max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
testing/MLDB-1703_null_char_import.py
kstepanmpmg/mldb
665
11190996
<gh_stars>100-1000 # # MLDB-1703 null char import # 2 juin 2016 # This file is part of MLDB. Copyright 2016 mldb.ai inc. All rights reserved. # import unittest from mldb import mldb, MldbUnitTest, ResponseException class Mldb1703(MldbUnitTest): @classmethod def setUpClass(self): # this file includes a problematic character mldb.log(mldb.put("/v1/procedures/importer", { "type": "import.text", "params": { "dataFileUrl": "file://mldb/testing/dataset/MDLB-1703_data.csv", "outputDataset": "test_case", "named": "rowName", "select": "* EXCLUDING(rowName)", "runOnCreation": True, "structuredColumnNames": True, "allowMultiLines": False, "replaceInvalidCharactersWith": " " } })) def test_select(self): mldb.query("select name from test_case") def test_tokenize(self): mldb.query("select tokenize(name) from test_case") mldb.run_tests()
utils/dbpedia.py
Tijana37/chimera
125
11191009
<reponame>Tijana37/chimera import json from collections import Counter from functools import lru_cache from itertools import chain from os.path import isfile import requests from utils.file_system import makedir cache = "/tmp/dbpedia/" makedir(cache) DBPEDIA = "http://dbpedia.org/" @lru_cache(maxsize=None) def normalize_entity(entity: str): return entity \ .replace("/", "%2F") \ .replace("&", "%26") \ .replace("+", "%2B") @lru_cache(maxsize=None) def get_dbpedia_entity(entity: str): entity = normalize_entity(entity) cache_ent = cache + entity + ".json" if isfile(cache_ent): f = open(cache_ent, "r") content = json.load(f) f.close() return content r = requests.get(url=DBPEDIA + 'data/' + entity + '.json') content = r.json() f = open(cache_ent, "w") json.dump(content, f) f.close() return content def english_value(entries): filtered = [e["value"] for e in entries if e["lang"] == "en"] if len(filtered) > 0: return filtered[0] return None gender_pronouns = { "male": ["he", "him", "his", "himself"], "female": ["she", "her", "hers", "herself"], "inanimate": ["it", "its", "itself"], "plural": ["they", "them", "theirs"] } all_pronouns = set(chain.from_iterable(gender_pronouns.values())) def pronouns(entity: str): dbpedia = get_dbpedia_entity(entity) ent_uri = DBPEDIA + 'resource/' + entity gender_uri = "http://xmlns.com/foaf/0.1/gender" abstract_uri = "http://dbpedia.org/ontology/abstract" if ent_uri not in dbpedia: # print(dbpedia) # raise ValueError("No URI - " + entity) return [] if gender_uri in dbpedia[ent_uri]: gender = english_value(dbpedia[ent_uri][gender_uri]) if gender is not None: return gender_pronouns[gender] if abstract_uri in dbpedia[ent_uri]: abstract = english_value(dbpedia[ent_uri][abstract_uri]) if abstract is not None: words = Counter(abstract.lower().split()) gender_by_words = {g: sum([words[w] for w in g_words]) for g, g_words in gender_pronouns.items()} gender = max(gender_by_words, key=gender_by_words.get) if gender_by_words[gender] == 0: gender = "inanimate" # Default return gender_pronouns[gender] return [] if __name__ == "__main__": print("Start") for e in ['Jalisco', 'Diane_Duane', '23rd_Street_(Manhattan)']: print(len(get_dbpedia_entity(e))) print("end") print(pronouns("United_States")) print(pronouns("Buzz_Aldrin")) print(pronouns("Hillary_Clinton")) print(pronouns("Italy_national_football_team"))
examples/article_examples/E_cartoon_plot.py
ATayls/DnaFeaturesViewer
391
11191054
from matplotlib import rc_context from A_linear_plot import CustomTranslator rc_context({"path.sketch": (1.5, 300, 1)}) # scale, length, randomness class CustomTranslatorVariant(CustomTranslator): def compute_feature_fontdict(self, feature): return {"family": "<NAME>"} translator = CustomTranslatorVariant() graphic_record = translator.translate_record("plasmid.gb") cropped_record = graphic_record.crop((0, 1850)) ax, _ = cropped_record.plot(figure_width=2.5, with_ruler=False) ax.figure.savefig("E_cartoon_plot.png", dpi=300, bbox_inches="tight")
projects/perception/slam/full_map_posterior_gmapping/src/map_simulator/src/map_simulator/map_obstacles/__init__.py
makistsantekidis/opendr
217
11191070
<filename>projects/perception/slam/full_map_posterior_gmapping/src/map_simulator/src/map_simulator/map_obstacles/__init__.py from .polygonal_obstacle import PolygonalObstacle __all__ = ['PolygonalObstacle', ]
bindings/python/cntk/ops/tests/evaluation_test.py
shyamalschandra/CNTK
17,702
11191107
<reponame>shyamalschandra/CNTK # Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== """ Unit tests for evaluation operations (grad and eval) """ from __future__ import division import numpy as np import pytest from .ops_test_utils import _test_binary_op, AA, precision, PRECISION_TO_TYPE,\ unittest_helper from cntk import dropout, combine import cntk as C def test_sequence_grad_as_numpy_false(device_id, precision): from .. import sequence a = sequence.input_variable(shape=(1,), dtype=PRECISION_TO_TYPE[precision], needs_gradient=True, name='a') sequence_sum_a_plus_sequence_sum_a = sequence.reduce_sum(a) + sequence.reduce_sum(a) a_data = [AA([[2]], dtype=PRECISION_TO_TYPE[precision]), AA([[2], [3]], dtype=PRECISION_TO_TYPE[precision]), AA([[2], [3], [4]], dtype=PRECISION_TO_TYPE[precision])] actual_grad = sequence_sum_a_plus_sequence_sum_a.grad({a: a_data}, [a], as_numpy=False) test_op = a + 1 result = test_op.eval({a : actual_grad}) assert np.array_equal(result[0], np.asarray([[3.]])) assert np.array_equal(result[1], np.asarray([[3.], [3.]])) assert np.array_equal(result[2], np.asarray([[3.], [3.], [3.]])) def test_grad_with_no_arguments_needing_gradients(): x = C.input_variable(10) z = dropout(x, .4) with pytest.raises(ValueError): _, result = z.grad({x: [np.array([5]*150, "float32").reshape(15, 10)]}, outputs=[z]) def test_eval_not_all_outputs(): x = C.input_variable(1) x_data = [AA([3], dtype=np.float32)] y = C.input_variable(1) y_data = [AA([2], dtype=np.float32)] plus_func = x + 1 minus_func = y - 1 func = combine([plus_func, minus_func]) result = func.eval({x : x_data}, [plus_func]) assert np.array_equal(result, np.asarray([[4.]])) result = func.eval({y : y_data}, [minus_func]) assert np.array_equal(result, np.asarray([[1.]])) def test_grad_custimized_root(): x = C.input_variable(shape=(1,), needs_gradient=True) y = C.sqrt(x) y2 = C.log(x) combine = C.combine([y.output, y2.output]) a = np.asarray([1,4,16], dtype=np.float32).reshape(3,1) grads = combine.grad({x:a}, grad_root = y.output) expect_grad = np.asarray([[0.5],[0.25],[0.125]], dtype=np.float32) assert np.array_equal(grads, expect_grad) def test_constant_eval(): c = C.Constant(value=1) c_plus_1 = c + 1 op = C.combine([c_plus_1, c]) result = op.eval({}) assert np.array_equal(result[c_plus_1.output], 2.0) assert np.array_equal(result[c], 1.0) def test_input_without_dynamic_axes(): x = C.input_variable(shape=(2,), dynamic_axes=[], needs_gradient=True, name='x') assert len(x.dynamic_axes) == 0 op = x * .01 + 3.0 grad_result, eval_result = op.grad({x : np.asarray([.6, -.8], dtype=np.float32)}, outputs=[op], wrt=[x]) assert np.allclose(eval_result, [3.006, 2.992]) assert np.allclose(grad_result, [.01, .01]) w = C.parameter(init=np.asarray([[0.5], [-1.5]], dtype=np.float32)) op = C.times(x, w) + 3.0 grad_result, eval_result = op.grad({x : np.asarray([.6, -.8], dtype=np.float32)}, outputs=[op], wrt=[w]) assert np.allclose(eval_result, [4.5]) assert np.allclose(grad_result, [[.6], [-.8]]) def test_grad_after_eval(): x = C.input_variable((C.FreeDimension, 2)) w = C.parameter(init=np.asarray([[2, 5], [1, 3]], dtype=np.float32)) t = C.times(x, w) x_data = np.asarray([[0.5, 0.2]], np.float32) t_val = t.eval({x : x_data}) assert np.array_equal(t_val, np.asarray([[[1.2, 3.1]]], dtype=np.float32)) w_grad, t_val = t.grad({x : x_data}, wrt=[w], outputs=[t]) assert np.array_equal(t_val, np.asarray([[[1.2, 3.1]]], dtype=np.float32)) assert np.array_equal(w_grad, np.asarray([[0.5, .5], [.2, .2]], dtype=np.float32)) x_data = np.asarray([[0.5, 0.2], [0.1, .6]], np.float32) t_val = t.eval({x : x_data}) assert np.allclose(t_val, np.asarray([[[1.2, 3.1], [0.8, 2.3]]], dtype=np.float32)) w_grad, t_val = t.grad({x : x_data}, wrt=[w], outputs=[t]) assert np.allclose(t_val, np.asarray([[[1.2, 3.1], [0.8, 2.3]]], dtype=np.float32)) assert np.array_equal(w_grad, np.asarray([[0.6, .6], [.8, .8]], dtype=np.float32)) def test_validation_before_eval(): w = C.parameter((4,C.InferredDimension)) v = C.parameter((C.InferredDimension,5)) wv = C.times(w,v) p = C.input((4,1)) wp = C.times(w,p) q = C.input((1,5)) qv = C.times(q,v) with pytest.raises(ValueError): wv.eval()
desktop/core/ext-py/nose-1.3.7/functional_tests/test_isolate_plugin.py
kokosing/hue
5,079
11191122
import os import sys import unittest from nose.plugins.isolate import IsolationPlugin from nose.plugins import PluginTester support = os.path.join(os.path.dirname(__file__), 'support') class TestDiscovery(PluginTester, unittest.TestCase): activate = '--with-isolation' args = ['-v'] plugins = [IsolationPlugin()] suitepath = os.path.join(support, 'ipt') def runTest(self): print str(self.output) for line in self.output: if not line.strip(): continue if line.startswith('-'): break assert line.strip().endswith('ok'), \ "Failed test: %s" % line.strip() class TestLoadFromNames(PluginTester, unittest.TestCase): activate = '--with-isolation' args = ['-v', 'test1/tests.py', 'test2/tests.py'] plugins = [IsolationPlugin()] suitepath = None def setUp(self): self._dir = os.getcwd() os.chdir(os.path.join(support, 'ipt')) super(TestLoadFromNames, self).setUp() def tearDown(self): os.chdir(self._dir) super(TestLoadFromNames, self).tearDown() def makeSuite(self): return None def runTest(self): print str(self.output) for line in self.output: if not line.strip(): continue if line.startswith('-'): break assert line.strip().endswith('ok'), \ "Failed test: %s" % line.strip() if __name__ == '__main__': unittest.main()
toad/tadpole/base.py
Padfoot-ted/toad
325
11191176
import seaborn as sns from .utils import ( get_axes, tadpole_axes, FIG_SIZE, ) class Tadpole: def __getattr__(self, name): t = getattr(sns, name) if callable(t): return self.wrapsns(t) return t def wrapsns(self, f): @tadpole_axes def wrapper(*args, figure_size = FIG_SIZE, **kwargs): kw = kwargs.copy() if 'ax' not in kw: kw['ax'] = get_axes(size = figure_size) try: return f(*args, **kw) except: return f(*args, **kwargs) return wrapper
tests/unit/filters/test_xyz_filters.py
bernssolg/pyntcloud-master
1,142
11191182
<reponame>bernssolg/pyntcloud-master<filename>tests/unit/filters/test_xyz_filters.py import pytest from numpy.testing import assert_array_equal from pyntcloud.filters.xyz import BoundingBoxFilter @pytest.mark.usefixtures("simple_pyntcloud") def test_BoundingBoxFilter_default_values(simple_pyntcloud): """ Default bounding box values are infinite so all points should pass the filter. """ bbox_filter = BoundingBoxFilter(pyntcloud=simple_pyntcloud) bbox_filter.extract_info() result = bbox_filter.compute() assert all(result) @pytest.mark.parametrize("bounding_box,expected_result", [ ( { "min_x": 0.4, "max_x": 0.6, "min_y": 0.4, "max_y": 0.6 }, [False, False, False, True, False, False] ), ( { "min_x": 0.4, }, [False, False, False, True, True, True] ), ( { "max_x": 1., }, [True, True, True, True, True, False] ) ]) @pytest.mark.usefixtures("simple_pyntcloud") def test_BoundingBoxFilter_expected_results(simple_pyntcloud, bounding_box, expected_result): bbox_filter = BoundingBoxFilter( pyntcloud=simple_pyntcloud, **bounding_box ) bbox_filter.extract_info() result = bbox_filter.compute() assert_array_equal(result, expected_result)
DevOps/resources/Jenkins/scripts/notification/notifier/main.py
jaswinder9051998/Resources
101
11191185
# Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import requests import sys from notifier import parse message = 'Build {}'.format('FAILED') headers = { 'Content-Type': 'application/json', } payload = { 'message': message, } endpoint = '' def main(): """Main entry point.""" # Parse given arguments parser = parse.create_parser() args = parser.parse_args() r = requests.post(endpoint, data=json.dumps(payload + args), headers=headers) print(r.status) if __name__ == '__main__': sys.exit(main())
qt__pyqt__pyside__pyqode/pyqt__custom_title_bar__FramelessWindow/FramelessWindow.py
DazEB2/SimplePyScripts
117
11191205
<filename>qt__pyqt__pyside__pyqode/pyqt__custom_title_bar__FramelessWindow/FramelessWindow.py #!/usr/bin/env python # -*- coding: utf-8 -*- # Created on 2018年4月30日 # author: Irony # site: https://github.com/892768447 # email: <EMAIL> # file: FramelessWindow # description: __Author__ = """By: Irony QQ: 892768447 Email: <EMAIL>""" __Copyright__ = 'Copyright (c) 2018 Irony' __Version__ = 1.0 # SOURCE: https://github.com/892768447/PyQt/blob/f6ff3ee8bf8e7e9dd8d3ba3d39cf5cefa3c91e7b/%E6%97%A0%E8%BE%B9%E6%A1%86%E8%87%AA%E5%AE%9A%E4%B9%89%E6%A0%87%E9%A2%98%E6%A0%8F%E7%AA%97%E5%8F%A3/FramelessWindow.py from enum import Enum, auto from PyQt5.QtCore import Qt, pyqtSignal, QPoint from PyQt5.QtGui import QFont, QEnterEvent, QPainter, QColor, QPen from PyQt5.QtWidgets import QWidget, QVBoxLayout, QHBoxLayout, QLabel, QSpacerItem, QSizePolicy, QPushButton # стиль STYLE_SHEET = """ /* Панель заголовка */ TitleBar { background-color: rgb(54, 157, 180); } /* Минимизировать кнопку `Максимальное выключение` Общий фон по умолчанию */ #buttonMinimum, #buttonMaximum, #buttonClose { border: none; background-color: rgb(54, 157, 180); } /* Зависание */ #buttonMinimum:hover,#buttonMaximum:hover { background-color: rgb(48, 141, 162); } #buttonClose:hover { color: white; background-color: rgb(232, 17, 35); } /* Мышь удерживать */ #buttonMinimum:pressed,#buttonMaximum:pressed { background-color: rgb(44, 125, 144); } #buttonClose:pressed { color: white; background-color: rgb(161, 73, 92); } """ class TitleBar(QWidget): # Сигнал минимизации окна windowMinimumed = pyqtSignal() # увеличить максимальный сигнал окна windowMaximumed = pyqtSignal() # сигнал восстановления окна windowNormaled = pyqtSignal() # сигнал закрытия окна windowClosed = pyqtSignal() # Окно мобильных windowMoved = pyqtSignal(QPoint) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Поддержка настройки фона qss self.setAttribute(Qt.WA_StyledBackground, True) self._old_pos = None # Размер значка по умолчанию self.iconSize = 20 # Установите цвет фона по умолчанию, иначе он будет прозрачным из-за влияния родительского окна self.setAutoFillBackground(True) palette = self.palette() palette.setColor(palette.Window, QColor(240, 240, 240)) self.setPalette(palette) # значок окна self.iconLabel = QLabel() # self.iconLabel.setScaledContents(True) # название окна self.titleLabel = QLabel() self.titleLabel.setMargin(2) # Использовать шрифты Webdings для отображения значков font = self.font() or QFont() font.setFamily('Webdings') self.buttonMinimum = QPushButton('0', clicked=self.windowMinimumed.emit, font=font, objectName='buttonMinimum') self.buttonMaximum = QPushButton('1', clicked=self.showMaximized, font=font, objectName='buttonMaximum') self.buttonClose = QPushButton('r', clicked=self.windowClosed.emit, font=font, objectName='buttonClose') # макет layout = QHBoxLayout(spacing=0) layout.setContentsMargins(0, 0, 0, 0) layout.addWidget(self.iconLabel) layout.addWidget(self.titleLabel) # Средний телескопический бар layout.addSpacerItem(QSpacerItem(40, 20, QSizePolicy.Expanding, QSizePolicy.Minimum)) self.layout_custom_widget = QHBoxLayout() self.layout_custom_widget.setContentsMargins(0, 0, 0, 0) layout.addLayout(self.layout_custom_widget) layout.addWidget(self.buttonMinimum) layout.addWidget(self.buttonMaximum) layout.addWidget(self.buttonClose) self.setLayout(layout) # начальная высота self.setHeight() def addWidget(self, widget, width=38, height=38): self.layout_custom_widget.addWidget(widget) widget.setMinimumSize(width, height) widget.setMaximumSize(width, height) def showMaximized(self): if self.buttonMaximum.text() == '1': # Максимизировать self.buttonMaximum.setText('2') self.windowMaximumed.emit() else: # Восстановить self.buttonMaximum.setText('1') self.windowNormaled.emit() def setHeight(self, height=38): """ Установка высоты строки заголовка """ self.setMinimumHeight(height) self.setMaximumHeight(height) # Задайте размер правой кнопки ? self.buttonMinimum.setMinimumSize(height, height) self.buttonMinimum.setMaximumSize(height, height) self.buttonMaximum.setMinimumSize(height, height) self.buttonMaximum.setMaximumSize(height, height) self.buttonClose.setMinimumSize(height, height) self.buttonClose.setMaximumSize(height, height) def setTitle(self, title): """ Установить заголовок """ self.titleLabel.setText(title) def setIcon(self, icon): """ настройки значокa """ self.iconLabel.setPixmap(icon.pixmap(self.iconSize, self.iconSize)) def setIconSize(self, size): """ Установить размер значка """ self.iconSize = size def enterEvent(self, event): self.setCursor(Qt.ArrowCursor) super().enterEvent(event) def mouseDoubleClickEvent(self, event): super().mouseDoubleClickEvent(event) self.showMaximized() def mousePressEvent(self, event): """ Событие клика мыши """ if event.button() == Qt.LeftButton: self._old_pos = event.pos() event.accept() def mouseReleaseEvent(self, event): """ Событие отказов мыши """ self._old_pos = None event.accept() def mouseMoveEvent(self, event): if event.buttons() == Qt.LeftButton and self._old_pos: self.windowMoved.emit(self.mapToGlobal(event.pos() - self._old_pos)) event.accept() # Перечислить верхнюю левую, нижнюю правую и четыре неподвижные точки class Direction(Enum): LEFT = auto() TOP = auto() RIGHT = auto() BOTTOM = auto() LEFT_TOP = auto() RIGHT_TOP = auto() LEFT_BOTTOM = auto() RIGHT_BOTTOM = auto() class FramelessWindow(QWidget): # Четыре периметра MARGINS = 7 def __init__(self): super().__init__() self.setStyleSheet(STYLE_SHEET) self._old_pos = None self._direction = None self._widget = None # Фон прозрачный self.setAttribute(Qt.WA_TranslucentBackground, True) # Нет границы self.setWindowFlags(self.windowFlags() | Qt.FramelessWindowHint) # TODO: AttributeError: 'FramelessWindow' object has no attribute 'setWindowFlag' # self.setWindowFlag(Qt.FramelessWindowHint) # Отслеживание мыши self.setMouseTracking(True) # макет layout = QVBoxLayout(spacing=0) # Зарезервировать границы для изменения размера окна без полей layout.setContentsMargins(self.MARGINS, self.MARGINS, self.MARGINS, self.MARGINS) # Панель заголовка self.titleBar = TitleBar(self) layout.addWidget(self.titleBar) self.setLayout(layout) # слот сигнала self.titleBar.windowMinimumed.connect(self.showMinimized) self.titleBar.windowMaximumed.connect(self.showMaximized) self.titleBar.windowNormaled.connect(self.showNormal) self.titleBar.windowClosed.connect(self.close) self.titleBar.windowMoved.connect(self.move) self.windowTitleChanged.connect(self.titleBar.setTitle) self.windowIconChanged.connect(self.titleBar.setIcon) def setTitleBarHeight(self, height=38): """ Установка высоты строки заголовка """ self.titleBar.setHeight(height) def setIconSize(self, size): """ Установка размера значка """ self.titleBar.setIconSize(size) def setWidget(self, widget): """ Настройте свои собственные элементы управления """ self._widget = widget # Установите цвет фона по умолчанию, иначе он будет прозрачным из-за влияния родительского окна self._widget.setAutoFillBackground(True) palette = self._widget.palette() palette.setColor(palette.Window, QColor(240, 240, 240)) self._widget.setPalette(palette) self._widget.installEventFilter(self) self.layout().addWidget(self._widget) def move(self, pos): if self.windowState() == Qt.WindowMaximized or self.windowState() == Qt.WindowFullScreen: # Максимизировать или полноэкранный режим не допускается return super().move(pos) def showMaximized(self): """ Чтобы максимизировать, удалите верхнюю, нижнюю, левую и правую границы. Если вы не удалите его, в пограничной области будут пробелы. """ super().showMaximized() self.layout().setContentsMargins(0, 0, 0, 0) def showNormal(self): """ Восстановить, сохранить верхнюю и нижнюю левую и правую границы, иначе нет границы, которую нельзя отрегулировать """ super().showNormal() self.layout().setContentsMargins(self.MARGINS, self.MARGINS, self.MARGINS, self.MARGINS) def eventFilter(self, obj, event): """ Фильтр событий, используемый для решения мыши в других элементах управления и восстановления стандартного стиля мыши """ if isinstance(event, QEnterEvent): self.setCursor(Qt.ArrowCursor) return super().eventFilter(obj, event) def paintEvent(self, event): """ Поскольку это полностью прозрачное фоновое окно, жесткая для поиска граница с прозрачностью 1 рисуется в событии перерисовывания, чтобы отрегулировать размер окна. """ super().paintEvent(event) painter = QPainter(self) painter.setPen(QPen(QColor(255, 255, 255, 1), 2 * self.MARGINS)) painter.drawRect(self.rect()) def mousePressEvent(self, event): """ Событие клика мыши """ super().mousePressEvent(event) if event.button() == Qt.LeftButton: self._old_pos = event.pos() def mouseReleaseEvent(self, event): """ Событие отказов мыши """ super().mouseReleaseEvent(event) self._old_pos = None self._direction = None def mouseMoveEvent(self, event): """ Событие перемещения мыши """ super().mouseMoveEvent(event) pos = event.pos() xPos, yPos = pos.x(), pos.y() wm, hm = self.width() - self.MARGINS, self.height() - self.MARGINS if self.isMaximized() or self.isFullScreen(): self._direction = None self.setCursor(Qt.ArrowCursor) return if event.buttons() == Qt.LeftButton and self._old_pos: self._resizeWidget(pos) return if xPos <= self.MARGINS and yPos <= self.MARGINS: # Верхний левый угол self._direction = Direction.LEFT_TOP self.setCursor(Qt.SizeFDiagCursor) elif wm <= xPos <= self.width() and hm <= yPos <= self.height(): # Нижний правый угол self._direction = Direction.RIGHT_BOTTOM self.setCursor(Qt.SizeFDiagCursor) elif wm <= xPos and yPos <= self.MARGINS: # верхний правый угол self._direction = Direction.RIGHT_TOP self.setCursor(Qt.SizeBDiagCursor) elif xPos <= self.MARGINS and hm <= yPos: # Нижний левый угол self._direction = Direction.LEFT_BOTTOM self.setCursor(Qt.SizeBDiagCursor) elif 0 <= xPos <= self.MARGINS and self.MARGINS <= yPos <= hm: # Влево self._direction = Direction.LEFT self.setCursor(Qt.SizeHorCursor) elif wm <= xPos <= self.width() and self.MARGINS <= yPos <= hm: # Право self._direction = Direction.RIGHT self.setCursor(Qt.SizeHorCursor) elif self.MARGINS <= xPos <= wm and 0 <= yPos <= self.MARGINS: # выше self._direction = Direction.TOP self.setCursor(Qt.SizeVerCursor) elif self.MARGINS <= xPos <= wm and hm <= yPos <= self.height(): # ниже self._direction = Direction.BOTTOM self.setCursor(Qt.SizeVerCursor) else: # Курсор по умолчанию self.setCursor(Qt.ArrowCursor) def _resizeWidget(self, pos): """ Отрегулируйте размер окна """ if self._direction is None: return mpos = pos - self._old_pos xPos, yPos = mpos.x(), mpos.y() geometry = self.geometry() x, y, w, h = geometry.x(), geometry.y(), geometry.width(), geometry.height() if self._direction == Direction.LEFT_TOP: # Верхний левый угол if w - xPos > self.minimumWidth(): x += xPos w -= xPos if h - yPos > self.minimumHeight(): y += yPos h -= yPos elif self._direction == Direction.RIGHT_BOTTOM: # Нижний правый угол if w + xPos > self.minimumWidth(): w += xPos self._old_pos = pos if h + yPos > self.minimumHeight(): h += yPos self._old_pos = pos elif self._direction == Direction.RIGHT_TOP: # верхний правый угол if h - yPos > self.minimumHeight(): y += yPos h -= yPos if w + xPos > self.minimumWidth(): w += xPos self._old_pos.setX(pos.x()) elif self._direction == Direction.LEFT_BOTTOM: # Нижний левый угол if w - xPos > self.minimumWidth(): x += xPos w -= xPos if h + yPos > self.minimumHeight(): h += yPos self._old_pos.setY(pos.y()) elif self._direction == Direction.LEFT: # Влево if w - xPos > self.minimumWidth(): x += xPos w -= xPos else: return elif self._direction == Direction.RIGHT: # Право if w + xPos > self.minimumWidth(): w += xPos self._old_pos = pos else: return elif self._direction == Direction.TOP: # выше if h - yPos > self.minimumHeight(): y += yPos h -= yPos else: return elif self._direction == Direction.BOTTOM: # ниже if h + yPos > self.minimumHeight(): h += yPos self._old_pos = pos else: return self.setGeometry(x, y, w, h) if __name__ == '__main__': import sys from PyQt5.QtWidgets import QApplication, QTextEdit app = QApplication(sys.argv) w = FramelessWindow() w.setWindowTitle('Test') # Добавить свое окно w.setWidget(QTextEdit("Hello World!", w)) w.show() sys.exit(app.exec_())
Packs/PerceptionPoint/Integrations/PerceptionPoint/PerceptionPoint.py
diCagri/content
799
11191211
<filename>Packs/PerceptionPoint/Integrations/PerceptionPoint/PerceptionPoint.py import demistomock as demisto from CommonServerPython import * ''' IMPORTS''' import requests import json from collections import defaultdict ''' INTEGRATION PARAMS ''' URL = 'http://api.perception-point.io/api/v1/{endpoint}' # disable-secrets-detection INCIDENTS_ENDPOINT = 'scans/incidents/' RELEASE_ENDPOINT = 'quarantine/release/{id_}' USER_PARAMS = demisto.params() SECURED = not USER_PARAMS.get('insecure', False) PP_TOKEN = USER_PARAMS.get('pp_token', None) if PP_TOKEN is None: return_error('Perception Point token is mandatory. ' 'Please enter your token or contact PerceptionPoint support for assistance') try: API_MAX_LOOPS = int(USER_PARAMS.get('api_loops', 1)) except Exception: API_MAX_LOOPS = 1 HEADER = {'Authorization': f'Token {PP_TOKEN}'} ''' CONSTANTS ''' RELEASE = 'release' LIST = 'list' API_ACTIONS_DICT = {RELEASE: RELEASE_ENDPOINT, LIST: INCIDENTS_ENDPOINT} SPAM = 'SPM' BLOCKED = 'BLK' MALICIOUS = 'MAL' API_CURSOR_ARG = '_cursor' VERBOSE_VERDICT_PARAM = 'verbose_verdict[]' FETCH_INCIDENTS_TYPE = [{'demisto_param': 'fetch_malicious', 'req_pname': VERBOSE_VERDICT_PARAM, 'req_pval': MALICIOUS}, {'demisto_param': 'fetch_blocked', 'req_pname': VERBOSE_VERDICT_PARAM, 'req_pval': BLOCKED}, {'demisto_param': 'fetch_spam', 'req_pname': VERBOSE_VERDICT_PARAM, 'req_pval': SPAM}] ''' HELPER FUNCTIONS ''' def build_fetch_incident_types(fetch_blocked, fetch_malicious, fetch_spam): fetch_type_dict = defaultdict(list) # type: ignore fetch_select = { 'fetch_blocked': fetch_blocked, 'fetch_malicious': fetch_malicious, 'fetch_spam': fetch_spam } for darg in FETCH_INCIDENTS_TYPE: darg_input = fetch_select.get(darg['demisto_param']) if darg_input: fetch_type_dict[darg['req_pname']].append(darg.get('req_pval', darg_input)) return dict(fetch_type_dict) def create_incident(record): record.pop('Attachment', None) record['RawJSON'] = json.dumps(record) return record def collect_incidents(params): list_url = build_request_url(LIST) api_res = get_pp_api_result(list_url, params) num_of_results = api_res.get('count') incidents = [] # type: list api_loops = 0 while num_of_results and api_loops < API_MAX_LOOPS: incidents += map(create_incident, api_res.get('results')) if api_res.get('next'): api_res = get_pp_api_result(api_res.get('next'), {}) num_of_results = api_res.get('count') api_loops += 1 return incidents def report_incidents(incidents_list): demisto.incidents(incidents_list) def get_pp_api_result(url, params): try: res = requests.get(url=url, params=params, headers=HEADER, verify=SECURED) res.raise_for_status() try: res_content = res.json() except Exception: res_content = {} return res_content except requests.exceptions.HTTPError as err: if 400 <= res.status_code < 500: return_error('Invalid token') else: return_error(err) except Exception as err: return_error(err) def build_request_url(api_action): return URL.format(endpoint=API_ACTIONS_DICT.get(api_action)) def command_fetch_incidents(): try: fetch_blocked = USER_PARAMS.get('fetch_blocked') fetch_spam = USER_PARAMS.get('fetch_spam') fetch_malicious = USER_PARAMS.get('fetch_malicious') req_args = build_fetch_incident_types(fetch_blocked, fetch_malicious, fetch_spam) last_run_id = int(demisto.getLastRun().get('scan_id', 0)) req_args[API_CURSOR_ARG] = last_run_id incidents_list = collect_incidents(req_args) report_incidents(incidents_list) if incidents_list: last_run_id = max(last_run_id, int(incidents_list[-1].get('Scan Id'))) demisto.setLastRun({'scan_id': int(last_run_id)}) except Exception as err: return_error(f'An error occurred while trying to fetch new incidents. ' f'Please contact PerceptionPoint support for more info. {err}') def release_email_and_get_message(scan_id_to_release): try: release_url = build_request_url(RELEASE).format(id_=scan_id_to_release) _ = get_pp_api_result(release_url, {}) return f'Email with id {scan_id_to_release} was released Successfully!' except Exception: raise def command_release_email(): try: scan_id_to_release = demisto.args().get('scan_id') entry = { 'Type': entryTypes['note'], 'ReadableContentsFormat': formats['markdown'] } email_release_response = release_email_and_get_message(scan_id_to_release) entry.update({'Contents': email_release_response, 'ContentsFormat': formats['text'], 'EntryContext': {'PP.Released': scan_id_to_release}} ) demisto.results(entry) except Exception as err: return_error(f'An error occurred while trying to release email. ' f'Please contact PerceptionPoint support for more info\n. {err}') def test_command(): list_url = build_request_url(LIST) if get_pp_api_result(list_url, {}): demisto.results('ok') ''' COMMAND CLASSIFIER''' try: handle_proxy() if demisto.command() == 'test-module': test_command() if demisto.command() == 'fetch-incidents': command_fetch_incidents() if demisto.command() == 'pp-release-email': command_release_email() except Exception as e: LOG(str(e)) message = f'Unexpected error: {e} \n' LOG(message) LOG.print_log() return_error(message)
