max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
analytics/duplicates_analyze.py
mattip/builder
225
11111916
#!/usr/bin/env python3 from typing import Dict, List from subprocess import check_output import os import sys def get_defined_symbols(fname: str, verbose: bool = False) -> Dict[str, int]: if verbose: print(f"Processing {fname}...", end='', flush=True) if sys.platform == 'darwin': lines = check_output(['nm', '--defined-only', '-n', fname]).decode('ascii').split("\n")[:-1] rc = {} for idx, line in enumerate(lines): addr, stype, name = line.split(' ') size = 4 if idx + 1 == len(lines) else (int(lines[idx + 1].split(' ')[0], 16) - int(addr, 16)) rc[name] = size else: lines = check_output(['nm', '--print-size', '--defined-only', fname]).decode('ascii').split('\n') rc = {e[3]: int(e[1], 16) for e in [line.split() for line in lines] if len(e) == 4} if verbose: print("done") return rc def get_deps(fname: str) -> List[str]: if sys.platform == 'darwin': rc = [] lines = check_output(['otool', '-l', fname]).decode('ascii').split("\n")[1:-1] for idx, line in enumerate(lines): if line.strip() != 'cmd LC_LOAD_DYLIB': continue path = lines[idx + 2].strip() assert path.startswith('name') rc.append(os.path.basename(path.split(' ')[1])) return rc lines = check_output(['readelf', '--dynamic', fname]).decode('ascii').split('\n') return [line.split('[')[1][:-1] for line in lines if '(NEEDED)' in line] def humansize(size): if size < 1024: return f"{size} bytes" if size < 1024**2: return f"{int(size/1024)} Kb" if size < 1024**3: return f"{size/(1024.0**2):.2f} Mb" return f"{size/(1024.0**3):.2f} Gb" def print_sizes(libname, depth: int = 2) -> None: libs = [libname] depth = 2 symbols = {os.path.basename(libname): get_defined_symbols(libname, verbose=True)} for _ in range(depth): for lib in libs: dirname = os.path.dirname(lib) for dep in get_deps(lib): path = os.path.join(dirname, dep) if not os.path.exists(path): continue if path not in libs: libs.append(path) symbols[dep] = get_defined_symbols(path, verbose=True) for lib in libs: lib_symbols = symbols[os.path.basename(lib)] lib_keys = set(lib_symbols.keys()) rc = f"{lib} symbols size {humansize(sum(lib_symbols.values()))}" for dep in get_deps(lib): if dep not in symbols: continue dep_overlap = lib_keys.intersection(set(symbols[dep].keys())) overlap_size = sum(lib_symbols[k] for k in dep_overlap) if overlap_size > 0: rc += f" {dep} overlap is {humansize(overlap_size)}" print(rc) def print_symbols_overlap(libname1: str, libname2: str) -> None: sym1 = get_defined_symbols(libname1, verbose=True) sym2 = get_defined_symbols(libname2, verbose=True) sym1_size = sum(sym1.values()) sym2_size = sum(sym2.values()) sym_overlap = set(sym1.keys()).intersection(set(sym2.keys())) overlap_size = sum(sym1[s] for s in sym_overlap) if overlap_size == 0: print(f"{libname1} symbols size {humansize(sym1_size)} does not overlap with {libname2}") return print(f"{libname1} symbols size {humansize(sym1_size)} overlap {humansize(overlap_size)} ({100.0 * overlap_size/sym1_size :.2f}%)") for sym in sym_overlap: print(sym) if __name__ == '__main__': if len(sys.argv) == 3: print_symbols_overlap(sys.argv[1], sys.argv[2]) else: print_sizes(sys.argv[1] if len(sys.argv) > 1 else "lib/libtorch_cuda.so")
examples/django_110/app/views.py
ascan-io/raven-python
1,108
11111934
<gh_stars>1000+ import logging logger = logging.getLogger('app') def home(request): logger.info('Doing some division') 1 / 0
polytester/parsers/unittest.py
skoczen/polytester
115
11111977
<gh_stars>100-1000 from .nose import NoseParser class UnittestParser(NoseParser): """Output when using `python -m unittest` is the same as nose output.""" name = "unittest" def command_matches(self, command): return "unittest" in command
common/mongo_db.py
seaglass-project/seaglass
211
11111987
<gh_stars>100-1000 from pprint import pprint import pymongo import time import sys import traceback import os import base64 import datetime import common.utils as utils import common.scan as scan DB_INSERT_TIMEOUT = 1 # Used to prevent timeouts on cursors BATCH_SIZE = 1000 # Nice to have some versioning VERSION = 0 class Database(): ''' This is a helpful class to handle the necessary database operations''' def __init__(self, db_name, collection_name, host="localhost", port=27017, authentication=None): '''Establishes the database connection Args: db_name (String): Name of the database collection_name (String): Name of the collection host (String): hostname of database port (int): port of database authentication ({'username' : XXX, 'password' : XXX, 'source' : XXX}): This specifies the authentication parameters if necessary. If not specified then no authentication is used. All of these arguments must be present in the authenticaiton string. ''' client = pymongo.MongoClient(host, port) if authentication is not None: # Raise an exception if some of the authentication params are missing if 'username' not in authentication or \ 'password' not in authentication or \ 'source' not in authentication: raise Exception("Missing critical authentication argument") # Now do the actual authentication client[db_name].authenticate(authentication['username'], \ authentication['password'], \ source=authentication['source']) self.collection = client[db_name][collection_name] def insert_sensor_point(self, full_scan, version=VERSION): ''' This will insert a scan point + gps into the database Args: scan (Scan): The object that represents the entire scan ''' # Begin with the scan document mongo_dict = full_scan.document() rand = os.urandom(128) mongo_dict['unique_id'] = base64.b64encode(rand).decode('utf-8') mongo_dict['version'] = version self.insert_mongo_point(mongo_dict) def insert_mongo_point(self, mongo_dict): # If the connection has a timeout then just keep trying. # If the database is down there is no point in collecting # data anyway. insertion_successful = False while not insertion_successful: try: # Finally insert the point and set a bool to leave the loop utils.log("Trying to write to the DB...") self.collection.insert_one(mongo_dict) insertion_successful = True utils.log("Done writing to DB.") except Exception as e: exceptionType, exceptionValue, exceptionTraceback = sys.exc_info() traceback.print_exception(exceptionType, exceptionValue, exceptionTraceback, file=sys.stdout) utils.log("Error writing to DB: {}".format(e)) time.sleep(DB_INSERT_TIMEOUT) def insert_mongo_points(self, mongo_dicts): # If the connection has a timeout then just keep trying. # If the database is down there is no point in collecting # data anyway. insertion_successful = False while not insertion_successful: try: # Finally insert the point and set a bool to leave the loop utils.log("Trying to write to the DB...") self.collection.insert_many(mongo_dicts) insertion_successful = True utils.log("Done writing to DB.") except Exception as e: exceptionType, exceptionValue, exceptionTraceback = sys.exc_info() traceback.print_exception(exceptionType, exceptionValue, exceptionTraceback, file=sys.stdout) utils.log("Error writing to DB: {}".format(e)) time.sleep(DB_INSERT_TIMEOUT) def get_scans(self, uuids=None): '''This returns a iterable object to get all of the scan objects in the db''' # Just start grabbing all of the points points = self.collection.find() # The points object is a pymongo cursor. However there are timeouts if the # cursor reads too many points so we will set it manually points.batch_size(BATCH_SIZE) i = 0 for point in points: i += 1 if i % 1000 == 0: print("Collection point number: ", i) if uuids is None or point['unique_id'] not in uuids: gps_before = point['gps_before'] gps_after = point['gps_after'] gsm = point['gsm'] sensor_name = point['sensor_name'] uuid = point['unique_id'] version = point['version'] yield (scan.scan_factory(gsm, gps_before, gps_after, sensor_name), uuid, version)
Algo and DSA/LeetCode-Solutions-master/Python/maximum-profit-in-job-scheduling.py
Sourav692/FAANG-Interview-Preparation
3,269
11111991
<filename>Algo and DSA/LeetCode-Solutions-master/Python/maximum-profit-in-job-scheduling.py # Time: O(nlogn) # Space: O(n) import itertools import bisect class Solution(object): def jobScheduling(self, startTime, endTime, profit): """ :type startTime: List[int] :type endTime: List[int] :type profit: List[int] :rtype: int """ jobs = sorted(itertools.izip(endTime, startTime, profit)) dp = [(0, 0)] for e, s, p in jobs: i = bisect.bisect_right(dp, (s+1, 0))-1 if dp[i][1]+p > dp[-1][1]: dp.append((e, dp[i][1]+p)) return dp[-1][1] # Time: O(nlogn) # Space: O(n) import heapq class Solution(object): def jobScheduling(self, startTime, endTime, profit): """ :type startTime: List[int] :type endTime: List[int] :type profit: List[int] :rtype: int """ min_heap = zip(startTime, endTime, profit) heapq.heapify(min_heap) result = 0 while min_heap: s, e, p = heapq.heappop(min_heap) if s < e: heapq.heappush(min_heap, (e, s, result+p)) else: result = max(result, p) return result
scripts/converter/convert_geometries.py
HarpieRapace45/webots
1,561
11112020
<gh_stars>1000+ #!/usr/bin/env python3 # Copyright 1996-2021 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert R2020b world file from the NUE to the ENU coordinate system.""" from transforms3d import quaternions from webots_parser import WebotsParser coordinateSystem = 'ENU' def rotation(value, r): # if value == ['0', '0', '1', '1.57'] and r == ['1', '0', '0', '-1.57079632679']: # return [WebotsParser.str(0), WebotsParser.str(1), WebotsParser.str(0), WebotsParser.str(-1.57079632679)] q0 = quaternions.axangle2quat([float(value[0]), float(value[1]), float(value[2])], float(value[3])) q1 = quaternions.axangle2quat([float(r[0]), float(r[1]), float(r[2])], float(r[3])) qr = quaternions.qmult(q1, q0) v, theta = quaternions.quat2axangle(qr) return [WebotsParser.str(v[0]), WebotsParser.str(v[1]), WebotsParser.str(v[2]), WebotsParser.str(theta)] def createNewTransform(): if coordinateSystem == 'ENU': return {'fields': [{'name': 'Geometrics_conversion', 'value': 'Geometrics_conversion', 'type': 'SFString'}, {'name': 'rotation', 'value': ['1', '0', '0', '1.57079632679'], 'type': 'SFRotation'}, {'name': 'children', 'type': 'MFNode', 'value': []}], 'type': 'node', 'name': 'Transform'} else: return {'fields': [{'name': 'Geometrics_conversion', 'value': 'Geometrics_conversion', 'type': 'SFString'}, {'name': 'rotation', 'value': ['1', '0', '0', '-1.57079632679'], 'type': 'SFRotation'}, {'name': 'children', 'type': 'MFNode', 'value': []}], 'type': 'node', 'name': 'Transform'} def convert_children(node, parent): if 'USE' in node: return if node['name'] in 'Shape': for field in node['fields']: if field['name'] in ['geometry'] and 'USE' not in field['value'] and field['value']['name'] in ['Cylinder', 'Cone', 'Capsule', 'ElevationGrid', 'Plane']: isDef = False defName = None position = -1 for index in range(0, len(parent)): if parent[index] == node: position = index # We need to transfer the def of the geometry to the transform if 'DEF' in field['value']: defName = field['value']['DEF'] isDef = True field['value'].pop('DEF') # We need to transfer the def of the shape to the transform if 'DEF' in node: defName = node['DEF'] isDef = True node.pop('DEF') newTransform = createNewTransform() for param in newTransform['fields']: if param['name'] in 'children': param['value'] = [node] if isDef: newTransform['DEF'] = defName parent[position] = newTransform # Case of boundingObject elif node['name'] in ['Cylinder', 'Capsule', 'ElevationGrid', 'Plane']: newTransform = createNewTransform() for param in newTransform['fields']: if param['name'] in 'children': param['value'] = [node] # Case where this is a geometry directly inserted in a boundingObject if 'fields' in parent: for field in parent['fields']: if field['name'] in 'boundingObject': field['value'] = newTransform # Case where this is a geometry in a transform else: parent.remove(node) parent.append(newTransform) for field in node['fields']: if field['name'] in 'Geometrics_conversion': break elif field['name'] in 'children': for child in field['value']: convert_children(child, field['value']) elif field['name'] in 'endPoint': convert_children(field['value'], field['value']) elif field['name'] in 'boundingObject': convert_children(field['value'], node) def cleanTransform(node): for field in node['fields']: if field['name'] in 'Geometrics_conversion': node['fields'].remove(field) break elif field['name'] in 'children': for child in field['value']: cleanTransform(child) elif field['name'] in ['endPoint', 'boundingObject']: cleanTransform(field['value']) def squashUniqueTransform(node): if 'USE' in node: return if node['name'] in ['Transform']: for field in node['fields']: if field['name'] in 'children': if len(field['value']) == 1 and field['value'][0]['name'] in 'Transform' and 'DEF' not in field['value'][0]: childT = field['value'][0] for fieldC in childT['fields']: if fieldC['name'] == 'Geometrics_conversion': mergeTransform(node, childT) for field in node['fields']: if field['name'] in 'children': for child in field['value']: squashUniqueTransform(child) elif field['name'] in ['endPoint', 'boundingObject']: squashUniqueTransform(field['value']) def mergeTransform(parent, child): childRotation = None isChildRotation = False childShape = None isChildShape = False for childField in child['fields']: if childField['name'] in 'rotation': childRotation = childField['value'] isChildRotation = True if childField['name'] in 'children': if childField['value'][0]['name'] in ['Shape', 'Cylinder', 'Capsule', 'ElevationGrid', 'Plane']: childShape = childField['value'][0] isChildShape = True if isChildRotation and isChildShape: isParentRotation = False for parentField in parent['fields']: if parentField['name'] in 'rotation': parentField['value'] = rotation(parentField['value'], childRotation) isParentRotation = True if parentField['name'] in 'children': parentField['value'] = [childShape] if not isParentRotation: parent['fields'].append({'name': 'rotation', 'value': childRotation, 'type': 'SFRotation'}) def convert_to_enu(filename): world = WebotsParser() world.load(filename) global coordinateSystem print("Add transforms") for node in world.content['root']: if node['name'] == 'WorldInfo': for field in node['fields']: if field['name'] in 'coordinateSystem': coordinateSystem = field['value'] else: convert_children(node, world.content['root']) print("Merge transforms") for node in world.content['root']: squashUniqueTransform(node) cleanTransform(node) world.save(filename) if __name__ == "__main__": # execute only if run as a script # for filename in sys.argv: # if not filename.endswith('.wbt'): # continue filename = "tests/api/worlds/range_finder.wbt" print(filename) convert_to_enu(filename)
mapproxy/cache/__init__.py
cunha17/mapproxy
347
11112043
# This file is part of the MapProxy project. # Copyright (C) 2010 Omniscale <http://omniscale.de> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tile caching (creation, caching and retrieval of tiles). .. digraph:: Schematic Call Graph ranksep = 0.1; node [shape="box", height="0", width="0"] cl [label="CacheMapLayer" href="<mapproxy.layer.CacheMapLayer>"] tm [label="TileManager", href="<mapproxy.cache.tile.TileManager>"]; fc [label="FileCache", href="<mapproxy.cache.file.FileCache>"]; s [label="Source", href="<mapproxy.source.Source>"]; { cl -> tm [label="load_tile_coords"]; tm -> fc [label="load\\nstore\\nis_cached"]; tm -> s [label="get_map"] } """
tutorials/W0D3_LinearAlgebra/solutions/W0D3_Tutorial2_Solution_a86560cc.py
eduardojdiniz/CompNeuro
2,294
11112058
<reponame>eduardojdiniz/CompNeuro A = np.array([[-1, 0], [0, 1]]) # Uncomment to visualize transformation plot_linear_transformation(A)
ProofOfConcepts/Vision/OpenMvStereoVision/src/target_code/lens_correction.py
WoodData/EndpointAI
190
11112082
# Lens Correction import sensor, image, time sensor.reset() sensor.set_framesize(sensor.VGA) sensor.set_pixformat(sensor.RGB565) sensor.set_windowing((160,120,320,240)) sensor.skip_frames(time = 2000) data_fb = sensor.alloc_extra_fb(320, 240, sensor.RGB565) clock = time.clock() count = 0 remap = False while(True): clock.tick() # test without remap, with remap QVGA and with remap QQVGA img = sensor.snapshot() if remap: img.remap(data_fb, right=False, upside_down=False) count += 1 if count == 100: print("remap QVGA GRAYSCALE") remap = True sensor.set_framesize(sensor.VGA) sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_windowing((160,120,320,240)) elif count == 200: print("remap QVGA") remap = True sensor.set_framesize(sensor.VGA) sensor.set_pixformat(sensor.RGB565) sensor.set_windowing((160,120,320,240)) elif count == 300: print("remap QQVGA") remap = True sensor.set_framesize(sensor.QVGA) sensor.set_pixformat(sensor.RGB565) sensor.set_windowing((78,60,160,120)) elif count == 400: print("no remap VGA") remap = False sensor.set_framesize(sensor.VGA) sensor.set_pixformat(sensor.RGB565) sensor.set_windowing((160,120,320,240)) count = 0
src/dal_select2_queryset_sequence/fields.py
epoiate/django-autocomplete-light
1,368
11112087
"""Autocomplete fields for Select2GenericForeignKey choices.""" from dal_queryset_sequence.fields import QuerySetSequenceModelField from dal_select2_queryset_sequence.views import Select2QuerySetSequenceAutoView from dal_select2_queryset_sequence.widgets import QuerySetSequenceSelect2 from django.conf.urls import url from queryset_sequence import QuerySetSequence class Select2GenericForeignKeyModelField(QuerySetSequenceModelField): """ Select2GenericForeignKeyModelField class. Field that generate automatically the view for the QuerySetSequenceSelect2 widget """ def __init__(self, *args, **kwargs): """ Initialize Select2GenericForeignKeyModelField. :param args: :param model_choice: [(Model, 'filter_by', [('forwardfield_name', 'filter_by')]), ], List of tuples, for each select2 widget. Model is the model to query, 'filter_by' the attribute of the model to apply the filter. The list in the tuple is optional, its to forward a field from the form to the widget. :param field_id: Optional name instead of the automatic one :param kwargs: """ model_choice = kwargs.pop('model_choice', None) field_id = kwargs.pop('field_id', None) self.field_id = field_id if field_id else id(self) if model_choice: self.model_choice = model_choice models_queryset = [model[0].objects.all() for model in model_choice] kwargs['queryset'] = QuerySetSequence(*models_queryset) super(Select2GenericForeignKeyModelField, self).__init__(*args, **kwargs) def as_url(self, form): """Return url.""" url_name = '{}_autocomp_{}'.format(form.__name__, self.field_id) forward_fields = { forward_tuple[0] for field in self.model_choice if len(field) > 2 for forward_tuple in field[2] } # a set of the fields to forward. # it checks if the 3rd index of the list exists self.widget = QuerySetSequenceSelect2( url=url_name, forward=forward_fields ) # generate the class to work with multiple gfk # (can't work on instance level) auto_view = type( 'Autoview{}{}'.format(form.__name__, self.field_id), (Select2QuerySetSequenceAutoView,), {'model_choice': self.model_choice} ) # send to the view the model and filter list return url( r'^{}_{}_autocomp$'.format(form.__name__, self.field_id), auto_view.as_view(), name=url_name )
desktop/core/ext-py/python-ldap-2.3.13/Tests/Lib/ldap/schema/test_tokenizer.py
kokosing/hue
5,079
11112103
<gh_stars>1000+ import ldap.schema from ldap.schema.tokenizer import split_tokens,extract_tokens testcases_split_tokens = ( (" BLUBBER DI BLUBB ", ["BLUBBER", "DI", "BLUBB"]), ("BLUBBER DI BLUBB",["BLUBBER","DI","BLUBB"]), ("BLUBBER DI BLUBB ",["BLUBBER","DI","BLUBB"]), ("BLUBBER DI 'BLUBB' ",["BLUBBER","DI","BLUBB"]), ("BLUBBER ( DI ) 'BLUBB' ",["BLUBBER","(","DI",")","BLUBB"]), ("BLUBBER(DI)",["BLUBBER","(","DI",")"]), ("BLUBBER ( DI)",["BLUBBER","(","DI",")"]), ("BLUBBER ''",["BLUBBER",""]), ("( BLUBBER (DI 'BLUBB'))",["(","BLUBBER","(","DI","BLUBB",")",")"]), ("BLUBB (DA$BLAH)",['BLUBB',"(","DA","BLAH",")"]), ("BLUBB ( DA $ BLAH )",['BLUBB',"(","DA","BLAH",")"]), ("BLUBB (DA$ BLAH)",['BLUBB',"(","DA","BLAH",")"]), ("BLUBB (DA $BLAH)",['BLUBB',"(","DA","BLAH",")"]), ("BLUBB 'DA$BLAH'",['BLUBB',"DA$BLAH"]), ("BLUBB DI 'BLU B B ER' DA 'BLAH' ",['BLUBB','DI','BLU B B ER','DA','BLAH']), ("BLUBB DI 'BLU B B ER' DA 'BLAH' LABER",['BLUBB','DI','BLU B B ER','DA','BLAH','LABER']), ("BLUBBER DI 'BLU'BB ER' DA 'BLAH' ", ["BLUBBER", "DI", "BLU'BB ER", "DA", "BLAH"]), # for Oracle ("BLUBB DI 'BLU B B ER'MUST 'BLAH' ",['BLUBB','DI','BLU B B ER','MUST','BLAH']) # for Oracle ) for t,r in testcases_split_tokens: l = ldap.schema.tokenizer.split_tokens(t,{'MUST':None}) if l!=r: print 'String:',repr(t) print '=>',l print 'differs from',r
bcs-ui/backend/templatesets/legacy_apps/configuration/migrations/0034_auto_20200106_1455.py
laodiu/bk-bcs
599
11112118
<reponame>laodiu/bk-bcs<filename>bcs-ui/backend/templatesets/legacy_apps/configuration/migrations/0034_auto_20200106_1455.py # -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Generated by Django 1.11.5 on 2020-01-06 06:55 from __future__ import unicode_literals from django.db import migrations, models import backend.templatesets.legacy_apps.configuration.models.mixins class Migration(migrations.Migration): dependencies = [ ('configuration', '0033_auto_20191103_2342'), ] operations = [ migrations.CreateModel( name='Ingress', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('creator', models.CharField(max_length=32, verbose_name='创建者')), ('updator', models.CharField(max_length=32, verbose_name='更新者')), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('deleted_time', models.DateTimeField(blank=True, null=True)), ('config', models.TextField(verbose_name='配置信息')), ('name', models.CharField(default='', max_length=255, verbose_name='名称')), ], options={ 'ordering': ('created',), 'abstract': False, }, bases=( models.Model, backend.templatesets.legacy_apps.configuration.models.mixins.MConfigMapAndSecretMixin, ), ), migrations.AlterField( model_name='resourcefile', name='resource_name', field=models.CharField( choices=[ ('Deployment', 'Deployment'), ('Service', 'Service'), ('ConfigMap', 'ConfigMap'), ('Secret', 'Secret'), ('Ingress', 'Ingress'), ('StatefulSet', 'StatefulSet'), ('DaemonSet', 'DaemonSet'), ('Job', 'Job'), ('HPA', 'HPA'), ('ServiceAccount', 'ServiceAccount'), ('ClusterRole', 'ClusterRole'), ('ClusterRoleBinding', 'ClusterRoleBinding'), ('PodDisruptionBudget', 'PodDisruptionBudget'), ('StorageClass', 'StorageClass'), (('PersistentVolume',), 'PersistentVolume'), ('PersistentVolumeClaim', 'PersistentVolumeClaim'), ], max_length=32, ), ), ]
examples/ConsPortfolioModel/example_ConsPortfolioModel.py
AMonninger/HARK
264
11112119
