max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
libcity/data/batch.py
moghadas76/test_bigcity
221
11113707
<reponame>moghadas76/test_bigcity import torch import numpy as np class Batch(object): def __init__(self, feature_name, pad_item=None, pad_max_len=None): """Summary of class here Args: feature_name (dict): key is the corresponding feature's name, and the value is the feature's data type pad_item (dict): key is the feature name, and value is the padding value. We will just padding the feature in pad_item pad_max_len (dict): key is the feature name, and value is the max length of padded feature. use this parameter to truncate the feature. """ self.data = {} # 默认是根据 batch 中每个特征最长的长度来补齐,如果某个特征的长度超过了 pad_max_len 则进行剪切 self.pad_len = {} self.origin_len = {} # 用于得知补齐前轨迹的原始长度 self.pad_max_len = pad_max_len if pad_max_len is not None else {} self.pad_item = pad_item if pad_item is not None else {} self.feature_name = feature_name for key in feature_name: self.data[key] = [] if key in self.pad_item: self.pad_len[key] = 0 self.origin_len[key] = [] def __getitem__(self, key): if key in self.data: return self.data[key] else: raise KeyError('{} is not in the batch'.format(key)) def __setitem__(self, key, value): if key in self.data: self.data[key] = value else: raise KeyError('{} is not in the batch'.format(key)) def append(self, item): """ append a new item into the batch Args: item (list): 一组输入,跟feature_name的顺序一致,feature_name即是这一组输入的名字 """ if len(item) != len(self.feature_name): raise KeyError( 'when append a batch, item is not equal length with \ feature_name') for i, key in enumerate(self.feature_name): # 需保证 item 每个特征的顺序与初始化时传入的 feature_name 中特征的顺序一致 self.data[key].append(item[i]) if key in self.pad_item: self.origin_len[key].append(len(item[i])) if self.pad_len[key] < len(item[i]): # 保持 pad_len 是最大的 self.pad_len[key] = len(item[i]) def padding(self): """ 只提供对一维数组的特征进行补齐 """ for key in self.pad_item: # 只对在 pad_item 中的特征进行补齐 if key not in self.data: raise KeyError('when pad a batch, raise this error!') max_len = self.pad_len[key] if key in self.pad_max_len: max_len = min(self.pad_max_len[key], max_len) for i in range(len(self.data[key])): if len(self.data[key][i]) < max_len: self.data[key][i] += [self.pad_item[key]] * \ (max_len - len(self.data[key][i])) else: # 截取的原则是,抛弃前面的点 # 因为是时间序列嘛 self.data[key][i] = self.data[key][i][-max_len:] # 对于剪切了的,我们没办法还原,但至少不要使他出错 self.origin_len[key][i] = max_len def get_origin_len(self, key): return self.origin_len[key] def to_tensor(self, device): """ 将数据self.data转移到device上 Args: device(torch.device): GPU/CPU设备 """ for key in self.data: if self.feature_name[key] == 'int': self.data[key] = torch.LongTensor(np.array(self.data[key])).to(device) elif self.feature_name[key] == 'float': self.data[key] = torch.FloatTensor(np.array(self.data[key])).to(device) elif self.feature_name[key] == 'array of int': for i in range(len(self.data[key])): for j in range(len(self.data[key][i])): try: self.data[key][i][j] = torch.LongTensor(np.array(self.data[key][i][j])).to(device) except TypeError: print('device is ', device) exit() elif self.feature_name[key] == 'no_pad_int': for i in range(len(self.data[key])): self.data[key][i] = torch.LongTensor(np.array(self.data[key][i])).to(device) elif self.feature_name[key] == 'no_pad_float': for i in range(len(self.data[key])): self.data[key][i] = torch.FloatTensor(np.array(self.data[key][i])).to(device) elif self.feature_name[key] == 'no_tensor': pass else: raise TypeError( 'Batch to_tensor, only support int, float, array of int, no_pad_float.\ and you give {}'.format(self.feature_name[key])) def to_ndarray(self): for key in self.data: if self.feature_name[key] == 'int': self.data[key] = np.array(self.data[key]) elif self.feature_name[key] == 'float': self.data[key] = np.array(self.data[key]) else: raise TypeError( 'Batch to_tensor, only support int, float, array of int, no_pad_float.\ and you give {}'.format(self.feature_name[key]))
sdk/cognitiveservices/azure-cognitiveservices-vision-contentmoderator/azure/cognitiveservices/vision/contentmoderator/operations/__init__.py
rsdoherty/azure-sdk-for-python
2,728
11113735
<filename>sdk/cognitiveservices/azure-cognitiveservices-vision-contentmoderator/azure/cognitiveservices/vision/contentmoderator/operations/__init__.py # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .image_moderation_operations import ImageModerationOperations from .text_moderation_operations import TextModerationOperations from .list_management_image_lists_operations import ListManagementImageListsOperations from .list_management_term_lists_operations import ListManagementTermListsOperations from .list_management_image_operations import ListManagementImageOperations from .list_management_term_operations import ListManagementTermOperations from .reviews_operations import ReviewsOperations __all__ = [ 'ImageModerationOperations', 'TextModerationOperations', 'ListManagementImageListsOperations', 'ListManagementTermListsOperations', 'ListManagementImageOperations', 'ListManagementTermOperations', 'ReviewsOperations', ]
c++/paddle_infer_demo/test_yolov3.py
windstamp/Paddle-Inference-Demo
115
11113756
<reponame>windstamp/Paddle-Inference-Demo<gh_stars>100-1000 import numpy as np import argparse import time import os from paddle.inference import Config from paddle.inference import create_predictor def init_predictor(args): config = Config() if args.model_dir == "": config.set_model(args.model_file, args.params_file) else: config.set_model(args.model_dir) #config.disable_glog_info() config.enable_use_gpu(1000, 3) predictor = create_predictor(config) return predictor def run(args, predictor, data): # copy data to input tensor input_names = predictor.get_input_names() for i, name in enumerate(input_names): input_tensor = predictor.get_input_handle(name) input_tensor.reshape(data[i].shape) data[i] = data[i].copy() input_tensor.copy_from_cpu(data[i]) # warm up for i in range(10): predictor.run() # do the inference repeat = 100 start = time.clock() for i in range(repeat): for i, name in enumerate(input_names): input_tensor = predictor.get_input_handle(name) input_tensor.reshape(data[i].shape) input_tensor.copy_from_cpu(data[i]) predictor.run() output_names = predictor.get_output_names() for i, name in enumerate(output_names): output_tensor = predictor.get_output_handle(name) output_data = output_tensor.copy_to_cpu() end = time.clock() precision = "int8" if args.use_int8 else "float32" latency = (end - start) * 1000 / repeat print("latency:", latency, "ms") results = [] # get out data from output tensor output_names = predictor.get_output_names() for i, name in enumerate(output_names): output_tensor = predictor.get_output_handle(name) output_data = output_tensor.copy_to_cpu() results.append(output_data) return results def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_file", type=str, default="", help="Model filename, Specify this when your model is a combined model.") parser.add_argument("--params_file", type=str, default="", help="Parameter filename, Specify this when your model is a combined model.") parser.add_argument("--model_dir", type=str, default="", help="Model dir, If you load a non-combined model, specify the directory of the model.") parser.add_argument("--int8", dest='use_int8', action='store_true', help="Use int8.") parser.add_argument("--float32", dest='use_int8', action='store_false', help="Use float32.") parser.set_defaults(use_int8=False) parser.add_argument("--min", type=int, default=3, help="min_subgraph_size for tensorrt") return parser.parse_args() def fake_input(shape): fake_img = np.ones(shape).astype(np.float32) return fake_img if __name__ == '__main__': args = parse_args() pred = init_predictor(args) input_shape = (1, 3, 608, 608) fake_img = fake_input(input_shape) im_size = np.array([[608, 608]]).astype('int32') result = run(args, pred, [fake_img, im_size])
package_control/downloaders/basic_auth_downloader.py
evandrocoan/package_control
3,373
11113762
<reponame>evandrocoan/package_control<filename>package_control/downloaders/basic_auth_downloader.py import base64 try: # Python 3 from urllib.parse import urlparse except (ImportError): # Python 2 from urlparse import urlparse class BasicAuthDownloader(object): """ A base for downloaders to add an HTTP basic auth header """ def build_auth_header(self, url): """ Constructs an HTTP basic auth header for a URL, if present in settings :param url: A unicode string of the URL being downloaded :return: A dict with an HTTP header name as the key and the value as the value. Both are unicode strings. """ auth_string = self.get_auth_string(url) if not auth_string: return {} b64_auth = base64.b64encode(auth_string.encode('utf-8')).decode('utf-8') return {"Authorization": "Basic %s" % b64_auth} def get_auth_string(self, url): """ Constructs a string of username:password for use in HTTP basic auth :param url: A unicode string of the URL being downloaded :return: None, or a unicode string of the username:password for the URL """ username, password = self.get_username_password(url) if username and password: return "%s:%s" % (username, password) return None def get_username_password(self, url): """ Returns a tuple of (username, password) for use in HTTP basic auth :param url: A unicode string of the URL being downloaded :return: A 2-element tuple of either (None, None) or (username, password) as unicode strings """ domain_name = urlparse(url).netloc auth_settings = self.settings.get('http_basic_auth') if auth_settings and isinstance(auth_settings, dict): params = auth_settings.get(domain_name) if params and isinstance(params, (list, tuple)) and len(params) == 2: return (params[0], params[1]) return (None, None)
problems/first-greater-number/first-greater-number.py
vidyadeepa/the-coding-interview
1,571
11113812
<gh_stars>1000+ def first_greater(l, n): return next((i for i in l if i > n), None) print first_greater([2, 10,5,6,80], 6) print first_greater([2, 10,5,6,80], 20) print first_greater([2, 10,5,6,80], 100)
tools/autoconfig.py
joyzainzy/xiaomi_miot_raw
1,294
11113842
<filename>tools/autoconfig.py<gh_stars>1000+ import requests url_all = 'http://miot-spec.org/miot-spec-v2/instances?status=all' url_spec = 'http://miot-spec.org/miot-spec-v2/instance' def deviceinfo(j): print(f"设备描述:{j['description']}") print("设备属性:") for s in j['services']: print(f"\nsiid {s['iid']}: {s['description']}\n") for p in s.get('properties', []): print(f" piid {p['iid']}: {p['description']}", end=' ') if 'read' in p['access']: print("可读取", end=' ') if 'write' in p['access']: print("可控制", end=' ') print() if 'format' in p: print(f" 数据类型:{p['format']}") if 'value-range' in p: print(f" 取值范围:{p['value-range']}") if 'value-list' in p: print(f" 取值范围:") for item in p['value-list']: print(f" {item['value']}: {item['description']}") for a in s.get('actions', []): print(f" aiid {a['iid']}: {a['description']}", end=' ') print() print() if __name__ == '__main__': print("正在加载设备列表...") dev_list = requests.get(url_all).json().get('instances') print(f"加载成功,现已支持{len(dev_list)}个设备") model_ = input("请输入设备model:") result = [] for item in dev_list: if model_ in item['model'] or model_ in item['type']: result.append(item) # print(result) if result: print("已发现以下设备") print("--------------------------------------") print("序号\t model \t urn") for idx, item in enumerate(result): print(f"{idx+1}\t{item['model']}\t{item['type']}") if len(result) > 1: inp = input("请确认哪个是你的设备,输入序号:") urn = result[int(inp)-1]['type'] else: urn = result[0]['type'] params = {'type': urn} r = requests.get(url_spec, params=params).json() # print(r) deviceinfo(r) else: print("未找到相关设备") input("按任意键退出...")
tests/tools/test_flake8_works.py
asdfCYBER/nbQA
457
11113909
"""Check :code:`flake8` works as intended.""" import os from textwrap import dedent from typing import TYPE_CHECKING import pytest from nbqa.__main__ import main if TYPE_CHECKING: from _pytest.capture import CaptureFixture @pytest.mark.parametrize( "path_0, path_1, path_2", ( ( os.path.abspath( os.path.join("tests", "data", "notebook_for_testing.ipynb") ), os.path.abspath( os.path.join("tests", "data", "notebook_for_testing_copy.ipynb") ), os.path.abspath( os.path.join("tests", "data", "notebook_starting_with_md.ipynb") ), ), ( os.path.join("tests", "data", "notebook_for_testing.ipynb"), os.path.join("tests", "data", "notebook_for_testing_copy.ipynb"), os.path.join("tests", "data", "notebook_starting_with_md.ipynb"), ), ), ) def test_flake8_works( path_0: str, path_1: str, path_2: str, capsys: "CaptureFixture" ) -> None: """ Check flake8 works. Shouldn't alter the notebook content. Parameters ---------- capsys Pytest fixture to capture stdout and stderr. """ # check passing both absolute and relative paths main(["flake8", path_0, path_1, path_2]) expected_path_0 = os.path.join("tests", "data", "notebook_for_testing.ipynb") expected_path_1 = os.path.join("tests", "data", "notebook_for_testing_copy.ipynb") expected_path_2 = os.path.join("tests", "data", "notebook_starting_with_md.ipynb") out, err = capsys.readouterr() expected_out = dedent( f"""\ {expected_path_0}:cell_1:1:1: F401 'os' imported but unused {expected_path_0}:cell_1:3:1: F401 'glob' imported but unused {expected_path_0}:cell_1:5:1: F401 'nbqa' imported but unused {expected_path_0}:cell_2:19:9: W291 trailing whitespace {expected_path_0}:cell_4:1:1: E402 module level import not at top of file {expected_path_0}:cell_4:1:1: F401 'random.randint' imported but unused {expected_path_0}:cell_5:1:1: E402 module level import not at top of file {expected_path_0}:cell_5:2:1: E402 module level import not at top of file {expected_path_1}:cell_1:1:1: F401 'os' imported but unused {expected_path_1}:cell_1:3:1: F401 'glob' imported but unused {expected_path_1}:cell_1:5:1: F401 'nbqa' imported but unused {expected_path_2}:cell_1:1:1: F401 'os' imported but unused {expected_path_2}:cell_1:3:1: F401 'glob' imported but unused {expected_path_2}:cell_1:5:1: F401 'nbqa' imported but unused {expected_path_2}:cell_3:2:1: E302 expected 2 blank lines, found 0 """ ) expected_err = "" assert sorted(out.splitlines()) == sorted(expected_out.splitlines()) assert sorted(err.splitlines()) == sorted(expected_err.splitlines())
front/models.py
llazzaro/django-front
135
11113951
<reponame>llazzaro/django-front<gh_stars>100-1000 from django.db import models from django.core.cache import cache from django.dispatch import receiver from django.db.models.signals import post_save import hashlib import six class Placeholder(models.Model): key = models.CharField(max_length=40, primary_key=True, db_index=True) value = models.TextField(blank=True) def __unicode__(self): return self.value def cache_key(self): return "front-edit-%s" % self.key @classmethod def key_for(cls, name, *bits): return hashlib.new('sha1', six.text_type(name + ''.join([six.text_type(token) for token in bits])).encode('utf8')).hexdigest() @classmethod def copy_content(cls, name, source_bits, target_bits): source_key = cls.key_for(name, *source_bits) target_key = cls.key_for(name, *target_bits) source = cls.objects.filter(key=source_key) if source.exists(): source = source.get() cls.objects.create(key=target_key, value=source.value) class PlaceholderHistory(models.Model): placeholder = models.ForeignKey(Placeholder, related_name='history', on_delete=models.CASCADE) value = models.TextField(blank=True) saved = models.DateTimeField(auto_now_add=True) class Meta: ordering = ('-saved', ) @property def _as_json(self): return {'value': self.value, 'saved': self.saved.strftime('%s')} @receiver(post_save, sender=Placeholder) def save_placeholder(sender, instance, created, raw, *args, **kwargs): if not raw: # If we have placeholders, check wheter the content has changed before saving history if PlaceholderHistory.objects.filter(placeholder=instance).exists(): ph = PlaceholderHistory.objects.all()[0] if ph.value != instance.value: PlaceholderHistory.objects.create(placeholder=instance, value=instance.value) else: PlaceholderHistory.objects.create(placeholder=instance, value=instance.value) @receiver(post_save, sender=PlaceholderHistory) def save_history(sender, instance, created, raw, *args, **kwargs): cache.delete(instance.placeholder.cache_key())
spockbot/mcp/mcpacket.py
SpockBotMC/SpockBot
171
11113966
try: basestring except NameError: basestring = str import copy import logging import zlib from time import gmtime, strftime from spockbot.mcp import datautils, proto from spockbot.mcp.bbuff import BoundBuffer, BufferUnderflowException from spockbot.mcp.extensions import hashed_extensions from spockbot.mcp.proto import MC_VARINT logger = logging.getLogger('spockbot') class PacketDecodeFailure(Exception): def __init__(self, packet, pbuff, underflow=False): self.packet = packet self.pbuff = pbuff self.underflow = underflow class Packet(object): def __init__(self, ident=[proto.HANDSHAKE_STATE, proto.CLIENT_TO_SERVER, 0x00], data=None ): if isinstance(ident, basestring): ident = proto.packet_str2ident[ident] self.__ident = list(ident) # Quick hack to fake default ident if len(self.__ident) == 2: self.__ident.append(0x00) self.ident = tuple(self.__ident) self.str_ident = proto.packet_ident2str[self.ident] self.data = data if data else {} def clone(self): return Packet(self.ident, copy.deepcopy(self.data)) def new_ident(self, ident): self.__init__(ident, self.data) def decode(self, bbuff, proto_comp_state): self.data = {} packet_length = datautils.unpack(MC_VARINT, bbuff) packet_data = bbuff.recv(packet_length) pbuff = BoundBuffer(packet_data) if proto_comp_state == proto.PROTO_COMP_ON: body_length = datautils.unpack(MC_VARINT, pbuff) if body_length: body_data = zlib.decompress(pbuff.flush(), zlib.MAX_WBITS) pbuff.write(body_data) pbuff.save() try: # Ident self.__ident[2] = datautils.unpack(MC_VARINT, pbuff) self.ident = tuple(self.__ident) self.str_ident = proto.packet_ident2str[self.ident] # Payload for dtype, name in proto.hashed_structs[self.ident]: self.data[name] = datautils.unpack(dtype, pbuff) # Extension if self.ident in hashed_extensions: hashed_extensions[self.ident].decode_extra(self, pbuff) if pbuff: raise PacketDecodeFailure(self, pbuff) except BufferUnderflowException: raise PacketDecodeFailure(self, pbuff, True) return self def encode(self, proto_comp_state, proto_comp_threshold, comp_level=6): # Ident o = datautils.pack(MC_VARINT, self.ident[2]) # Payload for dtype, name in proto.hashed_structs[self.ident]: o += datautils.pack(dtype, self.data[name]) # Extension if self.ident in hashed_extensions: o += hashed_extensions[self.ident].encode_extra(self) if proto_comp_state == proto.PROTO_COMP_ON: uncompressed_len = len(o) if uncompressed_len < proto_comp_threshold: header = datautils.pack(MC_VARINT, uncompressed_len + 1) header += datautils.pack(MC_VARINT, 0) else: o = zlib.compress(o, comp_level) ulen_varint = datautils.pack(MC_VARINT, uncompressed_len) header = datautils.pack(MC_VARINT, len(o) + len(ulen_varint)) header += ulen_varint return header + o elif proto_comp_state == proto.PROTO_COMP_OFF: return datautils.pack(MC_VARINT, len(o)) + o else: return None def __repr__(self): s = ('<<<', '>>>')[self.ident[1]] f = "[%s] %s (0x%02X, 0x%02X): %-" + str( max([len(i) for i in proto.hashed_names.values()]) + 1) + "s%s" return f % ( strftime("%H:%M:%S", gmtime()), s, self.ident[0], self.ident[2], proto.hashed_names[self.ident], str(self.data) )
data_preparation/move_valid_files.py
Dieg0Alejandr0/EquiBind
128
11113977
<filename>data_preparation/move_valid_files.py import os from shutil import copyfile from tqdm import tqdm from commons.utils import read_strings_from_txt data_path = '../data/PDBBind' overwrite = False names = sorted(os.listdir(data_path)) invalid_names = read_strings_from_txt('select_chains.log') valid_names = list(set(names) - set(invalid_names)) if not os.path.exists('../data/PDBBind_processed'): os.mkdir('../data/PDBBind_processed') for i, name in tqdm(enumerate(valid_names)): if not os.path.exists(f'../data/PDBBind_processed/{name}'): os.mkdir(f'../data/PDBBind_processed/{name}') rec_path = os.path.join(data_path, name, f'{name}_protein.pdb') copyfile(os.path.join(data_path, name, f'{name}_protein_processed.pdb'), f'../data/PDBBind_processed/{name}/{name}_protein_processed.pdb') copyfile(os.path.join(data_path, name, f'{name}_ligand.mol2'), f'../data/PDBBind_processed/{name}/{name}_ligand.mol2') copyfile(os.path.join(data_path, name, f'{name}_ligand.sdf'), f'../data/PDBBind_processed/{name}/{name}_ligand.sdf')
DQM/L1TMonitor/python/L1GtHwValidation_cff.py
ckamtsikis/cmssw
852
11113978
import FWCore.ParameterSet.Config as cms from DQM.L1TMonitor.l1GtHwValidation_cfi import * from DQM.L1TMonitor.l1Stage1GtHwValidation_cfi import *
evdev/__init__.py
alexbprofit/python-evdev
231
11113992
#-------------------------------------------------------------------------- # Gather everything into a single, convenient namespace. #-------------------------------------------------------------------------- from evdev.device import DeviceInfo, InputDevice, AbsInfo, EvdevError from evdev.events import InputEvent, KeyEvent, RelEvent, SynEvent, AbsEvent, event_factory from evdev.uinput import UInput, UInputError from evdev.util import list_devices, categorize, resolve_ecodes, resolve_ecodes_dict from evdev import ecodes from evdev import ff
caffe2/python/operator_test/rms_norm_op_test.py
Hacky-DH/pytorch
60,067
11113997
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np import unittest class TestRMSNormOp(hu.HypothesisTestCase): @given( M=st.integers(0, 8), N=st.integers(1, 16), eps=st.floats(0, 1e-3), dtype=st.sampled_from([np.float32, np.float64]), **hu.gcs, ) @settings(deadline=None) def test_rms_norm(self, M, N, eps, dtype, gc, dc): X = (np.random.randn(M, N) * 2.0 + 1.0).astype(dtype) gamma = np.random.randn(N).astype(dtype) beta = np.random.randn(N).astype(dtype) op = core.CreateOperator( "RMSNorm", ["X", "gamma", "beta"], ["Y", "rrms"], eps=eps, ) def rms_norm_ref(X, gamma, beta): rrms = 1.0 / np.sqrt(np.mean(np.square(X), axis=1) + eps) Y = X * np.expand_dims(rrms, axis=1) * gamma + beta return Y, rrms inputs = [X, gamma, beta] self.assertReferenceChecks(gc, op, inputs, rms_norm_ref) self.assertDeviceChecks(dc, op, inputs, [0, 1]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) if __name__ == "__main__": unittest.main()
examples/applications/restapi/handlers.py
electrumsv/electrumsv
136
11114041
<gh_stars>100-1000 # TODO(REST-API-Refactoring) Notes follow. # - All these functions should be moved out of the example and into the code base proper. We should # make a very simple example that extends it as a daemon app. # - Remove the variables like VERSION, NETWORK, .... a good idea in theory but they overcomplicate # things in practice. # - In `handler_tools.argparser` it should check the type of each variable as it extracts them # either from the route or the body and convert them at point of extraction or raise a fault # on the first found failed conversion. # - The only time a wallet name should be passed in the route is at load time for the filename. # Beyond that we should use it's ephemeral id, and we should perhaps consider replacing that # with a GUID. We should also consider dropping the `.sqlite` suffix from wallet name. # - Add a `pay` API where the caller just provides a destination address and the wallet manages # everything and just returns some result to indicate success. import asyncio import atexit from functools import partial import json import os from pathlib import Path import shutil import tempfile from typing import Any, cast, List, Optional from aiohttp import web import aiorpcx import bitcoinx import requests from electrumsv.app_state import app_state from electrumsv.bitcoin import COINBASE_MATURITY, script_template_to_string from electrumsv.constants import AccountCreationType, CredentialPolicyFlag, KeystoreTextType, \ RECEIVING_SUBPATH from electrumsv.keystore import instantiate_keystore_from_text from electrumsv.storage import WalletStorage from electrumsv.transaction import Transaction from electrumsv.logs import logs from electrumsv.networks import BitcoinRegtest, Net from electrumsv.restapi import Fault, good_response, fault_to_http_response from electrumsv.startup import base_dir from electrumsv.types import TransactionSize from .errors import Errors from .handler_utils import ExtendedHandlerUtils, VNAME, InsufficientCoinsError, \ WalletInstanceKind, WalletInstancePaths from .txstatewebsocket import TxStateWebSocket logger = logs.get_logger("app_state") # Makes this code docker-friendly (can access a node on host with "host.docker.internal" BITCOIN_NODE_HOST = os.environ.get("BITCOIN_NODE_HOST") or "127.0.0.1" BITCOIN_NODE_PORT = os.environ.get("BITCOIN_NODE_PORT") or 18332 BITCOIN_NODE_RPCUSER = os.environ.get("BITCOIN_NODE_RPCUSER") or "rpcuser" BITCOIN_NODE_RPCPASSWORD = os.environ.get("BITCOIN_NODE_RPCPASSWORD") or "rpcpassword" BITCOIN_NODE_URI = f"http://{BITCOIN_NODE_RPCUSER}:{BITCOIN_NODE_RPCPASSWORD}" \ f"@{BITCOIN_NODE_HOST}:{BITCOIN_NODE_PORT}" def node_rpc_call(method_name: str, *args: Any) -> Any: result = None try: if not args: params = [] else: params = [*args] payload = json.dumps({"jsonrpc": "2.0", "method": f"{method_name}", "params": params, "id": 0}) result = requests.post(BITCOIN_NODE_URI, data=payload) result.raise_for_status() return result except requests.exceptions.HTTPError as e: if result is not None: logger.error(result.json()['error']['message']) raise e # hardcoded # - WIF private_key: <KEY> # - Pubkey hash: <KEY> REGTEST_FUNDS_PRIVATE_KEY = bitcoinx.PrivateKey( bytes.fromhex('a2d9803c912ab380c1491d3bd1aaab34ca06742d7885a224ec8d386182d26ed2'), coin=BitcoinRegtest) REGTEST_FUNDS_PRIVATE_KEY_WIF = REGTEST_FUNDS_PRIVATE_KEY.to_WIF() REGTEST_FUNDS_PUBLIC_KEY: bitcoinx.PublicKey = REGTEST_FUNDS_PRIVATE_KEY.public_key REGTEST_P2PKH_ADDRESS: str = REGTEST_FUNDS_PUBLIC_KEY.to_address(coin=Net.COIN).to_string() def regtest_get_mined_balance() -> int: # Calculate matured balance payload = json.dumps({"jsonrpc": "2.0", "method": "listunspent", "params": [1, 1_000_000_000, [REGTEST_P2PKH_ADDRESS]], "id": 1}) result = requests.post(BITCOIN_NODE_URI, data=payload) result.raise_for_status() utxos = result.json()['result'] matured_balance = sum( utxo['amount'] for utxo in utxos if utxo['confirmations'] > COINBASE_MATURITY) logger.debug("matured coins in regtest slush fund=%s", matured_balance) return matured_balance def regtest_topup_account(receive_address: bitcoinx.P2PKH_Address, amount: int=25) \ -> Optional[str]: matured_balance = regtest_get_mined_balance() while matured_balance < amount: nblocks = 1 if matured_balance == 0: nblocks = 200 result = node_rpc_call("generatetoaddress", nblocks, REGTEST_P2PKH_ADDRESS) if result.status_code == 200: logger.debug(f"generated {nblocks}: {result.json()['result']}") matured_balance = regtest_get_mined_balance() # Note: for bare multi-sig support may need to craft rawtxs manually via bitcoind's # 'signrawtransaction' jsonrpc method - AustEcon payload = json.dumps({"jsonrpc": "2.0", "method": "sendtoaddress", "params": [receive_address.to_string(), amount], "id": 0}) result = requests.post(BITCOIN_NODE_URI, data=payload) if result.status_code != 200: raise requests.exceptions.HTTPError(result.text) txid = cast(str, result.json()['result']) logger.info("topped up wallet with %s coins to receive address='%s'. txid=%s", amount, receive_address.to_string(), txid) return txid def regtest_generate_nblocks(nblocks: int, address: str) -> List[str]: payload1 = json.dumps( {"jsonrpc": "2.0", "method": "generatetoaddress", "params": [nblocks, address], "id": 0}) result = requests.post(BITCOIN_NODE_URI, data=payload1) result.raise_for_status() block_hashes = [] for block_hash in cast(List[str], result.json()['result']): block_hashes.append(block_hash) logger.debug("newly mined blockhash: %s", block_hash) logger.debug("mined %s new blocks (funds to address=%s). use the " "'regtest_topup_account' method to fund your account", nblocks, address) return block_hashes class ExtensionEndpoints(ExtendedHandlerUtils): """Extension endpoints for ElectrumSV REST API""" routes = [] # PATHS VERSION = "/v1" NETWORK = "/{network}" BASE = VERSION + NETWORK + "/dapp" # avoid conflicts with built-ins WALLETS_TLD = BASE + "/wallets" WALLETS_PARENT = WALLETS_TLD + "/{wallet_name}" WALLETS_ACCOUNT = WALLETS_PARENT + "/{account_id}" ACCOUNT_TXS = WALLETS_ACCOUNT + "/txs" ACCOUNT_UTXOS = WALLETS_ACCOUNT + "/utxos" def __init__(self): super().__init__() self.logger = logs.get_logger("restapi-dapp") self.app_state = app_state # easier to monkeypatch for testing self.add_routes() self.temp_dir = tempfile.TemporaryDirectory() def cleanup(self) -> None: atexit.register(self.temp_dir.cleanup) def add_routes(self): self.routes = [ web.get(self.WALLETS_TLD, self.get_all_wallets), web.post("/v1/{network}/dapp/wallets/load_instanced", self.load_instanced_wallet), web.get(self.WALLETS_PARENT, self.get_parent_wallet), web.post(self.WALLETS_PARENT + "/load_wallet", self.load_wallet), web.get(self.WALLETS_ACCOUNT, self.get_account), web.post("/v1/{network}/dapp/wallets/{wallet_id}/{account_id}/payment_request", self.create_payment_request), web.get(self.ACCOUNT_UTXOS + "/coin_state", self.get_coin_state), web.get(self.ACCOUNT_UTXOS, self.get_utxos), web.get(self.ACCOUNT_UTXOS + "/balance", self.get_balance), web.delete(self.ACCOUNT_TXS, self.remove_txs), web.get(self.ACCOUNT_TXS + "/history", self.get_transaction_history), web.post(self.ACCOUNT_TXS + "/fetch", self.fetch_transaction), web.post(self.ACCOUNT_TXS + "/create", self.create_tx), web.post(self.ACCOUNT_TXS + "/create_and_broadcast", self.create_and_broadcast), web.post(self.ACCOUNT_TXS + "/broadcast", self.broadcast), web.post(self.ACCOUNT_TXS + "/split_utxos", self.split_utxos), web.view(self.ACCOUNT_TXS + "/websocket/text-events", TxStateWebSocket), ] if app_state.config.get('regtest'): self.routes.extend([ web.post(self.WALLETS_ACCOUNT + "/topup_account", self.topup_account), web.post(self.WALLETS_ACCOUNT + "/generate_blocks", self.generate_blocks), web.post(self.WALLETS_PARENT + "/create_new_wallet", self.create_new_wallet), ]) # ----- Extends electrumsv/restapi_endpoints ----- # async def get_all_wallets(self, request: web.Request) -> web.Response: try: all_parent_wallets = self._get_all_wallets(self.wallets_path) response = all_parent_wallets return good_response({"wallets": response}) except Fault as e: return fault_to_http_response(e) async def get_parent_wallet(self, request: web.Request) -> web.Response: """Overview of parent wallet and accounts""" try: vars = await self.argparser(request, required_vars=[VNAME.WALLET_NAME]) wallet_name = vars[VNAME.WALLET_NAME] wallet = self._get_parent_wallet(wallet_name) accounts = self._accounts_dto(wallet) response = {"parent_wallet": wallet_name, "accounts": accounts} return good_response(response) except Fault as e: return fault_to_http_response(e) async def load_instanced_wallet(self, request: web.Request) -> web.Response: """ This copies a pre-generated wallet file to a temporary location and loads it. It can only be called once for each wallet instance kind and will error if the instance file name is in use. We do not want duplicated wallets reusing keys, it is problems waiting to happen. The reason we do this via ids, is that we do not want to allow users to load wallets from arbitrary paths. """ try: vars = await self.argparser(request, required_vars=[VNAME.PASSWORD, VNAME.WALLET_INSTANCE_ID]) valid_instance_ids = set(item.value for item in WalletInstanceKind) wallet_instance_id = cast(int, vars[VNAME.WALLET_INSTANCE_ID]) if wallet_instance_id not in valid_instance_ids: raise Fault(message="Unknown wallet instance id") relative_wallet_path = WalletInstancePaths[wallet_instance_id] wallet_path = os.path.join(base_dir, relative_wallet_path) if not os.path.exists(wallet_path): raise Fault(message="Instanced wallet path invalid") wallet_filename = os.path.basename(wallet_path) instanced_wallet_path = os.path.join(self.temp_dir.name, wallet_filename) if os.path.exists(instanced_wallet_path): raise Fault(message="Instanced wallet in use") shutil.copyfile(wallet_path, instanced_wallet_path) wallet = await self._load_wallet(instanced_wallet_path, vars[VNAME.PASSWORD], enforce_wallet_directory=False) accounts = self._accounts_dto(wallet) return good_response({ "wallet_id": wallet.get_id(), "accounts": accounts }) except Fault as e: return fault_to_http_response(e) async def load_wallet(self, request: web.Request) -> web.Response: try: vars = await self.argparser(request, required_vars=[VNAME.PASSWORD, VNAME.WALLET_NAME]) wallet_name = vars[VNAME.WALLET_NAME] wallet = await self._load_wallet(wallet_name, vars[VNAME.PASSWORD]) accounts = self._accounts_dto(wallet) return good_response({ "wallet_id": wallet.get_id(), "parent_wallet": wallet_name, "accounts": accounts }) except Fault as e: return fault_to_http_response(e) async def create_new_wallet(self, request: web.Request) -> web.Response: """only for regtest for the moment...""" try: vars = await self.argparser(request, required_vars=[VNAME.PASSWORD, VNAME.WALLET_NAME], check_wallet_availability=False) create_filepath = str(Path(self.wallets_path).joinpath(vars[VNAME.WALLET_NAME])) self.check_if_wallet_exists(create_filepath) storage = WalletStorage.create(create_filepath, vars[VNAME.PASSWORD]) storage.close() app_state.credentials.set_wallet_password(create_filepath, vars[VNAME.PASSWORD], CredentialPolicyFlag.FLUSH_AFTER_WALLET_LOAD) parent_wallet = self.app_state.daemon.load_wallet(create_filepath) assert parent_wallet is not None # create an account for the Wallet with the same password via an imported seed text_type = KeystoreTextType.EXTENDED_PRIVATE_KEY text_match = '<KEY>' \ '<KEY>' keystore = instantiate_keystore_from_text(text_type, text_match, vars[VNAME.PASSWORD], derivation_text=None, passphrase='') parent_wallet.create_account_from_keystore(AccountCreationType.IMPORTED, keystore) await self._load_wallet(vars[VNAME.WALLET_NAME], vars[VNAME.PASSWORD]) response = {"new_wallet": create_filepath} return good_response(response) except Fault as e: return fault_to_http_response(e) async def get_account(self, request: web.Request) -> web.Response: """Overview of a single 'account""" try: vars = await self.argparser(request, required_vars=[VNAME.WALLET_NAME, VNAME.ACCOUNT_ID]) wallet_name = vars[VNAME.WALLET_NAME] account_id = vars[VNAME.ACCOUNT_ID] account = self._get_account(wallet_name, account_id) response = self._account_dto(account) return good_response(response) except Fault as e: return fault_to_http_response(e) async def topup_account(self, request): """only for regtest""" try: vars = await self.argparser(request, required_vars=[VNAME.WALLET_NAME, VNAME.ACCOUNT_ID]) wallet_name = vars[VNAME.WALLET_NAME] account_id = vars[VNAME.ACCOUNT_ID] amount = vars.get(VNAME.AMOUNT, 25) account = self._get_account(wallet_name, account_id) receive_key = account.get_fresh_keys(RECEIVING_SUBPATH, 1)[0] receive_address = account.get_script_template_for_derivation( account.get_default_script_type(), receive_key.derivation_type, receive_key.derivation_data2) txid = regtest_topup_account(receive_address, amount) response = {"txid": txid} return good_response(response) except Fault as e: return fault_to_http_response(e) async def generate_blocks(self, request): """only for regtest""" try: vars = await self.argparser(request, required_vars=[VNAME.WALLET_NAME, VNAME.ACCOUNT_ID]) nblocks = vars.get(VNAME.NBLOCKS, 1) txid = regtest_generate_nblocks(nblocks, REGTEST_P2PKH_ADDRESS) response = {"txid": txid} return good_response(response) except Fault as e: return fault_to_http_response(e) async def create_payment_request(self, request: web.Request) -> web.Response: try: vars = await self.argparser(request, required_vars=[VNAME.WALLET_ID, VNAME.ACCOUNT_ID, VNAME.MESSAGE ]) wallet_id = vars[VNAME.WALLET_ID] account_id = vars[VNAME.ACCOUNT_ID] message = vars[VNAME.MESSAGE] if not len(message): raise Fault(message="Empty message") wallet = self._get_wallet_by_id(wallet_id) account = self._get_account_from_wallet(wallet, account_id) future, key_data = account.create_payment_request(message) rows = await asyncio.wrap_future(future) if len(rows) != 1: raise Fault(message="Error creating the payment request") script_type = account.get_default_script_type() script_template = account.get_script_template_for_derivation( script_type, key_data.derivation_type, key_data.derivation_data2) if script_template is None: raise Fault(message="Error creating the payment destination") text = script_template_to_string(script_template) return good_response({ "script_type": script_type.name, "destination": text, }) except Fault as e: return fault_to_http_response(e) async def get_coin_state(self, request: web.Request) -> web.Response: """get coin state (unconfirmed and confirmed coin count)""" try: vars = await self.argparser(request, required_vars=[VNAME.WALLET_NAME, VNAME.ACCOUNT_ID]) wallet_name = vars[VNAME.WALLET_NAME] account_id = vars[VNAME.ACCOUNT_ID] account = self._get_account(wallet_name, account_id) response = self._coin_state_dto(account) return good_response(response) except Fault as e: return fault_to_http_response(e) async def get_utxos(self, request: web.Request) -> web.Response: try: vars = await self.argparser(request, required_vars=[VNAME.WALLET_NAME, VNAME.ACCOUNT_ID]) wallet_name = vars[VNAME.WALLET_NAME] account_id = vars[VNAME.ACCOUNT_ID] exclude_frozen = vars.get(VNAME.EXCLUDE_FROZEN, False) confirmed_only = vars.get(VNAME.CONFIRMED_ONLY, False) mature = vars.get(VNAME.MATURE, True) account = self._get_account(wallet_name, account_id) utxos = account.get_transaction_outputs_with_key_data(exclude_frozen=exclude_frozen, confirmed_only=confirmed_only, mature=mature) result = self._utxo_dto(utxos) response = {"utxos": result} return good_response(response) except Fault as e: return fault_to_http_response(e) async def get_balance(self, request: web.Request) -> web.Response: """get confirmed, unconfirmed and coinbase balances""" try: vars = await self.argparser(request, required_vars=[VNAME.WALLET_NAME, VNAME.ACCOUNT_ID]) wallet_name = vars[VNAME.WALLET_NAME] account_id = vars[VNAME.ACCOUNT_ID] account = self._get_account(wallet_name, account_id) response = self._balance_dto(wallet=account) return good_response(response) except Fault as e: return fault_to_http_response(e) async def remove_txs(self, request: web.Request) -> web.Response: # follows this spec https://opensource.zalando.com/restful-api-guidelines/#152 """This might be used to clean up after creating many transactions that were never sent.""" try: vars = await self.argparser(request, required_vars=[VNAME.WALLET_NAME, VNAME.ACCOUNT_ID, VNAME.TXIDS]) wallet_name = vars[VNAME.WALLET_NAME] account_id = vars[VNAME.ACCOUNT_ID] txids = vars[VNAME.TXIDS] account = self._get_account(wallet_name, account_id) results = [] if txids: for txid in txids: try: self.remove_transaction(bitcoinx.hex_str_to_hash(txid), account) results.append({"id": txid, "result": 200}) except Fault as e: if e.code == Errors.DISABLED_FEATURE_CODE: results.append({"id": txid, "result": 400, "description": Errors.DISABLED_FEATURE_MESSAGE}) if e.code == Errors.TRANSACTION_NOT_FOUND_CODE: results.append({"id": txid, "result": 400, "description": Errors.TRANSACTION_NOT_FOUND_MESSAGE}) return self.batch_response({"items": results}) except Fault as e: return fault_to_http_response(e) async def get_transaction_history(self, request: web.Request) -> web.Response: """get transactions - currently only used for debugging via 'postman'""" try: vars = await self.argparser(request, required_vars=[VNAME.WALLET_NAME, VNAME.ACCOUNT_ID]) wallet_name = vars[VNAME.WALLET_NAME] account_id = vars[VNAME.ACCOUNT_ID] tx_flags = vars.get(VNAME.TX_FLAGS) account = self._get_account(wallet_name, account_id) response = self._history_dto(account, tx_flags) return good_response({"history": response}) except Fault as e: return fault_to_http_response(e) async def fetch_transaction(self, request: web.Request) -> web.Response: """get transaction""" try: required_vars = [VNAME.WALLET_NAME, VNAME.ACCOUNT_ID, VNAME.TXID] vars = await self.argparser(request, required_vars) wallet_name = vars[VNAME.WALLET_NAME] account_id = vars[VNAME.ACCOUNT_ID] txid = vars[VNAME.TXID] account = self._get_account(wallet_name, account_id) response = self._fetch_transaction_dto(account, tx_id=txid) return good_response(response) except Fault as e: return fault_to_http_response(e) async def create_tx(self, request: web.Request) -> web.Response: """ General purpose transaction builder. - Should handle any kind of output script.( see bitcoinx.address for utilities for building p2pkh, multisig etc outputs as hex strings.) """ account = None tx = None try: tx, account, password = await self._create_tx_helper(request) response = {"txid": tx.txid(), "rawtx": str(tx)} return good_response(response) except Fault as e: if tx and tx.is_complete() and e.code != Fault(Errors.ALREADY_SENT_TRANSACTION_CODE): self.cleanup_tx(tx, account) return fault_to_http_response(e) except Exception as e: if tx and tx.is_complete(): self.cleanup_tx(tx, account) return fault_to_http_response( Fault(code=Errors.GENERIC_INTERNAL_SERVER_ERROR, message=str(e))) async def create_and_broadcast(self, request): account = None tx = None try: tx, account, password = await self._create_tx_helper(request) try: result = await self._broadcast_transaction(str(tx), tx.hash(), account) except aiorpcx.jsonrpc.RPCError as e: raise Fault(Errors.AIORPCX_ERROR_CODE, e.message) self.prev_transaction = result response = {"txid": result} self.logger.debug("successful broadcast for %s", result) return good_response(response) except Fault as e: if tx and tx.is_complete() and e.code != Errors.ALREADY_SENT_TRANSACTION_CODE: self.cleanup_tx(tx, account) return fault_to_http_response(e) except Exception as e: self.logger.exception("unexpected error in create_and_broadcast handler") if tx and tx.is_complete() and not ( isinstance(e, AssertionError) and str(e) == 'duplicate set not supported'): self.cleanup_tx(tx, account) return fault_to_http_response( Fault(code=Errors.GENERIC_INTERNAL_SERVER_ERROR, message=str(e))) async def broadcast(self, request: web.Request) -> web.Response: """Broadcast a rawtx (hex string) to the network. """ try: required_vars = [VNAME.WALLET_NAME, VNAME.ACCOUNT_ID, VNAME.RAWTX] vars = await self.argparser(request, required_vars=required_vars) wallet_name = vars[VNAME.WALLET_NAME] index = vars[VNAME.ACCOUNT_ID] rawtx = vars[VNAME.RAWTX] account = self._get_account(wallet_name, index) tx = Transaction.from_hex(rawtx) self.raise_for_duplicate_tx(tx) try: result = await self._broadcast_transaction(rawtx, tx.hash(), account) except aiorpcx.jsonrpc.RPCError as e: raise Fault(Errors.AIORPCX_ERROR_CODE, e.message) self.prev_transaction = result response = {"txid": result} return good_response(response) except Fault as e: return fault_to_http_response(e) async def split_utxos(self, request: web.Request) -> web.Response: account = None tx = None try: required_vars = [VNAME.WALLET_NAME, VNAME.ACCOUNT_ID, VNAME.SPLIT_COUNT, VNAME.PASSWORD] vars = await self.argparser(request, required_vars=required_vars) wallet_name = vars[VNAME.WALLET_NAME] account_id = vars[VNAME.ACCOUNT_ID] split_count = vars[VNAME.SPLIT_COUNT] # optional split_value = vars.get(VNAME.SPLIT_VALUE, 10000) password = vars.get(VNAME.PASSWORD, None) desired_utxo_count = vars.get(VNAME.DESIRED_UTXO_COUNT, 2000) require_confirmed = vars.get(VNAME.REQUIRE_CONFIRMED, False) account = self._get_account(wallet_name, account_id) # Approximate size of a transaction with one P2PKH input and one P2PKH output. base_fee = self.app_state.config.estimate_fee(TransactionSize(203, 0)) loop = asyncio.get_event_loop() # run in thread - CPU intensive code partial_coin_selection = partial(self.select_inputs_and_outputs, self.app_state.config, account, base_fee, split_count=split_count, desired_utxo_count=desired_utxo_count, require_confirmed=require_confirmed, split_value=split_value) split_result = await loop.run_in_executor(self.txb_executor, partial_coin_selection) if isinstance(split_result, Fault): return fault_to_http_response(split_result) self.logger.debug("split result: %s", split_result) utxos, outputs, attempted_split = split_result if not attempted_split: fault = Fault(Errors.SPLIT_FAILED_CODE, Errors.SPLIT_FAILED_MESSAGE) return fault_to_http_response(fault) tx, tx_context = account.make_unsigned_transaction(utxos, outputs) future = account.sign_transaction(tx, password, tx_context) if future is not None: future.result() self.raise_for_duplicate_tx(tx) # broadcast result = await self._broadcast_transaction(str(tx), tx.hash(), account) self.prev_transaction = result response = {"txid": result} return good_response(response) except Fault as e: if tx and tx.is_complete() and e.code != Fault(Errors.ALREADY_SENT_TRANSACTION_CODE): self.cleanup_tx(tx, account) return fault_to_http_response(e) except InsufficientCoinsError as e: self.logger.debug(Errors.INSUFFICIENT_COINS_MESSAGE) return fault_to_http_response( Fault(Errors.INSUFFICIENT_COINS_CODE, Errors.INSUFFICIENT_COINS_MESSAGE)) except Exception as e: if tx and tx.is_complete(): self.cleanup_tx(tx, account) return fault_to_http_response( Fault(code=Errors.GENERIC_INTERNAL_SERVER_ERROR, message=str(e)))
alipay/aop/api/response/AlipayOpenMiniTemplatemessageUsertemplateApplyResponse.py
snowxmas/alipay-sdk-python-all
213
11114055
<filename>alipay/aop/api/response/AlipayOpenMiniTemplatemessageUsertemplateApplyResponse.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayOpenMiniTemplatemessageUsertemplateApplyResponse(AlipayResponse): def __init__(self): super(AlipayOpenMiniTemplatemessageUsertemplateApplyResponse, self).__init__() self._user_template_id = None @property def user_template_id(self): return self._user_template_id @user_template_id.setter def user_template_id(self, value): self._user_template_id = value def parse_response_content(self, response_content): response = super(AlipayOpenMiniTemplatemessageUsertemplateApplyResponse, self).parse_response_content(response_content) if 'user_template_id' in response: self.user_template_id = response['user_template_id']
nitorch/transforms.py
ArneBinder/Pytorch-LRP
117
11114068
<reponame>ArneBinder/Pytorch-LRP import numpy as np import numbers import torch from scipy.ndimage.interpolation import rotate from scipy.ndimage.interpolation import zoom def normalize_float(x, min=-1): """ Function that performs min-max normalization on a `numpy.ndarray` matrix. """ if min == -1: norm = (2 * (x - np.min(x)) / (np.max(x) - np.min(x))) - 1 elif min == 0: if np.max(x) == 0 and np.min(x) == 0: norm = x else: norm = (x - np.min(x)) / (np.max(x) - np.min(x)) return norm def normalize_float_torch(x, min=-1): ''' Function that performs min-max normalization on a Pytorch tensor matrix. Can also deal with Pytorch dictionaries where the data matrix key is 'image'. ''' import torch if min == -1: norm = (2 * (x - torch.min(x)) / (torch.max(x) - torch.min(x))) - 1 elif min == 0: if torch.max(x) == 0 and torch.min(x) == 0: norm = x else: norm = (x - torch.min(x)) / (torch.max(x) - torch.min(x)) return norm def normalization_factors(data, train_idx, shape, mode="slice"): """ Shape should be of length 3. mode : either "slice" or "voxel" - defines the granularity of the normalization. Voxelwise normalization does not work well with only linear registered data. """ print("Computing the normalization factors of the training data..") if mode == "slice": axis = (0, 1, 2, 3) elif mode == "voxel": axis = 0 else: raise NotImplementedError("Normalization mode unknown.") samples = np.zeros( [len(train_idx), 1, shape[0], shape[1], shape[2]], dtype=np.float32 ) for c, value in enumerate(train_idx): samples[c] = data[value]["image"].numpy() mean = np.mean(samples, axis=axis) std = np.std(samples, axis=axis) return np.squeeze(mean), np.squeeze(std) class CenterCrop(object): """Crops the given 3D ndarray Image at the center. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w, d), a cube crop (size, size, size) is made. """ def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size), int(size)) else: self.size = np.asarray(size) assert len(self.size) == 3, "The `size` must be a tuple of length 3 but is \ length {}".format(len(self.size)) def __call__(self, img): """ Args: 3D ndarray Image : Image to be cropped. Returns: 3D ndarray Image: Cropped image. """ # if the 4th dimension of the image is the batch then ignore that dim if len(img.shape) == 4: img_size = img.shape[1:] elif len(img.shape) == 3: img_size = img.shape else: raise ValueError("The size of the image can be either 3 dimension or 4\ dimension with one dimension as the batch size") # crop only if the size of the image is bigger than the size to be cropped to. if all(img_size >= self.size): slice_start = (img_size - self.size)//2 slice_end = self.size + slice_start cropped = img[slice_start[0]:slice_end[0], slice_start[1]:slice_end[1], slice_start[2]:slice_end[2] ] if len(img.shape) == 4: cropped = np.expand_dims(cropped, 0) else: cropped = img return cropped def __repr__(self): return self.__class__.__name__ + '(size={0})'.format(self.size) class Normalize(object): """ Normalize tensor with first and second moments. By default will only normalize on non-zero voxels. Set masked = False if this is undesired. """ def __init__(self, mean, std=1, masked=True, eps=1e-10): self.mean = mean self.std = std self.masked = masked # set epsilon only if using std scaling self.eps = eps if np.all(std) != 1 else 0 def __call__(self, image): if self.masked: image = self.zero_masked_transform(image) else: image = self.apply_transform(image) return image def denormalize(self, image): image = image * (self.std + self.eps) + self.mean return image def apply_transform(self, image): return (image - self.mean) / (self.std + self.eps) def zero_masked_transform(self, image): """ Only apply transform where input is not zero. """ img_mask = image == 0 # do transform image = self.apply_transform(image) image[img_mask] = 0. return image class IntensityRescale: """ Rescale image itensities between 0 and 1 for a single image. Arguments: masked: applies normalization only on non-zero voxels. Default is True. on_gpu: speed up computation by using GPU. Requires torch.Tensor instead of np.array. Default is False. """ def __init__(self, masked=True, on_gpu=False): self.masked = masked self.on_gpu = on_gpu def __call__(self, image): if self.masked: image = self.zero_masked_transform(image) else: image = self.apply_transform(image) return image def apply_transform(self, image): if self.on_gpu: return normalize_float_torch(image, min=0) else: return normalize_float(image, min=0) def zero_masked_transform(self, image): """ Only apply transform where input is not zero. """ img_mask = image == 0 # do transform image = self.apply_transform(image) image[img_mask] = 0. return image ######################################################################## # Data augmentations ######################################################################## class ToTensor(object): """ Convert ndarrays to Tensors. Expands channel axis # numpy image: H x W x Z # torch image: C x H x W x Z """ def __call__(self, image): image = torch.from_numpy(image).unsqueeze(0) image = image.float() return image class Flip: """ Flip the input along a given axis. Arguments: axis: axis to flip over. Default is 0 prob: probability to flip the image. Executes always when set to 1. Default is 0.5 """ def __init__(self, axis=0, prob=0.5): self.axis = axis self.prob = prob def __call__(self, image): rand = np.random.uniform() if rand <= self.prob: augmented = np.flip(image, axis=self.axis).copy() else: augmented = image return augmented class SagittalFlip(Flip): """ Flip image along the sagittal axis (x-axis). Expects input shape (X, Y, Z). """ def __init__(self, prob=0.5): super().__init__(axis=0, prob=prob) def __call__(self, image): assert(len(image.shape) == 3) return super().__call__(image) class CoronalFlip(Flip): """ Flip image along the coronal axis (y-axis). Expects input shape (X, Y, Z). """ def __init__(self, prob=0.5): super().__init__(axis=1, prob=prob) def __call__(self, image): assert(len(image.shape) == 3) return super().__call__(image) class AxialFlip(Flip): """ Flip image along the axial axis (z-axis). Expects input shape (X, Y, Z). """ def __init__(self, prob=0.5): super().__init__(axis=2, prob=prob) def __call__(self, image): assert(len(image.shape) == 3) return super().__call__(image) class Rotate: """ Rotate the input along a given axis. Arguments: axis: axis to rotate. Default is 0 deg: min and max rotation angles in degrees. Randomly rotates within that range. Can be scalar, list or tuple. In case of scalar it rotates between -abs(deg) and abs(deg). Default is (-3, 3). """ def __init__(self, axis=0, deg=(-3, 3)): if axis == 0: self.axes = (1, 0) elif axis == 1: self.axes = (2, 1) elif axis == 2: self.axes = (0, 2) if isinstance(deg, tuple) or isinstance(deg, list): assert(len(deg) == 2) self.min_rot = np.min(deg) self.max_rot = np.max(deg) else: self.min_rot = -int(abs(deg)) self.max_rot = int(abs(deg)) def __call__(self, image): rand = np.random.randint(self.min_rot, self.max_rot + 1) augmented = rotate( image, angle=rand, axes=self.axes, reshape=False ).copy() return augmented class SagittalRotate(Rotate): """ Rotate image's sagittal axis (x-axis). Expects input shape (X, Y, Z). """ def __init__(self, deg=(-3, 3)): super().__init__(axis=0, deg=deg) class CoronalRotate(Rotate): """ Rotate image's coronal axis (y-axis). Expects input shape (X, Y, Z). """ def __init__(self, deg=(-3, 3)): super().__init__(axis=1, deg=deg) class AxialRotate(Rotate): """ Rotate image's axial axis (z-axis). Expects input shape (X, Y, Z). """ def __init__(self, deg=(-3, 3)): super().__init__(axis=2, deg=deg) class Translate: """ Translate the input along a given axis. Arguments: axis: axis to rotate. Default is 0 dist: min and max translation distance in pixels. Randomly translates within that range. Can be scalar, list or tuple. In case of scalar it translates between -abs(dist) and abs(dist). Default is (-3, 3). """ def __init__(self, axis=0, dist=(-3, 3)): self.axis = axis if isinstance(dist, tuple) or isinstance(dist, list): assert(len(dist) == 2) self.min_trans = np.min(dist) self.max_trans = np.max(dist) else: self.min_trans = -int(abs(dist)) self.max_trans = int(abs(dist)) def __call__(self, image): rand = np.random.randint(self.min_trans, self.max_trans + 1) augmented = np.zeros_like(image) if self.axis == 0: if rand < 0: augmented[-rand:, :] = image[:rand, :] elif rand > 0: augmented[:-rand, :] = image[rand:, :] else: augmented = image elif self.axis == 1: if rand < 0: augmented[:,-rand:, :] = image[:,:rand, :] elif rand > 0: augmented[:,:-rand, :] = image[:,rand:, :] else: augmented = image elif self.axis == 2: if rand < 0: augmented[:,:,-rand:] = image[:,:,:rand] elif rand > 0: augmented[:,:,:-rand] = image[:,:,rand:] else: augmented = image return augmented class SagittalTranslate(Translate): """ Translate image along the sagittal axis (x-axis). Expects input shape (X, Y, Z). """ def __init__(self, dist=(-3, 3)): super().__init__(axis=0, dist=dist) class CoronalTranslate(Translate): """ Translate image along the coronal axis (y-axis). Expects input shape (X, Y, Z). """ def __init__(self, dist=(-3, 3)): super().__init__(axis=1, dist=dist) class AxialTranslate(Translate): """ Translate image along the axial axis (z-axis). Expects input shape (X, Y, Z). """ def __init__(self, dist=(-3, 3)): super().__init__(axis=2, dist=dist)
demo/demo/app/models.py
HiveTechies/django-star-ratings
296
11114076
from __future__ import unicode_literals from django.db import models class Foo(models.Model): bar = models.CharField(max_length=100)
homeassistant/components/workday/__init__.py
domwillcode/home-assistant
30,023
11114093
<filename>homeassistant/components/workday/__init__.py """Sensor to indicate whether the current day is a workday."""