exoplanet-ml/beam/astrowavenet/prediction_fns.py
ritwik12/exoplanet-ml
286
11191243
<reponame>ritwik12/exoplanet-ml # Copyright 2018 The Exoplanet ML Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Beam DoFns for making and saving predictions using an AstroWavenet model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import os.path import apache_beam as beam import numpy as np import tensorflow as tf from astrowavenet import astrowavenet_model from astrowavenet.data import kepler_light_curves from astrowavenet.util import estimator_util from tf_util import config_util from tf_util import example_util def _get_step_from_checkpoint_path(path): """Extracts the global step from a checkpoint path.""" split_path = path.rsplit("model.ckpt-", 1) if len(split_path) != 2: raise ValueError("Unrecognized checkpoint path: {}".format(path)) return int(split_path[1]) class MakePredictionsDoFn(beam.DoFn): """Generates predictions for a particular checkpoint.""" def __init__(self, hparams, dataset_overrides): """Initializes the DoFn.""" self.hparams = hparams self.dataset_overrides = dataset_overrides def process(self, inputs): checkpoint_path, input_file_pattern = inputs global_step = _get_step_from_checkpoint_path(checkpoint_path) # Create the input_fn. dataset_builder = kepler_light_curves.KeplerLightCurves( input_file_pattern, mode=tf.estimator.ModeKeys.PREDICT, config_overrides=self.dataset_overrides) tf.logging.info("Dataset config: %s", config_util.to_json(dataset_builder.config)) input_fn = estimator_util.create_input_fn(dataset_builder) # Create the estimator. estimator = estimator_util.create_estimator(astrowavenet_model.AstroWaveNet, self.hparams) # Generate predictions. for predictions in estimator.predict( input_fn, checkpoint_path=checkpoint_path): # Add global_step. predictions["global_step"] = global_step # Squeeze and un-pad the sequences. weights = np.squeeze(predictions["seq_weights"]) real_length = len(weights) while real_length > 0 and weights[real_length - 1] == 0: real_length -= 1 for name, value in predictions.items(): value = np.squeeze(predictions[name]) if value.shape: value = value[0:real_length] predictions[name] = value yield predictions class SaveLossesDoFn(beam.DoFn): """Writes losses for a particular global step to a csv file.""" def __init__(self, output_dir): self.output_dir = output_dir def start_bundle(self): if not tf.gfile.Exists(self.output_dir): tf.gfile.MakeDirs(self.output_dir) def process(self, inputs): # Unpack the inputs and sort predictions by loss. global_step, all_predictions = inputs all_predictions = sorted(all_predictions, key=lambda p: p["mean_loss"]) if not all_predictions: return # Write the CSV. csv_filename = os.path.join(self.output_dir, "{}.csv".format(global_step)) with tf.gfile.Open(csv_filename, "w") as f: fieldnames = ["example_id", "mean_loss"] writer = csv.DictWriter(f, fieldnames=fieldnames) writer.writeheader() for predictions in all_predictions: writer.writerow({ "example_id": predictions["example_id"], "mean_loss": predictions["mean_loss"], }) class SavePredictionsDoFn(beam.DoFn): """Writes predictions for a particular example to a TFRecord file.""" def __init__(self, output_dir): self.output_dir = output_dir def start_bundle(self): if not tf.gfile.Exists(self.output_dir): tf.gfile.MakeDirs(self.output_dir) def process(self, inputs): # Unpack the inputs and sort predictions by global step. example_id, all_predictions = inputs all_predictions = sorted(all_predictions, key=lambda p: p["global_step"]) if not all_predictions: return filename = os.path.join(self.output_dir, "{}.tfrecord".format(example_id)) with tf.python_io.TFRecordWriter(filename) as writer: for predictions in all_predictions: ex = tf.train.Example() for name, value in predictions.items(): if name == "example_id": continue if not np.shape(value): value = [value] example_util.set_feature(ex, name, value) writer.write(ex.SerializeToString())
codigo/Live15/determinante_0.py
cassiasamp/live-de-python
572
11191247
from threading import Thread from queue import Queue from time import sleep q = Queue() matriz = [[2, 9], [-1, 6]] def principal(mat): sleep(10) q.put(mat[0][0] * mat[1][1]) def secundaria(mat): count = 0 while q.empty(): count += 1 print(count) q.put(mat[1][0] * mat[0][1]) t_p = Thread(target=principal, kwargs={'mat': matriz}, name='principal') t_p.start() t_s = Thread(target=secundaria, kwargs={'mat': matriz}, name='secundária') t_s.start() t_s.join() print(q.queue) val_p = q.queue[0] val_s = q.queue[1] print(val_p - val_s)
distribution/bin/web-console-dep-lister.py
RomaKoks/druid
5,813
11191294
<reponame>RomaKoks/druid #!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import sys # Helper program for listing the deps in the compiled web-console-<VERSION>.js file in druid-console.jar if len(sys.argv) != 2: sys.stderr.write('usage: program <web-console js path>\n') sys.exit(1) web_console_path = sys.argv[1] dep_dict = {} with open(web_console_path, 'r') as web_console_file: for line in web_console_file.readlines(): match_result = re.match('/\*\*\*/ "\./node_modules/([\@\-a-zA-Z0-9_]+)/.*', line) if match_result != None: dependency_name = match_result.group(1) dep_dict[dependency_name] = True for dep in dep_dict: print(dep)
presidio-image-redactor/presidio_image_redactor/image_pii_verify_engine.py
vtols/presidio
1,408
11191316
from PIL import Image, ImageChops from presidio_image_redactor.image_analyzer_engine import ImageAnalyzerEngine import matplotlib import io from matplotlib import pyplot as plt def fig2img(fig): """Convert a Matplotlib figure to a PIL Image and return it.""" buf = io.BytesIO() fig.savefig(buf) buf.seek(0) img = Image.open(buf) return img class ImagePiiVerifyEngine: """ImagePiiVerifyEngine class only supporting Pii verification currently.""" def __init__(self): self.analyzer_engine = ImageAnalyzerEngine() def verify(self, image: Image) -> Image: """Annotate image with the detect PII entity. Please notice, this method duplicates the image, creates a new instance and manipulate it. :param image: PIL Image to be processed :return: the annotated image """ image = ImageChops.duplicate(image) image_x, image_y = image.size analyzer_engine = ImageAnalyzerEngine() bboxes = analyzer_engine.analyze(image) fig, ax = plt.subplots() image_r = 70 fig.set_size_inches(image_x / image_r, image_y / image_r) if len(bboxes) == 0: return image else: for box in bboxes: entity_type = box.entity_type x0 = box.left y0 = box.top x1 = x0 + box.width y1 = y0 + box.height rect = matplotlib.patches.Rectangle( (x0, y0), x1 - x0, y1 - y0, edgecolor="b", facecolor="none" ) ax.add_patch(rect) ax.annotate( entity_type, xy=(x0 - 3, y0 - 3), xycoords="data", bbox=dict(boxstyle="round4,pad=.5", fc="0.9"), ) ax.imshow(image) im_from_fig = fig2img(fig) im_resized = im_from_fig.resize((image_x, image_y)) return im_resized
maro/cli/process/utils/default_param.py
yangboz/maro
598
11191319
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. process_setting = { "redis_info": { "host": "localhost", "port": 19999 }, "redis_mode": "MARO", # one of MARO, customized. customized Redis won't exit after maro process clear. "parallel_level": 1, "keep_agent_alive": 1, # If 0 (False), agents will exit after 5 minutes of no pending jobs and running jobs. "check_interval": 60, # seconds "agent_countdown": 5 # how many times to shutdown agents about finding no job in Redis. }
webs/bilibili/tasks/get_animations_full_data.py
billvsme/videoSpider
216
11191381
# -*- coding: utf-8 -*- import requests import models from config import sqla from helpers import random_str from gevent.pool import Pool from webs.bilibili import parsers from sqlalchemy.exc import IntegrityError, InvalidRequestError bilibili_animation_url = 'http://www.bilibili.com/bangumi/i/' cookies = { 'sid': '' } def create_requests_and_save_datas(bilibili_id): session = sqla['session'] cookies['sid'] = random_str(8) r = requests.get( bilibili_animation_url + str(bilibili_id), cookies=cookies, timeout=10 ) if r.status_code != 200: return data = parsers.animation.start_parser(r.text) animation = session.query(models.Animation).filter_by( bilibili_id=bilibili_id ).one() genre_class = models.AnimationGenre for k, v in data.items(): if k == 'genres': for genre in v: try: genre_obj = genre_class(**genre) session.add(genre_obj) session.commit() except (IntegrityError, InvalidRequestError): session.rollback() genre_obj = session.query(genre_class).filter_by( name=genre['name'] ).one() animation.genres.append(genre_obj) for k, v in data.items(): if k != 'genres': if type(v) == list: v = str(v) setattr(animation, k, v) animation.is_detail = True session.commit() print(','.join( [bilibili_id, data.get('title')] )) def task(bilibili_ids, pool_number): pool = Pool(pool_number) for bilibili_id in bilibili_ids: pool.spawn( create_requests_and_save_datas, bilibili_id=bilibili_id, ) pool.join()
vumi/transports/vumi_bridge/__init__.py
seidu626/vumi
199
11191404
from vumi.transports.vumi_bridge.vumi_bridge import GoConversationTransport __all__ = [ 'GoConversationTransport', ]
neptune/new/internal/utils/generic_attribute_mapper.py
Raalsky/neptune-client
254
11191426
# # Copyright (c) 2021, Neptune Labs Sp. z o.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from neptune.new.internal.backends.api_model import AttributeType class NoValue: pass VALUE = "value" LAST_VALUE = "last" VALUES = "values" atomic_attribute_types_map = { AttributeType.FLOAT.value: "floatProperties", AttributeType.INT.value: "intProperties", AttributeType.BOOL.value: "boolProperties", AttributeType.STRING.value: "stringProperties", AttributeType.DATETIME.value: "datetimeProperties", AttributeType.RUN_STATE.value: "experimentStateProperties", AttributeType.NOTEBOOK_REF.value: "notebookRefProperties", } value_series_attribute_types_map = { AttributeType.FLOAT_SERIES.value: "floatSeriesProperties", AttributeType.STRING_SERIES.value: "stringSeriesProperties", } value_set_attribute_types_map = { AttributeType.STRING_SET.value: "stringSetProperties", } # TODO: nicer mapping? _unmapped_attribute_types_map = { AttributeType.FILE_SET.value: "fileSetProperties", # TODO: return size? AttributeType.FILE.value: "fileProperties", # TODO: name? size? AttributeType.IMAGE_SERIES.value: "imageSeriesProperties", # TODO: return last step? AttributeType.GIT_REF.value: "gitRefProperties", # TODO: commit? branch? } def map_attribute_result_to_value(attribute): for attribute_map, value_key in [ (atomic_attribute_types_map, VALUE), (value_series_attribute_types_map, LAST_VALUE), (value_set_attribute_types_map, VALUES), ]: source_property = attribute_map.get(attribute.type) if source_property is not None: mapped_attribute_entry = getattr(attribute, source_property) return getattr(mapped_attribute_entry, value_key) return NoValue
stethoscope/plugins/sources/jamf/utils.py
HoriaHorvat/stethoscope
1,865
11191460
<reponame>HoriaHorvat/stethoscope<gh_stars>1000+ # vim: set fileencoding=utf-8 : from __future__ import absolute_import, print_function, unicode_literals import pprint import logbook import six.moves logger = logbook.Logger(__name__) def _parse_parameter_dict(item_dict): """Convert a mapping with 'name' and 'value' keys into a key-value tuple. >>> _parse_parameter_dict({ ... u'id': 65, ... u'name': u'Computer Model', ... u'type': u'String', ... u'value': u'MacBook Pro (Retina, 15-inch, Mid 2015)', ... }) (u'Computer Model', u'MacBook Pro (Retina, 15-inch, Mid 2015)') >>> _parse_parameter_dict({ ... u'value': u'MacBook Pro (Retina, 15-inch, Mid 2015)', ... }) Traceback (most recent call last): ... KeyError: 'name' """ try: name = item_dict['name'] value = item_dict['value'] # appears there is only the string type at the moment (2015-12-17) # vtype = item_dict['type'] # not using 'id' # item_dict['id'] except KeyError: logger.error("incorrect input for parameter: {!s}".format(pprint.pformat(item_dict))) raise return (name, value) def _parse_parameter_list(dict_list): """Create a mapping from the given list of item-describing dictionaries. >>> returned = _parse_parameter_list([ ... {u'id': 68, ... u'name': u'Carbon Black Installed', ... u'type': u'String', ... u'value': u'Installed'}, ... {u'id': 65, ... u'name': u'Computer Model', ... u'type': u'String', ... u'value': u'MacBook Pro (Retina, 15-inch, Mid 2015)'}, ... ]) >>> returned == { ... u'Computer Model': u'MacBook Pro (Retina, 15-inch, Mid 2015)', ... u'Carbon Black Installed': u'Installed', ... } True """ return dict(six.moves.map(_parse_parameter_dict, dict_list))
pytorch_projects/integral_human_pose/_init_paths.py
KGMSFT/integral-human-pose
472
11191498
import os import sys def add_path(path): if path not in sys.path: sys.path.insert(0, path) this_dir = os.path.dirname(__file__) add_path(os.path.join(this_dir, '..', '..', 'common')) add_path(os.path.join(this_dir, '..', 'common_pytorch')) add_path(os.path.join(this_dir, '..', '..')) add_path(os.path.join(this_dir, '..')) add_path(os.path.join(this_dir)) print("=================SYS PATH================\n") for path in sys.path: print(path) print("\n=================SYS PATH================")
unittest/scripts/py_dev_api_examples/concepts/Setting_the_Current_Schema.py
mueller/mysql-shell
119
11191510
from mysqlsh import mysqlx # Direct connect with no client side default schema defined mySession = mysqlx.get_session('mike:paSSw0rd@localhost') mySession.set_current_schema("test")
tests/test_lang/test_spacy_language.py
nth-attempt/whatlies
325
11191514
<gh_stars>100-1000 import pytest import numpy as np from spacy.vocab import Vocab from spacy.language import Language from whatlies.language import SpacyLanguage @pytest.fixture() def color_lang(): vector_data = { "red": np.array([1.0, 0.0]), "green": np.array([0.5, 0.5]), "blue": np.array([0.0, 1.0]), "purple": np.array([0.0, 1.0]), } vocab = Vocab(strings=list(vector_data.keys())) for word, vector in vector_data.items(): vocab.set_vector(word, vector) nlp = Language(vocab=vocab) return SpacyLanguage(nlp) def test_basic_usage(color_lang): queries = [ "green is blue and yellow", "purple is red and blue", "purple isn't same as red!", "red and blue is a like a glue!", ] emb = color_lang[queries] assert len(emb) == 4 assert emb[queries[0]].name == "green is blue and yellow" assert emb[queries[0]].vector.shape == (2,) def test_score_similar_one(color_lang): scores = color_lang.score_similar("blue", n=2, prob_limit=None, lower=False) print(scores) assert all([s[1] == 0 for s in scores]) assert "blue" in [s[0].name for s in scores] assert "purple" in [s[0].name for s in scores] def test_single_token_words(color_lang): # test for issue here: https://github.com/RasaHQ/whatlies/issues/5 assert len(color_lang["red"].vector) > 0
packages/pyright-internal/src/tests/samples/typeNarrowingLocalConst1.py
Jasha10/pyright
3,934
11191575
<gh_stars>1000+ # This sample tests the case where a local (constant) variable that # is assigned a narrowing expression can be used in a type guard condition. # These are sometimes referred to as "aliased conditional expressions". from typing import Optional, Union import random class A: a: int class B: b: int def func1(x: Union[A, B]) -> None: is_a = not not isinstance(x, A) if not is_a: reveal_type(x, expected_text="B") else: reveal_type(x, expected_text="A") def func2(x: Union[A, B]) -> None: is_a = isinstance(x, A) if random.random() < 0.5: x = B() if is_a: reveal_type(x, expected_text="B | A") else: reveal_type(x, expected_text="B | A") def func3(x: Optional[int]): is_number = x != None if is_number: reveal_type(x, expected_text="int") else: reveal_type(x, expected_text="None") def func4() -> Optional[A]: return A() if random.random() < 0.5 else None maybe_a1 = func4() is_a1 = maybe_a1 if is_a1: reveal_type(maybe_a1, expected_text="A") else: reveal_type(maybe_a1, expected_text="None") maybe_a2 = func4() def func5(): global maybe_a2 maybe_a2 = False is_a2 = maybe_a2 if is_a2: reveal_type(maybe_a2, expected_text="A | None") else: reveal_type(maybe_a2, expected_text="A | None") def func6(x: Union[A, B]) -> None: is_a = isinstance(x, A) for y in range(1): if is_a: reveal_type(x, expected_text="A | B") else: reveal_type(x, expected_text="A | B") if random.random() < 0.5: x = B() def get_string() -> str: ... def get_optional_string() -> Optional[str]: ... def func7(val: Optional[str] = None): val = get_optional_string() val_is_none = val is None if val_is_none: val = get_string() reveal_type(val, expected_text="str") def func8(val: Optional[str] = None): val = get_optional_string() val_is_none = val is None val = get_optional_string() if val_is_none: val = get_string() reveal_type(val, expected_text="str | None") def func9(var: Optional[str] = None): if var_not_None := not (var is None): reveal_type(var, expected_text="str") reveal_type(var, expected_text="str | None") if var_not_None: reveal_type(var, expected_text="str") if 1 > 1 + 2: var = None else: var = "a" + "b" if var_not_None: reveal_type(var, expected_text="Literal['ab'] | None")
pwncat/modules/linux/enumerate/system/aslr.py
Mitul16/pwncat
1,454
11191606
<reponame>Mitul16/pwncat<filename>pwncat/modules/linux/enumerate/system/aslr.py #!/usr/bin/env python3 from pwncat.db import Fact from pwncat.platform.linux import Linux from pwncat.modules.enumerate import EnumerateModule class ASLRStateData(Fact): def __init__(self, source, state): super().__init__(source=source, types=["system.aslr"]) self.state: int = state """ the value of /proc/sys/kernel/randomize_va_space """ def title(self, session): if self.state == 0: return "[green]disabled[/green]" return "[red]enabled[/red]" class Module(EnumerateModule): """ Determine whether or not ASLR is enabled or disabled. :return: """ PROVIDES = ["system.aslr"] PLATFORM = [Linux] def enumerate(self, session): try: with session.platform.open( "/proc/sys/kernel/randomize_va_space", "r" ) as filp: value = filp.read() try: value = int(value) except ValueError: value = None if value is not None: yield ASLRStateData(self.name, value) except (FileNotFoundError, PermissionError): pass
conans/test/functional/cross_building/build_helper_test.py
matthiasng/conan
6,205
11191633
<reponame>matthiasng/conan import textwrap import unittest from conans.test.utils.tools import TestClient class BuildHelperTest(unittest.TestCase): def test_autotools_helper(self): client = TestClient() conanfile = textwrap.dedent(""" from conans import ConanFile, AutoToolsBuildEnvironment class Pkg(ConanFile): def build(self): AutoToolsBuildEnvironment(self) """) client.save({"conanfile.py": conanfile, "host": "", "build": ""}) client.run("create . pkg/1.0@ --profile:build=build --profile:host=host") self.assertIn("Configuration (profile_host):", client.out) self.assertIn("Configuration (profile_build):", client.out) self.assertIn("pkg/1.0: Calling build()", client.out) self.assertIn("pkg/1.0: Created package", client.out)
tests/unit/viz/test_basemaps.py
manmorjim/cartoframes
236
11191692
from cartoframes.viz import basemaps class TestBasemaps(object): def test_is_defined(self): "basemaps" assert basemaps is not None def test_has_defined_basemaps(self): "basemaps content" assert basemaps.positron == 'Positron' assert basemaps.darkmatter == 'DarkMatter' assert basemaps.voyager == 'Voyager'
notebook/pandas_tz_convert_tz_localize.py
vhn0912/python-snippets
174
11191697
<filename>notebook/pandas_tz_convert_tz_localize.py import pandas as pd s = '2018-01-01T12:00+09:00' print(s) # 2018-01-01T12:00+09:00 print(type(s)) # <class 'str'> ts = pd.to_datetime(s) print(ts) # 2018-01-01 12:00:00+09:00 print(type(ts)) # <class 'pandas._libs.tslibs.timestamps.Timestamp'> print(ts.tz) # pytz.FixedOffset(540) ts_utc = pd.to_datetime(s, utc=True) print(ts_utc) # 2018-01-01 03:00:00+00:00 print(ts_utc.tz) # UTC s_without_tz = '2018-01-01T12:00' ts_naive = pd.to_datetime(s_without_tz) print(ts_naive) # 2018-01-01 12:00:00 print(ts_naive.tz) # None ts_set_utc = pd.to_datetime(s_without_tz, utc=True) print(ts_set_utc) # 2018-01-01 12:00:00+00:00 print(ts_set_utc.tz) # UTC print(ts_utc) # 2018-01-01 03:00:00+00:00 print(ts_utc.tz) # UTC ts_jst = ts_utc.tz_convert('Asia/Tokyo') print(ts_jst) # 2018-01-01 12:00:00+09:00 print(ts_jst.tz) # Asia/Tokyo print(ts_utc.value) # 1514775600000000000 print(ts_jst.value) # 1514775600000000000 print(ts_utc == ts_jst) # True ts_pst = ts_utc.tz_convert('US/Pacific') print(ts_pst) # 2017-12-31 19:00:00-08:00 print(ts_pst.tz) # US/Pacific print(ts_utc.tz_convert('America/Los_Angeles')) # 2017-12-31 19:00:00-08:00 print(ts_utc.tz_convert('America/Vancouver')) # 2017-12-31 19:00:00-08:00 print(ts_naive) # 2018-01-01 12:00:00 print(ts_naive.tz) # None # print(ts_naive.tz_convert('Asia/Tokyo')) # TypeError: Cannot convert tz-naive Timestamp, use tz_localize to localize ts_jst_localize = ts_naive.tz_localize('Asia/Tokyo') print(ts_jst_localize) # 2018-01-01 12:00:00+09:00 print(ts_jst_localize.tz) # Asia/Tokyo print(ts_naive.tz_localize('US/Pacific')) # 2018-01-01 12:00:00-08:00 print(ts_naive.tz_localize('Asia/Tokyo') == ts_naive.tz_localize('US/Pacific')) # False print(ts_jst) # 2018-01-01 12:00:00+09:00 print(ts_jst.tz) # Asia/Tokyo # print(ts_jst.tz_localize('US/Pacific')) # TypeError: Cannot localize tz-aware Timestamp, use tz_convert for conversions print(ts_jst) # 2018-01-01 12:00:00+09:00 print(ts_jst.tz) # Asia/Tokyo print(ts_jst.tz_convert(None)) # 2018-01-01 03:00:00 print(ts_jst.tz_localize(None)) # 2018-01-01 12:00:00 df = pd.DataFrame({'date': ['2018-01-01T12:00', '2018-01-02T00:00', '2018-01-03T10:00', '2018-01-03T19:00'], 'value': ['A', 'B', 'C', 'D']}) print(df) # date value # 0 2018-01-01T12:00 A # 1 2018-01-02T00:00 B # 2 2018-01-03T10:00 C # 3 2018-01-03T19:00 D s_naive = pd.to_datetime(df['date']) print(s_naive) # 0 2018-01-01 12:00:00 # 1 2018-01-02 00:00:00 # 2 2018-01-03 10:00:00 # 3 2018-01-03 19:00:00 # Name: date, dtype: datetime64[ns] print(s_naive[0]) # 2018-01-01 12:00:00 print(type(s_naive[0])) # <class 'pandas._libs.tslibs.timestamps.Timestamp'> print(s_naive[0].tz) # None s_utc = pd.to_datetime(df['date'], utc=True) print(s_utc) # 0 2018-01-01 12:00:00+00:00 # 1 2018-01-02 00:00:00+00:00 # 2 2018-01-03 10:00:00+00:00 # 3 2018-01-03 19:00:00+00:00 # Name: date, dtype: datetime64[ns, UTC] print(s_utc[0].tz) # UTC # print(s_naive.tz_localize('Asia/Tokyo')) # TypeError: index is not a valid DatetimeIndex or PeriodIndex # print(s_utc.tz_convert('Asia/Tokyo')) # TypeError: index is not a valid DatetimeIndex or PeriodIndex print(s_naive.dt.tz_localize('Asia/Tokyo')) # 0 2018-01-01 12:00:00+09:00 # 1 2018-01-02 00:00:00+09:00 # 2 2018-01-03 10:00:00+09:00 # 3 2018-01-03 19:00:00+09:00 # Name: date, dtype: datetime64[ns, Asia/Tokyo] print(s_utc.dt.tz_convert('Asia/Tokyo')) # 0 2018-01-01 21:00:00+09:00 # 1 2018-01-02 09:00:00+09:00 # 2 2018-01-03 19:00:00+09:00 # 3 2018-01-04 04:00:00+09:00 # Name: date, dtype: datetime64[ns, Asia/Tokyo] # print(s_naive.dt.tz_convert('Asia/Tokyo')) # TypeError: Cannot convert tz-naive timestamps, use tz_localize to localize # print(s_utc.dt.tz_localize('Asia/Tokyo')) # TypeError: Already tz-aware, use tz_convert to convert. # print(df['date'].dt.tz_localize('Asia/Tokyo')) # AttributeError: Can only use .dt accessor with datetimelike values df['date'] = pd.to_datetime(df['date']) df_ts = df.set_index('date') print(df_ts) # value # date # 2018-01-01 12:00:00 A # 2018-01-02 00:00:00 B # 2018-01-03 10:00:00 C # 2018-01-03 19:00:00 D print(df_ts.index) # DatetimeIndex(['2018-01-01 12:00:00', '2018-01-02 00:00:00', # '2018-01-03 10:00:00', '2018-01-03 19:00:00'], # dtype='datetime64[ns]', name='date', freq=None) print(type(df_ts.index)) # <class 'pandas.core.indexes.datetimes.DatetimeIndex'> print(df_ts['2018-01-03']) # value # date # 2018-01-03 10:00:00 C # 2018-01-03 19:00:00 D print(df_ts.index.tz_localize('Asia/Tokyo')) # DatetimeIndex(['2018-01-01 12:00:00+09:00', '2018-01-02 00:00:00+09:00', # '2018-01-03 10:00:00+09:00', '2018-01-03 19:00:00+09:00'], # dtype='datetime64[ns, Asia/Tokyo]', name='date', freq=None) print(df_ts.tz_localize('Asia/Tokyo')) # value # date # 2018-01-01 12:00:00+09:00 A # 2018-01-02 00:00:00+09:00 B # 2018-01-03 10:00:00+09:00 C # 2018-01-03 19:00:00+09:00 D s_ts = df_ts['value'] print(s_ts) # date # 2018-01-01 12:00:00 A # 2018-01-02 00:00:00 B # 2018-01-03 10:00:00 C # 2018-01-03 19:00:00 D # Name: value, dtype: object print(s_ts.tz_localize('Asia/Tokyo')) # date # 2018-01-01 12:00:00+09:00 A # 2018-01-02 00:00:00+09:00 B # 2018-01-03 10:00:00+09:00 C # 2018-01-03 19:00:00+09:00 D # Name: value, dtype: object df = pd.DataFrame({'date': ['2018-01-01T12:00+09:00', '2018-01-02T00:00+09:00', '2018-01-03T10:00+09:00', '2018-01-03T19:00+09:00'], 'value': ['A', 'B', 'C', 'D']}) print(df) # date value # 0 2018-01-01T12:00+09:00 A # 1 2018-01-02T00:00+09:00 B # 2 2018-01-03T10:00+09:00 C # 3 2018-01-03T19:00+09:00 D print(pd.to_datetime(df['date'])) # 0 2018-01-01 12:00:00+09:00 # 1 2018-01-02 00:00:00+09:00 # 2 2018-01-03 10:00:00+09:00 # 3 2018-01-03 19:00:00+09:00 # Name: date, dtype: datetime64[ns, pytz.FixedOffset(540)] print(pd.to_datetime(df['date'], utc=True)) # 0 2018-01-01 03:00:00+00:00 # 1 2018-01-01 15:00:00+00:00 # 2 2018-01-03 01:00:00+00:00 # 3 2018-01-03 10:00:00+00:00 # Name: date, dtype: datetime64[ns, UTC] print(pd.to_datetime(df['date']).dt.tz_convert('US/Pacific')) # 0 2017-12-31 19:00:00-08:00 # 1 2018-01-01 07:00:00-08:00 # 2 2018-01-02 17:00:00-08:00 # 3 2018-01-03 02:00:00-08:00 # Name: date, dtype: datetime64[ns, US/Pacific] df['date'] = pd.to_datetime(df['date']) df_ts = df.set_index('date') print(df_ts) # value # date # 2018-01-01 12:00:00+09:00 A # 2018-01-02 00:00:00+09:00 B # 2018-01-03 10:00:00+09:00 C # 2018-01-03 19:00:00+09:00 D print(df_ts.index) # DatetimeIndex(['2018-01-01 12:00:00+09:00', '2018-01-02 00:00:00+09:00', # '2018-01-03 10:00:00+09:00', '2018-01-03 19:00:00+09:00'], # dtype='datetime64[ns, pytz.FixedOffset(540)]', name='date', freq=None) print(df_ts.tz_convert('US/Pacific')) # value # date # 2017-12-31 19:00:00-08:00 A # 2018-01-01 07:00:00-08:00 B # 2018-01-02 17:00:00-08:00 C # 2018-01-03 02:00:00-08:00 D df = pd.DataFrame({'date': ['2018-01-01T12:00+09:00', '2018-01-02T00:00+09:00', '2018-01-03T10:00-05:00', '2018-01-03T19:00-08:00'], 'value': ['A', 'B', 'C', 'D']}) print(df) # date value # 0 2018-01-01T12:00+09:00 A # 1 2018-01-02T00:00+09:00 B # 2 2018-01-03T10:00-05:00 C # 3 2018-01-03T19:00-08:00 D print(pd.to_datetime(df['date'])) # 0 2018-01-01 12:00:00+09:00 # 1 2018-01-02 00:00:00+09:00 # 2 2018-01-03 10:00:00-05:00 # 3 2018-01-03 19:00:00-08:00 # Name: date, dtype: object print(type(pd.to_datetime(df['date'])[0])) # <class 'datetime.datetime'> print(pd.to_datetime(df['date'])[0].tzinfo) # tzoffset(None, 32400) print(pd.to_datetime(df['date'])[2].tzinfo) # tzoffset(None, -18000) print(pd.to_datetime(df['date'], utc=True)) # 0 2018-01-01 03:00:00+00:00 # 1 2018-01-01 15:00:00+00:00 # 2 2018-01-03 15:00:00+00:00 # 3 2018-01-04 03:00:00+00:00 # Name: date, dtype: datetime64[ns, UTC] print(type(pd.to_datetime(df['date'], utc=True)[0])) # <class 'pandas._libs.tslibs.timestamps.Timestamp'> # print(pd.to_datetime(df['date']).dt.tz_convert('Asia/Tokyo')) # ValueError: Tz-aware datetime.datetime cannot be converted to datetime64 unless utc=True df['date'] = pd.to_datetime(df['date']) df_dt = df.set_index('date') print(df_dt) # value # date # 2018-01-01 12:00:00+09:00 A # 2018-01-02 00:00:00+09:00 B # 2018-01-03 10:00:00-05:00 C # 2018-01-03 19:00:00-08:00 D print(df_dt.index) # Index([2018-01-01 12:00:00+09:00, 2018-01-02 00:00:00+09:00, # 2018-01-03 10:00:00-05:00, 2018-01-03 19:00:00-08:00], # dtype='object', name='date') # print(df_dt.tz_convert('Asia/Tokyo')) # TypeError: index is not a valid DatetimeIndex or PeriodIndex # print(df_dt.tz_localize('Asia/Tokyo')) # TypeError: index is not a valid DatetimeIndex or PeriodIndex