# %% """ Example implementations of HARK.ConsumptionSaving.ConsPortfolioModel """ from copy import copy from time import time import matplotlib.pyplot as plt import numpy as np from HARK.ConsumptionSaving.ConsIndShockModel import init_lifecycle from HARK.ConsumptionSaving.ConsPortfolioModel import ( PortfolioConsumerType, init_portfolio, ) from HARK.utilities import plot_funcs # %% # Make and solve an example portfolio choice consumer type print("Now solving an example portfolio choice problem; this might take a moment...") MyType = PortfolioConsumerType() MyType.cycles = 0 t0 = time() MyType.solve() t1 = time() MyType.cFunc = [MyType.solution[t].cFuncAdj for t in range(MyType.T_cycle)] MyType.ShareFunc = [MyType.solution[t].ShareFuncAdj for t in range(MyType.T_cycle)] print( "Solving an infinite horizon portfolio choice problem took " + str(t1 - t0) + " seconds." ) # %% # Plot the consumption and risky-share functions print("Consumption function over market resources:") plot_funcs(MyType.cFunc[0], 0.0, 20.0) print("Risky asset share as a function of market resources:") print("Optimal (blue) versus Theoretical Limit (orange)") plt.xlabel("Normalized Market Resources") plt.ylabel("Portfolio Share") plt.ylim(0.0, 1.0) # Since we are using a discretization of the lognormal distribution, # the limit is numerically computed and slightly different from # the analytical limit obtained by Merton and Samuelson for infinite wealth plot_funcs( [ MyType.ShareFunc[0], lambda m: MyType.ShareLimit * np.ones_like(m), ], 0.0, 200.0, ) # %% # Now simulate this consumer type MyType.track_vars = ["cNrm", "Share", "aNrm", "t_age"] MyType.T_sim = 100 MyType.initialize_sim() MyType.simulate() # %% print("\n\n\n") print("For derivation of the numerical limiting portfolio share") print("as market resources approach infinity, see") print( "http://www.econ2.jhu.edu/people/ccarroll/public/lecturenotes/AssetPricing/Portfolio-CRRA/" ) # %% "" # Make another example type, but this one optimizes risky portfolio share only # on the discrete grid of values implicitly chosen by RiskyCount, using explicit # value maximization. init_discrete_share = init_portfolio.copy() init_discrete_share["DiscreteShareBool"] = True # Have to actually construct value function for this to work init_discrete_share["vFuncBool"] = True # %% # Make and solve a discrete portfolio choice consumer type print("Now solving a discrete choice portfolio problem; this might take a minute...") DiscreteType = PortfolioConsumerType(**init_discrete_share) DiscreteType.cycles = 0 t0 = time() DiscreteType.solve() t1 = time() DiscreteType.cFunc = [ DiscreteType.solution[t].cFuncAdj for t in range(DiscreteType.T_cycle) ] DiscreteType.ShareFunc = [ DiscreteType.solution[t].ShareFuncAdj for t in range(DiscreteType.T_cycle) ] print( "Solving an infinite horizon discrete portfolio choice problem took " + str(t1 - t0) + " seconds." ) # %% # Plot the consumption and risky-share functions print("Consumption function over market resources:") plot_funcs(DiscreteType.cFunc[0], 0.0, 50.0) print("Risky asset share as a function of market resources:") print("Optimal (blue) versus Theoretical Limit (orange)") plt.xlabel("Normalized Market Resources") plt.ylabel("Portfolio Share") plt.ylim(0.0, 1.0) # Since we are using a discretization of the lognormal distribution, # the limit is numerically computed and slightly different from # the analytical limit obtained by Merton and Samuelson for infinite wealth plot_funcs( [DiscreteType.ShareFunc[0], lambda m: DiscreteType.ShareLimit * np.ones_like(m)], 0.0, 200.0, ) # %% print("\n\n\n") # %% "" # Make another example type, but this one can only update their risky portfolio # share in any particular period with 15% probability. init_sticky_share = init_portfolio.copy() init_sticky_share["AdjustPrb"] = 0.15 # %% # Make and solve a discrete portfolio choice consumer type print( 'Now solving a portfolio choice problem with "sticky" portfolio shares; this might take a moment...' ) StickyType = PortfolioConsumerType(**init_sticky_share) StickyType.cycles = 0 t0 = time() StickyType.solve() t1 = time() StickyType.cFuncAdj = [ StickyType.solution[t].cFuncAdj for t in range(StickyType.T_cycle) ] StickyType.cFuncFxd = [ StickyType.solution[t].cFuncFxd for t in range(StickyType.T_cycle) ] StickyType.ShareFunc = [ StickyType.solution[t].ShareFuncAdj for t in range(StickyType.T_cycle) ] print( "Solving an infinite horizon sticky portfolio choice problem took " + str(t1 - t0) + " seconds." ) # %% # Plot the consumption and risky-share functions print( "Consumption function over market resources when the agent can adjust his portfolio:" ) plot_funcs(StickyType.cFuncAdj[0], 0.0, 50.0) # %% print( "Consumption function over market resources when the agent CAN'T adjust, by current share:" ) M = np.linspace(0.0, 50.0, 200) for s in np.linspace(0.0, 1.0, 21): C = StickyType.cFuncFxd[0](M, s * np.ones_like(M)) plt.plot(M, C) plt.xlim(0.0, 50.0) plt.ylim(0.0, None) plt.show() # %% print("Risky asset share function over market resources (when possible to adjust):") print("Optimal (blue) versus Theoretical Limit (orange)") plt.xlabel("Normalized Market Resources") plt.ylabel("Portfolio Share") plt.ylim(0.0, 1.0) plot_funcs( [StickyType.ShareFunc[0], lambda m: StickyType.ShareLimit * np.ones_like(m)], 0.0, 200.0, ) # %% "" # Make another example type, but this one has *age-varying* perceptions of risky asset returns. # Begin by making a lifecycle dictionary, but adjusted for the portfolio choice model. init_age_varying_risk_perceptions = copy(init_lifecycle) init_age_varying_risk_perceptions["RiskyCount"] = init_portfolio["RiskyCount"] init_age_varying_risk_perceptions["ShareCount"] = init_portfolio["ShareCount"] init_age_varying_risk_perceptions["aXtraMax"] = init_portfolio["aXtraMax"] init_age_varying_risk_perceptions["aXtraCount"] = init_portfolio["aXtraCount"] init_age_varying_risk_perceptions["aXtraNestFac"] = init_portfolio["aXtraNestFac"] init_age_varying_risk_perceptions["BoroCnstArt"] = init_portfolio["BoroCnstArt"] init_age_varying_risk_perceptions["CRRA"] = init_portfolio["CRRA"] init_age_varying_risk_perceptions["DiscFac"] = init_portfolio["DiscFac"] # %% init_age_varying_risk_perceptions["RiskyAvg"] = [1.08] * init_lifecycle["T_cycle"] init_age_varying_risk_perceptions["RiskyStd"] = list( np.linspace(0.20, 0.30, init_lifecycle["T_cycle"]) ) init_age_varying_risk_perceptions["RiskyAvgTrue"] = 1.08 init_age_varying_risk_perceptions["RiskyStdTrue"] = 0.20 AgeVaryingRiskPercType = PortfolioConsumerType(**init_age_varying_risk_perceptions) AgeVaryingRiskPercType.cycles = 1 # %% # Solve the agent type with age-varying risk perceptions # print('Now solving a portfolio choice problem with age-varying risk perceptions...') t0 = time() AgeVaryingRiskPercType.solve() AgeVaryingRiskPercType.cFunc = [ AgeVaryingRiskPercType.solution[t].cFuncAdj for t in range(AgeVaryingRiskPercType.T_cycle) ] AgeVaryingRiskPercType.ShareFunc = [ AgeVaryingRiskPercType.solution[t].ShareFuncAdj for t in range(AgeVaryingRiskPercType.T_cycle) ] t1 = time() print( "Solving a " + str(AgeVaryingRiskPercType.T_cycle) + " period portfolio choice problem with age-varying risk perceptions took " + str(t1 - t0) + " seconds." ) # %% # Plot the consumption and risky-share functions print("Consumption function over market resources in each lifecycle period:") plot_funcs(AgeVaryingRiskPercType.cFunc, 0.0, 20.0) print("Risky asset share function over market resources in each lifecycle period:") plot_funcs(AgeVaryingRiskPercType.ShareFunc, 0.0, 200.0) # %% [markdown] # The code below tests the mathematical limits of the model. # %% # Create a grid of market resources for the plots mMin = 0 # Minimum ratio of assets to income to plot mMax = 5 * 1e2 # Maximum ratio of assets to income to plot mPts = 1000 # Number of points to plot eevalgrid = np.linspace(0, mMax, mPts) # range of values of assets for the plot # Number of points that will be used to approximate the risky distribution risky_count_grid = [5, 50, 200] # Plot by ages (time periods) at which to plot. We will use the default life-cycle calibration. ages = [2, 4, 6, 8] # Create lifecycle dictionary with portfolio choice parameters merton_dict = copy(init_lifecycle) merton_dict["RiskyCount"] = init_portfolio["RiskyCount"] merton_dict["ShareCount"] = init_portfolio["ShareCount"] merton_dict["aXtraMax"] = init_portfolio["aXtraMax"] merton_dict["aXtraCount"] = init_portfolio["aXtraCount"] merton_dict["aXtraNestFac"] = init_portfolio["aXtraNestFac"] merton_dict["BoroCnstArt"] = init_portfolio["BoroCnstArt"] merton_dict["CRRA"] = init_portfolio["CRRA"] merton_dict["DiscFac"] = init_portfolio["DiscFac"] merton_dict["RiskyAvgTrue"] = 1.08 merton_dict["RiskyStdTrue"] = 0.20 # Create a function to compute the Merton-Samuelson limiting portfolio share. def RiskyShareMertSamLogNormal(RiskPrem, CRRA, RiskyVar): return RiskPrem / (CRRA * RiskyVar) # %% Calibration and solution for rcount in risky_count_grid: # Create a new dictionary and replace the number of points that # approximate the risky return distribution # Create new dictionary copying the default merton_dict["RiskyCount"] = rcount # Create and solve agent agent = PortfolioConsumerType(**merton_dict) agent.solve() # Compute the analytical Merton-Samuelson limiting portfolio share RiskyVar = agent.RiskyStd ** 2 RiskPrem = agent.RiskyAvg - agent.Rfree MS_limit = RiskyShareMertSamLogNormal(RiskPrem, agent.CRRA, RiskyVar) # Now compute the limiting share numerically, using the approximated # distribution agent.update_ShareLimit() NU_limit = agent.ShareLimit plt.figure() for a in ages: plt.plot( eevalgrid, agent.solution[a].ShareFuncAdj(eevalgrid), label="t = %i" % (a) ) plt.axhline( NU_limit, c="k", ls="-.", label="Exact limit as $m\\rightarrow \\infty$." ) plt.axhline( MS_limit, c="k", ls="--", label="M&S Limit without returns discretization." ) plt.ylim(0, 1.05) plt.xlim(eevalgrid[0] + 1, eevalgrid[-1]) plt.xscale("log") plt.legend() plt.title( "Risky Portfolio Share by Age\n Risky distribution with {points} equiprobable points".format( points=rcount ) ) plt.xlabel("Wealth (m)") plt.ioff() plt.draw() # %% # %%
isaacgymenvs/rl_games/common/interval_summary_writer.py
ZaneZh/IsaacGymEnvs
193
11112151
<gh_stars>100-1000 import time class IntervalSummaryWriter: """ Summary writer wrapper designed to reduce the size of tf.events files. It will prevent the learner from writing the summaries more often than a specified interval, i.e. if the current interval is 20 seconds and we wrote our last summary for a particular summary key at 01:00, all summaries until 01:20 for that key will be ignored. The interval is adaptive: it will approach 1/200th of the total training time, but no less than interval_sec_min and no greater than interval_sec_max. This was created to facilitate really big training runs, such as with Population-Based training, where summary folders reached tens of gigabytes. """ def __init__(self, summary_writer, cfg): self.experiment_start = time.time() # prevents noisy summaries when experiments are restarted self.defer_summaries_sec = cfg.get('defer_summaries_sec', 5) self.interval_sec_min = cfg.get('summaries_interval_sec_min', 5) self.interval_sec_max = cfg.get('summaries_interval_sec_max', 300) self.last_interval = self.interval_sec_min # interval between summaries will be close to this fraction of the total training time, # i.e. for a run that lasted 200 minutes we write one summary every minute. self.summaries_relative_step = 1.0 / 200 self.writer = summary_writer self.last_write_for_tag = dict() def _calc_interval(self): """Write summaries more often in the beginning of the run.""" if self.last_interval >= self.interval_sec_max: return self.last_interval seconds_since_start = time.time() - self.experiment_start interval = seconds_since_start * self.summaries_relative_step interval = min(interval, self.interval_sec_max) interval = max(interval, self.interval_sec_min) self.last_interval = interval return interval def add_scalar(self, tag, value, step, *args, **kwargs): if step == 0: # removes faulty summaries that appear after the experiment restart # print('Skip summaries with step=0') return seconds_since_start = time.time() - self.experiment_start if seconds_since_start < self.defer_summaries_sec: return last_write = self.last_write_for_tag.get(tag, 0) seconds_since_last_write = time.time() - last_write interval = self._calc_interval() if seconds_since_last_write >= interval: self.writer.add_scalar(tag, value, step, *args, **kwargs) self.last_write_for_tag[tag] = time.time() def __getattr__(self, attr): return getattr(self.writer, attr)
Stephanie/Modules/weather_report_module.py
JeremyARussell/stephanie-va
866
11112156
import datetime import pyowm from Stephanie.Modules.base_module import BaseModule from Stephanie.local_libs.numbers_format import NumberService class WeatherReportModule(BaseModule): def __init__(self, *args): super(WeatherReportModule, self).__init__(*args) self.api_key = self.get_configuration("open_weather_map_api_key") if self.api_key: self.owm = pyowm.OWM(self.api_key) else: return False self.city = self.get_configuration(section="USER", key="city") self.num_service = NumberService() # def weather_information(self): # self.assistant.say("What would you like to know about?") # query = self.assistant.listen().decipher() def weather_report_weekly(self): temp_unit = 'celsius' # some problem with self.city variable forecast = self.owm.daily_forecast(self.city) fore = forecast.get_forecast() location = fore.get_location().get_name() weather_report = self.get_weather_report_weekly(forecast, location, temp_unit, report="weekly") return weather_report def weather_report_today(self): temp_unit = 'celsius' report = 'current' cw = self.owm.weather_at_place(self.city) loc = cw.get_location().get_name() weather = cw.get_weather() weather_report = self.get_weather_report(weather, loc, temp_unit, report) return weather_report def weather_report_tomorrow(self): temp_unit = 'celsius' report = 'tomorrow' forecast = self.owm.daily_forecast(self.city) fore = forecast.get_forecast() loc = fore.get_location().get_name() tomorrow = pyowm.timeutils.tomorrow() weather = forecast.get_weather_at(tomorrow) weather_report = self.get_weather_report(weather, loc, temp_unit, report) return weather_report def get_weather_report(self, weather, loc, temp_unit='celsius', report='current'): weather_report = 'Server Down.' wind = weather.get_wind() wind_speed = self.num_service.parseMagnitude(wind["speed"]) humi = self.num_service.parseMagnitude(weather.get_humidity()) if weather.get_clouds() > 0: clou = self.num_service.parseMagnitude(weather.get_clouds()) else: clou = "zero" stat = weather.get_status() detstat = weather.get_detailed_status() if report == 'current': temp = weather.get_temperature(temp_unit) temp_max = self.num_service.parseMagnitude(temp['temp_max']) temp_min = self.num_service.parseMagnitude(temp['temp_min']) curr_temp = self.num_service.parseMagnitude(temp['temp']) weather_report = "Weather at " + loc + ". Today is " + stat + ". There is a chance of " \ + detstat + ". Now Temperature is " + curr_temp + " degree " \ + temp_unit + ". Humidity " + humi + " percent. Wind Speed " \ + wind_speed + ". with cloud cover " + clou + " percent." elif report == 'tomorrow': temp = weather.get_temperature(temp_unit) temp_morn = self.num_service.parseMagnitude(temp['morn']) temp_day = self.num_service.parseMagnitude(temp['day']) temp_night = self.num_service.parseMagnitude(temp['night']) weather_report = "Weather at " + loc + ". Tomorrow will be " + stat + ". There will be a chance of " \ + detstat + ". Temperature in the morning " + temp_morn + " degree " \ + temp_unit + ". Days Temperature will be " + temp_day + " degree " \ + temp_unit + ". and Temperature at night will be " + temp_night + " degree " \ + temp_unit + ". Humidity " + humi + " percent. Wind Speed " \ + wind_speed + ". with clouds cover " + clou + " percent." return weather_report def get_weather_report_weekly(self, forecast, loc, temp_unit='celsius', report='current'): weather_report = "Weather forecast for next week at " + loc + ". " rainy_days = len(forecast.when_rain()) if rainy_days > 0: rainy_days_str = "Rainy Days are. " for d in range(rainy_days): rain_day = forecast.when_rain()[d].get_reference_time() date_str = self.format_time_stamp(rain_day) rainy_days_str += date_str + ". " weather_report += rainy_days_str date_str = '' most_rainy = forecast.most_rainy() if most_rainy: weather_report += "You will observe heavy rain on. " ref_time = most_rainy.get_reference_time() date_str = self.format_time_stamp(ref_time) weather_report += date_str + ". " date_str = '' sunny_days = len(forecast.when_sun()) if sunny_days > 0: sunny_days_str = "Sunny Days are. " for d in range(sunny_days): sunny_day = forecast.when_sun()[d].get_reference_time() date_str = self.format_time_stamp(sunny_day) sunny_days_str += date_str + ". " weather_report += sunny_days_str date_str = '' most_hot = forecast.most_hot() if most_hot: weather_report += "You will feel heat on. " ref_time = most_hot.get_reference_time() date_str = self.format_time_stamp(ref_time) weather_report += date_str + ". " date_str = '' most_windy = forecast.most_windy() if most_windy: weather_report += "Most windy day will be. " ref_time = most_windy.get_reference_time() date_str = self.format_time_stamp(ref_time) weather_report += date_str + ". " date_str = '' most_humid = forecast.most_humid() if most_humid: weather_report += "Most humid day will be. " ref_time = most_humid.get_reference_time() date_str = self.format_time_stamp(ref_time) weather_report += date_str + ". " date_str = '' most_cold = forecast.most_cold() if most_cold: weather_report += "Coolest day will be. " ref_time = most_cold.get_reference_time() date_str = self.format_time_stamp(ref_time) weather_report += date_str + ". " date_str = '' return weather_report @staticmethod def format_time_stamp(unix_time): return datetime.datetime.fromtimestamp(unix_time).strftime("%B %d")
hn/__init__.py
movermeyer/HackerNewsAPI
132
11112165
<filename>hn/__init__.py<gh_stars>100-1000 """ Python API for Hacker News. @author <NAME> @email <EMAIL> """ __title__ = 'hackernews' __author__ = '<NAME>' __license__ = 'MIT' __copyright__ = 'Copyright 2014 Karan Goel' from .hn import HN, Story
Configuration/AlCa/python/autoCondModifiers.py
malbouis/cmssw
852
11112208
## ## Append for 0T conditions ## from Configuration.StandardSequences.CondDBESSource_cff import GlobalTag as essource connectionString = essource.connect.value() # method called in autoCond def autoCond0T(autoCond): ConditionsFor0T = ','.join( ['RunInfo_0T_v1_mc', "RunInfoRcd", connectionString, "", "2020-07-01 12:00:00.000"] ) GlobalTags0T = {} for key,val in autoCond.items(): if "phase" in key: # restrict to phase1 upgrade GTs GlobalTags0T[key+"_0T"] = (autoCond[key], ConditionsFor0T) autoCond.update(GlobalTags0T) return autoCond def autoCondHLTHI(autoCond): GlobalTagsHLTHI = {} # emulate hybrid ZeroSuppression on the VirginRaw data of 2015 FullPedestalsForHLTHI = ','.join( ['SiStripFullPedestals_GR10_v1_hlt', "SiStripPedestalsRcd", connectionString, "", "2021-03-11 12:00:00.000"] ) MenuForHLTHI = ','.join( ['L1Menu_CollisionsHeavyIons2015_v5_uGT_xml', "L1TUtmTriggerMenuRcd", connectionString, "", "2021-03-11 12:00:00.000"] ) for key,val in autoCond.items(): if key == 'run2_hlt_relval': # modification of HLT relval GT GlobalTagsHLTHI['run2_hlt_hi'] = (autoCond[key], FullPedestalsForHLTHI, MenuForHLTHI) autoCond.update(GlobalTagsHLTHI) return autoCond def autoCondDD4HEP(autoCond): GlobalTagsDDHEP = {} # substitute the DDD geometry tags with DD4HEP ones CSCRECODIGI_Geometry_dd4hep = ','.join( ['CSCRECODIGI_Geometry_120DD4hepV1' , "CSCRecoDigiParametersRcd", connectionString, "", "2021-09-28 12:00:00.000"] ) CSCRECO_Geometry_dd4hep = ','.join( ['CSCRECO_Geometry_120DD4hepV1' , "CSCRecoGeometryRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) DTRECO_Geometry_dd4hep = ','.join( ['DTRECO_Geometry_120DD4hepV1' , "DTRecoGeometryRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) GEMRECO_Geometry_dd4hep = ','.join( ['GEMRECO_Geometry_120DD4hepV1' , "GEMRecoGeometryRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) XMLFILE_Geometry_dd4hep = ','.join( ['XMLFILE_Geometry_121DD4hepV1_Extended2021_mc', "GeometryFileRcd" , connectionString, "Extended", "2021-09-28 12:00:00.000"] ) HCALParameters_Geometry_dd4hep = ','.join( ['HCALParameters_Geometry_120DD4hepV1' , "HcalParametersRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) TKRECO_Geometry_dd4hep = ','.join( ['TKRECO_Geometry_121DD4hepV1' , "IdealGeometryRecord" , connectionString, "", "2021-09-28 12:00:00.000"] ) CTRECO_Geometry_dd4hep = ','.join( ['CTRECO_Geometry_120DD4hepV1' , "PCaloTowerRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) EBRECO_Geometry_dd4hep = ','.join( ['EBRECO_Geometry_120DD4hepV1' , "PEcalBarrelRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) EERECO_Geometry_dd4hep = ','.join( ['EERECO_Geometry_120DD4hepV1' , "PEcalEndcapRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) EPRECO_Geometry_dd4hep = ','.join( ['EPRECO_Geometry_120DD4hepV1' , "PEcalPreshowerRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) HCALRECO_Geometry_dd4hep = ','.join( ['HCALRECO_Geometry_120DD4hepV1' , "PHcalRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) TKParameters_Geometry_dd4hep = ','.join( ['TKParameters_Geometry_120DD4hepV1' , "PTrackerParametersRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) ZDCRECO_Geometry_dd4hep = ','.join( ['ZDCRECO_Geometry_120DD4hepV1' , "PZdcRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) RPCRECO_Geometry_dd4hep = ','.join( ['RPCRECO_Geometry_120DD4hepV1' , "RPCRecoGeometryRcd" , connectionString, "", "2021-09-28 12:00:00.000"] ) for key,val in autoCond.items(): if key == 'phase1_2021_realistic': # modification of the DD4HEP relval GT GlobalTagsDDHEP['phase1_2021_dd4hep'] = (autoCond[key], CSCRECODIGI_Geometry_dd4hep, CSCRECO_Geometry_dd4hep, DTRECO_Geometry_dd4hep, GEMRECO_Geometry_dd4hep, XMLFILE_Geometry_dd4hep, HCALParameters_Geometry_dd4hep, TKRECO_Geometry_dd4hep, CTRECO_Geometry_dd4hep, EBRECO_Geometry_dd4hep, EERECO_Geometry_dd4hep, EPRECO_Geometry_dd4hep, HCALRECO_Geometry_dd4hep, TKParameters_Geometry_dd4hep, ZDCRECO_Geometry_dd4hep, RPCRECO_Geometry_dd4hep) autoCond.update(GlobalTagsDDHEP) return autoCond
flow-python/examples/warehouse/detection_memd/onnx_model.py
chentyjpm/MegFlow
303
11112217
# MegFlow is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2019-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #!/usr/bin/env python # coding=utf-8 from loguru import logger import onnxruntime import cv2 import numpy as np def load_onnx_model(onnx_path): onnx_session = onnxruntime.InferenceSession(onnx_path) return onnx_session def get_output_name(onnx_session): output_name = [] for node in onnx_session.get_outputs(): output_name.append(node.name) return output_name def transform(image, target_shape=(960, 960)): image_height, image_width, _ = image.shape ratio_h = target_shape[1] * 1.0 / image_height ratio_w = target_shape[0] * 1.0 / image_width image = cv2.resize(image, target_shape) return image, ratio_h, ratio_w def is_overlap_v1(rect1, rect2, iou_threshold): xx1 = max(rect1[0], rect2[0]) yy1 = max(rect1[1], rect2[1]) xx2 = min(rect1[2], rect2[2]) yy2 = min(rect1[3], rect2[3]) dx = max(0, xx2 - xx1 + 1) dy = max(0, yy2 - yy1 + 1) i = dx * dy u = (rect1[2] - rect1[0] + 1) * (rect1[3] - rect1[1] + 1) + ( rect2[2] - rect2[0] + 1) * (rect2[3] - rect2[1] + 1) - i ov = i / u return ov >= iou_threshold def raw_nms(boxes, iou_threshold=0.3): if 0 == len(boxes): return [] rects = list(boxes) for i in range(len(rects)): rects[i] = list(rects[i]) rects[i].append(i) rects.sort(key=lambda x: x[4], reverse=True) rect_valid = [True for i in range(len(rects))] for i in range(len(rects)): if rect_valid[i]: j = i + 1 while j < len(rect_valid): if is_overlap_v1(rects[i], rects[j], iou_threshold): rect_valid[j] = False j = j + 1 return [x[5] for i, x in enumerate(rects) if rect_valid[i]] def onnx_inference(onnx_session, num_classes, image, topk_candidates=1000): output_name = get_output_name(onnx_session) image, ratio_h, ratio_w = transform(image) image = image.astype(np.float32) image = np.expand_dims(image.transpose((2, 0, 1)), 0) scores, boxes = onnx_session.run(output_name, input_feed={"input": image}) keep = scores.max(axis=1) > 0.1 scores = scores[keep] boxes = boxes[keep] scores = scores.flatten() # Keep top k top scoring indices only. num_topk = min(topk_candidates, len(boxes)) # torch.sort is actually faster than .topk (at least on GPUs) topk_idxs = np.argsort(scores) scores = scores[topk_idxs][-num_topk:] topk_idxs = topk_idxs[-num_topk:] # filter out the proposals with low confidence score shift_idxs = topk_idxs // num_classes classes = topk_idxs % num_classes boxes = boxes[shift_idxs] boxes[:, 0] /= ratio_w boxes[:, 1] /= ratio_h boxes[:, 2] /= ratio_w boxes[:, 3] /= ratio_h return boxes, scores, classes def run(onnx_session, image, class_names, score_thrs, nms_thr=0.6): num_classes = len(class_names) import time t0 = time.time() boxes, scores, cls_idxs = onnx_inference(onnx_session, num_classes, image) cost = time.time() - t0 logger.info(f'memd inference: {cost}s') assert len(boxes) == len(scores) and len(boxes) == len(cls_idxs) if isinstance(score_thrs, float): keep = scores > max(score_thrs, 0.2) else: score_thrs = np.asarray(score_thrs) keep = scores > np.maximum(score_thrs[cls_idxs], 0.2) pred_boxes = np.concatenate( [boxes, scores[:, np.newaxis], cls_idxs[:, np.newaxis]], axis=1) pred_boxes = pred_boxes[keep] all_boxes = [] for cls_idx in range(len(class_names)): keep_per_cls = pred_boxes[:, -1] == cls_idx if keep_per_cls.sum() > 0: pred_boxes_per_cls = pred_boxes[keep_per_cls].astype(np.float32) keep_idx = raw_nms(pred_boxes_per_cls[:, :5], nms_thr) for idx in keep_idx: all_boxes.append(pred_boxes_per_cls[idx]) return all_boxes
burp/blackboxprotobuf/__init__.py