ui/UpgradeDownloader.py
s1kx/BitcoinArmory
410
11114096
<gh_stars>100-1000 ################################################################################ # # # Copyright (C) 2011-2015, Armory Technologies, Inc. # # Distributed under the GNU Affero General Public License (AGPL v3) # # See LICENSE or http://www.gnu.org/licenses/agpl.html # # # ################################################################################ from PyQt4.Qt import * from PyQt4.QtGui import * from PyQt4.QtNetwork import * from qtdefines import * from armoryengine.parseAnnounce import * class UpgradeDownloader: def __init__(self, parent, main): self.finishedCB = lambda : None self.startedCB = lambda : None self.url = None self.filesha = None self.downloadFile = None self.progressBar = None self.frame = None self.parent = parent self.main = main self.packageName = '' self.networkAccess = QNetworkAccessManager() # downloadLinkFile def setFile(self, url, filehash): self.url = url self.filesha = filehash if self.downloadButton: if url and not self.downloadFile: self.downloadButton.setEnabled(True) else: self.downloadButton.setEnabled(False) def useDownloadLinkFileAndSignature(self, linkfile): self.downloadLinkFile = linkfile def setFinishedCallback(self, callback): self.finishedCB = callback def setStartedCallback(self, callback): self.startedCB = callback def setPackageName(self, pkgName): self.packageName = pkgName def createDownloaderWidget(self, parent): if self.frame: raise RuntimeError("already created a downloader widget") self.frame = QWidget(parent) bottomRowLayout = QHBoxLayout(self.frame) self.progressBar = QProgressBar(self.frame) bottomRowLayout.addWidget(self.progressBar, +1) self.downloadButton = QPushButton(tr("Download"), self.frame) self.frame.connect(self.downloadButton, SIGNAL('clicked()'), \ self.startOrStopDownload) bottomRowLayout.addWidget(self.downloadButton) return self.frame def startOrStopDownload(self): if self.downloadFile: o = self.downloadFile self.downloadFile = None o.close() else: self.startDownload() def startDownload(self): req = QNetworkRequest(QUrl.fromEncoded(self.url)) self.receivedData = "" self.downloadFile = self.networkAccess.get(req) QObject.connect(self.downloadFile, SIGNAL('readyRead()'), self.readMoreDownloadData) QObject.connect(self.downloadFile, SIGNAL('finished()'), self.downloadFinished) if not self.downloadButton is None: self.downloadButton.setText(tr("Cancel")) self.progressTimer() self.startedCB() ############################################################################# def downloadFinished(self): if not self.downloadButton is None: self.downloadButton.setText(tr("Download")) # We will ask the user if they want us to unpack it for them # Only if linux, only if satoshi, only if not offline-pkg-signed linuxUnpackFile = None # downloadFile will be removed on cancel if not self.downloadFile is None: status = self.downloadFile.attribute(QNetworkRequest.HttpStatusCodeAttribute).toInt()[0] if len(self.receivedData)==0: if status == 404: status = tr("File not found") QMessageBox.warning(self.frame, tr("Download failed"), \ tr("There was a failure downloading this file: {}").format(str(status))) else: res = binary_to_hex(sha256(self.receivedData)) LOGINFO("Downloaded package has hash " + res) if res != self.filesha: QMessageBox.warning(self.frame, tr("Verification failed"), tr(""" The download completed but its cryptographic signature is invalid. Please try the download again. If you get another error, please report the problem to <EMAIL>. <br><br> The downloaded data has been discarded. """)) else: defaultFN = os.path.basename(self.url) if self.downloadLinkFile: defaultFN += ".signed" dest = self.main.getFileSave(tr("Save File"), [tr('Installers (*.exe *.app *.deb *.tar.gz)')], defaultFilename=defaultFN) if len(dest)!=0: df = open(dest, "wb") if self.downloadLinkFile: df.write("START_OF_SIGNATURE_SECTION") df.write(self.downloadLinkFile) df.write("END_OF_SIGNATURE_SECTION") df.write(self.receivedData) df.close() if self.downloadLinkFile: QMessageBox.warning(self.frame, tr("Download complete"), tr(""" The package has the signature from <font color="%s"><b>Armory Technologies, Inc.</b></font> bundled with it, so it can be verified by an offline computer before installation. To use this feature, the offline system must be running Armory 0.91-beta or higher. Go to <i>"Help"</i>\xe2\x86\x92<i>"Verify Signed Package"</i> and load the <i>*.signed</i> file. The file was saved to: <br><br> %s <br><br> <b>There is no special procedure to update a previous installation.</b> The installer will update existing versions without touching your wallets or settings.""") % \ (htmlColor("TextGreen"), dest), \ QMessageBox.Ok) else: if OS_LINUX and \ self.packageName=='Satoshi' and \ dest.endswith('tar.gz'): linuxUnpackFile = dest else: QMessageBox.warning(self.frame, tr("Download complete"), tr(""" The file downloaded successfully, and carries a valid signature from <font color="%s"><b>Armory Technologies, Inc.</b></font> You can now use it to install the software. The file was saved to: <br><br> %s <br><br> <b>There is no special procedure to update a previous installation.</b> The installer will update existing versions without touching your wallets or settings.""") % \ (htmlColor("TextGreen"), dest), QMessageBox.Ok) if linuxUnpackFile is not None: reply = QMessageBox.warning(self.frame, tr('Unpack Download'), tr(""" You just downloaded the Bitcoin Core software for Linux. Would you like Armory to extract it for you and adjust your settings to use it automatically? <br><br> If you modified your settings to run Bitcoin Core manually, click "No" then extract the downloaded file and manually start bitcoin-qt or bitcoind in from the extracted "bin/%d" directory.""") % (64 if SystemSpecs.IsX64 else 32), \ QMessageBox.Yes | QMessageBox.No) if reply==QMessageBox.Yes: finalDir = self.main.unpackLinuxTarGz(dest, changeSettings=True) if finalDir is None: QMessageBox.critical(self.frame, tr('Error Unpacking'), tr(""" There was an error unpacking the Bitcoin Core file. To use it, you need to go to where the file was saved, right-click on it and select "Extract Here", then adjust your settings (<i>"File"</i>\xe2\x86\x92<i>"Settings"</i> from the main window) to point "Bitcoin Install Dir" to the extracted directory. <br><br> You saved the installer to: <br><br> %s""") % dest, QMessageBox.Ok) else: QMessageBox.warning(self.frame, tr('Finished!'), tr(""" The operation was successful. Restart Armory to use the newly-downloaded Bitcoin Core software"""), QMessageBox.Ok) self.receivedData = None self.downloadFile = None self.downloadButton.setEnabled(True) self.progressBar.setFormat("") if self.finishedCB: self.finishedCB() def readMoreDownloadData(self): if not self.receivedData is None: self.receivedData = self.receivedData + self.downloadFile.readAll() def progressTimer(self): if not self.downloadFile: self.progressBar.reset() self.progressBar.setRange(0, 100) self.progressBar.setValue(0) return size = self.downloadFile.header(QNetworkRequest.ContentLengthHeader).toInt()[0] self.progressBar.setRange(0, size) self.progressBar.setValue(len(self.receivedData)) totalStr = bytesToHumanSize(size) sofarStr = bytesToHumanSize(len(self.receivedData)) s = tr("{0} / {1} downloaded").format(sofarStr, totalStr) self.progressBar.setFormat(s) QTimer.singleShot(250, self.progressTimer) class UpgradeDownloaderDialog(ArmoryDialog): # parent: QWidget # showPackage: automatically select this package name, if available, for the current OS # downloadText: the text *WITH SIGNATURE* of the downloaded text data # changeLog: the text of the downloaded changelogs def __init__(self, parent, main, showPackage, downloadText, changeLog): super(UpgradeDownloaderDialog, self).__init__(parent, main) self.downloader = UpgradeDownloader(parent, main) self.bitsColor = htmlColor('Foreground') def enableOrDisable(e): self.os.setEnabled(e) self.osver.setEnabled(e) self.osarch.setEnabled(e) self.packages.setEnabled(e) self.closeButton.setEnabled(e) self.downloader.setFinishedCallback(lambda : enableOrDisable(True)) def onStart(): enableOrDisable(False) downloadText=None if self.saveAsOfflinePackage.isChecked(): downloadText = self.downloadText self.downloader.useDownloadLinkFileAndSignature(downloadText) self.downloader.setStartedCallback(onStart) self.downloadText = downloadText self.nestedDownloadMap = downloadLinkParser(filetext=downloadText).downloadMap self.changelog = changelogParser().parseChangelogText(changeLog) self.localizedData = { \ "Ubuntu" : tr("Ubuntu/Debian"), \ "Windows" : tr("Windows"), \ "MacOSX" : tr("MacOSX"), \ "32" : tr("32-bit"), \ "64" : tr("64-bit"), \ "Satoshi" : tr("Bitcoin Core"), \ "ArmoryTesting" : tr("Armory Testing (unstable)"), \ "ArmoryOffline" : tr("Offline Armory Wallet") \ } oslabel = QLabel(tr("OS:"), self) self.os = QComboBox(self) self.osver = QComboBox(self) self.osarch = QComboBox(self) packages = QTreeWidget(self) self.packages = packages packages.setRootIsDecorated(False) packages.sortByColumn(0, Qt.AscendingOrder) packages.setSortingEnabled(True) headerItem = QTreeWidgetItem() headerItem.setText(0,tr("Package")) headerItem.setText(1,tr("Version")) packages.setHeaderItem(headerItem) packages.setMaximumHeight(int(7*tightSizeStr(packages, "Abcdefg")[1])) packages.header().setResizeMode(0, QHeaderView.Stretch) packages.header().setResizeMode(1, QHeaderView.Stretch) self.connect(self.os, SIGNAL("activated(int)"), self.cascadeOsVer) self.connect(self.osver, SIGNAL("activated(int)"), self.cascadeOsArch) self.connect(self.osarch, SIGNAL("activated(int)"), self.displayPackages) self.connect(packages, \ SIGNAL('currentItemChanged(QTreeWidgetItem*,QTreeWidgetItem*)'), \ self.useSelectedPackage) self.changelogView = QTextBrowser(self) self.changelogView.setOpenExternalLinks(True) self.saveAsOfflinePackage = QCheckBox(tr("Save with offline-verifiable signature")) self.closeButton = QPushButton(tr("Close"), self) self.connect(self.closeButton, SIGNAL('clicked()'), self.accept) self.btnDLInfo = QLabelButton('Download Info') self.btnDLInfo.setVisible(False) self.connect(self.btnDLInfo, SIGNAL('clicked()'), self.popupPackageInfo) self.lblSelectedSimple = QRichLabel(tr('No download selected'), doWrap=False, hAlign=Qt.AlignHCenter) self.lblSelectedSimpleMore = QRichLabel('', doWrap=False) self.lblSelectedComplex = QRichLabel(tr('No download selected')) self.lblCurrentVersion = QRichLabel('', hAlign=Qt.AlignHCenter) # At the moment, not sure we actually need this label self.lblSelectedComplex.setVisible(False) self.btnShowComplex = QLabelButton(tr('Show all downloads for all OS')) self.connect(self.btnShowComplex, SIGNAL('clicked()'), self.showComplex) frmDisp = makeHorizFrame(['Stretch', self.lblSelectedSimpleMore, 'Stretch']) frmBtnShowComplex = makeHorizFrame(['Stretch', self.btnShowComplex]) layoutSimple = QVBoxLayout() layoutSimple.addWidget(self.lblSelectedSimple) layoutSimple.addWidget(frmDisp) layoutSimple.addWidget(self.lblCurrentVersion) layoutSimple.addWidget(frmBtnShowComplex) frmTopSimple = QFrame() frmTopSimple.setLayout(layoutSimple) layoutComplex = QGridLayout() layoutComplex.addWidget(oslabel, 0,0) layoutComplex.addWidget(self.os, 0,1) layoutComplex.addWidget(self.osver, 0,2) layoutComplex.addWidget(self.osarch,0,3) layoutComplex.addWidget(packages, 1,0, 1,4) layoutComplex.addWidget(self.lblSelectedComplex, 2,0, 1,4) layoutComplex.setColumnStretch(0,0) layoutComplex.setColumnStretch(1,2) layoutComplex.setColumnStretch(2,2) layoutComplex.setColumnStretch(3,1) frmTopComplex = QFrame() frmTopComplex.setLayout(layoutComplex) frmTopComplex.setFrameStyle(STYLE_SUNKEN) frmTopSimple.setFrameStyle(STYLE_SUNKEN) self.stackedDisplay = QStackedWidget() self.stackedDisplay.addWidget(frmTopSimple) self.stackedDisplay.addWidget(frmTopComplex) layout = QGridLayout() layout.addWidget(self.stackedDisplay, 0,0, 1,3) layout.addWidget(self.changelogView, 1,0, 1,3) layout.addWidget(self.saveAsOfflinePackage, 2,0) layout.addWidget(self.btnDLInfo, 2,2) layout.addWidget(self.downloader.createDownloaderWidget(self), \ 3,0, 1,3) layout.addWidget(self.closeButton, 4,2) layout.setRowStretch(0, 1) layout.setColumnStretch(1, 1) self.cascadeOs() self.selectMyOs() # Above we had to select *something*, we should check that the # architecture actually matches our system. If not, warn trueBits = '64' if SystemSpecs.IsX64 else '32' selectBits = self.itemData(self.osarch)[:2] if showPackage and not trueBits==selectBits: QMessageBox.warning(self, tr("Wrong Architecture"), tr(""" You appear to be on a %s-bit architecture, but the only available download is for %s-bit systems. It is unlikely that this download will work on this operating system. <br><br> Please make sure that the correct operating system is selected before attempting to download and install any packages.""") % (trueBits, selectBits), QMessageBox.Ok) self.bitsColor = htmlColor('TextRed') if showPackage == 'Armory': expectVer = self.main.armoryVersions[1] elif showPackage == 'Satoshi': expectVer = self.main.satoshiVersions[1] if showPackage: for n in range(0, packages.topLevelItemCount()): row = packages.topLevelItem(n) if str(row.data(0, 32).toString()).startswith(showPackage): packages.setCurrentItem(row) if not expectVer or str(row.data(1, 32).toString())==expectVer: break self.useSelectedPackage(limit=True) else: QMessageBox.warning(self, tr("Not Found"), tr( "Armory could not determine an appropriate download for " "your operating system. You will have to manually select " "the correct download on the next window."), QMessageBox.Ok) self.stackedDisplay.setCurrentIndex(1) else: self.stackedDisplay.setCurrentIndex(1) self.setLayout(layout) self.setMinimumWidth(600) self.setWindowTitle(tr('Secure Downloader')) def showSimple(self): self.stackedDisplay.setCurrentIndex(0) def showComplex(self): self.stackedDisplay.setCurrentIndex(1) def findCmbData(self, cmb, findStr, last=False, nonenotfound=False): """ So I ran into some issues with finding python strings in comboboxes full of QStrings. I confirmed that self.os.itemText(i)==tr("Ubuntu/Debian") but not self.os.findData(tr("Ubuntu/Debian")) I'm probably being stupid, I thought I saw this work before... Return zero if failed so we just select the first item in the list if we don't find it. """ for i in range(cmb.count()): if cmb.itemText(i)==findStr: return i if nonenotfound: return None return cmb.count()-1 if last else 0 def selectMyOs(self): osVar = OS_VARIANT if isinstance(osVar, (list,tuple)): osVar = osVar[0] osIndex = 0 if OS_WINDOWS: osIndex = self.findCmbData(self.os, tr("Windows")) elif OS_LINUX: if osVar.lower() in ('debian', 'linuxmint', 'ubuntu'): osIndex = self.findCmbData(self.os, tr('Ubuntu/Debian')) else: osIndex = self.findCmbData(self.os, tr('Linux')) elif OS_MACOSX: osIndex = self.findCmbData(self.os, tr('MacOSX')) self.os.setCurrentIndex(osIndex) self.cascadeOsVer() # signals don't go through for some reason osverIndex = 0 if OS_WINDOWS: win_ver = platform.win32_ver()[0] osverIndex = self.findCmbData(self.osver, win_ver, True) elif OS_LINUX: osverIndex = self.findCmbData(self.osver, OS_VARIANT[1], True) elif OS_MACOSX: mac_ver = platform.mac_ver()[0] osverIndex = self.findCmbData(self.osver, mac_ver, nonenotfound=True) if osverIndex is None: mac_ver = mac_ver[:mac_ver.rfind(".")] osverIndex = self.findCmbData(self.osver, mac_ver, True) self.osver.setCurrentIndex(osverIndex) self.cascadeOsArch() archIndex = 0 if platform.machine() in ("x86_64", "AMD64"): archIndex = self.findCmbData(self.osarch, tr('64-bit')) else: archIndex = self.findCmbData(self.osarch, tr('32-bit')) self.osarch.setCurrentIndex(archIndex) self.cascadeOsArch() def useSelectedPackage(self, *args, **kwargs): limit = kwargs.get("limit") if self.packages.currentItem() is None: self.changelogView.setHtml("<html>" + tr(""" There is no version information to be shown here.""") +"</html>") self.downloader.setFile(None, None) else: packagename = str(self.packages.currentItem().data(0, 32).toString()) packagever = str(self.packages.currentItem().data(1, 32).toString()) packageurl = str(self.packages.currentItem().data(2, 32).toString()) packagehash = str(self.packages.currentItem().data(3, 32).toString()) self.downloader.setFile(packageurl, packagehash) self.selectedDLInfo = [packagename,packagever,packageurl,packagehash] self.btnDLInfo.setVisible(True) self.downloader.setPackageName(packagename) # Figure out where to bound the changelog information startIndex = -1 if self.changelog is not None: for i,triplet in enumerate(self.changelog): if triplet[0]==packagever: startIndex = i break stopIndex = len(self.changelog) if limit and len(self.main.armoryVersions[0])>0: for i,triplet in enumerate(self.changelog): currVer = getVersionInt(readVersionString(self.main.armoryVersions[0])) thisVer = getVersionInt(readVersionString(triplet[0])) if thisVer <= currVer: stopIndex = i + 1 break if startIndex > -1: logHtml = "<html><body>" if startIndex >= stopIndex: logHtml = tr("Release notes are not available for this package") else: for i in range(startIndex, stopIndex): block = self.changelog[i] logHtml += "<h2>" + tr("Version {0}").format(block[0]) + "</h2>\n" logHtml += "<em>" + tr("Released on {0}").format(block[1]) + "</em>\n" features = block[2] logHtml += "<ul>" for f in features: logHtml += "<li>" + tr("<b>{0}</b>: {1}").format(f[0], f[1]) + "</li>\n" logHtml += "</ul>\n\n" else: if packagename == "Satoshi": logHtml = tr( "No version information is available here for any of the " "core Bitcoin software downloads. You can find the " "information at: " "<a href='https://bitcoin.org/en/version-history'>https://bitcoin.org/en/version-history</a>") else: logHtml = tr("Release notes are not available for this package") #logHtml += tr(""" #<br><br> #----- #<br><br> #<u>Package</u>: <b>%s version %s</b><br> #<u>Download URL</u>: <b>%s</b><br> #<u>Verified sha256sum</u>: <b>%s</b>""") % \ #(packagename, packagever, packageurl, packagehash) self.changelogView.setHtml(logHtml) self.updateLabels(packagename, packagever, self.itemData(self.os), self.itemData(self.osver), self.itemData(self.osarch)) def popupPackageInfo(self): pkgname,pkgver,pkgurl,pkghash = self.selectedDLInfo pkgname= tr(pkgname) pkgver = tr(pkgver) osname = tr(self.itemData(self.os)) osver = tr(self.itemData(self.osver)) osarch = self.itemData(self.osarch) inst = os.path.basename(pkgurl) QMessageBox.information(self, tr('Package Information'), tr(""" Download information for <b>%(pkgname)s version %(pkgver)s:</b> <br> <ul> <li><u><b>Operating System</b></u>:</li> <ul> <li>%(osname)s %(osver)s %(osarch)s-bit</li> </ul> <li><u><b>Installer Filename</b></u>:</li> <ul> <li>%(inst)s</li> </ul> <li><u><b>Download URL</b></u>:</li> <ul> <li>%(pkgurl)s</li> </ul> <li><u><b>Verified sha256sum</b></u>:</li> <ul> <li>%(pkghash)s</li> </ul> </ul>""") % locals(), QMessageBox.Ok) def cascade(self, combobox, valuesfrom, nextToCascade): combobox.blockSignals(True) current = combobox.currentText() combobox.clear() for v in valuesfrom: combobox.addItem(self.localized(v), QVariant(v)) at = combobox.findText(current) if at != -1: combobox.setCurrentIndex(at) nextToCascade() combobox.blockSignals(False) # pass the combobox (self.os, osver, ...) and the part of nestedDownloadMap # to look into def cascadeOs(self): allOSes = set() for pack in self.nestedDownloadMap.itervalues(): for packver in pack.itervalues(): for os in packver.iterkeys(): allOSes.add(os) self.cascade(self.os, allOSes, self.cascadeOsVer) def cascadeOsVer(self): chosenos = str(self.os.itemData(self.os.currentIndex()).toString()) if len(chosenos)==0: return allVers = set() for pack in self.nestedDownloadMap.itervalues(): for packver in pack.itervalues(): if chosenos in packver: for osver in packver[chosenos].iterkeys(): allVers.add(osver) # We use a list here because we need to sort the subvers allVers = sorted([x for x in allVers]) self.cascade(self.osver, allVers, self.cascadeOsArch) def cascadeOsArch(self): chosenos = str(self.os.itemData(self.os.currentIndex()).toString()) chosenosver = str(self.osver.itemData(self.osver.currentIndex()).toString()) if len(chosenosver)==0: return allArchs = set() for pack in self.nestedDownloadMap.itervalues(): for packver in pack.itervalues(): if chosenos in packver and chosenosver in packver[chosenos]: for osarch in packver[chosenos][chosenosver].iterkeys(): allArchs.add(osarch) self.cascade(self.osarch, allArchs, self.displayPackages) def displayPackages(self): packages = self.packages packages.clear() chosenos = str(self.os.itemData(self.os.currentIndex()).toString()) chosenosver = str(self.osver.itemData(self.osver.currentIndex()).toString()) chosenosarch = str(self.osarch.itemData(self.osarch.currentIndex()).toString()) if len(chosenosarch)==0: return for packname,pack in self.nestedDownloadMap.iteritems(): for packvername,packver in pack.iteritems(): if chosenos in packver \ and chosenosver in packver[chosenos] \ and chosenosarch in packver[chosenos][chosenosver]: row = QTreeWidgetItem() row.setText(0, self.localized(packname)) row.setData(0, 32, packname) # not localized row.setText(1, self.localized(packvername)) row.setData(1, 32, packvername) row.setData(2, 32, packver[chosenos][chosenosver][chosenosarch][0]) row.setData(3, 32, packver[chosenos][chosenosver][chosenosarch][1]) packages.addTopLevelItem(row) self.updateLabels(packname, packvername, self.itemData(self.os), self.itemData(self.osver), self.itemData(self.osarch)) def updateLabels(self, pkgName, pkgVer, osName, osVer, osArch): if not pkgName: self.lblSelectedComplex.setText(tr("""No package currently selected""")) self.lblSelectedSimple.setText(tr("""No package currently selected""")) self.lblSelectedSimpleMore.setText("") else: self.lblSelectedComplex.setText(tr(""" <font size=4><b>Selected Package:</b> {} {} for {} {} {}</font>"""). \ format(tr(pkgName), tr(pkgVer), tr(osName), tr(osVer), tr(osArch))) self.lblSelectedSimple.setText(tr(""" <font size=4><b>Securely download latest version of <u>%s</u></b></font>""") % pkgName) self.lblCurrentVersion.setText('') currVerStr = '' if pkgName=='Satoshi': if self.main.satoshiVersions[0]: self.lblCurrentVersion.setText(tr(""" You are currently using Bitcoin Core version %s""") % \ self.main.satoshiVersions[0]) elif pkgName.startswith('Armory'): if self.main.armoryVersions[0]: self.lblCurrentVersion.setText(tr(""" You are currently using Armory version %s""") % \ self.main.armoryVersions[0]) self.lblSelectedSimpleMore.setText(tr(""" <b>Software Download:</b> %s version %s<br> <b>Operating System:</b> %s %s <br> <b>System Architecture:</b> <font color="%s">%s</font> """) % \ (tr(pkgName), tr(pkgVer), tr(osName), tr(osVer), self.bitsColor, tr(osArch))) # get the untranslated name from the combobox specified def itemData(self, combobox): return str(combobox.itemData(combobox.currentIndex()).toString()) def localized(self, v): if v in self.localizedData: return str(self.localizedData[v]) else: return str(v) # kate: indent-width 3; replace-tabs on;
fastmri_recon/data/scripts/multicoil_nc_tf_records_generation.py
samiulshuvo/fastmri-reproducible-benchmark
105
11114108
from pathlib import Path import tensorflow as tf from tfkbnufft.kbnufft import KbNufftModule from tfkbnufft import kbnufft_forward, kbnufft_adjoint from tfkbnufft.mri.dcomp_calc import calculate_density_compensator from tqdm import tqdm from fastmri_recon.config import FASTMRI_DATA_DIR from fastmri_recon.data.utils.crop import adjust_image_size from fastmri_recon.data.utils.fourier import tf_ortho_ifft2d from fastmri_recon.data.utils.non_cartesian import get_radial_trajectory, get_debugging_cartesian_trajectory, get_spiral_trajectory from fastmri_recon.data.utils.multicoil.smap_extract import extract_smaps, non_cartesian_extract_smaps from fastmri_recon.data.utils.h5 import from_multicoil_train_file_to_image_and_kspace_and_contrast from fastmri_recon.data.utils.tfrecords import encode_ncmc_example from fastmri_recon.models.utils.fourier import tf_unmasked_adj_op, tf_unmasked_adj_op, nufft, FFTBase def generate_multicoil_nc_tf_records( acq_type='radial', af=4, mode='train', brain=False, ): if brain: path = Path(FASTMRI_DATA_DIR) / f'brain_multicoil_{mode}' else: path = Path(FASTMRI_DATA_DIR) / f'multicoil_{mode}' filenames = sorted(list(path.glob('*.h5'))) scale_factor = 1e6 image_size = (640, 400) nufft_ob = KbNufftModule( im_size=image_size, grid_size=None, norm='ortho', ) class PreProcModel(tf.keras.models.Model): def __init__(self, **kwargs): super().__init__(**kwargs) interpob = nufft_ob._extract_nufft_interpob() self.nufftob_back = kbnufft_adjoint(interpob, multiprocessing=False) self.nufftob_forw = kbnufft_forward(interpob, multiprocessing=False) if acq_type == 'radial': self.traj = get_radial_trajectory(image_size, af=af) elif acq_type == 'cartesian': self.traj = get_debugging_cartesian_trajectory() elif acq_type == 'spiral': self.traj = get_spiral_trajectory(image_size, af=af) else: raise NotImplementedError(f'{acq_type} dataset not implemented yet.') self.dcomp = calculate_density_compensator( interpob, self.nufftob_forw, self.nufftob_back, self.traj[0], ) if brain: self.fft = FFTBase(False, multicoil=True, use_smaps=False) def call(self, inputs): images = inputs['image'] kspaces = inputs['kspace'] if brain: complex_images = self.fft.adj_op([kspaces[..., None], None])[..., 0] complex_images_padded = adjust_image_size( complex_images, image_size, multicoil=True, ) kspaces = self.fft.op([complex_images_padded[..., None], None])[..., 0] traj = tf.repeat(self.traj, tf.shape(images)[0], axis=0) orig_image_channels = tf_ortho_ifft2d(kspaces) nc_kspace = nufft(nufft_ob, orig_image_channels, traj, image_size, multiprocessing=False) nc_kspace_scaled = nc_kspace * scale_factor images_scaled = images * scale_factor images_channeled = images_scaled[..., None] nc_kspaces_channeled = nc_kspace_scaled[..., None] orig_shape = tf.ones([tf.shape(kspaces)[0]], dtype=tf.int32) * tf.shape(kspaces)[-1] dcomp = tf.ones([tf.shape(kspaces)[0], tf.shape(self.dcomp)[0]], dtype=self.dcomp.dtype) * self.dcomp[None, :] extra_args = (orig_shape, dcomp) smaps = non_cartesian_extract_smaps(nc_kspace, traj, dcomp, self.nufftob_back, orig_shape) model_inputs = (nc_kspaces_channeled, traj, smaps, extra_args) if brain: output_shape = tf.shape(images)[1:][None, :] output_shape = tf.tile(output_shape, [tf.shape(images)[0], 1]) model_inputs += (output_shape,) return model_inputs, images_channeled extension = f'_nc_{acq_type}' if af != 4: extension += f'_af{af}' extension += '.tfrecords' selection = [ {'inner_slices': None, 'rand': False}, # slice selection {'rand': False, 'keep_dim': False}, # coil selection ] mirrored_strategy = tf.distribute.MirroredStrategy() with mirrored_strategy.scope(): preproc_model = PreProcModel() for filename in tqdm(filenames): directory = filename.parent filename_tfrecord = directory / (filename.stem + extension) if filename_tfrecord.exists(): continue image, kspace, _ = from_multicoil_train_file_to_image_and_kspace_and_contrast( filename, selection=selection, ) data = tf.data.Dataset.zip({ 'image': tf.data.Dataset.from_tensor_slices(image), 'kspace': tf.data.Dataset.from_tensor_slices(kspace), }) data = data.batch(len(image)) options = tf.data.Options() options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF data = data.with_options(options) model_inputs, model_outputs = preproc_model.predict(data) with tf.io.TFRecordWriter(str(filename_tfrecord)) as writer: example = encode_ncmc_example(model_inputs, [model_outputs]) writer.write(example)
toy/mdn.py
mehrdad-shokri/WorldModels-1
149
11114130
import matplotlib.pyplot as plt plt.switch_backend('agg') import chainer import chainer.functions as F import chainer.links as L from chainer import training, datasets, iterators, report from chainer.training import extensions import numpy as np class MDN(chainer.Chain): def __init__(self, hidden_dim, output_dim, k): self.output_dim = output_dim self.hidden_dim = hidden_dim self.k = k super(MDN, self).__init__( input_layer=L.Linear(None, hidden_dim), coef_layer=L.Linear(hidden_dim, k * output_dim), mu_layer=L.Linear(hidden_dim, k * output_dim), ln_var_layer=L.Linear(hidden_dim, k * output_dim), ) def __call__(self, input): coef, mu, ln_var = self.fprop(input) def sample(row_num): cum_prod = 0 r = np.random.uniform() index = None for i, probability in enumerate(coef[row_num]): cum_prod += sum(probability) if r <= cum_prod.data: index = i break return F.gaussian(mu[row_num][index], ln_var[row_num][index]) output = F.expand_dims(sample(0), 0) for row_num in range(1, input.shape[0]): this_output = F.expand_dims(sample(row_num), 0) output = F.concat((output, this_output), axis=0) return output def fprop(self, input): k = self.k output_dim = self.output_dim h = self.input_layer(input) coef = F.softmax(self.coef_layer(h)) mu = self.mu_layer(h) ln_var = self.ln_var_layer(h) mu = F.reshape(mu, (-1, k, output_dim)) coef = F.reshape(coef, (-1, k, output_dim)) ln_var = F.reshape(ln_var, (-1, k, output_dim)) return coef, mu, ln_var def get_loss_func(self): def lf(input, output, epsilon=1e-8): output_dim = self.output_dim coef, mu, ln_var = self.fprop(input) output = F.reshape(output, (-1, 1, output_dim)) mu, output = F.broadcast(mu, output) var = F.exp(ln_var) density = F.sum( coef * (1 / (np.sqrt(2 * np.pi) * F.sqrt(var))) * F.exp(-0.5 * F.square(output - mu) / var) , axis=1) nll = -F.sum(F.log(density)) report({'loss': nll}, self) return nll return lf class Linear(chainer.Chain): def __init__(self, hidden_dim, output_dim): self.output_dim = output_dim super(Linear, self).__init__( input_layer=L.Linear(None, hidden_dim), output_layer=L.Linear(hidden_dim, output_dim), ) def __call__(self, input): return self.fprop(input) def fprop(self, input): h = self.input_layer(input) return self.output_layer(h) def get_loss_func(self): def lf(input, output): pred = self.fprop(input) loss = F.mean_squared_error(output.reshape(-1, 1), pred) report({'loss': loss}, self) return loss return lf def main(): model = MDN(256, 1, 5) # model = Linear(256, 1) points = 500 y = np.random.rand(points).astype(np.float32) x = np.sin(2 * np.pi * y) + 0.2 * np.random.rand(points) * (np.cos(2 * np.pi * y) + 2) x = x.astype(np.float32) optimizer = chainer.optimizers.Adam() optimizer.setup(model) dataset = datasets.tuple_dataset.TupleDataset(x.reshape(-1, 1), y) train_iter = iterators.SerialIterator(dataset, batch_size=100) updater = training.StandardUpdater(train_iter, optimizer, loss_func=model.get_loss_func()) trainer = training.Trainer(updater, (2000, 'epoch')) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport(['epoch', 'main/loss'])) trainer.run() plt.ylim(-0.1, 1.1) plt.plot(x, y, "b.") plt.savefig("result/mdn-data_only.png") plt.clf() x_test = np.linspace(min(x), max(x), points).astype(np.float32) y_pred = model(x_test.reshape(-1, 1)).data plt.ylim(-0.1, 1.1) plt.plot(x, y, "b.") plt.plot(x_test, y_pred, "r.") plt.savefig("result/mdn-with_preds.png") if __name__ == '__main__': main()
toad/preprocessing/partition.py
Padfoot-ted/toad
325
11114170
import numpy as np import pandas as pd class Partition: def partition(self, data): """partition data Args: data (DataFrame): dataframe Returns: iterator -> ndarray[bool]: mask of partition data iterator -> str: suffix string of current partition """ yield np.ones(len(data)).astype(bool), '' class TimePartition(Partition): """partition data by time delta Args: base (str): column name of base time filter (str): column name of target time to be compared times (list): list of time delta` Example: >>> TimePartition('apply_time', 'query_time', ['30d', '90d', 'all']) """ def __init__(self, base, filter, times): self.base = base self.filter = filter self.times = times def partition(self, data): base = pd.to_datetime(data[self.base]) filter = pd.to_datetime(data[self.filter]) for t in self.times: if t != 'all': delta = pd.Timedelta(t) mask = filter > (base - delta) else: mask = np.ones(len(filter)).astype(bool) yield mask, '_' + t class ValuePartition(Partition): """partition data by column values Args: column (str): column name which will be used as partition Example: >>> ValuePartition('status') """ def __init__(self, column): self.column = column def partition(self, data): data = data[self.column] unique = data.unique() for u in unique: if pd.isna(u): mask = data.isna() else: mask = (data == u) yield mask, '_' + str(u)
convokit/model/corpusComponent.py
CornellNLP/Cornell-Conversational-Analysis-Toolkit
371
11114227
<filename>convokit/model/corpusComponent.py from .convoKitMeta import ConvoKitMeta from convokit.util import warn, deprecation from typing import List, Optional class CorpusComponent: def __init__(self, obj_type: str, owner=None, id=None, vectors: List[str]=None, meta=None): self.obj_type = obj_type # utterance, speaker, conversation self._owner = owner if meta is None: meta = dict() self.meta = self.init_meta(meta) self.id = id self.vectors = vectors if vectors is not None else [] def get_owner(self): return self._owner def set_owner(self, owner): self._owner = owner if owner is not None: self.meta = self.init_meta(self.meta) owner = property(get_owner, set_owner) def init_meta(self, meta): if self._owner is None: return meta else: ck_meta = ConvoKitMeta(self.owner.meta_index, self.obj_type) for key, value in meta.items(): ck_meta[key] = value return ck_meta def get_id(self): return self._id def set_id(self, value): if not isinstance(value, str) and value is not None: self._id = str(value) warn("{} id must be a string. ID input has been casted to a string.".format(self.obj_type)) else: self._id = value id = property(get_id, set_id) # def __eq__(self, other): # if type(self) != type(other): return False # # do not compare 'utterances' and 'conversations' in Speaker.__dict__. recursion loop will occur. # self_keys = set(self.__dict__).difference(['_owner', 'meta', 'utterances', 'conversations']) # other_keys = set(other.__dict__).difference(['_owner', 'meta', 'utterances', 'conversations']) # return self_keys == other_keys and all([self.__dict__[k] == other.__dict__[k] for k in self_keys]) def retrieve_meta(self, key: str): """ Retrieves a value stored under the key of the metadata of corpus object :param key: name of metadata attribute :return: value """ return self.meta.get(key, None) def add_meta(self, key: str, value) -> None: """ Adds a key-value pair to the metadata of the corpus object :param key: name of metadata attribute :param value: value of metadata attribute :return: None """ self.meta[key] = value def get_info(self, key): """ Gets attribute <key> of the corpus object. Returns None if the corpus object does not have this attribute. :param key: name of attribute :return: attribute <key> """ deprecation("get_info()", "retrieve_meta()") return self.meta.get(key, None) def set_info(self, key, value): """ Sets attribute <key> of the corpus object to <value>. :param key: name of attribute :param value: value to set :return: None """ deprecation("set_info()", "add_meta()") self.meta[key] = value def get_vector(self, vector_name: str, as_dataframe: bool = False, columns: Optional[List[str]] = None): """ Get the vector stored as `vector_name` for this object. :param vector_name: name of vector :param as_dataframe: whether to return the vector as a dataframe (True) or in its raw array form (False). False by default. :param columns: optional list of named columns of the vector to include. All columns returned otherwise. This parameter is only used if as_dataframe is set to True :return: a numpy / scipy array """ if vector_name not in self.vectors: raise ValueError("This {} has no vector stored as '{}'.".format(self.obj_type, vector_name)) return self.owner.get_vector_matrix(vector_name).get_vectors(ids=[self.id], as_dataframe=as_dataframe, columns=columns) def add_vector(self, vector_name: str): """ Logs in the Corpus component object's internal vectors list that the component object has a vector row associated with it in the vector matrix named `vector_name`. Transformers that add vectors to the Corpus should use this to update the relevant component objects during the transform() step. :param vector_name: name of vector matrix :return: None """ if vector_name not in self.vectors: self.vectors.append(vector_name) def has_vector(self, vector_name: str): return vector_name in self.vectors def delete_vector(self, vector_name: str): """ Delete a vector associated with this Corpus component object. :param vector_name: :return: None """ self.vectors.remove(vector_name) def __str__(self): return "{}(id: {}, vectors: {}, meta: {})".format(self.obj_type.capitalize(), self.id, self.vectors, self.meta) def __hash__(self): return hash(self.obj_type + str(self.id)) def __repr__(self): copy = self.__dict__.copy() deleted_keys = ['utterances', 'conversations', 'user', '_root', '_utterance_ids', '_speaker_ids'] for k in deleted_keys: if k in copy: del copy[k] to_delete = [k for k in copy if k.startswith('_')] to_add = {k[1:]: copy[k] for k in copy if k.startswith('_')} for k in to_delete: del copy[k] copy.update(to_add) try: return self.obj_type.capitalize() + "(" + str(copy) + ")" except AttributeError: # for backwards compatibility when corpus objects are saved as binary data, e.g. wikiconv return "(" + str(copy) + ")"
samsungctl/upnp/UPNP_Device/instance_singleton.py
p3g4asus/samsungctl
135
11114265
# -*- coding: utf-8 -*- class InstanceSingleton(type): _objects = {} def __call__(cls, id, *args): if id not in InstanceSingleton._objects: InstanceSingleton._objects[id] = ( super(InstanceSingleton, cls).__call__(id, *args) ) return InstanceSingleton._objects[id]
openrec/tf1/legacy/modules/__init__.py
pbaiz/openrec
399
11114291
from openrec.tf1.legacy.modules.module import Module
labs/notebooks/reinforcement_learning/RL.py
mtreviso/lxmls-toolkit
183
11114368
<reponame>mtreviso/lxmls-toolkit from IPython import embed # Load Part-of-Speech data from lxmls.readers.pos_corpus import PostagCorpusData data = PostagCorpusData() print(data.input_size) print(data.output_size) print(data.maxL) import numpy as np import time batch_size = 1 # Get batch iterators for train and test train_batches = data.batches('train', batch_size=batch_size) dev_set = data.batches('dev', batch_size=batch_size) test_set = data.batches('test', batch_size=batch_size) # Alternative native CuDNN native implementation of RNNs #from lxmls.deep_learning.pytorch_models.rnn import FastPytorchRNN # model = FastPytorchRNN( # input_size=data.input_size, # embedding_size=50, # hidden_size=100, # output_size=data.output_size, # learning_rate=0.05 # ) # # # num_epochs = 15 # # Epoch loop # start = time.time() # for epoch in range(num_epochs): # # # Batch loop # for batch in train_batches: # model.update(input=batch['input'], output=batch['output']) # # # Evaluation dev # is_hit = [] # for batch in dev_set: # is_hit.extend(model.predict(input=batch['input']) == batch['output']) # accuracy = 100 * np.mean(is_hit) # # # Inform user # print("Epoch %d: dev accuracy %2.2f %%" % (epoch + 1, accuracy)) # print("Training took %2.2f seconds per epoch" % ((time.time() - start) / num_epochs)) # # Evaluation test # is_hit = [] # for batch in test_set: # is_hit.extend(model.predict(input=batch['input']) == batch['output']) # accuracy = 100 * np.mean(is_hit) # # # Inform user # print("Test accuracy %2.2f %%" % accuracy) # Alternative native CuDNN native implementation of RNNs from lxmls.deep_learning.pytorch_models.rnn import PolicyRNN model = PolicyRNN( input_size=data.input_size, embedding_size=50, hidden_size=100, output_size=data.output_size, learning_rate=0.05, gamma=0.8, RL=True, maxL=data.maxL ) num_epochs = 15 import numpy as np import time batch_size = 1 # Get batch iterators for train and test train_batches = data.sample('train', batch_size=batch_size) dev_set = data.sample('dev', batch_size=batch_size) test_set = data.sample('test', batch_size=batch_size) print("RL") # Epoch loop start = time.time() for epoch in range(num_epochs): # Batch loop for batch in train_batches: #TODO: Use this here to create an RL inside model.update() #samples, log_probs = model._sample(input=batch['input']) # sample actions and its neg log probs model.update(input=batch['input'], output=batch['output']) # Evaluation dev is_hit = [] for batch in dev_set: loss = model.predict_loss(batch['input'], batch['output']) is_hit.extend(loss) accuracy = 100 * np.mean(is_hit) # Inform user print("Epoch %d: dev accuracy %2.2f %%" % (epoch + 1, accuracy)) print("Training took %2.2f seconds per epoch" % ((time.time() - start) / num_epochs)) # Evaluation test is_hit = [] for batch in test_set: is_hit.extend(model.predict_loss(batch['input'],batch['output'])) accuracy = 100 * np.mean(is_hit) # Inform user print("Test accuracy %2.2f %%" % accuracy)
test/vectors_example.py
shardros/autopep8
3,459
11114381
<gh_stars>1000+ # vectors - a simple vector, complex, quaternion, and 4d matrix math module ''' http://www.halley.cc/code/python/vectors.py A simple vector, complex, quaternion, and 4d matrix math module. ABSTRACT This module gives a simple way of doing lightweight 2D, 3D or other vector math tasks without the heavy clutter of doing tuple/list/vector conversions yourself, or the burden of installing some high-performance native math routine module. Included are: V(...) - mathematical real vector C(...) - mathematical complex number (same as python "complex" type) Q(...) - hypercomplex number, also known as a quaternion M(...) - a fixed 4x4 matrix commonly used in graphics SYNOPSIS >>> import vectors ; from vectors import * Vectors: >>> v = V(1,2,3) ; w = V(4,5,6) >>> v+w, (v+w == w+v), v*2 V(5.0, 7.0, 9.0), True, V(2.0, 4.0, 6.0) >>> v.dot(w), v.cross(w), v.normalize().magnitude() 32.0, V(-3.0, 6.0, -3.0), 1.0 Quaternions: >>> q = Q.rotate('X', vectors.radians(30)) Q(0.7071067811, 0.0, 0.0, 0.7071067811) >>> q*q*q*q*q*q == Q.rotate('X', math.pi) == Q(1,0,0,0) True AUTHOR <NAME> (<EMAIL>) 12 February 2005 REFERENCES Many libraries implement a host of 4x4 matrix math and vector routines, usually related to the historical SGI GL implementation. A common problem is whether matrix element formulas are transposed. One useful FAQ on matrix math can be found at this address: http://www.j3d.org/matrix_faq/matrfaq_latest.html ''' __all__ = [ 'V', 'C', 'Q', 'M', 'zero', 'equal', 'radians', 'degrees', 'angle', 'track', 'distance', 'nearest', 'farthest' ] #---------------------------------------------------------------------------- import math import random EPSILON = 0.00000001 __deg2rad = math.pi / 180.0 __rad2deg = 180.0 / math.pi def zero(a): return abs(a) < EPSILON def equal(a, b): return abs(a - b) < EPSILON def degrees(rad): return rad * __rad2deg def radians(deg): return deg * __deg2rad def sign(a): if a < 0: return -1 if a > 0: return +1 return 0 def isseq(x): return isinstance(x, (list, tuple)) def collapse(*args): it = [] for i in range(len(args)): if isinstance(args[i], V): it.extend(args[i]._v) else: it.extend(args[i]) return it #---------------------------------------------------------------------------- class V: '''A mathematical vector of arbitrary number of scalar number elements. ''' O = None X = None Y = None Z = None __slots__ = [ '_v', '_l' ] @classmethod def __constants__(cls): if V.O: return V.O = V() ; V.O._v = (0.,0.,0.) ; V.O._l = 0. V.X = V() ; V.X._v = (1.,0.,0.) ; V.X._l = 1. V.Y = V() ; V.Y._v = (0.,1.,0.) ; V.Y._l = 1. V.Z = V() ; V.Z._v = (0.,0.,1.) ; V.Z._l = 1. def __init__(self, *args): l = len(args) if not l: self._v = [0.,0.,0.] self._l = 0. return if l > 1: self._v = map(float, args) self._l = None return arg = args[0] if isinstance(arg, (list, tuple)): self._v = map(float, arg) self._l = None elif isinstance(arg, V): self._v = list(arg._v[:]) self._l = arg._l else: arg = float(arg) self._v = [ arg ] self._l = arg def __len__(self): '''The len of a vector is the dimensionality.''' return len(self._v) def __list__(self): '''Accessing the list() will return all elements as a list.''' if isinstance(self._v, tuple): return list(self._v[:]) return self._v[:] list = __list__ def __getitem__(self, key): '''Vector elements can be accessed directly.''' return self._v[key] def __setitem__(self, key, value): '''Vector elements can be accessed directly.''' self._v[key] = value def __str__(self): return self.__repr__() def __repr__(self): return self.__class__.__name__ + repr(tuple(self._v)) def __eq__(self, other): '''Vectors can be checked for equality. Uses epsilon floating comparison; tiny differences are still equal. ''' for i in range(len(self._v)): if not equal(self._v[i], other._v[i]): return False return True def __cmp__(self, other): '''Vectors can be compared, returning -1,0,+1. Elements are compared in order, using epsilon floating comparison. ''' for i in range(len(self._v)): if not equal(self._v[i], other._v[i]): if self._v[i] > other._v[i]: return 1 return -1 return 0 def __pos__(self): return V(self) def __neg__(self): '''The inverse of a vector is a negative in all elements.''' v = V(self) for i in range(len(v._v)): v[i] = -v[i] v._l = self._l return v def __nonzero__(self): '''A vector is nonzero if any of its elements are nonzero.''' for i in range(len(self._v)): if self._v[i]: return True return False def zero(self): '''A vector is zero if none of its elements are nonzero.''' return not self.__nonzero__() @classmethod def random(cls, order=3): '''Returns a unit vector in a random direction.''' # distribution is not without bias, need to use polar coords? v = V(range(order)) v._l = None short = True while short: for i in range(order): v._v[i] = 2.0*random.random() - 1.0 if not zero(v._v[i]): short = False return v.normalize() # Vector or scalar addition. def __add__(self, other): return self.__class__(self).__iadd__(other) def __radd__(self, other): return self.__class__(self).__iadd__(other) def __iadd__(self, other): '''Vectors can be added to each other, or a scalar added to them.''' if isinstance(other, V): if len(other._v) != len(self._v): raise ValueError, 'mismatched dimensions' for i in range(len(self._v)): self._v[i] += other._v[i] else: for i in range(len(self._v)): self._v[i] += other self._l = None return self # Vector or scalar subtraction. def __sub__(self, other): return self.__class__(self).__isub__(other) def __rsub__(self, other): return (-self.__class__(self)).__iadd__(other) def __isub__(self, other): '''Vectors can be subtracted, or a scalar subtracted from them.''' if isinstance(other, V): if len(other._v) != len(self._v): raise ValueError, 'mismatched dimensions' for i in range(len(self._v)): self._v[i] -= other._v[i] else: for i in range(len(self._v)): self._v[i] -= other self._l = None return self # Cross product or magnification. See dot() for dot product. def __mul__(self, other): if isinstance(other, M): return other.__rmul__(self) return self.__class__(self).__imul__(other) def __rmul__(self, other): # The __rmul__ is called in scalar * vector case; it's commutative. return self.__class__(self).__imul__(other) def __imul__(self, other): '''Vectors can be multipled by a scalar. Two 3d vectors can cross.''' if isinstance(other, V): self._v = self.cross(other)._v else: for i in range(len(self._v)): self._v[i] *= other self._l = None return self def __div__(self, other): return self.__class__(self).__idiv__(other) def __rdiv__(self, other): raise TypeError, 'cannot divide scalar by non-scalar value' def __idiv__(self, other): '''Vectors can be divided by scalars; each element is divided.''' other = 1.0 / other for i in range(len(self._v)): self._v[i] *= other self._l = None return self def cross(self, other): '''Find the vector cross product between two 3d vectors.''' if len(self._v) != 3 or len(other._v) != 3: raise ValueError, 'cross multiplication only for 3d vectors' p, q = self._v, other._v r = [ p[1] * q[2] - p[2] * q[1], p[2] * q[0] - p[0] * q[2], p[0] * q[1] - p[1] * q[0] ] return V(r) def dot(self, other): '''Find the scalar dot product between this vector and another.''' s = 0 for i in range(len(self._v)): s += self._v[i] * other._v[i] return s def __mag(self): if self._l is not None: return self._l m = 0 for i in range(len(self._v)): m += self._v[i] * self._v[i] self._l = math.sqrt(m) return self._l def magnitude(self, value=None): '''Find the magnitude (spatial length) of this vector. With a value, return a vector with same direction but of given length. ''' mag = self.__mag() if value is None: return mag if zero(mag): raise ValueError, 'Zero-magnitude vector cannot be scaled.' v = self.__class__(self) v.