bookwyrm/views/imports/manually_review.py
mouse-reeve/fedireads
270
11191720
""" verify books we're unsure about """ from django.contrib.auth.decorators import login_required from django.core.exceptions import PermissionDenied from django.core.paginator import Paginator from django.shortcuts import get_object_or_404, redirect from django.template.response import TemplateResponse from django.utils.decorators import method_decorator from django.views import View from django.views.decorators.http import require_POST from bookwyrm import models from bookwyrm.importers.importer import import_item_task from bookwyrm.settings import PAGE_LENGTH # pylint: disable= no-self-use @method_decorator(login_required, name="dispatch") class ImportManualReview(View): """problems items in an existing import""" def get(self, request, job_id): """status of an import job""" job = get_object_or_404(models.ImportJob, id=job_id) if job.user != request.user: raise PermissionDenied() items = job.items.order_by("index").filter( book__isnull=True, book_guess__isnull=False ) paginated = Paginator(items, PAGE_LENGTH) page = paginated.get_page(request.GET.get("page")) data = { "job": job, "items": page, "page_range": paginated.get_elided_page_range( page.number, on_each_side=2, on_ends=1 ), "complete": True, } return TemplateResponse(request, "import/manual_review.html", data) @login_required @require_POST # pylint: disable=unused-argument def approve_import_item(request, job_id, item_id): """we guessed right""" item = get_object_or_404( models.ImportItem, id=item_id, job__id=job_id, book_guess__isnull=False ) item.fail_reason = None item.book = item.book_guess item.book_guess = None item.save() # the good stuff - actually import the data import_item_task.delay(item.id) return redirect("import-review", job_id) @login_required @require_POST # pylint: disable=unused-argument def delete_import_item(request, job_id, item_id): """we guessed right""" item = get_object_or_404( models.ImportItem, id=item_id, job__id=job_id, book_guess__isnull=False ) item.book_guess = None item.save() return redirect("import-review", job_id)
scripts/result_mdtable_generator.py
Spaskich/NLP-Cube
488
11191724
# This script reads the results.json file and converts it to a results.md file import json, collections def extract_language_from_test_file(file): # ex: "/home/ubuntu/ud-treebanks-v2.2/UD_Afrikaans-AfriBooms/af_afribooms-ud-test.txt" parts = file.split("/") dir = parts[-2].replace("UD_","") dir = dir[:dir.find("-")] return dir.replace("_"," ") all = json.load(open("results.json","r")) lall = {} for model, elem in all.items(): language = extract_language_from_test_file(elem["test_file"]) print(language) if language not in lall: lall[language] = {} lall[language][model] = elem all = collections.OrderedDict(sorted(lall.items())) header = "|Language|Model|Token|Sentence|UPOS|XPOS|AllTags|Lemmas|UAS|LAS|\n" header += "|--------|-----|:---:|:------:|:--:|:--:|:-----:|:----:|:-:|:-:|\n" rows = [] for language, langdict in all.items(): lrow = "|"+language+"|\n" rows.append(lrow) langdict = collections.OrderedDict(sorted(langdict.items())) for model, elem in langdict.items(): row = "| |" row += model + "|" row += str(round(elem["metrics"]["Tokens"]["f1"],2)) + "|" row += str(round(elem["metrics"]["Sentences"]["f1"],2)) + "|" row += str(round(elem["metrics"]["UPOS"]["f1"],2)) + "|" row += str(round(elem["metrics"]["XPOS"]["f1"],2)) + "|" row += str(round(elem["metrics"]["AllTags"]["f1"],2)) + "|" row += str(round(elem["metrics"]["Lemmas"]["f1"],2)) + "|" row += str(round(elem["metrics"]["UAS"]["f1"],2)) + "|" row += str(round(elem["metrics"]["LAS"]["f1"],2)) + "|\n" rows.append(row) with open("results.md","w",encoding="utf8") as f: f.write(header) for row in rows: f.write(row)
neon/data/aeon_shim.py
rsketine/neon
4,415
11191733
<reponame>rsketine/neon # ****************************************************************************** # Copyright 2017-2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** import sys from neon import logger as neon_logger from neon.data.dataloaderadapter import DataLoaderAdapter try: from aeon import DataLoader as AeonLoader except ImportError: neon_logger.error('Unable to load Aeon data loading module.') neon_logger.error('Please follow installation instructions at:') neon_logger.error('https://github.com/NervanaSystems/aeon') sys.exit(1) def AeonDataLoader(config, adapter=True): if adapter: return DataLoaderAdapter(AeonLoader(config)) else: return AeonLoader(config)
IQA_pytorch/VIF.py
dingkeyan93/IQA-pytorch
203
11191744
<filename>IQA_pytorch/VIF.py<gh_stars>100-1000 import torch from torch import nn from torch.nn import functional as F import numpy as np from torchvision import transforms from .utils import fspecial_gauss from .SteerPyrSpace import SteerablePyramidSpace import math class VIF(torch.nn.Module): # Refer to https://live.ece.utexas.edu/research/Quality/VIF.htm def __init__(self, channels=3, level=4, ori=6, device = torch.device("cuda")): super(VIF, self).__init__() self.ori = ori-1 self.level = level self.channels = channels self.M=3 self.subbands=[4, 7, 10, 13, 16, 19, 22, 25] self.sigma_nsq=0.4 self.tol = 1e-12 def corrDn(self, image, filt, step=1, channels=1,start=[0,0],end=[0,0]): filt_ = torch.from_numpy(filt).float().unsqueeze(0).unsqueeze(0).repeat(channels,1,1,1).to(image.device) p = (filt_.shape[2]-1)//2 image = F.pad(image, (p,p,p,p),'reflect') img = F.conv2d(image, filt_, stride=1, padding=0, groups = channels) img = img[:,:,start[0]:end[0]:step,start[1]:end[1]:step] return img def vifsub_est_M(self, org, dist): g_all = [] vv_all = [] for i in range(len(self.subbands)): sub=self.subbands[i]-1 y=org[sub] yn=dist[sub] lev=np.ceil((sub-1)/6) winsize=int(2**lev+1) win = np.ones((winsize,winsize)) newsizeX=int(np.floor(y.shape[2]/self.M)*self.M) newsizeY=int(np.floor(y.shape[3]/self.M)*self.M) y=y[:,:,:newsizeX,:newsizeY] yn=yn[:,:,:newsizeX,:newsizeY] winstart=[int(1*np.floor(self.M/2)),int(1*np.floor(self.M/2))] winend=[int(y.shape[2]-np.ceil(self.M/2))+1,int(y.shape[3]-np.ceil(self.M/2))+1] mean_x = self.corrDn(y,win/(winsize**2),step=self.M, channels=self.channels,start=winstart,end=winend) mean_y = self.corrDn(yn,win/(winsize**2),step=self.M, channels=self.channels,start=winstart,end=winend) cov_xy = self.corrDn(y*yn, win, step=self.M, channels=self.channels,start=winstart,end=winend) - (winsize**2)*mean_x*mean_y ss_x = self.corrDn(y**2,win, step=self.M, channels=self.channels,start=winstart,end=winend) - (winsize**2)*mean_x**2 ss_y = self.corrDn(yn**2,win, step=self.M, channels=self.channels,start=winstart,end=winend) - (winsize**2)*mean_y**2 ss_x = F.relu(ss_x) ss_y = F.relu(ss_y) g = cov_xy/(ss_x+self.tol) vv = (ss_y - g*cov_xy)/(winsize**2) g = g.masked_fill(ss_x < self.tol,0) vv [ss_x < self.tol] = ss_y [ss_x < self.tol] ss_x = ss_x.masked_fill(ss_x < self.tol,0) g = g.masked_fill(ss_y < self.tol,0) vv = vv.masked_fill(ss_y < self.tol,0) vv[g<0]=ss_y[g<0] g = F.relu(g) vv = vv.masked_fill(vv < self.tol, self.tol) g_all.append(g) vv_all.append(vv) return g_all, vv_all def refparams_vecgsm(self, org): ssarr, l_arr, cu_arr = [], [], [] for i in range(len(self.subbands)): sub=self.subbands[i]-1 y=org[sub] M = self.M newsizeX=int(np.floor(y.shape[2]/M)*M) newsizeY=int(np.floor(y.shape[3]/M)*M) y=y[:,:,:newsizeX,:newsizeY] B,C,H,W = y.shape temp=[] for j in range(M): for k in range(M): temp.append(y[:,:,k:H-(M-k)+1, j:W-(M-j)+1].reshape(B,C,-1)) temp = torch.stack(temp,dim=3) mcu = torch.mean(temp,dim=2).unsqueeze(2).repeat(1,1,temp.shape[2],1) cu=torch.matmul((temp-mcu).permute(0,1,3,2),temp-mcu)/temp.shape[2] temp=[] for j in range(M): for k in range(M): temp.append(y[:,:,k:H+1:M, j:W+1:M].reshape(B,C,-1)) temp = torch.stack(temp,dim=2) ss=torch.matmul(torch.pinverse(cu),temp) # ss = torch.matmul(torch.pinverse(cu),temp) ss=torch.sum(ss*temp,dim=2)/(M*M) ss=ss.reshape(B,C,H//M,W//M) v,_ = torch.symeig(cu,eigenvectors=True) l_arr.append(v) ssarr.append(ss) cu_arr.append(cu) return ssarr, l_arr, cu_arr def vif(self, x, y): sp_x = SteerablePyramidSpace(x, height=self.level, order=self.ori, channels=self.channels)[::-1] sp_y = SteerablePyramidSpace(y, height=self.level, order=self.ori, channels=self.channels)[::-1] g_all, vv_all = self.vifsub_est_M(sp_y, sp_x) ss_arr, l_arr, cu_arr = self.refparams_vecgsm(sp_y) num, den = [], [] for i in range(len(self.subbands)): sub=self.subbands[i] g=g_all[i] vv=vv_all[i] ss=ss_arr[i] lamda = l_arr[i] neigvals=lamda.shape[2] lev=np.ceil((sub-1)/6) winsize=2**lev+1 offset=(winsize-1)/2 offset=int(np.ceil(offset/self.M)) _,_,H,W = g.shape g= g[:,:,offset:H-offset,offset:W-offset] vv=vv[:,:,offset:H-offset,offset:W-offset] ss=ss[:,:,offset:H-offset,offset:W-offset] temp1=0 temp2=0 for j in range(neigvals): cc = lamda[:,:,j].unsqueeze(2).unsqueeze(3) temp1=temp1+torch.sum(torch.log2(1+g*g*ss*cc/(vv+self.sigma_nsq)),dim=[2,3]) temp2=temp2+torch.sum(torch.log2(1+ss*cc/(self.sigma_nsq)),dim=[2,3]) num.append(temp1.mean(1)) den.append(temp2.mean(1)) return torch.stack(num,dim=1).sum(1)/(torch.stack(den,dim=1).sum(1)+1e-12) def forward(self, y, x, as_loss=True): assert x.shape == y.shape x = x * 255 y = y * 255 if as_loss: score = self.vif(x, y) return 1 - score.mean() else: with torch.no_grad(): score = self.vif(x, y) return score if __name__ == '__main__': from PIL import Image import argparse from utils import prepare_image parser = argparse.ArgumentParser() parser.add_argument('--ref', type=str, default='images/r0.png') parser.add_argument('--dist', type=str, default='images/r1.png') args = parser.parse_args() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ref = prepare_image(Image.open(args.ref).convert("L"),repeatNum=1).to(device) dist = prepare_image(Image.open(args.dist).convert("L"),repeatNum=1).to(device) dist.requires_grad_(True) model = VIF(channels=1) score = model(dist, ref, as_loss=False) print('score: %.4f' % score.item()) # score: 0.1804
tests/test_apis/test_utils.py
hongxuenong/mmocr
2,261
11191795
# Copyright (c) OpenMMLab. All rights reserved. import copy import os import pytest from mmcv import Config from mmocr.apis.utils import (disable_text_recog_aug_test, replace_image_to_tensor) @pytest.mark.parametrize('cfg_file', [ '../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py', ]) def test_disable_text_recog_aug_test(cfg_file): tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) config_file = os.path.join(tmp_dir, cfg_file) cfg = Config.fromfile(config_file) test = cfg.data.test.datasets[0] # cfg.data.test.type is 'OCRDataset' cfg1 = copy.deepcopy(cfg) test1 = copy.deepcopy(test) test1.pipeline = cfg1.data.test.pipeline cfg1.data.test = test1 cfg1 = disable_text_recog_aug_test(cfg1, set_types=['test']) assert cfg1.data.test.pipeline[1].type != 'MultiRotateAugOCR' # cfg.data.test.type is 'UniformConcatDataset' # and cfg.data.test.pipeline is list[dict] cfg2 = copy.deepcopy(cfg) test2 = copy.deepcopy(test) test2.pipeline = cfg2.data.test.pipeline cfg2.data.test.datasets = [test2] cfg2 = disable_text_recog_aug_test(cfg2, set_types=['test']) assert cfg2.data.test.pipeline[1].type != 'MultiRotateAugOCR' assert cfg2.data.test.datasets[0].pipeline[1].type != 'MultiRotateAugOCR' # cfg.data.test.type is 'ConcatDataset' cfg3 = copy.deepcopy(cfg) test3 = copy.deepcopy(test) test3.pipeline = cfg3.data.test.pipeline cfg3.data.test = Config(dict(type='ConcatDataset', datasets=[test3])) cfg3 = disable_text_recog_aug_test(cfg3, set_types=['test']) assert cfg3.data.test.datasets[0].pipeline[1].type != 'MultiRotateAugOCR' # cfg.data.test.type is 'UniformConcatDataset' # and cfg.data.test.pipeline is list[list[dict]] cfg4 = copy.deepcopy(cfg) test4 = copy.deepcopy(test) test4.pipeline = cfg4.data.test.pipeline cfg4.data.test.datasets = [[test4], [test]] cfg4.data.test.pipeline = [ cfg4.data.test.pipeline, cfg4.data.test.pipeline ] cfg4 = disable_text_recog_aug_test(cfg4, set_types=['test']) assert cfg4.data.test.datasets[0][0].pipeline[1].type != \ 'MultiRotateAugOCR' # cfg.data.test.type is 'UniformConcatDataset' # and cfg.data.test.pipeline is None cfg5 = copy.deepcopy(cfg) test5 = copy.deepcopy(test) test5.pipeline = copy.deepcopy(cfg5.data.test.pipeline) cfg5.data.test.datasets = [test5] cfg5.data.test.pipeline = None cfg5 = disable_text_recog_aug_test(cfg5, set_types=['test']) assert cfg5.data.test.datasets[0].pipeline[1].type != 'MultiRotateAugOCR' @pytest.mark.parametrize('cfg_file', [ '../configs/textdet/psenet/psenet_r50_fpnf_600e_ctw1500.py', ]) def test_replace_image_to_tensor(cfg_file): tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) config_file = os.path.join(tmp_dir, cfg_file) cfg = Config.fromfile(config_file) test = cfg.data.test.datasets[0] # cfg.data.test.pipeline is list[dict] # and cfg.data.test.datasets is list[dict] cfg1 = copy.deepcopy(cfg) test1 = copy.deepcopy(test) test1.pipeline = copy.deepcopy(cfg.data.test.pipeline) cfg1.data.test.datasets = [test1] cfg1 = replace_image_to_tensor(cfg1, set_types=['test']) assert cfg1.data.test.pipeline[1]['transforms'][3][ 'type'] == 'DefaultFormatBundle' assert cfg1.data.test.datasets[0].pipeline[1]['transforms'][3][ 'type'] == 'DefaultFormatBundle' # cfg.data.test.pipeline is list[list[dict]] # and cfg.data.test.datasets is list[list[dict]] cfg2 = copy.deepcopy(cfg) test2 = copy.deepcopy(test) test2.pipeline = copy.deepcopy(cfg.data.test.pipeline) cfg2.data.test.datasets = [[test2], [test2]] cfg2.data.test.pipeline = [ cfg2.data.test.pipeline, cfg2.data.test.pipeline ] cfg2 = replace_image_to_tensor(cfg2, set_types=['test']) assert cfg2.data.test.pipeline[0][1]['transforms'][3][ 'type'] == 'DefaultFormatBundle' assert cfg2.data.test.datasets[0][0].pipeline[1]['transforms'][3][ 'type'] == 'DefaultFormatBundle'
testcases/ch2o_tests/node/Concat.py
vermashresth/chainer-compiler
116
11191796
# coding: utf-8 import chainer import chainer.functions as F class ConcatTuple(chainer.Chain): def forward(self, x, y): return F.concat((x, y)) class ConcatList(chainer.Chain): def forward(self, x, y): return F.concat([x, y]) # ====================================== from chainer_compiler import ch2o import numpy as np if __name__ == '__main__': v = np.random.rand(7, 4, 2).astype(np.float32) w = np.random.rand(7, 3, 2).astype(np.float32) ch2o.generate_testcase(ConcatTuple, [v, w]) ch2o.generate_testcase(ConcatList, [v, w], subname='list')
ghidra_9.0/Ghidra/Features/Python/data/jython-2.7.1/Lib/_fsum.py
ChristopherMorrison/ghidra
577
11191868
#!/usr/bin/env python from sys import float_info import math mant_dig = float_info.mant_dig etiny = float_info.min_exp - mant_dig def fsum(iterable): """Full precision summation. Compute sum(iterable) without any intermediate accumulation of error. Based on the 'lsum' function at http://code.activestate.com/recipes/393090/ """ tmant, texp = 0, 0 for x in iterable: mant, exp = math.frexp(x) mant, exp = int(math.ldexp(mant, mant_dig)), exp - mant_dig if texp > exp: tmant <<= texp-exp texp = exp else: mant <<= exp-texp tmant += mant # Round tmant * 2**texp to a float. The original recipe # used float(str(tmant)) * 2.0**texp for this, but that's # a little unsafe because str -> float conversion can't be # relied upon to do correct rounding on all platforms. tail = max(len(bin(abs(tmant)))-2 - mant_dig, etiny - texp) if tail > 0: h = 1 << (tail-1) tmant = tmant // (2*h) + bool(tmant & h and tmant & 3*h-1) texp += tail return math.ldexp(tmant, texp)
src/genie/libs/parser/junos/tests/ShowInterfacesDescriptions/cli/equal/golden_output2_expected.py
balmasea/genieparser
204
11191901
expected_output = { 'interface-information':{ 'physical-interface':[ { 'name':'ge-0/0/0', 'admin-status':'up', 'oper-status':'up', 'description':'none/100G/in/hktGCS002_ge-0/0/0 more description' } ] } }
scripts/timing/core_domain.py
wetgi/lagom
109
11191931
<gh_stars>100-1000 class SomeOtherThingAsAsingleton: def work(self): return 1 class SomeService: def __init__(self, other: SomeOtherThingAsAsingleton): self.other = other def do_it(self): return self.other.work() class AThingIMightNeed: service: SomeService def __init__(self, service: SomeService): self.service = service def do_it(self): return self.service.do_it()
tools/update_feed.py
mubashshirjamal/code
1,582
11191949
# -*- coding: utf-8 -*- import json from datetime import datetime from vilya.libs.rdstore import rds from vilya.models.utils import ( CJsonEncoder, ) from vilya.models.feed import ( get_user_feed as get_user_feed_v2, get_user_inbox as get_user_inbox_v2, get_public_feed as get_public_feed_v2, get_team_feed as get_team_feed_v2, ) from vilya.models.team import Team # update feed data from v1 to v2 MAX_ACTIONS_COUNT = 1009 # Happy Number RDS_USER_INBOX_KEY = 'feed:private:user:v1:%s' RDS_USER_FEED_KEY = 'feed:public:user:v1:%s' RDS_PUBLIC_FEED_KEY = 'feed:public:everyone:v1' RDS_TEAM_FEED_KEY = 'feed:public:team:v1:%s' class Feed(object): def __init__(self, db_key): self.db_key = db_key def __repr__(self): return '%s (%s)' % (self.__class__, self.db_key) @classmethod def get(cls, db_key): return cls(db_key=db_key) def add_action(self, action_data): data = json.dumps(action_data, cls=CJsonEncoder) rds.lpush(self.db_key, data) rds.ltrim(self.db_key, 0, MAX_ACTIONS_COUNT) def get_actions(self): data = rds.lrange(self.db_key, 0, MAX_ACTIONS_COUNT) return [json.loads(d) for d in data] def get_user_inbox(user): return Feed.get(db_key=RDS_USER_INBOX_KEY % user) def get_user_feed(user): return Feed.get(db_key=RDS_USER_FEED_KEY % user) def get_public_feed(): return Feed.get(db_key=RDS_PUBLIC_FEED_KEY) def get_team_feed(team): return Feed.get(db_key=RDS_TEAM_FEED_KEY % team) def main(): public_feed = get_public_feed() public_feed_v2 = get_public_feed_v2() feeds = public_feed.get_actions() for feed in feeds: date = datetime.strptime(feed['date'], "%Y-%m-%d %H:%M:%S") feed['date'] = date public_feed_v2.add_action(feed) print "updated %s public feeds." % len(feeds) teams = Team.gets() for team in teams: team_feed = get_team_feed(team.id) team_feed_v2 = get_team_feed_v2(team.id) feeds = team_feed.get_actions() for feed in feeds: date = datetime.strptime(feed['date'], "%Y-%m-%d %H:%M:%S") feed['date'] = date team_feed_v2.add_action(feed) print "updated %s team %s feeds." % (len(feeds), team.name) user_inbox_keys = rds.keys('feed:private:user:v1:*') for key in user_inbox_keys: _, _, _, _, user = key.split(':') user_feed = get_user_inbox(user) user_feed_v2 = get_user_inbox_v2(user) feeds = user_feed.get_actions() for feed in feeds: date = datetime.strptime(feed['date'], "%Y-%m-%d %H:%M:%S") feed['date'] = date user_feed_v2.add_action(feed) print "updated %s user %s inbox feeds." % (len(feeds), user) user_feed_keys = rds.keys('feed:public:user:v1:*') for key in user_feed_keys: _, _, _, _, user = key.split(':') user_feed = get_user_feed(user) user_feed_v2 = get_user_feed_v2(user) feeds = user_feed.get_actions() for feed in feeds: date = datetime.strptime(feed['date'], "%Y-%m-%d %H:%M:%S") feed['date'] = date user_feed_v2.add_action(feed) print "updated %s user %s feeds." % (len(feeds), user) if __name__ == "__main__": main()
python/scrape_for_events.py
victorromeo/uTensor
1,047
11191993
<reponame>victorromeo/uTensor import numpy as np import glob import re from collections import defaultdict from pprint import pprint def mHash_fnv1a(mStr): np.seterr(over='ignore') val_32_const = np.uint32(0x811c9dc5) prime_32_const = np.uint32(0x1000193) value = val_32_const for c in mStr: value = (value ^ np.uint32(ord(c))) * prime_32_const return value def get_target_files(): x = glob.glob('**/*.[ch]pp', recursive=True) return x def get_event_map(): tgts = get_target_files() event_names = [] event_map = defaultdict(list) for f in tgts: with open(f) as fp: for line in fp: m = re.match("\s*DECLARE_\w+\((\w+)\)", line) if m: #print(m) event_names.append(m.group(1)) for evt in event_names: x = mHash_fnv1a(evt) event_map[x].append(evt) pprint(event_map) return event_map if __name__ == "__main__": x = get_event_map()
5-minute-coding-interview-bootcamp-basic-algorithms/dfs.py
dapopov-st/python-youtube-code
262
11191998
<filename>5-minute-coding-interview-bootcamp-basic-algorithms/dfs.py graph = {"A": set(["B", "C"]), "B": set(["A", "D", "E"]), "C": set(["A", "F", "G"]), "D": set(["B"]), "E": set(["B"]), "F": set(["C"]), 'G': set(["C"])} def dfs(graph, start_node): explored, fronteir = set(), [start_node] while fronteir: node = fronteir.pop() if node not in explored: explored.update(node) print(node) fronteir.extend(graph[node] - explored) return dfs(graph, "A")
Py Apple Dynamics V6.5/Py Apple Dynamics V6.5 固件及程序/V6.5 源代码/config.py
ToanTech/py-apple-dynamics
125
11192044
#=============Wifi设置============= #do_connect_STA('Toan','Toan123456') #WIFI账号密码 do_connect_AP() #=============步态参数============= Ts=1 #周期 faai=0.5 #占空比 pit_max_ang=20 #设定俯仰轴最大限制角度 rol_max_ang=20 #设定滚转轴最大限制角度 xs_max=80 #设定最大x轴移动角度
cookietemple/util/dict_util.py
e2jk/cookietemple
117
11192049
from collections.abc import MutableMapping from contextlib import suppress def delete_keys_from_dict(dictionary: MutableMapping, keys: list) -> None: """ Deletes all key instances in an arbitrarily nested dictionary inplace :param dictionary: dictionary of which the keys are deleted :param keys: list of keys to delete """ for key in keys: with suppress(KeyError): del dictionary[key] for value in dictionary.values(): if isinstance(value, MutableMapping): delete_keys_from_dict(value, keys) def is_nested_dictionary(dictionary: dict) -> bool: """ Determines whether a dictionary is nested or not :param dictionary: dictionary to examine :return: True if dictionary is nested, false otherwise """ return any(isinstance(_, dict) for _ in dictionary.values())
docs/plasmapy_sphinx/utils.py
seanjunheng2/PlasmaPy
429
11192062