nccgroup/blackboxprotobuf
261
11112239
<gh_stars>100-1000 import os import sys import inspect # Add correct directory to sys.path _BASE_DIR = os.path.abspath( os.path.dirname(inspect.getfile(inspect.currentframe())) + "../../../" ) sys.path.insert(0, _BASE_DIR + "/lib/") sys.path.insert(0, _BASE_DIR + "/burp/deps/six/") sys.path.insert(0, _BASE_DIR + "/burp/deps/protobuf/python/") # extend_path looks for other 'blackboxprotobuf' modules in the sys.path and # adds them to __path__ from pkgutil import extend_path __path__ = extend_path(__path__, __name__) # Hack to fix loading protobuf libraries within Jython. See https://github.com/protocolbuffers/protobuf/issues/7776 def fix_protobuf(): import six u = six.u def new_u(s): if s == r"[\ud800-\udfff]": # Don't match anything return "$^" else: return u(s) six.u = new_u fix_protobuf() # mirror what we do in lib so we can use blackboxprotobuf.<function> from blackboxprotobuf.lib.api import *
tests/mockapp/migrations/0005_mockperson_birthdate.py
fluxility/drf-haystack
201
11112251
<reponame>fluxility/drf-haystack # -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-04-16 07:05 from __future__ import unicode_literals from django.db import migrations, models import tests.mockapp.models class Migration(migrations.Migration): dependencies = [ ('mockapp', '0002_mockperson'), ] operations = [ migrations.AddField( model_name='mockperson', name='birthdate', field=models.DateField(default=tests.mockapp.models.get_random_date, null=True), ), ]
Chapter02/callCalculator.pyw
houdinii/Qt5-Python-GUI-Programming-Cookbook
131
11112273
import sys from PyQt5.QtWidgets import QDialog, QApplication from demoCalculator import * class MyForm(QDialog): def __init__(self): super().__init__() self.ui = Ui_Dialog() self.ui.setupUi(self) self.ui.pushButtonPlus.clicked.connect(self.addtwonum) self.ui.pushButtonSubtract.clicked.connect(self.subtracttwonum) self.ui.pushButtonMultiply.clicked.connect(self.multiplytwonum) self.ui.pushButtonDivide.clicked.connect(self.dividetwonum) self.show() def addtwonum(self): if len(self.ui.lineEditFirstNumber.text())!=0: a=int(self.ui.lineEditFirstNumber.text()) else: a=0 if len(self.ui.lineEditSecondNumber.text())!=0: b=int(self.ui.lineEditSecondNumber.text()) else: b=0 sum=a+b self.ui.labelResult.setText("Addition: " +str(sum)) def subtracttwonum(self): if len(self.ui.lineEditFirstNumber.text())!=0: a=int(self.ui.lineEditFirstNumber.text()) else: a=0 if len(self.ui.lineEditSecondNumber.text())!=0: b=int(self.ui.lineEditSecondNumber.text()) else: b=0 diff=a-b self.ui.labelResult.setText("Substraction: " +str(diff)) def multiplytwonum(self): if len(self.ui.lineEditFirstNumber.text())!=0: a=int(self.ui.lineEditFirstNumber.text()) else: a=0 if len(self.ui.lineEditSecondNumber.text())!=0: b=int(self.ui.lineEditSecondNumber.text()) else: b=0 mult=a*b self.ui.labelResult.setText("Multiplication: " +str(mult)) def dividetwonum(self): if len(self.ui.lineEditFirstNumber.text())!=0: a=int(self.ui.lineEditFirstNumber.text()) else: a=0 if len(self.ui.lineEditSecondNumber.text())!=0: b=int(self.ui.lineEditSecondNumber.text()) else: b=0 division=a/b self.ui.labelResult.setText("Division: " +str(round(division,2))) if __name__=="__main__": app = QApplication(sys.argv) w = MyForm() w.show() sys.exit(app.exec_())
tests/model_fields/test_floatfield.py
ni-ning/django
61,676
11112290
<filename>tests/model_fields/test_floatfield.py from django.db import transaction from django.test import TestCase from .models import FloatModel class TestFloatField(TestCase): def test_float_validates_object(self): instance = FloatModel(size=2.5) # Try setting float field to unsaved object instance.size = instance with transaction.atomic(): with self.assertRaises(TypeError): instance.save() # Set value to valid and save instance.size = 2.5 instance.save() self.assertTrue(instance.id) # Set field to object on saved instance instance.size = instance msg = ( 'Tried to update field model_fields.FloatModel.size with a model ' 'instance, %r. Use a value compatible with FloatField.' ) % instance with transaction.atomic(): with self.assertRaisesMessage(TypeError, msg): instance.save() # Try setting field to object on retrieved object obj = FloatModel.objects.get(pk=instance.id) obj.size = obj with self.assertRaisesMessage(TypeError, msg): obj.save() def test_invalid_value(self): tests = [ (TypeError, ()), (TypeError, []), (TypeError, {}), (TypeError, set()), (TypeError, object()), (TypeError, complex()), (ValueError, 'non-numeric string'), (ValueError, b'non-numeric byte-string'), ] for exception, value in tests: with self.subTest(value): msg = "Field 'size' expected a number but got %r." % (value,) with self.assertRaisesMessage(exception, msg): FloatModel.objects.create(size=value)
corehq/messaging/smsbackends/http/tests/test_models.py
akashkj/commcare-hq
471
11112292
<reponame>akashkj/commcare-hq from corehq.util.urlvalidate.urlvalidate import PossibleSSRFAttempt from datetime import datetime from unittest.mock import patch, ANY from django.test import SimpleTestCase from corehq.apps.sms.models import SMS, OUTGOING from corehq.util.urlvalidate.test.mockipinfo import hostname_resolving_to_ips from ..models import SQLHttpBackend from .. import models class TestHttpBackend(SimpleTestCase): @patch.object(models, 'urlopen') def test_sends_without_error(self, mock_urlopen): message = self._create_message(phone_number='1234567890', text='Hello World') backend = self._create_backend(url='http://www.dimagi.com') backend.send(message) mock_urlopen.assert_called_with('http://www.dimagi.com?message=Hello+World&number=1234567890', context=ANY, timeout=ANY) @hostname_resolving_to_ips('malicious.address', ['127.0.0.1']) @patch.object(SMS, 'save') # mocked to avoid the database def test_throws_error_when_url_is_ssrf(self, mock_save): message = self._create_message() backend = self._create_backend(url='http://malicious.address') with self.assertRaises(PossibleSSRFAttempt): backend.send(message) def _create_backend(self, url='http://www.dimagi.com', message_param='message', number_param='number', method='GET'): return SQLHttpBackend(extra_fields={ 'url': url, 'message_param': message_param, 'number_param': number_param, 'include_plus': False, 'method': method }) def _create_message(self, domain='test_domain', phone_number='1234567890', direction=OUTGOING, date=None, text='Hello World'): if not date: date = datetime(2021, 5, 15) return SMS( domain=domain, phone_number=phone_number, direction=direction, date=date, text=text )
security_monkey/tests/auditors/rds/test_rds_snapshot.py
boladmin/security_monkey
4,258
11112299
# Copyright 2017 Netflix, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module: security_monkey.tests.auditors.rds.test_rds_snapshot :platform: Unix .. version:: $$VERSION$$ .. moduleauthor:: <NAME> <<EMAIL>> @monkeysecurity """ from security_monkey.tests import SecurityMonkeyTestCase from security_monkey.auditors.rds.rds_snapshot import RDSSnapshotAuditor from security_monkey.watchers.rds.rds_snapshot import RDSSnapshot, RDSSnapshotItem from security_monkey.datastore import Account, AccountType from security_monkey import db class RDSSnapshotAuditorTestCase(SecurityMonkeyTestCase): def pre_test_setup(self): RDSSnapshotAuditor(accounts=['TEST_ACCOUNT']).OBJECT_STORE.clear() account_type_result = AccountType(name='AWS') db.session.add(account_type_result) db.session.commit() # main account = Account(identifier="123456789123", name="TEST_ACCOUNT", account_type_id=account_type_result.id, notes="TEST_ACCOUNT", third_party=False, active=True) # friendly account2 = Account(identifier="222222222222", name="TEST_ACCOUNT_TWO", account_type_id=account_type_result.id, notes="TEST_ACCOUNT_TWO", third_party=False, active=True) # third party account3 = Account(identifier="333333333333", name="TEST_ACCOUNT_THREE", account_type_id=account_type_result.id, notes="TEST_ACCOUNT_THREE", third_party=True, active=True) db.session.add(account) db.session.add(account2) db.session.add(account3) db.session.commit() def test_check_internet_accessible(self): config0 = {'Attributes': { 'restore': ['all'] } } config1 = {'Attributes': { 'restore': [] } } rsa = RDSSnapshotAuditor(accounts=['TEST_ACCOUNT']) rsa.prep_for_audit() item = RDSSnapshotItem(config=config0) rsa.check_internet_accessible(item) self.assertEqual(len(item.audit_issues), 1) self.assertEqual(item.audit_issues[0].score, 10) self.assertEqual(item.audit_issues[0].issue, 'Internet Accessible') self.assertEqual(item.audit_issues[0].notes, 'Entity: [account:all] Actions: ["restore"]') item = RDSSnapshotItem(config=config1) rsa.check_internet_accessible(item) self.assertEqual(len(item.audit_issues), 0) def test_check_friendly(self): config0 = {'Attributes': { 'restore': ["222222222222"] } } rsa = RDSSnapshotAuditor(accounts=['TEST_ACCOUNT']) rsa.prep_for_audit() item = RDSSnapshotItem(config=config0) rsa.check_friendly_cross_account(item) self.assertEqual(len(item.audit_issues), 1) self.assertEqual(item.audit_issues[0].score, 0) self.assertEqual(item.audit_issues[0].issue, 'Friendly Cross Account') self.assertEqual(item.audit_issues[0].notes, 'Account: [222222222222/TEST_ACCOUNT_TWO] Entity: [account:222222222222] Actions: ["restore"]') def test_check_thirdparty(self): config0 = {'Attributes': { 'restore': ["333333333333"] } } rsa = RDSSnapshotAuditor(accounts=['TEST_ACCOUNT']) rsa.prep_for_audit() item = RDSSnapshotItem(config=config0) rsa.check_thirdparty_cross_account(item) self.assertEqual(len(item.audit_issues), 1) self.assertEqual(item.audit_issues[0].score, 0) self.assertEqual(item.audit_issues[0].issue, 'Thirdparty Cross Account') self.assertEqual(item.audit_issues[0].notes, 'Account: [333333333333/TEST_ACCOUNT_THREE] Entity: [account:333333333333] Actions: ["restore"]') def test_check_unknown(self): config0 = {'Attributes': { 'restore': ["444444444444"] } } rsa = RDSSnapshotAuditor(accounts=['TEST_ACCOUNT']) rsa.prep_for_audit() item = RDSSnapshotItem(config=config0) rsa.check_unknown_cross_account(item) self.assertEqual(len(item.audit_issues), 1) self.assertEqual(item.audit_issues[0].score, 10) self.assertEqual(item.audit_issues[0].issue, 'Unknown Access') self.assertEqual(item.audit_issues[0].notes, 'Entity: [account:444444444444] Actions: ["restore"]')
rbac/proxy.py
eldorplus/simple-rbac
219
11112312
<filename>rbac/proxy.py<gh_stars>100-1000 from __future__ import absolute_import import functools import collections __all__ = ["dummy_factory", "model_role_factory", "model_resource_factory", "RegistryProxy"] # identity tuple identity = collections.namedtuple("identity", ["type", "cls", "id"]) role_identity = functools.partial(identity, "role-model") resource_identity = functools.partial(identity, "resource-model") def GetFullName(m): return "%s.%s" % (m.__module__, m.__name__) def DummyFactory(acl, obj): return obj # inline functions getfullname = GetFullName dummy_factory = DummyFactory def _model_identity_factory(obj, identity_maker, identity_adder): if not hasattr(obj, "id"): return obj if isinstance(obj, type): # make a identity tuple for the "class" identity = identity_maker(getfullname(obj), None) # register into access control list identity_adder(identity) else: # make a identity tuple for the "instance" and the "class" class_fullname = getfullname(obj.__class__) identity = identity_maker(class_fullname, obj.id) identity_type = identity_maker(class_fullname, None) # register into access control list identity_adder(identity, parents=[identity_type]) return identity def model_role_factory(acl, obj): """A factory to create a identity tuple from a model class or instance.""" return _model_identity_factory(obj, role_identity, acl.add_role) def model_resource_factory(acl, obj): """A factory to create a identity tuple from a model class or instance.""" return _model_identity_factory(obj, resource_identity, acl.add_resource) class RegistryProxy(object): """A proxy of the access control list. This proxy could use two factory function to create the role identity object and the resource identity object automatic. A example for the factory function: >>> def role_factory(acl, input_role): >>> role = ("my-role", str(input_role)) >>> acl.add_role(role) >>> return role """ def __init__(self, acl, role_factory=dummy_factory, resource_factory=model_resource_factory): self.acl = acl self.make_role = functools.partial(role_factory, self.acl) self.make_resource = functools.partial(resource_factory, self.acl) def add_role(self, role, parents=[]): role = self.make_role(role) parents = [self.make_role(parent) for parent in parents] return self.acl.add_role(role, parents) def add_resource(self, resource, parents=[]): resource = self.make_resource(resource) parents = [self.make_resource(parent) for parent in parents] return self.acl.add_resource(resource, parents) def allow(self, role, operation, resource, assertion=None): role = self.make_role(role) resource = self.make_resource(resource) return self.acl.allow(role, operation, resource, assertion) def deny(self, role, operation, resource, assertion=None): role = self.make_role(role) resource = self.make_resource(resource) return self.acl.deny(role, operation, resource, assertion) def is_allowed(self, role, operation, resource, **assertion_kwargs): role = self.make_role(role) resource = self.make_resource(resource) return self.acl.is_allowed(role, operation, resource, **assertion_kwargs) def is_any_allowed(self, roles, operation, resource, **assertion_kwargs): roles = [self.make_role(role) for role in roles] resource = self.make_resource(resource) return self.acl.is_any_allowed(roles, operation, resource, **assertion_kwargs) def __getattr__(self, attr): return getattr(self.acl, attr)
jupyterlab_sql/connection_url.py
mwiewior/jupyterlab-sql
385
11112315
import sqlalchemy.engine.url def is_sqlite(url): backend = _to_sqlalchemy_url(url).get_backend_name() return backend == "sqlite" def is_mysql(url): backend = _to_sqlalchemy_url(url).get_backend_name() return backend == "mysql" def has_database(url): database = _to_sqlalchemy_url(url).database # database is either None or an empty string, depending on # whether the URL contains a trailing slash. return bool(database) def _to_sqlalchemy_url(url): return sqlalchemy.engine.url.make_url(url)
torchelie/datasets/debug.py
Vermeille/Torchelie
117
11112332
import os from typing import Optional, Callable from typing_extensions import Literal import torch import torchvision.transforms as TF from torch.utils.data import Dataset from torchvision.datasets import ImageFolder from torchvision.datasets.utils import download_and_extract_archive __all__ = ['ColoredColumns', 'ColoredRows', 'Imagenette', 'Imagewoof'] class ColoredColumns(Dataset): """ A dataset of precedurally generated images of columns randomly colorized. Args: *size (int): size of images transform (transforms or None): the image transforms to apply to the generated pictures """ def __init__(self, *size, transform=None) -> None: super(ColoredColumns, self).__init__() self.size = size self.transform = transform if transform is not None else (lambda x: x) def __len__(self): return 10000 def __getitem__(self, i): cols = torch.randint(0, 255, (3, 1, self.size[1])) expanded = cols.expand(3, *self.size).float() img = TF.ToPILImage()(expanded / 255) return self.transform(img), 0 class ColoredRows(Dataset): """ A dataset of precedurally generated images of rows randomly colorized. Args: *size (int): size of images transform (transforms or None): the image transforms to apply to the generated pictures """ def __init__(self, *size, transform=None) -> None: super(ColoredRows, self).__init__() self.size = size self.transform = transform if transform is not None else (lambda x: x) def __len__(self): return 10000 def __getitem__(self, i): rows = torch.randint(0, 255, (3, self.size[0], 1)) expanded = rows.expand(3, *self.size).float() img = TF.ToPILImage()(expanded / 255) return self.transform(img), 0 class Imagenette(ImageFolder): """ Imagenette by <NAME> ( https://github.com/fastai/imagenette ). Args: root (str): root directory split (bool): if False, use validation split transform (Callable): image transforms download (bool): if True and root empty, download the dataset version (str): which resolution to download ('full', '32Opx', '160px') """ def __init__(self, root: str, train: bool, transform: Optional[Callable] = None, download: bool = False, version: Literal['full', '320px', '160px'] = '320px'): size = ({ 'full': 'imagenette2', '320px': 'imagenette2-320', '160px': 'imagenette2-160' })[version] split = 'train' if train else 'val' if not self._check_integrity(f'{root}/{size}') and download: download_and_extract_archive( f'https://s3.amazonaws.com/fast-ai-imageclas/{size}.tgz', root, remove_finished=True) super().__init__(f'{root}/{size}/{split}', transform=transform) def _check_integrity(self, path): return os.path.exists(os.path.expanduser(path)) class Imagewoof(ImageFolder): """ Imagewoof by <NAME> ( https://github.com/fastai/imagenette ). Args: root (str): root directory split (bool): if False, use validation split transform (Callable): image transforms download (bool): if True and root empty, download the dataset version (str): which resolution to download ('full', '32Opx', '160px') """ def __init__(self, root: str, train: bool, transform: Optional[Callable] = None, download: bool = False, version: Literal['full', '320px', '160px'] = '320px'): size = ({ 'full': 'imagewoof2', '320px': 'imagewoof2-320', '160px': 'imagewoof2-160' })[version] split = 'train' if train else 'val' if not self._check_integrity(f'{root}/{size}') and download: download_and_extract_archive( f'https://s3.amazonaws.com/fast-ai-imageclas/{size}.tgz', root, remove_finished=True) super().__init__(f'{root}/{size}/{split}', transform=transform) def _check_integrity(self, path): return os.path.exists(os.path.expanduser(path))
src/chapter-12/test_caching.py
luizyao/pytest-chinese-doc
283
11112354
<reponame>luizyao/pytest-chinese-doc<filename>src/chapter-12/test_caching.py #!/usr/bin/env python3 # -*- coding:utf-8 -*- ''' Author: luizyao (<EMAIL>) Created Date: 2019-11-30 20:35:07 ----- Modified: 2019-11-30 20:36:29 Modified By: luizyao (<EMAIL>) ----- THIS PROGRAM IS FREE SOFTWARE, IS LICENSED UNDER MIT. A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Copyright © 2019 <NAME> ----- HISTORY: Date By Comments ---------- -------- --------------------------------------------------------- ''' # content of test_caching.py import pytest def expensive_computation(): print("running expensive computation...") @pytest.fixture def mydata(request): # 从缓存中读取数据 val = request.config.cache.get("example/value", None) if val is None: expensive_computation() val = 42 # 如果缓存中没有,设置缓存中的值 request.config.cache.set("example/value", val) return val def test_function(mydata): assert mydata == 23
examples/plot_hide.py
ipa-maa/UpSetPlot
175
11112388
""" ====================================== Hiding subsets based on size or degree ====================================== This illustrates the use of ``min_subset_size``, ``max_subset_size``, ``min_degree`` or ``max_degree``. """ from matplotlib import pyplot as plt from upsetplot import generate_counts, plot example = generate_counts() plot(example, show_counts=True) plt.suptitle('Nothing hidden') plt.show() ########################################################################## plot(example, show_counts=True, min_subset_size=100) plt.suptitle('Small subsets hidden') plt.show() ########################################################################## plot(example, show_counts=True, max_subset_size=500) plt.suptitle('Large subsets hidden') plt.show() ########################################################################## plot(example, show_counts=True, min_degree=2) plt.suptitle('Degree <2 hidden') plt.show() ########################################################################## plot(example, show_counts=True, max_degree=2) plt.suptitle('Degree >2 hidden') plt.show()
archai/algos/gumbelsoftmax/gs_exp_runner.py
cclauss/archai
344
11112429
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Type from overrides import overrides from archai.nas.exp_runner import ExperimentRunner from archai.nas.arch_trainer import TArchTrainer from archai.nas.finalizers import Finalizers from .gs_model_desc_builder import GsModelDescBuilder from .gs_arch_trainer import GsArchTrainer from .gs_finalizers import GsFinalizers class GsExperimentRunner(ExperimentRunner): @overrides def model_desc_builder(self)->GsModelDescBuilder: return GsModelDescBuilder() @overrides def trainer_class(self)->TArchTrainer: return GsArchTrainer @overrides def finalizers(self)->Finalizers: return GsFinalizers()
examples/select_loop.py
webcoast-dk/mitogen
1,526
11112441
<filename>examples/select_loop.py # # This demonstrates using a nested select.Select() to simultaneously watch for # in-progress events generated by a bunch of function calls, and the completion # of those function calls. # # We start 5 children and run a function in each of them in parallel. The # function writes the numbers 1..5 to a Sender before returning. The master # reads the numbers from each child as they are generated, and exits the loop # when the last function returns. # from __future__ import absolute_import from __future__ import print_function import time import mitogen import mitogen.select def count_to(sender, n, wait=0.333): for x in range(n): sender.send(x) time.sleep(wait) @mitogen.main() def main(router): # Start 5 subprocesses and give them made up names. contexts = { 'host%d' % (i,): router.local() for i in range(5) } # Used later to recover hostname. A future Mitogen will provide a better # way to get app data references back out of its IO primitives, for now you # need to do it manually. hostname_by_context_id = { context.context_id: hostname for hostname, context in contexts.items() } # I am a select that holds the receivers that will receive the function # call results. Selects are one-shot by default, which means each receiver # is removed from them as a result arrives. Therefore it means the last # function has completed when bool(calls_sel) is False. calls_sel = mitogen.select.Select() # I receive the numbers as they are counted. status_recv = mitogen.core.Receiver(router) # Start the function calls for hostname, context in contexts.items(): calls_sel.add( context.call_async( count_to, sender=status_recv.to_sender(), n=5, wait=0.333 ) ) # Create a select subscribed to the function call result Select, and to the # number-counting receiver. Any message arriving on any child of this # Select will wake it up -- be it a message arriving on the status # receiver, or any message arriving on any of the function call result # receivers. # Once last call is completed, calls_sel will be empty since it's # oneshot=True (the default), causing __bool__ to be False both_sel = mitogen.select.Select([status_recv, calls_sel], oneshot=False) # Internally selects store a strong reference from Receiver->Select that # will keep the Select alive as long as the receiver is alive. If a # receiver or select otherwise 'outlives' some parent select, attempting to # re-add it to a new select will raise an error. In all cases it's # desirable to call Select.close(). This can be done as a context manager. with calls_sel, both_sel: while calls_sel: try: msg = both_sel.get(timeout=60.0) except mitogen.core.TimeoutError: print("No update in 60 seconds, something's broke") break hostname = hostname_by_context_id[msg.src_id] if msg.receiver is status_recv: # https://mitogen.readthedocs.io/en/stable/api.html#mitogen.core.Message.receiver # handle a status update print('Got status update from %s: %s' % (hostname, msg.unpickle())) elif msg.receiver is calls_sel: # subselect # handle a function call result. try: assert None == msg.unpickle() print('Task succeeded on %s' % (hostname,)) except mitogen.core.CallError as e: print('Task failed on host %s: %s' % (hostname, e)) if calls_sel: print('Some tasks did not complete.') else: print('All tasks completed.')
