max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/baseline_data.py
jakiee3y/luma.core
114
11188716
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2017-18 <NAME> and contributors # See LICENSE.rst for details. def primitives(device, draw): padding = 2 shape_width = 20 top = padding bottom = device.height - padding - 1 draw.rectangle(device.bounding_box, outline="white", fill="black") x = padding draw.ellipse((x, top, x + shape_width, bottom), outline="red", fill="black") x += shape_width + padding draw.rectangle((x, top, x + shape_width, bottom), outline="blue", fill="black") x += shape_width + padding draw.polygon([(x, bottom), (x + shape_width / 2, top), (x + shape_width, bottom)], outline="green", fill="black") x += shape_width + padding draw.line((x, bottom, x + shape_width, top), fill="yellow") draw.line((x, top, x + shape_width, bottom), fill="yellow") x += shape_width + padding draw.text((x, top), 'Hello', fill="cyan") draw.text((x, top + 20), 'World!', fill="purple")
examples/custom_op/train.py
jnclt/simple_tensorflow_serving
771
11188743
<gh_stars>100-1000 #!/usr/bin/env python import os import numpy as np import tensorflow as tf from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import ( signature_constants, signature_def_utils, tag_constants, utils) from tensorflow.python.util import compat def main(): # Load custom op filename = os.path.join(os.path.dirname(__file__), "zero_out.so") zero_out_module = tf.load_op_library(filename) zero_out = zero_out_module.zero_out # Prepare train data train_data = np.ones((2, 2)) print("Input data: {}".format(train_data)) # Define the model input = tf.placeholder(tf.int32, shape=(None, 2)) output = zero_out(input) # Export the model model_path = "model" model_version = 1 model_signature = signature_def_utils.build_signature_def( inputs={ "input": utils.build_tensor_info(input), }, outputs={ "output": utils.build_tensor_info(output), }, method_name=signature_constants.PREDICT_METHOD_NAME) export_path = os.path.join( compat.as_bytes(model_path), compat.as_bytes(str(model_version))) legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') # Create session to run with tf.Session() as sess: sess.run(tf.initialize_all_variables()) output_data = sess.run(output, feed_dict={input: train_data}) print("Output data: {}".format(output_data)) builder = saved_model_builder.SavedModelBuilder(export_path) builder.add_meta_graph_and_variables( sess, [tag_constants.SERVING], clear_devices=True, signature_def_map={ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: model_signature, }, legacy_init_op=legacy_init_op) builder.save() if __name__ == "__main__": main()
inferpy/util/iterables.py
PGM-Lab/InferPy
140
11188762
<gh_stars>100-1000 def get_shape(x): """ Get the shape of an element x. If it is an element with a shape attribute, return it. If it is a list with more than one element, compute the shape by checking the len, and the shape of internal elements. In that case, the shape must be consistent. Finally, in other case return () as shape. Args: x: The element to compute its shape Raises: class `ValueError`: list shape not consistent Returns: A tuple with the shape of `x` """ if isinstance(x, list) and len(x) > 0: shapes = [get_shape(subx) for subx in x] if any([s != shapes[0] for s in shapes[1:]]): raise ValueError('Parameter dimension not consistent: {}'.format(x)) return (len(x), ) + shapes[0] else: if hasattr(x, '_shape_tuple'): return x._shape_tuple() # method to return the shape as a tuple elif hasattr(x, 'shape'): return tuple(x.shape) else: return () def get_plate_size(variables, sample_dict): # get the plate size by analyzing the sample_dict input # check that all values in dict whose name is a datamodel RV has the same length (will be the plate size) plate_shapes = [get_shape(v) for k, v in sample_dict.items() if k in variables and variables[k].is_datamodel] plate_sizes = [s[0] if len(s) > 0 else 1 for s in plate_shapes] # if the shape is (), it is just one element if len(plate_sizes) == 0: return 1 else: plate_size = plate_sizes[0] if any(plate_size != x for x in plate_sizes[1:]): raise ValueError('The number of elements for each mapped variable must be the same.') return plate_size
python/fate_arch/federation/transfer_variable/_cleaner.py
hubert-he/FATE
3,787
11188789
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import typing from collections import deque from fate_arch.abc import GarbageCollectionABC from fate_arch.common.log import getLogger LOGGER = getLogger() class IterationGC(GarbageCollectionABC): def __init__(self, capacity=2): self._ashcan: deque[typing.List[typing.Tuple[typing.Any, str, dict]]] = deque() self._last_tag: typing.Optional[str] = None self._capacity = capacity self._enable = True def add_gc_action(self, tag: str, obj, method, args_dict): if self._last_tag == tag: self._ashcan[-1].append((obj, method, args_dict)) else: self._ashcan.append([(obj, method, args_dict)]) self._last_tag = tag def disable(self): self._enable = False def set_capacity(self, capacity): self._capacity = capacity def gc(self): if not self._enable: return if len(self._ashcan) <= self._capacity: return self._safe_gc_call(self._ashcan.popleft()) def clean(self): while self._ashcan: self._safe_gc_call(self._ashcan.pop()) @staticmethod def _safe_gc_call(actions: typing.List[typing.Tuple[typing.Any, str, dict]]): for obj, method, args_dict in actions: try: LOGGER.debug(f"[CLEAN]deleting {obj}, {method}, {args_dict}") getattr(obj, method)(**args_dict) except Exception as e: LOGGER.debug(f"[CLEAN]this could be ignore {e}")
test/library/packages/ProtobufProtocolSupport/endToEnd/oneofs/write.py
jhh67/chapel
1,602
11188850
import oneofs_pb2 messageObj = oneofs_pb2.Foo() messageObj.co = oneofs_pb2.color.green messageObj.name = b"chapel"; messageObj.mfield.a = 67 messageObj.ifield = 45 file = open("out", "wb") file.write(messageObj.SerializeToString()) file.close()
python-sdk/nuscenes/scripts/export_instance_videos.py
bjajoh/nuscenes-devkit
1,284
11188859
<filename>python-sdk/nuscenes/scripts/export_instance_videos.py # nuScenes dev-kit. # Code written by <NAME>, 2020. """ Generate videos of nuScenes object instances. See https://github.com/EricWiener/nuscenes-instance-videos for more detailed instructions. Usage: python3 generate_videos.py --dataroot <path to data> --version <version> -o <output directory> Note: You first need to generate 2D annotations with export_2d_annotations_as_json.py. """ import argparse import json import os import pathlib from collections import defaultdict from shutil import rmtree from typing import List, Tuple import cv2 import numpy as np from PIL import Image from tqdm import tqdm def convert_annotation_list_to_dict(annotation_list: List[dict], categories: List[str] = None, visibilities: List[str] = None) -> defaultdict: """ Save the list of sample_annotations in a format suitable for instance videos. When saving the list of annotations to a dictionary, special attention must be paid to the correct keys to use. For example, you will have bounding boxes with the same instance_token and sample_annotation_token because there are multiple cameras on the car, so you can have the same object appearing across multiple sensors. Each sensor's data is identified with a sample_data_token. {'attribute_tokens': ['58aa28b1c2a54dc88e169808c07331e3'], 'bbox_corners': [1370.3079971217335, 446.66394956158524, 1600.0, 607.4567037983365], 'category_name': 'vehicle.car', 'filename': 'samples/CAM_FRONT/n008-2018-08-27-11-48-51-0400__CAM_FRONT__1535385095912404.jpg', 'instance_token': '0f8696c5e7284236b29a806d3d6f3513', 'next': '<KEY>', 'num_lidar_pts': 4, 'num_radar_pts': 2, 'prev': '8291db1bc2704230867275bad5f42297', 'sample_annotation_token': 'ee04de72a30e4517a366ddad89d64fef', 'sample_data_token': '60ade2dececb46c69b114ce4c8a0bd3e', 'visibility_token': '1'} {'attribute_tokens': ['58aa28b1c2a54dc88e169808c07331e3'], 'bbox_corners': [0.0, 446.3944232196225, 387.13952090477727, 618.0310593208171], 'category_name': 'vehicle.car', 'filename': 'samples/CAM_FRONT_RIGHT/n008-2018-08-27-11-48-51-0400__CAM_FRONT_RIGHT__1535385095920482.jpg', 'instance_token': '0f8696c5e7284236b29a806d3d6f3513', 'next': '<KEY>', 'num_lidar_pts': 4, 'num_radar_pts': 2, 'prev': '8291db1bc2704230867275bad5f42297', 'sample_annotation_token': 'ee04de72a30e4517a366ddad89d64fef', 'sample_data_token': '92d49452e5804d0a9724ab4161a26147', 'visibility_token': '1'} A combination of [instance_token][sample_data_token] can be used to uniquely identify the bounding boxes. You can enumerate through [instance_token][x] to find all the different views of a single bounding box. :param annotation_list: A list of annotations. :param categories: The list of categories to filter annotations by. :param visibilities: The list of visibilities to filter annotations by. :return: A nested dict of annotations indexed by [instance_token][sample_token][camera_name]. """ # Default arguments. if visibilities is None: visibilities = ['', '1', '2', '3', '4'] # Convert the list of instance to a dictionary that uses the # instance_token -> sample_annotation_token -> camera # to look up the instance. bbox_2d_annotations = defaultdict(lambda: defaultdict(dict)) num_dups = 0 for instance in annotation_list: instance_token = instance['instance_token'] # 3. `sample` - An annotated snapshot of a scene at a particular timestamp. # This is identified by `sample_annotation_token`. # 4. `sample_data` - Data collected from a particular sensor. # sample_data refers to the picture captured by a single sensor at a single timestamp. # sample_annotation_token refers to a single bounding box, which might exist in multiple # sample_data (across the different cameras) sample_token = instance['sample_annotation_token'] category = instance['category_name'] visibility = instance['visibility_token'] camera_name = extract_camera_key_from_filename(instance['filename']) # Append additional information. instance['camera_name'] = camera_name instance['bbox_area'] = calculate_bb_area(instance['bbox_corners']) if (categories is not None and category not in categories) or visibility not in visibilities: continue if instance_token in bbox_2d_annotations and sample_token in bbox_2d_annotations[instance_token] \ and camera_name in bbox_2d_annotations[instance_token][sample_token]: num_dups += 1 print('Duplicate instance {}, sample {}, and camera {}'.format( instance_token, sample_token, camera_name)) bbox_2d_annotations[instance_token][sample_token][camera_name] = instance assert num_dups == 0, 'Error: Number of duplicates (should be zero)!' return bbox_2d_annotations def extract_camera_key_from_filename(filename: str) -> str: """ Extract the camera name from the filename. :param filename: the name of the file where the samples image is stored. Ex: 'samples/CAM_BACK/n015-2018-10-02-10-50-40+0800__CAM_BACK__1538448750037525.jpg', :return: The camera name. """ camera_name = filename.split('/')[1] # Validate the camera name is valid. camera_names = ['CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT', 'CAM_FRONT', 'CAM_FRONT_LEFT', 'CAM_FRONT_RIGHT'] assert (camera_name in camera_names), "Invalid camera name: {} from path: {}".format( camera_name, filename) return camera_name def calculate_bb_area(bounding_box: np.ndarray) -> float: """ Calculates area of a 2D bounding box. :param bounding_box: np.array of length 4 (x min, y min, x max, y max). :return: The area. """ x_min, y_min, x_max, y_max = bounding_box return (x_max - x_min) * (y_max - y_min) def get_most_visible_camera_annotation(camera_data_dict: dict) -> dict: """ Get the most visibile camera's annotation. :param camera_data_dict: Dictionary of form: { 'CAM_BACK': {'attribute_tokens': ['<KEY>'], 'bbox_corners': [600.8315617945755, 426.38901275036744, 643.6756536789582, 476.66593163100237], 'category_name': 'vehicle.bus.rigid', 'filename': 'samples/CAM_BACK/n015-2018-10-02-10-50-40+0800__CAM_BACK__1538448750037525.jpg', 'instance_token': '<KEY>', 'next': 'ef90c2e525244b7d9eeb759837cf2277', 'num_lidar_pts': 0, 'num_radar_pts': 0, 'prev': '6628e81912584a72bd448a44931afb42', 'sample_annotation_token': '06b4886e79d2435c80bd23e7ac60c618', 'sample_data_token': '<KEY>', 'visibility_token': '4'}, 'CAM_FRONT': ... ... } :return: The camera annotation with highest visibility. """ # Loop through all the camera views to find the best view of this instance # Each of the cameras will have a corresponding bounding box and visibility. # We want the largest bounding box and highest visibility. best_visibility = '' largest_area = -1 best_camera_token = None for camera_token in camera_data_dict: visibility = camera_data_dict[camera_token]['visibility_token'] bbox_area = camera_data_dict[camera_token]['bbox_area'] if visibility > best_visibility or (visibility == best_visibility and bbox_area > largest_area): best_camera_token = camera_token largest_area = bbox_area best_visibility = visibility if not best_camera_token: print('Unable to find any good views for camera data dict: {}'.format( camera_data_dict)) best_instance_data = camera_data_dict[best_camera_token] return best_instance_data def get_cropped_image_for_annotation(sample_data_annotation: dict, dataroot: str, output_size: Tuple[int, int]) -> np.ndarray: """ Crop the annotation of a given imgae. :param sample_data_annotation: Dict of form: ``` {'attribute_tokens': ['<KEY>'], 'bbox_corners': [600.8315617945755, 426.38901275036744, 643.6756536789582, 476.66593163100237], 'category_name': 'vehicle.bus.rigid', 'filename': 'samples/CAM_BACK/n015-2018-10-02-10-50-40+0800__CAM_BACK__1538448750037525.jpg', 'instance_token': '<KEY>', 'next': 'ef90c2e525244b7d9eeb759837cf2277', 'num_lidar_pts': 0, 'num_radar_pts': 0, 'prev': '<KEY>', 'sample_annotation_token': '06b4886e79d2435c80bd23e7ac60c618', 'sample_data_token': '<KEY>', 'visibility_token': '4'}, ``` :param dataroot: The nuScenes dataroot. :param output_size: A tuple for the image size. :return: The cropped image. """ data_path = os.path.join(dataroot, sample_data_annotation['filename']) bbox = sample_data_annotation['bbox_corners'] im = Image.open(data_path) im1 = im.crop(bbox) im1 = im1.resize(output_size) np_img = np.asarray(im1) return np_img def sort_sample_annotations_chronologically(instance_dict: dict) -> List[str]: """ Sort the sample_annotations chronologically. :param instance_dict: Taken by indexing bbox_2d_annotations[instance_token] :return: A list of chronologically sorted annotations. Uses [sample_token][sample_annotation_token]['best_annotation'] to find the correct sequence. """ # Find the first sample token first_sample_token = None for sample_token in instance_dict: if instance_dict[sample_token]['best_annotation']['prev'] == '': first_sample_token = sample_token break if first_sample_token is None: print("Unable to find a start token") # Now iterate and find a list of the sample_tokens in order sequential_sample_tokens = [first_sample_token] while True: try: next_sample_token = instance_dict[sequential_sample_tokens[-1]]['best_annotation']['next'] except: print("Unrecognized sample annotaton token: {}", sequential_sample_tokens) break if next_sample_token == '': break sequential_sample_tokens.append(next_sample_token) return sequential_sample_tokens def remove_bad_samples(instance_annotation: dict, minimum_bb_area: float, minimum_visibility: str, image_area: int = 1600 * 900) -> List: """ Removes bad samples from an instance annotation's sample sequence :param instance_annotation: an instance annotation :param minimum_bb_area: The minimum fraction of a frame a bounding box take up to be used (0, 1) :param minimum_visibility: The minimum visibility a frame is allowed to haev ('', '1', '2', '3', '4') :param image_area: The area of an image frame. Defaults to 1600*900. :return: A cleaned list of sample annotation tokens that meet requirements """ sample_token_sequence = instance_annotation['sample_annotation_sequence'] cleaned = [] for sample_token in sample_token_sequence: area = instance_annotation[sample_token]['best_annotation']['bbox_area'] visibility = instance_annotation[sample_token]['best_annotation']['visibility_token'] if area / image_area > minimum_bb_area and visibility >= minimum_visibility: cleaned.append(sample_token) return cleaned def main(version: str, dataroot: str, output: str, object_categories: List[str], fps: int, output_size: Tuple[int, int], minimum_frames: int, minimum_bb_area: float, visibility: str, codec: str) -> None: """ Generates video sequences of nuScenes object instances over time. Expects the data to be organized as: ``` "$dataroot"/ samples - Sensor data for keyframes. sweeps - Sensor data for intermediate frames. maps - Folder for all map files: rasterized .png images and vectorized .json files. v1.0-* - JSON tables that include all the meta data and annotations. Each split (trainval, test, mini) is provided in a separate folder. Note that image_annotations.json should be inside this directory. ``` :param version: The nuScenes data version. :param dataroot: The path to the data root directory. :param output: The path to the output video directory. :param object_categories: The categories to extract videos for. :param fps: Frames per second to use for the video. :param output_size: The output dimension to resize every cropped bounding box to. Defaults to (112, 112). :param minimum_frames: The minimum number of frames an instance must have. :param minimum_bb_area: The minimum fraction of a frame a bounding box take up to be used (0, 1). :param visibility: The minimum visibility a frame is allowed to haev ('', '1', '2', '3', '4'). :param codec: Which codec to use to generate the video, e.g. MJPG or vp09. Some data annotation platforms require vp09. """ print('=' * 20) print('Generating video sequences:') print('\t* Size: {}'.format(output_size)) print('\t* FPS: {}'.format(fps)) print('\t* Minimum frame count: {}'.format(minimum_frames)) print('\t* Minimum BB area: {}'.format(minimum_bb_area)) print('\t* Minimum visibility: {}'.format(visibility)) # ================================ Load image annotations. ======================================== image_annotations_file = os.path.join(dataroot, version, 'image_annotations.json') if not os.path.exists(image_annotations_file): raise Exception("Error: Missing image_annotations.json. " "Please run the export_2d_annotations_as_json.py script.") with open(image_annotations_file) as f: # A list of dictionaries bbox_2d_annotations_list = json.load(f) # These can be indexed with [instance_token][sample_annotation_token][camera_name] -> data about the annotation # You can use the sample_annotation_token with the nuScenes helper in order to get the sample tokens. bbox_2d_annotations = convert_annotation_list_to_dict( bbox_2d_annotations_list, categories=object_categories) print('Number of unique vehicle instances: {}'.format(len(bbox_2d_annotations))) # ============================================================================================== # ===== For each instance and each sample annotation, find the best camera sensor to use. ====== # Get sorted sample annotation tokens per instance per camera. for instance_token in bbox_2d_annotations: for sample_annotation_token in bbox_2d_annotations[instance_token]: bbox_2d_annotations[instance_token][sample_annotation_token][ 'best_annotation'] = get_most_visible_camera_annotation( bbox_2d_annotations[instance_token][sample_annotation_token]) # ============================================================================================== # ====== For each instance, find the correct sequence of sample annotations. ==================== # Get sorted sample annotation tokens per instance per camera. for instance_token in bbox_2d_annotations: bbox_2d_annotations[instance_token]['sample_annotation_sequence'] = sort_sample_annotations_chronologically( bbox_2d_annotations[instance_token]) # ============================================================================================== # ====== Remove samples from sequence that don't meet requirements. ==================== for instance_token in bbox_2d_annotations: bbox_2d_annotations[instance_token]['sample_annotation_sequence'] = remove_bad_samples( bbox_2d_annotations[instance_token], minimum_bb_area, visibility) # ============================================================================================== # ====== Create videos for every instance. ====================================================== # Remove the directory if it already exists and create new one. rmtree(output, ignore_errors=True) pathlib.Path(output).mkdir(parents=True, exist_ok=True) print("Creating videos and storing in '{}'...".format(output)) total_videos = 0 for instance_token in tqdm(bbox_2d_annotations): sample_annotation_tokens = bbox_2d_annotations[instance_token]['sample_annotation_sequence'] if len(sample_annotation_tokens) < minimum_frames: continue # Define codec and file extension. file_ext = 'mp4' if codec == 'vp09' else 'avi' video_path = os.path.join( output, '{}.{}'.format(instance_token, file_ext)) out = cv2.VideoWriter( video_path, cv2.VideoWriter_fourcc(*codec), fps, output_size) for sample_annotation_token in sample_annotation_tokens: best_annotation = bbox_2d_annotations[instance_token][sample_annotation_token]['best_annotation'] cropped_img = get_cropped_image_for_annotation( best_annotation, dataroot, output_size) # Convert from PIL's RGB to cv2 BGR out.write(cropped_img[:, :, ::-1]) out.release() total_videos += 1 print('Created {} videos ({} did not meet requirements).'.format( total_videos, len(bbox_2d_annotations) - total_videos, minimum_frames)) # ============================================================================================== print('=' * 20) if __name__ == "__main__": # Construct the argument parser and parse the arguments. ap = argparse.ArgumentParser() ap.add_argument("-d", "--dataroot", type=str, default='/data/sets/nuscenes', help="The path to the root directory where the data is stored") ap.add_argument("-v", "--version", type=str, default='v1.0-trainval', help="The nuScenes data version") ap.add_argument("-o", "--output", type=str, default="videos", help="The output video directory") ap.add_argument("-x", "--codec", type=str, default='MJPG', help="Which codec to use to generate the video, e.g. MJPG or vp09. ") ap.add_argument("-f", "--fps", type=int, default=2, help="Frames per second for output video (use 2 to match speed of original data)") ap.add_argument("-m", "--minimum_frames", type=int, default=9, help="The minimum number of frames an instance must have") ap.add_argument("-p", "--minimum_bb_area", type=float, default=0.01, help="The minimum fraction of a frame a bounding box take up to be used (0, 1)") ap.add_argument("--visibility", type=str, default='2', help="The minimum visibility a frame is allowed to have ('', '1', '2', '3', '4')") ap.add_argument("-s", "--size", type=int, default=(112, 112), nargs=2, help="Size of the output video") # Excludes bicycle and motorcycle by default. vehicle_categories = ['vehicle.bus.bendy', 'vehicle.bus.rigid', 'vehicle.car', 'vehicle.construction', 'vehicle.trailer', 'vehicle.truck'] ap.add_argument("-c", "--categories", nargs='+', help="The categories to extract videos for", required=False, default=vehicle_categories) args = vars(ap.parse_args()) main(args['version'], args['dataroot'], args['output'], args['categories'], args['fps'], tuple(args['size']), args['minimum_frames'], args['minimum_bb_area'], args["visibility"], args['codec'])
tests/samples/method_and_prefix.py
spamegg1/snoop
751
11188890
<filename>tests/samples/method_and_prefix.py from snoop.configuration import Config snoop = Config(prefix='ZZZ').snoop class Baz(object): def __init__(self): self.x = 2 @snoop(watch='self.x') def square(self): foo = 7 self.x **= 2 return self def main(): baz = Baz() baz.square()
pystiche/enc/models/alexnet.py
dooglewoogle/pystiche
129
11189028
<reponame>dooglewoogle/pystiche from typing import Any, Dict, List, Tuple from torch import nn from torchvision.models import alexnet from torchvision.models.alexnet import model_urls as TORCH_MODEL_URLS from .utils import ModelMultiLayerEncoder, select_url __all__ = ["AlexNetMultiLayerEncoder", "alexnet_multi_layer_encoder"] MODEL_URLS = {"torch": TORCH_MODEL_URLS["alexnet"]} def _make_description() -> str: return r"""Multi-layer encoder based on :class:`~torchvision.models.AlexNet`. The :class:`~torchvision.models.AlexNet` architecture was introduced by Krizhevsky, Sutskever, and Hinton in :cite:`KSH2012`. """ def _make_docstring(body: str) -> str: return f"{_make_description()}\n{body}" class AlexNetMultiLayerEncoder(ModelMultiLayerEncoder): __doc__ = _make_docstring( r""" Args: pretrained: If ``True``, loads builtin weights. Defaults to ``True``. framework: Name of the framework that was used to train the builtin weights. Defaults to ``"torch"``. kwargs: Optional arguments of :class:`ModelMultiLayerEncoder` . Raises: RuntimeError: If ``pretrained`` and no weights are available for the ``framework``. """ ) def state_dict_url(self, framework: str) -> str: return select_url(MODEL_URLS, framework) def collect_modules( self, inplace: bool ) -> Tuple[List[Tuple[str, nn.Module]], Dict[str, str]]: model = alexnet(pretrained=False) modules = [] state_dict_key_map = {} block = 1 for idx, module in model.features.named_children(): if isinstance(module, nn.Conv2d): name = f"conv{block}" elif isinstance(module, nn.ReLU): module = nn.ReLU(inplace=inplace) name = f"relu{block}" if block in (3, 4): # in the third and forth block the ReLU layer marks the end of the # block block += 1 else: # isinstance(module, nn.MaxPool2d): name = f"pool{block}" # each pooling layer marks the end of the current block block += 1 modules.append((name, module)) state_dict_key_map.update( { f"features.{idx}.{key}": f"{name}.{key}" for key in module.state_dict().keys() } ) return modules, state_dict_key_map def alexnet_multi_layer_encoder(**kwargs: Any) -> AlexNetMultiLayerEncoder: return AlexNetMultiLayerEncoder(**kwargs) alexnet_multi_layer_encoder.__doc__ = _make_docstring( r""" Args: kwargs: Optional arguments of :class:`AlexNetMultiLayerEncoder` . """ )
tests/unit/nn/test_rnn.py
ethan-asapp/flambe
148
11189031
import pytest from flambe.nn import RNNEncoder import torch import mock @pytest.mark.parametrize("rnn_type", ['LSTM', 'random', '']) def test_invalid_type(rnn_type): with pytest.raises(ValueError): RNNEncoder( input_size=10, hidden_size=20, rnn_type=rnn_type ) def test_sru_kwargs(): rnn = RNNEncoder( input_size=10, hidden_size=20, rnn_type='sru', use_tanh=True ) for i in rnn.rnn.rnn_lst: assert i.activation == 'tanh' def test_invalid_sru_kwargs(): with pytest.raises(ValueError): _ = RNNEncoder( input_size=10, hidden_size=20, rnn_type='sru', use_tanh=True, some_invalid_param=123 ) @pytest.mark.parametrize("rnn_type", ['lstm', 'gru', 'sru']) def test_forward_pass(rnn_type): input_size = 300 output_size = 10 seq_len = 20 batch_len = 32 rnn = RNNEncoder( input_size=input_size, hidden_size=output_size, n_layers=4, rnn_type=rnn_type) input_t = torch.rand(batch_len, seq_len, input_size) output, state = rnn(input_t) assert output.shape == torch.Size((batch_len, seq_len, output_size)) @pytest.mark.parametrize("rnn_type", ['lstm', 'gru', 'sru']) def test_transpose_on_forward_pass(rnn_type): input_size = 300 output_size = 10 rnn = RNNEncoder( input_size=input_size, hidden_size=output_size, n_layers=4, rnn_type=rnn_type) input_t = torch.rand(10, 10, input_size) input_t.transpose = mock.Mock(side_effect=input_t.transpose) output, state = rnn(input_t) input_t.transpose.assert_called() input_t.transpose.assert_called_with(0, 1)
xam/preprocessing/binning/base.py
topolphukhanh/xam
357
11189037
<reponame>topolphukhanh/xam import numpy as np from sklearn.base import BaseEstimator from sklearn.base import TransformerMixin from sklearn.exceptions import NotFittedError from sklearn.utils import check_array class BaseBinner(BaseEstimator, TransformerMixin): @property def cut_points(self): raise NotImplementedError def transform(self, X, y=None): """Binarize X based on the fitted cut points.""" # scikit-learn checks X = check_array(X) if self.cut_points is None: raise NotFittedError('Estimator not fitted, call `fit` before exploiting the model.') if X.shape[1] != len(self.cut_points): raise ValueError("Provided array's dimensions do not match with the ones from the " "array `fit` was called on.") binned = np.array([ np.digitize(x, self.cut_points[i]) if len(self.cut_points[i]) > 0 else np.zeros(x.shape) for i, x in enumerate(X.T) ]).T return binned class BaseSupervisedBinner(BaseBinner): def fit(X, y, **fit_params): raise NotImplementedError class BaseUnsupervisedBinner(BaseBinner): def fit(X, y=None, **fit_params): raise NotImplementedError
tests/cli/agent/build/build_test.py
bbhunter/ostorlab
113
11189062
<reponame>bbhunter/ostorlab """Tests for CLI agent build command.""" from pathlib import Path import docker import pytest from click import testing from ostorlab.cli import rootcli def testAgentBuildCLI_whenRequiredOptionFileIsMissing_showMessage(): """Test ostorlab agent build CLI command without the required file option. Should show help message, and confirm the --file option is missing. """ runner = testing.CliRunner() result = runner.invoke(rootcli.rootcli, ['agent', 'build']) assert 'Usage: rootcli agent build [OPTIONS]' in result.output assert 'Try \'rootcli agent build --help\' for help.' in result.output assert 'Error: Missing option \'--file\' / \'-f\'.' in result.output def _is_docker_image_present(image: str): docker_sdk_client = docker.from_env() try: docker_sdk_client.images.get(image) return True except docker.errors.ImageNotFound: return False def testAgentBuildCLI_whenParentBuildRootPath_failShowErrorMessage(): """Test ostorlab agent build CLI command : Case where the command is valid. The agent container should be built. """ dummy_def_yaml_file_path = Path(__file__).parent / 'assets/illegal_build_root_dummydef.yaml' runner = testing.CliRunner() result = runner.invoke(rootcli.rootcli, [ 'agent', 'build', f'--file={dummy_def_yaml_file_path}', '--organization=ostorlab' ]) assert 'ERROR: Invalid docker build path' in result.output @pytest.mark.docker @pytest.mark.parametrize('image_cleanup', ['dummy'], indirect=True) def testAgentBuildCLI_whenCommandIsValid_buildCompletedAndNoRaiseImageNotFoundExcep(image_cleanup): """Test ostorlab agent build CLI command : Case where the command is valid. The agent container should be built. """ del image_cleanup dummy_def_yaml_file_path = Path(__file__).parent / 'assets/dummydef.yaml' runner = testing.CliRunner() _ = runner.invoke(rootcli.rootcli, [ 'agent', 'build', f'--file={dummy_def_yaml_file_path}', '--organization=ostorlab' ]) assert _is_docker_image_present('agent_ostorlab_dummy_agent:v1.0.0') is True @pytest.mark.docker @pytest.mark.parametrize('image_cleanup', ['dummy'], indirect=True) def testAgentBuildCLI_whenCommandIsValidAndImageAlreadyExists_showsMessageAndExists(image_cleanup): """Test ostorlab agent build CLI command : Case where the command is valid. The agent container should be built. """ del image_cleanup dummy_def_yaml_file_path = Path(__file__).parent / 'assets/dummydef.yaml' runner = testing.CliRunner() _ = runner.invoke(rootcli.rootcli, ['agent', 'build', f'--file={dummy_def_yaml_file_path}', '--organization=ostorlab']) result = runner.invoke(rootcli.rootcli, ['agent', 'build', f'--file={dummy_def_yaml_file_path}', '--organization=ostorlab']) assert 'already exist' in result.output assert result.exit_code == 0 @pytest.mark.docker @pytest.mark.parametrize('image_cleanup', ['dummy'], indirect=True) def testAgentBuildCLI_whenImageAlreadyExistsAndForceFlagPassed_buildCompletedAndNoRaiseImageNotFoundExcep( image_cleanup): """Test ostorlab agent build CLI command : Case where the command is valid, the image exists and force flag is passed. The agent container should be built. """ del image_cleanup dummy_def_yaml_file_path = Path(__file__).parent / 'assets/dummydef.yaml' runner = testing.CliRunner() _ = runner.invoke(rootcli.rootcli, ['agent', 'build', f'--file={dummy_def_yaml_file_path}', '--organization=ostorlab']) result = runner.invoke(rootcli.rootcli, ['agent', 'build', '--force', f'--file={dummy_def_yaml_file_path}', '--organization=ostorlab']) assert 'already exist' not in result.output assert result.exit_code == 0
Polar/polar_effectscatter.py
pyecharts/pyecharts_gallery
759
11189064
<reponame>pyecharts/pyecharts_gallery import random from pyecharts import options as opts from pyecharts.charts import Polar data = [(i, random.randint(1, 100)) for i in range(10)] c = ( Polar() .add( "", data, type_="effectScatter", effect_opts=opts.EffectOpts(scale=10, period=5), label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts(title_opts=opts.TitleOpts(title="Polar-EffectScatter")) .render("polar_effectscatter.html") )
recipes/Python/138889_extract_email_addresses/recipe-138889.py
tdiprima/code
2,023
11189081
def grab_email(files = []): # if passed a list of text files, will return a list of # email addresses found in the files, matched according to # basic address conventions. Note: supports most possible # names, but not all valid ones. found = [] if files != None: mailsrch = re.compile(r'[\w\-][\w\-\.]+@[\w\-][\w\-\.]+[a-zA-Z]{1,4}') for file in files: for line in open(file,'r'): found.extend(mailsrch.findall(line)) # remove duplicate elements # borrowed from <NAME>' algorithm on ASPN Cookbook u = {} for item in found: u[item] = 1 # return list of unique email addresses return u.keys()
examples/butteryfly_network.py
eric-downes/mesh-networking
368
11189141
# -*- coding: utf-8 -*- # <NAME> 2016/10/08 # Butterfly Network # # Simulate a butterfly network where addresses can be used to determine routing paths. # MIT 6.042J Mathematics for Computer Science: Lecture 9 # https://www.youtube.com/watch?v=bTyxpoi2dmM import math import time from mesh.node import Node from mesh.links import VirtualLink from mesh.programs import Cache, BaseProgram class ButterflySwitch(BaseProgram): """A switch that routes a packet coming in on any interface to all the other interfaces.""" def recv(self, packet, interface): other_ifaces = set(self.node.interfaces) - {interface} if packet and other_ifaces: self.node.log("SWITCH ", (str(interface)+" >>>> <"+','.join(i.name for i in other_ifaces)+">").ljust(30), packet.decode()) self.node.send(packet, interfaces=other_ifaces) def ask(type, question, fallback=None): value = input(question) if type == bool: if fallback: return not value[:1].lower() == "n" else: return value[:1].lower() == "y" try: return type(value) except Exception: return fallback def print_grid(nodes): for row in NODES: output = '' if row and row[-1].program.received: output = ' : {}'.format(row[-1].program.received.pop()) print(' --- '.join(str(n).center(10) for n in row) + output) if __name__ == "__main__": num_rows = ask(int, "How many input nodes do you want? [8]:", 8) num_cols = 2 + int(math.log(num_rows)) print('Creating Nodes ({}x{})...'.format(num_rows, num_cols)) IN_ADDRESSES = ['in:0b{0:b}'.format(a) for a in range(0, num_rows)] OUT_ADDRESSES = ['out:0b{0:b}'.format(a) for a in range(0, num_rows)] NODES = [] # make several rows of input nodes to output nodes for row_idx in range(num_rows): row = [] for col_idx in range(num_cols): # add input node if col_idx == 0: addr = IN_ADDRESSES[row_idx] Program = None # add output node elif col_idx == num_cols - 1: addr = OUT_ADDRESSES[row_idx] Program = Cache # out middle node else: addr = 'row:{};col{}'.format(row_idx, col_idx) Program = ButterflySwitch row.append(Node(name=addr, mac_addr=addr, Program=Program)) NODES.append(row) print('Creating Butterfly Links...') # make the first links going directly across each row for row_idx in range(num_rows): for col_idx in range(num_cols - 1): bridge = VirtualLink(name='{}<{}>{}'.format(col_idx, row_idx, col_idx + 1)) NODES[row_idx][col_idx].interfaces.append(bridge) # node directly to the right NODES[row_idx][col_idx + 1].interfaces.append(bridge) bridge.start() # TODO: finish diagonal linking algorithm # give each node a second diagonal link, starting from right to left for col_idx in reversed(range(1, num_cols)): for row_idx in range(num_rows): diagonal = VirtualLink(name='{}<{}>{}'.format(col_idx, row_idx, col_idx + 1)) NODES[row_idx][col_idx].interfaces.append(diagonal) # node to the left and (up/down) to a different butterfly set to_row = 1 NODES[to_row][col_idx - 1].interfaces.append(diagonal) diagonal.start() [n.start() for row in NODES for n in row] print_grid(NODES) print('Input the number of a node, followed by text to send') print(' e.g. [$]: 0:hello world!') dont_exit = True try: while dont_exit: try: in_id, in_text = str(input("#:text ")).split(':', 1) except ValueError: print('Input must be #:text') continue in_node = NODES[int(in_id)][0] in_node.send(bytes(in_text, 'UTF-8')) time.sleep(0.2) # import ipdb; ipdb.set_trace() print_grid(NODES) except (KeyboardInterrupt, EOFError): raise SystemExit(0)
ros/geometry/tf_conversions/src/tf_conversions/posemath.py
numberen/apollo-platform
742
11189155
# Copyright (c) 2010, <NAME>, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the <NAME>, Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from geometry_msgs.msg import Pose, Point, Quaternion from tf import transformations import tf import rospy import numpy from PyKDL import * def fromTf(tf): """ :param tf: :class:`tf.Transformer` transform :type tf: tuple (translation, quaternion) :return: New :class:`PyKDL.Frame` object Convert a pose returned by :meth:`tf.Transformer.lookupTransform` to a :class:`PyKDL.Frame`. .. doctest:: >>> import rospy >>> import tf >>> import geometry_msgs.msg >>> t = tf.Transformer(True, rospy.Duration(10.0)) >>> m = geometry_msgs.msg.TransformStamped() >>> m.header.frame_id = 'THISFRAME' >>> m.child_frame_id = 'CHILD' >>> m.transform.translation.x = 668.5 >>> m.transform.rotation.w = 1.0 >>> t.setTransform(m) >>> t.lookupTransform('THISFRAME', 'CHILD', rospy.Time(0)) ((668.5, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0)) >>> import tf_conversions.posemath as pm >>> p = pm.fromTf(t.lookupTransform('THISFRAME', 'CHILD', rospy.Time(0))) >>> print pm.toMsg(p * p) position: x: 1337.0 y: 0.0 z: 0.0 orientation: x: 0.0 y: 0.0 z: 0.0 w: 1.0 """ position, quaternion = tf x, y, z = position Qx, Qy, Qz, Qw = quaternion return Frame(Rotation.Quaternion(Qx, Qy, Qz, Qw), Vector(x, y, z)) def toTf(f): """ :param f: input pose :type f: :class:`PyKDL.Frame` Return a tuple (position, quaternion) for the pose. """ return ((f.p[0], f.p[1], f.p[2]), f.M.GetQuaternion()) # to and from pose message def fromMsg(p): """ :param p: input pose :type p: :class:`geometry_msgs.msg.Pose` :return: New :class:`PyKDL.Frame` object Convert a pose represented as a ROS Pose message to a :class:`PyKDL.Frame`. """ return Frame(Rotation.Quaternion(p.orientation.x, p.orientation.y, p.orientation.z, p.orientation.w), Vector(p.position.x, p.position.y, p.position.z)) def toMsg(f): """ :param f: input pose :type f: :class:`PyKDL.Frame` Return a ROS Pose message for the Frame f. """ p = Pose() p.orientation.x, p.orientation.y, p.orientation.z, p.orientation.w = f.M.GetQuaternion() p.position.x = f.p[0] p.position.y = f.p[1] p.position.z = f.p[2] return p # to and from matrix def fromMatrix(m): """ :param m: input 4x4 matrix :type m: :func:`numpy.array` :return: New :class:`PyKDL.Frame` object Convert a pose represented as a 4x4 numpy array to a :class:`PyKDL.Frame`. """ return Frame(Rotation(m[0,0], m[0,1], m[0,2], m[1,0], m[1,1], m[1,2], m[2,0], m[2,1], m[2,2]), Vector(m[0,3], m[1, 3], m[2, 3])) def toMatrix(f): """ :param f: input pose :type f: :class:`PyKDL.Frame` Return a numpy 4x4 array for the Frame F. """ return numpy.array([[f.M[0,0], f.M[0,1], f.M[0,2], f.p[0]], [f.M[1,0], f.M[1,1], f.M[1,2], f.p[1]], [f.M[2,0], f.M[2,1], f.M[2,2], f.p[2]], [0,0,0,1]]) # from camera parameters def fromCameraParams(cv, rvec, tvec): """ :param cv: OpenCV module :param rvec: A Rodrigues rotation vector - see :func:`Rodrigues2` :type rvec: 3x1 :class:`CvMat` :param tvec: A translation vector :type tvec: 3x1 :class:`CvMat` :return: New :class:`PyKDL.Frame` object For use with :func:`FindExtrinsicCameraParams2`:: import cv import tf_conversions.posemath as pm ... rvec = cv.CreateMat(3, 1, cv.CV_32FC1) tvec = cv.CreateMat(3, 1, cv.CV_32FC1) cv.FindExtrinsicCameraParams2(model, corners, intrinsic_matrix, kc, rvec, tvec) pose = pm.fromCameraParams(cv, rvec, tvec) """ m = numpy.array([ [ 0, 0, 0, tvec[0,0] ], [ 0, 0, 0, tvec[1,0] ], [ 0, 0, 0, tvec[2,0] ], [ 0, 0, 0, 1.0 ] ], dtype = numpy.float32) cv.Rodrigues2(rvec, m[:3,:3]) return fromMatrix(m)
utils/util.py
xyupeng/ContrastiveCrop
148
11189204
import math import numpy as np import torch import random class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class TrackMeter(object): """Compute and store values""" def __init__(self): self.reset() def reset(self): self.data = [] self.sum = 0 self.avg = 0 self.max_val = float('-inf') self.max_idx = -1 def update(self, val, idx=None): self.data.append(val) self.sum += val self.avg = self.sum / len(self.data) if val > self.max_val: self.max_val = val self.max_idx = idx if idx else len(self.data) def last(self, k): assert 0 < k <= len(self.data) return sum(self.data[-k:]) / k def set_seed(seed=42): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) def update_ema(model, model_ema, m=0.999): for param, param_ema in zip(model.parameters(), model_ema.parameters()): param_ema.data = param_ema.data * m + param.data * (1. - m) # BN running_mean and running_var are buffers for buf, buf_ema in zip(model.buffers(), model_ema.buffers()): buf_ema.data = buf.data # buf_ema = buf is wrong. should not share memory def interleave(x, batch_size): # x.shape[0] == batch_size * num_batches s = list(x.shape) return x.reshape([-1, batch_size] + s[1:]).transpose(0, 1).reshape([-1] + s[1:]) def de_interleave(x, batch_size): s = list(x.shape) return x.reshape([batch_size, -1] + s[1:]).transpose(0, 1).reshape([-1] + s[1:]) def count_params(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def _get_lr(cfg, step): lr = cfg.lr if cfg.type == 'Cosine': # Cosine Anneal start_step = cfg.get('start_step', 1) eta_min = lr * cfg.decay_rate lr = eta_min + (lr - eta_min) * (1 + math.cos(math.pi * (step - start_step) / cfg.steps)) / 2 elif cfg.type == 'MultiStep': # MultiStep num_steps = np.sum(step > np.asarray(cfg.decay_steps)) lr = lr * (cfg.decay_rate ** num_steps) else: raise NotImplementedError(cfg.type) return lr def adjust_learning_rate(cfg, optimizer, step, batch_idx=0, num_batches=100): start_step = cfg.get('start_step', 1) if step < cfg.get('warmup_steps', 0) + start_step: warmup_to = _get_lr(cfg, cfg.warmup_steps + 1) p = (step - start_step + batch_idx / num_batches) / cfg.warmup_steps lr = cfg.warmup_from + p * (warmup_to - cfg.warmup_from) else: lr = _get_lr(cfg, step) # update optimizer lr for param_group in optimizer.param_groups: param_group['lr'] = lr def adjust_lr_simsiam(cfg, optimizer, step): init_lr = cfg.lr lr = _get_lr(cfg, step) for param_group in optimizer.param_groups: if 'fix_lr' in param_group and param_group['fix_lr']: param_group['lr'] = init_lr else: param_group['lr'] = lr def format_time(seconds): days = int(seconds / 3600/24) seconds = seconds - days*3600*24 hours = int(seconds / 3600) seconds = seconds - hours*3600 minutes = int(seconds / 60) seconds = seconds - minutes*60 secondsf = int(seconds) seconds = seconds - secondsf # millis = int(seconds*1000) f = '' i = 1 if days > 0: f += str(days) + 'D' i += 1 if hours > 0 and i <= 2: f += str(hours) + 'h' i += 1 if minutes > 0 and i <= 2: f += str(minutes) + 'm' i += 1 if secondsf > 0 and i <= 2: f += str(secondsf) + 's' i += 1 # if millis > 0 and i <= 2: # f += str(millis) + 'ms' # i += 1 if f == '': f = '0ms' return f
django/contrib/gis/forms/__init__.py
pomarec/django
285
11189217
<filename>django/contrib/gis/forms/__init__.py from django.forms import * from .fields import (GeometryField, GeometryCollectionField, PointField, MultiPointField, LineStringField, MultiLineStringField, PolygonField, MultiPolygonField) from .widgets import BaseGeometryWidget, OpenLayersWidget, OSMWidget
alipay/aop/api/domain/InstCashPoolAccountMappingVO.py
antopen/alipay-sdk-python-all
213
11189291