<reponame>seanjunheng2/PlasmaPy """ A utility package containing functions and variables to support development of the core functionality in `plasmapy_sphinx`. """ __all__ = [ "default_grouping_info", "find_mod_objs", "get_custom_grouping_info", "package_dir", "templates_dir", ] import inspect import os from collections import OrderedDict from importlib import import_module from sphinx.application import Sphinx from typing import Any, Dict package_dir = os.path.abspath(os.path.dirname(__file__)) """Absolute path to the `plasmapy_sphinx` package directory.""" templates_dir = os.path.join(package_dir, "templates") """Absolute path to the `plasmapy_sphinx` templates directory.""" default_grouping_info = OrderedDict( { "modules": {"title": "Sub-Packages & Modules"}, "classes": {"title": "Classes"}, "exceptions": {"title": "Exceptions"}, "warnings": {"title": "Warnings"}, "functions": {"title": "Functions"}, "variables": {"title": "Variables & Attributes"}, }, ) """ Dictionary containing information related to the default object groups used by the :rst:dir:`automodapi` and :rst:dir:`automodsumm` directives. Can be extend using the configuration value :confval:`automodapi_custom_groups`. """ def get_custom_grouping_info(app: Sphinx): """ Retrieve the custom groups dictionary defined by the configuration value :confval:`automodapi_custom_groups`. """ try: _info = app.config.automodapi_custom_groups except AttributeError: _info = {} return _info def find_mod_objs(modname: str, app: Sphinx = None) -> Dict[str, Dict[str, Any]]: """ Inspect the module ``modname`` for all the contained objects, sort for the object type (module, function, class, etc.), and return a dictionary containing object names, fully qualified names, and instances. Parameters ---------- modname : str Name of the module (e.g. ``"plasmapy_sphinx.utils'``) to be inspect. app : `~sphinx.application.Sphinx` Instance of the `Sphinx` application. Returns ------- mod_objs : Dict[str, Dict[str, List[Any]]] A dictionary containing names, qualified names, and objects instances of all the objects in ``modname`` sorted by their respective group (module, class, function, etc.) The first key of the dictionary represents the object type (modules, classes, functions, etc.). The second key is either ``"names"`` (list of all object short names), ``"qualnames"`` (list of all object qualified names), and ``"objs"`` (list of object instances). Examples -------- >>> find_mod_objs("plasmapy_sphinx.utils") { 'functions': { 'names': ['find_mod_objs', 'get_custom_grouping_info'], 'qualnames': [ 'plasmapy_sphinx.utils.find_mod_objs', 'plasmapy_sphinx.utils.get_custom_grouping_info', ], 'objs': [ <function plasmapy_sphinx.utils.find_mod_objs>, <function plasmapy_sphinx.utils.get_custom_grouping_info>, ] }, 'variables': { 'names': ['default_grouping_info', 'package_dir', 'templates_dir'], 'qualnames': [ 'plasmapy_sphinx.utils.default_grouping_info', 'plasmapy_sphinx.utils.package_dir', 'plasmapy_sphinx.utils.templates_dir', ], 'objs': [ OrderedDict(...), "/.../plasmapy_sphinx", "/.../plasmapy_sphinx/templates", ] } } Notes ----- If the module contains the ``__all__`` dunder, then the routine groups the objects specified in the dunder; otherwise, it will search the module's `globals`, minus any private or special members. The routing will then group the module objects in the following order... 1. Group any imported modules or packages. - Regardless of if ``__all__`` is defined, the routine will first search the module's `globals` for any imported modules or packages. - Any 3rd party modules are excluded unless specified in ``__all__``. - Any non-direct sub-modules are excluded unless specified in ``__all__``. 2. Custom groups defined by :confval:`automodapi_custom_groups` are then collected. 3. The remaining objects are grouped into the default groupds defined by :attr:`default_grouping_info`. """ if app is not None: if isinstance(app, Sphinx): cgroups_def = get_custom_grouping_info(app) else: # assuming dict for testing cgroups_def = app cgroups = set(cgroups_def) else: cgroups_def = {} cgroups = set() mod = import_module(modname) pkg_name = modname.split(".")[0] # define what to search pkg_names = {name for name in mod.__dict__.keys() if not name.startswith("_")} if hasattr(mod, "__all__"): no_all = False names_to_search = set(mod.__all__) else: no_all = True names_to_search = pkg_names # filter pkg_names for name in pkg_names.copy(): obj = getattr(mod, name) if not no_all and name in names_to_search: continue ismod = inspect.ismodule(obj) ispkg = ismod and obj.__package__ == obj.__name__ # remove test folders if ispkg and obj.__package__.split(".")[-1] == "tests": pkg_names.remove(name) continue # remove 3rd party objects if ismod and obj.__package__.split(".")[0] != pkg_name: pkg_names.remove(name) continue elif ( not ismod and hasattr(obj, "__module__") and obj.__module__.split(".")[0] != pkg_name ): # Note: this will miss ufuncs like numpy.sqrt since they do not have # a __module__ property pkg_names.remove(name) continue # remove non direct sub-pkgs and mods of modname if ismod: if not obj.__name__.startswith(modname): pkg_names.remove(name) continue else: nm = obj.__name__[len(modname) :].split(".") nm.remove("") if len(nm) != 1: pkg_names.remove(name) continue # find local modules first names_of_modules = set() for name in pkg_names.copy(): obj = getattr(mod, name) if inspect.ismodule(obj): names_of_modules.add(name) mod_objs = {"modules": {"names": []}} if len(names_of_modules) > 0: names_of_modules = names_of_modules mod_objs["modules"]["names"] = list(names_of_modules) names_to_search = names_to_search - names_of_modules # find and filter custom groups for name in cgroups: dunder = cgroups_def[name]["dunder"] if hasattr(mod, dunder): custom_names = set(getattr(mod, dunder)) else: continue if len(custom_names) > 0: mod_objs.update({name: {"names": list(custom_names)}}) names_to_search = names_to_search - custom_names # gather all remaining groups mod_objs.update( { "classes": {"names": []}, "exceptions": {"names": []}, "warnings": {"names": []}, "functions": {"names": []}, "variables": {"names": []}, } ) # type: Dict[str, Dict[str, Any]] for name in names_to_search: obj = getattr(mod, name) if inspect.isroutine(obj): # is a user-defined or built-in function mod_objs["functions"]["names"].append(name) elif inspect.isclass(obj): if issubclass(obj, Warning): mod_objs["warnings"]["names"].append(name) elif issubclass(obj, BaseException): mod_objs["exceptions"]["names"].append(name) else: mod_objs["classes"]["names"].append(name) else: mod_objs["variables"]["names"].append(name) # retrieve and defined qualnames and objs for obj_type in list(mod_objs): if len(mod_objs[obj_type]["names"]) == 0: del mod_objs[obj_type] continue mod_objs[obj_type].update({"qualnames": [], "objs": []}) for name in list(mod_objs[obj_type]["names"]): # Note: The 'qualname' is always constructed with 'name' so when # something like # # def func(...): # ... # # f2 = func # # is done, then the 'qualname' ends with 'f2' and not 'func'. # obj = getattr(mod, name) ismod = inspect.ismodule(obj) # ispkg = ismod and obj.__package__ == obj.__name__ if not ismod and no_all: # only allow local objects to be collected # - at this point modules & pkgs should have already been # filtered for direct sub-modules and pkgs if not hasattr(obj, "__module__"): # this would be a locally defined variable like # plasmapy.__citation__ pass elif not obj.__module__.startswith(pkg_name): # object not from package being documented mod_objs[obj_type]["names"].remove(name) continue if ismod: obj_renamed = obj.__name__.split(".")[-1] != name elif not hasattr(obj, "__name__"): obj_renamed = False else: obj_renamed = obj.__name__ != name if ismod and obj_renamed: qualname = f"{obj.__package__}.{name}" elif ismod and not obj_renamed: qualname = obj.__name__ elif obj_renamed or not hasattr(obj, "__module__"): # can not tell if the object was renamed in modname or in # obj.__module__, so assumed it happened in modname qualname = f"{modname}.{name}" elif obj.__module__.split(".")[0] != pkg_name: # this will catch scenarios like typing alias definitions where # __module__ == typing even when defined locally qualname = f"{modname}.{name}" else: qualname = f"{obj.__module__}.{name}" mod_objs[obj_type]["qualnames"].append(qualname) mod_objs[obj_type]["objs"].append(obj) # sort lists names = sorted(mod_objs[obj_type]["names"].copy()) qualnames = [] objs = [] for name in names: index = mod_objs[obj_type]["names"].index(name) qualnames.append(mod_objs[obj_type]["qualnames"][index]) objs.append(mod_objs[obj_type]["objs"][index]) mod_objs[obj_type] = {"names": names, "qualnames": qualnames, "objs": objs} return mod_objs
nalaf/learning/crfsuite.py
ashish-narwal/nalaf
103
11192111
<reponame>ashish-narwal/nalaf<filename>nalaf/learning/crfsuite.py<gh_stars>100-1000 import warnings import pycrfsuite from nalaf.structures.data import Label class PyCRFSuite: def __init__(self, model_file=None): self.model_file = model_file if self.model_file is None: self.tagger = None else: self.tagger = pycrfsuite.Tagger() self.tagger.open(self.model_file) def close(self): if self.tagger is not None: self.tagger.close() def __del__(self): self.close() def __exit__(self, exc_type, exc_value, traceback): self.close() def annotate(self, corpus, class_id): """ :type corpus: nalaf.structures.data.Dataset :type class_id: str ~ to annotate with """ for sentence in corpus.sentences(): labels = self.tagger.tag(pycrfsuite.ItemSequence(token.features for token in sentence)) for token_index in range(len(sentence)): label = labels[token_index] try: sentence[token_index].predicted_labels = [Label(label, self.tagger.marginal(label, token_index))] except Exception as e: raise Exception("Exception when assining the predicted labels; likely a Multi-Thread problem", e) corpus.form_predicted_annotations(class_id) @staticmethod def train(data, model_file, params=None): """ :type data: nalaf.structures.data.Dataset :type model_file: str ~ filename (from local file system) to save trained model to. If None, no model is saved. """ trainer = pycrfsuite.Trainer() try: if params is not None: trainer.set_params(params) for sentence in data.sentences(): trainer.append(pycrfsuite.ItemSequence([token.features for token in sentence]), [token.original_labels[0].value for token in sentence]) # The CRFSuite library handles the "pickling" of the file; saves the model here trainer.train(model_file) finally: trainer.clear() @staticmethod def tag(data, model_file, class_id): warnings.warn('Use non-static `annotate` instead', DeprecationWarning) """ :type data: nalaf.structures.data.Dataset :type model_file: str """ tagger = pycrfsuite.Tagger() try: tagger.open(model_file) for sentence in data.sentences(): labels = tagger.tag(pycrfsuite.ItemSequence(token.features for token in sentence)) for token_index in range(len(sentence)): label = labels[token_index] sentence[token_index].predicted_labels = [Label(label, tagger.marginal(label, token_index))] data.form_predicted_annotations(class_id) finally: tagger.close()
zproc/state/server.py
pycampers/zproc
106
11192116
<gh_stars>100-1000 import os import struct import time from bisect import bisect from collections import defaultdict from contextlib import contextmanager from copy import deepcopy from typing import Any, Dict, List, Tuple import zmq from zproc import serializer from zproc.consts import Cmds, ServerMeta from zproc.consts import Msgs RequestType = Dict[Msgs, Any] class StateServer: identity: bytes namespace: bytes state_map: Dict[bytes, dict] state: dict history: Dict[bytes, Tuple[List[float], List[List[bytes]]]] pending: Dict[bytes, Tuple[bytes, bytes, bool, float]] def __init__( self, state_router: zmq.Socket, watch_router: zmq.Socket, server_meta: ServerMeta, ) -> None: self.state_router = state_router self.watch_router = watch_router self.server_meta = server_meta self.dispatch_dict = { Cmds.run_fn_atomically: self.run_fn_atomically, Cmds.run_dict_method: self.run_dict_method, Cmds.get_state: self.send_state, Cmds.set_state: self.set_state, Cmds.get_server_meta: self.get_server_meta, Cmds.ping: self.ping, Cmds.time: self.time, } self.state_map = defaultdict(dict) self.history = defaultdict(lambda: ([], [])) self.pending = {} def send_state(self, _): """reply with state to the current client""" self.reply(self.state) def get_server_meta(self, _): self.reply(self.server_meta) def ping(self, request): self.reply((request[Msgs.info], os.getpid())) def time(self, _): self.reply(time.time()) def set_state(self, request): new = request[Msgs.info] with self.mutate_safely(): self.state_map[self.namespace] = new self.reply(True) def run_dict_method(self, request): """Execute a method on the state ``dict`` and reply with the result.""" state_method_name, args, kwargs = ( request[Msgs.info], request[Msgs.args], request[Msgs.kwargs], ) # print(method_name, args, kwargs) with self.mutate_safely(): self.reply(getattr(self.state, state_method_name)(*args, **kwargs)) def run_fn_atomically(self, request): """Execute a function, atomically and reply with the result.""" fn = serializer.loads_fn(request[Msgs.info]) args, kwargs = request[Msgs.args], request[Msgs.kwargs] with self.mutate_safely(): self.reply(fn(self.state, *args, **kwargs)) def recv_request(self): self.identity, request = self.state_router.recv_multipart() request = serializer.loads(request) try: self.namespace = request[Msgs.namespace] except KeyError: pass else: self.state = self.state_map[self.namespace] self.dispatch_dict[request[Msgs.cmd]](request) def reply(self, response): # print("server rep:", self.identity, response, time.time()) self.state_router.send_multipart([self.identity, serializer.dumps(response)]) @contextmanager def mutate_safely(self): old = deepcopy(self.state) stamp = time.time() try: yield except Exception: self.state = self.state_map[self.namespace] = old raise slot = self.history[self.namespace] slot[0].append(stamp) slot[1].append( [ self.identity, serializer.dumps((old, self.state, stamp)), self.state == old, ] ) self.resolve_pending() def resolve_watcher( self, w_ident: bytes, s_ident: bytes, namespace: bytes, identical_not_okay: bool, only_after: float, ) -> bool: timestamps, history = self.history[namespace] index = bisect(timestamps, only_after) - 1 while True: index += 1 try: ident, update, identical = history[index] except IndexError: break if ident == s_ident: continue if identical_not_okay and identical: continue self.watch_router.send_multipart([w_ident, update, bytes(identical)]) return True return False def resolve_pending(self): pending = self.pending if not pending: return for w_ident in list(pending): if self.resolve_watcher(w_ident, *pending[w_ident]): del pending[w_ident] def recv_watcher(self): w_ident, s_ident, namespace, identical_okay, only_after = ( self.watch_router.recv_multipart() ) self.pending[w_ident] = ( s_ident, namespace, not identical_okay, *struct.unpack("d", only_after), ) def reset_internal_state(self): self.identity = None self.namespace = None self.state = None def tick(self): self.resolve_pending() for sock in zmq.select([self.watch_router, self.state_router], [], [])[0]: if sock is self.state_router: self.recv_request() elif sock is self.watch_router: self.recv_watcher()
mmwave/tracking/__init__.py
gimac/OpenRadar
275
11192122
from .ekf import *
job_report/main.py
DazEB2/SimplePyScripts
117
11192123
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # p12 to pem: # C:\Users\ipetrash>openssl pkcs12 -in ipetrash.p12 -out ipetrash.pem -nodes -clcerts # Enter Import Password: # MAC verified OK # OR: # OpenSSL_example\p12_to_pem.py PEM_FILE_NAME = 'ipetrash.pem' if __name__ == '__main__': from job_report.utils import get_report_persons_info, get_person_info report_dict = get_report_persons_info(PEM_FILE_NAME) # Вывести всех сотрудников, отсортировав их по количестве переработанных часов from itertools import chain person_list = set(chain(*report_dict.values())) # Проверка того, что сортировка работает (в принципе, думаю можно удалить) assert sorted(person_list, key=lambda x: x.deviation_of_time) == \ sorted(person_list, key=lambda x: x.deviation_of_time.total) sorted_person_list = sorted(person_list, key=lambda x: x.deviation_of_time, reverse=True) for i, person in enumerate(sorted_person_list, 1): print('{:>3}. {} {}'.format(i, person.full_name, person.deviation_of_time)) print() person = get_person_info(PEM_FILE_NAME, second_name='Петраш', first_name='Илья', report_dict=report_dict) if person: print('#{}. {} {}'.format(sorted_person_list.index(person) + 1, person.full_name, person.deviation_of_time))
tests/sparseml/tensorflow_v1/optim/test_manager.py
clementpoiret/sparseml
922
11192151
<reponame>clementpoiret/sparseml # Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Callable import pytest from sparseml.tensorflow_v1.optim import Modifier, ScheduledModifierManager from sparseml.tensorflow_v1.utils import tf_compat from tests.sparseml.tensorflow_v1.optim.test_modifier import ( ModifierTest, ScheduledModifierImpl, conv_graph_lambda, mlp_graph_lambda, ) @pytest.mark.skipif( os.getenv("NM_ML_SKIP_TENSORFLOW_TESTS", False), reason="Skipping tensorflow_v1 tests", ) @pytest.mark.parametrize( "modifier_lambda", [lambda: ScheduledModifierManager([ScheduledModifierImpl()])], scope="function", ) @pytest.mark.parametrize( "graph_lambda", [mlp_graph_lambda, conv_graph_lambda], scope="function" ) @pytest.mark.parametrize("steps_per_epoch", [100], scope="function") class TestManagerImpl(ModifierTest): def test_yaml( self, modifier_lambda: Callable[[], Modifier], graph_lambda: Callable[[], tf_compat.Graph], steps_per_epoch: int, ): # no yaml tests for manager return @pytest.mark.skipif( os.getenv("NM_ML_SKIP_TENSORFLOW_TESTS", False), reason="Skipping tensorflow_v1 tests", ) def test_manager_yaml(): manager = ScheduledModifierManager([ScheduledModifierImpl()]) yaml_str = str(manager) assert yaml_str
experiments/ekfloc.py
VladPodilnyk/Kalman-and-Bayesian-Filters-in-Python
12,315
11192170
<filename>experiments/ekfloc.py # -*- coding: utf-8 -*- """ Created on Sun May 24 08:39:36 2015 @author: Roger """ #x = x x' y y' theta from math import cos, sin, sqrt, atan2 import numpy as np from numpy import array, dot from numpy.linalg import pinv def print_x(x): print(x[0, 0], x[1, 0], np.degrees(x[2, 0])) def control_update(x, u, dt): """ x is [x, y, hdg], u is [vel, omega] """ v = u[0] w = u[1] if w == 0: # approximate straight line with huge radius w = 1.e-30 r = v/w # radius return x + np.array([[-r*sin(x[2]) + r*sin(x[2] + w*dt)], [ r*cos(x[2]) - r*cos(x[2] + w*dt)], [w*dt]]) a1 = 0.001 a2 = 0.001 a3 = 0.001 a4 = 0.001 sigma_r = 0.1 sigma_h = a_error = np.radians(1) sigma_s = 0.00001 def normalize_angle(x, index): if x[index] > np.pi: x[index] -= 2*np.pi if x[index] < -np.pi: x[index] = 2*np.pi def ekfloc_predict(x, P, u, dt): h = x[2] v = u[0] w = u[1] if w == 0: # approximate straight line with huge radius w = 1.e-30 r = v/w # radius sinh = sin(h) sinhwdt = sin(h + w*dt) cosh = cos(h) coshwdt = cos(h + w*dt) G = array( [[1, 0, -r*cosh + r*coshwdt], [0, 1, -r*sinh + r*sinhwdt], [0, 0, 1]]) V = array( [[(-sinh + sinhwdt)/w, v*(sin(h)-sinhwdt)/(w**2) + v*coshwdt*dt/w], [(cosh - coshwdt)/w, -v*(cosh-coshwdt)/(w**2) + v*sinhwdt*dt/w], [0, dt]]) # covariance of motion noise in control space M = array([[a1*v**2 + a2*w**2, 0], [0, a3*v**2 + a4*w**2]]) x = x + array([[-r*sinh + r*sinhwdt], [r*cosh - r*coshwdt], [w*dt]]) P = dot(G, P).dot(G.T) + dot(V, M).dot(V.T) return x, P def ekfloc(x, P, u, zs, c, m, dt): h = x[2] v = u[0] w = u[1] if w == 0: # approximate straight line with huge radius w = 1.e-30 r = v/w # radius sinh = sin(h) sinhwdt = sin(h + w*dt) cosh = cos(h) coshwdt = cos(h + w*dt) F = array( [[1, 0, -r*cosh + r*coshwdt], [0, 1, -r*sinh + r*sinhwdt], [0, 0, 1]]) V = array( [[(-sinh + sinhwdt)/w, v*(sin(h)-sinhwdt)/(w**2) + v*coshwdt*dt/w], [(cosh - coshwdt)/w, -v*(cosh-coshwdt)/(w**2) + v*sinhwdt*dt/w], [0, dt]]) # covariance of motion noise in control space M = array([[a1*v**2 + a2*w**2, 0], [0, a3*v**2 + a4*w**2]]) x = x + array([[-r*sinh + r*sinhwdt], [r*cosh - r*coshwdt], [w*dt]]) P = dot(F, P).dot(F.T) + dot(V, M).dot(V.T) R = np.diag([sigma_r**2, sigma_h**2, sigma_s**2]) for i, z in enumerate(zs): j = c[i] q = (m[j][0] - x[0, 0])**2 + (m[j][1] - x[1, 0])**2 z_est = array([sqrt(q), atan2(m[j][1] - x[1, 0], m[j][0] - x[0, 0]) - x[2, 0], 0]) H = array( [[-(m[j, 0] - x[0, 0]) / sqrt(q), -(m[j, 1] - x[1, 0]) / sqrt(q), 0], [ (m[j, 1] - x[1, 0]) / q, -(m[j, 0] - x[0, 0]) / q, -1], [0, 0, 0]]) S = dot(H, P).dot(H.T) + R #print('S', S) K = dot(P, H.T).dot(pinv(S)) y = z - z_est normalize_angle(y, 1) y = array([y]).T #print('y', y) x = x + dot(K, y) I = np.eye(P.shape[0]) I_KH = I - dot(K, H) #print('i', I_KH) P = dot(I_KH, P).dot(I_KH.T) + dot(K, R).dot(K.T) return x, P def ekfloc2(x, P, u, zs, c, m, dt): h = x[2] v = u[0] w = u[1] if w == 0: # approximate straight line with huge radius w = 1.e-30 r = v/w # radius sinh = sin(h) sinhwdt = sin(h + w*dt) cosh = cos(h) coshwdt = cos(h + w*dt) F = array( [[1, 0, -r*cosh + r*coshwdt], [0, 1, -r*sinh + r*sinhwdt], [0, 0, 1]]) V = array( [[(-sinh + sinhwdt)/w, v*(sin(h)-sinhwdt)/(w**2) + v*coshwdt*dt/w], [(cosh - coshwdt)/w, -v*(cosh-coshwdt)/(w**2) + v*sinhwdt*dt/w], [0, dt]]) # covariance of motion noise in control space M = array([[a1*v**2 + a2*w**2, 0], [0, a3*v**2 + a4*w**2]]) x = x + array([[-r*sinh + r*sinhwdt], [r*cosh - r*coshwdt], [w*dt]]) P = dot(F, P).dot(F.T) + dot(V, M).dot(V.T) R = np.diag([sigma_r**2, sigma_h**2]) for i, z in enumerate(zs): j = c[i] q = (m[j][0] - x[0, 0])**2 + (m[j][1] - x[1, 0])**2 z_est = array([sqrt(q), atan2(m[j][1] - x[1, 0], m[j][0] - x[0, 0]) - x[2, 0]]) H = array( [[-(m[j, 0] - x[0, 0]) / sqrt(q), -(m[j, 1] - x[1, 0]) / sqrt(q), 0], [ (m[j, 1] - x[1, 0]) / q, -(m[j, 0] - x[0, 0]) / q, -1]]) S = dot(H, P).dot(H.T) + R #print('S', S) K = dot(P, H.T).dot(pinv(S)) y = z - z_est normalize_angle(y, 1) y = array([y]).T #print('y', y) x = x + dot(K, y) print('x', x) I = np.eye(P.shape[0]) I_KH = I - dot(K, H) P = dot(I_KH, P).dot(I_KH.T) + dot(K, R).dot(K.T) return x, P m = array([[5, 5], [7,6], [4, 8]]) x = array([[2, 6, .3]]).T u = array([.5, .01]) P = np.diag([1., 1., 1.]) c = [0, 1, 2] import matplotlib.pyplot as plt from numpy.random import randn from filterpy.common import plot_covariance_ellipse from filterpy.kalman import KalmanFilter plt.figure() plt.plot(m[:, 0], m[:, 1], 'o') plt.plot(x[0], x[1], 'x', color='b', ms=20) xp = x.copy() dt = 0.1 np.random.seed(1234) for i in range(1000): xp, _ = ekfloc_predict(xp, P, u, dt) plt.plot(xp[0], xp[1], 'x', color='g', ms=20) if i % 10 == 0: zs = [] for lmark in m: d = sqrt((lmark[0] - xp[0, 0])**2 + (lmark[1] - xp[1, 0])**2) + randn()*sigma_r a = atan2(lmark[1] - xp[1, 0], lmark[0] - xp[0, 0]) - xp[2, 0] + randn()*sigma_h zs.append(np.array([d, a])) x, P = ekfloc2(x, P, u, zs, c, m, dt*10) if P[0,0] < 10000: plot_covariance_ellipse((x[0,0], x[1,0]), P[0:2, 0:2], std=2, facecolor='g', alpha=0.3) plt.plot(x[0], x[1], 'x', color='r') plt.axis('equal') plt.show()
adversarial_mnist.py
goodcq/zhihuzhuanlan
101
11192180
from __future__ import absolute_import #from __future__ import print_function import os import struct from array import array from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.regularizers import l2, l1 from keras.constraints import maxnorm from keras.optimizers import SGD, Adam, RMSprop, Adagrad from keras.utils import np_utils, generic_utils import numpy as np import matplotlib.pyplot as plt class MNIST(object): def __init__(self, path='.'): self.path = path self.test_img_fname = 't10k-images-idx3-ubyte' self.test_lbl_fname = 't10k-labels-idx1-ubyte' self.train_img_fname = 'train-images-idx3-ubyte' self.train_lbl_fname = 'train-labels-idx1-ubyte' self.test_images = [] self.test_labels = [] self.train_images = [] self.train_labels = [] def load_testing(self): ims, labels = self.load(os.path.join(self.path, self.test_img_fname), os.path.join(self.path, self.test_lbl_fname)) self.test_images = np.array(ims) self.test_labels = np.array(labels) return ims, labels def load_training(self): ims, labels = self.load(os.path.join(self.path, self.train_img_fname), os.path.join(self.path, self.train_lbl_fname)) self.train_images = np.array(ims) self.train_labels = np.array(labels) np.random.seed(1337) np.random.shuffle(self.train_images) np.random.seed(1337) np.random.shuffle(self.train_labels) return ims, labels @classmethod def load(cls, path_img, path_lbl): with open(path_lbl, 'rb') as file: magic, size = struct.unpack(">II", file.read(8)) if magic != 2049: raise ValueError('Magic number mismatch, expected 2049,' 'got %d' % magic) labels = array("B", file.read()) with open(path_img, 'rb') as file: magic, size, rows, cols = struct.unpack(">IIII", file.read(16)) if magic != 2051: raise ValueError('Magic number mismatch, expected 2051,' 'got %d' % magic) image_data = array("B", file.read()) images = [] for i in xrange(size): images.append([0]*rows*cols) for i in xrange(size): images[i][:] = image_data[i*rows*cols : (i+1)*rows*cols] return images, labels def test(self): test_img, test_label = self.load_testing() train_img, train_label = self.load_training() assert len(test_img) == len(test_label) assert len(test_img) == 10000 assert len(train_img) == len(train_label) assert len(train_img) == 60000 print ("Showing num:" , train_label[0]) print (self.display(train_img[0])) print return True @classmethod def display(cls, img, width=28): render = '' for i in range(len(img)): if i % width == 0: render += '\n' if img[i] > 200: render += '1' else: render += '0' return render def image_generator(img, batch_size): dataset = np.zeros((64, 1, 28, 28)) for i in range(batch_size): dataset[i] = img + np.random.uniform(low=-0.1, high=0.1, size=(1, 28, 28)) return dataset def build_model(): nb_classes = 10 model = Sequential() model.add(Convolution2D(32, 3, 3, input_shape=(1,28,28))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(64, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(256, init='normal')) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes, init='normal')) model.add(Activation('softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd) return model def gen(X_train, Y_train, X_test, Y_test): batch_size = 64 nb_classes = 10 nb_epoch = 20 img = X_train[2] img = img.astype("float32").reshape((1,28,28)) label = Y_train[2] img /= 255.0 print 'label=' + str(label) plt.imshow(img.reshape((28,28)),cmap = plt.cm.gray) plt.show() model = build_model() model.load_weights('mnist_cnn') for iterator in range(200): ds = image_generator(img, 64) pred = model.predict(ds, batch_size=64) pred_label = np.argmax(pred, axis=1) flag = False for i in range(64): if pred_label[i] == label: choosed_img = ds[i] flag = True break if flag == False: print 'iter=' + str(iterator) + ", break" break else: img = choosed_img print 'iter=' + str(iterator) + ", label = " + str(label) if iterator == 50 or iterator == 100 or iterator == 150: plt.imshow(img.reshape((28,28)),cmap = plt.cm.gray) plt.show() print img plt.imshow(img.reshape((28,28)),cmap = plt.cm.gray) plt.show() # choose the best def gen2(X_train, Y_train, X_test, Y_test): batch_size = 64 nb_classes = 10 nb_epoch = 20 img = X_train[2] img = img.astype("float32").reshape((1,28,28)) label = Y_train[2] img /= 255.0 print 'label=' + str(label) model = build_model() model.load_weights('mnist_cnn') for iterator in range(1000): ds = image_generator(img, 64) pred = model.predict(ds, batch_size=64) pred_label = np.argmax(pred, axis=1) flag = False for i in range(64): if pred_label[i] != label: choosed_idx = i flag = True break if flag == False: print 'iter=' + str(iterator) + ", no change" img = ds[0] else: img = ds[choosed_idx] print 'iter=' + str(iterator) + ", label = " + str(pred_label[choosed_idx]) break plt.imshow(img.reshape((28,28)),cmap = plt.cm.gray) plt.show() def CNN(X_train, Y_train, X_test, Y_test): batch_size = 64 nb_classes = 10 nb_epoch = 20 X_train = X_train.reshape(60000, 1, 28, 28) X_test = X_test.reshape(10000, 1, 28, 28) X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train /= 255 X_test /= 255 print(X_train.shape, 'train samples') print(Y_train.shape, 'train labels') print(X_test.shape, 'test smaples') Y_train = np_utils.to_categorical(Y_train, nb_classes) Y_test = np_utils.to_categorical(Y_test, nb_classes) model = build_model() model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=30) score = model.evaluate(X_test, Y_test, batch_size=batch_size) model.save_weights('mnist_cnn') print('Test score:', score) if __name__ == "__main__": print ('Testing') mn = MNIST('.') if mn.test(): print ('Passed') #CNN(mn.train_images, mn.train_labels, mn.test_images, mn.test_labels) gen2(mn.train_images, mn.train_labels, mn.test_images, mn.test_labels)
tests/unit/cfngin/lookups/test_registry.py
avosper-intellaegis/runway
134
11192185
"""Tests for runway.cfngin.lookups.registry.""" # pylint: disable=no-self-use # pyright: basic from __future__ import annotations from typing import TYPE_CHECKING, Any import pytest from runway.cfngin.lookups.handlers.default import DefaultLookup from runway.cfngin.lookups.registry import ( CFNGIN_LOOKUP_HANDLERS, register_lookup_handler, unregister_lookup_handler, ) if TYPE_CHECKING: from pytest_mock import MockerFixture def test_autoloaded_lookup_handlers(mocker: MockerFixture) -> None: """Test autoloaded lookup handlers.""" mocker.patch.dict(CFNGIN_LOOKUP_HANDLERS, {}) handlers = [ "ami", "cfn", "default", "dynamodb", "ecr", "envvar", "file", "hook_data", "kms", "output", "random.string", "rxref", "split", "ssm", "xref", ] for handler in handlers: assert ( handler in CFNGIN_LOOKUP_HANDLERS ), f'Lookup handler: "{handler}" not registered' assert len(CFNGIN_LOOKUP_HANDLERS) == len( handlers ), f"expected {len(handlers)} autoloaded handlers but found {len(CFNGIN_LOOKUP_HANDLERS)}" def test_register_lookup_handler_function() -> None: """Test register_lookup_handler function.""" def fake_lookup(**_: Any) -> None: """Fake lookup.""" with pytest.raises(TypeError): register_lookup_handler("test", fake_lookup) # type: ignore def test_register_lookup_handler_not_subclass() -> None: """Test register_lookup_handler no subclass.""" class FakeLookup: """Fake lookup.""" with pytest.raises(TypeError): register_lookup_handler("test", FakeLookup) # type: ignore def test_register_lookup_handler_str(mocker: MockerFixture) -> None: """Test register_lookup_handler from string.""" mocker.patch.dict(CFNGIN_LOOKUP_HANDLERS, {}) register_lookup_handler( "test", "runway.cfngin.lookups.handlers.default.DefaultLookup" ) assert "test" in CFNGIN_LOOKUP_HANDLERS assert CFNGIN_LOOKUP_HANDLERS["test"] == DefaultLookup def test_unregister_lookup_handler(mocker: MockerFixture) -> None: """Test unregister_lookup_handler.""" mocker.patch.dict(CFNGIN_LOOKUP_HANDLERS, {"test": "something"}) assert "test" in CFNGIN_LOOKUP_HANDLERS unregister_lookup_handler("test") assert "test" not in CFNGIN_LOOKUP_HANDLERS
mobula/config.py
wkcn/MobulaOP
161
11192193
