoader/infinibatch/infinibatch/torch/data.py
NickSchoelkopf/SummerTime
178
11110727
<filename>model/third_party/HMNet/DataLoader/infinibatch/infinibatch/torch/data.py # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch from infinibatch.iterators import CheckpointableIterator from infinibatch.datasets import chunked_dataset_iterator from typing import Union, Iterable, Any # @TODO: This has been tested once, but we have no regression test presently. I am worried tests will fail if Torch is not installed. class IterableCheckpointedDataset(torch.utils.data.IterableDataset): """ Wraps a CheckpointableIterator into a PyTorch IterableDataset, which is recognized by its type by PyTorch's DataLoader class. """ def __init__(self, source: CheckpointableIterator): super().__init__() self._source = source def __iter__(self): # this is called in the forked clone worker_info = torch.utils.data.get_worker_info() assert ( worker_info is None or worker_info.num_workers == 1 ) # not supported since we can't get at the checkpoint for each worker return iter(self._source) # @TODO: This is currently untested, and may not work presently. class IterableChunkedDataset(torch.utils.data.IterableDataset): def __init__( self, paths: Union[str, Iterable[str]], shuffle: bool = True, buffer_size: int = 2 ** 20, transform=None, seed: int = None, world_size: int = 1, rank: int = 0, num_workers_per_rank: int = 1, ): super().__init__() self.rank = rank self.num_workers_per_rank = num_workers_per_rank # instance_rank is set assuming that num_workers_per_rank = 1 and adapted dynamically in __iter__ self.dataset = chunked_dataset_iterator( paths, shuffle=shuffle, buffer_size=buffer_size, transform=transform, seed=seed, num_instances=world_size * num_workers_per_rank, instance_rank=rank, ) def __iter__(self): worker_info = torch.utils.data.get_worker_info() if worker_info is None: # single-process data loading self.dataset._instance_rank = self.rank else: assert worker_info.num_workers == self.num_workers_per_rank self.dataset._instance_rank = ( self.rank * self.num_workers_per_rank + worker_info.id ) return iter(self.dataset)
Lib/test/test_compiler/testcorpus/60_try_except.py
diogommartins/cinder
1,886
11110742
try: a except Exc: b
ckg/report_manager/apps/apps_config.py
igg-bioinfo/CKG
189
11110776
<reponame>igg-bioinfo/CKG stats_file = "../../data/imports/stats/stats.hdf" logo = '../static/img/logo.png' footer = '<div id="PageFooter"><p> The Clinical Knowledge Graph has been implemented by <a href="mailto:<EMAIL>"><NAME></a>, <a><NAME></a> and <a href="mailto:<EMAIL>"><NAME></a></p></br> <p>This tool is used by the Clinical Proteomics Department, Prof. <NAME>, at <a href="http://www.cpr.ku.dk">Novo Nordisk Foundation Center for Protein Reseach</a></p></div>' projectPage = {"overview":[ ("overview", [], ["basicTable"], {}), ("number_subjects", [], ["basicTable"], {}), ("number_analytical_samples", [], ["basicTable"], {}) ] } proteomicsPage= {"overview":[ ("number_peptides_analytical_sample", [], ["basicBarPlot"], {"x_title":"Analytical sample", "y_title":"number of peptides"}), ("number_proteins_analytical_sample", [], ["basicBarPlot"], {"x_title":"Analytical sample", "y_title":"number of proteins"}), ("number_modified_proteins_analytical_sample", [], ["basicBarPlot"], {"x_title":"Analytical sample", "y_title":"number of modified proteins"}) ], "stratification":[ ("identified_proteins_sample_group", ["pca", "tsne", "umap"], ["scatterPlot"], {"imputation":True, "imputation_method":"Mixed", "x_title":"PC1", "y_title":"PC2", "components":2, "perplexity":40, "n_iter":1000, "init":'pca'}) ], "regulation":[ ("identified_proteins_sample_group_with_gene", ["ttest"], ["volcanoPlot", "basicTable"], {"imputation":True, "imputation_method":"Mixed", "alpha":0.05, "drop_cols":["sample","gene_name"], "name":"name"}) ], #"correlation":[ # ("identified_proteins_sample_group", # ["correlation"], # ["3Dnetwork", "basicTable"], # {"source":"node1", "target":"node2"}) # ], "action":[ ("drug_acts_on_proteins", [], ["basicTable", "3Dnetwork"], {"replace":[("ACTION","inhibition"),("PROTEINS",'"O60341"')]}) ] } wesPage= {"overview":[ ("number_somatic_mutations_by_type_analytical_sample",["basicBarPlot", "basicTable"]), ], "targets":[ ("target_analysis_variants",["basicTable", "3dNetwork"]) ] } ### Project Page configuration pages = {"projectPage":{ "project": projectPage, "proteomics": proteomicsPage, #"wes": wesPage }, "importsPage":{"stats_file":stats_file}, "projectCreationPage":{} } ## Overview ## Project Name ## Project description ## Studied disease ## Person responsible ## Participants ## Number of enrolled subjects
pyvisa/rname.py
jpsecher/pyvisa
393
11110812
# -*- coding: utf-8 -*- """Functions and classes to parse and assemble resource name. :copyright: 2014-2020 by PyVISA Authors, see AUTHORS for more details. :license: MIT, see LICENSE for more details. """ import contextlib import re from collections import defaultdict from dataclasses import dataclass, field, fields from typing import ( TYPE_CHECKING, Callable, Dict, Iterable, List, Optional, Set, Tuple, Type, TypeVar, ) from typing_extensions import ClassVar from . import constants, errors, logger if TYPE_CHECKING: from .resources import Resource # noqa # pragma: no cover #: Interface types for which a subclass of ResourName exists _INTERFACE_TYPES: Set[str] = set() #: Resource Class for Interface type _RESOURCE_CLASSES: Dict[str, Set[str]] = defaultdict(set) #: Subclasses of ResourceName matching an interface type, resource class pair _SUBCLASSES: Dict[Tuple[str, str], Type["ResourceName"]] = {} # DEFAULT Resource Class for a given interface type. _DEFAULT_RC: Dict[str, str] = {} class InvalidResourceName(ValueError): """Exception raised when the resource name cannot be parsed.""" def __init__(self, msg: str) -> None: self.msg = msg @classmethod def bad_syntax( cls, syntax: str, resource_name: str, ex: Exception = None ) -> "InvalidResourceName": """Build an exception when the resource name cannot be parsed.""" if ex: msg = "The syntax is '%s' (%s)." % (syntax, ex) else: msg = "The syntax is '%s'." % syntax msg = "Could not parse '%s'. %s" % (resource_name, msg) return cls(msg) @classmethod def subclass_notfound( cls, interface_type_resource_class: Tuple[str, str], resource_name: str = None ) -> "InvalidResourceName": """Build an exception when no parser has been registered for a pair.""" msg = "Parser not found for: %s." % (interface_type_resource_class,) if resource_name: msg = "Could not parse '%s'. %s" % (resource_name, msg) return cls(msg) @classmethod def rc_notfound( cls, interface_type: str, resource_name: str = None ) -> "InvalidResourceName": """Build an exception when no resource class is provided and no default is found.""" msg = ( "Resource class for %s not provided and default not found." % interface_type ) if resource_name: msg = "Could not parse '%s'. %s" % (resource_name, msg) return cls(msg) def __str__(self) -> str: return self.msg T = TypeVar("T", bound=Type["ResourceName"]) def register_subclass(cls: T) -> T: """Register a subclass for a given interface type and resource class.""" # Assemble the format string based on the resource parts fmt = cls.interface_type syntax = cls.interface_type for ndx, f in enumerate(fields(cls)): sep = "::" if ndx else "" fmt += sep + "{0.%s}" % f.name if not f.default: syntax += sep + f.name.replace("_", " ") else: syntax += "[" + sep + f.name.replace("_", " ") + "]" fmt += "::" + cls.resource_class if not cls.is_rc_optional: syntax += "::" + cls.resource_class else: syntax += "[" + "::" + cls.resource_class + "]" cls._visa_syntax = syntax cls._canonical_fmt = fmt key = cls.interface_type, cls.resource_class if key in _SUBCLASSES: raise ValueError("Class already registered for %s and %s" % key) _SUBCLASSES[(cls.interface_type, cls.resource_class)] = cls _INTERFACE_TYPES.add(cls.interface_type) _RESOURCE_CLASSES[cls.interface_type].add(cls.resource_class) if cls.is_rc_optional: if cls.interface_type in _DEFAULT_RC: raise ValueError("Default already specified for %s" % cls.interface_type) _DEFAULT_RC[cls.interface_type] = cls.resource_class return cls class ResourceName: """Base class for ResourceNames to be used as a mixin.""" #: Interface type string interface_type: ClassVar[str] #: Resource class string resource_class: ClassVar[str] #: Specifices if the resource class part of the string is optional. is_rc_optional: ClassVar[bool] = False #: Formatting string for canonical _canonical_fmt: str = field(init=False) #: VISA syntax for resource _visa_syntax: str = field(init=False) #: VISA syntax for resource _fields: Tuple[str, ...] = field(init=False) #: Resource name provided by the user (not empty only when parsing) user: str = field(init=False) def __post_init__(self): # Ensure that all mandatory arguments have been passed for f in fields(self): if not getattr(self, f.name): raise TypeError(f.name + " is a required parameter") self._fields = tuple(f.name for f in fields(self)) @property def interface_type_const(self) -> constants.InterfaceType: try: return getattr(constants.InterfaceType, self.interface_type.lower()) except Exception: return constants.InterfaceType.unknown @classmethod def from_string(cls, resource_name: str) -> "ResourceName": """Parse a resource name and return a ResourceName Parameters ---------- resource_name : str Name of the resource Raises ------ InvalidResourceName Raised if the resource name is invalid. """ # TODO Remote VISA uname = resource_name.upper() for interface_type in _INTERFACE_TYPES: # Loop through all known interface types until we found one # that matches the beginning of the resource name if not uname.startswith(interface_type): continue parts: List[str] if len(resource_name) == len(interface_type): parts = [] else: parts = resource_name[len(interface_type) :].split("::") # Try to match the last part of the resource name to # one of the known resource classes for the given interface type. # If not possible, use the default resource class # for the given interface type. if parts and parts[-1] in _RESOURCE_CLASSES[interface_type]: parts, resource_class = parts[:-1], parts[-1] else: try: resource_class = _DEFAULT_RC[interface_type] except KeyError: raise InvalidResourceName.rc_notfound(interface_type, resource_name) # Look for the subclass try: subclass = _SUBCLASSES[(interface_type, resource_class)] except KeyError: raise InvalidResourceName.subclass_notfound( (interface_type, resource_class), resource_name ) # And create the object try: rn = subclass.from_parts(*parts) rn.user = resource_name return rn except (ValueError, TypeError) as ex: raise InvalidResourceName.bad_syntax( subclass._visa_syntax, resource_name, ex ) raise InvalidResourceName( "Could not parse %s: unknown interface type" % resource_name ) @classmethod def from_kwargs(cls, **kwargs) -> "ResourceName": """Build a resource from keyword arguments.""" interface_type = kwargs.pop("interface_type") if interface_type not in _INTERFACE_TYPES: raise InvalidResourceName("Unknown interface type: %s" % interface_type) try: resource_class = kwargs.pop("resource_class", _DEFAULT_RC[interface_type]) except KeyError: raise InvalidResourceName.rc_notfound(interface_type) # Look for the subclass try: subclass = _SUBCLASSES[(interface_type, resource_class)] except KeyError: raise InvalidResourceName.subclass_notfound( (interface_type, resource_class) ) # And create the object try: # Always use for subclasses that do take arguments return subclass(**kwargs) # type: ignore except (ValueError, TypeError) as ex: raise InvalidResourceName(str(ex)) # Implemented when building concrete subclass in build_rn_class @classmethod def from_parts(cls, *parts): """Construct a resource name from a list of parts.""" resource_parts = fields(cls) if len(parts) < sum(1 for f in resource_parts if f.default): raise ValueError("not enough parts") elif len(parts) > len(resource_parts): raise ValueError("too many parts") k, rp = resource_parts[0], resource_parts[1:] # The first part (just after the interface_type) is the only # optional part which can be empty and therefore the # default value should be used. p, pending = parts[0], parts[1:] kwargs = {k.name: k.default if p == "" else p} # The rest of the parts are consumed when mandatory elements are required. while len(pending) < len(rp): k, rp = rp[0], rp[1:] if not k.default: # This is impossible as far as I can tell for currently implemented # resource names if not pending: raise ValueError(k.name + " part is mandatory") # pragma: no cover p, pending = pending[0], pending[1:] if not p: raise ValueError(k.name + " part is mandatory") kwargs[k.name] = p else: kwargs[k.name] = k.default # When the length of the pending provided and resource parts # are equal, we just consume everything. kwargs.update((k.name, p) for k, p in zip(rp, pending)) return cls(**kwargs) def __str__(self): return self._canonical_fmt.format(self) # Build subclasses for each resource @register_subclass @dataclass class GPIBInstr(ResourceName): """GPIB INSTR The syntax is: GPIB[board]::primary_address[::secondary_address][::INSTR] """ #: GPIB board to use. board: str = "0" #: Primary address of the device to connect to primary_address: str = "" #: Secondary address of the device to connect to # Reference for the GPIB secondary address # https://www.mathworks.com/help/instrument/secondaryaddress.html secondary_address: str = "0" interface_type: ClassVar[str] = "GPIB" resource_class: ClassVar[str] = "INSTR" is_rc_optional: ClassVar[bool] = True @register_subclass @dataclass class GPIBIntfc(ResourceName): """GPIB INTFC The syntax is: GPIB[board]::INTFC """ #: GPIB board to use. board: str = "0" interface_type: ClassVar[str] = "GPIB" resource_class: ClassVar[str] = "INTFC" @register_subclass @dataclass class ASRLInstr(ResourceName): """ASRL INSTR The syntax is: ASRL[board]::INSTR """ #: Serial connection to use. board: str = "0" interface_type: ClassVar[str] = "ASRL" resource_class: ClassVar[str] = "INSTR" is_rc_optional: ClassVar[bool] = True @register_subclass @dataclass class TCPIPInstr(ResourceName): """TCPIP INSTR The syntax is: TCPIP[board]::host address[::LAN device name][::INSTR] """ #: Board to use. board: str = "0" #: Host address of the device (IPv4 or host name) host_address: str = "" #: LAN device name of the device lan_device_name: str = "inst0" interface_type: ClassVar[str] = "TCPIP" resource_class: ClassVar[str] = "INSTR" is_rc_optional: ClassVar[bool] = True @register_subclass @dataclass class TCPIPSocket(ResourceName): """TCPIP SOCKET The syntax is: TCPIP[board]::host address[::port]::SOCKET """ #: Board to use board: str = "0" #: Host address of the device (IPv4 or host name) host_address: str = "" #: Port on which to establish the connection port: str = "" interface_type: ClassVar[str] = "TCPIP" resource_class: ClassVar[str] = "SOCKET" @register_subclass @dataclass class USBInstr(ResourceName): """USB INSTR The syntax is: USB[board]::manufacturer ID::model code::serial number[::USB interface number][::INSTR] """ #: USB board to use. board: str = "0" #: ID of the instrument manufacturer. manufacturer_id: str = "" #: Code identifying the model of the instrument. model_code: str = "" #: Serial number of the instrument. serial_number: str = "" #: USB interface number. usb_interface_number: str = "0" interface_type: ClassVar[str] = "USB" resource_class: ClassVar[str] = "INSTR" is_rc_optional: ClassVar[bool] = True @register_subclass @dataclass class USBRaw(ResourceName): """USB RAW The syntax is: USB[board]::manufacturer ID::model code::serial number[::USB interface number]::RAW """ #: USB board to use. board: str = "0" #: ID of the instrument manufacturer. manufacturer_id: str = "" #: Code identifying the model of the instrument. model_code: str = "" #: Serial number of the instrument. serial_number: str = "" #: USB interface number. usb_interface_number: str = "0" interface_type: ClassVar[str] = "USB" resource_class: ClassVar[str] = "RAW" @register_subclass @dataclass class PXIBackplane(ResourceName): """PXI BACKPLANE The syntax is: PXI[interface]::chassis number::BACKPLANE """ #: PXI interface number. interface: str = "0" #: PXI chassis number chassis_number: str = "" interface_type: ClassVar[str] = "PXI" resource_class: ClassVar[str] = "BACKPLANE" @register_subclass @dataclass class PXIMemacc(ResourceName): """PXI MEMACC The syntax is: PXI[interface]::MEMACC """ #: PXI interface number interface: str = "0" interface_type: ClassVar[str] = "PXI" resource_class: ClassVar[str] = "MEMACC" @register_subclass @dataclass class VXIBackplane(ResourceName): """VXI BACKPLANE The syntax is: VXI[board]::VXI logical address::BACKPLANE """ #: VXI board board: str = "0" #: VXI logical address vxi_logical_address: str = "" interface_type: ClassVar[str] = "VXI" resource_class: ClassVar[str] = "BACKPLANE" @register_subclass @dataclass class VXIInstr(ResourceName): """VXI INSTR The syntax is: VXI[board]::VXI logical address[::INSTR] """ #: VXI board board: str = "0" #: VXI logical address vxi_logical_address: str = "" interface_type: ClassVar[str] = "VXI" resource_class: ClassVar[str] = "INSTR" is_rc_optional: ClassVar[bool] = True @register_subclass @dataclass class VXIMemacc(ResourceName): """VXI MEMACC The syntax is: VXI[board]::MEMACC """ #: VXI board board: str = "0" interface_type: ClassVar[str] = "VXI" resource_class: ClassVar[str] = "MEMACC" @register_subclass @dataclass class VXIServant(ResourceName): """VXI SERVANT The syntax is: VXI[board]::SERVANT """ #: VXI board board: str = "0" interface_type: ClassVar[str] = "VXI" resource_class: ClassVar[str] = "SERVANT" # TODO 3 types of PXI INSTR # TODO ENET-Serial INSTR # TODO Remote NI-VISA def assemble_canonical_name(**kwargs) -> str: """Build the canonical resource name from a set of keyword arguments.""" return str(ResourceName.from_kwargs(**kwargs)) def to_canonical_name(resource_name: str) -> str: """Parse a resource name and return the canonical version.""" return str(ResourceName.from_string(resource_name)) parse_resource_name = ResourceName.from_string def filter(resources: Iterable[str], query: str) -> Tuple[str, ...]: r"""Filter a list of resources according to a query expression. The search criteria specified in the query parameter has two parts: 1. a VISA regular expression over a resource string. 2. optional logical expression over attribute values (not implemented in this function, see below). .. note: The VISA regular expression syntax is not the same as the Python regular expression syntax. (see below) The regular expression is matched against the resource strings of resources known to the VISA Resource Manager. If the resource string matches the regular expression, the attribute values of the resource are then matched against the expression over attribute values. If the match is successful, the resource has met the search criteria and gets added to the list of resources found. By using the optional attribute expression, you can construct flexible and powerful expressions with the use of logical ANDs (&&), ORs(||), and NOTs (!). You can use equal (==) and unequal (!