__imul__(value / mag) v._l = value return v def dsquared(self, other): m = 0 for i in range(len(self._v)): d = self._v[i] - other._v[i] m += d * d return m def distance(self, other): '''Compare this vector with another, for distance.''' return math.sqrt(self.dsquared(other)) def normalize(self): '''Return a vector with the same direction but of unit length.''' return self.magnitude(1.0) def order(self, order): '''Remove elements from the end, or extend with new elements.''' order = int(order) if order < 1: raise ValueError, 'cannot reduce a vector to zero elements' v = V(self) while order < len(v._v): v._v.pop() while order > len(v._v): v._v.append(1.0) v._l = None return v #---------------------------------------------------------------------------- class C (V): # python has a built-in complex() type which is pretty good, # but we provide this class for completeness and consistency O = None j = None __slots__ = [ '_v', '_l' ] @classmethod def __constants__(cls): if C.O: return C.O = C(0+0j) ; C.O._v = tuple(C.O._v) C.j = C(0+1j) ; C.j._v = tuple(C.j._v) def __init__(self, *args): if not args: args = (0, 0) a = args[0] if isinstance(a, complex): a = (a.real, a.imag) if isinstance(a, V): if len(a) != 2: raise TypeError, 'C() takes exactly 2 elements' self._v = list(a._v[:]) elif isseq(a): if len(a) != 2: raise TypeError, 'C() takes exactly 2 elements' self._v = map(float, a) else: if len(args) != 2: raise TypeError, 'C() takes exactly 2 elements' self._v = map(float, args) #def __repr__(self): # return 'C(%s+%sj)' % (repr(self._v[0]), repr(self._v[1])) # addition and subtraction of C() work the same as V() def dot(self): raise AttributeError, "C instance has no attribute 'dot'" def __imul__(self, other): if isinstance(other, C): sx,sj = self._v ox,oj = other._v self._v = [ sx*ox - sj*oj, sx*oj + ox*sj ] else: V.__imul__(self, other) return self def conjugate(self): twin = C(self) twin._v[0] = -twin._v[0] return twin #---------------------------------------------------------------------------- class Q (V): I = None __slots__ = [ '_v', '_l' ] @classmethod def __constants__(cls): if Q.O: return Q.I = Q() ; Q.I._v = tuple(Q.I._v) def __init__(self, *args): # x, y, z, w if not args: args = (0, 0, 0, 1) a = args[0] if isinstance(a, V): if len(a) != 4: raise TypeError, 'Q() takes exactly 4 elements' self._v = list(a._v[:]) elif isseq(a): if len(a) != 4: raise TypeError, 'Q() takes exactly 4 elements' self._v = map(float, a) else: if len(args) != 4: raise TypeError, 'Q() takes exactly 4 elements' self._v = map(float, args) self._l = None # addition and subtraction of Q() work the same as V() def dot(self): raise AttributeError, "Q instance has no attribute 'dot'" #TODO: extra methods to convert euler vectors and quaternions def conjugate(self): '''The conjugate of a quaternion has its X, Y and Z negated.''' twin = Q(self) for i in range(3): twin._v[i] = -twin._v[i] twin._l = twin._l return twin def inverse(self): '''The quaternion inverse is the conjugate with reciprocal W.''' twin = self.conjugate() if twin._v[3] != 1.0: twin._v[3] = 1.0 / twin._v[3] twin._l = None return twin @classmethod def rotate(cls, axis, theta): '''Prepare a quaternion that represents a rotation on a given axis.''' if isinstance(axis, str): if axis in ('x','X'): axis = V.X elif axis in ('y','Y'): axis = V.Y elif axis in ('z','Z'): axis = V.Z axis = axis.normalize() s = math.sin(theta / 2.) c = math.cos(theta / 2.) return Q( axis._v[0] * s, axis._v[1] * s, axis._v[2] * s, c ) def __imul__(self, other): if isinstance(other, Q): sx,sy,sz,sw = self._v ox,oy,oz,ow = other._v self._v = [ sw*ox + sx*ow + sy*oz - sz*oy, sw*oy + sy*ow + sz*ox - sx*oz, sw*oz + sz*ow + sx*oy - sy*ox, sw*ow - sx*ox - sy*oy - sz*oz ] else: V.__imul__(self, other) return self #---------------------------------------------------------------------------- class M (V): I = None Z = None __slots__ = [ '_v' ] @classmethod def __constants__(cls): if M.I: return M.I = M() ; M.I._v = tuple(M.I._v) M.Z = M() ; M.Z._v = (0,)*16 def __init__(self, *args): '''Constructs a new 4x4 matrix. If no arguments are given, an identity matrix is constructed. Any combination of V vectors, tuples, lists or scalars may be given, but taken together in order, they must have 16 number values total. ''' # no args gives identity matrix # 16 scalars collapsed from any combination of lists, tuples, vectors if not args: args = (1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1) if len(args) == 4: args = collapse(*args) a = args[0] if isinstance(a, V): if len(a) != 16: raise TypeError, 'M() takes exactly 16 elements' self._v = list(a._v[:]) elif isseq(a): if len(a) != 16: raise TypeError, 'M() takes exactly 16 elements' self._v = map(float, a) else: if len(args) != 16: raise TypeError, 'M() takes exactly 16 elements' self._v = map(float, args) @classmethod def rotate(cls, axis, theta=0.0): if isinstance(axis, str): if axis in ('x','X'): c = math.cos(theta) ; s = math.sin(theta) return cls( [ 1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1 ] ) if axis in ('y','Y'): c = math.cos(theta) ; s = math.sin(theta) return cls( [ c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1 ] ) if axis in ('z','Z'): c = math.cos(theta) ; s = math.sin(theta) return cls( [ c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] ) if isinstance(axis, V): axis = Q.rotate(axis, theta) if isinstance(axis, Q): return cls.twist(axis) raise ValueError, 'unknown rotation axis' @classmethod def twist(cls, torsion): # quaternion to matrix torsion = torsion.normalize() (X,Y,Z,W) = torsion._v xx = X * X ; xy = X * Y ; xz = X * Z ; xw = X * W yy = Y * Y ; yz = Y * Z ; yw = Y * W ; zz = Z * Z ; zw = Z * W a = 1 - 2*(yy + zz) ; b = 2*(xy - zw) ; c = 2*(xz + yw) e = 2*(xy + zw) ; f = 1 - 2*(xx + zz) ; g = 2*(yz - xw) i = 2*(xz - yw) ; j = 2*(yz + xw) ; k = 1 - 2*(xx + yy) return cls( [ a, b, c, 0, e, f, g, 0, i, j, k, 0, 0, 0, 0, 1 ] ) @classmethod def scale(cls, factor): m = cls() if isinstance(factor, (V, list, tuple)): for i in (0,1,2): m[(i,i)] = factor[i] else: for i in (0,1,2): m[(i,i)] = factor return m @classmethod def translate(cls, offset): m = cls() for i in (0,1,2): m[(3,i)] = offset[i] return m @classmethod def reflect(cls, normal, dist=0.0): (x,y,z,w) = normal.normalize()._v (n2x,n2y,n2z) = (-2*x, -2*y, -2*z) return cls( [ 1+n2x*x, n2x*y, n2x*z, 0, n2y*x, 1+n2y*y, n2y*z, 0, n2z*x, n2z*y, 1+n2z*z, 0, d*x, d*y, d*y, 1 ] ) @classmethod def shear(cls, amount): # | 1. yx zx 0. | # | xy 1. zy 0. | # | xz yz 1. 0. | # | 0. 0. 0. 1. | pass @classmethod def frustrum(cls, l, r, b, t, n, f): rl = 1/(r-l) ; tb = 1/(t-b) ; fn = 1/(f-n) return cls( [ 2*n*rl, 0, (r+l)*rl, 0, 0, 2*n*tb, 0, 0, 0, 0, -(f+n)*fn, -2*f*n*fn, 0, 0, -1, 0 ] ) @classmethod def perspective(cls, yfov, aspect, n, f): t = math.tan(yfov/2)*n b = -t r = aspect * t l = -r return cls.frustrum(l, r, b, t, n, f) def __str__(self): '''Returns a multiple-line string representation of the matrix.''' # prettier on multiple lines n = self.__class__.__name__ ns = ' '*len(n) t = n+'('+', '.join([ repr(self._v[i]) for i in 0,1,2,3 ])+',\n' t += ns+' '+', '.join([ repr(self._v[i]) for i in 4,5,6,7 ])+',\n' t += ns+' '+', '.join([ repr(self._v[i]) for i in 8,9,10,11 ])+',\n' t += ns+' '+', '.join([ repr(self._v[i]) for i in 12,13,14,15 ])+')' return t def __getitem__(self, rc): '''Returns a single element of the matrix. May index 0-15, or with tuples of (row,column) 0-3 each. Indexing goes across first, so m[3] is m[0,3] and m[7] is m[1,3]. ''' if not isinstance(rc, tuple): return V.__getitem__(self, rc) return self._v[rc[0]*4+rc[1]] def __setitem__(self, rc, value): '''Injects a single element into the matrix. May index 0-15, or with tuples of (row,column) 0-3 each. Indexing goes across first, so m[3] is m[0,3] and m[7] is m[1,3]. ''' if not isinstance(rc, tuple): return V.__getitem__(self, rc) self._v[rc[0]*4+rc[1]] = float(value) def dot(self): raise AttributeError, "M instance has no attribute 'dot'" def magnitude(self): raise AttributeError, "M instance has no attribute 'magnitude'" def row(self, r, v=None): '''Returns or replaces a vector representing a row of the matrix. Rows are counted 0-3. If given, new vector must be four numbers. ''' if r < 0 or r > 3: raise IndexError, 'row index out of range' if v is None: return V(self._v[r*4:(r+1)*4]) e = v if isinstance(v, V): e = v._v if len(e) != 4: raise ValueError, 'new row must include 4 values' self._v[r*4:(r+1)*4] = e return v def col(self, c, v=None): '''Returns or replaces a vector representing a column of the matrix. Columns are counted 0-3. If given, new vector must be four numbers. ''' if c < 0 or c > 3: raise IndexError, 'column index out of range' if v is None: return V([ self._v[c+4*i] for i in range(4) ]) e = v if isinstance(v, V): e = v._v if len(e) != 4: raise ValueError, 'new row must include 4 values' for i in range(4): self._v[c+4*i] = e[i] return v def translation(self): '''Extracts the translation component from this matrix.''' (a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p) = self._v return V(m,n,o) def rotation(self): '''Extracts Euler angles of rotation from this matrix. This attempts to find alternate rotations in case of gimbal lock, but all of the usual problems with Euler angles apply here. All Euler angles are in radians. ''' (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) = self._v rotY = D = math.asin(c) C = math.cos(rotY) if (abs(C) > 0.005): trX = k/C ; trY = -g/C ; rotX = math.atan2(trY, trX) trX = a/C ; trY = -b/C ; rotZ = math.atan2(trY, trX) else: rotX = 0 trX = f ; trY = e ; rotZ = math.atan2(trY, trX) return V(rotX,rotY,rotZ) def scaling(self): '''Extracts the scaling component from this matrix.''' (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) = self._v return V(a,f,k) def determinant(self): (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) = self._v # determinants of 2x2 submatrices kplo = k*p-l*o ; jpln = j*p-l*n ; jokn = j*o-k*n iplm = i*p-l*m ; iokm = i*o-k*m ; injm = i*n-j*m # determinants of 3x3 submatrices d00 = (f*kplo - g*jpln + h*jokn) d01 = (e*kplo - g*iplm + h*iokm) d02 = (e*jpln - f*iplm + h*injm) d03 = (e*jokn - f*iokm + g*injm) # reciprocal of the determinant of the 4x4 dr = a*d00 - b*d01 + c*d02 - d*d03 return dr def inverse(self): (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) = self._v # determinants of 2x2 submatrices kplo = k*p-l*o ; jpln = j*p-l*n ; jokn = j*o-k*n iplm = i*p-l*m ; iokm = i*o-k*m ; injm = i*n-j*m gpho = g*p-h*o ; ifhn = f*p-h*n ; fogn = f*o-g*n ephm = e*p-h*m ; eogm = e*o-g*m ; enfm = e*n-f*m glhk = g*l-h*k ; flhj = f*l-h*j ; fkgj = f*k-g*j elhi = e*l-h*i ; ekgi = e*k-g*i ; ejfi = e*j-f*i # determinants of 3x3 submatrices d00 = (f*kplo - g*jpln + h*jokn) d01 = (e*kplo - g*iplm + h*iokm) d02 = (e*jpln - f*iplm + h*injm) d03 = (e*jokn - f*iokm + g*injm) d10 = (b*kplo - c*jpln + d*jokn) d11 = (a*kplo - c*iplm + d*iokm) d12 = (a*jpln - b*iplm + d*injm) d13 = (a*jokn - b*iokm + c*injm) d20 = (b*gpho - c*ifhn + d*fogn) d21 = (a*gpho - c*ephm + d*eogm) d22 = (a*ifhn - b*ephm + d*enfm) d23 = (a*fogn - b*eogm + c*enfm) d30 = (b*glhk - c*flhj + d*fkgj) d31 = (a*glhk - c*elhi + d*ekgi) d32 = (a*flhj - b*elhi + d*ejfi) d33 = (a*fkgj - b*ekgi + c*ejfi) # reciprocal of the determinant of the 4x4 dr = 1.0 / (a*d00 - b*d01 + c*d02 - d*d03) # inverse return self.__class__( [ d00*dr, -d10*dr, d20*dr, -d30*dr, -d01*dr, d11*dr, -d21*dr, d31*dr, d02*dr, -d12*dr, d22*dr, -d32*dr, -d03*dr, d13*dr, -d23*dr, d33*dr ] ) def transpose(self): return M( [ self._v[i] for i in [ 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 ] ] ) def __mul__(self, other): # called in case of m *m, m * v, m * s # support 3d m * v by extending to 4d v if isinstance(other, V): if len(other._v) == 3: other = V(other._v[0], other._v[1], other._v[2], 1) if len(other._v) == 4: a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p = self._v X,Y,Z,W = other._v return V( a*X + b*Y + c*Z + d*W, e*X + f*Y + g*Z + h*W, i*X + j*Y + k*Z + l*W, m*X + n*Y + o*Z + p*W ) return self.__class__(self).__imul__(other) def __rmul__(self, other): # called in case of s * m or v * m # support 3d v * m by extending to 4d v if isinstance(other, V): if len(other._v) == 3: other = V(other._v[0], other._v[1], other._v[2], 1) if len(other._v) == 4: A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P = self._v x,y,z,w = other._v return V( x*A + y*E + z*I + w*M, x*B + y*F + z*J + w*N, x*C + y*G + z*K + w*O, x*D + y*H + z*L + w*P ) return self.__class__(self).__imul__(other) def __imul__(self, other): # can m *= s # can't m *= v since answer is vector if not isinstance(other, V): other = float(other) self._v = [ self._v[i]*other for i in range(len(self._v)) ] elif len(other._v) == 16: s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,sA,sB,sC,sD,sE,sF = self._v o0,o1,o2,o3,o4,o5,o6,o7,o8,o9,oA,oB,oC,oD,oE,oF = other._v self._v = [ o0*s0 + o1*s4 + o2*s8 + o3*sC, # o0*s1 + o1*s5 + o2*s9 + o3*sD, o0*s2 + o1*s6 + o2*sA + o3*sE, o0*s3 + o1*s7 + o2*sB + o3*sF, o4*s0 + o5*s4 + o6*s8 + o7*sC, # o4*s1 + o5*s5 + o6*s9 + o7*sD, o4*s2 + o5*s6 + o6*sA + o7*sE, o4*s3 + o5*s7 + o6*sB + o7*sF, o8*s0 + o9*s4 + oA*s8 + oB*sC, # o8*s1 + o9*s5 + oA*s9 + oB*sD, o8*s2 + o9*s6 + oA*sA + oB*sE, o8*s3 + o9*s7 + oA*sB + oB*sF, oC*s0 + oD*s4 + oE*s8 + oF*sC, # oC*s1 + oD*s5 + oE*s9 + oF*sD, oC*s2 + oD*s6 + oE*sA + oF*sE, oC*s3 + oD*s7 + oE*sB + oF*sF ] else: raise ValueError, 'multiply by 4d matrix or 4d vector or scalar' return self #---------------------------------------------------------------------------- V.__constants__() C.__constants__() Q.__constants__() M.__constants__() def angle(a, b): '''Find the angle (scalar value in radians) between two 3d vectors.''' a = a.normalize() b = b.normalize() if a == b: return 0.0 return math.acos(a.dot(b)) def track(v): '''Find the track (direction in positive radians) of a 2d vector. E.g., track(V(1,0)) == 0 radians; track(V(0,1) == math.pi/2 radians; track(V(-1,0)) == math.pi radians; and track(V(0,-1) is math.pi*3/2. ''' t = math.atan2(v[1], v[0]) if t < 0: return t + 2.*math.pi return t def quangle(a, b): '''Find a quaternion that rotates one 3d vector to parallel another.''' x = a.cross(b) w = a.magnitude() * b.magnitude() + a.dot(b) return Q(x[0], x[1], x[2], w) def dsquared(one, two): '''Find the square of the distance between two points.''' # working with squared distances is common to avoid slow sqrt() calls m = 0 for i in range(len(one._v)): d = one._v[i] - two._v[i] m += d * d return m def distance(one, two): '''Find the distance between two points. Equivalent to (one-two).magnitude(). ''' return math.sqrt(dsquared(one, two)) def nearest(point, neighbors): '''Find the nearest neighbor point to a given point.''' best = None for other in neighbors: d = dsquared(point, other) if best is None or d < best[1]: best = (other, d) return best[0] def farthest(point, neighbors): '''Find the farthest neighbor point to a given point.''' best = None for other in neighbors: d = dsquared(point, other) if best is None or d > best[1]: best = (other, d) return best[0] #---------------------------------------------------------------------------- def __test__(): from testing import __ok__, __report__ print 'Testing basic math...' __ok__(equal(1.0, 1.0), True) __ok__(equal(1.0, 1.01), False) __ok__(equal(1.0, 1.0001), False) __ok__(equal(1.0, 0.9999), False) __ok__(equal(1.0, 1.0000001), False) __ok__(equal(1.0, 0.9999999), False) __ok__(equal(1.0, 1.0000000001), True) __ok__(equal(1.0, 0.9999999999), True) __ok__(equal(degrees(0), 0.0)) __ok__(equal(degrees(math.pi/2), 90.0)) __ok__(equal(degrees(math.pi), 180.0)) __ok__(equal(radians(0.0), 0.0)) __ok__(equal(radians(90.0), math.pi/2)) __ok__(equal(radians(180.0), math.pi)) print 'Testing V vector class...' # structural construction __ok__(V.O is not None, True) __ok__(V.O._v is not None, True) __ok__(V.O._v, (0., 0., 0.)) ; __ok__(V.O._l, 0.) __ok__(V.X._v, (1., 0., 0.)) ; __ok__(V.X._l, 1.) __ok__(V.Y._v, (0., 1., 0.)) ; __ok__(V.Y._l, 1.) __ok__(V.Z._v, (0., 0., 1.)) ; __ok__(V.Z._l, 1.) a = V(3., 2., 1.) ; __ok__(a._v, [3., 2., 1.]) a = V((1., 2., 3.)) ; __ok__(a._v, [1., 2., 3.]) a = V([1., 1., 1.]) ; __ok__(a._v, [1., 1., 1.]) a = V(0.) ; __ok__(a._v, [0.]) ; __ok__(a._l, 0.) a = V(3.) ; __ok__(a._v, [3.]) ; __ok__(a._l, 3.) # constants and direct comparisons __ok__(V.O, V(0.,0.,0.)) __ok__(V.X, V(1.,0.,0.)) __ok__(V.Y, V(0.,1.,0.)) __ok__(V.Z, V(0.,0.,1.)) # formatting and elements __ok__(repr(V.X), 'V(1.0, 0.0, 0.0)') __ok__(V.X[0], 1.) __ok__(V.X[1], 0.) __ok__(V.X[2], 0.) # simple addition __ok__(V.X + V.Y, V(1.,1.,0.)) __ok__(V.Y + V.Z, V(0.,1.,1.)) __ok__(V.X + V.Z, V(1.,0.,1.)) # didn't overwrite our constants, did we? __ok__(V.X, V(1.,0.,0.)) __ok__(V.Y, V(0.,1.,0.)) __ok__(V.Z, V(0.,0.,1.)) a = V(3.,2.,1.) b = a.normalize() __ok__(a != b) __ok__(a == V(3.,2.,1.)) __ok__(b.magnitude(), 1) b = a.magnitude(5) __ok__(a == V(3.,2.,1.)) __ok__(b.magnitude(), 5) __ok__(equal(b.dsquared(V.O), 25)) a = V(3.,2.,1.).normalize() __ok__(equal(a[0], 0.80178372573727319)) b = V(1.,3.,2.).normalize() __ok__(equal(b[2], 0.53452248382484879)) d = a.dot(b) __ok__(equal(d, 0.785714285714), True) __ok__(V(2., 2., 1.) * 3, V(6, 6, 3)) __ok__(3 * V(2., 2., 1.), V(6, 6, 3)) __ok__(V(2., 2., 1.) / 2, V(1, 1, 0.5)) v = V(1,2,3) w = V(4,5,6) __ok__(v.cross(w), V(-3,6,-3)) __ok__(v.cross(w), v*w) __ok__(v*w, -(w*v)) __ok__(v.dot(w), 32) __ok__(v.dot(w), w.dot(v)) __ok__(zero(angle(V(1,1,1), V(2,2,2))), True) __ok__(equal(90.0, degrees(angle(V(1,0,0), V(0,1,0)))), True) __ok__(equal(180.0, degrees(angle(V(1,0,0), V(-1,0,0)))), True) __ok__(equal( 0.0, degrees(track(V( 1, 0)))), True) __ok__(equal( 90.0, degrees(track(V( 0, 1)))), True) __ok__(equal(180.0, degrees(track(V(-1, 0)))), True) __ok__(equal(270.0, degrees(track(V( 0,-1)))), True) __ok__(equal( 45.0, degrees(track(V( 1, 1)))), True) __ok__(equal(135.0, degrees(track(V(-1, 1)))), True) __ok__(equal(225.0, degrees(track(V(-1,-1)))), True) __ok__(equal(315.0, degrees(track(V( 1,-1)))), True) print 'Testing C complex number class...' __ok__(C(1,2) is not None, True) __ok__(C(1,2)[0], 1.0) __ok__(C(1+2j)[0], 1.0) __ok__(C((1,2))[1], 2.0) __ok__(C(V([1,2]))[1], 2.0) __ok__(C(3+2j) * C(1+4j), C(-5+14j)) try: __ok__(C(1,2,3) is not None, True) except TypeError: # takes exactly 2 elements __ok__(True, True) try: __ok__(C([1,2,3]) is not None, True) except TypeError: # takes exactly 2 elements __ok__(True, True) except TypeError: # takes exactly 2 elements __ok__(True, True) print 'Testing Q quaternion class...' __ok__(Q(1,2,3,4) is not None, True) __ok__(Q(1,2,3,4)[1], 2.0) __ok__(Q((1,2,3,4))[2], 3.0) __ok__(Q(V(1,2,3,4))[3], 4.0) __ok__(Q(), Q(0,0,0,1)) __ok__(Q(1,2,3,4).conjugate(), Q(-1,-2,-3,4)) print 'Testing M matrix class...' m = M() __ok__(V(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1), m) __ok__(m.row(0), V(1,0,0,0)) __ok__(m.row(2), V(0,0,1,0)) __ok__(m.col(1), V(0,1,0,0)) __ok__(m.col(3), V(0,0,0,1)) __ok__(m[5], 1.0) __ok__(m[1,1], 1.0) __ok__(m[6], 0.0) __ok__(m[1,2], 0.0) __ok__(m * V(1,2,3,4), V(1,2,3,4)) __ok__(V(1,2,3,4) * m, V(1,2,3,4)) mm = m * m __ok__(mm.__class__, M) __ok__(mm, M.I) mm = m * 2 __ok__(mm.__class__, M) __ok__(mm, 2.0 * m) __ok__(mm[3,3], 2) __ok__(mm[3,2], 0) __ok__(M.rotate('X',radians(90)), M.twist(Q.rotate('X',radians(90)))) __ok__(M.twist(Q(0,0,0,1)), M.I) __ok__(M.twist(Q(.5,0,0,1)), M.twist(Q(.5,0,0,1).normalize())) __ok__(V.O * M.translate(V(1,2,3)), V(1,2,3,1)) __ok__((V.X+V.Y+V.Z) * M.translate(V(1,2,3)), V(2,3,4,1)) # need some tests on m.determinant() m = M() m = m.translate(V(1,2,3)) __ok__(m.inverse(), M().translate(-V(1,2,3))) m = m.rotate('Y', radians(30)) __ok__(m * m.inverse(), M.I) __report__() def __time__(): from testing import __time__ __time__("(V.X+V.Y).magnitude() memo", "import vectors; x=(vectors.V.X+vectors.V.Y)", "x._l = x._l ; x.magnitude()") __time__("(V.X+V.Y).magnitude() unmemo", "import vectors; x=(vectors.V.X+vectors.V.Y)", "x._l = None ; x.magnitude()") import psyco psyco.full() __time__("(V.X+V.Y).magnitude() memo [psyco]", "import vectors; x=(vectors.V.X+vectors.V.Y)", "x._l = x._l ; x.magnitude()") __time__("(V.X+V.Y).magnitude() unmemo [psyco]", "import vectors; x=(vectors.V.X+vectors.V.Y)", "x._l = None ; x.magnitude()") if __name__ == '__main__': import sys if 'test' in sys.argv: __test__() elif 'time' in sys.argv: __time__() else: raise Exception, \ 'This module is not a stand-alone script. Import it in a program.'
ikbtbasics/ik_classes.py
uw-biorobotics/IKBT
129
11114426
#!/usr/bin/python # # Inverse Kinematics Classes # # Copyright 2017 University of Washington # Developed by <NAME> and <NAME> # BioRobotics Lab, University of Washington # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sympy as sp import shutil as sh import os as os #import numpy as np import ikbtbasics.pykinsym as pks import re from ikbtbasics.solution_graph_v2 import * import ikbtbasics.matching as mtch import sys as sys import b3 as b3 # behavior trees import pickle from ikbtfunctions.helperfunctions import * import ikbtfunctions.graph2latex as gl #from kin_cl import * import ikbtbasics.kin_cl as kc # generic variables for any manipulator ((th_1, th_2, th_3, th_4, th_5, th_6)) = sp.symbols(('th_1', 'th_2', 'th_3', 'th_4', 'th_5', 'th_6')) ((d_1, d_2, d_3, d_4, d_5, d_6)) = sp.symbols(('d_1', 'd_2', 'd_3', 'd_4', 'd_5', 'd_6')) ((h,l_0, l_1, l_2, l_3, l_4, l_5, l_6)) = sp.symbols(('h','l_0', 'l_1', 'l_2', 'l_3', 'l_4', 'l_5', 'l_6')) ((a_2, a_3)) = sp.symbols(('a_2', 'a_3')) sp.var('l_5 l_6') sp.var('th_12, th_23, th_34, th_45, th_56') sp.var('th_123,th_234,th_345,th_456') sp.var('c_12 s_12 c_23 s_23 c_34 s_34 c_45 s_45 c_56 s_56 c_13 s_13') sp.var('x') # super generic place holder soa_vars = [th_12, th_23, th_34, th_45, th_56] # a list of the sum-of-angles variables soa_expansions= {} soa_expansions[th_12] = th_1 + th_2 soa_expansions[th_23] = th_2 + th_3 soa_expansions[th_34] = th_3 + th_4 soa_expansions[th_45] = th_4 + th_5 soa_expansions[th_56] = th_5 + th_6 soa_expansions[th_123] = th_1 + th_2 + th_3 soa_expansions[th_234] = th_2 + th_3 + th_4 soa_expansions[th_345] = th_3 + th_4 + th_5 soa_expansions[th_456] = th_4 + th_5 + th_6 pprotocol = 2 # # retrieve forward kinematics from a pickle file if it exists. # if it doesn't, compute the FK and store it in a pickle file. def kinematics_pickle(rname, dh, constants, pvals, vv, unks, test): # # Check for a pickle file of combined pre-computed Mech and Robot objects # # TODO: refactor code to get rid of unused "test" argument pickle_dir = 'fk_eqns/' if not os.path.isdir(pickle_dir): # if this doesn't exist, create it. print('Creating a new pickle directory: ./'+pickle_dir) os.mkdir(pickle_dir) name = pickle_dir + rname + '_pickle.p' print('kinematics pickle: trying to open ', name,' in ', os.getcwd()) if(os.path.isfile(name)): with open(name, 'rb') as pick: print('\Trying to read pre-computed forward kinematics from '+name) [m, R, unknowns] = pickle.load(pick) print('Successfully read pre-computed forward kinematics') print('pickle contained ', len(unknowns), ' unknowns') else: #print 'WRONG - quitting, error: ',sys.exc_info()[0] #sys.exit # set up mechanism object instance m = kc.mechanism(dh, constants, vv) m.pvals = pvals # store numerical values of parameters print('Did not find VALID stored pickle file: ', name) print("Starting Forward Kinematics") m.forward_kinematics() print("Completed Forward Kinematics") print('Starting Sum of Angles scan (slow!)') # set up Robot Object instance R = Robot(m, rname) # set up IK structs etc R.scan_for_equations(unks) # generate equation lists # below is commented out for testing and devel of sum_of_angles_transform R.sum_of_angles_transform(unks) # find sum of angles R.generate_solution_nodes(unks) # generate solution nodes print(' Storing kinematics pickle for '+rname + '('+name+')') with open(name,'wb') as pf: pickle.dump( [m, R, unks], pf, protocol=pprotocol) unknowns = unks # be sure to return updated unknown list (including SOAs) return [m,R,unknowns] def check_the_pickle(dh1, dh2): # check that two mechanisms have identical DH params flag = False if (dh1.shape[0] != dh2.shape[0]): print(' Wrong number of rows!') flag = True else: for r in range(0,dh1.shape[0]): for c in [0,1,2,3]: if(dh1[r,c] != dh2[r,c]): flag = True if(flag): print('''\n\n ----------------------------------------------------- DH parameters Differ Pickle file is out of date. please remove it and start again ----------------------------------------------------- ''') quit() ## retrieve thxy from thx, thy def find_xy(thx, thy): # lookup table for thxy print('test: find_xy:',thx, thy) thxy_lookup = { th_1:[th_12, th_123], th_2:[th_12, th_23, th_123, th_234], th_3:[th_23, th_34, th_123, th_234, th_345], th_4:[th_34, th_45, th_234, th_345, th_456], th_5:[th_45, th_56, th_345, th_456], th_6:[th_56, th_456] } # add 3-way SOA's to thxy_lookup thxy_lookup[th_12] = [th_123] thxy_lookup[th_23] = [th_123,th_234] thxy_lookup[th_34] = [th_234,th_345] thxy_lookup[th_45] = [th_345,th_456] thxy_lookup[th_56] = [th_456] # one symbol in common is the th_xy we're looking for thx_s = set(thxy_lookup[thx]) thy_s = set(thxy_lookup[thy]) thxy_s = thx_s.intersection(thy_s) thxy = thxy_s.pop() return thxy #def find_sum(thx,thy): # new approach for same problem as find_xy() # Class to contain all robot info class Robot: def __init__(self, Mech=None, name="*Unnamed*"): self.name = name # the following data pertain to the solution tree for this Robot self.solveN = 0 # index of current solution in solving sequence self.soltag = '' # suffix tag for current solution level leafs self.params = [] # constant dh params such as l_4 etc. self.solution_nodes = [] # first one is the root, by solve order self.variables_symbols = [] # # "notations" means specifically labeled solution variables such as # th_1s2 (theta-1, solution 2) self.notation_graph = set() #solution nodes notation graph self.notation_collections = [] #solution notations divided into subgroups self.min_index = 0 self.max_index = 0 # mequation_list: all the 4x4 Matrix FK equations self.mequation_list = [] # kequation_aux_list: sum of angle eqns such as eg th_23 = th_2+th_3 self.kequation_aux_list = [] # a matrix equation in which to embed important kequations equations # this is done for compatibility with the id/solvers # self.SOA_eqns = kc.matrix_equation() # To add a kequation, use R.kequation_aux_list.append(neweqn) if(Mech != None): # in testing situations we only need a "Robot" to keep track of solutions above self.Mech = Mech self.min_index = 0 # start DOF of the current chain # min_index starts at 0 for ALL manips. # max index == index of highest unsolved link variable # define indices for DH table d = 2 # joint offset DH param index th = 3 # joint angle DH param index self.max_index = -99 assert (self.Mech.DH[0,d]!=0 or self.Mech.DH[0,th] != 0), "You do not have a variable in first DH row!" for i in [5,4,3,2,1]: if(self.Mech.DH[i,d]!=0 or self.Mech.DH[i,th] != 0): self.max_index = i # end DOF of the current chain break assert (self.max_index > 0), "Couldn't find mechanism index" # # build up the equations to solve: self.mequation_list = Mech.get_mequation_set() # all the Matrix FK equations print('ik_classes: length Robot.mequation_list: ', len(self.mequation_list)) def generate_solution_nodes(self, unknowns): '''generate solution nodes''' for unk in unknowns: if unk.solvemethod != '': # this means the unk was not used at all in solution # typically SOA unknowns like th_23 self.solution_nodes.append(Node(unk)) self.variables_symbols.append(unk.symbol) print(self.solution_nodes) print(self.variables_symbols) # get lists of unsolved equations having 1 and 2 unks # class Robot: def scan_for_equations(self,variables): self.l1 = [] # equations with one unk nown (if any) self.l2 = [] # equations with two unknowns self.l3p = [] # 3 OR MORE unknowns sp.var('x') #this will be used to generate 'algebraic zero' #elist = self.mequation_list.append(self.kequation_aux_list) elist = self.mequation_list #print '------------------------- elist----' #print elist #print ('-------- (aux eqns):') #print (self.kequation_aux_list) #print ('--------') assert (len(elist) > 0), ' not enough equations ' #i=0 #for e in self.kequation_aux_list: #elist[0][3][i] = e # HACK: put aux eqns into row 4 Meqn[0] #print 'scan_for_equns: putting ', e, 'into eqn' #i+=1 for eqn in elist: lhs = eqn.Td #4x4 matrix rhs = eqn.Ts #4x4 matrix for i in [0,1,2,3]: for j in range(0,4): lh1x1 = lhs[i,j] rh1x1 = rhs[i,j] n = count_unknowns(variables, lh1x1) + count_unknowns(variables, rh1x1) e1 = kc.kequation(lh1x1, rh1x1) if(n==1): flag = False if e1 not in self.l1: self.l1.append(e1) # only append if not already there if(n==2): flag = False if e1 not in self.l2: self.l2.append(e1) # only append if not already there if(n > 2): if e1 not in self.l3p: self.l3p.append(e1) # only append if not already there #Process the SOA equations for e in self.kequation_aux_list: lhs = e.LHS rhs = e.RHS n = count_unknowns(variables, lhs) + count_unknowns(variables, rhs) if(n==1): self.l1.append(kc.kequation(lhs, rhs)) # change from 0, rhs-lhs !! ************ if(n==2): self.l2.append(kc.kequation(lhs, rhs)) self.l1 = erank(self.l1) # sort the equations (in place) so solvers get preferred eqns first self.l2 = erank(self.l2) self.l3p = erank(self.l3p) return [self.l1, self.l2, self.l3p] #end of scan_for_eqns # # Testing use only: # Get equation lists from just a matrix equation # (this is used when generating tests NOT from DH params) # def scan_Mequation(self,Meqn,variables): self.l1 = [] self.l2 = [] for eqn in Meqn.get_kequation_list(): lh1x1 = eqn.LHS #4x4 matrix rh1x1 = eqn.RHS #4x4 matrix n = count_unknowns(variables, lh1x1) + count_unknowns(variables, rh1x1) #e1 = kequation(lh1x1, rh1x1) # change from 0,rh1x1-lh1x1 ********** e1 = eqn if(n==1): flag = False if e1 not in self.l1: self.l1.append(e1) # only append if not already there if(n==2): flag = False if e1 not in self.l2: self.l2.append(e1) # only append if not already there self.l1 = erank(self.l1) # sort the equations (in place) so solvers get preferred eqns first self.l2 = erank(self.l2) return [self.l1, self.l2] # # identify sum of angles terms and transform them to new variable # def sum_of_angles_transform(self,variables): print('Starting sum-of-angles scan. Please be patient') unkn_sums_sym = set() #keep track of joint variable symbols #k = equation number #i = row, j=col nits = len(self.mequation_list) * 3 * 4 # total number of equations barlen = nits/2 it_number = 0 for k in range(0,len(self.mequation_list)): # contains duplicates Meq = self.mequation_list[k] # get next matrix equation for i in [0,1,2]: # only first three rows are interesting for j in [0,1,2,3]: # but check all 4 columns it_number += 1 #print ' .. ' prog_bar(it_number, nits, barlen, 'Sum of Angles') #print 'kij: ', k,i,j #print 'Sum of Angles: eqn,row,col: ', k,i,j # simplify with lasting effect (note: try sp.trigsimp() for faster????) Meq.Ts[i,j] = sp.simplify(Meq.Ts[i,j]) # simplify should catch c1s2+s1c2 etc. (RHS) Meq.Td[i,j] = sp.simplify(Meq.Td[i,j]) # simplify should catch c1s2+s1c2 etc. (LHS) lhs = Meq.Td[i,j] rhs = Meq.Ts[i,j] # simplify LHS lhs, newj, newe = sum_of_angles_sub(self, lhs, variables) if newj: variables.append(newj) if newe: self.kequation_aux_list.append(newe) # simplify RHS rhs, newj, newe= sum_of_angles_sub(self, rhs, variables) if newj: variables.append(newj) if newe: self.kequation_aux_list.append(newe) Meq.Td[i,j] = lhs Meq.Ts[i,j] = rhs prog_bar(-1,100,100, '') # clear the progress bar #x = raw_input('<enter> to cont...') print('Completed sum-of-angles scan.') ################## # # substitute th_23 for th_2+th_3 etc. # (april: separate out for easier testing) def sum_of_angles_sub(R, expr, variables): aw = sp.Wild('aw') bw = sp.Wild('bw') cw = sp.Wild('cw') newjoint = None tmpeqn = None found2 = found3 = False matches = expr.find(sp.sin(aw+bw+cw)) | expr.find(sp.cos(aw+bw+cw)) #print '- - - - -' #print expr #print matches for m in matches: # analyze each match d = m.match(sp.cos(aw + bw + cw)) d1 = m.match(sp.sin(aw + bw + cw)) if d != None and d1 != None: d.update(d1) if d == None and d1 != None: d = d1 # To find sum-of-angles arguments, # count number of non-zero elements among aw ... cw nzer = 0 varlist = [] for k1 in d.keys(): if d[k1] == 0: nzer += 1 else: varlist.append(d[k1]) #print 'varlist: ', varlist if len(varlist) == 2: found2 = True if len(varlist) == 3: found3 = True newjoint = None tmpeqn = None if(found2 or found3): # we've got a SOA! # generate index of the SOA variable nil = [] #new index list = 'nil' for v in varlist: # build the new subscript nil.append( str(get_variable_index(variables, v)) ) nil.sort() # get consistent order of indices ni = '' for c in nil: # make into a string ni += c # build up subscript e.g. 234 #print 'New index: '+ni vexists = False # has this SOA been found before? Did we already make it? for v in variables: if v.n == int(ni): # i.e. if th_23 is aready defined th_subval = v vexists = True newjoint = None tmpeqn = None th_new = sp.var('th_'+ni) # create iff doesn't yet exist th_subval = th_new if not vexists: print(": found new 'joint' (sumofangle) variable: ", th_new) # try moving soa equation to Tm.auxeqns #unkn_sums_sym.add(th_new) #add into the joint variable set newjoint = kc.unknown(th_new) newjoint.n = int(ni) # generate e.g. 234 = 10*2 + 34 newjoint.solved = False # just to be clear for count_unknowns variables.append(newjoint) #add it to unknowns list tmpeqn = kc.kequation(th_new, d[aw] + d[bw] + d[cw]) print('sum_of_angles_sub: created new equation:', tmpeqn) # # Add the def of this SOA to list: eg th23 = th2+th3 # BUT it needs to be embedded into a 4x4 mequation so # that solvers can scan it properly R.kequation_aux_list.append(tmpeqn) # substitute new variable into the kinematic equations # Problem Dec'21: # If there is a three-way sub, prefer it to a two-way sub. e.g: # (a+b+c) -> (abc) instead of (a+bc)(!) # #self.mequation_list[k].Td[i,j] = Meq.Td[i,j].subs(d[aw] + d[bw] + d[cw], th_subval) #self.mequation_list[k].Ts[i,j] = Meq.Ts[i,j].subs(d[aw] + d[bw] + d[cw], th_subval) expr = expr.subs(d[aw] + d[bw] + d[cw], th_subval) #print 'sum of angles (ik_classes): NEW Eqns (k,i,j)',k,i,j #print self.mequation_list[k].Td[i,j] #print ' = ' #print self.mequation_list[k].Ts[i,j] #print '========' if tmpeqn is not None: print('sum_of_angles_sub: Ive found a new SOA equation, ', tmpeqn) return (expr, newjoint, tmpeqn) def get_variable_index(vars, symb): for v in vars: if v.n == 0: print('get_variable_index()/ik_classes: at least one index is not initialized for joint variables (or is 0!)') quit() found = False #print 'get_variable_index: v[i], symb, v[i].n ',str(v.symbol),str(symb), v.n if v.symbol == symb: found = True return v.n assert found, 'Error: trying to get index of an unknown joint variable' + str(symb) #if found == False: #print 'Error: trying to get index of an unknown joint variable' #print 'symbol: ', symb #print vars #quit() return False # class kequation() now moved to kin_cl.py # class unknown(object) now moved to kin_cl.py # matrix_equation class moved to kin_cl.py # # # Print text-based solution graph # def output_solution_graph(R): print('========== Solution output ================') print(' ' + R.name) for node in R.solution_nodes: if node.solveorder != -1: #node is solved print('\n\n', node.solveorder, node.symbol, ' by method: ', node.solvemethod, ', ', node.nsolutions, ' solution(s)') print(node.solution_with_notations) # print all edges in graph print('========== Solution Graph (Edges) output ================') for edge in R.notation_graph: print(edge) print('========== End Solution output ================') def erank(list_L): # rearrange list of eqns by length # by putting shortest eqns last, system will prefer to solve # shorter equations (i.e. prefer shorter solutions where two exist) # since the sorting is from lower to higher # it should not be reversed when putting into the list - D.Z. sorted_ls = [] list_d = {} for e in list_L: count = int(sp.count_ops(e.RHS)) + int(sp.count_ops(e.LHS)) if count not in list_d.keys(): list_d[count] = [] list_d[count].append(e) keys = list_d.keys() keys = sorted(keys, reverse= False) for key in keys: sorted_ls.extend(list_d[key]) return sorted_ls ############# main test the library ######################### # if __name__ == "__main__": # tester code for the classes in this file # testing for these classes and methods now in tests/leavestest.py # TBD properly integrate with unittest module pass
packages/opal-common/opal_common/fetcher/engine/fetch_worker.py
permitio/opal
106
11114428
import asyncio from typing import Coroutine from ..events import FetchEvent from ..fetcher_register import FetcherRegister from ..logger import get_logger from .base_fetching_engine import BaseFetchingEngine logger = get_logger("fetch_worker") async def fetch_worker(queue: asyncio.Queue, engine): """The worker task performing items added to the Engine's Queue. Args: queue (asyncio.Queue): The Queue engine (BaseFetchingEngine): The engine itself """ engine: BaseFetchingEngine register: FetcherRegister = engine.register while True: # types event: FetchEvent callback: Coroutine # get a event from the queue event, callback = await queue.get() # take care of it try: # get fetcher for the event fetcher = register.get_fetcher_for_event(event) # fetch async with fetcher: res = await fetcher.fetch() data = await fetcher.process(res) # callback to event owner try: await callback(data) except Exception as err: logger.exception(f"Fetcher callback - {callback} failed") await engine._on_failure(err, event) except Exception as err: logger.exception("Failed to process fetch event") await engine._on_failure(err, event) finally: # Notify the queue that the "work item" has been processed. queue.task_done()
testrunner/app_level_tests.py
nanjekyejoannah/pypy
381
11114430
<filename>testrunner/app_level_tests.py #!/usr/bin/env python """ This is what the buildbot runs to execute the app-level tests on top of pypy-c. """ import sys, os import subprocess rootdir = os.path.dirname(os.path.dirname(os.path.abspath(sys.argv[0]))) os.environ['PYTHONPATH'] = rootdir os.environ['PYTEST_PLUGINS'] = '' popen = subprocess.Popen( [sys.executable, "testrunner/runner.py", "--logfile=pytest-A.log", "--config=pypy/pytest-A.cfg", "--config=pypy/pytest-A.py", "--config=~/machine-A_cfg.py", "--root=pypy", "--timeout=3600", ] + sys.argv[1:], cwd=rootdir) try: ret = popen.wait() except KeyboardInterrupt: popen.kill() print "\ninterrupted" ret = 1 sys.exit(ret)
static.py
wschae/wschae.github.io
191
11114436
#!/usr/bin/env python """static - A stupidly simple WSGI way to serve static (or mixed) content. (See the docstrings of the various functions and classes.) Copyright (C) 2006-2009 <NAME> - http://lukearno.com/ This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to: The Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. Luke Arno can be found at http://lukearno.com/ """ import mimetypes import rfc822 import time import string import sys from os import path, stat, getcwd from wsgiref import util from wsgiref.headers import Headers from wsgiref.simple_server import make_server from optparse import OptionParser try: from pkg_resources import resource_filename, Requirement except: pass try: import kid except: pass class MagicError(Exception): pass class StatusApp: """Used by WSGI apps to return some HTTP status.""" def __init__(self, status, message=None): self.status = status if message is None: self.message = status else: self.message = message def __call__(self, environ, start_response, headers=[]): if self.message: Headers(headers).add_header('Content-type', 'text/plain') start_response(self.status, headers) if environ['REQUEST_METHOD'] == 'HEAD': return [""] else: return [self.message] class Cling(object): """A stupidly simple way to serve static content via WSGI. Serve the file of the same path as PATH_INFO in self.datadir. Look up the Content-type in self.content_types by extension or use 'text/plain' if the extension is not found. Serve up the contents of the file or delegate to self.not_found. """ block_size = 16 * 4096 index_file = 'index.html' not_found = StatusApp('404 Not Found') not_modified = StatusApp('304 Not Modified', "") moved_permanently = StatusApp('301 Moved Permanently') method_not_allowed = StatusApp('405 Method Not Allowed') def __init__(self, root, **kw): """Just set the root and any other attribs passes via **kw.""" self.root = root for k, v in kw.iteritems(): setattr(self, k, v) def __call__(self, environ, start_response): """Respond to a request when called in the usual WSGI way.""" if environ['REQUEST_METHOD'] not in ('GET', 'HEAD'): headers = [('Allow', 'GET, HEAD')] return self.method_not_allowed(environ, start_response, headers) path_info = environ.get('PATH_INFO', '') full_path = self._full_path(path_info) if not self._is_under_root(full_path): return self.not_found(environ, start_response) if path.isdir(full_path): if full_path[-1] <> '/' or full_path == self.root: location = util.request_uri(environ, include_query=False) + '/' if environ.get('QUERY_STRING'): location += '?' + environ.get('QUERY_STRING') headers = [('Location', location)] return self.moved_permanently(environ, start_response, headers) else: full_path = self._full_path(path_info + self.index_file) content_type = self._guess_type(full_path) try: etag, last_modified = self._conditions(full_path, environ) headers = [('Date', rfc822.formatdate(time.time())), ('Last-Modified', last_modified), ('ETag', etag)] if_modified = environ.get('HTTP_IF_MODIFIED_SINCE') if if_modified and (rfc822.parsedate(if_modified) >= rfc822.parsedate(last_modified)): return self.not_modified(environ, start_response, headers) if_none = environ.get('HTTP_IF_NONE_MATCH') if if_none and (if_none == '*' or etag in if_none): return self.not_modified(environ, start_response, headers) file_like = self._file_like(full_path) headers.append(('Content-Type', content_type)) start_response("200 OK", headers) if environ['REQUEST_METHOD'] == 'GET': return self._body(full_path, environ, file_like) else: return [''] except (IOError, OSError), e: print e return self.not_found(environ, start_response) def _full_path(self, path_info): """Return the full path from which to read.""" return self.root + path_info def _is_under_root(self, full_path): """Guard against arbitrary file retrieval.""" if (path.abspath(full_path) + path.sep)\ .startswith(path.abspath(self.root) + path.sep): return True else: return False def _guess_type(self, full_path): """Guess the mime type using the mimetypes module.""" return mimetypes.guess_type(full_path)[0] or 'text/plain' def _conditions(self, full_path, environ): """Return a tuple of etag, last_modified by mtime from stat.""" mtime = stat(full_path).st_mtime return str(mtime), rfc822.formatdate(mtime) def _file_like(self, full_path): """Return the appropriate file object.""" return open(full_path, 'rb') def _body(self, full_path, environ, file_like): """Return an iterator over the body of the response.""" way_to_send = environ.get('wsgi.file_wrapper', iter_and_close) return way_to_send(file_like, self.block_size) def iter_and_close(file_like, block_size): """Yield file contents by block then close the file.""" while 1: try: block = file_like.read(block_size) if block: yield block else: raise StopIteration except StopIteration, si: file_like.close() return def cling_wrap(package_name, dir_name, **kw): """Return a Cling that serves from the given package and dir_name. This uses pkg_resources.resource_filename which is not the recommended way, since it extracts the files. I think this works fine unless you have some _very_ serious requirements for static content, in which case you probably shouldn't be serving it through a WSGI app, IMHO. YMMV. """ resource = Requirement.parse(package_name) return Cling(resource_filename(resource, dir_name), **kw) def command(): parser = OptionParser(usage="%prog DIR [HOST][:][PORT]", version="static 0.3.6") options, args = parser.parse_args() if len(args) in (1, 2): if len(args) == 2: parts = args[1].split(":") if len(parts) == 1: host = parts[0] port = None elif len(parts) == 2: host, port = parts else: sys.exit("Invalid host:port specification.") elif len(args) == 1: host, port = None, None if not host: host = '0.0.0.0' if not port: port = 8888 try: port = int(port) except: sys.exit("Invalid host:port specification.") app = Cling(args[0]) try: make_server(host, port, app).serve_forever() except KeyboardInterrupt, ki: print "Cio, baby!" except: sys.exit("Problem initializing server.") else: parser.print_help(sys.stderr) sys.exit(1) def test(): from wsgiref.validate import validator app = Cling(getcwd()) try: print "Serving " + getcwd() + " to http://localhost:8888" make_server('0.0.0.0', 8888, validator(app)).serve_forever() except KeyboardInterrupt, ki: print "" print "Ciao, baby!" if __name__ == '__main__': test()
designate-8.0.0/designate/storage/impl_sqlalchemy/migrate_repo/versions/083_change_managed_column_types.py
scottwedge/OpenStack-Stein
145
11114511
<reponame>scottwedge/OpenStack-Stein # Copyright 2016 Hewlett Packard Enterprise Development Company LP # # Author: <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Switch managed_* column types from Unicode to String Bug #276448 """ from oslo_log import log as logging from sqlalchemy.schema import MetaData, Table from sqlalchemy import String LOG = logging.getLogger() meta = MetaData() def upgrade(migrate_engine): meta.bind = migrate_engine records = Table('records', meta, autoload=True) records.columns.managed_extra.alter(type=String(100)) records.columns.managed_plugin_type.alter(type=String(50)) records.columns.managed_plugin_name.alter(type=String(50)) records.columns.managed_resource_type.alter(type=String(50)) records.columns.managed_resource_region.alter(type=String(100)) records.columns.managed_tenant_id.alter(type=String(36))
fasterai/sparse/sparsify_callback.py
nathanhubens/fasterai
191
11114515
<filename>fasterai/sparse/sparsify_callback.py # AUTOGENERATED! DO NOT EDIT! File to edit: nbs/02_sparsify_callback.ipynb (unless otherwise specified). __all__ = ['SparsifyCallback'] # Cell from fastai.vision.all import * from fastai.callback.all import * from .sparsifier import * from .criteria import * import torch import torch.nn as nn import torch.nn.functional as F # Cell class SparsifyCallback(Callback): def __init__(self, end_sparsity, granularity, method, criteria, sched_func, start_sparsity=0, start_epoch=0, end_epoch=None, lth=False, rewind_epoch=0, reset_end=False): store_attr() self.current_sparsity, self.previous_sparsity = 0, 0 assert self.start_epoch>=self.rewind_epoch, 'You must rewind to an epoch before the start of the pruning process' def before_fit(self): print(f'Pruning of {self.granularity} until a sparsity of {self.end_sparsity}%') self.end_epoch = self.n_epoch if self.end_epoch is None else self.end_epoch assert self.end_epoch <= self.n_epoch, 'Your end_epoch must be smaller than total number of epoch' self.sparsifier = Sparsifier(self.learn.model, self.granularity, self.method, self.criteria) self.n_batches = math.floor(len(self.learn.dls.dataset)/self.learn.dls.bs) self.total_iters = self.end_epoch * self.n_batches self.start_iter = self.start_epoch * self.n_batches def before_epoch(self): if self.epoch == self.rewind_epoch: print(f'Saving Weights at epoch {self.epoch}') self.sparsifier._save_weights() def before_batch(self): if self.epoch>=self.start_epoch: if self.epoch < self.end_epoch: self._set_sparsity() self.sparsifier.prune_model(self.current_sparsity) if self.lth and self.current_sparsity!=self.previous_sparsity: # If sparsity has changed, the network has been pruned print(f'Resetting Weights to their epoch {self.rewind_epoch} values') self.sparsifier._reset_weights() self.previous_sparsity = self.current_sparsity def before_step(self): if self.epoch>=self.start_epoch: self.sparsifier._mask_grad() def after_epoch(self): print(f'Sparsity at the end of epoch {self.epoch}: {self.current_sparsity:.2f}%') def after_fit(self): print(f'Final Sparsity: {self.current_sparsity:.2f}') if self.reset_end: self.sparsifier._reset_weights() self.sparsifier._clean_buffers() # Remove buffers at the end of training def _set_sparsity(self): self.current_sparsity = self.sched_func(start=self.start_sparsity, end=self.end_sparsity, pos=(self.train_iter-self.start_iter)/(self.total_iters-self.start_iter))
PythonToolbox/quantconnect/Result.py
BlackBoxAM/Lean
6,580
11114537