wtfml/logger/__init__.py
Mo5mami/wtfml
283
11112461
from .logger import logger
PyFin/tests/Math/Distributions/testDistribution.py
rpatil524/Finance-Python
325
11112468
# -*- coding: utf-8 -*- u""" Created on 2015-7-23 @author: cheng.li """ import unittest import math import copy import tempfile import pickle import os from PyFin.Math.Distributions import InverseCumulativeNormal from PyFin.Math.Distributions import NormalDistribution from PyFin.Math.Distributions import CumulativeNormalDistribution average = 1.0 sigma = 2.0 def gaussian(x): normFact = sigma * math.sqrt(2.0 * math.pi) dx = x - average return math.exp(-dx * dx / (2.0 * sigma * sigma)) / normFact def gaussianDerivative(x): normFact = sigma * sigma * sigma * math.sqrt(2.0 * math.pi) dx = x - average return -dx * math.exp(-dx * dx / (2.0 * sigma * sigma)) / normFact class TestDistribution(unittest.TestCase): def testNormal(self): invCumStandardNormal = InverseCumulativeNormal() check = invCumStandardNormal(0.5) self.assertAlmostEqual(check, 0.0, 10, "inverse cumulative of the standard normal at 0.5 is {0:f}" "\n instead of zero: something is wrong!".format(check)) normal = NormalDistribution(average, sigma) cum = CumulativeNormalDistribution(average, sigma) invCum = InverseCumulativeNormal(average, sigma) invCumAcc = InverseCumulativeNormal(average, sigma, fullAccuracy=True) numberOfStandardDeviation = 6 xMin = average - numberOfStandardDeviation * sigma xMax = average + numberOfStandardDeviation * sigma N = 100001 h = (xMax - xMin) / (N - 1) x = [xMin + i * h for i in range(N)] y = [gaussian(v) for v in x] yd = [gaussianDerivative(v) for v in x] temp = [normal(v) for v in x] for i, (expected, calculated) in enumerate(zip(y, temp)): self.assertAlmostEqual(expected, calculated, 15, "at index {0:d}\n" "Expected: {1:f}\n" "Calculated: {2:f}".format(i, expected, calculated)) temp = [cum(v) for v in x] temp = [invCum(v) for v in temp] for i, (expected, calculated) in enumerate(zip(x, temp)): self.assertAlmostEqual(expected, calculated, 7, "at index {0:d}\n" "Expected gaussian: {1:f}\n" "Calculated Gaussian: {2:f}".format(i, expected, calculated)) temp = [cum(v) for v in x] temp = [invCumAcc(v) for v in temp] for i, (expected, calculated) in enumerate(zip(x, temp)): self.assertAlmostEqual(expected, calculated, 7, "at index {0:d}\n" "Expected gaussian: {1:.9f}\n" "Calculated Gaussian: {2:.9f}".format(i, expected, calculated)) temp = [cum.derivative(v) for v in x] for i, (expected, calculated) in enumerate(zip(y, temp)): self.assertAlmostEqual(expected, calculated, 15, "at index {0:d}\n" "Expected: {1:f}\n" "Calculated: {2:f}".format(i, expected, calculated)) temp = [normal.derivative(v) for v in x] for i, (expected, calculated) in enumerate(zip(yd, temp)): self.assertAlmostEqual(expected, calculated, 15, "at index {0:d}\n" "Expected: {1:f}\n" "Calculated: {2:f}".format(i, expected, calculated)) # test nan value returning self.assertTrue(math.isnan(invCum(-0.5))) def testNormalDistributionCopy(self): norm = NormalDistribution(average, sigma) copied = copy.deepcopy(norm) self.assertEqual(norm, copied) def testNormalDistributionPickle(self): benchmark_norm = NormalDistribution(average, sigma) f = tempfile.NamedTemporaryFile('w+b', delete=False) pickle.dump(benchmark_norm, f) f.close() with open(f.name, 'rb') as f2: pickled_norm = pickle.load(f2) self.assertEqual(benchmark_norm, pickled_norm) os.unlink(f.name) def testCumulativeNormalDistribution(self): norm = CumulativeNormalDistribution(average, sigma) copied = copy.deepcopy(norm) self.assertEqual(norm, copied) def testCumulativeNormalDistributionPickle(self): benchmark_norm = CumulativeNormalDistribution(average, sigma) f = tempfile.NamedTemporaryFile('w+b', delete=False) pickle.dump(benchmark_norm, f) f.close() with open(f.name, 'rb') as f2: pickled_norm = pickle.load(f2) self.assertEqual(benchmark_norm, pickled_norm) os.unlink(f.name) def testInverseCumulativeNormal(self): norm = InverseCumulativeNormal(average, sigma, True) copied = copy.deepcopy(norm) self.assertEqual(norm, copied) def testInverseCumulativeNormalPickle(self): benchmark_norm = InverseCumulativeNormal(average, sigma) f = tempfile.NamedTemporaryFile('w+b', delete=False) pickle.dump(benchmark_norm, f) f.close() with open(f.name, 'rb') as f2: pickled_norm = pickle.load(f2) self.assertEqual(benchmark_norm, pickled_norm)
buildroot/support/testing/tests/package/test_prosody.py
rbrenton/hassos
349
11112480
<filename>buildroot/support/testing/tests/package/test_prosody.py from tests.package.test_lua import TestLuaBase class TestProsody(TestLuaBase): def lua_dependencies_test(self): self.module_test('bit') # luabitop self.module_test('lfs') # luafilesystem self.module_test('lxp') # luaexpat self.module_test('socket') # luasocket self.module_test('ssl') # luasec def prosody_test(self): # prosody was launched as service cmd = "prosodyctl status" output, exit_code = self.emulator.run(cmd) self.assertEqual(exit_code, 0) self.assertIn("Prosody is running", output[0]) class TestProsodyLua51(TestProsody): config = TestLuaBase.config + \ """ BR2_PACKAGE_LUA=y BR2_PACKAGE_LUA_5_1=y BR2_PACKAGE_PROSODY=y """ def test_run(self): self.login() self.version_test('Lua 5.1') self.g_version_test('Lua 5.1') self.lua_dependencies_test() self.prosody_test() class TestProsodyLuajit(TestProsody): config = TestLuaBase.config + \ """ BR2_PACKAGE_LUAJIT=y BR2_PACKAGE_PROSODY=y """ def test_run(self): self.login() self.version_test('LuaJIT 2') self.g_version_test('Lua 5.1') self.lua_dependencies_test() self.prosody_test()
051-100/061-rotate-list.py
bbram10/leetcode-master
134
11112525
<filename>051-100/061-rotate-list.py """ STATEMENT Given a list, rotate the list to the right by k places, where k is non-negative. CLARIFICATIONS - Is the list given as an array? No, a linked list. - Each node in the linked list is an object of a custom data structure, right? Yes. Define them. - Can k be more than the length of the list? Sure. - Do I return the head of the updated list? Yes. EXAMPLES 1->2->3->4->5->None, 2 => 4->5->1->2->3->NULL COMMENTS - If k is much longer than the list length, we should not update the list unneccessarily, so k should be updated to the k modulo list length. - If k is 0, return the original list. """ def rotateRight(head, k): """ :type head: ListNode :type k: int :rtype: ListNode """ if head is None: return head temp = head list_length = 1 while temp.next is not None: temp = temp.next list_length += 1 k = k%list_length if k == 0: return head prev, curr = head, head count = 1 while count <= k: curr = curr.next count += 1 while curr.next is not None: prev = prev.next curr = curr.next to_return = prev.next prev.next = None curr.next = head return to_return
rootpy/utils/hook.py
masonproffitt/rootpy
146
11112529
<reponame>masonproffitt/rootpy<gh_stars>100-1000 from __future__ import absolute_import import types import sys from .inject_closure import inject_closure_values from . import log; log = log[__name__] __all__ = [ 'super_overridden', 'uses_super', 'classhook', 'appendclass', ] # The below code is here for reference: # How to hook anything you want.. # TODO(pwaller): Delete this if no-one needs it after a month or two. """ from .. import QROOT HOOKED_CLASSES = {} TObject_meta = type(QROOT.TObject) orig_meta_getattribute = TObject_meta.__getattribute__ def new_meta_getattribute(cls, name): #print cls, name if cls in HOOKED_CLASSES: hook = HOOKED_METHODS.get((cls, name), None) if hook: hook(orig_getattribute) return orig_meta_getattribute(cls, name) TObject_meta.__getattribute__ = new_meta_getattribute orig_getattribute = QROOT.TObject.__getattribute__ def new_getattribute(cls, name): x = orig_getattribute(cls, name) return x QROOT.TObject.__getattribute__ = new_getattribute """ INTERESTING = ( types.FunctionType, types.MethodType, property, staticmethod, classmethod) def super_overridden(cls): """ This decorator just serves as a reminder that the super function behaves differently. It doesn't actually do anything, that happens inside ``classhook.hook_class``. """ cls.__rootpy_have_super_overridden = True return cls def uses_super(func): """ Check if the function/property/classmethod/staticmethod uses the `super` builtin """ if isinstance(func, property): return any(uses_super(f) for f in (func.fget, func.fset, func.fdel) if f) elif isinstance(func, (staticmethod, classmethod)): if sys.version_info >= (2, 7): func = func.__func__ elif isinstance(func, staticmethod): func = func.__get__(True) else: # classmethod func = func.__get__(True).im_func if sys.version_info[0] >= 3: return 'super' in func.__code__.co_names return 'super' in func.func_code.co_names class classhook(object): """ Interpose the `hook` classes' methods onto the target `classes`. Note, it is also necessary to decorate these classes with @super_overridden to indicate at the usage site that the super method may behave differently than you expect. The trick is that we want the hook function to call `super(ClassBeingHooked, self)`, but there are potentially multiple ClassesBeingHooked. Therefore, instead you must write `super(MyHookClass, self)` and the super method is replaced at hook-time through bytecode modification with another one which does the right thing. Example usage: @classhook(ROOT.TH1) @super_overridden class ChangeBehaviour(object): def Draw(self, *args): # Call the original draw function result = super(ChangeBehaviour, self).Draw(*args) # do something with the result here return result """ def overridden_super(self, target, realclass): class rootpy_overridden_super(super): def __init__(self, cls, *args): if cls is target: cls = realclass super(rootpy_overridden_super, self).__init__(cls, *args) return rootpy_overridden_super def __init__(self, *classes): self.classes = classes def hook_class(self, cls, hook): # Attach a new class type with the original methods on it so that # super() works as expected. hookname = "_rootpy_{0}_OrigMethods".format(cls.__name__) newcls = type(hookname, (), {}) cls.__bases__ = (newcls,) + cls.__bases__ # For every function-like (or property), replace `cls`'s methods for key, value in hook.__dict__.items(): if not isinstance(value, INTERESTING): continue # Save the original methods onto the newcls which has been # injected onto our bases, so that the originals can be called with # super(). orig_method = getattr(cls, key, None) if orig_method: setattr(newcls, key, orig_method) #newcls.__dict__[key] = orig_method newmeth = value if uses_super(newmeth): assert getattr(hook, "__rootpy_have_super_overridden", None), ( "Hook class {0} is not decorated with @super_overridden! " "See the ``hook`` module to understand why this must be " "the case for all classes overridden with @classhook" .format(hook)) # Make super behave as though the class hierarchy is what we'd # like. newsuper = self.overridden_super(hook, cls) newmeth = inject_closure_values(value, super=newsuper) setattr(cls, key, newmeth) def __call__(self, hook): """ Hook the decorated class onto all `classes`. """ for cls in self.classes: self.hook_class(cls, hook) return hook class appendclass(object): """ Append the methods/properties of `appender` onto `classes`. The methods being appended must not exist on any of the target classes. """ def __init__(self, *classes): self.classes = classes def __call__(self, appender): for appendee in self.classes: for key, value in appender.__dict__.items(): if not isinstance(value, INTERESTING): continue assert not hasattr(appendee, key), ( "Don't override existing methods with appendclass") assert not uses_super(value), ("Don't use the super class with " "@appendclass, use @classhook instead") setattr(appendee, key, value) continue return appender
csgomenumaker/component/debug.py
citrusCS/csgo-menu-maker
152
11112584
from .. import menu from ..param import * from .component import * from . import generic name_space( "debug", name="Debug", description=( "Debugging options that show different data on-screen, such as fps," " position, traces, etc." ) ) @Component("showpos", "show_pos") class ShowPos(generic.ChoiceVarBinary): params = ParamObj( Name("Show Position"), Desc("Show the player's position in the top left of the screen."), Override("convar", "cl_showpos") ) @Component("showfps", "show_fps") class ShowFPS(generic.ChoiceVarBinary): params = ParamObj( Name("Show FPS"), Desc("Show the FPS and map name in the top left of the screen."), Override("convar", "cl_showfps") ) @Component("netgraph", "net_graph") class NetGraph(generic.ChoiceVarBinary): params = ParamObj( Name("Net Graph"), Desc("Show network stats and frames per second."), Override("convar", "net_graph") ) @Component("entityreport", "entity_report") class EntityReport(generic.ChoiceVarBinary): params = ParamObj( Name("Entity Report"), Desc("Show a list of all entities in the scene."), Override("convar", "cl_entityreport"), flags=["cheat"] ) @Component("drawwireframe", "draw_wireframe") class DrawWireframe(generic.ChoiceVarBinary): params = ParamObj( Name("Draw Wireframe"), Desc("Draw a wireframe over the scene."), Override("convar", "mat_wireframe"), flags=["cheat"] ) @Component("showevents", "show_events") class ShowEvents(generic.ChoiceVarBinary): params = ParamObj( Name("Show Events"), Desc("Show entity event firing info in the top right of the screen."), Override("convar", "cl_showevents"), flags=["cheat"] ) @Component("visualizetraces", "visualize_traces") class VisualizeTraces(generic.ChoiceVarBinary): params = ParamObj( Name("Visualize Traces"), Desc("Show raycast visualizations as lines."), Override("convar", "r_visualizetraces"), flags=["cheat"] ) @Component("showbudget", "show_budget") class ShowBudget(generic.Choice): params = ParamObj( Name("Show Render Budget"), Desc( "Show information about the current render budget, which tracks" " the amounts of time each stage of rendering takes." ), Override( "choices", [ { "name": "-showbudget", "commands": [ "-showbudget" ] }, { "name": "+showbudget", "commands": [ "+showbudget" ] } ] ), flags=["cheat"] ) @Component("drawskeleton", "draw_skeleton") class DrawSkeleton(generic.ChoiceVarBinary): params = ParamObj( Name("Draw Skeletons"), Desc("Draw bone entity skeletons in wireframe form."), Override("convar", "enable_skeleton_draw"), flags=["cheat"] ) @Component("debugmenu", "debug_menu") class DebugMenu(generic.FireableCmd): params = ParamObj( Name("Debug Menu"), Desc("Open/Close the debug menu."), Override("concmd", "debugsystemui"), flags=["cheat", "needs_fireable"] ) @Component("lockpvs", "lock_pvs") class LockPVS(generic.ChoiceVarBinary): params = ParamObj( Name("Lock PVS"), Desc( "Lock/Unlock the PVS (Partially Visible Set) of polygons." ), Override("convar", "r_lockpvs"), flags=["cheat"] ) @Component( "drawvguitree", "draw_vgui_tree", "vguitree", "vgui_tree", "vguidrawtree", "vgui_draw_tree" ) class DrawVGUITree(generic.ChoiceVarBinary): params = ParamObj( Name("Draw VGUI Tree"), Desc("Draw a tree of all VGUI widgets and their info."), Override("convar", "vgui_draw_tree") ) @Component("showsound", "show_sound") class ShowSound(generic.ChoiceVarBinary): params = ParamObj( Name("Show Sound"), Desc( "Show a list of currently playing sounds and their info in the top" " right of the screen." ), Override("convar", "snd_show"), flags=["cheat"] ) @Component("showlagcompensation", "show_lag_compensation") class ShowLagCompensation(generic.ChoiceVarBinary): params = ParamObj( Name("Show Lag Compensation"), Desc("Show a lag compensated hitboxes, clientside."), Override("convar", "sv_showlagcompensation") ) @Component("showbullethits", "show_bullet_hits") class ShowBulletHits(generic.ChoiceVarBinary): params = ParamObj( Name("Show Bullet Hits"), Desc("Show bullet hits as red cylinders when they hit an entity."), Override("convar", "sv_showbullethits"), flags=["replicated"] ) @Component("showimpacts", "show_impacts") class ShowImpacts(generic.ChoiceVarBinary): params = ParamObj( Name("Show Impacts"), Desc("Show impacts as red/blue boxes wherever the bullet hits."), Override("convar", "sv_showimpacts"), flags=["replicated"] ) name_space()
lgcn/train_lgcn.py
LLLjun/learn-to-cluster
620
11112598
<filename>lgcn/train_lgcn.py<gh_stars>100-1000 from __future__ import division from collections import OrderedDict import torch from mmcv.runner import Runner, obj_from_dict from mmcv.parallel import MMDataParallel from lgcn.datasets import build_dataset, build_dataloader from lgcn.online_evaluation import online_evaluate def batch_processor(model, data, train_mode): assert train_mode pred, loss = model(data, return_loss=True) log_vars = OrderedDict() _, _, _, gtmat = data acc, p, r = online_evaluate(gtmat, pred) log_vars['loss'] = loss.item() log_vars['accuracy'] = acc log_vars['precision'] = p log_vars['recall'] = r outputs = dict(loss=loss, log_vars=log_vars, num_samples=len(gtmat)) return outputs def train_lgcn(model, cfg, logger): # prepare data loaders for k, v in cfg.model['kwargs'].items(): setattr(cfg.train_data, k, v) dataset = build_dataset(cfg.train_data) data_loaders = [ build_dataloader(dataset, cfg.batch_size_per_gpu, cfg.workers_per_gpu, train=True, shuffle=True) ] # train if cfg.distributed: raise NotImplementedError else: _single_train(model, data_loaders, cfg) def build_optimizer(model, optimizer_cfg): """Build optimizer from configs. """ if hasattr(model, 'module'): model = model.module optimizer_cfg = optimizer_cfg.copy() paramwise_options = optimizer_cfg.pop('paramwise_options', None) assert paramwise_options is None return obj_from_dict(optimizer_cfg, torch.optim, dict(params=model.parameters())) def _single_train(model, data_loaders, cfg): if cfg.gpus > 1: raise NotImplemented # put model on gpus model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda() # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config, cfg.checkpoint_config, cfg.log_config) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
tests/db/test_password.py
Yurzs/boto
5,079
11112608
# Copyright (c) 2010 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import unittest import logging import time log= logging.getLogger('password_property_test') log.setLevel(logging.DEBUG) class PasswordPropertyTest(unittest.TestCase): """Test the PasswordProperty""" def tearDown(self): cls=self.test_model() for obj in cls.all(): obj.delete() def hmac_hashfunc(self): import hmac def hashfunc(msg): return hmac.new('mysecret', msg) return hashfunc def test_model(self,hashfunc=None): from boto.utils import Password from boto.sdb.db.model import Model from boto.sdb.db.property import PasswordProperty import hashlib class MyModel(Model): password=PasswordProperty(hashfunc=hashfunc) return MyModel def test_custom_password_class(self): from boto.utils import Password from boto.sdb.db.model import Model from boto.sdb.db.property import PasswordProperty import hmac, hashlib myhashfunc = hashlib.md5 ## Define a new Password class class MyPassword(Password): hashfunc = myhashfunc #hashlib.md5 #lambda cls,msg: hmac.new('mysecret',msg) ## Define a custom password property using the new Password class class MyPasswordProperty(PasswordProperty): data_type=MyPassword type_name=MyPassword.__name__ ## Define a model using the new password property class MyModel(Model): password=MyPasswordProperty()#hashfunc=hashlib.md5) obj = MyModel() obj.password = '<PASSWORD>' expected = myhashfunc('bar').hexdigest() #hmac.new('mysecret','bar').hexdigest() log.debug("\npassword=%s\nexpected=%s" % (obj.password, expected)) self.assertTrue(obj.password == '<PASSWORD>' ) obj.save() id= obj.id time.sleep(5) obj = MyModel.get_by_id(id) self.assertEquals(obj.password, '<PASSWORD>') self.assertEquals(str(obj.password), expected) #hmac.new('mysecret','bar').hexdigest()) def test_aaa_default_password_property(self): cls = self.test_model() obj = cls(id='passwordtest') obj.password = '<PASSWORD>' self.assertEquals('foo', obj.password) obj.save() time.sleep(5) obj = cls.get_by_id('passwordtest') self.assertEquals('foo', obj.password) def test_password_constructor_hashfunc(self): import hmac myhashfunc=lambda msg: hmac.new('mysecret', msg) cls = self.test_model(hashfunc=myhashfunc) obj = cls() obj.password='<PASSWORD>' expected = myhashfunc('hello').hexdigest() self.assertEquals(obj.password, 'hello') self.assertEquals(str(obj.password), expected) obj.save() id = obj.id time.sleep(5) obj = cls.get_by_id(id) log.debug("\npassword=%s" % obj.password) self.assertTrue(obj.password == 'hello') if __name__ == '__main__': import sys, os curdir = os.path.dirname( os.path.abspath(__file__) ) srcroot = curdir + "/../.." sys.path = [ srcroot ] + sys.path logging.basicConfig() log.setLevel(logging.INFO) suite = unittest.TestLoader().loadTestsFromTestCase(PasswordPropertyTest) unittest.TextTestRunner(verbosity=2).run(suite) import boto
scripts/ios/relpath.py
Son-Le-Goog/nimbus
2,787
11112619
<gh_stars>1000+ #!/usr/bin/env python # encoding: utf-8 """ relpath.py A method for calculating the relative path from one directory to another. Originally written by <NAME>: http://code.activestate.com/recipes/208993-compute-relative-path-from-one-directory-to-anothe/ Date: July 6, 2003 Modifications Copyright 2011 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os def pathsplit(p, rest=[]): (h,t) = os.path.split(p) if len(h) < 1: return [t]+rest if len(t) < 1: return [h]+rest return pathsplit(h,[t]+rest) def commonpath(l1, l2, common=[]): if len(l1) < 1: return (common, l1, l2) if len(l2) < 1: return (common, l1, l2) if l1[0] != l2[0]: return (common, l1, l2) return commonpath(l1[1:], l2[1:], common+[l1[0]]) def relpath(p1, p2): (common,l1,l2) = commonpath(pathsplit(p1), pathsplit(p2)) p = [] if len(l1) > 0: p = [ '../' * len(l1) ] p = p + l2 return os.path.join( *p )
Exec/gravity_tests/hse_convergence_general/hse.py
MargotF/Castro
178
11112653
#!/bin/env python import argparse import numpy as np import matplotlib.pyplot as plt import yt def doit(outfile="hse.png"): low = yt.load("flame_wave_128_plt01600") med = yt.load("flame_wave_256_plt03200") high = yt.load("flame_wave_512_plt06400") fig, ax = plt.subplots(1,1) for ds, l in [(low, "128"), (med, "256"), (high, "512")]: ray = ds.ray((0, 0, 0), (2.56e3, 0, 0)) isrt = np.argsort(ray["x"]) ax.plot(ray["x"][isrt], ray["magvel"][isrt], label=l) ax.legend(frameon=False) ax.set_yscale("log") fig.tight_layout() fig.savefig(outfile) if __name__ == "__main__": p = argparse.ArgumentParser() p.add_argument("outfile", type=str, nargs="?", default="hse.png") args = p.parse_args() doit(outfile=args.outfile)
alipay/aop/api/FileItem.py
articuly/alipay-sdk-python-all
213
11112666
<filename>alipay/aop/api/FileItem.py # -*- coding: utf-8 -*- ''' Created on 2017-12-20 @author: liuqun ''' from alipay.aop.api.util.CommonUtils import get_mime_type class FileItem(object): def __init__(self, file_name=None, file_content=None, mime_type=None): self._file_name = file_name self._file_content = file_content self._mime_type = mime_type def get_file_name(self): return self._file_name def get_file_content(self): return self._file_content def get_mime_type(self): if not self._mime_type: self._mime_type = get_mime_type(self.get_file_content()) return self._mime_type
codigo/Live43/exemplo_2.py
cassiasamp/live-de-python
572
11112668
<reponame>cassiasamp/live-de-python from sys import stdout class PrintMock: def __enter__(self): self.old_print = stdout.write self.file = open('log.txt', 'a') stdout.write = self.log def log(self, arg): self.file.write('{}'.format(arg)) def __exit__(self, type, value, traceback): stdout.write = self.old_print
src/pretix/base/migrations/0049_checkin.py
pajowu/pretix
1,248
11112669
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-08 16:47 from __future__ import unicode_literals import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pretixbase', '0048_auto_20161129_1330'), ('pretixdroid', '0002_auto_20161208_1644'), ] state_operations = [ migrations.CreateModel( name='Checkin', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('datetime', models.DateTimeField(auto_now_add=True)), ('position', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pretixdroid_checkins', to='pretixbase.OrderPosition')), ], ), ] operations = [ migrations.SeparateDatabaseAndState(state_operations=state_operations) ]
recipes/Python/578465_longest_common_substring/recipe-578465.py
tdiprima/code
2,023
11112672
<reponame>tdiprima/code #!/usr/bin/env python3.2 import numpy as np def longest_common_substring(src, dst) : c = np.zeros((len(src), len(dst)), dtype=np.int) z = 0 src_m = None dst_m = None for i in range(len(src)) : for j in range(len(dst)) : if src[i] == dst[j] : if i == 0 or j == 0 : c[i,j] = 1 else : c[i, j] = c[i-1, j-1] + 1 if c[i, j] > z : z = c[i, j] if c[i, j] == z : src_m = (i-z+1, i+1) dst_m = (j-z+1, j+1) else : c[i, j] = 0 return src_m, dst_m >>> a = """Lorem ipsum dolor sit amet consectetur adipiscing elit Ut id nisl quis lacus lobortis egestas id nec turpis""".split() >>> b = """Lorem ipsum lobortis dolor sit adipiscing elit dolor amet consectetur Ut id nisl quis lacus egestas id nec turpis""".split() >>> src_m, dst_m = longest_common_substring(a, b) >>> print(src_m[0], src_m[1]) 8 13 >>> print(a[src_m[0]:src_m[1]]) ['Ut', 'id', 'nisl', 'quis', 'lacus'] >>> print(dst_m[0], dst_m[1]) 10 15 >>> print(b[dst_m[0]:dst_m[1]]) ['Ut', 'id', 'nisl', 'quis', 'lacus']
suzieq/db/parquet/migratedb.py
foobug/suzieq
487
11112677