from .utils import with_metaclass class DefaultConfig: TARGET = 'mobula_op' BUILD_PATH = './' BUILD_IN_LOCAL_PATH = True SHOW_BUILDING_COMMAND = False MAX_BUILDING_WORKER_NUM = 8 DEBUG = False USING_OPENMP = True USING_CBLAS = False HOST_NUM_THREADS = 0 # 0 : auto USING_HIGH_LEVEL_WARNINGS = False USING_OPTIMIZATION = True USING_ASYNC_EXEC = True GPU_BACKEND = 'cuda' CXX = 'g++' NVCC = 'nvcc' HIPCC = 'hipcc' CUDA_DIR = '/opt/cuda' HIP_DIR = '/opt/rocm/hip' class Config: def __init__(self): for name in dir(DefaultConfig): if not name.startswith('_'): self.__dict__[name] = getattr(DefaultConfig, name) def __setattr__(self, name, value): data = self.__dict__.get(name, None) if data is None: raise AttributeError("Config has no attribute '{}'".format(name)) target_type = type(data) value_type = type(value) if target_type is not value_type: raise TypeError('The type of config attribute `{}` is not consistent, target {} vs value {}.'.format( name, target_type, value_type)) self.__dict__[name] = value config = Config() class TempConfig: def __init__(self, **kwargs): self.kwargs = kwargs self.old_config = dict() def __enter__(self): for k, v in self.kwargs.items(): if not hasattr(config, k): raise AttributeError( "'mobula.config' object has no attribute '{}'".format(k)) self.old_config[k] = getattr(config, k) setattr(config, k, v) def __exit__(self, *dummy): for k, v in self.old_config.items(): setattr(config, k, v) Config.TempConfig = TempConfig
Chapter13/c13_99_get_finStatement_not_working.py
John-ye666/Python-for-Finance-Second-Edition
236
11192208
""" Name : c13_99_get_finStatement.py Book : Python for Finance Publisher: Packt Publishing Ltd. Author : <NAME> Date : 2/27/2017 email : <EMAIL> <EMAIL> """ import urllib2 import pandas as pd url='http://financials.morningstar.com/income-statement/is.html?t=IBM&region=usa&culture=en-US' x= pd.read_csv(url, skiprows=10, index_col=0)
examples/dummy_plugin/dummy_plugin/secrets.py
psmware-ltd/nautobot
384
11192226
<reponame>psmware-ltd/nautobot from django import forms from nautobot.utilities.forms import BootstrapMixin from nautobot.extras.secrets import SecretsProvider class ConstantValueSecretsProvider(SecretsProvider): """ Example of a plugin-provided SecretsProvider - this one just uses a user-specified constant value. Obviously this is insecure and not something you'd want to actually use! """ slug = "constant-value" name = "Constant Value" class ParametersForm(BootstrapMixin, forms.Form): """ User-friendly form for specifying the required parameters of this provider. """ constant = forms.CharField( required=True, help_text="Constant secret value. <strong>Example Only - DO NOT USE FOR REAL SENSITIVE DATA</strong>", ) @classmethod def get_value_for_secret(cls, secret, obj=None, **kwargs): """ Return the value defined in the Secret.parameters "constant" key. A more realistic SecretsProvider would make calls to external APIs, etc. to retrieve a secret from storage. Args: secret (nautobot.extras.models.Secret): The secret whose value should be retrieved. obj (object): The object (Django model or similar) providing context for the secret's parameters. """ return secret.rendered_parameters(obj=obj).get("constant") secrets_providers = [ConstantValueSecretsProvider]
pymtl/tools/translation/verilator_sim_test.py
belang/pymtl
206
11192318
#======================================================================= # verilator_sim_test.py #======================================================================= from pymtl import SimulationTool from verilator_sim import TranslationTool from pymtl import requires_verilator from pclib.rtl import Reg #----------------------------------------------------------------------- # Test Config #----------------------------------------------------------------------- # Skip all tests in module if verilator is not installed pytestmark = requires_verilator #----------------------------------------------------------------------- # Test Function #----------------------------------------------------------------------- def reg_test( model ): vmodel = TranslationTool( model ) vmodel.elaborate() sim = SimulationTool( vmodel ) sim.reset() assert vmodel.out == 0 vmodel.in_.value = 10 sim.cycle() assert vmodel.out == 10 vmodel.in_.value = 12 assert vmodel.out == 10 sim.cycle() assert vmodel.out == 12 #----------------------------------------------------------------------- # Run Tests #----------------------------------------------------------------------- def test_reg8(): reg_test( Reg(8) ) def test_reg16(): reg_test( Reg(16) )
onnx/bin/__init__.py
pchandrasekaran1595/onnx
12,820
11192324
# SPDX-License-Identifier: Apache-2.0 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals
tests/blob/test_blob_storage_account.py
Ross1503/azure-storage-python
348
11192330
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import unittest from azure.storage.blob import ( BlockBlobService, ) from azure.storage.blob.models import StandardBlobTier, BatchSetBlobTierSubRequest, RehydratePriority from tests.testcase import ( StorageTestCase, record, ) # ------------------------------------------------------------------------------ TEST_BLOB_PREFIX = 'blob' # ------------------------------------------------------------------------------ class BlobStorageAccountTest(StorageTestCase): def setUp(self): super(BlobStorageAccountTest, self).setUp() self.bs = self._create_storage_service_for_blob_storage_account(BlockBlobService, self.settings) self.container_name = self.get_resource_name('utcontainer') if not self.is_playback(): self.bs.create_container(self.container_name) def tearDown(self): if not self.is_playback(): try: self.bs.delete_container(self.container_name) except: pass return super(BlobStorageAccountTest, self).tearDown() # --Helpers----------------------------------------------------------------- def _get_blob_reference(self): return self.get_resource_name(TEST_BLOB_PREFIX) def _create_blob(self): blob_name = self._get_blob_reference() self.bs.create_blob_from_bytes(self.container_name, blob_name, b'') return blob_name def assertBlobEqual(self, container_name, blob_name, expected_data): actual_data = self.bs.get_blob_to_bytes(container_name, blob_name) self.assertEqual(actual_data.content, expected_data) # --Tests specific to Blob Storage Accounts (not general purpose)------------ @record def test_standard_blob_tier_set_tier_api(self): self.bs.create_container(self.container_name) tiers = [StandardBlobTier.Archive, StandardBlobTier.Cool, StandardBlobTier.Hot] for tier in tiers: blob_name = self._get_blob_reference() data = b'hello world' self.bs.create_blob_from_bytes(self.container_name, blob_name, data) blob_ref = self.bs.get_blob_properties(self.container_name, blob_name) self.assertIsNotNone(blob_ref.properties.blob_tier) self.assertTrue(blob_ref.properties.blob_tier_inferred) self.assertIsNone(blob_ref.properties.blob_tier_change_time) blobs = list(self.bs.list_blobs(self.container_name)) # Assert self.assertIsNotNone(blobs) self.assertGreaterEqual(len(blobs), 1) self.assertIsNotNone(blobs[0]) self.assertNamedItemInContainer(blobs, blob_name) self.assertIsNotNone(blobs[0].properties.blob_tier) self.assertTrue(blobs[0].properties.blob_tier_inferred) self.assertIsNone(blobs[0].properties.blob_tier_change_time) self.bs.set_standard_blob_tier(self.container_name, blob_name, tier) blob_ref2 = self.bs.get_blob_properties(self.container_name, blob_name) self.assertEqual(tier, blob_ref2.properties.blob_tier) self.assertFalse(blob_ref2.properties.blob_tier_inferred) self.assertIsNotNone(blob_ref2.properties.blob_tier_change_time) blobs = list(self.bs.list_blobs(self.container_name)) # Assert self.assertIsNotNone(blobs) self.assertGreaterEqual(len(blobs), 1) self.assertIsNotNone(blobs[0]) self.assertNamedItemInContainer(blobs, blob_name) self.assertEqual(blobs[0].properties.blob_tier, tier) self.assertFalse(blobs[0].properties.blob_tier_inferred) self.assertIsNotNone(blobs[0].properties.blob_tier_change_time) self.bs.delete_blob(self.container_name, blob_name) def test_empty_batch_set_standard_blob_tier(self): # Arrange batch_set_standard_blob_tier_requests = list() with self.assertRaises(ValueError): self.bs.batch_set_standard_blob_tier(batch_set_standard_blob_tier_requests) def test_batch_set_257_standard_blob_tier_for_blobs(self): # Arrange batch_set_standard_blob_tier_requests = list() for i in range(0, 257): batch_set_standard_blob_tier_requests.append( BatchSetBlobTierSubRequest(self.container_name, i, StandardBlobTier.Archive)) with self.assertRaises(ValueError): self.bs.batch_set_standard_blob_tier(batch_set_standard_blob_tier_requests) @record def test_set_standard_blob_tier_with_rehydrate_priority(self): # Arrange self.bs.create_container(self.container_name) blob_name = self._create_blob() blob_tier = StandardBlobTier.Archive rehydrate_tier = StandardBlobTier.Cool rehydrate_priority = RehydratePriority.Standard # Act self.bs.set_standard_blob_tier(self.container_name, blob_name, blob_tier, rehydrate_priority=rehydrate_priority) self.bs.set_standard_blob_tier(self.container_name, blob_name, rehydrate_tier) blob_ref = self.bs.get_blob_properties(self.container_name, blob_name) # Assert self.assertEquals('rehydrate-pending-to-cool', blob_ref.properties.rehydration_status) @record def test_batch_set_standard_blob_tier_for_one_blob(self): # Arrange batch_set_blob_tier_request = [] self.bs.create_container(self.container_name) blob_name = self._get_blob_reference() data = b'hello world' blob_tier = StandardBlobTier.Cool self.bs.create_blob_from_bytes(self.container_name, blob_name, data) sub_request = BatchSetBlobTierSubRequest(self.container_name, blob_name, blob_tier) batch_set_blob_tier_request.append(sub_request) # Act resp = self.bs.batch_set_standard_blob_tier(batch_set_blob_tier_request) blob_ref = self.bs.get_blob_properties(self.container_name, blob_name) # Assert self.assertIsNotNone(resp) self.assertEquals(len(batch_set_blob_tier_request), len(resp)) self.assertEquals(blob_tier, blob_ref.properties.blob_tier) for sub_response in resp: self.assertTrue(sub_response.is_successful) @record def test_batch_set_three_blob_tier(self): # Arrange self.bs.create_container(self.container_name) tiers = [StandardBlobTier.Archive, StandardBlobTier.Cool, StandardBlobTier.Hot] rehydrate_priority = [RehydratePriority.High, RehydratePriority.Standard, RehydratePriority.High] blob_names = list() batch_set_blob_tier_request = [] for i in range(0, len(tiers)): blob_name = str(i) data = b'hello world' self.bs.create_blob_from_bytes(self.container_name, blob_name, data) sub_request = BatchSetBlobTierSubRequest(self.container_name, blob_name, tiers[i], rehydrate_priority[i]) batch_set_blob_tier_request.append(sub_request) blob_names.append(blob_name) # Act resp = self.bs.batch_set_standard_blob_tier(batch_set_blob_tier_request) blob_refs = list() for blob_name in blob_names: blob_refs.append(self.bs.get_blob_properties(self.container_name, blob_name)) # Assert self.assertIsNotNone(resp) self.assertEquals(len(batch_set_blob_tier_request), len(resp)) for i in range(0, len(resp)): self.assertTrue(resp[i].is_successful) # make sure the tier for each blob is correct self.assertEquals(tiers[i], blob_refs[i].properties.blob_tier) @record def test_batch_set_nine_standard_blob_tier(self): # To make sure BatchSubResponse is bounded to a correct sub-request # Arrange self.bs.create_container(self.container_name) tiers = [StandardBlobTier.Archive, StandardBlobTier.Cool, StandardBlobTier.Hot, StandardBlobTier.Archive, StandardBlobTier.Cool, StandardBlobTier.Hot, StandardBlobTier.Archive, StandardBlobTier.Cool, StandardBlobTier.Hot] batch_set_blob_tier_request = [] # For even index, create batch delete sub-request for existing blob and their snapshot # For odd index, create batch delete sub-request for non-existing blob for i in range(0, len(tiers)): blob_name = str(i) if i % 2 is 0: data = b'hello world' self.bs.create_blob_from_bytes(self.container_name, blob_name, data) sub_request = BatchSetBlobTierSubRequest(self.container_name, blob_name, tiers[i]) batch_set_blob_tier_request.append(sub_request) # Act resp = self.bs.batch_set_standard_blob_tier(batch_set_blob_tier_request) # Assert self.assertIsNotNone(resp) self.assertEquals(len(batch_set_blob_tier_request), len(resp)) for i in range(0, len(tiers)): is_successful = resp[i].is_successful # for every even indexed sub-request, the blob should be deleted successfully if i % 2 is 0: self.assertEquals(is_successful, True, "sub-request" + str(i) + "should be true") # For every odd indexed sub-request, there should be a 404 http status code because the blob is non-existing else: self.assertEquals(is_successful, False, "sub-request" + str(i) + "should be false") self.assertEquals(404, resp[i].http_response.status) @record def test_batch_set_standard_blob_tier_api_with_non_askii_blob_name(self): # Arrange self.bs.create_container(self.container_name) tiers = [StandardBlobTier.Archive, StandardBlobTier.Cool, StandardBlobTier.Hot] batch_set_blob_tier_request = [] for tier in tiers: blob_name = "ööööööööö" data = b'hello world' self.bs.create_blob_from_bytes(self.container_name, blob_name, data) sub_request = BatchSetBlobTierSubRequest(self.container_name, blob_name, tier) batch_set_blob_tier_request.append(sub_request) # Act resp = self.bs.batch_set_standard_blob_tier(batch_set_blob_tier_request) # Assert self.assertIsNotNone(resp) self.assertEquals(len(batch_set_blob_tier_request), len(resp)) for sub_response in resp: self.assertTrue(sub_response.is_successful) @record def test_batch_set_non_existing_blob_tier(self): # Arrange self.bs.create_container(self.container_name) tiers = [StandardBlobTier.Archive, StandardBlobTier.Cool, StandardBlobTier.Hot] batch_set_blob_tier_request = [] for tier in tiers: blob_name = self._get_blob_reference() sub_request = BatchSetBlobTierSubRequest(self.container_name, blob_name, tier) batch_set_blob_tier_request.append(sub_request) # Act resp = self.bs.batch_set_standard_blob_tier(batch_set_blob_tier_request) # Assert self.assertIsNotNone(resp) self.assertEquals(len(batch_set_blob_tier_request), len(resp)) for sub_response in resp: self.assertFalse(sub_response.is_successful) @record def test_rehydration_status(self): blob_name = 'rehydration_test_blob_1' blob_name2 = 'rehydration_test_blob_2' data = b'hello world' self.bs.create_blob_from_bytes(self.container_name, blob_name, data) self.bs.set_standard_blob_tier(self.container_name, blob_name, StandardBlobTier.Archive) self.bs.set_standard_blob_tier(self.container_name, blob_name, StandardBlobTier.Cool) blob_ref = self.bs.get_blob_properties(self.container_name, blob_name) self.assertEqual(StandardBlobTier.Archive, blob_ref.properties.blob_tier) self.assertEqual("rehydrate-pending-to-cool", blob_ref.properties.rehydration_status) self.assertFalse(blob_ref.properties.blob_tier_inferred) blobs = list(self.bs.list_blobs(self.container_name)) self.bs.delete_blob(self.container_name, blob_name) # Assert self.assertIsNotNone(blobs) self.assertGreaterEqual(len(blobs), 1) self.assertIsNotNone(blobs[0]) self.assertNamedItemInContainer(blobs, blob_name) self.assertEqual(StandardBlobTier.Archive, blobs[0].properties.blob_tier) self.assertEqual("rehydrate-pending-to-cool", blobs[0].properties.rehydration_status) self.assertFalse(blobs[0].properties.blob_tier_inferred) self.bs.create_blob_from_bytes(self.container_name, blob_name2, data) self.bs.set_standard_blob_tier(self.container_name, blob_name2, StandardBlobTier.Archive) self.bs.set_standard_blob_tier(self.container_name, blob_name2, StandardBlobTier.Hot) blob_ref2 = self.bs.get_blob_properties(self.container_name, blob_name2) self.assertEqual(StandardBlobTier.Archive, blob_ref2.properties.blob_tier) self.assertEqual("rehydrate-pending-to-hot", blob_ref2.properties.rehydration_status) self.assertFalse(blob_ref2.properties.blob_tier_inferred) blobs = list(self.bs.list_blobs(self.container_name)) # Assert self.assertIsNotNone(blobs) self.assertGreaterEqual(len(blobs), 1) self.assertIsNotNone(blobs[0]) self.assertNamedItemInContainer(blobs, blob_name2) self.assertEqual(StandardBlobTier.Archive, blobs[0].properties.blob_tier) self.assertEqual("rehydrate-pending-to-hot", blobs[0].properties.rehydration_status) self.assertFalse(blobs[0].properties.blob_tier_inferred) # ------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
esmvaltool/cmorizers/obs/cmorize_obs_cowtanway.py
cffbots/ESMValTool
148
11192355
<reponame>cffbots/ESMValTool """ESMValTool CMORizer for CowtanWay. Tier Tier 2: other freely-available dataset. Source https://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html Last access 20200226 Download and processing instructions Download the following files: 'had4_krig_v1_0_0.nc.gz' 'had4_uah_v1_0_0.nc.gz' 'had4_short_krig_v2_0_0.nc.gz' 'had4_short_uah_v2_0_0.nc.gz' 'ghcn_short_krig_v2_0_0.nc.gz' 'ghcn_short_uah_v2_0_0.nc.gz' 'had4sst4_krig_v2_0_0.nc.gz' 'had4_krig_v2_0_0.nc.gz' """ import gzip import logging import os import shutil import iris from . import utilities as utils logger = logging.getLogger(__name__) def _clean(filepath): """Remove unzipped input file.""" if os.path.isfile(filepath): os.remove(filepath) logger.info("Removed cached file %s", filepath) def _extract_variable(short_name, var, vkey, version, cfg, filepath, out_dir): """Extract variable.""" raw_var = var.get('raw', short_name) cube = iris.load_cube(filepath, utils.var_name_constraint(raw_var)) # Fix units cmor_info = cfg['cmor_table'].get_variable(var['mip'], short_name).copy() cube.convert_units(cmor_info.units) utils.convert_timeunits(cube, 1950) # Fix coordinates utils.fix_coords(cube) if 'height2m' in cmor_info.dimensions: utils.add_height2m(cube) # Fix metadata attrs = cfg['attributes'].copy() attrs['mip'] = var['mip'] attrs['version'] = version baseline = cfg['attributes']['baseline'][vkey] attrs['baseline'] = baseline attrs['comment'] = attrs['comment'].format(baseline=baseline) utils.fix_var_metadata(cube, cmor_info) utils.set_global_atts(cube, attrs) # Save variable utils.save_variable(cube, short_name, out_dir, attrs, unlimited_dimensions=['time']) def _unzip(short_name, zip_path, out_dir): """Unzip `*.gz` file.""" if not os.path.isfile(zip_path): logger.debug("Skipping '%s', file '%s' not found", short_name, zip_path) return None logger.info("Found input file '%s'", zip_path) filename = os.path.basename(zip_path.replace('.gz', '')) new_path = os.path.join(out_dir, filename) with gzip.open(zip_path, 'rb') as zip_file: with open(new_path, 'wb') as new_file: shutil.copyfileobj(zip_file, new_file) logger.info("Succefully extracted file to %s", new_path) return new_path def cmorization(in_dir, out_dir, cfg, _): """Cmorization func call.""" raw_filepath = os.path.join(in_dir, cfg['filename']) # Run the cmorization for (short_name, var) in cfg['variables'].items(): for (vkey, version) in cfg['attributes']['version'].items(): logger.info("CMORizing variable '%s' version '%s'", short_name, version) zip_filepath = raw_filepath.format(version=version) filepath = _unzip(short_name, zip_filepath, out_dir) if filepath is None: continue _extract_variable(short_name, var, vkey, version, cfg, filepath, out_dir) _clean(filepath)
aws_lambda_powertools/utilities/data_classes/s3_event.py
Sordie/aws-lambda-powertools-python
1,208
11192389
<gh_stars>1000+ from typing import Dict, Iterator, Optional from urllib.parse import unquote_plus from aws_lambda_powertools.utilities.data_classes.common import DictWrapper class S3Identity(DictWrapper): @property def principal_id(self) -> str: return self["principalId"] class S3RequestParameters(DictWrapper): @property def source_ip_address(self) -> str: return self["requestParameters"]["sourceIPAddress"] class S3Bucket(DictWrapper): @property def name(self) -> str: return self["s3"]["bucket"]["name"] @property def owner_identity(self) -> S3Identity: return S3Identity(self["s3"]["bucket"]["ownerIdentity"]) @property def arn(self) -> str: return self["s3"]["bucket"]["arn"] class S3Object(DictWrapper): @property def key(self) -> str: """Object key""" return self["s3"]["object"]["key"] @property def size(self) -> int: """Object byte size""" return int(self["s3"]["object"]["size"]) @property def etag(self) -> str: """object eTag""" return self["s3"]["object"]["eTag"] @property def version_id(self) -> Optional[str]: """Object version if bucket is versioning-enabled, otherwise null""" return self["s3"]["object"].get("versionId") @property def sequencer(self) -> str: """A string representation of a hexadecimal value used to determine event sequence, only used with PUTs and DELETEs """ return self["s3"]["object"]["sequencer"] class S3Message(DictWrapper): @property def s3_schema_version(self) -> str: return self["s3"]["s3SchemaVersion"] @property def configuration_id(self) -> str: """ID found in the bucket notification configuration""" return self["s3"]["configurationId"] @property def bucket(self) -> S3Bucket: return S3Bucket(self._data) @property def get_object(self) -> S3Object: """Get the `object` property as an S3Object""" # Note: this name conflicts with existing python builtins return S3Object(self._data) class S3EventRecordGlacierRestoreEventData(DictWrapper): @property def lifecycle_restoration_expiry_time(self) -> str: """Time when the object restoration will be expired.""" return self["restoreEventData"]["lifecycleRestorationExpiryTime"] @property def lifecycle_restore_storage_class(self) -> str: """Source storage class for restore""" return self["restoreEventData"]["lifecycleRestoreStorageClass"] class S3EventRecordGlacierEventData(DictWrapper): @property def restore_event_data(self) -> S3EventRecordGlacierRestoreEventData: """The restoreEventData key contains attributes related to your restore request. The glacierEventData key is only visible for s3:ObjectRestore:Completed events """ return S3EventRecordGlacierRestoreEventData(self._data) class S3EventRecord(DictWrapper): @property def event_version(self) -> str: """The eventVersion key value contains a major and minor version in the form <major>.<minor>.""" return self["eventVersion"] @property def event_source(self) -> str: """The AWS service from which the S3 event originated. For S3, this is aws:s3""" return self["eventSource"] @property def aws_region(self) -> str: """aws region eg: us-east-1""" return self["awsRegion"] @property def event_time(self) -> str: """The time, in ISO-8601 format, for example, 1970-01-01T00:00:00.000Z, when S3 finished processing the request""" return self["eventTime"] @property def event_name(self) -> str: """Event type""" return self["eventName"] @property def user_identity(self) -> S3Identity: return S3Identity(self["userIdentity"]) @property def request_parameters(self) -> S3RequestParameters: return S3RequestParameters(self._data) @property def response_elements(self) -> Dict[str, str]: """The responseElements key value is useful if you want to trace a request by following up with AWS Support. Both x-amz-request-id and x-amz-id-2 help Amazon S3 trace an individual request. These values are the same as those that Amazon S3 returns in the response to the request that initiates the events, so they can be used to match the event to the request. """ return self["responseElements"] @property def s3(self) -> S3Message: return S3Message(self._data) @property def glacier_event_data(self) -> Optional[S3EventRecordGlacierEventData]: """The glacierEventData key is only visible for s3:ObjectRestore:Completed events.""" item = self.get("glacierEventData") return None if item is None else S3EventRecordGlacierEventData(item) class S3Event(DictWrapper): """S3 event notification Documentation: ------------- - https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html - https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html - https://docs.aws.amazon.com/AmazonS3/latest/dev/notification-content-structure.html """ @property def records(self) -> Iterator[S3EventRecord]: for record in self["Records"]: yield S3EventRecord(record) @property def record(self) -> S3EventRecord: """Get the first s3 event record""" return next(self.records) @property def bucket_name(self) -> str: """Get the bucket name for the first s3 event record""" return self["Records"][0]["s3"]["bucket"]["name"] @property def object_key(self) -> str: """Get the object key for the first s3 event record and unquote plus""" return unquote_plus(self["Records"][0]["s3"]["object"]["key"])
tests/m3u/__init__.py
grdorin/mopidy
6,700
11192434
<reponame>grdorin/mopidy<filename>tests/m3u/__init__.py def generate_song(i): return f"dummy:track:song{i}"
tests/lib/test_take.py
bogdanvuk/pygears
120
11192436
<reponame>bogdanvuk/pygears import pytest from pygears import Intf, gear from pygears.lib import decouple from pygears.lib import take from pygears.lib.delay import delay_rng from pygears.lib.verif import directed, drv, verif from pygears.sim import sim from pygears.typing import Queue, Tuple, Uint from pygears.util.test_utils import formal_check, synth_check T_DIN = Queue[Tuple[Uint[16], Uint[16]]] T_DIN_SEP = Queue[Uint[16]] T_QDIN_SEP = Queue[Uint[16], 2] T_CFG = Uint[16] T_QDIN = Queue[Tuple[Uint[16], Uint[16]], 2] def get_dut(dout_delay): @gear def decoupled(din): return din | take | decouple if dout_delay == 0: return decoupled return take @pytest.mark.parametrize('din_delay', [0, 5]) @pytest.mark.parametrize('dout_delay', [0, 5]) def test_directed(sim_cls, din_delay, dout_delay): seq = [] tmp = [] for i in range(9): tmp.append((i, 2)) seq.append(tmp) tmp = [] for i in range(5): tmp.append((i, 3)) seq.append(tmp) dut = get_dut(dout_delay) directed( drv(t=T_DIN, seq=seq) | delay_rng(din_delay, din_delay), f=dut(sim_cls=sim_cls), ref=[[0, 1], [0, 1, 2]], delays=[delay_rng(dout_delay, dout_delay)]) sim() def test_directed_two_inputs(cosim_cls): verif(drv(t=T_DIN_SEP, seq=[list(range(9)), list(range(5))]), drv(t=T_CFG, seq=[2, 3]), f=take(sim_cls=cosim_cls), ref=take(name='ref_model')) sim() @pytest.mark.parametrize('delay', [0, 5]) @pytest.mark.parametrize('dout_delay', [0, 5]) def test_q_directed(sim_cls, delay, dout_delay): seq1 = [[(j, 2) for j in range(3)] for _ in range(9)] seq2 = [[(j, 3) for j in range(6)] for _ in range(5)] seq = [seq1, seq2] dut = get_dut(dout_delay) directed( drv(t=T_QDIN, seq=seq) | delay_rng(delay, delay), f=dut(sim_cls=sim_cls), ref=[[list(range(3))] * 2, [list(range(6))] * 3], delays=[delay_rng(dout_delay, dout_delay)]) sim() @pytest.mark.parametrize('din_delay', [0, 5]) @pytest.mark.parametrize('cfg_delay', [0, 5]) def test_q_directed_two_inputs(sim_cls, din_delay, cfg_delay): seq1 = [list(range(3)) for _ in range(9)] seq2 = [list(range(6)) for _ in range(5)] seq = [seq1, seq2] directed(drv(t=T_QDIN_SEP, seq=seq) | delay_rng(din_delay, din_delay), drv(t=T_CFG, seq=[2, 3]) | delay_rng(cfg_delay, cfg_delay), f=take(sim_cls=sim_cls), ref=[[list(range(3))] * 2, [list(range(6))] * 3]) sim() @formal_check() def test_take_formal(): take(Intf(T_DIN)) @formal_check() def test_qtake_formal(): take(Intf(T_QDIN)) @synth_check({'logic luts': 19, 'ffs': 16}, tool='vivado') def test_take_vivado(): take(Intf(T_DIN)) @synth_check({'logic luts': 16, 'ffs': 15}, tool='yosys') def test_take_yosys(): take(Intf(T_DIN))
mangum/backends/base.py
tasn/mangum
661
11192442
<reponame>tasn/mangum from dataclasses import dataclass from typing import Any @dataclass class WebSocketBackend: # pragma: no cover """ Base class for implementing WebSocket backends to store API Gateway connections. Data source backends are required to implement configuration using the `dsn` connection string setting. """ dsn: str async def __aenter__(self) -> "WebSocketBackend": """ Establish the connection to a data source. """ raise NotImplementedError() async def __aexit__(self, *exc_info: Any) -> None: """ Closes the connection to a data source. """ raise NotImplementedError() async def save(self, connection_id: str, *, json_scope: str) -> None: """ Save the JSON scope for a connection. """ raise NotImplementedError() async def retrieve(self, connection_id: str) -> str: """ Retrieve the JSON scope for a connection. """ raise NotImplementedError() async def delete(self, connection_id: str) -> None: """ Delete the JSON scope for a connection. """ raise NotImplementedError()