<reponame>BlackBoxAM/Lean<filename>PythonToolbox/quantconnect/Result.py # QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd from math import isnan from datetime import datetime class Result: '''Result represents the live or backtest result of a successfully executed algorithm''' def __init__(self, json): '''Creates a new instance of Result''' tag = 'result' # LiveResults special case: self.LiveMode = 'LiveResults' in json if self.LiveMode: tag += 's' json = json.pop('LiveResults', json) result = json.pop(tag, json) self.Statistics = Information(result.pop('Statistics', {})) self.AlphaRuntimeStatistics = Information(result.pop('AlphaRuntimeStatistics', {})) self.RuntimeStatistics = Information(result.pop('RuntimeStatistics', {})) self.ClosedTrades = self.__create_closed_trades_table(result) self.Charts = self.__create_charts_table(result) self.ProfitLoss = self.__create_profit_loss_table(result) self.Orders = self.__create_order_table(result) self.RollingWindow = self.__create_rolling_window_table(result) self.Information = Information(json) def __create_order_table(self, json): '''Creates a dataframe with the orders information''' orders = json.pop('Orders', None) if orders is None: return None # In Live results, orders is a list, so convert to dict keyed by Id. if isinstance(orders, list): orders = {x['Id']: x for x in orders} def __status_int_to_str(value): if value is None: return None values = [ 'New', 'Submitted', 'PartiallyFilled', 'Filled', 'Canceled', 'None', 'Invalid', 'CancelPending' ] return str(values) if value >= len(values) else values[value] def __security_type_int_to_str(value): if value is None: return None values = [ 'Base', 'Equity', 'Option', 'Commodity', 'Forex', 'Future', 'Cfd', 'Crypto' ] return str(values) if value >= len(values) else values[value] def __type_int_to_str(value): if value is None: return None values = [ 'Market', 'Limit', 'StopMarket', 'StopLimit', 'MarketOnOpen', 'MarketOnClose', 'OptionExercise' ] return str(values) if value >= len(values) else values[value] columns = [ 'Id', 'Time', 'SecurityType', 'Symbol', 'PriceCurrency', 'Quantity', 'Direction', 'Price', 'Type', 'Status', 'Tag', 'LastFillTime', 'LastUpdateTime', 'CanceledTime' ] if self.LiveMode: columns += ['DeployId'] drop_columns = [ 'BrokerId', 'ContingentId', 'CreatedTime', 'IsMarketable', 'Value', 'AbsoluteQuantity', 'OrderSubmissionData', 'Properties', 'TimeInForce'] df = pd.DataFrame([v for k, v in orders.items()], columns = columns + drop_columns) df = df.set_index('Id').drop(drop_columns, axis=1) df['Time'] = df['Time'].apply(self.__str_to_datetime) df['CanceledTime'] = df['CanceledTime'].apply(self.__str_to_datetime) df['LastFillTime'] = df['LastFillTime'].apply(self.__str_to_datetime) df['LastUpdateTime'] = df['LastUpdateTime'].apply(self.__str_to_datetime) df['Symbol'] = df['Symbol'].apply(lambda x: x['ID']) df['Type'] = df['Type'].apply(__type_int_to_str) df['Direction'] = df['Direction'].apply(self.__direction_int_to_str) df['Status'] = df['Status'].apply(__status_int_to_str) df['SecurityType'] = df['SecurityType'].apply(__security_type_int_to_str) return df.dropna(how='all', axis=1) def __create_profit_loss_table(self, json): '''Creates a dataframe with the algorithm P&L''' profitLoss = json.pop('ProfitLoss', None) if profitLoss is None: return None df = pd.DataFrame({'profit_loss' : profitLoss}) df.index.name = 'time' df.index = df.index.map(self.__str_to_datetime) return df def __create_closed_trades_table(self, json): '''Creates a dataframe with the closed trades information''' total = json.get('TotalPerformance', None) if total is None: return None trades = total.get('ClosedTrades', None) if trades is None: return None df = pd.DataFrame(trades, columns = [ 'Symbol', 'Quantity', 'Direction', 'EntryTime', 'EntryPrice', 'ExitPrice', 'ExitTime', 'Duration', 'EndTradeDrawdown', 'MAE', 'MFE', 'ProfitLoss', 'TotalFees' ]) df['Symbol'] = df['Symbol'].apply(lambda x: x['ID']) df['Direction'] = df['Direction'].apply(self.__direction_int_to_str) df['EntryTime'] = df['EntryTime'].apply(self.__str_to_datetime) df['ExitTime'] = df['ExitTime'].apply(self.__str_to_datetime) df['Duration'] = df['ExitTime'] - df['EntryTime'] return df.set_index('EntryTime') def __create_charts_table(self, json): '''Creates a dataframe with the charts information. By converting the json into a dataframe, it makes data visualization easier''' charts = json.pop('Charts', None) if charts is None: return None df_charts = dict() for name, chart in charts.items(): # Skip Meta data if name == 'Meta': continue columns = list() for column, series in chart['Series'].items(): df = pd.DataFrame(series['Values']) df['x'] = pd.to_datetime(df['x'], unit='s') df = df.rename(index=str, columns={"x": "time", "y": column}) columns.append(df.set_index('time')) if len(columns) > 1: df = pd.concat(columns, axis = 1, sort = True) df = df.fillna(method = 'ffill') df = df.fillna(method = 'bfill') df_charts[name] = df return df_charts def __create_rolling_window_table(self, json): '''Creates a dataframe with the rolling statistics information. By converting the json into a dataframe, it makes data visualization easier''' rollingWindow = json.pop('RollingWindow', None) if rollingWindow is None: return None series = dict() if 'TotalPerformance' in json: window = json['TotalPerformance'] if window is None: window = dict() stats = window.get('PortfolioStatistics', dict()) stats.update(window.get('TradeStatistics', dict())) series = {'TotalPerformance': pd.Series(stats)} for row, window in rollingWindow.items(): stats = window.get('PortfolioStatistics', dict()) stats.update(window.get('TradeStatistics', dict())) series.update({row: pd.Series(stats)}) return pd.DataFrame(series).transpose() def __direction_int_to_str(self, value): if value is None: return None return [ 'Buy', 'Sell', 'Hold' ][value] def __str_to_datetime(self, value): if value is None: return None if isinstance(value, float) and isnan(value): return None fmt = '%Y-%m-%dT%H:%M:%SZ' if len(value) == 20 else '%Y-%m-%dT%H:%M:%S.%fZ' return datetime.strptime(value, fmt) class Information(dict): def __init__(self, d): d = d if d is not None else {} super().__init__(d) self.__repr = '' for k, b in d.items(): a = k.replace(' ','').replace('-','') if isinstance(b, (list, tuple)): setattr(self, a, [Information(x) if isinstance(x, dict) else x for x in b]) elif isinstance(b, dict): x = Information(b) setattr(self, a, x) s = '\n'.join([f' {l}' for l in repr(x).splitlines()]) self.__repr += f'{a}:\n{s}\n' else: setattr(self, a, b) self.__repr += f'{a}: {b}\n' def __repr__(self): return self.__repr
myia/operations/prim_shape.py
strint/myia
222
11114543
<reponame>strint/myia """Definitions for the primitive `shape`.""" from .. import xtype from ..lib import ( TYPE, VALUE, AbstractArray, AbstractScalar, AbstractTuple, bprop_to_grad_transform, force_pending, standard_prim, ) from ..operations import zeros_like from . import primitives as P def pyimpl_shape(array): """Implement `shape`.""" return array.shape @standard_prim(P.shape) async def infer_shape(self, engine, a: AbstractArray): """Infer the return type of primitive `shape`.""" shp = await force_pending(a.xshape()) values = [ AbstractScalar({VALUE: entry, TYPE: xtype.UInt[64]}) for entry in shp ] return AbstractTuple(values) @bprop_to_grad_transform(P.shape) def bprop_shape(arr, out, dout): """Backpropagator for primitive `shape`.""" return (zeros_like(arr),) __operation_defaults__ = { "name": "shape", "registered_name": "shape", "mapping": P.shape, "python_implementation": pyimpl_shape, } __primitive_defaults__ = { "name": "shape", "registered_name": "shape", "type": "backend", "python_implementation": pyimpl_shape, "inferrer_constructor": infer_shape, "grad_transform": bprop_shape, }
koku/masu/test/external/downloader/azure/test_azure_services.py
rubik-ai/koku
157
11114559
<reponame>rubik-ai/koku # # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """Test the AzureService object.""" from datetime import datetime from unittest.mock import Mock from unittest.mock import patch from unittest.mock import PropertyMock from adal.adal_error import AdalError from azure.common import AzureException from azure.core.exceptions import HttpResponseError from azure.storage.blob import BlobClient from azure.storage.blob import BlobServiceClient from azure.storage.blob import ContainerClient from dateutil.relativedelta import relativedelta from faker import Faker from masu.external.downloader.azure.azure_service import AzureCostReportNotFound from masu.external.downloader.azure.azure_service import AzureService from masu.external.downloader.azure.azure_service import AzureServiceError from masu.test import MasuTestCase from providers.azure.client import AzureClientFactory FAKE = Faker() def throw_azure_exception(scope): """Raises azure exception.""" raise AzureException() def throw_azure_http_error(scope): """Raises azure http error.""" raise HttpResponseError() def throw_azure_http_error_403(scope): """Raises azure http error.""" error = HttpResponseError() error.status_code = 403 raise error class AzureServiceTest(MasuTestCase): """Test Cases for the AzureService object.""" def setUp(self): """Set up each test.""" super().setUp() self.subscription_id = FAKE.uuid4() self.tenant_id = FAKE.uuid4() self.client_id = FAKE.uuid4() self.client_secret = FAKE.word() self.resource_group_name = FAKE.word() self.storage_account_name = FAKE.word() self.container_name = FAKE.word() self.current_date_time = datetime.today() self.export_directory = FAKE.word() def get_mock_client(self, blob_list=[], cost_exports=[]): """Generate an AzureService instance with mocked AzureClientFactory. Args: blob_list (list<Mock>) A list of Mock objects. The blob_list Mock objects must have these attributes: - name cost_exports (list<Mock>) A list of Mock objects. The cost_exports Mock objects must have these attributes: - name - delivery_info.destination.container - delivery_info.destination.root_folder_path - delivery_info.destination.resource_id Returns: (AzureService) An instance of AzureService with mocked AzureClientFactory """ fake_data = FAKE.binary(length=1024 * 64) client = None with patch( "masu.external.downloader.azure.azure_service.AzureClientFactory", spec=AzureClientFactory ) as mock_factory: mock_factory.return_value = Mock( # AzureClientFactory() spec=AzureClientFactory, cloud_storage_account=Mock( return_value=Mock( # .cloud_storage_account() spec=BlobServiceClient, get_blob_client=Mock( return_value=Mock( # .get_blob_client() spec=BlobClient, # .download_blob().readall() download_blob=Mock(return_value=Mock(readall=Mock(return_value=fake_data))), ) ), get_container_client=Mock( # .get_container_client().list_blobs() return_value=Mock(spec=ContainerClient, list_blobs=Mock(return_value=blob_list)) ), ) ), # .cost_management_client.exports.list().value cost_management_client=Mock(exports=Mock(list=Mock(return_value=Mock(value=cost_exports)))), # .subscription_id subscription_id=self.subscription_id, ) client = AzureService( self.tenant_id, self.client_id, self.client_secret, self.resource_group_name, self.storage_account_name, self.subscription_id, ) return client def test_initializer(self): """Test the AzureService initializer.""" svc = self.get_mock_client() self.assertIsInstance(svc, AzureService) @patch("masu.external.downloader.azure.azure_service.AzureClientFactory") def test_init_no_subscription_id(self, mock_factory): """Test that exception is raized with no subscription id provided.""" class MockAzureFactory: subscription_id = None factory = MockAzureFactory() mock_factory.return_value = factory with self.assertRaises(AzureServiceError): AzureService( self.tenant_id, self.client_id, self.client_secret, self.resource_group_name, self.storage_account_name ) def test_get_cost_export_for_key(self): """Test that a cost export is retrieved by a key.""" today = self.current_date_time yesterday = today - relativedelta(days=1) test_matrix = [ {"key": "{}_{}_day_{}".format(self.container_name, "blob", today.day), "expected_date": today.date()}, { "key": "{}_{}_day_{}".format(self.container_name, "blob", yesterday.day), "expected_date": yesterday.date(), }, ] for test in test_matrix: key = test.get("key") expected_modified_date = test.get("expected_date") mock_blob = Mock(last_modified=Mock(date=Mock(return_value=expected_modified_date))) name_attr = PropertyMock(return_value=key) type(mock_blob).name = name_attr # kludge to set name attribute on Mock svc = self.get_mock_client(blob_list=[mock_blob]) cost_export = svc.get_cost_export_for_key(key, self.container_name) self.assertIsNotNone(cost_export) self.assertEquals(cost_export.name, key) self.assertEquals(cost_export.last_modified.date(), expected_modified_date) def test_get_cost_export_for_missing_key(self): """Test that a cost export is not retrieved by an incorrect key.""" key = "{}_{}_wrong".format(self.container_name, "blob") mock_blob = Mock() name_attr = PropertyMock(return_value=FAKE.word()) type(mock_blob).name = name_attr # kludge to set name attribute on Mock svc = self.get_mock_client(blob_list=[mock_blob]) with self.assertRaises(AzureCostReportNotFound): svc.get_cost_export_for_key(key, self.container_name) def test_get_latest_cost_export_for_path(self): """Test that the latest cost export is returned for a given path.""" report_path = "{}_{}".format(self.container_name, "blob") mock_blob = Mock(last_modified=Mock(date=Mock(return_value=self.current_date_time.date()))) name_attr = PropertyMock(return_value=report_path) type(mock_blob).name = name_attr # kludge to set name attribute on Mock svc = self.get_mock_client(blob_list=[mock_blob]) cost_export = svc.get_latest_cost_export_for_path(report_path, self.container_name) self.assertEquals(cost_export.last_modified.date(), self.current_date_time.date()) def test_get_latest_cost_export_for_path_missing(self): """Test that the no cost export is returned for a missing path.""" report_path = FAKE.word() svc = self.get_mock_client() with self.assertRaises(AzureCostReportNotFound): svc.get_latest_cost_export_for_path(report_path, self.container_name) def test_describe_cost_management_exports(self): """Test that cost management exports are returned for the account.""" resource_id = ( f"/subscriptions/{self.subscription_id}/resourceGroups/" f"{self.resource_group_name}/providers/Microsoft.Storage/" f"storageAccounts/{self.storage_account_name}" ) mock_export = Mock( delivery_info=Mock( destination=Mock( container=self.container_name, root_folder_path=self.export_directory, resource_id=resource_id ) ) ) name_attr = PropertyMock(return_value=f"{self.container_name}_blob") type(mock_export).name = name_attr # kludge to set name attribute on Mock svc = self.get_mock_client(cost_exports=[mock_export]) exports = svc.describe_cost_management_exports() self.assertEquals(len(exports), 1) for export in exports: self.assertEquals(export.get("container"), self.container_name) self.assertEquals(export.get("directory"), self.export_directory) self.assertIn("{}_{}".format(self.container_name, "blob"), export.get("name")) def test_get_latest_cost_export_http_error(self): """Test that the latest cost export catches the error for Azure HttpError.""" report_path = "{}_{}".format(self.container_name, "blob") mock_blob = Mock(last_modified=Mock(date=Mock(return_value=self.current_date_time.date()))) name_attr = PropertyMock(return_value=report_path) type(mock_blob).name = name_attr # kludge to set name attribute on Mock svc = self.get_mock_client(blob_list=[mock_blob]) svc._cloud_storage_account.get_container_client.side_effect = throw_azure_http_error with self.assertRaises(AzureCostReportNotFound): svc.get_latest_cost_export_for_path(report_path, self.container_name) def test_get_latest_cost_export_http_error_403(self): """Test that the latest cost export catches the error for Azure HttpError 403.""" report_path = "{}_{}".format(self.container_name, "blob") mock_blob = Mock(last_modified=Mock(date=Mock(return_value=self.current_date_time.date()))) name_attr = PropertyMock(return_value=report_path) type(mock_blob).name = name_attr # kludge to set name attribute on Mock svc = self.get_mock_client(blob_list=[mock_blob]) svc._cloud_storage_account.get_container_client.side_effect = throw_azure_http_error_403 with self.assertRaises(AzureCostReportNotFound): svc.get_latest_cost_export_for_path(report_path, self.container_name) def test_get_latest_cost_export_no_container(self): """Test that the latest cost export catches the error for no container.""" report_path = "blob" container_name = None mock_blob = Mock(last_modified=Mock(date=Mock(return_value=self.current_date_time.date()))) name_attr = PropertyMock(return_value=report_path) type(mock_blob).name = name_attr # kludge to set name attribute on Mock svc = self.get_mock_client(blob_list=[mock_blob]) with self.assertRaises(AzureCostReportNotFound): svc.get_latest_cost_export_for_path(report_path, container_name) def test_describe_cost_management_exports_wrong_account(self): """Test that cost management exports are not returned from incorrect account.""" resource_id = ( f"/subscriptions/{FAKE.uuid4()}/resourceGroups/" f"{self.resource_group_name}/providers/Microsoft.Storage/" f"storageAccounts/{self.storage_account_name}" ) mock_export = Mock( delivery_info=Mock( destination=Mock( container=self.container_name, root_folder_path=self.export_directory, resource_id=resource_id ) ) ) name_attr = PropertyMock(return_value=f"{self.container_name}_blob") type(mock_export).name = name_attr # kludge to set name attribute on Mock svc = self.get_mock_client(cost_exports=[mock_export]) exports = svc.describe_cost_management_exports() self.assertEquals(exports, []) def test_describe_cost_management_exports_no_auth(self): """Test that cost management exports are not returned from incorrect account.""" svc = self.get_mock_client(cost_exports=[Mock()]) svc._factory.cost_management_client.exports.list.side_effect = throw_azure_exception with self.assertRaises(AzureCostReportNotFound): svc.describe_cost_management_exports() def test_download_cost_export(self): """Test that cost management exports are downloaded.""" key = "{}_{}_day_{}".format(self.container_name, "blob", self.current_date_time.day) mock_blob = Mock() name_attr = PropertyMock(return_value=key) type(mock_blob).name = name_attr # kludge to set name attribute on Mock client = self.get_mock_client(blob_list=[mock_blob]) file_path = client.download_cost_export(key, self.container_name) self.assertTrue(file_path.endswith(".csv")) @patch("masu.external.downloader.azure.azure_service.AzureClientFactory", spec=AzureClientFactory) def test_get_cost_export_for_key_exception(self, mock_factory): """Test that function handles a raised exception.""" mock_factory.return_value = Mock( spec=AzureClientFactory, cloud_storage_account=Mock( return_value=Mock( spec=BlobServiceClient, get_container_client=Mock( return_value=Mock(spec=ContainerClient, list_blobs=Mock(side_effect=AdalError("test error"))) ), ) ), ) with self.assertRaises(AzureServiceError): service = AzureService( self.tenant_id, self.client_id, self.client_secret, self.resource_group_name, self.storage_account_name ) service.get_cost_export_for_key(key=FAKE.word(), container_name=FAKE.word()) @patch("masu.external.downloader.azure.azure_service.AzureClientFactory", spec=AzureClientFactory) def test_download_cost_report_exception(self, mock_factory): """Test that function handles a raised exception.""" key = FAKE.word() mock_blob = Mock(last_modified=Mock(date=Mock(return_value=datetime.now()))) name_attr = PropertyMock(return_value=key) type(mock_blob).name = name_attr # kludge to set name attribute on Mock mock_factory.return_value = Mock( spec=AzureClientFactory, cloud_storage_account=Mock( return_value=Mock( spec=BlobServiceClient, get_blob_client=Mock(side_effect=AdalError("test error")), get_container_client=Mock( return_value=Mock(spec=ContainerClient, list_blobs=Mock(return_value=[mock_blob])) ), ) ), ) with self.assertRaises(AzureServiceError): service = AzureService( self.tenant_id, self.client_id, self.client_secret, self.resource_group_name, self.storage_account_name ) service.download_cost_export(key=key, container_name=FAKE.word()) @patch("masu.external.downloader.azure.azure_service.AzureClientFactory", spec=AzureClientFactory) def test_get_latest_cost_export_for_path_exception(self, mock_factory): """Test that function handles a raised exception.""" mock_factory.return_value = Mock( spec=AzureClientFactory, cloud_storage_account=Mock( return_value=Mock( spec=BlobServiceClient, get_container_client=Mock( return_value=Mock(spec=ContainerClient, list_blobs=Mock(side_effect=AdalError("test error"))) ), ) ), ) with self.assertRaises(AzureServiceError): service = AzureService( self.tenant_id, self.client_id, self.client_secret, self.resource_group_name, self.storage_account_name ) service.get_latest_cost_export_for_path(report_path=FAKE.word(), container_name=FAKE.word())
examples/language-model/make_data.py
greedyuser/kur
867
11114616
""" Copyright 2016 Deepgram Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from vocab import * import json import os if not os.path.exists('./data/'): os.mkdir('./data/') def one_hot(v, ndim): v_one_hot = np.zeros( (len(v), ndim,) ) for i in range(len(v)): v_one_hot[i][v[i]] = 1.0 return v_one_hot x = [] y = [] all_chars = [] for book in [ 'pride_and_prejudice.txt', 'shakespeare.txt' ]: with open('books/%s' % book, 'r') as infile: chars = [ c for c in ' '.join(infile.read().lower().split()) if c in set(vocab) ] all_chars += [' '] all_chars += chars all_chars = list(' '.join(''.join(all_chars).split())) num_chars = len(all_chars) with open('cleaned.txt', 'w') as outfile: outfile.write(''.join(all_chars)) x, y = [], [] data_portions = [ ('train', 0.8), ('validate', 0.05), ('test', 0.05), ('evaluate', 0.05), ] dev = False if dev: # shrink data to make things go faster for i in range(len(data_portions)): data_portions[i] = ( data_portions[i][0], data_portions[i][1] * 0.1 ) max_i = sum([ int(round(len(all_chars) * fraction)) for name, fraction in data_portions ]) - seq_len for i in range(max_i): in_char_seq = all_chars[i: i + seq_len] # one hot representation sample_x = np.zeros((len(in_char_seq), n_vocab,)) for j, c in enumerate(in_char_seq): sample_x[j][char_to_int[c]] = 1 x.append(sample_x) sample_y = np.zeros(n_vocab) sample_y[char_to_int[all_chars[i + seq_len]]] = 1 y.append(sample_y) x, y = np.array(x).astype('int32'), np.array(y).astype('int32') start_i = 0 for name, fraction in data_portions: end_i = start_i + int(round(len(x) * fraction)) print(start_i, end_i) x0 = x[start_i: end_i] y0 = y[start_i: end_i] print('dims:') print(x0.shape) print(y0.shape) start_i = end_i with open('data/%s.jsonl' % name, 'w') as outfile: for sample_x, sample_y in zip(x0, y0): outfile.write(json.dumps({ 'in_seq': sample_x.tolist(), 'out_char': sample_y.tolist() })) outfile.write('\n') del x0, y0
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/testing/loader.py
jeikabu/lumberyard
1,738
11114623
<filename>dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/testing/loader.py import numba.unittest_support as unittest from unittest import loader, case from os.path import isdir, isfile, join, dirname, basename class TestLoader(loader.TestLoader): def __init__(self, topleveldir=None): super(TestLoader, self).__init__() self._top_level_dir = topleveldir or dirname(dirname(dirname(__file__))) def _find_tests(self, start_dir, pattern, namespace=False): # Upstream doesn't look for 'load_tests' in start_dir. if isdir(start_dir) and not namespace and isfile(join(start_dir, '__init__.py')): name = self._get_name_from_path(start_dir) package = self._get_module_from_name(name) load_tests = getattr(package, 'load_tests', None) tests = self.loadTestsFromModule(package) if load_tests is not None: try: yield load_tests(self, tests, pattern) except Exception as e: yield loader._make_failed_load_tests(package.__name__, e, self.suiteClass) else: for t in super(TestLoader, self)._find_tests(start_dir, pattern): yield t
tests/nnapi/specs/V1_2/sin_1D_float_nnfw.mod.py
periannath/ONE
255
11114640
# model model = Model() i1 = Input("op1", "TENSOR_FLOAT32", "{4}") #A vector of inputs i2 = Output("op2", "TENSOR_FLOAT32", "{4}") #A vector of outputs model = model.Operation("SIN", i1).To(i2) # Example 1. Input in operand 0, input0 = {i1: # input 0 [2.0, 90.0, 1.0, 0.012]} output0 = {i2: # output 0 [0.909297427, 0.893996664, 0.841470985, 0.011999712]} # Instantiate an example Example((input0, output0))
Algo and DSA/LeetCode-Solutions-master/Python/insufficient-nodes-in-root-to-leaf-paths.py
Sourav692/FAANG-Interview-Preparation
3,269
11114661
<gh_stars>1000+ # Time: O(n) # Space: O(h) # Definition for a binary tree node. class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Solution(object): def sufficientSubset(self, root, limit): """ :type root: TreeNode :type limit: int :rtype: TreeNode """ if not root: return None if not root.left and not root.right: return None if root.val < limit else root root.left = self.sufficientSubset(root.left, limit-root.val) root.right = self.sufficientSubset(root.right, limit-root.val) if not root.left and not root.right: return None return root
visualization/evanescent/createsample.py
mika314/simuleios
197
11114687
#-------------createsample.py--------------------------------------------------# # # create sample.py # # Purpose: To create sample blender data for testing voxel stuff with. # #------------------------------------------------------------------------------# #import bpy import numpy as np import struct # Files and data and such vfile = open("sample.raw",'wb') n = 64 vdata = [[[0 for k in range(3*n)] for j in range(3*n)] for i in range(3*n)] # creating initial gradient for viewing. 0 to 255 at x,y,z = box_length for q in range(1,4): for i in range(64): for j in range(64): for k in range(64): vdata[i*q][j*q][k*q] = (q-1) * 0.33 * 255 #vdata[i*q][j*q][k*q] = (0.11*(q-1)*(i/64) + 0.11*(q-1)*(j/64) + 0.11*(q-1)*(k/64))*255 # function to write data to .raw file for blender # note, the density muct be an integer between 0 and 255 def voxel_gen(vdata, vfile, ii): for q in range(1,4): for i in range(ii): for j in range(ii): for k in range(ii): vfile.write(struct.pack('B',abs(int(vdata[i*q][j*q][k*q])))) vfile.flush() vfile.close() voxel_gen(vdata, vfile, 64)
transistor/browsers/splash_browser.py
awesome-archive/transistor
232
11114781
<gh_stars>100-1000 # -*- coding: utf-8 -*- """ transistor.browsers.splash_browser ~~~~~~~~~~~~ This module implements the SplashBrowser class. Splash browser is a subclass of mechanicalsoup.StatefulBrowser which adds a few new methods and overrides most existing methods to make it work with Splash and/or Splash + Crawlera. It is important that the lua script be formatted with below: If using Splash + Crawlera: local entries = splash:history() local last_response = entries[#entries].response return { url = splash:url(), headers = last_response.headers, http_status = last_response.status, cookies = splash:get_cookies(), html = splash:html(), har=splash:har(), png=splash:png() } If only using Splash: return { url = splash:url(), cookies = splash:get_cookies(), html = splash:html(), har=splash:har(), png=splash:png() } Except, it is not mandatory to return the har, cookies, or png. :copyright: Copyright (C) 2018 by BOM Quote Limited :license: The MIT License, see LICENSE for more details. ~~~~~~~~~~~~ """ import bs4 import sys import random import gevent from requests import Response from requests.exceptions import Timeout from mechanicalsoup.stateful_browser import _BrowserState, StatefulBrowser from mechanicalsoup.utils import LinkNotFoundError from mechanicalsoup.form import Form from transistor.utility.utils import obsolete_setter from transistor.browsers.mixin import SplashBrowserMixin class SplashBrowser(StatefulBrowser, SplashBrowserMixin): """ Make a few changes and overrides to enable a mechanicalsoup StatefulBrowser to work with Splash alone or Splash + Crawlera. Note: `select_form`, `submit` and `submit_selected` need refactored to work with Splash. Not useful/broken at the moment. """ retry = 0 def __init__(self, *args, **kwargs): self._set_raw_content(content=b'') self._set_status(status='') self.__state = _BrowserState() self._test_true = False self.timeout_exception = False self.flags = kwargs.pop('flags', None) self.priority = kwargs.pop('priority', 0) if kwargs.pop('meta', None): self._meta = dict(kwargs.pop('meta')) else: self._meta = None self.callback = None self.errback = None super().__init__(*args, **kwargs) @property def meta(self): if self._meta is None: self._meta = {} return self._meta def _get_raw_content(self): return self._content def _set_raw_content(self, content): if content is None: self._content = b'' elif not isinstance(content, bytes): raise TypeError( "Response content must be bytes.") else: self._content = content raw_content = property(_get_raw_content, obsolete_setter(_set_raw_content, 'raw_content')) def _get_status(self): return self._status def _set_status(self, status): if status is None: self._status = '' else: self._status = status # this is the status code received from Splash service (NOT THE WEBSITE ENDPOINT) status = property(_get_status, obsolete_setter(_set_status, 'status')) def get_current_form(self): """Get the currently selected form as a :class:`Form` object. See :func:`select_form`. """ return self.__state.form def get_current_page(self): """Get the current page as a soup object.""" return self.__state.page def get_current_url(self): """Get the current url as a soup object. """ return self.__state.url def get_current_request(self): """Get the last sent python-requests <PreparedRequest[POST]> object.""" return self.__state.request def _update_state(self, response): """Dry up the setters from http post and get methods.""" self._set_raw_content(response.content) self._set_status(response.status_code) self._add_soup(response, self.soup_config) self.__state = _BrowserState(page=response.soup, url=response.url, request=response.request) def open(self, url, *args, **kwargs): """Open the URL and store the Browser's state in this object. All arguments are forwarded to :func:`SplashCrawleraBrowser.stateful_post`. :return: Forwarded from :func:`Browser.stateful_post`. """ if self.get_verbose() == 1: sys.stdout.write('.') sys.stdout.flush() elif self.get_verbose() >= 2: print(url) resp = self.stateful_post(url, *args, **kwargs) return resp def open_fake_page(self, page_text, status_code=None, url=None, soup_config=None): """Mock version of :func:`open`. Behave as if opening a page whose text is ``page_text``, but do not perform any network access. If ``url`` is set, pretend it is the page's URL. Useful mainly for testing. """ soup_config = soup_config or self.soup_config self._test_true = True self._set_raw_content(page_text.encode()) self._set_status(status_code) self.__state = _BrowserState( page=bs4.BeautifulSoup(page_text, **soup_config), url=url) def refresh(self): """Reload the current page with the same request as originally done. Any change (`select_form`, or any value filled-in in the form) made to the current page before refresh is discarded. :raise ValueError: Raised if no refreshable page is loaded, e.g., when using the shallow ``Browser`` wrapper functions. :return: Response of the request.""" old_request = self.__state.request if old_request is None: raise ValueError('The current page is not refreshable. Either no ' 'page is opened or low-level browser methods ' 'were used to do so.') resp = self.session.send(old_request) self._update_state(resp) return resp def select_form(self, selector="form", nr=0): """Select a form in the current page. :param selector: CSS selector or a bs4.element.Tag object to identify the form to select. If not specified, ``selector`` defaults to "form", which is useful if, e.g., there is only one form on the page. For ``selector`` syntax, see the `.select() method in BeautifulSoup <https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors>`__. :param nr: A zero-based index specifying which form among those that match ``selector`` will be selected. Useful when one or more forms have the same attributes as the form you want to select, and its position on the page is the only way to uniquely identify it. Default is the first matching form (``nr=0``). :return: The selected form as a soup object. It can also be retrieved later with :func:`get_current_form`. """ if isinstance(selector, bs4.element.Tag): if selector.name != "form": raise LinkNotFoundError self.__state.form = Form(selector) else: # nr is a 0-based index for consistency with mechanize found_forms = self.get_current_page().select(selector, limit=nr + 1) if len(found_forms) != nr + 1: if self.__debug: print('select_form failed for', selector) self.launch_browser() raise LinkNotFoundError() self.__state.form = Form(found_forms[-1]) return self.get_current_form() def submit(self, form, url=None, **kwargs): """ Prepares and sends a form request. NOTE: To submit a form with a :class:`StatefulBrowser` instance, it is recommended to use :func:`StatefulBrowser.submit_selected` instead of this method so that the browser state is correctly updated. :param form: The filled-out form. :param url: URL of the page the form is on. If the form action is a relative path, then this must be specified. :param \*\*kwargs: Arguments forwarded to `requests.Session.request <http://docs.python-requests.org/en/master/api/#requests.Session.request>`__. :return: `requests.Response <http://docs.python-requests.org/en/master/api/#requests.Response>`__ object with a *soup*-attribute added by :func:`add_soup`. """ if isinstance(form, Form): form = form.form response = self._request(form, url, **kwargs) self._add_soup(response, self.soup_config) return response def submit_selected(self, btnName=None, *args, **kwargs): """Submit the form that was selected with :func:`select_form`. :return: Forwarded from :func:`Browser.submit`. If there are multiple submit input/button elements, passes ``btnName`` to :func:`Form.choose_submit` on the current form to choose between them. All other arguments are forwarded to :func:`Browser.submit`. """ self.get_current_form().choose_submit(btnName) referer = self.get_current_url() if referer: if 'headers' in kwargs: kwargs['headers']['Referer'] = referer else: kwargs['headers'] = {'Referer': referer} resp = self.submit(self.__state.form, url=self.__state.url, **kwargs) # updates the state self._update_state(resp) return resp @staticmethod def __looks_like_html(blob): """Guesses entity type when Content-Type header is missing. Since Content-Type is not strictly required, some servers leave it out. """ text = blob.lstrip().lower() return text.startswith('<html') or text.startswith('<!doctype') def _add_soup(self, response, soup_config): """Attaches a soup object to a requests response.""" if self.resp_headers: if ("text/html" in self.resp_content_type_header or SplashBrowser.__looks_like_html(self.html)): response.soup = bs4.BeautifulSoup(self.html, **soup_config) elif SplashBrowser.__looks_like_html(self.html): response.soup = bs4.BeautifulSoup(self.html, **soup_config) else: response.soup = None return response def post(self, *args, **kwargs): """Straightforward wrapper around `requests.Session.post <http://docs.python-requests.org/en/master/api/#requests.Session.post>`__. :return: `requests.Response <http://docs.python-requests.org/en/master/api/#requests.Response>`__ object with a *soup*-attribute added by :func:`_add_soup`. """ try: response = self.session.post(*args, **kwargs) self._update_state(response) return response except Timeout: self.timeout_exception = True print(f'Timeout exception.') resp = Response() resp.status_code = 408 self._update_state(resp) return resp def stateful_post(self, url, *args, **kwargs): """Post to the URL and store the Browser's state, as received from the response object, in this object. All arguments are forwarded to :func:`SplashCrawleraBrowser.post`. :param: url: this will always be the Splash /execute endpoint :param: kwargs: callback: a user defined callable to call after the response is returned. :param: kwargs: errback: a user defined callable to call after the response is returned. :return: Forwarded from :func:`SplashCrawleraBrowser.post`. """ callback = kwargs.pop('callback', None) errback = kwargs.pop('errback', None) if callback is not None and not callable(callback): raise TypeError( f'callback must be a callable, got {type(callback).__name__}') if errback is not None and not callable(errback): raise TypeError( f'errback must be a callable, got {type(errback).__name__}') self.callback = callback self.errback = errback if self.get_verbose() == 1: sys.stdout.write('.') sys.stdout.flush() elif self.get_verbose() >= 2: print(url) resp = self.post(url, *args, **kwargs) response_callback = self._response_callback(resp) if self.callback: return response_callback, self.callback() return response_callback def _response_callback(self, resp): """ Callback for after response received. If status code is not 200 then recursively retry. Retry up to five times. Flesh this out and do different things based on status code. Probably, better to get a way from searching strings. :returns response object """ def recurse(response): """Recursively call""" return self._response_callback(response) print(f'self.ucontent[0:1000] -> {self.ucontent[0:1000]}') # print(f'info -> {self.resp_content["info"]}') # print(f'error -> {self.resp_content["error"]}') if resp.status_code == 200: return resp if self.retry < 5: # check for http503 in content which has a few different meanings # see note 'HANDLING BANS' about 503 bans when handling your own session: # https://support.scrapinghub.com/support/solutions/articles/22000188402-using-crawlera-sessions-to-make-multiple-requests-from-the-same-ip # crawlera sessions operate with (at least) 12 second between requests.. # ..so we wait a random time from 12 - 20 seconds, hope to improve yield # check for http503 in content: slavebanned, serverbusy, or noslaves if b'http503' in self.raw_content or '503' in str(self.status): self.retry += 1 print(f'resp_code -> 503') print(f'Retying attempt {self.retry}.') gevent.sleep(random.randint(12, 20)) response = self.refresh() return recurse(response) # check for http504 in content which means some sort of timeout if b'http504' in self.raw_content or '504' in str(self.status): self.retry += 1 print(f'resp_code -> 504') print(self.resp_headers) print(f'Retying attempt {self.retry}.') gevent.sleep(random.randint(12, 20)) response = self.refresh() return recurse(response) print(f'Retried {self.retry} times and all were unsuccessful.') return resp
chips/compiler/instruction_utils.py
dillonhuff/Chips-2.0
221
11114827
__author__ = "<NAME>" __copyright__ = "Copyright (C) 2012, <NAME>" __version__ = "0.1" from register_map import * def push(trace, instructions, reg): """Push the content of *reg(* onto the stack""" instructions.append({"trace": trace, "op": "push", "reg": reg}) return instructions def pop(trace, instructions, reg): """Pop one item off the stack into reg""" instructions.append({"trace": trace, "op": "pop", "reg": reg}) return instructions def store_object(trace, instructions, n, offset, local, leave_on_stack=False): """ Store an item into the specified location if n = 1 the item is taken from the result register if n = 2 the item is taken from result and result_hi register if n > 2 the item is taken from the stack if local is true, the location is assumed to be relative to the frame register if offset is not specified, assume that address is in address if leave_on_stack is true the item is copied to the specified location, but left on the stack. if the item was not on the stack in the first place, the value is left in the result registers either way. """ if offset is not None: if local: instructions.append({ "trace": trace, "op": "addl", "z": address, "a": frame, "literal": offset}) else: instructions.append({ "trace": trace, "op": "literal", "z": address, "literal": offset}) if n == 1: instructions.append({ "trace": trace, "op": "store", "b": result, "a": address}) elif n == 2: instructions.append({ "trace": trace, "op": "store", "b": result, "a": address}) instructions.append({ "trace": trace, "op": "addl", "z": address, "a": address, "literal": 1}) instructions.append({ "trace": trace, "op": "store", "b": result_hi, "a": address}) else: instructions.append({ "trace": trace, "op": "addl", "z": address, "a": address, "literal": n - 1}) if leave_on_stack: instructions.append({ "trace": trace, "op": "addl", "z": tos_copy, "a": tos, "literal": 0}) for i in range(n): instructions.append({ "trace": trace, "op": "addl", "z": tos_copy, "a": tos_copy, "literal": -1}) instructions.append({ "trace": trace, "op": "load", "z": result, "a": tos_copy}) instructions.append({ "trace": trace, "op": "store", "b": result, "a": address}) if i < n - 1: instructions.append({ "trace": trace, "op": "addl", "z": address, "a": address, "literal": -1}) else: for i in range(n): pop(trace, instructions, result) instructions.append({ "trace": trace, "op": "store", "b": result, "a": address}) if i < n - 1: instructions.append({ "trace": trace, "op": "addl", "z": address, "a": address, "literal": -1}) return instructions def load_object(trace, instructions, n, offset, local): """Load an item from the specified location if n = 1 the item is taken from the result register if n = 2 the item is taken from result and result_hi register if n > 2 the item is taken from the stack If local is true, the location is assumed to be relative to the frame register If offset is not specified, assume that address is in result. """ if offset is not None: if local: instructions.append({ "trace": trace, "op": "addl", "z": address, "a": frame, "literal": offset}) else: instructions.append({ "trace": trace, "op": "literal", "z": address, "literal": offset}) else: instructions.append({ "trace": trace, "op": "addl", "z": address, "a": result, "literal": 0}) if n == 1: instructions.append({ "trace": trace, "op": "load", "z": result, "a": address}) elif n == 2: instructions.append({ "trace": trace, "op": "load", "z": result, "a": address}) instructions.append({ "trace": trace, "op": "addl", "z": address, "a": address, "literal": 1}) instructions.append({ "trace": trace, "op": "load", "z": result_hi, "a": address}) else: for i in range(n): instructions.append({ "trace": trace, "op": "load", "z": result, "a": address}) if i < n - 1: instructions.append({ "trace": trace, "op": "addl", "z": address, "a": address, "literal": 1}) push(trace, instructions, result) return instructions def call(trace, instructions, label): instructions.append({ "trace": trace, "op": "addl", "z": return_frame, "a": frame, "literal": 0}) instructions.append({ "trace": trace, "op": "addl", "z": frame, "a": tos, "literal": 0}) instructions.append({ "trace": trace, "op": "call", "z": return_address, "label": label}) return instructions def _return(trace, instructions): instructions.append({ "trace": trace, "op": "addl", "z": tos, "a": frame, "literal": 0}) instructions.append({ "trace": trace, "op": "addl", "z": frame, "a": return_frame, "literal": 0}) instructions.append({ "trace": trace, "op": "return", "a": return_address}) return instructions
vnpy/gateway/bitmex/__init__.py
funrunskypalace/vnpy
19,529
11114832
from .bitmex_gateway import BitmexGateway
音频处理/音频尾部处理.py
liusongtao99/tools_python
130
11114876
#!/usr/bin/env python # encoding: utf-8 """ @version: v1.0 @author: xag @license: Apache Licence @contact: <EMAIL> @site: http://www.xingag.top @software: PyCharm @file: 尾部处理.py @time: 2021-01-02 09:59 @description:TODO """ from pydub import AudioSegment from pydub.playback import play video_path = './raw.mp4' def speed_change(sound, speed=1.0): """ 改变音频的速度 参考:https://www.thinbug.com/q/51434897 :param sound: :param speed: :return: """ sound_with_altered_frame_rate = sound._spawn(sound.raw_data, overrides={ "frame_rate": int(sound.frame_rate * speed) }) return sound_with_altered_frame_rate.set_frame_rate(sound.frame_rate) # 注意:加载视频不需要指定format audio_sgement = AudioSegment.from_file(video_path) # 截取尾部内容 audio_end = audio_sgement[70 * 1000:70 * 1000 + 3000] # 变慢速度,具体根据视频速度去调整 audio_end2 = speed_change(audio_end, 0.55) # 合并两段音频 audio_result = audio_end + audio_end2 # 尾部淡出处理 audio_result.fade_out(1000) # 实时播放,方便调试 # play(audio_result) # 视频导出 audio_result.export("result.wav", format='wav')
tests/test_sequence_tagger.py
ParikhKadam/flair
7,539
11114878
<filename>tests/test_sequence_tagger.py import pytest from torch.optim import SGD from torch.optim.adam import Adam import flair.datasets from flair.data import MultiCorpus, Sentence from flair.embeddings import FlairEmbeddings, WordEmbeddings from flair.models import SequenceTagger from flair.trainers import ModelTrainer turian_embeddings = WordEmbeddings("turian") flair_embeddings = FlairEmbeddings("news-forward-fast") @pytest.mark.integration def test_load_use_tagger(): loaded_model: SequenceTagger = SequenceTagger.load("ner-fast") sentence = Sentence("I love Berlin") sentence_empty = Sentence(" ") loaded_model.predict(sentence) loaded_model.predict([sentence, sentence_empty]) loaded_model.predict([sentence_empty]) # check that "Berlin" is predicted as LOC-Span assert len(sentence.get_spans("ner")) == 1 assert sentence.get_spans("ner")[0].text == "Berlin" assert sentence.get_spans("ner")[0].tag == "LOC" # check that "Berlin" is predicted as S-LOC-Token when force_token_predictions=True sentence = Sentence("I love Berlin") loaded_model.predict(sentence, force_token_predictions=True) assert sentence.get_token(3).text == "Berlin" assert sentence.get_token(3).tag == "S-LOC" del loaded_model loaded_model: SequenceTagger = SequenceTagger.load("pos") loaded_model.predict(sentence) loaded_model.predict([sentence, sentence_empty]) loaded_model.predict([sentence_empty]) del loaded_model @pytest.mark.integration def test_load_use_tagger_keep_embedding(): loaded_model: SequenceTagger = SequenceTagger.load("ner-fast") sentence = Sentence("I love Berlin") loaded_model.predict(sentence) for token in sentence: assert len(token.embedding.cpu().numpy()) == 0 loaded_model.predict(sentence, embedding_storage_mode="cpu") for token in sentence: assert len(token.embedding.cpu().numpy()) > 0 del loaded_model @pytest.mark.integration def test_all_tag_proba_embedding(): loaded_model: SequenceTagger = SequenceTagger.load("ner-fast") sentence = Sentence("I love Berlin") loaded_model.predict(sentence, return_probabilities_for_all_classes=True) for token in sentence: assert len(token.get_tags_proba_dist(loaded_model.tag_type)) == len(loaded_model.label_dictionary) score_sum = 0 for label in token.get_tags_proba_dist(loaded_model.tag_type): assert label.data_point == token score_sum += label.score assert abs(score_sum - 1.0) < 1.0e-5 @pytest.mark.integration def test_train_load_use_tagger(results_base_path, tasks_base_path): corpus = flair.datasets.ColumnCorpus(data_folder=tasks_base_path / "fashion", column_format={0: "text", 3: "ner"}) tag_dictionary = corpus.make_label_dictionary("ner") tagger: SequenceTagger = SequenceTagger( hidden_size=64, embeddings=turian_embeddings, tag_dictionary=tag_dictionary, tag_type="ner", use_crf=False, ) # initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) trainer.train( results_base_path, learning_rate=0.1, mini_batch_size=2, max_epochs=2, shuffle=False, ) del trainer, tagger, tag_dictionary, corpus loaded_model: SequenceTagger = SequenceTagger.load(results_base_path / "final-model.pt") sentence = Sentence("I love Berlin") sentence_empty = Sentence(" ") loaded_model.predict(sentence) loaded_model.predict([sentence, sentence_empty]) loaded_model.predict([sentence_empty]) # clean up results directory del loaded_model @pytest.mark.integration def test_train_load_use_tagger_empty_tags(results_base_path, tasks_base_path): corpus = flair.datasets.ColumnCorpus(data_folder=tasks_base_path / "fashion", column_format={0: "text", 2: "ner"}) tag_dictionary = corpus.make_label_dictionary("ner") tagger: SequenceTagger = SequenceTagger( hidden_size=64, embeddings=turian_embeddings, tag_dictionary=tag_dictionary, tag_type="ner", use_crf=False, ) # initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) trainer.train( results_base_path, learning_rate=0.1, mini_batch_size=2, max_epochs=2, shuffle=False, ) del trainer, tagger, tag_dictionary, corpus loaded_model: SequenceTagger = SequenceTagger.load(results_base_path / "final-model.pt") sentence = Sentence("I love Berlin") sentence_empty = Sentence(" ") loaded_model.predict(sentence) loaded_model.predict([sentence, sentence_empty]) loaded_model.predict([sentence_empty]) del loaded_model @pytest.mark.integration def test_train_load_use_tagger_disjunct_tags(results_base_path, tasks_base_path): corpus = flair.datasets.ColumnCorpus( data_folder=tasks_base_path / "fashion_disjunct", column_format={0: "text", 3: "ner"}, ) tag_dictionary = corpus.make_label_dictionary("ner") tagger: SequenceTagger = SequenceTagger( hidden_size=64, embeddings=turian_embeddings, tag_dictionary=tag_dictionary, tag_type="ner", use_crf=False, allow_unk_predictions=True, ) # initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) trainer.train( results_base_path, learning_rate=0.1, mini_batch_size=2, max_epochs=2, shuffle=False, ) @pytest.mark.integration def test_train_load_use_tagger_large(results_base_path, tasks_base_path): corpus = flair.datasets.UD_ENGLISH().downsample(0.05) tag_dictionary = corpus.make_label_dictionary("pos") tagger: SequenceTagger = SequenceTagger( hidden_size=64, embeddings=turian_embeddings, tag_dictionary=tag_dictionary, tag_type="pos", use_crf=False, ) # initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) trainer.train( results_base_path, learning_rate=0.1, mini_batch_size=32, max_epochs=2, shuffle=False, ) del trainer, tagger, tag_dictionary, corpus loaded_model: SequenceTagger = SequenceTagger.load(results_base_path / "final-model.pt") sentence = Sentence("I love Berlin") sentence_empty = Sentence(" ") loaded_model.predict(sentence) loaded_model.predict([sentence, sentence_empty]) loaded_model.predict([sentence_empty]) del loaded_model @pytest.mark.integration def test_train_load_use_tagger_flair_embeddings(results_base_path, tasks_base_path): corpus = flair.datasets.ColumnCorpus(data_folder=tasks_base_path / "fashion", column_format={0: "text", 3: "ner"}) tag_dictionary = corpus.make_label_dictionary("ner") tagger: SequenceTagger = SequenceTagger( hidden_size=64, embeddings=flair_embeddings, tag_dictionary=tag_dictionary, tag_type="ner", use_crf=False, ) # initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) trainer.train( results_base_path, learning_rate=0.1, mini_batch_size=2, max_epochs=2, shuffle=False, ) del trainer, tagger, tag_dictionary, corpus loaded_model: SequenceTagger = SequenceTagger.load(results_base_path / "final-model.pt") sentence = Sentence("I love Berlin") sentence_empty = Sentence(" ") loaded_model.predict(sentence) loaded_model.predict([sentence, sentence_empty]) loaded_model.predict([sentence_empty]) del loaded_model @pytest.mark.integration def test_train_load_use_tagger_adam(results_base_path, tasks_base_path): corpus = flair.datasets.ColumnCorpus(data_folder=tasks_base_path / "fashion", column_format={0: "text", 3: "ner"}) tag_dictionary = corpus.make_label_dictionary("ner") tagger: SequenceTagger = SequenceTagger( hidden_size=64, embeddings=turian_embeddings, tag_dictionary=tag_dictionary, tag_type="ner", use_crf=False, ) # initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) trainer.train( results_base_path, learning_rate=0.1, mini_batch_size=2, max_epochs=2, shuffle=False, optimizer=Adam, ) del trainer, tagger, tag_dictionary, corpus loaded_model: SequenceTagger = SequenceTagger.load(results_base_path / "final-model.pt") sentence = Sentence("I love Berlin") sentence_empty = Sentence(" ") loaded_model.predict(sentence) loaded_model.predict([sentence, sentence_empty]) loaded_model.predict([sentence_empty]) del loaded_model @pytest.mark.integration def test_train_load_use_tagger_multicorpus(results_base_path, tasks_base_path): corpus_1 = flair.datasets.ColumnCorpus(data_folder=tasks_base_path / "fashion", column_format={0: "text", 3: "ner"}) corpus_2 = flair.datasets.NER_GERMAN_GERMEVAL(base_path=tasks_base_path).downsample(0.1) corpus = MultiCorpus([corpus_1, corpus_2]) tag_dictionary = corpus.make_label_dictionary("ner") tagger: SequenceTagger = SequenceTagger( hidden_size=64, embeddings=turian_embeddings, tag_dictionary=tag_dictionary, tag_type="ner", use_crf=False, allow_unk_predictions=True, ) # initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) trainer.train( results_base_path, learning_rate=0.1, mini_batch_size=2, max_epochs=2, shuffle=False, ) del trainer, tagger, corpus loaded_model: SequenceTagger = SequenceTagger.load(results_base_path / "final-model.pt") sentence = Sentence("I love Berlin") sentence_empty = Sentence(" ") loaded_model.predict(sentence) loaded_model.predict([sentence, sentence_empty]) loaded_model.predict([sentence_empty]) del loaded_model @pytest.mark.integration def test_train_resume_tagger(results_base_path, tasks_base_path): corpus_1 = flair.datasets.ColumnCorpus(data_folder=tasks_base_path / "fashion", column_format={0: "text", 3: "ner"}) corpus_2 = flair.datasets.NER_GERMAN_GERMEVAL(base_path=tasks_base_path).downsample(0.1) corpus = MultiCorpus([corpus_1, corpus_2]) tag_dictionary = corpus.make_label_dictionary("ner") model: SequenceTagger = SequenceTagger( hidden_size=64, embeddings=turian_embeddings, tag_dictionary=tag_dictionary, tag_type="ner", use_crf=False, ) # train model for 2 epochs trainer = ModelTrainer(model, corpus) trainer.train(results_base_path, max_epochs=2, shuffle=False, checkpoint=True) del model # load the checkpoint model and train until epoch 4 checkpoint_model = SequenceTagger.load(results_base_path / "checkpoint.pt") trainer.resume(model=checkpoint_model, max_epochs=4) # clean up results directory del trainer @pytest.mark.integration def test_find_learning_rate(results_base_path, tasks_base_path): corpus = flair.datasets.ColumnCorpus(data_folder=tasks_base_path / "fashion", column_format={0: "text", 3: "ner"}) tag_dictionary = corpus.make_label_dictionary("ner") tagger: SequenceTagger = SequenceTagger( hidden_size=64, embeddings=turian_embeddings, tag_dictionary=tag_dictionary, tag_type="ner", use_crf=False, ) # initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) trainer.find_learning_rate(results_base_path, optimizer=SGD, iterations=5) del trainer, tagger, tag_dictionary, corpus