from typing import Callable, Union import pandas as pd from pandas.core.computation.ops import UndefinedVariableError def get_migrate_fn(table_name: str, from_vers: str, to_vers: str) -> Union[Callable, None]: """Return a migration function if one is present for the table specified :param table_name: str, Name of the table for which we need the converter :param from_vers: str, Version number from which the conversion is needed :param to_vers: str, Version number to which the conversion is needed :returns: Routine to invoke to convert the data, or None :rtype: Callable or None """ conversion_dict = { 'bgp-1.0-2.0': _convert_bgp_vers_1_to_2 } return conversion_dict.get(f'{table_name}-{from_vers}-{to_vers}', None) def _convert_bgp_vers_1_to_2(df: pd.DataFrame) -> pd.DataFrame: """Convert BGP schema from version 1.0 to version 2.0 The dataframe MUST contain the sqvers column """ def set_community(x): communities = [] if (x.afi != 'l2vpn'): return communities if x.evpnSendCommunity == 'extendedAndStandard': communities = ['standard', 'extended'] elif x.evpnSendCommunity == 'extended': communities = ['extended'] elif x.evpnSendCommunity == 'standard': communities = ['standard'] return communities converted_df = pd.DataFrame() for pfx in ['v4', 'v6', 'evpn']: try: newdf = df.query(f'sqvers == "1.0" and {pfx}Enabled').reset_index() except UndefinedVariableError: newdf = pd.DataFrame() if not newdf.empty: if pfx == 'evpn': newdf['afi'] = 'l2vpn' newdf['safi'] = 'evpn' else: newdf['safi'] = 'unicast' if pfx == 'v4': newdf['afi'] = 'ipv4' else: newdf['afi'] = 'ipv6' newdf = newdf.rename(columns={ f'{pfx}PfxRx': 'pfxRx', f'{pfx}PfxTx': 'pfxTx', f'{pfx}IngressRmap': 'ingressRmap', f'{pfx}EgressRmap': 'egressRmap', f'{pfx}defaultsent': 'defOriginate', }) newdf['afisAdvOnly'] = [[] for _ in range(len(newdf))] newdf['afisRcvOnly'] = [[] for _ in range(len(newdf))] newdf['communityTypes'] = [[] for _ in range(len(newdf))] converted_df = pd.concat([converted_df, newdf]) if not converted_df.empty: converted_df['afisAdvOnly'] += converted_df.apply( lambda x: ['ipv4 unicast'] if (x.v4Advertised and not x.v4Received) else [], axis=1) converted_df['afisAdvOnly'] += converted_df.apply( lambda x: ['ipv6 unicast'] if (x.v6Advertised and not x.v6Received) else [], axis=1) converted_df['afisAdvOnly'] += converted_df.apply( lambda x: ['l2vpn evpn'] if (x.evpnAdvertised and not x.evpnReceived) else [], axis=1) converted_df['afisRcvOnly'] += converted_df.apply( lambda x: ['ipv4 unicast'] if (not x.v4Advertised and x.v4Received) else [], axis=1) converted_df['afisRcvOnly'] += converted_df.apply( lambda x: ['ipv6 unicast'] if (not x.v6Advertised and x.v6Received) else [], axis=1) converted_df['afisRcvOnly'] += converted_df.apply( lambda x: ['l2vpn evpn'] if (not x.evpnAdvertised and x.evpnReceived) else [], axis=1) converted_df['communityTypes'] += converted_df.apply(set_community, axis=1) converted_df['sqvers'] = '2.0' unconverted_df = df.query('sqvers != "1.0"').reset_index() final_df = pd.concat([converted_df, unconverted_df]) return final_df.reset_index(drop=True) else: return df
app/magtape/test/test_routes.py
gitter-badger/magtape
140
11112683
<reponame>gitter-badger/magtape<filename>app/magtape/test/test_routes.py<gh_stars>100-1000 #!/usr/bin/env python # Copyright 2020 T-Mobile, USA, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Trademark Disclaimer: Neither the name of T-Mobile, USA, Inc. nor the names of # its contributors may be used to endorse or promote products derived from this # software without specific prior written permission. import json import sys import unittest from unittest.mock import patch sys.path.append("./app/magtape/") from magtape import magtape class TestRoutes(unittest.TestCase): def setUp(self): self.app = magtape.app.test_client() self.app.testing = True self.k8s_events_enabled = "FALSE" def tearDown(self): pass def test_healthz(self): """Method to test webhook /healthz route""" result = self.app.get("/healthz") self.assertEqual(result.status_code, 200) self.assertEqual(json.loads(result.data)["health"], "ok") self.assertEqual(json.loads(result.data)["pod_name"], "magtape-abc1234") @patch("magtape.magtape.build_response_message", return_value="") def test_webhook_all_pass(self, magtape_build_response_message_function): """Method to test webhook with all fail response from OPA sidecar""" with open("./testing/deployments/test-deploy01.json") as json_file: request_object_json = json.load(json_file) result = self.app.post( "/", data=json.dumps(request_object_json), headers={"Content-Type": "application/json"}, ) self.assertEqual(result.status_code, 200) self.assertEqual(json.loads(result.data)["response"]["allowed"], True) @patch("magtape.magtape.k8s_events_enabled", "FALSE") @patch( "magtape.magtape.build_response_message", return_value='[FAIL] HIGH - Found privileged Security Context for container "test-deploy02" (MT2001), [FAIL] LOW - Liveness Probe missing for container "test-deploy02" (MT1001), [FAIL] LOW - Readiness Probe missing for container "test-deploy02" (MT1002), [FAIL] LOW - Resource limits missing (CPU/MEM) for container "test-deploy02" (MT1003), [FAIL] LOW - Resource requests missing (CPU/MEM) for container "test-deploy02" (MT1004)', ) def test_webhook_all_fail(self, build_response_message_function): """Method to test webhook with all fail response from OPA sidecar""" with open("./testing/deployments/test-deploy02.json") as json_file: request_object_json = json.load(json_file) result = self.app.post( "/", data=json.dumps(request_object_json), headers={"Content-Type": "application/json"}, ) self.assertEqual(result.status_code, 200) self.assertEqual(json.loads(result.data)["response"]["allowed"], False) self.assertEqual( json.loads(result.data)["response"]["status"]["message"], '[FAIL] HIGH - Found privileged Security Context for container "test-deploy02" (MT2001), [FAIL] LOW - Liveness Probe missing for container "test-deploy02" (MT1001), [FAIL] LOW - Readiness Probe missing for container "test-deploy02" (MT1002), [FAIL] LOW - Resource limits missing (CPU/MEM) for container "test-deploy02" (MT1003), [FAIL] LOW - Resource requests missing (CPU/MEM) for container "test-deploy02" (MT1004)', ) if __name__ == "__main__": unittest.main()
tartiflette/coercers/outputs/object_coercer.py
matt-koevort/tartiflette
530
11112698
from typing import Any, Dict, List from tartiflette.coercers.outputs.common import complete_object_value from tartiflette.coercers.outputs.null_coercer import null_coercer_wrapper __all__ = ("object_coercer",) @null_coercer_wrapper async def object_coercer( result: Any, info: "ResolveInfo", execution_context: "ExecutionContext", field_nodes: List["FieldNode"], path: "Path", object_type: "GraphQLObjectType", ) -> Dict[str, Any]: """ Computes the value of an object. :param result: resolved value :param info: information related to the execution and the resolved field :param execution_context: instance of the query execution context :param field_nodes: AST nodes related to the resolved field :param path: the path traveled until this resolver :param object_type: the GraphQLObjectType instance of the object :type result: Any :type info: ResolveInfo :type execution_context: ExecutionContext :type field_nodes: List[FieldNode] :type path: Path :type object_type: GraphQLObjectType :return: the computed value :rtype: Dict[str, Any] """ # pylint: disable=unused-argument return await complete_object_value( result, info, execution_context, field_nodes, path, object_type )
src/sh/run_all_python_tests.py
vb-wayne/paragraph
111
11112703
#! /usr/bin/env python3 import os import sys import unittest def main(): project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "python")) testsuite = unittest.TestLoader().discover(os.path.join(project_dir, "test")) lib_results = unittest.TextTestRunner(verbosity=3).run(testsuite) print("%d tests run in test/, %d failures, %d errors" % (lib_results.testsRun, len(lib_results.failures), len(lib_results.errors))) if len(lib_results.failures) > 0: sys.exit(1) if len(lib_results.errors) > 0: sys.exit(1) if __name__ == '__main__': main()
meshrcnn/utils/projtransform.py
MAYURGAIKWAD/meshrcnn
1,028
11112704
<gh_stars>1000+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch class ProjectiveTransform(object): """ Projective Transformation in PyTorch: Follows a similar design to skimage.ProjectiveTransform https://github.com/scikit-image/scikit-image/blob/master/skimage/transform/_geometric.py#L494 The implementation assumes batched representations, so every tensor is assumed to be of shape batch x dim1 x dim2 x etc. """ def __init__(self, matrix=None): if matrix is None: # default to an identity transform matrix = torch.eye(3).view(1, 3, 3) if matrix.ndim != 3 and matrix.shape[-1] != 3 and matrix.shape[-2] != 3: raise ValueError("Shape of transformation matrix should be Bx3x3") self.params = matrix @property def _inv_matrix(self): return torch.inverse(self.params) def _apply_mat(self, coords, matrix): """ Applies matrix transformation Input: coords: FloatTensor of shape BxNx2 matrix: FloatTensor of shape Bx3x3 Returns: new_coords: FloatTensor of shape BxNx2 """ if coords.shape[0] != matrix.shape[0]: raise ValueError("Mismatch in the batch dimension") if coords.ndim != 3 or coords.shape[-1] != 2: raise ValueError("Input tensors should be of shape BxNx2") # append 1s, shape: BxNx2 -> BxNx3 src = torch.cat( [ coords, torch.ones( (coords.shape[0], coords.shape[1], 1), device=coords.device, dtype=torch.float32 ), ], dim=2, ) dst = torch.bmm(matrix, src.transpose(1, 2)).transpose(1, 2) # rescale to homogeneous coordinates dst[:, :, 0] /= dst[:, :, 2] dst[:, :, 1] /= dst[:, :, 2] return dst[:, :, :2] def __call__(self, coords): """Apply forward transformation. Input: coords: FloatTensor of shape BxNx2 Output: coords: FloateTensor of shape BxNx2 """ return self._apply_mat(coords, self.params) def inverse(self, coords): """Apply inverse transformation. Input: coords: FloatTensor of shape BxNx2 Output: coords: FloatTensor of shape BxNx2 """ return self._apply_mat(coords, self._inv_matrix) def estimate(self, src, dst, method="svd"): """ Estimates the matrix to transform src to dst. Input: src: FloatTensor of shape BxNx2 dst: FloatTensor of shape BxNx2 method: Specifies the method to solve the linear system """ if src.shape != dst.shape: raise ValueError("src and dst tensors but be of same shape") if src.ndim != 3 or src.shape[-1] != 2: raise ValueError("Input should be of shape BxNx2") device = src.device batch = src.shape[0] # Center and normalize image points for better numerical stability. try: src_matrix, src = _center_and_normalize_points(src) dst_matrix, dst = _center_and_normalize_points(dst) except ZeroDivisionError: self.params = torch.zeros((batch, 3, 3), device=device) return False xs = src[:, :, 0] ys = src[:, :, 1] xd = dst[:, :, 0] yd = dst[:, :, 1] rows = src.shape[1] # params: a0, a1, a2, b0, b1, b2, c0, c1, (c3=1) A = torch.zeros((batch, rows * 2, 9), device=device, dtype=torch.float32) A[:, :rows, 0] = xs A[:, :rows, 1] = ys A[:, :rows, 2] = 1 A[:, :rows, 6] = -xd * xs A[:, :rows, 7] = -xd * ys A[:, rows:, 3] = xs A[:, rows:, 4] = ys A[:, rows:, 5] = 1 A[:, rows:, 6] = -yd * xs A[:, rows:, 7] = -yd * ys A[:, :rows, 8] = xd A[:, rows:, 8] = yd if method == "svd": A = A.cpu() # faster computation in cpu # Solve for the nullspace of the constraint matrix. _, _, V = torch.svd(A, some=False) V = V.transpose(1, 2) H = torch.ones((batch, 9), device=device, dtype=torch.float32) H[:, :-1] = -V[:, -1, :-1] / V[:, -1, -1].view(-1, 1) H = H.reshape(batch, 3, 3) # H[:, 2, 2] = 1.0 elif method == "least_sqr": A = A.cpu() # faster computation in cpu # Least square solution x, _ = torch.solve(-A[:, :, -1].view(-1, 1), A[:, :, :-1]) H = torch.cat([-x, torch.ones((1, 1), dtype=x.dtype, device=device)]) H = H.reshape(3, 3) elif method == "inv": # x = inv(A'A)*A'*b invAtA = torch.inverse(torch.mm(A[:, :-1].t(), A[:, :-1])) Atb = torch.mm(A[:, :-1].t(), -A[:, -1].view(-1, 1)) x = torch.mm(invAtA, Atb) H = torch.cat([-x, torch.ones((1, 1), dtype=x.dtype, device=device)]) H = H.reshape(3, 3) else: raise ValueError("method {} undefined".format(method)) # De-center and de-normalize self.params = torch.bmm(torch.bmm(torch.inverse(dst_matrix), H), src_matrix) return True def _center_and_normalize_points(points): """Center and normalize points. The points are transformed in a two-step procedure that is expressed as a transformation matrix. The matrix of the resulting points is usually better conditioned than the matrix of the original points. Center the points, such that the new coordinate system has its origin at the centroid of the image points. Normalize the points, such that the mean distance from the points to the origin of the coordinate system is sqrt(2). Inputs: points: FloatTensor of shape BxNx2 of the coordinates of the image points. Outputs: matrix: FloatTensor of shape Bx3x3 of the transformation matrix to obtain the new points. new_points: FloatTensor of shape BxNx2 of the transformed image points. References ---------- .. [1] <NAME>. "In defense of the eight-point algorithm." Pattern Analysis and Machine Intelligence, IEEE Transactions on 19.6 (1997): 580-593. """ device = points.device centroid = torch.mean(points, 1, keepdim=True) rms = torch.sqrt(torch.sum((points - centroid) ** 2.0, dim=(1, 2)) / points.shape[1]) norm_factor = torch.sqrt(torch.tensor([2.0], device=device)) / rms matrix = torch.zeros((points.shape[0], 3, 3), dtype=torch.float32, device=device) matrix[:, 0, 0] = norm_factor matrix[:, 0, 2] = -norm_factor * centroid[:, 0, 0] matrix[:, 1, 1] = norm_factor matrix[:, 1, 2] = -norm_factor * centroid[:, 0, 1] matrix[:, 2, 2] = 1.0 # matrix = torch.tensor( # [ # [norm_factor, 0.0, -norm_factor * centroid[0]], # [0.0, norm_factor, -norm_factor * centroid[1]], # [0.0, 0.0, 1.0], # ], device=device, dtype=torch.float32) pointsh = torch.cat( [ points, torch.ones((points.shape[0], points.shape[1], 1), device=device, dtype=torch.float32), ], dim=2, ) new_pointsh = torch.bmm(matrix, pointsh.transpose(1, 2)).transpose(1, 2) new_points = new_pointsh[:, :, :2] new_points[:, :, 0] /= new_pointsh[:, :, 2] new_points[:, :, 1] /= new_pointsh[:, :, 2] return matrix, new_points
projects/FastRetri/fastretri/config.py
NTU-ROSE/fast-reid
2,194
11112735
# encoding: utf-8 """ @author: <NAME> @contact: <EMAIL> """ def add_retri_config(cfg): _C = cfg _C.TEST.RECALLS = [1, 2, 4, 8, 16, 32]
linebot/models/imagemap.py
naotokuwa/line-bot-sdk-python
1,563
11112740
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """linebot.models.imagemap module.""" from abc import ABCMeta from future.utils import with_metaclass from .base import Base from .send_messages import SendMessage class ImagemapSendMessage(SendMessage): """ImagemapSendMessage. https://developers.line.biz/en/reference/messaging-api/#imagemap-message Imagemaps are images with one or more links. You can assign one link for the entire image or multiple links which correspond to different regions of the image. """ def __init__(self, base_url=None, alt_text=None, base_size=None, video=None, actions=None, **kwargs): """__init__ method. :param str base_url: Base URL of image. HTTPS :param str alt_text: Alternative text :param base_size: Width and height of base image :type base_size: :py:class:`linebot.models.imagemap.BaseSize` :param video: Video in imagemap message :type video: :py:class:`linebot.models.imagemap.Video` :param actions: Action when tapped :type actions: list[T <= :py:class:`linebot.models.imagemap.ImagemapAction`] :param kwargs: """ super(ImagemapSendMessage, self).__init__(**kwargs) self.type = 'imagemap' self.base_url = base_url self.alt_text = alt_text self.base_size = self.get_or_new_from_json_dict( base_size, BaseSize ) self.video = self.get_or_new_from_json_dict( video, Video ) new_actions = [] if actions: for action in actions: action_obj = self.get_or_new_from_json_dict_with_types( action, { 'uri': URIImagemapAction, 'message': MessageImagemapAction } ) if action_obj: new_actions.append(action_obj) self.actions = new_actions class BaseSize(Base): """BaseSize. https://developers.line.biz/en/reference/messaging-api/#imagemap-message """ def __init__(self, width=None, height=None, **kwargs): """__init__ method. :param int width: Width of base image (set to 1040px) :param int height: Height of base image(set to the height that corresponds to a width of 1040px :param kwargs: """ super(BaseSize, self).__init__(**kwargs) self.width = width self.height = height class ImagemapAction(with_metaclass(ABCMeta, Base)): """ImagemapAction. https://developers.line.biz/en/reference/messaging-api/#imagemap-message """ def __init__(self, **kwargs): """__init__ method. :param kwargs: """ super(ImagemapAction, self).__init__(**kwargs) self.type = None class URIImagemapAction(ImagemapAction): """URIImagemapAction. https://developers.line.biz/en/reference/messaging-api/#imagemap-message """ def __init__(self, link_uri=None, area=None, **kwargs): """__init__ method. :param str link_uri: Webpage URL :param area: Defined tappable area :type area: :py:class:`linebot.models.imagemap.ImagemapArea` :param kwargs: """ super(URIImagemapAction, self).__init__(**kwargs) self.type = 'uri' self.link_uri = link_uri self.area = self.get_or_new_from_json_dict(area, ImagemapArea) class MessageImagemapAction(ImagemapAction): """MessageImagemapAction. https://developers.line.biz/en/reference/messaging-api/#imagemap-message """ def __init__(self, text=None, area=None, **kwargs): """__init__ method. :param str text: Message to send :param area: Defined tappable area :type area: :py:class:`linebot.models.imagemap.ImagemapArea` :param kwargs: """ super(MessageImagemapAction, self).__init__(**kwargs) self.type = 'message' self.text = text self.area = self.get_or_new_from_json_dict(area, ImagemapArea) class ImagemapArea(Base): """ImagemapArea. https://developers.line.biz/en/reference/messaging-api/#imagemap-area-object Defines the size of the full imagemap with the width as 1040px. The top left is used as the origin of the area. """ def __init__(self, x=None, y=None, width=None, height=None, **kwargs): """__init__ method. :param int x: Horizontal position of the tappable area :param int y: Vertical position of the tappable area :param int width: Width of the tappable area :param int height: Height of the tappable area :param kwargs: """ super(ImagemapArea, self).__init__(**kwargs) self.x = x self.y = y self.width = width self.height = height class Video(Base): """Video. https://developers.line.biz/en/reference/messaging-api/#imagemap-message Defines the properties of the video object in imagemap. """ def __init__(self, original_content_url=None, preview_image_url=None, area=None, external_link=None, **kwargs): """__init__ method. :param str original_content_url: URL of the video file :param str preview_image_url: URL of the preview image :param area: Defined video area :type area: :py:class:`linebot.models.imagemap.ImagemapArea` :param external_link: Defined video external link :type external_link: :py:class:`linebot.models.imagemap.ExternalLink` :param kwargs: """ super(Video, self).__init__(**kwargs) self.original_content_url = original_content_url self.preview_image_url = preview_image_url self.area = self.get_or_new_from_json_dict(area, ImagemapArea) self.external_link = self.get_or_new_from_json_dict(external_link, ExternalLink) class ExternalLink(Base): """ExternalLink. https://developers.line.biz/en/reference/messaging-api/#imagemap-message Defines URL and label of external link in video. """ def __init__(self, link_uri=None, label=None, **kwargs): """__init__ method. :param str link_uri: Webpage URL :param str label: Label :param kwargs: """ super(ExternalLink, self).__init__(**kwargs) self.link_uri = link_uri self.label = label
torch/optim/rprop.py
Hacky-DH/pytorch
60,067
11112748
import torch from . import _functional as F from .optimizer import Optimizer class Rprop(Optimizer): r"""Implements the resilient backpropagation algorithm. .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta) \text{ (objective)}, \\ &\hspace{13mm} \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min} \text{ (step sizes)} \\ &\textbf{initialize} : g^0_{prev} \leftarrow 0, \: \eta_0 \leftarrow \text{lr (learning rate)} \\ &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm} \textbf{for} \text{ } i = 0, 1, \ldots, d-1 \: \mathbf{do} \\ &\hspace{10mm} \textbf{if} \: g^i_{prev} g^i_t > 0 \\ &\hspace{15mm} \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+}, \Gamma_{max}) \\ &\hspace{10mm} \textbf{else if} \: g^i_{prev} g^i_t < 0 \\ &\hspace{15mm} \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-}, \Gamma_{min}) \\ &\hspace{10mm} \textbf{else} \: \\ &\hspace{15mm} \eta^i_t \leftarrow \eta^i_{t-1} \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t) \\ &\hspace{5mm}g_{prev} \leftarrow g_t \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to the paper `A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-2) etas (Tuple[float, float], optional): pair of (etaminus, etaplis), that are multiplicative increase and decrease factors (default: (0.5, 1.2)) step_sizes (Tuple[float, float], optional): a pair of minimal and maximal allowed step sizes (default: (1e-6, 50)) """ def __init__(self, params, lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50)): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 < etas[0] < 1.0 < etas[1]: raise ValueError("Invalid eta values: {}, {}".format(etas[0], etas[1])) defaults = dict(lr=lr, etas=etas, step_sizes=step_sizes) super(Rprop, self).__init__(params, defaults) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params = [] grads = [] prevs = [] step_sizes = [] for p in group['params']: if p.grad is None: continue params.append(p) grad = p.grad if grad.is_sparse: raise RuntimeError('Rprop does not support sparse gradients') grads.append(grad) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 state['prev'] = torch.zeros_like(p, memory_format=torch.preserve_format) state['step_size'] = grad.new().resize_as_(grad).fill_(group['lr']) prevs.append(state['prev']) step_sizes.append(state['step_size']) etaminus, etaplus = group['etas'] step_size_min, step_size_max = group['step_sizes'] state['step'] += 1 F.rprop(params, grads, prevs, step_sizes, step_size_min=step_size_min, step_size_max=step_size_max, etaminus=etaminus, etaplus=etaplus) return loss
semtorch/models/archs/backbones/mobilenet.py
WaterKnight1998/SemTorch
145
11112778
"""MobileNet and MobileNetV2.""" import torch.nn as nn from .registry import BACKBONE_REGISTRY from ...modules import _ConvBNReLU, _DepthwiseConv, InvertedResidual from ...config import cfg __all__ = ['MobileNet', 'MobileNetV2'] class MobileNet(nn.Module): def __init__(self, num_classes=1000, norm_layer=nn.BatchNorm2d): super(MobileNet, self).__init__() multiplier = cfg.MODEL.BACKBONE_SCALE conv_dw_setting = [ [64, 1, 1], [128, 2, 2], [256, 2, 2], [512, 6, 2], [1024, 2, 2]] input_channels = int(32 * multiplier) if multiplier > 1.0 else 32 features = [_ConvBNReLU(3, input_channels, 3, 2, 1, norm_layer=norm_layer)] for c, n, s in conv_dw_setting: out_channels = int(c * multiplier) for i in range(n): stride = s if i == 0 else 1 features.append(_DepthwiseConv(input_channels, out_channels, stride, norm_layer)) input_channels = out_channels self.last_inp_channels = int(1024 * multiplier) features.append(nn.AdaptiveAvgPool2d(1)) self.features = nn.Sequential(*features) self.classifier = nn.Linear(int(1024 * multiplier), num_classes) # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def forward(self, x): x = self.features(x) x = self.classifier(x.view(x.size(0), x.size(1))) return x class MobileNetV2(nn.Module): def __init__(self, num_classes=1000, norm_layer=nn.BatchNorm2d): super(MobileNetV2, self).__init__() output_stride = cfg.MODEL.OUTPUT_STRIDE self.multiplier = cfg.MODEL.BACKBONE_SCALE if output_stride == 32: dilations = [1, 1] elif output_stride == 16: dilations = [1, 2] elif output_stride == 8: dilations = [2, 4] else: raise NotImplementedError inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1]] # building first layer input_channels = int(32 * self.multiplier) if self.multiplier > 1.0 else 32 # last_channels = int(1280 * multiplier) if multiplier > 1.0 else 1280 self.conv1 = _ConvBNReLU(3, input_channels, 3, 2, 1, relu6=True, norm_layer=norm_layer) # building inverted residual blocks self.planes = input_channels self.block1 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[0:1], norm_layer=norm_layer) self.block2 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[1:2], norm_layer=norm_layer) self.block3 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[2:3], norm_layer=norm_layer) self.block4 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[3:5], dilations[0], norm_layer=norm_layer) self.block5 = self._make_layer(InvertedResidual, self.planes, inverted_residual_setting[5:], dilations[1], norm_layer=norm_layer) self.last_inp_channels = self.planes # building last several layers # features = list() # features.append(_ConvBNReLU(input_channels, last_channels, 1, relu6=True, norm_layer=norm_layer)) # features.append(nn.AdaptiveAvgPool2d(1)) # self.features = nn.Sequential(*features) # # self.classifier = nn.Sequential( # nn.Dropout2d(0.2), # nn.Linear(last_channels, num_classes)) # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.zeros_(m.bias) def _make_layer(self, block, planes, inverted_residual_setting, dilation=1, norm_layer=nn.BatchNorm2d): features = list() for t, c, n, s in inverted_residual_setting: out_channels = int(c * self.multiplier) stride = s if dilation == 1 else 1 features.append(block(planes, out_channels, stride, t, dilation, norm_layer)) planes = out_channels for i in range(n - 1): features.append(block(planes, out_channels, 1, t, norm_layer=norm_layer)) planes = out_channels self.planes = planes return nn.Sequential(*features) def forward(self, x): x = self.conv1(x) x = self.block1(x) c1 = self.block2(x) c2 = self.block3(c1) c3 = self.block4(c2) c4 = self.block5(c3) # x = self.features(x) # x = self.classifier(x.view(x.size(0), x.size(1))) return c1, c2, c3, c4 @BACKBONE_REGISTRY.register() def mobilenet_v1(norm_layer=nn.BatchNorm2d): return MobileNet(norm_layer=norm_layer) @BACKBONE_REGISTRY.register() def mobilenet_v2(norm_layer=nn.BatchNorm2d): return MobileNetV2(norm_layer=norm_layer)