polymorphic_tree/tests/models.py
avaddon/django-polymorphic-tree
105
11192496
<reponame>avaddon/django-polymorphic-tree<filename>polymorphic_tree/tests/models.py<gh_stars>100-1000 from django.core.exceptions import ValidationError from django.db import models from mptt.exceptions import InvalidMove from polymorphic.showfields import ShowFieldContent from polymorphic_tree.models import PolymorphicMPTTModel, PolymorphicTreeForeignKey class PlainA(models.Model): field1 = models.CharField(max_length=10) class PlainB(PlainA): field2 = models.CharField(max_length=10) class PlainC(PlainB): field3 = models.CharField(max_length=10) class Model2A(ShowFieldContent, PolymorphicMPTTModel): parent = PolymorphicTreeForeignKey('self', blank=True, null=True, related_name='children', verbose_name='parent', on_delete=models.CASCADE) field1 = models.CharField(max_length=10) class Model2B(Model2A): field2 = models.CharField(max_length=10) class Model2C(Model2B): field3 = models.CharField(max_length=10) class Model2D(Model2C): field4 = models.CharField(max_length=10) class One2OneRelatingModel(PolymorphicMPTTModel): parent = PolymorphicTreeForeignKey('self', blank=True, null=True, related_name='children', verbose_name='parent', on_delete=models.CASCADE) one2one = models.OneToOneField(Model2A, on_delete=models.CASCADE) field1 = models.CharField(max_length=10) class One2OneRelatingModelDerived(One2OneRelatingModel): field2 = models.CharField(max_length=10) class Base(ShowFieldContent, PolymorphicMPTTModel): parent = PolymorphicTreeForeignKey('self', blank=True, null=True, related_name='children', verbose_name='parent', on_delete=models.CASCADE) field_b = models.CharField(max_length=10) class ModelX(Base): field_x = models.CharField(max_length=10) class ModelY(Base): field_y = models.CharField(max_length=10) class ModelWithCustomParentName(PolymorphicMPTTModel): """Model with custom parent name A model where ``PolymorphicTreeForeignKey`` attribute has not ``parent`` name, but ``chief`` Attributes: chief (ModelWithCustomParentName): parent field5 (str): test field """ chief = PolymorphicTreeForeignKey('self', blank=True, null=True, related_name='subordinate', verbose_name='Chief', on_delete=models.CASCADE) field5 = models.CharField(max_length=10) class MPTTMeta: parent_attr = 'chief' def __str__(self): return self.field5 class ModelWithValidation(PolymorphicMPTTModel): """Model with custom validation A model with redefined ``clean`` and ``validate_move_to`` methods ``clean`` method always raises ``ValidationError`` ``validate_move_to`` always calls ``clean`` Attributes: parent (ModelWithValidation): parent field6 (str): test field """ parent = PolymorphicTreeForeignKey('self', blank=True, null=True, related_name='children', on_delete=models.CASCADE) field6 = models.CharField(max_length=10) def clean(self): """Raise validation error""" raise ValidationError({ 'parent': 'There is something with parent field' }) def validate_move_to(self, target): """Execute ``clean``""" self.clean() class ModelWithInvalidMove(PolymorphicMPTTModel): """Model with custom validation A model with redefined only ``validate_move_to`` method which always raises ``InvalidMove`` Attributes: parent (ModelWithValidation): parent field7 (str): test field """ parent = PolymorphicTreeForeignKey('self', blank=True, null=True, related_name='children', on_delete=models.CASCADE) field7 = models.CharField(max_length=10) def validate_move_to(self, target): """Raise ``InvalidMove``""" raise InvalidMove('Invalid move') class ModelMustBeChildRoot(PolymorphicMPTTModel): """Model that must be a child""" can_be_root = True parent = PolymorphicTreeForeignKey('self', blank=True, null=True, related_name='children', on_delete=models.CASCADE) field8 = models.CharField(max_length=10) class ModelMustBeChild(ModelMustBeChildRoot): can_be_root = False class ModelRestrictedChildren(Base): child_types = [ ModelX, ]
GuiBuilder/PROJECTS/Demo/__main__.py
lon3wolf/MyPyBuilder
237
11192501
from GuiBuilder.PROJECTS.Demo.MainGui import Gui class Main(object): def __init__(self): self.app = Gui() self.app.run() if __name__ == '__main__': Main()
test/python/tests/test_loop.py
bh107/bohrium
236
11192516
import util np_dw_loop_src = """ def do_while(func, niters, *args, **kwargs): import sys i = 0 if niters is None: niters = sys.maxsize while i < niters: cond = func(*args, **kwargs) if cond is not None and not cond: break i += 1 """ class test_loop_fixed: """ Test loop with fixed number of iterations""" def init(self): cmd = np_dw_loop_src + """ def kernel(a, b): b += a * b a = M.arange(10); res = M.ones_like(a) """ yield (cmd) def test_func(self, cmd): """Test of the loop function""" return (cmd + "do_while(kernel, 5, a, res)", cmd + "M.do_while(kernel, 5, a, res)") class test_loop_cond: """ Test loop with a condition variable""" def init(self): cmd = np_dw_loop_src + """ def kernel(a, b): b += a * b return M.sum(b) < 10000 a = M.arange(10); res = M.ones_like(a) """ yield (cmd, 1000000) yield (cmd, 3) yield (cmd, None) def test_func(self, args): """Test of the do_while function""" (cmd, niter) = args return (cmd + "do_while(kernel, %s, a, res)" % (niter), cmd + "M.do_while(kernel, %s, a, res)" % (niter)) np_dw_loop_slide_src = """ def do_while_i(func, niters, *args, **kwargs): import sys i = 0 if niters is None: niters = sys.maxsize args += (0,) while i < niters: args = args[:-1] + (i,) cond = func(*args, **kwargs) if cond is not None and not cond: break i += 1 """ class test_loop_faculty_function_using_sliding_views: """ Test a of sliding two views within the do_while loop. The calculation results in the triangular numbers.""" def init(self): cmd1 = np_dw_loop_slide_src + \ """ iter = %s def kernel(a,i): a[i+1] += a[i] res = M.arange(1,iter+2) do_while_i(kernel, iter, res) """ cmd2 = np_dw_loop_src + \ """ iter = %s def kernel(a): i = get_iterator() a[i+1] += a[i] res = M.arange(1,iter+2) M.do_while(kernel, iter, res) """ yield (cmd1, cmd2, 10) def test_func(self, args): (cmd1, cmd2, niter) = args return (cmd1 % (niter), cmd2 % (niter)) class test_loop_one_and_two_dimensional_sliding_views: """Test of sliding two views with a for loop. One view is one-dimensional, while the other is two-dimensional""" def init(self): cmd1 = np_dw_loop_slide_src + \ """ iter = %s def kernel(a,b,i): a[i] += b[i, i] b = M.ones((20, iter)) b[::2, ::2] += 1 b[1::2, 1::2] += 1 res = M.zeros((iter, 1)) do_while_i(kernel, iter, res, b) """ cmd2 = np_dw_loop_src + \ """ iter = %s def kernel(a, b): i = get_iterator() a[i] += b[i, i] b = M.ones((20, iter)) b[::2, ::2] += 1 b[1::2, 1::2] += 1 res = M.zeros((iter, 1)) M.do_while(kernel, iter, res, b) """ yield (cmd1, cmd2, 5) def test_func(self, args): (cmd1, cmd2, niter) = args return (cmd1 % (niter), cmd2 % (niter)) class test_loop_sliding_view_index_switch_negative_positive: """Test of a sliding view that goes from a negative to a positive index (and vice versa)""" def init(self): cmd1 = np_dw_loop_slide_src + \ """ iter = %s def kernel(a,i): a[i] += 1 def kernel2(a,i): a[-i] += 1 res = M.zeros(iter) do_while_i(kernel, iter, res) do_while_i(kernel2, iter, res) """ cmd2 = np_dw_loop_src + \ """ iter = %s def kernel(a): i = get_iterator(-2) a[i] += 1 def kernel2(a): i = get_iterator(-2) a[-i] += 1 res = M.zeros(iter) M.do_while(kernel, iter, res) M.do_while(kernel2, iter, res) """ yield (cmd1, cmd2, 5) def test_func(self, args): (cmd1, cmd2, niter) = args return (cmd1 % (niter), cmd2 % (niter)) class test_loop_sliding_view_negative_index_3d: """Test of negative sliding in a 3-dimensional view""" def init(self): cmd1 = np_dw_loop_slide_src + \ """ iter = %s def kernel(a,i): a[-i, -i, -i] += 1 res = M.zeros((iter,iter,iter)) do_while_i(kernel, iter, res) """ cmd2 = np_dw_loop_src + \ """ iter = %s def kernel(a): i = get_iterator() a[-i, -i, -i] += 1 res = M.zeros((iter,iter,iter)) M.do_while(kernel, iter, res) """ yield (cmd1, cmd2, 3) def test_func(self, args): (cmd1, cmd2, niter) = args return (cmd1 % (niter), cmd2 % (niter)) class test_loop_sliding_view_out_of_bounds: """Test a of error checks when sliding out of bounds""" def init(self): cmd1 = np_dw_loop_slide_src + \ """ def kernel(a,i): a[i] += 1 res = M.zeros(5) """ cmd2 = np_dw_loop_src + \ """ iter = %s def kernel_out_of_bounds_overflow(a): i = get_iterator(1) a[i] += 1 def kernel_out_of_bounds_underflow(a): i = get_iterator(2) a[-i] += 1 def kernel(a): i = get_iterator() a[i] += 1 dummy = M.zeros(iter) res = M.zeros(iter) failure = False try: M.do_while(kernel_out_of_bounds_overflow, len(res), dummy) failure = True except M.loop.IteratorOutOfBounds: pass try: M.do_while(kernel_out_of_bounds_underflow, len(res), dummy) failure = True except M.loop.IteratorOutOfBounds: pass if not failure: M.do_while(kernel, iter, res) """ yield (cmd1, cmd2, 5) def test_func(self, args): """Test exceptions of underflow and overflow""" (cmd1, cmd2, niter) = args return (cmd1 + "do_while_i(kernel, %s, res)" % (niter), cmd2 % (niter)) class test_3d_grid: """Test iterating through a 3d grid""" def init(self): cmd1 = np_dw_loop_slide_src + \ """ iter = (%s, %s, %s) res = np.zeros(iter) counter = np.zeros(1) for i in range(iter[0]): for j in range(iter[1]): for k in range(iter[2]): counter += 1 res[i,j,k] += counter """ cmd2 = np_dw_loop_src + \ """ iter = (%s, %s, %s) def kernel(res, counter): i, j, k = get_grid(*iter) counter += 1 res[i,j,k] += counter res = bh.zeros(iter) counter = bh.zeros(1) M.do_while(kernel, iter[0]*iter[1]*iter[2], res, counter) """ yield (cmd1, cmd2, (4,4,4)) def test_func(self, args): """Test exceptions of underflow and overflow""" (cmd1, cmd2, niter) = args return (cmd1 % niter, cmd2 % niter) class test_dynamic_vector_broadcast: """Test broadcasting a single value to a vector with a shape that changes between each iteration""" def init(self): cmd1 = \ """ iter = %s res = M.zeros(iter) b = M.arange(iter)+1 for i in range(1,iter+1): res[:-i] += b[i-1] """ cmd2 = \ """ iter = %s def loop_body(res, b): i = get_iterator(1) res[:-i] += b[i-1] res = M.zeros(iter) b = M.arange(iter)+1 M.do_while(loop_body, iter, res, b) """ yield (cmd1, cmd2, 15) def test_func(self, args): (cmd1, cmd2, niter) = args return (cmd1 % niter, cmd2 % niter) class test_dynamic_tensor_broadcast: """Test broadcasting a single value to a tensor with a shape that changes between each iteration""" def init(self): cmd1 = \ """ iter = %s res = M.zeros((iter,iter,iter)) b = M.arange(iter)+1 for i in range(1,iter+1): res[:-i,:-i,:-i] += b[i-1] """ cmd2 = \ """ iter = %s def loop_body(res, b): i = get_iterator(1) res[:-i,:-i,:-i] += b[i-1] res = M.zeros((iter,iter,iter)) b = M.arange(iter)+1 M.do_while(loop_body, iter, res, b) """ yield (cmd1, cmd2, 15) def test_func(self, args): (cmd1, cmd2, niter) = args return (cmd1 % niter, cmd2 % niter) class test_gaussian_elimination: """Test of gaussian elimination on a 10 by 10 matrix (equation system)""" def init(self): cmd = "R = bh.random.RandomState(42); S = R.random((10,10), dtype=np.float, bohrium=BH); " cmd1 = cmd + \ """ for c in range(1, S.shape[0]): S[c:, c - 1:] -= (S[c:,c-1:c] / S[c-1:c, c-1:c]) * S[c-1:c,c-1:] S /= np.diagonal(S)[:, None] res = S """ cmd2 = cmd + \ """ def loop_body(S): c = get_iterator(1) S[c:, c - 1:] -= (S[c:,c-1:c] / S[c-1:c, c-1:c]) * S[c-1:c,c-1:] M.do_while(loop_body, S.shape[0]-1, S) S /= np.diagonal(S)[:, None] res = S """ yield (cmd1, cmd2) def test_func(self, args): (cmd1, cmd2) = args return (cmd1, cmd2) class test_nested_dynamic_view: """Test of a nested dynamic view""" def init(self): cmd1 = \ """ iter = %s res = M.zeros(iter**2) for i in range(iter): a = res[i:i+iter] a[i] += 1 """ cmd2 = \ """ iter = %s res = M.zeros(iter**2) def loop_body(res): i = get_iterator() a = res[i:i+iter] a[i] += 1 M.do_while(loop_body, iter, res) """ yield (cmd1, cmd2, 15) def test_func(self, args): (cmd1, cmd2, niter) = args return (cmd1 % niter, cmd2 % niter) class test_advanced_nested_dynamic_view: """Test of three nested views""" def init(self): cmd1 = \ """ a = M.zeros(32) for i in range(2): b = a[16*i:16*(i+1)-1:2] b += 1 c = b[4*i:4*(i+1)-1:2] c += 1 c[i] += 1 res = a """ cmd2 = \ """ def loop_body(a): i = get_iterator() b = a[16*i:16*(i+1)-1:2] b += 1 c = b[4*i:4*(i+1)-1:2] c += 1 c[i] += 1 res = M.zeros(32) M.do_while(loop_body, 2, res) """ yield (cmd1, cmd2) def test_func(self, args): (cmd1, cmd2) = args return (cmd1, cmd2) class test_do_while_convolution: """Test of a convolution that takes the average of a 3 by 3 window""" def init(self): cmd = "R = bh.random.RandomState(42); S = R.random((10,10), dtype=np.float, bohrium=BH); " cmd1 = cmd + \ """ a = M.zeros((12,12)) a[1:-1,1:-1] += S b = M.zeros((10,10)) for i in range(10): for j in range(10): point = b[i:i+1, j:j+1] window = a[i:i+3, j:j+3] point += M.mean(window) res = b """ cmd2 = cmd +\ """ def convolution(a, b): i, j = get_grid(10,10) point = b[i, j] window = a[i:i+3, j:j+3] point += M.mean(window) a = M.zeros((12,12)) a[1:-1,1:-1] += S b = M.zeros((10,10)) M.do_while(convolution, b.shape[0] * b.shape[1], a, b) res = b """ yield (cmd1, cmd2) def test_func(self, args): (cmd1, cmd2) = args return (cmd1, cmd2) class test_temp_arrays_with_changing_shape: """Test of temporary arrays with changing shape""" def init(self): cmd1 = \ """ iter = %s a = M.ones(iter*5) res = M.zeros(iter) for i in range(iter): b = a[i:iter] c = a[i+iter:2*iter] d = a[i+2*iter:3*iter] e = a[i+3*iter:4*iter] res[i:] += b+c+d+e """ cmd2 = \ """ iter = %s def loop_body(a, res): i = get_iterator() b = a[i:iter] c = a[i+iter:2*iter] d = a[i+2*iter:3*iter] e = a[i+3*iter:4*iter] res[i:] += b+c+d+e a = M.ones(iter*5) res = M.zeros(iter) M.do_while(loop_body, iter, a, res) """ yield (cmd1, cmd2, 5) def test_func(self, args): (cmd1, cmd2, niter) = args return (cmd1 % niter, cmd2 % niter) class test_loop_illegal_iterator_mix: """Test of mixing iterators within a grid illegally""" def init(self): cmd1 = np_dw_loop_slide_src + \ """ def kernel(a,i): a[i] += 1 res = M.zeros(5) """ cmd2 = np_dw_loop_src + \ """ iter = %s def iterator_mix1(a): i, j = get_grid(5,5) b = a[i:i+5,j:j+5] c = b[j, i] c += 1 def iterator_mix2(a): i, j = get_grid(5,5) k, l = get_grid(4,4) b = a[i:i+5] c = b[k] c += 1 def kernel(a): i = get_iterator() a[i] += 1 a = bh.zeros((10,10)) dummy = M.zeros(iter) res = M.zeros(iter) failure = False try: M.do_while(iterator_mix1, 2, a) failure = True except M.loop.IteratorIllegalDepth: pass try: M.do_while(iterator_mix2, 2, a) failure = True except M.loop.IteratorIllegalDepth: pass if not failure: M.do_while(kernel, iter, res) """ yield (cmd1, cmd2, 5) def test_func(self, args): """Test exceptions of underflow and overflow""" (cmd1, cmd2, niter) = args return (cmd1 + "do_while_i(kernel, %s, res)" % (niter), cmd2 % (niter))
tests/loading/schema/test_host_validation.py
maroux/flex
160
11192526
import itertools import pytest from flex.loading.schema import ( swagger_schema_validator, ) from flex.loading.schema.host import decompose_hostname from flex.exceptions import ValidationError from flex.error_messages import MESSAGES from tests.utils import ( assert_message_in_errors, assert_path_not_in_errors, assert_path_in_errors, ) from tests.factories import ( RawSchemaFactory, ) @pytest.mark.parametrize( 'scheme,hostname,port,path', itertools.product( ('http', ''), ('127.0.0.1', 'example.com', 'www.example.com'), ('8000', ''), ('api', ''), ), ) def test_hostname_decomposition(scheme, hostname, port, path): """ Ensure that the hostname decomposition tool works as expected. """ value = hostname if scheme: value = "{0}://{1}".format(scheme, value) if port: value = "{0}:{1}".format(value, port) if path: value = "{0}/{1}".format(value, path) assert decompose_hostname(value) == (scheme, hostname, port, path) def test_host_is_not_required(): """ Test that the info field is required for overall schema validation. """ raw_schema = RawSchemaFactory() raw_schema.pop('host', None) assert 'host' not in raw_schema try: swagger_schema_validator(raw_schema) except ValidationError as err: errors = err.detail else: errors = {} assert_path_not_in_errors( 'host', errors, ) @pytest.mark.parametrize( 'value', ( '127.0.0.1', '127.0.0.1:8000', 'example.com', 'example.com:8000', 'www.example.com', 'www.example.com:8000', ), ) def test_valid_host_values(value): raw_schema = RawSchemaFactory(host=value) try: swagger_schema_validator(raw_schema) except ValidationError as err: errors = err.detail else: errors = {} assert_path_not_in_errors( 'host', errors, ) @pytest.mark.parametrize( 'value', ( '127.0.0.1/api', '127.0.0.1:8000/api', 'example.com/api', 'example.com:8000/api', 'www.example.com/api', 'www.example.com:8000/api', ), ) def test_invalid_host_value_with_path(value): raw_schema = RawSchemaFactory(host=value) with pytest.raises(ValidationError) as err: swagger_schema_validator(raw_schema) assert_message_in_errors( MESSAGES['host']['may_not_include_path'], err.value.detail, 'host.path', ) @pytest.mark.parametrize( 'value', ( 'http://127.0.0.1/api', 'http://127.0.0.1:8000/api', 'http://example.com/api', 'http://example.com:8000/api', 'http://www.example.com/api', 'http://www.example.com:8000/api', ), ) def test_invalid_host_value_with_scheme(value): raw_schema = RawSchemaFactory(host=value) with pytest.raises(ValidationError) as err: swagger_schema_validator(raw_schema) assert_message_in_errors( MESSAGES['host']['may_not_include_scheme'], err.value.detail, 'host.scheme', )
unicorn/tests/regress/deadlock_1.py
clayne/unicorn_pe
491
11192551
<reponame>clayne/unicorn_pe #!/usr/bin/python # From issue #1 of <NAME> from unicorn import * import regress CODE = b"\x90\x91\x92" class DeadLock(regress.RegressTest): def runTest(self): mu = Uc(UC_ARCH_X86, UC_MODE_64) mu.mem_map(0x100000, 4 * 1024) mu.mem_write(0x100000, CODE) with self.assertRaises(UcError): mu.emu_start(0x100000, 0x1000 + len(CODE)) if __name__ == '__main__': regress.main()
mudpi/extensions/t9602/__init__.py
icyspace/mudpi-core
163
11192563
""" T9602 Extension Includes sensor interface for T9602. Works on i2c over linux boards (typically on a raspberry pi.) """ from mudpi.extensions import BaseExtension class Extension(BaseExtension): namespace = 't9602' update_interval = 30
federated_learning/nvflare/nvflare_example_docker/expr_files/download_dataset.py
tommydino93/tutorials
535
11192602
<reponame>tommydino93/tutorials<filename>federated_learning/nvflare/nvflare_example_docker/expr_files/download_dataset.py import os from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser from monai.apps.utils import download_and_extract def download_spleen_dataset(root_dir: str): """ This function is used to download Spleen dataset for this example. If you'd like to download other Decathlon datasets, please check ``monai.apps.datasets.DecathlonDataset`` for more details. """ url = "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task09_Spleen.tar" md5 = "410d4a301da4e5b2f6f86ec3ddba524e" task = "Task09_Spleen" dataset_dir = os.path.join(root_dir, task) tarfile_name = f"{dataset_dir}.tar" download_and_extract( url=url, filepath=tarfile_name, output_dir=root_dir, hash_val=md5 ) if __name__ == "__main__": parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument( "-root_dir", type=str, help="the root path to put downloaded file." ) args = parser.parse_args() download_spleen_dataset(root_dir=args.root_dir)
dirigible/fts/tests/test_2712_ImportCSV.py
EnoX1/dirigible-spreadsheet
168
11192629
<filename>dirigible/fts/tests/test_2712_ImportCSV.py<gh_stars>100-1000 # Copyright (c) 2010 Resolver Systems Ltd. # All Rights Reserved # from functionaltest import FunctionalTest, PAGE_LOAD_TIMEOUT import os class Test_2712_ImportCSV(FunctionalTest): def test_can_import_excel_generated_csv_to_cursor_position(self): file_name = 'excel_generated_csv.csv' # Harold has a csv file he wants to import into a cloud-based # python-infused spreadsheet # * Harold logs in to Dirigible and creates a nice shiny new sheet self.login_and_create_new_sheet() # * After weeks of frustration at being unable to get any data into the app, # it's with great joy that he spots a new button called 'import' self.wait_for_element_visibility('id=id_import_button', True) self.assertEquals( self.selenium.get_attribute('id=id_import_button@alt'), "Import a file" ) self.assertEquals( self.selenium.get_attribute('id=id_import_button@title'), "Import a file" ) # With preternatural insightfulness, he guesses the button will import # to the current cursor position. Accordingly, he gives himself a # little wriggle room self.click_on_cell(2, 2) # * He clicks the import CSV button self.selenium.click('id=id_import_button') # * He is presented with a jquery dialog that contains a file input element self.wait_for_element_visibility('id=id_import_form', True) self.wait_for_element_visibility('id=id_import_form_file', True) self.wait_for_element_visibility('id=id_import_form_upload_csv_button', False) self.wait_for_element_visibility('id=id_import_form_upload_xls_values_button', False) self.wait_for_element_visibility('id=id_import_form_cancel_button', True) #Harold chooses a file, but changes his mind and clicks cancel file_name = os.path.join( os.path.dirname(__file__), 'test_data', file_name ) self.set_filename_for_upload(file_name, 'id=id_import_form_file') self.selenium.click('id=id_import_form_cancel_button') # the dialog disappears self.wait_for_element_visibility('id=id_import_form', False) # harold, keen to get data imported, summons up the strength to try again self.selenium.click('id=id_import_button') # the dialog reappears self.wait_for_element_visibility('id=id_import_form', True) # his previous file choice doesn't self.assertEquals( self.selenium.get_value('id=id_import_form_file'), '' ) # * He clicks on the browse button * He is presented with a file-open # dialog, and chooses a suitable csv file self.set_filename_for_upload(file_name, 'id=id_import_form_file') # He spots a radio button, which is defaulted to the 'excel' option self.wait_for_element_visibility( 'css=input[type="radio"][name="csv_encoding"][value="excel"]', True ) self.wait_for_element_visibility( 'css=input[type="radio"][name="csv_encoding"][value="other"]', True ) self.assertEquals( self.selenium.get_value( 'css=input[type="radio"][name="csv_encoding"][value="excel"]' ), 'on' ) # so he clicks the upload button self.wait_for_element_visibility('id=id_import_form_upload_csv_button', True) self.selenium.click('id=id_import_form_upload_csv_button') # * ...and waits for the page to refresh self.selenium.wait_for_page_to_load(PAGE_LOAD_TIMEOUT) self.wait_for_grid_to_appear() # * and is mightily pleased when his data appears at the cursor position. self.wait_for_cell_value(2, 2, 'some text') self.wait_for_cell_value(3, 2, 'text with quotes "\'""\'"') # * In order to check that the cell with a carraige return is imported # ok, he has to check its value via the console, since the \n is # converted to something else for display in the cell #self.wait_for_cell_value(4, 2, 'text with a \ncarriage return') self.append_usercode('print worksheet.D2.value == "text with a \\ncarriage return"') self.wait_for_console_content('True') self.wait_for_cell_value(2, 3, 'some european characters:') self.wait_for_cell_value(3, 3, u'Herg\xe9') self.wait_for_cell_value(2, 4, 'some european money:') self.wait_for_cell_value(3, 4, u'pounds: \xa3') self.wait_for_cell_value(4, 4, u'euros : \u20ac') self.wait_for_cell_value(2, 5, 'numbers') self.wait_for_cell_value(2, 6, '1') self.wait_for_cell_value(3, 6, '2') self.wait_for_cell_value(4, 6, '3000000000') def test_can_import_utf8_csv(self): # Harold has a kawaii csv file he wants to import into a cloud-based # python-infused spreadsheet file_name = 'japanese.csv' # * He creates a new sheet and clicks the import CSV button self.login_and_create_new_sheet() self.selenium.click('id=id_import_button') # the dialog reappears self.wait_for_element_visibility('id=id_import_form', True) # * He clicks on the browse button * He is presented with a file-open # dialog, and chooses a suitable csv file file_name = os.path.join( os.path.dirname(__file__), 'test_data', file_name ) self.set_filename_for_upload(file_name, 'id=id_import_form_file') # He spots a radio button, which is defaulted to the 'excel' option self.wait_for_element_visibility( 'css=input[type="radio"][name="csv_encoding"][value="excel"]', True ) self.wait_for_element_visibility( 'css=input[type="radio"][name="csv_encoding"][value="other"]', True ) self.assertEquals( self.selenium.get_value( 'css=input[type="radio"][name="csv_encoding"][value="excel"]' ), 'on' ) # so he changes the radio button option to 'other' self.selenium.check( 'css=input[type="radio"][name="csv_encoding"][value="other"]' ) # and clicks the upload button self.wait_for_element_visibility('id=id_import_form_upload_csv_button', True) self.selenium.click('id=id_import_form_upload_csv_button') # * ...and waits for the page to refresh self.selenium.wait_for_page_to_load(PAGE_LOAD_TIMEOUT) self.wait_for_grid_to_appear() # * and is mightily pleased when his kanji appear self.wait_for_cell_value(1, 1, u'\u65b0\u4e16\u7d00\u30a8\u30f4\u30a1\u30f3\u30b2\u30ea\u30aa\u30f3') def test_bad_files_are_gracefully_handled(self): # Harold thinks that if he imports an image file, # it will appear in his spreadsheet file_name = os.path.join( os.path.dirname(__file__), 'test_data', 'import_csv_button.png') # * He logs in to Dirigible and creates a nice shiny new sheet self.login_and_create_new_sheet() sheet_url = self.browser.current_url # * He clicks the import toolbar button self.selenium.click('id=id_import_button') # * He is presented with a jquery dialog that contains a file input element self.wait_for_element_visibility('id=id_import_form', True) self.wait_for_element_visibility('id=id_import_form_file', True) self.wait_for_element_visibility('id=id_import_form_cancel_button', True) # * He clicks on the browse button # * He is presented with a file-open dialog, and chooses his image file self.set_filename_for_upload(file_name, 'id=id_import_form_file') # He clicks the upload button self.wait_for_element_visibility('id=id_import_form_upload_csv_button', True) self.selenium.click('id=id_import_form_upload_csv_button') # * ...and waits for the page to refresh self.selenium.wait_for_page_to_load(PAGE_LOAD_TIMEOUT) # * He is presented with an appropriate error page self.assertEquals(self.browser.title, "CSV Import Error: Dirigible") self.assertEquals( self.get_text("id=id_server_error_title"), "Could not import CSV file" ) error_text = self.get_text("id=id_server_error_text") msg = "Sorry, the file you uploaded was not in a recognised CSV format" self.assertTrue(msg in error_text) # * There is a link back to the sheet page, which he follows self.click_link('id_sheet_link') # And finds himself back on his sheet page. self.wait_for_grid_to_appear() self.assertEquals(self.browser.current_url, sheet_url)
arsdk-xml/ARSDKBuildUtils/Utils/Python/Common_GenAutotoolsLibraryDoc.py
2016-Capstone/PythonController
114
11192643