transformer_courses/BERT_distillation/PaddleSlim-develop/paddleslim/prune/idx_selector.py
wwhio/awesome-DeepLearning
1,150
11114880
<filename>transformer_courses/BERT_distillation/PaddleSlim-develop/paddleslim/prune/idx_selector.py """Define some functions to sort substructures of parameter by importance. """ # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import numpy as np from ..core import GraphWrapper from ..common import get_logger from ..core import Registry __all__ = ["IDX_SELECTOR"] IDX_SELECTOR = Registry('idx_selector') @IDX_SELECTOR.register def default_idx_selector(group, scores, ratios): """Get the pruned indices by scores of master tensor. This function return a list of parameters' pruned indices on given axis. Each element of list is a tuple with format (name, axis, indices) in which 'name' is parameter's name and 'axis' is the axis pruning on and `indices` is indices to be pruned. Args: group(Group): A group of pruning operations. scores(dict): The key is name of tensor, the value is a dict with axis as key and scores as value. ratios(dict): The pruned ratio of each tensor. The key is name of tensor and the value is the pruned ratio. Returns: list: pruned indices with format (name, axis, pruned_indices). """ # sort channels by the master convolution's score name = group.master["name"] axis = group.master["axis"] score = scores[name][axis] # get max convolution groups attribution max_groups = 1 for pruning_details in group.all_pruning_details(): groups = pruning_details.op.attr("groups") if groups is not None and groups > max_groups: max_groups = groups if max_groups > 1: score = score.reshape([max_groups, -1]) group_size = score.shape[1] # get score for each group of channels score = np.mean(score, axis=1) sorted_idx = score.argsort() ratio = ratios[name] pruned_num = int(round(len(sorted_idx) * ratio)) pruned_idx = sorted_idx[:pruned_num] # convert indices of channel groups to indices of channels. if max_groups > 1: correct_idx = [] for idx in pruned_idx: for offset in range(group_size): correct_idx.append(idx * group_size + offset) pruned_idx = correct_idx[:] ret = [] for _pruning_details in group.all_pruning_details(): ret.append((_pruning_details.name, _pruning_details.axis, pruned_idx, _pruning_details.transform)) return ret @IDX_SELECTOR.register def optimal_threshold(group, scores, ratios): """Get the pruned indices by scores of master tensor. This function return a list of parameters' pruned indices on given axis. Each element of list is a tuple with format (name, axis, indices) in which 'name' is parameter's name and 'axis' is the axis pruning on and `indices` is indices to be pruned. Args: group(Group): A group of pruning operations. scores(dict): The key is name of tensor, the value is a dict with axis as key and scores as value. ratios(dict): The pruned ratio of each tensor. The key is name of tensor and the value is the pruned ratio. Returns: list: pruned indices with format (name, axis, pruned_indices). """ # sort channels by the master tensor name = group.master["name"] axis = group.master["axis"] score = scores[name][axis] ratio = ratios[name] score[score < 1e-18] = 1e-18 score_sorted = np.sort(score) score_square = score_sorted**2 total_sum = score_square.sum() acc_sum = 0 for i in range(score_square.size): acc_sum += score_square[i] if acc_sum / total_sum > ratio: break th = (score_sorted[i - 1] + score_sorted[i]) / 2 if i > 0 else 0 pruned_idx = np.squeeze(np.argwhere(score < th)) idxs = [] for _pruning_details in group.all_pruning_details(): idxs.append((_pruning_details.name, _pruning_details.axis, pruned_idx, _pruning_details.transform)) return idxs
service/argo/rest_api.py
simpsonw/atmosphere
197
11114891
<reponame>simpsonw/atmosphere """ Client to access Argo REST API """ import json import requests from threepio import celery_logger as logger from service.argo.exception import ResponseNotJSON try: from json import JSONDecodeError except ImportError: # python2 does not has JSONDecodeError JSONDecodeError = ValueError class ArgoAPIClient: """ REST API Client for Argo. A thin layer of abstraction over Argo REST API endpoints """ def __init__(self, api_host, port, k8s_token, wf_namespace, verify=True): """ init the API client with all necessary credentials Args: api_host (str): hostname of where Argo server is hosted port (int): port of Argo server k8s_token (str): k8s token to authenticate with Argo server wf_namespace (str): k8s namespace used for the workflow verify (bool): verify SSL/TLS cert or not """ self._host = api_host self._port = port self._base_url = "https://{}:{}".format(self._host, self._port) self._token = k8s_token self._namespace = wf_namespace self._verify = verify def get_workflow(self, wf_name, fields=""): """ Endpoint for fetching a workflow Args: wf_name (str): name of the workflow fields (str): fields to be included in the response Returns: dict: response text as JSON object """ api_url = "/api/v1/workflows/{}/{}" api_url = api_url.format(self._namespace, wf_name) if fields: api_url = "{}?fields={}".format(api_url, fields) json_resp = self._req("get", api_url) return json_resp def list_workflow(self): """ Endpoint for fetching a list of workflows Returns: dict: response text as JSON object """ api_url = "/api/v1/workflows/" + self._namespace json_resp = self._req("get", api_url) return json_resp def run_workflow(self, wf_json): """ Endpoint for running a workflow Args: wf_json (dict): workflow definition as JSON object Returns: dict: response text as JSON object """ api_url = "/api/v1/workflows/" + self._namespace json_data = {} json_data["namespace"] = self._namespace json_data["serverDryRun"] = False json_data["workflow"] = wf_json json_resp = self._req("post", api_url, json_data=json_data) return json_resp def get_log_for_pod_in_workflow( self, wf_name, pod_name, container_name="main" ): """ Get the logs of a pod in a workflow Args: wf_name (str): name of the workflow pod_name (str): name of the pod container_name (str, optional): name of the container. Defaults to "main". Returns: list: a list of lines of logs """ api_url = "/api/v1/workflows/{}/{}/{}/log?logOptions.timestamps=true&logOptions.container={}" api_url = api_url.format( self._namespace, wf_name, pod_name, container_name ) resp = self._req("get", api_url, json_resp=False) logs = [] # each line is a json obj for line in resp.split("\n"): try: line = line.strip() if not line: continue log_json = json.loads(line) if "result" not in log_json or "content" not in log_json[ "result"]: continue logs.append(log_json["result"]["content"]) except Exception: continue return logs def get_workflow_template(self, wf_temp_name): """ fetch a workflow template by its name Args: wf_temp_name (str): name of the workflow template Returns: dict: response text as JSON object """ api_url = "/api/v1/workflows-templates/{}/{}" api_url = api_url.format(self._namespace, wf_temp_name) json_resp = self._req("get", api_url) return json_resp def list_workflow_templates(self): """ fetch a list of workflow templates Returns: dict: response text as JSON object """ api_url = "/api/v1/workflows-templates/{}" api_url = api_url.format(self._namespace) json_resp = self._req("get", api_url) return json_resp def create_workflow_template(self, wf_temp_def_json): """ create workflow template Args: wf_temp_def (dict): definition of the workflow template Returns: dict: response text as JSON object """ api_url = "/api/v1/workflow-templates/" + self._namespace json_data = {} json_data["namespace"] = self._namespace json_data["template"] = wf_temp_def_json json_resp = self._req("post", api_url, json_data=json_data) return json_resp def update_workflow_template(self, wf_temp_name, wf_temp_def_json): """ update workflow template with the given name Args: wf_temp_def (dict): definition of the workflow template Returns: dict: response text as JSON object """ api_url = "/api/v1/workflow-templates/{}/{}".format( self._namespace, wf_temp_name ) json_data = {} json_data["namespace"] = self._namespace json_data["template"] = wf_temp_def_json json_resp = self._req("put", api_url, json_data=json_data) return json_resp def submit_workflow_template(self, wf_temp_name, wf_param=[]): """ submit a workflow template for execution with parameters. this will create a workflow. Args: wf_temp_name (str): name of the workflow template wf_param ([str]): list of parameters, in the form of ["NAME1=VAL1", "NAME2=VAL2"] Returns: dict: response text as JSON object """ api_url = "/api/v1/workflows/{}/submit".format(self._namespace) json_data = {} json_data["namespace"] = self._namespace json_data["resourceKind"] = "WorkflowTemplate" json_data["resourceName"] = wf_temp_name json_data["submitOptions"] = {} json_data["submitOptions"]["parameters"] = wf_param json_resp = self._req("post", api_url, json_data=json_data) return json_resp def delete_workflow_template(self, wf_temp_name): """ delete a workflow templates with given name Args: wf_temp_name (str): name of the workflow template Returns: dict: response text as JSON object """ api_url = "/api/v1/workflow-templates/{}/{}" api_url = api_url.format(self._namespace, wf_temp_name) json_resp = self._req("delete", api_url) return json_resp def _req( self, method, url, json_data={}, additional_headers={}, json_resp=True ): """ send a request with given method to the given url Args: method (str): HTTP method url (str): api url to send the request to json_data (dict, optional): JSON payload. Defaults to None. additional_header (dict, optional): additional headers. Defaults to None. json_resp (bool, optional): if response is json. Defaults to True. Raises: ResponseNotJSON: raised when the response is not JSON HTTPError: requert failed Returns: dict: response text as JSON object """ try: headers = {} headers["Host"] = self.host headers["Accept"] = "application/json;q=0.9,*/*;q=0.8" headers["Content-Type"] = "application/json" if self._token: headers["Authorization"] = "Bearer " + self._token if additional_headers: headers.update(additional_headers) full_url = self.base_url + url requests_func = _http_method(method) if json_data: resp = requests_func( full_url, headers=headers, json=json_data, verify=self.verify ) else: resp = requests_func( full_url, headers=headers, verify=self.verify ) resp.raise_for_status() if json_resp: return json.loads(resp.text) return resp.text except JSONDecodeError as exc: msg = "ARGO - REST API, {}, {}".format(type(exc), resp.text) logger.exception(msg) raise ResponseNotJSON("ARGO, Fail to parse response body as JSON") except requests.exceptions.HTTPError as exc: msg = "ARGO - REST API, {}, {}".format(type(exc), resp.text) logger.exception(msg) raise exc @property def host(self): """ hostname of the Argo API Server. e.g. localhost Returns: str: hostname of the Argo API Server """ return self._host @property def base_url(self): """ base url for the Argo API Server. e.g. http://localhost:1234 Returns: str: base url for the Argo API Server """ return self._base_url @property def namespace(self): """ k8s namespace used for the workflow Returns: str: k8s namespace """ return self._namespace @property def verify(self): """ whether to verify SSL/TLS cert of api host or not Returns: bool: whether to verify SSL/TLS cert of api host or not """ return self._verify def _http_method(method_str): """ Return function for given HTTP Method from requests library Args: method_str (str): HTTP method, "get", "post", etc. Returns: function: requests.get, requests.post, etc. None if no match """ if method_str == "get": return requests.get if method_str == "post": return requests.post if method_str == "delete": return requests.delete if method_str == "put": return requests.put if method_str == "options": return requests.options return None
ochre/select_vudnc_files.py
KBNLresearch/ochre
113
11114898
#!/usr/bin/env python import click import os import json from nlppln.utils import cwl_file @click.command() @click.argument('dir_in', type=click.Path(exists=True)) def command(dir_in): files_out = [] newspapers = ['ad1951', 'nrc1950', 't1950', 'tr1950', 'vk1951'] for np in newspapers: path = os.path.join(dir_in, np) for f in os.listdir(path): fi = os.path.join(path, f) if fi.endswith('.folia.xml'): files_out.append(cwl_file(fi)) stdout_text = click.get_text_stream('stdout') stdout_text.write(json.dumps({'out_files': files_out})) if __name__ == '__main__': command()
setup.py
DuncanBetts/flask-redis
409
11114906
import codecs import os import re from setuptools import find_packages, setup NAME = "flask-redis" KEYWORDS = ["flask", "redis"] CLASSIFIERS = [ "Development Status :: 4 - Beta", "Environment :: Web Environment", "Framework :: Flask", "Intended Audience :: Developers", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Internet :: WWW/HTTP :: Dynamic Content", "Topic :: Software Development :: Libraries :: Python Modules", ] PROJECT_URLS = { "Bug Tracker": "https://github.com/underyx/flask-redis/issues", "Source Code": "https://github.com/underyx/flask-redis", } INSTALL_REQUIRES = ["Flask>=0.8", "redis>=2.7.6"] EXTRAS_REQUIRE = {"tests": ["coverage", "pytest", "pytest-mock"]} EXTRAS_REQUIRE["dev"] = EXTRAS_REQUIRE["tests"] + ["pre-commit"] def read(*parts): """ Build an absolute path from *parts* and return the contents of the resulting file. Assumes UTF-8 encoding. """ here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, *parts), "rb", "utf-8") as f: return f.read() META_FILE = read("flask_redis", "__init__.py") def find_meta(meta): """Extract __*meta*__ from META_FILE.""" meta_match = re.search( r"^__{meta}__ = ['\"]([^'\"]*)['\"]".format(meta=meta), META_FILE, re.M ) if meta_match: return meta_match.group(1) raise RuntimeError("Unable to find __{meta}__ string.".format(meta=meta)) setup( name=find_meta("title"), description=find_meta("description"), version=find_meta("version"), url=find_meta("url"), author=find_meta("author"), author_email=find_meta("email"), maintainer=find_meta("author"), maintainer_email=find_meta("email"), download_url=find_meta("url") + "releases", keywords=KEYWORDS, long_description=( read("README.md") + "\n\n" + re.sub("^#", "##", read("CHANGELOG.md")) + "\n\n" + re.sub("^#", "##", read("AUTHORS.md")) ), long_description_content_type="text/markdown", packages=find_packages(), classifiers=CLASSIFIERS, install_requires=INSTALL_REQUIRES, extras_require=EXTRAS_REQUIRE, python_requires=">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*", include_package_data=True, )
test/package/test_trace_dep/__init__.py
Hacky-DH/pytorch
60,067
11114935
<filename>test/package/test_trace_dep/__init__.py<gh_stars>1000+ import torch import yaml class SumMod(torch.nn.Module): def forward(self, inp): return torch.sum(inp)
src/genie/libs/parser/ios/show_vlan.py
nujo/genieparser
204
11114948
<reponame>nujo/genieparser """ IOS Parsers """ # genieparser from genie.libs.parser.iosxe.show_vlan import ShowVlan as ShowVlan_iosxe, \ ShowVlanMtu as ShowVlanMtu_iosxe,\ ShowVlanAccessMap as ShowVlanAccessMap_iosxe,\ ShowVlanRemoteSpan as ShowVlanRemoteSpan_iosxe,\ ShowVlanFilter as ShowVlanFilter_iosxe class ShowVlan(ShowVlan_iosxe): pass class ShowVlanMtu(ShowVlanMtu_iosxe): pass class ShowVlanAccessMap(ShowVlanAccessMap_iosxe): pass class ShowVlanRemoteSpan(ShowVlanRemoteSpan_iosxe): pass class ShowVlanFilter(ShowVlanFilter_iosxe): pass
gengine/maintenance/scripts/generate_revision.py
greck2908/gamification-engine
347
11114972
# -*- coding: utf-8 -*- import sys import os import pyramid_dogpile_cache from pyramid.config import Configurator from pyramid.paster import ( get_appsettings, setup_logging, ) from pyramid.scripts.common import parse_vars from sqlalchemy import engine_from_config def usage(argv): cmd = os.path.basename(argv[0]) print('usage: %s <config_uri> <message> [var=value]\n' '(example: "%s production.ini new_table_xy_created")' % (cmd, cmd)) sys.exit(1) def main(argv=sys.argv): if len(argv) < 3: usage(argv) config_uri = argv[1] message = argv[2] options = parse_vars(argv[3:]) setup_logging(config_uri) settings = get_appsettings(config_uri, options=options) durl = os.environ.get("DATABASE_URL") # heroku if durl: settings['sqlalchemy.url'] = durl murl = os.environ.get("MEMCACHED_URL") if murl: settings['urlcache_url'] = murl revision(settings, message, options) def revision(settings, message, options): engine = engine_from_config(settings, 'sqlalchemy.') config = Configurator(settings=settings) pyramid_dogpile_cache.includeme(config) from gengine.metadata import ( init_session, init_declarative_base, init_db ) init_session() init_declarative_base() init_db(engine) from gengine.app.cache import init_caches init_caches() from gengine.metadata import ( Base, ) if options.get("reset_db", False): Base.metadata.drop_all(engine) engine.execute("DROP SCHEMA IF EXISTS public CASCADE") engine.execute("CREATE SCHEMA IF NOT EXISTS public") from alembic.config import Config from alembic import command alembic_cfg = Config(attributes={ 'engine': engine, 'schema': 'public' }) script_location = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'app/alembic' ) alembic_cfg.set_main_option("script_location", script_location) command.revision(alembic_cfg,message,True) engine.dispose() if __name__ == '__main__': main()
mayan/apps/tags/__init__.py
eshbeata/open-paperless
2,743
11115003
from __future__ import unicode_literals default_app_config = 'tags.apps.TagsApp'
InnerEye/Common/resource_monitor.py
JacopoTeneggi/InnerEye-DeepLearning
402
11115019
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ from __future__ import annotations import logging import time from dataclasses import dataclass from multiprocessing import Process from pathlib import Path from typing import Dict, List, Tuple import GPUtil import pandas as pd import psutil import tensorboardX import torch from GPUtil import GPU from InnerEye.ML.utils.ml_util import is_gpu_available COL_GPU = "gpu" COL_METRIC = "metric" COL_VALUE = "value" def memory_in_gb(bytes: int) -> float: """ Converts a memory amount in bytes to gigabytes. :param bytes: :return: """ gb = 2 ** 30 return bytes / gb @dataclass class GpuUtilization: # The numeric ID of the GPU id: int # GPU load, as a number between 0 and 1 load: float # Memory utilization, as a number between 0 and 1 mem_util: float # Allocated memory by pytorch mem_allocated_gb: float # Reserved memory by pytorch mem_reserved_gb: float # Number of observations that are stored in the present object count: int def __add__(self, other: GpuUtilization) -> GpuUtilization: return GpuUtilization( id=self.id, load=self.load + other.load, mem_util=self.mem_util + other.mem_util, mem_allocated_gb=self.mem_allocated_gb + other.mem_allocated_gb, mem_reserved_gb=self.mem_reserved_gb + other.mem_reserved_gb, count=self.count + other.count ) def max(self, other: GpuUtilization) -> GpuUtilization: """ Computes the metric-wise maximum of the two GpuUtilization objects. :param other: :return: """ return GpuUtilization( # Effectively ignore ID. We could enforce consistent IDs, but then we could not compute overall max. id=self.id, load=max(self.load, other.load), mem_util=max(self.mem_util, other.mem_util), mem_allocated_gb=max(self.mem_allocated_gb, other.mem_allocated_gb), mem_reserved_gb=max(self.mem_reserved_gb, other.mem_reserved_gb), # Max does not make sense for the count field, hence just add up to see how many items we have done max for count=self.count + other.count ) def average(self) -> GpuUtilization: """ Returns a GPU utilization object that contains all metrics of the present object, divided by the number of observations. :return: """ return GpuUtilization( id=self.id, load=self.load / self.count, mem_util=self.mem_util / self.count, mem_allocated_gb=self.mem_allocated_gb / self.count, mem_reserved_gb=self.mem_reserved_gb / self.count, count=1 ) @property def name(self) -> str: """ Gets a string name for the GPU that the present objet describes, "GPU1" for GPU with id == 1. """ return f"GPU{self.id}" def enumerate(self, prefix: str = "") -> List[Tuple[str, float]]: """ Lists all metrics stored in the present object, as (metric_name, value) pairs suitable for logging in Tensorboard. :param prefix: If provided, this string as used as an additional prefix for the metric name itself. If prefix is "max", the metric would look like "maxLoad_Percent" :return: A list of (name, value) tuples. """ return [ (f'{prefix}MemUtil_Percent', round(self.mem_util * 100, 2)), (f'{prefix}Load_Percent', round(self.load * 100, 2)), (f'{prefix}MemReserved_GB', round(self.mem_reserved_gb, 4)), (f'{prefix}MemAllocated_GB', round(self.mem_allocated_gb, 4)) ] @staticmethod def from_gpu(gpu: GPU) -> GpuUtilization: """ Creates a GpuUtilization object from data coming from the gputil library. :param gpu: GPU diagnostic data from gputil. :return: """ return GpuUtilization( id=gpu.id, load=gpu.load, mem_util=gpu.memoryUtil, mem_allocated_gb=memory_in_gb(torch.cuda.memory_allocated(int(gpu.id))), mem_reserved_gb=memory_in_gb(torch.cuda.memory_reserved(int(gpu.id))), count=1 ) RESOURCE_MONITOR_AGGREGATE_METRICS = "aggregate_resource_usage.csv" class ResourceMonitor(Process): """ Monitor and log GPU and CPU stats in TensorBoard in a separate process. """ def __init__(self, interval_seconds: int, tensorboard_folder: Path, csv_results_folder: Path): """ Creates a process that will monitor CPU and GPU utilization. :param interval_seconds: The interval in seconds at which usage statistics should be written. :param tensorboard_folder: The path in which to create a tensorboard logfile. :param csv_results_folder: The path in which the CSV file with aggregate metrics will be created. When running in AzureML, this should NOT reside inside the /logs folder. """ super().__init__(name="Resource Monitor", daemon=True) self._interval_seconds = interval_seconds self.tensorboard_folder = tensorboard_folder self.gpu_aggregates: Dict[int, GpuUtilization] = dict() self.gpu_max: Dict[int, GpuUtilization] = dict() self.writer = tensorboardX.SummaryWriter(str(self.tensorboard_folder)) self.step = 0 self.aggregate_metrics: List[str] = [] self.aggregate_metrics_file = csv_results_folder / RESOURCE_MONITOR_AGGREGATE_METRICS def log_to_tensorboard(self, label: str, value: float) -> None: """ Write a scalar metric value to Tensorboard, marked with the present step. :param label: The name of the metric. :param value: The value. """ self.writer.add_scalar(label, value, global_step=self.step) def update_metrics(self, gpus: List[GPU]) -> None: """ Updates the stored GPU utilization metrics with the current status coming from gputil, and logs them to Tensorboard. :param gpus: The current utilization information, read from gputil, for all available GPUs. """ for gpu in gpus: gpu_util = GpuUtilization.from_gpu(gpu) for (metric_name, value) in gpu_util.enumerate(): self.log_to_tensorboard(f"{gpu_util.name}/{metric_name}", value) id = gpu_util.id # Update the total utilization if id in self.gpu_aggregates: self.gpu_aggregates[id] = self.gpu_aggregates[id] + gpu_util else: self.gpu_aggregates[id] = gpu_util # Update the maximum utilization if id in self.gpu_max: self.gpu_max[id] = self.gpu_max[id].max(gpu_util) else: self.gpu_max[id] = gpu_util def run(self) -> None: if self._interval_seconds <= 0: logging.warning("Resource monitoring requires an interval that is larger than 0 seconds, but " f"got: {self._interval_seconds}. Exiting.") self.kill() logging.info(f"Process '{self.name}' started with pid: {self.pid}") gpu_available = is_gpu_available() while True: if gpu_available: self.update_metrics(GPUtil.getGPUs()) # log the CPU utilization self.log_to_tensorboard('CPU/Load_Percent', psutil.cpu_percent(interval=None)) self.log_to_tensorboard('CPU/MemUtil_Percent', psutil.virtual_memory()[2]) self.step += 1 self.store_to_file() # pause the thread for the requested delay time.sleep(self._interval_seconds) def store_to_file(self) -> None: """ Writes the current aggregate metrics (average and maximum) to a file inside the csv_results_folder. """ aggregate_metrics: List[str] = [f"{COL_GPU},{COL_METRIC},{COL_VALUE}"] for util in self.gpu_aggregates.values(): for (metric, value) in util.average().enumerate(): aggregate_metrics.append(f"{util.name},{metric},{value}") for util in self.gpu_max.values(): for (metric, value) in util.enumerate(prefix="Max"): aggregate_metrics.append(f"{util.name},{metric},{value}") self.aggregate_metrics_file.write_text("\n".join(aggregate_metrics)) def read_aggregate_metrics(self) -> Dict[str, Dict[str, float]]: """ Reads the file containing aggregate metrics, and returns them parsed as nested dictionaries mapping from GPU name to metric name to value. """ if not self.aggregate_metrics_file.is_file(): return dict() df = pd.read_csv(self.aggregate_metrics_file) pivot = df.pivot(index=COL_GPU, columns=COL_METRIC, values=COL_VALUE) result = {index: series.to_dict() for index, series in pivot.iterrows()} return result
src/python/k4a/tests/test_functional_api_azurekinect.py
seanyen/Azure-Kinect-Sensor-SDK
1,120
11115085
''' test_device_azurekinect.py Tests for the Device class for Azure Kinect device. Copyright (C) Microsoft Corporation. All rights reserved. ''' import unittest import copy from time import sleep import numpy as np import k4a import test_config def k4a_device_set_and_get_color_control( device:k4a.Device, color_control_command:k4a.EColorControlCommand): saved_value = 0 # Get the step size. supports_auto = device.color_ctrl_cap.__dict__[color_control_command].supports_auto min_value = device.color_ctrl_cap.__dict__[color_control_command].min_value max_value = device.color_ctrl_cap.__dict__[color_control_command].max_value step_value = device.color_ctrl_cap.__dict__[color_control_command].step_value default_value = device.color_ctrl_cap.__dict__[color_control_command].default_value mode = k4a.EColorControlMode.MANUAL # Read the original value. (saved_value, mode) = device.get_color_control(color_control_command) # Write a new value. new_value = 0 if (saved_value + step_value <= max_value): new_value = saved_value + step_value else: new_value = saved_value - step_value status1 = device.set_color_control( color_control_command, mode, new_value) # Read back the value to check that it was written. (new_value_readback, mode) = device.get_color_control(color_control_command) # Write the original saved value. status2 = device.set_color_control( color_control_command, mode, saved_value) # Read back the value to check that it was written. (saved_value_readback, mode) = device.get_color_control(color_control_command) return (status1, status2, saved_value, saved_value_readback, new_value, new_value_readback) class Test_Functional_API_Device_AzureKinect(unittest.TestCase): '''Test Device class for Azure Kinect device. ''' @classmethod def setUpClass(cls): cls.device = k4a.Device.open() assert(cls.device is not None) cls.lock = test_config.glb_lock @classmethod def tearDownClass(cls): # Stop the cameras and imus before closing device. cls.device.stop_cameras() cls.device.stop_imu() cls.device.close() del cls.device def test_functional_fast_api_open_twice_expected_fail(self): device2 = k4a.Device.open() self.assertIsNone(device2) device2 = k4a.Device.open(1000000) self.assertIsNone(device2) def test_functional_fast_api_device_shallow_copy(self): device2 = copy.copy(self.device) self.assertIsNone(device2) def test_functional_fast_api_device_deep_copy(self): device2 = copy.deepcopy(self.device) self.assertIsNone(device2) def test_functional_fast_api_get_serial_number(self): serial_number = self.device.serial_number self.assertIsInstance(serial_number, str) self.assertGreater(len(serial_number), 0) # Helper method for test_set_serial_number(). @staticmethod def set_serial_number(device:k4a.Device, serial_number:str): device.serial_number = serial_number def test_functional_fast_api_set_serial_number(self): self.assertRaises(AttributeError, Test_Functional_API_Device_AzureKinect.set_serial_number, self.device, "not settable") def test_functional_fast_api_get_capture(self): # Start the cameras. status = self.device.start_cameras( k4a.DEVICE_CONFIG_BGRA32_2160P_WFOV_UNBINNED_FPS15) self.assertEqual(status, k4a.EStatus.SUCCEEDED) # Get a capture, waiting indefinitely. capture = self.device.get_capture(-1) self.assertIsNotNone(capture) # Stop the cameras. self.device.stop_cameras() def test_functional_fast_api_get_imu_sample(self): # Start the cameras. status = self.device.start_cameras( k4a.DEVICE_CONFIG_BGRA32_2160P_WFOV_UNBINNED_FPS15) self.assertEqual(status, k4a.EStatus.SUCCEEDED) # Start the imu. status = self.device.start_imu() self.assertEqual(status, k4a.EStatus.SUCCEEDED) # Get an imu sample, waiting indefinitely. imu_sample = self.device.get_imu_sample(-1) self.assertIsNotNone(imu_sample) # Stop the cameras and imu. self.device.stop_cameras() self.device.stop_imu() def test_functional_fast_api_get_serial_number(self): serial_number = self.device.serial_number self.assertIsInstance(serial_number, str) self.assertNotEqual(len(serial_number), 0) def test_functional_fast_api_get_hardware_version(self): hardware_version = self.device.hardware_version self.assertIsInstance(hardware_version, k4a.HardwareVersion) self.assertNotEqual(str(hardware_version), 0) def test_functional_fast_api_get_color_ctrl_cap(self): color_ctrl_cap = self.device.color_ctrl_cap self.assertNotEqual(str(color_ctrl_cap), 0) def test_functional_fast_api_get_sync_out_connected(self): sync_out_connected = self.device.sync_out_connected self.assertIsInstance(sync_out_connected, bool) def test_functional_fast_api_get_sync_in_connected(self): sync_in_connected = self.device.sync_in_connected self.assertIsInstance(sync_in_connected, bool) def test_functional_fast_api_start_stop_cameras(self): status = self.device.start_cameras(k4a.DEVICE_CONFIG_BGRA32_2160P_WFOV_UNBINNED_FPS15) self.assertEqual(status, k4a.EStatus.SUCCEEDED) self.device.stop_cameras() def test_functional_fast_api_start_stop_imu(self): status = self.device.start_cameras(k4a.DEVICE_CONFIG_BGRA32_2160P_WFOV_UNBINNED_FPS15) self.assertEqual(status, k4a.EStatus.SUCCEEDED) status = self.device.start_imu() self.assertEqual(status, k4a.EStatus.SUCCEEDED) self.device.stop_imu() self.device.stop_cameras() def test_functional_fast_api_get_color_control(self): color_control_commands = [ k4a.EColorControlCommand.BACKLIGHT_COMPENSATION, k4a.EColorControlCommand.BRIGHTNESS, k4a.EColorControlCommand.CONTRAST, k4a.EColorControlCommand.EXPOSURE_TIME_ABSOLUTE, k4a.EColorControlCommand.GAIN, k4a.EColorControlCommand.POWERLINE_FREQUENCY, k4a.EColorControlCommand.SATURATION, k4a.EColorControlCommand.SHARPNESS, k4a.EColorControlCommand.WHITEBALANCE ] for command in color_control_commands: with self.subTest(command = command): (value, mode) = self.device.get_color_control(command) self.assertIsNotNone(value) self.assertIsNotNone(mode) def test_functional_fast_api_set_color_control(self): color_control_commands = [ k4a.EColorControlCommand.BACKLIGHT_COMPENSATION, k4a.EColorControlCommand.BRIGHTNESS, k4a.EColorControlCommand.CONTRAST, #k4a.EColorControlCommand.EXPOSURE_TIME_ABSOLUTE, k4a.EColorControlCommand.GAIN, k4a.EColorControlCommand.POWERLINE_FREQUENCY, k4a.EColorControlCommand.SATURATION, k4a.EColorControlCommand.SHARPNESS, #k4a.EColorControlCommand.WHITEBALANCE ] for command in color_control_commands: with self.subTest(command = command): (status1, status2, saved_value, saved_value_readback, new_value, new_value_readback) = \ k4a_device_set_and_get_color_control(self.device, command) self.assertTrue(k4a.K4A_SUCCEEDED(status1)) self.assertTrue(k4a.K4A_SUCCEEDED(status2)) self.assertEqual(saved_value, saved_value_readback) self.assertEqual(new_value, new_value_readback) self.assertNotEqual(saved_value, new_value) def test_functional_fast_api_get_raw_calibration(self): raw_calibration = self.device.get_raw_calibration() self.assertIsNotNone(raw_calibration) def test_functional_fast_api_get_calibration(self): depth_modes = [ k4a.EDepthMode.NFOV_2X2BINNED, k4a.EDepthMode.NFOV_UNBINNED, k4a.EDepthMode.WFOV_2X2BINNED, k4a.EDepthMode.WFOV_UNBINNED, k4a.EDepthMode.PASSIVE_IR, ] color_resolutions = [ k4a.EColorResolution.RES_3072P, k4a.EColorResolution.RES_2160P, k4a.EColorResolution.RES_1536P, k4a.EColorResolution.RES_1440P, k4a.EColorResolution.RES_1080P, k4a.EColorResolution.RES_720P, ] for depth_mode in depth_modes: for color_resolution in color_resolutions: with self.subTest( depth_mode = depth_mode, color_resolution = color_resolution): calibration = self.device.get_calibration( depth_mode, color_resolution) self.assertIsNotNone(calibration) self.assertIsInstance(calibration, k4a.Calibration) class Test_Functional_API_Capture_AzureKinect(unittest.TestCase): '''Test Capture class for Azure Kinect device. ''' @classmethod def setUpClass(cls): cls.device = k4a.Device.open() assert(cls.device is not None) cls.lock = test_config.glb_lock @classmethod def tearDownClass(cls): # Stop the cameras and imus before closing device. cls.device.stop_cameras() cls.device.stop_imu() cls.device.close() del cls.device def setUp(self): status = self.device.start_cameras( k4a.DEVICE_CONFIG_BGRA32_2160P_WFOV_UNBINNED_FPS15) self.assertEqual(status, k4a.EStatus.SUCCEEDED) self.capture = self.device.get_capture(-1) self.assertIsNotNone(self.capture) def tearDown(self): self.device.stop_cameras() self.device.stop_imu() del self.capture def check_copy(self, image1:k4a.Image, image2:k4a.Image): # Check that the images are not the same instance. self.assertIsNot(image1, image2) # Check that the image contents are equal. if (image1.data.ndim == 3): self.assertEqual(image1.data[0, 0, 0], image2.data[0, 0, 0]) self.assertEqual(image1.data[100, 100, 1], image2.data[100, 100, 1]) self.assertEqual(image1.data[100, 50, 2], image2.data[100, 50, 2]) elif (image1.data.ndim == 2): self.assertEqual(image1.data[0, 0], image2.data[0, 0]) self.assertEqual(image1.data[100, 100], image2.data[100, 100]) self.assertEqual(image1.data[100, 50], image2.data[100, 50]) self.assertEqual(image1.image_format, image2.image_format) self.assertEqual(image1.size_bytes, image2.size_bytes) self.assertEqual(image1.width_pixels, image2.width_pixels) self.assertEqual(image1.height_pixels, image2.height_pixels) self.assertEqual(image1.stride_bytes, image2.stride_bytes) self.assertEqual(image1.device_timestamp_usec, image2.device_timestamp_usec) self.assertEqual(image1.system_timestamp_nsec, image2.system_timestamp_nsec) self.assertEqual(image1.exposure_usec, image2.exposure_usec) self.assertEqual(image1.white_balance, image2.white_balance) self.assertEqual(image1.iso_speed, image2.iso_speed) def test_functional_fast_api_capture_shallow_copy(self): capture2 = copy.copy(self.capture) # Check that the copy of the capture is not the same as the original. self.assertIsNotNone(capture2) self.assertIsNot(capture2, self.capture) # Check that the images are not the same as in the original. self.check_copy(capture2.color, self.capture.color) self.check_copy(capture2.depth, self.capture.depth) self.check_copy(capture2.ir, self.capture.ir) self.assertAlmostEqual(capture2.temperature, self.capture.temperature, 4) # Check that the image handles are the same. self.assertIs(capture2.color._image_handle, self.capture.color._image_handle) self.assertIs(capture2.depth._image_handle, self.capture.depth._image_handle) self.assertIs(capture2.ir._image_handle, self.capture.ir._image_handle) # Check that modifying one also modifies the other. self.capture.temperature = self.capture.temperature + 1 self.assertEqual(capture2.temperature, self.capture.temperature) self.capture.color.white_balance = self.capture.color.white_balance + 1 self.assertEqual(capture2.color.white_balance, self.capture.color.white_balance) self.capture.color.data[0, 0, 0] = self.capture.color.data[0, 0, 0] + 1 self.assertEqual(capture2.color.data[0, 0, 0], self.capture.color.data[0, 0, 0]) # Check that the copy of capture is still valid even if the original # capture is deleted. This is because the original capture's reference # count is increased when the copy is made. del capture2 self.assertIsNotNone(self.capture) self.assertIsNotNone(self.capture.color) self.assertIsNotNone(self.capture.depth) self.assertIsNotNone(self.capture.ir) self.assertIsNotNone(self.capture.temperature) def test_functional_fast_api_capture_deep_copy(self): capture2 = copy.deepcopy(self.capture) # Check that the copy of the capture is not the same as the original. self.assertIsNotNone(capture2) self.assertIsNot(capture2, self.capture) # Check that the images are not the same as in the original. self.check_copy(capture2.color, self.capture.color) self.check_copy(capture2.depth, self.capture.depth) self.check_copy(capture2.ir, self.capture.ir) self.assertAlmostEqual(capture2.temperature, self.capture.temperature, 4) # Check that the image handles are not the same. self.assertIsNot(capture2.color._image_handle, self.capture.color._image_handle) self.assertIsNot(capture2.depth._image_handle, self.capture.depth._image_handle) self.assertIsNot(capture2.ir._image_handle, self.capture.ir._image_handle) # Check that modifying one does not modify the other. self.capture.temperature = self.capture.temperature + 1 self.assertNotAlmostEqual(capture2.temperature, self.capture.temperature, 4) self.capture.color.white_balance = self.capture.color.white_balance + 1 self.assertNotAlmostEqual(capture2.color.white_balance, self.capture.color.white_balance, 4) self.capture.color.data[0, 0, 0] = self.capture.color.data[0, 0, 0] + 1 self.assertNotEqual(capture2.color.data[0, 0, 0], self.capture.color.data[0, 0, 0]) # Check that the copy of capture is still valid even if the original # capture is deleted. This is because the original capture's reference # count is increased when the copy is made. del capture2 self.assertIsNotNone(self.capture) self.assertIsNotNone(self.capture.color) self.assertIsNotNone(self.capture.depth) self.assertIsNotNone(self.capture.ir) self.assertIsNotNone(self.capture.temperature) def test_functional_fast_api_get_color(self): color = self.capture.color self.assertIsNotNone(color) self.assertEqual(color.width_pixels, 3840) self.assertEqual(color.height_pixels, 2160) self.assertEqual(color.image_format, k4a.EImageFormat.COLOR_BGRA32) def test_functional_fast_api_get_depth(self): depth = self.capture.depth self.assertIsNotNone(depth) self.assertEqual(depth.width_pixels, 1024) self.assertEqual(depth.height_pixels, 1024) self.assertEqual(depth.image_format, k4a.EImageFormat.DEPTH16) def test_functional_fast_api_get_ir(self): ir = self.capture.ir self.assertIsNotNone(ir) self.assertEqual(ir.width_pixels, 1024) self.assertEqual(ir.height_pixels, 1024) self.assertEqual(ir.image_format, k4a.EImageFormat.IR16) def test_functional_fast_api_set_color(self): color1 = self.capture.color self.assertIsNotNone(color1) self.assertEqual(color1.width_pixels, 3840) self.assertEqual(color1.height_pixels, 2160) self.assertEqual(color1.image_format, k4a.EImageFormat.COLOR_BGRA32) color2 = copy.deepcopy(color1) self.capture.color = color2 color3 = self.capture.color self.assertIsNotNone(color3) self.assertEqual(color3.width_pixels, 3840) self.assertEqual(color3.height_pixels, 2160) self.assertEqual(color3.image_format, k4a.EImageFormat.COLOR_BGRA32) self.assertIsNot(color3, color1) self.assertIsNot(color2, color1) self.assertIs(color3, color2) def test_functional_fast_api_set_depth(self): depth1 = self.capture.depth self.assertIsNotNone(depth1) self.assertEqual(depth1.width_pixels, 1024) self.assertEqual(depth1.height_pixels, 1024) self.assertEqual(depth1.image_format, k4a.EImageFormat.DEPTH16) depth2 = copy.deepcopy(depth1) self.capture.depth = depth2 depth3 = self.capture.depth self.assertIsNotNone(depth3) self.assertEqual(depth3.width_pixels, 1024) self.assertEqual(depth3.height_pixels, 1024) self.assertEqual(depth3.image_format, k4a.EImageFormat.DEPTH16) self.assertIsNot(depth3, depth1) self.assertIsNot(depth2, depth1) self.assertIs(depth3, depth2) def test_functional_fast_api_set_ir(self): ir1 = self.capture.ir self.assertIsNotNone(ir1) self.assertEqual(ir1.width_pixels, 1024) self.assertEqual(ir1.height_pixels, 1024) self.assertEqual(ir1.image_format, k4a.EImageFormat.IR16) ir2 = copy.deepcopy(ir1) self.capture.ir = ir2 ir3 = self.capture.ir self.assertIsNotNone(ir3) self.assertEqual(ir3.width_pixels, 1024) self.assertEqual(ir3.height_pixels, 1024) self.assertEqual(ir3.image_format, k4a.EImageFormat.IR16) self.assertIsNot(ir3, ir1) self.assertIsNot(ir2, ir1) self.assertIs(ir3, ir2) class Test_Functional_API_Image_AzureKinect(unittest.TestCase): '''Test Image class for Azure Kinect device. ''' @classmethod def setUpClass(cls): cls.device = k4a.Device.open() assert(cls.device is not None) cls.lock = test_config.glb_lock @classmethod def tearDownClass(cls): # Stop the cameras and imus before closing device. cls.device.stop_cameras() cls.device.stop_imu() cls.device.close() del cls.device def setUp(self): status = self.device.start_cameras( k4a.DEVICE_CONFIG_BGRA32_2160P_WFOV_UNBINNED_FPS15) self.assertEqual(status, k4a.EStatus.SUCCEEDED) self.capture = self.device.get_capture(-1) self.assertIsNotNone(self.capture) self.color = self.capture.color self.depth = self.capture.depth self.ir = self.capture.ir def tearDown(self): self.device.stop_cameras() self.device.stop_imu() del self.ir del self.depth del self.color del self.capture def check_copy(self, image1:k4a.Image, image2:k4a.Image): # Check that the images are not the same instance. self.assertIsNot(image1, image2) # Check that the image contents are equal. if (image1.data.ndim == 3): self.assertEqual(image1.data[0, 0, 0], image2.data[0, 0, 0]) self.assertEqual(image1.data[100, 100, 1], image2.data[100, 100, 1]) self.assertEqual(image1.data[100, 50, 2], image2.data[100, 50, 2]) elif (image1.data.ndim == 2): self.assertEqual(image1.data[0, 0], image2.data[0, 0]) self.assertEqual(image1.data[100, 100], image2.data[100, 100]) self.assertEqual(image1.data[100, 50], image2.data[100, 50]) self.assertEqual(image1.image_format, image2.image_format) self.assertEqual(image1.size_bytes, image2.size_bytes) self.assertEqual(image1.width_pixels, image2.width_pixels) self.assertEqual(image1.height_pixels, image2.height_pixels) self.assertEqual(image1.stride_bytes, image2.stride_bytes) self.assertEqual(image1.device_timestamp_usec, image2.device_timestamp_usec) self.assertEqual(image1.system_timestamp_nsec, image2.system_timestamp_nsec) self.assertEqual(image1.exposure_usec, image2.exposure_usec) self.assertEqual(image1.white_balance, image2.white_balance) self.assertEqual(image1.iso_speed, image2.iso_speed) def test_functional_fast_api_image_shallow_copy(self): color2 = copy.copy(self.color) depth2 = copy.copy(self.depth) ir2 = copy.copy(self.ir) # Check that the images are not the same as in the original. self.check_copy(self.color, color2) self.check_copy(self.depth, depth2) self.check_copy(self.ir, ir2) # Check that the image handles are the same. self.assertIs(color2._image_handle, self.color._image_handle) self.assertIs(depth2._image_handle, self.depth._image_handle) self.assertIs(ir2._image_handle, self.ir._image_handle) # Check that modifying one also modifies the other. self.color.white_balance = self.color.white_balance + 1 self.assertEqual(color2.white_balance, self.color.white_balance) self.color.data[0, 0, 0] = self.color.data[0, 0, 0] + 1 self.assertEqual(color2.data[0, 0, 0], self.color.data[0, 0, 0]) # Check that the copy of capture is still valid even if the original # capture is deleted. This is because the original capture's reference # count is increased when the copy is made. del color2 del depth2 del ir2 self.assertIsNotNone(self.color) self.assertIsNotNone(self.depth) self.assertIsNotNone(self.ir) def test_functional_fast_api_image_deep_copy(self): color2 = copy.deepcopy(self.color) depth2 = copy.deepcopy(self.depth) ir2 = copy.deepcopy(self.ir) # Check that the images are not the same as in the original. self.check_copy(self.color, color2) self.check_copy(self.depth, depth2) self.check_copy(self.ir, ir2) # Check that the image