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.InstAccountDTO import InstAccountDTO from alipay.aop.api.domain.InstAccountDTO import InstAccountDTO class InstCashPoolAccountMappingVO(object): def __init__(self): self._cash_pool_id = None self._inst_account = None self._main_account = None self._operator = None self._parent_inst_account = None @property def cash_pool_id(self): return self._cash_pool_id @cash_pool_id.setter def cash_pool_id(self, value): self._cash_pool_id = value @property def inst_account(self): return self._inst_account @inst_account.setter def inst_account(self, value): if isinstance(value, InstAccountDTO): self._inst_account = value else: self._inst_account = InstAccountDTO.from_alipay_dict(value) @property def main_account(self): return self._main_account @main_account.setter def main_account(self, value): self._main_account = value @property def operator(self): return self._operator @operator.setter def operator(self, value): self._operator = value @property def parent_inst_account(self): return self._parent_inst_account @parent_inst_account.setter def parent_inst_account(self, value): if isinstance(value, InstAccountDTO): self._parent_inst_account = value else: self._parent_inst_account = InstAccountDTO.from_alipay_dict(value) def to_alipay_dict(self): params = dict() if self.cash_pool_id: if hasattr(self.cash_pool_id, 'to_alipay_dict'): params['cash_pool_id'] = self.cash_pool_id.to_alipay_dict() else: params['cash_pool_id'] = self.cash_pool_id if self.inst_account: if hasattr(self.inst_account, 'to_alipay_dict'): params['inst_account'] = self.inst_account.to_alipay_dict() else: params['inst_account'] = self.inst_account if self.main_account: if hasattr(self.main_account, 'to_alipay_dict'): params['main_account'] = self.main_account.to_alipay_dict() else: params['main_account'] = self.main_account if self.operator: if hasattr(self.operator, 'to_alipay_dict'): params['operator'] = self.operator.to_alipay_dict() else: params['operator'] = self.operator if self.parent_inst_account: if hasattr(self.parent_inst_account, 'to_alipay_dict'): params['parent_inst_account'] = self.parent_inst_account.to_alipay_dict() else: params['parent_inst_account'] = self.parent_inst_account return params @staticmethod def from_alipay_dict(d): if not d: return None o = InstCashPoolAccountMappingVO() if 'cash_pool_id' in d: o.cash_pool_id = d['cash_pool_id'] if 'inst_account' in d: o.inst_account = d['inst_account'] if 'main_account' in d: o.main_account = d['main_account'] if 'operator' in d: o.operator = d['operator'] if 'parent_inst_account' in d: o.parent_inst_account = d['parent_inst_account'] return o
modeling/fuzzware_modeling/model_detection.py
felkal/fuzzware
106
11189297
import angr import claripy from itertools import chain from .angr_utils import is_ast_mmio_address, contains_var, all_states, has_conditional_statements, state_vars_out_of_scope, state_contains_tracked_mmio_path_constraints, state_variables_involved_in_loop, in_scope_register_values MAX_SET_MODEL_VAL_NUM = 16 # ======= Passthrough Model ======= def check_is_passthrough_model(state, mmio_constrains_path, returned, vars_dead): """ Compute Passthrough model Check whether a state represents a passthrough access """ if mmio_constrains_path: print("[PASSTHROUGH] [-] Path is constrained") return False if not vars_dead: print("[PASSTHROUGH] [-] Vars not dead") return False if state.liveness.tracked_vars: print("[PASSTHROUGH] [*] Checking vars in path") print("[PASSTHROUGH] [*] Vars: {}".format(state.liveness.tracked_vars)) mmio_write_actions = [ev for ev in state.history.actions if isinstance(ev, angr.state_plugins.sim_action.SimActionData) and ev.action == "write" and is_ast_mmio_address(state, ev.addr)] all_vars_written = True for var in state.liveness.tracked_vars: all_vars_written = all_vars_written and any([contains_var(action.data, var) for action in mmio_write_actions]) if all_vars_written: print("[PASSTHROUGH] [+] All MMIO vars written to mmio location") return True print("[PASSTHROUGH] [-] Default case") return False # ======= Constant Model ======= def check_is_constant_model(states): """ Compute Constant model prerequesites Check whether an MMIO output can be set to a constant value. Two situations can lead there: 1. MMIO is used as a guarding status value for a busy while(MMIO_VAL){} loop 2. MMIO value is not used at all and no conditional statements are present in the executed code until function return """ if any([not state_vars_out_of_scope(state) for state in states]): print("[CONST] [-] vars not dead") return False else: paths_constrained = [state_contains_tracked_mmio_path_constraints(state) for state in states] if not all(paths_constrained): if any(paths_constrained): print("[CONST] [-] Vars are dead and some some paths are constrained, but not all. We might be shadowed") return False known_unconditional_bbls = set() for state in states: if has_conditional_statements(state, known_unconditional_bbls): print("[CONST] [-] Vars are dead but path is not constrained by MMIO for all states and we found conditionals. We might be shadowed") return False # There are no conditional statements, we are not shadowed and the variable is indeed not used print("[CONST] [+] Variable is not used and no conditional statements may be shadowing us") return True print("[CONST] got {} states, #tracked_mmio_vars: {}".format(len(states), list(map(lambda s: len(s.liveness.tracked_vars), states)))) # First collect a representative last and prev-to-last constraint, making sure they are the same amongst states along the way reference_var = None normalized_last_constraint = None normalized_prev_to_last_constraint = None for state in sorted(states, key=lambda s:len(s.liveness.tracked_vars)): last_var = state.liveness.tracked_vars[-1] if reference_var is None: reference_var = claripy.BVS("ref", last_var.size()) last_tracked_var_constraints = [state.solver.simplify(state.liveness.base_snapshot.unconstrain(guard)) for guard in state.history.jump_guards if contains_var(guard, last_var)] # We are looking for a busy loop that gets exited by a single jump on the last variable meeting a condition if len(last_tracked_var_constraints) != 1: print("[CONST] [-] More than one constraint on last variable, assuming non-constant") return False # We also need all states to have the same (presumably inevitable) exit condition curr_last_constraint = last_tracked_var_constraints[0].replace(last_var, reference_var) if normalized_last_constraint is None: normalized_last_constraint = curr_last_constraint elif not claripy.is_true(normalized_last_constraint == curr_last_constraint): print("[CONST] [-] Encountered different exit conditions amongst states ('{}' != '{}')".format(normalized_last_constraint, curr_last_constraint)) return False if len(state.liveness.tracked_vars) == 1: continue pre_to_last_vars = state.liveness.tracked_vars[:-1] # Next up we make sure that all previous-to-last constraints are the same in nature prev_to_last_tracked_var_constraints = [] for var in pre_to_last_vars: prev_to_last_tracked_var_constraints += [state.solver.simplify(guard).replace(var, reference_var) for guard in state.history.jump_guards if contains_var(guard, var)] for constraint in prev_to_last_tracked_var_constraints: if normalized_prev_to_last_constraint is None: normalized_prev_to_last_constraint = constraint elif not claripy.is_true(normalized_prev_to_last_constraint == constraint): print("[CONST] [-] Encountered different previous-to-last constraint amongst states") if normalized_prev_to_last_constraint is None: print("[CONST] [-] We have no previous constraint to compare exit condition against") return False # Now check that all previous conditions are exactly Not(exit condition) if not claripy.is_true(state.solver.simplify( normalized_last_constraint == claripy.Not(normalized_prev_to_last_constraint) )): print("[CONST] [-] Not(prev-to-last constraint) != last constraint") return False print("[CONST] [+] All checks done") return True # ======= Set Model ======= def check_and_gen_set_model(states): """ Compute Set model Idea: Model representing access to status register which is used in conditional execution, if-statements or a switch/case construct Goal: Find exhaustive set of values triggering all paths, knowing that values outside the set do not contribute additional behavior """ # Check set model preconditions for state in states: # If not all variables are out of scope, we don't know whether they are still going to be checked later if not state_vars_out_of_scope(state): print("[SET Model] [-] some states have live variables ({})".format(state)) return None if state_variables_involved_in_loop(state): print("[SET Model] [-] variable used in loop") return None # Collect variables variables = set() for state in states: for var in state.liveness.tracked_vars: variables.add(var) # For every variable, collect and process constraints per state vals = None for var in variables: # Collect constraints for variable per state (position in guards corresponds to index of state) guards = [] for state in states: curr_guards = [guard for guard in state.history.jump_guards if guard.symbolic and contains_var(guard, var)] guards.append(claripy.And(*curr_guards)) if any(map(lambda guard: any(map(lambda state_restore_reg_bitvec: contains_var(guard, state_restore_reg_bitvec), state.liveness.base_snapshot.all_initial_bitvecs)), guards)): print("[SET Model] [-] detected state-defined register in relevant jump guard, not assigning a set model") vals = None break # Combine constraints on variable for each other state constraints = [] for i in range(len(states)): own_jumpguard = guards[i] curr_constraint = own_jumpguard # For the current state, make all constraints not collide with other state's constraints for j in range(len(guards)): # Skip our own constraints if j != i: other_jumpguard = guards[j] curr_constraint = claripy.And(curr_constraint, claripy.Or( # a) either own_jumpguard implies other_jumpguard own_jumpguard == claripy.Or(own_jumpguard, other_jumpguard) , # b) or we need to find a value which does not take other path claripy.Not(other_jumpguard) )) # Add the variable's combined constraints for the current state constraints.append(curr_constraint) # After collecting constraints curr_vals = set() for i in range(len(states)): curr_vals.add(states[i].solver.min(var, extra_constraints=[constraints[i]])) if vals is None: vals = curr_vals elif vals != curr_vals: print("[SET Model] [-] got ambiguous sets") return None if vals is None: print("[SET Model] [-] could not find values") return None print("[SET Model]: [+] Got vals: {}".format(vals)) # For single-valued sets, apply constant model if len(vals) == 1: return None else: return sorted(vals) def min_bitmask(state, ast, var): ast = state.liveness.base_snapshot.unconstrain(ast) simplified_ast = state.solver.simplify(ast) num_bits = var.size() mask = claripy.BVV((1 << num_bits) - 1, num_bits) for i in range(num_bits): # flip bit to 0 and retry mask &= ~(1 << i) replacement_var = var & mask replaced_ast = state.solver.simplify(simplified_ast.replace(var, replacement_var)) if not state.solver.is_true(state.solver.simplify(simplified_ast == replaced_ast)): mask |= (1 << i) return state.solver.eval(mask) # ======= Bitextract Model ======= def compute_bitextract_mask(state): """ Compute Bitextract model """ write_actions = [ action for action in state.history.actions if isinstance(action, angr.state_plugins.sim_action.SimActionData) and action.action == 'write' and action.type == 'mem' # and (print(action),print(action.actual_value) or True) and action.actual_value is not None and state.solver.symbolic(action.actual_value) ] masks = {} # Look at all writes for action in write_actions: for var in state.liveness.tracked_vars: if contains_var(action.actual_value, var): if var not in masks: masks[var] = set() masks[var].add(min_bitmask(state, action.actual_value, var)) break # Look at all jump guards for guard in state.history.jump_guards: for var in state.liveness.tracked_vars: if contains_var(guard, var): if var not in masks: masks[var] = set() masks[var].add(min_bitmask(state, guard, var)) break # Look at all in-scope registers for regval in in_scope_register_values(state): for var in state.liveness.tracked_vars: if contains_var(regval, var): if var not in masks: masks[var] = set() masks[var].add(min_bitmask(state, regval, var)) return masks # ======= Config Map Creation ======= def bitmask_to_byte_shift_config(bitmask): if bitmask == 0: return 0xffffffff, 0 min_bit, max_bit = -1, -1 for i in range(32): if bitmask & 1: if min_bit == -1: min_bit = i max_bit = i bitmask >>= 1 min_byte, max_byte = min_bit // 8, max_bit // 8 shift = min_byte * 8 size = max_byte - min_byte + 1 return size, shift def create_model_config_map_errored(pc): return {'errored': {'0x{:08x}'.format(pc): 'TBD'}} def hamming_weight(val): res = 0 while val: if val & 1: res += 1 val = val >> 1 return res def create_model_config_map(pc, representative_state, is_passthrough, is_constant, bitmask, set_vals): mmio_addr, mmio_access_size = representative_state.liveness.base_snapshot.mmio_addr, representative_state.liveness.base_snapshot.mmio_access_size result = {} pc &= (~0x1) entry_name = "pc_{:08x}_mmio_{:08x}".format(pc, mmio_addr) config_entry_map = {} config_entry_map['addr'] = mmio_addr config_entry_map['pc'] = pc config_entry_map['access_size'] = mmio_access_size model_type = "unmodeled" if is_passthrough: model_type = "passthrough" config_entry_map['init_val'] = 0 elif is_constant: assert(representative_state is not None) model_type = "constant" config_entry_map['val'] = representative_state.solver.min(representative_state.liveness.tracked_vars[-1]) elif set_vals is not None and len(set_vals) <= MAX_SET_MODEL_VAL_NUM: model_type = "set" config_entry_map['vals'] = set_vals elif bitmask != 0: # Only assign this if no completely replacing model was identified byte_size, left_shift = bitmask_to_byte_shift_config(bitmask) # Only assign bit mask if it actually reduces the access size if hamming_weight(bitmask) < mmio_access_size * 8: model_type = "bitextract" config_entry_map['size'] = byte_size config_entry_map['left_shift'] = left_shift config_entry_map['mask'] = bitmask result[model_type] = {} result[model_type][entry_name]=config_entry_map return result def detect_model(pc, simulation, is_timed_out=False, pre_fork_state=None): if is_timed_out: states = [pre_fork_state] else: states = simulation.found bitmask = 0 is_constant = False is_passthrough = False model_config_map = None set_vals = None state = None tracked_mmio_constrains_any_path = False if is_timed_out: """ For the timeout case, we only have a parent state before the first split. In this case, only the following models may possibly apply: - bitextract (a mask/extraction has already been applied) - passthrough (value has already been discarded without applying path constraints) """ state = states[0] returned = state.liveness.returned all_vars_out_of_scope = state_vars_out_of_scope(state) constrains_path = state_contains_tracked_mmio_path_constraints(state) tracked_mmio_constrains_any_path |= constrains_path # 1. Check for passthrough model if all_vars_out_of_scope: is_passthrough = check_is_passthrough_model(state, constrains_path, returned, all_vars_out_of_scope) else: print("[PASSTHROUGH] [-] Not all vars out of scope") # 2. Check for bitextract model min_masks = compute_bitextract_mask(state) print("Got minimal mask set: {}".format(min_masks)) # list(map(hex, min_masks))) if min_masks: for var, masks in min_masks.items(): for mask in masks: bitmask |= mask print("State: {}\nReturned: {}\nVars dead: {}\nIs config reg: {}\nbitmask: {:x}".format(state, returned, all_vars_out_of_scope, is_passthrough, bitmask)) elif simulation.found: states = simulation.found is_passthrough = True for state in states: returned = state.liveness.returned all_vars_out_of_scope = state_vars_out_of_scope(state) constrains_path = state_contains_tracked_mmio_path_constraints(state) tracked_mmio_constrains_any_path |= constrains_path if is_passthrough: curr_is_passthrough = check_is_passthrough_model(state, constrains_path, returned, all_vars_out_of_scope) is_passthrough = is_passthrough and curr_is_passthrough min_masks = compute_bitextract_mask(state) print("Got minimal mask set: {}".format(min_masks)) # list(map(hex, min_masks))) if min_masks: for var, masks in min_masks.items(): for mask in masks: bitmask |= mask print("State: {}\nReturned: {}\nVars dead: {}\nIs config reg: {}\nbitmask: {:x}".format(state, returned, all_vars_out_of_scope, curr_is_passthrough, bitmask)) set_vals = check_and_gen_set_model(states) is_constant = check_is_constant_model(states) # We treat the config model in a special way here and ignore deep calls if not tracked_mmio_constrains_any_path and not is_passthrough and all(map(lambda state: state.globals['config_write_performed'], all_states(simulation))): print("[PASSTHROUGH] [WARNING] Assigning low-confidence config model") is_passthrough = True model_config_map = create_model_config_map(pc, state, is_passthrough, is_constant, bitmask, set_vals) return model_config_map, is_passthrough, is_constant, bitmask, set_vals
configs/search_config.py
MarcAntoineAlex/DenseNAS-1
305
11189303
<gh_stars>100-1000 from tools.collections import AttrDict __C = AttrDict() search_cfg = __C __C.search_params=AttrDict() __C.search_params.arch_update_epoch=10 __C.search_params.val_start_epoch=120 __C.search_params.sample_policy='prob' # prob uniform __C.search_params.weight_sample_num=1 __C.search_params.softmax_temp=1. __C.search_params.adjoin_connect_nums = [] __C.search_params.net_scale = AttrDict() __C.search_params.net_scale.chs = [] __C.search_params.net_scale.fm_sizes = [] __C.search_params.net_scale.stage = [] __C.search_params.net_scale.num_layers = [] __C.search_params.PRIMITIVES_stack = [ 'mbconv_k3_t3', 'mbconv_k3_t6', 'mbconv_k5_t3', 'mbconv_k5_t6', 'mbconv_k7_t3', 'mbconv_k7_t6', 'skip_connect', ] __C.search_params.PRIMITIVES_head = [ 'mbconv_k3_t3', 'mbconv_k3_t6', 'mbconv_k5_t3', 'mbconv_k5_t6', 'mbconv_k7_t3', 'mbconv_k7_t6', ] __C.optim=AttrDict() __C.optim.init_dim=16 __C.optim.head_dim=16 __C.optim.last_dim=1984 __C.optim.weight=AttrDict() __C.optim.weight.init_lr=0.1 __C.optim.weight.min_lr=1e-4 __C.optim.weight.lr_decay_type='cosine' __C.optim.weight.momentum=0.9 __C.optim.weight.weight_decay=4e-5 __C.optim.arch=AttrDict() __C.optim.arch.alpha_lr=3e-4 __C.optim.arch.beta_lr=3e-4 __C.optim.arch.weight_decay=1e-3 __C.optim.if_sub_obj=True __C.optim.sub_obj=AttrDict() __C.optim.sub_obj.type='latency' # latency / flops __C.optim.sub_obj.skip_reg=False __C.optim.sub_obj.log_base=15.0 __C.optim.sub_obj.sub_loss_factor=0.1 __C.optim.sub_obj.latency_list_path=''
src/genie/libs/parser/iosxe/tests/ShowIpMsdpPeer/cli/equal/device_output_2_expected.py
balmasea/genieparser
204
11189328
expected_output = { "vrf": { "VRF1": { "peer": { "10.1.100.2": { "peer_as": 1, "session_state": "Up", "resets": "0", "connect_source": "Loopback0", "connect_source_address": "10.1.100.1", "elapsed_time": "00:15:38", "statistics": { "queue": {"size_in": 0, "size_out": 0}, "sent": { "data_message": 17, "sa_message": 8, "sa_response": 0, "data_packets": 1, }, "received": { "data_message": 15, "sa_message": 0, "sa_request": 0, "data_packets": 0, }, "error": {"rpf_failure": 0}, "established_transitions": 1, "output_msg_discarded": 0, }, "conn_count_cleared": "00:15:38", "sa_filter": { "in": { "(S,G)": {"filter": "none", "route_map": "none"}, "RP": {"filter": "none", "route_map": "none"}, }, "out": { "(S,G)": {"filter": "none", "route_map": "none"}, "RP": {"filter": "none", "route_map": "none"}, }, }, "sa_request": {"input_filter": "none"}, "ttl_threshold": 0, "sa_learned_from": 0, "signature_protection": False, } } } } }
extraPackages/matplotlib-3.0.3/examples/lines_bars_and_markers/simple_plot.py
dolboBobo/python3_ios
130
11189334
<filename>extraPackages/matplotlib-3.0.3/examples/lines_bars_and_markers/simple_plot.py<gh_stars>100-1000 """ =========== Simple Plot =========== Create a simple plot. """ import matplotlib import matplotlib.pyplot as plt import numpy as np # Data for plotting t = np.arange(0.0, 2.0, 0.01) s = 1 + np.sin(2 * np.pi * t) fig, ax = plt.subplots() ax.plot(t, s) ax.set(xlabel='time (s)', ylabel='voltage (mV)', title='About as simple as it gets, folks') ax.grid() fig.savefig("test.png") plt.show() ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions and methods is shown in this example: matplotlib.axes.Axes.plot matplotlib.pyplot.plot matplotlib.pyplot.subplots matplotlib.figure.Figure.savefig
ByteNet/translator.py
paarthneekhara/byteNet-tensorflow
345
11189339
import tensorflow as tf import ops class ByteNet_Translator: def __init__(self, options): self.options = options embedding_channels = 2 * options['residual_channels'] self.w_source_embedding = tf.get_variable('w_source_embedding', [options['source_vocab_size'], embedding_channels], initializer=tf.truncated_normal_initializer(stddev=0.02)) self.w_target_embedding = tf.get_variable('w_target_embedding', [options['target_vocab_size'], embedding_channels], initializer=tf.truncated_normal_initializer(stddev=0.02)) def build_model(self): options = self.options self.source_sentence = tf.placeholder('int32', [None, None], name = 'source_sentence') self.target_sentence = tf.placeholder('int32', [None, None], name = 'target_sentence') target_1 = self.target_sentence[:,0:-1] target_2 = self.target_sentence[:,1:] source_embedding = tf.nn.embedding_lookup(self.w_source_embedding, self.source_sentence, name = "source_embedding") target_1_embedding = tf.nn.embedding_lookup(self.w_target_embedding, target_1, name = "target_1_embedding") curr_input = source_embedding for layer_no, dilation in enumerate(options['encoder_dilations']): curr_input = ops.byetenet_residual_block(curr_input, dilation, layer_no, options['residual_channels'], options['encoder_filter_width'], causal = False, train = True) encoder_output = curr_input combined_embedding = target_1_embedding + encoder_output curr_input = combined_embedding for layer_no, dilation in enumerate(options['decoder_dilations']): curr_input = ops.byetenet_residual_block(curr_input, dilation, layer_no, options['residual_channels'], options['decoder_filter_width'], causal = True, train = True) logits = ops.conv1d(tf.nn.relu(curr_input), options['target_vocab_size'], name = 'logits') print "logits", logits logits_flat = tf.reshape(logits, [-1, options['target_vocab_size']]) target_flat = tf.reshape(target_2, [-1]) loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels = target_flat, logits = logits_flat) self.loss = tf.reduce_mean(loss) self.arg_max_prediction = tf.argmax(logits_flat, 1) tf.summary.scalar('loss', self.loss) def build_translator(self, reuse = False): if reuse: tf.get_variable_scope().reuse_variables() options = self.options self.t_source_sentence = tf.placeholder('int32', [None, None], name = 'source_sentence') self.t_target_sentence = tf.placeholder('int32', [None, None], name = 'target_sentence') source_embedding = tf.nn.embedding_lookup(self.w_source_embedding, self.t_source_sentence, name = "source_embedding") target_embedding = tf.nn.embedding_lookup(self.w_target_embedding, self.t_target_sentence, name = "target_embedding") curr_input = source_embedding for layer_no, dilation in enumerate(options['encoder_dilations']): curr_input = ops.byetenet_residual_block(curr_input, dilation, layer_no, options['residual_channels'], options['encoder_filter_width'], causal = False, train = False) encoder_output = curr_input[:,0:tf.shape(self.t_target_sentence)[1],:] combined_embedding = target_embedding + encoder_output curr_input = combined_embedding for layer_no, dilation in enumerate(options['decoder_dilations']): curr_input = ops.byetenet_residual_block(curr_input, dilation, layer_no, options['residual_channels'], options['decoder_filter_width'], causal = True, train = False) logits = ops.conv1d(tf.nn.relu(curr_input), options['target_vocab_size'], name = 'logits') logits_flat = tf.reshape(logits, [-1, options['target_vocab_size']]) probs_flat = tf.nn.softmax(logits_flat) self.t_probs = tf.reshape(probs_flat, [-1, tf.shape(logits)[1], options['target_vocab_size']]) def main(): options = { 'source_vocab_size' : 250, 'target_vocab_size' : 250, 'residual_channels' : 512, 'encoder_dilations' : [ 1,2,4,8,16, 1,2,4,8,16 ], 'decoder_dilations' : [ 1,2,4,8,16, 1,2,4,8,16 ], 'encoder_filter_width' : 3, 'decoder_filter_width' : 3 } md = ByteNet_Translator(options) md.build_model() md.build_translator(reuse = True) if __name__ == '__main__': main()
bindings/nodejs/nan/lib/sdb.gyp
XVilka/sdb
123
11189351
{ "targets": [ { "target_name": "libsdb", "type": "static_library", "include_dirs": [ "sdb/src" ], "sources": [ "sdb/src/sdb.c", "sdb/src/fmt.c", "sdb/src/array.c", "sdb/src/base64.c", "sdb/src/buffer.c", "sdb/src/cdb.c", "sdb/src/cdb_make.c", "sdb/src/disk.c", "sdb/src/ht.c", "sdb/src/journal.c", "sdb/src/json.c", "sdb/src/lock.c", "sdb/src/ls.c", "sdb/src/match.c", "sdb/src/ns.c", "sdb/src/num.c", "sdb/src/query.c", "sdb/src/sdb_version.h", "sdb/src/util.c", ] } ] }
ZeroingArrays_2016/TestSizes.py
riverar/blogstuff
323
11189355
<reponame>riverar/blogstuff """ Test compilation of char array[BUF_SIZE] = {} versus char array[BUF_SIZE] = {0} """ import os import subprocess import sys terse = False if len(sys.argv) > 1: if sys.argv[1].lower() == "--terse": terse = True else: print "--terse is the only option to this program" test_code = r'''// Test of code generation #include <stdio.h> void ZeroArray1() { char buffer[BUF_SIZE] = { 0 }; printf("Don't optimize away my empty buffer.%s\n", buffer); } void ZeroArray2() { char buffer[BUF_SIZE] = {}; printf("Don't optimize away my empty buffer.%s\n", buffer); } ''' open("TestCode.cpp", "w").write(test_code) os.environ["INCLUDE"] = r"C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE;C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\ATLMFC\INCLUDE;C:\Program Files (x86)\Windows Kits\10\include\10.0.10586.0\ucrt;C:\Program Files (x86)\Windows Kits\NETFXSDK\4.6.1\include\um;C:\Program Files (x86)\Windows Kits\10\include\10.0.10586.0\shared;C:\Program Files (x86)\Windows Kits\10\include\10.0.10586.0\um;C:\Program Files (x86)\Windows Kits\10\include\10.0.10586.0\winrt;C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\INCLUDE;C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\ATLMFC\INCLUDE;C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\include" startpath = os.environ["PATH"] for bitness in [32, 64]: for options in ["/O1 /Oy-", "/O2 /Oy-", "/O2"]: if bitness == 64: options = options.replace(" /Oy-", "") print "%d-bit with %s:" % (bitness, options), if not terse: print if bitness == 32: os.environ["PATH"] = r"C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\BIN;" + startpath else: os.environ["PATH"] = r"C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\BIN\AMD64;" + startpath total = 0 count = 0 last_diff = None total_sizes = [(0,0)] for buf_size in range(1,65): # Using /O2 instead of /O1 changes the results # On 32-bit /O2 buids /Oy- changes the results # /Oi seems to make no difference command = "cl /nologo /c TestCode.cpp %s /FAcs /DBUF_SIZE=%d" % (options, buf_size) subprocess.check_output(command) lastline = "" size1 = None size2 = None SSE_used = False SSE_used_for1 = None SSE_used_for2 = None for line in open("TestCode.cod").readlines(): if line.count(" PROC") > 0: SSE_used = False if line.lower().count("xmm") > 0: SSE_used = True if lastline.count("ret") == 1: if line.startswith("?ZeroArray1@@YAXXZ"): size1 = int(lastline.strip().split("\t")[0], 16) + 1 SSE_used_for1 = SSE_used SSE_used = False if line.startswith("?ZeroArray2@@YAXXZ"): size2 = int(lastline.strip().split("\t")[0], 16) + 1 SSE_used_for2 = SSE_used SSE_used = False lastline = line last_total = total_sizes[-1] total_sizes.append((last_total[0] + size1, last_total[1] + size2)) if size1 != size2: last_diff = buf_size if not terse: print "%2d: %2d -> %2d: %+3d bytes" % (buf_size, size1, size2, size2 - size1), print "%4.1f%%" % ((size1 - size2) * 100.0 / size1), if SSE_used_for1: print " SSE used for = {0};", if SSE_used_for2: print " SSE used for = {};", print total += size2 - size1 count += 1 print "Average saving from 1 to %d is %1.3f bytes," % (last_diff, total * -1.0 / last_diff), last_diff_totals = total_sizes[last_diff] print "%1.2f%%" % ((last_diff_totals[0] - last_diff_totals[1]) * 100.0 / last_diff_totals[0]) if not terse: print if not terse: print
yt/units/unit_object.py
Xarthisius/yt
360
11189362
<reponame>Xarthisius/yt<filename>yt/units/unit_object.py from unyt.unit_object import *
node_modules/python-shell/test/python/exit-code.py
brenocg29/TP1RedesInteligentes
1,869
11189386
<reponame>brenocg29/TP1RedesInteligentes import sys exit_code = int(sys.argv[1]) if len(sys.argv) > 1 else 0 sys.exit(exit_code)
chainer_chemistry/dataset/splitters/stratified_splitter.py
pfnet/chainerchem
184
11189410
<filename>chainer_chemistry/dataset/splitters/stratified_splitter.py import numpy import pandas from chainer_chemistry.dataset.splitters.base_splitter import BaseSplitter from chainer_chemistry.datasets.numpy_tuple_dataset import NumpyTupleDataset def _approximate_mode(class_counts, n_draws): """Referred scikit-learn, https://git.io/fPMmB""" n_class = len(class_counts) continuous = class_counts * n_draws / class_counts.sum() floored = numpy.floor(continuous) assert n_draws // n_class == floored.sum() // n_class n_remainder = int(n_draws - floored.sum()) remainder = continuous - floored inds = numpy.argsort(remainder)[::-1] inds = inds[:n_remainder] floored[inds] += 1 assert n_draws == floored.sum() return floored.astype(numpy.int) class StratifiedSplitter(BaseSplitter): """Class for doing stratified data splits.""" def _split(self, dataset, frac_train=0.8, frac_valid=0.1, frac_test=0.1, labels=None, **kwargs): numpy.testing.assert_almost_equal(frac_train + frac_valid + frac_test, 1.) seed = kwargs.get('seed', None) label_axis = kwargs.get('label_axis', -1) task_index = kwargs.get('task_index', 0) n_bin = kwargs.get('n_bin', 10) task_type = kwargs.get('task_type', 'auto') if task_type not in ['classification', 'regression', 'auto']: raise ValueError("{} is invalid. Please use 'classification'," "'regression' or 'auto'".format(task_type)) rng = numpy.random.RandomState(seed) if isinstance(labels, list): labels = numpy.array(labels) elif labels is None: if not isinstance(dataset, NumpyTupleDataset): raise ValueError("Please assign label dataset.") labels = dataset.features[:, label_axis] if labels.ndim == 1: labels = labels else: labels = labels[:, task_index] if task_type == 'auto': if labels.dtype.kind == 'i': task_type = 'classification' elif labels.dtype.kind == 'f': task_type = 'regression' else: raise ValueError if task_type == 'classification': classes, labels = numpy.unique(labels, return_inverse=True) elif task_type == 'regression': classes = numpy.arange(n_bin) labels = pandas.qcut(labels, n_bin, labels=False) else: raise ValueError n_classes = classes.shape[0] n_total_valid = int(numpy.floor(frac_valid * len(dataset))) n_total_test = int(numpy.floor(frac_test * len(dataset))) class_counts = numpy.bincount(labels) class_indices = numpy.split(numpy.argsort(labels, kind='mergesort'), numpy.cumsum(class_counts)[:-1]) # n_total_train is the remainder: n - n_total_valid - n_total_test n_valid_samples = _approximate_mode(class_counts, n_total_valid) class_counts = class_counts - n_valid_samples n_test_samples = _approximate_mode(class_counts, n_total_test) train_index = [] valid_index = [] test_index = [] for i in range(n_classes): n_valid = n_valid_samples[i] n_test = n_test_samples[i] perm = rng.permutation(len(class_indices[i])) class_perm_index = class_indices[i][perm] class_valid_index = class_perm_index[:n_valid] class_test_index = class_perm_index[n_valid:n_valid+n_test] class_train_index = class_perm_index[n_valid+n_test:] train_index.extend(class_train_index) valid_index.extend(class_valid_index) test_index.extend(class_test_index) assert n_total_valid == len(valid_index) assert n_total_test == len(test_index) return numpy.array(train_index), numpy.array(valid_index),\ numpy.array(test_index), def train_valid_test_split(self, dataset, labels=None, label_axis=-1, task_index=0, frac_train=0.8, frac_valid=0.1, frac_test=0.1, converter=None, return_index=True, seed=None, task_type='auto', n_bin=10, **kwargs): """Split dataset into train, valid and test set. Split indices are generated by stratified splitting of labels. Args: dataset(NumpyTupleDataset, numpy.ndarray): Dataset. labels(numpy.ndarray): Target label. If `None`, this function assumes that dataset is an instance of `NumpyTupleDataset`. labels_axis(int): Dataset feature axis in NumpyTupleDataset. task_index(int): Target task index in dataset for stratification. seed (int): Random seed. frac_train(float): Fraction of dataset put into training data. frac_valid(float): Fraction of dataset put into validation data. return_index(bool): If `True`, this function returns only indexes. If `False`, this function returns splitted dataset. Returns: SplittedDataset(tuple): splitted dataset or indexes .. admonition:: Example >>> from chainer_chemistry.datasets import NumpyTupleDataset >>> from chainer_chemistry.dataset.splitters import StratifiedSplitter # NOQA >>> >>> a = numpy.random.random((10, 10)) >>> b = numpy.random.random((10, 8)) >>> c = numpy.random.random((10, 1)) >>> d = NumpyTupleDataset(a, b, c) >>> splitter = StratifiedSplitter() >>> train, valid, test = splitter.train_valid_test_split(dataset, return_index=False) >>> print(len(train), len(valid)) 8, 1, 1 """ return super(StratifiedSplitter, self)\ .train_valid_test_split(dataset, frac_train, frac_valid, frac_test, converter, return_index, seed=seed, label_axis=label_axis, task_type=task_type, task_index=task_index, n_bin=n_bin, labels=labels, **kwargs) def train_valid_split(self, dataset, labels=None, label_axis=-1, task_index=0, frac_train=0.9, frac_valid=0.1, converter=None, return_index=True, seed=None, task_type='auto', n_bin=10, **kwargs): """Split dataset into train and valid set. Split indices are generated by stratified splitting of labels. Args: dataset(NumpyTupleDataset, numpy.ndarray): Dataset. labels(numpy.ndarray): Target label. If `None`, this function assumes that dataset is an instance of `NumpyTupleDataset`. labels_axis(int): Dataset feature axis in NumpyTupleDataset. task_index(int): Target task index in dataset for stratification. seed (int): Random seed. frac_train(float): Fraction of dataset put into training data. frac_valid(float): Fraction of dataset put into validation data. return_index(bool): If `True`, this function returns only indexes. If `False`, this function returns splitted dataset. Returns: SplittedDataset(tuple): splitted dataset or indexes .. admonition:: Example >>> from chainer_chemistry.datasets import NumpyTupleDataset >>> from chainer_chemistry.dataset.splitters \ >>> import StratifiedSplitter >>> a = numpy.random.random((10, 10)) >>> b = numpy.random.random((10, 8)) >>> c = numpy.random.random((10, 1)) >>> d = NumpyTupleDataset(a, b, c) >>> splitter = StratifiedSplitter() >>> train, valid = splitter.train_valid_split(dataset, return_index=False) >>> print(len(train), len(valid)) 9, 1 """ return super(StratifiedSplitter, self)\ .train_valid_split(dataset, frac_train, frac_valid, converter, return_index, seed=seed, label_axis=label_axis, task_type=task_type, task_index=task_index, n_bin=n_bin, labels=labels, **kwargs)
scripts/data/jura2bbtxt.py
wuzzh/master_thesis_code
206
11189427
""" Script for translating the dataset from J<NAME> (jura) to BBTXT format. Since this dataset contains only cars all objects will be assigned label 1. A BBTXT file is formatted like this: filename label confidence xmin ymin xmax ymax filename label confidence xmin ymin xmax ymax filename label confidence xmin ymin xmax ymax ... The label txt files in the jura dataset have the following form: filename:car_ID left top right bottom bumper_center;car_ID left top right bottom bumper_center.... filename:car_ID left top right bottom bumper_center;car_ID left top right bottom bumper_center.... ... ---------------------------------------------------------------------------------------------------- python jura2bbtxt.py path_labels path_images outfile.bbtxt ---------------------------------------------------------------------------------------------------- """ __date__ = '12/06/2016' __author__ = '<NAME>' __email__ = '<EMAIL>' import argparse import os #################################################################################################### # DEFINITIONS # #################################################################################################### #################################################################################################### # FUNCTIONS # #################################################################################################### def translate_file(path_file, path_images, outfile): """ Translates a single TXT file with jura labels and appends its output to the given BBTXT file. Input: path_file: Path to the TXT file to be translated path_images: Path to the folder, which contains "Toyota" and "LiborNovak" folders outfile: File handle of the open output BBTXT file """ with open(path_file, 'r') as infile: for line in infile: line = line.rstrip('\n') # Get the image file path data = line.split(':') path_image = os.path.join(path_images, data[0]) if not os.path.isfile(path_image): print('WARNING: Image "%s" does not exist!'%(path_image)) # Get the annotations annotations = data[1].split(';') for annotation in annotations: if annotation != '': # Get the numbers coords = annotation.split(' ') # All annotations are cars -> put 1 for class. For confidence we put 1 - just # to have something line_out = path_image + ' 1 1 ' # Bounding box line_out += coords[1] + ' ' + coords[2] + ' ' + coords[3] + ' ' + coords[4] + '\n' outfile.write(line_out) def translate_files(path_labels, path_images, outfile): """ Runs the translation of <NAME>ny's label format into the BBTXT format. Translates all TXT files in the path_labels folder into a single BBTXT file. Input: path_labels: Path to the folder with label files to be translated path_images: Path to the folder, which contains "Toyota" and "LiborNovak" folders outfile: File handle of the open output BBTXT file """ print('-- TRANSLATING JIRI TREFNY\'S ANNOTATION TO BBTXT') # Get the content of the path_labels directory txt_names = [f for f in os.listdir(path_labels) if os.path.splitext(f)[1] == '.txt'] for filename in txt_names: print('-- Processing: ' + filename) translate_file(os.path.join(path_labels, filename), path_images, outfile) print('-- TRANSLATION DONE') #################################################################################################### # MAIN # #################################################################################################### def check_path(path, is_folder=False): """ Checks if the given path exists. Input: path: Path to be checked is_folder: True if the checked path is a folder Returns: True if the given path exists """ if not os.path.exists(path) or (not is_folder and not os.path.isfile(path)): print('ERROR: Path "%s" does not exist!'%(path)) return False return True def parse_arguments(): """ Parse input options of the script. """ parser = argparse.ArgumentParser(description='Convert KITTI label files into BBTXT.') parser.add_argument('path_labels', metavar='path_labels', type=str, help='Path to the folder with label files to be translated (all .txt files'\ ' from this folder will be loaded)') parser.add_argument('path_images', metavar='path_images', type=str, help='Path to the folder, which contains "Toyota" and "LiborNovak" folders') parser.add_argument('outfile', metavar='path_outfile', type=argparse.FileType('w'), help='Path to the output BBTXT file (including the extension)') args = parser.parse_args() if not check_path(args.path_labels, True) or not check_path(args.path_images, True): parser.print_help() exit(1) return args def main(): args = parse_arguments() translate_files(args.path_labels, args.path_images, args.outfile) args.outfile.close() if __name__ == '__main__': main()
examples/numbersonly.py
shmuelamar/cbox
164
11189456
#!/usr/bin/env python3 import cbox @cbox.stream() def numbersonly(line): """returns the lines containing only numbers. bad lines reported to stderr. if any bad line is detected, exits with exitcode 2. """ if not line.isnumeric(): raise ValueError('{} is not a number'.format(line)) return line if __name__ == '__main__': cbox.main(numbersonly)
posthog/migrations/0194_set_property_type_for_time.py
dorucioclea/posthog
7,409
11189480
<reponame>dorucioclea/posthog # Generated by Django 3.2.5 on 2021-12-22 09:13 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("posthog", "0193_auto_20211222_0912"), ] operations = [ migrations.RunSQL( sql=""" update posthog_propertydefinition set property_type = 'DateTime', property_type_format='unix_timestamp' where name = '$time' """, reverse_sql=""" update posthog_propertydefinition set property_type = null, property_type_format=null where name = '$time' """, ) ]
texthero/representation.py
gagandeepreehal/texthero
2,559
11189502