''' Copyright (C) 2014 <NAME> Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Parrot nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' from ARFuncs import * import re import tempfile import os def Common_WriteValuesToDoxyCfgFile(DFile, **kwargs): for key, value in kwargs.items(): os.write(DFile, '%(key)s = %(value)s\n' % locals()) def Common_GenAutotoolsLibraryDoc(target, lib, clean=False, subdirsToInclude=[], onlyC=True): args = dict(locals()) StartDumpArgs(**args) res = False # Do not generate doc for external lib if lib.ext: ARLog('Documentation will not be generated for external libraries') return EndDumpArgs(res=True, **args) OutputDir = ARPathFromHere('Targets/%(target)s/Build/Doc/lib%(lib)s' % locals()) # Clean handle if clean: ARDeleteIfExists(OutputDir) return EndDumpArgs(res=True, **args) # Create output directory if not os.path.exists(OutputDir): os.makedirs(OutputDir) # If the directory (release) is configured, just call "make doxygen-doc" BuildDir = ARPathFromHere('Targets/%(target)s/Build/lib%(lib)s' % locals()) Makefile = '%(BuildDir)s/Makefile' % locals() if os.path.exists(Makefile): bdir = Chdir(BuildDir) res = ARExecute(os.environ.get('ARMAKE') + ' doxygen-doc') bdir.exit() # If make doxygen-doc failed, or if the Makefile does not exists, run doxygen manually if not res: DummyDirForRelativePath = ARPathFromHere('Targets/%(target)s/Build/Dummy' % locals()) if not os.path.exists(DummyDirForRelativePath): os.makedirs(DummyDirForRelativePath) ConfigureAc = lib.path + '/Build/configure.ac' DoxyCfg = lib.path + '/Build/doxygen.cfg' if not os.path.exists(ConfigureAc): ARLog('Unable to generate lib%(lib)s documentation') ARLog('lib%(lib)s does not contains a configure.ac file, and was not previously built') return EndDumpArgs(res=False, **args) # Create Doxygen Extra Args SRCDIR = lib.path + '/Build' PROJECT = 'lib%(lib)s' % locals() # -- Search version in configure.ac file confacfile = open(ConfigureAc) VERSION = '' for line in confacfile.readlines(): match = re.search(r'AC_INIT', line) if match: Version = re.sub(r'[A-Z_]*\(\[[^]]*\], \[([^]]*)\].*', r'\1', line).strip() break confacfile.close() if not Version: ARLog('Unable to read version from configure.ac file') return EndDumpArgs(res=False, **args) PERL_PATH = os.popen('which perl').read().strip() HAVE_DOT = 'NO' if ARExistsInPath('dot'): HAVE_DOT = 'YES' # Create temporary configuration file DoxyCfgFinalFile, DoxyCfgFinalName = tempfile.mkstemp() # -- Copy original file in the temporary one DoxyCfgFile = open(DoxyCfg) for line in DoxyCfgFile.readlines(): os.write(DoxyCfgFinalFile, line) DoxyCfgFile.close() # -- Export needed values ARSetEnv ('PROJECT', PROJECT) ARSetEnv ('VERSION', VERSION) ARSetEnv ('SRCDIR', SRCDIR) # -- Append needed values Common_WriteValuesToDoxyCfgFile(DoxyCfgFinalFile, PERL_PATH=PERL_PATH, HAVE_DOT=HAVE_DOT, GENERATE_MAN='NO', GENERATE_RTF='NO', GENERATE_XML='NO', GENERATE_HTMLHELP='NO', GENERATE_CHI='NO', GENERATE_HTML='YES', GENERATE_LATEX='NO',) # -- Append subdirs for extraDir in subdirsToInclude: if os.path.exists(lib.path + '/../' + extraDir): os.write(DoxyCfgFinalFile, 'INPUT += $(SRCDIR)/../%(extraDir)s\n' % locals()) # -- Append Non-C mode if not onlyC: Common_WriteValuesToDoxyCfgFile(DoxyCfgFinalFile, OPTIMIZE_OUTPUT_FOR_C='NO') # -- Close temporary file os.close(DoxyCfgFinalFile) # Call doxygen bdir = Chdir (DummyDirForRelativePath) res = ARExecute ('doxygen %(DoxyCfgFinalName)s' % locals()) bdir.exit() ARDeleteIfExists(DummyDirForRelativePath) os.remove (DoxyCfgFinalName) return EndDumpArgs(res, **args)
deployment/setup.py
ruxi/logomaker
125
11192652
from setuptools import setup def readme(): with open('README.rst') as f: return f.read() setup(name='logomaker', version='0.8.0', description='Package for making Sequence Logos', long_description=readme(), classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.6', 'Topic :: Scientific/Engineering :: Bio-Informatics', ], keywords='Sequence Logos', url='http://logomaker.readthedocs.io', author='<NAME> and <NAME>', author_email='<EMAIL>', license='MIT', packages=['logomaker'], include_package_data=True, install_requires=[ 'numpy', 'matplotlib>=2.2.2', 'pandas' ], zip_safe=False)
dnsgate/help.py
jakeogh/dnsgate
121
11192654
#!/usr/bin/env python3 # tab-width:4 # pylint: disable=missing-docstring import os import sys import time from pathlib import Path from .config import dnsmasq_config_file_line from .global_vars import CACHE_EXPIRE from .global_vars import CONFIG_FILE from .global_vars import CUSTOM_BLACKLIST from .global_vars import CUSTOM_WHITELIST from .global_vars import DEFAULT_REMOTE_BLACKLISTS from .global_vars import DNSMASQ_CONFIG_FILE from .global_vars import OUTPUT_FILE_PATH def dnsmasq_install_help(*, dnsmasq_config_file: Path, output_file: Path, ): config_file_line = dnsmasq_config_file_line() print(' $ cp -vi ' + dnsmasq_config_file.as_posix() + ' ' + dnsmasq_config_file.as_posix() + '.bak.' + str(time.time()), file=sys.stderr,) print(' $ grep ' + config_file_line + ' ' + dnsmasq_config_file + '|| { echo ' + config_file_line + ' >> dnsmasq_config_file ; }', file=sys.stderr,) print(' $ /etc/init.d/dnsmasq restart', file=sys.stderr,) def hosts_install_help(output_file: Path = OUTPUT_FILE_PATH,): print(' $ mv -vi /etc/hosts /etc/hosts.default', file=sys.stderr) print(' $ cat /etc/hosts.default ' + output_file.as_posix() + ' > /etc/hosts', file=sys.stderr) OUTPUT_FILE_HELP = '(for testing) output file (defaults to ' + OUTPUT_FILE_PATH.as_posix() + ')' DNSMASQ_CONFIG_HELP = 'dnsmasq config file (defaults to ' + DNSMASQ_CONFIG_FILE.as_posix() + ')' BACKUP_HELP = 'backup output file before overwriting' INSTALL_HELP_HELP = 'Help configure dnsmasq or /etc/hosts' SOURCES_HELP = '''remote blacklist(s) to get rules from. Defaults to: \b ''' + ' '.join(DEFAULT_REMOTE_BLACKLISTS) WHITELIST_HELP = '''\b whitelists(s) defaults to:''' + CUSTOM_WHITELIST.as_posix() BLOCK_AT_PSL_HELP = 'strips subdomains, for example: analytics.google.com -> google.com' + \ ' (must manually whitelist inadvertently blocked domains)' VERBOSE_HELP = 'print debug information to stderr' NO_CACHE_HELP = 'do not cache --source files as sha1(url) to ~/.dnsgate/cache/' CACHE_EXPIRE_HELP = 'seconds until cached remote sources are re-downloaded ' + \ '(defaults to ' + str(CACHE_EXPIRE / 3600) + ' hours)' DEST_IP_HELP = 'IP to redirect blocked connections to (defaults to ' + \ '127.0.0.1 in hosts mode, specifying this in dnsmasq mode causes ' + \ 'lookups to resolve rather than return NXDOMAIN)' NO_RESTART_DNSMASQ_HELP = 'do not restart the dnsmasq service' BLACKLIST_HELP = 'Add domain(s) to ' + CUSTOM_BLACKLIST.as_posix() WHITELIST_HELP = 'Add domain(s) to ' + CUSTOM_WHITELIST.as_posix() DISABLE_HELP = 'Disable ' + OUTPUT_FILE_PATH.as_posix() ENABLE_HELP = 'Enable ' + OUTPUT_FILE_PATH.as_posix() CONFIGURE_HELP = '''Write ''' + CONFIG_FILE.as_posix() + ''' \b [SOURCES] are the ''' + SOURCES_HELP GENERATE_HELP = 'Create ' + OUTPUT_FILE_PATH.as_posix() BLOCKALL_HELP = 'return NXDOMAIN on _ALL_ domains'
cherry/debug.py
acse-yl27218/cherry
160
11192661
<filename>cherry/debug.py<gh_stars>100-1000 #!/usr/bin/env python3 """ General debugging utilities. """ import os import sys import logging import traceback import pdb import queue from logging import handlers from datetime import datetime IS_DEBUGGING = False # Sets up general debugger logger = logging.getLogger('cherry') logger.setLevel(logging.INFO) logger.propagate = False # Handler for normal printing fmt = logging.Formatter(fmt='%(message)s', datefmt='') print_handler = logging.StreamHandler(sys.stdout) print_handler.setFormatter(fmt) print_handler.setLevel(logging.INFO) logger.addHandler(print_handler) def debug(log_dir='./'): """ Enables some debugging utilities for logging and pdb. Includes: * Automatically dropping into a post-mortem pdb debugger session whenever an exception is raised. * Enables fast DEBUG logging to a logging file via QueueHandler. * Copies all stdout output to the logging file. (Experimental) **References** 1. Automatically start the debugger on an exception (Python recipe), <NAME>, 2001, [Link](http://code.activestate.com/recipes/65287-automatically-start-the-debugger-on-an-exception/) 2. Dealing with handlers that block, Python Documentation, 2019. [Link](https://docs.python.org/3/howto/logging-cookbook.html#dealing-with-handlers-that-block) **Arguments** * **log_dir** (str, *optional*, Default: './') - Location to store the log files. **Example** ~~~python ch.debug.debug() raise Exception('My exception') -> raise('My exception') (Pdb) ~~~ """ global IS_DEBUGGING if not IS_DEBUGGING: # Enable debugging logging. now = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') log_file = os.path.join(log_dir, 'cherry_debug_' + now + '.log') if not os.path.exists(log_dir): os.mkdir(log_dir) # Experimental: forward stdout/print to log_file too log_file = open(log_file, mode='a', buffering=1, encoding='utf-8') stdout_write = sys.stdout.write stderr_write = sys.stderr.write def custom_stdout_write(*args, **kwargs): stdout_write(*args, **kwargs) log_file.write(*args, **kwargs) def custom_stderr_write(*args, **kwargs): stderr_write(*args, **kwargs) log_file.write(*args, **kwargs) def custom_newline_stdout(*args, **kwargs): custom_stdout_write(*args, **kwargs) custom_stdout_write('\n') global print print = custom_newline_stdout sys.stdout.write = custom_stdout_write sys.stderr.write = custom_stderr_write # Log to file using queue handler and listener logger.setLevel(logging.DEBUG) debug_queue = queue.Queue(-1) queue_handler = handlers.QueueHandler(debug_queue) logger.addHandler(queue_handler) debug_fmt = logging.Formatter(fmt='%(asctime)s - %(name)s - %(levelname)s \n%(message)s', datefmt='%Y-%m-%d %H:%M:%S') debug_handler = logging.StreamHandler(log_file) debug_handler.setFormatter(debug_fmt) debug_handler.setLevel(logging.DEBUG) queue_listener = handlers.QueueListener(debug_queue, debug_handler) queue_listener.start() logger.debug('Debugging started.') # Enable automatic post-mortem on Exception. def info(type, value, tb): if hasattr(sys, 'ps1') or not sys.stderr.isatty(): sys.__excepthook__(type, value, tb) else: traceback.print_exception(type, value, tb) pdb.pm() sys.excepthook = info # Turn debug flag on. IS_DEBUGGING = True if __name__ == '__main__': print('This is from print.') print('This is from print.') sys.stdout.write('This is from stdout.') logger.debug('debug') logger.info('info') debug(log_dir='./logs') debug() logger.info('info') logger.debug('debug') print('This is from print.') print('This is from print.') sys.stdout.write('This is from stdout.') raise Exception('haha')
third_party/graphy/graphy/backends/google_chart_api/line_chart_test.py
tingshao/catapult
2,151
11192682
<filename>third_party/graphy/graphy/backends/google_chart_api/line_chart_test.py #!/usr/bin/python2.4 # # Copyright 2008 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unittest for Graphy and Google Chart API backend.""" from graphy import common from graphy import graphy_test from graphy import line_chart from graphy.backends import google_chart_api from graphy.backends.google_chart_api import base_encoder_test # Extend XYChartTest so that we pick up & repeat all the basic tests which # LineCharts should continue to satisfy class LineChartTest(base_encoder_test.XYChartTest): def GetChart(self, *args, **kwargs): return google_chart_api.LineChart(*args, **kwargs) def AddToChart(self, chart, points, color=None, label=None): return chart.AddLine(points, color=color, label=label) def testChartType(self): self.assertEqual(self.Param('cht'), 'lc') def testMarkers(self): x = common.Marker('x', '0000FF', 5) o = common.Marker('o', '00FF00', 5) line = common.Marker('V', 'dddddd', 1) self.chart.AddLine([1, 2, 3], markers=[(1, x), (2, o), (3, x)]) self.chart.AddLine([4, 5, 6], markers=[(x, line) for x in range(3)]) x = 'x,0000FF,0,%s,5' o = 'o,00FF00,0,%s,5' V = 'V,dddddd,1,%s,1' actual = self.Param('chm') expected = [m % i for i, m in zip([1, 2, 3, 0, 1, 2], [x, o, x, V, V, V])] expected = '|'.join(expected) error_msg = '\n%s\n!=\n%s' % (actual, expected) self.assertEqual(actual, expected, error_msg) def testLinePatterns(self): self.chart.AddLine([1, 2, 3]) self.chart.AddLine([4, 5, 6], pattern=line_chart.LineStyle.DASHED) self.assertEqual(self.Param('chls'), '1,1,0|1,8,4') def testMultipleAxisLabels(self): self.ExpectAxes('', '') left_axis = self.chart.AddAxis(common.AxisPosition.LEFT, common.Axis()) left_axis.labels = [10, 20, 30] left_axis.label_positions = [0, 50, 100] self.ExpectAxes('0:|10|20|30', '0,0,50,100') bottom_axis = self.chart.AddAxis(common.AxisPosition.BOTTOM, common.Axis()) bottom_axis.labels = ['A', 'B', 'c', 'd'] bottom_axis.label_positions = [0, 33, 66, 100] sub_axis = self.chart.AddAxis(common.AxisPosition.BOTTOM, common.Axis()) sub_axis.labels = ['CAPS', 'lower'] sub_axis.label_positions = [0, 50] self.ExpectAxes('0:|10|20|30|1:|A|B|c|d|2:|CAPS|lower', '0,0,50,100|1,0,33,66,100|2,0,50') self.chart.AddAxis(common.AxisPosition.RIGHT, left_axis) self.ExpectAxes('0:|10|20|30|1:|10|20|30|2:|A|B|c|d|3:|CAPS|lower', '0,0,50,100|1,0,50,100|2,0,33,66,100|3,0,50') self.assertEqual(self.Param('chxt'), 'y,r,x,x') def testAxisProperties(self): self.ExpectAxes('', '') self.chart.top.labels = ['cow', 'horse', 'monkey'] self.chart.top.label_positions = [3.7, 10, -22.9] self.ExpectAxes('0:|cow|horse|monkey', '0,3.7,10,-22.9') self.chart.left.labels = [10, 20, 30] self.chart.left.label_positions = [0, 50, 100] self.ExpectAxes('0:|10|20|30|1:|cow|horse|monkey', '0,0,50,100|1,3.7,10,-22.9') self.assertEqual(self.Param('chxt'), 'y,t') sub_axis = self.chart.AddAxis(common.AxisPosition.BOTTOM, common.Axis()) sub_axis.labels = ['CAPS', 'lower'] sub_axis.label_positions = [0, 50] self.ExpectAxes('0:|10|20|30|1:|CAPS|lower|2:|cow|horse|monkey', '0,0,50,100|1,0,50|2,3.7,10,-22.9') self.assertEqual(self.Param('chxt'), 'y,x,t') self.chart.bottom.labels = ['A', 'B', 'C'] self.chart.bottom.label_positions = [0, 33, 66] self.ExpectAxes('0:|10|20|30|1:|A|B|C|2:|CAPS|lower|3:|cow|horse|monkey', '0,0,50,100|1,0,33,66|2,0,50|3,3.7,10,-22.9') self.assertEqual(self.Param('chxt'), 'y,x,x,t') # Extend LineChartTest so that we pick up & repeat all the line tests which # Sparklines should continue to satisfy class SparklineTest(LineChartTest): def GetChart(self, *args, **kwargs): return google_chart_api.Sparkline(*args, **kwargs) def testChartType(self): self.assertEqual(self.Param('cht'), 'lfi') if __name__ == '__main__': graphy_test.main()
mmdet/datasets/pipelines/pixel_aug_pil.py
Qianna00/InstanceLoc
120
11192687
<gh_stars>100-1000 import random import cv2 import mmcv import numpy as np import torchvision.transforms as transforms from PIL import Image, ImageFilter from ..builder import PIPELINES class GaussianBlur(object): """Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709""" def __init__(self, sigma=[.1, 2.]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x @PIPELINES.register_module() class PixelAugPil(object): """ Apply the same augmentation as the MoCoV2. """ def __init__(self, to_rgb=False): # MoCo v2's aug: similar to SimCLR https://arxiv.org/abs/2002.05709 augmentation = [ transforms.RandomApply( [ transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened ], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5), ] self.transforms = transforms.Compose(augmentation) self.to_rgb = to_rgb def __call__(self, results): bgr_img = results['img'] pil_img = Image.fromarray(bgr_img[:, :, ::-1]) # BGR2RGB first out_pil_img = self.transforms(pil_img) out_rgb_img = np.array(out_pil_img) if self.to_rgb: results['img'] = out_rgb_img else: results['img'] = out_rgb_img[:, :, ::-1] # RGB2BGR return results
plato/agent/component/dialogue_policy/dialogue_policy.py
avmi/plato-research-dialogue-system
899
11192688
<reponame>avmi/plato-research-dialogue-system<filename>plato/agent/component/dialogue_policy/dialogue_policy.py """ Copyright (c) 2019-2020 Uber Technologies, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ __author__ = "<NAME>" from plato.agent.component.conversational_module \ import ConversationalModule from abc import abstractmethod """ DialoguePolicy is the abstract parent class of all policies and defines the interface that each dialogue policy derived class should adhere to. """ class DialoguePolicy(ConversationalModule): def __init__(self): """ Initialize the internal structures of the dialogue policy """ super(DialoguePolicy, self).__init__() @abstractmethod def initialize(self, args): """ Initialize internal structures at the beginning of each dialogue :return: Nothing """ pass @abstractmethod def restart(self, **kwargs): """ Re-initialize relevant parameters / variables at the beginning of each dialogue. :return: """ pass @abstractmethod def next_action(self, state): """ Consult the internal model and produce the agent's response, given the current state :param state: the current dialogue state :return: """ pass # From the ConversationalModule interface def generate_output(self, args=None): """ :param args: :return: """ # Unpack args if isinstance(args, dict): if 'args' in args: args = args['args'] else: raise ValueError('DialoguePolicy: unacceptable input!') return self.next_action(args) @abstractmethod def train(self, dialogues): """ Train the dialogue policy's internal model :param dialogues: the dialogue experience :return: """ pass @abstractmethod def save(self, path=None): """ Save the internal model to the path provided (or to a default one) :param path: the path to save the model to :return: """ pass @abstractmethod def load(self, path): """ Load the model from the path provided :param path: the path to load the model from :return: """ pass
dags/cm360_segmentology_dag.py
Ressmann/starthinker
138
11192690
########################################################################### # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################### # # This code generated (see starthinker/scripts for possible source): # - Command: "python starthinker_ui/manage.py airflow" # ########################################################################### ''' -------------------------------------------------------------- Before running this Airflow module... Install StarThinker in cloud composer ( recommended ): From Release: pip install starthinker From Open Source: pip install git+https://github.com/google/starthinker Or push local code to the cloud composer plugins directory ( if pushing local code changes ): source install/deploy.sh 4) Composer Menu l) Install All -------------------------------------------------------------- If any recipe task has "auth" set to "user" add user credentials: 1. Ensure an RECIPE['setup']['auth']['user'] = [User Credentials JSON] OR 1. Visit Airflow UI > Admin > Connections. 2. Add an Entry called "starthinker_user", fill in the following fields. Last step paste JSON from authentication. - Conn Type: Google Cloud Platform - Project: Get from https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md - Keyfile JSON: Get from: https://github.com/google/starthinker/blob/master/tutorials/deploy_commandline.md#optional-setup-user-credentials -------------------------------------------------------------- If any recipe task has "auth" set to "service" add service credentials: 1. Ensure an RECIPE['setup']['auth']['service'] = [Service Credentials JSON] OR 1. Visit Airflow UI > Admin > Connections. 2. Add an Entry called "starthinker_service", fill in the following fields. Last step paste JSON from authentication. - Conn Type: Google Cloud Platform - Project: Get from https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md - Keyfile JSON: Get from: https://github.com/google/starthinker/blob/master/tutorials/cloud_service.md -------------------------------------------------------------- CM360 Segmentology CM360 funnel analysis using Census data. - Wait for <b>BigQuery->->->Census_Join</b> to be created. - Join the <a href='https://groups.google.com/d/forum/starthinker-assets' target='_blank'>StarThinker Assets Group</a> to access the following assets - Copy <a href='https://datastudio.google.com/c/u/0/reporting/3673497b-f36f-4448-8fb9-3e05ea51842f/' target='_blank'>CM360 Segmentology Sample</a>. Leave the Data Source as is, you will change it in the next step. - Click Edit Connection, and change to <b>BigQuery->->->Census_Join</b>. - Or give these intructions to the client. -------------------------------------------------------------- This StarThinker DAG can be extended with any additional tasks from the following sources: - https://google.github.io/starthinker/ - https://github.com/google/starthinker/tree/master/dags ''' from starthinker.airflow.factory import DAG_Factory INPUTS = { 'account':'', 'auth_read':'user', # Credentials used for reading data. 'auth_write':'service', # Authorization used for writing data. 'recipe_name':'', # Name of report, not needed if ID used. 'date_range':'LAST_365_DAYS', # Timeframe to run report for. 'recipe_slug':'', # Name of Google BigQuery dataset to create. 'advertisers':[], # Comma delimited list of CM360 advertiser ids. } RECIPE = { 'tasks':[ { 'dataset':{ 'description':'Create a dataset for bigquery tables.', 'hour':[ 4 ], 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Credentials used for writing data.'}}, 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','description':'Place where tables will be created in BigQuery.'}} } }, { 'bigquery':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Credentials used for writing function.'}}, 'function':'Pearson Significance Test', 'to':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}} } } }, { 'google_api':{ 'auth':'user', 'api':'dfareporting', 'version':'v3.4', 'function':'accounts.get', 'kwargs':{ 'id':{'field':{'name':'account','kind':'integer','order':5,'default':'','description':'Campaign Manager Account ID'}}, 'fields':'id,name' }, 'results':{ 'bigquery':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Credentials used for writing function.'}}, 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}}, 'table':'CM360_Account' } } } }, { 'dcm':{ 'auth':{'field':{'name':'auth_read','kind':'authentication','order':0,'default':'user','description':'Credentials used for reading data.'}}, 'report':{ 'filters':{ 'advertiser':{ 'values':{'field':{'name':'advertisers','kind':'integer_list','order':6,'default':[],'description':'Comma delimited list of CM360 advertiser ids.'}} } }, 'account':{'field':{'name':'account','kind':'string','order':5,'default':'','description':'Campaign Manager Account ID'}}, 'body':{ 'name':{'field':{'name':'recipe_name','kind':'string','suffix':' Segmentology','description':'The report name.','default':''}}, 'criteria':{ 'dateRange':{ 'kind':'dfareporting#dateRange', 'relativeDateRange':{'field':{'name':'date_range','kind':'choice','order':3,'default':'LAST_365_DAYS','choices':['LAST_7_DAYS','LAST_14_DAYS','LAST_30_DAYS','LAST_365_DAYS','LAST_60_DAYS','LAST_7_DAYS','LAST_90_DAYS','LAST_24_MONTHS','MONTH_TO_DATE','PREVIOUS_MONTH','PREVIOUS_QUARTER','PREVIOUS_WEEK','PREVIOUS_YEAR','QUARTER_TO_DATE','WEEK_TO_DATE','YEAR_TO_DATE'],'description':'Timeframe to run report for.'}} }, 'dimensions':[ { 'kind':'dfareporting#sortedDimension', 'name':'advertiserId' }, { 'kind':'dfareporting#sortedDimension', 'name':'advertiser' }, { 'kind':'dfareporting#sortedDimension', 'name':'zipCode' } ], 'metricNames':[ 'impressions', 'clicks', 'totalConversions' ] }, 'type':'STANDARD', 'delivery':{ 'emailOwner':False }, 'format':'CSV' } } } }, { 'dcm':{ 'auth':{'field':{'name':'auth_read','kind':'authentication','order':0,'default':'user','description':'Credentials used for reading data.'}}, 'report':{ 'account':{'field':{'name':'account','kind':'string','default':''}}, 'name':{'field':{'name':'recipe_name','kind':'string','order':3,'suffix':' Segmentology','default':'','description':'Name of report, not needed if ID used.'}} }, 'out':{ 'bigquery':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}}, 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}}, 'table':'CM360_KPI', 'header':True } } } }, { 'bigquery':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}}, 'from':{ 'query':'SELECT Id AS Partner_Id, Name AS Partner, Advertiser_Id, Advertiser, Zip_Postal_Code AS Zip, SAFE_DIVIDE(Impressions, SUM(Impressions) OVER(PARTITION BY Advertiser_Id)) AS Impression, SAFE_DIVIDE(Clicks, Impressions) AS Click, SAFE_DIVIDE(Total_Conversions, Impressions) AS Conversion, Impressions AS Impressions FROM `{dataset}.CM360_KPI` CROSS JOIN `{dataset}.CM360_Account` ', 'parameters':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','description':'Place where tables will be created in BigQuery.'}} }, 'legacy':False }, 'to':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','description':'Place where tables will be written in BigQuery.'}}, 'view':'CM360_KPI_Normalized' } } }, { 'census':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}}, 'normalize':{ 'census_geography':'zip_codes', 'census_year':'2018', 'census_span':'5yr' }, 'to':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}}, 'type':'view' } } }, { 'census':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}}, 'correlate':{ 'join':'Zip', 'pass':[ 'Partner_Id', 'Partner', 'Advertiser_Id', 'Advertiser' ], 'sum':[ 'Impressions' ], 'correlate':[ 'Impression', 'Click', 'Conversion' ], 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}}, 'table':'CM360_KPI_Normalized', 'significance':80 }, 'to':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}}, 'type':'view' } } } ] } dag_maker = DAG_Factory('cm360_segmentology', RECIPE, INPUTS) dag = dag_maker.generate() if __name__ == "__main__": dag_maker.print_commandline()
LeetCode/0437_Path_Sum_III.py
Achyut-sudo/PythonAlgorithms
144
11192700
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: count = 0 past_sums = {} def pathSum(self, root: TreeNode, sum: int) -> int: if root is not None: self.recurse(root, 0, sum) return self.count def recurse(self, node, summed, target): if node is None: return False else: summed += node.val if summed == target: self.count += 1 if summed - target in self.past_sums: self.count += self.past_sums[summed - target] if summed in self.past_sums: self.past_sums[summed] += 1 else: self.past_sums[summed] = 1 self.recurse(node.left, summed, target) self.recurse(node.right, summed, target) self.past_sums[summed] -= 1
insights/parsers/tests/test_ls_var_lib_nova_instances.py
lhuett/insights-core
121
11192715