handles are the same. self.assertIsNot(color2._image_handle, self.color._image_handle) self.assertIsNot(depth2._image_handle, self.depth._image_handle) self.assertIsNot(ir2._image_handle, self.ir._image_handle) # Check that modifying one does not modifies the other. self.color.white_balance = self.color.white_balance + 1 self.assertNotEqual(color2.white_balance, self.color.white_balance) self.color.data[0, 0, 0] = self.color.data[0, 0, 0] + 1 self.assertNotEqual(color2.data[0, 0, 0], self.color.data[0, 0, 0]) # Check that the copy of capture is still valid even if the original # capture is deleted. This is because the original capture's reference # count is increased when the copy is made. del color2 del depth2 del ir2 self.assertIsNotNone(self.color) self.assertIsNotNone(self.depth) self.assertIsNotNone(self.ir) def test_functional_fast_api_get_data(self): data = self.color.data self.assertIsNotNone(data) self.assertIsInstance(data, np.ndarray) def test_functional_fast_api_get_image_format(self): image_format = self.color.image_format self.assertIsNotNone(image_format) self.assertIsInstance(image_format, k4a.EImageFormat) def test_functional_fast_api_get_size_bytes(self): size_bytes = self.color.size_bytes self.assertIsNotNone(size_bytes) self.assertIsInstance(size_bytes, int) self.assertNotEqual(size_bytes, 0) def test_functional_fast_api_get_width_pixels(self): width_pixels = self.color.width_pixels self.assertIsNotNone(width_pixels) self.assertIsInstance(width_pixels, int) self.assertNotEqual(width_pixels, 0) def test_functional_fast_api_get_height_pixels(self): height_pixels = self.color.height_pixels self.assertIsNotNone(height_pixels) self.assertIsInstance(height_pixels, int) self.assertNotEqual(height_pixels, 0) def test_functional_fast_api_get_stride_bytes(self): stride_bytes = self.color.stride_bytes self.assertIsNotNone(stride_bytes) self.assertIsInstance(stride_bytes, int) self.assertNotEqual(stride_bytes, 0) def test_functional_fast_api_get_device_timestamp_usec(self): device_timestamp_usec = self.color.device_timestamp_usec self.assertIsNotNone(device_timestamp_usec) self.assertIsInstance(device_timestamp_usec, int) def test_functional_fast_api_get_system_timestamp_nsec(self): system_timestamp_nsec = self.color.system_timestamp_nsec self.assertIsNotNone(system_timestamp_nsec) self.assertIsInstance(system_timestamp_nsec, int) def test_functional_fast_api_get_exposure_usec(self): exposure_usec = self.color.exposure_usec self.assertIsNotNone(exposure_usec) self.assertIsInstance(exposure_usec, int) def test_functional_fast_api_get_white_balance(self): white_balance = self.color.white_balance self.assertIsNotNone(white_balance) self.assertIsInstance(white_balance, int) def test_functional_fast_api_get_iso_speed(self): iso_speed = self.color.iso_speed self.assertIsNotNone(iso_speed) self.assertIsInstance(iso_speed, int) def test_functional_fast_api_set_device_timestamp_usec(self): self.color.device_timestamp_usec = 10 device_timestamp_usec = self.color.device_timestamp_usec self.assertIsNotNone(device_timestamp_usec) self.assertIsInstance(device_timestamp_usec, int) self.assertEqual(device_timestamp_usec, 10) def test_functional_fast_api_set_system_timestamp_nsec(self): self.color.system_timestamp_nsec = 10 system_timestamp_nsec = self.color.system_timestamp_nsec self.assertIsNotNone(system_timestamp_nsec) self.assertIsInstance(system_timestamp_nsec, int) self.assertEqual(system_timestamp_nsec, 10) def test_functional_fast_api_set_exposure_usec(self): self.color.exposure_usec = 10 exposure_usec = self.color.exposure_usec self.assertIsNotNone(exposure_usec) self.assertIsInstance(exposure_usec, int) self.assertEqual(exposure_usec, 10) def test_functional_fast_api_set_white_balance(self): self.color.white_balance = 1000 white_balance = self.color.white_balance self.assertIsNotNone(white_balance) self.assertIsInstance(white_balance, int) self.assertEqual(white_balance, 1000) def test_functional_fast_api_set_iso_speed(self): self.color.iso_speed = 100 iso_speed = self.color.iso_speed self.assertIsNotNone(iso_speed) self.assertIsInstance(iso_speed, int) self.assertEqual(iso_speed, 100) class Test_Functional_API_Calibration_AzureKinect(unittest.TestCase): '''Test Calibration class for Azure Kinect device. ''' @classmethod def setUpClass(cls): cls.device = k4a.Device.open() assert(cls.device is not None) cls.lock = test_config.glb_lock @classmethod def tearDownClass(cls): # Stop the cameras and imus before closing device. cls.device.stop_cameras() cls.device.stop_imu() cls.device.close() del cls.device def test_functional_fast_api_get_calibration_from_device(self): depth_modes = [ k4a.EDepthMode.NFOV_2X2BINNED, k4a.EDepthMode.NFOV_UNBINNED, k4a.EDepthMode.WFOV_2X2BINNED, k4a.EDepthMode.WFOV_UNBINNED, k4a.EDepthMode.PASSIVE_IR, ] color_resolutions = [ k4a.EColorResolution.RES_3072P, k4a.EColorResolution.RES_2160P, k4a.EColorResolution.RES_1536P, k4a.EColorResolution.RES_1440P, k4a.EColorResolution.RES_1080P, k4a.EColorResolution.RES_720P, ] for depth_mode in depth_modes: for color_resolution in color_resolutions: with self.subTest( depth_mode = depth_mode, color_resolution = color_resolution): calibration = self.device.get_calibration( depth_mode, color_resolution) self.assertIsNotNone(calibration) self.assertIsInstance(calibration, k4a.Calibration) def test_functional_fast_api_get_calibration_from_raw(self): raw_calibration = self.device.get_raw_calibration() self.assertIsNotNone(raw_calibration) depth_modes = [ k4a.EDepthMode.NFOV_2X2BINNED, k4a.EDepthMode.NFOV_UNBINNED, k4a.EDepthMode.WFOV_2X2BINNED, k4a.EDepthMode.WFOV_UNBINNED, k4a.EDepthMode.PASSIVE_IR, ] color_resolutions = [ k4a.EColorResolution.RES_3072P, k4a.EColorResolution.RES_2160P, k4a.EColorResolution.RES_1536P, k4a.EColorResolution.RES_1440P, k4a.EColorResolution.RES_1080P, k4a.EColorResolution.RES_720P, ] for depth_mode in depth_modes: for color_resolution in color_resolutions: with self.subTest( depth_mode = depth_mode, color_resolution = color_resolution): calibration = k4a.Calibration.create_from_raw( raw_calibration, depth_mode, color_resolution) self.assertIsNotNone(calibration) self.assertIsInstance(calibration, k4a.Calibration) class Test_Functional_API_Transformation_AzureKinect(unittest.TestCase): '''Test Transformation class for Azure Kinect device. ''' depth_modes = [ k4a.EDepthMode.NFOV_2X2BINNED, k4a.EDepthMode.NFOV_UNBINNED, k4a.EDepthMode.WFOV_2X2BINNED, k4a.EDepthMode.WFOV_UNBINNED, k4a.EDepthMode.PASSIVE_IR, ] color_resolutions = [ k4a.EColorResolution.RES_3072P, k4a.EColorResolution.RES_2160P, k4a.EColorResolution.RES_1536P, k4a.EColorResolution.RES_1440P, k4a.EColorResolution.RES_1080P, k4a.EColorResolution.RES_720P, ] calibration_types = [ k4a.ECalibrationType.COLOR, k4a.ECalibrationType.DEPTH ] @classmethod def setUpClass(cls): cls.device = k4a.Device.open() assert(cls.device is not None) cls.lock = test_config.glb_lock cls.calibration = cls.device.get_calibration( k4a.EDepthMode.WFOV_UNBINNED, k4a.EColorResolution.RES_2160P) @classmethod def tearDownClass(cls): # Stop the cameras and imus before closing device. cls.device.stop_cameras() cls.device.stop_imu() cls.device.close() del cls.device del cls.calibration def test_functional_fast_api_point_3d_to_point_3d(self): depth_mode = k4a.EDepthMode.NFOV_2X2BINNED color_resolution = k4a.EColorResolution.RES_720P source_camera = k4a.ECalibrationType.COLOR target_camera = k4a.ECalibrationType.DEPTH # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (x, y, z) = transformation.point_3d_to_point_3d( (300.0, 300.0, 500.0), source_camera, target_camera) self.assertIsNotNone(x) self.assertIsNotNone(y) self.assertIsNotNone(z) def test_functional_fast_api_pixel_2d_to_point_3d(self): depth_mode = k4a.EDepthMode.NFOV_2X2BINNED color_resolution = k4a.EColorResolution.RES_720P source_camera = k4a.ECalibrationType.COLOR target_camera = k4a.ECalibrationType.DEPTH # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (x, y, z) = transformation.pixel_2d_to_point_3d( (300.0, 300.0), 500.0, source_camera, target_camera) self.assertIsNotNone(x) self.assertIsNotNone(y) self.assertIsNotNone(z) def test_functional_fast_api_point_3d_to_pixel_2d(self): depth_mode = k4a.EDepthMode.NFOV_2X2BINNED color_resolution = k4a.EColorResolution.RES_720P source_camera = k4a.ECalibrationType.COLOR target_camera = k4a.ECalibrationType.DEPTH # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (x, y) = transformation.point_3d_to_pixel_2d( (300.0, 300.0, 500.0), source_camera, target_camera) self.assertIsNotNone(x) self.assertIsNotNone(y) def test_functional_fast_api_pixel_2d_to_pixel_2d(self): depth_mode = k4a.EDepthMode.NFOV_2X2BINNED color_resolution = k4a.EColorResolution.RES_720P source_camera = k4a.ECalibrationType.COLOR target_camera = k4a.ECalibrationType.DEPTH # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (x, y) = transformation.pixel_2d_to_pixel_2d( (300.0, 300.0), 500.0, source_camera, target_camera) self.assertIsNotNone(x) self.assertIsNotNone(y) def test_functional_fast_api_color_2d_to_depth_2d(self): depth_mode = k4a.EDepthMode.NFOV_2X2BINNED color_resolution = k4a.EColorResolution.RES_720P source_camera = k4a.ECalibrationType.COLOR target_camera = k4a.ECalibrationType.DEPTH # Get a depth image. device_config = k4a.DeviceConfiguration( color_format = k4a.EImageFormat.COLOR_BGRA32, color_resolution = color_resolution, depth_mode = depth_mode, camera_fps = k4a.EFramesPerSecond.FPS_15, synchronized_images_only = True, depth_delay_off_color_usec = 0, wired_sync_mode = k4a.EWiredSyncMode.STANDALONE, subordinate_delay_off_master_usec = 0, disable_streaming_indicator = False ) self.device.start_cameras(device_config) capture = self.device.get_capture(-1) self.device.stop_cameras() # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (x, y) = transformation.color_2d_to_depth_2d( (capture.color.height_pixels/4, capture.color.width_pixels/4), capture.depth) self.assertIsNotNone(x) self.assertIsNotNone(y) def test_functional_fast_api_depth_image_to_color_camera(self): depth_mode = k4a.EDepthMode.NFOV_2X2BINNED color_resolution = k4a.EColorResolution.RES_720P # Get a depth image. device_config = k4a.DeviceConfiguration( color_format = k4a.EImageFormat.COLOR_BGRA32, color_resolution = color_resolution, depth_mode = depth_mode, camera_fps = k4a.EFramesPerSecond.FPS_15, synchronized_images_only = True, depth_delay_off_color_usec = 0, wired_sync_mode = k4a.EWiredSyncMode.STANDALONE, subordinate_delay_off_master_usec = 0, disable_streaming_indicator = False ) self.device.start_cameras(device_config) capture = self.device.get_capture(-1) depth = capture.depth self.device.stop_cameras() del capture # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. transformed_depth = transformation.depth_image_to_color_camera(depth) self.assertIsNotNone(transformed_depth) def test_functional_fast_api_depth_image_to_color_camera_custom(self): depth_mode = k4a.EDepthMode.NFOV_2X2BINNED color_resolution = k4a.EColorResolution.RES_720P # Get a depth image. device_config = k4a.DeviceConfiguration( color_format = k4a.EImageFormat.COLOR_BGRA32, color_resolution = color_resolution, depth_mode = depth_mode, camera_fps = k4a.EFramesPerSecond.FPS_15, synchronized_images_only = True, depth_delay_off_color_usec = 0, wired_sync_mode = k4a.EWiredSyncMode.STANDALONE, subordinate_delay_off_master_usec = 0, disable_streaming_indicator = False ) self.device.start_cameras(device_config) capture = self.device.get_capture(-1) depth = capture.depth self.device.stop_cameras() del capture # Create a custom image. custom = k4a.Image.create( k4a.EImageFormat.CUSTOM16, depth.width_pixels, depth.height_pixels, depth.width_pixels * 2) # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (transformed_depth, transformed_custom) = \ transformation.depth_image_to_color_camera_custom( depth, custom, k4a.ETransformInterpolationType.LINEAR, 0) self.assertIsNotNone(transformed_depth) self.assertIsNotNone(transformed_custom) def test_functional_fast_api_color_image_to_depth_camera(self): depth_mode = k4a.EDepthMode.NFOV_2X2BINNED color_resolution = k4a.EColorResolution.RES_720P # Get a depth and color image. device_config = k4a.DeviceConfiguration( color_format = k4a.EImageFormat.COLOR_BGRA32, color_resolution = color_resolution, depth_mode = depth_mode, camera_fps = k4a.EFramesPerSecond.FPS_15, synchronized_images_only = True, depth_delay_off_color_usec = 0, wired_sync_mode = k4a.EWiredSyncMode.STANDALONE, subordinate_delay_off_master_usec = 0, disable_streaming_indicator = False ) self.device.start_cameras(device_config) capture = self.device.get_capture(-1) depth = capture.depth color = capture.color self.device.stop_cameras() # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. transformed_color = transformation.color_image_to_depth_camera( depth, color) self.assertIsNotNone(transformed_color) def test_functional_fast_api_depth_image_to_point_cloud(self): depth_mode = k4a.EDepthMode.NFOV_2X2BINNED color_resolution = k4a.EColorResolution.RES_720P # Get a depth image. device_config = k4a.DeviceConfiguration( color_format = k4a.EImageFormat.COLOR_BGRA32, color_resolution = color_resolution, depth_mode = depth_mode, camera_fps = k4a.EFramesPerSecond.FPS_15, synchronized_images_only = True, depth_delay_off_color_usec = 0, wired_sync_mode = k4a.EWiredSyncMode.STANDALONE, subordinate_delay_off_master_usec = 0, disable_streaming_indicator = False ) self.device.start_cameras(device_config) capture = self.device.get_capture(-1) depth = capture.depth self.device.stop_cameras() del capture # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. point_cloud = transformation.depth_image_to_point_cloud( depth, k4a.ECalibrationType.DEPTH) self.assertIsNotNone(point_cloud) # # The following tests may take a long time. # It is not recommended to run them frequently. # def test_functional_api_point_3d_to_point_3d(self): for depth_mode in Test_Transformation_AzureKinect.depth_modes: for color_resolution in Test_Transformation_AzureKinect.color_resolutions: for source_camera in Test_Transformation_AzureKinect.calibration_types: for target_camera in Test_Transformation_AzureKinect.calibration_types: with self.subTest(depth_mode = depth_mode, color_resolution = color_resolution, source_camera = source_camera, target_camera = target_camera): # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (x, y, z) = transformation.point_3d_to_point_3d( (300.0, 300.0, 500.0), source_camera, target_camera) self.assertIsNotNone(x) self.assertIsNotNone(y) self.assertIsNotNone(z) def test_functional_api_pixel_2d_to_point_3d(self): for depth_mode in Test_Transformation_AzureKinect.depth_modes: for color_resolution in Test_Transformation_AzureKinect.color_resolutions: for source_camera in Test_Transformation_AzureKinect.calibration_types: for target_camera in Test_Transformation_AzureKinect.calibration_types: with self.subTest(depth_mode = depth_mode, color_resolution = color_resolution, source_camera = source_camera, target_camera = target_camera): # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (x, y, z) = transformation.pixel_2d_to_point_3d( (300.0, 300.0), 500.0, source_camera, target_camera) self.assertIsNotNone(x) self.assertIsNotNone(y) self.assertIsNotNone(z) def test_functional_api_point_3d_to_pixel_2d(self): for depth_mode in Test_Transformation_AzureKinect.depth_modes: for color_resolution in Test_Transformation_AzureKinect.color_resolutions: for source_camera in Test_Transformation_AzureKinect.calibration_types: for target_camera in Test_Transformation_AzureKinect.calibration_types: with self.subTest(depth_mode = depth_mode, color_resolution = color_resolution, source_camera = source_camera, target_camera = target_camera): # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (x, y) = transformation.point_3d_to_pixel_2d( (300.0, 300.0, 500.0), source_camera, target_camera) self.assertIsNotNone(x) self.assertIsNotNone(y) def test_functional_api_pixel_2d_to_pixel_2d(self): for depth_mode in Test_Transformation_AzureKinect.depth_modes: for color_resolution in Test_Transformation_AzureKinect.color_resolutions: for source_camera in Test_Transformation_AzureKinect.calibration_types: for target_camera in Test_Transformation_AzureKinect.calibration_types: with self.subTest(depth_mode = depth_mode, color_resolution = color_resolution, source_camera = source_camera, target_camera = target_camera): # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (x, y) = transformation.pixel_2d_to_pixel_2d( (300.0, 300.0), 500.0, source_camera, target_camera) self.assertIsNotNone(x) self.assertIsNotNone(y) def test_functional_api_color_2d_to_depth_2d(self): for depth_mode in Test_Transformation_AzureKinect.depth_modes[:4]: for color_resolution in Test_Transformation_AzureKinect.color_resolutions: for source_camera in Test_Transformation_AzureKinect.calibration_types: for target_camera in Test_Transformation_AzureKinect.calibration_types: with self.subTest(depth_mode = depth_mode, color_resolution = color_resolution, source_camera = source_camera, target_camera = target_camera): # Get a depth image. device_config = k4a.DeviceConfiguration( color_format = k4a.EImageFormat.COLOR_BGRA32, color_resolution = color_resolution, depth_mode = depth_mode, camera_fps = k4a.EFramesPerSecond.FPS_15, synchronized_images_only = True, depth_delay_off_color_usec = 0, wired_sync_mode = k4a.EWiredSyncMode.STANDALONE, subordinate_delay_off_master_usec = 0, disable_streaming_indicator = False ) self.device.start_cameras(device_config) capture = self.device.get_capture(-1) self.device.stop_cameras() # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (x, y) = transformation.color_2d_to_depth_2d( (capture.color.height_pixels/4, capture.color.width_pixels/4), capture.depth) self.assertIsNotNone(x) self.assertIsNotNone(y) def test_functional_api_depth_image_to_color_camera(self): for depth_mode in Test_Transformation_AzureKinect.depth_modes[:4]: for color_resolution in Test_Transformation_AzureKinect.color_resolutions: with self.subTest(depth_mode = depth_mode, color_resolution = color_resolution): # Get a depth image. device_config = k4a.DeviceConfiguration( color_format = k4a.EImageFormat.COLOR_BGRA32, color_resolution = color_resolution, depth_mode = depth_mode, camera_fps = k4a.EFramesPerSecond.FPS_15, synchronized_images_only = True, depth_delay_off_color_usec = 0, wired_sync_mode = k4a.EWiredSyncMode.STANDALONE, subordinate_delay_off_master_usec = 0, disable_streaming_indicator = False ) self.device.start_cameras(device_config) capture = self.device.get_capture(-1) depth = capture.depth self.device.stop_cameras() del capture # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. transformed_depth = transformation.depth_image_to_color_camera(depth) self.assertIsNotNone(transformed_depth) def test_functional_api_depth_image_to_color_camera_custom(self): for depth_mode in Test_Transformation_AzureKinect.depth_modes[:4]: for color_resolution in Test_Transformation_AzureKinect.color_resolutions: with self.subTest(depth_mode = depth_mode, color_resolution = color_resolution): # Get a depth image. device_config = k4a.DeviceConfiguration( color_format = k4a.EImageFormat.COLOR_BGRA32, color_resolution = color_resolution, depth_mode = depth_mode, camera_fps = k4a.EFramesPerSecond.FPS_15, synchronized_images_only = True, depth_delay_off_color_usec = 0, wired_sync_mode = k4a.EWiredSyncMode.STANDALONE, subordinate_delay_off_master_usec = 0, disable_streaming_indicator = False ) self.device.start_cameras(device_config) capture = self.device.get_capture(-1) depth = capture.depth self.device.stop_cameras() del capture # Create a custom image. custom = k4a.Image.create( k4a.EImageFormat.CUSTOM16, depth.width_pixels, depth.height_pixels, depth.width_pixels * 2) # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. (transformed_depth, transformed_custom) = \ transformation.depth_image_to_color_camera_custom( depth, custom, k4a.ETransformInterpolationType.LINEAR, 0) self.assertIsNotNone(transformed_depth) self.assertIsNotNone(transformed_custom) def test_functional_api_color_image_to_depth_camera(self): for depth_mode in Test_Transformation_AzureKinect.depth_modes[:4]: for color_resolution in Test_Transformation_AzureKinect.color_resolutions: with self.subTest(depth_mode = depth_mode, color_resolution = color_resolution): # Get a depth and color image. device_config = k4a.DeviceConfiguration( color_format = k4a.EImageFormat.COLOR_BGRA32, color_resolution = color_resolution, depth_mode = depth_mode, camera_fps = k4a.EFramesPerSecond.FPS_15, synchronized_images_only = True, depth_delay_off_color_usec = 0, wired_sync_mode = k4a.EWiredSyncMode.STANDALONE, subordinate_delay_off_master_usec = 0, disable_streaming_indicator = False ) self.device.start_cameras(device_config) capture = self.device.get_capture(-1) depth = capture.depth color = capture.color self.device.stop_cameras() # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. transformed_color = transformation.color_image_to_depth_camera( depth, color) self.assertIsNotNone(transformed_color) def test_functional_api_depth_image_to_point_cloud(self): for depth_mode in Test_Transformation_AzureKinect.depth_modes[:4]: for color_resolution in Test_Transformation_AzureKinect.color_resolutions: with self.subTest(depth_mode = depth_mode, color_resolution = color_resolution): # Get a depth image. device_config = k4a.DeviceConfiguration( color_format = k4a.EImageFormat.COLOR_BGRA32, color_resolution = color_resolution, depth_mode = depth_mode, camera_fps = k4a.EFramesPerSecond.FPS_15, synchronized_images_only = True, depth_delay_off_color_usec = 0, wired_sync_mode = k4a.EWiredSyncMode.STANDALONE, subordinate_delay_off_master_usec = 0, disable_streaming_indicator = False ) self.device.start_cameras(device_config) capture = self.device.get_capture(-1) depth = capture.depth self.device.stop_cameras() del capture # Get calibration. calibration = self.device.get_calibration( depth_mode, color_resolution) # Create transformation. transformation = k4a.Transformation(calibration) # Apply transformation. point_cloud = transformation.depth_image_to_point_cloud( depth, k4a.ECalibrationType.DEPTH) self.assertIsNotNone(point_cloud) if __name__ == '__main__': unittest.main()
parse_text_http_headers.py
DazEB2/SimplePyScripts
117
11115110
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import re from typing import Dict HTTP_HEADER_PATTERN = re.compile(r'([\w-]+): (.*)', flags=re.IGNORECASE) def parse(text: str) -> Dict[str, str]: return dict(HTTP_HEADER_PATTERN.findall(text)) if __name__ == '__main__': text_http_headers = """ POST /index.php?do=search HTTP/1.1 Host: online.anidub.com User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:77.0) Gecko/20100101 Firefox/77.0 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8 Accept-Language: ru-RU,ru;q=0.8,en-US;q=0.5,en;q=0.3 Accept-Encoding: gzip, deflate, br Content-Type: application/x-www-form-urlencoded Content-Length: 112 Origin: https://online.anidub.com Connection: keep-alive Referer: https://online.anidub.com/index.php?do=search Upgrade-Insecure-Requests: 1 TE: Trailers Pragma: no-cache Cache-Control: no-cache """ headers = parse(text_http_headers) print(headers) assert headers == { 'Host': 'online.anidub.com', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:77.0) Gecko/20100101 Firefox/77.0', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Accept-Language': 'ru-RU,ru;q=0.8,en-US;q=0.5,en;q=0.3', 'Accept-Encoding': 'gzip, deflate, br', 'Content-Type': 'application/x-www-form-urlencoded', 'Content-Length': '112', 'Origin': 'https://online.anidub.com', 'Connection': 'keep-alive', 'Referer': 'https://online.anidub.com/index.php?do=search', 'Upgrade-Insecure-Requests': '1', 'TE': 'Trailers', 'Pragma': 'no-cache', 'Cache-Control': 'no-cache' }
tests/cpydiff/modules_array_subscrstep.py
sebastien-riou/micropython
13,648
11115164
<reponame>sebastien-riou/micropython<gh_stars>1000+ """ categories: Modules,array description: Subscript with step != 1 is not yet implemented cause: Unknown workaround: Unknown """ import array a = array.array("b", (1, 2, 3)) print(a[3:2:2])
tests/algorithms/test_rvea.py
jarreguit/pymoo
762
11115172
<filename>tests/algorithms/test_rvea.py<gh_stars>100-1000 import numpy as np from pymoo.algorithms.moo.rvea import APDSurvival, RVEA from pymoo.factory import DTLZ2 from pymoo.core.population import Population from tests.util import path_to_test_resource def test_survival(): problem = DTLZ2(n_obj=3) for k in range(1, 11): print("TEST RVEA GEN", k) ref_dirs = np.loadtxt(path_to_test_resource('rvea', f"ref_dirs_{k}.txt")) F = np.loadtxt(path_to_test_resource('rvea', f"F_{k}.txt")) pop = Population.new(F=F) algorithm = RVEA(ref_dirs) algorithm.setup(problem, termination=('n_gen', 500)) algorithm.n_gen = k algorithm.pop = pop survival = APDSurvival(ref_dirs) survivors = survival.do(problem, algorithm.pop, n_survive=len(pop), algorithm=algorithm, return_indices=True) apd = pop[survivors].get("apd") correct_apd = np.loadtxt(path_to_test_resource('rvea', f"apd_{k}.txt")) np.testing.assert_allclose(apd, correct_apd)
adaptdl/adaptdl/conftest.py
jessezbj/adaptdl
294
11115228
# Copyright 2020 Petuum, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import multiprocessing as mp import os import signal import tempfile import portpicker def elastic_multiprocessing(func): """ Decorator which runs a function inside a temporary local environment which mimics a real AdaptDLJob. Runs replicas of the decorated function in their own processes, and sets up the shared environment, including environment variables and shared directories. The decorated function is always started with a single replica, but can optionally return an integer number of replicas to trigger a restart using that many replicas. ```python @elastic_multiprocessing def test_my_stuff(): from adaptdl.env import num_replicas, num_restarts if num_restarts() == 0: print(num_replicas) # Outputs '1'. return 5 # Restart using 5 replicas. if num_restarts() == 1: print(num_replicas) # Outputs '5'. return 0 # No more restarts, this line can be omitted. ``` .. warning:: The replica processes are forked from the current main process. This means that mutations to global variables in the main process prior to calling the decorated function may be observed by the child processes! """ @functools.wraps(func) def wrapper(*args, **kwargs): num_restarts = 0 num_replicas = 1 with tempfile.TemporaryDirectory() as tmpdir: while num_replicas: assert isinstance(num_replicas, int) master_port = portpicker.pick_unused_port() queue = mp.Queue() # For passing return values back. def run(rank): # Invoked in each child process. os.environ["ADAPTDL_CHECKPOINT_PATH"] = str(tmpdir) os.environ["ADAPTDL_JOB_ID"] = "tmpjob" os.environ["ADAPTDL_MASTER_PORT"] = str(master_port) os.environ["ADAPTDL_REPLICA_RANK"] = str(rank) os.environ["ADAPTDL_NUM_REPLICAS"] = str(num_replicas) os.environ["ADAPTDL_NUM_NODES"] = "1" os.environ["ADAPTDL_NUM_RESTARTS"] = str(num_restarts) ret = None try: ret = func(*args, **kwargs) finally: queue.put((rank, ret)) # Start each replica in a separate child process. procs = [mp.Process(target=run, args=(rank,)) for rank in range(num_replicas)] for proc in procs: proc.start() try: # Wait for results from child processes. for i in range(num_replicas): rank, ret = queue.get() procs[rank].join() assert procs[rank].exitcode == 0 if i == 0: # All return values should be the same. num_replicas = ret assert num_replicas == ret finally: # Clean up any remaining child processes. for proc in procs: if proc.is_alive(): os.kill(proc.pid, signal.SIGKILL) proc.join() # Clean up the queue. queue.close() num_restarts += 1 return wrapper
esphome/components/am43/cover/__init__.py
OttoWinter/esphomeyaml
249
11115229
<reponame>OttoWinter/esphomeyaml<gh_stars>100-1000 import esphome.codegen as cg import esphome.config_validation as cv from esphome.components import cover, ble_client from esphome.const import CONF_ID, CONF_PIN CODEOWNERS = ["@buxtronix"] DEPENDENCIES = ["ble_client"] AUTO_LOAD = ["am43", "sensor"] CONF_INVERT_POSITION = "invert_position" am43_ns = cg.esphome_ns.namespace("am43") Am43Component = am43_ns.class_( "Am43Component", cover.Cover, ble_client.BLEClientNode, cg.Component ) CONFIG_SCHEMA = ( cover.COVER_SCHEMA.extend( { cv.GenerateID(): cv.declare_id(Am43Component), cv.Optional(CONF_PIN, default=8888): cv.int_range(min=0, max=0xFFFF), cv.Optional(CONF_INVERT_POSITION, default=False): cv.boolean, } ) .extend(ble_client.BLE_CLIENT_SCHEMA) .extend(cv.COMPONENT_SCHEMA) ) def to_code(config): var = cg.new_Pvariable(config[CONF_ID]) cg.add(var.set_pin(config[CONF_PIN])) cg.add(var.set_invert_position(config[CONF_INVERT_POSITION])) yield cg.register_component(var, config) yield cover.register_cover(var, config) yield ble_client.register_ble_node(var, config)
allennlp/modules/transformer/layer_norm.py
MSLars/allennlp
11,433
11115245
import torch from allennlp.modules.transformer.transformer_module import TransformerModule class LayerNorm(torch.nn.LayerNorm, TransformerModule): _pretrained_mapping = {"gamma": "weight", "beta": "bias"}
libcity/data/dataset/eta_encoder/abstract_eta_encoder.py
moghadas76/test_bigcity
221
11115258
from logging import getLogger class AbstractETAEncoder(object): """ETA Encoder ETA Encoder is used to encode the spatiotemporal information in trajectory. We abstract the encoding operation from the Dataset Module to facilitate developers to achive more flexible and diverse trajectory representation extraction. It is worth noting that the representation extraction involved here is not learnable and fixed. Any learnable representation extraction, e.g. embedding, should be emplemented in Model Module. Attributes: config (libcity.ConfigParser): The configuration of the encoder. pad_item (dict): The key is a feature's name and the value should be corresponding padding value. If a feature dose not need to be padded, don't insert it into this dict. In other word, libcity.dataset.Batch will pad all features in pad_item.keys(). feature_dict (dict): The key is a feature's name and the value should be the data type of the corresponding feature. When libcity.dataset.Batch converts the encoded trajectory tuple to tensor, It will refer to this attribute to know the feature name and data type corresponding to each element in the tuple. data_feature (dict): The data_feature contains the statistics features of the encoded dataset, which is used to init the model. For example, if the model use torch.nn.Embedding to embed location id and time id, the data_feature should contain loc_size and time_size to tell model how to init the embedding layer. """ def __init__(self, config): """Init Encoder with its config Args: config (libcity.ConfigParser): Dict-like Object. Can access any config by config[key]. """ self.config = config self._logger = getLogger() self.pad_item = {} self.feature_dict = {} self.data_feature = {} self.cache_file_name = '' def encode(self, uid, trajectories, dyna_feature_column): """Encode trajectories of user uid. Args: uid (int): The uid of user. If there is no need to encode uid, just keep it. trajectories (list of trajectory): The trajectories of user. Each trajectory is a sequence of spatiotemporal point. The spatiotemporal point is represented by a list. Thus, a trajectory is represented by a list of lists. For example: trajectory1 = [ [dyna_id, type, time, entity_id, traj_id, coordinates/location, properties], [dyna_id, type, time, entity_id, traj_id, coordinates/location, properties], ..... ] Every spatiotemporal tuple contains all useful information in a record of the Raw Data (refer to corresponding .dyna file for details). In addition, the trajectories are represented as: [ [ # trajectory1 [dyna_id, type, time, entity_id, traj_id, coordinates/location, properties], [dyna_id, type, time, entity_id, traj_id, coordinates/location, properties], ... ], trajectory2, ... ] dyna_feature_column (dict): The key is a feature's name and the value should be corresponding column id in .dyna file. Returns: list: The return value of this function is the list of encoded trajectories. Same as the input format, each encoded trajectory should be a tuple, which contains all features extracted from the input trajectory. The encoded trajectory will subsequently be converted to a torch.tensor and then directly input to the model. (see more in libcity.Batch) Take the DeeptteEncoder as an example. encoded_trajectory = [current_longi, current_lati, current_tim, current_dis, current_state, uid, weekid, timeid, dist, time] Please make sure the order of the features in the list is consistent with the order of the features in self.feature_dict. """ def gen_data_feature(self): """After encode all trajectories, this method will be called to tell encoder that you can generate the data_feature and pad_item """
Chapter04/DeepLearningDemo.py
Tanishadel/Mastering-Machine-Learning-for-Penetration-Testing
241
11115327
from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.utils import np_utils seed = 7 numpy.random.seed(seed) (X_train, y_train), (X_test, y_test) = mnist.load_data() num_pixels = X_train.shape[1] * X_train.shape[2] X_train = X_train / 255 X_test = X_test / 255 y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] model = Sequential() model.add(Dense(num_pixels, input_dim=num_pixels, activation='relu')) model.add(Dense(num_classes,activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
pysb/examples/tutorial_c.py
FFroehlich/pysb
105
11115331
from pysb import * Model() Monomer('Raf', ['s', 'k'], {'s': ['u', 'p']}) Monomer('MEK', ['s218', 's222', 'k'], {'s218': ['u', 'p'], 's222': ['u', 'p']}) Parameter('kf', 1e-5) Parameter('Raf_0', 7e4) Parameter('MEK_0', 3e6)
cycles/utils/setMat_crackedCeramic.py
HTDerekLiu/BlenderToolbox
208
11115335
# Copyright 2020 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import bpy from include import * def setMat_crackedCeramic(mesh, meshColor, crackScale, crackDisp): mat = bpy.data.materials.new('MeshMaterial') mesh.data.materials.append(mat) mesh.active_material = mat mat.use_nodes = True tree = mat.node_tree # init color node C = initColorNode(tree, meshColor) GLO = tree.nodes.new('ShaderNodeBsdfGlossy') GLO.inputs['Roughness'].default_value = 0.316 DIF = tree.nodes.new('ShaderNodeBsdfDiffuse') tree.links.new(C.outputs['Color'], DIF.inputs['Color']) MIXS = tree.nodes.new('ShaderNodeMixShader') MIXS.inputs['Fac'].default_value = 0.327 tree.links.new(DIF.outputs['BSDF'], MIXS.inputs[1]) tree.links.new(GLO.outputs['BSDF'], MIXS.inputs[2]) VOR = tree.nodes.new('ShaderNodeTexVoronoi') VOR.inputs['Scale'].default_value = crackScale VOR.location.x -= 200 VOR.location.y -= 200 DISP = tree.nodes.new('ShaderNodeDisplacement') DISP.inputs[1].default_value = 0.0 DISP.inputs[2].default_value = crackDisp DISP.location.x -= 400 DISP.location.y -= 200 tree.links.new(VOR.outputs['Fac'], DISP.inputs['Height']) tree.links.new(MIXS.outputs[0], tree.nodes['Material Output'].inputs['Surface']) tree.links.new(DISP.outputs[0], tree.nodes['Material Output'].inputs['Displacement'])
deepFEPE/models/DeepFNetSampleLoss.py
KuangHaofei/pytorch-deepFEPE
112
11115364
""" DeepF for sample loss Keep but not tested (you-yi on 07/13/2020) Authors: <NAME>, <NAME> """ import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable, Function from torch.nn.functional import grid_sample import numpy as np import cv2 import dsac_tools.utils_F as utils_F # If cannot find: export KITTI_UTILS_PATH='/home/ruizhu/Documents/Projects/kitti_instance_RGBD_utils' # import utils_F.compute_epi_residual as compute_epi_residual # import utils_F.compute_epi_residual_non_rob as compute_epi_residual_non_rob from models.GoodCorresNet import GoodCorresNet # from models.ConfNet import VggDepthEstimator # from models.ConfNet import VggDepthEstimatorOLD as VggDepthEstimator # from models.ImageFeatNet import Conv # from models.ImageFeatNet import VggDepthEstimatorSeperate as VggDepthEstimator from models.ErrorEstimators import * from batch_svd import batch_svd # https://github.com/KinglittleQ/torch-batch-svd.git class NormalizeAndExpand(nn.Module): def __init__(self, is_cuda=True, is_test=False): super(NormalizeAndExpand, self).__init__() self.ones_b = Variable(torch.ones((1, 1, 1)), volatile=is_test) self.T_b = Variable(torch.zeros(1, 3, 3), volatile=is_test) if is_cuda: self.ones_b = self.ones_b.cuda() self.T_b = self.T_b.cuda() def normalize(self, pts): T = self.T_b.expand(pts.size(0), 3, 3).clone() ones = self.ones_b.expand(pts.size(0), pts.size(1), 1) pts = torch.cat((pts, ones), 2) c = torch.mean(pts,1) newpts_ = (pts - c.unsqueeze(1)) # First center to zero mean meandist = newpts_[:,:,:2].pow(2).sum(2).sqrt().mean(1) scale = 1.0/meandist T[:,0,0] = scale T[:,1,1] = scale T[:,2,2] = 1 T[:,0,2] = -c[:,0]*scale T[:,1,2] = -c[:,1]*scale pts_out = torch.bmm(T, pts.permute(0,2,1)) return pts_out, T def forward(self, pts): pts1, T1 = self.normalize(pts[:,:,:2]) pts2, T2 = self.normalize(pts[:,:,2:]) return pts1, pts2, T1, T2 class NormalizeAndExpand_K(nn.Module): def __init__(self, is_cuda=True, is_test=False): super(NormalizeAndExpand_K, self).__init__() self.ones_b = Variable(torch.ones((1, 1, 1)), volatile=is_test) self.T_b = Variable(torch.zeros(1, 3, 3), volatile=is_test) if is_cuda: self.ones_b = self.ones_b.cuda() self.T_b = self.T_b.cuda() def normalize(self, pts, K_invs): T = K_invs ones = self.ones_b.expand(pts.size(0), pts.size(1), 1) pts = torch.cat((pts, ones), 2) pts_out = torch.bmm(T, pts.permute(0,2,1)) return pts_out, T def forward(self, pts, K_invs): pts1, T1 = self.normalize(pts[:,:,:2], K_invs) pts2, T2 = self.normalize(pts[:,:,2:], K_invs) return pts1, pts2, T1, T2 class NormalizeAndExpand_HW(nn.Module): # so that the coordintes are normalized to [-1, 1] for both H and W def __init__(self, image_size, is_cuda=True, is_test=False): super(NormalizeAndExpand_HW, self).__init__() self.ones_b = Variable(torch.ones((1, 1, 1)), volatile=is_test) # self.T_b = Variable(torch.zeros(1, 3, 3), volatile=is_test) H, W = image_size[0], image_size[1] self.T = torch.tensor([[2./W, 0., -1.], [0., 2./H, -1.], [0., 0., 1.]]).float().unsqueeze(0) if is_cuda: self.ones_b = self.ones_b.cuda() # self.T_b = self.T_b.cuda() self.T = self.T.cuda() def normalize(self, pts): ones = self.ones_b.expand(pts.size(0), pts.size(1), 1) pts = torch.cat((pts, ones), 2) pts_out = self.T @ pts.permute(0,2,1) return pts_out, self.T def forward(self, pts): pts1, T1 = self.normalize(pts[:,:,:2]) pts2, T2 = self.normalize(pts[:,:,2:]) return pts1, pts2, T1, T2 class Fit(nn.Module): def __init__(self, is_cuda=True, is_test=False, if_cpu_svd=False, normalize_SVD=True, if_sample_loss=False): super(Fit, self).__init__() # self.svd = bsvd(is_cuda, is_test) self.ones_b = Variable(torch.ones((1, 1, 1)).float()) self.zero_b = Variable(torch.zeros((1, 1, 1)).float()) self.T_b = torch.zeros(1, 3, 3).float() self.mask = Variable(torch.ones(3)) self.mask[-1] = 0 self.normalize_SVD = normalize_SVD self.if_cpu_svd = if_cpu_svd if self.if_cpu_svd: self.mask_cpu = self.mask.clone() self.if_sample_loss = if_sample_loss if is_cuda: self.ones_b = self.ones_b.cuda() self.zero_b = self.zero_b.cuda() self.T_b = self.T_b.cuda() self.mask = self.mask.cuda() self.is_cuda = is_cuda # self.bsvd = bsvd_torch() def normalize(self, pts, weights): device = pts.device T = Variable(self.T_b.to(device).expand(pts.size(0), 3, 3)).clone() ones = self.ones_b.to(device).expand(pts.size(0), pts.size(1), 1) denom = weights.sum(1) # # c = torch.mean(pts,1) # newpts_ = (pts - c.unsqueeze(1)) # meandist = newpts_[:,:,:2].pow(2).sum(2).sqrt().mean(1) c = torch.sum(pts*weights,1)/denom # print(c.size(), pts.size()) newpts_ = (pts - c.unsqueeze(1)) meandist = ((weights*(newpts_[:,:,:2].pow(2).sum(2).sqrt().unsqueeze(2))).sum(1)/denom).squeeze(1) scale = 1.4142/meandist T[:,0,0] = scale T[:,1,1] = scale T[:,2,2] = 1 T[:,0,2] = -c[:,0]*scale T[:,1,2] = -c[:,1]*scale # pts_ = torch.cat((pts, ones), 2) # print(pts.device, weights.device, T.device, self.T_b.device) pts_out = torch.bmm(T, pts.permute(0,2,1)) return pts_out, T # def weighted_svd(self, pts1, pts2, weights): # weights = weights.squeeze(1).unsqueeze(2) # pts1n, T1 = self.normalize(pts1, weights) # pts2n, T2 = self.normalize(pts2, weights) # p = torch.cat((pts1n[:,0].unsqueeze(1)*pts2n, # pts1n[:,1].unsqueeze(1)*pts2n, # pts2n), 1).permute(0,2,1) # X = p*weights # out_b = [] # for b in range(X.size(0)): # _, _, V = torch.svd(X[b]) # F = V[:,-1].view(3,3) # U, S, V = torch.svd(F) # F_ = U.mm((S*self.mask).diag()).mm(V.t()) # out_b.append(F_.unsqueeze(0)) # out = torch.cat(out_b, 0) # out = T1.permute(0,2,1).bmm(out).bmm(T2) # return out def weighted_svd(self, pts1, pts2, weights, if_print=False): device = weights.device weights = weights.squeeze(1).unsqueeze(2) ones = torch.ones_like(weights) if self.is_cuda: ones = ones.cuda() pts1n, T1 = self.normalize(pts1, ones) pts2n, T2 = self.normalize(pts2, ones) # pts1n, T1 = self.normalize(pts1, weights) # pts2n, T2 = self.normalize(pts2, weights) p = torch.cat((pts2n[:,0].unsqueeze(1)*pts1n, pts2n[:,1].unsqueeze(1)*pts1n, pts1n), 1).permute(0,2,1) # # if self.normalize_SVD: # # p = torch.nn.functional.normalize(p, dim=2) # X = p*torch.sqrt(weights) if self.normalize_SVD: p = torch.nn.functional.normalize(p, dim=2) X = p*weights out_b = [] F_vecs_list = [] if self.if_cpu_svd: for b in range(X.size(0)): _, _, V = torch.svd(X[b].cpu()) F = V[:,-1].view(3,3) F_vecs_list.append(V[:,-1]/(V[:,-1].norm())) U, S, V = torch.svd(F) F_ = U.mm((S*self.mask.cpu()).diag()).mm(V.t()) out_b.append(F_.unsqueeze(0)) out = torch.cat(out_b, 0).cuda() F_vecs= torch.stack(F_vecs_list).cuda() else: for b in range(X.size(0)): _, _, V = torch.svd(X[b]) F = V[:,-1].view(3,3) F_vecs_list.append(V[:,-1]/(V[:,-1].norm())) U, S, V = torch.svd(F) F_ = U.mm((S*self.mask.to(device)).diag()).mm(V.t()) out_b.append(F_.unsqueeze(0)) out = torch.cat(out_b, 0) F_vecs = torch.stack(F_vecs_list) if if_print: print(F_vecs.size(), p.size(), weights.size()) print('----F_vecs') print(F_vecs[0].detach().cpu().numpy()) print('----p') print(p[0].detach().cpu().numpy()) print('----weights') print(weights[:2].squeeze().detach().cpu().numpy(), torch.sum(weights[:2], dim=1).squeeze().detach().cpu().numpy()) residual = (X @ F_vecs.unsqueeze(-1)).squeeze(-1) # [B, N, 1] # residual_nonWeighted = (p @ F_vecs.unsqueeze(-1)).squeeze(-1) # [B, N, 1] # print(residual.size()) # print(residual.norm(p=2, dim=1).size()) out = T2.permute(0,2,1).bmm(out).bmm(T1) return out, residual.squeeze(-1) def weighted_svd_batch(self, pts1, pts2, weights, if_print=False): device = weights.device weights = weights.squeeze(1).unsqueeze(2) ones = torch.ones_like(weights) if self.is_cuda: ones = ones.cuda() pts1n, T1 = self.normalize(pts1, ones) pts2n, T2 = self.normalize(pts2, ones) # pts1n, T1 = self.normalize(pts1, weights) # pts2n, T2 = self.normalize(pts2, weights) p = torch.cat((pts2n[:,0].unsqueeze(1)*pts1n, pts2n[:,1].unsqueeze(1)*pts1n, pts1n), 1).permute(0,2,1) # # if self.normalize_SVD: # # p = torch.nn.functional.normalize(p, dim=2) # X = p*torch.sqrt(weights) if self.normalize_SVD: p = torch.nn.functional.normalize(p, dim=2) X = p*weights Us, Ss, Vs = batch_svd(X) Fs = Vs[:, :, -1].view(-1, 3, 3) F_vecs = torch.nn.functional.normalize(Vs[:, :, -1], p=2, dim=1) Us, Ss, Vs = batch_svd(Fs) out = Us @ torch.diag_embed(Ss*self.mask.unsqueeze(0)) @ Vs.transpose(1, 2) # out_b = [] # F_vecs_list = [] # if self.if_cpu_svd: # for b in range(X.size(0)): # _, _, V = torch.svd(X[b].cpu()) # F = V[:,-1].view(3,3) # F_vecs_list.append(V[:,-1]/(V[:,-1].norm())) # U, S, V = torch.svd(F) # F_ = U.mm((S*self.mask.cpu()).diag()).mm(V.t()) # out_b.append(F_.unsqueeze(0)) # out = torch.cat(out_b, 0).cuda() # F_vecs= torch.stack(F_vecs_list).cuda() # else: # for b in range(X.size(0)): # _, _, V = torch.svd(X[b]) # F = V[:,-1].view(3,3) # F_vecs_list.append(V[:,-1]/(V[:,-1].norm())) # U, S, V = torch.svd(F) # F_ = U.mm((S*self.mask.to(device)).diag()).mm(V.t()) # out_b.append(F_.unsqueeze(0)) # out = torch.cat(out_b, 0) # F_vecs = torch.stack(F_vecs_list) # if if_print: # print(F_vecs.size(), p.size(), weights.size()) # print('----F_vecs') # print(F_vecs[0].detach().cpu().numpy()) # print('----p') # print(p[0].detach().cpu().numpy()) # print('----weights') # print(weights[:2].squeeze().detach().cpu().numpy(), torch.sum(weights[:2], dim=1).squeeze().detach().cpu().numpy()) residual = (X @ F_vecs.unsqueeze(-1)).squeeze(-1) # [B, N, 1] # residual_nonWeighted = (p @ F_vecs.unsqueeze(-1)).squeeze(-1) # [B, N, 1] # print(residual.size()) # print(residual.norm(p=2, dim=1).size()) out = T2.permute(0,2,1).bmm(out).bmm(T1) return out, residual.squeeze(-1) def get_unique(self, xs, topk, matches_good_unique_nums, pts1, pts2): # [B, N] xs_topk_list = [] topK_indices_list = [] pts1_list = [] pts2_list = [] for x, matches_good_unique_num, pt1, pt2 in zip(xs, matches_good_unique_nums, pts1, pts2): # x_unique = torch.unique(x) # no gradients!!! x_unique = x[:, :matches_good_unique_num] # print(x_unique_topK) x_unique_topK, topK_indices = torch.topk(x_unique, topk, dim=1) xs_topk_list.append(x_unique_topK) topK_indices_list.append(topK_indices.squeeze()) pt1_topK, pt2_topK = pt1[topK_indices.squeeze(), :], pt2[topK_indices.squeeze(), :] pts1_list.append(pt1_topK) pts2_list.append(pt2_topK) return torch.stack(xs_topk_list), torch.stack(topK_indices_list), torch.stack(pts1_list), torch.stack(pts2_list) def forward(self, pts1, pts2, weights, if_print=False, matches_good_unique_nums=None): out, residual = self.weighted_svd(pts1, pts2, weights, if_print=if_print) out_dict = {'out': out, 'residual': residual} # if not(self.if_sample_loss): # return out, residual, None, None topK = 20 selects_each_sample = 100 # print(weights.size()) # [B, 1, N] weights_topK, indices_topK, pts1_topK, pts2_topK = self.get_unique(weights, topK, matches_good_unique_nums, pts1, pts2) # print(indices_topK, indices_topK.size()) # print(indices_topK.size()) # [8, 10] weights_mask = torch.zeros(weights.size(0), weights.size(2), device=weights.device).float() # [B, topK] # print(indices_topK.size(), torch.max(indices_topK), weights_mask.size()) weights_mask = weights_mask.scatter_(1, indices_topK, 1.) # print(torch.sum(weights_mask, dim=1)) # print(pts1.size(), weights.size(), indices_topK.size()) # torch.Size([8, 1000, 3]) torch.Size([8, 1, 1000]) torch.Size([8, 100]) pts1_topK = torch.gather(pts1, 1, indices_topK.unsqueeze(-1).expand(-1, -1, 3)) pts2_topK = torch.gather(pts2, 1, indices_topK.unsqueeze(-1).expand(-1, -1, 3)) weights_topK = torch.gather(weights, 2, indices_topK.unsqueeze(1)) # a = torch.index_select(pts1, 1, indices_topK.unsqueeze(-1)) # mask_select = weights_mask.byte().unsqueeze(-1) # a = torch.masked_select(pts1, mask_select) # out_topK, residual_topK = self.weighted_svd(pts1_topK, pts2_topK, weights_topK, if_print=if_print) out_topK, residual_topK = self.weighted_svd_batch(pts1_topK, pts2_topK, weights_topK, if_print=if_print) out_dict.update({'out_topK': out_topK, 'residual_topK': residual_topK}) # out, residual = self.weighted_svd(pts1, pts2, weights * weights_mask.unsqueeze(1), if_print=if_print) out_sample_selected_list = [] weights_sample_selected_accu_list = [] for batch_idx, (matches_good_unique_num, weights_sample) in enumerate(zip(matches_good_unique_nums.cpu().numpy(), weights.detach().cpu().numpy())): selected_corres_idx_per_sample_list = [] p = weights_sample.flatten()[:matches_good_unique_num] p = p / np.sum(p) for select_idx in range(selects_each_sample): selected_corres_idx = np.random.choice(matches_good_unique_num, topK, p=p) # selected_corres_idx = np.random.choice(matches_good_unique_num, topK) selected_corres_idx_per_sample_list.append(selected_corres_idx) selected_corres_idx_per_sample = np.stack(selected_corres_idx_per_sample_list) # [selects_each_sample, topK] pts1_sample = pts1[batch_idx:batch_idx+1].expand(selects_each_sample, -1, -1) pts1_sample_selected = torch.gather(pts1_sample, 1, torch.from_numpy(selected_corres_idx_per_sample).unsqueeze(-1).expand(-1, -1, 3).cuda()) # [selects_each_sample, topK, 3] pts2_sample = pts2[batch_idx:batch_idx+1].expand(selects_each_sample, -1, -1) pts2_sample_selected = torch.gather(pts2_sample, 1, torch.from_numpy(selected_corres_idx_per_sample).unsqueeze(-1).expand(-1, -1, 3).cuda()) # [selects_each_sample, topK, 3] weights_sample = weights[batch_idx:batch_idx+1].expand(selects_each_sample, -1, -1) weights_sample_selected = torch.gather(weights_sample, 2, torch.from_numpy(selected_corres_idx_per_sample).unsqueeze(1).cuda()) # [selects_each_sample, 1, topK] weights_sample_selected_normalized = torch.nn.functional.normalize(weights_sample_selected, p=1, dim=2) # [selects_each_sample, 1, topK] weights_sample_selected_accu = torch.prod(weights_sample_selected * 1000., dim=2) # [selects_each_sample, 1] weights_sample_selected_accu = weights_sample_selected_accu / (torch.sum(weights_sample_selected_accu)+1e-10) # print(weights_sample_selected_accu, torch.sum(weights_sample_selected_accu)) weights_sample_selected_accu_list.append(weights_sample_selected_accu) # out_sample_selected, _ = self.weighted_svd(pts1_sample_selected, pts2_sample_selected, weights_sample_selected_normalized, if_print=False) # [selects_each_sample, 3, 3] out_sample_selected, _ = self.weighted_svd_batch(pts1_sample_selected, pts2_sample_selected, weights_sample_selected, if_print=False) # [selects_each_sample, 3, 3] out_sample_selected_list.append(out_sample_selected) out_sample_selected_batch = torch.stack(out_sample_selected_list) # [B, selects_each_sample, 3, 3] weights_sample_selected_accu_batch = torch.stack(weights_sample_selected_accu_list) # [B, selects_each_sample, 1] # return out_topK, residual_topK, out_sample_selected_batch, weights_sample_selected_accu_batch out_dict.update({'out_sample_selected_batch': out_sample_selected_batch, 'weights_sample_selected_accu_batch': weights_sample_selected_accu_batch}) return out_dict class Norm8PointNet(nn.Module): def __init__(self, depth, image_size, if_quality, if_goodCorresArch=False, if_tri_depth=False, if_sample_loss=False, if_learn_offsets=False, if_des=False, des_size=None, quality_size=0, is_cuda=True, is_test=False, if_cpu_svd=False, **params): super(Norm8PointNet, self).