<filename>texthero/representation.py """ Map words into vectors using different algorithms such as TF-IDF, word2vec or GloVe. """ import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.manifold import TSNE from sklearn.decomposition import PCA, NMF from sklearn.cluster import KMeans, DBSCAN, MeanShift from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import normalize as sklearn_normalize from scipy.sparse import coo_matrix from typing import Optional, Union, Any from texthero._types import ( TextSeries, TokenSeries, VectorSeries, DataFrame, InputSeries, ) from texthero import preprocessing import logging import warnings # from texthero import pandas_ as pd_ """ Helper """ # Warning message for not-tokenized inputs _not_tokenized_warning_message = ( "It seems like the given Pandas Series s is not tokenized. This" " function will tokenize it automatically using hero.tokenize(s)" " first. You should consider tokenizing it yourself first with" " hero.tokenize(s) in the future." ) """ Vectorization """ @InputSeries([TokenSeries, TextSeries]) def count( s: Union[TokenSeries, TextSeries], max_features: Optional[int] = None, min_df=1, max_df=1.0, binary=False, ) -> pd.DataFrame: """ Represent a text-based Pandas Series using count. Rows of the returned DataFrame represent documents whereas columns are terms. The value in the cell document-term is the number of the term in this document. The output is sparse. TODO add tutorial link The input Series should already be tokenized. If not, it will be tokenized before count is calculated. Parameters ---------- s : Pandas Series (tokenized) max_features : int, optional, default=None Maximum number of features to keep. Will keep all features if set to None. min_df : float in range [0.0, 1.0] or int, optional, default=1 When building the vocabulary ignore terms that have a document frequency (number of documents they appear in) strictly lower than the given threshold. If float, the parameter represents a proportion of documents, integer absolute counts. max_df : float in range [0.0, 1.0] or int, optional, default=1.0 Ignore terms that have a document frequency (number of documents they appear in) frequency strictly higher than the given threshold. If float, the parameter represents a proportion of documents, integer absolute counts. binary : bool, optional, default=False If True, all non zero counts are set to 1. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series(["Sentence one", "Sentence two"]).pipe(hero.tokenize) >>> hero.count(s) # doctest: +SKIP Sentence one two 0 1 1 0 1 1 0 1 See Also -------- TODO add tutorial link """ # TODO. Can be rewritten without sklearn. # Check if input is tokenized. Else, print warning and tokenize. if not isinstance(s.iloc[0], list): warnings.warn(_not_tokenized_warning_message, DeprecationWarning) s = preprocessing.tokenize(s) tf = CountVectorizer( max_features=max_features, tokenizer=lambda x: x, preprocessor=lambda x: x, min_df=min_df, max_df=max_df, binary=binary, ) tf_vectors_csr = tf.fit_transform(s) return pd.DataFrame.sparse.from_spmatrix( tf_vectors_csr, s.index, tf.get_feature_names() ) def term_frequency( s: pd.Series, max_features: Optional[int] = None, min_df=1, max_df=1.0, ) -> pd.DataFrame: """ Represent a text-based Pandas Series using Term Frequency. Rows of the returned DataFrame represent documents whereas columns are terms. The value in the cell document-term is the frequency of the term in this document. The output is sparse. TODO add tutorial link The input Series should already be tokenized. If not, it will be tokenized before term_frequency is calculated. Parameters ---------- s : Pandas Series (tokenized) max_features : int, optional, default=None Maximum number of features to keep. Will keep all features if set to None. min_df : float in range [0.0, 1.0] or int, optional, default=1 When building the vocabulary ignore terms that have a document frequency (number of documents they appear in) strictly lower than the given threshold. If float, the parameter represents a proportion of documents, integer absolute counts. max_df : float in range [0.0, 1.0] or int, optional, default=1.0 Ignore terms that have a document frequency (number of documents they appear in) frequency strictly higher than the given threshold. If float, the parameter represents a proportion of documents, integer absolute counts. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series(["Text Text of doc one", "Text of of doc two", "Aha hi bnd one"]).pipe(hero.tokenize) >>> hero.term_frequency(s) # doctest: +SKIP term_frequency Aha Text bnd doc hi of one two 0 0.00 0.4 0.00 0.2 0.00 0.2 0.20 0.0 1 0.00 0.2 0.00 0.2 0.00 0.4 0.00 0.2 2 0.25 0.0 0.25 0.0 0.25 0.0 0.25 0.0 See Also -------- TODO add tutorial link """ # Term frequency is just the word counts for each document # with each document divided by the number of terms in the # document. That's just l1 normalization! s_term_frequency = s.pipe( count, max_features=max_features, min_df=min_df, max_df=max_df ).pipe(normalize, norm="l1") return s_term_frequency def tfidf(s: pd.Series, max_features=None, min_df=1, max_df=1.0,) -> pd.DataFrame: """ Represent a text-based Pandas Series using TF-IDF. Rows of the returned DataFrame represent documents whereas columns are terms. The value in the cell document-term is the tfidf-value of the term in this document. The output is sparse. *Term Frequency - Inverse Document Frequency (TF-IDF)* is a formula to calculate the _relative importance_ of the words in a document, taking into account the words' occurences in other documents. It consists of two parts: The *term frequency (tf)* tells us how frequently a term is present in a document, so tf(document d, term t) = number of times t appears in d. The *inverse document frequency (idf)* measures how _important_ or _characteristic_ a term is among the whole corpus (i.e. among all documents). Thus, idf(term t) = log((1 + number of documents) / (1 + number of documents where t is present)) + 1. Finally, tf-idf(document d, term t) = tf(d, t) * idf(t). Different from the `sklearn-implementation of tfidf <https://scikit-learn.org/stable/modules/generated/sklearn.feature_ extraction.text.TfidfVectorizer.html>`, this function does *not* normalize the output in any way, so the result is exactly what you get applying the formula described above. The input Series should already be tokenized. If not, it will be tokenized before tfidf is calculated. Parameters ---------- s : Pandas Series (tokenized) max_features : int, optional, default=None If not None, only the max_features most frequent tokens are used. min_df : float in range [0.0, 1.0] or int, optional, default=1 When building the vocabulary ignore terms that have a document frequency (number of documents they appear in) strictly lower than the given threshold. If float, the parameter represents a proportion of documents, integer absolute counts. max_df : float in range [0.0, 1.0] or int, default=1.0 Ignore terms that have a document frequency (number of documents they appear in) frequency strictly higher than the given threshold. This arguments basically permits to remove corpus-specific stop words. If float, the parameter represents a proportion of documents, integer absolute counts. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series(["Hi Bye", "Test Bye Bye"]).pipe(hero.tokenize) >>> hero.tfidf(s) # doctest: +SKIP Bye Hi Test 0 1.0 1.405465 0.000000 1 2.0 0.000000 1.405465 See Also -------- `TF-IDF on Wikipedia <https://en.wikipedia.org/wiki/Tf-idf>`_ TODO add tutorial link """ # Check if input is tokenized. Else, print warning and tokenize. if not isinstance(s.iloc[0], list): warnings.warn(_not_tokenized_warning_message, DeprecationWarning) s = preprocessing.tokenize(s) tfidf = TfidfVectorizer( use_idf=True, max_features=max_features, min_df=min_df, max_df=max_df, tokenizer=lambda x: x, preprocessor=lambda x: x, norm=None, # Disable l1/l2 normalization. ) tfidf_vectors_csr = tfidf.fit_transform(s) return pd.DataFrame.sparse.from_spmatrix( tfidf_vectors_csr, s.index, tfidf.get_feature_names() ) """ Dimensionality reduction """ def pca( input_matrix: Union[pd.Series, pd.DataFrame], n_components=2, random_state=None ) -> pd.Series: """ Perform principal component analysis on the given input. Principal Component Analysis (PCA) is a statistical method that is used to reveal where the variance in a dataset comes from. For textual data, one could for example first represent a Series of documents using :meth:`texthero.representation.tfidf` to get a vector representation of each document. Then, PCA can generate new vectors from the tfidf representation that showcase the differences among the documents most strongly in fewer dimensions. For example, the tfidf vectors will have length 100 if hero.tfidf was called on a large corpus with max_features=100. Visualizing 100 dimensions is hard! Using PCA with n_components=3, every document will now get a vector of length 3, and the vectors will be chosen so that the document differences are easily visible. The corpus can now be visualized in 3D and we can get a good first view of the data! In general, *pca* should be called after the text has already been represented to a matrix form. PCA cannot directly handle sparse input, so when calling pca on a sparse DataFrame, the input has to be expanded which can lead to memory problems with big datasets. Parameters ---------- input_matrix : Pandas Series (VectorSeries) or DataFrame n_components : int or str, optional, default=2 Number of components to keep (dimensionality of output vectors). If n_components is not set or None, all components are kept. If set to "mle", the number of components is automatically estimated. random_state : int, optional, default=None Pass an int for reproducible results across multiple function calls. Returns ------- Pandas Series with the vector calculated by PCA for the document in every cell. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series(["Football is great", ... "Hi, I'm Texthero, who are you? Tell me!"]) >>> s = s.pipe(hero.clean).pipe(hero.tokenize).pipe(hero.tfidf) >>> # Attention, your results might differ due to >>> # the randomness in PCA! >>> hero.pca(s) # doctest: +SKIP document 0 [1.5713577608669735, 1.1102230246251565e-16] 1 [-1.5713577608669729, 1.1102230246251568e-16] dtype: object See also -------- `PCA on Wikipedia <https://en.wikipedia.org/wiki/Principal_component_analysis>`_ """ # Default n_components=2 to enable users to easily plot the results. pca = PCA(n_components=n_components, random_state=random_state, copy=False) if isinstance(input_matrix, pd.DataFrame): values = input_matrix.values else: values = list(input_matrix) return pd.Series(list(pca.fit_transform(values)), index=input_matrix.index) def nmf( input_matrix: Union[pd.Series, pd.DataFrame], n_components=2, random_state=None ) -> pd.Series: """ Performs non-negative matrix factorization on the given input. Non-Negative Matrix Factorization (NMF) is often used in natural language processing to find clusters of similar texts (e.g. some texts in a corpus might be about sports and some about music, so they will differ in the usage of technical terms; see the example below). Given a document-term matrix (so in texthero usually a Series after applying :meth:`texthero.representation.tfidf` or some other first representation function that assigns a scalar (a weight) to each word), NMF will find n_components many topics (clusters) and calculate a vector for each document that places it correctly among the topics. NMF can directly handle sparse input, so when calling nmf on a sparse DataFrame, the advantage of sparseness is kept. Parameters ---------- input_matrix : Pandas Series (VectorSeries) or DataFrame n_components : int, optinal, default=2 Number of components to keep (dimensionality of output vectors). If n_components is not set or None, all components are kept. random_state : int, optional, default=None Pass an int for reproducible results across multiple function calls. Returns ------- Pandas Series with the vector calculated by NMF for the document in every cell. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series(["Football, Sports, Soccer", ... "Music, Violin, Orchestra", "Football, Music"]) >>> s = s.pipe(hero.clean).pipe(hero.tokenize).pipe( ... hero.term_frequency ... ) >>> hero.nmf(s) # doctest: +SKIP 0 [0.9080190347553924, 0.0] 1 [0.0, 0.771931061231598] 2 [0.3725409073202516, 0.31656880119331093] dtype: object >>> # As we can see, the third document, which >>> # is a mix of sports and music, is placed >>> # between the two axes (the topics) while >>> # the other documents are placed right on >>> # one topic axis each. See also -------- `NMF on Wikipedia <https://en.wikipedia.org/wiki/Non-negative_matrix_factorization>`_ """ # Default n_components=2 to enable users to easily plot the results. nmf = NMF(n_components=n_components, init="random", random_state=random_state,) if isinstance(input_matrix, pd.DataFrame): input_matrix_coo = input_matrix.sparse.to_coo() input_matrix_for_vectorization = input_matrix_coo.astype("float64") else: input_matrix_for_vectorization = list(input_matrix) return pd.Series( list(nmf.fit_transform(input_matrix_for_vectorization)), index=input_matrix.index, ) def tsne( input_matrix: Union[pd.Series, pd.DataFrame], n_components=2, perplexity=30.0, learning_rate=200.0, n_iter=1000, random_state=None, n_jobs=-1, ) -> VectorSeries: """ Performs t-Distributed Stochastic Neighbor Embedding on the given input. t-distributed Stochastic Neighbor Embedding (t-SNE) is a machine learning algorithm used to visualize high-dimensional data in fewer dimensions. In natural language processing, the high-dimensional data is usually a document-term matrix (so in texthero usually a Series after applying :meth:`texthero.representation.tfidf` or some other first representation function that assigns a scalar (a weight) to each word) that is hard to visualize as there might be many terms. With t-SNE, every document gets a new, low-dimensional (n_components entries) vector in such a way that the differences / similarities between documents are preserved. T-SNE can directly handle sparse input, so when calling tsne on a sparse DataFrame, the advantage of sparseness is kept. Parameters ---------- input_matrix : Pandas Series (VectorSeries) or DataFrame n_components : int, optional, default=2 Number of components to keep (dimensionality of output vectors). If n_components is not set or None, all components are kept. perplexity : float, optional, default=30 The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. Different values can result in significanlty different results. learning_rate : float, optional, default=200.0 The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a 'ball' with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. If the cost function gets stuck in a bad local minimum increasing the learning rate may help. n_iter : int, optional, default=1000 Maximum number of iterations for the optimization. Should be at least 250. random_state : int, optional, default=None Determines the random number generator. Pass an int for reproducible results across multiple function calls. n_jobs : int, optional, default=-1 The number of parallel jobs to run for neighbors search. ``-1`` means using all processors. Returns ------- Pandas Series with the vector calculated by t-SNE for the document in every cell. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series(["Football, Sports, Soccer", ... "Music, Violin, Orchestra", "Football, Music"]) >>> s = s.pipe(hero.clean).pipe(hero.tokenize).pipe(hero.term_frequency) >>> hero.tsne(s, random_state=42) # doctest: +SKIP 0 [-18.833383560180664, -276.800537109375] 1 [-210.60179138183594, 143.00535583496094] 2 [-478.27984619140625, -232.97410583496094] dtype: object See also -------- `t-SNE on Wikipedia <https://en.wikipedia.org/wiki/T-distributed_ stochastic_neighbor_embedding>`_ """ # Default n_components=2 to enable users to easily plot the results. tsne = TSNE( n_components=n_components, perplexity=perplexity, learning_rate=learning_rate, n_iter=n_iter, random_state=random_state, n_jobs=n_jobs, ) if isinstance(input_matrix, pd.DataFrame): input_matrix_coo = input_matrix.sparse.to_coo() input_matrix_for_vectorization = input_matrix_coo.astype("float64") else: input_matrix_for_vectorization = list(input_matrix) return pd.Series( list(tsne.fit_transform(input_matrix_for_vectorization)), index=input_matrix.index, ) """ Clustering """ @InputSeries([VectorSeries, DataFrame]) def kmeans( input_matrix: Union[pd.Series, pd.DataFrame], n_clusters=5, n_init=10, max_iter=300, random_state=None, algorithm="auto", ) -> VectorSeries: """ Performs K-means clustering algorithm on the given input. K-means clustering is used in natural language processing to separate texts into k clusters (groups) (e.g. some texts in a corpus might be about sports and some about music, so they will differ in the usage of technical terms; the K-means algorithm uses this to separate them into two clusters). Given a document-term matrix (so in texthero usually a Series after applying :meth:`texthero.representation.tfidf` or some other first representation function that assigns a scalar (a weight) to each word), K-means will find k topics (clusters) and assign a topic to each document. Kmeans can directly handle sparse input, so when calling kmeans on a sparse DataFrame, the advantage of sparseness is kept. Parameters ---------- input_matrix: Pandas Series (VectorSeries) or DataFrame n_clusters: int, optional, default=5 The number of clusters to separate the data into. n_init : int, optional, default=10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. max_iter : int, optional, default=300 Maximum number of iterations of the k-means algorithm for a single run. random_state : int, optional, default=None Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. algorithm : {"auto", "full", "elkan"}, optional, default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient on data with well-defined clusters, by using the triangle inequality. However it's more memory intensive. Returns ------- Pandas Series with the cluster the document was assigned to in each cell. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series(["Football, Sports, Soccer", ... "music, violin, orchestra", ... "football, fun, sports", "music, fun, guitar"]) >>> s = s.pipe(hero.clean).pipe(hero.tokenize).pipe( ... hero.term_frequency ... ) >>> hero.kmeans(s, n_clusters=2, random_state=42) # doctest: +SKIP 0 1 1 0 2 1 3 0 dtype: category Categories (2, int64): [0, 1] >>> # As we can see, the documents are correctly >>> # separated into topics / clusters by the algorithm. See also -------- `kmeans on Wikipedia <https://en.wikipedia.org/wiki/K-means_clustering>`_ """ if isinstance(input_matrix, pd.DataFrame): input_matrix_coo = input_matrix.sparse.to_coo() input_matrix_for_vectorization = input_matrix_coo.astype("float64") else: input_matrix_for_vectorization = list(input_matrix) kmeans = KMeans( n_clusters=n_clusters, n_init=n_init, max_iter=max_iter, random_state=random_state, copy_x=True, algorithm=algorithm, ).fit(input_matrix_for_vectorization) return pd.Series( kmeans.predict(input_matrix_for_vectorization), index=input_matrix.index ).astype("category") @InputSeries([VectorSeries, DataFrame]) def dbscan( input_matrix: Union[pd.Series, pd.DataFrame], eps=0.5, min_samples=5, metric="euclidean", metric_params=None, leaf_size=30, n_jobs=-1, ) -> VectorSeries: """ Perform DBSCAN clustering on the given input. Density-based spatial clustering of applications with noise (DBSCAN) is used in natural language processing to separate texts into clusters (groups) (e.g. some texts in a corpus might be about sports and some about music, so they will differ in the usage of technical terms; the DBSCAN algorithm uses this to separate them into clusters). It chooses the number of clusters on its own. Given a document-term matrix (so in texthero usually a Series after applying :meth:`texthero.representation.tfidf` or some other first representation function that assigns a scalar (a weight) to each word), DBSCAN will find topics (clusters) and assign a topic to each document. DBSCAN can directly handle sparse input, so when calling dbscan on a sparse DataFrame, the advantage of sparseness is kept. Parameters ---------- input_matrix: Pandas Series (VectorSeries) or DataFrame eps : float, optional, default=0.5 The maximum distance between two samples for one to be considered as in the neighborhood of the other. This is not a maximum bound on the distances of points within a cluster. This is the most important DBSCAN parameter to choose appropriately for your data set and distance function. min_samples : int, optional, default=5 The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. metric : string or callable, optional, default='euclidean' The metric to use when calculating distance between instances in a feature array. Use `sorted(sklearn.neighbors.VALID_METRICS['brute'])` to see valid options. metric_params : dict, optional, default=None Additional keyword arguments for the metric function. leaf_size : int, optional, default=30 Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. n_jobs : int, optional, default=-1 The number of parallel jobs to run. ``-1`` means using all processors. Returns ------- Pandas Series with the cluster the document was assigned to in each cell. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series(["Football, Sports, Soccer", ... "music, violin, orchestra", ... "football, fun, sports", "music, enjoy, guitar"]) >>> s = s.pipe(hero.clean).pipe(hero.tokenize).pipe(hero.tfidf) >>> hero.dbscan(s, min_samples=1, eps=4) 0 0 1 1 2 0 3 1 dtype: category Categories (2, int64): [0, 1] >>> # As we can see, the documents are correctly >>> # separated into topics / clusters by the algorithm >>> # and we didn't even have to say how many topics there are! See also -------- `DBSCAN on Wikipedia <https://en.wikipedia.org/wiki/DBSCAN>`_ """ if isinstance(input_matrix, pd.DataFrame): input_matrix_coo = input_matrix.sparse.to_coo() input_matrix_for_vectorization = input_matrix_coo.astype("float64") else: input_matrix_for_vectorization = list(input_matrix) return pd.Series( DBSCAN( eps=eps, min_samples=min_samples, metric=metric, metric_params=metric_params, leaf_size=leaf_size, n_jobs=n_jobs, ).fit_predict(input_matrix_for_vectorization), index=input_matrix.index, ).astype("category") @InputSeries([VectorSeries, DataFrame]) def meanshift( input_matrix: Union[pd.Series, pd.DataFrame], bandwidth=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, n_jobs=-1, max_iter=300, ) -> VectorSeries: """ Perform mean shift clustering on the given input. Mean shift clustering is used in natural language processing to separate texts into clusters (groups) (e.g. some texts in a corpus might be about sports and some about music, so they will differ in the usage of technical terms; the mean shift algorithm uses this to separate them into clusters). It chooses the number of clusters on its own. Given a document-term matrix (so in texthero usually a Series after applying :meth:`texthero.representation.tfidf` or some other first representation function that assigns a scalar (a weight) to each word), mean shift will find topics (clusters) and assign a topic to each document. Menashift cannot directly handle sparse input, so when calling meanshift on a sparse DataFrame, the input has to be expanded which can lead to memory problems with big datasets. Parameters ---------- input_matrix: Pandas Series (VectorSeries) or DataFrame bandwidth : float, optional, default=None Bandwidth used in the RBF kernel. If not given, the bandwidth is estimated. Estimating takes time at least quadratic in the number of samples (i.e. documents). For large datasets, it’s wise to set the bandwidth to a small value. bin_seeding : bool, optional, default=False If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. min_bin_freq : int, optional, default=1 To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. cluster_all : bool, optional, default=True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. n_jobs : int, optional, default=-1 The number of jobs to use for the computation. ``-1`` means using all processors max_iter : int, optional, default=300 Maximum number of iterations, per seed point before the clustering operation terminates (for that seed point), if has not converged yet. Returns ------- Pandas Series with the cluster the document was assigned to in each cell. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series([[1, 1], [2, 1], [1, 0], [4, 7], [3, 5], [3, 6]]) >>> hero.meanshift(s, bandwidth=2) 0 1 1 1 2 1 3 0 4 0 5 0 dtype: category Categories (2, int64): [0, 1] See also -------- `Mean-Shift on Wikipedia <https://en.wikipedia.org/wiki/Mean_shift>`_ """ if isinstance(input_matrix, pd.DataFrame): vectors = input_matrix.values else: vectors = list(input_matrix) return pd.Series( MeanShift( bandwidth=bandwidth, bin_seeding=bin_seeding, min_bin_freq=min_bin_freq, cluster_all=cluster_all, n_jobs=n_jobs, max_iter=max_iter, ).fit_predict(vectors), index=input_matrix.index, ).astype("category") """ Topic modelling """ # TODO. """ Normalization. """ def normalize(input_matrix: Union[pd.DataFrame, pd.Series], norm="l2") -> pd.Series: """ Normalize every cell in a Pandas Series. Input can be VectorSeries or DataFrames. For sparse DataFrames, the sparseness is kept. Parameters ---------- input_matrix: Pandas Series (VectorSeries) or DataFrame norm: str, optional, default="l2" One of "l1", "l2", or "max". The norm that is used. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> col = ["a","b","c", "d"] >>> s = pd.DataFrame([[1, 2, 3, 4],[4, 2, 7, 5],[2, 2, 3, 5],[1, 2, 9, 8]], ... columns=col).astype("Sparse") >>> hero.normalize(s, norm="max") # doctest: +SKIP a b c d 0 0.250000 0.500000 0.75 1.000000 1 0.571429 0.285714 1.00 0.714286 2 0.400000 0.400000 0.60 1.000000 3 0.111111 0.222222 1.00 0.888889 See Also -------- DataFrame link TODO add link to tutorial `Norm on Wikipedia <https://en.wikipedia.org/wiki/Norm_(mathematics)>`_ """ isDataFrame = isinstance(input_matrix, pd.DataFrame) if isDataFrame: input_matrix_coo = input_matrix.sparse.to_coo() input_matrix_for_vectorization = input_matrix_coo.astype("float64") else: input_matrix_for_vectorization = list(input_matrix) result = sklearn_normalize( input_matrix_for_vectorization, norm=norm ) # Can handle sparse input. if isDataFrame: return pd.DataFrame.sparse.from_spmatrix( result, input_matrix.index, input_matrix.columns ) else: return pd.Series(list(result), index=input_matrix.index)
PhysicsTools/RecoAlgos/python/TrackFullCloneSelector_cfi.py
ckamtsikis/cmssw
852
11189516
import FWCore.ParameterSet.Config as cms trackFullCloneSelector = cms.EDFilter("TrackFullCloneSelector", copyExtras = cms.untracked.bool(False), ## copies also extras and rechits on RECO src = cms.InputTag("ctfWithMaterialTracks"), cut = cms.string('(numberOfValidHits >= 8) & (normalizedChi2 < 5)'), # don't set this to true on AOD! copyTrajectories = cms.untracked.bool(False) )
third_party/tests/Rsd/Processor/Tools/KanataConverter/RSD_Event.py
little-blue/Surelog
670
11189530
# -*- coding: utf-8 -*- class RSD_Event(object): """ Parser event types """ INIT = 0 STAGE_BEGIN = 1 STAGE_END = 2 STALL_BEGIN = 3 STALL_END = 4 RETIRE = 5 FLUSH = 6 LABEL = 7
tests/zeus/api/resources/test_build_file_coverage.py
conrad-kronos/zeus
221
11189549
<reponame>conrad-kronos/zeus # flake8 is breaking with no empty lines up here NOQA def test_build_file_coverage_list( client, default_login, default_repo, default_build, default_filecoverage, default_repo_access, ): resp = client.get( "/api/repos/{}/builds/{}/file-coverage".format( default_repo.get_full_name(), default_build.number ) ) assert resp.status_code == 200 data = resp.json() assert len(data) == 1 assert data[0]["filename"] == str(default_filecoverage.filename) def test_build_file_coverage_list_filter_diff_only( client, default_login, default_repo, default_build, default_filecoverage, default_repo_access, ): resp = client.get( "/api/repos/{}/builds/{}/file-coverage?diff_only=true".format( default_repo.get_full_name(), default_build.number ) ) assert resp.status_code == 200 data = resp.json() assert len(data) == 0 resp = client.get( "/api/repos/{}/builds/{}/file-coverage?diff_only=false".format( default_repo.get_full_name(), default_build.number ) ) data = resp.json() assert len(data) == 1 assert data[0]["filename"] == str(default_filecoverage.filename)
utils/tensor_utils_test.py
garyxcheng/federated
330
11189553
<reponame>garyxcheng/federated<gh_stars>100-1000 # Copyright 2018, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf from utils import tensor_utils class TensorUtilsTest(tf.test.TestCase): def expect_ok_graph_mode(self, structure): with tf.Graph().as_default(): result, error = tensor_utils.zero_all_if_any_non_finite(structure) with self.session() as sess: result, error = sess.run((result, error)) try: tf.nest.map_structure(np.testing.assert_allclose, result, structure) except AssertionError: self.fail('Expected to get input {} back, but instead got {}'.format( structure, result)) self.assertEqual(error, 0) def expect_ok_eager_mode(self, structure): result, error = tensor_utils.zero_all_if_any_non_finite(structure) try: tf.nest.map_structure(np.testing.assert_allclose, result, structure) except AssertionError: self.fail('Expected to get input {} back, but instead got {}'.format( structure, result)) self.assertEqual(error, 0) def expect_zeros_graph_mode(self, structure, expected): with tf.Graph().as_default(): result, error = tensor_utils.zero_all_if_any_non_finite(structure) with self.session() as sess: result, error = sess.run((result, error)) try: tf.nest.map_structure(np.testing.assert_allclose, result, expected) except AssertionError: self.fail('Expected to get zeros, but instead got {}'.format(result)) self.assertEqual(error, 1) def expect_zeros_eager_mode(self, structure, expected): result, error = tensor_utils.zero_all_if_any_non_finite(structure) try: tf.nest.map_structure(np.testing.assert_allclose, result, expected) except AssertionError: self.fail('Expected to get zeros, but instead got {}'.format(result)) self.assertEqual(error, 1) def test_zero_all_if_any_non_finite_graph_mode(self): tf.config.experimental_run_functions_eagerly(False) self.expect_ok_graph_mode([]) self.expect_ok_graph_mode([(), {}]) self.expect_ok_graph_mode(1.1) self.expect_ok_graph_mode([1.0, 0.0]) self.expect_ok_graph_mode([1.0, 2.0, {'a': 0.0, 'b': -3.0}]) self.expect_zeros_graph_mode(np.inf, 0.0) self.expect_zeros_graph_mode((1.0, (2.0, np.nan)), (0.0, (0.0, 0.0))) self.expect_zeros_graph_mode((1.0, (2.0, { 'a': 3.0, 'b': [[np.inf], [np.nan]] })), (0.0, (0.0, { 'a': 0.0, 'b': [[0.0], [0.0]] }))) def test_zero_all_if_any_non_finite_eager_mode(self): tf.config.experimental_run_functions_eagerly(True) self.expect_ok_eager_mode([]) self.expect_ok_eager_mode([(), {}]) self.expect_ok_eager_mode(1.1) self.expect_ok_eager_mode([1.0, 0.0]) self.expect_ok_eager_mode([1.0, 2.0, {'a': 0.0, 'b': -3.0}]) self.expect_zeros_eager_mode(np.inf, 0.0) self.expect_zeros_eager_mode((1.0, (2.0, np.nan)), (0.0, (0.0, 0.0))) self.expect_zeros_eager_mode((1.0, (2.0, { 'a': 3.0, 'b': [[np.inf], [np.nan]] })), (0.0, (0.0, { 'a': 0.0, 'b': [[0.0], [0.0]] }))) if __name__ == '__main__': tf.test.main()
fexm/evalscripts/eval_seeds.py
fgsect/fexm
105
11189557
import subprocess import sys import matplotlib.pyplot as plt import os import pandas as pd def get_file_bucket(file): file_bucket = " ".join(str(subprocess.check_output("file {0}".format(file), shell=True).strip()).split(":")[1].split(",")[0].strip().split( " ")[:2]) if file_bucket[-1] == "'": file_bucket = file_bucket[:-1] return file_bucket def main(seeds_dir: str): df = pd.DataFrame([], columns=["id", "filetype", "size_bucket"]) filetypes = [] file_buckets = [] count = 0 for file_dir in os.listdir(seeds_dir): filedir_full_path = os.path.join(seeds_dir, file_dir) if not os.path.isdir(filedir_full_path): continue if not os.listdir(filedir_full_path): continue # for file in os.listdir(filedir_full_path): # print("Pre-Processing file {0}".format(file)) # file_full_path = os.path.join(filedir_full_path,file) # file_bucket = get_file_bucket(file_full_path) # file_buckets.append(file_bucket) filetypes.append(file_dir.split("_")[0]) plot_df = pd.DataFrame([], columns=["<1KB", "<=500KB", "<=1000KB", ">1000KB"], index=filetypes) plot_bucket_dict = {} for filetype in filetypes: plot_df.loc[filetype]["<1KB"] = 0 plot_df.loc[filetype]["<=500KB"] = 0 plot_df.loc[filetype]["<=1000KB"] = 0 plot_df.loc[filetype][">1000KB"] = 0 for file_dir in os.listdir(seeds_dir): filedir_full_path = os.path.join(seeds_dir, file_dir) if not os.path.isdir(filedir_full_path): continue if not os.listdir(filedir_full_path): continue for file in os.listdir(filedir_full_path): print("Processing file {0}".format(file)) file_full_path = os.path.join(filedir_full_path, file) bucket = "" size = os.path.getsize(file_full_path) if size <= 1 * 1000: bucket = "<1KB" elif size <= 500 * 1000: bucket = "<=500KB" elif size <= 1000 * 1000: bucket = "<=1000KB" else: bucket = ">1000KB" df.loc[count] = [file, file_dir.split("_")[0], bucket] count += 1 plot_df.loc[file_dir.split("_")[0]][bucket] += 1 file_bucket = get_file_bucket(file_full_path) if not plot_bucket_dict.get(file_bucket): plot_bucket_dict[file_bucket] = {"<1KB": 0, "<=500KB": 0, "<=1000KB": 0, ">1000KB": 0} plot_bucket_dict[file_bucket][bucket] = 1 elif not plot_bucket_dict.get(file_bucket).get(bucket): plot_bucket_dict[file_bucket][bucket] = 1 else: plot_bucket_dict[file_bucket][bucket] += 1 # plot_bucket_df.loc[get_file_bucket(file_full_path)bucket] +=1 plot_bucket_df = pd.DataFrame([], columns=["<1KB", "<=500KB", "<=1000KB", ">1000KB"], index=plot_bucket_dict.keys()) for file_bucket in plot_bucket_dict.keys(): plot_bucket_df.loc[file_bucket, "<1KB"] = plot_bucket_dict[file_bucket]["<1KB"] plot_bucket_df.loc[file_bucket, "<=500KB"] = plot_bucket_dict[file_bucket]["<=500KB"] plot_bucket_df.loc[file_bucket, "<=1000KB"] = plot_bucket_dict[file_bucket]["<=1000KB"] plot_bucket_df.loc[file_bucket, ">1000KB"] = plot_bucket_dict[file_bucket][">1000KB"] plot_bucket_df.plot.barh(stacked=True, figsize=(80, 80)) plot_bucket_df.to_csv("bucket_seeds_eval.csv") plot_df.to_csv("fileendings_seeds_eval.csv") plt.show() if __name__ == "__main__": main(sys.argv[1])
teuthology/openstack/test/test_config.py
varshar16/teuthology
117
11189564
from teuthology.config import config class TestOpenStack(object): def setup(self): self.openstack_config = config['openstack'] def test_config_clone(self): assert 'clone' in self.openstack_config def test_config_user_data(self): os_type = 'rhel' os_version = '7.0' template_path = self.openstack_config['user-data'].format( os_type=os_type, os_version=os_version) assert os_type in template_path assert os_version in template_path def test_config_ip(self): assert 'ip' in self.openstack_config def test_config_machine(self): assert 'machine' in self.openstack_config machine_config = self.openstack_config['machine'] assert 'disk' in machine_config assert 'ram' in machine_config assert 'cpus' in machine_config def test_config_volumes(self): assert 'volumes' in self.openstack_config volumes_config = self.openstack_config['volumes'] assert 'count' in volumes_config assert 'size' in volumes_config
playground/pythonic-doom-fire/pythonic-doom-fire/example/doom_fire_pygame.py
jpalvesl/doom-fire-algorithm
1,227
11189566
<reponame>jpalvesl/doom-fire-algorithm from os.path import dirname, abspath, join import pygame import sys doom_fire_pygame_dir = dirname(abspath(__file__)) sys.path.append(join(doom_fire_pygame_dir, '..')) from doom_fire import DoomFire class DoomFirePygame(DoomFire): def render(self, ctx): ps = self.pixel_size for i in range(self.height): for j in range(self.width): pixel_index = i * self.width + j color_intensity = self.pixels_array[pixel_index] color = self.color_palette.get_color(color_intensity) pixel_rect = (j * ps, i * ps, ps, ps) pygame.draw.rect(ctx, color, pixel_rect, 0)
pyjobs/core/managers.py
Mdslino/PyJobs
132
11189591
from datetime import datetime, timedelta from django.db import models class PublicQuerySet(models.QuerySet): def public(self): return self.filter(public=True) def premium(self): return self.public().filter(premium=True) def not_premium(self): return self.public().filter(premium=False) def created_in_the_last(self, days, premium=False): if premium: return self.filter( premium_at__gt=datetime.today() - timedelta(days=days), premium_at__lte=datetime.today(), ) return self.filter( created_at__gt=datetime.today() - timedelta(days=days), created_at__lte=datetime.today(), ) def search(self, term): if not term: return self params = ( models.Q(title__icontains=term) | models.Q(workplace__icontains=term) | models.Q(description__icontains=term) | models.Q(requirements__icontains=term) ) return self.filter(params) class ProfilingQuerySet(models.QuerySet): def grade(self, skills, job_skills): if not skills or not job_skills: return 0 intersect = set(skills) & set(job_skills) return (len(intersect) / len(job_skills)) * 100
tools/live_plot.py
francescodelduchetto/gazr
174
11189610
<filename>tools/live_plot.py #! /usr/bin/env python import sys import time from numpy import arange import matplotlib.pyplot as plt PLOT_WIDTH=100 plt.axis([0, PLOT_WIDTH, -90, 90]) plt.ion() pitch = [0] * PLOT_WIDTH yaw = [0] * PLOT_WIDTH roll = [0] * PLOT_WIDTH pitch_graph, yaw_graph, roll_graph = plt.plot(pitch, 'r', yaw, 'g', roll, 'b') plt.legend([pitch_graph, yaw_graph, roll_graph], ['Pitch', 'Yaw', 'Roll']) plt.show() while True: line = sys.stdin.readline() data = eval(line) if "face_0" in data: pitch.append(data["face_0"]["pitch"]-180) del pitch[0] pitch_graph.set_data(arange(0, len(pitch)), pitch) yaw.append(data["face_0"]["yaw"]-180) del yaw[0] yaw_graph.set_data(arange(0, len(yaw)), yaw) roll.append(data["face_0"]["roll"]) del roll[0] roll_graph.set_data(arange(0, len(roll)), roll) plt.xlim([max(0,len(pitch) - PLOT_WIDTH), max(0,len(pitch) - PLOT_WIDTH) + PLOT_WIDTH]) plt.draw() plt.pause(0.05) else: pitch.append(0) yaw.append(0) roll.append(0)
easyargs/decorators.py
carlwgeorge/easyargs
160
11189662
from . import parsers import functools import inspect def make_easy_args(obj=None, auto_call=True): def decorate(f): @functools.wraps(f) def decorated(*args, **kwargs): parser = parsers.create_base_parser(f) if inspect.isfunction(f): parsers.function_parser(f, parser) else: klass_instance = f() parsers.class_parser(klass_instance, parser) if auto_call: return parsers.handle_parser(parser) return parser return decorated if obj is not None: return decorate(obj) return decorate
neuralmonkey/attention/__init__.py
Simon-Will/neuralmonkey
446
11189664
from .feed_forward import Attention from .coverage import CoverageAttention from .scaled_dot_product import ScaledDotProdAttention
causallib/contrib/shared_sparsity_selection/__init__.py
liranszlak/causallib
350
11189694
from .shared_sparsity_selection import SharedSparsityConfounderSelection
tests/r/test_strike_nb.py
hajime9652/observations
199
11189710
<reponame>hajime9652/observations<gh_stars>100-1000 from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.strike_nb import strike_nb def test_strike_nb(): """Test module strike_nb.py by downloading strike_nb.csv and testing shape of extracted data has 108 rows and 3 columns """ test_path = tempfile.mkdtemp() x_train, metadata = strike_nb(test_path) try: assert x_train.shape == (108, 3) except: shutil.rmtree(test_path) raise()
StackApp/env/lib/python2.7/site-packages/flask_api/exceptions.py
jonathanmusila/StackOverflow-Lite
555
11189751
<reponame>jonathanmusila/StackOverflow-Lite<filename>StackApp/env/lib/python2.7/site-packages/flask_api/exceptions.py from __future__ import unicode_literals from flask_api import status class APIException(Exception): status_code = status.HTTP_500_INTERNAL_SERVER_ERROR detail = '' def __init__(self, detail=None): if detail is not None: self.detail = detail def __str__(self): return self.detail class ParseError(APIException): status_code = status.HTTP_400_BAD_REQUEST detail = 'Malformed request.' class AuthenticationFailed(APIException): status_code = status.HTTP_401_UNAUTHORIZED detail = 'Incorrect authentication credentials.' class NotAuthenticated(APIException): status_code = status.HTTP_401_UNAUTHORIZED detail = 'Authentication credentials were not provided.' class PermissionDenied(APIException): status_code = status.HTTP_403_FORBIDDEN detail = 'You do not have permission to perform this action.' class NotFound(APIException): status_code = status.HTTP_404_NOT_FOUND detail = 'This resource does not exist.' # class MethodNotAllowed(APIException): # status_code = status.HTTP_405_METHOD_NOT_ALLOWED # detail = 'Request method "%s" not allowed.' # def __init__(self, method, detail=None): # self.detail = (detail or self.detail) % method class NotAcceptable(APIException): status_code = status.HTTP_406_NOT_ACCEPTABLE detail = 'Could not satisfy the request Accept header.' class UnsupportedMediaType(APIException): status_code = status.HTTP_415_UNSUPPORTED_MEDIA_TYPE detail = 'Unsupported media type in the request Content-Type header.' class Throttled(APIException): status_code = status.HTTP_429_TOO_MANY_REQUESTS detail = 'Request was throttled.' # def __init__(self, wait=None, detail=None): # if wait is None: # self.detail = detail or self.detail # self.wait = None # else: # format = (detail or self.detail) + ' ' + self.extra_detail # self.detail = format % (wait, wait != 1 and 's' or '') # self.wait = math.ceil(wait)
rpmvenv/extensions/core.py
oleynikandrey/rpmvenv
150
11189834
"""Extension which accounts for the core RPM metadata fields.""" from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals from confpy.api import Configuration from confpy.api import Namespace from confpy.api import StringOption from confpy.api import ListOption from . import interface cfg = Configuration( core=Namespace( description='Common core RPM metadata fields.', name=StringOption( description='The name of the RPM file which is generated.', required=True, ), version=StringOption( description='The RPM version to build.', required=True, ), release=StringOption( description=( 'The release number for the RPM. Default is 1. ' 'Supports strings to let free usage of, for example, %{?dist}.' ), default='1', ), summary=StringOption( description='The short package summary.', required=False, ), group=StringOption( description='The RPM package group in which this package belongs.', required=False, ), license=StringOption( description='The license under which the package is distributed.', required=False, ), url=StringOption( description='The URL of the package source.', required=False, ), source=StringOption( description='The path to the package source.', required=False, ), buildroot=StringOption( description='The name of the buildroot directory to use.', default=( '%(mktemp -ud %{_tmppath}/%{SOURCE0}-%{version}' '-%{release}-XXXXXX)' ), ), buildarch=StringOption( description='The build architecture to use.', required=False ), requires=ListOption( option=StringOption(), default=(), description='Dependencies', required=False ), conflicts=ListOption( option=StringOption(), default=(), description='Conflicts', required=False ), obsoletes=ListOption( option=StringOption(), default=(), description='Obsoletes', required=False ), provides=ListOption( option=StringOption(), default=(), description='Virtual package', required=False ), ), ) class Extension(interface.Extension): """Common core RPM metadata fields.""" name = 'core' description = 'Complete the common core RPM metadata fields.' version = '1.0.0' requirements = {} @staticmethod def generate(config, spec): """Generate the core RPM package metadata.""" name = config.core.name version = config.core.version release = config.core.release summary = config.core.summary group = config.core.group license = config.core.license url = config.core.url source = config.core.source buildroot = config.core.buildroot buildarch = config.core.buildarch requires = tuple(config.core.requires) conflicts = tuple(config.core.conflicts) obsoletes = tuple(config.core.obsoletes) provides = tuple(config.core.provides) spec.tags['Name'] = name spec.tags['Version'] = version spec.tags['Release'] = release spec.tags['BuildRoot'] = buildroot if requires: spec.tags['Requires'] = ', '.join(requires) if conflicts: spec.tags['Conflicts'] = ', '.join(conflicts) if obsoletes: spec.tags['Obsoletes'] = ', '.join(obsoletes) if provides: spec.tags['Provides'] = ', '.join(provides) if buildarch: spec.tags["BuildArch"] = buildarch if summary: spec.tags['Summary'] = summary if group: spec.tags['Group'] = group if license: spec.tags['License'] = license if url: spec.tags['Url'] = url if source: spec.tags['Source0'] = source spec.blocks.prep.append('rm -rf %{buildroot}/*') spec.blocks.clean.append('rm -rf %{buildroot}') return spec
topik/fileio/base_output.py
ContinuumIO/topik
104
11189838
<filename>topik/fileio/base_output.py<gh_stars>100-1000 from abc import ABCMeta, abstractmethod from six import with_metaclass import jsonpickle from ._registry import registered_outputs class OutputInterface(with_metaclass(ABCMeta)): def __init__(self, *args, **kwargs): super(OutputInterface, self).__init__( *args, **kwargs) # should be an iterable with each member having (id, text) self.corpus = None # should be a dictionary-like structure, with string ids for tokenizer used and parameters # passed and dictionaries mapping doc id to list of tokens self.tokenized_corpora = None # should be a dictionary-like structure, with string ids for vectorizer used and parameters # passed and dictionaries mapping doc id to list of tokens self.vectorized_corpora = None # should be a dictionary-like structure, with string ids for model used and parameters passed # and dictionaries mapping doc id to list of tokens self.modeled_corpora = None def save(self, filename, saved_data=None): """Persist this object to disk somehow. You can save your data in any number of files in any format, but at a minimum, you need one json file that describes enough to bootstrap the loading process. Namely, you must have a key called 'class' so that upon loading the output, the correct class can be instantiated and used to load any other data. You don't have to implement anything for saved_data, but it is stored as a key next to 'class'. """ with open(filename, "w") as f: f.write(jsonpickle.encode({"class": self.__class__.__name__, "saved_data": saved_data}, f)) def synchronize(self, max_wait, field): """By default, operations are synchronous and no additional wait is necessary. Data sources that are asynchronous (ElasticSearch) may use this function to wait for "eventual consistency" """ pass @abstractmethod def get_filtered_data(self, field_to_get, filter=""): raise NotImplementedError def close(self): pass def load_output(filename): with open(filename) as f: output_details = jsonpickle.decode(f.read()) return registered_outputs[output_details['class']](**output_details["saved_data"])
tests/test_application.py
william-wambua/rpc.py
152
11189858