tests/syntax/def_name_is_parameter_and_global.py
matan-h/friendly
287
11112850
<reponame>matan-h/friendly """Should raise SyntaxError: name 'x' is parameter and global """ def f(x): global x
data_collection/gazette/spiders/base/dosp.py
itepifanio/querido-diario
268
11112864
import base64 import datetime import json import dateparser import scrapy from gazette.items import Gazette from gazette.spiders.base import BaseGazetteSpider class DospGazetteSpider(BaseGazetteSpider): allowed_domains = ["dosp.com.br", "imprensaoficialmunicipal.com.br"] # Must be defined into child classes code = None start_date = None def start_requests(self): FORMAT_DATE = "%Y-%m-%d" target_date = self.start_date end_date = datetime.date.today() while target_date <= end_date: from_data = target_date.strftime(FORMAT_DATE) target_date = target_date + datetime.timedelta(weeks=1) to_date = target_date.strftime(FORMAT_DATE) yield scrapy.Request( f"https://dosp.com.br/api/index.php/dioedata.js/{self.code}/{from_data}/{to_date}?callback=dioe" ) def parse(self, response): # The response are in a javascript format, then needs some clean up data = json.loads(response.text[6:-2]) for item in data["data"]: code = item["iddo"] code = str(code).encode("ascii") pdf_code = base64.b64encode(code).decode("ascii") file_url = f"https://dosp.com.br/exibe_do.php?i={pdf_code}" edition_number = item["edicao_do"] date = dateparser.parse(item["data"]).date() yield Gazette( date=date, file_urls=[file_url], edition_number=edition_number, power="executive_legislative", )
scripts/19-reshelve.py
jmviz/xd
179
11112866
#!/usr/bin/env python3 # Usage: $0 [-c <corpus>] <regex> <pubid> # # rewrites receipts.tsv and fills in any blanks based on regex # # git mv all .xd with pubid of <src> to have a pubid of <dest> (simple file rename) # # import re from xdfile import utils, metadatabase as metadb, catalog def main(): args = utils.get_args() all_receipts = metadb.xd_receipts_header receipts = metadb.xd_receipts_rows() rids = set() # set of ReceiptId for r in receipts: oldpubid = "" oldpubid = utils.parse_pubid(r.xdid or '') newpubid = catalog.find_pubid("|".join((str(x) for x in r))) d = r._asdict() if newpubid and newpubid != oldpubid: seqnum = utils.parse_seqnum(r.xdid or r.SourceFilename) if seqnum: newxdid = newpubid + seqnum utils.info("changing xdid from '%s' to '%s'" % (r.xdid, newxdid)) d["xdid"] = newxdid else: utils.info("no date or number in xdid, not reshelving") all_receipts += metadb.xd_receipts_row(**d) open(metadb.RECEIPTS_TSV, 'w').write(all_receipts) main()
clinica/iotools/converters/oasis_to_bids/oasis_to_bids_cli.py
Raelag0112/clinica
135
11112868
import click from clinica.iotools.converters import cli_param @click.command(name="oasis-to-bids") @cli_param.dataset_directory @cli_param.clinical_data_directory @cli_param.bids_directory def cli( dataset_directory: str, clinical_data_directory: str, bids_directory: str, ) -> None: """OASIS to BIDS converter. Convert the imaging and clinical data of OASIS (http://oasis-brains.org/), located in DATASET_DIRECTORY and CLINICAL_DATA_DIRECTORY respectively, to a BIDS dataset in the target BIDS_DIRECTORY. """ from clinica.iotools.converters.oasis_to_bids.oasis_to_bids import OasisToBids oasis_to_bids = OasisToBids() oasis_to_bids.convert_images(dataset_directory, bids_directory) oasis_to_bids.convert_clinical_data(clinical_data_directory, bids_directory) if __name__ == "__main__": cli()
omega_miya/database/model/bot_self.py
rinrini001/omega-miya
120
11112881
""" @Author : Ailitonia @Date : 2021/05/23 19:32 @FileName : bot_self.py @Project : nonebot2_miya @Description : BotSelf Table Model @GitHub : https://github.com/Ailitonia @Software : PyCharm """ from omega_miya.database.database import BaseDB from omega_miya.database.class_result import Result from omega_miya.database.tables import BotSelf from datetime import datetime from sqlalchemy.future import select from sqlalchemy.orm.exc import NoResultFound, MultipleResultsFound class DBBot(object): def __init__(self, self_qq: int): self.self_qq = self_qq async def id(self) -> Result.IntResult: async_session = BaseDB().get_async_session() async with async_session() as session: async with session.begin(): try: session_result = await session.execute( select(BotSelf.id).where(BotSelf.self_qq == self.self_qq) ) bot_table_id = session_result.scalar_one() result = Result.IntResult(error=False, info='Success', result=bot_table_id) except NoResultFound: result = Result.IntResult(error=True, info='NoResultFound', result=-1) except MultipleResultsFound: result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: result = Result.IntResult(error=True, info=repr(e), result=-1) return result async def exist(self) -> bool: result = await self.id() return result.success() async def upgrade(self, status: int = 0, info: str = None) -> Result.IntResult: async_session = BaseDB().get_async_session() async with async_session() as session: try: async with session.begin(): try: # 已存在则更新表中已有信息 session_result = await session.execute( select(BotSelf).where(BotSelf.self_qq == self.self_qq) ) exist_bot = session_result.scalar_one() exist_bot.status = status if info: exist_bot.info = info exist_bot.updated_at = datetime.now() result = Result.IntResult(error=False, info='Success upgraded', result=0) except NoResultFound: # 不存在则在表中添加新信息 new_bot = BotSelf(self_qq=self.self_qq, status=status, info=info, created_at=datetime.now()) session.add(new_bot) result = Result.IntResult(error=False, info='Success added', result=0) await session.commit() except MultipleResultsFound: await session.rollback() result = Result.IntResult(error=True, info='MultipleResultsFound', result=-1) except Exception as e: await session.rollback() result = Result.IntResult(error=True, info=repr(e), result=-1) return result
examples/pyro/pyro_logregression.py
PGM-Lab/InferPy
140
11112894
### Setting up import torch import pyro from pyro.distributions import Normal, Binomial from pyro.infer import SVI, Trace_ELBO from pyro.optim import Adam from pyro.contrib.autoguide import AutoDiagonalNormal d = 2 N = 1000 ### 17 ### Model definition ### def log_reg(x_data=None, y_data=None): w = pyro.sample("w", Normal(torch.zeros(d), torch.ones(d))) w0 = pyro.sample("w0", Normal(0., 1.)) with pyro.plate("map", N): x = pyro.sample("x", Normal(torch.zeros(d), 2).to_event(1), obs=x_data) logits = (w0 + x @ torch.FloatTensor(w)).squeeze(-1) y = pyro.sample("pred", Binomial(logits = logits), obs=y_data) return x,y qmodel = AutoDiagonalNormal(log_reg) ### 37 #### Sample from prior model sampler = pyro.condition(log_reg, data={"w0": 0, "w": [2,1]}) x_train, y_train = sampler() #### Inference optim = Adam({"lr": 0.1}) svi = SVI(log_reg, qmodel, optim, loss=Trace_ELBO(), num_samples=10) num_iterations = 10000 pyro.clear_param_store() for j in range(num_iterations): # calculate the loss and take a gradient step loss = svi.step(x_train, y_train) print("[iteration %04d] loss: %.4f" % (j + 1, loss / len(x_train))) #### Usage of the inferred model # Print the parameters w_post = qmodel()["w"] w0_post = qmodel()["w0"] print(w_post, w0_post) # Sample from the posterior sampler_post = pyro.condition(log_reg, data={"w0": w0_post, "w": w_post}) x_gen, y_gen = sampler_post() print(x_gen, y_gen) ##### Plot the results import matplotlib.pyplot as plt fig = plt.figure(figsize=(10, 5)) for c in [0, 1]: x_gen_c = x_gen[y_gen.flatten() == c, :] plt.plot(x_gen_c[:, 0], x_gen_c[:, 1], 'bx' if c == 0 else 'rx') plt.show() ### 90
src/python/twitter/common/python/base.py
zhouyijiaren/commons
1,143
11112903
from __future__ import absolute_import from pex.base import *
examples/wide_form_violinplot.py
amirhosseindavoody/seaborn
8,852
11112917
""" Violinplot from a wide-form dataset =================================== _thumb: .6, .45 """ import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") # Load the example dataset of brain network correlations df = sns.load_dataset("brain_networks", header=[0, 1, 2], index_col=0) # Pull out a specific subset of networks used_networks = [1, 3, 4, 5, 6, 7, 8, 11, 12, 13, 16, 17] used_columns = (df.columns.get_level_values("network") .astype(int) .isin(used_networks)) df = df.loc[:, used_columns] # Compute the correlation matrix and average over networks corr_df = df.corr().groupby(level="network").mean() corr_df.index = corr_df.index.astype(int) corr_df = corr_df.sort_index().T # Set up the matplotlib figure f, ax = plt.subplots(figsize=(11, 6)) # Draw a violinplot with a narrower bandwidth than the default sns.violinplot(data=corr_df, palette="Set3", bw=.2, cut=1, linewidth=1) # Finalize the figure ax.set(ylim=(-.7, 1.05)) sns.despine(left=True, bottom=True)
mmfashion/models/backbones/__init__.py
RyanJiang0416/mmfashion
952
11112922
<reponame>RyanJiang0416/mmfashion from .resnet import ResNet from .vgg import Vgg __all__ = ['Vgg', 'ResNet']
tf_base/src/network/lenetem.py
borgr/active_learning_coreset
181
11112965
from network import Network class LeNetEm(Network): def setup(self): (self.feed('data') .reshape([-1,28,28,1], name='data_reshape') .conv(5, 5, 20, 1, 1, padding='VALID', relu=False, name='conv1') .max_pool(2, 2, 2, 2, name='pool1') .conv(5, 5, 50, 1, 1, padding='VALID', relu=False, name='conv2') .max_pool(2, 2, 2, 2, name='pool2') .fc(500, name='ip1') .fc(64, relu=False, name='ip2'))
colossalai/zero/sharded_param/sharded_tensor.py
RichardoLuo/ColossalAI
1,630
11112972
import torch from colossalai.gemini.stateful_tensor import StatefulTensor, TensorState class ShardedTensor(StatefulTensor): def __init__(self, tensor: torch.Tensor, state: TensorState = TensorState.HOLD) -> None: r""" A tensor sharded in multiple processes. Constructed from an existing torch.Tensor instance. """ assert tensor.requires_grad is False super().__init__(tensor, state) # kept the shape, numel and dtype of the init tensor. self._origin_shape = tensor.shape self._origin_numel = tensor.numel() self._origin_dtype = tensor.dtype self._is_sharded = False @property def dtype(self) -> torch.dtype: assert self._payload.dtype == self._origin_dtype return self._payload.dtype @property def origin_numel(self) -> int: return self._origin_numel @property def origin_shape(self) -> int: return self._origin_shape @property def is_sharded(self): return self._is_sharded @is_sharded.setter def is_sharded(self, flag: bool): self._is_sharded = flag
compiler/bon.py
cheery/lever
136
11112974
""" binary object notation A data-interchange format. Used here because it is simpler to decode than other similar formats and can contain custom encodings. """ import struct types = {} decoder = {} encoder = {} def load(fd): type_id = ord(fd.read(1)) return decoder[type_id](fd) def dump(fd, obj): type_id = types[type(obj)] fd.write(chr(type_id)) return encoder[type_id](fd, obj) def r32(fd): a, b, c, d = fd.read(4) return ord(a) << 24 | ord(b) << 16 | ord(c) << 8 | ord(d) def w32(fd, value): fd.write(''.join(( chr(value >> 24 & 255), chr(value >> 16 & 255), chr(value >> 8 & 255), chr(value >> 0 & 255), ))) def rlong(fd): "http://en.wikipedia.org/wiki/Variable-length_quantity" sign = +1 output = 0 ubyte = ord(fd.read(1)) if ubyte & 0x40 == 0x40: sign = -1 ubyte &= 0xBF while ubyte & 0x80: output |= ubyte & 0x7F output <<= 7 ubyte = ord(fd.read(1)) output |= ubyte return output * sign def wlong(fd, value): "http://en.wikipedia.org/wiki/Variable-length_quantity" output = [] if value < 0: negative = True value = -value else: negative = False output.append(value & 0x7F) while value > 0x7F: value >>= 7 output.append(0x80 | value & 0x7F) if output[-1] & 0x40 != 0: output.append(0x80) if negative: output[-1] |= 0x40 fd.write(''.join(map(chr, reversed(output)))) types[int] = 0 types[long] = 0 decoder[0] = rlong encoder[0] = wlong def rdouble(fd): return struct.unpack('!d', fd.read(8))[0] def wdouble(fd, obj): fd.write(struct.pack('!d', obj)) types[float] = 1 decoder[1] = rdouble encoder[1] = wdouble def rstring(fd): length = r32(fd) return fd.read(length).decode('utf-8') def wstring(fd, obj): w32(fd, len(obj)) fd.write(obj.encode('utf-8')) types[unicode] = 2 decoder[2] = rstring encoder[2] = wstring def rlist(fd): length = r32(fd) sequence = [] for _ in range(length): sequence.append(load(fd)) return sequence def wlist(fd, obj): w32(fd, len(obj)) for value in obj: dump(fd, value) types[list] = 3 types[tuple] = 3 decoder[3] = rlist encoder[3] = wlist def rdict(fd): length = r32(fd) dictionary = dict() for _ in range(length): key = load(fd) val = load(fd) dictionary[key] = val return dictionary def wdict(fd, obj): w32(fd, len(obj)) for key, value in obj.iteritems(): dump(fd, key) dump(fd, value) types[dict] = 4 decoder[4] = rdict encoder[4] = wdict def rbytes(fd): length = r32(fd) return fd.read(length) def wbytes(fd, obj): w32(fd, len(obj)) fd.write(obj) types[bytes] = 5 decoder[5] = rbytes encoder[5] = wbytes def rboolean(fd): return fd.read(1) != '\x00' def wboolean(fd, obj): return fd.write('\x00\x01'[obj]) types[bool] = 6 decoder[6] = rboolean encoder[6] = wboolean def rnull(fd): return None def wnull(fd, obj): pass types[type(None)] = 7 decoder[7] = rnull encoder[7] = wnull
examples/plots/partial-dependence-plot-2D.py
samueljamesbell/scikit-optimize
2,404
11113035
""" =========================== Partial Dependence Plots 2D =========================== Hvass-Labs Dec 2017 <NAME> 2020 .. currentmodule:: skopt Simple example to show the new 2D plots. """ print(__doc__) import numpy as np from math import exp from skopt import gp_minimize from skopt.space import Real, Categorical, Integer from skopt.plots import plot_histogram, plot_objective_2D, plot_objective from skopt.utils import point_asdict np.random.seed(123) import matplotlib.pyplot as plt ############################################################################# dim_learning_rate = Real(name='learning_rate', low=1e-6, high=1e-2, prior='log-uniform') dim_num_dense_layers = Integer(name='num_dense_layers', low=1, high=5) dim_num_dense_nodes = Integer(name='num_dense_nodes', low=5, high=512) dim_activation = Categorical(name='activation', categories=['relu', 'sigmoid']) dimensions = [dim_learning_rate, dim_num_dense_layers, dim_num_dense_nodes, dim_activation] default_parameters = [1e-4, 1, 64, 'relu'] def model_fitness(x): learning_rate, num_dense_layers, num_dense_nodes, activation = x fitness = ((exp(learning_rate) - 1.0) * 1000) ** 2 + \ (num_dense_layers) ** 2 + \ (num_dense_nodes/100) ** 2 fitness *= 1.0 + 0.1 * np.random.rand() if activation == 'sigmoid': fitness += 10 return fitness print(model_fitness(x=default_parameters)) ############################################################################# search_result = gp_minimize(func=model_fitness, dimensions=dimensions, n_calls=30, x0=default_parameters, random_state=123 ) print(search_result.x) print(search_result.fun) ############################################################################# for fitness, x in sorted(zip(search_result.func_vals, search_result.x_iters)): print(fitness, x) ############################################################################# space = search_result.space print(search_result.x_iters) search_space = {name: space[name][1] for name in space.dimension_names} print(point_asdict(search_space, default_parameters)) ############################################################################# print("Plotting now ...") _ = plot_histogram(result=search_result, dimension_identifier='learning_rate', bins=20) plt.show() ############################################################################# _ = plot_objective_2D(result=search_result, dimension_identifier1='learning_rate', dimension_identifier2='num_dense_nodes') plt.show() ############################################################################# _ = plot_objective_2D(result=search_result, dimension_identifier1='num_dense_layers', dimension_identifier2='num_dense_nodes') plt.show() ############################################################################# _ = plot_objective(result=search_result, plot_dims=['num_dense_layers', 'num_dense_nodes']) plt.show()
tests/slack_sdk/web/test_slack_response.py
priya1puresoftware/python-slack-sdk
2,486
11113078
<filename>tests/slack_sdk/web/test_slack_response.py import unittest from slack_sdk.web import WebClient from slack_sdk.web.slack_response import SlackResponse class TestSlackResponse(unittest.TestCase): def setUp(self): pass def tearDown(self): pass # https://github.com/slackapi/python-slackclient/issues/559 def test_issue_559(self): response = SlackResponse( client=WebClient(token="<KEY>"), http_verb="POST", api_url="http://localhost:3000/api.test", req_args={}, data={"ok": True, "args": {"hello": "world"}}, headers={}, status_code=200, ) self.assertTrue("ok" in response.data) self.assertTrue("args" in response.data) self.assertFalse("error" in response.data) # https://github.com/slackapi/python-slack-sdk/issues/1100 def test_issue_1100(self): response = SlackResponse( client=WebClient(token="<KEY>"), http_verb="POST", api_url="http://localhost:3000/api.test", req_args={}, data=None, headers={}, status_code=200, ) with self.assertRaises(ValueError): response["foo"] foo = response.get("foo") self.assertIsNone(foo) # https://github.com/slackapi/python-slack-sdk/issues/1102 def test_issue_1102(self): response = SlackResponse( client=WebClient(token="<KEY>"), http_verb="POST", api_url="http://localhost:3000/api.test", req_args={}, data={"ok": True, "args": {"hello": "world"}}, headers={}, status_code=200, ) self.assertTrue("ok" in response) self.assertTrue("foo" not in response)
samcli/lib/init/template_modifiers/xray_tracing_template_modifier.py
praneetap/aws-sam-cli
2,285
11113131
<gh_stars>1000+ """ Class used to parse and update template when tracing is enabled """ import logging from samcli.lib.init.template_modifiers.cli_template_modifier import TemplateModifier LOG = logging.getLogger(__name__) class XRayTracingTemplateModifier(TemplateModifier): FIELD_NAME_FUNCTION_TRACING = "Tracing" FIELD_NAME_API_TRACING = "TracingEnabled" GLOBALS = "Globals:\n" RESOURCE = "Resources:\n" FUNCTION = " Function:\n" TRACING_FUNCTION = " Tracing: Active\n" API = " Api:\n" TRACING_API = " TracingEnabled: True\n" COMMENT = ( "# More info about Globals: " "https://github.com/awslabs/serverless-application-model/blob/master/docs/globals.rst\n" ) def _add_new_field_to_template(self): """ Add new field to SAM template """ global_section_position = self._section_position(self.GLOBALS) if global_section_position >= 0: self._add_tracing_section( global_section_position, self.FUNCTION, self.FIELD_NAME_FUNCTION_TRACING, self.TRACING_FUNCTION ) self._add_tracing_section(global_section_position, self.API, self.FIELD_NAME_API_TRACING, self.TRACING_API) else: self._add_tracing_with_globals() def _add_tracing_with_globals(self): """Adds Globals and tracing fields""" resource_section_position = self._section_position(self.RESOURCE) globals_section_data = [ self.COMMENT, self.GLOBALS, self.FUNCTION, self.TRACING_FUNCTION, self.API, self.TRACING_API, "\n", ] self.template = ( self.template[:resource_section_position] + globals_section_data + self.template[resource_section_position:] ) def _add_tracing_section( self, global_section_position: int, parent_section: str, tracing_field_name: str, tracing_field: str, ): """ Adds tracing into the designated field Parameters ---------- global_section_position : dict Position of the Globals field in the template parent_section: str Name of the parent section that the tracing field would be added. tracing_field_name: str Name of the tracing field, which will be used to check if it already exist tracing_field: str Name of the whole tracing field, which includes its name and value """ parent_section_position = self._section_position(parent_section, global_section_position) if parent_section_position >= 0: field_positon_function = self._field_position(parent_section_position, tracing_field_name) if field_positon_function >= 0: self.template[field_positon_function] = tracing_field else: self.template = self._add_fields_to_section(parent_section_position, [tracing_field]) else: self.template = self._add_fields_to_section(global_section_position, [parent_section, tracing_field]) def _print_sanity_check_error(self): link = ( "https://docs.aws.amazon.com/serverless-application-model/latest" "/developerguide/sam-resource-function.html#sam-function-tracing" ) message = f"Warning: Unable to add Tracing to the project. To learn more about Tracing visit {link}" LOG.warning(message)
evosax/strategies/gld.py
RobertTLange/evosax
102
11113136
<gh_stars>100-1000 import jax import jax.numpy as jnp import chex from typing import Tuple from ..strategy import Strategy class GLD(Strategy): def __init__(self, num_dims: int, popsize: int): """Gradientless Descent (Golovin et al., 2019) Reference: https://arxiv.org/pdf/1911.06317.pdf""" super().__init__(num_dims, popsize) self.strategy_name = "GLD" @property def params_strategy(self) -> chex.ArrayTree: """Return default parameters of evolution strategy.""" return { "init_min": 0.0, "init_max": 0.0, "radius_max": 0.05, "radius_min": 0.001, "radius_decay": 5, } def initialize_strategy( self, rng: chex.PRNGKey, params: chex.ArrayTree ) -> chex.ArrayTree: """`initialize` the evolution strategy.""" initialization = jax.random.uniform( rng, (self.num_dims,), minval=params["init_min"], maxval=params["init_max"], ) state = { "mean": initialization, } return state def ask_strategy( self, rng: chex.PRNGKey, state: chex.ArrayTree, params: chex.ArrayTree ) -> Tuple[chex.Array, chex.ArrayTree]: """`ask` for new proposed candidates to evaluate next.""" # Sampling of N(0, 1) noise z = jax.random.normal( rng, (self.popsize, self.num_dims), ) # Exponentially decaying sigma scale sigma_scale = params["radius_min"] + jnp.exp2( -jnp.arange(self.popsize) / params["radius_decay"] ) * (params["radius_max"] - params["radius_min"]) sigma_scale = sigma_scale.reshape(-1, 1) # print(state["best_member"].shape, (sigma_scale * z).shape) x = state["best_member"] + sigma_scale * z return x, state def tell_strategy( self, x: chex.Array, fitness: chex.Array, state: chex.ArrayTree, params: chex.ArrayTree, ) -> chex.ArrayTree: """`tell` update to ES state.""" # No state update needed - everything happens with best_member update state["mean"] = state["best_member"] return state
minimongo/index.py
ricksore/minimongo
144
11113147
# -*- coding: utf-8 -*- class Index(object): """A simple wrapper for arguments to :meth:`pymongo.collection.Collection.ensure_index`.""" def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def __eq__(self, other): """Two indices are equal, when they have equal arguments. >>> Index(42, foo='bar') == Index(42, foo='bar') True >>> Index(foo='bar') == Index(42, foo='bar') False """ return self.__dict__ == other.__dict__ def ensure(self, collection): """Calls :meth:`pymongo.collection.Collection.ensure_index` on the given `collection` with the stored arguments. """ return collection.ensure_index(*self._args, **self._kwargs)
src/hg/makeDb/genbank/src/lib/py/genbank/__init__.py
andypohl/kent
171
11113152
<filename>src/hg/makeDb/genbank/src/lib/py/genbank/__init__.py<gh_stars>100-1000 import sys, os # require 2.4 or newer if (sys.version_info[0] <= 2) and (sys.version_info[1] < 4): raise Exception("python 2.4 or newer required, using " + sys.version) def gbAbsBinDir(): "get the absolute path to the bin directory" return os.path.abspath(os.path.normpath(os.path.dirname(sys.argv[0]))) def gbSetupPath(): "setup PATH to include gbRoot bin directories" absBinDir = gbAbsBinDir() mach = os.uname()[4] if mach == "i686": mach = "i386" machBinPath = absBinDir + "/" + mach if mach != "i386": machBinPath += ":" + absBinDir + "/i386" # use on x86_64 for now os.environ["PATH"] = machBinPath + ":" + os.environ["PATH"] def gbSetupHgConf(): "setup the HGDB_CONF environment variable as needed" # only set HGDB_CONF to one of the gbRoot/etc ones if we are user genbank if os.environ["USER"] == "genbank": host = os.uname()[1] if host == "hgwbeta": hgconf = "etc/.hg.mysqlbeta.conf" elif host == "hgnfs1": hgconf = "etc/.hg.mysqlrr.conf" else: hgconf = "etc/.hg.conf" os.environ["HGDB_CONF"] = os.path.abspath(hgconf)
MDEQ-Vision/lib/config/models.py
ashwinipokle/deq
548
11113159
# Modified based on the HRNet repo. from __future__ import absolute_import from __future__ import division from __future__ import print_function from yacs.config import CfgNode as CN MDEQ = CN() MDEQ.FULL_STAGE = CN() MDEQ.FULL_STAGE.NUM_MODULES = 1 MDEQ.FULL_STAGE.NUM_BRANCHES = 4 MDEQ.FULL_STAGE.NUM_BLOCKS = [1, 1, 1, 1] MDEQ.FULL_STAGE.NUM_CHANNELS = [64, 128, 256, 512] MDEQ.FULL_STAGE.BIG_KERNELS = [0, 0, 0, 0] MDEQ.FULL_STAGE.HEAD_CHANNELS = [32, 64, 128, 256] # Only for classification MDEQ.FULL_STAGE.FINAL_CHANSIZE = 2048 # Only for classification MDEQ.FULL_STAGE.BLOCK = 'BASIC' MDEQ.FULL_STAGE.FUSE_METHOD = 'SUM' MODEL_EXTRAS = { 'mdeq': MDEQ }
apps/venv/lib/python2.7/site-packages/MySQLdb/constants/CR.py
gmacchi93/serverInfoParaguay
5,079
11113163
"""MySQL Connection Errors Nearly all of these raise OperationalError. COMMANDS_OUT_OF_SYNC raises ProgrammingError. """ MIN_ERROR = 2000 MAX_ERROR = 2999 UNKNOWN_ERROR = 2000 SOCKET_CREATE_ERROR = 2001 CONNECTION_ERROR = 2002 CONN_HOST_ERROR = 2003 IPSOCK_ERROR = 2004 UNKNOWN_HOST = 2005 SERVER_GONE_ERROR = 2006 VERSION_ERROR = 2007 OUT_OF_MEMORY = 2008 WRONG_HOST_INFO = 2009 LOCALHOST_CONNECTION = 2010 TCP_CONNECTION = 2011 SERVER_HANDSHAKE_ERR = 2012 SERVER_LOST = 2013 COMMANDS_OUT_OF_SYNC = 2014 NAMEDPIPE_CONNECTION = 2015 NAMEDPIPEWAIT_ERROR = 2016 NAMEDPIPEOPEN_ERROR = 2017 NAMEDPIPESETSTATE_ERROR = 2018 CANT_READ_CHARSET = 2019 NET_PACKET_TOO_LARGE = 2020
samples/RecurringTask.py
amih90/bacpypes
240
11113177