=) comparators to compare attributes of any type, and other inequality comparators (>, <, >=, <=) to compare attributes of numeric type. Use only global attributes in the attribute expression. Local attributes are not allowed in the logical expression part of the expr parameter. Symbol Meaning ---------- ---------- ? Matches any one character. \ Makes the character that follows it an ordinary character instead of special character. For example, when a question mark follows a backslash (\?), it matches the ? character instead of any one character. [list] Matches any one character from the enclosed list. You can use a hyphen to match a range of characters. [^list] Matches any character not in the enclosed list. You can use a hyphen to match a range of characters. * Matches 0 or more occurrences of the preceding character or expression. + Matches 1 or more occurrences of the preceding character or expression. Exp|exp Matches either the preceding or following expression. The or operator | matches the entire expression that precedes or follows it and not just the character that precedes or follows it. For example, VXI|GPIB means (VXI)|(GPIB), not VX(I|G)PIB. (exp) Grouping characters or expressions. """ if "{" in query: query, _ = query.split("{") logger.warning( "optional part of the query expression not supported. " "See filter2" ) try: query = query.replace("?", ".") matcher = re.compile(query, re.IGNORECASE) except re.error: raise errors.VisaIOError(constants.VI_ERROR_INV_EXPR) return tuple(res for res in resources if matcher.match(res)) class _AttrGetter: """Smart attr getter infering common attribute from resource name. Used to implement filter2 """ def __init__( self, resource_name: str, open_resource: Callable[[str], "Resource"] ) -> None: self.resource_name = resource_name self.parsed = parse_resource_name(resource_name) self.resource = None self.open_resource = open_resource def __getattr__(self, item): # noqa: C901 if item == "VI_ATTR_INTF_NUM": try: return int(self.parsed.board) except AttributeError: return int(self.interface) elif item == "VI_ATTR_MANF_ID": if not isinstance(self.parsed, (USBInstr, USBRaw)): raise self.raise_missing_attr(item) else: return self.parsed.manufacturer_id elif item == "VI_ATTR_MODEL_CODE": if not isinstance(self.parsed, (USBInstr, USBRaw)): raise self.raise_missing_attr(item) else: return self.parsed.model_code elif item == "VI_ATTR_USB_SERIAL_NUM": if not isinstance(self.parsed, (USBInstr, USBRaw)): raise self.raise_missing_attr(item) else: return self.parsed.serial_number elif item == "VI_ATTR_USB_INTFC_NUM": if not isinstance(self.parsed, (USBInstr, USBRaw)): raise self.raise_missing_attr(item) else: return int(self.parsed.board) elif item == "VI_ATTR_TCPIP_ADDR": if not isinstance(self.parsed, (TCPIPInstr, TCPIPSocket)): raise self.raise_missing_attr(item) else: return self.parsed.host_address elif item == "VI_ATTR_TCPIP_DEVICE_NAME": if not isinstance(self.parsed, TCPIPInstr): raise self.raise_missing_attr(item) else: return self.parsed.lan_device_name elif item == "VI_ATTR_TCPIP_PORT": if not isinstance(self.parsed, TCPIPSocket): raise self.raise_missing_attr(item) else: return int(self.parsed.port) elif item == "VI_ATTR_GPIB_PRIMARY_ADDR": if not isinstance(self.parsed, GPIBInstr): raise self.raise_missing_attr(item) else: return int(self.parsed.primary_address) elif item == "VI_ATTR_GPIB_SECONDARY_ADDR": if not isinstance(self.parsed, GPIBInstr): raise self.raise_missing_attr(item) else: return int(self.parsed.secondary_address) elif item == "VI_ATTR_PXI_CHASSIS": if not isinstance(self.parsed, PXIBackplane): raise self.raise_missing_attr(item) else: return int(self.parsed.chassis_number) elif item == "VI_ATTR_MAINFRAME_LA": if not isinstance(self.parsed, (VXIInstr, VXIBackplane)): raise self.raise_missing_attr(item) else: return int(self.parsed.vxi_logical_address) if self.resource is None: self.resource = self.open_resource(self.resource_name) return self.resource.get_visa_attribute(item) def raise_missing_attr(self, item): raise errors.VisaIOError(constants.VI_ERROR_NSUP_ATTR) def filter2( resources: Iterable[str], query: str, open_resource: Callable[[str], "Resource"] ) -> Tuple[str, ...]: """Filter a list of resources according to a query expression. It accepts the optional part of the expression. .. warning: This function is experimental and unsafe as it uses eval, It also might require to open the resource. Parameters ---------- resources : Iterable[str] Iterable of resource name to filter. query : str The pattern to use for filtering open_resource : Callable[[str], Resource] Function to open a resource (typically ResourceManager().open_resource) """ optional: Optional[str] if "{" in query: try: query, optional = query.split("{") optional, _ = optional.split("}") except ValueError: raise errors.VisaIOError(constants.VI_ERROR_INV_EXPR) else: optional = None filtered = filter(resources, query) if not optional: return tuple(filtered) optional = optional.replace("&&", "and").replace("||", "or").replace("!", "not ") optional = optional.replace("VI_", "res.VI_") @contextlib.contextmanager def open_close(resource_name): getter = _AttrGetter(resource_name, open_resource) yield getter if getter.resource is not None: getter.resource.close() selected = [] for rn in filtered: with open_close(rn) as getter: try: if eval(optional, None, dict(res=getter)): selected.append(rn) except Exception: logger.exception("Failed to evaluate %s on %s", optional, rn) return tuple(selected)
utils/plot_debug.py
jswulff/mrflow
124
11110839
<reponame>jswulff/mrflow # -*- coding: utf-8 -*- """ Created on Sat Oct 24 18:16:46 2015 @author: jonas """ import numpy as np import flow_viz as viz import os have_plt=False try: from matplotlib import pyplot as plt plt._INSTALL_FIG_OBSERVER=True plt.rcParams['image.cmap'] = 'jet' plt.figure() plt.close() have_plt=True except: plt=None def imshow(*args, **kwargs): if plt is None: return plt.ion() plt.figure() plt.imshow(*args, **kwargs) plt.show() plt.pause(3) def imshow_perc(*args, **kwargs): if plt is None: return vmin=np.percentile(args[0],5) vmax=np.percentile(args[0],95) kwargs['vmin']=vmin kwargs['vmax']=vmax plt.ion() plt.figure() plt.imshow(*args, **kwargs) plt.show() plt.pause(3) def plot(*args): if plt is None: return plt.ion() plt.figure() plt.plot(*args) plt.show() plt.pause(3) def quiver(*args): if plt is None: return plt.ion() plt.figure() plt.quiver(*args) plt.show() plt.pause(3) def plot_quiver(pt, uv, title, masks=None, norm=-1, outpath='.'): if plt is None: return plt.ioff() if masks is None: masks = [np.ones(pt.shape[0])>0,] if norm > 0: uvlen = np.sqrt((uv**2).sum(axis=1)) uv[uvlen<norm,:] /= (1.0/norm) * uvlen[uvlen<norm][:,np.newaxis] colors = ['r','b','g','c','y'] plt.figure() for i,m in enumerate(masks): plt.quiver(pt[m,0], pt[m,1], uv[m,0], uv[m,1], color=colors[i%len(colors)], angles='xy', scale_units='xy', scale=1) plt.axis('equal') plt.title(title) plt.ylim([pt[:,1].max(),0]) save_figure(title, outpath) def plot_scatter(pt, title, I=None,masks=None, outpath='.'): if plt is None: return plt.ioff() if masks is None: masks = [np.ones(pt.shape[0])>0,] colors = ['r','b','g','c','y'] plt.figure() if I is not None: plt.imshow(I) for i,m in enumerate(masks): plt.plot(pt[m,0], pt[m,1], '.{}'.format(colors[i%len(colors)])) if I is not None: ymax = I.shape[0] xmax = I.shape[1] else: ymax = pt[:,1].max() xmax = pt[:,0].max() plt.axis('equal') plt.title(title) plt.ylim([ymax,0]) plt.xlim([0,xmax]) save_figure(title, outpath) def show(): if plt is None: return plt.show() def plot_flow(u,v,title,outpath='.'): if plt is None: return plt.ioff() Iuv = viz.computeFlowImage(u,v) plt.figure() plt.imshow(Iuv) plt.title(title) save_figure(title,outpath) def plot_image(x,title,colorbar=False,vmin=None,vmax=None,outpath='.',cmap=None): if plt is None: return plt.ioff() plt.figure() plt.imshow(x,interpolation='nearest',vmin=vmin,vmax=vmax,cmap=cmap) plt.xticks([]) plt.yticks([]) plt.title(title) if colorbar: plt.colorbar() save_figure(title,outpath) def plot_plot(y, title, legends=None,outpath='.'): if plt is None: return if np.array(y).ndim == 1: y = np.array(y).reshape((-1,1)) no_legends = legends is None if legends is None or len(legends) < y.shape[1]: legends = [''] * y.shape[1] plt.ioff() plt.figure() for d in range(y.shape[1]): plt.plot(y[:,d],label=legends[d]) if not no_legends: plt.legend() plt.title(title) save_figure(title,outpath) def save_figure(title,outpath='.'): if plt is None: return outdir = os.path.join(outpath, 'images') if not os.path.isdir(outdir): os.makedirs(outdir) fname = outdir + '/' + title.replace(' ', '') + '.png' plt.savefig(fname, dpi=200,bbox_inches='tight', pad_inches=0) plt.close()
examples/showcase/src/demos_widgets/hyperlink.py
takipsizad/pyjs
739
11110846
<reponame>takipsizad/pyjs """ The ``ui.Hyperlink`` class acts as an "internal" hyperlink to a particular state of the application. These states are stored in the application's history, allowing for the use of the Back and Next buttons in the browser to move between application states. The ``ui.Hyperlink`` class only makes sense in an application which keeps track of state using the ``History`` module. When the user clicks on a hyperlink, the application changes state by calling ``History.newItem(newState)``. The application then uses a history listener function to respond to the change in state in whatever way makes sense. """ from pyjamas.ui.SimplePanel import SimplePanel from pyjamas.ui.VerticalPanel import VerticalPanel from pyjamas.ui.HorizontalPanel import HorizontalPanel from pyjamas.ui.Hyperlink import Hyperlink from pyjamas.ui.Label import Label from pyjamas import History class HyperlinkDemo(SimplePanel): def __init__(self): SimplePanel.__init__(self) History.addHistoryListener(self) vPanel = VerticalPanel() self.stateDisplay = Label() vPanel.add(self.stateDisplay) hPanel = HorizontalPanel(Spacing=5) hPanel.add(Hyperlink("State 1", False, TargetHistoryToken="state number 1")) hPanel.add(Hyperlink("State 2", False, TargetHistoryToken="state number 2")) vPanel.add(hPanel) self.add(vPanel) def onHistoryChanged(self, state): self.stateDisplay.setText(state)
health_check/conf.py
witold-gren/django-health-check
739
11110863
from django.conf import settings HEALTH_CHECK = getattr(settings, 'HEALTH_CHECK', {}) HEALTH_CHECK.setdefault('DISK_USAGE_MAX', 90) HEALTH_CHECK.setdefault('MEMORY_MIN', 100) HEALTH_CHECK.setdefault('WARNINGS_AS_ERRORS', True)
REST/python/Targets/register-listening-tentacle.py
gdesai1234/OctopusDeploy-Api
199
11110895
<reponame>gdesai1234/OctopusDeploy-Api import json import requests octopus_server_uri = 'https://your.octopus.app/api' octopus_api_key = 'API-YOURAPIKEY' headers = {'X-Octopus-ApiKey': octopus_api_key} def get_octopus_resource(uri): response = requests.get(uri, headers=headers) response.raise_for_status() return json.loads(response.content.decode('utf-8')) def get_by_name(uri, name): resources = get_octopus_resource(uri) return next((x for x in resources if x['Name'] == name), None) space_name = 'Default' environment_names = ['Development', 'Test'] space = get_by_name('{0}/spaces/all'.format(octopus_server_uri), space_name) environments = get_octopus_resource('{0}/{1}/environments/all'.format(octopus_server_uri, space['Id'])) environment_ids = [environment['Id'] for environment in environments if environment['Name'] in environment_names] params = { 'host': 'your target hostname', 'port': '10933', 'type': 'TentaclePassive' } uri = '{0}/{1}/machines/discover'.format(octopus_server_uri, space['Id']) response = requests.get(uri, headers=headers, params=params) response.raise_for_status() discovered = json.loads(response.content.decode('utf-8')) target = { 'Endpoint': discovered['Endpoint'], 'EnvironmentIds': environment_ids, 'Name': discovered['Name'], 'Roles': ['your-target-role'] } uri = '{0}/{1}/machines'.format(octopus_server_uri, space['Id']) response = requests.post(uri, headers=headers, json=target) response.raise_for_status()
osf/migrations/0123_merge_20180803_1346.py
gaybro8777/osf.io
628
11110897
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-08-03 13:46 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('osf', '0122_auto_20180801_2105'), ('osf', '0121_generalize_schema_models'), ] operations = [ ]
examples/ls_hf_transformer_encoder_layer.py
HyeongminMoon/PatrickStar
494
11110903
<reponame>HyeongminMoon/PatrickStar # BSD 3-Clause License # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the psutil authors nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. try: from lightseq.training.ops.pytorch.transformer_encoder_layer import ( LSTransformerEncoderLayer, ) except ImportError: raise RuntimeError("pip install lightseq first!") class LSHFTransformerEncoderLayer(LSTransformerEncoderLayer): def __init__(self, *args, **kwargs): super(LSHFTransformerEncoderLayer, self).__init__(*args, **kwargs) def forward(self, hidden_states, encoder_padding_mask, *args, **kwargs): encoder_padding_mask /= -10000.0 encoder_padding_mask = encoder_padding_mask.squeeze() output = super().forward(hidden_states, encoder_padding_mask) return (output, None, None, None) def gen_bert_config(training_args, config): bert_config = LSTransformerEncoderLayer.get_config( max_batch_tokens=4096, max_seq_len=config.max_position_embeddings, hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, nhead=config.num_attention_heads, attn_prob_dropout_ratio=config.attention_probs_dropout_prob, activation_dropout_ratio=config.hidden_dropout_prob, hidden_dropout_ratio=config.hidden_dropout_prob, pre_layer_norm=False, fp16=training_args.use_fp16, local_rank=training_args.local_rank, activation_fn="gelu", ) return bert_config def get_hf_bert_enc_layer_params(layer): init_ws = [] init_bs = [] init_ws.append(layer.attention.self.query.weight.detach().clone()) init_bs.append(layer.attention.self.query.bias.detach().clone()) init_ws.append(layer.attention.self.key.weight.detach().clone()) init_bs.append(layer.attention.self.key.bias.detach().clone()) init_ws.append(layer.attention.self.value.weight.detach().clone()) init_bs.append(layer.attention.self.value.bias.detach().clone()) init_ws.append(layer.attention.output.dense.weight.detach().clone()) init_bs.append(layer.attention.output.dense.bias.detach().clone()) init_ws.append(layer.attention.output.LayerNorm.weight.detach().clone()) init_bs.append(layer.attention.output.LayerNorm.bias.detach().clone()) init_ws.append(layer.intermediate.dense.weight.detach().clone()) init_bs.append(layer.intermediate.dense.bias.detach().clone()) init_ws.append(layer.output.dense.weight.detach().clone()) init_bs.append(layer.output.dense.bias.detach().clone()) init_ws.append(layer.output.LayerNorm.weight.detach().clone()) init_bs.append(layer.output.LayerNorm.bias.detach().clone()) return init_ws, init_bs def inject_ls_enc_layer(model, training_args, config): for i in range(config.num_hidden_layers): bert_config = gen_bert_config(training_args, config) init_ws, init_bs = get_hf_bert_enc_layer_params(model.bert.encoder.layer[i]) model.bert.encoder.layer[i] = LSHFTransformerEncoderLayer( bert_config, init_ws, init_bs ).cuda()
fast_arrow/resources/option_chain.py
jwschmo/fast_arrow
143
11110933
<reponame>jwschmo/fast_arrow<gh_stars>100-1000 class OptionChain(object): @classmethod def fetch(cls, client, _id, symbol): """ fetch option chain for instrument """ url = "https://api.robinhood.com/options/chains/" params = { "equity_instrument_ids": _id, "state": "active", "tradability": "tradable" } data = client.get(url, params=params) def filter_func(x): return x["symbol"] == symbol results = list(filter(filter_func, data["results"])) return results[0]
examples/tile.py
salt-die/nurses_2
171
11110961
<filename>examples/tile.py import asyncio from pathlib import Path from nurses_2.app import App from nurses_2.widgets.image import Image from nurses_2.widgets.tiled_image import TiledImage LOGO_PATH = Path("images") / "python_discord_logo.png" LOGO_FLAT = Path("images") / "logo_solo_flat_256.png" class MyApp(App): async def on_start(self): tile_1 = Image(size=(10, 25), path=LOGO_PATH) tile_2 = Image(size=(9, 19), path=LOGO_FLAT) tiled_image = TiledImage(size=(25, 50), tile=tile_1) self.add_widget(tiled_image) await asyncio.sleep(5) tiled_image.tile = tile_2 await asyncio.sleep(4) tiled_image.allow_partial_tiling = False MyApp().run()
tools/query_tabular/filters.py
supernord/tools-iuc
142
11110984