__init__() print('====Loading [email protected]') if not if_quality: quality_size = 0 self.if_quality = if_quality if if_quality: print('----Quality!!!!!!@Norm8PointNet') if if_learn_offsets: print('----if_learn_offsets!!!!!!@Norm8PointNet') print('----CPU svd@Norm8PointNet!!!!!!' if if_cpu_svd else '----GPU svd@Norm8PointNet!!!!!!') self.if_des = if_des self.if_goodCorresArch = if_goodCorresArch self.if_learn_offsets = if_learn_offsets self.image_size = image_size # list of [H, W, 3] self.if_tri_depth = if_tri_depth self.depth_size = 1 if self.if_tri_depth else 0 if if_tri_depth: print('----Tri depth!!!!!!@Norm8PointNet') self.if_sample_loss = if_sample_loss if if_sample_loss: print('----if_sample_loss!!!!!!@Norm8PointNet') if if_des: # self.input_weights = ErrorEstimatorDes(4+quality_size, des_size) # self.update_weights = ErrorEstimatorDes(6+quality_size, des_size) # self.input_weights = ErrorEstimatorFeatFusion(4+quality_size, des_size) # self.update_weights = ErrorEstimatorFeatFusion(6+quality_size+1, des_size) # +1 for the added in residual # if if_learn_offsets: # self.update_offsets = ErrorEstimatorFeatFusion(6+quality_size+1, des_size, output_size=4) # +1 for the added in residual self.input_weights = ErrorEstimator(4+quality_size+des_size) self.update_weights = ErrorEstimator(6+quality_size+1+des_size) # +1 for the added in residual # self.input_weights = ErrorEstimatorFeatFusion2Head(4+quality_size, des_size) # self.update_weights = ErrorEstimatorFeatFusion2Head(6+quality_size+1, des_size) # +1 for the added in residual if if_learn_offsets: self.update_offsets = ErrorEstimator(6+quality_size+1+des_size, output_size=4) # +1 for the added in residual print('----DES feat@Norm8PointNet!!!!!!') else: if self.if_goodCorresArch: print('----goodCorresArch@Norm8PointNet!!!!!!') self.input_weights = GoodCorresNet(4+quality_size, bn=False) self.update_weights = GoodCorresNet(6+quality_size, bn=False) else: self.input_weights = ErrorEstimator(4+quality_size) self.update_weights = ErrorEstimator(4+quality_size+3+self.depth_size) # +3 for weights, epi_res and redisual, +1 for tri depth! if if_learn_offsets: self.update_offsets = ErrorEstimator(4+quality_size+2+self.depth_size, output_size=4, if_bn=False) # +1 for the added in residual if is_test: self.input_weights.eval() self.update_weights.eval() if if_learn_offsets: self.update_offsets.eval() self.norm = NormalizeAndExpand(is_cuda, is_test) self.norm_K = NormalizeAndExpand_K(is_cuda, is_test) self.norm_HW = NormalizeAndExpand_HW(self.image_size, is_cuda, is_test) self.fit = Fit(is_cuda, is_test, if_cpu_svd, if_sample_loss=if_sample_loss) self.depth = depth self.mask = Variable(torch.ones(3)).cuda() self.mask[-1] = 0 def get_input(self, data_batch, offsets=None, iter=None): pts = data_batch['matches_xy_ori'] if offsets is not None: # print('------ ', iter) # print(pts.permute(0, 2, 1)[0, :2, :].clone().detach().cpu().numpy()) # print(offsets[0, :2, :].clone().detach().cpu().numpy()) pts = pts + offsets.permute(0, 2, 1) # pts1, pts2, T1, T2 = self.norm(pts) # pts: [b, N, 2] # \in [-1, 1] # pts1, pts2, T1, T2 = self.norm_K(pts, data_batch['K_invs']) # pts: [b, N, 2] # \in [-1, 1] pts1, pts2, T1, T2 = self.norm_HW(pts) # print(pts1.max(-1)[0].max(0)[0], pts1.min(-1)[0].min(0)[0]) # pts1_recover = torch.inverse(T1) @ pts1 # print(pts1_recover.max(-1)[0].max(0)[0], pts1_recover.min(-1)[0].min(0)[0]) pts1 = pts1.permute(0,2,1) pts2 = pts2.permute(0,2,1) if self.if_quality: quality = data_batch['quality'] weight_in = torch.cat(((pts1[:,:,:2]+1)/2, (pts2[:,:,:2]+1)/2, quality), 2).permute(0,2,1) # [0, 1] else: weight_in = torch.cat(((pts1[:,:,:2]+1)/2, (pts2[:,:,:2]+1)/2), 2).permute(0,2,1) # [0, 1] # if self.if_quality: # quality = data_batch['quality'] # weight_in = torch.cat((pts1[:,:,:2], pts2[:,:,:2], quality), 2).permute(0,2,1) # [0, 1] # else: # weight_in = torch.cat((pts1[:,:,:2], pts2[:,:,:2]), 2).permute(0,2,1) # [0, 1] # f1 = data_batch['Ks'][:, 0, 0] # f2 = data_batch['Ks'][:, 1, 1] # w2 = data_batch['Ks'][:, 0, 2] # h2 = data_batch['Ks'][:, 1, 2] # print(w2/f1) # print(h2/f2) # print(f1, f2) return weight_in, pts1, pts2, T1, T2 def get_depth(self, data_batch, F_out, T1, T2): F_ests = T2.permute(0,2,1) @ F_out @ T1 E_ests = data_batch['Ks'].transpose(1, 2) @ F_ests @ data_batch['Ks'] depth_list = [] for E_hat, K, match in zip(E_ests, data_batch['Ks'], data_batch['matches_xy_ori']): K = K.cpu().numpy() p1p2 = match.cpu().numpy() x1 = p1p2[:, :2] x2 = p1p2[:, 2:] num_inlier, R, t, mask_new = cv2.recoverPose(E_hat.detach().cpu().numpy().astype(np.float64), x1, x2, focal=K[0, 0], pp=(K[0, 2], K[1, 2])) R1 = np.eye(3) t1 = np.zeros((3, 1)) M1 = np.hstack((R1, t1)) M2 = np.hstack((R, t)) # print(np.linalg.norm(t)) X_tri_homo = cv2.triangulatePoints(np.matmul(K, M1), np.matmul(K, M2), x1.T, x2.T) X_tri = X_tri_homo[:3, :]/X_tri_homo[-1, :] depth = X_tri[-1, :].T depth_list.append(depth) # print(depth.flatten()[:10]) depths = np.stack(depth_list) # [B, N] return torch.from_numpy(depths).unsqueeze(1).float().cuda() def forward(self, data_batch): pts_normalized_in, pts1, pts2, T1, T2 = self.get_input(data_batch) if self.if_des: # des1, des2 = data_batch['feats_im1'], data_batch['feats_im2'] # [B, D, N] # des_in = torch.cat((des1, des2), 1) # des_in = data_batch['feats_im12_var'] des_in = data_batch['feats_im12_groupConv'] # logits = self.input_weights(pts_normalized_in, des_in) logits = self.input_weights(torch.cat((pts_normalized_in, des_in), 1)) else: logits = self.input_weights(pts_normalized_in) weights = F.softmax(logits, dim=2) # weights = torch.sigmoid(logits) matches_good_unique_nums = data_batch['matches_good_unique_nums'] # [B] # matches_good_unique_num = None if self.if_tri_depth: t_scene_scale = data_batch['t_scene_scale'] out_layers = [] out_topK_layers = [] epi_res_layers = [] residual_layers = [] weights_layers = [weights] logits_layers = [logits] out_sample_selected_batch_layers = [] weights_sample_selected_accu_batch_layers = [] for iter in range(self.depth-1): out_dict = self.fit(pts1, pts2, weights, matches_good_unique_nums=matches_good_unique_nums) out, residual = out_dict['out'], out_dict['residual'] residual_layers.append(residual) out_layers.append(out) out_topK_layers.append(out_dict['out_topK']) out_sample_selected_batch_layers.append(out_dict['out_sample_selected_batch']) weights_sample_selected_accu_batch_layers.append(out_dict['weights_sample_selected_accu_batch']) if self.if_tri_depth: tri_depths = self.get_depth(data_batch, out, T1, T2) # [B, 1, N] tri_depths = torch.clamp(tri_depths * t_scene_scale, -150., 150.) epi_res = utils_F.compute_epi_residual(pts1, pts2, out).unsqueeze(1) epi_res_layers.append(epi_res) if self.if_tri_depth: net_in = torch.cat((pts_normalized_in, weights, epi_res, tri_depths), 1) else: # net_in = torch.cat((pts_normalized_in, weights, epi_res), 1) net_in = torch.cat((pts_normalized_in, weights, epi_res), 1) if self.if_learn_offsets: if self.if_des: offsets = self.update_offsets(net_in, des_in) else: offsets = self.update_offsets(net_in) # if iter == 0: offsets_accu = offsets # else: # offsets_accu += offsets pts_normalized_in, pts1, pts2, T1, T2 = self.get_input(data_batch, offsets_accu, iter) if self.if_tri_depth: net_in = torch.cat((pts_normalized_in, weights, epi_res, tri_depths), 1) else: # net_in = torch.cat((pts_normalized_in, weights, epi_res), 1) net_in = torch.cat((pts_normalized_in, weights, epi_res), 1) if self.if_des: logits = self.update_weights(net_in, des_in) else: logits = self.update_weights(net_in) weights = F.softmax(logits, dim=2) # weights = torch.sigmoid(logits) weights_layers.append(weights) logits_layers.append(logits) out_dict = self.fit(pts1, pts2, weights, matches_good_unique_nums=matches_good_unique_nums) out, residual = out_dict['out'], out_dict['residual'] residual_layers.append(residual) out_layers.append(out) out_topK_layers.append(out_dict['out_topK']) out_sample_selected_batch_layers.append(out_dict['out_sample_selected_batch']) weights_sample_selected_accu_batch_layers.append(out_dict['weights_sample_selected_accu_batch']) preds = { # "cls_logit": cls_logit, "logits": logits.squeeze(1), # [batch_size, N] 'logits_layers': logits_layers, 'F_est': out, 'epi_res_layers': epi_res_layers, 'T1': T1, 'T2': T2, 'out_layers': out_layers, 'out_topK_layers': out_topK_layers, 'pts1': pts1, 'pts2': pts2, 'weights': weights, 'residual_layers': residual_layers, 'weights_layers': weights_layers, 'out_sample_selected_batch_layers': out_sample_selected_batch_layers, 'weights_sample_selected_accu_batch_layers': weights_sample_selected_accu_batch_layers } if self.if_learn_offsets: preds.update({'offsets': offsets_accu}) if self.if_tri_depth: preds.update({'tri_depths': tri_depths}) return preds # class Norm8PointNet_bkg(nn.Module): # def __init__(self, depth, if_quality, if_goodCorresArch=False, if_learn_offsets=False, if_des=False, des_size=None, quality_size=0, is_cuda=True, is_test=False, if_cpu_svd=False, **params): # super(Norm8PointNet, self).__init__() # print('====Loading Norm8PointNet@<EMAIL>F<EMAIL>.py') # if not if_quality: # quality_size = 0 # self.if_quality = if_quality # if if_quality: # print('----Quality!!!!!!') # self.if_des = if_des # self.if_goodCorresArch = if_goodCorresArch # if if_des: # # self.input_weights = ErrorEstimatorDes(4+quality_size, des_size) # # self.update_weights = ErrorEstimatorDes(6+quality_size, des_size) # self.input_weights = ErrorEstimatorFeatFusion(4+quality_size, des_size*2) # self.update_weights = ErrorEstimatorFeatFusion(6+quality_size, des_size*2) # if if_learn_offsets: # self.update_offsets = ErrorEstimatorFeatFusion(6+quality_size+1, des_size*2, output_size=4, if_bn=False) # print('----DES feat@Norm8PointNet!!!!!!') # else: # if self.if_goodCorresArch: # print('----goodCorresArch@Norm8PointNet!!!!!!') # self.input_weights = GoodCorresNet(4+quality_size) # self.update_weights = GoodCorresNet(6+quality_size) # else: # self.input_weights = ErrorEstimator(4+quality_size) # self.update_weights = ErrorEstimator(6+quality_size) # if if_learn_offsets: # self.update_offsets = ErrorEstimator(6+quality_size+1, output_size=4, if_bn=False) # if is_test: # self.input_weights.eval() # self.update_weights.eval() # if if_learn_offsets: # self.update_offsets.eval() # self.norm = NormalizeAndExpand(is_cuda, is_test) # self.norm_K = NormalizeAndExpand_K(is_cuda, is_test) # self.fit = Fit(is_cuda, is_test, if_cpu_svd) # print('----CPU svd!!!!!!' if if_cpu_svd else '----GPU svd!!!!!!') # self.depth = depth # self.mask = Variable(torch.ones(3)).cuda() # self.mask[-1] = 0 # def forward(self, data_batch): # pts = data_batch['matches_xy_ori'] # # pts1, pts2, T1, T2 = self.norm(pts) # pts: [b, N, 2] # \in [-1, 1] # pts1, pts2, T1, T2 = self.norm_K(pts, data_batch['K_invs']) # pts: [b, N, 2] # \in [-1, 1] # if self.if_des: # # des1, des2 = data_batch['des1'].transpose(1, 2), data_batch['des2'].transpose(1, 2) # des1, des2 = data_batch['feats_im1'], data_batch['feats_im2'] # [B, D, N] # des_in = torch.cat((des1, des2), 1) # pts1 = pts1.permute(0,2,1) # pts2 = pts2.permute(0,2,1) # if self.if_quality: # quality = data_batch['quality'] # weight_in = torch.cat(((pts1[:,:,:2]+1)/2, (pts2[:,:,:2]+1)/2, quality), 2).permute(0,2,1) # [0, 1] # else: # weight_in = torch.cat(((pts1[:,:,:2]+1)/2, (pts2[:,:,:2]+1)/2), 2).permute(0,2,1) # [0, 1] # if self.if_des: # logits = self.input_weights(weight_in, des_in) # else: # logits = self.input_weights(weight_in) # weights = F.softmax(logits, dim=2) # # weights = torch.sigmoid(logits) # out_layers = [] # epi_res_layers = [] # residual_layers = [] # weights_layers = [weights] # for iter in range(self.depth-1): # out, residual = self.fit(pts1, pts2, weights) # out_layers.append(out) # residual_layers.append(residual) # epi_res = utils_F.compute_epi_residual(pts1, pts2, out).unsqueeze(1) # epi_res_layers.append(epi_res) # net_in = torch.cat((weight_in, weights, epi_res), 1) # if self.if_des: # logits = self.update_weights(net_in, des_in) # else: # logits = self.update_weights(net_in) # weights = F.softmax(logits, dim=2) # # weights = torch.sigmoid(logits) # weights_layers.append(weights) # out, residual = self.fit(pts1, pts2, weights, if_print=False) # residual_layers.append(residual) # preds = { # # "cls_logit": cls_logit, # "logits": logits.squeeze(1), # [batch_size, N] # 'F_est': out, # 'epi_res_layers': epi_res_layers, # 'T1': T1, # 'T2': T2, # 'out_layers': out_layers, # 'pts1': pts1, # 'pts2': pts2, # 'weights': weights, # 'residual_layers': residual_layers, # 'weights_layers': weights_layers # } # return preds # class Norm8PointNetMixWeights(nn.Module): # def __init__(self, depth, if_quality, if_des, if_goodCorresArch, quality_size=0, is_cuda=True, is_test=False): # super(Norm8PointNetMixWeights, self).__init__() # if not if_quality: # quality_size = 0 # self.if_quality = if_quality # if if_quality: # print('----Quality!!!!!!') # self.if_des = if_des # self.if_goodCorresArch = if_goodCorresArch # self.input_weights = ErrorEstimator(4+quality_size) # self.update_weights = ErrorEstimator(6+quality_size) # if is_test: # self.input_weights.eval() # self.update_weights.eval() # self.norm = NormalizeAndExpand(is_cuda, is_test) # self.norm_K = NormalizeAndExpand_K(is_cuda, is_test) # self.fit = Fit(is_cuda, is_test) # self.depth = depth # self.mask = Variable(torch.ones(3)).cuda() # self.mask[-1] = 0 # def forward(self, data_batch): # pts = data_batch['matches_xy_ori'] # # pts1, pts2, T1, T2 = self.norm(pts) # pts: [b, N, 2] # \in [-1, 1] # pts1, pts2, T1, T2 = self.norm_K(pts, data_batch['K_invs']) # pts: [b, N, 2] # \in [-1, 1] # pts1 = pts1.permute(0,2,1) # pts2 = pts2.permute(0,2,1) # weights_im1 = data_batch['feats_im1'] # [B, 1, N] # weights_im2 = data_batch['feats_im2'] # [B, 1, N] # if self.if_quality: # quality = data_batch['quality'] # weight_in = torch.cat(((pts1[:,:,:2]+1)/2, (pts2[:,:,:2]+1)/2, quality), 2).permute(0,2,1) # [B, D, N] # else: # weight_in = torch.cat(((pts1[:,:,:2]+1)/2, (pts2[:,:,:2]+1)/2), 2).permute(0,2,1) # [0, 1] # logits = self.input_weights(weight_in) # weights = F.softmax(logits, dim=2) # [B, 1, N] # weights = weights * weights_im1 * weights_im2 # out_a = [] # for iter in range(self.depth-1): # out = self.fit(pts1, pts2, weights) # out_a.append(out) # res = utils_F.compute_epi_residual(pts1, pts2, out, clamp_at=0.05).unsqueeze(1) # # res_np = res.detach().cpu().numpy().squeeze() # # print(res_np, res_np.shape, np.amax(res_np, 1), np.amin(res_np, 1), np.mean(res_np, 1), np.median(res_np, 1)) # net_in = torch.cat((weight_in, weights, res), 1) # logits = self.update_weights(net_in) # weights = F.softmax(logits, dim=2) * weights_im1 * weights_im2 # out = self.fit(pts1, pts2, weights) # preds = { # # "cls_logit": cls_logit, # "logits": logits.squeeze(1), # [batch_size, N] # 'F_est': out, # 'res': weights.squeeze(1), # 'T1': T1, # 'T2': T2, # 'out_a': out_a, # 'pts1': pts1, # 'pts2': pts2, # 'weights': weights # } # return preds # class NWeightMixer(nn.Module): # def __init__(self, input_size): # super(NWeightMixer, self).__init__() # inplace = True # hasbias = True # learn_affine = True # self.fw = nn.Sequential( # nn.Conv1d(input_size, 16, kernel_size=1, bias=hasbias), # # nn.InstanceNorm1d(64, affine=learn_affine), # nn.LeakyReLU(inplace=inplace), # nn.Conv1d(16,32, kernel_size=1, bias=hasbias), # # nn.InstanceNorm1d(128, affine=learn_affine), # nn.LeakyReLU(inplace=inplace), # nn.Conv1d(32,16,kernel_size=1, bias=hasbias), # # nn.InstanceNorm1d(1024, affine=learn_affine), # nn.LeakyReLU(inplace=inplace), # nn.Conv1d(16,1, kernel_size=1, bias=hasbias), # nn. # def forward(self, data): # # print('ErrorEstimator') # return self.fw(data)
pyez/gather_facts.py
rsmekala/junosautomation
117
11115401
<reponame>rsmekala/junosautomation from jnpr.junos import Device from pprint import pprint dev = Device(host='xxxx', user='demo', password='<PASSWORD>') dev.open() pprint (dev.facts) # As dev.facts is a dictionary, we can fetch any specific data print dev.facts['serialnumber'] print dev.facts['version'] print dev.facts['version_info'] print dev.facts['version_info'].major
data/transcoder_evaluation_gfg/python/COUNT_PALINDROME_SUB_STRINGS_STRING.py
mxl1n/CodeGen
241
11115417
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( str , n ) : dp = [ [ 0 for x in range ( n ) ] for y in range ( n ) ] P = [ [ False for x in range ( n ) ] for y in range ( n ) ] for i in range ( n ) : P [ i ] [ i ] = True for i in range ( n - 1 ) : if ( str [ i ] == str [ i + 1 ] ) : P [ i ] [ i + 1 ] = True dp [ i ] [ i + 1 ] = 1 for gap in range ( 2 , n ) : for i in range ( n - gap ) : j = gap + i ; if ( str [ i ] == str [ j ] and P [ i + 1 ] [ j - 1 ] ) : P [ i ] [ j ] = True if ( P [ i ] [ j ] == True ) : dp [ i ] [ j ] = ( dp [ i ] [ j - 1 ] + dp [ i + 1 ] [ j ] + 1 - dp [ i + 1 ] [ j - 1 ] ) else : dp [ i ] [ j ] = ( dp [ i ] [ j - 1 ] + dp [ i + 1 ] [ j ] - dp [ i + 1 ] [ j - 1 ] ) return dp [ 0 ] [ n - 1 ] #TOFILL if __name__ == '__main__': param = [ (['E', 'E', 'J', 'P', 'T', 'U', 'X', 'Y', 'Z', 'e', 'f', 'h', 'l', 'm', 'n', 'o', 'z'],11,), (['8', '7', '3', '4', '9', '5', '3', '1', '4', '0', '6', '8', '2', '5', '8', '3', '5', '2', '8', '6', '6', '3', '5', '7', '5', '5', '3', '7'],27,), (['0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'],23,), (['f', 'E', 'e', 'z', 'B', 'o', 'i', 'v', 'K', 'u', 'P', 'C', 'z', 'f', 'k', 'J', 't', 'R', 't', 'A', 'f', 'G', 'D', 'X', 'H', 'e', 'p', 'l', 'l', 'k', 'Z', 'Y', 'u', 'g', 'H', 'C', 'f', 'J', 'H', 'W'],27,), (['0', '0', '0', '1', '1', '1', '1', '1', '1', '2', '2', '2', '3', '3', '3', '3', '3', '4', '4', '4', '4', '4', '4', '5', '5', '5', '5', '6', '6', '7', '7', '9', '9', '9', '9', '9', '9'],35,), (['1', '0', '1', '1', '0', '0', '1', '1', '1', '0', '1', '0', '1', '1', '0', '1', '0', '1', '1', '1', '1', '1', '0', '1', '1', '0', '1', '0', '1', '1', '0', '0', '1', '0', '1', '0', '0', '0', '0', '0', '1', '1', '0', '1', '0', '1'],43,), (['C', 'C', 'D', 'F', 'L', 'M', 'P', 'X', 'a', 'f', 'i', 'j', 'w'],9,), (['7', '9', '0', '2', '8', '0', '7', '5', '9', '4', '5', '4', '8', '1', '9', '5', '3', '2', '4', '1', '2'],16,), (['0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'],32,), (['m', 'X', 'N', 'M'],3,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
dnnweaver2/scalar/ops.py
ZixuanJiang/dnnweaver2
159
11115421
<filename>dnnweaver2/scalar/ops.py from dnnweaver2.scalar.dtypes import Dtype class ScalarOp(object): def __init__(self, op_str, dtype): self.op_str = op_str self.dtype = dtype def __str__(self): if isinstance(self.dtype, Dtype): return '{}({})'.format(self.op_str, self.dtype.__str__()) else: ret = str(self.op_str) ret += '(' ret += ','.join([x.__str__() for x in self.dtype]) ret += ')' return ret class ScalarOpTypes(object): def __init__(self): self.MulOp = {} self.MacOp = {} self.SqrOp = {} self.CmpOp = {} self.AddOp = {} self.SubOp = {} self.RshiftOp = {} def MUL(self, dtypes): assert len(dtypes) == 2 if dtypes not in self.MulOp: self.MulOp[dtypes] = ScalarOp('Multiply', dtypes) return self.MulOp[dtypes] def MAC(self, dtypes): assert len(dtypes) == 3 if dtypes not in self.MacOp: self.MacOp[dtypes] = ScalarOp('Multiply-Accumulate', dtypes) return self.MacOp[dtypes] def SQR(self, dtypes): assert isinstance(dtypes, Dtype) if dtypes not in self.SqrOp: self.SqrOp[dtypes] = ScalarOp('Square', dtypes) return self.SqrOp[dtypes] def CMP(self, dtypes): assert isinstance(dtypes, Dtype), 'Got Dtypes: {}'.format(dtypes) if dtypes not in self.CmpOp: self.CmpOp[dtypes] = ScalarOp('Compare', dtypes) return self.CmpOp[dtypes] def ADD(self, dtypes): assert len(dtypes) == 2 if dtypes not in self.AddOp: self.AddOp[dtypes] = ScalarOp('Addition', dtypes) return self.AddOp[dtypes] def SUB(self, dtypes): assert len(dtypes) == 2 if dtypes not in self.SubOp: self.SubOp[dtypes] = ScalarOp('Subtract', dtypes) return self.SubOp[dtypes] def RSHIFT(self, dtypes): assert isinstance(dtypes, Dtype), 'Got Dtypes: {}'.format(dtypes) if dtypes not in self.RshiftOp: self.RshiftOp[dtypes] = ScalarOp('Rshift', dtypes) return self.RshiftOp[dtypes] Ops = ScalarOpTypes()
cosrlib/sources/webarchive.py
commonsearch/cosr-back
141
11115436
<reponame>commonsearch/cosr-back<filename>cosrlib/sources/webarchive.py from __future__ import absolute_import, division, print_function, unicode_literals import os import tempfile from cosrlib.sources import Source from cosrlib.url import URL import warc from gzipstream import GzipStreamFile try: from http_parser.parser import HttpParser except ImportError: from http_parser.pyparser import HttpParser class WebarchiveSource(Source): """ Generic .warc Source """ def get_partitions(self): # .txt file with one .warc path per line if self.args.get("list"): with open(self.args["list"], "rb") as f: return [{ "path": x.strip(), "source": "warc" } for x in f.readlines()] # Direct list of .warc filepaths elif self.args.get("paths"): return [{ "path": path, "source": "warc" } for path in self.args["paths"]] # Single .warc else: return [{ "path": self.args["path"], "source": "warc" }] def _warc_reader_from_file(self, filereader, filepath): """ Creates a WARC record iterator from a file reader """ if filepath.endswith(".warc"): return warc.WARCFile(fileobj=filereader) else: # TODO: investigate how we could use cloudflare's zlib return warc.WARCFile(fileobj=GzipStreamFile(filereader)) def open_warc_stream(self, filepath): """ Creates a WARC record iterator from the filepath given to the Source """ filereader = open(filepath, "rb") return self._warc_reader_from_file(filereader, filepath) def iter_items(self, partition): """ Yields objects in the source's native format """ warc_stream = self.open_warc_stream(partition["path"]) for record in warc_stream: if not record.url: continue if record['Content-Type'] != 'application/http; msgtype=response': continue url = URL(record.url, check_encoding=True) do_parse, index_level = self.qualify_url(url) if not do_parse: continue payload = record.payload.read() parser = HttpParser() parser.execute(payload, len(payload)) headers = parser.get_headers() if 'text/html' not in headers.get("content-type", ""): # print "Not HTML?", record.url, headers continue yield url, headers, "html", index_level, parser.recv_body() def create_warc_from_corpus(documents, filename=None): """ Used mainly in tests to generate small .warc files """ if filename is None: fd, filename = tempfile.mkstemp(suffix=".warc") os.close(fd) f = warc.open(filename, "w") for doc in documents: headers = "Connection: close\r\nContent-Type: text/html" if "headers" in doc: headers = "\r\n".join(["%s: %s" % (k, v) for k, v in doc["headers"].iteritems()]) payload = "HTTP/1.1 200 OK\r\n" + headers + "\r\n\r\n" + doc["content"] record = warc.WARCRecord(payload=payload, headers={ "Content-Type": "application/http; msgtype=response", "WARC-Type": "response", "WARC-Target-URI": doc["url"] }) f.write_record(record) f.close() return filename
demo/tracking/deep_sort.py
shachargluska/centerpose
245
11115471
<gh_stars>100-1000 import time import numpy as np from .feature_extractor import Extractor from .sort.detection import Detection from .sort.nn_matching import NearestNeighborDistanceMetric from .sort.preprocessing import non_max_suppression from .sort.tracker import Tracker class DeepSort(object): def __init__(self, model_path): self.min_confidence = 0.3 self.nms_max_overlap = 1.0 self.extractor = Extractor(model_path, use_cuda=True) max_cosine_distance = 0.2 nn_budget = 100 metric = NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) self.tracker = Tracker(metric) def update(self, bbox_xywh, confidences, ori_img): self.height, self.width = ori_img.shape[:2] # generate detections try : features = self._get_features(bbox_xywh, ori_img) except : print('a') detections = [Detection(bbox_xywh[i], conf, features[i]) for i,conf in enumerate(confidences) if conf>self.min_confidence] # run on non-maximum supression boxes = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) indices = non_max_suppression( boxes, self.nms_max_overlap, scores) detections = [detections[i] for i in indices] # update tracker self.tracker.predict() self.tracker.update(detections) # output bbox identities outputs = [] for track in self.tracker.tracks: if not track.is_confirmed() or track.time_since_update > 1: continue box = track.to_tlwh() x1,y1,x2,y2 = self._xywh_to_xyxy_centernet(box) track_id = track.track_id outputs.append(np.array([x1,y1,x2,y2,track_id], dtype=np.int)) if len(outputs) > 0: outputs = np.stack(outputs,axis=0) return outputs # for centernet (x1,x2 w,h -> x1,y1,x2,y2) def _xywh_to_xyxy_centernet(self, bbox_xywh): x1,y1,w,h = bbox_xywh x1 = max(x1,0) y1 = max(y1,0) x2 = min(int(x1+w),self.width-1) y2 = min(int(y1+h),self.height-1) return int(x1),int(y1),x2,y2 # for yolo (centerx,centerx, w,h -> x1,y1,x2,y2) def _xywh_to_xyxy_yolo(self, bbox_xywh): x,y,w,h = bbox_xywh x1 = max(int(x-w/2),0) x2 = min(int(x+w/2),self.width-1) y1 = max(int(y-h/2),0) y2 = min(int(y+h/2),self.height-1) return x1,y1,x2,y2 def _get_features(self, bbox_xywh, ori_img): features = [] for box in bbox_xywh: x1,y1,x2,y2 = self._xywh_to_xyxy_centernet(box) im = ori_img[y1:y2,x1:x2] feature = self.extractor(im)[0] features.append(feature) if len(features): features = np.stack(features, axis=0) else: features = np.array([]) return features if __name__ == '__main__': pass
explorer/python-api/explorer_python_api/app.py
johnnynetgevity/cardano-sl
4,174
11115482
<reponame>johnnynetgevity/cardano-sl<gh_stars>1000+ import atexit import json import logging import os import records import requests import pytz import time from flask import Flask, request from flask.logging import default_handler from prometheus_flask_exporter import PrometheusMetrics from prometheus_client import CollectorRegistry from explorer_python_api import db # variables that are accessible from anywhere commonDataStruct = {} logger_name = __name__ logger = logging.getLogger(__name__) logger.addHandler(default_handler) def create_app(): app = Flask(__name__) gunicorn_logger = logging.getLogger('gunicorn.error') app.logger.handlers = gunicorn_logger.handlers app.logger.setLevel(gunicorn_logger.level) metrics_registry = CollectorRegistry() metrics = PrometheusMetrics(app, registry=metrics_registry) dbuser = os.environ.get('DBUSER', 'explorer_python_api') dbname = os.environ.get('DBNAME', 'explorer_python_api') dbsockpath = os.environ.get('DBSOCKPATH', '/tmp') addr_max_len = os.environ.get('ADDRMAXLEN', '200') dbstring = f'postgres:///{dbname}?user={dbuser}&host={dbsockpath}' explorer_url = os.environ.get('EXPLORERURL', 'http://localhost:8100') dbc = records.Database(dbstring) @app.route('/api/addresses/summary/<address>') @metrics.do_not_track() @metrics.histogram('address_summary_hist', 'Address Summary Histogram', labels={'status': lambda r: r.status_code}) def address_summary(address): app.logger.debug("Address summary page accessed") resp = getAddressSummary(address[:int(addr_max_len)]) if type(resp) == bytes: return resp return json.dumps(resp) @app.route('/', defaults={'u_path': ''}) @app.route('/<path:u_path>') @metrics.do_not_track() @metrics.histogram('proxy_hist', 'Proxy Histogram', labels={'status': lambda r: r.status_code}) def explorer_proxy(u_path): app.logger.info(f'API proxied to Explorer: {u_path}') return requests.get(f'{explorer_url}/{u_path}').content def getAddressSummary(caAddress): p1 = time.time() caTxSentRecord = db.caTxSentRecord(dbc, caAddress) caTxReceivedRecord = db.caTxReceivedRecord(dbc, caAddress) caTxRecord = db.caTxRecord(dbc, caAddress) caTxNum = len(caTxRecord) if caTxNum == 0: app.logger.info(f'{explorer_url}/api/addresses/summary/{caAddress}') return requests.get(f'{explorer_url}/api/addresses/summary/{caAddress}').content # These address metrics can be logged prior to any heavy processing # Seeing these logs may help explain any timeouts app.logger.debug(f'caAddress: {caAddress}') app.logger.debug(f'caTxNum: {caTxNum}') app.logger.debug(f'len(caTxSentRecord): {len(caTxSentRecord)}') app.logger.debug(f'len(caTxReceivedRecord): {len(caTxReceivedRecord)}') txs = [] caBalanceInput = 0 caBalanceOutput = 0 caBalanceFee = 0 ctbSelfInputSum = 0 ctbSelfOutputSum = 0 txLoopCount = 0 inputRecord = 0 outputRecord = 0 for tx in caTxRecord: txtemp = {} txtempinput = [] txtempinputs = [] txtempoutput = [] txtempoutputs = [] ctbInputSum = 0 ctbOutputSum = 0 txtemp['ctbId'] = tx['ctsid'] txtemp['ctbTimeIssued'] = int(tx['ctstxtimeissued'].replace(tzinfo=pytz.utc).timestamp()) while inputRecord < len(caTxSentRecord) and caTxSentRecord[inputRecord]['ctsid'] == tx['ctsid']: txinput = caTxSentRecord[inputRecord] txtempinput.append(txinput['ctsinputaddr']) txtempinput.append({ "getCoin": str(txinput['ctsinput']) }) ctbInputSum = ctbInputSum + txinput['ctsinput'] if txinput['ctsinputaddr'] == caAddress: ctbSelfInputSum = ctbSelfInputSum + txinput['ctsinput'] txtempinputs.append(txtempinput) txtempinput = [] inputRecord = inputRecord + 1 while outputRecord < len(caTxReceivedRecord) and caTxReceivedRecord[outputRecord]['ctsid'] == tx['ctsid']: txoutput = caTxReceivedRecord[outputRecord] txtempoutput.append(txoutput['ctsoutputaddr']) txtempoutput.append({ "getCoin": str(txoutput['ctsoutput']) }) ctbOutputSum = ctbOutputSum + txoutput['ctsoutput'] if txoutput['ctsoutputaddr'] == caAddress: ctbSelfOutputSum = ctbSelfOutputSum + txoutput['ctsoutput'] txtempoutputs.append(txtempoutput) txtempoutput = [] outputRecord = outputRecord + 1 txtemp['ctbInputs'] = txtempinputs txtemp['ctbOutputs'] = txtempoutputs txtemp['ctbInputSum'] = { "getCoin": str(ctbInputSum) } txtemp['ctbOutputSum'] = { "getCoin": str(ctbOutputSum) } txtemp['ctsFees'] = { "getCoin": str(tx['ctsfees']) } caBalanceFee = caBalanceFee + tx['ctsfees'] caBalanceInput = caBalanceInput + ctbInputSum caBalanceOutput = caBalanceOutput + ctbOutputSum txs.append(txtemp) txLoopCount = txLoopCount + 1 caBalance = ctbSelfOutputSum - ctbSelfInputSum addressReport = { "Right": { "caAddress": caAddress, "caType": "CPubKeyAddress", "caTxNum": caTxNum, "caBalance": { "getCoin": str(caBalance) }, "caTotalInput": { "getCoin": str(ctbSelfInputSum) }, "caTotalOutput": { "getCoin": str(ctbSelfOutputSum) }, "caTotalFee": { "getCoin": str(caBalanceFee) }, "caTxList": txs } } app.logger.debug(f'caBalance: {caBalance}') app.logger.debug(f'caTotalInput: {ctbSelfInputSum}'), app.logger.debug(f'caTotalOutput: {ctbSelfOutputSum}'), app.logger.debug(f'caTotalFee: {caBalanceFee}'), p2 = time.time() app.logger.info(f'[{p2-p1:.3f}s] API request for address summary: {caAddress}') return addressReport return app app = create_app()
python-gurobi model/Netflow problem.py
woruoweikunlun/Python-Gurobi
162
11115497
<reponame>woruoweikunlun/Python-Gurobi #!/usr/bin/python # Copyright 2016, Gurobi Optimization, Inc. # Solve a multi-commodity flow problem. Two products ('Pencils' and 'Pens') # are produced in 2 cities ('Detroit' and 'Denver') and must be sent to # warehouses in 3 cities ('Boston', 'New York', and 'Seattle') to # satisfy demand ('inflow[h,i]'). # # Flows on the transportation network must respect arc capacity constraints # ('capacity[i,j]'). The objective is to minimize the sum of the arc # transportation costs ('cost[i,j]'). from gurobipy import * # Model data commodities = ['Pencils', 'Pens'] nodes = ['Detroit', 'Denver', 'Boston', 'New York', 'Seattle'] arcs, capacity = multidict({ ('Detroit', 'Boston'): 100, ('Detroit', 'New York'): 80, ('Detroit', 'Seattle'): 120, ('Denver', 'Boston'): 120, ('Denver', 'New York'): 120, ('Denver', 'Seattle'): 120 }) arcs = tuplelist(arcs) cost = { ('Pencils', 'Detroit', 'Boston'): 10, ('Pencils', 'Detroit', 'New York'): 20, ('Pencils', 'Detroit', 'Seattle'): 60, ('Pencils', 'Denver', 'Boston'): 40, ('Pencils', 'Denver', 'New York'): 40, ('Pencils', 'Denver', 'Seattle'): 30, ('Pens', 'Detroit', 'Boston'): 20, ('Pens', 'Detroit', 'New York'): 20, ('Pens', 'Detroit', 'Seattle'): 80, ('Pens', 'Denver', 'Boston'): 60, ('Pens', 'Denver', 'New York'): 70, ('Pens', 'Denver', 'Seattle'): 30 } inflow = { ('Pencils', 'Detroit'): 50, ('Pencils', 'Denver'): 60, ('Pencils', 'Boston'): -50, ('Pencils', 'New York'): -50, ('Pencils', 'Seattle'): -10, ('Pens', 'Detroit'): 60, ('Pens', 'Denver'): 40, ('Pens', 'Boston'): -40, ('Pens', 'New York'): -30, ('Pens', 'Seattle'): -30 } # Create optimization model m = Model('netflow') # Create variables flow = {} for h in commodities: for i,j in arcs: flow[h,i,j] = m.addVar(ub=capacity[i,j], obj=cost[h,i,j], name='flow_%s_%s_%s' % (h, i, j)) m.update() # Arc capacity constraints for i,j in arcs: m.addConstr(quicksum(flow[h,i,j] for h in commodities) <= capacity[i,j], 'cap_%s_%s' % (i, j)) # Flow conservation constraints for h in commodities: for j in nodes: m.addConstr( quicksum(flow[h,i,j] for i,j in arcs.select('*',j)) + inflow[h,j] == quicksum(flow[h,j,k] for j,k in arcs.select(j,'*')), 'node_%s_%s' % (h, j)) # Compute optimal solution m.optimize() # Print solution if m.status == GRB.Status.OPTIMAL: solution = m.getAttr('x', flow) for h in commodities: print('\nOptimal flows for %s:' % h) for i,j in arcs: if solution[h,i,j] > 0: print('%s -> %s: %g' % (i, j, solution[h,i,j]))
lvsr/ops.py
dendisuhubdy/attention-lvcsr
295
11115600
from __future__ import print_function import math try: import fst except ImportError: print("No PyFST module, trying to work without it. If you want to run the " "language model, please install openfst and PyFST") import numpy import theano import itertools from theano import tensor, Op from theano.gradient import disconnected_type from fuel.utils import do_not_pickle_attributes from picklable_itertools.extras import equizip from collections import defaultdict, deque from toposort import toposort_flatten from lvsr.error_rate import reward_matrix, gain_matrix EPSILON = 0 MAX_STATES = 7 NOT_STATE = -1 def read_symbols(fname): syms = fst.SymbolTable('eps') with open(fname) as sf: for line in sf: s,i = line.strip().split() syms[s] = int(i) return syms @do_not_pickle_attributes('fst') class FST(object): """Picklable wrapper around FST.""" def __init__(self, path): self.path = path def load(self): self.fst = fst.read(self.path) self.isyms = dict(self.fst.isyms.items()) def __getitem__(self, state): """Returns all arcs of the state i""" return self.fst[state] def combine_weights(self, *args): # Protection from underflow when -x is too small m = max(args) return m - math.log(sum(math.exp(m - x) for x in args if x is not None)) def get_arcs(self, state, character): return [(state, arc.nextstate, arc.ilabel, float(arc.weight)) for arc in self[state] if arc.ilabel == character] def transition(self, states, character): arcs = list(itertools.chain( *[self.get_arcs(state, character) for state in states])) next_states = {} for next_state in {arc[1] for arc in arcs}: next_states[next_state] = self.combine_weights( *[states[arc[0]] + arc[3] for arc in arcs if arc[1] == next_state]) return next_states def expand(self, states): seen = set() depends = defaultdict(list) queue = deque() for state in states: queue.append(state) seen.add(state) while len(queue): state = queue.popleft() for arc in self.get_arcs(state, EPSILON): depends[arc[1]].append((arc[0], arc[3])) if arc[1] in seen: continue queue.append(arc[1]) seen.add(arc[1]) depends_for_toposort = {key: {state for state, weight in value} for key, value in depends.items()} order = toposort_flatten(depends_for_toposort) next_states = states for next_state in order: next_states[next_state] = self.combine_weights( *([next_states.get(next_state)] + [next_states[prev_state] + weight for prev_state, weight in depends[next_state]])) return next_states def explain(self, input_): input_ = list(input_) states = {self.fst.start: 0} print("Initial states: {}".format(states)) states = self.expand(states) print("Expanded states: {}".format(states)) for char, ilabel in zip(input_, [self.isyms[char] for char in input_]): states = self.transition(states, ilabel) print("{} consumed: {}".format(char, states)) states = self.expand(states) print("Expanded states: {}".format(states)) result = None for state, weight in states.items(): if numpy.isfinite(weight + float(self.fst[state].final)): print("Finite state {} with path weight {} and its own weight {}".format( state, weight, self.fst[state].final)) result = self.combine_weights( result, weight + float(self.fst[state].final)) print("Total weight: {}".format(result)) return result class FSTTransitionOp(Op): """Performs transition in an FST. Given a state and an input symbol (character) returns the next state. Parameters ---------- fst : FST instance remap_table : dict Maps neutral network characters to FST characters. """ __props__ = () def __init__(self, fst, remap_table): self.fst = fst self.remap_table = remap_table def pad(self, arr, value): return numpy.pad(arr, (0, MAX_STATES - len(arr)), mode='constant', constant_values=value) def perform(self, node, inputs, output_storage): all_states, all_weights, all_inputs = inputs # Each row of all_states contains a set of states # padded with NOT_STATE. all_next_states = [] all_next_weights = [] for states, weights, input_ in equizip(all_states, all_weights, all_inputs): states_dict = dict(zip(states, weights)) del states_dict[NOT_STATE] next_states_dict = self.fst.transition( states_dict, self.remap_table[input_]) next_states_dict = self.fst.expand(next_states_dict) if next_states_dict: next_states, next_weights = zip(*next_states_dict.items()) else: # No adequate state when no arc exists for now next_states, next_weights = [], [] all_next_states.append(self.pad(next_states, NOT_STATE)) all_next_weights.append(self.pad(next_weights, 0)) output_storage[0][0] = numpy.array(all_next_states, dtype='int64') output_storage[1][0] = numpy.array(all_next_weights) def make_node(self, states, weights, input_): # check that the theano version has support for __props__ assert hasattr(self, '_props') states = theano.tensor.as_tensor_variable(states) weights = theano.tensor.as_tensor_variable(weights) input_ = theano.tensor.as_tensor_variable(input_) return theano.Apply(self, [states, weights, input_], [states.type(), weights.type()]) class FSTCostsOp(Op): """Returns transition costs for all possible input symbols. Parameters ---------- fst : FST instance remap_table : dict Maps neutral network characters to FST characters. no_transition_cost : float Cost of going to the start state when no arc for an input symbol is available. Notes ----- It is assumed that neural network characters start from zero. """ __props__ = () def __init__(self, fst, remap_table, no_transition_cost): self.fst = fst self.remap_table = remap_table self.no_transition_cost = no_transition_cost def perform(self, node, inputs, output_storage): all_states, all_weights = inputs all_costs = [] for states, weights in zip(all_states, all_weights): states_dict = dict(zip(states, weights)) del states_dict[NOT_STATE] costs = (numpy.ones(len(self.remap_table), dtype=theano.config.floatX) * self.no_transition_cost) if states_dict: total_weight = self.fst.combine_weights(*states_dict.values()) for nn_character, fst_character in self.remap_table.items(): next_states_dict = self.fst.transition(states_dict, fst_character) next_states_dict = self.fst.expand(next_states_dict) if next_states_dict: next_total_weight = self.fst.combine_weights(*next_states_dict.values()) costs[nn_character] = next_total_weight - total_weight all_costs.append(costs) output_storage[0][0] = numpy.array(all_costs) def make_node(self, states, weights): # check that the theano version has support for __props__ assert hasattr(self, '_props') states = theano.tensor.as_tensor_variable(states) weights = theano.tensor.as_tensor_variable(weights) return theano.Apply(self, [states, weights], [theano.tensor.matrix()]) class RewardOp(Op): __props__ = () def __init__(self, eos_label, alphabet_size): """Computes matrices of rewards and gains.""" self.eos_label = eos_label self.alphabet_size = alphabet_size def perform(self, node, inputs, output_storage): groundtruth, recognized = inputs if (groundtruth.ndim != 2 or recognized.ndim != 2 or groundtruth.shape[1] != recognized.shape[1]): raise ValueError batch_size = groundtruth.shape[1] all_rewards = numpy.zeros( recognized.shape + (self.alphabet_size,), dtype='int64') all_gains = numpy.zeros( recognized.shape + (self.alphabet_size,), dtype='int64') alphabet = list(range(self.alphabet_size)) for index in range(batch_size): y = list(groundtruth[:, index]) y_hat = list(recognized[:, index]) try: eos_pos = y.index(self.eos_label) y = y[:eos_pos + 1] except: # Sometimes groundtruth is in fact also a prediction # and in this case it might not have EOS label pass if self.eos_label in y_hat: y_hat_eos_pos = y_hat.index(self.eos_label) y_hat_trunc = y_hat[:y_hat_eos_pos + 1] else: y_hat_trunc = y_hat rewards_trunc = reward_matrix( y, y_hat_trunc, alphabet, self.eos_label) # pass freshly computed rewards to gain_matrix to speed things up # a bit gains_trunc = gain_matrix(y, y_hat_trunc, alphabet, given_reward_matrix=rewards_trunc) gains = numpy.ones((len(y_hat), len(alphabet))) * -1000 gains[:(gains_trunc.shape[0] - 1), :] = gains_trunc[:-1, :] rewards = numpy.ones((len(y_hat), len(alphabet))) * -1 rewards[:(rewards_trunc.shape[0] - 1), :] = rewards_trunc[:-1, :] all_rewards[:, index, :] = rewards all_gains[:, index, :] = gains output_storage[0][0] = all_rewards output_storage[1][0] = all_gains def grad(self, *args, **kwargs): return disconnected_type(), disconnected_type() def make_node(self, groundtruth, recognized): recognized = tensor.as_tensor_variable(recognized) groundtruth = tensor.as_tensor_variable(groundtruth) return theano.Apply( self, [groundtruth, recognized], [tensor.ltensor3(), tensor.ltensor3()])
pyobjus/consts/__init__.py
zenvarlab/pyobjus
114
11115656
<gh_stars>100-1000 ''' Tools to allow reading const ObjC values. See pyobjus.consts.corebluetooth for an example of usage. Under normal circumstances, this is just a convoluted way to generate a class with attributes containing the default values. But with 'PYOBJUS_DEV' in the environment, this will instead automatically generate an ObjC source file, defining a class with getter methods returning the requested values. That source will then be built using make_dylib, loaded via load_dylib, and wrapped to provide the same interface as the normal class. In addition, a report will be printed to the console showing the values from the generated class:: ObjC Const Report - CBAdvertisementDataKeys =========================================== LocalName = (NSString*)'kCBAdvDataLocalName' ManufacturerData = (NSString*)'kCBAdvDataManufacturerData' ServiceUUIDs = (NSString*)'kCBAdvDataServiceUUIDs' This is done to provide the values so that the defaults can be set appropriately for release. Note that this has only been tested with NSString* values, and may need adjustment to work with other types. ''' from __future__ import print_function, absolute_import from os import makedirs, environ from os.path import expanduser, join, exists, getmtime from hashlib import md5 from pyobjus import autoclass from ..dylib_manager import make_dylib, load_dylib try: from six import with_metaclass except ImportError: def with_metaclass(meta, *bases): """Create a base class with a metaclass.""" # This requires a bit of explanation: the basic idea is to make a dummy # metaclass for one level of class instantiation that replaces itself with # the actual metaclass. class metaclass(meta): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, 'temporary_class', (), {}) const_m_template = '''\ {imports} @interface {name} : NSObject @end @implementation {name} {props} @end ''' const_m_import_template = '#import <{0}/{0}.h>' const_m_prop_template = '''\ + ({type}) get{key} {{ return {const}; }} ''' def load_consts(name, frameworks=None, properties=None): frameworks = ['Foundation'] + (frameworks or []) properties = properties or {} keys = [] consts = {} types = {} defaults = {} for k, v in properties.items(): keys.append(k) consts[k], types[k], defaults[k] = v if 'PYOBJUS_DEV' in environ: libdir = expanduser('~/.pyobjus/libs') if not exists(libdir): makedirs(libdir) src_file = join(libdir, name + '.src') m_file = join(libdir, name + '.m') dylib_file = join(libdir, name + '.dylib') src_data = md5(str((name, frameworks, consts))).digest() force_rebuild = True if exists(src_file): with open(src_file) as f: prev_src_data = f.read() if src_data == prev_src_data: force_rebuild = False if (force_rebuild or not exists(dylib_file) or getmtime(dylib_file) < getmtime(src_file)): with open(src_file, 'w') as f: f.write(src_data) with open(m_file, 'w') as f: imports = '\n'.join([const_m_import_template.format(fw) for fw in frameworks]) props = '\n'.join([const_m_prop_template.format(type=types[k], key=k, const=consts[k]) for k in keys]) f.write(const_m_template.format(imports=imports, name=name, props=props)) try: make_dylib(m_file, frameworks=frameworks) except Exception: # might just not be writable, in which case if the file # exists we can load it below, otherwise load_dylib() # will throw an exception anyway print('failed to make dylib -', name) try: load_dylib(dylib_file) objc_class = autoclass(name) class wrapper(object): def __getattr__(self, item): try: value = getattr(objc_class, 'get' + item) except AttributeError: return object.__getattribute__(self, item) else: value = value() try: if hasattr(value, 'cString'): return value.cString() elif hasattr(value, 'floatValue'): return value.floatValue() except Exception: pass return value wrapper.__name__ = name rv = wrapper() print('ObjC Const Report -', name) print('=' * (len(name) + 20)) for k in keys: try: v = repr(getattr(rv, k)) except Exception as e: v = str(e) print('{} = ({}){}'.format(k, types[k], v)) print() return rv except Exception: # we don't care what the exception was, just use the defaults print('failed to load dylib -', name) return type(name, (object,), defaults)() class Const(object): def __init__(self, name, default='', type='NSString*'): self.spec = name, type, default class ObjcConstMeta(type): def __new__(cls, name, bases, dct): if name == 'ObjcConstType': return super(ObjcConstMeta, cls).__new__(cls, name, bases, dct) frameworks = [] props = {} for k, v in dct.items(): if k == 'frameworks': frameworks = v elif isinstance(v, Const): props[k] = v.spec rv = load_consts(name, frameworks, props) rv.__doc__ = dct.get('__doc__', '') return rv class ObjcConstType(with_metaclass(ObjcConstMeta)): __abstract__ = True frameworks = []
autofixture_tests/urls.py
jayvdb/django-autofixture
332
11115674
<gh_stars>100-1000 # -*- coding: utf-8 -*- from django.http import HttpResponse def handle404(request): return HttpResponse('404') def handle500(request): return HttpResponse('500') handler404 = 'autofixture_tests.urls.handle404' handler500 = 'autofixture_tests.urls.handle500' urlpatterns = [ ]
adalink/errors.py
pomplesiegel/Adafruit_Adalink
119
11115704
<filename>adalink/errors.py<gh_stars>100-1000 # adalink Errors # # Common errors and exceptions raised by adalink. # # Author: <NAME> class AdaLinkError(Exception): """Class to represent an error from AdaLink. Base-class for all AdaLink errors. """ pass
autogl/module/nas/estimator/__init__.py
THUMNLab/AutoGL
824
11115740