#!/usr/bin/env python """ This application demonstrates doing something at a regular interval. """ import sys from bacpypes.debugging import bacpypes_debugging, ModuleLogger from bacpypes.consolelogging import ArgumentParser from bacpypes.core import run from bacpypes.task import RecurringTask # some debugging _debug = 0 _log = ModuleLogger(globals()) # # PrairieDog # @bacpypes_debugging class PrairieDog(RecurringTask): def __init__(self, dog_number, interval): if _debug: PrairieDog._debug("__init__ %r %r", dog_number, interval) RecurringTask.__init__(self, interval) # save the identity self.dog_number = dog_number # install it self.install_task() def process_task(self): if _debug: PrairieDog._debug("process_task") sys.stdout.write("%d woof!\n" % (self.dog_number,)) # # __main__ # def main(): # parse the command line arguments parser = ArgumentParser(description=__doc__) # add an argument for seconds per dog parser.add_argument('seconds', metavar='N', type=int, nargs='+', help='number of seconds for each dog', ) # now parse the arguments args = parser.parse_args() if _debug: _log.debug("initialization") if _debug: _log.debug(" - args: %r", args) # make some dogs for i, sec in enumerate(args.seconds): dog = PrairieDog(i, sec * 1000) if _debug: _log.debug(" - dog: %r", dog) _log.debug("running") run() _log.debug("fini") if __name__ == "__main__": main()
test/test_metrics/test_commons.py
wangjunyan305/homura
102
11113211
import torch from homura.metrics import commons # pred: [2, 0, 2, 2] input = torch.tensor([[0, 0, 1], [1, 0, 0], [0, 0, 1], [0, 0, 1]], dtype=torch.float) target = torch.tensor([2, 0, 0, 1], dtype=torch.long) def test_confusion_matrix(): cm = commons.confusion_matrix(input, target) expected = torch.zeros(3, 3, dtype=torch.long) expected[2, 2] = 1 expected[0, 0] = 1 expected[2, 0] = 1 expected[2, 1] = 1 assert all(cm.view(-1) == expected.view(-1)) def test_classwise_accuracy(): assert all(commons.classwise_accuracy(input, target) == torch.tensor([3 / 4, 3 / 4, 2 / 4])) def test_true_positive(): # class 0: 1 # class 1: 0 # class 2: 1 assert all(commons.true_positive(input, target) == torch.tensor([1, 0, 1]).float()) def test_true_negative(): # class 0: 2 # class 1: 3 # class 2: 1 assert all(commons.true_negative(input, target) == torch.tensor([2, 3, 1]).float()) def test_false_positive(): # class 0: 0 # class 1: 0 # class 2: 2 assert all(commons.false_positive(input, target) == torch.tensor([0, 0, 2]).float()) def test_false_negative(): # class 0: 1 # class 1: 1 # class 2: 0 assert all(commons.false_negative(input, target) == torch.tensor([1, 1, 0]).float()) def test_precision(): # class 1 is nan assert all(commons.precision(input, target)[[0, 2]] == torch.tensor([1 / 1, 1 / 3])) def test_recall(): assert all(commons.recall(input, target) == torch.tensor([1 / 2, 0 / 1, 1 / 1])) def test_specificity(): assert all(commons.specificity(input, target) == torch.tensor([2 / 2, 3 / 3, 1 / 3])) def test_true_positive_2d(): # torch.randn(2, 3, 2, 2) input = torch.tensor([[[[0.0146, 0.8026], [0.5576, -2.3168]], [[-1.1490, 0.6365], [-1.1506, -0.6319]], [[-0.4976, 0.8760], [0.6989, -1.1562]]], [[[-0.0541, -0.0892], [-0.9677, 1.3331]], [[1.7848, 1.0078], [0.7506, -1.5101]], [[-0.6134, 1.9541], [1.1825, -0.5879]]]]) # argmax(dim=1) target = torch.tensor([[[0, 2], [2, 1]], [[1, 2], [2, 0]]]) assert all(commons.true_positive(input, target) == torch.tensor([2, 2, 4]).float()) def test_accuracy(): input = torch.tensor([[0.9159, -0.3400, -1.0952, 0.1969, 0.4769], [-0.1677, 0.7205, 0.3802, -0.8408, 0.5447], [0.1596, 0.0366, -1.3719, 1.6869, -0.2422]]) # argmax=[0, 1, 3], argmin=[2, 3, 2] target = torch.tensor([0, 3, 0]) assert commons.accuracy(input, target) == torch.tensor([1 / 3]) assert commons.accuracy(input, target, top_k=3) == torch.tensor([2 / 3]) assert commons.accuracy(input, target, top_k=5) == torch.tensor([1.0])
tests/components/xiaomi_miio/__init__.py
MrDelik/core
30,023
11113224
<gh_stars>1000+ """Tests for the Xiaomi Miio integration.""" TEST_MAC = "ab:cd:ef:gh:ij:kl"
src/robomaster/module.py
talb430/RoboMaster-SDK
204
11113282
<filename>src/robomaster/module.py # -*-coding:utf-8-*- # Copyright (c) 2020 DJI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License in the file LICENSE.txt or at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import protocol from . import logger __all__ = ['Module'] # registered protocol dict. registered_modules = {} class _AutoRegisterModule(type): """ help to automatically register Proto Class where ever they're defined """ def __new__(mcs, name, bases, attrs, **kw): return super().__new__(mcs, name, bases, attrs, **kw) def __init__(cls, name, bases, attrs, **kw): super().__init__(name, bases, attrs, **kw) key = attrs['_host'] if key in registered_modules.keys(): raise ValueError("Duplicate module class {0}".format(name)) registered_modules[key] = cls class Module(metaclass=_AutoRegisterModule): # V1 host byte, protocol.host2byte(type, index) _host = 0 _client = None _robot = None def __init__(self, robot): self._robot = robot self._client = robot.client @property def client(self): return self._client def reset(self): raise Exception("Module, reset function Not Implemented!") def start(self): pass def stop(self): pass def get_version(self): """ 获取模块版本号 :return:字符串,格式为:AA.BB.CC.DD """ proto = protocol.ProtoGetVersion() msg = protocol.Msg(self.client.hostbyte, self._host, proto) try: resp_msg = self.client.send_sync_msg(msg) if resp_msg is not None: prot = resp_msg.get_proto() version = "{0:02d}.{1:02d}.{2:02d}.{3:02d}".format(prot._aa, prot._bb, prot._cc, prot._dd) return version else: logger.warning("Module: get_version, {0} failed.".format(self.__class__.__name__)) return None except Exception as e: logger.warning("Module: get_version, {0} exception {1}.".format(self.__class__.__name__, str(e))) return None def _send_sync_proto(self, proto, target=None): if not self.client: return False if target: msg = protocol.Msg(self._client.hostbyte, target, proto) else: msg = protocol.Msg(self._client.hostbyte, self._host, proto) try: resp_msg = self._client.send_sync_msg(msg) if resp_msg: proto = resp_msg.get_proto() if proto._retcode == 0: return True else: logger.warning("{0}: send_sync_proto, proto:{1}, retcode:{2} ".format(self.__class__.__name__, proto, proto._retcode)) return False else: logger.warning("{0}: send_sync_proto, proto:{1} resp_msg is None.".format( self.__class__.__name__, proto)) return False except Exception as e: logger.warning("{0}: send_sync_proto, proto:{1}, exception:{2}".format(self.__class__.__name__, proto, e)) return False def _send_async_proto(self, proto, target=None): if not self.client: return False if target: msg = protocol.Msg(self._client.hostbyte, target, proto) else: msg = protocol.Msg(self._client.hostbyte, self._host, proto) try: return self._client.send_async_msg(msg) except Exception as e: logger.warning("{0}: _send_async_proto, proto:{1}, exception:{2}".format(self.__class__.__name__, proto, e)) return False
spec/settings_spec.py
kfischer-okarin/mamba
462
11113310
# -*- coding: utf-8 -*- from mamba import description, it, context, before from expects import expect, have_property, equal, be_false, be_none from mamba.settings import Settings IRRELEVANT_SLOW_TEST_THRESHOLD = 'irrelevant slow test threeshold' IRRELEVANT_ENABLE_CODE_COVERAGE = 'irrelevant enable code coverage' IRRELEVANT_NO_COLOR = 'irrelevant no color' with description(Settings) as self: with before.each: self.settings = Settings() with context('when loading defaults'): with it('has 75 millis as slow test threshold'): expect(self.settings).to(have_property('slow_test_threshold', equal(0.075))) with it('has code coverage disabled by default'): expect(self.settings).to(have_property('enable_code_coverage', be_false)) with it('has no color disabled by default'): expect(self.settings).to(have_property('no_color', be_false)) with it('has no tags included by default'): expect(self.settings).to(have_property('tags', be_none)) with context('when setting custom values'): with it('sets slow test threshold'): self.settings.slow_test_threshold = IRRELEVANT_SLOW_TEST_THRESHOLD expect(self.settings).to(have_property('slow_test_threshold', IRRELEVANT_SLOW_TEST_THRESHOLD)) with it('sets code coverage'): self.settings.enable_code_coverage = IRRELEVANT_ENABLE_CODE_COVERAGE expect(self.settings).to(have_property('enable_code_coverage', IRRELEVANT_ENABLE_CODE_COVERAGE)) with it('sets no color'): self.settings.no_color = IRRELEVANT_NO_COLOR expect(self.settings).to(have_property('no_color', IRRELEVANT_NO_COLOR))
Alfred/BilibiliSearch/Source/bilibiliSearch.py
Vespa314/bilibili-api
1,460
11113326
# -*- coding: utf-8 -*- import sys import re import zlib import urllib2 import xml.etree.ElementTree as et default_encoding = 'utf-8' if sys.getdefaultencoding() != default_encoding: reload(sys) sys.setdefaultencoding(default_encoding) class Feedback(): """Feeback used by Alfred Script Filter Usage: fb = Feedback() fb.add_item('Hello', 'World') fb.add_item('Foo', 'Bar') print fb """ def __init__(self): self.feedback = et.Element('items') def __repr__(self): """XML representation used by Alfred Returns: XML string """ return et.tostring(self.feedback) def add_item(self, title, subtitle = "", arg = "", valid = "yes", autocomplete = "", icon = "icon.png"): """ Add item to alfred Feedback Args: title(str): the title displayed by Alfred Keyword Args: subtitle(str): the subtitle displayed by Alfred arg(str): the value returned by alfred when item is selected valid(str): whether or not the entry can be selected in Alfred to trigger an action autcomplete(str): the text to be inserted if an invalid item is selected. This is only used if 'valid' is 'no' icon(str): filename of icon that Alfred will display """ item = et.SubElement(self.feedback, 'item', uid=str(len(self.feedback)), arg=arg, valid=valid, autocomplete=autocomplete) _title = et.SubElement(item, 'title') _title.text = title _sub = et.SubElement(item, 'subtitle') _sub.text = subtitle _icon = et.SubElement(item, 'icon') _icon.text = icon query = '{query}' url = "http://www.bilibili.com/search?keyword=%s&orderby=&formsubmit="%query req = urllib2.Request(url = url); content = urllib2.urlopen(req,timeout = 10).read(); content = zlib.decompress(content, 16+zlib.MAX_WBITS) reg = r'<div class="r"><a href="http://www.bilibili.tv/video/av(\d+)/" target="_blank"><div class="t"><span>([^<]*)</span>([^<]*)</div></a>'; result = re.findall(reg,content,re.S) fb = Feedback() try: for item in result: avnum = item[0] avtype = item[1] title = item[2].strip() fb.add_item(title,subtitle="%s : http://www.bilibili.tv/video/%s"%(avtype,avnum),arg=avnum) except SyntaxError as e: if ('EOF', 'EOL' in e.msg): fb.add_item('...') else: fb.add_item('SyntaxError', e.msg) except Exception as e: fb.add_item(e.__class__.__name__,subtitle=e.message) print fb
ioflo/base/deeding.py
BradyHammond/ioflo
128
11113339
<reponame>BradyHammond/ioflo<gh_stars>100-1000 """ deeding.py deed module Backwards compatibility module Future use doing module instead """ from . import doing # for backwards compatibility deedify = doing.doify class Deed(doing.Doer): pass class DeedParam(doing.DoerParam): pass class DeedSince(doing.DoerSince): pass class DeedLapse(doing.DoerLapse): pass
RecoLocalTracker/SubCollectionProducers/python/TopBottomClusterInfoProducer_cfi.py
ckamtsikis/cmssw
852
11113347
<reponame>ckamtsikis/cmssw import FWCore.ParameterSet.Config as cms topBottomClusterInfoProducer = cms.EDProducer("TopBottomClusterInfoProducer", stripClustersOld = cms.InputTag("siStripClusters"), pixelClustersOld = cms.InputTag("siPixelClusters"), stripClustersNew = cms.InputTag("siStripClustersTop"), pixelClustersNew = cms.InputTag("siPixelClustersTop"), stripMonoHitsOld = cms.InputTag("siStripMatchedRecHits","rphiRecHit"), stripStereoHitsOld = cms.InputTag("siStripMatchedRecHits","stereoRecHit"), pixelHitsOld = cms.InputTag("siPixelRecHits"), stripMonoHitsNew = cms.InputTag("siStripMatchedRecHitsTop","rphiRecHit"), stripStereoHitsNew = cms.InputTag("siStripMatchedRecHitsTop","stereoRecHit"), pixelHitsNew = cms.InputTag("siPixelRecHitsTop") )
pliers/tests/converters/api/test_revai_converters.py
nickduran/pliers
229
11113372
<reponame>nickduran/pliers from os.path import join import pytest from ...utils import get_test_data_path from pliers.converters import RevAISpeechAPIConverter from pliers.stimuli import AudioStim, ComplexTextStim, TextStim AUDIO_DIR = join(get_test_data_path(), 'audio') @pytest.mark.requires_payment @pytest.mark.skipif("'REVAI_ACCESS_TOKEN' not in os.environ") def test_googleAPI_converter(): stim = AudioStim(join(AUDIO_DIR, 'obama_speech.wav'), onset=4.2) conv = RevAISpeechAPIConverter() assert conv.validate_keys() out_stim = conv.transform(stim) assert type(out_stim) == ComplexTextStim text = [elem.text for elem in out_stim] assert 'years' in text assert 'together' in text first_word = next(w for w in out_stim) assert isinstance(first_word, TextStim) assert first_word.duration > 0 assert first_word.onset > 4.2 and first_word.onset < 8.0 conv = RevAISpeechAPIConverter(access_token='bad<PASSWORD>') assert not conv.validate_keys()
omega_miya/plugins/omega_plugins_manager/__init__.py
rinrini001/omega-miya
120
11113419
<reponame>rinrini001/omega-miya """ @Author : Ailitonia @Date : 2021/09/12 14:02 @FileName : __init__.py.py @Project : nonebot2_miya @Description : 插件管理器 @GitHub : https://github.com/Ailitonia @Software : PyCharm """ import pathlib from nonebot import CommandGroup, get_loaded_plugins, logger from nonebot.plugin.export import export from nonebot.rule import to_me from nonebot.permission import SUPERUSER from nonebot.typing import T_State from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.event import MessageEvent from nonebot.adapters.cqhttp.message import MessageSegment from omega_miya.database import DBPlugin from omega_miya.utils.omega_plugin_utils import init_export, TextUtils # Custom plugin usage text __plugin_custom_name__ = 'Omega Plugins Manager' __plugin_usage__ = r'''【OmegaPluginsManager 插件管理器】 插件管理器 仅限超级管理员使用 **Usage** **SuperUser Only** /OPM''' # Init plugin export init_export(export(), __plugin_custom_name__, __plugin_usage__) # 注册事件响应器 OmegaPluginsManager = CommandGroup( 'OPM', rule=to_me(), permission=SUPERUSER, priority=10, block=True ) enable_plugin = OmegaPluginsManager.command('enable', aliases={'启用插件'}) disable_plugin = OmegaPluginsManager.command('disable', aliases={'禁用插件'}) list_plugins = OmegaPluginsManager.command('list', aliases={'插件列表'}) # 修改默认参数处理 @enable_plugin.args_parser async def parse(bot: Bot, event: MessageEvent, state: T_State): args = event.get_plaintext().strip() if not args: await enable_plugin.reject('你似乎没有发送有效的参数呢QAQ, 请重新发送:') state[state["_current_key"]] = args if state[state["_current_key"]] == '取消': await enable_plugin.finish('操作已取消') @enable_plugin.handle() async def handle_first_receive(bot: Bot, event: MessageEvent, state: T_State): args = event.get_plaintext().strip() if args: state['plugin_name'] = args else: plugin_list = get_loaded_plugins() # 提示的时候仅显示有 matcher 的插件 plugin_msg = '\n'.join([x.name for x in plugin_list if len(x.matcher) > 0]) msg = f'当前已加载的插件有:\n\n{plugin_msg}' await enable_plugin.send(msg) @enable_plugin.got('plugin_name', prompt='请输入需要启用的插件名称:') async def handle_enable_plugin(bot: Bot, event: MessageEvent, state: T_State): plugin_name = state['plugin_name'] plugin_list = [x.name for x in get_loaded_plugins()] if plugin_name not in plugin_list: await enable_plugin.reject('没有这个插件, 请重新输入需要启用的插件名称:\n取消操作请发送【取消】') result = await DBPlugin(plugin_name=plugin_name).update(enabled=1) if result.success(): logger.success(f'OPM | Success enabled plugin {plugin_name} by user {event.user_id}') await enable_plugin.finish(f'启用插件 {plugin_name} 成功') else: logger.error(f'OPM | Failed to enable {plugin_name}, {result.info}') await enable_plugin.finish(f'启用插件 {plugin_name} 失败, 详细信息请参见日志') # 修改默认参数处理 @disable_plugin.args_parser async def parse(bot: Bot, event: MessageEvent, state: T_State): args = event.get_plaintext().strip() if not args: await disable_plugin.reject('你似乎没有发送有效的参数呢QAQ, 请重新发送:') state[state["_current_key"]] = args if state[state["_current_key"]] == '取消': await disable_plugin.finish('操作已取消') @disable_plugin.handle() async def handle_first_receive(bot: Bot, event: MessageEvent, state: T_State): args = event.get_plaintext().strip() if args: state['plugin_name'] = args else: plugin_list = get_loaded_plugins() # 提示的时候仅显示有 matcher 的插件 plugin_msg = '\n'.join([x.name for x in plugin_list if len(x.matcher) > 0]) msg = f'当前已加载的插件有:\n\n{plugin_msg}' await disable_plugin.send(msg) @disable_plugin.got('plugin_name', prompt='请输入需要禁用的插件名称:') async def handle_disable_plugin(bot: Bot, event: MessageEvent, state: T_State): plugin_name = state['plugin_name'] plugin_list = [x.name for x in get_loaded_plugins()] if plugin_name not in plugin_list: await disable_plugin.reject('没有这个插件, 请重新输入需要禁用的插件名称:\n取消操作请发送【取消】') result = await DBPlugin(plugin_name=plugin_name).update(enabled=0) if result.success(): logger.success(f'OPM | Success enabled plugin {plugin_name} by user {event.user_id}') await disable_plugin.finish(f'禁用插件 {plugin_name} 成功') else: logger.error(f'OPM | Failed to enable {plugin_name}, {result.info}') await disable_plugin.finish(f'禁用插件 {plugin_name} 失败, 详细信息请参见日志') # 显示所有插件状态 @list_plugins.handle() async def handle_list_plugins(bot: Bot, event: MessageEvent, state: T_State): # 只显示有 matcher 的插件信息 plugin_list = [plugin.name for plugin in get_loaded_plugins() if len(plugin.matcher) > 0] # 获取插件启用状态 enabled_plugins_result = await DBPlugin.list_plugins(enabled=1) disabled_plugins_result = await DBPlugin.list_plugins(enabled=0) if enabled_plugins_result.error or disabled_plugins_result.error: logger.error(f'OPM | Getting plugins info failed, ' f'enabled result: {enabled_plugins_result}, disabled result: {disabled_plugins_result}') await list_plugins.finish('获取插件信息失败, 详细信息请参见日志') enabled_plugins = '\n'.join(x for x in enabled_plugins_result.result if x in plugin_list) disabled_plugins = '\n'.join(x for x in disabled_plugins_result.result if x in plugin_list) text = f'已启用的插件:\n{"="*12}\n{enabled_plugins}\n\n\n被禁用的插件:\n{"="*12}\n{disabled_plugins}' text_img_result = await TextUtils(text=text).text_to_img() if text_img_result.error: logger.error(f'OPM | Generate plugins list image failed, {text_img_result.info}') await list_plugins.finish('生成插件信息失败, 详细信息请参见日志') img_seg = MessageSegment.image(file=pathlib.Path(text_img_result.result).as_uri()) await list_plugins.finish(img_seg)
examples/LCD/main.py
ccccmagicboy2022/pikascript
228
11113439
<filename>examples/LCD/main.py from PikaObj import * import PikaStdLib import PikaPiZero import STM32G0 lcd = PikaPiZero.LCD() lcd.init() lcd.clear('white') mem = PikaStdLib.MemChecker() key = PikaPiZero.KEY() key.init() time = STM32G0.Time() h = 10 w = 10 x = 10 y = 10 x_last = x y_last = y is_update = 0 print('mem used max:') mem.max() lcd.fill(x, y, w, h, 'blue') while True: key_val = key.get() if key_val != -1: x_last = x y_last = y is_update = 1 if key_val == 0: x = x + 5 if key_val == 1: y = y - 5 if key_val == 2: y = y + 5 if key_val == 3: x = x - 5 if is_update: is_update = 0 lcd.fill(x_last, y_last, w, h, 'white') lcd.fill(x, y, w, h, 'blue')
tests/ut/python/dataset/test_random_lighting.py
PowerOlive/mindspore
3,200
11113441
<gh_stars>1000+ # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing RandomLighting op in DE """ import numpy as np import pytest import mindspore.dataset as ds import mindspore.dataset.transforms.py_transforms import mindspore.dataset.vision.py_transforms as F import mindspore.dataset.vision.c_transforms as C from mindspore import log as logger from util import visualize_list, diff_mse, save_and_check_md5, \ config_get_set_seed, config_get_set_num_parallel_workers DATA_DIR = "../data/dataset/testImageNetData/train/" MNIST_DATA_DIR = "../data/dataset/testMnistData" GENERATE_GOLDEN = False def test_random_lighting_py(alpha=1, plot=False): """ Feature: RandomLighting Description: test RandomLighting python op Expectation: equal results """ logger.info("Test RandomLighting python op") # Original Images data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(), F.Resize((224, 224)), F.ToTensor()]) ds_original = data.map(operations=transforms_original, input_columns="image") ds_original = ds_original.batch(512) for idx, (image, _) in enumerate(ds_original.create_tuple_iterator(num_epochs=1, output_numpy=True)): if idx == 0: images_original = np.transpose(image, (0, 2, 3, 1)) else: images_original = np.append(images_original, np.transpose(image, (0, 2, 3, 1)), axis=0) # Random Lighting Adjusted Images data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) alpha = alpha if alpha is not None else 0.05 py_op = F.RandomLighting(alpha) transforms_random_lighting = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(), F.Resize((224, 224)), py_op, F.ToTensor()]) ds_random_lighting = data.map(operations=transforms_random_lighting, input_columns="image") ds_random_lighting = ds_random_lighting.batch(512) for idx, (image, _) in enumerate(ds_random_lighting.create_tuple_iterator(num_epochs=1, output_numpy=True)): if idx == 0: images_random_lighting = np.transpose(image, (0, 2, 3, 1)) else: images_random_lighting = np.append(images_random_lighting, np.transpose(image, (0, 2, 3, 1)), axis=0) num_samples = images_original.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = diff_mse(images_random_lighting[i], images_original[i]) logger.info("MSE= {}".format(str(np.mean(mse)))) if plot: visualize_list(images_original, images_random_lighting) def test_random_lighting_py_md5(): """ Feature: RandomLighting Description: test RandomLighting python op with md5 comparison Expectation: same MD5 """ logger.info("Test RandomLighting python op with md5 comparison") original_seed = config_get_set_seed(140) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # define map operations transforms = [ F.Decode(), F.Resize((224, 224)), F.RandomLighting(1), F.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) # Generate dataset data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) data = data.map(operations=transform, input_columns=["image"]) # check results with md5 comparison filename = "random_lighting_py_01_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore configuration ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_lighting_c(alpha=1, plot=False): """ Feature: RandomLighting Description: test RandomLighting cpp op Expectation: equal results from Mindspore and benchmark """ logger.info("Test RandomLighting cpp op") # Original Images data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transforms_original = [C.Decode(), C.Resize((224, 224))] ds_original = data.map(operations=transforms_original, input_columns="image") ds_original = ds_original.batch(512) for idx, (image, _) in enumerate(ds_original.create_tuple_iterator(num_epochs=1, output_numpy=True)): if idx == 0: images_original = image else: images_original = np.append(images_original, image, axis=0) # Random Lighting Adjusted Images data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) alpha = alpha if alpha is not None else 0.05 c_op = C.RandomLighting(alpha) transforms_random_lighting = [C.Decode(), C.Resize((224, 224)), c_op] ds_random_lighting = data.map(operations=transforms_random_lighting, input_columns="image") ds_random_lighting = ds_random_lighting.batch(512) for idx, (image, _) in enumerate(ds_random_lighting.create_tuple_iterator(num_epochs=1, output_numpy=True)): if idx == 0: images_random_lighting = image else: images_random_lighting = np.append(images_random_lighting, image, axis=0) num_samples = images_original.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = diff_mse(images_random_lighting[i], images_original[i]) logger.info("MSE= {}".format(str(np.mean(mse)))) if plot: visualize_list(images_original, images_random_lighting) def test_random_lighting_c_py(alpha=1, plot=False): """ Feature: RandomLighting Description: test Random Lighting Cpp and Python Op Expectation: equal results from Cpp and Python """ logger.info("Test RandomLighting Cpp and python Op") # RandomLighting Images data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) data = data.map(operations=[C.Decode(), C.Resize((200, 300))], input_columns=["image"]) python_op = F.RandomLighting(alpha) c_op = C.RandomLighting(alpha) transforms_op = mindspore.dataset.transforms.py_transforms.Compose([lambda img: F.ToPIL()(img.astype(np.uint8)), python_op, np.array]) ds_random_lighting_py = data.map(operations=transforms_op, input_columns="image") ds_random_lighting_py = ds_random_lighting_py.batch(512) for idx, (image, _) in enumerate(ds_random_lighting_py.create_tuple_iterator(num_epochs=1, output_numpy=True)): if idx == 0: images_random_lighting_py = image else: images_random_lighting_py = np.append(images_random_lighting_py, image, axis=0) data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) data = data.map(operations=[C.Decode(), C.Resize((200, 300))], input_columns=["image"]) ds_images_random_lighting_c = data.map(operations=c_op, input_columns="image") ds_random_lighting_c = ds_images_random_lighting_c.batch(512) for idx, (image, _) in enumerate(ds_random_lighting_c.create_tuple_iterator(num_epochs=1, output_numpy=True)): if idx == 0: images_random_lighting_c = image else: images_random_lighting_c = np.append(images_random_lighting_c, image, axis=0) num_samples = images_random_lighting_c.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = diff_mse(images_random_lighting_c[i], images_random_lighting_py[i]) logger.info("MSE= {}".format(str(np.mean(mse)))) if plot: visualize_list(images_random_lighting_c, images_random_lighting_py, visualize_mode=2) def test_random_lighting_invalid_params(): """ Feature: RandomLighting Description: test RandomLighting with invalid input parameters Expectation: throw ValueError or TypeError """ logger.info("Test RandomLighting with invalid input parameters.") with pytest.raises(ValueError) as error_info: data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) data = data.map(operations=[C.Decode(), C.Resize((224, 224)), C.RandomLighting(-2)], input_columns=["image"]) assert "Input alpha is not within the required interval of [0, 16777216]." in str(error_info.value) with pytest.raises(TypeError) as error_info: data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) data = data.map(operations=[C.Decode(), C.Resize((224, 224)), C.RandomLighting('1')], input_columns=["image"]) err_msg = "Argument alpha with value 1 is not of type [<class 'float'>, <class 'int'>], but got <class 'str'>." assert err_msg in str(error_info.value) if __name__ == "__main__": test_random_lighting_py() test_random_lighting_py_md5() test_random_lighting_c() test_random_lighting_c_py() test_random_lighting_invalid_params()