#!/usr/binsenv python from __future__ import print_function import re import sys from itertools import chain class LineFilter(object): def __init__(self, source, filter_dict): self.source = source self.filter_dict = filter_dict self.func = lambda i, l: l.rstrip('\r\n') if l else None self.src_lines = [] self.src_line_cnt = 0 def xint(x): if isinstance(x, int): return x try: return int(x) except Exception: return x if x else None if not filter_dict: return if filter_dict['filter'] == 'regex': rgx = re.compile(filter_dict['pattern']) if filter_dict['action'] == 'exclude_match': self.func = lambda i, l: l if not rgx.match(l) else None elif filter_dict['action'] == 'include_match': self.func = lambda i, l: l if rgx.match(l) else None elif filter_dict['action'] == 'exclude_find': self.func = lambda i, l: l if not rgx.search(l) else None elif filter_dict['action'] == 'include_find': self.func = lambda i, l: l if rgx.search(l) else None elif filter_dict['filter'] == 'select_columns': cols = [int(c) - 1 for c in filter_dict['columns']] self.func = lambda i, l: self.select_columns(l, cols) elif filter_dict['filter'] == 'select_column_slices': cols = [x if isinstance(x, int) else [y if y is not None else None for y in [xint(k) for k in x.split(':')]] for x in [xint(c) for c in filter_dict['columns']]] if all([isinstance(x, int) for x in cols]): self.func = lambda i, l: self.select_columns(l, cols) else: cols = [slice(x[0], x[1], x[2] if len(x) > 2 else None) if isinstance(x, list) else x for x in cols] self.func = lambda i, l: self.select_slices(l, cols) elif filter_dict['filter'] == 'replace': p = filter_dict['pattern'] r = filter_dict['replace'] c = int(filter_dict['column']) - 1 if 'add' not in filter_dict\ or filter_dict['add'] not in ['prepend', 'append', 'before', 'after']: self.func = lambda i, l: '\t'.join( [x if j != c else re.sub(p, r, x) for j, x in enumerate(l.split('\t'))]) else: a = 0 if filter_dict['add'] == 'prepend'\ else min(0, c - 1) if filter_dict['add'] == 'before'\ else c + 1 if filter_dict['add'] == 'after'\ else None self.func = lambda i, l: self.replace_add(l, p, r, c, a) elif filter_dict['filter'] == 'prepend_line_num': self.func = lambda i, l: '%d\t%s' % (i, l) elif filter_dict['filter'] == 'append_line_num': self.func = lambda i, l: '%s\t%d' % (l.rstrip('\r\n'), i) elif filter_dict['filter'] == 'prepend_text': s = filter_dict['column_text'] self.func = lambda i, l: '%s\t%s' % (s, l) elif filter_dict['filter'] == 'append_text': s = filter_dict['column_text'] self.func = lambda i, l: '%s\t%s' % (l.rstrip('\r\n'), s) elif filter_dict['filter'] == 'skip': cnt = filter_dict['count'] self.func = lambda i, l: l if i > cnt else None elif filter_dict['filter'] == 'normalize': cols = [int(c) - 1 for c in filter_dict['columns']] sep = filter_dict['separator'] self.func = lambda i, l: self.normalize(l, cols, sep) def __iter__(self): return self def __next__(self): if not self.src_lines: self.get_lines() if self.src_lines: return self.src_lines.pop(0) raise StopIteration next = __next__ def select_columns(self, line, cols): fields = line.split('\t') return '\t'.join([fields[x] for x in cols]) def select_slices(self, line, cols): fields = line.split('\t') return '\t'.join(chain.from_iterable([y if isinstance(y, list) else [y] for y in [fields[x] for x in cols]])) def replace_add(self, line, pat, rep, col, pos): fields = line.rstrip('\r\n').split('\t') i = pos if pos is not None else len(fields) val = '' if col < len(fields) and re.search(pat, fields[col]): val = re.sub(pat, rep, fields[col]).replace('\t', ' ') return '\t'.join(fields[:i] + [val] + fields[i:]) def normalize(self, line, split_cols, sep): lines = [] fields = line.rstrip('\r\n').split('\t') split_fields = dict() cnt = 0 for c in split_cols: if c < len(fields): split_fields[c] = fields[c].split(sep) cnt = max(cnt, len(split_fields[c])) if cnt == 0: lines.append('\t'.join(fields)) else: for n in range(0, cnt): flds = [x if c not in split_cols else split_fields[c][n] if n < len(split_fields[c]) else '' for (c, x) in enumerate(fields)] lines.append('\t'.join(flds)) return lines def get_lines(self): for i, next_line in enumerate(self.source): self.src_line_cnt += 1 line = self.func(self.src_line_cnt, next_line) if line: if isinstance(line, list): self.src_lines.extend(line) else: self.src_lines.append(line) return class TabularReader: """ Tabular file iterator. Returns a list """ def __init__(self, input_file, skip=0, comment_char=None, col_idx=None, filters=None): self.skip = skip self.comment_char = comment_char self.col_idx = col_idx self.filters = filters self.tsv_file = \ input_file if hasattr(input_file, 'readline') else open(input_file) if skip and skip > 0: for i in range(skip): if not self.tsv_file.readline(): break source = LineFilter(self.tsv_file, None) if comment_char: source = LineFilter(source, {"filter": "regex", "pattern": comment_char, "action": "exclude_match"}) if filters: for f in filters: source = LineFilter(source, f) self.source = source def __iter__(self): return self def __next__(self): ''' Iteration ''' for i, line in enumerate(self.source): fields = line.rstrip('\r\n').split('\t') if self.col_idx: fields = [fields[i] for i in self.col_idx] return fields raise StopIteration next = __next__ def filter_file(input_file, output, skip=0, comment_char='#', filters=None): data_lines = 0 try: tr = TabularReader(input_file, skip=skip, comment_char=comment_char, filters=filters) for linenum, fields in enumerate(tr): data_lines += 1 try: output.write('%s\n' % '\t'.join(fields)) except Exception as e: print('Failed at line: %d err: %s' % (linenum, e), file=sys.stderr) except Exception as e: exit('Error: %s' % (e))
examples/highcharts/column-stacked-and-grouped.py
Jbrunn/python-highcharts
370
11110988
<gh_stars>100-1000 # -*- coding: utf-8 -*- """ Highcharts Demos Stacked and grouped column: http://www.highcharts.com/demo/column-stacked-and-grouped """ from highcharts import Highchart H = Highchart(width=750, height=600) data1 = [5, 3, 4, 7, 2] data2 = [3, 4, 4, 2, 5] data3 = [2, 5, 6, 2, 1] data4 = [3, 0, 4, 4, 3] options = { 'title': { 'text': 'Total fruit consumtion, grouped by gender' }, 'xAxis': { 'categories': ['Apples', 'Oranges', 'Pears', 'Grapes', 'Bananas'] }, 'yAxis': { 'allowDecimals': False, 'min': 0, 'title': { 'text': 'Number of fruits' } }, 'tooltip': { 'formatter': "function () {\ return '<b>' + this.x + '</b><br/>' +\ this.series.name + ': ' + this.y + '<br/>' +\ 'Total: ' + this.point.stackTotal;\ }" }, 'plotOptions': { 'column': { 'stacking': 'normal' } } } H.set_dict_options(options) H.add_data_set(data1, 'column', 'John', stack='male' ) H.add_data_set(data2, 'column', 'Joe', stack='male') H.add_data_set(data3, 'column', 'Jane', stack='female') H.add_data_set(data4, 'column', 'Janet', stack='female') H.htmlcontent
plugins/headings/__init__.py
GiovanH/MarkdownEditing
2,612
11111001
from .common import * from .goto import * from .level import * from .style import * from .underlined import *
tests/util/test_get_control_variate_coef.py
xiangze/edward
5,200
11111044
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from edward.util.tensorflow import get_control_variate_coef class test_get_control_variate_coef(tf.test.TestCase): def test_calculate_correct_coefficient(self): with self.test_session(): f = tf.constant([1.0, 2.0, 3.0, 4.0]) h = tf.constant([2.0, 3.0, 8.0, 1.0]) self.assertAllClose(get_control_variate_coef(f, h).eval(), 0.03448276) if __name__ == '__main__': tf.test.main()
state_representation/client.py
anonymous-authors-2018/robotics-repo
524
11111057
""" Client to communicate with SRL server """ import os import json from enum import Enum import zmq HOSTNAME = 'localhost' SERVER_PORT = 7777 class Command(Enum): HELLO = 0 LEARN = 1 READY = 2 ERROR = 3 EXIT = 4 class SRLClient(object): def __init__(self, data_folder, hostname='localhost', server_port=7777): super(SRLClient, self).__init__() self.hostname = hostname self.server_port = server_port context = zmq.Context() self.socket = context.socket(zmq.PAIR) self.socket.connect("tcp://{}:{}".format(hostname, server_port)) self.path_to_srl_server = None self.data_folder = data_folder def __del__(self): self.socket.close() def waitForServer(self): print("Waiting for server...") msg = self.socket.recv_json() assert Command(msg['command']) == Command.HELLO self.path_to_srl_server = msg.get('path') self.socket.send_json({"command": Command.HELLO.value, 'data_folder': self.data_folder}) print("Connected to server") def sendLearnCommand(self, state_dim, seed=1): """ :param state_dim: (int) :param seed: (int) """ self.socket.send_json({"command": Command.LEARN.value, 'state_dim': state_dim, 'seed': seed}) def sendExitCommand(self): self.socket.send_json({"command": Command.EXIT.value}) def receiveMessage(self): """ :return: (Command, dict) """ msg = self.socket.recv_json() try: # Convert to a command object command = Command(msg.get('command')) except ValueError: raise ValueError("Unknown command: {}".format(msg)) return command, msg def waitForSRLModel(self, state_dim): """ Wait until SRL is trained :param state_dim: (int) :return: (bool, str) (True if no error, path to learned model) """ self.sendLearnCommand(state_dim) command, msg = self.receiveMessage() if command == Command.ERROR: print("An error occured during SRL") return False, "" elif command != Command.READY: print("Unsupported command:{}".format(command)) return False, "" else: path_to_model = msg.get('path') + '/srl_model.pth' return True, path_to_model if __name__ == '__main__': data_folder = 'test_server' os.makedirs('srl_zoo/data/' + data_folder, exist_ok=True) dataset_config = {'relative_pos': False} with open("srl_zoo/data/{}/dataset_config.json".format(data_folder), "w") as f: json.dump(dataset_config, f) socket_client = SRLClient(data_folder) socket_client.waitForServer() try: while True: ok, path_to_model = socket_client.waitForSRLModel(state_dim=3) print(path_to_model) break except KeyboardInterrupt: pass socket_client.sendExitCommand() print("Client exiting...")
unicorn/tests/regress/mips_kernel_mmu.py
clayne/unicorn_pe
491
11111071
<filename>unicorn/tests/regress/mips_kernel_mmu.py #!/usr/bin/python from unicorn import * from unicorn.mips_const import * import regress class MipsSyscall(regress.RegressTest): def test(self): addr = 0x80000000 code = '34213456'.decode('hex') # ori $at, $at, 0x3456 uc = Uc(UC_ARCH_MIPS, UC_MODE_MIPS32 + UC_MODE_BIG_ENDIAN) uc.mem_map(addr, 0x1000) uc.mem_write(addr, code) uc.reg_write(UC_MIPS_REG_AT, 0) uc.emu_start(addr, addr + len(code)) self.assertEqual(uc.reg_read(UC_MIPS_REG_AT), 0x3456) if __name__ == '__main__': regress.main()
src/programy/nlp/stemming.py
cdoebler1/AIML2
345
11111077
""" Copyright (c) 2016-2020 <NAME> http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import nltk from nltk.stem.regexp import RegexpStemmer from nltk.stem.lancaster import LancasterStemmer from nltk.stem.isri import ISRIStemmer from nltk.stem.porter import PorterStemmer from nltk.stem.snowball import SnowballStemmer from nltk.stem.rslp import RSLPStemmer from nltk.stem.cistem import Cistem class Stemmer: @staticmethod def download_additional(): nltk.download('rslp') # pragma: no cover def __init__(self, stemmer="porter", **kwargs): self._impl = self._get_stemmer(stemmer, **kwargs) def stem(self, string): if self._impl is not None: return self._impl.stem(string) return string def _get_porter_stemmer(self): return PorterStemmer() def _get_lancaster_stemmer(self): return LancasterStemmer() def _get_regex_stemmer(self, regexp, minimum): return RegexpStemmer(regexp=regexp, min=minimum) def _get_iris_stemmer(self): return ISRIStemmer() def _get_snowball_stemmer(self, language): return SnowballStemmer(language=language) def _get_rslp_stemmer(self): return RSLPStemmer() def _get_cis_stemmer(self, case_insensitive): return Cistem(case_insensitive=case_insensitive) def _get_stemmer(self, stemmer="porter", **kwargs): if stemmer == "porter": return self._get_porter_stemmer() elif stemmer == "lancaster": return self._get_lancaster_stemmer() elif stemmer == "regex": regexp = kwargs['regexp'] if 'min' in kwargs: minimum = kwargs['min'] else: minimum = 0 return self._get_regex_stemmer(regexp=regexp, minimum=minimum) elif stemmer == "isri": return self._get_iris_stemmer() elif stemmer == "snowball": if 'language' in kwargs: language = kwargs['language'] else: language = 'english' return self._get_snowball_stemmer(language=language) elif stemmer == "rslp": return self._get_rslp_stemmer() elif stemmer == "cistem": if 'case_insensitive' in kwargs: case_insensitive = kwargs['case_insensitive'] else: case_insensitive = False return self._get_cis_stemmer(case_insensitive=case_insensitive) else: raise ValueError("Unknown stemmer [%s]"%stemmer)
nodes/0.9.x/python/Workset.Kind.py
jdehotin/Clockworkfordynamo
147
11111079
import clr clr.AddReference('RevitAPI') from Autodesk.Revit.DB import * clr.AddReference("RevitServices") import RevitServices from RevitServices.Persistence import DocumentManager doc = DocumentManager.Instance.CurrentDBDocument worksets = UnwrapElement(IN[0]) elementlist = list() for workset in worksets: try: elementlist.append(str(workset.Kind)) except: elementlist.append(list()) OUT = elementlist
api/sdlc-integration/run_scan.py
knassar702/community-scripts
629
11111095
# This script should be used to run the actual ZAP scan import sys import core.scan_module.scan as scan scan.main(sys.argv[1:])
network/src/network/stream/visual_stream.py
dropitlikecross/looking-to-listen
123
11111138
<reponame>dropitlikecross/looking-to-listen import chainer import chainer.links as L import chainer.functions as F import env class Visual_Stream(chainer.Chain): # @chainer.static_graph def __call__(self, visual): b = F.leaky_relu(self.bn1(self.conv1(visual))) b = F.leaky_relu(self.bn2(self.conv2(b))) b = F.leaky_relu(self.bn3(self.conv3(b))) b = F.leaky_relu(self.bn4(self.conv4(b))) b = F.leaky_relu(self.bn5(self.conv5(b))) b = F.leaky_relu(self.bn6(self.conv6(b))) # (b, 256, 75, 1) b = F.resize_images(b, (env.AUDIO_LEN, 1)) # (b, 256, 301, 1) return b def __init__(self, trained=None): super(Visual_Stream, self).__init__() with self.init_scope(): initial = chainer.initializers.HeNormal() self.conv1 = L.DilatedConvolution2D( in_channels=env.VIS_CHANNNEL, out_channels=256, stride=1, ksize=(7, 1), dilate=1, pad=(3, 0), nobias=True, initialW=initial) self.conv2 = L.DilatedConvolution2D( in_channels=256, out_channels=256, stride=1, ksize=(5, 1), dilate=1, pad=(2, 0), nobias=True, initialW=initial) self.conv3 = L.DilatedConvolution2D( in_channels=256, out_channels=256, stride=1, ksize=(5, 1), dilate=(2, 1), pad=(4, 0), nobias=True, initialW=initial) self.conv4 = L.DilatedConvolution2D( in_channels=256, out_channels=256, stride=1, ksize=(5, 1), dilate=(4, 1), pad=(8, 0), nobias=True, initialW=initial) self.conv5 = L.DilatedConvolution2D( in_channels=256, out_channels=256, stride=1, ksize=(5, 1), dilate=(8, 1), pad=(16, 0), nobias=True, initialW=initial) self.conv6 = L.DilatedConvolution2D( in_channels=256, out_channels=256, stride=1, ksize=(5, 1), dilate=(16, 1), pad=(32, 0), nobias=True, initialW=initial) self.bn1 = L.BatchNormalization(256) self.bn2 = L.BatchNormalization(256) self.bn3 = L.BatchNormalization(256) self.bn4 = L.BatchNormalization(256) self.bn5 = L.BatchNormalization(256) self.bn6 = L.BatchNormalization(256) if trained is not None: self.conv1.W = trained["conv1"].W self.conv2.W = trained["conv2"].W self.conv3.W = trained["conv3"].W self.conv4.W = trained["conv4"].W self.conv5.W = trained["conv5"].W self.conv6.W = trained["conv6"].W self.bn1.gamma = trained["bn1"].gamma self.bn1.beta = trained["bn1"].beta self.bn1.avg_mean = trained["bn1"].avg_mean self.bn1.avg_var = trained["bn1"].avg_var self.bn2.gamma = trained["bn2"].gamma self.bn2.beta = trained["bn2"].beta self.bn2.avg_mean = trained["bn2"].avg_mean self.bn2.avg_var = trained["bn2"].avg_var self.bn3.gamma = trained["bn3"].gamma self.bn3.beta = trained["bn3"].beta self.bn3.avg_mean = trained["bn3"].avg_mean self.bn3.avg_var = trained["bn3"].avg_var self.bn4.gamma = trained["bn4"].gamma self.bn4.beta = trained["bn4"].beta self.bn4.avg_mean = trained["bn4"].avg_mean self.bn4.avg_var = trained["bn4"].avg_var self.bn5.gamma = trained["bn5"].gamma self.bn5.beta = trained["bn5"].beta self.bn5.avg_mean = trained["bn5"].avg_mean self.bn5.avg_var = trained["bn5"].avg_var self.bn6.gamma = trained["bn6"].gamma self.bn6.beta = trained["bn6"].beta self.bn6.avg_mean = trained["bn6"].avg_mean self.bn6.avg_var = trained["bn6"].avg_var
examples/synthetic/syn_cnn_1/syn_cnn_1.py
hase1128/dragonfly
675
11111156
""" A synthetic function on CNNs. -- <EMAIL> """ # pylint: disable=invalid-name # Local from dragonfly.nn.syn_nn_functions import cnn_syn_func1 def syn_cnn_1(x): """ Computes the Branin function. """ return cnn_syn_func1(x[0]) # Write a function like this called 'obj'. def objective(x): """ Objective. """ return syn_cnn_1(x) def main(x): """ main function. """ return syn_cnn_1(x)
tests/r/test_wong.py
hajime9652/observations
199
11111169
<reponame>hajime9652/observations from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.wong import wong def test_wong(): """Test module wong.py by downloading wong.csv and testing shape of extracted data has 331 rows and 7 columns """ test_path = tempfile.mkdtemp() x_train, metadata = wong(test_path) try: assert x_train.shape == (331, 7) except: shutil.rmtree(test_path) raise()
lahja/exceptions.py
ethereum/lahja
400
11111178
class LahjaError(Exception): """ Base class for all lahja errors """ pass class BindError(LahjaError): """ Raise when an attempt was made to bind an event that is already bound. """ class ConnectionAttemptRejected(LahjaError): """ Raised when an attempt was made to connect to an endpoint that is already connected. """ pass class LifecycleError(LahjaError): """ Raised when attempting to violate the lifecycle of an endpoint such as starting an already started endpoint or starting an endpoint that has already stopped. """ pass class NoSubscribers(LahjaError): """ Raised when attempting to send an event or make a request while there are no listeners for the specific type of event or request. This is a safety check, set ``require_subscriber`` of :class:`~lahja.base.BroadcastConfig` to ``False`` to allow propagation without listeners. """ pass class UnexpectedResponse(LahjaError): """ Raised when the type of a response did not match the ``expected_response_type``. """ pass class RemoteDisconnected(LahjaError): """ Raise when a remote disconnects while we attempting to read a message. """ pass
integration_tests/samples/socket_mode/bolt_adapter/websocket_client.py
priya1puresoftware/python-slack-sdk
2,486
11111208
<reponame>priya1puresoftware/python-slack-sdk import os from time import time from typing import Optional from slack_sdk.socket_mode.request import SocketModeRequest from slack_sdk.socket_mode.websocket_client import SocketModeClient from slack_bolt import App from .base_handler import BaseSocketModeHandler from .internals import run_bolt_app, send_response from slack_bolt.response import BoltResponse class SocketModeHandler(BaseSocketModeHandler): app: App # type: ignore app_token: str client: SocketModeClient def __init__( # type: ignore self, app: App, # type: ignore app_token: Optional[str] = None, ): self.app = app self.app_token = app_token or os.environ["SLACK_APP_TOKEN"] self.client = SocketModeClient(app_token=self.app_token) self.client.socket_mode_request_listeners.append(self.handle) def handle(self, client: SocketModeClient, req: SocketModeRequest) -> None: start = time() bolt_resp: BoltResponse = run_bolt_app(self.app, req) send_response(client, req, bolt_resp, start)
MLFeatureSelection/__init__.py
yutiansut/Feature-Selection
596
11111279
<reponame>yutiansut/Feature-Selection # __init__.py __version__ = "0.0.9.5.1" __author__ = "<NAME>"
houdini/constants.py
Oblivion-Max/houdini
444
11111294
<filename>houdini/constants.py<gh_stars>100-1000 import enum class StatusField(enum.IntEnum): OpenedIglooViewer = 1 ActiveIglooLayoutOpenFlag = 2 PuffleTreasureInfographic = 512 PlayerOptInAbTestDayZero = 1024 PlayerSwapPuffle = 2048 MoreThanTenPufflesBackyardMessage = 4096 VisitBackyardFirstTime = 8192 HasWalkedPuffleFirstTime = 65536 HasWalkedPuffleSecondTime = 131072 class ConflictResolution(enum.Enum): Silent = 0 Append = 1 Exception = 2 class Language(enum.IntEnum): En = 1 Pt = 2 Fr = 4 Es = 8 De = 32 Ru = 64 class ClientType(enum.Enum): Legacy = 'legacy' Vanilla = 'vanilla'
optimus/helpers/debug.py
atwoodjw/Optimus
1,045
11111301
<reponame>atwoodjw/Optimus<filename>optimus/helpers/debug.py import inspect from inspect import getframeinfo, stack def get_var_name(var): """ Get the var name from the var passed to a function :param var: :return: """ _locals = inspect.stack()[2][0].f_locals for name in _locals: if id(var) == id(_locals[name]): return name return None def debug(value): """ Print a message with line and file name :param value: string to be printed :return: """ frame_info = getframeinfo((stack()[1][0])) print("{}->{}:{}".format(value, frame_info.filename, frame_info.lineno, ))
examples/common_scenarios/sequence_without_tf_binding_sites.py
sukolsak/DnaChisel
124
11111306