import doctest from insights.parsers import ls_var_lib_nova_instances as ls_instances from insights.tests import context_wrap LS_VAR_LIB_NOVA_INSTANCES = ''' /var/lib/nova/instances/: drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 . drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 .. drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 11415c6c-a2a5-45f0-a198-724246b96631 drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 _base -rw-r--r--. nova nova system_u:object_r:nova_var_lib_t:s0 compute_nodes drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 locks /var/lib/nova/instances/11415c6c-a2a5-45f0-a198-724246b96631: drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 . drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 .. -rw-------. root root system_u:object_r:nova_var_lib_t:s0 console.log -rw-r--r--. qemu qemu system_u:object_r:svirt_image_t:s0:c92,c808 disk -rw-r--r--. nova nova system_u:object_r:nova_var_lib_t:s0 disk.info /var/lib/nova/instances/_base: drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 . drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 .. -rw-r--r--. qemu qemu system_u:object_r:virt_content_t:s0 572dfdb7e1d9304342cbe1fd5e3da4ff2e55c7a6 /var/lib/nova/instances/locks: drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 . drwxr-xr-x. nova nova system_u:object_r:nova_var_lib_t:s0 .. -rw-r--r--. nova nova system_u:object_r:nova_var_lib_t:s0 nova-572dfdb7e1d9304342cbe1fd5e3da4ff2e55c7a6 -rw-r--r--. nova nova system_u:object_r:nova_var_lib_t:s0 nova-storage-registry-lock '''.strip() LS_R_VAR_LIB_NOVA_INSTANCES = ''' /var/lib/nova/instances: total 4 drwxr-xr-x. 5 nova nova 97 Feb 20 2017 . drwxr-xr-x. 9 nova nova 111 Feb 17 2017 .. drwxr-xr-x. 2 nova nova 54 Feb 17 2017 _base -rw-r--r--. 1 nova nova 44 May 26 2017 compute_nodes drwxr-xr-x. 2 nova nova 54 Feb 17 2017 e560e649-41fd-46a2-a3d2-5f4750ba2bb4 drwxr-xr-x. 2 nova nova 93 Feb 17 2017 locks /var/lib/nova/instances/_base: total 18176 drwxr-xr-x. 2 nova nova 54 Feb 17 2017 . drwxr-xr-x. 5 nova nova 97 Feb 20 2017 .. -rw-r--r--. 1 qemu qemu 41126400 May 26 2017 faf1184c098da91e90290a920b8fab1ee6e1d4c4 /var/lib/nova/instances/e560e649-41fd-46a2-a3d2-5f4750ba2bb4: total 2104 drwxr-xr-x. 2 nova nova 54 Feb 17 2017 . drwxr-xr-x. 5 nova nova 97 Feb 20 2017 .. -rw-r--r--. 1 qemu qemu 48957 Feb 20 2017 console.log -rw-r--r--. 1 qemu qemu 2097152 Feb 20 2017 disk -rw-r--r--. 1 nova nova 79 Feb 17 2017 disk.info /var/lib/nova/instances/locks: total 0 drwxr-xr-x. 2 nova nova 93 Feb 17 2017 . drwxr-xr-x. 5 nova nova 97 Feb 20 2017 .. -rw-r--r--. 1 nova nova 0 Feb 17 2017 nova-faf1184c098da91e90290a920b8fab1ee6e1d4c4 -rw-r--r--. 1 nova nova 0 Feb 17 2017 nova-storage-registry-lock '''.strip() def test_ls_var_lib_nova_instances(): ls_var_lib_nova_instances = ls_instances.LsVarLibNovaInstances(context_wrap(LS_VAR_LIB_NOVA_INSTANCES)) assert ls_var_lib_nova_instances.dirs_of('/var/lib/nova/instances/') == ['.', '..', '11415c6c-a2a5-45f0-a198-724246b96631', '_base', 'locks'] assert ls_var_lib_nova_instances.listings['/var/lib/nova/instances/11415c6c-a2a5-45f0-a198-724246b96631']['entries']['console.log']['se_type'] == 'nova_var_lib_t' assert ls_var_lib_nova_instances.dir_entry('/var/lib/nova/instances/locks', 'nova-storage-registry-lock') == {'se_type': 'nova_var_lib_t', 'name': 'nova-storage-registry-lock', 'perms': 'rw-r--r--.', 'se_user': 'system_u', 'raw_entry': '-rw-r--r--. nova nova system_u:object_r:nova_var_lib_t:s0 nova-storage-registry-lock', 'se_mls': 's0', 'se_role': 'object_r', 'owner': 'nova', 'group': 'nova', 'type': '-', 'dir': '/var/lib/nova/instances/locks'} assert ls_var_lib_nova_instances.dir_entry('/var/lib/nova/instances/11415c6c-a2a5-45f0-a198-724246b96631', 'console.log')['owner'] == 'root' def test_ls_r_var_lib_nova_instances(): ls_r_instances = ls_instances.LsRVarLibNovaInstances(context_wrap(LS_R_VAR_LIB_NOVA_INSTANCES)) assert ls_r_instances.dir_entry('/var/lib/nova/instances/e560e649-41fd-46a2-a3d2-5f4750ba2bb4', 'console.log')['size'] == 48957 def test_ls_var_lib_nova_instances_doc_examples(): failed, total = doctest.testmod( ls_instances, globs={'ls_var_lib_nova_instances': ls_instances.LsVarLibNovaInstances(context_wrap(LS_VAR_LIB_NOVA_INSTANCES)), 'ls_r_var_lib_nova_instances': ls_instances.LsRVarLibNovaInstances(context_wrap(LS_R_VAR_LIB_NOVA_INSTANCES))} ) assert failed == 0
DQM/SiStripCommon/python/EventAnalyzer_cfi.py
ckamtsikis/cmssw
852
11192750
import FWCore.ParameterSet.Config as cms EventAnalyzer = cms.EDAnalyzer("EventContentAnalyzer")
topicnet/embeddings/api.py
machine-intelligence-laboratory/topicnet
123
11192753
<reponame>machine-intelligence-laboratory/topicnet import os import shutil import ssl import sys from tqdm import tqdm from urllib.request import ( Request, urlopen, ) from ..cooking_machine.models import TopicModel _SERVER_URL = 'http://172.16.31.10:8885' _ARCHIVE_EXTENSION = '.tar.gz' def load_model(model_name: str) -> TopicModel: """ Load model by model_name. Run ``get_info()`` to get model information Parameters ---------- model_name: str name of model to download """ # model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), model_name) model_path = os.path.join('.', model_name) if os.path.isdir(model_path): print(f'The model "{model_name}" was already downloaded before, loading it...') return TopicModel.load(model_path) req = Request(_SERVER_URL + '/' + model_name) context = ssl._create_unverified_context() print(f'Downloading the "{model_name}" model...') save_path = None try: # with urlopen(req, data=data, context=context) as answer: with urlopen(req, context=context) as answer: total_size = int(answer.headers.get('content-length', 0)) block_size = 1024 save_path = model_path # + answer.getheader('file-extension') t = tqdm(total=total_size, unit='iB', unit_scale=True, file=sys.stdout) with open(save_path + _ARCHIVE_EXTENSION, 'wb') as f: while True: chunk = answer.read(block_size) if not chunk: break t.update(len(chunk)) f.write(chunk) t.close() if total_size != 0 and t.n != total_size: raise RuntimeError( "Failed to download the model!" " Some data was lost during network transfer" ) shutil.unpack_archive(save_path + _ARCHIVE_EXTENSION, save_path) return TopicModel.load(save_path) except Exception as exception: if save_path is not None and os.path.isfile(save_path): os.remove(save_path) raise exception finally: if save_path is not None and os.path.isfile(save_path + _ARCHIVE_EXTENSION): os.remove(save_path + _ARCHIVE_EXTENSION)
RecoMET/METFilters/python/HcalStripHaloFilter_cfi.py
ckamtsikis/cmssw
852
11192756
import FWCore.ParameterSet.Config as cms HcalStripHaloFilter = cms.EDFilter( "HcalStripHaloFilter", taggingMode = cms.bool(False), maxWeightedStripLength = cms.int32(7), maxEnergyRatio = cms.double(0.15), minHadEt = cms.double(100.0) )
wbb/core/types/__init__.py
DopeBotz/WilliamButcherBot-1
175
11192758
# flake8: noqa from .InlineQueryResult import (InlineQueryResultAudio, InlineQueryResultCachedDocument)
实践案例/B15-基于深度学习的代码搜索案例/src/3Model/args.py
microsoft/ai-edu
11,094
11192767
<filename>实践案例/B15-基于深度学习的代码搜索案例/src/3Model/args.py # Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE file in the project root for full license information. import argparse def add_common_model_arguments(parser: argparse.ArgumentParser) -> None: """Add common arguments like `--dataset_path`, `--model_path`, `--gpu`, `--load`, `--epoch`, `--batch_size`, `--learning_rate`, `--log_every_iter`, `--valid_every_epoch`, `--save_every_epoch`, `--comment`.""" parser.add_argument('--dataset_path', help='path to the dataset') parser.add_argument('--model_path', help='path for saving models and codes', required=True) parser.add_argument('--gpu', type=lambda x: list(map(int, x.split(','))), default=[], nargs='?', const=[-1], help='GPU ids splited by ",", no-ids to use all GPU') parser.add_argument('--load', type=int, default=0, help='load module training at give epoch') parser.add_argument('--epoch', type=int, default=200, help='epoch to train') parser.add_argument('--batch_size', type=int, default=32, help='batch size') parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate') parser.add_argument('--log_every_iter', type=int, default=100, help='log loss every numbers of iteration') parser.add_argument('--valid_every_epoch', type=int, default=10, help='run validation every numbers of epoch; ' '0 for disabling') parser.add_argument('--save_every_epoch', type=int, default=10, help='save model every numbers of epoch; ' '0 for disabling') parser.add_argument('--comment', default='', help='comment for tensorboard') def add_server_arguments(parser: argparse.ArgumentParser) -> None: """Add server arguments like `--port` and `--host`.""" parser.add_argument('--port', type=int, default=8080, help='port to serve at') parser.add_argument('--host', default='0.0.0.0', help='address to serve at') def add_retrieval_eval_arguments(parser: argparse.ArgumentParser) -> None: """Add retrieval evaluation arguments like `--eval_pool_size` and `--eval_k`.""" parser.add_argument('--eval_pool_size', type=int, default=200, help='pool size for evaluation') parser.add_argument('--eval_k', type=int, default=10, help='k for evaluation') def add_search_arguments(parser: argparse.ArgumentParser) -> None: parser.add_argument('--search_top_n', type=int, default=5, help='search top-n results for search task') def add_codenn_train_arguments(parser: argparse.ArgumentParser) -> None: parser.add_argument('--embed_size', type=int, default=100, help='embedding size') parser.add_argument('--repr_size', type=int, default=100, help='representation size; for bidirectional rnn, the ' 'real value will be doubled') parser.add_argument('--pool', choices=['max', 'mean', 'sum'], default='mean', help='pooling method to use') parser.add_argument('--rnn', choices=['lstm', 'gru', 'rnn'], default='gru', help='rnn and rnn variants to use') parser.add_argument('--bidirectional', choices=['true', 'false'], default='true', help='whether to use bidirectional rnn') parser.add_argument('--activation', choices=['relu', 'tanh'], default='relu', help='activation function to use') parser.add_argument('--margin', type=float, default=0.05, help='margin to use in the loss function') parser.add_argument('--name_len', type=int, default=6, help='length of name sequence') parser.add_argument('--api_len', type=int, default=30, help='length of api sequence') parser.add_argument('--token_len', type=int, default=50, help='length of tokens') parser.add_argument('--desc_len', type=int, default=30, help='length of description sequence') def add_code_summarizer_train_arguments(parser: argparse.ArgumentParser) \ -> None: parser.add_argument('--embed_size', type=int, default=800, help='embedding size') parser.add_argument('--hidden_size', type=int, default=1000, help='hidden state size') def get_codenn_argparser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument('--task', choices=['train', 'valid', 'test', 'repr', 'search', 'serve'], default='train', help="task to run; `train' for training the dataset; " "`valid'/`test' for evaluating model on " "corresponding dataset; `repr' for converting " "whole dataset(`use') to code; `search' for " "searching in whole dataset, it require `repr' to " "run first; `serve' for searching as web server, " "it require `repr' to run first") add_common_model_arguments(parser) add_codenn_train_arguments(parser) add_retrieval_eval_arguments(parser) add_search_arguments(parser) add_server_arguments(parser) return parser def get_code_summarizer_argparser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument('--task', choices=['train', 'valid', 'test', 'summarize'], default='train', help="task to run; `train' for training the dataset; " "`valid'/`test' for evaluating model on " "corresponding dataset; `summarize' for summarize " "the user input code") add_common_model_arguments(parser) add_code_summarizer_train_arguments(parser) return parser
setup.py
carloshanson/etlalchemy
525
11192777
import sys from setuptools import setup from setuptools.command.test import test as TestCommand class PyTest(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass into pytest")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = "" def run_tests(self): import pytest import shlex errno = pytest.main(shlex.split(self.pytest_args)) sys.exit(errno) setup( name = 'etlalchemy', packages = ['etlalchemy'], version = '1.0.6', description = 'Extract, Transform, Load. Migrate any SQL Database in 4 lines of code', author = '<NAME>', author_email='<EMAIL>', url='https://github.com/seanharr11/etlalchemy', download_url='https://github.com/seanharr11/etlalchemy/tarball/1.0.6', keywords=['sql','migration','etl','database'], install_requires = [ "six>=1.9.0", "SQLAlchemy>=1.2.1,<1.3", "sqlalchemy-migrate>=0.9.7", "SQLAlchemy-Utils>=0.32.0" ], classifiers=[], cmdclass={'test': PyTest}, tests_require = ["pytest"], )
i3pystatus/group.py
fkusei/i3pystatus
413
11192790
from i3pystatus import IntervalModule, Status, Module from i3pystatus.core import util from i3pystatus.core.imputil import ClassFinder class Group(Module, Status): """ Module for grouping modules together Cycles trough groups by means of scrolling .. code-block:: python group = Group() group.register("network", interface="eth0", divisor=1024, start_color='white', format_up="{bytes_recv}K / {bytes_sent}K" ) group.register("network", interface="eth0", color_up='#FFFFFF', format_up="{v4}" ) status.register(group) """ on_upscroll = ['cycle_module', 1] on_downscroll = ['cycle_module', -1] def __init__(self, *args, **kwargs): Module.__init__(self, *args, **kwargs) self.modules = util.ModuleList(self, ClassFinder(Module)) self.active = 0 self.__name__ = 'Group' def get_active_module(self): if self.active > len(self.modules): return return self.modules[self.active] def run(self): activemodule = self.get_active_module() if not activemodule: return self.output = activemodule.output def register(self, *args, **kwargs): module = Status.register(self, *args, **kwargs) if module: module.on_change = self.run return module def cycle_module(self, increment=1): active = self.active + increment if active >= len(self.modules): active = 0 elif active < 0: active = len(self.modules) - 1 self.active = active def on_click(self, button, **kwargs): """ Capture scrollup and scorlldown to move in groups Pass everthing else to the module itself """ if button in (4, 5): return super().on_click(button, **kwargs) else: activemodule = self.get_active_module() if not activemodule: return return activemodule.on_click(button, **kwargs)
setup.py
oscarpicas/loophole
153
11192797
import sys from distutils.core import setup setup( name = 'loophole', packages = ['loophole', 'loophole.polar', 'loophole.polar.pb'], version = '0.5.2', description = 'Polar devices Python API and CLI.', author = '<NAME>', author_email = '<EMAIL>', url = 'https://github.com/rsc-dev/loophole', download_url = 'https://github.com/rsc-dev/loophole/releases/tag/0.5.2', keywords = ['polar', 'api', 'cli', 'reverse', ''], classifiers = [ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Software Development :: Libraries :: Python Modules' ], install_requires=['protobuf'] + ( ['pywinusb'] if "win" in sys.platform else ['pyusb'] ) )
libs/fuel/tests/test_streams.py
dendisuhubdy/attention-lvcsr
767
11192808
<reponame>dendisuhubdy/attention-lvcsr import numpy from numpy.testing import assert_equal, assert_raises from fuel.datasets import IterableDataset, IndexableDataset from fuel.schemes import SequentialExampleScheme, SequentialScheme from fuel.streams import AbstractDataStream, DataStream class DummyDataStream(AbstractDataStream): def reset(self): pass def close(self): pass def next_epoch(self): pass def get_epoch_iterator(self, as_dict=False): pass def get_data(self, request=None): pass class TestAbstractDataStream(object): def test_raises_value_error_on_no_scheme_no_produces_examples(self): stream = DummyDataStream() assert_raises(ValueError, getattr, stream, 'produces_examples') def test_raises_value_error_when_setting_produces_examples_if_scheme(self): stream = DummyDataStream(SequentialExampleScheme(2)) assert_raises(ValueError, setattr, stream, 'produces_examples', True) class TestDataStream(object): def setUp(self): self.dataset = IterableDataset(numpy.eye(2)) def test_sources_setter(self): stream = DataStream(self.dataset) stream.sources = ('features',) assert_equal(stream.sources, ('features',)) def test_no_axis_labels(self): stream = DataStream(self.dataset) assert stream.axis_labels is None def test_axis_labels_on_produces_examples(self): axis_labels = {'data': ('batch', 'features')} self.dataset.axis_labels = axis_labels stream = DataStream(self.dataset) assert_equal(stream.axis_labels, {'data': ('features',)}) def test_axis_labels_on_produces_batches(self): dataset = IndexableDataset(numpy.eye(2)) axis_labels = {'data': ('batch', 'features')} dataset.axis_labels = axis_labels stream = DataStream(dataset, iteration_scheme=SequentialScheme(2, 2)) assert_equal(stream.axis_labels, axis_labels) def test_produces_examples(self): stream = DataStream(self.dataset, iteration_scheme=SequentialExampleScheme(2)) assert stream.produces_examples
src/homework/tests/api/tests_markdown_sanitization.py
denkasyanov/education-backend
151
11192858
import pytest pytestmark = [ pytest.mark.django_db, pytest.mark.usefixtures('purchase'), ] @pytest.mark.parametrize(('text', 'expected'), [ ('<script>Ev1l</script>', '<!-- raw HTML omitted -->'), ('*should be rendered*', '<p><em>should be rendered</em></p>'), ('![](typicalmacuser.jpg)', '<p><img alt="" src="typicalmacuser.jpg"></p>'), ('<em ev1l="hax0r">test</em>', '<p><!-- raw HTML omitted -->test<!-- raw HTML omitted --></p>'), ('a\nb', '<p>a\nb</p>'), ('<h1><h2><h3><h4><h5>', '<!-- raw HTML omitted -->'), ('# test', '<h1>test</h1>'), ('a<hr>b', '<p>a<!-- raw HTML omitted -->b</p>'), ('> а хули ты?', '<blockquote>\n<p>а хули ты?</p>\n</blockquote>'), ]) def test_markdown_gets_sanitized(api, answer, text, expected): answer.text = text answer.save() got = api.get(f'/api/v2/homework/answers/{answer.slug}/') assert got['text'].strip() == expected
mmflow/models/losses/__init__.py
ArlenCHEN/mmflow
481
11192879
# Copyright (c) OpenMMLab. All rights reserved. from .census_loss import census_loss from .multilevel_bce import (MultiLevelBCE, binary_cross_entropy, multi_levels_binary_cross_entropy) from .multilevel_charbonnier_loss import (MultiLevelCharbonnierLoss, charbonnier_loss) from .multilevel_epe import MultiLevelEPE, endpoint_error from .sequence_loss import SequenceLoss, sequence_loss from .smooth_loss import smooth_1st_loss, smooth_2nd_loss from .ssim import weighted_ssim __all__ = [ 'endpoint_error', 'sequence_loss', 'binary_cross_entropy', 'SequenceLoss', 'MultiLevelBCE', 'MultiLevelEPE', 'MultiLevelCharbonnierLoss', 'multi_levels_binary_cross_entropy', 'charbonnier_loss', 'weighted_ssim', 'smooth_1st_loss', 'smooth_2nd_loss', 'census_loss' ]
tests/unit/resources/security/test_certificate_rabbitmq.py
doziya/hpeOneView
107
11192898
<reponame>doziya/hpeOneView<filename>tests/unit/resources/security/test_certificate_rabbitmq.py # -*- coding: utf-8 -*- ### # (C) Copyright (2012-2017) Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the 'Software'), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ### from unittest import TestCase import mock from hpOneView.connection import connection from hpOneView.resources.resource import ResourceClient from hpOneView.resources.security.certificate_rabbitmq import CertificateRabbitMQ class CertificateRabbitMQTest(TestCase): def setUp(self): self.host = '127.0.0.1' self.connection = connection(self.host) self._certificate_rabbitmq = CertificateRabbitMQ(self.connection) @mock.patch.object(ResourceClient, 'create') def test_generate_called_once_with_defaults(self, mock_create): information = { "commonName": "default", "type": "RabbitMqClientCertV2" } self._certificate_rabbitmq.generate(information) mock_create.assert_called_once_with(information, timeout=-1) @mock.patch.object(ResourceClient, 'get') def test_get_by_alias_name_called_once(self, mock_get): alias_name = 'default' self._certificate_rabbitmq.get(alias_name) mock_get.assert_called_once_with(alias_name) @mock.patch.object(ResourceClient, 'get') def test_get_key_pair_called_once(self, mock_get): alias_name = 'default' self._certificate_rabbitmq.get_key_pair(alias_name) uri = "/rest/certificates/client/rabbitmq/keypair/" + alias_name mock_get.assert_called_once_with(uri) @mock.patch.object(ResourceClient, 'get') def test_get_keys_called_once(self, mock_get): alias_name = 'default' key_format = 'Base64' self._certificate_rabbitmq.get_keys(alias_name, key_format) uri = "/rest/certificates/client/rabbitmq/keys/" + alias_name + "?format=" + key_format mock_get.assert_called_once_with(uri)
tests/apps/namespace_package_base/nsapp/apps.py
MikeAmy/django
5,079
11192901
import os from django.apps import AppConfig from django.utils._os import upath class NSAppConfig(AppConfig): name = 'nsapp' path = upath(os.path.dirname(__file__))
mixly_arduino/sample/mixpy/海龟画图/py/海龟画图08猜一猜_01猜性别.py
wecake/Mixly_Arduino
118
11192934
import turtle tina= turtle.Turtle() mygender = "女" guess = turtle.textinput("猜一猜","猜一猜我是男生还是女生?") tina.pencolor("#ff0000") tina.hideturtle() if mygender == guess: tina.write("你真棒,猜对了!",False,align="left",font=("黑体",20,"normal")) else: tina.write("很遗憾,猜错了!",False,align="left",font=("黑体",20,"normal"))
src/tests/file_upload_feature_test.py
tomgilbertson/script-server-v1
833
11192943
import os import time import unittest from features.file_upload_feature import FileUploadFeature from files.user_file_storage import UserFileStorage from tests import test_utils from utils import file_utils class TestUserFileStorage(unittest.TestCase): def setUp(self): test_utils.setup() self.__storage = UserFileStorage(b'12345678') self.upload_feature = FileUploadFeature(self.__storage, test_utils.temp_folder) def tearDown(self): test_utils.cleanup() self.__storage._stop_autoclean() def test_prepare_new_folder(self): file_path = self.upload_feature.prepare_new_folder('userX') self.assertTrue(os.path.exists(file_path)) def test_prepare_new_folder_different_users(self): path1 = self.upload_feature.prepare_new_folder('userX') path2 = self.upload_feature.prepare_new_folder('userY') self.assertNotEqual(path1, path2) def test_prepare_new_folder_twice(self): file_path1 = self.upload_feature.prepare_new_folder('userX') time.sleep(0.1) file_path2 = self.upload_feature.prepare_new_folder('userX') self.assertNotEqual(file_path1, file_path2)
tests/testing.py
WamboJambo/spur.py
217
11192950
import os import spur import spur.ssh def _int_or_none(val): return int(val) if val is not None else None HOSTNAME = os.environ.get("TEST_SSH_HOSTNAME", "127.0.0.1") USERNAME = os.environ["TEST_SSH_USERNAME"] PASSWORD = os.environ["TEST_SSH_PASSWORD"] PORT = _int_or_none(os.environ.get("TEST_SSH_PORT", 22)) def create_ssh_shell(missing_host_key=None, shell_type=None): return spur.SshShell( hostname=HOSTNAME, username=USERNAME, password=PASSWORD, port=PORT, missing_host_key=(missing_host_key or spur.ssh.MissingHostKey.accept), shell_type=shell_type, )
036-ircbot/bot.py
gynvael/stream
152
11192988
<reponame>gynvael/stream #!/usr/bin/python3 import sys import socket import threading import os import time import random import string import telnetlib import queue def recvuntil(sock, txt): d = b"" while d.find(txt) == -1: try: dnow = sock.recv(1) if len(dnow) == 0: return False except socket.error as msg: return False d += dnow return d def recvall(sock, n): d = "" while len(d) != n: try: dnow = sock.recv(n - len(d)) if len(dnow) == 0: return False except socket.error as msg: return False d += dnow return d # Proxy object for sockets. class gsocket(object): def __init__(self, *p): self._sock = socket.socket(*p) def __getattr__(self, name): return getattr(self._sock, name) def recvall(self, n): return recvall(self._sock, n) def recvuntil(self, txt): return recvuntil(self._sock, txt) def gen_random_nick(prefix): return prefix + ''.join(random.choice(string.ascii_letters) for _ in range(4)) def toutf8(x): return bytes(x, "utf-8") class ReciverThread(threading.Thread): def __init__(self, s, q): threading.Thread.__init__(self) self.s = s self.q = q def run(self): while True: txt = str(self.s.recvuntil(b"\n").strip(), "utf-8") self.q.put(txt) def handle_PING(s, src, cmd, params): s.sendall(toutf8("PONG " + params + "\r\n")) print("********************** SENT PONG") def xhandle_PRIVMSG(s, src, cmd, params): x = params.split(" ", 2) if len(x) != 2: return chan, msg = x if msg.startswith(":"): msg = msg[1:] if msg == "!rand": x = random.randint(0, 10000000000000000000000000) s.sendall(toutf8("PRIVMSG %s :%i\r\n" % (chan, x))) print("RANDOM SENT") def xhandle_376(s, src, cmd, params): s.sendall(toutf8("JOIN #gynvaelstream\r\n")) handlers = {} def init_handlers(): for k, v in globals().items(): if k.startswith("handle_"): handlers[k[7:]] = v print(handlers) def go(): global HOST global PORT init_handlers() s = gsocket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) nick = gen_random_nick("Pacynka_") s.sendall(toutf8("NICK %s\r\n" % nick)) s.sendall(toutf8("USER %s %s %s :%s\r\n" % (nick, nick, nick, nick))) msg_queue = queue.Queue() rt = ReciverThread(s, msg_queue) rt.daemon = True rt.start() while True: try: msg = msg_queue.get(timeout=0.1) msg_split = msg.split(" ", 2) if len(msg_split) == 3: src, cmd, params = msg_split else: src, cmd, params = "", *msg_split print("DEBUG: (%s, %s, %s)" % (src, cmd, params)) if cmd in handlers: print("USING HANDLER: %s" % (str(handlers[cmd]))) handlers[cmd](s, src, cmd, params) else: print("HANDLER NOT FOUND") except queue.Empty: pass #t = telnetlib.Telnet() #t.sock = s #t.interact() s.close() HOST = 'irc.freenode.net' PORT = 6667 go()
recipes/Python/578293_unicode_Command_line_histograms/recipe-578293.py
tdiprima/code
2,023
11193027
<gh_stars>1000+ import numpy as np def cli_hist(data,bins=10): bars = u' ▁▂▃▄▅▆▇█' n,_ = np.histogram(data,bins=bins) n2=n*(len(bars)-1)/(max(n)) res = u" ".join( bars[i] for i in n2 ) return res data = np.random.random(100) print cli_hist(data) # ▆ ▄ ▃ ▅ █ ▄ ▅ ▁ ▅ ▇ print cli_hist(data,bins=5) # ▆ ▅ █ ▄ ▇
scripts/nextpnr-timing.py
keadwen/CFU-Playground
240
11193040
#!/usr/bin/env python3 import json import argparse arg = argparse.ArgumentParser() arg.add_argument('file', help='JSON timing report') arg.add_argument('--src', default='', help='Source name') arg.add_argument('--dst', default='', help='Destination name') arg.add_argument('--results', default=100, type=int, help='Number of paths reported') arg.add_argument('--tgt-len', default=0.0, type=float, help='List paths that are longer than this value (in ns)') args = vars(arg.parse_args()) data = dict() with open(args['file'], 'r') as file: data = json.load(file) paths = [] for net in data['detailed_net_timings']: if args['src'] in net['driver']: src = net['driver'] for endpoint in net['endpoints']: if args['dst'] in endpoint['cell']: dly = endpoint['delay'] tgt = endpoint['cell'] if args['tgt_len'] < dly: paths.append((src, tgt, dly)) paths.sort(key=lambda tup: tup[2], reverse=True) for path in paths[:args['results']]: src, tgt, dly = path print(f"{src} -> {tgt} : {dly}")
venv/Lib/site-packages/rivescript/regexp.py
Hazemcodes/GimmyBot
154
11193057
# RiveScript-Python # # This code is released under the MIT License. # See the "LICENSE" file for more information. # # https://www.rivescript.com/ from __future__ import unicode_literals import re """Common regular expressions used in RiveScript.""" # Common regular expressions. class RE(object): equals = re.compile('\s*=\s*') ws = re.compile('\s+') space = re.compile('\\\\s') objend = re.compile('^\s*<\s*object') weight = re.compile(r'\s*\{weight=(\d+)\}\s*') inherit = re.compile('\{inherits=(\d+)\}') wilds_and_optionals = re.compile('[\s\*\#\_\[\]()]+') nasties = re.compile('[^A-Za-z0-9 ]') crlf = re.compile('<crlf>') literal_w = re.compile(r'\\w') array = re.compile(r'\@(.+?)\b') reply_array = re.compile(r'\(@([A-Za-z0-9_]+)\)') ph_array = re.compile(r'\x00@([A-Za-z0-9_]+)\x00') def_syntax = re.compile(r'^.+(?:\s+.+|)\s*=\s*.+?$') name_syntax = re.compile(r'[^a-z0-9_\-\s]') obj_syntax = re.compile(r'[^A-Za-z0-9_\-\s]') utf8_trig = re.compile(r'[A-Z\\.]') trig_syntax = re.compile(r'[^a-z0-9(\|)\[\]*_#@{}<>=\s]') cond_syntax = re.compile(r'^.+?\s*(?:==|eq|!=|ne|<>|<|<=|>|>=)\s*.+?=>.+?$') utf8_meta = re.compile(r'[\\<>]') utf8_punct = re.compile(r'[.?,!;:@#$%^&*()]') cond_split = re.compile(r'\s*=>\s*') cond_parse = re.compile(r'^(.+?)\s+(==|eq|!=|ne|<>|<|<=|>|>=)\s+(.+?)$') topic_tag = re.compile(r'\{topic=(.+?)\}') set_tag = re.compile(r'<set (.+?)=(.+?)>') bot_tag = re.compile(r'<bot (.+?)>') get_tag = re.compile(r'<get (.+?)>') star_tags = re.compile(r'<star(\d+)>') botstars = re.compile(r'<botstar(\d+)>') input_tags = re.compile(r'<input([1-9])>') reply_tags = re.compile(r'<reply([1-9])>') random_tags = re.compile(r'\{random\}(.+?)\{/random\}') redir_tag = re.compile(r'\{@(.+?)\}') tag_search = re.compile(r'<([^<]+?)>') placeholder = re.compile(r'\x00(\d+)\x00') zero_star = re.compile(r'^\*$') optionals = re.compile(r'\[(.+?)\]') empty_pipe = re.compile(r'\|\s*\||\[\s*\||\|\s*\]|\(\s*\||\|\s*\)') # ||, [|, |], (|, |)