import asyncio import json import sys import time from typing import AsyncGenerator, Generator import httpx import pytest from rpcpy.application import RPC, AsgiRPC, WsgiRPC from rpcpy.serializers import SERIALIZER_NAMES, SERIALIZER_TYPES from rpcpy.typing import TypedDict def test_wsgirpc(): rpc = RPC() assert isinstance(rpc, WsgiRPC) @rpc.register def sayhi(name: str) -> str: return f"hi {name}" with pytest.raises( TypeError, match="WSGI mode can only register synchronization functions." ): @rpc.register async def async_sayhi(name: str) -> str: return f"hi {name}" @rpc.register def sayhi_without_type_hint(name): return f"hi {name}" with httpx.Client(app=rpc, base_url="http://testServer/") as client: assert client.get("/openapi-docs").status_code == 405 assert client.post("/sayhi", data={"name": "Aber"}).status_code == 415 assert client.post("/sayhi", json={"name": "Aber"}).status_code == 200 assert ( client.post("/sayhi_without_type_hint", json={"name": "Aber"}) ).status_code == 200 assert client.post("/sayhi", data=json.dumps({"name": "Aber"})).status_code == 415 assert ( client.post( "/sayhi", content=json.dumps({"name": "Aber"}).encode("utf8"), headers={"serializer": "application/json"}, ).status_code == 415 ) assert ( client.post( "/sayhi", content=json.dumps({"name": "Aber"}).encode("utf8"), headers={"content-type": "", "serializer": "json"}, ).status_code == 200 ) @pytest.mark.asyncio async def test_asgirpc(): rpc = RPC(mode="ASGI") assert isinstance(rpc, AsgiRPC) @rpc.register async def sayhi(name: str) -> str: return f"hi {name}" @rpc.register async def sayhi_without_type_hint(name): return f"hi {name}" with pytest.raises( TypeError, match="ASGI mode can only register asynchronous functions." ): @rpc.register def sync_sayhi(name: str) -> str: return f"hi {name}" async with httpx.AsyncClient(app=rpc, base_url="http://testServer/") as client: assert (await client.get("/openapi-docs")).status_code == 405 assert (await client.post("/sayhi", data={"name": "Aber"})).status_code == 415 assert (await client.post("/sayhi", json={"name": "Aber"})).status_code == 200 assert ( await client.post("/sayhi_without_type_hint", json={"name": "Aber"}) ).status_code == 200 assert ( await client.post( "/sayhi", content=json.dumps({"name": "Aber"}).encode("utf8"), headers={"serializer": "application/json"}, ) ).status_code == 415 assert ( await client.post( "/sayhi", content=json.dumps({"name": "Aber"}).encode("utf8"), headers={"content-type": "", "serializer": "json"}, ) ).status_code == 200 @pytest.mark.skipif("pydantic" in sys.modules, reason="Installed pydantic") def test_wsgi_openapi_without_pydantic(): rpc = RPC(openapi={"title": "Title", "description": "Description", "version": "v1"}) @rpc.register def sayhi(name: str) -> str: """ say hi with name """ return f"hi {name}" with pytest.raises(NotImplementedError): rpc.get_openapi_docs() @pytest.mark.skipif("pydantic" in sys.modules, reason="Installed pydantic") @pytest.mark.asyncio async def test_asgi_openapi_without_pydantic(): rpc = RPC( mode="ASGI", openapi={"title": "Title", "description": "Description", "version": "v1"}, ) @rpc.register async def sayhi(name: str) -> str: """ say hi with name """ return f"hi {name}" with pytest.raises(NotImplementedError): rpc.get_openapi_docs() @pytest.mark.skipif("pydantic" not in sys.modules, reason="Missing pydantic") def test_wsgi_openapi(): rpc = RPC(openapi={"title": "Title", "description": "Description", "version": "v1"}) @rpc.register def sayhi(name: str = "Aber") -> str: """ say hi with name """ return f"hi {name}" class DNSRecord(TypedDict): record: str ttl: int class DNS(TypedDict): dns_type: str host: str result: DNSRecord @rpc.register def query_dns(dns_type: str, host: str) -> DNS: return {"dns_type": dns_type, "host": host, "result": {"record": "", "ttl": 0}} @rpc.register def timestamp() -> Generator[int, None, None]: while True: yield int(time.time()) time.sleep(1) assert rpc.get_openapi_docs() == OPENAPI_DOCS with httpx.Client(app=rpc, base_url="http://testServer/") as client: assert client.get("/openapi-docs").status_code == 200 assert client.get("/get-openapi-docs").status_code == 200 @pytest.mark.skipif("pydantic" not in sys.modules, reason="Missing pydantic") @pytest.mark.asyncio async def test_asgi_openapi(): rpc = RPC( mode="ASGI", openapi={"title": "Title", "description": "Description", "version": "v1"}, ) @rpc.register async def sayhi(name: str = "Aber") -> str: """ say hi with name """ return f"hi {name}" DNSRecord = TypedDict("DNSRecord", {"record": str, "ttl": int}) DNS = TypedDict("DNS", {"dns_type": str, "host": str, "result": DNSRecord}) @rpc.register async def query_dns(dns_type: str, host: str) -> DNS: return {"dns_type": dns_type, "host": host, "result": {"record": "", "ttl": 0}} @rpc.register async def timestamp() -> AsyncGenerator[int, None]: while True: yield int(time.time()) await asyncio.sleep(1) assert rpc.get_openapi_docs() == OPENAPI_DOCS async with httpx.AsyncClient(app=rpc, base_url="http://testServer/") as client: assert (await client.get("/openapi-docs")).status_code == 200 assert (await client.get("/get-openapi-docs")).status_code == 200 DEFAULT_PARAMETERS = [ { "name": "content-type", "in": "header", "description": "At least one of serializer and content-type must be used" " so that the server can know which serializer is used to parse the data.", "required": True, "schema": { "type": "string", "enum": [serializer_type for serializer_type in SERIALIZER_TYPES], }, }, { "name": "serializer", "in": "header", "description": "At least one of serializer and content-type must be used" " so that the server can know which serializer is used to parse the data.", "required": True, "schema": { "type": "string", "enum": [serializer_name for serializer_name in SERIALIZER_NAMES], }, }, ] OPENAPI_DOCS = { "openapi": "3.0.0", "info": {"title": "Title", "description": "Description", "version": "v1"}, "paths": { "/sayhi": { "post": { "summary": "say hi with name", "parameters": DEFAULT_PARAMETERS, "requestBody": { "required": True, "content": { serializer_type: { "schema": { "type": "object", "properties": { "name": { "default": "Aber", "title": "Name", "type": "string", } }, } } for serializer_type in SERIALIZER_TYPES }, }, "responses": { 200: { "content": {"application/json": {"schema": {"type": "string"}}}, "headers": { "serializer": { "schema": { "type": "string", "enum": ["json"], }, "description": "Serializer Name", } }, } }, } }, "/query_dns": { "post": { "parameters": DEFAULT_PARAMETERS, "requestBody": { "required": True, "content": { serializer_type: { "schema": { "type": "object", "properties": { "dns_type": { "title": "Dns Type", "type": "string", }, "host": { "title": "Host", "type": "string", }, }, "required": ["dns_type", "host"], } } for serializer_type in SERIALIZER_TYPES }, }, "responses": { 200: { "content": { "application/json": { "schema": { "type": "object", "properties": { "dns_type": { "title": "Dns Type", "type": "string", }, "host": { "title": "Host", "type": "string", }, "result": {"$ref": "#/definitions/DNSRecord"}, }, "required": ["dns_type", "host", "result"], } } }, "headers": { "serializer": { "schema": { "type": "string", "enum": ["json"], }, "description": "Serializer Name", } }, } }, } }, "/timestamp": { "post": { "parameters": DEFAULT_PARAMETERS, "responses": { 200: { "content": {"text/event-stream": {"schema": {"type": "integer"}}}, "headers": { "serializer": { "schema": {"type": "string", "enum": ["json"]}, "description": "Serializer Name", } }, } }, } }, }, "definitions": { "DNSRecord": { "title": "DNSRecord", "type": "object", "properties": { "record": {"title": "Record", "type": "string"}, "ttl": {"title": "Ttl", "type": "integer"}, }, "required": ["record", "ttl"], } }, }
tools/bin/pythonSrc/pychecker-0.8.18/pychecker2/tests/nested.py
YangHao666666/hawq
450
11189867
<filename>tools/bin/pythonSrc/pychecker-0.8.18/pychecker2/tests/nested.py class N1: class N2: x = 1 class N3: pass
preprocessing/compute_distances.py
enviromachinebeast/head2head
206
11189870
import cv2 import os import numpy as np import argparse import collections import torch import itertools from tqdm import tqdm from preprocessing import transform from reconstruction import NMFCRenderer IMG_EXTENSIONS = ['.png'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def get_image_paths_dict(dir): # Returns dict: {name: [path1, path2, ...], ...} image_files = {} assert os.path.isdir(dir), '%s is not a valid directory' % dir for root, _, fnames in sorted(os.walk(dir)): basename = os.path.basename(root) for fname in fnames: if is_image_file(fname) and basename in ['real', 'fake']: path = os.path.join(root, fname) seq_name = os.path.basename(root).split('_')[0] if seq_name not in image_files: image_files[seq_name] = [path] else: image_files[seq_name].append(path) # Sort paths for each sequence for k, v in image_files.items(): image_files[k] = sorted(v) # Return directory sorted for keys (identity names) return collections.OrderedDict(sorted(image_files.items())) def paths_exist(image_pths): return all([os.path.exists(image_path) for image_path in image_pths]) def print_args(parser, args): message = '' message += '----------------- Arguments ---------------\n' for k, v in sorted(vars(args).items()): comment = '' default = parser.get_default(k) if v != default: comment = '\t[default: %s]' % str(default) message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) message += '-------------------------------------------' print(message) def l1_dist(v1, v2): return np.abs(v1 - v2).sum() def euler_dist(e1, e2): d0 = abs(e1[0]-e2[0]) if d0 > 180: d0 = 360 - d0 d1 = abs(e1[1]-e2[1]) if d1 > 180: d1 = 360 - d1 d2 = abs(e1[2]-e2[2]) if d2 > 180: d2 = 360 - d2 return (d0 + d1 + d2) / 3 def get_within_distances(lst): pairs = itertools.combinations(lst, 2) max = 0 min = np.float('inf') avg = [] for pair in pairs: dst = l1_dist(pair[0], pair[1]) if dst < min: min = dst if dst > max: max = dst avg.append(dst) avg = np.mean(avg) return min, max, avg def compute_distance_of_average_identities(ident_list1, ident_list2): avg_ident1, avg_ident2 = np.mean(ident_list1, axis=0), np.mean(ident_list2, axis=0) return l1_dist(avg_ident1, avg_ident2) def compute_average_expesion_distance(expr_list1, expr_list2): return np.mean([l1_dist(expr1, expr2) \ for expr1, expr2 in zip(expr_list1, expr_list2)]) def compute_average_rotation_distance(cam_list1, cam_list2): # Rotation parameters to Euler angles. angles_list1 = [transform.matrix2angle(cam[1]) for cam in cam_list1] angles_list2 = [transform.matrix2angle(cam[1]) for cam in cam_list2] return np.mean([euler_dist(ang1, ang2) \ for ang1, ang2 in zip(angles_list1, angles_list2)]) def main(): print('Computation of L1 distance between average identity coeffs (DAI-L1)\n') print('Computation of average L1 distance between expression coeffs (AED-L1)\n') print('Computation of average L1 distance between rotation parameters (ARD-L1)\n') parser = argparse.ArgumentParser() parser.add_argument('--results_dir', type=str, default='results/head2head_obama/latest_epoch/videos_test/obama', help='Path to the results directory.') parser.add_argument('--gpu_id', type=int, default='0', help='Negative value to use CPU, or greater equal than zero for GPU id.') args = parser.parse_args() # Figure out the device args.gpu_id = int(args.gpu_id) if args.gpu_id < 0: args.gpu_id = -1 elif torch.cuda.is_available(): if args.gpu_id >= torch.cuda.device_count(): args.gpu_id = 0 else: print('GPU device not available. Exit.') exit(0) # Print Arguments print_args(parser, args) # Create the directory of image paths. images_dict = get_image_paths_dict(args.results_dir) # Make sure we have two folders, one with real and one withs fake frames. assert 'real' in images_dict and 'fake' in images_dict and \ len(images_dict.keys()) == 2, 'Results directory has wrong structure' # Initialize the NMFC renderer. renderer = NMFCRenderer(args) # Iterate through the images_dict identities_dict = {} expressions_dict = {} camera_dict = {} for name, image_pths in images_dict.items(): if paths_exist(image_pths): success, reconstruction_output = renderer.reconstruct(image_pths) if success: identities_dict[name] = reconstruction_output[1] expressions_dict[name] = reconstruction_output[2] camera_dict[name] = reconstruction_output[0] else: print('Reconstruction on %s failed.' % name) break # If the two expression sequences have been computed, find average L1 dist. if len(identities_dict.keys()) == 2: # Identity dai_L1 = compute_distance_of_average_identities(identities_dict['real'], identities_dict['fake']) # Distance Between Average Identities (DAI-L1) print('(L1) distance between average identities from real and fake sequences (DAI-L1): %0.4f' % (dai_L1)) #dsts_real = get_within_distances(identities_dict['real']) #print('Within real sequence min %0.4f, max %0.4f, mean %0.4f' % dsts_real) #dsts_fake = get_within_distances(identities_dict['fake']) #print('Within fake sequence min %0.4f, max %0.4f, mean %0.4f' % dsts_fake) # Expression aed_L1 = compute_average_expesion_distance(expressions_dict['real'], expressions_dict['fake']) # Average Expression Distance (AED-L1) print('Average expression (L1) distance between real and fake sequences (AED-L1): %0.4f' % (aed_L1)) # Pose ard_L1 = compute_average_rotation_distance(camera_dict['real'], camera_dict['fake']) # Average Rotation Parameters Distance (ARD-L1) print('Average rotation (L1) distance between real and fake sequences (ARD-L1): %0.4f' % (ard_L1)) # Clean renderer.clear() if __name__=='__main__': main()
codingame/easy/Chuck Norris.py
DazEB2/SimplePyScripts
117
11189880
<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import sys import math # Auto-generated code below aims at helping you parse # the standard input according to the problem statement. message = input() print(message, file=sys.stderr) # Write an action using print # To debug: print("Debug messages...", file=sys.stderr) def Chuck_Norris_encode(text): last_c = text[0] count = 1 result = '00 ' if last_c == '0' else '0 ' for i in range(len(text))[1:]: c = text[i] if c != last_c: result += '0' * count + ' ' count = 1 result += '00 ' if c == '0' else '0 ' else: count += 1 last_c = c result += '0' * count return result # Бинарная строка должна содержать 7 символов, а bin в может вернуть # строку меньшего размера, убрав ненужные нули text = ''.join([bin(ord(c))[2:].rjust(7, '0') for c in message]) print(Chuck_Norris_encode(text))
johnny/utils.py
bennylope/johnny-cache
124
11189919
#!/usr/bin/env python # -*- coding: utf-8 -*- """Extra johnny utilities.""" from johnny.cache import get_backend, local, patch, unpatch from johnny.decorators import wraps, available_attrs __all__ = ["celery_enable_all", "celery_task_wrapper", "johnny_task_wrapper"] def prerun_handler(*args, **kwargs): """Celery pre-run handler. Enables johnny-cache.""" patch() def postrun_handler(*args, **kwargs): """Celery postrun handler. Unpatches and clears the localstore.""" unpatch() local.clear() def celery_enable_all(): """Enable johnny-cache in all celery tasks, clearing the local-store after each task.""" from celery.signals import task_prerun, task_postrun, task_failure task_prerun.connect(prerun_handler) task_postrun.connect(postrun_handler) # Also have to cleanup on failure. task_failure.connect(postrun_handler) def celery_task_wrapper(f): """ Provides a task wrapper for celery that sets up cache and ensures that the local store is cleared after completion """ from celery.utils import fun_takes_kwargs @wraps(f, assigned=available_attrs(f)) def newf(*args, **kwargs): backend = get_backend() was_patched = backend._patched get_backend().patch() # since this function takes all keyword arguments, # we will pass only the ones the function below accepts, # just as celery does supported_keys = fun_takes_kwargs(f, kwargs) new_kwargs = dict((key, val) for key, val in kwargs.items() if key in supported_keys) try: ret = f(*args, **new_kwargs) finally: local.clear() if not was_patched: get_backend().unpatch() return ret return newf # backwards compatible alias johnny_task_wrapper = celery_task_wrapper
tests/ut/python/privacy/sup_privacy/test_model_train.py
hboshnak/mindarmour
139
11189936
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Suppress Privacy model test. """ import pytest import numpy as np from mindspore import nn from mindspore import context from mindspore.train.callback import ModelCheckpoint from mindspore.train.callback import CheckpointConfig from mindspore.train.callback import LossMonitor from mindspore.nn.metrics import Accuracy import mindspore.dataset as ds from mindarmour.privacy.sup_privacy import SuppressModel from mindarmour.privacy.sup_privacy import SuppressMasker from mindarmour.privacy.sup_privacy import SuppressPrivacyFactory from mindarmour.privacy.sup_privacy import MaskLayerDes from tests.ut.python.utils.mock_net import Net as LeNet5 def dataset_generator(): """mock training data.""" batches = 10 batch_size = 32 data = np.random.random((batches*batch_size, 1, 32, 32)).astype( np.float32) label = np.random.randint(0, 10, batches*batch_size).astype(np.int32) for i in range(batches): yield data[i*batch_size:(i + 1)*batch_size],\ label[i*batch_size:(i + 1)*batch_size] @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_suppress_model_with_pynative_mode(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") networks_l5 = LeNet5() epochs = 5 batch_num = 10 mask_times = 10 lr = 0.01 masklayers_lenet5 = [] masklayers_lenet5.append(MaskLayerDes("conv1.weight", 0, False, False, -1)) suppress_ctrl_instance = SuppressPrivacyFactory().create(networks_l5, masklayers_lenet5, policy="local_train", end_epoch=epochs, batch_num=batch_num, start_epoch=1, mask_times=mask_times, lr=lr, sparse_end=0.50, sparse_start=0.0) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_opt = nn.SGD(networks_l5.trainable_params(), lr) model_instance = SuppressModel( network=networks_l5, loss_fn=net_loss, optimizer=net_opt, metrics={"Accuracy": Accuracy()}) model_instance.link_suppress_ctrl(suppress_ctrl_instance) suppress_masker = SuppressMasker(model=model_instance, suppress_ctrl=suppress_ctrl_instance) config_ck = CheckpointConfig(save_checkpoint_steps=batch_num, keep_checkpoint_max=10) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory="./trained_ckpt_file/", config=config_ck) ds_train = ds.GeneratorDataset(dataset_generator, ['data', 'label']) model_instance.train(epochs, ds_train, callbacks=[ckpoint_cb, LossMonitor(), suppress_masker], dataset_sink_mode=False)
test/python/test_sparse.py
LinjianMa/ctf
108
11190071
<reponame>LinjianMa/ctf #!/usr/bin/env python import unittest import numpy import ctf import os import sys def allclose(a, b): return abs(ctf.to_nparray(a) - ctf.to_nparray(b)).sum() < 1e-14 class KnowValues(unittest.TestCase): def test_einsum_hadamard(self): n = 11 a1 = ctf.tensor((n,n,n), sp=1) b1 = ctf.tensor((n,n,n), sp=1) c1 = ctf.tensor((n,n,n)) a1.fill_sp_random(0., 1., 0.1) b1.fill_sp_random(0., 1., 0.1) c1.fill_sp_random(0., 1., 0.1) d1 = ctf.einsum('ijk,jkl->ijkl', a1, b1) e1 = numpy.einsum('ijk,jkl->ijkl', ctf.to_nparray(a1), ctf.to_nparray(b1)) self.assertTrue(allclose(d1,e1)) d2 = ctf.einsum('ijk,jkl->ijkl', a1, c1) e2 = numpy.einsum('ijk,jkl->ijkl', ctf.to_nparray(a1), ctf.to_nparray(c1)) self.assertTrue(allclose(d2,e2)) def test_scaled_expression(self): n = 5 a_sp = ctf.tensor((n,n,n), sp=1) a_dn = ctf.tensor((n,n,n), sp=0) a_sp.fill_sp_random(0., 1., 0.1) a_dn += a_sp b_sp = ctf.tensor((n,n,n), sp=1) b_dn = ctf.tensor((n,n,n), sp=0) b_sp.fill_sp_random(0., 1., 0.1) b_dn += b_sp c_sp = ctf.tensor((n,n,n), sp=1) c_dn = ctf.tensor((n,n,n), sp=0) c_sp.fill_sp_random(0., 1., 0.1) c_dn += c_sp a_np = ctf.to_nparray(a_dn) b_np = ctf.to_nparray(b_dn) c_np = ctf.to_nparray(c_dn) c_sp.i("ijk") << 2.3*a_sp.i("ijl")*b_sp.i("kjl") + 7*c_sp.i("ijk") - a_sp.i("ijk") - 1. * a_sp.i("ijk") - 2 * b_sp.i("ijk") c_dn.i("ijk") << 2.3*a_dn.i("ijl")*b_dn.i("kjl") + 7*c_dn.i("ijk") - a_dn.i("ijk") - 1. * a_dn.i("ijk") - 2 * b_dn.i("ijk") c_np += 2.3*numpy.einsum("ijl,kjl->ijk",a_np,b_np) + 7*c_np - a_np - 1. * a_np - 2 * b_np self.assertTrue(allclose(c_np,c_dn)) self.assertTrue(allclose(c_np,c_sp)) def test_complex(self): a0 = numpy.arange(27.).reshape(3,3,3) b0 = numpy.arange(27.).reshape(3,3,3) a1 = ctf.astensor(a0) b1 = ctf.astensor(b0) .2*b1.i("ijk") << .7*a1.i("kij") b0 = .2*b0 + .7*a0.transpose([1,2,0]) self.assertTrue(allclose(b0,b1)) def test_sample(self): A = ctf.tensor((4,3,5)) nrm = A.norm2() A.sample(.5) nrm2 = A.norm2() A.sample(.3) nrm3 = A.norm2() self.assertTrue(nrm2<=nrm) self.assertTrue(nrm3<=nrm2) def test_sparse_SY(self): A = ctf.tensor((4,4),sym=[ctf.SYM.SY,ctf.SYM.NS]) AA = ctf.tensor((3,3,3),sym=[ctf.SYM.NS,ctf.SYM.SY,ctf.SYM.NS]) B = ctf.tensor((4,4,4,4),sym=[ctf.SYM.NS,ctf.SYM.NS,ctf.SYM.SY,ctf.SYM.NS]) C = ctf.tensor((4,4,4,4),sym=[ctf.SYM.SY,ctf.SYM.NS,ctf.SYM.NS,ctf.SYM.NS]) D = ctf.tensor((4,4,4,4),sym=[ctf.SYM.SY,ctf.SYM.NS,ctf.SYM.SY,ctf.SYM.NS]) E = ctf.tensor((4,4,4,4),sym=[ctf.SYM.SY,ctf.SYM.SY,ctf.SYM.SY,ctf.SYM.NS]) for X in [A,AA,B,C,D,E]: X.fill_random(1.,1.) Y = X.sparsify(0.) #print("TEST") #print(X.shape,X.sym) #print(X) #print("norms are",ctf.vecnorm(X),ctf.vecnorm(Y)) self.assertTrue(allclose(X,Y)) self.assertTrue(allclose(X-Y,0.)) self.assertTrue(allclose(ctf.vecnorm(X),ctf.vecnorm(Y))) def run_tests(): numpy.random.seed(5330); wrld = ctf.comm() if ctf.comm().rank() != 0: result = unittest.TextTestRunner(stream = open(os.devnull, 'w')).run(unittest.TestSuite(unittest.TestLoader().loadTestsFromTestCase(KnowValues))) else: print("Tests for sparse functionality") result = unittest.TextTestRunner().run(unittest.TestSuite(unittest.TestLoader().loadTestsFromTestCase(KnowValues))) return result if __name__ == "__main__": result = run_tests() ctf.MPI_Stop() sys.exit(not result)
code/doubanUtils.py
zefengdaguo/douban_crawler
116
11190101
<filename>code/doubanUtils.py import requests import csv, os, os.path, re from functools import reduce from bs4 import BeautifulSoup from time import localtime,strftime,perf_counter,strptime user_agent_list = ["Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; …) Gecko/20100101 Firefox/61.0", "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36 Edg/84.0.522.63", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36", "Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.2.15) Gecko/20110303 Firefox/3.6.15", ] def getAgent(n=3): return user_agent_list[n] def hasNextPage(soup): try: NextPage=soup.find(class_='next').link.get('href') return NextPage except: return False def nextPageLink(sess,soup,page,head=""): NextPage=soup.find(class_='next').link.get('href') req=sess.get(head + NextPage) print(f'第{page}页:',req.status_code) return BeautifulSoup(req.text,'html.parser') # file name def fn(name): return name.replace('\\','-').replace('/','-')\ .replace(':','-').replace('*','-').replace('"','“')\ .replace('<','《').replace('>','》').replace('|','-').replace('?','?') # page control def pageControl(limit=50): beg=eval(input('请输入你要爬取的起始页码(比如1):')) end=eval(input('请输入终止页码(建议一次爬取{}页以下):'.format(limit))) return beg, end def timebar(scale,start,p): a='※'*round(p*scale) b='.'*(scale-round(p*scale)) dur=(perf_counter()-start)/60 print("\r{:^3.0f}%[{}->{}]已运行{:.2f}分钟"\ .format(p*100,a,b,dur),end=' ') def noco(txt): if len(txt)==0: return '...' return txt.replace(',','、').replace(',','、').replace('\n',' ') def getFormatTime(): return strftime("%Y-%m-%d %H-%M-%S", localtime()) def string2Time(s): return strptime(s, '%Y-%m-%d %H-%M-%S') def fileTimeCompare(fn1, fn2): fn1 = fn1.replace(".csv","").split('-',1)[1][:-6] fn2 = fn2.replace(".csv","").split('-',1)[1][:-6] return string2Time(fn1) > string2Time(fn2) def getLastBackUpItem(douId,Type): # 获取上次文件 matchFiles = [] # 文件名 fnMatch = r"iiid-\d{4}-\d{2}-\d{2} \d{2}-\d{2}-\d{2}tttypeplus.csv"\ .replace('iiid',douId).replace('tttype',Type) for _, _, files in os.walk("."): for file in files: # print(file) if re.match(fnMatch,file): matchFiles.append(file) ## 得到最新的电影名 if len(matchFiles) != 0: latest = reduce(lambda x,y: x if fileTimeCompare(x,y) else y,\ matchFiles) with open(latest, 'r', encoding='utf-8_sig') as f: reader = csv.DictReader(f) # 获取第一行电影的id try: row = reader.__next__() return row['subjectId'] except: return None else: return None def getCookie(raw_cookies): cookies={} for line in raw_cookies.split(';'): key,value=line.split('=',1) cookies[key]=value return cookies def getYear(raw): yearRex = r'([1|2][9|0]\d{2})' res = re.match(yearRex,raw) try: return res.group(1) except: return '' def getShortComments(comments): res = '' for com in comments: # 先得到评价用户名 user = com.find(class_="comment-info").get_text(strip=True).replace('\xa0','').replace('\n','') res += user res += ':' short = com.find(class_="short").get_text(strip=True).replace('\xa0','').replace('\n','') res += short res += '; | ' return res.replace("看过"," ")
tools/Ubertooth/host/python/extcap/btle-extcap.py
Charmve/BLE-Security-Att-Def
149
11190106
<reponame>Charmve/BLE-Security-Att-Def<gh_stars>100-1000 #!/usr/bin/env python # Copyright 2013 <NAME> # # This file is part of Project Ubertooth. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. import getopt import re import sys from subprocess import Popen, PIPE def main(): try: opts, args = getopt.getopt( sys.argv[1:], "h", [ "help", "list-interfaces", "list-dlts", "config", "capture", "interface=", "fifo=", "channel=", ]) except getopt.GetoptError as err: # print help information and exit: print(str(err)) # will print something like "option -a not recognized" usage() sys.exit(2) interface = '' fifo = None channel = "37" do_list_dlts = False do_config = False do_capture = False for o, a in opts: if o in ("-h", "--help"): usage() sys.exit() elif o == "--list-interfaces": list_interfaces() exit(0) elif o == "--list-dlts": do_list_dlts = True elif o == "--config": do_config = True elif o == "--capture": do_capture = True elif o == "--interface": interface = a elif o == "--fifo": fifo = a elif o == "--channel": channel = a else: assert False, "unhandled option" # every operation down here depends on having an interface m = re.match('ubertooth(\d+)', interface) if not m: exit(1) interface = m.group(1) if do_list_dlts: list_dlts() elif do_config: config() elif do_capture: if fifo is None: print("Must specify fifo!") exit(1) capture(interface, fifo, channel) def usage(): print("Usage: %s <--list-interfaces | --list-dlts | --config | --capture>" % sys.argv[0]) def list_interfaces(): proc = Popen(['ubertooth-util', '-s'], stdout=PIPE, stderr=PIPE, universal_newlines=True) out = proc.communicate()[0] lines = out.split('\n') interfaces = [] for line in lines: p = line.split() if len(p) == 0 or p[0] == 'ubertooth-util': break if p[0] == 'Serial': interfaces.append(p[2]) elif re.match('[0-9a-f]+', p[0]): interfaces.append(p[0]) for i in range(len(interfaces)): print("interface {value=ubertooth%d}{display=Ubertooth One %s}" % (i, interfaces[i])) def list_dlts(): print("dlt {number=147}{name=USER0}{display=Bluetooth Low Energy}") def config(): args = [] args.append((0, '--channel', 'Advertising Channel', 'selector')) values = [] values.append((0, "37", "37", "true")) values.append((0, "38", "38", "false")) values.append((0, "39", "39", "false")) for arg in args: print("arg {number=%d}{call=%s}{display=%s}{type=%s}" % arg) for value in values: print("value {arg=%d}{value=%s}{display=%s}{default=%s}" % value) def capture(interface, fifo, channel): p = Popen([ "ubertooth-btle", "-f", "-U%s" % interface, "-c", fifo, "-A", channel, ]) p.wait() if __name__ == "__main__": main()
build/python-env/lib/python2.7/site-packages/nose/exc.py
rfraposa/hadoopbeat
5,079
11190128
"""Exceptions for marking tests as skipped or deprecated. This module exists to provide backwards compatibility with previous versions of nose where skipped and deprecated tests were core functionality, rather than being provided by plugins. It may be removed in a future release. """ from nose.plugins.skip import SkipTest from nose.plugins.deprecated import DeprecatedTest
ahmia/views_search.py
keyboardcowboy42/ahmia
176
11190173
<gh_stars>100-1000 """ Views Full text search views. YaCy back-end connections. """ import time import urllib2 # URL encode import simplejson as json import urllib3 # HTTP conncetions from django.conf import settings # For the back-end connection settings from django.core.exceptions import ObjectDoesNotExist from django.http import HttpResponse, StreamingHttpResponse from django.shortcuts import redirect from django.template import Context, loader from django.views.decorators.http import require_GET, require_http_methods from lxml import etree # To handle the XML answers from the YaCy import ahmia.view_help_functions as helpers # My view_help_functions.py from ahmia.models import HiddenWebsite, HiddenWebsitePopularity from haystack.query import SearchQuerySet @require_http_methods(["GET", "POST"]) def proxy(request): """Proxy connection to """ full_url = request.get_full_path() http = urllib3.PoolManager() url = settings.PROXY_BASE_URL + full_url.replace("/elasticsearch/", "") content_type = {'Content-Type':request.META.get('CONTENT_TYPE')} response = http.request(request.method, url, headers=content_type, body=request.body) r_type = response.getheader('content-type') r_data = response.data r_status = response.status return HttpResponse(content=r_data, content_type=r_type, status=r_status) @require_GET def solrapi(request): """Solr API to search domain. Returns a list of domains.""" query = request.GET.get('q', '') domain_list = [] # Query format is key=value # /search/API?q=key=value # Examples: title=alert, server_header=openresty, text=ahmia, h1=Hidden Service, h2=Hidden Service # Query key=value must be shorter than 120 chars if query and "=" in query and len(query) < 120 and len(query.split("=")) == 2: query = query.split("=") key = query[0] value = query[1].replace(" ", "+") http = urllib3.PoolManager() url = settings.SOLR_ADDRESS + "/select/?q=" + key + "%3A" + value + "&fl=domain" url = url + '&start=0&rows=200&indent=on&group.field=domain&wt=python&group=true&group.limit=100' response = http.request('GET', url) # If Solr answer is 200 OK then build a domain list if response.status == 200: obj_data = eval(response.data) # Answer string to object groups = obj_data["grouped"]["domain"]["groups"] for group in groups: domains = group["doclist"]["docs"] for domain in domains: domain_str = domain["domain"] if 28 < len(domain_str) < 32: # Seems to be onion domain domain_list.append(domain_str+"\n") domain_list = sorted(set(domain_list)) # Sort the domains return StreamingHttpResponse(domain_list, content_type="text/plain") @require_GET def autocomplete(request): """Autocomplete function to full text Haystack based search.""" sqs = SearchQuerySet().autocomplete(text=request.GET.get('q', ''))[:5] suggestions = [result.title for result in sqs] # Make sure you return a JSON object, not a bare list. # Otherwise, you could be vulnerable to an XSS attack. the_data = json.dumps({ 'results': suggestions }) return HttpResponse(the_data, content_type='application/json') @require_GET def default(request): """The default page.""" return redirect('/search/') @require_GET def search_page(request): """The default full text search page.""" query_string = request.GET.get('q', '') search_time = "" if query_string: start = time.time() if ".onion" in request.get_host(): show_tor2web_links = False else: show_tor2web_links = True search_results = query(query_string, show_tor2web_links) end = time.time() search_time = end - start search_time = round(search_time, 2) else: search_results = "" onions = HiddenWebsite.objects.all() template = loader.get_template('full_text_search.html') content = Context({'search_results': search_results, 'search_time': search_time, 'count_banned': onions.filter(banned=True, online=True).count(), 'count_online': onions.filter(banned=False, online=True).count()}) return HttpResponse(template.render(content)) @require_GET def yacy_connection(request, query_string): """Direct YaCy search wrapper.""" url = request.get_full_path() if url == "/yacysearch.html": url = "" http = urllib3.PoolManager() url = settings.YACY[:-1] + url response = http.request('GET', url) r_type = response.getheader('content-type') r_data = response.data r_status = response.status return HttpResponse(content=r_data, content_type=r_type, status=r_status) @require_GET def yacy_static(request, query_string): url = request.get_full_path() return redirect('/static/yacy'+url) @require_GET def find(request, query_string): """XSLT based search view. For special use.""" if not query_string and 's' in request.GET: query_string = request.GET.get('s') xml = str(get_query(query_string)) xml = xml.replace("/yacysearch.xsl", "/static/xslt/yacysearch.xsl") xml = xml.replace("<rss", "<lol") xml = xml.replace("</rss>", "</lol>") return HttpResponse(xml, content_type="application/xml") def get_query(query_string): """Wrapper to YaCy installation.""" #<yacy_host>/yacysearch.rss?query=<search_string>&size=<max_hits> try: query_string = urllib2.quote(query_string.encode("utf8")) url = settings.YACY + "yacysearch.rss?query=" + query_string http = urllib3.PoolManager() response = http.request('GET', url) data = response.data return data except Exception as error: print error def query(query_string, show_tor2web_links=True): """Build HTML answer from the answer of the YaCy back-end.""" try: xml = get_query(query_string) root = etree.fromstring(xml) html_answer = build_html_answer(root, show_tor2web_links) if not html_answer: html_answer = '<li class="hs_site"><h3>No search results</h3></li>' return html_answer except Exception as error: print error return '<li class="hs_site"><h3>No search results</h3></li>' def build_html_answer(root, show_tor2web_links): """Builds HTML answer from the XML.""" results = [] for element in root.iter("item"): link = element.find("link").text or "" # HTML escape the link (href attribute) link = helpers.html_escape(link) # Show link on title if there is no title title = element.find("title").text or link redirect_link = "/redirect?redirect_url=" + link description = element.find("description").text or "" pub_date = element.find("pubDate").text or "" answer = '<h3><a href="' + link + '">' + title + '</a></h3>' answer = answer + '<div class="infotext"><p class="links">' answer = answer + 'Direct link: <a href="' + redirect_link + '">' answer = answer + link + '</a></p>' if show_tor2web_links: tor2web_link = link.replace('.onion/', '.tor2web.fi/') redirect_tor2web_link = "/redirect?redirect_url=" + tor2web_link answer = answer + '<p class="links"> Access without Tor Browser: ' answer = answer + '<a href="' answer = answer + redirect_tor2web_link + '">' + tor2web_link answer = answer + '</a></p>' answer = answer + description answer = answer + '<p class="urlinfo">' + pub_date + '</p></div>' answer = '<li class="hs_site">' + answer + '</li>' # Calculate the place of the result namespaces = {'yacy': 'http://www.yacy.net/'} host = element.find("yacy:host", namespaces=namespaces).text or "" add_result(answer, host, results) html_answer = sort_results(results) return html_answer def add_result(answer, host, results): """Add new search result and get the stats about it.""" if host: onion_id = host.replace(".onion", "") tor2web, backlinks, clicks = get_popularity(onion_id) if tor2web > 0 or backlinks > 0 or clicks > 0: results.append(Popularity(host, answer, tor2web, backlinks, clicks)) else: results.append(Popularity(host, answer, 1, 1, 1)) def get_popularity(onion): """Calculate the popularity of an onion page.""" try: hs = HiddenWebsite.objects.get(id=onion) except ObjectDoesNotExist: return 1, 1, 1 if hs.banned: return 0, 0, 0 try: pop = HiddenWebsitePopularity.objects.get(about=hs) clicks = pop.clicks public_backlinks = pop.public_backlinks tor2web = pop.tor2web return tor2web, public_backlinks, clicks except ObjectDoesNotExist: return 1, 1, 1 def sort_results(p_tuples): """Sort the results according to stats.""" # Scaling the number of backlinks p_by_backlinks = sorted(p_tuples, key=lambda popularity: popularity.backlinks, reverse=True) for index, p_info in enumerate(p_by_backlinks): p_info.backlinks = 1 / (float(index) + 1) # Scaling the number of clicks p_by_clicks = sorted(p_by_backlinks, key=lambda popularity: popularity.clicks, reverse=True) for index, p_info in enumerate(p_by_clicks): p_info.clicks = 1 / (float(index) + 1) # Scaling the number of Tor2web p_by_tor2web = sorted(p_by_clicks, key=lambda popularity: popularity.tor2web, reverse=True) for index, p_info in enumerate(p_by_tor2web): p_info.tor2web = 1 / (float(index) + 1) p_by_sum = sorted(p_by_tor2web, key=lambda popularity: popularity.sum(), reverse=True) html_answer = "" for p_info in p_by_sum: html_answer = html_answer + p_info.content return html_answer class Popularity(object): """Popularity by Tor2web visits, backlinks and clicks.""" def __init__(self, url, content, tor2web, backlinks, clicks): self.url = url self.content = content self.tor2web = float(tor2web) self.backlinks = float(backlinks) self.clicks = float(clicks) def func(self): """Print the sum function.""" print "2.0*%f + 3.0*%f + 1.0*%f" % self.tor2web, self.backlinks, self.clicks def sum(self): """Calculate the popularity.""" #The model can be very simple (sum) #What are the proper coefficients? sum_function = 2.0*self.tor2web + 3.0*self.backlinks + 1.0*self.clicks return sum_function def __repr__(self): return repr((self.url, self.tor2web, self.backlinks, self.clicks, self.sum))
tests/unit/core/addresscodec/test_main_test_cases.py
SubCODERS/xrpl-py
216
11190207
test_cases = [ [ "<KEY>", None, "<KEY>", "<KEY>", ], [ "<KEY>", 1, "<KEY>", "<KEY>", ], [ "<KEY>", 14, "<KEY>", "<KEY>", ], [ "<KEY>", 11747, "<KEY>", "<KEY>", ], [ "<KEY>", None, "<KEY>gBttTxAZwMcuJd4xteQHyt", "TVVrSWtmQQssgVcmoMBcFQZKKf56QscyWLKnUyiuZW8ALU4", ], [ "<KEY>", None, "<KEY>", "<KEY>", ], [ "<KEY>", 58, "<KEY>", "<KEY>", ], [ "<KEY>", 23480, "<KEY>", "<KEY>", ], [ "<KEY>", 11747, "<KEY>", "<KEY>", ], [ "<KEY>", None, "XVLhHMPHU98es4dbozjVtdWzVrDjtV5fdx1mHp98tDMoQXb", "<KEY>", ], [ "<KEY>", 0, "<KEY>", "<KEY>", ], [ "<KEY>", 1, "<KEY>", "<KEY>", ], [ "<KEY>", 2, "<KEY>", "<KEY>", ], [ "<KEY>", 32, "<KEY>", "<KEY>", ], [ "<KEY>", 276, "<KEY>", "<KEY>", ], [ "<KEY>", 65591, "<KEY>", "<KEY>", ], [ "<KEY>", 16781933, "<KEY>", "<KEY>", ], [ "<KEY>", 4294967294, "<KEY>", "<KEY>", ], [ "<KEY>", 4294967295, "<KEY>", "<KEY>", ], [ "<KEY>", None, "<KEY>", "<KEY>", ], [ "<KEY>", 0, "<KEY>", "<KEY>", ], [ "<KEY>", 13371337, "<KEY>", "<KEY>", ], ]
static/scripts/tools/gis_update_location_tree.py
whanderley/eden
205
11190213
#!/usr/bin/python # This is a script to update the Location Tree in the Database # Needs to be run in the web2py environment # python web2py.py -S eden -M -R applications/eden/static/scripts/tools/gis_update_location_tree.py s3db.gis_location gis.update_location_tree() db.commit()
opendeep/models/single_layer/restricted_boltzmann_machine.py
vitruvianscience/OpenDeep
252
11190217
<filename>opendeep/models/single_layer/restricted_boltzmann_machine.py """ This module provides the RBM. http://deeplearning.net/tutorial/rbm.html Boltzmann Machines (BMs) are a particular form of energy-based model which contain hidden variables. Restricted Boltzmann Machines further restrict BMs to those without visible-visible and hidden-hidden connections. Also see: https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf for optimization tips and tricks. """ # standard libraries import logging # third party libraries import theano import theano.tensor as T import theano.sandbox.rng_mrg as RNG_MRG # internal references from opendeep.utils.decorators import inherit_docs from opendeep.models.model import Model from opendeep.utils.weights import get_weights, get_bias from opendeep.utils.activation import get_activation_function, is_binary log = logging.getLogger(__name__) @inherit_docs class RBM(Model): """ This is a probabilistic, energy-based model. Basic binary implementation from: http://deeplearning.net/tutorial/rnnrbm.html and http://deeplearning.net/tutorial/rbm.html .. todo:: Implement non-binary support for visible and hiddens (this means changing sampling method). """ def __init__(self, inputs=None, hiddens=None, params=None, outdir='outputs/rbm/', visible_activation='sigmoid', hidden_activation='sigmoid', weights_init='uniform', weights_mean=0, weights_std=5e-3, weights_interval='glorot', bias_init=0.0, mrg=RNG_MRG.MRG_RandomStreams(1), k=15): """ RBM constructor. Defines the parameters of the model along with basic operations for inferring hidden from visible (and vice-versa), as well as for performing CD updates. Parameters ---------- inputs : List of [tuple(shape, `Theano.TensorType`)] The dimensionality of the inputs for this model, and the routing information for the model to accept inputs from elsewhere. `inputs` variable are expected to be of the form (timesteps, batch, data). `shape` will be a monad tuple representing known sizes for each dimension in the `Theano.TensorType`. The length of `shape` should be equal to number of dimensions in `Theano.TensorType`, where the shape element is an integer representing the size for its dimension, or None if the shape isn't known. For example, if you have a matrix with unknown batch size but fixed feature size of 784, `shape` would be: (None, 784). The full form of `inputs` would be: [((None, 784), <TensorType(float32, matrix)>)]. hiddens : int or Tuple of (shape, `Theano.TensorType`) Int for the number of hidden units to use, or a tuple of shape, expression to route the starting hidden values from elsewhere. params : Dict(string_name: theano SharedVariable), optional A dictionary of model parameters (shared theano variables) that you should use when constructing this model (instead of initializing your own shared variables). This parameter is useful when you want to have two versions of the model that use the same parameters - such as siamese networks or pretraining some weights. outdir : str The directory you want outputs (parameters, images, etc.) to save to. If None, nothing will be saved. visible_activation : str or callable The nonlinear (or linear) visible activation to perform after the dot product from hiddens -> visible layer. This activation function should be appropriate for the input unit types, i.e. 'sigmoid' for binary inputs. See opendeep.utils.activation for a list of available activation functions. Alternatively, you can pass your own function to be used as long as it is callable. hidden_activation : str or callable The nonlinear (or linear) hidden activation to perform after the dot product from visible -> hiddens layer. See opendeep.utils.activation for a list of available activation functions. Alternatively, you can pass your own function to be used as long as it is callable. weights_init : str Determines the method for initializing model weights. See opendeep.utils.nnet for options. weights_interval : str or float If Uniform `weights_init`, the +- interval to use. See opendeep.utils.nnet for options. weights_mean : float If Gaussian `weights_init`, the mean value to use. weights_std : float If Gaussian `weights_init`, the standard deviation to use. bias_init : float The initial value to use for the bias parameter. Most often, the default of 0.0 is preferred. mrg : random A random number generator that is used when sampling. The RBM is a probabilistic model, so it relies a lot on sampling. I recommend using Theano's sandbox.rng_mrg.MRG_RandomStreams. k : int The k number of steps used for CD-k or PCD-k with Gibbs sampling. Basically, the number of samples generated from the model to train against reconstructing the original input. """ # init Model to combine the defaults and config dictionaries with the initial parameters. initial_parameters = locals().copy() initial_parameters.pop('self') super(RBM, self).__init__(**initial_parameters) ################## # specifications # ################## if len(self.inputs) > 1: raise NotImplementedError("Expected 1 input to RBM, found %d. Please merge inputs before passing " "to the model!" % len(self.inputs)) # self.inputs is a list of all the input expressions (we enforce only 1, so self.inputs[0] is the input) input_shape, self.input = self.inputs[0] if isinstance(input_shape, int): self.input_size = ((None,) * (self.input.ndim - 1)) + (input_shape,) else: self.input_size = input_shape assert self.input_size is not None, "Need to specify the shape for the last dimension of the input!" # our output space is the same as the input space self.output_size = self.input_size # grab hiddens # have only 1 hiddens assert len(self.hiddens) == 1, "Expected 1 `hiddens` param, found %d" % len(self.hiddens) self.hiddens = self.hiddens[0] if isinstance(self.hiddens, int): hidden_size = self.hiddens hiddens_init = None elif isinstance(self.hiddens, tuple): hidden_shape, hiddens_init = self.hiddens if isinstance(hidden_shape, int): hidden_size = hidden_shape else: hidden_size = hidden_shape[-1] else: raise AssertionError("Hiddens need to be an int or tuple of (shape, theano_expression), found %s" % type(self.hiddens)) # other specifications # visible activation function! self.visible_activation_func = get_activation_function(visible_activation) # make sure the sampling functions are appropriate for the activation functions. if is_binary(self.visible_activation_func): self.visible_sampling = mrg.binomial else: # TODO: implement non-binary activation log.error("Non-binary visible activation not supported yet!") raise NotImplementedError("Non-binary visible activation not supported yet!") # hidden activation function! self.hidden_activation_func = get_activation_function(hidden_activation) # make sure the sampling functions are appropriate for the activation functions. if is_binary(self.hidden_activation_func): self.hidden_sampling = mrg.binomial else: # TODO: implement non-binary activation log.error("Non-binary hidden activation not supported yet!") raise NotImplementedError("Non-binary hidden activation not supported yet!") #################################################### # parameters - make sure to deal with params_hook! # #################################################### self.W = self.params.get( "W", get_weights(weights_init=weights_init, shape=(self.input_size[-1], hidden_size), name="W", rng=mrg, # if gaussian mean=weights_mean, std=weights_std, # if uniform interval=weights_interval) ) self.b_v = self.params.get( "b_v", get_bias(shape=self.input_size[-1], name="b_v", init_values=bias_init) ) self.b_h = self.params.get( "b_h", get_bias(shape=hidden_size, name="b_h", init_values=bias_init) ) # Finally have the parameters self.params = {"W": self.W, "b_v": self.b_v, "b_h": self.b_h} ############### # computation # ############### # initialize from visibles if we aren't generating from some hiddens if hiddens_init is None: [_, v_chain, _, h_chain], self.updates = theano.scan(fn=self._gibbs_step_vhv, outputs_info=[None, self.input, None, None], n_steps=k) # initialize from hiddens else: [_, v_chain, _, h_chain], self.updates = theano.scan(fn=self._gibbs_step_hvh, outputs_info=[None, None, None, hiddens_init], n_steps=k) self.v_sample = v_chain[-1] self.h_sample = h_chain[-1] mean_v, _, _, _ = self._gibbs_step_vhv(self.v_sample) # the free-energy cost function! # consider v_sample constant when computing gradients on the cost function # this actually keeps v_sample from being considered in the gradient, to set gradient to 0 instead, # use theano.gradient.zero_grad v_sample_constant = theano.gradient.disconnected_grad(self.v_sample) # v_sample_constant = v_sample self.cost = (self.free_energy(self.input) - self.free_energy(v_sample_constant)) / self.input.shape[0] log.debug("Initialized an RBM shape %s", str((self.input_size, hidden_size))) def _gibbs_step_vhv(self, v): """ Single step in the Gibbs chain computing visible -> hidden -> visible. """ # compute the hiddens and sample mean_h = self.hidden_activation_func(T.dot(v, self.W) + self.b_h) h = self.hidden_sampling(size=mean_h.shape, n=1, p=mean_h, dtype=theano.config.floatX) # compute the visibles and sample mean_v = self.visible_activation_func(T.dot(h, self.W.T) + self.b_v) v = self.visible_sampling(size=mean_v.shape, n=1, p=mean_v, dtype=theano.config.floatX) return mean_v, v, mean_h, h def _gibbs_step_hvh(self, h): """ Single step in the Gibbs chain computing hidden -> visible -> hidden (for generative application). """ # compute the visibles and sample mean_v = self.visible_activation_func(T.dot(h, self.W.T) + self.b_v) v = self.visible_sampling(size=mean_v.shape, n=1, p=mean_v, dtype=theano.config.floatX) # compute the hiddens and sample mean_h = self.hidden_activation_func(T.dot(v, self.W) + self.b_h) h = self.hidden_sampling(size=mean_h.shape, n=1, p=mean_h, dtype=theano.config.floatX) return mean_v, v, mean_h, h def free_energy(self, v): """ The free-energy equation used for contrastive-divergence. Parameters ---------- v : tensor The theano tensor representing the visible layer input. Returns ------- theano expression The free energy calculation given the input tensor. """ # vbias_term = -T.dot(v, self.b_v) # hidden_term = -T.sum( # T.log(1 + T.exp(T.dot(v, self.W) + self.b_h)), # axis=1 # ) vbias_term = -(v * self.b_v).sum() hidden_term = -T.log(1 + T.exp(T.dot(v, self.W) + self.b_h)).sum() return vbias_term + hidden_term #################### # Model functions! # #################### def get_inputs(self): return self.input def get_hiddens(self): return self.h_sample def get_outputs(self): return self.v_sample def generate(self, initial=None): log.exception("Generate not implemented yet for the RBM! Feel free to contribute :)") raise NotImplementedError("Generate not implemented yet for the RBM! Feel free to contribute :)") def get_loss(self): return self.cost def get_updates(self): return self.updates def get_params(self): return self.params