from dnachisel import DnaOptimizationProblem, AvoidPattern, random_dna_sequence from urllib import request import pandas as pd from io import StringIO # DOWNLOAD THE LIST OF TF BINDING SITES url = "http://regulondb.ccg.unam.mx/menu/download/datasets/files/BindingSiteSet.txt" data = request.urlopen(url).read().decode("utf-8") df = pd.read_csv( StringIO(data), sep="\t", skiprows=(range(0, 46)), header=None ) # First 46 lines are description # OBTAIN A LIST OF TF BINDING SEQUENCES tf_column = df[13] # 14th column contains TF binding sites tf_column.dropna(inplace=True) tf_list = tf_column.to_list() # According to the description, the binding sites are in uppercase, so we remove lowercase: tf_binding_sequences = ["".join(ch for ch in tf if not ch.islower()) for tf in tf_list] # DEFINE AND SOLVE THE OPTIMIZATION PROBLEM problem = DnaOptimizationProblem( sequence=random_dna_sequence(50000), constraints=[AvoidPattern(pattern) for pattern in tf_binding_sequences], ) problem.resolve_constraints() problem.to_record("sequence_without_tf_binding_sites.gb")
docs/gallery/tutorials/pipeshard_parallelism.py
alpa-projects/alpa
114
11111315
<reponame>alpa-projects/alpa """ Distributed Training with Both Shard and Pipeline Parallelism ============================================================= Alpa can automatically parallelizes jax functions with both shard parallelism (a.k.a. intra-operator parallelism) and pipeline parallelism (a.k.a. inter-operator parallelism). Shard parallelism includes data parallelism, operator parallelism, and their combinations. The :ref:`quick start <Alpa Quickstart>` focuses on using Alpa for shard parallelism. In this tutorial, we show how to use Alpa with both shard and pipeline parallelism. First, we show how to use Alpa to manually assign stages for pipeline parallelism. Then we show how to use Alpa to automate this process. """ ################################################################################ # Import Libraries and Initialize Environment # ------------------------------------------- # We first import the required libraries. import alpa from alpa.testing import assert_allclose import copy from flax import linen as nn from flax.training.train_state import TrainState import jax import jax.numpy as jnp from jax import random import optax import ray ################################################################################ # Connect to a Ray Cluster # ------------------------------------------- # Alpa uses a distributed framework `ray <https://docs.ray.io/>`_ to manage # the cluster and disributed workers. We initialize ray and alpa. ray.init() alpa.init(cluster="ray") # Alternatively, you can use the following command to connect to an existing # ray cluster. # ray.init(address="auto") ################################################################################ # Train an MLP on a Single Device # ------------------------------- # In this tutorial, we use a toy dataset to train an MLP model. # Specifically, we use the model to fit the function: :math:`y = Wx + b`. # Note that now this model is being executed on CPU because we force the driver # process to use the CPU. class MLPModel(nn.Module): hidden_dim: int @nn.compact def __call__(self, x): x = nn.Dense(features=self.hidden_dim * 4)(x) x = nn.relu(x) x = nn.Dense(features=self.hidden_dim)(x) x = nn.relu(x) x = nn.Dense(features=self.hidden_dim * 4)(x) x = nn.relu(x) x = nn.Dense(features=self.hidden_dim)(x) x = nn.relu(x) return x dim = 2048 batch_size = 2048 # Generate ground truth W and b rngkey = jax.random.PRNGKey(0) k1, k2 = random.split(rngkey) W = random.normal(k1, (dim, dim), jnp.float32) b = random.normal(k2, (dim,), jnp.float32) # Generate the training data ksample, knoise = random.split(k1) x = random.normal(ksample, (batch_size, dim), jnp.float32) y = (x @ W + b) + 0.1 * random.normal(knoise, (batch_size, dim), jnp.float32) # Initialize a train state, which includes the model paramter and optimizer # state. model = MLPModel(hidden_dim=dim) params = model.init(rngkey, x) tx = optax.adam(learning_rate=1e-3) state = TrainState.create(apply_fn=model.apply, params=params, tx=tx) # Define training step def train_step(state, batch): def loss_func(params): out = model.apply(params, batch["x"]) loss = jnp.mean((out - batch["y"])**2) return loss grads = jax.grad(loss_func)(state.params) new_state = state.apply_gradients(grads=grads) return new_state batch = {"x": x, "y": y} expected_state = train_step(state, batch) ################################################################################ # Pipeline Parallelism with Manual Assignment # ------------------------------------------- # To manually assign stages for pipeline parallelism, we can use the # ``alpa.mark_pipeline`` function to mark the start and end of each pipeline # stage, and use the ``@alpa.manual_layer_construction`` decorator to indicate # that we are manually assigning stages. Note that each the pipeline stage is # also automatically parallelized by the shard parallel pass. # Define the manually parallelized model with pipeline markers. class ManualPipelineMLPModel(nn.Module): hidden_dim: int @nn.compact def __call__(self, x): x = nn.Dense(features=self.hidden_dim * 4)(x) x = nn.relu(x) x = nn.Dense(features=self.hidden_dim)(x) x = nn.relu(x) # Mark the end of the 0th pipeline stage and the start of the 1st # pipeline stage. the start marker of the 0th stage and the end # marker of the 1st stage are marked in the train_step below. alpa.mark_pipeline(name='0', mark_type='end') alpa.mark_pipeline(name='1', mark_type='start') x = nn.Dense(features=self.hidden_dim * 4)(x) x = nn.relu(x) x = nn.Dense(features=self.hidden_dim)(x) x = nn.relu(x) return x # Initialize the train state with the same parameters as the single-device # model. manual_pipeline_model = ManualPipelineMLPModel(hidden_dim=dim) manual_pipeline_state = TrainState.create(apply_fn=manual_pipeline_model.apply, params=copy.deepcopy(params), tx=tx) # Define the training step with manually parallelized pipeline stages. # We use the "alpa.PipeshardParallel" option to let alpa use both # pipeline parallelism and shard parallelism. @alpa.parallelize(method=alpa.PipeshardParallel(num_micro_batches=16)) def manual_pipeline_train_step(state, batch): # Indicate that we are manually assigning pipeline stages. @alpa.manual_layer_construction def loss_func(params): # Mark the start of the 0th pipeline stage. alpa.mark_pipeline(name='0', mark_type='start') out = state.apply_fn(params, batch["x"]) loss = jnp.mean((out - batch["y"])**2) # Mark the end of the 1st pipeline stage. alpa.mark_pipeline(name='1', mark_type='end') return loss # We use `alpa.grad` here to seperate the apply gradient stage with the # forward/backward stages in the pipeline. This is necessary to ensure that # the gradient accumulation is correct. grads = alpa.grad(loss_func)(state.params) new_state = state.apply_gradients(grads=grads) return new_state manual_pipeline_actual_state = manual_pipeline_train_step(manual_pipeline_state, batch) assert_allclose(expected_state.params, manual_pipeline_actual_state.params, atol=5e-3) alpa.shutdown() ################################################################################ # Pipeline Parallelism with Automatic Assignment # ---------------------------------------------- # Alpa also supports automatically partitioning the model into multiple # pipeline stages and assign each pipeline stage a device mesh such that # the total execution latency is minimized. Specifically, the automatic # partitioning algorithm consists of the following steps: # # 1. **Layer Construction:** In this step, the operators in the model are # clustered into "layers" based on a graph clustering algorithm. The # user needs to specify the total number of layers (i.e. clusters) as # a hyperparameter. # 2. **Stage Construction and Mesh Slicing:** In this step, we partition # the device cluster (device mesh) to multiple submeshes and assign # layers to submeshes to form pipeline stages to minimize the total # pipeline execution latency. alpa.init(cluster="ray") # Define training step with automatic pipeline-operator parallelism. Note that # we reuse the same model and state as the single device case. The only # modification required is the two decorators. The stage construction and # mesh slicing are performed within the `parallelize` decorator. @alpa.parallelize(method=alpa.PipeshardParallel(num_micro_batches=16, stage_mode="auto")) def auto_pipeline_train_step(state, batch): # Indicate that we use automatic layer construction. The `layer_num` here # is a hyperparameter to control how many layers we get from the # layer construction algorithm. @alpa.automatic_layer_construction(layer_num=2) def loss_func(params): out = state.apply_fn(params, batch["x"]) loss = jnp.mean((out - batch["y"])**2) return loss # Again, we use `alpa.grad` here to seperate the apply gradient stage with # the forward/backward stages in the pipeline. grads = alpa.grad(loss_func)(state.params) new_state = state.apply_gradients(grads=grads) return new_state # In the first call, alpa triggers the compilation. # The compilation first profiles several costs and solves an optimization # problem to get the optimal pipeline assignments. auto_pipeline_actual_state = auto_pipeline_train_step(state, batch) assert_allclose(expected_state.params, auto_pipeline_actual_state.params, atol=5e-3) alpa.shutdown()
examples/AHEG.py
SignorMercurio/petlib
112
11111344
<reponame>SignorMercurio/petlib ## An implementation of an additivelly homomorphic ## ECC El-Gamal scheme, used in Privex. from petlib.ec import EcGroup import pytest def params_gen(nid=713): """Generates the AHEG for an EC group nid""" G = EcGroup(nid) g = G.generator() o = G.order() return (G, g, o) def key_gen(params): """Generates a fresh key pair""" _, g, o = params priv = o.random() pub = priv * g return (pub, priv) def enc(params, pub, counter): """Encrypts the values of a small counter""" assert -2**8 < counter < 2**8 G, g, o = params k = o.random() a = k * g b = k * pub + counter * g return (a, b) def enc_side(params, pub, counter): """Encrypts the values of a small counter""" assert -2**8 < counter < 2**8 G, g, o = params k = o.random() a = k * g b = k * pub + counter * g return (a, b, k) def add(c1, c2): """Add two encrypted counters""" a1, b1 = c1 a2, b2 = c2 return (a1 + a2, b1 + b2) def mul(c1, val): """Multiplies an encrypted counter by a public value""" a1, b1 = c1 return (val*a1, val*b1) def randomize(params, pub, c1): """Rerandomize an encrypted counter""" zero = enc(params, pub, 0) return add(c1, zero) def make_table(params): """Make a decryption table""" _, g, o = params table = {} for i in range(-1000, 1000): table[i * g] = i return table def dec(params, table, priv, c1): """Decrypt an encrypted counter""" _, g, o = params a, b = c1 plain = b + (-priv * a) return table[plain] def test_AHEG(): params = params_gen() (pub, priv) = key_gen(params) table = make_table(params) # Check encryption and decryption one = enc(params, pub, 1) assert dec(params, table, priv, one) == 1 # Check addition tmp = add(one, one) two = randomize(params, pub, tmp) assert dec(params, table, priv, two) == 2 # Check multiplication tmp1 = mul(two, 2) four = randomize(params, pub, tmp1) assert dec(params, table, priv, four) == 4
src/genie/libs/parser/iosxe/tests/ShowBridgeDomain/cli/equal/golden_output_4_expected.py
balmasea/genieparser
204
11111346
<reponame>balmasea/genieparser<filename>src/genie/libs/parser/iosxe/tests/ShowBridgeDomain/cli/equal/golden_output_4_expected.py expected_output = { "bridge_domain": { 4050: { "aging_timer": 3600, "bd_domain_id": 4050, "mac_learning_state": "Enabled", "number_of_ports_in_all": 0, "state": "UP", } } }
h2o-py/tests/testdir_algos/stackedensemble/pyunit_stackedensemble_gaussian.py
ahmedengu/h2o-3
6,098
11111362
#!/usr/bin/env python # -*- encoding: utf-8 -*- from __future__ import print_function import h2o import sys sys.path.insert(1,"../../../") # allow us to run this standalone from h2o.estimators.random_forest import H2ORandomForestEstimator from h2o.estimators.gbm import H2OGradientBoostingEstimator from h2o.estimators.stackedensemble import H2OStackedEnsembleEstimator from tests import pyunit_utils as pu from tests.pyunit_utils import assert_warn seed = 1 def prepare_data(blending=False): col_types = ["numeric", "numeric", "numeric", "enum", "enum", "numeric", "numeric", "numeric", "numeric"] dat = h2o.upload_file(path=pu.locate("smalldata/extdata/prostate.csv"), destination_frame="prostate_hex", col_types=col_types) train, test = dat.split_frame(ratios=[.8], seed=1) x = ["CAPSULE", "GLEASON", "RACE", "DPROS", "DCAPS", "PSA", "VOL"] y = "AGE" ds = pu.ns(x=x, y=y, train=train, test=test) if blending: train, blend = train.split_frame(ratios=[.7], seed=seed) return ds.extend(train=train, blend=blend) else: return ds def train_base_models(dataset, **kwargs): model_args = kwargs if hasattr(dataset, 'blend') else dict(nfolds=3, fold_assignment="Modulo", keep_cross_validation_predictions=True, **kwargs) gbm = H2OGradientBoostingEstimator(distribution="gaussian", ntrees=10, max_depth=3, min_rows=2, learn_rate=0.2, seed=seed, **model_args) gbm.train(x=dataset.x, y=dataset.y, training_frame=dataset.train) rf = H2ORandomForestEstimator(ntrees=10, seed=seed, **model_args) rf.train(x=dataset.x, y=dataset.y, training_frame=dataset.train) xrf = H2ORandomForestEstimator(ntrees=20, histogram_type="Random", seed=seed, **model_args) xrf.train(x=dataset.x, y=dataset.y, training_frame=dataset.train) return [gbm, rf, xrf] def train_stacked_ensemble(dataset, base_models, **kwargs): se = H2OStackedEnsembleEstimator(base_models=base_models, seed=seed) se.train(x=dataset.x, y=dataset.y, training_frame=dataset.train, blending_frame=dataset.blend if hasattr(dataset, 'blend') else None, **kwargs) return se def test_suite_stackedensemble_gaussian(blending=False): def test_predict_on_se_model(): ds = prepare_data(blending) models = train_base_models(ds) se = train_stacked_ensemble(ds, models) for i in range(2): # repeat predict to verify consistency pred = se.predict(test_data=ds.test) assert pred.nrow == ds.test.nrow, "expected " + str(pred.nrow) + " to be equal to " + str(ds.test.nrow) assert pred.ncol == 1, "expected " + str(pred.ncol) + " to be equal to 1 but it was equal to " + str(pred.ncol) def test_se_performance_is_better_than_individual_models(): ds = prepare_data(blending) base_models = train_base_models(ds) def compute_perf(model): perf = pu.ns( train=model.model_performance(train=True), test=model.model_performance(test_data=ds.test) ) print("{} training performance: ".format(model.model_id)) print(perf.train) print("{} test performance: ".format(model.model_id)) print(perf.test) return perf base_perfs = {} for model in base_models: base_perfs[model.model_id] = compute_perf(model) se = train_stacked_ensemble(ds, base_models) perf_se = compute_perf(se) # Check that stack perf is better (smaller) than the best (smaller) base learner perf: # Training RMSE for each base learner baselearner_best_rmse_train = min([perf.train.rmse() for perf in base_perfs.values()]) stack_rmse_train = perf_se.train.rmse() print("Best Base-learner Training RMSE: {}".format(baselearner_best_rmse_train)) print("Ensemble Training RMSE: {}".format(stack_rmse_train)) assert_warn(stack_rmse_train < baselearner_best_rmse_train, "expected SE training RMSE would be smaller than the best of base learner training RMSE, but obtained: " \ "RMSE (SE) = {}, RMSE (best base learner) = {}".format(stack_rmse_train, baselearner_best_rmse_train)) # Test RMSE for each base learner baselearner_best_rmse_test = min([perf.test.rmse() for perf in base_perfs.values()]) stack_rmse_test = perf_se.test.rmse() print("Best Base-learner Test RMSE: {}".format(baselearner_best_rmse_test)) print("Ensemble Test RMSE: {}".format(stack_rmse_test)) assert_warn(stack_rmse_test < baselearner_best_rmse_test, "expected SE test RMSE would be smaller than the best of base learner test RMSE, but obtained: " \ "RMSE (SE) = {}, RMSE (best base learner) = {}".format(stack_rmse_test, baselearner_best_rmse_test)) def test_validation_frame_produces_same_metric_as_perf_test(): ds = prepare_data(blending) models = train_base_models(ds) se = train_stacked_ensemble(ds, models, validation_frame=ds.test) se_perf = se.model_performance(test_data=ds.test) se_perf_validation_frame = se.model_performance(valid=True) # since the metrics object is not exactly the same, we can just test that RSME is the same assert se_perf.rmse() == se_perf_validation_frame.rmse(), \ "expected SE test RMSE to be the same as SE validation frame RMSE, but obtained: " \ "RMSE (perf on test) = {}, RMSE (test passed as validation frame) = {}".format(se_perf.rmse(), se_perf_validation_frame.rmse()) return [pu.tag_test(test, 'blending' if blending else None) for test in [ test_predict_on_se_model, test_se_performance_is_better_than_individual_models, test_validation_frame_produces_same_metric_as_perf_test ]] pu.run_tests([ test_suite_stackedensemble_gaussian(), test_suite_stackedensemble_gaussian(blending=True) ])
dash/misc/misc_data_app.py
jingmouren/QuantResearch
623
11111364