rls/envs/wrappers/vec.py
StepNeverStop/RLs
371
11113489
#!/usr/bin/env python3 # encoding: utf-8 from typing import Dict, List, Tuple, Union class VECEnv: def __init__(self, n, env_fn, config: Dict = {}): self.idxs = list(range(n)) self._envs = [env_fn(idx, **config) for idx in self.idxs] def run(self, attr: str, params: Union[Tuple, List, Dict] = dict(args=(), kwargs=dict()), idxs=None): idxs = (idxs,) if isinstance(idxs, int) else idxs idxs = self.idxs if idxs is None else idxs rets = [] if isinstance(params, dict): params = [params] * len(idxs) for i, idx in enumerate(idxs): attr, data = attr, params[i] attrs = attr.split('.') obj = self._envs[idx] for attr in attrs: obj = getattr(obj, attr) if hasattr(obj, '__call__'): ret = obj(*data.get('args', ()), **data.get('kwargs', {})) else: ret = obj rets.append(ret) return rets
twistedcaldav/dropbox.py
backwardn/ccs-calendarserver
462
11113490
## # Copyright (c) 2006-2017 Apple Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## """ Implements drop-box functionality. A drop box is an external attachment store. """ __all__ = [ "DropBoxHomeResource", "DropBoxCollectionResource", ] from twext.python.log import Logger from txweb2 import responsecode from txdav.xml import element as davxml from txweb2.dav.http import ErrorResponse from txweb2.dav.resource import DAVResource, TwistedACLInheritable from txweb2.dav.util import joinURL from twisted.internet.defer import inlineCallbacks, returnValue from twistedcaldav.config import config from twistedcaldav.customxml import calendarserver_namespace log = Logger() class DropBoxHomeResource (DAVResource): """ Drop box collection resource. """ def resourceType(self): return davxml.ResourceType.dropboxhome # @UndefinedVariable def isCollection(self): return True def http_PUT(self, request): return responsecode.FORBIDDEN @inlineCallbacks def accessControlList(self, request, *args, **kwargs): """ Override this to give write proxies DAV:write-acl privilege so they can add attachments too. """ acl = (yield super(DropBoxHomeResource, self).accessControlList(request, *args, **kwargs)) if config.EnableProxyPrincipals: owner = (yield self.ownerPrincipal(request)) newaces = tuple(acl.children) newaces += ( # DAV:write-acl access for this principal's calendar-proxy-write users. davxml.ACE( davxml.Principal(davxml.HRef(joinURL(owner.principalURL(), "calendar-proxy-write/"))), davxml.Grant( davxml.Privilege(davxml.WriteACL()), ), davxml.Protected(), TwistedACLInheritable(), ), ) returnValue(davxml.ACL(*newaces)) else: returnValue(acl) class DropBoxCollectionResource (DAVResource): """ Drop box resource. """ def resourceType(self): return davxml.ResourceType.dropbox # @UndefinedVariable def isCollection(self): return True def writeNewACEs(self, newaces): """ Write a new ACL to the resource's property store. We override this for calendar collections and force all the ACEs to be inheritable so that all calendar object resources within the calendar collection have the same privileges unless explicitly overridden. The same applies to drop box collections as we want all resources (attachments) to have the same privileges as the drop box collection. @param newaces: C{list} of L{ACE} for ACL being set. """ # Add inheritable option to each ACE in the list edited_aces = [] for ace in newaces: if TwistedACLInheritable() not in ace.children: children = list(ace.children) children.append(TwistedACLInheritable()) edited_aces.append(davxml.ACE(*children)) else: edited_aces.append(ace) # Do inherited with possibly modified set of aces return super(DropBoxCollectionResource, self).writeNewACEs(edited_aces) def http_PUT(self, request): return ErrorResponse( responsecode.FORBIDDEN, (calendarserver_namespace, "valid-drop-box"), "Cannot store resources in dropbox", )
influx-test/writerow.py
1514louluo/influx-proxy
130
11113491
<reponame>1514louluo/influx-proxy<gh_stars>100-1000 import time import requests import multiprocessing as mlp from mytime import mytime def url(precision='ns'): return 'http://localhost:7076/write?db=test&precision='+precision def send(m, precision, number, init_time): t = init_time.t_p(precision) for i in range(number): d = m + ' fd=0 ' + str(t+i) r = requests.post(url(precision), d) if i % 500 == 0: time.sleep(1) print(m +' '+precision+' '+str(i)) def main(): init_time = mytime(2015,1,1,0,0,0) thread_list = [] thread_list.append( mlp.Process(target=send, args=('cpu,pr=s', 's', 100000, init_time))) thread_list.append( mlp.Process(target=send, args=('cpu,pr=h', 'h', 88888, init_time))) thread_list.append( mlp.Process(target=send, args=('mem,pr=m', 'm', 130000, init_time))) thread_list.append( mlp.Process(target=send, args=('mem,pr=ns', 'ns', 77777, init_time))) thread_list.append( mlp.Process(target=send, args=('mms', 'ms', 111111, init_time))) thread_list.append( mlp.Process(target=send, args=('mus', 'us', 122222, init_time))) return thread_list if __name__ == '__main__': thread_list = main() for thr in thread_list: thr.start() for thr in thread_list: thr.join() print('write over')
components/isceobj/IsceProc/runRgoffset_ampcor.py
vincentschut/isce2
1,133
11113508
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Copyright 2014 California Institute of Technology. ALL RIGHTS RESERVED. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # United States Government Sponsorship acknowledged. This software is subject to # U.S. export control laws and regulations and has been classified as 'EAR99 NLR' # (No [Export] License Required except when exporting to an embargoed country, # end user, or in support of a prohibited end use). By downloading this software, # the user agrees to comply with all applicable U.S. export laws and regulations. # The user has the responsibility to obtain export licenses, or other export # authority as may be required before exporting this software to any 'EAR99' # embargoed foreign country or citizen of those countries. # # Author: <NAME> #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Comment: Adapted from InsarProc/runRgoffsetprf_ampcor.py import logging import isceobj from iscesys.ImageUtil.ImageUtil import ImageUtil as IU from mroipac.ampcor.Ampcor import Ampcor from isceobj import Constants as CN logger = logging.getLogger('isce.isceProc.runRgoffset') def runRgoffset(self): infos = {} for attribute in ['firstSampleAcrossPrf', 'firstSampleDownPrf', 'numberLocationAcrossPrf', 'numberLocationDownPrf']: infos[attribute] = getattr(self._isce, attribute) for attribute in ['sensorName', 'offsetSearchWindowSize']: infos[attribute] = getattr(self, attribute) stdWriter = self._stdWriter refPol = self._isce.refPol refScene = self._isce.refScene imageSim = self._isce.simAmpImage sceneid1, sceneid2 = self._isce.pairsToCoreg[0] if sceneid1 != refScene: sys.exit("runRgoffset: should have refScene here!") #refScene should always be the first scene in each pair of pairsToCoreg (reference strategy) pairRef = None #pair with refScene in it for pair in self._isce.selectedPairs: if refScene == pair[0]: # refScene is first scene of pair (=> band 0 of imageAmp) bandRef = 0 pairRef = pair break if refScene == pair[1]: # refScene is second scene of pair (=> band 1 of imageAmp) bandRef = 1 pairRef = pair if pairRef is None: sys.exit("runRgoffset: refScene not in any selected pairs!") # can happen if refScene was used to coregister only but no pair was formed with it imageAmp = self._isce.resampAmpImages[pairRef][refPol] prf = self._isce.frames[refScene][refPol].getInstrument().getPulseRepetitionFrequency() fs1 = self._isce.frames[refScene][refPol].getInstrument().getRangeSamplingRate() sid = self._isce.formatname(refScene) infos['outputPath'] = self.getoutputdir(refScene) catalog = isceobj.Catalog.createCatalog(self._isce.procDoc.name) offsetField = run(imageAmp, imageSim, bandRef, prf, fs1, infos, stdWriter, catalog=catalog, sceneid=sid) self._isce.procDoc.addAllFromCatalog(catalog) # assign the same offsetField to all pairs in pairsToCoreg (will be used by runOffoutliers) for pair in self._isce.pairsToCoreg: self._isce.offsetFields[pair] = offsetField self._isce.refinedOffsetFields[pair] = offsetField def run(imageAmp, imageSim, numBand, prf, fs1, infos, stdWriter, catalog=None, sceneid='NO_ID'): #fs1: range sampling rate firstAc = infos['firstSampleAcrossPrf'] firstDown = infos['firstSampleDownPrf'] numLocationAcross = infos['numberLocationAcrossPrf'] numLocationDown = infos['numberLocationDownPrf'] coarseAcross = 0 coarseDown = 0 #Fake amplitude image as a complex image objAmp = isceobj.createImage() objAmp.setAccessMode('read') objAmp.dataType = 'CFLOAT' objAmp.bands = 1 objAmp.setFilename(imageAmp.filename) objAmp.setWidth(imageAmp.width) objAmp.createImage() widthAmp = objAmp.getWidth() intLength = objAmp.getLength() objSim = isceobj.createImage() objSim.setFilename(imageSim.filename) objSim.setWidth(imageSim.width) objSim.dataType='FLOAT' objSim.setAccessMode('read') objSim.createImage() # check if it's correct delRg1 = CN.SPEED_OF_LIGHT / (2*fs1) objAmpcor = Ampcor() objAmpcor.setImageDataType1('real') objAmpcor.setImageDataType2('complex') ####Adjust first and last values using window sizes xMargin = 2*objAmpcor.searchWindowSizeWidth + objAmpcor.windowSizeWidth yMargin = 2*objAmpcor.searchWindowSizeHeight + objAmpcor.windowSizeHeight offAc = max(firstAc, -coarseAcross) + xMargin offDn = max(firstDown, -coarseDown) + yMargin lastAc = int(min(widthAmp, widthAmp-offAc) - xMargin) lastDn = int(min(intLength, intLength-offDn) - yMargin) print(xMargin, yMargin) print(offAc, lastAc) print(offDn, lastDn) objAmpcor.setFirstSampleAcross(offAc) objAmpcor.setLastSampleAcross(lastAc) objAmpcor.setNumberLocationAcross(numLocationAcross) objAmpcor.setFirstSampleDown(offDn) objAmpcor.setLastSampleDown(lastDn) objAmpcor.setNumberLocationDown(numLocationDown) #set the tag used in the outfile. each message is preceded by this tag #if the writer is not of "file" type the call has no effect objAmpcor.stdWriter = stdWriter.set_file_tags("rgoffset", "log", "err", "out") objAmpcor.setFirstPRF(prf) objAmpcor.setSecondPRF(prf) objAmpcor.setAcrossGrossOffset(coarseAcross) objAmpcor.setDownGrossOffset(coarseDown) objAmpcor.setFirstRangeSpacing(delRg1) objAmpcor.setSecondRangeSpacing(delRg1) objAmpcor.ampcor(objSim,objAmp) if catalog is not None: # Record the inputs and outputs isceobj.Catalog.recordInputsAndOutputs(catalog, objAmpcor, "runRgoffset_ampcor.%s" % sceneid, logger, "runRgoffset_ampcor.%s" % sceneid) objAmp.finalizeImage() objSim.finalizeImage() return objAmpcor.getOffsetField()
tests/multi_net/uasyncio_tcp_close_write.py
sebastien-riou/micropython
13,648
11113512
<gh_stars>1000+ # Test uasyncio TCP stream closing then writing try: import uasyncio as asyncio except ImportError: try: import asyncio except ImportError: print("SKIP") raise SystemExit PORT = 8000 async def handle_connection(reader, writer): # Write data to ensure connection writer.write(b"x") await writer.drain() # Read, should return nothing print("read:", await reader.read(100)) # Close connection print("close") writer.close() await writer.wait_closed() print("done") ev.set() async def tcp_server(): global ev ev = asyncio.Event() server = await asyncio.start_server(handle_connection, "0.0.0.0", PORT) print("server running") multitest.next() async with server: await asyncio.wait_for(ev.wait(), 5) async def tcp_client(): reader, writer = await asyncio.open_connection(IP, PORT) # Read data to ensure connection print("read:", await reader.read(1)) # Close connection print("close") writer.close() await writer.wait_closed() # Try writing data to the closed connection print("write") try: writer.write(b"x") await writer.drain() except OSError: print("OSError") def instance0(): multitest.globals(IP=multitest.get_network_ip()) asyncio.run(tcp_server()) def instance1(): multitest.next() asyncio.run(tcp_client())
examples/pxScene2d/external/libnode-v10.15.3/test/addons-napi/test_env_sharing/binding.gyp
madanagopaltcomcast/pxCore
1,144
11113513
<gh_stars>1000+ { "targets": [ { "target_name": "store_env", "sources": [ "store_env.c" ] }, { "target_name": "compare_env", "sources": [ "compare_env.c" ] } ] }
ci/docker/docker-in-docker-image/publish-docker-image/publish_docker_image/command.py
bugtsa/avito-android
347
11113535
import os import fire import yaml from .emulator import publish_emulator from .docker import publish, test CONFIG_FILE = 'image.yaml' # noinspection PyClassHasNoInit class Command: @staticmethod def publish(directory): config_file_path = Command._check_configuration(directory) with open(config_file_path, 'r') as config_file: config = yaml.load(config_file, Loader=yaml.SafeLoader) docker_registry = config['registry'] if docker_registry == 'DOCKER_REGISTRY': docker_registry = os.getenv('DOCKER_REGISTRY', '___MISSED_DOCKER_REGISTRY_ENV___') publish(directory, docker_registry, config['image']) @staticmethod def publish_emulator(directory, emulators): emulators_to_publish = str(emulators).split() print('Emulators for publishing: {emulators}'.format(emulators=emulators_to_publish)) config_file_path = Command._check_configuration(directory) with open(config_file_path, 'r') as config_file: config = yaml.load(config_file, Loader=yaml.SafeLoader) docker_registry = config['registry'] if docker_registry == 'DOCKER_REGISTRY': docker_registry = os.getenv('DOCKER_REGISTRY', '___MISSED_DOCKER_REGISTRY_ENV___') publish_emulator(directory, docker_registry, config['image'], emulators_to_publish) @staticmethod def test(): test() @staticmethod def _check_configuration(directory): if not directory: raise ValueError('Directory is not specified') config_file_path = os.path.join(directory, CONFIG_FILE) if not os.path.isfile(config_file_path): raise ValueError('Configuration file not found in specified directory') return config_file_path if __name__ == '__main__': fire.Fire(Command)
webdataset/tests/test_utils.py
techthiyanes/webdataset
389
11113640
from webdataset import utils def test_repeatedly(): assert len(list(utils.repeatedly(range(3), nepochs=7))) == 21 def test_repeatedly2(): assert len(list(utils.repeatedly(range(3), nbatches=10))) == 10 def test_repeatedly3(): assert len(list(utils.repeatedly([[[1, 1], [2, 2]]] * 3, nsamples=10))) == 5
AE_Datasets/O_A/datasets/__init__.py
MasterXin2020/DL-based-Intelligent-Diagnosis-Benchmark
200
11113667
<reponame>MasterXin2020/DL-based-Intelligent-Diagnosis-Benchmark<filename>AE_Datasets/O_A/datasets/__init__.py #!/usr/bin/python # -*- coding:utf-8 -*- from AE_Datasets.O_A.datasets.CWRU import CWRU from AE_Datasets.O_A.datasets.CWRUFFT import CWRUFFT from AE_Datasets.O_A.datasets.CWRUCWT import CWRUCWT from AE_Datasets.O_A.datasets.CWRUSTFT import CWRUSTFT from AE_Datasets.O_A.datasets.CWRUSlice import CWRUSlice from AE_Datasets.O_A.datasets.MFPT import MFPT from AE_Datasets.O_A.datasets.MFPTFFT import MFPTFFT from AE_Datasets.O_A.datasets.MFPTCWT import MFPTCWT from AE_Datasets.O_A.datasets.MFPTSTFT import MFPTSTFT from AE_Datasets.O_A.datasets.MFPTSlice import MFPTSlice from AE_Datasets.O_A.datasets.PU import PU from AE_Datasets.O_A.datasets.PUFFT import PUFFT from AE_Datasets.O_A.datasets.PUCWT import PUCWT from AE_Datasets.O_A.datasets.PUSTFT import PUSTFT from AE_Datasets.O_A.datasets.PUSlice import PUSlice from AE_Datasets.O_A.datasets.SEU import SEU from AE_Datasets.O_A.datasets.SEUFFT import SEUFFT from AE_Datasets.O_A.datasets.SEUCWT import SEUCWT from AE_Datasets.O_A.datasets.SEUSTFT import SEUSTFT from AE_Datasets.O_A.datasets.SEUSlice import SEUSlice from AE_Datasets.O_A.datasets.UoC import UoC from AE_Datasets.O_A.datasets.UoCFFT import UoCFFT from AE_Datasets.O_A.datasets.UoCCWT import UoCCWT from AE_Datasets.O_A.datasets.UoCSTFT import UoCSTFT from AE_Datasets.O_A.datasets.UoCSlice import UoCSlice from AE_Datasets.O_A.datasets.JNU import JNU from AE_Datasets.O_A.datasets.JNUFFT import JNUFFT from AE_Datasets.O_A.datasets.JNUCWT import JNUCWT from AE_Datasets.O_A.datasets.JNUSTFT import JNUSTFT from AE_Datasets.O_A.datasets.JNUSlice import JNUSlice from AE_Datasets.O_A.datasets.XJTU import XJTU from AE_Datasets.O_A.datasets.XJTUFFT import XJTUFFT from AE_Datasets.O_A.datasets.XJTUCWT import XJTUCWT from AE_Datasets.O_A.datasets.XJTUSTFT import XJTUSTFT from AE_Datasets.O_A.datasets.XJTUSlice import XJTUSlice
tests/ex01_compose_v2/models.py
RodrigoDeRosa/related
190
11113670
import related @related.immutable class Service(object): name = related.StringField() image = related.StringField(required=False) build = related.StringField(required=False) ports = related.SequenceField(str, required=False) volumes = related.SequenceField(str, required=False) command = related.StringField(required=False) @related.immutable class Compose(object): version = related.StringField(required=False, default=None) services = related.MappingField(Service, "name", required=False)
the-basic-mq/python/app.py
mttfarmer/serverless
1,627
11113674
#!/usr/bin/env python3 from aws_cdk import core from the_basic_mq.the_basic_mq_stack import TheBasicMQStack app = core.App() TheBasicMQStack(app, "TheBasicMQStack", env=core.Environment(region="us-east-1")) app.synth()
mastermind/http.py
gap892003/mastermind
389
11113678
from __future__ import (absolute_import, print_function, division) from mitmproxy.models import Headers, HTTPResponse status_codes = {100: 'Continue', 101: 'Switching Protocols', 200: 'OK', 201: 'Created', 202: 'Accepted', 203: 'Non-Authoritative Information', 204: 'No Content', 205: 'Reset Content', 206: 'Partial Content', 300: 'Multiple Choices', 301: 'Moved Permanently', 302: 'Found', 303: 'See Other', 304: 'Not Modified', 305: 'Use Proxy', 307: 'Temporary Redirect', 400: 'Bad Request', 401: 'Unauthorized', 402: 'Payment Required', 403: 'Forbidden', 404: 'Not Found', 405: 'Method Not Allowed', 406: 'Not Acceptable', 407: 'Proxy Authentication Required', 408: 'Request Timeout', 409: 'Conflict', 410: 'Gone', 411: 'Length Required', 412: 'Precondition Failed', 413: 'Request Entity Too Large', 414: 'Request-URI Too Long', 415: 'Unsupported Media Type', 416: 'Requested Range Not Satisfiable', 417: 'Expectation Failed', 500: 'Internal Server Error', 501: 'Not Implemented', 502: 'Bad Gateway', 503: 'Service Unavailable', 504: 'Gateway Timeout', 505: 'HTTP Version Not Supported'} def status_message(code): return status_codes[code] def response(code, body=b'', headers=None): # http://docs.python-guide.org/en/latest/writing/gotchas/#mutable-default-arguments if headers is None: headers = Headers() return HTTPResponse('HTTP/1.1', code, status_message(code), headers, body)
docker/build_files/entrypoint-nvidia.py
PeihongYu/surreal
471
11113697
<gh_stars>100-1000 #!/usr/bin/env python import os import sys import shlex import shutil def init(): os.system('Xdummy > /dev/null 2>&1 &') if os.path.exists('/etc/secrets/mjkey.txt'): shutil.copy('/etc/secrets/mjkey.txt', '/root/.mujoco/mjkey.txt') os.system('python -c "import mujoco_py"') os.environ['DISPLAY'] = ':0' def _run_cmd_list(args): if len(args) == 1: os.system(args[0]) else: # docker run os.system(' '.join(map(shlex.quote, args))) init() _run_cmd_list(sys.argv[1:])
ch13/ch13_part2.py
ericgarza70/machine-learning-book
655
11113698
<filename>ch13/ch13_part2.py # coding: utf-8 import sys from python_environment_check import check_packages import numpy as np import torch import torch.nn as nn import pandas as pd import sklearn import sklearn.model_selection from torch.nn.functional import one_hot from torch.utils.data import DataLoader, TensorDataset import torchvision from torchvision import transforms # # Machine Learning with PyTorch and Scikit-Learn # # -- Code Examples # ## Package version checks # Add folder to path in order to load from the check_packages.py script: sys.path.insert(0, '..') # Check recommended package versions: d = { 'numpy': '1.21.2', 'pandas': '1.3.2', 'sklearn': '1.0', 'torch': '1.8', 'torchvision': '0.9.0' } check_packages(d) # # Chapter 13: Going Deeper -- the Mechanics of PyTorch (Part 2/3) # **Outline** # # - [Project one - predicting the fuel efficiency of a car](#Project-one----predicting-the-fuel-efficiency-of-a-car) # - [Working with feature columns](#Working-with-feature-columns) # - [Training a DNN regression model](#Training-a-DNN-regression-model) # - [Project two - classifying MNIST handwritten digits](#Project-two----classifying-MNIST-handwritten-digits) # ## Project one - predicting the fuel efficiency of a car # # ### Working with feature columns # # url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data' column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin'] df = pd.read_csv(url, names=column_names, na_values = "?", comment='\t', sep=" ", skipinitialspace=True) df.tail() print(df.isna().sum()) df = df.dropna() df = df.reset_index(drop=True) df.tail() df_train, df_test = sklearn.model_selection.train_test_split(df, train_size=0.8, random_state=1) train_stats = df_train.describe().transpose() train_stats numeric_column_names = ['Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration'] df_train_norm, df_test_norm = df_train.copy(), df_test.copy() for col_name in numeric_column_names: mean = train_stats.loc[col_name, 'mean'] std = train_stats.loc[col_name, 'std'] df_train_norm.loc[:, col_name] = (df_train_norm.loc[:, col_name] - mean)/std df_test_norm.loc[:, col_name] = (df_test_norm.loc[:, col_name] - mean)/std df_train_norm.tail() boundaries = torch.tensor([73, 76, 79]) v = torch.tensor(df_train_norm['Model Year'].values) df_train_norm['Model Year Bucketed'] = torch.bucketize(v, boundaries, right=True) v = torch.tensor(df_test_norm['Model Year'].values) df_test_norm['Model Year Bucketed'] = torch.bucketize(v, boundaries, right=True) numeric_column_names.append('Model Year Bucketed') total_origin = len(set(df_train_norm['Origin'])) origin_encoded = one_hot(torch.from_numpy(df_train_norm['Origin'].values) % total_origin) x_train_numeric = torch.tensor(df_train_norm[numeric_column_names].values) x_train = torch.cat([x_train_numeric, origin_encoded], 1).float() origin_encoded = one_hot(torch.from_numpy(df_test_norm['Origin'].values) % total_origin) x_test_numeric = torch.tensor(df_test_norm[numeric_column_names].values) x_test = torch.cat([x_test_numeric, origin_encoded], 1).float() y_train = torch.tensor(df_train_norm['MPG'].values).float() y_test = torch.tensor(df_test_norm['MPG'].values).float() train_ds = TensorDataset(x_train, y_train) batch_size = 8 torch.manual_seed(1) train_dl = DataLoader(train_ds, batch_size, shuffle=True) hidden_units = [8, 4] input_size = x_train.shape[1] all_layers = [] for hidden_unit in hidden_units: layer = nn.Linear(input_size, hidden_unit) all_layers.append(layer) all_layers.append(nn.ReLU()) input_size = hidden_unit all_layers.append(nn.Linear(hidden_units[-1], 1)) model = nn.Sequential(*all_layers) model loss_fn = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) torch.manual_seed(1) num_epochs = 200 log_epochs = 20 for epoch in range(num_epochs): loss_hist_train = 0 for x_batch, y_batch in train_dl: pred = model(x_batch)[:, 0] loss = loss_fn(pred, y_batch) loss.backward() optimizer.step() optimizer.zero_grad() loss_hist_train += loss.item() if epoch % log_epochs==0: print(f'Epoch {epoch} Loss {loss_hist_train/len(train_dl):.4f}') with torch.no_grad(): pred = model(x_test.float())[:, 0] loss = loss_fn(pred, y_test) print(f'Test MSE: {loss.item():.4f}') print(f'Test MAE: {nn.L1Loss()(pred, y_test).item():.4f}') # ## Project two - classifying MNIST hand-written digits image_path = './' transform = transforms.Compose([transforms.ToTensor()]) mnist_train_dataset = torchvision.datasets.MNIST(root=image_path, train=True, transform=transform, download=True) mnist_test_dataset = torchvision.datasets.MNIST(root=image_path, train=False, transform=transform, download=False) batch_size = 64 torch.manual_seed(1) train_dl = DataLoader(mnist_train_dataset, batch_size, shuffle=True) hidden_units = [32, 16] image_size = mnist_train_dataset[0][0].shape input_size = image_size[0] * image_size[1] * image_size[2] all_layers = [nn.Flatten()] for hidden_unit in hidden_units: layer = nn.Linear(input_size, hidden_unit) all_layers.append(layer) all_layers.append(nn.ReLU()) input_size = hidden_unit all_layers.append(nn.Linear(hidden_units[-1], 10)) model = nn.Sequential(*all_layers) model loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) torch.manual_seed(1) num_epochs = 20 for epoch in range(num_epochs): accuracy_hist_train = 0 for x_batch, y_batch in train_dl: pred = model(x_batch) loss = loss_fn(pred, y_batch) loss.backward() optimizer.step() optimizer.zero_grad() is_correct = (torch.argmax(pred, dim=1) == y_batch).float() accuracy_hist_train += is_correct.sum() accuracy_hist_train /= len(train_dl.dataset) print(f'Epoch {epoch} Accuracy {accuracy_hist_train:.4f}') pred = model(mnist_test_dataset.data / 255.) is_correct = (torch.argmax(pred, dim=1) == mnist_test_dataset.targets).float() print(f'Test accuracy: {is_correct.mean():.4f}') # --- # # Readers may ignore the next cell.