bin/chunks.py
cwickham/merely-useful.github.io
190
11190238
#!/usr/bin/env python ''' chunks.py [source_file...] Check that all chunks are either naked (no language spec) or have a recognizable language and a label. If no source files are given, reads from standard input. ''' import sys import re from util import LANGUAGES, read_all_files, report MARKER = '```' RICH_MARKER = re.compile(r'^```\{(.+?)\s+([^=,]+)(,\s*.+=.+)*\s*}$') def main(source_files): '''Main driver.''' chunks = read_all_files(source_files, get_chunks) chunks = {c for c in chunks if bad_chunk(c)} report('Bad Chunks', chunks) def get_chunks(filename, reader): '''Extract chunk headers.''' result = set() in_chunk = False for (i, line) in enumerate(reader): if line.startswith(MARKER): marker = line.rstrip() if in_chunk: assert marker == MARKER, \ f'Badly-formed end of chunk {filename}:{i}' in_chunk = False else: result.add((filename, i+1, marker)) in_chunk = True return result def bad_chunk(chunk): '''Is this a badly formed chunk?''' filename, line_number, marker = chunk # Naked chunk (plain text). if marker == MARKER: return False # Doesn't match pattern for rich chunk header. match = RICH_MARKER.search(marker) if not match: return True # Unknown language. language, label = match.group(1), match.group(2) if language not in LANGUAGES: return True # No reason to reject. return False if __name__ == '__main__': main(sys.argv[1:])
mlens/parallel/tests/test_a_learner_full.py
mehrdad-shokri/mlens
760
11190260
""""ML-ENSEMBLE Testing suite for Learner and Transformer """ from mlens.testing import Data, EstimatorContainer, get_learner, run_learner def test_predict(): """[Parallel | Learner | Full | No Proba | No Prep] test fit and predict""" args = get_learner('predict', 'full', False, False) run_learner(*args) def test_transform(): """[Parallel | Learner | Full | No Proba | No Prep] test fit and transform""" args = get_learner('transform', 'full', False, False) run_learner(*args) def test_predict_prep(): """[Parallel | Learner | Full | No Proba | Prep] test fit and predict""" args = get_learner('predict', 'full', False, True) run_learner(*args) def test_transform_prep(): """[Parallel | Learner | Full | No Proba | Prep] test fit and transform""" args = get_learner('transform', 'full', False, True) run_learner(*args) def test_predict_proba(): """[Parallel | Learner | Full | Proba | No Prep] test fit and predict""" args = get_learner('predict', 'full', True, False) run_learner(*args) def test_transform_proba(): """[Parallel | Learner | Full | Proba | No Prep] test fit and transform""" args = get_learner('transform', 'full', True, False) run_learner(*args) def test_predict_prep_proba(): """[Parallel | Learner | Full | Proba | No Prep] test predict""" args = get_learner('predict', 'full', True, True) run_learner(*args) def test_transform_prep_proba(): """[Parallel | Learner | Full | Proba | Prep] test transform""" args = get_learner('transform', 'full', True, True) run_learner(*args)
Python3/687.py
rakhi2001/ecom7
854
11190267
__________________________________________________________________________________________________ sample 336 ms submission # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def helper(self, node): cur_path=0 if node.left: n, val = self.helper(node.left) if val==node.val: cur_path = n+1 if self.longest_path<cur_path: self.longest_path = cur_path if node.right: n, val = self.helper(node.right) if val==node.val: cur_path2 = n+1 if self.longest_path<(cur_path+cur_path2): self.longest_path = (cur_path+cur_path2) cur_path = max(cur_path, cur_path2) return cur_path, node.val def longestUnivaluePath(self, root: TreeNode) -> int: self.longest_path = 0 if root: self.helper(root) return self.longest_path __________________________________________________________________________________________________ sample 17088 kb submission # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def longestUnivaluePath(self, root: TreeNode) -> int: longestPath = [float('-inf')] def longestCommonPath(root, val): if not root: return 0 left = right = 0 found = False if root.val == val: found = True left = longestCommonPath(root.left, val) right = longestCommonPath(root.right, val) else: left = longestCommonPath(root.left, root.val) right = longestCommonPath(root.right, root.val) if left+right+1 > longestPath[0]: longestPath[0] = left+right+1 return max(left+1, right+1) if found else 0 if not root: return 0 longestCommonPath(root, root.val) return longestPath[0]-1 __________________________________________________________________________________________________
piwheels/monitor/sense/renderers.py
jgillis/piwheels
120
11190281
#!/usr/bin/env python # The piwheels project # Copyright (c) 2017 <NAME> <https://github.com/bennuttall> # Copyright (c) 2017 <NAME> <<EMAIL>> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Implements the screen rendering classes for the Sense HAT monitor. .. autoclass:: Renderer :members: .. autoclass:: MainRenderer :members: .. autoclass:: MasterRenderer :members: .. autoclass:: SlaveRenderer :members: .. autoclass:: QuitRenderer :members: .. autofunction:: bounce """ import signal import subprocess from datetime import datetime, timedelta, timezone from itertools import cycle, chain from threading import main_thread from contextlib import contextmanager import numpy as np from pisense import array, draw_text from colorzero import Color, Lightness, ease_out from piwheels.format import format_size from piwheels.transport import NoData from .states import SlaveList, MasterState, SlaveState from . import controls UTC = timezone.utc def bounce(it): # bounce('ABC') -> A B C C B A A B C ... return cycle(chain(it, reversed(it))) class Renderer: """ Base class for all renderers. A renderer acts as an iterator, yielding images (or arrays, or anything that can be passed to one of the screen methods). Renderers also have a :meth:`move` method which is used by the owning task to pass along joystick events to the renderer. The base implementation provides a simple joystick-based navigation implementation, and limits its coordinates to a specified boundary. """ def __init__(self): self._limits = (0, 0, 7, 7) self._position = (0, 0) @property def position(self): return self._position @position.setter def position(self, value): x, y = value min_x, min_y, max_x, max_y = self.limits x = max(min_x, min(max_x, x)) y = max(min_y, min(max_y, y)) self._position = x, y @property def limits(self): return self._limits @limits.setter def limits(self, value): if value != self._limits: self._limits = value # Re-calculate position for new limits self.position = self.position def __iter__(self): pass def move(self, event, task): if event.pressed: x, y = self.position try: dx, dy = { 'up': (0, -1), 'down': (0, 1), 'left': (-1, 0), 'right': (1, 0), }[event.direction] except KeyError: pass else: self.position = x + dx, y + dy nx, ny = self.position return nx - x, ny - y return (0, 0) class HelpRenderer(Renderer): """ The :class:`HelpRenderer` is responsible for rendering help notes for the graphs at the top of the main page. It consists of eight small horizontally arranged blocks at the top of the screen. Each can be individually selected to display a scrolling description below. """ def __init__(self): super().__init__() self.offset = None self.text = None self.limits = (0, 0, 7, 0) self.position = (0, 0) self._update_text() @property def position(self): return super().position @position.setter def position(self, value): with self.watch_selection(): # Fugly super-call for property setters... super(HelpRenderer, self.__class__).position.fset(self, value) @contextmanager def watch_selection(self): before = self.position yield after = self.position if before != after: self._update_text() def _update_text(self): label = [ 'Last Seen', 'Builds Queue/Build Time', 'Disk Used', 'Swap Used', 'Mem Used', 'CPU Temperature', 'Load Avg', 'Builds Done/Clock Skew', ][self.position[0]] self.text = array( draw_text(label, font='small.pil', foreground=Color('white'), background=Color('black'), padding=(8, 3, 8, 0))) self.offset = iter(cycle(range(self.text.shape[1] - 8))) def move(self, event, task): if event.direction == 'down': task.renderers['main'].position = self.position[0], 3 task.switch_to(task.renderers['main'], transition='draw') return (0, 0) else: return super().move(event, task) def __iter__(self): buf = array(Color('black')) grad = list(Color('darkblue').gradient(Color('white'), steps=15)) pulse = iter(bounce(range(len(grad)))) while True: offset = next(self.offset) buf[:, :] = self.text[:, offset:offset + 8] buf[:3, :] = Color('darkblue') x, y = self.position buf[:3, x] = grad[next(pulse)] yield buf class MainRenderer(Renderer): """ The :class:`MainRenderer` is responsible for rendering the main screen in the application (the first screen shown on start). It consists of eight small horizontally arranged bar charts at the top of the screen. These indicate, in order: time since last ping, disk used, swap used, memory used, SoC temperature, load average, queue size, and inverted build rate. The status of each slave is depicted as a single pixel below these three rows. """ def __init__(self): super().__init__() self.slaves = SlaveList() self.controls = None self.connected = False self.limits = (0, 3, 7, 7) self.position = (0, 3) self._make_stats(self.selected) @staticmethod def _slave_coords(index): return (index // 5, 3 + index % 5) @staticmethod def _slave_index(x, y): return (x * 5) + (y - 3) @property def selected(self): try: return self.slaves[self._slave_index(*self.position)] except IndexError: return None @property def position(self): return super().position @position.setter def position(self, value): with self.watch_selection(): # ... and again super(MainRenderer, self.__class__).position.fset(self, value) @contextmanager def watch_selection(self): before = self.selected yield after = self.selected if before != after: self._make_stats(after) def _make_stats(self, state): if isinstance(state, MasterState): self.controls = [ controls.LastSeen(), controls.BuildsQueue(), controls.Disk(), controls.Swap(), controls.Mem(), controls.CPUTemp(), controls.LoadAvg(), controls.BuildsDone(), ] elif isinstance(state, SlaveState): self.controls = [ controls.LastSeen(), controls.BuildTime(), controls.Disk(), controls.Swap(), controls.Mem(), controls.CPUTemp(), controls.LoadAvg(), controls.ClockSkew(), ] else: assert state is None self.controls = [controls.Placeholder()] * 8 self._refresh_stats(state) def _refresh_stats(self, state): for control in self.controls: control.update(state) def message(self, msg, data): if msg in ('HELLO', 'STATS'): slave_id = None timestamp = datetime.now(tz=UTC) if msg == 'HELLO': self.connected = True elif msg == 'SLAVE': slave_id, timestamp, msg, data = data with self.watch_selection(): self.slaves.message(slave_id, timestamp, msg, data) if self.selected is not None and self.selected.slave_id == slave_id: self._refresh_stats(self.selected) def move(self, event, task): if not self.connected: return (0, 0) elif event.direction == 'up' and self.position[1] == 3: task.renderers['help'].position = self.position[0], 0 task.switch_to(task.renderers['help'], transition='draw') return (0, 0) elif event.direction == 'down' and self.position[1] == 7: task.switch_to(task.renderers['quit'], transition='slide', direction='up', duration=0.5) return (0, 0) else: delta = super().move(event, task) if event.direction == 'enter' and self.selected is not None: if isinstance(self.selected, MasterState): task.switch_to(MasterRenderer(self.selected), transition='zoom', direction='in', center=self.position, duration=0.5) else: task.switch_to(SlaveRenderer(self.selected), transition='zoom', direction='in', center=self.position, duration=0.5) return delta def _render_stats(self, buf): for x, stat in enumerate(self.controls): if isinstance(stat, controls.LastSeen): # Always ensure last-seen is updated as its value can change # regardless of message arrival (and *should* change if message # arrival has stopped) stat.update(self.selected) # Scale the value to a range of 2, with an offset of 1 # to ensure that the status line is never black value = (stat.value * 2) + 1 buf[0:3, x] = [ stat.color if y < int(value) else stat.color * Lightness(value - int(value)) if y < value else Color('black') for y in range(3) ][::-1] def _render_slaves(self, buf, pulse): for index, slave in enumerate(self.slaves): x, y = self._slave_coords(index) if 0 <= x < 8 and 0 <= y < 8: buf[y, x] = slave.color x, y = self.position base = Color(*buf[y, x]) grad = list(base.gradient(Color('white'), steps=15)) buf[y, x] = grad[pulse] def __iter__(self): waiting = array( draw_text('Waiting for connection', padding=(8, 0, 8, 1))) for offset in cycle(range(waiting.shape[1] - 8)): if self.connected: break yield waiting[:, offset:offset + 8] buf = array(Color('black')) pulse = iter(bounce(range(10))) while True: x, y = self.position with self.watch_selection(): self.slaves.prune() buf[:] = Color('black') self._render_stats(buf) self._render_slaves(buf, next(pulse)) yield buf class NodeRenderer(Renderer): """ The :class:`NodeRenderer` is used to render the full-screen status of the master or slave nodes (when selected from the main menu). Various screens are included, detailing the node's statistics, and providing rudimentary control actions. This is effectively an abstract base class, with :class:`SlaveRenderer` and :class:`MasterRenderer` filling in the :attr:`stats` dictionary. """ def __init__(self, node): super().__init__() self.updated = datetime(1970, 1, 1, tzinfo=UTC) self.node = node self.text = None self.offset = None self.graph = None self._mode = 'text' self.limits = (0, 0, 7, 2) self.position = (0, 1) self.controls = {} @property def selected(self): try: return self.controls[self.position] except KeyError: return None @property def mode(self): return self._mode @mode.setter def mode(self, value): assert value in {'text', 'graph'} if self._mode != value: self._mode = value { 'text': self._update_text, 'graph': self._update_graph, }[value]() def move(self, event, task): if event.pressed and event.direction == 'enter': self._run_actions(self.selected.activate(), task) return (0, 0) delta = super().move(event, task) if delta != (0, 0): if not isinstance(self.selected, controls.HistoryStat): self._mode = 'text' { 'text': self._update_text, 'graph': self._update_graph, }[self.mode]() return delta def _run_actions(self, actions, task): data = self.node.slave_id if data is None: data = NoData for action in actions: if action == 'SWITCH': self.mode = { 'text': 'graph', 'graph': 'text', }[self.mode] elif action == 'BACK': task.switch_to( task.renderers['main'], transition='zoom', direction='out', duration=0.5, center=task.renderers['main'].position) break else: task.send_control(action, data) def _update_text(self, *, restart=True): self.text = array( draw_text(self.selected.label, font='small.pil', padding=(8, 3, 8, 0))) if restart or self.offset is None: last = 0 else: # Ensure the text doesn't "skip" while we're rendering it by # starting the offset cycle at the current position of the offset # cycle (unless it's out of range) last = next(self.offset) if last >= self.text.shape[1] - 8: last = 0 self.offset = iter(cycle(chain( range(last, self.text.shape[1] - 8), range(last) ))) def _update_graph(self): self.graph = array(shape=(5, 8)) for x, stat in zip(reversed(range(8)), self.selected.history()): if stat is None: continue # Scale the value to the vertical size value = stat.value * self.graph.shape[0] for y in range(5): self.graph[4 - y, x] = ( stat.color if y < int(value) else stat.color * Lightness(value - int(value)) if y < value else Color('black') ) def _update_stats(self): if self.updated < self.node.last_seen: for control in self.controls.values(): control.update(self.node) self._update_text(restart=False) self._update_graph() self.updated = self.node.last_seen def _render_stats(self, buf, pulse): for (x, y), stat in self.controls.items(): buf[y, x] = stat.color x, y = self.position base = Color(*buf[y, x]) grad = list(base.gradient(Color('white'), steps=15)) buf[y, x] = grad[pulse] def _render_text(self, buf): offset = next(self.offset) buf += self.text[:, offset:offset + 8] def _render_graph(self, buf): buf[3:8, :] += self.graph def __iter__(self): buf = array(Color('black')) pulse = iter(bounce(range(10))) render_mode = { 'text': self._render_text, 'graph': self._render_graph, } while True: x, y = self.position buf[:] = Color('black') self._update_stats() self._render_stats(buf, next(pulse)) render_mode[self.mode](buf) yield buf.clip(0, 1) class MasterRenderer(NodeRenderer): """ The :class:`MasterRenderer` is used to render the full-screen status of the master node (when selected from the main menu). Various screens are included, detailing the master's statistics, and providing rudimentary control actions. """ def __init__(self, master): super().__init__(master) self.controls = { (x, y): item for y, row in enumerate([ [ controls.Pause(), controls.Halt(), controls.Resume(), controls.StopSlaves(), controls.KillSlaves(), controls.StopMaster(), controls.Placeholder(), controls.Placeholder(), ], [ controls.Activity(), controls.Host(), controls.Board(), controls.Serial(), controls.OS(), controls.UpTime(), controls.Placeholder(), controls.Placeholder(), ], [ controls.LastSeen(), controls.BuildsQueue(), controls.Disk(), controls.Swap(), controls.Mem(), controls.CPUTemp(), controls.LoadAvg(), controls.BuildsDone(), ], ]) for x, item in enumerate(row) } def _update_stats(self): self.controls[0, 1].update(self.node) self.controls[0, 2].update(self.node) super()._update_stats() class SlaveRenderer(NodeRenderer): """ The :class:`SlaveRenderer` is used to render the full-screen status of a build slave (when selected from the main menu). Various screens are included, detailing the slave's statistics, and providing rudimentary control actions. """ def __init__(self, slave): super().__init__(slave) self.controls = { (x, y): item for y, row in enumerate([ [ controls.Skip(), controls.Pause(), controls.Halt(), controls.Resume(), controls.StopSlave(), controls.KillSlave(), controls.Placeholder(), controls.Placeholder(), ], [ controls.Activity(), controls.Host(), controls.Board(), controls.Serial(), controls.OS(), controls.UpTime(), controls.ABI(), controls.Placeholder(), ], [ controls.LastSeen(), controls.BuildTime(), controls.Disk(), controls.Swap(), controls.Mem(), controls.CPUTemp(), controls.LoadAvg(), controls.ClockSkew(), ], ]) for x, item in enumerate(row) } def _update_stats(self): self.controls[0, 2].update(self.node) super()._update_stats() class QuitRenderer(Renderer): """ The :class:`QuitRenderer` is responsible for rendering the Quit? and Terminate? options which are "below" the main screen. """ def __init__(self): super().__init__() self.limits = (0, 0, 2, 0) self.text = None self.update_text() def move(self, event, task): x, y = self.position if event.direction == 'enter': if x == 1: subprocess.call(['sudo', '-n', 'reboot']) elif x == 2: subprocess.call(['sudo', '-n', 'poweroff']) signal.pthread_kill(main_thread().ident, signal.SIGINT) delta = super().move(event, task) if event.direction == 'up': task.switch_to(task.renderers['main'], transition='slide', direction='down', duration=0.5) elif delta != (0, 0): self.update_text() return delta def update_text(self): x, y = self.position text = { 0: 'Quit?', 1: 'Reboot?', 2: 'Off?', }[x] self.text = array( draw_text(text, foreground=Color('red'), padding=(8, 0, 8, 1))) self.offset = iter(cycle(range(self.text.shape[1] - 8))) def __iter__(self): buf = array(Color('black')) while True: offset = next(self.offset) yield self.text[:, offset:offset + 8]
test_autolens/point/test_point_source.py
Jammy2211/AutoLens
114
11190309
<reponame>Jammy2211/AutoLens from os import path import shutil import os import numpy as np import autolens as al def test__point_dataset_structures_as_dict(): point_dataset_0 = al.PointDataset( name="source_1", positions=al.Grid2DIrregular([[1.0, 1.0]]), positions_noise_map=al.ValuesIrregular([1.0]), ) point_dict = al.PointDict(point_dataset_list=[point_dataset_0]) assert point_dict["source_1"].name == "source_1" assert point_dict["source_1"].positions.in_list == [(1.0, 1.0)] assert point_dict["source_1"].positions_noise_map.in_list == [1.0] assert point_dict["source_1"].fluxes == None assert point_dict["source_1"].fluxes_noise_map == None point_dataset_1 = al.PointDataset( name="source_2", positions=al.Grid2DIrregular([[1.0, 1.0]]), positions_noise_map=al.ValuesIrregular([1.0]), fluxes=al.ValuesIrregular([2.0, 3.0]), fluxes_noise_map=al.ValuesIrregular([4.0, 5.0]), ) point_dict = al.PointDict(point_dataset_list=[point_dataset_0, point_dataset_1]) assert point_dict["source_1"].name == "source_1" assert point_dict["source_1"].positions.in_list == [(1.0, 1.0)] assert point_dict["source_1"].positions_noise_map.in_list == [1.0] assert point_dict["source_1"].fluxes == None assert point_dict["source_1"].fluxes_noise_map == None assert point_dict["source_2"].name == "source_2" assert point_dict["source_2"].positions.in_list == [(1.0, 1.0)] assert point_dict["source_2"].positions_noise_map.in_list == [1.0] assert point_dict["source_2"].fluxes.in_list == [2.0, 3.0] assert point_dict["source_2"].fluxes_noise_map.in_list == [4.0, 5.0] assert (point_dict.positions_list[0] == np.array([1.0, 1.0])).all() assert (point_dict.positions_list[1] == np.array([1.0, 1.0])).all() def test__inputs_are_other_python_types__converted_correctly(): point_dataset_0 = al.PointDataset( name="source_1", positions=[[1.0, 1.0]], positions_noise_map=[1.0] ) point_dict = al.PointDict(point_dataset_list=[point_dataset_0]) assert point_dict["source_1"].name == "source_1" assert point_dict["source_1"].positions.in_list == [(1.0, 1.0)] assert point_dict["source_1"].positions_noise_map.in_list == [1.0] assert point_dict["source_1"].fluxes == None assert point_dict["source_1"].fluxes_noise_map == None point_dataset_0 = al.PointDataset( name="source_1", positions=[(1.0, 1.0), (2.0, 2.0)], positions_noise_map=[1.0], fluxes=[2.0], fluxes_noise_map=[3.0], ) point_dict = al.PointDict(point_dataset_list=[point_dataset_0]) assert point_dict["source_1"].name == "source_1" assert point_dict["source_1"].positions.in_list == [(1.0, 1.0), (2.0, 2.0)] assert point_dict["source_1"].positions_noise_map.in_list == [1.0] assert point_dict["source_1"].fluxes.in_list == [2.0] assert point_dict["source_1"].fluxes_noise_map.in_list == [3.0] def test__from_json_and_output_to_json(): point_dataset_0 = al.PointDataset( name="source_1", positions=al.Grid2DIrregular([[1.0, 1.0]]), positions_noise_map=al.ValuesIrregular([1.0]), ) point_dataset_1 = al.PointDataset( name="source_2", positions=al.Grid2DIrregular([[1.0, 1.0]]), positions_noise_map=al.ValuesIrregular([1.0]), fluxes=al.ValuesIrregular([2.0, 3.0]), fluxes_noise_map=al.ValuesIrregular([4.0, 5.0]), ) point_dict = al.PointDict(point_dataset_list=[point_dataset_0, point_dataset_1]) dir_path = path.join("{}".format(path.dirname(path.realpath(__file__))), "files") if path.exists(dir_path): shutil.rmtree(dir_path) os.makedirs(dir_path) file_path = path.join(dir_path, "point_dict.json") point_dict.output_to_json(file_path=file_path, overwrite=True) point_dict_via_json = al.PointDict.from_json(file_path=file_path) assert point_dict_via_json["source_1"].name == "source_1" assert point_dict_via_json["source_1"].positions.in_list == [(1.0, 1.0)] assert point_dict_via_json["source_1"].positions_noise_map.in_list == [1.0] assert point_dict_via_json["source_1"].fluxes == None assert point_dict_via_json["source_1"].fluxes_noise_map == None assert point_dict_via_json["source_2"].name == "source_2" assert point_dict_via_json["source_2"].positions.in_list == [(1.0, 1.0)] assert point_dict_via_json["source_2"].positions_noise_map.in_list == [1.0] assert point_dict_via_json["source_2"].fluxes.in_list == [2.0, 3.0] assert point_dict_via_json["source_2"].fluxes_noise_map.in_list == [4.0, 5.0]
alipay/aop/api/domain/AlipayCommerceOperationPoiVendingUploadModel.py
antopen/alipay-sdk-python-all
213
11190336
<filename>alipay/aop/api/domain/AlipayCommerceOperationPoiVendingUploadModel.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.BusinessHoursDesc import BusinessHoursDesc class AlipayCommerceOperationPoiVendingUploadModel(object): def __init__(self): self._address_desc = None self._business_hours_desc = None self._category_code = None self._contact_number = None self._enabled = None self._entity_code = None self._entity_name = None self._ext_infos = None self._latitude = None self._longitude = None self._upload_time = None @property def address_desc(self): return self._address_desc @address_desc.setter def address_desc(self, value): self._address_desc = value @property def business_hours_desc(self): return self._business_hours_desc @business_hours_desc.setter def business_hours_desc(self, value): if isinstance(value, list): self._business_hours_desc = list() for i in value: if isinstance(i, BusinessHoursDesc): self._business_hours_desc.append(i) else: self._business_hours_desc.append(BusinessHoursDesc.from_alipay_dict(i)) @property def category_code(self): return self._category_code @category_code.setter def category_code(self, value): self._category_code = value @property def contact_number(self): return self._contact_number @contact_number.setter def contact_number(self, value): self._contact_number = value @property def enabled(self): return self._enabled @enabled.setter def enabled(self, value): self._enabled = value @property def entity_code(self): return self._entity_code @entity_code.setter def entity_code(self, value): self._entity_code = value @property def entity_name(self): return self._entity_name @entity_name.setter def entity_name(self, value): self._entity_name = value @property def ext_infos(self): return self._ext_infos @ext_infos.setter def ext_infos(self, value): self._ext_infos = value @property def latitude(self): return self._latitude @latitude.setter def latitude(self, value): self._latitude = value @property def longitude(self): return self._longitude @longitude.setter def longitude(self, value): self._longitude = value @property def upload_time(self): return self._upload_time @upload_time.setter def upload_time(self, value): self._upload_time = value def to_alipay_dict(self): params = dict() if self.address_desc: if hasattr(self.address_desc, 'to_alipay_dict'): params['address_desc'] = self.address_desc.to_alipay_dict() else: params['address_desc'] = self.address_desc if self.business_hours_desc: if isinstance(self.business_hours_desc, list): for i in range(0, len(self.business_hours_desc)): element = self.business_hours_desc[i] if hasattr(element, 'to_alipay_dict'): self.business_hours_desc[i] = element.to_alipay_dict() if hasattr(self.business_hours_desc, 'to_alipay_dict'): params['business_hours_desc'] = self.business_hours_desc.to_alipay_dict() else: params['business_hours_desc'] = self.business_hours_desc if self.category_code: if hasattr(self.category_code, 'to_alipay_dict'): params['category_code'] = self.category_code.to_alipay_dict() else: params['category_code'] = self.category_code if self.contact_number: if hasattr(self.contact_number, 'to_alipay_dict'): params['contact_number'] = self.contact_number.to_alipay_dict() else: params['contact_number'] = self.contact_number if self.enabled: if hasattr(self.enabled, 'to_alipay_dict'): params['enabled'] = self.enabled.to_alipay_dict() else: params['enabled'] = self.enabled if self.entity_code: if hasattr(self.entity_code, 'to_alipay_dict'): params['entity_code'] = self.entity_code.to_alipay_dict() else: params['entity_code'] = self.entity_code if self.entity_name: if hasattr(self.entity_name, 'to_alipay_dict'): params['entity_name'] = self.entity_name.to_alipay_dict() else: params['entity_name'] = self.entity_name if self.ext_infos: if hasattr(self.ext_infos, 'to_alipay_dict'): params['ext_infos'] = self.ext_infos.to_alipay_dict() else: params['ext_infos'] = self.ext_infos if self.latitude: if hasattr(self.latitude, 'to_alipay_dict'): params['latitude'] = self.latitude.to_alipay_dict() else: params['latitude'] = self.latitude if self.longitude: if hasattr(self.longitude, 'to_alipay_dict'): params['longitude'] = self.longitude.to_alipay_dict() else: params['longitude'] = self.longitude if self.upload_time: if hasattr(self.upload_time, 'to_alipay_dict'): params['upload_time'] = self.upload_time.to_alipay_dict() else: params['upload_time'] = self.upload_time return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayCommerceOperationPoiVendingUploadModel() if 'address_desc' in d: o.address_desc = d['address_desc'] if 'business_hours_desc' in d: o.business_hours_desc = d['business_hours_desc'] if 'category_code' in d: o.category_code = d['category_code'] if 'contact_number' in d: o.contact_number = d['contact_number'] if 'enabled' in d: o.enabled = d['enabled'] if 'entity_code' in d: o.entity_code = d['entity_code'] if 'entity_name' in d: o.entity_name = d['entity_name'] if 'ext_infos' in d: o.ext_infos = d['ext_infos'] if 'latitude' in d: o.latitude = d['latitude'] if 'longitude' in d: o.longitude = d['longitude'] if 'upload_time' in d: o.upload_time = d['upload_time'] return o
jasmin/protocols/cli/configs.py
paradiseng/jasmin
750
11190386
""" Config file handler for 'jcli' section in jasmin.cfg """ import os import logging import binascii from jasmin.config import ConfigFile ROOT_PATH = os.getenv('ROOT_PATH', '/') LOG_PATH = os.getenv('LOG_PATH', '%s/var/log/jasmin/' % ROOT_PATH) class JCliConfig(ConfigFile): """Config handler for 'jcli' section""" def __init__(self, config_file=None): ConfigFile.__init__(self, config_file) self.bind = self._get('jcli', 'bind', '127.0.0.1') self.port = self._getint('jcli', 'port', 8990) self.authentication = self._getbool('jcli', 'authentication', True) self.admin_username = self._get('jcli', 'admin_username', 'jcliadmin') self.admin_password = binascii.unhexlify(self._get('jcli', 'admin_password', '<PASSWORD>')) self.log_level = logging.getLevelName(self._get('jcli', 'log_level', 'INFO')) self.log_file = self._get('jcli', 'log_file', '%s/jcli.log' % LOG_PATH) self.log_rotate = self._get('jcli', 'log_rotate', 'W6') self.log_format = self._get( 'jcli', 'log_format', '%(asctime)s %(levelname)-8s %(process)d %(message)s') self.log_date_format = self._get('jcli', 'log_date_format', '%Y-%m-%d %H:%M:%S')
elliot/recommender/latent_factor_models/SVDpp/__init__.py
gategill/elliot
175
11190409
from .svdpp import SVDpp
scripts/release_test/tests/simpixel.py
rec/leds
253
11190476
import common FEATURES = 'browser', PROJECTS = 'sim-strip.yml', 'sim-matrix.yml', 'sim-cube.yml', 'sim-circle.yml', def run(): common.test_prompt('simpixel') common.run_project(*PROJECTS, flag='-s')
tests/core/permissions/test_models.py
jeanmask/opps
159
11190477
<reponame>jeanmask/opps #!/usr/bin/env python # -*- coding: utf-8 -*- from django.test import TestCase from django.contrib.sites.models import Site from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from opps.channels.models import Channel from opps.core.permissions.models import Permission, PermissionGroup User = get_user_model() class PermissionModelTest(TestCase): def test_create(self): user = User.objects.create(username='user') instance = Permission.objects.create(user=user) self.assertTrue(instance) def test_empty_get_by_user(self): user = User.objects.create(username='another') result = Permission.get_by_user(user) self.assertEqual(len(result['sites_id']), 0) self.assertEqual(len(result['all_sites_id']), 0) self.assertEqual(len(result['channels_id']), 0) self.assertEqual(len(result['channels_sites_id']), 0) def test_get_by_user_with_user_permission(self): user = User.objects.create(username='john_doe') site = Site.objects.all()[0] channel = Channel.objects.create( name='Home', slug='home', site=site, user=user ) permission = Permission.objects.create(user=user) permission.channel.add(channel) permission.save() result = Permission.get_by_user(user) self.assertTrue(site.pk in result['all_sites_id']) self.assertTrue(channel.pk in result['channels_id']) def test_get_by_user_with_group_permission(self): group = Group.objects.create(name='programmers') user = User.objects.create(username='john_doe') user.groups.add(group) site = Site.objects.all()[0] channel = Channel.objects.create( name='Home', slug='home', site=site, user=user ) permission = PermissionGroup.objects.create(group=group) permission.channel.add(channel) permission.save() result = Permission.get_by_user(user) self.assertTrue(site.pk in result['all_sites_id']) self.assertTrue(channel.pk in result['channels_id'])
scale/ingest/views.py
kaydoh/scale
121
11190507
"""Defines the views for the RESTful ingest and Strike services""" from __future__ import unicode_literals import datetime import logging import json import rest_framework.status as status from rest_framework.renderers import JSONRenderer from django.http import JsonResponse from django.http.response import Http404 import django.utils.timezone as timezone from rest_framework.generics import GenericAPIView, ListAPIView, ListCreateAPIView, RetrieveAPIView from rest_framework.response import Response from rest_framework.reverse import reverse from rest_framework.views import APIView from job.models import Job import util.rest as rest_util from ingest.models import Ingest, Scan, Strike from ingest.scan.configuration.exceptions import InvalidScanConfiguration from ingest.scan.configuration.json.configuration_v6 import ScanConfigurationV6 from ingest.serializers import (IngestDetailsSerializerV6, IngestSerializerV6, IngestStatusSerializerV6, ScanSerializerV6, ScanDetailsSerializerV6, StrikeSerializerV6, StrikeDetailsSerializerV6) from ingest.strike.configuration.exceptions import InvalidStrikeConfiguration from ingest.strike.configuration.json.configuration_v6 import StrikeConfigurationV6 #from queue.models import Queue from queue.messages.requeue_jobs import create_requeue_jobs_messages, QueuedJob from messaging.manager import CommandMessageManager from util.rest import BadParameter from util.rest import title_to_name logger = logging.getLogger(__name__) class IngestsView(ListAPIView): """This view is the endpoint for retrieving the list of all ingests.""" queryset = Ingest.objects.all() def get_serializer_class(self): """Returns the appropriate serializer based off the requests version of the REST API""" if self.request.version == 'v6': return IngestSerializerV6 elif self.request.version == 'v7': return IngestSerializerV6 def list(self, request): """Determine api version and call specific method :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self.list_impl(request) elif request.version == 'v7': return self.list_impl(request) raise Http404() def list_impl(self, request): """Retrieves the list of all ingests and returns it in JSON form :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ started = rest_util.parse_timestamp(request, 'started', required=False) ended = rest_util.parse_timestamp(request, 'ended', required=False) rest_util.check_time_range(started, ended) ingest_statuses = rest_util.parse_string_list(request, 'status', required=False) strike_ids = rest_util.parse_int_list(request, 'strike_id', required=False) scan_ids = rest_util.parse_int_list(request, 'scan_id', required=False) file_name = rest_util.parse_string(request, 'file_name', required=False) order = rest_util.parse_string_list(request, 'order', required=False) ingests = Ingest.objects.get_ingests(started=started, ended=ended, statuses=ingest_statuses, scan_ids=scan_ids, strike_ids=strike_ids, file_name=file_name, order=order) page = self.paginate_queryset(ingests) serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) class IngestDetailsView(RetrieveAPIView): """This view is the endpoint for retrieving/updating details of an ingest.""" queryset = Ingest.objects.all() def get_serializer_class(self): """Returns the appropriate serializer based off the requests version of the REST API""" if self.request.version == 'v6': return IngestDetailsSerializerV6 elif self.request.version == 'v7': return IngestDetailsSerializerV6 def retrieve(self, request, ingest_id=None, file_name=None): """Determine api version and call specific method :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :param ingest_id: The id of the ingest :type ingest_id: int encoded as a str :param file_name: The name of the ingest :type file_name: string :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6' or request.version == 'v7': return self.retrieve_v6(request, ingest_id) raise Http404() def retrieve_v6(self, request, ingest_id): """Retrieves the details for an ingest and return them in JSON form :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :param ingest_id: The id of the ingest :type ingest_id: int encoded as a str :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ try: is_staff = False if request.user: is_staff = request.user.is_staff ingest = Ingest.objects.get_details(ingest_id, is_staff) except Ingest.DoesNotExist: raise Http404 serializer = self.get_serializer(ingest) return Response(serializer.data) class IngestsStatusView(ListAPIView): """This view is the endpoint for retrieving summarized ingest status.""" queryset = Ingest.objects.all() def get_serializer_class(self): """Returns the appropriate serializer based off the requests version of the REST API""" if self.request.version == 'v6': return IngestStatusSerializerV6 elif self.request.version == 'v7': return IngestStatusSerializerV6 def list(self, request): """Determine api version and call specific method :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6' or request.version == 'v7': return self.list_impl(request) raise Http404() def list_impl(self, request): """Retrieves the ingest status information and returns it in JSON form :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ started = rest_util.parse_timestamp(request, 'started', required=False) ended = rest_util.parse_timestamp(request, 'ended', required=False) rest_util.check_time_range(started, ended, max_duration=datetime.timedelta(days=31)) use_ingest_time = rest_util.parse_bool(request, 'use_ingest_time', default_value=False) ingests = Ingest.objects.get_status(started, ended, use_ingest_time) page = self.paginate_queryset(ingests) serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) class ScansProcessView(GenericAPIView): """This view is the endpoint for launching a scan execution to ingest""" queryset = Scan.objects.all() def get_serializer_class(self): """Returns the appropriate serializer based off the requests version of the REST API. """ if self.request.version == 'v6': return ScanDetailsSerializerV6 elif self.request.version == 'v7': return ScanDetailsSerializerV6 def post(self, request, scan_id=None): """Launches a scan to ingest from an existing scan model instance :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :param scan_id: ID for Scan record to pull configuration from :type scan_id: int :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self._post_v6(request, scan_id) elif request.version == 'v7': return self._post_v6(request, scan_id) raise Http404() def _post_v6(self, request, scan_id=None): """Launches a scan to ingest from an existing scan model instance :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :param scan_id: ID for Scan record to pull configuration from :type scan_id: int :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ ingest = rest_util.parse_bool(request, 'ingest', default_value=False) try: scan = Scan.objects.queue_scan(scan_id, dry_run=not ingest) except Scan.DoesNotExist: raise Http404 serializer = self.get_serializer(scan) return Response(serializer.data, status=status.HTTP_201_CREATED) class ScansView(ListCreateAPIView): """This view is the endpoint for retrieving the list of all Scan process.""" queryset = Scan.objects.all() def get_serializer_class(self): """Returns the appropriate serializer based off the requests version of the REST API. """ if self.request.version == 'v6': return ScanSerializerV6 elif self.request.version == 'v7': return ScanSerializerV6 def list(self, request): """Retrieves the list of all Scan process and returns it in JSON form :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self._list_v6(request) elif request.version == 'v7': return self._list_v6(request) raise Http404() def _list_v6(self, request): """Retrieves the list of all Scan process and returns it in JSON form :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ started = rest_util.parse_timestamp(request, 'started', required=False) ended = rest_util.parse_timestamp(request, 'ended', required=False) rest_util.check_time_range(started, ended) names = rest_util.parse_string_list(request, 'name', required=False) order = rest_util.parse_string_list(request, 'order', required=False) scans = Scan.objects.get_scans(started, ended, names, order) page = self.paginate_queryset(scans) serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) def create(self, request): """Creates a new Scan process and returns a link to the detail URL :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self._create_v6(request) elif request.version == 'v7': return self._create_v6(request) raise Http404() def _create_v6(self, request): """Creates a new Scan process and returns a link to the detail URL :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ title = rest_util.parse_string(request, 'title', required=True) name = title_to_name(self.queryset, title) description = rest_util.parse_string(request, 'description', required=False) configuration = rest_util.parse_dict(request, 'configuration') try: config = ScanConfigurationV6(configuration, do_validate=True).get_configuration() except InvalidScanConfiguration as ex: raise BadParameter('Scan configuration invalid: %s' % unicode(ex)) try: scan = Scan.objects.create_scan(name, title, description, config) except InvalidScanConfiguration as ex: raise BadParameter('Scan configuration invalid: %s' % unicode(ex)) serializer = ScanDetailsSerializerV6(scan) scan_url = reverse('scans_details_view', args=[scan.id], request=request) return Response(serializer.data, status=status.HTTP_201_CREATED, headers=dict(location=scan_url)) class CancelScansView(GenericAPIView): """This view is the endpoint for canceling a scan in progress.""" queryset = Scan.objects.all() def get_serializer_class(self): """Returns the appropriate serializer based off the requests version of the REST API. """ if self.request.version == 'v6': return ScanSerializerV6 elif self.request.version == 'v7': return ScanSerializerV6 def post(self, request, scan_id): try: if self.request.version == 'v6' or self.request.version == 'v7': return self._cancel_v6(request, scan_id) else: raise Http404 except Scan.DoesNotExist: raise Http404 def _cancel_v6(self, request, scan_id): """Cancels a scan job :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :param scan_id: The ID of the Scan process :type scan_id: int encoded as a str :returns: The HTTP response to send back to the user :rtype: :class:`rest_framework.response.Response` """ canceled_ids = Scan.objects.cancel_scan(scan_id) resp_dict = {'id': scan_id, 'canceled_jobs': canceled_ids} return JsonResponse(resp_dict, status=status.HTTP_202_ACCEPTED) # return Response(resp_dict, status=status.HTTP_202_ACCEPTED) # return Response(JSONRenderer().render(canceled_ids), status=status.HTTP_202_ACCEPTED) class ScansDetailsView(GenericAPIView): """This view is the endpoint for retrieving/updating details of a Scan process.""" queryset = Scan.objects.all() def get_serializer_class(self): """Returns the appropriate serializer based off the requests version of the REST API. """ if self.request.version == 'v6': return ScanDetailsSerializerV6 elif self.request.version == 'v7': return ScanDetailsSerializerV6 def get(self, request, scan_id): """Retrieves the details for a Scan process and return them in JSON form :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :param scan_id: The ID of the Scan process :type scan_id: int encoded as a str :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self._get_v6(request, scan_id) elif request.version == 'v7': return self._get_v6(request, scan_id) raise Http404() def _get_v6(self, request, scan_id): """Retrieves the details for a Scan process and return them in JSON form :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :param scan_id: The ID of the Scan process :type scan_id: int encoded as a str :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ try: scan = Scan.objects.get_details(scan_id) except Scan.DoesNotExist: raise Http404 serializer = self.get_serializer(scan) return Response(serializer.data) def patch(self, request, scan_id): """Edits an existing Scan process and returns the updated details :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :param scan_id: The ID of the Scan process :type scan_id: int encoded as a str :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self._patch_v6(request, scan_id) elif request.version == 'v7': return self._patch_v6(request, scan_id) raise Http404() def _patch_v6(self, request, scan_id): """Edits an existing Scan process and returns the updated details :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :param scan_id: The ID of the Scan process :type scan_id: int encoded as a str :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ title = rest_util.parse_string(request, 'title', required=False) description = rest_util.parse_string(request, 'description', required=False) configuration = rest_util.parse_dict(request, 'configuration', required=False) config = None try: if configuration: config = ScanConfigurationV6(configuration, do_validate=True).get_configuration() except InvalidScanConfiguration as ex: raise BadParameter('Scan configuration invalid: %s' % unicode(ex)) try: Scan.objects.edit_scan(scan_id, title, description, config) except Scan.DoesNotExist: raise Http404 except InvalidScanConfiguration as ex: logger.exception('Unable to edit Scan process: %s', scan_id) raise BadParameter(unicode(ex)) return Response(status=status.HTTP_204_NO_CONTENT) class ScansValidationView(APIView): """This view is the endpoint for validating a new Scan process before attempting to actually create it""" queryset = Scan.objects.all() def post(self, request): """Validates a new Scan process and returns any warnings discovered :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self._post_v6(request) elif request.version == 'v7': return self._post_v6(request) raise Http404() def _post_v6(self, request): """Validates a new Scan process and returns any warnings discovered :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ configuration = rest_util.parse_dict(request, 'configuration') # Validate the Scan configuration validation = Scan.objects.validate_scan_v6(configuration=configuration) resp_dict = {'is_valid': validation.is_valid, 'errors': [e.to_dict() for e in validation.errors], 'warnings': [w.to_dict() for w in validation.warnings]} return Response(resp_dict) class StrikesView(ListCreateAPIView): """This view is the endpoint for retrieving the list of all Strike process.""" queryset = Strike.objects.all() def get_serializer_class(self): """Returns the appropriate serializer based off the requests version of the REST API""" if self.request.version == 'v6': return StrikeSerializerV6 elif self.request.version == 'v7': return StrikeSerializerV6 def list(self, request): """Determine api version and call specific method :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self.list_impl(request) elif request.version == 'v7': return self.list_impl(request) raise Http404() def list_impl(self, request): """Retrieves the list of all Strike process and returns it in JSON form :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ started = rest_util.parse_timestamp(request, 'started', required=False) ended = rest_util.parse_timestamp(request, 'ended', required=False) rest_util.check_time_range(started, ended) names = rest_util.parse_string_list(request, 'name', required=False) order = rest_util.parse_string_list(request, 'order', required=False) strikes = Strike.objects.get_strikes(started, ended, names, order) page = self.paginate_queryset(strikes) serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) def create(self, request): """Determine api version and call specific method :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self.create_impl_v6(request) elif request.version == 'v7': return self.create_impl_v6(request) raise Http404() def create_impl_v6(self, request): """Creates a new Strike process and returns a link to the detail URL :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ title = rest_util.parse_string(request, 'title', required=True) name = title_to_name(self.queryset, title) description = rest_util.parse_string(request, 'description', required=False) configuration = rest_util.parse_dict(request, 'configuration') config = None try: if configuration: config = StrikeConfigurationV6(configuration, do_validate=True).get_configuration() except InvalidStrikeConfiguration as ex: raise BadParameter('Strike configuration invalid: %s' % unicode(ex)) try: strike = Strike.objects.create_strike(name, title, description, config) except InvalidStrikeConfiguration as ex: raise BadParameter('Strike configuration invalid: %s' % unicode(ex)) # Fetch the full strike process with details try: strike = Strike.objects.get_details(strike.id) except Strike.DoesNotExist: raise Http404 serializer = StrikeDetailsSerializerV6(strike) strike_url = reverse('strike_details_view', args=[strike.id], request=request) return Response(serializer.data, status=status.HTTP_201_CREATED, headers=dict(location=strike_url)) class StrikeDetailsView(GenericAPIView): """This view is the endpoint for retrieving/updating details of a Strike process.""" queryset = Strike.objects.all() def get_serializer_class(self): """Returns the appropriate serializer based off the requests version of the REST API""" if self.request.version == 'v6': return StrikeDetailsSerializerV6 elif self.request.version == 'v7': return StrikeDetailsSerializerV6 def get(self, request, strike_id): """Determine api version and call specific method :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :param strike_id: The ID of the Strike process :type strike_id: int encoded as a str :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self.get_impl(request, strike_id) elif request.version == 'v7': return self.get_impl(request, strike_id) raise Http404() def get_impl(self, request, strike_id): """Retrieves the details for a Strike process and return them in JSON form :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :param strike_id: The ID of the Strike process :type strike_id: int encoded as a str :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ try: is_staff = False if request.user: is_staff = request.user.is_staff strike = Strike.objects.get_details(strike_id, is_staff) except Strike.DoesNotExist: raise Http404 serializer = self.get_serializer(strike) return Response(serializer.data) def patch(self, request, strike_id): """Determine api version and call specific method :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :param strike_id: The ID of the Strike process :type strike_id: int encoded as a str :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self.patch_impl_v6(request, strike_id) elif request.version == 'v7': return self.patch_impl_v6(request, strike_id) raise Http404() def patch_impl_v6(self, request, strike_id): """Edits an existing Strike process and returns the updated details :param request: the HTTP GET request :type request: :class:`rest_framework.request.Request` :param strike_id: The ID of the Strike process :type strike_id: int encoded as a str :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ title = rest_util.parse_string(request, 'title', required=False) description = rest_util.parse_string(request, 'description', required=False) configuration = rest_util.parse_dict(request, 'configuration', required=False) config = None try: if configuration: config = StrikeConfigurationV6(configuration, do_validate=True).get_configuration() except InvalidStrikeConfiguration as ex: raise BadParameter('Strike configuration invalid: %s' % unicode(ex)) try: # must collect old config before editing strike if config: new_config = config.get_dict() old_config = Strike.objects.get_details(strike_id) Strike.objects.edit_strike(strike_id, title, description, config) # if workspace has changed strike job must be restarted for changes to take effect if config and old_config.configuration["workspace"] != new_config["workspace"]: strike_job = old_config.job Job.objects.update_jobs_to_canceled([strike_job], timezone.now()) requeue_jobs = [] requeue_jobs.append(QueuedJob(strike_job.id, strike_job.num_exes)) msg = create_requeue_jobs_messages(requeue_jobs) CommandMessageManager().send_messages(msg) except Strike.DoesNotExist: raise Http404 except InvalidStrikeConfiguration as ex: logger.exception('Unable to edit Strike process: %s', strike_id) raise BadParameter(unicode(ex)) return Response(status=status.HTTP_204_NO_CONTENT) class StrikesValidationView(APIView): """This view is the endpoint for validating a new Strike process before attempting to actually create it""" queryset = Strike.objects.all() def post(self, request): """Determine api version and call specific method :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ if request.version == 'v6': return self.post_impl_v6(request) elif request.version == 'v7': return self.post_impl_v6(request) raise Http404() def post_impl_v6(self, request): """Validates a new Strike process and returns any warnings discovered :param request: the HTTP POST request :type request: :class:`rest_framework.request.Request` :rtype: :class:`rest_framework.response.Response` :returns: the HTTP response to send back to the user """ configuration = rest_util.parse_dict(request, 'configuration') # Validate the Strike configuration validation = Strike.objects.validate_strike_v6(configuration=configuration) resp_dict = {'is_valid': validation.is_valid, 'errors': [e.to_dict() for e in validation.errors], 'warnings': [w.to_dict() for w in validation.warnings]} return Response(resp_dict)
minihack/scripts/download_boxoban_levels.py
samvelyan/minihack-1
217
11190509
<reponame>samvelyan/minihack-1 # Copyright (c) Facebook, Inc. and its affiliates. import os import zipfile import pkg_resources DESTINATION_PATH = pkg_resources.resource_filename("minihack", "dat") BOXOBAN_REPO_URL = ( "https://github.com/deepmind/boxoban-levels/archive/refs/heads/master.zip" ) def download_boxoban_levels(): print("Downloading Boxoban levels...") os.system( f"wget -c --read-timeout=5 --tries=0 " f'"{BOXOBAN_REPO_URL}" -P {DESTINATION_PATH}' ) print("Boxoban levels downloaded, unpacking...") zip_file = os.path.join(DESTINATION_PATH, "master.zip") with zipfile.ZipFile(zip_file, "r") as zip_ref: zip_ref.extractall(DESTINATION_PATH) os.remove(zip_file) if __name__ == "__main__": download_boxoban_levels()
the_archive/archived_rapids_blog_notebooks/azureml/rapids/init_dask.py
ssayyah/notebooks-contrib
155
11190526
import sys import argparse import time import threading import subprocess import socket from mpi4py import MPI from azureml.core import Run from notebook.notebookapp import list_running_servers def flush(proc, proc_log): while True: proc_out = proc.stdout.readline() if proc_out == '' and proc.poll() is not None: proc_log.close() break elif proc_out: sys.stdout.write(proc_out) proc_log.write(proc_out) proc_log.flush() if __name__ == '__main__': comm = MPI.COMM_WORLD rank = comm.Get_rank() ip = socket.gethostbyname(socket.gethostname()) parser = argparse.ArgumentParser() parser.add_argument("--datastore") parser.add_argument("--n_gpus_per_node") parser.add_argument("--jupyter_token") args = parser.parse_args() n_gpus_per_node = eval(args.n_gpus_per_node) print("number of GPUs per node:", n_gpus_per_node) print("- my rank is ", rank) print("- my ip is ", ip) if rank == 0: cluster = { "scheduler" : ip + ":8786", "dashboard" : ip + ":8787" } scheduler = cluster["scheduler"] dashboard = cluster["dashboard"] else: cluster = None cluster = comm.bcast(cluster, root=0) scheduler = cluster["scheduler"] dashboard = cluster["dashboard"] if rank == 0: Run.get_context().log("headnode", ip) Run.get_context().log("cluster", "scheduler: {scheduler}, dashboard: {dashboard}".format(scheduler=cluster["scheduler"], dashboard=cluster["dashboard"])) Run.get_context().log("datastore", args.datastore) cmd = ("jupyter lab --ip 0.0.0.0 --port 8888" + \ " --NotebookApp.token={token}" + \ " --allow-root --no-browser").format(token=args.jupyter_token) jupyter_log = open("jupyter_log.txt", "a") jupyter_proc = subprocess.Popen(cmd.split(), universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) jupyter_flush = threading.Thread(target=flush, args=(jupyter_proc, jupyter_log)) jupyter_flush.start() while not list(list_running_servers()): time.sleep(5) jupyter_servers = list(list_running_servers()) assert (len(jupyter_servers) == 1), "more than one jupyter server is running" Run.get_context().log("jupyter", "ip: {ip_addr}, port: {port}".format(ip_addr=ip, port=jupyter_servers[0]["port"])) Run.get_context().log("jupyter-token", jupyter_servers[0]["token"]) cmd = "dask-scheduler " + "--port " + scheduler.split(":")[1] + " --dashboard-address " + dashboard scheduler_log = open("scheduler_log.txt", "w") scheduler_proc = subprocess.Popen(cmd.split(), universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) os.environ["CUDA_VISIBLE_DEVICES"] = str(list(range(n_gpus_per_node))).strip("[]") cmd = "dask-cuda-worker " + scheduler + " --memory-limit 0" worker_log = open("worker_{rank}_log.txt".format(rank=rank), "w") worker_proc = subprocess.Popen(cmd.split(), universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) worker_flush = threading.Thread(target=flush, args=(worker_proc, worker_log)) worker_flush.start() flush(scheduler_proc, scheduler_log) else: os.environ["CUDA_VISIBLE_DEVICES"] = str(list(range(n_gpus_per_node))).strip("[]") cmd = "dask-cuda-worker " + scheduler + " --memory-limit 0" worker_log = open("worker_{rank}_log.txt".format(rank=rank), "w") worker_proc = subprocess.Popen(cmd.split(), universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) flush(worker_proc, worker_log)
tests/data/photos_data.py
nicx/icloud-drive-docker
196
11190590
DATA = { "query?remapEnums=True&getCurrentSyncToken=True": [ { "data": { "query": {"recordType": "CheckIndexingState"}, "zoneID": {"zoneName": "PrimarySync"}, }, "response": { "records": [ { "recordName": "_5c82ba39-fa99-4f36-ad2a-1a87028f8fa4", "recordType": "CheckIndexingState", "fields": { "progress": {"value": 100, "type": "INT64"}, "state": {"value": "FINISHED", "type": "STRING"}, }, "pluginFields": {}, "recordChangeTag": "0", "created": { "timestamp": 1629754179814, "userRecordName": "_10", "deviceID": "1", }, "modified": { "timestamp": 1629754179814, "userRecordName": "_10", "deviceID": "1", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, } ], "syncToken": "<PASSWORD>", }, }, { "data": { "query": {"recordType": "CPLAlbumByPositionLive"}, "zoneID": {"zoneName": "PrimarySync"}, }, "response": { "records": [ { "recordName": "----Project-Root-Folder----", "recordType": "CPLAlbum", "fields": { "recordModificationDate": { "value": 1611165435221, "type": "TIMESTAMP", }, "sortAscending": {"value": 1, "type": "INT64"}, "sortType": {"value": 0, "type": "INT64"}, "albumType": {"value": 3, "type": "INT64"}, "position": {"value": 0, "type": "INT64"}, "sortTypeExt": {"value": 0, "type": "INT64"}, }, "pluginFields": {}, "recordChangeTag": "3mp3", "created": { "timestamp": 1600316906967, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1611168194962, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "----Root-Folder----", "recordType": "CPLAlbum", "fields": { "recordModificationDate": { "value": 1611165435221, "type": "TIMESTAMP", }, "sortAscending": {"value": 1, "type": "INT64"}, "sortType": {"value": 0, "type": "INT64"}, "albumType": {"value": 3, "type": "INT64"}, "position": {"value": 0, "type": "INT64"}, "sortTypeExt": {"value": 0, "type": "INT64"}, }, "pluginFields": {}, "recordChangeTag": "3mp2", "created": { "timestamp": 1442497886351, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "361FF63C0FF75A92666117B37B680CB75643625D4D9DDAA5A6E5876E606350AA", }, "modified": { "timestamp": 1611168194962, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "E803E065-D8A4-4398-DE23-23F8FD0886EB", "recordType": "CPLAlbum", "fields": { "recordModificationDate": { "value": 1608493740571, "type": "TIMESTAMP", }, "sortAscending": {"value": 1, "type": "INT64"}, "sortType": {"value": 0, "type": "INT64"}, "albumType": {"value": 0, "type": "INT64"}, "albumNameEnc": { "value": "YWxidW0tMQ==", # album-1 "type": "ENCRYPTED_BYTES", }, "position": {"value": 1063936, "type": "INT64"}, "sortTypeExt": {"value": 0, "type": "INT64"}, }, "pluginFields": {}, "recordChangeTag": "3km2", "created": { "timestamp": 1496340770777, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1608493742434, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "D41A228F-D89E-494A-8EEF-853D461B68CF", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "E4RT4FB7-4A35-4958-1D42-5769E66BE407", "recordType": "CPLAlbum", "fields": { "recordModificationDate": { "value": 1608493740571, "type": "TIMESTAMP", }, "sortAscending": {"value": 1, "type": "INT64"}, "sortType": {"value": 0, "type": "INT64"}, "albumType": {"value": 0, "type": "INT64"}, "albumNameEnc": { "value": "YWxidW0gMg==", # album 2 "type": "ENCRYPTED_BYTES", }, "position": {"value": 1065984, "type": "INT64"}, "sortTypeExt": {"value": 0, "type": "INT64"}, }, "pluginFields": {}, "recordChangeTag": "3km7", "created": { "timestamp": 1546997094145, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1608493743317, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "D41A228F-D89E-494A-8EEF-853D461B68CF", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, ], "syncToken": "<PASSWORD>", }, }, { "data": { "query": { "filterBy": [ { "fieldName": "startRank", "fieldValue": {"type": "INT64", "value": 0}, "comparator": "EQUALS", }, { "fieldName": "direction", "fieldValue": {"type": "STRING", "value": "ASCENDING"}, "comparator": "EQUALS", }, { "fieldName": "parentId", "comparator": "EQUALS", "fieldValue": { "type": "STRING", "value": "E4RT4FB7-4A35-4958-1D42-5769E66BE407", }, }, ], "recordType": "CPLContainerRelationLiveByAssetDate", }, "resultsLimit": 200, "desiredKeys": [ "resJPEGFullWidth", "resJPEGFullHeight", "resJPEGFullFileType", "resJPEGFullFingerprint", "resJPEGFullRes", "resJPEGLargeWidth", "resJPEGLargeHeight", "resJPEGLargeFileType", "resJPEGLargeFingerprint", "resJPEGLargeRes", "resJPEGMedWidth", "resJPEGMedHeight", "resJPEGMedFileType", "resJPEGMedFingerprint", "resJPEGMedRes", "resJPEGThumbWidth", "resJPEGThumbHeight", "resJPEGThumbFileType", "resJPEGThumbFingerprint", "resJPEGThumbRes", "resVidFullWidth", "resVidFullHeight", "resVidFullFileType", "resVidFullFingerprint", "resVidFullRes", "resVidMedWidth", "resVidMedHeight", "resVidMedFileType", "resVidMedFingerprint", "resVidMedRes", "resVidSmallWidth", "resVidSmallHeight", "resVidSmallFileType", "resVidSmallFingerprint", "resVidSmallRes", "resSidecarWidth", "resSidecarHeight", "resSidecarFileType", "resSidecarFingerprint", "resSidecarRes", "itemType", "dataClassType", "filenameEnc", "originalOrientation", "resOriginalWidth", "resOriginalHeight", "resOriginalFileType", "resOriginalFingerprint", "resOriginalRes", "resOriginalAltWidth", "resOriginalAltHeight", "resOriginalAltFileType", "resOriginalAltFingerprint", "resOriginalAltRes", "resOriginalVidComplWidth", "resOriginalVidComplHeight", "resOriginalVidComplFileType", "resOriginalVidComplFingerprint", "resOriginalVidComplRes", "isDeleted", "isExpunged", "dateExpunged", "remappedRef", "recordName", "recordType", "recordChangeTag", "masterRef", "adjustmentRenderType", "assetDate", "addedDate", "isFavorite", "isHidden", "orientation", "duration", "assetSubtype", "assetSubtypeV2", "assetHDRType", "burstFlags", "burstFlagsExt", "burstId", "captionEnc", "locationEnc", "locationV2Enc", "locationLatitude", "locationLongitude", "adjustmentType", "timeZoneOffset", "vidComplDurValue", "vidComplDurScale", "vidComplDispValue", "vidComplDispScale", "vidComplVisibilityState", "customRenderedValue", "containerId", "itemId", "position", "isKeyAsset", ], "zoneID": {"zoneName": "PrimarySync"}, }, "response": { "records": [ { "recordName": "YN1v8eGiHYYZ/aKUkMuGtSf0P1BN", "recordType": "CPLMaster", "fields": { "itemType": {"value": "public.jpeg", "type": "STRING"}, "resJPEGThumbFingerprint": { "value": "DmK0xzSiAUSFrAsYYAvby7QHrMDe", "type": "STRING", }, "filenameEnc": { "value": "SU1HXzMzMjguSlBH", "type": "ENCRYPTED_BYTES", }, "resJPEGMedRes": { "value": { "fileChecksum": "EeGlt2PppPTgd0Q7mp8GenIugSh7", "size": 2194253, "wrappingKey": "amaCdL9Z+QxfzgD4+aYATg==", "referenceChecksum": "AQYmx+DRYXnMs0tkDZ3rorp4IB99", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/EeGlt2PppPTgd0Q7mp8GenIugSh7AQYmx-DRYXnMs0tkDZ3rorp4IB99/${f}?o=Ai6vEWSVp5w5zaBTm7XvC55prdq006u5yUW5EfZs4KLT&v=1&x=3&a=CAogvhLnXY3DD7gxkuzbuKlak-NMlKvq37s7a-beQRlkZCsSbRCbkq2nty8Ym--IqbcvIgEAUgQugSh6WgR4IB99aiYQWP8altHEtfDsXqRVOJ19O49YwikLbHn5Ha6IeAIHhXVRK7Fpa3ImBoK0z2Usv0QeZBog1G6uVLc1ZapiFVtXuoc52Ijt3dpb4J3VMIA&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=amaCdL9Z-QxfzgD4-aYATg&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=J9LA0hC_xBV3TqYvwg_zAPWPwH8", }, "type": "ASSETID", }, "originalOrientation": {"value": 1, "type": "INT64"}, "resJPEGMedHeight": {"value": 1559, "type": "INT64"}, "resOriginalRes": { "value": { "fileChecksum": "YN1v8eGiHYYZ/aKUkMuGtSf0P1BN", "size": 2194253, "wrappingKey": "Y40xDPUr6DmxfeoSqxaQ7A==", "referenceChecksum": "AXKVYPcDa+9Mjvnap0ZS+p2Z24V3", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/YN1v8eGiHYYZ_aKUkMuGtSf0P1BNAXKVYPcDa-9Mjvnap0ZS-p2Z24V3/${f}?o=Ame-Q1e_1nWqIn7YG7VfVZk-XAs8bVdcHo-owaNRmfPn&v=1&x=3&a=CAogwS503Q9EkCdnzvD-kLG0VNwrlEmARONCS-hADMtqg1QSbRCckq2nty8YnO-IqbcvIgEAUgT0P1BNWgSZ24V3aiYLdjzdjGLXPtKfjwtH_PG0ralgbDDBOIftNXxyRxdhzz8OuZztNnImb65YPlo1qUOy4i7tW1pcyAZcjqS8kYfxPQD6SKIAKNk3dUid7mE&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=Y40xDPUr6DmxfeoSqxaQ7A&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=X91oiOo0Avp6TR4d27MGupd_cqY", }, "type": "ASSETID", }, "resJPEGMedFileType": { "value": "public.jpeg", "type": "STRING", }, "resJPEGThumbHeight": {"value": 365, "type": "INT64"}, "resJPEGThumbWidth": {"value": 472, "type": "INT64"}, "resOriginalWidth": {"value": 3100, "type": "INT64"}, "resJPEGThumbFileType": { "value": "public.jpeg", "type": "STRING", }, "dataClassType": {"value": 1, "type": "INT64"}, "resOriginalFingerprint": { "value": "YN1v8eGiHYYZ/aKUkMuGtSf0P1BN", "type": "STRING", }, "resJPEGMedWidth": {"value": 2016, "type": "INT64"}, "resJPEGThumbRes": { "value": { "fileChecksum": "DmK0xzSiAUSFrAsYYAvby7QHrMDe", "size": 2194253, "wrappingKey": "r7EeA3tyPsWdcECp6X9dHA==", "referenceChecksum": "AR5TiM9Qko4rHwmoDH1BgNRVZpF4", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/DmK0xzSiAUSFrAsYYAvby7QHrMDeAR5TiM9Qko4rHwmoDH1BgNRVZpF4/${f}?o=AjM3SMy6F9O-5AWTv2HnEp_GiL7ycAx1ls3yOqypKX-3&v=1&x=3&a=CAogiUnx0vJRhNr8Xt_dbOGrxiu8gKNAz_l_8Z5TVGmok64SbRCckq2nty8YnO-IqbcvIgEAUgQHrMObWgRVZpF4aiYwQUojYj2kyD-EyrtVjkw5sVJ60NK0x8nKjsjNXzTYH__dA6VcCHImQduy0Vis9tCiB3ox2KXKiyf3NOaih9TbQ8KfJ8H_8sFzdtXHw8I&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=r7EeA3tyPsWdcECp6X9dHA&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=m2Z7uOxYG9iNHiAZbLm6OE2O6hE", }, "type": "ASSETID", }, "resOriginalFileType": { "value": "public.jpeg", "type": "STRING", }, "resOriginalHeight": {"value": 2398, "type": "INT64"}, "resJPEGMedFingerprint": { "value": "EeGlt2PppPTgd0Q7mp8GenIugSh7", "type": "STRING", }, }, "pluginFields": {}, "recordChangeTag": "3pjq", "created": { "timestamp": 1596388681827, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1619641691167, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "ENKzBUr+DdmTaP/GEAglTurWtsen", "recordType": "CPLMaster", "fields": { "itemType": {"value": "public.jpeg", "type": "STRING"}, "resJPEGThumbFingerprint": { "value": "ASy6f/leU1+xkR1aPmQyvYmwHUpE", "type": "STRING", }, "filenameEnc": { "value": "SU1HXzMzMjcuSlBH", "type": "ENCRYPTED_BYTES", }, "resJPEGMedRes": { "value": { "fileChecksum": "NOHzBUr+DdmTaP/SAVglTurWtsen", "size": 2194253, "wrappingKey": "<KEY> "referenceChecksum": "Ab5Vyk36t2jwuON7WSxvon/DvGtK", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/ARKzBUr-DdmTaP_SAVglTurWtsmrAb5Vyk36t2jwuON7WSxvon_DvGtK/${f}?o=AnHR_fOkcKyPuLPOCXcp9C52pM-oZefmc9efp0e0ahAO&v=1&x=3&a=CAogf7lfgZsLeoZdnUfnSzBMLzy9WrbD7vMgHjmY9CI7_uESbRCmkq2nty8Ypu-IqbcvIgEAUgTWtsmrWgTDvGtKaiYANfDoXLBqjbu3_O1AGa62AuKbnBEsqXqysujWIiFYxe-i-AiEb3ImWrZCs4OP45m3SoQL7fh49dD-aHcXkEMAfevtQ6xh5-RH-5bq3sQ&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=eqUQfTajfGXgQHbBJh8Qwg&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=ci4ad9AWukocHK1gYXbJrx-Ok9M", }, "type": "ASSETID", }, "originalOrientation": {"value": 1, "type": "INT64"}, "resJPEGMedHeight": {"value": 1788, "type": "INT64"}, "resOriginalRes": { "value": { "fileChecksum": "ENKzBUr+DdmTaP/GEAglTurWtsen", "size": 2194253, "wrappingKey": "tPtP2Y7mGQ4yOsOCMFG/sg==", "referenceChecksum": "Ad0I2qxdsqlGuSLlqtTBgoKndHE/", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/AUvKU8j-Z5pfqGI_fe-9tibuqfVRAd0I2qxdsqlGuSLlqtTBgoKndHE_/${f}?o=AuoILQZ6O-MHJ-g-prxkKJNvAz0wU24Va6re5l5JIhrW&v=1&x=3&a=CAogiV6FTwlLeQt348ipvPuax8JBYrtL7o0q7WMX775pR4YSbRCmkq2nty8Ypu-IqbcvIgEAUgTuqfVRWgSndHE_aiZN21K0DzyVdoR0roYdRIUTUdT16tIhKWq2fJfrIDzHjd0YU3MhW3ImUfLx8SZ3FmkyDDQA-J5nJkGVtdKMsxmegM4H68EIUA9-idz8C-g&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=tPtP2Y7mGQ4yOsOCMFG_sg&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=4MygIoxG8NYN-VK3zWB-a-wqy7c", }, "type": "ASSETID", }, "resJPEGMedFileType": { "value": "public.jpeg", "type": "STRING", }, "resJPEGThumbHeight": {"value": 419, "type": "INT64"}, "resJPEGThumbWidth": {"value": 412, "type": "INT64"}, "resOriginalWidth": {"value": 2268, "type": "INT64"}, "resJPEGThumbFileType": { "value": "public.jpeg", "type": "STRING", }, "dataClassType": {"value": 1, "type": "INT64"}, "resOriginalFingerprint": { "value": "ENKzBUr+DdmTaP/GEAglTurWtsen", "type": "STRING", }, "resJPEGMedWidth": {"value": 1759, "type": "INT64"}, "resJPEGThumbRes": { "value": { "fileChecksum": "ASy6f/leU1+xkR1aPmQyvYmwHUpE", "size": 2194253, "wrappingKey": "E1zCp4gxgoHQNQHWjS3Wag==", "referenceChecksum": "ARHOzkI3sbX3SZDmNQgttNJ9DqQa", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/ASy6f_leU1-xkR1aPmQyvYmwHUpEARHOzkI3sbX3SZDmNQgttNJ9DqQa/${f}?o=AiE0LlRJclp9DPkfhwdmJUfxo_vgP7JLWn3qtvPUeTuS&v=1&x=3&a=CAogroLnmMZUEfwNczwEl6zmt6YvBGhwJnPwcJogyD0-dYESbRCmkq2nty8Ypu-IqbcvIgEAUgSwHUpEWgR9DqQaaiZ5SoSlUQbaa-uaRlv6ga8Vyh14lIf466mlURl-3DYa6jr_6SsjQnImlqDZof_hQbcHONiYRrB9MXnKpJ9akb7rPc8_GAwPduNtPHAhBBk&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=E1zCp4gxgoHQNQHWjS3Wag&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=5uuV1dFCaVoK0EhvreVHqYZiBNM", }, "type": "ASSETID", }, "resOriginalFileType": { "value": "public.jpeg", "type": "STRING", }, "resOriginalHeight": {"value": 2306, "type": "INT64"}, "resJPEGMedFingerprint": { "value": "NOHzBUr+DdmTaP/SAVglTurWtsen", "type": "STRING", }, }, "pluginFields": {}, "recordChangeTag": "3pjr", "created": { "timestamp": 1596388681829, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1619641691167, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "AUxVFT2yVsQ5739tmU5c1497duFD", "recordType": "CPLMaster", "fields": { "itemType": {"value": "public.jpeg", "type": "STRING"}, "resJPEGThumbFingerprint": { "value": "ASPVZ/Pft6gIN2VEA/oUbqQzh6Wy", "type": "STRING", }, "filenameEnc": { "value": "SU1HXzMzMjIuSlBH", "type": "ENCRYPTED_BYTES", }, "resJPEGMedRes": { "value": { "fileChecksum": "ASTSuc7S58IPmVCJIUslbeCRjsno", "size": 2194253, "wrappingKey": "<KEY>==", "referenceChecksum": "ASIoOBi88potAS0gE8tfnojuSlrb", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/ASTSuc7S58IPmVCJIUslbeCRjsnoASIoOBi88potAS0gE8tfnojuSlrb/${f}?o=AotG4ZrSZDU3u6kP4yWDFXfZ3_6tKEyLXvh4gcpo4ELn&v=1&x=3&a=CAogJr6QVcZkN2p9iAoOF0Tr4qnsmeCHSHrFoTzxEHq7NQUSbRCwkq2nty8YsO-IqbcvIgEAUgSRjsnoWgTuSlrbaibzwCZQjqQ5JaCOYReCcRWatftcle04VKPDs1BnZT75v_W_X7tuyXImMWPY8r1ICHzS3Us89foRJ0jtqcXwvVd3nT7EM6EPexOdJAI4_qQ&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=ysHoAuqERA8H3MadxO6-PA&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=TiejMZ9ftbHECNhJzeowymOGu3I", }, "type": "ASSETID", }, "originalOrientation": {"value": 1, "type": "INT64"}, "resJPEGMedHeight": {"value": 2101, "type": "INT64"}, "resOriginalRes": { "value": { "fileChecksum": "AUxVFT2yVsQ5739tmU5c1497duFD", "size": 2194253, "wrappingKey": "8ydPkuUeW1rXYBf+8EUhWQ==", "referenceChecksum": "AdkoZP1534bwlULpwCdn2fd44LAt", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/AUxVFT2yVsQ5739tmU5c1497duFDAdkoZP1534bwlULpwCdn2fd44LAt/${f}?o=AtyLCU3HpSWYfXnAPtzDXkhqPhQVX_2KI1m03qQMcrX8&v=1&x=3&a=CAoguSOx9xIzgn8O-3JZPJEFmuCqSpNEdkQUdkK-kdTjfyQSbRCwkq2nty8YsO-IqbcvIgEAUgR7duFDWgR44LAtaiYyf1-bnKqpPXGMfJ_iZeMO0Ar6T3qqD2Nwc5hia_fAPn-qOLNguXImMEz0ks6Sun_tBea1p7Gs39vk_ERXdi-KrSpKwpkhrUNPNhAl3t4&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=8ydPkuUeW1rXYBf-8EUhWQ&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=hYKaX0XrV6ghQqijbnjdyNejnec", }, "type": "ASSETID", }, "resJPEGMedFileType": { "value": "public.jpeg", "type": "STRING", }, "resJPEGThumbHeight": {"value": 492, "type": "INT64"}, "resJPEGThumbWidth": {"value": 351, "type": "INT64"}, "resOriginalWidth": {"value": 2899, "type": "INT64"}, "resJPEGThumbFileType": { "value": "public.jpeg", "type": "STRING", }, "dataClassType": {"value": 1, "type": "INT64"}, "resOriginalFingerprint": { "value": "AUxVFT2yVsQ5739tmU5c1497duFD", "type": "STRING", }, "resJPEGMedWidth": {"value": 1498, "type": "INT64"}, "resJPEGThumbRes": { "value": { "fileChecksum": "ASPVZ/Pft6gIN2VEA/oUbqQzh6Wy", "size": 2194253, "wrappingKey": "3EAjgkS2+Mr38eqQFk7C0A==", "referenceChecksum": "AXd258pYF6LLhmADLoZAumNqI+8M", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/ASPVZ_Pft6gIN2VEA_oUbqQzh6WyAXd258pYF6LLhmADLoZAumNqI-8M/${f}?o=AtA8VtFypX8-ayXsVGPnssT56G8EM8ZdWr3nFmug2dPM&v=1&x=3&a=CAogZYCSkK2TW_pwByMq7sMg791XyNwx5u0lgyxvV0cKs3YSbRCxkq2nty8Yse-IqbcvIgEAUgQzh6WyWgRqI-8MaibbeMKtZNDpNkTWx6jOoPY4npOZt2t0xHw4QfV3u2b-KI47DIvSOXImJp7IX_oKObj3XLk-Gvvg-9z_e9JYfqbOJyUNAxz_e5wdxr6wQxs&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=3EAjgkS2-Mr38eqQFk7C0A&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=PbVsX_tz5q6QJFzf_TxHZ1SH79I", }, "type": "ASSETID", }, "resOriginalFileType": { "value": "public.jpeg", "type": "STRING", }, "resOriginalHeight": {"value": 4067, "type": "INT64"}, "resJPEGMedFingerprint": { "value": "ASTSuc7S58IPmVCJIUslbeCRjsno", "type": "STRING", }, }, "pluginFields": {}, "recordChangeTag": "3pjs", "created": { "timestamp": 1595274371241, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1619641691167, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "Ab/8kUAhnGzSxnl9yWvh8JKBpOvV", "recordType": "CPLMaster", "fields": { "itemType": {"value": "public.jpeg", "type": "STRING"}, "resJPEGThumbFingerprint": { "value": "AQNND5zpteAXnnBP2BmDd0ropjY9", "type": "STRING", }, "filenameEnc": { "value": "SU1HXzMyMDYuSlBH", "type": "ENCRYPTED_BYTES", }, "resJPEGMedRes": { "value": { "fileChecksum": "ATTRy6p+Q3U1HqcF6BUKrrOMnjvn", "size": 2194253, "wrappingKey": "<KEY> "referenceChecksum": "ATqG89bMsXhtmMRMw009uhyJc/Kh", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/ATTRy6p-Q3U1HqcF6BUKrrOMnjvnATqG89bMsXhtmMRMw009uhyJc_Kh/${f}?o=AovA4TUyNl2kYkqOdInhEXGZ_6Lgkx1fTEsqpkkMh3hm&v=1&x=3&a=CAogVnr-sKWlefxaxarlxJ-k7EPRB-Q851T9df9zyhCvis0SbRC7kq2nty8Yu--IqbcvIgEAUgSMnjvnWgSJc_KhaiZCiMEZuykdl4ex2Ra8y53DbEEtJi6ItoX1e6b8TOoWXYiLA-mkr3Im7aDvMFg_m7tYuslgLZFXL8hxJftHL4oTy1ZpuVaP__2nTQTPLp4&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=pYDpdhqdaL9SAxHilZEj3Q&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=IKz0oqClwHpM9shdTb3e5liYV5E", }, "type": "ASSETID", }, "originalOrientation": {"value": 1, "type": "INT64"}, "resJPEGMedHeight": {"value": 1781, "type": "INT64"}, "resOriginalRes": { "value": { "fileChecksum": "Ab/8kUAhnGzSxnl9yWvh8JKBpOvV", "size": 2194253, "wrappingKey": "YIFaf0awZsX16khQaJ5pHw==", "referenceChecksum": "AVLSGMHt+PAQ9/krqqfXATNX57d5", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/Ab_8kUAhnGzSxnl9yWvh8JKBpOvVAVLSGMHt-PAQ9_krqqfXATNX57d5/${f}?o=AvHBwurT0LTKni3mzYNLu4FnSeLeXfxYgSThZ4ImxjO8&v=1&x=3&a=CAogTIPbEVbPukTNLTRMbKPr3KEw-OwlmwJ6E2P4TWSVmS0SbRC7kq2nty8Yu--IqbcvIgEAUgSBpOvVWgRX57d5aibAoDs2oxjwpsMmZzKDj2ndE0sAhXdcwzBu-U_oZGpb059mW6D0dnImIjbNA_Bqcyw_VKQmNxeLtnGtGwyFB16OPwFKYcs1KsSFvHFAD7Y&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=YIFaf0awZsX16khQaJ5pHw&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=1bdqdYxBN6JqLAkjMyHSEGNkqDA", }, "type": "ASSETID", }, "resJPEGMedFileType": { "value": "public.jpeg", "type": "STRING", }, "resJPEGThumbHeight": {"value": 417, "type": "INT64"}, "resJPEGThumbWidth": {"value": 413, "type": "INT64"}, "resOriginalWidth": {"value": 1995, "type": "INT64"}, "resJPEGThumbFileType": { "value": "public.jpeg", "type": "STRING", }, "dataClassType": {"value": 1, "type": "INT64"}, "resOriginalFingerprint": { "value": "Ab/8kUAhnGzSxnl9yWvh8JKBpOvV", "type": "STRING", }, "resJPEGMedWidth": {"value": 1765, "type": "INT64"}, "resJPEGThumbRes": { "value": { "fileChecksum": "AQNND5zpteAXnnBP2BmDd0ropjY9", "size": 2194253, "wrappingKey": "lxLQBw46n1nvea4s30UY+A==", "referenceChecksum": "AV2Zh7WygJu74eNWVuuMT4lM8qme", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/AQNND5zpteAXnnBP2BmDd0ropjY9AV2Zh7WygJu74eNWVuuMT4lM8qme/${f}?o=ArcD2SL9b5Gy5zcnrnT2luycDRZzFLjOiX-8u9IWdQM2&v=1&x=3&a=CAogfF6-sW-XhnsFDy-vqHQjR8LXVO4OmxBUqG4CZf1zmOwSbRC8kq2nty8YvO-IqbcvIgEAUgTopjY9WgRM8qmeaibiG79B2YhfcchV4W9EgxQXAN4Bpi57NX82WXqo_YW-xi1qLAH9-HImRd8oYhd7r27sXPkUL3GT-rKGSKG-leLeNevi3ay090liNNZH-2U&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=lxLQBw46n1nvea4s30UY-A&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=34vgVK6vLEdlpYceHAmIfqIp1Fk", }, "type": "ASSETID", }, "resOriginalFileType": { "value": "public.jpeg", "type": "STRING", }, "resOriginalHeight": {"value": 2013, "type": "INT64"}, "resJPEGMedFingerprint": { "value": "ATTRy6p+Q3U1HqcF6BUKrrOMnjvn", "type": "STRING", }, }, "pluginFields": {}, "recordChangeTag": "2wtv", "created": { "timestamp": 1574869225887, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1595187513229, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "AVx3/VKkbWPdNbWw68mrWzSuemXg", "recordType": "CPLMaster", "fields": { "itemType": {"value": "public.jpeg", "type": "STRING"}, "resJPEGThumbFingerprint": { "value": "ARpHiouI3Ib/ziuZYTCiSikohvMY", "type": "STRING", }, "filenameEnc": { "value": "SU1HXzMxNDguSlBH", "type": "ENCRYPTED_BYTES", }, "resJPEGMedRes": { "value": { "fileChecksum": "ARZd/GzpY62XRtXt+jP6UsV4fBZH", "size": 2194253, "wrappingKey": "dmZqsyvxEA4s3CvifNMApA==", "referenceChecksum": "ATi6BbOzDuHl6RONNFCub9eqZqSm", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/ARZd_GzpY62XRtXt-jP6UsV4fBZHATi6BbOzDuHl6RONNFCub9eqZqSm/${f}?o=AkMi62tflbXgUrgSyQZ94SinXG9TYXZ6tydGOmDQx9HG&v=1&x=3&a=CAogc8yqpMgxKnf363cp0n1CujaxnsWY_KrZ3VEN9QchlhcSbRDGkq2nty8Yxu-IqbcvIgEAUgR4fBZHWgSqZqSmaiaxcg1zIsiESwGaEOecYR84r83ltACA6SY5ypGyvYxKD0M3LmqI8HIm7n2S2UL6EBM2Z3a9YFIGX8MrKABFDMA5TXFPUVUP6AfsnKigVMc&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=dmZqsyvxEA4s3CvifNMApA&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=rYmwpGBg6DPYHSGj6UAOnCfuMPk", }, "type": "ASSETID", }, "originalOrientation": {"value": 1, "type": "INT64"}, "resJPEGMedHeight": {"value": 1747, "type": "INT64"}, "resOriginalRes": { "value": { "fileChecksum": "AVx3/VKkbWPdNbWw68mrWzSuemXg", "size": 2194253, "wrappingKey": "Nz2a7ohpe3KPptCk0J0lWA==", "referenceChecksum": "AdUIDFzHC2rVOvwTz0jPi/tKihnb", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/AVx3_VKkbWPdNbWw68mrWzSuemXgAdUIDFzHC2rVOvwTz0jPi_tKihnb/${f}?o=AksMTyqi4NosuW50ei90oXcv82fP1r-6QocLorp20RpO&v=1&x=3&a=CAogfvU0-_8L-3qRcy6jZsj3Vuqt4aL2rk5xVXF7lwVV6A8SbRDGkq2nty8Yxu-IqbcvIgEAUgSuemXgWgRKihnbaiZoWboa3qYl3KVDo1VGIHrRDoySixw8lzXtf1Y-AnoVN1Pd4hLkPnImXYuLGS8iK7BRJcQg25R5hk54OD04duy2TscnYu1mACOSERXpXEI&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=Nz2a7ohpe3KPptCk0J0lWA&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=t3NT5mCLmsRjPqAGvROVsMrAjfg", }, "type": "ASSETID", }, "resJPEGMedFileType": { "value": "public.jpeg", "type": "STRING", }, "resJPEGThumbHeight": {"value": 409, "type": "INT64"}, "resJPEGThumbWidth": {"value": 421, "type": "INT64"}, "resOriginalWidth": {"value": 2132, "type": "INT64"}, "resJPEGThumbFileType": { "value": "public.jpeg", "type": "STRING", }, "dataClassType": {"value": 1, "type": "INT64"}, "resOriginalFingerprint": { "value": "AVx3/VKkbWPdNbWw68mrWzSuemXg", "type": "STRING", }, "resJPEGMedWidth": {"value": 1799, "type": "INT64"}, "resJPEGThumbRes": { "value": { "fileChecksum": "ARpHiouI3Ib/ziuZYTCiSikohvMY", "size": 2194253, "wrappingKey": "UiIQr3rRvyIcoAz/sxDugQ==", "referenceChecksum": "ARtMrcvA8cbMefPDnmwSWQwe+mBd", # pylint: disable=C0321 "downloadURL": "https://cvws.icloud-content.com/B/ARpHiouI3Ib_ziuZYTCiSikohvMYARtMrcvA8cbMefPDnmwSWQwe-mBd/${f}?o=Auh2MA-6wuqdRGUDQ4kZL3fuuuMVWVVnTnTcThej9ad5&v=1&x=3&a=CAogaHp1wKKc8QF3MI-2OrLYdQx8V4PIVZvFQyuN1m6pXFMSbRDHkq2nty8Yx--IqbcvIgEAUgQohvMYWgQe-mBdaibQsOQuSEfHUK0xs9nLWG6nHKAvRCwkkmsvXL1Ku9aCARYpDg4mWHImDCoL_RiyOC-KXU_0Jpntuid9MdC08bvpHUp5hkzlctbjsBvT654&e=1629757781&fl=&r=4d5c62f6-c81b-4e60-a785-4139aad087a7-1&k=UiIQr3rRvyIcoAz_sxDugQ&ckc=com.apple.photos.cloud&ckz=PrimarySync&y=1&p=104&s=Rx2sZoVhs_Phm_Ps3RvVwJ2mgvA", }, "type": "ASSETID", }, "resOriginalFileType": { "value": "public.jpeg", "type": "STRING", }, "resOriginalHeight": {"value": 2070, "type": "INT64"}, "resJPEGMedFingerprint": { "value": "ARZd/GzpY62XRtXt+jP6UsV4fBZH", "type": "STRING", }, }, "pluginFields": {}, "recordChangeTag": "2wwt", "created": { "timestamp": 1572285894332, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1595187518048, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "248AFAAE-062C-40BB-92C6-B47084527A9E", "recordType": "CPLAsset", "fields": { "assetDate": {"value": 1596386628825, "type": "TIMESTAMP"}, "orientation": {"value": 1, "type": "INT64"}, "addedDate": {"value": 1596386628833, "type": "TIMESTAMP"}, "assetSubtypeV2": {"value": 0, "type": "INT64"}, "assetHDRType": {"value": 0, "type": "INT64"}, "timeZoneOffset": {"value": -25200, "type": "INT64"}, "masterRef": { "value": { "recordName": "YN1v8eGiHYYZ/aKUkMuGtSf0P1BN", "action": "DELETE_SELF", "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, "type": "REFERENCE", }, "adjustmentRenderType": {"value": 0, "type": "INT64"}, "vidComplDispScale": {"value": 0, "type": "INT64"}, "isHidden": {"value": 0, "type": "INT64"}, "duration": {"value": 0, "type": "INT64"}, "burstFlags": {"value": 0, "type": "INT64"}, "assetSubtype": {"value": 0, "type": "INT64"}, "vidComplDurScale": {"value": 0, "type": "INT64"}, "vidComplDurValue": {"value": 0, "type": "INT64"}, "vidComplVisibilityState": {"value": 0, "type": "INT64"}, "customRenderedValue": {"value": 0, "type": "INT64"}, "isFavorite": {"value": 0, "type": "INT64"}, "vidComplDispValue": {"value": 0, "type": "INT64"}, }, "pluginFields": {}, "recordChangeTag": "3qdm", "created": { "timestamp": 1596388681828, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1622829385777, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "32187DDB-371D-4616-A311-8A3ACA0FA5FE", "recordType": "CPLAsset", "fields": { "assetDate": {"value": 1596386602837, "type": "TIMESTAMP"}, "orientation": {"value": 1, "type": "INT64"}, "addedDate": {"value": 1596386602843, "type": "TIMESTAMP"}, "assetSubtypeV2": {"value": 0, "type": "INT64"}, "assetHDRType": {"value": 0, "type": "INT64"}, "timeZoneOffset": {"value": -25200, "type": "INT64"}, "masterRef": { "value": { "recordName": "ENKzBUr+DdmTaP/GEAglTurWtsen", "action": "DELETE_SELF", "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, "type": "REFERENCE", }, "adjustmentRenderType": {"value": 0, "type": "INT64"}, "vidComplDispScale": {"value": 0, "type": "INT64"}, "isHidden": {"value": 0, "type": "INT64"}, "duration": {"value": 0, "type": "INT64"}, "burstFlags": {"value": 0, "type": "INT64"}, "assetSubtype": {"value": 0, "type": "INT64"}, "vidComplDurScale": {"value": 0, "type": "INT64"}, "vidComplDurValue": {"value": 0, "type": "INT64"}, "vidComplVisibilityState": {"value": 0, "type": "INT64"}, "customRenderedValue": {"value": 0, "type": "INT64"}, "isFavorite": {"value": 0, "type": "INT64"}, "vidComplDispValue": {"value": 0, "type": "INT64"}, }, "pluginFields": {}, "recordChangeTag": "3h64", "created": { "timestamp": 1596388681830, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1596466239177, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "D41A228F-D89E-494A-8EEF-853D461B68CF", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "BEF79215-3125-45B2-A54C-39E47DBFB23A", "recordType": "CPLAsset", "fields": { "assetDate": {"value": 1595267003960, "type": "TIMESTAMP"}, "orientation": {"value": 1, "type": "INT64"}, "addedDate": {"value": 1595267004003, "type": "TIMESTAMP"}, "assetSubtypeV2": {"value": 0, "type": "INT64"}, "assetHDRType": {"value": 0, "type": "INT64"}, "timeZoneOffset": {"value": -25200, "type": "INT64"}, "masterRef": { "value": { "recordName": "AUxVFT2yVsQ5739tmU5c1497duFD", "action": "DELETE_SELF", "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, "type": "REFERENCE", }, "adjustmentRenderType": {"value": 0, "type": "INT64"}, "vidComplDispScale": {"value": 0, "type": "INT64"}, "isHidden": {"value": 0, "type": "INT64"}, "duration": {"value": 0, "type": "INT64"}, "burstFlags": {"value": 0, "type": "INT64"}, "assetSubtype": {"value": 0, "type": "INT64"}, "vidComplDurScale": {"value": 0, "type": "INT64"}, "vidComplDurValue": {"value": 0, "type": "INT64"}, "vidComplVisibilityState": {"value": 0, "type": "INT64"}, "customRenderedValue": {"value": 0, "type": "INT64"}, "isFavorite": {"value": 0, "type": "INT64"}, "vidComplDispValue": {"value": 0, "type": "INT64"}, }, "pluginFields": {}, "recordChangeTag": "3gwf", "created": { "timestamp": 