<reponame>jingmouren/QuantResearch #!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import pandas as pd import numpy as np import scipy, scipy.stats from datetime import date, datetime, timedelta from dateutil.relativedelta import relativedelta from sklearn import linear_model import plotly.graph_objs as go import plotly.figure_factory as ff import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State import dash_table as dt import dash_table.FormatTemplate as FormatTemplate import ta import data_loader from time_tools import convert_date_input from app import app app.config.suppress_callback_exceptions = True app.scripts.config.serve_locally = True # -------------------------------------------------------- data preparation ---------------------------------------- $ misc_data_dict = data_loader.load_misc() # -------------------------------------------------------- help functions ---------------------------------------- $ # -------------------------------------------------------- define layout ---------------------------------------- $ layout = html.Div([ html.Div([ html.H2("misc data") ], className='banner'), html.Div(id='cached-data-market-misc-data', style={'display': 'none'}), html.Div([ html.Div([ dcc.Dropdown( id="data-item-selection-market-misc-data", options=[ {'label': md, 'value': md} for md in sorted(misc_data_dict.keys()) ], value='USDT', ), ], className='two columns wind-polar'), html.Div([ dcc.Dropdown( id="is-cross-sectional-market-misc-data", options=[ {'label': md, 'value': md} for md in ['Time-Series', 'Cross-Sectional'] ], value='Time-Series', ), ], className='two columns wind-polar'), ], className='twelve columns row wind-speed-row'), html.Div([ dt.DataTable( style_table={'overflowX': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '100px', 'overflow': 'hidden', 'textOverflow': 'ellipsis', }, data=misc_data_dict['USDT'].to_dict('records'), columns=[{"name": i, "id": i, "deletable": False} for i in misc_data_dict['USDT'].columns], editable=False, row_deletable=False, filter_action="native", sort_action="native", sort_mode='multi', row_selectable='single', # multi selected_rows=[], page_action='native', page_current=0, page_size=15, id='overview-table-market-misc-data' ) ], className='twelve columns row wind-speed-row'), html.Div([ html.Div([ dcc.Input(id='cross-section-selection-1-market-misc-data', placeholder='(yyyy-mm-dd) or 5Y', type='text', value='') ], className='two columns wind-polar'), html.Div([ dcc.Input(id='cross-section-selection-2-market-misc-data', placeholder='(yyyy-mm-dd) or 5Y', type='text', value='') ], className='two columns wind-polar'), html.Div([ dcc.Input(id='cross-section-selection-3-market-misc-data', placeholder='(yyyy-mm-dd) or 5Y', type='text', value='') ], className='two columns wind-polar'), html.Div([ dcc.Input(id='cross-section-selection-4-market-misc-data', placeholder='(yyyy-mm-dd) or 5Y', type='text', value='') ], className='two columns wind-polar'), html.Div([ dcc.Input(id='cross-section-selection-5-market-misc-data', placeholder='(yyyy-mm-dd) or 5Y', type='text', value='') ], className='two columns wind-polar'), html.Div([ html.Button('Update Graph', id='update-button-market-misc-data') ], className='one columns wind-polar'), ], className='twelve columns row wind-speed-row'), html.Div([dcc.Graph(id='historical-time-series-market-misc-data')], className='twelve columns row wind-speed-row') ]) # -------------------------------------------------------- define event handler -------------------------------------- $ @app.callback( [Output("overview-table-market-misc-data", "data"), Output('overview-table-market-misc-data', 'columns')], [Input('data-item-selection-market-misc-data', 'value')] ) def update_datatable_market_misc_data(item_selected): df = misc_data_dict[item_selected].copy() df.insert(0, column='Date', value=df.index) return df.to_dict('records'), [{"name": i, "id": i, "deletable": False} for i in df.columns] @app.callback( Output('historical-time-series-market-misc-data', 'figure'), [Input('data-item-selection-market-misc-data', 'value'), Input('update-button-market-misc-data', 'n_clicks')], [State('is-cross-sectional-market-misc-data', 'value'), State('cross-section-selection-1-market-misc-data', 'value'), State('cross-section-selection-2-market-misc-data', 'value'), State('cross-section-selection-3-market-misc-data', 'value'), State('cross-section-selection-4-market-misc-data', 'value'), State('cross-section-selection-5-market-misc-data', 'value')] ) def update_historical_data_plot_markete_misc_data(item_selected, n_clicks, is_cross_sectional, ione, itwo, ithree, ifour, ifive): print(is_cross_sectional) if is_cross_sectional == 'Time-Series': try: return plot_time_series_market_misc_data(item_selected, ione) except: return None else: try: return plot_cross_sectional_market_misc_data(item_selected, ione, itwo, ithree, ifour, ifive) except: return None def plot_time_series_market_misc_data(item_selected, lookback_window): lookback_date = convert_date_input(lookback_window, datetime(2008, 1, 1)) df_raw = misc_data_dict[item_selected][lookback_date.date():] if item_selected in ['USDT']: df = df_raw elif item_selected in ['PCR:VIX', 'PCR:SPX', 'PCR:SPY']: df = pd.concat([df_raw['PV']/df_raw['CV'], df_raw['POI']/df_raw['COI']], axis=1) df.columns = ['PCR:V', 'PCR:OI'] elif 'COT:' in item_selected: if item_selected not in ['COT:ES', 'COT:NQ', 'COT:UX']: df = pd.concat([df_raw['Open Interest:F'], df_raw['Producer/Merchant/Processor/User:Long:F'] - df_raw['Producer/Merchant/Processor/User:Short:F'], df_raw['Swap Dealers:Long:F'] - df_raw['Swap Dealers:Short:F'], df_raw['Managed Money:Long:F'] - df_raw['Managed Money:Short:F'], df_raw['Other Reportables:Long:F'] - df_raw['Other Reportables:Short:F']], axis=1) df.columns = ['Open Interest', 'Producers', 'Swap Dealers', 'Managed Money', 'Other Report'] df['Commercial'] = df['Producers'] + df['Swap Dealers'] df['Large Spec'] = df['Managed Money'] + df['Other Report'] df['Small Spec'] = 0.0 - df['Commercial'] - df['Large Spec'] else: df = pd.concat([df_raw['Open Interest:F'], df_raw['Dealer Intermediary:Long:F'] - df_raw['Dealer Intermediary:Short:F'], df_raw['Asset Manager/Institutional:Long:F'] - df_raw['Asset Manager/Institutional:Short:F'], df_raw['Leveraged Funds:Long:F'] - df_raw['Leveraged Funds:Short:F'], df_raw['Other Reportables:Long:F'] - df_raw['Other Reportables:Short:F'], df_raw['Nonreportable Positions:Long:F'] - df_raw['Nonreportable Positions:Short:F'],], axis=1) df.columns = ['Open Interest', 'Dealer Intermediary', 'Asset Manager', 'Leveraged Funds', 'Other Reportables','Nonreportable Positions'] # sym_root = item_selected.split(':')[1] # hist_price = generic_futures_hist_prices_dict[sym_root][lookback_date.date():].iloc[:,0] else: return None traces = [go.Scatter(x=df.index, y=df[col], mode='lines', name=col) for col in df.columns] layout_fig = go.Layout( title=item_selected, xaxis=dict(title=item_selected, rangeslider=dict( visible=False ), type='date'), yaxis=dict(title='Value'), legend=dict(orientation="h"), height=800, margin=dict(l=0, r=0, t=0, b=0), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) return go.Figure(data=traces, layout=layout_fig) def plot_cross_sectional_market_misc_data(item_selected, ione, itwo, ithree, ifour, ifive): df_raw = misc_data_dict[item_selected] if item_selected in ['USDT']: df = df_raw elif item_selected in ['PCR:VIX', 'PCR:SPX', 'PCR:SPY']: df = pd.concat([df_raw['PV'] / df_raw['CV'], df_raw['POI'] / df_raw['COI']], axis=1) df.columns = ['PCR:V', 'PCR:OI'] elif 'COT:' in item_selected: if item_selected not in ['COT:ES', 'COT:NQ', 'COT:UX']: df = pd.concat([df_raw['Open Interest:F'], df_raw['Producer/Merchant/Processor/User:Long:F'] - df_raw[ 'Producer/Merchant/Processor/User:Short:F'], df_raw['Swap Dealers:Long:F'] - df_raw['Swap Dealers:Short:F'], df_raw['Managed Money:Long:F'] - df_raw['Managed Money:Short:F'], df_raw['Other Reportables:Long:F'] - df_raw['Other Reportables:Short:F']], axis=1) df.columns = ['Open Interest', 'Producers', 'Swap Dealers', 'Managed Money', 'Other Report'] df['Commercial'] = df['Producers'] + df['Swap Dealers'] df['Large Spec'] = df['Managed Money'] + df['Other Report'] df['Small Spec'] = 0.0 - df['Commercial'] - df['Large Spec'] else: df = pd.concat([df_raw['Open Interest:F'], df_raw['Dealer Intermediary:Long:F'] - df_raw['Dealer Intermediary:Short:F'], df_raw['Asset Manager/Institutional:Long:F'] - df_raw[ 'Asset Manager/Institutional:Short:F'], df_raw['Leveraged Funds:Long:F'] - df_raw['Leveraged Funds:Short:F'], df_raw['Other Reportables:Long:F'] - df_raw['Other Reportables:Short:F'], df_raw['Nonreportable Positions:Long:F'] - df_raw['Nonreportable Positions:Short:F'], ], axis=1) df.columns = ['Open Interest', 'Dealer Intermediary', 'Asset Manager', 'Leveraged Funds', 'Other Reportables', 'Nonreportable Positions'] else: return None asofdate = df.index[-1] s0 = df.loc[asofdate] s = s0.to_frame() if (ione is not None) and (not not ione): t1 = convert_date_input(ione, datetime.today()) t1 = t1.date() dateidx1 = df.index.searchsorted(t1) # first one greater than or equal to s1 = df.iloc[dateidx1] s = pd.concat([s, s1], axis=1) if (itwo is not None) and (not not itwo): t2 = convert_date_input(itwo, datetime.today()) t2 = t2.date() dateidx2 = df.index.searchsorted(t2) # first one greater than or equal to s2 = df.iloc[dateidx2] s = pd.concat([s, s2], axis=1) if (ithree is not None) and (not not ithree): t3 = convert_date_input(ithree, datetime.today()) t3 = t3.date() dateidx3 = df.index.searchsorted(t3) # first one greater than or equal to s3 = df.iloc[dateidx3] s = pd.concat([s, s3], axis=1) if (ifour is not None) and (not not ifour): t4 = convert_date_input(ifour, datetime.today()) t4 = t4.date() dateidx4 = df.index.searchsorted(t4) # first one greater than or equal to s4 = df.iloc[dateidx4] s = pd.concat([s, s4], axis=1) if (ifive is not None) and (not not ifive): t5 = convert_date_input(ifive, datetime.today()) t5 = t5.date() dateidx5 = df.index.searchsorted(t5) # first one greater than or equal to s5 = df.iloc[dateidx5] s = pd.concat([s, s5], axis=1) traces = [go.Scatter(x=s.index, y=s[c], name=c.strftime('%Y-%m-%d'), mode='lines+markers', hovertext=s.index) for c in s.columns] layout_fig = go.Layout(title=item_selected, xaxis={'title': item_selected}, yaxis={'title': 'Value'}, legend=dict(orientation="h"), paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)' ) # plotly.offline.plot({'data': traces, 'layout': layout}) return go.Figure(data=traces, layout=layout_fig)
app/grandchallenge/uploads/views.py
kaczmarj/grand-challenge.org
101
11111387
import logging from django.http import Http404 from rest_framework import mixins from rest_framework.decorators import action from rest_framework.permissions import DjangoObjectPermissions from rest_framework.response import Response from rest_framework.status import HTTP_400_BAD_REQUEST from rest_framework.viewsets import GenericViewSet from rest_framework_guardian.filters import ObjectPermissionsFilter from grandchallenge.uploads.models import UserUpload from grandchallenge.uploads.serializers import ( UserUploadCompleteSerializer, UserUploadCreateSerializer, UserUploadPartsSerializer, UserUploadPresignedURLsSerializer, UserUploadSerializer, ) logger = logging.getLogger(__name__) class UserUploadViewSet( mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.ListModelMixin, GenericViewSet, ): queryset = UserUpload.objects.all() permission_classes = (DjangoObjectPermissions,) filter_backends = (ObjectPermissionsFilter,) def get_serializer_class(self): if self.serializer_class is None: if self.action == "create": return UserUploadCreateSerializer else: return UserUploadSerializer else: return self.serializer_class @action( detail=True, methods=["get"], serializer_class=UserUploadPartsSerializer, url_path="(?P<s3_upload_id>[^/]+)/list-parts", ) def list_parts(self, request, pk, s3_upload_id): object = self.get_object() if object.s3_upload_id != s3_upload_id: logger.warning( f"Upload ID did not match: {object=}, {s3_upload_id=}" ) raise Http404 serializer = self.get_serializer(instance=object) return Response(data=serializer.data) @action( detail=True, methods=["patch"], serializer_class=UserUploadPresignedURLsSerializer, url_path="(?P<s3_upload_id>[^/]+)/generate-presigned-urls", ) def generate_presigned_urls(self, request, pk, s3_upload_id): object = self.get_object() if object.s3_upload_id != s3_upload_id: logger.warning( f"Upload ID did not match: {object=}, {s3_upload_id=}" ) raise Http404 if not object.can_upload_more: self.permission_denied(request, message="Upload limit reached") serializer = self.get_serializer( instance=object, data=request.data, partial=True ) if serializer.is_valid(): return Response(data=serializer.data) else: return Response( data=serializer.errors, status=HTTP_400_BAD_REQUEST ) @action( detail=True, methods=["patch"], serializer_class=UserUploadCompleteSerializer, url_path="(?P<s3_upload_id>[^/]+)/complete-multipart-upload", ) def complete_multipart_upload(self, request, pk, s3_upload_id): object = self.get_object() if object.s3_upload_id != s3_upload_id: logger.warning( f"Upload ID did not match: {object=}, {s3_upload_id=}" ) raise Http404 serializer = self.get_serializer( instance=object, data=request.data, partial=True ) if serializer.is_valid(): serializer.save() return Response(data=serializer.data) else: return Response( data=serializer.errors, status=HTTP_400_BAD_REQUEST ) @action( detail=True, methods=["patch"], url_path="(?P<s3_upload_id>[^/]+)/abort-multipart-upload", ) def abort_multipart_upload(self, request, pk, s3_upload_id): object = self.get_object() if object.s3_upload_id != s3_upload_id: logger.warning( f"Upload ID did not match: {object=}, {s3_upload_id=}" ) raise Http404 object.abort_multipart_upload() object.save() serializer = self.get_serializer(instance=object) return Response(serializer.data)
python3/monitor_console.py
charlesnchr/jupyter-vim
358
11111445
<filename>python3/monitor_console.py """ Feature to get a buffer with jupyter output """ # Standard import asyncio from queue import Queue # Local from jupyter_util import echom, unquote_string, str_to_vim, get_vim # Process local import vim class Monitor(): """Jupyter kernel monitor buffer and message line""" def __init__(self, kernel_client): self.kernel_client = kernel_client self.cmd = None self.cmd_id = None self.cmd_count = 0 self.line_queue = Queue() ## Open the Jupyter terminal in vim, and move cursor to it if -1 == vim.eval('jupyter#monitor_console#OpenJupyterMonitor()'): echom('__jupyter_monitor__ failed to open!', 'Error') return # Launch timer that will update the buffer timer_interval = get_vim('g:jupyter_timer_interval', 500) vim.command(f'call timer_start({timer_interval}, "jupyter#monitor_console#UpdateConsoleBuffer")') for channel in ['shell', 'iopub', 'control']: asyncio.run_coroutine_threadsafe(self.monitor(channel), kernel_client.loop) async def monitor(self, channel): """Start monitoring a channel. Parameters ---------- channel : 'shell' | 'iopub' | 'control' The channel to monitor. """ while not self.kernel_client.loop.is_closed(): msg = await self.kernel_client.get_next_msg(channel) self.line_queue.put(f'[{channel}] {msg["header"]["msg_type"]}: {msg["content"]}') def timer_write_msgs(self): """Write kernel <-> vim messages to monitor buffer""" timer_interval = get_vim('g:jupyter_timer_interval', 500) vim.command(f'call timer_start({timer_interval}, "jupyter#monitor_console#UpdateConsoleBuffer")') # Check in if self.line_queue.empty(): return # Get buffer (same indexes as vim) b_nb = int(vim.eval('bufnr("__jupyter_monitor__")')) buf = vim.buffers[b_nb] cur_win = vim.eval('win_getid()') term_win = vim.eval('bufwinid({})'.format(str(b_nb))) vim.command('call win_gotoid({})'.format(term_win)) vim.command('set modifiable') # Append mesage to jupyter terminal buffer while not self.line_queue.empty(): msg = self.line_queue.get_nowait() for line in msg.splitlines(): line = unquote_string(str_to_vim(line)) buf.append(line) vim.command('normal! G') vim.command('set nomodifiable') vim.command('call win_gotoid({})'.format(cur_win))
shadowproxy/proxies/socks/client.py
xiaoshihu/shadowproxy
180
11111470
<reponame>xiaoshihu/shadowproxy import random from curio import socket from ...protocols import socks4, socks5 from ...utils import run_parser_curio, set_disposable_recv from ..base.client import ClientBase class SocksClient(ClientBase): proto = "SOCKS" async def init(self): auth = getattr(self.ns, "auth", None) client_parser = socks5.client.parser(auth, self.target_addr) await run_parser_curio(client_parser, self.sock) redundant = client_parser.readall() set_disposable_recv(self.sock, redundant) class Socks4Client(ClientBase): proto = "SOCKS4" async def init(self): info = await socket.getaddrinfo( *self.target_addr, socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_TCP ) addr = random.choice(info)[-1] socks4_client_parser = socks4.client.parser(addr) await run_parser_curio(socks4_client_parser, self.sock) redundant = socks4_client_parser.readall() set_disposable_recv(self.sock, redundant)
examples/contouring.py
JNDanielson/mplstereonet
120
11111562
<filename>examples/contouring.py<gh_stars>100-1000 """A basic example of producing a density contour plot of poles to planes.""" import matplotlib.pyplot as plt import numpy as np import mplstereonet # Fix random seed so that output is consistent np.random.seed(1977) fig, ax = mplstereonet.subplots() # Generate a random scatter of planes around the given plane # All measurements follow the right-hand-rule to indicate dip direction strike, dip = 90, 80 num = 10 strikes = strike + 10 * np.random.randn(num) dips = dip + 10 * np.random.randn(num) # Create filled contours of the poles of the generated planes... # By default this uses a modified Kamb contouring technique with exponential # smoothing (See Vollmer, 1995) cax = ax.density_contourf(strikes, dips, measurement='poles') # Plot the poles as points on top of the contours ax.pole(strikes, dips) # Turn on a grid and add a colorbar ax.grid(True) fig.colorbar(cax) plt.show()
tests/test_fields.py
Highpolar-Softwares/django-url-filter
303
11111590
# -*- coding: utf-8 -*- from __future__ import print_function, unicode_literals import pytest from django import forms from url_filter.fields import MultipleValuesField from url_filter.validators import MaxLengthValidator, MinLengthValidator class TestMultipleValuesField(object): def test_init(self): field = MultipleValuesField( child=forms.IntegerField(), min_values=2, max_values=100, delimiter=";" ) assert isinstance(field.child, forms.IntegerField) assert field.delimiter == ";" assert any((isinstance(i, MinLengthValidator) for i in field.many_validators)) assert any((isinstance(i, MaxLengthValidator) for i in field.many_validators)) def test_clean_empty(self): assert MultipleValuesField(required=False).clean("") is None def test_clean(self): field = MultipleValuesField(min_values=2, max_values=3) assert field.clean("hello,world") == ["hello", "world"] with pytest.raises(forms.ValidationError): field.clean("hello") with pytest.raises(forms.ValidationError): field.clean("hello,world,and,many,happy,rainbows") def test_clean_all_valid(self): field = MultipleValuesField(forms.IntegerField(), all_valid=False) assert field.clean("1,2,3") == [1, 2, 3] assert field.clean("a,1,b,2") == [1, 2] def test_many_to_python(self): field = MultipleValuesField() assert field.many_to_python("hello,world") == ["hello", "world"] def test_many_validate(self): assert MultipleValuesField().many_validate([1, 2]) is None with pytest.raises(forms.ValidationError): MultipleValuesField().many_validate([]) def test_many_run_validators(self): field = MultipleValuesField(error_messages={"min_length": "foo"}) assert field.many_run_validators(None) is None with pytest.raises(forms.ValidationError) as e: field.many_run_validators(["hello"]) assert e.value.error_list[0].message == "foo"
tests/test_import_concept_pairs.py
vishalbelsare/kgtk
222
11111611
import shutil import unittest import tempfile import pandas as pd from kgtk.cli_entry import cli_entry from kgtk.exceptions import KGTKException class TestKGTKImportConceptPairs(unittest.TestCase): def setUp(self) -> None: self.temp_dir=tempfile.mkdtemp() def tearDown(self) -> None: shutil.rmtree(self.temp_dir) def test_kgtk_import_concept_pairs(self): cli_entry("kgtk", "import-concept-pairs", "-i", "data/synonyms.txt", "--source", "RG", "--relation", "/r/Synonym", "-o", f'{self.temp_dir}/roget_syn.tsv') df = pd.read_csv(f'{self.temp_dir}/roget_syn.tsv', sep='\t') self.assertEqual(len(df.columns), 9) for i, row in df.iterrows(): self.assertTrue(row['relation']=='/r/Synonym') print('ROGET', df)
python_modules/libraries/dagster-mysql/dagster_mysql/event_log/__init__.py
dbatten5/dagster
4,606
11111614