<filename>autogl/module/nas/estimator/__init__.py import importlib import os from .base import BaseEstimator NAS_ESTIMATOR_DICT = {} def register_nas_estimator(name): def register_nas_estimator_cls(cls): if name in NAS_ESTIMATOR_DICT: raise ValueError( "Cannot register duplicate NAS estimator ({})".format(name) ) if not issubclass(cls, BaseEstimator): raise ValueError( "Model ({}: {}) must extend NAS estimator".format(name, cls.__name__) ) NAS_ESTIMATOR_DICT[name] = cls return cls return register_nas_estimator_cls from .one_shot import OneShotEstimator from .train_scratch import TrainEstimator def build_nas_estimator_from_name(name: str) -> BaseEstimator: """ Parameters ---------- name: ``str`` the name of nas estimator. Returns ------- BaseEstimator: the NAS estimator built using default parameters Raises ------ AssertionError If an invalid name is passed in """ assert name in NAS_ESTIMATOR_DICT, "HPO module do not have name " + name return NAS_ESTIMATOR_DICT[name]() __all__ = ["BaseEstimator", "OneShotEstimator", "TrainEstimator"]
tests/test_domaintools.py
target/huntlib
116
11115759
#!/usr/bin/env python import os import unittest from multiprocessing import cpu_count from unittest import TestCase from huntlib.domaintools import DomainTools import pandas as pd import numpy as np class TestDomainTools(TestCase): _handle = None _nonexistent_domain = "ladfownlasdfabwhxpaowanlsuwjn.com" @classmethod def setUpClass(self): ''' Authenticate to DomainTools once, and reuse that connection for all the tests in this module. ''' # This uses the default creds stored in ~/.huntlibrc dt = DomainTools() self._handle = dt def test_account_information(self): limits = self._handle.account_information() self.assertIsInstance( limits, dict, f"The return type of account_information was {type(limits)} not 'dict'." ) self.assertGreater( len(limits), 0, "account_information() did not return any information." ) def test_available_api_calls(self): api_calls = self._handle.available_api_calls() self.assertIsInstance( api_calls, list, f"The return type of available_api_calls was {type(api_calls)} not 'list'." ) self.assertGreater( len(api_calls), 0, "available_api_calls() did not return any information." ) def test_whois_domain(self): whois = self._handle.whois('google.com') self.assertIsInstance( whois, dict, f"The return type of whois() was {type(whois)} not 'dict'." ) self.assertIn( "registrant", whois, "Couldn't find the 'registrant' field in whois data." ) self.assertEqual( "Google LLC", whois['registrant'], "The registrant information does not seem to be correct." ) # Test against a domain that doesn't exist whois = self._handle.whois(self._nonexistent_domain) self.assertDictEqual( whois, {}, "The WHOIS for a non-existent domain was not empty." ) def test_whois_ipv4(self): whois = self._handle.whois('192.168.3.11') self.assertIsInstance( whois, dict, f"The return type of whois() was {type(whois)} not 'dict'." ) self.assertIn( "registrant", whois, "Couldn't find the 'registrant' field in whois data." ) self.assertEqual( "Google LLC", whois['registrant'], "The registrant information does not seem to be correct." ) def test_parsed_whois_domain(self): whois = self._handle.parsed_whois('google.com') self.assertIsInstance( whois, dict, f"The return type of whois() was {type(whois)} not 'dict'." ) self.assertIn( "registrant", whois, "Couldn't find the 'registrant_org' field in whois data." ) self.assertEqual( "Google LLC", whois['registrant'], "The registrant information does not seem to be correct." ) self.assertIn( 'registration', whois, "Couldn't find the 'registration' field in the parsed whois data." ) self.assertIn( 'created', whois['registration'], "Couldn't find the 'created' field in the 'registration' dict." ) self.assertEqual( "1997-09-15", whois['registration']['created'], "The registration create information does not seem to be correct." ) # Test against a domain that doesn't exist whois = self._handle.whois(self._nonexistent_domain) self.assertDictEqual( whois, {}, "The parsed WHOIS for a non-existent domain was not empty." ) def test_parsed_whois_ipv4(self): whois = self._handle.parsed_whois('8.8.8.8') self.assertIsInstance( whois, dict, f"The return type of whois() was {type(whois)} not 'dict'." ) def test_enrich(self): df = pd.DataFrame(['google.com', 'microsoft.com', '8.8.8.8', 'wstwc.cn', self._nonexistent_domain], columns=["domain"]) enriched_df = self._handle.enrich(df, column='domain') self.assertGreater( enriched_df.shape[1], 10, "Enriched DataFrame does not have the correct number of columns." ) self.assertIn( 'dt_enrich.active', enriched_df.columns, "Could not find the 'dt_enrich.active' column in the enriched frame." ) def test_brand_monitor(self): # Because this depends so much on which domains are registered # each day, it's hard to find a real term that has guaranteed # matches. So we just look for anything with the letter 'a' in # it, which is virtualy assured. domains = self._handle.brand_monitor('a') self.assertIsInstance( domains, list, f"The return from brand_monitor() was a {type(domains)}, not a list." ) self.assertGreater( len(domains), 0, "The brand_monitor search returned no results." ) def test_domain_reputation(self): # We can't predict a given domain name's exact reputation for # testing purposes, but we can make a couple of assumptions. # ASSUMPTION 1: We're using the domaintools API, and their own # domain is whitelisted to give a consistent 0.0 risk score. risk = self._handle.domain_reputation('domaintools.com') self.assertEqual( risk['risk_score'], 0.0, "The 'domaintools.com' domain should have a 0.0 risk score." ) # ASSUMPTION 2: Any given domain in a 'risky' TLD should have a positive, # non-zero score risk = self._handle.domain_reputation('domaintools.xyz') self.assertGreater( risk['risk_score'], 0.0, "The non-existent domain should have a non-zero risk score." ) # Finally, we just need to test that we get an empty dict when we pass in # an IP, since the API endpoint doesn't actually support IPs risk = self._handle.domain_reputation('8.8.8.8') self.assertDictEqual( risk, {}, "Domain reputation lookup on an IP failed to return an empty dict." ) # Test against a domain that doesn't exist risk = self._handle.domain_reputation(self._nonexistent_domain) self.assertDictEqual( risk, {}, "Domain reputation result for a non-existent domain was not empty." ) def test_risk(self): risk = self._handle.risk('wstwc.cn') self.assertIsInstance( risk, dict, "Risk scoring should have returned a dict." ) self.assertIn( "proximity", risk, "The returned risk data did not contain a 'proximity' risk value." ) # Test against a domain that doesn't exist risk = self._handle.risk(self._nonexistent_domain) self.assertDictEqual( risk, dict(), "The returned risk data for a non-existent domain was not empty." )
unittest_reinvent/running_modes/lib_invent_tests/logger_tests/__init__.py
lilleswing/Reinvent-1
183
11115772
<reponame>lilleswing/Reinvent-1 from unittest_reinvent.running_modes.lib_invent_tests.logger_tests.test_reinforcement_logger import \ TestReinforcementLogger
test/test_khan_dl.py
rand-net/khan-dl
835
11115779
import unittest import youtube_dl import sys sys.path.append("../khan_dl") from khan_dl.khan_dl import * class TestKhanDL(unittest.TestCase): def test_get_courses(self): print("test_get_courses") khan_dl = KhanDL() courses, courses_url = khan_dl.get_courses("https://www.khanacademy.org/math") self.assertIsNotNone(courses) self.assertIsNotNone(courses_url) self.assertEqual(len(courses), len(courses_url)) def test_get_course_page(self): print("test_get_course_page") khan_dl = KhanDL() khan_dl.course_url = "https://www.khanacademy.org/math/precalculus" khan_dl.get_course_page() self.assertIsNotNone(khan_dl.course_page) def test_get_course_title(self): print("test_get_course_title") khan_dl = KhanDL() khan_dl.course_url = "https://www.khanacademy.org/math/precalculus" khan_dl.get_course_page() khan_dl.get_course_title() self.assertEqual(khan_dl.course_title, "Precalculus") def test_get_course_unit_urls(self): print("test_get_course_unit_urls") khan_dl = KhanDL() khan_dl.course_url = "https://www.khanacademy.org/math/precalculus" khan_dl.get_course_page() khan_dl.get_course_unit_urls() self.assertEqual(len(khan_dl.course_unit_urls), 10) def test_get_course_unit_titles(self): print("test_get_course_unit_titles") khan_dl = KhanDL() khan_dl.course_url = "https://www.khanacademy.org/math/precalculus" khan_dl.get_course_page() khan_dl.get_course_unit_titles() self.assertIsNotNone(khan_dl.course_unit_titles) self.assertEqual(len(khan_dl.course_unit_titles), 10) def test_get_course_unit_slugs(self): print("test_get_course_unit_slugs") khan_dl = KhanDL() khan_dl.course_url = "https://www.khanacademy.org/math/precalculus" khan_dl.get_course_page() khan_dl.get_course_title() khan_dl.get_course_unit_titles() khan_dl.get_course_unit_slugs() self.assertEqual(len(khan_dl.course_unit_slugs), 10) def test_youtube_dl_down_playlist(self): print("test_youtube_dl_down_playlist") course_unit_url = ( "https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:complex" ) lesson_youtube_ids = [] youtube_dl_opts = {} with youtube_dl.YoutubeDL(youtube_dl_opts) as ydl: info_dict = ydl.extract_info(course_unit_url, download=False) for video in info_dict["entries"]: video_id = video.get("id", None) lesson_youtube_ids.append(video_id) self.assertIsNotNone(lesson_youtube_ids) self.assertEqual(len(lesson_youtube_ids), 22) def test_lesson_title_match_youtube_ids(self): print("test_lesson_title_match_youtube_ids") khan_dl = KhanDL() khan_dl.course_url = "https://www.khanacademy.org/math/trigonometry" khan_dl.get_course_page() khan_dl.get_course_title() khan_dl.get_course_unit_titles() khan_dl.get_course_unit_slugs() khan_dl.get_course_unit_urls() khan_dl.get_course_all_slugs() khan_dl.get_course_youtube_ids() self.assertEqual(len(khan_dl.course_all_slugs), len(khan_dl.lesson_youtube_ids)) if __name__ == "__main__": unittest.main()
boto3_type_annotations_with_docs/boto3_type_annotations/elastictranscoder/waiter.py
cowboygneox/boto3_type_annotations
119
11115791
from typing import Dict from botocore.waiter import Waiter class JobComplete(Waiter): def wait(self, Id: str, WaiterConfig: Dict = None): """ Polls :py:meth:`ElasticTranscoder.Client.read_job` every 30 seconds until a successful state is reached. An error is returned after 120 failed checks. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/elastictranscoder-2012-09-25/ReadJob>`_ **Request Syntax** :: waiter.wait( Id='string', WaiterConfig={ 'Delay': 123, 'MaxAttempts': 123 } ) :type Id: string :param Id: **[REQUIRED]** The identifier of the job for which you want to get detailed information. :type WaiterConfig: dict :param WaiterConfig: A dictionary that provides parameters to control waiting behavior. - **Delay** *(integer) --* The amount of time in seconds to wait between attempts. Default: 30 - **MaxAttempts** *(integer) --* The maximum number of attempts to be made. Default: 120 :returns: None """ pass
blacksheep/server/authentication/jwt.py
q0w/BlackSheep
420
11115823
from typing import Optional, Sequence from guardpost.asynchronous.authentication import AuthenticationHandler from guardpost.authentication import Identity from guardpost.jwks import KeysProvider from guardpost.jwts import InvalidAccessToken, JWTValidator from jwt.exceptions import InvalidTokenError from blacksheep.baseapp import get_logger from blacksheep.messages import Request class JWTBearerAuthentication(AuthenticationHandler): """ AuthenticationHandler that can parse and verify JWT Bearer access tokens to identify users. JWTs are validated using public RSA keys, and keys can be fetched automatically from OpenID Connect (OIDC) discovery, if an `authority` is provided. It is possible to use several instances of this class, to support authentication through several identity providers (e.g. Azure Active Directory, Auth0, Azure Active Directory B2C). """ def __init__( self, *, valid_audiences: Sequence[str], valid_issuers: Optional[Sequence[str]] = None, authority: Optional[str] = None, require_kid: bool = True, keys_provider: Optional[KeysProvider] = None, keys_url: Optional[str] = None, cache_time: float = 10800, auth_mode: str = "JWT Bearer" ): """ Creates a new instance of JWTBearerAuthentication, which tries to obtains the identity of the user from the "Authorization" request header, handling JWT Bearer tokens. Only standard authorization headers starting with the `Bearer ` string are handled. Parameters ---------- valid_audiences : Sequence[str] Sequence of acceptable audiences (aud). valid_issuers : Optional[Sequence[str]] Sequence of acceptable issuers (iss). Required if `authority` is not provided. If authority is specified and issuers are not, then valid issuers are set as [authority]. authority : Optional[str], optional If provided, keys are obtained from a standard well-known endpoint. This parameter is ignored if `keys_provider` is given. algorithms : Sequence[str], optional Sequence of acceptable algorithms, by default ["RS256"]. require_kid : bool, optional According to the specification, a key id is optional in JWK. However, this parameter lets control whether access tokens missing `kid` in their headers should be handled or rejected. By default True, thus only JWTs having `kid` header are accepted. keys_provider : Optional[KeysProvider], optional If provided, the exact `KeysProvider` to be used when fetching keys. By default None keys_url : Optional[str], optional If provided, keys are obtained from the given URL through HTTP GET. This parameter is ignored if `keys_provider` is given. cache_time : float, optional If >= 0, JWKS are cached in memory and stored for the given amount in seconds. By default 10800 (3 hours). auth_mode : str, optional When authentication succeeds, the declared authentication mode. By default, "JWT Bearer". """ self.logger = get_logger() if authority and not valid_issuers: valid_issuers = [authority] if not authority and not valid_issuers: raise TypeError("Specify either an authority or valid issuers.") assert valid_issuers is not None self._validator = JWTValidator( authority=authority, require_kid=require_kid, keys_provider=keys_provider, keys_url=keys_url, valid_issuers=valid_issuers, valid_audiences=valid_audiences, cache_time=cache_time, ) self.auth_mode = auth_mode self._validator.logger = self.logger async def authenticate(self, context: Request) -> Optional[Identity]: authorization_value = context.get_first_header(b"Authorization") if not authorization_value: context.identity = Identity({}) return None if not authorization_value.startswith(b"Bearer "): self.logger.debug( "Invalid Authorization header, not starting with `Bearer `, " "the header is ignored." ) context.identity = Identity({}) return None token = authorization_value[7:].decode() try: decoded = await self._validator.validate_jwt(token) except (InvalidAccessToken, InvalidTokenError) as ex: # pass, because the application might support more than one # authentication method and several JWT Bearer configurations self.logger.debug( "JWT Bearer - access token not valid for this configuration: %s", str(ex), ) pass else: context.identity = Identity(decoded, self.auth_mode) return context.identity context.identity = Identity({}) return None
querybook/server/logic/result_store.py
shivammmmm/querybook
1,144
11115832
<filename>querybook/server/logic/result_store.py import csv from io import StringIO import sys from typing import List from datetime import datetime from app.db import with_session from models.result_store import KeyValueStore # HACK: https://stackoverflow.com/questions/15063936/csv-error-field-larger-than-field-limit-131072 csv.field_size_limit(sys.maxsize) @with_session def create_key_value_store(key, value, commit=True, session=None): return KeyValueStore.create( {"key": key, "value": value}, commit=commit, session=session ) @with_session def update_key_value_store(key, value, commit=True, session=None): # csv kvs = get_key_value_store(key, session=session) kvs.value = value kvs.updated_at = datetime.utcnow() if commit: session.commit() else: session.flush() kvs.id return kvs @with_session def upsert_key_value_store(key, value, commit=True, session=None): kvp = get_key_value_store(key, session=session) if kvp: return update_key_value_store(key, value, commit, session=session) else: return create_key_value_store(key, value, commit, session=session) @with_session def get_key_value_store(key, session=None): return KeyValueStore.get(session=session, key=key) @with_session def delete_key_value_store(key, commit=True, session=None): item = get_key_value_store(key=key, session=session) if item: session.delete(item) if commit: session.commit() def string_to_csv(raw_csv_str: str) -> List[List[str]]: # Remove NULL byte to make sure csv conversion works raw_csv_str = raw_csv_str.replace("\x00", "") result = [] if len(raw_csv_str) > 0: raw_results = StringIO(raw_csv_str) csv_reader = csv.reader(raw_results, delimiter=",") result = [row for row in csv_reader] return result
python/src/main/python/pygw/statistics/binning_strategy/numeric_range_field_value_binning_strategy.py
radiant-maxar/geowave
280
11115855
<reponame>radiant-maxar/geowave<filename>python/src/main/python/pygw/statistics/binning_strategy/numeric_range_field_value_binning_strategy.py<gh_stars>100-1000 # # Copyright (c) 2013-2020 Contributors to the Eclipse Foundation # # See the NOTICE file distributed with this work for additional information regarding copyright # ownership. All rights reserved. This program and the accompanying materials are made available # under the terms of the Apache License, Version 2.0 which accompanies this distribution and is # available at http://www.apache.org/licenses/LICENSE-2.0.txt # =============================================================================================== from pygw.base.type_conversions import StringArrayType from pygw.config import geowave_pkg from .field_value_binning_strategy import FieldValueBinningStrategy class NumericRangeFieldValueBinningStrategy(FieldValueBinningStrategy): """ Statistic binning strategy that bins statistic values by the numeric representation of the value of a given field. By default it will truncate decimal places and will bin by the integer. However, an "offset" and "interval" can be provided to bin numbers at any regular step-sized increment from an origin value. A statistic using this binning strategy can be constrained using numeric ranges (A Range can be used as a constraint). """ def __init__(self, fields=None, interval=1, offset=0, java_ref=None): if java_ref is None: java_ref = geowave_pkg.core.store.statistics.binning.NumericRangeFieldValueBinningStrategy( float(interval), float(offset), StringArrayType().to_java(fields)) super().__init__(fields, java_ref)
configs/_base_/det_pipelines/psenet_pipeline.py
yuexy/mmocr
2,261
11115894
<gh_stars>1000+ img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadTextAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='ColorJitter', brightness=32.0 / 255, saturation=0.5), dict(type='Normalize', **img_norm_cfg), dict( type='ScaleAspectJitter', img_scale=[(3000, 736)], ratio_range=(0.5, 3), aspect_ratio_range=(1, 1), multiscale_mode='value', long_size_bound=1280, short_size_bound=640, resize_type='long_short_bound', keep_ratio=False), dict(type='PSENetTargets'), dict(type='RandomFlip', flip_ratio=0.5, direction='horizontal'), dict(type='RandomRotateTextDet'), dict( type='RandomCropInstances', target_size=(640, 640), instance_key='gt_kernels'), dict(type='Pad', size_divisor=32), dict( type='CustomFormatBundle', keys=['gt_kernels', 'gt_mask'], visualize=dict(flag=False, boundary_key='gt_kernels')), dict(type='Collect', keys=['img', 'gt_kernels', 'gt_mask']) ] # for ctw1500 img_scale_test_ctw1500 = (1280, 1280) test_pipeline_ctw1500 = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='MultiScaleFlipAug', img_scale=img_scale_test_ctw1500, flip=False, transforms=[ dict(type='Resize', img_scale=(1280, 1280), keep_ratio=True), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] # for icdar2015 img_scale_test_icdar2015 = (2240, 2240) test_pipeline_icdar2015 = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='MultiScaleFlipAug', img_scale=img_scale_test_icdar2015, flip=False, transforms=[ dict(type='Resize', img_scale=(1280, 1280), keep_ratio=True), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ]
contracts/migrations/0021_idv_piid_verbose_name.py
mepsd/CLAC
126
11115898
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-05-10 18:35 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('contracts', '0020_add_indexes'), ] operations = [ migrations.AlterField( model_name='contract', name='idv_piid', field=models.CharField(db_index=True, max_length=128, verbose_name='contract number'), ), ]
tools/kernel_names.py
datalayer-contrib/jupyterwidgets-tutorial
342
11115912
<reponame>datalayer-contrib/jupyterwidgets-tutorial from argparse import ArgumentParser from pathlib import Path import nbformat NB_VERSION = 4 def change_kernel_name(notebook_name, kernel_name, display_name=None): """ Change the name of the notebook kernel. """ dname = display_name if display_name else kernel_name notebook = nbformat.read(notebook_name, NB_VERSION) current_kname = notebook['metadata']['kernelspec']['name'] current_dname = notebook['metadata']['kernelspec']['display_name'] if current_kname == kernel_name and current_dname == dname: print('not changing kernel of {}'.format(notebook_name)) return notebook['metadata']['kernelspec']['name'] = kernel_name notebook['metadata']['kernelspec']['display_name'] = dname # print('\nHad this been a real operation, would have changed {}'.format(notebook_name)) # print('\t\tcurrent: {} to new: {}\n'.format(current_kname, kernel_name)) nbformat.write(notebook, notebook_name) def get_kernel_name(notebook_name): """ Return the name of the kernel in the notebook. """ notebook = nbformat.read(notebook_name, NB_VERSION) kname = notebook['metadata']['kernelspec']['name'] return kname if __name__ == '__main__': parser = ArgumentParser(description='Get or set kernel names for all ' 'notebooks in a directory.') parser.add_argument('-d', '--directory', default='.', help='Directory in which to look for notebooks.') parser.add_argument('-s', '--set', dest='kernel_name', metavar='kernel_name', help="Set the kernel to this name for each notebook.") parser.add_argument('--display-name', help="Display name of the kernel (default is same as " "kernel name).") args = parser.parse_args() directory = args.directory if args.directory else '.' p = Path(directory) notebooks = list(p.glob('**/*.ipynb')) if not notebooks: raise RuntimeError('No notebooks found at path {}'.format(directory)) for notebook in notebooks: nb_str = str(notebook) if args.kernel_name: change_kernel_name(nb_str, args.kernel_name, display_name=args.display_name) else: kname = get_kernel_name(nb_str) print('{}\t\t\t\t{}'.format(nb_str, kname))
test/test_bindings.py
hujiawei-sjtu/sdf_tools
159
11115932
#! /usr/bin/env python import unittest import numpy as np from sdf_tools import utils_2d class TestSDFTools(unittest.TestCase): def test_sdf_tools(self): res = 0.05 x_width = 20 y_height = 40 grid_world = np.zeros([y_height, x_width], dtype=np.uint8) grid_world[1, 3] = 1 center_x = 0 center_y = 0 sdf_origin = [center_x - x_width / 2, center_y - y_height / 2] sdf, sdf_gradient = utils_2d.compute_sdf_and_gradient(grid_world, res, sdf_origin) self.assertAlmostEqual(sdf[1, 3], -res) self.assertAlmostEqual(sdf[2, 3], res) self.assertAlmostEqual(sdf[0, 3], res) self.assertAlmostEqual(sdf[1, 2], res) self.assertAlmostEqual(sdf[1, 4], res) self.assertGreater(sdf[3, 6], 3 * res) self.assertEqual(sdf.shape, (y_height, x_width)) self.assertEqual(sdf_gradient.shape, (y_height, x_width, 2)) np.testing.assert_allclose(sdf_gradient[1, 4], [1.5, 0]) if __name__ == '__main__': unittest.main()
sasila/system_normal/manager/spider_manager.py
iiiusky/Sasila
327
11115959
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import json import threading if sys.version_info < (3, 0): reload(sys) sys.setdefaultencoding('utf-8') class SpiderManager(object): def __init__(self): self.spider_list = dict() def set_spider(self, spider): self.spider_list[spider._spider_id] = spider def del_spider(self, spider_id): if spider_id in self.spider_list.keys(): self.spider_list[spider_id].stop() del self.spider_list[spider_id] def init_system(self): pass def get_all_spider(self): return json.dumps(self.spider_list.keys()) def find_spider(self, spider_id): pass def start_spider(self, spider_id): if self.spider_list[spider_id]._spider_status == "stopped": thread = threading.Thread(target=self.spider_list[spider_id].start) thread.setDaemon(True) thread.start() def restart_spider(self, spider_id): thread = threading.Thread(target=self.spider_list[spider_id].restart) thread.setDaemon(True) thread.start() def stop_spider(self, spider_id): self.spider_list[spider_id].stop() def get_spider_detail(self, spider_id): return str(self.spider_list[spider_id]._process_count)
reclist/datasets.py
nsbits/reclist
183
11116008
import json import tempfile import zipfile import os from reclist.abstractions import RecDataset from reclist.utils.config import * class MovieLensDataset(RecDataset): """ MovieLens 25M Dataset Reference: https://files.grouplens.org/datasets/movielens/ml-25m-README.html """ def __init__(self, **kwargs): super().__init__(**kwargs) def load(self): cache_dir = get_cache_directory() filepath = os.path.join(cache_dir, "movielens_25m.zip") if not os.path.exists(filepath) or self.force_download: download_with_progress(MOVIELENS_DATASET_S3_URL, filepath) with tempfile.TemporaryDirectory() as temp_dir: with zipfile.ZipFile(filepath, "r") as zip_file: zip_file.extractall(temp_dir) with open(os.path.join(temp_dir, "dataset.json")) as f: data = json.load(f) self._x_train = data["x_train"] self._y_train = None self._x_test = data["x_test"] self._y_test = data["y_test"] self._catalog = self._convert_catalog_keys(data["catalog"]) def _convert_catalog_keys(self, catalog): """ Convert catalog keys from string to integer type JSON encodes all keys to strings, so the catalog dictionary will be loaded up string representation of movie IDs. """ converted_catalog = {} for k, v in catalog.items(): converted_catalog[int(k)] = v return converted_catalog class CoveoDataset(RecDataset): """ Coveo SIGIR data challenge dataset """ def __init__(self, **kwargs): super().__init__(**kwargs) def load(self): cache_directory = get_cache_directory() filename = os.path.join(cache_directory, "coveo_sigir.zip") # TODO: make var somewhere if not os.path.exists(filename) or self.force_download: download_with_progress(COVEO_INTERACTION_DATASET_S3_URL, filename) with tempfile.TemporaryDirectory() as temp_dir: with zipfile.ZipFile(filename, 'r') as zip_ref: zip_ref.extractall(temp_dir) with open(os.path.join(temp_dir, 'dataset.json')) as f: data = json.load(f) self._x_train = data["x_train"] self._y_train = None self._x_test = data["x_test"] self._y_test = data["y_test"] self._catalog = data["catalog"] class SpotifyDataset(RecDataset): def __init__(self, **kwargs): super().__init__(**kwargs) def load(self): data = self.load_spotify_playlist_dataset() self._x_train = data["train"] self._y_train = None self._x_test = data['test'] self._y_test = None self._catalog = data["catalog"] # generate NEP dataset here for now test_pairs = [(playlist[:-1], [playlist[-1]]) for playlist in self._x_test if len(playlist) > 1] self._x_test, self._y_test = zip(*test_pairs) def load_spotify_playlist_dataset(self): cache_directory = get_cache_directory() filename = os.path.join(cache_directory, "small_spotify_playlist.zip") # TODO: make var somewhere if not os.path.exists(filename) or self.force_download: download_with_progress(SPOTIFY_PLAYLIST_DATASET_S3_URL, filename) with tempfile.TemporaryDirectory() as temp_dir: with zipfile.ZipFile(filename, 'r') as zip_ref: zip_ref.extractall(temp_dir) with open(os.path.join(temp_dir, 'dataset.json')) as f: data = json.load(f) return data
test/test_kp_term_in_kp.py
Usama0121/flashtext
5,330
11116018
<filename>test/test_kp_term_in_kp.py from collections import defaultdict from flashtext import KeywordProcessor import logging import unittest import json import re logger = logging.getLogger(__name__) class TestKPDictionaryLikeFeatures(unittest.TestCase): def setUp(self): logger.info("Starting...") def tearDown(self): logger.info("Ending.") def test_term_in_dictionary(self): keyword_processor = KeywordProcessor() keyword_processor.add_keyword('j2ee', 'Java') keyword_processor.add_keyword('colour', 'color') keyword_processor.get_keyword('j2ee') self.assertEqual(keyword_processor.get_keyword('j2ee'), 'Java', "get_keyword didn't return expected Keyword") self.assertEqual(keyword_processor['colour'], 'color', "get_keyword didn't return expected Keyword") self.assertEqual(keyword_processor['Test'], None, "get_keyword didn't return expected Keyword") self.assertTrue('colour' in keyword_processor, "get_keyword didn't return expected Keyword") self.assertFalse('Test' in keyword_processor, "get_keyword didn't return expected Keyword") def test_term_in_dictionary_case_sensitive(self): keyword_processor = KeywordProcessor(case_sensitive=True) keyword_processor.add_keyword('j2ee', 'Java') keyword_processor.add_keyword('colour', 'color') keyword_processor.get_keyword('j2ee') self.assertEqual(keyword_processor.get_keyword('j2ee'), 'Java', "get_keyword didn't return expected Keyword") self.assertEqual(keyword_processor['colour'], 'color', "get_keyword didn't return expected Keyword") self.assertEqual(keyword_processor['J2ee'], None, "get_keyword didn't return expected Keyword") self.assertTrue('colour' in keyword_processor, "get_keyword didn't return expected Keyword") self.assertFalse('Colour' in keyword_processor, "get_keyword didn't return expected Keyword") if __name__ == '__main__': unittest.main()
Angel/Libraries/DevIL-SDK-1.7.8/srcs/BuildImageLibraries.py
Tifox/Grog-Knight
171
11116045
<filename>Angel/Libraries/DevIL-SDK-1.7.8/srcs/BuildImageLibraries.py<gh_stars>100-1000 #!/usr/bin/python # This file builds all the mac version of the image libraries. # It won't work on Windows as it's using the Unix build methods. import os import sys import shutil FILE_PATH = os.path.abspath(__file__) ROOT_DIR = os.path.dirname(FILE_PATH) INST_DIR = os.path.join(ROOT_DIR, "install") BASE_CFLAGS = "-I%s/include -L%s/lib -m32" % (INST_DIR, INST_DIR) BASE_CFLAGS += " -O -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.7.sdk -mmacosx-version-min=10.7 -arch i386" BASE_CPPFLAGS = BASE_CFLAGS BASE_LDFLAGS = "-L%s/lib -lstdc++ -m32 -arch i386" % (INST_DIR) BASE_ARCHFLAGS = "-arch i386" CLEAN = False LIBLIST = { "devil": ["DevIL-1.7.8.tar.gz", "devil-1.7.8", ["libIL.dylib", "libILU.dylib", "libILUT.dylib"]], "jasper": ["jasper-1.900.1.zip", "jasper-1.900.1", ["libjasper.dylib"]], "libjpeg": ["jpegsrc.v8a.tar.gz", "jpeg-8a", ["libjpeg.dylib"]], "lcms": ["lcms-1.19.tar.gz", "lcms-1.19", ["liblcms.dylib"]], "libpng": ["libpng-1.4.1.tar.gz", "libpng-1.4.1", ["libpng.dylib"]], "libmng": ["libmng-1.0.10.tar.gz", "libmng-1.0.10", ["libmng.dylib"]], "libtiff": ["tiff-3.9.2.tar.gz", "tiff-3.9.2", ["libtiff.dylib"]], } def resetStuff(): os.chdir(ROOT_DIR) os.environ['CFLAGS'] = BASE_CFLAGS os.environ['CPPFLAGS'] = BASE_CPPFLAGS os.environ['LDFLAGS'] = BASE_LDFLAGS os.environ['ARCHFLAGS'] = BASE_ARCHFLAGS ##################################### # clean up if necessary # ##################################### if "clean" in sys.argv: CLEAN = True if (CLEAN): if (os.path.exists(INST_DIR)): os.system("rm -rf %s" % INST_DIR) for lib, data in LIBLIST.iteritems(): if (os.path.exists(data[1])): print "Clearing out %s" % data[1] os.system("rm -rf %s" % data[1]) sys.exit(0) ##################################### # unarchive everything # ##################################### for libname, data in LIBLIST.iteritems(): lib = data[0] directory = data[1] if os.path.exists(directory): print "Skipping %s, %s already exists" % (lib, directory) continue if (libname == "libpng"): print "Copying libpng from Angel libraries..." os.system("cp -R ../../libpng-1.4.1 ./") elif lib.endswith(".zip"): print "Unzipping %s..." % lib os.system("unzip %s > /dev/null" % lib) elif (lib.endswith(".tar.gz") or lib.endswith(".tgz")): print "Untarring %s..." % lib os.system("tar -xzf %s > /dev/null" % lib) else: print "Problem, don't know how to unarchive %s" % lib ##################################### # build libpng # ##################################### if ("libpng" in LIBLIST.keys()): resetStuff() os.chdir(LIBLIST["libpng"][1]) config_string = "./configure --disable-dependency-tracking --prefix=%s --host=i686-apple-darwin10 " % (INST_DIR) os.system(config_string) os.system('make install') os.system('install_name_tool -id @executable_path/../Frameworks/libpng.dylib %s/lib/libpng.dylib' % (INST_DIR)) ##################################### # build libjpeg # ##################################### if ("libjpeg" in LIBLIST.keys()): resetStuff() os.chdir(LIBLIST["libjpeg"][1]) config_string = "./configure --prefix=%s --host=i686-apple-darwin10 " % (INST_DIR) os.system(config_string) os.system('make install') os.system('install_name_tool -id @executable_path/../Frameworks/libjpeg.dylib %s/lib/libjpeg.dylib' % (INST_DIR)) ##################################### # build libtiff # ##################################### if ("libtiff" in LIBLIST.keys()): resetStuff() os.chdir(LIBLIST["libtiff"][1]) config_string = "./configure --prefix=%s --enable-shared --host=i686-apple-darwin10 " % (INST_DIR) os.system(config_string) os.system('make install') os.system('install_name_tool -id @executable_path/../Frameworks/libtiff.dylib %s/lib/libtiff.dylib' % (INST_DIR)) ##################################### # build liblcms # ##################################### if ("lcms" in LIBLIST.keys()): resetStuff() os.chdir(LIBLIST["lcms"][1]) config_string = "./configure --prefix=%s --host=i686-apple-darwin10 " % (INST_DIR) os.system(config_string) os.system('make install') os.system('install_name_tool -id @executable_path/../Frameworks/liblcms.dylib %s/lib/liblcms.dylib' % (INST_DIR)) ##################################### # build libmng # ##################################### if ("libmng" in LIBLIST.keys()): resetStuff() os.chdir(LIBLIST["libmng"][1]) os.environ['LIBTOOLIZE'] = "glibtoolize" os.system("ln -s makefiles/configure.in .") os.system("ln -s makefiles/acinclude.m4 .") os.system("ln -s makefiles/Makefile.am .") # need to patch the configure file to build with latest autoconf srcFile = "configure.in" srcFileHandle = open(srcFile) srcData = srcFileHandle.read() srcFileHandle.close() badString = "\nAM_C_PROTOTYPES" goodString = "" srcData = srcData.replace(badString, goodString) srcFileHandle = open(srcFile, 'w') srcFileHandle.write(srcData) srcFileHandle.close() os.system("autoreconf -fvi") config_string = "./configure --prefix=%s --host=i686-apple-darwin10 " % (INST_DIR) os.system(config_string) os.system('make install') os.system('install_name_tool -id @executable_path/../Frameworks/libmng.dylib %s/lib/libmng.dylib' % (INST_DIR)) ##################################### # build libjasper # ##################################### if ("jasper" in LIBLIST.keys()): resetStuff() os.chdir(LIBLIST["jasper"][1]) config_string = "./configure --prefix=%s --enable-shared --host=i686-apple-darwin10 " % (INST_DIR) os.system(config_string) os.system('make install') os.system('install_name_tool -id @executable_path/../Frameworks/libjasper.dylib %s/lib/libjasper.dylib' % (INST_DIR)) ##################################### # build libil # ##################################### if ("devil" in LIBLIST.keys()): resetStuff() os.chdir(LIBLIST["devil"][1]) # ILU contains a bug that keeps it from building on OS X. Let's patch it. srcFile = "src-ILU/ilur/ilur.c" srcFileHandle = open(srcFile) srcData = srcFileHandle.read() srcFileHandle.close() badString = """ #include <malloc.h> """ goodString = """ #if defined(__APPLE__) #include "sys/malloc.h" #else #include <malloc.h> #endif """ srcData = srcData.replace(badString, goodString) srcFileHandle = open(srcFile, 'w') srcFileHandle.write(srcData) srcFileHandle.close() # replace old png functions with new hotness for oldFile in ['src-IL/src/il_icon.c', 'src-IL/src/il_png.c']: oldFileHandle = open(oldFile) oldData = oldFileHandle.read() oldFileHandle.close() badString = "png_set_gray_1_2_4_to_8" goodString = "png_set_expand_gray_1_2_4_to_8" oldData = oldData.replace(badString, goodString) badString = "png_check_sig(Signature, 8);" goodString = "!png_sig_cmp(Signature, 0, 8);" newData = oldData.replace(badString, goodString) oldFileHandle = open(oldFile, 'w') oldFileHandle.write(newData) oldFileHandle.close() config_string = "./configure --prefix=%s --enable-ILU --enable-ILUT --host=i686-apple-darwin10" % (INST_DIR) print(config_string) os.system(config_string) os.system('make install') for f in ['IL', 'ILU', 'ILUT']: correction_string = "install_name_tool -id @executable_path/../Frameworks/lib%s.dylib %s/lib/lib%s.1.dylib" % (f, INST_DIR, f) os.system(correction_string) if (f == 'ILU' or f == 'ILUT'): correction_string = "install_name_tool -change %s/lib/libIL.1.dylib @executable_path/../Frameworks/libIL.dylib %s/lib/lib%s.1.dylib" % (INST_DIR, INST_DIR, f) os.system(correction_string) if (f == 'ILUT'): correction_string = "install_name_tool -change %s/lib/libILU.1.dylib @executable_path/../Frameworks/libILU.dylib %s/lib/lib%s.1.dylib" % (INST_DIR, INST_DIR, f) os.system(correction_string) move_string = "mv %s/lib/lib%s.1.dylib %s/lib/lib%s.dylib" % (INST_DIR, f, INST_DIR, f) os.system(move_string) ##################################### # copying # ##################################### resetStuff() libpath = os.path.join(INST_DIR, "lib") exppath = os.path.join(INST_DIR, "exp") if not os.path.exists(libpath): os.makedirs(libpath) if not os.path.exists(exppath): os.makedirs(exppath) os.chdir(libpath) for libname, data in LIBLIST.iteritems(): files = data[2] for f in files: true_lib = os.path.realpath(f) shutil.copyfile(true_lib, os.path.join(exppath, f)) ##################################### # cleanup # ##################################### # we don't care about the extra stuff that most of these libs install # for dd in ["bin", "man", "share", "lib/pkgconfig", "lib/*.la"]: # dd = os.path.join(INST_DIR, dd) # os.system("rm -rf %s" % dd)
test/test_console_notifier.py
trae-horton/secret-bridge
152
11116061
<reponame>trae-horton/secret-bridge<filename>test/test_console_notifier.py<gh_stars>100-1000 import unittest from pathlib import Path from config import Config from notifiers import Registry from models.finding import Finding class TestConsoleNotifier(unittest.TestCase): def test_console_notifier(self): config_path = Path(__file__).parent.parent / 'config.toml' config = Config.load_file(config_path) notifier = Registry.get("console")(config) findings = [ Finding("testfile.py", 123, "test_secret_type", "https://www.example.com") ] notifier.process(findings, 'test-detector') if __name__ == "__main__": unittest.main()
ipypublish/__init__.py
parmentelat/ipypublish
220
11116082
from ipypublish.scripts import nb_setup # noqa: F401 __version__ = "0.10.12"
tests/basic_checks/issue_46_non_existant_signal_column.py
jmabry/pyaf
377
11116106
import numpy as np import pandas as pd import pyaf.ForecastEngine as autof try: df = pd.DataFrame([[0 , 0.54543]], columns = ['date' , 'signal']) lEngine = autof.cForecastEngine() lEngine.train(df , 'date' , 'signal_non_existant', 1); raise Exception("NOT_OK") except Exception as e: # should fail print(str(e)); assert(str(e) == "PYAF_ERROR_SIGNAL_COLUMN_NOT_FOUND signal_non_existant") if(str(e) == "NOT_OK"): raise pass
src/brain.py
Atharv-cyber/Jarvis-1
251
11116117
<gh_stars>100-1000 import re import webbrowser import os import random import urllib import thread import yaml from src import google_tts from src.wikipedia import wikipedia from src import network from src.some_functions import * from src import common speak_engine = google_tts.Google_TTS() with open('config.yml', 'r') as f: config = yaml.load(f) class Brain(): ''' This class will load core things in Jarvis' brain ''' def process(self, text): words = text.lower().split(' ') if 'open' in words: speak_engine.say("I'm on it. Stand By.") websites = config["config"]["websites"] website_to_open = text[text.index('open') + 5:] if website_to_open in websites: url = websites[website_to_open] webbrowser.open_new_tab(url) if 'search' in words: speak_engine.say("I'm looking for it. Please stand by!") term_to_search = text[text.index('search') + 7:] summary = wikipedia.summary(term_to_search) summary = " ".join(re.findall('\w+.', summary)) summary = summary[:99] speak_engine.say(summary) return True if 'where' in words and ('are' in words or 'am' in words) and ('we' in words or 'i' in words) or 'location' in words: speak_engine.say("I am tracking the location. Stand by.") speak_engine.say(network.currentLocation()) return True if 'play' in words: if 'a' in words and 'song' in words: thread.start_new_thread(play_music, ()) return True if 'current' in words and 'time' in words: time = common.getCurrentTime() speak_engine.say(time) return True '''Handling Mathematical/Computational queries''' if 'add' in words or 'subtract' in words or 'multiply' in words or 'divide' in words: try: nums = re.findall('\d+', text) if len(nums) < 2: mod_text = words_to_nums(text) nums += re.findall('\d+', mod_text) print nums nums = map(int, nums) if 'add' in words: speak_engine.say("It is " + str(sum(nums))) if 'subtract' in words: speak_engine.say("It is " + str(nums[1] - nums[0])) if 'multiply' in words: speak_engine.say("It is " + str(nums[0] * nums[1])) if 'divide' in words: speak_engine.say("It is " + str(nums[0] / nums[1])) except: speak_engine.say( "Perhaps my Mathematical part of brain is malfunctioning.") return True return False
pytorch-pretrained-bert/eval/evaluate_ae.py
lianapanatau/BERT-for-RRC-ABSA
425
11116136
<reponame>lianapanatau/BERT-for-RRC-ABSA import argparse import time import json import numpy as np import math import random import xml.etree.ElementTree as ET from subprocess import check_output def label_rest_xml(fn, output_fn, corpus, label): dom=ET.parse(fn) root=dom.getroot() pred_y=[] for zx, sent in enumerate(root.iter("sentence") ) : tokens=corpus[zx] lb=label[zx] opins=ET.Element("Opinions") token_idx, pt, tag_on=0, 0, False start, end=-1, -1 for ix, c in enumerate(sent.find('text').text): if token_idx<len(tokens) and pt>=len(tokens[token_idx] ): pt=0 token_idx+=1 if token_idx<len(tokens) and lb[token_idx]==1 and pt==0 and c!=' ': if tag_on: end=ix tag_on=False opin=ET.Element("Opinion") opin.attrib['target']=sent.find('text').text[start:end] opin.attrib['from']=str(start) opin.attrib['to']=str(end) opins.append(opin) start=ix tag_on=True elif token_idx<len(tokens) and lb[token_idx]==2 and pt==0 and c!=' ' and not tag_on: start=ix tag_on=True elif token_idx<len(tokens) and (lb[token_idx]==0 or lb[token_idx]==1) and tag_on and pt==0: end=ix tag_on=False opin=ET.Element("Opinion") opin.attrib['target']=sent.find('text').text[start:end] opin.attrib['from']=str(start) opin.attrib['to']=str(end) opins.append(opin) elif token_idx>=len(tokens) and tag_on: end=ix tag_on=False opin=ET.Element("Opinion") opin.attrib['target']=sent.find('text').text[start:end] opin.attrib['from']=str(start) opin.attrib['to']=str(end) opins.append(opin) if c==' ': pass elif tokens[token_idx][pt:pt+2]=='``' or tokens[token_idx][pt:pt+2]=="''": pt+=2 else: pt+=1 if tag_on: tag_on=False end=len(sent.find('text').text) opin=ET.Element("Opinion") opin.attrib['target']=sent.find('text').text[start:end] opin.attrib['from']=str(start) opin.attrib['to']=str(end) opins.append(opin) sent.append(opins ) dom.write(output_fn) def label_laptop_xml(fn, output_fn, corpus, label): dom=ET.parse(fn) root=dom.getroot() pred_y=[] for zx, sent in enumerate(root.iter("sentence") ): tokens=corpus[zx] lb=label[zx] opins=ET.Element("aspectTerms") token_idx, pt, tag_on=0, 0, False start, end=-1, -1 for ix, c in enumerate(sent.find('text').text): if token_idx<len(tokens) and pt>=len(tokens[token_idx] ): pt=0 token_idx+=1 if token_idx<len(tokens) and lb[token_idx]==1 and pt==0 and c!=' ': if tag_on: end=ix tag_on=False opin=ET.Element("aspectTerm") opin.attrib['term']=sent.find('text').text[start:end] opin.attrib['from']=str(start) opin.attrib['to']=str(end) opins.append(opin) start=ix tag_on=True elif token_idx<len(tokens) and lb[token_idx]==2 and pt==0 and c!=' ' and not tag_on: start=ix tag_on=True elif token_idx<len(tokens) and (lb[token_idx]==0 or lb[token_idx]==1) and tag_on and pt==0: end=ix tag_on=False opin=ET.Element("aspectTerm") opin.attrib['term']=sent.find('text').text[start:end] opin.attrib['from']=str(start) opin.attrib['to']=str(end) opins.append(opin) elif token_idx>=len(tokens) and tag_on: end=ix tag_on=False opin=ET.Element("aspectTerm") opin.attrib['term']=sent.find('text').text[start:end] opin.attrib['from']=str(start) opin.attrib['to']=str(end) opins.append(opin) if c==' ' or ord(c)==160: pass elif tokens[token_idx][pt:pt+2]=='``' or tokens[token_idx][pt:pt+2]=="''": pt+=2 else: pt+=1 if tag_on: tag_on=False end=len(sent.find('text').text) opin=ET.Element("aspectTerm") opin.attrib['term']=sent.find('text').text[start:end] opin.attrib['from']=str(start) opin.attrib['to']=str(end) opins.append(opin) sent.append(opins ) dom.write(output_fn) def evaluate(pred_fn, command, template): with open(pred_fn) as f: pred_json=json.load(f) y_pred=[] for ix, logit in enumerate(pred_json["logits"]): pred=[0]*len(pred_json["raw_X"][ix]) for jx, idx in enumerate(pred_json["idx_map"][ix]): lb=np.argmax(logit[jx]) if lb==1: #B pred[idx]=1 elif lb==2: #I if pred[idx]==0: #only when O->I (I->I and B->I ignored) pred[idx]=2 y_pred.append(pred) if 'REST' in command: command=command.split() label_rest_xml(template, command[6], pred_json["raw_X"], y_pred) acc=check_output(command ).split() return float(acc[9][10:]) elif 'Laptops' in command: command=command.split() label_laptop_xml(template, command[4], pred_json["raw_X"], y_pred) acc=check_output(command ).split() return float(acc[15]) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--pred_json', type=str) args = parser.parse_args() if 'rest' in args.pred_json: command="java -cp eval/A.jar absa16.Do Eval -prd ae/official_data/rest_pred.xml -gld ae/official_data/EN_REST_SB1_TEST.xml.gold -evs 2 -phs A -sbt SB1" template="ae/official_data/EN_REST_SB1_TEST.xml.A" elif 'laptop' in args.pred_json: command="java -cp eval/eval.jar Main.Aspects ae/official_data/laptop_pred.xml ae/official_data/Laptops_Test_Gold.xml" template="ae/official_data/Laptops_Test_Data_PhaseA.xml" print(evaluate(args.pred_json, command, template) )
tests/test_metrics.py
Jeanselme/xgboost-survival-embeddings
197
11116170
import pandas as pd import numpy as np from xgbse.metrics import concordance_index, approx_brier_score, dist_calibration_score from xgbse import XGBSEDebiasedBCE from xgbse.non_parametric import get_time_bins, calculate_kaplan_vectorized from tests.data import get_data ( X_train, X_test, X_valid, T_train, T_test, T_valid, E_train, E_test, E_valid, y_train, y_test, y_valid, features, ) = get_data() # generating Kaplan Meier for all tests time_bins = get_time_bins(T_train, E_train, 100) mean, high, low = calculate_kaplan_vectorized( T_train.values.reshape(1, -1), E_train.values.reshape(1, -1), time_bins ) km_survival = pd.concat([mean] * len(y_train)) km_survival = km_survival.reset_index(drop=True) # generating xgbse predictions for all tests xgbse_model = XGBSEDebiasedBCE() xgbse_model.fit( X_train, y_train, num_boost_round=1000, validation_data=(X_valid, y_valid), early_stopping_rounds=10, verbose_eval=0, time_bins=time_bins, ) preds = xgbse_model.predict(X_test) # generating dummy predictions dummy_preds = pd.DataFrame({100: [0.5] * len(y_test)}) # functions to make testing easier def is_brier_score_return_correct_len(): return len(approx_brier_score(y_train, km_survival, aggregate=None)) == len( km_survival.columns ) def is_dist_cal_return_correct_len(): return len(dist_calibration_score(y_train, km_survival, returns="histogram")) == 10 def is_dist_cal_return_correct_type(): result = dist_calibration_score(y_train, km_survival, returns="all") return type(result) == dict # testing def test_concordance_index(): assert concordance_index(y_train, km_survival) == 0.5 assert concordance_index(y_test, preds) > 0.5 assert np.isclose( concordance_index(y_test, T_test.values, risk_strategy="precomputed"), 0, atol=0.02, ) assert np.isclose( concordance_index(y_test, -T_test.values, risk_strategy="precomputed"), 1, atol=0.02, ) def test_approx_brier_score(): assert approx_brier_score(y_test, preds) < 0.25 assert approx_brier_score(y_train, km_survival) < 0.2 assert approx_brier_score(y_test, dummy_preds) == 0.25 assert is_brier_score_return_correct_len() def test_dist_calibration_score(): assert dist_calibration_score(y_train, km_survival) > 0.90 assert dist_calibration_score(y_train, km_survival, returns="statistic") < 1.0 assert dist_calibration_score(y_train, km_survival, returns="max_deviation") < 0.01 assert is_dist_cal_return_correct_len() assert is_dist_cal_return_correct_type()