1595274371245, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1595274371245, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "97362090-90E4-4F54-A564-14F7ECC02706", "recordType": "CPLAsset", "fields": { "assetDate": {"value": 1574840964935, "type": "TIMESTAMP"}, "orientation": {"value": 1, "type": "INT64"}, "addedDate": {"value": 1574840964970, "type": "TIMESTAMP"}, "assetSubtypeV2": {"value": 0, "type": "INT64"}, "assetHDRType": {"value": 0, "type": "INT64"}, "timeZoneOffset": {"value": 19800, "type": "INT64"}, "masterRef": { "value": { "recordName": "Ab/8kUAhnGzSxnl9yWvh8JKBpOvV", "action": "DELETE_SELF", "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, "type": "REFERENCE", }, "adjustmentRenderType": {"value": 0, "type": "INT64"}, "vidComplDispScale": {"value": 0, "type": "INT64"}, "isHidden": {"value": 0, "type": "INT64"}, "duration": {"value": 0, "type": "INT64"}, "burstFlags": {"value": 0, "type": "INT64"}, "assetSubtype": {"value": 0, "type": "INT64"}, "vidComplDurScale": {"value": 0, "type": "INT64"}, "vidComplDurValue": {"value": 0, "type": "INT64"}, "vidComplVisibilityState": {"value": 0, "type": "INT64"}, "customRenderedValue": {"value": 0, "type": "INT64"}, "isFavorite": {"value": 0, "type": "INT64"}, "vidComplDispValue": {"value": 0, "type": "INT64"}, }, "pluginFields": {}, "recordChangeTag": "2wtw", "created": { "timestamp": 1574869225891, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1595187513229, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "986F607D-E8E0-45C4-B230-EF37B7E40B77", "recordType": "CPLAsset", "fields": { "assetDate": {"value": 1572285626625, "type": "TIMESTAMP"}, "orientation": {"value": 1, "type": "INT64"}, "addedDate": {"value": 1572285626635, "type": "TIMESTAMP"}, "assetSubtypeV2": {"value": 0, "type": "INT64"}, "assetHDRType": {"value": 0, "type": "INT64"}, "timeZoneOffset": {"value": -25200, "type": "INT64"}, "masterRef": { "value": { "recordName": "AVx3/VKkbWPdNbWw68mrWzSuemXg", "action": "DELETE_SELF", "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, "type": "REFERENCE", }, "adjustmentRenderType": {"value": 0, "type": "INT64"}, "vidComplDispScale": {"value": 0, "type": "INT64"}, "isHidden": {"value": 0, "type": "INT64"}, "duration": {"value": 0, "type": "INT64"}, "burstFlags": {"value": 0, "type": "INT64"}, "assetSubtype": {"value": 0, "type": "INT64"}, "vidComplDurScale": {"value": 0, "type": "INT64"}, "vidComplDurValue": {"value": 0, "type": "INT64"}, "vidComplVisibilityState": {"value": 0, "type": "INT64"}, "customRenderedValue": {"value": 0, "type": "INT64"}, "isFavorite": {"value": 0, "type": "INT64"}, "vidComplDispValue": {"value": 0, "type": "INT64"}, }, "pluginFields": {}, "recordChangeTag": "2wwu", "created": { "timestamp": 1572285894335, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1595187518048, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "248AFAAE-062C-40BB-92C6-B47084527A9E-IN-E4RT4FB7-4A35-4958-1D42-5769E66BE407", "recordType": "CPLContainerRelation", "fields": { "itemId": { "value": "248AFAAE-062C-40BB-92C6-B47084527A9E", "type": "STRING", }, "isKeyAsset": {"value": 0, "type": "INT64"}, "position": {"value": 6144, "type": "INT64"}, "containerId": { "value": "E4RT4FB7-4A35-4958-1D42-5769E66BE407", "type": "STRING", }, }, "pluginFields": {}, "recordChangeTag": "3h4p", "created": { "timestamp": 1596388681830, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1596388681830, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "32187DDB-371D-4616-A311-8A3ACA0FA5FE-IN-E4RT4FB7-4A35-4958-1D42-5769E66BE407", "recordType": "CPLContainerRelation", "fields": { "itemId": { "value": "32187DDB-371D-4616-A311-8A3ACA0FA5FE", "type": "STRING", }, "isKeyAsset": {"value": 0, "type": "INT64"}, "position": {"value": 5120, "type": "INT64"}, "containerId": { "value": "E4RT4FB7-4A35-4958-1D42-5769E66BE407", "type": "STRING", }, }, "pluginFields": {}, "recordChangeTag": "3h4q", "created": { "timestamp": 1596388681830, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1596388681830, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "BEF79215-3125-45B2-A54C-39E47DBFB23A-IN-E4RT4FB7-4A35-4958-1D42-5769E66BE407", "recordType": "CPLContainerRelation", "fields": { "itemId": { "value": "BEF79215-3125-45B2-A54C-39E47DBFB23A", "type": "STRING", }, "isKeyAsset": {"value": 0, "type": "INT64"}, "position": {"value": 4096, "type": "INT64"}, "containerId": { "value": "E4RT4FB7-4A35-4958-1D42-5769E66BE407", "type": "STRING", }, }, "pluginFields": {}, "recordChangeTag": "3gwj", "created": { "timestamp": 1595274371883, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1595274371883, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "97362090-90E4-4F54-A564-14F7ECC02706-IN-E4RT4FB7-4A35-4958-1D42-5769E66BE407", "recordType": "CPLContainerRelation", "fields": { "itemId": { "value": "97362090-90E4-4F54-A564-14F7ECC02706", "type": "STRING", }, "isKeyAsset": {"value": 0, "type": "INT64"}, "position": {"value": 3072, "type": "INT64"}, "containerId": { "value": "E4RT4FB7-4A35-4958-1D42-5769E66BE407", "type": "STRING", }, }, "pluginFields": {}, "recordChangeTag": "3f4w", "created": { "timestamp": 1574869421700, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1595190034254, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, { "recordName": "986F607D-E8E0-45C4-B230-EF37B7E40B77-IN-E4RT4FB7-4A35-4958-1D42-5769E66BE407", "recordType": "CPLContainerRelation", "fields": { "itemId": { "value": "986F607D-E8E0-45C4-B230-EF37B7E40B77", "type": "STRING", }, "isKeyAsset": {"value": 0, "type": "INT64"}, "position": {"value": 2048, "type": "INT64"}, "containerId": { "value": "E4RT4FB7-4A35-4958-1D42-5769E66BE407", "type": "STRING", }, }, "pluginFields": {}, "recordChangeTag": "3f7a", "created": { "timestamp": 1572285894336, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "modified": { "timestamp": 1595190039047, "userRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "deviceID": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23_1d5r3c201b3a4r5daac8ff7e7fbc0c23", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, }, ], "syncToken": "<PASSWORD>", }, }, { "data": { "query": { "filterBy": [ { "fieldName": "startRank", "fieldValue": {"type": "INT64", "value": 5}, "comparator": "EQUALS", }, { "fieldName": "direction", "fieldValue": {"type": "STRING", "value": "ASCENDING"}, "comparator": "EQUALS", }, { "fieldName": "parentId", "comparator": "EQUALS", "fieldValue": { "type": "STRING", "value": "E4RT4FB7-4A35-4958-1D42-5769E66BE407", }, }, ], "recordType": "CPLContainerRelationLiveByAssetDate", }, "resultsLimit": 200, "desiredKeys": [ "resJPEGFullWidth", "resJPEGFullHeight", "resJPEGFullFileType", "resJPEGFullFingerprint", "resJPEGFullRes", "resJPEGLargeWidth", "resJPEGLargeHeight", "resJPEGLargeFileType", "resJPEGLargeFingerprint", "resJPEGLargeRes", "resJPEGMedWidth", "resJPEGMedHeight", "resJPEGMedFileType", "resJPEGMedFingerprint", "resJPEGMedRes", "resJPEGThumbWidth", "resJPEGThumbHeight", "resJPEGThumbFileType", "resJPEGThumbFingerprint", "resJPEGThumbRes", "resVidFullWidth", "resVidFullHeight", "resVidFullFileType", "resVidFullFingerprint", "resVidFullRes", "resVidMedWidth", "resVidMedHeight", "resVidMedFileType", "resVidMedFingerprint", "resVidMedRes", "resVidSmallWidth", "resVidSmallHeight", "resVidSmallFileType", "resVidSmallFingerprint", "resVidSmallRes", "resSidecarWidth", "resSidecarHeight", "resSidecarFileType", "resSidecarFingerprint", "resSidecarRes", "itemType", "dataClassType", "filenameEnc", "originalOrientation", "resOriginalWidth", "resOriginalHeight", "resOriginalFileType", "resOriginalFingerprint", "resOriginalRes", "resOriginalAltWidth", "resOriginalAltHeight", "resOriginalAltFileType", "resOriginalAltFingerprint", "resOriginalAltRes", "resOriginalVidComplWidth", "resOriginalVidComplHeight", "resOriginalVidComplFileType", "resOriginalVidComplFingerprint", "resOriginalVidComplRes", "isDeleted", "isExpunged", "dateExpunged", "remappedRef", "recordName", "recordType", "recordChangeTag", "masterRef", "adjustmentRenderType", "assetDate", "addedDate", "isFavorite", "isHidden", "orientation", "duration", "assetSubtype", "assetSubtypeV2", "assetHDRType", "burstFlags", "burstFlagsExt", "burstId", "captionEnc", "locationEnc", "locationV2Enc", "locationLatitude", "locationLongitude", "adjustmentType", "timeZoneOffset", "vidComplDurValue", "vidComplDurScale", "vidComplDispValue", "vidComplDispScale", "vidComplVisibilityState", "customRenderedValue", "containerId", "itemId", "position", "isKeyAsset", ], "zoneID": {"zoneName": "PrimarySync"}, }, "response": { "records": [], "syncToken": "<PASSWORD>", }, }, ], "query/batch?remapEnums=True&getCurrentSyncToken=True": [ { "data": { "batch": [ { "resultsLimit": 1, "query": { "filterBy": { "fieldName": "indexCountID", "fieldValue": { "type": "STRING_LIST", "value": [ "CPLContainerRelationNotDeletedByAssetDate:E4RT4FB7-4A35-4958-1D42-5769E66BE407" ], }, "comparator": "IN", }, "recordType": "HyperionIndexCountLookup", }, "zoneWide": True, "zoneID": {"zoneName": "PrimarySync"}, } ] }, "response": { "batch": [ { "records": [ { # pylint: disable=C0321 "recordName": "CPLContainerRelationNotDeletedByAssetDate:E4RT4FB7-4A35-4958-1D42-5769E66BE407", "recordType": "IndexCountResult", "fields": {"itemCount": {"value": 5, "type": "INT64"}}, "pluginFields": {}, "recordChangeTag": "0", "created": { "timestamp": 1629754181247, "userRecordName": "_10", "deviceID": "1", }, "modified": { "timestamp": 1629754181247, "userRecordName": "_10", "deviceID": "1", }, "deleted": False, "zoneID": { "zoneName": "PrimarySync", "ownerRecordName": "_1d5r3c201b3a4r5daac8ff7e7fbc0c23", "zoneType": "REGULAR_CUSTOM_ZONE", }, } ], "syncToken": "AQ<PASSWORD>//////////<PASSWORD>", } ] }, } ], "https://cvws.icloud-content.com/B/": [], }
gitplus/cmd_git_semver.py
tkrajina/git-plus
170
11190629
#!/usr/bin/env python3 # Copyright 2013 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import argparse from . import git from . import semver from typing import * git.assert_in_git_repository() parser = argparse.ArgumentParser(description='List / update semver tags') parser.add_argument('--major', action='store_true', default=False, help='Increase major version') parser.add_argument('--minor', action='store_true', default=False, help='Increase minor version') parser.add_argument('--patch', action='store_true', default=False, help='Increase patch version') parser.add_argument('--suffix', type=str, default="", help='Suffix (for example v1.2.3-suffix)') args = parser.parse_args() incr_major: bool = args.major incr_minor: bool = args.minor incr_patch: bool = args.patch suffix: str = args.suffix versions = semver.get_all_versions_ordered(output_non_versions=True) max_version = versions[-1] if versions else semver.Version("v0.0.0", "v", 0, 0, 0, "") if not versions: print("No tags") sys.exit(0) for n, version in enumerate(versions): if n > 0: previous_ver = versions[n-1] if previous_ver.major != version.major: print(f"New major: {version.major}") if previous_ver.minor != version.minor: print(f"New minor: {version.major}.{version.minor}") print(f" * {version.tag}") print() print(f"Last version: {max_version.tag}") print() if incr_major or incr_minor or incr_patch: if incr_patch: max_version.patch += 1 if incr_minor: max_version.minor += 1 max_version.patch = 0 if incr_major: max_version.major += 1 max_version.minor = 0 max_version.patch = 0 new_tag = f'{max_version.prefix}{max_version.major}.{max_version.minor}.{max_version.patch}' if suffix: new_tag += "-" + suffix print(f"Creating new version/tag: {new_tag}") success, output = git.execute_git(f"tag {new_tag}") if not success: print(f'Error creating tag: {output}') sys.exit(1) print(f'Tag {new_tag} created, you can push it now')
tests/test_02_app/app_with_installs/app/main.py
coinforensics/uwsgi-nginx-docker
597
11190640
import sys from flask import Flask application = Flask(__name__) @application.route("/") def hello(): version = "{}.{}".format(sys.version_info.major, sys.version_info.minor) message = "Hello World from Nginx uWSGI Python {} app in a Docker container".format( version ) return message
tests/integrational/native_sync/test_fire.py
panchiwalashivani/python
146
11190648
from tests.helper import pnconf_copy from tests.integrational.vcr_helper import pn_vcr from pubnub.structures import Envelope from pubnub.pubnub import PubNub from pubnub.models.consumer.pubsub import PNFireResult from pubnub.models.consumer.common import PNStatus @pn_vcr.use_cassette('tests/integrational/fixtures/native_sync/publish/fire_get.yaml', filter_query_parameters=['uuid', 'seqn', 'pnsdk']) def test_single_channel(): config = pnconf_copy() pn = PubNub(config) chan = 'unique_sync' envelope = pn.fire().channel(chan).message('bla').sync() assert(isinstance(envelope, Envelope)) assert not envelope.status.is_error() assert isinstance(envelope.result, PNFireResult) assert isinstance(envelope.status, PNStatus)
interactive.py
bckim92/sequential-knowledge-transformer
135
11190675
import os import math from pprint import PrettyPrinter import random import numpy as np import torch import sklearn import tensorflow as tf import better_exceptions from tqdm import tqdm, trange import colorlog import colorful from utils.etc_utils import set_logger, set_tcmalloc, set_gpus, check_none_gradients from utils import config_utils, custom_argparsers from models import MODELS from modules.checkpoint_tracker import CheckpointTracker from modules.trainer import run_wow_evaluation, Trainer from modules.from_parlai import download_from_google_drive, unzip from data.wizard_of_wikipedia import WowDatasetReader from data.interactive_helper import ( TopicsGenerator, WikiTfidfRetriever, InteractiveInputProcessor ) from data.interactive_world import InteractiveWorld from data import vocabulary as data_vocab better_exceptions.hook() _command_args = config_utils.CommandArgs() pprint = PrettyPrinter().pprint def main(): # Argument passing/parsing args, model_args = config_utils.initialize_argparser( MODELS, _command_args, custom_argparsers.DialogArgumentParser) hparams, hparams_dict = config_utils.create_or_load_hparams( args, model_args, args.cfg) pprint(hparams_dict) if hparams.test_mode == 'wow': os.makedirs('./tmp', exist_ok=True) if not os.path.exists('tmp/wow_pretrained'): fname = 'wow_pretrained.zip' gd_id = '1lkF1QENr45j0vl-Oja3wEiqkxoNTxkXT' colorlog.info(f"Download pretrained checkpoint {fname}") download_from_google_drive(gd_id, os.path.join('tmp', fname)) unzip('tmp', fname) ckpt_fname = os.path.join('tmp/wow_pretrained', 'ckpt-46070') else: raise ValueError("Only 'wow' is currently supported") # Set environment variables & gpus set_logger() set_gpus(hparams.gpus) set_tcmalloc() gpus = tf.config.experimental.list_physical_devices('GPU') tf.config.experimental.set_visible_devices(gpus, 'GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) # Set random seed #tf.random.set_seed(hparams.random_seed) #np.random.seed(hparams.random_seed) #random.seed(hparams.random_seed) # Set gpu assert hparams.num_gpus == 1 mirrored_strategy = None # Make dataset reader os.makedirs(hparams.cache_dir, exist_ok=True) reader = WowDatasetReader( hparams.batch_size, hparams.num_epochs, buffer_size=hparams.buffer_size, bucket_width=hparams.bucket_width, max_length=hparams.max_length, max_episode_length=hparams.max_episode_length, max_knowledge=hparams.max_knowledge, knowledge_truncate=hparams.knowledge_truncate, cache_dir=hparams.cache_dir, bert_dir=hparams.bert_dir, ) train_dataset, iters_in_train = reader.read('train', mirrored_strategy) test_dataset, iters_in_test = reader.read('test', mirrored_strategy) vocabulary = reader.vocabulary # Build model & optimizer & trainer model = MODELS[hparams.model](hparams, vocabulary) optimizer = tf.keras.optimizers.Adam(learning_rate=hparams.init_lr, clipnorm=hparams.clipnorm) trainer = Trainer(model, optimizer, mirrored_strategy, hparams.enable_function, WowDatasetReader.remove_pad) # Setup checkpoint global_step = tf.compat.v1.train.get_or_create_global_step() checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=global_step) train_example = next(iter(train_dataset)) _ = trainer.train_step(train_example) checkpoint.restore(ckpt_fname) # Load retriever and input processor dictionary = reader._dictionary tokenize_fn = lambda x: [data_vocab.BERT_CLS_ID] \ + dictionary.convert_tokens_to_ids(dictionary.tokenize(x)) \ + [data_vocab.BERT_SEP_ID] input_processor = InteractiveInputProcessor(tokenize_fn, 5) # Compile graph colorlog.info("Compile model") dummy_input = input_processor.get_dummy_input() for _ in trange(5, ncols=70): trainer.test_step(dummy_input) # Module for interactive mode wiki_tfidf_retriever = WikiTfidfRetriever(hparams.cache_dir) topics_generator = TopicsGenerator(hparams.cache_dir) interactive_world = InteractiveWorld( responder=trainer, input_processor=input_processor, wiki_retriever=wiki_tfidf_retriever, topics_generator=topics_generator ) # Loop! while True: interactive_world.run() interactive_world.reset() if __name__ == '__main__': main()
test/programytest/config/brain/test_tokenizer.py
cdoebler1/AIML2
345
11190683
import unittest from programy.clients.events.console.config import ConsoleConfiguration from programy.config.brain.tokenizer import BrainTokenizerConfiguration from programy.config.file.yaml_file import YamlConfigurationFile class BrainTokenizerConfigurationTests(unittest.TestCase): def test_with_data(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" brain: tokenizer: classname: programy.utils.language.chinese.ChineseLanguage """, ConsoleConfiguration(), ".") brain_config = yaml.get_section("brain") tokenizer_config = BrainTokenizerConfiguration() tokenizer_config.load_config_section(yaml, brain_config, ".") self.assertEqual("programy.utils.language.chinese.ChineseLanguage", tokenizer_config.classname) def test_with_default_data(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" brain: tokenizer: classname: programy.utils.language.default.DefaultLangauge split_chars: .:' """, ConsoleConfiguration(), ".") brain_config = yaml.get_section("brain") tokenizer_config = BrainTokenizerConfiguration() tokenizer_config.load_config_section(yaml, brain_config, ".") self.assertEqual("programy.utils.language.default.DefaultLangauge", tokenizer_config.classname) self.assertEqual(".:'", tokenizer_config.split_chars) def test_without_data(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" brain: tokenizer: """, ConsoleConfiguration(), ".") brain_config = yaml.get_section("brain") tokenizer_config = BrainTokenizerConfiguration() tokenizer_config.load_config_section(yaml, brain_config, ".") def test_with_no_data(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" brain: """, ConsoleConfiguration(), ".") brain_config = yaml.get_section("brain") tokenizer_config = BrainTokenizerConfiguration() tokenizer_config.load_config_section(yaml, brain_config, ".") def test_defaults(self): tokenizer_config = BrainTokenizerConfiguration() data = {} tokenizer_config.to_yaml(data, True) BrainTokenizerConfigurationTests.assert_defaults(self, data) @staticmethod def assert_defaults(test, data): test.assertEqual(data['classname'], "programy.dialog.tokenizer.tokenizer.Tokenizer") test.assertEqual(data['split_chars'], ' ')
app/utils/proxy.py
ErictheSam/ASoulCnki
384
11190686
# timer from threading import Timer from requests import get class ProxyPool(): def __init__(self, proxyConfig, interval=True, intervalRange=60): ''' @param proxyConfig: like proxies in requests.get() @param interval: start interval @param intervalRange: interval range of timer (seconds), default is 60s ''' self.proxyConfig = proxyConfig self.nowProxy = {} self.intervalRange = intervalRange if (interval): Timer(intervalRange, self.flush).start() def get(self): ''' get now proxy, if no proxy, return {} ''' return self.nowProxy def setDirect(self): ''' when no proxy is usable, set direct ''' self.nowProxy = {} def flush(self): # use requests.get() to test proxy def isProxyUsable(): testUrl = 'https://baidu.com' try: get(testUrl, proxies=self.proxyConfig, timeout=5) return True except Exception: return False if isProxyUsable(): self.nowProxy = self.proxyConfig else: self.nowProxy = {} Timer(self.intervalRange, self.flush).start()
sympy/parsing/autolev/test-examples/ruletest10.py
iamabhishek0/sympy
603
11190689
<reponame>iamabhishek0/sympy import sympy.physics.mechanics as me import sympy as sm import math as m import numpy as np x, y = me.dynamicsymbols('x y') a, b = sm.symbols('a b', real=True) e = a*(b*x+y)**2 m = sm.Matrix([e,e]).reshape(2, 1) e = e.expand() m = sm.Matrix([i.expand() for i in m]).reshape((m).shape[0], (m).shape[1]) e = sm.factor(e, x) m = sm.Matrix([sm.factor(i,x) for i in m]).reshape((m).shape[0], (m).shape[1]) eqn = sm.Matrix([[0]]) eqn[0] = a*x+b*y eqn = eqn.row_insert(eqn.shape[0], sm.Matrix([[0]])) eqn[eqn.shape[0]-1] = 2*a*x-3*b*y print(sm.solve(eqn,x,y)) rhs_y = sm.solve(eqn,x,y)[y] e = (x+y)**2+2*x**2 e.collect(x) a, b, c = sm.symbols('a b c', real=True) m = sm.Matrix([a,b,c,0]).reshape(2, 2) m2 = sm.Matrix([i.subs({a:1,b:2,c:3}) for i in m]).reshape((m).shape[0], (m).shape[1]) eigvalue = sm.Matrix([i.evalf() for i in (m2).eigenvals().keys()]) eigvec = sm.Matrix([i[2][0].evalf() for i in (m2).eigenvects()]).reshape(m2.shape[0], m2.shape[1]) frame_n = me.ReferenceFrame('n') frame_a = me.ReferenceFrame('a') frame_a.orient(frame_n, 'Axis', [x, frame_n.x]) frame_a.orient(frame_n, 'Axis', [sm.pi/2, frame_n.x]) c1, c2, c3 = sm.symbols('c1 c2 c3', real=True) v=c1*frame_a.x+c2*frame_a.y+c3*frame_a.z point_o = me.Point('o') point_p = me.Point('p') point_o.set_pos(point_p, c1*frame_a.x) v = (v).express(frame_n) point_o.set_pos(point_p, (point_o.pos_from(point_p)).express(frame_n)) frame_a.set_ang_vel(frame_n, c3*frame_a.z) print(frame_n.ang_vel_in(frame_a)) point_p.v2pt_theory(point_o,frame_n,frame_a) particle_p1 = me.Particle('p1', me.Point('p1_pt'), sm.Symbol('m')) particle_p2 = me.Particle('p2', me.Point('p2_pt'), sm.Symbol('m')) particle_p2.point.v2pt_theory(particle_p1.point,frame_n,frame_a) point_p.a2pt_theory(particle_p1.point,frame_n,frame_a) body_b1_cm = me.Point('b1_cm') body_b1_cm.set_vel(frame_n, 0) body_b1_f = me.ReferenceFrame('b1_f') body_b1 = me.RigidBody('b1', body_b1_cm, body_b1_f, sm.symbols('m'), (me.outer(body_b1_f.x,body_b1_f.x),body_b1_cm)) body_b2_cm = me.Point('b2_cm') body_b2_cm.set_vel(frame_n, 0) body_b2_f = me.ReferenceFrame('b2_f') body_b2 = me.RigidBody('b2', body_b2_cm, body_b2_f, sm.symbols('m'), (me.outer(body_b2_f.x,body_b2_f.x),body_b2_cm)) g = sm.symbols('g', real=True) force_p1 = particle_p1.mass*(g*frame_n.x) force_p2 = particle_p2.mass*(g*frame_n.x) force_b1 = body_b1.mass*(g*frame_n.x) force_b2 = body_b2.mass*(g*frame_n.x) z = me.dynamicsymbols('z') v=x*frame_a.x+y*frame_a.z point_o.set_pos(point_p, x*frame_a.x+y*frame_a.y) v = (v).subs({x:2*z, y:z}) point_o.set_pos(point_p, (point_o.pos_from(point_p)).subs({x:2*z, y:z})) force_o = -1*(x*y*frame_a.x) force_p1 = particle_p1.mass*(g*frame_n.x)+ x*y*frame_a.x
Ch9/CG.py
jason-168/MLCode
146
11190735
# Code from Chapter 9 of Machine Learning: An Algorithmic Perspective (2nd Edition) # by <NAME> (http://stephenmonika.net) # You are free to use, change, or redistribute the code in any way you wish for # non-commercial purposes, but please maintain the name of the original author. # This code comes with no warranty of any kind. # <NAME>, 2008, 2014 # The conjugate gradients algorithm import numpy as np def Jacobian(x): #return np.array([.4*x[0],2*x[1]]) return np.array([x[0], 0.4*x[1], 1.2*x[2]]) def Hessian(x): #return np.array([[.2,0],[0,1]]) return np.array([[1,0,0],[0,0.4,0],[0,0,1.2]]) def CG(x0): i=0 k=0 r = -Jacobian(x0) p=r betaTop = np.dot(r.transpose(),r) beta0 = betaTop iMax = 3 epsilon = 10**(-2) jMax = 5 # Restart every nDim iterations nRestart = np.shape(x0)[0] x = x0 while i < iMax and betaTop > epsilon**2*beta0: j=0 dp = np.dot(p.transpose(),p) alpha = (epsilon+1)**2 # Newton-Raphson iteration while j < jMax and alpha**2 * dp > epsilon**2: # Line search alpha = -np.dot(Jacobian(x).transpose(),p) / (np.dot(p.transpose(),np.dot(Hessian(x),p))) print "N-R",x, alpha, p x = x + alpha * p j += 1 print x # Now construct beta r = -Jacobian(x) print "r: ", r betaBottom = betaTop betaTop = np.dot(r.transpose(),r) beta = betaTop/betaBottom print "Beta: ",beta # Update the estimate p = r + beta*p print "p: ",p print "----" k += 1 if k==nRestart or np.dot(r.transpose(),p) <= 0: p = r k = 0 print "Restarting" i +=1 print x x0 = np.array([-2,2,-2]) CG(x0)
vilt/utils/write_nlvr2.py
kris927b/ViLT
587
11190743
import json import pandas as pd import pyarrow as pa import os from tqdm import tqdm from collections import defaultdict def process(root, iden, row): texts = [r["sentence"] for r in row] labels = [r["label"] for r in row] split = iden.split("-")[0] if iden.startswith("train"): directory = row[0]["directory"] path = f"{root}/images/train/{directory}/{iden}" else: path = f"{root}/{split}/{iden}" with open(f"{path}-img0.png", "rb") as fp: img0 = fp.read() with open(f"{path}-img1.png", "rb") as fp: img1 = fp.read() return [img0, img1, texts, labels, iden] def make_arrow(root, dataset_root): train_data = list( map(json.loads, open(f"{root}/nlvr2/data/train.json").readlines()) ) test1_data = list( map(json.loads, open(f"{root}/nlvr2/data/test1.json").readlines()) ) dev_data = list(map(json.loads, open(f"{root}/nlvr2/data/dev.json").readlines())) balanced_test1_data = list( map( json.loads, open(f"{root}/nlvr2/data/balanced/balanced_test1.json").readlines(), ) ) balanced_dev_data = list( map( json.loads, open(f"{root}/nlvr2/data/balanced/balanced_dev.json").readlines(), ) ) unbalanced_test1_data = list( map( json.loads, open(f"{root}/nlvr2/data/unbalanced/unbalanced_test1.json").readlines(), ) ) unbalanced_dev_data = list( map( json.loads, open(f"{root}/nlvr2/data/unbalanced/unbalanced_dev.json").readlines(), ) ) splits = [ "train", "dev", "test1", "balanced_dev", "balanced_test1", "unbalanced_dev", "unbalanced_test1", ] datas = [ train_data, dev_data, test1_data, balanced_dev_data, balanced_test1_data, unbalanced_dev_data, unbalanced_test1_data, ] annotations = dict() for split, data in zip(splits, datas): _annot = defaultdict(list) for row in tqdm(data): _annot["-".join(row["identifier"].split("-")[:-1])].append(row) annotations[split] = _annot for split in splits: bs = [ process(root, iden, row) for iden, row in tqdm(annotations[split].items()) ] dataframe = pd.DataFrame( bs, columns=["image_0", "image_1", "questions", "answers", "identifier"], ) table = pa.Table.from_pandas(dataframe) os.makedirs(dataset_root, exist_ok=True) with pa.OSFile(f"{dataset_root}/nlvr2_{split}.arrow", "wb") as sink: with pa.RecordBatchFileWriter(sink, table.schema) as writer: writer.write_table(table)
sky/legacy/titletests.py
Asteur/sky_python_crawler
325
11190747
<filename>sky/legacy/titletests.py import numpy # TITLE TESTS try: from .training import Training from .helper import * from .findTitle import getTitle except SystemError: from training import Training from helper import * from findTitle import getTitle # title = normalize(''.join([x for x in z.xpath('//span[@class="x-nc-sel1"]/text()')])) # body = normalize(''.join([x for x in z.xpath('//span[@class="x-nc-sel2"]/text()')])) with open('/Users/pascal/Downloads/L3S-GN1-20100130203947-00001/url-mapping.txt') as f: urlmapping = {x[10:46] : [x[48:], extractDomain(x[48:])] for x in f.read().split('\n')} template = '/Users/pascal/Downloads/L3S-GN1-20100130203947-00001/annotated/{}.html' domains = {} for h in urlmapping: if h: with open(template.format(h)) as f: html = f.read() tr = makeTree(html, h) if urlmapping[h][1] not in domains: domains[urlmapping[h][1]] = [] domains[urlmapping[h][1]].append((urlmapping[h][0], h, tr)) filtered_domains = {} for x in domains: if len(domains[x]) > 1: filtered_domains[x] = domains[x] def f1(x,y): try: z = sum([w in y for w in x]) / len(x) z2 = sum([w in x for w in y]) / len(y) return (2 * z * z2) / (z + z2) except: return 0 # 0.86593087007951342 #def fn(num): num = 5 it = 0 s = 0 fscores = [] fouten = 0 printing = True wrongs = [] for x in filtered_domains: for case in filtered_domains[x]: try: t = case[2] realy = normalize(''.join([x for x in t.xpath('//span[@class="x-nc-sel1"]/text()')])) #ys = [x['text'] for x in getTitle(t,False)] ys = [getTitle(t)] #if any([z in y for z in x.split('.')]): if any(['-' in y or '|' in y for y in ys]): fscores.append(1) it += 1 continue f = f1(set(re.sub('[^a-zA-Z0-9]+', ' ', ys[0].lower()).split()), set(re.sub('[^a-zA-Z0-9]+', ' ', realy.lower()).split())) fscores.append(f) y = " ".join(re.sub('[^a-zA-Z0-9]+', ' ', ys[0].lower()).split()) realy = " ".join(re.sub('[^a-zA-Z0-9]+', ' ', realy.lower()).split()) if f < 1: fouten += 1 wrongs.append(it) if fouten == num and printing: a = t view_tree(t) printing = False 'a'+1 print(realy, '-----------', y) print('\n'.join([(x['xpath'] + ' ||| ' + x['text']) for x in getTitle(t, False)])) print(case) it += 1 except IndexError: pass #return np.mean(fscores) it = 0 s = 0 fscores = [] for x in domains: for case in domains[x]: try: t = case[2] realy = normalize(''.join([x for x in t.xpath('//span[@class="x-nc-sel1"]/text()')])) y = getTitle(t) #print(realy, '----------', y) it += 1 #if any([z in y for z in x.split('.')]): f = f1(set(re.sub('[^a-zA-Z0-9]+', ' ', y.lower()).split()), set(re.sub('[^a-zA-Z0-9]+', ' ', realy.lower()).split())) fscores.append(f) y = " ".join(re.sub('[^a-zA-Z0-9]+', ' ', y.lower()).split()) if y.startswith('jeremy'): 'a'+1 realy = " ".join(re.sub('[^a-zA-Z0-9]+', ' ', realy.lower()).split()) if f < 1: print(realy, '-----------', y) except IndexError: pass # for meta in doc.xpath('//meta[re:test(@name, "description", "i")]', namespaces={"re": "http://exslt.org/regular-expressions"}): # print(html.tostring(meta, pretty_print=True))
benchmarks/django-workload/uwsgi/files/django-workload/django_workload/feed_timeline.py
jonasbn/cloudsuite
103
11190783
<reponame>jonasbn/cloudsuite class FeedTimeline(object): def __init__(self, request): self.request = request def get_timeline(self): user = self.request.user feed = user.feed_entries().limit(20) user_info = user.json_data result = { 'num_results': len(feed), 'items': [ { 'pk': str(e.id), 'comment_count': e.comment_count, 'published': e.published.timestamp(), 'user': user_info } for e in feed] } return result def post_process(self, result): item_list = result['items'] conf = FeedTimelineConfig() # duplicate the data for i in range(conf.mult_factor): conf.list_extend(item_list) sorted_list = sorted(conf.get_list(), key=lambda x: x['published'], reverse=True) final_items = [] for item in sorted_list: conf.user = item['user']['name'] conf.comments_total = conf.comments_total + item['comment_count'] conf.comments_per_user[conf.user] = item['comment_count'] # un-duplicate the data exists = False for final_item in final_items: if final_item['pk'] == item['pk']: exists = True break if not exists: final_items.append(item) result['comments_total'] = int(conf.comments_total / conf.mult_factor) result['items'] = final_items return result class FeedTimelineConfig(object): def __init__(self): # Number of times the original items list is duplicated in order # to make the view more Python intensive self.mult_factor = 5 self.work_list = [] self.user = "" self.comments_total = 0 self.comments_per_user = {} def list_extend(self, l): self.work_list.extend(l) def get_list(self): return self.work_list
mercari/main_mx.py
lammda/mercari-solution
249
11190786
<reponame>lammda/mercari-solution<filename>mercari/main_mx.py<gh_stars>100-1000 import sys from mercari.config import TEST_SIZE from mercari.datasets_mx import ( prepare_vectorizer_1, prepare_vectorizer_3, prepare_vectorizer_2, ) from mercari.main_helpers import main from mercari.mx_sparse import MXRegression, MXRegressionClf def define_models_1(n_jobs, seed): h0 = 256 # reduced from 384 due to kaggle slowdown n_epoch = 3 if TEST_SIZE == 1 else 1 models = [ MXRegression( n_hidden=(h0, 128, 64), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=1e-3, loss='huber'), MXRegression( n_hidden=(h0, 128, 64), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=1e-3, loss='huber'), MXRegressionClf( n_hidden=(h0, 128), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=2e-4), MXRegressionClf( n_hidden=(h0, 128), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=2e-4), ] for i, model in enumerate(models, seed * 100): model.seed = i return models, prepare_vectorizer_1(n_jobs=n_jobs) def define_models_2(n_jobs, seed): h0 = 256 n_epoch = 3 if TEST_SIZE == 1 else 1 models = [ MXRegression( n_hidden=(h0, 128, 64), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=1e-3, loss='huber', binary_X=True), MXRegression( n_hidden=(h0, 128, 64), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=1e-3, loss='huber'), MXRegressionClf( n_hidden=(h0, 128), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=2e-4, binary_X=True), MXRegressionClf( n_hidden=(h0, 128), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=2e-4), ] for i, model in enumerate(models, seed * 100): model.seed = i return models, prepare_vectorizer_2(n_jobs=n_jobs) def define_models_3(n_jobs, seed): h0 = 256 n_epoch = 3 if TEST_SIZE == 1 else 1 models = [ MXRegression( n_hidden=(h0, 128, 64), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=1e-3, loss='huber', binary_X=True), MXRegression( n_hidden=(h0, 128, 64), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=1e-3, loss='huber'), MXRegressionClf( n_hidden=(h0, 128), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=2e-4, binary_X=True), MXRegressionClf( n_hidden=(h0, 128), n_epoch=n_epoch, batch_size=2 ** 11, learning_rate=0.4e-2, reg_l2=2e-4), ] # 4 more same models in the best submission for i, model in enumerate(models, seed * 100): model.seed = i return models, prepare_vectorizer_3(n_jobs) if __name__ == '__main__': main( 'mx', sys.argv[1], { 1: define_models_1(n_jobs=4, seed=1), 2: define_models_2(n_jobs=4, seed=2), 3: define_models_3(n_jobs=4, seed=3), }, fit_parallel='mp', predict_parallel=None, )
Source/ThirdParty/aes/python_binding/setup.py
HanasakiHonoka/ds3os
651
11190792
#!/usr/bin/env python import platform from distutils.core import setup, Extension source_files = ['aesmodule.c', '../aeskey.c', '../aes_modes.c', '../aestab.c', '../aescrypt.c'] cflags = [] if platform.system() == 'Linux': cflags.append('-Wno-sequence-point') if platform.machine() == 'x86_64': source_files.append('../aes_ni.c') cflags.append('-D__PROFILE_AES__') setup(name='aes', version='1.0', ext_modules=[Extension('aes', source_files, include_dirs=['..'], extra_compile_args=cflags)], )
tests/loan-closing/test_LoanClosing.py
DryptoBZX/contractsV2
177
11190845
# #!/usr/bin/python3 # import pytest # from brownie import Wei, reverts # more complex scenario here in the future
scripts/automation/trex_control_plane/interactive/trex/wireless/services/trex_stl_ap.py
timgates42/trex-core
956
11190861
import base64 import random import struct import sys import threading import time from collections import deque from enum import Enum import simpy import wireless.pubsub.pubsub as pubsub from scapy.all import * from scapy.contrib.capwap import * from scapy.contrib.capwap import CAPWAP_PKTS from trex_openssl import * # from trex_stl_lib.api import * from trex.common.services.trex_service import Service, ServiceFilter from trex.utils.common import PassiveTimer from ..pubsub.broker import deregister_sub, register_sub, subscribers from ..pubsub.message import PubSubMessage from ..trex_wireless_ap_state import * from ..trex_wireless_client_state import * from .trex_wireless_service_event import WirelessServiceEvent ''' FSMs for AP: * Discover WLC * Establish DTLS session * Join WLC * Add client (station) * Shutdown DTLS session * Maintenance (arp, ping, capwap echo request, fetches rx and dispatches to rx_buffer of APs) ''' sleep_for_packet = 0.3 sleep_for_state = 0.5 ''' Just assign services to AP, it will get packets from AP's rx_buffer ''' class APJoinDisconnectedEvent(WirelessServiceEvent): """Raised when AP is deassociated from the WLC.""" def __init__(self, env, device): service = ServiceAPRun.__name__ value = "disconnected" super().__init__(env, device, service, value) class APJoinConnectedEvent(WirelessServiceEvent): """Raised when AP is Joined to the WLC.""" def __init__(self, env, device): service = ServiceAPRun.__name__ value = "joined" super().__init__(env, device, service, value) class APVAPReceivedEvent(WirelessServiceEvent): """Raised when AP received VAPs from the WLC.""" def __init__(self, env, device): service = ServiceAPRun.__name__ value = "vap_received" super().__init__(env, device, service, value) class APDTLSEstablishedEvent(WirelessServiceEvent): """Raised when AP's DTLS is established with WLC.""" def __init__(self, env, device): service = ServiceAPRun.__name__ value = "established" super().__init__(env, device, service, value) class ServiceFilterPerAp(ServiceFilter): def __init__(self): self.services_per_ap = {} def add(self, service): if service.ap in self.services_per_ap: self.services_per_ap[service.ap].append(service) else: self.services_per_ap[service.ap] = [service] class ServiceAP(Service): requires_dtls = True client_concurrent = 0 max_client_concurrent = 1 concurrent = 0 max_concurrent = float('inf') # changed when called by join_aps def __init__(self, worker, ap, env, topics_to_subs, verbose_level=Service.WARN): Service.__init__(self, verbose_level) self.worker = worker self.ap = ap self.name = self.__class__.__name__ self.env = env self.topics_to_subs = topics_to_subs def raise_event(self, event): """Raise a WirelessServiceEvent. Args: event: the WirelessServiceEvent to raise """ self.ap.pubsub.publish(event.value, event.topics) # create a pubsubmessage pubsub_message = PubSubMessage(event.value, event.topics) # if others are waiting on this event, wake them and deregister if self.topics_to_subs: subscriptions = subscribers(self.topics_to_subs, pubsub_message) for sub in subscriptions: sub.trigger() deregister_sub(self.topics_to_subs, sub) def stop_and_launch_service(self, service, pipe): with self.worker.services_lock: if self in self.worker.stl_services: del self.worker.stl_services[self] self.worker.stl_services[service] = {'pipe': pipe} return self.ap.register_service(service, self.env.process(service.run(pipe))) def get_filter_type(self): return ServiceFilterPerAp def timeout(self): self.ap.warn('Timeout in FSM %s' % self.name) def err(self, msg): self.ap.logger.warn('Error in FSM %s: %s' % (self.name, msg)) def send(self, v): self.worker.pkt_pipe.send(v) def wait(self, pipe, val): return pipe.async_wait(val) def run(self, pipe): try: run_gen = self.run_with_buffer() send_data = None while True: try: action = run_gen.send(send_data) except StopIteration: action = 'done' if type(action) is tuple and len(action) == 2: action, val = action elif type(action) is tuple and len(action) == 3: action, val1, val2 = action # if action == 'get': # send_data = None # v = wait_for_pkt() # resp = yield v # if resp: # send_data = resp[0]['pkt'] if action == 'put': # send packet if type(val) is list: for v in val: # pipe.async_tx_pkt(v) self.send(v) else: self.send(val) # pipe.async_tx_pkt(val) elif action == 'sleep': # async sleep v = self.wait(pipe, val) yield v elif action == 'service': # launch a service in the current service # current service will therefore stop running # when done, give hand back to former service service = val with self.worker.services_lock: if self in self.worker.stl_services: del self.worker.stl_services[self] self.worker.stl_services[service] = {'pipe': pipe} # launch process stop = yield self.ap.register_service(service, self.env.process(service.run(pipe))) if stop: return True # process returned with self.worker.services_lock: if service in self.worker.stl_services: del self.worker.stl_services[service] self.worker.stl_services[self] = {'pipe': pipe} elif action == 'done': # stop the service self.ap.logger.debug( 'Finished successfully FSM %s' % self.name) break elif action == 'process_with_timeout': # yields the given simpy process and a timeout # wakes up when either completes yield simpy.events.AnyOf(self.env, [val1, self.env.timeout(val2)]) elif action == 'start_ap': # async wait until free spot to continue self.ap.ap_concurrent_request = simpy.resources.resource.Request( ServiceAP.ap_concurrent) yield self.ap.ap_concurrent_request elif action == 'done_ap': # free the current spot for other APs to start join process yield simpy.resources.resource.Release(ServiceAP.ap_concurrent, self.ap.ap_concurrent_request) elif action == 'err': # for service errors self.err(val) elif action == 'time': # for timeouts, stops the service self.timeout() break elif not action: break else: raise Exception('Incorrect action in FSM %s: %s' % (self.name, action)) except simpy.events.Interrupt as e: pass def hex(buf, delimiter=' '): if not buf: return 'Empty buffer' return delimiter.join(['%02x' % (c if type(c) is int else ord(c)) for c in buf]) ################ FSMs ################## class ServiceAPDiscoverWLC(ServiceAP): """Discovery Service for one AP.""" requires_dtls = False def run_with_buffer(self): from ..trex_wireless_config import config # request a slot yield ("start_ap") self.ap.logger.info("Service DiscoverWLC started") self.ap.start_join_time = time.time() while True: if self.ap.state > APState.DISCOVER: return yield("service", ServiceAPShutdownDTLS(self.worker, self.ap, self.env, self.topics_to_subs)) self.ap.reset_vars() self.ap.state = APState.DISCOVER self.ap.active_service = self self.ap._create_ssl(config.openssl.buffer_size) self.ap.rx_responses[2] = -1 self.ap.retries += 1 # First resolve WLC MAC if needed if self.ap.wlc_ip_bytes and not self.ap.wlc_mac_bytes: self.ap.logger.info( "Resolving WLC MAC for IP: %s" % self.ap.wlc_ip) while not self.ap.wlc_mac_bytes: RetransmitInterval = config.capwap.retransmit_interval for _ in range(config.capwap.max_retransmit): if self.ap.wlc_mac_bytes: break RetransmitInterval *= 2 self.ap.logger.debug("sending who-as for WLC IP") arp = self.ap.get_arp_pkt( 'who-has', src_mac_bytes=self.ap.mac_bytes, src_ip_bytes=self.ap.ip_bytes, dst_ip_bytes=self.ap.wlc_ip_bytes) yield('put', arp) # waiting for an arp response self.waiting_on = simpy.events.Event(self.env) yield ("process_with_timeout", self.waiting_on, RetransmitInterval) del self.waiting_on if self.ap.wlc_mac_bytes: self.ap.logger.debug("got MAC of WLC") # done break if self.ap.wlc_ip_bytes and not self.ap.wlc_mac_bytes: self.err( 'err', 'Unable to resolve MAC address of WLC for %s' % self.ap.wlc_ip) RetransmitInterval = config.capwap.retransmit_interval for _ in range(config.capwap.max_retransmit): RetransmitInterval *= 2 discovery_pkt = self.ap.wrap_capwap_pkt( CAPWAP_PKTS.discovery(self.ap), is_discovery=True) self.ap.logger.debug("sending discovery request to WLC") yield('put', discovery_pkt) self.waiting_on = simpy.events.Event(self.env) yield ("process_with_timeout", self.waiting_on, RetransmitInterval) del self.waiting_on try: result_code = self.ap.rx_responses[2] except KeyError: result_code = -1 yield("err", 'No response') if result_code in (None, 0, 2): self.ap.state = APState.DTLS self.ap.logger.info("Service DiscoverWLC finished") yield ("service", ServiceAPEstablishDTLS(self.worker, self.ap, self.env, self.topics_to_subs)) elif result_code != -1: self.ap.wlc_mac_bytes = None self.ap.wlc_mac = None yield("err", 'Not successful result %s - %s.' % (result_code, capwap_result_codes.get(result_code, 'Unknown'))) break self.ap.logger.info("DiscoverWLC retries expired") class ServiceAPEstablishDTLS(ServiceAP): """Service which tries to setup DTLS with remote controller.""" requires_dtls = False aps_by_ssl = {} @staticmethod def openssl_callback(ssl, where, ret): pkt_pipe = ServiceAPEstablishDTLS.aps_by_ssl[ssl]['pkt_pipe'] ap = ServiceAPEstablishDTLS.aps_by_ssl[ssl]['ap'] logger = ServiceAPEstablishDTLS.aps_by_ssl[ssl]['logger'] if where & SSL_CONST.SSL_CB_ALERT: ap.state = APState.DISCOVER ap.logger.info("Received DTLS Alert") return 0 if not ap.mac_bytes: return 0 if libcrypto.BIO_ctrl_pending(ap.out_bio): ssl_data = ap.ssl_read() ap.nb_write += 1 if ap.state != APState.DTLS: return 0 if ssl_data: # # This is due to a bug in the ordering of UDP packet received... to be investigated # if ap.nb_write > 7 and len(ssl_data) > 1000 and not ap.is_handshake_done_libssl(): # with ap.ssl_lock: # timeout = libssl.DTLSv1_get_timeout(ap.ssl) # timeout = timeout.tv_sec + timeout.tv_usec * 1e-6 # print("Sending bad DTLS packet ????: %d timeout %d %f %s" % (len(ssl_data), ap.timeout_dtls, timeout, ap.name)) # return 0 pkt = ap.wrap_capwap_pkt(b'\1\0\0\0' + ssl_data) logger.debug( "sending dtls packet (openssl callback @ DTLS service)") pkt_pipe.send(pkt) return 0 ssl_info_callback_type = CFUNCTYPE(c_int, c_void_p, c_int, c_int) ssl_info_callback_func = ssl_info_callback_type(openssl_callback.