<filename>python_modules/libraries/dagster-mysql/dagster_mysql/event_log/__init__.py from .event_log import MySQLEventLogStorage
bokeh/sphinxext/util.py
kevin1kevin1k/bokeh
445
11111680
from ..settings import settings from ..resources import Resources def get_sphinx_resources(include_bokehjs_api=False): docs_cdn = settings.docs_cdn() # if BOKEH_DOCS_CDN is unset just use default CDN resources if docs_cdn is None: resources = Resources(mode="cdn") else: # "BOKEH_DOCS_CDN=local" is used for building and displaying the docs locally if docs_cdn == "local": resources = Resources(mode="server", root_url="/en/latest/") # "BOKEH_DOCS_CDN=test:newthing" is used for building and deploying test docs to # a one-off location "en/newthing" on the docs site elif docs_cdn.startswith("test:"): resources = Resources( mode="server", root_url="/en/%s/" % docs_cdn.split(":")[1]) # Otherwise assume it is a dev/rc/full release version and use CDN for it else: resources = Resources(mode="cdn", version=docs_cdn) if include_bokehjs_api: resources.js_components.append("bokeh-api") return resources
test/crc16.py
pengdao/simcc
108
11111729
<filename>test/crc16.py def crc16(x): b=0xA001 a=0xFFFF for byte in x: a=a^ord(byte) for i in range(8): last=a%2 a=a>>1 if last==1:a=a^b aa='0'*(6-len(hex(a)))+hex(a)[2:] ll,hh=int(aa[:2],16),int(aa[2:],16) return hh+ll*256 print crc16('hello') print crc16('world')
python/mask_detection/models/pd_model.py
windstamp/Paddle-Inference-Demo
115
11111730
import numpy as np from paddle.inference import Config from paddle.inference import create_predictor class Model: def __init__(self, model_file, params_file, use_mkldnn=True, use_gpu=False, device_id=0): config = Config(model_file, params_file) config.enable_memory_optim() if use_gpu: print("ENABLE_GPU") config.enable_use_gpu(100, device_id) if use_mkldnn: config.enable_mkldnn() self.predictor = create_predictor(config) def run(self, img_list): input_names = self.predictor.get_input_names() for i, name in enumerate(input_names): input_tensor = self.predictor.get_input_handle(input_names[i]) input_tensor.reshape(img_list[i].shape) input_tensor.copy_from_cpu(img_list[i].copy()) self.predictor.run() results = [] output_names = self.predictor.get_output_names() for i, name in enumerate(output_names): output_tensor = self.predictor.get_output_handle(output_names[i]) output_data = output_tensor.copy_to_cpu() results.append(output_data) return results
examples/sharepoint/migration/export_list.py
theodoriss/Office365-REST-Python-Client
544
11111739
from office365.sharepoint.client_context import ClientContext from tests import test_team_site_url, test_client_credentials ctx = ClientContext(test_team_site_url).with_credentials(test_client_credentials) ctx.web.lists.get_by_title("Tasks").save_as_template("Tasks.stp", "Tasks", "", True).execute_query()
Lib/test/test_compiler/sbs_code_tests/06_funcall_varargs.py
diogommartins/cinder
1,886
11111750
c = (a, b) fun(a, b, *c) # EXPECTED: [ ..., BUILD_TUPLE_UNPACK_WITH_CALL(2), CALL_FUNCTION_EX(0), ..., ]
tools/perf/page_sets/loading_mobile.py
zipated/src
2,151
11111757
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from page_sets import page_cycler_story from telemetry.page import cache_temperature as cache_temperature_module from telemetry.page import shared_page_state from telemetry.page import traffic_setting as traffic_setting_module from telemetry import story class LoadingMobileStorySet(story.StorySet): """ A collection of tests to measure loading performance of mobile sites. Design doc: https://docs.google.com/document/d/1QKlZIoURAxZk-brrXsKYZl9O8ieqXht3ogeF9yLNFCI/edit """ def __init__(self, cache_temperatures=None, cache_temperatures_for_pwa=None, traffic_settings=None): super(LoadingMobileStorySet, self).__init__( archive_data_file='data/loading_mobile.json', cloud_storage_bucket=story.PARTNER_BUCKET) if cache_temperatures is None: cache_temperatures = [cache_temperature_module.ANY] if cache_temperatures_for_pwa is None: cache_temperatures_for_pwa = [cache_temperature_module.ANY] if traffic_settings is None: traffic_settings = [traffic_setting_module.NONE] self.AddStories(['global'], [ ('https://www.google.com/search?q=flower#q=flower+delivery', 'GoogleRedirectToGoogleJapan'), ('https://www.youtube.com/watch?v=MU3YuvNRhVY', 'Youtube'), # pylint: disable=line-too-long ('https://www.google.co.in/search?q=%E0%A4%AB%E0%A5%82%E0%A4%B2&rct=j#q=%E0%A4%AB%E0%A5%82%E0%A4%B2+%E0%A4%B5%E0%A4%BF%E0%A4%A4%E0%A4%B0%E0%A4%A3', 'GoogleIndia'), ('https://www.google.com.br/search?q=flor#q=Entrega+de+flores&start=10', 'GoogleBrazil'), ('https://www.google.co.id/#q=pengiriman+bunga', 'GoogleIndonesia'), ('https://m.facebook.com/?soft=messages', 'Facebook'), # pylint: disable=line-too-long ('http://g1.globo.com/politica/noticia/2016/02/maioria-do-stf-autoriza-fisco-obter-dados-bancarios-sem-decisao-judicial.html', 'G1'), # pylint: disable=line-too-long ('https://m.baidu.com/s?word=%E9%B2%9C%E8%8A%B1%E9%80%9F%E9%80%92&oq=%E9%B2%9C%E8%8A%B1', 'Baidu'), # pylint: disable=line-too-long ('http://news.yahoo.com/were-top-10-most-visited-us-national-parks-105323727.html', 'YahooNews'), ('https://en.m.wikipedia.org/wiki/Solo_Foods', 'Wikipedia'), # pylint: disable=line-too-long ('http://noticias.bol.uol.com.br/ultimas-noticias/brasil/2016/08/03/tufao-nida-nao-deixa-vitimas-mas-prejuizos-de-us-43-milhoes.htm', 'BOLNoticias'), ('http://www.amazon.com/gp/aw/s/ref=is_s/189-8585431-1246432?k=shoes', 'Amazon'), # pylint: disable=line-too-long ('http://m.tribunnews.com/superskor/2016/08/03/ribuan-polisi-dikerahkan-mengawal-bonek', 'TribunNews'), ('http://xw.qq.com/news/20160803025029/NEW2016080302502901', 'QQNews'), # pylint: disable=line-too-long ('http://m.kaskus.co.id/thread/57a03a3214088d91068b4567/inilah-akibat-bersikap-overprotektif-terhadap-anak/?ref=homelanding&med=hot_thread', 'Kaskus'), ('http://www.dailymotion.com/video/x3d1kj5_fallout-4-review_videogames', 'Dailymotion'), ('https://mobile.twitter.com/scottjehl/status/760618697727803394', 'Twitter'), ('http://m.kapanlagi.com/lirik/artis/anji/kata_siapa/', 'KapanLagi'), # pylint: disable=line-too-long ('http://olx.co.id/iklan/iphone-6s-64-rose-gold-warna-favorite-IDiSdm5.html#5310a118c3;promoted', 'OLX'), # pylint: disable=line-too-long ('http://enquiry.indianrail.gov.in/mntes/MntesServlet?action=MainMenu&subAction=excep&excpType=EC', 'EnquiryIndianRail'), # TODO(rnephew): Rerecord this. crbug.com/728882 # pylint: disable=line-too-long # ('https://googleblog.blogspot.jp/2016/02/building-safer-web-for-everyone.html', # 'Blogspot'), # pylint: disable=line-too-long # ('http://m.detik.com/finance/read/2016/02/19/151843/3146351/1034/ekspor-tambang-mentah-mau-dibuka-lagi-kalau-sudah-bangun-smelter-bagaimana', # 'Detik'), ], cache_temperatures, traffic_settings) self.AddStories(['pwa'], [ # pylint: disable=line-too-long ('https://www.flipkart.com/big-wing-casuals/p/itmemeageyfn6m9z?lid=LSTSHOEMEAGURG2PHPW18FTBN&pid=SHOEMEAGURG2PHPW', 'FlipKart'), ('https://smp.suumo.jp/mansion/tokyo/sc_104/cond/?moreCond=1', 'Suumo'), ('https://voice-memos.appspot.com', 'VoiceMemos'), ('https://dev.opera.com/', 'DevOpera'), ('https://flipboard.com/topic/yoga', 'FlipBoard'), # TODO(rnephew): Record these. crbug.com/728882 # ('https://wiki-offline.jakearchibald.com/', # 'WikiOffline'), # ('https://busrouter.sg', 'BusRouter'), # ('https://airhorner.com', 'AirHorner'), ], cache_temperatures_for_pwa, traffic_settings) self.AddStories(['tough_ttfmp'], [ ('http://www.localmoxie.com', 'LocalMoxie'), ('http://www.dawn.com', 'Dawn'), ('http://www.thairath.co.th', 'Thairath'), ('http://www.hashocean.com', 'HashOcean'), ], cache_temperatures, traffic_settings) self.AddStories(['easy_ttfmp'], [ ('http://www.slideshare.net', 'SlideShare'), ('http://www.bradesco.com.br', 'Bradesco'), ('http://www.gsshop.com', 'GSShop'), ], cache_temperatures, traffic_settings) self.AddStories(['tough_tti'], [ ('http://www.thestar.com.my', 'TheStar'), ('http://www.58pic.com', '58Pic'), ('http://www.hongkiat.com', 'Hongkiat'), ('http://www.ibicn.com', 'IBI'), ], cache_temperatures, traffic_settings) self.AddStories(['easy_tti'], [ ('http://www.dramaq.com.tw', 'Dramaq'), ('http://www.locanto.in', 'Locanto'), ('http://www.francetvinfo.fr', 'FranceTVInfo'), ], cache_temperatures, traffic_settings) def AddStories(self, tags, urls, cache_temperatures, traffic_settings): for url, name in urls: for temp in cache_temperatures: for traffic in traffic_settings: self.AddStory(page_cycler_story.PageCyclerStory(url, self, name=name, shared_page_state_class=shared_page_state.SharedMobilePageState, cache_temperature=temp, traffic_setting=traffic, tags=tags))
lib/core/eval.py
frostinassiky/2D-TAN
249
11111764
import json import argparse import numpy as np from terminaltables import AsciiTable from core.config import config, update_config def iou(pred, gt): # require pred and gt is numpy assert isinstance(pred, list) and isinstance(gt,list) pred_is_list = isinstance(pred[0],list) gt_is_list = isinstance(gt[0],list) if not pred_is_list: pred = [pred] if not gt_is_list: gt = [gt] pred, gt = np.array(pred), np.array(gt) inter_left = np.maximum(pred[:,0,None], gt[None,:,0]) inter_right = np.minimum(pred[:,1,None], gt[None,:,1]) inter = np.maximum(0.0, inter_right - inter_left) union_left = np.minimum(pred[:,0,None], gt[None,:,0]) union_right = np.maximum(pred[:,1,None], gt[None,:,1]) union = np.maximum(0.0, union_right - union_left) overlap = 1.0 * inter / union if not gt_is_list: overlap = overlap[:,0] if not pred_is_list: overlap = overlap[0] return overlap def rank(pred, gt): return pred.index(gt) + 1 def nms(dets, thresh=0.4, top_k=-1): """Pure Python NMS baseline.""" if len(dets) == 0: return [] order = np.arange(0,len(dets),1) dets = np.array(dets) x1 = dets[:, 0] x2 = dets[:, 1] lengths = x2 - x1 keep = [] while order.size > 0: i = order[0] keep.append(i) if len(keep) == top_k: break xx1 = np.maximum(x1[i], x1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) inter = np.maximum(0.0, xx2 - xx1) ovr = inter / (lengths[i] + lengths[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return dets[keep] def eval(segments, data): tious = [float(i) for i in config.TEST.TIOU.split(',')] if isinstance(config.TEST.TIOU,str) else [config.TEST.TIOU] recalls = [int(i) for i in config.TEST.RECALL.split(',')] if isinstance(config.TEST.RECALL,str) else [config.TEST.RECALL] eval_result = [[[] for _ in recalls] for _ in tious] max_recall = max(recalls) average_iou = [] for seg, dat in zip(segments, data): seg = nms(seg, thresh=config.TEST.NMS_THRESH, top_k=max_recall).tolist() overlap = iou(seg, [dat['times']]) average_iou.append(np.mean(np.sort(overlap[0])[-3:])) for i,t in enumerate(tious): for j,r in enumerate(recalls): eval_result[i][j].append((overlap > t)[:r].any()) eval_result = np.array(eval_result).mean(axis=-1) miou = np.mean(average_iou) return eval_result, miou def eval_predictions(segments, data, verbose=True): eval_result, miou = eval(segments, data) if verbose: print(display_results(eval_result, miou, '')) return eval_result, miou def display_results(eval_result, miou, title=None): tious = [float(i) for i in config.TEST.TIOU.split(',')] if isinstance(config.TEST.TIOU,str) else [config.TEST.TIOU] recalls = [int(i) for i in config.TEST.RECALL.split(',')] if isinstance(config.TEST.RECALL,str) else [config.TEST.RECALL] display_data = [['Rank@{},mIoU@{}'.format(i,j) for i in recalls for j in tious]+['mIoU']] eval_result = eval_result*100 miou = miou*100 display_data.append(['{:.02f}'.format(eval_result[j][i]) for i in range(len(recalls)) for j in range(len(tious))] +['{:.02f}'.format(miou)]) table = AsciiTable(display_data, title) for i in range(len(tious)*len(recalls)): table.justify_columns[i] = 'center' return table.table def parse_args(): parser = argparse.ArgumentParser(description='Train localization network') # general parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str) args, rest = parser.parse_known_args() # update config update_config(args.cfg) parser.add_argument('--verbose', default=False, action="store_true", help='print progress bar') args = parser.parse_args() return args def reset_config(config, args): if args.verbose: config.VERBOSE = args.verbose if __name__ == '__main__': args = parse_args() reset_config(config, args) train_data = json.load(open('/data/home2/hacker01/Data/DiDeMo/train_data.json', 'r')) val_data = json.load(open('/data/home2/hacker01/Data/DiDeMo/val_data.json', 'r')) moment_frequency_dict = {} for d in train_data: times = [t for t in d['times']] for time in times: time = tuple(time) if time not in moment_frequency_dict.keys(): moment_frequency_dict[time] = 0 moment_frequency_dict[time] += 1 prior = sorted(moment_frequency_dict, key=moment_frequency_dict.get, reverse=True) prior = [list(item) for item in prior] prediction = [prior for d in val_data] eval_predictions(prediction, val_data)
examples/text_classification/model.py
mattolson93/wikipedia2vec
744
11111781
<reponame>mattolson93/wikipedia2vec import torch import torch.nn as nn import torch.nn.functional as F class NABoE(nn.Module): def __init__(self, word_embedding, entity_embedding, num_classes, dropout_prob, use_word): super(NABoE, self).__init__() self.use_word = use_word self.word_embedding = nn.Embedding(word_embedding.shape[0], word_embedding.shape[1], padding_idx=0) self.word_embedding.weight = nn.Parameter(torch.FloatTensor(word_embedding)) self.entity_embedding = nn.Embedding(entity_embedding.shape[0], entity_embedding.shape[1], padding_idx=0) self.entity_embedding.weight = nn.Parameter(torch.FloatTensor(entity_embedding)) self.attention_layer = nn.Linear(2, 1) self.dropout = nn.Dropout(p=dropout_prob) self.output_layer = nn.Linear(word_embedding.shape[1], num_classes) def forward(self, word_ids, entity_ids, prior_probs): word_sum_vector = self.word_embedding(word_ids).sum(1) entity_vectors = self.entity_embedding(entity_ids) word_norm_vector = word_sum_vector / torch.norm(word_sum_vector, dim=1, keepdim=True).clamp(min=1e-12).detach() entity_norm_vectors = entity_vectors / torch.norm(entity_vectors, dim=2, keepdim=True).clamp(min=1e-12).detach() cosine_similarities = (word_norm_vector.unsqueeze(1) * entity_norm_vectors).sum(2, keepdim=True) attention_features = torch.cat((prior_probs.unsqueeze(2), cosine_similarities), 2) attention_logits = self.attention_layer(attention_features).squeeze(-1) attention_logits = attention_logits.masked_fill_(entity_ids == 0, -1e32) attention_weights = F.softmax(attention_logits, dim=1) feature_vector = (entity_vectors * attention_weights.unsqueeze(-1)).sum(1) if self.use_word: word_feature_vector = word_sum_vector / (word_ids != 0).sum(dim=1, keepdim=True).type_as(word_sum_vector) feature_vector = feature_vector + word_feature_vector feature_vector = self.dropout(feature_vector) return self.output_layer(feature_vector)
plecost_lib/libs/utils.py
enterstudio/plecost
363
11111808
<gh_stars>100-1000 #!/usr/bin/python # -*- coding: utf-8 -*- # # Plecost: Wordpress vulnerabilities finder # # @url: http://iniqua.com/labs/ # @url: https://github.com/iniqua/plecost # # @author:<NAME> aka ffranz (http://iniqua.com/) # @author:<NAME> aka cr0hn (http://www.cr0hn.com/me/) # # Copyright (c) 2015, Iniqua Team # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # """ This file contains some orphan functions """ import urllib import aiohttp import asyncio import os.path as op from urllib.parse import urljoin from random import choice, randint from difflib import SequenceMatcher from string import ascii_letters, digits try: from termcolor import colored except ImportError: def colored(text, color): return text __all__ = ["colorize", "generate_error_page", "get_diff_ratio", "get_data_folder", "check_redirects"] # ---------------------------------------------------------------------- def log(message, log_level=0, current_log_level=None): """ Auxiliary function to use as log level :param current_log_level: Log level selected at the moment of running the program :type current_log_level: int :param message: Message to display :type message: basestring :param log_level: log level: 0-4 :type log_level: int """ from sys import stdout from os import environ if current_log_level is None: try: _current_log_level = int(environ["PLECOST_LOG_LEVEL"]) except KeyError: _current_log_level = 0 else: _current_log_level = current_log_level if log_level <= _current_log_level: print(message, end='') stdout.flush() # ---------------------------------------------------------------------- def colorize(text, color="yellow", activate=True): """ This function return the text in a indicated color, if color is activate. :param text: Text to colorize :type text: basestring :param color: Color name :type color: basestring :param activate: boolean value that indicates if color is enabled. :type activate: bool :return: string with colored (if activated) text. :rtype: str """ if activate: return colored(text, color) # ---------------------------------------------------------------------- def generate_error_page(url): """ Takes an URL to an existing document and generates a random URL to a nonexisting document, to trigger a server error. Example: >>> from libs.utils import generate_error_page >>> generate_error_page("http://www.site.com/index.php") 'http://www.site.com/index.php.19ds_8vjX' :param url: Original URL. :type url: str :return: Generated URL. :rtype: str """ if not isinstance(url, str): raise TypeError("Expected basestring, got '%s' instead" % type(url)) # Get random path random_path = "".join(choice(ascii_letters + digits) for _ in range(randint(5, 20))) return "%s/%s" % (url, random_path) # ------------------------------------------------------------------------------ def get_diff_ratio(text1, text2): """ Compare two texts and return a floating point value between 0 and 1 with the difference ratio, with 0 being absolutely different and 1 being absolutely equal - the more similar the two texts are, the closer the ratio will be to 1. ..note: This function was taken from Golismero project: http://github.com/golismero/golismero :param text1: First text to compare. :type text1: basestring :param text2: Second text to compare. :type text2: basestring :returns: Floating point value between 0 and 1. :rtype: float """ # Solve some trivial type errors (like using None). if not text1: text1 = "" if not text2: text2 = "" # Trivial case, the two texts are identical. if text1 == text2: return 1.0 # Use the difflib sequence matcher to calculate the ratio. m = SequenceMatcher(a=text1, b=text2) return m.ratio() # ---------------------------------------------------------------------- def get_data_folder(): """ Return path of resources folder. :return: path of resources folder. :rtype: str """ return op.abspath(op.join(op.dirname(__file__), "..", "resources")) # ---------------------------------------------------------------------- def update_progress(values, print_function=None, prefix_text="", bar_len=40): """ Creates a process bar in ASCII >>> for x in update_progress(range(1, 65), prefix_text="Prefix text: "): Prefix text: [########] 20.31% :param values: list or generator with items to process :type values: list :param print_function: function used to display information. By default is buildin 'print'. :type print_function: function :param prefix_text: Text to write before bar. :type prefix_text: str :param bar_len: number of characters used into bar. :type bar_len: int """ _values = list(values) _len_values = len(_values) _var_len = bar_len _print = print_function or print for i, x in enumerate(_values, start=1): _percent = (i/_len_values) _percent_fix = int((i/_len_values) * _var_len) _print('\r{0} [#{1}] {2:.2f}%'.format(prefix_text, '#'*_percent_fix, _percent*100), end='') yield x # ------------------------------------------------------------------------------ @asyncio.coroutine def download(url, max_redirect=2, loop=None, session=None, method="get", get_content=True, auto_redirect=True, custom_hostname=None): """ Download a web page content. :param url: path where to get information. :type url: basestring :param max_tries: maximum number of retries for each page :type max_tries: int :param connector: HTTPConnection instance :type connector: `HTTPConnection` :param loop: Event loop object :type loop: loop :param method: HTTP method to use :type method: str :param get_content: boolean value that indicates if must download content or not :type get_content: bool :return: Web page content as a tuple: (http_header, status, basestring) :rtype: (dict, int, str) """ ret_status = None ret_headers = None ret_content = None custom_headers = {} if custom_hostname: custom_headers["host"] = custom_hostname try: with aiohttp.Timeout(5): if max_redirect < 0: return None, None, None response = yield from session.request( method, url, headers=custom_headers, allow_redirects=False) if response.status in (300, 301, 302, 303, 307): location = response.headers.get('location') next_url = urllib.parse.urljoin(url, location) if max_redirect > 0: log('\n[!] redirect to %r from %r\n' % (next_url, url), log_level=1) if auto_redirect is True: # return _loop.run_until_complete(download(next_url, # max_redirect=(max_redirect-1))) r = yield from download(next_url, max_redirect=(max_redirect - 1)) return r else: ret_headers, ret_status, ret_content = response.headers, response.status, None else: log('\n[!] redirect limit reached for %r from %r\n' % (next_url, url), log_level=2) ret_headers, ret_status, ret_content = response.headers, response.status, None else: content = None if get_content: content = (yield from response.read()).decode(errors="ignore") ret_headers, ret_status, ret_content = response.headers, response.status, content # Timeout error except Exception: pass return ret_headers, ret_status, ret_content # -------------------------------------------------------------------------- class ConcurrentDownloader: """Get a list of URLs. Download their content and call user defined action """ # ---------------------------------------------------------------------- def __init__(self, process_url_content, session, max_redirects=2, max_tasks=10, ignore_403=False, loop=None): """ :param process_url_content: function to process URL content, after it is downloaded :type process_url_content: function :param max_redirects: maximum number of redirects :type max_redirects: int :param max_tries: maximum number of HTTP retries. :type max_tries: int :param max_tasks: maximum number of concurrent tasks :type max_tasks: int :param loop: optional event loop object :type loop: loop :param ignore_403: Ignore 403 responses from server :type ignore_403: bool :param connector: aioTCPConnector object :type connector: aiohttp.TCPConnector >>> import asyncio >>> display=lambda x: print(x) >>> loop = asyncio.get_event_loop() >>> v = ConcurrentDownloader(url_base="http://myhost.com", process_url_content=display) >>> loop.run_until_complete(v.run()) """ self.session = session self.ignore_403 = ignore_403, self.max_redirects = max_redirects self.process_url_function = process_url_content or (lambda x: None) self.max_tasks = max_tasks self.loop = loop or asyncio.get_event_loop() self.q = asyncio.Queue(loop=self.loop) self.__results = [] self.__results_append = self.results.append # ---------------------------------------------------------------------- @property def results(self): return self.__results # ---------------------------------------------------------------------- @asyncio.coroutine def _work(self): while True: # Get an URL to process url = yield from self.q.get() # Download content log("\n |- Trying: %s" % colorize(url, "yellow"), log_level=1) headers, status, content = yield from download(url, session=self.session, max_redirect=self.max_redirects, loop=self.loop) if self.ignore_403 is True and status == 403: continue else: # Processing response _r = self.process_url_function(url, headers, status, content) if _r is not None: self.__results_append(_r) del headers, status, content self.q.task_done() # -------------------------------------------------------------------------- # # Public method # # ---------------------------------------------------------------------- def close(self): """Close resources.""" self.connector.close() # -------------------------------------------------------------------------- @asyncio.coroutine def run(self): """ Start the analyzer daemon. """ # Add workers workers = [asyncio.Task(self._work(), loop=self.loop) for _ in range(self.max_tasks)] # Wait content of workers ends yield from self.q.join() for w in workers: w.cancel() # ---------------------------------------------------------------------- def add_url(self, url): """ Add a URL to queue to analyze :param url: URL to store :type url: str """ self.q.put_nowait(url) # ---------------------------------------------------------------------- def add_url_list(self, urls): """ Add an URL list to processing :param urls: list with URLs :type urls: str """ for x in urls: self.q.put_nowait(x)
test_inference.py
shintotm/breast_density_classifier
158
11111825
import argparse import numpy as np MODEL_PATH_DICT = { "cnn": { "tf": "saved_models/BreastDensity_BaselineBreastModel/model.ckpt", "torch": "saved_models/BreastDensity_BaselineBreastModel/model.p", }, "histogram": { "tf": "saved_models/BreastDensity_BaselineHistogramModel/model.ckpt", "torch": "saved_models/BreastDensity_BaselineHistogramModel/model.p", }, } def get_result(library, device_type, model_type): if library == "tf": import density_model_tf inference_func = density_model_tf.inference elif library == "torch": import density_model_torch inference_func = density_model_torch.inference else: raise RuntimeError(library) return inference_func({ "model_type": model_type, "model_path": MODEL_PATH_DICT[model_type][library], "device_type": device_type, "gpu_number": 0, "image_path": "images/", "input_size": (2600, 2000), "bins_histogram": 50, }, verbose=False) GOLDEN_RESULT = { "histogram": (0.0819444, 0.78304, 0.133503, 0.00151265), "cnn": (0.209689, 0.765076, 0.024949, 0.000285853), } # CPU-GOLDEN Consistency def test_tf_golden_equal_cnn(): assert np.allclose(get_result("tf", "cpu", "cnn"), GOLDEN_RESULT["cnn"]) def test_torch_golden_equal_cnn(): assert np.allclose(get_result("torch", "cpu", "cnn"), GOLDEN_RESULT["cnn"]) def test_tf_golden_equal_histogram(): assert np.allclose(get_result("tf", "cpu", "histogram"), GOLDEN_RESULT["histogram"]) def test_torch_golden_equal_histogram(): assert np.allclose(get_result("torch", "cpu", "histogram"), GOLDEN_RESULT["histogram"]) # CPU-GPU Consistency def test_tf_cpu_gpu_equal_cnn(): assert np.allclose(get_result("tf", "cpu", "cnn"), get_result("tf", "gpu", "cnn")) def test_torch_cpu_gpu_equal_cnn(): assert np.allclose(get_result("torch", "cpu", "cnn"), get_result("torch", "gpu", "cnn")) def test_tf_cpu_gpu_equal_histogram(): assert np.allclose(get_result("tf", "cpu", "histogram"), get_result("tf", "gpu", "histogram")) def test_torch_cpu_gpu_equal_histogram(): assert np.allclose(get_result("torch", "cpu", "histogram"), get_result("torch", "gpu", "histogram")) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run Tests') parser.add_argument('--using') parser.add_argument('--with-gpu', action="store_true") args = parser.parse_args() test_list = [] if args.using == "tf": test_list.append(test_tf_golden_equal_cnn) test_list.append(test_tf_golden_equal_histogram) if args.with_gpu: test_list.append(test_tf_cpu_gpu_equal_cnn) test_list.append(test_tf_cpu_gpu_equal_histogram) elif args.using == "torch": test_list.append(test_torch_golden_equal_cnn) test_list.append(test_torch_golden_equal_histogram) if args.with_gpu: test_list.append(test_torch_cpu_gpu_equal_cnn) test_list.append(test_torch_cpu_gpu_equal_histogram) else: raise RuntimeError("Provide --using 'tf' or 'torch'") for test_func in test_list: try: test_func() print("{}: PASSED".format(test_func.__name__)) except Exception as e: print("{}: FAILED".format(test_func.__name__)) raise print("All {} test(s) passed.".format(len(test_list)))
src/API/python_listener.py
parzival3/Surelog
156
11111852
<reponame>parzival3/Surelog # Sample listener SLregisterNewErrorType("[NOTE :PY0403]", "Module declaration \"%s\"", ""); SLoverrideSeverity("[NOTE :PY0403]", "INFO") def enterModule_nonansi_header(prog, ctx): SLaddErrorContext(prog, ctx, "[INFO :PY0403]", SLgetText(prog, ctx)) def enterModule_ansi_header(prog, ctx): SLaddErrorContext(prog, ctx, "[INFO :PY0403]", SLgetText(prog, ctx))
lib/pymedphys/_imports/slow/imports.py
ethanio12345/pymedphys
207
11111854
# pylint: disable = unused-import, reimported, import-error import tensorflow # type: ignore
koku/sources/test/test_sources_error_message.py
rubik-ai/koku
157
11111862
# # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """Test the Sources Error Messages.""" from django.test import TestCase from rest_framework.serializers import ValidationError from api.common import error_obj from providers.provider_errors import ProviderErrors from sources.sources_error_message import SourcesErrorMessage class SourcesErrorMessageTest(TestCase): """Test cases for SourcesErrorMessage.""" def test_aws_errors(self): """Test AWS error types.""" test_matrix = [ { "key": ProviderErrors.AWS_ROLE_ARN_UNREACHABLE, "internal_message": "internal resource name message string", "expected_message": ProviderErrors.AWS_ROLE_ARN_UNREACHABLE_MESSAGE, }, { "key": ProviderErrors.AWS_BILLING_SOURCE_NOT_FOUND, "internal_message": "internal billing source message string", "expected_message": ProviderErrors.AWS_BILLING_SOURCE_NOT_FOUND_MESSAGE, }, { "key": ProviderErrors.AWS_COMPRESSION_REPORT_CONFIG, "internal_message": "internal compression error message", "expected_message": ProviderErrors.AWS_COMPRESSION_REPORT_CONFIG_MESSAGE, }, { "key": ProviderErrors.AWS_BUCKET_MISSING, "internal_message": ProviderErrors.AWS_BUCKET_MISSING_MESSAGE, "expected_message": ProviderErrors.AWS_BUCKET_MISSING_MESSAGE, }, ] for test in test_matrix: with self.subTest(test=test): key = test.get("key") message = test.get("internal_message") error = ValidationError(error_obj(key, message)) message_obj = SourcesErrorMessage(error) self.assertEquals(message_obj.display(source_id=1), test.get("expected_message")) def test_azure_errors(self): """Test Azure error types.""" test_matrix = [ { "key": ProviderErrors.AZURE_CLIENT_ERROR, "internal_message": ", AdalError: Get Token request returned http error: 401 and server response:", "expected_message": ProviderErrors.AZURE_INCORRECT_CLIENT_SECRET_MESSAGE, }, { "key": ProviderErrors.AZURE_CLIENT_ERROR, "internal_message": ( ", AdalError: Get Token request returned http error: 400 and server response:" ' {"error":"invalid_request","error_description":"AADSTS90002: Tenant' ), "expected_message": ProviderErrors.AZURE_INCORRECT_TENANT_ID_MESSAGE, }, { "key": ProviderErrors.AZURE_CLIENT_ERROR, "internal_message": ( ", AdalError: Get Token request returned http error: 400 and server response:" ' {"error":"unauthorized_client","error_description":"AADSTS700016:' ), "expected_message": ProviderErrors.AZURE_INCORRECT_CLIENT_ID_MESSAGE, }, { "key": ProviderErrors.AZURE_CLIENT_ERROR, "internal_message": ( "Azure Error: ResourceGroupNotFound\nMessage: Resource group" "'RG2' could not be found." ), "expected_message": ProviderErrors.AZURE_INCORRECT_RESOURCE_GROUP_MESSAGE, }, { "key": ProviderErrors.AZURE_CLIENT_ERROR, "internal_message": ( "Azure Error: ResourceNotFound\nMessage: The " "Resource 'Microsoft.Storage/storageAccounts/mysa5' under " "resource group 'RG1' was not found" ), "expected_message": ProviderErrors.AZURE_INCORRECT_STORAGE_ACCOUNT_MESSAGE, }, { "key": ProviderErrors.AZURE_CLIENT_ERROR, "internal_message": ( "Azure Error: SubscriptionNotFound\nMessage: The " "subscription '2639de71-ca37-4a17-a104-17665a50e7fd'" " could not be found." ), "expected_message": ProviderErrors.AZURE_INCORRECT_SUBSCRIPTION_ID_MESSAGE, }, { "key": ProviderErrors.AZURE_CLIENT_ERROR, "internal_message": "Random azure error", "expected_message": ProviderErrors.AZURE_GENERAL_CLIENT_ERROR_MESSAGE, }, ] for test in test_matrix: with self.subTest(test=test): key = test.get("key") message = test.get("internal_message") error = ValidationError(error_obj(key, message)) message_obj = SourcesErrorMessage(error) self.assertEquals(message_obj.display(source_id=1), test.get("expected_message")) def test_general_string_error(self): """Test general string error fallback.""" random_error_dict = {"rando": "error"} message_obj = SourcesErrorMessage(random_error_dict) self.assertEquals(message_obj.display(source_id=1), str(random_error_dict)) def test_available_source(self): """Test an available source message.""" message_obj = SourcesErrorMessage(None).display(source_id=1) self.assertEquals(message_obj, "")
iPERCore/tools/utils/geometry/mesh.py
JSssssss/iPERCore
2,223
11111885
<reponame>JSssssss/iPERCore<filename>iPERCore/tools/utils/geometry/mesh.py<gh_stars>1000+ # Copyright (c) 2020-2021 impersonator.org authors (<NAME> and <NAME>). All rights reserved. import itertools import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import json def save_to_obj(path, verts, faces, vts, vns, faces_vts, faces_vns): """ Save the SMPL model into .obj file. Parameter: --------- path: Path to save. """ with open(path, "w") as fp: fp.write("g\n") for v in verts: fp.write("v %.8f %.8f %.8f\n" % (v[0], v[1], v[2])) if len(vts) != 0: for vt in vts: fp.write("vt %.8f %.8f\n" % (vt[0], vt[1])) if len(vns) != 0: for vn in vns: fp.write("vn %f %f\n" % (vn[0], vn[1])) if len(faces_vts) == 0 or len(faces_vns) == 0: # index from 1 for f in faces + 1: fp.write("f %d %d %d\n" % (f[0], f[1], f[2])) else: # index from 1 for f, vt, vn in zip(faces + 1, faces_vts + 1, faces_vns + 1): fp.write( "f %d/%d/%d %d/%d/%d %d/%d/%d\n" % ( f[0], vt[0], vn[0], f[1], vt[1], vn[1], f[2], vt[2], vn[2]) ) fp.write("s off\n") def load_obj(obj_file): with open(obj_file, "r") as fp: verts = [] faces = [] vts = [] vns = [] faces_vts = [] faces_vns = [] for line in fp: line = line.rstrip() line_splits = line.split() prefix = line_splits[0] if prefix == "v": verts.append(np.array([line_splits[1], line_splits[2], line_splits[3]], dtype=np.float32)) elif prefix == "vn": vns.append(np.array([line_splits[1], line_splits[2], line_splits[3]], dtype=np.float32)) elif prefix == "vt": vts.append(np.array([line_splits[1], line_splits[2]], dtype=np.float32)) elif prefix == "f": f = [] f_vt = [] f_vn = [] for p_str in line_splits[1:4]: p_split = p_str.split("/") f.append(p_split[0]) if len(p_split) > 1: f_vt.append(p_split[1]) f_vn.append(p_split[2]) # index from 0 faces.append(np.array(f, dtype=np.int32) - 1) faces_vts.append(np.array(f_vt, dtype=np.int32) - 1) faces_vns.append(np.array(f_vn, dtype=np.int32) - 1) elif prefix == "g" or prefix == "s": continue else: # raise ValueError(prefix) pass obj_dict = { "vertices": np.array(verts, dtype=np.float32), "faces": np.array(faces, dtype=np.int32), "vts": np.array(vts, dtype=np.float32), "vns": np.array(vns, dtype=np.float32), "faces_vts": np.array(faces_vts, dtype=np.int32), "faces_vns": np.array(faces_vns, dtype=np.int32) } return obj_dict def sample_textures(texture_flow, images): """ texture_flow: B x F x T x T x 2 (In normalized coordinate [-1, 1]) images: B x 3 x N x N output: B x F x T x T x 3 """ # Reshape into B x F x T*T x 2 T = texture_flow.size(-2) F = texture_flow.size(1) flow_grid = texture_flow.view(-1, F, T * T, 2) # B x 3 x F x T*T samples = torch.nn.functional.grid_sample(images, flow_grid) # B x 3 x F x T x T samples = samples.view(-1, 3, F, T, T) # B x F x T x T x 3 return samples.permute(0, 2, 3, 4, 1) def get_spherical_coords(X): # X is N x 3 rad = np.linalg.norm(X, axis=1) # Inclination theta = np.arccos(X[:, 2] / rad) # Azimuth phi = np.arctan2(X[:, 1], X[:, 0]) # Normalize both to be between [-1, 1] vv = (theta / np.pi) * 2 - 1 uu = ((phi + np.pi) / (2 * np.pi)) * 2 - 1 # Return N x 2 return np.stack([uu, vv], 1) def compute_coords(tex_size): """ :param tex_size: :return: (2, T*T) """ alpha = np.arange(tex_size, dtype=np.float) / (tex_size - 1) beta = np.arange(tex_size, dtype=np.float) / (tex_size - 1) # Barycentric coordinate values coords = np.stack([p for p in itertools.product(*[alpha, beta])]) # T*T x 2 coords = torch.FloatTensor(coords.T) # (2, T*T) return coords def compute_uvsampler(verts, faces, tex_size=2): """ For this mesh, pre-computes the UV coordinates for F x T x T points. Returns F x T x T x 2 """ alpha = np.arange(tex_size, dtype=np.float) / (tex_size - 1) beta = np.arange(tex_size, dtype=np.float) / (tex_size - 1) # Barycentric coordinate values coords = np.stack([p for p in itertools.product(*[alpha, beta])]) # 36 x 2 vs = verts[faces] # Compute alpha, beta (this is the same order as NMR) v2 = vs[:, 2] # (656, 3) v0v2 = vs[:, 0] - vs[:, 2] # (656, 3) v1v2 = vs[:, 1] - vs[:, 2] # (656, 3) # F x 3 x T*2 samples = np.dstack([v0v2, v1v2]).dot(coords.T) + v2.reshape(-1, 3, 1) # F x T*2 x 3 points on the sphere samples = np.transpose(samples, (0, 2, 1)) # Now convert these to uv. uv = get_spherical_coords(samples.reshape(-1, 3)) # uv = uv.reshape(-1, len(coords), 2) uv = uv.reshape((-1, tex_size, tex_size, 2)) return uv def create_uvsampler(uv_mapping_path="data/uv_mappings.txt", tex_size=2, fill_back=False): """ For this mesh, pre-computes the UV coordinates for F x T x T points. Returns F x T*T x 2 """ alpha = np.arange(tex_size, dtype=np.float32) / (tex_size - 1) beta = np.arange(tex_size, dtype=np.float32) / (tex_size - 1) # Barycentric coordinate values coords = np.stack([p for p in itertools.product(*[alpha, beta])]) # T*2 x 2 obj_info = load_obj(uv_mapping_path) vts = obj_info["vts"] vts[:, 1] = 1 - vts[:, 1] faces = obj_info["faces_vts"] if fill_back: faces = np.concatenate((faces, faces[:, ::-1]), axis=0) # F x 3 x 2 f2vts = vts[faces] # Compute alpha, beta (this is the same order as NMR) v2 = f2vts[:, 2] # (nf, 2) v0v2 = f2vts[:, 0] - f2vts[:, 2] # (nf, 2) v1v2 = f2vts[:, 