__func__) def run(self, pipe): from ..trex_wireless_config import config # assert self.ap.ssl and (self.ap.ssl not in self.aps_by_ssl) self.ap.logger.info("Service ApEstablishDTLS started") try: while True: if self.ap.state != APState.DTLS: self.ap.logger.info("Service ApEstablishDTLS rollback") return self.ap.active_service = self self.aps_by_ssl[self.ap.ssl] = { 'ap': self.ap, 'pkt_pipe': self.worker.pkt_pipe, 'logger': self.ap.logger} self.ap.nb_write = 0 self.ap.timeout_dtls = 0 with self.ap.ssl_lock: libssl.SSL_clear(self.ap.ssl) libssl.SSL_set_info_callback( self.ap.ssl, self.ssl_info_callback_func) # set ssl callback timeout = libssl.DTLSv1_get_timeout(self.ap.ssl) timeout = min( max(timeout.tv_sec + timeout.tv_usec * 1e-6, sleep_for_packet), 3) libssl.SSL_do_handshake(self.ap.ssl) try: timer = PassiveTimer(config.dtls.timeout) while not timer.has_expired(): if self.ap.state != APState.DTLS: return if self.ap.is_handshake_done_libssl(): # session established self.ap.state = APState.JOIN event = APDTLSEstablishedEvent(self.env, self.ap.mac) self.raise_event(event) self.ap.logger.info( "Service ApEstablishDTLS finished successfully") stop = yield self.stop_and_launch_service(ServiceAPJoinWLC(self.worker, self.ap, self.env, self.topics_to_subs), pipe) if stop: return True return resps = yield pipe.async_wait_for_pkt(time_sec=timeout, limit=1) self.ap.logger.debug( "got %s packets at DTLS service" % len(resps)) if not resps: if self.ap.is_handshake_done_libssl(): # session established self.ap.state = APState.JOIN event = APDTLSEstablishedEvent(self.env, self.ap.mac) self.raise_event(event) self.ap.logger.info( "Service ApEstablishDTLS finished successfully") stop = yield self.stop_and_launch_service(ServiceAPJoinWLC(self.worker, self.ap, self.env, self.topics_to_subs), pipe) if stop: return True return # Make DTLS timeout to retransmit with self.ap.ssl_lock: libssl.DTLSv1_handle_timeout(self.ap.ssl) timeout = libssl.DTLSv1_get_timeout(self.ap.ssl) timeout = min( max(timeout.tv_sec + timeout.tv_usec * 1e-6, sleep_for_packet), 3) self.ap.timeout_dtls += 1 ret = libssl.SSL_do_handshake(self.ap.ssl) if ret <= 0: try: # looking up the error self.ap.logger.error("SSL Handshake error: %s: %s" % ( ret, SSL_CONST.ssl_err[libssl.SSL_get_error(self.ap.ssl, ret)])) except: pass continue if self.ap.state != APState.DTLS: return pkt_bytes = resps[0]['pkt'] is_dtls = struct.unpack('?', pkt_bytes[42:43])[0] if is_dtls: self.ap.decrypt(pkt_bytes[46:]) if self.ap.state <= APState.DTLS: self.ap.state = APState.DISCOVER self.ap.logger.info( "Service ApEstablishDTLS rollback: timer expired") stop = yield self.stop_and_launch_service(ServiceAPDiscoverWLC(self.worker, self.ap, self.env, self.topics_to_subs), pipe) return stop finally: with self.ap.ssl_lock: libssl.SSL_set_info_callback( self.ap.ssl, None) # remove ssl callback if self.ap.ssl in self.aps_by_ssl: del self.aps_by_ssl[self.ap.ssl] except simpy.events.Interrupt: self.ap.logger.debug("Service ApEstablishDTLS interrupted") return True class ServiceAPEncryptedControl(ServiceAP): def control_round_trip(self, tx_pkt, expected_response_type, debug_msg=None): """Send the packet, wait for the expected answer, and retry.""" from ..trex_wireless_config import config self.ap.rx_responses[expected_response_type] = -1 RetransmitInterval = config.capwap.retransmit_interval for i in range(config.capwap.max_retransmit): if not self.ap.is_dtls_established: yield 'dtls_broke' return if not self.ap.is_dtls_established: break RetransmitInterval *= 2 encrypted = self.ap.encrypt(tx_pkt) if encrypted and encrypted != '': tx_pkt_wrapped = self.ap.wrap_capwap_pkt( b'\1\0\0\0' + self.ap.encrypt(tx_pkt)) self.ap.logger.debug("sending packet") yield ('put', tx_pkt_wrapped) else: continue timer = PassiveTimer(RetransmitInterval) self.waiting_on = simpy.events.Event(self.env) yield ("process_with_timeout", self.waiting_on, RetransmitInterval) del self.waiting_on if expected_response_type in self.ap.rx_responses: result_code = self.ap.rx_responses[expected_response_type] if result_code in (None, 0, 2): # expected response yield 'good_resp' if result_code != -1: # non expected response yield ('err', 'Not successful result %s - %s.' % (result_code, capwap_result_codes.get(result_code, 'Unknown'))) return else: continue else: continue # timeout self.ap.state = APState.DISCOVER if self.ap.is_dtls_established: self.ap.logger.info( "Service ApJoinWLC rollback: dtls broke") else: self.ap.logger.info( "Service ApJoinWLC rollback: timeout: too many trials") yield 'time' class ServiceAPJoinWLC(ServiceAPEncryptedControl): """"Join state and Configuration state simulation for an AP.""" def run_with_buffer(self): from ..trex_wireless_config import config def rollback(reason=None): if reason: self.ap.logger.info("Service ApJoinWLC rollback: %s" % reason) self.ap.state = APState.DISCOVER return ('service', ServiceAPDiscoverWLC(self.worker, self.ap, self.env, self.topics_to_subs)) try: while True: if self.ap.state != APState.JOIN: return self.ap.logger.info("Service ApJoinWLC started") self.ap.active_service = self self.ap.logger.debug('Sending Join Request') join_req = CAPWAP_PKTS.join(self.ap) ctrl_gen = self.control_round_trip( join_req, 4, debug_msg='Join Request') send_data = None while True: action = ctrl_gen.send(send_data) if action in ('good_resp', 'time', 'dtls_broke', 'err'): ctrl_gen.close() break else: send_data = yield action if action == 'dtls_broke': yield(rollback("dtls session broken")) return elif action == 'time': yield rollback("timeout: join request") return elif action == 'err': yield rollback("error") return self.ap.logger.debug('Got Join Response') self.ap.logger.debug('Sending Configuration Status Request') ctrl_gen = self.control_round_trip(CAPWAP_PKTS.conf_status_req( self.ap), 6, debug_msg='Config status request') send_data = None while True: action = ctrl_gen.send(send_data) if action in ('good_resp', 'time', 'dtls_broke', 'err'): ctrl_gen.close() break else: send_data = yield action if action == 'dtls_broke': yield(rollback("dtls session broken")) return elif action == 'time': yield rollback("timeout: join request") return elif action == 'err': yield rollback("error") return self.ap.logger.debug('Got Configuration Status Response') self.ap.logger.debug('Sending Change State Event Request') ctrl_gen = self.control_round_trip(CAPWAP_PKTS.change_state( self.ap, radio_id=0), 12, debug_msg='Change state event request') send_data = None while True: action = ctrl_gen.send(send_data) if action in ('good_resp', 'time', 'dtls_broke', 'err'): ctrl_gen.close() break else: send_data = yield action if action == "err": break if action == 'dtls_broke': yield(rollback("dtls session broken")) return elif action == 'time': yield rollback("timeout: join request") return elif action == 'err': yield rollback("error") return self.ap.logger.debug('Got Change State Event Response') self.ap.logger.debug('Sending Change State Event Request') ctrl_gen = self.control_round_trip(CAPWAP_PKTS.change_state( self.ap, radio_id=1), 12, debug_msg='Change state event request') send_data = None while True: action = ctrl_gen.send(send_data) if action in ('good_resp', 'time', 'dtls_broke', 'err'): ctrl_gen.close() break else: send_data = yield action if action == "err": break if action == 'dtls_broke': yield(rollback("dtls session broken")) return elif action == 'time': yield rollback("timeout: join request") return elif action == 'err': yield rollback("error") return self.ap.logger.debug('Got Change State Event Response') self.ap.logger.debug( 'Going to ack all config updates and try to get SSID') # ack all config updates in worker_traffic_handler thread # while not self.ap.last_recv_ts or self.ap.last_recv_ts + 5 >= time.time(): # self.waiting_on = simpy.events.Event(self.env) # yield ("process_with_timeout", self.waiting_on, 5) # del self.waiting_on # if not self.ap.is_dtls_established: # yield rollback("dtls not established") # return # elif self.ap.SSID: # break # if not self.ap.last_recv_ts: # break self.waiting_on = simpy.events.Event(self.env) yield ("process_with_timeout", self.waiting_on, config.capwap.specific.ssid_timeout) del self.waiting_on if not self.ap.SSID: yield rollback("no SSID") return self.ap.logger.info("received SSID, proceding with sending data keep_alive") RetransmitInterval = config.capwap.retransmit_interval for _ in range(config.capwap.max_retransmit): if self.ap.state == APState.RUN: break if not self.ap.is_dtls_established: yield rollback("dtls not established") return RetransmitInterval *= 2 tx_pkt = self.ap.wrap_capwap_pkt( CAPWAP_PKTS.keep_alive(self.ap), dst_port=5247) self.ap.logger.debug("Sending keep-alive") yield ('put', tx_pkt) self.waiting_on = simpy.events.Event(self.env) yield ("process_with_timeout", self.waiting_on, RetransmitInterval) del self.waiting_on if self.ap.got_keep_alive: self.ap.got_keep_alive = False self.ap.logger.debug('Received Keep-alive response.') self.ap.last_echo_req_ts = time.time() self.ap.join_time = time.time() self.ap.join_duration = self.ap.join_time - self.ap.start_join_time self.ap.state = APState.RUN self.ap.logger.info("Service ApJoinWLC finished") # release spot yield("done_ap") yield ('service', ServiceAPRun(self.worker, self.ap, self.env, self.topics_to_subs)) return if not self.ap.is_dtls_established: break # timeout if not self.ap.is_dtls_established: yield rollback("DTLS session broken") return # too many trials or failure if self.ap.state == APState.JOIN: yield rollback("too many trials") return except simpy.events.Interrupt: self.ap.logger.debug("Service APJoinWLC interrupted") return True class ServiceAPRun(ServiceAP): """Run state simulation for an AP. Send periodic Echo Request to the WLC. """ def run_with_buffer(self): from ..trex_wireless_config import config try: ap = self.ap self.publish = pubsub.Publisher(ap.pubsub, "").publish # publish Joined event event = APJoinConnectedEvent(self.env, ap.mac) self.raise_event(event) def rollback(reason=None): if reason: self.ap.logger.info("Service ApRun rollback: %s" % reason) self.ap.state = APState.DISCOVER return ('service', ServiceAPDiscoverWLC(self.worker, self.ap, self.env, self.topics_to_subs)) self.ap.logger.info("Service ApRun started") wait_time = config.capwap.echo_interval while True: if ap.state != APState.RUN: break if ap.got_disconnect: event = APJoinDisconnectedEvent(self.env, ap.name) self.raise_event(event) ap.got_disconnect = False # if disconnected, disconnect the clients for client in ap.clients: client.got_disconnect = True try: client.got_disconnected_event.succeed() except (RuntimeError, AttributeError): # already triggered or not waiting for this packet pass rollback("got disconnected") yield ("sleep", wait_time) # echo_resp_timer is set when a response is stil expected (waiting), otherwise is None if ap.echo_resp_timer and ap.echo_resp_timer.has_expired(): # no echo response received, retry if ap.echo_resp_retry <= config.capwap.max_retransmit: ap.echo_resp_timeout *= 2 ap.echo_resp_timer = PassiveTimer(ap.echo_resp_timeout) ap.echo_resp_retry += 1 tx_pkt = ap.get_echo_capwap() ap.logger.debug( "sending echo request after timeout, retries: %s" % ap.echo_resp_retry) encrypted = ap.encrypt(tx_pkt) if encrypted: self.worker.pkt_pipe.send(ap.get_echo_wrap(encrypted)) else: event = APJoinDisconnectedEvent(self.env, ap.mac) self.raise_event(event) self.ap.logger.warn( "Timeout in echo response, disconnecting AP") ap.echo_resp_timeout = config.capwap.retransmit_interval ap.echo_resp_retry = 0 yield rollback("timeout in echo response") if time.time() > ap.last_echo_req_ts + config.capwap.echo_interval: # echo_req_timer passed, send new echo tx_pkt = ap.get_echo_capwap() ap.last_echo_req_ts = time.time() ap.echo_resp_timer = PassiveTimer(ap.echo_resp_timeout) ap.logger.debug("sending echo request") encrypted = ap.encrypt(tx_pkt) if encrypted: self.worker.pkt_pipe.send(ap.get_echo_wrap(encrypted)) except simpy.events.Interrupt: self.ap.logger.debug("Service ApRun interrupted") return True self.ap.logger.info("Service ApRun finished") class ServiceAPShutdownDTLS(ServiceAP): def run(self, pipe): yield pipe.async_wait(0) self.ap.logger.info("Service ApShutdownDTLS started") with self.ap.ssl_lock: libssl.SSL_shutdown(self.ap.ssl) ssl_data = self.ap.ssl_read() if ssl_data: try: tx_pkt = self.ap.wrap_capwap_pkt(b'\1\0\0\0' + ssl_data) self.send(tx_pkt) except: return class ServiceAPShutdown(ServiceAP): """Service stopping an AP, sending a 'close notify' to the controller if needed. When done, the state of the AP is CLOSED. """ aps_by_ssl = {} @staticmethod def openssl_callback(ssl, where, ret): pkt_pipe = ServiceAPShutdown.aps_by_ssl[ssl]['pkt_pipe'] ap = ServiceAPShutdown.aps_by_ssl[ssl]['ap'] logger = ServiceAPShutdown.aps_by_ssl[ssl]['logger'] if libcrypto.BIO_ctrl_pending(ap.out_bio): ssl_data = ap.ssl_read() ap.nb_write += 1 if ap.state != APState.CLOSING: return 0 if ssl_data: # This is due to a bug in the ordering of UDP packet received... to be investigated if ap.nb_write > 7 and len(ssl_data) > 1000 and not ap.is_handshake_done_libssl(): with ap.ssl_lock: timeout = libssl.DTLSv1_get_timeout(ap.ssl) timeout = timeout.tv_sec + timeout.tv_usec * 1e-6 return 0 pkt = ap.wrap_capwap_pkt(b'\1\0\0\0' + ssl_data) logger.debug( "sending dtls packet (openssl callback @ ApShutdown)") pkt_pipe.send(pkt) return 0 ssl_info_callback_type = CFUNCTYPE(c_int, c_void_p, c_int, c_int) ssl_info_callback_func = ssl_info_callback_type(openssl_callback.__func__) def run(self, pipe): try: from ..trex_wireless_config import config yield pipe.async_wait(0) event = APJoinDisconnectedEvent(self.env, self.ap.name) self.raise_event(event) self.ap.logger.info("Service ApShutdown started") if self.ap.state <= APState.DISCOVER or self.ap.state > APState.CLOSING: self.ap.state = APState.CLOSED self.ap.logger.info("Service ApShutdown stopped : AP is already shut") return self.ap.active_service = self ServiceAPShutdown.aps_by_ssl[self.ap.ssl] = { 'ap': self.ap, 'pkt_pipe': self.worker.pkt_pipe, 'logger': self.ap.logger} self.ap.nb_write = 0 self.ap.timeout_dtls = 0 try: # DTLS Shutdown with self.ap.ssl_lock: libssl.SSL_set_info_callback( self.ap.ssl, self.ssl_info_callback_func) # set ssl callback cnt = 0 with self.ap.ssl_lock: ret = libssl.SSL_shutdown(self.ap.ssl) # want read / want write while ret == 0 or libssl.SSL_get_error(self.ap.ssl, ret) in (2, 3): # retry timeout = libssl.DTLSv1_get_timeout(self.ap.ssl) timeout = min( max(timeout.tv_sec + timeout.tv_usec * 1e-6, sleep_for_packet), 3) yield pipe.async_wait(timeout) ret = libssl.SSL_shutdown(self.ap.ssl) cnt += 1 if cnt > config.dtls.shutdown_max_retransmit: break if ret == 1: self.ap.logger.debug("SSL Shutdown success") else: try: self.ap.logger.warn("SSL Shutdown error: %s: %s" % ( ret, SSL_CONST.ssl_err[libssl.SSL_get_error(self.ap.ssl, ret)])) except KeyError: # unknown error pass finally: with self.ap.ssl_lock: libssl.SSL_set_info_callback( self.ap.ssl, None) # remove ssl callback if self.ap.ssl in ServiceAPShutdown.aps_by_ssl: del ServiceAPShutdown.aps_by_ssl[self.ap.ssl] self.ap.logger.info("Service ApShutdown finished") self.ap.state = APState.CLOSED self.ap.reset_vars() except simpy.events.Interrupt: self.ap.logger.info("Service ApShutdown interrupted") return True return class ServiceInfoEvent(Service): """Service gathering info on aps and clients joins.""" def __init__(self, worker, verbose_level=Service.WARN): Service.__init__(self, verbose_level) # TODO self.worker = worker self.name = ServiceInfoEvent.__class__.__name__ def get_filter_type(self): return None def run(self, pipe): ap_joined = False client_joined = False while not ap_joined or not client_joined: with self.worker.aps_lock: aps = list(self.worker.aps) if not ap_joined and len([ap for ap in aps if ap.state != APState.RUN]) == 0: # all aps are joined for the first time self.worker.ap_join_done_time = time.time() ap_joined = True self.worker.ap_joined.set() with self.worker.clients_lock: clients = list(self.worker.clients) if clients and ap_joined and not client_joined and (len([c for c in clients if c.state != ClientState.RUN]) == 0): self.worker.client_join_done_time = time.time() client_joined = True # self.worker.client_joined.set() yield pipe.async_wait(0.5) # print( len([ap for ap in self.manager.aps if ap.state != APState.RUN]) ) class ServiceEventManager(Service): """Service waiting on queue for events to be 'triggered' (set).""" def __init__(self, event_store): """Build a ServiceEventManager. Args: event_store: SynchronziedStore where all elements are events to be 'succeed'. """ super().__init__() self.event_store = event_store self.name = ServiceEventManager.__class__.__name__ def get_filter_type(self): return None def run(self): while True: events = yield self.event_store.get(None, 1) for event in events: try: event.succeed() except RuntimeError: # already triggered pass
gramformer/__init__.py
shashankdeshpande/Gramformer
971
11190867
<reponame>shashankdeshpande/Gramformer from gramformer.gramformer import Gramformer
nucleoatac/diff_occ.py
RavelBio/NucleoATAC
101
11190896
<reponame>RavelBio/NucleoATAC<filename>nucleoatac/diff_occ.py """ Script to make nucleosome occupancy track! @author: <NAME> """ ##### IMPORT MODULES ##### # import necessary python modules import multiprocessing as mp import numpy as np import traceback import itertools import pysam from pyatac.utils import shell_command,read_chrom_sizes_from_bam from pyatac.chunk import ChunkList from nucleoatac.Occupancy import FragmentMixDistribution, OccupancyParameters, OccChunk from pyatac.fragmentsizes import FragmentSizes from pyatac.bias import PWM def _diffHelper(arg): """function to get occupancy for a set of bed regions """ (chunk, params) = arg try: occ = OccChunk(chunk) occ.process(params) out = (occ.getNucDist(), occ.occ, [occ.peaks[i] for i in sorted(occ.peaks.keys())]) occ.removeData() except Exception as e: print('Caught exception when processing:\n'+ chunk.asBed()+"\n") traceback.print_exc() print() raise e return out def _writeDiff(pos_queue, out): out_handle = open(out + '.occdiff.bed','a') try: for poslist in iter(pos_queue.get, 'STOP'): for pos in poslist: pos.write(out_handle) pos_queue.task_done() except Exception, e: print('Caught exception when writing occupancy track\n') traceback.print_exc() print() raise e out_handle.close() return True def run_diff(args, bases = 500000): """run differential occupancy calling """ chrs = read_chrom_sizes_from_bam(args.bam) pwm = PWM.open(args.pwm) chunks = ChunkList.read(args.bed, chromDict = chrs, min_offset = args.flank + args.upper/2 + max(pwm.up,pwm.down)) chunks.merge() maxQueueSize = max(2,int(100 * bases / np.mean([chunk.length() for chunk in chunks]))) #get fragmentsizes fragment_dist1 = FragmentMixDistribution(0, upper = args.upper) fragment_dist1.fragmentsizes = FragmentSizes(0, args.upper, vals = FragmentSizes.open(args.sizes1).get(0,args.upper)) fragment_dist1.modelNFR() fragment_dist2 = FragmentMixDistribution(0, upper = args.upper) fragment_dist2.fragmentsizes = FragmentSizes(0, args.upper, vals = FragmentSizes.open(args.sizes2).get(0,args.upper)) fragment_dist2.modelNFR() params = OccupancyParameters(fragment_dist, args.upper, args.fasta, args.pwm, sep = args.nuc_sep, min_occ = args.min_occ, flank = args.flank, bam = args.bam, ci = args.confidence_interval) sets = chunks.split(bases = bases) pool1 = mp.Pool(processes = max(1,args.cores-1)) diff_handle = open(args.out + '.occdiff.bed','w') diff_handle.close() diff_queue = mp.JoinableQueue() diff_process = mp.Process(target = _writeDiff, args=(diff_queue, args.out)) diff_process.start() nuc_dist = np.zeros(args.upper) for j in sets: tmp = pool1.map(_occHelper, zip(j,itertools.repeat(params))) for result in tmp: diff_queue.put(result[1]) pool1.close() pool1.join() diff_queue.put('STOP') diff_process.join() pysam.tabix_compress(args.out + '.occdiff.bed', args.out + '.occdiff.bed.gz',force = True) shell_command('rm ' + args.out + '.occdiff.bed') pysam.tabix_index(args.out + '.occdiff.bed.gz', preset = "bed", force = True)
finrl_meta/env_future_trading/wt4elegantrl/envs.py
eitin-infant/FinRL-Meta
214
11190922
from gym import Env from gym.spaces import Box, Space from features import Feature from stoppers import Stopper from assessments import Assessment from wtpy.apps import WtBtAnalyst from wtpy.WtBtEngine import WtBtEngine from strategies import StateTransfer, EngineType from multiprocessing import Pipe, Process from os import getpid # 一个进程只能有一个env class WtEnv(Env): TRAINER = 1 EVALUATOR = 2 DEBUGGER = 3 def __init__(self, strategy: StateTransfer, stopper: Stopper, feature: Feature, assessment: Assessment, time_range: tuple, slippage: int = 0, id: int = getpid(), mode=1, ): self.reward_range if mode == 3: # 调试模式 self._log_: str = './config/03research/log_debugger.json' self._dump_: bool = True self._mode_: str = 'WtDebugger' elif mode == 2: # 评估模式 self._log_: str = './config/03research/log_evaluator.json' self._dump_: bool = True self._mode_: str = 'WtEvaluator' else: # 训练模式 self._log_: str = './config/03research/log_trainer.json' self._dump_: bool = False self._mode_: str = 'WtTrainer' self._id_: int = id self._iter_: int = 0 self._run_: bool = False self.__strategy__ = strategy self._et_ = self.__strategy__.EngineType() self.__stopper__: Stopper = stopper self.__slippage__: int = slippage self.__feature__: Feature = feature self.observation_space: Box = Box(**self.__feature__.observation) self.action_space: Space = self.__strategy__.Action( len(self.__feature__.securities)) self._assessment_: Assessment = assessment self.__time_range__ = time_range def _debug_(self): pass def __step__(self): finished = not self._cb_step_() if self._assessment_.done or finished: self._assessment_.finish() self._debug_() self.close() # if self._dump_: # self.analyst(self._iter_) def close(self): if self._run_ and hasattr(self, '_engine_'): self._engine_.stop_backtest() self._run_ = False def reset(self): self.close() time_start, time_end = self.__time_range__[self._iter_%len(self.__time_range__)] self._iter_ += 1 if not hasattr(self, '_engine_'): # 创建一个运行环境 self._engine_: WtBtEngine = WtBtEngine( eType=self._et_, logCfg=self._log_, ) if self._et_ == EngineType.ET_CTA: self._engine_.init( './config/01commom/', './config/03research/cta.json') self._cb_step_ = self._engine_.cta_step elif self._et_ == EngineType.ET_HFT: self._engine_.init( './config/01commom/', './config/03research/hft.json') self._cb_step_ = self._engine_.hft_step else: raise AttributeError self._engine_.configBacktest(time_start, time_end) self._engine_.commitBTConfig() else: self._engine_.set_time_range(time_start, time_end) # 重置奖励 self._assessment_.reset() # 创建一个策略并加入运行环境 self._strategy_: StateTransfer = self.__strategy__( name=self._name_(self._iter_), feature=self.__feature__, stopper=self.__stopper__, assessment=self._assessment_, ) # 设置策略的时候一定要安装钩子 if self._et_ == EngineType.ET_CTA: self._engine_.set_cta_strategy( self._strategy_, slippage=self.__slippage__, hook=True, persistData=self._dump_) elif self._et_ == EngineType.ET_HFT: self._engine_.set_hft_strategy(self._strategy_, hook=True) else: raise AttributeError # 回测一定要异步运行 self._engine_.run_backtest(bAsync=True, bNeedDump=self._dump_) self._run_ = True self.__step__() return self.__feature__.obs def step(self, action): assert hasattr(self, '_engine_') self._strategy_.setAction(action) self._cb_step_() self.__step__() return self.__feature__.obs, self._assessment_.reward, self._assessment_.done, {} @property def assets(self): return self._assessment_.curr_assets def analyst(self, iter: int): name = self._name_(iter) analyst = WtBtAnalyst() folder = "./outputs_bt/%s/" % name analyst.add_strategy( name, folder=folder, init_capital=self._assessment_._init_assets_, rf=0.02, annual_trading_days=240) try: analyst.run_new('%s/PnLAnalyzing.xlsx' % folder) except: analyst.run('%s/PnLAnalyzing.xlsx' % folder) def analysts(self): for iter in range(1, self._iter_+1): self.analysis(iter) def _name_(self, iter): time_start, time_end = self.__time_range__[(iter-1)%len(self.__time_range__)] return '%s%s_%s_%s_%s-%s' % (self._mode_, self._id_, self.__strategy__.Name(), iter, str(time_start)[:8], str(time_end)[:8]) def __del__(self): if hasattr(self, '_engine_'): self._engine_.release_backtest() def __sub_process_worker__(pipe: Pipe, _cmd_, _attr_, cli, kwargs): env = cli(**kwargs) while True: cmd, kwargs = pipe.recv() if cmd in _cmd_: if cmd == 'stop': pipe.send(True) pipe.close() break call = getattr(env, cmd) if kwargs: # print(cmd, kwargs) pipe.send(call(**kwargs)) else: pipe.send(call()) elif cmd in _attr_: pipe.send(getattr(env, cmd)) else: pipe.send('unknow %s' % cmd) class WtSubProcessEnv(Env): _cmd_ = ('reset', 'step', 'close', 'stop') _attr_ = ('reward_range', 'metadata', 'observation_space', 'action_space', 'assets') def __init__(self, cli, **kwargs): self._pipe_, pipe = Pipe() self._process_ = Process( target=__sub_process_worker__, args=(pipe, self._cmd_, self._attr_, cli, kwargs), daemon=True ) self._process_.start() def __do__(self, cmd, **kwargs): self._pipe_.send((cmd, kwargs)) return self._pipe_.recv() @property def metadata(self): return self.__do__('metadata') @property def reward_range(self): return self.__do__('reward_range') @property def observation_space(self): return self.__do__('observation_space') @property def action_space(self): return self.__do__('action_space') @property def assets(self): return self.__do__('assets') def reset(self): return self.__do__('reset') def step(self, action): # print(type(action)) return self.__do__('step', action=action) def close(self): return self.__do__('close') def __del__(self): self.__do__('stop') self._process_.join() self._process_.close()
climlab/surface/turbulent.py
nfeldl/climlab
160
11190930
'''Processes for surface turbulent heat and moisture fluxes :class:`~climlab.surface.SensibleHeatFlux` and :class:`~climlab.surface.LatentHeatFlux` implement standard bulk formulae for the turbulent heat fluxes, assuming that the heating or moistening occurs in the lowest atmospheric model level. :Example: Here is an example of setting up a single-column Radiative-Convective model with interactive water vapor and surface latent and sensible heat fluxes. This example also demonstrates *asynchronous coupling*: the radiation uses a longer timestep than the other model components:: import numpy as np import climlab from climlab import constants as const # Temperatures in a single column full_state = climlab.column_state(num_lev=30, water_depth=2.5) temperature_state = {'Tatm':full_state.Tatm,'Ts':full_state.Ts} # Initialize a nearly dry column (small background stratospheric humidity) q = np.ones_like(full_state.Tatm) * 5.E-6 # Add specific_humidity to the state dictionary full_state['q'] = q # ASYNCHRONOUS COUPLING -- the radiation uses a much longer timestep # The top-level model model = climlab.TimeDependentProcess(state=full_state, timestep=const.seconds_per_hour) # Radiation coupled to water vapor rad = climlab.radiation.RRTMG(state=temperature_state, specific_humidity=full_state.q, albedo=0.3, timestep=const.seconds_per_day ) # Convection scheme -- water vapor is a state variable conv = climlab.convection.EmanuelConvection(state=full_state, timestep=const.seconds_per_hour) # Surface heat flux processes shf = climlab.surface.SensibleHeatFlux(state=temperature_state, Cd=0.5E-3, timestep=const.seconds_per_hour) lhf = climlab.surface.LatentHeatFlux(state=full_state, Cd=0.5E-3, timestep=const.seconds_per_hour) # Couple all the submodels together model.add_subprocess('Radiation', rad) model.add_subprocess('Convection', conv) model.add_subprocess('SHF', shf) model.add_subprocess('LHF', lhf) print(model) # Run the model model.integrate_years(1) # Check for energy balance print(model.ASR - model.OLR) ''' from __future__ import division import numpy as np from climlab.utils.thermo import qsat from climlab import constants as const from climlab.process.energy_budget import EnergyBudget from climlab.domain.field import Field class _SurfaceFlux(EnergyBudget): '''Abstract parent class for SensibleHeatFlux and LatentHeatFlux''' def __init__(self, Cd=3E-3, resistance=1., **kwargs): super(_SurfaceFlux, self).__init__(**kwargs) self.Cd = Cd self.add_input('resistance', resistance) self.heating_rate['Tatm'] = np.zeros_like(self.Tatm) # fixed wind speed (for now) self.add_input('U', 5. * np.ones_like(self.Ts)) # retrieving surface pressure from model grid self.ps = self.lev_bounds[-1] def _compute_heating_rates(self): '''Compute energy flux convergences to get heating rates in :math:`W/m^2`.''' self._compute_flux() self.heating_rate['Ts'] = -self._flux # Modify only the lowest model level self.heating_rate['Tatm'][..., -1, np.newaxis] = self._flux def _air_density(self, Ta): return self.ps * const.mb_to_Pa / const.Rd / Ta class SensibleHeatFlux(_SurfaceFlux): r'''Surface turbulent sensible heat flux implemented through a bulk aerodynamic formula. The flux is computed from .. math:: SH = r ~ c_p ~\rho ~ C_D ~ U \left( T_s - T_a \right) where: - :math:`c_p` and :math:`\rho` are the specific heat and density of air - :math:`C_D` is a drag coefficient (stored as ``self.Cd``, default value is 3E-3) - :math:`U` is the near-surface wind speed, stored as ``self.U``, default value is 5 m/s - :math:`r` is an optional resistance parameter (stored as ``self.resistance``, default value = 1) The surface temperature :math:`T_s` is taken directly from ``self.state['Ts']``, while the near-surface air temperature :math:`T_a` is taken as the lowest model level in ``self.state['Tatm']`` Diagnostic quantity ``self.SHF`` gives the sensible heat flux in W/m2. Temperature tendencies associated with this flux are computed for ``Ts`` and for the lowest model level in ``Tatm``. All other tendencies (including air temperature tendencies at other levels) are set to zero. ''' def __init__(self, Cd=3E-3, **kwargs): super(SensibleHeatFlux, self).__init__(Cd=Cd, **kwargs) self.add_diagnostic('SHF', 0.*self.Ts) def _compute_flux(self): # this ensure same dimensions as Ts # (and use only the lowest model level) Ta = Field(self.Tatm[..., -1, np.newaxis], domain=self.Ts.domain) Ts = self.Ts DeltaT = Ts - Ta rho = self._air_density(Ta) # flux from bulk formula self._flux = self.resistance * const.cp * rho * self.Cd * self.U * DeltaT self.SHF = self._flux class LatentHeatFlux(_SurfaceFlux): r'''Surface turbulent latent heat flux implemented through a bulk aerodynamic formula. The flux is computed from .. math:: LH = r ~ L ~\rho ~ C_D ~ U \left( q_s - q_a \right) where: - :math:`L` and :math:`\rho` are the latent heat of vaporization and density of air - :math:`C_D` is a drag coefficient (stored as ``self.Cd``, default value is 3E-3) - :math:`U` is the near-surface wind speed, stored as ``self.U``, default value is 5 m/s - :math:`r` is an optional resistance parameter (stored as ``self.resistance``, default value = 1) The surface specific humidity :math:`q_s` is computed as the saturation specific humidity at the surface temperature ``self.state['Ts']`` and surface pressure ``self.ps``, while the near-surface specific humidity :math:`q_a` is taken as the lowest model level in the field ``self.q`` (which must be provided either as a state variable or as input). Two diagnostics are computed: - ``self.LHF`` gives the sensible heat flux in W/m2. - ``self.evaporation`` gives the evaporation rate in kg/m2/s (or mm/s) How the tendencies are computed depends on whether specific humidity ``q`` is a state variable (i.e. is present in ``self.state``): - If ``q`` is in ``self.state`` then the evaporation determines the specific humidity tendency ``self.tendencies['q']``. The water vapor is added to the lowest model level only. Evaporation cools the surface through the surface tendency ``self.tendencies['Ts']``. Air temperature tendencies are zero everywhere. - If ``q`` is not in ``self.state`` then we compute an equivalent air temperature tendency for the lowest model layer instead of a specific humidity tendency (i.e. the latent heat flux is applied in the same way as a sensible heat flux). This process does not apply a tendency to the surface water amount. In the absence of other water processes this implies an infinite water source at the surface (slab ocean). ''' def __init__(self, Cd=3E-3, **kwargs): super(LatentHeatFlux, self).__init__(Cd=Cd, **kwargs) self.add_diagnostic('LHF', 0.*self.Ts) self.add_diagnostic('evaporation', 0.*self.Ts) # in kg/m2/s or mm/s def _compute_flux(self): # specific humidity at lowest model level # assumes pressure is the last axis q = Field(self.q[..., -1, np.newaxis], domain=self.Ts.domain) Ta = Field(self.Tatm[..., -1, np.newaxis], domain=self.Ts.domain) qs = qsat(self.Ts, self.ps) Deltaq = Field(qs - q, domain=self.Ts.domain) rho = self._air_density(Ta) # flux from bulk formula self._flux = self.resistance * const.Lhvap * rho * self.Cd * self.U * Deltaq self.LHF[:] = self._flux # evporation rate, convert from W/m2 to kg/m2/s (or mm/s) self.evaporation[:] = self.LHF/const.Lhvap def _compute(self): '''Overides the _compute method of EnergyBudget''' tendencies = self._temperature_tendencies() if 'q' in self.state: # in a model with active water vapor, this flux should affect # water vapor tendency, NOT air temperature tendency! tendencies['Tatm'] *= 0. Pa_per_hPa = 100. air_mass_per_area = self.Tatm.domain.lev.delta[...,-1] * Pa_per_hPa / const.g specific_humidity_tendency = 0.*self.q specific_humidity_tendency[...,-1,np.newaxis] = self.LHF/const.Lhvap / air_mass_per_area tendencies['q'] = specific_humidity_tendency return tendencies
tests/modules/contrib/test_vpn.py
spxtr/bumblebee-status
1,089
11190947
import pytest pytest.importorskip("tkinter") def test_load_module(): __import__("modules.contrib.vpn")
persephone/tests/test_transcription_preprocessing.py
a-tsioh/persephone
133
11190955
<filename>persephone/tests/test_transcription_preprocessing.py def test_segment_into_chars(): from persephone.preprocess.labels import segment_into_chars input_1 = "hello" output_1 = "h e l l o" input_2 = "hello world" output_2 = "h e l l o w o r l d" input_3 = "hello wo rld" output_3 = "h e l l o w o r l d" input_4 = "hello wo rld\r\n" output_4 = "h e l l o w o r l d" assert segment_into_chars(input_1) == output_1 assert segment_into_chars(input_2) == output_2 assert segment_into_chars(input_3) == output_3 def test_segment_into_tokens(): from persephone.preprocess.labels import segment_into_tokens from persephone.datasets.na import PHONEMES from persephone.datasets.na import TONES from persephone.datasets.na import SYMBOLS_TO_PREDICT input_1 = "ə˧ʝi˧-ʂɯ˥ʝi˩ | -dʑo˩ … | ə˩-gi˩!" output_1 = "ə ˧ ʝ i ˧ ʂ ɯ ˥ ʝ i ˩ | dʑ o ˩ | ə ˩ g i ˩" input_2 = "ʈʂʰɯ˧ne˧ ʝi˥-kv̩˩-tsɯ˩ | -mv̩˩." output_2 = "ʈʂʰ ɯ ˧ n e ˧ ʝ i ˥ k v̩ ˩ ts ɯ ˩ | m v̩ ˩" input_3 = " ʈʂʰɯ˧ne˧ ʝi˥-kv̩˩-tsɯ˩ | -mv̩˩.\r\n" output_3 = "ʈʂʰ ɯ ˧ n e ˧ ʝ i ˥ k v̩ ˩ ts ɯ ˩ | m v̩ ˩" token_inv = PHONEMES.union(TONES).union(SYMBOLS_TO_PREDICT) assert segment_into_tokens(input_1, token_inv) == output_1 assert segment_into_tokens(input_2, token_inv) == output_2 assert segment_into_tokens(input_3, token_inv) == output_3 def test_unicode_segmentation(): """Test that unicode whitespace characters are correctly handled in segmentation""" from persephone.preprocess.labels import segment_into_chars no_break_space = "hello\u00A0world" assert segment_into_chars(no_break_space) == "h e l l o w o r l d" unicode_spaces = [ "\u2000", #EN QUAD "\u2001", #EM QUAD "\u2002", #EN SPACE "\u2003", #EM SPACE "\u2004", #THREE-PER-EM SPACE "\u2005", #FOUR-PER-EM SPACE "\u2006", #SIX-PER-EM SPACE "\u2007", #FIGURE SPACE "\u2008", #PUNCTUATION SPACE "\u2009", #THIN SPACE "\u200A", #HAIR SPACE ] for space_character in unicode_spaces: assert segment_into_chars("hello"+space_character+"world") == "h e l l o w o r l d"
packages/vaex-core/vaex/registry.py
sethvargo/vaex
337
11190973
"""This module contains the `register_function` decorator to add expression methods to vaex dataframe.""" import functools import vaex.arrow import vaex.expression import vaex.multiprocessing scopes = { 'str': vaex.expression.StringOperations, 'str_pandas': vaex.expression.StringOperationsPandas, 'dt': vaex.expression.DateTime, 'td': vaex.expression.TimeDelta, 'struct': vaex.expression.StructOperations } def register_function(scope=None, as_property=False, name=None, on_expression=True, df_accessor=None, multiprocessing=False): """Decorator to register a new function with vaex. If on_expression is True, the function will be available as a method on an Expression, where the first argument will be the expression itself. If `df_accessor` is given, it is added as a method to that dataframe accessor (see e.g. vaex/geo.py) Example: >>> import vaex >>> df = vaex.example() >>> @vaex.register_function() >>> def invert(x): >>> return 1/x >>> df.x.invert() >>> import numpy as np >>> df = vaex.from_arrays(departure=np.arange('2015-01-01', '2015-12-05', dtype='datetime64')) >>> @vaex.register_function(as_property=True, scope='dt') >>> def dt_relative_day(x): >>> return vaex.functions.dt_dayofyear(x)/365. >>> df.departure.dt.relative_day """ import vaex.multiprocessing prefix = '' if scope: prefix = scope + "_" if scope not in scopes: raise KeyError("unknown scope") def wrapper(f, name=name): name = name or f.__name__ # remove possible prefix if name.startswith(prefix): name = name[len(prefix):] full_name = prefix + name if df_accessor: def closure(name=name, full_name=full_name, function=f): def wrapper(self, *args, **kwargs): lazy_func = getattr(self.df.func, full_name) lazy_func = vaex.arrow.numpy_dispatch.autowrapper(lazy_func) return vaex.multiprocessing.apply(lazy_func, args, kwargs, multiprocessing) return functools.wraps(function)(wrapper) if as_property: setattr(df_accessor, name, property(closure())) else: setattr(df_accessor, name, closure()) else: if on_expression: if scope: def closure(name=name, full_name=full_name, function=f): def wrapper(self, *args, **kwargs): lazy_func = getattr(self.expression.ds.func, full_name) lazy_func = vaex.arrow.numpy_dispatch.autowrapper(lazy_func) args = (self.expression,) + args return vaex.multiprocessing.apply(lazy_func, args, kwargs, multiprocessing) return functools.wraps(function)(wrapper) if as_property: setattr(scopes[scope], name, property(closure())) else: setattr(scopes[scope], name, closure()) else: def closure(name=name, full_name=full_name, function=f): def wrapper(self, *args, **kwargs): lazy_func = getattr(self.ds.func, full_name) lazy_func = vaex.arrow.numpy_dispatch.autowrapper(lazy_func) args = (self,) + args return vaex.multiprocessing.apply(lazy_func, args, kwargs, multiprocessing=multiprocessing) return functools.wraps(function)(wrapper) setattr(vaex.expression.Expression, name, closure()) vaex.expression.expression_namespace[prefix + name] = vaex.arrow.numpy_dispatch.autowrapper(f) return f # we leave the original function as is return wrapper
graphql_compiler/cost_estimation/__init__.py
manesioz/graphql-compiler
521
11190981
<gh_stars>100-1000 # Copyright 2019-present Kensho Technologies, LLC. """Query cost estimator. Purpose ======= Compiled GraphQL queries are sometimes too expensive to execute, in two ways: - They return too many results: high *cardinality*. - They require too many operations: high *execution cost*. If these impractically-expensive queries are executed, they can overload our systems and cause the querying system along with all dependent systems to crash. In order to prevent this, we use schema information and graph statistics to estimate these two costs at the GraphQL level given a query and parameters. A separate module could then use these estimates to inform users about potentially expensive queries, do automatic paging of the query, or suggest additions of indexes that may improve performance. Estimating Cardinality ====================== The *cardinality* of a query is a rough measure of the query result size and is defined as the unfolded number of rows returned by the query. We estimate cardinality by estimating the number of *result sets* (sets of graph vertices that match with scopes in the query) found as the results are *expanded* (as we step through the query and create or discard result sets). Example: Given the query { Region { name @output(out_name: "region") in_TropicalCyclone_LandfallRegion { name @output(out_name: "cyclone") } in_Earthquake_AffectedRegion { name @output(out_name: "earthquake") } } } and a graph with 6 Regions, 12 TropicalCyclones each linked to some Region, and 2 Earthquakes each linked to some Region, we estimate cardinality as follows: First, find all 6 Regions. For each Region, assuming the 12 relevant TropicalCyclones are evenly distributed among the 6 Regions, we expect 12/6=2 TropicalCyclones connected to each Region. So, after *expanding* each Region (going through each one and finding connected TropicalCyclones), we expect 6*2=12 *result sets* (subgraphs of a Region vertex connected to a TropicalCyclone vertex). Next, we expect only 2/6=.33 result sets in the *subexpansion* associated with Earthquakes (expanding each Region looking just for Earthquakes). So of the 12 TropicalCyclone result sets, we expect 12*.33=4 complete result sets for the full query (i.e. the query has estimated cardinality of 4). Approach Details: Following this expansion model, we can think of queries as trees and find the number of expected result sets as we recursively traverse the tree (i.e. step through the expansion). Our calculation depends on two types of values: (1) The root result set count (e.g. the 6 Regions in the graph) (2) The expected result set count per parent (e.g. .33 Earthquake result sets per Region) Both can be calculated with graph counts for every type in the schema which must be externally provided. (1) can be looked up directly and (2) can be approximated as the number of parent-child edges divided up over parent vertices present in the graph. Type casting and directives can affect these calculations in many different ways. We naively handle type casting, as well as optional, fold, recurse, and some filter directives. Additional statistics can be recorded to improve the coverage and accuracy of these adjustments. TODOs ===== - Estimate execution cost by augmenting the cardinality calculation. - Add recurse handling. - Add additional statistics to improve directive coverage (e.g. histograms to better model more filter operations). """
jacinle/random/rng.py
dapatil211/Jacinle
114
11190992
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # File : rng.py # Author : <NAME> # Email : <EMAIL> # Date : 01/19/2018 # # This file is part of Jacinle. # Distributed under terms of the MIT license. import os import random as sys_random import numpy as np import numpy.random as npr from jacinle.utils.defaults import defaults_manager from jacinle.utils.registry import Registry __all__ = ['JacRandomState', 'get_default_rng', 'gen_seed', 'gen_rng', 'reset_global_seed'] class JacRandomState(npr.RandomState): def choice_list(self, list_, size=1, replace=False, p=None): """Efficiently draw an element from an list, if the rng is given, use it instead of the system one.""" if size == 1: if type(list_) in (list, tuple): return list_[self.choice(len(list_), p=p)] return self.choice(list_, p=p) else: if type(list_) in (list, tuple): inds = self.choice(len(list_), size=size, replace=replace, p=p) return [list_[i] for i in inds] return self.choice(list_, size=size, replace=replace, p=p) def shuffle_list(self, list_): if type(list_) is list: sys_random.shuffle(list_, random=self.random_sample) else: self.shuffle(list_) def shuffle_multi(self, *arrs): length = len(arrs[0]) for a in arrs: assert len(a) == length, 'non-compatible length when shuffling multiple arrays' inds = np.arange(length) self.shuffle(inds) return tuple(map(lambda x: x[inds], arrs)) @defaults_manager.wrap_custom_as_default(is_local=True) def as_default(self): yield self _rng = JacRandomState() get_default_rng = defaults_manager.gen_get_default(JacRandomState, default_getter=lambda: _rng) def gen_seed(): return get_default_rng().randint(4294967296) def gen_rng(seed=None): return JacRandomState(seed) global_rng_registry = Registry() global_rng_registry.register('jacinle', lambda: _rng.seed) global_rng_registry.register('numpy', lambda: npr.seed) global_rng_registry.register('sys', lambda: sys_random.seed) def reset_global_seed(seed=None, verbose=False): if seed is None: seed = gen_seed() for k, seed_getter in global_rng_registry.items(): if verbose: from jacinle.logging import get_logger logger = get_logger(__file__) logger.critical('Reset random seed for: {} (pid={}, seed={}).'.format(k, os.getpid(), seed)) seed_getter()(seed) def _initialize_global_seed(): seed = os.getenv('JAC_RANDOM_SEED', None) if seed is not None: reset_global_seed(seed) _initialize_global_seed()