1] - f2vts[:, 2] # (nf, 2) # F x 2 x T*2 samples = np.dstack([v0v2, v1v2]).dot(coords.T) + v2.reshape(-1, 2, 1) samples = np.clip(samples, a_min=0.0, a_max=1.0) # F x T*2 x 2 points on the sphere uv = np.transpose(samples, (0, 2, 1)) # uv = uv.reshape(-1, tex_size, tex_size, 2) # normalize to [-1, 1] uv = uv * 2 - 1 return uv def compute_barycenter(f2vts): """ Args: f2vts: F x 3 x 2 Returns: fbc: F x 2 """ # Compute alpha, beta (this is the same order as NMR) v2 = f2vts[:, 2] # (nf, 2) v0v2 = f2vts[:, 0] - f2vts[:, 2] # (nf, 2) v1v2 = f2vts[:, 1] - f2vts[:, 2] # (nf, 2) fbc = v2 + 0.5 * v0v2 + 0.5 * v1v2 return fbc def get_f2vts(uv_map_path_or_obj_info, fill_back=False, z=1): """ For this mesh, pre-computes the bary-center coords. Returns F x 3 x 3 """ if isinstance(uv_map_path_or_obj_info, str): obj_info = load_obj(uv_map_path_or_obj_info) else: obj_info = uv_map_path_or_obj_info vts = np.copy(obj_info["vts"]) vts[:, 1] = 1 - vts[:, 1] vts = vts * 2 - 1 # F x (2 + 1) = F x 3 vts = np.concatenate([vts, np.zeros((vts.shape[0], 1), dtype=np.float32) + z], axis=-1) faces = obj_info["faces_vts"] if fill_back: faces = np.concatenate((faces, faces[:, ::-1]), axis=0) # F x 3 x 3 f2vts = vts[faces] return f2vts def cal_face_k_nearest(fbc, nearest_k=10): """ Args: fbc (np.ndarray): f x 3 or (nf x 2) nearest_k (int): the nearest percent Returns: nearest_ids (np.ndarray): f x nearest_k """ # f x f nf = fbc.shape[0] fbc_square = fbc ** 2 fbc_square_sum = np.sum(fbc_square, axis=1) dists = np.zeros((nf, nf)) dists += np.reshape(fbc_square_sum, (1, nf)) # 1 * nf dists += np.reshape(fbc_square_sum, (nf, 1)) # nf * 1 dists -= 2 * np.dot(fbc, fbc.T) # nf * nf nearest_ids = np.argsort(dists, axis=-1)[:, 0:nearest_k] return nearest_ids def find_part_k_nearest_faces(f2vts, parts, k=20): """ Args: f2vts (np.ndarray): F x 3 x 3 parts (dict): k (int): Returns: face_k_nearest: """ fbc = compute_barycenter(f2vts) nf = fbc.shape[0] face_k_nearest = np.empty((nf, k), dtype=np.int) for name, f_ids in parts.items(): part_fbc = fbc[f_ids] nearest_ids = cal_face_k_nearest(part_fbc, nearest_k=k) nearest_f_ids = np.array(f_ids, dtype=np.int)[nearest_ids] face_k_nearest[f_ids, :] = nearest_f_ids return face_k_nearest def get_front_ids(nf, front_info, fill_back=False): if fill_back: half_nf = nf // 2 with open(front_info, "r") as reader: front_data = json.load(reader) faces = front_data["face"] if fill_back: faces = faces + [f + half_nf for f in faces] return faces def get_back_ids(nf, all_info, front_info, fill_back=False): if fill_back: half_nf = nf // 2 with open(all_info, "r") as reader: head_faces = set(json.load(reader)["face"]) with open(front_info, "r") as front_reader: front_faces = set(json.load(front_reader)["face"]) faces = list(head_faces - front_faces) if fill_back: faces = faces + [f + half_nf for f in faces] return faces def get_part_ids(nf, part_info, fill_back=False): if fill_back: half_nf = nf // 2 with open(part_info, "r") as reader: part_data = json.load(reader) part_names = sorted(part_data.keys()) total_faces = set() ordered_faces = dict() for i, part_name in enumerate(part_names): part_vals = part_data[part_name] faces = part_vals["face"] if fill_back: faces = faces + [f + half_nf for f in faces] ordered_faces[part_name] = faces total_faces |= set(faces) nf_counter = len(total_faces) assert nf_counter == nf, "nf_counter = {}, nf = {}".format(nf_counter, nf) return ordered_faces def binary_mapping(nf): width = len(np.binary_repr(nf)) map_fn = [np.array(list(map(int, np.binary_repr(i, width=width)))) for i in range(nf)] map_fn = np.stack(map_fn, axis=0) bg = np.zeros((1, width), dtype=np.float32) - 1.0 return map_fn, bg def ids_mapping(nf): map_fn = np.arange(0, 1, 1/nf, dtype=np.float32) bg = np.array([[-1]], dtype=np.float32) return map_fn, bg def par_mapping(nf, part_info, fill_back=False): if fill_back: half_nf = nf // 2 with open(part_info, "r") as reader: part_data = json.load(reader) ndim = len(part_data) + 1 # 10 map_fn = np.zeros((nf, ndim), dtype=np.float32) part_names = sorted(part_data.keys()) total_faces = set() for i, part_name in enumerate(part_names): part_vals = part_data[part_name] faces = part_vals["face"] if fill_back: faces = faces + [f + half_nf for f in faces] map_fn[faces, i] = 1.0 total_faces |= set(faces) nf_counter = len(total_faces) assert nf_counter == nf, "nf_counter = {}, nf = {}".format(nf_counter, nf) # add bg bg = np.zeros((1, ndim), dtype=np.float32) bg[0, -1] = 1 return map_fn, bg def front_mapping(nf, front_face_info, fill_back=False): if fill_back: half_nf = nf // 2 map_fn = np.zeros((nf, 1), dtype=np.float32) with open(front_face_info, "r") as reader: front_data = json.load(reader) faces = front_data["face"] if fill_back: faces = faces + [f + half_nf for f in faces] map_fn[faces] = 1.0 # add bg bg = np.zeros((1, 1), dtype=np.float32) return map_fn, bg def back_mapping(nf, head_face_info, front_face_info, fill_back=False): if fill_back: half_nf = nf // 2 map_fn = np.zeros((nf, 1), dtype=np.float32) with open(head_face_info, "r") as reader: head_faces = set(json.load(reader)["face"]) with open(front_face_info, "r") as front_reader: front_faces = set(json.load(front_reader)["face"]) faces = list(head_faces - front_faces) if fill_back: faces = faces + [f + half_nf for f in faces] map_fn[faces] = 1.0 # add bg bg = np.zeros((1, 1), dtype=np.float32) return map_fn, bg def create_mapping(map_name, obj_info, part_path="assets/configs/pose3d/smpl_part_info.json", front_path="assets/configs/pose3d/front_body.json", facial_path="assets/configs/pose3d/front_facial.json", head_path="assets/configs/pose3d/head.json", contain_bg=True, fill_back=False): """ Args: map_name: "uv" -> (F + 1) x 2 (bg as -1) "uv_seg" -> (F + 1) x 3 (bs as -1) "ids" -> (F + 1) x 1 (bg as -1) "binary" -> (F + 1) x 14 (bs as -1) "seg" -> (F + 1) x 1 (bs as 0) "par" -> (F + 1) x (10 + 1) obj_info: part_path: front_path: facial_path: head_path: contain_bg: fill_back: Returns: """ # F x C f2vts = get_f2vts(obj_info, fill_back=fill_back, z=0) nf = f2vts.shape[0] if map_name == "uv": fbc = compute_barycenter(f2vts) map_fn = fbc[:, 0:2] # F x 2 bg = np.array([[-1, -1]], dtype=np.float32) elif map_name == "seg": map_fn = np.ones((nf, 1), dtype=np.float32) bg = np.array([[0]], dtype=np.float32) elif map_name == "uv_seg": fbc = compute_barycenter(f2vts) map_fn = fbc # F x 3 bg = np.array([[0, 0, 1]], dtype=np.float32) elif map_name == "par": map_fn, bg = par_mapping(nf, part_path) elif map_name == "front": map_fn, bg = front_mapping(nf, front_path, fill_back=fill_back) elif map_name == "facial": map_fn, bg = front_mapping(nf, facial_path, fill_back=fill_back) elif map_name == "head": map_fn, bg = front_mapping(nf, head_path, fill_back=fill_back) elif map_name == "back": map_fn, bg = back_mapping(nf, head_path, facial_path, fill_back=fill_back) elif map_name == "ids": map_fn, bg = ids_mapping(nf) elif map_name == "binary": map_fn, bg = binary_mapping(nf) else: raise ValueError("map name error {}".format(map_name)) if contain_bg: map_fn = np.concatenate([map_fn, bg], axis=0) return map_fn def get_part_face_ids(part_type, mapping_path="assets/checkpoints/pose3d/mapper.txt", part_path="assets/configs/pose3d/smpl_part_info.json", front_path="assets/configs/pose3d/front_body.json", head_path="assets/configs/pose3d/head.json", facial_path="assets/configs/pose3d/front_facial.json", fill_back=False): # F x C f2vts = get_f2vts(mapping_path, fill_back=fill_back, z=0) nf = f2vts.shape[0] if part_type == "head_front": faces = get_front_ids(nf, facial_path, fill_back=fill_back) elif part_type == "head_back": faces = get_back_ids(nf, head_path, facial_path, fill_back=fill_back) elif part_type == "body_front": faces = get_front_ids(nf, front_path, fill_back=fill_back) elif part_type == "par": faces = get_part_ids(nf, part_path, fill_back=fill_back) else: raise ValueError("map name error {}".format(part_type)) return faces def get_map_fn_dim(map_name): """ :param map_name: "seg" -> (F + 1) x 1 (bs as -1 or 0) "uv" -> (F + 1) x 2 (bg as -1) "uv_seg" -> (F + 1) x 3 (bg as -1) "ids" -> (F + 1) x 1 (bg as -1) "binary" -> (F + 1) x 15 (bs as -1) "par" -> (F + 1) x (10 + 1) :return: """ # F x C if map_name == "seg": dim = 1 elif map_name == "uv": dim = 2 elif map_name == "uv_seg": dim = 3 elif map_name == "par": dim = 11 elif map_name == "ids": dim = 1 elif map_name == "binary": dim = 15 else: raise ValueError("map name error {}".format(map_name)) return dim def cvt_fim_enc(fim_enc, map_name): h, w, c = fim_enc.shape if map_name == "uv": # (H, W, 2), bg is -1, -> (H, W, 3) img = np.ones((h, w, 3), dtype=np.float32) # print(fim_enc.shape) img[:, :, 0:2] = fim_enc[:, :, 0:2] img = np.transpose(img, axes=(2, 0, 1)) elif map_name == "seg": # (H, W, 1), bg is -1 -> (H, W) img = fim_enc[:, :, 0] elif map_name == "uv_seg": # (H, W, 3) -> (H, W, 3) img = fim_enc.copy() img = np.transpose(img, axes=(2, 0, 1)) elif map_name == "par": # (H, W, C) -> (H, W) img = fim_enc.argmax(axis=-1) img = img.astype(np.float32) img /= img.max() elif map_name == "ids": # (H, W, 1), bg is -1 -> (H, W) img = fim_enc[:, :, 0] elif map_name == "binary": img = np.zeros((h, w), dtype=np.float32) def bin2int(bits): total = 0 for shift, j in enumerate(bits[::-1]): if j: total += 1 << shift return total for i in range(h): for j in range(w): val = bin2int(fim_enc[i, j, :]) img[i, j] = val img /= img.max() else: raise ValueError(map_name) img = img.astype(np.float32) return img
recipes/Python/577366_TRAC_Interpreter__Sixties_programming/recipe-577366.py
tdiprima/code
2,023
11111889
import sys import unittest BEGIN_ACTIVE_FUNC = "\x80" BEGIN_NEUTRAL_FUNC = "\x81" END_FUNC = "\x8f" END_ARG = "\x8e" SEGMENT_GAP = "\xff" class TracError(Exception): pass def list_get(list_, index, default=""): try: return list_[index] except: return default def scan_char(list_, pos): return list_get(list_, pos) def scan_chars(list_, pos, n): chars = [] for i in range(n): c = scan_char(list_, pos + i) if c: chars.append(c) return "".join(chars) class Processor(object): def __init__(self, program=""): self.work = [] # workspace containing current TRAC program self.sp = 0 # position of scanning pointer in workspace self.forms = {} # key-value storage for program variables self.output = "" # last string printed to output by ps for unit testing self.trace = True # flag for printing trace results of function evaluation self.primitives = {} # dictionary containing bound methods for TRAC primitives self.initialize(program) def tn(self, args): self.trace = True return "" def tf(self, args): self.trace = False return "" def ds(self, args): key = list_get(args, 0) value = list_get(args, 1) self.forms[key] = value return "" def ps(self, args): try: s = list_get(args, 0) print s self.output = s except: pass return "" def ad(self, args): try: num1 = int(list_get(args, 0)) num2 = int(list_get(args, 1)) return str(num1 + num2) except: return "" def su(self, args): try: num1 = int(list_get(args, 0)) num2 = int(list_get(args, 1)) return str(num1 - num2) except: return "" def ml(self, args): try: num1 = int(list_get(args, 0)) num2 = int(list_get(args, 1)) return str(num1 * num2) except: return "" def dv(self, args): try: num1 = int(list_get(args, 0)) num2 = int(list_get(args, 1)) return str(num1 / num2) except: return "" def eq(self, args): try: s1 = list_get(args, 0) s2 = list_get(args, 1) eq_result = list_get(args, 2) neq_result = list_get(args, 3) if s1 == s2: return eq_result else: return neq_result except: return "" def ss(self, args): try: form_key = args.pop(0) form = self.forms[form_key] form_marked = form for i in range(len(args)): arg = args[i] marker = "%s%s" % (SEGMENT_GAP, chr(i)) form_marked = form_marked.replace(arg, marker) self.forms[form_key] = form_marked form_list = [] form_list += form_marked #print "ss: %s" % (form_list) return "" except: return "" def cl(self, args): try: form_key = args.pop(0) form = self.forms[form_key] form_processed = form for i in range(len(args)): arg = args[i] marker = "%s%s" % (SEGMENT_GAP, chr(i)) form_processed = form_processed.replace(marker, arg) return form_processed except: return "" def initialize(self, program=""): self.forms = {} self.work = [] self.reset() self.work += program self.primitives = {"ds":self.ds, \ "ps":self.ps, \ "ss":self.ss, \ "cl":self.cl, \ "ad":self.ad, \ "su":self.su, \ "ml":self.ml, \ "dv":self.dv, \ "tn":self.tn, \ "tf":self.tf, \ "eq":self.eq \ } def run(self): args = [] handler = self.scan_next_char while handler: try: next_handler, args = handler(args) except TracError, e: sys.stderr.write("TracError: %s\n" % e ) next_handler, args = self.reset, [] handler = next_handler def scan_next_char(self, args): # Rule 1 args = [] #self.db("scan_next_char") c = scan_char(self.work, self.sp) if c: if c == '(': handler = self.handle_begin_paren elif c in "\n\r\t": handler = self.handle_tab_return elif c == ',': handler = self.handle_comma elif c == '#' and scan_chars(self.work, self.sp, 2) == '#(': handler = self.handle_begin_active_func elif c == '#' and scan_chars(self.work, self.sp, 3) == '##(': handler = self.handle_begin_neutral_func elif c == '#': handler = self.handle_sharp_sign elif c == ')': handler = self.handle_end_paren else: args.append(c) handler = self.handle_char else: self.db("exit") print "Forms: %s" % (self.forms) print "Output: [%s]" % (self.output) handler = None return handler, args def handle_begin_paren(self, args): # Rule 2 args = [] nested_count = 1 chars = [] matched = False del self.work[self.sp] c = scan_char(self.work, self.sp) while c and not matched: if c == ')': nested_count -= 1 if nested_count == 0: matched = True break if not matched: if c == '(': nested_count += 1 chars.append(c) self.sp += 1 c = scan_char(self.work, self.sp) if matched: del self.work[self.sp] else: raise TracError, "%s: can't find matching end parenthesis" %("handle_begin_paren") return self.scan_next_char, [] def handle_tab_return(self, args): # Rule 3 args = [] del self.work[self.sp] self.sp -= 1 return self.inc_scan_pointer_continue, args def handle_comma(self, args): # Rule 4 args = [] self.work[self.sp] = END_ARG return self.inc_scan_pointer_continue, args def handle_begin_active_func(self, args): # Rule 5 args = [] del self.work[self.sp:self.sp + 2] self.work.insert(self.sp, BEGIN_ACTIVE_FUNC) self.sp += 1 return self.scan_next_char, args def handle_begin_neutral_func(self, args): # Rule 6 args = [] del self.work[self.sp:self.sp + 3] self.work.insert(self.sp, BEGIN_NEUTRAL_FUNC) self.sp += 1 return self.scan_next_char, args def handle_sharp_sign(self, args): # Rule 7 args = [] return self.inc_scan_pointer_continue, args def handle_end_paren(self, args): # Rule 8 #self.db("end_paren_0") args = [] self.work[self.sp] = END_FUNC func_begin = self.get_func_begin() func_result = self.eval_func(func_begin) func_marker = self.work[func_begin] args.append(func_begin) if func_result == "": handler = self.handle_null_func_result # Rule 10 elif func_marker == BEGIN_ACTIVE_FUNC: args.append(func_result) handler = self.handle_active_func_result # Rule 11 elif func_marker == BEGIN_NEUTRAL_FUNC: args.append(func_result) handler = self.handle_neutral_func_result # Rule 12 else: raise TracError, "%s: invalid func_marker" %("handle_end_paren") #self.db("end_paren_1") return handler, args def get_func_begin(self): pos = self.sp - 1 c = self.work[pos] while c: if c == BEGIN_ACTIVE_FUNC or c == BEGIN_NEUTRAL_FUNC: break pos -= 1 if pos >= 0: c = self.work[pos] else: raise TracError, "%s: can't find begin function marker" %("get_func_begin") return pos def get_func_end(self, func_begin): pos = func_begin c = self.work[pos] while c: if c == END_FUNC: break pos += 1 c = self.work[pos] return pos def get_func_args(self, func_begin): args = [] cur_arg = [] pos = func_begin c = self.work[pos] db = [] while c: db.append(c) if c == BEGIN_ACTIVE_FUNC or c == BEGIN_NEUTRAL_FUNC: pass elif c == END_ARG or c == END_FUNC: arg = "".join(cur_arg) args.append(arg) cur_arg = [] else: cur_arg.append(c) if c != END_FUNC: pos += 1 c = self.work[pos] db = [] else: break return args def eval_func(self, func_begin): result = "" try: args = self.get_func_args(func_begin) func_name = args[0] primitive = self.primitives.get(func_name, None) if primitive: result = primitive(args[1:]) if self.trace: print "eval_func: %s %s -> [%s]" % (func_name, args[1:], result) except Exception, e: raise TracError, "%s: failed - %s" %("eval_func", e) return result def handle_char(self, args): # Rule 9 c = args[0] args = [] return self.inc_scan_pointer_continue, args def handle_null_func_result(self, args): # Rule 10 return self.handle_func_cleanup, args def handle_active_func_result(self, args): # Rule 11 func_begin = args[0] func_result = args[1] args = [] self.work[self.sp+1:self.sp+1] += func_result args.append(func_begin) #self.db("handle_active_func_result") return self.handle_func_cleanup, args def handle_neutral_func_result(self, args): # Rule 12 func_begin = args[0] func_result = args[1] args = [] self.work[self.sp+1:self.sp+1] += func_result func_end = self.sp del self.work[func_begin:func_end + 1] self.sp = func_begin + len(func_result) - 1 #self.db("handle_neutral_func_result") return self.inc_scan_pointer_continue, args def handle_func_cleanup(self, args): # Rule 13 if args: func_begin = args[0] func_end = self.get_func_end(func_begin) args = [] del self.work[func_begin:func_end + 1] self.sp = func_begin - 1 #self.db("handle_func_cleanup") return self.inc_scan_pointer_continue, args def reset(self, args=[]): # Rule 14 args = [] self.work = [] self.sp = 0 return self.scan_next_char, args def inc_scan_pointer_continue(self, args): # Rule 15 args = [] self.sp += 1 return self.scan_next_char, args def db(self, msg="db"): print "%s: %s SP:%d %s" % (msg, self.work[0:self.sp], self.sp, self.work[self.sp:]) class TestTrac(unittest.TestCase): def setUp(self): pass def __test(self, program, output): self.processor = Processor() self.processor.initialize(program) self.processor.run() self.assertEqual(self.processor.output, output) def test_1_ps(self): self.__test("#(ps,Hello world)", "Hello world") def test_2_equal(self): self.__test("#(ps,#(eq,Cat,Cat,equal,not equal))", "equal") def test_3_not_equal(self): self.__test("#(ps,#(eq,Cat,Dog,equal,not equal))", "not equal") def test_4_ds(self): self.__test("#(ds,AA,Cat)#(ps,#(cl,AA))", "Cat") def test_5_protect_parens(self): self.__test("#(ds,AA,Cat)#(ds,BB,(#(cl,AA)))#(ps,(#(cl,BB)))", "#(cl,BB)") def test_6_neutral_func(self): self.__test("#(ds,AA,Cat)#(ds,BB,(#(cl,AA)))#(ps,##(cl,BB))", "#(cl,AA)") def test_7_indirection(self): self.__test("#(ds,AA,Cat)#(ds,BB,(#(cl,AA)))#(ps,#(cl,BB))", "Cat") def test_8_ss(self): self.__test("#(ds,AA,Hello X)#(ss,AA,X)#(ps,#(cl,AA,world))", "Hello world") def test_9_factorial(self): self.__test(""" #(ds,Factorial,(#(eq,X,1,1,(#(ml,X,#(cl,Factorial,#(su,X,1))))))) #(ss,Factorial,X) #(ps,#(cl,Factorial,5)) """, "120") if __name__ == "__main__": print __file__ unittest.main()